Mutual Regulation of Bcl-2 Proteins Independent of the BH3 Domain as Shown by the BH3-Lacking Protein Bcl-xAK

Michael Plötz¹, Amir M. Hossini¹, Bernhard Gillissen², Peter T. Daniel², Eggert Stockfleth¹, Jürgen Eberle¹*

¹ Department of Dermatology and Allergy, Skin Cancer Center, University Medical Center Charité, Berlin, Germany, ² Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Berlin, Germany

Abstract

The BH3 domain of Bcl-2 proteins was regarded as indispensable for apoptosis induction and for mutual regulation of family members. We recently described Bcl-xAK, a proapoptotic splice product of the bcl-x gene, which lacks BH3 but encloses BH2, BH4 and a transmembrane domain. It remained however unclear, how Bcl-xAK may trigger apoptosis. For efficient overexpression, Bcl-xAK was subcloned in an adenoviral vector under Tet-OFF control. The construct resulted in significant apoptosis induction in melanoma and nonmelanoma cell lines with up to 50% apoptotic cells as well as decreased cell proliferation and survival. Disruption of mitochondrial membrane potential, and cytochrome c release clearly indicated activation of the mitochondrial apoptosis pathways. Both Bax and Bak were activated as shown by clustering and conformation analysis. Mitochondrial translocation of Bcl-xAK appeared as an essential and initial step. Bcl-xAK was critically dependent on either Bax or Bak, and apoptosis was abrogated in Bax/Bak double knockout conditions as well by overexpression of Bcl-2 or Bcl-xL. A direct interaction with Bcl-2, Bax, Bad, Noxa or Puma was however not seen by immunoprecipitation. Thus besides BH3-mediated interactions, there exists an additional way for mutual regulation of Bcl-2 proteins, which is independent of the BH3. This pathway appears to play a supplementary role also for other proapoptotic family members, and its unraveling may help to overcome therapy resistance in cancer.

Introduction

Apoptosis is a defined genetic death program that leads to ordered destruction of cellular components while membrane integrity is preserved [1]. It also represents a safeguard mechanism against tumor formation, due to the elimination of altered and mutated cells. Thus, apoptosis resistance is characteristic for tumor cells, and therapeutic strategies aim to overcome this resistance [2].

Two major apoptosis pathways (extrinsic and intrinsic) have been described in detail. Extrinsic pathways are initiated by binding of death ligands (TNF-α, CD95L and TRAIL) to cell surface receptors, leading to the formation of death-inducing signaling complexes, where initiator caspsases 8 and 10 are activated [3,4]. On the other hand, intrinsic/mitochondrial apoptosis pathways are triggered by intracellular signals such as by cellular or DNA damage. Key events are depolarization of the mitochondrial membrane potential (ΔΨm) and mitochondrial outer membrane permeabilisation (MOMP) resulting in cytochrome c release and subsequent activation of initiator caspase 9 [5]. Initiator caspsases cleave and activate downstream effector caspsases, which target a large number of death substrates to set apoptosis into work [6,7].

Mitochondrial activation is critically controlled by the family of pro- and antiapoptotic Bcl-2 proteins [8]. These proteins share homology in four conserved regions termed Bcl-2 homology domains (BH) and in a transmembrane domain (TM). Anti-apoptotic proteins as Bcl-2, Bcl-xL, Bcl-w, Mcl-1 and Bfl-1/A1 enclose all four BH domains whereas proapoptotic Bcl-2 homologues subdivide in the Bax/Bak group characterized by BH 1–3, and the BH3-only group enclosing several proteins i.e. Bad, Bid, Bik/Nbk, Bim, Noxa and Puma. In present models, Bax and Bak drive MOMP and are neutralized by antiapoptotic family members. The BH3-only proteins contribute to the regulation either as sensitizers through inhibition of antiapoptotic Bcl-2 proteins or as direct activators of Bax and Bak [8,9].

Mutual regulation and neutralization has been described as based on the formation of heterodimers between Bcl-2 family members. Thus, the BH3 domain of proapoptotic Bcl-2 proteins encloses an amphipathic α helix, which binds to a hydrophobic groove formed by BH1, BH2 and BH3 of antiapoptotic members [10]. In a rheostat model, the balance of pro- and antiapoptotic Bcl-2 proteins determines the fate of a cell [11]. In melanoma, apoptosis deficiency has been attributed to high expression of antiapoptotic Bcl-2 proteins [12,13].
Alternative splicing further increases the number of the Bcl-2 family members. Thus, the \(bcl-x \) gene is expressed as a long antiapoptotic form (Bcl-xL) and a short proapoptotic form (Bcl-xS) [14]. We have recently described Bcl-xAK (atypical killer), a new proapoptotic splice product which encloses BH2, BH4 and TM. It completely lacks the BH3 domain, which has been regarded so far as indispensable for the proapoptotic function [15].

For unraveling the mechanism of Bcl-xAK-mediated apoptosis and exploring its possible therapeutic potential, we constructed an adenoviral vector, which mediates its efficient and conditional expression. We show that Bcl-xAK clearly activated the mitochondrial pathway, and its activity was critically controlled by both pro- and anti-apoptotic Bcl-2 proteins, despite the lack of BH3. Thus, a new model is suggested, in which Bcl-xAK acts as an atypical killer to trigger Bax/Bak-dependent apoptosis.

