This paper deals with the performances of switched reluctance motor (SRM) and with its utilization in electric traction. The investigation of SRM equivalent circuit parameters by measurement and by finite element method is described. The calculated and measured values of parameters are used in the mathematical model of SRM, which was simulated. The simulation outputs are time profiles of the phase currents, voltages and torque and also the torque/speed characteristic, which can be used for the traction characteristic calculation. The dependencies of the losses and efficiency on the speed are shown. The comparison of performances of induction machine and SRM is shown at the end.

1. Introduction

The DC series machine had a unique status in electric traction drives in the past because of its natural mechanical characteristic approaches to traction demand. The development of DC choppers with new semiconductor structures has caused DC series machines to be replaced by DC separately excited ones, whose field and armature windings are fed from two independent DC choppers to improve its hard characteristic to the soft one, so it is similar with traction characteristic. However, the development of the semiconductor and control electronics also has caused the spread usage of drives with induction machines (IM). The control techniques of IM, scalar or vector, had been theoretically brought under control and from the simulations point of view many years ago, but the power stresses of inverters and control electronics in that time did not allow use of high power drives with IM, where electric traction also takes place. Only in the recent development of microcontrollers and semiconductor structures has high reverse blocking voltage and current density has the usage of the IM drives in electric traction been enabled.

They have become a very strong competitor to the DC drives because some advantages of the IM, such as simple construction, lower production costs and price, maintenance-free operation (there is no commutator which is the key part during the DC machine maintenance), and higher power density. Therefore, IM have come to the forefront with DC machines considering the parallel that production costs of the inverter are higher as that of DC choppers. But the IM drive has to be vector controlled to achieve...
Rozvoj výkonovej elektroniky spustil aj vývoj pohonov, ktoré sa označujú ako „moderne“, aj keď akné člene v týchto pohonoch vysvietia prípady objavené už v 19. storoči. Jediným z takýchto pohonov je pohon zo spinaným relukčným motorm, ktorého princip činnosti bol objavený v roku 1838. A práve tento pohon sa stáva vážnym konkurentom pohonov s IM, pri SRM vynika voč SRM hlavne jednoduchší konštrukcii a teda aj jednoduchší a lacnejšiu súrovou výrobou, výššou robustnosťou, menšími nárokami na údržbu. Menič, ktorý z principu činnosti pri SRM nutný, je ale jednoduchší ako striedací pohonov s IM a teda aj finančne menej nákladný. To je tiež z principu činnosti nutné, avšak to ovela jednoduchšie ako pri IM, pretože pri SRM riadieme len velkosť prúdu fázy a dĺžku jej zopnutia, čo je závislé od rýchlosti a tato nelineárna závislosť môže byť v riadiacom mikroprocesorech zadaná tabulkovo. Ďalšou nespornou výhodou je možnosť riadenia v otvorenej slučke, samozrejme za cenu znenia prevádzkovej oblasti, resp. možnosť bezsúčiastkového riadenia. Vector control of IM drives also has drawbacks, mainly the dependence of control preciseness on the exact knowledge of the machine equivalent circuit parameters because the controlled quantities – flux and torque are not measured directly, but they are calculated from the machine model based on the measured quantities like currents, voltages and speed.

The SRM expressions evolution has also started the development of drives, called “modern”, although the actuators used in these drives work based on the principles invented in the 19th century. Switched reluctance machine (SRM) is one of them. Its principle of operation was invented in 1838. And just the drive with this machine is becoming a very strong competitor to the drives with IM. SRM has simpler construction and, therefore, lower production costs, higher robustness and lower maintenance demands as the drives with IM. The SRM can work only if it is fed from an inverter, but the inverter of SRM is simpler and, therefore, cheaper than the one used to feed IM. The same conclusion is also valid for SRM. Basically, it is also needed for the SRM operation, but it is simpler as the vector control for drives with IM, because only the values of the phase currents and the switching time, which are speed dependent, are controlled and these non-linear dependencies can be given in table form and put to the microcontroller. The next indisputable advantage of the SRM drive is that it can be controlled in the open speed loop and also sensorlessly in the closed speed loop, which is the up-to-date trend in IM drives. The profile of the SRM torque/speed characteristics ($T = f(n)$), although it is fed from the inverter, looks similar to traction characteristics. That is why the SRM is becoming a very strong competitor to the IM. On the other hand, we should mention also that the drawbacks of the SRM is the torque ripples, which are given by the teeth construction and phase switching, magnetic noise and speed sensor necessity if the unfailing operation is desired. From the SRM performances point of view mentioned above, the detailed analyses of the SRM used in electromobiles and locomotives are given in [2], [3].

