The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions

Marius Trøseid a,b,c,*, Geir Øystein Andersen d, Kaspar Broch e, Johannes Roksund Hov a,c,f,g

a Research Institute of Internal Medicine, Sognsvannsvægen 20, 0027 Oslo, Norway
b Section of Clinical Immunology and Infectious diseases, Norway
c Institute of Clinical Medicine, University of Oslo, Norway
d Department of Cardiology, Oslo University Hospital Ullevål, Norway
e Department of Cardiology, Oslo University Hospital Rikshospitalet, Norway
f Norwegian PSC Research Center, Norway
g Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Norway

1. Introduction

The gut microbiota, comprising the trillions of bacteria in the gastrointestinal tract, is a complex community whose metabolic activities and interactions with the immune system extend beyond the gut itself [1]. Host-microbiota interactions involving inflammatory and metabolic pathways have been proposed to contribute to the pathogenesis of multiple immune-mediated diseases and metabolic conditions like diabetes and obesity. Accumulating evidence suggests that alterations in the gut microbiota could play a role in cardiovascular disease. This review focuses on recent advances in our understanding of the interplay between diet, gut microbiota and cardiovascular disease, with emphasis on heart failure and coronary artery disease. Whereas much of the literature has focused on the circulating levels of the diet- and microbiota-dependent metabolite trimethylamine-N-oxide (TMAO), several recent sequencing-based studies have demonstrated compositional and functional alterations in the gut microbiomes in both diseases. Some microbiota characteristics are consistent across several study cohorts, such as a decreased abundance of microbes with capacity for producing butyrate. However, the published gut microbiota studies generally lack essential covariates like diet and clinical data, are too small to capture the substantial variation in the gut microbiome, and lack parallel plasma samples, limiting the ability to translate the functional capacity of the gut microbiomes to actual function reflected by circulating microbiota-related metabolites. This review attempts to give directions for future studies in order to demonstrate clinical utility of the gut-heart axis.

Heart failure (HF) is a syndrome caused by the impaired ability of the heart to fill or eject blood [4]. Any disorder affecting the structural and/or functional integrity of the heart, such as valvular, coronary or myocardial disease, can commence HF. Hemodynamic stress [5], neurocrine activation [6], and inflammation [7] all contribute to the structural changes observed in advanced HF. Accumulating evidence suggests that alterations in the gut microbial community could play a role in cardiovascular disease. This review focuses on recent advances in our understanding of the interplay between the gut microbiota and cardiovascular disease, with emphasis on HF and coronary artery disease (CAD). Some microbiota characteristics have consistently been identified in both diseases, such as a decreased abundance of microbes with capacity for producing butyrate and increased circulating levels of the diet- and microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) (Fig. 1). However, most published studies lack essential covariates like diet, and are too small to capture the substantial variation in the gut microbiome. This review attempts to give directions for future studies in order to demonstrate a clinically useful gut-heart axis.
2. A brief introduction to microbiota-related laboratory methods

The gut microbiome can be considered an endocrine organ, and each microbe has the capacity to produce hundreds of different known and unknown metabolites which act beyond gut itself [1]. The composition of the microbiota is typically analyzed by high-throughput sequencing and bioinformatic analyses of extracted microbial deoxyribonucleic acid (DNA). The methodologies are extensively reviewed in the literature [8,9], but as basis for this review, we provide a brief overview of the most relevant methods.

This review addresses the bacterial component of the gut microbiome, for which segments of the 16S ribosomal ribonucleic acid (rRNA) marker gene are amplified and submitted to next-generation sequencing [10–12]. A given bacterial species (e.g. Faecalibacterium prausnitzii) can be described on different taxonomic levels; as part of a phylum (e.g. Firmicutes), class (Clostridia), order (Clostridiales), family (Ruminococcaceae) or genus (Faecalibacterium). With 16S sequencing, bacteria can typically be identified at genus level resolution, more rarely at species level.

When using the full metagenomic (shotgun) sequencing, all the DNA in the sample is sequenced, providing resolution on species level [9]. This method is more expensive and computationally demanding, but provides an overview of potential microbial functions. Similar data may be generated (imperfectly) by predicting the functional gene content from 16S rRNA-based data [13]. Methods for characterizing microbial functions include metatranscriptomics, metaproteomics and metabolomics [14]. Typically, metabolomic methods may be applied to stool or peripheral blood samples and provide direct measures of microbial activity.

3. Coronary artery disease

3.1. Altered gut microbiome with inflammatory properties and reduced capacity for short chain fatty acid (SCFA) production

Three recent studies have investigated the gut microbiota composition in patients with CAD, using different sequencing methodologies (Table 1). Cui et al. reported differences on phylum level, with
decreased proportion of Bacteroidetes and increased proportion of Firmicutes in patients with coronary heart disease [15]. In a much more comprehensive study, Jie et al. reported increased levels of several Streptococcus species and genera of the Enterobacteriaceae family, and reduced abundance of Roseburia Intestinalis and Faecalibacterium prausnitzii, known producers of the SCFA butyrate [16]. Zhu and colleagues reported increased abundance of Escherichia-Shigella and Enterococcus and lower abundance of the butyrate producers Faecalibacterium, Roseburia, and Eubacterium rectale [17]. The studies by Jie and Zhu are in line with a previous study on symptomatic carotid atherosclerosis by Karlsson et al. reporting decreased relative abundance of Roseburia and Eubacterium, known producers of butyrate [18]. Butyrate and other SCFAs are end products of fermentation of dietary fibers, and the main energy source for colonocytes maintaining the gut mucosal barrier [19]. A reduction in the overall genetic potential for butyrate production could also be observed in the metagenome data in the study by Jie et al. [16]. Furthermore, Karlsson et al. observed a strong negative correlation between genes encoding butyrate production (butyrate-acetoacetate CoA-transferase and C-reactive protein (CRP) levels in the metagenomes of patients with symptomatic carotid atherosclerosis [18]. Other SCFAs could also be relevant, including acetate, which was shown to attenuate cardiac fibrosis and improve cardiac function in experimental mouse models [20].

3.2. Dysfunctional gut barrier, lipopolysaccharide (LPS) and inflammation

The gut microbial changes affecting butyrate may also influence inflammatory pathways, as butyrate exerts local anti-inflammatory effects in the intestinal mucosa by inducing colonic regulatory T cells [21]. Loss of butyrate producing bacteria may result in a dysfunctional gut mucosal barrier, facilitating passive leakage of microbial toxins such as LPS that binds to Toll-like receptors and other receptors of the innate immune system, thereby triggering inflammation [1,22–24]. Of interest, an increased potential for LPS biosynthesis in the microbiome has been reported among patients with CAD [17] and previous studies have linked circulating levels of LPS to insulin resistance [22], glycemic control and abdominal obesity [23]. We recently reported that increased plasma levels of LPS-binding protein and soluble CD14 predicted cardiovascular events in a high-risk population [25].

