A GENERALIZATION OF THE PROBABILITY THAT THE COMMUTATOR OF TWO GROUP ELEMENTS IS EQUAL TO A GIVEN ELEMENT

AHMAD M.A. ALGHAMDI AND FRANCESCO G. RUSSO

Abstract. The probability that the commutator of two group elements is equal to a given element has been introduced in literature few years ago. Several authors have investigated this notion with methods of the representation theory and with combinatorial techniques. Here we illustrate that a wider context may be considered and show some structural restrictions on the group.

1. Different formulations of the commutativity degree

Given two elements \(x\) and \(y\) of a group \(G\), several authors studied the probability that a randomly chosen commutator \([x, y]\) of \(G\) satisfies a prescribed property. P. Erdős and P. Turán [6] began to investigate the case \([x, y] = 1\), noting some structural restrictions on \(G\) from bounds of statistical nature. Their approach involved combinatorial techniques, which were developed successively in [2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 17] and extended to the infinite case in [8, 13, 18]. On another hand, P. X. Gallagher [11] investigated the case \([x, y] = 1\), using character theory, and opened another line of research, illustrated in [3, 4, 12, 16, 19]. The literature shows that it is possible to variate the condition on \([x, y]\) involving arbitrary words, which could not be the commutator word \([x, y]\). From now, all the groups which we consider will be finite.

Given two subgroups \(H\) and \(K\) of \(G\) and two integers \(n, m \geq 1\), we define

\[
p_{y}^{(n,m)}(H, K) = \frac{|\{(x_1, \ldots, x_n, y_1, \ldots, y_m) \in H^n \times K^m \mid [x_1, \ldots, x_n, y_1, \ldots, y_m] = y\}|}{|H|^n |K|^m},
\]

as the probability that a randomly chosen commutator of weight \(n + m\) of \(H \times K\) is equal to a given element of \(G\). Denoting

\[
\mathcal{A} = \{(x_1, \ldots, x_n, y_1, \ldots, y_m) \in H^n \times K^m \mid [x_1, \ldots, x_n, y_1, \ldots, y_m] = y\},
\]

\(|\mathcal{A}| = |H|^n |K|^m \cdot p_{y}^{(n,m)}(H, K)\). The case \(n = m = 1\) can be found in [4] and is called generalized commutativity degree of \(G\). For \(n = m = 1\) and \(H = K = G\),

\[
p_{y}^{(1,1)}(G, G) = p_{y}(G) = \frac{|\{(x, y) \in G^2 \mid [x, y] = y\}|}{|G|^2},
\]

is the probability that the commutator of two group elements of \(G\) is equal to a given element of \(G\) in [16].

It is well known (see for instance [11, Exercise 3, p. 183]) that the function \(\psi(g) = |\{(x, y) \in G \times G \mid [x, y] = g\}|\) is a character of \(G\) and we have

\[
\psi = \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)} \chi,
\]

where \(\text{Irr}(G)\) denotes the set of all irreducible complex characters of \(G\). However, the authors exploited this fact in [16, Theorem 2.1], writing (1.3) as

\[
p_{y}(G) = \frac{1}{|G|} \sum_{\chi \in \text{Irr}(G)} \chi(g) \chi(1),
\]

For terminology and notations in character theory we refer to [14].

Now for \(g = 1\),

\[
p_{1}^{(1,1)}(G, G) = p_{1}(G) = d(G) = \frac{|\{(x, y) \in G^2 \mid [x, y] = 1\}|}{|G|^2} = \frac{|\text{Irr}(G)|}{|G|}.
\]
Remark 2.1. If $S = \{[x_1, \ldots, x_n, y_1, \ldots, y_m] \mid x_1, \ldots, x_n \in H; y_1, \ldots, y_m \in K\}$, then $p_{(n,m)}(H, K) = 0$ if and only if $g \notin S$. On another hand, $p_{(n,m)}(H, K) = 1$ if and only if $[H, \ldots, H, K, \ldots, K] = [nH, mK] = 1$.

