An approach toward a finite-dimensional definition of twisted K-theory

Kiyonori Gomi

Abstract

This is an expository account of the following result: we can construct a group by means of twisted \mathbb{Z}_2-graded vectorial bundles which is isomorphic to K-theory twisted by any degree three integral cohomology class.

1 Introduction

Topological K-theory admits a twisting by a degree three integral cohomology class. The resulting K-theory, known as twisted K-theory [2], has its origin in the works of Donovan-Karoubi [8] and Rosenberg [15], and has applications to D-brane charges [5, 12, 17], Verlinde algebras [9] and so on.

As is well-known, ordinary K-theory has definitions by means of:

1. vector bundles;
2. the C^*-algebra of continuous functions; and
3. the space of Fredholm operators.

Twisted K-theory is usually defined by twisting the definitions (2) or (3). For a definition parallel to (1), there are the notions of twisted vector bundles [13, 14, 16], see also [5, 8, 12], and of bundle gerbe K-modules [4]. However, the definitions by means of these geometric objects are only valid for twisted K-theory whose “twisting”, a third integral cohomology class, is of finite order: otherwise, there is no non-trivial such geometric object in finite-dimensions.

Toward a finite-dimensional definition of twisted K-theory valid for degree three integral cohomology classes of infinite order, we explain in this article Furuta’s notion of generalized vector bundles [10], which we call vectorial bundles. We also explain a notion of finite dimensional approximation of Fredholm operators, which provides a linear version of the finite dimensional approximation of the monopole equations [11]. We can use these notions to construct a group and an isomorphism from K-theory twisted by any degree three integral cohomology class. The proof of the result is only outlined. The detailed treatment will be provided elsewhere.

A possible application of the result above is to generalize the notions of 2-vector bundles [3, 4]. A 2-vector bundle of rank 1 due to Brylinski [6] is a stack which reproduces the category of twisted vector bundles. Replacing
the category of vector bundles by that of vectorial bundles, we can directly
genralize the 2-vector bundles in [6]. Similarly, we can also generalize the 2-
vector bundles due to Baas, Dundas and Rognes [3], which they studied in an
approach to geometric realization of elliptic cohomology. It seems interesting to
apply their study of 2-vector bundles to the generalization of 2-vector bundles
made of vectorial bundles.

Acknowledgments. I am grateful to M. Furuta for helpful discussions con-
cerning this work. I am also indebted to T. Moriyama and A. Henriques for
useful suggestions. I thank the organizers of School on Poisson geometry and
related topics for the invitation to give a talk.

2 Twisted K-theory and twisted vector bundles

In this section, we review the definition of twisted K-theory by means of the
space of Fredholm operators, following [2]. We also review the notion of twisted
vector bundles [4, 5, 8, 12, 13, 14, 16].

Unless otherwise mentioned, X is a compact manifold through this article.

2.1 Twisted K-theory

The twisted K-theory we consider in this article is associated to a degree three
integral cohomology class. To give the precise definition, we represent the class
by a projective unitary bundle. Let \mathcal{H} be a separable Hilbert space of infinite
dimension, and $PU(\mathcal{H})$ the projective unitary group $PU(\mathcal{H}) = U(\mathcal{H})/U(1)$.

Definition 2.1. For a principal $PU(\mathcal{H})$-bundle over X, we define the twisted K-

group $K_P(X)$ to be the fiberwise homotopy classes of sections of the associate-
d bundle $P \times_{Ad} \mathcal{F}(\mathcal{H})$ over X, where $PU(\mathcal{H})$ acts on the space $\mathcal{F}(\mathcal{H})$ of Fredholm
operators on \mathcal{H} by adjoint.

In the above definition, the topologies on $PU(\mathcal{H})$ and $\mathcal{F}(\mathcal{H})$ are understood
to come from the operator norm. Notice that we can also use the compact-open
topology in the sense of [2].

If P is a trivial bundle, then $K_P(X)$ is exactly the homotopy classes of
continuous functions $X \to \mathcal{F}(\mathcal{H})$. Thus, in this case, we recover the K-group of
X by the well-known fact that $\mathcal{F}(\mathcal{H})$ is a classifying space of K-theory [1].

