Evaluation of suitable reference genes for normalization of quantitative reverse transcription PCR analyses in *Clavibacter michiganensis*

Na Jiang¹ | Qingyang Lyu¹ | Sining Han¹ | Xin Xu¹ | Ronald R. Walcott² | Jianqiang Li¹ | Laixin Luo¹

¹Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
²Department of Plant Pathology, 4315 Miller Plant Sciences, the University of Georgia, Athens, GA, USA

Correspondence
Laixin Luo, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China. Email: luolaixin@cau.edu.cn

Funding Information
National Key Research and Development Program of China, Grant/Award Number: 2018YFD0201302; National Natural Science Foundation of China, Grant/Award Number: 31571972

Abstract
Clavibacter michiganensis, the causal agent of bacterial canker of tomato, is a Gram-positive bacterium and a model for studying plant diseases. The real-time quantitative reverse transcription PCR (real-time qRT-PCR) assay is widely used to quantify gene expression in plant pathogenic bacteria. However, accurate quantification of gene expression requires stably expressed reference genes that are consistently expressed during the experimental conditions of interest. The use of inappropriate reference genes leads to a misinterpretation of gene expression data and false conclusions. In current study, we empirically assessed the expression stability of six housekeeping genes (*gyrB*, *rpoB*, *tufA*, *bipA*, *gapA*, and *pbpA*) of *C. michiganensis* under five experimental conditions using two algorithms, geNorm and NormFinder. *C. michiganensis* expressed *gyrB*, *bipA*, and *gapA* stably when growing in nutrient-rich broth (TBY broth and modified M9 broth). We concluded that *pbpA*, *tufA*, and *gyrB* were suitable reference genes in *C. michiganensis*—tomato interaction studies. We also recommended *bipA* and *rpoB* to be used to study bacterial gene expression under nutrient-poor conditions. Finally, *gyrB*, *pbpA*, and *rpoB* can be used to normalize the quantification of *C. michiganensis* gene expression while the bacterium is in the viable but nonculturable (VBNC) state. This study identified the most suitable reference genes depending on the experimental conditions for calibrating real-time qRT-PCR analyses of *C. michiganensis* and will be useful in studies that seek to understand the molecular interactions between *C. michiganensis* and tomato.

Keywords
Clavibacter michiganensis, geNorm, NormFinder, real-time qRT-PCR, reference genes

Jiang and Lyu contribute equally to this work

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Species within *Clavibacter* genus are xylem colonizing Gram-positive bacteria. Based on average nucleotide identity from whole genome analyses, *Clavibacter michiganensis* subspecies have been to elevate to the species level recently (Li et al., 2018; Tambong, 2017). Specific *Clavibacter* species can infect different hosts, and *Clavibacter michiganensis* (also known as *C. michiganensis* subsp. *michiganensis*) is the causal agent of bacterial canker of tomato (*Solanum lycopersicum*) (Davis, Gillaspie, Vidaver, & Harris, 1984; Strider, 1969). This bacterium has become a model for studying the mechanisms of pathogenicity of Gram-positive bacteria due to its potential risk of causing substantial economic losses in tomato production and the availability of its whole genome sequences (Gartemann et al., 2008; Thapa et al., 2017). Relative to most economically important phytopathogenic bacteria that are in the Proteobacteria phylum, less attention has been paid to *C. michiganensis* with regards to molecular host-pathogen interactions (Mansfield et al., 2012). The mechanisms of pathogenicity for *C. michiganensis* are substantially different to those Proteobacteria members (Eichenlaub & Gartemann, 2011). The genome of *C. michiganensis* strain NCPPB382 was published in 2007 and provides a valuable resource for exploring its pathogenesis (Gartemann et al., 2008). Studies of the molecular biology of bacterial canker of tomato can ultimately improve disease management. The survival and transmission of *C. michiganensis* on/in the seed or in the field is important for understanding and managing tomato bacterial canker (Fatmi & Schaad, 2002). Specifically, *C. michiganensis* cells on tomato seeds may be induced into the viable but nonculturable (VBNC) state by a range of conditions including bactericide (copper agent) treatments, dry conditions, and lack of available nutrients and may pose a risk for tomato production (Jiang et al., 2016; de León, Siverio, López, & Rodríguez, 2011). The VBNC state of some Gram-negative phytopathogenic bacteria has been shown to be a survival strategy in response to harsh environmental conditions (Oliver, 2010). However, there are very few studies of the molecular mechanisms involved in the induction and maintenance of VBNC state of phytopathogenic bacteria.

Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) has become a powerful technique for RNA quantifying and the expression of specific genes (Die & Román, 2012). This assay was used to study the interactions between *C. michiganensis*—tomato plants, and the results revealed that the difference of gene expression between systemic and located infection of *C. michiganensis*, while some genes located on the pathogenicity island of *C. michiganensis* were involved in the suppression of tomato basal defenses (Chalupowicz et al., 2017, 2010). qRT-PCR was also used to validate the expression patterns obtained by cDNA-amplified fragment length polymorphism (AFLP) and identified five candidate genes for developing *C. michiganensis*—tolerant tomato cultivars (Lara-Avila, Isordia-Jasso, Castillo-Collazo, Simpson, & Alpuche-Solis, 2011). Moreover, real-time qRT-PCR was used to detect VBNC cells of bacteria, because sustainable gene expression is a reliable indicator for cell viability (Oliver, 2010; Liu, Wang, Tyrrell & Li, 2010). For example, the expression of housekeeping genes, such as 16S rRNA and rpoS (RNA polymerase and sigma factor), was quantified to reveal the variation in viability of bacterial cells (González-Escalona, Fey, Höfle, Espejo, & A Guzmán, 2006).

