Strong Typed Böhm Theorem and Functional Completeness on the Linear Lambda Calculus

Satoshi Matsuoka

National Institute of Advanced Industrial Science and Technology (AIST),
1-1-1 Umezono, Tsukuba, Ibaraki, 305-8565 Japan
matsuoka@ni.aist.go.jp

In this paper, we prove a version of the typed Böhm theorem on the linear lambda calculus, which says, for any given types A and B, when two different closed terms s_1 and s_2 of A and any closed terms u_1 and u_2 of B are given, there is a term t such that ts_1 is convertible to u_1 and ts_2 is convertible to u_2. Several years ago, a weaker version of this theorem was proved, but the stronger version was open. As a corollary of this theorem, we prove that if A has two different closed terms s_1 and s_2, then A is functionally complete with regard to s_1 and s_2. So far, it was only known that a few types are functionally complete.

1 Introduction

This paper is an addendum to the paper [13], which was published several years ago. The previous paper establishes the following result in the linear λ-calculus:

For any type A and two different closed terms s_1 and s_2 of type A, there is a term t such that

$$ts_1 =_{\beta\eta} 0 \quad \text{and} \quad ts_2 =_{\beta\eta} 1,$$

where $0 \equiv \text{def} \ \lambda x. \lambda f. \lambda g. f(g(x))$ and $1 \equiv \text{def} \ \lambda x. \lambda f. \lambda g. g(f(x))$.

In [13], the proof net notation for the intuitionistic multiplicative linear logic (for short, IMLL) was used, but as shown later, the linear λ-calculus can be regarded as a subsystem of IMLL proof nets. In addition the equality $=_{\beta\eta}$ will be defined precisely later. In this paper, we prove a stronger version of the previous statement, which is stated as follows:

For any given types A and B, when two different closed terms s_1 and s_2 of A and any closed terms u_1 and u_2 of B are given, there is a term t such that

$$ts_1 =_{\beta\eta} u_1 \quad \text{and} \quad ts_2 =_{\beta\eta} u_2.$$

The stronger version was an open question in [13]. Note that the strong version is trivially derived from the weak one in the simply typed λ-calculus, because the calculus allows discard and copy of variables freely. But the linear λ-calculus officially does not allow these two operations. So some technical devices are required. The basic idea of our solution is to extend the typability by a linear implicational formula $A \rightarrow B$ to a more liberalized form. We call the extended typability poly-typability, which is a mathematical formulation of the typing discipline used in [12]. Thanks to the extension, we can prove Projection Lemma (Lemma 5.1) and Constant Function Lemma (Lemma 5.2), which are the keys to establish our typed Böhm theorem.
One application is the functional completeness problem of the linear λ-calculus. It raises the question about the possibility of Boolean representability in the linear λ-calculus. We prove that any type with at least two different closed terms is functionally complete. This means that any two-valued functions can be represented over these two terms. So far, it was only known that a few types have this property. Our functional completeness theorem liberalizes us from sticking to specific types. This situation is analogous to that of the degree of freedom about a base choice in linear algebra: linear independence is enough. Similarly we may choose any different two terms of any type in order to establish the functional completeness.

The strong typed Böhm theorem gives a general construction of linear λ-terms that satisfy a given specification for inputs and outputs. It is expected that useful theorems about linear λ-terms will be proved by using the theorem further.

Comparison with the case of the simply typed lambda calculus The first proof of the typed Böhm theorem for the simply typed lambda calculus was given in [17]. The proof is based on the reducibility theorem in [16] (see also Theorem 3.4.8 in [1]). Our proof proceeds in a similar manner to Statman’s proof. But the proof of the reducibility theorem is rather complicated, since it uses different operations. On the other hand, the proof of our analogue, which is Proposition 3.1, is much simpler, because our proof is based on one simple principle, i.e., linear distributive law (see, e.g., [3]).

\[
((A \otimes B) \otimes C) \to \circ (A \otimes (B \otimes C))
\]

On the other hand, while the final separation argument of Statman’s proof only uses type instantiation, our proof of Theorem 5.1 needs the notion of poly-types.

2 Typing Rules, Reduction Rules, and an Equational Theory

In this section we give our type assignment system for the linear λ-calculus and discuss some reduction rules and equivalence relations on the typed terms of the system. Our system is based on the natural deduction calculus given in [19], which is equivalent to the system based on the sequent calculus or proof nets in [6] (e.g., see [19]). Our notation is the same as that in [12]: the reader can confirm our results using an implementation of Standard ML [15].

Types

\[
A ::= 'a
| A_1 \cdot A_2
| A_1 \to A_2
\]

The symbol $'a$ stands for a type variable. On the other hand $A_1 \cdot A_2$ stands for the tensor product $A_1 \otimes A_2$ and $A_1 \to A_2$ for the linear implication $A_1 \to \circ A_2$ in the usual notation.

Terms We use x, y, z for term variables and r, s, t, u, v, w for general terms.

