Whole Life Cycle Risk Assessment of Prefabricated Construction: A Structural Equation Modeling

Zhu Huang¹, Ting Huang¹, Ying Peng¹ and Wen Jiang¹*

¹College of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu, Sichuan, 611830, China

*Corresponding author’s e-mail: xuezhongsha_wen@163.com

Abstract. With the rapid development of urbanization in China, prefabricated construction (PC) has attracted the attention of the public but PC is still in their infancy. Therefore, it is necessary to identify the risk factors of whole life cycle of PC. This paper adopts the structural equation modeling to analyze the data of the questionnaire and calculates the weight of each risk index. The research results provide decision makers with reference to the PC cycle risk, and also lay the foundation for the PC risk index system.

1. Introduction

PC is a manufacturing process, generally taking place at a specialized facility where various materials are joined to form a component part of the final installation[1]. Compared with the traditional construction method of cast-in-place concrete, it has the advantages of high production efficiency, high construction quality, low labor demand, saving resources and reducing environmental pollution. At present, Chinese government attaches great importance to resource environmental protection, and relevant policies have also been introduced. Under this background, PC has gradually become an important component in the development of industrial buildings in China. Due to the late start of PC in China, great risks and challenges remain on the road to the development of PC.

Sang Peidong[2] identified 18 key indexes to build a risk assessment system for the investment risk of PC project and used the structural equation modeling to obtain that consumer cognitive and project management model were important risk factors. Meng Tao[3] evaluated the risk of PC from five stages through the analytic hierarchy process and the entropy method. Meanwhile, based on the extension theory, a full life cycle risk extension evaluation model for PC was constructed. Shi Yufang[4] constructed the SWOT matrix of PC and concluded that the great difficulty of construction was the primary factor to the development of PC. Qi Baoku[5] used the entropy method to identify 27 key risk factors in practical cases based on the perspective of whole life cycle of PC and provided an effective reference for the research of deuterian risk assessment. Gan Xiaolong[6] used ISM to study the factors that hindered the development of PC, and found that inadequate policies and regulations and lack of knowledge and expertise were the first causes.

Based on the characteristics of PC, this paper constructs the whole life cycle risk assessment system of PC in view of the development status and practical problems of PC in China. The structural equation modeling is introduced to quantify qualitative factors, which can scientifically analyze the uncertainty of the multilevel index and provide certain reference basis for risk assessment of PC.
2. Index system establishment

By summarizing and analyzing the research situation of domestic and foreign scholars in PC, this paper divides the whole life cycle of PC into five stages, which are decision stage, design stage, production transportation stage, construction stage, operation maintenance stage. Combined with the present situation of Chinese PC and the problems it faces, the whole life cycle risk index system of PC is established through expert interviews. As shown in Table 1.

Table 1. Risk evaluation index system.

Latent variables	Observation variables
Decision	lack of effective financing channels
	large upfront investment
	inadequate policy and regulations
	lack of professional consultants
	long investment payback period
	inaccurate market estimate
Design	nonstandard design
	lack of experience in PC integration design
	poor design workability
	Not Considering the Local Conditions
	Failure to comply with modular coordination principle
	Not considering civil engineering, decoration, equipment integration
Production transportation	unqualified production qualification
	insufficient concrete strength
	component stacking loss
	the limited size and load of transport vehicles
	lack of special plans for lifting and transporting
	lack of personnel with experience in lifting
Construction	lack of site managers for PC
	inaccurate contractor quotes
	lack of complete technical conditions
	PC component structure processing
	insufficient industrialization and mechanization
Operation maintenance	insufficient consumer awareness
	short of expected return
	Low level of cooperation among the participants
	lack of scientific maintenance
	insufficient level of property management company

