Kugel ball as an interesting application of designing the hydrosphere

Ahmad W. Yacout Elsecendarany

Mechanical Department, Faculty of Engineering, Alexandria University, Egypt

Received December 2020

Abstract

Analytical solutions are not available for the partial hemispherical hydrosphere which called as the Kugel ball fountain or the Kugel ball. However, this study offers a comprehensive idea about this phenomenon presenting a design map that gives a panoramic sight enabling the designers to easily choose whatever specifications needed for their fountain. Through simplifying the author previous formulae for this type of bearings, this paper removes the mystery of the Kugel ball phenomenon and shows that no complicated mathematic or physics are needed, as believed, to be grasped for producing such fountains. A new simple design technique is used and the most two famous fountains (at the House of Science in Patras, Greece and the largest at the Science Museum of Virginia, Richmond, USA.) are checked as an application of this design. One of the most important side results of this study is finding the equilibrium point, discovered in the author previous papers, which was considered as the equilibrium point between the forces of centripetal inertia, viscosity and friction due to the surface roughness. It becomes clear that this point is a natural characteristic of this type of bearings.

Keywords: Kugel ball mathematics, externally pressurized bearings; spherical bearings; surface roughness; hydrostatic bearings design; Inertia effect

1. Introduction

Kugel ball, as defined in the fountain Wikipedia, is a water feature or sculpture where a sphere sits in a fitted hollow in a pedestal, and is supported by aquaplaning on a thin film of water. Pressurized water flows between the sphere and socket, creating a mechanical hydrostatic bearing that is nearly frictionless. The sphere can weigh thousands of kilograms, but the efficient bearing allows it to be spun by the force of a hand. The sphere does not float, being denser than water; it is often made from granite. The hydraulics of the fountain can be controlled so that the axis of rotation of the sphere changes continually [1]. To understand the Kugel ball phenomenon it is necessary to go back to the first hydrosphere found by Shaw and Strang [2] where it is suggested through theoretical and experimental work that the lubricant inertia could explain the performance of the bearing. Block and Cameron [3] disputed Shaw and Strang suggestion putting forward approximate calculations to support their view. Dowson and Taylor [4-5] offered more complete theoretical analysis by starting with the equations of motion and reducing them to a usable form retaining only the centripetal inertia terms. Yacout [6-11] developed Dowson form to be able to handle this type of bearings with its different configurations, in presence of the surface roughness centripetal inertia and the lubricant variable viscosity, investigating its performance in details and offering a single equation forms this type and a design for restricted and self-restriction fitted bearing, which the Kugel ball is to be considered a partially hemispherical configuration of the hydrosphere. Snoeijer and Weele [12] offered mathematical analysis for the Kugel ball and concluded that, as a matter of fact, the kugel fountain can be thought of as a giant ball bearing. D’Alessio and Pascal [13] offered analytical investigation of the steady flow of a thin fluid layer over a sphere resulting from a constant discharge from a small hole at the top of the sphere concluding that, as the technique and approach adopted can be used to model other thin flows that occur in similar settings. Inasmuch as the hydrosphere has been found, the arguments about this type of bearings have not been stopped; however, the present study mainly offers a new technique for designing the Kugel ball as a partially hemispherical hydrostatic thrust spherical bearing.
\[A = - (6 \mu q / e^3 \pi p_i) \]
\[a = \text{Bearing projected area (} \pi R^2 \text{)} . \]
\[b^2 = 3 \sigma^2 \]
\[D = \text{Ball diameter} \]
\[d_{or} = \text{Orifice restrictor diameter} \]
\[d_{io} = \text{Bearing inlet orifice diameter}. \]
\[e = \text{Eccentricity.} \]
\[e_i = \text{Lateral eccentricity (dislocation)} \]
\[h = \text{Film thickness} = e \cos \theta \]
\[h_c = e \cos \theta_c \]
\[h_i = e \cos \theta_i \]
\[J_f = \text{Geometry factor} = 1/W \]
\[JFQ = J_f Q^2 \text{ For the ball} \]
\[jfqc = J_f Q^2 \text{ For the ball at different } (\eta) \]
\[K_c = (e/R) \]
\[K_{or} = \text{Orifice restrictor constant} \]
\[M = \text{Dimensionless torque} = \frac{me}{2\pi \mu \Omega R^4} \]
\[m = \text{Rotational torque}. \]
\[m_{or} = \frac{d_{or}}{d_{io}} \]
\[m_u = \text{The moment due to the ball center dislocation} \]
\[N = \text{Rotational speed (rpm)} \]
\[p_i = \text{Inlet pressure} \]