Linear Typing Contexts A linear typing context is a finite list of pairs $x:A$ such that each variable occurs in the list once. Usually we use Greek letters Γ, Δ, \ldots to denote linear typing contexts.

1For example, this principle includes \(((A \to B) \to C) \to \circ (A \to (B \to C) \to \circ D)\), \(((A \to B) \to C) \to \circ (A \to (B \to C))\), and \(((A \to B \to C) \to \circ D) \to \circ (B \to \circ (A \to C) \to \circ D)\). This observation was the starting point of Proposition 3.1.
Type Assignment System

\[
\begin{align*}
\Gamma, x: A, \Delta \vdash t: C & \quad \text{Γ, x: A, y: B, Δ \vdash t: C} \\
\Gamma, y: B, x: A, \Delta \vdash t: C & \quad \text{Γ, y: B, x: A, Δ \vdash t: C} \\
\Gamma \vdash t: A \Rightarrow B & \quad \text{Γ \vdash t: A \Rightarrow B} \\
\Delta \vdash s: A & \quad \text{Δ \vdash s: A} \\
\Gamma, \Delta \vdash (s, t): A \ast B & \quad \text{Γ, Δ \vdash (s, t): A \ast B} \\
\Gamma, \Delta \vdash \text{let val (x, y) = s in t end: C} & \quad \text{Γ, Δ \vdash \text{let val (x, y) = s in t end: C}}
\end{align*}
\]

In addition we assume that for each term variable, if an occurrence of the variable appears in a sequent in a term derivation, then the number of the occurrences in the sequent is exactly two. For a term \(t \) the set of bound variables \(BV(t) \) is defined recursively as follows:

- \(BV(x) = 0 \),
- \(BV(s \ t) = BV((s, t)) = BV(t) \cup BV(s) \),
- \(BV(fn \ x=>t) = \{x\} \cup BV(t) \),
- \(BV(let \ val \ (x, y) = s \ in \ t \ end) = \{x, y\} \cup BV(s) \cup BV(t) \).

The set of free variables of \(t \), denoted by \(FV(t) \) is the complement of the set of variables in \(t \) with respect to \(BV(t) \).

The function declaration

\[
\text{fun } f \ x1 \ x2 \ \ldots \ xn = t
\]

is interpreted as the following term:

\[
f = fn \ x1=>fn \ x2=> \ \ldots \ =fn \ xn=>t
\]

Below we consider only closed terms (i.e. combinators)

\(\vdash t: A \).

Term Reduction Rules

Two of our reduction rules are

\((\beta_1)\): \((fn \ x=>t)s \Rightarrow_{\beta_1} t[s/x] \)

\((\beta_2)\): \(\text{let val (x, y) = (u, v) in w end} \Rightarrow_{\beta_2} w[u/x, v/y] \)

Then note that if a function \(f \) is defined by

\[
\text{fun } f \ x1 \ x2 \ \ldots \ xn = t
\]

and

\[
x1:A1, \ldots, xn:An \vdash t: B, \ |-t1:A1, \ldots, |-tn:An
\]

then, we have

\[
f \ t1 \ \ldots \ tn \Rightarrow^*_{\beta_1} t[t1/x1, \ldots, tn/xn].
\]

We denote the reflexive transitive closure of a relation \(R \) by \(R^* \). In the following \(\Rightarrow_{\beta} \) denotes the congruent (one-step reduction) relation generated by the two reduction rules above and the following contexts:

\[
C[] = [] \ | \ C[] t \ | \ t C[] \ | \ (t, C[]) \ | \ (C[], t) \ | \ fn x => C[]
\]

\[
\text{let val (x, y) = C[] in t end} \ | \ \text{let val (x, y) = t in C[] end}
\]

We define the set of variables captured by a context \(C[] \), denoted by \(CV(C[]) \) recursively:

- \(CV([]) = 0 \),
- \(CV(C[] t) = CV(t C[]) = CV((t, C[])) = CV((C[], t)) = CV(C[]) \),
- \(CV(fn \ x => C[]) = \{x\} \cup CV(C[]) \),
- \(CV(let \ val \ (x, y) = C[] \ in \ t \ end) = CV(C[]) \),
• CV(let val (x,y) = t in C[] end) = \{x,y\} \cup CV(C[]).

The set of free variables of a context C[], denoted by FV(C[]) is defined similarly to that of a term t.

