Acute Lymphoblastic Leukemia in Children: Better Transplant Outcomes After Total Body Irradiation-based Conditioning

JAN STYCZYNSKI¹, ROBERT DEBSKI¹, KRZYSZTOF CZYZEWSKI¹, KATARZYNA GAGOLA², EWA MARQUARDT², KRZYSZTOF ROSZKOWSKI³, JANUSZ WINIECKI³, NINELA IRGA-JAWORSKA⁴, MARCIN HENNIG⁴, KATARZYNA MUSZYNKA-ROSŁAN⁵, MARCIN PLONOWSKI⁵, TOMASZ OCIEPA⁶, MONIKA LECKA¹, JOANNA KONIECZEK¹, PRZEMYSŁAW GALAZKA¹, MONIKA POGORZALA¹, MONIKA RICHERT-PRZYGONSKA¹ and MARIUSZ WYSOCKI¹

¹Department of Pediatric Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University Toruń, Jurasz University Hospital 1, Bydgoszcz, Poland; ²Regional Blood Transfusion Center (RCKiK), Bydgoszcz, Poland; ³Oncology Center, Bydgoszcz, Poland; ⁴Department of Pediatric Hematology and Oncology, Medical University, Gdansk, Poland; ⁵Department of Pediatrics, Oncology and Hematology, Medical University, Białystok, Poland; ⁶Department of Pediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University, Szczecin, Poland

Abstract. Background/Aim: Comparison of transplant outcomes in long-term follow-up of children after total body irradiation (TBI)- or chemotherapy-based conditioning allogeneic hematopoietic cell transplantation (allo-HCT).

Patients and Methods: Patients undergoing allo-HCT for Acute lymphoblastic leukemia (ALL) conditioned either with TBI (n=55) or chemotherapy (n=84) were compared. The following transplant outcomes were analyzed: overall survival (OS), event-free survival (EFS), relapse incidence (RI), and graft-versus-host-disease (GVHD)-free-relapse-free survival (GRFS).

Results: All analyzed long-term transplant outcomes were significantly better for patients conditioned with TBI at 2 years after transplant. OS at 2 years was 84% after TBI and 60.5% after chemotherapy-conditioning (p=0.005). Risk factor analysis showed that two factors, TBI-based conditioning and transplant in first remission of ALL, significantly improved OS, EFS, GRFS, and decreased RI. Conclusion: TBI-based conditioning before allogeneic HCT in children with acute lymphoblastic leukemia provides significantly better transplant outcomes, when compared to chemotherapy-based conditioning.

Acute lymphoblastic leukemia (ALL) is the most frequent type of malignancy in children. With international cooperation, outcomes have improved remarkably during the last decades and reached 90% of long-term survival (1, 2). ALL is also the most frequent indication for allogeneic hematopoietic cell transplantation (allo-HCT) in children, comprising both patients with high-risk disease in first complete remission (CR1) or in relapsed phase (rALL) (3). Two basic types of high-dose conditioning therapy before HCT for ALL are used both in children and adults, based on total body irradiation (TBI) or on chemotherapy (CHT), mainly with the use of busulfan or treosulfan (4, 5). Differences in the efficacy and short- and long-term safety between TBI and CHT-based transplantations is a matter of debate (4, 6, 7). A benefit in the outcome after the use of TBI has been observed in adults (6), but not univocally in children, as presented in a meta-analysis in 2011 (8). A recent large international prospective trial showed improved survival and lower relapse risk in patients following TBI+etoposide conditioning in comparison to CHT-based allo-HCT in children aged over 4 years (9). However, there are almost no real-world data on pediatric ALL-HCT (10). Herein, we present our experience with allo-HCT in pediatric ALL with respect to the type of conditioning. The objective of this analysis was comparison of transplant outcomes: overall survival (OS), event-free survival (EFS), relapse incidence (RI), and graft-versus-host-disease (GVHD)-

Key Words: Acute lymphoblastic leukemia, hematopoietic cell transplantation, total body irradiation, children, GVHD-free-relapse-free survival, GRFS.

This article is freely accessible online.

