Looking for winning strategies in two-player games on Petri nets with partial observability

Federica Adobbati
DISCo, Univ. di Milano-Bicocca
viale Sarca 336-U14, Milano, Italy
f.adobbati@campus.unimib.it

Luca Bernardinello
DISCo, Univ. di Milano-Bicocca
viale Sarca 336-U14, Milano, Italy
luca.bernardinello@unimib.it

Lucia Pomello
DISCo, Univ. di Milano-Bicocca
viale Sarca 336-U14, Milano, Italy
lucia.pomello@unimib.it

Abstract. We define a game on 1-safe Petri nets, where a user plays against an environment in order to reach a goal on the system. The goal is expressed through an LTL-X formula, and represents a behaviour of the system that the user needs to guarantee. The user can try to reach his goal by controlling a subset of transitions, and by observing a subset of local states. Although we do not put any requirement on the local states observable by the user, we assume that he cannot be sure to observe them in the exact moment in which they become marked. For this reason, we define a notion of stability of the observation. We propose a method to determine whether the user has a winning strategy, i.e. if he can win every play by taking some decisions based on the information available for him.

Keywords: Petri nets, distributed games, temporal logics, partial observability

1. Introduction

Games can be used as a formal tool to model the interaction between agents. In this paper we define a game between a user and an environment on a distributed system modelled as a 1-safe Petri net.

Corresponding author
The task of the user is to control the system, so that only executions satisfying a desired property are allowed. In general, the environment does not cooperate with the system, and may be hostile or indifferent.

In order to reach his goal, the user can control the occurrence of a subset of transitions, i.e. he can decide whether to fire them or not, when they are enabled. The rest of transitions belongs to the environment, and it is uncontrollable by the user. We assume a fairness constraint for the environment: no uncontrollable transition can be permanently enabled in the system and never fire. A play is represented through a run on the unfolding of the net. A run represents an execution of the system, and records all the occurrences of both controllable and uncontrollable transitions. The user wins the play if the run satisfies the property that he needs to guarantee.

In order to reach his goal, the user must decide the transitions to fire based on his information on the current state of the system. We assume that he has no memory, hence his decisions cannot be based on the states previously crossed during the play, and that the user has partial observability on the system, i.e. he can never know the value of some of the local states. Even for observable states, we assume that the information about their values may take some time to arrive, and therefore the user can use them to take decisions only if they are stable. This is motivated by the presence of different components in a distributed and concurrent system: in a realistic model, each communication from a component to another takes some time, and while the communication happens, the information may become outdated, due to the occurrence of a new transition. Finally, we assume that the structure of the system is known, and the user can exploit all the information that he can derive from it. In particular, we will show in Sec. 2 and 3 how to add some places to the net that do not alter its behaviour, but allow the user to take his decisions combining the information derived from his observations and from the structure of the system.

Our goal is to determine whether the user has a winning strategy, i.e. if he can select transitions based on his observations that make him always win. We consider the case in which the goal of the user can be expressed through a fragment of LTL, and we propose a method based on the marking graph to find a winning strategy, if one exists.

Possible applications of such a game could be in the frame of verification, adaptation and control of distributed systems; so that, in the case of a winning strategy for the user with respect to a behavioural property, the system model could be adapted imposing that specific property, for example by adding a controller component which implements the user behaviour by synthesising the winning strategy; a reference for this sort of applications is for example [1].

The rest of the paper is organized as follows. Sec. 2 presents the basic definitions related to Petri nets, marking graphs, and unfoldings; in Sec. 3, we introduce the game formally, and discuss some examples to motivate our modelling choices. Sec. 4 and Sec. 5 provide the procedure to check whether the user has a winning strategy, and show a relation between our game and those defined on concurrent structures. In Sec. 6 we discuss some related works. Finally, Sec. 7 ends the paper and suggests future developments of this works.
2. Petri nets

This section recalls some basic definitions and features of Petri nets, which will be used throughout the paper. As main reference see [2]. Petri nets were introduced by C.A. Petri as a formal tool to represent flows of information in distributed systems. In the last decades, several classes of nets have been defined and studied. In this work we use the class of 1-safe nets.

Definition 2.1. A net is a triple $N = (P, T, F)$, where P and T are disjoint sets. The elements of P are called places and are represented by circles, the elements of T are called transitions and are represented by squares. F is called flow relation, with $F \subseteq (P \times T) \cup (T \times P)$, and is represented by arcs.

For each element of the net $x \in P \cup T$, the pre-set of x is the set $\bullet x = \{ y \in P \cup T \mid (y, x) \in F \}$, the post-set of x is the set $x^\bullet = \{ y \in P \cup T \mid (x, y) \in F \}$. The previous notation can be extended to subsets of elements $A \subseteq P \cup T$: $\bullet A = \bigcup_{x \in A} \bullet x$ and $A^\bullet = \bigcup_{x \in A} x^\bullet$. We assume that each transition has non-empty pre-set and post-set.

Two transitions, t_1 and t_2, are independent if $(\bullet t_1 \cup t_1^\bullet)$ and $(\bullet t_2 \cup t_2^\bullet)$ are disjoint. They are in conflict, denoted with $t_1 \# t_2$, if $\bullet t_1 \cap t_2^\bullet \neq \emptyset$.

A net $N' = (P', T', F')$ is a subnet of $N = (P, T, F)$ if $P' \subseteq P$, $T' \subseteq T$, and F' is F restricted to the elements in N'.

Definition 2.2. A net system is a quadruple $\Sigma = (P, T, F, m_{in})$ consisting of a finite net $N = (P, T, F)$ and an initial marking $m_{in} : P \to \mathbb{N}$.

A transition t is enabled at a marking m, denoted $m[t]$, if, for each $p \in \bullet t$, $m(p) > 0$. A transition t, enabled at m, can occur (or fire) producing a new marking m' (denoted $m[t]m'$), where

$$m'(p) = \begin{cases} m(p) + 1 & \text{if } p \in \bullet t \setminus \bullet t \\ m(p) - 1 & \text{if } p \in \bullet t \setminus t^\bullet \\ m(p) & \text{otherwise} \end{cases}$$

A marking m' is reachable from another marking m, if there is a sequence of transitions $t_1t_2\ldots t_n$ such that $m[t_1]m_1[t_2]\ldots m_{n-1}[t_n]m'$, this is also denoted with $m[t_1t_2\ldots t_n]m'$; $[m]$ denotes the set of markings reachable from m. A marking m is reachable if it is reachable from the initial marking m_{in}, i.e.: if $m \in [m_{in}]$; $[m_{in}]$ will be also denoted M in the next sections.

A net system is 1-safe if $m(p) \leq 1$, for each place p and for each reachable marking m. Markings in 1-safe net systems can, and will be, considered as subsets of places.

In a net system, two transitions, t_1 and t_2, are concurrent at a marking m if they are independent and both enabled at m.

Example 2.3. Fig. 4 shows a net system with initial marking $m_{in} = \{u, r\}$. sc_1 and sc_2 are transitions which are in conflict; whereas sc_1 and t are independent and both enabled at m_{in}, hence they are concurrent at m_{in}.
The sequential behaviour of a net system can be described by an initialized labelled transition system, where the states correspond to reachable markings, with the initial one corresponding to the initial marking, and each arc is labelled by the transition leading from the source marking to the target one.

Definition 2.4. Let $\Sigma = (P, T, F, m_{in})$ be a net system. Its sequential marking graph is a quadruple $\text{MG}(\Sigma) = (M, T, A, m_{in})$ where M is the set of reachable markings in Σ, and where $A = \{(m, t, m') \mid m, m' \in M, t \in T \text{ and } m[t]m'\}$.

2.1. Implicit places

From now on, we will work on 1-safe net systems. As remarked above, each node of the marking graph of a 1-safe net is a set of places. Hence, we can associate to each place its extension, namely the set of reachable markings to which it belongs:

$$\forall p \in P \quad r(p) = \{m \in \text{MG}(\Sigma) \mid \langle p \rangle m = 1\}$$

The extension of a place satisfies a few properties, which are immediate consequences of the firing rule of nets, together with 1-safeness. The main property we need here can be called the uniform crossing property: for any given transition t, if one occurrence of t in the marking graph enters $r(p)$, then all occurrences of t do the same, and analogously when an occurrence leaves $r(p)$. This property can be defined more abstractly in the context of general labelled transition systems.

