LIGHT-CURVE CALCULATIONS OF SUPERNOVAE FROM Fallback GAMMA-RAY Bursts

Chris L. Fryer, Aimee L. Hungerford, and Patrick A. Young

Received 2007 March 1; accepted 2007 May 7; published 2007 June 7

ABSTRACT
The currently favored model for long-duration gamma-ray bursts (GRBs) invokes explosions from the collapse of a massive star down to a black hole, either directly or through fallback. Those GRBs forming via fallback will produce much less radioactive nickel, and hence it has been argued (without any real calculation) that these systems produce dim supernovae. These fallback black hole GRBs have recently been argued as possible progenitors of a newly discovered set of GRBs lacking any associated supernovae. Here we present the first ever radiation-hydrodynamics calculations of the light curves produced in the hypernova explosion by a delayed-fallback gamma-ray burst. We find that the bolometric light curve is dominated by shock-deposited energy, not the decay of radioactive elements. As such, observations of such bursts actually probe the density in the progenitor wind more than it does the production of radioactive nickel.

Subject headings: gamma rays: bursts — nuclear reactions, nucleosynthesis, abundances — supernovae: general

1. INTRODUCTION
It is now generally accepted that long-duration GRBs are associated with bright supernova-like explosions. One of the primary differences between these GRB-associated “supernovae” and normal supernovae is that GRB-associated supernovae have larger (by more than a factor of 4 in some cases) 56Ni yields. How is this extra 56Ni produced? It is known that the GRB jets themselves do not produce large amounts of 56Ni, and researchers focused on two different paradigms for producing large amounts of 56Ni: the 56Ni is produced in a disk around the black hole (see Surman et al. 2006 and references therein), or the 56Ni is produced in the explosion of the star that accompanies the GRB jet (e.g., Nomoto et al. 2003; Maiz- zali et al. 2006). Calculations assuming an accretion-disk site for 56Ni production tend to approximate the disk using the structure from advection-dominated accretion flow solutions (e.g., Popham et al. 1999) and use a neutrino-driven wind solution to derive particle trajectories. Depending on the exact conditions in the disk (in particular, the electron fraction), a large amount of 56Ni can be produced. Although Surman et al. (2006) have shown that the amount of 56Ni produced does depend on the conditions in the disk, one can reasonably assume that this mechanism always produces large amounts of 56Ni.

The explosive nucleosynthesis site uses strong shocks in the stellar explosion (beyond the narrow jet region) to heat material and cause it to burn to 56Ni. It depends sensitively on the structure of the star and the velocity of the shock beyond the jet itself. Nomoto and collaborators (Maeda & Nomoto 2003; Nomoto et al. 2004) have argued that a significant portion of the star in a GRB is still ejected in faster than normal velocities, allowing the production of enhanced amounts of 56Ni. The problem with this site of 56Ni production is that GRBs may be produced as either direct collapse black holes or through weak supernovae that do not impart enough energy onto the star to prevent the fallback of matter onto the proto-neutron star, causing it to collapse to a black hole. Fryer et al. (2006b) found that if the delay between this weak supernova explosion is more than a few seconds, the amount of 56Ni produced in explosive nucleosynthesis is very small indeed. And with very little 56Ni produced in the explosion, these GRBs should produce dim supernovae.

Where are these GRBs with faint associated supernovae? All observations suggested that bursts were associated with bright, high 56Ni yield, high-velocity supernovae (also known as “hypernovae”; Nomoto et al. 2004). Could it be that fallback black holes do not produce GRBs? The same month that the Fryer et al. (2006b) paper was accepted, the first of two very peculiar long-duration bursts exploded. These two bursts were well localized, but their late-time emission showed no presence of an associated supernova (Fynbo et al. 2006; Gal-Yam et al. 2006; Della Valle et al. 2006). On the surface, these bursts seem to be exactly the dim-supernova GRBs predicted by theory. But Gal-Yam et al. (2006) argue that GRB 060614 is not a typical long burst and may require a different engine altogether. GRB 060605’s duration ($T_{90} = 4 \pm 1$ s) lies on the border between short and long bursts, and both Ameti et al. (2006) and E. Ofek et al. (2007, in preparation) argue that it is a short burst. So the observational evidence of low 56Ni yield GRB-supernovae is far from conclusive.

