Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (*Hippophae rhamnoides* L.) grown wild in Iran

Keramatollah Saeidia,*, Abolfazl Alirezalub and Zahra Akbaric

aDepartment of Horticultural Science, Shahrekord University, Shahrekord, Iran; bDepartment of Medicinal and Industrial Plants, Institute of Biotechnology, Urmia University, Urmia, Iran; cDepartment of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran

(Received 24 January 2015; final version received 30 May 2015)

In this investigation, the chemical compositions of berries from sea buckthorn were studied. The amount of ascorbic acid and \(\beta\)-carotene determined by HPLC was 170 mg/100 g FW and 0.20 mg/g FW, respectively. Total phenols, anthocyanins, acidity and total soluble solids (TSS) contents were 247 mg GAE/100 g FW, 3 mg/L (cyanidin-3-glucoside), 5.32\% and 13.8\%, respectively. Fruit antioxidant activity determined by the ferric reducing ability of plasma (FRAP) method was 24.85 mM Fe/100 g FW. Results confirmed the presence of six dominant fatty acids (determined by GC) in fruit including linoleic (34.2\%), palmitoleic (21.37\%), palmitic (17.2\%), oleic (12.8\%), linolenic (5.37\%) and stearic acid (1.67\%). Five dominant fatty acids of the seeds were linoleic (42.36\%), linolenic (21.27\%), oleic (21.34\%), palmitic (6.54\%) and stearic acid (2.54\%). The nitrogen content was 3.96\%. The P, K, Ca, Mg, Fe, Zn, Mn, Cu, Cd and Cl contents of fruit were 491, 1674, 1290, 990, 291, 29.77, 108.37, 17.87, 0.021 and 2.18 mg/kg DW, respectively.

Keywords: ascorbic acid; fatty acid; fruit; sea buckthorn; seed

1. Introduction

Sea buckthorn (*Hippophae rhamnoides* L.) is a spiny shrub or tree belonging to the Elaeagnaceae family. This plant is beneficial for esophagitis, aphthous ulcers, acid reflux, peptic ulcers, cerebrovascular diseases regulate immunofunctions, attenuate inflammation and anti-carcinogenic (Zadernowski et al. 1997; Li & Beveridge 2003). The berries of sea buckthorn contain organic acids, phenols, carbohydrates, carotenoids, proteins, minerals and fatty acids (Kallio et al. 1999; Chauhan & Varshneya 2012; Yildiz et al. 2012; Pop et al. 2014). The characteristic property of sea buckthorn fruit/pulp lipid is the high content of palmitoleic acid.
This high concentration of palmitoleic acid may have cholesterol and triglyceride lowering as well as stroke-suppressing effects (Yang et al. 2000; Yang & Kallio 2001). Palmitoleic acid and palmitic acid are the major fatty acids in the fruits. Oleic, palmitic, linoleic and linolenic acids are the major fatty acids in the seeds (Yang & Kallio 2001; Cakir 2004). The aim of this investigation was evaluation of some phytochemical constitute of fruit and seed of sea buckthorn. There was no data on the fruit and seed constitutes content of sea buckthorn grown in Iran.

2. Results and discussion

The amount of ascorbic acid in berries was 170 mg/100 g FW (Table S1). In previous studies, the ascorbic acid content of sea buckthorn berries ranged from 28 to 1330 mg/100 g (Yao et al. 1992; Jeppson & XiangQun 2000; Tang & Tigerstedt 2001). Origin, temperature, harvesting time, ripening and geographical factors affect the ascorbic acid content of sea buckthorn berries (Jeppson & XiangQun 2000; Yang 2009; Zheng et al. 2011). β-Carotene, total phenolics and total anthocyanin contents of berries were 0.20 mg/g FW, 247 mg GAE/100 g FW and 7.1 mg/L cyanidin-3-gluco side, respectively (Table S1). The total phenolic content for sea buckthorn fruit in this study was 1.5–3 times higher than that reported for this fruit in Europe (Gao et al. 2000). Yildiz et al. (2012) reported that the total phenolic content in fruit was ranged from 220 to 260 mg GAE/100g FW. The anthocyanin content of different sea buckthorn genotypes has previously been reported to be 0.5–25 mg/L (Sabir et al. 2005), that is in accordance with our results. Genetic and environmental conditions affect the total anthocyanins in plants (Naczk & Shahidi 2004).

The results showed that total antioxidant activity of the fruits was 24.85 mM/100 g FW, which was higher than previous study (Kruczek et al. 2012). The differences can be explained by differences in the environmental conditions of the regions under study which may affect the quality of the fruits. The N content of the fruits was 3.96%. The P, K, Ca and Mg contents were 491, 1674, 1290 and 990 mg/kg, respectively. The Fe, Zn, Mn, Cu, Cd and Cl contents were 291, 29.77, 108.37, 17.87, 0.021 and 2.18 mg/kg, respectively (Table S2). Fruit maturity and soil condition affects the level of minerals (Bounous & Zanini 1998). Difference between our results and other studies may be originating from the natural contents of elements in the soil.