A labelled transition system is a structure $\text{TS} = (Q, L, \Delta)$, where Q is the set of states, L a set of labels, and $\Delta \subseteq Q \times L \times Q$ is the set of edges (edges are usually called transitions, but here we prefer to reserve this term to the transitions of net systems). A subset r of states satisfies the uniform crossing properties for TS if, for all $t \in L$,

$$(q_1, t, q_2), (q_3, t, q_4) \in \Delta, q_1 \in r, q_2 \not\in r \implies q_3 \in r, q_4 \not\in r$$

$$(q_1, t, q_2), (q_3, t, q_4) \in \Delta, q_1 \not\in r, q_2 \in r \implies q_3 \in r, q_4 \not\in r$$

A subset of states which satisfies the uniform crossing properties is called a region (refer to [3] for an extensive report on region theory, with proofs of the properties recalled in the rest of this section). A region r has a set of entering labels, denoted by r^\cdot, and a set of exiting labels, denoted by r^\ast: if r is a region and $t \in L$ a label, then $t \in r^\cdot$ if there is an edge (q_1, t, q_2) entering r, namely $q_1 \not\in r$ and $q_2 \in r$; symmetrically, $t \in r^\ast$ if there is an edge leaving r.

If r is a region of the marking graph of a net system Σ, then we can add a corresponding place to the net without changing the behaviour: the marking graph of the extended net system is isomorphic to the marking graph of Σ. The place $r \in P$ is a precondition of all the transitions $t \in T$ such that $t \in r^\ast$, and a postcondition of the transitions $t \in T$ such that $t \in r^\cdot$.

The set of regions of a labelled transition system satisfies some useful combinatorial properties. We say that two regions, r_1 and r_2, are compatible if there exist three, pairwise disjoint, regions, u_1, u_2, u_3 such that $r_1 = u_1 \cup u_2$ and $r_2 = u_2 \cup u_3$. If r is a region, then its set-theoretic complement
Q \ r is a region. In general, regions are not closed by union and intersection, but the union of compatible regions is always a region. In particular, the union of disjoint regions is a region. Since each region can be associated to a (potential) place on the net, these same properties can be equivalently stated between places of Σ. In particular, for each place p ∈ P with extension r(p), its complement p^c is the place with extension Q \ r(p); two places p_1, p_2 ∈ P are compatible, denoted with p_1 \$ p_2, iff their extensions r(p_1) and r(p_2) are compatible; the union of two compatible places p_1 and p_2 is the place with extension r(p_1) ∪ r(p_2) and is denoted with p_1 ∨ p_2.

We will call implicit place of a net system Σ a region of MG(Σ) which is not the extension of a place of Σ. Let H be a set of implicit places of Σ; then Σ_H denotes the net system obtained from Σ by adding the implicit places in H. For each place h in H we add an arc to the flow relation from t to h for each t in • h and an arc from h to t' for each t' in h^•. An implicit place belongs to the initial marking of Σ_H if m_0 belongs to the corresponding region.

2.2. Branching processes and unfoldings

The non sequential behaviour of 1-safe net systems can be recorded by occurrence nets, which are used to represent by a single object the set of potential histories of a net system. In the following, we denote with F^+ the transitive closure of F, and with F^* the reflexive closure of F^+.

Given two elements x, y ∈ P ∪ T we write x ⇑ y, if there exist t_1, t_2 ∈ T : t_1 ≠ t_2, t_1 F^* x, t_2 F^* y ∧ ∃p ∈ • t_1 ∩ • t_2.

Definition 2.5. A net N = (B, E, F) is an occurrence net if

- for all b ∈ B, |• b| ≤ 1
- F^* is a partial order on B ∪ E
- for all x ∈ B ∪ E, the set \{y ∈ B ∪ E | y F^* x\} is finite
- for all x ∈ B ∪ E, x ⇑ x does not hold

We will say that two elements x and y, x ≠ y, of N are concurrent, and write x co y, if they are not ordered by F^*, and x ⇑ y does not hold.

By min(N) we will denote the set of minimal elements with respect to the partial order induced by F^*.

A B-cut of N is a maximal set of pairwise concurrent elements of B. B-cuts represent potential global states through which a process can go in a history of the system. By analogy with net systems, we will sometimes say that an event e of an occurrence net is enabled at a B-cut γ, denoted γ[e], if • e ⊆ γ. We will denote by γ + e the B-cut (γ \ e) ∪ e^•. A B-cut is a deadlock cut if no event is enabled at it.

Let Γ be the set of B-cuts of N. A partial order on Γ can be defined as follows: let γ_1, γ_2 be two B-cuts. We say γ_1 ≤ γ_2 iff

1. ∀y ∈ γ_2 ∃x ∈ γ_1 : x F^* y
2. \(\forall x \in \gamma_1 \exists y \in \gamma_2 : xF^* y \)

In words, \(\gamma_1 \leq \gamma_2 \) if any condition in the second B-cut is or follows a condition of the first B-cut and any condition in the first B-cut is or comes before a condition of the second B-cut. \(\gamma_1 < \gamma_2 \) if the conditions above hold and \(\exists x \in \gamma_1, \exists y \in \gamma_2 : xF^+ y. \)

A sequence of B-cuts, \(\gamma_0 \gamma_1 \ldots \gamma_l \ldots \) is increasing if \(\gamma_i < \gamma_{i+1} \) for all \(i \geq 0 \). A cut \(\gamma \) is compatible with an increasing sequence of B-cuts \(\delta \) iff there are two cuts \(\gamma_i, \gamma_{i+1} \in \delta \) such that \(\gamma_i \leq \gamma \leq \gamma_{i+1} \).

Given an increasing sequence of B-cuts \(\delta \), we define a refinement \(\delta' \) of \(\delta \) as an increasing sequence of B-cuts such that for each \(\gamma \in \delta \), \(\gamma \) is also in \(\delta' \). A maximal refinement \(\delta' \) is an increasing sequence of B-cuts such that there is no \(\gamma \not\in \delta' \) compatible with \(\delta' \).

Example 2.6. Fig. 5 shows an occurrence net and an increasing sequence of B-cuts, represented with bold lines. The B-cut \(\{b_9, b_{10}\} \) is compatible with the sequence in the figure, therefore the sequence including the three represented B-cuts and \(\{b_9, b_{10}\} \) is a refinement of the sequence in figure.

We say that an event \(e \in E \) precedes a B-cut \(\gamma \), and write \(e < \gamma \), iff there is \(y \in \gamma \) such that \(eF^+ y \). In this case, each element of \(\gamma \) either follows \(e \) or is concurrent with \(e \) in the partial order induced by the occurrence net.

The next definitions are adapted from [4].

Definition 2.7. A branching process of a 1-safe net system \(\Sigma = (P, T, F, m_{in}) \) is an occurrence net \(N = (B, E, F) \), together with a labelling function \(\mu : B \rightarrow P \), such that

- \(\mu(B) \subseteq P \) and \(\mu(E) \subseteq T \)
- for all \(e \in E \), the restriction of \(\mu \) to \(*e \) is a bijection between \(*e \) and \(*\mu(e) \); the same holds for \(e^* \)
- the restriction of \(\mu \) to \(\operatorname{min}(N) \) is a bijection between \(\operatorname{min}(N) \) and \(m_{in} \)
- for all \(e_1, e_2 \in E \), if \(*e_1 = *e_2 \) and \(\mu(e_1) = \mu(e_2) \), then \(e_1 = e_2 \)

A run of \(\Sigma \) is a branching process \((N, \mu) \) such that there is no pair of elements \(x, y \) in \(N \) such that \(x \not\leq y. \)

For \(\gamma \) a B-cut of \(N \), the set \(\{\mu(b) \mid b \in \gamma\} \) is a reachable marking of \(\Sigma \) ([4]), and we refer to it as the marking corresponding to \(\gamma \).

Let \((N_1, \mu_1) \) and \((N_2, \mu_2) \) be two branching processes of \(\Sigma \), where \(N_i = (B_i, E_i, F_i), \) \(i = 1, 2 \). We say that \((N_1, \mu_1) \) is a prefix of \((N_2, \mu_2) \) if \(N_1 \) is a subnet of \(N_2 \), and \(\mu_2|_{B_1 \cup E_1} = \mu_1 \). For any net system \(\Sigma \), there exists a unique, up to isomorphism, maximal branching process of \(\Sigma \). We will call it the unfolding of \(\Sigma \), and denote it by \(\operatorname{UNF}(\Sigma) \).

A run of \(\Sigma \) describes a particular history of \(\Sigma \), in which conflicts have been solved. Any run of \(\Sigma \) is a prefix of the unfolding \(\operatorname{UNF}(\Sigma) \); we also say that it is a run on \(\operatorname{UNF}(\Sigma) \).
3. A two-player game on a 1-safe Petri net

In this section, we consider 1-safe net systems (in the following called only net systems) in which a subset of transitions is controllable by a user. This means that whenever a controllable transition is enabled, the user can decide whether to fire it or not. All the other transitions belong to the environment. In figures, controllable transitions will be represented in dark grey, while environment transitions will be white.