Remark 2.2. The equation (1.1) assigns by default the map
\[
p_g^{(n,m)} : (x_1, \ldots, x_n, y_1, \ldots, y_m) \in H^n \times K^m \mapsto p_g^{(n,m)}(H, K) \in [0, 1],
\]
which is a probability measure on $H^n \times K^m$, satisfying a series of standard properties such as being multiplicative, symmetric and monotone.

The fact that (2.1) is multiplicative is described by the next result.

Proposition 2.3. Let E and F be two groups such that $e \in E, f \in F, A, C \leq E$ and $B, D \leq F$. Then
\[
p_{(e,f)}^{(n,m)}(A \times C, B \times D) = p_{e}^{(n,m)}(A, B) \cdot p_{f}^{(n,m)}(C, D).
\]

Proof. It is enough to note that
\[
[(a_1, \ldots, a_n), (c_1, \ldots, c_n), ([b_1, \ldots, b_m], [d_1, \ldots, d_m])] = ([(a_1, \ldots, a_n), [b_1, \ldots, b_m]], [c_1, \ldots, c_n], [d_1, \ldots, d_m])].
\]

Proposition 2.4. With the notations of (1.1), $p_g^{(n,m)}(H, K) = p_{g^{-1}}^{(n,m)}(K, H)$. Moreover, if H, or K, is normal in G, then $p_g^{(n,m)}(H, K) = p_g^{(n,m)}(K, H) = p_{g^{-1}}^{(n,m)}(H, K)$.

Proof. The commutator rule $[x, y]^{-1} = [y, x]$ implies the first part of the result. Now let H be normal in G, $n \leq m$ and $B = \{[y_1, \ldots, y_m, x_1, \ldots, x_n] \in K^m \times H^n \mid [y_1, \ldots, y_m, x_1, \ldots, x_n] = g\}$. The map $\varphi : (x_1, \ldots, x_n, y_1, \ldots, y_m) \in A \mapsto (y_1^{-1}, y_2^{-1}, \ldots, y_m^{-1}, b_1, \ldots, b_m, y_1 x_1 y_1^{-1}, y_2 x_2 y_2^{-1}, \ldots, y_n x_n y_n^{-1}) \in B$ is bijective and so the remaining equalities follow. A similar argument can be applied, when the assumption H is normal in G is replaced by K is normal in G.

The fact that (2.1) is monotone is more delicate to prove, since this is a situation in which we may find upper bounds for (1.1). Details are given later on. Now we will get another expression for (1.1). With the notations of (1.1), $C_l(K([x_1, \ldots, x_n])$ denotes the K-conjugacy class of $[x_1, \ldots, x_n] \in H$.

2. TECHNICAL PROPERTIES AND SOME COMPUTATIONS

We begin with two elementary observations on (1.1).

is the probability of commuting pairs of G (or briefly the commutativity degree of G), largely studied in [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 19]. In particular,

(\begin{equation}
\label{eq:2.1}
p_{(n,1)}^{(n,1)}(G, G) = \frac{|\{(x_1, \ldots, x_n, x_{n+1}) \in G^{n+1} \mid [x_1, \ldots, x_n, x_{n+1}] = 1\}|}{|G|^{n+1}} = d_h(n, G),
\end{equation}

is the n-th nilpotency degree of G in [2, 3, 9, 17, 18] and that

(\begin{equation}
\label{eq:2.2}
p_{(1,1)}^{(n,1)}(H, G) = \frac{|\{(x_1, \ldots, x_n) \in H^{n} \times G \mid [x_1, \ldots, x_n] = 1\}|}{|H|^n |G|} = d_h(n, H, G),
\end{equation}

is the relative n-th nilpotency degree of H in G, studied in [7, 9, 17, 18]. We may express (1.7) not necessarily with $g = 1$; assuming that H is normal in G, Equation (4) and Theorem 4.2 imply

