Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula

Kyuhyun Choi1, Youngin Lee1, Changwoo Lee1, Seokheon Hong2, Soonje Lee1, Shin Jung Kang2 & Ki Soon Shin1

The medial habenula (MHb) plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal. The MHb receives GABAergic input from the medial septum/diagonal band of Broca (MS/DB), yet the synaptic mechanism that regulates MHb activity is unclear. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter activating both GABA_A receptors and GABA_B receptors. Depending on intracellular chloride concentration, however, GABA_A receptors also function in an excitatory manner. In the absence of various synaptic inputs, we found that MHb neurons displayed spontaneous tonic firing at a rate of about ~4.4 Hz. Optogenetic stimulation of MS/DB inputs to the MHb evoked GABA_A receptor-mediated synaptic currents, which produced stimulus-locked neuronal firing. Subsequent delayed yet lasting activation of GABA_B receptors attenuated the intrinsic tonic firing. Consequently, septal GABAergic input alone orchestrates both excitatory GABA_A and inhibitory GABA_B receptors, thereby entraining the firing of MHb neurons.

The MHb plays an important role in nicotine-related behaviors such as nicotine aversion and withdrawal1–3. Neurons in the ventral two-thirds of the MHb comprise cholinergic subdivision of the nucleus: These neurons densely express cholineacetyltransferase (ChAT) and nicotinic acetylcholine receptors4,5. Typically, they exhibit spontaneous tonic firings that are not synchronized with other adjacent neurons4. A few factors have been known to affect the tonic firings of MHb neurons. Ex-vivo application of nicotine increases firing frequency via neurokinin-2 signaling6. In addition, HCN channels appeared to be involved in the tonic firing4. More importantly, it was found that changes in MHb neuronal tonic firing is associated with the somatic and affective signs of nicotine withdrawal4. GABA, glutamate and ATP are known to be released from afferents to the MHb. Retrograde labeling revealed that MS/DB is a main GABAergic source and the triangular septum that comprises the posterior septal structure is glutamatergic and purinergic sources of the MHb7–9.

In the mammalian brain, GABA is known to inhibit neuronal activity via both GABA_A and GABA_B receptors. Ionotropic GABA_A receptors activation elicits inward Cl⁻ flows, which inhibit neuronal activity by generating hyperpolarizing inhibitory postsynaptic currents (IPSCs). GABA_B receptors, a member of inhibitory G-protein coupled receptors, stabilize neuronal activity through a couple of different pathways. For instance, GABA_B receptors activate Go_α proteins, which in turn inhibit adenylyl cyclase via Go_α or gate ion channels via G_βγ10,11. A growing body of evidence suggests that depending on intracellular Cl⁻ concentration, neurons can be depolarized by GABA-generating inward currents through GABA_A receptors. In the dentate gyrus, a well-known neurogenic region, neural stem cells are depolarized by GABA_A receptors12–15. In the developing brain, GABA_A receptors are excitatory until 2 postnatal weeks15. Recurrent seizures induce excitatory GABA signal by downregulating K⁺/2Cl⁻ cotransporter (KCC2)16,17 and upregulating Na⁺/K⁺/2Cl⁻ cotransporter 1 (NKCC1)18. In an acute stress mouse model, noradrenergic receptor-mediated KCC2 downregulation removes GABA_A receptor-mediated synaptic inhibitory constraint of the parvocellular neuron in the hypothalamus18. Therefore, under the certain circumstances, GABA plays as an excitatory neurotransmitter.
Interestingly, it has been known that lack of KCC2 in MHb neurons results in a high internal chloride concentration\(^20,21\). Therefore, GABAergic transmission in the MHb may function in excitatory and inhibitory manners via GABAA receptors and GABAB receptors, respectively. Given that MHb neurons generate spontaneous tonic firing\(^4,20\), we asked whether this rhythmic firing can be modulated by MS/DB GABAergic inputs. In the present study, exploiting the optogenetic controls of MS/DB input to the MHb, we showed that GABA released from MS/DB afferents entrains MHb neuronal firing by orchestrating both excitatory GABAA receptors and inhibitory GABAB receptors.

Results

Spontaneous tonic firing in MHb neurons.

