Noncontiguous finished genome sequence and description of Paenibacillus antibioticophila sp. nov. GD11T, the type strain of Paenibacillus antibioticophila

G. Dubourg1,2, T. Cimmino1, S. a. Senkar1, J.-C. Lagier1,2, C. Robert1, C. Flaudrops1, P. Brouqui3, D. Raoult1,2,4, P.-E. Fournier1,2 and J.-M. Rolain1,2

1) Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Aix-Marseille Université, 2) Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie–Hygiène–Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 3) Service des Maladies Infectieuses et Tropicales, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, France and 4) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia

Abstract

Paenibacillus antibioticophila strain GD11T sp. nov. is the type strain of a new species within the genus Paenibacillus. This strain, whose genome is described here, was isolated from human faeces of a 63-year-old woman with multidrug-resistant tuberculosis who was receiving numerous antibiotics at the time of stool collection. Paenibacillus antibioticophila is a Gram-positive aerobic bacterium. We describe here the features of this bacterium, together with the complete genome sequence and annotation. The 5 562 631 bp long genome contains 5084 protein-coding and 71 RNA genes. New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.

Keywords: Culturomics, genome, Paenibacillus antibioticophila, taxonogenomics

Original Submission: 23 July 2015; Revised Submission: 7 October 2015; Accepted: 7 October 2015; Article published online: 18 October 2015

Organism information

Classification and features

A stool sample was collected from a 63-year-old woman with a pulmonary form of multidrug-resistant tuberculosis [2]. The study was approved by the ethics committee of the Institut Fédératif de Recherche IFR48, Faculty of Medicine, Marseille.
France, under agreement 09-002. The faecal specimen was preserved at ~80°C after collection. Strain GD11^T (Table 1) was isolated in March 2012 by cultivation on 5% sheep’s blood agar in aerobic conditions at 37°C after a 21-day preincubation in a blood culture bottle with sterile cow rumen fluid and sheep’s blood.

Strain GD11^T exhibited a 97.6% 16S rRNA sequence identity with P. puldeungensis (GenBank accession no. NR117451), the phylogenetically closest bacterial species with standing in nomenclature (Fig. 1). Its 16S rRNA sequence was deposited in GenBank under accession number KC158472. This value was lower than the 98.7% 16S rRNA gene sequence threshold recommended by Stackebrandt and Ebers [4] to delineate a new species without carrying out DNA-DNA hybridization.

Growth at different temperatures (25, 30, 37, 45 and 56°C) was tested; no growth was observed at 45°C or 56°C. Growth occurred between 25°C and 37°C, after 24 to 48 hours of incubation. Colonies were 0.5 μm in diameter on blood-enriched Columbia agar. Growth of the strain was tested in 5% sheep’s blood-enriched Columbia agar (bioMérieux, Marcy l’Etoile, France) under anaerobic and microaerophilic conditions using the GENbag anaer and GENbag microaer systems, respectively (bioMérieux), and under aerobic conditions using the GENbag anaer and GENbag microaer systems, respectively (bioMérieux), and under aerobic conditions, with or without 5% CO2. Growth was achieved only both aerobically and anaerobically. Gram staining showed Gram-positive bacilli (Fig. 2). A motility test was positive. Cells grown on agar were soft and translucent after 24 hours and had a mean width of 0.49 μm and mean length of 2.67 μm (Fig. 3).

Strain GD11^T exhibits neither catalase nor oxidase activity. Using an API ZYM strip (bioMérieux), positive reactions were observed for esterase (C4), esterase lipase (C8), naphthol-AS-BI-phosphohydrolase, β-galactosidase, α-galactosidase and α-glucosidase. Using rapid ID32A, positive reactions were observed for α-glucosidase, α-arabinosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, nitrate reduction, glutamic acid decarboxylase, fermentation of mannose and raffinose.

Using an API 50 CH strip (bioMérieux), positive reactions were recorded for esculin hydrolysis and fermentation of L-arabinose, D-ribose, D-xyllose, methyl-β-D-xlylopyranoside, D-galactose, D-glucose, D-fructose, D-mannose, L-rhamnose, D-mannitol, N-acetyl-D-glucomamine, amygdalin, arbutin, salicin, D-cellobiose, D-maltose, L-lactose, D-melibiose, D-saccharose, D-trehalose, inulin, D-melezitose, D-raffinose, starch, glycogen and D-lyxose.