1. Expressions Needed
Simplifying the expressions in Yacout (6-11) gives the simplest forms of the equations needed for the Kugel ball at the appendix, which cover the un-recessed fitted hydrosphere. Equating the parameter: \((K_r, K_s, K_v, S, \lambda) \) with zero for un-recessed stationary fitted bearing supplied with constant viscosity lubricant, the expressions become surprisingly simple:

![Figure 1.Bearing configuration](image)

1.1 Dimensionless Pressure
\[P = \frac{A}{1 + b^2} \left[\frac{1}{2b^2} \ln(1 + b^2 \sec^2 \theta) + \ln(\tan \theta) \right] + B \] (1)

Where:

\[p_s = \text{Supply pressure} \]
\[q = \text{lubricant volume flow rate} \]
\[R = \text{Ball radius} \]
\[W = \text{Dimensionless load carrying capacity (} w_1/\pi R^2 p_i \text{)} . \]
\[w = \text{Ball weight}. \]
\[\beta = p_i / p_s \]
\[\phi_o = \text{Seat outer rim angle} \]
\[\phi_i = \text{Seat inner rim angle} \]
\[\theta = \text{Angle co-ordinate} \]
\[\theta_i = \text{Inlet flow angle} \]
\[\theta_e = \text{Outlet flow angle} \]
\[\rho = \text{Lubricant density (1000 N. s}^2/\text{m}^4) \]
\[\sigma = \text{Dimensionless surface roughness parameter} \]
\[\sigma_i^2 = \text{Variance of the film thickness} \]
\[\Lambda = (h_{mn} / \sigma) \text{ Dimensionless film thickness parameter (5:100) for the hydrodynamic lubrication regime} \]
\[\gamma = \text{Specific weight of the ball material} \]
\[\eta = 2\phi_i / \pi \]
\[\xi = \text{Normalized roughness Parameter (0.05:1)} \]
\[\lambda = \text{Bearing stiffness} \]
\[\mu = \text{Lubricant viscosity (0.001 N. s} / \text{m}^2) \]
\[\Omega = 2 \pi N \]

1.2 Dimensionless Load Carrying Capacity
\[W = \sin^2 \theta + \frac{A}{2b^2 (1 + b^2)} \left(\cos^2 \theta + b^2 \right) \ln(\cos^2 \theta + b^2) \]
\[\left. - \frac{\sin^2 \theta}{1 + b^2} \right] \ln(\sin \theta) - \frac{\cos^2 \theta}{b^2} \ln(\cos \theta) \right|_{\theta_i}^{\theta} + B[\cos^2 \theta]_{\theta_i}^{\theta} \] (4)
\[W = \frac{w}{\pi R^2 \beta p_s} \]

1.3 Dimensionless Rotational Torque
\[M = \left[\frac{\cos \theta}{2} \right]^2 + \left(\sigma_i^2 - 1 \right) \ln(\cos \theta) + \frac{\sigma_i^2}{2(\cos \theta)^2} \] (5)
\[M = me/2\pi \mu \Omega R^4 \] (6)

1.4 Dimensionless Flow rate
\[Q = -A = 6 \mu q / \pi e^3 \beta p_s \]
\[q = K_{or} \sqrt{(1 - \beta)} / p_s \]
\[K_{or} \sqrt{C_d \pi m_{or} / 8 \rho} \]
\[d_{io} = R \sin (\phi_i) \& m_{or} = d_{or} / d_{io} \]

2. Kugel Ball Mathematics
2.1 Supply pressure
From eq. (4):
\[W = (4/3) \pi R^3 \gamma / \pi R^2 \beta_p \]
\[p_s = (2/3) \beta D \gamma J_f \]
(8)

2.2 Ball design parameter (bdp)
From eq. (7, 8):
\[J_f Q^2 = \frac{54 \mu^2 K_{in}^2 (1 - \beta)}{\pi^2 e \delta D \gamma \beta} \]
(9)