MHb neurons lack KCC2 expression\(^20,21\). Given that KCC2 is critical for extruding Cl\(^-\) in adult neurons\(^15,22\), intracellular Cl\(^-\) concentration in MHb neurons is likely to be higher. Therefore, to obtain stable intrinsic firing frequency without disturbing the intracellular ionic composition, loose-seal cell-attached recordings were made with aCSF-filled patch pipettes\(^23\). Recordings were performed at the ventral region of the MHb as shown in Fig. 1A and stable action currents with average firing frequency of \(4.36 \pm 1.06\) Hz were consistently observed. When we measure any time-course change of the firing rates, the paired Student's t-test showed no significant difference between the initial value (0–5 min) and late value (15–20 min) (aCSF: \(99.99 \pm 6.57\%\) compared with baseline, \(n = 7\); Fig. 1B), indicating that stable recordings can be maintained for at least 20 min. The MHb receives GABAergic, glutamatergic and purinergic inputs\(^7–9\). In addition, the MHb has marked expression of nicotinic receptors\(^2,5\). Thus, we first examined whether the synaptic inputs are involved in the tonic firing of MHb neurons. Inhibition of glutamatergic (AMPA receptor antagonist, CNQX 10 \(\mu\)M; NMDA receptor antagonist, D-APV 30 \(\mu\)M), cholinergic (nACh receptor antagonist, mecamylamine 10 \(\mu\)M), purinergic (P2X receptor antagonist, PPADS 50 \(\mu\)M) or GABAergic (GABAA receptor antagonist, picrotoxin 100 \(\mu\)M; GABAB receptor antagonist, CGP52432 10 \(\mu\)M) inputs did not modify the spontaneous tonic firing (Fig. 1).

When the firing rates recorded 10–15 minutes after the drug treatments were compared with baseline firing rates (0–5 min), the paired Student's t-test revealed no significant effect of treatments on percent changes in the firing rates (CNQX and D-APV: \(98.88 \pm 1.70\%\), \(n = 6\); mecamylamine: \(107.60 \pm 3.54\%\), \(n = 5\); PPADS: \(107.6 \pm 3.54\%\), \(n = 6\); picrotoxin: \(100.70 \pm 6.54\%\), \(n = 4\); CGP52432: \(107 \pm 3.69\%\), \(n = 5\)). The results demonstrate that spontaneous tonic firing is independent of these synaptic inputs.

Now, we speculated that activation of GABAA receptors elicits excitatory postsynaptic currents (EPSCs) in MHb neurons due to the lack of KCC2 proteins thereby enhances MHb neuronal activity. As expected, muscimol (10 \(\mu\)M), a GABAA receptor agonist, showed significant effect on firing frequency (\(F_{1,4} = 65.75, P = 0.0013\), one-way repeated measure ANOVA). As shown in Fig. 2A, tonic firing was briefly increased \(185.3 \pm 19.8\%\) in the early stage of muscimol application (\(P < 0.05\) compared with baseline firing frequency, Bonferroni's post-hoc test) and quickly became quiescent (\(P < 0.001\) compared with baseline firing frequency, Bonferroni's post hoc test).

Figure 1. Tonic firing is intrinsically generated in the MHb. (A) Representative image showing recording site from acute brain slice visualized using infrared-DIC optics. The yellow arrowhead points to the tip of patch pipette. (B) Time course of tonic firing with loose-seal cell-attached recording in aCSF (\(n = 7\)). Inset shows representative traces of tonic firing recorded at time indicated by the numbers (Scale bars, 100 pA and 100 ms). (C) Tonic firing was not changed in the presence of CNQX (10 \(\mu\)M) and APV (30 \(\mu\)M), \(n = 6\). (D) Tonic firing was not changed in the presence of mecamylamine (10 \(\mu\)M), \(n = 5\). (E) Tonic firing was not changed in the presence of PPADS (50 \(\mu\)M), \(n = 6\). (F) Tonic firing was not changed in the presence of picrotoxin (100 \(\mu\)M), \(n = 4\). (G) Tonic firing was not changed in the presence of CGP52432 (10 \(\mu\)M), \(n = 5\).
This might be due to the sodium channel inactivation as a result of prolonged membrane depolarization caused by lasting excitatory GABA-mediated currents.

Meanwhile, GABA_B receptor is G-protein coupled receptor that associates with pertussis toxin sensitive G_{i/o} family, that in turn regulates specific ion channels and cAMP cascades^{10,11}. Consequently, activation of GABA_B receptors stabilizes neuronal activity. As shown in Fig. 2B, baclofen (10μM), a GABA_B receptor agonist, markedly blocked MHb neuronal firing (9.83 ± 4.32% compared with baseline firing rates, p < 0.0001, n = 5, paired t-test). The result is consistent with the well-known inhibitory effect of GABA_B receptors on neuronal excitability. Taken together, while GABA may not be involved in basal tonic firing of MHb neurons (Fig. 1), activation of GABA transmission would actively modify neuronal firing. Therefore, we next tested the possibility that GABAergic inputs to the MHb efficiently regulate neuronal tonic firing in the MHb.

