Three-body Recombination of $^6$Li Atoms with Large Negative Scattering Lengths

Eric Braaten,¹ H.-W. Hammer,² Daekyoung Kang,¹ and Lucas Platter¹

¹Department of Physics, The Ohio State University, Columbus, OH 43210, USA
²Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany

(Dated: October 29, 2009)

The 3-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the 3 scattering lengths and the Efimov parameter, which can be complex valued. We provide semi-analytic expressions for the cases of 2 or 3 equal scattering lengths and we obtain numerical results for the general case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of $^6$Li atoms. Comparisons with recent experiments provide indications of loss features associated with Efimov trimers near the 3-atom threshold.

PACS numbers: 31.15.-p, 34.50.-s, 67.85.Lm, 03.75.Nt, 03.75.Ss

Keywords: Degenerate Fermi gases, three-body recombination, scattering of atoms and molecules.

Atomic gases allow the experimental study of superfluidity in systems in which the fundamental interactions are simple and experimentally controllable. In the case of fermionic atoms with two spin states, there have been extensive investigations of the crossover from the BCS mechanism (Cooper pairing of atoms) to the BEC mechanism (Bose-Einstein condensation of diatomic molecules) [1]. Fermionic atoms with three spin states open up the possibility of new superfluid phases and new mechanisms for superfluidity [2, 3, 4, 5]. The first experimental studies of such a system were recently carried out using the three lowest hyperfine states of $^6$Li atoms [6, 7].

Fermionic atoms with three spin states also open up new possibilities in few-body physics. For the discussion of 3-body observables, they can simply be considered as three distinguishable atoms and their fermionic nature plays no special role. If the pair scattering lengths are large compared to the range of the interactions between the atoms, a remarkable set of 3-body phenomena are predicted. If the 3 scattering lengths are infinitely large, there is an infinite sequence of 3-atom bound states called Efimov trimers with a geometric spectrum and an accumulation point at the 3-atom threshold [8]. Low-energy 3-body phenomena governed by discrete scale invariance are generally referred to as Efimov physics [9, 10]. The first experimental evidence for Efimov physics was experiments with ultracold $^{133}$Cs atoms by Grimm and coworkers in which they observed dramatic dependence of the 3-body recombination rate and the atom-dimer relaxation rate on the scattering length [11, 12].

In this Letter, we present calculations of the 3-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths in the zero-range limit. We provide semi-analytic expressions for the cases of 2 or 3 equal scattering lengths and we obtain numerical results for the general case of 3 different scattering lengths. We apply our general results to the three lowest hyperfine states of $^6$Li atoms and compare with recent 3-body recombination rate measurements [6, 7].

By the optical theorem, the event rate constant $K_3$ in the low-temperature limit can be expressed as twice the imaginary part of the forward T-matrix element for 3-atom elastic scattering in the limit where the momenta of the atoms all go to 0. Using diagrammatic methods, the T-matrix element for elastic scattering can be expressed as the sum of 9 amplitudes corresponding to the 3 possible pairs that are the first to scatter and the 3 possible pairs that are the last to scatter. For small collision energies, the leading contributions to those amplitudes come from the S-wave terms, which we denote by $A_{ij}(p, p')$, where $(ij)$ is the relative momentum between the pair that scatters first (last) and the third atom labelled $i$ ($j$). The rate constant $K_3$ in Eq. (1) is

$$K_3 = \frac{32\pi^2}{m} \sum_{i,j} a_ia_j \text{Im} A_{ij}(0, 0),$$

where the sums are over $i, j = 1, 2, 3$. The amplitudes $A_{ij}(p, p')$ can be calculated in the zero-range limit by solving 9 coupled integral equations that are generalizations of the Skorniakov–Ter-Martirosian (STM) equation [13]. To determine $\text{Im} A_{ij}(0, 0)$, it is sufficient to solve the

By the optical theorem, the event rate constant $K_3$ in the low-temperature limit can be expressed as twice the imaginary part of the forward T-matrix element for 3-atom elastic scattering in the limit where the momenta of the atoms all go to 0. Using diagrammatic methods, the T-matrix element for elastic scattering can be expressed as the sum of 9 amplitudes corresponding to the 3 possible pairs that are the first to scatter and the 3 possible pairs that are the last to scatter. For small collision energies, the leading contributions to those amplitudes come from the S-wave terms, which we denote by $A_{ij}(p, p')$, where $(ij)$ is the relative momentum between the pair that scatters first (last) and the third atom labelled $i$ ($j$). The rate constant $K_3$ in Eq. (1) is

$$K_3 = \frac{32\pi^2}{m} \sum_{i,j} a_ia_j \text{Im} A_{ij}(0, 0),$$

where the sums are over $i, j = 1, 2, 3$. The amplitudes $A_{ij}(p, p')$ can be calculated in the zero-range limit by solving 9 coupled integral equations that are generalizations of the Skorniakov–Ter-Martirosian (STM) equation [13]. To determine $\text{Im} A_{ij}(0, 0)$, it is sufficient to solve the

