Multiplex PCR for Direct Detection of Shiga Toxigenic *Escherichia coli*
Strains Producing the Novel Subtilase Cytotoxin

Adrienne W. Paton* and James C. Paton

School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia

Received 15 December 2004/Returned for modification 4 February 2005/Accepted 7 February 2005

We have recently described a novel AB₅ subtilase cytotoxin produced by certain Shiga toxigenic *Escherichia coli* (STEC) strains. This potentially lethal toxin may contribute to severe gastrointestinal and systemic disease in humans. In this study we have developed a trivalent PCR assay for the detection of the novel toxin A subunit gene *subA*, as well as *stx₁* and *stx₂*. The three primer pairs used in the assay do not interfere with each other and generate amplification products of 556, 180, and 255 bp, respectively. The assay can be used for determining the toxin genotype of STEC isolates, as well as for direct detection of toxin genes in primary fecal culture extracts.

Shiga toxigenic *Escherichia coli* (STEC) is an important cause of gastrointestinal disease in humans, particularly since these infections may result in life-threatening sequelae such as the hemolytic-uremic syndrome (HUS) (7, 9, 18). STEC produces one or both of two major types of Shiga toxin, designated Stx₁ and Stx₂; production of the latter is associated with an increased risk of developing HUS (2, 8, 10). Other putative accessory virulence factors produced by subsets of STEC include the capacity to produce attaching and effacing lesions on intestinal mucosa, a property encoded by the locus for enterocyte effacement (LEE), as well as megaplasmid-encoded factors such as the enterohemolysin Ehx, the extracellular serine protease EspP, and the putative adhesin Saa (3, 4, 9, 18, 19).

While there is circumstantial evidence that the accessory virulence factors referred to above contribute to the pathogenesis of human gastrointestinal disease, the bulk of the pathology is believed to be directly attributable to the systemic effects of Stx, particularly damage to the microvascular endothelium (9, 18). However, we have recently reported that some STEC strains produce an additional, previously undescribed AB₅ cytotoxin, which is lethal for mice and also results in extensive microvascular damage, thrombosis, and necrosis in multiple organs, including the brain, kidneys, and liver (15). The new toxin has been named subtilase cytotoxin because its 35-kDa A subunit is a subtilase-like serine protease distantly related to the BA_2875 gene product of *Bacillus anthracis*. The B subunit is related to a putative exported protein from *Yersinia pestis*, and like Stx, it forms a pentamer which mediates binding to glycolipid receptors on the target cell surface. The prototype Subtilase cytotoxin (SubAB) was detected in the LEE-negative O113:H21 STEC strain 98NK2, which was responsible for a small outbreak of HUS in Adelaide, South Australia, in 1998 (17). It is encoded by two closely linked, cotranscribed genes (*subA* and *subB*), which in 98NK2 are located on a large, conjugative virulence plasmid designated pO113 (15). The overlapping pathology caused by SubAB in mice and Stx in humans and various animal models raises the intriguing question of whether the new toxin contributes to life-threatening disease in humans, either on its own or in concert with Stx.

Direct PCR analysis is increasingly being used for the detection of STEC in primary cultures of feces or foods (18). A positive reaction with primers specific for *stx₁* or *stx₂* is sufficient to confirm the presence of STEC in a sample, but use of primers capable of detecting accessory virulence genes (which are not universally distributed among STEC strains) provides additional clinically relevant information that may also be of great epidemiological value. Indeed, several multiplex PCR assays specific for *stx₁*, *stx₂*, various accessory virulence genes, and also some important STEC O or H serogroups have been described (11, 12, 13, 18). In view of the potential importance of SubAB in the pathogenesis of disease caused by STEC, we have designed a multiplex PCR assay for direct detection of the *subA* gene, as well as *stx₁* and *stx₂*. This will facilitate screening of existing strain collections to determine the prevalence of the novel toxin gene in diverse STEC lineages, as well as in other *E. coli* pathotypes. It can also be used as a first-line screen for direct detection of strains carrying the toxin genes in clinical samples.

Multiplex toxin-specific PCR. Shiga toxin genes are highly variable, particularly within the *stx₂* class (18), and our previously described diagnostic PCR primers for *stx₁* and *stx₂* were designed to react with all known sequence variants (11). Although we have shown by Southern hybridization analysis that homologues of *subAB* are present in a number of STEC strains in our collection (15), the extent of any sequence variation between these genes is currently unknown. In order to minimize the possibility of random sequence variations interfering with a diagnostic PCR, we designed primers specific for two of three critical functional domains in the *subA* coding sequence. The three domains contain conserved Asp, His, and Ser residues, respectively, and collectively make up the “catalytic triad” characteristic of the subtilase family of serine proteases (15, 20). Primer SubHCDF (5′-TATGGCTTCCTCATTGC C-3′) is specific for nucleotides 276 to 294 of the *subA* open reading frame, which encode part of the His catalytic domain.

