Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9

Noam D. Elkies

Abstract. Let E be an elliptic curve over \mathbb{Q}, and $\rho_l: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{Z}_l)$ its l-adic Galois representation. Serre observed in 1968 [2] IV, 3.4, Lemma 3 that for $l \geq 5$ there is no proper closed subgroup of $\text{SL}_2(\mathbb{Z}_l)$ that maps surjectively onto $\text{SL}_2(\mathbb{Z}/l\mathbb{Z})$, and concluded that if ρ_l is surjective mod l then it is surjective onto $\text{GL}_2(\mathbb{Z}_l)$. We show that this no longer holds for $l = 3$ by describing a modular curve \mathcal{X}_9 of genus 0 parametrizing elliptic curves for which ρ_3 is not surjective mod 9 but generically surjective mod 3. The curve \mathcal{X}_9 is defined over \mathbb{Q}, and the modular cover $\mathcal{X}_9 \to X(1)$ has degree 27, so \mathcal{X}_9 is rational because 27 is odd. We exhibit an explicit rational function $f \in \mathbb{Q}(x)$ of degree 27 that realizes this cover. We show that for every $x \in \mathbb{P}^1(\mathbb{Q})$, other than the two rational solutions of $f(x) = 0$, the elliptic curves with j-invariant $f(x)$ have ρ_3 surjective mod 3 but not mod 9. We determine all nonzero integral values of $f(x)$, and exhibit several elliptic curves satisfying our condition on ρ_3, of which the simplest are the curves $Y^2 = X^3 - 27X - 42$ and $Y^2 + Y = X^3 - 135X - 604$ of conductors 1944 = 2^33^5 and 6075 = 3^55^2 respectively.

0. Introduction. Let E be an elliptic curve over \mathbb{Q}, and $\rho_l: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{Z}_l)$ its l-adic Galois representation. Serre observed in 1968 [2] IV, 3.4, Lemma 3 that for $l \geq 5$ there is no proper closed subgroup of $\text{SL}_2(\mathbb{Z}_l)$ that maps surjectively onto $\text{SL}_2(\mathbb{Z}/l\mathbb{Z})$, and concluded that if ρ_l is surjective mod l then it is surjective onto $\text{GL}_2(\mathbb{Z}_l)$. He noted [2] IV, 3.4, Exercise 3 that for $l = 3$ there exists a subgroup $G \subset \text{SL}_2(\mathbb{Z}/9\mathbb{Z})$ such that the restriction to G of the reduction-mod-3 map $\text{SL}_2(\mathbb{Z}/9\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/3\mathbb{Z})$ is an isomorphism. The preimage of G in $\text{SL}_2(\mathbb{Z}_9)$ is then a proper closed subgroup that maps surjectively to $\text{SL}_2(\mathbb{Z}/3\mathbb{Z})$. This suggests that there could be curves E for which G is the image of ρ_3 mod 9, making ρ_3 surjective mod 3 but not mod 9. Serre does not raise this question explicitly, and it does not seem to have been addressed elsewhere in the literature; I thank Grigor Grigorov for drawing my attention to it. In this paper we answer the question by showing that there exist infinitely many $j \in \mathbb{Q}$ for which an elliptic curve of j-invariant j must have ρ_3 surjective mod 3 but not mod 9. The simplest examples are $j = 4374$, $j = 419904$, and $j = -44789760$. In general j is the value of a rational function $f(x)$ of degree 27 at all but finitely many $x \in \mathbb{P}^1(\mathbb{Q})$.

Such curves E are parametrized by a modular curve $\mathcal{X}_9 = X(9)/G$. The natural cover $\mathcal{X}_9 \to X(1)$ has degree 27, and our rational function f arises as the pullback to \mathcal{X}_9 of the degree-1 function j on $X(1)$. It is easy to check from the Riemann-Hurwitz formula that \mathcal{X}_9 has genus zero. The challenge is to prove that \mathcal{X}_9 is defined over \mathbb{Q} and to compute $f(x)$ for some choice of rational coordinate x on \mathcal{X}_9. (Once \mathcal{X}_9 is known to be defined over \mathbb{Q}, it is automatically isomorphic with \mathbb{P}^1 over \mathbb{Q}, because it supports the rational function j of odd degree.) We prove the rationality in section 1, and compute x using products of Siegel functions in section 2. Such products are modular.

