Implantable CPW fed M Shaped Antenna for Biomedical Applications

Kazal Kumar Saha*, Sohrab Hossain Razu, Diponkar Kundu

Department of Electrical & Electronic Engineering, Pabna University of Science & Technology, Pabna, Bangladesh

Email address: engr.kazal.eee@gmail.com (K. K. Saha), sohrabhossain1995@gmail.com (S. H. Razu), d.kundu.eee@gmail.com (D. Kundu)

To cite this article:
Kazal Kumar Saha, Sohrab Hossain Razu, Diponkar Kundu. Implantable CPW fed M-shaped Antenna for Biomedical Applications. Journal of Electrical and Electronic Engineering. Vol. 7, No. 2, 2019, pp. 42-45. doi: 10.11648/j.jeee.20190702.12

Received: February 25, 2019; Accepted: April 4, 2019; Published: April 29, 2019

Abstract: Implantable medical device has become very popular in medical sector for proper diagnosis and treatment. If, these devices are wireless, then it will very effective for remote communication. For this wireless communication, antenna is a suitable thing. So, this paper presents the design Implantable CPW fed M-shaped antenna for biomedical applications. Coplanar waveguide fed technique is used with ground plane in this antenna. The antenna is designed by Alumina ceramic (Al₂O₃) substrate and Copper ground plane with dimensions (8mm × 7mm × 0.85mm) and Silicon material of 0.1mm thickness is used as a coating for human body safety. This antenna works under 2.42 GHz resonate frequency of ISM band (2.40-2.48 GHz). The bandwidth percent of the antenna at -10dB is 7.66%. The return loss characteristic of the antenna is -56.96 dB. Based on the conductivity and permittivity of different tissue (such as: Muscle, Fat, Skin) a simple 3D human body phantom structure is designed for implantation of CPW fed antenna. The antenna is designed and simulated with the help of CST software. The antenna parameters such as: Return loss, Smith Chart, VSWR, Gain, SAR have been discussed in the paper.

Keywords: Implantable Antenna, Coplanar Waveguide (CPW), ISM Band, Biomedical Applications, Specific Absorption Rate (SAR), CST Software

1. Introduction

At presents, Different diseases such as: Diabetic, High pressure, Cancer, Heart attack etc have become a part of some human life. Old aged people suffer from these diseases very much. Regularly checkup is the best treatment of these diseases. But, Regularly checkup is very painful for old aged people at hospital or to the doctor. The implantable device has become an effective solution for these problems. Because, implantable device is that device which collects information from patient’s body and sends it to external device by wirelessly [1, 2]. This wireless communication is done by antenna. In this case, Small implantable device is implanted inside human body very easily. For this small device, small antenna is much suitable. Antenna have been used in many medical applications such as: Biomedical telemetry, Wireless capsule endoscopy, Hyperthermia treatments, Microwave imaging, Microwave coagulation therapy [3-5]. The Industrial scientific and medical (ISM) band (2.40–2.48 GHz) is allocated by FCC for medical applications. This band gives higher bit rates and high frequency [6, 7].

Recently, Implantable antenna have been reported by some researchers. In paper [8], an implantable medical antenna was proposed, which operating at 2.45GHz of ISM band. The bandwidth of this antenna was 40.3 MHz. An implantable dual spiral antenna has been proposed in the frequency 2.41 GHz of ISM band. The total size of this antenna was (30mm × 30mm × 1.6mm). The return loss of this antenna was -26 dB at 2.41 GHz [7]. A rectangular shaped implantable antenna were presented at 2.46 GHz of ISM band. The dimension of this antenna was (17.635mm × 17.325mm × 1.3314mm). The return loss of this antenna was -46.42 dB at 2.46 GHz [6]. Most of the implantable antennas proposed in literature have large size and complex shape. It is very difficult to implant into the human body for large size. So, Main purpose of this research is to reduce the size of antenna as much as possible at proper operating frequency band. For reducing the dimension of antenna, high permittivity dielectric substrate Alumina...
ceramic (Al₂O₃) is used for simulation [9, 10]. Since, this antenna is operated inside human body (such as: muscle, fat, skin). Implantable device is must biocompatible to prevent unwanted short circuits and patient safety for long-term implantation [11-13]. This paper has introduced Implantable CPW fed M-shaped antenna with CPW fed technique and coated with silicon as biocompatible material. This silicon coated antenna has been designed and simulated inside human body phantom using CST microwave studio [14]. This CPW fed M-shaped antenna is resonating at 2.42 GHz of ISM band. This paper is organized as follows: section 0, describes the antenna design and structure. Section 0, shows simulation results of proposed antenna. Section 0, denotes conclusion for this research.

