Gamma Knife Radiosurgery For Brain Vascular Malformations: Current Evidence And Future Tasks

Hirotaka Hasegawa 1
Masaaki Yamamoto 2
Masahiro Shin 1
Bierta E Barfod 2

1 Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan; 2 Katsuta Hospital Mito Gamma House, Hitachinaka, Ibaraki, Japan

Abstract: Gamma Knife radiosurgery (GKRS) has long been used for treating brain vascular malformations, including arteriovenous malformations (AVMs), dural arteriovenous fistulas (DAVFs), and cavernous malformations (CMs). Herein, current evidence and controversies regarding the role of stereotactic radiosurgery for vascular malformations are described. 1) It has already been established that GKRS achieves 70–85% obliteration rates after a 3–5-year latency period for small to medium-sized AVMs. However, late radiation-induced adverse events (RAEs) including cyst formation, encapsulated hematoma, and tumorigenesis have recently been recognized, and the associated risks, clinical courses, and outcomes are under investigation. SRS-based therapeutic strategies for relatively large AVMs, including staged GKRS and a combination of GKRS and embolization, continue to be developed, though their advantages and disadvantages warrant further investigation. The role of GKRS in managing unruptured AVMs remains controversial since a prospective trial showed no benefit of treatment, necessitating further consideration of this issue. 2) Regarding DAVFs, GKRS achieves 41–90% obliteration rates at the second post-GKRS year with a hemorrhage rate below 5%. Debate continues as to whether GKRS might serve as a first-line solo therapeutic modality given its latency period. Although the post-GKRS outcomes are thought to differ among lesion locations, further outcome analyses regarding DAVF locations are required. 3) GKRS is generally accepted as an alternative for small or medium-sized CMs in which surgery is considered to be too risky. The reported hemorrhage rates ranged from 0.5–5% after GKRS. Higher dose treatments (>15 Gy) were performed during the learning curve, while, with the current standard treatment, a dose range of 12–15 Gy is generally selected, and has resulted in acceptable complication rates (< 5%). Nevertheless, further elucidation of long-term outcomes is essential.

Keywords: arteriovenous malformation, cavernous malformation, dural arteriovenous fistula, gamma knife radiosurgery, stereotactic radiosurgery

Introduction
Based on the concept of stereotactic radiosurgery that was first introduced in 1951, the gamma unit was designed by Lars Leksell using multiple 60Co sources focused at a fixed center. 1,2 Characterized by its single-session focused irradiation with high accuracy and sharp dose fall-off, 3,4 gamma knife radiosurgery (GKRS) was first introduced clinically in 1968 and has since been used to treat more than one million patients worldwide with a variety of cerebral/cranial conditions. 2,5–7 Artierovenous malformation (AVM), dural arteriovenous fistula (DAVF), and cavernous malformation (CM) are the main GKRS targets; all are categorized as brain vascular malformations and are essentially caused by arteriovenous shunting, though their...
conditions and responses to GKRS are entirely different. Numerous studies, including systematic reviews and multicenter retrospective analyses, have examined radiosurgical outcomes of these disorders and the efficacy of GKRS has been well established. Nevertheless, several problems remain that must be addressed. Herein, we summarize current evidence supporting the use of GKRS for such brain vascular malformations and discuss persisting controversies.

GKRS Procedures For Vascular Malformations

Using local anesthesia with or without sedation, the patient’s head is fixed in a Leksell Coordinate Frame G (Elekta AB, Stockholm, Sweden). The patient is then sent to a radiographic suite to undergo stereotactic imaging studies, including magnetic resonance imaging (MRI), computed tomography (CT), and digital subtraction angiography (DSA). These imaging studies are performed with fitting of an appropriate indicator on the frame, which imposes fiducials on images of the patient. The acquired image dataset is then sent to GammaPlan (Elekta AB), a radiosurgical planning software program. In creating the radiosurgical plan, an appropriate prescription dose is aimed at the target’s margin usually using a 50–60% isodose gradient while a 70–90% isodose gradient occasionally is used in patients with a relatively small target. A margin, the setting of which is usually recommended in linac-based radiosurgery, is not required.

GKRS For Arteriovenous Malformation

Current Evidence

Brain AVM is the most common brain vascular malformation with a prevalence of just under 10 per 100,000. The hemorrhage risk is reported to be approximately 3%/year. Once a hemorrhage occurs, the possibilities of neurologic deficits and death are < 50% and < 10%, respectively. Therefore, the treatment goal is to eliminate the risk of hemorrhage, which can be achieved by isolating the nidus from the circulation. GKRS is considered to be a main therapeutic modality and is often applied to small to medium-sized AVMs.

Generally, nidus obliteration can be achieved in 70–85% of patients after a 3–5 year latency period. Though DSA is still the gold standard method for confirming nidus obliteration, there is a recent tendency to avoid DSA due to its invasiveness. MRI is generally regarded as an acceptable alternative, exhibiting 77–85% sensitivity and 89–95% specificity. Radiosurgical dose and AVM size are the factors most strongly influencing nidus obliteration. The Pittsburgh radiosurgical AVM score with its modification and the Virginia radiosurgical AVM scale are two major scoring systems which aid neurosurgeons in predicting post-radiosurgical outcomes. As to disadvantages of GKRS, approximately 30% of patients suffer from perinidal T2-signal intensity change within 2 years after the procedure, but this becomes symptomatic in less than 10% and permanent in only 3%. Post-GKRS hemorrhage is rare, and the risk does not increase, remaining the same or decreasing during the latency period. Whether nidus obliteration means “complete” eradication of hemorrhage risk remains debatable. Bleeding due to recanalization of a once-obliterated nidus, albeit quite rare, has been reported.

Late Radiation-Induced Adverse Events (RAEs)

Since the late 1990s, an increasing number of studies have described late RAEs, including cyst formation (CF), chronic encapsulated hematoma (CEH), and tumorigenesis. Radiation-induced chronic inflammation appears to play an important role in the former two conditions, suggesting that target size is strongly associated with their occurrence. The other risk factors include lobar location, higher prescription dose, and history of embolization as pre-GKRS factors, the occurrence of early edema, additional irradiation, and the state of nidus obliteration as post-GKRS factors. CF/CEH develops approximately 6.5–11.8 years after irradiation, and the cumulative incidences are estimated to range from 2.8–7.7% at 10 years and 7.6–12.5% at 15 years. Though the optimal treatment remains a source of controversy, surgical resection is widely regarded as a standard option. However, fluid diversion, including cyst-peritoneal shunt and ommaya reservoir placement, are minimally invasive alternatives for exclusively cystic lesions. Oral corticosteroids may help reduce the associated edema and alleviate symptoms; however, the long-term effects remain unknown. Previous studies on CF/CEH are summarized in Table 1.
less than 0.2%. The actual incidence, however, has yet to be determined due to the rarity of this condition.

Staged GKRS For Large AVMs

Large AVMs are challenging targets. Radiosurgical doses are generally reduced for fear of RAEs, which in turn could decrease the obliteration rate and might eventually result in a higher hemorrhage rate. In short, it is important to balance the therapeutic effect and risks. Accumulated evidence tells us that stand-alone GKRS for AVMs > 10 mL is controversial and that staged GKRS is an alternative that is frequently considered.

