Prognostic impact of at least 12 lymph nodes after neoadjuvant therapy in rectal cancer: A meta-analysis

Ling Tan, Zi-Lin Liu, Zhou Ma, Zhou He, Lin-Han Tang, Yi-Lei Liu, Jiang-Wei Xiao

Abstract

BACKGROUND
The number of dissected lymph nodes (LNs) in rectal cancer after neoadjuvant therapy has a controversial effect on the prognosis.

AIM
To investigate the prognostic impact of the number of LN dissected in rectal cancer patients after neoadjuvant therapy.

METHODS
We performed a systematic review and searched PubMed, Embase (Ovid), MEDLINE (Ovid), Web of Science, and Cochrane Library from January 1, 2000 until January 1, 2020. Two reviewers examined all the publications independently and extracted the relevant data. Articles were eligible for inclusion if they compared the number of LNs in rectal cancer specimens resected after neoadjuvant treatment (LNs ≥ 12 vs LNs < 12). The primary endpoints were the overall survival (OS) and disease-free survival (DFS).

RESULTS
Nine articles were included in the meta-analyses. Statistical analysis revealed a statistically significant difference in OS [hazard ratio (HR) = 0.76, 95% confidence interval (CI): 0.66-0.88, \(P = 0.122 \), \(P = 0.336 \)], DFS (HR = 0.76, 95% CI: 0.63-0.92, \(P = 0.584 \), \(P = 0.013 \)), and distant recurrence (DR) (HR = 0.67, 95% CI: 0.48-0.93, \(P = 0.663 \), \(P = 0.352 \)) between the LNs ≥ 12 and LNs < 12 groups, but local recurrence (HR = 0.67, 95% CI: 0.38-1.16, \(P = 0.0 \), \(P = 0.348 \)) showed no statistical difference. Moreover, subgroup analysis of LN negative patients revealed a statistically significant difference in DFS (HR = 0.67, 95% CI: 0.52-0.88, \(P = 0 \), \(P = 0.565 \)) between the LNs ≥ 12 and LNs < 12 groups.

CONCLUSION
Although neoadjuvant therapy reduces LN production in rectal cancer, our data indicate that dissecting at least 12 LNs after neoadjuvant therapy may improve the patients’ OS, DFS, and DR.

Key Words: Rectal cancer; Neoadjuvant therapy; Lymph node; Prognostic; Overall survival; Meta-analysis

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: After neoadjuvant treatment of rectal cancer, the lymph node (LN) output is significantly reduced. There is no consensus on the relationship between the number of LNs resected and the prognosis of rectal cancer after neoadjuvant treatment. This is the first meta-analysis to compare the impact of the number of LNs on the prognosis of rectal cancer after neoadjuvant treatment. We studied the effects of resection of at least 12 LNs and less than 12 LNs after neoadjuvant treatment of rectal cancer on overall survival, disease-free survival, distant recurrence, and local recurrence.

INTRODUCTION

Colorectal cancer is ranked third and second among global cancer morbidity and mortality, respectively. The incidence rate of colorectal cancer is third in men and fourth in women[1]. In 2018, 43030 new cases of rectal cancer were diagnosed in the United States[2].

According to both the International Union Against Cancer (UICC) and American Joint Commission on Cancer (AJCC), a minimum of 12 lymph nodes (LNs) should be obtained from surgical specimens to stage a colorectal cancer12. Today, the standard of care for patients with locally advanced rectal cancer is neoadjuvant chemoradiation therapy (CRT), followed by total mesorectal excision (TME)3. However, many studies have reported a significant decrease in the number of LNs retrieved from patients with rectal cancer who have received preoperative chemoradiation5-9. For example, a meta-analysis reported an average reduction of 3.9 LNs in neoadjuvant CRT compared with no neoadjuvant CRT13. Therefore, it remains controversial whether 12 or more resected LNs should be recommended by the UICC or AJCC after many neoadjuvant treatments for rectal cancer.

In the past 20 years, neoadjuvant therapy has been widely applied in rectal cancer. An increasing number of scholars have focused on the influence of the number of resected LNs after neoadjuvant therapy on the prognosis of rectal cancer. Presently, resecting more than 12 LNs or fewer than 12 LNs after neoadjuvant treatment for rectal cancer is controversial for prognosis.

Given the prognostic impact of the number of LNs, we performed a first series of meta-analyses to compare the prognostic impact of surgical resection of greater than 12 vs fewer than 12 LNs in patients with rectal cancer after neoadjuvant treatment.

MATERIALS AND METHODS

Search strategy and inclusion criteria

For this systematic review, we adhered to the Meta-analysis of Observational Studies guidelines[14] and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement[15]. A systematic search was performed based on the following databases: PubMed, Embase (Ovid), MEDLINE (Ovid), Web of Science, and Cochrane Library from January 1, 2000 to January 1, 2020. We used “rectal cancer”, “neoadjuvant....
therapy”, “preoperative radiotherapy”, “preoperative chemotherapy”, “lymph nodes” and corresponding free words to search the literature in the above databases. Regardless of the type of study, the articles were eligible for inclusion if they compared the number of LNs in rectal cancer specimens resected after neoadjuvant treatment (LNs ≥ 12 vs LNs < 12).

