ORBIFOLD HURWITZ NUMBERS AND EYNARD–ORANTIN INVARIANTS

NORMAN DO, OLIVER LEIGH, AND PAUL NORBURY

Abstract. We prove that a generalisation of simple Hurwitz numbers due to Johnson, Pandharipande and Tseng satisfy the topological recursion of Eynard and Orantin. This generalises the Bouchard–Mariño conjecture and places Hurwitz–Hodge integrals, which arise in the Gromov–Witten theory of target curves with orbifold structure, in the context of the Eynard–Orantin topological recursion.

Contents

1. Introduction 1
2. Hurwitz numbers 3
2.1. Cut-and-join recursion 3
2.2. Double Hurwitz numbers 6
3. An ELSV-type formula 7
3.1. Orbifold Hurwitz generating function 9
4. Eynard–Orantin invariants 11
4.1. Principal parts 12
4.2. Principal parts of Eynard–Orantin invariants 14
5. Proof of Main Theorem 16
6. String and dilaton equations 20
Appendix A. Graphical interpretation of Hurwitz numbers 23
Appendix B. Combinatorics of exponential generating functions 27
References 28

1. Introduction

The topological recursion of Eynard and Orantin produces invariants of a Riemann surface \(C \) equipped with two meromorphic functions \(x : C \to \mathbb{C} \) and \(y : C \to \mathbb{C} \) [18]. For integers \(g \geq 0 \) and \(n > 0 \), the Eynard–Orantin invariant \(\omega_{g,n} \) is a multidifferential — in other words, a tensor product of meromorphic 1-forms — on the Cartesian product \(\mathbb{C}^n \). See Section 4 for a precise definition of the topological recursion and further details. For various choices of spectral curve \((C, x, y)\), the Eynard–Orantin invariants store intersection numbers on moduli spaces of curves [15, 18]; Weil–Petersson volumes [20]; simple Hurwitz numbers [2, 4, 16]; the enumeration of lattice points in moduli spaces of curves [29]; Gromov–Witten invariants of \(\mathbb{P}^1 \) [10, 30]; and conjecturally, the open and closed Gromov–Witten invariants of toric Calabi–Yau threefolds [3, 28, 17]. The main result of this paper adds to this list an infinite family of examples, which generalise the relation between

2010 Mathematics Subject Classification. 32G15; 14N35; 05A15.
This work was partially supported by the Australian Research Council grant DP1094328.
simple Hurwitz numbers and Eynard–Orantin invariants known as the Bouchard–Mariño conjecture [4]. The methods herein generalise the proof of this result by Eynard, Mulase, and Safnuk [16].

A great deal of attention in the literature has been paid to simple Hurwitz numbers and their relation to various moduli spaces [4, 12, 16, 25, 31]. The simple Hurwitz number $H_{g,\mu}$ is the weighted count of connected genus g branched covers of \mathbb{P}^1 with ramification profile over ∞ given by the partition $\mu = (\mu_1, \mu_2, \ldots, \mu_n)$ and simple ramification elsewhere. In this paper, we consider the generalisation $H_{g,\mu}^{[a]}$, which is the weighted count of connected genus g branched covers of \mathbb{P}^1 with ramification profile over ∞ given by μ, ramification profile over 0 given by a partition of the form (a, a, \ldots, a), and simple ramification elsewhere. We refer to these as orbifold Hurwitz numbers and note that we recover the simple Hurwitz numbers in the case $a = 1$.

See Section 2 for a precise definition of orbifold Hurwitz numbers.

Assemble the orbifold Hurwitz numbers into the following generating function.

\begin{equation}
H_{g,n}^{[a]}(x_1, \ldots, x_n) = \sum_{\mu_1, \ldots, \mu_n = 1}^{\infty} H_{g,\mu}^{[a]} \left(\frac{|\text{Aut } \mu|}{(2g - 2 + n + |\mu|)!} \right) x_1^{\mu_1} \cdots x_n^{\mu_n}
\end{equation}

We use the notation $|\mu|$ to denote the sum $\mu_1 + \mu_2 + \cdots + \mu_n$ and $\text{Aut } \mu$ to denote the group of permutations that leave the tuple $(\mu_1, \mu_2, \ldots, \mu_n)$ invariant.

Theorem 1. For any positive integer a, consider the rational spectral curve C given by

\[x(z) = z \exp(-z^a) \quad \text{and} \quad y(z) = z^a. \]

The analytic expansion of the Eynard–Orantin invariant $\omega_{g,n}$ of C around $x_1 = x_2 = \cdots = x_n = 0$ is given by

\begin{equation}
\Omega_{g,n}^{[a]}(x_1, \ldots, x_n) = \frac{\partial}{\partial x_1} \cdots \frac{\partial}{\partial x_n} H_{g,n}^{[a]}(x_1, \ldots, x_n) \ dx_1 \otimes \cdots \otimes dx_n.
\end{equation}

Here and throughout the paper, we consider z_k to be the rational parameter on the kth copy of C in the Cartesian product C^n and we adopt the shorthand x_k for $x(z_k)$. For notational convenience, we usually omit the \otimes symbol in the tensor product of 1-forms.

Our results are motivated by and reliant upon the work of Johnson, Pandharipande and Tseng concerning Hurwitz–Hodge integrals [27]. They describe spaces of admissible covers and interpret them as moduli spaces of stable maps. This allows for virtual localisation to be used, which leads to the following relation between orbifold Hurwitz numbers and intersection numbers on moduli spaces of stable maps to the classifying stack \mathcal{BZ}_n given by a point with trivial \mathbb{Z}_n action.

\[H_{g,\mu}^{[a]} = \frac{(2g - 2 + n + \frac{|\mu|}{a})!}{|\text{Aut } \mu|} a^{1-g+\sum(\mu_i/a)} \prod_{i=1}^{n} \mu_i^{\lceil \mu_i/a \rceil} \int_{M_{g,\mu/a}(\mathcal{BZ}_n)} \sum_{i=0}^{\infty} (-a)^i \lambda_i \prod_{i=1}^{n} \prod_{i=1}^{\infty} (1 - \mu_i^* \psi_i), \]

where $r = \lfloor r \rfloor + \{ r \}$ gives the integer and fractional parts of the real number r. The case $a = 1$ is the famous ELSV formula, which expresses simple Hurwitz numbers as intersection numbers on moduli spaces of curves [12]. See Section 3 for a precise definition of the moduli spaces and characteristic classes appearing in the formula above.

One consequence of this ELSV-type formula is that the so-called Hurwitz–Hodge integrals appearing on the right hand side can be calculated from the knowledge of the orbifold Hurwitz numbers. So our main theorem places Hurwitz–Hodge integrals, which arise in the Gromov–Witten theory of target curves with orbifold structure, in the context of Eynard–Orantin topological recursion.

Sections 2, 3 and 4 contain preparatory material. The heart of the proof of Theorem 1 is contained in Section 5. In Section 6, we conclude the paper with some applications of our main theorem. In particular, the
general theory of Eynard–Orantin topological recursion involves string and dilaton equations. In the context of orbifold Hurwitz numbers, these lead to relations between Hurwitz–Hodge integrals on $\overline{\mathcal{M}}_{g,n+1}(B\mathbb{Z}_a)$ and those on $\overline{\mathcal{M}}_{g,n}(B\mathbb{Z}_a)$.

2. Hurwitz numbers

Hurwitz numbers count branched covers $\Sigma \to \Sigma'$ of Riemann surfaces with specified branch points and ramification profiles. Variants may require further conditions to be satisfied — for example, that the branched covers be connected or that the preimages of a branch point be labelled. Two branched covers Σ_1 and Σ_2 are isomorphic if there exists an isomorphism of Riemann surfaces $f : \Sigma_1 \to \Sigma_2$ that covers the identity on Σ'. Similarly, an automorphism of a branched cover $\Sigma \to \Sigma'$ is an automorphism of the Riemann surface Σ that covers the identity on Σ'. For a degree d branched cover, the ramification profile at a branch point is given by a partition $\mu = (\mu_1, \mu_2, \ldots, \mu_l)$ consisting of non-increasing positive integers that sum to d. Suppose that we fix $\{p_1, p_2, \ldots, p_r\} \subset \Sigma'$ together with partitions $\mu^{(1)}, \mu^{(2)}, \ldots, \mu^{(r)}$ of d. The associated Hurwitz number is the weighted count of branched covers $\pi : \Sigma \to \Sigma'$ with ramification profile $\mu^{(i)}$ at p_i, where the weight of a branched cover π is $\frac{1}{|\text{Aut} \, \pi|}$. There are two distinct flavours of Hurwitz theory corresponding to the enumerations of connected covers and disconnected covers. Although our primary goal is to understand connected Hurwitz numbers, it is often necessary to deal with disconnected Hurwitz numbers.

The Riemann existence theorem allows a branched cover of \mathbb{P}^1 to be described by its monodromy at the branch points. It follows that a disconnected Hurwitz number is equal to $\frac{1}{m!}$ multiplied by the number of tuples $(\sigma_1, \sigma_2, \ldots, \sigma_r)$ of permutations in the symmetric group $S_{\ell |\mu|}$ such that

- $\sigma_1 \sigma_2 \cdots \sigma_r = (1)$; and
- σ_i has cycle type given by the partition $\mu^{(i)}$.

One obtains connected Hurwitz numbers by further requiring that the permutations $\sigma_1, \sigma_2, \ldots, \sigma_r$ generate a transitive subgroup of $S_{\ell |\mu|}$.

Definition 2. For a positive integer a, let the *orbifold Hurwitz number* $H_{g,m}^{[a]}(\mu)$ be the weighted count of connected genus g branched covers of \mathbb{P}^1 such that

- the ramification profile over ∞ is given by the partition $\mu = (\mu_1, \mu_2, \ldots, \mu_n)$;
- the ramification profile over 0 is given by a partition of the form (a, a, \ldots, a); and
- the only other ramification is simple and occurs at m fixed points.

The Hurwitz number is zero unless a divides $|\mu|$ and the Riemann–Hurwitz formula implies that m must be equal to $2g - 2 + n + \frac{|\mu|}{a}$. We will consistently use m to denote the expression $2g - 2 + n + \frac{|\mu|}{a}$ throughout the paper. We also consider a to be fixed and often drop the superscript $[a]$.

2.1. Cut-and-join recursion. The cut-and-join recursion provides a simple method for the calculation of Hurwitz numbers. It was originally conceived for the case of simple Hurwitz numbers [21] and has since been generalised in various ways [32, 35]. The basic premise is to determine the behaviour of a branched cover as two of the branch points come together. For simple ramification, this translates into understanding the behaviour of permutations multiplied by transpositions. We state the cut-and-join recursion using the following normalisation of the simple Hurwitz numbers, where $\mu = (\mu_1, \mu_2, \ldots, \mu_n)$ and $m = 2g - 2 + n + |\mu|$.

$$H_g(\mu) = H_{g,m} \times \frac{|\text{Aut} \, \mu|}{m!}$$

Proposition 3 (Cut-and-join recursion for simple Hurwitz numbers [22]). The normalised simple Hurwitz numbers satisfy the following recursion, where \(m = 2g - 2 + n + |\mu| \). We use the notation \(S = \{1, 2, \ldots, n\} \) and \(\mu_1 = (\mu_{i_1}, \mu_{i_2}, \ldots, \mu_{i_N}) \) for \(I = \{i_1, i_2, \ldots, i_N\} \).

\[
mH_g(\mu_S) = \sum_{i<j} (\mu_i + \mu_j) H_g(\mu_{S \setminus \{i,j\}}, \mu_i + \mu_j) + \sum_{i=1}^{n} \frac{\alpha \beta}{\alpha + \beta = \mu_i} H_{g-1}(\mu_{S \setminus \{i\}}, \alpha, \beta) + \sum_{g_1 + g_2 = g, I \cup J = S \setminus \{i\}} H_{g_1}(\mu_I, \alpha) H_{g_2}(\mu_J, \beta)
\]

We can state the cut-and-join recursion for orbifold Hurwitz numbers using the analogous normalisation, where \(\mu = (\mu_1, \mu_2, \ldots, \mu_n) \) and \(m = 2g - 2 + n + \frac{|\mu|}{\alpha} \).

\[
H_{g}^{[a]}(\mu) = H_{g}^{[a]} \times \frac{|\text{Aut} \mu|}{m!}
\]

Proposition 4 (Cut-and-join recursion for orbifold Hurwitz numbers). For \(\mu = (\mu_1, \mu_2, \ldots, \mu_n) \), the normalised orbifold Hurwitz numbers satisfy the cut-and-join recursion (3), where \(m = 2g - 2 + n + \frac{|\mu|}{\alpha} \).

In Appendix A, we provide a proof of this proposition via a graphical representation of branched covers. An immediate use of Proposition 4 is the calculation of the generating functions appearing in Equations 1 and 2 in the base cases \((g, n) = (0, 1)\) and \((g, n) = (0, 2)\).