Correspondence to: Jan Styczynski, MD, Ph.D., Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Antoni Jurasz University Hospital No. 1, ul. Słodowskiej-Curie 9, 85-094 Bydgoszcz, Poland. Tel: +48 525854860, Fax: +48 525854087, e-mail: jstyczynski@cm.umk.pl

Key Words: Acute lymphoblastic leukemia, hematopoietic cell transplantation, total body irradiation, children, GVHD-free-relapse-free survival, GRFS.
free-relapse-free survival (GRFS) in long-term follow-up of children after TBI- or CHT-based conditioning.

Patients and Methods

Design. Transplant outcomes were compared between groups of patients undergoing allo-HCT for ALL conditioned either with TBI or CHT. All consecutive children and adolescents aged between 1 and 18 years treated in the single center between 2003 and 2020 were qualified for the analysis, regardless of the type of donor (matched-related or unrelated donor), and stem cell source (bone marrow, peripheral blood, cord blood). The selection of conditioning was individualized in each case.

Patients. Pediatric patients in first (CR1) or subsequent complete remission (CR2), undergoing allo-HCT for ALL after myeloablative conditioning with the use of either TBI or chemotherapy were included in the study. A total number of 139 allo-HCT transplantations performed in a single center were analyzed: TBI-based conditioning in 55 patients, and chemotherapy-only in 84 patients (busulfan-based in 56 and treosulfan-based in 28 patients).

Transplant conditioning. TBI at a total dose of 12 Gy was delivered in six fractions over 3 days from a linear accelerator, with lung shielding at 10 Gy, followed by etoposide administration (60 mg/kg; upper total dose 3.6 g) on day -3 before HCT. In CHT-based conditioning, either busulfan over 4 days or treosulfan 14 g/m² once a day for 3 days was used together with cyclophosphamide (60 mg/kg for two days) or fludarabine 30 mg/m² once a day over 5 days and thiotepa 5 mg/kg twice a day for 1 day. Busulfan was administered four times a day with age and body weight dose adjustment. Other transplant procedures and supportive care were described elsewhere (11-14). Neutrophil engraftment was defined as the first of three consecutive days of absolute neutrophil counts exceeding 0.5×10^9/l. Platelet engraftment was defined as the first of three consecutive days with platelets of more than 20×10^9/l, with no platelet transfusions done during the preceding 7 days.

Statistical analysis. Non-categorical variables were compared with the Mann-Whitney test, and categorical variables with the chi-squared test, with odds ratio (OR) and 95% confidence interval (95% CI). The mean survival was calculated with the Kaplan–Meier method. The primary endpoint of the study was OS, and secondary endpoints included: event-free survival (EFS), relapse incidence (RI), and severe GVHD-free relapse-free survival (GRFS). Severe GVHD was defined as grade III-IV acute (aGVHD) and chronic (cGVHD). Kaplan-Meier curves and cumulative incidence functions were used to summarize survival and time-dependent incidence and compared with the log-rank test. Additionally, we compared frequencies of veno-occlusive disease (VOD), acute and chronic GVHD (aGVHD/cGVHD), idiopathic pneumonia syndrome (IPS), cytomegalovirus (CMV) reactivation, and invasive fungal disease (IFD). In order to correlate each potential prognostic factor with a primary or secondary endpoint, risk factor analysis was performed using a univariate Cox proportional-hazards regression model. The following risk factors were analyzed: conditioning (TBI-based vs. chemotherapy-based), age (as continuous variable; and ≥10 vs. <10 years), donor type (matched family donor, MFD vs. matched unrelated donor, MUD), Karnofsky/Lansky performance score (≥80 vs. <80), disease status (CR=1 vs. CR>1), stem cell source (PB vs. BM), pre-transplant patient CMV serostatus (IgG negative vs. IgG positive), CMV reactivation, dose of mononuclear cells (MNC), dose of CD34-positive cells, and year of transplantation (≤2012 vs. >2012). The factors that appeared to be important were then fitted together in multivariate Cox models and then backward selection was used to remove any non-significant variables using the likelihood ratio test at a 0.05 level. A final check was made to ensure that no excluded factors would improve the fit. The results of the uni- and multi-variate analysis are presented as hazard ratios (HR) with their 95%CIs. The analysis was performed using the statistical package SPSS 27.0 (IBM, Armonk, NY, USA).

