Microstructure study of lime-slag cement stone after thermal treatment at various temperatures

R R Akhtayamov1,2, B Ya Trofimov1, R A Zhivtsova1
1Institute of Architecture and Construction, Building materials and products, South Ural State University, 76, Lenin Avenue, Chelyabinsk 454080, Russia
2UralNIistrorm, 5/2, Stalevarov street, Chelyabinsk 454047, Russia

E-mail: 351@7359808.ru

Abstract. For the time being the problem of metallurgic waste utilization has obtained urgent importance. The slags of aluminothermic manufacturing of metallic chromium and ferrotitanium are considered to be the most promising component of thermally resistant lime-slag concretes. Fine dispersion particles of aggregates made of such slags participate in a hydration reaction in presence of alkali. This phenomenon allows for the prediction of hydration occurrence on the surface of coarse aggregate of the aluminothermic manufacturing process of metallic chromium and ferrotitanium to enhance cohesion between the aggregate and the cement stone. The paper reports on a study of the phase composition and the microstructure of lime-slag cement stone with the addition of the slags of metallic chromium and ferrotitanium after a thermal treatment at various temperatures. It has been observed that metallic chromium and ferrotitanium slag additives increase the highest admissible operation temperature of thermally resistant lime-slag concretes. Such effect is obtained due to refractory compounds formation on the aggregate surface.

1. Introduction
Metallurgic wastes may be utilized as aggregates for thermally resistant concretes [1-5]. High-aluminous slags of aluminothermic processes are of minor popularity [6-10]. The basic obstacle for wide use of such slags [11-15] in thermally resistant concretes based on Portland cement or aluminous cement is the low strength on the aggregate-cement stone border area [16-20].

For better understanding of processes occurring during the interaction of the lime-slag binding material and the superficial aggregate layer, it deemed advisable to carry out comparative studies of the phase composition and the microstructure of the lime-slag cement stone composed by a binding material (ferrochromium decomposing slag (FCS) tempered with technical caustic soda solution) or floured metallic chromium slag (MCS), or floured ferrotitanium slag (FTS), after thermal treatment at various temperatures.

2. Experimental

2.1. Materials
For lime-slag cement stone generation, the following materials were used:

...
• FCS from the process of OJSC «Chelyabinsky Electrometallurgical Integrated Iron and Steel Works»;
• MCS and FTS from the process of JSC «UK «RosSpetsSplav-Group MidUral» Klutchevsky Ferrous-Based Alloy Works;
• technical caustic soda, flake-grained, made by JSC «Bashkirian Soda Company»;
• utility water.

2.2. Sample preparations
The MCS and FTS were floured till complete passage through sieve No. 008.

For experiments with lime-slag cement stone, sample cubicles 2 cm x 2 cm x 2 cm were prepared, dried out at 120°C with subsequent thermal treatment at 350 °C, 800 °C, and 1200 °C.

2.3. Statement of Method
The microstructure of microsections of the lime-slag cement stone was studied by means of a JSM–700, 1F scanning electron microscope with a microanalytic system by Jeol Interactive Corporation, Japan.

3. Results
3.1. Microstructure
Figures 1-3 demonstrate photos of lime-slag cement stone samples of FCS-based and MCS- or FTS-based cement stone, respectively, at x3000 magnifying power which have been thermally treated at various temperatures.

![Figure 1](image_url)

Figure 1. Microstructure of lime-slag cement stone based on FCS, after thermal treatment at: a) 120 °C; b) 350 °C; c) 800 °C; d) 1200 °C

The structure of additive-free lime-slag cement stone is visibly uniform. Figure 1 shows that increasing temperature leads to smaller size of particles composing the cement stone.
As evident from Figure 2, the structure of the lime-slag cement stone based on MCS is not visibly uniform. At increasing temperature of the thermal treatment of lime-slag cement stone, the sizes of the cement stone particles of sodium and magnesium Al-Cr-silicates of calcium get smaller, the acicular and plate crystal hydration products get loose, spheroid.

As evident from Figure 3, the structure of the lime-slag cement stone based on FTS is not visibly uniform. At increasing temperature, the particle size of the cement stone get smaller, acicular particles get loose, spheroid.

Figure 2. Microstructure of lime-slag cement stone based on MCS, after thermal treatment at: a) 120 °C; b) 350 °C; c) 800 °C; d)1200 °C

Figure 3. Microstructure of lime-slag cement stone based on FTS, after thermal treatment at: a) 120 °C; b) 350 °C; c) 800 °C; d)1200 °C
3.2. Qualitative and Quantitative Analysis

Qualitative and quantitative analysis over sample surface and in points of the lime-slag cement stone based on FCS (LS CS on FCS), MCS (LS CS on MCS) and FTS (LS CS on FTS) after drying out at 120 °C and subsequent thermal treatment (TT) at 350, 800, 1200 °C, see Table 1.