Recent work has demonstrated different bioactivity of LPS, with hexa-acetylated, but no penta-acetylated LPS triggering inflammation [26,27]. Jie et al. reported that genes required for synthesis of the LPS O-antigen were enriched in CAD, whereas the lipid A module was depleted, most likely due to depletion of Bacteroides, which produce non-inflammatory penta-acetylated lipid A [16].

3.3. The microbiota and the diet-dependent metabolite TMAO

The most compelling evidence of a link between the gut microbiome and CAD is related to microbial metabolism of dietary factors like carnitine and choline [28–30]. In a landmark paper from the Hazen group, the metabolite TMAO was identified as a strong predictor of CAD [28]. More than just a marker of the disease, TMAO is potentially a causative agent in atherosclerosis [29]. The source of TMAO is trimethylamine, which is produced by the gut microbiota from nutrients containing L-carnitine or phosphatidylcholine, and subsequently oxidized by hepatic flavin-containing monoxygenases to TMAO [28,29]. Precursors of TMAO promote foam cell formation and atherosclerosis in animal models, but not when adding antibiotics to the drinking water, suggesting a microbiota dependent mechanism [29]. In several independent cohorts from USA and Europe, plasma levels of TMAO predicted myocardial infarction, stroke and all-cause mortality [28–32].

In a recent study, TMAO levels increased in healthy individuals after dietary intake of red meat as compared with a non-meat or a white meat enriched diet [33]. The effect of diet on TMAO levels was reversible. Additionally, isotope techniques demonstrated that the increased TMAO production was from carnitine, not choline [33].

Although TMAO is the most studied microbiota-related metabolite in relation to cardiovascular risk, other metabolites along the TMAO pathway are of potential interest. Gamma-butyrobetaine (γBB) is a partly microbiota-related metabolite on the pathway from L-carnitine to TMAO, which has also been linked to CAD [34]. Trimethylsine (TML) is a partly endogenous, partly diet-derived precursor of both γBB and TMAO. It has been linked to increased CAD risk, alone, or in combination with TMAO [35,36]. In recent studies, circulating levels of γBB and TML, but not TMAO, predicted cardiovascular mortality in patients with carotid artery atherosclerosis [37]. Hence, there is a need to include also TMAO precursors in future studies to delineate which pathways are involved in atherosclerosis and CAD.

3.4. From the chronic atherosclerotic process to acute cardiovascular events

The atherosclerotic process starts with the fatty streak and culminates in plaque rupture and acute atherothrombosis, causing acute clinical events such as stroke or myocardial infarction [3,38]. Whereas inflammation is involved in all phases of atherosclerosis, most literature on the microbiome in CAD has not separated clearly between chronic CAD and acute events.

The published studies regarding the role of the microbiome in CAD all investigated patients with mostly stable CAD using cross-sectional designs [16–18]. Hence, prospective studies powered for
In a similar-sized study, Kamo et al. found a reduced relative abundance of the Lachnospiracea family on the genus level in 20 patients with HF [42]. In a study by Sandek et al. using traditional culture techniques, found an increased gut permeability as measured by the lactulose-mannitol test and the cellobiose sugar test [47,49] which could facilitate outgrowth of pathogenic microbes as reported by Sandek et al. [48]. The recent studies mentioned above are partly contrasting older data. In a study by Sandek et al. using fluorescence in situ hybridization, an enrichment of *Eubacterium rectale* and *Faecalibacterium* in gut mucosal biopsies were observed in patients with HF [46]. Pasini and colleagues, using traditional culture techniques, found an increased abundance of several pathogenic bacteria in HF, including *Campylobacter*, *Shigella*, *Salmonella*, *Yersinia Enterolytica* and *Candida* species [47]. The methodological differences are probably the key to explain these contradictory findings, although the different sampling site is a relevant factor in the former study, as mucosa-adherent microbes might differ from luminal fecal samples [48].

4.2. Gut mucosal biofilm, pathogens and leaky gut

The recent studies mentioned above are partly contrasting older data. In a study by Sandek et al. using fluorescence in situ hybridization, an enrichment of *Eubacterium rectale* and *Faecalibacterium* in gut mucosal biopsies were observed in patients with HF [46]. Pasini and colleagues, using traditional culture techniques, found an increased abundance of several pathogenic bacteria in HF, including *Campylobacter*, *Shigella*, *Salmonella*, *Yersinia Enterolytica* and *Candida* species [47]. The methodological differences are probably the key to explain these contradictory findings, although the different sampling site is a relevant factor in the former study, as mucosa-adherent microbes might differ from luminal fecal samples [48].

In order to define a more robust HF-related gut microbiota signature, we investigated two independent cross-sectional cohorts, finding that patients with HF had reduced biodiversity in the gut microbiome, as well as altered abundance of 15 core taxa. Most of the microbes that were depleted in HF belonged to the Lachnospiraceae family, in addition to *Faecalibacterium* from the Ruminococaceae family [45], again pointing to reduced capacity for butyrate production as a key element, supported by a lower predicted genetic potential for butyrate production (genes encoding butyrate-acetoacetate CoA-transferase). Of relevance, the abundance of several members of the Lachnospiraceae family correlated with soluble CD25, a marker of T cell activation, and depletion of the known butyrate producer *Eubacterium Halli* and increased plasma levels of soluble CD25 were associated with death or heart transplantation [45].

Table 2

Study	Luedde et al. [42]	Kamo et al. [43]	Cui et al. [44]	Kummen et al. [45]	Mayerhofer et al. [66]
Patients	Chronic HF, 70% exacerbation, 30% stable	Acute HF or exacerbation of chronic HF	Stable chronic HF: Ischaemic or dilated cardiomyopathy	Stable systolic HF	
	65 ± 3.2 years	73.8 ± 2.8 years	58.1 ± 13.3 years	58.9 (39–74) years	
Age patients	45/55	18/82	17/83	19/72	
Gender (%/f/m)	n = 20 HF	n = 12 HF >60years	n = 53 HF	n = 84 HF (discovery-validation)	
Sample size	n = 20 controls	n = 10 HF >60years	n = 41 controls	n = 266 controls	
Methods	16 s rRNA	16 s rRNA	16 s rRNA	16 s rRNA	
Parallel plasma/serum	No	No	Yes	Yes	
Dietary data	No	No	Yes	Yes	
Increased relative abundance in patients	–	–	–	–	
Decreased relative abundance in patients	Coriobacteriaceae, Erysipelotrichaceae, Ruminococaceae (family level)	Eubacterium rectale, Dorea longicatena	Faecalibacterium prausnitzii, Lachnospiraceae family: 9 different genera, including Blautia and Faecalibacterium halli	Lachnospiraceae family: 9 different genera, including Blautia and Faecalibacterium halli	
Blautia (genus level)	–	–	Depletion of Faecalibacterium in older patients	Faecalibacterium prausnitzii	Lachnospiraceae family: 9 different genera, including Blautia and Faecalibacterium halli
Functional findings	–	–	–	–	