There are two distinct staging methods: volume-staged GKRS (VSGKRS) and dose-staged GKRS. In VSGKRS, the entire nidus volume is divided into 2 or 3 parts, which are then irradiated independently with intervals of several months (usually 3 to 6 months). On the other hand, in dose-staged GKRS, the entire nidus is irradiated repeatedly with an attenuated dose until a planned cumulative dose has been fully delivered. Although no definitive conclusion has yet been reached, retrospective evidence indicates the superiority of VSGKRS.

Previous studies on VSGKRS are summarized in Table 1. The crude obliteration rates after VSGKRS range between 33% and 72%, the exception being one study reporting 13%; this broad range may be due to marked differences in nidus volumes among studies (mean, 16.8–60 mL) and the wide variety of prescription doses administered (mean, 15.5–20.8 Gy). It seems that a dose of at least 17 Gy for each session is needed to obtain a favorable obliteration rate; if lesions are treated with ≥17 Gy, the obliteration rate approaches 60%. The other factors that potentially contribute to successful obliteration include larger than 20 Gy-volume coverage and a single drainer vessel. However, these results are not consistent and further research is needed. Regarding the disadvantages of VSGKRS, relatively high hemorrhage rates are the primary concern, with crude rates ranging from 4.5% up to 33%. The occurrence of RAEs would presumably be greatly affected by the dose, volume, location, and follow-up duration, and is thus

Author	Year	N	Median Observation Period (y)	Definition Of Late RAEs	Incidence (Crude Or Cumulative Rate)	Risk Factors	Remarks/ Treatment Modality
T. Hasegawa	2019	189	11.3*	CF, CEH, RIT	7.2%/15 y (cumulative)	Larger nidus volume	All pediatric patients
H. Hasegawa	2018	581	11.8*	CF, CEH	7.6%/15 y (cumulative)	Diameter > 22 mm, lobar location, (Early edema, secondary SRS)	GKRS
Pomeraniec	2018	1159	5.9 (w CF)/11.0 (wo CF)	CF	1.5% (crude)	Larger number of isocenters, early edema, longer follow-up	GKRS
Pollock	2017	233	9.8	ND	12.5%/15 y (cumulative)	Early edema, nidus occlusion, SRS before April 1997	GKRS
Nakajima	2016	404	4.9	CF, CEH	5.0% (crude)	No factor	GKRS
Matsuo	2014	109	ND	CF	5.5% (crude)	NA	Linac-radiosurgery
Parkhuzik	2013	102	5.3	Radionecrosis	6.9% (crude)	Diameter > 3 cm, secondary SRS	GKRS
Pan	2005	1203	See below	CF	3.6% (crude)	Addition of embolization, early edema	GKRS
Izawa	2005	237	6.8*	CF	3.4% (crude)	Higher central dose, larger nidus volume, nidus occlusion, lobar location	GKRS

Notes: *Mean. Observation period < 5 y, 674 patients; 5–10 y, 332 patients; 11–15 y, 167 patients; 16–23 y, 30 patients. Abbreviations: AVM, arteriovenous malformation; CF, cyst formation; CEH, chronic encapsulated hematoma; GKRS, gamma knife radiosurgery; NA, not assessed; ND, not described; RAE, radiation adverse event; RIT, radiation-induced tumor; y, year(S); w, with; wo, without.
Year	Author	N	Median Follow-Up Period (m)	Median Age At GKRS (y)	Median Prescription Dose (Gy)	Median Nidus Volume (mL)	Cases With Prior Hemorrhage	Obliteration Rate	Post-GKRS Hemorrhage Rate	Morbidity	Mortality
2019	El-Shehaby	29	43[*]	24[*]	18[*]	16[*]	58.3%	62.5% (CR)	2%/y	3.4% (CR)	0%
2018	Kano	60	ND	30	16	11.6 (1st), 10.6 (2nd)	43%	44%/10 y	25.2%/10 y	7% (CR)	16.7%/10 y
2017	Pollock	34	98.4	31	16	22.2	35%	75%/7 y	4.6%/y	6% (CR)	6% (CR)
2017	Nagy	44†	> 48	37	17.5	19.7	44%	61.4%/4 y	3.2%/y (wo HoH), 5.6%/y (w HoH)	6.5% (CR)	6% (CR)
2016	Hansaita	18	53	33	16	38	67%	35%/5 y	3.9%/y	11% (CR)	5.5% (CR)
2016	Park	45	104.9^{**}	29[*]	13–17	20.4[*]	22.2%	64.4% (CR)	11.1% (CR)	ND	3% (CR)
2016	Seymour	69	57.6–103.2	34	15.5–17.0	18.9–27.3	35–39%	21–68%/5 y (including near complete obliteration)	5.6%/y	3–16% (CR)	13–21% (CR)
2016	Franzin	20	45†	38	20	15.9	30%	20% (75% reduction)	10% (CR)	5% (CR)	ND
2012	Huang	18	> 36‡	35	15	22.9	55.6%	89%/10 y	31%/5 y	5.6% (CR)	5.6% (CR)

Notes: *Mean. **The interval of each GKRS session was > 2 years. †This is a study on 76 patients but the outcome analyses were performed only for the 44 patients who had follow-up data. ‡Sixteen out of 18 patients completed > 36 months of follow-up.

Abbreviations: AVM, arteriovenous malformation; BS, brainstem; CR, crude rate; GKRS, gamma knife radiosurgery; HoH, history of hemorrhage; m, month(s); ND, not described; y, year(s); VSGKRS, volume-staged gamma knife radiosurgery; w, with; w/o, without.
Combination Of GKRS And Embolization For Large AVMs

The other option for large AVMs is a combination of neoadjuvant nidus embolization and definitive GKRS. Previous relatively large studies reporting this combination are summarized in Table 3. A recent systematic review found the obliteration rate to be 41.0%, the 3-year hemorrhage rate to be 7.3%, and the RAE rate to be 3.3% however, these results might be misleading due to volume discrepancies and how they are defined. First, median/mean volumes in the studies included in this systematic review varied significantly; the smallest was 2.8 mL and the largest 29.5 mL. Second, most of the prior studies used residual AVM volume after embolization as a baseline while others employed the pre-embolization volume, and two studies did not describe volume in detail. Since AVM volume significantly affects radiosurgical outcomes, these discrepancies present a major obstacle to interpreting the results.

This combination was initially deemed to be ideal because embolization can reduce the nidus volume, with minimal invasiveness, down to the level at which GKRS could be suitably applied. However, several studies later suggested that this approach might be associated with a reduction in the obliteration rate. This reduction might be attributable to several factors including recanalization of the embolized AVM compartments, increased difficulty in AVM demarcation for radiosurgical planning, and increased angiogenesis after embolization. Nevertheless, it would be premature to abandon this combination strategy, given the volume issues discussed above. What we can learn from the relevant studies is that the obliteration rate for post-embolized AVMs might be lower than that for non-embolized AVMs with volumes similar to the residual volumes of embolized AVMs. Comparing post-embolized AVMs to non-embolized AVMs with volumes similar to the pre-embolized volume of the former would yield different results. Further studies must be designed to ascertain whether the combination therapy is beneficial for larger AVMs, by comparing the overall outcomes of both embolization and GKRS to a GKRS-based strategy without embolization, with adjustment for the pre-intervention volume between the two cohorts.