The goal of the user is to force the behaviour of the system so that every execution satisfies a certain behaviour (e.g. reaching and/or avoiding some subsets of places). In order to reach his goal, the user can observe part of the current global state and decide whether to fire some controllable enabled transitions. If a controllable transition is in conflict with an uncontrollable transition, and they are both enabled, we assume that the user cannot guarantee to fire his transition before the environment. We model the interaction between the user and the environment as a game on the net, where the user and the environment are two players challenging each other. Informally, a play is an execution on the net, and the user wins a play if it satisfies his goal. If the user is always able to force the behaviour of the system according to his goal, and therefore to win all the plays that he enforces from the initial state, we say that the user has a winning strategy for that goal. We assume that the user has no memory, i.e. his decisions can only be based on the current state of the system, and not on its history.

Formally, let \(\Sigma = (P, T, F, m_{in}) \) be a net system, \(T_u \) the set of transitions controllable by the user, and \(T_{env} = T \setminus T_u \) the set of transitions belonging to the environment. We assume that the user observes a subset of places \(P_O \subseteq P \), and that he observes which of his transitions are enabled, i.e. \(T_u \subseteq P_O \). In figures, observable places are represented with thicker borders.

In addition to the observability, in order to define what information the user can exploit to reach his goal, we need to introduce the concept of stable part of a marking. Let \(m \in \{m_{in}\} \) be a reachable marking. Its stable part is defined as the set \(m^s = \{p \in m \mid \exists t_1t_2...t_n \in T_{env}^* : p \in \bullet t_n \wedge (m[t_1...t_{n-1}]m_n \wedge \bullet t_n \subseteq m_n)\} \); in other words \(m^s \) is the set of places in \(m \) that cannot be consumed by any sequence of uncontrollable transitions enabled in \(m \). In what follows, we assume that the user can base his decisions only upon the observable and stable parts of markings. This is motivated by the fact that in realistic scenarios, even if the value of a certain local state is not hidden to the user, its information may arrive to the user with a certain delay. By definition, if a place is not in the stable part of a marking, its value may change due to a transition that is out of the control of the user, therefore the information about it may arrive outdated to the user, that cannot count on it. To clarify this concept, consider the following example.

Example 3.1. In the net in Fig. 1, assume that \(P_O = P \) and that the goal of the user is to reach one of the two markings \(\{p_0, p_4\} \) or \(\{p_1, p_3\} \). If the user could base his decision on the global states, then he could reach his goal by firing \(t_2 \) when the marking is \(\{p_0, p_2\} \) or \(t_3 \) when the marking is \(\{p_1, p_2\} \). However, even if the user observes an occurrence of \(p_0 \), it is unrealistic to assume that the communication arrives without time delay and that he succeeds in firing \(t_2 \) before the environment can fire \(t_0 \). In our setting, the user can base his decisions only on the stable part of the markings. For both \(\{p_0, p_2\} \) and \(\{p_1, p_2\} \) the stable part is \(\{p_2\} \), therefore the user cannot differentiate between the two markings, and cannot reach his goal.

In some cases, the definition of stable part of a marking has consequences also on the controllable
transitions that the user can fire. Consider the net system in Fig. 2, where p_1 and p_2 are the observable places, and t_1 and t_2 are the controllable transitions. Assume that the goal of the user is to reach p_8. Intuitively, from the initial marking the user cannot prevent the sequence t_3t_6 to fire, and therefore he cannot count on the occurrence of t_2 to win, even if t_2 is controllable and enabled in the initial marking. This can be modelled thanks to the definition of stable part of a marking: there is no marking where p_2 is stable, because from every marking containing p_2 there is a sequence of uncontrollable transitions that could fire and make p_2 false (for example, as we already observed, the sequence t_3t_6 in the initial marking).

In some cases, the information coming from the structure of the net and from some observations, even if delayed, is sufficient for the user to reach his goal, but is not included in the stable parts of the reachable markings. For example, the user may know that an observable place cannot be marked anymore in the future or that there must be a token in a certain set of observable places, even without knowing precisely in which one (see Ex. 3.3). For this reason, in order to use this information in the strategy, we consider some implicit places, corresponding to unions and complements of observable and compatible places. In particular, the set P' of places that the strategy will consider is defined as
follows. All the places in \(P \) are also in \(P' \), i.e. \(P \subseteq P' \). We denote the set of observable places in \(P' \) as \(P'_O \). \(P'_O \) is constructed recursively as follows. \(P_O \subseteq P'_O \); if \(p \in P'_O \), then its complement \(p^c \) is in \(P'_O \); if \(p_1, p_2 \) are in \(P'_O \) and \(p_1 \neq p_2 \) then \(p_1 \lor p_2 \in P'_O \). By construction all the places in \(P' \setminus P \) are observable. In the figures, the implicit places will be coloured in light grey. We denote the net with these additional places as \(\Sigma' = (P', \mathcal{T}', m_{in}') \); in what follow \(\Sigma' \) will be also referred as extension of \(\Sigma \) or extended net.

Recall, from Sec. 2.1, that adding implicit places to a net does not change its behaviour. The extended net just makes explicit an information which was actually available in the original net. On the other hand, in defining a strategy we cannot use information corresponding to the union, or logical disjunction, of non compatible places, because this information cannot be coded in the form of a place, explicit or implicit.

Let \(M^S \) be the set of stable parts of the markings in \([m_{in}'] \); for each \(m^s \in M^S \), \(o(m^s) = m^s \cap P'_O \), i.e. \(o(m^s) \) is the set of observable places in the stable part of a certain marking. We denote \(O(M^S) = \{ o(m^s) \mid m^s \in M^S \} \) as the set of all these elements.

Definition 3.2. A strategy is a function \(f : O(M^S) \to 2^T \) such that for each \(o(m^s) \), for each \(t \in f(o(m^s)) \), \(\bullet t \in o(m^s) \). In other words, each transition selected by a strategy in the observable and stable part of a marking must be enabled in this part of the marking.

Example 3.3. Consider the net in Fig. 3, without the grey places. Assume that the user can observe everything and his goal is to reach any marking among \(\{ p3, p5 \}, \{ p5, p7 \} \) and \(\{ p4, p6 \} \). A way for the user to reach this goal would be to wait for the environment to move, and to fire \(t3 \) if transition \(t1 \) occurred, and \(t4 \) otherwise. This would not be possible with a strategy defined on the stable parts of the markings of the initial net: the stable part of \(\{ p1, p2 \}, \{ p2, p3 \} \) and \(\{ p2, p7 \} \) \(\{ p2 \} \), therefore the strategy could not differentiate between the initial marking \(\{ p1, p2 \} \) and the markings reached after the occurrence of \(t1 \) \(\{ p2, p3 \} \) and \(\{ p2, p7 \} \). This problem is overcome when we consider the extended net, with the place \(p3 \lor p7 \) (added in grey in the figure). Once that \(t1 \) occurs, this place will belong to the stable parts of all the markings subsequently reached, therefore the strategy can use the information that one of those two places must be marked to select transition \(t3 \). Note that the net in Fig. 3 is not the complete extended net, but the represented places are sufficient for the sake of presentation.

The aim of the following example is to show the importance of allowing that some places are not observable, even when they belong to a stable marking.

Example 3.4. Consider the net in Fig. 4, where the user represents a robber and the environment a banker. For the sake of clarity the net is not extended; however this is irrelevant for the following discussion. The goal of the user is to reach place \(w \), representing a successful robbery, without ending in place \(p \), representing the prison. In the initial marking, the environment can set the code of the vault to one or to two (by executing \(sc1 \) or \(sc2 \) respectively). In order to successfully end the robbery, the user needs to choose between \(i1 \) and \(i2 \), agreeing with the decision of the environment. If the robber observed everything, he would not need to communicate with the environment in order to know the code; he could directly go to the vault (through transition \(gv \)) and observe whether \(s1 \) or \(s2 \) is marked.
This happens because s_1 (resp. s_2) is in the stable part of the markings $\{s_1, v\}$ (resp. $\{s_2, v\}$), since there are no uncontrollable transitions enabled in those markings. However, this scenario is not realistic, and we should assume s_1 and s_2 are not visible by the robber.

So far we dealt with goals and plays informally, however in order to automatically check if the user has a winning strategy, we need to formally define them.

Let Σ be a net system and Σ' its extension. Let $\text{UNF}(\Sigma') = (B, E, F, \mu)$ be the unfolding of Σ', then the set E can be partitioned into the set of uncontrollable events $E_{\text{env}} = \{e \in E \mid \mu(e) \in T_{\text{env}}\}$ and the set of controllable events $E_{u} = \{e \in E \mid \mu(e) \in T_{u}\}$. We define a play as a run on $\text{UNF}(\Sigma')$, weakly fair with respect to the uncontrollable events, together with an increasing sequence of B-cuts, which can be seen as a potential record of the play as observed by an external entity. Formally:

Definition 3.5. Let $\rho = (B_\rho, E_\rho, F_\rho, \mu_\rho)$ be a run on $\text{UNF}(\Sigma')$ and $\delta = \gamma_0, \gamma_1, \cdots, \gamma_i, \cdots$ an increasing sequence of B-cuts. The pair (ρ, δ) is a play iff:
1. for each uncontrollable event e in $\text{UNF}(\Sigma')$, the net obtained by adding e and its postconditions to ρ is not a run of $\text{UNF}(\Sigma')$;

2. $\forall e \in E_\rho$ there is a B-cut $\gamma_i \in \delta$ such that $e < \gamma_i$.

