Transitions in quantum computational power

Tzu-Chieh Wei (魏子傑)
C.N. Yang Institute for Theoretical Physics

Stony Brook University

APCWQIS 2014, NCKU, Tainan

Supported by
Collaborators

Ying Li (CQT, Oxford) Dan Browne (UCL)

Leong Chuan Kwek (CQT) Robert Raussendorf (UBC)
Outline

I. Introduction
 - quantum computation by local measurement
 - notion of transitions in quantum computational power

II. Example Hamiltonians: Building blocks

III. 2D/3D structure
 - Phase diagrams for quantum computational power

IV. Summary
2D cluster state

- Created by applying CZ gates to each pair with edge

\[|C\rangle \equiv \bigotimes_{\langle i,j \rangle} CZ_{i,j} \left(|+\rangle |+\rangle \cdots |+\rangle \right) \]

[Raussendorf&Briegel '01]

- Ground state of 5-body Hamiltonian

\[H = - \sum_v K_v = - \sum_v \begin{pmatrix} Z & Z \\ Z & Z \end{pmatrix} \]

(except boundary spins)

\[X, Y, Z \text{ Pauli matrices} \]
Resource for universal quantum computation

- Carve out entanglement structure by local Z measurement

[Raussendorf&Briegel ’01]

(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement along each bridge simulates two-qubit gate (CNOT)

Universal measurement-based quantum computation (MBQC)
Other states for universal QC?

- The first known resource state is the 2D cluster state
 - Other 2D graph/cluster states* on regular lattices: triangular, honeycomb, kagome, etc. [Van den Nest et al. '06]
 - A few other states from tensor network construction and TriCluster state [Gross & Eisert '07, '10]
 [Chen et al. '09]
 - Family of 2D Affleck-Kennedy-Lieb-Tasaki states [Wei, Affleck & Raussendorf '11&12; Miyake '11; Wei '13, Wei, Hagnagadar & Raussendorf '14]

 опасно

So far still no complete characterization for resource states
Resource states from ground states?

- Unique ground states of certain gapped Hamiltonians?
 \[H | \Psi_{\text{resource}} \rangle = E_0 | \Psi_{\text{resource}} \rangle \]

 - If so, create resources by cooling!

 - Desire simple and short-ranged (nearest nbr) 2-body Hamiltonians

 - Cluster states require few-body (e.g. 5-body) interactions! \[\text{[Nielsen '06]} \]

 - AKLT states are ground state of two-body interacting Hamiltonians (possibly gapped) \[\text{[AKLT '87,88]} \text{[Garcia-Saez,Murg,Wei '12]} \]

- What about thermal states for quantum computation?
 \[\rho_{\text{resource}} = e^{-\beta H} / \text{Tr}(e^{-\beta H}) \] useful?

 \[\text{[Li,Browne,Kwek,Raussendorf & Wei '11]} \]
Main motivations here

- Universal resource states from certain phases of matter?
 - it’s a difficult question in general, but some examples:
 - Browne et al. --- percolation
 - Bartlett et al. --- (1) Cluster in B field; (2) deformed AKLT
 - Murao et al. --- interacting cluster at finite T
 - Li et al. --- thermal states for QC

- Can we characterize regions in the phase diagram by the quantum computational power of the equilibrium states?

- System parameter vs. temperature “phase diagram” in terms of universal quantum computation?
Some examples why transitions in quantum computational power make sense...
Cluster state and percolation

- Cluster-state at faulty square lattice:

 \[p_{\text{occupy}} : \text{system parameter} \Rightarrow \text{QC possible if } p_{\text{occupy}} > p_{\text{perco.threshold}} \]

 \[\Rightarrow \text{Transition in quantum computational power} \]

\[\text{[Browne, Elliot, Flammia, Merkel, Miyake, Short '08]} \]
\[\text{cf [Gross, Eisert, Schuch, Perez-Garcia rowne, '07]} \]
Cluster phase?