Obtaining accurate gene expression results by real-time qRT-PCR is difficult in some cases, due to the shortage of stably expressed reference genes for data normalization and quantification. The expression of prokaryotic housekeeping gene, like 16 rRNA, varied widely under different conditions (Takle, Toth, & Brurberg, 2007; Vandecasteele, Peetmans, Merckx, & Eldere, 2001). Some software or algorithms, such as geNorm, NormFinder, BestKeeper, and ∆∆Ct, have been developed to evaluate the expression stability of housekeeping genes in different experiments (Andersen, Jensen, & Ørntoft, 2004; Pfaffl, Tichopad, Prgomet, & Neuvians, 2004; Silver, Best, Jiang, & Thein, 2006; Vandesompele et al., 2002). Despite the comments above, the empirical validation of *C. michiganensis* reference genes for use in real-time qRT-PCR analyses received few attention. The expression stability of 3 housekeeping genes, gyrA, bipA, and qcrA, was estimated by geNorm under experimental conditions and as a result, gyrA and bipA were used as reference genes in the study of interactions between tomato and *C. michiganensis* (Chalupowicz et al., 2017, 2010). Since only three housekeeping genes were evaluated under one experimental condition, it is unlikely that these genes will be suitable for normalizing gene expression studies conducted in other experiments.

In current study, the expression stabilities of six housekeeping genes from *C. michiganensis* were tested under five different conditions. The results provide information on the most suitable reference genes for gene expression studies in *C. michiganensis* and other phytopathogenic bacteria.
the final titer of bacteria was ca. 10^7 CFU/ml. The growth curve of *C. michiganensis* in these three media was measured with a Bioscreen C Pro Automated Microbiology Growth Curve Analysis System (Oy Growth Curve Ab Ltd.) at 28°C with continuous shaking and calculated by Prism 6 (GraphPad Software). Time points representing log, stationary, and decline phases were selected for RNA extraction according to the growth curves.

The other two experimental conditions were 0.85% NaCl solution supplemented with and without 50 μM of CuSO_4_. These conditions represent a VBNC induction condition and a starvation treatment, respectively. *Clavibacter michiganensis* cells at late log phase were added into 0.85% NaCl solution with and without 50 μM CuSO_4_ to an OD_580_ of 0.45 (ca. 10^8 CFU/ml), respectively. Cells were incubated at 28°C without shaking and harvested samples at 12, 24, and 48 hr, respectively. The culturable cells in the starvation treatment were assessed by spreading serial dilutions on TBY agar incubating at 28°C for 3 days and counting the colonies. In contrast, the VBNC cells were counted as described previously reported method (Jiang et al., 2016). This experiment included two biological replicates of each treatment, and each biological replicate included three technical replicates in survival curves analysis. During real-time qRT-PCR analyses, each treatment had three biological replicates.

2.2 | RNA isolation and cDNA synthesis

To extract RNA, 1 ml of *C. michiganensis* cells (OD_580_ = 1.0) was harvested by centrifugation at 14,000 g for 5 min at 4°C at each time point in different treatment and stored at −80°C immediately. Total RNA was extracted using the SV Total RNA Isolation System (Promega Corporation) according to the manufacturer's instructions with minor modifications. Cells were resuspended in 100 µl freshly prepared 1 × TE buffer containing 50 mg/ml lysozyme and incubated at 37°C for 10 min, then the manufacturer’s protocol was followed. RNA was eluted in 70 µl of nuclease-free water and kept at −80°C. Total RNA concentration and purity were determined using a NanoDrop 2000 (Thermo Fisher Scientific), and RNA integrity was tested by running 1% (w/v) native agarose gel in 1 × TAE buffer under 6 V/cm for 15 min. Two bands will be observed on the gel after EB staining, the intensity of 235 RNA band should be twice as strong as the 16s rRNA band if the integrity of RNA sample is good. The concentration of all RNA samples was adjusted to 100 ng/µl and used for following experiment.

Reverse transcription was performed on 2 µl (200 ng) of RNA with the PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Kusatsu, Shiga, Japan). The cDNA was fourfold diluted with EASY Dilution Solution for Real-Time PCR (Takara, Kusatsu, Shiga, Japan) and stored at −20°C. All cDNA samples were tested by conventional PCR using the primer pair rRNA-I (5′-CATCACAGCCGACCCACATC-3′)/ rRNA-O (5′-ACCACCGTTATCAGCCG-3′) to confirm the absence of genomic DNA (gDNA). The forward primer, rRNA-I was located between positions 2,253,240 and 2,253,256 and the reverse primer, rRNA-O was located between positions 2,253,739 and 2,253,759 according to the genome sequence of *C. michiganensis* strain NCPPB382 (GenBank: AM711867.1) (Gartemann et al., 2008).

2.3 | Oligonucleotide primer design

The DNAMAN 6 software (Lynnon Biosoft) was used to design primers based on the genome sequence of *C. michiganensis* strain NCPPB382 to amplify the corresponding sequences of candidate genes.