By the optical theorem, the event rate constant $K_3$ in the low-temperature limit can be expressed as twice the imaginary part of the forward T-matrix element for 3-atom elastic scattering in the limit where the momenta of the atoms all go to 0. Using diagrammatic methods, the T-matrix element for elastic scattering can be expressed as the sum of 9 amplitudes corresponding to the 3 possible pairs that are the first to scatter and the 3 possible pairs that are the last to scatter. For small collision energies, the leading contributions to those amplitudes come from the S-wave terms, which we denote by $A_{ij}(p, p')$, where $(ij)$ is the relative momentum between the pair that scatters first (last) and the third atom labelled $i$ ($j$). The rate constant $K_3$ in Eq. (1) is

$$K_3 = \frac{32\pi^2}{m} \sum_{i,j} a_ia_j \text{Im} A_{ij}(0, 0),$$

where the sums are over $i, j = 1, 2, 3$. The amplitudes $A_{ij}(p, p')$ can be calculated in the zero-range limit by solving 9 coupled integral equations that are generalizations of the Skorniakov–Ter-Martirosian (STM) equation [13]. To determine $\text{Im} A_{ij}(0, 0)$, it is sufficient to solve the
discrete scaling factor $\epsilon \ll p$ can be extrapolated to the Efimov parameter $\Lambda$ infinitely large \cite{9}:

$$A_{ij}(p, 0) = \frac{1 - \delta_{ij}}{p^2} + \frac{2}{\pi} \sum_k (1 - \delta_{kj})$$

$$\times \int_0^\Lambda dq Q(q/p) D_k(q) A_{ik}(q, 0), \quad (3)$$

where

$$Q(x) = \frac{x}{2} \log \frac{1 + x + x^2}{1 - x - x^2}; \quad (4)$$

$$D_k(q) = \left(-1/a_k + \sqrt{3}q/2\right)^{-1}, \quad (5)$$

and $\Lambda$ is an ultraviolet cutoff. The solutions to Eqs. \cite{9} are singular as $p \to 0$. The singular terms, which are proportional to $1/p^2$, $1/p$, and $\ln p$, appear only in $\text{Re} A_{ij}(p, 0)$ for real $p$ and can be derived from the integral equations \cite{14}. Since $\text{Im} A_{ij}(p, 0)$ must be extrapolated to $p = 0$, it is useful to transform Eqs. \cite{3} into coupled STM equations for amplitudes $A_{ij}(p, 0)$ obtained by subtracting the singular terms from $A_{ij}(p, 0)$. For $p \ll \Lambda$, the solutions depend log-periodically on $\Lambda$ with a discrete scaling factor $e^{\pi/s_0} \approx 22.7$, where $s_0 = 1.00624$. The dependence on the arbitrary cutoff $\Lambda$ can be eliminated in favor of a physical 3-body parameter, such as the Efimov parameter $\kappa_s$ defined by the spectrum of Efimov states in the limit where all 3 scattering lengths are infinitely large \cite{9}:

$$E_n = -\left(e^{\pi/s_0}\right)^n \frac{\hbar^2 \kappa_s^2}{m} (a_{12} = a_{23} = a_{31} = \pm \infty). \quad (6)$$

If we restrict $\Lambda$ to a range that corresponds to a multiplicative factor of 22.7, then $\Lambda$ differs from $\kappa_s$ only by a multiplicative numerical constant. Thus we can also simply take $\Lambda$ as the 3-body parameter.

If $a_{ij} > 0$, there is a contribution to $K_3$ from 3-body recombination into the shallow dimer whose constituents have spins $i$ and $j$ and whose binding energy is $\hbar^2/(ma_{ij}^2)$. If $a_{12}, a_{23},$ and $a_{31}$ are all negative, there are no shallow dimers. The solutions $A_{ij}(p, 0)$ to the coupled STM equations in Eq. \cite{3} are all real-valued in this case, so the rate constant $K_3$ in Eq. \cite{4} is predicted to be 0.

