A COMPACT BINARY MERGER MODEL FOR THE SHORT, HARD GRB 050509b

WILLIAM H. LEE*, ENRICO RAMIREZ-RUIZ† AND JONATHAN GRANOT‡

Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540

Draft version March 20, 2022

ABSTRACT

The first X–ray afterglow for a short (~ 30 ms), hard γ–ray burst was detected by Swift on 9 May 2005 (GRB 050509b). No optical or radio counterpart was identified in follow–up observations. The tentative association of the GRB with a nearby giant elliptical galaxy at redshift \(z = 0.2248 \) would imply a total energy release \(E_{\gamma,\text{iso}} \approx 3 \times 10^{48} \text{ erg} \), and that the progenitor had traveled several tens of kpc from its point of origin, in agreement with expectations linking these events to the final merger of compact binaries driven by gravitational wave emission. We model the dynamical merger of such a system and the time–dependent evolution of the accretion tori thus created. The resulting energetics, variability, and expected durations are consistent with GRB 050509b originating from the tidal disruption of a neutron star by a stellar mass black hole, or of the merger of two neutron stars followed by prompt gravitational collapse of the massive remnant. We discuss how the available γ–ray and X–ray data provide a probe for the nature of the relativistic ejecta and the surrounding medium.

Subject headings: binaries: close — stars: neutron — gamma-rays: bursts

1. INTRODUCTION

Classical γ–ray bursts (GRBs) naturally divide into two classes based on their duration and spectral properties (Kouveliotou et al. 1993): short/hard (\(t < 2 \text{ s} \)), and long/soft (\(t > 2 \text{ s} \)) bursts. Through the impetus of the BeppoSAX satellite, it became clear that those of the long variety signal the catastrophic collapse of massive, rapidly rotating stars (Woosley 1993) at high redshift (Metzger et al. 1997). The nature of short events (about 1/3 of the total), is still undefined, but the merger of two compact objects in a tight binary, as will occur in PSR1913+16 (Hulse & Taylor 1975) and PSRJ0737-3039 (Burgay et al. 2005) in 300 Myr and 85 Myr respectively, has long been considered a prime candidate for a progenitor (Paczynski 1986; Eichler et al. 1989). The short duration of the prompt γ–ray emission, however, precluded determination of accurate positions and follow–up observations, until now.

A breakthrough came on 9 May 2005, when Swift succeeded in promptly localizing GRB 050509b, a short burst lasting only \(t_{50} \sim 30 \text{ ms} \) (Gehrels et al. 2003, Bloom et al. 2005). The fast response allowed for an accurate position determination and a rapidly fading X–ray source was located, falling below detection within \(\sim 300 \text{ s} \). For the next few days several multiwavelength observations were made, but unfortunately no optical or radio afterglow was detected. Although the issue of a host and its implications for the distance scale remain to be resolved, initial reports of a giant elliptical galaxy at redshift \(z = 0.2248 \) (GRB 050509b). No optical or radio afterglow was detected. The tentative association of the GRB with a nearby giant elliptical galaxy at redshift \(z = 0.2248 \) thus presents us with the unique opportunity, to which this Letter is devoted, to constrain this scenario, both from the prompt γ–ray emission and the afterglow. In §2 we address the energetics and timescales which can be expected for the merger of two compact objects based on recent calculations, and compare them with the data for GRB 050509b. In §3 we constrain the properties of the ejecta and the external medium by using the information available to us from both the afterglow and prompt emission, considering both the distance scale of the tentative host galaxy and a higher redshift. Our findings are summarized in §4.

