Centauros and/or Chirons as evaporating mini black holes

Theodore N. Tomarasa*

aDepartment of Physics and Institute of Plasma Physics, University of Crete, P.O.Box 2208, 71003 Heraklion, Crete, Hellas and Fo.R.T.H.

It is argued that the signals expected from the evaporation of mini black holes - predicted in TeV-scale gravity models with large extra dimensions, and possibly produced in ultra high energy collisions in the atmosphere - have characteristics quite similar to the ones of the Centauro events, an old mystery of cosmic-ray physics.

1. Introduction

The theoretical framework of this talk is the TeV-scale gravity with large extra dimensions. The basic assumption, easily accommodated in Superstring Theory, is that our spacetime is a 4 dimensional hypersurface (a D3-brane) embedded in a 10 dimensional world (the bulk), with the additional feature that all known matter (quarks, leptons, higgses), as well as the carriers of the fundamental interactions of the Standard Model of Particle Physics (photon, W, Z, gluons) are confined on our 4 dimensional subspace. Only gravity can propagate in the bulk. The fact that the only communication with the bulk is via the gravitational force, allows for a fundamental gravitational scale to be of \(\mathcal{O}(1 \text{TeV}) \), while at the same time the size of the extra spatial dimensions may be as large as a fraction of a mm.

Clearly, such a scenario, if true, leads to the exciting prospect of observing string physics, large higher dimensions and quantum gravity effects, within the next few years in the forthcoming accelerator (LHC), neutrino and cosmic-ray experiments.

Even better, in this talk I will argue that the long known Centauro-like events (CLEs) may be due to the formation and subsequent evaporation of mini black holes (MBHs), predicted in the context of the above scenario \cite{[1]}. After a quick review of the relevant scales and of the main features of MBHs in TeV-gravity, as well as of the basic characteristics of the Centauro events, I present in Section 5 the somewhat qualitative arguments that support our interpretation. The talk ends with a critical discussion.

The first steps towards a more quantitative analytical/Monte Carlo investigation of the mini black hole picture are described in \cite{[2]} and \cite{[3]}.

2. TeV-scale gravity models

Even though non-compact extra dimensions are not a priori excluded, the most straightforward realization of the above theoretical scenario is to neglect the tension on the brane, which would modify the gravitational background, and to consider the extra dimensions compact and forming a higher dimensional torus \(T^n \), with equal radii \(R \).

In the simplest case of \(n = 1 \), one is dealing with a 4 dimensional Minkowski space with one extra transverse dimension, a circle of radius \(R \). One may compute the gravitational potential \(\Phi(x, \theta) \) (in the Newtonian approximation) of a point mass \(M \) at the origin, by solving the corresponding Poisson equation

\[
\nabla^2 \Phi + \frac{1}{R^2} \frac{\partial^2 \Phi}{\partial \theta^2} = -G^{(4)} M \delta(x) \frac{\delta(\theta)}{2\pi R}
\]

where \(G^{(4)} \equiv 1/M^3 \) is the 4 dimensional gravitational constant, with fundamental gravitational

*This talk is mostly based on \cite{[1]}. Research supported in part by the EU under the RTN contract HPRN-CT-2000-00122, and by a grant P.O. Education - Heraklitos from the Hellenic Ministry of Education.
Thus, it is reasonable to expect that for a light black hole the mass is of the order of the weak interaction scale. Lighter black holes cannot exist. At least a few times the fundamental gravitational scale. Near the mass M, i.e. for $r \ll R$ and $\theta \ll \pi$ it gives $\Phi \sim 4\pi MC^4/(r^2 + R^2\theta^2)$, the correct expression for a 4 dimensional gravitational potential. At large distances ($r \gg R$) from the mass M, on the other hand, one obtains $\Phi \sim 2\pi MG^4/Rr$, the correct 3 dimensional Newtonian potential with Newton’s constant $G_N = 2\pi G^4/R = 2\pi/RM^3$.