Table 1. Qualitative and quantitative analysis over specimen surface and points.

Sample	TT, °C	Weight ratio of the element, % wt															
	Over surface	In point															
	O	Na	Mg	Al	Si	Ca	Cr	Fe	O	Na	Mg	Al	Si	Ca	Cr	Fe	
LS CS on FCS	120	47.6	4.4	4.1	2.1	8.6	22.3	1.9	0.5	51.5	3.4	2.1	0.3	13.7	28.2	0.4	0.3
	350	47.3	2.7	4.6	2.3	10.7	26.5	2.4	0.0	42.0	1.9	0.7	52.0	0.6	1.6	1.2	0.0
	800	45.1	1.3	4.8	2.5	12.3	30.7	2.8	0.8	50.1	7.4	2.4	1.6	11.7	22.5	4.3	0.0
	1200	42.9	0.6	5.9	2.6	12.6	31.8	2.9	0.9	49.8	0.9	2.7	1.9	14.2	29.4	1.2	0.0
LS CS on MCS	120	46.5	32.9	0.4	11.8	0.6	2.0	3.3	1.7	51.9	5.7	0.20	10.8	30.4	0.4	0.0	0.0
	350	46.2	6.9	0.9	27.3	0.9	4.6	4.8	1.8	50.3	3.7	0.9	30.3	1.2	7.7	4.9	0.9
	800	45.8	6.8	0.9	34.9	1.7	3.6	6.4	1.9	55.8	5.7	0.8	28.9	1.9	1.2	4.1	1.3
	1200	44.2	4.2	1.1	39.8	2.6	4.5	6.7	2.4	48.6	2.9	0.3	37.9	0.0	2.5	6.5	1.1
LS CS on FTS	120	48.2	17.1	4.6	11.3	3.7	10.9	3.5	0.6	52.8	35.1	0.7	2.5	1.3	6.6	0.7	0.3
	350	46.7	4.5	6.6	17.8	4.3	11.7	5.2	0.7	48.4	4.4	7.7	20.2	5.4	9.7	3.5	0.6
	800	43.2	4.4	6.9	19.6	5.0	13.2	9.2	0.9	47.6	3.3	7.7	23.1	3.8	7.1	7.6	0.0
	1200	37.6	2.5	7.8	20.3	5.1	14.2	11.1	1.4	42.9	2.7	4.9	24.4	4.6	13.2	6.7	0.7

The quantitative analysis over specimen surface has lead to detection of varying sodium contents. The smallest quantity of sodium was found out in the lime-slag cement stone on FCS, the biggest quantity of sodium was found out in the lime-slag cement stone on MCS. The activity of the slags as to caustic soda is decreasing within the sequence FCS-FTS-MCS.

Figure 1 and Table 1 demonstrate that in the specimen of lime-slag cement stone based on FCS, after thermal treatment at 120°C, only hydration products are visible, like sodium and magnesium calcium silicates; after thermal treatment at 350°C, there are alumina particles, original slag and hydration products; after thermal treatment at 800°C, there are particles of Cr-Al-magnesite; after thermal treatment at 1200°C, there are particles of well-crystallized magnesite and Al-Mg-silicate, and de-hydrated particles of hydration products.

Figure 2 and Table 1 demonstrate that in the specimen of lime-slag cement stone based on MCS, after thermal treatment at 120°C, only hydration products are visible, and free caustic soda with contaminants; after thermal treatment at 350°C, there are alumina particles and hydration products; after thermal treatment at 800°C, there are particles of crystallized alumina and hydration products;
after thermal treatment at 1200°C, there are numerous particles of well-crystallised alumina, corundum, and de-hydrated particles of hydration products.

Figure 3 and Table 1 demonstrate that in the specimen of lime-slag cement stone based on MCS, after thermal treatment at 120°C, only hydration products are visible, like sodium and magnesium calcium Al-Cr-silicates, and free caustic soda with contaminants; after thermal treatment at 350°C, there are small particles of Al-Mg-chromite, and hydration products; after thermal treatment at 800°C, there are particles of crystallized Al-Mg-chromite and hydration products; after thermal treatment at 1200°C, there are numerous particles of well-crystallised Al-Mg-chromite, and de-hydrated particles of hydration products.

4. Conclusion
The initial MCS and FTS slags are polymineral products, the most active compounds containing calcium, magnesium, silicon and iron ions participate in the hydration reaction with the alkali (caustic soda). Based on the results of microstructure, qualitative and quantitative analyses, it was established, that at heating up to 1200°C, the most active minerals almost completely interreact with the caustic soda combining compounds which ensure the adhesion of the aggregate.

