IMPROVING A CONSTANT IN HIGH-DIMENSIONAL DISCREPANCY ESTIMATES

Hendrik Pasing and Christian Weiβ

Abstract. For all \(s \geq 1 \) and \(N \geq 1 \) there exist sequences \((z_1, \ldots, z_N)\) in \([0, 1]^s\) such that the star-discrepancy of these points can be bounded by

\[
D_N^*(z_1, \ldots, z_N) \leq c \sqrt{s} \sqrt[4]{N}.
\]

In practice it is desirable to obtain low values of \(c \). The best known value for the constant is \(c = 10 \) as has been calculated by Aistleitner. In this paper we improve the bound to \(c = 9 \).

1. Introduction

When quasi-Monte Carlo methods are applied in practice to answer financial mathematical questions, the occurring problems frequently involve to explicitly or implicitly calculate integrals. Often the arithmetic mean of some function evaluations \(f(z_1), \ldots, f(z_N) \) is taken as an approximation of the integral under consideration. A theoretic justification for this approach is the Koksma–Hlawka inequality which states that the difference between the arithmetic mean and the integral of a function \(f \) over the \(s \)-dimensional unit cube is bounded by the product of the total variation of \(f \) in the sense of Hardy–Krause and the so-called star-discrepancy \(D_N^*(z_1, \ldots, z_N) \).

As the problems occurring in practice are in addition typically high-dimensional (\(s \gg 0 \)) and function evaluation is expensive (\(N \ll \infty \)), see e.g. [2, 8], classical (finite) low-discrepancy sequences which satisfy the inequality

\[
D_N^*(z_1, \ldots, z_N) \leq \frac{c (\log N)^{s-1}}{N}
\]

are of limited use because the numerator grows exponentially with the dimension \(s \) (and \(s \gg 0 \)). This observation is known as the curse of dimensionality, compare e.g. [9, Chapter 1], [10]. Instead of using low-discrepancy sequences, it is hence desirable

2010 Mathematics Subject Classification: Primary 11K38; Secondary 11K31.

Key words and phrases: star-discrepancy, quasi-Monte Carlo, \(\delta \)-bracketing, curse of dimensionality.

Communicated by Slobodanka Janković.
to construct sequences which have a small star-discrepancy if \(N \) is relatively small in comparison to \(s \). This is the main task of this paper.

In \([7]\) it was shown that for every \(s \geq 1 \) and \(N \geq 1 \), there exists a finite sequence \((z_1, \ldots, z_N)\) of elements of the \(s\)-dimensional unit cube such that the star-discrepancy of this sequence satisfies

\[
D_N^*(z_1, \ldots, z_N) \leq c \frac{\sqrt{s}}{\sqrt{N}}
\]

for some constant \(c \) independent of \(s \) and \(N \). These finite sequences have a lower discrepancy than classical low-discrepancy sequences if \(s \) is relatively big in comparison to \(N \). However, no concrete value for \(c \) was calculated in this paper. In \([1]\), a new proof of the result was given including the explicit upper bound \(c = 10 \). In this paper, we improve the upper constant to \(c = 9 \). More precisely, we show:

Theorem 1.1. For any \(s \geq 1 \) and \(N \geq 1 \), there exists a sequence \((z_1, \ldots, z_N)\) of elements of the \(s\)-dimensional unit cube such that

\[
D_N^*(z_1, \ldots, z_N) < 9 \frac{\sqrt{s}}{\sqrt{N}}.
\]

An improvement of the constant \(c \) is of important practical use: for bounding the discrepancy of a sequence \((z_1, \ldots, z_N)\) deterministically by 1 we need a sequence \((z_1, \ldots, z_N)\) of length \(N > c^2 s \). So \(N \) depends on \(c^2 \) which means it is a matter of interest to find the best possible theoretical value of \(c \). Our work is a contribution to this aim.

