Title: Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization

Authors:
Jacobo de la Cuesta-Zuluagaa,d, Vanessa Corrales-Agudeloa, Eliana P. Velásquez-Mejiaa, Jenny A. Carmonab,e, José M. Abadc, and Juan S. Escobara,*

Affiliations:
a Vidarium—Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur 50-67, 050023 Medellin, Colombia. b Dinámica IPS—Especialista en Ayudas Diagnósticas, Calle 27 45-109, 050021 Medellin, Colombia. c EPS SURA, Calle 49A 63-55, 050034 Medellin, Colombia. d Current address: Max Planck Institute for Developmental Biology—Max-Planck-Ring 5, 72076 Tübingen, Germany. e Current address: SURA Colombia, Medellin, Colombia.

*Corresponding author: Juan S. Escobar
Address: Vidarium—Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur 50-67, 050023 Medellin, Colombia.
Telephone number: (+57-4) 2856600 ext. 44508
Email: jsescobar@serviciosnutresa.com
Correspondence and material requests should be addressed to this author.
Supplementary Results

Prevotella-Bacteroides co-exclusion.

A pattern commonly observed in microbiome studies has been the co-exclusion of *Prevotella* and *Bacteroides*¹⁻⁵, which has been suggested to suffice for describing enterotypes⁶. We took advantage of the curatedMetagenomicData⁷ package to analyze the breadth of this co-exclusion in 16 benchmark metagenomic studies. This meta-analysis confirmed the co-exclusion between these two taxa, with the co-exclusion being stronger in Western (Spearman’s rho=−0.32, p=0.002) than in non-Western populations (rho=−0.21, p<0.001). We observed that the negative correlation between *Prevotella* and *Bacteroides* in the Colombian cohort was intermediate between Western and non-Western populations (Spearman’s rho=−0.26, p<0.0001); this co-exclusion did not distinguish clear types of microbiota (Fig. SR1).

![Principal coordinate analysis (PCoA) based on weighted UniFrac distances.](image)

Fig. SR1. Principal coordinate analysis (PCoA) based on weighted UniFrac distances. Samples are colored by their *Prevotella-Bacteroides* ratio (PB ratio) using the relative abundances of all OTUs classified as *Prevotella* (174 OTUs) and *Bacteroides* (101 OTUs). The *Prevotella-Bacteroides* ratio was calculated as the relative abundances of *Prevotella*/*(Bacteroides + Prevotella)*; red indicates no *Prevotella* and purple no *Bacteroides*. Percentages on the axes represent the proportion of the explained variation of each component of the PCoA.
Replicability of the CAG clustering.

We explored the replicability of the five detected CAGs underscored in the Colombian dataset using genus-level abundance in most of the benchmark metagenomic studies available in the curatedMetagenomicData7 package (11 countries comprising 1600 individuals; we excluded datasets from Austria, Germany, Luxembourg, Peru and Tanzania since they considered few individuals for robust CAG inference); note that OTU abundance was unavailable in these datasets.

For each dataset, we applied the methodology employed for CAG definition in the Colombian dataset (see Methods in the main text), and compared the species composition of each CAG with those underscored in the Colombian cohort. In this way, we counted the number of times taxa clustered with “expected” microbes and the number of times there were “unexpected” associations. As an example, consider stool data from the Human Microbiome Project. In this dataset, we detected a CAG containing \textit{Bifidobacterium}, \textit{Collinsella}, \textit{Coprococcus}, \textit{Dorea}, \textit{Faecalibacterium}, \textit{Ruminococcus} and \textit{Streptococcus}. All these microbes, except \textit{Streptococcus}, clustered within the Lachnospiraceae-CAG in our Colombian cohort; \textit{Streptococcus} was expected to cluster within the Pathogen-CAG. We counted the first six cases as checked (1 point was given to each taxon) while \textit{Streptococcus} counted as unchecked (0 points). The replicability of a given CAG was calculated as the sum across datasets of all checked cases for the taxa “expected” to cluster in that CAG over the sum of checked and unchecked cases.