Ethical considerations. All investigations and treatments analyzed in this study were established clinical practices carried out according to accepted clinical practices and in compliance with the medical principles of the Declaration of Helsinki. Informed consent was obtained from all parents and patients (if applicable) prior to treatment. In this retrospective analysis of common clinical practice, formal ethical approval was not required.

Results

Demographics. Overall, 55 patients were conditioned with TBI, and 84 with chemotherapy-only. Detailed patient characteristics are presented in Table I. There were no differences between groups, except for the older age of patients undergoing TBI, since only one child was at the age of ≤4 years (TBI was performed under conditions of general anesthesia), and most of them were over 7 years of age.

Engraftment and early complications. Patients after TBI had higher rate of neutrophil and platelet engraftment (Table II). There were no differences in frequency of VOD, CMV reactivation, idiopathic pneumonia syndrome, invasive fungal disease, and acute and chronic GVHD in the first year after allo-HCT. Additionally, no differences were found in both early and long-term transplant outcomes in patients treated with chemotherapy only: busulfan- vs. treosulfan-based conditioning (data not shown).

Transplant outcomes and risk factor analysis. All analyzed long-term transplant outcomes (OS, EFS, RI and GRFS) were significantly better in patients conditioned with TBI at 2 years after transplant (Table III). Overall survival at 2 years was 84% after TBI and 60.5% after chemotherapy-conditioning (p=0.005). Risk factor analysis for primary and secondary study endpoints with factors listed in the “statistical methods” section, showed that two factors, TBI conditioning and transplant in first remission of ALL, improved OS, EFS, GRFS and decreased RI (Table IV, Figure 1).

Discussion

In this real-world single center study, we showed that TBI-based conditioning before allogeneic HCT in children with
Table I. Patient pre-transplant characteristics.

	TBI-based	Chemotherapy-based	p-Value
Number of patients	55	84	
Gender			
	41 M (74.5%); 14 F	49 M (58.3%); 35 F	0.076
Age at HCT	12.4 (2.4-17.9)	6.2 (1.0-17.9)	<0.001
Age >10 years	39 (70.9%)	23 (27.4%)	<0.001
MFD	20 (36.4%)	21 (25%)	0.152
MD-HCT	55 (100%)	80 (95.2%)	0.102
MFD-vs.-MUD	20 (36.4%)	21 (25%)	0.211
First HCT	52 (94.5%)	73 (83.9%)	0.145
Karnofsky/Lansky >80	54 (98.2%)	80 (95.2%)	0.364
CR>1 at HCT	28 (50.9%)	46 (54.8%)	0.657
Stem cell source			
	PBSC 41 (74.5%); BM 14 (25.5%)	PBSC 57 (67.9%); BM 25 (29.8%); CB 2 (2.4%)	0.360
Patient CMV serostatus			
	41 (74.5%)	70 (83.3%)	0.189
ATG	25 (45.5%)	44 (52.4%)	0.532
Dose of MNC	8.6 (1.7-53)	10.1 (0.3-52.1)	0.426
MNC>1x10^8 cells/kg	22 (40%)	44 (52.4%)	0.154
Dose of CD34	6.6 (0.4-17.0)	7.3 (0.1-23.4)	0.382
CD34 >5x10^6 cells/kg	30 (54.5%)	50 (59.5%)	0.563

HCT: Hematopoietic cell transplantation; TBI: total body irradiation; M: male; F: female; MFD: matched family donor; MD: matched donor; MUD: matched unrelated donor; CR: complete remission; ATG: anti-thymocyte globulin; CMV: cytomegalovirus; PBSC: peripheral blood stem cells; BM: bone marrow; CB: cord blood; MNC: mononuclear cells.

Table II. Immediate transplant outcomes: engraftment and early complications.