Our proof closely follows the one presented in \([1]\). As was already mentioned therein, an improvement of Gnewuch’s upper bound for the smallest cardinality of a \(\delta \)-cover, Theorem 2.1, should result in a better value for \(c \). Indeed, in Proposition 2.1 we are able to improve Gnewuch’s result, which is another main result of our paper. Afterwards, we only need to slightly amend Aistleitner’s proof for the new upper bound and find a lower value for \(c \). A main ingredient of the proof is the use of Monte Carlo samples. Instead of using such completely random sequences, it is another idea to use less random samples, e.g. Latin hypercube sampling. Such alternative approaches have been conducted in unpublished work, \([4, 6]\) and also lead to improved values of \(c \) in comparison to \([1]\). Finally, it should be mentioned, that the rate of convergence \(\sqrt{s/N} \) is in some sense best possible: it was shown in \([3]\) by Doerr that for a random set of independent, uniformly distributed points \((z_1, \ldots, z_N)\) the inequality

\[
E(D_N^*(z_1, \ldots, z_N)) \geq c \frac{\sqrt{s}}{\sqrt{N}}
\]

for the expected value holds.

2. **Proof of the main results**

Before we come to the proof of Theorem 1.1 we collect some of the necessary background.
Discrepancy. Let $Z = (z_n)_{n \geq 0}$ be a sequence in $[0, 1)^s$. Then the star-discrepancy of the first N points of the sequence is defined by

$$D^*_N(Z) := \sup_{B \subset [0, 1)^s} \left| \frac{A_N(B)}{N} - \lambda_s(B) \right|,$$

where the supremum is taken over all intervals $B = [0, a_1) \times [0, a_2) \times \cdots \times [0, a_s) \subset [0, 1)^s$ and $A_N(B) := \left| \{ n \mid 0 \leq n < N, z_n \in B \} \right|$ and λ_s denotes the s-dimensional Lebesgue-measure. If $D^*_N(Z)$ satisfies

$$D_N(Z) = O(N^{-1}(\log N)^{s-1})$$

then Z is called a low-discrepancy sequence. For more details we refer the reader to [9].

δ-bracketing Covers. In this paper we will use the notation of δ-bracketing covers as in [5]: let $F \subset L^1([0, 1]^s)$ be a subset of the real valued Lebesgue integrable functions. For $0 < \delta \leq 1$ and $f, g \in F$ with

$$\int_{[0, 1]^s} (g(x) - f(x))dx \leq \delta,$$

we call the set

$$[f, g]_F := \{ h \in F \mid f \leq h \leq g \}$$

a δ-bracket of F. A finite subset $\Gamma \subset F$ is called a δ-cover of F, if for every $h \in F$, there exists $f, g \in \Gamma$ with $h \in [f, g]_F$. A δ-bracketing cover of F is a set of δ-brackets whose union is F. The number $N(F, d)$ denotes the smallest cardinality of a δ-cover of F, i.e.

$$N(F, d) := \min \{ |\Gamma| \mid \Gamma \text{ is a } \delta\text{-cover} \}.$$

Similarly, $N_1(|F, \delta)$ denotes the smallest cardinality of a δ-bracketing cover. In the following we will restrict to the specific subset of F which consists of all indicator function of the form $\mathbb{1}_{[0,x)}$ for some $x < 1$ and use the notation $N(s, d)$ and $N_1(|s, \delta)$ in this case.

Gnewuch’s inequality. In [5], Gnewuch proved the following inequality for $N_1(|s, \delta)$.

Theorem 2.1. [5, Theorem 1.15] Let $s \in \mathbb{N}$ and $0 < \delta \leq 1$. Then

$$(2.1) \quad N_1(|s, \delta) \leq 2^{s-1}\left(\frac{s^3}{s!}\right)\delta^{-1} + 1.$$

We will focus here on an intermediate result of Gnewuch which he derived during the proof of Theorem 2.1 and state it as a lemma. Afterwards we will show that it can be used to strengthen inequality (2.1).

Lemma 2.1. Let $s \in \mathbb{N}$ and $0 < \delta \leq 1$. Then

$$N_1(|s, \delta) \leq \sum_{k=0}^{s-2} \binom{s}{k+1}2^{s-k-2}\frac{s^s}{(s-k)!}\left(\delta^{-1} + \frac{1}{2}\right)^{s-k} + \delta^{-1} + 1.$$
Indeed, we prove here the following stronger version of Gnewuch’s inequality. Note that
\[2^{s-2} \left(\frac{s^s}{s!} \right) (\delta^{-1} + 1)^s + \frac{1}{2} (\delta^{-1} + 1) < 2^{s-1} \left(\frac{s^s}{s!} \right) (\delta^{-1} + 1)^s \]
for all \(s \geq 2 \).