Using an API ZYM strip (bioMérieux), negative reactions were observed for acid phosphatase, alkaline phosphatase, leucine arylamidase, valine arylamidase, cystine arylamidase, lipase (C14), trypsin, α-chymotrypsin, β-glucosidase, α-mannosidase, and α-fucosidase. Using rapid API 32A, negative reactions were observed for arginine dihydrolase, urease, production of indole, leucine arylamidase, histidine arylamidase, phenylalanine arylamidase, tyrosin arylamidase, alanine arylamidase α-mannosidase, β-glucosidase, α-fucosidase. An API 50 CH strip (bioMérieux), negative reactions were recorded for fermentation of erythritol, D-arabinose, L-xyllose, D-adonitol, L-sorbose, dulcitol, inositol, D-sorbitol, xylitol, D-turanose, D-tagatose, D-fucose, L-fucose, L-arabitol, L-arabinol, potassium gluconate, potassium 2-ketogluconate, potassium 5-ketogluconate and potassium-5-ketogluconate.

Cells are susceptible to penicillin G, amoxicillin, amoxicillin–clavulanic acid, ceftriaxone, imipenem, vancomycin, rifampicin, erythromycin, gentamicin, ciprofloxacin and trimethoprim–sulfamethoxazole, but resistant to metronidazole.

By comparison with P. puldeungensis strain CAU 9324^T, its phylogenetically closest neighbor, P. antibioticophila differed in alkaline phosphates, acid phosphatase, oxidase and β-glucosidase (Table 2).

Extended features descriptions

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) protein analysis was carried out as previously described [48]. Briefly, using a pipette tip, one isolated bacterial colony from a culture on agar plate was transferred and spread as a thin film on a MSP 96 MALDI-TOF target plate (Bruker Daltonics, Leipzig, Germany). Twelve distinct deposits from 20 isolated colonies were performed for strain GD11^T. Each smear was overlaid with 2 μL of matrix solution (saturated solution of alpha-cyano-4-hydroxycinnamic acid) in 50% acetonitrile, 2.5% trifluoroacetic acid, and dried for 5 minutes. Microflex spectrometer (Bruker) was used for measurements, and spectra were then recorded in the positive linear mode for the mass range of 2000 to 20 000 Da (parameter settings: ion source 1 (IS1), 20 kV; IS2, 18.5 kV; lens, 7 kV). A spectrum was obtained after 240 shots with variable laser power. The 20 GD11^T spectra were imported into MALDI BioTyper 3.0 software (Bruker) and analysed by standard pattern matching (with default parameter settings) against the main spectra of 7379 bacteria, including 129 spectra from 70 Paenibacillus species. The method of identification included the m/z from 3000 to 15 000 Da. A maximum of 100 peaks were compared with spectra in the database for every spectrum. The resulting score enabled the identification of tested species (or not): a score of ≥2 with a validly published species enabled identification at the species level; a score of ≥1.7 but <2 enabled identification at the genus level; and a score of <1.7 did not enable any identification. No significant MALDI-TOF score was obtained for strain GD11^T against the Bruker.
The spectral differences with other members of the genus *Paenibacillus* strain GD11T according to MIGS recommendations [48].

MIGS ID	Property	Term	Evidence codea
	Current classification	Domain: Bacteria	TAS [43]
		Phylum: Firmicutes	TAS [44]
		Class: Bacillus	TAS [45]
		Order: Boiledales	TAS [46]
		Family: Paenibacillaceae	TAS [47]
		Genus: Paenibacillus	TAS [37]
		Species: *Paenibacillus*	IDA
		antibioticophila	IDA
		Type strain: GD11T	IDA
MIGS-6.3	Gram stain	Positive	IDA
MIGS-22	Cell shape	Bacilli	IDA
MIGS-6	Motility	Mobile	IDA
MIGS-15	Sporulation	Nonsporulating	IDA
MIGS-14	Temperature range	Mesophile	IDA
	Optimum temperature	37°C	IDA
	Salinity	Unknown	IDA
MIGS-4	Oxygen requirement	Aerobic	IDA
MIGS-5	Carbon source	Unknown	IDA
	Energy source	Unknown	IDA
MIGS-6	Habitat	Human gut	IDA
MIGS-15	Biotic relationship	Free-living	IDA
MIGS-14	Pathogenicity	Unknown	IDA
	Biosafety level	2	IDA
MIGS-4	Isolation	Human feces	IDA
MIGS-5	Geographic location	Marseille, France	IDA
MIGS-4.1	Sample collection time	March 2012	IDA
MIGS-4.1	Latitude	43.296482	IDA
MIGS-4.1	Longitude	5.36978	IDA
MIGS-4.3	Depth	Surface	IDA
MIGS-4.4	Altitude	0 m above sea level	IDA

aMIGS, minimum information about a genome sequence.

