Efficient Quadrature Solution for Composite Plates with Variable Thickness Resting on Non-Uniform and Nonlinear Elastic Foundation

Ola Ragba, M. S. Matbuly

Department of Physics and Engineering Mathematics, Faculty of Engineering, Zagazig University, P.O. 44519, Zagazig, Egypt

Abstract—Two Different schemes are examined for vibration analysis of composite plate with variable thickness resting on non-uniform and nonlinear elastic foundation problems. On the basis of first order transverse shear theory a basic equation of vibration is derived. Investigations are made over non-uniform and nonlinear Winkler and uniform Pasternak foundation model. Examined schemes are based on discrete singular convolution and moving least square differential quadrature method. Also, the obtained nonlinear algebraic system is solved by using iterative quadrature technique. This problem is solved for different boundary conditions, different shear correction factor and varying thickness in one and two directions. Numerical analysis is applied to investigate influence of different computational characteristics on convergence and accuracy of the obtained results. The obtained results agreed with the previous analytical and numerical ones. Further a parametric study is introduced to explore the influence of elastic and geometric characteristics of the vibrated plate, on results.

Keywords—Composite; Vibration; Shear Correction Factor; Non-uniform Elastic Foundation; Nonlinear Winkler Foundation; Variable Thickness; Discrete Singular Convolution; Moving Least Square.

I. INTRODUCTION

Non-uniform elastic plates with varying thickness are commonly used in ship and offshore structures, pavement of roads, footing of buildings and bases of machines. Therefore, the vibration analysis of like plates is of great importance for practical design and structural components.

Depending upon the requirement, durability and reliability, materials are being developed so that these may provide better strength, efficiency and economy. Therefore a study of character and behavior of these plates is required so that the full potential of these plates may be used. So, these plates have been studied analytically and numerically. In most cases, their closed form solutions are extremely difficult to establish. But, for some special cases of variable thickness of rectangular plate, investigations have been made and solutions have been obtained \cite{1-4}. The most commonly used numerical methods for such applications are Spline function approximation technique \cite{5-6}, Rayleigh-Ritz method \cite{7-8}, Mesh-free method\cite{9}, Mixed boundary node method\cite{10}, Finite strip method \cite{11} and Finite element method\cite{12}, have been widely applied for the plate resting on uniform elastic foundation. Most of these studies are computationally expensive.

In seeking a more efficient numerical method is differential quadrature method (DQM) which requires fewer grid points yet achieves acceptable accuracy \cite{13-15}. By applying DQM, the free vibration problem of plate is translated into the eigenvalue problem. According to the selection of basis functions and influence domain for each point, there are more than versions of DQM. Discrete singular convolution differential quadrature method (DSCDQM) \cite{16-18}, Moving least square differential quadrature method (MLSDQM) \cite{19-21} are the most reliable versions. DSCDQ method is that they exhibit exponential convergence of spectral methods while having the flexibility of local methods for complex boundary conditions. MLSDQM exploits the merits of both the DQ and meshless method.

The main aim of present work to apply two different schemes (DSCDQM and MLSDQM) to solve vibration problems of composite plates with varying thickness. These plates are resting on non-uniform and nonlinear Winkler and uniform Pasternak elastic foundation. Based on a transverse shear theory, the governing equations of the problem are formulated. The unknown field quantities and their derivatives are approximated using DQ approximations. Then the obtained nonlinear algebraic system is solved by using iterative quadrature technique. The program of MATLAB is designed to solve the reduced eigenvalue problem. Numerical analysis is implemented to investigate convergence and efficiency of each scheme. Accuracy of the obtained results is compared with the existing previous results. Further a parametric study is introduced to investigate the influence of elastic and geometric characteristics on natural frequencies and mode shapes.

II. FORMULATION OF THE PROBLEM

Consider a composite consisting of \(n \) plates interfacially bonded with variable thickness \(h(x,y) \) and resting on non-uniform and nonlinear elastic foundation of Winkler and uniform Pasternak type, as shown in Fig.(1).
Each plate occupies $(a_i \leq x \leq a_i, \ 0 \leq y \leq b, \ i = 1, n)$, where a and b are width and length of the composite. Based on a first-order shear deformation theory, the equations of motion for each plate can be written as [20, 22]:

$$
D(x, y) \left\{ \frac{\partial^2 \Phi_x}{\partial x^2} + \frac{(1 - \nu)}{2} \frac{\partial^2 \Phi_x}{\partial y^2} + \frac{(1 + \nu)}{2} \frac{\partial^2 \Phi_y}{\partial x \partial y} \right\} + kGh(x, y) \left(\frac{\partial \Phi_x}{\partial x} - \frac{\partial \Phi_y}{\partial y} \right) = -I_1 \frac{\partial^2 \Phi_x}{\partial t^2},
$$

