Binding of NAD$^+$ and L-Threonine Induces Stepwise Structural and Flexibility Changes in Cupriavidus necator L-Threonine Dehydrogenase*§

Received for publication, December 6, 2013, and in revised form, February 11, 2014. Published, JBC Papers in Press, February 20, 2014, DOI 10.1074/jbc.M113.540773

Shogo Nakano¹§, Seiji Okazaki¹§, Hiroaki Tokiwa³§, and Yasuhsia Asano¹§¹

From the ¹Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, the ²Research Center of Smart Molecules, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan, and the ³Biotechnology Research Center of Smart Molecules, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan, and the ⁴Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan

Background: The structural changes in short chain dehydrogenase-like L-threonine dehydrogenase (SDR-like L-ThrDH) that occur during catalysis remain unknown.

Results: Several analyses revealed dynamical changes in SDR-like L-ThrDH.

Conclusion: NAD$^+$ and L-threonine binding induced changes in flexibility and structure.

Significance: This report demonstrates that the dynamical structural changes of SDR-like L-ThrDH are important for the reactivity and specificity of the enzyme.

Crystal structures of short chain dehydrogenase-like L-threonine dehydrogenase from Cupriavidus necator (CnThrDH) in the apo and holo forms were determined at 2.25 and 2.5 Å, respectively. Structural comparison between the apo and holo forms revealed that four regions of CnThrDH adopted flexible conformations when neither NAD$^+$ nor l-Thr were bound: residues 38–59, residues 77–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations performed at the 50-ns time scale revealed that three of these regions remained flexible when NAD$^+$ was bound to CnThrDH: residues 80–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations also indicated that the structure of CnThrDH changed from a closed form to an open form upon NAD$^+$ binding. The newly formed cleft in the open form may function as a conduit for substrate entry and product exit. These computational results led us to hypothesize that the CnThrDH reaction progresses by switching between the closed and open forms. Enzyme kinetics parameters of the L80G, G184A, and T186N variants also supported this prediction: the k_{cat}/K_m, l-Thr value of the variants was >330-fold lower than that of the wild type; this decrease suggested that the variants mostly adopt the open form when l-Thr is bound to the active site. These results are summarized in a schematic model of the stepwise changes in flexibility and structure that occur in CnThrDH upon binding of NAD$^+$ and l-Thr. This demonstrates that the dynamical structural changes of short chain dehydrogenase-like L-threonine dehydrogenase are important for the reactivity and specificity of the enzyme.

¹ This work was supported by a grant from the ERATO Asano Active Enzyme Molecule Project from the Japan Science and Technology Agency.

§ This article contains supplemental Movie S1.

The atomic coordinates and structure factors (codes 3MWZ and 3WMX) have been deposited in the Protein Data Bank (http://wwwpdb.org/).

¹ To whom correspondence should be addressed: Biotechnology Research Center and Dept. of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan. Tel.: 81-766-56-7500, Ext. 530; Fax: 81-766-56-2498; E-mail: asano@pu-toyama.ac.jp.

2 The abbreviations used are: l-ThrDH, L-threonine 3-dehydrogenase; CnThrDH, L-ThrDH from C. necator; GalE, UDP-galactose 4-epimerase; ADH, alcohol dehydrogenase; MD, molecular dynamics; SDR, short chain dehydrogenase/reductase; MDR, medium chain dehydrogenase/reductase; RMSD, root mean square distance; RMSF, root mean square fluctuation; 2-AKB, 2-amino-3-keto butyrate.
Dynamic Structural Changes of Bacterial SDR-like L-ThrDH

described ADH-like L-ThrDHs. More recently, Milleriou et al. (12) demonstrated that SDR-like L-ThrDH is essential for lipid biosynthesis in Trypanosoma brucei, the causative pathogen of human African trypanosomiasis. The reaction catalyzed by SDR-like L-ThrDH proceeds via an ordered Bi-Bi mechanism; NAD⁺ binds to SDR-like L-ThrDH before binding of L-Thr, and the product 2-amino-3-keto butyrate is released before NADH (11). SDR-like L-ThrDH has higher substrate specificity for L-Thr than ADH-like L-ThrDH. In fact, Ueatrongchit and Asano (13) showed that CnThrDH reacts with only two compounds, L-Thr and DL-α-amino β-hydroxyvalerate, and has no activity toward 36 other compounds, including other amino acids and their derivatives. Because of its high specificity for L-Thr, CnThrDH can be used to quantitate the L-Thr concentration in blood plasma; the plasma level of L-Thr reflects the symptom of certain diseases and can therefore be a criterion for diagnosis of these conditions (13–15). Yoneda et al. (16) were the first to determine the crystal structure of the SDR-like L-ThrDH from Flavobacterium frigidimariss KUC-1 (FfThrDH); they showed that the overall structure of FfThrDH is similar to other GaE structures. In a subsequent study, they also determined structures of L-Thr-bound SDR-like L-ThrDH from Thermoplasma volcanium (TvThrDH (Y137F)) (17) and proposed a catalytic mechanism for this enzyme.