In addition, we must be wary of making any strong claims between 56Ni yields and supernova light curves. The process by which the energy from the decay of 56Ni and its daughter product 56Co is converted into optical photons is not linear. The energy from decay is released in gamma rays, which then scatter and ultimately absorb in the star. The star thermalizes this energy and reemits it in optical photons. But the star is also hot because it just exploded and the shock energy has heated it. In supernovae, the peak of the supernova light curve can be powered either by this shock energy or, for the most compact stars, the decay of radioactive material. In this Letter, we provide the first radiation-hydrodynamics explosion calculations of these delayed-collapse hypernovae. In § 2, we describe both our initial stellar models and a description of our light-curve code. We conclude with a discussion of our results and comparison of these results to the current data.

2. INITIAL CONDITIONS AND CODE DESCRIPTION
For initial conditions, we use the two 40 M_\odot fallback GRBs from Fryer et al. (2006a) with two different delays between the weak supernova explosion and the GRB outburst: a 1 s...
delay producing $0.33 \, M_\odot$ of ^{56}Ni, and a 6.8 s delay producing $0.016 \, M_\odot$. We focus on the longer delay explosion in our efforts to produce a dim supernova explosion. At early times, the radiation is completely trapped, so we grab the models from these calculations after the shock has moved a few times 10^8 cm. Fryer et al. (2006a) calculated the detailed yields from these models, but for our opacities we have reduced these yields to 30 base elements from hydrogen up to zinc. Figure 1 shows the initial velocity structure used in our models. Note that these explosions are very fast with shock velocities v_{shock} in excess of 2×10^8 cm s$^{-1}$, and the stars are rather compact (1.5×10^{15} cm) so the shock will quickly break out of the star.

On top of this basic stellar structure, we have added a wind structure using the mass-loss rates from the last $\sim 10,000$–100,000 yr in the life of our Wolf-Rayet stars based on models presented by Fryer et al. (2006b): $2 \times 10^{-5} \, M_\odot$ yr$^{-1}$ with velocities in the $700 \, \text{km} \, \text{s}^{-1}$ range. Note that the wind velocities could be as high as $3000 \, \text{km} \, \text{s}^{-1}$, and it is likely that GRBs arise from lower metallicity objects where the mass-loss rate is lower than our chosen values. The primary effect of both of these is a lowering of the density in the wind. We have included a run where the density is scaled down by a factor of 100 to study this effect. The initial density profile of all our models are shown in Figure 1.

For our calculations, we use the multidimensional radiation-hydrodynamics code RAGE (Radiation Adaptive Grid Eulerian), which was designed to model a variety of multimaterial flows (Baltrusaitis et al. 1996). The conservative equations for mass, momentum, and total energy are solved through a second-order, direct-Eulerian Godunov method on a finite-volume mesh (Gittings et al. 2007). It includes a flux-limited diffusion scheme to model the transport of photons using the Levermore-Pomraning flux limiter (Levermore & Pomraning 1991). RAGE has been extensively tested on a range of verification problems (Holmes et al. 1999; Hueckstaedt et al. 2005) and applied to (and tested on) a range of astrophysics problems (Herwig et al. 2006; Coker et al. 2006; Fryer et al. 2007), including the strong velocity gradients that exist in supernova explosions (Lowrie & Rauenzahn 2006).

The RAGE code can be used in one, two, and three dimensions with spherical, cylindrical, and planar geometries in one dimension, cylindrical and planar geometries in two dimensions, and planar geometries in three dimensions. For this Letter, we focus on one-dimensional, spherical calculations. RAGE uses an adaptive mesh refinement technique, allowing us to focus the resolution on the shock and follow the shock as it progresses through the star. Even so, we were forced to regrid in our calculations to ensure that we resolved the shock at early times and still allow us to model the shock progression out to 100 days (the shock moves from 10^7 cm out to 10^{15} cm in the course of a simulation).

For our current set of calculations, the energy released from the decay ^{56}Ni and ^{56}Co is deposited directly at the location of the ^{56}Ni using the following formula:

$$
\frac{dE}{dt} = E_{\text{Ni}}/\tau_{\text{Ni}} e^{-t/\tau_{\text{Ni}}} + E_{\text{Co}}/(\tau_{\text{Co}} - \tau_{\text{Ni}})(e^{-t/\tau_{\text{Co}}} - e^{-t/\tau_{\text{Ni}}}),
$$

(1)

where $E_{\text{Ni}} = 1.7 \, \text{MeV}$ and $E_{\text{Co}} = 2.9 \, \text{MeV}$ are the mean energies released per atom for the decay of ^{56}Ni and ^{56}Co, respectively, and $\tau_{\text{Ni}} = 7.6 \times 10^5$ s, $\tau_{\text{Co}} = 9.6 \times 10^5$ s. Especially at late times, this energy is not deposited into the matter surrounding it but rather escapes the star. We have included a simulation where after the shock has reached 5×10^{12} cm, we assume 99% of the energy escapes, allowing a lower bound on our models. This provides us with four models in total: 1 s delay, 6.8 s delay, a 6.8 s delay with large escape fraction of gamma rays, and a 6.8 s delay with both a large escape fraction and a lowered wind.