(1)

$$
D(x, y) \left\{ \frac{\partial^2 \Phi_y}{\partial y^2} + \frac{(1 - \nu)}{2} \frac{\partial^2 \Phi_y}{\partial x^2} + \frac{(1 + \nu)}{2} \frac{\partial^2 \Phi_x}{\partial x \partial y} \right\} + kGh(x, y) \left(\frac{\partial \Phi_y}{\partial y} - \frac{\partial \Phi_x}{\partial x} \right) = -I_1 \frac{\partial^2 \Phi_y}{\partial t^2},
$$

(2)

$$
D(x, y) \left\{ \frac{\partial^2 \Phi_x}{\partial x^2} + \frac{(1 - \nu)}{2} \frac{\partial^2 \Phi_x}{\partial y^2} + \frac{(1 + \nu)}{2} \frac{\partial^2 \Phi_y}{\partial x \partial y} \right\} + kGh(x, y) \left(\frac{\partial \Phi_x}{\partial x} - \frac{\partial \Phi_y}{\partial y} \right) = \omega^2 I_1 \Phi_x,
$$

(3)

$$
D(x, y) \left\{ \frac{\partial^2 \Phi_y}{\partial y^2} + \frac{(1 - \nu)}{2} \frac{\partial^2 \Phi_y}{\partial x^2} + \frac{(1 + \nu)}{2} \frac{\partial^2 \Phi_x}{\partial x \partial y} \right\} + kGh(x, y) \left(\frac{\partial \Phi_y}{\partial y} - \frac{\partial \Phi_x}{\partial x} \right) = \omega^2 I_1 \Phi_y,
$$

(4)

Where I_0 and I_1 are mass moments of inertias [23]:

$$
I_0 = \int_{-h/2}^{h/2} \left(1, z^2 \right) \rho \ dz,
$$

(5)

$$
I_1 = \int_{-h/2}^{h/2} \left(1, z^2 \right) \rho \ dz,
$$

(6)

$kGh(x, y)$ is the non-uniform Winkler foundation stiffness which linearly varying along x-direction. γ is variation parameter of stiffness of foundation. K_2 is shear modulus of foundation reaction. K_3 is the non-linear Winkler foundation. t: time. $\Phi_x(x, y, t), \Phi_y(x, y, t), w(x, y, t)$ are normal strain rotations and transverse deflection [24].

The thickness variation function of plate is $h(x, y) = h_0(1 + \alpha x / a)(1 + \beta y / b)$, h_0 is the constant reference thickness value and α, β are variation parameter of thickness.

$$
D(x, y) = E h^3(x, y) /[2(1 - \nu^2)] \text{ is the flexural rigidity of the plate. } G, E \text{ and } v \text{ are shear modulus, Young’s modulus and Poisson’s ratio of the plate. } k \text{ is the shear correction factor [25-27].}
$$

Assuming harmonic behavior of the problem, the field quantities can be written as:

$$
\Phi_x(x, y, t) = \varphi_x e^{i\omega t}, \quad \Phi_y(x, y, t) = \varphi_y e^{i\omega t}, \quad w(x, y, t) = W e^{i\omega t}
$$

(7)

Where ω is the natural frequency of the plate and $i = \sqrt{-1}$. φ_x, φ_y, W are the amplitudes for Φ_x, Φ_y, and w, respectively.

Substituting from Eq.(5) into (1-4), One can reduce the problem to:

$$
D(x, y) \left\{ \frac{\partial^2 \varphi_x}{\partial x^2} + \frac{(1 - \nu)}{2} \frac{\partial^2 \varphi_x}{\partial y^2} + \frac{(1 + \nu)}{2} \frac{\partial^2 \varphi_y}{\partial x \partial y} \right\} + kGh(x, y) \left(\frac{\partial \varphi_x}{\partial x} - \frac{\partial \varphi_y}{\partial y} \right) = \omega^2 I_1 \varphi_x,
$$

(8)

$$
D(x, y) \left\{ \frac{\partial^2 \varphi_y}{\partial y^2} + \frac{(1 - \nu)}{2} \frac{\partial^2 \varphi_y}{\partial x^2} + \frac{(1 + \nu)}{2} \frac{\partial^2 \varphi_x}{\partial x \partial y} \right\} + kGh(x, y) \left(\frac{\partial \varphi_y}{\partial y} - \frac{\partial \varphi_x}{\partial x} \right) = \omega^2 I_1 \varphi_y,
$$

(9)

$$
kGh(x, y) \left(\frac{\partial \varphi_x}{\partial x} - \frac{\partial \varphi_y}{\partial y} \right) = \omega^2 I_1 W
$$

(10)

Boundary conditions can be expressed as follows:

- **Clamped edge:**

$$
W = 0, \quad n_x \varphi_x - n_y \varphi_y = 0, \quad n_x \varphi_x + n_y \varphi_y = 0
$$

(11)
• Simply Supporting of the first kind: SS1

\[
W = 0, \quad n_x^2 (n_x^2 + n_y^2) \frac{\partial \phi_x}{\partial x} + n_y (n_x^2 + n_y^2) \frac{\partial \phi_y}{\partial y} + (1 - \nu)n_x n_y \frac{\partial^2 \phi}{\partial x \partial y} = 0,
\]

\[
(i = 1, n)
\]

\[
\frac{1 - \nu}{2} D \left((n_x^2 - n_y^2) \frac{\partial \phi_x}{\partial y} - 2n_x n_y \frac{\partial \phi_y}{\partial x} \right) = 0,
\]

\[
\frac{1 - \nu}{2} D \left((n_x^2 - n_y^2) \frac{\partial \phi_x}{\partial y} - 2n_x n_y \frac{\partial \phi_y}{\partial x} \right) = 0,
\]

• Simply Supporting of the second kind: SS2

\[
W = 0, \quad n_x n_y \frac{\partial \phi_x}{\partial x} - n_y n_x \frac{\partial \phi_y}{\partial y} = 0,
\]

\[
(i = 1, n)
\]

\[
(n_x^2 + n_y^2) \frac{\partial \phi_x}{\partial x} + (1 - \nu)n_x n_y \frac{\partial \phi_y}{\partial y} = 0,
\]

\[
(i = 1, n)
\]

III. SOLUTION OF THE PROBLEM

Two different differential quadrature techniques are employed to reduce the governing equations into nonlinear eigenvalue problem, as follows [16-21]:

• Discrete Singular Convolution Differential Quadrature Method (DSCDQM)

In this technique, regularized Shannon kernel (RSK) may be used as a shape function such that the unknown \(u(x) \) and its derivatives can be approximated over a narrow bandwidth

\[
u \frac{\partial \phi_x (x, y)}{\partial y} - \frac{\partial \phi_y (x, y)}{\partial x} = D \left(\frac{\partial \phi_x (x, y)}{\partial x} + \frac{\partial \phi_y (x, y)}{\partial y} \right),
\]

\[
u \frac{\partial \phi_x (x, y)}{\partial y} + \frac{\partial \phi_y (x, y)}{\partial x} = \frac{1 - \nu}{2} \left(\frac{\partial \phi_x (x, y)}{\partial x} + \frac{\partial \phi_y (x, y)}{\partial y} \right),
\]

(13)

Along the interface between \(i \)th plate and \((i+1)\)th one, the continuity boundary conditions can be described as:

\[
\begin{align*}
W (x, b_i) &= W (x, b_i^+), \\
-D \left(\frac{\partial \phi_x (x, b_i)}{\partial x} + \frac{\partial \phi_y (x, b_i)}{\partial y} \right) &= \frac{1 - \nu}{2} \left(\frac{\partial \phi_x (x, b_i)}{\partial x} + \frac{\partial \phi_y (x, b_i)}{\partial y} \right),
\end{align*}
\]

\[(i = 1, n)
\]

Where

\[
C_{ij}^x = \begin{cases}
(1 - i) \frac{1}{h_x} e^{\frac{(i-j)^2}{2\sigma^2}}, & i \neq j \\
0, & i = j
\end{cases}
\]

(16)
Similarly, one can approximate u_x, u_y and calculated C_{ij}^{xy}, C_{ij}^{yy}.

- **Moving Least Squares Differential Quadrature Method (MLSDQM)**

In this technique, the influence domain, $(\Omega_i, i=1:N)$, for each node is determined as shown in Fig. (2). Over each influence domain, the nodal unknowns can be approximated as [19-21]:

$$ u(x_i) \approx u^h(x_i) = \sum_{j=1}^{N_i} \phi_j(x_i) u(x_j), \quad (i = 1, N), $$

(18)

![Fig. 2: Domain discretization for moving least squares differential quadrature.](image)

Fig. 2 Domain discretization for moving least squares differential quadrature.

Where the shape function $\phi_j(x_i)$ can be obtained using MLS approximation as follows:

$$ u^h(x) = \sum_{i=1}^{m} P_i(x) a_i(x) = P^T(x) a(x), $$

(19)

where $a(x) = \{a_1(x), a_2(x), \ldots, a_m(x)\}^T$ is a vector of unknown coefficients.