First, all the identified titles and abstracts were examined by two independent reviewers (Tan L and Liu ZL). Next, the same two reviewers independently examined the full text of potentially relevant articles. In the event of disagreement, a third reviewer (Ma Z) was consulted and the relevant articles were discussed until a consensus was reached.

Data extraction and quality assessment
The following relevant information was extracted from all the included publications: First author, year of publication, country, number of patients, age, tumor grade, neoadjuvant therapy, surgery, years of follow-up, and outcome type. The main outcomes were the overall survival (OS) and disease-free survival (DFS) differences between the LNs ≥ 12 and LNs < 12 groups in patients after neoadjuvant therapy. The secondary outcomes were the distant recurrence (DR) and local recurrence (LR) differences between the LNs ≥ 12 and LNs < 12 groups in patients after neoadjuvant therapy. Therefore, if available, the following data were extracted: Hazard ratios (HRs), 95% confidence intervals (CIs), and P values of OS, DFS, DR, and LR. When the literature did not report HRs, only OS and DFS Kaplan-Meier curves and Engauge Digitizer (version 10.8) were used to determine the survival rate at the corresponding time points on the curve, followed by the HR calculation table[1]. We took the cutoff point if the HR reported in the literature was LNs < 12 vs LNs ≥ 12. All the data were independently extracted by two authors (Tan L and Liu ZL) and compared for consistency.

The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS), with a maximum of nine points per study. Publication bias was assessed by visual inspection of the symmetry of the funnel plot. Since we considered that DFS heterogeneity was derived from patients with positive LNs, we performed subgroup analysis of the DFS of LN negative patients based on LNs ≥ 12 vs LNs < 12.

Statistical analysis
We used the Stata (version 15.3) Meta package for meta-analysis[5]. Binary outcome data are reported as HRs with 95% CIs using the Mantel–Haenszel method. Weighted mean differences were calculated for the effect size of continuous variables. Heterogeneity was assessed using I² statistics, with values above 50% considered considerable heterogeneity. An a priori decision to use the random-effects model was made to account for the assumed considerable heterogeneity between the studies.

RESULTS
After removing duplicates, our computer-aided search yielded 11871 publications from PubMed, Medline (Ovid), Embase (Ovid), Web of Science, and Cochrane Library (Figure 1). In total, nine publications and 4494 patients with rectal cancer were eligible for inclusion. Table 1 indicates the characteristics of the included studies. Seven[17,18,21,23] of the nine studies (3840 patients) reported the main endpoint of OS; five[17,19,21,24] of the nine studies (1811 patients) reported the endpoint of DFS; three[17,23,29] of nine studies (953 patients) reported the endpoint of DR; two[17,29] of the nine studies (716 patients) reported the endpoint of LR. The NOS scores of the nine studies ranged from eight to nine (Figure 2). The literature collected was considered to be qualified.

Primary endpoints
OS for LNs ≥ 12 vs LNs < 12: Seven of the nine included studies reported OS data based on at least 12 LNs vs fewer than 12 LNs; the HRs and 95% CIs of these studies and the summary HRs are shown in Figure 3A. The total summary estimated HR was 0.76 (95% CI: 0.66-0.88, P = 0.336). Heterogeneity tests showed that the trials did not have heterogeneity (I² = 12.2%, P = 0.336).

DFS for LNs ≥ 12 vs LNs < 12: Among the nine studies collected, five reported DFS data based on at least 12 LNs and fewer than 12 LNs; the 95% CIs and HRs for each study and the summary HRs are shown in Figure 3B. The total summary estimated HR was 0.76 (95% CI: 0.63-0.92, P = 0.013). Heterogeneity tests showed that the trials had
Table 1 Characteristics of studies included in the meta-analysis

Ref.	Country	n	Age (yr)	Stage	Treatment	Surgery	Year of follow-up	Outcome
Wang et al[17], 2019	China	495	50: 160; > 50: 335	I-IV	Neoadjuvant treatment (RT 45–55 Gy + capecitabine)	AR, APR, Hartmann	No report	OS, DFS, DR
Lykke et al[18], 2015	Denmark	2123	60-75	I-IV	Neoadjuvant treatment	TME	No report	OS
de Campos-Lobato et al[23], 2013	United States	237	57 (49-66)	II-III	Neoadjuvant treatment	LAR, APR	55 (36-77) mo	OS, DR, LR
Kim et al[20], 2015	South Korea	302	39-73	I-IV	Neoadjuvant treatment (IV 5-FU leucovorin or oral 5-FU based)	LAR, APR, CAA	57 mo	OS, DFS
Doll et al[22], 2009	Germany	102	18-75	I-IV	Neoadjuvant diachemotherapy (RT 45 Gy + 5-FU)	(L)AR, Miles	No reports	OS
La Torre et al[19], 2013	Italy	123	67.9 (27-91)	I-IV	Neoadjuvant diachemotherapy (RT 45 Gy + 5-FU)	LAR, APR	50 (9-120) mo	OS, DFS
Kim et al[24], 2015	South Korea	433	62 ± 11.1	I-IV	Perioperative chemoradiation (45.0-50.4 Gy + 5-FU and leucovorin)	TME	41.2 mo	DFS
Han et al[21], 2016	South Korea	458	60 (22-99)	I-III	Neoadjuvant treatment (RT 45-50.4 Gy + 5-FU)	TME	52 mo	OS, DFS
Klos et al[25], 2010	United States	221	53 ± 13		Neoadjuvant treatment (RT 45.0-50.4 Gy + 5-FU)	TME	36 (21.6-63.6) mo	LR, DR