(\begin{equation}
\label{eq:2.3}
p_{g}^{(1,1)}(H, G) = \frac{|\{(x, y) \in H \times G \mid [x, y] = 1\}|}{|H| |G|} = \frac{1}{|H||G|} \sum_{\chi \in \text{Irr}(G)} |H| \langle \chi, \chi \rangle = \chi(g),
\end{equation}

where χ_H denotes the restriction of χ to H and \langle , \rangle the usual inner product. Our purpose is to study (1.1), extending the previous contributions in [2, 3, 7, 10, 17]. The main results of the present paper are in Section 3, in which the general considerations of Section 2 are applied.
Proposition 2.5. With the notations of (1.1),

\[(2.2)\quad p_g^{(n,m)}(H,K) = \frac{1}{|H|^n |K|^m} \sum_{x_1,\ldots,x_n \in H \atop g^{-1}[x_1,\ldots,x_n] \in \text{Cl}_K([x_1,\ldots,x_n])} |C_K([x_1,\ldots,x_n])|^m.\]

Proof. It is straightforward to check that
\[(2.3)\quad C_K^m([x_1,\ldots,x_n]) = \underbrace{C_K([x_1,\ldots,x_n]) \times \cdots \times C_K([x_1,\ldots,x_n])}_{\text{m-times}}.\]

In particular, \(|C_K^m([x_1,\ldots,x_n])| = \underbrace{|C_K([x_1,\ldots,x_n])|^m}_{\text{m-times}}.\]

\[A = \bigcup_{[x_1,\ldots,x_n] \in H} \{[x_1,\ldots,x_n] \times T_{[x_1,\ldots,x_n]}\}, \text{ where } T_{[x_1,\ldots,x_n]} = \{(y_1,\ldots,y_m) \in K^m \mid [x_1,\ldots,x_n,y_1,\ldots,y_m] = g\}.\]

Obviously, \(T_{[x_1,\ldots,x_n]} \neq \emptyset\) if and only if \(g^{-1}[x_1,\ldots,x_n] \in \text{Cl}_K([x_1,\ldots,x_n]).\) Let \(T_{[x_1,\ldots,x_n]} \neq \emptyset.\) Then \(|T_{[x_1,\ldots,x_n]}| = |C_K^m([x_1,\ldots,x_n])|,\) because the map \(\psi : [y_1,\ldots,y_m] \mapsto g[y_1,\ldots,y_m] \) is bijective, where \([y_1,\ldots,y_m]\) is a fixed element of \(T_{[x_1,\ldots,x_n]}.\) We deduce that
\[(2.4)\quad |A| = \sum_{[x_1,\ldots,x_n] \in H} |T_{[x_1,\ldots,x_n]}| = \sum_{x_1,\ldots,x_n \in H \atop g^{-1}[x_1,\ldots,x_n] \in \text{Cl}_K([x_1,\ldots,x_n])} |C_K^m([x_1,\ldots,x_n])|^m\]
and the result follows. \(\square\)

Special cases of Proposition 2.5 are listed below.

Corollary 2.6. In Proposition 2.5, if \(m = 1\) and \(G = K,\) then
\[(2.5)\quad p_g^{(n,1)}(H,G) = \frac{1}{|H|^n |G|} \sum_{x_1,\ldots,x_n \in H \atop g^{-1}[x_1,\ldots,x_n] \in \text{Cl}_G([x_1,\ldots,x_n])} |C_G([x_1,\ldots,x_n])|.\]

Corollary 2.7 (See [4], Theorem 2.3). In Proposition 2.5, if \(m = n = 1,\) then
\[(2.6)\quad p_g^{(1,1)}(H,K) = \frac{1}{|H| |K|} \sum_{x \in H \atop g^{-1}x \in \text{Cl}_K(x)} |C_K(x)|.\]

In particular, if \(G = K,\) then \(p_g^{(1,1)}(H,G) = \frac{1}{|H| |G|} \sum_{x \in H \atop g^{-1}x \in \text{Cl}_G(x)} |C_G(x)|.\)

Corollary 2.8 (See [7], Proof of Lemma 4.2). In Proposition 2.5, if \(m = 1\) and \(G = K,\) then
\[(2.7)\quad p_1^{(n,1)}(H,G) = d^{(n)}(H,G) = \frac{1}{|H|^n |G|} \sum_{x_1,\ldots,x_n \in H} |C_G([x_1,\ldots,x_n])|.\]

