Characterization of a Branch of the Phylogenetic Tree

Stuart A. Samuel

Lawrence Berkeley Laboratory
MS 50A-5105
Berkeley, CA 94720 USA

Gezhi Weng

Department of Pharmacology
Mount Sinai School of Medicine
New York, NY 10029, USA

Abstract

We use a combination of analytic models and computer simulations to gain insight into the dynamics of evolution. Our results suggest that certain interesting phenomena should eventually emerge from the fossil record. For example, there should be a “tortoise and hare effect”: Those genera with the smallest species death rate are likely to survive much longer than genera with large species birth and death rates. A complete characterization of the behavior of a branch of the phylogenetic tree corresponding to a genus and accurate mathematical representations of the various stages are obtained. We apply our results to address certain controversial issues that have arisen in paleontology such as the importance of punctuated equilibrium and whether unique Cambrian phyla have survived to the present.
I. Introduction

The fossil record is incomplete, providing only a fraction of the species that actually existed. This makes it difficult to characterize the phylogenetic tree. Indeed, different behaviors have been suggested (Gould et al., 1977; Gould, 1989), and phenomena that might be present are easily overlooked. In addition, controversial issues such as the importance of punctuated equilibrium (Eldredge & Gould, 1972; Stanley, 1979; Gould & Eldredge, 1993) and whether Cambrian phyla extend to the present (Gould, 1989; Morris, 1998) remain unresolved. In this work, we bypass the difficulty of fossil-record incompleteness by using computer simulations and analytic methods that lead to a new understanding of the dynamics of evolution. We find that the development of a branch corresponding to a genus of species is characterized by three stages with distinct behaviors. We establish new types of contingency, prove that all genera must eventually go extinct, and uncover some surprising phenomena that should be present if the fossil record were known more precisely.

For the most part, our analysis is for the evolution of a set of closely related species who originate from a single lineage. We shall refer to this as a genus, a genus being a group of species with similar characteristics usually determined subjectively by taxonomists on the basis of morphology. One can imagine sudden and gradual origins for a new genus: An individual through faulty genetic reproduction may be radically different from others and through subsequent mating may eventually produce a significantly different species. Alternatively, as a group, a species may evolve over a long period of time to become sufficiently morphologically different from other members in its genus to warrant the establishment of a new genus. Independent of the creation mechanism, it is expected that a new genus begins with a single species. Such a species through splitting processes can yield a genus with two or more members with similar characteristics.

Our results are mostly applicable to the case of genera as opposed to higher taxonomic groupings such as families and orders. The reason for this is that the model we use assumes that all member species have the the same speciation birth and death rates. This is expected to be the case for genera but less so for higher
groupings. Nevertheless, some of the phenomena that we have observed for genera can be expected to arise for certain families, orders, classes and phyla. It is also possible to generalize the model to include larger parts of the phylogenetic tree but that goes beyond the aims of the current research.

II. The One-Genus Model

Consider the emergence of a new genus \mathcal{G} initially containing only one species. Through genetic mutations, environmental factors and other effects, new species arise and old species die to create or destroy a lineage of the phylogenetic tree. Let B, the species birth rate, be the probability per unit time that a new species line splits off of an old species line. Likewise, let D, the species death rate, be the probability per unit time that a species goes extinct. It is assumed that $B > D$; otherwise the genus soon goes extinct. In a small time interval Δt, $d = D\Delta t$, $b = B\Delta t$ and $u = 1 - d - b$ are respectively the probabilities that a particular species dies, that it gives rise to an additional lineage and that neither of these happens. If $N(t)$ is the number of species in the genus, then

$$N(t + \Delta t) = N(t) + \delta N(t),$$

where $\delta N(t)$ is determined by the probabilities d, b and u. This is a stochastic process.

Since Earth’s ecosystem cannot support an unlimited number of living organisms, we imposed the constraint that $N(t) \leq N_{\text{max}}$ for some maximum number of species N_{max}. The parameters B, D and N_{max} vary significantly from genus to genus, with B and D generally being larger for smaller organisms. For most metazoa, B and D range roughly from one species per 10,000 years to one per 10 million years (May, 1995; McCune, 1997). One expects N_{max} to vary from a small number to hundreds. As an example, data exist that imply $N_{\text{max}} \approx 16$ for the grazing horses in North America during the Miocene (MacFadden & Hulbert, 1986). For the most part, one expects B, D and N_{max} to be slowly varying functions of time. In our model, we take these parameters to be constant (See, however, Section V where N_{max} is allowed to undergo jumps to simulate the effects of punctuated equilibrium). This approximation will not change our conclusions as long as the fractional variations in the parameters are significantly less than the smallest inverse time scale in the model,
that is, 1/BdB/dt << D, 1/DdD/dt << D and 1/N_{max}dN_{max}/dt << D.

The above defines what we mean by the term *evosystem*: the evolution of a group of species in a constrained environment. We wrote a software package to generate and explicitly display phylogenetic trees governed by the probabilities b, d and u. Hundreds of trees were examined to gain insight into general behavior and interesting phenomena. The computer simulations reveal that three stages characterize the phylogenetic dynamics of a genus of the evolutionary tree: (1) an initial period of precariousness, (2) a period of exponential growth and (3) a period of quasi stability. See Figure 1a.