This analysis indicated that most datasets formed well-defined CAGs, some of which overlapped with the five CAGs uncovered in the Colombian cohort. In particular, the Akkermansia-Bacteroidales-, Pathogen- and Lachnospiraceae-CAGs were 70-80% replicable across datasets, whereas the Prevotella- and Ruminococcaceae-CAGs were less common (Table SR1). This is not surprising given that important taxa aggregating within the latter CAGs are enriched in non-Western populations (e.g., \textit{Prevotella}, Ruminococcaceae) while the datasets for comparison originated mostly from Westernized populations, where these taxa are rarer. Even though co-abundance patterns are fundamentally dataset-dependent, several of the CAGs that we underscored in the Colombian cohort were partly replicable and might represent general ecological associations in the human gut microbiota.
Table SR1. Replicability of the “Colombian” CAGs in publicly available datasets (see Methods in the main text).

CAG	Taxa “expected” to cluster within the CAG	Taxa found at least once in public datasets	Checked*	Checked + unchecked	Replicability of CAGs
Prevotella	6	4	7	16	43.75%
Akkermansia-	17	14	75	94	79.79%
Bacteroidales					
Ruminococcaceae	11	2	1	4	25.00%
Lachnospiraceae	18	9	58	84	69.05%
Pathogen	10	7	27	38	71.05%

*Number of times the taxa found in at least one public dataset clustered in the “expected” CAG across all datasets.

Supplementary References

1. Gorvitovskaia, A., Holmes, S. P. & Huse, S. M. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. *Microbiome* **4**, 15 (2016).
2. Roager, H. M., Licht, T. R., Poulsen, S. K., Larsen, T. M. & Bahl, M. I. Microbial Enterotypes, Inferred by the Prevotella-to-Bacteroides Ratio, Remained Stable during a 6-Month Randomized Controlled Diet Intervention with the New Nordic Diet. *Appl. Environ. Microbiol.* **80**, 1142–1149 (2014).
3. Falony, G. et al. Population-level analysis of gut microbiome variation. *Science (80-.)* **352**, 560–564 (2016).
4. Koren, O. et al. A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human Microbiome Datasets. *PLoS Comput. Biol.* **9**, e1002863 (2013).
5. Dugas, L. R., Fuller, M., Gilbert, J. & Layden, B. T. The obese gut microbiome across the epidemiologic transition. *Emerg. Themes Epidemiol.* **13**, 2 (2016).
6. Arumugam, M. et al. Enterotypes of the human gut microbiome. *Nature* **473**, 174–180 (2011).
7. Pasolli, E. et al. Accessible, curated metagenomic data through ExperimentHub. *Nature Methods* **14**, 1023–1024 (2017).
Fig. S1. CAG-defining correlation heatmap. Dendrograms obtained by hierarchical Ward-linkage clustering based on Spearman’s correlation coefficients of the relative abundances of the 100 OTUs that had median abundances $\geq 0.01\%$. Color bars on top and left of the heatmap show the defined CAGs.
Fig. S2. Boxplot of α-diversity metrics of each co-abundance group (CAG) calculated in the subset of participants forming high-abundance poles (HAPs; n=114). (A) Species richness, (B) Shannon diversity index, (C) Pielou's J, (D) KEGG ortholog (KO) richness. Notches represent the 95% confidence intervals of the median.
Table S1. Foods most commonly ingested by the participants of the study.