OS: Overall survival; DFS: Disease-free survival; DR: Distant recurrence; LR: Local recurrence; RT: Radiotherapy; 5-FU: 5-Fluorouracil; TME: Total mesolectal excision; APR: Abdominoperineal resection; LAR: Low anterior resection; CAA: Coloanal anastomosis; AR: Anterior resection.

significant heterogeneity ($I^2 = 68.4\%, P = 0.013$).

Secondary endpoints

DR for LNs ≥ 12 vs LNs < 12: Three of the nine included studies reported DR data based on LN ≥ 12 vs LN < 12; the 95% CIs and HRs for each study and the summary HRs are shown in Figure 3C. The total summary estimated HR was 0.67 (95% CI: 0.48-0.93, $P = 0.237$). Heterogeneity tests showed that the trials had no significant heterogeneity ($I^2 = 30.5\%, P = 0.237$).

LR for LNs ≥ 12 vs LNs < 12: Two of the nine included studies reported LR data based on LN ≥ 12 vs LN < 12. The total summary estimated HR was 0.67 (95% CI: 0.38-1.16, $P = 0.348$), with no statistical significance.

Sensitivity analysis

Sensitivity analysis showed that any deletion of a set of data had no effect on the results (Figure 4). We considered heterogeneity in patients with LN positivity. So, we conducted subgroup analysis of LN negative patients; the HRs and 95% CIs for each study and the summary HRs are shown in Figure 5. The total summary estimated HR was 0.67 (95% CI: 0.52-0.88), and no heterogeneity was found.

Publication bias

Publication bias was assessed by visual examination of the symmetry of the funnel plot. Our funnel plot showed no publication bias (Figure 6).

DISCUSSION

The AJCC and College of American Pathologists recommend examination of a minimum of 12 LNs to stage rectal cancer accurately. Sampling of 12 LNs may not be achievable in patients who have received neoadjuvant chemoradiation therapy[4,26]. Therefore, it remains controversial whether 12 LNs can be used as an accurate staging index for rectal cancer patients who have received preoperative neoadjuvant...
chemoradiation therapy. The mean number of LNs retrieved from rectal cancers treated with neoadjuvant therapy is significantly lower than that from rectal cancers treated by surgery alone\[8,9\]. The number of LNs needed to stage neoadjuvant-treated cases accurately is unknown. In patients receiving neoadjuvant radiotherapy and chemotherapy, the number of LN dissections needs to reach 12. Is this requirement suitable as a risk factor to evaluate the prognosis of patients with rectal tumors? Is it possible that the number of evaluated LN dissections is fewer than 12 because neoadjuvant radiotherapy and chemotherapy will lead to a decrease in the number of LN dissections? To confirm whether the number of LN dissections to judge the prognosis of rectal cancer patients who received neoadjuvant radiotherapy and chemotherapy is still applicable to 12, we performed this meta-analysis study.
Figure 3 Forest plots for the meta-analyses. A: Overall survival; B: Disease-free survival; C: Distant recurrence. HR: Hazard ratio; CI: Confidence interval; OS: Overall survival; DFS: Disease-free survival; DR: Distant recurrence.
The main finding of the present study is that, among patients with rectal cancer, dissecting at least 12 LNs after neoadjuvant treatment improved OS and DR compared with dissecting fewer than 12 LNs. In this study, we confirmed that at least 12 LNs should be dissected in rectal cancer patients after neoadjuvant radiotherapy and chemotherapy to evaluate the prognosis of patients well, and the number of LNs dissected was closely related to the improvement in the survival rate of rectal cancer patients. Additionally, for subgroup analysis, the DFS of LN negative patients with greater than 12 LNs dissected was better than that of patients with fewer than 12 LNs dissected. These data suggest that surgical resection of at least 12 LNs after neoadjuvant treatment of rectal cancer improves prognosis.