III. The Three Stages

During Stage (1), when \(N(t) \) is small, there is a certain probability \(P_e \) that a genus goes extinct because of “bad luck” since \(B > D \) favors growth. See Figure 1b. An approximate equation for \(P_e \) is \(P_e = D/B \). See Appendix A for a derivation. This formula becomes exact for \(N_{max} = \infty \) and is quite accurate for all but small \(N_{max} \). If the number of species is initially \(N_0 \) instead of 1,

\[
P_e = (D/B)^{N_0}.
\]

An analogous result is known for population models (MacArthur, 1972). The exact formula when \(N_{max} = \infty \) for the probability of extinction as a function of time is provided in eq.(7) below and rapidly approaches eq.(2) for \(t > 1/(B-D) \).

If \(\mathcal{G} \) survives the period of precariousness, Stage (2) arrives. It is characterized by exponential growth: \(\bar{N}(t) = N_0 \exp(Gt) \) where \(G = B - D \) and \(\bar{N}(t) \) is the average value of \(N(t) \). This result is expected and is similar to the situation in population dynamics (Renshaw, 1991). In general, when there is ample vacant phase space for an evosystem, species proliferation occurs. Such opportunities arise when life moves into a new ecological niche, when a new morphological development arises, or just after a catastrophic extinction. The fastest growth in the absolute number of new species \(N_{new} \) occurs near the end of Stage (2) since \(dN_{new}(t)/dt = B\bar{N}(t) \) and the constraint of \(N(t) \leq N_{max} \) is not operative.

Stage (3) is characterized by having \(N(t) \) near \(N_{max} \): The genus has expanded fully into its evosystem’s phase space. The rate of new species generation slows from
BN to DN because species creation can only occur at the expense of the death of a species lineage. Thus, the rapid flow of Stage (2) gives way to a slower phylogenetic movement. See the right side part of Figure 1a. During Stage (3), adaptation leads to the evolution of old species through natural selection but this process is more gradual.

One would think that a genus could last forever in the presence of a stable, rich, life-supporting environment. Surprisingly, this is not the case as we demonstrate below. It turns out that G is guaranteed to go extinct, but the time scale T_e for eventual extinction is quite large: $T_e = 1/D f_e(B/D)$ with f_e of the order of $(B/D)^{N_{max}}$. The time at which a particular genus goes extinct involves considerable uncertainty but, since it must, Stage (3) is characterized as a period of quasi stability. A genus has the best chance to survive for a long time if N_{max} is large and D/B is small.

The result of guaranteed extinction does not take into account the following effect. One species in the genus may become sufficiently different from the rest as to warrant its classification as a new genus. In such a situation, it is removed from the genus under consideration and becomes the first species of a new genus. An example of this is the case of birds and dinosaurs. Assuming that "being a reptile" is part of the definition of a dinosaur, then the dinosaurs went extinct 65 million years ago, while birds, which descended from the dinosaurs, survived. If, on one hand, the new genus occupies the same ecosystem phase space, then the N_{max} constraint applies to the combined system: $N_{original\ genus} + N_{new\ genus} \leq N_{max}$. Such a model is analyzed in Section VII. If, on the other hand, the new genus moves into a new region of ecosystem phase space, then it will be limited by a new maximum-number-of-species constant. In this case, the system resembles two, independent, one-genus models. What is more likely to transpire is something between these two extremes. Such a system can be modeled using the constraints: $N_o \leq N_{max}^o$, $N_n \leq N_{max}^n$ and $N_o + N_n \leq N_{combined}^\text{combined}$, where N_o is the number of species in the original genus, N_n is the number of species in the new genus, and N_{max}^o, N_{max}^n and $N_{combined}^\text{combined}$ are constants.

The role of contingency in evolution has been emphasized by Gould (1989) and others. The extinction effects of Stages (1) or (3) described above are specific realizations of contingency that are different from those envisioned by Gould but are nonetheless present.
One application of Stage (1) precariousness is the “smearing in time” of a catastrophic extinction. Initial opposition arose to the asteroid impact explanation of the KT mass extinction (Alvarez et al., 1980) because paleontologists found evidence in sedimentary rock that all species did not die instantly (Archibald, 1981; Hickey, 1981; Sloan et al., 1986). Many researchers assume that the explanation for this is an imperfect fossil record. This may very well be the reason, however, Stage (1) precariousness may be contributing: Suppose for example that $B = 1/(200,000$ years) and $D = 1/(400,000$ years) and that after the asteroid struck, 10% of genera were left with a single species and 20% were left with two species. Then from eq.(2), one concludes that 10% of genera would go extinct over the next few hundred thousand years. In other words, in a catastrophic extinction, most genera die out quickly but a non negligible fraction die out over a much longer period of time. Figure 2a shows a computer simulation that exemplifies this for a particular genus.

IV. The Statistical Mechanics of Evolutionary Trees

Let us perform a statistical analysis. Defined $p_N(t)$ to be the probability that a tree has N branches at time t on average. Each process associated with eq.(1) produces a “path” for $N(t)$, a random walk in the interval 0 to N_{max}. Averaging over all possible stochastic processes produces the probabilities $p_N(t)$. Differential equations determine the $p_N(t)$:

$$
\frac{dp_N(t)}{dt} = -N(B(1 - \delta_{N,N_{\text{max}}}) + D)p_N(t) + (N + 1)D(1 - \delta_{N,N_{\text{max}}})p_{N+1}(t) + (N - 1)B(1 - \delta_{N,0})p_{N-1}(t),
$$

