Extramedullary myeloid sarcoma mimicking tuberculosis of spine: A case report and literature review

Prasad Patgaonkar¹, Vaibhav Goyal¹, Nandan Marathe²

¹Department of Spine Surgery, Indore Spine Centre, Indore, Madhya Pradesh, India. ²Department of Spine Services, Indian Spinal Injuries Centre, New Delhi, India.

E-mail: Prasad Patgaonkar - spineprasad@gmail.com; *Vaibhav Goyal - vgvgoyal1@gmail.com; Nandan Marathe - nandanmarathe88@gmail.com

INTRODUCTION

Extramedullary myeloid sarcoma (EMS) may involve any organ or tissue. Skin, bone, and lymph nodes are most frequently affected, with vertebral involvement being extremely rare. Here, we present a 25-year-old male who was originally diagnosed and treated for tuberculosis (TB) spondylitis, where the ultimate correct diagnosis was EMS.

CASE REPORT

A 25-year-old male originally presented with mid-back pain of 2 months duration. After a T8 thoracic CT-guided biopsy, he was diagnosed/treated for TB spondylodiscitis, a PET-CT and reevaluation of the biopsy specimen both confirmed the diagnosis of an EMS.

X-ray and MR studies

The chest X-ray showed a pleural effusion, while the thoracic spine X-ray demonstrated T8 vertebral collapse. Further, the thoracic spine MRI showed a posterior epidural collection

*Corresponding author: Vaibhav Goyal, Department of Spine Surgery, Indore Spine Centre, Indore, Madhya Pradesh, India. vgvgoyal1@gmail.com

Received: 30 November 2020
Accepted: 31 March 2021
Published: 19 April 2021

DOI 10.25259/SNI_855_2020

Quick Response Code:
extending from T7 to T9 resulting in cord compression. Of interest, lumbar X-rays and lumbar MR scan both demonstrated an additional although smaller, asymptomatic L3 vertebral body lesion [Figures 1 and 2].

Surgery

The patient's progressive myelopathy prompted a T8, T9 laminectomy that included a culture/biopsy of the lesion, epidural debridement, and T6-T10 pedicle screw fixation [Figure 3]. Notably, at the T8 level, there was a nonpurulent, soft, grayish-white material found in the center of the T8 vertebral body that appeared more consistent with tumor than tubercular infection.

Pathology/culture

The pathology showed only inflammatory granulation tissue, and the staining for all organisms, including *Mycobacterium tuberculosis* (MTB), was negative [Figure 4].

Postoperative course

Postoperatively, the patient's back pain (VAS score 2) improved, and he showed significant neurological recovery (e.g., 4/5 function proximally, 5/5 distally). However, within 3 days, he developed an increased left-sided pleural effusion (1700 cc). Tissue culture and MTB DNA reverse transcriptase-polymerase chain reaction of the fluid were negative. Four weeks postoperatively, when he returned with dyspnea and cough, the PET-CT scan revealed a metabolically active osteolytic lesion predominantly involving the T8 vertebral body, with extension into the T7, T9, and T11 vertebral bodies, involving the left 7th rib, as well as multiple other sites [Figure 5a].

Biopsy of the left 7th rib and immunohistochemistry studies confirmed that the lesion was an EMS [Figure 5b]. At that
Table 1: Review of literature of extramedullary sarcoma involving spine.