As it was mentioned earlier, the construction of SRM is very simple. It has salient poles on stator as well as on rotor. It is preferable to name these poles as teeth, because the term of pole in the SRM expressions only the physical pole, which means salience on the inner surface of stator and outer surface of rotor. Both the stator and rotor are laminated. The field windings are located only on the stator; the rotor is passive and has a low moment of inertia. Each stator tooth has a field winding on it. The windings of the teeth, which are geometrically opposite, are connected in series, and they create one phase (for example A, Fig. 1a). The cross section area of the three phase $m = 3$ (m - number of phases), 6/4, which means that the machine has six poles on the stator $N_s = 6$ and four poles on the rotor $N_r = 6$, SRM is shown on Fig. 1a. A two-poles field is created in this machine if the individual phases are switched.

The aims of this paper are to point out the performances of SRM from the traction application point of view and to show how the parameters of the SRM used in its model can be identified. The SRM model, described below, has been used in simulation. The results are time profiles of phase currents i and voltages v.
2. Analýza parametrov SRM

Jedným z najdôležitejších parametrov SRM sú magnetizačné charakteristiky spiráhnutého toku $\psi = f(\Theta, i)$ v závislosti od veľkosti prúdu i a polohy rotora Θ. Náhradná schéma jednej fázy je na obr. 2, ktorá pozostáva z odporu vinutia fázy R_f, fázovej indukčnosti L a indukovaného napätia u_i. Dôležitým rozdielom oproti náhradným schémom ostatných motorov je ten, že indukčnosť L sa mení s veľkosťou prúdu a polohou rotora $L_f(\Theta, i)$, to znamená, že je závislá od dvoch premenných. Vzájomná indukčnosť medzi fázami je veľmi malá, preto sa vo všeobecnosti zanedbáva. Charakteristiky spiráhnutého toku je možné získať viacerými metódami: statickým meraním, metódou konečných prvkov (MKP) alebo analytickým vypočtom, ak je napájaná iba jedna fáza. Priebeh nameraných hodnôt spiráhnutého toku vyšetrovaného motora vidíme na obr. 3. Hodnoty toku sú uvedené iba do hodnoty prúdu 12 A, preto sa vo všeobecnosti zanedbáva. Charakteristiky spiráhnutého toku je možné získať viacerými metódami: statickým meraním, metódou konečných prvkov (MKP) alebo analytickým vypočtom, ak je napájaná iba jedna fáza. Priebeh nameraných hodnôt spiráhnutého toku vyšetrovaného motora vidíme na obr. 3. Hodnoty toku sú uvedené iba do hodnoty prúdu 12 A, pretože pri výššej hodnote prúdu motor tvorí taký moment, pri ktorom sa nedala s dostatočnou presnosťou udržať konštantná poloha rotora, ktorá sa menila po jednom stupni (mechanickom). Pre výššie hodnoty prúdu bol spiráhmutý tok vypočitaný pomocou MKP [4].

2. The analysis of SRM parameters

One of the most important parameters of SRM are magnetization curves of flux-linkage (versus current i and rotor position Θ, given as $\psi = f(\Theta, i)$). The equivalent circuit of one phase is in Fig. 2, consisting of winding resistance R_f, phase inductance L and induced voltage u_i. The important difference between the equivalent circuit of SRM and other motors is that the inductance varies with current and rotor position $L_f(\Theta, i)$, which means the inductance depends on two variables. Mutual inductance between phases is very low; consequently, it may be neglected. It is possible to obtain the magnetization curves of $\psi = f(\Theta, i)$ by many methods: by static measurement, by finite element method (FEM), or by analytical approach, only when one phase is supplied. The profile of measured values of the investigated motor flux-linkage can be seen on Fig. 3. Values of flux-linkage ψ are presented only for current to 12 A, because it was very difficult to maintain the rotor in the stable position for such a high value of torque if the current was over 12 A. The rotor position was changed by 1 mechanical degree. For higher values of current the flux-linkage has been computed by means of FEM [4]. It is possible to calculate phase...
Zo spriahnutého toku je možné vypočítať na základe prúdu pre danú polohu rotora fázovú indukčnosť. Na obr. 4 je znázornený priebeh fázovej indukčnosti $L = f(\Theta, i)$ vyšetrovaného SRM, ktorá je vypočítaná pomocou MKP. Fázová indukčnosť je jedným zo vstupných parametrov matematického modelu SRM.