$P^T(x) = \{p_1(x), p_2(x), \ldots, p_m(x)\}$ is a complete set of monomial basis. m is the number of basis terms. The coefficients $a_j(x), (j = 1, m)$, can be obtained at any point x by minimizing the following weighted quadratic for

$$ \Pi(a) = \sum_{i=1}^{N_i} \sigma(x-x_i)(u^h(x_i) - u_i)^2 = $$

(20)

$$ \sum_{i=1}^{N_i} \sigma(x-x_i)(P^T(x_i) a(x) - u_i)^2 $$

Where $\sigma(x-x_i)$ is a positive weight function defined over the influence domain, $(\Omega_i, i=1:N)$

The stationary value of $\Pi(a)$ with respect to $a(x)$ leads to a linear equation, such as:

$$ A(x) a(x) = B(x) u, $$

(21)

from which $a(x) = A^{-1}(x) B(x) u$, (22)

where

$$ A(x) = P(x_i) \sigma_i(x_i) P^T(x_i) = $$

$$ \sum_{i=1}^{N_i} \sigma_i(x_i) P(x_i) P^T(x_i), \quad u = [u_1, u_2, \ldots, u_n]^T, $$

$$ B(x) = P(x) \sigma(x) = $$

$$ [\sigma_1(x) P(x_1), \sigma_2(x) P(x_2), \ldots, \sigma_n(x) P(x_n)]. $$

On suitable substitution from Eq. (22) into (19), $u^h(x)$ can then be expressed as:

$$ u^h(x) = P^T(x) a(x) = $$

$$ P^T(x) A^{-1}(x) B_1(x) u = \sum_{i=1}^{N_i} \phi_i(x) u_i $$

(23)

Where the nodal shape function:

$$ \phi_i(x) = P^T(x) A^{-1}(x) B_1(x) $$

(24)

Determination of the shape function $\phi_i(x)$ and its partial derivatives can be simplified as follows [19-21]:

$$ \phi_i(x) = P^T(x) A^{-1}(x) B_1(x) = \alpha^T(x) B_1(x) $$

(25)

Since $A(x)$ is a symmetric matrix, then $\alpha(x)$ can be obtained through

$$ A(x) \alpha(x) = P(x) $$

(26)

Therefore, the problem of determination of the shape function is reduced to solution of Eq.(26). This Equation can be solved using LU decomposition and back-substitution, which requires fewer computations than the inversion of
A(x). Further, the first and second order partial derivatives of \(\phi_j(x_i) \) can be determined as follows [19-21]:

\[
\frac{\partial^2 \phi_j}{\partial x^2} \left(x_i \right) = \alpha_{i,j}^T(x_i) \frac{\partial^2}{\partial x^2} B_j(x_i) + \alpha_{i,j}^T(x_i) B_{i,j}(x_i), \quad \left(L = X, Y \right)
\]

(27)

\[
\frac{\partial^2 \phi_j}{\partial y^2} \left(x_i \right) = \alpha_{i,j}^L(x_i) \frac{\partial^2}{\partial y^2} B_j(x_i) + \alpha_{i,j}^L(x_i) B_{i,j}(x_i), \quad \left(L = K, X, Y \right)
\]

(28)

The first and second order partial derivatives of the shape function can be described as:

\[
\phi_{j,L}(x_i) = c_j^L(x_i) = \alpha_{i,j}^L(x_i) B_j(x_i) + \alpha_{i,j}^L(x_i) B_{i,j}(x_i), \quad \left(L = X, Y \right)
\]

(29)

\[
\phi_{j,K}(x_i) = c_j^K(x_i) = \alpha_{i,j}^K(x_i) B_j(x_i) + \alpha_{i,j}^K(x_i) B_{i,j}(x_i), \quad \left(L, K = X, Y \right)
\]

(30)

On suitable substitution from Eqs.(14-30) into (6-8), the problem can be reduced to the following nonlinear eigenvalue problem:

\[
W_i = 0, \quad n_x \varphi_j^y - n_y \varphi_j^x = 0, \quad n_x \varphi_j^x + n_y \varphi_j^y = 0, \quad (i = 1, N)
\]

(34)

- Simply supporting of the first kind: SS1

\[
W_i = 0, \quad n_x \varphi_j^y - n_y \varphi_j^x = 0,
\]

(35)

- Simply supporting of the second kind: SS2

\[
W_i = 0, \quad n_x \varphi_j^y - n_y \varphi_j^x = 0,
\]

(36)

- Free edge:

\[
kG \ h^3 \sum_{j=1}^{N} \left(n_j c_{ij}^y + n_j c_{ij}^x \right) W^j - kG \ h^3 \left(n_j \varphi_j^y + n_j \varphi_j^x \right) = 0,
\]

(37)

\[
- \frac{1}{2} V \ D^y \sum_{j=1}^{N} \left(n_j c_{ij}^y + n_j c_{ij}^x \right) \varphi_j^y = 0,
\]

(38)

