報道機関各位

東京工業大学
分子科学研究所
広島大学
日本原子力研究開発機構
東京大学 大学院工学系研究科
高エネルギー加速器研究機構
筑波大学

新奇な磁性トポロジカル絶縁体ヘテロ構造の作成に成功
－磁性とトポロジカル物性の協奏現象に新たな知見－

【要点】
○トポロジカル絶縁体の表面付近に複数の磁性層を埋め込むことに成功
○トポロジカル表面状態のエネルギーギャップが磁化秩序の発現温度より一桁高い温度で閉じることを実証
○高温での量子異常ホール効果の実現、デバイス開発に新たな道

【概要】
東京工業大学 理学院 物理学系の平原徹准教授は、分子科学研究所の田中清尚准教授、広島大学放射光科学研究センターの奥田太一教授、日本原子力研究開発機構の竹田幸治研究主幹、東京大学大学院工学系研究科の小林正起准教授、高エネルギー加速器研究機構 物質構造科学研究所の雨宮健太教授、筑波大学数理物質系の黒田眞司教授、物質・材料研究機構 磁性・スピントロニクス材料研究拠点の佐々木泰雄主幹研究員、ロシア・スペインの理論グループと共同で、トポロジカル絶縁体の表面近傍に複数の規則的な磁性層を埋め込むことに成功し、その表面ディラックコーンのエネルギーギャップが磁化秩序（用語 1）の発現する温度より高い温度で閉じることを実証した。

トポロジカル絶縁体とは、物質内部は絶縁体で電流を通さないが、表面には金属状態が存在し、電流を流すことのできる新しい絶縁体であり、「量子物質」（用語 2）として注目されている。このトポロジカル絶縁体にさらに磁石の性質である磁化秩序を導入することで、輸送特性として量子異常ホール効果（用語 3）が実現する。磁性トポロジカル絶縁体では表面に存在するディラック電子（用語 4）にエネルギーギャップが開くが、これまでの研究では、理論の予想する磁化秩序（磁性）とディラックコーンのエネルギーギャップの相関が実験的に正しいのか明確でなく、論争になっていた。
今回は、トポロジカル絶縁体である Bi₂Te₃（ビスマステルル化合物）薄膜上にさらに Te（テルル）と磁性元素 Mn（マンガン）を蒸着したところ、表面近傍に Mn と Te が潜り込み、Mn₄Bi₂Te₇/Bi₂Te₃ という新奇な磁性トポロジカル絶縁体ヘテロ構造（用語 5）が形成された。そしてこの物質の表面ディラックコーヌのエネルギーギャップは、磁化秩序が消失する温度より一桁高い温度まで存在し、最終的には閉じることが示された。この成果によって量子異常ホール効果がこれまでより高温で実現され、デバイス応用につながることが期待できる。

本成果は、2020 年 9 月 24 日に、英国科学誌「Nature Communications（ネイチャー・コミュニケーションズ）」にオンライン掲載された。

●研究の背景

物質をトポロジー（用語 6）によって分類する考え方は 2016 年のノーベル物理学賞の受賞対象であり、現在、盛んに研究されている。その代表例がトポロジカル絶縁体であり、物質内部では絶縁体で電流を通さないが、表面には金属状態が存在し、電流を流すことのできる新しいタイプの絶縁体として、超スマート社会実現に向けた「量子物質」として注目を集めている。

トポロジカル絶縁体の表面状態はトポロジーによって保護された、質量のないスピン偏極ディラック電子になっている（図 1(a)）。磁化秩序を導入すると、金属的であった表面状態にエネルギーギャップが開き、質量のあるスピン偏極ディラック電子へと変化する（図 1(b)）。これにより新たなトポロジカル相があり、電子の輸送特性を測定すると量子異常ホール効果が観測される。しかし量子異常ホール効果が観測される温度は最高でも 2 K（−271 ℃）と非常に低い温度にとどまっており、新たな物質開拓が望まれている。

理論的には磁性トポロジカル絶縁体での磁性の発現と、表面ディラック電子にギャップが開くことは相関している。しかしこれまで行われてきた実験では、磁化秩序が現象する温度（Te）よりはるかに高い温度までディラック電子にギャップが開き続け、消失しない例が多数報告されていた。一方で、Te 以下でもギャップが生じていないケースもあった。また、Te 以下でも温度上昇とともに磁化秩序は弱くなるため、表面状態のギャップの大きさも小さくなりやがて閉じることが予想されるが、そのような詳細な温度依存性が観測されている例もほとんどなかった。それゆえ磁性トポロジカル絶縁体のエネルギーギャップが磁性起源で開いているのではないかとさえ示唆されていた。