Gene name	Gene description	GenBank accession	Primer sequence	Amplicon size (bp)	E^a (%)
gyrB	DNA gyrase B subunit	KJ123741	RT-F: GGACAGCACATCACGACCC RT-R: CCTTCCGACATCTTTCTCCC	202	91
ppaA	Penicillin-binding protein 2	KJ123735	RT-F: CGACGCCACTGGATTCTG RT-R: GCTTCCGGACCCGAT	105	94
gapA	Glyceraldehyde−3-phosphate dehydrogenase	KJ123733	RT-F: TTAGCCTGTTGCCGATGAC RT-R: TCAACGACCGCGCCTCCT	64	101
bipA	Predicted membrane GTPase involved in stress response	KF990998	RT-F: GGTTGCTGTGCTGCTGA RT-R: CGAGGCCGTGTTGCA	63	93
tufA	Translation elongation factor Tu	KJ123740	RT-F: CAGGAGGCCGCAGTTCT RT-R: GTCCCCACGTTCAAGCC	89	101
rpmB	DNA-directed RNA polymerase beta subunit	KJ123738	RT-F: ATGCGCGGAGGATCGAG RT-R: GCAACAAGGGCGCTACTT	115	101
chpC	Predicted serine protease	KJ123731	RT-F: CCATCTGTCCTTGCTT RT-R: CGAAGCGGAAGACCAAG	148	91
celA	Endo-1,4-beta-glucanase	KJ123730	RT-F: CATTTCGCAAAGTCCGT RT-R: AAGCGCAAGGAGAGGACC	55	98

^a Amplification efficiency, calculated as E = (10^{1/slope}−1)*100, where the slope was obtained from the cDNA dilution ratio - C, value standard curve.
gene candidates used in this study were selected based on two criteria: (a) genes routinely used in bacteria for transcript normalization and (b) genes described as stably expressed under environmental stress. The housekeeping genes including gyrB (DNA gyrase B subunit), pbpA (penicillin-binding protein 2), gapA (glyceraldehyde-3-phosphate dehydrogenase), tufA (translation elongation factor Tu), and rpoB (DNA-directed RNA polymerase beta subunit) were chosen for this study. These genes had different functions to avoid problems associated with coregulation. The celA (cellobiose) and chpC (serine protease) genes, which are important for C. michiganensis pathogenicity, were selected as validating genes and used to evaluate the applicability of reference genes.

Six primer pairs that amplified pbpA, gapA, tufA, rpoB, and chpC genes (Table A1 in Appendix) were designed according to the genome sequence of C. michiganensis strain NCPPB382. The sequences of 6 reference gene candidates and 2 pathogenicity genes of BT0505 were aligned to the genome sequence of strain NCPPB382 using Basic Local
Alignment Search Tool (BLAST) on National Center for Biotechnology Information (NCBI). The complete sequences of eight selected genes of *Clavibacter michiganensis* strain BT0505 were deposited in GenBank, and the accession numbers were listed in Table 1. These sequences were used for designing primers for qPCR. The variation of these eight genes between BT0505 and NCPPB382 was listed in Table A2 in Appendix.

Real-time qRT-PCR was optimized for each primer pair (Table 1) using cDNA samples. The primer pair rRNA-I/rRNA-O designed in this study was used to confirm the absence of gDNA. The 516-bp amplicon included the space between rRNA and *tys* (tyrosyl-tRNA synthetase) sequences which was not in the same transcript. All cDNA samples were negative for the 516-bp amplicon, indicating that the cDNA samples were free of gDNA (Figure A2 in Appendix).

Melt curve analyses showed a single melting peak for each primer pair in qPCR with the *Clavibacter michiganensis* cDNA (Figure A1 in Appendix). This indicated that there was no nonspecific amplification with the primer pairs. Amplification efficiency values ranged from 91% to 101% (Table 1) confirmed that these 6 primer pairs were suitable for evaluating the expression stability of the reference gene candidates.

3.2 | Expression stability of the reference gene candidates in cultural conditions

The expression stability of six candidates of *Clavibacter michiganensis* was evaluated in three different experimental conditions at the log, stationary, and decline growth phases. *Clavibacter michiganensis* grew fastest in TSH medium, followed by TBY broth and mM9 medium at the log phase. However, the greatest biomass was obtained in mM9 medium at the stationary phase (Figure 1a). The expression levels of the six candidate genes were presented as the raw C\(_t\) values. The ranges of expression were 19.59–34.97, 21.77–34.82, 15.78–30.24, 19.50–34.00, 13.19–26.57, and 18.82–33.97 for *gyrB*, *ppbA*, *gapA*, *bipA*, *tufA*, and *rpoB*, respectively (Figure 2a-c). The *gyrB* and *bipA* got the lowest M value 0.680 followed by *gapA* (0.897) and *rpoB* (1.048), and the combination of these 4 genes yielded the lowest V value (0.244). *tufA* and *ppbA* were ranked as the most unstable genes by both geNorm and NormFinder software packages (Figure 3a). According to the cut-off M ≤ 0.7, *gyrB* and *bipA* were suitable reference genes, even though *bipA* was ranked 4th according to NormFinder.

In TBY broth, the average C\(_t\) values were 25.26 ± 4.56, 27.96 ± 4.38, 19.89 ± 3.87, 24.34 ± 4.60, 16.81 ± 2.81, and 24.06 ± 3.84 for the expression of *gyrB*, *ppbA*, *gapA*, *bipA*, *tufA*, and *rpoB*, respectively in *Clavibacter michiganensis* (Figure 2a). In mM9 medium, however, the C\(_t\) values were 27.44 ± 3.04, 27.10 ± 3.56, 21.72 ± 3.08, 26.65 ± 3.34, 19.22 ± 2.36, and 25.20 ± 2.52 for the expression of *gyrB*, *ppbA*, *gapA*, *bipA*, *tufA*, and *rpoB*, respectively (Figure 2b). The results show that these genes displayed lower expression levels, but greater expression stability in mM9 medium although the differences were not significant according to t test (p < .05). In geNorm analyses, *gyrB* (0.454), *bipA* (0.454), and *gapA* (0.622) fit the cut-off limit of M ≤ 0.7, but the lowest V value was 0.227 (V\(_{2/3}\)), which was greater than the threshold for V (≤0.15) (Figure 3b). The ranking of the genes based on expression stability was different between NormFinder and geNorm. According to NormFinder, the most stably expressed gene was *gapA* and the least stably gene was *ppbA* (Figure 3b). Based on geNorm, *gyrB*, *bipA*, and *gapA* were the most suitable reference gene candidates despite the fourth ranking of *bipA* by NormFinder.