Food	Individuals (%)	Mean daily consumption (g)	Notes
Rice	77.8	150.2	
Vegetable oil	76.5	14.9	
Sugar	76.0	16.5	
Coffee	65.8	171.3	
Whole milk	62.3	228.1	
Tomatoes	58.4	57.5	
Potatoes	54.0	179	
Bread	48.6	70.9	
Eggs	47.7	79.4	
Beef	46.4	77.3	
Soda	44.2	336.9	
Arepa	43.1	96.4	Grilled patty of soaked, ground kernels of maize or maize flour
Cheese	41.0	52.9	
Vegetable fat	40.3	6.9	
Chicken	39.9	90.1	
Carrot	38.6	28.5	
Bulb onion	36.8	29.2	
Plantain	34.9	114.9	
Panela	30.3	46.3	Unrefined whole cane sugar
Cookies	30.3	33.1	
Lime	29.2	45.4	
Lunch meat	26.1	44.9	
Fish oil	24.4	8.8	
Tea	23.1	186.3	
Chocolate	21.4	9.9	
Lettuce	19.8	22.4	
Welsh onion	19.6	7.1	
Pea	18.3	32.8	
Green bean	15.7	31.1	
Pasta	15.7	133.6	
Banana	14.8	98	
Mango	14.8	138.7	
Papaya	14.4	98.6	
Bean	14.4	141.7	
Pork	14.4	81.3	
Coriander	13.3	0.9	
Garlic	12.9	2.1	
Tamarillo	12.4	77.7	Solanum betaceum
Blackberry	12.2	56.2	
Manioc	12.2	55.3	
Ketchup	11.8	12.9	
Snack foods	11.5	41.6	
Bell pepper	11.5	13.2	
Avocado	11.3	43.2	
Apple	10.7	141.3	
Cake	10.5	101.8	
Guava	10.2	115.3	
Orange	10.0	257.7	
Lentil	9.4	189.5	
Corn	9.2	38	
Lulo	9.2	91.3	Solanum quitoense
Pineapple	9.2	110.2	
Chorizo	8.7	33.2	
Breakfast cereal	8.3	30.2	
Oatmeal	8.1	66.6	
Toast	8.1	32.9	
Fish	7.8	141.6	
Cabbage	7.8	24.5	
Sugar candy	7.2	17.5	
Tangerine	7.2	252.4	
Empanada	7.0	149.6	Stuffed and fried pastry made of maize meal
Vinaigrette	6.5	4.5	
Animal fat	6.5	9	
Powdered milk	6.5	15.1	
For each food, the proportion of individuals who reported having eaten it in the last 24 hours and the mean intake in grams is given. Macronutrient intake in the studied population, expressed as the percentage of calories contributed by total carbohydrates, protein and total fat, was (mean ± SD) 55.4 ± 3.0%, 15.7 ± 1.4% and 28.7 ± 2.5%, respectively. Fiber intake was 17.7 ± 5.1 g.
Table S2. Proportions of enrolled participants according to the city of origin, sex, age range and BMI.

City of origin	N (%)	Sex (%male	%female)	Age range (%18-40 yrs	%41-62 yrs)	BMI (%Ln	%Ow	%Ob)
Barranquilla	89 (20%)	50	50	43	57	26	39	35
Bogota	85 (19%)	40	60	49	51	31	42	27
Bucaramanga	79 (18%)	52	48	62	38	38	39	23
Cali	89 (20%)	43	57	43	57	31	37	31
Medellin	99 (22%)	52	48	40	60	31	36	32
Total	441 (100%)	48	52	47	53	31	39	30

Ln=lean; Ow=overweight; Ob=obese
Table S3. Marker taxa associated with Westernization.

