A new polyoxygenated farnesylcyclohexenone from Fungus *Penicillium* sp.

Yabin Yang\(^{a1}\), Fangfang Yang\(^{a1}\), Lixing Zhao\(^{b}\), Rongting Duang\(^{a}\), Guangyi Chen\(^{a}\), Xiaozhan Li\(^{a}\), Qiling Li\(^{a}\), Shaohuan Qin\(^{a}\) and Zhongtao Ding\(^{a*}\)

\(^{a}\)School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China; \(^{b}\)Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, P.R. China

(Received 11 January 2015; final version received 15 March 2015)

A new polyoxygenated farnesylcyclohexenone, peniginsengin A (1), was isolated from the fermentation of *Penicillium* sp. YIM PH30003, an endophytic fungus associated with *Panax notoginseng* (Burk.) F. H. Chen. The structure was assigned based on a combination of 1 D and 2 D NMR and mass spectral data. The cytotoxicity and antimicrobial activities of compound 1 were investigated.

Keywords: *Penicillium* sp.; polyoxygenated farnesylcyclohexenone; peniginsengin A

1. Introduction

The genus *Penicillium* is one of the largest and most intensively investigated mangrove endophytic fungal genera. Diverse structures and interesting biological activities from endophytic *Penicillium* species have been characterised (Motohashi et al. 2009; Wang et al. 2011; Yang et al. 2013; Rukachaisirikul et al. 2014). As part of our ongoing research on new bioactive compounds from endophytic fungi, the broth culture of the rhizosphere fungus *Penicillium* sp. YIM PH30003 exhibited antimicrobial activity towards *Fusarium solani*, the pathogenic fungus of *Panax notoginseng*. We reported herein the isolation and identification of one new compound from the fungus *Penicillium* sp., together with its bioactivities. The structure was determined as peniginsengin A (1) (Figure 1) by extensive spectroscopic analyses. The cytotoxicity against human promyelocytic leukemia HL-60, human hepatoma SMMC-7721, non-small-cell lung cancer A-549, breast cancer MCF-7 and human colorectal carcinoma SW4801 cell lines, and antimicrobial activities against *F. solani* and *Staphylococcus aureus* of compound 1 were investigated.

2. Results and discussion

HR-ESIMS analysis of compound 1 revealed quasi-molecular ion peaks at 357.1757 [M + Na]\(^{+}\). The \(^{1}\)H and \(^{13}\)C NMR spectra, including DEPT, clearly showed three olefinic...
methyl singlets, two oxygenated methines, one oxygenated quaternary carbon, two olefinic carbons and five methylenes. The \(^1H\) NMR and \(^{13}C\) NMR of 1 empressed the skeleton of polyoxygenated farnesylcyclohexenones isolated from *Penicillium* (Li et al. 2003). The cyclohexanone structure unit in compound 1 was confirmed by HMBC and \(^1\text{H}–^1\text{H}\) COSY spectra (Figure S1). The HMBC correlations between H-7 and C-4, C-5 and C-6 suggested a methyl group connected to a double bond at C-5 position. The \(^1\text{H}–^1\text{H}\) COSY between H-3 and H-4 indicated that C-3 was connected to C-4. The structure of the side chain, comprising two isoprene and one acetic acid fragments, could also be established by the information provided by \(^1\text{H}–^1\text{H}\) COSY and HMBC spectra (Figure S1). The HMBC signals between H-1\(^\prime\) and C-2 indicated that the side chain was connected to C-2 position. The relative stereochemistry of this metabolite was determined by the coupling constant and the NOESY data. The coupling constant of H-3 and H-4 was observed to be 2.2 Hz and a broad singlet when compared with ambuic acid derivatives, suggesting that H-3 and H-4 are situated in a *cis* relationship (Ding et al. 2009). The orientations of double bonds were determined by the NOESY data from H-2\(^\prime\) to H-4\(^\prime\), H-4\(^\prime\) to H-6\(^\prime\), H-6\(^\prime\) to H-8\(^\prime\) and NMR when compared with 7-deacetoxyyuanthone A (Li et al. 2003).

Compound 1 showed no cytotoxicity against HL-60, SMMC-7721, A-549, MCF-7, SW4801 up to a concentration of 40 \(\mu\)M in the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxy methoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) method, and compound 1 indicated antifungal activity with an MIC of 64 \(\mu\)g/mL against *F. solani*, the pathogenic fungus of *P. notoginseng*, but no antibacterial activity was shown with MIC > 100 \(\mu\)g/mL.