Fig. 5 represents a play on the net in Fig. 4.

The winning condition for a user is a set of plays. We are particularly interested in the case in which the winning plays satisfy a certain property, specified through a state based LTL-X formula. LTL-X is the fragment of LTL in which the X operator has been removed; other works, such as [6, 7, 8], studied this logic on Petri nets. We identify the set of atomic propositions as the set of places of the net; a proposition p is true in a marking m iff $p \in m$.

Example 3.6. All the goals discussed until this point can be expressed through an LTL-X formula. As an example, consider the net in Fig. 5 which represents a play on the net discussed in Ex. 3.4. The goal of the user is represented by the formula $Fw \land G \neg p$.

Given an LTL-X formula ϕ, and a play (ρ, δ), we can evaluate ϕ on a maximal refinement δ' of δ by considering the sequence of markings corresponding to the B-cuts in δ' and applying the usual semantics of LTL. A play (ρ, δ) is winning for the user when the goal is ϕ iff ϕ holds in all the maximal refinements of δ.

The following definition allows us to define a fairness constraint for the user.

Definition 3.7. In a play (ρ, δ) the user is finally postponed iff there is a controllable event $e \in E_u$ and a B-cut $\gamma_i \in \delta$ such that, for each $\gamma_j \in \delta$ such that $\gamma_i < \gamma_j$, it holds that $e \subseteq \gamma_j$, and $\mu_\rho(e)$ is chosen by f in the observable stable part of the marking associated with γ_j; in formula $\mu_\rho(e) \in f(o(\mu_\rho(\gamma_j)^s))$.

Since the game that we are considering is asynchronous, we focus our attention on the plays where the user is not finally postponed: if a transition is constantly enabled, the environment has no way to prevent at some point its occurrence.

Definition 3.8. A play (ρ, δ) is consistent with a strategy f iff:
1. For each controllable event $e \in E_u \cap E_\rho$, there is a cut $\gamma_i \in \delta$ such that $\mu_\rho(\gamma_i) = m_i$, $\mu_\rho(e) \in f(o(m_i^e))$, and e is the only event between γ_i and $\gamma_i + 1$. In other words, each controllable event must be chosen by the strategy in the observable stable part of a marking that is compatible with a cut of the play.

2. The user is not finally postponed.

A strategy f is winning for the user iff there is at least one play consistent with f, and the user wins every play consistent with f, whatever the environment does.

Example 3.9. Consider the net in Fig. 3 where the user has goal $F(p4 \land p5) \lor F((p3 \lor p7) \land p6)$. If the user observes everything, then there is a winning strategy f defined in this way: $f(\{p2\}) = \emptyset$, $f(\{p2, p3 \lor p7\}) = \{t4\}$, $f(\{p2, p4\}) = \{t3\}$. If some of the places are unobservable there may not be a winning strategy. Consider $P_O = \{p1, p2, p5, p6\}$. In this case the user does not have a winning strategy: by observing the net he knows when t_1 or t_2 fired (because he will observe the place $p1^c$ of the saturated net), but cannot know which of them, and consequently he cannot decide which transition to fire in order to reach his goal.

4. From Petri nets to concurrent game structures

In this section we show how our game relates to a turn-based asynchronous game played on a concurrent structure. These structures are extensions of Kripke models, and were introduced in [9] for model-checking Alternating-time Temporal Logic (ATL). ATL is an extension of CTL, and expresses the fact that in a multi-agent system, a group of agents has a set of winning strategies to enforce a certain property on the system. The logic ATL* extends ATL in the same way that CTL* extends CTL. In particular, ATL* includes LTL, therefore the problem that we want to solve on the net, i.e. checking whether the user is able to enforce a behavior specified by an LTL-X formula ϕ, can be translated into the problem of verifying whether the system satisfies the corresponding ATL* formula $\langle\langle\text{user}\rangle\rangle\phi$. This fragment of ATL* was previously considered in [10] and denoted with 1ATL-X. Originally, ATL and concurrent structures were defined in [9] by assuming full memory and full observability. Subsequent works, such as [5, 11], adapted the logic and the structures to express also contexts with partial observability and no memory. We will refer to the definition of game structure provided in [5].

Our aim in discussing this relation is twofold: showing how our game can be interpreted in one of the most used frames to reason about multi-agent systems, and providing an intermediate step that we believe to be helpful for understanding the correctness of the method that we will propose in Sec. 5 to find a winning strategy. Let $\Sigma = (P, T, F, m_{in})$ be a net system, T_u the set of controllable transitions, P_O the set of observable places, and $\Sigma' = (P', T, F', m'_{in})$ the extension of Σ. We construct a turn-based asynchronous game structure G_Σ where three players interact: the user (u), the environment (env), and a scheduler (s). G_Σ is a structure derived from Σ and obtained through the following steps.

1. We construct the marking graph of Σ, $MG(\Sigma)$, and we interpret it as a Kripke model, where each local state is a proposition. For each state $m \in \{m_{in}\}$, a proposition p is true in m iff $p \in m$.

2. We compute all the regions of $\text{MG}(\Sigma)$ associated with the unions and the complements of observable places. We update the set of propositions true in each state as follows. For each region r, for each state $m \in r$, we add the boolean combination of places associated to r as local proposition that is true in m. With this operation we obtain a Kripke model isomorphic to the marking graph of the extended net $\text{MG}(\Sigma')$. In particular, the set of propositions that are true in some states of the model coincides with $P'_\mathcal{O}$.

3. For each marking m, we compute its stable part m^s. Let $P'_\mathcal{O}$ be the set of observable places in P'. We define an equivalence relation \sim_u between the markings in this way: for each $m_1, m_2 \in [m'_{\text{in}}]$, $m_1 \sim_u m_2$ iff $o(m_1^s) = m_2^s \cap P'_\mathcal{O} = o(m_2^s) = m_2^s \cap P'_\mathcal{O}$. Intuitively, $m_1 \sim_u m_2$ if the user cannot distinguish m_1 from m_2.

4. From each state m, we compute which controllable transitions are enabled in $o(m^s)$ and we remove from $\text{MG}(\Sigma')$ the controllable transitions which are enabled in m and not in $o(m^s)$. We denote as $M^r \subseteq [m'_{\text{in}}]$ the subset of states that are reachable from m'_{in} once that this step has been executed. Since some places may not belong anymore to any reachable marking, the associated propositions are false in all the states of G_{Σ}.

An example of this construction is in Ex. 4.1. Then, $G_{\Sigma} = \{\{u, env, s\}, M^r, m'_{\text{in}}, P', d, \tau, \sim_u\}$, where $u, env,$ and s are the three players, i.e. the user, the environment and the scheduler respectively, and d and τ are as follows.

- For each $i \in \{u, env, s\}$, for each $m \in M^r$, $d_i(m)$ is the set of moves available in m for player i. Specifically, for each $m \in M^r$, $d_u(m)$ is the set of controllable transitions outgoing from m, plus a move remaining in the same state, from now on denoted with ϵ; $d_{\text{env}}(m)$ is the set of uncontrollable transitions outgoing from m; if no such transition is enabled, $d_{\text{env}}(m) = \{\epsilon\}$; $d_s(m) = \{u, env\}$. For each state $m \in M^r$, a move vector enabled in m is a tuple $\langle j_u, j_{\text{env}}, j_s \rangle$, where $j_i \in d_i(m), i \in \{u, env, s\}$.

- τ is the transition function; for each $m \in M^r$ and vector move $\langle j_u, j_{\text{env}}, j_s \rangle$ enabled in m, $\tau(m, j_u, j_{\text{env}}, j_s)$ is the state reached on Σ' when transition j_s occurs.

Example 4.1. Let Σ be the net in Fig. 6, except for the grey places. Let $p1$ and $p2$ be the observable places. In the right part of the figure, we show $\text{MG}(\Sigma)$ (in black and grey), and the structure of G_{Σ} (in black). In this example, the extended net Σ' has only two places more than Σ, represented in grey in the figure, associated with the complements of the two observable places. As observed in Sec. 2, $\text{MG}(\Sigma')$ is isomorphic to $\text{MG}(\Sigma)$, therefore the right part of Fig. 6 represents it. In Table 1, each state of $\text{MG}(\Sigma')$ is associated with its stable and observable part. As observed in Ex. 3.1, there is no marking where $p2$ is stable. For this reason, a winning strategy for the user can never depend from the occurrence of $t2$, and when we construct G_{Σ} we can remove all the occurrences of this transition as well as of the transitions causally depending from it (as explained in point 4 of the procedure above).