where δ_{ij} is 1 if $i = j$ and zero otherwise. These equations are similar to ones appearing in population models (Nisbet & Gurney, 1982). They have a simple physical interpretation: When N species are present, any N of them may go extinct with probability per unit time of D or any N of them may give rise to a new species with a probability per unit time of B. These two processes move the system out of the case of N species and reduce p_N by $N(D+B)$ times the probability that the system has N species, that is, p_N. The first term on the right hand side (RHS) of eq.(3) represents these two processes. If the system has $N + 1$ species, then any one of the $N + 1$
species may go extinct with a probability per unit time of D to arrive in the N-species sector. This increased p_N by $(N + 1)D$ times the probability that the system has $N + 1$ species. This generates the second term on the RHS of eq.(3). Finally, if the system has $N - 1$ species, then any one of the $N - 1$ species may give rise to a new species with a probability per unit time of B to put one in the N-species sector. This explains the third term on the RHS of eq.(3). The delta functions in eq.(3) take into account the “boundary condition” effects when $N = 0$ and when $N = N_{\text{max}}$.

We initially tried to find solutions to eq.(3) using the diffusion approximation, which is the same approach used in Foley (1997) for populations. However, the results, when compared to simulated output, were not very accurate: The diffusion approximation works best when N is large so that N/N_{max} can be treated as a continuous variable. In our case, N_{max} is not sufficiently big.

It follows from multiplying eq.(3) by N and summing over N that the average number of species $\bar{N}(t)$ obeys $d\bar{N}(t)/dt = (B - D)\bar{N}(t) - N_{\text{max}}Bp_{N_{\text{max}}}(t)$. This equation implies exponential growth in time for $\bar{N}(t)$ with a coefficient G during Stages (1) and (2), because the constraint that $N(t) \leq N_{\text{max}}$ can be neglected.

Assembling $p_N(t)$ for $N = 0, 1, \ldots, N_{\text{max}}$ into an $N_{\text{max}} + 1$ column vector Ψ, allows the dynamical system governed by eq.(3) to be cast in the form

$$\frac{d\Psi}{dt} = -H\Psi \quad .$$

To solve eq.(4), one needs to find the right-side eigenvalues E_i and eigenvectors $v^{(i)}$ of H. Then the exact solution is $p_N(t) = \sum_{i=0}^{N_{\text{max}}} c^{(i)} v^{(i)}_N \exp(-E_i t)$, where the coefficients $c^{(i)}$ are determined by the initial conditions $p_N(0) = \sum_{i=0}^{N_{\text{max}}} c^{(i)} v^{(i)}_0$. Since $E_i > 0$ for $i > 0$, one sees that, as $t \to \infty$, $p_N(t) \to \delta_{N0} = v^{(0)}_N$ and that $c^{(0)}$ must be 1. This proves that a genus eventually goes extinct for finite N_{max}.

It turns out that all eigenvalues are positive except for one, E_0, which is zero and corresponds to the situation of an extinct genus with $p_0(t) = 1$. The smallest non-zero eigenvalue determines the asymptotic dynamics of the evosystem and the behavior of Stage (3). We have found that as soon as N_{max} is sizeable (greater than say 6), there is a single, very small eigenvalue E_1.

The genus goes extinct at an average time scale of $T_e = 1/E_1$, which is much larger
than any of the time parameters of the evosystem. We have uncovered an accurate
approximate formula for E_1:

$$E_1 \approx \frac{N_{\text{max}}! D^{N_{\text{max}}}}{\sum_{j=0}^{N_{\text{max}}-1} a_j^{(N_{\text{max}})} B_j D^{N_{\text{max}}-j-1}} .$$

(5)

where the coefficients $a_j^{(N_{\text{max}})}$ are determined recursively: $a_j^{(N_{\text{max}})} = N_{\text{max}} a_j^{(N_{\text{max}}-1)} + (N_{\text{max}} - 1)!$ for $j = 1, 2, \ldots N_{\text{max}} - 2$, and $a_{N_{\text{max}}-1}^{(N_{\text{max}})} = (N_{\text{max}} - 1)!$.

For comparison, when $N_{\text{max}} = 10$, and $B/D = 2$, $E_1/D = 0.0430 \ldots$ is the exact
result, whereas eq.(5) gives $E_1/D \approx 0.0427$.

We have found an accurate formula for $v^{(1)}$: Set $v_0^{(1)} = 1$ and $v_{N_{\text{max}}-1}^{(1)} = (N_{\text{max}} D - E_1)/((N_{\text{max}} - 1) B)$ and then use $(N - 1) B v_{N-1}^{(1)} = (N (B + D) - E_1) v_N^{(1)} - (N + 1) D v_{N+1}^{(1)}$, for $N = N_{\text{max}} - 1$ to 2 and finally set $v_0^{(1)} = -\sum_{N=1}^{N_{\text{max}}} v_N^{(1)}$. Since $v^{(0)}$ is also known, an approximate analytic solution for the $p_N(t)$ during Stage (3) is obtained by using these lowest two eigenstates of H:

$$p_N(t) \approx v_N^{(0)} + ((D/B)N_0 - 1)v_N^{(1)}/v_0^{(1)} \exp[-E_1(t - t_{\text{asy}})] ,$$

(6)

where $t_{\text{asy}} = 7/(4(B - D))ln[N_{\text{max}}/N_0]$ is the time that it takes to reach Stage (3)
on average. For example, in dimensionless units of time, let $D = 0.1$, $B = 0.2$, and
$N_{\text{max}} = 10$. Then at $t = 60$, the approximate probabilities ($p_0, p_1, \ldots p_{10}$) of eq.(6) are
$(0.513, 0.0021, 0.0031, 0.0049, 0.0078, 0.0129, 0.0219, 0.0378, 0.0663, 0.118, 0.213)$
and can be compared to the exact results of $(0.504, 0.0025, 0.0036, 0.0053, 0.0083, 0.0134, 0.0224, 0.0385, 0.0673, 0.120, 0.215)$. This excellent agreement is typical. The
derivation of the approximate solution is outlined in Appendix B.

