Reducing emissions and logistics costs in Indonesia: An overview

A Aziz* and M Z Abidin
Ministry of Finance, Jakarta, Indonesia
*Corresponding author: a_aziz@kemenkeu.go.id

Abstract. This study aims to determine the aspects of reducing emissions and logistics costs in Indonesia. This research used a qualitative approach with a descriptive method. The data was obtained through the literature study (secondary data). The results show that reducing emissions and logistics costs in Indonesia can be achieved by applying green logistics by emphasizing the more efficient use of energy. Fiscal policy support reducing emissions and increase the competitiveness of the logistics industry. This policy can be pursued through interest subsidies to finance investment in environmentally friendly transportation equipment, developments of environmentally friendly infrastructure, and quality fuel availability. In the long term, the efficiency benefits obtained are expected to exceed the cost of the spent investment.

1. Introduction
Increasing global warming, global climate change, Greenhouse Gas Emissions (GGE) have become a global concern for the earth's population regarding the future of the earth and humankind. Most of the increase in global average temperatures since the mid-20th century has been due to human activity-induced greenhouse gas effect [1]. Other consequences of global warming are reduced agricultural yields, loss of glaciers, and the extinction of various types of animals [2].

Indonesia's economy is the 16th largest globally and the largest in Southeast Asia. Indonesia's economic development is supported by logistics activities. Logistics activity is logistics management of the flow of goods and services between points of origin and points of consumption to meet customer needs. Logistics is positioning resources at the right time, at the right place, for the correct cost and good quality. Logistics refers to the efficient and economical transfer of goods [3].

Good logistics provides excellent benefits for a country in the global era. A sound logistics system will have global value chain integration and provide attractiveness for foreign investors [4]. As foreign trade and investment are vital to the absorption of foreign knowledge, poor logistics performance hinders access to new technology and knowledge, which hinders national productivity growth [5].

Increased trade will create a demand for logistics activities. On the other hand, logistics activities impact on the environment, starting from selecting suppliers, material and product content, production processes, packaging, transportation, and warehousing. There are logistics activities that trigger emissions.

Logistic transportation activities produce emissions. In a logistical context, the most significant contribution of GGE emissions is resulting from transportation activities [6]. Transportation activities also have an impact on environmental degradation, time consume, and natural resources depletion [7].

Transportation activities have an impact on the environment [8]. The impact of transportation is directly related to the fuel consumption of vehicles used for transportation. In addition, transportation activities affect the quality of the environment and public health because these activities cause
congestion, air pollution, noise pollution, and accidents [9].

Indonesia is the largest emitter of greenhouse gases after China, the United States, and India in 2015. The highest source comes from deforestation and peat forest fires, followed by emissions from burning fossil fuels for energy. On the other hand, Indonesia has a target to improve energy efficiency. The National Energy Conservation Master Plan (RIKEN) sets a target of reducing energy intensity by 1% per year until 2025. The National Mid-Term Development Plan for Awakening of five “priority sectors,” including energy and transportation [10]. In Indonesia, the transportation sector contributes less than 5% of the total national emissions, which most come from the forestry sector (fire and destruction) and land-use conversion. From energy emissions (fuel, coal, gas, and geothermal) the transportation sector contributes around 26% of emissions, with the fuel consumption reaches 50% of the total national fuel consumption each year.

Emission reduction in the logistics sector is needed to reduce the negative impact on the environment and human health. On the other hand, a reduction in logistics costs will increase the competitiveness of a country. An effective and efficient logistics system should reduce costs and emissions [11]. Transportation costs are the most significant logistics cost component [12]. Transportation costs are influenced by driving behavior, fuel consumption, vehicle maintenance, capital invested in vehicles, and administrative equipment [13].

Emission reduction brings benefits to logistics transportation activities. Cost savings through capacity utilization and transportation optimization result in reduced carbon dioxide emissions and reduced transportation costs. Transportation activities will consume financial resources, time, and environmental resources. Reducing emissions from logistics transportation is very important.

Integration and collaboration of logistical activities with suppliers and customers to reduce carbon dioxide emissions and negative environmental impacts from materials, production processes, products, packaging, transportation, warehousing, and distribution activities. Fleet optimization through the use of alternative fuel vehicles; Utilization of vehicles with high fuel efficiency; and selecting transporters with good environmental performance.