Current Evidence

DAVFs, accounting for 10–15% of intracranial arteriovenous shunt disorders, are acquired arteriovenous shunts involving the dura mater, where arterialized dural sinuses become an obstacle to normal cerebral venous return, eventually resulting in intracranial hemorrhage and/or non-hemorrhagic neurological deficits due to venous hyperemia. Presence of cortical venous drainage (CVD) and prior hemorrhage are well-known risk factors
Year	Author	N	Material For Embolization	Median Prescription Dose (Gy)	Median Nidus Volume (mL)	Cases With Prior Hemorrhage	Obliteration Rate (As Compared To Non-Embolized Cohort)	Post-GKRS Hemorrhage Rate	Study Design
2017	Miyachi	73	NBCA (100%)	ND	Pre, 13.8*	59%	CR, 60.3%	CR, 4.1%	Multicenter single arm retrospective analysis
2017	Strauss	35	Onyx (100%)		Pre, 12.2*	40%	CR, 51.4%	CR, 2.9%	Single arm retrospective analysis
2016	Huo	162	Onyx (60%), NBCA (37%), silk/coil (2%)	16.0	Pre, 14.3; Post, 10.9	40.1%	CR, 56.8%	1.71%/y	Single arm retrospective analysis
2015	Oermann	242	NBCA (79%), coil (13%), Onyx (9%)	20	Post, 4.6	50%	30.9%/5 y (worse)	2.0%/y	Matched cohort analysis (emboli + GKRS vs GKRS only)
2015	Lee	25	Onyx (100%)	22	Post, 3.5	36%	34.1%/4 y (no difference)	CR, 4%	Matched cohort analysis (emboli + GKRS vs GKRS only)
2015	Xiaochuan	46*	ND (mostly Onyx)	16.3	Pre, 14.1	50%	CR, 28.2%	1.66%/y	Retrospective analysis focusing on target embolization with GKRS
2012	Schwyzer	215	NBCA (66%), coil (11%), silk (2%)	19.6*	Post, 4.7*	42.8%	CR, 33% (worse)	CR, 6.08%	Retrospective comparison between emboli + GKRS vs GKRS only
2012	Kano	120	PVA (17%), NBCA/isobutyl 2-cyanoacrylate (44%), coil (8%), ND (32%)	18	Post, 6.6	53.3%	55%/5 y (worse)	2.7%/y	Matched cohort analysis (emboli + GKRS vs GKRS only)
2000	Miyachi	37	NBCA (100%)	ND	Pre, 21.9*; Post, 3.9*	40.5%	CR, 49% (for > 90% occlusion)	CR, 5.4%	Single arm retrospective analysis

Notes: *Mean. **Forty-six out of 86 patients had follow-up data.

Abbreviations: CR, crude rate; GKRS, gamma knife radiosurgery; NBCA, n-butyl cyanoacrylate; ND, not described; Post, post-embolization; Pre, pre-embolization; PVA, polyvinyl alcohol particle; y, year(s).
for future hemorrhage.137,138,141,143,144–146 The estimated annual event rates are 7–19% for DAVFs with CVD and/or prior hemorrhage, though the rates range from 0–1.5% in the absence of these aggressive features.137,143,147–149 During GKRS, the irradiation target is shunt tissues in the dura mater which can be seen on time-of-flight MRI and DSA. The prescription dose is usually between 18 and 22 Gy in most institutions. Fistula obliteration is achieved in 41–90% of treated patients after a latency period of several months to years (typically 1–3 years), with an acceptable hemorrhage rate below 5% as well as low symptomatic RAE rates ranging from 0–5%.150–164 The results of recent studies with significant numbers of study participants (≥20) are summarized in Table 5.152–155,157,161–165

Unresolved Issues And Future Tasks

First, no consensus has been reached regarding factors associated with successful obliteration. Knowing those factors would be an important first step to refining appropriate case selection and radiosurgical planning, and to tailoring treatment strategies to individual patients. Several studies have attempted to identify these crucial factors, but to date cavernous sinus location and absence of CVD are the only factors suggested by more than one study.152,154,165,166 The inconsistencies among these studies indicate that further investigations are necessary to clarify the relevant issues. Unlike AVM, DAVF is likely to be treated not only with GKRS alone but also in combination with embolization and/or surgery, making it difficult to assess the reasons for failed obliteration after GKRS.

Second, the outcomes of GKRS as a solo treatment remain to be fully elucidated. Due to the latency period in which hemorrhage risk cannot be regarded as negligible, GKRS is generally considered to be an alternative method when endovascular embolization and direct surgery are not feasible or have failed, or for patients with significant medical comorbidities.144 As such, in almost all published studies focusing on GKRS for DAVFs, a significant number of patients underwent embolization before GKRS or scheduled embolization immediately after GKRS. Nevertheless, GKRS is more advantageous in terms of safety and minimal invasiveness than the other therapeutic modalities; GKRS alone is thus potentially a good therapeutic option when endeavoring to achieve a balance between efficacy and safety. Indeed, Park et al reported a 90% obliteration rate with a 0% hemorrhage rate, suggesting that GKRS might provide acceptable outcomes when used as a solo treatment.163 However, their study was based on only 20 patients.

Third, since studies have suggested that cavernous sinus location is associated with fistula obliteration, fistula location may affect radiosurgical outcomes. Taking AVMs as an example, nidi location significantly affects treatment outcomes.16,25,41,49,167 To date, however, no study has addressed this issue, probably due to relatively small patient numbers. Starke et al recently reported the first multicenter retrospective analysis of data from 114 patients, approximately half of whom had undergone prior embolization, though they did not show location-specific outcomes, a factor which should be considered in future studies.165

Year	Author	N	Median Follow-Up Period (m)	Median Age At GKRS (y)	Median Nidus Volume (mL)	Obliteration Rate	Stroke Or Death Rate
2019	Karlsson136	1351	60	41	5	61% (CR)	5.8%/2 y (stroke), 1.4%/2 y (death)
2018	Tonetti134	233	100.8	42*	ND	72% (CR)	0.8%/y
2017	Ding133	232	90.5*	42*	2.1*	72%/5 y	10.3% (CR for stroke or death), 1.0%/y (stroke)
2016	Ding31	509	86*	40*	3.0*	75% (CR)	0.9%/y (stroke), 1.0–2.9% (death, depending on whether the unknown causes of death were related to AVM or not)
2016	Hanakita135	240	62	39	4.3	73%/6 y	1.1%/y (stroke)
2013	Pollock32	174	64	42.5	5.6	69.7% (CR)	10.3%/5 y (stroke or death)

Notes: *Mean. Abbreviations: ARUBA, A Randomised trial of Unruptured Brain Arteriovenous malformations; CR, crude rate; m = month(s); GKRS, gamma knife radiosurgery; ND, not described; y, year(s).
Year	Author	N	Median Prescription Dose (Gy)	Cases With Embolization	Cases With Prior Hemorrhage	Cases With CVD	Crude Obliteration Rate	Hemorrhage Rate	RAE Rate	Factors Associated With Successful Obliteration	Remarks
2019	Starke	114	Mean, 21.8	47%	24%	52%	68%	0.9%/year	3.5%	Female sex, absence of venous ectasia, CS location	Multicenter study
2018	Tonetti	42	20	67%	31%	100%	64%	0.8%/year	/	All cases had CVD	/
2018	Chen	27	Mean, 20	63%	44%	63%	63%	3.3%/year	/	None	All cases had high-risk features
2016	Park	20	Mean, 16.8	0%	5%	60%	90%	0%	5%	/	No cases had prior embolization
2013	Pan	264	Mean, 17.2	13%	/	45%↑	66%	0.8%	0.4%	/	/
2012	Hanakita	22	20	45%	27%	68%	55%	0%	0%	Absence of CVD, prior hemorrhage, volume < 1.5 mL, Cognard type IIIV	/
2010	Cifarelli	55	21	65%	36%	71%	54%	5.4%	1.8%	Absence of CVD, Borden type I***	/
2010	Yang	40	20	30%	18%	50%	73%	2.5%	0%	CS location***	/
2006	Soderman	49	Mean, 23	17%	39%	69%	68%	4.0%	2.0%	/	/
2001	Friedman	23	18	87%↑	9%	17%	41%§	0%	0%	None	/
1999	Pollock	20	20	65%↑	0%	20%	65%	0%	0%↑	CS DAVF only	/

Notes: *The entire cohort includes 41 patients but follow-up data were available for only 37. †32 of the 115 patients with non-CS DAVFs had CVD. ‡Results from univariate analyses; multivariate analysis was not performed. §Planned post-radiosurgical embolization was included. ¶Calculated from data not including patients lacking follow-up angiography (n = 6). ¶One recurrence of visual symptoms was noted.