To date, no studies have described the dynamic structural changes that these enzymes undergo during their reactions. In many other NAD⁺-dependent enzymes that contain Rossmann fold motifs, as SDR-like L-ThrDH does, structural changes occur upon binding of NAD⁺ and substrates to the enzyme. These changes play significant roles in determining the high substrate specificity of the enzymes. One such enzyme is ADH, in which a structural change is induced by binding of NAD⁺ and substrate (18). ADH may adopt both open and closed forms; a flexible loop containing residues 293–298 is involved in switching between the two forms (18, 19). This switching has also been confirmed by molecular dynamics (MD) simulation (20). In ADH, the switching is essential for the high substrate specificity of the enzyme (19). Based on these findings, it seems likely that binding of NAD⁺ and L-Thr should induce structural changes in SDR-like L-ThrDH.

To investigate the structural changes that occur in SDR-like L-ThrDH, we determined two crystal structures: CnThrDH (apo) and CnThrDH (holo). In the apo form, NAD⁺ and L-Thr did not bind to the active site, whereas in the holo form, both compounds bound to the active site. In the apo form, four regions of the protein adopted a flexible conformation. Furthermore, using the structure of NAD⁺-bound CnThrDH (CnThrDH (holo, with NAD⁺)) as a starting model, we performed MD simulations at the 50-ns time scale to predict the structural changes that occur upon NAD⁺ binding. In the final state of the simulations, CnThrDH adopted an open form. To probe the mechanism underlying this conformational change, we mutated residues predicted to be involved in switching between the open and closed forms and determined the kinetic parameters of the mutant enzymes. The results of the enzyme kinetics analyses revealed that CnThrDH performs its reaction by switching between the open and closed forms. Based on our findings, we propose a model for the stepwise dynamic structural changes induced in SDR-like L-ThrDH upon binding of NAD⁺ and L-Thr.

EXPERIMENTAL PROCEDURES

Site-directed Mutagenesis of CnThrDH Variants—To generate CnThrDH variants, the CnThrDH-pET-15b plasmid, created in a previous study (13), was used as a template. Site-directed mutagenesis was performed using a QuikChange Lightning site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA). CnThrDH variants were confirmed by sequencing.

Overexpression and Purification of CnThrDH—CnThrDH WT and variant plasmids were transformed into Escherichia coli strain BL21(DE3). Overexpression of CnThrDH WT was performed as previously described (13). Overexpressing cells were collected, suspended in buffer A (20 mM potassium phosphate, pH 7.0, 100 mM NaCl, and 10 mM imidazole), and sonicated. The insoluble fraction was removed by centrifugation (28,000 × g, 30 min), and the supernatant was collected and loaded onto a Ni²⁺-Sepharose column. The column was washed with 50 ml of buffer A, and then with 50 ml of buffer A containing 70 mM imidazole, after which CnThrDH (WT) was eluted and collected buffer A containing 300 mM imidazole. The eluted CnThrDH was concentrated and applied to a gel filtration column (Superdex 75 pg) that had been equilibrated with buffer B (10 mM potassium phosphate, pH 7.0, 50 mM NaCl). The presence of CnThrDH in eluted fractions was confirmed by SDS-PAGE, and fractions containing CnThrDH were collected and concentrated for crystallization. The same procedure was applied to purify other CnThrDH variants.

Crystalization of apo and holo Forms of CnThrDH—The CnThrDH sample was concentrated to more than 20 mg/ml by Amicon Ultra-15 Centrifugal filter devices (Millipore, Billerica, MA). Protein concentration was calculated by measuring UV-visible absorbance at 280 nm on a Nanodrop UV-visible spectrometer (Thermo Fisher Scientific, Waltham, MA). The concentrated sample was divided between two conditions: part of the sample was used directly for screening of crystallization conditions for CnThrDH (apo), and the remainder of the sample was mixed with buffer C (10 mM potassium phosphate, pH 7.0, 50 mM NaCl, 25 mM NAD⁺) at a sample:buffer ratio of 9:1 for screening of crystallization conditions for CnThrDH (holo).

Screening of crystallization conditions for CnThrDH (apo) was performed using index screening and PEG/ION screening kits (Hampton Research, Aliso Viejo, CA). A 2-μl sample was mixed with 1.0 μl of each reservoir solution from the screening kit. After a 1-month incubation at 20 °C, block-shaped CnThrDH (apo) crystals appeared in PEG/ION screen conditions 1–8 (20% (w/v) PEG3350 and 0.2 M CaCl₂). For CnThrDH (holo), a 2-μl sample was mixed with 0.4 μl of 1.0 M magnesium chloride solution and 1.0 μl or each reservoir solution from the PEG/ION screening kit. After 2 weeks, plate-like crystals appeared in PEG/ION screen conditions 1–29 (20% (w/v) PEG3350 and 0.2 M potassium acetate).