3. Experimental

3.1. General experimental procedures

Silica gel (100–200, 200–300 mesh; Qingdao Marine Chemical Group Co., Shangdong, China) and Sephadex LH-20 (GE Healthcare Co., Buckinghamshire, UK) were employed for column chromatography. All chemicals were purchased from Beijing Greenherbs Science and Technology Development Co. (Beijing, China). Optical rotations were measured with a Jasco P-1020 (Jasco Co., Tokyo, Japan). 1D- and 2D-NMR spectra were obtained on Bruker 500 MHz instruments (Bruker, Karlsruhe, Germany) with tetramethylsilane (TMS) (Sigma-Aldrich Co., Shanghai, China) as internal standard. MS spectrum was recorded using an Agilent G3250AA system (Agilent, Santa Clara, CA, USA).

3.2. Biological material and cultivation of fungal strain

Penicillium sp. was isolated on PDA medium (infusion of 200 g fresh potato, dextrose 15 g and 1 L distilled water, agar 15.0 g, pH 7.0) from the *P. notoginseng* collected from Wenshan, Yunnan Province, China, in March 2012. The stock culture of *Penicillium* sp. was grown on the slant of PDA medium at 4°C. Identification of the strain was performed by rDNA-ITS molecular-phylogenetic analysis and morphological characteristics of its different growth stages.
A voucher specimen (no. YIM PH30003) was preserved at the Yunnan Institute of Microbiology, Kunming, P.R. China.

3.3. Fermentation and isolation
The fungus *Penicillium* YIM PH 30003 was maintained on the seed medium (PDB, potato infusion of 200 g fresh potato, dextrose 20 g, distilled water 1.0 L, pH 7.0) in a 500-mL Erlenmeyer flask for 30 min at room temperature (rt). The flasks were incubated on a rotary shaker at 28°C at 130 rpm for 3 days. The seed culture (10%) was then transferred into a 1000 mL Erlenmeyer flask containing 250 mL of seed medium as the production medium. Fermentation was performed on a rotary shaker at 28°C at 130 rpm for 7 days.

The production culture (50 L) was centrifuged to separate mycelia from the supernatant. The supernatant was exhaustively extracted with EtOAc yielding 25.1 g of extract. The crude residue of fermentation broth was fractionated by column chromatography on silica gel eluting with a stepwise gradient of CHCl₃/MeOH (1:0, 100:1, 100:1, 50:1, 20:1, 10:1, 5:1 and 0:1, v/v) and seven fractions (Fr.1–Fr.7) were collected. Fr.2 fraction (2.3 g) was eluted upon silica gel column with petroleum ether/EtOAc (1:0, 5:1, 1:1, 0:1, v/v) to give Fr. 2.1–Fr. 2.4. The Fr. 2–4 (0.4 g) were subjected to further elution on repeated Sephadex LH-20 (2 cm £ 160 cm, methanol) and repeated Sephadex LH-20 (2 cm £ 160 cm, acetone) and silica gel column with CHCl₃/MeOH (1:0, 50:1, 20:1, 10:1, 5:1, 0:1, v/v) to give compound 1 (Rf value at 0.3 in 20% CHCl₃/CH₃OH).

3.4. Spectroscopic data
Peniginsengin A (1): amorphous solid; IR (KBr) νmax: 3435, 1706, 1629, 1454, 1262, 1085, 812 cm⁻¹. [α]D²⁰ 5.4 (c 0.1, MeOH); HR-ESIMS m/z: 357.1757 [M + Na]+, calcd for C₁₉H₂₆O₅Na: 357.1678.

³¹P-NMR (CDCl₃, 200 MHz) δ: 5.70 (1H, s, H-6), 5.01 (1H, t, J = 6.0Hz, H-6), 5.01 (1H, t, J = 6.0Hz, H-6), 4.89 (1H, t, J = 7.0Hz, H-2'), 4.39 (1H, br s, H-4), 3.61 (1H, d, J = 2.2Hz, H-3), 2.50, 2.67 (2H, m, H-1'), 2.37 (2H, m, H-9'), 2.22 (2H, m, H-8'), 1.96 (2H, m, H-5'), 1.92 (2H, m, H-4'), 1.96 (2H, m, H-5'), 1.53 (3H, s, H-12'), 1.52 (3H, s, H-11').

C-NMR (CDCl₃, 500 MHz) δ: 194.0 (C-1), 178.4 (C-10), 156.6 (C-5), 139.7 (C-3), 133.7 (C-7), 125.1 (C-6), 123.8 (C-6), 116.8 (C-2), 68.0 (C-4), 61.9 (C-2), 59.4 (C-3), 39.7 (C-4'), 34.7 (C-8'), 33.1 (C-9'), 26.1 (C-5'), 26.1 (C-1'), 20.5 (C-7), 16.5 (C-11'), 16.5 (C-12').

