Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-based Aerosol Optical Depth: Development and Application

Aaron van Donkelaar¹, Randall V. Martin¹,², Michael Brauer³, Ralph Kahn⁴, Robert Levy⁴, Carolyn Verduzco¹ and Paul J. Villeneuve⁵,⁶

¹Department of Physics and Atmospheric Science, Dalhousie University, 6300 Coburg Rd., Halifax, Nova Scotia, Canada, B3H 3J5 **

²Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA.

³School of Environmental Health, University of British Columbia, British Columbia, Canada.

⁴NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA

⁵Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

⁶Population Studies Division, Health Canada, Ottawa, Ontario, Canada.

** primary location of this work
Acknowledgments: Funded by Health Canada (contract 4500171909 and 4500220294).

A. van Donkelaar was supported by graduate fellowships from the Natural Sciences and Engineering Research of Canada (NSERC) and the Killam Trust.

List of Abbreviations:

AOD - Aerosol Optical Depth

AQS - Air Quality Guideline

CALIPSO - Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite

CTM - Chemical Transport Model

MISR - Multiangle Imaging Spectroradiometer

MODIS - Moderate Resolution Imaging Spectroradiometer

PM$_{2.5}$ - Fine particulate matter with diameter less than 2.5 µm.

SEDAC - Socioeconomic Data and Applications Center

IT - Interim Target

WHO - World Health Organisation
Background: Epidemiologic and health impact studies of fine particulate matter (PM$_{2.5}$) are limited by the lack of monitoring data, especially in developing countries. Satellite-observations offer valuable global information about PM$_{2.5}$ concentrations.

Methods: Global ground-level PM$_{2.5}$ concentrations were mapped using total column aerosol optical depth (AOD) from the MODIS and MISR satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model.

Results: Global estimates of long-term average (2001-2006) PM$_{2.5}$ concentrations at ~10 km × 10 km resolution indicate a global population-weighted geometric mean PM$_{2.5}$ concentration of 20 µg/m3. The World Health Organization Air Quality PM$_{2.5}$ Interim Target-1 (35 µg/m3 annual average) is exceeded over central and eastern Asia for 38% and 50% of the population, respectively. Annual mean PM$_{2.5}$ concentrations exceed 80 µg/m3 over Eastern China.

Evaluation of the satellite-derived estimate with ground-based in-situ measurements indicates significant spatial agreement with North American measurements ($r = 0.77$, slope = 1.07, n = 1057) and with non-coincident measurements elsewhere ($r = 0.83$, slope = 0.86, n = 244). The one-sigma uncertainty in the satellite-derived PM$_{2.5}$ is 25%, inferred from the AOD retrieval and aerosol vertical profiles errors and sampling. The global population-weighted mean uncertainty is 6.7 µg/m3.

Conclusions: Satellite-derived total-column AOD, when combined with an aerosol transport model, provides estimates of global long-term average PM$_{2.5}$ concentrations.
Introduction

Chronic exposure to airborne fine particulate matter with diameter less than 2.5 µm (PM$_{2.5}$) is associated with adverse human health impacts including morbidity and mortality (e.g. Dockery et al. 1993; McDonnell et al. 2000; 2002; Pope et al. 2009). Several national environmental agencies in North America and Europe monitor PM$_{2.5}$ concentrations at numerous sites throughout their jurisdictions, but even these relatively dense networks have limited geographical coverage. Few long-term measurement sites exist elsewhere in the world, particularly in rapidly developing countries where concentrations and estimated health impacts are greatest (Cohen et al. 2003). Point measurements collected at monitoring sites are not necessarily representative of regional concentration, and regional variability is difficult to assess from point measurements alone. Application of satellite observation to surface air quality has advanced considerably in recent years (Martin 2008; Hoff and Christopher 2009). Global aerosol observations from satellite could substantially improve estimates of population exposure to PM$_{2.5}$.

The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) instruments onboard the Terra satellite have provided since mid-2000 global observations of aerosol optical depth (AOD), a measure of light extinction by aerosol in the atmospheric column above the Earth’s surface. Terra’s Sun-synchronous orbit encircles the Earth approximately 15 times each day, with each pass crossing the Equator at approximately 10:30, local time. Observations of AOD from Terra provide daily insight into the global distribution of column-integrated aerosol.
However, the applicability of AOD to surface air quality depends upon several factors, including the vertical structure, composition, size distribution and water content of atmospheric aerosol.

Many studies have investigated the relationship between total-column AOD and surface PM$_{2.5}$ measurements. Most have developed simple empirical relationships between these two variables (e.g. Wang and Christopher 2003; Engel-Cox et al. 2004a), while more recent works often used local meteorological information to improve agreement (e.g. Liu et al. 2005; Koelemeijer et al. 2006) or to filter the data (e.g. Gupta et al. 2006). Some studies have employed LIDAR instruments to capture the vertical aerosol distribution at specific locations (e.g. Engel-Cox et al. 2006; Schaap et al. 2008). As noted by Schaap et al. (2008), locally derived AOD-PM$_{2.5}$ relationships cannot be easily extended to other regions due to variation in meteorology and aerosol composition. Unique, local, time-dependent AOD-PM$_{2.5}$ relationships are necessary to infer global estimates of PM$_{2.5}$. Ground-based measurements of aerosol vertical profiles and properties have insufficient coverage to estimate global AOD-PM$_{2.5}$ relationships.

Global chemical transport models (CTMs) resolve atmospheric composition at a resolution of hundreds of kilometres horizontally by hundreds of meters vertically, with a temporal frequency of tens of minutes. Liu et al. (2004) first estimated surface-level PM$_{2.5}$ from MISR observations by using CTM output to represent local AOD-PM$_{2.5}$ conversion factors over the contiguous United States. Van Donkelaar et al. (2006) extended the approach of Liu et al. (2004) to estimate PM$_{2.5}$ from both MODIS and MISR observations and investigated the factors affecting the agreement between AOD and surface-level PM$_{2.5}$. Statistical models have also been used to relate AOD to PM$_{2.5}$,
using MISR-retrieved spherical vs. non-spherical particle fraction, in addition to model-derived vertical distribution, to separate mineral dust from other aerosol species (Liu et al. 2007). Some recent work also probed the limitations of using AOD without accounting for vertical distribution or speciation, and concluded that agreement with ground-based monitors based on this approach might depend on factors other than satellite observations (Paciorek and Liu 2009).

In this paper, we develop a global satellite-based estimate of surface PM$_{2.5}$ at a spatial resolution of 0.1° × 0.1°, or approximately 10 km × 10 km at mid-latitudes. The methods section develops an approach for combining MODIS and MISR AOD into a single, improved estimate of AOD. AOD-PM$_{2.5}$ conversion factors, calculated with a global chemical transport model, are produced and applied to these AOD in the results section. We present a global estimate of PM$_{2.5}$ concentrations and validate this with ground-based (in-situ) observations. We estimate global exposure to outdoor ambient PM$_{2.5}$ using our satellite-derived product to demonstrate potential application for global health studies. We then examine sources of error.

Methods

Satellite Observations

The MODIS instrument measures a wide range of spatial and spectral information from its orbit aboard the Terra satellite. The near-daily global coverage from the MODIS AOD retrieval (Levy et al. 2007) is advantageous. The MISR instrument, also aboard Terra, offers smaller spatial and spectral ranges, but views each scene on the Earth from
nine different angles. This additional angular information allows the MISR AOD retrieval (Diner et al. 2005; Martonchik et al. 2009) to reduce algorithmic assumptions and retrieval bias, as well as obtain information about microphysical properties, and plume heights in aerosol source regions (Kahn et al. 2007). Neither instrument can retrieve AOD in cloudy conditions.

We use the MODIS BRDF/Albedo product (MOD43, Collection 5) to distinguish surface types and, in conjunction with ground-based retrievals of AOD, to identify regions of high bias in both MODIS and MISR AOD. We define these surface types for each month according to the ratio of surface albedo for different wavelengths, similar to assumptions inherent in the MODIS AOD retrieval. We remove AOD retrieved from either instrument with an anticipated bias greater than ±(0.1 or 20%), based on comparison with AERONET sun photometer measurements of AOD. Remaining MODIS and MISR AOD are averaged to produce a single value at a given grid cell. The supplemental material describes in detail the satellite retrievals, and this bias filtration. We restrict our subsequent analysis to locations with at least 50 successful satellite retrievals over 2001-2006, to yield near-complete (95%) global geographic coverage.

Estimating PM$_{2.5}$ from Aerosol Optical Depth

Estimating ground-level concentrations of dry 24-h PM$_{2.5}$ (in µg/m3) from satellite observations of total-column AOD (unitless) requires a conversion factor that accounts for their spatially and temporally varying relationship.
\[\text{PM}_{2.5} = \eta \cdot \text{AOD} \]

\[\eta \] is a function of the factors that relate 24-h dry aerosol mass to satellite observations of ambient AOD: aerosol size, aerosol type, diurnal variation, relative humidity and the vertical structure of aerosol extinction (van Donkelaar et al. 2006). Following Liu et al. (2004; 2007) and van Donkelaar et al. (2006), we use a global 3-D chemical transport model (GEOS-Chem; Supplemental Material) to calculate the daily global distribution of \[\eta \].