1 Supported in part by NSF grants DMS-0200687 and DMS-0501029.
units on $X(N)$ with known q-expansions; since the cusps of \mathcal{X}_9 are not rational we must also find a fractional linear transformation over \mathcal{Q} that takes the modular unit to a function x defined over \mathcal{Q}. In section 3 we discuss elliptic curves E with j-invariants obtained by specializing f, and use explicit computation of curves $X(9)/H$ with $H \subset G$ to show that all such curves with $x \in \mathcal{P}_1(\mathcal{Q})$ satisfy our condition on ρ_3 except for those with $j = 0$. Finally in section 4 we determine the finite set $f(\mathcal{P}_1(\mathcal{Q})) \cap \mathcal{Z}$, and exhibit some specific elliptic curves E whose j-invariants are these integral values.

1. The group G and the curve \mathcal{X}_9. The group $\text{SL}_2(\mathcal{Z}/3\mathcal{Z})$ is generated by

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

the images mod 3 of the standard generators of $\text{SL}_2(\mathcal{Z})$. These generators of $\text{SL}_2(\mathcal{Z}/3\mathcal{Z})$ satisfy

$$S^2 = (ST)^3 = -I, \quad T^3 = I.$$

To lift $\text{SL}_2(\mathcal{Z}/3\mathcal{Z})$ to a subgroup G of $\text{SL}_2(\mathcal{Z}/9\mathcal{Z})$, it is enough to lift S, T to matrices mod 9 satisfying the same relations[2]. A direct search finds 27 such lifts \tilde{S}, \tilde{T}, all equivalent under conjugation in $\text{SL}_2(\mathcal{Z}/9\mathcal{Z})$. These yield 27 choices of lift of $\text{PSL}_2(\mathcal{Z}/3\mathcal{Z})$ to a subgroup $G/\{ \pm 1 \}$ of $\text{PSL}_2(\mathcal{Z}/9\mathcal{Z}) = \text{Aut}(X(9))$, all conjugate in $\text{Aut}(X(9))$. Hence the quotients of $X(9)$ by these subgroups are all equivalent under $\text{Aut}(X(9))$. We choose

$$\tilde{S} = \begin{pmatrix} 0 & 2 \\ 4 & 0 \end{pmatrix}, \quad \tilde{T} = \begin{pmatrix} 4 & 1 \\ -3 & 4 \end{pmatrix},$$

and set $G = \langle \tilde{S}, \tilde{T} \rangle \subset \text{SL}_2(\mathcal{Z}/9\mathcal{Z})$ and $\mathcal{X}_9 = X(9)/(G/\{ \pm 1 \})$.

We can then calculate the genus of \mathcal{X}_9 by applying the Riemann-Hurwitz formula either to the quotient map $X(9) \rightarrow \mathcal{X}_9$, using the fact that $X(9)$ has genus 10, or to the covering map $\mathcal{X}_9 \rightarrow X(1)$. In the quotient map, each of the three involutions in G has six fixed points, and each of the four 3-element subgroups has three; thus the ramification divisor has degree $3 \cdot 6 + 4 \cdot 6 = 42 = 2|G| + 2(10 - 1)$, whence \mathcal{X}_9 has genus 0. The covering map has degree 27 and is unramified except above the cusp $j = \infty$ and the elliptic points $j = 0, j = 1728$. We find that these points have preimages with multiplicities $9^3, 3^61^3$, and 12^21^3 respectively (using m^c as a standard shorthand for c preimages of multiplicity m). Hence the ramification divisor has degree $3 \cdot 8 + 8 \cdot 2 + 12 = 52 = 2(27 - 1)$, so again we conclude that \mathcal{X}_9 has genus 0.