These evidence codes are as follows: IDA, inferred from direct assay; TAS, traceable author statement (i.e., a direct report exists in the literature); NAS, nontraceable author statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species or ancestral evidence). These evidence codes are from the Gene Ontology project (http://www.geneontology.org/GO.evidence.shtml) [47]. If the evidence code is IDA, then the property should have been directly observed, for the purpose of this specific publication, for a live isolate by one of the authors, or by an expert or reputable institution mentioned in the acknowledgments.

Table 1. Classification and general features of *Paenibacillus antibioticophila* strain GD11T according to MIGS recommendations [48].

Genome sequencing information

Genome project history

As part of a culturomics study isolating all bacterial species from the human digestive flora from patients with multidrug-resistant tuberculosis and treated with broad-spectrum antibiotics, this organism was isolated and selected for sequencing on the basis of its phenotypic differences, phylogenetic position and 16S rRNA sequence similarity to other members of the genus *Paenibacillus*. It is the first sequenced genome of *P. antibioticophila* sp. nov. The GenBank Bioproject number is PRJEB1962 and consists of 131 large contigs in nine scaffolds. Table 3 shows the project information and its association with minimum information about a genome sequence (MIGS) 2.0 compliance [49].

Growth conditions and DNA isolation

Paenibacillus antibioticophila strain GD11T (DSM 28228 = CSUR P1358) was cultured aerobically on Columbia agar (bioMérieux). A total of 200 μL of bacterial suspension was diluted in 1 mL Tris-EDTA (TE) buffer for lysis treatment. After a lysisome incubation of 30 minutes at 37°C, the lysis was performed with laurylsarcosylb 1% final and RNaseA treatment at 50 μg/μL final concentration during 1 hour at 37°C, followed by an overnight proteinase K incubation at 37°C. The DNA was purified three times by phenol–chloroform extractions, and ethanol precipitation was performed at −20°C overnight. After centrifugation, the DNA was resuspended in 150 μL TE buffer. The concentration was measured by the Quant-it Picogreen kit (Invitrogen; Life Technologies, Carlsbad, CA, USA) on the Genios_Tecan fluorometer at 48 ng/μL.

Genomic DNA of *Paenibacillus antibioticophila* strain GD11T was sequenced on 454_Roche_Titanium (Roche, Basel, Switzerland).

A paired end library was pyrosequenced on the 454_Roche_Titanium. This project was loaded twice on a 1/4 region for the 5 kb insert libraries on PTP PicoTiterPlates. The library was constructed with 2.5 μg of DNA according to the 454_Roche_Titanium paired end protocol and manufacturer. It was mechanically fragmented on the Covaris device (KBioScience—LGC Genomics, Teddington, UK) through miniTUBE-Red 5 kb. The DNA fragmentation was visualized through the Agilent 2100 BioAnalyzer on a DNA labchip 7500, with an optimal size of 4.7 kb. The library was constructed according to the 454_Roche_Titanium paired end protocol and manufacturer. Circularization and nebulization were performed and generated a pattern with optimal at 490 bp. After PCR amplification through 17 cycles followed by double size selection, the library was then quantified on the Quant-it Ribogreen kit (Invitrogen) on the Genios_Tecan fluorometer at 759 pg/μL. The library concentration equivalence was calculated as 2.84 × 10⁹ molecules/μL. The library was stocked at −20°C until use.

The 5 kb paired end library was cloned amplified with 0.25 and 0.5 cpb in 4 emPCR reactions per condition, with the GS Titanium SV emPCR Kit (Lib-L) v2. The yield of the emPCR was 5.21% and 5.69%, respectively, according to the quality expected by the range of 5 to 20% from the Roche procedure.

Twice, 790 000 beads were loaded on the GS Titanium PicoTiterPlates PTP Kit 70 × 75 and sequenced with the GS Titanium Sequencing Kit XLR70.
The runs were performed overnight and then analysed through the gsRunBrowser and Newbler assembler _Roche_. The global 411,382 passed filter sequences generated 150.40 Mb with a length average of 354 bp. These sequences were assembled on the gsAssembler from Roche with 90% identity and 40 bp as overlap. It led to nine scaffolds and 131 large contigs (>1500 bp), generating a genome size of 5.6 Mb, which corresponds to a coverage of 19.96 genome equivalent.