- Increased capacity for lipopolysaccharide biosynthesis and TMA production and reduced capacity for butyrate production in HF microbiomes
- Lower genetic potential for butyrate production in HF microbiomes
- *Eubacterium hallii* associated with soluble CD25 and mortality
- Dysbiosis related to dietary fiber intake

Clinical events, as well as studies of the microbiome during acute coronary syndromes, should be a priority. Whereas direct analyses of the content of the microbiome could be difficult to perform in patients with acute disease, studies of microbiota-related metabolites could be more feasible in this setting. Interestingly, increased bacterial translocation has been reported in patients with acute myocardial infarction, with LPS and D-lactate blood levels being associated with adverse outcomes [39]. Furthermore, elevated levels of TMAO [32] and TML, alone or in combination with TMAO [36], have been shown to be associated with major adverse cardiac events 30 days after acute coronary syndrome, independent of troponin T levels. TMAO has been shown to interfere with platelet reactivity, which could be relevant for acute thromboembolic events [40]. Hence, although microbiota analyses are not yet ready for clinical use in the emergency room [41], microbiota-dependent biomarkers including LPS and TMA are potential therapeutic targets in patients with CAD.

4. Heart failure

4.1. Altered gut microbiome in HF with reduced capacity for butyrate production

The last two years, several sequencing-based studies have reported that the gut microbiota composition and functions differ between patients with HF and healthy subjects, with some common findings, but also considerable variation between studies (Table 2). Luedde and colleagues observed a reduced abundance of Ruminococaceae on the family level and reduced abundance of *Blautia* from the Lachnospiraceae family on the genus level in 20 patients with HF [42]. In a similar-sized study, Kamo et al. found a reduced relative abundance of *Eubacterium rectale* and *Dorea longicatena* from the Lachnospiraceae family, and levels of *Faecalibacterium* from the Ruminococaceae family were lower in older patients [43]. Furthermore, Cui et al. reported reduced levels of *Faecalibacterium prausnitzii* in patients with HF [44]. A common finding in these studies is the relative reduction in taxa from the Lachnospiraceae or Ruminococaceae families, known for their capacity for butyrate production.
4.3. TMAO: of prognostic value in HF?

Inspired by the role of TMAO in CAD, several independent studies have investigated the role of TMAO in chronic HF. It turns out that TMAO is a strong predictor of clinical outcomes in patients with HF, regardless of the underlying etiology [59]. In a study from our hospital, TMAO was elevated in patients with ischemic HF but not with dilated cardiomyopathy, and TMAO levels were associated with increased pulmonary artery pressure and wedge pressure, which are indices of left atrial stress [51]. Hence, the TMAO pathway could be related to decompensated HF and congestion, as TMAO levels were associated with prognosis in patients with acute decompensated HF [52]. An experimental study also supports this concept, since feeding animals with TMAO or its dietary precursors aggravated hemodynamic parameters [53].

Heart transplantation could represent a human “model” to provide additional information on the potential impact of the gut microbiota in HF. Recently, we found increased plasma levels of TMAO and TMAO-precursors in de novo heart transplant recipients, whereas the partly microbiota-dependent metabolite y-BB increased steadily after transplant. This metabolite was associated with acute rejection and cardiac allograft vasculopathy [54]. Although alloimmunity, treatment with immunosuppressive drugs and other factors could be relevant in these disease processes, there is a major knowledge gap related to the role of the gut microbiota in the post-transplant setting [55].

4.4. Primary and secondary bile acids

We recently analyzed the circulating bile acid pool in patients with HF and healthy controls and found an increased ratio of secondary to primary bile acids in HF, which was associated with reduced overall survival in unadjusted, but not adjusted analyses [56]. Whereas bile acids are traditionally regarded as emulsifiers to facilitate the absorption of dietary fat and fat-soluble vitamins, bile acids are now recognized as signaling molecules that interact with plasma membranes as well as nuclear receptors, exerting regulatory effects on glucose and lipid metabolism [57], energy homeostasis [58] and other physiological processes [59]. In fact, several bile acid receptors are expressed in cardiomyocytes, and it has been proposed that bile acids influence cardiovascular function [60]. In the gut, primary bile acids undergo metabolism to secondary bile acids [61] before reabsorption as a part of the enterohepatic cycle. These microbial bile acid modifications have a major impact on the agonist activity on the bile acid receptors such as the farnesoid X receptor, which has several activities and vascular influence [62]. Interestingly, a pilot study targeting the bile acid pool by ursodeoxycholic acid, reported improved peripheral blood flow as well as improved markers of liver function in patients with chronic HF [62].

4.5. Uremic toxins

Although reviewed only briefly here, the role of microbiota-derived uremic toxins could be of particular relevance for targeting cardiovascular risk in patients with chronic kidney disease (CKD) [63], including patients with HF as part of the cardiorenal syndrome. In CKD, the loss of urinary excretion results in retention of various substances known as uremic retention solutes, many of which have toxic properties, and certain uremic toxins are synthesized by gut microbes [63,64]. Indoles are bacterial metabolites of tryptophan, a semi-essential amino acid found in various food sources such as red meat, egg and fish. Indoles are metabolized into indole derivatives, such as indoxyl sulfate (IS) and indole-3-acetic acid (IAA), which act as endogenous ligands of transcription factors interacting with various regulatory and signaling pathways, thereby mediating cardiotoxicity and vascular inflammation [63].

Another microbiota-generated uremic toxin is P-Cresyl Sulfate (PCS), which is derived from bacterial metabolism of aromatic amino acids that are subsequently sulfonated into PCS in the liver. In several studies, elevated levels of IS, IAA and PCS have been associated with increased mortality and increased risk of cardiovascular events [63]. TMAO is dependent on renal elimination, resulting in elevated plasma levels in CKD. The TMAO pathway has been implicated in the development of renal insufficiency and increased mortality in patients with CKD [31].

