Distribution of Nitrate, Phosphate and N/P Ratio in Maninjau Lake, West Sumatra, Indonesia

M F Fachrul¹, A Rinanti¹, D I Hendrawan¹, M A Salsabil¹, N K Alreekabi²
¹Environmental Engineering Department, Faculty of Architecture Landscape and Environmental Technology, Universitas Trisakti, Jakarta, Indonesia
²Center of Urban &Regional Planning for Post Graduate Studies, University of Baghdad, Iraq
*Email: melati@trisakti.ac.id

Abstract. This research aim to study of spatial distribution of Nitrate and Phosphate concentration, and also N/P ratio in waters of Maninjau Lake (0°19’ S; 100°12’E), West Sumatera Province, Indonesia, collected from 11 sampling points of water samples which were performed during 3 (three periods) May, June and July 2017. Other major sources of environmental nitrogen and phosphate are fertilizers and wastewater discharged from farms and livestock facilities, and sewage from residential areas which leak into lakes. The Nitrate and phosphate concentrations in Maninjau Lake waters, the results of the analysis found that Nitrate values ranged from 0.02 - 0.40 mg/L (quality standard 10 mg/L), while phosphate ranged from 0.12 - 0.54 mg/L (quality standard 0.2 mg / L). Nitrogen (N) and phosphorus (P) generally limit the main productivity in lakes. The N/P Ratio calculation results are known that 0.29 -0.58, the value shows that there has been an excessive addition of phosphate elements into the waters, so that it appears that the N element is a limiting element that affects the biological conditions of ecosystems such as phytoplankton biomass, species composition which is likely to occur dominance of certain types. This situation is quite reasonable, considering that around the study site is a residential area that discharges household wastewater that uses detergents into the waters. Anthropogenic nitrogen and phosphorus supply to natural ecosystems has increased them in many lakes.

1. Introduction
Water pollution is a global issue and world community is facing worst results of polluted water. Major sources of water pollution are discharge of domestic and agriculture wastes, population growth, excessive use of pesticides and fertilizers and urbanization [1]. Water pollution may pose serious threat to the environment as well as lives. Pollutant effects may vary depending on their types and source. [2] and it occurs when harmful substances—often chemicals or microorganisms—contaminate a stream, river, lake, ocean, aquifer, or other body of water, degrading water quality and rendering it toxic to humans or the environment [3]. Water is uniquely vulnerable to pollution. Known as a “universal solvent,” water is able to dissolve more substances than any other liquid on earth. Toxic substances from farms, towns, and factories readily dissolve into and mix with it, causing water pollution [4].

Lake as water ecosystems are an important resource for aquatic wildlife and human needs [5], [6] the water quality is governed by complex anthropogenic activities and natural processes [7] The ecosystem services include the provision of water for various purposes, including power generation, transportation, fisheries, tourism, and recreational enjoyment [8]. The alterations of water quality has wide-ranging ecological and societal implications that In general, lake ecosystems face threats that arise from a variety
of stresses, related to excessive nutrient (nitrogen: N and phosphorus: P) from nutrient runoff [9] modified hydrology, and climate change [10].

Important elements in waters that affect the availability of aquatic nutrients are nitrogen and phosphate because they play an important role in the formation of phytoplankton composition and biomass which will determine the primary productivity of waters. The anthropogenic nitrogen is accumulating in environmental reservoirs and altering many ecological processes whereas phosphorus is considered the limiting nutrient for phytoplankton production in freshwater systems [11]. Furthermore, the N: P ratio affects the food web in the water, so the values are different for plants, bacteria, zooplankton and fish.

Maninjau Lake (0°19’ S; 100°12’E) is a natural lake located in West Sumatra Province (Sumatra Island). The functions of Maninjau Lake are as a catchment area, water recreation area, and fish breeding area. Inlet channel comes from Batang Antokan River while its outlet channel flows into 3 small rivers namely Batang Tumayo, Batang Amparan, and Batang Kurambik. Around Maninjau Lake there are recreation areas, housing, laundry, hotels, and restaurants [12], [13]. The functions of the lake are very diverse, so the input of nitrogen and phosphorus elements in the waters is high, of course, it greatly affects the level of water fertility. The aim of the research to 1) Analysed the Concentration of Nitrate and Phosphate, 2) Determine the N/P Ratio (Redfield) in Maninjau Lake waters.