For opacities, we use the SESAME opacities produced at LANL (Magee et al. 1995). These opacities have been extensively used in astrophysics including many problems in supernovae (e.g., Fryer et al. 1999; Deng et al. 2005; Mazzali et al. 2006). This opacity base is being continually updated, and we use the latest updates on these opacities. The assumption with these opacities is that the atoms are in local thermodynamic equilibrium with the matter, and hence the opacity can be determined assuming a single temperature in each cell. Only a few atoms deviate significantly from their local thermodynamic solution, and this effect should be minor for our calculations of bolometric light curves.

3. THEORETICAL LIGHT CURVES AND THE OBSERVATIONS

If there still is considerable internal energy in the shock when it reaches the edge of the star, the shock can accelerate even further when it reaches the wind. From Figure 1, we see this is the case for our short-delay model, but not for our long delay models. At this time, roughly 4×10^4 s (3×10^4 s for our short delay model) the shock is just becoming optically thin. This occurs between 5 and 10×10^{13} cm when the shock is well beyond the stellar surface and out in the Wolf-Rayet wind. For our short-delay model, the shock has taken on a homologous velocity ($v \propto r$) structure, but the long-delay models take more than 10^4 s to develop the canonical homologous velocity structure. More important, note the density structure in these
models. In the long-delay models, the weak supernova shock combined with the accretion of fallback material produces an evacuated region around the compact remnant. When the strong explosions sweeps up the weak supernova shock, it produces a shell of fast moving material. This ring of material causes the shock to remain optically thick longer than one would expect from more standard shock profiles.\footnote{Note that at these early times, the short-delay models with and without the loss of 56Ni decay gamma rays are identical.} Clearly, the nature of the explosion will have a strong affect on our light curves. Simple, homologous-velocity profiles, with power-law density profiles will not be able to model the broad range of explosion scenarios.

The short-delay explosion experiences both a shock breakout bump at 3 days followed by a 56Ni powered peak at roughly 25 days after the launch of the explosion. The only surprise in this model is that shock breakout for these strong explosions propagating through dense wind material can produce strong emission, in excess of 10^{54} ergs s$^{-1}$. This emission becomes the dominant emission in models where the 56Ni is small. The light curves produced by our long-delay (\equiv low 56Ni yield) simulations are shown in Figure 2. These light curves only get a large peak at shock breakout. This sharp peak drops within 8 days of the launch of the explosion. By allowing the gamma rays to escape, we actually get a brighter peak luminosity (the shock is slightly more compact and is hotter), but by 20 days, the model with 100% gamma-ray deposition is brighter and by 100 days it has a luminosity that is an order of magnitude higher than the model with only 1% gamma-ray deposition. These features can be explained if the bulk of the light curve is powered by shock energy, not gamma-ray deposition. The peak in the light curve is powered by shock breakout. Indeed, it appears that shock energy dominates out beyond 20–30 days. Due to the fact that the supernova explosion is strong ($\approx 10^{52}$ ergs) and the 56Ni production is low (<0.02 M_\odot), this is not unexpected. In such a system, one would expect that the amount of mass in the wind is more important. Our simulation with a low wind is an order of magnitude dimmer than our strong wind candidates.

The strong shock drives the matter temperature (and the emitted Planck-averaged radiation temperature) well beyond the optical bands. But as the shock moves out of the envelope, the averaged radiation energy in the shock decreases (Fig. 3). It is the temperature in the shocks that drive most of the emission, and this temperature is characteristic of the radiation temperature. Six days into the explosion, when the luminosity peaks, the Planck-averaged radiation temperature lies between 1.5 and 4 eV for all models, with most of the photons emerging in the ultraviolet.