In order to establish a full and faithful embedding from linear λ-terms into IMLL proof nets, we introduce further reduction rules. Basically we follow [11], but note that a simpler presentation is given than that of [11], following a suggestion of an anonymous referee. The following are η-rules:

(η1): fn x=>(t x) ⇒_η t
(η2): let val (x,y) = t in (x,y) ⇒_η t

In the following →_βη denotes the congruent (one-step reduction) relation generated by the four reduction rules above and any context C[]. But these reduction rules are not enough: different normal terms may correspond to the same normal IMLL proof net. In order to make further identification we introduce the following commutative conversion rule. Then we define the commutative conversion relation ⇔_c:

C[let val (x,y)=t in u end] ⇔_c let val (x,y)=t in C[u] end

where FV(C[]) ∩ \{x,y\} = \emptyset and CV(C[]) ∩ FV(t) = \emptyset

Let =_c be the congruent equivalence relation generated by ⇔_c and any context C[]. Then we define →_βη c as the least relation satisfying the following rule:

\[
\begin{array}{c}
t =_c t' \quad t' \rightarrow_βη u' \quad u' =_c u \\
\end{array}
\]

Then the following holds.

Proposition 2.1 (Church Rosser[11]) if t →_βη c t' and t →_βη c u' then for some w =_c w', t' →_βη c w and u' →_βη c w'.

Furthermore we can easily prove that →_βη c is strong normalizable as shown in [11]. We can conclude that we have the uniqueness property for normal forms under →_βη c up to =_c.

Equality Rules Next we define our fundamental equality =_βη c, which is given in [11] implicitly. The equality =_βη c is the smallest relation satisfying the following rules of the three groups:

(Relation Group)

(Refl) \(\Gamma \vdash t : A \quad \frac{}{\Gamma \vdash t = t : A} \)
(Sym) \(\Gamma \vdash t = s : A \quad \frac{}{\Gamma \vdash s = t : A} \)
(Trans) \(\Gamma \vdash t = s : A \quad \frac{}{\Gamma \vdash s = u : A} \)

(Reduction Group)

(Eqc) \(\Gamma \vdash t : A \quad \frac{}{\Gamma \vdash t = t' : A} \)
(Eqβη) \(\frac{}{\Gamma \vdash t : A \quad t \rightarrow_βη c t' \quad \frac{}{\Gamma \vdash t = t' : A}} \)

(Congruence Group)

(Eqλ) \(x : A, \Gamma \vdash t = t' : B \quad \frac{}{\Gamma \vdash fn x=>t = fn x=>t' : A->B} \)
(Eqap) \(\Gamma \vdash t = t' : A->B \quad \frac{}{\Gamma, \Delta \vdash (s,t) = (s',t') : A*B} \)
(Eqτ) \(\Gamma, \Delta \vdash (s,t) = (s',t') : A*B \quad \frac{}{\Gamma \vdash t = t' : C} \)

(Eqlet) \(\Gamma, \Delta \vdash \text{let val (x,y)=s in t end} = \text{let val (x,y)=s' in t' end : C} \)
The relationship between linear λ terms and IMLL proof nets

We can prove the existence of a full and faithful embedding from the equivalence classes of linear λ-terms up to $\beta\eta$ into the set of normal IMLL proof nets in the sense of [13]. The proof is given in Appendix [A.1] with a brief introduction to IMLL proof nets.

3 The Linear Distributive Transformation

In this section we recall some definitions and results in [13]. In [13], most results are given by IMLL proof nets, not by the linear λ-calculus. But we have already given a full and faithful embedding from linear λ-terms to IMLL proof nets. So those results can be used for the linear λ-calculus freely.

Definition 3.1 A linear λ-term t is implicational if there are neither let constructors nor $(-, -)$ constructors in t.
A type A is implicational if there are no $A_1 \otimes A_2$ tensor subformulas in A. The order of an implicational formula A, $\text{order}(A)$ is defined inductively as follows:

1. A is a propositional variable $'a$, then $\text{order}(A) = 1$.
2. A is $A_1 \rightarrow \cdots \rightarrow A_n \rightarrow 'a$, then $\text{order}(A)$ is

\[\max\{\text{order}(A_1), \ldots, \text{order}(A_n)\} + 1 \]

The following proposition is the linear lambda calculus version of Corollary 2 in [13], which says that any different two terms of a type can be mapped into different two terms of another (but possibly the same) type with lower order (more precisely, less than 4) without any tensor connectives injectively. The purpose is to transform given terms into terms that can be treated easily.

Proposition 3.1 (Linear Distributive Transformation) Let A be a type and s_1 and s_2 be two different closed terms of A up to $\beta\eta$. Then there is a linear λ-term $\text{LDTr}_A s_1$ such that $\text{LDTr}_A s_1 \neq_{\beta\eta} \text{LDTr}_A s_2$ and both $\text{LDTr}_A s_1$ and $\text{LDTr}_A s_2$ are a closed term of an implicational type A_0 whose order is less than four.

After obtaining two different closed terms $\text{LDTr}_A s_1$ and $\text{LDTr}_A s_2$ of the same implicational type A_0 with order less than four using the proposition, we apply a term s' with poly-type $A_0 \rightarrow B$, which is defined in the next section, and we obtain

$s' (\text{LDTr}_A s_1) =_{\beta\eta} t_1$ and $s' (\text{LDTr}_A s_2) =_{\beta\eta} t_2$

such that two closed terms t_1 and t_2 of type B are outputs of the intended specification. This is an overview of our proof of Theorem 5.1 (Strong Typed Böhm Theorem). In order to construct the term s', it is convenient to introduce a simple notion of model theory.