- Doherty and Bartlett: Cluster Hamiltonian in B field

\[H = - \sum_{v} K_v - B \sum_{v} X_v \] \[\text{[Doherty, Bartlett '09]}\]

\[H = -\sum_{\square} \hat{Z} \hat{Z} - B \sum_{\mu} \hat{X}_{\mu} \]

- They argue that the phase $|B|<1$ is characterized by fidelities of universal gates

- transition in quantum computational power

- Question: what about finite temperature T?
Deforming AKLT state

- Spin-3/2 AKLT state on honeycomb lattice is universal
 - [Wei, Affleck & Raussendorf '11; Miyake '11]

- Deformed AKLT also universal (in a range of deformation)
 \[|\psi(a)\rangle \propto \left(D(a)^{-1}\right)^{\otimes N} |\psi_{\text{AKLT}}\rangle \]

 - Transition to non-universal coincides with transition to Neel order
 - Q: finite T?

\[
D(a) = \frac{\sqrt{3}}{a} (|\frac{3}{2}\rangle\langle\frac{3}{2}| + |\frac{-3}{2}\rangle\langle\frac{-3}{2}|)
+ |\frac{1}{2}\rangle\langle\frac{1}{2}| + |\frac{-1}{2}\rangle\langle\frac{-1}{2}|
\]

\[
H = \sum_{\langle i,j \rangle} D(a)_i \otimes D(a)_j h_{i,j}^{[\text{AKLT}]} D(a)_i \otimes D(a)_j
\]
Interacting cluster Hamiltonian at finite T

$$H = - \sum_v K_v = - \sum_v \begin{array}{c} Z \cr \otimes \cr Z \end{array}$$

\Rightarrow $H' = - \sum_{\langle u,v \rangle} K_u K_v \rightarrow \sum_{\langle u,v \rangle} X_u X_v$ (mapped to classical Ising by CZ)

[Fujii, Nakata, Ohzeki, Murao ’13]

- Gate fidelity shows a transition at classical Ising transition T_c

\Rightarrow Q: can we add local field to vary Hamiltonian?

$$H'' = - \sum_{\langle u,v \rangle} K_u K_v - B \sum_v X_v$$
Thermal states as resource

- 2D & 3D spin Hamiltonians

\[V_{\text{line}} = \Delta (S_c^{x} A_b^x + S_c^{y} A_b^y + S_c^{z} A_b^z) \]
\[V_{\text{dash}} = \Delta (S_c^{x} B_b^x + S_c^{y} B_b^y + S_c^{z} B_b^z) \]

- Thermal states can be used for universal QC, if \(T/\Delta \) is such that error below threshold

Q: can we vary some system parameter or local field?
Goal: Phase diagram with temperature and other system parameter

- Models illustrated:
 - Percolation: vary probability only
 - Cluster with B field and deformed AKLT: only at zero T
 \[H = - \sum_v K_v - B \sum_v X_v \]
 \[H = \sum_{\langle i,j \rangle} D(a)_i \otimes D(a)_j h[^{\text{AKLT}}]_{i,j} D(a)_i \otimes D(a)_j \]
 - Interacting cluster at finite T: mapped to classical Ising
 \[H' = - \sum_{\langle u,v \rangle} K_u K_v \to - \sum_{\langle u,v \rangle} X_u X_v \]
 - Thermal states for universal QC: Hamiltonian Heisenberg-like

- Varying both T & some system parameter?
 \[\Rightarrow \text{difficult problem: Hamiltonian not solvable in general} \]
Goal: Phase diagram of quantum computational power

- Another question: Does transition in quantum computational power necessarily coincide with transition in the phase of matter?