If there are deeply-bound diatomic molecules (deep dimers) in any of the three 2-body channels, there are also contributions to $K_3$ from 3-body recombination into the deep dimers. If all 3 scattering lengths are negative, these are the only contributions to $K_3$. The coupled STM equations in Eq. \cite{3} do not take into account contributions from deep dimers. The inclusive effect of all the deep dimers can be taken into account by analytically continuing the Efimov parameter $\kappa_s$ to a complex value \cite{13}: $\kappa_s \to \kappa_s \exp(i\eta_s/s_0)$, where $\eta_s$ is a positive real parameter. Making this substitution in Eq. \cite{4}, we find that the Efimov states acquire nonzero decay widths determined by $\eta_s$. If we use the ultraviolet cutoff $\Lambda$ as the 3-body parameter, the inclusive effects of deep dimers can be taken into account by changing the upper limit of the integral in Eq. \cite{4} to $\Lambda \exp(i\eta_s/s_0)$, so the path of integration extends into the complex plane. Having made this change, the solutions $A_{ij}(p, 0)$ are complex-valued even if $a_{12}, a_{23}$, and $a_{31}$ are all negative. The rate constant $K_3$ in Eq. \cite{2} is a function of the scattering lengths $a_{12}, a_{23},$ and $a_{31}$ and the 3-body parameters $\Lambda$ and $\eta_s$ and it vanishes as $\eta_s \to 0$. It gives the inclusive rate for 3-body recombination into all deep dimers.

We focus our attention on cases in which all scattering lengths are negative, so the only recombination channels are into deep dimers. We first consider the case of 3 equal scattering lengths: $a_{12} = a_{23} = a_{31} = a < 0$. In this case Eq. \cite{3} reduces $-$ after summing over $i$ and $j$ $-$ to the STM equation for identical bosons. In Ref. \cite{13}, Braaten and Hammer deduced an analytic expression for the 3-body recombination rate constant for identical bosons with a large negative scattering length $a$:

$$K_3 = \frac{16 \pi^2 C \sinh(2\eta_s)}{\sin^2[s_0 \ln(D|\alpha|\kappa_s)] + \sinh^2 \eta_s} \frac{\hbar a^4}{m}, \quad (7)$$

where $s_0 = 1.00624$, $C$, and $D$ are numerical constants. This formula exhibits resonant enhancement for $a$ near the values $(e^{\pi/s_0})^n (D\kappa_s)^{-1}$ for which there is an Efimov state at the 3-body threshold. Fitting our numerical results for $K_3/a^4$ as functions of $a\Lambda$ and $\eta_s$, we determine the numerical constants to be $C = 29.62(1)$ and $D = 0.6642(2)$. These values are more accurate than previous results for identical bosons \cite{9}. A separate calculation of the spectrum of Efimov states in the limit $a \to \pm \infty$ with $\eta_s = 0$ is necessary to determine the relation between the Efimov parameter and the ultraviolet cutoff: $\kappa_s = 0.17609(5)\Lambda$.

We next consider the case of 2 equal negative scattering lengths and a third that vanishes: $a_{12} = a_{13} = a < 0$, $a_{23} = 0$. In this case with only two resonant scattering channels, $s_0 = 0.413698$ and the discrete scaling factor
is \( e^{\pi/80} \approx 1986 \). Eq. (7) again gives an excellent fit to our numerical results and we determine the numerical constants as \( C = 0.8410(6) \) and \( D = 0.3169(1) \).

We now consider the case of 2 equal negative scattering lengths and a third that is unequal: \( a_{12} = a_{13} = a < 0, a_{23} < 0 \). Eq. (7) with \( s_0 = 1.00624 \) continues to provide an excellent fit to our numerical results. The fitted values of \( C \) and \( D \) are shown as functions of \( a_{23}/a \) in Fig. 1. For \( |a_{23}| \gg |a| \), the coefficients seem to have the limiting behaviors \( C \approx 10.88(2) (a_{23}/a)^2 \) and \( D \approx 1.30(1) \). Their limiting behaviors for \( |a_{23}| \ll |a| \) do not seem to be simple power laws. This is not surprising, because the discrete scaling factor 22.7 changes to 1986 when \( a_{23} = 0 \).

Finally we consider the general problem of 3 different negative scattering lengths, for which we can obtain numerical results and we determine the numerical constants as \( C = 0.8410(6) \) and \( D = 0.3169(1) \).

The 3-body recombination rate \( K_3 \) for \(^6\)Li atoms in the three lowest hyperfine states has recently been measured by Jochim et al. \cite{6} and by O’Harra et al. \cite{7}. Their results are shown in Figs. 3 and 4. In Ref. \cite{6}, \( K_3 \) was measured for each of the three spin states separately. Those results have been averaged to get a single value of \( K_3 \) at each value of \( B \). Both groups observed dramatic variations in \( K_3 \) with \( B \), including a narrow loss feature near 130 G and a broader loss feature near 500 G.

