Correlation of invasive and non-invasive blood pressure: A must for management

DOI: 10.4103/0019-5049.72658

Sir,

Arterial blood pressure (ABP) is a basic haemodynamic index often utilized to guide therapeutic interventions, especially in critically ill patients. Inaccurate ABP measuring creates a potential for misdiagnosis and mismanagement. I would like to share an important and interesting experience with you that would be valuable for the students.

A 74-year-old male (43 kg, ASA status II) patient was posted for parotid gland excision. The patient’s medical history was significant for chronic obstructive lung disease. He had fair effort tolerance (New York Heart Association-II). All pre-operative investigations were normal except for moderate obstruction in spirometry and typical hyperinflation features in chest X-ray. His physical examination and airway assessment were unremarkable.

The patient was induced with i.v. inj fentanyl 2 ug/kg, inj propofol 2 mg/kg and inj atracurium 0.5 mg/kg after pre-oxygenating with 100% oxygen. His non-invasive systolic blood pressure was between 80 and 90 mmHg. We placed a radial arterial cannula with 100 cm of stiff tubing that was free of air bubbles and used a Flotrac™ sensor for arterial pressure monitoring. Invasive BP was 176/114 mmHg. There was no ringing or resonance and arterial tracing was absolutely normal. Non-invasive BP showed 82/46 mmHg. We cross-checked our BP reading and found it to be correct. Then, we changed the disposable transducer. After changing the disposable transducer, invasive BP correlated with non-invasive BP. The remaining intra-operative period was uneventful and the patient was extubated successfully.

Ideally, the pressure waves recorded through the intravascular catheter should be transmitted undistorted to the transducer and then to the amplifier, display or recording system. Unfortunately, the mechanical transmission system oscillates (rings or resonates) after being set in motion by the arterial pressure wave. These oscillations produce small pressure waves that are superimposed on those caused by the pressure pulse itself, thereby introducing artefacts that distort the measured pressure. In our case, there was no ringing or resonance as the arterial waveform was not distorted. Most disposable transducers have natural frequencies of several hundred hertz, but the addition of saline-filled tubing and stopcocks that may trap tiny air bubbles results in a monitoring system with a markedly reduced natural frequency. We used 100 cm of stiff tubing that was free of air bubbles and a Flotrac™ sensor for arterial pressure monitoring. In our case, the disposable transducer was faulty, probably having a natural frequency in the unacceptable low range.

In conclusion, invasive BP should always be correlated with non-invasive BP, and any discrepancy noted should be rectified to avoid misdiagnosis and mismanagement.

Sameer Sethi
Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India

Address for correspondence:
Dr. Sameer Sethi,
Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
E-mail: sethi.sameer@rediffmail.com

REFERENCES

1. Barbeito A, Mark JB. Arterial and central venous pressure monitoring. Anaesthesiol Clin 2006;24:717-35.
2. Pittman JA, Ping JS, Mark JB. Arterial and central venous pressure monitoring. Anaesthesiol Clin 2004;42:13-30.
3. McGhee BH, Bridges EJ. Monitoring arterial blood pressure: What you may not know. Crit Care Nurs 2002;22:60-79.
4. Hunziker P. Accuracy and dynamic response of disposable pressure transducer tubing systems. Can J Anaesth 1987;34:409-14.

Neostigmine has never been reported to cause pulmonary oedema in contemporary literature. Millions of anaesthetics have been delivered with the use of neostigmine but development of postoperative pulmonary oedema has not been attributed to it. It would be too farfetched to attribute the occurrence of pulmonary oedema, in the two cases reported, to the use of neostigmine, without clear evidence or a viable argument.

Mukul C Kapoor
Department of Anaesthesiology, Command Hospital (CC), Lucknow, Uttar Pradesh, India

Address for correspondence: Dr. Mukul C Kapoor, 16 Church Road, Delhi Cantt - 110 010, India.
E-mail: mukulanjali@rediffmail.com

REFERENCES
1. Raiger LK, Naithani U, Vijay BS, Gupta P, Bhargava V. Non-cardiogenic pulmonary oedema after neostigmine for reversal: A report of two cases. Indian J Anaesth 2010;54:338-41.
2. Oswalt CE, Gates GA, Homstrom MG. Pulmonary edema as a complication of acute airway obstruction. JAMA 1977;238:1833-5.
3. Fremont RD, Kallet RH, Matthay MA, Ware LB. Postobstructive pulmonary edema: A case for hydrostatic mechanisms. Chest 2007;131:1742-6.
4. Kallet RH, Daniel BM, Gropper M, Mathay MA. Acute pulmonary edema following upper airway obstruction: Case reports and brief review. Respir Care 1998;43:476-80.
5. Reed CR, Glauser FL. Drug-induced noncardiogenic pulmonary edema. Chest 1991;100:1120-4.