2.3 Ball Rotation
From eq. (6):
\[\Omega = m_e / 2 \pi \mu M R^4 \]
(10)

Reforming eq. (4) becomes:
\[W = W_e + W_i - W_f \]
\[W_e = \sin \theta_e \]
\[W_i = \frac{A}{2b^2(1+b^2)}[(\cos^2 \theta_e + b^2) \ln(\cos \theta_e + b^2) \]
\[- \sin^2 \theta_e \ln(\sin \theta_e) - \frac{(\cos^2 \theta_e)}{b^2} \ln(\cos \theta_e)] + B \cos \theta_e \]
(11)
\[W_i = \frac{A}{2b^2(1+b^2)}[(\cos^2 \theta_i + b^2) \ln(\cos \theta_i + b^2) \]
\[- \sin^2 \theta_i \ln(\sin \theta_i) - \frac{(\cos^2 \theta_i)}{b^2} \ln(\cos \theta_i)] + B \cos \theta_i \]

From figure (2):
Balancing the forces gives:
\[m = m_e - m_i \]
\[m_e = W_e R \sin \theta_e \]
(12)
\[m_i = W_i R \sin \theta_i \]
\[m_w = we_l \]
(13)

2.4 The lubricant film thickness
\[h_e = e \cos \theta_e \]
\[h_i = e \cos \theta_i \]
(14)

3. DESIGN PROCEDURES
The ball diameter is (D) and its specific weight is (\gamma)
Then:
1. Select the parameters of (\epsilon, \varphi, \beta, m_w)
2. Draw (J_f) at different values of (\eta)
3. Draw (\Omega) or (N) at different values of (\eta)
4. Draw (J_f Q^2) at different values of (\eta) i.e., the graph (jfqc - \eta) or the suggested name (bdp) graph.
5. Calculate the ball (J_f Q^2) based on the selected parameters i.e., (JFQ)
6. The intersection between the calculated (JFQ) with the drawn graph (jfqc - \eta) gives the required (\eta).
7. By this determined (\eta) find the (J_f) graphically from the curve (J_f - \eta).
8. Determining (J_f) the supply pressure (p_s) could be calculated from equation (8).
9. Getting (p_s) the flow rate (q) could be calculated from equation (7).
10. The ball rotational speed (N) could be calculated from equation (10) or graphically from the (N - \eta) graph.
11. The minimum and maximum lubricant film thicknesses could be calculated from equation (14).
12. Calculate the ball center dislocation (e_l) through equating the two moments in equations (12, 13).

4. Design Examples.
4.1 Checking the house of science fountain in Patras, Greece
The fountain specifications are:
Ball radius (R) = 0.5 m fitted with the seat.
Material, granite, specific weight \((\gamma) = 2.75 \times 10^4 \) N/m\(^3\)

Following the previous design procedures:
\(\phi_r = 2.31 \) deg, \(K_c = 1/775 \), \(m_o = 1 \) for self-restriction [11] and \(\beta = 2/3 \) for consistency [6-11], water lubricant \(\rho = 10^3 \) Kg/m\(^3\), \(\mu = 0.001 \) N.s/m\(^4\)

From eq. (7):
\[
K_{or} = \sqrt{C_d \pi m_o d_{io} / 8 \rho}
\]
\[
d_{io} = R \sin (\phi_r)
\]
\[
K_{or} = (0.6 \times (22/7) \times (1) \times (0.5 \times \sin(2.31)) / (8 \times 0.001))^{1/2} = 8.5593 \times 10^{-6}
\]

From eq. (10):
\[
J_f Q^2 = \frac{54 \mu^2 K_c^2 (1 - \beta)}{\pi^2 \rho D \gamma \beta}
\]
\[
= 54 \times (0.001)^2 \times (8.5593 \times 0.001) / [(22/7)^2 \times (0.5 \times 775) \times (1) \times (2.75 \times 10^4) \times (2/3)] = 0.1011
\]
\(JFQ = 0.1011 \)

From figure \((Jfqc-\eta)\), the intersection between the \((JFQ)\) and the \((jfqc)\) gives:
\(\eta = 0.6887 \)

From the geometry factor could be known mathematically or graphically as:
\(J_f = 3.1868 \)

From equation (8):
\[
P_s = (2/3 \times 3/2) \times (1) \times (2.75 \times 10^4) \times (3.1868)
\]
\[
= 8.763 \times 10^6 \text{ N/m}^2
\]

Ball weight \((w) = 1.4399 \times 10^4 \) N

From equation (7):
\[
q = (8.5593 \times 10^{-6}) \times \{1 - (2/3) \} \times p_s \times 1/2
\]
\[
= 0.001468 \text{ m}^3/s
\]
\(q = 1.468 \) Liter/s