- Will construct two models to investigate these
Outline

I. Introduction

- quantum computation by local measurement
- notion of transitions in quantum computational power

II. Example Hamiltonians: Building blocks

III. 2D/3D structure

- Phase diagrams for quantum computational power

IV. Summary
First: Toy model

- 3 spin-1/2 at sides and 1 spin-3/2 at center u

Mathematically project joint state of $(1'2'3')$ to their symmetric subspace (i.e. virtual to physical)

\[
\Pi_{S}^{[1'2'3'\rightarrow u]} = \left| +\frac{3}{2}\right\rangle \left\langle 000\right| + \left| -\frac{3}{2}\right\rangle \left\langle 111\right| \\
+ \left| +\frac{1}{2}\right\rangle \left\langle W\right| + \left| -\frac{1}{2}\right\rangle \left\langle \overline{W}\right|
\]

$|\overline{W}\rangle \equiv \frac{1}{\sqrt{3}}(|110\rangle + |101\rangle + |011\rangle) \leftrightarrow \left| -\frac{1}{2}\right\rangle$

$|W\rangle \equiv \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle) \leftrightarrow \left| \frac{1}{2}\right\rangle$
Spin 3/2 and three virtual qubits

- Addition of angular momenta of 3 spin-1/2’s

\[
\begin{align*}
\frac{1}{2} \otimes \frac{1}{2} &= 0 \oplus 1 \\
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} &= \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}
\end{align*}
\]

- The four basis states in the symmetric subspace

\[
\begin{align*}
|111\rangle &\equiv |↓↓↓\rangle \leftrightarrow \left| -\frac{3}{2} \right\rangle & |\overline{W}\rangle &\equiv \frac{1}{\sqrt{3}}(|110\rangle + |101\rangle + |011\rangle) \leftrightarrow \left| -\frac{1}{2} \right\rangle \\
|000\rangle &\equiv |↑↑↑\rangle \leftrightarrow \left| \frac{3}{2} \right\rangle & |W\rangle &\equiv \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle) \leftrightarrow \left| \frac{1}{2} \right\rangle
\end{align*}
\]
Toy model: building block

- 3 spin-1/2 at sides and 1 spin-3/2 at center \(u \)

\[
|\text{Singlets}\rangle \equiv (|01\rangle - |10\rangle)_{1'1} (|01\rangle - |10\rangle)_{22'} (|01\rangle - |10\rangle)_{33'}
\]

\[
\Pi_{S[^{1'2'3'}\to u]} = |\frac{3}{2}\rangle\langle 000| - |\frac{3}{2}\rangle\langle 111| + |\frac{1}{2}\rangle\langle W| - |\frac{1}{2}\rangle\langle W|
\]

- Form an AKLT-like state:

\[
|\psi_{\text{AKLT}}\rangle \equiv \Pi_{S[^{1'2'3'}\to u]}|\text{Singlets}\rangle
\]

\[
= |000\rangle_{123} \otimes |\frac{3}{2}\rangle_u - |111\rangle_{123} \otimes |\frac{3}{2}\rangle_u - |W\rangle_{123} \otimes |\frac{1}{2}\rangle_u + |\overline{W}\rangle_{123} \otimes |\frac{1}{2}\rangle_u
\]

- Unique ground state of \(H \), projector to total \(S=2 \) joint subspace of spins \(i \) and \(u \)

\[
H = \sum_{i=1}^{3} P_{i,u}^{[S=2]} = \sum_{i} \left[\frac{1}{2} \mathbf{s}_u \cdot \mathbf{s}_i + \frac{5}{8} \right]
\]
Toy model Hamiltonians

- Exactly diagonalizable
 - Finite energy gap = 1
- Next: Allow the Hamiltonians to vary

\[
H = \sum_{i=1,2,3} \vec{S}_u \cdot \vec{s}_i
\]

\[
H_1 = \sum_{i=1,2,3} \left[S_u^x s_i^x + S_u^y s_i^y + (1 + \delta) S_u^z s_i^z \right]
\]

\[
H_2 = \sum_{i=1,2,3} \left(\vec{S}_u \cdot \vec{s}_i \right) - d_z \left(S_u^z \right)^2
\]
Toy model is for 4 spins.