An infinite computation λ on G_{Σ} is an infinite sequence of states starting from m'_{in} such that the successor of each state is fully determined by the moves chosen in the previous one. In order to exclude the computations associated with unfair runs on the net, we need to add to G_{Σ} some weak
Table 1. Table representing the stable and observable part of each state of the marking graph in Fig. 6

States	Propositions
1, 2	p1
5	p1, p2c
3, 6, 8, 11	p1c
4, 7, 9, 10, 12, 13	p1c, p2c

Figure 6. A net system, its marking graph (black and grey) and its associated game structure (black)

fairness constraints, as defined in [9]. A weak fairness constraint is a pair \(\langle i, c \rangle \) where \(i \in \{ u, env, s \} \) and \(c \) is a function that associates a set of moves for player \(i \) to every state. Let \(\lambda \) be an infinite computation and \(m_k \) its \(k \)-th element; \(\langle i, c \rangle \) is enabled in \(m_k \) if \(c(m_k) \neq \emptyset \), and is taken if there is a vector move \(\langle j_u, j_{env}, j_s \rangle \) with \(j_i \in c(m_k) \), \(m_{k+1} = \tau(m_k, j_u, j_{env}, j_s) \), and if \(i \neq s, j_s = i \). An infinite computation \(\lambda \) is weakly fair with respect to \(\langle i, c \rangle \), if \(\langle i, c \rangle \) is not enabled in infinitely many positions of \(\lambda \) or it is taken infinitely many times.

We require that there is no point in the computation from which the scheduler selects always the same player: this is expressed by the constraints \(\langle s, c_u \rangle \) and \(\langle s, c_{env} \rangle \), where \(\forall m \in M^r \ c_i(m) = \{ i \}, i \in \{ u, env \} \). In addition, we require that the computations are weakly fair with respect to uncontrollable transitions: for each uncontrollable transition \(t \), we define \(\# t : M^r \to 2^{T_{env}} \) such that \(\# t(m) = \emptyset \) if \(t \) is not enabled in \(m \), \(\# t(m) = \{ t \} \cup \{ t_i : \bullet t_i \subseteq m \land t_i \# t \} \) otherwise; for each \(t \) uncontrollable, we add the constraint \(\langle env, \# t \rangle \).

For each state \(m \in M^r \), let \([m]_u \) be the equivalence class of \(m \) with respect to \(\sim_u \), and \(M_u \) be the set of all these classes. A strategy is a function \(f : M_u \to T_u \cup \{ \epsilon \} \). Given \(\psi \in \text{LTL-X} \), a strategy is winning with respect to the goal expressed by \(\psi \) iff all the fair computations in which the user follows the strategy satisfy \(\psi \).

Given a computation \(\lambda = m_{i_0}m_{i_1}...m_{n}... \) (finite or infinite) we can construct a new sequence \(\pi(\lambda) \) in which all the consecutive states such that \(m_i = m_{i+1} \) have been identified. Given an infinite sequence \(\lambda \), \(\pi(\lambda) \) can be also infinite, if there is no state \(m_i \in \lambda \) such that for each \(m_j : j > i \) \(m_j = m_{j+1} \), or finite otherwise.
Lemma 4.2. Let ψ be an LTL-X formula, and λ_1 and λ_2 be two infinite computations such that $\pi(\lambda_1) = \pi(\lambda_2)$. λ_1 satisfies ψ iff λ_2 does.

Proof:
If the operator X is not allowed, then the validity of ψ depends only on the sequence of distinct states in computations; since, by hypothesis, $\pi(\lambda_1) = \pi(\lambda_2)$, the thesis follows. \qed

4.1. Relation between plays in the two models

Let $\Sigma = (P,T,F,m_{in})$ be a net system, Σ' its extension, and G_{Σ} the derived game structure.

We now prove some propositions that show the relations between the plays on the unfolding and the infinite fair computations on the concurrent structure.

Let $\lambda = m_0m_1 \cdots$ be a fair computation on G_{Σ}. For every pair of consecutive states m_i, m_{i+1}, such that $m_i \neq m_{i+1}$, the move on the concurrent game structure is associated, by construction, with a transition t in Σ', such that $m_i[t]m_{i+1}$.

Given λ, we construct a run ρ on the unfolding of Σ', starting from the initial cut and adding the events associated with the moves that bring from a state to the next one in the same order that the states have in λ. At the same time we construct an increasing sequence δ of cuts: initially, $\delta = \gamma_0$; after an event e is added to the run, we add to δ the cut $\gamma = (\gamma' \setminus \bullet e) \cup e\bullet$, where γ' is the last cut added in δ before e. The pair derived in this way will be denoted by $(\rho,\delta)[\lambda]$.

Lemma 4.3. The pair $(\rho,\delta)[\lambda]$ is a play on $\text{UNF}(\Sigma')$.

Proof:
The sequence of cuts δ satisfies condition 2 of Def. 3.5 by construction.

We need to prove that there is no uncontrollable event $e \not\in \rho$ such that $\rho \cup \{e\}$ is a run on the unfolding. By contradiction, assume that we can find such an event e. Then, there is $i \in \mathbb{N}$ such that, on G_{Σ}, the move $\mu(e) = t$ is enabled in every state $m_j \in \lambda : i < j$, but is never chosen. The reason cannot be that the environment player is never selected by the scheduler, otherwise, the constraint $\langle s, c_{\text{env}} \rangle$ would not be satisfied, and λ would not be a fair computation. Hence the move t is available in every state m_j for player env, but he never chooses it. Then, the computation does not satisfy the fairness constraint $\langle \text{env}, \# t \rangle$.

Hence, $(\rho,\delta)[\lambda]$ constructed in this way is a play on the unfolding. \qed

With a similar idea, for each strategy f as defined in Def. 3.2, we can associate every play on $\text{UNF}(\Sigma')$ consistent with f with a set of infinite fair computations on G_{Σ}: let (ρ,δ) be a play on the unfolding; as first step, we consider all the possible sequentializations of events included between the initial cut γ_0 and the next cut $\gamma_1 \in \delta$. For each of these linearizations we can find a prefix of a computation on the concurrent game structure by executing on it, from the state corresponding to the initial marking, all the events in the order given by the linearization; then, we extend all these prefixes by considering the successive pairs of consecutive cuts, and the sequentializations of the events between them. If the play on the distributed net system reaches a deadlock, then the only possibility in the associated concurrent game structure is to execute the transition that remains in the same state infinitely often.
In this way, we obtain a set of infinite computations associated with a play \((\rho, \delta)\), denoted by \(\Lambda(\rho, \delta)\).

Lemma 4.4. Let \(f\) be a strategy on \(\Sigma'\), and \((\rho, \delta)\) be a play consistent with \(f\) on \(\text{UNF}(\Sigma')\). For every computation \(\lambda \in \Lambda(\rho, \delta)\) on \(G_\Sigma\), there is at least one fair computation \(\lambda' : \pi(\lambda') = \pi(\lambda)\).

Proof:
The set of constraints of the scheduler must guarantee that no player is neglected forever. If \(\rho\) is finite then every \(\lambda \in \Lambda(\rho, \delta)\) is fair: the only move available for the environment is the empty move, that keeps the system in the same state; when the scheduler selects the user, he can decide to execute the move that keep the structure in the same state.

In addition, when \(\rho\) is finite, also the constraints on the environment are satisfied: after a finite number of states there is no uncontrollable enabled transition, therefore those constraints are infinitely not enabled.

We now consider the case in which \(\rho\) is infinite. Since a play on the unfolding must be fair with respect to uncontrollable transitions, in the computation \(\lambda\) the fairness constraint \(\langle s, c_{\text{env}} \rangle\) must be satisfied. If \(\rho\) has infinitely many controllable events, then the fairness constraint \(\langle s, c_u \rangle\) is also satisfied by construction; otherwise, since the user has always the possibility not to move in the system, we can construct a sequence \(\lambda' : \pi(\lambda') = \pi(\lambda)\) with some repeated states, that represent points of the sequence in which the user was selected by the scheduler in \(G_\Sigma\), but the state of the system did not change.