Abbreviations: CS, cavernous sinus; CVD, cortical venous drainage; DAVF, dural arteriovenous fistula; RAE, radiation-induced adverse event; TS, transverse-sigmoid.
In conclusion, GKRS has the potential to become a first-line therapeutic option for DAVFs. However, its efficacy must be further confirmed with additional studies based on a large number of participants. Due to the scarcity of cases in a single institution, this goal might be achievable only by conducting a multi-institutional investigation with a large combined sample population. At present, a multi-institutional study is ongoing in Japan (JLGK1802, University Medical Information Network Registry No. UMIN000037211).

GKRS For Cavernous Malformation

Current Evidence

Brain CM is a low-flow and angiographically-occult vascular lesion, accounting for 10% to 15% of all brain vascular malformations.\(^\text{168-170}\) A CM becomes symptomatic when it bleeds and expands or causes seizures. In general, the hemorrhage rate for those in deep locations (for brainstem, thalamus, and basal ganglia lesions, the hemorrhage rate is 3–10%/year) exceeds that for CM in lobar locations (0–12%/year), and the rate for those with prior hemorrhage (5–23%/year) is higher than that for CM without prior bleeding (0–1%/year).\(^\text{171-177}\) The 5-year risk of additional hemorrhage or neurological decline for those with a prior hemorrhage is high, up to 42% if untreated, though the risk diminishes over time.\(^\text{178}\)

Asymptomatic CMs are better managed conservatively since the risk of a first-ever intracranial hemorrhage is low and functional impairment from the hemorrhage would be mild; only patients with symptomatic and/or progressive lesions are regarded as good candidates for interventions.\(^\text{170,178-180}\) Surgical resection is recommended for superficial lesions; whereas radiosurgery is considered for those located deep inside the brain, such as lesions in the basal ganglia, thalamus, and brainstem.\(^\text{169,170,179}\)

Before the early 2000s, mainly high radiosurgical doses (=18 Gy) were used, which contributed to a relatively high rate of RAEs.\(^\text{181-184}\) Currently, low doses (≤15 Gy) are generally preferred, and provide a level of effectiveness similar to that of higher doses but with a lower risk profile (Table 6).\(^\text{181,185-195}\)

The goal of GKRS is to minimize the risk of bleeding, which can be achieved within an approximately two-year latency period. The short- to mid-term outcomes up to ≥5 years are well-known. Recent retrospective studies have shown the post-radiosurgical hemorrhage rates to range from 3.3–15%/year within two years after GKRS and 0.8–4.7%/year thereafter (Table 2), a remarkable reduction compared to the pre-radiosurgical hemorrhage rates ranging from 20–40%.\(^\text{181,185-195}\) The histopathological responses following GKRS are not yet fully understood. Based on the best of currently available evidence, GKRS induces collagen formation, vessel wall-thickening, thrombus formation, and hyalinization in CM sinusoids, which then develop over the course of several months to a few years.\(^\text{196-198}\) These changes can be accompanied by some areas of neovascularization, which might be responsible for post-radiosurgical hemorrhage and raise the concerns discussed below.\(^\text{198}\)

Unresolved Issues And Future Tasks

First, the optimal radiosurgical dose for CMs has not as yet been standardized, with the mean prescription doses ranging from 11 and 16 Gy (Table 6).\(^\text{181,185-195}\) Reflecting this, the dose-volume response also has not been clarified. These two issues are rather challenging because, unlike AVMs, there would be little visible or apparent change allowing clinicians to determine whether GKRS is effective. The only measurable therapeutic outcome is the hemorrhage rate.

Second, long-term efficacy has not been adequately examined. It seems that GKRS cannot completely eliminate the hemorrhage risk. To date, three studies have attempted to address this issue,\(^\text{186,194,195}\) of which the one with the longest follow-up (mean, 9.3 years)\(^\text{186}\) showed a post-radiosurgical hemorrhage rate for the first 5 years of 1.5–3.3%/year, apparently much better than the natural history documented in a prospective study\(^\text{178}\) (the rate of hemorrhage or neurological event; 20%/year during the first year, 12–13%/year during the second to third years, and 5%/year during the fourth to fifth years), while a mild increase up to 4.6%/year was noted after 5 years. These data underscore the importance of conducting further research, with larger patient populations and longer follow-up periods, to define the long-term efficacy of GKRS.

Conclusion

GKRS is highly effective for small to medium-sized AVMs. VSGKRS and a combination of embolization and GKRS are currently being developed as therapeutic options for larger AVMs. These approaches require additional evaluation with larger sample sizes and longer follow-up periods. GKRS for DAVF is feasible as a
Year	Author	N	Mean F/U (Month)	Mean Age (Year)	Mean Diameter (mm)	Mean Volume (mL)	Location	Mean Prescription Dose (Gy)	Hemorrhage rate Before GKRS	Rate Of New Neurological Deficits	
2018	Park186	45	112	37	NA	1.8	BS	13	40%/y (≤2y), 1.5%/y (2–5y), 4.6%/y (>5y)	2.6%	
2018	Jacobs94	76	NA	42	NA	0.66**	BS	15**	31%/y	4%/y	9%
2018	Sheen95	81	79**	39	NA	1.0	Any	14	NA	NA	
2016	Liu187	43	36	42	NA	0.44	BS	12	25%/y (≤2y), 1.9%/y (>2y)	2.3%	
2015	Kida185	298	68	39	15	N/A	BS, Thal, BGL, others	15	21%/y (≤2y), 2.8%/y (>2y)	6.7%	
2012	Lee189	49	41	39	32	3.2	BS	11	31%/y (≤2y), 3.6%/y (>2y)	4.1%	
2010	Lunsford90	103	24–240*	39	NA	1.3**	BS, Thal, BGL, others	16**	33%/y (≤2y), 1.1%/y (>2y)	14%	
2010	Nagy91	113	48	37	NA	0.34–0.83	BS, Thal, BGL	12	31%/y (≤2y), 2.4%/y (>2y)	7.3%	
2010	Monaco93	68	62	41	NA	1.2	BS	16	32%/y (≤2y), 1.4%/y (>2y)	12%	
2009	Kida92	84	55	38	14	N/A	BS, Thal, BGL	13	NA	3.2%	
2002	Hasegawa181	82	59	38	NA	1.9	BS, Thal, BGL, others	16	34%/y (≤2y), 0.76%/y (≤2y)	7.3%	