Genome annotation
Open reading frames (ORFs) were predicted using Prodigal [50] with default parameters, but the predicted ORFs were excluded if they were spanning a sequencing gap region. The predicted bacterial protein sequences were searched against the GenBank database [51] and the Clusters of Orthologous Groups (COGs) database using BLASTP. The tRNAscanSE tool [52] was used to find tRNA genes, whereas ribosomal RNAs were found by using
RNAmmer [53] and BLASTn against the GenBank database. Lipoprotein signal peptides and the number of transmembrane helices were predicted using SignalP [54] and TMHMM [55], respectively. ORFans were identified if their BLASTP E value was lower than 1e-03 for alignment length greater than 80 aa. If alignment lengths were smaller than 80 aa, we used an E value of 1e-05. Such parameter thresholds have already been used in previous works to define ORFans. Here, we compared the genome sequence of *P. antibioticophila* strain GD11T with those of *Paenibacillus barengoltzii* strain G22 (GenBank accession no. ASSZ00000000.1), *Paenibacillus massiliensis* strain 2301065\(^T\) (GenBank accession no. ARIL00000000.1), *Paenibacillus panacisoli* strain DSM 21345 (GenBank accession no. AUFO00000000.1), *Paenibacillus polymyxa* strain ATCC 842\(^T\) (GenBank accession no. AFOX00000000.1), *Paenibacillus sanguinis* strain 2301083\(^T\) (GenBank accession no. ARGO00000000.1), *Paenibacillus senegalensis* strain JC66\(^T\) (GenBank accession no. CAES00000000.1), *Paenibacillus terrae* strain HPL-003 (GenBank accession no. CP003107.1) and *Paenibacillus xanthoxyl* strain JH29\(^T\) (GenBank accession no. ASSD00000000.1), which were identified using the Proteinortho software (version 1.4) [56] using a 30% protein identity and 1e-05 E value. The average percentage of nucleotide sequence identity (Table 4) between corresponding orthologous sets was determined using the Needleman-Wunsch algorithm global alignment technique. Artemis [57] was used for data management, and DNA Plotter [58] was used for visualization of genomic features. The Mauve alignment tool was used for multiple genomic sequence alignment and visualization [59]. PHAST (PHAge search Tool) was employed to identify phage sequences [60].

Genome properties

The genome of *P. antibioticophila* strain GD11T is 5 562 631 bp long with a 49.1% G+C content (Fig. 6). Of the 5155 predicted genes, 5084 were protein-coding genes and three were RNAs. Three rRNA genes (one 16S rRNA, one 23S rRNA and one 5S rRNA) and 68 predicted tRNA genes were identified in the genome. A total of 3814 genes (73.98%) were assigned a putative function. One hundred forty-three genes (2.77%) were identified as ORFans. The remaining genes were annotated as hypothetical proteins. The properties and the statistics of the genome are summarized in Tables 5 and 6. The distribution of genes into COGs functional categories is presented in Table 5.

Insights from genome sequence

Extended insights

The genome of *P. antibioticophila* strain GD11T was compared to each of *Paenibacillus barengoltzii* strain G22 (GenBank accession no. ASSZ00000000.1), *Paenibacillus massiliensis* strain 2301065\(^T\) (GenBank accession no. ARIL00000000.1), *Paenibacillus panacisoli* strain DSM 21345 (GenBank accession no. AUFO00000000.1), *Paenibacillus polymyxa* strain ATCC 842\(^T\) (GenBank accession no. AFOX00000000.1), *Paenibacillus sanguinis* strain 2301083\(^T\) (GenBank accession no. ARGO00000000.1), *Paenibacillus senegalensis* strain JC66\(^T\) (GenBank accession no. CAES00000000.1), *Paenibacillus terrae* strain HPL-003 (GenBank accession no. CP003107.1) and...
TABLE 2. Differential characteristics of *Paenibacillus antibioticophila* strain GD11^T (data from this study) with *P. sanguinis* strain 2301083^T, *P. zanthoxyli* strain JH29^T, *P. puldeungensis* strain CAU 9324^T, *P. terrae* strain AM141^T

