Traditional Chinese Medicine Therapy for Esophageal Cancer: A Literature Review

Luchang Cao, MB1*, Xinmiao Wang, MMed1*, Guanghui Zhu, MMed1,2*, Shixin Li, MB1,2*, Heping Wang, MMed1, Jingyuan Wu, MB1,2, Taicheng Lu, MB1,2, and Jie Li, PhD1

Abstract
Esophageal cancer (EC) is the sixth leading cause of cancer-related deaths worldwide. Western medicine has played a leading role in its treatment, but its prognosis remains unsatisfactory. Therefore, the development of effective therapies is important. Traditional Chinese medicine (TCM) has been practiced for thousands of years, and involves taking measures before diseases occur, deteriorate, and recur. Interestingly, there is growing evidence that TCM can improve the therapeutic effects in reversing precancerous lesions, inhibiting the recurrence and metastasis of EC. In this article, we review traditional Chinese herbs and formulas that have preventive and therapeutic effects on EC, summarize the application and research status of TCM in patients with EC, and discuss its shortcomings and prospects in the context of translational, evidence-based, and precision medicine.

Keywords
esophageal cancer, traditional Chinese medicine, complementary and alternative medicine, therapy, mechanism

Submitted July 3, 2021; revised October 10, 2021; accepted November 5, 2021

Introduction
There are an estimated 604,000 new esophageal cancer (EC) cases and 544,000 deaths each year, and the incidence and mortality rates of EC are ranked seventh and sixth in the world, respectively.1 EC is mainly classified as esophageal squamous cell carcinoma (ESCC) or esophageal adenocarcinoma (EAC), of which ESCC accounts for about 90% with a 5-year survival rate of 10%,2 and 30% to 40% of cases have local or distant metastasis once found.3,4 Smoking, excessive alcohol consumption, red meat, salted meat, fried food, Barrett’s esophagus, gastroesophageal reflux disease, and obesity can increase the risk of EC.5,6 At present, EC is mainly treated by surgical resection, radiotherapy, chemotherapy, molecular targeted therapy, and immunotherapy, but the prognosis is still poor.7-9

Traditional Chinese medicine (TCM) originated in ancient China. It has experienced different stages of prosperity, decline, and revival (Figure 1) during over 5000s of years of medical practice. The main guiding concept of “seeking the root of the disease (Zhibing Qiuben)” is from a classic ancient book named “Huang Di Nei Jing.” Under the overall and individualized concept,10,11 TCM teaches that qi, xue, yin, and yang are the basic materials to maintain human life activities, and the occurrence of diseases is due to their imbalance. The body is like a “soil environment,” and cancer cells are like “seeds.” TCM not only can directly eliminate carcinogenic “seeds,”12 but also improve the “soil environment” to make the body no longer suitable for “seed” growth.13-16 Maintaining esophageal patency (tongji-ang in TCM) is beneficial in the therapeutic method. The key pathological factors of EC are deficiency (xu), stasis (yu), heat (re), and poison (du). Therefore, therapies such as replenishing qi, promoting blood circulation, invigorating the spleen and kidney, regulating qi and phlegm, and clearing heat and toxic substances are needed. Compared with Western medicine, TCM plays a supplementary and alternative role in EC, which has gained a satisfactory effect and

1Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
2Beijing University of Traditional Chinese Medicine, Beijing, China
*These authors have contributed equally to this work.

Corresponding Author:
Jie Li, Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange Street, Xicheng District, Beijing 100053, China.
Email: qfm2020jieli@yeah.net

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Integrative Cancer Therapies attracted widespread attention.17-21 In this article, we review the application status and mechanistic research of TCM and discuss its shortcomings and prospects in the context of integrated medicine, precision medicine, and evidence-based medicine.22-26

Ancient Classical Formulas for the Treatment of EC

Although EC itself was not described in ancient China, TCM was applied to improve clinical symptoms such as dysphagia.27,28 Meanwhile, ancient Chinese herbal formulas gradually developed from single herbs to multiple drugs (formulas). Some ancient classical formulas have preventive and therapeutic effects on EC. For example, Liu-Jun-Zi-Tang29 and Sha-Shen-Mai-Dong-Tang,30 which supplement \textit{qi} and nourish \textit{yin}, can inhibit the growth of EC cells. Xiao-Chai-Hu-Tang31 and Qi-Zhu-Yu-Ling-Tang32 soothe the liver and regulate \textit{qi}. They can prevent EC cell proliferation and improve clinical symptoms. Bu-Qi-Yun-Pi-Tang30 and Liu-Wei-Di-Huang-Wan33 are classical prescriptions for invigorating the spleen and tonifying the kidney. They can prevent the progression of EC. Formulas such as Qi-Ge-San34 and Tong-You-Tang30 remove phlegm, dampness, blood stasis, and poisonous substances, which can strengthen the body to resist disease (Table 1).

Modern Application and Research of TCM in EC

TCM for Prevention of EC Occurrence and Metastasis

EC mostly develops from esophageal squamous epithelial dysplasia,37 and chronic inflammatory and mucosal hyperplasia are important factors for the gradual development of the esophageal epithelium into dysplasia.48,49 Clinical studies have shown that TCM has promise in preventing EC. For example, a randomized controlled trial showed that Fu-Fang-Cang-Dou-Wan (Atractylodes Rhizome, Radix Sophorae Tonkinensis, and green tea) can reduce the 2-year cancer rate, cellular DNA content, and proliferation index of patients with severe hyperplasia of esophageal epithelial cells.50

Randomized controlled trials showed that Kang-Ai-Yi-Pian (Dioscorea Bulbifera L, Polygonum Bistorta L,
Table 1. Ancient Classical Formulas for the Treatment of EC.