●研究成果

今回、東京工業大学を中心とする研究グループは高品質のビスマステルル（Bi₂Te₃）薄膜を作成し、その上にさらに Te と磁性元素マンガン（Mn）を蒸着しヘテロ構造を作成し磁性の導入を行った。そして分子科学研究所の極端紫外光研究施設 UVSOR と広島大学放射光科学研究センター HiSOR でスピンおよび角
度分解光電子分光（用語 7）により、この物質の電気的特性を測定した。その結果、このヘテロ構造の表面状態には 16 K （－257 ℃）で 70 meV のギャップが確かに開いていた（図 2(a)）。温度を上昇させ詳細な測定を行ったところ、ギャップの大きさは徐々に小さくなり、200 K （－73 ℃）から 250 K （－23 ℃）の間で緩やかに閉じることが観測された。
一方、SPring-8 の日本原子力研究開発機構管理のビームラインおよび高エネルギー加速器研究機構物質構造科学研究所 フォトンファクトリーにおける X 線磁気円二色性（XMCD）（用語 8）、さらに筑波大学における超伝導量子磁束干渉計（SQUID）（用語 9）を用いた磁気特性測定により、このヘテロ構造では $T_c = 20 K$ （－253 ℃）で磁化秩序が消失することが分かった。このように磁性トポロジカル絶縁体ヘテロ構造の表面状態のギャップが、磁気秩序が消失する温度より一番低い温度まで存在し、やがて閉じることを世界で初めて観測した。
さらに、物質・材料研究機構での高分解能透過電子顕微鏡（TEM）（用語 10）を用いた構造解析により、この試料は Mn 原子が試料最表面の Bi$_2$Te$_3$ 内部に 4 層埋め込まれた、Mn$_4$Bi$_2$Te$_7$/Bi$_2$Te$_3$ ヘテロ構造を含むことが分かった（図 2(b)）。これまでの磁性トポロジカル絶縁体ヘテロ構造は磁性原子層が 1 層だけトポロジカル絶縁体の最表面に埋め込まれていたものであり、複数の磁性原子層を埋め込んだものの作成に世界で初めて成功した。これらの結果はロシア・スペインのグループが行った第一原理計算によくも支持された。

●本研究に関する各研究機関の役割

機関名	ルーチン
東京工業大学 (代表機関)	研究のコーディネート、試料作成、スピンおよび角度分解光電子分光測定、XMCD 測定
分子科学研究所	角度分解光電子分光測定
広島大学	スピンおよび角度分解光電子分光測定
日本原子力研究開発機構	XMCD 測定
東京大学	XMCD 測定
高エネルギー加速器研究機構	XMCD 測定
筑波大学	SQUID 測定
物質・材料研究機構	TEM 観察
ロシア・スペイン理論グループ	第一原理計算
今後の展開

今回の研究は、トポロジカル絶縁体に複数の強磁性層を埋め込む新たな方法を発見し、磁性と表面状態のエネルギーギャップの関係に新たな知見を与えたものである。このアプローチは、従来量子異常ホール効果の研究に用いられてきた、磁性不純物ドープのトポロジカル絶縁体や、1層の磁性層が埋め込まれた磁性トポロジカル絶縁体と大きく異なる。表面ディラックコーンギャップが磁化秩序の発現温度より一桁高い温度まで開いている性質を用いれば、これまで2Kまでしか実現されていない量子異常ホール効果をより高温で実現できる可能性がある。さらに、そのトポロジカルな性質を生かした極めて薄いナノデバイスの開発の応用研究が加速することが期待できる。

【用語説明】
(1) 磁化秩序：隣り合うスピンが同一の方向（強磁性）あるいは反対の方向（反強磁性）を向いて整列している状態。強磁性状態は外部磁場が無くても自発磁化を持つことができ、いわゆる磁石の性質のことである。
(2) 量子物質：量子とは量子力学によって記述される、粒子と波の性質をあわせ持った、とても小さな物質やエネルギーの単位のことである。量子物質は、特に波としての性質が物質全体に巨視的に顕著に表れているもののことである。
(3) 量子異常ホール効果：磁場中を電子が動くと、その動きが曲げられる。固体物質ではこの現象をホール効果と呼び、電流にも磁場にも垂直な方向に発生する電圧をホール電圧と言う。物質が強磁性体の場合、磁性体自身を持っている磁化が外部磁場の代わりになることで無磁場でもホール効果が発生する。この現象を異常ホール効果と呼ぶ。また、異常ホール効果によって生じる抵抗が量子化抵抗値に等しくなる現象を、量子異常ホール効果と呼ぶ。この状態では無散逸に電流が流れるので省エネデバイスに応用が期待されている。
(4) ディラック電子：通常の電子と異なり、英国の物理学者ディラックが1928年に発表した相対論的量子力学に従う電子のこと。トポロジカル絶縁体の表面ではさらにこのディラック電子がスピン偏極している。
(5) ヘテロ構造：組成元素が異なる2つの固体を接合して形成される構造のこと。
(6) トポロジー：トポロジーとは、数学の一分野であり、何らかの形を連続変形（伸ばしたり曲げたりすることはするが切ったり貼ったりしないこと）しても保たれる性質に焦点を当てたものである。例えば、ドーナツとマグカップは穴が一つあるので連続変形によって移り変わる
図1 スピン偏極した質量のないディラック電子(a)およびギャップの開いたスピン偏極ディラック電子(b)。赤と青は異なるスピンの向きを持っていることを表している。
図2 新たに作成に成功したヘテロ構造の表面ディラック電子のバンド構造 (a) およびその原子構造 (b)

【論文情報】
掲載誌：Nature Communications
論文タイトル：Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone
著者：T. Hirahara, M. M. Otrokov, T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, K. Amemiya, T. Shirasawa, S. Ideta, K. Miyamoto, K. Tanaka, S. Kuroda, T. Okuda, K. Hono, S. V. Eremeev, and E. V. Chulkov
DOI：10.1038/s41467-020-18645-9

【問い合わせ先】
東京工業大学 理学院 物理学系 准教授
平原 徹
Email: hirahara@phys.titech.ac.jp
TEL: 03-5734-2365 FAX: 03-5734-2365

【取材申し込み先】
東京工業大学 総務部 広報課
Email: media@jim.titech.ac.jp
TEL: 03-5734-2975 FAX: 03-5734-3661