IV. NUMERICAL RESULTS

This section presents numerical results that demonstrate convergence and efficiency of each one of the proposed schemes for vibration analysis of non-uniform and nonlinear Winkler and uniform Pasternak foundation of composite plate. This plate varying with thickness. For all results, the boundary conditions (34-37) are augmented in the governing equations (31-33). Then the obtained nonlinear algebraic system is solved by using iterative quadrature technique [34]. The computational characteristics of each scheme are adapted to reach accurate results with error of order \(\leq 10^{-10} \). The obtained frequencies \(\omega \) are normalized such as:

\[
\Omega = \left(\omega \sqrt{\rho} \right) / (\pi \sqrt{\alpha}), \quad \Omega_0 = \text{fundamental frequency of isotropic squared plate.}
\]

For DSCDQ scheme based on regularized Shannon kernel (RSK), the problem is also solved over a uniform grids ranging from 7*7 to 19*19. The bandwidth 2M+1
ranges from 5 to 15 and the regularization parameter $\sigma = r_{h}$ ranges from $1.5h_{1}$ to $3h_{1}$, where $h_{1}=1/N-1$.

Table (1) shows convergence of the obtained fundamental frequency to the exact and numerical ones [28-31] over grid size $\geq 13 \times 13$, bandwidth ≥ 11 and regularization parameter $\sigma = 2.82 h_{1}$.

Table 1: Comparison between the fundamental frequency due to DSCDQM-RSK with the bandwidth $2M+1$ and regularization parameter σ, the grid points N and the previous results for a regular discretized isotropic simply supported plate $(h_{0}/a=0.01,v=0.3, k=5/6, K_{1}=100, \alpha=0.5, \beta=0.5, \gamma=0, K_{2}=0, K_{3}=0)$.

fundamental frequency	Number of grid points	9	11	13	15	17	
$\sigma = 1.8 h_{1}$	DSCDQM-RSK	$2M+1 = 7$	2.03	2.46	2.74	2.89	2.9545
		$2M+1 = 9$	2.23	2.69	2.82	2.93	2.9736
		$2M+1 = 11$	2.58	2.88	2.91	2.95	2.9828
		$2M+1 = 13$	2.79	2.92	2.96	2.99	2.9991
$\sigma = 2.4 h_{1}$	DSCDQM-RSK	$2M+1 = 7$	2.29	2.64	2.83	2.92	2.9683
		$2M+1 = 9$	2.52	2.72	2.88	2.96	2.9743
		$2M+1 = 11$	2.64	2.91	2.94	2.98	2.9955
$\sigma = 2.62 h_{1}$	DSCDQM-RSK	$2M+1 = 7$	2.86	2.95	2.99	2.99	2.9976
		$2M+1 = 9$	2.82	2.72	2.89	2.96	2.9697
		$2M+1 = 11$	2.76	2.85	2.94	2.99	2.9953
$\sigma = 2.82 h_{1}$	DSCDQM-RSK	$2M+1 = 7$	2.89	2.98	3.01	3.02	3.0213
		$2M+1 = 9$	2.86	2.92	2.98	2.99	3.0026
		$2M+1 = 11$	2.89	2.98	3.01	3.02	3.0141
		$2M+1 = 13$	2.94	2.99	3.02	3.02	3.0215

Exact results [28] 3.0215
Ritz method [29] 3.0214
Radial basis [30] 3.0216
Element free Galerkin [31] (15x15) 3.0225

For MLSDQ scheme, circular influence domain, $(Q_{i}, i=1,N)$, is considered as shown in Fig.2. Gaussian weight function is employed such as [19-21]:

$$w_{i}(x) = \frac{\exp(-d_{i}^{2}/c^{2}) - \exp(-(r/c)^{2})}{1 - \exp(-(r/c)^{2})} d_{i} \leq r$$

$$= 0 \quad \quad d_{i} > r$$

(38)

Where d_{i} is the distance from a nodal point x_{i} to a field one x located in the influence domain of x_{i}, r is the radius of support domain and c is the dilation parameter. In the present work, the dilation parameter is selected such as: $c=r/4$.

The scheme is employed with varying completeness order N, ranges from 2 to 5 and the radius of support domain $d_{max} = r_{h}$ ranges from 4 to 9. Also, the problem is also solved over a uniform grids ranging from $5*5$ to $19*19$. Table (2) shows convergence of the obtained fundamental frequency to the exact and numerical ones [28-31] over grid size $\geq 11 \times 11$, completeness order ≥ 4 and radius of support domain $d_{max} = 5$.