Figure 2. GABA_A and GABA_B receptors regulate MHb neuronal firing in opposite ways. (A) Muscimol (10μM) briefly increased tonic firing and then completely abolished it. Left: Time-course change in firing frequency. Inset shows representative traces recorded at time indicated by the numbers. Scale bars represent 100 pA and 100 ms, respectively. Right: Percent change in firing frequency was compared with the baseline value obtained as in the left panel. Asterisks denote significant difference compared with the baseline value. *P < 0.05 and **P = 0.0013, repeated measure one-way ANOVA and Bonferroni's post-hoc test, n = 5. (B) Baclofen (10μM) completely abolished tonic firing. Left: Time-course change in firing frequency. Inset shows representative traces recorded at time indicated by the numbers. Scale bars, 100 pA and 100 ms. Right: Percent change in the firing frequency was compared with the baseline value. Asterisks denote significant difference compared with the baseline value. *P < 0.0001, paired Student's t-test, n = 5.
The MS/DB GABAergic input to the MHb. Previous histological study using retrograde tracers show that GABAergic neurons in MS/DB project to the MHb. However, functional GABAergic connections between these two regions have not been examined. Using optogenetic approaches, we tried to elucidate the functional properties of the synapses connecting between the MS/DB and the MHb. We delivered AAV expressing Chronos-GFP into the MS/DB (Fig. 3A). Four to six weeks post infection, marked GFP signals were observed in the injection site (Fig. 3B). In addition, significant GFP signals were also apparent in the ventral MHb (Fig. 3C). As expected, the GFP-positive axon collaterals from the MS/DB showed the expression of vGAT1, a GABAergic presynaptic marker (Fig. 3D).

We next examined functional synaptic connectivity of the MS/DB GABAergic input to the MHb. Whole-cell recordings were obtained from MHb neurons and synaptic neurotransmitter release, putatively GABA, was triggered by illuminating Chronos with a blue LED (470 nm, 5-ms duration). Light stimulation produced inward current at -70 mV (Fig. 4). As expected, picrotoxin (100 μM) dramatically abolished the light-evoked currents ($8.97 \pm 3.54\%$ compared with baseline currents, $P < 0.0001$, paired Student’s t-test, $n = 4$). These data indicate that GABA released from MS/DB inputs induces GABAα receptor-mediated currents in the MHb. However, the light-evoked currents were unchanged with AMPA receptor antagonist (CNQX 10 μM: $114.0 \pm 21.39\%$ compared with baseline currents, $P = 0.55$, paired Student’s t-test, $n = 5$). In addition, non-specific nAChR blocker did not modify the light-evoked currents (mecamylamine 10 μM: $108.2 \pm 13.43\%$ compared with baseline, $P = 0.57$, paired Student’s t-test, $n = 5$). Interestingly, P2X receptor antagonist, PPADS (50 μM), slightly but significantly decreased the currents ($77.76 \pm 3.34\%$ compared with baseline, $P = 0.0038$, paired Student’s t-test, $n = 5$). At present, it remains to be examined how purinergic transmission exerts its effect on GABAergic synaptic transmission.

Next we measured the reversal potential of the GABAα receptor-mediated currents ($E_{GABA\alpha}$) elicited by light stimulation. To preserve intracellular Cl^{-} concentration, gramicidin perforated patch recordings were performed. Figure 4E shows representative current traces evoked by a brief light stimulation (470 nm, 10-ms duration) at different membrane potentials: The light-evoked Cl^{-} currents were reversed in polarity between -40 mV and -30 mV. We then constructed $I-V$ plots for the Cl^{-} currents and used linear regression analysis to measure $E_{GABA\alpha}$ (Fig. 4F). $E_{GABA\alpha}$ was estimated to be -33.27 ± 1.43 mV ($n = 4$), which was more depolarized than resting membrane potential of MHb neurons (-44.50 ± 1.29 mV, $n = 12$). Therefore, activation of GABAα receptors is expected to produce EPSCs in MHb neurons.

Although it has been reported that GABAα receptor signaling is absent in the MHb, our data clearly verify the functional GABAα receptor-mediated synapses in the MHb. As we assessed the expression of mRNA encoding GABAα receptor subtypes in the MHb, multiple subtypes appeared to be expressed in the MHb (Supplementary information Fig. S1).

