Large deviations for Markov processes with resetting
Work with: Hugo Touchette and Sanjib Sabhapandit

Janusz Meylahn

ICTS - Bangaluru

August 2017
Introduction

Outline

- Simple examples of resetting
- Mathematical formulation
- Main result
- Derivation of main result
- Application to the Ornstein-Uhlenbeck process (← LDT)
- Outlook
Examples of resetting

Discrete-space

- birth-death process with catastrophes (population dynamics)
- clearing of queues on failure of server (queueing theory)
- search strategies (computer science)

Continuous-space

- protein searchers on DNA (microbiology)
- foraging of animals (ecology)
- motion of molecular motor along biofilament
Brownian motion with resetting

Figure – Brownian motion X_t reset at rate r to zero.
Mathematical formulation

Stochastic differential equation (SDE)

\[dX_t = F(X_t)dt + \sigma dW_t \]

- \(X_t \) - position at time \(t \)
- \(F(\cdot) \) - drift function
- \(\sigma \) - noise strength
- \(dW_t \) - standard Brownian motion

In infinitesimal time interval \(dt \):
- reset to \(x_r \) with probability \(rdt \)
- evolve according to Eq. (1) with probability \(1 - rdt \)
Definitions

Observables of X_t having time-additive form:

$$A_T = \frac{1}{T} \int_0^T f(X_t) dt$$ \hspace{1cm} (2)

Generating function:

$$G_r(x, k, t) = E_x[e^{tkA_t}]$$ \hspace{1cm} (3)

$E_x[.]$ denotes expectation w.r.t. X_t with resetting started at x.

Laplace transform of Generating function in time

$$\tilde{G}_r(x, k, s) = \int_0^\infty e^{-st} G_r(x, k, t) dt$$ \hspace{1cm} (4)

subscript r refers to process with resetting. Objects are defined in an analogous way for no reset ($r=0$).
Main Result

Simple equation relating reset and no reset processes

\[\tilde{G}_r(x, k, s) = \frac{\tilde{G}_0(x, k, s + r)}{1 - r\tilde{G}_0(x_r, k, s + r)} \]

(5)
Reset periods

Assume n resets in $[0, T]$ with duration $\tau_1, \tau_2, \ldots, \tau_n$ s.t.

$$T = \sum_{i=1}^{n+1} \tau_i$$

(6)

where τ_{n+1} is period after last reset. Can rewrite A_T:

$$A_T = \frac{1}{T} \sum_{i=1}^{n+1} \int \sum_{j=1}^{i} \tau_j f(X_s) ds$$

(7)

where we define $\tau_0 = 0$.
Renewal representation of $G_r(x, k, s)$

Derivation

Due to independent diffusion segments:

$$G_r(x, k, T) = \sum_{n=0}^{\infty} \int_0^T d\tau_1 r e^{-r\tau_1} G_0(x_r, k, \tau_1) \int_0^T d\tau_2 r e^{-r\tau_2} G_0(x, k, \tau_2)$$

$$\times \ldots \int_0^T d\tau_{n+1} e^{-r\tau_{n+1}} G_0(x_r, k, \tau_{n+1}) \delta(T - \sum_{i=1}^{n+1} \tau_i) \quad (8)$$

Taking the Laplace transform:

$$\tilde{G}_r(x, k, s) = \tilde{G}_0(x, k, s + r) \sum_{n=0}^{\infty} r^n \tilde{G}_0(x_r, k, s + r)^n \quad (9)$$

Assuming $r \tilde{G}_0(x_r, k, s + r) < 1$ gives the result.
Mathematical formulation

Stochastic differential equation (SDE)

\[dX_t = -\gamma X_t \, dt + \sigma dW_t \]

- \(X_t \) - position at time \(t \)
- \(-\gamma X_t \) - drift function
- \(\sigma \) - noise strength
- \(dW_t \) - standard Brownian motion

Consider additive observable

\[A_T = \frac{1}{T} \int_0^T X_t \, dt \]
Spectral decomposition

Generating function for reset free process:

\[
G_0(x, k, T) = \sum_{i=0}^{\infty} \psi_{k,i}(x) e^{\lambda_{0,i}(k)T}
\]

where

\[
\lambda_{0,i} = \frac{k^2 \sigma^2}{2\gamma^2} - i\gamma, \quad i = 0, 1, \ldots
\]

and

\[
\psi_{k,i}(x) = \frac{(-1)^i \gamma^{3i/2} (k\sigma)^i e^{kx/\gamma - 3k^2\sigma^2/(4\gamma^3)} H_i\left(\frac{\sqrt{\gamma}x}{\sigma} - \frac{k\sigma}{\gamma^{3/2}}\right)}{\sqrt{2^i i! \sqrt{(2i)!!}}}
\]

with \(H_i\) \(i^{th}\) Hermite polynomial.
Large deviation theory

Largest eigenvalue (SCGF):

\[\lambda_0(k) = \frac{k^2 \sigma^2}{2\gamma^2} \] \hspace{1cm} (15)

corresponds to rate function:

\[l_0(a) = \frac{\gamma^2 a^2}{2\sigma^2} \] \hspace{1cm} (16)

for reset process:

\[G_r(x, k, T) \sim e^{\lambda_r(k)T} \] \hspace{1cm} (17)

In Laplace space:

\[\tilde{G}_r(x, k, s) \sim \frac{1}{s - \lambda_r(k)} \] \hspace{1cm} (18)

Conclusion

SCGF for OU process with reset is largest pole in \(s \) of main result Eq. (5).
Finite n truncation

Taking only the first term in Eq. (12) gives invalid SCGF but by including more terms converge to valid SCGF

Figure — Largest pole of Eq. (5) for various truncation orders (left). Rate function for process without reset (dotted) and with reset (solid) with $r = 1$ (right). Both with reset position at $x_r = 0$.
Non-zero reset position

\[\lambda_r(k) \]

\[I_{0,r}(a) \]

Figure — Largest pole of Eq. (5) for various truncation orders (left). Rate function for process without reset (dotted) and with reset (solid) with \(r = 1 \) (right). Both with reset position at \(x_r = 0.5 \).
Comments

- small fluctuations - many resets - Gaussian fluctuations in rate function with modified variance $\lambda'_r(k)$
- large fluctuations come from no/few resets suggesting

$$\lambda_r(k) \approx \lambda_0(k) - r \quad \text{as} \quad |k| \to \infty \quad (19)$$

and

$$l_r(a) \approx l_0(a) + r \quad \text{as} \quad |a| \to \infty \quad (20)$$

- competing effects: drift $-\gamma X_t$ vs. resetting rate r gives non-parabolic rate function
- zero of rate function a^* changes linearly in reset position X_r
- a^* approaches x_r as $r \to \infty$ given that γ is fixed
Outlook

Possibly interesting questions

- Can resetting introduce large deviation principle?
- Can this be generalized to current type observables?
- Which other process can this be applied to? (e.g. Reflected Brownian motion?)
- Could we pick the reset position from a distribution?
- Can we introduce a random time penalty at each reset event?
[1] J. M. Meylahn, S. Sabhapandit, and H. Touchette
Large deviations for Markov processes with resetting.
Phys. Rev. E., **92**, 062148, 2015.

[2] M. R. Evans and S. N. Majumdar.
Diffusion with Stochastic Resetting.
Phys. Rev. Lett., **106**, 160601, 2011.