Dôležitú úlohu v simulácii má matematický popis zmeny indukčnosti v závislosti od fázoveho prúdu a polohy rotora. Existujú dva bežné prístupy:

1. Jednotlivé hodnoty indukčnosti (namerané, alebo vypočítané) sú zadané tabuľkovo použitím lineárnej, kubickej alebo kubicko-splinovej interpolácie medzi jednotlivými hodnotami.
2. Na základe tabuľkových hodnôt je urobená analytická aproximácia vyjadená spojitou funkciou. Tato metóda nemusí byť celkom presná, pretože sa veľmi ťažko hľadá analytická funkcia, ktorá by presne zodpovedala nameraným alebo vypočítaným tabuľkovým hodnotám. Ale je potrebné vziať do úvahy, že tato metóda je oveľa rýchlejšia [2].

3. Matematický model SRM

V predchádzajúcej kapitole sme uviedli náhradnú schému SRM pre jednu fázu, ktorú môžeme popísať rovnicou pre okamžitú hodnotu napätia:

$$u = R_i i + \frac{d\phi(i, \Theta)}{dt} = u_R + \frac{d\phi(i, \Theta)}{dt}$$

kde u je svorkové napätie a u_R je obytok napätia na odpore.

Protože SRM má vyjadrené zuby na statore aj rotore, počas jeho prevádzky neexistuje ustálený stav, v ktorom má priebeh induktance for a given current and rotor position from flux-linkage. The profile of phase inductance $L = f(\Theta, i)$ of investigated SRM computed by means of FEM is shown on Fig. 4. The phase inductance is one of the input parameters of the SRM mathematical model.

3. Mathematical model of SRM

One-phase equivalent circuit of the SRM shown above can be described by the equation for the instantaneous value of voltage:

$$u = R_i i + \frac{d\phi(i, \Theta)}{dt} = u_R + \frac{d\phi(i, \Theta)}{dt}$$

where u is the terminal voltage and u_R is the voltage drop due to resistance.

Because the SRM has salient poles on the stator as well as on the rotor, there is no steady state condition during its running, in
prúdu alebo napätia konštantnú alebo ustálenú hodnotu, pretože prúd aj spriahnutý tok narastajú počas každého pracovného cyklu z nulovej hodnoty v závislosti od rýchlosti otáčania a spôsobu riadenia. Preto je spriahnutý tok funkciou dvoch premenných: fázy

-indukovaného voltage a polohy rotora a jeho časová derivácia môže byť

-vyjadrená nasledovne:

\[
\frac{d\phi(i,\Theta)}{dt} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial \Theta} \frac{d\Theta}{dt} = L(i,\Theta) \frac{di}{dt} + \frac{\partial \phi}{\partial \Theta} \omega \tag{2}
\]

kde \(\omega \) je uhlová rýchlosť rotora.

Vieme, že spriahnutý tok je daný súčinom indukčnosti a prúdu

\[
\psi(i,\Theta) = L(i,\Theta)i \tag{3}
\]

Ak dosadíme do vzťahu (2) vzťah (3), tak môžeme napísať:

\[
\frac{d\phi(i,\Theta)}{dt} = L(i,\Theta) \frac{di}{dt} + io \frac{dL}{d\Theta} = u_L + u_i \tag{4}
\]

Prvá časť vzťahu \(u_i \) predstavuje inductive úbytok napätia na indukčnosti a druhá časť vzťahu predstavuje indukované napätie, ktoré je úmerné veľkosti prúdu, uhlové rýchlosti \(\omega \) a pomereným zmieny indukčnosti od polohy rotora.

which the current or voltage would have constant value, because the current and flux-linkage are established from zero every stroke depending on speed and on control strategy. Therefore, the flux-linkage depends on both variables: phase current and rotor position, and its time derivation can be expressed as follows:

\[
\frac{d\phi(i,\Theta)}{dt} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial \Theta} \frac{d\Theta}{dt} = L(i,\Theta) \frac{di}{dt} + \frac{\partial \phi}{\partial \Theta} \omega \tag{2}
\]

where \(\omega \) is angular speed of rotor.