X-ray Data Collection—The CnThrDH (apo) crystal used for diffraction data collection was quickly soaked in reservoir solution containing 10% (w/v) PEG400 before the crystal was mounted. The CnThrDH (holo) crystal was soaked for a few
minutes in reservoir containing 10 mM L-Thr and 10% (w/v) PEG400. Because the crystals suffered serious damage when NAD$^+$ was present, NAD$^+$ was omitted from the soaking reservoir. The soaked crystals were mounted and flash-cooled under a nitrogen stream (−173 °C). Diffraction data were collected using a Quantum 315 CCD detector at BL-17A of the Photon Factory (Tsukuba, Japan). These data were integrated and scaled using HKL2000 and SCALEPACK (21). Initial phases were determined by molecular replacement using MOLREP (22), with the crystal structure of T. ThiirDH (Protein Data Bank code 3A4V) as a template. Model building and structure refinement with local NCS restraints were performed using COOT (23) and REFMAC (24), respectively. Water molecules were automatically placed by ARP/WARP (25). All figures were prepared using PyMOL (26). Crystallographic and refinement parameters are shown in Table 1.

Molecular Dynamics Simulation—Chains A and C and the NAD$^+$ molecule of the CnThrDH (holo) structure (CnThrDH (holo, with NAD$^+$)) were used as initial structures for the MD simulations. CnThrDH (holo, with NAD$^+$) was loaded into the Molecular Operating Environment 2011 software (27), and protonation of each amino acid residue and NAD$^+$ was performed using the Protonate3D procedure within Molecular Operating Environment (27). An $11 \times 10 \times 11$-nm3 cuboid box was prepared after completion of protonation. Protonated CnThrDH (holo, with NAD$^+$) was moved to the center of the box, and TIP3P water molecules were solvated into the box at a solvent density of 1.0 g/cm3. Energy minimization of the system was performed using the Charmm27 force field as follows: first, energy minimization was performed by constraining the backbone atoms of CnThrDH, and then the constraint was turned off. Before starting the MD simulation, the protonation states of the histidine residues of CnThrDH (holo) at pH 7.0 were re-estimated using the PROPKA web server (28). After the total charge of the system was calculated using a custom-made Python script, sodium (Na$^+$) or chloride (Cl$^-$) ions were added to the system to neutralize the total charge to zero.

All MD simulations were performed using the NAMD 2.9 software (29) with periodic boundary conditions. Electrostatic interactions over long distances were evaluated by the standard particle mesh Ewald method (30). All hydrogens were constrained, and the RATTLE algorithm (31) was employed. The simulation time step was 2 fs, and the isothermal-isobaric (NPT) ensemble was applied to the system. The temperature was set at 300 K, and a Langevin thermostat was applied to the system. Pressure was set at 1.0 bar.

Before commencing collection of trajectories from the MD simulation, we performed energy minimization for 20 ps and confirmed that total energy of the system would be constant. After completion of the minimization, 150 ps of preliminary simulation was performed while gradually raising the temperature of the system from 0 to 300 K in steps of 100 K. This simulated annealing procedure was repeated at least three times, and then productive MD simulation was performed for 50 ns. The structures were saved as trajectories every 1 ps. The trajectory analysis tool Worddom (32) was used to analyze the trajectory data.

![Figure 1](https://example.com/image1.png)

FIGURE 1. Crystal structures of CnThrDH (apo) and CnThrDH (holo) forms. A, superposed structures of the apo (green) and the holo (orange) forms. NAD$^+$ is shown as stick model (gray). These two structures are similar to each other; the RMSD between these forms was 0.44 Å2. B, structure of catalytic domain and NAD$^+$ binding domain of the CnThrDH (holo). The catalytic domain (amino acids 176–214, 245–279, and 301–313) and the NAD$^+$ binding domain (amino acids 1–175, 215–244, and 280–300) are colored gray, green, and orange, respectively. C, L-Thr binding form of the CnThrDH (holo). F$_o$–F$_c$ difference Fourier map (2.5 σ, in blue mesh) is superposed on the stick model of L-Thr. Potential hydrogen bonds (broken lines) with lengths less than 3.4 Å are shown.

Assay of Enzyme Activity toward L-Thr and NAD$^+$—The enzyme activities of WT and variant CnThrDH were measured by quantitating the amount of NADH produced as a product of the L-ThrDH reaction at various concentrations of L-Thr and NAD$^+$. Enzyme activity toward L-Thr and NAD$^+$ was measured using assay buffer 1 (0.1 M Gly-KOH-KCl, pH 10.0, 2.5 mM NAD$^+$, and 5–500 mM L-Thr) and assay buffer 2 (0.1 M Gly-KOH-KCl, pH 10.0, 0.050–0.500 mM NAD$^+$, and 100 mM L-Thr). The assay buffer and enzyme solution diluted with buffer B were prepared separately and incubated for 1 h at 30 °C. To start the reaction, 980 µl of the assay buffer was transferred to a cuvette, and then 20 µl of the enzyme solution was added. The cuvette was installed immediately into a UV-visible spectrometer (UV-1700 PharmaSpec; Shimadzu), and the time-dependent spectrum change of NADH at 340 nm was measured over 2 min. NADH concentration was calculated using the molar extinction coefficient (6300 M$^{-1}$ cm$^{-1}$) of the NADH at 340 nm. Initial velocities at different concentrations of L-Thr and NAD$^+$ were calculated using an original program written in Python. The initial velocity was plotted using the ORIGIN program, and the enzyme kinetics parameters k_{cat}, K_m, L-Thr, and K_m, NAD$^+$ were calculated using the Michaelis-Menten equation and applying the nonlinear least squares method.