2.1. Data collection

In this study, a questionnaire was designed based on whole life-cycle risk index system of PC, and the variables were measured using the Likert 5-level scale. In order to ensure the quality of the questionnaire, the survey conducted online and offline paper questionnaires for project developers, design enterprise, construction enterprise, engineering consulting enterprise, equipment supply enterprise, scientific research academy and other units in the construction industry. 284 questionnaires were issued, and the effective questionnaire was 250, with a recovery rate of 88.02%.
2.2. Reliability analysis
Using the Cronbach's alpha to analyze the reliability of the scale, Normally Cronbach's alpha has a good reliability when it is above 0.6. From the results of SPSS24.0, the Cronbach's alpha of the subscale of the five potential variables is more than 0.6, and the overall Cronbach's alpha is 0.946, indicating that the scale has good reliability. The specific Cronbach's alpha of the scale is shown in Table 2.

Latent variables	Number of measurable variables	Cronbach's alpha
Decision	6	0.961
Design	6	0.959
Production transportation	6	0.960
Construction	5	0.952
Operation maintenance	5	0.956

2.3. Validity analysis
The KMO test and Bartlett's test were used to do effectiveness degree test of the scale. As the statistical analysis software SPSS24.0 calculation shows, the KMO value of the questionnaire is 0.875. The Sig value of the Bartlett's test is 0, which is less than 0.01, indicating that the sample data is highly correlated. Therefore, the scale has good convergence validity.

3. Discussion and analysis
Combined with the above data, the whole life cycle risk of PC is analysed from five stages: decision, design, production transportation, construction, operation maintenance. In order to make data support more reliable, this study uses structural equation modeling to analyse the relationship among variables. Among them, the ellipse represents the latent variable, and the rectangle represents the observed variable. Taking five stages of whole life cycle of PC as the latent variable of the model and investigating each index as the observation variable of the model, the whole life cycle risk assessment model of PC is constructed.

3.1. First-order model confirmatory factor analysis
Before evaluating the model-fitting degree, it is necessary to conduct an "Offending Estimates" to determine whether estimation coefficient is within the acceptable level[7]. Hair[8] believe that the Offending Estimates follows three rules: The first is that the Negative error term has variation, the second is that the standardization coefficient is too close to or exceeds 1 (generally 0.95 is the threshold), and the third is that the standard error is too large. If the detection results of the construction model do not have the above-mentioned Offending Estimates phenomenon, then the matched degree of the overall model can be tested. The first-order model is calculated by Amos22.0. It is shown in Figure 1.

3.2. Second-order model confirmatory factor analysis
It can be found from the study of 3.2 that the first-order theoretical model can be adapted to the sample data, and there may be a medium and high correlation between the original first-order factors, so it can be assumed that there is a higher-order factor construct that measures the five first-order factors. Combined with the questionnaire design, this higher-order potential factor is named as whole life cycle risk of PC. Based on this, the second-order confirmatory factor analysis model of life cycle risk is drawn. After substituting the questionnaire data into the model, it was found that most of the indexes in the model can measure up to standard through AMOS22.0 analysis, but there are still a few fitting indexes that do not measure up to standard. Thus, the model needs to be modified. With reference to the correction index MI value, the relevant path of the residual variable is added to the
model until the final model is obtained which is shown in Fig. 2. The model test results are shown in Table 3

Table 3. The model fitting indices results

index name	Adapted standard or threshold	initial model	Model adaptation judgment	corrected model	Model adaptation judgment
RMSEA	<0.08	0.083	NO	0.027	YES
GFI	>0.9	0.819	NO	0.903	YES
PNFI	>0.5	0.815	YES	0.827	YES
CFI	>0.9	0.929	YES	0.993	YES
TLI	>0.9	0.922	YES	0.992	YES
NFI	>0.9	0.893	NO	0.956	YES
CMIN/DF	<3	2.72	YES	1.184	YES

Through the analysis of the integrated model fitting degree and the measurement equation estimate parameters, it can be considered that the correction model has a good internal structure fitting degree, so the model constructed by the article shows better adaptability. In summary, the model overall is ideal.

