Coherent radiation of atoms and a channeling particle

V. Epp, M. A. Sosedova

Department of Theoretical Physics, Tomsk State Pedagogical University, Tomsk, 634061, Russia.

Abstract

New mechanism of radiation emitted at channeling of a relativistic particle in a crystal is studied. Superposition of coherent radiation of the atoms in a crystal lattice which are excited by a channeling particle and radiation of the channeling particle itself is considered. It is shown that coherent radiation of the chain of oscillating atoms forms a resonance peak on the background of radiation of the channeling particle.

Keywords: radiation, channeling, crystal lattice, atoms vibration, coherence

PACS: 61.85.+p, 63.10.+a, 29.25.-t, 34.50.-s

1. Introduction

Channeling of the charged particles was predicted by American scientists M.T. Robinson and O.S. Oen in 1961 and was discovered by several groups of scientists in 1963 – 1965. Channeling of the accelerated particles was investigated in detail both theoretically and experimentally. The effect of channeling has served as the base for development of new experimental methods of research on the crystal structure. It makes possible to measure distribution of electronic density in inter-atomic space of crystals and exact orientation of the crystal planes. Channeling of ions is used recently for direct detections of WIMP (Weakly Interacting Massive Particle) – the Dark Matter candidates.

At interaction between the channeling particle and a crystal the electromagnetic radiation is generated. In the framework of classical electrodynamics one can consider this radiation as radiation from different sources, such as radiation of the channeling particle, radiation of the electronic gas (wake trace) and radiation of the atoms excited by a channeling particle. Radiation of a channeling particle is investigated in details in many papers and books, see for example. Experimental study of radiation of wake fields can be found in. Less attention is paid to radiation of the atoms excited by a channeling particle. The last effect consists of two different parts – radiation emitted at decay of excited state of atom, and radiation of vibrating atomic nucleus. When channeling, the charged particle transmits part of its transverse momentum to the surrounding atoms. This excites vibration of atomic nucleons together with the inner electrons. This phenomenon is similar to the vibrational excitation of molecules and causes respective radiation. But vibrations of atoms in the channel are coherent,
because they are exited by the same channeling particle. This can lead to sufficient amplification of radiation intensity.

Assumption on radiation of this kind was expressed recently in [2]. It was shown that radiation of an atomic chain is collimated in direction of the channeling particle velocity. But proper radiation of the channeling particle was not taken into account. Actually, the field of radiation should be calculated as a superposition of fields generated both by channeling particle and excited atoms.

In this paper we study the field of vibrating atoms in some more details and calculate angular distribution of radiation resulting from superposition of fields produced by channeling particle and excited atoms. In section 2, we discuss some features of radiation field of atomic chain which were not studied in [2]. Next section presents calculation of the net field produced by channeling particle and excited atoms. We discuss the ratio of radiation intensity caused by vibrating atoms and by channeling particle. Angular distribution of radiation is plotted.

2. Field of the atomic chains exited by a channeling particle

Electric field $E_a(t)$ of vibrating atoms in far zone is given by equation (30) in [2]. We rewrite this equation in a complex form

$$E_a(t) = \frac{A_0}{2k} \left\{ \frac{e^{i\nu t} - e^{-i\Omega' t}}{\nu + \Omega'} + \frac{e^{i\nu t} - e^{i\Omega' t}}{\nu - \Omega'} \right\},$$

(1)

for $t \leq Lk$ and

$$E_a(t) = \frac{A_0}{2k} \left\{ \frac{1 - e^{-ikL(\nu + \Omega')}}{\nu + \Omega'} + \frac{1 - e^{-ikL(\nu - \Omega')}}{\nu - \Omega'} \right\},$$

(2)

for $t > Lk$. Here

$$A_0 = \frac{2eq^2K \sin \theta}{mVD^2\omega b Rc}, \quad k = \frac{1}{V}(1 - \beta \sin \theta \sin \varphi), \quad \nu = \omega + i\alpha,$$

(3)

V is the mean velocity of the channeling particle, $\beta = V/c$, c is the speed of light, e is the charge of the channeling particle, m is the mass of atom, $2D$ is the width of the channel, b is the spacing between atoms in an atomic chain and q is an effective charge of a nucleus of atom which is screened by the interior electrons. Angles θ and φ of spherical coordinate system are depicted in Fig. 1. K and Ω are the amplitude and frequency of channeling particle oscillations which are bound to XOY plane. The mean velocity of the particle is directed along the X-axis, the particle enters the crystal at $x = 0$ and leaves it at $x = L$. An exited atom of the crystal lattice is oscillating along the Y-axis with frequency ω and amplitude decreasing in time as $\exp(-\alpha t)$, where α is the attenuation factor.