Table 2: Comparison between the fundamental frequency due to MLSDQM with the radius of support domain d_{max}, completeness order N_{c}, the grid points N and the previous results for a regular discretized isotropic simply supported plate $(h_{0}/a=0.01,v=0.3, k=5/6, K_{1}=100, \alpha=0.5, \beta=0.5, \gamma=0, K_{2}=0, K_{3}=0)$.

fundamental frequency	Number of grid points	7	9	11	13
	completeness order	7	9	11	13
	DSCDQM-RSK				
	$d_{max} = 5$				
	$N_{c} = 2$	2.64	2.516	2.446	2.4509
	$d_{max} = 6$	2.31	2.295	2.272	2.2612
	$N_{c} = 3$	2.26	2.254	2.251	2.2491
	$d_{max} = 8$	2.25	2.247	2.246	2.2436
	$N_{c} = 4$	2.24	2.241	2.241	2.2413
	$d_{max} = 5$	2.24	2.241	2.241	2.2413
	$N_{c} = 5$	2.24	2.241	2.241	2.2413
	Exact results [28]	2.2413			
	Ritz method [29]	2.2413			
	Radial basis [30]	2.2414			
	Element free Galerkin [31] (15x15)	2.2427			

Table (3) shows that the best value of shear factor correction is to be taken $(5/6-v)$. Tables (3,4) show that the fundamental frequency decrease with increasing Poisson ratio and shear factor correction. Also, the value of shear factor correction helps to achieve more accurate results.

Table 3: Comparison between the fundamental frequency, Poisson, shear factor correction K and the previous results for CCCS squared plate $(h_{0}/a=0.01, K_{1}=0, \alpha=0.5, \beta=0.5, \gamma=0, K_{2}=0, K_{3}=0, E_{1}=E_{2}=2.45)$.

Poisson ratio ν	Discrete Green function [33]	$k = \frac{s}{\kappa} \frac{1}{(1+n^{2}(h_{0})^{a})^{(2)}}$	$k = \frac{s}{\kappa} \frac{1}{(1+n^{2}(h_{0})^{a})^{(2)}}$	$k = \frac{s}{\kappa} \frac{1}{(1+n^{2}(h_{0})^{a})^{(2)}}$
0.15	8.1424	8.1638	8.1639	8.164
0.23	8.1110	8.1111	8.1112	8.111
0.3	8.0640	8.04586	8.0460	8.046
0.5	7.8909	7.7430	7.7432	7.744
TABLE 4 Comparison between the fundamental frequency, Poisson, shear factor correction K and different boundary condition for squared plate: (h/a=0.01, K₁=100, α=0, β=0, γ=0, K₂=50, K₃=0, E₁/E₂=2.45).

Poisson ratio v	shear factor correction	SSSS	CCCC	CSSS	CCSC
0.15	0.8547	3.9382	5.20912	4.2312	4.87028
0.23	0.8666	3.9207	5.18596	4.2123	4.84863
0.3	0.8772	3.8935	5.1801	4.1831	4.8151
0.5	0.9091	3.7429	4.95105	4.0213	4.62899

Tables (5, 6) show that execution time of DSCDQM-RSK scheme is less than that of MLSDQM. Therefore, it is more efficient than MLSDQM for vibration analysis of variable thickness, non-uniform and nonlinear elastically supported composite plate.

TABLE 5 Comparison between the obtained natural frequencies and the previous results for isotropic clamped plate: (h₀/a=0.015, v=0.15, α=0, β=0, γ=0, K₂=0, K₃=0).

Subgrade reaction	K₁=1390.2	K₁=2780.4	Execution time (sec)				
Results	ω₁	ω₂	ω₃				
MLSDQM (11x11), α =0 and d= 0.01	5.245	8.316	8.316	6.463	9.132	9.132	1.676119
DSCDQM- RSK (11x11) and Mat[3]	5.245	8.316	8.316	6.463	9.132	9.132	1.656792
Mixed finite element [32]	5.245	8.316	8.316	6.463	9.132	9.132	1.676119
Element free Galerkin [31]	5.267	8.391	8.392	6.477	9.202	9.203	1.676119
Ritz method[29]	5.259	8.432	8.432	6.460	9.248	9.248	1.676119
Radial basis[30]	5.244	8.313	8.313	6.463	9.130	9.130	1.676119

Also, for different boundary conditions and varying thickness in one and two directions, tables (6, 7) insist that DSCDQM-RSK scheme is the best choice for such problem.

TABLE 6 Comparison between the natural frequency due to DSCDQM-RSK and MLSDQM with the variable thickness α in one direction, different boundary conditions and the previous results for a squared plate: (h₀/a=0.01, E₁/E₂=2.45, v=0.23, K₁=0, β=0, K₃=0).