Corollary 2.9. In Proposition 2.5, if \(C_K([x_1,\ldots,x_n]) = 1,\) then
\[(2.8)\quad p_1^{(n,m)}(H,K) = \frac{1}{|H|^n} + \frac{1}{|K|^m} - \frac{1}{|H|^n |K|^m}.\]

[4] Proposition 3.4 follows from Corollary 2.9 when \(m = n = 1.\)

Remark 2.10. Equation (1.7) makes equivalent the study of \(p_1^{(n,1)}(H,G)\) and that of \(d^{(n)}(H,G).\) This is illustrated in Corollary 2.8 and noted here for the first time. Therefore there are many information from [2] [7] [9] [17] and [4] [3] [16] which can be connected. It is relevant to point out that these concepts were treated independently and with different methods in the last years.
Let \(\chi \) be a character of \(G \) and \(\theta \) be a character of \(H \leq G \). The Frobenius Reciprocity Law \([14\, Lemma\, 5.2]\) gives a link between the restriction \(\chi_H \) of \(\chi \) to \(H \) and the induced character \(\theta^G \) of \(\theta \). Therefore \(\langle \chi, \theta^G \rangle_G = \langle \chi_H, \theta \rangle_H \). Write this number as \(e_{(\chi, \theta)} = \langle \chi, \theta^G \rangle_G = \langle \chi_H, \theta \rangle_H \). If \(e_{(\chi, \theta)} = 0 \), then \(\theta \) does not appear in \(\chi_H \) and so \(\chi \) does not appear in \(\theta^G \). Recall from \([14]\) that, if \(e_{(\chi, \theta)} \neq 0 \), then \(\chi \) covers \(\theta \) (or also \(\theta \) belongs to the constituents of \(\chi_H \)). In particular, if \(\theta = \chi_H \), then \(e_{(\chi, \chi_H)} = \langle \chi, \chi_H^G \rangle_G = \langle \chi_H, \chi_H \rangle_H \). From a classic relation (see \([14\, Lemma\, 2.29]\)), \(e_{(\chi, \chi_H)} = \langle \chi, \chi_H \rangle_G = \langle \chi_H, \chi_H \rangle_H \leq |G : H| \langle \chi, \chi \rangle_G = |G : H| e_{(\chi, \chi)} \) and the equality holds if and only if \(\chi(x) = 0 \) for all \(x \in G - H \). In particular, if \(\chi \in \text{Irr}(G) \), then \(\langle \chi_H, \chi_H \rangle_H = |G : H| \) if and only if \(\chi(x) = 0 \), for all \(x \in G - H \). Therefore the following result is straightforward.

Corollary 2.11. With the notations of \([14]\), \(p_g^{(1,1)}(H, G) \leq |G : H| \; p_1(g) \) and the equality holds if and only if all the characters vanish on \(G - H \).

At this point, \([4\, Theorem\, 4.2]\) becomes

(2.9) \quad \zeta(g) = |H| \sum_{\chi \in \text{Irr}(G)} \frac{e_{(\chi, \chi g)}}{\chi(1)} \chi(g) = |\{(x, y) \in H \times G \mid [x, y] = g\}| = \sum_{x \in H} \sum_{g^{-1}x \in C_G(x)} |C_G(x)|,

where \(\zeta(g) \) is the number of solutions \((x, y) \in H \times G\) of the equation \([x, y] = g\). Note that \((2.9)\) and \([1\, Exercise\, 3, p. 183]\) give a short argument to prove that \(\zeta(g) \) is a character of \(G \) with respect to the argument in \([4\, Corollary\, 4.3]\). The equation \((2.9)\) becomes

(2.10) \quad p_g^{(1,1)}(H, G) = \frac{\zeta(g)}{|H| |G|}.