Q: how do we scale to 2D or 3D structure for universal quantum computation?

Ans. Use toy model as a building block

→ Patch up 2D or 3D structure
2D or 3D spin models

- Use this as a building block to construct spin systems with a spectral gap

- Regard two bond qubits as a spin-3/2

- The spectral property is inherited from toy model
2D or 3D structure

- Use this as a building block to construct spin systems with a spectral gap

\[
H_1 = \sum_{i=1,2,3} [S_u^x s_i^x + S_u^y s_i^y + (1 + \delta)S_u^z s_i^z]
\]

\[
H_2 = \sum_{i=1,2,3} (\vec{S}_u \cdot \vec{s}_i) - d_z \left(S_u^z \right)^2
\]
Two spin models

\[H_1 = \sum_{i=1,2,3} \left[S_u^x s_i^x + S_u^y s_i^y + (1 + \delta) S_u^z s_i^z \right] \]

\[H_2 = \sum_{i=1,2,3} \left(\vec{S}_u \cdot \vec{s}_i \right) - d_z \left(S_u^z \right)^2 \]

- No transitions at finite T (free energy analytic)

- \(f = -T \log \left[\text{Tr}(e^{-\beta H}) \right] \)
Two spin models

\[H_1 = \sum_{i=1,2,3} \left[S_u^x s_i^x + S_u^y s_i^y + (1 + \delta) S_u^z s_i^z \right] \]

\[H_2 = \sum_{i=1,2,3} \left(\vec{S}_u \cdot \vec{s}_i \right) - d_z \left(S_u^z \right)^2 \]

1st

What about transitions in quantum computational power?
Outline

I. Introduction

- quantum computation by local measurement
- notion of transitions in quantum computational power

II. Example Hamiltonians: Building blocks

III. 2D/3D structure

- Phase diagrams for quantum computational power

IV. Summary
How to understand the computational phase in $\delta (d_z)$ –vs.- T plane?

- Model 1: Useful for QC
- Model 2: Not useful for QC
Zero temperature

\[H_1 = \sum_{i=1,2,3} \left[S_{u}^x s_i^x + S_{u}^y s_i^y + (1 + \delta) S_{u}^z s_i^z \right] \]

\[H_2 = \sum_{i=1,2,3} \left(\vec{S}_{u} \cdot \vec{s}_i \right) - d_z \left(S_{u}^z \right)^2 \]

Wavefunction:
\[|\Psi(\delta)\rangle = -(|3/2, 111\rangle - | -3/2, 000\rangle) + \frac{-2\delta + \sqrt{9 + 4\delta^2}}{3} (|1/2, \bar{W}\rangle - | -1/2, W\rangle) \]

\[\Rightarrow \text{For } \delta, d_z \geq -\sqrt{3}/2, \text{ can filter out a GHZ } |\uparrow \downarrow \downarrow \uparrow \rangle - | \downarrow \uparrow \uparrow \uparrow \rangle \]

with probability=1 via generalize measurement (next slides)
Distill a four-spin GHZ state (@ δ=δz=0)

\[H_1 = \sum_{i=1,2,3} \left[S_u^x s_i^x + S_u^y s_i^y + (1 + \delta) S_u^z s_i^z \right] \]

\[H_2 = \sum_{i=1,2,3} \left(\vec{S}_u \cdot \vec{s}_i \right) - d_z \left(S_u^z \right)^2 \]

- Central spin has 4 levels: how to reduce to 2 levels?
 - Use projection?
 \[P_z = \left| \frac{3}{2} \right>_u \left\langle \frac{3}{2} \right| + \left| -\frac{3}{2} \right>_u \left\langle -\frac{3}{2} \right| \]

\[|000\rangle_{123} \otimes \left| -\frac{3}{2} \right>_u - \frac{3}{2} \right>_u - |111\rangle_{123} \otimes \left| \frac{3}{2} \right>_u - |W\rangle_{123} \otimes - \left| \frac{1}{2} \right>_u + |\bar{W}\rangle_{123} \otimes \left| \frac{1}{2} \right>_u \]