2. Research Method
This research was conducted in aquatic ecosystem of Maninjau Lake (0°19’ S; 100°12’E) located at Tanjung Raya Sub-District, Agam District, West Sumatera Province, Indonesia (Sumatra Island) (Figure 1). The waters samples were collected monthly from May to July 2017 by using water sampler by boat to get to the sampling location, which was determined based on Indonesian National Standard (SNI) 6989.57: 2008 about surface water sampling method [14] at 11 sampling point scattered along the waters were representing main inlet, main outlet and the activities both of waters surrounding as show in Table 1.

Parameters analyzed were Nitrate (N), Phosphate (P), were examined in the laboratory. The sample was put into a glass bottle with a volume of 1 L and tightly closed and placed in the cool box. The Nitrate concentration was measured by spectrophotometric, and the phosphate concentration was determined by calorimetric technique with molybden blue staining at a wavelength of 693 nm. Measurement of N-total, determined by spectrophotometry using the indophenol blue color generator method, measurement of P-total, was carried out using the Bray I Method [15].

Figure 1. Sampling Location in Maninjau Lake
Maninjau Lake water characteristics were compared to the quality standards by Government Regulation No. 82 of 2001 concerning Management of Water Quality and Water Pollution Control Class 2 for water recreation facilities, fisheries, irrigation, and stockbreeding.

3. Result and Discussion

3.1 Nitrate Concentration in Maninjau Lake Waters

The results of laboratory analysis in Table 2 showed that nitrate concentrations > 2.0 mg/l were found at several sampling points (3, 4 and 8) in period 1 due to the accumulation of waste from residential, pond fishery and agricultural activities in these locations. Moreover, at this location there is a Lake Maninjau Hydropower activity which results in the bottom of the estuary waters there are pipes for hydropower and canteen activities that dispose of waste water, causing pollutants to be stagnant and accumulation in the bottom lake.

In some waters, nitrates are described as micronutrient compounds controlling primary productivity in the euphotic layer. Nitrate concentrations that exceed 5.0 mg/l represent the occurrence of anthropogenic contamination originating from human activities and animal feces. Nitrate concentrations in excess of 0.2 mg/l can cause in eutrophication of waters which stimulates rapid growth of algae and aquatic plants (blooming) [16], [17]. The results of laboratory analysis obtained the following nitrate concentration data in Maninjau Lake.

Table 2. Nitrate Concentration in Maninjau Lake Waters

Period	Unit	Quality Standard	Sampling Point	Average
1	mg/l	10	1 0.09 0.09 0.36 0.30 0.11 0.07 0.20 0.32 0.15 0.24 0.16	0.19
2	mg/l	10	0.17 0.04 0.31 0.13 0.15 0.11 0.02 0.40 0.08 0.08 0.02	0.14
3	mg/l	10	0.11 0.13 0.19 0.10 0.08 0.07 0.05 0.30 0.04 0.10 0.08	0.11

Range Concentration: 0.02 - 0.40 mg/L comply to WQS

Meanwhile, at the other sampling points, there is the lowest nitrate concentration value, which is <0.2 mg/l, this occurs due to at that point the nitrogen in the form of nitrate has reduction process to form nitrite and ammonia (denitrification).
Figure 2. Nitrate Concentration in Maninjau Lake Waters

3.2 Phosphate Concentration in Maninjau Lake Waters
Phosphate is a very important nutrient compound. Source of phosphate compounds in waters usually from natural sources such as soil erosion, waste from animals and weathering plants. The concentration of phosphate increases due to discharge of domestic waste (detergent, etc.), home industry and agriculture/plantation (fertilizer) which contains a lot of phosphate [18], [19].

Table 3. Phosphate Concentration in Maninjau Lake Waters

Period	Unit	Quality Standard	Sampling Point	Average
			1 2 3 4 5 6 7 8 9 10 11	
1	mg/l	0.2	0.50 0.44 0.15 0.19 0.41 0.53 0.28 0.19 0.39 0.25 0.31	0.33
2	mg/l	0.2	0.28 **0.50** 0.16 0.35 0.32 0.48 **0.52** 0.12 0.41 0.47 **0.54**	0.38
3	mg/l	0.2	0.34 0.40 0.29 0.37 0.44 0.51 0.48 0.17 0.45 0.30 0.46	0.38

Range Concentration: 0.12-0.54 mg/L comply to WQS

The results of the analysis of phosphate concentrations in the waters of Maninjau Lake show in Table 3, shows that the value of the phosphate concentration exceeds the standard Quality. Excess phosphate in the waters causes the blooming of algae (eutrophication) with the side effect of decreasing oxygen concentration in water bodies, causing the death of aquatic biota [16] [17] [20].