Proposition 2.1 (Upper bound for covering numbers). Let \(s \in \mathbb{N} \) and \(0 < \delta \leq 1 \). Then
\[N_{\lceil s, \delta \rceil} \leq 2^{s-2} \left(\frac{s^s}{s!} \right) (\delta^{-1} + 1)^s + \frac{1}{2} (\delta^{-1} + 1). \]

Proof. We prove our claim by induction on \(s \). Let \(n := \lceil \delta^{-1} \rceil \). For \(s = 1 \) we have \(N_{\lceil 1, \delta \rceil} \leq n \leq \delta^{-1} + 1 \). So let \(s \geq 2 \). With Lemma 2.1 we have
\[N_{\lceil 1, \delta \rceil} \leq \sum_{k=0}^{s-2} \left(\binom{s}{k+1} 2^{s-k} \frac{s^s}{(s-k)!} (\delta^{-1} + \frac{1}{2})^{s-k} + \delta^{-1} + 1 \right). \]

For the right hand side we get
\[\sum_{k=0}^{s-2} \left(\binom{s}{k} 2^{s-k-2} \frac{s^s}{s!} (\delta^{-1} + \frac{1}{2})^{s-k} + \delta^{-1} + 1 \right) - \sum_{k=s-1}^{s} \left(\binom{s}{k} 2^{s-k-2} \frac{s^s}{s!} (\delta^{-1} + \frac{1}{2})^{s-k} \right) + \delta^{-1} + 1 \]

Finally
\[\sum_{k=s-1}^{s} \left(\binom{s}{k} 2^{s-k-2} \frac{s^s}{s!} (\delta^{-1} + \frac{1}{2})^{s-k} + \delta^{-1} + 1 \right) \leq \frac{1}{2} (\delta^{-1} + 1) \]
and
\[\sum_{k=0}^{s} \left(\binom{s}{k} 2^{s-k-2} \frac{s^s}{s!} (\delta^{-1} + \frac{1}{2})^{s-k} \right) = 2^{s-2} \frac{s^s}{s!} (\delta^{-1} + 1)^s \]

imply
\[N_{\lceil 1, \delta \rceil} \leq 2^{s-2} \left(\frac{s^s}{s!} \right) (\delta^{-1} + 1)^s + \frac{1}{2} (\delta^{-1} + 1). \]

Proof of Theorem 1.1. We closely follow the proof of [1, Theorem 1], and amend the arguments therein in order to take into account our improved version of Gnewuch’s inequality. For \(s = 1 \), the points of distance \(1/N \) satisfy the inequality and for \(s = 2 \), the Hammersley sequence with base 2 does the job. Therefore let \(s \geq 3 \). Without loss of generality we may assume that \(N > 81s \) because the claim trivially follows otherwise. For a clear presentation, we subdivide our proof into 5
steps. Since steps 1, 2 and 5 are essentially the same as in \cite{1}, we will not go into details here but still present them for the sake of completeness and for introducing notation. On the other hand steps 3 and 4 include some additional aspects in comparison to \cite{1}.

Step 1: Define subsets A_k and bound their cardinality by Proposition \cite{2}. Let

$$K := \lfloor (\log_2(N) - \log_2(s))/2 \rfloor.$$

Then $K \geq 3$ and

$$2^{-K} \in \left[\frac{\sqrt{s}}{2\sqrt{N}}, \frac{\sqrt{s}}{\sqrt{N}} \right].$$