Materials and Methods

Cell culture and cell lines

Three representative human melanoma cell lines, SK-Mel-13 [16], Mel2a and A-375 [17] were investigated. For analyzing the function of Bax and Bak, the prostate carcinoma cell line DU145 (DSMZ, Braunschweig, Germany) and the colon carcinoma cell line HCT116 (ATCC, Maryland, MD, USA) were used. Parental DU145 cells are deficient for Bax and reveal only moderate expression of Bak. The cells had been reconstituted by EGFP-tagged Bax or Bak, resulting in DU145-EGFP-Bax and DU145-EGFP-Bak, as described previously [18]. HCT116 parental cells express both Bax and Bak. Isogenic sublines with either Bax knockout or Bak knockdown as well as Bax−/Bak− double knockdown cells had been kindly provided by B. Vogelstein (John Hopkins Cancer Center, Baltimore) [18]. Subclones of A-375 melanoma cells resulted from stable transfection of a pIRESBcl-2 plasmid (A375-Bcl-2) or the pIRES empty plasmid (A375-Mock), as previously described [13]. The pIRES plasmid originated from Clontech (Palo Alto, California, USA).

Cell lines were cultured at 37°C, 5% CO\(_2\) in DMEM (Gibco, Karlsruhe, Germany) supplemented with 10% FCS and antibiotics (Biochrom, Berlin, Germany). For caspase inhibition, cells were preincubated for 1 h with 10 \(\mu \)M of the pancaspase inhibitor zVAD-fmk (R&D Systems, Wiesbaden, Germany), which binds the active sites of caspase-like proteases.

Construction of Bcl-xAK adenovirus

Bcl-xAK full-length cDNA [15] was subcloned into the Ad5 adenoviral vector pAd5-\(\text{tTA} \), according to a strategy described previously [19]. In brief, the cDNA was inserted into the TRE-containing pHVAad2 shuttle vector. The resulting TRE-Bcl-xAK expression cassette was then inserted into pAd5-\(\text{tTA} \) by homologous recombination, thereby replacing the E1 region and creating pAdV-AK DNA (Fig. 1A). This was transfected into HEK293 cells, and adenoviral plaques corresponding to AdV-AK were propagated. Expression of Bcl-xAK after AdV-AK transduction was suppressed by addition of 1 \(\mu \)g/ml doxycycline to the culture medium (OFF condition), whereas omitting doxycycline resulted in promoter induction (ON condition). An adenoviral vector for expression of myc-tagged Bik/Nbk (Ad5-myc-Nkb-t\(\text{tTA} \)→AdV-Nbk), used here as control, had been described previously [19]. A luciferase-encoding adenovirus (Ad5-CMV-Luc) served as mock control for adenovirus transduction and was applied at the same MOI [20].

Aptoptosis, cytotoxicity, cell proliferation and viability

For quantification of apoptosis, cell cycle analyses were carried out, and apoptotic cells corresponded to cell populations with hypodiploid nuclei [21]. Therefore, cells were seeded in 24-well plates (50,000 cells per well). After incubation, cells were harvested by trypsinisation, washed with ice-cold phosphate-buffered saline (PBS) and incubated for 1 h with the staining buffer, containing 0.1% sodium citrate, 0.1% triton X-100 and propidium iodide (PI; 40 \(\mu \)g/ml; Sigma-Aldrich, Taufkirchen, Germany). The DNA content of nuclei was determined by using flow cytometry (FACS Calibur and CellQuest software; Becton Dickinson, Heidelberg, Germany). As a second assay for quantification of apoptosis, a cell death detection ELISA (Roche Diagnostics, Mannheim, Germany) was applied, which detects mono and oligonucleosomes formed in apoptotic cells. Cytotoxicity was determined in parallel by a cytotoxicity detection assay (Roche Diagnostics), which measures LDH activity in culture fluids. As positive controls for induced cytotoxicity, cells were completely lysed by triton X-100 or were treated with doxorubicin (300 nM, 72 h). Protocols for apoptosis ELISA and LDH release were according to the manufacturer with minor modifications [22].

Cell proliferation (as a product of cell number and mitochondrial activity) was quantified according to the cleavage of the water-soluble tetrazolium salt WST by mitochondrial dehydrogenases in viable cells (WST-1 assay, Roche Diagnostics). Cells were seeded in a density of 10,000 per 100 \(\mu \)l in 96-well plates, and treatments started after 24 h. At the time of analysis, WST-1 reagent was added and absorbance (450 nm) was determined in an ELISA reader. Data were reported in percent of non-treated controls. Cell viability at the single cell level was monitored by the life-cell labeling dye calcine-AM. Briefly, 10\(^5\) cells were incubated with calcine (4 \(\mu \)M; eBioscience, Frankfurt, Germany) in serum-free growth medium (60 min, 37°C). After PBS washing, cell viability was determined by flow cytometry, comparing calcine-stained (viable) and unstained (dead) cells.

For identification of chromatin condensation and nuclear fragmentation in course of apoptosis, cells were harvested by trypsinisation, centrifuged on cytospins and fixed for 30 min in 4% formaldehyde. Cytosines were stained with bisbenzimide (Hoechst-33258; Sigma, Taufkirchen, Germany; 1 \(\mu \)g/ml, 30 min) and examined by fluorescence microscopy. Apoptotic cells were identified by fragmented nuclei or by bright blue-stained nuclei with condensed chromatin. For quantitative evaluation, fields with 100–200 cells were assessed in triplicates.

Cell transfection

Melanoma cells were seeded in six-well plates with 2\(\times 10^5\) cells/well. For transient transfection, cells at a confluence of 50% were washed with serum-free Opti-MEM medium (Life Technologies, Carlsbad, CA, USA), followed by incubation at 37°C in Opti-MEM for 4 h with plasmid DNA (2.5 or 3 \(\mu \)g/ml) and 0.1% DMRIE-C (Life Technologies). Detailed protocols for transient cell transfection had been described previously [22]. Plasmid constructs of pcDNA3 (Invitrogen, Eugene, OR, USA) were used for transient transfection to express full length Bcl-xAK and Bcl-xS.