The GEOS-Chem model solves for the temporal and spatial evolution of aerosol (sulfate, nitrate, ammonium, carbonaceous, mineral dust and sea salt) and gaseous compounds using meteorological data sets, emission inventories, and equations that represent the physics and chemistry of atmospheric constituents. The model calculates the global 3-D distribution of aerosol mass and AOD with a transport timestep of 15 minutes. We apply the modelled relationship between aerosol mass and relative humidity for each aerosol type to calculate \(\text{PM}_{2.5} \) for relative humidity values that correspond to surface-measurement standards (35% for U.S. and Canada; 50% for Europe). We calculate daily values of \(\eta \) as the ratio of 24-h ground-level \(\text{PM}_{2.5} \) for a relative humidity of 35% (U.S. and Canadian surface-measurement gravimetric analysis standard), and at 50% (European surface-measurement standard), to total-column AOD at ambient relative humidity. The AOD is averaged between 10 a.m. and 12 p.m. local time, corresponding to the Terra overpass period. We interpolate values of \(\eta \) from \(2^\circ \times 2.5^\circ \), the resolution of the GEOS-Chem simulation, to \(0.1^\circ \times 0.1^\circ \) for application to satellite AOD values.
We compare the original MODIS and MISR total-column AOD with coincident ground-based measurements of daily mean PM$_{2.5}$. Canadian sites are part of the NAPS Network, maintained by Environment Canada (http://www.etc.cte.ec.gc.ca/NAPS/index_e.html). U.S. data are from the IMPROVE network (http://vista.cira.colostate.edu/improve/Data/data.htm) and the U.S. Environmental Protection Agency Air Quality System Federal Reference Method sites (http://www.epa.gov/air/data/index.html). Validation of global satellite-derived PM$_{2.5}$ estimates is hindered by the lack of available surface-measurement networks in many parts of the world. We collect 244 annually representative, ground-based PM$_{2.5}$ data from both published and unpublished field measurements outside the United States and Canada, as described in the supplemental material.

Results

The top and middle panels of Figure 1 show mean AOD for 2001-2006 over North America from MODIS and MISR. Both datasets exhibit similar AOD values of 0.15-0.25 over the eastern United States, reflecting a combination of anthropogenic and biogenic sources. Several individual cities can be clearly identified in mean MODIS AOD for the Great Lakes region. A large AOD enhancement over the southwestern United States appears in the MODIS retrievals, but is absent from the MISR retrievals. The bottom panel of Figure 1 shows the mean combined MODIS and MISR AOD over North America. Our combination of these two AOD products removes the biased AOD observed by MODIS over the western United States. The combined product is dominated
by MODIS in the east due to finer temporal sampling. MISR dominates in the west due to its accuracy.

Table 1 gives statistics comparing the spatial variation in six-year mean AOD retrievals with measurements of daily 24-h average PM$_{2.5}$ sampled on the same days as successful satellite observations. Both the MODIS and MISR instruments indicate some relationship between retrieved total-column AOD and in-situ PM$_{2.5}$, both with spatial correlation coefficients of 0.39. A simple average of the daily AOD from both instruments yields a correlation of 0.44. Combining retrievals from these instruments as described in the methods section increases the correlation to 0.61. Additional information is required to quantitatively estimate PM$_{2.5}$ concentrations from AOD as presented below.

Figure 2 shows the annual mean distribution of daily η values used to relate satellite-observed total-column AOD to PM$_{2.5}$ at 35% relative humidity. Average values of η are typically 20-130 μg/m3. High values of η over regions of large dust concentration (Prospero et al. 2002) reflect in part its low hygroscopicity. Values of η are lower for hygroscopic aerosols as their dry volume is significantly smaller than under ambient conditions. Ground-level aerosol sources in industrial regions lead to vertical profiles that peak near ground, and moderate values of η. Western North America is characterized by low η, providing additional insight into the poor AOD-PM$_{2.5}$ correlations (Engel-Cox et al. 2004b; Hu 2009) associated with this region, and in agreement with Liu et al. (2007) who found that transported dust aloft affects the western North America AOD-PM$_{2.5}$ relationship. η is related to land types only insomuch as
these are typified by particular aerosol types, meteorology and vertical structures. Temporal variation in η is considerable.

The top panel of Figure 3 shows the six-year mean of 24-h average satellite-derived surface PM$_{2.5}$ over North America as calculated from equation 1 at a daily timescale. A large-scale PM$_{2.5}$ enhancement is apparent over the eastern United States. The western and northern parts of the continent are generally characterized by low concentrations, with a few exceptions. Geographic mean PM$_{2.5}$ concentrations over eastern and western North America are 6.9 μg/m3 and 6.2 μg/m3, respectively. Application of η (Figure 2) increased the spatial contrast in Figure 1, reflecting ground-level aerosol sources in the east and aerosols aloft in the north and west.

We evaluate the satellite-derived PM$_{2.5}$ with surface monitors. The bottom right panel of Figure 3 shows the annual mean of 24-h PM$_{2.5}$ concentrations measured with the surface monitors and sampled on the same days as the satellite-derived PM$_{2.5}$. Ground-level measurements show similar features to our satellite-derived product. The bottom left panel of Figure 3 quantitatively compares satellite-derived and ground-level measured PM$_{2.5}$. We find significant cross-sectional correlation between average coincidently sampled satellite-derived and ground-based PM$_{2.5}$ across North America ($r = 0.77$, slope = 1.07, bias = -1.75 μg/m3). Many factors contribute to the scatter of points, including differences between what satellite and in situ measurements represent that do not necessarily indicate errors in either measurement.

Global Estimates of PM$_{2.5}$ Concentrations
Figure 4 presents the six-year mean of our global satellite-derived PM$_{2.5}$. This figure, and all subsequent, are at 50% RH in agreement with European ground-based measurements. We reject points created with less than 50 values, enabling 95% global geographic coverage. The satellite-derived PM$_{2.5}$ include an adjustment for discontinuous sampling as described in the error analysis. Annual mean PM$_{2.5}$ concentrations vary spatially by more than an order of magnitude. Values are less than 10 µg/m3 for large regions of the earth. In contrast, PM$_{2.5}$ concentrations of 60-90 µg/m3 are found over eastern China, with values in excess of 100 µg/m3 for its major industrial regions. The Indo-Gangetic plain, from New Delhi eastward contains the highest PM$_{2.5}$ concentrations in India, with values of 80-100 µg/m3, especially in winter (e.g. Di Girolamo et al. 2004). Concentrations elsewhere in northern India are 15-60 µg/m3. Biomass burning effects on PM$_{2.5}$ levels are visible in central South America and central Africa, where concentrations of 10-17 µg/m3 are estimated. Dust transport in the fine mode is substantial (Jones and Christopher 2007), contributing to large-scale PM$_{2.5}$ in the Middle East of approximately 20-50 µg/m3.

Figure 4 also shows locations of ground-based measurements and values outside North America that were used for comparison. Despite increased uncertainty due to temporal sampling differences, significant overall agreement exists ($r = 0.83$, slope = 0.86, intercept = 1.15 µg/m3, n = 244). Similar agreement is obtained when all sites except Europe and North America are considered ($r = 0.83$, slope = 0.91, intercept = -2.64 µg/m3, n = 84).

Figure 5 overlays contours of population density and surface elevation onto satellite-derived PM$_{2.5}$ for regions of major anthropogenic sources: eastern North America,
western Europe and eastern Asia. Some relationships are apparent between PM$_{2.5}$, topography and populationl. Heavily populated and highly polluted, low-lying regions of eastern China and the Po Valley of northern Italy contrast sharply with neighboring higher altitude regions. The Appalachian Mountains in eastern North America emerge as a relatively clean region. Many PM$_{2.5}$ enhancements are associated with urban or industrial areas, but these relationships are complex.

Error Analysis

The dominant sources of error in satellite-derived PM$_{2.5}$ arise from uncertainties in both AOD retrieval and aerosol vertical structure (van Donkelaar et al. 2006). The residual AOD bias after data filtering in within $\pm(0.1 + 20\%)$, as evaluated with ground-based AERONET measurements. We evaluate the GEOS-Chem simulation of the aerosol vertical profile using observations from the CALIPSO satellite. The GEOS-Chem simulation generally captures to within 5% the fraction of AOD within the boundary layer (Supplemental Material). We estimate the error in satellite-derived PM$_{2.5}$ as the change in PM$_{2.5}$ that occurs when η and AOD are adjusted by their uncertainty, approximated as the GEOS-Chem vertical profile bias and residual satellite AOD bias, respectively.

Figure 6 shows the error distribution of coincidently sampled satellite-derived PM$_{2.5}$. Arid regions are typically over-predicted, and populated regions of East Asia under-predicted. We find that one standard deviation of the global error distribution is within $\pm15\%$ of the satellite-derived value. We test this uncertainty estimate by comparison with coincident PM$_{2.5}$ observations for North America (Figure 2) and find that one
standard deviation of the data lies within ±(1 µg/m3 + 15%). The necessary inclusion of a small absolute term suggests that our uncertainty estimate may be underestimated at low PM$_{2.5}$ values, and supports the presence of a small negative bias, as indicated by the line of best fit.

Non-uniform and incomplete sampling by satellites have the potential to create bias in long-term mean observations (Levy et al. 2009; Paciorek and Liu 2009). Here we investigate how non-random sampling of AOD by satellite observations affect the representation of annual mean PM$_{2.5}$. The total number of successful satellite retrievals are shown in the top panel of Figure 7 and summarized regionally as population-weighted mean in Table 2. Lower sampling is fortuitously collocated with lower population. The global population-weighted mean number of observations per 0.1° × 0.1° box is 297. The bottom panel of Figure 7 shows the percent difference between a GEOS-Chem simulation of PM$_{2.5}$ sampled coincidently with daily satellite-derived PM$_{2.5}$ versus a complete annual mean of the simulated values. Most regions exhibit a sampling-induced uncertainty (one-sigma) within ±20% of simulated PM$_{2.5}$. Regions of low sampling do not necessarily demonstrate enhanced uncertainty and vice versa. Sampling error of satellite-derived PM$_{2.5}$ is larger in regions influenced by biomass burning, mineral dust, or persistent cloud due to a combination of large seasonal variability and non-representative sampling. We apply the ratio of complete to coincident mean simulated PM$_{2.5}$ to reduce uncertainty from sampling variability.

Validation of this is inhibited by the lack of in-situ measurements in the regions most significantly affected by intermittent sampling. Statistical comparison over the United States and Canada of non-coincident satellite-derived and in-situ PM$_{2.5}$ decreases the
agreement relative to a coincident comparison (non-coincident: slope = 1.13, r = 0.70 versus coincident: slope = 1.07, r = 0.77), supporting the need for sampling error correction. Uncertainties derived from both the PM$_{2.5}$ estimate and sampling can vary substantially on the regional scale. Testing the combined uncertainty of ±25% from both sources reveals that approximately one standard deviation of the North American data falls within this overall error envelope. Globally, the population-weighted mean uncertainty in satellite-derived PM$_{2.5}$ is 6.7 µg/m3.