$PU(\mathcal{H})$-bundles over X are classified by $H^3(X, \mathbb{Z})$: since $U(\mathcal{H})$ is contractible
by Kuiper’s theorem, $PU(\mathcal{H})$ is homotopy equivalent to the Eilenberg-MacLane
space $K(\mathbb{Z}, 2)$, so that the classifying space $BPU(\mathcal{H})$ is homotopy equivalent to
$K(\mathbb{Z}, 3)$. If P and P' are isomorphic $PU(\mathcal{H})$-bundles, then the twisted K-groups
$K_P(X)$ and $K_{P'}(X)$ are also (non-canonically) isomorphic. So we often speak
of “twisted K-theory twisted by a class in $H^3(X, \mathbb{Z})$”.

We will call the cohomology class corresponding to P the Dixmier-Douady
class, and denote it by $\delta(P) \in H^3(X, \mathbb{Z})$. For later convenience, we recall here
the construction of $\delta(P)$: take an open cover $\mathcal{U} = \{U_\alpha\}$ of X so that:
• there are local sections $s_\alpha : U_\alpha \to P_{|U_\alpha}$;
• there are lifts $g_{\alpha\beta} : U_{\alpha\beta} \to U(H)$ of the transition functions $\mathcal{F}_{\alpha\beta} : U_{\alpha\beta} \to PU(H)$.

Here we write $U_{\alpha\beta}$ for the overlap $U_\alpha \cap U_\beta$, and the transition function is defined by the relation $s_\alpha \mathcal{F}_{\alpha\beta} = s_\beta$. Because of the cocycle condition for $\{\mathcal{F}_{\alpha\beta}\}$, we can find a map $c_{\alpha\beta\gamma} : U_{\alpha\beta\gamma} \to U(1)$ such that $g_{\alpha\beta} g_{\beta\gamma} = c_{\alpha\beta\gamma} g_{\alpha\gamma}$. These maps comprise a Čech 2-cocycle $(c_{\alpha\beta\gamma}) \in \check{Z}^2(\mathcal{U}, U(1))$ with its coefficients in the sheaf of germs of $U(1)$-valued functions, which represents $\delta(P)$ through the isomorphism $\check{H}^2(X, U(1)) \cong H^3(X, \mathbb{Z})$.

2.2 Twisted vector bundles

For a $PU(H)$-bundle P over X, a twisted vector bundle consists essentially of the data $(\mathcal{U}, E_\alpha, \phi_{\alpha\beta})$:

- an open cover $\mathcal{U} = \{U_\alpha\}$ of X;
- vector bundles E_α over U_α;
- isomorphisms of vector bundles $\phi_{\alpha\beta} : E_\beta|_{U_{\alpha\beta}} \to E_\alpha|_{U_{\alpha\beta}}$ over $U_{\alpha\beta}$ satisfying the “twisted cocycle condition” on $U_{\alpha\beta\gamma}$:

$$\phi_{\alpha\beta} \phi_{\beta\gamma} = c_{\alpha\beta\gamma} \phi_{\alpha\gamma},$$

where $c_{\alpha\beta\gamma}$ is as in the previous subsection.

In the rigorous definition of twisted vector bundles, we have to include the choices of the local sections s_α and the lifts $g_{\alpha\beta}$. Though it is crucial to specify these choices in considering isomorphism classes of twisted vector bundles, we omit them for simplicity.

The isomorphism classes of twisted vector bundles $\text{Vect}_P(X)$ gives rise to a semi-group by the direct sum of local vector bundles. Let $K(\text{Vect}_P(X))$ denote the group given by applying the Grothendieck construction to $\text{Vect}_P(X)$. Then the following fact is known. (See [5, 8, 12, 13, 16].)

Proposition 2.2. For a $PU(H)$-bundle whose Dixmier-Douady class $\delta(P)$ is of finite order, there exists an isomorphism:

$$K_P(X) \to K(\text{Vect}_P(X)).$$

Instead of twisted vector bundles, we can use bundle gerbe K-modules to obtain an equivalent result [4, 7].

