SUPPLEMENTARY MATERIAL

Inhibition of resveratrol glucosides (REs) on advanced glycation endproducts (AGEs) formation: inhibitory mechanism and structure-activity relationship

Minzhuo Liu¹, Fen Tang¹, Qi Liu¹*, Jianbo Xiao³, Hui Cao³, Xiaoqing Chen¹,²,*

¹College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
²Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
³Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau

*Corresponding author: Tel./fax: +86-731-88830833.
E-mail address: iliuqi@csu.edu.cn (Qi Liu), xqchen@csu.edu.cn (Xiaoqing Chen)

Abstract

The study on inhibitory effects of resveratrol glucosides (REs) on advanced glycation endproducts (AGEs) formation is still unmet. Herein, for the first time, the antiglycation activities of five REs in the fetal bovine serum proteins (FBS)/fructose system were evaluated, and its structure-activity relationship and antiglycation mechanism were further explored. These REs showed remarkable inhibition toward AGEs formation. Among them, Piceatannol-3'-O-glucoside (PG) exhibited highest antiglycation activity as reflected in approximately 80% inhibition of fluorescent AGEs at the concentration of 1.0 mM. The structure-activity relationship analysis indicated that glucoside attached to the B ring of resveratrol displays a superior antiglycation activity. Moreover, the results of antiglycation mechanism showed that the antiglycation activity of REs was proportional to their antioxidant capacity and methylglyoxal (MGO) trapping capacity. Therefore, the REs are promising candidates worthy of further exploration for preventing AGEs accumulation in vivo, thereby treating AGEs-associated diseases.

Keywords Resveratrol glucosides (REs); Advanced glycation endproducts (AGEs); Structure-activity relationship; Antiglycation mechanism
Experimental

Apparatus and reagents

The fluorescence spectra were recorded on a HITACHI F-7000 fluorometer (Tokyo, Japan). UV-vis spectra were recorded on UV-2450 UV-vis spectrophotometer (Shimadzu, Kyoto, Japan). Seven stilbenoids were studied: Resveratrol (>98.0%), Isorhapontigenin (>98.0%), (E)-Polydatin (>99.0%), Resveratroloside (>98.0%), Piceatannol-3’-O-glucoside (>98.0%), 2,3,5,4’-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG, >98.0%), Astringin (>97.0%) were all purchased from Yuanye Bio-Technology Co., Ltd (Shanghai, China). Structures of seven stilbenoids tested in this study are shown in Figure S4.

Fetal bovine serum (FBS) was obtained from Sigma. The working solution of FBS (10 μM) was prepared by directly diluting the above FBS with 100 mM phosphate buffer solution before use. The working solutions of stilbenoids (1.0 mM) were prepared by dissolving each stilbenoid with methanol.

1, 1-diphenyl-2-picrylhydrazyl (Aladin Co. Ltd, Shanghai, China) was employed to determine the antioxidant activity of stilbenoids. Buffer solution used all over the experiments was the 100 mM phosphate buffer solution with pH at 7.4. Ultrapure water was purified by a Milli-Q system (Millipore, Bedford, MA, USA). All other reagents and solvents were of analytical grade and purchased from Chemical Reagent Factory of Hunan Normal University (Changsha, Hunan, China).

Measurement of AGE-inhibitory activity

The fructose-derived AGEs were prepared according to the previous method with some modifications (Sompong et al., 2015; Takeuchi et al., 2010). The FBS (10 μM) solutions was incubated with 50 mM fructose in 100 mM phosphate buffer saline (PBS), pH 7.4 at 37 °C for 10 days. In addition, the resveratrol and its derivatives were added to the glycation model in the concentration range of 0-10 mM, and aminoguanidine (AG) was used as the positive control. After incubation, the fluorescent intensity was measured to assess fructose-derived AGE formation via using the fluorometer at the excitation wavelength of 330 nm and emission wavelength of 410 nm, respectively. The percentage of inhibition of fructose-derived
AGEs formation was calculated by the following formula:

\[
\text{Inhibition rate (\%)} = \left[\frac{(F_C - F_{CB}) - (F_S - F_{CB})}{F_C - F_{CB}} \right] \times 100\% \\
\]

where \(F_C\) and \(F_{CB}\) are the fluorescent intensity of control with and without fructose, \(F_S\) is the fluorescent intensity of the sample with fructose.

Measurement of antioxidant capacity

Antioxidant activities of these REs were measured on the basis of the scavenging 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical and 2, 20-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) ABTS free radical.

DPPH free radical scavenging activity

The DPPH free radical scavenging activity of the REs was measured according to literatures with slight modifications (Cao et al., 2015; Ren et al., 2013). The samples with different volumes were added to 500 \(\mu\)L of DPPH solution (1.0 mM in 50% ethanol) and diluted with 50% methanol to 1.0 mL. Following incubation in the dark for 30 min, the absorbance at 517 nm was measured. The REs were replaced by methanol in the control group. The blank group consisted of 750 \(\mu\)L methanol and 250 \(\mu\)L of Millipore water. The DPPH free radical scavenging potential was calculated using the following formula:

\[
\text{DPPH free radical scavenging activity (\%)} = \left(1 - \frac{A_1}{A_0} \right) \times 100\% \\
\]

where \(A_0\) is the absorbance of the control, and \(A_1\) is the absorbance of samples. Each sample was tested three times (\(n=3\)). The absorbance was found to be reproducible within experimental errors.