By Proposition \cite{2}, there exists a 2^{-k}-cover of $[0,1]^s$ for $1 \leq k \leq K - 1$, denoted by Γ_k, such that Stirling’s formula yields

$$|\Gamma_k| \leq 2^{s-1} \left(\frac{s}{s!} \right)^2 (2^k + 1)^s + (2^k + 1) \leq \frac{1}{\sqrt{2\pi s}} 2^{s-2} \exp(s)(2^k + 1)^s + (2^k + 1),$$

because $\mathcal{N}(s, d) \leq 2\mathcal{N}(1)(s, d)$. Analogously, there exists a 2^{-K}-bracketing cover Δ_K with

$$|\Delta_K| \leq \frac{1}{\sqrt{2\pi s}} 2^{s-2} \exp(s)(2^K + 1)^s + (2^K + 1).$$

Moreover we set

$$\Gamma_k := \{v \in [0,1]^s \mid (v, w) \in \Delta_K \text{ for some } w\}.$$

Fix $x \in [0,1]^s$ arbitrarily. We want to canonically define two sequences v_k, w_k with $v_k, w_k \in \Gamma_k \cup \{0\}$ such that $0 \leq v_1 \leq v_2 \leq \ldots \leq v_{K-1} \leq v_K \leq x \leq w_K$ holds. First we choose $v_K, w_K = (v_K(x), w_K(x))$ with $v_K \leq x \leq w_K$ and $\lambda_s[v_K, w_K] \leq 2^{-K}$. For every k, $2 \leq k \leq K$ and $\gamma \in \Gamma_k$, there exist $v_{k-1} = v_{k-1}(\gamma)$ and $w_{k-1} = w_{k-1}(\gamma)$ with $v_{k-1}, w_{k-1} \in \Gamma_{k-1} \cup \{0\}$, $v_k \leq \gamma \leq w_k$ and $\lambda_s[v_k, w_k] \leq 2^{-k+1}$. Recursively we set $p_k(x) := v_k(x)$ and $p_k := v_k(v_{k+1}(x))$ for $1 \leq k \leq K - 1$. Moreover we define $p_0 = 0$. Finally, for $x, y \in [0,1]$ let

$$[x, y] := \begin{cases} [0, y] & \text{if } x \neq 0 \\ [0, y] \setminus [0, x] & \text{if } x = 0, y \neq 0 \\ \emptyset & \text{if } x = y = 0 \end{cases}.$$

For $0 \leq k \leq K - 1$, the sets $[p_k(x), p_{k+1}(x)]$ are bounded by

$$\lambda_s[p_k(x), p_{k+1}(x)] \leq 2^{-k}$$

and $[p_K(x), w_K(x)]$ by

$$\lambda_s[p_K(x), w_K(x)] \leq 2^{-K}.$$

We define A_K as the set of all sets of the form $[p_k(x), p_{k+1}(x)]$ for $0 \leq k \leq K - 1$ and A_K as the set of all sets of the form $[p_K(x), w_K(x)]$. It was proven in \cite{1} that
\(\lambda_k(A_k) \leq 2^{-k} \) for all \(0 \leq k \leq K \). Moreover, every \(p_{k+1} \in \Gamma_{k+1} \) is contained in some \(A_k \) and hence \(|A_k| \leq |\Gamma_{k+1}| \). Therefore we have
\[
|A_k| \leq \frac{1}{\sqrt{2 \pi s}} 2^{s-1} \exp(s)(2^{k+1} + 1)^s + (2^{k+1} + 1),
\]
\[|A_K| \leq \frac{1}{\sqrt{2 \pi s}} 2^{s-2} \exp(s)(2K + 1)^s + \frac{1}{2}(2K + 1).
\]

Step 2: Calculate the lower bound for expected value of indicator functions.

Let \(X_1, \ldots, X_n \) be a sequence of i.i.d random variables defined on some probability space \((\Omega, A, P)\) having uniform distribution on \([0, 1]^s\). For \(I \in A_k \) set \(Z_i := 1_{I}(X_i) - \lambda_s(I) \). In \([1]\), it is shown by using Bernstein’s and Hoeffding’s inequality that for arbitrary \(c > 0 \)
\[
P\left(\left| \sum_{i=1}^{N} Z_i \right| > c \sqrt{sN} \right) \leq \begin{cases} 2 \exp\left(- \frac{\sigma^2}{2} \right) & \text{for } 2 \leq k \leq K \\ 2 \exp(-2c^2s) & \text{for } k = 0, 1 \end{cases}
\]

Step 3: Show that
\[
P\left(\bigcup_{k=0}^{K} \bigcup_{I \in A_k} \left(\left| \sum_{i=1}^{N} 1_{I}(X_i) - N \lambda_s(I) \right| > c_k \sqrt{sN} \right) \right) < 1,
\]
where the coefficients \(c_k \) will be chosen in the following.