Mitochondrial membrane potential and ROS

For determination of the mitochondrial membrane potential (\(\Delta \psi \text{m} \)), the fluorescent dye JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetracythyl-benzimidazolyl carbocyanine iodide) or the dye TMRM\(^*\) (Tetramethyl rhodamine methyl ester perchlorate) were used (both from Sigma-Aldrich). Cells were harvested by trypsinisation and stained for 15 min at 37°C with JC-1
Figure 1. Efficient induction of cell death by Bcl-xAK. (A) The structure of the adenoviral construct AdV-AK is shown. The adenoviral E1 region was replaced by the Bcl-xAK cDNA driven by a tetracyclin-responsive promoter (PTRE), and the E3 region was replaced by the tetracyclin-controlled transactivator (tTA) driven by a CMV promoter (P_{CMV}). The tTA mediates Tet-OFF regulation. Striped boxes indicate the poly(A)+ regions. (B) Bcl-xAK expression as determined by Western blot analysis is shown in melanoma cell lines SK-Mel-13, A-375 and Mel-2a at 48 h after transduction with AdV-AK (MOI = 50). Cells had received doxycycline (OFF condition) or were left without (ON condition). Equal protein loading was confirmed by β-actin. (C) Left, examples of cell cycle analysis after PI staining indicating sub-G1 apoptotic cell populations in Mel-2a at 48 h of transduction. Middle panel, detached and rounded cells indicating apoptosis are shown of Mel-2a at 48 h after transduction with AdV-AK under OFF and ON conditions. Right panel, chromatin condensation and nuclear fragmentation were visualized by bisbenzimide (DAPI) staining in Mel-2a at 48 h after AdV-AK transduction (MOI = 50). D–F) Time course analyses of apoptosis (D, flow cytometry after PI staining), cytotoxicity (E, LDH release) and cell proliferation (F, WST-1 assay) are shown for SK-Mel-13, A-375 and Mel-2a cells at 24, 48 and 72 h after transduction with AdV-AK (50 MOI). +Dox = Off, –Dox = On. As positive controls for induced cytotoxicity, cell lines were completely lysed by triton X-100 (T = 100%) or were treated with doxorubicin (D, 500 nM, 72 h). WST-1 values are expressed as percent of non-treated controls (= 100%). (G) For comparison, apoptosis induction (sub-G1 cells) by AdV-Nbk is shown for Mel-2a cells at 24, 48 h and 72 h (MOI = 50). AdV-Nbk shares the same backbone with AdV-AK. For induction, doxycycline was omitted (On). (H) A time course analysis of Bcl-xAK expression (3–48 h) after AdV-AK transduction and promoter induction is shown for Mel-2a, as determined by Western blot analysis. (I) Cell survival was determined according to calcein staining in Mel-2a cells at 48 h of Bcl-xAK induction. A shift to the left indicates calcein-negative (= non-viable) cells. (J) Quantification of the calcein experiment. (D, E, F, G, I) Means and standard deviations of triplicate values of representative experiments are shown. A luciferase-encoding adenovirus (Ad5-CMV-Luc) applied at the same MOI served as mock control (M), for controlling adenovirus transduction. All experiments were performed at least twice, resulting in highly comparable results.

doi:10.1371/journal.pone.0034549.g001

(2.5 µM) or TMRM⁺ (1 µM), and changes of Δψ_m were determined by flow cytometry.

For measurement of intracellular ROS levels, the fluorescent dye H₂DCCFDA (2′, 7′- dichloro-dihydro-fluorescein-diacetate) was used. Cells were stained for 30 min with 15 µM H2DCCFDA (Molecular Probes, Invitrogen), harvested by trypsinisation, resuspended in HBSS buffer (Biochrom, Berlin, Germany) and analyzed by flow cytometry. For ROS scavenging, N-acetyl cysteine (NAC, Sigma-Aldrich) was used in a concentration of 200 µM.

Assays for Bax/Bak activation

For determination of Bax and Bak clusters indicative for Bax/Bak activation, DU145 cells were used, which had been stably transfected for expression of EGFP-Bax or EGFP-Bak, respectively [18]. Cells were seeded, transduced with AdV-AK (MOI = 50) and were cultured for 48 h with or without doxycycline. Bax and Bak clustering was demonstrated by a fluorescence microscope (Olympus BX50, Hamburg, Germany). For semi-quantitative evaluation, at least 500 cells of each condition were assessed.

For analysis of Bax/Bak conformational changes related to activation, primary antibodies specific for Bax/Bak N-terminal domains were applied in flow cytometry (Bax-NT, Upstate, Lake Placid, USA, #06-499; Bak-NT, Merck, Darmstadt, Germany, #AM04). Melanoma cells (10⁵) were harvested and fixed for 30 min with 4% paraformaldehyde in PBS. Cells were suspended in saponin buffer (1% FCS, 0.1% saponin in PBS) and incubated for 1 h at 4°C in the dark with antibodies Bax-BT (1:100) or Bak-BT (1:10). As secondary antibodies, goat anti-rabbit IgG (H_L-L-FTTC) (Jackson Immuno Research, West Grove, USA) and goat anti-mouse IgG (H_L-L-FTTC) (SouthernBiotech, Birmingham, AL, USA) were used. After washing and resuspension, cells were immediately measured by flow cytometry.

Western blot analysis

Detailed protocols for protein extraction and Western blot analysis had been described previously [22]. As a standard, 10⁶ cells were harvested and dissolved in lysis buffer (150 mM NaCl, 1 mM EDTA, 0.5% SDS, 0.5% Nonidet P-40, 2 mM PMSF, 1 mM iodopeptin, 1 mM pepstatin, 10 mM Tris-HCl, pH 7.5). For analysis of cytochrome c and mitochondrial localization of Bcl-2 proteins, cytosolic and mitochondrial cell fractions were separated by a mitochondria/cytosol fractionation kit (Alexis, Grunberg, Germany).

