Potential use of green macroalgae *Ulva lactuca* as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, *Clarias gariepinus*

Abdel-Wahab A. Abdel-Warith\(^a,b,\star\), El-Sayed M.I. Younis\(^a\), Nasser A. Al-Asgah\(^a\)

\(^a\) Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
\(^b\) Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt

Received 25 May 2015; revised 12 October 2015; accepted 11 November 2015
Available online 24 November 2015

Abstract This study aimed to evaluate the effects of diet containing the green macroalgae, *Ulva lactuca*, on the growth performance, feed utilization and body composition of African catfish *Clarias gariepinus*. Four experimental diets were formulated: D1 as a control group and D2, D3 and D4 which included 10%, 20% and 30% *U. lactuca* meal, respectively. 180 African catfish, weighing 9.59 ± 0.43 g, and with an average length of 11.26 ± 0.21, (mean ± SE) were divided into four groups corresponding to the different feeding regimes. The final body weight of the fish showed insignificant differences (\(P > 0.05\)) between the control and fish fed D2, whereas, there was a significant difference (\(P < 0.05\)) between these two diets compared with D3 and D4, with weights of 70.52, 60.92, 40.57 and 35.66 g recorded for D1, D2, D3 and D4, respectively. In the same trend significant differences were also evident in weight gain, specific growth rate and feed utilization. Fish fed with a diet containing 20% or 30% *U. lactuca* meal had poorer growth performance and feed utilization. Protein productive value, protein efficiency ratio, daily dry feed intake and total feed intake were also significantly lower in fish fed with D3 and D4 than in the control D1 and D2.

Overall, the results of the experiment revealed that African catfish fed a diet with *U. lactuca* included at 20% or 30% *U. lactuca* meal had poorer growth performance and feed utilization. © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Seaweeds are excellent dietary sources of vitamins, proteins, carbohydrates, trace minerals and other bioactive compounds (Kumar et al., 2008). In an effort to exploit the nutritional value of seaweeds fully, several studies have been conducted to find the biochemical and nutritional composition of various
seaweeds collected from different parts of the world (Rupérez, 2002; McDermid and Stuercke, 2003; Ortiz et al., 2006; Marsham et al., 2007; Chakraborty and Santra, 2008; Matanjun et al., 2009).

Improving ecologically integrated aquaculture technology, specially a tank-based integrated technique for bioremediation of effluents using the red alga, *Gracilaria arcauta*, and the green alga, *Ulva lactuca*, both of which are available in the Red Sea off the Jeddah coast of Saudi Arabia. Aquaculture entrepreneurs in Saudi Arabia may consider a possible reduction in feed concentrations in seawater effluent and a chance to diversify materials of production in changing market status as offering the possibility for additional sources of income (Al-Hafedh et al., 2012). This work is highly relevant for the developing aquaculture industry in Saudi Arabia (FAO, 2010) and reduction of the environmental dangers to an oligotrophic sea that has a high level of biodiversity (Khail and Abdel-Rahman, 1997; Baars et al., 1998).

Mustafa and Nakagawa (1995) summarized the importance of algae as ingredients in fish feed. Since then, several studies have evaluated the incorporation of various seaweed species in aquafeeds *Ascophyllum nodosum* (Nakagawa et al., 1997), *Porphyra* (Davies et al., 1997; Kalla et al., 2008; Khan et al., 2008; Soler-Vila et al., 2009), *Ulva* (Wassef et al., 2001), *Sargassum* spp. (Casas-Valdez et al., 2006), *Hizikia fusiformis* (Pham et al., 2006), *Gracilaria bursa-pastoris*, *Gracilaria cornea* and *Ulva rigida* (Valente et al., 2006), and *Padina arborescens*, *Sargassum silviusaetron* (Ma et al., 2005). Most of these investigations have reported promising results for the use of seaweed as partial replacement of fishmeal or protein hydrolysate in aquafeeds. It is clear, however, that the effect of the inclusion of seaweed in aquafeeds seems to depend on the seaweed species, the level at which it is included in feed and the species of fish on whom the seaweed is tested as shown, for instance, by Khan et al. (2008) and Kalla et al. (2008) using *Porphyra* in black sea bream and Red Sea bream.

Ulva is a good source of protein, pigments, minerals and vitamins, and is especially rich in vitamin C (Ortiz et al., 2008; Garcia-Casal et al., 2007) and, in recent years, *Ulva* species have become important macroalgae, which have been investigated as a dietary ingredient for a wide range of fish species.