Country	Subjects	Lifestyle	Prevotella	Treponema	Bacteroides	Bifidobacterium	Barnesiella
AUT	6	Western	0.1 ± 0.2	0 ± 0	4.9 ± 4.9	12.1 ± 5.2	0.5 ± 0.5
CAN	36	Western	3.3 ± 13.1	0 ± 0	36 ± 18.3	1.3 ± 2.4	1.7 ± 2.5
CHN	278	Western	11.2 ± 21	0 ± 0	36 ± 21.3	1.2 ± 3	0.5 ± 1
DEU	5	Western	1.7 ± 3.8	0 ± 0	17.2 ± 10.2	7.5 ± 7.5	0.8 ± 0.6
DNK	163	Western	8 ± 16.4	0 ± 0	21.6 ± 14.6	1.1 ± 1.4	2.2 ± 2.7
ESP	63	Western	4.6 ± 12.7	0 ± 0	24 ± 13.8	3.1 ± 3.9	1.7 ± 1.5
FJI	112	Non-Western	31.5 ± 16.7	2.2 ± 9.1	1.7 ± 3.3	3.4 ± 6	0.1 ± 0.4
FRA	41	Western	3.1 ± 9.7	0 ± 0	15.1 ± 11.1	4.6 ± 5.5	0.8 ± 1.1
GBR	178	Western	1.3 ± 5.1	0 ± 0	21.6 ± 15.2	5.7 ± 7.7	2.5 ± 2.7
ITA	27	Western	5.1 ± 13.3	0 ± 0	11.7 ± 14.1	17.9 ± 25.1	0.5 ± 1
LUX	7	Western	0 ± 0	0 ± 0	19.6 ± 8.9	1.2 ± 1.1	3.2 ± 2.2
MNG	45	Western	17.1 ± 16.6	0 ± 0	5.2 ± 8.6	18.1 ± 17.4	0.2 ± 0.7
MNG	65	Non-Western	16 ± 14.3	0 ± 0	5.1 ± 10.1	17.8 ± 15.5	0.2 ± 0.4
NLD	393	Western	3.7 ± 7.7	0 ± 0	8.9 ± 7.8	15 ± 12.2	0.8 ± 1.1
PER	16	Non-Western	5.2 ± 4	8.8 ± 19.2	0.2 ± 0.3	2.9 ± 7.1	0 ± 0
TZA	21	Non-Western	27.6 ± 19.4	3.1 ± 3.5	0.1 ± 0.2	0 ± 0	0 ± 0
USA	199	Western	3.9 ± 11.6	0 ± 0	39.7 ± 24.6	1.1 ± 3.2	1.6 ± 3.1

Sample size, Westernization status and relative abundances of the marker taxa of the countries included in the analysis of publicly available datasets.

*The values in parentheses exclude the particular Mongolian populations.

**From Wilcoxon rank sum tests, testing the null hypothesis that the abundance of each marker taxa is not significantly different between Western and non-Western populations.

Markers
Western
Non-Western
P-value**

	4.85 ± 4.80	0 ± 0	20.12 ± 11.52	6.92 ± 6.61 (5.98 ± 5.94)*	1.31 ± 0.92
	20.08 ± 11.90	3.52 ± 3.75	1.78 ± 2.33	6.02 ± 7.99 (2.10 ± 1.84)*	0.08 ± 0.10
P-value**	0.01	0.001	0.005	0.69 (0.35)*	0.004
Table S4. OTUs correlated with the PCoA axes of weighted UniFrac distances.

