Internet-based Task Computing

- Increasing demand for processing computation intensive tasks
 - One-processor machines have limited computational resources
 - Powerful parallel machines (supercomputers) are expensive and are not globally available

- Growing use and capabilities of Personal Computers

- Wide access to the Internet

- Internet emerges as a viable platform for supercomputing
 - Master-Worker volunteer computing: @home projects
 - e.g., SETI@home, AIDS@home, Folding@home
 - Profit-seeking computing
 - e.g., Amazon’s Mechanical Turk (human-based computing)
SETI-like Internet-based computing

Mechanism for deciding result (e.g., majority voting)

Task 1

Master

Redundancy

Untrusted

Worker

Untrusted

Worker

Untrusted

Worker

10-12-2013

Reputation-based Mechanisms for Evolutionary Master-Worker Computing
Prior Work

- **Classical Distributing Computing approach:**
 - **Malicious workers:** always incorrect result
 - **Altruistic workers:** always return a correct result

 [Fernández et al.; Konwar; Sarmenta]

- **Game Theoretic approach:**
 - **Rational workers:** act upon their best interest, i.e., choose the strategy that maximizes their own benefit

 [Abraham et al.; Golle and Mironov; Shneidman and Parkes]

- **All three types are considered**
 - Mechanisms with reward/punish schemes that provide incentives to workers to be honest and alleviate malicious action consequences

 [Fernández et al.]

- **Multi-round interaction but only rational workers are assumed**

 [Christoforou et al.]
Motivation

What's your main reason for running SETI@home? (73110 responses)

Reason	Percentage
Find ET for the good of humanity	58.88%
Find ET to become famous	2.93%
Keep my computer productive	15.15%
Get my name on a top 100 list on the website	2.26%
Other	20.78%

Other examples:

- Not sure: 4.07%
- Should Earth send a signal for aliens to hear? (7489 responses)
 - Yes: 78.16%
 - No: 10.42%
 - Not sure: 11.41%
- How many hours is your computer running on a typical day? (74820 responses)
 - Less than 24: 35.42%
 - 24, because of SETI@home: 36.46%
 - 24, but not because of SETI@home: 28.12%
- When do you think humans will detect the first ET signal? (73982 responses)
 - Within the next 2 years: 8.67%
 - Within the next 10 years: 38.69%
 - Within the next 100 years: 41.97%
 - More than 100 years from now: 7.15%
 - Never: 3.56%
- Should the U.S. government fund SETI research? (74089 responses)
 - Yes: 80.10%
 - No: 11.43%
 - Not sure: 8.47%
Motivation

• Several studies have showed that volunteer Internet-based computing is unreliable, with malicious behavior

 [Aderson; Heien et al.; Kondo et al.]

• In commercial platforms we should not expect the existence of altruistic workers
Evolutionary Game Theory

In biological terms: the application of game theory to evolving populations of life forms

Our aim: Evolutionary Stable Strategy

A strategy is called evolutionary stable if, when the whole population is using this strategy, any group of invaders (mutants) using a different strategy will eventually die over multiple generations (evolutionary rounds).

[Gintis 2000]
Reputation-based Mechanisms for Evolutionary Master-Worker Computing

Background/ Rational Worker Approach

• Bush and Mosteller's model, aspiration based
 - players adapt by comparing their experience with an aspiration level

 - an aspiration a_i for player i

 • the minimum benefit it expects to obtain in an interaction

[Bush Mosteller 55]
Background/ Master Approach

• The master can apply a reputation technique to identify which workers should be trusted.

• Central authority that objectively calculates the reputation of each worker.

• Based on the master’s observations about the workers behavior.

• Master reinforces its strategy as a function of the reputation calculated for each worker.
BOINC (i.e., SETI@home, AIDS@home, Folding@home, etc.) has a reputation mechanism, called adaptive replication.

- Replication is avoided when a task is sent to a highly reliable worker

Sonnek et al. use an adaptive reputation-based technique for task scheduling in volunteer setting

- Reputation is used as a mechanism to reduce the degree of redundancy while keeping it possible for the master to verify the results by allocating more reliable nodes.

We design a mechanism that forces the system to evolve to a reliable state.
Our Approach

• **Objective:** Develop a reliable computation platform where the master obtains the correct task results always.

• We design an algorithmic mechanism that uses reinforcement learning to induce the correct behavior to rational workers while coping with malice using reputation.

• We consider three different reputation types to calculate each worker’s reputation.

• We analyze our reputation-based mechanism:
 - we model it as a Markov chain
 - we identify conditions under which truthful behavior can be ensured
 - we prove that reliable computation is eventually achieved, by using a reputation type introduced in this work.