Formulas	Herbs	TCM therapeutic principles	Reference
Er-Chen-Tang	Banxia (Pinellia Ternata), Chenpi (Citrus Reticulata), Fuling (Tuckahoe), Gancao (Licorice)	Invigorating spleen and draining dampness	Tai-ping-hui-min-he-ji-ju-fang[^35]
Si-Wu-Tang	Shudihuang (Rehmanniae Radix Praeparata), Baishao (Paeoniae Radix Alba), Danggui (Angelicae Sinensis Radix), Chuanxiong (Chuanxiong Rhizoma)	Tonifying yin and blood	Xian-shou-li-shang-xu-duan-mi-fang[^36]
Xiao-Chai-Hu-Tang	Chaihu (Radix Bupleuri), Gancao (Licorice), Banxia (Pinellia Ternata), Renshen (Panax Ginseng C. A. Mey), Huangqin (Scutellariae Radix), Shengjiang (Zingiber Officinale Roscoe), Dazao (Jujuabae Fructus)	Soothing liver and relieving depression	Shang-han-lun[^37]
Ban-Xia-Xie-Xin-tang	Banxia (Pinellia Ternata), Huanglian (Coptidis rhizoma), Huangqin (Scutellariae Radix), Gancao (Licorice), Dazao (Jujuabae Fructus), Renshen (Panax Ginseng C. A. Mey)	Harmonize liver and spleen, acrid opening and bitter downbearing	Shang-han-lun[^37]
Xuan-Fu-Dai-Zhe-Tang	Xuanfuhua (Inulae Flos), Banxia (Pinellia Ternata), Gancao (Licorice), Renshen (Panax Ginseng C. A. Mey), Daizheshi (Ruddle ocher), Shengjiang (Zingiber Officinale Roscoe), Dazao (Jujuabae Fructus)	Nourishing qi, harmonizing stomach, and depressing qi	Shang-han-lun[^37]
Sheng-Yang-Yi-Wei-Tang	Huangqi (Hedysarum Multijugum Maxim), Banxia (Pinellia Ternata), Renshen (Panax Ginseng C. A. Mey), Gancao (Licorice), Fangfeng (Saposhnikoviae Radix), Baishao (Paeoniae Radix Alba), Qianghuo (Notopterygyi Rhizoma Et Radix), Duhuo (Radix Angelicae Biserratae), Chenpi (Citrus Reticulata), Fuling (Tuckahoe), Zexie (Oriental Waterplantain Rhizome), Chaihu (Radix Bupleuri), Baizhu (Atractylodes macrocephala Koidz), Huanglian (Coptidis rhizoma),	Tonifying spleen and stomach, clearing heat, and draining dampness	Pi-wei-lun[^38]
Tong-You-Tang	Taoren (Persicæ Semen), Honghua (Carthami Flos), Shengdihuang (Rehmannia glutinosa), Shudihuang (Rehmanniae Radix Praeparata), Danggui (Angelicae Sinensis Radix), Gancao (Licorice), Shengma (Cimicifugae Fuguea)	Nourishing yin and blood, and promoting blood circulation	Pi-wei-lun[^38]
Sha-Shen-Mai-Dong-Tang	Shashen (Root of straight ladybell), Yuzhu (Polygonati Odotari Rhizoma), Gancao (Licorice), Sangye (Mori Folium), Madong (Ophiopogon Panisus), Baihoutou (Lablab Semen Album), Tianhuafen (Trichosanthis Radix)	Tonifying lung and stomach, nourishing qi and yin	Wen-bing-tiao-bian[^19]
Qi-Ge-San	Shashen (Root of straight ladybell), Danshen (Radix Salviae), Fuling (Tuckahoe), Chuanbeimu (Fritillariae Irideae Bulbus), Yujin (Curcumae Radix), Shanren (Amomum Aurantiacum H. T. Tsai Et S. W. Zhao), Heye (Folium Nelmabini)	Nourishing qi and yin, relieving depression, and removing phlegm	Yi-xue-xin-wu[^40]
Tong-Qiao-Huo-Xue-Tang	Chishao (Radix Saposhnikoviae Rubra), Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Semen), Dazao (Jujuabae Fructus), Honghua (Carthami Flos), Laocang (Alii Fistulost Bulbus), Shengjiang (Zingiber Officinale Roscoe), Shexiang (Mush)	Promoting blood circulation and dissolving stasis	Yi-lin-gai-cuo[^41]
Liu-Wei-Di-Huang-Wan	Shudihuang (Rehmanniae Radix Praeparata), Shanyourou (Coronis Officinalis), Mudanpi (Cortex Moutan), Shanyao (Rhizaoma Dioscoreae), Fuling (Tuckahoe), Zexie (Oriental Waterplantain Rhizome)	Nourishing yin and tonifying kidney	Xiao-er-yao-zeng-zhi-jue[^42]
Bu-Zhong-Yi-Qi-Tang	Huangqi (Hedysarum Multijugum Maxim), Baizhu (Atractylodes macrocephala Koidz), Chenpi (Citrus Reticulata), Shengma (Cimicifugae Fuguea), Chaihu (Radix Bupleuri), Ren (Panax Ginseng C. A. Mey), Gancao (Licorice), Danggui (Angelicae Sinensis Radix)	Invigorating spleen and Stomach, and tonifying qi	Nei-wai-shang-bian-huo-lun[^43]
Huang-Lian-Jie-Du-Tang	Huanglian (Coptidis rhizoma), Huangqin (Scutellariae Radix), Huangbai (Phellodendri Chinensis Cortex), Zhizi (Gardeniae Fructus)	Clearing heat and poison, and draining dampness	Zhou-hou-bei-jia-fang[^44]
Sheng-Xian-Tang	Huangqi (Hedysarum Multijugum Maxim), Zhouli (Anemarrheneae Rhizoma), Chaihu (Radix Bupleuri), Jiegeng (Platyodon Grandiflorus), Shengma (Cimicifugae Fuguea)	Tonifying lung, nourishing qi, and elevating qi	Yi-xue-zhong-zhong-can-xi-lu[^45]
Wen-Dan-Tang	Banxia (Pinellia Ternata), Zhuru (Caulis bambusae in taenias), Zhishi (Aurantii Fructus Immaturus), Chenpi (Citrus Reticulata), Gancao (Licorice), Fuling (Tuckahoe)	Regulating qi, harmonizing stomach, and removing phlegm	San-yan-ji-yi-bing-zheng-fang-lun[^46]
Rhizoma Menispermi, Selfheal, Dahurian Patrinia Herb, and Cortex Dictamni) could reduce the transformation rate of severe esophagus epithelial cell hyperplasia by 52.2% and 47.3% at 3 and 5 years, respectively. Acrid opening and bitter down-bearing herbs (such as Pinellia Ternata, Scutellariae Radix, Cotidis Rizoma, Zingiberis Rizoma, Panax Ginseng C. A. Mey, Licorice, Jujubae Fructus) not only had a reversal effect on esophagus mucosal dysplasia (2-month and 1-year cure rates were 71.7% and 70.0%, respectively), but also improved clinical symptoms. The total effective rate of Qing-Re-Huo-Xue-He-Ji (Hedysarum Multijugum Maxim, Angelicae Sinensis Radix, Radix Paeoniae Rubra, Sophora Tonkinensis, Radix Sophorae Flavescentis, Hawthorn, Fructus Akebiae, Tianlong) on gastroscopy pathology in patients with esophageal mucosal dysplasia after 3 months of intervention was 82.76% (24/29). In a non-randomized controlled trial Jia-Wei-Liu-Wei-Di-Huang-Tang (Rehmanniae Radix Praeparata, Cornus Officinalis, Rhizoma Dioscoreae, Oriental Waterplantain Rhizome, Tuckahoe, Cortex Moutan, Barbed Skullcap Herb, Hedyotis Diffusa, Prunella Asiatica, Oyster Shell) was used to treat patients with esophageal epithelial hyperplasia (mild, moderate and severe) for 3 to 6 months; the total effective rate of gastroscopical pathology was 94.2% (49/52), with no cancerous findings. It can be seen that TCM has anti-EC potential and has direct inhibitory and reversal effects on esophageal epithelial hyperplasia. In addition, in terms of prevention of recurrence and metastasis of EC by TCM herbs, a non-randomized controlled trial reported that Jia-Wei-Qi-Ge-San (Salvia miltiorrhiza, Root Of Straight Ladybell, Radix Curcumae, Amomum Villosum, Poria cocos, Fritillaria thunbergi, Radix Scrophulariae, Rehmannia glutinosa, Ophiopogon japonicus, lotus leaf, and floating wheat) could reduce the 1-year recurrence and metastasis rates by 9.4% and 19.6% (respectively), prolong disease-free-survival, and improve the quality of life of patients after radical resection of EC.