- What if the projection does not succeed?
Distill a four-spin GHZ state (@ \(\delta = d_z = 0 \))

\[
H_1 = \sum_{i=1,2,3} [S_{u}^{x} s_i^{x} + S_{u}^{y} s_i^{y} + (1 + \delta) S_{u}^{z} s_i^{z}]
\]

\[
H_2 = \sum_{i=1,2,3} (\vec{S}_u \cdot \vec{s}_i) - d_z (S_{u}^{z})^2
\]

- Central spin has 4 levels: how to reduce to 2 levels?

\[
|\psi\rangle_{123u} = |000\rangle_{123} \otimes |0\rangle_u - \frac{3}{2} |1\rangle_u - |111\rangle_{123} \otimes |\frac{3}{2}\rangle_u - |W\rangle_{123} \otimes |-\frac{1}{2}\rangle_u + |\overline{W}\rangle_{123} \otimes |\frac{1}{2}\rangle_u
\]

- Use projection?

\[
P_z = |\frac{3}{2}\rangle_u \langle \frac{3}{2}| - |\frac{3}{2}\rangle_u \langle \frac{1}{2}| - |\frac{1}{2}\rangle_u \langle \frac{3}{2}|
\]

\[
|\psi\rangle_{123u} \xrightarrow{P_z} |000\rangle_{123} \otimes |\frac{3}{2}\rangle_u - |111\rangle_{123} \otimes |\frac{3}{2}\rangle_u
\]

- What if the projection does not succeed?
Generalized measurement (POVM)

- \(x \) and \(y \) axes are also good:

\[
F_{u,z} = \frac{\sqrt{2}}{3} \left(\left| \frac{3}{2} \right\rangle_{a} \left\langle \frac{3}{2} \right|_{z} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{z} \right)
\]

\[
F_{u,x} = \frac{\sqrt{2}}{3} \left(\left| \frac{3}{2} \right\rangle_{a} \left\langle \frac{3}{2} \right|_{x} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{x} \right)
\]

\[
F_{u,y} = \frac{\sqrt{2}}{3} \left(\left| \frac{3}{2} \right\rangle_{a} \left\langle \frac{3}{2} \right|_{y} + \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{y} \right)
\]

- Three elements satisfy:

\[
F_{u,x} F_{u,x} + F_{u,y} F_{u,y} + F_{u,z} F_{u,z} = I_u
\]

- POVM outcome \(a_u \) = \{ \(x \), \(y \), or \(z \) \} is random

- effective 2-level system

\[
\left| \frac{3}{2} \right\rangle_{a_u} \leftrightarrow \left| 000 \right\rangle_{a_u}, \left| -\frac{3}{2} \right\rangle_{a_u} \leftrightarrow \left| 111 \right\rangle_{a_u}
\]

- \(a_u \): new quantization axis

\[
\bar{Z} \equiv \left| \frac{3}{2} \right\rangle_{a_u} \left\langle \frac{3}{2} \right|_{a_u} - \left| -\frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{a_u}, \quad \bar{X} \equiv \left| \frac{3}{2} \right\rangle \left\langle -\frac{3}{2} \right|_{a_u} + \left| -\frac{3}{2} \right\rangle \left\langle +\frac{3}{2} \right|_{a_u}
\]

- state becomes \(\left| \Phi \right\rangle \rightarrow F_{u,a_u} \left| \Phi \right\rangle \)
Distill a four-spin GHZ state (@ $\delta=d_z=0$)

$H_1 = \sum_{i=1,2,3} [S_u^x s_i^x + S_u^y s_i^y + (1 + \delta)S_u^z s_i^z]$
$H_2 = \sum_{i=1,2,3} (S_u \cdot \vec{s}_i) - d_z (S_u^z)^2$