5. Is dysbiosis of the gut microbiota linked to plasma metabolites?

Circulating microbial metabolites are potential disease-modifying mediators of bacterial functions, provided that the disease-associated dysbiosis correlates with metabolite concentrations. The majority of microbiota analyses in CAD and HF (Tables 1 and 2) have not been accompanied by parallel plasma samples. Even though TMAO is elevated in CAD, Karlsson et al. found no upregulation of the metabolic pathway from phosphatidylcholine to TMA in the gut microbiomes of patients with CAD [18]. In contrast, the larger study by Jie et al. reported enrichment of gut microbial enzymes involved in trimethylamine formation in microbiomes from patients with CAD [16], although none of these studies reported circulating TMAO levels. In HF, Cui et al. found increased genetic potential for TMA production in the gut microbiome, but no association with circulating TMAO [44]. In a study comprising 22 patients with HF and 11 matched controls, elevated TMAO levels in HF correlated with the abundance of Escherichia and Shigella, although the abundance of these genera did not differ between HF patients and controls [65]. In an animal study of TMAO formation and platelet reactivity, taxa of the Lachnospiracea family were negatively associated with circulating TMAO levels [40]. In contrast, in our own HF cohort, in which several members of the Lachnospiracea family were depleted, we found no association between the dysbiosis in HF and circulating TMAO. TMAO generation is determined by a complex interplay between dietary factors, microbiota-dependent activity and hepatic oxidation, and expecting the gut microbiota alterations observed in CAD and HF to correlate directly with circulating TMAO may be too simplistic.

We recently measured circulating butyrate in plasma from patients with HF, but found no association with gut dysbiosis, possibly due to low circulating levels of butyrate [66]. Butyrate and other SCFAs can be measured in fecal samples, providing a more direct measure of microbial activity, but this requires snap frozen samples without preservatives.

6. Search for novel microbiota-related pathways in CAD and HF

With the combined genes of the microbiome outnumbering the human genome by two orders of magnitude, and each microbe having the potential to turn on and off the production of hundreds of metabolites, several undiscovered microbiota-related metabolites are likely to be relevant in human disease. The seminal TMAO-report by Tang et al. reported on several metabolites predictive of CAD, the nature of which are presumably still unknown [29].

There is a need to apply more extensively full metagenomic sequencing to better define changes in the functional genetic alterations in the gut microbiome in patients with HF. Such methods are expensive and resource demanding, but provide species level resolution, as well as the functional potential of the microbes and the host in the gut compartment, as assessed in coronary heart disease in the studies by Karlsson et al. and Jie et al. [16,18]. Ultimately, combined analyses of the actual byproducts of microbial activity (unbiased metabolomics and/or proteomics analyses of parallel plasma samples) and metagenomics analyses must be performed in multi-level bioinformatics controlling for relevant confounders, in order to
identify functional alterations influencing the clinical phenotype of interest.

For translation to a clinical setting, biomarkers that are easily measurable in a reproducible way in plasma or urine will probably be of more value. Of relevance, Feng et al. measured metabolites in parallel plasma and urine samples in CAD patients and controls. The results were integrated with metagenomic analyses, identifying several metabolites, including GlcNAc-6-P, mannitol and 15 plasma choline, as novel candidate biomarkers potentially derived from the gut microbes [67]. In order to make such a biomarker useful, it should preferably provide prognostic information beyond that of established biomarkers or point to novel therapeutic principles. Furthermore, whereas the above-mentioned studies are based upon known proteins and metabolites, a recent study identified thousands of uncharacterized microbiota-generated small molecules, probably small proteins coded from open reading frames [68]. This approach could open up other avenues in microbiota-related studies.

7. Controlling for diet, drugs and comorbidities

Host genetic factors have a small but significant impact on the composition of the gut microbiota [69, 70]. However, environmental factors probably play a greater role [71]. One limitation of the studies published so far is the lack of dietary data. In an attempt to address this, we gathered food frequency questionnaires from patients with HF, finding that several characteristics of the dysbiosis observed in HF, including the low diversity and the reduction in butyrate-producing microbes, correlated with a low dietary fiber intake [66]. Importantly, diet has a major impact on the gut microbiota and related metabolites (Fig. 1), and dietary data should preferably be registered among other relevant co-variates in microbiota studies.

Other important confounders include concurrent medication and comorbidities. Recent large-scale studies have identified several commonly used drugs and their metabolism to be associated with microbiota alterations [72]. An interesting in vitro study examined nearly 1000 different drugs, finding that an estimated 24% of the drugs, most of which were not antibiotics, had the ability to suppress the growth of at least one commensal microbe in cultures [72]. Some drugs are even believed to mediate part of their therapeutic effects through their influence on the gut microbiome, as shown for metformin [74].

The studies summarized in Tables 1 and 2 all have limitations, regarding sample size, methodology, lack of parallel fecal and plasma samples or relevant covariates. All these factors should be considered when planning future microbiota-related studies.

8. Targeting the gut microbiome

Almost 20 years after Ross defined atherosclerosis as an inflammatory disease [38], Paul Ridker published the CANTOS trial [75], showing that inhibition of IL-1β by the monoclonal antibody canakinumab, can reduce cardiovascular events. Clinical translation will hopefully take shorter time in microbiota medicine, but there are several obstacles, including safety issues and substantial inter-individual variation in gut microbiota composition and function.

8.1. Probiotics and prebiotics

Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host [76]. Probiotics in clinical use comprise bacterial and fungal microorganisms, including the genera Lactobacillus and Bifidobacterium and the fungus Saccharomyces boulardii [77]. Results from animal models suggest that certain strains of Lactobacillus could have cardioprotective effects. Rats treated with a supplement containing Lactobacillus plantarum 299v before coronary artery ligation had reduced infarct size and improved left ventricular function [78]. Another study showed similar cardioprotective results in a rat model of myocardial ischemia after supplementation with Lactobacillus rhamnosus GR-1 [79].

In humans, a pilot study reported not only reduced systemic inflammation, but also improved left ventricular ejection fraction after an intervention with the probiotic yeast Saccharomyces Boulardii in patients with chronic HF [80]. The number of participants was low (n = 20), and the results should be interpreted with caution. We are currently performing a randomized controlled trial (RCT) including 150 patients with systolic HF, powered to detect an increase in left ventricular ejection fraction of 5% [81]. Results are expected during 2020. Given the potential clinical impact of microbiota modulation, as well as the high morbidity and mortality in HF, microbiota modulation is not without risk [82], and close clinical monitoring and predefined safety measures should follow the same standards as in other clinical trials [83]. Notably, genomic and epidemiological evidence of bacterial transmission from probiotic capsules to blood was recently reported in patients in intensive care units [84].