In particular, each of the cusps of $X(9)$ has trivial stabilizer in G. To explain this, note that the stabilizer in $\text{PSL}_2(\mathcal{Z}/9\mathcal{Z})$ of each cusp of $X(9)$ is conjugate to the group of matrices $\{ \pm (1,1) \}$; if G had a nontrivial intersection with this group then G would contain $\{ \pm (1,3) \}$, contradicting the requirement that the reduction map $G \rightarrow \text{PSL}_2(\mathcal{Z}/3\mathcal{Z})$ be bijective. It follows that \mathcal{X}_9 has $27/9 = 3$ cusps.

[2] Warning: This approach to lifting $\text{SL}_2(\mathcal{Z}/n\mathcal{Z})$ works only for $n \leq 5$ (including $n = 4$), where $\langle s, t \mid s^2 = (st)^3 = t^n = 1 \rangle$ is a presentation of $\text{PSL}_2(\mathcal{Z}/n\mathcal{Z})$. For $n > 5$ more relations must be checked.
To obtain a model of \mathcal{X}_9 defined over \mathbb{Q}, we must extend G to a group $G' \subset \text{GL}_2(\mathbb{Z}/9\mathbb{Z})$ such that $G' \triangleright G$ and the determinant map $G'/G \to (\mathbb{Z}/9\mathbb{Z})^\ast$ is an isomorphism. For the preimages of the squares in $(\mathbb{Z}/9\mathbb{Z})^\ast$ we use the invertible multiples of the identity (recall that $-I$ is already in G). It remains to lift $\pm\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ from $\text{GL}_2(\mathbb{Z}/3\mathbb{Z})$ to $\text{GL}_2(\mathbb{Z}/9\mathbb{Z})$, and we calculate that the unique choice that normalizes G is $\pm\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Together with the invertible scalar matrices this yields a unique extension G' satisfying our conditions, and thus a unique structure for \mathcal{X}_9 as a modular curve over \mathbb{Q}.

In general, even if a curve of genus 0 is known to be defined over \mathbb{Q} it need not be isomorphic with $\mathbb{P}^1(\mathbb{Q})$. But in our case the curve supports \mathbb{Q}-rational divisors of odd degree (such as the preimage of the cusp, or indeed the preimage of any rational point on $X(1)$, so \mathcal{X}_9 must be isomorphic with $\mathbb{P}^1(\mathbb{Q})$. In the next section we choose an isomorphism, and compute j as a rational function of a rational coordinate on \mathcal{X}_9.

While \mathcal{X}_9 is defined over \mathbb{Q}, its three cusps are not rational. More precisely, they are conjugate over the cyclic cubic extension $K := \mathbb{Q}(\zeta + \zeta^{-1})$, where $\zeta = e^{2\pi i/9}$, a primitive 9th root of unity. To see this, we check that G' contains an element $\pm\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for $a = \pm 1$ (when $b = 0$) but no other $a \in (\mathbb{Z}/9\mathbb{Z})^\ast$. (Since G' contains $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, it is enough to check this for $a = 4$ and $a = 7$, and then we can multiply by the scalar matrix $a^{-1} \in G'$ to reduce to the corresponding statement for G.) Thus the subgroup of $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ that fixes the cusp $i\infty$ consists of the images of ± 1 under the standard identification of $(\mathbb{Z}/9\mathbb{Z})^\ast$ with $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$. Hence that cusp is defined over K but not over \mathbb{Q}, and its conjugates under $\text{Gal}(K/\mathbb{Q})$ must be the other two cusps of \mathcal{X}_9.

The fact that the cusps of \mathcal{X}_9 are not rational will make our computation of rational functions on \mathcal{X}_9 somewhat trickier: we can still expand these functions in powers of q, but the coefficients will in general be contained only in K, not in \mathbb{Q}, even for a function in $\mathbb{Q}(\mathcal{X}_9)$.