The expression stability of *Clavibacter michiganensis* reference genes in TSH medium was different to that in TBY broth and mM9 medium. The average C\(_t\) values were 29.35 ± 4.62, 28.73 ± 4.57, 23.34 ± 5.29, 19.12 ± 3.90, 21.13 ± 4.74, and 28.52 ± 4.79 for the expression of *gyrB*, *ppbA*, *gapA*, *bipA*, *tufA*, and *rpoB* in TSH medium, respectively (Figure 2c). Interestingly, *ppbA*, which was the least stably expressed gene in TBY and mM9 media, was the most stably expressed gene in TSH medium (Figure 3c). Analyses by both geNorm and NormFinder showed the same rankings for expression stability of the candidate reference genes. *ppbA* and *gapA* were the most and least stably expressed genes, respectively.

![FIGURE 1](image-url) Population growth of *Clavibacter michiganensis* in five experimental conditions. (a) Three cultural conditions, TBY broth (purple), modified M9Cmm-minimal medium (mM9, blue), and tomato seedling homogenate (TSH, orange). The curves were generated using a BioScreen C Pro Automated Microbiology Growth Curve Analysis System. Time points on each curve represented the log phase, stationary phase, and decline phase from left to right. (b) Survival curve of *Clavibacter michiganensis* in 0.85% NaCl solution (triangle) and 0.85% NaCl solution supplemented with 50 μM CuSO\(_4\) (circle). Culturable cell counts were determined by the plating method, and viable cells counts were calculated by flow cytometry method. Error bars represent the standard deviation of two biological replicates.
The top three stably expressed genes, \textit{pbpA}, \textit{tufA}, and \textit{gyrB}, were suitable for transcript normalization in vitro according to the criteria described above. Combined all results, the \textit{gyrB} was an optimal reference gene for culture-based research. Moreover, the \textit{bipA} and \textit{gapA} were also recommended for in vitro research, such as incubation in TBY broth and mM9 medium. However, \textit{pbpA}, \textit{tufA}, and \textit{gyrB} were an appropriate reference gene set in \textit{C. michiganensis}—tomato interaction research (Table 3).

\textbf{FIGURE 2} Expression profiles of \textit{Clavibacter michiganensis} reference gene candidates. Expression data are displayed as \textit{Ct} values for each reference gene in different experimental conditions. The line across the box represents the median. The box indicates the 25th and 75th percentiles of \textit{Ct} values. Whiskers represent the 1th and 99th percentiles of \textit{Ct} values. (a) TBY broth. (b) mM9 medium. (c) TSH medium. (d) 0.85% NaCl solution. (e) 0.85% NaCl solution supplemented with 50 μM CuSO₄₄.

The top three stably expressed genes, \textit{pbpA}, \textit{tufA}, and \textit{gyrB}, were suitable for transcript normalization in vitro according to the criteria described above. Combined all results, the \textit{gyrB} was an optimal reference gene for culture-based research. Moreover, the \textit{bipA} and \textit{gapA} were also recommended for in vitro research, such as incubation in TBY broth and mM9 medium. However, \textit{pbpA}, \textit{tufA}, and \textit{gyrB} were an appropriate reference gene set in \textit{C. michiganensis}—tomato interaction research (Table 3).

\textbf{FIGURE 3} Expression stability of \textit{Clavibacter michiganensis} reference gene candidates in culturable samples ranked by geNorm (left) and NormFinder (right). (a) TBY broth. (b) mM9 medium. (c) TSH medium. M, stability measure. V, pairwise variation. and SV, stability value. The upper and lower dash lines in left figures represent the cut-off M value (0.7) and V value (0.15), respectively.
TABLE 2 Expression stability of Clavibacter michiganensis reference gene candidates in oligotrophic samples

Nutrient starvationa	VBNCb	
Gene	M	V
bipA		
rpoB	0.16	0.09
gapA	0.24	0.25
pbpA	0.62	0.15
tufA	0.70	0.26
gyrB	1.01	1.47

Note: Stability measure (M) and pairwise variation (V) were calculated with geNorm. Stability value (SV) was estimated with NormFinder.

3.3 | Expression stability of the reference gene candidates in oligotrophic conditions

The expression stability of six C. michiganensis reference genes was evaluated in 0.85% NaCl solution and 0.85% NaCl solution supplemented with 50 μM CuSO₄, which represent starvation and VBNC-inducing conditions, respectively. In 0.85% NaCl solution, the population of culturable cells decreased slightly, from 10⁷ CFU/ml to 10⁷ CFU/ml within 4 days (Figure 1b). Under the presence of copper ions, however, the culturable cells decreased below the limit of detection (0.1 CFU/ml) at 12 hr postinduction, and the viable cells remained constantly at 10⁷ cell/ml by 2 d after induction, suggesting that the cells were in VBNC state (Figure 1b).