	TBI-based	Chemotherapy-based	p-Value
Neutrophil engraftment	55 (100%)	78 (92.9%)	0.043
Time to neutrophil engraftment [days] (median, range)	19 (12-25)	17 (11-33)	0.253
Platelet engraftment	54 (98.2%)	72 (85.7%)	0.014
Time to platelet engraftment [days] (median, range)	15 (7-65)	15 (9-62)	0.893
Veno-occlusive disease (VOD)	8 (14.5%)	8 (9.5%)	0.525
aGVHD grade 3/4	7 (12.7%)	9 (10.7%)	0.926
cGVHD	7 (12.7%)	9 (10.7%)	0.926
Severe GVHD	8 (14.5%)	10 (11.9%)	0.651
CMV reactivation	16 (29.1%)	25 (29.8%)	0.699
Idiopathic pneumonia syndrome (IPS)	8 (14.5%)	9 (10.7%)	0.682
Invasive fungal disease (IFD)	15 (27.3%)	24 (28.5%)	0.999

TBI: Total body irradiation; GVHD: graft-versus-host disease.

Table III. Transplant outcomes: 2-year probabilities.

	TBI-based	Chemotherapy-based	p-Value
Number of patients	55	84	
Mean survival [years]	10.3 (95%CI=8.9-11.7)	8.6 (95%CI=7.2-10.1)	
Overall survival	84.0±5.2%	60.5±5.5%	0.005
Event free survival	80.4±5.6%	54.5±5.5%	0.002
Relapse incidence	10.2±4.3%	29.3±5.4%	0.016
GRFS	69.6±6.5%	45.2±5.6%	0.007

TBI: Total body irradiation; GRFS: GVHD-free-relapse-free survival; GVHD: graft-versus-host disease.
Table IV. Risk factor analysis.

Univariate analysis	OS	EFS	RI	GRFS
Chemotherapy vs. TBI	HR=2.7 (1.3-5.7)	HR=2.7 (1.4-5.1)	HR=2.8 (1.3-6.8)	HR=2.1 (1.2-3.6)
	\textit{p}=0.007	\textit{p}=0.003	\textit{p}=0.020	\textit{p}=0.008
MUD vs. MFD	HR=1.1 (0.5-2.2)	HR=1.0 (0.5-1.8)	HR=1.8 (0.8-3.6)	HR=1.0 (0.6-1.7)
	\textit{p}=0.732	\textit{p}=0.972	\textit{p}=0.133	\textit{p}=0.917
CR>1 vs. CR=1	HR=2.1 (1.2-4.5)	HR=1.8 (1.0-3.1)	HR=2.4 (1.1-5.3)	HR=2.0 (1.2-3.4)
	\textit{p}=0.021	\textit{p}=0.057	\textit{p}=0.028	\textit{p}=0.007
Karnofsky/Lansky score <80 vs. ≥80	HR=2.8 (0.8-9.0)	HR=2.2 (0.8-7.2)	HR=1.5 (0.2-9.9)	HR=1.6 (0.5-4.8)
	\textit{p}=0.090	\textit{p}=0.134	\textit{p}=0.748	\textit{p}=0.402

Multivariate analysis	OS	EFS	RI	GRFS
Chemotherapy vs. TBI	HR=2.8 (1.3-5.9)	HR=2.7 (1.4-5.3)	HR=2.9 (1.3-7.1)	HR=2.1 (1.3-3.8)
	\textit{p}=0.007	\textit{p}=0.002	\textit{p}=0.014	\textit{p}=0.006
CR>1 vs. CR=1	HR=2.1 (1.2-4.6)	HR=1.9 (1.1-3.4)	HR=2.6 (1.2-5.6)	HR=2.1 (1.2-3.5)
	\textit{p}=0.019	\textit{p}=0.039	\textit{p}=0.019	\textit{p}=0.005
Karnofsky/Lansky score <80 vs. ≥80	HR=1.9 (0.6-6.3)	NA	NA	NA
	\textit{p}=0.297	NA	NA	NA

TBI: Total body irradiation; MFD: matched family donor; MUD: matched unrelated donor; CR: complete remission; HR: hazard ratio; NA: not applicable; OS: overall survival; EFS: event-free survival; RI: relapse incidence; GRFS: GVHD-free-relapse-free survival; GVHD: graft-versus-host disease.