The following primary antibodies were used: procaspase-3 (Cell Signaling, Danvers, MA, USA; rabbit; 1:1000), cleaved caspase-3 (Cell Signaling; rabbit; 1:1000), caspase-8 (Cell Signaling; mouse; 1:1000), caspase-9 (Cell Signaling; rabbit; 1:1000), Bcl-xL (Santa Cruz, Heidelberg, Germany; mouse; 1:200), mouse Bcl-2 (Santa Cruz; mouse; 1:200), human Bcl-2 (Santa Cruz; mouse; 1:200), Mel-1 (Santa Cruz; rabbit; 1:200), Bax (Santa Cruz; rabbit; 1:200), Bak (Assay Biotechnology, Sunnyvale, CA, USA; rabbit; 1:500), Bcl-2 (Assay Biotechnology, Sunnyvale, CA, USA; rabbit; 1:1000), Noxa (ProSci Incorporated, Poway, CA, USA; rabbit; 1:500), cytochrome c (BD Biosciences, Heidelberg, Germany; mouse; 1:1000), c-Myc (Calbiochem, Nottingham, UK; mouse; 1:500), anti-porin 31 HL (VDAC; Calbiochem; mouse; 1:5000), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Santa Cruz; mouse; 1:1000), β-actin (Sigma-Aldrich; mouse; 1:5000). As secondary antibodies, peroxidase-labeled goat anti-rabbit and goat anti-mouse antibodies were used (Dako, Hamburg, Germany; 1:5000).

Immunoprecipitation with anti-Myc microbeads

Melanoma cells (10⁶, SK-Mel-13) were transiently transfected with plasmids encoding myc-tagged Bcl-2 proteins (0.1% DMRIE-C, 5 µg/ml plasmid). After 24 h (for Bcl-xL and Bax) or 48 h (for Bcl-xAK), cells were harvested, washed with ice-cold PBS and resuspended in 1 ml of pre-cooled lysis buffer (150 mM NaCl, 1% Triton X-100, 50 mM Tris-HCl, pH 8). Microbeads covered with monoclonal anti-myc antibodies were given to the lysis for magnetic labelling of the tagged proteins. Beads and bound proteins were captured on flow-through magnetic columns, washed with buffer 1 (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl, pH 8) and washed for another time with 20 mM Tris-HCl (pH 7.5). Proteins were eluted with hot (95°C) elution buffer (50 mM DTT, 1% SDS, 1 mM EDTA, 0.005% bromphenol blue, 10% glycerol, 50 mM Tris-HCl, pH 6.8). No secondary antibodies were needed. The mock control were melanoma cells transiently transfected with an empty pcDNA3 plasmid. The mock control proved that the anti-Myc beads do not result in any non-specific precipitates. Immunoprecipitation of myc-tagged proteins was carried out with the μMACS c-myc-tagged protein isolation kit (Miltenyi Biotec, Bergisch-Gladbach, Germany). Lysates and immunoprecipitates were investigated by Western blot analysis.

Results

Delayed but efficient apoptosis induction

For investigating the efficacy and mechanism of Bcl-xAK-mediated apoptosis, an adenoviral vector was constructed with the
Bcl-xAK full length cDNA under control of a Tet-OFF promoter inserted into the adenoviral E1 region. The tetracycline/doxycycline repressible transactivator tTA was located in the adenoviral E3 region (Fig. 1A). The construct mediated high expression of Bcl-xAK in melanoma cell lines as shown for SK-Mel-13, A-375 and Mel-2a, when doxycycline was omitted (ON condition), whereas addition of doxycycline almost completely abolished Bcl-xAK expression (OFF condition, Fig. 1B).

Significant induction of apoptosis, as determined by counting hypodiploide sub-G1 cells, was seen in melanoma cell lines after transduction and promoter activation, whereas doxycycline strongly diminished apoptosis (Fig. 1D, examples shown in 1C left panel). Kinetic analyses revealed a delayed induction of apoptosis in the three cell lines, which increased to 12%–23% at 48 h and to 17%–37% at 72 h after transduction (Fig. 1D). In contrast, other proapoptotic Bcl-2 proteins induced apoptosis already at 24 h, as shown here for the BH3-only protein Bik/Nbk subcloned in the same adenoviral background (Fig. 1G). The delay in apoptosis induction by Bcl-xAK occurred despite its adenovirus-mediated high expression already at 6 h after transduction (Fig. 1H).

In parallel with DNA fragmentation, clearly visible effects indicating apoptosis were evident, as reduced cell numbers, rounded and detached cells (Fig. 1C, middle panel). Chromatin condensation and nuclear fragmentation, typical hallmarks in apoptosis, were seen after bisbenzimide staining (Fig. 1C, right panel). At 48 h after transduction of Bcl-xAK, the cell numbers with atypical nuclei increased from 4% (Off) to 33% (On).