Prebiotics are substrates that are selectively utilized by host microorganisms and confer a potential health benefit, e.g. nondigestible dietary fibers and oligosaccharides [85]. Most contemporary deep sequencing studies of patients with cardiovascular disease report depletion of microbes with the capacity of producing SCFAs such as butyrate (Tables 1 and 2). Prebiotics promoting microbial fermentation of dietary fibers to SCFAs may therefore be of potential benefit in the gut, as well as in splanchnic and peripheral tissues, which in total may result in improved metabolic regulation [86]. Some prebiotics, such as inulin, have the potential to counteract harmful effects of antibiotics by promoting the diversity and functional capacity of the gut microbiota [87]. A recent RCT showed that dietary supplementation with inulin or inulin-propionate ester improved insulin sensitivity and reduced markers of systemic inflammation by raising colonic delivery of the SCFA propionate [88]. Hence, targeting microbial SCFAs production by supplement of inulin or other prebiotics are attractive strategies for future trials in cardiovascular disease, although current scientific evidence does not support the use of probiotics or prebiotics as supplemental therapy in patients with HF or CAD.

8.2. Antibiotics for gut decontamination

Early studies targeting the gut in patients with HF have focused on gut decontamination with broad-spectrum antibiotics to reduce bacterial translocation and inflammation. Although this approach has been successful in reducing markers of systemic inflammation, a clinical effect has not been demonstrated [89, 90].

In a recent study, it was shown that a broad-spectrum cocktail of oral antibiotics markedly increased post-infarction rupture and death in a murine model of ligation of the left anterior descending artery [91], suggesting that an intact microbial community is required around the time of myocardial injury for proper myocardial repair [92]. This study contrasts with previous animal models, reporting that oral vancomycin decreased infarct size and improved post-infarct cardiac function in rats [78], as well as a subsequent study, reporting that a mixture of streptomycin, neomycin, polymyxin B and bacitracin reduced infarct size along with alterations in microbiota-related metabolites [93]. Furthermore, antibiotics reduced bacterial translocation, inflammation and myocardial injury in an experimental mouse model [39]. Taken together, these diverging animal studies strongly suggest a role of the gut microbiota composition in acute myocardial infarction, but the direction of microbiota alterations and the potential metabolic or inflammatory pathways are poorly understood.

Targeting cardiovascular disease with antibiotic therapy is not a new idea. Between 1995 and 2005 > 19 000 patients were included in RCTs aimed to target chlamydia pneumonia in patients with CAD.
Positive experimental studies and small RCTs were followed by large trials with adequate sample size, which demonstrated no clinical benefit of antibiotic therapy. In addition to the obvious risk of antimicrobial resistance, other safety concerns of antibiotics have recently emerged with potential relevance for future trials. Recently, 10 years of follow-up data from the CLARICOR trial demonstrated increased cardiovascular death in clarithromycin-treated patients with stable CAD, [95] leading to an FDA alert in 2018 on the use of clarithromycin in patients with CAD (https://www.fda.gov/Drugs/DrugSafety/ucm597289.htm). In December 2018, another FDA alert on the use of clarithromycin in patients with CAD (https://www.fda.gov/Drugs/DrugSafety/ucm628753.htm). Finally, a recent study reported increased risk of cardiovascular events in elderly women with increased cumulative exposure to antibiotics in adulthood [96]. The explanation for this increased risk in women, but could involve prolongation of the QT-to-LPS. The other markers of bacterial translocation such as LBP, 1-FABP, zonulin, as well as functional measurements of gut leakage should be further studied for their potential relevance to disease-specific dysbiosis. Circulating bile acid pool should be investigated in relation to disease-specific dysbiosis. Pleiotropic effects of bile acid receptor FXR should be further studied in CVD. Interventions targeting uremic toxins, such as oral absorbants and synbiotics, should inspire research also in non-CKD populations.

8.4. Precision medicine targeting enzymatic pathways

Whereas probiotics, antibiotics and FMT are all potential candidate interventions in proof of principle studies, next generation probiotics need to be more goal-directed, targeting specific enzymatic pathways. Interestingly, inhibitors of TMAO production that target distinct microbial TMA lyses have been developed. These drugs reduce TMAO levels and reverse atherosclerosis in animal models [103]. TMA lysis has become a current potential therapeutic target of TMAO modulation. An appealing side of this “drug the bug” approach is that microbial pathways may be targeted, apparently without having bactericidal effects.

For now, dietary interventions, including adherence to a Mediterranean diet [104] or discontinuation of dietary red meat [33], are more accessible ways of reducing TMAO levels and possibly, cardiovascular risk. In light of our recent findings of dietary fiber intake being negatively associated with dysbiosis in HF, dietary intervention with a high-fiber diet, alone or in combination with a Mediterranean diet, could be a logical next step for targeting the gut heart axis.

8.5. Personalized approach

One aspect with particular relevance to microbiota research is the tremendous inter-individual variation in the gut microbiota composition [105]. In an elegant study, Zeevi et al. all showed that integration of microbiota profiles and metadata in a machine learning model made it possible to precisely predict individual glycemic responses in order to personalize nutritional advice [106]. These findings have been independently validated [107]. Hence, although certain

Biomarker	Relevance and main findings	Limitations	Future directions
TMAO	-Predicts clinical end points in numerous studies on HF, stable CAD and acute CAD.	-Circulating TMAO weakly linked to disease-specific dysbiosis.	-Potential therapeutic target in dietary interventions and pharmacological products interfering with TMA production. Microbiota-derived precursors such as TML should be studied further. Potential therapeutic target in high fiber dietary interventions.
Butyrate	-Reproducible measurements with mass spectrometry.	-TMAO levels influenced by diet, renal and liver function.	
	-Low microbial butyrate producing potential linked to dysbiosis in several cohorts of HF and CAD.	-Low circulating levels, not suitable as soluble biomarker	
		-Measurable in snap frozen fecal samples without preservatives, but rapidly degraded.	
Gut leakage markers	-Increase in LPS-producing microbes linked to dysbiosis in several cohorts of HF and CAD.	-Confounded by fiber intake	
	-Increased plasma LPS in HF	-Direct measurement of gut permeability is not so far feasible in the clinic	
	-Increased gut permeability measured by lactulose-mannitol test and cellulbiose sugar test in HF	-Large variability in LPS LAL-assay.	
Bile acids	-Increased conversion from primary to secondary bile acids in HF	-LAL assay does not separate between hexa- and penta-acylated LPS variants.	
Uremic toxins	-Microbiota-generated toxins such as PCS and IS accumulate as a result of reduced urinary excretion and predict clinical end points in CKD patients	-Large variability and technically difficult to measure	-Interventions targeting uremic toxins, such as oral absorbants and synbiotics, should inspire research also in non-CKD populations.

CAD: coronary artery disease; HF: heart failure; CKD: chronic kidney disease; LPS: lipopolysaccharide; LBP: LPS-binding protein; LAL-assay: limulus amebocyte lysate assay; I-FABP: intestinal fatty acid binding protein; FXR: farnesoid X receptor; PCS: P-Cresyl Sulfate; IS: indoxyl sulfate TMA: Trimethylamine; TMAO: Trimethylamine-N-Oxide; TML: Trimethyllysine.