• We evaluate our mechanism with simulations.
Eventual correctness: After a finite number of rounds
- the master obtains the correct result in every round
- with minimal auditing
- the rational workers are satisfied

Rational : probability of cheating pC_i,

Altruistic: always honest

Malicious: always cheat

Reward / Punish schemes

p_A: probability of auditing

REPUTATION
Reputation-based Mechanisms for Evolutionary Master-Worker Computing

Payoffs

Payoff	Description
WP_C	Worker’s punishment for being caught cheating
WC_T	Worker’s cost for computing a task
WB_y	Worker’s benefit from master’s acceptance

PA: probability of auditing

Reward / Punish schemes

REPUTATION

Punishment

Cost

Benefit
ρ_A: probability of auditing

Reward / Punish schemes

$\text{aud}(r)$: the number of rounds that the master audited up to round r

$v_i(r)$: the number of auditing rounds where worker i was found truthful up to round r

$\rho_i(r)$: the reputation of worker i after round r

Type 1:

$$\rho_i(r) = \frac{(v_i(r) + 1)}{(\text{aud}(r) + 2)}$$

Type 2:

$$\rho_i(r) = \varepsilon^{\text{aud}(r) - v_i(r)} \quad \varepsilon \in (0, 1)$$
\[\beta_i(r) : \text{the error rate of worker } i \text{ at round } r \]
initialized by \(\beta_i(0) = 0.1 \)

\(A = 0.05 \) is the error bound

Type 3:

Step 1:

if worker truthful then
\[\beta_i(r) \leftarrow \beta_i(r) \cdot 0.95 \quad \text{calculating error rate} \]
else \(\beta_i(r) \leftarrow \beta_i(r) + 0.1 \)

Step 2:

if \(\beta_i(r) > A \) then
\[\rho_i(r) \leftarrow 0 \quad \text{calculating reputation} \]
else \(\rho_i(r) \leftarrow 1 - \sqrt{\frac{\beta_i(r)}{A}} \)
Reputation-based Mechanisms for Evolutionary Master-Worker Computing

- **Type 1:** $\rho_i(r) = (v_i(r) + 1)/(aud(r) - v_i(r))$
- **Type 2:** $\rho_i(r) = \varepsilon^{aud(r)} - v_i(r)$
- **Type 3:**

 \[\beta_i(r) \text{ initialized by } \beta_i(0) = 0.1 \]

 $A = 0.04$ is the error bound

 \[\beta_i(r) \text{ is recomputed when master audits} \]

- If the master does not audit, the result is obtained by the weighted majority
Markov Chain Modeling

Round $r-1$
\[\langle p_A(r-1), aud(r-1), p_{C1}(r-1), p_{C2}(r-1), \ldots, p_{Cn}(r-1), v_1(r-1), v_2(r-1), \ldots, v_n(r-1) \rangle \]

- **Master audits**
- **Set of cheaters F**

Round r
\[\langle p_A(r), aud(r), p_{C1}(r), p_{C2}(r), \ldots, p_{Cn}(r), v_1(r), v_2(r), \ldots, v_n(r) \rangle \]

Master’s updates
\[
\begin{align*}
 aud(r) &= aud(r - 1) + 1 \\
 p_A(r) &= p_A(r - 1) + \alpha_m \left(\frac{\rho_F(r)}{\rho_W(r) - \tau} \right)
\end{align*}
\]

Workers’ updates
\[
\begin{align*}
 \text{cheating workers:} & \quad v_i(r) = v_i(r - 1) \\
 & \quad p_{Ci}(r) = p_{Ci}(r - 1) - \alpha_w(a_i + WP_C) \\
 \text{honest worker:} & \quad v_i(r) = v_i(r - 1) + 1 \\
 & \quad p_{Ci}(r) = p_{Ci}(r - 1) + \alpha_w(a_i - (WB_Y - WC_T))
\end{align*}
\]
Markov Chain Modeling

Round $r-1$

$$\langle p_A(r-1), aud(r-1), p_{C1}(r-1), p_{C2}(r-1), \ldots, p_{Cn}(r-1), v_1(r-1), v_2(r-1), \ldots, v_n(r-1) \rangle$$

Master does not audit
Set of cheaters F

Round r

$$\langle p_A(r), aud(r), p_{C1}(r), p_{C2}(r), \ldots, p_{Cn}(r), v_1(r), v_2(r), \ldots, v_n(r) \rangle$$