TCM Combined With Modern Medicine for EC Therapy

Surgery and chemoradiotherapy, as the main treatments for EC, have toxic side effects and affect the daily quality of life of patients. It is reported that TCM combined with Western medicine can improve the efficacy of such treatments and prolong survival. For instance, 3 randomized controlled trials have shown that Bu-Yi-San-Jie-Yin can improve postoperative symptoms of fatigue, slurred speech, shortness of breath, fatigue, and spontaneous sweating and the levels of immune and nutritional indicators (P < 0.05) after EC radical resection. Xiao-Ai-Ping combined with S-1 and cisplatin could improve the response rate and disease control rate, prolong progression-free-survival (PFS) and overall survival (OS) of patients with advanced EC compared with chemotherapy alone. Concurrent chemoradiotherapy combined with Qing-Fei-Qu-Yu-Tang in patients with advanced EC could reduce the incidence of radiation pneumonitis and radiation lung damage and improve the survival and quality of life of patients (P < .05). A retrospective clinical study determined that chemoradiotherapy and β-elemene can improve the OS, PFS, and 3-year survival of patients with ESCC, which provides a basis for the clinical application of β-elemene herbs, such as Zedoary.

TCM Improves EC Patients’ Symptoms

In patients with EC, ginseng and Astragalus Membranaceus are often used to improve appetite and fatigue. Pinellia ternata and Ruddle Ocher can improve nausea. Concha Arcae and cuttlebone are applied to improve acid heartburn and rhubarb and Areca Catechu are used to improve constipation. Cancer-related pain is the most common symptom in patients with advanced incurable EC, mostly secondary to dysphagia or local tumor spread. Two meta-analyses and one overview of systematic reviews have shown that Compound Kushen Injection can relieve cancer-related pain, including lung cancer, EC, liver cancer, gastric cancer, and other cancers. Two randomized controlled trials showed that Nourishing Yin and Unblocking Meridians (Radix Asparagi, Radix Ophiopogonis, Radix Scrophulariae, Radix Rehmanniae, Radix Bupleuri, Fructus Aurantii Immaturus, Rhizoma Corydali, Rhizoma Cy, Radix Paeoniae, Radix Angelicae Sinensis, Radix Notoginseng, Pericarpium Citri Reticulatae Viride, Semen Persicae, Radix Glycyrrhizae) can enhance the analgesic effect of opioids. Ationping Capsule (Manyleaf Paris Rhizome, pillbug, Reddish Jackinthe pulp Rhizome, Giant Typhonium Rhizome, Olibanum, immature long pepper fruit, Rhizoma corydalis and others) exerts a central analgesic effect by increasing plasma β-endorphin content and decreasing cAMP levels, and improves the quality of life to a certain extent.

Anti-EC Mechanisms of TCM

Inhibition of Cell Proliferation and Induction of Cell Senescence

Aberrant cell proliferation is a hallmark of cancer. Studies have shown that lupeol acetate and baohuoside-I, the active ingredients of Cortex Periplocae Radicis, can inhibit the proliferation of EC cells by downregulating the expression of β-catenin and its downstream proteins. β-elemene (an active ingredient of Curcumae Longae Rhizoma) can inhibit the proliferation of ESCC by regulating hTERT expression mediated by long non-coding RNA. In addition, Chinese herbal medicines and their active ingredients,
such as Momordicae Semen (*Mubiezi*), curcumin (an active ingredient of Curcumae Longae Rhizoma) and Jia-Wei-Tong-You-Tang (Persicae Semen, Carthami Flos, Cimicifugae Rhizoma, Arecae Semen, Scutellariae Barbatae Herba, and *Hedyotis Diffusa* Herba) can also inhibit cell proliferation to exert anti-EC effects. 77-79 The mechanism of action of TCM against EC is detailed in Figure 2.

Senescence is an irreversible state of cell cycle arrest. Accumulating evidence suggests that the induction of cellular senescence is an effective method in cancer therapy.80,81 Interestingly, studies have shown that gypenoside L (a saponin isolated from *Gynostemma pentaphyllum*) could promote aging-related cytokines (such as IL-1α, IL-6, TIMP-1, CXCL-1, and CXCL-2) and aging-related cyclins (p21 and p27) by increasing the activity of SA-β-galactosidase, resulting in cells arrested in the S phase. Coincidentally, pathways regulating cellular senescence have an impact on the development of ESCC. Among them, p38 MAPK activation may be a key link during malignant carcinogenesis and transformation of ESCC; the MAPK/ERK pathway can inhibit the proliferation and invasion of ESCC cells by targeting MAP3K9; NF-κB signaling is overactivated in ESCC cells, and its inhibition leads to decreased cell growth and cell proliferation.84 Another study showed that gypenoside L can induce senescence in EC cells by activating the p38, ERK, MAPK, and NF-κB pathways.85

Induction of Autophagy and Apoptosis

Autophagy is a mechanism by which cellular materials are degraded by lysosomes. It has opposing and context-dependent roles in cancer, and is proposed as a therapeutic approach for tumors.86 Ursolic acid can inhibit the growth and metastasis of EC cells by reactive oxygen species (ROS)-mediated autophagy.87 Echinatin (an active ingredient of licorice), dihydroartemisinin (an active ingredient of Artemisinin), and ginsenoside Rk3 (an active ingredient of ginseng and Notoginseng Ginseng) can induce autophagy and exert anti-EC effects by inhibiting the Akt/mTOR signaling pathway.88-90