For $N_{\text{max}} = \infty$, the solution to eq.(6) is known (Nisbet & Gurney, 1982):

$$p_0(t) = \frac{D (e^{Gt} - 1)}{Be^{Gt} - D} ,$$

$$p_N(t) = \frac{B^{N-1}(B - D)^2 e^{Gt}(e^{Gt} - 1)^{N-1}}{(Be^{Gt} - D)^{N+1}} \text{ for } N > 1 .$$

(7)

Note that $p_0(t)$ approaches eq.(2) for $N_0 = 1$ when t is greater than $1/G$ as should be the case. When $N_0 > 1$, $p_0(t)$ is given as in eq.(7) above but with the RHS raised to the N_0th power. Because the N_{max} constraint plays no role during Stage (1), eq.(7)
accurately approximates the $p_N(t)$ for the finite N_{max} case at early times for the cases where N is somewhat less than N_{max}.

V. Punctuated Equilibrium

Based on the fossils of the Burgess Shale, a new picture of diversity in the tree of life has been suggested (Gould et al., 1977; Valentine, 1969; Sepkoski, 1978) that involves initial growth and subsequent decimation and restriction (see for example Figure 1.17 in Gould (1989) and see the discussion in Valentine & Erwin (1985)). To check the validity of this idea, we incorporate catastrophes in the computer simulations by selecting a point in time and randomly rendering a species extinct with probability p_c. Figure 2b displays a typical output. The catastrophic event usually resets the genus system to Stage (1). If the genus survives the period of precariousness, exponential expansion occurs re-filling the available phase space of the evosystem. The phylogenetic trees outputted in our simulations do not resemble the new picture because the effects of decimation due to a catastrophe are eliminated exponentially quickly on a time scale of t_{asy}, which is of order $1/(B – D)$. The rapid radiation that occurs after a mass extinction is well documented (Sepkoski, 1993; Jablonksi, 1995). See Erwin et al. (1988) for a comparison of diversity patterns during the Paleozoic and Mesozoic eras.

The picture of the diversity of life should be as follows: A significant addition to the span of diversity occurs whenever new phase space in the evosystem becomes available. See Figure 2c. Catastrophes should slightly decrease diversity but not drastically because a subset of species is able to maintain most of the morphological features of the larger set. During the rest of the time, when genera are in Stage (3), the change in diversity should be gradual: Adaptation can lead to new developments that slowly increase diversity, while convergent evolution or the haphazard extinction of a particular species may reduce it.

The typical phylogenetic branch is obtained by piecing together Figures 1a, 2b and 2c in various ways. This picture is confirmed by the fossil record. See, for example, MacFadden & Hulbert (1986).

Our approach can quantify the importance of punctuated equilibriu (Eldredge
& Gould, 1972; Stanley, 1979; Gould & Eldredge, 1993), an issue that has been hotly debated. Much evidence has been gathered that supports the role of punctuated equilibrium in evolution (Cheetham, 1986; Stanley & Yang, 1987; Jackson & Cheetham, 1990). If r_c catastrophic extinction events occur per unit time, then the rate of speciation for G due to catastrophes is roughly $r_c p_c N_{\text{max}}$. During “equilibrium periods,” the rate of species growth is $D N_{\text{max}}$, as noted above. The ratio $r_c p_c / D$ of these two rates provides the relative importance of speciation for the two situations. For $r_c \approx$ one event per 40 million years, $p_c \approx 3/4$, and a genus with $D =$ one species per 300,000 years, this ratio is only 1% so that speciation during equilibrium periods is much more important than speciation just after a catastrophe. Punctuated periods also occur when a new region of ecosystem phase space becomes available. During this radiation, a genus starts in Stage (2), increases its number of species from $N_{\text{old max}}$ to $N_{\text{new max}}$ via exponential growth, and then arrives at Stage (3). See Figure 2c.

Assuming that species generation proceeds slowly during stable geological periods, one concludes that punctuated equilibrium is relatively unimportant for speciation. However, visually punctuated events are quite striking as Figure 2 shows. They also often mark a significant change in the direction of evolution. Of course, proponents of punctuated equilibrium might argue that new species arise rapidly even during geologically calm periods. On the other hand, opponents of punctuated equilibrium might argue that speciation might be occurring gradually even just after catastrophes. Our mathematical analysis cannot address either of these issues.

VI. An Application of the Analytic Results

Our methods can help to address the controversy over the survival of Cambrian phyla. The issue is whether unusual phyla of the Cambrian Period have survived to the present. S. J. Gould (Gould, 1989) argues that many phyla are unique to the Cambrian Period, while S. Conway Morris (Morris, 1998) takes the opposite view that descendents of most Cambrian phyla have survived to the Recent.