Not updated

$$p_A(r) = p_A(r-1) \quad aud(r) = aud(r-1)$$
$$i \in W: v_i(r) = v_i(r-1)$$

Updated

Cheating worker	Honest worker	
$p_F(r) > p_{WF}(r)$	$p_{Ci}(r) = p_{Ci}(r-1) + \alpha_w(WB_Y - a_i)$	$p_{Ci}(r) = p_{Ci}(r-1) + \alpha_w(a_i + WC_T)$
$p_F(r) < p_{WF}(r)$	$p_{Ci}(r) = p_{Ci}(r-1) - \alpha_w \cdot a_i$	$p_{Ci}(r) = p_{Ci}(r-1) + \alpha_w(a_i - (WB_Y - WC_T))$
We analyze the evolution of the master-worker system as a Markov chain and we show:

For the system to achieve eventual correctness and the master to audit with sufficient to have p_{min} is necessary and sufficient to have $WB_Y \geq a_i + WC_T$ for all rational workers and at least one altruistic or rational worker to be present.
Eventual correctness analysis

- Universal class of reputation functions characterized by the following properties

Property 1: For any constant $\delta > 0$, there is a bounded value $\gamma(\delta)$ such that, for any non-empty $X \subseteq W$ and any initial state s_r in which $v_i(r) = 0, \forall i \notin X$, if the Markov chain evolves in such a way that $\forall k = 1, \ldots, \gamma(\delta)$, it holds that $aud(r + k) = aud(r) + k, \forall i \in X, v_i(r + k) = v_i(r) + k$ and $\forall j \in W \setminus X, v_j(r + k) = v_j(r)$, then $\rho_X(r + \gamma(\delta)) > \delta \cdot \rho_W \setminus X(r + \gamma(\delta))$.

- If the master audits in k consecutive rounds and players in set X are honest while players in set $W \setminus X$ cheat then the aggregated reputation of the players in X is δ times larger than the aggregated reputation of $W \setminus X$ set.

Property 2: For any $X \subseteq W$ and $Y \subseteq W$, if $aud(r + 1) = aud(r) + 1$ and $\forall j \in X \cup Y$ it is $v_j(r + 1) = v_j(r) + 1$ then $\rho_X(r) > \rho_Y(r) \Rightarrow \rho_X(r + 1) > \rho_Y(r + 1)$.

- If the aggregated reputation of workers in X is larger than the aggregated reputation of set Y then if the master audits and all workers are honest the inequality should continue to be the same.
Lemma 1. Consider any set of workers $Z \subseteq W$ such that $WB_Y > a_i$, for every rational worker $i \in Z$. Consider the set of states

$$S = \{ s | (p_A(s) = 0) \land (\forall w \in Z : p_{Cw}(s) = 1) \land (\rho_Z(s) > \rho_{W-Z}(s)) \}.$$

Then,

(i) S is a closed untruthful set, and
(ii) if $p_A(0) = 0$, $\rho_Z(0) > \rho_{W-Z}(0)$, and for all $i \in Z$ it is $p_{C_i}(0) > 0$, then, S is reachable.

Lemma 1: Motivates the necessity of $p_A^{\min} > 0$ unless altruistic workers outnumber the rest

Lemma 2. If all workers are malicious or uncovered rationals, no truthful set S is closed, if the reputation type satisfies Property 2.

Lemma 2: Having an altruistic or rational worker is necessary
Lemma 3. Consider a reputation type that satisfies Properties 1 and 2. If all rational workers are covered and at least one worker is altruistic or rational, a closed truthful set S is reachable from any initial state. Moreover, in every state $s \in S$, $p_A(s) = p_A^{min}$.

Theorem 1. From any initial state, if all rational workers are covered, having at least one worker altruist or rational is necessary and sufficient to eventually reach a closed truthful set S where the master audits with probability p_A^{min}, and hence to guarantee eventual correctness, if the reputation type satisfies Properties 1 and 2.

Eventual correctness is reached with auditing being minimal, if all rational workers are covered, Properties 1 & 2 are satisfied and at least one altruistic or rational worker is present.
Simulations

- We created our own simulation setup by implementing our mechanism
- Choose parameters likely to be encountered:
 - 9 workers (e.g. SETI@home 3 workers)
 - initial $P_A = 0.5$
 - $P_A^{min} = 0.01$
 - $\tau = 0.5$ (master does not tolerate a majority of cheaters)
 - aspiration $a_i = 0.1$ for each worker
 - learning rate $\alpha = \alpha_m = \alpha_w = 0.1$
 - $\varepsilon = 0.5$ in reputation type 2
 - Benefit is 1
 - Punishment is zero
 - Cost is 0.1
Reputation-based Mechanisms for Evolutionary Master-Worker Computing

Only Rational Workers

\[p_C = 0.5 \]

\[p_C = 1 \]
Reputation types (Only Rational workers)

![Graph showing reputation over time for different worker types]

- **Type 1**: Rising reputation over time.
- **Type 2**: Initial high reputation followed by decline.
- **Type 3**: Nearly constant reputation with slight variations.