RESULTS AND DISCUSSION

Crystal Structures of CnThrDH (apo) and CnThrDH (holo)—The crystal structure of the CnThrDH (apo) form was determined at 2.25 Å resolution (Fig. 1A). The space group is $P2_1_2_1_2_1$, and there are two molecules in an asymmetric unit.
Dynamic Structural Changes of Bacterial SDR-like \(\beta \)-ThrDH

There is no electron density representing NAD\(^+\) or \(\beta \)-Thr at the active site.

The crystal structure of the \(Cn\)ThrDH (holo) form, which contains NAD\(^+\) and \(\beta \)-Thr bound at the active site, was determined at 2.5 Å resolution (Fig. 1A, orange). The space group is \(P2_1_2_1_2_1 \), and there are four molecules in the asymmetric unit. The contacts between chains A and C and chains B and D represent native dimer contacts in SDR-like \(\beta \)-ThrDH. These contacts are also present in the previously determined structures of two other SDR-like \(\beta \)-ThrDHs, \(Ff \)ThrDH, and \(Tp \)ThrDH (16, 17).

Electron density was observed for amino acid residues 6–313 in chains A, B, and C, and all of these residues could be assigned to the electron density map (Fig. 1A, orange). For chain D, the electron density of the \(\text{Gly}^{182}_{\text{C}}\text{Gly}^{184}_{\text{C}} \) region was too low to assign these residues on the map.

SDR-like \(\beta \)-ThrDH can be divided into the NAD\(^+\)-binding and catalytic domains (16, 17). In the \(Cn \)ThrDH structure, the NAD\(^+\)-binding domain consists of residues 1–175, 215–244, and 280–300 (Fig. 1B, green), and the catalytic domain is formed by residues 176–214, 245–279, and 301–313 (Fig. 1B, magenta).

The overall structure of \(Cn \)ThrDH (holo) was almost the same as those of two other previously determined SDR-like \(\beta \)-ThrDHs, \(Ff \)ThrDH (Protein Data Bank code 2YY7), and \(Tp \)ThrDH (Protein Data Bank code 3A4V). The root mean square distance (RMSD) value for \(Cn \) atoms was 0.50 Å between \(Cn \)ThrDH (holo) and \(Ff \)ThrDH and 0.40 Å between \(Cn \)ThrDH (holo) and \(Tp \)ThrDH.

Active Site Structure of \(Cn \)ThrDH (holo)—In the \(Cn \)ThrDH (holo) structure, the electron density map revealed a molecule bound at the active site. This electron density can be observed more clearly for chains A and B than for chains C and D. We predicted that this electron density represents the substrate, \(\beta \)-Thr, because it corresponds to \(\beta \)-Thr in the \(Tp \)ThrDH (Y137F) variant, in which \(\beta \)-Thr forms hydrogen bonds with three residues: Ser\(^{81}\), Tyr\(^{144}\), and Thr\(^{186}\) (Fig. 1C (17)). In the data deposited in the Protein Data Bank, \(\beta \)-Thr is placed in the electron density map of chains A and B.

In the \(Cn \)ThrDH (holo) structure, all four chains have almost the same overall structure; the RMSD values for \(Cn \) atoms between each chain were less than 0.55 Å. Therefore, we assumed that all four chains have the same fold and subsequently used the chain A structure as a representative model of \(Cn \)ThrDH (holo).

Four Flexible Regions in \(Cn \)ThrDH (apo)—Comparison of the structures of the apo and the holo forms (Fig. 1) revealed that four regions were more flexible in \(Cn \)ThrDH (apo) than in \(Cn \)ThrDH (holo). Invisible and unclear electron density corresponding to residues 38–59 and 77–87 indicated that these regions were flexible in \(Cn \)ThrDH (apo) (Fig. 2, A and B). Residues 180–186 (Fig. 2A) and the catalytic domain (Fig. 1B, magenta) were also flexible in \(Cn \)ThrDH (apo) (Fig. 2), as judged from their high B-factor values. On the other hand, in the \(Cn \)ThrDH (holo) structure, these four regions were rigid: the electron density map for these four regions was clearly observed, and their B-factor values were low.

The \(R_{\text{free}} \) value of the \(Cn \)ThrDH (apo) structure (0.264 in Table 1) was higher than that of the \(Cn \)ThrDH (holo) structure (0.240 in Table 1), in contrast to their relative resolutions. In the apo structure, there were many disordered residues that were not assigned into the electron density map, and this might have made the \(R_{\text{free}} \) value of the apo structure higher that of the holo structure. In fact, in the asymmetric unit, the rates of disordered residues in the protein molecule were 17.9% (apo) and 9.0% (holo), respectively. Similar phenomena have been observed in other enzymes (33, 34). To summarize the results, the following four regions were flexible in the \(Cn \)ThrDH (apo) form: residues 38–59, residues 77–87, residues 180–186, and the catalytic domain.

Molecular Dynamics Simulation of \(Cn \)ThrDH (holo, with NAD\(^+\))—The comparison between the apo and holo forms suggested that changes in flexibility and structure occurred upon binding of NAD\(^+\) and \(\beta \)-Thr. Despite much effort, we could not obtain a crystal structure of \(Cn \)ThrDH with only NAD\(^+\) bound at the active site. Therefore, we performed MD simulations to analyze the flexibility of NAD\(^+\)-bound \(Cn \)ThrDH.