For the general case that \(n > 1, m > 1 \) and \(G = K \),

(2.11) \quad p_g^{(n,m)}(H, G) = \frac{\zeta^{(n,m)}(g)}{|G|^m} \frac{1}{|K|^n} \sum_{x_1, \ldots, x_n \in H} \sum_{g^{-1}[x_1, \ldots, x_n] \in C_G([x_1, \ldots, x_n])} |C_G([x_1, \ldots, x_n])|^m,

where

(2.12) \quad \zeta^{(n,m)}(g) = \sum_{x_1, \ldots, x_n \in H} \sum_{g^{-1}[x_1, \ldots, x_n] \in C_G([x_1, \ldots, x_n])} |C_G([x_1, \ldots, x_n])|^m

is the number of solutions \((x_1, \ldots, x_n, y_1, \ldots, y_m) \in H^n \times G^m\) of \([x_1, \ldots, x_n, y_1, \ldots, y_m] = g\).

Remark 2.12. There are many evidences from the computations that \(\zeta^{(n,m)}(g) \) is a character of \(G \).

Now we may prove upper bounds for \((2.1)\) and find that \((2.3)\) is monotone.

Proposition 2.13. With the notations of \([14]\), if \(H \leq K \), then \(p_g^{(n,m)}(H, G) \geq p_g^{(n,m)}(K, G) \). The equality holds if and only if \(\text{Cl}_H(x) = \text{Cl}_K(x) \) for all \(x \in G \).

Proof. We note that \(\frac{1}{|K|} \leq \frac{1}{|H|} \) and then \(\frac{1}{|K|^n} \leq \frac{1}{|H|^n} \). By Proposition \(2.5\)

\[
|G|^m \cdot p_g^{(n,m)}(K, G) = \frac{1}{|K|^n} \sum_{x_1, \ldots, x_n \in K} |C_G([x_1, \ldots, x_n])|
\]

(2.13) \quad \leq \frac{1}{|H|^n} \sum_{x_1, \ldots, x_n \in K} |C_G([x_1, \ldots, x_n])|

in particular the last relation is true for \(x_1, \ldots, x_n \in H \leq K \) and continuing

(2.14) \quad \frac{1}{|H|^n} \sum_{x_1, \ldots, x_n \in H} |C_G([x_1, \ldots, x_n])| = |G|^m \cdot p_g^{(n,m)}(H, G).

The rest of the proof is clear. (\qed)

The next result shows an upper bound, which generalizes \([7\, Theorem\, 4.6]\).
Proposition 2.14. With the notations of (1.1), if N is a normal subgroup of G such that $H \leq N$, then $p_g^{(n,m)}(H, G) \leq p_g^{(n,m)}(N, H)$. Moreover, if $N \cap [nH, mG] = 1$, then the equality holds.

Proof. We have
\[
|H|^n \cdot |G|^m \cdot p_g^{(n,m)}(H, G) = |A|
\]
\[
= |\{(x_1, \ldots, x_n, y_1, \ldots, y_m) \in H^n \times G^m \mid [x_1, \ldots, x_n, y_1, \ldots, y_m] \cdot g^{-1} = 1\}|
\]
\[
= |\{(x_1, \ldots, x_n, y_1, \ldots, y_m) \in H^n \times G^m \mid [x_1, \ldots, x_n, y_1, \ldots, y_m, g^{-1}] = 1\}|
\]
\[
= \sum_{x_1 \in H} \cdots \sum_{x_n \in H} \sum_{y_1 \in G} \cdots \sum_{y_m \in G} |C_G([x_1, \ldots, x_n, y_1, \ldots, y_m])|
\]
\[
= \sum_{x_1 \in H} \cdots \sum_{x_n \in H} \sum_{y_1 \in G} \cdots \sum_{y_m \in G} \left|C_G([x_1, \ldots, x_n, y_1, \ldots, y_m])\right| |N|^{n+m}
\]
\[
\leq \sum_{x_1 \in H} \cdots \sum_{x_n \in H} \sum_{y_1 \in G} \cdots \sum_{y_m \in G} |C_G(N)\left([x_1, \ldots, x_n, y_1, \ldots, y_m]\right)|
\]
\[
= \sum_{s_1 \in H/N} \sum_{x_1 \in s_1} \cdots \sum_{s_n \in H/N} \sum_{x_1 \in s_1} \cdots \sum_{x_n \in s_n} \sum_{y_1 \in G/N} \cdots \sum_{y_m \in G/N} |C_G(N)\left([s_1, \ldots, s_n, T_1, \ldots, T_m]\right)|
\]
\[
= N^{n+m} \sum_{s_1 \in H/N} \sum_{x_1 \in s_1} \cdots \sum_{x_n \in s_n} \sum_{y_1 \in G/N} \cdots \sum_{y_m \in G/N} |C_G(N)\left([s_1, \ldots, s_n, T_1, \ldots, T_m]\right)|
\]
\[
= \left(\frac{H}{N} \right)^n \cdot \left(\frac{G}{N} \right)^m \cdot p_g^{(n,m)}(N, H) \cdot |N|^{n+m} = \left|H^n \cdot |G|^m \cdot p_g^{(n,m)}(N, H) \right|
\]
The condition of equality in the above relations is satisfied exactly when $N \cap [nH, mG] = 1$. The result follows. □