Lemma 5. The generating function \(H_{0,1}^{[a]}(x) \) satisfies the following equations.

\[
x \frac{d}{dx} H_{0,1}^{[a]} = z^a \quad \Omega_{0,1}^{[a]} = z^{a-1} \left(1 - az^a\right) dz.
\]

Proof. In the case \((g, n) = (0, 1)\), Proposition 4 states that

\[
\left(\frac{\mu}{a} - 1\right) H_0(\mu) = \sum_{\alpha + \beta = \mu} \frac{\alpha \beta}{2} H_0(\alpha) H_0(\beta).
\]

This may be equivalently expressed at the level of generating functions in the following way.

\[
x \frac{dH_{0,1}^{[a]}}{dx} - H_{0,1}^{[a]} = \frac{x^2}{2} \left(\frac{dH_{0,1}^{[a]}}{dx}\right)^2 \Rightarrow \frac{z}{a(1 - az^a)} \frac{dH_{0,1}^{[a]}}{dz} - H_{0,1}^{[a]} = \frac{z^2}{2(1 - az^a)^2} \left(\frac{dH_{0,1}^{[a]}}{dz}\right)^2
\]

This is satisfied by \(H_{0,1}^{[a]} = \frac{z^a}{a} - \frac{z^a}{x} \), from which we immediately obtain the desired result. \(\square\)

Lemma 6. The bidifferential \(\Omega_{0,2}^{[a]} \) satisfies the following equation.

\[
\Omega_{0,2}^{[a]} = \frac{dz_1}{z_1 - z_2} \frac{dz_2}{z_1 - z_2} - \frac{dx_1}{x_1 - x_2} \frac{dx_2}{x_1 - x_2}.
\]

Proof. In the case \((g, n) = (0, 2)\), Proposition 4 states that at the level of generating functions,

\[
\left[\frac{1}{a(1 - az_1)} x_1 \frac{\partial}{\partial x_1} + \frac{1}{a(1 - az_2)} x_2 \frac{\partial}{\partial x_2}\right] H_{0,2}^{[a]}(x_1, x_2) = \frac{x_2 z_1^a - x_1 z_2^a}{x_1 - x_2}.
\]

This is a special case of Proposition 7 below. Given that \(H_{0,2}^{[a]}(x_1, x_2) \) must be symmetric in \(x_1 \) and \(x_2 \), the equation is satisfied by

\[
x_1 \frac{\partial}{\partial x_1} H_{0,2}^{[a]}(x_1, x_2) = \frac{x_2}{x_2 - x_1} - \frac{z_2}{(z_2 - z_1)(1 - az_1^a)}.
\]
Now apply \(x_2 \frac{\partial}{\partial x_2} = \frac{x_2}{1-x_2} \frac{\partial}{\partial x_2} \) to this equation to obtain

\[
x_1 x_2 \frac{\partial^2}{\partial x_1 \partial x_2} H_{0,2}^{[a]}(x_1, x_2) = -\frac{x_1 x_2}{(x_1 - x_2)^2} + \frac{z_1 x_2}{(z_1 - z_2)^2(1 - az_1^2)} \frac{dz_2}{dx_2} = -\frac{x_1 x_2}{(x_1 - x_2)^2} + \frac{x_1 x_2}{(z_1 - z_2)^2} \frac{dz_1}{dx_1} \frac{dz_2}{dx_2},
\]
from which we immediately obtain the desired result.

The following proposition expresses the cut-and-join recursion in terms of the orbifold Hurwitz number generating functions and generalises Theorem 4.4 from [22].

Proposition 7. For \(2g - 2 + n > 1 \), the orbifold Hurwitz number generating functions satisfy the following partial differential equation. We use the notation \(S = \{1, 2, \ldots, n\} \) and \(x_I = (x_{i_1}, x_{i_2}, \ldots, x_{i_N}) \) for \(I = \{i_1, i_2, \ldots, i_N\} \).

\[
(5) \quad 2g - 2 + n + \frac{1}{\partial} \sum_{i=1}^{n} (1 - a_{x_i}^2) x_i \frac{\partial}{\partial x_i} H_{g,n}^{[a]}(x_S) = \sum_{i<j} \frac{1}{z_i - z_j} \left(\frac{z_i}{1 - a_{z_i}^2} x_i \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \right) \left[H_{g,n-1}^{[a]}(x_{S\setminus\{j\}}) + H_{g,n-1}^{[a]}(x_{S\setminus\{i\}}) \right]
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{\text{stable}} \left[x_i \frac{\partial}{\partial x_i} H_{g+1,1}^{[a]}(x_i, x_I) \right] \left[x_i \frac{\partial}{\partial x_i} H_{g,1,1}^{[a]}(x_i, x_J) \right]
\]

The final summation is stable in the sense that we omit all terms which involve \(H_{0,1}^{[a]} \) or \(H_{0,2}^{[a]} \).

Proof. Apply the operator

\[
\sum_{\mu_1, \ldots, \mu_n=1}^{\infty} [\cdot] x_1^{\mu_1} \cdots x_n^{\mu_n}
\]

to both sides of the cut-and-join recursion to obtain the following partial differential equation satisfied by the expansion of \(H_{g,n}^{[a]} \) around \(x_1 = \cdots = x_n = 0 \).

\[
(6) \quad 2g - 2 + n + \frac{1}{\partial} \sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i} H_{g,n}^{[a]}(x_S) = \sum_{i<j} x_i x_j \left(\frac{\partial}{\partial x_i} - \frac{\partial}{\partial x_j} \right) \left[H_{g,n-1}^{[a]}(x_{S\setminus\{j\}}) + H_{g,n-1}^{[a]}(x_{S\setminus\{i\}}) \right]
\]

\[
+ \sum_{i \neq j} \left[x_i \frac{\partial}{\partial x_i} H_{g,n-1}^{[a]}(x_{S\setminus\{j\}}) \right] \left[x_i \frac{\partial}{\partial x_i} H_{0,2}^{[a]}(x_i, x_j) \right] + \sum_{i=1}^{n} \left[x_i \frac{\partial}{\partial x_i} H_{g,n}^{[a]}(x_S) \right] \left[x_i \frac{\partial}{\partial x_i} H_{0,1}^{[a]}(x_i) \right]
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{\text{stable}} \left[x_i \frac{\partial}{\partial x_i} H_{g+1,1}^{[a]}(x_i, x_I) \right] \left[x_i \frac{\partial}{\partial x_i} H_{g,1,1}^{[a]}(x_i, x_J) \right]
\]

We have used here the fact that

\[
\frac{x_1 x_2}{x_1 - x_2} \left(\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} \right) [x_1^n + x_2^n] = N(x_1^{N-1} x_2 + x_1^{N-2} x_2^2 + \cdots + x_1 x_2^{N-1}).
\]
Substitute the expression $x_i \frac{\partial}{\partial x_i} H^{[a]}_0(x_1, x_j) = \frac{x_i}{x_i - x_j} - \frac{x_j}{x_i - x_j} (1 - ax_i^2)$ from equation (4) into equation (6) to get cancellation of all terms involving $x_i x_j$. Furthermore, move the terms involving $x_i \frac{\partial}{\partial x_i}, H_0(x_i) = z_i^a$ calculated in Lemma 5 to the left hand side in order to obtain the desired result.

Many of the cancellations in the proof of Proposition 7 do not occur in the special cases $(g, n) = (0, 3)$ and $(g, n) = (1, 1)$. Nevertheless, equation (6) is still satisfied in these special cases and simplifies to the following PDEs.

Proposition 8. The orbifold Hurwitz generating functions $H^{[a]}_{0,3}$ and $H^{[a]}_{1,1}$ satisfy the following, where the subscripts in the first equation are to be interpreted modulo 3.

\[
\begin{align*}
(7) & \quad \left[1 + \frac{3}{a} \sum \frac{\partial}{\partial z_i} \right] H^{[a]}_{0,3}(x_1, x_2, x_3) = \frac{z_1 z_2 z_3}{(z_1 - z_2)(z_2 - z_3)(z_3 - z_1)} \sum_{i=1}^3 \frac{z_i - 1 - z_i + 1}{z_i(1 - ax_i^2)^2} \\
(8) & \quad \left[1 + \frac{\partial}{\partial z_1} \right] H^{[a]}_{1,1}(x_1) = \frac{1}{2} x_1^2 \left(\frac{\partial x_1}{\partial x_2} - \frac{d z_1}{(z_1 - z_2)^2} \right)_{z_2 = z_1}.
\end{align*}
\]

Equations (7) and (8) uniquely determine $H^{[a]}_{0,3}(x_1, x_2, x_3)$ and $H^{[a]}_{1,1}(x_1)$. In (8), the right hand side is meromorphic at $z_1 = \alpha$ with no other poles, by (20).

2.2. Double Hurwitz numbers. An alternative proof of the cut-and-join equations arises by considering the action of transpositions in the symmetric group and so is more natural from the disconnected Hurwitz number viewpoint. It assembles the Hurwitz numbers into the generating functions (9) of double Hurwitz numbers. We describe it here for completeness, incorporating the generalisation which satisfies the same cut-and-join equations as simple Hurwitz numbers.

Orbifold Hurwitz numbers are particular examples of double Hurwitz numbers, which count branched covers of \mathbb{P}^1 with specified ramification over two points and simple ramification elsewhere.

Definition 9. The double Hurwitz number $H_{g,\mu,\nu}$ is the number of genus g branched covers of \mathbb{P}^1 such that

- the ramification profile over ∞ is given by the partition $\mu = (\mu_1, \mu_2, \ldots, \mu_n)$;
- the ramification profile over 0 is given by a partition $\nu = (\nu_1, \nu_2, \ldots, \nu_m)$; and
- the only other ramification is simple and occurs over m fixed points.

The Hurwitz number must be zero unless $|\mu| = |\nu|$ and the Riemann–Hurwitz formula implies that $m = 2g - 2 + \ell(\mu) + \ell(\nu)$.

Shadrin, Spitz and Zvonkine [32] use the infinite wedge space formalism together with calculations involving characters of the symmetric group to prove that double Hurwitz numbers satisfy the cut-and-join equation. The cut-and-join equation takes the form of a partial differential equation satisfied by the following generating function for double Hurwitz numbers here written in the special case of orbifold Hurwitz numbers.

\[
\begin{align*}
H^{[a]}(s; p_1, p_2, \ldots) &= \sum_{m=0}^{\infty} \sum_{\mu} H^{[a]}_{g,\mu,\mu} \frac{s^m}{m!} p_{\mu_1} p_{\mu_2} \cdots p_{\mu_n} \\
H^{[a]}_{\bullet}(s; p_1, p_2, \ldots) &= \sum_{m=0}^{\infty} \sum_{\mu} H^{[a]}_{g,\mu,\mu} \frac{s^m}{m!} p_{\mu_1} p_{\mu_2} \cdots p_{\mu_n}
\end{align*}
\]

Here, the inner summations are over all partitions μ, including the empty partition. The relation between disconnected and connected Hurwitz numbers can be succinctly stated using the well-known logarithm trick.

$$H^{[a]}_{\bullet} = \exp H^{[a]}.$$
The cut-and-join recursion can be naturally expressed as the following partial differential equation for the generating function (9).

Proposition 10. [32] The generating function for connected orbifold Hurwitz numbers satisfies the following partial differential equation.

\[
\frac{\partial H^{[a]}_a}{\partial s} = \frac{1}{2} \sum_{i,j=1}^{\infty} \left[(i+j)p_i p_j \frac{\partial H^{[a]}_a}{\partial p_{i+j}} + ijp_{i+j} \frac{\partial^2 H^{[a]}_a}{\partial p_i \partial p_j} + ijp_{i+j} \frac{\partial H^{[a]}_a}{\partial p_i} \cdot \frac{\partial H^{[a]}_a}{\partial p_j} \right].
\]

3. An ELSV-type formula

For simple Hurwitz numbers we have the remarkable ELSV-formula due to Ekedahl, Lando, Shapiro and Vainshtein [11, 12, 23].

For \(i = 1, \ldots, n \), define the line bundle \(L_i \) on \(\mathcal{M}_{g,n} \) whose fibre over \([(C, p_1, \ldots, p_n)] \) is the cotangent space at the marked point \(p_i \). Denote its first Chern class by \(\psi_i = c_1(L_i) \in H^2(\mathcal{M}_{g,n}, \mathbb{Q}) \) and refer to these as descendent classes.

If \(\pi \) is the universal curve over \(\mathcal{M} \) and \(\mathcal{K}_\pi \) is its relative dualizing line bundle, then the Hodge bundle is \(\mathcal{E}_{g,n} := \pi^* \mathcal{K}_\pi \). Then define \(\lambda_k = c_k(\mathcal{E}_{g,n}) \in H^{2k}(\mathcal{M}_{g,n}, \mathbb{Q}) \), the \(k \)th Chern class, and \(\Lambda = 1 - \lambda_1 + \cdots + (-1)^g \lambda_g \).

For \(0 < 2g - 2 + n \) the linear Hodge integrals are the top intersection products of classes \(\{\lambda_k\} \) and \(\{\psi_i\}_{1 \leq i \leq n} \) that are of the form

\[
\int_{\mathcal{M}_{g,n}} \lambda_k \psi_1^i \cdots \psi_n^j.
\]

The ELSV formula expresses Hurwitz numbers using linear Hodge integrals,

\[
H_{g,\mu} = \frac{|\text{Aut } \mu| \ell(\mu)!}{m!} \prod_{i=1}^{\ell(\mu)} \frac{\mu_i^{\mu_i}}{\mu_i!} \int_{\mathcal{M}_{g,\ell(\mu)}} \frac{\Lambda}{\prod_{i=1}^{\ell(\mu)} (1 - m\mu_i \psi_i)}.
\]

Note that simple Hurwitz numbers are well defined for \(g = 0 \) and \(\ell(\mu) > 0 \) so one defines the notation:

\[
\int_{\mathcal{M}_{0,1}} \frac{\lambda_0}{1 - \mu_1 \psi_1} = \frac{1}{\mu_1^2}
\]

\[
\int_{\mathcal{M}_{0,2}} \frac{\lambda_0}{(1 - \mu_1 \psi_1)(1 - \mu_2 \psi_2)} = \frac{1}{\mu_1 + \mu_2}.
\]

In [27] Johnson, Pandharipande and Tseng introduced a generalisation of the ELSV formula which uses generalisations of the descendent classes, Hodge classes and the Hodge integrals.

For a positive integer \(a \), we consider the cyclic group \(\mathbb{Z}_a \) and the moduli space of admissible covers \(\mathcal{A}_{g,\gamma}(\mathbb{Z}_a) \), which is a compact moduli space introduced by Harris and Mumford [24].