OTU	Taxonomy (k = kingdom; p = phylum; c = class; o = order; f = family; g = genus; s = species)	Spearman's rho
OTu00001	k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae;g__Prevotella;s__copri;	PCo1 (16.30%)
	--	PCo2 (13.71%)
	--	PCo3 (11.82%)
OTu00002	k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae;g__Prevotella;s__copri;	-0.56
	--	-0.13
	--	0.45
OTu00003	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Gemmiger;s__formicilis;	-0.65
	--	-0.15
	--	0.51
OTu00004	k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Escherichia;s__coli;	-0.35
	--	0.07
	--	-0.63
OTu00006	k__Bacteria;p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales;f__Verrucomicrobiaceae;g__Akkermansia;s__muciniphila;	0.48
	--	-0.54
	--	-0.28
OTu00007	k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium;s__adolescentis;	0.33
	--	0.19
	--	0.14
OTu00008	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Faecalibacterium;s__prausnitzii;	0.42
	--	0.48
	--	0.07
OTu00009	k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Enterobacter;s__hormaechei;	-0.38
	--	0.23
	--	-0.38
OTu00010	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Clostridium;s__celatum;	0.05
	--	0.30
	--	0.06
OTu00012	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Oscillospira;unclassified;	0.16
	--	-0.18
	--	0.35
OTu00020	k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;unclassified;	0.18
	--	0.46
	--	-0.09
OTu00021	k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus;unclassified;	0.10
	--	0.35
	--	-0.14
OTu00030	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;s__obeum;	0.34
	--	0.42
	--	0.10
OTu00032	k__Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae;g__Prevotella;s__stercorea;	-0.38
	--	-0.02
	--	0.19
OTu00033	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Oscillospira;unclassified;	-0.02
	--	-0.20
	--	0.32
OTu00037	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;unclassified;	0.00
	--	0.35
	--	0.05
OTu00041	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Oscillospira;unclassified;	0.22
	--	0.01
	--	0.32
OTu00043	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__Oscillospira;unclassified;	-0.01
	--	-0.17
	--	0.32
OTu00046	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;unclassified;	0.30
	--	0.37
	--	0.06
OTu00052	k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Coriobacteriales;f__Coriobacteriaceae;unclassified;	0.13
	--	0.04
	--	0.30
OTu00058	k__Bacteria;p__Actinobacteria;c__Actinomycetales;o__Actinomyces;unclassified;	0.34
	--	0.37
	--	0.04
OTu00060	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia;unclassified;	0.36
	--	-0.06
	--	0.20
OTu00083	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Dorea;s__formigenerans;	0.17
	--	0.46
	--	0.18
OTu00097	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Mogibacteriaceae;unclassified;unclassified;	0.31
	--	0.29
	--	0.17
OTu00108	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus;unclassified;	-0.10
	--	-0.01
	--	0.34
OTu00126	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Clostridium;s__clostridiforme;	0.37
	--	0.20
	--	-0.02
OTu00197	k__Bacteria;p__Firmicutes;c__Bacilli;o__Gemellales;f__Gemellaceae;g__Gemella;unclassified;	0.12
	--	0.36
	--	-0.13
OTu00284	k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus;unclassified;	0.22
	--	0.30
	--	0.24