Even though the valuable effects of *Ulva* spp. are well known, to the authors’ knowledge there is to date no literature concerning the use of *Ulva* meal in diets for the African catfish, *Clarias gariepinus*, particularly in terms of the impact of this macroalgae on growth performance and feed utilization.

The aims of this study are to determine the effect of replacing a proportion of conventional fish meal with *U. lactuca* meal on the growth performance, feed utilization and body carcass and muscle composition of the African catfish.

2. Materials and methods

2.1. Diet formulations

Green seaweed, *U. lactuca*, was freshly collected from the near-shore waters of the Red Sea coast at Jeddah, Saudi Arabia. Algal samples were thoroughly washed with sea water, tap water and distilled water, sundried for 48 h and fine-milled with a laboratory blender. The Ulva meal was then passed through a mesh sieve to produce raw Ulva meal for proximate analysis (Table 1). Other dietary ingredients were purchased from a local feed company (Maram Feed Company, Riyadh, KSA). Proximate analysis of major dietary ingredients was performed prior to formulation of experimental diets (Table 2).

All diets contained approximately 35% protein (Table 3). The diet without *U. lactuca* served as a control diet (D1), while the three other diets were formulated such that *U. lactuca* replaced a proportion of standard fish meal, respectively 10% for D2, 20% (D3) and 30% (D4). Table 2 presents the complete diet formulation and proximate composition.

Dietary ingredients were mixed in a food mixer (Legacy, USA) with water (at around 50 °C) to produce a 2 mm pellet. The moist pellets were then oven dried at 105 °C and stored frozen at –20 °C until use.

2.2. Experimental fish

African catfish *C. gariepinus* were collected from the fish seed hatchery at King Abdulaziz City for Sciences and Technology Mozahmiya, Riyadh, Saudi Arabia. Fish were acclimatized to laboratory conditions for two weeks prior to experiments.

2.3. Experimental design

One hundred and eighty acclimatized fish, weighing 9.59 ± 0.43 g (mean ± SE), and with an average length of 11.26 ± 0.21 were divided into four groups. Each of these four groups were then divided into triplicate glass aquaria, each with a capacity of 80 l (100 × 50 × 40 cm), with 15 fish in each tank. The first group served as the control (D1), while each of the three other groups were fed one of the experimental diets (D2, D3 and D4) containing of 10%, 20% and 30% of Ulva meal, respectively. Fish were fed twice daily with a 35% crude protein diet at a rate of 3% of body weight, seven days a week. Proximate composition of the moisture, protein, lipid, and ash in the body carcass and muscles of fish from each of the diets was determined according to AOAC (1995). The water temperature was maintained at 28 ± 1 °C by a thermostatically controlled immersion heater and pH, ammonia (NH₃), nitrite (NO₂), nitrate (NO₃) and dissolved oxygen were measured periodically.

Table 1 Chemical composition of ingredients used in diets formulation fed to African catfish *Clarias gariepinus*.

Parameters	Ingredients	Ulva lactuca	Fish meal	Soybean meal	Wheat meal	Wheat bran	Yellow corn
Moisture		10.45	8.89	6.84	11.20	7.00	10.6
Protein		11.50	61.41	44.24	14.36	15.03	9.45
Lipid		6.08	12.33	2.91	1.40	5.25	3.10
Ash		24.29	18.64	6.50	1.80	4.79	3.40
monitored and remained at acceptable levels throughout the experimental period.

2.4. Statistical analysis

The statistical analysis of the data was done using the one way analysis of variance (ANOVA) technique. The means were separated by Fisher’s LSD test and compared using Duncan’s Multiple Range Test (DMRT) as described by Snedecor and Cochran (1989). Significant differences were defined at \(P < 0.05 \).