First, we analyzed the time-dependent change of RMSD values for \(Cn \) atoms (Fig. 3A). RMSD values increased during the first 20 ns of the simulation to a maximum of 2.8 Å; subsequently, the values equilibrated ~2.0 Å (Fig. 3A). Radius of gyration values for \(Cn \) atoms followed the same general pattern as the RMSD values (Fig. 3B), increasing to a maximum of 20.2 Å and then equilibrating ~19.7 Å. These results indicate that the simulation reached equilibrium.

To evaluate backbone flexibility during the simulations, we calculated the root mean square fluctuation (RMSF) values for all \(Cn \) atoms (Fig. 3C). High RMSF values indicate residues that fluctuate dynamically during the simulation. The average RMSF value for all residues was 1.66 Å. High RMSF values (more than 3.0 Å) were confirmed for residues 80–87, 180–186, and 267–273 (Fig. 3C), strongly indicating that these three regions adopted flexible forms in the simulation.

Residues 38–59 and 77–79 regions were flexible in the \(Cn \)ThrDH (apo) form (Fig. 2); however, their RMSF values were almost the same as the average RMSF value: 1.63 and 1.58 Å for residues 38–59 and 77–79, respectively. This observation suggested that these regions adopt rigid forms when NAD\(^+\) binds to \(Cn \)ThrDH. These details are discussed in the next section.
The catalytic domain adopted a more flexible form than the NAD\(^+\)-binding domain. RMSF values for a part of the catalytic domain, residues 267–273, were high, as were those for residues 80–87 and 180–186. Furthermore, the average RMSF value for the catalytic domain (2.22 Å; Fig. 3C, red bars) was ~1.5 times higher than that of the NAD\(^+\)-binding domain (1.44 Å; Fig. 3C, black bars). Summarizing these results, the following regions were assigned as flexible regions in CnThrDH (holo, with NAD\(^+\)): residues 80–87, residues 180–186, and the catalytic domain.

Structural Changes of CnThrDH (holo, with NAD\(^+\)) Associated with an Increase in Simulation Time—We next analyzed time-dependent structural changes in the CnThrDH (holo, with NAD\(^+\)) trajectories generated by the simulation. From comparisons between the simulation’s initial (0 ns) and final (50 ns) structure, we confirmed that structural changes occurred in residues 80–87 and 180–186, and especially in residues 180–186 and 267–273 (Fig. 4A). During the simulation, these regions moved in the direction indicated by an arrow in Fig. 4A. Surface representations of the initial and final structures are shown in Fig. 4 (B and C), respectively.

In the initial structure, three regions, the regions containing residues 80–87, 180–186, and 267–273, formed stable hydrophobic interactions with each other (Fig. 4B, orange). As a result, there was no cleft through which \(\text{L-Thr}\) could enter the active site, and the initial structure had a “closed” form. By contrast, in the final structure, these hydrophobic interactions had disappeared (Fig. 4C, orange), resulting in formation of a cleft connected to the active site. Thus, the final state had an “open” form. The open form is the predominant structure in the simulation (supplemental Movie S1). Therefore, CnThrDH (holo, with NAD\(^+\)) should mostly adopt the open form in solution. The cleft in the open form (Fig. 4C) should serve as a conduit for entry of the substrate (e.g. \(\text{L-Thr}\)) and for exit of the product (e.g. 2-amino-3-keto butyrate). No previous report has described such a conduit within an SDR-like \(\text{L-Thr}\)-DH in complex with NAD\(^+\); to date, all reported structures (16, 17) are of closed forms, in which no such conduit is present.

In residues 38–59, which was flexible in CnThrDH (apo), the simulation revealed structural change smaller than those of the three flexible regions described above. This observation suggested that residues 38–59 form a rigid conformation in CnThrDH (holo, with NAD\(^+\)) via interactions between this region and NAD\(^+\): in particular, the carbonyl group of Asp\(^{38}\) and the carboxamide group of Asn\(^{34}\) would form hydrogen bonds with NAD\(^+\).

To summarize the structural changes revealed in the simulation, CnThrDH is predicted to mainly adopt the open form when only NAD\(^+\) is bound at the active site. Once NAD\(^+\) is bound, binding of \(\text{L-Thr}\) or an inhibitor such as pyruvate to the active site would favor the closed form. The closed form could be initiated by binding these compounds and could therefore be regarded as a Michaelis complex structure within SDR-like \(\text{L-Thr}\)-DH. This idea is consistent with the results of Yoneda et al. (17), who observed that NAD\(^+\) and \(\text{L-Thr}\)-bound \(T_v\)ThrDH (Y137F) also adopted a closed form and predicted that the reaction progresses via this form. A movie depicting the structural changes of CnThrDH (holo, with NAD\(^+\)) from the closed to open form is provided as supplemental Movie S1.