Notes: *Detailed data on the median or mean value not provided. †Median. ‡Results of high-risk group. §Results of low-risk group.
Abbreviations: BGL, basal ganglia; BS, brainstem; F/U, follow up; GKRS, gamma knife; NA, not assessed; Thal, thalamus.
minimally invasive option but further multicenter studies are needed to both clarify efficacy as a solo treatment modality and confirm factors required for successful obliteration, as well as to examine location-specific outcomes. GKRS for CMs is also feasible for obtaining short- to mid-term prevention of additional hemorrhage. Further long-term follow-up studies are necessary to identify the long-term benefits of GKRS and optimize radiosurgical doses.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Leksell DG. Stereotactic radiosurgery. Present status and future trends. Neuror Res. 1987;9(2):60–68. doi:10.1080/01616412.1987.11737975
2. Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46(9):797–803. doi:10.1136/jnnp.46.9.797
3. Massager N, Maris C, Nissim O, Devriendt D, Salmon I, Levivier M. Experimental analysis of radiation dose distribution in radiosurgery. II. Dose fall-off outside the target volume. Stereotact Funct Neurosurg. 2009;87(3):137–142. doi:10.1159/000209293
4. Semwal MK, Singh S, Sarin A, Bhatnagar S, Pathak HC. Comparative clinical dosimetry with X-knife and gamma knife. Phys Med. 2012;28(3):269–272. doi:10.1016/j.pmed.2011.07.003
5. Steiner L, Forster D, Lekssl L, Meyerson BA, Boethius J. Gammahalatomy in intractable pain. Acta Neurochir (Wien). 1980;52(3–4):173–184. doi:10.1007/BF01402072
6. Leksell L. Cerebral radiosurgery. I. Gammahalatomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–595.
7. Nirangan A, Lansford LD. Radiosurgery: where we were, are, and may be in the third millennium. Neurosurgery. 2000;46(3):531–543. doi:10.1097/00006123-200003000-00002
8. Fleetwood IG, Steinberg GK. Arteriovenous malformations. Lancet. 2002;359(9309):863–873. doi:10.1016/S0140-6736(02)07946-1
9. Stapf C, Mohr JP, Pile-Spellman J, Solomon RA, Sacco RL, Connolly ES. Epidemiology and natural history of arteriovenous malformations. Neurosurg Focus. 2001;11(5):e1. doi:10.3171/2001.11.5.2
10. Ogilvy CS, Stiege PG, Awad I, et al. AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001;32(6):1458–1471. doi:10.1161/01.STR.32.6.1458
11. Fukuda K, Majumdar M, Masoud H, et al. Multicenter assessment of morbidity associated with cerebral arteriovenous malformation hemorrhages. J Neurointerv Surg. 2017;9(7):664–668. doi:10.1136/neurintsurg-2016-012485
12. Solomon RA, Connolly ES Jr. Arteriovenous malformations of the brain. N Engl J Med. 2017;376(19):1859–1866. doi:10.1056/NEJMra1607407
13. Choi JH, Mohr JP. Brain arteriovenous malformations in adults. Lancet Neurol. 2005;4(5):299–308. doi:10.1016/S1474-4422(05)70073-9
14. Friedlander RM. Clinical practice. Arteriovenous malformations of the brain. N Engl J Med. 2007;356(26):2704–2712. doi:10.1056/NEJMcp067192
15. Starke RM, Kano H, Ding D, et al. Stereotactic radiosurgery for cerebral arteriovenous malformations: evaluation of long-term outcomes in a multicenter cohort. J Neurosurg. 2017;126(1):36–44. doi:10.3171/2015.9.JNS151311
16. Pollock BE, Flickinger JC, Lansford LD, Maitz A, Kondziolka D. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery. 1998;42(6):1239–1244. discussion 1244–1237. doi:10.1093/00006123-199806000-00020
17. Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96(1):79–85. doi:10.3171/jns.2002.96.1.0079
18. Flickinger JC, Kondziolka D, Maitz AH, Lansford LD. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002;63(3):347–354. doi:10.1016/S0167-8140(02)00103-2
19. Liscař R, Vladyka V, Simonová G, et al. Arteriovenous malformations after Leksell gamma knife radiosurgery: rate of obliteration and complications. Neurosurgery. 2007;60(6):1005–1014. discussion 1015–1006. doi:10.1227/01.NEU.0000255474.60505.AA
20. Kano H, Lansford LD, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 1: management of Spetzler-Martin Grade I and II arteriovenous malformations. J Neurosurg. 2012;116(1):11–20. doi:10.3171/2011.9.JNS101740
21. Fokas E, Henzel M, Wittig A, Grund S, Engenhart-Cabillic R. Stereotactic radiosurgery of cerebral arteriovenous malformations: long-term follow-up in 164 patients of a single institution. J Neurosurg. 2013;120(8):2156–2162.
22. Kano H, Flickinger JC, Yang HC, et al. Stereotactic radiosurgery for Spetzler-Martin Grade III arteriovenous malformations. J Neurosurg. 2014;120(4):973–981. doi:10.3171/2013.12.JNS131600
23. Pollock BE, Kondziolka D, Flickinger JC, Patel AK, Bissonette DJ, Lansford LD. Magnetic resonance imaging: an accurate method to evaluate arteriovenous malformations after stereotactic radiosurgery. J Neurosurg. 1996;85(6):1044–1049. doi:10.3171/jns.1996.85.6.1044
24. Lee CC, Reardon MA, Ball BZ, et al. The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery. J Neurosurg. 2015;123(1):136–144. doi:10.3171/2014.10.JNS141565
25. Starke RM, Yen CP, Ding D, Sheehan JP. A practical grading scale for predicting outcome after radiosurgery for arteriovenous malformations: analysis of 1012 treated patients. J Neurosurg. 2013;119(4):981–987. doi:10.3171/2013.5.JNS1311
26. Starke RM, Ding D, Kano H, et al. International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: outcomes after stereotactic radiosurgery. J Neurosurg Pediatr. 2017;19(2):136–148. doi:10.1016/j.jneuro.2016.9.PEDS16284
27. Hasegawa H, Hanakita S, Shin M, et al. Does advanced age affect the outcomes of stereotactic radiosurgery for cerebral arteriovenous malformation? World Neurosurg. 2018;109:e715–e723. doi:10.1016/j.wneu.2017.10.071
28. Ding D, Xu Z, Yen CP, Starke RM, Sheehan JP. Radiosurgery for cerebral arteriovenous malformations in elderly patients: effect of advanced age on outcomes after intervention. World Neurosurg. 2015;84(3):795–804. doi:10.1016/j.wneu.2015.05.012
29. Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Effect of prior hemorrhage on intracranial arteriovenous malformation radiosurgery outcomes. Cerebrovasc Dis. 2015;39(1):53–62. doi:10.1159/000369959
30. Lansford LD, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg. 1991;75(4):512–524.
31. Pollock BE, Flickinger JC, Lansford LD, Bissonette DJ, Kondziolka D. Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke. 1996;27(1):1–6. doi:10.1161/01.STR.27.1.1
32. Karlsson B, Lindquist C, Steiner L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery. 1997;40(3):425–430. discussion 430–421. doi:10.1097/00006123-199703000-00001
49. Flickinger JC, Kondziolka D, Lunsford LD, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys. 2000;46(5):1143–1148. doi:10.1016/S0360-3016(99)00513-1

50. Cohen-Inbar O, Lee CC, Xu Z, Schlesinger D, Sheehan JP. A quantitative analysis of adverse radiation effects following Gamma Knife radiosurgery for arteriovenous malformations. J Neurosurg. 2015;123(4):945–953. doi:10.3171/2014.10.JNS142264