After heating up to 1200 °C, there are grains of refractory compounds distinctly visible in the cement stones which do not participate in the hydration reaction and are inert to the alkali at a high temperature.

Basic conclusions of the paper:
• based on the number of the refractory grains in the cement stone after heating up to 1200 °C, one can forecast that the slags could be assigned to the respective highest admissible operating temperatures of concrete as follows: FCS, FTS, MCS, respectively, in the ascending order of temperature;
• based on the number and particle size of the hydration products after thermal treatment at a temperature of 120 °C, one can forecast that the slags could be assigned to the compression strength scale as follows: FCS, FTS, MCS, respectively, in the descending order of the compression strength value.

References
[1] Chi Mc and Huang R 2013 Binding mechanism and properties of alkali-activated fly ash/slag mortars Construction and building materials 40 291–8
[2] Thomas R J, Gebregziabiher B S, Giffin A and Peethamparan S 2018 Micromechanical properties of alkali-activated slag cement binders Cement & concrete composites 90 241–56
[3] Puertas F, Martinez-Ramirez S, Alonso S and Vazquez T 2000 Alkali-activated fly ash/slag cement - Strength behaviour and hydration products Cement and concrete research 30 1625–32
[4] Puertas F and Fernandez-Jimenez A 2003 Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes, Cement & concrete composites 25 287–92
[5] Bakharev T, Sanjayan J G and Cheng Y B 1999 Effect of elevated temperature curing on properties of alkali-activated slag concrete Cement and concrete research 29 1619–25
[6] Carabba L, Manzi S, Rambaldi E, Ridolfi G and Bignozzi M C 2017 High-Temperature Behaviour of Alkali-Activated Composites based on Fly Ash and Recycled Refractory Particles Journal of ceramic science and technology 8 377–88
[7] Fernandez-Jimenez A, Pastor J Y, Martin A and Palomo A 2010 High-Temperature Resistance in Alkali-Activated Cement Journal of the American ceramic society 93 3411–7
[8] Aydin S and Baradan B 2012 Mechanical and microstructural properties of heat cured alkali-activated slag mortars Materials & design 35 374–83
[9] Zuda L, Pavlik Z, Rovnanikova P, Bayer P and Cerny R 2006 Properties of alkali activated aluminosilicate material after thermal load International journal of thermophysics 27 1250–63
[10] Collins F G and Sanjayan J G 1999 Workability and mechanical properties of alkali activated slag concrete Cement and concrete research 29 455–8

[11] Perepelitsyn V A, Rytvin V M, Kormina I V and Ignatenko V G 2006 Composition and properties of the main types of aluminothermic slag at the Klyuchi Ferroalloy Works Refractories and industrial ceramics 47 264–8

[12] Bron V A, Savkevich I A and Mil’shenko R S 1957 High-alumina refractories from slag of metallic chrome production Ogneupory 2 49–55

[12] Perepelitsyn V A, Rytvin V M and Kormina I V 2006 Material composition, properties and prospects of using refractory aluminothermic slag Nov. Ogneupory 4 14–15

[13] Perepelitsyn V A, Rytvin V M and Gil’varg S I 2009 Self-disintegrating ferrochrome aluminothermic slag-semifunctional technogenic raw material Refractories and industrial ceramics 50 328–32

[14] Perepelitsyn V A, Koroteev V A and Rytvin V M 2011 High-alumina technogenic raw material Refractories and industrial ceramics 52 84–94

[15] Rytvin V M, Perepelitsyn V A and Ponomarenko A A 2018 Ferrochrome Aluminothermal Slags as a Multifunctional Technogenic Resource. Part I. Ferrochrome Slag Material Composition and Properties Refractories and industrial ceramics 58 499–506

[16] Aksel’rod L M 2011 Development of refractory production in the world and in russia, new technologies Refractories and industrial ceramics 52 95–106

[17] Sharapova V V 2013 Prospects for Using Combined Metallurgical Production Technogenic Raw Material in the Refractory Industry Refractories and industrial ceramics 54 160–5

[18] Perepelitsyn V A, Kapustin F L and Sheshukov O Yu 2016 Theoretical and Applied Aspects of Forecasting Refractories of the Future Refractories and industrial ceramics 57 125–31

[19] Abyzov A N, Perepylytsyn V A and Rytvin V M 2007 Heat-resistant concrete based on aluminothermic slags of the Klyuchevskii Ferroalloys Plant Refractories and industrial ceramics 48 397–400

[20] Rytvin V M, Perepelitsyn V A and Ponomarenko A A 2017 Titanium-Alumina Slag - Semifunctional Technogenic Resource of High-Alumina Composition. Part 1. Substance Composition and Titanium-Alumina Slag Properties Refractories and industrial ceramics 58 130–5