Spearman’s correlation coefficients of the operational taxonomic units (OTUs) that had a median abundance ≥0.01% and that were significantly correlated (q-value<0.05) with one of the first three axes of the weighted UniFrac principal correspondence analysis (PCoA). Rho<-0.3 or rho>0.3, and q-value<0.05 are highlighted in bold. The percentages of explained variations are given for each PCoA axis.
CAG	OTU	Median relative abundance	Taxonomy (k = kingdom; p = phylum; c = class; o = order; f = family; g = genus; s = species)	SparCC-based CAG	Mean decrease accuracy
Prevotella	0.033	Bacteroidetes:p Bacteroidetes;o Bacteroidales:f Prevotellaceae,g Prevotella;s copri	Prevotella	0.698	
	0.02974	Bacteroidetes:p Bacteroidetes;o Bacteroidales:f Prevotellaceae,g Prevotella;s copri	Prevotella	0.457	
	0.0101	Bacteroidetes:p Actinobacteria:o Coriobacteria:o Coriobacteriales:f Coriobacteriaceae,g Adlercreutzia:unclassified	Prevotella	0.52	
	0.01128	Bacteroidetes:p Firmicutes:o Erysipelotrichi:o Erysipelotrichales:f Erysipelotrichaceae,g Catenibacterium:unclassified	Prevotella	0.13	
	0.03852	Bacteroidetes:p Firmicutes:o Erysipelotrichi:o Erysipelotrichaceae,g [Eubacterium]:unclassified	Prevotella	0.85	
	0.0018	Bacteroidetes:p Actinobacteria:o Coriobacteria:o Coriobacteriales:f Coriobacteriaceae,g Adlercreutzia:unclassified	Lachnospiraceae	0.62	
	0.00241	Bacteroidetes:p Actinobacteria:o Coriobacteria:o Coriobacteriales:f Coriobacteriaceae,g Adlercreutzia:unclassified	Lachnospiraceae	0.69	
	0.01034	Bacteroidetes:p Actinobacteria:o Coriobacteria:o Coriobacteriales:f Coriobacteriaceae,g Adlercreutzia:unclassified	Lachnospiraceae	0.113	
	0.01433	Bacteroidetes:p Clostridia:o Clostridiales:f Ruminococcaceae,g Gemmiger:s formicilis	Lachnospiraceae	0.113	
Lachnospiraceae	0.0102	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Faecalibacterium:s prausnitzii	Pathogen	0.12	
	0.00972	Bacteroidetes:p Actinobacteria:o Bifidobacteria:o Bifidobacteriales:f Bifidobacteriaceae,g Bifidobacterium:s adolescentis	Lachnospiraceae	0.266	
	0.01286	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Faecalibacterium:s prausnitzii	Lachnospiraceae	0.352	
	0.00383	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Clostridiaceae,g Clostridium:s cellulatum	Lachnospiraceae	0.043	
	0.00804	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Roseburia:s faecis	Pathogen	0.031	
	0.00514	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Cellulosibacter:s alkalithermophilus	Prevotella	0.031	
	0.01072	Bacteroidetes:p Actinobacteria:o Coriobacteria:o Coriobacteriales:f Clostridiaceae,g Collinsella:s aerofaciens	Lachnospiraceae	0.103	
	0.00453	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s gnavus	Lachnospiraceae	0.022	
	0.00962	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Bulryanococcus:s paulceorum	Lachnospiraceae	0.022	
	0.0047	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s albus	Lachnospiraceae	0.136	
	0.00149	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s lactaris	Lachnospiraceae	0.004	
	0.0084	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Blautia:s ubuminumin	Lachnospiraceae	0.071	
	0.00036	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s gnavus	Pathogen	0.013	
	0.01178	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s albus	Lachnospiraceae	0.031	
	0.00387	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s albus	Pathogen	0	
	0.00254	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Blautia:s obum	Lachnospiraceae	0.136	
	0.00049	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s lactaris	Lachnospiraceae	0.014	
	0.00148	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Blautia:s ubiquitim	Lachnospiraceae	0.032	
	0.00149	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Roseburia:s inulinivorans	Pathogen	0.007	
	0.00088	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Dorea:s unclassified	Lachnospiraceae	0.037	
	0.00012	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Enterococcaceae,g Enterococcus:s casseliflavus	Pathogen	0.007	
	0.00039	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Coprococcus:unclassified	Pathogen	0.018	
	0.00114	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Dorea:s formigenicola	Lachnospiraceae	0.117	
	0.00157	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Clostridiaceae,g Clostridium:unclassified	Lachnospiraceae	0.031	
	0.00051	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f [Mogibacteriaceae]:unclassified	Lachnospiraceae	0.044	
	0.00126	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Clostridium:s distridiforme	Pathogen	0.057	
	0.0004	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s infantilis	Pathogen	0.038	
	0.00012	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Dorea:unclassified	Lachnospiraceae	0.005	
	0.00011	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Ruminococcaceae,g Ruminococcus:s mosora	Lachnospiraceae	0.087	
	0.00013	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Coprococcus:unclassified	Lachnospiraceae	0.036	
	0.0002	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Pathogen	0.006	
	0.00218	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Lachnospiraceae	0.018	
	0.00082	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Pathogen	0.023	
	0.00034	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Lachnospiraceae	0.008	
	0.00027	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Pathogen	0.011	
	0.00017	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Lachnospiraceae	0.031	
	0.00015	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Pathogen	0.009	
Pathogen	0.00014	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Pathogen	0	
	0.00019	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Pathogen	0	
	0.00011	Bacteroidetes:p Firmicutes:o Clostridia:o Clostridiales:f Lachnospiraceae,g Ruminococcus:s mosora	Lachnospiraceae	0.015	
The 95th percentile of the distribution of each CAG is shown. In addition, for each OTU, the median relative abundance, the taxonomy, the alternative grouping proposed by the compositional network reconstruction analysis (SparCC) and the decreasing mean accuracy to discriminate CAGs by the Random Forest machine-learning algorithm are shown.					
Metabolic module ID	Metabolic module name	Hierarchy level 1	Hierarchy level 2	Prevotella-CAG	Lachnospiracea-CAG
---------------------	----------------------	------------------	------------------	---------------	-------------------
MF0001	ethanol production (formate pathway)	alcohol metabolism	ethanol metabolism	0.001895	0.002039124
MF0003	acetylglucosaminuria degradation	amines and polyamines degradation	acetylglucosamine degradation	0.0003715	0.000729
MF0005	acetylmannosamine degradation	amines and polyamines degradation	biacetyl acid degradation	0.000187	0.000273
MF0007	acetylneuraminic acid degradation	amines and polyamines degradation	acetylneuraminic acid degradation	0.000351	0.000465
MF0008	acetylglucosamine degradation	amines and polyamines degradation	acetylglucosamine degradation	0.0000517	0.00008049
MF0009	acetylglutamic acid degradation	amines and polyamines degradation	acetylglutamic acid degradation	0.000029	0.000039
MF0010	acetylpyruvic acid degradation	amines and polyamines degradation	acetylpyruvic acid degradation	0.00001184	0.00001574
MF0011	acetylglutamate degradation	amines and polyamines degradation	acetylglutamate degradation	0.000017	0.0000217
MF0012	acetylglutamate degradation	amines and polyamines degradation	acetylglutamate degradation	0.00003	0.00003
MF0014	acetylglutamate degradation	amines and polyamines degradation	acetylglutamate degradation	0.000029	0.000039
MF0015	acetylglutamate degradation	amines and polyamines degradation	acetylglutamate degradation	0.00001184	0.00001574
MF0016	acetylglutamate degradation	amines and polyamines degradation	acetylglutamate degradation	0.00001184	0.00001574
MF0017	acetylglutamate degradation	amines and polyamines degradation	acetylglutamate degradation	0.00001184	0.00001574