Most scholars agree that the LN yield affects the prognosis of rectal cancer. Presently, they have studied the effect of resection of 12 LNs on the prognosis. At the same time, many scholars have studied the effect of different numbers of LNs resected on the prognosis of patients with neoadjuvant therapy for rectal cancer. We summarize the literature on the effect of different LN numbers on the prognosis in the last 10 years (Table 2). Yeo et al.\(^\text{[31]}\) showed that at least 8.5 LNs removed from rectal cancer surgery after neoadjuvant therapy could significantly improve the 5-year OS. La Torre et al.\(^\text{[32]}\), Tsai et al.\(^\text{[33]}\), and Han et al.\(^\text{[34]}\) found that at least 6, 7, and 8 LNs resected after neoadjuvant treatment could improve the prognosis. Pitto et al.\(^\text{[35]}\) found that at least 10 to 20 LNs resected after neoadjuvant radiotherapy improved the 5-year OS compared with fewer than 9 and more than 20. The above studies indicated that the small number of LNs dissected after neoadjuvant therapy is not a sign of a good tumor response to neoadjuvant therapy, and a relatively large number of LNs is still needed to be dissected to ensure a good prognosis.

The prognostic impact of resecting more than 12 LNs and fewer than 12 LNs after neoadjuvant treatment for rectal cancer is controversial. For example, Dev et al.\(^\text{[36]}\) found that resecting fewer than 12 LNs in rectal cancer patients undergoing neoadjuvant radiotherapy should be considered a better prognostic factor, but Wang et al.\(^\text{[37]}\) and Lykke et al.\(^\text{[38]}\) believed that resecting at least 12 LNs is an independent and favorable prognostic factor for rectal cancer after neoadjuvant therapy. Moreover, Khan et al.\(^\text{[39]}\) and La Torre et al.\(^\text{[40]}\) believed that at least 12 LNs dissected after neoadjuvant treatment of rectal cancer do not affect the prognosis. Our meta-analysis combining the available data showed that resection of at least 12 LNs after neoadjuvant therapy improves the prognosis.

The LN harvest is influenced by several factors, including the patient's anatomic and pathologic workup, surgical dissection technique, and use of methylene blue and neoadjuvant treatment\(^\text{[12-30]}\). Pathological techniques are considered a factor that affects the LN yield due to improper specimen analysis and processing. Factors associated with patients, such as advanced age and obesity, are associated with lower LN yields\(^\text{[12,17,28]}\). Standard TME should be performed to help achieve optimal tumor resection. The injection of methylene blue solution into the inferior mesenteric artery is an effective and simple way to increase the LN harvest in the histopathological examination of the TME of rectal specimens\(^\text{[39]}\), especially those receiving neoadjuvant therapy\(^\text{[40-42]}\). Presently, the use of neoadjuvant radiotherapy and chemotherapy is the standard treatment for rectal cancer in many European countries, leading to fewer LN tests\(^\text{[43]}\). If 12 LNs are considered the number needed for the accurate staging of stage II tumors, only 20% of cases treated with neoadjuvant therapy had adequate LN sampling\(^\text{[4]}\). To date, the number of dissected LNs needed to stage neoadjuvant-treated cases accurately is unknown. Additionally, the clinical significance of this information is unknown in the neoadjuvant setting because postoperative therapy is indicated in all patients who receive preoperative therapy regardless of the surgical pathology results. Therefore, technical measures are needed to improve the postoperative LN detection rate in patients with rectal cancer after neoadjuvant radiotherapy and chemotherapy. For example, standard TME in combination with the injection of methylene blue into the inferior mesenteric artery can be used to increase LN yield after neoadjuvant therapy. At the same time, the application of nano-carbon lymphatic tracer technology can also effectively improve the detection rate of postoperative LNs in patients with rectal cancer.

In recent decades, the therapeutic effect of rectal cancer has made great progress with the development of laparoscopic technology and medical devices. Murphy et al.\(^\text{[44]}\) found that the 5-year relative survival of rectal cancer improved significantly from 1992-1996 to 2010-2014. The emergence of neoadjuvant therapy, especially neoadjuvant radiotherapy and chemotherapy, significantly reduced the local recurrence rate and tumor staging of patients\(^\text{[45,46]}\). Neoadjuvant radiotherapy and chemotherapy have been regarded as the standard treatments for locally advanced rectal cancer, and the side effects of neoadjuvant radiotherapy and chemotherapy
Table 2 Prognosis of different lymph node yield after neoadjuvant therapy for rectal cancer

Ref.	n	Treatment	Number of LNs compared	OS (HR or percent)	DFS (HR or percent)
Yeo et al[27], 2020	94	Neoadjuvant CRT (RT 45 Gy + capecitabine)	LNs ≥ 8.5 vs LNs < 8.5	HR: 0.31 (95%CI: 0.15-0.64, P < 0.001)	-
			LNs ≥ 16.5 vs LNs < 16.5	-	HR: 0.46 (95%CI: 0.17-1.27, P = 0.13)
La Torre et al[19], 2013	123	Neoadjuvant CRT (RT 45 Gy + 5-FU)	LNs ≥ 6 vs LNs < 6	5-yr OS: 84% vs 75% (P = 0.03)	5-yr DFS: 83% vs 75% (P = 0.03)
Tsai et al[28], 2011	372	Neoadjuvant CRT (RT 45 Gy + 5-FU and/or capecitabine)	LNs ≥ 7 vs LNs ≤ 7	5-yr OS: 86.9% vs 81% (P = 0.067)	-
Han et al[21], 2016	458	Neoadjuvant CRT (RT 45–50.4 Gy + 5-FU)	LNs ≥ 8 vs LNs < 8	HR: 0.5 (95%CI: 0.2-0.9, P = 0.002)	HR: 0.6 (95%CI: 0.4-1.1, P = 0.042)
Pitta et al[29], 2020	104	Neoadjuvant RT (RT 45 Gy + capecitabine)	LNs: 10-20 vs LNs ≤ 9 and ≥ 20	-	HR: 0.313 (95%CI: 0.1-0.99, P = 0.049)

OS: Overall survival; DFS: Disease-free survival; LNs: Lymph nodes; HR: Hazard ratio; CRT: Chemoradiation therapy; RT: Radiotherapy; 5-FU: 5-Fluorouracil; CI: Confidence interval.