Stage (1) precariousness tells us that D/B of Cambrian phyla consisting of a single species should have gone extinct in a relatively short period of time. Hence, a small but reasonable fraction of the Cambrian phyla should not be associated with lineages
surviving to the present. If the evosystem did not allow more than about 10 members for a particular phylum, then that phylum probably did not survive to the Recent due to Stage (3) contingency. For example, if $B = 1/(100,000 \text{ years})$, $D = 1/(200,000 \text{ years})$, and $N_{\text{max}} = 10$, then $T_e \approx 90$ million years and it is very unlikely that such a phylum survived beyond the Paleozoic Era. However, if $B = 1/(500,000 \text{ years})$, $D = 1/(1 \text{ million years})$, and $N_{\text{max}} = 10$, $T_e \approx 470$ million years and roughly $1/3$ of such phyla that achieved Stage (3) status would survive to the present. This analysis, however, does not include the effects of mass extinctions, which decrease the chances of survival of lineages.

VII. Two-Genera Systems

In the real world, a genus does not evolve in isolation since organisms compete for shared resources. This introduces phylogenetic “interactions”. The simplest way to incorporate these effects is to consider two genera G_a and G_b that share the same ecosystem with a constraint of N_{max} on the combined number of species: $N_a + N_b \leq N_{\text{max}}$. Since the birth and death rates for G_a and G_b may differ, there are four additional parameters: B_a, D_a, B_b, and D_b, where subscripts “a” and “b” distinguish the two genera.

As is the case of the one-genus system, there are usually three stages of evolution. If both genera start with a small number of species, then Stage (1) is characterized by precariousness: Either genus may go extinct by “bad luck.” If this happens to only one of the two genera, the two-genus system becomes a one-genus system and the results above apply. Assuming that both genera survive Stage (1), the genera enter Stage (2), which is characterized by exponential growth: $N_a \sim \exp(G_a t)$ and $N_b \sim \exp(G_b t)$ with $G_a = B_a - D_a$ and $G_b = B_b - D_b$. Both genera expand rapidly until the effect of the constraint on the maximum number of species is felt. At this point, Stage (3) arrives and the two genera compete for limited evosystem phase space.

During Stage (3), anything is possible since a stochastic process is involved: Either G_a or G_b may go extinct first. To address what happens on average, introduce $p_{N_a, N_b}(t)$, which are the probabilities that the evosystem has N_a species of G_a and N_b
species of G_b at time t. The differential equations that determine the time evolution of $p_{N_a,N_b}(t)$ are similar to those to eq.(3) and straightforward to write down but are more complicated due to the presence of two genera and the boundary conditions of $N_a \geq 0$, $N_b \geq 0$ and $N_a + N_b \leq N_{\text{max}}$ that determine the evosystem phase space. Assembling p_{N_a,N_b} into an $(N_{\text{max}} + 1)(N_{\text{max}} + 2)/2$ column vector Ψ, the system of equations can be again written as in eq.(4), and because it is linear, it is exactly solvable once the eigenvalues and eigenvectors are found.

The real parts of all the eigenvalues are positive except for one, which is zero and corresponds to both genera being extinct. The eigenvalues of the single-genus system with parameters B_a, D_a, and N_{max} are also eigenvalues of the two-genus system. The reason is as follows: if $v_N^{(i)}$ is an eigenvector for the single-genus system then $v_{N_1,N_2}^{(i)} = v_{N_1}^{(i)}\delta_{N_2,0}$ and $v_{N_1,N_2}^{(i)} = \delta_{N_1,0}v_{N_2}^{(i)}$ are eigenvectors for the two-genus case. It turns out that there are only two very small eigenvalues, and they are equal to those of the single-genus systems, for which eq.(5) provides accurate approximations.

Let E_{1a} (respectively, E_{1b}) denote the smallest non-zero eigenvalue of H for the one-genus with parameters B_a, D_a and N_{max} (respectively, B_b, D_b and N_{max}). If both genera arrive at Stage (3), then usually the genus with the smallest E_1 eventually dominates with the other genus going extinct first. Therefore quite often, the genus with the smallest death to birth rate D/B survives the longest. Species with “conservative” habits such as burrowing organisms, nocturnal creatures, and life with strong protective features, are more likely to have smaller D/B ratios because they are less susceptible to destructive natural forces such as predation and geological calamities. Therefore, such species often have a better chance to survive for long times. Among such species, some may also have a smaller birth rate B. This can lead to a “tortoise and hare” effect: Imagine a situation for which G_a is bigger than G_b but with E_{1b} less than E_{1a}. Then, on average, genus G_a (“the hares”) more quickly radiate initially but genus G_b (“the tortoises”) usually eventually dominate. The computer simulation in Figure 3a illustrates the effect.

It has been known for a long time that populations of prey and predator can undergo oscillations (Utida, 1957; Leslie & Grower, 1958). The question is whether similar oscillatory effects arise among genera of species of prey and predators. Let the
letter “a” denote a predator genus and let “b” denote a prey genus. Assume that the ecosystem can support up to \(N_{a_{\text{max}}}'\) predator species and \(N_{b_{\text{max}}}'\) prey species, and let the birth and death rates of \(G_a\) and \(G_b\) depend on \(N_a\) and \(N_b\). We choose \(D_b = D_b^0 + D_{ba}N_a\) with \(D_{ba}\) being a constant, \(B_a = B_{ab}N_b\) with \(B_{ab}\) being a constant, and we take the parameters \(D_a\) and \(B_b\) to be independent of \(N_a\) and \(N_b\). The functional forms for \(D_b\) and \(B_a\) are reasonable if the number of prey (respectively predator) individuals is proportional to the number of prey (respectively predator) species. This is more likely than not to be the case, but there may be specific examples when it is not true.