For the two oligotrophic environments, the Ct values of the six candidate genes were 23.97–33.80, 24.36–36.51, 17.85–28.47, 24.20–31.46, 13.86–30.42, and 26.40–36.92 for gyrB, pbpA, gapA, bipA, tufA, and rpoB, respectively. Compared to the 0.85% NaCl solution, the standard deviations of Ct values for expression of all genes except rpoB were smaller in the copper-stress environment (Figure 2d,e). Based on the geNorm analyses, the gyrB and tufA genes did not meet the threshold for acceptance (M ≤ 0.7) in 0.85% NaCl solution and copper-stress conditions, respectively (Table 2). The V₂/₃ value for bipA and rpoB (V₂/₃ = 0.09) and the V₃/₄ value of gyrB, pbpA, and rpoB (V₃/₄ = 0.14) were less than 0.15 in 0.85% NaCl solution and the copper-stress condition, respectively (Table 2). The combination of bipA and rpoB and the combination of gyrb, pbpA, and rpoB were sufficiently stable to serve as normalization factors for measuring C. michiganensis gene expression in starvation and VBNC studies, respectively. NormFinder ranked rpoB and gyrB as the most stably and most unstably expressed genes in 0.85% NaCl solution, respectively. In the copper-stress condition, geNorm and NormFinder were in agreement with regards to the rank of six genes (Table 2). These results indicated bipA and rpoB were consistently found to be the most suitable reference genes for C. michiganensis gene expression studies in starvation conditions, and the combination of gyrB, pbpA, and rpoB was recommended for VBNC research (Table 3).

3.4 | Validation of reference genes

In order to validate the selected reference genes, the relative expression level of two C. michiganensis pathogenicity genes, celA, and chpC, were evaluated in TSH medium. Clavibacter michiganensis cells collected at the log phase in TBY broth were used as control. In TSH medium, the expression of celA and chpC were normalized using the three most stable reference genes (pbpA, tufA, and gyrB) and the least stable gene (gapA), respectively. celA expression increased over time. In contrast, chpC expression was down-regulated initially then increased. Normalized of gene expression with the most suitable reference genes (pbpA, tufA, and gyrB) or gapA, revealed that expression of both celA and chpC increased over time in TSH medium (Figure 4). However, comparing with the three most suitable reference genes, the expression of chpC and celA are higher when only gapA gene was used for normalization. Moreover, the difference at 105 hr was significant according to t test (p < .05). These results indicate that unsuitable reference genes may lead to an overestimation of pathogenicity gene expression in C. michiganensis.

TABLE 3 | Recommended reference genes for in vitro research of Clavibacter michiganensis

Experimental condition	Recommended reference genes
In vitro culture	gyrB, bipA, gapA
Interaction with tomato	pbpA, tufA, gyrB
Starvation	bipA, rpoB, gapA, pbpA, tufA
VBNC	gyrB, pbpA, rpoB, gapA, bipA

Note: The names of genes in bold represent the best combination of reference genes.

4 | DISCUSSION

Real-time qRT-PCR, a simple method for quantifying gene expression, plays an important role in molecular biology. However, accurate quantification of gene expression should be based on the stable expression of reference genes (Zhou et al., 2011). Unfortunately, it is
Asterisks represent significant differences between the relative standard deviation calculated from three biological replicates.

8 of 12 pathogenicity genes in TSH medium. The sample of Clavibacter of collected at the log phase in TBY broth was used as control. The least stable gene (dash line, dark symbol), respectively. The gapA chpC and tomato seedling homogenate. The relative expression levels of celA and pbpA, tufA, and gyrB in tomato seedling homogenate. The relative expression levels of celA and chpC were normalized to NF (solid line, blank symbol) and the least stable gene gapA (dash line, dark symbol), respectively. The fold change in gene expression was calculated as $-\Delta \Delta C_t$. Error bars show standard deviation calculated from three biological replicates. Asterisks represent significant differences between the relative expression levels of pathogenicity genes normalized to NF and gapA according to a two-sided one sample t test ($p < .05$).

difficult to find a universal reference gene stably expressed under different environmental conditions for bacteria. Bacterial gene expression varies widely depending on the experimental treatments (Takle et al., 2007). Hence, it is critical to screen appropriate reference genes under the experimental condition to confirm stable gene expression.

Here, we empirically assessed the expression stability of six reference genes in C. michiganensis under five experimental conditions.

Six housekeeping genes, gyrB, pbpA, gapA, bipA, tufA, and rpoB, were evaluated in this study. The gyrB gene, encoding DNA gyrase, is a common reference gene especially for Gram-positive bacteria and is stably expressed in nutrient-rich media or under certain stress conditions (Carvalho et al., 2014; Crawford, Singh, Metcalf, Gibson, & Weese, 2014; Duquenne et al., 2010; Siitho, Tasara, Stephan, & Johler, 2014). The gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase, is a key gene for metabolism and has been used to normalize the expression of virulence genes (Bjelland et al., 2013; Kjeldgaard, Henriksen, Cohn, Aabo, & Ingmer, 2011). We observed that M value of gyrB and gapA was 0.82 (data not shown), which suggests that these genes are suitable for some studies (Botteldoorn et al., 2006; Mafra et al., 2012). These two genes can be used as reference genes for C. michiganensis when the bacteria are cultured under most common conditions, such as TBY broth and other nutrient-rich media.

The pbpA gene, which is responsible for synthesizing the penicillin-binding protein, expressed stably under different conditions, including interaction with host cells, nutrient starvation, and VBNC induction. Previously, pbp5, which is a homolog of pbpA, was successfully used as a reference gene for studying the viability of VBNC Enterococcus faecalis cells (Lleo et al., 2001). bipA and gyrA were reported as reference genes in C. michiganensis—host interaction study (Chalupowicz et al., 2017, 2010). In current study, we showed that pbpA and tufA were better reference genes than bipA in TSH medium, which is a mimic of natural host-pathogen interaction condition (Figure 3c). Interestingly, tufA and rpoS genes were constitutively expressed in VBNC Vibrio vulnificus cells (Smith & Oliver, 2006). rpoB is a homolog gene of rpoS in C. michiganensis, and its M value was less than 0.5 under nutrient starvation and VBNC-inducing conditions, indicating that rpoB is a suitable reference gene under stressful conditions. On the other hand, tufA expression was less stable than rpoB when C. michiganensis was grown under stress conditions.