Corollary 2.15. A special case of Proposition 2.14 is $p_g(N) \leq p_g(G/N)$.

Corollary 2.16 (See [7], Theorem 4.6). In Proposition 2.14, if $m = 1$ and $g = 1$, then $d^{(n)}(H, G) \leq d^{(n)}(H/N, G/N)$.

3. SOME UPPER AND LOWER BOUNDS

A relation among (1.1)–(1.5) is described below.

Theorem 3.1. With the notations of (1.1), $p_g^{(n, m)}(G, G) \leq p_g^{(n, m)}(H, K) \leq p_1^{(n, m)}(H, K) \leq p_1^{(n, m)}(H, G) \leq p_1^{(n, m)}(H, H)$.

Proof. From Proposition 2.13 $p_g^{(n, m)}(G, G) \leq p_g^{(n, m)}(G, H)$. From Proposition 2.5
\[
p_g^{(n, m)}(H, K) = \frac{1}{|H|^n \cdot |K|^m} \sum_{x_1, \ldots, x_n \in H} |C_K([x_1, \ldots, x_n])|^m
\]
and for $g = 1$ we get
\[
\leq \frac{1}{|H|^n \cdot |K|^m} \sum_{x_1, \ldots, x_n \in H} |C_K([x_1, \ldots, x_n])|^m = p_1^{(n, m)}(H, K),
\]
where in the last passage still Proposition 2.5 is used. From $C_K([x_1, \ldots, x_n]) \subseteq C_G([x_1, \ldots, x_n])$, we deduce
\[
\leq \sum_{x_1, \ldots, x_n \in H} |C_G([x_1, \ldots, x_n])|^m = p_1^{(n, m)}(H, G).
\]
Applying Proposition 3.3, \(p_1^{(n,m)}(H, G) = p_1^{(n,m)}(G, H) \) and so \(p_1^{(n,m)}(G, H) \leq p_1^{(n,m)}(H, H) \) by Proposition 2.13.

Corollary 3.2. With the notations of (11), if \(Z(G) = 1 \), then \(p_2^{(n,1)}(H, K) \leq 2^{n-1} \).

Proof. It follows from Theorem 6.1 and [7, Theorem 5.3].

Another significant restriction is the following.

Theorem 3.3. With the notations of (11), let \(p \) be the smallest prime divisor of \(|G|\). Then

(i) \(p_2^{(n,m)}(H, K) \leq \frac{2^{n} + p - 2}{p^{m+1}} \),

(ii) \(p_2^{(n,m)}(H, K) \geq \frac{\{1 - p\}Y_{H}n + \{p\}H^n}{|H|^n |K|^m} - \frac{\{(K+p)C_H(K)\}^n}{|H|^n |K|^m} \);

where \(Y_{H^n} = \{[x_1, \ldots, x_n] \in H^n | \ C_K([x_1, \ldots, x_n]) = 1\} \).