Figure 4 Sensitivity map for the meta-analysis of disease-free survival. CI: Confidence interval.

cannot be ignored, such as chronic sexual dysfunction[47] and diarrhea[48,49]. Some patients with high-risk diseases may need more intensive treatment, while others may have severe side effects due to the use of current protocols[50]. The criteria for the inclusion of patients with rectal cancer to undergo neoadjuvant radiotherapy and chemotherapy need to be further optimized, and multidisciplinary team discussion is warranted to determine whether a patient should receive neoadjuvant therapy for rectal cancer.

This meta-analysis was mostly limited by its inclusion of cohort study data only; no randomized controlled study was included. Cohort studies are prone to introduce bias, and two of these studies did have OS results. The HR data in four studies could not be extracted directly and were calculated from Kaplan-Meier curves, a calculation process that may cause errors. Additionally, this study only analyzed the prognosis of patients in the LNs ≥ 12 and LNs < 12 groups after neoadjuvant therapy. Insufficient data existed to analyze the effect of other LN numbers on the prognosis. Differences in surgical treatment reported in the literature, as well as different surgical procedures, may influence the LN yield, which may lead to bias.
Figure 5 Forest plot for the meta-analysis of disease-free survival in the subgroup of lymph node negative patients. HR: Hazard ratio; CI: Confidence interval; DFS: Disease-free survival.

CONCLUSION

Although neoadjuvant therapy reduces the production of LNs in rectal cancer, our data indicate that dissecting at least 12 LNs after neoadjuvant therapy may improve the patients’ OS, DFS, and DR.
ARTICLE HIGHLIGHTS

Research background
Neoadjuvant therapy significantly reduces the number of yielded lymph nodes (LNs) for rectal cancer, and the number of dissected LNs in rectal cancer after neoadjuvant therapy has a controversial effect on the prognosis.

Research motivation
Studies have shown that the number of LNs after rectal cancer is significantly reduced after neoadjuvant therapy. Some scholars have found that less than 12 LNs in rectal cancer patients receiving neoadjuvant radiotherapy should be considered as a better prognostic factor. However, others believe that dissecting at least 12 LNs is an independent and favorable prognostic factors for rectal cancer after neoadjuvant therapy. Therefore, it is necessary to conduct a meta-analysis to systematically and comprehensively study the influence of the number of LNs retrieved after neoadjuvant treatment on the survival outcome of patients with rectal cancer.

Research objectives
To evaluate the effect of LN production in rectal cancer after neoadjuvant treatment on survival through meta-analysis.

Research methods
The meta-analysis methods were adopted to realize the objectives.

Research results
Nine articles were included in the meta-analyses. Statistical analysis revealed a statistically significant difference in overall survival (OS) [hazard ratio (HR) = 0.76,
REFERENCES

1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2018; 68: 394-424 [PMID: 30207593 DOI: 10.3322/caac.21492]

2 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. *CA Cancer J Clin* 2018; 68: 7-30 [PMID: 29313949 DOI: 10.3322/caac.21442]

3 Greene FL. The American Joint Committee on Cancer: updating the strategies in cancer staging. *Bull Am Coll Surg* 2002; 87: 13-15 [PMID: 17387902]

4 Sobin LH. TNM classification: clarification of number of regional lymph nodes for pN0. *Br J Cancer* 2001; 85: 780 [PMID: 11531267 DOI: 10.1054/bjoc.2001.1996]

5 Collins S, Moran B, Adams R, Cunningham C, Bach S, Myint AS, Renihan A, Karandikar S, Goh V, Prezzi D, Langman G, Ahmedzai S, Geh I. Association of Coloproctology of Great Britain & Ireland (ACPGBI): Guidelines for the Management of Cancer of the Colon, Rectum and Anus (2017) - Multidisciplinary Management. *Colorectal Dis* 2017; 19 Suppl 1: 37-66 [PMID: 28632307 DOI: 10.1111/col.13505]

6 Glynn-Jones R, Wyrwicz L, Tret E, Brown G, Rödel C, Cervantes A, Arnold D, ESOMO Guidelines Committee. Rectal cancer: ESOMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2018; 29: iv263 [PMID: 29741565 DOI: 10.1093/annonc/mdy161]