Figure 3. Phosphate Concentration in Maninjau Lake Waters
4. **N/P Ratio in Maninjau Lake Waters**

The elements Nitrogen (N) and Phosphorus (P) are two important elements in the metabolic process of cells and their presence always serves as a benchmark for whether these elements are limiting factors or not. The ratio of the uptake rate of elements by microorganisms (Phytoplankton) is described by the N/P Ratio. Using this ratio can explain that the availability of elemental nitrogen in the form of nitrate (NO3) must be 16 times more than elemental phosphorus (PO4), this ratio is called the "Redfield Ratio". If the value of N/P Ratio is below 16, then the N element becomes the limiting element, whereas if the N/P ratio is higher than 16, then the P element is the limiting element from the existence of phytoplankton. This has an impact on the biological conditions of the ecosystem such as phytoplankton biomass, the composition of the species where certain species are likely to dominate and also on the dynamics of the food web [21], [22].

Period	N/P Ratio	Sampling Point	Average											
		1	2	3	4	5	6	7	8	9	10	11		
1	<16 = P	Low	0.18	0.20	2.40	1.58	0.27	0.13	0.71	1.68	0.38	0.96	0.52	0.58
2	<16 = P	Low	0.61	0.08	1.94	0.37	0.47	0.23	0.04	3.33	0.20	0.17	0.04	0.37
3	<16 = P	Low	0.32	0.33	0.66	0.27	0.18	0.14	0.10	1.76	0.09	0.33	0.17	0.29

Figure 4. N/P Ratio in Maninjau Lake

Overall show that N/P Ratio in Lake Maninjau Waters lowes than 16, means the P element is the limiting element from the existence of phytoplankton. This condition should be a concern, because if management is not implemented, it will be to nutrient enrichment, eutrophication can occur [23], [24].

5. **Conclusions**

1. Activities that are a source of ammonia and nitrite pollutants in the waters of Lake Maninjau include activities around the sampling location (which can be in the form of organic waste and ammonia compounds), human settlements (in the form of detergent organic waste), fish cages (produce leftover feed) in lake waters.
2. The results showed that the phosphate compounds had the largest concentration in the waters of Lake Maninjau when compared to nitrogen compounds.
3. The N/P ratio is very less than 16. This condition shows that there has been an excessive addition of phosphate elements in these waters.
References

[1] Mehtab Haseena, Muhammad Faheem Malik, Asma Javed, Sidra Arshad, Nayab Asif, Sharon Zulfiqar and Jaweria Hanif, 2017. Water pollution and human health Environmental Risk Assessment and Remediation Volume 1, Issue 3 DOI: 10.4066/2529-8046.10020.

[2] Inyinbor Adejumoke A., Adebesin Babatunde O., Oluyori Abimbola P., Adelani-Akande Tabitha A., Dada Adewumi O. and Oreofe Toyin A., 2018. Water Pollution: Effects, Prevention, and Climatic Impact, Water Challenges of an Urbanizing World, Matjaž Glavan, IntechOpen, DOI: 10.5772/intechopen.72018.

[3] Briggs D. 2003. Environmental pollution and the global burden of disease. British medical bulletin, 68, 1-24.

[4] Halder JN, Islam MN. 2015. Water pollution and its impact on the human health. Journal of environment and human, 2(1), 36-46.

[5] Salim Aijaz Bhat and Ashok K. Pandit, 2014. Surface Water Quality Assessment of Wular Lake, A Ramsar Site in Kashmir Himalaya, Using Discriminant Analysis and WQI, Journal of Ecosystems Volume 2014, Article ID 724728, 18 pages

[6] W.F.Vincent, Effects of Climate Change on Lakes, Encyclopedia of Inland Waters 2009, Pages 55-60, https://doi.org/10.1016/B978-012370626-3.00233-7.

[7] S. Ravichandran, 2003. Hydrological influences on the water quality trends in Tamiraparani basin, South India, Environmental Monitoring and Assessment, vol. 87, no. 3, pp. 293–309.

[8] Schallenberg M, de Winton MD, Verburg P, Kelly DJ, Hamill KD, Hamilton DP. 2013. Ecosystem services of lakes. In: Dymond JR, editor. Ecosystem services in New Zealand – conditions and trends. Lincoln (New Zealand): Manaaki Whenua Press; p. 203–225.