One arrives at the Volterra-Hamiltonian models (Hastings, 1997) by using a “mean field theory” approximation for which the stochastic variables \(N_a\) and \(N_b\) are replaced by the mean values \(\bar{N}_a\) and \(\bar{N}_b\). During Stage (2), the growth rates of \(G_a\) of \(G_a\) and \(G_b\) of \(G_b\) are respectively \(G_a = B_a - D_a \approx B_{ab}\bar{N}_b - D_a\) and \(G_b = B_b - D_b \approx B_b - D_b^0 - D_{ba}\bar{N}_a\). A fixed point exists at \(\bar{N}_b = D_a/B_{ab}\) and \(\bar{N}_a = (B_b - D_b^0)/D_{ba}\). With appropriate initial conditions, this system often exhibits oscillations. Figure 3b shows one of our computer simulations that generates such behavior. The current fossil record is undoubtedly too fragmented to see oscillations in species numbers but, because of the vast richness of ecosystems and life forms during the long history of the Earth, it is likely that there were situations in evolution for which our prey-predator model is sufficiently good and for which such oscillatory effects did occur.

Interestingly, we found that only a limited number of oscillations took place. To determine what happens on average, let \(p_{N_a,N_b}(t)\) be the probability that there are \(N_a\) members of \(G_a\) and \(N_b\) members of \(G_b\) at time \(t\). Then the system of equations for the \(p_{N_a,N_b}\) can again be cast as \(d\Psi/dt = -H\Psi\). Some of the eigenvalues of \(H\) appear in complex pairs, signaling the possibility of oscillatory behavior. However, the real parts of the complex eigenvalues are sizeable compared to the imaginary parts, thereby causing oscillations to damp out. Figure 3c shows the behavior of \(\bar{N}_a(t)\) and \(\bar{N}_b(t)\) for a typical case. We arrive at the perhaps surprising conclusion that, while specific evolutions may exhibit many oscillations, on average this does not happen.
VII. Summary

Our computer simulations reveal that a branch of the evolutionary tree corresponding to a genus has three states: During Stage (1), there is a sizeable chance that the genus goes extinct, Figure 1b being an example. The probability that this happens is given in eq.(2) where N_0, the initial number of species in the genus, is usually one. Stage (2) is characterized by exponential growth in time with $1/(B-D)$ being the time constant. In Stage (3), the number of species lingers near N_{max}. However, this stage is quasi-stable in the sense that extinction will eventually happen but at a long time scale that is equal to $1/E_1$ on average where E_1 is given in eq.(5). Any genus of species is guaranteed to perish at some point.

There are differential equations (eq.(3)) that determine the probability $p_N(t)$ that a genus has N species at time t. For Stage (1), the $p_N(t)$ are well approximated by the $N_{max} = \infty$ case, for which an exact result is provided in eq.(7). For Stage (3), we obtained an accurate but approximate solution (see eq.(6)).

We have identified two new types of contingency: (a) extinction associated with “bad luck” during Stage (1) and (b) extinction associated with the quasi-stability of Stage (3). Note that although a genus will disappear on average at a time given by $1/E_1$, there is great variation in this extinction time for specific cases (that is, one genus may perish at $5/E_1$ while other may only survive as long as $0.1/E_1$).

We have shown that due to Stage (1) contingency, the extinction of a genus during a catastrophic event may not be immediate but may occur over a time scale set by $1/B$. Figure 2a is an example from a computer simulation. Thus, at the genus level, a “smearing in time” arises for catastrophic mass extinctions.

Our analytic and simulation methods produce a new picture of diversity: Diversity should initially increase exponentially and then slowly increase with small setbacks due to mass extinctions. This picture combines features of gradualism and punctuated equilibrium.

Using reasonable values for the time scales of speciation and catastrophes, we show that speciation during “calm” periods is more important than just after a catastrophe. If speciation during a catastrophic rebound is 100% attributable to punctuated
equilibrium and speciation during other times is gradual then the generation of new
species from punctuated periods is roughly two orders of magnitude smaller than
during other times.

There should be situations in Earth’s evolutionary past exhibiting the “tortoise
and the hare” effect. One genus (the hares) initially increase its number of species
rapidly while the other genus (the tortoises) lag behind, but eventually the slower
genus (the tortoises) survive longer than the faster genus (the hares) because the
former has a small species death rate D. Figure 3a illustrates this. We also argue
that, in certain, fairly special situations, oscillations in the number of species of a
genus may occur. See Figure 3b. On average, the oscillatory behavior is damped so
that only a few oscillations occur.

Complex behavior such as chaos cannot arise for averaged quantities: Since all the
above systems governed by H are linear and exactly solvable, they cannot be chaotic,
although the evolution of a particular genus is stochastic and involves considerable
random effects.

Appendix A: A Derivation of the Extinction Probability that Arises
During Stage (1)

Eq.(2) for $N_0 = 1$ can be derived using using the idea of self-similarity. Let
Δt be a small time interval and set $d = D\Delta t$, $b = B\Delta t$ and $u = 1 - b - d$. A
single line may survive k time intervals and then go extinct (which happens with
probability $u^k d$), or it may survive k time intervals and then split into two (which
happens with probability $u^k g$). Summing the single line graph cases gives $d/(1 - u)$
since k may range from 0 to ∞. When a single line splits into two, two copies of
the original system are obtained. The probability that both lines go extinct is P_e^2.
Summing the graphs for the splitting case gives $P_e^2 g/(1 - u)$. Combining, one obtains
$P_e = d/(1 - u) + P_e^2 g/(1 - u)$. Solving this quadratic equation for P_e generates the
result for P_e given in Section III.