* Corresponding author. Mailing address: School of Molecular and Biomedical Science, University of Adelaide, Adelaide, S.A. 5005, Australia. Phone: 61-8-83037552. Fax: 61-8-83033262. E-mail: adrienne.paton@adelaide.edu.au.
while primer SubSCDR (5′-TATAGCTGTTGCTCTGACG-3′) is complementary to nucleotides 812 to 831, which encode part of the Ser catalytic domain. These primers directed the amplification of a 556-bp fragment from the central region of subA using crude DNA from STEC strain 98NK2 as template, as predicted (result not shown). These were then combined with our previously described diagnostic PCR primers for stx1 and stx2 (11), which direct the amplification of 180- and 255-bp products, respectively.

The toxin-specific PCR was initially characterized using crude DNA extracts from 44 STEC strains in our collection. These strains had all been tested previously by PCR for stx1 and stx2, as well as for a number of additional putative accessory virulence factor genes. PCR templates were prepared by microfuging 1 ml of an overnight Luria-Bertani broth culture of each strain for 1 min. Pellets were resuspended in 75 μl of sterile water, and 3 μl of proteinase K (20 mg/ml) and 25 μl of Chelex 100 (Bio-Rad Laboratories, Hercules, CA) (prepared in 0.1% NP-40. Samples were subjected to 35 PCR cycles, each consisting of 1 min of denaturation at 95°C, 2 min of annealing at 72°C, incrementing to 2.5 min of elongation at 72°C, to a maximum of 35 cycles.
Each of these samples had previously tested positive by PCR (described above) from 171 patients with diarrhea were tested. Crude DNA extracts of primary fecal cultures (prepared as above) from 12 healthy controls yielded negative results for all target genes (result not shown). Nine-teen (11%) of the 171 stx-positive samples were positive for subA. Interestingly, 41.7% of samples that were positive for both subA and stx2 genes, confirming the diagnosis of STEC infection. These 171 samples (stored at −15°C) were collected over approximately 4 years and represent all stx-positive cases from South Australia for which sufficient residual DNA extract was available. Multiplex PCR results for a subset of these samples are shown in Fig. 2, while collated data for all samples are shown in Table 2. Analysis of crude fecal culture extracts from 12 healthy controls yielded negative results for all target genes (result not shown). Nineteen (11%) of the 171 stx-positive samples were positive for subA. Interestingly, 41.7% of samples that were positive for subA only were also subA positive, compared with only 2.9% of those with subA alone and 3.7% of those with both subA genes.

Discussion and conclusions. PCR is increasingly being used for rapid diagnosis of enteric infections, particularly those caused by pathogenic *E. coli* strains that are not easily distinguished from commensal organisms by simple culture techniques. Although direct extracts of feces or foods can be used as templates for PCR, the best results are usually obtained by testing extracts of primary broth cultures (1, 5, 14, 18). The broth enrichment step can involve as little as 4 h of incubation and serves two purposes: inhibitors in the sample are diluted, and bacterial growth increases the number of copies of the target sequence, enhancing sensitivity. For STEC infections, detection of either the stx1 or the stx2 gene confirms the diagnosis but testing for the presence of additional gene sequences can provide clinically and epidemiologically important additional information about the infecting strain(s), even under circumstances in which isolates are not obtained. For example, testing for *eae* and *ehxA* confirms the presence of the LEE pathogenicity island and the large virulence plasmid, respectively, both of which are more commonly found in STEC strains associated with severe human disease (2, 6, 19).

The recent discovery that some STEC strains produce a potent AB2 cytotoxin (SubAB) that has the potential to significantly augment clinical manifestations, or indeed to cause disease in its own right, raises several important questions. For example, what is the prevalence of SubAB-producing STEC strains? How widely distributed are the subA and stx2 genes among disease-causing STEC strains? Are the genes found only in certain STEC lineages? Is SubAB produced by any non-STEC strains, and most importantly, is there any association between production of SubAB and severity of STEC disease in humans? Answering these questions will require analysis of much larger strain collections, a task for which PCR is well suited. In the present study, we have designed PCR primers based on structurally constrained regions of the *subA* and *stx* genes, which are likely to be highly conserved, and combined these with primers specific for *stx1* and *stx2* in a multiplex format. The various primers were designed such that the PCR products differ in size (180, 255, and 556 bp) and so can be readily distinguished by agarose gel electrophoresis. We have demonstrated the utility of the trivalent PCR for characterization of individual isolates, thereby facilitating screening of existing STEC strain collections from diverse geographic regions. We have also used it to test 171 crude DNA extracts from primary fecal cultures from patients with proven STEC disease and demonstrated that 11% of these samples were also subA positive. We also demonstrated a strong association between the presence of subA and STEC carrying stx2 only; this STEC subset has already been associated with an increased risk of serious human disease, such as HUS. Although not examined in the present study, it is possible that SubAB is produced by other (non-STEC) pathogenic *E. coli* strains. This possibility could be addressed by using the multiplex PCR assay described herein as a primary diagnostic screening method.