Figure 1. First-order model confirmatory factor analysis

Figure 2. Second-order model confirmatory factor analysis
3.3. Risk weight determination
According to the evaluation of the above fitting effect, the weight coefficient of whole life cycle risk assessment index of PC is further calculated. The calculation method is as follows: Firstly, assume that the path coefficients of the five latent variables are H_1, H_2, H_3, H_4, H_5, then the index weights of the five latent variables are calculated by the formula $H_i = \frac{H_i}{\sum_{i=1}^{5} H_i}$. Similarly, the index weights of the observation variables can be calculated. The results are shown in Table 4.

latent variables	The weight of the first grade indexes	observation variable	The weight of the second indexes of the grade
decision	0.222	lack of effective financing channels 0.176	
		large upfront investment 0.152	
		inadequate policy and regulations 0.172	
		lack of professional consultants 0.165	
		long investment payback period 0.165	
		inaccurate market estimate 0.170	
design	0.198	nonstandard design 0.167	
		lack of experience in PC integration design 0.163	
		poor design workability 0.169	
		Not Considering the Local Conditions 0.179	
		Failure to comply with modular coordination principle 0.148	
		Not considering civil engineering, decoration, equipment integration 0.174	
Production	0.191	unqualified production qualification 0.171	
transportation		insufficient concrete strength 0.179	
		component stacking loss 0.177	
		the limited size and load of transport vehicles 0.171	
		lack of special plans for lifting and transporting 0.150	
		lack of personnel with experience in lifting 0.152	
construction	0.198	lack of site managers for PC 0.203	
		inaccurate contractor quotes 0.184	
		lack of complete technical conditions 0.205	
		PC component structure processing 0.203	
		insufficient industrialization and mechanization 0.205	
operation	0.191	insufficient consumer awareness 0.207	
maintenance		short of expected return 0.202	
		Low level of cooperation among the participants 0.189	
		lack of scientific maintenance 0.200	
		insufficient level of property management company 0.202	

4. Conclusions
Structural equations are mainly used to analyze theoretical models made up of causes and results. In this paper, structural equations are applied to the study of whole life cycle risk of PC, the results show that the structural equation modeling can be used to analyze whole life cycle risk of PC, and the reliability of the established risk index system can be verified. At the same time, this paper improves the domestic research on whole life cycle risk assessment method of PC, which can help stakeholders to effectively judge and avoid risks. In addition, there are still some shortcomings in this paper. Future research can combine the data with the successful cases of PC at home and abroad for risk analysis and program selection. With the continuous development of PC in China, it is necessary to screen and optimize the whole life cycle index of PC.
References
[1] Tatum, C B, Vanegas, J A, Williams, J M. (1986) Constructability improvement using prefabrication, pre-assembly and modularization. Construction Industry Institute.
[2] Sang, P D, Li, J X. (2017) Risk evaluation of prefabricated buildings development and construction based on structural equation. Journal of Civil Engineering and Management, 34(04):89-95.
[3] Meng, T. (2018) Comprehensive evaluation of prefabricated buildings risk based on extenics theory. Project Management Technology, 16(10):44-52.
[4] Shi, Y S, Kang, K, Wang, X F. (2016) Research on development countermeasures of prefabricated building in China based on SWOT analysis. Construction Economy, 37(11):5-9.
[5] Qi, B K, Zhu, Y, Fan, W Y. (2016) Risk factor identification method of the whole life cycle in prefabricated construction. Journal of Shenyang Jianzhu University(Social Science Edition), 18(03):257-261.
[6] Gan X L, Chang R D, Zuo J, et al. (2018) Barriers to the transition towards off-site construction in China: An Interpretive structural modeling approach. Journal of Cleaner Production, 197:8-18.
[7] Rong, T S. (2010) AMOS and research methods. Chongqing University Press, Chongqing.
[8] Hair, J F, Black, W C, Babin, B J. et al. (1998) Multivariate Data Analysis. Prentice Hall, Upper Saddle River.