Moreover, apoptosis, a biological process in which multiple factors induce programed cell death, has also been shown to be a promising effective way to prevent cancer growth and progression.91 Studies have shown that TCM can induce apoptosis to inhibit EC progression. For example, Jaridonin, the active ingredient of *Isodon rubescens*, has been reported to induce apoptosis by inducing ROS
Inhibition of Metastasis and Angiogenesis

Metastasis is the real cause of malignant tumor characteristics and causes 90% of cancer-related deaths. Studies have shown that berberine (an active ingredient of Coptidis Rhizoma) can inhibit EC cell migration by downregulating the expression of CCR7 and CXCR4. Curcumin (an active ingredient of Curcumae Longae Rhizoma), can inhibit the formation of the lipid raft-associated Rac1/PI3K/Akt signaling complex to improve Sdf-1 expression in EC. Angiogenesis is a necessary condition for tumor growth and metastasis. Inhibiting angiogenesis and tumor vascular supply can contribute to the control of tumor cell growth and metastasis. Scholars have speculated that the overexpression of PDGFR-α is associated with tumor-related angiogenesis and progression. The PDGFR-α expression rates of EAC and ESCC are 91% and 100%, respectively. VEGF expression is closely related to angiogenesis, disease progression, and prognosis in ESCC. Studies have shown that Qi-Ge-San and Cinobufotalin injection can inhibit EMT by inhibiting the expression of Gas6/axl and the activation of the Snail/Twist pathway, respectively.

Regulation of Immune Function

Immune escape, triggered by T cell reduction or dysfunction, is one of the mechanisms by which cancer cells avoid the immune system. Studies have shown that Compound Radix Sophorae Flavescentis Injection (Radix Sophorae Flavescentis, Radix Polygoni Multiflori, Trogopterus Dung) can improve the levels of CD3+T, CD4+T, and CD4+CD8+ T cells and strengthen cellular immune function in elderly EC patients undergoing chemoradiotherapy. Zhenqi Fuzheng Granules can increase the levels of CD3+T cells and enhance the immune capacity of EC patients. In addition, mature dendritic cells (DCs), as antigen-presenting cells in the immune system, have an ultra-strong ability to acquire antigens and present them to T cells. Qi-Ge-San can reduce the EC inhibitory effect on DCs by inhibiting the STAT3 signaling pathway. At the same time, Treg cells are also involved in the development of tumors by inhibiting tumor immunity. A study has shown that Lian-Hua-Shen-Jia-Fang (Forsythiae Fructus, Codonopsis Radix, Cortex Periplocae) can slow down the process of precancerous esophageal lesions by inhibiting the expression of Treg cells.

Conclusions

The prognosis of patients with advanced EC remains unsatisfactory. The 5-year survival rate is approximately 5%. With more EC-relevant clinical trials being carried out in recent years, targeted and non-targeted immunotherapies have been gradually developed. It is expected that these therapies combined with surgery, radiotherapy, and chemotherapy, will be the future of multimodal treatment for EC. However, drug resistance in targeted immunotherapy is an unavoidable and complicated problem. TCM plays an important role in immune and targeted therapies, such as synergism and attenuation, improvement of drug sensitivity, and even reversal of drug resistance. For example, studies have demonstrated that TCM has unique advantages in...
reversing the acquired drug resistance of EGFR tyrosine kinase inhibitors in lung cancer. Accordingly, whether TCM plays a positive role in reversing targeted and immuno-therapy drug resistance in EC treatment remains a valuable problem to be solved. Moreover, it is worth exploring the mechanisms of TCM in the EC microenvironment and its effect on oral and intestinal flora.

TCM has shown great potential for the treatment of EC. It is well-suited to the complex mechanism of EC because of its natural complexity. However, there is also a wider dilemma: due to the multiple targets and pathways of TCM, the anti-EC mechanisms of most Chinese herbs have not been fully elucidated. It is necessary to explore regulatory networks associated with TCM mechanisms with the help of multidisciplinary, large-sample, and multi-omics techniques. Meanwhile, TCM is at a disadvantage in setting clinical pathways and guidelines for EC due to the lack of high-quality evidence-based studies, which greatly limits the application and development of TCM. In the future, high-quality randomized clinical trials with larger sample sizes across multiple centers need to be performed to improve this.

Author Contributions

LC and XW conceived the work. LC, XW, and GZ wrote and drafted the manuscript. LC, XW, GZ, and JL discussed and edited the manuscript. SL, HW, JW, and TL assisted in revising the second edition. JL funded the study. All authors read and approved the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Major projects funded by Beijing Science and Technology Plan: (No.D161100005116004).

ORCID iD

Jie Li https://orcid.org/0000-0002-3461-8816

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-249. doi:10.3322/caac.21660
2. Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91-95. doi:10.1038/nature13176
3. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499-2509. doi:10.1056/NEJMra1314530
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. doi:10.3322/caac.21492
5. Huang FL, Yu SJ. Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg. 2018;41:210-215. doi:10.1016/j.asjsur.2016.10.005
6. Zhao L, Li YC, Wu JP, et al. Increased risk of esophageal squamous cell carcinoma associated with frequent and long-term consumption of salted meat and salted fat. J Int Med Res. 2019;47:3841-3849. doi:10.1177/0300060519859729
7. Ohnuma H, Sato Y, Hayasaka N, et al. Neoadjuvant chemotherapy with docetaxel, nedaplatin, and fluorouracil for resectable esophageal cancer: a phase II study. Cancer Sci. 2018;109:3554-3563. doi:10.1111/cas.13772
8. Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20:1506-1517. doi:10.1016/S1470-2045(19)30626-6
9. Elliott JA, Docherty NG, Eckhardt HG, et al. Weight loss, satiety, and the postprandial gut hormone response after Esophagectomy: a prospective study. Ann Surg. 2017;266:82-90. doi:10.1097/SLA.0000000000001918
10. Wang WJ, Zhang T. Integration of traditional Chinese medicine and Western medicine in the era of precision medicine. J Integr Med. 2017;15:1-7. doi:10.1007/s12260-016-0314-5
11. Li L, Yao H, Wang J, Li Y, Wang Q. The role of Chinese medicine in health maintenance and disease prevention: application of constitution theory. Am J Chin Med. 2019;47:495-506. doi:10.1142/S0192415X19500253
12. Zhou W, Wu J, Zhang J, et al. Integrated bioinformatics analysis to decipher molecular mechanism of compound Kushen injection for esophageal cancer by combining WGCNA with network pharmacology. Sci Rep. 2020;10:12745. doi:10.1038/s41598-020-69708-2
13. Shi Q, Diao Y, Jin F, Ding Z. Anti-metastatic effects of Aidi decoction on human esophageal squamous cell carcinoma by inhibiting epithelial-mesenchymal transition and angiogenesis. Mol Med Rep. 2018;18:131-138. doi:10.3892/mmr.2018.8976
14. Fan W, Sun L, Zhou JQ, et al. Marsdenia tenacissima extract inhibits G0/G1 cell cycle arrest in human esophageal carcinoma cells by inhibiting mitogen-activated protein kinase (MAPK) signaling pathway. Chin J Nat Med. 2015;13:428-437. doi:10.1016/S1875-5364(15)30036-4
15. Cui Z, Liu W, Zhou Y, et al. [Curative effect of Jiedu Shengji recipe in preventing and treating acute radiation esophagitis in radiotherapy induced esophageal carcinoma patients]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2016;36:810-813.
16. Shi H, Shi D, Wu Y, Shen Q, Li J. Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function. Cancer Lett. 2016;380:184-190. doi:10.1016/j.canlet.2016.06.015
17. Rauf A, Abu-Izneid T, Olatunde A, et al. COVID-19 pandemic: epidemiology, etiology, conventional and non-conventional
therapies. *Int J Environ Res Public Health.* 2020;17:E8155. doi:10.3390/ijerph17218155