Emission dan pollution arising from logistics activities is a form of negative externality that increases the risk of climate change. Externalities are defined as costs or benefits of economic activity that are not reflected in prices. Externalities occur when one person's actions have an impact on other people or the environment without obtaining any consequences, resulting in inefficiency in the allocation of factors of production.

Government action is needed to address negative externalities. The government plays a role in supporting transportation by providing the necessary infrastructure, such as the construction of roads, ports, airports, rail networks, transportation policies, and transportation services in order to improve national logistics performance, encourage economic growth and prosperity.

The government can use both sides of public finance (i.e., public spending and taxes that generate public revenues) to influence economic outcomes. The use of government spending and taxation to influence the economy includes expenditure and taxation instruments, such as taxes, subsidies, grants, and government spending decisions. Fiscal instruments (i.e, government spending and taxation) can influence people's behavior in support of policy objectives.

The Efforts to reduce emissions and logistics costs are important to protect the environment and improve competitiveness. The study was conducted to reduce emissions in transportation activities that can support the reduction of logistics costs. Furthermore, this study describes fiscal policies to support climate change issues rewarded with greenhouse gases in the logistics sector.

2. Methods of research

This research used qualitative approach by examining and reviewing secondary data obtained from library research. The data was obtained through literature study (secondary data) from journal articles and various research reports. Data from library research were analyzed descriptively qualitatively, which describes all research results (data) in systematic writing through the process of data reduction, explanation, and conclusions/verification.
3. Results and discussion

3.1. Reducing emission and logistic cost

Transportation activities produce fuel combustion emissions in vehicle engines, thereby increasing the carbon footprint, especially carbon monoxide (CO), carbon dioxide (CO$_2$), and Particular Matter (PM) which can harm the environment and the health of humans. Carbon dioxide (CO$_2$) emissions are a type of gas emission that results from the burning process of fossil fuels [14]. The higher the carbon content in fossil fuels, or the less efficient combustion process, will generally produce more significant CO$_2$.

Table 1. CO$_2$ emission factors based on fuel type (tons/TJ).

Fuel	Default	Lower	Upper
Gasoline	69.3	67.5	73
Other Kerosene	71.9	70.8	73.6
Gas/Diesel Oil	74.1	72.6	74.8
Residual Fuel Oil	77.4	75.5	78.8
Liquifield Petroleum Gases	63.1	61.6	65.6
Refinery Gas	57.6	48.2	69.0
Paraffin Waxes	73.3	72.2	74.4
White Spirit & SBP	73.3	72.2	74.4
Other Petroleum Products	73.3	72.2	74.4
Natural Gas	56.1	54.3	58.3

Source: IPCC, 2006 [15].

Logistics costs are formed from activities that support the logistics process, namely customer service, transportation, warehousing, inventory storage, and logistics administration. The percentage of Indonesia's logistics costs to GDP is 27%, while South Korea is 16.3%, Japan is 10.6%, and the United States is only 9.9%. The component logistics cost consists of cost of transportation (12.04% to GDP); administration cost (4.52% to GDP), and storage cost (9.47% to GDP). The transportation cost is dominated by land transportation (72.21%) [16]. This statistic clearly shows that Indonesia's logistics costs are still costly due to the inefficient logistics activities of companies, thus reducing the competitiveness of Indonesian companies, which can also reduce the competitiveness of the country.

The leading cause of the high cost of logistics in Indonesia is the infrastructure condition, which is considered inadequate to support the smooth flow of logistics traffic. Likewise, the intermodal or multimodal transportation system is still experiencing obstacles due to the difficulty of transportation access from production centers to ports and airports or vice versa. These obstacles are due to the not yet optimal infrastructure of ports and airports [17]. This causes the quality of service to be low and service rates to be expensive.

In general, the inefficiency factors that cause the number of emissions in the transportation sector is as follows: types of energy / fuel, technology and types of vehicles, regulations, transportation and spatial planning systems, vehicle driving behavior and techniques [18]. Opportunities for efficiency in the transportation sector can be done immediately without having to make significant investments. For example, the application of adequate regulations, changes in behavior, and vehicle driving techniques can increase the efficiency of significant fuel use and reduce the number of emissions released.