The rank of a twisted vector bundle is a multiple of the order of $\delta(P)$. This can be seen readily as follows. Suppose that a twisted vector bundle has a finite rank r. Taking the determinant of the twisted cocycle condition, we have:

$$\det \phi_{\alpha\beta} \det \phi_{\beta\gamma} = c_{\alpha\beta\gamma}^r \det \phi_{\alpha\gamma}.$$

Hence $(c_{\alpha\beta\gamma}^r) \in \check{Z}^2(\mathcal{U}, U(1))$ is a coboundary and $r\delta(P) = 0$.

3
Because of the above remark, there are no non-trivial twisted vector bundles in the case where $\delta(P)$ is infinite order. So we cannot use twisted vector bundles of finite dimensions to realize $K_P(X)$ generally. In spite of this fact, collections of locally defined vector bundles seem to have the potential in defining $K_P(X)$ by means of finite-dimensional objects. An approach is to use the usual technique proving the isomorphism $K(X) \cong \{X, F(H)\}$. In this approach, however, some complications prevent us from transparent management, in particular, in giving equivalence relation. The usage of Furuta’s generalized vector bundle provides a more efficient approach, which we explain in the next section.

3 Furuta’s generalized vector bundle

In this section, we explain a generalization of the notion of vector bundles introduced by M. Furuta [10]. We call the generalized vector bundles vectorial bundles for short. This notion is closely related to a finite-dimensional approximation of Fredholm operators. Applying these notions, we approach to our problem of defining twisted K-theory finite-dimensionally.

3.1 Approximation of a Fredholm operator

We begin with the simplest situation. A \mathbb{Z}_2-graded vectorial bundle over a single point is a pair (E, h) consisting of:

- a \mathbb{Z}_2-graded Hermitian vector space $E = E^0 \oplus E^1$ of finite rank; and
- a Hermitian map $h : E \to E$ of degree 1.

By using a \mathbb{Z}_2-graded vectorial bundle over a point, we can approximate a single Fredholm operator as follows. Let $A : H \to H$ be a Fredholm operator. For simplicity, we assume the kernel or cokernel of A is non-trivial. We define the \mathbb{Z}_2-graded Hilbert space \hat{H} by $\hat{H} = H \oplus H$, and the self-adjoint Fredholm operator $\hat{A} : \hat{H} \to \hat{H}$ of degree 1 by $\hat{A} = \begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix}$. By the assumption, the spectrum $\sigma(\hat{A}^2)$ of the non-negative operator \hat{A}^2 contains 0. Since \hat{A} is also Fredholm, $0 \in \sigma(\hat{A}^2)$ is a discrete spectrum. Hence there is a positive number μ such that:

- $\mu \notin \sigma(\hat{A}^2)$;
- the subset $\sigma(\hat{A}^2) \cap [0, \mu)$ consists of a finite number of eigenvalues;
- the eigenspace $\text{Ker}(\hat{A}^2 - \lambda)$ is finite dimensional for $\lambda \in \sigma(\hat{A}^2) \cap [0, \mu)$.

Let $0 = \lambda_1 < \lambda_2 < \cdots < \lambda_n < \mu$ be the distinct eigenvalues in $\sigma(\hat{A}^2) \cap [0, \mu)$. Then we have the following orthogonal decomposition of \hat{H}:

$$\hat{H} = (\hat{H}, \hat{A})_{\lambda_1} \oplus (\hat{H}, \hat{A})_{\lambda_2} \oplus \cdots \oplus (\hat{H}, \hat{A})_{\lambda_n} \oplus \hat{H}',$$

where $(\hat{H}, \hat{A})_{\lambda} = \text{Ker}(\hat{A}^2 - \lambda)$ is the eigenspace of \hat{A}^2 with its eigenvalue λ, and \hat{H}' is the orthogonal complement. Notice that \hat{A} preserves each eigenspace as well as the orthogonal complement. More precisely, \hat{A} restricts to the trivial
map on $(\hat{\mathcal{H}}, \hat{A})_{\lambda_1} \cong \text{Ker} A \oplus \text{Ker} A^*$, while \hat{A} induces isomorphisms on $(\mathcal{H}, \hat{A})_{\lambda_i}$ for $i > 1$ and \mathcal{H}'.