Proof. If \([n_{H,m}K] = 1\), then \(C_{H^n}(K^n) = H^n \) and \(Y_{H^n} \) equals \(H^n \) or an empty set according as \(K^n \) is trivial or nontrivial. Assume that \([n_{H,m}K] \neq 1\). Then \(Y_{H^n} \cap C_{H^n}(K^n) = Y_{H^n} \cap (C_{H}(K) \times C_{H}(K) \times \ldots \times C_{H}(K)) = Y_{H^n} \cap (C_{H}(K) \times C_{H}(K) \times \ldots \times C_{H}(K)) \neq \emptyset \) and

\[
\begin{align*}
\sum_{x_1, \ldots, x_n \in H} |C_{K^n}([x_1, \ldots, x_n])| = & \sum_{x_1, \ldots, x_n \in H} |C_{K}([x_1, \ldots, x_n])|^m \\
= & \sum_{x_1, \ldots, x_n \in Y_{H^n}} |C_{K}([x_1, \ldots, x_n])|^m + \sum_{x_1, \ldots, x_n \in C_{H^n}(K)} |C_{K}([x_1, \ldots, x_n])|^m \\
& + \sum_{x_1, \ldots, x_n \in H^n - (Y_{H^n} \cup C_{H^n}(K))} |C_{K}([x_1, \ldots, x_n])|^m.
\end{align*}
\]

(3.4)

Since \(p^m \leq |C_K([x_1, \ldots, x_n])|^m \leq \frac{|K^m|}{p^m}, \ Y_{H^n} \leq |H^n| \) and \(p^n \leq |C_{H}(K)|^n \leq \frac{|H^n|}{p^n} \),

(3.5)

\[
\begin{align*}
\leq & \ Y_{H^n} + |K| |C_{H}(K)|^n + (|H^n| - (|Y_{H^n}| + |C_{H}(K)|^n)) \frac{|K^m|}{p^m} \\
& + \sum_{x_1, \ldots, x_n \in H^n - (Y_{H^n} \cup C_{H^n}(K))} |C_{K}([x_1, \ldots, x_n])|^m.
\end{align*}
\]

and then

(3.6)

\[
\begin{align*}
p_2^{(n,m)}(H, K) \leq \frac{\{1 - p\}Y_{H}n}{|H|^n |K|^m} + \frac{|K| |C_H(K)|^n}{|H|^n |K|^m} + \frac{1}{p^m} - \frac{|Y_{H^n}|}{p^m - |H^n|} - \frac{|C_{H}(K)|^n}{p^m - |H^n|} \\
& \leq \frac{1}{p^m} + \frac{1}{p^m - |H^n|} + \frac{1}{p^m} - \frac{1}{p^m - 1} = \frac{2^{n} + p - 2}{p^{m+1}}.
\end{align*}
\]

Hence (i) follows. On another hand, we may continue in the other direction

\[
\begin{align*}
& \geq |Y_{H^n}| + |K| |C_{H}(K)|^n + p (|H^n| - (|Y_{H^n}| + |C_{H}(K)|^n)) \\
& \geq |Y_{H^n}| + |K| |C_{H}(K)|^n + p \left(\frac{1 - p}{|H^n|} \right) \frac{|Y_{H^n}|}{|H^n| |K|^m} + \frac{1}{p^m} - \frac{|K| + p |C_{H}(K)|^n}{|H^n| |K|^m}.
\end{align*}
\]

Then (ii) follows.

The bound in Theorem 3.3 (i) is a little bit different from the bound in [4, Corollary 3.9], where it is proved that \(p_2^{(1,1)}(H, K) \leq \frac{2^{p-1}}{p} \) and in particular \(p_2^{(1,1)}(H, K) \leq \frac{3}{4} \). We conclude the following structural restriction.

Corollary 3.4. In Theorem 3.3, if \(p_2^{(n,m)}(H, K) = \frac{2^{p^n + p - 2}}{p^{m+1}} \), then

(3.9)

\[
|H : C_H(K)| \leq \left(\frac{p^{n+1} - p^3 - \frac{p^2}{2p} + p}{2p^2 + p - 2} \right)^\frac{1}{n}.
\]