Let us compare these models with the observational limits placed by Fynbo et al. (2006) and Gal-Yam et al. (2006). At 10 days for a GRB at 388 Mpc (roughly equivalent to a redshift of 0.089 corresponding to GRB 060505), the bolometric luminosities for these three models are 23.5, 24.7, and 26.8 mag for the 1% gamma-ray deposition, 100% gamma-ray deposition, and low wind models, respectively. For the more distant GRB 060614, the expected late-time flux is even lower. It is likely that these models would all be below the observed limits at this time. However, at shock breakout, these spherically symmetric models predict a very bright luminosity (above 20th magnitude at 6 days). Why don’t we see the burst at this time? Although the afterglow is still strong at this time, our predicted luminosities could well dominate. But remember that the peak flux is in the ultraviolet, not the optical. The fact that nothing is observed could place constraints on the model. Either there is considerable dust extinction (a few magnitudes in the UV), the explosion is weaker than our spherically symmetric 10^{52} ergs explosion has assumed, or this GRB truly is different than our
standard long-duration burst classification as Gehrels et al. (2006) and Gal-Yam et al. (2006) argue.

We have learned a number of features of delayed black hole–forming GRBs. First, the emission of these supernovae is likely to peak at shock breakout. The luminosity is dominated by the shock energy and not the decay of radioactive elements. As such, any observation places more constraints on the surrounding wind than it does on the 56Ni yield. Also, the structure of the shock may well be very different than the canonical density and velocity structures seen in more normal supernovae, and we must pay particular attention to the explosions in calculating these light curves. The models in these papers are examples of a larger set of possibilities. Finally, bear in mind that we are assuming spherically symmetric models run in the gray approximation, and asymmetric, multigroup models may have very different light curves.

This work was carried out in part under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory and supported by contract DE-AC52-06NA25396.

REFERENCES

Amati, L., Della Valle, M., Frontera, F., Malesani, D., Guidorzi, C., Montanari, E., & Pian, E. 2007, A&A, 463, 913
Baltrusaitis, R., Gittings, M., Weaver, R., Benjamin, R., & Budzinski, J. 1996, Phys. Fluids, 8, 2471
Coker, R. F., et al. 2006, Ap&SS, 579
Della Valle, M., et al. 2006, Nature, 444, 1050
Deng, J., Tominaga, N., Mazzali, P. A., & Maeda, K. 2005, ApJ, 624, 898
Fryer, C. L., Colgate, S. A., & Pinto, P. A. 1999, ApJ, 511, 885
Fryer, C. L., Hungerford, A. L., & Rockefeller, G. 2007, Int. J. Mod. Phys. D, submitted
Fryer, C. L., Rockefeller, G., & Young, P. A. 2006a, ApJ, 647, 1269
Fryer, C. L., Young, P. A., & Hungerford, A. L. 2006b, ApJ, 650, 1028
Fynbo, J. P. U., et al. 2006, Nature, 444, 1047
Gal-Yam, A., et al. 2006, Nature, 444, 1053
Gehrels, N., et al. 2006, Nature, 444, 1044
Gittings, M., et al. 2007, J. Comput. Phys., submitted
Herwig, F., Freytag, B., Hueckstaedt, R. M., & Timmes, F. X. 2006, ApJ, 642, 1057
Holmes, R., et al. 1999, J. Fluid Mech., 389, 255
Hueckstaedt, R., et al. 2005, Ap&SS, 298, 255
Levermore, C. D., & Pomraning, G. C. 1981, ApJ, 248, 321
Lowrie, R. B., & Rauenzahn, R. M. 2006, LANL Tech. Rep. LA-UR-06-3853 (Los Angeles: LANL)
Maeda, K., & Nomoto, K. 2003, ApJ, 598, 1163
Magee, N. H., Jr., et al. 1995, in ASP Conf. Ser. 78, Astrophysical Applications of Powerful New Databases, ed. S. J. Adelman & W. L. Wiese (San Francisco: ASP), 51
Mazzali, P. A., et al. 2006, ApJ, 645, 1323
Nagataki, S., Mizuta, A., Yamada, S., Takabe, H., & Sato, K. 2003, ApJ, 596, 401
Nomoto, K., Maeda, K., Mazzali, P. A., Umeda, H., Deng, J., & Iwamoto, K. 2004, in Stellar Collapse, ed. Chris Fryer (Dordrecht: Kluwer), 384
Popham, R., Woosley, S. E., & Fryer, C. 1999, ApJ, 518, 356
Surman, R., McLaughlin, G. C., & Hix, W. R. 2006, ApJ, 643, 1057