Definition 3.2 (The Second-order Linear Term System) (1) The language:

(a) A denumerable set of variables Var: Elements of Var are denoted by x_1, x_2, \ldots.

(b) A denumerable set of second-order variables SVar: Elements of SVar are denoted by G_1, G_2, \ldots.

Each element of G of SVar has its arity $\text{arity}(G) \geq 1$.

(2) The set SLT of the terms of the language is defined inductively:

(a) If $x \in \text{Var}$ then $x \in \text{SLT}$.

instance of a type order variable assignment is less than 4 is identified with an element where the principal type of Proposition 3.2 projection is assigned. The following proposition is Proposition 25 in [13].

We note that in the definition above, to each second-order variable, a constant function or a (positive) projection is assigned. The following proposition is Proposition 25 in [13].

Proposition 3.2 Let \(s_1, s_2 \) be in SLT. If \(s_1 \neq s_2 \) then there are a variable assignment \(\rho_1 \) and a second-order variable assignment \(\rho_2 \) such that \(\langle s_1 \rangle_{(\rho_1, \rho_2)} \neq \langle s_2 \rangle_{(\rho_1, \rho_2)} \).

This proposition essentially uses linearity: for example we can not separate \(f(x) \) and \(f(f(f(x))) \) over \(\{0, 1\} \). Then as observed in [13], we note that an implicational closed term \(s \) of a type \(A \) whose order is less than 4 is identified with an element \(s \) of SLT. So, without loss of generality, we can write \(s \) as a closed linear term

\[
fn \ x1=>\ldots=>fn \ xn=>fn \ G1=>\ldots=>fn \ Gm \Rightarrow s0
\]

where the principal type of \(s \) has the following form:

\[
\overset{n}{\overline{\text{\(a_{01} \rightarrow \ldots \rightarrow a_{0n} \rightarrow \)}}} \overset{k_1}{\overline{\text{\(a_{1}\rightarrow \ldots \rightarrow a_{k_1}\rightarrow \) \(a_{01} \rightarrow \ldots \rightarrow a_{0n} \rightarrow \) \(a_{1}\rightarrow \ldots \rightarrow a_{k_1}\rightarrow \) \(a_{01} \rightarrow \ldots \rightarrow a_{0n} \rightarrow \)}}} \overset{k_m}{\overline{\text{\(a_{m1}\rightarrow \ldots \rightarrow a_{mk_m}\rightarrow \) \(a_{01} \rightarrow \ldots \rightarrow a_{0n} \rightarrow \)}}}
\]

and each positive (resp. negative) occurrence of \(a_{ij} \) in the has the corresponding exactly one negative (resp. positive) occurrence of \(a_{ij} \). Unlike the weak typed Böhm theorem in [13], each \(a_{ij} \) will not be instantiated with the same type in main theorems in this paper: it may be instantiated with an implicational type with higher order. For this reason we need the notion of poly-types, which will be introduced in the next section.

4 Poly-Types

In this section we introduce the notion of poly-types, which is the key concept in this paper. For that purpose we need to introduce some notions.

Principal Type Theorem A type substitution is a function from type variables to types. It is well-known that any type substitution is uniquely extended to a function from types to types. A type \(A \) is an instance of a type \(B \) if there is a type substitution \(\theta \) such that \(A = B\theta \). A type \(A \) is a principal type of a linear term \(t \) if (i) for some typing context \(\Gamma \), \(\Gamma \vdash t : A \) is derivable and (ii) when \(\Gamma' \vdash t : A' \) is derivable,
A' and Γ' are an instance of A and Γ respectively. By the definition, if both A and A' are principal types of t, then A is an instance of A' and vice versa. So we can call A the principal type of t without ambiguity and write it as $\text{PT}(t)$. An untyped λ-term t is defined by the following syntax:

$$t ::= x \mid ts \mid \text{fn } x \Rightarrow t \mid (t, s) \mid \text{let val } (x, y) = s \text{ in } t$$

An untyped linear λ-term t is an untyped λ-term such that each free or bound variable in t occurs exactly once in t.

Proposition 4.1 If an untyped linear λ-term t is typable by the type assignment system in the previous section, then it has the principal type $\text{PT}(t)$

Proof: By assumption, we have a derivation for the term t with a type. Then by applying an easily modified version of the main result of [5] (see Section 7 of [5]) augmented with the $*$ connective to t, we have a derivation for the term t with the principal type. \square

Since our linear λ-calculus has the let-constructor and the $(-, -)$ constructor, any untyped λ-term is not necessarily typable. A counterexample is $\text{let val } (x, y) = \text{fn } z \Rightarrow z \text{ in } (x, y)$. If the system has neither the let-constructor nor the $(-, -)$ constructor, then any untyped λ-term is typable (see Theorem 4.1 of [8]).