Table S6. Metabolic modules present in the gut microbiota of individuals with single-CAG dominated microbiota.
Metabolic module ID	Metabolic module name	Hierarchy level 1	Hierarchy level 2	Prevotella- CAG	Lachnospiraceae-CAG	Pathogen- CAG	Akkermansia- Bacteroidales-CAG	Ruminococcaceae- CAG	B-value (Kruskal-Wallis)	B-value (Benjamini-Hochberg)
MF0069	succinate degradation	carbohydrate degradation	sugar degradation	0.0001245	0.0003455	0.000118	0.0000513	0.000185	1.8E-12	3.8E-12
MF0107	succinate degradation	carbohydrate degradation	sugar degradation	0.0000685	0.0002011	0.000118	0.0000513	0.000185	1.8E-12	3.8E-12
MF0111	Z-galacturonate degradation	carbohydrate degradation	sugar degradation	0.00032	0.0001313	0.000369	0.000106	0.000191	1.7E-06	2.1E-06
MF0114	methyl degradation	carbohydrate degradation	sugar degradation	0.000167	0.000067	0.2967	0.000118	0.000229	1.3E-11	2.5E-11
MF0134	sorbitol degradation (dehydration)	carbohydrate degradation	sugar degradation	0.0001715	0.0001218	0.000184	0.0000517	0.000119	1.8E-12	3.8E-12
MF0136	sorbitol degradation (phosphoformate):sorbitose degradation	carbohydrate degradation	sugar degradation	0.0000506	0.000352	0.000154	0.0000803	0.000206	1.9E-12	2.4E-12
MF0140	succinate degradation	carbohydrate degradation	sugar degradation	0.000166	0.000237	0.000118	0.0000513	0.000185	1.8E-12	3.8E-12
MF0157	succinate degradation	carbohydrate degradation	sugar degradation	0.0003235	0.000222	0.000274	0.0000803	0.000206	1.9E-12	2.4E-12
MF0165	threonine degradation	carbohydrate degradation	sugar degradation	0.000447	0.000424	0.000368	0.00015	0.000333	2.22E-06	2.39E-06
MF0062	sorbose phosphate pathway (oxidative branch)	carbohydrate degradation	energy metabolism	0.000175	0.000036	0.000407	0.000118	0.000229	1.3E-11	2.5E-11
MF0063	xylulose dehydrogenase complex	carbohydrate degradation	energy metabolism	0.0004895	0.000424	0.000368	0.00015	0.000333	2.22E-06	2.39E-06
MF0066	MF0070 galactonate degradation carbohydrate degradation	0.00000513	0.0000165	1.52E-12	3.82E-12					
MF0067	MF0071 sorbitol degradation carbohydrate degradation	0.00000513	0.0000165	1.52E-12	3.82E-12					
MF0068	MF0072 threonine degradation carbohydrate degradation	0.00000513	0.0000165	1.52E-12	3.82E-12					
MF0069	MF0073 xylulose dehydrogenase complex carbohydrate degradation	0.00000513	0.0000165	1.52E-12	3.82E-12					
MF0070	MF0074 threonine degradation carbohydrate degradation	0.00000513	0.0000165	1.52E-12	3.82E-12					
MF0071	MF0075 xylulose dehydrogenase complex carbohydrate degradation	0.00000513	0.0000165	1.52E-12	3.82E-12					