[9] Sunaryani, E Harsono, H A Rustini and S Nomosatryo, IOP Conf. Series: Earth and Environmental Science 118 (2018) 012031 doi:10.1088/1755-1315/118/1/012031.

[10] Deniz Özkdakci and Moritz K. Lehmann 2019. Lake resilience: concept, observation and management, New Zealand Journal Of Marine And Freshwater Research 2019, VOL. 53, NO. 4, 481–488 https://doi.org/10.1080/00288330.2019.1647855.

[11] N N. Rabalais, Nitrogen in Aquatic Ecosystems, Ambio Vol. 31 No. 2, March 2002 p. 102-112.

[12] Melati Ferianita Fachrul, Astri Rinanti and Diana Irvinidiay Hendrawan. The Carbon Sequestration By Phytoplankton In Tropical Lake And Reservoir, International Journal of GEOMATE, March, 2019 Vol.16, Issue 55, pp. 40 - 45 ISSN: 2186-2982 (P), 2186-2990 (O), Japan, DOI: https://doi.org/10.21660/2019.55.4613 Special Issue on Science, Engineering & Environment.

[13] Muhammad Arif Salsabil, Astri Rinanti, and Melati Ferianita Fachrul, Analysis of water quality in Maninjau Lake, West Sumatera 2018. Indonesia using phytoplankton MATEC Web of Conferences 197, 13007. https://doi.org/10.1051/matecconf/201819713007 AASEC 2018.

[14] Badan Standarisasi Nasional. 2008 SNI 6989.57 Mengenai Air dan Air Limbah Volume 11, Issue 3 (2021) 012028 doi:10.1088/1755-1315/112/1/012027.

[15] Timothy A. Doane and William R. Horwath, 2003. Spectrophotometric Determination of Nitrate with a Single Reagent. Analytical Letters Vol. 36, No. 12, pp. 2713–2722.

[16] Beniah Obininalsiuku, Christian Ebere Enyoh, Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South astern, Nigeria, Environmental Advances Volume 2, December 2020, 100018 https://doi.org/10.1016/j.envadv.2020.100018.

[17] Steffii Fried, Brendan Mackie, Erin Nothwehr. 2003. Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond, Tillers, 4, 21-24.Grnell College.

[18] Yangxin, Yu., Z. Jin., & A. E. Bayly. 2008. Development of Surfactants and Builders in Detergent Formulations. Chinese Journal of Chemical Engineering, 16 (4): 517-527.

[19] Nitasha Khatri and Sanjiv Tyagi, 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas, Frontiers in Life Science, Vol. 8, No. 1, 23–39, http://dx.doi.org/10.1080/21553769.2014.933716.

[20] Barlah Rumhuyati, Studi Senyawa Fosfat dalam Sedimen dan Air menggunakan Teknik Diffusive Gradient in Thin Films (DGT) Jurnal Ilmu Dasar, Vol. 11 No. 2, Juli 2010: 160-166.
[21] Endang Widyastuti, Sukanto, dan Nuning Setyaningrum, Pengaruh Limbah Organik terhadap Status Tropik, Rasio N/P serta Kelimpahan Fitoplankton di Waduk Panglima Besar Soedirman Kabupaten Banjarnegara, Biosfera 32 (1) Januari 2015.

[22] A. K. Choudhury and P. Bhadury, Relationship between N:P:Si ratio and phytoplankton community composition in a tropical estuarine mangrove ecosystem, Biogeosciences Discuss., 12, 2307–2355, 2015 www.biogeosciences-discuss.net/12/2307/2015/ doi:10.5194/bgd-12-2307-2015

[23] Ng H. They, André M. Amado and James B. Cotner, Redfield Ratios in Inland Waters: Higher Biological Control of C:N:P Ratios in Tropical Semi-arid High Water Residence Time Lakes, Front Microbiol. 2017; 8: 1505. doi:10.3389/fmicb.2017.01505.

[24] Melati Ferianita Fachrul, Herman Haeruman, Anita Anggraeni. Distribusi Spatial Nitrat, Fosfat Dan Ratio N/P Di Perairan Teluk Jakarta. Seminar Nasional Penelitian Lingkungan di Perguruan Tinggi, ATPI Teknik Lingkungan ITB, Bandung, 17-18 Juli 2006.