Global Ambient PM$_{2.5}$: Application to Population Exposure

Pope et al. [2009] estimate that a long-term PM$_{2.5}$ exposure decrease of 10 µg/m3 increases life expectancy by 0.61 ± 0.30 years for the United States. We estimate global long-term exposure to ambient PM$_{2.5}$ at a spatial resolution of 0.1° using our satellite-derived values for 2001-2006 and the Gridded Population of the World (Tobler et al. 1997) data for 2005 from the Socioeconomic Data and Applications Center (SEDAC; GPW v3; http://sedac.ciesin.columbia.edu/). Figure 8 shows the global and regional distributions of long-term ambient PM$_{2.5}$ exposure. Table 3 summarizes these results. All regions exhibit non-linear relationships between population and PM$_{2.5}$ concentrations. Eastern and central Asia have the highest levels of PM$_{2.5}$ concentrations with 38-50% of the regional population exceeding the WHO Air Quality Interim Target-1 (WHO 2005) of 35 µg/m3. According to the WHO Guidelines, concentrations at this level and higher are associated with approximately a 15% increased mortality risk, relative to the Air Quality Guideline of 10 µg/m3. Globally 80% of the population lives in regions that exceed the Air Quality Guideline. These PM$_{2.5}$ estimates should be of considerable value
for assessing the chronic health impacts of air pollution, especially in regions with sparse
ground-based monitoring.

Discussion

A major challenge for global epidemiological studies and assessments of air pollution
health impacts is the lack of representative exposure estimates (Cohen et al. 2003).
While extensive ground-based monitoring networks exist in some parts of the world,
major portions of the globe are not covered. The situation is especially acute in
developing countries with large populations and high pollution levels, but limited
monitoring with traditional ground-based sampling techniques. While measurements
from ground monitors are currently the “gold-standard” for epidemiological studies, these
are not only sparse, but may represent only a small spatial extent in heterogeneous
regions (Chen et al. 2006). Satellite observations offer area-integrated values with global
coverage, providing valuable additional information for global health studies.

In this work, we produced a satellite-derived climatology of PM$_{2.5}$ concentrations. These
estimates should facilitate studies of chronic exposure to particulate matter, similar to
those already conducted in Europe and North America (e.g. Dockery et al. 1993; Pope et
al. 2002; Beelen et al. 2008; Pope et al. 2009), in regions of the world currently without
extensive ground-based monitoring networks. Although there are a growing number of
studies of the impacts of short-term exposure to particulate matter have in previously
under-represented regions of the world (e.g. Wong et al. 2008; Romieu et al. 2009),
studies of long-term exposure also incorporate impacts related to chronic disease and
therefore provide a more comprehensive estimate of overall health effects (Kunzli et al.
Our estimates suggest the global population-weighted geometric mean PM$_{2.5}$ concentration is 20 µg/m3 and that 80% of the global population resides in locations where ambient concentrations exceed the WHO Air Quality Guideline of 10 µg/m3. Application of the satellite-derived PM$_{2.5}$ dataset also identifies global regions and areas of specific concern; half (50%) of the eastern Asian population lives in regions that exceed the WHO Air Quality Interim Target 3 of 35 µg/m3, and are therefore at increased risk from air pollution-related health impacts. These results highlight the potential of satellite aerosol observations to contribute to chronic effects studies at regional and global scales.

Several notable developments over previous work were included in these estimates. Combining AOD from two satellite instruments (MODIS and MISR) improved the correlation of AOD versus ground-based PM$_{2.5}$ measurements. Extending the satellite data over six years (2001-2006) reduces sampling issues. The unprecedented global spatial resolution of 0.1º × 0.1º retains variation relevant to population distribution. A chemical transport model (GEOS-Chem) was applied to account for aerosol vertical distribution, a key factor affecting the relationship between satellite-retrieved, total column AOD and near-surface PM$_{2.5}$. We found significant spatial agreement between mean coincident satellite-derived and ground-based PM$_{2.5}$ for North America (slope = 1.07, r = 0.77, n = 1057), as well as evidence of global agreement with non-coincident measurements from published and unpublished data (slope = 0.86, r = 0.83, n = 244). Notably, this level of agreement with ground-based PM$_{2.5}$ is significantly better than that obtained using a global chemical transport model (GEOS-Chem) without satellite data.
(Supplemental Material). Detailed spatial structure in the satellite-derived PM$_{2.5}$ concentrations reflect multiple influences.

We assessed the uncertainty in the satellite-derived product through comparison with independent observations and error propagation. We estimated our coincident satellite-derived PM$_{2.5}$ to be accurate at the one-sigma level to within ±15% of the satellite-derived value using the relative AOD vertical profile measured by the CALIPSO satellite and the total column AOD from ground-based measurements (AERONET). We found evidence that the effect of non-uniform satellite sampling typically biases annual mean satellite-derived PM$_{2.5}$ by less than ±20% of the satellite-derived value. Larger effects are expected over regions influenced by substantial seasonal variation, by persistent cloud, or for individual, severe pollution events. The overall combined PM$_{2.5}$ uncertainty of ±25% indicates a mean global, population-weighted uncertainty in PM$_{2.5}$ concentration of 6.7 µg/m3.

Additional developments could continue to reduce error in the satellite-derived PM$_{2.5}$ estimates presented here. Increased satellite coverage would reduce sampling concerns and may allow for satellite-derived PM$_{2.5}$ to be applied to studies of temporal or spatiotemporal variation. Further improvements to the AOD retrieval (e.g. Drury et al. 2008) would improve accuracy and reduce sampling bias by reducing data rejection. Simulating the AOD-PM$_{2.5}$ conversion factors at finer spatial resolution would better capture their variability, which is especially important in regions of sharp topographic or emissions gradients. Further development of aerosol speciation capability (e.g. Liu et al. 2007) and satellite-based estimates of additional species, such as NO$_2$ (Lamsal et al. 2008) would be valuable to more specifically estimate pollutant concentrations.
References

Beelen R, Hoek G, van den Brandt PA, Goldbohm RA, Fisher P, Schouten LJ, et al. 2008. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-air study). Environmental Health Perspectives 116(2): 196-202.

Chen C-H, Liu W-L, Chen C-H. 2006. Development of a multiple objective planning theory and system for sustainable air quality monitoring networks. Science of the Total Environment 354: 1-19.

Cohen AJ, Anderson HR, Ostro B, Dev Pandey K, Krzyzanowski M, Kunzli N, et al. 2003. Global and regional burden of diseases attributable to selected major risk factors - chapter 17: Urban air pollution. World Health Organization 1: 1353-1433.

Di Girolamo L, Bond TC, Bramer D, Diner DJ, Fettinger F, Kahn RA, et al. 2004. Analysis of Multi-Angle Imaging Spectroradiometer (MISR) aerosol optical depths over greater India during winter 2001-2004. Geophysical Research Letters 31(23).

Diner DD, Braswell BH, Davies R, Gobron N, Hu J, Jin Y, et al. 2005. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment 97: 495-518.

Dockery DW, Pope CA, Xu XP, Spengler JD, Ware JH, Fay ME, et al. 1993. An association between air-pollution and mortality in 6 united-states cities. New England Journal of Medicine 329(24): 1753-1759.

Drury E, Jacob DJ, Wang J, Spurr RJD, Chance K. 2008. Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America. Journal of Geophysical Research-Atmospheres 113(D16).

Engel-Cox JA, Hoff RM, Haymet ADJ. 2004a. Recommendations on the use of satellite remote-sensing data for urban air quality. Journal of the Air & Waste Management Association 54(11): 1360-1371.

Engel-Cox JA, Hoff RM, Rogers R, Dimmick F, Rush AC, Szykman JJ, et al. 2006. Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmospheric Environment 40(40): 8056-8067.

Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM. 2004b. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric Environment 38(16): 2495-2509.

Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N. 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment 40(30): 5880-5892.
Hirsh RM, Gilroy EJ. 1984. Methods of fitting a straight line to data: Examples in water resources. Journal of the American Water Resources Association 20(5): 705-711.

Hoff RM, Christopher SA. 2009. Remote sensing of particulate pollution from space: Have we reached the promised land? Journal of Air & Waste Management Association 59: 645-675.

Hu Z. 2009. Spatial analysis of MODIS aerosol optical depth, PM$_{2.5}$ and chronic coronary heart disease. International Journal of Health Geographics 8:27.

Jones AJ, Christopher SA. 2007. MODIS derived fine mode fraction characteristics of marine, dust, and anthropogenic aerosols over the ocean, constrained by GOCART, MOPITT, and TOMS. Journal of Geophysical Research 112(D22204).

Kahn RA, Li W-H, Moroney C, Diner DJ, Martonchik JV, Fishbein E. 2007. Aerosol source plume physical characteristics from space-based multiangle imaging. Journal of Geophysical Research 112(D11205).

Koelemeijer RBA, Homan CD, Matthijsen J. 2006. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment 40(27): 5304-5315.

Kunzli N, Medina S, Kaiser R, Quenel P, Horak FJ, Studnicka M. 2001. Assessment of deaths attributable to air pollution: Should we use risk estimates based on time series or on cohort studies? American Journal of Epidemiology 153(11): 1050-1055.

Lamsal LN, Martin RV, van Donkelaar A, Steinbacher M, Celarier EA, Bucsela E, et al. 2008. Ground-level nitrogen dioxide concentrations inferred from the satellite-borne ozone monitoring instrument. Journal of Geophysical Research-Atmospheres 113, doi:10.1029/2007JD009235(D16308).

Levy R, Leptoukh G, Kahn R, Zubko V, Gopalan A, Remer L. 2009. A critical look at deriving monthly aerosol optical depth from satellite data. IEEE Transactions on Geoscience and Remote Sensing, in press.

Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ. 2007. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. Journal of Geophysical Research-Atmospheres 112(D13).

Liu Y, Koutrakis P, Kahn R. 2007. Estimating fine particulate matter component concentrations and size distribution using satellite-retrieved fractional aerosol optical depth: Part 1 - method development. Journal of Air & Waste Management Association 57(11): 1351-1359.