Entrainment of MHb neuronal firing via both GABAα and GABAβ receptors. Our immunohistochemical and optogenetic approaches demonstrate that the MS/DB exerts GABAergic transmission on MHb neurons. Since agonists for GABAα receptors increased MHb neuronal firing (Fig. 2A) and $E_{GABA\alpha}$ was more depolarized than resting membrane potential of MHb neurons, we tested whether the MS/DB GABAergic inputs can generate firing in MHb neurons. To this end, we delivered light stimulus (470 nm, 5 ms) to activate Chronos...
Figure 4. Optogenetic stimulation of Chronos-expressing MS/DB afferents evoked GABA_A receptor-mediated currents in the MHb. (A–D) Light stimulation (470 nm, 5 ms indicated by the blue bar) evoked postsynaptic current at −70 mV in whole-cell mode. Representative light-evoked current traces (top, scale bars: 50 pA and 10 ms) and time course changes of the light-evoked currents (bottom) upon treatments with various receptor antagonists were shown. (A) Picrotoxin, 100 μM, n = 4; (B) CNQX, 10 μM, n = 5; (C) mecamylamine, 10 μM, n = 5; (D) PPADS, 50 μM, n = 5; ***P < 0.0001 and **P = 0.0038, paired Student’s t-test. (E,F) Gramicidin perforated patch recordings revealed depolarized E_{GABA} of MHb neurons. Representative recordings of the light-evoked (470 nm, 10 ms indicated by the blue bar) currents at the indicated membrane potentials shown to the right of each trace (E). I-V relationship of normalized light-evoked currents and the linear regression fit to the data points, n = 4 (F).
expressed in MS/DB afferents upon loose-patch cell-attached recordings. Raster plot, corresponding normalized firing frequency and z-score profiles demonstrated that a single light stimulus reliably induced neuronal firing with the kinetics not different from those of the spontaneous tonic firing (Fig. 5A inset, Pearson correlation coefficient $r = 0.95, P < 0.0001$). A light stimulus frequently triggered a brief burst (Fig. 5A), which might be attributed to the light-evoked strong depolarization. Given the high input resistance of MHb neurons ($1.29 \pm 0.11 \, \text{G} \Omega, n = 12$), we expected that EPSPs generated by light-activated GABA$_A$ currents are sufficient to trigger action potentials in MHb neurons. Indeed, the light-induced firing was completely abolished by picrotoxin (Fig. 5B).

Meanwhile, a light stimulus not only induced immediate firing, but also generated delayed but prolonged quiet periods when spontaneous tonic firing was suppressed (as judged by negative values of z-score, Fig. 5A). Intriguingly, the suppression of tonic firing was still maintained in the presence of picrotoxin. This might be due to the delayed but lasting activation of GABAB receptors. Indeed, CGP52432 rendered the quiet period less prominent without affecting light-induced firing (Fig. 5C). Consequently, GABAA and GABAB receptors cooperatively participate in resetting the intrinsic tonic firing of MHb neurons.

We next sought to establish whether various frequency activation of GABAergic input from the MS/DB can affect firing output in MHb neurons. When light with various frequencies (1–10 Hz) were applied, raster plot and corresponding z-score profile showed that MHb neurons reliably followed the stimulation frequency in a stimulus-locked manner, regardless of their original tonic firing frequency (Fig. 6A). To ensure the involvement of both GABAA and GABAB receptors on the firing entrainment, we examined the effects of picrotoxin and CGP52432. As expected, treatment of picrotoxin completely failed light-evoked firing, consequently abolished the firing entrainment (Fig. 6B). Instead, prominent light-induced suppression of intrinsic tonic firing was apparent in the presence of picrotoxin, which might be due to the activation of GABA B receptors alone. In contrast, light stimulations in the presence of CGP52432 induced limited entrainment: light elicited GABA A receptor-dependent firing, with less suppressed intrinsic tonic firings between stimulations (Fig. 6C). For this reason, CGP52432 rendered low-frequency entrainment (1 and 2 Hz) far less accurate. In conclusion, GABAA and GABAB receptors activated by GABA released from MS/DB afferents entrain MHb neuronal firing by exerting opposite effects on neuronal activity.

Discussion

In the present study, we have demonstrated functional GABAergic synaptic connectivity between the MS/DB and the MHb. More importantly, we revealed that the GABAergic transmission alone is sufficient to entrain rhythmic firing in the MHb. We hope that our findings will give insight to understand MHb activity-mediated behaviors.

It has been known that MHb neurons possess spontaneous tonic firing19,20. A recent study revealed that MHb neurons are equipped with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that confer them with intrinsic rhythmic firing9. Indeed, the tonic firing is maintained without synaptic input as shown in this study (Fig. 1) as well as the previous observations19,20. This intrinsically generated tonic firing was dramatically modified following the activation of GABA A and GABA B receptors using the agonists, muscimol and baclofen, respectively: GABA A receptor activation by muscimol triggered robust firings in MHb neurons, whereas GABA B receptor activation by baclofen completely abolished the firings (Fig. 2). Previous study also reported GABA A excitation in the MHb from juvenile rats (18- to 25-day old)20. Since GABA A receptors are excitatory until 2...
postnatal weeks in the developing brain, the possibility was raised that the GABAergic excitation in the MHb only reflects the immature property of the developing brain. However, we consistently observed GABAergic excitation in the MHb obtained from adult mice (10–16 weeks), indicating that excitatory GABAergic activity is not attributed to immaturity of MHb neurons.