These formulas generalize trivially to n toroidal transverse dimensions, in which case Newton’s constant is given by

$$G_N \sim \frac{1}{M^2_N} \frac{1}{(RM^3)^n}$$ (3)

Assume that the fundamental scale M_N of gravity is of the order of the weak interaction scale $M_N \sim O(1 \text{TeV})$. Then, (3) leads to the correct value $G_N \simeq 10^{-38}\text{GeV}^{-2}$ for a value of R given by $R_\pi \simeq 1/(M_N(M_N^2 G_N)^{1/n})$. The value $n = 1$ is excluded, since it leads to R of the order of the size of the solar system. For $n = 2$ one obtains $R_2 \sim 2\text{mm}$. Accelerator and astrophysical constraints lead to a preferred value of $n \geq 4$ with a corresponding value for R, much larger than the usual value 10^{-33}cm.

3. Mini black holes

As described, the world contains black holes, generalizations to $D = 4 + n$ space-time dimensions of the well known Schwarzschild metric. They are characterized by their mass M_{BH}, and can exist as long as M_{BH} is at least a few times the fundamental gravity scale. Lighter black holes cannot exist. Thus, it is reasonable to expect that for M_* a fraction of a TeV, the black hole masses are $M_{BH} \geq 2\text{TeV}$. If, in addition, $M_{BH} \ll M_* (G_N M^2_N)^{-1/n}$, the black hole is essentially 4+n-dimensional, since its Schwarzschild radius $R_S^{-1} \sim M_*(M_/M_{BH})^{(1/n-1)} \sim M_*$ is much smaller than the radius of the large extra dimensions. Black holes are expected to be produced in the collision of any two particles, as long as their impact parameter is smaller than the Schwarzschild radius corresponding to their center of mass energy. A black hole with mass of the order of the ones discussed here can be produced in the collision of an ultra high energy primary with atmospheric partons. The energy of the primary should exceed 1000 TeV and the cross section of the process is conjectured to be $\sigma \sim \pi R^2 \sim 10^{-37}\text{cm}^2 \sim \sigma_{\nu N}$, comparable to the neutrino-nucleon weak interaction cross section at these energies.

Once produced, black holes are believed to evaporate. Even though none has worked out the details of the evaporation process for such light black holes, we shall assume the semiclassical formulas of the standard treatment. So, within $\tau_{BH} \sim M^{-n+2}_*/(4\pi R_S)^{n+3}/(n+1)^{n+3} \sim 10^{-27}$ seconds the black hole decays "democratically" into all kinds of quarks, leptons, gauge bosons, gravitons, higgses. It is a fireball of temperature $T_{BH} = (n+1)/4\pi R_S \sim 1 \text{TeV}$. The number of initial particles emitted by the black hole is determined by its entropy $S_{BH} = \pi M_{BH} R_S/2$. For the case of black holes with mass of order 1-2 TeV of interest here and $n = 4$, this number is of the order of $O(10)$.

4. The Centauro-like events (CLEs)

A normal high energy cosmic ray event is created by the collision of a primary particle with a particle in the atmosphere. Typically a couple of leading partons emerge from the interaction region with high transverse momenta, leaving behind a number of soft fragments, mainly pions with relative abundance 1:1:1. The neutral pions subsequently decay to photons and the shower ends up consisting of low $p_T < 1 \text{GeV/c}$ particles with $N_{hadron}/N_{em} \sim 1$ or even less, if one takes into account the extra photons that will be produced as the shower develops even further.

In contrast to the above picture, several events have been observed since 1972 with the following main characteristics [4]: (a) They were claimed to have taken place at distances smaller than 500 m above the detectors at Pamir and Chacaltaya. It should be pointed out, however, that the altitude was measured directly only for one of these
events, and even that has been questioned recently \cite{5}. (b) They are hadron rich, with typically \(N_{\text{hadron}}/N_{\text{em}} \gg 1 \), (c) have fragments with high \(p_T \gg 1 \) GeV/c, (d) have in many cases a heavy central core with tiny angular opening (halo) and finally, (e) have all been observed with energies above a threshold around 500 TeV in the lab frame.