Property	*P. antibioticophila*	*P. sanguinis*	*P. zanthoxyli*	*P. puldeungensis*	*P. terrae*
Cell diameter (μm)	0.49 × 2.67	0.5 × 2–3	0.4 × 4–4.8	0.3 × 1.3–2.3	1.5 × 4–7
Oxygen requirement	Aerobic	Aerobic	Aerobic	Aerobic	Aerobic
Gram stain	+	+	+	+	+
Salt requirement	No	No	No	No	No
Motility	+	+	+	+	+
Endospore formation	NA	+	+	+	+
Production of:					
Alkaline phosphatase	–	+	NA	+	–
Acid phosphatase	–	+	NA	+	–
Catalase	–	–	+	–	+
Oxidase	–	–	–	+	+
Nitrate reductase	+	+	NA	+	+
Urease	–	–	NA	NA	NA
α-Galactosidase	+	NA	NA	+	NA
β-Galactosidase	+	NA	NA	+	NA
β-Glucuronidase	+	NA	NA	+	NA
α-Glucosidase	+	NA	NA	+	NA
β-Glucosidase	–	NA	NA	+	NA
Esterase	+	NA	NA	+	NA
Esterase lipase	+	NA	NA	–	NA
Naphthol-AS-BI-phosphohydrolase	+	NA	NA	NA	NA
N-Acetyl-β-glucosaminidase	–	NA	NA	–	NA
Pyrazinamidase	NA	NA	NA	NA	NA
α-Mannosidase	–	NA	NA	–	NA
α-Fucosidase	–	NA	NA	–	NA
Leucine arylamidase	+	NA	NA	+	NA
Valine arylamidase	–	NA	NA	+	NA
Cystine arylamidase	–	NA	NA	+	NA
α-Chymotrypsin	–	NA	NA	+	NA
Trypsin	–	NA	NA	NA	NA
α-Mannosidase	–	NA	NA	–	NA
α-Fucosidase	–	NA	NA	–	NA
Leucine arylamidase	+	NA	NA	+	NA
Valine arylamidase	–	NA	NA	+	NA
Cystine arylamidase	–	NA	NA	+	NA
α-Chymotrypsin	–	NA	NA	+	NA
Trypsin	–	NA	NA	NA	NA
Utilization of:					
5-Keto-gluconate	–	NA	NA	NA	NA
D-Xylose	–	NA	NA	NA	NA
D-Fructose	–	NA	NA	NA	NA
D-Glucose	–	NA	NA	NA	NA
D-Mannose	–	NA	NA	NA	NA
Glutamic acid	–	NA	NA	NA	NA
α-Mannosidase	–	NA	NA	–	NA
α-Fucosidase	–	NA	NA	–	NA
Leucine arylamidase	+	NA	NA	+	NA
Valine arylamidase	–	NA	NA	+	NA
Cystine arylamidase	–	NA	NA	+	NA
α-Chymotrypsin	–	NA	NA	+	NA
Trypsin	–	NA	NA	NA	NA
α-Mannosidase	–	NA	NA	–	NA
α-Fucosidase	–	NA	NA	–	NA
Leucine arylamidase	+	NA	NA	+	NA
Valine arylamidase	–	NA	NA	+	NA
Cystine arylamidase	–	NA	NA	+	NA
α-Chymotrypsin	–	NA	NA	+	NA
Trypsin	–	NA	NA	NA	NA
Human gut	NA	NA	NA	NA	NA
Soil	NA	NA	NA	NA	NA
Algae	NA	NA	NA	NA	NA

+, positive result; −, negative result; NA, data not available.

Paenibacillus zanthoxyli strain JH29^T (GenBank accession no. ASSD00000000.1). The draft genome of *P. antibioticophila* has a larger size than that of *P. barengoltzii*, *P. sanguinis* and *P. zanthoxyli* (5.56, 4.75, 4.8 and 5.05 Mb, respectively). The G+C content of *P. antibioticophila* is higher than those of *P. massiliensis*, *P. panacisoli*, *P. polymyxa*, *P. senegalensis* and *P. terrae* (49.1, 48.5, 48.3, 44.9, 48.2 and 46.8%, respectively) but less than that of *P. barengoltzii*, *P. sanguinis* and *P. zanthoxyli*.

FIG. 4. Reference mass spectrum from *Paenibacillus antibioticophila* strain GD11^T (DSM 28228 = CSUR P1358). Spectra from 16 individual colonies were compared and reference spectrum generated.
The gene content of *P. antibioticophila* is larger than those of *P. barengoltzii*, *P. sanguinis*, *P. senegalensis* and *P. zanthoxyli* (5155, 4394, 4209, 4422 and 4878, respectively). However, the distribution of genes into COGs categories was similar in all nine compared genomes (Fig. 7). In addition, *P. antibioticophila* shared 5084, 4307, 5055, 5059, 5068, 4093, 4278, 5525 and 4676 orthologous genes with *P. barengoltzii*, *P. massiliensis*, *P. panacisoli*, *P. polymyxa*, *P. sanguinis*, *P. senegalensis*, *P. terrae* and *P. zanthoxyli*, respectively (Table 6). The average nucleotide sequence identity ranged from 96.47 to 66.74% between the species. Finally, no sequences coding for nonribosomal peptide synthetases or polyketide synthases were found within the *P. antibioticophila* genome. The analysis of virome revealed the presence of one intact phage of 20.8 kb, and other three incomplete phages, of, respectively, 17, 15.4 and 14.3 kb with 43.96, 50.60 and 49.84% G+C content (Table 7).