Poly-types

Example 4.1 The following two terms are the basic constructs in [12]:

- $\text{fun True } x \ y \ z = z \ x \ y$;
- $\text{fun False } x \ y \ z = z \ y \ x$;

The terms True and False can be considered as the two normal terms of

$$\mathbb{B}_{\text{HM}} = \chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow})))$$

The following term can be considered as a not gate for \mathbb{B}_{HM}:

- $\text{fun Not}_{\text{POLY}} p = p \text{ False True (fn } f=>\text{fn } g=>(\text{erase}_3 g) f)$;

where

- $\text{fun I } x = x$;
- $\text{fun erase}_3 p = p \ I \ I \ I$;

We explain the reason in the following. The term Not_{POLY} has types $A0 \rightarrow \mathbb{B}_{\text{HM}}$ and $A1 \rightarrow \mathbb{B}_{\text{HM}}$, where

$$\begin{align*}
A0 &= X0 \rightarrow Y0 \rightarrow (X0 \rightarrow Y0 \rightarrow Z0) \rightarrow Z0 & X0 &= A = Z0 \\
Y0 &= P \rightarrow (A \rightarrow A) \rightarrow (P \rightarrow P) \rightarrow (A \rightarrow A) \\
P &= (A \rightarrow A) \rightarrow (A \rightarrow A) & A &= \mathbb{B}_{\text{HM}} \\
A1 &= X1 \rightarrow Y1 \rightarrow (Y1 \rightarrow X1 \rightarrow Z1) \rightarrow Z1 & Y1 &= A = Z1 \\
X1 &= (A \rightarrow A) \rightarrow P \rightarrow (P \rightarrow P) \rightarrow (A \rightarrow A)
\end{align*}$$

Observe that $A0 \neq A1$. Moreover it is easy to see that there is no type substitution θ such that $\theta(A0) = \theta(A1)$. On the other hand, two terms True and False have the principal types

$$\begin{align*}
\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow}))) & \quad \text{and} \\
\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow}(\chi_{\rightarrow} \chi_{\rightarrow})))
\end{align*}$$

respectively. Moreover, these types have instances $A0$ and $A1$ respectively. As a result, two application terms $\text{Not}_{\text{POLY}} \text{True}$ and $\text{Not}_{\text{POLY}} \text{False}$ have a type \mathbb{B}_{HM}.

Example 4.1 motivates the following definition.

Definition 4.1 Let \(t \) and \(s \) be two closed linear \(\lambda \)-terms such that \(\vdash t : A' \rightarrow B' \) and \(\vdash s : A \) are derivable and for some type substitution \(\theta_0 \), \(\theta_0(\text{PT}(t)) = A_0 \rightarrow B \) and \(\theta_0(\text{PT}(s)) = A_0 \). Then we say that the term \(t \) is poly-typable by \(A \rightarrow B \) w.r.t. \(s \).

When \(t \) is poly-typable by \(A \rightarrow B \) w.r.t. \(s \), observe that \(\vdash t : A \rightarrow B \) is not necessarily derivable. For example, the term \(\text{Not POLY} \) is not typable by \(B_{\text{HM}} \rightarrow B_{\text{HM}} \), but is poly-typable by \(B_{\text{HM}} \rightarrow B_{\text{HM}} \) w.r.t. \(\text{True} \) and \(\text{False} \) respectively. But then note that \(ts \) has type \(B \) in the usual sense. For example, both \(\text{Not POLY True} \) and \(\text{Not POLY False} \) have type \(B_{\text{HM}} \).

The importance of Definition 4.1 is the composability of two poly-typable terms. The proof of the following proposition is easy.

Proposition 4.2 Let \(t \) be poly-typable by \(A \rightarrow B \) w.r.t. two terms \(s \) and \(s' \) with type \(A \). Moreover let \(t' \) be poly-typable by \(B \rightarrow C \) w.r.t. the two terms \(t s \) and \(t s' \). Then the term \(\text{fn } x \Rightarrow (t'(t x)) \) are poly-typable by \(A \rightarrow C \) w.r.t. \(s \) and \(s' \).

We need a generalization of the definition above. Let \(t \) and \(s_i (1 \leq i \leq n) \) be closed linear \(\lambda \)-terms such that \(\vdash t : A'_1 \rightarrow \cdots \rightarrow A'_{n-1} \rightarrow B' \) and \(\vdash s_i : A_i \) are derivable. If for some type substitution \(\theta \), we have \(\theta(\text{PT}(t)) = A''_1 \rightarrow \cdots \rightarrow A''_{n-1} \rightarrow B \) and \(\theta(\text{PT}(s_i)) = A''_i \), then we say that the term \(t \) is poly-typable by \(t : A_1 \rightarrow \cdots \rightarrow A_n \rightarrow B \) w.r.t. \(s_i \).