7 Sermier A, Gervaz P, Egger JF, Dao M, Allal AS, Bonet M, Morel P. Lymph node retrieval in abdominoperineal surgical specimen is radiation time-dependent. *World J Surg Oncol* 2006; 4: 29 [PMID: 16749931 DOI: 10.1186/1477-7819-4-29]

8 Wichmann MW, Müller C, Meyer G, Strauss T, Hornung HM, Lau-Werner U, Angele MK, Schildberg FW. Effect of preoperative radiochemotherapy on lymph node retrieval after resection of rectal cancer. *Arch Surg* 2002; 137: 206-210 [PMID: 11822961 DOI: 10.1001/archsurg.137.2.206]

9 Baxter NN, Morris AM, Rothenberger DA, Tepper JE. Impact of preoperative radiation for rectal cancer on subsequent lymph node evaluation: a population-based analysis. *Int J Radiat Oncol Biol Phys* 2005; 61: 426-431 [PMID: 15667963 DOI: 10.1016/j.ijrobp.2004.06.259]

10 Nagtegaal ID, van de Velde CJ, van der Worp E, Kapiteijn E, Quirke P, van Krieken JH; Cooperative Clinical Investigators of the Dutch Colorectal Cancer Group. Macroscopic evaluation of rectal cancer resection specimen: clinical significance of the pathologist in quality control. *J Clin Oncol* 2002; 20: 1729-1734 [PMID: 11919228 DOI: 10.1200/jco.2002.07.010]

11 Rullier A, Laurent C, Capdepon M, Vendrely V, Bellecannée G, Bioulac-Sage P, Rullier E. Lymph nodes after preoperative chemoradiotherapy for rectal carcinoma: number, status, and impact on survival. *Am J Surg Pathol* 2008; 32: 45-50 [PMID: 18162769 DOI: 10.1097/PAS.0b013e3180de92ab]

12 Mechera R, Schuster T, Rosenberg B, Speich B. Lymph node yield after rectal resection in patients treated with neoadjuvant radiation for rectal cancer: A systematic review and meta-analysis. *Eur J Cancer* 2017; 72: 84-94 [PMID: 28027520 DOI: 10.1016/j.ejca.2016.10.031]

13 Group DF, Berlin JA, Morton SC, Olink I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA* 2000; 283: 2008-2012 [PMID: 10789670 DOI: 10.1001/jama.283.15.2008]

14 Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009; 339: b2535 [PMID: 19356178]
Tan L et al. Rectal cancer prognosis upon dissecting 12 lymph nodes

Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8: 16 [PMID: 17555582 DOI: 10.1186/1745-6215-8-16]

Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health 2014; 72: 39 [PMID: 25810908 DOI: 10.1186/2049-3258-72-39]

Wang Y, Zhou M, Yang J, Sun X, Zou W, Zhang Z, Zhang J, Shen L, Yang L, Zhang Z. Increased lymph node yield indicates improved survival in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Cancer Med 2019; 8: 4615-4625 [PMID: 31250569 DOI: 10.1002/cam4.2372]

Lykke J, Jess P, Roikjaer O; Danish Colorectal Cancer Group. Increased Lymph Node Yield Is Associated With Improved Survival in Rectal Cancer Irrespective of Neoadjuvant Treatment: Results From a National Cohort Study. Dis Colon Rectum 2015; 58: 823-830 [PMID: 26252843 DOI: 10.1097/DCR.0000000000000429]

La Torre M, Mazzuca F, Ferri M, Mari FS, Botticelli A, Pilozzi E, Lorenzon L, Osti MF, Marchetti P, Enrici RM, Zipparo V. The importance of lymph node retrieval and lymph node ratio following preoperative chemoradiation of rectal cancer. Colorectal Dis 2013; 15: e382-e388 [PMID: 23581854 DOI: 10.1111/codi.12242]

Kim WR, Han YD, Cho MS, Hur H, Min BS, Lee KY, Kim NK. Oncologic Impact of Fewer Than 12 Lymph Nodes in Patients Who Underwent Neoadjuvant Chemoradiation Followed by Total Mesorectal Excision for Locally Advanced Rectal Cancer. Medicine 94: e1133 [PMID: 26181550 DOI: 10.1097/MD.000000000001133]

Han J, Noh GT, Yeo SA, Cheong C, Cho MS, Hur H, Min BS, Lee KY, Kim NK. The number of retrieved lymph nodes needed for accurate staging differs based on the presence of preoperative chemoradiation for rectal cancer. Medicine 95: e4891 [PMID: 27661032 DOI: 10.1097/MD.000000000004891]

Doll D, Gertler R, Maak M, Friederichs J, Becker K, Geinitz H, Kriner M, Nekarda H, Siewert JR, Rosenberg R. Reduced lymph node yield in rectal carcinoma specimen after neoadjuvant radiochemotherapy has no prognostic relevance. World J Surg 2009; 33: 340-347 [PMID: 19034566 DOI: 10.1007/s00268-009-9838-8]

de Campos-Lobato LF, Stocchi L, de Sousa JB, Buta M, Lavery IC, Fazio VW, Dietz DW, Kalady MF. Less than 12 nodes in the surgical specimen after total mesorectal excision following neoadjuvant chemoradiation: it means more than you think! Ann Surg Oncol 2013; 20: 3398-3406 [PMID: 23812804 DOI: 10.1245/s10434-013-3010-x]