The TMAO concentration can be influenced by several factors, including diet, renal function, and the presence of infection. For example, it has been shown that a high-fat diet can increase TMAO levels, while a low-fat diet can decrease them. Similarly, individuals with renal impairment have higher TMAO levels due to impaired clearance. Infection can also increase TMAO levels, particularly in Clostridium difficile infection. FMT from lean donors was previously shown to reduce TMAO levels and improve insulin sensitivity in obese subjects [98], although the effect was only temporary. A subsequent study on 20 subjects with the metabolic syndrome, FMT from vegan donors changed the gut microbiota composition toward a vegan profile in some patients; however, without altering TMAO production capacity or parameters related to vascular inflammation [100]. FMT is now tested in several clinical settings, but with the current mode of endoscopic delivery, its use in acute and high-risk settings such as acute coronary syndrome and decompensated HF is limited. FMT is not without risk and was recently shown to transmit drug-resistant E. Coli resulting in bacteremia in two patients, one of whom died [101]. It is critical to standardize and optimize procedures for FMT, including screening for suitable donors, development of non-invasive delivery modes such as capsules, as well as determination of the active components, in order to develop personalized treatment strategies [102].

8.3. Fecal microbiota transplant (FMT)

FMT is the most radical current intervention for targeting the gut microbiome and an established treatment for recurrent Clostridiodes difficile infection. FMT from lean donors was previously shown to normalize insulin sensitivity in obese subjects with the metabolic syndrome [98,99], although the effect was only temporary. In a subsequent study on 20 subjects with the metabolic syndrome, FMT from vegan donors changed the gut microbiota composition toward a vegan profile in some patients; however, without altering TMAO production capacity or parameters related to vascular inflammation [100]. FMT is now tested in several clinical settings, but with the current mode of endoscopic delivery, its use in acute and high-risk settings such as acute coronary syndrome and decompensated HF is limited. FMT is not without risk and was recently shown to transmit drug-resistant E. Coli resulting in bacteremia in two patients, one of whom died [101]. It is critical to standardize and optimize procedures for FMT, including screening for suitable donors, development of non-invasive delivery modes such as capsules, as well as determination of the active components, in order to develop personalized treatment strategies [102].

8.4. Precision medicine targeting enzymatic pathways

Whereas probiotics, antibiotics and FMT are all potential candidate interventions in proof of principle studies, next generation probiotics need to be more goal-directed, targeting specific enzymatic pathways. Interestingly, inhibitors of TMAO production that target distinct microbial TMA lyses have been developed. These drugs reduce TMAO levels and reverse atherosclerosis in animal models [103]. TMA lysis has become a current potential therapeutic target of TMAO modulation. An appealing side of this “drug the bug” approach is that microbial pathways may be targeted, apparently without having bactericidal effects.

For now, dietary interventions, including adherence to a Mediterranean diet [104] or discontinuation of dietary red meat [33], are more accessible ways of reducing TMAO levels and possibly, cardiovascular risk. In light of our recent findings of dietary fiber intake being negatively associated with dysbiosis in HF, dietary intervention with a high-fiber diet, alone or in combination with a Mediterranean diet, could be a logical next step for targeting the gut heart axis.

8.5. Personalized approach

One aspect with particular relevance to microbiota research is the tremendous inter-individual variation in the gut microbiota composition [105]. In an elegant study, Zeevi et al. all showed that integration of microbiota profiles and metadata in a machine learning model made it possible to precisely predict individual glycemic responses in order to personalize nutritional advice [106]. These findings have been independently validated [107]. Hence, although certain

[94]. Positive experimental studies and small RCTs were followed by large trials with adequate sample size, which demonstrated no clinical benefit of antibiotic therapy. In addition to the obvious risk of antimicrobial resistance, other safety concerns of antibiotics have recently emerged with potential relevance for future trials. Recently, 10 years of follow-up data from the CLARICOR trial demonstrated increased cardiovascular death in clarithromycin-treated patients with stable CAD, [95] leading to an FDA alert in 2018 on the use of clarithromycin in patients with CAD (https://www.fda.gov/Drugs/DrugSafety/ucm597289.htm). In December 2018, another FDA alert on the use of fluoroquinolones warned about increased risk of aortic ruptures and aortic dissection in patients at increased risk, such as elderly patients with hypertension or peripheral atherosclerotic vascular disease (https://www.fda.gov/Drugs/DrugSafety/ucm628753.htm). Finally, a recent study reported increased risk of cardiovascular events in elderly women with increased cumulative exposure to antibiotics in adulthood [96]. The explanation for this increased risk in women, but could involve prolongation of the QT-interval and Torsade de Pointes arrhythmia, predisposing to a neuroendocrine and metabolic risk profile. Several studies have demonstrated that antibiotics are associated with an increased risk of adverse events. A recent meta-analysis of 15 studies found a significant increase in the risk of cardiovascular events among patients exposed to antibiotics compared to those not exposed [97].

Microbiota-based therapies offer a promising strategy for modulating the gut microbiota and improving health outcomes. One approach is to use fecal microbiota transplant (FMT), which involves the administration of fecal material from healthy donors to a recipient with dysbiosis, in order to restore a healthy gut microbiota. FMT has been shown to improve symptoms and laboratory markers of IBD, metabolic syndrome, and hepatic encephalopathy [98]. However, FMT is not without risk and can lead to complications such as bacteremia and transmissible drug-resistant bacteria [99]. Therefore, it is important to carefully select donors and recipients, and to monitor patients closely for potential side effects.

Another approach is to manipulate the gut microbiota using dietary interventions. For example, a high-fiber diet rich in prebiotics can modulate the gut microbiota and improve glucose metabolism [100]. However, the efficacy of dietary interventions can be limited by poor adherence and individual variation in response. Therefore, personalized dietary interventions that take into account individual gut microbiota composition and metabolic status may be more effective [101].

It is important to note that the gut microbiota is a dynamic ecosystem that is influenced by a wide range of factors, including diet, genetics, and the environment. Therefore, developing strategies to manipulate the gut microbiota for therapeutic purposes will require a multi-disciplinary approach that integrates knowledge from fields such as microbiology, nutrition, and genomics.
microbiota-metabolite traits, such as increased TMAO or reduced butyrate production, may be identified in groups of patients, different microbiota-related pathways may be relevant in different individuals. In addition to the requirement of demonstrated effect in RCTs, a personalized approach is probably necessary if gut microbiota interventions should be of clinical significance.