Now, cutting off the infinite-dimensional part $\hat{\mathcal{H}}'$, we define E and h by $E = \bigoplus_i (\hat{\mathcal{H}}, \hat{A})_{\lambda_i}$ and $h = \hat{A}|_E$. The pair (E, h) is nothing but a \mathbb{Z}_2-graded vectorial bundle over a point.

As a finite-dimensional approximation of a single Fredholm operator, we obtained a \mathbb{Z}_2-graded vectorial bundle over a single point. As will be explained in Subsection 3.3 a similar approximation is possible for a family of Fredholm operators parameterized by X. The resulting object is a \mathbb{Z}_2-graded vectorial bundle over X.

3.2 Definition of vectorial bundle

We now introduce \mathbb{Z}_2-graded vectorial bundles:

Definition 3.1. Let $(U, (E_\alpha, h_\alpha), \phi_{\alpha \beta})$ be the following data:

- an open cover $U = \{U_\alpha\}$ of X;
- \mathbb{Z}_2-graded Hermitian vector bundles E_α over U_α;
- Hermitian maps $h_\alpha : E_\alpha \rightarrow E_\alpha$ of degree 1;
- vector bundle maps $\phi_{\alpha \beta} : E_{\beta}|_{U_{\alpha \beta}} \rightarrow E_{\alpha}|_{U_{\alpha \beta}}$ of degree 0 over $U_{\alpha \beta}$ such that $h_\alpha \phi_{\alpha \beta} = \phi_{\alpha \beta} h_\beta$.

A \mathbb{Z}_2-graded vectorial bundle over X is defined to be data $(U, (E_\alpha, h_\alpha), \phi_{\alpha \beta})$ satisfying the following conditions:

$$\phi_{\alpha \alpha} \cong 1 \text{ on } U_\alpha,$$

$$\phi_{\alpha \beta} \phi_{\beta \gamma} \cong \phi_{\alpha \gamma} \text{ on } U_{\alpha \beta \gamma}.$$

In the above definition, the symbol \cong stands for an equivalence relation.

For any point $x \in U_\alpha$, there are a neighborhood $V \subset U_\alpha$ of x and a positive number μ such that: for all $y \in V$ and $v \in (E_\alpha, h_\alpha)_y, < \mu$ we have $\phi_{\alpha \alpha}(v) = v$.

Here $(E_\alpha, h_\alpha)_y, < \mu$ is the subspace in the fiber of E_α at y given by the direct sum of eigenspaces of $(h_\alpha)_y^2$ whose eigenvalues are less than μ:

$$(E_\alpha, h_\alpha)_y, < \mu = \bigoplus_{\lambda < \mu} \text{Ker} ((h_\alpha)_y^2 - \lambda) = \bigoplus_{\lambda < \mu} \{v \in (E_\alpha)_y | (h_\alpha)_y^2 v = \lambda v\}.$$

The meaning of the second condition $\phi_{\alpha \beta} \phi_{\beta \gamma} \cong \phi_{\alpha \gamma}$ is now obvious.

Definition 3.2. Let $E = (U, (E_\alpha, h_\alpha), \phi_{\alpha \beta})$ and $E' = (U, (E'_\alpha, h'_\alpha), \phi'_{\alpha \beta})$ be \mathbb{Z}_2-graded vectorial bundles over X.

(a) A set (f_α) of vector bundle maps $f_\alpha : E_\alpha \rightarrow E'_\alpha$ of degree 0 such that $f_\alpha h_\alpha = h'_\alpha f_\alpha$ on U_α is said to be a homomorphism from E to E', if we have $f_\alpha \phi_{\alpha \beta} \cong \phi'_{\alpha \beta} f_\beta$ on $U_{\alpha \beta}$.
(b) A homomorphism $(f_\alpha) : E \to E'$ is said to be an isomorphism, if there exists a homomorphism $(f'_\alpha) : E' \to E$ such that $f_\alpha f'_\alpha = 1$ and $f'_\alpha f_\alpha = 1$ on U_α.