Conclusions

On the basis of phenotypic, phylogenetic and genomic analyses, we formally propose the creation of *Paenibacillus antibioticophila* sp. nov. The strain has been isolated from the stool sample of a 63-year-old woman with multidrug-resistant tuberculosis in Marseille, France. Several other previously undescribed bacterial species were also cultivated from different faecal samples through diversification of culture conditions [1,8–36], thus suggesting that the human faecal flora of humans remains partially unknown.
Description of Paenibacillus antibioticophila strain GD11T sp. nov.

Paenibacillus antibioticophila strain GD11T (= DSM 28228 = CSUR P1358) is the type strain of the genus Paenibacillus. It was isolated from the stool samples of a 63-year-old woman with a

TABLE 5. Number of genes associated with 25 general COGs

Code	Value	% of total	Description
J	184	3.61	Translation
A	0	0	RNA processing and modification
K	486	9.55	Transcription
L	154	3.02	Replication, recombination and repair
B	1	0.01	Chromatin structure and dynamics
D	35	0.68	Cell cycle control, mitosis and meiosis
Y	0	0	Nucleolar structure
V	132	2.59	Defense mechanisms
T	314	6.17	Signal transduction mechanisms
M	179	3.52	Cell wall/membrane biogenesis
N	70	1.37	Cell motility
Z	2	0.03	Cytoskeleton
W	0	0	Extracellular structures
U	50	0.98	Intracellular trafficking and secretion
O	110	2.16	Posttranslational modification, protein turnover, chaperones
C	148	2.91	Energy production and conversion
G	637	12.52	Carbohydrate transport and metabolism
E	296	5.82	Amino acid transport and metabolism
F	89	1.75	Nucleotide transport and metabolism
H	122	2.39	Coenzyme transport and metabolism
I	88	1.73	Lipid transport and metabolism
P	266	5.23	Inorganic ion transport and metabolism
Q	77	1.51	Secondary metabolites biosynthesis, transport and catabolism
R	576	11.32	General function prediction only
S	323	6.35	Function unknown
—	1.27	24.98	Not in COGs

TABLE 6. Numbers of orthologous proteins shared between genomes

PN	PB	PM	PPA	PP	PS	PSE	PT	PZ	
PN	5084	2553	2421	2381	2242	2562	1883	2318	2078
PB	72.85	4307	2357	2304	2249	2456	1833	2292	2063
PM	69.61	69.12	5055	3881	3084	2339	1900	3142	2283
PPA	69.60	69.14	96.47	5059	3038	2302	1894	3104	2267
PP	69.11	69.12	96.29	5068	2167	1798	3279	2210	
PS	73.96	75.72	69.42	69.29	4093	1802	2228	1948	
PSE	67.11	67.15	66.75	66.74	67.17	4278	1797	1651	
PT	69.62	69.55	71.63	71.53	86.20	69.68	66.99	5525	2240
PZ	69.97	70.46	69.28	69.32	69.99	67.16	69.85	4676	

Average percentage similarity of nucleotides corresponding to orthologous protein shared between genomes (below diagonal) and numbers of proteins per genome (bold).
pulmonary form of multidrug-resistant tuberculosis hospitalized in an infectious diseases ward in Marseille, France. The main scope of the culturomics study is to cultivate all the species within the human faeces. *P. antibioticophila* is a Gram-positive bacilli that does not exhibit catalase nor oxidase activity. Colonies were 0.5 mm in diameter, and cells have a mean width of 0.49 μm and a mean length of 2.67 μm. Esterase (C4), esterase lipase (C8), naphthol-AS-Bl-phosphohydrolase, β-galactosidase, α-galactosidase and α-glucosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, nitrate reduction, glutamic acid decarboxylase, fermentation L-arabinose, D-ribose, D-xylose, methyl-β-D-xlophanoside, D-galactose, D-glucose, D-fructose, D-mannose, L-rhamnose, D-mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, D-cellulobiose, D-maltose, D-lactose, D-melibiose, D-saccharose, D-xylose, inulin, D-melezitose, D-raffinose, starch, glycogen and D-fucopentose were positive. Acid phosphatase, alkaline phosphatase, leucine arylamidase, valine arylamidase, cystine arylamidase, lipase (C14), trypsin, α-chymotrypsin, β-glucosidase, α-mannosidase, α-fucosidase, arginine dehydrolase, urease, production of indole, leucine arylamidase, histidine arylamidase, phenylalanine arylamidase, tyrosin arylamidase, alanine arylamidase α-mannosidase, fermentation erythritol, D-arabinose, L-xyllose, D-ribitol, L-sorbitol, inositol, D-sorbitol, xylitol, D-turanose, D-tagatose, D-fucose, L-fucose, D-arabitol, L-arabitol, potassium gluconate, potassium 2-ketogluconate, potassium 5-ketogluconate and potassium-5-ketogluconate were negative. Cells are susceptible to penicillin G, amoxicillin, amoxicillin–clavulanic acid, ceftriaxone, imipenem, vancomycin, rifampicin, erythromycin, gentamicin, ciprofloxacin and trimethoprim–sulfamethoxazole and resistant to metronidazole.