As it is known, the product of inductance and current gives the flux-linkage

\[
\psi(i,\Theta) = L(i,\Theta)i \tag{3}
\]

If equation (3) is included, the equation (2) can be rewritten:

\[
\frac{d\phi(i,\Theta)}{dt} = L(i,\Theta) \frac{di}{dt} + io \frac{dL}{d\Theta} = u_L + u_i \tag{4}
\]

The first part of the equation \(u_L \) presents a voltage drop due to inductance, and the second part is induced voltage, which is proportional to the current, angular speed \(\omega \) and position variation of the inductance.

Aby sme mohli získať priebehy prechodových dejov SRM je potrebné rozhodnúť o m napätových rovnici. Pre jednu fázu má napätová rovnica nasledovný tvar:

\[
u = R_i i + \frac{d\phi}{dt} = \left[R_i + \frac{dL(i,\Theta)}{d\Theta} \frac{di}{dt}\right] + L(i,\Theta) \frac{di}{dt} \tag{5}
\]

Ak zanedbáme vzájomné indukčnosti, tak potom môžeme vyjadriť vyvíjaný elektromagnetic ký moment nasledovne:

\[
T_{\text{em}}(\Theta,i) = \frac{i^2}{2} \frac{dL(i,\Theta)}{d\Theta} \tag{6}
\]

and also
kde \(J \) je moment zotrvačnosti všetkých rotujúcich častí a \(T_l \) je zátážový moment.

Z princípu činnosti SRM vyplýva, že potrebujeme vedieť aj aktuálnu polohu rotora, ktorá závisí od uhlovej rýchlosti rotora:

\[
\Theta = \int \omega dt
\]

Aby bolo možné vyriešiť všetky uvedené rovnice, je nevyhnutné zadať okrem svorkového napätia, odporu vinutia a momentu zotrvačnosti aj hodnoty indukčnosti, ktoré sú závislé od fázového prúdu a polohy rotora. Na zadávanie hodnôt indukčnosti je použitý prístup č. 1 popísaný v kapitole 2. Matematický model bol naprogramovaný a riešený prostredníctvom simulačného jazyka MATLAB/SIMULINK, použitím numerickej matematickej metódy na riešenie diferenciálnych rovníc Runge – Kutta. Na obr. 5 vidíme simulované priebehy fázového prúdu, napätia a spriahnutého toku pre nižšie rýchlosti (obr. 5a) \(n = 500 \text{ min}^{-1} \) a pre vyššie rýchlosti (obr. 5b) \(n = 3000 \text{ min}^{-1} \), keď zátážový moment bol rovný menovitému momentu 11,8 Nm. Na obr.6 môžeme vidieť namerané priebehy napätia a prúdu pre tie isté podmienky, ktoré boli použité v simulácii. Na základe dobrej zhody simulovaných a nameraných priebehov (obr. 5 a 6), môžeme využiť simuláciu aj na návrh a optimalizáciu parametrov SRM. Podrobnnejšia analýza priebehov prúdu, napätia a ostatných veličí pri vyšších a nižších rýchlosťach je urobená v [7].

4. Straty a účinnosť SRM

Ako sme uviedli v úvode, pri výbere trakčného pohonu je potrebné mať na zreteľ jeho účinnosť a s ňou súvisia straty. Vo všeobecnosti sa v elektrických motoroch uvažuje o štyroch druhoch

\[
T_m - T_l = J \frac{d\omega}{dt}
\]

(7)

where \(J \) is moment of inertia of all rotating parts and \(T_l \) is load torque.