Let \(\gamma = (\gamma_1, \ldots, \gamma_n) \) with each \(\gamma_i \in \mathbb{Z}_a \) then an admissible cover is pair \([\pi, \tau]\) where

\begin{itemize}
 \item \(\pi : D \to (C, p_1, \ldots, p_n) \) is a degree \(a \) finite map of complete curves,
 \item \(\tau : \mathbb{Z}_a \times D \to D \) is a \(\mathbb{Z}_a \)-action,
\end{itemize}

such that:

\begin{itemize}
 \item The curve \(D \) is possibly disconnected and nodal.
 \item The class of curves \([C, p_1, \ldots, p_n] \in \mathcal{M}_{g,n}\) is stable.
 \item The map \(\pi \) takes non-singular points to non-singular points, and nodes to nodes.
\end{itemize}
Theorem 11. \[\overline{\mathcal{A}}_{g,\gamma}(\mathbb{Z}_a) \cong \overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a), \] where $B\mathbb{Z}_a$ is the classifying stack of \mathbb{Z}_a given by a point with trivial \mathbb{Z}_a action \cite{26}. One can obtain this isomorphism by viewing an admissible cover as a principal \mathbb{Z}_a-bundle over the stack quotient $[D/\mathbb{Z}_a]$. This induces a stable map to the classifying stack. Note that when $a = 1$, $\mathbb{Z}_1 = \{0\}$, so $\overline{\mathcal{M}}_{g,(0,\ldots,0)}(B\mathbb{Z}_1) \cong \overline{\mathcal{M}}_{g,n}$.

Define descendant classes (often known as ancestor classes in analogous contexts) by the pullback of the forgetful map $\overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a) \to \overline{\mathcal{M}}_{g,n}$

\[\overline{\psi}_i = \varepsilon^*(\overline{\psi}_i) \in H^2(\overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a); \mathbb{Q})\]

Let U be the irreducible representation $U : \mathbb{Z}_a \to \mathbb{C}^*$ defined on a cyclic generator g by $U(g) = \exp \left(\frac{2\pi i}{a} \right)$. For each map $[f : [D/\mathbb{Z}_a] \to B\mathbb{Z}_a] \in \overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a)$ the \mathbb{Z}_a-action on D and the functoriality of the global sections functor gives that $H^0(D,\omega_D)$ is a \mathbb{Z}_a-representation. Associate the U-summand of this representation to $[f] \in \overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a)$ creating the vector bundle

\[E^U \to \overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a)\]

which is called a generalised Hodge bundle. Define the generalised Hodge classes to be the Chern classes of this vector bundle

\[\lambda^U_k = c_k(E^U) \in H^{2k}(\overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a); \mathbb{Q}).\]

For $2g - 2 + n > 0$ the linear Hodge integrals over $\overline{\mathcal{M}}_{g,\gamma}(BG)$ are the top intersection products of classes $\{\lambda^U_k\}$ and $\{\overline{\psi}_i\}_{1 \leq i \leq n}$ that are of the form

\[\int_{\overline{\mathcal{M}}_{g,\gamma}(BG)} \lambda^U_k \overline{\psi}_1^{m_1} \cdots \overline{\psi}_n^{m_n}\]

Johnson, Pandharipande and Tseng expressed the orbifold Hurwitz number $H_{g,\mu}^{[a]}$ in terms of these generalised Hodge integrals. The term Hurwitz–Hodge integral was introduced in \cite{5} and they have been extensively studied in the literature \cite{6, 7, 8, 33}.

\[\text{Theorem 11. \cite[Theorem 1]{27}}\]

For $\mu = (\mu_1, \ldots, \mu_n)$, the orbifold Hurwitz number $H_{g,\mu}^{[a]}$ satisfies

\[H_{g,\mu}^{[a]} = \frac{n!}{|\text{Aut} \mu|} a^{1-g+\sum(\mu_i/a)} \prod_{i=1}^{n} \mu_i^{[\mu_i/a]} \int_{\overline{\mathcal{M}}_{g,[-\mu]}(B\mathbb{Z}_a)} \sum_{i=0}^{\infty} (-a)^i \lambda^U_i \left(\frac{1}{1 - \mu_1 \overline{\psi}_1} \right) \prod_{i=1}^{n} \left(1 - \mu_i \overline{\psi}_i\right),\]

where $[-\mu] = (-\mu_1 \mod a, \ldots, -\mu_n \mod a)$. One can interpret the unstable cases by defining

\[\int_{\overline{\mathcal{M}}_{g,[-\mu]}(B\mathbb{Z}_a)} \sum_{i=0}^{\infty} (-a)^i \lambda^U_i \left(\frac{1}{1 - \mu_1 \overline{\psi}_1} \right) = \begin{cases} \frac{1}{a} \cdot \frac{1}{\mu_1} & \text{if } \mu_1 \equiv 0 \pmod{a}, \\ 0 & \text{otherwise.} \end{cases}\]

\[\int_{\overline{\mathcal{M}}_{g,[-\mu]}(B\mathbb{Z}_a)} \sum_{i=0}^{\infty} (-a)^i \lambda^U_i \left(\frac{1}{1 - \mu_1 \overline{\psi}_1} \right) \left(\frac{1}{1 - \mu_2 \overline{\psi}_2} \right) = \begin{cases} \frac{1}{a} \cdot \frac{1}{\mu_1 + \mu_2} & \text{if } \mu_1 + \mu_2 \equiv 0 \pmod{a}, \\ 0 & \text{otherwise.} \end{cases}\]

The proof of this theorem is by virtual localisation on the moduli space of maps $\overline{\mathcal{M}}_g(\mathbb{P}^1[a], \mu)$, where $\mathbb{P}^1[a]$ is the projective space \mathbb{P}^1 with an a-fold orbifold point at 0. In fact, Johnson, Pandharipande and Tseng proved
a more general statement than Theorem 11. Their formula can be used to give an expression for any double Hurwitz number by choosing \(a \) sufficiently large.

3.1. Orbifold Hurwitz generating function

For a partition \(\mu \) define an analogue of Witten’s notation by:

\[
\langle \Lambda_r \bar{\tau}_{m_1} \cdots \bar{\tau}_{m_n} \rangle_{g,n} = \int_{M_g([-\mu])} \Lambda_r \bar{\psi}_{m_1} \cdots \bar{\psi}_{m_n}
\]

Rearranging gives,

\[
H_{g,\mu}^{[a]} = \frac{m!}{|\text{Aut} \mu|} \sum_{j_1, \ldots, j_\ell(\mu) \in \mathbb{Z}_+} a^{1-g + \frac{\ell(\mu)}{a}} \left(\prod_{i=1}^{\ell(\mu)} \frac{(\mu_i/a)^{[\mu_i/a]} \mid \mu_i/a \mid}{\mu_i^i} \right) \langle \Lambda_r \bar{\tau}_{j_1} \cdots \bar{\tau}_{j_\ell} \rangle_{g,\ell,\mu}.
\]

So the orbifold Hurwitz generating function (1) becomes

\[
H_{g,n}^{[a]}(x_1, \ldots, x_n) = \sum_{j_1, \ldots, j_n \in \mathbb{Z}^n} a^{1-g} \sum_{\mu \in \mathbb{Z}^n} a^{1-g + \frac{\mu}{a}} \langle \Lambda_r \bar{\tau}_{j_1} \cdots \bar{\tau}_{j_n} \rangle_{g,n} \prod_{i=1}^{n} \frac{(\mu_i/a)^{[\mu_i/a]} \mid \mu_i/a \mid}{\mu_i^i} x_i^{\mu_i}.
\]

If \(\mu = \nu \mod a \) then \(\langle \Lambda_r \bar{\tau}_{j_1} \cdots \bar{\tau}_{j_n} \rangle_{g,n} = \langle \Lambda_r \bar{\tau}_{j_1} \cdots \bar{\tau}_{j_n} \rangle_{g,n} \). So we can sum over the mod-classes of \(\mu \):

\[
H_{g,n}^{[a]}(x_1, \ldots, x_n) = a^{1-g} \sum_{j_1, \ldots, j_n \in \mathbb{Z}^n, \beta \in (2a)^n} \langle \Lambda_r \bar{\tau}_{j_1} \cdots \bar{\tau}_{j_n} \rangle_{g,n} \prod_{i=1}^{n} \frac{(\mu_i/a)^{[\mu_i/a]} \mid \mu_i/a \mid}{\mu_i^i} x_i^{\mu_i}.
\]

Now, for \(\mu \in \mathbb{Z}^+, [\mu] = \beta \) we set \(b_i = \frac{\mu_i - \alpha_i}{a} = [\frac{\mu_i}{a}] \). The generating function becomes:

\[
H_{g,n}^{[a]}(x_1, \ldots, x_n) = a^{1-g} \sum_{j_1, \ldots, j_n \in \mathbb{Z}^n, \beta \in (2a)^n} a^{\beta} \langle \Lambda_r \bar{\tau}_{j_1} \cdots \bar{\tau}_{j_n} \rangle_{g,n} \prod_{i=1}^{\alpha} \frac{(ab_i + \beta_i)^{b_i + \beta_i}}{b_i!} x_i^{(ab_i + \beta_i)}
\]

(10)

where

\[
f_{r,k}(x) := \sum_{b=0}^{\infty} \frac{(ab + r)^{b + k}}{b!} x^{ab + r}.
\]

For \(r = 1, \ldots, a \) define

\[
\xi_k^{(r)}(z) = \frac{d}{dx} \xi_k(z), \quad \xi_k^{(r)}(z) = \begin{cases}
\frac{z^r}{r} & r = 1, \ldots, a - 1 \\
\frac{z^a}{a} & r = a.
\end{cases}
\]

\[\textbf{Lemma 12.}\] The function \(z(x) = \sum_{b=0}^{\infty} \frac{(ab + 1)^{b-1}}{b!} x^{ab + 1} \) satisfies the equation \(x = z(x) \exp(-z(x)^a) \). Furthermore, \(\frac{z(x)^r}{r} = \sum_{b=0}^{\infty} \frac{(ab + r)^{b-1}}{b!} x^{ab + r} \) and \(f_{r,k}(x) = \xi_k^{(r)}(z(x)) \).

\[\textit{Proof.}\] We recall some properties of exponential generating functions. Let \(f(x) \) and \(g(x) \) be exponential generating functions for collections of labelled objects \(F \) and \(G \) respectively. Then

- \(f(x)g(x) \) is the exponential generating function for sequences \((A_F, A_G) \) where \(A_F \in F \) and \(A_G \in G \).
- \(f(x)^k \) is the exponential generating function for sequences of \(k \) objects from \(F \).
exp \(f(x) \) is the exponential generating function for sets of elements from \(F \) of all cardinalities.

We now use these properties to prove the result.

- \(z(x) \) is the exponential generating function for cactus-node trees of type \((1, a, \ldots, a) \) (see Appendix B, Definition 26 and Proposition 28). Removing the node of type 1 we obtain a pair \((x, C)\) where \(x \) is a point representing the node and \(C \) is a collection of rooted-cactus-node trees of type \((a, \ldots, a) \).

A rooted-cactus-node trees of type \((a, \ldots, a) \) is a sequence \((T_1, \ldots, T_a)\) of cactus-node trees of type \((1, a, \ldots, a)\).

Hence \(z(x) \) satisfies \(z(x) = x \exp(z(x)^a) \).

- \(r \sum_{b=0}^{\infty} \frac{(ab + r)^{b-1}}{b!} x^{ab+r} \) is the exponential generating function for cactus-node trees of type \((r, a, \ldots, a) \) with one of the points in the \(r \)-node marked. A cactus-node trees of this type is a sequence \((T_1, \ldots, T_r)\) of cactus-node trees of type \((1, a, \ldots, a) \).

Hence, \(z(x)^r = r \sum_{b=0}^{\infty} \frac{(ab + r)^{b-1}}{b!} x^{ab+r} \).

- Finally, we have

\[
 f_{r,k}(x) = \sum_{b=0}^{\infty} \frac{(ab + r)^{b+k}}{b!} x^{ab+r} = \left(x \frac{d}{dx} \right)^{k+1} \sum_{b=0}^{\infty} \frac{(ab + r)^{b-1}}{b!} x^{ab+r} \\
 = \left(x \frac{d}{dx} \right)^{k+1} \frac{z^r}{r} = \xi_k^{(r)}(z(x))
\]

Define

\(F_{g,n}^{[a]}(z_1, \ldots, z_n) := H_{g,n}^{[a]}(x_1(z_1), \ldots, x_n(z_n)) \).

Applying lemma 12 to the orbifold generating function (10) we have,

\[
 H_{g,n}^{[a]}(x_1, \ldots, x_n) = a^{1-g} \sum_{j_1, \ldots, j_n \in \mathbb{Z}^+} \sum_{\beta \in (\mathbb{Z}a)^n} a_{j_1}^{[\beta]} \left(\Lambda^{j_1} \tilde{\tau}_{j_1} \cdots \tilde{\tau}_{j_n} \right)_{g,n}^{(\beta)} \prod_{i=1}^{n} \xi_{j_i}^{(\beta_i)}(z_i(x_i))
\]
which gives
\begin{equation}
F_{g,n}^{[a]}(z_1, \ldots, z_n) = a^{1-g} \sum_{j_1, \ldots, j_n \in \mathbb{Z}_+} \sum_{\beta \in (2\mathbb{Z})^n} a^{[\beta]} \langle A U_{p_1} \cdots p_n \rangle^{(\beta)} \prod_{i=1}^n \xi_{\alpha_i}(z_i)
\end{equation}

A key consequence is that the generating functions \(H_{g,n}^{[a]}(x_1, \ldots, x_n) \) are rational in \((z_1, \ldots, z_n)\), or more accurately are local expansions around \(x_i = 0 \) of rational functions.

The function \(x = z \exp(-z^a) \) defines local involutions \(z \mapsto \sigma_\alpha(z) \) near each root \(\alpha \) of \(dx(\alpha) = 0 \). Via a local coordinate \(s_\alpha \) such that \(x = s_\alpha^2 + x(\alpha) \), the involution is given by \(\sigma_\alpha(s_\alpha) = -s_\alpha \). It gives rise to the following vector space.

Definition 13. Define the vector space \(\mathcal{A}_x \) to consist of rational functions \(p \) satisfying:
- \(p \) has poles only at \(\{ \alpha : dx(\alpha) = 0 \} \);
- \(p(z) + p(\sigma_\alpha(z)) \) is analytic at \(z = \alpha \).