18. Song Q, Yang W, Meng Z, Wang J. Protocol for a systematic review and meta-analysis of Kang-ai injection for patients with oesophageal cancer. *Medicine.* 2020;99:e22148. doi:10.1097/MD.0000000000022148

19. Zhang D, Wu J, Wang H, et al. Systematic review and network meta-analysis comparing Chinese herbal injections with chemotherapy for treating patients with oesophageal cancer. *J Int Med Res.* 2020;48:30060519898336. doi:10.1177/0300060519898336

20. Liu Z, Dong Y, Zhu M, Mu Y, Chen L. Xuxaoping injection as adjunct therapy for patients with advanced oesophageal carcinoma: a protocol for a systematic review and meta-analysis. *Medicine.* 2020;99:e20984. doi:10.1097/MED.0000000000020984

21. Ying J, Zhang M, Qiu X, Lu Y. The potential of herb medicines in the treatment of esophageal cancer. *Biomed Pharmacother.* 2018;103:381-390. doi:10.1016/j.biopha.2018.04.088

22. Cai YM, Zhu H, Niu JX, et al. Identification of herb pairs in esophageal cancer. *Complement Med Res.* 2017;24:40-45. doi:10.1159/000454699

23. Kong L, Wu Z, Zhao Y, et al. Qigesan reduces the motility of esophageal cancer cells via inhibiting Gas6/Axl and NF-κB expression. *Biosci Rep.* 2019;39:BSR20190850. doi:10.1042/BSR20190850

24. Yang X, Li Y, Qian H. Study on the selection of the targets of esophageal carcinoma and interventions of Ginsenosides based on network pharmacology and bioinformatics. *Evid Based Complement Alternat Med.* 2020;2020:4821056. doi:10.1155/2020/4821056

25. Wang TH, Wan JY, Gong X, Li HZ, Cheng Y. Tetrandrine enhances cytotoxicity of cisplatin in human drug-resistant esophageal squamous carcinoma cells by inhibition of multidrug resistance-associated protein 1. *Oncol Rep.* 2012;28:1681-1686. doi:10.3892/or.2012.1999

26. Jia YS, Hu XQ, Li JA, Andras S, Hegyi G, Han BS. Tonglian decoction () arrests the cell cycle in S-phase by targeting the nuclear factor-kappa B signal pathway in esophageal carcinoma cells. *Chin J Integr Med.* 2016;22:384-389. doi:10.1007/s11655-016-2096-3

27. Liang X, Wang Q, Jiang Z, et al. Clinical research linking Traditional Chinese medicine constitution types with diseases: a literature review of 1639 observational studies. *J Tradit Chin Med.* 2020;40:690-702. doi:10.19852/j.cnki.jtcm.2020.04.019

28. Liu Y, Pan T, Zou W, et al. Relationship between traditional Chinese medicine constitutional types with chemotherapy-induced nausea and vomiting in patients with breast cancer: an observational study. *BMC Complement Altern Med.* 2016;16:451. doi:10.1186/s12906-016-1415-3

29. Yin SG, Wang HH, Wu YS, Chen YL. Study of Liujunzi Tang extract on inhibiting human esophageal carcinoma Eca109 cells growth. *Chin J Exp Tradit Med Form.* 2015;21:163-166.

30. Si FC. Effects of Qigesan, Shashenmaidongtang, Tongyoutang and Buqiyunpitang on hEGF-stimulated proliferation of human esophageal carcinoma EC9706 cells. *World Chin J Dig.* 2010;18:2956-2965.

31. Du HX, Huang ZX, Yao CC. Effect of Xiaochaihu decoction on the proliferation and apoptosis of human Esophageal cancer cell line Eca-109. *Guangming J Chin Med.* 2014;29:51-54.

32. Wu CY, Song Z, Li J. Experience of Qizhu Yuling decoction in treating esophageal cancer. *J Tradit Chin Med.* 2016;57:1879-1881.

33. Institute of Chinese Medicine Guang’anmen Hospital. Curative effect of Liuwei Dihuang pill on 30 cases of esophageal epithelial cell hyperplasia. *J Tradit Chin Med.* 1977;25:26.

34. Wu YS, Yang LH, Guo B, et al. Synergistic inhibition effect of qige powder and cisplatin on esophageal EC9706 cell growth mediated by miR-21. *Chin Arch Tradit Chin Med.* 2017;35:3098-3101.

35. Bureau THH. *Prescriptions of the Bureau of Taiping People’s Welfare.* People’s Medical Publishing House; 2007.

36. Lin DR. *Secret Recipes of Treating Wounds and Bone.* Setting Taught by Celestials. People’s Medical Publishing House; 1957.