From equation (14):
\[
h_e = e \cos \theta_e
\]
\[
h_i = e \cos \theta_i
\]
\[
\phi_b = 2.31 \text{ deg}
\]
\[
\phi_a = \eta \times \pi / 2 = 0.6887 \times 90 = 62 \text{ deg}
\]

The difference between \((\phi & \theta) \) could be neglected or could be found, in details, in yacout [10] which gives:
\(\theta_1 = 2.307 \) deg
\(\theta_2 = 61.9178 \) deg
\(e = R \times K_c \times (0.5 \times 1/775) \times 10^6 = 645.16 \) micron
\(h_1 = e \cos \theta_1 = 645.16 \times \cos (2.307) = 644.64 \) micron
\(h_i = e \cos \theta_i = 645 \times \cos (61.9178) = 303.7 \) micron
\(h_e = 644.64 \) micron
\(h_i = 303.7 \) micron

From equations (5, 9, 11 and 12) the rotational speed could be mathematically calculated or graphically through \((N-\eta) \) and \((M-\eta) \) graphs.

\(m = 0.041 \text{ N.m} \)
\(M = 0.3644 \)
\(N = -1.7645 \text{ rpm} \) (A. C. W.)

From equations (13):

\[e_i = m/w = (0.041/1.4399 \times 10^4) \times 10^6 = 2.846 \text{ micron} \]
\[e_i = 2.846 \text{ micron} \]

Figure 5 Design Example 1

Figure 6 Design Example 1

Figure 7 Design Example 1

4.2 Checking Virginia Museum fountain in Richmond, USA

The main difference between this example and the previous one is the ball stagnation.
The fountain specifications
It has the same previous specifications except the ball radius.
Ball radius = 1.5 m
Starting with the selection of:
\[\phi_i = 2.31 \text{deg}, \quad m_{cr} = 1, \quad \beta = 2/3 \]
and with aid of subfigure (3-b) select \(K_r = 1/1750 \), which gives the minimum \((\eta) \) that satisfies the condition of \((m = 0) \), i.e., no rotation, the figures (8-10) could be drawn and all needed information could be got as before either mathematically or graphically.

5. RESULTS
The Kugel ball is treated as an un-recessed fitted self-restriction hydrosphere through a new design technique simplifying the hydrosphere formulae and developing two special simple characteristic equations governing the kugel ball design.
A side result of this study is finding the partially hemispherical hydrosphere, equilibrium point which was believed to be as the point of balance between the centripetal inertia, the viscosity and the surface roughness friction forces.

6. DESCUTION
The new provided design technique simplifies the fitted hydrosphere formulae deriving the two characteristic equations (8, 9) especially for this pattern of the fitted hydrosphere.
Equation (8) simply calculates the pressure supply through multiplying the ball diameter by its specific weight and the bearing geometry factor.
Equation (10) is a master governing relation where it could be really defined as the bearing or the ball design parameter \((bdp) \); it combines the geometry factor with the dimensionless flow rate in a simple form yielding a constant value.

6.1. General ball characteristics
Figures (3, 4) show the ball behavior at different partial seats and different eccentricities.
Subfigure (3-a) shows that the dimensionless rotational torque \((M) \) increases with \((\eta) \) and decreases with \((e) \) which is supported by Yacout [6].
Subfigure (3-b) is new and could be considered as an important side result of this study and will be discussed in details later on, however, it enables the designer to know the parameter \((\eta) \) that makes the ball stagnant.
Subfigures (3-c, d) show the ball rotational speed and the \((\eta) \) range that the ball changes its rotational direction.
Subfigures (4-a) shows that the dimensionless flow rate decreases with \((\eta) \) while increases with \((e) \), supported by yacout [6-11].
Subfigures (4-b) shows the geometry factor \((J_f) \) where it decreases with \((\eta) \) and increases with \((e) \) which is logic where \((J_f = 1/W) \) and \((W) \) increases with \((\eta) \) and decreases with \((e) \), supported by Yacout [10-11].
Subfigures (4-c) show the intersection between the \((JFQ) \) parameter of the designed ball with the \((J_f) \) curve to determine \((Q^2) \) and with \((jfcq) \) curve to determine \((\eta) \).
Subfigures (4-d) show a design map that gives a panoramic sight on the ball behavior to enable the designer to quickly choose the area of his work.