Lemma 14. For \(k \geq 0 \) and \(r = 1, \ldots, a \), \(\xi_k^{(r)}(z) \in \mathcal{A}_x \) and form a basis.

Proof. The proof uses the simple fact that \(x \frac{d}{dx} \) preserves \(\mathcal{A}_x \), i.e.
\begin{equation}
\frac{d}{dx} \mathcal{A}_x \subset \mathcal{A}_x.
\end{equation}

This can be seen as follows. Clearly \(x \frac{d}{dx} = \frac{x}{1-a^2} \frac{d}{dz} \) introduces no new poles outside \(\{ \alpha : dx(\alpha) = 0 \} \). So we study its behaviour locally around a single pole \(\alpha \). The principal part of any function in \(\mathcal{A}_x \) is an odd polynomial in \(s_\alpha^{-1} \) for \(s_\alpha \) the local coordinate defined above (since \(z \mapsto \sigma_\alpha(z) \) corresponds to \(s_\alpha \mapsto -s_\alpha \)), and
\[
\frac{d}{dx} = \frac{s_\alpha^2 + \alpha}{2s_\alpha} \frac{d}{ds_\alpha}
\]
maps odd polynomials in \(s_\alpha^{-1} \) to odd polynomials in \(s_\alpha^{-1} \) since it preserves the parity of the power of any monomial in \(s_\alpha \). Furthermore, \(x \frac{d}{dx} \mathbb{C}[s_\alpha] \subset \mathbb{C}s_\alpha^{-1} + \mathbb{C}[s_\alpha] \subset \mathcal{A}_x \). Hence (13) is proven.

Now \(\xi^{(r)}_{-1}(z) = z^r/r \in \mathcal{A}_x \) (or \(z^n \) for \(r = a \)) since it is analytic at \(z = \alpha \). Since \(\xi_k^{(r)}(z) = x \frac{d}{dx} \xi_{k-1}^{(r)}(z) \) and \(x \frac{d}{dx} \) preserves \(\mathcal{A}_x \), by induction \(\xi_k^{(r)}(z) \in \mathcal{A}_x \) for all \(r \) and \(k \).

A simple dimension argument proves that the \(\xi_k^{(r)}(z) \) form a basis. \(\square \)

Remark. If \(f(z) \) is analytic at \(z = \alpha \) and satisfies \(f(z) = f(\sigma_\alpha(z)) \) then \(x \frac{d}{dx} f(z) \) is analytic at \(z = \alpha \). In the terminology of the proof of Lemma 14, the local expansion of \(f(z) \) lies in \(\mathbb{C}[s_\alpha^2] \) and \(x \frac{d}{dx} \mathbb{C}[s_\alpha^2] \subset \mathbb{C}[s_\alpha^2] \).

Since each \(\xi_k^{(r)}(z) \in \mathcal{A}_x \) we have proven:

Corollary 15. For \(2g - 2 + n > 0 \) and all \(a \), \(F_{g,n}^{[a]}(z_1, \ldots, z_n) \in \mathcal{A}_x \), for each \(i = 1, \ldots, n \).

4. Eynard–Orantin invariants

Consider a triple \((C, x, y)\) consisting of a genus 0 Riemann surface \(C \) and meromorphic functions \(x, y : C \to \mathbb{C} \) with the property that the zeros of \(dx \) are simple and disjoint from the zeros of \(dy \). For every \((g, n) \in \mathbb{Z}^2 \) with \(g \geq 0 \) and \(n > 0 \) the Eynard–Orantin invariant of \((C, x, y)\) is a multidifferential \(\omega^g_{n}(p_1, \ldots, p_n) \), i.e. a tensor product of meromorphic 1-forms on the product \(C^n \), where \(p_i \in C \). More generally, if \(C \) has positive genus it should come with a Torelli marking which is a choice of symplectic basis \(\{a_i, b_i\}_{i=1,\ldots,g} \) of the first homology group \(H_1(\bar{C}) \) of the compact closure \(\bar{C} \) of \(C \). In particular, a genus 0 surface \(C \) requires no Torelli
When \(2g - 2 + n > 0 \), \(\omega_n^\alpha(p_1, \ldots, p_n) \) is defined recursively in terms of local information around the poles of \(\omega_n^\alpha(p_1, \ldots, p_n) \) for \(2g' + 2 - n' < 2g - 2 + n \). Equivalently, the \(\omega_n^\alpha(p_1, \ldots, p_n) \) are used as kernels on the Riemann surface.

Since each zero \(\alpha \) of \(dx \) is simple, for any point \(p \in C \) close to \(\alpha \) there is a unique point \(\hat{p} \neq p \) close to \(\alpha \) such that \(x(\hat{p}) = x(p) \). The recursive definition of \(\omega_n^\alpha(p_1, \ldots, p_n) \) uses only local information around zeros of \(dx \) and makes use of the well-defined map \(p \mapsto \hat{p} \) there. The invariants are defined as follows. Given a rational coordinate \(z \) on \(C \)

\[
\omega^0_1 = -\frac{y(z)dx(z)}{x(z)} \quad \omega^0_2 = \frac{dz_1 \otimes dz_2}{(z_1 - z_2)^2}
\]

For \(2g - 2 + n > 0 \),

\[
\omega^g_n(z_1, z_S) = \sum_{\alpha = \alpha} \text{Res} K(z_1, z) \left[\omega^{g-1}_{n+1}(z, \hat{z}, z_S) + \sum_{g_1 + g_2 = g, I \cup J = S} \omega^{g_1}_{|I|+1}(z, z_I)\omega^{g_2}_{|J|+1}(\hat{z}, z_J) \right]
\]

where the sum is over the zeros \(\alpha \) of \(dx \), \(S' = \{2, \ldots, n\} \), \((g_1, |I|) \neq (0, 0) \neq (g_2, |J|) \) and

\[
K(z_1, z) = -\int_{\hat{z}}^z \frac{\omega^g_0(z_1, z')x(z)}{2(g(z) - y(z'))}dx(z) = \frac{x(z)}{2(g(z) - y(z'))}x'(z) \left(g - 1 - \frac{1}{z - z_1} - \frac{1}{\hat{z} - z_1} \right) dz_1
\]

is well-defined in the vicinity of each zero of \(dx \). Note that the quotient of a differential by the differential \(dx(z) \) is a meromorphic function. The recursion (14) depends only on the meromorphic differential \(ydx/x \) and the map \(p \mapsto \hat{p} \) around zeros of \(dx \). For \(2g - 2 + n > 0 \), each \(\omega^g_n \) is a symmetric multidifferential with poles only at the zeros of \(dx \), of order \(6g - 4 + 2n \), and zero residues.

Define \(\Phi(z) \) by \(d\Phi(z) = y(z)dx(z)/x(z) \). For \(2g - 2 + n > 0 \), the invariants satisfy the dilaton equation [18]:

\[
\sum_{\alpha = \alpha} \text{Res} \Phi(z)\omega^{g-1}_{n+1}(z, z_1, \ldots, z_n) = (2 - 2g - n)\omega^0_n(z_1, \ldots, z_n)
\]

where the sum is over the zeros \(\alpha \) of \(dx \), \(\Phi(z) = \int^z ydx(z') \) is an arbitrary antiderivative and \(z_S = (z_1, \ldots, z_n) \).

This enables the definition of the so-called symplectic invariants

\[
F_g = \sum_{\alpha = \alpha} \text{Res} \Phi(z)\omega^0_n(z).
\]

Remark. There are variations on the definition of the Eynard–Orantin invariants determined by how \(x \) and \(y \) appear in the kernel \(K \). Here we have used \(dx/x \) and \(y \) to define the kernel \(K \) but any of the four combinations of \(dx \) or \(dx/x \) and \(dy \) or \(dy/y \) can be used. All are equivalent via changes of coordinates \(u = \log x \) and \(v = \log y \), but in order to have \(x \) appear algebraically in generating functions, the choice here suits best.

4.1. Principal parts.

We will see below that the Eynard–Orantin recursion (14) which is given as a sum

\[
\omega^g_n(z_1, z_2, \ldots, z_n) = \sum_{\alpha = \alpha} \text{Res} K(z_1, z)\mathcal{F}(z, z_2, \ldots, z_n)
\]

over \(\{\alpha : dx(\alpha) = 0\} \) expresses \(\omega^g_n(z_1, \ldots, z_n) \) as the sum of its principal parts in \(z_1 \) at its poles \(z_1 = \alpha \). This is an important feature so we explain it below after first recalling the definition and properties of principal parts.
Given a local parameter \(z \) of a curve \(C \), the principal part at a point \(\alpha \in C \) of a function or differential \(h(z) \) analytic in \(U \setminus \{ \alpha \} \) for some neighbourhood \(U \) of \(\alpha \) is

\[
[h(z)]_{\alpha} := \text{Res}_{w=\alpha} \frac{h(w) dw}{z-w}.
\]

(Strictly we might write \(z = z(p) \) and \(w = w(q) \) for points \(p \) and \(q \) on \(C \) but we abuse terminology and identify \(U \) with \(z(U) \).) It satisfies the properties:

(i) \([h(z)]_{\alpha} \) is analytic on \(U \setminus \{ \alpha \} \);

(ii) \(h(z) - [h(z)]_{\alpha} \) is analytic on \(U \).

Thus \([h(z)]_{\alpha} \) is given by the negative part of the Laurent series of \(h(z) \) at \(\alpha \).

To see (i), given \(z \in U \setminus \{ \alpha \} \), choose a contour \(\gamma_1 \) around \(\alpha \) not containing \(z \) to calculate the residue, as in Figure 1.

![Figure 1](https://via.placeholder.com/150)

Now simply differentiate under the integral sign to prove analyticity at \(z \). To see (ii), Figure 1 gives

\[
h(z) = -\text{Res}_{w=\alpha} \frac{h(w) dw}{z-w} = \frac{1}{2\pi i} \int_{\gamma_1 - \gamma_2} \frac{h(w) dw}{z-w} = [h(z)]_{\alpha} - \frac{1}{2\pi i} \int_{\gamma_2} \frac{h(w) dw}{z-w}
\]

and the integral around \(\gamma_2 \) is analytic in \(z \in U \) again since we can differentiate under the integral sign.

Suppose \(C \) is a rational curve and \(z \) is a rational parameter as will be true in our applications. If \(h(z) \) has a pole at \(\alpha \) then \([h(z)]_{\alpha} \) is a polynomial in \(1/(z-\alpha) \) (or \(z \) when \(\alpha = \infty \).) Up to a constant, any rational function is the sum of its principal parts commonly known as its partial fraction decomposition. Any rational differential is equal to the sum of its principal parts (with no constant ambiguity.)

The principal part of a function of several variables or multidifferential \(h(z_1, \ldots, z_n) \) at the point \(z_1 = \alpha \) is defined via (15) as if the \(z_j, j > 1 \) are constants. It is denoted \([h(z_1, \ldots, z_n)]_{z_1=\alpha} \) or \([h(z_1, \ldots, z_n)]_{\alpha} \) when \(z_1 \) is understood.

For \(h(z) \) analytic in \(U \setminus \{ b \} \)

\[
\left[\frac{h(z_1)}{z_1 - z_2} \right]_{z_1=\alpha} = \text{Res}_{w=\alpha} \frac{h(w) dw}{(w-z_2)(z_1-w)}
\]

and we choose the contour containing \(z_1 \) and not \(z_2 \) as in Figure 2,

![Figure 2](https://via.placeholder.com/150)

to obtain the properties:

(i) \([h(z_1)/(z_1 - z_2)]_{\alpha} \) is analytic in \(z_1 \) and \(z_2 \) on \(U \setminus \{ \alpha \} \);
(ii) \(h(z_1)/(z_1 - z_2) - [h(z_1)/(z_1 - z_2)]_{\alpha} \) is analytic in \(z_1 \) on \(U \).

Note that in (ii) we allow \(z_1 \) to take the value \(z_1 = \alpha \) whereas we do not allow \(z_2 \) to take the value \(z_2 = \alpha \). Note also that:

\[
\frac{h(z_1)}{z_1 - z_2}_{\alpha} = \frac{h(z_1) - h(z_2)}{z_1 - z_2}_{\alpha} = \frac{h(z_2)}{z_2 - z_1}_{\alpha}.
\]

In particular, if \(h(z) \) is analytic at \(\alpha \) then \(\frac{h(z_1)}{z_1 - z_2}_{\alpha} = 0 \).

The principal part of a function with respect to more than one variable depends on the order and so is slightly subtle. For example,

\[
\left[\frac{1}{z_1 z_2} \right]_{z_1 = 0} = \frac{1}{z_1 z_2}_{z_2 = 0} = \frac{1}{z_1 z_2},
\]

so we see that principal parts at 0 with respect to \(z_1 \) and \(z_2 \) commute on \(1/z_1 z_2 \) and more generally for any product \(h_1(z_1)h_2(z_2) \), whereas

\[
\left[\frac{1}{z_1 (z_1 - z_2)} \right]_{z_1 = 0} = \frac{1}{z_1 (z_1 - z_2)}_{z_2 = 0} = \frac{1}{z_1 (z_1 - z_2)}_{z_2 = 0} = \frac{1}{z_1 (z_1 - z_2)}_{z_2 = 0} = 0.
\]

so they do not commute on \(1/z_1 (z_1 - z_2) \). In this paper, whenever we have a function of several variables we only take the principal part with respect to one of the variables so the subtlety described here never arises.

4.2. Principal parts of Eynard–Orantin invariants. An important property of the stable Eynard–Orantin invariants is that they are meromorphic multidifferentials with poles at the zeros of \(dx \). In particular, on a rational curve they are rational multidifferentials and hence equal to the sum of their principal parts.