Liu Y, Park RJ, Jacob DJ, Li QB, Kilaru V, Sarnat JA. 2004. Mapping annual mean ground-level PM$_{2.5}$ concentrations using multiangle imaging spectroradiometer aerosol...
optical thickness over the contiguous United States. Journal of Geophysical Research-Atmospheres 109(D22).

Liu Y, Sarnat JA, Kilaru A, Jacob DJ, Koutrakis P. 2005. Estimating ground-level PM$_{2.5}$ in the eastern United States using satellite remote sensing. Environmental Science & Technology 39(9): 3269-3278.

Martin RV. 2008. Satellite remote sensing of surface air quality. Atmospheric Environment 42: 7823-7843.

Martonchik JV, Kahn RA, Diner DJ. 2009. Retrieval of aerosol properties over land using MISR observations. In: Satellite aerosol remote sensing over land (Kokhanovsky AA, Leeuw Gd, eds). Berlin: Springer.

McDonnell WF, Nishino-Ishikawa N, Petersen FF, Chen LH, Abbey DE. 2000. Relationships of mortality with the fine and coarse fractions of long-term ambient PM$_{10}$ concentrations in nonsmokers. Journal of Exposure Analysis and Environmental Epidemiology 10(5): 427-436.

Paciorek CJ, Liu Y. 2009. Limitations of remotely-sensed aerosol as a spatial proxy for fine particulate matter. Environmental Health Perspectives 117(6).

Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA-Journal of the American Medical Association 287(9): 1132-1141.

Pope CA, Ezzati M, Dockery DW. 2009. Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine 360: 376-386.

Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics 40(1).

Romieu I, Gouveia N, Cifuentes L, Ponce de Leon A, Junger W, Miranda V, et al. 2009. Mortality effects of air pollution in Latin American cities: Results from the Escala study. In: Health Effects Institute Annual Conference.

Schaap M, Apituley A, Timmermans RMA, Koelemeijer RBA, de Leeuw G. 2008. Exploring the relation between aerosol optical depth and PM$_{2.5}$ at Cabauw, the Netherlands. Atmospheric Chemistry and Physics Discussions 8: 17939-17986.

Tobler W, Deichmann U, Gottsegen J, Maloy K. 1997. World population in a grid of spherical quadrilaterals. International Journal of Population Geography 3: 203-225.

van Donkelaar A, Martin RV, Park RJ. 2006. Estimating ground-level PM$_{2.5}$ using aerosol optical depth determined from satellite remote sensing. Journal of Geophysical Research-Atmospheres 111(D21).
Wang J, Christopher SA. 2003. Intercomparison between satellite-derived aerosol optical thickness and PM$_{2.5}$ mass: Implications for air quality studies. Geophysical Research Letters 30(21).

WHO. 2005. Air quality guidelines - global update 2005. World Health Organization Europe.

Wong C-M, Vichit-Vadakan N, Kan H, Qian Z, Teams PP. 2008. Public health and Air Pollution in Asia (PAPA): A multicity study of short-term effects of air pollution on mortality. Environmental Health Perspectives 116(9): 1195-1202.
Table 1: Comparison of coincidently sampled six-year mean measurementsa of daily 24h average PM\textsubscript{2.5} with AOD and satellite-derived PM\textsubscript{2.5}.

	slopeb	intercept	r	n
MODIS AOD	0.020	0.10	0.39	1218
MISR AOD	0.010	0.11	0.39	353
Average AOD	0.015	0.06	0.44	1236
Combined AOD	0.017	0.10	0.61	1057
Satellite-derived PM\textsubscript{2.5}	1.066	-1.75	0.77	1057

a A minimum of 50 measurements are required for each point.
b calculated with reduced major-axis linear regression (Hirsh and Gilroy 1984)
Table 2: Regional PM$_{2.5}$ statistics, number of observations and population in excess of WHO Air Quality Guideline (AQG) and Interim Targets (IT). Regions are defined in Figure 6.

Region	Population-weighted statistics [µg/m3]	Population-weighted total observations	Population (million people)							
	mean	std	geo. mean	geo. std.	Total	AQG (10 µg/m3)	IT-3 (15 µg/m3)	IT-2 (25 µg/m3)	IT-1 (35 µg/m3)	
World	27	23	20	2.3	297	6,400	5,100 (81%)	4,000 (63%)	2,300 (37%)	1,600 (25%)
E. Asia	44	29	34	2.2	270	1,900	1,800 (93%)	1,600 (83%)	1,200 (65%)	940 (50%)
C. Asia	31	16	27	1.8	230	1,500	1,400 (94%)	1,300 (86%)	780 (54%)	560 (38%)
N. Africa	26	10	24	1.5	195	540	530 (98%)	450 (85%)	250 (47%)	8.7 (17%)
S. Africa	11	6	9	1.9	368	540	240 (47%)	110 (21%)	7.7 (1.5%)	0.1 (0.0%)
E. Europe	15	5	14	1.4	437	450	400 (88%)	210 (47%)	14 (3.0%)	1.8 (0.4%)
S. America	7	4	5	2.0	361	400	52 (13%)	18 (4.5%)	5.3 (1.3%)	0.0 (0.0%)
E. North America	13	5	12	1.5	476	350	250 (72%)	110 (32%)	17 (4.7%)	0.0 (0.0%)
S. Asia/Australia	12	6	10	1.8	304	310	180 (58%)	72 (24%)	13 (4.4%)	1.3 (0.4%)
W. Europe	17	5	16	1.4	311	260	250 (94%)	170 (63%)	15 (5.9%)	3.7 (1.4%)
W. North America	11	5	10	1.6	366	120	56 (46%)	22 (18%)	0.3 (0.2%)	0.0 (0.0%)

* (WHO 2005)
Figure Legends

Figure 1: Mean aerosol optical depth (AOD) over 2001-2006 from the MODIS and MISR satellite instruments. The bottom panel indicates data from the combined product developed here. White space denotes water or fewer than 50 measurements.

Figure 2: Annual mean η (ratio of PM$_{2.5}$ to AOD) for 35% relative humidity. White space indicates water.

Figure 3: Satellite-derived PM$_{2.5}$ and comparison with surface measurements. The top panel shows mean satellite-derived PM$_{2.5}$ between 2001-2006. White space denotes water or fewer than 50 AOD measurements. The bottom right panel shows positions and mean values of coincidently measured surface sites. The bottom left panel compares average coincident values of both measured and satellite-estimated PM$_{2.5}$ in μg/m3. The solid black line denotes unity. Thin dotted lines show uncertainty of $\pm (1 \mu g/m^3 \pm 15\%)$. The line of best fit (Hirsh and Gilroy 1984) is dashed.

Figure 4: Global satellite-derived PM$_{2.5}$ averaged over 2001-2006. White space indicates water or locations containing less than 50 measurements. Circles correspond to values and locations of comparison sites outside Canada and the United States. The black rectangle outlines European sites.

Figure 5: Regional satellite-derived PM$_{2.5}$ concentrations. Columns show mean satellite-derived PM$_{2.5}$ for 2001-2006 at locations containing at least 50 measurements. Contours denote population density in the left column and surface elevation in the right. The color scale varies by region. Crosses indicate city centers in both columns. Altitude data are from the United States Geological Survey.

Figure 6: Estimate of the satellite-derived PM$_{2.5}$ bias, defined as (satellite-derived PM$_{2.5}$ - truth) / truth. Boxed areas define the regions used in Figure 8.

Figure 7: Satellite-derived PM$_{2.5}$ sampling and its estimated induced uncertainty. The top panel shows the total number of values used from satellite per 0.1º grid box. The bottom panel shows the percent change in average coincidently-sampled simulated PM$_{2.5}$ concentrations relative to a full year average.

Figure 8: Cumulative distribution of regional, annual mean PM$_{2.5}$ estimated from satellite-derived PM$_{2.5}$ at a resolution of 0.1º \times 0.1º for 2001-2006. The top axis identifies WHO Air Quality Guidelines (AQG) and Interim Targets (IT-#) associated with each concentration level. Regions are defined in Figure 6.
Figure 1: Mean aerosol optical depth (AOD) over 2001-2006 from the MODIS and MISR satellite instruments. The bottom panel indicates data from the combined product developed here. White space denotes water or fewer than 50 measurements.
Figure 2: Annual mean η (ratio of PM$_{2.5}$ to AOD) for 35% relative humidity. White space indicates water.
Figure 3: Satellite-derived PM$_{2.5}$ and comparison with surface measurements. The top panel shows mean satellite-derived PM$_{2.5}$ between 2001-2006. White space denotes water or fewer than 50 AOD measurements. The bottom right panel shows positions and mean values of coincidently measured surface sites. The bottom left panel compares average coincident values of both measured and satellite-estimated PM$_{2.5}$ in µg/m3. The solid black line denotes unity. Thin dotted lines show uncertainty of ±(1 µg/m3 + 15%). The line of best fit (Hirsh and Gilroy 1984) is dashed.
Figure 4: Global satellite-derived PM$_{2.5}$ averaged over 2001-2006. White space indicates water or locations containing less than 50 measurements. Circles correspond to values and locations of comparison sites outside Canada and the United States. The black rectangle outlines European sites.
Figure 5: Regional satellite-derived PM$_{2.5}$ concentrations. Columns show mean satellite-derived PM$_{2.5}$ for 2001-2006 at locations containing at least 50 measurements. Contours denote population density in the left column and surface elevation in the right. The color scale varies by region. Crosses indicate city centers in both columns. Altitude data are from the United States Geological Survey.
Figure 6: Estimate of the satellite-derived PM$_{2.5}$ bias, defined as (satellite-derived PM$_{2.5}$ - truth) / truth. Boxed areas define the regions used in Figure 8.
Figure 7: Satellite-derived PM$_{2.5}$ sampling and its estimated induced uncertainty. The top panel shows the annual average number of values used from satellite. The bottom panel shows the percent change in average coincidently-sampled simulated PM$_{2.5}$ concentrations relative to a full year average.
Figure 8: Cumulative distribution of regional, annual mean PM$_{2.5}$ estimated from satellite-derived PM$_{2.5}$ at a resolution of 0.1º × 0.1º for 2001-2006 per 0.1º grid box. The top axis identifies WHO Air Quality Guidelines (AQG) and Interim Targets (IT-#) associated with each concentration level. Regions are defined in Figure 6.
Collection of Global Ground-based PM$_{2.5}$ measurements

