Balanced k-Center Clustering When k Is A Constant

Hu Ding

Computer Science and Engineering, Michigan State University
• Given n points in \mathbb{R}^d and an integer $k > 0$, k-center clustering is to find k balls to cover all the points and minimize the maximum radius.

• Many applications in data analysis, networking, etc.
Why Balanced K-Center Clustering?

- Add upper and lower bound on cluster size: resource allocation, big data, etc.
• The size of each resulting cluster should be bounded by the given \([L, U]\).
• \(1 \leq L \leq n/k \leq U \leq n\).
Balanced \(K \)-Center Clustering

• The size of each resulting cluster should be bounded by the given \([L, U]\).

• \(1 \leq L \leq n/k \leq U \leq n\).
• Ordinary k-center clustering: **2-approximation** and the hardness for $c < 2$ by Gonzalez 1985, Hochbaum and Shmoys 1985.

• With upper bound (capacitated): Khuller and Sussmann 2000, Cygan et al. 2012, An et al. 2015, etc.

• With lower bound: Aggarwal et al. 2010, Ene et al. 2013, Ahmadian and Swamy 2016, etc.

• With upper and lower bounds: Ding et al. 2017 provide a **6-approximation** via linear programming relaxation and rounding techniques.
Our Contribution

- d is high and k is constant: a nearly linear time 4-approximation algorithm.
Our Contribution

• \(d\) is high and \(k\) is constant: a nearly linear time 4-approximation algorithm.

• Why assume \(k\) is constant?
Our Contribution

- d is high and k is constant: a nearly linear time 4-approximation algorithm.

- Why assume k is constant?
 - Any improvement in theory.
Our Contribution

- d is high and k is constant: a nearly linear time 4-approximation algorithm.
- Why assume k is constant?
 - Any improvement in theory.
 - k is often not large in practice.
Overview of Our Approach

- **Step 1:** find the k cluster centers. *Not necessary from the input, though our algorithm finds them from the input.*
- **Step 2:** find the balanced assignment.
Overview of Our Approach

• **Step 1:** find the k cluster centers. Not necessary from the input, though our algorithm finds them from the input.

• **Step 2:** find the balanced assignment.
Overview of Our Approach

• **Step 1:** find the k cluster centers. Not necessary from the input, though our algorithm finds them from the input.

• **Step 2:** find the balanced assignment.
Gonzalez’s algorithm:

1. Arbitrarily select one point as s_1, and set $S = \{s_1\}$. $j = 2$.

2. Repeat the following steps $k - 1$ times:
 - Let s_j be the point having the largest distance to S.
 - $S = S \cup \{s_j\}$. $j = j + 1$.

The resulting approximation ratio is 2 for ordinary clustering, but could be arbitrarily large for balanced clustering.
Gonzalez’s algorithm:

1. Arbitrarily select one point as s_1, and set $S = \{s_1\}$. \(j = 2 \).

2. Repeat the following steps \(k - 1 \) times:
 - Let s_j be the point having the largest distance to S.
 - $S = S \cup \{s_j\}$. \(j = j + 1 \).
 - The resulting approximation ratio is 2 for ordinary clustering, but could be arbitrarily large for balanced clustering.
• **Lemma:** replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.
• **Lemma:** replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.

• Basic idea: imagine the k hidden optimal clusters,
Find The K Cluster Centers

- **Lemma**: replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.

- Basic idea: imagine the k hidden optimal clusters,
 - if s_1, \cdots, s_k fall into different clusters, S yields 2-approximation;
Find The K Cluster Centers

- **Lemma**: replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.
- Basic idea: imagine the k hidden optimal clusters,
 - if s_1, \cdots, s_k fall into different clusters, S yields 2-approximation;
Find The K Cluster Centers

- **Lemma:** replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.
- Basic idea: imagine the k hidden optimal clusters,
 - if s_1, \cdots, s_k fall into different clusters, S yields 2-approximation;
Lemma: replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.

Basic idea: imagine the k hidden optimal clusters,
- if s_1, \cdots, s_k fall into different clusters, S yields 2-approximation;
Find The K Cluster Centers

- **Lemma**: replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.

- Basic idea: imagine the k **hidden** optimal clusters,
 - if s_1, \cdots, s_k fall into different clusters, S yields 2-approximation;
 - else, s_{j_1} and s_{j_2} fall into the same cluster, but due to the nature of Gonzalez’s algorithm, there exists one s_j can handle all the clusters after j_2.
• **Lemma:** replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.