Let
\[
B_k := \bigcup_{I \in A_k} \left(\left| \sum_{i=1}^{N} 1_{I}(X_i) - N \lambda_s(I) \right| > c_k \sqrt{sN} \right).
\]
For \(k = 0 \) we get
\[
P(B_0) \leq 2 \exp(-2c_0^2s)|A_0| \
\leq 2 \exp(-2c_0^2s)\left(\frac{1}{\sqrt{2 \pi s}} 2^{s-1} \exp(s)3^s + 3 \right) \\
\leq \exp(-2c_0^2s) \exp(s)6^s\left(\frac{1}{\sqrt{6 \pi}} + 6 \exp(-3)6^{-3} \right) \\
\leq \frac{1}{4} \exp(-2c_0s^2) \exp(s)6^s.
\]
Thus \(P(B_0) \leq 1/4 \) holds after choosing \(c_0 = \sqrt{(\log(6) + 1)/2} \leq 1.19 \). Analogously, we choose \(c_1 = \sqrt{(\log(10) + 1)/2} \leq 1.29 \) and get \(P(B_1) \leq 1/4 \). Now let \(2 \leq k \leq K - 1 \). Then
\[
2^{k} P(B_k) \leq \left(\frac{2^{s-1}}{\sqrt{2 \pi s}} \exp(s)(2^{k+1} + 1)^s + (2^{k+1} + 1) \right) 2^{k+1} \\
\cdot \exp\left(- \frac{c_k^2 s}{2-k+1(1-2^{-k}) + 4c_k^2 2^{-K}} \right)
\]

At first we bound G by
\[
G \lesssim \left(\frac{1}{2\sqrt{6\pi}} + 2^{-3}(2^{k+1} + 1)^{-2}\exp(-3) \right)^{\frac{1}{2}+1+k}(2^{k+1} + 1)^{\frac{s}{2}}\exp(s)
\]

\[
\lesssim \frac{1}{\pi}2^{k+1}(2^{k+1} + 1)^{\frac{s}{2}}\exp(s)
\]

\[
\lesssim \frac{1}{2}2^{k+1}\exp(s(\log(2) + 1 + \log(2^{k+1} + 1)))
\]

\[
s \gtrsim \exp \left(s \left(\frac{4}{3}(1 + k) \log(2) + 1 + \log(2^{-k-1} + 1) \right) \right).
\]

Finally we define c_k as the positive solution of the equation
\[
c_k = \sqrt{a_k} \cdot \sqrt{2^{-k+1}(1 - 2^k) + \frac{4}{3}c_k2^{-K}},
\]

which yields $|c_k| \leq 1.58$ and
\[
2^k\mathbb{P}(B_k) \leq \exp(s \cdot a_k) \exp \left(-\frac{c_k^2 s}{2^{-k+1}(1 - 2^k) + \frac{4}{3}c_k2^{-K}} \right) \leq 1
\]

and thus $\mathbb{P}(B_k) \leq 2^{-k}$. For $k = K$ the set A_K contains at most
\[
|A_K| \leq |\Delta_K| \leq \frac{1}{\sqrt{2\pi s}}2^{s-2}\exp(s)(2^K + 1)^{s} + (2^K + 1)
\]

elements. Similarly to the last case we obtain
\[
2^K\mathbb{P}(B_K) \leq \exp \left(s \left(\frac{4}{3}K \log(2) + 1 + \log(1 + 2^{-K}) \right) \right)
\]

\[
\cdot \exp \left(-\frac{c_K^2 s}{2^{-K+1}(1 - 2^{-K}) + \frac{4}{3}c_K2^{-K}} \right).
\]

Defining c_K via the equation
\[
c_K = \sqrt{a_K} \cdot \sqrt{2^{-K+1}(1 - 2^{-K}) + \frac{4}{3}c_K2^{-K}}
\]

we arrive at $|c_K| \leq 1.33$ and $\mathbb{P}(B_K) \leq 2^{-K}$. This completes step 3.