2. Computing x and $f(x)$. For τ in the upper half-plane \mathcal{H}, let $q = e^{2\pi i\tau}$ as usual, and let $q_9 = e^{2\pi i\tau/9}$, a local parameter for $X(9)$ and \mathcal{X}_9 at the cusp $\tau = i\infty$, with $q = q_9^3$. The curve $X(3)$ has genus zero with rational coordinate

$$H_3 = \left(\frac{\eta(\tau/3)}{\eta(3\tau)}\right)^3 + 3 = q_9^{-3}(1 + 5q - 7q^2 + 3q^3 + 15q^4 - 32q^5 + \cdots);$$

the curve $X(9)$ is a $(\mathbb{Z}/3\mathbb{Z})^3$ cover of $X(3)$ whose function field is obtained from $\mathbb{C}(H_3)$ by adjoining cube roots of $H - 3$, $\zeta^3 H - 3$, and $\zeta^{-3} H - 3$. The group $\text{PSL}_2(\mathbb{Z}/3\mathbb{Z})$ acts on $X(3)$ by the fractional linear transformations of H that permute $\{\infty, 3\zeta, 3\zeta^2, 3\zeta^{-2}, 3\zeta^{-3}\}$, which are the transformations that preserve $j = H^3((H^3+216)/(H^3-27))^3$. (Recall that we set $\zeta = e^{2\pi i/9}$, so 1 and $\zeta^{\pm 3}$ are the cube roots of unity.) To compute \mathcal{X}_9, we may lift these transformations to elements of G in the group $\text{PSL}_2(\mathbb{Z}/9\mathbb{Z})$ of automorphisms of $X(9)$ and look for a rational function x of degree 1 on the quotient $\mathcal{X}_9 = X(9)/G$. We could try to find x using our above description of the function field of $X(9)$ as a $(\mathbb{Z}/3\mathbb{Z})^3$ extension of $\mathbb{C}(H_3)$, but this seemed like an unpleasant project. Instead we use modular units on $X(9)$, that is, modular functions whose divisors are supported on the cusps.
For integers a, b we have a function $s_{a,b}$ on \mathcal{H} defined by

$$s(a, b) = q_9^\alpha (1 - \zeta^b q_9^a) \prod_{n=1}^{\infty} (1 - \zeta^b q_9^{9n+a})(1 - \zeta^{-b} q_9^{9n-a}),$$

where $\alpha = (a^2 / 9 + a - 9/6)/2 = 18B_2(a/9)$. This is a modular unit, namely the “Siegel function” of [4] p.29 with parameters $(a/9, b/9)$, multiplied by a power of $-\zeta$ that is irrelevant for our purpose. Taking $N = 9$ in [4] p.68, Thm. 4.1, we see that a product $F = \prod r s(a_r, b_r)^{m_r}$ of such functions is a modular function on $X(9)$ if and only if the (a_r, b_r) and m_r satisfy the “quadratic relations”

$$\sum_r m_r a_r^2 = \sum_r m_r b_r^2 = \sum_r m_r a_r b_r = 0 \mod 9.$$

Note that this condition depends only on the $(a_r, b_r) \mod 9$, and is invariant under changing (a_r, b_r) to $(-a_r, -b_r)$ for some r; Indeed $s(-a, -b)$ is a scalar multiple of $s(a, b)$, as is $s(a', b')$ if $(a', b') \equiv (a, b) \mod 9$.

The pairs $\{(a, b), (-a, -b)\} \in (\mathbb{Z}/9\mathbb{Z})^2$ with at least one of a, b not divisible by 3 correspond bijectively with the cusps of $X(9)$: the cusps are orbits of $\Gamma(9)$ acting on $\mathbb{P}^1(\mathbb{Q})$, and if $\gcd(a, b) = \gcd(a', b') = 1$ for some integers a, b, a', b' then a/b and a'/b' are in the same orbit if and only if $(a', b') \equiv (a, b) \mod 9$. This labeling is consistent with the action of $\text{PSL}_2(\mathbb{Z}/9\mathbb{Z})$ on cusps, and dual to its action on the modular units $s(a, b)$ (up to μ_{18} factors). We choose one of the three orbits of the action of $G/\{\pm 1\}$ on the cusps of $X(9)$, and take (a_r, b_r) corresponding to the twelve cusps in the orbit. We check that these satisfy the quadratic relations with $m_r = 1$, so the product F of the twelve functions $S(a_r, b_r)$ is a modular function on $X(9)$ whose divisor is invariant under G.