Figure 1. Major transplant outcomes in pediatric Acute lymphoblastic leukemia with respect to type of conditioning (total body irradiation (TBI)-based vs. chemotherapy-based): (A) overall survival; (B) event-free survival; (C) relapse incidence; (D) GVHD-free-relapse-free survival.
ALL provides significantly better OS, EFS, and GRFS and a lower RI, when compared to chemotherapy-based conditioning. The second factor contributing to better long-term transplant outcomes was CR1 in comparison to relapsed phases of disease.

All other analyzed factors had no impact on transplant outcomes. This is especially important in the context of the type of donor and the source of hematopoietic cells. Both findings are already well-known in the pediatric setting. It was shown in the prospective multinational Berlin-Frankfurt-Muenster (BFM) study group trial (ALL-SCT-BFM 2003) that the outcome among high-risk children with ALL after allo-HCT was not affected by donor type, and was the same for the matched family and matched unrelated donors.

Moreover, among recipients of HCT from unrelated donors, there were no significant differences in transplant outcomes (OS, EFS, RFS) between patients with HLA 9/10 and those with HLA 10/10 matched antigens grafts. Additionally, no differences in transplant outcomes between patients grafted from peripheral blood stem cells and those transplanted from the bone marrow were noted (15).

In ALL not only diagnosis and treatment of the disease, but also complications and supportive therapy (16, 17), monitoring of residual disease (18), and treatment of relapse including HCT (9, 15, 18) are subjects of detailed scientific analysis.

The positive impact of TBI conditioning on children with ALL is in line with the results of the prospective FORUM trial (9), and a retrospective single-center analysis of early transplant outcomes (10). In our study, we additionally analyzed a new composite endpoint, GRFS, which indicates not only remission of leukemia, but also the quality of life expressed by the absence of severe GVHD (19). We found a positive effect of TBI conditioning on GRFS in children with ALL.

In addition, TBI has a high risk of long-term complications, such as infertility, cataract, thyroid and other endocrine insufficiency, short stature, and other sequelae. Nevertheless, with an improved overall survival by 10-20%, an interdisciplinary approach may lead to the prevention and treatment of any possible TBI complications.

This study has several limitations. It is underpowered with respect to the analysis of outcome of the busulfan- vs. treosulfan-based conditioning. Also, the period of inclusion was relatively long, however, our results were not influenced by its duration.

In conclusion, this single-center real-world study showed that TBI-based conditioning before allo-HCT in pediatric ALL provides better survival than chemotherapy-based conditioning before transplantation.

Conflicts of Interest

The Authors declare no conflicts of interest related to this study.

Authors’ Contributions

Study design: JS. Data analysis: JS, RD, KC and MRP. Article writing: JS. Provision of important clinical data and interpretation: All Authors. Data check: All Authors. Statistical analysis: JS and KC. Administrative support: JS. Final approval: All Authors.