Remark 1 Poly-types are used in [12] without referring to it explicitly. Let \(A \) be a uniform data type consisting of exactly one type variable \('a \) (for example, \(B_{\text{HM}} = 'a \rightarrow 'a \rightarrow ('a \rightarrow 'a \rightarrow 'a) \rightarrow 'a \)). In general, the principal type of a closed term of \(A \) is more general than \(A \). The basic idea is to utilize the difference ingeniously. By using more general types, we can acquire more expressive power.

5 Strong Typed Böhm Theorem

In this section we prove the first main theorem of this paper: a version of the typed Böhm theorem with regard to \(=_{\beta \eta c} \). First we give some preliminary results, which state that for any types \(A \) and \(B \) having at least one closed term, we can always represent any projection from \(A \times \cdots \times A \) to \(A \) and any constant function from \(A \) to \(B \) using the notion of poly-types.

Lemma 5.1 (Projection Lemma) Let \(A \) be a type having at least one closed term. For any type \(B \), there is a closed term \(t \) that is poly-typable by \(A \rightarrow (B
rightarrow B) \) w.r.t. any closed term \(s \) of \(A \) such that

\[
 t \ s =_{\beta \eta c} I
\]

Proof: The term \(t \) that we are looking for has the following form:

\[
\text{fun } t \ x0 = \text{LDTr}_A \ x0 \ \overline{1} \ \cdots \ \overline{1} \ u1 \ \cdots \ um;
\]

where \(\text{LDTr}_A \) is the closed term obtained using Proposition 3.1 and the closed term \(u_j \) is defined by

\[
\text{fun } u_j \ x1 \ldots xkj-1 \ xkj = x1 \ (\cdots (xkj-1 \ (xkj \ I)) \ldots)
\]

for each \(j(1 \leq j \leq m) \). We note that the only occurrence of \(I \) in \(u_j \) is typed by \('a \rightarrow 'a \) in the principal typing, which implies that it can be typed by \(B \rightarrow B \). We also observe that the principal type of
LDTr.A s0 has the following form:

\[
\begin{array}{c}
\vdots \\
\vdots \

Theorem 5.1 (Strong Typed Böhm Theorem) For any types \(A\) and \(B\), when any two different closed terms \(s_1\) and \(s_2\) of type \(A\) and any closed terms \(u_1\) and \(u_2\) of type \(B\) are given, there is a closed term \(t\) that is poly-typable by \(A \rightarrow B\) such that

\[t \, s_1 = \beta \eta c \, u_1 \quad \text{and} \quad t \, s_2 = \beta \eta c \, u_2 \]

Proof: The term \(t\) that we are looking for has the following form:

\[\text{fun } t \, x_0 = \text{LDTr}_A \, x_0 \, \ldots \, \text{vn} \, \ldots \, \text{wm} ; \]

By Proposition 3.1 we have \(\text{LDTr}_A \, s_1 \neq \beta \eta c \, \text{LDTr}_A \, s_2\). Then since \(\text{LDTr}_A \, s_1\) and \(\text{LDTr}_A \, s_2\) are typable by a common type with order less than four, as observed before, they are identified with terms \(s_1\) and \(s_2\) in SLT respectively such that \(s_1 \neq s_2\). Then by Proposition 3.2, there are a variable assignment \(\rho_1\) and a second-order variable assignment \(\rho_2\) such that \(\left[s_1 \right]_{\rho_1, \rho_2} \neq \left[s_2 \right]_{\rho_1, \rho_2}\). Then following \(\rho_1\), we choose \(u_1\) or \(u_2\) as the subterm \(v_i\) (with type \(B\)) of \(t\) for each \(i (1 \leq i \leq n)\) and following \(\rho_2\), we choose a constant function or a projection as the subterm \(w_j\) (with poly-type \(k_j \rightarrow \cdots \rightarrow B \rightarrow B\)) of \(t\) for each \(j (1 \leq j \leq m)\). These constant functions and projections are obtained using Projection and Constant Function Lemmas. Note that these constant functions and projections can be composed by Proposition 4.2 such that the closed term \(t\) is poly-typable appropriately. It is obvious that the term \(t\) has the desired properties. \(\blacksquare\)

Remark 2 Theorem 5.1 can be considered as a strong version of Corollary 6 in [13]. While Corollary 6 in [13] uses only uniform type instantiation, Theorem 5.1 uses poly-types. We can not prove Theorem 5.1 using only uniform type instantiation. Appendix B gives a discussion of this matter.

Corollary 5.3 Let \(s_1\) and \(s_2\) be two different closed terms of \(A\). Then there is a closed term \(\text{Copy}_{A,n}\) such that

\[\text{Copy}_{A,n} \, s_1 = \beta \eta c \, (s_1, \ldots, s_1) \quad \text{and} \quad \text{Copy}_{A,n} \, s_2 = \beta \eta c \, (s_2, \ldots, s_2) \]

where \(s_1\) and \(s_2\) occur in \((s_1, \ldots, s_1)\) and \((s_2, \ldots, s_2)\) \(n\) times respectively.