6.2. Checking the first example
Figures (5, 6 and 7) represent the first design example procedures and calculations.
From subfigure (5-a) the parameter \((\eta) \) is determined; then, after getting \((\eta) \), the geometry factor \((J_f) \) is determined from subfigure (5-b).
After getting \((\eta) \) and \((J_f) \), the pressure supply \((p_i) \), the flow rate \((q) \), the rotational speed \((N) \) and other specifications have be got mathematically and also graphically.
Subfigures (5-d) and (6-b) show the designer the ability to design a stagnant ball.
Subfigures (6-c.d), represent the supply pressure and the flow rate where (p, and q) could be easily determined graphically. Figure (7) represent the lubricant film thicknesses at its inlet and outlet where the thickness could be graphically determined. Looking at the few data mentioned by Snoeijer and van der Weele [12] about this example, it could be realized the agreement with the present results. However, despite the lack of information about the specifications of this example, the results reveal that the Kugel ball is a self-restriction hydrosphere Yacout [11].

6.3. Checking the second example
Figures (8-10) represent the second design example procedures and calculations.
In this example the ball is stagnant, hence, figure (3-b) is necessary to get the idea about the parameter (η) that could result in the zero moment then the same procedures are to be applied as before to get the results mathematically or graphically as shown in the first example. Due to the absence of data about this example, the present results could be considered as a temporary guide for the future investigations.

6.4. The side result
The side result got in this study is the point of minimum moment, subfigures (3-b); this point appears in yacout [6-8] which considered as the equilibrium point between the forces of the centrifugal inertia, viscosity and surface roughness friction. This point of minimum moment appears around (η) value of (0.75). From subfigures (5-b) and (8-b), the geometry factor at this point is (2.406 - 2.411) and its load carrying capacity (W ~ 0.416) which coincides with the equilibrium point of the fitted hydrosphere in yacout [6]. It becomes clearly now that the name of this point and the reason of its appearance is not the balance between the aforementioned forces and it could be assured that the point’s name is the minimum moment and the reason is the minimum difference between (m_a, and m_i) where the centrifugal inertia will not affect this difference despite its effect on the load carrying capacity (W).

7. CONCLUSION
The new design technique has many advantages where it:
- Results in deriving two simple characteristic relations where the first is concerned with the supply pressure and the second with the flow rate. While the first one is especially for the Kugel ball, the second one could be generally applied to the hydrosphere where no hydrosphere could be outside this relation.
- Proves that the Kugel ball is just a simple hydrosphere based on simple mathematics not as believed before.
- Offers the mathematical reason of the ball rotation calculating its rotational speed whilst the concerned references treated the rotation or (spin as said in these references) as to be a fact.
- Proves that the lubricant film is not a sheet as believed and mentioned in the references but a convergent shape with different thicknesses.
- Finds, as a side result, the real reason of what is called the forces equilibrium point of the hydrosphere.
- Offers a design map of panoramic sight on the ball characteristics to help the designer select the needed specifications.

- Show clearly, through the two design examples, that the increase in the seat arc length decreases the supply pressure which leads to levitate the ball by low pressure.

8. FUTURE WORK
Based on the conception of this especial hydrosphere, a general new design technique will be offered to simply design the externally pressurized thrust spherical hydrostatic bearings avoiding the difficulties in the previous designs and improving the method of selecting the proper bearing.

APPENDIX
All mathematical equations related to the hydrosphere could be found in Yacout [6-11] and the necessary ones which serve this design are listed.

A1. Dimensionless Pressure
\[P = \frac{A}{1 + b^2} \left[\frac{1}{2b^2} \ln(1 + b^2 \sec^2 \theta) + \ln(\tan \theta) \right] - 2S \cos^2 \theta + B \]
\[A = \frac{(1 + b^2)[1 - 2S(\cos^2 \theta_e - \cos^2 \theta_i)]}{2b^2} \ln(1 + b^2 \sec^2 \theta_e) + \ln(\tan \theta_e) \]
\[B = 2S \cos^2 \theta_e - \frac{A}{1 + b^2} \left[\frac{1}{2b^2} \ln(1 + b^2 \sec^2 \theta_e) + \ln(\tan \theta_e) \right] \]

A2. Dimensionless Load Carrying
\[W = \sin^2 \theta_i + \frac{A}{2b^2(1 + b^2)} \left[\ln(\cos^2 \theta + b^3) \ln(\cos^2 \theta + b^3) - \frac{\sin^2 \theta}{1 + b^2} \ln(\sin \theta) \right] \]
\[- \frac{(\cos^2 \theta)}{b^2} \ln(\cos \theta) \right)_1^{b} - S[\cos^4 \theta]_0^{b} + B[\cos^2 \theta]_0^{b} \]
\[W = w/ \pi R^2 \beta \rho \]