There is then a homomorphism $\chi : G \to \mathbb{C}^*$ such that $F(g(\tau)) = \chi(g)F(\tau)$ for all $g \in G$ and $\tau \in \mathcal{H}$. We claim that χ is trivial. Indeed, if it were nontrivial we could take for g a 3-cycle in G, and for τ a preimage of a fixed point on $X(9)$ of g, and conclude that τ is a zero or pole of F, which is impossible because τ is not a cusp. Therefore χ is trivial as claimed, whence F descends to a function on \mathcal{X}_9 whose only poles or zeros are at the cusps.

We find that F has a simple pole at one cusp, a simple zero at another, and neither zero nor pole at the third. In particular, F is a function of degree 1 on \mathcal{X}_9. Choosing the orbit of $(a, b) = (1, 0)$, corresponding to the cusp $i\infty$, we find that F has a pole at that cusp, and calculate the q-expansion

$$F = q_9^{-1} - 1 + c_1 q_9 + c_1^2 q_9^2 + (c_2 + 2) q_9^3 + c_3 q_9^4 + \cdots,$$

where $c_m := \zeta^m + \zeta^{-m}$, a unit in K. The q-expansions of the products corresponding to the other two orbits then let us recognize those products as fractional linear transformations of F, namely $1/(F - c_2 + 1)$ and $(1 - c_2)/F$.

It follows that F takes the values 0 and $1 - c_2$ on the other two cusps of \mathcal{X}_9. Therefore j, considered as a rational function of F, must have its poles at $F = 0, 1 - c_2, \infty,$
each with multiplicity 9. Indeed we compute that \(F^3(F - c_2 + 1)^3 j \) is a polynomial of degree 27 in \(F \) to the accuracy allowed by our \(q \)-expansions (which extend far enough beyond the constant term of that polynomial to provide a sanity check on our computations).

It remains to find a fractional linear transformation with coefficients in \(K \) that, when applied to \(F \), yields a coordinate \(x \) on \(\mathcal{Z}_9 \) such that \(j \in \mathbb{Q}(x) \). Thus \(x \) must map the three cusps to a \(\text{Gal}(K/\mathbb{Q}) \) orbit in \(K \). We may choose any ordered orbit, and then \(x \) is determined uniquely, because \(\text{PGL}_2 \) acts simply 3-transitively on \(\mathbb{P}^1 \). (The order must be consistent with the Galois action on the cusps.) We then apply a \(\text{PGL}_2(\mathbb{Q}) \) transformation so that the map \(\mathcal{Z}_9 \to X(1) \) is represented by a rational function with small coefficients. This leads us to

\[
\begin{align*}
x &= \frac{-c_1 F + 1 - c_2}{F - c_1 + 3(1 - c_2)} \\
&= -c_1 + (2c_2 + c_4)q_9 + 3(1 - c_1)q_9^2 + (6 - 7c_1 + c_2)q_9^3 + (15 - 16c_1 + 7c_2)q_9^4 \cdots,
\end{align*}
\]

when \(j = f(x) \) with

\[
\begin{align*}
f(x) &= -3^7(x^2 - 1)^3(x^6 + 3x^5 + 6x^4 + x^3 - 3x^2 + 12x + 16)^3(2x^3 + 3x^2 - 3x - 5) \\
&= 1728 - \frac{3^2 A(x) B^2(x)(2x^3 - 3x^2 + 4)}{(x^3 - 3x - 1)^9},
\end{align*}
\]

where \(A(x), B(x) \) are the sextic polynomials

\[
\begin{align*}
A(x) &= x^6 + 6x^5 + 4x^3 + 12x^2 - 18x - 23, \\
B(x) &= 7x^6 + 24x^5 + 18x^4 - 26x^3 - 33x^2 + 18x + 28.
\end{align*}
\]

3. The elliptic curves parametrized by \(\mathcal{Z}_9 \). Now let \(E/\mathbb{Q} \) be an elliptic curve with \(j \)-invariant \(f(x) \) for some \(x \in \mathbb{P}^1(\mathbb{Q}) \). Assume that its 3-adic Galois representation \(\rho_3 \) is surjective mod 3. Then its image mod 9 is a conjugate of the proper subgroup \(G' \) of \(\text{GL}_3(\mathbb{Z}/9\mathbb{Z}) \), because this image is contained in \(G \) and its determinant maps surjectively to \(\mathbb{Z}_3^* \). In particular, \(\rho_3 \) is surjective mod 3 but not mod 9, as desired.