3. Results

3.1. Growth performance

The growth performance and feed utilization data for the African catfish fed the four diets are set out in Table 4. There was a significant difference \((P < 0.05) \) between the final average body weights between fish fed the control diet D1 and the other groups. Fish fed the fishmeal based control diet (D1) and D2 demonstrated the highest mean final body weight 70.52 and 60.92 g, respectively compared with the other two diets D3 and D4 containing 20% and 30% of Ulva these fish weighed, 40.57 and 35.66 g, respectively. There was also a significant difference \((P < 0.05) \) in the final length observed between fish fed on the control group D2 and on the other two diets, with results ranging between 19.90 and 17.11 cm (Table 4). The specific growth rate (SGR%) values further supported this trend, with SGR reducing from 2.73 for the fish fed on the control diet to 2.69, 2.11 and 1.91 for the fish fed on the other three diets (Table 4) with also, insignificant differences \((P > 0.05) \) between D1 and D2. The condition factors \((K)\) ranged between 0.92 and 0.674, although no mortality was observed during the experimental period and the overall health of the fish appeared normal.

3.2. Feed consumption and feed utilization

The diets, D1 and D2 were well accepted by the African catfish, while diets containing 20% and 30% replacement of Ulva appeared less palatable to the fish. Mean daily feed intake ranged between 0.978 and 0.661 g/fish/day with a significant difference \((P < 0.05) \) between control and other groups. There

Table 2 Formulation of experimental diets (g/kg dry weight) containing *Ulva lactuca* fed to African catfish *Clarias gariepinus*.

Ingredients	Diets	D1 (control)	D2 (10% Ulva)	D3 (20% Ulva)	D4 (30% Ulva)
Fish meal	450.00	405.00	360.00	320.00	
Ulva meal	00	45.0	90.0	130.0	
Soybean meal	50.00	140.0	220.0	290.0	
Wheat meal	180.00	150.0	100.0	100.0	
Wheat bran	100.00	100.0	100.0	80.0	
Yellow corn	170.00	110.0	80.0	30.0	
Corn oil	30.00	30.0	30.0	30.0	
Vitamin mix	10.00	10.0	10.0	10.0	
Mineral mix	10.00	10.0	10.0	10.0	
Total	1000	1000	1000	1000	

Table 3 Proximate composition for experimental diets (% as fed) containing *Ulva lactuca* fed to African catfish *Clarias gariepinus*.

Parameters	Diets	D1	D2	D3	D4
Moisture		6.24	7.34	6.68	7.22
Protein		35.14	35.31	35.60	35.55
Lipid		10.82	8.83	8.63	8.56
Ash		13.28	15.35	15.48	16.20

Table 4 Weight increase, feed consumption and nutritive utilization of African catfish *Clarias gariepinus* fed experimental diets containing *Ulva lactuca*.

Parameters	Diets	D1	D2	D3	D4
Initial weight (g)		10.42 ± 0.654	9.28 ± 0.604	9.25 ± 0.479	9.40 ± 0.344
Initial length (cm)		12.20 ± 0.251	11.03 ± 0.256	11.08 ± 0.184	10.72 ± 0.112
Final weight (g)		70.52 ± 2.37a	60.92 ± 3.10a	40.57 ± 3.43b	35.66 ± 3.19b
Final length (cm)		19.90 ± 0.479a	18.76 ± 0.728a	18.19 ± 0.586b	17.11 ± 0.494b
Weight gain (g)		60.10 ± 0.799	51.64 ± 0.815a	31.32 ± 1.24b	26.26 ± 1.05b
Condition factor \((K)\)		0.893 ± 0.004a	0.922 ± 0.005a	0.674 ± 0.004b	0.712 ± 0.003b
SGR (%)		2.73 ± 0.035a	2.69 ± 0.018a	2.11 ± 0.012b	1.91 ± 0.027b
Feed intake (g/fish)		68.45 ± 0.77a	62.61 ± 0.58b	49.77 ± 0.57b	46.28 ± 0.66c
Daily feed intake (g/fish/day)		0.978 ± 0.008a	0.894 ± 0.007a	0.711 ± 0.009b	0.661 ± 0.005c
FCR		1.14 ± 0.015b	1.21 ± 0.055b	1.59 ± 0.031a	1.76 ± 0.053a
PER		2.50 ± 0.023b	2.34 ± 0.025a	1.77 ± 0.027b	1.60 ± 0.018b
PPV (%)		26.28 ± 0.52b	24.56 ± 0.46b	24.44 ± 0.77b	23.83 ± 0.72b
HSI		1.25 ± 0.098a	1.48 ± 0.256a	1.46 ± 0.094a	1.30 ± 0.100a