A3. Dimensionless Frictional Torque
\[M = \left(\frac{\cos \theta}{2} \right)^2 + \left(\sigma^2 - 1 \right) \ln(\cos \theta) + \frac{\sigma^2}{2(\cos \theta)^2} \right)_0^{b} \]
\[M = me / 2\pi \mu L R^4 \]

A4. Dimensionless Flow rate
\[Q = -A = 6\mu q / \pi e^3 \beta \rho \]
\[q = K_{or} \sqrt{(1 - \beta)} \rho \]
\[K_{or} = \sqrt{C_d \pi m_o d_{io} / 8 \rho} \]
\[d_{io} = R \sin(\phi_o) \]
\[m_{or} = d_{or} / d_{io} \]

A5. The lubricant film thickness
\[h_e = e \cos \theta_e \]
\[h_i = e \cos \theta_i \]

A6. Geometry Factor
\[J_f = 1/W \]
REFERENCES

[1] Fountain Wikipedia. https://en.wikipedia.org/wiki/Kugel_fountain

[2] The hydrosphere, A new hydrodynamic bearing,” Shaw M. C. and Strang C. D. “The annual meeting of the American Society of Mechanical Engineers, 1948, 137-146. https://sites.google.com/umich.edu/shihlabs/prof-milton-shaw/manuscript-of-professor-milton-shaw

[3] Discussion of Shaw and Strang hydrosphere, a new hydrodynamic bearing, “Block H. and Cameron A. “Transaction of ASME J. Appl. Mech. 1949, Vol. 71, 93-102

[4] Fluid-inertia effects in spherical hydrostatic thrust bearings, “Dowson D. and Taylor C. M. “ASLE, Transaction, 1967, 10, 316-321. https://doi.org/10.1080/0569819670897218cooms

[5] Re-examination of hydrosphere performance, "Dowson D. and Taylor C. M. “ASLE, Transaction, 1967, 10, 325-333. https://doi.org/10.1080/0569819670897218cooms

[6] The combined effects of the centripetal inertia and the surface roughness on the hydrostatic thrust spherical bearings performance, Ahmad W.Yacout, Ashraf S. Ismail, Sadek Z. Kassab, Tribology International, 2007, 40(3), 522-532. https://doi.org/10.1016/j.triboint.2006.05.007

[7] W., Ismail A. S. and Kassab S. Z.,” The Surface Roughness Effect on the Hydrostatic Thrust Spherical Bearings Performance (part2 un-recessed clearance type), ASME International Mechanical Engineering Congress and Exposition, IMECE2006-13004. https://doi.org/10.1115/IMECE2006-13004

[8] Yacout A. W., Ismail A. S. and Kassab S. Z.,” The Surface Roughness Effect on the Hydrostatic Thrust Spherical Bearings Performance (Part3 recessed clearance type of bearings), “ASME International Mechanical Engineering Congress and Exposition, IMECE 2007 -41013. https://doi.org/10.1115/IMECE2007-41013

[9] The Effect of the fluid Film variable viscosity on the hydrostatic thrust spherical bearing performance in the presence of centripetal inertia and surface roughness,’ Ahmad W. Y. Elescandarany,’ International Journal of Mechanical Engineering and Applications, 2018, 6 (1), 1-12. https://doi: 10.11648/j.ijmea.20180601.11

[10] Design of the Hydrostatic thrust spherical bearing with restrictors (Fitted type),’ Ahmad W.Y. Elescandarany’ International Journal of Mechanical Engineering and Applications, 2019, 7 (2), 34-45. https://doi:10.11648/j.ijmea.20190702.11

[11] Design of Self-restriction Hydrostatic Thrust Spherical Bearing (Fitted Type)’ Ahmad W.Y. Elescandarany’ International Journal of Mechanical Engineering and Applications, 2019, 7 (4), 111-122. https://doi:10.11648/j.ijmea.20190704.14

[12] Physics of the granite sphere fountain,’Jacco H. Snoeijer and Ko van der Weele, ‘American Journal of Physics 2014, 82, 1029. https://doi:10.1119/1.4886365

[13] The dynamics of the globe fountain, ’Serge D’Alessio1 and J.P. Pascal, ‘AFM 2016, September 5-7, Ancona, Italy. https://doi:10.2495/cmem-V4-N2-131-141