51. Karlsson B, Lax I, Söderman M. Risk for hemorrhage during the 2-year latency period following gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2001;49(4):1045–1051. doi:10.1016/S0360-3016(00)01432-2

52. Friedman WA, Blatt DL, Bova FJ, Buatti JM, Mendenhall WM, Kubitlis PS. The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg. 1996;84(6):912–919. doi:10.3171/1996.84.6.0912

53. Shin M, Kawaehara N, Maruyama K, Tago M, Ueki K, Kirino T. Risk of hemorrhage from an arteriovenous malformation confirmed to have been obliterated on angiography after stereotactic radio surgery for arteriovenous malformations. J Neurosurg. 2005;102(5):842–846. doi:10.3171/jns.2005.102.5.0842

54. Lindqvist M, Karlsson B, Guo WY, Kihlström L, Lippitz B, Yamamoto M. Angiographic long-term follow-up data for arteriovenous malformations previously proven to be obliterated after gamma knife radiosurgery. Neurosurgery. 2000;46(4):803–808, discussion 809–810. doi:10.1097/00006123-200004000-00006

55. Szeifert GT, Salmon I, Baleraux D, Brothci J, Levievier M. Immunohistochemical analysis of a cerebral arteriovenous malformation obliterated by radiosurgery and presenting with re-bleeding. Case report. Neurol Res. 2003;25(7):718–721. doi:10.1179/01640130322228

56. Shuto T, Matsunaga S, Suenaga J. Surgical treatment for late complications following gamma knife surgery for arteriovenous malformations. Stereotact Funct Neurosurg. 2011;89(2):96–102. doi:10.1159/000323543
64. Hasegawa H, Hanakita S, Shin M, et al. A comprehensive study of symptomatic late radiation-induced complications after radiosurgery for brain arteriovenous malformation: incidence, risk factors, and clinical outcomes. World Neurosurg. 2018;116:e556–e565. doi:10.1016/j.wneu.2018.05.038
65. Ilyas A, Chen CJ, Ding D, et al. Cyst formation after stereotactic radiosurgery for brain arteriovenous malformations: a systematic review. J Neurosurg. 2017;1–10.
66. Pomeranee JJ, Ding D, Starke RM, et al. Delayed cyst formation after stereotactic radiosurgery for brain arteriovenous malformations. J Neurosurg. 2017;1–10.
67. Matsuo T, Kamada K, Izumo T, Hayashi N, Nagata I. Cyst formation after linac-based radiosurgery for arteriovenous malformation: examination of predictive factors using magnetic resonance imaging. Clin Neurol Neurosurg. 2014;121:10–16. doi:10.1016/j.clineuro.2014.03.006
68. Pollock BE, Link MJ, Branda ME, Storlie CB. Incidence and management of late adverse radiation effects after arteriovenous malformation radiosurgery. Neurosurgery. 2017. doi:10.1093/neuros/nyx010
69. Kano H, Flickinger JC, Tonetti D, et al. Estimating the risks of adverse radiation effects after gamma knife radiosurgery for arteriovenous malformations. Stroke. 2017;48(1):84–90. doi:10.1161/STROKEAHA.116.014825
70. Yamamoto M, Jinbo M, Hara M, Saito I, Mori K. Gamma knife radiosurgery for arteriovenous malformations: long-term follow-up results focusing on complications occurring more than 5 years after irradiation. Neurosurgery. 1996;38(5):906–914. doi:10.1093/0061-2105/38/5-506
71. Yamamoto M, Hara M, Ide M, Ono Y, Jinbo M, Saito I. Radiation-related adverse effects observed on neuro-imaging several years after radiosurgery for cerebral arteriovenous malformations. Surg Neurol. 1998;49(4):385–397. discussion 397–388. doi:10.1016/S0039-6109(98)00051-4
72. Hasegawa T, Kato T, Naito T, et al. Long-term outcomes for pediatric patients with brain arteriovenous malformations treated with gamma knife radiosurgery, Part 2: the incidence of cyst formation, encapsulated hematoma, and radiation-induced tumor. World Neurosurg. 2019;126:e1526–e1536. doi:10.1016/j.wneu.2019.03.177
73. Nakajima H, Yamanaka K, Ishibashi K, Iwai Y. Delayed cyst formations and/or expanding hematomas developing after Gamma Knife surgery for cerebral arteriovenous malformations. J Clin Neurolsci. 2016;33:96–99. doi:10.1016/j.jocn.2016.01.044
74. Pan HC, Sheehan J, Stroila M, Steiner M, Steiner L. Late cyst formation following gamma knife surgery of arteriovenous malformations. J Neurosurg. 2005;102(s_supplement):124–127. doi:10.3171/jns.2005.102.s_supplement.0124
75. Xhumari A, Rroji A, Enesi E, Bushati T, Sallabanda Diaz K, Petrela M. Glioblastoma after AVM radiosurgery. Case report and clinical outcomes. Neurosurgery. 2017. doi:10.1227/01.NEU.0000163095.56638.26
76. Nagy G, Grainger A, Hodgson TJ, et al. Staged-volume radiotherapy to decrease the risk of hemorrhage in inoperable arteriovenous malformations: a preliminary report. J Neurosurg. 2016;124(4):875–876. doi:10.1227/01.NEU.0000513701.35209.43
77. Hasegawa H, Hanakita S, Shin M, et al. Re-evaluation of the size limitation in single-session stereotactic radiosurgery for brain arteriovenous malformations: detailed analyses on the outcomes with focusing on radiosurgical doses. Neurosurgery. 2019. doi:10.1093/neuros/nyz280
78. Chung WY, Shiu CY, Wu HM, et al. Staged radiosurgery for extra-large cerebral arteriovenous malformations: method, implementation, and results. J Neurosurg. 2008;109(Suppl):65–72. doi:10.3171/JNS/2008/109/12/S11
79. Ding D, Solberg TD, Hryczuk B, Medin P, Whitworth L, Timmerman RD. Multi-staged robotic stereotactic radiosurgery for large cerebral arteriovenous malformations. Radiother Oncol. 2013;109(3):452–456. doi:10.1016/j.radonc.2013.07.018
80. Firlik AD, Leyi EL, Konzjoilka D, Yonas H. Staged volume radiosurgery followed by microsurgical resection: a novel treatment for giant cerebral arteriovenous malformations: technical case report. Neurosurgery. 1998;43(5):1223–1228. doi:10.1097/00006123-199811000-00124
81. Hasegawa H, Hanakita S, Shin M, et al. Staged radiosurgery for arteriovenous malformations, Part 6: multistaged volumetric management of large arteriovenous malformations. J Neurosurg. 2012;116(1):54–65. doi:10.3171/2011.9.JNS11177
82. Ilyas A, Chen CJ, Ding D, et al. Volume-staged versus dose-staged stereotactic radiosurgery outcomes for large brain arteriovenous malformations: a systematic review. J Neurosurg. 2018;128(1):154–164. doi:10.3171/2016.9.JNS161571
83. Mousa S, Chen CJ, Ding D, et al. Volume-staged versus dose-staged radiosurgery outcomes for large intracranial arteriovenous malformations. Neurosurg Focus. 2014;37(3):E18. doi:10.3171/2014.5.FOCUS14205
84. Pollock BE, Kline RW, Stafford SL, Foote RL, Schomberg PJ. The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 2000;48(3):817–824. doi:10.1016/S0360-3016(00)00696-9
85. Sirin S, Konzjoilka D, Niranjan A, Flickinger JC, Maizt AH, Lunsford LD. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreated patients. Neurosurgery. 2006;58(1):17–27. discussion 17–27. doi:10.1227/01.NEU.0000190653.42970.6B
86. Hanakita S, Shin M, Koga T, Ikagi H, Saito N. Outcomes of volume-staged radiosurgery for cerebral arteriovenous malformations larger than 20 cm(3) with more than 3 years of follow-up. World Neurosurg. 2016;87:242–249. doi:10.1016/j.wneu.2015.12.020
87. Nagy G, Grainger A, Hodgson TJ, et al. Staged-volume radiotherapy of large arteriovenous malformations improves outcome by reducing the rate of adverse radiation effects. Neurosurgery. 2016. doi:10.1227/NEU.0000000000001212
88. Lindvall P, Bergstrom P, Lofroth PO, et al. Hypofractionated conformal stereotactic radiotherapy for arteriovenous malformations. Neurosurgery. 2003;53(5):1036–1042. discussion 1042–1033. doi:10.1227/01.NEU.0000088566.82699.E6
89. Laing RW, Childs J, Brada M. Failure of conventionally fractionated radiotherapy to decrease the risk of hemorrhage in inoperable arteriovenous malformations. Neurosurgery. 1992;30(6):872–875. discussion 875–876. doi:10.1227/00006123-199206000-00009
90. Karlsson B, Lindqvist M, Blomgren H, et al. Long-term results after fractionated radiation therapy for large brain arteriovenous malformations. Neurosurgery. 2005;57(1):42–49. discussion 42–49. doi:10.1227/01.NEU.0000163095.56638.26
91. Park HR, Lee JM, Kim JW, et al. Time-staged gamma knife stereotactic radiosurgery for large cerebral arteriovenous malformations: a preliminary report. PLOS ONE. 2016;11(11):e0165783. doi:10.1371/journal.pone.0165783
92. Ilyas A, Chen CJ, Ding D, et al. Volume-staged versus dose-staged stereotactic radiosurgery outcomes for large brain arteriovenous malformations: a systematic review. J Neurosurg. 2017;1–11.
96. Chytka T, Liscak R, Kozubikova P, Vymazal J. Radiosurgery for large arteriovenous malformations as a single-session or staged treatment. Stereotact Funct Neurosurg. 2015;93(5):342–347. doi:10.1159/000439116