Kim HJ, Jo JS, Lee SY, Kim CH, Kim YJ, Kim HR. Low Lymph Node Retrieval After Preoperative Chemoradiation for Rectal Cancer is Associated with Improved Prognosis in Patients with a Good Tumor Response. Ann Surg Oncol 2015; 22: 2075-2081 [PMID: 25935150 DOI: 10.1245/s10434-014-3235-z]

Klos CL, Shellito PC, Rattner DW, Hodin RA, Cusack JC, Bordeianou L, Sylla P, Hong TS, Blaszkowsky L, Ryan DP, Lauwers GY, Chang Y, Berger DL. The effect of neoadjuvant chemoradiation therapy on the prognostic value of lymph nodes after rectal cancer surgery. Am J Surg 2010; 200: 440-445 [PMID: 20887837 DOI: 10.1016/j.amjsurg.2010.03.013]

Bostwick DG, Grignon DJ, Hammond ME, Amin MB, Cohen M, Crawford D, Gospodorawicz M, Kaplan RS, Miller DS, Montironi R, Pajak TF, Pollack A, Srigley JR, Yarbro JW. Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 2000; 124: 995-1000 [PMID: 10887774]

Yeo CS, Syn N, Liu H, Fong SS. A lower cut-off for lymph node harvest predicts for poorer overall survival after rectal surgery post neoadjuvant chemoradiation. World J Surg Oncol 2020; 18: 58 [PMID: 32197615 DOI: 10.1186/s12957-020-01833-8]

Tsai CJ, Crane CH, Skibber JM, Rodriguez-Bigas MA, Chang GJ, Feig BW, Eng C, Krishnan S, Maru DM, Das P. Number of lymph nodes examined and prognosis among pathologically lymph node-negative patients after preoperative chemoradiation therapy for rectal adenocarcinoma. Cancer 2011; 117: 3713-3722 [PMID: 21283329 DOI: 10.1002/cncr.25973]

Pitto F, Zoppoli G, Scabini S, Rameiro E, Fiocca R, Ballestrero A, Sparaviglia M, Malaspina L, Valente L, Grillo F, Mastracci L. Lymph node number, surface area and lymph node ratio are important prognostic indicators in neoadjuvant chemoradiotherapy treated rectal cancer. J Clin Pathol 2020; 73: 162-166 [PMID: 31554678 DOI: 10.1136/jclinpath-2019-206139]

Dev K, Shivran N, Gurawalia J, Pandey A, Kumar S, Kurpad V, Nayak S, Arjunan R. Less Than 12 Lymph Nodes in The Surgical Specimen after Neo-Adjuvant Chem-Radiotherapy in Rectal Cancer: Five Years Survival Analysis. Eur J Surg Oncol 2020; 46: e78 [DOI: 10.1016/j.ejso.2019.11.179]

Wang Y, Zhou M, Yang L, Zhang J, Deng W, Shen L, Yao Y, Liang L, Zhang Z. Prognostic value of lymph node yield in locally advanced rectal cancer with neoadjuvant chemoradiotherapy. J Clin Oncol 2018; 36: e15680 [DOI: 10.1200/JCO.2018.36.15_suppl.e15680]

Khan M, Hakeem A, Scott N, Botterill I. Significance of the lymph node count after neo-adjuvant treatment for rectal cancer. Gut 2015; 64: A542 [DOI: 10.1136/gutjnl-2015-309861.1187]

Thorn CC, Woodcock NP, Scott N, Verbeke C, Scott SB, Ambrose NS. What factors affect lymph node yield in surgery for rectal cancer? Colorectal Dis 2004; 6: 356-361 [PMID: 15333570 DOI: 10.1111/j.1463-1318.2004.00670.x]

Miller ED, Robb BW, Cummings OW, Johnstone PA. The effects of preoperative chemoradiotherapy...
on lymph node sampling in rectal cancer. *Dis Colon Rectum* 2012; **55**: 1002-1007 [PMID: 22874609 DOI: 10.1097/DCR.0b013e3182536d70]

35. **Mekenkamp LJ**, van Krieken JH, Marijnen CA, van de Velde CJ, Nagtegaal ID; Pathology Review Committee and the Co-operative Clinical Investigators. Lymph node retrieval in rectal cancer is dependent on many factors—the role of the tumor, the patient, the surgeon, the radiotherapist, and the pathologist. *Am J Surg Pathol* 2009; **33**: 1547-1553 [PMID: 19661781 DOI: 10.1097/PAS.0b013e3181e2011]

36. **Liu J**, Huang P, Zheng Z, Chen T, Wei H. Modified methylene blue injection improves lymph node harvest in rectal cancer. *ANZ J Surg* 2017; **87**: 247-251 [PMID: 25331064 DOI: 10.1111/ans.12889]