LDH release monitoring loss of plasma membrane integrity was determined to exclude early necrotic cell death. Indeed, LDH release was not significant at 48 h, when apoptosis was already induced, and it was less affected at 72 h, as compared to cytotoxicity controls (Fig. 1E). As determined by WST-1 assay,

Figure 2. Activation of caspases and mitochondria. (A) Processing of caspase-3, -8 and -9 is shown in Mel-2a cells at 24 h and at 48 h after transduction with AdV-AK (MOI = 50). Expression of Bcl-xAK was switched on in the absence of doxycycline (ON) or shut off with doxycycline (OFF). Equal protein loading (20 μg/lane) was confirmed by GAPDH. The whole experiment was performed twice. (B) Inhibition of apoptosis by preincubation with the pancaspase inhibitor zVAD-fmk (1 h, 10 μM) is shown. SK-Mel-13 cells had been transduced with AdV-AK (MOI = 100, 48 h). Means and SDs of triplicate values of a representative experiment (one of two) are shown. (C) Decrease of the mitochondrial membrane potential (ΔΨm) is shown for Mel-2a cells at 48 h after transduction of AdV-AK, as determined by flow cytometry after JC-1 or TMRM staining. Cultures with doxycycline (OFF, grey) are compared to cultures grown in the absence of doxycycline (ON, open graphs). The experiment was performed three times, resulting in highly comparable results. (D) ROS levels were determined in Mel-2a cells at 24 h and 48 h after transduction with AdV-AK under ON and OFF conditions (flow cytometry after H2DCFDA staining). Below, parallel cultures were pre-treated for 1 h with 200 μM NAC before transduction. (E) Relative DNA-fragmentation rates (apoptosis) at 48 h with or without NAC were determined in parallel. Non-transduced cells (−/−NAC) are shown as additional controls (open bars). Values had been normalized with regard to non-treated controls, set to 1. Means and SDs of triplicate values of a representative experiment are shown (two independent experiments). (F) Expression levels of Bcl-2 proteins, of p53 and Survivin were determined by Western blot analysis in Mel-2a cells at 24 h and 48 h after transduction with AdV-AK (ON and OFF conditions). Equal protein loading (20 μg/lane) was confirmed by GAPDH.

doi:10.1371/journal.pone.0034549.g002
cell proliferation of Mel-2a cells was strongly decreased, reaching a loss of 60% at 72 h (Fig. 1F). Also cell viability, determined by calcein staining, was decreased (38% in Mel-2a at 72 h), as compared to 6% under OFF conditions (Fig. 2I, J). Thus, Bcl-xAK triggered delayed but efficient induction of apoptosis in melanoma cells.

Activation of caspases and mitochondria through adenovirus-encoded Bcl-xAK

Targeting of the caspase cascade was investigated in Mel-2a cells by Western blot analyses for the initiator caspases 8 and 9 as well as for the main effector caspase 3. Under conditions of high adenovirus-mediated expression of Bcl-xAK and strong apoptosis induction, also significant processing of these caspases was evident at 48 h of transduction (Fig. 2A). Underlining the role of caspases, Bcl-xAK-induced apoptosis was almost completely blocked by the pancaspase inhibitor zVAD-fmk (10 µM; Fig. 2B).

The effects on mitochondrial proapoptotic pathways were monitored by two distinct mitochondrial membrane potential (∆Ψm)-dependent dyes. Both JC-1 and TMRM+ revealed the same result, namely decrease of ∆Ψm upon Bcl-xAK expression. Interestingly, loss of ∆Ψm appeared already at 24 h after AdV-AK transduction, thus proving this as an early step in Bcl-xAK signal transduction, before apoptosis became evident (Fig. 2C). Reactive oxidative species (ROS) are regarded as an additional step in apoptosis regulation. Increased ROS levels were determined by flow cytometry after H2DCFDA staining and found in Mel-2a cells at 48 h but not at 24 h after transduction, thus characterizing this step likely as a consequence of apoptosis (Fig. 2D). Thus, increased ROS may further enhance the apoptotic effect, which was proven by pretreatment for 1 h with the antioxidant N-acetyl cysteine (NAC). Neutralization of ROS by NAC (Fig. 3D) resulted in a two-fold decrease of Bcl-xAK-induced apoptosis (Fig. 2E).

Dependency on Bax and Bak

To address the relation of Bcl-xAK-induced cell death to Bax and Bak, we used a HCT116-derived colon carcinoma cell model. This consisted of parental Bax+/Bak+ cells as well as subclones (Bax−/Bak+), (Bax+/Bak−) and (Bax−/Bak−) were transduced with AdV-AK (MOI = 50) and cultured under OFF or ON conditions. Relative DNA fragmentation values (apoptosis ELISA) were normalized according to the values of parental cells under OFF conditions (set to 1). (D) DU145 parental cells (Bax+/EGFP-Bak−) as well as subclones (Bax+/EGFP-Bak+) and (EGFP-Bax+/EGFP-Bak−) were transduced with AdV-AK (MOI = 50, 100) and cultured under OFF or ON conditions. The percentages of apoptotic cells (sub-G1 populations) are shown, as determined by flow cytometry at 48 h after transduction. (B, D) Means and SDs of triplicate values of a representative experiment are shown (each two independent experiments). Statistical significance as determined by Student’s t-test is indicated by asterisks (*, p<0.05; **, p<0.005), when comparing parental cells and subclones under ON conditions.