Both input and output pathways of the MHb have been well established. Nevertheless, many functional studies related with the MHb have been focused on the output pathway or the habenular nucleus itself. Here we focused on MS/DB afferents to the MHb to establish functional input pathway of the MHb. It has been reported that the MHb received GABAergic projection from MS/DB using a retrograde tracer. Consistently, we observed that Chronos-GFP-expressing MS/DB afferents express vGAT1, a GABAergic presynaptic marker. Furthermore, light stimulation of Chronos-GFP-expressing MS/DB afferents evoked picrotoxin-sensitive GABA A currents, indicating functional synaptic connectivity of the GABAergic MS/DB afferents to the MHb. On the contrary, a previous study demonstrates that β2/3 subtypes of GABAA receptors are not expressed in the MHb and GABA application evoked no measurable currents in the MHb. Our study, however, identified GABAA receptor subtypes differentially expressed in the MHb using RT-PCR (Supplementary Fig. S1). More importantly, optogenetic stimulation evoked picrotoxin-sensitive GABAA currents in MHb neurons (Fig. 4).

Meanwhile, it has been reported that GABA A receptors are expressed substantially in MHb (Allen institute, experiment number 68862120, 71247614). Consistent with these observations, we found that baclofen completely abolished spontaneous tonic firing (Fig. 2B). Considering that GABA A and GABA B receptors exert the opposite effects on the activity of MHb neurons, we supposed that GABAergic MS/DB input alone entrains thereby synchronize MHb neuronal firings. We found that GABA optogenetically released from MS/DB afferents immediately elicited firing via fast activation of GABA A receptors and subsequently suppressed intrinsic tonic firings via delayed but lasting activation of GABA B receptors (Fig. 5). As a result, GABAergic MS/DB input entrained firing of MHb neurons (Fig. 6).

The MS/DB plays a key role in generating theta oscillations in the hippocampus. And most MS/DB GABAergic neuronal firing is phase locked to hippocampal theta in vivo. Intriguingly, hippocampal input to the MS/DB preferentially generates rhythmic firing of GABAergic neurons in the MS/DB. In brain slices ex vivo, spontaneous tonic firings of MHb neurons are not synchronized with other adjacent neurons. Taking into account the facts that MS/DB GABAergic neuronal firing is tuned to theta frequency in vivo and that GABAergic MS/DB input entrains neuronal firing in the MHb (Fig. 6), MS/DB input may synchronize MHb

Figure 6. GABAergic MS/DB inputs entrained MHb neuronal firing. Light-stimulation (470 nm, 5 ms indicated by the blue bars) with various frequencies (1 Hz, 2 Hz, 5 Hz and 10 Hz for 3 sec) evoked neuronal firing in loose-seal cell-attached mode. (A) Light-stimulation generated the firing entrained to the stimulation frequency. Top: Representative raster plot from 3 cells as indicated by the numbers on the right (10-ms bin); bottom: Corresponding z-score profile (1 Hz, n = 40 epochs from 10 cells; 2 Hz, n = 40 epochs from 10 cells; 5 Hz, n = 28 epochs from 7 cells; 10 Hz, n = 36 epochs from 9 cells). (B) In the presence of picrotoxin (100 μM), light stimulation did not produce firing entrainment (1 Hz, n = 28 epochs from 7 cells; 2 Hz, n = 28 epochs from 7 cells; 5 Hz, n = 20 epochs from 5 cells; 10 Hz, n = 28 epochs from 7 cells). (C) In the presence of CGP52432 (50 μM), light stimulus induced entrainment without elimination of spontaneous tonic firing (1 Hz, n = epochs from 8 cells; 2 Hz, n = 28 epochs form 7 cells; 5 Hz, n = 28 epochs from 7 cells; 10 Hz, n = 32 epochs from 8 cells).
neuronal firing locked to theta rhythm in vivo. MHb neurons mainly project to the interpeduncular nucleus (IPN)\(^{19,20,25,26}\). Supposedly, unsynchronized intrinsic tonic firing in MHb neurons per se may produce subthreshold postsynaptic activity in IPN neurons. Now the synchronized MHb neuronal firing by MS/DB input may cause postsynaptic spatial summation, allowing IPN neurons to generate faithful suprathreshold activity.

Several studies have revealed that the MHb-IPN pathway play roles in nicotine-related behaviors. Activation of IPN GABAergic neurons that receive direct projection from the MHb triggers physical nicotine withdrawal symptoms\(^{26}\). Mice lacking nAChR α5 subunit exhibit decreased MHb input to IPN, which results in attenuated nicotine aversion\(^{1}\). Conversely, elevated expression of the nAChR β4 subunit increases nicotine aversion in mice by enhancing activity of the MHb to the IPN\(^{2}\). Experiments in animal models have demonstrated directly that the MHb-IPN pathway participates in nicotine withdrawal\(^{27}\). Therefore, it is plausible that MS/DB-MHb pathway also plays a role in nicotine-related behaviors because synchronized MHb neuronal firing would reliably activate IPN neurons. Although behavioral relevance still remains to be investigated, to our best knowledge, we have first demonstrated the MS/DB GABAergic entrainment of MHb neuronal firing.