Further we consider only this part of radiation. Taking the real part of equation (I) we obtain

$$E_a(t) = -\frac{A_0}{k} \left\{ \frac{2\alpha\Omega'^\alpha \sin \Omega't}{(\alpha^2 + \omega^2 - \Omega'^2)^2 + 4\alpha^2\Omega'^2} \right\} \left\{ \cos \Omega't \left[\left(\alpha^2 + \omega^2 \right)^2 + \Omega'^2(3\alpha^2 - \omega^2) \right] \right\}.$$

(4)
This field has some features typical for the field of relativistic charged particle though the radiation is caused by non-relativistic vibrating atoms. First, the multiple $1 - \beta \sin \theta \sin \varphi$ in denominator of A_0 shows that main part of radiation is concentrated around the direction of the particle velocity β. Second, the frequency of radiation Ω' is just the same as the frequency of the relativistic channeling particle. Coherence of radiation is expressed by factor b in denominator of A_0. It shows that intensity of radiation is proportional to the square of linear charge density q/b. Denominator of this expression is of typical resonant character. Indeed, if attenuation of atomic vibrations vanishes ($\alpha \to 0$) and $\Omega' = \omega$, the electric field defined by the above equation tends to infinity.

3. Superposition with the field of channeling particle

Radiation of the vibrating atoms is emitted at the same frequency Ω' as the radiation of the channeling particle. And in case of relativistic particle it is concentrated in the same narrow cone around the direction of the particle velocity. Hence, the fields of both sources are correlated and the resulting field must be calculated as superposition of the fields.

Let us calculate the radiation field of the channeling particle. Electric field E_c of a moving charge e is given by equation [8]:

$$E_c = \frac{e}{c^2 R(1 - \beta n)^3} \left[n \left[(n - \beta) \dot{v} \right] \right],$$

where \dot{v} is the velocity of charged particle and $\beta = v/c$. Next, we assume that the transversal component v_\perp of the particle velocity is small enough to satisfy inequality $v_\perp \ll c \sqrt{1 - \beta^2}$. It is shown in [8] that in this case we can consider v as being constant, keeping as time dependent only \dot{v}. Hence, we put $v = (V, 0, 0)$.

Substituting the low of motion $x(t) = V t$, $y(t) = K \cos \Omega t$, $z(t) = 0$ into (5) we get the electric field components in spherical coordinates defined by Fig. 1:

$$E_{c\theta} = \frac{e K \Omega^2 (\beta \sin \varphi - \sin \theta) \cos \Omega t}{c^2 R(1 - \beta \sin \theta \sin \varphi)^3}, \quad E_{c\varphi} = \frac{e K \Omega^2 \beta \cos \theta \cos \varphi \cos \Omega t}{c^2 R(1 - \beta \sin \theta \sin \varphi)^3}. \quad (6)$$

The net radiation field E is a vector sum of the fields of atomic chains (4) and of the channeling particle (6). The electric field E_\perp is polarized in a plane which includes axis 3.
In order to compute the intensity of radiation we average over time the square of the resulting field. This yields

\[
E^2_\theta = E^2_0 \left\{ \frac{(\beta \sin \varphi - \sin \theta)^2}{(1 - \beta \sin \theta \sin \varphi)^4} \right. \\
-2\eta^2 \frac{\sin \theta (\beta \sin \varphi - \sin \theta)}{(1 - \beta \sin \theta \sin \varphi)^2} \left[(\alpha^2 + \omega^2)^2 + \Omega^2 (3\alpha^2 - \omega^2) \right] \\
\left. \left(1 - \beta \sin \theta \sin \varphi \right)^4 \right\} ,
\]

(7)

\[
E^2_\varphi = \frac{E^2_0 \beta^2 \cos^2 \theta \cos^2 \varphi}{(1 - \beta \sin \theta \sin \varphi)^4} ,
\]

(8)

where

\[
E_0 = \frac{e\Omega^2 K}{\sqrt{2} c^2 R(1 - \beta n_x)} ,
\]

\[
\eta = \frac{2q^2}{m \gamma'^2 \Omega^2 b L^2} , \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}} .
\]

Factor \(\eta \) shows the relation between the intensity of radiation generated by atoms and radiation emitted by the channeling particle.

For an ultra-relativistic particle we have only to consider small angles around the velocity direction and can make the usual approximation, leading to reduced angles

\[
\psi_y = \gamma \left(\frac{\pi}{2} - \theta \right) , \quad \psi_z = \gamma \left(\frac{\pi}{2} - \varphi \right) , \quad \psi^2 = \psi_y^2 + \psi_z^2 ,
\]

In this approximation (7) and (8) take the form:

\[
E^2_\theta = E^2_0 \gamma^4 \left\{ 4 \frac{(1 - \psi_y^2 + \psi_z^2)^2}{(1 + \psi^2)^4} \right. \\
+4\eta \frac{(1 - \psi_y^2 + \psi_z^2)^2}{(1 + \psi^2)^2} \left[(\bar{\alpha}^2 + 1)^2 + \bar{\Omega}^2 (3\bar{\alpha}^2 - 1) \right] \\
\left. \left(1 - \beta \sin \theta \sin \varphi \right)^4 \right\} ,
\]