Boundary conditions	natural frequency variable thickness	results	Execution time (sec)		
α =0	DSCDQM-RSK	4.902	7.253	8.374	1.78028
MLSDQM	4.902	7.253	8.374	1.89144	
Discrete Green function[33]	4.902	7.253	8.374	1.89144	
α =0.4	DSCDQM-RSK	5.360	7.928	9.150	1.88903
MLSDQM	5.360	7.928	9.150	1.91884	
Discrete Green function[33]	5.360	7.928	9.150	1.91884	
α =0.8	DSCDQM-RSK	5.770	8.525	9.831	1.900178
MLSDQM	5.770	8.525	9.831	1.928867	
Discrete Green function[33]	5.770	8.525	9.831	1.928867	

TABLE 7 Comparison between the natural frequency due to DSCDQM-RSK and MLSDQM with the variable thickness α, β in two direction, different boundary conditions and the previous results for a squared plate: (h₀/a=0.01, E₁/E₂=2.45, v=0.23, K₁=0, K₃=0, K₄=0).
Furthermore, a parametric study is introduced to investigate the influence of elastic and geometric characteristics of the composite on the values of natural frequencies.

Figures (3-15) show that the natural frequencies decrease with increasing variable thickness (α, β), Young's modulus gradation ratio and thickness ratio. As well as, Figs. (3-10,12-13) show that the natural frequencies are increased with increasing variation parameter of foundation stiffness γ. Winkler and Pasternak foundation, shear modulus gradation ratio and aspect ratio a/b. The case of $(E_1=\frac{E_2}{E_3}=E_3$, $G_1=G_2=G_3=G_4$ and $h_1=h_2=h_3=h_4)$ is a limiting case of this study which was previously solved in [28] and [29-33]. Figures(12-15) show the first three mode shapes of the vibration waves along the interface. Furthermore, Figs.(14-15) show that the amplitudes of W increase with increasing linear and nonlinear elastic foundation parameters. Also, these figures show that the natural frequencies do not affect significantly by nonlinear elastic foundation parameter k.

Boundary conditions	natural frequency	results	$\tilde{\omega}_1$	$\tilde{\omega}_2$	$\tilde{\omega}_3$
α β					
SSSS 0.5 -0.5	DSCDQM-RSK	3.635	5.335	6.087	
	MLSQM	3.635	5.335	6.087	
	Element free Galerkin [31]	3.633	5.3460	6.0957	
	Discrete Green function [33]	3.635	5.335	6.087	
CCCC 0.5 -0.5	DSCDQM-RSK	4.704	6.937	7.966	
	MLSQM	4.704	6.937	7.966	
	Element free Galerkin [31]	4.707	6.9422	7.9751	
	Discrete Green function [33]	4.704	6.937	7.966	

Fig. 3 Variation of the normalized fundamental frequency with thickness variable (α, β) and non-uniform Winkler foundation for squared simply supported plates. A: $\beta=0$, B: $\beta=0.5$ ($K_1=1000$, $K_2=0,K_3=0$).
Fig. 4 Variation of the normalized fundamental frequency with thickness variable (α, β) and non-uniform Winkler and uniform Pasternak foundation for squared simply supported plates. A: β=0, B: β=0.5 (K₁=1000, K₂=10, K₃=0)

Fig. 5 Variation of the normalized fundamental frequency with thickness variable (α, β). non-uniform, non-linear Winkler and Pasternak foundation for squared simply supported plates. A: β=0, B: β=0.5 (K₁=1000, K₂=10, K₃=50)

Fig. 6 Variation of the normalized fundamental frequency with thickness variable (α, β) and non-uniform Winkler foundation for squared simply supported plates. A: K₁=10, B: K₁=100 (K₂=0, K₃=0)
FIG. 7 Variation of the normalized fundamental frequency with thickness variable (α, β) and non-uniform Winkler and Pasternak foundation for squared simply supported plates. A: K₁=10, B: K₁=100 (K₂=10, K₃=0).

FIG. 8 Variation of the normalized fundamental frequency with thickness variable (α, β) and non-uniform, nonlinear Winkler and Pasternak foundation for squared simply supported plates. A: K₁=10, B: K₁=100 (K₂=10, K₃=100).

FIG. 9 Variation of the natural frequencies with Young's and Shear modulus gradation ratio of a squared simply supported composite (K₁=100, K₂=10, K₃=50, h₀/a=0.01, γ=1000, α=-0.5, β=-0.5, ν₁=v₂=v₃=v₄=v₅).
FIG. 10 Variation of the natural frequencies with aspect ratio (a/b) and thickness (h/a) for Clamped composite plates. A: h/a=0.01, B: h/a=0.1 (K_1=500, K_2=100, K_3=100, γ=1000, α=-0.5, β=-0.5; E_1=E_2=E_3=E_4=E_5, G_1=G_2=G_3=G_4=G_5, v_1=v_2=v_3=v_4=v_5).

FIG. 11 Variation of the natural frequencies with thickness of a squared elastically supported composite. A: Simply supported plates, B: Clamped plates (K_1=1000, K_2=1000, K_3=1000, α=0, β=0; E_1=E_2=E_3=E_4=E_5, G_1=G_2=G_3=G_4=G_5, v_1=v_2=v_3=v_4=v_5).