The G+C content of the genome is 49.1%. The 16S rRNA gene sequence and whole-genome shotgun sequence of *P. antibioticophila* strain GD11T is deposited in GenBank under accession number KC158472. The type strain is GD11T (= DSM 28228 = CSUR P1358).

Acknowledgements

The authors thank the Xegen Company (http://www.xegen.fr/) for automating the genomic annotation process. This study was funded by the Méditerranée Infection Foundation.

Conflict of Interest

None declared.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.nmni.2015.10.006.

TABLE 7. Characteristics associated to phages in Paenibacillus antibioticophila strain GD11

Region length (bp)	Completeness	GC%
20.8	Intact	48.31
17	Incomplete	43.96
15.4	Incomplete	50.60
14.3	Incomplete	49.84
References

[1] Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93.

[2] Dubourg G, Lagier JC, Armougom F, Robert C, Hamad I, Brouqui P, et al. The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur J Clin Microbiol Infect Dis 2012;32:637–45.

[3] Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–66.

[4] Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–5.

[5] Wayne LG, Brenner DJ, Colwell PR, Grimont PAD, Kandler O, Krichevskey MI, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 1987;37;463–4.

[6] Rossello-Mora R, DNA–DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In: Molecular identification, systematics, and population structure of prokaryotes. Heidelberg: Springer Berlin; 2006. p. 23–250.

[7] Genomes OnLine Database (GOLD). https://gold.iigf.de/index.

[8] Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Bacillus timonensis sp. nov. Stand Genomic Sci 2012;6:346–55.

[9] Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Anaerococcus senegalensis sp. nov. Stand Genomic Sci 2012;6:116–25.

[10] Mishra AK, Gimenez G, Lagier JC, Robert C, Raoult D, Fournier PE. Genome sequence and description of Aluphis senegalensis sp. nov. Stand Genomic Sci 2012;6:1–16.

[11] Lagier JC, Armougom F, Mishra AK, Nguyen TT, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Aluphis senegalensis sp. nov. Stand Genomic Sci 2012;6:315–24.

[12] Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Clostridium sengalenense sp. nov. Stand Genomic Sci 2012;6:386–95.

[13] Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Peptoniphilus massiliensis sp. nov. Stand Genomic Sci 2012;7:1–11.

[14] Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Herbaspirillum arcticum sp. nov. Stand Genomic Sci 2012;7:220–9.

[15] Roux V, El Karkouri K, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Kastella senegalensis sp. nov. Stand Genomic Sci 2012;7:221–32.

[16] Kolch S, Ramasamy D, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Brevibacterium sengalenense sp. nov. Stand Genomic Sci 2012;7:233–45.

[17] Ramasamy D, Kolch S, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Genome sequence and description of Aeromonas massiliensis sp. nov. Stand Genomic Sci 2012;7:246–57.

[18] Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 2012;7:258–70.

[19] Lagier JC, El Karkouri K, Rivet R, Couderc C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Streptococcus anserinae gen. nov., sp. nov. Stand Genomic Sci 2013;7:343–56.

[20] Mishra AK, Hugon P, Lagier JC, Nguyen TT, Robert C, Couderc C, et al. Non-contiguous-genome sequence and description of Peptoniphilus obesi sp. nov. Stand Genomic Sci 2013;7:357–69.

[21] Mishra AK, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Peptoniphilus sengalenensis sp. nov. Stand Genomic Sci 2013;7:370–81.

[22] Lagier JC, El Karkouri K, Mishra AK, Robert C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Enterobacter massiliensis sp. nov. Stand Genomic Sci 2013;7:399–412.

[23] Hugon P, Ramasamy D, Lagier JC, Rivet R, Couderc C, Raoult D, et al. Non-contiguous-genome sequence and description of Alastipes obesi sp. nov. Stand Genomic Sci 2013;7:427–39.

[24] Mishra AK, Hugon P, Robert C, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Peptoniphilus grossensis sp. nov. Stand Genomic Sci 2013;7:320–30.

[25] Mishra AK, Hugon P, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Deinba fusidiosa gen. nov., sp. nov., a new member of the family Corynebacteriaceae. Stand Genomic Sci 2013;8:290–305.

[26] Ramasamy D, Lagier JC, Gorlas A, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Bacillus massiliensis sp. nov. Stand Genomic Sci 2013;8:264–78.