The set of fairness constraints for the environment must be satisfied: by contradiction, we assume that there is a function \(#t\), such that \(\langle \text{env}, \#t \rangle\) is not satisfied in \(\lambda'\); this means that \(\langle \text{env}, \#t \rangle\) is not enabled in a finite number of states in \(\lambda\), but it is taken only a finite number of times. This means that there is an uncontrollable event \(e \notin \rho\) in the net that is enabled in all the cuts compatible with \(\delta\), except for a finite set; since \(\rho\) is infinite, there must be a cut \(\gamma \in \delta\) such that \(e\) is enabled in \(\gamma\) and in all the cuts \(\gamma_j \in \rho : \gamma_j > \gamma\); hence \(\rho \cup \{e\}\) is a run on \(\text{UNF}(\Sigma')\). This is in contradiction with the hypothesis that \(\rho\) is a play. \(\square\)

Lemma 4.5. Let \(\psi\) be an LTL-X formula. A computation \(\lambda\) satisfies \(\psi\) iff \((\rho, \delta)[\lambda]\) does. Analogously, a play \((\rho, \delta)\) satisfies \(\psi\) iff all the computations in \(\Lambda(\rho, \delta)\) do.

Proof:
By construction, \(\delta\) is a maximal refinement, therefore \((\rho, \delta)[\lambda]\) allows a unique sequentialization equivalent to the computation \(\lambda\).

Each element \(\lambda \in \Lambda(\rho, \delta)\) is associated with a maximal refinement of \(\delta\) by construction. If all the elements in \(\Lambda(\rho, \delta)\) satisfy \(\psi\), then also all the refinements of \(\delta\) do. Viceversa, if there is a \(\lambda \in \Lambda(\rho, \delta)\) that does not satisfy \(\psi\), also the \(\delta'\) maximal refinement of \(\delta\) associated with \(\lambda\) does not. \(\square\)

4.2. Relations between winning strategies in the two models

Let \(f' : O(M^S) \rightarrow 2^T_u\) be a strategy for the user on \(\Sigma'\). We call \(f'\) a strategy on \(G_\Sigma\) constructed from \(f'\) as follows.
1. If \(f'(o(m^s)) \neq \emptyset \), and \(t \) is a transition in \(f'(o(m^s)) \) arbitrarily chosen, then \(f'_f([m]_u) = t \).

2. \(f'_f([m]_u) = \epsilon \) otherwise.

Analogously, let \(f : M_u \rightarrow T_u \cup \{ \epsilon \} \) be a strategy on \(G_S \); we define the derived strategy \(f'_f \) on \(\Sigma' \) as follows:

1. \(f'_f(o(m^s)) = \{ f([m]_u) \}, \) if \(f([m]_u) \neq \epsilon \).

2. \(f'_f(o(m^s)) = \emptyset \), otherwise.

Theorem 4.6. Let \(\psi \) be an LTL-X formula, \(\Sigma \) a net system, \(\Sigma' \) its extension, and \(G_S \) the derived game structure. A winning strategy exists on \(\Sigma' \) for \(\psi \) iff a winning strategy exists on \(G_S \).

Proof:

As first step, we show that if \(f' \) is a winning strategy on \(\Sigma' \) for \(\psi \), then \(f'_f \) is a winning strategy for \(\psi \) on \(G_S \).

Let \(out(m'_i, f'_f) \) be the set of fair computations starting from \(m'_i \) that the user enforces by following the strategy \(f'_f \). For any \(\lambda \in out(m'_i, f'_f) \), we show that \((\rho, \delta)[\lambda] \) satisfies the conditions of Def. 3.8, and therefore is consistent with \(f' \): (1) let \(e \in E_u \cap \rho \) be an event controllable by the user. By construction, \(\delta \) is a maximal refinement, hence there must be two cuts \(\gamma_j \) and \(\gamma_{j+1} \) such that \(e \) is the only event between them. By construction, if \(e \) was added to the run after \(\gamma_j \), there must be a state \(m \in \lambda : \mu(\gamma_j) = m \) such that \(f'_f([m]_u) = \mu(e) \). By construction of the strategy, \(\mu(e) \in f'(o(m^s)) \). (2) By contradiction, assume that the user is finally postponed; then there is a cut \(\gamma \in \delta \) such that for each cut \(\gamma_j \) compatible with \(\delta \) such that \(\gamma_j > \gamma \), \(f'(o(\mu(\gamma_j)^s)) \neq \emptyset \). By construction, there must be a state \(m_i \in \lambda : \mu(\gamma_i) = m_i \) such that \(f([m]_u) \neq \emptyset \) for each \(m_j, j > i \); then \(\lambda \) cannot be fair with respect to \(\rho, \delta \). \((\rho, \delta)[\lambda] \) is a play, and it is consistent with the strategy by construction, hence it is a winning play for the user and it satisfies the property expressed by \(\psi \). Hence also \(\lambda \) satisfies it on the concurrent game structure.

As second step, let \(f \) be a winning strategy on \(G_S \). We show that \(f'_f \) is a winning strategy on \(\Sigma' \).

Let \((\rho, \delta) \) be a play consistent with \(f'_f \). By contradiction, we assume that the formula \(\psi \) is not satisfied on \(UNF(\Sigma') \), and that the play \((\rho, \delta) \) testifies it. Then there must be a maximal refinement \(\delta' \) of \(\delta \) that does not satisfy the formula. \(\delta' \) is associated with an infinite sequence of states \(\lambda \) on \(G_S \). If \(\lambda \) is a fair computation on \(G_S \), then it is also a computation consistent with the strategy: let \(t \) be a user’s move in \(m_i \in \lambda \). By construction, there must be \(e : \mu(e) = t \in (\rho, \delta) \) such that \(t \in f(o(\mu(\gamma_i)^s)) \), where \(\gamma_i \in \delta' \) and \(\mu(\gamma_i) = m_i \).

If \(\lambda \) is not fair, we know by Lemma 4.4 that we can construct a fair computation \(\lambda' \) such that \(\pi(\lambda) = \pi(\lambda') \). In addition, from the proof of Lemma 4.4 we know that the only reason why \(\lambda \) can be unfair is that the user is finally neglected during the play. This cannot happen if the user has the strategy finally not-empty, otherwise the play on the net would not be consistent with this strategy (by definition the strategy selects only enabled events). Then, there is an infinite number of states in the sequence in which \(f \) selects only the transition that keeps the system in the same state. We add a copy of these states in the position coming immediately after them. This computation \(\lambda' \) is fair with respect to the user, therefore it is a play consistent with the strategy on the concurrent game structure.
and by hypothesis is winning. By construction $\pi(\lambda) = \pi(\lambda')$, hence Lemma 4.2 guarantees that also λ respect ψ. \hfill \Box

5. Finding a winning strategy

In this section we describe a method to find a winning strategy for the user on the net system, if one exists. In Sec. 4 we showed that this is equivalent to find a strategy on the derived game structure, and we mentioned that this problem can be translated into the problem of model-checking a 1ATL-X formula. However, to our knowledge, none of the model-checkers developed for ATL can be directly applied to solve the problem as we stated. This is because we want to model check a fragment of ATL^*, whereas most of the tools only support ATL, and because even those tools supporting ATL^* do not allow to specify the observability and the fairness constraints that we require. Among the most prominent tools, MOCHA [12] works only for synchronous systems and allows neither partial observability nor any kind of fairness constraint; MCMAS [13] does not support partial observability and consider only the so called unconditional fairness, where each fair computation must cross infinitely often some subsets of states; finally the recent STV+ [14] supports a special case of partial observability, in which the agents can observe only their local states, and does not support any fairness constraint.

In this section we will focus on the research of a winning strategy on the derived game structure. The method that we propose can be summarized in the following steps, that will be explained in detail in the next subsection.

1. Among the set of potential winning strategies, we select a strategy f for G_Σ, and we prune G_Σ accordingly.

2. From the pruned G_Σ and the strategy f, we construct a Kripke model $K(G_\Sigma, f)$ that allows us to verify fairness constraints without having them externally specified. To the same aim, we construct a formula ψ' from ψ such that the user has a winning strategy for ψ on G_Σ if, and only if, ψ' is verified in the initial state on $K(G_\Sigma, f)$.

3. We check if the strategy is winning with the help of an LTL model-checker; if it is, we stop and return that strategy, otherwise we mark the current strategy and all those equivalent to it as checked, and we repeat the steps.

We say that two strategies f and f' are equivalent if the set of states reachable from the initial state of $K(G_\Sigma, f)$ is equivalent to the set of states reachable from the initial state of $K(G_\Sigma, f')$. This may happen because some states become unreachable after the pruning process. In this case, f is winning iff f' is.

5.1. Encoding fairness constraints into the Kripke model

Let $G_\Sigma = (\{u, env, s\}, M^*, m_{init}, P', d, \tau, \sim_u)$ be a derived game structure with fairness constraints, and f be a strategy on G_Σ. We modify G_Σ and construct a Kripke model $K(G_\Sigma, f)$ as follows. Let P^f_I be the set of atomic propositions of K. P^f_I includes all the elements in P'. In addition, for each
transition \(t \in T_{\text{env}} \), we add an element to \(P_f \). Abusing the notation, these propositions will be denoted with the name of their associated transitions. Finally \(P_f \) includes the two propositions \(env \) and \(u \).