3.5. The cytotoxicity and antimicrobial assays
The cytotoxicities of compound 1, against HL-60, SMMC-7721, A-549, MCF-7 and SW4801 were determined in vitro by MTS method. Briefly, cells were seeded in 96-well plates at a density of 5.0 x 10⁴ to 1 x 10⁵ cells/well. Cells were treated with different concentrations of compound 1 for 48 h, following incubation with MTS solution for 4 h. The absorbance was measured using a microplate reader (Bio-Rad 680, Bio-Rad, Hercules, USA) at a wavelength of 490 nm. Cisplatin was used as a positive control, generating IC₅₀ values of 1.93, 10.21, 6.59, 8.20 and 12.16 μM against HL-60, SMMC-7721, A-549, MCF-7 and SW4801 cells, respectively, and taxol was used as a positive control with IC₅₀ < 0.008 μM.

Antimicrobial assays were performed in 96-well sterilised microplates using a microdilution method. Briefly, 4-day-old spores from *F. solani* (grown on PDB medium: potato 200 g, glucose 20 g and distilled water 1000 mL) and the test concentration was 1 x 10⁵ spores/mL. The 18-hour-old bacterial cultures from *S. aureus* (grown on LB medium: yeast extract 5 g, tryptone 10 g, NaCl 10 g and distilled water 1000 mL, pH 7.0) were grown until they reach 1 x 10⁵ colony-forming units/mL. The test samples were dissolved in DMSO, and their final concentrations ranged from 512 to 0.5 μg/mL, which was determined using a 2-fold
serial dilution method. The final concentration of DMSO did not exceed 5%. The wells containing test strains and diluted samples were incubated at 28°C (4 days) for fungi and 37°C (24 h) for bacteria. The wells containing a culture suspension and DMSO were run as negative controls. As a positive control, nystatin (Taicheng Pharmaceutical Co., Ltd., Guangdong, China) had antifungal activity against *F. solani* with an MIC of 4 μg/mL, kanamycin (Yunke Biotechnology, Kunming, China) showed antibacterial activity against *S. aureus* with an MIC of 4 μg/mL. All experiments were repeated three times. The growth of test strains was observed using a CX21BIM-set5 microscope (Olympus Corp., Tokyo, Japan). MICs were determined as the lowest concentrations that produce complete growth inhibition of the tested microorganisms.

4. Conclusion

Penicillium sp. YIM PH30003 associated with *P. notoginseng* produced a new small molecule with antifungal activity against *F. solani*, the pathogenic fungus of *P. notoginseng*.

Supplementary material

Supplementary material relating to this article is available online, alongside Figures S1–S8.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (81360480 and 81460536), Changjiang Scholars and the Innovative Research Team at the University (No. IRT 13095). We also thank Mr. Rong Huang at Yunnan University for the measurement of NMR.

Disclosure statement

No potential conflict of interest was reported by the authors.

Note

1. Yabin Yang and Fangfang Yang contributed equally to this paper.

References

Ding G, Li Y, Fu SB, Liu SC, Wei JC, Che YS. 2009. Ambuic acid and torreyanic acid derivatives from the endolichenic fungus *Pestalotiopsis* sp. *J Nat Prod.* 72:182–186. doi:10.1021/np800733y.

Li XF, Choi HD, Kang JS, Lee CO, Son BW. 2003. New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus *Penicillium* sp. *J Nat Prod.* 66:1499–1500. doi:10.1021/np030231u.

Motohashi K, Hashimoto J, Inaba S, Khan ST, Komaki H, Nagai A, Takagi M, Shin-ya K. 2009. New sesquiterpenes, JBIR-27 and-28, isolated from a tunicate-derived fungus, *Penicillium* sp SS080624SCF1. *J Antibiot.* 62:247–250. doi:10.1038/ja.2009.21.

Rukachaisirikul V, Satpradit S, Klaiklay S, Phongpaichit S, Borwornwiriyanapan K, Sakayaroj J. 2014. Polyketide anthraquinone, diphenyl ether, and xanthone derivatives from the soil fungus *Penicillium* sp. PSU-RSPG99. Tetrahedron. 70:5148–5152. doi:10.1016/j.tet.2014.05.105.

Wang H, Wang Y, Wang W, Fu P, Liu PP, Zhu WM. 2011. Anti-influenza virus polyketides from the acid-tolerant fungus *Penicillium purpurogenum* JS03-21. *J Nat Prod.* 74(9):2014–2018. doi:10.1021/np2004769.

Yang JX, Huang RM, Qiu SX, She ZG, Lin YC. 2013. A new isobenzofuranone from the mangrove endophytic fungus *Penicillium* sp (ZH58). *Nat Prod Res.* 27:1902–1905. doi:10.1080/14786419.2013.784870.