Values in the same row with the same superscript (a-c) are not significantly different \((P > 0.05)\).
was a noticeable effect of the dietary inclusion of alternative protein sources on feed intake (Table 4). Feed intake for catfish fed on the control diet containing the highest amount of fishmeal and D2 containing 10% of Ulva meal were significantly better than those observed for fish fed D3 and D4 containing 20% and 30% Ulva. FCR values also differed significantly (P < 0.05) between the control group and D2 (1.14 and 1.21) when compared to fish fed on D3 and D4 (1.59 and 1.76). The protein efficiency ratio (PER) was noticeably different between treatments and supported the same trend, with the fish fed the control diet displaying a superior PER (2.50) and fish receiving the different levels of Ulva exhibiting a PER of 2.34, 1.77 and 1.60, respectively. Protein productive values (PPV%) values also showed a decrease when fishmeal was replaced by the U. lactuca meal source. These values were 26.28 for fish fed control diets and 24.56, 24.44 and 23.83 for D2, D3 and D4, respectively (Table 4).

3.3. Fish body composition

Table 5 presents the initial and final carcass composition of the fish fed the experimental diets. The final carcass composition showed little significant variation in proximate composition as a result of the diet formulations. Fish fed the fishmeal based control diet and the diets based on different levels of Ulva did not yield any variations in their carcass lipid and ash content (P > 0.05) whereas, there was a significant difference (P < 0.05) between the control group and D2 compared with D3 and D4 in moisture and protein contents. Also, there was a significant increase in percentage of protein in muscle composition from 17.21% for D1 to 17.96 for D4. Also, ash content in muscles showed slight differences among groups (Table 5).

Table 5	Body composition of African catfish fed graded levels of Ulva lactuca (mean ± SE).			
Carcass				
Moisture	80.16			
Protein	11.53			
Lipid	1.93			
Ash	3.37			
	D1	D2	D3	D4
Moisture	71.99 ± 0.67\(^b\)			
Protein	17.85 ± 0.36\(^a\)			
Lipid	5.76 ± 0.58\(^a\)			
Ash	4.03 ± 0.08\(^a\)			
	73.45 ± 1.13\(^a\)			
	16.96 ± 0.63\(^a\)			
	5.12 ± 0.51\(^a\)			
	4.05 ± 0.10\(^a\)			
	73.30 ± 0.34 \(^b\)			
	15.86 ± 0.24 \(^b\)			
	4.803 ± 0.517 \(^b\)			
	4.02 ± 0.06 \(^a\)			
	74.738 ± 0.30 \(^a\)			
	15.45 ± 0.25 \(^b\)			
	4.390 ± 0.40 \(^b\)			
	4.03 ± 0.03 \(^a\)			
	77.16 ± 0.97 \(^b\)			
	17.21 ± 0.22 \(^b\)			
	2.21 ± 0.30 \(^b\)			
	0.97 ± 0.04 \(^b\)			
	77.69 ± 0.42 \(^a\)			
	17.60 ± 0.20 \(^ab\)			
	2.65 ± 0.10 \(^a\)			
	1.02 ± 0.03 \(^b\)			
	77.75 ± 0.21 \(^a\)			
	17.59 ± 0.04 \(^ab\)			
	2.30 ± 0.11 \(^a\)			
	1.14 ± 0.01 \(^a\)			
	77.06 ± 0.09 \(^a\)			
	17.96 ± 0.04 \(^b\)			
	2.47 ± 0.10 \(^b\)			
	1.18 ± 0.06 \(^a\)			

Values in the same row with the same superscript are not significantly different (P > 0.05). ND: not detected.

4. Discussion

The present study reports the first use of macroalgae U. lactuca in African catfish diets. The results show that the growth performance of fish tended to reduce as the amount of U. lactuca in the diet was increased.

Previous investigations have used many types of seaweed as feed for other fish species, Azaza et al. (2008), Güroy et al. (2007), Valente et al. (2006) and Wassel et al. (2005). Generally, these have found that the inclusion of different seaweeds (Cystoseira barbata, U. lactuca, U. rigida and G. cornea) at a high level leads to poorer growth and feed utilization compared to fish fed a control diet. These are, therefore, in agreement with our data, which recorded a decline in all growth performance and feed utilization parameters such as final body weight, SGR, FCR, and PER for diets containing 20% and 30% of the U. lactuca diets compared with fish fed the control and D2 diets. These results indicate that the levels of U. lactuca added to feed in this study were ideal for African catfish up to 10% of U. lactuca.