Each summand at a zero \(\alpha \) of \(dx \) in the RHS of the defining recursion (14) for \(\omega^\alpha_n(z_1, \ldots, z_n) \) has dependence on \(z_1 \) only occurring as \(1/(z - z_1) \) and \(1/(\hat{z} - z_1) \). Express (14) as \(\omega^\alpha_n = \sum I_\alpha \) then:

\[
I_\alpha = \text{Res}_{z=\alpha} \left(\frac{dz_1}{z - z_1} - \frac{dz_1}{\hat{z} - z_1} \right) \frac{x(z)}{2(y(\hat{z}) - y(z))} \omega_{n+1}^\alpha(z, \hat{z}, z, z') + \sum_{g_1 + g_2 = g} \omega_{|I|+1}^{g_1}(z, z') \omega_{|J|+1}^{g_2}(\hat{z}, z_j)
\]

One can differentiate \(I_\alpha \) with respect to \(z_1 \) under the integral sign showing that it is analytic everywhere except possibly at \(z_1 = \alpha \). Note that \(I_\alpha \) is analytic at \(z_1 = \infty \) (assuming \(\alpha \neq \infty \)) since

\[
K \sim \frac{(\hat{z} - z) x(z)}{2(y(\hat{z}) - y(z))} \frac{1}{x(z)} \frac{dz_1}{\hat{z}^2}
\]

so for some \(C \) constant in \(z_1 \), \(I_\alpha \sim C \frac{dz_1}{\hat{z}^2} \) which is analytic at \(z_1 = \infty \). Thus \(I_\alpha \) is rational and equal to its principal part at \(z_1 = \alpha \). But then \(I_\alpha \) is the principal part of \(\omega^\alpha_n(z_1, \ldots, z_n) \) at \(z_1 = \alpha \).

Furthermore, we can calculate \(I_\alpha \) since

\[
I_\alpha = \text{Res}_{z=\alpha} \left(\frac{\eta(z)}{z - z_1} - \frac{\eta(\hat{z})}{\hat{z} - z_1} \right) dz_1
\]

\[
= 2 \text{Res}_{z=\alpha} \frac{\eta(z)}{z - z_1} dz_1
\]

\[
= -2 |\eta(z)|_{\alpha}
\]

\[
= -\left[\frac{x(z_1)}{(y(\hat{z}_1) - y(z_1))} \frac{1}{x(z_1)} \left(\omega_{n+1}^\alpha(z_1, \hat{z}_1, z, z') + \sum_{g_1 + g_2 = g} \omega_{|I|+1}^{g_1}(z_1, z_j) \omega_{|J|+1}^{g_2}(\hat{z}_1, z_j) \right) \right]_{\alpha}
\]
where \(\eta(z) \) is a differential form that satisfies \(\eta(z) = -\eta(\hat{z}) \) (since \(x(z) = x(\hat{z}) \) and \(\omega_{n+1}^{-1} \) is symmetric in its arguments.) Notice that \(I_\alpha(z_1) = -I_\alpha(\hat{z}_1) \).

In summary, we have proven:

Proposition 16. The recursion (14) expresses any Eynard-Orantin invariant as the sum of its principal parts:

\[
\omega_n^0(z_1, z_{S'}) = -\sum_\alpha \left[\frac{x(z_1)}{(y(\hat{z}_1) - y(z_1))} \left(\omega_{n+1}^{-1}(z_1, \hat{z}_1, z_{S'}) + \sum_{I \cup J = S'} \omega_{|I|+1}^0(z_1, \hat{z}_1) \right) \right]_{\alpha}
\]

where the sum is over the zeros \(\alpha \) of \(dx \), \(S' = \{2, \ldots, n\} \) and \((g_1, |J|) \neq (0, 0) \neq (g_2, |J|) \).

The principal parts of the stable \(\omega^0_2 \) in the right hand side of (17) are straight-forward because their pole structure is rather simple. The terms involving \(\omega_2^0 \) are less straight-forward so later we will require the following:

Lemma 17.

\[
\left[\left(\frac{dz_1}{z_1 - z_2} + \frac{d\hat{z}_1}{\hat{z}_1 - \hat{z}_2} \right) \frac{x_1}{x_1 - x_2} \right] = \left[\frac{x_1}{x_1 - x_2} \right]
\]

Proof. Note that we express the terms on the left hand side as quotients of differentials instead of functions for later ease.

Locally

\[
x(z_1) - x(z_2) = (z_1 - z_2)(\hat{z}_1 - \hat{z}_2)h(z_1, z_2)
\]

where \(h(z_1, z_2) \) is analytic and non-zero at \(z_1 = \alpha \) and \(h(z_1, z_2) = h(\hat{z}_1, \hat{z}_2) \). By the remark after Lemma 14, since \(\log h(z_1, z_2) \) is analytic at \(z_1 = \alpha \) and invariant under \(z_1 \mapsto \hat{z}_1 \), then \(x_1 \frac{d}{dx_1} \log h(z_1, z_2) \) is analytic at \(z_1 = \alpha \) (where as usual \(x_1 = x(z_1) \).) Hence the right hand side of

\[
x_1 \frac{d}{dx_1} \log h(z_1, z_2) = \frac{x_1}{x_1 - x_2} - \left(\frac{dz_1}{z_1 - z_2} + \frac{d\hat{z}_1}{\hat{z}_1 - \hat{z}_2} \right) \frac{x_1}{x_1 - x_2}
\]

is analytic at \(z_1 = \alpha \) and the lemma follows.

Take the exterior of (19) with respect to the second variable to get:

\[
\left[\left(\frac{dz_1dz_2}{(z_1 - z_2)^2} + \frac{d\hat{z}_1dz_2}{(\hat{z}_1 - \hat{z}_2)^2} \right) \frac{x_1}{x_1 - x_2} \right] = \left[\frac{x_1dz_2}{(x_1 - x_2)^2} \right]_{\alpha}
\]

and hence

\[
\frac{dx_1dz_2}{(x_1 - x_2)^2} - \frac{dz_1dz_2}{(z_1 - z_2)^2} - \frac{d\hat{z}_1dz_2}{(\hat{z}_1 - \hat{z}_2)^2}
\]

is analytic at \(z_1 = \alpha \) and vanishes there for all \(z_2 \) (in particular, for \(z_2 = \alpha \).)

Notice that \(x \) appears in the definition only via \(dx/x \) which is rational for the spectral curve of interest in this paper:

\[
x = z \exp(-z^a), \quad y = z^a.
\]

Hence the kernel \(K \) is also rational:

\[
K(z_1, z) = \frac{z}{2(\hat{z}^a - z^a)(1 - az^a)} \left(\frac{1}{z - z_1} - \frac{1}{\hat{z} - z_1} \right) \frac{dz_1}{dz}.
\]
By the construction of Eynard–Orantin invariants as a sum of their principal parts one easily sees that \(\omega^g_n \) has invariance properties under the local involutions \(\sigma_\alpha(z) \) defined near each zero \(\alpha \) of \(dx \). In the language of Section 3.1 for \(x = z \exp(-z^a) \), we see that for \(2g - 2 + n > 0 \), \(\omega^g_n(z_1, \ldots, z_n) \in A_{x_i} \) for each \(i = 1, \ldots, n \).

Remark. In [13, 14] Eynard chooses a basis \(d\xi_{\alpha,m} \) of \(A_{x_i} \), linearly related to the basis \(d\xi_1, d\xi_2, \ldots, d\xi_n \) in Section 3.1, and identifies the coefficients in terms of intersection numbers over a moduli space of \(a \)-coloured Riemann surfaces,

\[
\omega^g_n(z_1, \ldots, z_n) = \sum_{i_1, \ldots, i_n} \sum_{d_1, \ldots, d_n} A_n^{(g)}(i_1, d_1; \ldots; i_n, d_n) \prod d\xi_{\alpha_{i_k}, d_k}(z_k)
\]

where \(\alpha_1, \ldots, \alpha_a \) are the zeros of \(dx \). Essentially Eynard showed that the Eynard–Orantin invariants give cohomological field theories. This was made more precise in [10]. Eynard described his result as a generalised ELSV formula. It is intriguing that the ELSV-type formula in this paper transforms linearly to Eynard’s formula and hence we see a relationship between intersection numbers over \(\overline{\mathcal{M}}_{g,\gamma}(B\mathbb{Z}_a) \) and intersection numbers over \(\overline{\mathcal{M}}_{g,n} \).

5. Proof of Main Theorem

In this section we prove that the Eynard–Orantin invariants of the spectral curve

\[
x = z \exp(-z^a), \quad y = z^a
\]

coincide with (the total derivatives of) the orbifold Hurwitz number generating functions. The strategy of proof is quite natural. Since the Eynard–Orantin recursion expresses the invariants as a sum over the principal parts in the first variable then we will analyse the principal parts of the partial differential equation (5). Furthermore, the principal parts of the Eynard–Orantin invariants are antisymmetric with respect to the local involutions at each zero of \(dx \), so we take the anti-symmetric part of the principal part of (5). (In fact we take the symmetric part of the principal part of (5) since it contains an extra anti-symmetric factor.) This is exactly the strategy of proof used in [16].

Proof of Theorem 1. Recall from Section 3 that

\[
F^{[a]}_{g,n}(z_1, \ldots, z_n) := H^{[a]}_{g,n}(x(z_1), \ldots, x(z_n))
\]

is a rational function of the \(z_i \). Equivalently, \(H^{[a]}_{g,n}(x_1, \ldots, x_n) \) gives a local expansion of the rational function \(F^{[a]}_{g,n}(z_1, \ldots, z_n) \) in the local coordinate \(x(z_i) \) around \(z_i = 0 \).

Furthermore, \(x = z \exp(-z^a) \) defines local involutions \(\sigma_\alpha(z) \) around each zero \(\alpha \) of \(dx \) and for \(2g - 2 + n > 0 \), and Corollary 15 gives that \(F^{[a]}_{g,n}(z_1, \ldots, z_n) \) satisfies:

- \(F^{[a]}_{g,n}(z_1, \ldots, z_n) \) has poles only at \(\{ z_i = \alpha : dx(\alpha) = 0 \} \);
- \(F^{[a]}_{g,n}(z_1, \ldots, z_i, \ldots, z_n) + F^{[a]}_{g,n}(z_1, \ldots, \sigma_\alpha(z_i), \ldots, z_n) \) is analytic at \(z_i = \alpha \).
The recursion (5) satisfied locally by $H_{g,n}^{[a]}(x_1, \ldots, x_n)$ is satisfied globally by $F_{g,n}^{[a]}(z_1, \ldots, z_n)$. Recall that $S' = \{2, \ldots, n\}$ and $S = \{1, \ldots, n\}$. For $2g - 2 + n > 1$,

$$
(2g - 2 + n + \frac{1}{a} \sum_{i=1}^{n} (1 - az_i^a) x_i \frac{\partial}{\partial x_i}) F_{g,n}^{[a]}(z_S) = \sum_{i < j} \left(\frac{z_j}{1 - az_j^a} x_i \frac{\partial}{\partial x_i} - \frac{z_i}{1 - az_i^a} x_j \frac{\partial}{\partial x_j} \right) \left(F_{g,n-1}^{[a]}(z_{S \setminus \{j\}}) + F_{g,n-1}^{[a]}(z_{S \setminus \{i\}}) \right)
$$

(21)

$$
+ \frac{1}{2} \sum_{i=1}^{n} x(t_1) x(t_2) \frac{\partial^2}{\partial x(t_1) \partial x(t_2)} F_{g-1,n+1}^{[a]}(t_1, t_2, z_{S \setminus \{i\}}) \bigg|_{t_1 = t_2 = z_i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{\text{stable}} x_i \frac{\partial}{\partial x_i} F_{g,n}^{[a]}(z_1, z_I) x_i \frac{\partial}{\partial x_i} F_{g,n}^{[a]}(z_I, z_J)
$$

Take the principal part of (21) at $z_1 = \alpha$ and take the invariant part under the involution $\hat{z}_1 := \sigma_1(z_1)$.

First we have

$$
[F_{g,n}^{[a]}(z_1, z_I) + F_{g,n}^{[a]}(\hat{z}_1, z_I)]_\alpha = 0 = \left[x_i \frac{\partial}{\partial x_i} F_{g,n}^{[a]}(z_1, z_I) + x_i \frac{\partial}{\partial x_i} F_{g,n}^{[a]}(\hat{z}_1, z_I) \right]_\alpha, \quad i = 1, \ldots, n
$$

for any $I \subset S'$ since $F_{g,n}^{[a]}(z_1, z_I) + F_{g,n}^{[a]}(\hat{z}_1, z_I)$ and $x_i \frac{\partial}{\partial x_i} F_{g,n}^{[a]}(z_1, z_I) + x_i \frac{\partial}{\partial x_i} F_{g,n}^{[a]}(\hat{z}_1, z_I)$ are analytic at $z_1 = \alpha$. This annihilates the factor $(2g - 2 + n)$ in the first line of (21), and all summands not involving z_1 in all four lines of (21).