2. ENERGETICS AND INTRINSIC TIME SCALES OF THE TRIGGER

It has long been assumed (Lattimer & Schramm 1974) that the merger of a black hole–neutron star (BH-NS) or double neutron star (NS-NS) binary would result in the formation of an accretion disk with enough mass and internal energy to account for the energetics of a typical GRB, through tidal disruption of the neutron star in the former, or post–merger collapse of the central core in the latter. Calculations supporting this view have been carried out in the Newtonian regime, resulting in disks with \(n_d \approx 0.3 M_\odot, kT \approx 10 \text{ MeV}, \rho \approx 10^{-11} \text{ g cm}^{-3} \), which could power a GRB (Ruffert et al. 1996, Kluźniak & Lee 1998, Rosswog et al. 2002). General Relativity (GR) is certain to play a role, but gauging its effects is not an easy task. The star could plunge directly into the black hole and be accreted whole in a matter of a millisecond (Miller 2005), precluding the production of a GRB 10 to 100 times longer. Pseudo–Newtonian simulations (Rosswog 2005) and post-Newtonian orbital evolution estimates (Prakash et al. 2004), however, reveal that the star is frequently distorted enough by tidal forces that disk–like structures and long, partially unbound tidal tails can form. The outcome is sensitive to the mass ratio \(q = M_{\text{NS}}/M_{\text{BH}} \) and it appears that rotating BHs favor the creation of disks (Taniguchi et al. 2005). For mass ratios \(q \approx 0.25 \) it is possible to form a disk\(^2\), although of lower mass than previously estimated, although the issue of a host and its implications for the distance scale remain to be resolved, initial reports of a giant elliptical galaxy at redshift \(z = 0.2248 \sim 3.2 M_\odot \), and for \(q \approx 0.25 \) of them (44%), average values yield \(6.5 < M_{\text{BH}}/M_\odot < 7.5 \) (McClintock & Remillard 2003).
thought, \(m_d \approx 10^{-2} M_\odot \).

To better estimate the mass of the disk (which will crucially affect the energetics) and the circumstances under which it may form, we have extended our study of merging BH-NS pairs using a pseudo–Newtonian potential in three dimensions (Lee & Kluzniak 1999) and summarize our new results in Table I. A relatively narrow, but not unlikely range of parameters allows for the formation of a small disk, with \(m_d \approx 3 \times 10^{-2} M_\odot \). Mass ratios higher that 1/3 are unlikely to occur, and if \(q \leq 0.1 \) only a wide, relatively cold arc–like structure is formed. The densities and temperatures in the resulting disks are \(\rho \approx 10^{10} – 10^{11} \) g cm\(^{-3} \) and \(KT \approx 2 – 5 \) MeV. We have considered the stiffness of the nuclear equation of state as a parameter by using polytropes with various indices in the range \(5/3 \leq \Gamma \leq 2 \). The standard mass for the neutron star is \(1.4 M_\odot \).

In the case of merging neutron stars (Shibata et al. 2005), a low–mass disk (with \(\approx 1\% \) of the total mass) may survive once the supra–massive remnant collapses because of gravitational wave emission on a time scale shorter than \(\approx 100 \) ms, and release up to \(10^{50} \) erg in neutrinos. In addition, the merger process and the collapse itself would likely produce a signal of their own (Rosswog & Ramirez–Ruiz 2002).

Once a disk is formed, the energy output depends on its initial mass, \(m_d \) and temperature. We have recently calculated (Lee et al. 2005) a realistic set of time-dependent models for their dynamical evolution, covering the typical duration time scales of short GRBs (up to one second). These 2D models make use of a Smooth Particle Hydrodynamics (SPH) code in azimuthal symmetry and include an accurate equation of state which considers photodisintegration, neutronization, and a relativistic Fermi gas of arbitrary degeneracy, as well as neutrino cooling and finite optical depths to neutrinos. From the resulting neutrino luminosities we have computed the total energy deposition that could drive a relativistic outflow through \(\nu \tau \) annihilation, assuming a 1% efficiency at \(\nu L_\nu = 10^{53} \) erg s\(^{-1} \) (Popham et al. 1999) and its duration. The results for various disk masses and effective \(\alpha \)-disk viscosities are shown in Figure II (joined square symbols), along with the energy–duration curve for GRB 050509b constrained by the redshift. The total output \(E_{\nu \tau} \approx 10^{49} [m_d/0.03 M_\odot]^2 \) erg, is roughly independent of the inferred duration, which increases with decreasing disk viscosity since the overall evolution is slower (see Lee et al. 2005). The strong dependence on disk mass reflects the sensitivity of the neutrino emission rates on temperature (\(e^\pm \) capture on free nucleons dominates the cooling rate, with emissivity \(\dot{q} \propto \rho T^6 \)).