For each state \(m \in M^r \), we delete all the outgoing controllable transitions that are not selected by \(f \) in \([m]\). We split all the other arcs by adding for each of them an intermediate state. Let \(t \) be a transition outgoing from \(m \) in \(G_\Sigma \), and \(l \) be the intermediate state to add. All the propositions true in \(m \) and all those associated with uncontrollable transitions not enabled at \(m \) are true in \(l \). In addition, if \(t \) is controllable or \(f([m]) = \emptyset \), \(u \) is true in \(l \); if \(m \) does not enable any transition in \(T_{\text{env}} \), \(env \) is true in \(l \); if \(t \in T_{\text{env}} \) all the propositions in \#\(t \) are true in \(l \).

Finally, for each state \(m \) in \(M^r \) if \(m \) does not enable any transition in \(T_{\text{env}} \) and \(f([m]) = \emptyset \), we add a state \(l \) and two transitions so to create a cycle between \(m \) and \(l \). In \(l \) the true propositions are those true in \(m \) and all those in \(P_f \setminus P^r \).

Example 5.1. Consider the net system and its concurrent game structure represented in Fig. 6. Assume that the goal of the user is \(F(p_7 \land p_9) \), and that the user follows the strategy \(f \) such that \(f(p_1, p_2^c) = \{t1\}, f(o(m^s)) = \emptyset \) otherwise. The Kripke model \(K(G_\Sigma, f) \) encoding this strategy and the fairness constraints is represented in black in Fig. 7. The grey part represents the parts of the game structure \(G_\Sigma \) that must be deleted. Each transition in \(K(G_\Sigma, f) \) is doubled with respect to the same transition in \(G_\Sigma \). The states dividing each transition (1', 2', 5' etc.) are used to store the information about fairness constraints. The true propositions in each of these new states are in Table 2. We can use this Kripke model to check if \(f \) is winning, as formalized in Lemma 5.2.

Lemma 5.2. Let \(\psi \) be an LTL-X formula, \(G_\Sigma \) a derived structure, \(f \) a strategy and \(K(G_\Sigma, f) \) the derived Kripke model. \(f \) is winning on \(G_\Sigma \) if, and only if, \(\psi' = (\bigwedge_{x \in \{u, \text{env}\}} GF x \land \bigwedge_{t_j \in T_{\text{env}}} G F t_j) \rightarrow \psi \) holds in the initial state on \(K(G_\Sigma, f) \).

Proof:
We associate to every infinite computation \(\lambda_f \) on \(K(G_\Sigma, f) \) an infinite computation \(\lambda \) on \(G_\Sigma \) by removing from \(\lambda_f \) all the states that are not in \(M^r \).

We first show that for each infinite path \(\lambda_f \) in \(K(G_\Sigma, f) \), \(\lambda_f \) satisfies

\[
(\bigwedge_{x \in \{u, \text{env}\}} GF x \land \bigwedge_{t_j \in T_{\text{env}}} G F t_j)
\]

Table 2. True propositions in the states added during the construction of \(K(G_\Sigma, f) \)

New states	True propositions
1'	\(p_1, p_2, p_3, u, \text{env}, t_3, t_4, t_5, t_6 \)
2'	\(p_1, p_2, p_6, u, \text{env}, t_3, t_4, t_5, t_6 \)
5'	\(p_1, p_2^c, p_9, u, t_3, t_4, t_5, t_6 \)
10'	\(p_1^c, p_2^c, p_4, p_9, u, \text{env}, t_3, t_4, t_5, t_6 \)
13'	\(p_1^c, p_2^c, p_7, p_9, u, \text{env}, t_3, t_4, t_5, t_6 \)
iff there is a computation λ' in G_{Σ} such that $\pi(\lambda) = \pi(\lambda')$, and λ' satisfies all the fairness constraints in G_{Σ}. Assume such a λ' exists, then both the user and the environment must have been selected infinitely often by the scheduler. If λ' is obtained through the occurrence of infinitely many uncontrollable and controllable transitions, then by construction $\bigwedge_{i \in \{u,env\}} GFi$ holds in λ^f. If there is a finite number of uncontrollable transitions, there must be an index i such that for each $\lambda'_j : j > i$, λ'_j does not enable any uncontrollable transition. Since $\pi(\lambda) = \pi(\lambda')$, this property must hold also for λ. By construction, for each state in λ where no uncontrollable transition is enabled, there is a state in λ^f where env is true. Analogously for u if no controllable transition is enabled from a certain state on. In addition, there may be a finite number of controllable transitions also if the strategy for the user does not select any transition from a certain state on. By construction, for each of these states in λ there is a state on λ^f where u is true. Vice versa, if there is no fair λ', also the formula $\bigwedge_{i \in \{u,env\}} GFi$ does not hold on λ^f, since there are no other cases than those discussed above in which u or env are true in a state. If λ satisfies also the constraints for the environment, then the formula $\bigwedge_{t_j \in T_{env}} GFt_j$ must hold in λ^f, because by construction, for each $t_j \in T_{env}$, t_j is true in a state l of λ^f iff there is a state m in λ and a transition t_i bringing to the next state of λ and such that t_j is not enabled at m (and therefore its associated fairness constraint is also not enabled) or $t_j \in \#t_i$ (and therefore the constraint is taken in λ).

As second step, we observe that ψ holds in λ iff it holds in λ^f (since all the propositions of ψ are in P, this can be seen as a Corollary of Lemma 4.2).

Then, if ψ' holds in $K(G_{\Sigma}, f)$, in all the fair paths in G_{Σ} that follow f, ψ holds, and therefore f is winning on G_{Σ}. Vice versa, if ψ does not hold in $K(G_{\Sigma}, f)$, there is at least a fair path on G_{Σ} that follows f and such that ψ is not verified, therefore f is not winning on G_{Σ}.

Lemma 5.2 allows us to prove the correctness of the algorithmic procedure proposed at the beginning of this section to find a winning strategy, if one exists.

5.2. Complexity

Theorem 5.3. The complexity of finding a winning strategy is at least PSPACE and at most EXPSPACE in the dimension of the net.
Proof:
In order to prove that finding a winning strategy is at least PSPACE, we show that this problem is at least as hard as the reachability problem. This consists in deciding whether a given marking is reachable from the initial marking, and it is proved to be PSPACE-complete for 1-safe nets [15]. Let $\Sigma = (P,T,F,m_0)$ be a net system, and $m \subseteq P$ be a marking. We associate to the reachability problem for m from m_0 a game on the net. On Σ, we assume that all the places are observable, and all the transitions are controllable by the user. Since every transition is controllable, for each marking, the stable part is the entire marking, therefore the strategy is defined on the reachable markings of the net. Let the goal of the user be $F(\bigwedge_{p_i \in m} p_i \land \bigwedge_{p_i \in P \setminus m} \neg p_i)$. A winning strategy for the user exists iff m is reachable:

- If m is reachable, then there is a sequence of transitions that brings from m_0 to m. Let $\sigma = t_0 \ldots t_n$ be this sequence, and $m_0 m_1 \ldots m_n$ be the corresponding sequence of markings, so that $m_0[t_0]m_1[t_1] \ldots m_n[t_n]m$. We can assume that for each $i \neq j, m_i \neq m_j$. If this is not the case, we can construct another path that from m_0 arrives to m by observing that if $m_l = m_{l+k}$ for some l,k, then the sequence of transitions $t_0 t_1 \ldots t_{l-1} t_{l+k} \ldots t_n$ also reaches m and the repetition between m_l and m_{l+k} has been deleted. Then a winning strategy is a function f such that $f(m_i) = \{t_i\}$ for each $i \in \{0, \ldots, n\}$.
- If there is a winning strategy for the user, then by construction the user reaches m after a finite number of steps.

We now prove the upper limit by showing that the algorithm that we proposed is at most EXPSPACE. In general, the marking graph $MG(\Sigma)$ has exponential size with respect to the size of Σ; computing all the unions and complements of the observable places is also exponential with respect to Σ. Computing the stable and observable parts of all the markings requires polynomial time with respect to $MG(\Sigma)$. Let G_{Σ} be the concurrent structure derived from Σ. By construction, $MG(\Sigma)$ and G_{Σ} have the same size. In our algorithm we guess a strategy f, we construct a Kripke model $K(G_{\Sigma}, f)$ and we verify an LTL formula. Since constructing a strategy f and $K(G_{\Sigma}, f)$ is polynomial with respect of G_{Σ}, and model-checking of LTL-X is PSPACE, the algorithm is PSPACE with respect to the size of $MG(\Sigma)$. Since $MG(\Sigma)$ is in general exponentially larger than Σ, the algorithm is at most EXPSPACE.

