Superfluid critical temperature in 3D Fermi gas with repulsion

Dmitry V. Efremova,1, Maxim S. Mar’enkoa, Mikhail A. Baranovb Maxim Yu. Kagana,
aP.L. Kapitza Institute for Physical Problems, Ul. Kosygina 2, Moscow 117334, Russia
bRussian Research Center "Kurchatov Institute", Kurchatov Square, Moscow, 123182, Russia

Abstract

The critical temperature of a superfluid phase transition in a Fermi gas with repulsive interaction is found. The influence of a magnetic field on the transition is analyzed. The estimates for the critical temperature for a trapped gas of 6Li atoms and 3He–4He mixtures are presented.

Keywords: Superfluidity in neutral Fermi systems; 3He–4He mixtures; trapped Fermi gases

One of the most important questions in connection with nonconventional superconductivity is the origin of an attractive interaction. In this paper we show that a nonideal Fermi gas with purely repulsive bare interaction is unstable towards Cooper pairing with orbital momentum \(l = 1\). This instability exists due to Kohn-Luttinger mechanism based on many-body effects [1].

1. Theoretical model

We consider a nonideal Fermi-gas described by the Hamiltonian:

\[
\hat{H} = \sum_{\sigma = \uparrow, \downarrow, \mathbf{p}} \xi_{\mathbf{p}} \hat{a}_{\mathbf{p}\sigma} \hat{a}^\dagger_{\mathbf{p}\sigma} + g \sum_{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4} \hat{a}^\dagger_{\mathbf{p}_1 \uparrow} \hat{a}^\dagger_{\mathbf{p}_2 \downarrow} \hat{a}_{\mathbf{p}_3 \downarrow} \hat{a}_{\mathbf{p}_4 \uparrow},
\]

where \(\xi_{\mathbf{p}} = \mathbf{p}^2/2m - \mu\), \(\mu\) is the chemical potential, \(g\) the constant of a bare point-like repulsive interparticle interaction, and different spin components, \(\sigma = \uparrow, \downarrow\), are assumed to have equal masses \(m\) and concentrations \(n\).

As it was shown in [2,3], an effective interparticle interaction originated from both the bare one and many-body effects, is attractive when two particles have a nonzero relative angular momentum \(l\). This attractive interaction is maximal for \(l = 1\) and, therefore, results in a \(p\)-wave triplet Cooper pairing with the critical temperature:

\[
T_{c1} = \tilde{\varepsilon} \exp \left\{ -1/\nu_F |V_{1}^{eff}| \right\} = \tilde{\varepsilon} \exp \left\{ -12.9/\lambda^2 \right\},
\]

where \(\nu_F = m p_F/2\pi^2\) is the density of states at the Fermi energy \((p_F = (6\pi^2n)^{1/3}\) the Fermi momentum \), \(V_{1}^{eff} = (2\ln 2 - 1)g^2 \nu_F/5\) the \(p\)-wave harmonic of the effective interaction in the Cooper channel (see [2] for details), \(a\) the scattering length \((a = mg/4\pi\) in the Born approximation\), \(\lambda = 2a p_F/\pi\) the gas parameter \((\lambda \ll 1\) for the considered case\), and \(\tilde{\varepsilon}\) the cutoff parameter of the order of the Fermi-energy, \(\tilde{\varepsilon} \sim \varepsilon_F = p_F^2/2m\).
To fix the parameter $\tilde{\varepsilon}$ and find the critical temperature one has to keep all contributions up to λ^4 in the Bethe-Salpeter equation, that defines the critical temperature (see [5] for more details). These contributions originate from the effective interaction, retardation effects (momentum and frequency dependence of the effective interaction) and renormalization of Green functions (Z-factor and m^*).

The corresponding critical temperature, found numerically, is

$$T_{c1} \approx \frac{2}{\pi} C \varepsilon_F \exp \left\{ -\frac{12.9}{\lambda^2 (1 + 4.3\lambda)} + \frac{13.4}{(1 + 4.3\lambda)^2} \right\},$$

where $C = 0.577$ is the Euler constant, and neglected terms are of order λ. (Note, that this formula extrapolates the expression for T_{c1} from $\lambda \ll 1$ to $\lambda < 1$.)

Magnetic field dependence of the critical temperature T_{c1} can be analyzed in the same way. We present the results for T_{c1} as a function of polarization $\alpha = (n_\uparrow - n_\downarrow)/(n_\uparrow + n_\downarrow)$ on Fig 1. It turns out, that the nonmonotonic dependence of T_{c1} on α is a result of a competition between the increase of the angular dependence of the effective interaction V^{eff} and decrease of its amplitude. (The former increases $|V_1^{eff}|$ and, hence, T_{c1}, while the later decreases.)

2. Conclusions.

In conclusion, let us mention two possible experimental applications of the presented theory. The first one is to 3He-4He mixtures, providing that the concentration x of 3He is more than 3%. (In this case the interaction between 3He atoms is repulsive.) The estimate of the critical temperature in zero magnetic field gives the value $T_{c1} \approx 5 \cdot 10^{-6}$K for the maximal concentration $x \approx 9.5\%$ (at pressure 10 bar). By applying the magnetic field this value can be increased by a factor of 6 (at polarization $\alpha \sim 40\%$), that gives a hope to observe the transition experimentally.

The second application is to trapped neutral Fermi gases. For these systems the critical temperature T_{c1} is estimated to be of the order of $10^{-7} \div 10^{-6}$K for densities $n \sim 10^{14}$cm$^{-3}$.

Acknowledgement

We acknowledge fruitful discussions with A.F. Andreev, H.W. Capel, I.A. Fomin, Yu. Kagan, D. Rainer, and I.M Suslov. This work was supported by INTAS grant 98-963 and RFBR grants 98-02-17077 and 97-02-16532.

References

[1] W. Kohn, J.H. Luttinger, Phys. Rev. Lett., 15, 524-526 (1965).
[2] M.Yu. Kagan, A.V. Chubukov, JETP Letters, 1988, v.47, p.525.
[3] D. Fay, A. Layzer, Phys. Rev. Lett., 20, 187-190 (1968).
[4] M.Yu. Kagan, A.V. Chubukov, JETP Letters, 1989, v.50, p.483.
[5] D.V. Efremov, M.S. Marenko, M.A. Baranov, M.Yu. Kagan, JETP, to be published.