The principal part of the terms in (21) involving $1/(z_1 - z_j)$ are calculated as follows. For any $j \neq 1$, put $F_j(z_1) = x_1 \frac{\partial}{\partial x_1} F_{g,n-1}^{[a]}(z_1, z_{S \setminus \{j\}})$ and

$$
\left[\frac{\hat{z}_1}{1 - az_1^a} F_j(z_1) - \frac{z_1}{1 - az_1^a} F_j(z_1) \right]_\alpha = \left[\frac{\hat{z}_1}{1 - az_1^a} F_j(z_1) - \frac{z_1}{1 - az_1^a} F_j(z_1) \right]_\alpha = \left[\frac{\hat{z}_1}{1 - az_1^a} F_j(z_1) - \frac{z_1}{1 - az_1^a} F_j(z_1) \right]_\alpha = \left[\frac{\hat{z}_1}{1 - az_1^a} F_j(z_1) - \frac{z_1}{1 - az_1^a} F_j(z_1) \right]_\alpha + c_j
$$

where we have used (16) and the fact that $\frac{F_j(z_1)}{1 - az_1^a}$ is independent of z_1 and hence annihilated by taking principal parts. Note that $c_j := -\left[\frac{F_j(z_1)}{1 - az_1^a} \right]_\alpha$ is independent of z_j. Thus the invariant part of the principal part of (21) becomes:

$$
(22)
$$
\[+ \sum_{j=2}^{n} c_j' \]

where \(c_j' := c_j(z_1) + c_j(\hat{z}_1) \) is independent of \(z_j \). There is now a one-to-one correspondence between terms in (22) and terms in the Eynard–Orantin recursion (14) if we ignore the \(c_j' \) terms which will be annihilated later. We can simplify (22) further to:

\[
\left[(z_1^{a} - z_1^a) x_1 \frac{\partial}{\partial x_1} F_{g,n}(z_1, z_{S'}) \right]_{\alpha} = \sum_{j=2}^{n} \left[\frac{z_1}{1 - a \hat{z}_1} x_1 \frac{\partial}{\partial x_1} F_{g,n-1}(\hat{z}_1, z_{S'\setminus\{j\}}) + \frac{\hat{z}_1}{1 - a z_1} x_1 \frac{\partial}{\partial x_1} F_{g,n-1}(z_1, z_{S'\setminus\{j\}}) \right]_{\alpha} \\
+ \left[x(t_1)x(t_2) \frac{\partial^2}{\partial x(t_1) \partial x(t_2)} F_{g-1,n+1}(t_1, t_2, z_{S'}) \bigg|_{t_1=z_1, t_2=\hat{z}_1} \right]_{\alpha} \\
+ \sum_{g_1+g_2=g \atop I \cup J=S'} \left[x_1 \frac{\partial}{\partial x_1} F_{g_1,I+1}(z_1, z_I) x_1 \frac{\partial}{\partial x_1} F_{g_2,J+1}(\hat{z}_1, z_J) \right]_{\alpha} + \sum_{j=2}^{n} c_j' \]

Define \(F(z_1) = x_1 \frac{\partial}{\partial x_1} F_{g,n-1}(z_1, z_{S'\setminus\{j\}}) \). The replacement in the first line of (22) to get the first line of (23) uses:

\[
\left[\frac{z_1}{1 - a \hat{z}_1} F(z_1) + \frac{\hat{z}_1}{1 - a \hat{z}_1} F(z_1) + \frac{\hat{z}_1}{1 - a z_1} F(z_1) + \frac{z_1}{1 - a z_1} F(z_1) \right]_{\alpha} = 0
\]

which is true since (24) factorises into

\[
\left[\left(F(z_1) + F(\hat{z}_1) \right) \left(\frac{z_1}{1 - a \hat{z}_1} + \frac{\hat{z}_1}{1 - a z_1} \right) \right]_{\alpha} = \left[\left(F(z_1) + F(\hat{z}_1) \right) \left(\frac{d \hat{z}_1}{\hat{z}_1 - z_1} + \frac{d z_1}{z_1 - \hat{z}_1} \right) \right]_{\alpha} = 0
\]

where we have used \(\frac{d x_1}{x_1} = \frac{d z_1}{z_1} = \frac{d \hat{z}_1}{\hat{z}_1} \) in the first line and the second line uses Lemma 17 together with the fact that \((F(z_1) + F(\hat{z}_1) \) is analytic at \(z_1 = \alpha \). The final expression does not have a pole at \(z_1 = z_j \) and vanishes since it is an analytic function.

Define the symmetric function of two variables

\[F_3(t_1, t_2) = x(t_1)x(t_2) \frac{\partial^2}{\partial x(t_1) \partial x(t_2)} F_{g-1,n+1}(t_1, t_2, z_S). \]

so \(F_3(t_1, t_2) + F_3(\hat{t}_1, \hat{t}_2) \) is analytic at \(t_1 = \alpha \) and \(F_3(t_1, t_2) + F_3(t_1, \hat{t}_2) \) is analytic at \(t_2 = \alpha \). Thus \(F_3(t_1, t_2) + F_3(\hat{t}_1, t_2) + F_3(t_1, \hat{t}_2) + F_3(\hat{t}_1, \hat{t}_2) \) is analytic at \(t_1 = \alpha \) and \(t_2 = \alpha \) so

\[\left[F_3(z_1, z_1) + F_3(\hat{z}_1, \hat{z}_1) + F_3(z_1, \hat{z}_1) + F_3(\hat{z}_1, z_1) \right]_{\alpha} = 0 \]

which gives the second line of (23). For any choice of \(I \subset S \), and \(J = S - I \), put

\[
F_1(z_1) = x_1 \frac{\partial}{\partial x_1} F_{g_1,I+1}(z_1, z_I), \quad F_2(z_1) = x_1 \frac{\partial}{\partial x_1} F_{g_2,J+1}(\hat{z}_1, z_J)
\]
which requires 2

To complete the proof we need to show the base cases \((g, n) = (0, 3)\) and \((1, 1)\) agree since until now we have used Proposition 7 which requires \(2g - 2 + n > 1\).
For \(\Omega_{0,3}^{[a]}(z_1, z_2, z_3) \) we use Proposition 8. We consider only the principal parts of \(\Omega_{0,3}^{[a]}(z_1, z_2, z_3) \) since it is rational and hence determined by its principal parts. It is clear from (7) that \(F_{0,3}^{[a]} \) can only have simple poles hence has principal part

\[
\left[F_{0,3}^{[a]} \right]_\alpha = \frac{\lambda}{(z_1 - \alpha)(z_2 - \alpha)(z_3 - \alpha)}
\]

for some \(\lambda \) which is easily calculated using (7) to be \(\lambda = -\alpha^3/a \). Then \(\Omega_{0,3}^{[a]}(z_1, z_2, z_3) = d_{z_1}d_{z_2}d_{z_3}F_{0,3}^{[a]} \) agrees with the Eynard-Orantin invariant which can be given via the direct formula Theorem 4.1 in [18].

\[
\left[\omega^0_3(z_1, z_2, z_3) \right]_\alpha = \text{Res}_{z = \alpha} \frac{\omega_2^0(z, z_1)\omega_2^0(z, z_2)\omega_3^0(z, z_3)x(z)}{dx(z)dy(z)} = d_{z_1}d_{z_2}d_{z_3} \frac{1}{(z_1 - \alpha)(z_2 - \alpha)(z_3 - \alpha)(\ln x)''(\alpha)y'(\alpha)}
\]

since \(-\alpha^3/a = 1/(\ln x)''(\alpha)y'(\alpha)\).

For \(\Omega_{1,1}^{[a]}(z_1) \) we take the invariant part of the principal part of (8).

\[
(27) \quad \left[(z_1^\ast - z_1^\ast) x_1 \frac{d}{dx_1} F_{1,1}^{[a]}(z_1) \right]_\alpha = \left[\frac{x_1^4}{s_2} \frac{d}{dx_1} \omega_{1,2}(z_1, \hat{z}_1) \right]_\alpha
\]

where we have used Lemma 17 to replace the invariant part of the right hand side of (8). Hence

\[
\left[\Omega_{1,1}^{[a]}(z_1) \right]_\alpha = \left[\frac{1}{z_1^\ast - z_1^\ast} \frac{x_1}{s_1} \omega_{1,2}(z_1, \hat{z}_1) \right]_\alpha
\]

which agrees with the Eynard–Orantin recursion expressed in terms of its principal parts so \(\Omega_{1,1}^{[a]}(z_1) \) satisfies the Eynard–Orantin recursion (14) as required. Alternatively, we can use [27] where all 1-point functions on the right hand side of the ELSV-type formula in Theorem 11 have been calculated. This yields

\[
F_{1,1}^{[a]}(z_1) = \frac{a}{24} e^{(a)}(z) - \frac{1}{24} e^{(a)}(z)
\]

so \(\Omega_{1,1}^{[a]}(z_1) = dF_{1,1}^{[a]}(z_1) \) agrees with \(\omega_1^{[a]}(z_1) \) by a direct calculation of (14).

Hence the base cases agree and \(\Omega_{g,n}^{[a]}(z_1, ..., z_n) = \omega_n^{[a]}(z_1, ..., z_n) \) as required. \(\square \)

6. STRING AND DILATON EQUATIONS

The general Eynard–Orantin theory of topological recursion includes string and dilaton equations, which relate \(\omega_{g,n+1} \) and \(\omega_{g,n} \).

Theorem 18 (String and dilaton equations). The Eynard–Orantin invariants satisfy the following, where the summations are over the zeros of \(dx \) on the spectral curve and \(\Phi \) satisfies \(d\Phi = y^2 dx \).

\[
\sum_\alpha \text{Res}_{z = \alpha} y(z) \omega_{g,n+1}(z, zS) = -\sum_{k=1}^n dz_k \frac{\partial}{\partial z_k} \left[\omega_{g,n}(zS) \frac{x_k}{dx_k} \right]
\]

(28)

\[
\sum_\alpha \text{Res}_{z = \alpha} \Phi(z) \omega_{g,n+1}(zS, z) = (2 - 2g - n) \omega_{g,n}(zS)
\]

(29)

These are modified versions of equation (A.26) and Theorem 4.7 from [18]. The adjustment is due to our use of the exponentiated form of \(x \), which effectively requires us to use \(\frac{dx}{x} \) in place of \(dx \).

A consequence of Theorem 11 is that orbifold Hurwitz numbers can be expressed as

\[
H_g^{[a]}(\mu_1, ..., \mu_n) = a^{-g+\sum\{\mu_i/a\}} Q_{g,n}^{[a]}(\mu_1, ..., \mu_n) \prod_{i=1}^n C(\mu_i),
\]
where \(C(\mu) = \frac{\mu^{\lfloor \mu/a \rfloor}}{[\mu/a]} \) and \(Q_{g,n}^{[\alpha]} \) is a quasi-polynomial modulo \(a \). The string and dilaton equations for orbifold Hurwitz numbers provide a relation between the quasi-polynomials \(Q_{g,n+1}^{[\alpha]} \) and \(Q_{g,n}^{[\alpha]} \). The above equation defines the values of \(Q_{g,n}^{[\alpha]}(\mu_1, \mu_2, \ldots, \mu_n) \) for positive integers \(\mu_1, \mu_2, \ldots, \mu_n \). Since \(Q_{g,n}^{[\alpha]} \) is a quasi-polynomial, we can naturally extend its domain to all integers \(\mu_1, \mu_2, \ldots, \mu_n \). In particular, it makes sense to evaluate these quasi-polynomials at zero.

Theorem 19 (String equation for orbifold Hurwitz numbers).

\[
Q_{g,n+1}^{[\alpha]}(\mu_1, \ldots, \mu_n, 0) = (\mu_1 + \cdots + \mu_n) Q_{g,n}^{[\alpha]}(\mu_1, \ldots, \mu_n)
\]

Theorem 20 (Dilaton equation for orbifold Hurwitz numbers).

\[
\frac{\partial Q_{g,n+1}^{[\alpha]}}{\partial \mu_{n+1}}(\mu_1, \ldots, \mu_n, 0) = (2 - 2g - n) Q_{g,n}^{[\alpha]}(\mu_1, \ldots, \mu_n)
\]

The quasi-polynomial behaviour of \(Q_{g,n}^{[\alpha]} \) allows us to express the Eynard–Orantin invariants in the following way. The constants \(A_{r_1,\ldots,r_n}^{k_1,\ldots,k_n} \) are the coefficients of the polynomials governing \(Q_{g,n}^{[\alpha]} \) for particular modulo classes, which are Hurwitz–Hodge integrals by Theorem 11.

\[
\omega_{g,n} = \sum_{\mu_1,\ldots,\mu_n=1}^{\infty} a^{1-g+\sum\{\mu_i/a\}} Q_{g,n}^{[\alpha]}(\mu_1, \ldots, \mu_n) \prod_{i=1}^{n} C(\mu_i) x_i^{\mu_i} \frac{dx_i}{x_i}
\]

\[
= \sum_{r_1,\ldots,r_n=1}^{a} a^{1-g+\sum\{r_i/a\}} \sum_{\mu_1=0}^{\infty} \sum_{\mu_2=0}^{\infty} \cdots \sum_{\mu_n=0}^{\infty} A_{r_1,\ldots,r_n}^{k_1,\ldots,k_n} \prod_{i=1}^{n} C(\mu_i) x_i^{\mu_i+1} \frac{dx_i}{x_i}
\]

Proof of Theorem 19. We begin with the following residue calculation.

\[
\sum_{\alpha} \text{Res}_{z=\alpha} y(z) \xi_k(z) \frac{dx}{dx} = \begin{cases} 1 & \text{for } k = 1 \text{ and } r = a \\ 0 & \text{otherwise} \end{cases}
\]

One can prove by induction that

\[
\xi_k^{(r)}(z) = \frac{z^r p_k(z^a)}{(1 - az)^{2k+1}}
\]

for positive integers \(k \), where \(p_k \) is a polynomial of degree \(k \) for \(1 \leq r \leq a-1 \) and of degree \(k-1 \) for \(r = a \). It follows that the residue

\[
\sum_{\alpha} \text{Res}_{z=\alpha} y(z) \xi_k^{(r)}(z) \frac{dx}{dx} = -\text{Res}_{z=\infty} z^a \frac{1-az}{z} \xi_k^{(r)}(z) dz
\]

can be non-zero only when \(k = 1 \) and \(r = a \). In this case, the residue can be computed explicitly.

\[
-\text{Res}_{z=\infty} z^a \frac{1-az}{z} \xi_1^{(a)}(z) dz = -\text{Res}_{z=\infty} \frac{a^2 z^{2a-1}}{(1 - az)^2} dz = \text{Res}_{z=0} \frac{a^2}{(z^a - a)^2} \frac{1}{z} dz = 1
\]
Consider the left hand side of (28).
\[
\sum_{\alpha} \operatorname{Res}_{z=\alpha} y(z) \omega_{g,n+1}(z, z_S)
\]
\[
= \sum_{r, r_1, \ldots, r_n = 1} a^{1-g + \{r/a\} + \sum \{r_i/a\}} \sum_{k_1, \ldots, k_n = 0} \text{finite} \ A_{\mu_1, \ldots, \mu_n} \prod_{i=1}^n \xi_{k_1+1}(x_i) \frac{dx_i}{x_i} \sum_{\alpha} \operatorname{Res}_{z=\alpha} y(z) \xi_k^{(r)} \frac{dx}{x}
\]
\[
= \sum_{\mu_1, \ldots, \mu_n = 1} a^{1-g + \sum \{r_i/a\}} \prod_{i=1}^n (\mu_i x_i^{\mu_i} \frac{dx_i}{x_i})
\]