This work was supported by program grant 284214 from the National Health and Medical Research Council of Australia.

REFERENCES

1. Begum, D., and M. P. Jackson. 1995. Direct detection of Shiga-like toxin-producing *Escherichia coli* in ground beef using the polymerase chain reaction. Mol. Cell. Probes 9:259–264.

2. Boerlin, P., S. A. McEwen, F. Boerlin-Petzold, J. B. Wilson, R. P. Johnson, and C. L. Gyles. 1999. Associations between virulence factors of Shiga toxin-producing *Escherichia coli* and disease in humans. J. Clin. Microbiol. 37:997–993.

3. Bründer, W., H. Schmidt, and H. Karch. 1997. EspP, a novel extracellular serine protease of enterohaemorrhagic *Escherichia coli* O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24:767–778.
4. Elliott, S. J., L. A. Wainwright, T. K. McDaniel, K. G. Jarvis, Y. K. Deng, L.-C. Lai, B. P. McNamara, M. S. Donnenberg, and J. B. Kaper. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28:1–4.

5. Gannon, V. P. J., R. K. King, J. Y. Kim, and E. J. Thomas. 1992. Rapid and sensitive method for detection of Shiga-like toxin-producing Escherichia coli in ground beef using the polymerase chain reaction. Appl. Environ. Microbiol. 58:3809–3815.

6. Gannon, V. P. J., M. Rashed, R. K. King, and E. J. G. Thomas. 1993. Detection and characterization of the eae gene of Shiga-like toxin-producing Escherichia coli using polymerase chain reaction. J. Clin. Microbiol. 31:1268–1274.

7. Karmali, M. A. 1989. Infection by verotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 2:15–38.

8. Kleanthous, H., H. R. Smith, S. M. Scotland, R. J. Gross, B. Rowe, C. M. Taylor, and D. V. Milford. 1990. Haemolytic uraemic syndromes in the British Isles, 1985–8: association with Verocytotoxin producing Escherichia coli. Part 2: microbiological aspects. Arch. Dis. Child. 65:722–727.

9. Nataro, J. P., and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:450–479.

10. Ostroff, S. M., P. I. Tarr, M. A. Neill, J. H. Lewis, N. Hargrett-Bean, and J. M. Kobayashi. 1989. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J. Infect. Dis. 160:994–999.

11. Paton, A. W., and J. C. Paton. 1998. Detection and characterization of Shiga toxinogenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J. Clin. Microbiol. 36:598–602.

12. Paton, A. W., and J. C. Paton. 1999. Direct detection of Shiga toxinogenic Escherichia coli strains belonging to serogroups O111, O157, and O113 by multiplex PCR. J. Clin. Microbiol. 37:3362–3365.

13. Paton, A. W., and J. C. Paton. 2002. Direct detection and characterization of Shiga toxinogenic Escherichia coli by multiplex PCR for stx1, stx2, eae, eltA, and saa. J. Clin. Microbiol. 40:271–274.

14. Paton, A. W., J. C. Paton, P. N. Goldwater, and P. A. Manning. 1993. Direct detection of Escherichia coli Shiga-like toxin genes in primary fecal cultures using the polymerase chain reaction. J. Clin. Microbiol. 31:3063–3067.

15. Paton, A. W., P. Srimanote, U. M. Talbot, H. Wang, and J. C. Paton. 2004. A new family of potent AB5 cytotoxins produced by Shiga toxinogenic Escherichia coli. J. Exp. Med. 200:35–46.

16. Paton, A. W., P. Srimanote, M. C. Woodrow, and J. C. Paton. 2001. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 69:6999–7009.

17. Paton, A. W., M. C. Woodrow, R. M. Doyle, J. A. Lanser, and J. C. Paton. 1999. Molecular characterization of a Shiga-toxigenic Escherichia coli O113: H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J. Clin. Microbiol. 37:3357–3361.

18. Paton, J. C., and A. W. Paton. 1998. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 11:450–479.

19. Schmidt, H., L. Beutin, and H. Karch. 1995. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL933. Infect. Immun. 63:1055–1061.

20. Siezen, R. J., W. M. de Vos, J. A. M. Leunissen, and B. W. Dijkstra. 1991. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 4:719–737.

21. Srimanote, P., A. W. Paton, and J. C. Paton. 2002. Characterization of a novel type IV pilus locus carried on the large plasmid of human-virulent strains of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli. Infect. Immun. 70:3094–3100.