Carnivorous fish, such as African catfish, would tend to prefer diets with animal ingredients rather than plant feedstuff, and such a conclusion is in accordance with our results showing a decrease in feed intake by fish at the levels 20% and 30% of U. lactuca in their diets was increased (Table 4). The growth reduction noted in this research might also be attributed to the effects of various anti-nutrients (e.g., saponins, tannins, phytic acid) which can reduce the palatability of diets (Francis et al., 2001). Azaza et al. (2008) reported that the inclusion of U. rigida up to a level of 10% of the meal produced diets containing a certain amount of anti-nutrients, for example saponins (1.13%), tannins (0.16%) and phytic acid (0.47%). Saponins could diminish the palatability of a diet by their bitterness and interference with the absorption of dietary lipids and bile salts (Guillaume and Choubert, 2001). These compounds with anti-nutritional characteristics may, therefore, inhibit growth performance and feed utilization when fish are fed high levels of Ulva. Thiessen et al. (2004) illustrates the reduction in growth when using seaweed in fish diets, arguing that most plant ingredients contain a certain amount of fibre and that this may have a negative effect on both their nutritional value and palatability. Ortiz et al. (2006), meanwhile, reported that U. lactuca contains about 60% fibre this might reduce its value in aqua feeds.
which may have reduced the available dietary energy. Soler-Vila et al. (2009), who reported that increasing the amount of the red alga, *Porphyra dioica*, in rainbow trout diets up to a 10% level led to an increase in voluntary feed intake. The inclusion of *P. dioica* in the diets, therefore, increased the polysaccharide fibre content which may have reduced the available dietary energy.

Analysis of the carcass of African catfish fed *U. lactuca* did not show any variations between treatments for lipid and ash, however, there were significant variations in carcass moisture and protein. Carcass ash and lipid content did not exhibit significant differences between diets (Table 5). These results also showed little increase in protein muscle with increasing amounts of Ulva, especially D4 which contain 30% Ulva, in contrast, Soler-Vila et al. (2009) found that muscle protein deposition in the rainbow trout was influenced by a 15% level of *Porphyra* in the diet, which means that a level of up to 10% would not have an effect on muscle protein deposition. Menghe et al. (2009), meanwhile, recommended that feeding dried algae up to 2% of the diet did not affect the body composition or feed utilization of channel catfish. Altogether, combining these previous studies with our own suggests a need for further work to determine the optimum substitution levels more than 10% of *U. lactuca* in the diets of African catfish.

In conclusion, the results of this study showed that feeding experimental diets containing 20% and 30% *U. lactuca* to African catfish resulted in poor growth and feed utilization, and that further investigations are required to evaluate the optimum dietary inclusion level of more than 10% of these green macroalgae in African catfish diets with adding amino acids or fatty acids to enhance palatability, growth performance and feed utilization for *U. lactuca*.

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for the funding of this research through the Research Group Project No. (RGP-VPP-304).

References

Al-Hafedh, Y.S., Alam, A., Buschmann, A.H., Fitzsimmons, K.M., 2012. Experiments on an integrated aquaculture system (seaweeds and marine fish) on the Red Sea coast of Saudi Arabia: efficiency comparison of two local seaweed species of nutrient biofiltration and production. Rev. Aquacult. 4, 21–31.

AOAC (Association of Official Analytical Chemists), 1995. Official Methods of Analysis. AOAC, Arlington, Virginia.

Azza, M.S., Mensi, F., Ksouri, J., Dhraief, M.N., Brini, B., Abdelmouleh, A., Ksousi, M.M., 2008. Growth of Nile tilapia, *Oreochromis niloticus* L., fed with diets containing graded levels of green algae Ulva meal. *Ulva rigida*, reared in geothermal waters of southern Tunisia. J. Appl. Ichthyol. 24, 202–207.

Baars, M.A., Schalk, P.H., Veldhuis, M.J.W., 1998. Seasonal fluctuations in plankton biomass and productivity in the ecosystems of the Somali Current, Gulf of Aden, and Southern Red Sea. In: Sherman, K., Okemwa, E., Nitib, M. (Eds.), Large Marine Ecosystems of the Indian Ocean: Assessment, Sustainability, and Management. Blackwell Science, Oxford, pp. 143–174.