Appendix B: A Derivation of the Approximate Asymptotic Solution

The late time behavior of the $p_N(t)$ is governed by the eigenvalues E_i of H in eq.(4)
with the smallest real parts. We numerically calculated the right-side eigenvalues of
and discovered that there are only two relevant ones no matter what are the values of B, D and N_{max}. For one-genus systems, all eigenvalues are real and non-negative (the latter must be true if probability is to be conserved). One eigenvalue $E_0 = 0$ corresponds to extinction; its eigenvector $v^{(0)}$ is $(1, 0, 0, \ldots, 0)$ and corresponds to $p_N = \delta_{0N}$. The other small eigenvalue E_1, which is given in eq.(5), was obtained by computing the characteristic equation $det(H - I \lambda) = 0$ and neglecting terms of order λ^2 and higher. This linearization is justified because λ is small. Even after this simplification, it is not easy to find the solution $\lambda (\equiv E_1)$ because the determinants can be sizeable and results are fairly complicated functions of B, D and N_{max}. We proceeded by obtaining the solutions for $N_{max} = 2$ through 6. We noticed patterns in various coefficients that led to the recursion relations for $a_j^{(N_{max})}$ given below eq.(5). We then checked “our guess” for $N_{max} = 7$ and 8 to confirm our formula.

To obtain the approximate eigenvalue $v^{(1)}$, use the result for E_1 in eqs.(3) and (4) and solve the equation set for the p_N starting with $N = N_{max}$ and working down to $N = 1$. One finds the result for $v^{(1)}$ given above eq.(6). Saturating the general solution with the two smallest eigenvalues produces the form of the general solution:

$$p_N(t) \approx c^{(0)}v^{(0)}_N \exp(-E_0 t) + c^{(1)}v^{(1)}_N \exp(-E_1 t) .$$ (8)

It remains to determine $c^{(0)}$ and $c^{(1)}$. As explained in Sect.IV, $c^{(0)} = 1$. Let t_{asy} be the time at which Stage (3) is established. Beyond this time, $p_0 \approx (D/B)^{N_0}$. Substituting this result into the approximate solution, one finds

$$c^{(1)} \approx \left(\left(\frac{D}{B} \right)^{N_0} - 1 \right) \frac{\exp(E_1 t_{asy})}{v^{(1)}_0} .$$

To determine t_{asy}, note that it is of order $1/(B-D)\ln[N_{max}/N_0]$ due to the exponential growth behavior of Stage (2). We found by comparison with numerical solutions that $t_{asy} = 7/4\ln[N_{max}/N_0]/(B - D)$ produced good results. Although $7/4$ might not be precisely the optimal choice for the coefficient, agreement at about the 1% occurs with this value.

Acknowledgments

We thank Ravi Iyengar for assistance. This work was supported in part by the National Science Foundation under the grants PHY-9420615 and PHY-0098840, by
the Aaron Diamond Foundation, and by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy under contract DE-AC03-76SF00098.

REFERENCES

Alvarez, L., Alvarez, W., Asaro, F. & Michel, H. V. (1980), “Extraterrestrial Cause for the Cretaceous-Tertiary Extinction”, Science 208, 1095-1108.

Archibald, J. D. (1981), “The Earliest Known Palaeocene Mammal Fauna and Its Implication for the Cretaceous-Tertiary Transition”, Nature 291, 650-652.

Cheetham, A. H. (1986), “Tempo of Evolution in a Neogene Bryozoan: Rates of Morphologic Change Within and Across Species Boundaries”, Paleobiology 12, 190-202.

Conway Morris, S. (1998), The Crucible of Creation: The Burgess Shale and the Rise of Animals (Oxford University Press, Oxford).

Eldredge, N. & Gould, S. J. (1972), in Models in Paleobiology, ed. T. J. M. Schopf, (Freeman Cooper, San Francisco), 82-115.

Erwin, D., Valentine, J., and Sepkoski, J. (1988) “A Comparative Study of Diversification Events”, Evolution 41, 1177-1186.

Foley, P. (1997), “Extinction Models for Local Populations” in Metapopulation Biology, ed. Hanski, I. & Gilpin, M. E., 215-245, (Academic Press) and references therein.

Gould, S. J., Raup, D. M., Sepkoski, J. J., Schopf, T. J. M. & Simberloff, D. S. (1977), “The Shape of Evolution: A Comparison of Real and Random Clades”, Paleobiology 3, 23-40.

Gould, S. J. (1989), Wonderful Life (W. W. Norton, New York).

Gould, S. J. & Eldredge, N. (1993), “Punctuated Equilibrium Comes to Age”, Nature 366, 223-227.

See for example Hastings, A. (1997), Population Biology (Springer Verlag, New York).

Hickey, L. J. (1981), “Land Plant Evidence Compatible with Gradual, Not Catastrophic Change at the End of the Cretaceous”, Nature 292, 529-531.
Jablonksi, D. (1995), “Extinctions in the Fossil Record”, in Extinction Rates, ed. Lawton, J. & May, R.M., 1-21, (Oxford University Press) and references therein.

Jackson, J.B.C. and A.H. Cheetham (1990), “Evolutionary Significance of Morphospecies: a Test with Cheilostrome Bryozoa”, Science 248, 579-583.