Furthermore, the commonly used reference gene, 16S rRNA, was ruled out in our study. Since rRNA accounts for more than 95% of bacterial total RNA, and the expression level of rRNA is significantly higher than that of mRNA (Peano et al., 2013). Additionally, rRNA is more stable than mRNA, and its quantity is not comparable to that of mRNA (Deutscher, 2006; Peano et al., 2013). The use of rRNA as reference gene for a human tissue biopsy was also found to be inappropriate (Tricarico et al., 2002).

The expression of C. michiganensis reference genes tested in this study varied among the experimental conditions, confirming that standard housekeeping genes should be screened before use for normalization of gene expression. Based on t test ($p < .05$), we observed significant difference when normalizing the expression of celA and chpC with different normalization factors, the three most stable reference genes (pbpA, tufA, and gyrB) and the most variable gene (gapA) at 105 hr in TSH medium (Figure 4). Similar results were reported in studies using reference genes of melon and citrus (Kong et al., 2014; Mafra et al., 2012). The use of inappropriate reference genes led to an increasing fold change of WRKY70, which was upregulated 35-fold compared to the most stable reference genes (Mafra et al., 2012). These results indicate that inappropriate reference genes can lead to a significant misinterpretation of data.

gNorm and NormFinder ranked the six C. michiganensis reference genes differently in all experimental conditions but the TSH medium and VBNC state. Other studies also reported that the use of different software could lead to different rankings of reference genes (Cruz et al., 2009; Kong et al., 2014; Mafra et al., 2012). These differences may be caused by the use of different statistical algorithms (Andersen et al., 2004). NormFinder ranked the most stable genes with minimal inter- and intra-group variation and geNorm selected the top two genes with the highest similarity in expression and the lowest intragroup variation (Andersen et al., 2004; Vandesompele et al., 2002). Thus, coregulated genes should be excluded when using geNorm to screen reference genes.

5 | CONCLUSION

In summary, we systematically screened C. michiganensis reference genes for use in real-time qRT-PCR. The gyrB and gapA genes stably expressed in most of the experimental conditions except in 0.85%
NaCl solution and TSH medium. This highlights the need to empirically assess the suitability of reference genes under different experimental conditions before use. We found that gyrB, bipA, and gapA were suitable for artificial nutrient conditions. On the other hand, ppaA, tuaA, and gyrB were suitable for use as reference genes in pathogen-host interaction studies. The combination of bipA and rpoB and the combination of gyrB, ppaA, and rpoB would be useful for nutrient starvation and VBNB experiments, respectively. Because of the similarity of C. michiganensis and other phytopathogenic bacteria, this study provides useful information on the reference genes selection for other researches, especially for studies related with plant pathology.

ACKNOWLEDGMENTS

This study is supported by the National Natural Science Foundation of China (NSFC) project (No. 31571972) and the National Key Research and Development Program of China (No. 2018YFD0201302). We especially thank to Dr. Qiusheng Kong from Huazhong Agricultural University for his constructive suggestions for data analysis by using the geNorm Software.

CONFLICT OF INTERESTS

The authors declare no conflict of interests.

AUTHOR CONTRIBUTIONS

Conceptualization: Laixin Luo, Ronald Walcott; Data Curation: Na Jiang, Qingyang Lyu; Funding Acquisition: Laixin Luo, Jianqiang Li; Investigation: Na Jiang, Qingyang Lyu, Xin Xu; Methodology: Na Jiang, Qingyang Lyu, Sining Han; Project Administration: Laixin Luo; Supervision: Na Luo, Jianqiang Li; Writing-Original Draft Preparation: Na Jiang; Writing-review & editing: Qingyang Lyu, Ronald Walcott.

ETHICAL APPROVAL

None required.

DATA AVAILABILITY STATEMENT

All data are included in the main manuscript and in the appendices. Raw data and materials are available on request.

ORCID

Laixin Luo https://orcid.org/0000-0002-6543-6011

REFERENCES

Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

Bjelland, A. M., Fauske, A. K., Nguyen, A., Orljen, I. E., Østgaard, I. M., & Serum, H. (2013). Expression of Vibrio salmonicida virulence genes and immune response parameters in experimentally challenged Atlantic salmon (Salmo salar L.). Frontiers in Microbiology, 4, 401. https://doi.org/10.3389/fmicb.2013.00401

Botteldoorn, N., Van Coillie, E., Grijseepolder, K., Werbrouck, H., Haesebrouck, F., Donné, E., ... Herman, L. (2006). Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosome-like conditions. Journal of Microbiological Methods, 66, 125–135. https://doi.org/10.1016/j.mimet.2005.11.003

Carvalho, D., de Sá, P., Castro, T. P., Carvalho, R., Pinto, A., Gil, D. P., ... Pacheco, L. C. (2014). Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data. Antonie van Leeuwenhoek, 106, 605–614. https://doi.org/10.1007/s10482-014-0231-3

Chalupowicz, L., Barash, I., Reuven, M., Dror, O., Sharabani, G., Gartemann, K. H., ... Manulis-Sasson, S. (2017). Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Molecular Plant Pathology, 18, 336–346.

Chalupowicz, L., Cohen-Kandli, M., Dror, O., Eichenlaub, R., Gartemann, K. H., Sessa, G., ... Manulis-Sasson, S. (2010). Sequential expression of bacterial virulence and plant defense genes during infection of tomato with Clavibacter michiganensis subsp. michiganensis. Phytopathology, 100, 252–261.