Magically dominated outflows may alternatively tap the disk energy through the Blandford–Znajek mechanism. Our estimates are shown in Figure II (round symbols), assuming equipartition of the magnetic field energy density and the internal energy of the fluid in the inner disk. The energy flux is sensitive primarily to the equatorial flow density. It is thus initially roughly constant, then drops on an accretion (i.e. viscous) timescale. This explains the energy–duration correlation in Figure II. Since the observed flux sets the threshold for burst detection, neutrino powered events will enhance the relative importance of shorter events (since \(E_{\nu \tau} \sim const \), then \(L_{\nu \tau} \sim \tau^{-1} \)), while magnetically dominated short GRBs more truthfully reflect the underlying intrinsic distribution (since \(L_{\nu \tau} \sim const \), then \(E_{\nu \tau} \propto \tau \)–4). Relaxing the assumption of full equipartition will lower the total energy budget accordingly. The dependence on disk mass is different, with \(E_{\nu \tau} \approx 5 \times 10^{49} [m_d/0.03 M_\odot] [\alpha/10^{-1}]^{-0.55} \) erg. Our estimates assume that whatever seed field was present has been amplified to the correspondingly high values extremely rapidly. Whether this will actually occur is unclear, particularly for the shortest events, as the field can grow only in a time scale associated with proto–neutron star–like convection or differential rotation in the case of the MRI.

3. CONSTRAINTS ON THE PROPERTIES OF THE EJECTA AND THE EXTERNAL MEDIUM

The afterglow of GRB 050509b was detected by the Swift XRT during an observation which started 62 s after the burst and lasted 1.6 ks (Bloom et al. 2005) with a flux of \(F_{\gamma} \approx 7 \times 10^{-13} \) erg cm\(^{-2} \) s\(^{-1} \) in the 0.2 – 10 keV range at \(t = 200 \) s, and a temporal decay index \(\alpha \approx 1.3^{-0.3} \), where \(F_{\gamma} \propto t^{-\alpha} \). The numerous upper limits in the optical and few upper limits in the radio are not very constraining for the theoretical models (see Bloom et al. 2005). The fact that the X-ray flux was

Table 1

Disk formation in BH-NS mergers.

\(\frac{M_{NS}}{M_{BH}} \)	\(q \)	\(m_d/M_\odot \)	\(m_{\text{iso}}/M_\odot \)
0.3	5/3	0.03	0.05
0.2	5/3	0.03	0.05
0.1	5/3	–	0.01
0.3	2.0	0.04	0.1
0.2	2.0	0.03	0.1
0.1	2.0	–	0.02

Figure 1.

Top: Histogram of observed short–hard burst durations taken from Paciesas et al. (1999). Bottom: Comparison of the energy–duration relation as a function of redshift for GRB 050509b (black line) with estimates from compact binary mergers. The square (round) joined symbols show the total isotropic energy release (assuming collimation of the outflow into \(\Omega_{\text{BZ}} = 4\pi/10 \)) and duration (\(t_{\text{BZ}} \)) for \(\nu \tau \) annihilation (Blandford–Znajek)–powered bursts, as computed from our 2D disk evolution models. The range in initial disk mass covers one order of magnitude and the effective disk viscosities are \(\alpha \approx 10^{-1}, 10^{-2}, 10^{-3} \) (left to right). Many of the estimates are lower limits because at the end of our calculations not enough mass had drained from the disk for the luminosity to drop appreciably. The stars correspond to \(\nu \tau \)–driven outflows in NS–NS mergers, computed by Rosswog & Liebendorfer 2003.
already decaying at $t > 60$ s implies $t_{\text{dec}} < 60$ s, where

$$t_{\text{dec}} = (1 + z) \frac{R_{\text{dec}}}{2c\Gamma_0^2} = 42(1 + z) \left(\frac{E_{51}}{n_0} \right)^{1/3} \left(\frac{\Gamma_0}{100} \right)^{-8/3} \text{s}$$