References

1. Inaba H and Pui CH: Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. J Clin Med 10(9): 1926, 2021. PMID: 33946897. DOI: 10.3390/jcm10091926
2. Demidowicz E, Pogorzała M, Łęcka M, Żołnowska H, Marjańska A, Kubicka M, Kuryło-Rafińska B, Czyżewski K, Dębski R, Kołtan A, Richert-Przygońska M and Styczyński J: Outcome of pediatric acute lymphoblastic leukemia: Sixty years of progress. Anticancer Res 39(9): 5203-5207, 2019. PMID: 31519634. DOI: 10.21873/anticancer.13717
3. Duarte RF, Labopin M, Bader P, Basak GW, Bonini C, Chabannon C, Corbacioglu S, Dreger P, Dufour C, Genery AR, Kuball J, Lankester AC, Lanza F, Montoto S, Nagler A, Pefault de Latour R, Snowden JA, Styczynski J, Yakoub-Agha I, Kröger N, Mohy M and European Society for Blood and Marrow Transplantation (EBMT): Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant 54(10): 1525-1552, 2019. PMID: 30953028. DOI: 10.1038/s41409-019-0516-2
4. Boztug H, Zecca M, Sykora KW, Veys P, Lankester A, Slatter M, Skinner R, Wachowiak J, Pötschner U, Glogova E, Peters C and EBMT paediatric diseases working party: Treosulfan-based conditioning regimens for allogeneic HCT in children with acute lymphoblastic leukaemia. Ann Hematol 94(2): 297-306, 2015. PMID: 25231927. DOI: 10.1007/s00277-014-2196-8
5. Kato M, Takahashi Y, Tomizawa D, Okamoto Y, Inagaki J, Koh K, Ogawa A, Okada K, Cho Y, Takita J, Goto H, Sakamaki H, Yabe H, Kawana K, Suzuki R, Kudo K and Kato K: Comparison of intravenous with oral busulfan in allogeneic hematopoietic stem cell transplantation with myeloablative conditioning regimens for pediatric acute leukemia. Biol Blood Marrow Transplant 19(12): 1690-1694, 2013. PMID: 24071595. DOI: 10.1016/j.bbmt.2013.09.012
6. Kebriaei P, Anasetti C, Zhang MJ, Wang HL, Aldoss I, de Lima B, Alvarnas J, Bredeson C, Seftel MD, Pulsipher MA, Boelens JJ, Alvarnas J, Bejanyan N, Ciurea S, Lazarus HM, Gale RP, Litzow M, Breddesen C, Settel MD, Pulsiheimer MA, Boelens JJ, Alvarnas J, Champlin R, Forman S, Pullarkat V, Weisdorf D, Marks DI and Acute Leukemia Committee of the CIBMTR: Intravenous busulfan compared with total body irradiation pretransplant conditioning for adults with acute lymphoblastic leukemia. Biol Blood Marrow Transplant 24(4): 726-733, 2018. PMID: 29197676. DOI: 10.1016/j.bbmt.2017.11.025
7. Hamidieh AA, Monzavi SM, Kaboutari M, Behfar M and Esfandbod M: Outcome analysis of pediatric patients with acute lymphoblastic leukemia treated with total body irradiation-free allogeneic hematopoietic stem cell transplantation: comparison of patients with and without central nervous system involvement. Biol Blood Marrow Transplant 23(12): 2110-2117, 2017. PMID: 28870778. DOI: 10.1016/j.bbmt.2017.08.036
8 Gupta T, Kannan S, Dantkale V and Laskar S: Cyclophosphamide plus total body irradiation compared with busulfan plus cyclophosphamide as a conditioning regimen prior to hematopoietic stem cell transplantation in patients with leukemia: a systematic review and meta-analysis. Hematol Oncol Stem Cell Ther 4(1): 17-29, 2011. PMID: 21460603. DOI: 10.5144/1658-3876.2011.17

9 Peters C, Dalle JH, Locatelli F, Poetschger U, Sedlacek P, Buechner J, Shaw PJ, Staciuk R, Iversen M, Pichler H, Vettenranta K, Svec P, Aleinikova O, Stein J, Gungör T, Toporski J, Truong TH, Diaz-de-Heredia C, Bierings M, Ariffin H, Essa M, Burkhardt B, Schultz K, Meisel R, Lankester A, Ansari M, Schrampe M, IBFM Study Group, von Stackelberg A, IntReALL Study Group, Bälduuzzi A, I-BFM SCT Study Group, Corbicagiò S, EBMT Paediatric Diseases Working Party and Bader P: Total body irradiation or chemotherapy conditioning in childhood ALL: A multinational, randomized, noninferiority phase III study. J Clin Oncol 39(4): 295-307, 2021. PMID: 33323189. DOI: 10.1200/JCO.20.02529

10 Yalcin K, Pehlivan B, Celen S, Bas EG, Kabakci C, Pashayev D, Daloglu H, Zhumataiev S, Uygur V, Karasu GT, Hazar V and Yesilipek A: Comparison of total body irradiation-based versus chemotherapy-based conditionings for early complications of allogeneic hematopoietic stem cell transplantation in children with ALL. J Pediatr Hematol Oncol 2021. PMID: 33625092. DOI: 10.1097/MPH.0000000000002055

11 Peters C, Dalle JH, Locatelli F, Poetschger U, Sedlacek P, Buechner J, Shaw PJ, Staciuk R, Iversen M, Pichler H, Vettenranta K, Svec P, Aleinikova O, Stein J, Gungör T, Toporski J, Truong TH, Diaz-de-Heredia C, Bierings M, Ariffin H, Essa M, Burkhardt B, Schultz K, Meisel R, Lankester A, Ansari M, Schrampe M, IBFM Study Group, von Stackelberg A, IntReALL Study Group, Bälduuzzi A, I-BFM SCT Study Group, Corbicagiò S, EBMT Paediatric Diseases Working Party and Bader P: Total body irradiation or chemotherapy conditioning in childhood ALL: A multinational, randomized, noninferiority phase III study. J Clin Oncol 39(4): 295-307, 2021. PMID: 33323189. DOI: 10.1200/JCO.20.02529