- POVM outcome $a_u=\{x,y,z\}$ indicates a randomly chosen quantization axis and the state becomes

$$F_{u,a_u} |\psi_{AKLT}\rangle = |(+3/2)_u (111)_{123}\rangle_{a_u} - |(-3/2)_u (000)_{123}\rangle_{a_u}$$

- Re-label states @ site u: $|(+3/2)_u\rangle \rightarrow |1_u\rangle$, $-|(-3/2)_u\rangle \rightarrow |0_u\rangle$

⇒ Post-POVM state is a GHZ state: $|(0)_u (000)_{123}\rangle + |(1)_u (111)_{123}\rangle$
Distill a four-spin GHZ state (@ δ=d_z≠0)

\[|\Psi(\delta)\rangle = -(|3/2, 111\rangle - | -3/2, 000\rangle) + \frac{-2\delta + \sqrt{9 + 4\delta^2}}{3}(|1/2, W\rangle - | -1/2, W\rangle) \]

\[D(a) = | + 3/2\rangle\langle +3/2 | + | -3/2\rangle\langle -3/2 | + a(|1/2\rangle\langle 1/2 | + | -1/2\rangle\langle -1/2 |) \]

- Use combination of filtering D(a) and POVM F’s

\[F'_{x}(a) = \frac{1}{a} F_{x} D(a) \]
\[F'_{z}(a) = \sqrt{\frac{3a^2 - 1}{2a^2}} F_{z} D(a) \]
\[F'_{y}(a) = \frac{1}{a} F_{y} D(a) \]

⇒ Distill GHZ state with certainty for \[a \geq \frac{1}{\sqrt{3}} \quad (\delta, d_z \geq -\sqrt{3}/2) \]

- For \[a < \frac{1}{\sqrt{3}} \], need a different POVM but succeeds with

\[p = \frac{1 - 3a^2}{1 + a^2} \]

⇒ Percolation consideration for cluster state
GHZ network + CZ

→ Measurement of two virtual qubits enacts Controlled-Z gate between neighboring center particles

| ↑↓↓↓⟩ - | ↓↑↑↑⟩
Cluster state (universal for QC) is created (for $\delta, d_z \geq -\sqrt{3}/2$) on honeycomb lattice with unit probability.
Zero temperature (δ, d_z near -1)

For $-1.288 < \delta, d_z < -\sqrt{3}/2$, can filter out a GHZ with probability > percolation threshold

Connected 2D cluster state on faulty honeycomb lattice
Finite T diagram (T=0 understood)

- Model exactly solvable \Rightarrow GHZ fraction at finite T is known
- Use techniques from fault-tolerant quantum computation
 \Rightarrow to locate temperature where error rate = FT threshold
 \Rightarrow transition temperature
3D is more robust

- Model 1: Useful for QC
- Model 2: Not useful for QC

- Can create 3D cluster state ➔ topological protection for QC (Measurement-based version of so-called surface code QC)

[Raussendorf, Harrington, Goyal ‘06]
[Raussendorf, Harrington, PRL (2007)]
Summary

- Introduce notion of “computational phase” via resource states in measurement-based quantum computation
- Explicitly construct two model spin-3/2 Hamiltonians \(\Rightarrow \) QC phase diagram of \(T \text{-vs. } \delta \) (or \(d_z \))

- Transitions in quantum computational power need NOT coincide with transitions in phases of matter

Main Refs.: Li, Browne, Kwek, Raussendorf & Wei, PRL 107,060501 (2011)

Wei, Li & Kwek, PRA 89,0502315 (2014)

Related Refs.: Wei, Affleck, Raussendorf, PRL 106,070501 (2011)

Wei, PRA 88,062307 (2013); Wei et al, PRA 90, 042333 (2014)