FIG. 12 Variation of the lateral mode shapes with time and non-uniform Winkler foundation for squared clamped plate at α=0, β=0, K_2=0, K_3=0, γ=1000. A: K_1=10, B: K_1=100.
Fig. 13 Variation of the lateral mode shapes with time and non-uniform Winkler and Pasternak foundation for squared clamped plate at \(\alpha = -0.5, \beta = 0.5, K_2 = 100, K_3 = 0, \gamma = 1000 \). A: \(K_1 = 10 \), B: \(K_1 = 500 \).

Fig. 14 Variation of the lateral mode shapes with time and non-uniform and nonlinear Winkler foundation for squared clamped plate at \(\alpha = -0.5, \beta = 0.5, K_2 = 0, K_3 = 100, \gamma = 1000 \). A: \(K_1 = 10 \), B: \(K_1 = 500 \).

Fig. 15 Variation of the lateral mode shapes with time and non-uniform and nonlinear Winkler and Pasternak foundation for squared clamped plate at \(\alpha = -0.5, \beta = 0.5, K_2 = 100, K_3 = 100, \gamma = 1000 \). A: \(K_1 = 10 \), B: \(K_1 = 500 \).
V. CONCLUSION

Different Quadrature schemes have been successfully applied for vibration analysis of composite plate with variable thickness resting on non-uniform and nonlinear elastic foundation. Iterative quadrature technique is used to solve the nonlinear algebraic system. A matlab program is designed for each scheme such that the maximum error (comparing with the previous exact results) is \(\leq 10^{-10} \). Also, Execution time for each scheme, is determined. It is concluded that discrete singular convolution differential quadrature method based on regularized Shannon kernel (DSQDM-RSK) with grid size 13×13, bandwidth $2M+1 \geq 11$ and regularization parameter $\sigma = 2.82$ hx leads to best accurate efficient results for the concerned problem. shear factor correction $(K=5/6-v)$ is considered for such problem. Based on this scheme, a parametric study is introduced to investigate the influence of elastic and geometric characteristics of the vibrated plate, on results. It is aimed that these results may be useful for design purposes of engineering fields.

REFERENCES

[1] Y. P. Xu, D. Zhou, Three-dimensional elasticity solution for simply supported rectangular plates with variable thickness, Journal of Strain Analysis for Engineering Design, 43 (2008)165-174.

[2] Y. Xu, D. Zhou, K. Liu, Three-dimensional thermo elastic analysis of rectangular plates with variable thickness subjected to thermo-mechanical loads, Journal of Thermal Stresses, 33 (2010) 1136-1155.

[3] A.H. Sofiyev, H.M. Halilov, N. Kuruoglu, Analytical solution of the initial value problem of the wave equation of a circular plate with variable thickness and general boundary conditions, WIT Transactions on Research, 238(2014) 225-236.

[4] R.M. Dauteri, G. Payanque, S.R.Mirakabad, M. J. M.Taheri, Static and Free Vibration Analyses of Functionally Graded Nano composite Plates Reinforced by Wavy Carbon Nanotubes Resting on a Pasternak Elastic Foundation, Mechanics of Advanced Composite Structures, 3 (2016) 123-135.

[5] V. Panč, Theory of elastic plates, Leydon: Noordhoff International Publishing, (1975) 13-41.

[6] J.N. Reddy, Mechanics of Laminated Composite Plates, Theory and Analysis, CRC Press, Boca Raton, FL(1997).

[7] J.N. Reddy, Theory and analysis of elastic plates, Taylor& Francis: Philadelphia, PA(1999).

[8] V. Birman, C. W. Bert, On the Choice of Shear Correction Factor in Sandwich Structures, Journal of Sandwich Structures and Materials, 4 (2002) 83-95.

[9] V. Birman, C. W. Bert, Effect of Shear Correction Factor on Response of Cross-ply Laminated Plates using FSĐT, Defence Science Journal, 55 (2005) 377-387.

[10] F. Gruttmann, W. Wagner, Shear correction factors for layered plates and shells,Comput Mech, 59 (2019) e01856.

[11] M. Huang, J. Ma, J. N. Tang, H. Yuan, Mixed boundary node method for free vibration analysis of rectangular plates with variable thickness and general boundary conditions, WIT Transactions on Modelling and Simulation, 56(2013).

[12] A. S. Ashour, vibration of variable thickness plates with edges elastically restrained against rotational and translation, Thin-Walled Structures, 42(2004) 1-24.

[13] H. Zafarmand, M. Kadhodhay, Free vibration analysis of thick plates with variable thickness containing orthotropic and nonhomogeneous material using finite element method, Journal of theoretical and applied mechanics, 53(2015) 1005-1018.

[14] V. Tahounet, Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method, Structural Engineering and Mechanics, 52(2014) 663-686.