(9)

\[
E^2_\varphi = 32E^2_0 \gamma^4 \frac{\psi_y^2 \psi_z^2}{(1 + \psi^2)^4} ,
\]

(10)

where

\[
\bar{\alpha} = \alpha / \omega , \quad \bar{\Omega} = \Omega / \omega .
\]

(11)
Let us estimate the value of η. The frequency Ω depends on the continuous interaction potential of atomic strings with the channeled particle and is of order $\Omega \approx c\psi/D$, where ψ is the Lindhard angle

$$\psi = \sqrt{\frac{e^2}{\mathcal{E} b}}$$ \hspace{1cm} (12)$$

$\mathcal{E} = m_e c^2 \gamma$ is the energy of the channeling particle, m_e is its mass. Substituting all this into expression for η we get

$$\eta \approx \frac{q m_e}{c m \gamma}.$$

If the channeling particle is a proton, the charge of nucleus is $q = Z e$ and mass of nucleus is $m = 2Z e$, then $\eta \approx \gamma^{-1}$. But we have to take into account the resonant character of the last term in equation (9). Substituting $\tilde{\Omega}' = 1$ into (9) we see that the ratio of last term to the first one is of order $\eta^2 \alpha^{-2} \sim \left[\frac{m_e}{m \gamma \alpha} \right]^2$.

Hence, in case of heavy channeling particle and low attenuation the radiation intensity of the atomic string can be comparable with radiation intensity of the channeling particle. The resonance condition

$$\tilde{\Omega}' = 2\gamma^2 \frac{\Omega}{\omega (1 + \psi^2)} = 1$$ \hspace{1cm} (13)$$
can be fulfilled only if $2\gamma^2 \Omega/\omega > 1$.

As an example we have plotted angular distribution of radiation intensity

$$I_i(\psi_y, \psi_z) = \frac{c}{4\pi} R^2 E_i^2, \hspace{0.5cm} i = \theta, \phi$$

using formula for the field components (9) and (10). We put $\eta = 10^{-2}$, $\gamma = 100$, $\tilde{\alpha} = 10^{-2}$.

Polarization components of radiation are shown in the Figs 2 and 3. Axes Y and Z correspond to ψ_y and ψ_z respectively. All figures are plotted for interval $-1 < \psi_y < 1$, $-1 < \psi_z < 1$.

![Figure 2: Polar component of radiation intensity I_θ.](image)

We see that the main part of radiation intensity is the radiation of the channeling particle which in our case is represented by radiation of an harmonic oscillator moving with constant velocity. Radiation of this source is investigated in details in many papers (see for example [9] and references therein). Radiation emitted by the vibrating atoms is represented as a sharp peak at definite angle ψ. The angular distribution of total radiation intensity $I = I_\theta + I_\varphi$ is depicted in Fig. 4.
4. Conclusion

At first glance, radiation of atoms exited by a channeling particle and vibrating in the points of crystal lattice is negligible small because of small amplitude and small frequency of vibrations, which is a consequence of relatively great mass of atoms. But if we take into account that great number of atoms are involved in coherent oscillations by the channeling particle, we get sufficient amplification of the intensity of radiation. Derived expressions show that this kind of radiation can be comparable in magnitude with radiation of the channeling particle itself. It is shown that the vibrating atoms produce radiation field which results in a sharp peak at certain directions on the background of radiation of the channeling particle. This effect can be observed at channeling of heavy relativistic particles such as protons or ions. Very simplified model of crystal lattice was used just to show the essence of the phenomenon. Many details have not been taken into account.

For example, this paper has not reviewed thermal vibrations of atoms. These can be taken into account by adding random oscillations to the regular harmonic oscillations. This will cause additional background in intensity of radiation. Evidently, the momentum inhomogeneity in a beam of the channeling particles will broaden the resonant peak of radiation shown in Figs 2 and 4.

Acknowledgement

This research has been supported by the grant for LRSS, project No 224.2012.2.
References

[1] M.T. Robinson, O.S. Oen, Phys. Rev. 132 (1963) 2385 - 2398
[2] E.M. Drobyshevski, Mod. Phys. Lett. A 23 (2008) 3077 - 3085
[3] R. Bernabei, P. Belli, F. Montecchia, F. Nozzoli and F. Cappella, et al, Eur. Phys. J. C 53 (2008) 205 - 213
[4] J. Lindhard, Phys. Let. 12 (1964) 126 - 128
[5] V.A. Bazylev, N.K. Zhevago, Radiation Effects 54 (1981) 41- 50
[6] S.V. Shchelkunov et al, Phys. Rev. 9 (2006) 011301 - 011307
[7] V.Y. Epp, M.A. Sosedova, Tomsk State Pedagogical University Bulletin 8 (2011) 38 - 43 [arXiv:1105.3064v1 [physics.acc-ph]]
[8] L.D. Landau, E.M. Lifshitz, The classical theory of fields, fourth ed., Butterworth Heinemann, Oxford, 1994
[9] V.A. Bordovitsyn, Synchrotron radiation theory and its development, World Scientific, Singapore, 1999