For the right hand side of (28), we use the fact that \(dz_k \frac{\partial}{\partial z_k} x_k^{\mu_k} = \mu_k x_k^{\mu_k} \frac{dx_k}{x_k}\).

\[
\sum_{k=1}^n dz_k \frac{\partial}{\partial z_k} \left[\omega_{g,n}(z_S) \frac{x_k}{dx_k} \right] = \sum_{k=1}^n dz_k \frac{\partial}{\partial z_k} \left[x_k \frac{dx_k}{\mu_1, \ldots, \mu_n = 1} H_g^{[a]}(\mu_1, \ldots, \mu_n) \prod_{i=1}^n (\mu_i x_i^{\mu_i} \frac{dx_i}{x_i}) \right]
\]
\[
= \sum_{\mu_1, \ldots, \mu_n = 1} (\mu_1 + \cdots + \mu_n) a^{1-g + \sum \{r_i/a\}} \prod_{i=1}^n (\mu_i x_i^{\mu_i} \frac{dx_i}{x_i})
\]

Now compare coefficients of \(\prod x_i^{\mu_i} \frac{dx_i}{x_i}\) for both of these expressions to yield the desired result. \(\square\)

Proof of Theorem 20. We begin with the following residue calculation.

\[
\sum_{\alpha} \operatorname{Res}_{z=\alpha} \Phi(z) \xi_k^{(r)}(z) \frac{dx}{x} = \begin{cases} -1 & \text{for } k = 2 \text{ and } r = a \\ 0 & \text{otherwise} \end{cases}
\]

The equation \(d\Phi = y \frac{dx}{x}\) implies that we may write \(\Phi = \frac{1}{z} z^a - \frac{1}{2} z^{2a}\). For brevity, we omit the details of the remainder of the proof, which uses the same strategy as the proof of Theorem 19. \(\square\)

Let \(Q_{g,n}^{[a]}\) denote the polynomial which governs the quasi-polynomial \(Q_{g,n}^{[a]}\) in the case that all entries are divisible by \(a\). Although the string and dilaton equations are not recursive by nature, they do allow us to uniquely determine these polynomials for low genus.

Corollary 21. In genus \(0\), we have the closed formula \(Q_{0,n}^{[a]}(\mu_1, \ldots, \mu_n) = \frac{1}{a} (\mu_1 + \cdots + \mu_n)^{n-3}\). In genus \(1\), the polynomial \(Q_{1,n+1}^{[a]}\) can be effectively determined from \(Q_{1,n}^{[a]}\) by the string and dilaton equations.

Proof. The formula certainly holds for the base cases \(n = 1\) and \(n = 2\), which correspond to the unstable cases of Theorem 11. Now suppose that the formula is true for some \(n \geq 2\). Then the string equation and the inductive hypothesis imply that

\[
Q_{0,n+1}^{[a]}(\mu_1, \ldots, \mu_n, 0) = (\mu_1 + \cdots + \mu_n) Q_{g,n}^{[a]}(\mu_1, \ldots, \mu_n) = \frac{1}{a} (\mu_1 + \cdots + \mu_n)^{n-2}.
\]

It follows that

\[
Q_{0,n+1}^{[a]}(\mu_1, \ldots, \mu_n, \mu_{n+1}) = \frac{1}{a} (\mu_1 + \cdots + \mu_n)^{n-2} + \mu_{n+1} F(\mu_1, \ldots, \mu_n, \mu_{n+1}).
\]
Now use the fact that $\hat{Q}_{0,n+1}$ is symmetric of degree at most $n - 2$, a consequence of Theorem 11. Suppose that it is possible to write down another symmetric polynomial of degree at most $n - 2$, which has the form

$$\frac{1}{n} (\mu_1 + \cdots + \mu_n)^{n-2} + \mu_{n+1} G(\mu_1, \ldots, \mu_n, \mu_{n+1}).$$

Then the difference $\mu_{n+1}[F(\mu_1, \ldots, \mu_n, \mu_{n+1}) - G(\mu_1, \ldots, \mu_n, \mu_{n+1})]$ must also be symmetric of degree at most $n - 2$. Symmetry implies that, since it is divisible by μ_{n+1}, it must also be divisible by $\mu_1 \cdots \mu_n$. The degree condition now forces the difference to be equal to zero. In other words, the symmetry and degree condition on $\hat{Q}_{0,n+1}$ uniquely determine F and it follows by induction that $\hat{Q}_{0,n+1}(\mu_1, \ldots, \mu_n) = \frac{1}{n} (\mu_1 + \cdots + \mu_n)^{n-3}$.

Now use the same argument and the fact that $\hat{Q}_{1,n+1}$ is symmetric of degree at most $n + 1$. This allows us to determine $\hat{Q}_{1,n+1}(\mu_1, \ldots, \mu_n, \mu_{n+1})$ up to the addition of $c \mu_1 \cdots \mu_n \mu_{n+1}$ for some constant c. Now invoke the dilaton equation to determine the value of c. □

Appendix A. Graphical interpretation of Hurwitz numbers

Let us introduce some notation for the set of branched covers enumerated by the orbifold Hurwitz numbers.

Definition 22. For a positive integer a, let $\text{Cov}^a_g(\mu_1, \mu_2, \ldots, \mu_n)$ be the set of connected genus g branched covers $f : C \to \mathbb{P}^1$ such that

- the preimages of ∞ are labelled p_1, p_2, \ldots, p_n and the divisor $f^{-1}(\infty)$ is equal to $\mu_1 p_1 + \mu_2 p_2 + \cdots + \mu_n p_n$;
- the ramification profile over 0 is given by a partition of the form (a, a, \ldots, a); and
- the only other ramification is simple and occurs over the mth roots of unity.

Note that the weighted count of the branched covers in $\text{Cov}^a_g(\mu_1, \mu_2, \ldots, \mu_n)$ is equal to $H^a_{g, \mu} \times |\text{Aut} \mu|$. The extra factor appears since we require the branched covers to have labelled preimages of ∞. Thus, it is natural to define the following normalisation of the orbifold Hurwitz numbers.

$$K^a_g(\mu) = H^a_{g, \mu} \times |\text{Aut} \mu|$$

In this appendix, we prove Proposition 4 using an interpretation of Hurwitz numbers as the weighted count of fatgraphs, which appears in the work of Okounkov and Pandharipande [31]. One can informally think of a fatgraph as the 1-skeleton of a finite cell decomposition of a connected oriented surface, where the faces are labelled from 1 up to n. It is useful to consider each edge as the union of two half-edges. The orientation of the underlying surface allows us to define the permutation σ_0 on the set of half-edges that cyclically permutes the half-edges adjacent to a common vertex. The permutation σ_1 denotes the fixed point free involution that swaps two half-edges comprising the same edge. The product $\sigma_2 = \sigma_0 \sigma_1$ is the permutation that cyclically permutes the half-edges adjacent to a common face. The following precise definition generalises this notion of a fatgraph by allowing σ_1 to have fixed points, which correspond to half-edges that do not get paired to create an edge. We refer to such half-edges in the fatgraph as leaves.

Definition 23. A fatgraph is a triple (X, σ_0, σ_1) where X is a finite set, $\sigma_0 : X \to X$ is a permutation, and $\sigma_1 : X \to X$ is an involution. We require that the group generated by σ_0 and σ_1 acts transitively on X and that the elements of $X/\langle \sigma_2 \rangle$ are labelled from 1 up to n.

The set $X/\langle \sigma_0 \rangle$ is canonically equivalent to the set of vertices of the fatgraph. The set $X/\langle \sigma_1 \rangle$ is canonically equivalent to the set of leaves and edges of the fatgraph. Furthermore, the set $X/\langle \sigma_2 \rangle$ is canonically equivalent to the set of faces of the fatgraph. The perimeter of a face is defined to be the length of the cycle of σ_2.
corresponding to the face. We consider two fatgraphs \((X, \sigma_0, \sigma_1)\) and \((Y, \tau_0, \tau_1)\) to be equivalent if there exists a bijection \(\phi : X \to Y\) satisfying \(\phi \circ \sigma_0 = \tau_0 \circ \phi\) and \(\phi \circ \sigma_1 = \tau_1 \circ \phi\), which preserves the face labels. Thus, each fatgraph \(\Gamma\) is endowed with a natural automorphism group \(\text{Aut} \ \Gamma\).

The structure of a fatgraph allows one to thicken the underlying graph to a connected oriented surface with boundary, where the boundary components naturally correspond to the faces. In particular, a fatgraph acquires a type \((g, n)\), where \(g\) denotes the genus and \(n\) the number of faces. The following diagram shows two distinct fatgraphs — the first of type \((0, 3)\) and the second of type \((1, 1)\) — whose underlying graphs are isomorphic. We use the usual convention whereby the cyclic ordering of the half-edges adjacent to a vertex is induced by the orientation of the page.

![Diagram of two fatgraphs](image)

Definition 24. For a positive integer \(a\), let \(\text{Fat}_g^{[a]}(\mu_1, \mu_2, \ldots, \mu_n)\) be the set of edge-labelled fatgraphs of type \((g, n)\) such that

- there are \(\frac{|\mu|}{a}\) vertices and at each of them there are \(am\) adjacent half-edges that are cyclically labelled \(1, 2, 3, \ldots, m, 1, 2, 3, \ldots, m, 1, 2, 3, \ldots, m;\)
- there are exactly \(m\) edges that are labelled \(1, 2, 3, \ldots, m;\) and
- the perimeters of the faces are given by the tuple \((\mu_1 m, \mu_2 m, \ldots, \mu_n m)\).

Here, we say that an edge is labelled \(k\) if its constituent half-edges are both labelled \(k\). For example, the set \(\text{Fat}_0^{[2]}(3, 1)\) consists of the following three fatgraphs, where the face labels have been omitted for clarity.

![Three fatgraphs](image)

Proposition 25. There is a one-to-one correspondence between \(\text{Cov}_g^{[a]}(\mu_1, \ldots, \mu_n)\) and \(\text{Fat}_g^{[a]}(\mu_1, \ldots, \mu_n)\) that preserves automorphism groups. Consequently, the normalised orbifold Hurwitz number \(K_g^{[a]}(\mu)\) is the weighted count of the fatgraphs in \(\text{Fat}_g^{[a]}(\mu_1, \ldots, \mu_n)\).

Proof. Let \(\Gamma_m\) denote the fatgraph with one vertex obtained by connecting 0 to the \(m\)th roots of unity in \(\mathbb{P}^1\) by half-edges, as shown in the diagram below. The one-to-one correspondence between \(\text{Cov}_g^{[a]}(\mu_1, \mu_2, \ldots, \mu_n)\) and \(\text{Fat}_g^{[a]}(\mu_1, \mu_2, \ldots, \mu_n)\) is given by \(f \mapsto f^{-1}(\Gamma_m)\).
The vertices correspond to the preimages of 0 and the faces to the preimages of ∞. Preimages of the segment connecting 0 to \(\omega^k \) correspond to half-edges labelled \(k \), so that the edges correspond to the points where branching occurs. The conditions for a branched cover to be in \(\text{Cov}^{[a]}_{g_1}(\mu_1, \mu_2, \ldots, \mu_n) \) translate into the conditions for a fatgraph to be in \(\text{Fat}^{[a]}_g(\mu_1, \mu_2, \ldots, \mu_n) \).

An isomorphism of fatgraphs is equivalent to an orientation-preserving homeomorphism of the underlying surface that maps vertices, edges, and faces to vertices, edges, and faces, while preserving all labels. It follows that the notion of equivalence and automorphism of branched covers descends to the notion of equivalence and automorphism of fatgraphs. \(\square \)

Continuing the previous example, we note that the three fatgraphs in \(\text{Fat}^{[2]}_{a_1}(3, 1) \) have trivial automorphism groups. Therefore, we have calculated the orbifold Hurwitz number \(H^{[2]}_{a_1}(3, 1) = 3 \).

The cut-and-join recursion for orbifold Hurwitz numbers can be stated in terms of the normalisation \(K^{[a]}_g(\mu) \).

\[
K^{[a]}_g(\mu_S) = \sum_{i<j} (\mu_i + \mu_j)K^{[a]}_g(\mu_{S\setminus\{i,j\}}, \mu_i + \mu_j)
\]

\[
+ \sum_{i=1}^n \sum_{\alpha+\beta=\mu_i} \frac{\alpha \beta}{2} \left[K^{[a]}_{g-1}(\mu_{S\setminus\{i\}}, \alpha, \beta) + \sum_{g_1+g_2=g, I\cup J=S\setminus\{i\}} \sum \frac{(m-1)!}{m_1!m_2!} K^{[a]}_{g_1}(\mu_{I}, \alpha)K^{[a]}_{g_2}(\mu_{J}, \beta) \right],
\]

Here, we use the notation \(m_1 = 2g_1 - 1 + |I| + \frac{|I|+\alpha}{a} \) and \(m_2 = 2g_2 - 1 + |J| + \frac{|J|+\beta}{a} \). The conditions \(g_1 + g_2 = g, I\cup J = S\setminus\{i\}, \) and \(\alpha + \beta = \mu_i \) imply that \(m_1 + m_2 = m - 1 \).

Proof of Proposition 4. Recall that \(K^{[a]}_g(\mu_S) \) is the weighted count of the fatgraphs in \(\text{Fat}^{[a]}_g(\mu_S) \). Choose a fatgraph in \(\text{Fat}^{[a]}_g(\mu_S) \) and remove the half-edges and the edge labelled \(m \) from it. Then one of the following three cases must arise.