Material and Method

Animals. Animal maintenance and treatment were carried out in accordance with the Animal Care and Use Guidelines issued by Kyung Hee University, Korea. All experiments with mice were performed according to the protocols approved by the Institutional Animal Care and Use Committee of Kyung Hee University (Approved protocol No. KHU(SE)-13-031, KHU(SE)-15-026). Male C57BL/6 mice (6–16 weeks of age, Orient Bio) were used for all experiments. Mice were group-housed on a 12-h:12-h light:dark cycle (light on 07:00) and had free access to food and water. The animals were held in a chamber with 20–24 °C, 30–60% humidity.

Surgery. All streptotoxic injections were performed under xylazine (5 mg/kg), tiletamine (60 mg/kg) and zolazepam (60 mg/kg) anesthesia using streptotoxic frame (Stoelting). For virus injections, viral stocks (0.5 μL, AAV/Syn:Chrons-GFP, UNC vector core) were injected in the MS (AP +0.75, ML –0.05, DV –4.30) and DB (AP +0.75 mm, ML –0.45 mm, DV –5.30 mm) using Picospritzer III (Parker) at a slow rate (50 nl/min). Mice were then allowed to recover for 4–6 weeks until further experiments.

Acute Slice preparation. Mice were deeply anesthetized and performed cardiac perfusion with ice-cold aCSF of the following composition (in mM): 124 NaCl, 2.5 KCl, 1.2 NaH₂PO₄, 24 NaHCO₃, 5 HEPES, 13 glucose, 2 MgSO₄, 2 CaCl₂. After perfusion, the brain was quickly removed, submerged and coronally sectioned on a vibratome (VT1000s, Leica) to 250–300 μm in ice-cold aCSF. Slices transferred quickly to NMDG based recovery solution at 32 °C of the following composition (in mM): 92 NMDG, 2.5 KCl, 1.2 NaH₂PO₄, 30 NaHCO₃, 25 HEPES, 25 glucose, 5 sodium ascorbate; 2 thiourea, 3 sodium pyruvate, 10 MgSO₄, 0.5 CaCl₂. After 10–12 min recovery periods, slices were transferred to room temperature aCSF chamber (20–22 °C) and left at least for 1 hour for the further recovery.

Electrophysiology. Electrophysiological recordings were made using an EPC10 amplifier (HEKA elektronik). Patch-clamp pipettes were pulled (PP-83; Narishige) from borosilicate glass (Warner Instruments) and had a tip resistance of 3–6 MΩ when filled with internal solution. After recovery periods, acute slices were then transferred to the recording chamber, were fully submerged at a flow rate of 1.4–1.6 mL/min and maintained at 30 ± 1 °C in aCSF. Cells were visualized using epifluorescence and infrared differential interference contrast (IR-DIC) video microscopy with a 4X0 magnification water-immersion objective (BX51WI, Olympus). Tonic firings were measured in a loose cell-attached mode (8–25 MΩ) to prevent internal dialysis and aCSF was used for pipet solution. Chronos was stimulated by brief 470 nm light (5-ms duration) through the optic fiber (NA 0.35) using light-emitting diode (LED; Doric lens, LEDC2) powered by an LED driver (Thorlabs, LEDD1B) under control of pulse generator (AMPl, Master-8). After the recordings, some slices were fixed in 4% paraformaldehyde in PBS to perform immunohistochemistry. Synaptic currents evoked by light were recorded at –70 mV in a whole-cell mode using pipet solution containing (in mM): 100 K-Gluconate, 20 KCl, 0.2 EGTA, 10 Na₄-phosphocreatine, 4 MgATP, 0.3 Na,GTP; pH was adjusted to 7.2–7.3 with KOH. Pipet solution for gramicidin perforated patch recording containing (in mM) 140 KCl, 0 NaCl, 10 HEPES; pH was adjusted to 7.2–7.3 with KOH. Gramicidin (Sigma-Aldrich) was first dissolved in DMSO (10 mg/ml) to KOH. Pipet solution for gramicidin perforated patch recording containing (in mM) 140 KCl, 20 KCl, 10 HEPES, 0.2 EGTA, 10 Na₄-phosphocreatine, 4 MgATP, 0.3 Na,GTP; pH was adjusted to 7.2–7.3 with KOH. Pipet solution for gramicidin perforated patch recording containing (in mM) 140 KCl, 0 NaCl, 10 HEPES; pH was adjusted to 7.2–7.3 with KOH. Gramicidin-containing solution was then diluted to a final concentration of 10 μg/ml in the pipet solution. The gramicidin-containing solution was prepared and sonicated immediately before use. After EcAβAβ measurements, the integrity of the perforated patch was confirmed by rupturing the underlying sealed membrane and observing an abrupt change in access resistance and a shift in EcAβAβ. Data were sampled at 10 kHz and filtered at 2.9 kHz with Bessel filter of the amplifier. Data were analyzed using Patchmaster (HEKA), Igor 6.0 (Wavemetrixcs) or Minianalysis (synaptosoft).