doi:10.1371/journal.pone.0034549.g003

Figure 3. Bcl-xAK-mediated apoptosis depends on Bax or Bak. (A, C) Expression of Bax and Bak is shown by Western blot analysis in subclones of HCT116 and DU145, respectively. Equal loading was confirmed by incubation with β-actin. Two independent series of protein extracts revealed largely comparable expression. (B) HCT116 parental cells (Bax+/Bak+) as well as subclones (Bax−/Bak+), (Bax+/Bak−) and (Bax−/Bak−) were transduced with AdV-AK (MOI = 50) and cultured under OFF or ON conditions. Relative DNA fragmentation values (apoptosis ELISA) were normalized according to the values of parental cells under OFF conditions (set to 1). (D) DU145 parental cells (Bax+/EGFP-Bak−) as well as subclones (Bax+/EGFP-Bak+) and (EGFP-Bax+/EGFP-Bak−) were transduced with AdV-AK (MOI = 50, 100) and cultured under OFF or ON conditions. The percentages of apoptotic cells (sub-G1 populations) are shown, as determined by flow cytometry at 48 h after transduction. (B, D) Means and SDs of triplicate values of a representative experiment are shown (each two independent experiments). Statistical significance as determined by Student’s t-test is indicated by asterisks (*, p<0.05; **, p<0.005), when comparing parental cells and subclones under ON conditions.
In a complementary approach, a DU145 prostate carcinoma cell model was applied. Parental cells are deficient for Bax and reveal only moderate activity of Bak. They had been reconstituted for either Bax or Bak expression by using EGFP-tagged copies (Fig. 3C). Parental DU145 cells were clearly non-responsive to AdV-AK, possibly indicating an endogeneous non-functional Bak. However, the reconstitution of either Bax or Bak strongly enhanced Bcl-xAK-mediated apoptosis, resulting in each case in more than 50% apoptotic cells. This again showed that Bcl-xAK can induce apoptosis via both Bax and Bak (Fig. 3D).

Formation of Bax/Bak clusters has been reported as related to proapoptotic function [23]. For monitoring this step, DU145 cells were used that had been stably transfected with EGFP-Bax and EGFP-Bak, respectively. In agreement with the function of both Bax and Bak, Bcl-xAK expression resulted in visible clustering of both EGFP-Bax and EGFP-Bak at 48 h after transduction. Clustering induced by Bcl-xAK was comparable to the effects of doxorubicin (2 μM, 24 h), used as positive control (Fig. 4A). Evaluations revealed Bax/Bak clusters in 20%–30% of cells, similar to apoptosis inductions at these conditions (Fig. 4B). In course of Bax/Bak activation, conformational changes may lead to exposure of their N-termini. Flow cytometry with N-terminus-specific antibodies (Bax-NT, Bak-NT) showed activation of Bax and Bak in 30% of Mel-2a cells in response to Bcl-xAK expression (Fig. 4C, 4D).

Abrogation of Bcl-xAK-mediated apoptosis by antiapoptotic Bcl-2 proteins

To address the role of antiapoptotic Bcl-2 proteins, A-375 melanoma cells stably transfected for Bcl-2 overexpression (A375-Bcl-2) were applied. These cells were completely protected against the proapoptotic effects of Bcl-xAK, whereas mock-transfected cells (A375-Mock) revealed about 30% apoptotic cells at 48 h of transduction with AdV-AK (Fig. 5A). A similar result was obtained after Bcl-xL overexpression. Transient transfection of a Bcl-xAK expression plasmid significantly enhanced apoptosis in SK-Mel-13 melanoma cells at 48 h, whereas the co-transfection of a Bcl-xL expression plasmid almost completely prevented Bcl-xAK-induced apoptosis (Fig. 5B). Thus, either one or these antiapoptotic proteins was sufficient to block Bcl-xAK-mediated apoptosis. Loss of ΔΨm was also seen in A375-Mock, which was completely prevented by Bcl-2 overexpression in A375-Bcl-2 (Fig. 5C).

Mitochondrial translocation of Bcl-xAK is not prevented by Bcl-2

Hallmarks in mitochondrial apoptosis pathways are translocation of Bax and release of mitochondrial factors. Significant cytochrome c release was seen in Mel-2a and in A375-Mock at 48 h after AdV-AK transduction (Fig. 6A). Also higher levels of
Bax were seen in mitochondrial extracts. In this assay however, Bax translocation and activation is underestimated as some cytosolic contaminations (up to 5%) were still left in mitochondrial fractions seen by the cytosolic marker GAPDH. This may explain the weaker bands of Bax already before induction of Bcl-xAK expression (Fig. 6B).

The localization of Bcl-xAK itself appeared as an important step. When comparing 24 h with 48 h, the amount of Bcl-xAK in the cytosol significantly decreased at 48 h by 2–3-fold in all three cell lines. Equal loading of cytosolic extracts was proven by β-actin (Fig. 6A). The direct comparison of the mitochondrial extracts at 24 h and 48 h clearly showed almost no Bcl-xAK in Mel-2a and only weak bands in the two A-375 clones at 24 h. The mitochondrial localization of Bcl-xAK however strongly increased at 48 h (Fig. 6B). Simultaneous decrease of Bcl-xAK in the cytosol and its strong increase in mitochondria at 48 h clearly proved mitochondrial translocation of Bcl-xAK, which is suggestive as a critical step for induction of apoptosis. Importantly, the mitochondrial translocation of Bcl-xAK was not prevented by Bcl-2, whereas cytochrome c release and Bax translocation were completely blocked (Fig. 6A; B).

No interaction of Bcl-xAK with other Bcl-2 family members

For investigating whether Bcl-xAK might directly interact with other Bcl-2 proteins, SK-Mel-13 melanoma cells were transiently transfected with myc-tagged copies of Bcl-xAK, Bcl-xL or Bax. Following immunoprecipitation with anti-Myc microbeads, binding of Bcl-xL, Bax, Bad, Noxa and Puma was investigated by Western blotting. Mock transfected cells were used as controls and ruled out non-specific precipitations by the microbeads. On the other hand, Myc-tagged proteins were efficiently immunoprecipitated, as seen in the pellet (P) fractions after incubation with the Myc antibody (Fig. 7A, panels 1–3).