37. **Shen SS**, Haupt BX, Ro JY, Zhu J, Bailey HR, Schwartz MR. Number of lymph nodes examined and associated clinicopathologic factors in colorectal carcinoma. *Arch Pathol Lab Med* 2009; **133**: 781-786 [PMID: 19415953]

38. **Görg D**, Nagy P, Péter A, Perner F. Influence of obesity on lymph node recovery from rectal resection specimens. *Pathol Oncol Res* 2003; **9**: 180-183 [PMID: 14530812 DOI: 10.1007/bf03033734]

39. **Klepyšytė E**, Samalavičius NE. Injection of methylene blue solution into the inferior mesenteric artery of resected rectal specimens for rectal cancer as a method for increasing the lymph node harvest. *Tech Coloproctol* 2012; **16**: 207-211 [PMID: 22426928 DOI: 10.1007/s11015-012-0816-7]

40. **Borowski DW**, Banky B, Banerjee AK, Agarwal AK, Tabaqchali MA, Garg DK, Hobday C, Hegab M, Gill TS. Intra-arterial methylene blue injection into ex vivo colorectal cancer specimens improves lymph node staging accuracy: a randomized controlled trial. *Colorectal Dis* 2014; **16**: 681-689 [PMID: 24911342 DOI: 10.1111/ced.12681]

41. **Münster M**, Hanisch U, Tuffaha M, Kube R, Prok H. Ex Vivo Intra-arterial Methylene Blue Injection in Rectal Cancer Specimens Increases the Lymph-Node Harvest, Especially After Preoperative Radiation. *World J Surg* 2016; **40**: 463-470 [PMID: 26310202 DOI: 10.1007/s00268-015-2320-2]

42. **Reima H**, Saar H, Innos K, Soplemann J. Methylene blue ex vivo staining of resected colorectal cancer specimens to enhance lymph node retrieval: a randomised controlled trial. Conference: 8th Congress of the Baltic Association of Surgeons; 2015; Estonia. *Eesti Arst* 2015; **94**: 77

43. **Marijnen CA**, Nagtegaal ID, Klein Kranenburg E, Hermans J, van de Velde CJ, Leer JW, van Krieken JH; Pathology Review Committee and the Cooperative Clinical Investigators. No downstaging after short-term preoperative radiotherapy in rectal cancer patients. *J Clin Oncol* 2001; **19**: 1976-1984 [PMID: 11283130 DOI: 10.1200/jco.2001.19.7.1976]

44. **Murphy CC**, Wallace K, Sandler RS, Baron JA. Racial Disparities in Incidence of Young-Onset Colorectal Cancer and Patient Survival. *Gastroenterology* 2019; **156**: 958-965 [PMID: 30521807 DOI: 10.1053/j.gastro.2018.11.060]

45. **Abraham I**, Aristei C, Palumbo I, Lupattelli M, Trastulli S, Ciocci R, De Florio R, Valentini V. Preoperative radiotherapy and curative surgery for the management of localised rectal carcinoma. *Cochrane Database Syst Rev* 2018; **10**: CD002102 [PMID: 30284239 DOI: 10.1002/14651858.CD002102.pub3]

46. **Pettersson D**, Lörine E, Holm T, Iversen H, Cedemark B, Gilmelius B, Martling A. Tumour regression in the randomized Stockholm III Trial of radiotherapy regimens for rectal cancer. *Br J Surg* 2015; **102**: 972-978 [PMID: 25695256 DOI: 10.1002/bjs.9811]

47. **Hendren SK**, O'Connor BL, Liu M, Asano T, Cohen Z, Swallow CJ, Macrae HM, Gryfe R, McLeod RS. Prevalence of male and female sex dysfuncion is high following surgery for rectal cancer. *Ann Surg* 2005; **242**: 212-223 [PMID: 16041212 DOI: 10.1097/01.sla.0000171299.43954.cc]

48. **Sauer R**, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, Martus P, Tscherpel Tschmelitsch J, Hager E, Hess CF, Karstens JH, Liersch T, Schmidt-Werder H, Raab R; German Rectal Cancer Study Group. Preoperative versus postoperative chemoradiotherapy for rectal cancer. *N Engl J Med* 2004; **351**: 1731-1740 [PMID: 15496622 DOI: 10.1056/NEJMoa0404094]

49. **Ansari N**, Solomon MJ, Fisher RJ, Mackay J, Burmeister B, Ackland S, Heriot A, Joseph D, McLachlan SA, McClure B, Ngan SY. Acute Adverse Events and Postoperative Complications in a Randomized Trial of Preoperative Short-course Radiotherapy Versus Long-course Chemoradiotherapy for T3 Adenocarcinoma of the Rectum: Trans-Tasman Radiation Oncology Group Trial (TROG 01.04). *Ann Surg 2017; 265*: 882-888 [PMID: 27631775 DOI: 10.1097/sla.0000000000001987]

50. **Rana N**, Chakravarthy AB, Kachnic LA. Neoadjuvant Treatment for Locally Advanced Rectal Cancer: New Concepts in Clinical Trial Design. *Curr Treat Options Oncol* 2017; **18**: 13 [PMID: 28281215 DOI: 10.1007/s11864-017-0454-4]