The narrow loss feature and the broad loss feature observed in Refs. \cite{6,7} appear near the boundaries of the low-field region in which all 3 scattering lengths satisfy \( |a_{ij}| > 2 \ell_{vdW} \). The zero-range approximation is questionable near the boundaries of this region. We nevertheless fit the data for \( K_3 \) in this region by calculating the 3-body recombination rate using the \( B \)-dependence of \( a_{12}, a_{23}, \) and \( a_{13} \) shown in Fig. 2 while treating \( \Lambda \) as fitting parameters. Since the systematic error in the normalization of \( K_3 \) was estimated to be 90% in Ref. \cite{6} and 70% in Ref. \cite{7}, we only fit the shape of the data and not its normalization. A 2-parameter fit to the data from Ref. \cite{6} in the region \( 122 \, \text{G} < B < 485 \, \text{G} \) gives \( \Lambda = 436 \, a_0^{-1} \) and \( \eta_\ast = 0.11 \). The fit to the shape of the narrow loss feature is excellent as shown in Fig. 3. Having fit the position and width of the loss feature, the normalization of \( K_3 \) is determined. In the region of the narrow loss feature, the prediction for \( K_3 \) lies below the data of Ref. \cite{6} by about a factor of 2, which is well within the systematic error of 90%. The excellent fit to the shape of the narrow loss feature and the prediction of the normalization of \( K_3 \) consistent with the data suggests that this loss feature may arise from an Efimov state near the threshold for atoms in spin states 1, 2, and 3.
FIG. 4: (Color online) The 3-body recombination rate constant $K_3$ as a function of the magnetic field $B$. The three vertical dashed lines mark the positions of the Feshbach resonances. The solid dots are data points from Ref. [7]. The curve is a 2-parameter fit to the last two data points.

The 3-body recombination rate in the entire universal region $K_3 > 3 \times 10^{16}$ G$^{-2}$ cm$^6$ s$^{-1}$, where $B > 834$ G that is predicted by our fit. However the measurement of $K_3$ involves a model for the heating of the system, and the failure of our fit at 835 G might be attributable to the breakdown of that model near the Feshbach resonance.

In summary, we have calculated the recombination rate of three distinguishable atoms with large negative pair scattering lengths in the zero-range limit. We have provided simple semi-analytical expressions for the rate if 2 or 3 scattering lengths are equal. Using our general result for 3 unequal scattering lengths, we showed that the narrow 3-body loss feature for $^6$Li atoms with three spin states [4, 5] may be attributed to an Efimov state near threshold. Our results provide a starting point for a quantitative understanding of the 3-body loss rates and the unambiguous identification of Efimov physics in these systems.

We thank S. Jochim, K.M. O’Hara, and A.N. Wenz for useful communications. This research was supported in part by the DOE under grants DE-FG02-05ER15715 and DE-FC02-07ER41457, by the NSF under grant PHY-0653312, and by the BMBF under contract 06BN411.

[1] Ultracold Fermi Gases, ed. M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam, 2008).
[2] P.F. Bedaque and J. D’Incao, [arXiv:cond-mat/0602525].
[3] T. Paananen, J.-P. Martikainen, and P. Turpeinen, Phys. Rev. A 73, 053606 (2006).
[4] L. He, M. Jin, and P. Zhuang Phys. Rev. A 74, 033604 (2006).
[5] H. Zhai, Phys. Rev. A 75, 031603(R) (2007).
[6] T.B. Ottenstein, T. Lompe, M. Köhnen, A.N. Wenz, and S. Jochim, Phys. Rev. Lett. 101, 203202 (2008).
[7] J.H. Huckans, J.R. Williams, E.L. Hazlett, R.W. Stites, and K.M. O’Hara, Phys. Rev. Lett. 102, 165302 (2009).
[8] V. Efimov, Phys. Lett. 33B, 563 (1970); Nucl. Phys. A 210, 157 (1973).
[9] E. Braaten and H.-W. Hammer, Phys. Rept. 428, 259 (2006).
[10] E. Braaten and H.-W. Hammer, Annals Phys. 322, 120 (2007).
[11] T. Kraemer et al., Nature 440, 315 (2006).
[12] S. Knoop et al., Nature Physics 5, 227 (2009).
[13] G.V. Skorniakov and K.A. Ter-Martirosian, Sov. JETP 4, 648 (1957).
[14] E. Braaten, H.-W. Hammer and T. Mehen, Phys. Rev. Lett. 88, 040401 (2002).
[15] E. Braaten and H.-W. Hammer, Phys. Rev. A 70, 042706 (2004).
[16] P.S. Julienne, private communication.
[17] M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 (2005).