Enzyme Kinetics Studies of CnThrDH Variants, L80G, G184A, and T186N—From the results of the crystal structures and the MD simulations, residues 80–87 and 180–186 are key positions for switching between the open and closed forms of CnThrDH. Therefore, we predicted that site-directed mutations in the regions should affect switching and thereby influence enzymatic activity toward the substrate, \(\text{L-Thr}\). We could obtain three variants in soluble forms: L80G, G184A and T186N. The locations of the mutation sites are shown in Fig. 5A. In SDR-like \(\text{L-Thr}\)-DH, the hydroxyl group of Thr\(^{186}\) forms a hydrogen bond with the amino group of \(\text{L-Thr}\) (Fig. 1C and Ref. 17) but is distant from the site of the reaction, i.e. the \(\beta\)-carbon and \(\beta\)-hydroxy hydrogen atoms of \(\text{L-Thr}\). Therefore, it would be difficult for the T186N variant to form a Michaelis complex (closed form) because of the steric repulsion resulting from the mutation, but it should retain activity because the T186N mutation does not affect the dehydrogenation reaction directly. Overall, this should lead to a decrease of \(K_m/\text{cat}\) for \(\text{L-Thr}\) value: the \(K_m\) value toward \(\text{L-Thr}\) \(\left(K_m/\text{cat}\right)\) should be increased, but \(K_{\text{cat}}\) should not be zero.
The enzyme kinetics of WT and variant enzymes toward l-Thr are plotted in Fig. 5 (B and C), and the kinetics parameters are shown in Table 2. The initial velocities of the variants (L80G, G184A, and T186N) did not reach maximum value (Fig. 5C) because of their significantly larger K_m, l-Thr values and the solubility limit of the substrate, l-Thr. Consequently, the k_{cat} and K_m, l-Thr values for the variants could not be determined accurately. Therefore, these parameters are annotated as “not determined” (ND in Table 2), and the k_{cat}/K_m, l-Thr value is instead estimated (Table 2).

As predicted in the previous paragraph, the T186N variant had retained low activity: the k_{cat}/K_m, l-Thr value of the T186N variant was \sim330-fold lower than that of WT (Fig. 5C and Table 2). In addition, the k_{cat}/K_m, l-Thr value of L80G was \sim10-fold lower than those of the G184A and T186N variants (Table 2). From the kinetics plot (Fig. 5C), this reduction seemed to result not only from the larger K_m, l-Thr value but also from the lower k_{cat} value relative to the other variants. Because the side chain of Leu80 is one the residues forming the active site (Fig. 5A), the mutation of Leu80 to Gly may create a space and affect the motion of l-Thr, NAD$^+$, and active site residues such as Tyr144 during the reaction. Such motion changes may affect the distances between the C4 atom of the pyridine ring of NAD$^+$ and the β-carbon hydroxyl group of l-Thr and between the oxygen atom of Tyr144 and the β-hydroxyl hydrogen atom of l-Thr. This would shift the p_K_a values of the molecules and possibly alter the efficiency of hydride transfer, ultimately decreasing k_{cat}. In ADH, shifting the p_K_a of alcoxide and NAD$^+$ by mutating hydrophobic residues near NAD$^+$ decreases the k_{cat} value (35).

Like G184A and T186N, L80G also seemed to have difficulty in adopting the closed form: its k_{cat}/K_m, l-Thr value was 3300-fold lower than that of WT (Fig. 5C and Table 2). In addition, the k_{cat}/K_m, l-Thr value of L80G was \sim10-fold lower than those of the G184A and T186N variants (Table 2). From the kinetics plot (Fig. 5C), this reduction seemed to result not only from the larger K_m, l-Thr value but also from the lower k_{cat} value relative to the other variants. Because the side chain of Leu80 is one the residues forming the active site (Fig. 5A), the mutation of Leu80 to Gly may create a space and affect the motion of l-Thr, NAD$^+$, and active site residues such as Tyr144 during the reaction. Such motion changes may affect the distances between the C4 atom of the pyridine ring of NAD$^+$ and the β-carbon hydroxyl group of l-Thr and between the oxygen atom of Tyr144 and the β-hydroxyl hydrogen atom of l-Thr. This would shift the p_K_a values of the molecules and possibly alter the efficiency of hydride transfer, ultimately decreasing k_{cat}. In ADH, shifting the p_K_a of alcoxide and NAD$^+$ by mutating hydrophobic residues near NAD$^+$ decreases the k_{cat} value (35).

Like G184A and T186N, L80G also seemed to have difficulty in adopting the closed form: its k_{cat}/K_m, l-Thr value was 3300-fold lower than that of WT (Fig. 5C and Table 2). In addition, the k_{cat}/K_m, l-Thr value of L80G was \sim10-fold lower than those of the G184A and T186N variants (Table 2). From the kinetics plot (Fig. 5C), this reduction seemed to result not only from the larger K_m, l-Thr value but also from the lower k_{cat} value relative to the other variants. Because the side chain of Leu80 is one the residues forming the active site (Fig. 5A), the mutation of Leu80 to Gly may create a space and affect the motion of l-Thr, NAD$^+$, and active site residues such as Tyr144 during the reaction. Such motion changes may affect the distances between the C4 atom of the pyridine ring of NAD$^+$ and the β-carbon hydroxyl group of l-Thr and between the oxygen atom of Tyr144 and the β-hydroxyl hydrogen atom of l-Thr. This would shift the p_K_a values of the molecules and possibly alter the efficiency of hydride transfer, ultimately decreasing k_{cat}. In ADH, shifting the p_K_a of alcoxide and NAD$^+$ by mutating hydrophobic residues near NAD$^+$ decreases the k_{cat} value (35).