Our results confirmed that linoleic (34.2%), palmitoleic (21.37%), palmitic (17.2%), oleic (12%), linolenic (5.37%) and stearic acid (1.67%) were dominant fatty acids in fruit (Table S3). Macadamia and sea buckthorn oil are botanical sources of palmitoleic acid with high concentrations (Li & Beveridge 2003). The sea buckthorn fruit/pulp has high content of palmitoleic acid (Yang & Kallio 2001). Palmitoleic acid is low in seed oils, but is characteristic of the oil in the fruit pulp (Gao et al. 2000). Result about fruit fatty acids in this study was almost same as the previous studies. A little difference between our findings and other studies could be the results of growth conditions and environmental factors. The fatty acid composition of sea buckthorn fruit oil depends on the climatic and environmental conditions where is grown (Li & Beveridge 2003). Linoleic acid was the most abundant fatty acid in seeds. Concentration of five dominant fatty acids of seed including linoleic, linolenic, oleic, palmitic and stearic acid were 42.36%, 21.27%, 20.34%, 5.54% and 2.54%, respectively (Table S3). In this study more than 80% of the fatty acids in seeds were unsaturated. The seed oil comprises two essential fatty acids including linolenic and linoleic acids. In general, the pulp oil contains more saturated fatty acids than the seed oil (Kallio et al. 1999).

3. Conclusion

Results showed that sea buckthorn fruit is a rich source of vitamin C, citric acid, phenols, carbohydrates, beta carotene, fatty acid and minerals. Moreover, the seed was rich in unsaturated fatty acid acids.
Supplementary material

Experimental details relating to this article are available online, alongside Tables S1–S3.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Bounous G, Zianin E. 1998. The variability of some components and biometric characteristics of fruit of six tree and shrub species. Hort Abstr. 60:4153.

Cakir A. 2004. Essential oil and fatty acid composition of the fruits of *Hippophae rhamnoides* L. (sea buckthorn) and *Myrtus communis* L. from Turkey. Biochem Sys Ecol. 32:809–816. doi:10.1016/j.bse.2003.11.010.

Chauhan S, Varshneya C. 2012. The profile of bioactive compounds in seabuckthorn: berries and seed oil. Int J Theor Appl Sci. 4:216–220.

Gao X, Ohlander M, Björk L, Trajkovski V. 2000. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (*Hippophae rhamnoides* L.) during maturation. J Agric Food Chem. 48:1485–1490. doi:10.1021/jf991072g.

Jeppson N, XiangQun G. 2000. Changes in the contents of kaempherol, quercetin and l-ascorbic acid in sea buckthorn berries during maturation. Agri Food Sci (Finland). 9:17–22.

Kallio K, Yang BR, Tahvonen R, Hakala M. 1999. Composition of sea buckthorn berries of various origins. International Symposium on Sea Buckthorn; Beijing, China.

Kruczek M, Swiderski A, Mech-Nowak A, Krol K. 2012. Antioxidant capacity of crude extracts containing carotenoids from the berries of various cultivars of sea buckthorn (*Hippophae rhamnoides* L.). Acta Biochim Pol. 59:135–137.

Li TSC, Beveridge THJ. 2003. Sea buckthorn (*Hippophae rhamnoides* L.): production and utilization. Ottawa, ON: NRC Research Press.

Naczk M, Shahidi F. 2004. Extraction and analysis of phenolics in food. J Chromatogr A. 1054:95–111. doi:10.1016/j.chroma.2004.08.059.

Pop RM, Weesepoel Y, Socaciu C, Pintea A, Vincken JP, Gruppen H. 2014. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (*Hippophae rhamnoides* L.) varieties. Food Chem. 147:1–9. doi:10.1016/j.foodchem.2013.09.083.

Sabir SM, Maqsood H, Ahmed SD, Shah AH, Khan MQ. 2005. Chemical and nutritional constituents of sea buckthorn (*Hippophae rhamnoides* ssp. *turkestanaica*) berries from Pakistan. Ital J Food Sci. 17:455–462.

Tang X, Tigerstedt PMA. 2001. Variation of physical and chemical characters within an elite sea buckthorn (*Hippophae rhamnoides* L.) breeding population. Sci Hortic. 88:203–214. doi:10.1016/S0304-4238(00)00208-9.

Yang B. 2009. Sugars, acids, ethyl B-D-glucopyranose and a methyl inositol in sea buckthorn (*Hippophae* rhamnoides) berries. Food Chem. 112:89–97. doi:10.1016/j.foodchem.2008.05.042.

Yang B, Kalimo KO, Tahvonen RL, Mattila LM, Katajisto JK, Kallio HP. 2000. Effect of dietary supplementation with sea buckthorn (*Hippophae rhamnoides*) seed and pulp oils on the fatty acid composition of skin glycerophospholipids of patients with atopic dermatitis. J Nutr Biochem. 11:338–340. doi:10.1016/S0955-2863(00)00088-7.

Yang B, Kallio HP. 2001. Fatty acid composition of lipids in sea buckthorn (*Hippophae rhamnoides*) berries of different origins. J Agric Food Chem. 49:1939–1947. doi:10.1021/jf001059s.

Yao Y, Tigerstedt PMA, Joy P. 1992. Variation of vitamin C concentration and character correlation between and within natural sea buckthorn (*Hippophae rhamnoides* L.) populations. Acta Agric Scand. 42:12–17.

Zheng J, Kallio H, Linderborg K, Yang B. 2011. Sugars, sugar alcohols, fruit acids, and ascorbic acid in wild Chinese sea buckthorn (*Hippophae rhamnoides* ssp. *sinensis*) with special reference to influence of latitude and altitude. Food Res Int. 44:2018–2026. doi:10.1016/j.foodres.2010.10.007.