Immunohistochemistry. 30 μm cryosectioned brain slices were permeabilized in 0.6% Triton X-100 and blocked in 3% normal donkey serum in PBS for 30 minutes in free floating condition. Rabbit anti-5GT1 antibody (1:500, Synaptic systems) was incubated overnight in 1% normal donkey serum and 0.1% Triton X-100 in PBS at 4 °C. For visualization, slices were incubated with Cy3-conjugated anti-rabbit secondary antibody (Jackson ImmunoResearch Laboratories) for 2 hours. Immunostained slices were scanned using a confocal laser microscope (LSM510, Carl Zeiss).

RT-PCR. Total RNA was extracted using RNeasy Mini Kit (QIAGEN #74104) according to the manufacturer’s instruction. To synthesize first strand cDNA, 1 μg of total RNA was incubated at 70 °C for 5 min with 0.5 μg of oligo(dT) and deionized water (up to 15 μL). The reverse transcription reaction was performed using 200 units of M-MLV reverse transcriptase (Promega, Madison, WI, USA) in 5X reaction buffer (250 mmol/l Tris-HCl; pH 8.3, 375 mM KCl, 15 mM MgCl₂, 50 mM DTT), 28 units of RNasin inhibitor, and 2.5 mM dNTP mixtures at 42 °C for 1 hour.
90 min. The expression of GABA_A receptor subunits was examined by PCR as previously described.\(^9,39\) Two micro-
liters of the cDNA product were amplified in a mixture containing 5 pmole of GABA A receptor subtype-specific primers, 0.2 mM dNTPs and 1 unit Taq DNA polymerase (Promega, Madison, WI, USA) with reaction buffer in a final volume of 25 μl. The PCR amplification was carried out for 35 cycles of 94 °C for 30 sec, 52 °C for 30 sec and 72 °C for 1 min. The primers used were beta-actin sense primer, 5'-TCACCCACACTGGCCCATCTAGG-3'; beta-actin anti-sense primer, 5'-GTGGTGAAGCTGTAGCCACGCTC-3'; GABA_A receptor subtype α1, α2, α3, α4, α5, α6, β1, β2, β3, γ1, γ2, γ3. δ primers were manufactured as previously described.\(^8,18\) GABA_A receptor subtype ε, β1, β2, β3 primer sequences were referred to in the previous paper.\(^9\)

Statistics. All data are presented as mean ± SEM. Data were analyzed by one-way analysis of variance (ANOVA) or paired Student’s t-test. Mean differences between groups were considered significant when P < 0.05. To quantify firing entrainment, loose seal cell-attached recording was normalized using firing probability and standard ±-score transformation (bin size, 10 ms). Firing probability was calculated by following equations; sum