The mutated residues in the variants are distant from the NAD$^+$ binding site (Fig. 5A). Therefore, we predicted that the mutations do not affect NAD$^+$ binding. To confirm this, we
measured the K_m values toward NADH (Fig. 6). These interactions, confirmed in the l-Thr- and NADH-bound structure (Fig. 1C and Ref. 17), would be altered by production of 2-AKB and NADH because of the changes in the steric and electronic interactions among the components of the ternary complex (protein molecule, 2-AKB, and NADH). Furthermore, these changes would promote adoption of the open form by SDR-like l-ThrDH. At least two factors are predicted to provide this driving force, as follows: (i) the hybrid orbital of l-Thr at the C9 atom changes from sp3 (l-Thr) to sp2 (2-AKB) as a result of the reaction, and this should induce a molecular geometry change, e.g., C9–C1 bond rotation and a change in the C9–C10–C1 bond angle; this may alter the interactions confirmed in Fig. 1C and Ref. 17; and (ii) electronic interactions among the components of the ternary complex may be altered by conversion of the positively charged cofactor NAD+ into the uncharged cofactor NADH. More experimental data are required to reveal the cause of the driving force. Subsequently, NADH is emitted into the solvent, and the reaction cycle returns to the initial state (Fig. 6A). The existence of an NADH-bound state (Fig. 6D) was predicted from the binding order of SDR-like l-ThrDH and the flexibility of CnThrDH (holo, with NAD+) (Table 3).

We are aware of no previous study that analyzed the structural changes of SDR-like l-ThrDH. Additional experimental studies could provide data that might support our model of these structural changes (Fig. 6). Several spectrometric methods, such as hydrogen-deuterium exchange and fluorescence...
methods (36), are helpful in understanding structural changes at various time scales (from μs to s) that are difficult to analyze by MD simulation. As for other members of the extended SDR superfamily, both crystallography and computer simulation studies (37–39) have suggested that GalE undergoes structural changes during its reaction. Specifically, x-ray crystal structures indicated that the catalytic domain of GalE is flexible, just as that of SDR-like L-ThrDH is, when substrate is not bound to the active site (39). Furthermore, using MD simulation, Friedman et al. (38) showed that induced fit and structural changes of the catalytic domain are likely to play a role in the binding of substrates to the active site of GalE. On the other hand, switching between open and closed forms was not mentioned in these studies. In addition to SDR-like L-ThrDH, other members of the extended SDR family may perform enzymatic reactions by switching between forms.

Based on the results of this study, we propose that the high specificity and reactivity of SDR-like L-ThrDH are controlled by the flexibility and structural changes induced by binding of both NAD$^+$ and L-Thr (Fig. 6). Thus, catalysis by SDR-like L-ThrDH is accompanied by dynamical structural change. We believe that such changes are general to other SDR-like

![FIGURE 5. Changes in enzymatic activity resulting from mutations in Leu80, Gly184, and Thr186 of CnThrDH. A, locations of the mutated sites (orange). Thr186 forms a hydrogen bond with L-Thr, the substrate, but there is no hydrogen bonding between L-Thr and Leu80 or Gly184. B and C, catalytic activity of wild type (\(\mathcal{R}\)) and three variants (L80G, G184A, and T186N) (\(\mathcal{C}\)) toward L-Thr. The data are shown as means \pm S.D.]

TABLE 2

Enzymatic properties of CnThrDH WT and variants

Variants	\(k_{cat}\)	\(K_m\), L-Thr	\(K_m\), NAD$^+$	\(k_{cat}/K_m\), L-Thr
WT	50.0 ± 3.7	15.2 ± 2.6	0.120 ± 0.020	3.3
L80G	NDd	ND	0.115 ± 0.003	0.001
G184A	NDd	ND	0.156 ± 0.012	0.01
T186N	NDd	ND	0.097 ± 0.004	0.01

a Locations of mutated sites in the three-dimensional structure are shown in Fig. 5A. Recombinant enzymes were purified as described under “Experimental Procedures.”

b \(k_{cat}\) values of the variants and WT were derived from the data shown in Fig. 5 (B and C).

c \(K_m\), L-Thr and \(K_m\), NAD$^+$ values represent the Michaelis constant value toward L-Thr and NAD$^+$, respectively.

d ND, not determined.
L-ThrDH enzymes. If these changes could be controlled by site-directed mutations, it is possible that mutated SDR-like L-ThrDH could acquire reactivity toward novel substrates.

Acknowledgments—The x-ray data were collected at the synchrotron facilities of the Photon Factory using Beamline BL-17A (proposal 2012U005). We are grateful to the beamline staff and to Dr. Yusuke Yamada for assistance with the experiments at Photon Factory. We also thank to Dr. Suyoung Re of RIKEN for helpful discussion about the manuscript.