Satellite-derived and simulated global PM$_{2.5}$ concentrations require validation against surface measurements. We combine values from numerous sources for the purpose of comparison. We use European data from a combination of the European Monitoring and Evaluation Programme (EMEP; http://www.emep.int/) and the European Air quality database (AIRBASE; http://air-climate.eionet.europa.eu/databases/airbase/). Australian data were collected from the Environment Protection and Heritage Council (http://www.ephc.gov.au/). New Zealand data were collected from the New Zealand Ministry for the Environment website (http://www.mfe.govt.nz/). Mexican data are from the ESCALA project (Gouveia et al. 2008; Romieu et al. 2009). Columbian data were provided by Victor Miranda and Isabelle Romieu and from the Instituto de Hidrologia Meteorologia y Estudios Ambientales (www.ideam.gov.co). Some Brazilian data for Sao Paulo are from the secretary of State for the Environment, Sao Paulo (http://www.cetesb.sp.gov.br/). Chilean data were provided by CENMA, the Chilean National Environment Center (http://www.cenma.cl/). Additional sources are described in Table S-1. We exclude sites from all sources that are suspected to be spatially or temporally biased.
We combine measurements onto the same $0.1^\circ \times 0.1^\circ$ grid as the satellite dataset. We average colocated studies/sites, weighted by the product of their temporal range (years) and number of monitors (to a maximum of 5), such that long-term, multi-monitor studies have greater influence on final comparison values. Any surface PM$_{2.5}$ grid cell with an overall weight of less than 1 monitor-year is considered unrepresentative and is not used for evaluation of satellite-derived PM$_{2.5}$.

Description of the GEOS-Chem model

We use v8-01-04 of the GEOS-Chem chemical transport model (http://acmg.seas.harvard.edu/geos/index.html). The GEOS-Chem model is driven by assimilated meteorology from the Goddard Earth Observing System (GEOS-4) at the NASA Global Modeling Assimilation Office (GMAO). Our simulation is run at $2^\circ \times 2.5^\circ$ with 42 vertical levels ranging between the surface and approximately 80 km. The thickness of the lower layer is approximately 100 meters. The model timestep for transport is 15 minutes.

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium system (Park et al. 2006), primary (Park et al. 2003) and secondary (Liao et al. 2007) carbonaceous aerosols, mineral dust (Fairlie et al. 2007) and sea-salt (Alexander et al. 2005). Formation of sulfate and nitrate (Park et al. 2004), heterogeneous chemistry (Jacob 2000) and photolysis rates (Martin et al. 2003) are all coupled with oxidant simulation. Dry and wet deposition are described in Liu et al. (2001), and include both washout and rainout. The emission inventory has been recently updated to 2005, following van Donkelaar et
al. (2008). We use the eight day Global Fire Emission Database version 2 (GFEDv2) biomass burning emissions (van der Werf et al. 2006), as implemented by Nassar et al. (2009).

The GEOS-Chem aerosol simulation has been extensively evaluated with ground-based measurements (e.g. Park et al. 2006; Fairlie et al. 2007; Pye et al. in press) and aircraft measurements (e.g. Heald et al. 2005; van Donkelaar et al. 2008; Dunlea et al. 2009).

Description of Satellite Retrievals

The MODIS instrument provides near-daily global AOD coverage in the absence of clouds. The MODIS AOD retrieval algorithm over land (Levy et al. 2007) applies three spectral bands at 0.47 µm, 0.66 µm and 2.1 µm plus those used for cloud masking, and requires that surface-reflected radiation makes little contribution to total radiation leaving the top of the atmosphere. Dark surfaces are first detected using the infrared (2.1 µm) spectral band, where atmospheric absorption and scattering from aerosols is generally weak. Surface reflection at visible wavelengths (0.47 µm and 0.66 µm) is then estimated through specified relationships with the 2.1 µm reflectivity. Pre-computed seasonally and spatially varying lookup tables (LUT) that combine likely aerosol scenarios with surface reflectivities are then matched with top-of-atmosphere observations to determine AOD values representing 10 km × 10 km retrieval regions. Quality assured collection (version) 5 MODIS AOD over land has been validated such that at least two-thirds of retrievals are within ±(0.05 + 15%) using Aerosol Robotic Network (AERONET, Holben et al. 1998) measurements of AOD (Levy et al. 2009; Remer et al. 2008). The ratio of
two spectral bands is used estimate the contribution of non-dust (fine) aerosol to total
AOD, but this product is highly uncertain (Remer et al. 2005), especially over land,
where it is considered an algorithm diagnostic rather than a retrieval quantity (Anderson
et al. 2005; Levy et al. 2009).

The MODIS BRDF/Albedo product (MOD43 V5, Lucht et al. 2000) estimates 16-day
average land surface albedo through an algorithm that is separate from the surface
reflectivity estimate used by the MODIS AOD retrieval. Albedo, the hemispheric
integration of directional surface reflectance, is separated into black-sky and white-sky
albedo, where these refer to the albedo under purely direct and diffuse conditions,
respectively. The true albedo varies between these two extremes.

The MISR instrument observes radiation leaving the top of the atmosphere in four
spectral bands (0.446, 0.558, 0.672 and 0.866 µm), each at nine viewing angles (±70.5°,
±60.0°, ±45.6°, ±25.1° and nadir). MISR takes 9 days for complete global coverage at the
equator, and two days near the poles, in the absence of clouds. The MISR AOD retrieval
algorithm (Martonchik et al. 2002; Diner et al. 2005; Martonchik et al. 2009) uses same-
scene, multi-angle, multi-spectral observations to infer AOD and aerosol microphysical
property information over 18 km × 18 km retrieval regions, assuming only approximate
spectral invariance of the surface angular reflectance, via pre-calculated LUTs. MISR
AOD has been validated such that two-thirds of retrievals fall within the maximum of
±(0.05 or 20%) of ground truth observations (Kahn et al. 2005). The MISR aerosol
product also provides estimates of AOD contribution according to aerosol size, dividing
AOD into the fraction of particles of radius < 0.35 µm, between 0.35-0.7 µm and > 0.7
μm. The aerosol-size retrieval is most reliable when AOD is greater than 0.2 (Kahn et al. 2009).

We explored using satellite retrievals of aerosol fine mode fraction (FMF) in lieu of the GEOS-Chem simulation of this quantity in the calculation of η, but found that simulated FMF was more accurate for our application due to retrieval uncertainties, temporal coverage and consistency of fine mode definition. We determine FMF from the GEOS-Chem simulation as the ratio of fine AOD (sulfate, organic carbon, black carbon, and fine dust and fine sea salt) to total AOD (fine AOD + coarse dust and coarse sea salt).

Combining MODIS and MISR observations

Here we describe our approach to combine AOD retrievals from both MODIS and MISR. We translate daily AOD measurements between Jan. 1 2001 and Dec. 31 2006 from MODIS level 2, version 5, best quality and MISR level 2 (F09_0017-F11_0021, best estimate) onto a global 0.1º × 0.1º grid. MODIS AOD retrievals exhibit a high bias over deserts and coastal sites due to surface brightness and subpixel water contamination (Abdou et al. 2005) partially explaining the poor agreement between MODIS AOD and surface PM$_{2.5}$ observed the western United States (e.g. Engel-Cox et al. 2004; Liu et al. 2007; Hu 2009). Systematic regional differences between MODIS and MISR AOD are also found over north-central Africa, northern India and Bangladesh, and the Patagonia Desert region of South America (Kahn et al. 2009).

We use the MODIS BRDF/Albedo product to distinguish surface types and identify regional error in AOD retrieval. Two ratios of six-year monthly mean black-sky albedo
(0.47 µm / 0.66 µm and 0.66 µm / 2.1 µm) are used to divide the Earth’s surface into nine albedo-based domains, as defined by the combinations of each ratio being < 0.4, 0.4 - 0.6, and > 0.6. Four surface types dominate, as shown for July in the top panel of Figure S-1. MODIS and MISR AOD are then compared against ground-based retrievals of AOD from the AERONET to calculate an average monthly bias for each instrument within each domain. Local AERONET comparisons are combined according to surface type. We reject all satellite AOD retrievals with a local estimated monthly bias in excess of the maximum of ±(0.1 or 20%). Data from regions that cannot be confirmed to be within these bounds are rejected. Nearby AERONET sites are weighted more heavily in the comparison to allow more representative measurements to dominate the filtration process. The bottom row of Figure S-1 compares unfiltered satellite and AERONET AOD by zone for all months. MODIS AOD over zone 2 (470/660: >0.6; 660/2100: 0.4-0.6) and zone 9 (470/660: >0.6; 660/2100: >0.6) show more scatter than other zones. Figure S-2 shows the total number of months included from each instrument after this filtration process. MODIS AOD are frequently rejected over bright surfaces, such as deserts, and are more heavily filtered than MISR. Regions with few months are more susceptible to sampling bias as discussed in the main text. Fortunately most of the regions with poor seasonal sampling tend to have low population.

To reduce the influence of large particles, we also exclude individual MODIS and MISR AOD with less than 20% fine mode fraction based upon their respective retrievals of this quantity. The albedo-filtered, fine-mode-filtered AOD from MODIS and MISR are averaged to produce daily of AOD at 0.1° × 0.1°.
Comparison of GEOS-Chem vertical structure with CALIPSO measurements

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been providing aerosol backscatter and extinction profiles from orbit since June 2006 (Vaughan et al. 2004). Extinction profiles obtained from CALIPSO are presently unvalidated, beta-quality products. This dataset, however, is the most complete measurement-based representation of global aerosol profiles currently available and a valuable source of information for the validation of simulated vertical profiles and their impact on satellite-derived PM$_{2.5}$. We therefore compare simulated and measured AOD relative vertical profiles from GEOS-Chem and CALIPSO.