[27] Ramasamy D, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non-contiguous-genome sequence and description of Dependibacter massiliensis sp. nov. Stand Genomic Sci 2013;8:318–35.

[28] Roux V, Lagier JC, Gorlas A, Robert C, Raoult D. Non-contiguous finished genome sequence and description of Kastella senegalensis sp. nov. Stand Genomic Sci 2014;9(3).

[29] Padmanaban R, Dubourg G, Lagier JC, Nguyen TT, Couderc C, Rossi-Tamisier M, et al. Non-contiguous finished genome sequence and description of Collinsella massiliensis sp. nov. Stand Genomic Sci 2014;9(3).

[30] Ramasamy D, Dubourg G, Robert C, Caputo A, Papazian L, Raoult D, et al. Non-contiguous-genome sequence and description of Deinba fusidiosa gen. nov. Stand Genomic Sci 2014;9(3).

[31] Edouard S, Bibi F, Ramasamy D, Lagier JC, Ashar El, Robert C, et al. Non-contiguous-genome sequence and description of Coriobacterium jiddahense sp. nov. Stand Genomic Sci 2014;9(3).

[32] Pagnier I, Croce O, Robert C, Raoult D, La Scola B. Non-contiguous finished genome sequence and description of Alastipes senegalensis sp. nov. Stand Genomic Sci 2014;9(3).

[33] Pagnier I, Croce O, Robert C, Raoult D, La Scola B. Non-contiguous finished genome sequence and description of Anarococcus provensis sp. nov. Stand Genomic Sci 2014;9(3).

[34] Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Peptoniibacillus. Antonie Van Leeuwenhoek 1993;64:253–60.

[35] Lal S, Tabacchioni S. Ecology and biotechnological potential of Peptoniibacillus polyxenus: a minireview. Indian J Microbiol 2009;49:2–10.

[36] McSpadden Gardner BB. Ecology of Bacillus and Peptoniibacillus spp. in agricultural systems. Phytopathology 2004;94:1252–8.

[37] Montes MJ, Mercado E, Bozal N, Guine J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004;54:1521–6.
Ouyang, J., Pei, Z., Lutwick, L., Dalal, S., Yang, L., Cassai, N., et al. Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci 2008;38:393–400.

Glaeser, S.P., Falsen, E., Busse, H.J., Kempfer, P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Bacteriol 2013;63(pt 2): 777–82.

Woese, C.R., Kandler, O., Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc Natl Acad Sci U S A 1990;87:4576–9.

Skerman, V.B.D., Sneath, P.H.A. Approved list of bacterial names. Int J Syst Bact 1980;30:225–420.

Garrity, G.M., Holt, J. Taxonomic outline of the Archaea and Bacteria. In: Garrity, G.M., Boone, D.R., Castenholz, R.W., editors. Bergey’s manual of systematic bacteriology. New York: Springer Verlag; 2001. p. 155–66.

Prevot, A.R. Dictionnaire des bactéries pathogènes. In: Hauduroy, P., Ehringer, G., Guillot, G., Magrou, J., Prevot, A.R., Rosset, A., et al., editors. Paris: Masson; 1953. p. 1–692.

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25–9.

Seng, P., Drancourt, M., Gouriet, F., La Scala, B., Fournier, P.E., Rolain, J.M., et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009;49:543–51.

Field, D., Garrity, G., Gray, T., Morrison, N., Selengut, J., Sterk, P., et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008;26:541–7.

Prodigal. http://prodigalornl.gov.

Benson, D.A., Karsch-Mizrachi, I., Clark, K., Lipman, D.J., Ostell, J., Sayers, E.W. GenBank. Nucleic Acids Res 2012;40:D48–53.

Lowe, T.M., Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–64.

Lagesen, K., Hallin, P., Rodland, E., Staerfeldt, H.H., Rognes, T., Ussery, D.W. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–8.

Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004;340:783–95.

TMHMM. http://www.cbs.dtu.dk/services/TMHMM.

Lechner, M., Findei, S., Steiner, L., Marz, M., Stadler, P.F., Prohaska, S.J. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011;12:124.

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., et al. Artemis: sequence visualization and annotation. Bioinformatics 2000;16:944–5.

Carver, T., Thomson, N., Bleasby, A., Bertram, M., Parkhill, J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009;25:119–20.

Darling, A.C., Mau, B., Blatner, F.R., Perna, N.T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004;14:1394–403.

Zhao, Y., Liang, Y., Lynch, K.H., Dennis, J.J., Wishart, D.S. PHAST: a fast phage search tool. Nucleic Acids Res 2011;39(Web server issue): W347–52.