In the above definition of homomorphism, E and E' share the same open cover. In the case where they have different open covers \mathcal{U} and \mathcal{U}' respectively, it suffices to take a common refinement of \mathcal{U} and \mathcal{U}'.

Definition 3.3. A homotopy between \mathbb{Z}_2-graded vectorial bundles E and E' over X is defined to be a \mathbb{Z}_2-graded vectorial bundle \hat{E} over $X \times [0,1]$ such that E and E' are isomorphic to $\hat{E}|_{X \times \{0\}}$ and $\hat{E}|_{X \times \{1\}}$, respectively.

We write $KF(X)$ for the set of homotopy classes of isomorphism classes of \mathbb{Z}_2-graded vectorial bundles. The set $KF(X)$ gives rise to a group by means of the direct sum of vector bundles given locally.

A \mathbb{Z}_2-graded (ordinary) vector bundle E gives an example of a \mathbb{Z}_2-graded vectorial bundle by setting $\mathcal{U} = \{X\}$ and $h = 0$. This construction induces a well-defined homomorphism $K(X) \to KF(X)$. In [10], Furuta proved:

Proposition 3.4. The homomorphism $K(X) \to KF(X)$ is an isomorphism.

3.3 Approximation of a family of Fredholm operators

As a family version of the construction in Subsection 3.1, we can show:

Lemma 3.5. Let $A = \{A_x\} : X \to \mathcal{F}(\mathcal{H})$ be a continuous map. For any point $p \in X$, there are a neighborhood U_p of p and a positive number μ_p such that the following family of vector spaces gives rise to a vector bundle over U_p:

$$
\bigcup_{x \in U_p} (\mathcal{H}, \hat{A}_x)_{<\mu_p} = \bigcup_{x \in U_p} \bigoplus_{\lambda < \mu_p} \text{Ker}(\hat{A}_x^2 - \lambda).
$$

A key to this lemma is that eigenvalues of A_x is continuous in x.

By means of the lemma, the family of Fredholm operators $A : X \to \mathcal{F}(\mathcal{H})$ yields a \mathbb{Z}_2-graded vectorial bundle $\{(U_p)_{p \in X}, (E_{U_p}, h_{U_p}), (\phi_{U_p, U_q})\}$, where the \mathbb{Z}_2-graded vector bundle E_{U_p} is that in Lemma 3.5 the Hermitian map h_{U_p} is given by restricting the Fredholm operator: $h_{U_p}|_{x} = \hat{A}_x|_{E_{U_p}}$, and the map of vector bundles $\phi_{U_p, U_q} : E_{U_q} \to E_{U_p}$ is the following composition of the natural inclusion and the orthogonal projection:

$$
\bigcup_{x \in U_p \cap U_q} (\mathcal{H}, \hat{A}_x)_{<\mu_p} \to (U_p \cap U_q) \times \mathcal{H} \to \bigcup_{x \in U_p \cap U_q} (\mathcal{H}, \hat{A}_x)_{<\mu_p}.
$$

The construction above induces a well-defined homomorphism

$$
\alpha : [X, \mathcal{F}(\mathcal{H})] \to KF(X).
$$
This homomorphism is compatible with the isomorphism \(\text{ind} : [X, F(H)] \rightarrow K(X) \) in \([\text{II}]\). Namely, the following diagram is commutative:

\[
\begin{array}{ccc}
[X, F(H)] & \xrightarrow{\text{ind}} & [X, F(H)] \\
\downarrow & & \downarrow \alpha \\
K(X) & \longrightarrow & KF(X).
\end{array}
\]

The compatibility follows from the fact that one can realize any vector bundle \(E \rightarrow X \) as \(E = \bigcup_{x \in X} \text{Ker}A_x \) by taking \(A : X \rightarrow F(H) \) such that \(\sigma(A^2_x) = \{0, 1\} \). (See the proof of the surjectivity of \(\text{ind} \) in \([\text{II}]\).)

3.4 Twisted vectorial bundle and twisted \(K \)-theory

We now apply vectorial bundles and finite dimensional approximations explained so far to twisted \(K \)-theory.