S. No.	Author/Year	#Patients	Location of tumor	Treatment	Outcome
1.	Landis et al., 2003	1 patient	Thoracic (T8-T9)	Laminectomy T8, T9 and excisional biopsy of tumor followed by chemo and RT	6 months postcompletion of chemo, he remains in remission
2.	Kalayci et al., 2006	1 patient	Thoracic (T3-T5)	Laminectomy T3 to T5 and excisional biopsy of tumor followed by chemo and RT	8 months postoperatively, no recurrence and patient is walking with a cane
3.	Seok et al., 2010	32 patients	Lumbosacral and thoracic	Laminectomy and excisional biopsy in four patients	In 21 patients followed 1 year postoperatively, 9 had complete reduction, and 12 had partial reduction in tumor volume
4.	Gupta et al., 2014	1 patient	Cervicothoracic (C5-T1)	Laminectomy C5 to T1 with tumor debulking	Patient died 4 days postoperatively due to respiratory failure
5.	Krishnan et al., 2015	1 patient	Thoracic (T7)	Laminectomy T6 to T8 and excisional biopsy followed by chemo and RT	2 years postoperatively, patient had no back pain or any residual deficits
6.	Alaya et al., 2017	1 patient	Thoracic (T4-T7)	Laminectomy T4 to T7 and excisional biopsy followed by chemo	7 years postoperatively, there are tumor remission and residual circumduction present

RT: Radiation therapy, Chemo: Chemotherapy

The patient was referred for chemotherapy (e.g., cytarabine + daunorubicin). Now 1 year following the completion of chemotherapy, he remains asymptomatic, and the EMS has not yet recurred.

DISCUSSION

Frequency and differential diagnosis for EMS

EMS (also known as myeloid sarcoma MS, granulocytic sarcoma, or myeloblastoma) is rare. Patients ages can range from 1 to 81. EMS commonly affects skin, bone, and lymph nodes, but rarely presents in the spine. Misdiagnosis is often seen in EMS with differential diagnoses including lymphoma, undifferentiated malignancies, extramedullary hematopoiesis, and inflammatory pathologies (i.e., TB that is more common and endemic in India) [Table 1].

Diagnostic studies for EMS

EMS can present as single or multifocal lesions; 2–8% of these patients will have acute myeloid leukemia (AML). CT and MRI studies help differentiate EMS from hemorrhage or abscesses. Stölzel et al. emphasized that fluorodeoxyglucose PET-CT also

Figure 3: Postoperative X-ray postdecompression X-ray spine anteroposterior and lateral views showing pedicle screws inserted from D6 to D10 and L2-L4 vertebral levels sparing involved D8 vertebra.

Figure 4: Histopathological examination report showing inflammatory granulation tissue.
additionally helped document extramedullary AML.[7] There are also multiple treatment regimens for MS with or without AML, including conventional AML chemotherapy.[1,5]

CONCLUSION

EMSs of the spine are rare. They must be biopsy confirmed to differentiate them from TB spondylodiscitis (i.e., in endemic areas) and other lesions.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol 2011;29:487-94.
2. Cunningham I. Extramedullary sites of leukemia relapse after transplant. Leuk Lymphoma 2006;47:1754-67.
3. Lan TY, Lin DT, Tien HF, Yang RS, Chen CY, Wu K. Prognostic factors of treatment outcomes in patients with granulocytic sarcoma. Acta Haematol 2009;122:238-46.
4. Mostafavi H, Lennarson PJ, Traynelis VC. Granulocytic sarcoma of the spine. Neurosurgery 2000;46:78-83; discussion 83-4.
5. Ofiran Y, Rowe JM. Induction and postremission strategies in acute myeloid leukemia: What is new? Curr Opin Hematol 2011;18:83-8.
6. Seok JH, Park J, Kim SK, Choi JE, Kim CC. Granulocytic sarcoma of the spine: MRI and clinical review. AJR Am J Roentgenol 2010;194:485-9.
7. Stölzel F, Röllig C, Radke J, Mohr B, Platzbecker U, Bornhäuser M, Paulus T, et al. 18F-FDG-PET/CT for detection of extramedullary acute myeloid leukemia. Haematologica. 2011;96:1552-6.
8. Suh YK, Shin HJ. Fine-needle aspiration biopsy of granulocytic sarcoma: A clinicopathologic study of 27 cases. Cancer 2000;90:364-72.

How to cite this article: Patgaonkar P, Goyal V, Marathe N. Extramedullary myeloid sarcoma mimicking tuberculosis of spine: A case report and literature review. Surg Neurol Int 2021;12:178.