The binding analyses revealed characteristic interactions, thus proving the reliability of the assay. Thus binding of Bcl-2 to myc-Bax, binding of Bax to myc-Bcl-xL and myc-Bax as well as binding of Bad to myc-Bcl-xL were seen (Fig. 7A). Apoptosis, monitored in parallel, was induced by myc-Bax and myc-Bcl-xAK, whereas myc-Bcl-xL diminished basal apoptotic rates, thus providing a proof on the function of the transfected proteins (data not shown). However, no direct interactions of the five representatives of the Bcl-2 family were seen with Bcl-xAK (Fig. 7A), thus suggesting that Bcl-xAK displays its activation of Bax and Bak in an indirect way via a not yet defined step. In this pathway Bcl-xAK and antiapoptotic family members act independent of each other on Bax and Bak (Fig. 7B).

Discussion

Pro- and antiapoptotic Bcl-2 proteins are critically involved in apoptosis regulation by controlling mitochondrial cell death.
pathways [5]. Their already high number is further increased by differential splicing, leading to an enhanced complexity. Thus, up to 10 splice products have been reported for the \textit{bim} gene, of which \textit{BimS}, \textit{BimL} and \textit{BimEL} have been characterized. Also eight splice products with different domain structures have been reported for the \textit{bax} gene, of which \textit{Bax-a} is best characterized [24,25]. Another example is given by the \textit{bcl-x} gene, which is expressed in four reported isoforms with different activities. Besides \textit{Bcl-xL} (long), antiapoptotic functions have also been reported for \textit{Bcl-xS} (short) [26,27]. In contrast, \textit{Bcl-xS} (short) and \textit{Bcl-xAK} (atypical killer) exert proapoptotic functions [14,15]. Alternative splicing is a target of specific regulations. Thus, the switch from \textit{Bcl-xL} to \textit{Bcl-xS} in response to genotoxic stress was related to an ATM/CHK2/p53-dependent pathway [28]. The pathway, which triggers \textit{Bcl-xAK} expression, is not yet defined.

Bcl-2 proteins are categorized in three subfamilies according to different domain structures, enclosing antiapoptotic proteins (BH 1–4), the Bax/Bak group (BH 1–3) and BH3-only proteins [9]. The \textit{bcl-x} splice products, however, reveal unique structures. Thus, \textit{Bcl-xL} encloses BH3 and BH4 [24], whereas \textit{Bcl-xAK} encloses BH2 and BH4 [15]. Despite the BH3 domain has been regarded as indispensible for proapoptotic functions [12], we had previously categorized \textit{Bcl-xAK} as proapoptotic based on a moderate induction of apoptosis in melanoma cells (two-fold), after plasmid transfection [15]. For unraveling \textit{Bcl-xAK}-mediated pathways, we have constructed an adenoviral vector, which drives its high and conditional expression under Tet-OFF control. With this efficient expression system, \textit{Bcl-xAK} induced apoptosis in up to 40% of melanoma and in 50% of non-melanoma cells. In its efficacy, \textit{Bcl-xAK} was comparable to the BH3-only protein Bik/Nbk, which was available in the same adenoviral backbone [19].

Under AdV-AK-mediated high expression of \textit{Bcl-xAK}, significant caspase activation became evident, in contrast to previous findings under moderate expression of \textit{Bcl-xAK} [15]. Thus, caspase activation by \textit{Bcl-xAK} in melanoma cells appeared as dependent on its expression level. Initiator caspases of both extrinsic and intrinsic pathways (caspase-8, and \textit{caspase-9}) were cleaved. However, caspase-8 may also be activated downstream of caspase-3 in a described amplification loop [29], which is suggestive for \textit{Bcl-xAK}. Bcl-2 family proteins are particularly involved in the control of mitochondrial apoptosis pathways, which can be induced by overexpression of BH3-only proteins as well as by overexpression of Bax or Bak [18,30,31]. Also, \textit{Bcl-xAK} resulted in significant decrease of mitochondrial membrane potential and in cytochrome c release, thus clearly indicating parallels to other proapoptotic Bcl-2 proteins. Although Bax/Bak-independent mechanisms were also discussed [32], mitochondrial activation is mainly related to Bax or Bak function [9]. Here again, \textit{Bcl-xAK} revealed typical characteristics of proapoptotic Bcl-2 proteins, namely a strong dependency on either Bax or Bak. Both proteins share a similar structure and related functions [33]. Some proapoptotic Bcl-2 proteins show preference for activating either Bax or Bak, as Bik/
Highly characteristic for Bcl-xAK-induced apoptosis was a time delay of 48 h, whereas other Bcl-2 proteins as Bik/Nbk and Bcl-xS induced apoptosis in melanoma cells already at 24 h [35, 36]. In general, proapoptotic signaling as mutual regulation of Bcl-2 family members, to release Bax or Bak by the replacement of the Bim BH3 [30]. Also peptides of the BH3 domains of Bid, Bim and Puma were able to drive direct activation activity is also regarded as BH3-dependent. Thus, direct, although indirect mechanism enclosing a time-consuming step. No relation was seen to the expression of other Bcl-2 proteins. Rather, Bcl-xAK mitochondrial localization appeared as a critical step, and membrane transport may play a regulatory role therein. Whereas Bcl-xAK was cytosolic at 24 h, it translocated to mitochondria at 48 h, when apoptosis was induced. Also other proapoptotic Bcl-2 proteins have to translocate to mitochondria to exert their proapoptotic activities, as shown for tBid and Bax [5, 39]. Thus, apoptosis by Bcl-xAK appeared as tightly linked to its presence in mitochondria, where it resulted in Bax and Bak activation.