The benefits of transport sector efficiency are not only for reducing emissions but also for direct and more significant economic benefits. The key to reducing emissions in the transportation sector is efficiency; the more efficient the transportation system, the fewer emissions it produces.

The successful implementation of strategies and programs for reducing CO$_2$ emissions in the logistics sector, known as green logistics, environmentally-friendly logistics - requires commitment and seriousness from entrepreneurs, governments, and the community. The application of green logistics can reduce emissions by improving the logistics transportation system.

From entrepreneurs in the logistics sector, CO$_2$ emissions can be reduced through the use of quality...
fuels and the more efficient operation of the number of vehicles. The role of entrepreneurs, especially producers of goods owners and entrepreneurs of vehicle operators, is carried out by implementing redesign of transportation networks to be more efficient and intensive training of drivers to behave in a safe & environmentally friendly [19]. Driving is the key to the success of green logistics in Indonesia. Willingness to share resources, especially sharing vehicles with other producers of goods owners, so that economies of scale can be achieved and vehicle capacity optimization is also the key to the success of green logistics.

Consumers as part of society can encourage the implementation of green logistics by choosing products produced from producers who apply green logistics. In addition, familiarize the 3R (reduce, reuse, and recycle) behavior of products that are used daily, to reduce CO₂ emissions [20].

Green logistics encourages increased competitiveness. Environmentally friendly logistics activities aim to limit greenhouse gases in order to save energy and prevent environmental pollution. Companies can do various ways to streamline the total cost of logistics by implementing Green Logistics, namely by minimizing energy and resource consumption to reduce non-renewable resources, reduce energy use, and reduce air pollution. Companies can do various ways to streamline the total cost of logistics by optimizing route, quantity, capacity, fuel and mode of transportation [21].

In Indonesia, the condition of transportation facilities and infrastructure has not supported the efficiency of transportation costs. this causes the average logistics cost to increase. However, the company has the opportunity to reduce logistics costs by implementing green logistics. Companies can improve the efficiency of logistics activities to reduce the company's total logistics costs [22].

3.2. Fiscal policy to reduce emission and logistics costs
Most of the components of logistics costs come from the transportation sector. On the other hand, almost all transportation infrastructure is owned and managed as a public good or service [23]. To that end, transportation policy is directed at creating a fair and competitive business environment, preventing monopolies, balancing the environment, and saving energy [24].

Government support policies are essential to attract investment in green transportation in the logistics sector to mitigate climate change. In green logistics, the government plays a role in supporting conditions for manufacturing, transportation, and distribution processes that are minimally polluted [25].

Providing tax incentives can drive behavior change towards green logistics [26]. Based on Indonesian regulations, incentive policies can be directed at energy-saving projects that positively impact living conditions (economy). The role of government support is to support green transportation to increase the benefit value of the logistics sector for the community. This government support logistics efficiency and competitiveness. Types of incentives that can be provided include income tax facilities (tax allowance and tax holiday), value added tax, and luxury goods tax. In addition, Indonesia can provide subsidies in the context of financing investment towards the development of green logistics.

4. Conclusion
Reducing emissions and logistics costs in Indonesia can be achieved by applying green logistics by emphasizing the more efficient use of energy. Fiscal policy support to reduce emissions and increase the competitiveness of the logistics industry. This policy can be pursued through interest subsidies to finance investment in environmentally friendly transportation equipment, development of environmentally friendly infrastructure, and quality fuel availability. In the long term, the efficiency benefits obtained is expected to exceed the cost of the investment that has been spent.