Proof: In Theorem 5.1 one chooses \(\overline{A^* \cdots A}\) as \(B\), and then \((s_1, \ldots, s_1)\) and \((s_2, \ldots, s_2)\) as \(u_1\) and \(u_2\) respectively. \(\blacksquare\)

The next theorem claims that in a limited situation we can obtain a closed term representing a function from closed terms of a type to closed terms that may not be typable by the same implicational type, but are poly-typable by the type.

Theorem 5.2 (Poly-type Version of Strong Typed Böhm Theorem) Let \(s_1\) and \(s_2\) denote two different closed terms with type \(A\), and \(u_1\) and \(u_2\) denote two different closed terms which are poly-typable by \(A_0 \rightarrow B\) w.r.t. two closed terms \(r_1\) and \(r_2\) with type \(A_0\) such that \(\{u_1 \, r_1, u_1 \, r_2, u_2 \, r_1, u_2 \, r_2\}\) is a set of one or two closed terms (with type \(B\)). Then there is a closed term \(t\) that is poly-typable by \(A \rightarrow A_0 \rightarrow B\) such that

\[t \, s_1 \, r_i = \beta \eta c \, u_1 \, r_i \quad \text{and} \quad t \, s_2 \, r_i = \beta \eta c \, u_2 \, r_i \]

for each \(i \in \{1, 2\}\).
Proof: By Proposition 3.1 there is a linear λ-term $LD_{Tr}A$ such that $LD_{Tr}A \ s_1 \neq_{\beta\eta} LD_{Tr}A \ s_2$ and these terms can be regarded as different linearly labeled trees T_1 and T_2 respectively. In the rest of the proof, we assign a poly-typable first-order function to each leaf (which represented a first order variable in our proof of Theorem 5.1) and a poly-typable first-order or second-order function to each internal node (which represented a second order variable in our proof of Theorem 5.1) in T_1 and T_2, following the structure of trees T_1 and T_2. The purpose is to construct a closed term t such that each of $t \ s_1$ and $t \ s_2$ represents a one argument boolean function satisfying the specification of the theorem. The main tools are Projection and Constant Function Lemmas and the Strong Typed Böhm Theorem. We have two cases according to the structure of T_1 and T_2.

- The case where both T_1 an T_2 have an n-ary second order variable F ($n \geq 2$) and a first or second order variable G such that G is above F in both T_1 and T_2 and the position of G in T_1 is different from that of T_2.

 Furthermore, the case is divided into three cases. We assume that we choose F to be the nearest one to G in T_1 and the variable in T_2 that has the same position as G in T_1 is H.

 Without loss of generality, this case can be shown as Figure [1]. The term t that we are looking for has the following form:

 \[
 \text{fun } t \ x_0 \ y_0 = \\
 \text{let \ val } (x_1, \cdots, x_n) = \text{Copy}_{A_0 \rightarrow n} y_0 \text { in } \;
 \text{LD}_{Tr}A x_0 (v_1 \ x_1) \cdots (v_n \ x_n) \ w_1 \cdots w_m \text { end;}
 \]

 where the subterm v_i that is poly-typable by $A_0 \rightarrow B$ is obtained using Theorem 5.1 representing a surjection from $\{r_1, r_2\}$ to one or two element set $\{u_1 r_1, u_1 r_2, u_2 r_1, u_2 r_2\}$ for each $i (1 \leq i \leq n)$. The subterm w_j that is poly-typable by $B \rightarrow \cdots \rightarrow B \rightarrow B$ for each $j (1 \leq j \leq m)$ is constructed from Projection Lemma w.r.t. an appropriate position except for G and H. For example the first argument projection is assigned to F in Figure [1]. Then G and H are constructed in the following two steps:

 1. First we construct terms m_j with type $B \rightarrow B$ using the Strong Typed Böhm Theorem (Theorem 5.1). The functions for G and H are the constant, identity, or negation functions, depending on u_1 and u_2. Note that in order to represent the negation function we need the Strong Typed Böhm Theorem.

 2. Second from using m_j, we construct w_j using Constant Function Lemma in order to discard the unnecessary arguments. The terms corresponding to G and H in Figure [1] discard the second argument.

- The case where (i) there is no any path from the root to a leaf, including G in T_1 such that the path does not include H and (ii) there is a path from the root to a leaf, including H in T_2 such that the path does not include G.

 We assume that the variable in T_1 that has the same position as G in T_2 is K. In this case, the following additional properties hold:

 (iii) There is no any path from the root to a leaf, including G in T_2 such that the path does not include K.

(iv) there is a path from the root to a leaf, including K in T_1 such that the path does not include G.