It should be pointed out that there are severe uncertainties in the observational data. One of the speakers in this meeting presented a reanalysis of the Centauro I and raised serious doubts about the altitudes reported in general for all these events \cite{5}. Others express doubts about the existence of these events altogether, worrying, for instance, about the fact that no such events have been observed yet in Kanbala and Fuji. We shall not take part in this debate at this point. Instead, we shall assume that the events are real and try to interpret them as due to evaporating MBHs, produced by ultra high energy \(E_1 > 1000 \) TeV cosmic ray primaries.

5. CLEs as evaporating mini black holes

The processes of black hole creation, of its subsequent evaporation and, finally of the shower formation in the atmosphere involve all the complications of several different fields, such as cosmic ray physics, quantum gravity/string theory, quantum field theory in curved spacetimes, quark-gluon plasma physics in QCD, low energy non-perturbative QCD, cosmic shower atmospheric physics, of theoretical and experimental high energy physics and astrophysics. Given the incomplete knowledge in all these, a lot has to be done before one can safely confront the observational data. Nevertheless, we shall make a few simplifying assumptions, implicit in the discussion below, and present the arguments in favour of the scenario proposed in \cite{123}.

- **Energy threshold.** The energy threshold of the observed Centauro events, corresponds in the center of mass frame to a mass roughly a few times \(M_\bullet \sim 1 \) TeV. This coincides with the lower bound on the MBH masses, mentioned above. The agreement may be even better, if one takes into account the energy losses into the bulk during the evaporation of the MBH.
- **Production rate.** Assuming that the black holes are produced by primary neutrinos, one may obtain a rough estimate of the number of CLEs based on current figures for the neutrino flux \(\Phi_\nu \).

Since we are interested in neutrino energies of order \(10^6 - 10^7 \) GeV in the lab frame, one may use the estimates for the gamma-ray burst muon neutrino flux given in \cite{67}. Their analysis leads to \(\sim 20 \) neutrino-induced muon events in a km\(^3\) water or ice per year. Since the cross section of MBH production by neutrinos is of the same order of magnitude as that of muon production, we would expect approximately the above number of black holes for each kind of neutrino. Multiplying by 10-20 (the number of initial jets) and taking into account the lower density of the atmosphere, where the centauros are produced, one ends up with the estimate of about 10-100 events per km\(^2\) per year, which is one to two orders of magnitude smaller than the claimed intensity of the Centauros \cite{4}. However, it seems to us that there is considerable uncertainty in the neutrino flux, which could take care of this discrepancy \cite{8}.

- **Decay products, \(p_T, N_{\text{hadron}}/N_{\text{em}} \).** The black hole, depending on its mass, decays initially to 10-20 fundamental particles of all kinds and with equal probability. Their energies are \(\sim 100 \) GeV each in the black hole frame. The MBH emits almost as a black body of temperature \(\sim 1 \) TeV, all types of matter and force quanta of the Standard Model. The simplest possibility is that these initial partons, with \(p_T \)s also around 50-100 GeV will form hadrons, mostly mesons, of all kinds. The charmed or heavier mesons will decay to lighter ones, the neutral pions will decay to photons almost immediately, but the kaons will survive a distance of a few hundred meters. Since the Ks are counted as hadrons, the ratio of \(N_{\text{hadron}}/N_{\text{em}} \) will be enhanced, if the observation takes place at less than a few hundred meters from the initial interaction. The total multiplicities of the final showers in this case are a few decades \cite{2}.

An alternative possibility is that a hot DCC forms before hadronization of the produced partons. This is known to lead to larger numbers of heavier mesons, which makes it more probable to
obtain a large ratio of the hadronic to the electromagnetic components. However, it is unclear if the system passes through such a DCC state. In any case, it seems that the probability to obtain a superclean Centauro event is rather small.

On the other hand, given the typically large values of p_T, the present scenario seems to be the most natural one to explain this feature of the Centauros.

- **Deep penetration.** The deep penetration follows from the assumption of neutrinos, or some other weakly interacting particle (WIMP?), as the primary source of these events. According to the present picture any black holes produced at higher altitudes from the detectors, will give signals similar to standard events. This kind of signature with large hadronic to electromagnetic ratio, could only be obtained from the decay of black holes near the detector.