9. Conclusion

Recent studies of the gut microbiome have identified some common traits in CAD and HF, in particular a decreased abundance of gut microbes with capacity for producing butyrate and elevated circulating levels of TMAO. However, a link between gut microbiota alterations and circulating metabolites in cardiovascular disease is yet to be defined, and most published studies lack information about essential covariates like drugs, diet and comorbidities and are too small to capture the substantial variation in the gut microbiome. Given the complexity and magnitude of the gut microbiota and its metabolites, as well as the potential benefits and risks of targeting the gut microbiota in high-risk clinical settings, a multidisciplinary approach is necessary. Close collaboration between dedicated clinicians and microbiota-focused groups with capacity for metagenomics and multi-level bioinformatics will be necessary to demonstrate a clinically relevant gut-heart axis. (Table 3).

10. Outstanding questions

Adequately powered studies; including well-designed randomized trials with parallel microbiota and plasma samples, controlled for essential covariates like diet; are needed to move the field from associative studies to possible causation.

11. Search and selection criteria

This review is based on a systematic search in PubMed using the term (microbiota OR microbiome) AND (heart failure OR coronary artery disease OR atherosclerosis OR cardiovascular) as of December 10th 2019. We limited our search to articles on adult patients, written in English and published over the last three years.

Declaration of Competing Interest

Dr. Trøseid, Dr Broch and Dr Andersen declare no conflict of interest. Dr. Hov has received funding from Biogen, personal fees from Novartis, and personal fees from Orkla Health.

Funding statement

No external funding source.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi: 10.1016/j.ebiom.2020.102649.

References

[1] Sonnenburg JL, Backhed F. Diet-microbiota interactions as modulators of human metabolism. Nature 2016;535(7610):56–64.
[2] Roth GA, Johnson C, Abajobir A, Abd-Allah F, Afera AF, Afshin A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2019. J Am Coll Cardiol 2017;70(1):1–25.
[3] Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352(16):1685–93.
[4] Vanc HWW, Jessep M, Bjurtz B, Butler J, Case Jr. DE, Drezner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation 2013;128(h16):e240–327.
[5] Modesti PA, Vanni S, Bertolozzi I, Cecioni I, Poldori G, Panuccio R, et al. Early sequence of cardiac adaptations and growth factor formation in pressure- and volume-overload hypertrophy. Am J Physiol Heart Circ Physiol 2000;279:H204–15.
[6] Gajarsa J, Kloner RA. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev 2011;16(1):13–21.
[7] Yndestad A, Daman JK, Oie E, Ueland T, Gulstad L, Aukrust P. Systemic inflammation in heart failure—the whys and wherefores. Heart Fail Rev 2006;11(1):83–92.
[8] Allahaband D, McDonald D, Vazquez-Baexa Y, Minich JJ, Tripathi A, Brenner DA, et al. Microbiome 101: study, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol 2019;17(2):218–30.
[9] Morgan XC, Huttenhower C. Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014;146(5):1437–48.
[10] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the illumina hiseq and miSeq platforms. ISME J 2012;6(8):1621–4.
[11] Fadros M, M, B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16s rRNA gene sequencing on the illumina miSeq platform. Microbiome 2014;2(1):6.
[12] Koizhi J, Westcott SL, Baxter NS, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplification sequence data on the miSeq illumina sequencing platform. Appl Environ Microbiol 2013;79(17):5112–20.
[13] Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16 s rRNA gene sequences. Nat Biotechnol 2013;31(9):814–21.
[14] Mallick H, Ma S, Franusa EA, Vatanen T, Morgan XC, Huttenhower C. Experimental design and quantitative analysis of microbial community metatransomics. Genome Biol 2017;18(1):228.
[15] Uy L, Zhao T, Hu H, Zhang W, Hua X. Association study of gut flora in coronary heart disease through high-throughput sequencing. Biomed Res Int 2017;2017:3796339.
[16] Jie Z, Xie H, Zhong SL, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017;8:1345.
[17] Zhu Q, Gao R, Zhang Y, Pan D, Zhu Y, Zhang X, et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics 2018;50(10):893–903.
[18] Karlsson LH, Fok K, Nooawa I, Tamarov F, Vegasberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012;3:1245.
[19] Ringdger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982;83(2):424–9.
[20] Marques FZ, Nelson E, Chu PY, Horlock D, Fierder A, Ziemann M, et al. High-Fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 2017;135(10):964–77.
[21] Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbial-derived butyrate induces the differentiation of colon regulatory T cells. Nature 2013;504(7480):440–6.
[22] Cai J, Anar J, Iglises MA, Figari M, Knaus C, Rastelli D, et al. Metabolic endotoxin imitates obesity and insulin resistance. Diabetes 2007;56(7):1761–72.
[23] Trosed M, Nestvold TK, Rudi K, Thoresen H, Nielsen E, Wadegard PT. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care 2013;36(16):3627–32.
[24] Brandesma E, Kloosterhuis N, Koster M, Dekker DC, Gijbels MJ, van D, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res 2019;124(1):94–100.
[25] Awoyemi A, Trosed M, Arnesen H, Solheim S, Selset L. Effects of dietary intervention and n-3 pufa supplementation on markers of gut-related inflammation and their association with cardiovascular events in a high-risk population. Atherosclerosis 2019;286:53–9.
[26] Brix S, Eriksen C, Larsen JM, Bisgaard H. Metagenomic heterogeneity explains dual immune effects of endotoxins. J Allergy Clin Immunol 2015;135(1):277–80.
[27] Vatanen T, Kostic AD, Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 2016;162(4):542–53.
[28] Tang WH, Wang Z, Levison BS, Koeth RA, Britt E, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368(17):1575–85.
[29] Wang Z, Klopil CF, Bennett RJ, Koeh R, Levison DS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472(7341):57–63.
[30] Koeh RA, Wang Z, Levison BS, Buja F, Oeg E, Sheeby BT, et al. Intestinal micro- biota metabolism of d-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19(5):576–85.
[31] Tang WH, Wang Z, Kennedy DJ, Wu Y, Buja F, Agatia-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality in chronic kidney disease. Circ Res 2015;116(3):448–55.
[32] Li XS, Obied S, Klingenberg R, Gencer B, Mach F, Raber L, et al. Gut microbiota- dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017;38(11):814–24.
[33] Wang Z, Bergerson N, Levison BS, Li XS, Chiu S, Jia X, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide
metabolism and renal excretion in healthy men and women. Eur Heart J 2019;40 (7):583–94.

[34] Koeth RA, Levinson BS, Culley MK, Buffa JA, Wang Z, Gregory JC, et al. Gamma-butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of dietary betaine to trimethylamine-N-oxide. J Am Coll Cardiol 2014;63(2):199–212.