From the principles of SRM operation follows, that it is necessary to know an actual rotor position \(\Theta \), which depends on the angular rotor speed \(\omega \):

\[
\Theta = \int \omega dt
\]

(8)

To solve all given equations, it is necessary to know terminal voltage, winding resistance and moment of inertia, and the values of inductance, depending on the phase current and rotor position. To set the inductance values, approach No. 1, described in chapter 2., has been used. A mathematical model has been solved by means of simulation language MATLAB/SIMULINK, solving differential equations on the basis of numerical mathematical method Runge-Kutta.

In Fig. 5 simulated phase current, voltage and flux-linkage profiles for lower speed (Fig. 5a), \(n = 500 \text{ rpm} \), and for higher speed \(n = 3000 \text{ rpm} \) (Fig. 5b), can be seen if load torque was equal to rated torque 11.8 Nm. In Fig. 6 measured voltage and current profiles for the same conditions as in simulations can be seen. On the basis of good coincidence simulated and measured values (Fig. 5 and 6), the simulation can be used also for SRM design and parameters optimization. More detailed analysis of the current, voltage and other variables profiles for higher and lower speed is made in [7].

4. SRM Losses and Efficiency

As mentioned in the introduction, in the process of the traction drive choice the losses and efficiency must be taken into account. Generally, in electrical machines four kinds of losses are
5. Mechanická charakteristika SRM

Ako sme spomenuli v úvode, prirodzený tvar charakteristiky SRM $T = f(\omega)$ (obr. 9) sa podobá na trakčnú charakteristiku. Táto charakteristika sa sklada z troch základných častí.

V prvej časti vidime priebehovom intenzity. Ten docielime tak, že fázový prúd budeme udržiavať na konštantnej hodnote vhodným druhom regulátora. Táto reguláciu je možné robíť iba v určitom rozsahu rýchlostí, pričom moment bol udržiavaný na konštantnej hodnote (obr. 11), alebo rýchlosť otáčania. Naopak, pri vyšších rýchlostiach efektívna hodnota prúdu klesne, tým klesnú aj straty vo vinutí. Straty v železe narastajú s rýchlosťou otáčania. Na obr. 8 je uvedený priebeh účinnosti v závislosti od otáčok, vypočítaný na základe priebehov strát z obr. 7.

Iron losses increase with increasing speed, because the time change of flux-linkage also increases. Rotational losses also increase with speed. In Fig. 8 there is an efficiency/speed curve calculated on the basis of losses from Fig. 7.

5. Torque/speed characteristic of SRM

As mentioned in the introduction, the inherent form of the SRM torque/speed characteristic (Fig. 9) is similar to traction characteristic. This characteristic consists of three basic parts.

In the first part a constant torque can be seen. It can be obtained by keeping the phase current on the constant value by a suitable kind of controller. This control is possible to carry out only in the limited speed range, maximum until the point B. At point B, the speed ω_B is the highest speed at which a maximum current can be supplied at a rated voltage, with fixed firing angles Θ_p, and commutation angles Θ_c (Fig. 6a). The conduction angle or dwell angle $\Theta_p = \Theta_c - \Theta_p$ has constant value.

In the second part of the torque/speed characteristic, between the point B and P, the control mode on the constant power ($P = T\omega$) can be seen (till the point P). This part of the torque/speed characteristic is possible to obtain by increasing of the conduction angle Θ_p. The developed torque decreases, because the value of phase current decreases [7].

If the speed controller at the rated voltage will increase the motor speed and the conduction angle will be maximum and constant, the torque will decrease with the square of the speed, which corresponds to the third part of the torque/speed characteristic from the point P towards the right. Similar to the second part the
klesá hodnota prúdu, ktorý už nie je možné udržiavať na požadovanej hodnote danej regulátorom.