37. Zhang ZJ. *Treatise on Cold-Attack.* People’s Medical Publishing House; 2005.

38. Li DY. *Theory of Spleen and Stomach.* People’s Medical Publishing House; 2005.

39. Wu JT. *Febrile Disease Differentiation.* People’s Medical Publishing House; 2005.

40. Cheng GP. *Medicine Comprehended.* People’s Medical Publishing House; 2006.

41. Wang QR. *Medical Forest Correction.* People’s Medical Publishing House; 2005.

42. Qian Y. *Key to the Therapeutics of Children’s Diseases.* People’s Medical Publishing House; 2006.

43. Li DY. *The Theory of Internal and External Injury Differentiation.* People’s Medical Publishing House; 2007.

44. Ge H. *Elbow Backup Emergency.* China Traditional Chinese Medicine Publishing House; 2018.

45. Zhang XC. *Integrating Chinese and Western Medicine.* People’s Medical Publishing House; 2006.

46. Chen Y. *Three-Cause-One-Disease-Syndrome Theory.* People’s Medical Publishing House; 2007.

47. Taylor PR, Abnet CC, Dawsey SM. Squamous dysplasia—the precursor lesion for esophageal squamous cell carcinoma. *Cancer Epidemiol Biomarkers Prev.* 2013;22:540-552. doi:10.1158/1055-9965.EPI-12-1347

48. Zhang GH, Su M, Tian DP, et al. Analysis of basement membrane structure and inflammation during the development of esophageal squamous cell carcinoma in the Chinese Chaoshan high risk region. *Cancer Invest.* 2008;26:296-305. doi:10.1080/07357900701683901

49. Lin J, Zeng R, Cao W, Luo R, Chen J, Lin Y. Hot beverage and food intake and esophageal cancer in southern China. *Asian Pac J Cancer Prev.* 2011;12:2189-2192.

50. Hou J, Yan FR, Li SS, Li ZY, Chen ZF. Clinical study of blocking treatment of esophageal cancer cell line Eca-109. *Guangming J Chin Med.* 2014;29:51-54.
52. Liu YL. Clinical analysis of 60 cases of esophageal mucosal atypical hyperplasia treated with Xinkaitujiang method. *J Hebei Trad Chin Med Pharmacol*. 2013;28:18-19.

53. Zhang DX, Wang X. 29 cases of esophageal epithelial atypical hyperplasia treated by Qingre Huoxue mixture. *Chin J Integr Tradit West Med Dig*. 2011;19:55-56.

54. Wang P, Wang Y. Clinical observation on 52 cases of esophageal epithelial hyperplasia treated with modified Liuwei Dihuang decoction. *J Sichuan Trad Chin Med*. 2005;23:55.

55. Zhang YS, Gao J, Shi HJ, Shi DX, Li J. Effect of modified quaesin on the recurrence and metastasis rate and quality of life among patients after radical resection of Esophageal carcinoma. *Chin Gen Pract*. 2018;21:1239-1243.

56. Baba Y, Baba H, Yamamoto S, et al. Chemotherapy-induced nausea and vomiting is less controlled at delayed phase in patients with esophageal cancer: a prospective registration study by the CINV Study Group of Japan. *Dis Esophagus*. 2017;30:1-7. doi:10.1111/dote.12482

57. Derogar M, Orsini N, Sadr-Azodi O, Lagergren P. Influence of major postoperative complications on health-related quality of life among long-term survivors of esophageal cancer surgery. *J Clin Oncol*. 2012;30:1615-1619. doi:10.1200/JCO.2011.40.3568

58. Rees J, Hurt CN, Collins S, et al. Patient-reported outcomes during and after definitive chemoradiotherapy for oesophageal cancer. *Br J Cancer*. 2015;113:603-610. doi:10.1038/bjc.2015.258

59. Ruteogard M, Lagergren J, Rouvelas I, Lindblad M, Blazebry JM, Lagergren P. Population-based study of surgical factors in relation to health-related quality of life after oesophageal cancer resection. *Br J Surg*. 2008;95:592-601. doi:10.1002/bjs.6021

60. Tajaldini M, Samadi F, Khosravi A, Ghasemnejad A, Asadi J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. *Biomed Pharmacother*. 2020;121:109594. doi:10.1016/j.biopha.2019.109594

61. Tang XH, Long XE. Effect of Buyi Sanjie decoction adjuvant enteral nutrition support on quality of life and immune function in patients with radical resection of esophageal cancer after surgery. *Mod J Integr Tradit Chin West Med*. 2017;26:944-947.

62. Wang F, Fan QX, Wang HH, Han DM, Song NS, Lu H. [Efficacy and safety of xiaoqing combined with chemotherapy in the treatment of advanced esophageal cancer]. *Zhonghua Zhong Liu Za Zhi*. 2017;39:453-457. doi:10.3760/cma.j.issn.0253-3766.2017.06.010

63. Cui Z, Liu W, Yin HM, et al. [Effect of Qingfei Quyu decoction in prevention of radiation pneumonitis induced by concurrent chemoradiotherapy for Esophageal carcinoma patients]. *Chin J Integr Tradit West Med*. 2016;36:317-321.

64. Chang Z, Gao M, Zhang W, Song L, Jia Y, Qin Y. Betalumene treatment is associated with improved outcomes of patients with esophageal squamous cell carcinoma. *Surg Oncol*. 2017;26:333-337. doi:10.1016/j.suronc.2017.07.002

65. Jiang X, Tian YH, Zhang QL, Zhao WP, Li B, Huang JC. Huang Jin-chang’s experience in the treatment of esophageal cancer. *China J Tradit Chin Med Pharm*. 2020;35:203-205.

66. Lu IZ, Zhao H, Liu Y, Feng LC. Clinical study on prevention and treatment for acute radiation esophagitis by modified Lophatheri and Gypsi fibrosis decoction. *China J Tradit Chin Med Pharm*. 2010;25:59-62.

67. Javel M, Ailawadhi S, Yang Y, Nwogu CE, Schiff MD, Nava HR. Palliation of malignant dysphagia in esophageal cancer: a literature-based review. *Support Oncol*. 2006;4:365-373, 379.

68. Yanju B, Yang L, Hua B, et al. A systematic review and meta-analysis on the use of traditional Chinese medicine compound kushen injection for bone cancer pain. *Support Care Cancer*. 2014;22:825-836. doi:10.1007/s00520-013-2063-5

69. Bao Y, Kong X, Yang L, et al. Complementary and alternative medicine for cancer pain: a systematic review. *Evid Based Complement Alternat Med*. 2014;2014:170396. doi:10.1155/2014/170396

70. Guo YM, Huang YX, Shen HH, et al. Efficacy of compound Kushen injection in relieving cancer-related pain: a systematic review and meta-analysis. *Evid Based Complement Alternat Med*. 2015;2015:840742. doi:10.1155/2015/840742

71. Ting Z, Sheng-lin M, Guang-ru X, et al. Clinical research on nourishing yin and unblocking meridians recipe combined with opioid analgesics in cancer pain management. *Chin J Integr Med*. 2006;12:180-184. doi:10.1007/BF02836518

72. Wu MH, Zhou XP, Cheng HB. [Clinical study on ationgpin capsule in treating cancerous pain]. *Chin J Integr Tradit West Med*. 2005;25:218-221.