We claim that the mod-3 condition on \(\rho_3 \) is satisfied by except at \(x = \pm 1 \), the points at which \(f(x) = 0 \), the \(j \)-invariant of an elliptic curve with complex multiplication.

For any elliptic curve \(E/\mathbb{Q} \), the representation \(\rho_3 \) is surjective mod 3 if and only if the intersection of its image in \(\text{PGL}_2(\mathbb{Z}/3\mathbb{Z}) \) with \(\text{PSL}_2(\mathbb{Z}/3\mathbb{Z}) \) is contained in the 4-element normal subgroup or in a cyclic subgroup of order 3. In the former case, the \(j \)-invariant \(j_E \) of \(E \) is a cube, and this necessary condition is also sufficient unless \(j_E = 0 \). If \(f(x) \neq 0 \) then \(f(x) \) is a cube if and only if \(3(2x^3 + 3x^2 - 3x - 5) = z^3 \) for some \(z \in \mathbb{Q} \). This curve of genus 1 has no rational points due to a 3-adic obstruction: we have

\[
2x^3 + 3x^2 - 3x - 5 = 3(x + 1)^3 - (x + 2)^3,
\]

so the 3-adic valuation of \(3(2x^3 + 3x^2 - 3x - 5) \) is never divisible by 3. Thus \(f(x) \) is never a nonzero cube. The latter case holds if and only if \(E \) admits a rational
3-isogeny. Such \(x \) are parametrized by a curve \(\mathcal{X}'_g = \mathcal{X}_g/\langle T \rangle \), the quotient of \(X(9) \) by a 3-cycle in \(G \). This curve has genus 3, so there are only finitely many such \(x \) by Mordell-Faltings. For a general curve of genus 3 it is not known how to provably list all the rational points. But here we are lucky: we can give a rational map of degree 3 from \(\mathcal{X}'_g \) to the elliptic curve \(Y^2 + Y = X^3 \), which is known to have rank zero. Pulling back each of this curve’s three rational points to \(\mathcal{X}'_g \) then yields a set of \(\mathbb{Q} \)-rational points that must contain all the \(\mathbb{Q} \)-rational ones. To complete the proof of our claim we shall observe that there are only two \(\mathbb{Q} \)-rational points, one for each of \(x = \pm 1 \).

A simple model for \(\mathcal{X}'_g \) is
\[
3z_2^3 = z_1(z_1^3 + 3z_1^2 - 6z_1 + 1),
\]
and the map to \(Y^2 + Y = X^3 \) can be given by
\[
(X : Y : 1) = (z_1(z_1 + 1)z_2 : 3z_1^2 : z_2^3).
\]
The rational points on \(\mathcal{X}'_g \) are \((0, 0)\) and the point at infinity. The equation (1) for \(\mathcal{X}'_g \) shows that this curve has an automorphism \(\sigma \) of order 3 that fixes \(z_1 \) and multiplies \(z_2 \) by a cube root of unity. This automorphism arises from the element \(3T - 2 = (1, 1, 1) \) of \(\text{PSL}_2(\mathbb{Z}/9\mathbb{Z}) \), which commutes with \(T \) and thus descends from \(\text{Aut}(X(9)) \) to an automorphism of \(\mathcal{X}'_g \). The quotient of \(\mathcal{X}'_g \) by \(\langle \sigma \rangle \) is the \(z_1 \)-line, which covers the \(j \)-line \(X(1) \) with degree 36 and the curve \(X_0(3) \) with degree 9. The latter map can be realized by the rational function \(27((z_1^3 + 3z_1^2 - 6z_1 + 1)/(z_1^3 - 6z_1^2 + 3z_1 + 1))^3 \).