Aby sme mohli získať charakteristiku \(T = f(n) \) analyzovaného SRM, je potrebné aplikovať a používať matematický model SRM, uvedený v kapitole 3 a v blokovej schéme na obr. 9. Bloková schéma sa skládá z PID regulátora, matematického modelu meniča (bez uvažovania úbytkov napätí na polovodičových prvkoch), matematického modelu SRM, ktorý je rozdelený na tri bloky: block V.E. tvoria napätové rovnice pre každú fázu, blok T.E. predstavuje otáčkovú rovnici a tretí blok predstavuje momentovú rovnici. Ako je vidieť z obr. 9, do PID regulátora stúpajú rozdiel žiadaného a skutočného otáčok, výstup PID regulátora je žiadaná hodnota prúdu. V meniči sa porovnáva skutočná a žiadaná hodnota prúdu a na základe ich rozdielu a podľa polohy rotora sa pripája napätie na jednotlivé fázy. Ak chceme získať výstupné charakteristiky momentu v závislosti od rýchlosti otáčania rotora, je potrebné uvažovať s uhlom zopnutia a vypnutia fázového prúdu, pretože tvar charakteristiky \(T = f(\omega) \) je závislý aj od uhlia vodivosti (obr. 9), pozdĺž ktorého sa vytvára elektromagnetický moment (obr. 6a). V [1] je definovaná momentová oblasť, ktoréj je vytváraný nenulový moment danou fázou. V súmernom motore je táto oblasť určená vzťahom \(\pi/N_s \). In our investigated SRM it is 22.5°, because \(N_s = 8 \) Further it is defined an effective moment zone, which represents an angle, along which one phase produces a torque comparable with the rated one. This angle corresponds to this pole arc from the both overlapping poles, which is smaller. In this case the smaller is a stator pole, and its value is 15° mech. Therefore, the effective zone of here investigated SRM is 15° mech.
Na obr. 11 vidíme \(T = f(\alpha) \) charakteristiku SRM pre uhlovodivosti 22.5° a 15°.

Tieto charakteristiky sú vystupom zo simulácie. Pre porovnanie bolo urobene meranie, pričom uhlovodivosť bol nastavený (výrobcom) v meniči na 15° a zátažový moment bol menovité. Otáčky vyšetrovaného SRM boli obmedzené meničom, a preto sa pri meraní nedali zvýšiť na také otáčky, aké boli použité v simulácii. Ako možné vidieť z priebehov na obr. 11, tvar charakteristiky \(T = f(\alpha) \) sa podobá na trakčnú charakteristiku a zodpovedá prirodzenej charakteristike na obr. 9. Pre konkrétne trakčnú aplikáciu je potrebné prepočítať moment na trakčnú silu s uvažovaním všetkých jazdných odporov a otáčky prepočítať na rýchlosť trakčného vozidla.

Na záver uvádzame porovnanie niektorých parametrov SRM a indukčného motora podľa [9], ktoré sú uvedené v tab. 1. Boli porovnávané motory s rovnakým menovitým výkonom a rovnakými menovitými otáčkami, ktorých katalógové údaje sú:

Parametre	SRM	IM
Výkon [kW]	7.5	7.5
Rýchlosť otáčania [min\(^{-1}\)]	1500 – 3000	1500 – 3000
Magnetizačný prúd (1500 RPM) [A]	13.1	8.0
Vonkajší priemer statora [mm]	121	122
Merň vykon na hmotnosť [kW/kg]	0.115	0.141
Hmotnosť motora [kg]	65	53
Počet zubov: stator/rotor	12/8	48/36
Dĺžka železa [mm]	193	135
Moment zotrvačnosti rotora [kgm\(^2\)]	0.0195	0.024
Priemer rotora [mm]	120	122
Straty v Fe / mechanické straty	200/165 W	265/55 W
Straty vo vinutí: stator/rotor	595/0 W	650/350 W
Účinnosť motora	89.8 %	85.5 %
Účinnosť meniča	96.6 %	97.0 %
Účinnosť pohonu	86.7 %	82.6 %

Z porovnania vyplýva, že aj naprieč vyššieho magnetizačného prúdu SRM má vyššiu hmotný vykon a účinnosť pohonu so SRM je o 4 % vyššia ako účinnosť pohonu s IM.