Figure S-3 shows average relative vertical profiles from CALIPSO for various land regions, for June-December 2006, the period of overlap with GEOS-4 meteorological fields. The fraction of AOD within the simulated lower mixed layer ranges from about 30% over Europe to 50% over North Africa. This represents a lower bound for fully sampled mean conditions, as profiles taken during high pollution events are unlikely to reach the ground due to attenuation of the CALIPSO beam. Figure S-3 also shows the mean of coincidently sampled profiles from the GEOS-Chem simulation. Simulated and retrieved profiles are consistent. The largest regional differences occur at approximately 5 km. The fraction of AOD in the mixed layer typically differ by less than 5%, with the exception of South America and Polynesia, where this difference is within 15%. There are concerns about an error in the CALIPSO data below 800 m (Ray Hoff, personal communication). Differences in the mixed layer fraction of simulated and observed AOD remain within the above percentages when excluding these values.
Comparison of simulated and satellite-derived PM$_{2.5}$

Of interest is whether the satellite-derived PM$_{2.5}$ improves over the GEOS-Chem simulation of PM$_{2.5}$. Table S-2 compares satellite-derived and simulated PM$_{2.5}$ with ground-based PM$_{2.5}$ over North America and the rest of the world. PM$_{2.5}$ data are sampled coincidently over North America. Annual average measurements are used for the rest of the world. The slope between ground-based measurements and satellite-derived PM$_{2.5}$ at 0.1° × 0.1° is consistently nearer to unity as compared to the simulation. The bias is also smaller between the satellite-data and ground-based measurements. Much of the global improvement in slope is driven by the finer resolution of satellite-derived PM$_{2.5}$ (0.86 for 0.1° × 0.1° versus 0.59 for 2° × 2.5°), but correlation is higher with the satellite product than for the simulation regardless (satellite-derived: 0.75-0.83 versus simulated: 0.63). By contrast, coarse resolution comparisons over western North America have an improved slope relative to simulation (0.83 versus 0.49), but a poorer correlation than at 0.1° × 0.1° (0.67 versus 0.53).

Figure S-4 shows global coincidently sampled satellite-derived and simulated PM$_{2.5}$ at the simulation resolution of 2° × 2.5°. Both PM$_{2.5}$ estimates agree with each other (r = 0.77), with major enhancements associated with dust, biomass burning and industrial activities. The magnitude of the concentrations, however, have pronounced differences. Simulated values of PM$_{2.5}$ over the Sahara exceed satellite-derived estimates by 20-150 µg/m3. Satellite-derived PM$_{2.5}$ deviate from simulated concentrations over east Asia and northern India by as much as 30 µg/m3. Satellite-derived PM$_{2.5}$ over Mexico has an enhancement of 5-10 µg/m3 relative to simulation. The large population present in the
latter three regions make differences of particular epidemiological significance and may indicate regional bias in current emission inventories.
References

The World Bank. 2004. Toward cleaner urban air in south asia: Tackling transport pollution, understanding sources: The World Bank.

Abdou WA, Diner DJ, Martonchik JV, Bruegge CJ, Kahn RA, Gaitley BJ, et al. 2005. Comparison of coincident multiangle imaging spectroradiometer and moderate resolution imaging spectroradiometer aerosol optical depths over land and ocean scenes containing aerosol robotic network sites. Journal of Geophysical Research-Atmospheres 110(D10).

Abu-Allaban M, Lowenthal DH, Gertler AW, Labib M. 2007. Sources of pm10 and pm2.5 in cairo's ambient air. Environmental Monitoring and Assessment(133, Numbers 1-3): 417-425.

Alexander B, Park RJ, Jacob DJ, Li QB, Yantosca RM, Savarino J, et al. 2005. Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. Journal of Geophysical Research-Atmospheres 110(D10).

Anderson TL, Wu YH, Chu DA, Schmid B, Redemann J, Dubovik O. 2005. Testing the modis satellite retrieval of aerosol fine-mode fraction. Journal of Geophysical Research-Atmospheres 110(D18).

Artaxo P, Gerab F, Yamasoe MA, Martins JV. 1994. Fine mode aerosol composition at 3 long-term atmospheric monitoring sites in the amazon basin. Journal of Geophysical Research-Atmospheres 99(D11): 22857-22868.

Balasubramanian R, Qian WB, Decesari S, Facchini MC, Fuzzi S. 2003. Comprehensive characterization of pm2.5 aerosols in singapore. Journal of Geophysical Research-Atmospheres 108(D16).

Begum BA, Biswas SK, Hopke PK. 2006. Temporal variations and spatial distribution of ambient pm2.2 and pm10 concentrations in dhaka, bangladesh. The Science of the total environment 358(1-3): 36-45.

Begum BA, Biswas SK, Hopke PK. 2008. Assessment of trends and present ambient concentrations of pm2.2 and pm10 in dhaka, bangladesh. Air Quality, Atmosphere and Health 1: 125-133.

Brown KW, Bouhamra W, Lamoureux DP, Evans JS, Koutrakis P. 2008. Characterization of particulate matter for three sites in kuwait. Journal of the Air & Waste Management Association 58(8): 994-1003.

Carrico CM, Bergin MH, Shrestha AB, Dibb JE, Gomes L, Harris JM. 2003. The importance of carbon and mineral dust to seasonal aerosol properties in the nepal himalaya. Atmospheric Environment 37(20): 2811-2824.
Castanho ADA, Artaxo P. 2001. Wintertime and summertime sao paulo aerosol source apportionment study. Atmospheric Environment 35(29): 4889-4902.

Chowdhury M. 2004. Characterization of fine particle air pollution in the indian subcontinent. PhD Dissertation, Georgia Institute of Technology.

Chuersuwan N, Nimrat S, Lekphet S, Kerdkumrai T. 2008. Levels and major sources of pm2.5 and pm10 in bangkok metropolitan region. Environment International 34(5): 671-677.

Cohen DD, Garton D, Stelcer E, Wang T, Poon S, Kim J, et al. 2002. Characterisation of pm2.5 and pm10 fine particle pollution in several asian regions. 16th Int Clean Air Conf.

Diner DD, Braswell BH, Davies R, Gobron N, Hu J, Jin Y, et al. 2005. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment 97: 495-518.

Duan FK, He KB, Ma YL, Yang FM, Yu XC, Cadle SH, et al. 2006. Concentration and chemical characteristics of pm2.5 in beijing, china: 2001-2002. Science of the Total Environment 355(1-3): 264-275.

Dunlea EJ, DeCarlo PF, Aiken AC, Kimmel JR, Peltier RE, Weber RJ, et al. 2009. Evolution of asian aerosols during transpacific transport in intex-b. Atmospheric Chemistry and Physics 9: 7257-7287.

Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM. 2004. Qualitative and quantitative evaluation of modis satellite sensor data for regional and urban scale air quality. Atmospheric Environment 38(16): 2495-2509.

Fairlie TD, Jacob DJ, Park RJ. 2007. The impact of transpacific transport of mineral dust in the united states. Atmospheric Environment 41(6): 1251-1266.

Feng Y, Chen Y, Guo H, Zhi G, Xiong S, Li J, et al. 2009. Characteristics of organic and elemental carbon in pm2.5 samples in shanghai, china. Atmospheric Research 92(4): 434-442.

Gouveia N, Junger W, Ponce de Leon A, Miranda R, Hurtado M, Rojas L, et al. 2008. Air pollution and mortality in latin america: Results from the escala project (multi-city study of air pollution and health effects in latin america). In: Health Effects Institute Annual Conference.

He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK, et al. 2001. The characteristics of pm2.5 in beijing, china. Atmospheric Environment 35(29): 4959-4970.

Heald CL, Jacob DJ, Park RJ, Russell LM, Huebert BJ, Seinfeld JH, et al. 2005. A large organic aerosol source in the free troposphere missing from current models. Geophysical Research Letters 32(18).
Ho KF, Cao JJ, Lee SC, Chan CK. 2006. Source apportionment of pm2.5 in urban area of Hong Kong. Journal of Hazardous Materials 138(1): 73-85.

Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, et al. 1998. Aeronet - a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment 66(1): 1-16.

Hopke PK, Cohen DD, Begum BA, Biswas SK, Ni BF, Pandit GG, et al. 2008. Urban air quality in the Asian region. Science of the Total Environment 404(1): 103-112.

Hu Z. 2009. Spatial analysis of MODIS aerosol optical depth, pm2.5 and chronic coronary heart disease. International Journal of Health Geographics 8:27.

Jacob DJ. 2000. Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment 34(12-14): 2131-2159.

Kahn R, Nelson D, Garay M, Levy R, Bull M, Diner DD, et al. 2009. MISR aerosol product attributes, and statistical comparisons with MODIS. Transactions on Geoscience and Remote Sensing.

Kahn RA, Gaitley BJ, Martonchik JV, Diner DJ, Crean KA, Holben B. 2005. Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident aerosol robotic network (AERONET) observations. Journal of Geophysical Research-Atmospheres 110(D10).

Karaca F, Alagha O, Ertürk F. 2005. Statistical characterization of atmospheric PM10 and PM2.5 concentrations at a non-impacted suburban site of Istanbul, Turkey. Chemosphere 59(8): 1183-1190.

Karaca F, Alagha O, Erturk F, Yilmaz YZ, Ozkara T. 2008. Seasonal variation of source contributions to atmospheric fine and coarse particles at suburban area in Istanbul, Turkey. Environmental Engineering Science 25(5): 767-781.

Kim YJ, Kim KW, Kim SD, Lee BK, Han JS. 2006. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. In: Atmospheric Environment. Oxford: Pergamon, 593.

Kothai P, Saradhi IV, Prathibha P, Hopke PK, Pandit GG, Puranik VD. 2008. Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol and air quality research 8(4): 423-436.

Kouyoumdjian H, Saliba NA. 2006. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: Effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride. Atmospheric Chemistry and Physics 6: 1865-1877.

Kumar N, Chu A, Foster A. 2007. An empirical relationship between PM2.5 and aerosol optical depth in Delhi metropolitan. Atmospheric Environment 41(21): 4492-4503.
Kumar R, Joseph AE. 2006. Air pollution concentrations of pm2.5, pm10 and no2 at ambient and kerbsite and their correlation in metro city - mumbai. Environmental monitoring and assessment 119(1-3): 191-199.