Proof. Looking at (3.8) and the proof of Theorem 3.3 (i), we deduce

(3.10)

\[
\frac{2^{p^n + p - 2}}{p^{m+1}} \leq \frac{|Y_{H^n}|}{|H^n| |K|^m} + \frac{|K| |C_H(K)|^n}{|H^n| |K|^m} + \frac{1}{p^m} \leq \frac{1}{p^m} + \frac{1}{p^m - 1} \left(\frac{C_H(K)}{|H^n|} \right)^n + \frac{1}{p^m}
\]

\[
= \frac{1}{p^m} \left(\frac{2}{p} + \frac{|C_H(K)|}{|H^n|} \right)^n.
\]
and then $\frac{2p^n + p - 2}{p^n + 2} \leq 2 + \frac{\left| CH(K) \right|}{p}$. We conclude that $\frac{p^{n+1}}{2p^n + p - 2} \geq \frac{p}{2} + \frac{H}{\left| CH(K) \right|}$ and so

$$p^{n+1} \left(\frac{1}{2p^n + p - 2} - \frac{p}{2} \right) = \frac{p^{n+1} - p^3 - p^2 + p}{2p^n + p - 2} \geq \frac{H}{\left| CH(K) \right|} \cdot$$

The result follows, once we extract the n-th root. □

Acknowledgement

The second author is grateful to the colleagues of the Ferdowsi University of Mashhad for some helpful comments in the period in which the present work has been written.

References

[1] J. Alperin and B. Bell, Groups and Representations, Springer, 1995, New York.
[2] K. Chiti, M. R. R. Moghaddam and A. R. Salemkar, n-isoclinism classes and n-nilpotency degree of finite groups, Algebra Colloq. 12 (2005), 225–261.
[3] A. K. Das and R. K. Nath, On solutions of a class of equations in a finite group, Commun. Algebra 37 (2009), 3904–3911.
[4] A. K. Das and R. K. Nath, On the generalized relative commutative degree of a finite group, Int. Electr. J. Algebra 7 (2010), 140–151.
[5] H. Doostie and M. Maghasedi, Certain classes of groups with commutativity degree $d(G) < 1/2$, Ars Combinatoria 89 (2008), 263–270.
[6] P. Erdős and P. Turán, On some problems of statistical group theory, Acta Math. Acad. Sci. Hung. 19 (1968), 413–435.
[7] A. Erfanian, P. Lescot and R. Rezaei, On the relative commutativity degree of a subgroup of a finite group, Comm. Algebra 35 (2007), 4183–4197.
[8] A. Erfanian and R. Rezaei, On the commutativity degree of compact groups, Arch. Math. (Basel) 93 (2009), 345–356.
[9] A. Erfanian, R. Rezaei and F. G. Russo, Relative n-isoclinism classes and relative n-th nilpotency degree of finite groups, e-print, Cornell University, 2010, arXiv:0903310 [math.GR].
[10] I.V. Erovenko and B. Sury, Commutativity degree of wreath products of finite abelian groups, Bull. Austral. Math. Soc. 77 (2008), 31–36.
[11] P. X. Gallagher, The number of conjugacy classes in a finite group, Math. Z. 118 (1970), 175–179.
[12] R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, J. Algebra 300 (2006), 509–528.
[13] W. H. Gustafson, What is the probability that two groups elements commute? Amer. Math. Monthly 80 (1973), 1031–1304.
[14] I. M. Isaacs, Character Theory of Finite Groups, Dover Publ., New York, 1994.
[15] P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra 177 (1987), 847–869.
[16] M. R. Pournaki and R. Sobhani, Probability that the commutator of two group elements is equal to a given element, J. Pure Appl. Algebra 212 (2008), 727–734.
[17] R. Rezaei and F. G. Russo, n-th relative nilpotency degree and relative n-isoclinism classes, e-print, Cornell University, 2010, arXiv:1003.2297v1 [math.GR].
[18] R. Rezaei and F. G. Russo, Bounds for the relative n-th nilpotency degree in compact groups, e-print, Cornell University, 2009, arXiv:0910.4716v1 [math.GR].
[19] D. J. Rustin, What is the probability that two elements of a finite group commute?, Pacific J. Math. 82 (1979), 237–247.

Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Alqura University, P.O. Box 14035, Makkah, 21555, Saudi Arabia

E-mail address: amghamdi@uqu.edu.sa

IISSS "Axel Munthe", Viale Axel Munthe, 80074, Anacapri (Naples), Italy

E-mail address: francescog.russo@yahoo.com