We next outline the computation of the model (1) and the map (2). We begin with the modular units
\[
s(1, 0)s(4, 6)s(4, 3), \quad s(4, 0)s(7, 6)s(7, 3), \quad s(7, 0)s(1, 6)s(1, 3).
\]
The first of these corresponds to the orbit of the cusp \(i\infty \) under the 3-cycle \(T \), and the others are obtained by multiplying \(\{1, 0 \}, \{4, 6 \}, \{4, 3 \} \) by 4 and 7 mod 9. We calculate that these products do not satisfy the quadratic relations, but the quotient of any two of them does, giving a rational function of degree 3 on \(\mathcal{X}'_g \). Using the \(q \)-expansions we find that the three functions in (3) are linearly dependent, and thus that their pairwise quotients are all related by fractional linear transformations over \(K \). As we did for \(x \), we find two linear combinations of the functions in (3) whose quotient is a degree-3 function on \(\mathcal{X}'_g \) defined over \(\mathbb{Q} \). We call this function
\[
y = -c_2 + (c_4 - c_2 + 3)q_0 + (3c_4 - 6c_7 + 9)q_0^2 + (10c_4 - 22c_7 + 27)q_0^3 \cdots,
\]
and use the \(q \)-expansions to find the coefficients of a polynomial identity \(P(x, y) = 0 \) of bidegree \((3, 4) \) in \((x, y) \).

This is a model for \(\mathcal{X}'_g \) in \(\mathbb{P}^1 \times \mathbb{P}^1 \), but it is not smooth. We find that it has three double points, at \(x = y = -c_1, -c_2, -c_4 \). Thus the holomorphic differentials on \(\mathcal{X}'_g \) are the forms \(Q(x, y)dx/P_y \) for \(Q \) in the 3-dimensional space of polynomials of bidegree \((1, 2) \) that vanish at the three singularities. We interpret these as modular cuspforms of
weight 2 on \mathcal{X}_4^2 by writing $q\,dx/dq$ in place of dx, and find a basis for the space of such cuspforms:

\[
\begin{align*}
\varphi_1 &= c_4q - 3q^3 - 2c_2q^4 - c_1q^7 + 6q^{12} + 5c_2q^{13} + 4c_1q^{16} - 7c_4q^{19} + 3q^{21} \cdots, \\
\varphi_2 &= q + (c_4 - c_1)q^2 + q^4 + (2c_2 + c_4)q^5 + 2q^7 + (c_2 + c_4)q^8 - 3q^{10} \cdots, \\
\varphi_3 &= (c_4 - c_2)q - 3q^2 + (c_2 - c_1)q^4 + 3q^5 + (2c_1 - 2c_4)q^7 + 3q^8 + (3c_2 - 3c_4)q^{10} \cdots.
\end{align*}
\]

The affine model (1) is then obtained by taking $(z_1 : z_2 : 1) = (\varphi_2 + \varphi_1 : \varphi_3 : 2\varphi_2 - \varphi_3)$. The map (2) was obtained by integrating the CM form φ_1; it can also be seen in (1) by writing the cubic factor as $(z_1 + 1)^3 - 9z_1$.

4. Numerical examples. Besides $f(\pm 1) = 0$, there are seven other integers obtained by evaluating $f(x)$ at points of $P^1(\mathbb{Q})$ of small height. For each of those, we list x, $f(x)$, and one of the elliptic curves E of j-invariant $f(x)$ and minimal conductor N:

x	$j = f(x)$	E	N
1/0	4374	$[0, 0, 0, -27, -42]$	$2^{3}3^{5}$
-2	419904	$[0, 0, 0, -162, 792]$	$2^{3}3^{5}$
0	-44789760	$[0, 0, 1, -135, -604]$	$3^{5}5^{2}$
-1/2	15786448344	$[0, 0, 0, -5427, 153882]$	$2^{5}3^{5}$
2	2499251858304	$[0, 0, 0, -201042, 34695912]$	$2^{8}3^{5}17^{2}$
-3/2	-9251041526500	$[0, 0, 0, -1126035, 459913278]$	$2^{3}3^{5}19^{2}$
-1/3	-70043919611288518656	$[0, 0, 1, -1127379978, -14569799990728]$	$3^{5}97^{2}101^{2}$