Crawford, E. C., Singh, A., Metcalf, D., Gibson, T. W., & Weese, S. J. (2014). Identification of appropriate reference genes for qPCR studies in Staphylococcus pseudintermedius and preliminary assessment of icaA gene expression in biofilm-embedded bacteria. BMC Research Notes, 7, 451. https://doi.org/10.1186/1756-0500-7-451

Cruz, F., Kalaoun, S., Nobile, P., Colombo, C., Almeida, J., Barros, L. M., ... Alves-Ferreira, M. (2009). Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Molecular Breeding, 23, 607–616. https://doi.org/10.1007/s11032-009-9259-x

Davis, M. J., Gillaspie, A. G., Vidaver, A. K., & Harris, R. W. (1984). Clavibacter: A new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xylellus subsp. xylellus nov., subsp. nov. and Clavibacter xylellus subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermedgrass stunting disease. International Journal of Systematic Bacteriology, 34, 107–117.

de León, L., Siverio, F., López, M. M., & Rodríguez, A. (2011). Clavibacter michiganensis subsp. michiganensis, a seedborne tomato pathogen: Healthy seeds are still the goal. Plant Disease, 95, 1328–1338.

Deutscher, M. P. (2006). Degradation of RNA in bacteria: Comparison of mRNA and stable RNA. Nucleic Acids Research, 34, 659–666. https://doi.org/10.1093/nar/gkj472

Die, J. V., & Román, B. (2012). RNA quality assessment: A view from plant qPCR studies. Journal of Experimental Botany, 63, 6069–6077. https://doi.org/10.1093/jxb/ers276

Duquenne, M., Fleurot, I., Aigle, M., Darrigo, C., Borezée-Durant, E., Derzelle, S., ... Delacroix-Buchet, A. (2010). Tool for quantification of staphylococcal enterotoxin gene expression in cheese. Applied and Environment Microbiology, 76, 1367–1374. https://doi.org/10.1128/AEM.01736-09

Eichenlaub, R., & Gartemann, K. H. (2011). The Clavibacter michiganensis subspecies: Molecular investigation of Gram-positive bacterial plant pathogens. Annual Review of Phytopathology, 49, 445–464.

Fatmi, M., & Schaad, N. W. (2002). Survival of Clavibacter michiganensis ssp. michiganensis in infected tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathology, 51, 149–154.
Flügel, M., Becker, A., Gartemann, K.-H., & Eichenlaub, R. (2012). Interaction of the pathogenicity of Clavibacter michiganensis subsp. michiganensis with its host plant tomato by genome-wide expression profiling. Journal of Biotechnology, 160, 42–54.

Gartemann, K.-H., Abt, B., Bekel, T., Burger, A., Engemann, J., Flügel, M., ... Kalinowski, J. (2008). The genome sequence of the tomato-pathogenic actinomyete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. Journal of Bacteriology, 190, 2138–2149.

González-Escalona, N., Fey, A., Höffle, M. G., Espejo, R. T., & A Guzmán, C. (2006). Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholerae cells entering the viable but not-culturable state and starvation in response to cold shock. Environmental Microbiology, 8, 658–666. https://doi.org/10.1111/j.1462-2962.2005.00943.x

Jiang, N., Lv, Q. Y., Xu, X., Cao, Y. S., Walcott, R. R., Li, J. Q., & Luo, L. X. (2016). Induction of the viable but nonculturable state in Clavibacter michiganensis subsp. michiganensis and in planta resuscitation of the cells on tomato seedlings. Plant Pathology, 65, 826–836.

Kjeldgaard, J., Henriksen, S., Cohn, M. T., Aabo, S., & Ingmer, H. (2011). Method enabling gene expression studies of pathogens in a complex food matrix. Applied and Environmental Microbiology, 77, 8456–8458. https://doi.org/10.1128/AEM.05471-11

Kong, Q., Yuan, J., Niu, P., Xie, J., Jiang, W., Huang, Y., & Bie, Z. (2014). Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon. PLoS ONE, 9, e87197.

Lara-Avila, J. P., Iordis-Jasso, M. I., Castillo-Collazo, R., Simpson, J., & Alpuche-Solis, Á. G. (2011). Gene expression analysis during interaction of tomato and related wild species with Clavibacter michiganensis subsp. michiganensis. Plant Molecular Biology Reporter, 30, 498–511. https://doi.org/10.1007/s11105-011-0348-8

Li, X., Tambong, J., Yuan, K. X., Chen, W., Xu, H., Levesque, C. A., & De Boer, S. H. (2018). Re-classification of Clavibacter michiganensis subsp. species on the basis of whole-genome and multi-locus sequence analyses. International Journal of Systematic and Evolutionary Microbiology, 68, 234–240. https://doi.org/10.1099/ijsem.0.022492

Liu, Y., Wang, C., Tyrrell, G., & Li, X.-F. (2010). Production of Shiga-like toxins in viable but nonculturable Escherichia coli O157:H7. Water Research, 44, 711–718. https://doi.org/10.1016/j.watres.2009.10.005

Lleo, M. M., Bonato, B., Tafi, M. C., Signoretto, C., Boaretto, M., & Canepari, P. (2001). Resuscitation state in different enterococcal species in the viable but non-culturable state. Journal of Applied Microbiology, 91, 1095–1102. https://doi.org/10.1046/j.1365-2672.2001.01476.x

Luo, L. X. (2008). The molecular detection and phylogenetic analysis of Clavibacter michiganensis subsp. michiganensis. Beijing, China: Agricultural University.

Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., ... Machado, M. A. (2012). Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE, 7, e31263. https://doi.org/10.1371/journal.pone.0031263

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sariyanidou, M., Ronald, P., ... Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13, 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

Nguewa, P. A., Agorreta, J., Blanco, D., Lozano, M., Gomez-Roman, J., Sanchez, B. A., ... Calvo, A. (2008). Identification of importin 8 (IPO8) as the most accurate reference gene for the clinopathological analysis of lung specimens. BMC Molecular Biology, 9, 103. https://doi.org/10.1186/1471-2199-9-103

Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews, 34, 415–425. https://doi.org/10.1111/j.1574-6976.2009.00200.x

Peano, C., Pietrelli, A., Consolandi, C., Rossi, E., Petitti, L., Tagliabue, L., ... Landini, P. (2013). An efficient RNA removal method for RNA sequencing in GC-rich bacteria. Microbial Informatics and Experimentation, 3, 1. https://doi.org/10.1186/2042-5783-3-1

Pfaffl, M., Tichopad, A., Prgomet, C., & Neuvians, T. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pairwise correlations. Biotechnology Letters, 26, 509–515. https://doi.org/10.1023/B:BILE.000019559.84305.47

Sihto, H.-M., Tasara, T., Stephan, R., & Jokela, S. (2014). Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiology Letters, 356, 134–140.

Silver, N., Best, S., Jiang, J., & Thein, S. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7, 33.

Smith, B., & Oliver, J. D. (2006). In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Applied and Environmental Microbiology, 72, 1445–1451. https://doi.org/10.1128/AEM.72.2.1445-1451.2006

Strider, D. L. (1969). Bacterial canker of tomato caused by Corynebacterium michiganense: A literature review and bibliography. North Carolina Agricultural Experiment Station Technical Bulletin, 193, 1–80.

Takle, G., Toth, I., & Brurberg, M. (2007). Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biology, 7, 50. https://doi.org/10.1186/1471-2229-7-50

Tambong, J. T. (2017). Comparative genomics of Clavibacter michiganensis subspecies, pathogens of important agricultural crops. PLoS ONE, 12, e0172295.

Thapa, S. P., Pattathil, S., Hahn, M. G., Jacques, M. A., Gilbertson, R. L., & Coaker, G. (2017). Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a gram-positive bacterial pathogen. Molecular plant-microbe Interactions, 30(10), 786–802.

Tricarico, C., Pinzani, P., Bianchi, S., Paglierani, M., Distante, V., Pazzaglia, M., ... Orlando, C. (2002). Quantitative real-time reverse transcription polymerase chain reaction: Normalization to RNA or single housekeeping genes is inappropriate for human tissue biopsies. Analytical Biochemistry, 309, 293–300. https://doi.org/10.1006/ABIO.2000.4786

Vandecasteele, S. J., Peertmans, W. E., Merckx, R., & Van Eldere, J. (2001). Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. Journal of Bacteriology, 183, 7094–7101. https://doi.org/10.1128/JB.183.24.7094-7101.2001

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 1–11.

Zhou, K., Zhou, L., Lim, Q. E., Zou, R., Stephanopoulos, G., & Too, H.-P. (2011). Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Molecular Biology, 12, 18. https://doi.org/10.1186/1471-2199-12-18

How to cite this article: Jiang N, Lyu Q, Han S, et al. Evaluation of suitable reference genes for normalization of quantitative reverse transcription PCR analyses in Clavibacter michiganensis. MicrobiologyOpen. 2019:e928. https://doi.org/10.1002/mbo3.928
APPENDIX

TABLE A1
Primer sequences and properties for Clavibacter michiganensis strain BT0505

Gene name	Primer ID	Primer sequence (5′→3′)	Annealing temperature (ºC)	Extension time (s)	Amplicon size (bp)
gyrB	gyrB5754F	ATACCTACGGCTAGGGAGG	57	150	2,329
	gyrB8082R	AGGTCCCGTTCAGAGGTC			
pbpA	pbpA-F	TCCTCTCGCCGTAGTC	60	120	1,964
	pbpA-R	ACCTGCTGCTGTCCTG			
gapA	gapA-F	GGGACGCAGGCTGACTTT	62	90	1,297
	gapA-R	CGGAACCTCCATCACCC			
bipA	bipA-F	ACATTGCGACGGCTGT	58	130	1,261
	bipA-R	TTCGCCCTCCTCCCT			
tufA	tufA-F	GCACCATCGCCATCGT	59	90	1,425
	tufA-R	GCATCCCGGTTTCAGT			
rpoB	rpoB-F	TGCTCGTGGACTGTTG	60	240	3,806
	rpoB-R	GGTCCGTCATGTTGCA			
chpC	chpC-F	CGAGACGGCTGCCGAAAACTA	61	90	1,248
	chpC-R	CCGCGAGAGGCTGAAAAACA			
celA	celA17558F	GAGGTCCTCGGCTCCTGAG	58	150	2,441
	celA19998R	CTGATCGAGAGAGATGTC			

Note: The gyrB5754F/gyrB8082R primers and the celA17558F/celA19998R primers were described by Luo (2008) and the other six primer pairs were designed in this study.

TABLE A2
Variation of genes used in this study from BT0505 compared to NCPPB382

Gene	DNA difference	Amino acid difference	G + C (%)	GenBank accession number
gyrB	5/2046	3/681	67.2	KJ123741
pbpA	2/1452	0/483	69.4	KJ123735
gapA	2/1008	0/335	68.0	KJ123733
bipA	2/1908	0/635	68.3	KJ9990998
tufA	0/1194	0/397	66.6	KJ123740
rpoB	4/3489	0/1162	67.3	KJ123738
chpC	1/861	0/286	52.0	KJ123731
celA	9/2241	3/746	66.8	KJ123730
FIGURE A2 PCR test result of DNA. Total RNA was reverse transcript to cDNA and test by specific PCR primers. 16S-F/R targeted to 16S rRNA while rRNA-I/rRNA-O targeted to the space between rRNA and tyrS (tyrosyl-tRNA synthetase) sequences which were not in the same transcript. (a) Samples treated with 0.85% NaCl. (b) Samples treated with CuSO₄₉. P, genomic DNA of *Clavibacter michiganensis*. N, negative control