Laakso L, Laakso H, Aalto PP, Keronen P, Petaja T, Nieminen T, et al. 2008. Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean southern african savannah environment. Atmospheric Chemistry and Physics 8(16): 4823-4839.

Levy R, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Eck TF. 2009. Global evaluation of the collection 5 modis aerosol products over land and ocean. Atmospheric Chemistry and Physics Discussions.

Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ. 2007. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. Journal of Geophysical Research-Atmospheres 112(D13).

Liao H, Henze DK, Seinfeld JH, Wu SL, Mickley LJ. 2007. Biogenic secondary organic aerosol over the united states: Comparison of climatological simulations with observations. Journal of Geophysical Research-Atmospheres 112(D6).

Lin JJ. 2002. Characterization of the major chemical species in pm2.5 in the kaohsiung city, taiwan. Atmospheric Environment 36(12): 1911-1920.

Liu HY, Jacob DJ, Bey I, Yantosca RM. 2001. Constraints from pb-210 and be-7 on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research-Atmospheres 106(D11): 12109-12128.

Liu Y, Koutrakis P, Kahn R. 2007. Estimating fine particulate matter component concentrations and size distribution using satellite-retrieved fractional aerosol optical depth: Part 1 - method development. Journal of Air & Waste Management Association 57(11): 1351-1359.

Lucht W, Schaaf CB, Strahler AH. 2000. An algorithm for the retrieval of albedo from space using semiempirical brdf models. Ieee Transactions on Geoscience and Remote Sensing 38(2): 977-998.

Mariani RL, de Mello WZ. 2007. Pm2.5-10, pm2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of rio de janeiro. Atmospheric Environment 41(13): 2887-2892.

Martin RV, Jacob DJ, Yantosca RM, Chin M, Ginoux P. 2003. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical Research-Atmospheres 108(D3).
Martonchik JV, Diner DJ, Crean KA, Bull MA. 2002. Regional aerosol retrieval results from misr. IEEE Transactions on Geoscience and Remote Sensing 40(7): 1520-1531.

Martonchik JV, Kahn RA, Diner DJ. 2009. Retrieval of aerosol properties over land using misr observations. In: Satellite aerosol remote sensing over land (Kokhanovsky AA, Leeuw Gd, eds). Berlin: Springer.

Minoura H, Takahashib K, Chow JC, Watson JG. 2006. Multi-year trend in fine and coarse particle mass, carbon, and ions in downtown tokyo, japan. Atmospheric Environment 40(14): 2478-2487.

Nassar R, Logon JA, Megretskaia IA, Murray LT, Zhang L, Jones DBA. 2009. Analysis of tropical tropospheric ozone, carbon monoxide and water vapor during the 2006 el niño using tes observations and the geos-chem model. Journal of Geophysical Research-Atmospheres in press.

Oanh NTK, Upadhyaya N, Zhuang YH, Hao ZP, Murthy DVS, Lestari P, et al. 2006. Particulate air pollution in six asian cities: Spatial and temporal distributions, and associated sources. Atmospheric Environment 40(18): 3367-3380.

Park E-j, Kim D-s, Park K. 2008. Monitoring of ambient particles and heavy metals in a residential area of seoul, korea. Environmental monitoring and assessment 137(1-3): 441-449.

Park RJ, Jacob DJ, Chin M, Martin RV. 2003. Sources of carbonaceous aerosols over the united states and implications for natural visibility. Journal of Geophysical Research-Atmospheres 108(D12).

Park RJ, Jacob DJ, Field BD, Yantosca RM, Chin M. 2004. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the united states: Implications for policy. Journal of Geophysical Research-Atmospheres 109(D15).

Park RJ, Jacob DJ, Kumar N, Yantosca RM. 2006. Regional visibility statistics in the united states: Natural and transboundary pollution influences, and implications for the regional haze rule. Atmospheric Environment 40(28): 5405-5423.

Pye HOT, Liao H, Wu S, Mickley LJ, Jacob DJ, Henze DK. in press. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the united states. Journal of Geophysical Research.

Remer LA, Kaufman YJ, Tanre D, Mattoo S, Chu DA, Martins JV, et al. 2005. The modis aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences 62(4): 947-973.

Romieu I, Gouveia N, Cifuentes L, Ponce de Leon A, Junger W, Miranda V, et al. 2009. Mortality effects of air pollution in latin american cities: Results from the escala study. In: Health Effects Institute Annual Conference.
Saliba NA, Kouyoumdjian H, Roumié M. 2007. Effect of local and long-range transport emissions on the elemental composition of pm10-2.5 and pm2.5 in beirut. Atmospheric Environment 41(31): 6497-6509.

Schaap M, Apituley A, Timmermans RMA, Koelemeijer RBA, de Leeuw G. 2008. Exploring the relation between aerosol optical depth and pm2.5 at cabauw, the netherlands. Atmospheric Chemistry and Physics Discussions 8: 17939-17986.

Sheehan PE, Bowman FM. 2001. Estimated effects of temperature on secondary organic aerosol concentrations. Environmental Science & Technology 35(11): 2129-2135.

Soluri DS, Godoy MLDP, Godoy JM, Roldao LA. 2007. Multi-site pm2.5 and pm2.5-10 aerosol source apportionment in rio de janeiro, brazil. Journal of the Brazilian Chemical Society 18(4): 838-845.

van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AFJ. 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics 6: 3423-3441.

donkelaar A, Martin RV, Leaitch WR, Macdonald AM, Walker TW, Streets DG, et al. 2008. Analysis of aircraft and satellite measurements from the intercontinental chemical transport experiment (intex-b) to quantify long-range transport of east asian sulfur to canada. Atmospheric Chemistry and Physics 8(11): 2999-3014.

Vaughan M, Young S, Winker D, Powell K, Omar A, Liu Z, et al. 2004. Fully automated analysis of space-based lidar data: An overview of the calipso retrieval algorithms and data products. Proceedings of SPIE 5575: 16-30.

Ye B, Ji X, Yang H, Yao X, Chan CK, Cadle SH, et al. 2003. Concentration and chemical composition of pm2.5 in shanghai for a 1-year period. Atmospheric Environment 37(4): 499-510.

zakey AS, Abdel-Wahab MM, Pettersson JBC, Gatari M, Hallquist M. 2008. Seasonal and spatial variation of atmospheric particulate matter in a developing megacity, the greater cairo, egypt. Atmosfera 21(2): 171.

Zhao X, Zhang X, Xu X, Xu J, Meng W, Pu W. 2009. Seasonal and diurnal variations of ambient pm2.5 concentration in urban and rural environments in beijing. Atmospheric Environment 43(18): 2893-2900.

Zheng M, Salmon LG, Schauer JJ, Zeng LM, Kiang CS, Zhang YH, et al. 2005. Seasonal trends in pm2.5 source contributions in beijing, china. Atmospheric Environment 39(22): 3967-3976.
Table S-1: Additional PM$_{2.5}$ surface measurements used for comparison and their combined values. Source indicates all sources used to determine location value.