(1)

and $R_{\text{dec}} = (3E_{51}/4\pi n_0 m_pc^2\Gamma_0^2)^{1/3}$ are the observed time and radius where the outflow decelerates significantly, Γ_0 is the initial Lorentz factor, $n = n_0 \text{ cm}^{-3}$ is the external density and $E_{k,\text{iso}} = 10^{51} E_{51} \text{ erg}$ is the isotropic equivalent kinetic energy. That is $\Gamma_0 = 87[t_{\text{dec}}/(1 + z)60\text{s}]^{-3/8}(E_{51}/n_0)^{1/8}$.

3.1. Prompt Emission from Internal Shocks

Internal shocks typically occur at a radius $R_{\text{IS}} \approx 2\Gamma_0^2 c t_i$ where t_i is the variability time. Since GRB 050509b had a single peaked light curve (Gehrels et al. 2005), $t_i = T_{\text{GRB}}/(1 + z)$ where $T_{\text{GRB}} \approx 30$ ms is the observed burst duration. The Thompson optical depth is $\tau_\gamma = E_{51}\sigma_T/4\pi R_{\text{IS}}^2 m_pc^2\Gamma_0$. To see the prompt emission we need $\tau_\gamma(R_{\text{IS}}) < 1$ implying

$$\Gamma_0 > 100 E_{51}^{1/5} \left(\frac{t_i}{30 \text{ ms}} \right)^{-2/5}.$$

(2)

For internal shocks, the νF_ν spectrum peaks at

$$E_p = \frac{h\nu_m}{\sqrt{1 + \epsilon_B^2}} \left(\frac{E_{51}}{30 \text{ ms}} \right)^{1/2} \left(\frac{\Gamma_0}{100} \right)^{-2} \text{keV},$$

(3)

where $\epsilon_B = 10^{-2} \epsilon_B$ and $\epsilon_e = 0.1 \epsilon_e$ are the fractions of the internal energy behind the shock in the magnetic field and in relativistic electrons, respectively, $g = 3(p-2)/(p-1)$ and p is the power-law index for the electron energy distribution. Eqs. 2 and 3 imply

$$E_p < \frac{h\nu_m}{\sqrt{1 + \epsilon_B^2}} \left(\frac{E_{51}}{30 \text{ ms}} \right)^{1/2} \left(\frac{t_i}{30 \text{ ms}} \right)^{-1/5} \left(\frac{T_{\text{GRB}}}{30 \text{ ms}} \right)^{-1/2} \text{keV}.$$

(4)

The Swift BAT spectrum is $\nu F_\nu \propto \nu^{0.5 \pm 0.4}$ in the $15 - 350$ keV range (Barthelmy et al. 2005), implying $E_p > 300$ keV, which is hard to achieve for internal shocks (see Eq. 4). Possible ways of increasing E_p are if (i) the internal shocks are highly relativistic, rather than mildly relativistic as assumed above, or (ii) only a small fraction of the electrons are accelerated to relativistic energies (e.g. Ramirez-Ruiz & Lloyd-Ronning 2002). It is not clear how likely either of these options is. The constraints on the physical parameters in the internal shocks model are summarized in Fig. 2.

3.2. Prompt Emission from the External Shock

In this case $t_{\text{dec}} \approx T_{\text{GRB}} \approx 30$ ms, implying a very high $\Gamma_0 \approx 1500(E_{51}/n_0)^{1/8}$. Also, $E_p = \max(h\nu_m, h\nu_c)$ where

$$h\nu_m = 8.8 \epsilon_B^2 \epsilon_e^{-1/2} E_{51}^{1/2} (t_{\text{dec}}/30 \text{ ms})^{-3/2} \text{MeV},$$

(5)

$$h\nu_c = 25(1 + Y)^{-2} \epsilon_B \epsilon_e^{-3/2} n_0^{-1} E_{51}^{-1/2} (t_{\text{dec}}/30 \text{ ms})^{-1/2} \text{ keV},$$

(6)

and Y is the Compton γ-parameter. The value of E_p is reasonable and independent of n for $\nu_c < \nu_m$. This requires, however, sufficiently high values of n and $E_{k,\text{iso}}$.