97. Kano H, Flickinger JC, Nakamura A, et al. How to improve obliteration rates during volume-staged stereotactic radiosurgery for large arteriovenous malformations. J Neurosurg. 2018;1–8.

98. El-Shehaby AMN, Reda WA, Abdel Karim KM, Emad Eldin RM, Nabeel AM, Tawadros SR. Volume-staged Gamma Knife radiosurgery for large brain arteriovenous malformation. World Neurosurg. 2019. doi:10.1016/j.wneu.2019.08.065

99. Franzin A, Panni P, Spatola G, et al. Results of volume-staged fractionated Gamma Knife radiosurgery for large complex arteriovenous malformations: obliteration rates and clinical outcomes of an evolving treatment paradigm. J Neurosurg. 2016;125(Suppl 1):104–113. doi:10.3171/2016.7.GKS161549

100. Huang PP, Rush SC, Donahue B, et al. Long-term outcomes after staged-volume stereotactic radiosurgery for large arteriovenous malformations. Neurosurgery. 2012;71(3):632–643. discussion 643–634. doi:10.1227/NEU.0b013e318256247

101. Pollock BE, Link MJ, Stafford SL, Lanzino G, Garces YI, Foote RL. Volume-staged stereotactic radiosurgery for intracranial arteriovenous malformations: outcomes based on an 18-year experience. Neurosurgery. 2018;80(4):543–550. doi:10.1093/neuros/nyw107

102. Seymour ZA, Sneed PK, Gupta N, et al. Volume-staged radiosurgery for large arteriovenous malformations: an evolving paradigm. J Neurosurg. 2016;124(1):163–174. doi:10.3171/2014.12. JNS141308

103. Nagy G, Grainger A, Hodgson TJ, et al. Staged-volume radiotherapy for large arteriovenous malformations improves outcome by reducing the rate of adverse radiation effects. Neurosurgery. 2017;80(2):180–192. doi:10.1227/NEU.0000000000001212

104. Oermann EK, Ding D, Yen CP, et al. Effect of prior embolization on cerebral arteriovenous malformation radiosurgery outcomes: a case-control study. Neurosurgery. 2015;77(3):406–417. discussion 417. doi:10.1227/NEU.0000000000000772

105. Lee CC, Chen CJ, Ball B, et al. Stereotactic radiosurgery for arteriovenous malformations after Onyx embolization: a case-control study. J Neurosurg. 2015;123(1):126–135. doi:10.3171/2014.12. JNS141437

106. Huo X, Jiang Y, Lv X, Yang H, Zhao Y, Li Y. Gamma Knife surgical treatment for partially embolized cerebral arteriovenous malformations. J Neurosurg. 2015;1–10.

107. Xiaochuan H, Yuhua J, Xianli L, Hongchao Y, Yang Z, Youxiang D. Interv Neuroradiol. 2017;23(Suppl 1):105. doi:10.1054/jocn.2000.0718

108. Miyachi S, Negoro M, Okamoto T, et al. Embolisation of cerebral arteriovenous malformations to assure successful subsequent radiosurgery. J Clin Neurosci. 2000;7(Suppl 1):82–85. doi:10.1054/jocn.2000.0718

109. Miyachi S, Izumi T, Satow T, et al. Effectiveness of preradiosurgical embolization with NBCA for arteriovenous malformations - retrospective outcome analysis in a Japanese registry of 73 patients (J-REAL study). Neurointervention. 2017;12(2):100–109. doi:10.5469/neuroint.2017.12.2.100

110. Strauss I, Haim O, Umansky D, et al. Impact of Onyx embolization on radiosurgical management of cerebral arteriovenous malformations: treatment and outcome. World Neurosurg. 2017;108:656–661. doi:10.1016/j.wneu.2017.08.188

111. Hasegawa et al. Radiosurgery for cerebral arteriovenous malformation: a perspective from Japan. Neurosurgery. 2017;80(4):543–550. doi:10.1227/NEU.0000000000000772

112. Mathis JA, Barr JD, Horton JA, et al. The efficacy of particulate embolization combined with stereotactic radiosurgery for treatment of large arteriovenous malformations of the brain. AJNR Am J Neuroradiol. 1995;16(2):299–306.

113. Murray G, Brau RH. A 10-year experience of radiosurgical treatment for cerebral arteriovenous malformations: a perspective from a series with large malformations. Clinical article. J Neurosurg. 2011;115(2):337–346. doi:10.3171/2011.3.JNS10814

114. Schienger M, Atlan D, Lefkopoulos D, et al. Linac radiosurgery with and without embolization for intracranial arteriovenous malformations: a systematic review and meta-analysis. Neurosurg Focus. 2014;37(3):E16. doi:10.3171/2014.6.FOCUS14 178

115. Andrade-Souza YM, Ramani M, Scora D, Tsao MN, terBrugge K, Schwartz ML. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery. 2007;60(3):443–451. discussion 451–442. doi:10.1227/01.NEU.00002053.47.25959.D0

116. Mathis JA, Barr JD, Horton JA, et al. The efficacy of particulate embolization combined with stereotactic radiosurgery for treatment of large arteriovenous malformations of the brain. AJNR Am J Neuroradiol. 1995;16(2):299–306.