- **Halo.** At a more speculative level, it has been claimed recently that after evaporation a MBH is expected to leave behind a highly excited string state (a string ball), which in principle will decay to light (compared to M_*) particles. Their life-time depends strongly on the excitation level and can be considerably larger than M_*^{-1}. These objects may be serious candidates in the context of the present scenario for the projectiles responsible for the halos observed mostly in Chirons.

6. Discussion

On the basis of the above qualitative presentation and of the results of the first numerical steps taken in [2], it seems that the above scenario may account quite successfully (a) for the energy threshold of all these events of order O(TeV) in the center of mass frame, (b) the total multiplicities of a few dozen particles, dependent on the number of extra dimensions [2], (c) the large values of p_T, and (d) the number and the rough heights of first interaction of the Centauro/Chiron events. It seems less successful in giving the right $N_{\text{hadron}}/N_{\text{em}}$ (especially for the superclean events), even though due to large statistical fluctuations, the numerical simulations [2] have not been conclusive yet.

Several alternative proposals have been put forward to explain these mysterious events [4]. An effort was made in [1] and [9] to compare the various scenarios. It should be clear however, that the study, for instance, of the production and evaporation processes of a MBH or of Strange Quark Matter fireballs, of the potential formation of a high temperature quark-gluon plasma phase or of a DCC, of the hadronization of the 100 GeV partons, all rely on unknown aspects of the physics involved. Much more work is necessary and all possible realizations of a given scenario have to be investigated, before one can safely fit the observational data. The fundamental importance of the issues involved deserves every effort.

REFERENCES

1. "Can Centauros or Chirons be the first observations of evaporating mini black holes?", A.Mironov, A.Morozov and T.N.Tomaras; [hep-ph/0311318].
2. A.Cafarella, C.Corianò and T.N.Tomaras, “Cosmic Ray Signals from Mini Black Holes in models with Extra Dimensions: An Analytical/Monte Carlo study”, [hep-ph/0410358].
3. A.Cafarella, C.Corianò and T.N.Tomaras, “Searching for Extra Dimensions in High Energy Cosmic Rays”, [hep-ph/0410190]. Talk presented in this meeting by Claudio Corianò.
4. E.Gladysz-Dziaduś, Phys. Part. Nucl. 34 (2003) 565; [hep-ph/0111163] and references therein.
5. V.Kopenkin, A.Ohsawa, E.Shibuya and M.Tamada, Proc. 28th International Cosmic Ray Conf., 2003; p.1583. V.Kopenkin, Y.Fujimoto and T.Sinzi, Phys. Rev. D68 (2003) 052007.
6. E.Waxman and J.N.Bahcall, Phys. Rev. D59 (1999) 023002; [hep-ph/9902383].
7. E.Waxman, Nucl. Phys. Proc. Suppl. 118 (2003) 353.
8. O.Kalashev, V.A.Kuzmin, D.V.Semikoz and G.Sigl, Phys. Rev. D66 (2002) 063004.
9. E.Gladysz-Dziaduś, [hep-ph/0405115].
10. D.Chialva, R.Jengo and J.Russo, [hep-th/0310283].
Elsevier instructions for the preparation of a 2-column format camera-ready paper in \LaTeX

P. de Groota,*, R. de Maasa,†, X.-Y. Wangb and A. Sheffielda,‡

aMathematics and Computer Science Section, Elsevier Science B.V.,
P.O. Box 103, 1000 AC Amsterdam, The Netherlands

bEconomics Department, University of Winchester,
2 Finch Road, Winchester, Hampshire P3L T19, United Kingdom

These pages provide you with an example of the layout and style for 100% reproduction which we wish you to adopt during the preparation of your paper. This is the output from the \LaTeX document class you requested.

1. **FORMAT**

Text should be produced within the dimensions shown on these pages: each column 7.5 cm wide with 1 cm middle margin, total width of 16 cm and a maximum length of 19.5 cm on first pages and 21 cm on second and following pages. The \LaTeX document class uses the maximum stipulated length apart from the following two exceptions (i) \LaTeX does not begin a new section directly at the bottom of a page, but transfers the heading to the top of the next page; (ii) \LaTeX never (well, hardly ever) exceeds the length of the text area in order to complete a section of text or a paragraph. Here are some references: [1,2].