12 Zawitkowska J, Lejman M, Zaucha-Prażmo A, Drabko K, Płonowski M, Bulsja J, Romiszewski M, Mizia-Malarz A, Kołtan A, Derwich K, Karolczyk G, Ociepa T, Cwiklińska M, Trelińska J, Owoc-Lempach J, Niedźwiecki M, Kiermasz A and Kowalczyk J: Grade 3 and 4 toxicity profiles during therapy of childhood acute lymphoblastic leukemia. In Vivo 33(4): 1333-1339, 2019. PMID: 31280227. DOI: 10.21873/invivo.11608

13 Peters C, Schrappe M, von Stackelberg A, Schrauder A, Bader P, Ebell W, Lang P, Sykora KW, Schrum J, Kremens B, Ehler K, Albert MH, Meisel R, Matthes-Martin S, Gungör T, Holter W, Strahm B, Gruhn B, Schulz A, Woessmann W, Poetschger U, Zimmermann M and Klingebiel T: Stem-cell transplantation in children with acute lymphoblastic leukemia: A prospective international multicenter trial comparing sibling donors with matched unrelated donors-The ALL-SCT-BFM-2003 trial. J Clin Oncol 33(11): 1265-1274, 2015. PMID: 25753432. DOI: 10.1200/JCO.2014.58.9747

14 Cesaro S: Prognostic impact of Epstein-Barr virus serostatus in patients with nonmalignant hematological disorders undergoing allogeneic hematopoietic stem cell transplantation: The study of Infectious Diseases Working Party of the European Society for Blood and Marrow Transplantation. Acta Haematol Pol 51(2): 73-80, 2020. DOI: 10.2478/ahp-2020-0015

15 Gupta T, Kannan S, Dantkale V and Laskar S: Cyclophosphamide plus total body irradiation compared with busulfan plus cyclophosphamide as a conditioning regimen prior to hematopoietic stem cell transplantation in patients with leukemia: a systematic review and meta-analysis. Hematol Oncol Stem Cell Ther 4(1): 17-29, 2011. PMID: 21460603. DOI: 10.5144/1658-3876.2011.17

16 Zawitkowska J, Lejman M, Zaucha-Prażmo A, Drabko K, Płonowski M, Bulsja J, Romiszewski M, Mizia-Malarz A, Kołtan A, Derwich K, Karolczyk G, Ociepa T, Cwiklińska M, Trelińska J, Owoc-Lempach J, Niedźwiecki M, Kiermasz A and Kowalczyk J: Grade 3 and 4 toxicity profiles during therapy of childhood acute lymphoblastic leukemia. In Vivo 33(4): 1333-1339, 2019. PMID: 31280227. DOI: 10.21873/invivo.11608

17 Buchmann S, Schrappe M, Baruchel A, Biondi A, Borowitz MJ, Campbell M, Cario G, Cazzaniga G, Escherich G, Harrison CJ, Heyman H, Hunger SP, Kiss C, Liu HC, Locatelli F, Loh ML, Manabe A, Mann G, Pieters R, Pui CH, Rives S, Schmiegelow K, Silverman LB, Stary J, Vora A and Brown PA: Remission, treatment failure, and relapse in pediatric ALL: An international consensus of the Ponte-di-Legno Consortium. Blood: 2021012328. 2021. PMID: 34192312. DOI: 10.1182/blood.2021012328

18 Holton SG, DeFor TE, Lazaryan A, Bejanyan N, Arora M, Brunstein CG, Blazar BR, MacMillan ML and Weisdorf DJ: Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood 125(8): 1333-1338, 2015. PMID: 25593335. DOI: 10.1182/blood-2014-10-609032

Received August 15, 2021
Revised September 9, 2021
Accepted September 10, 2021