ABTS assay

The ABTS assay described by Re et al (1999) was used with minor modifications. The ABTS assay assesses the total radical scavenging capacity based on the ability of an antioxidant to scavenge the stable ABTS radical cation (ABTS\(^{+}\)), which was produced by mixing 4.0 mL ABTS stock solution (7.0 mM) with 4.0 mL potassium persulphate (2.45 mM) and allowing to stand in the dark at room temperature for 12-16 h before use. The ABTS\(^{+}\) stock solution was melted with ethanol to an absorbance of 0.70 (±0.02) at 734 nm. The samples with different volumes were
added to 500 μL of ABTS⁺ diluted solution and diluted with 50% methanol to 1.0 mL. Following kept in the dark at room temperature for 5 min, the absorbance was spectrophotometrically determined at 734 nm. The REs were replaced by methanol in the control group. The blank group consisted of 750 μL methanol and 250 μL of Millipore water. The ABTS⁺ scavenging activity was calculated using the following formula:

\[
\text{ABTS radical scavenging activity (\%)} = (1 - \frac{A_1}{A_0}) \times 100\%
\]

where \(A_0\) is the absorbance of the control, and \(A_1\) is the absorbance of sample. Each sample was tested three times (\(n = 3\)). The absorbance was found to be reproducible within experimental errors.

Evaluation of methylglyoxal (MGO) trapping ability

The ability of trapping MGO was tested according to the approach described by Peng et al. (2008). MGO (0.25 mL, 1.0 mM) was incubated with 0.25 mL PBS (blank), 1 mM aminoguanidine (AG) in PBS (positive control) and 1.0 mM REs in PBS at 37 °C for 3 h respectively. \(O\)-phenylenediamine (OPD) was used as derivatizing agent, and 5-methylquinoxaline (5-MQ) as the internal standard. After derivatization, MGO was converted to 2-methylquinoxaline (2-MQ) at a UV absorbance of 315 nm. The UPLC analysis was carried out on a reversed-phase Syncronis C18 column (100 mm × 2.1 mm i.d, 1.7 μm, Thermo Fisher Scientific, USA) and a Dionex Ultimate 3000 UPLC instrument. The mobile phase was composed of (A) 0.5% (v/v) acetic acid in water and (B) methanol using an isocratic elution of 60% B. The flow rate was 0.3 mL/min, and the column temperature was maintained at 25 °C. The sample injection volume was 10 μL. The residual MGO after capture reaction was quantified by the ratio of peak area of 2-MQ over 5-MQ and percentage reduction of MGO was calculated as 100 * (quantity of MGO in blank - quantity of MGO in samples with REs/ quantity of MGO in blank - quantity of MGO in AG).

References

Cao H, Xie YX, & Chen XQ. 2015. Type 2 diabetes diminishes the benefits of dietary antioxidants: Evidence from the different free radical scavenging potential. Food Chem. 186:106-112.
Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C, et al. 2008. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J Agric. Food Chem. 56:1907-1911.

Ren SC, Qiao QQ, & Ding XL. 2013. Antioxidative activity of five flavones glycosides from corn silk (Stigma maydis). Czech J. Food Sci. 31:148-155.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, & Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26, 1231-1237.

Sompong W, Adisakwattana S. 2015. Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxal-derived advanced glycation end-products. BMC Compl. Altern. M. 15:394-401.

Takeuchi M, Iwaki M, Takino J, & Yamagishi S. 2010. Immunological detection of fructose-derived advanced glycation end-products. Lab. Invest. 90:1117-1127.
Figure S1. Antioxidant capacity of resveratrol and its derivatives. (A: DPPH, the concentration of test samples is 20 μM; B: ABTS, the concentration of test samples is 4.0 μM). Data are represented as means ± SD (n= 3). All differences found are significant at P < 0.05.

Figure S2. MGO Trapping capacity of aminoguanidine (AG), resveratrol and its derivatives. The concentration of test samples is 1.0 mM, and AG was used as positive control in this assay. Data are represented as means ± SD (n= 3). All differences found are significant at P < 0.05.
Figure S3. Inhibitory activity of aminoguanidine (AG), resveratrol and its derivatives on total fluorescent AGEs formation. FBS (10 µM) was incubated with fructose (50 mM) in 100 mM phosphate buffer saline (pH 7.4) at 37 °C for 10 days in the absence (control) and presence of each sample (1.0 mM). Aminoguanidine (1.0 mM) was used as a positive control. Fluorescence of samples was measured at excitation 330 nm and emission 410 nm. Data are represented as means ± SD (n= 3). All differences found are significant at P < 0.05.
Figure S4. Structures of resveratrol and its derivatives tested in this study.
Table S1. Antioxidant capacity of resveratrol and its derivatives

Compounds	IC₅₀ (μM)^a	DPPH	ABTS
Resveratrol^b	14.45±0.40	3.82±0.02	
Isorhapontigenin	40.67±0.18	7.49±0.03	
Polydatin	28.69±0.38	4.41±0.01	
Resveratroloside	34.61±0.27	5.65±0.03	
PG	10.63±0.14	2.18±0.02	
THSG	16.84±0.15	2.85±0.01	
Astringin	21.07±0.38	3.09±0.03	

^a The IC₅₀ was defined as the concentration of the 50% inhibition. Data are represented as means ± SD (n= 3). All differences found are significant at P < 0.05.

^b Positive control
Table S2. Inhibitory activity of aminoguanidine (AG), resveratrol and its derivatives on total fluorescent AGEs formation

Compounds	IC$_{50}$ (μM)a	FBS-Fructose assay
AGb	1021.41±4.42	
Polydatin	1746.68±4.81	
Resveratrol	521.44±2.83	
THSG	280.51±1.62	
Resveratroloside	762.34±3.08	
PG	128.32±1.64	
Astringin	1241.45±4.92	
Isorhapontigenin	6321.43±5.76	

a The IC$_{50}$ was defined as the concentration of the 50% inhibition. Data are represented as means ± SD (n= 3). All differences found are significant at P < 0.05.

b Positive control