Leslie, P.H. & Grower, J.C. (1958), “The Properties of a Stochastic Model for the Predator-Prey Types of Interactions Between Two Species”, Biometrika 57, 219-234.

MacArthur, R.H. (1972), Geographical Ecology (Harper & Row); see the Appendix on page 121.

MacFadden, B.J. & Hulbert, Jr., R.C. (1986), “Explosive Speciation at the Base of the Adaptive Radiation of Miocene Grazing Horses”, Nature 336, 466-468.

May, R.M., Lawton, J. & Stack, N.E. (1995), in Extinction Rates, ed. Lawton, J. & May, R.M., (Oxford University Press) 1-21.

McCune, A.R. (1997), “How Fast is Speciation” in Molecular Evolution and Adaptive Radiation, ed. by Gvnish T. J., and Sytsma, K. J., (Cambridge University Press).

Nisbet, R.M. & Gurney, W.S.C. (1982), Modelling Fluctuating Populations, see Chapter 6, (John Wiley & Sons).

Renshaw, E. (1991), Modelling Biological Populations in Space and Time (Cambridge University Press, Cambridge).

Sepkoski, J.J. (1993), “Ten Years in the Library: New Data Confirms Paleontological Patterns”, Paleobiology 19, 43-51.

Sloan, R.E., Rigby Jr., J.K., Van Valen L.M. & Gabriel, D. (1986), “Gradual Dinosaur Extinction and Simultaneous Ungulate Radiation in the Hell Creek Formation”, Science 232, 629-33.

Sepkoski, J.J. (1978), “A Kinetic Model of Phanerozoic Taxonomic Diversity I: Analysis of Marine Orders, Paleobiology 4, 223-251.

Stanley, S.M. (1979), Macroevolution: Patterns and Process (W. H. Freeman).

Stanley, S.M., and Yang, X. (1987), “Approximate Evolutionary Stasis for Bivalve Morphology over Millions of Years: a Multivariate, Multilineage Study”, Paleobiology 13, 113-139.

Utida, S. (1957), “Cyclic Fluctuations of Population Density Intrinsic to the Host-parasite System”, Ecology 38, 442-429.
Valentine, J. (1969), “Patterns of Taxonomic and Ecological Structure of the Shelf Benthos During Phanerozoic Time”, Paleontology 12, 684-709.

Valentine, J., and Erwin, D. (1985) “Interpreting Great Developmental Experiments: The Fossil Record”, in Development as an Evolutionary Process ed. Raff, R., A. and Raff, E.C., (Alan R. Liss, Inc., New York) 71-107.

Figure Captions

Figure 1 Single Species Simulations with Parameters $b = 0.25$, $d = 0.1$, $u = 0.65$ and $N_{\text{max}} = 15$.

a) The Development of a Genus Showing the Three Stages.

b) A Genus that Does Not Survive Stage (1).

Figure 2 Simulations with Punctuated Equilibrium with Parameters $b = 0.25$, $d = 0.1$, and $u = 0.65$.

a) “Slow Extinction” after a Catastrophe. A catastrophic event with $p_c = 0.9$ occurs as indicated, but the genus does not survive Stage (1) and goes extinct after a relatively long time period. N_{max} is 15.

b) The Usual Effects of a Catastrophe. A catastrophic event with $p_c = 0.9$ occurs as indicated, and the genus survives Stage (1) eventually filling the evosystem phase space. The simulation was a continuation of that in Figure 2a.

c) The Effects of New Phase Space.

At t_{exp}, N_{max} goes from 10 to 20 leading to a radiation.

Figure 3 Simulations with Two Genera.

a) The “Tortoise and the Hare” Effect. G_a, the “aggressive” genus, initially dominates but, on the long run, G_b, the “conservative” genus, survives while genus G_a goes extinct. The parameters for the simulation are $N_{\text{max}} = 15$, $b_a = 0.45$, $d_a = 0.15$, $u_a = 0.40$, $b_b = 0.20$, $d_b = 0.05$, $u_b = 0.75$. For clarity, the evolution between times 20 and 180 is not shown.

b) Predator/Prey Oscillations. The number of predators and prey species oscillate. The curve for the predators leads the curve for the prey. The genus of prey goes extinct around $t = 230$, and the extinction of the genus of predators soon follows. The parameters are $N_{\text{max}}^a = N_{\text{max}}^b = 40$, $d_a = 0.1$, $b_{ab} = d_{ba} = 0.00625$, $b_b = 0.101$, and
\(d^0_b = 0.001 \). The lower case “\(b \)” and “\(d \)” indicate discrete versions of the continuous birth and death rate parameters “\(B \)” and “\(D \).

Damped Predator/Prey Oscillations. The average number of predators \(\bar{N}_a \) and prey \(\bar{N}_b \) undergo an initial oscillation, but eventually the they exhibits smooth behavior. The parameters are \(N^a_{\text{max}} = N^b_{\text{max}} = 40, D_a = 2.0, B_{ab} = D_{ba} = 0.25, B_b = 2.5, \) and \(D^0_b = 0.5. \)
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.
This figure "figures1ab.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0512002v1
This figure "figures2a.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0512002v1
This figure "figures2b.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0512002v1
This figure "figures2c.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0512002v1
This figure "figures3a.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0512002v1
This figure "figures3bc.jpg" is available in "jpg" format from:

http://arXiv.org/ps/q-bio/0512002v1