Recall that twisted vector bundles are defined by “twisting” the ordinary cocycle condition for vector bundles. In a similar way, for a \(PU(H) \)-bundle \(P \), we define a twisted \(\mathbb{Z}_2 \)-graded vectorial bundle by replacing the “cocycle condition” \(\phi_{\alpha \beta} \phi_{\beta \gamma} = \phi_{\alpha \gamma} \) in Definition 3.1 by the “twisted cocycle condition”:

\[\phi_{\alpha \beta} \phi_{\beta \gamma} = \epsilon_{\alpha \beta \gamma} \phi_{\alpha \gamma}. \]

A twisted \(\mathbb{Z}_2 \)-graded vectorial bundle can be constructed from a section \(\tilde{A} : X \rightarrow P \times_{Ad} F(H) \). The section gives a set of maps \(\{ A_p : W_p \rightarrow F(H) \}_{p \in X} \) such that \(A_p = g_{pq}^{-1} A_q g_{pq} \), where \(W_p \) is an open set containing \(p \) and \(g_{pq} : W_p \cap W_q \rightarrow U(H) \) is a lift of transition function of \(P \). Now, we use Lemma 3.5 to define a Hermitian vector bundle over \(U_p \subset W_p \) by \(E_{U_p} = \bigcup_{x \in U_p} (\tilde{H}, (\tilde{A}_p)_x)_{<\mu_p}. \) The map \(A_p \) also defines a Hermitian map \(h_{U_p} \) on \(E_{U_p} \) by restriction. If we define \(\tilde{h}_{U_p, U_q} : E_{U_q} \rightarrow E_{U_p} \) by the following composition:

\[
\bigcup_{x \in U_{pq}} (\tilde{H}, (\tilde{A}_p)_x)_{<\mu_p} \rightarrow U_{pq} \times \tilde{H} \xrightarrow{id \times g_{pq}^{-1}} U_{pq} \times \tilde{H} \rightarrow \bigcup_{x \in U_{pq}} (\tilde{H}, (\tilde{A}_p)_x)_{<\mu_p},
\]

then \(\{ U_p \}, (E_{U_p}, h_{U_p}, \tilde{h}_{U_p, U_q}) \) is a twisted \(\mathbb{Z}_2 \)-graded vectorial bundle.

Introducing isomorphisms and homotopies in a similar way, we obtain the group \(KF_P(X) \) of homotopy classes of isomorphism classes of twisted \(\mathbb{Z}_2 \)-graded vectorial bundles. The above construction of twisted vectorial bundles induces the well-defined homomorphism

\[\alpha : K_P(X) \longrightarrow KF_P(X). \]

Since this map generalizes \(\alpha : [X, F(H)] \rightarrow KF(X) \), it is reasonable to expect that \(\alpha \) gives rise to an isomorphism. In fact, we have:

Theorem 3.6. For any \(PU(H) \)-bundle \(P \) over a compact manifold \(X \), the homomorphism \(\alpha : K_P(X) \longrightarrow KF_P(X) \) is bijective.

We sketch the proof of this result in the next subsection.
3.5 Sketch of the proof of Theorem 3.6

The fundamental idea to prove Theorem 3.6 is to construct a kind of generalized cohomology theory on CW complexes by means of $KF_P(X)$.

As is known [1, 2, 7], the twisted K-group $K_P(X)$ fits into a certain generalized cohomology theory $\{K^*_P(X, Y)\}_{n \in \mathbb{Z}}$. In particular, for a CW pair (X, Y) equipped with a $PU(\mathcal{H})$-bundle $P \to X$, we have the long exact sequence:

$$\cdots \to K^*_{P|Y}(X) \to K^*_{P}(X, Y) \to K^*_{P}(X) \to K^*_{P|Y}(Y) \to \cdots.$$

Note that we can identify $K^*_{P}(X, Y)$ with $K^*_{P\times I}(X \times I, Y \times I \cup X \times \partial I)$, and $\delta_0 : K^0_{P|Y}(Y) \to K^1_{P}(X, Y)$ with the composition of the following maps:

$$K^0_{P|Y}(Y) \xrightarrow{\beta} K^0_{P|Y \times D^2}(Y \times D^2, Y \times S^1) = K^2_{P|Y}(Y) \xrightarrow{\delta_1} K^1_{P}(X, Y).$$

Here β induces the Bott periodicity, and is given by “multiplying” a map $T : D^2 \to F(\mathcal{H})$ representing the generator of $K(D^2, S^1)$.