73. Jarrett AM, Lima EABF, Hormuth DA 2nd, et al. Mathematical models of tumor cell proliferation: a review of the literature. *Expert Rev Anticancer Ther*. 2018;18:1271-1286. doi:10.1080/14737144.2018.1527689

74. Wang L, Lu A, Meng F, Cao Q, Shan B. Inhibitory effects of lupeol acetate of Cortex periplocae on N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis. *Oncol Lett*. 2012;4:231-236. doi:10.3892/ol.2012.717

75. Wang L, Lu A, Liu X, et al. The flavonoid Baohuodsie-I inhibits cell growth and downregulates survivin and cyclin D1 expression in esophageal carcinoma via β-catenin-dependent signaling. *Onkol Rep*. 2011;26:1149-1156. doi:10.3892/ol.2011.1400

76. Hu Z, Wu H, Li Y, et al. β-Elemene inhibits the proliferation of esophageal squamous cell carcinoma by regulating long noncoding RNA-mediated inhibition of hTERT expression. *Anticancer Drugs*. 2015;26:531-539. doi:10.1097/CAD.0000000000000216

77. Li YH, Chen H, Liu XR, et al. Effect of modified Tongyou decoction on esophageal cancer cell vasculogenic mimicry and proliferation under hypoxia conditions. *Chin J Ethnomed Ethnopharm*. 2018;27:23-26.

78. Ushida J, Sugie S, Kawabata K, et al. Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. *Jpn J Cancer Res*. 2000;91:893-898. doi:10.1111/j.1349-7006.2000.tb01031.x

79. Xu XR, Luo CH, Cao B, et al. A potential anti-tumor herb bred in a tropical fruit: insight into the chemical components and pharmacological effects of Momordicae semen. *Molecules*. 2019;24:3949. doi:10.3390/molecules24213949
80. Kagawa S, Natsuizaka M, Whelan KA, et al. Cellular senescence checkpoint function determines differential notch1-dependent oncogenic and tumor-suppressor activities. Oncogene. 2015;34:2347-2359. doi:10.1038/onc.2014.169

81. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 2019;99:1047-1078. doi:10.1152/physrev.00020.2018

82. Zheng ST, Zhang CS, Qin X, et al. The status of phosphorylated p38 in esophageal squamous cell carcinoma. Mol Biol. Rep. 2012;39:5315-5321. doi:10.1007/s11033-011-1330-0

83. Zhang BX, Yu T, Yu Z, Yang XG. MicroRNA-148a regulates the development of esophagus squamous cell carcinoma via targeting MAP3K9. Eur Rev Med Pharmacol Sci. 2019;23:6497-6504. doi:10.26355/eurrev_201908_18353

84. Lehman HL, Kidacki M, Warrick JI, Stairs DB. NFkB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation. Oncotarget. 2018;9:11180-11196. doi:10.18632/oncotarget.24358

85. Ma J, Hu X, Liao C, et al. Gypenoside L inhibits proliferation of Liver and esophageal cancer cells by inducing senescence. Molecules. 2019;24:E1054. doi:10.3390/molecules24061054

86. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528-542. doi:10.1038/nrc.2017.53

87. Lee NR, Meng RY, Rah SY, et al. Reactive oxygen species-mediated autophagy by Ursolic acid inhibits growth and metastasis of Esophageal cancer cells. Int J Mol Sci. 2020;21:9409. doi:10.3390/ijms21249409

88. Chen X, He LY, Lai S, He Y. Dihydroartemisinin inhibits the migration of esophageal cancer cells by inducing autophagy. Oncol Lett. 2020;20:94. doi:10.3892/ol.2020.11955

89. Hong P, Liu QW, Xie Y, et al. Echinatins suppress esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis. 2020;11:524. doi:10.1038/s41419-020-2730-7

90. Liu H, Zhao J, Fu R, Zhu C, Fan D. The ginsenoside Rk3 exerts anti-esophageal cancer activity in vitro and in vivo by mediating apoptosis and autophagy through regulation of the PI3K/akt/mTOR pathway. PLoS One. 2019;14:e0216759. doi:10.1371/journal.pone.0216759

91. Zhang YS, Shen Q, Li J. Traditional Chinese medicine targeting apoptotic mechanisms for esophageal cancer therapy. Acta Pharmacol Sin. 2016;37:295-302. doi:10.1038/aps.2015.116

92. Ma YC, Ke Y, Zi X, Zhao W, Shi XJ, Liu HM. Jaridonin, a novel ent-kaurene diterpenoid from Isodon rubescens, inducing apoptosis via production of reactive oxygen species in esophageal cancer cells. Curr Cancer Drug Targets. 2013;13:611-624. doi:10.2174/15680096113139990030

93. Kwak AW, Yoon G, Lee MH, Cho SS, Shim JH, Chae JI. Picropodophyllotoxin, an epimer of podophyllotoxin, causes apoptosis of human esophageal squamous cell carcinoma cells through ROS-mediated JNK/P38 MAPK pathways. Int J Mol Sci. 2020;21:E4640. doi:10.3390/ijms21134640

94. Shi N, Yu H, Chen T. Inhibition of esophageal cancer growth through the suppression of PI3K/akt/mTOR signaling pathway. Onco Targets Ther. 2019;12:7637-7647. doi:10.2147/OTT.S205457

95. Wang Q, Du H, Geng G, et al. Matrine inhibits proliferation and induces apoptosis via BID-mediated mitochondrial pathway in esophageal cancer cells. Mol Biol Rep. 2014;41:3009-3020. doi:10.1007/s11033-014-3160-3

96. Qiao Z, Cheng Y, Liu S, Ma Z, Li S, Zhang W. Casticin inhibits esophageal cancer cell proliferation and promotes apoptosis by regulating mitochondrial apoptotic and JNK signaling pathways. Naunyn Schmiedebers Arch Pharmacol. 2019;392:177-187. doi:10.1007/s00210-018-1574-5

97. Jiang JH, Pi J, Jin H, Cai JY. Oridonin-induced mitochondria-dependent apoptosis in esophageal cancer cells by inhibiting PI3K/akt/mTOR and ras/raf pathways. J Cell Biochem. 2019;120:3736-3746. doi:10.1002/jcb.27654

98. Zhang D, Wang A, Feng J, Zhang Q, Liu L, Ren H. Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide-3 kinase/protein kinase B signaling pathway. Mol Med Rep. 2019;19:4019-4026. doi:10.3892/mmr.2019.10093

99. Robert J. Biologie de la métastase. Bull Cancer. 2013;100:333-342. doi:10.1684/bdc.2013.1724

100. Zeeshan R, Mutahir Z. Cancer metastasis - tricks of the trade. Bosn J Basic Med Sci. 2017;17:172-182. doi:10.17305/bjbms.2017.1908

101. Mishan MA, Ahmadianka N, Matin MM, et al. Role of Berberine on molecular markers involved in migration of esophageal cancer cells. Cell Mol Biol. 2015;61:37-43.