Casas-Valdez, M., Portillo-Clark, G., Aguilera-Ramirez, N., Rodriguez-Astudillo, S., Sanchez-Rodriguez, I., Carrillo-Dominguez, S., 2006. Effect of the marine algae *Sargassum* spp. on the productive parameters and cholesterol content of the brown shrimp, *Farfantepenus californiensis*, (Holmes, 1900). Rev. Biol. Mar. Oceanogr. 41, 97–105.

Chakrabarty, S., Santra, S.C., 2008. Biochemical composition of eight benthic alga collected from Sunderban. Indian J. Mar. Sci. 37, 329–332.

Davies, S.J., Brown, M.T., Camilleri, M., 1997. Preliminary assessment of the seaweed, *Porphyra purpurea*, in artificial diets for thick-lipped grey mullet *Chelon labrosus*. Aquaculture 152, 249–258.

FAO, 2010. Report of the Fifth Meeting of the Working Group on Aquaculture, Doha, the State of Qatar, 27 October 2010: FAO Fisheries and Aquaculture Report No. 954. Food and Agriculture Organization, Rome.

Francis, G., Makkar, H.P.S., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197–227.

Garcia-Casal, M.N., Pereira, A.C., Lees, I., Ramirez, J., Quiroga, M. E., 2007. High iron content and bioavailability in humans from four species of marine algae. J. Nutr. 137, 2691–2695.

Guillaume, J., Choubert, G., 2001. Digestive physiology and nutrient digestibility in fishes. In: Guillaume, J., Kaushik, S., Bergot, P., Me’ tallier, R. (Eds.), Nutrition and Feeding of Fish and Crustaceans. Springer, London, UK, pp. 27–56.

Guroy, B., Cikir, S., Guroy, D., Sanver, F., Tekinay, A.A., 2007. Effects of *Ulva rigida* or *Cystoseira barbata* meals as a feed additive on growth performance, feed utilization, and body composition in Nile tilapia, *Oreochromis niloticus*. Turk. J. Vet. Anim. Sci. 31, 91–97.

Kalla, A., Yoshishitatu, T., Araki, T., Zhang, D.M., Yamamoto, T., Sakamoto, S., 2008. Use of *Porphyra* spherooplasts as feed additive for red sea bream. Fish. Sci. 74, 104–108.

Khalil, M.T., Abdel-Rahman, N.S., 1997. Abundance and diversity of surface zooplankton in the Gulf of Aqaba, Red Sea, Egypt. J. Plankton Res. 19, 927–936.

Khan, M.N.D., Yoshishitatu, T., Kalla, A., Araki, T., Sakamoto, S., 2008. Supplemental effect of *Porphyra* spherooplasts on the growth and feed utilization of black sea bream. Fish. Sci. 74, 397–404.

Kumar, C.S., Ganesan, P., Suresh, P.V., Bhaskar, N., 2008. Seaweeds as a source of nutritionally beneficial compounds—a review. J. Food Sci. Technol. 45, 1–13.

Ma, W.C.J., Chund, H.Y., Ang, P., Kim, P.S., 2005. Enhancement of bromphenol levels in aquacultured silver seabream (*Sparus sarba*). J. Agric. Food Chem. 53, 2133–2139.

Marsham, S., Scott, G.W., Tobin, M.L., 2007. Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem. 100, 1331–1336.

Mutanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K., 2009. Nutrient content of tropical edible seaweeds, *Eucheuma cottonii*, Caulerpa lentillifera and *Sargassum polycystum*. J. Appl. Phycol. 21, 75–80.

McDermid, K.J., Stuercke, B., 2003. Nutritional composition of edible Hawaiian seaweeds. J. Appl. Phycol. 15, 513–524.

Menghe, H.L., Robinson, E.H., Tucker, C.S., Manning, B.B., Khoo, L., 2009. Effects of dried algae *Schizochytrium* sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish *Ictalurus punctatus*. Aquaculture 292, 232–236.

Mustafa, M.G., Nakagawa, H., 1995. A review: dietary benefits of algae as an additive in fish feed. Isr. J. Aquacult. Bamid. 47, 155–162.

Nakagawa, H., Umino, T., Tasaka, Y., 1997. Usefulness of Ascophyllum meal as a feed additive for red sea bream (*Pagrus major*). Aquaculture 151, 275–281.

Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A., Rios, A., 2006. Dietary fiber,
Potential use of green macroalgae *Ulva lactuca*