- **The edge labelled \(m \) is adjacent to two distinct faces labelled \(i \) and \(j \).**

 The removal of the half-edges and the edge labelled \(m \) leaves a fatgraph in \(\text{Fat}^{[a]}_g(\mu_{S\setminus\{i,j\}}, \mu_i + \mu_j) \).
Conversely, there are $\mu_i + \mu_j$ ways to reconstruct a fatgraph in $\Fat_g^a(\mu_S)$ from a fatgraph in $\Fat_g^a(\mu_{S\setminus\{i,j\}}, \mu_i + \mu_j)$ by adding half-edges and one edge labelled m.

- **The edge labelled m is adjacent to the face labelled i on both sides and its removal leaves a fatgraph.**

 The removal of the half-edges and the edge labelled m leaves a fatgraph in $\Fat_{g-1}^a(\mu_{S\setminus\{i\}}, \alpha, \beta)$, where $\alpha + \beta = \mu_i$.

Conversely, there are $\frac{1}{2} \times \alpha \times \beta$ ways to reconstruct a fatgraph in $\Fat_g^a(\mu_S)$ from a fatgraph in $\Fat_g^{a-1}(\mu_{S\setminus\{i\}}, \alpha, \beta)$ where $\alpha + \beta = \mu_i$ by adding half-edges and one edge labelled m. The factor $\alpha \times \beta$ accounts for the possible locations of the ends of the edge labelled m. The factor $\frac{1}{2}$ adjusts for the overcounting due to the symmetry in α and β.

- **The edge labelled m is adjacent to the face labelled i on both sides and its removal leaves the disjoint union of two fatgraphs.**

 The removal of the half-edges and the edge labelled m leaves the disjoint union of two fatgraphs Γ_1 and Γ_2. Remove from Γ_1 all leaves whose label does not appear on an edge of Γ_1 and replace all labels with the numbers from 1 up to m_1, preserving the order. Similarly, remove from Γ_2 all leaves whose label does not appear on an edge of Γ_2 and replace all labels with the numbers from 1 up to m_2, preserving the order. We are left with the disjoint union of two fatgraphs in $\Fat_g^{a-1}(\mu_I, \alpha)$ and $\Fat_g^{a-2}(\mu_J, \beta)$. We necessarily have the conditions $g_1 + g_2 = g$, $I \sqcup J = S \setminus \{i\}$, and $\alpha + \beta = \mu_i$.

Conversely, there are $\frac{1}{2} \times \alpha \times \beta \times \frac{(m-1)!}{m_1 m_2}$ ways to reconstruct a fatgraph in $\Fat_g^a(\mu_S)$ from a pair of fatgraphs in $\Fat_g^{a-1}(\mu_I, \alpha)$ and $\Fat_g^{a-2}(\mu_J, \beta)$ by adding half-edges and one edge labelled m. We have assumed here that $g_1 + g_2 = g$, $I \sqcup J = S \setminus \{i\}$, and $\alpha + \beta = \mu_i$. The factor $\frac{(m-1)!}{m_1 m_2}$ accounts for the distribution of the labels $\{1, 2, \ldots, m-1\}$ between the two fatgraphs. The factor $\alpha \times \beta$ accounts for the possible locations of the ends of the edge labelled m. The factor $\frac{1}{2}$ adjusts for the overcounting due to the symmetry in (g_1, I, α) and (g_2, J, β).

To obtain all fatgraphs in $\Fat_g^a(\mu)$, it is necessary to perform the reconstruction process in the first case for all possible values of i and j; in the second case for all possible values of i and $\alpha + \beta = \mu_i$; and in the third case for all possible values of i, $g_1 + g_2 = g$, $I \sqcup J = S \setminus \{i\}$ and $\alpha + \beta = \mu_i$. We obtain the cut-and-join recursion for orbifold Hurwitz numbers by summing up over all these contributions. \qed
Definition 26. Let \(d \) be a positive integer and \(\nu \) be a partition of \(d \). A \textit{cactus-node tree of type} \(\nu \) is a connected graph \(D \) such that:

- There exists a collection \(N \) called the \textit{nodes} (or \textit{cactus-nodes}):
 \[
 N = \left\{ g_i \middle| \begin{array}{l}
 i \in \{1, \ldots, l\}, \text{ if } i \neq j \text{ then } g_i \cap g_j = \emptyset, \\
 g_i \text{ is a directed } \nu_i\text{-cycle in } D \text{ if } \nu_i > 1, \\
 \text{or a vertex of } D \text{ if } \nu_i = 1,
 \end{array} \right\}
 \]

- There exists a collection of edges \(B \) with \(|B| = \ell(\nu) - 1 \) and \(B \cap E(N) = \emptyset \) called the \textit{branches}.

- If \(c \) is a cycle in \(D \) then \(c \in N \).

- \(|\text{Edges}(D)| = |\text{Edges}(N)| + |\text{Edges}(B)| \)

Call a node that is connected to exactly one branch a \textit{leaf}.

Example 27. These are examples of cactus-node trees of type \(\{1, 1, 1, 3, 4, 5\} \).

\[
\begin{align*}
\text{Example 27.} & \quad \text{These are examples of cactus-node trees of type } \{1, 1, 1, 3, 4, 5\}. \\
\end{align*}
\]

\[
\text{Proposition 28.} \quad \text{Let } d \text{ be a positive integer and } \nu \text{ be a partition of } d. \text{ The number of cactus-node trees of type } \nu \text{ on a set of } d \text{ marked points is}
\]
\[
\frac{d!}{|\text{Aut } \nu|} d^{(\nu)-2}.
\]

\[
\text{Proof.} \quad \text{We generalise the Pr"ufer encoding used to prove Cayley’s formula for the number of labelled trees. Let } M \text{ be the set of collections of the form:}
\]
\[
\left\{ C_i \middle| \begin{array}{l}
 i \in \{1, \ldots, l\}, \text{ if } i \neq j \text{ then } C_i \cap C_j = \emptyset, \\
 C_i \text{ is a rooted } \nu_i\text{-cycle on } \{1, \ldots, d\} \text{ if } \nu_i > 1, \\
 \text{or a marked point on } \{1, \ldots, d\} \text{ if } \nu_i = 1,
 \end{array} \right\}
\]

We claim that there is a bijection
\[
\left\{ \text{Cactus-node trees of type } \nu \right\} \longleftrightarrow M \times \{1, \ldots, d\}^{l-2}
\]

To see this we use ideas from the Pr"ufer encoding:

- Locate the leaf with with the largest label.
- Mark the leaf where the branch is connected.
- Write down the label the where branch is connected to the non-leaf component.
- Remove the branch connecting this to the graph.
- Repeat this until two leaves are left.
- Remove the branch connecting the final two leaves.
- We are left with a collection in \(M \) and a sequence in \(\{1, \ldots, \} \) of length \(l - 2 \).
This encoding can be reversed. Let C be a collection in M, and K be a sequence in $\{1, \ldots, \}$ of length $l - 2$.

- Locate $b \in C$ with the largest label not in K.
- Locate $c \in C$ that contains the label K_1.
- Connect b and c with a branch at the marked points.
- Replace C with $C \setminus b$ and K with (K_2, \ldots, K_{l-2}).
- Continue until K is empty.
- Connect the marked points of the remaining two elements of C.

Each $C \in M$ can be uniquely specified by

- Partitioning S into sets of size determined by ν. The number of ways to do this is:
 \[
 \frac{d!}{\nu_1! \nu_2! \cdots \nu_l!} = \frac{d!}{\nu_1!(d-\nu_1)! \nu_2!(d-\nu_2-\nu_1)! \cdots}.
 \]

- Specifying the cycle structure and marked point of each set. For each set of size ν_i there are $\nu_i!$ possible marked cycle structures.
- We must divide by $|\text{Aut } \nu|$ because these sets are unlabelled.

Hence $|M| = \frac{d!}{\text{Aut}(\nu)}$ and the desired result follows immediately. \qed

REFERENCES

[1] A. Bayer and C. Cadman, Quantum cohomology of $[\mathbb{C}^N/\mu_r]$, Compositio Math. 146 (2010), 1291-1322.
[2] Borot, Gaëtan; Eynard, Bertrand; Mulase Motohico and Safnuk, Brad. A matrix model for simple Hurwitz numbers, and topological recursion. Journal of Geometry and Physics 61 (2011), 522-540.
[3] Bouchard, Vincent; Klemm, Albrecht; Mariño, Marcos; Pasquetti, Sara Remodeling the B-Model. Comm. Math. Phys. 287 (2009), 117–178.
[4] Bouchard, Vincent and Mariño, Marcos Hurwitz numbers, matrix models and enumerative geometry. From Hodge theory to integrability and TQFT tt*-geometry, 263-283, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008.
[5] J.Bryan, T.Graber, R.Pandharipande, The orbifold quantum cohomology of \mathbb{C}^2/Z_3 and Hurwitz-Hodge integrals. Comm. Math. Phys. 287 (2009), no. 1, 1-28.
[6] C.Cadman, R.Cavalieri, Gerby localization, Z_3-Hodge integrals and the GW theory of $[\mathbb{C}^3/Z_3]$ Amer. J. Math. 131 (2009), no. 4, 1009-1046.
[7] Cavalieri, Renzo Generating functions for Hurwitz-Hodge integrals. Adv. Math. 218 (2008), 1419–1429.
[8] T.Coates, A.Corti, H.Iritani,H.-H.Tseng, Computing genus-zero twisted Gromov-Witten invariants. Duke Math. J. 147 (2009), no. 3, 377-438.
[9] Dijkgraaf, Robbert ; Fuji, Hiroyuki and Manabe Masahide The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings. Nucl. Phys. B 849 (2011), 166.
[10] P. Dunin-Barkowski; N. Orantin; S. Shadrin and L. Spitz Identification of the Givental formula with the spectral curve topological recursion procedure arXiv:1211.4021
[11] T.Ekedahl, S.Lando, M.Shapiro, A.Vainshtein, On Hurwitz numbers and Hodge integrals. C. R. Acad. Sci. Paris S?r. I Math. 328 (1999), no. 12, 1175–1180.
[12] T.Ekedahl, S.Lando, M.Shapiro, A.Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146 (2001), no. 2, 297–327.
[13] Eynard, Bertrand and Orantin, Nicolas Intersection numbers of spectral curves. arXiv:1104.0176
[14] Eynard, Bertrand and Orantin, Nicolas Invariants of spectral curves and intersection theory of moduli spaces of complex curves. arXiv:1110.2949
[15] Eynard, B. Recursion between Mumford volumes of moduli spaces arXiv:0706.4403
[16] Bertrand Eynard, Motohico Mulase, Brad Safnuk The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers Publications of the Research Institute for Mathematical Sciences 47 (2011), 629-670.
[17] Eynard, Bertrand and Orantin, Nicolas *Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture*. arXiv:1205.1103

[18] Eynard, Bertrand and Orantin, Nicolas *Invariants of algebraic curves and topological expansion*. Communications in Number Theory and Physics 1 (2007), 347–452.

[19] Eynard, Bertrand and Orantin, Nicolas *Topological recursion in enumerative geometry and random matrices*. J. Phys. A: Math. Theor. 42 (2009) 293001 (117pp).

[20] Eynard, Bertrand and Orantin, Nicolas *Weil–Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models*. arXiv:0705.3600

[21] I.P.Goulden, D.M.Jackson *Transitive factorisations into transpositions and holomorphic mappings on the sphere*. Proc. Amer. Math. Soc. 125 (1997), no. 1, 51–60.

[22] I.P.Goulden, D.M.Jackson and A.Vainshtein *The number of ramified coverings of the sphere by the torus and surfaces of higher genera*. Annals of Combinatorics 4 (2000), 27-46.

[23] T.Grabert, R.Vakil, *Hodge integrals and Hurwitz numbers via virtual localization*. Compositio Math. 135 (2003), no. 1, 25–36.

[24] Harris, Joe and Mumford, David *On the Kodaira dimension of the moduli space of curves*. Invent. Math. 67 (1982), 23–88.

[25] A. Hurwitz, *Über Riemannische Flächen mit gegebenen Verzweigungspunkten*. Math. Ann. 39 (1897), 1–60.

[26] Jarvis, Tyler and Kimura, Takashi *Orbifold quantum cohomology of the classifying space of a finite group*. Orbifolds in mathematics and physics (Madison, WI, 2001), 123-134, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002.

[27] P.Johnson, R.Pandharipande and H.-H.Tseng *Abelian Hurwitz–Hodge integrals*. Michigan Math. J. 60 (2011), no. 1, 171–198.

[28] Mariño, Marcos *Open string amplitudes and large order behavior in topological string theory*. J. High Energy Phys. 2008, no. 3, 060, 34 pp.

[29] Norbury, Paul *String and dilaton equations for counting lattice points in the moduli space of curves*. To appear in Trans. AMS. arXiv:0905.4141

[30] Norbury, Paul and Scott, Nick. *Gromov–Witten invariants of \(\mathbb{P}^1 \) and Eynard–Orantin invariants*. arXiv:1106.1337

[31] Okounkov, Andrei and Pandharipande, Rahul *Gromov–Witten theory, Hurwitz numbers, and Matrix models*. Algebraic geometry-Seattle 2005. Part 1, 325-414, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009.

[32] S.Shadrin, L.Spitz, D.Zvonkine *On double Hurwitz numbers with completed cycles*. J. London Math. Soc. (2012).

[33] H.-H.Tseng, *Orbifold quantum Riemann-Roch, Lefschetz and Serre*. Geom. Topol. 14 (2010), no. 1, 1-81.

[34] Witten, Edward *Two-dimensional gravity and intersection theory on moduli space*. Surveys in differential geometry (Cambridge, MA, 1990), 243–310, Lehigh Univ., Bethlehem, PA, 1991.

[35] H.Zhang, J.Zhou, *Wreath Hurwitz numbers, colored cut-and-join equations, and 2-Toda hierarchy*. Sci. China Math. 55 (2012), no. 8, 1627–1646.

School of Mathematical Sciences, Monash University, Victoria 3800, Australia
E-mail address: norm.do@monash.edu

Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
E-mail address: oleigh@student.unimelb.edu.au

Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
E-mail address: pbnorbury@ms.unimelb.edu.au