117. Dawson RC 3rd, Tarr RW, Hecht ST, et al. Treatment of arteriovenous malformations of the brain with combined embolization and stereotactic radiosurgery: results after 1 and 2 years. AJNR Am J Neuroradiol. 1990;11(5):857–864.

118. Akakin A, Ozkan A, Akgun E, et al. Endovascular treatment increases but gamma knife radiosurgery decreases angiogenic activity of arteriovenous malformations: an in vivo experimental study using a rat cornea model. Neurosurgery. 2010;66(1):121–129. discussion 129–130. doi:10.1227/01.NEU.0000363154.88768.34

119. Pollock BE, Kondziolka D, Lunsford LD, Bissonette D, Flickinger JC. Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery. 1996;38(2):318–324. doi:10.1097/00006123-19960200-000016
127. Shtraus N, Schifter D, Corn BW, et al. Radiosurgical treatment planning of AVM following embolization with Onyx: possible dosage error in treatment planning can be averted. J Neurooncol. 2010;98(2):271–276. doi:10.1007/s11060-010-0177-x

128. Miyawaki L, Dowd C, Wara W, et al. Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int J Radiat Oncol Biol Phys. 1999;44(5):1089–1106. doi:10.1016/S0360-3016(99)00102-9

129. Mohr JP, Parides MK, Stapf C, et al. Medical management with or without interventional therapy for untreated brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383(9917):614–621. doi:10.1016/S0140-6736(13)62302-8

130. Magné E, Gentric JC, Darsaut TE, et al. Responses to ARUBA: a systematic review and critical analysis for the design of future arteriovenous malformation trials. J Neurosurg. 2017;126(2):486–494. doi:10.3171/2015.6.JNS15619

131. Ding D, Starke RM, Kano H, et al. Radiosurgery for cerebral arteriovenous malformations in a randomized trial of unruptured brain Arteriovenous Malformations (ARUBA)-eligible patients: a multicenter study. Stroke. 2016;47(2):342–349. doi:10.1161/STROKEAHA.115.011400

132. Pollock BE, Link MJ, Brown RD. The risk of stroke or clinical impairment after stereotactic radiosurgery for ARUBA-eligible patients. Stroke. 2013;44(2):437–441. doi:10.1161/STROKEAHA.112.670232

133. Ding D, Starke RM, Kano H, et al. Stereotactic radiosurgery for ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations)-Eligible Spetzler-Martin Grade I and II arteriovenous malformations: a multicenter study. World Neurosurg. 2017;102:507–517. doi:10.1016/j.wneu.2017.03.061

134. Tonetti DA, Gross BA, Atcheson KM, et al. The benefit of radiosurgery for ARUBA-eligible arteriovenous malformations: a practical analysis over an appropriate follow-up period. J Neurosurg. 2018;128(6):1850–1854. doi:10.3171/2017.1.JNS162962

135. Hanakita S, Shin M, Koga T, Igaki H, Saito N. Risk reduction of cerebral stroke after stereotactic radiosurgery for small unruptured brain arteriovenous malformations. Stroke. 2016;47(5):1247–1252. doi:10.1161/STROKEAHA.116.013132

136. Karlsson B, Jokura H, Yang HC, et al. The NASSAU (New Assessment of Cerebral Arteriovenous Malformations Yet Unruptured) Analysis: are the results from the ARUBA trial also applicable to unruptured arteriovenous malformations suitable for Gamma Knife surgery? Neurosurgery. 2019;85(1):E118–E124. doi:10.1093/neuros/nyy391

137. Soderman M, Pavic L, Edner G, Holmin S, Andersson T. Natural history of dural arteriovenous shunts. J Neurosurg. 2019;85(1):E118–E124. doi:10.1093/neuros/nyy391

138. Soderman M, Pavic L, Edner G, Holmin S, Andersson T. Natural history of dural arteriovenous shunts. J Neurosurg. 2006;104(6):1735–1739. doi:10.1227/01.NEU.0000338066.3066.B2

139. Zipfel GJ, Shah MN, Refai D, Dacey RG Jr, Dendey CP. Cranial arterial and venous fistulas: clinical and angiographic classification of angiographic classification based on new natural history data. Neurosurg Focus. 2009;26(5):E14. doi:10.3171/2009.5.FOCUS09298

140. Gross BA, Albuquerque FC, McDougall CG, et al. A multi-institutional analysis of the untreated course of cerebral dural arteriovenous fistulas. J Neurosurg. 2018;129(5):1114–1119. doi:10.1093/jns/jny170

141. Yang HC, Kano H, Kondziolka D, et al. Stereotactic radiosurgery with the Stockholm experience. J Neurosurg. 2013;127:197–200.

142. Hanakita S, Koga T, Shin M, Sojima M, Igaki H, Saito N. Role of Gamma Knife surgery in the treatment of intracranial dural arteriovenous fistulas. J Neurosurg. 2012;117(Suppl):158–163. doi:10.3171/2012.7.GKS12967

143. Yang HC, Kano H, Kondziolka D, et al. Stereotactic radiosurgery with or without embolization for intracranial dural arteriovenous fistulas. Neurosurgery. 2010;67(5):1276–1283. discussion 1284–1295. doi:10.1227/01.NEU.0b013e3181f3f22

144. Cifarelli CP, Kaptain G, Yen CP, Schlesinger D, Sheehan JP. Gamma knife radiosurgery for dural arteriovenous fistulas. Neurosurgery. 2010;67(5):1230–1235. discussion 1235. doi:10.1227/01.NEU.0b013e3181f3f22

145. Soderman M, Edner G, Ericson K, et al. Gamma knife surgery for dural arteriovenous shunts: 25 years of experience. J Neurosurg. 2006;104(6):867–875. doi:10.3171/2006.10.JNS06.191

146. Pan DH, Wu HM, Kao YH, Chung WY, Lee CC, Guo WY. Intracranial dural arteriovenous fistulas: natural history and rationale for treatment with stereotactic radiosurgery. Prog Neurol Surg. 2013;27:176–194.

147. Cognard C, Cassado A, Toevi M, Houdart E, Chiras J, Merland JJ. Dural arteriovenous fistulas as a cause of intracranial hypertension due to impairment of cranial venous outflow. J Neurol Neurosurg Psychiatry. 1998;65(3):308–316. doi:10.1136/jnnp.65.3.308
195. Sheen JJ, Lee DH, Lee DH, Song Y, Kwon DH. Long-term outcome of gamma knife radiosurgery for brain cavernoma: factors associated with subsequent De Novo Cavernoma formation. *World Neurosurg.* 2018;120:e17–e23. doi:10.1016/j.wneu.2018.07.046

196. Tu J, Stoodley MA, Morgan MK, Storer KP, Smee R. Different responses of cavernous malformations and arteriovenous malformations to radiosurgery. *J Clin Neurosci.* 2009;16(7):945–949. doi:10.1016/j.jocn.2008.09.017

197. Nyary I, Major O, Hanzely Z, Szeifert GT. Pathological considerations to irradiation of cavernous malformations. *Prog Neurol Surg.* 2007;20:231–234. doi:10.1159/000100122

198. Shin SS, Murdoch G, Hamilton RL, et al. Pathological response of cavernous malformations following radiosurgery. *J Neurosurg.* 2015;123(4):938–944. doi:10.3171/2014.10.JNS14499