Garcia-Saez, Murg, Wei, PRB 88, 245118 (2013)
Supplementary slides
One-qubit gate

\[U = e^{-i \frac{\xi}{2} \sigma_x} e^{-i \frac{\eta}{2} \sigma_z} e^{-i \frac{\xi}{2} \sigma_x} \]

input \[|\psi_{in}\rangle \]

output \[|\psi_{out}\rangle \sim U |\psi_{in}\rangle \]

Measurement pattern:

Observables:

\[\sigma_x \]

\[\cos(\xi) \sigma_x \pm \sin(\xi) \sigma_y \]
CNOT gate

\[
CNOT = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

\[|\psi_{\text{in}}\rangle \rightarrow |\psi_{\text{out}}\rangle \sim \text{CNOT}|\psi_{\text{in}}\rangle\]

\(\Rightarrow\) simulates CNOT (via entanglement between wires)
Generating a cluster state

- Example: 2D cluster state on square lattice
Creating a cluster state

- After POVM on center particles, each block is an effective 4-qubit GHZ state

\[\rightarrow |0000\rangle + |1111\rangle \]

- Perform measurement on the bond particles

 ➔ Effective joint measurement on the two virtual qubits (e.g. Bell-state measurement or in 2-qubit cluster state basis)

 ➔ Induce control-phase gate between two center qubits (up to Z gates)

 ➔ Give rise to a cluster state on a hexagonal (honeycomb) lattice
Error analysis

Table 1: Consequence of qubit errors (from 0-3 and 0′-3′ of block C in Fig. b on logical cluster-state qubits. The logical error X_C is equivalent to $Z_U Z_L Z_D Z_R$ due to the cluster-state stabilizer operator $X_C Z_U Z_L Z_D Z_R$.

\[
\begin{array}{|c|c|}
\hline
\text{errors on 0-3 or 0′-3′} & \text{errors on C, U, L, D, and R} \\
\hline
X_0 & I \text{ (no error)} \\
X_0' & X_C \equiv Z_U Z_L Z_D Z_R \\
X_1 \text{ or } X_1' & Z_U Z_L \\
X_2 & Z_U \\
X_2' & Z_D \\
X_3 & Z_L \\
X_3' & Z_R \\
Z_i \text{ (for all } i) & Z_C \\
\hline
\end{array}
\]
Error analysis

As goal is to investigate intrinsic property of quantum computational power, assume error caused by finite T (i.e. assume perfect measurement)

$$\rho_T = \frac{e^{-H/T}}{\text{Tr} e^{-H/T}}$$

$$\rho_{GHZ} = U_y F_x \rho_T F^\dagger_x U_y^\dagger + U_x F_y \rho_T F^\dagger_y U_x^\dagger + F_z \rho_T F^\dagger_z$$

$$\rho'_{GHZ} = \prod_{K \in \{K\}} \frac{1}{2} ([I] + [K]) \rho_{GHZ} = \sum_{\sigma \in \{\sigma\}} p_\sigma [\sigma] |GHZ\rangle \langle GHZ|$$

$$p_z \simeq 2(p_{Z_0} + 2p_{X_1} + p_{X_2} + p_{X_3} + 3p_{Z_0}X_1 + 2p_{Z_0}X_2 + 2p_{Z_0}X_3)$$

- **2D**: transition at
 $$p'_z \approx 10^{-7} \Rightarrow p_z \approx \frac{1}{3} 10^{-7} k(p_l)$$

- **3D**: $$\frac{p_l}{24.9\%} + \frac{p_z}{2.93\%} \approx 1$$

[Wei, Li, Kwek, PRA ‘14]
Computational phases

Model 1

Model 2

2D:

3D:
Fault tolerance at 3D

- Builds upon Raussendorf-Harrington-Goyal scheme on 3D cluster state

\[\text{Error threshold: 1.4\% for depolarizing error and 0.11 \% (later improved to 0.75\%) on preparation-, gate-, storage-, and measurement errors} \]

[Ann of Phys 321, 2242 (2006)]

[Raussendorf & Harrington, PRL (2007)]