1.1. **Spacing**

We normally recommend the use of 1.0 (single) line spacing. However, when typing complicated mathematical text \LaTeX automatically increases the space between text lines in order to prevent sub- and superscript fonts overlapping one another and making your printed matter illegible.

1.2. **Fonts**

These instructions have been produced using a 10 point Computer Modern Roman. Other recommended fonts are 10 point Times Roman, New Century Schoolbook, Bookman Light and Palatino.

2. **PRINTOUT**

The most suitable printer is a laser or an inkjet printer. A dot matrix printer should only be used if it possesses an 18 or 24 pin printhead ("letter-quality").

The printout submitted should be an original; a photocopy is not acceptable. Please make use of good quality plain white A4 (or US Letter) paper size. The dimensions shown here should be strictly adhered to: do not make changes to these dimensions, which are determined by the document class. The document class leaves at least 3 cm at the top of the page before the head, which contains the page number.

Printers sometimes produce text which contains light and dark streaks, or has considerable lighting variation either between left-hand and right-hand margins or between text heads and bottoms. To achieve optimal reproduction quality, the contrast of text lettering must be uniform,
sharp and dark over the whole page and throughout the article.

If corrections are made to the text, print completely new replacement pages. The contrast on these pages should be consistent with the rest of the paper as should text dimensions and font sizes.

3. TABLES AND ILLUSTRATIONS

Tables should be made with \LaTeX; illustrations should be originals or sharp prints. They should be arranged throughout the text and preferably be included on the same page as they are first discussed. They should have a self-contained caption and be positioned in flush-left alignment with the text margin within the column. If they do not fit into one column they may be placed across both columns (using \texttt{\begin{table*}} or \texttt{\begin{figure*}} so that they appear at the top of a page).

3.1. Tables

Tables should be presented in the form shown in Table 1. Their layout should be consistent throughout.

Horizontal lines should be placed above and below table headings, above the subheadings and at the end of the table above any notes. Vertical lines should be avoided.

If a table is too long to fit onto one page, the table number and headings should be repeated above the continuation of the table. For this you have to reset the table counter with \texttt{\addtocounter{table}{-1}}. Alternatively, the table can be turned by 90° (‘landscape mode’) and spread over two consecutive pages (first an even-numbered, then an odd-numbered one) created by means of \texttt{\begin{table}[h]} without a caption. To do this, you prepare the table as a separate \LaTeX document and attach the tables to the empty pages with a few spots of suitable glue.

3.2. Useful table packages

Modern \LaTeX comes with several packages for tables that provide additional functionality. Below we mention a few. See the documentation of the individual packages for more details. The
The next-to-leading order (NLO) results without the pion field.

\(\Lambda \) (MeV)	140	150	175	200
\(r_d \) (fm)	1.973	1.972	1.974	1.978
\(Q_d \) (fm\(^2\))	0.259	0.268	0.287	0.302
\(P_D \) (%)	2.32	2.83	4.34	6.14
\(\mu_d \)	0.867	0.864	0.855	0.845
\(M_{M1} \) (fm)	3.995	3.989	3.973	3.955
\(M_{GT} \) (fm)	4.887	4.881	4.864	4.846
\(\delta_{VP}^{1B} \) (%)	−0.45	−0.45	−0.45	−0.45
\(\delta_{C2}^{1B} \) (%)	0.03	0.03	0.03	0.03
\(\delta_{C2}^{N} \) (%)	−0.19	−0.19	−0.18	−0.15

The experimental values are given in ref. [4].

packages can be found in \texttt{\LaTeX}'s \texttt{tools} directory.

\textbf{array} Various extensions to \texttt{\LaTeX}'s \texttt{array} and \texttt{tabular} environments.

\textbf{longtable} Automatically break tables over several pages. Put the table in the \texttt{longtable} environment instead of the \texttt{table} environment.

\textbf{dcolumn} Define your own type of column. Among others, this is one way to obtain alignment on the decimal point.

\textbf{tabularx} Smart column width calculation within a specified table width.

\textbf{rotating} Print a page with a wide table or figure in landscape orientation using the \texttt{sidewaystable} or \texttt{sidewaysfigure} environments, and many other rotating tricks. Use the package with the \texttt{figuresright} option to make all tables and figures rotate in clockwise. Use the starred form of the \texttt{sideways} environments to obtain full-width tables or figures in a two-column article.