In the external shock model the prompt emission and the afterglow are produced in the same physical region. It is thus instructive to check whether the extrapolation of the flux in the prompt emission to the XRT observation at $t \approx 200$ s reproduces the observed flux. The prompt fluence was $f \approx (2.3 \pm 0.9) \times 10^{-8}$ erg cm$^{-2}$ in the $15 - 350$ keV BAT range (Barthelmy et al. 2005) implying a γ-ray flux of $F_\gamma(20 \text{ ms}) \approx 10^{-6}$ erg cm$^{-2}$ s$^{-1}$. The spectral slope of $\nu F_\nu \propto \nu^{0.5 \pm 0.4}$ implies an X-ray flux of $F_X(20 \text{ ms}) \approx 2 \times 10^{-7}$ erg cm$^{-2}$ s$^{-1}$ in the $0.3 - 10$ keV XRT range. This, in turn, implies an average temporal decay index of $(-\alpha) \approx 1.3 - 1.4$ between 20 ms and 200 s. One might expect $\langle \alpha \rangle$ to be somewhat smaller, as the maximal value of α is $(3\Gamma - 2)/4$ (i.e. 1.375 for $\Gamma = 2.5$) at $\nu > \max(h\nu_m, h\nu_c)$ which is above 300 keV at 20 ms. This results in overproducing the flux at 200 s by a factor of $\sim 10 - 20$ for $\nu > 2.5$. The observed flux is reproduced for $\nu \approx 2.8$. Lower values of ν might still be possible if, e.g., there are significant radiative losses or a much higher ϵ_B in the very early afterglow.

4. DISCUSSION AND PROSPECTS

From the inferred energy per solid angle, simple blast-wave models seem able to accommodate the data on the afterglow of GRB 050509b. Constraints on the angle-integrated γ-ray emission are not very stringent — the outflow could be concentrated in a high Lorentz factor beam only a few degrees across, or actually be wider. Standard arguments concerning the opacity of a relativistically expanding fireball (Paczynski 1986) indicate that Lorentz factors $\Gamma \gtrsim 10^2$ are required, with a baryon loading no larger than $\sim 10^{-4} m_\odot$. As we have argued in Sari (1998) for GRB 050509b internal shocks face the prob-
lem of explaining the observed peak energy. With an external shock, the required Lorentz factor is high by usual standards, and such accelerations would accordingly require a remarkably low baryon loading close to the central engine.

Only detailed simulations in full GR will provide us with the details of the merger process in a compact binary. However, an approximate treatment using variable compressibility in the equation of state and a range of mass ratios leads to similar outcomes, suggesting that the creation of a dense torus is a robust result. If the central engine involves such a configuration, is it possible to discriminate between the alternate modes for its formation: compact merger or collapsar? Accurate localizations of further events should help to confirm or reject the latter option, since a collapsar would occur in or near a region of recent star formation, contrary to the expectations concerning compact object mergers (see § 1).

A more direct test would obviously be a detection, or lack thereof, of a supernova–like signature\(^4\) Bloom et al. 2005. Definitive and spectacular confirmation could come from the detection of a coincident gravitational wave signal in the 0.1–1 kHz range, since mass determinations in X–ray binaries and the binary pulsars indicate that in NS–NS systems mass ratios should be close to unity, whereas in BH–NS binaries they should be smaller than 1/3. Accurate measurement of the inspiral waveform in the LIGO band would allow simultaneous determination of the ratio of reduced to total system mass, \(\mu/M_T\) and of the "chirp" mass \(M_c = (m_1 m_2)^{3/5}/(M_T)^{1/5}\), from which the mass ratio can be derived.