An interesting finding was that loss of $\Delta \Psi_{m}$ preceded translocation of Bcl-xAK and MOMP. The relation between $\Delta \Psi_{m}$ and MOMP is still a matter of discussion; one effect may precede the other or they may even occur independently of each other [40, 41]. Loss of $\Delta \Psi_{m}$ may result from uncoupling of the mitochondrial electron transport chain which may lead to Bax and Bak oligomerization [42]. Mitochondrial dynamics appears as another important level, which may be influenced by Bcl-xAK overexpression. Mitochondrial dynamics may contribute to the control of MOMP, which is further dependent on Bax [43]. Formation of large Bax/Bak clusters has been suggested, which may translocate to mitochondrial constriction sites, to drive MOMP [23]. Clustering of Bax and Bak was clearly induced in response to Bcl-xAK, thus further relations to mitochondrial fission and fusion may be expected.

For BH3-only proteins, different mechanisms have been suggested to explain their proapoptotic activities. In the neutralization/displacement model, BH3-only proteins bind antiapoptotic family members, to release Bax or Bak [5]. This activity is based on BH3, which binds to the hydrophobic groove of antiapoptotic Bcl-2 proteins [44]. According to a second model, BH3-only proteins may also directly bind and activate Bax or Bak, which has been shown for tBid, Bim and Puma [38, 45, 46]. This activity is also regarded as BH3-dependent. Thus, direct, although week binding of Bim to Bax has been shown, which was abrogated by the replacement of the Bim BH3 [30]. Also peptides of the BH3 domains of Bim, Bim and Puma were able to drive direct activation of Bax [45]. Both ways of apoptosis induction can not apply to Bcl-xAK, due to its lack of BH3.

A third way of apoptosis induction has been recently suggested. It is explained by a general remodelling of the mitochondrial outer membrane, including a delay of 48 h, whereas other Bcl-2 proteins as Bik/Nbk and Bcl-xS induced apoptosis in melanoma cells already at 24 h [35, 36]. In general, proapoptotic signaling as mutual regulation of Bcl-2 proteins, cytochrome c release and caspase activation are rather quick cellular events [38]. The time delay of Bcl-xAK in contrast to other proapoptotic Bcl-2 proteins is indicative for an indirect mechanism enclosing a time-consuming step. No relation was seen to the expression of other Bcl-2 proteins. Rather, Bcl-xAK mitochondrial localization appeared as a critical step, and membrane transport may play a regulatory role therein. Whereas Bcl-xAK was cytosolic at 24 h, it translocated to mitochondria at 48 h, when apoptosis was induced. Also other proapoptotic Bcl-2 proteins have to translocate to mitochondria to exert their proapoptotic activities, as shown for tBid and Bax [5, 39]. Thus, apoptosis by Bcl-xAK appeared as tightly linked to its presence in mitochondria, where it resulted in Bax and Bak activation.

An interesting finding was that loss of $\Delta \Psi_{m}$ preceded translocation of Bcl-xAK and MOMP. The relation between $\Delta \Psi_{m}$ and MOMP is still a matter of discussion; one effect may precede the other or they may even occur independently of each other [40, 41]. Loss of $\Delta \Psi_{m}$ may result from uncoupling of the mitochondrial electron transport chain which may lead to Bax and Bak oligomerization [42]. Mitochondrial dynamics appears as another important level, which may be influenced by Bcl-xAK overexpression. Mitochondrial dynamics may contribute to the control of MOMP, which is further dependent on Bax [43]. Formation of large Bax/Bak clusters has been suggested, which may translocate to mitochondrial constriction sites, to drive MOMP [23]. Clustering of Bax and Bak was clearly induced in response to Bcl-xAK, thus further relations to mitochondrial fission and fusion may be expected.

For BH3-only proteins, different mechanisms have been suggested to explain their proapoptotic activities. In the neutralization/displacement model, BH3-only proteins bind antiapoptotic family members, to release Bax or Bak [5]. This activity is based on BH3, which binds to the hydrophobic groove of antiapoptotic Bcl-2 proteins [44]. According to a second model, BH3-only proteins may also directly bind and activate Bax or Bak, which has been shown for tBid, Bim and Puma [38, 45, 46]. This activity is also regarded as BH3-dependent. Thus, direct, although week binding of Bim to Bax has been shown, which was abrogated by the replacement of the Bim BH3 [30]. Also peptides of the BH3 domains of Bim, Bim and Puma were able to drive direct activation of Bax [45]. Both ways of apoptosis induction can not apply to Bcl-xAK, due to its lack of BH3.
Thus, the characterization of Bcl-xAK strongly supports speculations on proapoptotic pathways that are mediated by Bcl-2 proteins but act independent of the BH3 domain. These pathways are nevertheless critically dependent on Bax and Bak as well as on antiapoptotic Bcl-2 family members. As shown here for melanoma, colon and prostate carcinoma cells, activation of these pathways can be effective in cancer cells. Bcl-2 proteins are of critical importance for therapy resistance in cancer, as particularly seen in melanoma. [2] Thus, new pathways for regulating Bcl-2 protein activity are of particular interest and may become useful for targeting so far therapy-refractory tumors, such as melanoma.

Author Contributions

Conceived and designed the experiments: JE MP ES PD. Performed the experiments: MP AH. Analyzed the data: JE MB. Contributed reagents/materials/analysis tools: BG PD. Wrote the paper: JE MPE.
43. Martinou JC, Youle RJ (2011) Mitochondria in Apoptosis: Bcl-2 Family Members and Mitochondrial Dynamics. Developmental Cell 21: 92–101.
44. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, et al. (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341.
45. Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, et al. (2010) BH3-domains other than Bim and Bid can directly activate BAX/BAK. J Biol Chem.
46. Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, et al. (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8: 1348–1358.
47. Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27 Suppl 1: S2–19.
48. Vaude VC, Cazene J, Dubik D, Almasti J, Brown T, et al. (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20: 5454–5468.
49. Weber A, Paschen SA, Heger K, Wildfing F, Frankenbarg T, et al. (2007) BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins. J Cell Biol 177: 625–636.