2. Antenna Design and Structure

The design specifications for the proposed antenna are:
1. Substrate material for the design is Alumina ceramic (εᵣ =9.9),
2. Patch and Ground material for the antenna is Copper.
3. Biocompatible material for coating of the antenna is Silicon (εᵣ =11.9).

Table 1. Antenna simulated setup structure.
Skin thickness = 4 mm
Fat thickness = 4 mm
Antenna thickness = 0.85 mm
Muscle thickness = 8mm

CPW fed technique has been used for this antenna. CPW fed has the advantages such as to simplify the fabrication and reduces the return loss. CPW fed ground plane and good impedance matching have their own merits and their physical structure makes them suitable for biomedical applications [15]. The details dimensions of the proposed antenna are shown in Figure 1.

Human tissues are electrically conductive. There has possibility to short circuit condition with patch and ground material of antenna. So, A shield can protect from this conditions. Silicon material has been utilized as a shield of this antenna. Because, Silicon is biocompatible material for the purpose of developing implantable biomedical devices [9, 16]. After designing this antenna, the antenna is simulated inside human body phantom. Human body phantom structure consists of muscle, fat and skin tissues of different dielectric properties. The proposed antenna inside human body phantom is shown in Figure 2 and the values of different dielectric properties of human tissues are specified in Table 2.

Table 2. Dielectric properties of human tissues.
Tissue
Skin
Fat
Muscle

3. Results and Discussion

The software is used to model and simulate the CPW fed antenna in CST Microwave Studio. It analyzes 3D and multilayer structures of human body phantom. It has calculate Return loss plot, Smith chart, VSWR plot, Farfield radiation pattern. The simulation results of the proposed antenna are presented in the below figures:
From Figure 3 it can be seen that the resonant frequency of the antenna is 2.42 GHz and return loss is -56.9607 dB. Bandwidth of antenna can be calculated from return loss graph. The bandwidth is 185.6 GHz (2.5158-2.3302 GHz) covering the ISM band (2.40 - 2.48 GHz). The bandwidth percent of the antenna at the standard value -10 dB is 7.66%.

The smith chart represents how the antenna impedance varies with frequency. The smith chart plot of the proposed antenna shown in Figure 4. From the simulation result, It is clear that, the impedance value is 50.1364+0.0396 ohm at 2.42 GHz.

The voltage standing wave ratio (VSWR) is the measure of how well the antenna terminal impedance is matched to the characteristic impedance of transmission line. VSWR of the proposed antenna is shown in Figure 5. The VSWR of the proposed antenna is 1.0028 at resonant frequency 2.42 GHz. Which is suitable for this antenna.

Specific absorption rate is a measure of how much transmitted RF energy is absorbed by human tissues. IEEE C95.3-2002 standard says that for an input power of 2mW, the 1-g averaged SAR should not exceed 1.6 W/kg as given by FCC and ICNIRP guidelines for public exposure [6].

In this research, 1-g averaged SAR (in Figure 7) is 0.456 W/kg and 10-g averaged SAR (in Figure 8) is 0.0932 W/kg for an input power of 2mW.
4. Conclusion

The Implantable CPW fed M-Shaped antenna has been designed for biomedical application with dimensions of (8mm × 7mm × 0.85 mm) in the ISM band (2.40-2.48 GHz). This antenna have been simulated in (60 mm × 60 mm) bio-tissue. The designed antenna resonates at 2.42 GHz and provides a bandwidth of 185.6 MHz. Due to its wideband property, this antenna can be used for remote distance health monitoring system. Size reduction and biocompatibility are main focus of this antenna design. For size reduction, high dielectric material is used and for biocompatibility the antenna is encased in a biocompatible material. Considering all these factors the antenna is designed using Alumina Ceramic (Al₂O₃) substrate inside human body phantom model and silicon coating of 0.1 mm is used as a biocompatible material. Due to superior permittivity of the Alumina ceramic substrates, implantable antenna exhibits lower return loss (-56.961 dB), good VSWR, better impedance matching with CPW structure. Therefore, the proposed antenna is proper structure for ISM band frequency of biomedical engineering.