Mathematical notation:

\[p_C = 0.5 \]
Rationals and Malicious

\[p_C = 1 \]

4 malicious; 5 rationals

5 malicious; 4 rationals

8 malicious; 1 rationals
One covered worker and changes of personality

Correct reply percentage as a function of time

Left Fig: Initially Reputations 1 & 3: $p_C = 0.5$ reputation 2: $p_C = 1$

Right Fig: Initial $p_C = 1$

5 malicious
Malicious-tolerant generic mechanism that uses reputation
- Reputation type 2 fits better in a commercial application
- Reputation type 3 fits better in a volunteering setting

Only reputation type 2 guarantees eventual correctness

Future Work: Workers can be connected to each other forming a social network, malicious players developing intelligent strategy, pool of workers, workers reinforcing their aspiration level
Appendix
Master’s Algorithm

\[p_A \leftarrow x, \text{ where } x \in [p_A^{\text{min}}, 1] \]
\[\text{aud} = 0 \]
\[// \text{ initially all workers have the same reputation} \]
\[\forall i \in W : v_i = 0; \rho_i = 0.5 \]
\[\text{for } r \leftarrow 1 \text{ to } \infty \text{ do} \]
\[\text{send a task } T \text{ to all workers in } W \]
\[\text{upon receiving all answers do} \]
\[\text{audit the answers with probability } p_A \]
\[\text{if the answers were not audited then} \]
\[// \text{ weighted majority, coin flip in case of a tie} \]
\[\text{accept the value returned by workers in } W_m \subseteq W, \]
\[\text{where } \rho_{W_m} > \rho_{W \setminus W_m} \]
\[\text{else } // \text{ the master audits} \]
\[\text{aud} \leftarrow \text{aud} + 1 \]
\[\text{Let } F \subseteq W \text{ be the set of workers that cheated.} \]
\[\forall i \in W : \]
\[\text{if } i \notin F \text{ then } v_i \leftarrow v_i + 1 // \text{ honest workers} \]
\[\text{update reputation } \rho_i \text{ of worker } i \]
\[\text{if } \rho_W = 0 \text{ then } p_A \leftarrow \min\{1, p_A + \alpha_m\} \text{ else} \]
\[p_A \leftarrow \min\{1, \max\{p_A^{\text{min}}, p_A + \alpha_m(\frac{\rho_F}{\rho_W} - \tau)\}\} \]
\[\forall i \in W : \text{return payoff } \Pi_i \text{ to worker } i \]

\[\alpha_m : \text{ learning rate (tunes the extent of change)} \]
\[\tau : \text{ tolerance (tolerable fraction of cheaters, e.g., 0.5)} \]
Rational Workers Algorithm

\[p_{C_i} \leftarrow y, \text{ where } y \in [0, 1] \]

\[\text{for } r \leftarrow 1 \text{ to } \infty \text{ do} \]

\[\text{receive a task } T \text{ from the master} \]

\[S_i \leftarrow -1 \text{ with probability } p_{C_i}, \]

\[\text{and } S_i \leftarrow 1 \text{ otherwise} \]

\[\text{if } S_i = 1 \text{ then} \]

\[\sigma \leftarrow \text{compute}(T), \]

\[\text{else} \]

\[\sigma \leftarrow \text{arbitrary solution} \]

\[\text{send response } \sigma \text{ to the master} \]

\[\text{get payoff } \Pi_i \]

\[\text{if } S_i = 1 \text{ then} \]

\[\Pi_i \leftarrow \Pi_i - WC_T \]

\[p_{C_i} \leftarrow \max\{0, \min\{1, p_{C_i} - \alpha_w (\Pi_i - a_i) S_i\}\} \]

\[\alpha_w : \text{learning rate (tunes the extent of change)} \]
• A set X of workers is called a reputable set if
 \[\rho_X(r) > \rho_{W \setminus X}(r) \]
• A worker is honest if \[p_{Ci}(s) = 0 \]
• A state s is a truthful state if the set of honest workers in state s is reputable
• A truthful set is any set of truthful states
• A worker is covered worker if
 \[WB_y \geq a_i + WC_T \]
• Opposite cases: uncovered worker, untruthful state, untruthful set, cheater worker
• Let a set of states S be called closed if, once the chain is in any state $s \in S$, it will not move to any state $s' \notin S$