GRB 050509b is the first event in the short class of bursts for which we have an accurate localization and a tentative distance indicator, based on an association with an elliptical galaxy at \(z = 0.2248\). At the inferred distance of \(\simeq 1\) Gpc, we have shown here that the energetics and duration can be accounted for by small, dense disks around stellar mass black holes, based on dynamical modeling of such systems. The lack of a SN–like signature in the optical at that distance (Hjorth et al. 2005) argues against a collapsar/hypernova progenitor. Putting GRB 050509b at a significantly higher redshift places more serious constraints not only due to the energetics, but particularly because of the short duration: at \(z = 3\), \(E_{\gamma,100} \approx 4.6 \times 10^{50}\ erg\) and \(t_{50} \approx 8\) ms (see Figures 1 and 2). This is hard to reconcile with the current models, and makes it unlikely that a collapsing stellar core is at the origin of GRB 050509b. The observed duration distribution of bursts may be affected by the mechanism responsible for the production of the relativistic outflow, with magnetically powered events more faithfully reflecting the intrinsic population. GRB 050509b is in many respects an unusual event, being so short and apparently sub–energetic.

Much progress has been made in understanding how \(\gamma\)-rays arise from the sudden deposition of energy in a small volume, and in deriving the properties of the afterglows that follow. The identity of short–burst progenitors remains a standing mystery, which further observations of events similar to GRB 050509b will hopefully help elucidate.

We thank J. Bloom, J. Hjorth, C. Kouveliotou, P. Kumar, D. Page, D. Pooley, J. Prochaska and S. Rosswog for helpful conversations. This work is supported by CONACyT-36632E (WHL), the DoE under contract DE-AC03-76SF00515 (JG), and NASA through a Chandra Fellowship award PF3-40028 (ER-R).

\(^4\) It is important to note that the natural time scale for a collapsing envelope to produce a GRB is given by the fall–back time, which is longer than a few seconds.

REFERENCES

Barthelmy, S., et al. 2005, GCN Circ. 3385
Bloom, J., Sigurdsson, S., Pols, O. R. 1999, MNRAS, 305, 763
Burgay, M. et al. 2005, submitted to ApJ [astro-ph/0504580]
Paczyński, B. 1986, ApJ, 308, L43
Popham, R., Woosley, S. E., Fryer C. L. 1999, ApJ, 518, 356
Prakash, M., Ratkov, S., Lattimer, J. M. 2004, J. Phys. G30, S1279-S1282
Ramirez–Ruiz, E., Lloyd–Ronning, N. M. 2002, NewA, 7, 197
Rosswog, S. 2005, preprint [astro-ph/0505007]
Rossow, S., Liebendorfer, M. 2003, MNRAS, 334, L7
Ruffert, M., Janka, H.-Th., Schäfer, 1996, A&A, 311, 532
Shibata, M., Taniguchi, M., Uryu, K. 2005, Phys. Rev. D71, 084021
Shibata, M., Taniguchi, M., Uryu, K. 2005, Phys. Rev. D71, 084021
Taniguchi, K., Baumgarte, T. W., Faber, J. A., Shapiro, S. L. 2005, PRD submitted [astro-ph/0505450]
Woosley, S. E. 1993, ApJ, 405, 273

Metal et al. 1997, Nature, 387, 878
Miller, M. C. 2005, ApJ, 626, L41
Paczyński, B. 1986, ApJ, 308, L43
Popham, R., Woosley, S. E., Fryer C. L. 1999, ApJ, 518, 356
Prakash, M., Ratkov, S., Lattimer, J. M. 2004, J. Phys. G30, S1279-S1282
Ramirez–Ruiz, E., & Lloyd–Ronning, N. M. 2002, NewA, 7, 197
Rossow, S. 2005, preprint [astro-ph/0505007]
Rossow, S., Davies, M. B. 2002, MNRAS, 334, 481
Rossow, S., Ramirez–Ruiz, E. 2002, MNRAS, 336, L7
Rossow, S., Liebendorfer, M. 2003, MNRAS, 342, L73
Ruffert, M., Janka, H.-Th., Schäfer, 1996, A&A, 311, 532
Shibata, M., Taniguchi, M., Uryu, K. 2005, Phys. Rev. D71, 084021
Taniguchi, K., Baumgarte, T. W., Faber, J. A., Shapiro, S. L. 2005, PRD submitted [astro-ph/0505450]
Woosley, S. E. 1993, ApJ, 405, 273