To construct a similar cohomology theory, we define $KF^*_P(X, Y)$ by using twisted \mathbb{Z}_2-graded vectorial bundles on X whose support do not intersect Y. (The support of a twisted \mathbb{Z}_2-graded vectorial bundle $E = (U, (E_\alpha, h_\alpha), \phi_{\alpha\beta})$ on X is the closure of the points $x \in X$ such that $(h_\alpha)_x$ is not invertible for an α.) For $n \geq 0$, we put:

$$K^*_{F_P}(X, Y) = K^*_P(X \times I^n, Y \times I^n \cup X \times \partial I^n).$$

Then $K^*_{F_P}(X, Y)$ satisfies the (suitably modified) homotopy axiom and the excision axiom in the Eilenberg-Steenrod axioms. In a way parallel to the method in [1], we can also introduce a natural map $\delta_{-n} : K^*_{P|Y}(Y) \to K^*_{F_P}(X, Y)$, and obtain the long exact sequence for a pair:

$$\cdots \to K^*_{F_P}(X) \to K^*_{P|Y}(Y) \to K^*_{P}(X, Y) \to K^*_{P|Y}(Y).$$

To extend this sequence, we put $K^*_{F_P}(X, Y) = K^*_{F_P}(X, Y)$ and define $\delta_0 : K^0_{P|Y}(Y) \to K^0_{F_P}(X, Y)$ to be the composition of:

$$K^0_{P|Y}(Y) \xrightarrow{\beta} K^0_{P|Y \times D^2}(Y \times D^2, Y \times S^1) = K^2_{P|Y}(Y) \xrightarrow{\delta_1} K^1_{P}(X, Y),$$

where β is given by tensoring a vector bundle representing the generator of $K(D^2, S^1)$. Then the composition of $K^0_{P}(X) \to K^0_{P|Y}(Y) \to K^0_{F_P}(X, Y)$ is trivial. (This sequence is not yet shown to be exact at this stage.)

The spaces $X \times I^n$ and $Y \times I^n \cup X \times \partial I^n$ in the definition of $K^*_{F_P}(X, Y)$ are used in that of $K^*_{P}(X, Y)$. Hence the finite-dimensional approximation induces
the natural homomorphism \(\alpha_{-n} : K^{-n}_P(X, Y) \to KF^{-n}_p(X, Y) \) for \(n \geq -1 \). We can readily see that \(\delta_{-n} \) \((n \geq 1)\) commutes with \(\alpha_{-n} \), since \(\delta_{-n} \) is essentially defined by an inclusion map of spaces. If \(X \) is compact, then \(\beta \) commutes with \(\alpha_{-n} \), so that \(\delta_0 \) does. The key to this fact is that the compactness allows us to choose a map \(T : D^2 \to F(H) \) realizing the generator of \(K(D^2, S^1) \) in a way appropriate for the finite-dimensional approximation.

Now, for a finite CW complex \(X \) and a \(PU(H) \)-bundle \(P \to X \), we can prove the bijectivity of \(\alpha_{-n} : K^{-n}_P(X) \to KF^{-n}_P(X) \) \((n \geq 0)\) by the induction on the number of cells in \(X \). Notice that, if \(P \) is trivial, then an argument by using Proposition 3.4 implies the bijectivity of \(\alpha_{-n} \), hence \(\delta_{-n} \) is essentially defined by an inclusion map of spaces. If \(X \) is compact, then \(\beta \) commutes with \(\alpha_{-n} \), so that \(\delta_0 \) does. The key to this fact is that the compactness allows us to choose a map \(T : D^2 \to F(H) \) realizing the generator of \(K(D^2, S^1) \) in a way appropriate for the finite-dimensional approximation.