• Basic idea: imagine the k hidden optimal clusters,
 - if s_1, \cdots, s_k fall into different clusters, S yields 2-approximation;
 - else, s_{j_1} and s_{j_2} fall into the same cluster, but due to the nature of Gonzalez’s algorithm, there exists one s_j can handle all the clusters after j_2.
• **Lemma:** replace $S = \{s_1, \cdots, s_k\}$ by the Cartesian product $S^k = S \times \cdots \times S$, and at least one k-tuple from S^k yields 4-approximation.

• Basic idea: imagine the k hidden optimal clusters,
 • if s_1, \cdots, s_k fall into different clusters, S yields 2-approximation;
 • else, s_{j_1} and s_{j_2} fall into the same cluster, but due to the nature of Gonzalez’s algorithm, there exists one s_j can handle all the clusters after j_2.
• **Lemma**: replace \(S = \{s_1, \cdots, s_k\} \) by the Cartesian product \(S^k \equiv S \times \cdots \times S \), and at least one \(k \)-tuple from \(S^k \) yields 4-approximation.

• Basic idea: imagine the \(k \) hidden optimal clusters,
 • if \(s_1, \cdots, s_k \) fall into different clusters, \(S \) yields 2-approximation;
 • else, \(s_{j_1} \) and \(s_{j_2} \) fall into the same cluster, but due to the nature of Gonzalez’s algorithm, there exists one \(s_j \) can handle all the clusters after \(j_2 \).
Sketch of our algorithm

1. Run Gonzalez’s algorithm to obtain $S = \{s_1, \cdots, s_k\}$.

2. Let \mathcal{R} be the set of sorted nk distances from the input P to S.

3. Fix each candidate S' from S^k, binary search on $r \in \mathcal{R}$ to check whether a balanced assignment exists for (S', r).

4. Output the candidate with the smallest feasible r.
• Fix \((S', r)\), build the bipartite graph and find the balanced assignment via max flow but with at least \(O(VE) = O(n^2)\) time.
When we fix \((S', r)\), the \(n\) points are divided into at most \(2^k - 1\) parts.
- When we fix \((S', r)\), the \(n\) points are divided into at most \(2^k - 1\) parts.
- Each part is covered by \(1 \leq t \leq k\) balls.
Find The Balanced Assignment: Another Idea

\[x^{j_1}_{(j_1,j_2,\ldots,j_t)} + \cdots + x^{j_t}_{(j_1,j_2,\ldots,j_t)} = n_{(j_1,j_2,\ldots,j_t)}, \]
\[L \leq \sum_{(j_1,j_2,\ldots,j_t) \in \pi_{j_l}} x^{j_l}_{(j_1,j_2,\ldots,j_t)} \leq U. \]

- Solve the system of linear equations and inequalities (SoL) with the complexity $O(k2^k)$.
 - $n_{(j_1,j_2,\ldots,j_t)}$: the number of points covered by the balls j_1, \ldots, j_t.
 - $x^{j_l}_{(j_1,j_2,\ldots,j_t)}$: the number of points assigned to j_l-th cluster.
 - π_{j_l}: the set of all the subsets containing j_l of $\{1, 2, \ldots, k\}$.
Find The Balanced Assignment: Another Idea

\[
x_{(j_1,j_2,\ldots,j_t)}^{j_1} + \cdots + x_{(j_1,j_2,\ldots,j_t)}^{j_t} = n_{(j_1,j_2,\ldots,j_t)},
\]
\[
L \leq \sum_{(j_1,j_2,\ldots,j_t) \in \pi_{j_l}} x_{(j_1,j_2,\ldots,j_t)}^{j_l} \leq U.
\]

- Solve the system of linear equations and inequalities (SoL) with the complexity \(O(k2^k)\).
 - \(n_{(j_1,j_2,\ldots,j_t)}\): the number of points covered by the balls \(j_1, \ldots, j_t\).
 - \(x_{(j_1,j_2,\ldots,j_t)}^{j_l}\): the number of points assigned to \(j_l\)-th cluster.
 - \(\pi_{j_l}\): the set of all the subsets containing \(j_l\) of \(\{1, 2, \ldots, k\}\).
- Can be solved in \(O(poly(2^k))\) time, but how to transform a solution to integer?
• Build a colored multigraph G:
 • each ball corresponds to one vertex;
 • each intersection of ball j_1, \cdots , j_t corresponds to $\binom{t}{2}$ edges with the same color;
 • each couple of variables $(x_{(j_1, \cdots , j_t)}, x_{(j_1, \cdots , j_t)}')$ corresponds to a unique edge.
• Build a colored multigraph G:

 - each ball corresponds to one vertex;
 - each intersection of ball j_1, \cdots, j_t corresponds to $\binom{t}{2}$ edges with the same color;
 - each couple of variables $(x_{(j_1, \cdots, j_t)}^{i'}, x_{(j_1, \cdots, j_t)}^{i''})$ corresponds to a unique edge.
Rounding for SOL

- Build a colored multigraph G:
 - each ball corresponds to one vertex;
 - each intersection of ball j_1, \cdots, j_t corresponds to $\binom{t}{2}$ edges with the same color;
 - each couple of variables $(x^{j_1}_{(j_1, \cdots, j_t)}, x^{j_2}_{(j_1, \cdots, j_t)})$ corresponds to a unique edge.
• Build a colored multigraph G:
 • each ball corresponds to one vertex;
 • each intersection of ball j_1, \cdots, j_t corresponds to $\binom{t}{2}$ edges with the same color;
 • each couple of variables $(x_{(j_1, \cdots, j_t)}^{j'}, x_{(j_1, \cdots, j_t)}^{j''})$ corresponds to a unique edge.
• Build a colored multigraph G:
 • each ball corresponds to one vertex;
 • each intersection of ball j_1, \ldots, j_t corresponds to $\binom{t}{2}$ edges with the same color;
 • each couple of variables $(x_{(j_1, \ldots, j_t)}, x_{(j_1, \ldots, j_t)})$ corresponds to a unique edge.
• Build a colored multigraph G:
 • each ball corresponds to one vertex;
 • each intersection of ball j_1, \ldots, j_t corresponds to $\binom{t}{2}$ edges with the same color;
 • each couple of variables $(x_{(j_1, \ldots, j_t)}, x'_{(j_1, \ldots, j_t)})$ corresponds to a unique edge.
• Build a colored multigraph G:

- each ball corresponds to one vertex;
- each intersection of ball j_1, \cdots, j_t corresponds to $\binom{t}{2}$ edges with the same color;
- each couple of variables $(x_{(j_1, \cdots, j_t)}^{j}, x_{(j_1, \cdots, j_t)}^{j''})$ corresponds to a unique edge.
Build a colored multigraph G:

- each ball corresponds to one vertex;
- each intersection of ball j_1, \ldots, j_t corresponds to $\binom{t}{2}$ edges with the same color;
- each couple of variables $(x_{(j_1, \ldots, j_t)}^i, x_{(j_1, \ldots, j_t)}^{i'})$ corresponds to a unique edge.
• Case 1: there exists a circle with at least two colors.
Case 1: there exists a circle with at least two colors.
Rounding for SOL

- Case 1: there exists a circle with at least two colors.

\[(1, 2.8) \quad (4.1, 5.6) \quad (0.6, 3.2) \]

- Lemma: Any solution of the SOL can always be rounded to an integer solution in \(O(poly(2^k)) \) time.
Rounding for SOL

- Case 1: there exists a circle with at least two colors.
- Case 2: no circle.

Lemma: Any solution of the SOL can always be rounded to an integer solution in \(O(poly(2^k)))\) time.
• Case 1: there exists a circle with at least two colors.
• Case 2: no circle.
Rounding for SOL

- Case 1: there exists a circle with at least two colors.
- Case 2: no circle.
- Case 3: each circle has only one color, build a pseudo tree.

Lemma: Any solution of the SOL can always be rounded to an integer solution in $O(poly(2^k))$ time.
Rounding for SOL

- Case 1: there exists a circle with at least two colors.
- Case 2: no circle.
- Case 3: each circle has only one color, build a pseudo tree.

Lemma: Any solution of the SoL can always be rounded to an integer solution in $O(\text{poly}(2^k))$ time.
Rounding for SOL

- Case 1: there exists a circle with at least two colors.
- Case 2: no circle.
- Case 3: each circle has only one color, build a pseudo tree.
- **Lemma**: Any solution of the SoL can always be rounded to an integer solution in $O(poly(2^k))$ time.
• **Theorem:** Our algorithm yields 4-approximation and costs $O(n(\log n + d))$ time when k is constant.
 - The time complexity is dominated by Gonzalez’s algorithm, computing and sorting the nk distances, and building the SoL log n times.
 - We have the example to show that 4 is tight.

• **Corollary:** Our algorithm can be extended for any metric space, and costs $O(n(\log n + D))$ time where $O(D)$ is the running time for acquiring pairwise distance.
Thank You!

Any Question?