6. Related works

Among the works putting together temporal logic and asynchronous systems, a prominent line is represented by the works on ATL, already introduced in Sec. 4. After its introduction in [9], many authors proposed extensions for it, by providing interpretation of this logic with bounded or no memory (imperfect recall), and partial observability (imperfect information) [5, 11, 16]. Complexity and decidability results were proved for these semantics [5, 17], and some heuristics where proposed to improve the performances of the algorithms in practice [18]. ATL is interpreted over concurrent game structures ([9, 5]), or interleaved interpreted systems ([19, 10]). In Sec. 5 we shortly discussed some tools for its model checking.

Other extension increasing the expressiveness of ALT includes the use of strategy contexts [11, 16] and probability [20, 21].
The game on the unfolding defined in this paper develops some of the ideas presented in [22]. However, in [22] we assumed the user to have full knowledge of the current global state of the system, and we defined the game only for a restricted class of 1-safe nets. In [22], the goal of the user is to reach a target transition, and the algorithm to find a strategy is developed on a prefix of the unfolding.

In [23] another game with a reachability goal on a Petri net is defined. In particular, the goal of the user consists in firing a target transition infinitely many times. Under the assumption of full observability, the authors reduce the game on the net to a Streett game on a graph.

In [24, 25] a different notion of game on the unfolding is presented. In this game, the players are represented as tokens on the net, and they are divided into two teams, the system and the environment players. The goal of the system players is to avoid a set of bad markings. Each token knows its own past, and is informed about the past of the others when it synchronizes with them through transitions in the net. Also in this case, in order to find a winning strategy, the authors translate their problem on a graph.

7. Conclusion

In this paper we defined a game between two players, a user and an environment, on the unfolding of a Petri net. We proposed a notion of information available for the user that considers both that the value of some places may not be accessible at all for the user, and that the value of some places may change before the user can observe them.

In the case where the user has no memory and must guarantee a property expressed with a LTL-X formula, we provided a method to determine whether he has a winning strategy, i.e. he can enforce the system to satisfy the LTL-X formula.

Our definition of the strategy and of the user’s observations keeps into account the presence of different components in the system, that may change their state, while the communication of a previous step reaches the user. This makes our model suitable to represent distributed system, where different components may be physically distant from each other. In future works we plan to exploit even more the concurrent structure of the net, by looking for strategies directly on the unfolding.

In Sec. 5.2 we showed that the problem considered in this paper has a high complexity, that may create problems for practical uses. To address this problem, we will work in two directions: finding heuristics that allow for fast computations in most of the cases, and identifying subclasses of goals and structural properties of the net with lower complexity. We implemented a preliminary version of a model-checker tool and tested it on small examples. Not surprisingly, on bigger examples the tool spends most of the time testing different strategies. In order to improve the performance, we will focus on the research of more convenient orders to select the strategies to check.

In addition, we intend to study the cases of bounded and full memory strategies. For these cases, we plan to define the memory of the user through the structure of the unfolding. We plan to find algorithms also for this case, and to compare the information of the user in this case with the information of a full memory strategy defined on a game structure.

Finally, we are working at the synthesis of strategies by adding a controller component to the original system in order to restrict its behaviors, so that every execution satisfies the desired specification, in the same line of [1].
Acknowledgements

This work is partially supported by the Italian MUR.

References

[1] Ramadge PJ, Wonham WM. Supervisory control of a class of discrete event processes. *SIAM journal on control and optimization*, 1987. 25(1):206–230.

[2] Murata T. Petri nets: Properties, analysis and applications. *Proceedings of the IEEE*, 1989. 77(4):541–580.

[3] Badouel E, Bernardinello L, Darondeau P. Petri Net Synthesis. Springer, 2015.

[4] Engelfriet J. Branching Processes of Petri Nets. *Acta Inf.*, 1991. 28(6):575–591. doi:10.1007/BF01463946. URL https://doi.org/10.1007/BF01463946.

[5] Schobbens PY. Alternating-time logic with imperfect recall. *Electronic Notes in Theoretical Computer Science*, 2004. 85(2):82–93.

[6] Esparza J, Heljanko K. Implementing LTL model checking with net unfoldings. In: Dwyer M (ed.), Model Checking Software. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-45139-6, 2001 pp. 37–56.

[7] Klai K, Petrucci L, Reniers M. An Incremental and Modular Technique for Checking LTL\(\setminus\)X Properties of Petri Nets. In: International Conference on Formal Techniques for Networked and Distributed Systems. Springer, 2007 pp. 280–295.

[8] Schröter C, Khomenev V. Parallel LTL-X model checking of high-level Petri nets based on unfoldings. In: International Conference on Computer Aided Verification. Springer, 2004 pp. 109–121.

[9] Alur R, Henzinger TA, Kupferman O. Alternating-time temporal logic. *J. ACM*, 2002. 49(5):672–713. doi:10.1145/585265.585270. URL https://doi.org/10.1145/585265.585270.

[10] Jamroga W, Penczek W, Sidoruk T, Dembinski P, Mazurkiewicz AW. Towards Partial Order Reductions for Strategic Ability. *J. Artif. Intell. Res.*, 2020. 68:817–850. doi:10.1613/jair.1.11936. URL https://doi.org/10.1613/jair.1.11936.

[11] Brihaye T, Da Costa A, Laroussinie F, Markey N. ATL with strategy contexts and bounded memory. In: International Symposium on Logical Foundations of Computer Science. Springer, 2009 pp. 92–106.

[12] Alur R, Henzinger TA, Mang FY, Qadeer S, Rajamani SK, Tasiran S. MOCHA: Modularity in model checking. In: International Conference on Computer Aided Verification. Springer, 1998 pp. 521–525.

[13] Lomuscio A, Qu H, Raimondi F. MCMAS: an open-source model checker for the verification of multi-agent systems. *Int. J. Softw. Tools Technol. Transf.*, 2017. 19(1):9–30. doi:10.1007/s10009-015-0378-x. URL https://doi.org/10.1007/s10009-015-0378-x.

[14] Kurpiewski D, Pazderski W, Jamroga W, Kim Y. STV+ Reductions: Towards Practical Verification of Strategic Ability Using Model Reductions. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems. 2021 pp. 1770–1772.

[15] Cheng A, Esparza J, Palsberg J. Complexity results for 1-safe nets. *Theoretical Computer Science*, 1995. 147(1-2):117–136.
[16] Laroussinie F, Markey N, Sangnier A. ATLsc with partial observation. In: Esparza J, Tronci E (eds.), Proceedings Sixth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2015, Genoa, Italy, 21-22nd September 2015, volume 193 of EPTCS. 2015 pp. 43–57. doi: 10.4204/EPTCS.193.4. URL https://doi.org/10.4204/EPTCS.193.4.

[17] Laroussinie F, Markey N, Oreiby G. On the expressiveness and complexity of ATL. In: International Conference on Foundations of Software Science and Computational Structures. Springer, 2007 pp. 243–257.

[18] Pilecki J, Bednarczyk MA, Jamroga W. Synthesis and verification of uniform strategies for multi-agent systems. In: International Workshop on Computational Logic and Multi-Agent Systems. Springer, 2014 pp. 166–182.

[19] Busard S, Pecheur C, Qu H, Raimondi F. Reasoning about memoryless strategies under partial observability and unconditional fairness constraints. Inf. Comput., 2015. 242:128–156. doi:10.1016/j.ic.2015.03.014. URL https://doi.org/10.1016/j.ic.2015.03.014.

[20] Kwiatkowska M, Norman G, Parker D, Santos G. Automatic Verification of Concurrent Stochastic Systems. *Formal Methods in System Design*, 2021.

[21] Chen T, Forejt V, Kwiatkowska M, Parker D, Simaitis A. Automatic verification of competitive stochastic systems. *Formal Methods in System Design*, 2013. 43(1):61–92.

[22] Adobbati F, Bernardinello L, Pomello L. A Two-Player Asynchronous Game on Fully Observable Petri Nets. *Trans. Petri Nets Other Model. Concurr.*, 2021. 15:126–149.

[23] Bernardinello L, Kılınc G, Pomello L. Weak observable liveness and infinite games on finite graphs. In: International Conference on Application and Theory of Petri Nets and Concurrency. Springer, 2017 pp. 181–199.

[24] Finkbeiner B, Olderog E. Petri games: Synthesis of distributed systems with causal memory. *Inf. Comput.*, 2017. 253:181–203. doi:10.1016/j.ic.2016.07.006. URL https://doi.org/10.1016/j.ic.2016.07.006.

[25] Gieseking M, Olderog E, Würdemann N. Solving high-level Petri games. *Acta Informatica*, 2020. 57(3-5):591–626. doi:10.1007/s00236-020-00368-5. URL https://doi.org/10.1007/s00236-020-00368-5.