REFERENCES

1. Epperly, B. R., and Dekker, E. E. (1991) L-Threonine dehydrogenase from Escherichia coli. Identification of an active site cysteine residue and metal ion studies. J. Biol. Chem. 266, 6086–6092
2. Misono, H., Shinagawa, Y., Nagata, S., and Nagasaki, S. (1987) Occurrence of D-threonine dehydrogenase in Pseudomonas putida. Agric. Biol. Chem. 51, 1467–1469
3. Bowyer, A., Mikolajek, H., Stuart, J. W., Wood, S. P., Jamil, F., Rashid, N., Akhtar, M., and Cooper, J. B. (2009) Structure and function of the L-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Struct. Biol. 168, 294–304
4. Kavanagh, K. L., Jörnvall, H., Persson, B., and Oppermann, U. (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci. 65, 3895–3906
5. Persson, B., Hedlund, J., and Jörnvall, H. (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the MDR superfamily. Cell. Mol. Life Sci. 65, 3879–3894
6. Nordling, E., Jörnvall, H., and Persson, B. (2008) Medium- and short-chain dehydrogenase/reductase genes and proteins (MDR). Family characterizations including genome comparisons and active site modeling. Eur. J. Biochem. 269, 4267–4276
7. Higashi, N., Fukada, H., and Ishikawa, K. (2005) Kinetic study of thermostable L-threonine dehydrogenase from an archaeon Pyrococcus horikoshii. J. Biosci. Bioeng. 99, 175–180
8. Shimizu, Y., Sakuraba, H., Kawakami, R., Goda, S., Kawarabayasi, Y., and Ohshima, T. (2005) L-Threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus horikoshii: gene cloning and enzymatic characterization. Extremophiles 9, 317–324
9. Ishikawa, K., Higashi, N., Nakamura, T., Matsuura, T., and Nakagawa, A. (2007) The first crystal structure of L-threonine dehydrogenase. J. Mol. Biol. 366, 857–867
10. Bashir, Q., Rashid, N., Jamil, F., Imanaka, T., and Akhtar, M. (2009) Highly thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Biochem. 146, 95–102
11. Kazuoka, T., Takigawa, S., Arakawa, N., Hizukuri, Y., Muraoka, I., Oikawa, T., and Soda, K. (2003) Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1. J. Bacteri

FIGURE 6. Schematic model of structural changes induced by binding of NAD$^+$ and L-Thr. In the A, B, and D states, CnThrDH adopts an open form, whereas in the C state, CnThrDH adopts the closed form. The flexibility changes that occur in each domain upon binding of NAD$^+$ and L-Thr are summarized in Table 3.

TABLE 3

Corresponding to	No binding of NAD$^+$ and L-Thr	Binding of NAD$^+$ alone	Binding of NAD$^+$ and L-Thr
Residues 38–59	CnThrDH (apo)	CnThrDH (holo, with NAD$^+$)	CnThrDH (holo)
Residues 77–87	Flexible	Rigid	Rigid
Residues 180–186	Flexible	Flexible	Flexible
Catalytic domain	Flexible	Rigid	Rigid
Dynamic Structural Changes of Bacterial SDR-like L-ThrDH			
Dynamic Structural Changes of Bacterial SDR-like L-ThrDH

12. Millerioux, Y., Ehikeme, C., Biran, M., Morand, P., Bouyssou, G., Vincent, I. M., Mazet, M., Riviere, L., Franconi, J. M., Burchmore, R. J., Moreau, P., Barrett, M. P., and Bringaud, F. (2013) The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Mol. Microbiol. 90, 114–129

13. Ueatrongchit, T., and Asano, Y. (2011) Highly selective L-threonine 3-dehydrogenation from Cupriavidus necator and its use in determination of L-threonine. Biochem. Biophys. Acta 1568, 111–117

14. Kamiya, Y., Horikoshi, T., Takagi, H., Okada, S., Hashimoto, K., Kido, C., Takehara, K., Nagamine, T., Sekiguchi, T., and Mori, M. (1995) Type II citrullinemia associated with neutropenia. Intern. Med. 34, 679–682

15. Ebara, S., Toyoshima, S., Matsumura, T., Adachi, S., Takenaka, S., Yamaji, R., Watanabe, F., Miyatake, K., Inui, H., and Nakano, Y. (2001) Cobalamin deficiency results in severe metabolic disorder of serine and threonine in rats. Biochim. Biophys. Acta 152, 13951–13959

16. Millerioux, Y., Ebikeme, C., Biran, M., Morand, P., Bouyssou, G., Vincent, I. M., Mazet, M., Riviere, L., Franconi, J. M., Burchmore, R. J., Moreau, P., Barrett, M. P., and Bringaud, F. (2013) The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Mol. Microbiol. 90, 114–129

17. Yoneda, K., Sakuraba, H., Araki, T., and Ohshima, T. (2012) Crystal structure of the binary and ternary complexes of archaeal UDP-galactose 4-epimerase from the hyperthermophilic archaeon Pyrobaculum calidifontis. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255

18. Ebara, S., Toyoshima, S., Matsumura, T., Adachi, S., Takenaka, S., Yamaji, R., Watanabe, F., Miyatake, K., Inui, H., and Nakano, Y. (2001) Cobalamin deficiency results in severe metabolic disorder of serine and threonine in rats. Biochim. Biophys. Acta 152, 13951–13959

19. Ramaswamy, S., Park, D. H., and Plapp, B. V. (1999) Substitutions in a developmental change and unmask hydrogen transfer.