We can assume that the first and the forth columns are bijective in the induction. The excision axiom implies that \(K^{-n}_P(X, Y) \cong K^{-n}_P(D^q, S^{q-1}) \) and \(KF^{-n}_P(X, Y) \cong KF^{-n}_P(D^q, S^{q-1}) \). Since any \(PU(H) \)-bundle over \(D^q \) is trivial, the second and fifth columns are also bijective. Thus, so is the third column. (The exactness at \(KF^{-n}_P(X, Y) \) is not necessary in the five-term lemma.)

References

[1] M. F. Atiyah, \textit{K-theory}. Lecture notes by D. W. Anderson W. A. Benjamin, Inc., New York-Amsterdam 1967.

[2] M. F. Atiyah and G. Segal, \textit{Twisted K-theory}. Ukr. Mat. Visn. 1 (2004), no. 3, 287–330; translation in Ukr. Math. Bull. 1 (2004), no. 3, 291–334. \texttt{arXiv:math/0407054}

[3] N. A. Baas, B. I. Dundas and J. Rognes, \textit{Two-vector bundles and forms of elliptic cohomology}. Topology, geometry and quantum field theory, 18–45, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004. \texttt{arXiv:math/0306027}

[4] P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray and D. Stevenson, \textit{Twisted K-theory and K-theory of bundle gerbes}. Comm. Math. Phys. 228 (2002), no. 1, 17–45. \texttt{arXiv:hep-th/0106194}

[5] P. Bouwknegt and V. Mathai, \textit{D-branes, B-fields and twisted K-theory}. J. High Energy Phys. 2000, no. 3, Paper 7, 11 pp. \texttt{arXiv:hep-th/0002023}
[6] J.-L. Brylinski, *Categories of vector bundles and Yang-Mills equations*. Contemp. Math., 230, Amer. Math. Soc., Providence, RI, 1998.

[7] A. L. Carey and B.-L. Wang, *Thom isomorphism and Push-forward map in twisted K-theory*. [arXiv:math/0507414](http://arxiv.org/abs/math/0507414)

[8] P. Donovan and M. Karoubi, *Graded Brauer groups and K-theory with local coefficients*. Inst. Hautes Etudes Sci. Publ. Math. No. 38 1970 5–25.

[9] D. S. Freed, M. J. Hopkins and C. Teleman, *Twisted K-theory and loop group representations*. [arXiv:math/0312155](http://arxiv.org/abs/math/0312155)

[10] M. Furuta, *Index theorem, II*. (Japanese) Iwanami Series in Modern Mathematics. Iwanami Shoten, Tokyo, 2002.

[11] M. Furuta, *Monopole equation and the 11/8-conjecture*. Math. Res. Lett. 8 (2001), no. 3, 279–291.

[12] A. Kapustin, *D-branes in a topologically nontrivial B-field*. Adv. Theor. Math. Phys. 4 (2000), no. 1, 127–154. [arXiv:hep-th/9909089](http://arxiv.org/abs/hep-th/9909089)

[13] E. Lupercio and B. Uribe, *Gerbes over orbifolds and twisted K-theory*. Comm. Math. Phys. 245 (2004), no. 3, 449–489. [arXiv:math/0105039](http://arxiv.org/abs/math/0105039)

[14] M. Mackaay, *A note on the holonomy of connections in twisted bundles*. Cah. Topol. Geom. Differ. Categ. 44 (2003), no. 1, 39–62. [arXiv:math/0106019](http://arxiv.org/abs/math/0106019)

[15] J. Rosenberg, *Continuous-trace algebras from the bundle theoretic point of view*. J. Austral. Math. Soc. Ser. A 47 (1989), no. 3, 368–381.

[16] J.-L. Tu, P. Xu and C. Laurent-Gengoux, *Twisted K-theory of differentiable stacks*. Ann. Sci. Ecole Norm. Sup. (4) 37 (2004), no. 6, 841–910. [arXiv:math/0306138](http://arxiv.org/abs/math/0306138)

[17] E. Witten, *D-branes and K-theory*. J. High Energy Phys. 1998, no. 12, Paper 19, 41 pp. (electronic). [arXiv:hep-th/9810188](http://arxiv.org/abs/hep-th/9810188)