102. Lin ML, Lu YC, Lee CC, Chung JG, Chen SS. Suppressing the formation of lipid raft-associated Rac1/PI3K/akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells. Mol Carcinog. 2014;53:360-379. doi:10.1002/mc.21984

103. Santamaria PG, Moreno-Bueno G, Portillo F, Cano A. EMT: present and future in clinical oncology. Mol Oncol. 2017;11:718-738. doi:10.1016/j.molonc.2018.02.091

104. Kong L, Lu X, Chen X, et al. Oligosaccharins inhibits esophageal cancer cell invasion and migration by inhibiting Gas6/axl-induced epithelial-mesenchymal transition. Aging. 2020;12:9714-9725. doi:10.18632/aging.103238

105. Yang XX, Ma M, Shan BE, et al. Effect of cinobufacini on molecular markers involved in migration of esophageal cancer cells. Mol Med Rep. 2019;61:1047-1078. doi:10.2147/OTT.2015.116208

106. Inoue K, Ozeki Y, Suganuma T, Sugiura Y, Tanaka S. Vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:96-101.

107. Viallard C, Larrivié B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409-426. doi:10.1007/s10456-017-9562-9

108. Goscincki MA, Larsen SG, Giercksky KE, Nesland JM, Suo A. PDGFR-α and CD117 expression pattern in Esophageal carcinomas. Anticancer Res. 2015;35:3793-3799.

109. Inoue K, Ozeki Y, Suganuma T, Sugiura Y, Tanaka S. Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma. Association with angiogenesis and tumor progression. Cancer. 1997;79:206-213. doi:10.1002/(sici)1097-0142(19970115)79:2<206::aid-cncr2>3.0.co;2-i
109. Kleespies A, Guba M, Jauch KW, Bruns CJ. Vascular endothelial growth factor in esophageal cancer. *J Surg Oncol*. 2004;87:95-104. doi:10.1002/jso.20070

110. Zhou L, Wu YS, Yin SG, Wang HH, Chen YL. Effect of qige powder on angiogenesis induced by Esophageal cancer cell line Eca-9706. *Zhong Yao Cai*. 2015;38:123-126.

111. Zhou L, Yin SG, Wu YS, Wang HH, Chen YL. Effect of Lijuunzi decoction on angiogenesis of esophageal cancer cell line EC9706. *Chin Tradit Pat Med*. 2015;37:1165-1169.

112. Si FC. Inhibitory effect of Qigesan and its separated formula on angiogenesis of esophageal carcinoma Eca109 cell-transplanted nude mouse tumor. *World Chin J Dig*. 2008;16:3139-3145.

113. Dewanjee S, Dua T, Bhattacharjee N, et al. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. *Molecules*. 2017;22:871. doi:10.3390/molecules22060871

114. Yang AK, Zhou ZW, Wei MQ, Liu JP, Zhou SF. Modulators of multidrug resistance associated proteins in the management of anticancer and antimicrobial drug resistance and the treatment of inflammatory diseases. *Curr Top Med Chem*. 2010;10:1732-1756. doi:10.2174/156802610792928040

115. Sun XR. *Curcumin reverses multidrug resistance of human esophageal cancer Eca-109 / VCR cells*. Master’s thesis. Hebei North University; 2017.

116. Yang ZZ. *The role of luteolin in the multidrug resistance of squamous esophageal carcinoma and its molecular mechanism*. Master’s thesis. Zhengzhou University; 2019.

117. Zhao X, Yang L, Hu J, Ruan J. miR-138 might reverse multidrug resistance of leukemia cells. *Leuk Res*. 2010;34:1078-1082. doi:10.1016/j.leukres.2009.10.002

118. Wang Q, Zhong M, Liu W, Li J, Huang J, Zheng L. Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP). *Exp Lung Res*. 2011;37:427-434. doi:10.3109/01902148.2011.584263.

119. Wu JB. α-solanine enhances the chemosensitivity of esophageal cancer cells to 5-FU/DDP by inducing microRNA-138 expression. Master’s thesis. Zhengzhou University; 2019.

120. Wang JC, Xu Y, Huang ZM, Lu XJ. T cell exhaustion in cancer: mechanisms and clinical implications. *J Cell Biochem*. 2018;119:4279-4286. doi:10.1002/jcb.26645

121. Lu WS, Chen S, Fang J. Effect of compound Radix Sophorae flavescents injection combined with chemoradiotherapy on serum CEA, CA199 and CA125 levels and cellular immune function in elderly patients with esophageal cancer. *Chin J Gerontol*. 2020;40:1186-1189.

122. Chen Y. Zhenqi fuzheng granules on influence of life quality and immune function in patients with esophageal cancer chemotherapy. *Jilin J Chin Med*. 2015;35:1025-1027.

123. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. *Cell Res*. 2017;27:74-95. doi:10.1038/cr.2016.157

124. Wu YS, Ren SS, Chen YL, Yin SG, Jin HB, Wang PH. The effect of qige powder on the mature dendritic cells inhibited by the esophageal cancer EC9706 cells. *Lishizhen Med Mater Med Res*. 2017;28:769-772.

125. Ohue Y, Nishikawa H. Regulatory T (treg) cells in cancer: Can Treg cells be a new therapeutic target? *Cancer Sci*. 2019;110:2080-2089. doi:10.1111/cas.14069

126. Han LX. Immunomodulatory effect of the active ingredients of traditional Chinese medicine based on the Compatibility Mechanism on early esophageal dysplasia. Master’s thesis. Hebei Medical University; 2015.

127. National Cancer Institute. Cancer stat facts: esophageal cancer. Accessed July 20, 2021. https://seer.cancer.gov/statfacts/html/esoph.html.

128. Puhr HC, Preusser M, Ilhan-Mutlu A. Immunotherapy for esophageal cancers: what is practice changing in 2021? *Cancers*. 2021;13:4632. doi:10.3390/cancers13184632

129. Yang YM, Hong P, Xu WW, He QY, Li B. Advances in targeted therapy for esophageal cancer. *Signal Transduct Target Ther*. 2020;5:229. doi:10.1038/s41392-020-00322-3

130. Liu H, Fang SP, Chen HR. Study on mechanism of Fuzheng Jiedu formula ameliorating EGFR – TKIs acquired resistance by lung cancer stem cells. *Chin Arch Tradit Chin Med*. 2021;39:14-17, +263-265.