References

[1] M. V. a. K. C. S. Kavya, "IMPLANTABLE ANTENNAS FOR BIOMEDICAL APPLICATIONS," *ARPN Journal of Engineering and Applied Sciences*, vol. VOL. 11, NO. 9, 5632-5636 MAY 2016.

[2] T. S. a. S. A. Kumar, "Design of an implantable CPW fed dual dipole antenna for dual band biomedical applications," *Int. J. Biomedical Engineering and Technology*, vol. Vol. 14, No. 1, pp. 46-59, 2014.

[3] N. R. Maneesha Nalam, Anand Mohan, "Biomedical Application of Microstrip Patch Antenna," *International Journal of Innovative Science and Modern Engineering (IJISME)*, vol. Volume-2, pp. 6-8, May 2014.

[4] A. K. Gurveer Kaur, Gurpreet Kaur Toor, Balwinder S. Dhalviwal and Shyam Sundar Pattnaik, "Antennas for Biomedical Applications," *The Korean Society of Medical & Biological Engineering and Springer 2015*, pp. 203-2012, 4 August 2015.

[5] D. K. Maria Lucia Scarpeleo, Hendrik Rogier, Senior Member, IEEE, Dries Vande Ginste, Member, IEEE, Fabrice Axia3, Jan Vanfleteren, Member, IEEE, Wout Joseph, Member, IEEE, Luc Martens, Member, IEEE, Gunter Vermeeren, "Design of an Implantable Slot Dipole Conformal Flexible Antenna for Biomedical Applications," pp. 1-9.

[6] Y. B. H. Tajwar Abrar Aleef, Vu Hoang Minh, Saed Khawaldeh, Usama Pervaiz, "Design and simulation-based performance evaluation of a miniaturised implantable antenna for biomedical applications," *The Institution of Engineering and Technology*, vol. Vol. 12, pp. 821-826, 19th June 2017.

[7] T. A. Mahalakshmi Nachiappan, "Design and development of dual-spiral antenna for implantable biomedical applications," *Biomed Res- India*, vol. Volume 28 pp. 5237-5240, 2017.

[8] S. M. Shankar Bhattacharjee, Sanjeev Kumar Metya, Chandan Tilak Bhunia, "Performance enhancement of implantable medical antenna using differential feed technique," *Engineering Science and Technology, an International Journal*, pp. 1-9, 2015.

[9] L. S. S. Paikhomba Loktongbam, "Design and Analysis of an Implantable Patch Antenna for Biomedical Applications," *International Journal of Engineering Technology Science and Research IJETSR*, vol. Volume 4, pp. 126-138, May 2017.

[10] s. a. k. a. t. shanmuganantham, "Coplanar waveguide-fed ISM band implantable crossed-type triangular slot antenna for biomedical applications," *International Journal of Microwave and Wireless Technologies*, vol. 6(2), pp. 167–172.

[11] T. S. S. Ashok Kumar, and G. Sasikala, "DESIGN AND DEVELOPMENT OF IMPLANTABLE CPW FED MONOPOLE U SLOT ANTENNA AT 2.45 GHz ISM BAND FOR BIOMEDICAL APPLICATIONS," *MICROWAVE AND OPTICAL TECHNOLOGY LETTERS*, vol. Vol. 57, No. 7, July 2015.

[12] Y.-X. G. a. S. X. Changrong Liu, "A Review of Implantable Antennas for Wireless Biomedical Devices," *Forum for Electromagnetic Research Methods and Application Technologies(FERMAT)*, pp. 1-11.

[13] T. S. S. Ashok Kumar, "Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications," *International Journal of Electronics and Communications (AEÜ)*, pp. 661-666, 2014.

[14] K. P. E. Tharaka Dissanayake, Mehmet Yuce, "UWB Antenna Impedance Matching in Biomedical Implants," pp. 3523-3526.

[15] T. S. S. Ashok Kumar, "Design and analysis of implantable CPW fed bowtie antenna for ISM band applications," *International Journal of Electronics and Communications (AEÜ)*, vol. Volume-68, pp. 158-165.

[16] B. K. D. Mihov, "SOME BIOMARKERS USED IN MEDICAL PRACTICE," *Trakia Journal of Sciences*, vol. 8, Suppl. 2, pp. pp 119-125, 2010.