6. Záver

Článok sa zaobera vyšetrovaním parametrov a vlastností SRM z hľadiska jeho využitia v elektrickej trakcii. Popísané sú parametre SRM a indukčného motora podľa [9], ktoré sú uvedené v tab. 1. Boli porovnávané motory s rovnakým menovitým výkonom a rovnakými menovitými otáčkami, ktorých katalógové údaje sú:

Parametre	SRM	IM
Výkon [kW]	7.5	7.5
Rýchlosť otáčania [min\(^{-1}\)]	1500 – 3000	1500 – 3000
Magnetizačný prúd (1500 RPM) [A]	13.1	8.0
Vonkajší priemer statora [mm]	121	122
Merň vykon na hmotnosť [kW/kg]	0.115	0.141
Hmotnosť motora [kg]	65	53
Počet zubov: stator/rotor	12/8	48/36
Dĺžka železa [mm]	193	135
Moment zotrvačnosti rotora [kgm\(^2\)]	0.0195	0.024
Priemer rotora [mm]	120	122
Straty v Fe / mechanické straty	200/165 W	265/55 W
Straty vo vinutí: stator/rotor	595/0 W	650/350 W
Účinnosť motora	89.8 %	85.5 %
Účinnosť meniča	96.6 %	97.0 %
Účinnosť pohonu	86.7 %	82.6 %

6. Conclusion

The paper deals with the SRM parameters and performance investigation from the point of view of its application in electrical...
náhradnej schémy, najmä \(L_{\psi} = f(\Theta, i) \), pre konkrétny motor. Bol zostavený matematický model, ktorého rovnice sú riešené v MATLAB/SIMULINKU. Výsledné časové priebehy prúdov a napätí sú porovnané pre nízke a vyššie rýchlosti s meranými priebehmi. Na základe blokovej schémy a matematického modelu boli vypočítané charakteristiky \(T = f(n) \) pre rôzne uhly vodivosti a porovnané s meraním. V článku je popísaný vzájomný súvis medzi charakteristikami \(T = f(n) \) SRM a trakčnou charakteristikou. Na záver je uvedené porovnanie niektorých parametrov SRM a IM. Z výsledkov vyplýva, že SRM je vhodný na trakčné aplikácie a môže nahradiť v súčasnosti používané IM.

Poďakovanie

Za podporu dákuje projektov VEGA 1/6111/99 a 1/8259/2001

Vyšetrovanie prostredníctvom PC-SRD bolo vykonané na Katedre elektrických pohonov a trakcie, FEL, ČVUT, Praha. Autori dajú svojim kolegom na uvedenej katedre za ochotu a láskavosť pri spolupráci.

Literatúra – References

[1] MILLER, T., J., E.: Switched Reluctance Motors and their Control, Magna Physics Publishing, Oxford 1993.

[2] BAUSCH, H., GRIEF, A., NICKEL, A. B. A.: A 30kW/9000RPM Switched Reluctance, Drive for Traction Application ICEM ’98, Turkey.

[3] RAY, W. F., DAVIS, R. M., LAWRENSON, P. J., STEPHENSON, J. M., FULTON, N. N. and BLAKE, R. J.: Switched reluctance motor drives for rail traction: a second view, IEE Proceedings, Vol. 131, Pt. B, No. 5, September 1984.

[4] HRABOVCOVÁ, V., RAFAJDUS, P., WIAK, S.: Finite Element Analysis and Test Results Characteristics of Switched Reluctance Motor, ISEF ’97, September 25–27, 1997, Gdansk, Poland, p. 102–105.

[5] Manual programu PC-SRD.

[6] HRABOVCOVÁ, V., RAFAJDUS, P., FERKOVA, Ž.: Test and Simulation Results of Switched Reluctance Motor Characteristics, ED&PE, 1–3.October 1996, The High Tatars, Slovakia, p. 516–520, Volume 2.

[7] HRABOVCOVÁ, V., RAFAJDUS, P., LÍČKO, M.; JANOUŠEK, L.: Modelling of The Dynamic Operation of The Switched Reluctance Drive by Simulink, SPEEDAM ’98, Sorrento, June, 3rd-5th 1998, Italy, p. P1–61 – P1–66.

[8] RAFAJDUS, P., HRABOVCOVÁ, V.: Switched Reluctance Motor and its Torque Production, TRANSCOM ’97, Volume 2, Žilina 25–26. 6. 1997, Slovak Republic, p. 157–160.

[9] BINDER, A.: Switched Reluctance Drive and inverter – fed Induction Machine – a comparison of design parameters and drive performance, Electrical Engineering 82 (2000) p. 239–248.

[10] KLUG, L.: Computer Hardware Drives and Other Special Drives, PEMC 1998, Prague, 8–10. September 1998, p. 3.81–3.84.