Step 4: Show that
\[
2.2 \quad \sum_{k=0}^{K} c_k < 8.
\]

The fact that the choice of the c_k depends on K, will be reflected by the notation $c_{k,K}$ in this step. For $K \leq 31$, the desired inequality can be checked by computer calculation. In this range, the maximal value is achieved for $K = 31$ and $\sum_{k=0}^{31} c_{k,31} \leq 7.99789995$. Hence let $K \geq 32$. Since the $c_{k,K}$ are monotonically decreasing for increasing K, we have
\[
\sum_{k=0}^{31} c_{k,K} \leq 7.99789995
\]
and $c_{K,K} \leq c_{32,32} \leq 5 \cdot 10^{-9}$ for $K \geq 32$. Solving the equation that defines $c_{k,K}$, we find

$$c_{k,K} \leq 0.2480726 \cdot k^{2-k/2}$$

for $k, K \geq 32, k \leq K - 1$ and thus end up with the desired bound.

Step 5: Derive inequality (1.1) According to step 3 we may choose a realization $X_1(\omega), \ldots, X_N(\omega)$ with $\omega \notin \bigcup_{k=0}^{K} B_k$ and set $z_n := X_n(\omega)$ for $1 \leq n \leq N$. In [1], it is proven that

$$N\lambda_s([0, x]) - \left(\sum_{k=0}^{K-1} c_k + 1 \right) \sqrt{sN} \leq \sum_{n=1}^{N} \mathbb{I}_{[0,x]}(z_n)$$

$$\leq N\lambda_s([0, x]) + \left(\sum_{k=0}^{K-1} c_k + 1 \right) \sqrt{sN}$$

holds for arbitrary $x \in [0, 1]^s$. Thus (1.1) follows from (2.2).

Acknowledgement. The first-named author thanks Markus Weimar for supervising his master thesis which this paper builds on and Rüdiger Verfürth for his constant support. The second-named author did parts of the work on this paper during a stay at the Fields Institute which he would like to thank for hospitality. Moreover, we would like to thank the referees for their useful comments.

References

1. C. Aistleitner, Covering numbers, dyadic chaining and discrepancy, J. Complexity 27 (2011), 531–540.
2. C. Bettels, J. Fabrega, C. Weiß, Anwendung von Least Squares Monte Carlo im Solvency II Kontext – Teil 1, Der Aktuar 2014(2) (2014), 151–155.
3. B. Doerr, Analyzing randomized search heuristics: tools from probability theory, B. Doerr, A. Auger (eds), Theory of Randomized Search Heuristics, 1–20, 2011.
4. B. Doerr, A sharp discrepancy bound for jittered sampling, Preprint, 2016.
5. M. Gnewuch, Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy, J. Complexity 24 (2008), 154–172.
6. M. Gnewuch, N. Hebbinghaus, Discrepancy bounds for a class of negatively dependent random points including latin hypercube samples, Preprint, 2016.
7. S. Heinrich, E. Novak, W. Wasilkowski, H. Woźniakowski, The inverse of the star-discrepancy depends linearly on the dimension, Acta Arith. 96 (3) (2001), 279–302.
8. A.-S. Krah, Z. Nikolič, R. Korn, A least-squares Monte Carlo framework in proxy modeling of life insurance companies, Risks 6(2) (2018), 1–26.
9. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, Number 63 in CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992.
10. I. Sloan, How high is high-dimensional? in: Essays on the Complexity of Continuous Problems, E. Novak, I. Sloan, J. Traub, H. Woźniakowski (eds.), 73–87, 2009.

Institut Naturwissenschaften
Hochschule Ruhr West
Mülheim a.d. Ruhr
Germany
hendrik.pasing@hs-ruhrwest.de
christian.weiss@hs-ruhrwest.de

(Received 24 12 2018)
(Revised 26 04 2020)