References
[1] WMO 2021 State of the global climate 2020: Provisional Report (Geneva: World Meteorological Organization)
[2] Cianconi P, Betrò S and Janiri L 2020 The impact of climate change on mental health: a systematic descriptive review Front. Psychiatry 11 74
[3] Kayikci Y 2018 Sustainability impact of digitization in logistics Procedia Manufacturing 21 782-9
[4] Chen Z, Dong J and Ren R 2017 Urban underground logistics system in China: Opportunities or challenges? Underground Space 2 195-208
[5] Halaszovitch T F and Kinra A 2020 The impact of distance, national transportation systems and logistics performance on FDI and international trade patterns: Results from Asian global value chains Transport Policy 98 35-47
[6] Kellner F 2016 Exploring the impact of traffic congestion on CO2 emissions in freight distribution networks Logistics Research 9 21
[7] Shouket B, Zaman K, Nassani A A, Aldakhil A M and Abro M M Q 2019 Management of green transportation: an evidence-based approach Environmental Science and Pollution Research 26 12574–89
[8] Varga B O, Mariasiu F, Miclea C D, Szabo I, Sirca A A and Nicolae V 2020 Direct and indirect environmental aspects of an electric bus fleet under service Energies 13 336
[9] Reijnders L 2000 Environmental evaluation of means of transport IATSS Research 24 14-20
[10] Dunne D 2019 The carbon brief profile: Indonesia [Online] Available: https://www.carbonbrief.org/the-carbon-brief-profile-indonesia accessed
[11] Ugarte G M, Golden J S and Dooley K J 2016 Lean versus green: The impact of lean logistics on greenhouse gas emissions in consumer goods supply chains Journal of Purchasing and Supply Management 22 98-109
[12] Rodrigue J P 2020 The geography of transport systems 5th ed (London: Routledge)
[13] Keyvanfar A, Shafaghat A, Muhammad N Z and Ferwati M S 2018 Driving behaviour and sustainable mobility—policies and approaches revisited Sustainability 10 1152
[14] Ciesielczuk T, Poluszyńska J, Rosik-Dulewska C, Sporek M and Lenkiewicz M 2016 Uses of weeds as an economical alternative to processed wood biomass and fossil fuels Ecological Engineering 95 485-91
[15] IPCC 2006 Guidelines for national greenhouse gas inventories Prepared by the National Greenhouse Gas Inventories Program ed Eggleston S, Buendia L, Miwa K, Ngara T and Tanabe K (Kanagawa, Japan: Institute for Global Environmental Strategy) p 3,50.
[16] Barata F A 2020 High cost of logistics and solution Proceedings of the 17th International Symposium on Management ed. Murhadi W R, Anandya D and Herlambang A (Netherlands: Atlantis Press) pp 407-10
[17] Sandee H 2016 Improving connectivity in indonesia: the challenges of better infrastructure, better regulations, and better coordination Asian Economic Policy Review 11 222–38
[18] Frey H C 2018 Trends in onroad transportation energy and emissions Journal of the Air & Waste Management Association 68 514-63
[19] Herold D M and Lee K-H 2018 Carbon disclosure strategies in the global logistics industry: similarities and differences in carbon measurement and reporting Pathways to a Sustainable Economy ed. Hossain M, Hales R and Sarker T (Switzerland: Springer) part II chapter 6 pp 87-102
[20] Wu R, Geng Y, Dong H, Fujita T and Tian X 2016 Changes of CO2 emissions embodied in China–Japan trade: drivers and implications Journal of Cleaner Production 112 4151-8
[21] Wang D-F, Dong Q-L, Peng Z-M, Khan S A R and Tarasov A 2018 The green logistics impact on international trade: evidence from developed and developing countries Sustainability 10 2235
[22] Albekov A U, Parkhomenko T V and Polubotko A A 2017 Green logistics in Russia: the phenomenon of progress, economic and environmental security European Research Studies Journal 20 13-21
[23] Jang Y J, Jeong S and Lee M S 2016 Initial energy logistics cost analysis for stationary, quasi-dynamic, and dynamic wireless charging public transportation systems Energies 9 483
[24] Rajendran K, O’Gallachoir B and Murphy J D 2019 The combined role of policy and incentives
in promoting cost efficient decarbonisation of energy: A case study for biomethane Journal of Cleaner Production 219 278-90

[25] Rodrigue J-P, Slack B and Comtois C 2017 Green Logistics Handbook of Logistics and Supply-Chain Management (Vol. 2) ed. Brewer A M, Button K J and Hensher D A (Bingley: Emerald Group Publishing Limited) pp 339-50

[26] Yabing T and Ting P 2018 Research progress of domestic reverse logistics management from the perspective of circular economy Proceedings of the 2018 International Conference on Economy, Management and Entrepreneurship ed. Hou E, Green R, Solovjeva I, and Hou M (Zhengzhou, China: Atlantis Press) pp 2352-5428