City/Site	Country	In-situ PM$_{2.5}$ (µg/m3)	Satellite-derived PM$_{2.5}$ (µg/m3)	Lat	Lon	Study Period	Number of Stations	Source
LIVERPOOL	AUSTRALIA	8.2	5	-33.9º	150.9º	2002-2005;2005;2005	1;1;1	(Hopke et al. 2008); Environment Protection and Heritage Council; Environment Protection and Heritage Council
LUCAS HEIGHTS	AUSTRALIA	5.7	3.1	-34º	151º	2002-2005;2005	1;1	(Hopke et al. 2008); Environment Protection and Heritage Council
DHAKA	BANGLADESH	33.7	23.9	23.8º	90.4º	2000-2003;2005	1;1;1	(Begum et al. 2006); (Begum et al. 2008)
DHAKA	BANGLADESH	28.7	26.2	23.7º	90.4º	2002-2005	1;1	(Hopke et al. 2008)
CUIABA	BRAZIL	10.5	10.7	-15.6º	-56.1º	Jul 1991 - Feb 1993	1	(Artaxo et al. 1994)
RIO DE JANEIRO	BRAZIL	17	7.1	-22.9º	-43.1º	Oct 1998 - Sep 1999	1	(Mariani and de Mello 2007)
RIO DE JANEIRO	BRAZIL	10	5	-22.9º	-43.4º	Sep 2003 - Sept 2004	10	(Soluri et al. 2007)
SAO PAULO	BRAZIL	22.6	8.8	-23.5º	-46.5º	Jul 1997-March 1998	2	(Castanho and Artaxo 2001)
SERRA DO NAVIO	BRAZIL	9.9	6.4	1º	-52º	Nov 1991 - Apr 1993	1	(Artaxo et al. 1994)
BANGKOK	CHINA	36.6	23.6	13.8º	100.5º	2001-2004;Feb 2002 - Jan 2003 Aug 2001-Sep 2002;2002;2000;2001-2004	1;3	(Oanh et al. 2006); (Chuersuwan et al. 2008)
BEIJING	CHINA	114.1	97.3	39.9º	116.4º	2001-2004	2;5;1	(Duan et al. 2006); (Zheng et al. 2005); (Oanh et al. 2006)
BEIJING	CHINA	121	99.6	39.8º	116.5º	Jul 1999- Sep 2000	2	(He et al. 2001)
BEIJEING	CHINA	35.6	96.1	39.9º	116.3º	2002-2004	1	(Hopke et al. 2008)
BEIJING	CHINA	127.5	97	39.9º	116.5º	unknown	8	(Zhang et al. 2009)
BEIJING	CHINA	87.7	90.4	39.9º	116.3º	2005-2007	1	(Zhao et al. 2009)
BEIJING	CHINA	54.2	29.6	40.6º	117.1º	2005-2007	1	(Zhao et al. 2009)
BEIJING-SUBURBAN	CHINA	42.1	87.2	39.7º	116º	2003-2004	1	(Hopke et al. 2008)
GUANGZHOU	CHINA	97.3	79.3	23.1º	113.1º	unknown	2	(Zhang et al. 2009)
HONG KONG	CHINA	42.8	45.4	22.3º	114.2º	Nov 2000-Feb 2001; Jun-Aug 2001	2	(Ho et al. 2006)
HONG KONG	CHINA	47.4	44.5	25.2º	115.1º	unknown	2	(Zhang et al. 2009)
SHANGHAI	CHINA	92.9	95.8	31.3º	121.3º	2005-2006	2	(Feng et al. 2009)
SHANGHAI	CHINA	59.6	65.9	31.2º	121.5º	1999	2	(Ye et al. 2003)
SHANGHAI	CHINA	78.6	98.1	31.1º	121.3º	unknown	3	(Zhang et al. 2009)
City	Country	Latitude	Longitude	Temperature	Dates	Authors		
--------------	-----------	----------	-----------	--------------	----------------------------	--		
Cairo	Egypt	30° 31.4°	30° 31.3°	Fall/Winter 1999; Summer 2002	2001-2002, 2001-2004, 2002-2003	(Abu-Allaban et al. 2007)		
Cairo	Egypt	30° 31.3°	30° 31.4°	Mar 2001 - Jan 2002, Jul-Dec 2003	1; 1; 1, 113	(Zakey et al. 2008)		
Chennai	India	13° 80.3°	13° 80.3°	Mar 2001 - Jan 2002, Jul-Dec 2003	1; 1	(Oanh et al. 2006); (Kumar and Joseph 2006)		
Delhi	India	28° 77.1°	28° 77.1°	Mar 2001 - Jan 2002, Jul-Dec 2003	1; 1	(The World Bank 2004); (Chowdhury 2004); (Kumar et al. 2007)		
Kolkata	India	18° 72.8°	18° 72.8°	Apr 2003 - Mar 2004	1	(Kumar et al. 2007)		
Mumbai	India	19° 72.8°	19° 72.8°	2002-2005	1	(Hopke et al. 2008)		
Mumbai	India	19° 72.9°	19° 72.9°	2002-2005	1	(The World Bank 2004); (Chowdhury 2004)		
Mumbai	India	22° 88.3°	22° 88.3°	Mar 2001 - Jan 2002	1; 1	(Kothai et al. 2008)		
Mumbai	India	18° 73°	18° 73°	Annual	1	(Kothai et al. 2008)		
Bandung	Indonesia	-6° 107°	-6° 107°	2001-2004, 2002-2005	1; 1	(Oanh et al. 2006); (Hopke et al. 2008)		
Lembang	Indonesia	-6° 107°	-6° 107°	2002-2005	1	(Hopke et al. 2008)		
Tokyo	Japan	35° 139°	35° 139°	2001-2004	1	(Minoura et al. 2006)		
Daegu	Korea	36° 127°	36° 127°	2002-2005	1	(Hopke et al. 2008)		
Seoul	Korea	37° 126°	37° 126°	2002-2004	2	(Kim et al. 2006)		
Seoul	Korea	39° 126°	39° 126°	2005-2006	1	(Park et al. 2008)		
Kuwait	Kuwait	29° 101°	29° 101°	Feb 2004 - Jul 2005	3	(Brown et al. 2008)		
Beirut	Lebanon	33° 104°	33° 104°	2003-2004	1; 1	(Sheehan and Bowman 2001); (Kouyoumdjian and Saliba 2006); (Saliba et al. 2007)		
Kuala Lumpur	Malaysia	3° 101°	3° 101°	2005	1	(Hopke et al. 2008)		
Kathmandu	Nepal	27° 85.5°	27° 85.5°	Dec 1998-Oct 2000	2	(Carrico et al. 2003)		
Cabauw	Netherlands	52° 4°	52° 4°	Aug 2006 - May 2007	1	(Schaap et al. 2008)		
Islamabad	Pakistan	33° 73°	33° 73°	2002-2004	1	(Hopke et al. 2008)		
Ateneo	Philippines	14° 121°	14° 121°	2002-2005, 2004-Apr-Dec 2001	1; 1	(Hopke et al. 2008); (Oanh et al. 2006); (Cohen et al. 2002)		
Singapore	Singapore	1.3° 104°	1.3° 104°	Jan-Dec 2000	1	(Balasubramanian et al. 2003)		
Boitsalano	South Africa	-25.5° 25.8°	-25.5° 25.8°	July 2006-July 2007	1	(Laakso et al. 2008)		
AEA	Sri Lanka	6° 79.9°	6° 79.9°	2002-2005	1	(Hopke et al. 2008); (Lin 2002)		
Kaohsiung	Taiwan	22.6° 120.3°	22.6° 120.3°	Nov 1998-Apr 1999	6	(Hopke et al. 2008)		
Bangkok	Thailand	13.8° 100.5°	13.8° 100.5°	2002-2005	1	(Hopke et al. 2008)		
Pathum Thani	Thailand	14° 100.5°	14° 100.5°	2003-2005	1	(Hopke et al. 2008)		
Istanbul	Turkey	41° 28.6°	41° 28.6°	Jul 2002 - Jul 2003	1	(Karaca et al. 2005; Karaca et al. 2008)		
City	Country	Lat.	Long.	Latitude	Longitude	Year Range	Data Source	
----------	-------------	------	-------	----------	-----------	--------------	---------------------	
HANOI	VIETNAM	53.3	49.5	21°	105.8°	Jan - Dec 2001; 2001-2004; 2002-2005	1:1:1	

(Cohen et al. 2002); (Oanh et al. 2006); (Hopke et al. 2008)
Table S-2: Comparison of simulated and satellite-derived PM$_{2.5}$ with ground-based measurements.a

Region	Data Source	Resolution	slope	bias [µg/m3]	r	n
North Americab,e	Satellite	$0.1^\circ \times 0.1^\circ$	1.07	-1.75	0.77	1057
	Satellite	$2^\circ \times 2.5^\circ$	0.94	0.38	0.82	190
	Simulation	$2^\circ \times 2.5^\circ$	1.04	-1.54	0.83	117
E. North Americab,e	Satellite	$0.1^\circ \times 0.1^\circ$	1.20	-3.40	0.74	798
	Satellite	$2^\circ \times 2.5^\circ$	1.34	-3.80	0.92	117
	Simulation	$2^\circ \times 2.5^\circ$	0.69	1.39	0.67	259
W. North Americab,e	Satellite	$0.1^\circ \times 0.1^\circ$	0.63	0.76	0.53	73
	Satellite	$2^\circ \times 2.5^\circ$	0.49	2.40	0.40	73
	Simulation	$2^\circ \times 2.5^\circ$	0.83	2.40	0.40	73
Globalc,e	Satellite	$0.1^\circ \times 0.1^\circ$	0.86	1.15	0.83	244
	Satellite	$2^\circ \times 2.5^\circ$	0.59	4.37	0.75	244
	Simulation	$2^\circ \times 2.5^\circ$	0.54	8.89	0.63	244
Global (non-EU)d,e	Satellite	$0.1^\circ \times 0.1^\circ$	0.91	-2.64	0.83	84
	Satellite	$2^\circ \times 2.5^\circ$	0.64	0.78	0.76	84
	Simulation	$2^\circ \times 2.5^\circ$	0.60	2.45	0.72	84

a All PM$_{2.5}$ data are averaged within the sampling resolution. A minimum of 50 measurements for each point.

b North American ground measurements are coincidently sampled with both satellite and simulated values.

c Global excludes North American sites.

d Global (non-EU) additionally excludes European sites.

e NA and Global comparisons are conducted at 35% and 50% relative humidity, respectively, for appropriate comparison with ground measurements.
Figure Legends

Figure S-1: Sample of albedo ratio zones, or surface types, used for AOD filtration. The top panel shows zone definitions for July. Marker positions and colors indicate AERONET locations and zones. Acceptable agreement (within 0.1 or 20%) of AERONET and MODIS (+), MISR (×) or both (*) AOD retrievals is shown at each site. An ‘o’ indicates neither satellite retrieval meets this criteria. The bottom row compares AERONET and unfiltered satellite AOD for all months within the predominant zones. MODIS AOD are denoted by blue ‘+’ and MISR AOD by red ‘×’. Agreement of 0.1 or 20% lie within the black dotted lines.

Figure S-2: Number of months remaining from the MODIS and MISR AOD retrievals after filtering to remove bias. Points denote AERONET stations used for bias identification.

Figure S-3: Vertically-resolved aerosol optical depth (AOD) from the top of the atmosphere to the given altitude (z). Red lines show values retrieved from the CALIPSO (CAL) satellite instrument over June-December 2006. Blue lines show values simulated with GEOS-Chem (GC) and sampled coincidently with CALIPSO. Cyan lines denote simulated mixed layer height. Percentages give fraction of AOD within the mixed layer. Regions are defined in Figure 6 of the main article. Error bars give one standard deviation.

Figure S-4: Comparison of coincidently sampled satellite-estimated and simulated PM$_{2.5}$. Satellite-estimated PM$_{2.5}$ has been degraded to a resolution of 2º × 2.5º.
Figure S-1: Sample of albedo ratio zones, or surface types, used for AOD filtration. The top panel shows zone definitions for July. Marker positions and colors indicate AERONET locations and zones. Acceptable agreement (within 0.1 or 20%) of AERONET and MODIS (+), MISR (×) or both (*) AOD retrievals is shown at each site. An ‘o’ indicates neither satellite retrieval meets this criteria. The bottom row compares AERONET and unfiltered satellite AOD for all months within the predominant zones. MODIS AOD are denoted by blue ‘+’ and MISR AOD by red ‘×’. Agreement of 0.1 or 20% lie within the black dotted lines.
Figure S-2: Number of months of MODIS and MISR AOD included in satellite-derived PM$_{2.5}$ estimate. Points denote AERONET stations used for bias identification.
Figure S-3: Vertically-resolved aerosol optical depth (AOD) from the top of the atmosphere to the given altitude (z). Red lines show values retrieved from the CALIPSO (CAL) satellite instrument over June-December 2006. Blue lines show values simulated with GEOS-Chem (GC) and sampled coincidently with CALIPSO. Cyan lines denote simulated mixed layer height. Percentages give fraction of AOD within the mixed layer. Regions are defined in Figure 6 of the main article. Error bars give one standard deviation.
Figure S-4: Comparison of coincidently sampled satellite-estimated and simulated PM$_{2.5}$. Satellite-estimated PM$_{2.5}$ has been degraded to a resolution of 2º × 2.5º.