3.3. Line drawings

Line drawings may consist of laser-printed graphics or professionally drawn figures attached to the manuscript page. All figures should be clearly displayed by leaving at least one line of spacing above and below them. When placing a figure at the top of a page, the top of the figure should align with the bottom of the first text line of the other column.

Do not use too light or too dark shading in your figures; too dark a shading may become too dense while a very light shading made of tiny points may fade away during reproduction.

All notations and lettering should be no less than 2 mm high. The use of heavy black, bold lettering should be avoided as this will look unpleasantly dark when printed.

3.4. PostScript figures

Instead of providing separate drawings or prints of the figures you may also use PostScript files which are included into your \texttt{\LaTeX} file and printed together with the text. Use one of the packages from \texttt{\LaTeX}'s \texttt{graphics} directory: \texttt{graphics}, \texttt{graphicx} or \texttt{epsfig}, with the \texttt{\usepackage} command, and then use the appropriate commands (\texttt{\includegraphics} or \texttt{\epsfig}) to include your PostScript file.

The simplest command is:

\texttt{\includegraphics{file}}, which inserts the PostScript file \texttt{file} at its own size. The starred version of this command:

\texttt{\includegraphics*[file]}, does the same, but clips the figure to its bounding box.

With the \texttt{graphicx} package one may specify a series of options as a key–value list, e.g.:
The \texttt{epsfig} package mimicks the commands familiar from the package with the same name in \LaTeX\texttt{2.09}. A PostScript file \texttt{file} is included with the command \texttt{psfig{file=file}}.

Grey-scale and colour photographs cannot be included in this way, since reproduction from the printed CRC article would give insufficient typographical quality. See the following subsections.

\textbf{3.5. Black and white photographs}

Photographs must always be sharp originals (\textit{not screened versions}) and rich in contrast. They will undergo the same reduction as the text and should be pasted on your page in the same way as line drawings.

\textbf{3.6. Colour photographs}

Sharp originals (\textit{not transparencies or slides}) should be submitted close to the size expected in publication. Charges for the processing and printing of colour will be passed on to the author(s) of the paper. As costs involved are per page, care should be taken in the selection of size and shape so that two or more illustrations may be fitted together on one page. Please contact the Author Support Department at Elsevier (E-mail: \texttt{authorsupport@elsevier.nl}) for a price quotation and layout instructions before producing your paper in its final form.

\section{4. EQUATIONS}

Equations should be flush-left with the text margin; \LaTeX\ provides the document class option \texttt{fleqn} to get the flush-left effect.

\begin{equation}
H_{\alpha\beta}(\omega) = E^{(0)}(\omega)\delta_{\alpha\beta} + \langle \alpha|W_\pi|\beta \rangle
\end{equation}

You need not put in equation numbers, since this is taken care of automatically. The equation numbers are always consecutive and are printed in parentheses flush with the right-hand margin of the text and level with the last line of the equation. For multi-line equations, use the \texttt{eqnarray} environment.

For complex mathematics, use the \texttt{AMSMath} package. This package sets the math indentation to a positive value. To keep the equations flush left, either load the \texttt{espcrc} package after the \texttt{AMSMath} package or set the command
in the preamble of your article.

REFERENCES

1. S. Scholes, Discuss. Faraday Soc. No. 50 (1970) 222.
2. O.V. Mazurin and E.A. Porai-Koshits (eds.), Phase Separation in Glass, North-Holland, Amsterdam, 1984.
3. Y. Dimitriev and E. Kashchieva, J. Mater. Sci. 10 (1975) 1419.
4. D.L. Eaton, Porous Glass Support Material, US Patent No. 3 904 422 (1975).

References should be collected at the end of your paper. Do not begin them on a new page unless this is absolutely necessary. They should be prepared according to the sequential numeric system making sure that all material mentioned is generally available to the reader. Use \cite to refer to the entries in the bibliography so that your accumulated list corresponds to the citations made in the text body.

Above we have listed some references according to the sequential numeric system [1234].