[35] Li XS, Wang Z, Cai J, Tu B, Buffa JA, Nemet I, Hurud AG, et al. Untargeted metabolites identifies trimethylamine, a TMAO-producing nutrient precursor, as a predictor of cardiovascular disease risk. J Clin Investig 2018;128(6):2612–23.

[36] Li XS, Obeid S, Wang Z, Hazen BI, Li L, Wu Y, et al. Trimethylamine-N-oxide, a trimethylamine-N-oxide precursor, provides near- and long-term prognostic value in patients with acute coronary syndromes. Eur Heart J 2019;40 (32):2700–9.

[37] Skenes K, Troseid M, Ueland T, Holm S, Abbas A, Gregeresen I, et al. The carnitine-butyrobetaine-Trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis 2019;305:164–9.

[38] Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999;340 (2):115–26.

[39] Zhou X, Li J, Guo J, Geng B, J Wang Z, Qiao et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 2018;6(1):56.

[40] Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 2016;11(6):e0154122.

[41] Troseid M. Gut microbiota and acute coronary syndromes: ready for use in the emergency room? Eur Heart J 2017;38(11):825–7.

[42] Lueeide M, Winkler T, Heinzen FA, Ruhlemann MC, Speithmann M, Bajovic A, et al. Heart transplants are associated with depletion of core intestinal microbiota. ESC Heart Fail 2017;4(3):282–90.

[43] Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One 2017;12(7):e0182918.

[44] Cui X, Ye L, Li J, Lin L, Wang W, Li S, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 2018;8(1):16355.

[45] Muenker KM, Mayerhofer CCK, Vestad B, Awoyemi A, Storm-Larsen C, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352(6285):565–9.

[46] Maier L, Pruteanu M, Kuhn M, Zeller C, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018;555(7689):623–8.

[47] Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannig PART, et al. Metformin alters the gut microbiota of ob/ob mice with type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017;23(7):850–8.

[48] Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017;377(12):1119–29.

[49] Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, But et al. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11(8):506–14.

[50] Patel R, DuPont HL. New approaches for bacteriotherapy: probiotics, new-generation probiotics, and synbiotics. Clin Infect Dis 2015;60(Suppl 2):S108–18.

[51] Lam V, Su J, Kropowski S, Ha R, Tweedell JS, Raffie P, et al. Intestinal microbiota dysbiosis precedes severity of myocardial infarction in rats. PloS ONE 2012;7(2):e32775.

[52] Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circ Res 2014;115(8):e67–71.

[53] Fox MA, Peterson S, Fabri BM, van Saene HK. Selective decontamination of the digestive tract: clinical benefit in critically ill patients. Crit Care Med 2016;44(1):200–7.

[54] Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Diesel exhaust exhaust alters the gut microbiome of individuals with treatment-naive type 2 diabetes, consistent with population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352(6285):565–9.

[55] Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018;7(4):198–206.

[56] Johnson LP, Walton GE, Psichas A, Frost GS, Gibson GR, Barraclough TG. Prebiotics directly modulate the gut microbiota of healthy adults with overweight and obesity with distinct effects on the gut microbiota. J Transl Med 2020;18(1):71.

[57] Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blehman R, et al. Human gut microbiome alters immune system composition and cripples postinfarction cardiac repair. Circ Res 2013;1(1):59–72.

[58] Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Selective decontamination of the digestive tract: clinical benefit in critically ill patients. Crit Care Med 2016;44(1):200–7.

[59] Construction ES, Patel R, DuPont HL. New approaches for bacteriotherapy: probiotics, new-generation probiotics, and synbiotics. Clin Infect Dis 2015;60(Suppl 2):S108–18.

[60] Lam V, Su J, Kropowski S, Ha R, Tweedell JS, Raffie P, et al. Intestinal microbiota dysbiosis precedes severity of myocardial infarction in rats. PloS ONE 2012;7(2):e32775.

[61] Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circ Res 2014;115(8):e67–71.

[62] Fox MA, Peterson S, Fabri BM, van Saene HK. Selective decontamination of the digestive tract: clinical benefit in critically ill patients. Crit Care Med 2016;44(1):200–7.

[63] Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Selective decontamination of the digestive tract: clinical benefit in critically ill patients. Crit Care Med 2016;44(1):200–7.

[64] Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Selective decontamination of the digestive tract: clinical benefit in critically ill patients. Crit Care Med 2016;44(1):200–7.

[65] Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Selective decontamination of the digestive tract: clinical benefit in critically ill patients. Crit Care Med 2016;44(1):200–7.

[66] Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al. Selective decontamination of the digestive tract: clinical benefit in critically ill patients. Crit Care Med 2016;44(1):200–7.
[94] Andrews R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 2005;293(21):2641–7.

[95] Winkel P, Hilden J, Hansen JF, Kastrup J, Kolmos HJ, Kjoller E, et al. Clarithromycin for stable coronary heart disease increases all-cause and cardiovascular mortality and cerebrovascular morbidity over 10 years in the claricor randomised, blinded clinical trial. Int J Cardiol 2015;182:459–65.

[96] Heanau Y, Zheng Y, Ma W, Rimn EB, Albert CM, Hu FR, et al. Duration and life-stage of antibiotic use and risk of cardiovascular events in women. Eur Heart J 2019.

[97] Knoop KA, McDonald KG, Kulkarni DH, Newberry RD. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 2016;65(7):1100–9.

[98] Vrieze A, van NE, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143(4):913–6.

[99] Kootte RS, Levin E, Salojarvi J, Smits LP, Harstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 2017;26(4):511–9.

[100] Smits LP, Kootte RS, Levin E, Prodan A, Fuentes S, Zoetendal EG, et al. Effect of vegan fecal microbiota transplantation on Carnitine- and Choline-Derived trimethylamine-oxide production and vascular inflammation in patients with metabolic syndrome. J Am Heart Assoc 2018;7(7).

[101] DeFilipp Z, Bloom PP, Torres SM, Mansour MK, Sater MRA, Huntley MH, et al. Drug-Resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 2019;381(21):2041–50.

[102] Wortelboer K, Nieuworp M, Herrema H. Fecal microbiota transplantation beyond clostridioides difficile infections. E Bio Med 2019;44:716–29.

[103] Wang Z, Roberts AB, Bufla JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015;163(7):1585–95.

[104] De FF, Pellegrini N, Vannini I, Jeffery IB, La SA, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016;65(11):1812–21.

[105] Structure, function and diversity of the healthy human microbiome. Nature 2012;486(7402):207–14.

[106] Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015;163(5):1079–94.

[107] Mendes-Soares H, Raveh-Sadka T, Azulay S, Edens K, Ben-Shlomo Y, Cohen Y, et al. Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw Open 2019;2(2):e188102.