References

1. Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J. & Kenny, P. J. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471, 597–601 (2011).
2. Frahm, S. et al. Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 70, 522–535 (2011).
3. Lee, H., Kang, M. S., Chung, J. M. & Noh, J. Repeated nicotine exposure in adolescent rats: Reduction of medial habenular activity and augmentation of nicotine preference. Physiology and behavior 138, 345–350 (2015).
4. Gorlich, A. et al. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proceedings of the National Academy of Sciences of the United States of America 110, 17077–17082 (2013).
5. Shih, P. Y. et al. Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula. The Journal of neuroscience 34, 9789–9802 (2014).
6. Dao, D. Q., Perez, E. E., Teng, Y., Dani, J. A. & De Biasi, M. Nicotine enhances excitability of medial habenular neurons via facilitation of neurokinin signaling. The Journal of neuroscience 34, 4273–4284 (2014).
7. Qin, C. & Luo, M. Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161, 827–837 (2009).
8. Spéral, B., Magloczky, Z., Vizi, E. S. & Freund, T. F. The triangular septal nucleus as the major source of ATP release in the rat habenula: a combined neurochemical and morphological study. Neuroscience 86, 1195–1207 (1998).
9. Antolín-Fontes, B., Ables, J. L., Gorlich, A. & Ibanez-Tallon, I. The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology 96, 213–222 (2015).
10. Gassmann, M. & Bettler, B. Regulation of neuronal GABA(B) receptor functions by subunit composition. Nature reviews Neuroscience 13, 380–392 (2012).
11. Bettler, B., Kaupmann, K., Mosbacher, I. & Gassmann, M. Molecular structure and physiological functions of GABA(B) receptors. Physiological reviews 84, 835–867 (2004).
12. Song, J. et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489 (2012).
13. Rivera, C. et al. The K+-/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397 (1999).
14. Cherubini, E., Gaiarsa, J. L. & Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends in neurosciences 14, 515–519 (1991).
15. Ben-Ari, Y. The GABA excitaotory/inhibitory developmental sequence: a personal journey. Neuroscience 279, 187–219 (2014).
16. Won, N. S. et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 12, 258–268 (2002).
17. Nardou, R. et al. Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. Brain 134, 987–1002 (2011).
18. Fukuda, A. Diuretic soothes seizures in newborns. Nature medicine 11, 1153–1154 (2005).
19. Hewitt, S. A., Walst, L., Kurz, E. U. & Bains, J. S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nature neuroscience 12 (2009).
20. Kim, U. & Chung, L. Y. Dual GABAergic synaptic response of fast excitation and slow inhibition in the medial habenula of rat hippocampus. The Journal of comparative neurology 397, 1323–1332 (2007).
21. Wang, D. G., Gong, N., Luo, B. & Xu, T. L. Absence of GABA type A signaling in adult medial habenular neurons. Neuroscience 141, 133–141 (2006).
22. Chamama, I., Chevy, Q., Poncer, J. C. & Levi, S. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Frontiers in cellular neuroscience 6, 5 (2012).
23. Perkins, K. L. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. Journal of neuroscience methods 154, 1–18 (2006).
24. Herkenham, M. & Nauta, W. J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. The Journal of comparative neurology 173, 123–146 (1977).
25. Herkenham, M. & Nauta, W. J. Efferent connections of the habenular nuclei in the rat. The Journal of comparative neurology 187, 19–47 (1979).
26. Zhao-Shea, R., Liu, L., Pang, X., Gardner, P. D. & Tapper, A. R. Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Current biology 23, 2327–2335 (2013).
27. Zhao-Shea, R. et al. Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nature communications 6, 6770 (2015).
28. Soria-Gomez, E. et al. Habenular CB1 Receptors Control the Expression of Aversive Memories. Neuron 88, 306–313 (2015).
29. Kobayashi, Y. et al. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice. Frontiers in behavioral neuroscience 7, 17 (2013).
30. Frahm, S. et al. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. eLife 4, e11396 (2015).
31. Yamaguchi, T., Danjo, T., Pastan, I., Hikida, T. & Nakashiba, S. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron 78, 537–544 (2013).
32. Hangya, B., Borhegyi, Z., Szilagyi, N., Freund, T. F. & Varga, V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. The Journal of neuroscience 29, 8094–8102 (2009).
33. Borhegyi, Z., Varga, V., Szilagyi, N., Fabo, D. & Freund, T. F. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. The Journal of neuroscience 24, 8470–8479 (2004).
34. Manseau, F., Goutagny, R., Danik, M. & Williams, S. The hippocamposeptal pathway generates rhythmic firing of GABAergic neurons in the medial septum and diagonal bands: an investigation using a complete septohippocampal preparation in vitro. The Journal of neuroscience 28, 4096–4107 (2008).

35. Ren, J. et al. Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69, 445–452 (2011).

36. Aizawa, H., Amo, R. & Okamoto, H. Phylogeny and ontogeny of the habenular structure. Frontiers in neuroscience 5, 138 (2011).

37. Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. The Journal of neuroscience 29, 3014–3018 (2009).

38. Gangisetty, O. & Reddy, D. S. The optimization of TaqMan real-time RT-PCR assay for transcriptional profiling of GABA-A receptor subunit plasticity. Journal of neuroscience methods 181, 58–66 (2009).

39. Mendu, S. K., Bhandage, A., Jin, Z. & Birnir, B. Different subtypes of GABA-A receptors are expressed in human, mouse and rat T lymphocytes. PloS one 7, e42959 (2012).

Acknowledgements

This research was supported by Basic Science Research Program through the NRF funded by the Ministry of Sciences, ICT & Future Planning (NRF-2014R1A2A1A11050360, NRF-2012M3A9C6049937, NRF-2012R1A2A2A01015843).

Author Contributions

K.C., Y.L., C.L., S.H. and S.L. designed and performed experiments. K.C., S.J.K. and K.S.S. analysed data and wrote the paper. K.S.S. designed and supervised the project. All authors reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Choi, K. et al. Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula. Sci. Rep. 6, 34800; doi: 10.1038/srep34800 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016