The smallest conductor here is 1944 = $2^{3}3^{5}$, still too large to appear in Cremona’s published tables [2] of curves of conductor ≤ 1000. But Cremona has pursued his computations up to 10^5 and beyond (see [3] for the status as of mid-2006), enough to find our first curve as well as those of conductors 6075 = $3^{5}5^{2}$, 7776 = $2^{3}3^{5}$, and 62208 = $2^{3}3^{5}$. Curves with $j = 4374$, $j = 419904$, and $j = 15786448344$ already appeared in the tables of elliptic curves with good reduction away from 2 and 3, compiled in 1966 by F.B. Coghlan and published as “Table 4” in [1] p.123]: see rows 52, 84, and 86 of “Table 4a” [1] p.125, and [1] p.75 for the attribution to Coghlan.

A search up to height 256 found no more integral values of $f(x)$. Since f has three distinct poles, there can be only finitely many x for which $f(x) \in \mathbb{Z}$. We claim that in fact we have found them all. Suppose $x = m/n$ in lowest terms. The resultant of the numerator and denominator of $f(x)$ is 3^{486}, so when we write $f(m/n)$ as the quotient of homogeneous polynomials in m,n the denominator $(m^3 - 3mn^2 - n^3)^{3A}$ must be $\pm 3^{A}$ for some A. Thus $m^3 - 3mn^2 - n^3 = \pm 1$ or ± 3, because the only $(m,n) \in \mathbb{Z}^2$ for which $9 \mid m^3 - 3mn^2 - n^3$ are those for which $3|m$ and $3|n$. The only cases of $m^3 - 3mn^2 - n^3 = \pm 3$ are $x = 1, -2, -1/2$, because these are the only rational points on the elliptic curve $x^3 - 3x - 1 = 3z^3$ (isogenous with the cubic Fermat curve). For $m^3 - 3mn^2 - n^3 = \pm 1$ one must work harder because the elliptic curve $x^3 - 3x - 1 = z^3$ has rank 1. Fortunately this work was already done by Ljunggren, who proved in 1942 that the Thue equation $m^3 - 3mn^2 - n^3 = 1$ has only the six solutions $(1, 0), (0, -1), (-1, 1), (2, 1), (1, -3), (-3, 2)$, corresponding to values of x already listed above. (See [5] §2, cited by Nagell [6] who also notes the connection between $X^3 + Y^3 = Z^3$.
and \(m^3 - 3mn^2 - n^3 = 3 \). The solutions of \(m^3 - 3mn^2 - n^3 = -1 \) are obtained from these six by changing each \((m, n)\) to \((-m, -n)\), which yields the same values of \(x = m/n \). Thus our list contains all the nonzero integral \(j \)-invariants of elliptic curves parametrized by \(X_9 \).

References

[1] Birch, B.J., Kuyk, W., ed.: Modular Functions of One Variable IV. Lect. Notes in Math. \textbf{476}, 1975.

[2] Cremona, J.E.: Algorithms for modular elliptic curves. Cambridge University Press, 1992.

[3] Cremona, J.E.: The elliptic curve database for conductors to 130000, Lecture Notes in Computer Science 4076 (Proceedings of ANTS-7, 2006; F.Hess, S.Pauli, and M.Pohst, ed.), 11–29.

[4] Kubert, D.S., Lang, S.: Modular Units. New York: Springer 1991.

[5] Ljunggren, W.: Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante, \textit{Acta math.} \textbf{75} (1942), 1–21.

[6] Nagell, T.: Sur un type particulier d’unités algébriques, \textit{Arkiv för Math.} \textbf{8} (1969), 163–184.

[7] Serre, J.-P.: \textit{Abelian l-adic Representations and Elliptic Curves}. Wellesley, Mass.: A.K. Peters, 1997.