Abundances of inferred metabolic modules for each co-abundance group (CAG) of microbes in the subset of participants having high abundance pols (HAPs; n=114, P-values (from Kruskal-Wallis tests) and q-values (Benjamini Hochberg correction) denote differences in the functional potential among CAGs.
Table S7. Correlations between relevant metabolic modules and co-abundance groups (CAGs) of microbes in the complete dataset.

Modules Figure 5A	Prevotella-CAG	Lachnospiraceae-CAG	Pathogen-CAG	Akkermansia-Bacteroidales-CAG	Ruminococcaceae-CAG					
	Rho	q value								
Lipopolysaccharide biosynthesis	0.02	0.06	-0.17	0.05	0.50	0.0002	-0.03	<0.0001	-0.41	<0.0001
Mucus degradation	-0.18	<0.0001	0.35	<0.0001	-0.09	<0.0001	0.33	<0.0001	-0.49	0.04
Methanogenesis	0.20	<0.0001	-0.15	<0.0001	-0.13	<0.0001	-0.27	<0.0001	0.58	0.004

Modules Figure 5B	Prevotella-CAG	Lachnospiraceae-CAG	Pathogen-CAG	Akkermansia-Bacteroidales-CAG	Ruminococcaceae-CAG					
	Rho	q value								
Lipopolysaccharide biosynthesis	0.21	<0.0001	0.15	<0.0001	-0.18	0.0002	-0.34	<0.0001	0.41	<0.0001
Mucus degradation	0.13	<0.0001	0.25	<0.0001	0.29	<0.0001	-0.37	0.04	-0.26	<0.0001
Methanogenesis	-0.24	0.0002	-0.25	<0.0001	0.14	0.0003	0.47	0.04	-0.31	0.03

Modules Figure 5C	Prevotella-CAG	Lachnospiraceae-CAG	Pathogen-CAG	Akkermansia-Bacteroidales-CAG	Ruminococcaceae-CAG					
	Rho	q value								
Lipopolysaccharide biosynthesis	0.41	<0.0001	0.07	<0.0001	0.29	<0.0001	-0.67	0.01	0.01	0.09
Mucus degradation	-0.05	0.006	-0.73	<0.0001	0.05	<0.0001	0.19	<0.0001	0.24	<0.0001
Methanogenesis	-0.05	0.0008	0.70	<0.0001	-0.10	<0.0001	-0.05	<0.0001	-0.24	<0.0001

Correlations between the relative abundances of metabolic modules depicted in Fig. 5 and CAG abundances in the complete dataset (n=441). Spearman's rho and q-values are shown.