Otherwise, we can apply the immediately above case (replace G and H by K and G respectively). In the case, T_1 and T_2 have the form of Figure 2 or Figure 3 without loss of generality. First we consider the case of Figure 2. The term t that we are looking for has the following form:

\[
\text{fun } t \ x_0 \ y_0 = \ \\
\text{let val } (x_1, \ldots, x_n) = \text{Copy}_{A_0, n} y_0 \text{ in } \\
\text{LDTr}_{A} x_0 (v_1, x_1) \cdots (v_n, x_n) w_1 \cdots w_m \text{ end;}
\]

where the subterm v_i that is poly-typable by $A_0 \to B$ is obtained using the Strong Typed Böhm Theorem (Theorem 5.1) for each $i (1 \leq i \leq n)$, representing a surjection from $\{r_1, r_2\}$ to one or two element set $\{u_1 r_1, u_1 r_2, u_2 r_1, u_2 r_2\}$ and the subterm w_j is poly-typable by $B \to \cdots \to B \to B$ for each $j (1 \leq j \leq m)$ obtained from Projection Lemma except that four terms assigned to F, G, H, and K are selected according to the table immediately below (and then Constant Function Lemma is applied in order to discard the
unnecessary arguments):

u_1	u_2	argument choice of F	G	H	K
const.	const.	left	const.	const.	don’t care
const.	id.	left	const.	id.	don’t care
const.	neg.	left	const.	neg.	don’t care
id.	const.	right	const.	don’t care	id.
neg.	const.	right	const.	don’t care	neg.
id.	id.	left	id.	id	id
neg.	neg.	left	id.	neg.	don’t care
id.	neg.	left	neg.	neg.	don’t care
neg.	id.	left	neg.	id.	don’t care

where id., neg., and const. mean the identity, negation, and constant functions respectively. The term “don’t care” means that we can choose any one argument function for that place.

In the case of Figure 3, the form of the term t is the same as Figure 2. The only difference is that we assign one argument functions to the subterms v_i corresponding to x and y, according to the instructions for H and K in the above table respectively. We can do the assignment using Theorem 5.1.

Figure 2: Two different linearly labeled trees (2)

- Otherwise:

 In this case, any path from the root to a leaf including G (resp. H) in T_1 (resp. T_2) includes H (resp. G) above G (resp. H). Without loss of generality, this case can be shown as Figure 4. The term t that we are looking for has the following form:

 $$
 \text{fun } t \ x_0 \ y_0 =
 \text{LDTr}_A \ x_0 \ v_1 \ \cdots \ \ v_n \ w_1 \ \cdots \ \ w_m \ (t_0 \ y_0);
 $$

 where t_0 that is poly-typable by $A_0 \rightarrow B$ is obtained from the Strong Typed Böhm Theorem (Theorem 5.1) which represents a surjection from $\{r_1, r_2\}$ to one or two element set.
\{u_1 \, r_1, u_1 \, r_2, u_2 \, r_1, u_2 \, r_2\}, the subterm \(v_i\) is poly-typable by \(B \to B\) obtained from Constant Function Lemma for each \(i(1 \leq i \leq n)\), and the subterm \(w_j\) has type

\[
C_1 \to \cdots \to C_{kj} \to D
\]

for each \(j(1 \leq j \leq m)\) where \(C_i\) and \(D\) is poly-typable by \(B \to B\). The subterm \(w_j\) is constructed from Projection Lemma w.r.t. an appropriate position except for \(G\) and \(H\). For example, in Figure 4, the first projection function is assigned to \(F\). The terms \(G\) and \(H\) are constructed by the following two steps:

1. First we construct a term \(m_j\) with type \(D\) using the Strong Typed Böhm Theorem (Theorem 5.1). The functions for \(G\) and \(H\) are the constant, identity, or negation functions, depending on \(u_1\) and \(u_2\). Note that in order to represent the negation function we need the Strong Typed Böhm Theorem.
2. Second from using \(m_j\), we construct \(w_j\) using Constant Function Lemma in order to discard the unnecessary arguments.

* Otherwise:

The case is any of the degenerated versions of the cases above. We can apply the same discussion.
6 Functional Completeness of Linear Types: An Application of Strong Typed Böhm Theorem

Strong typed Böhm theorem for the linear λ-calculus is not a theoretical nonsense. It has an algorithmic content and at least one application: functional completeness of linear types.

Definition 6.1 Let \(\mathcal{A} \) be a type that has two different closed terms \(s_1 \) and \(s_2 \). A function \(f : \{0,1\}^n \rightarrow \{0,1\} \) is represented by a closed term \(t \) that is poly-typable by \(\mathcal{A} \rightarrow \cdots \rightarrow \mathcal{A} \rightarrow \mathcal{A} \) with regard to \(s_1 \) and \(s_2 \) if, for any \(\langle x_1, \ldots, x_n \rangle \in \{0,1\}^n \) and \(y \in \{0,1\} \)

\[
f(x_1, \ldots, x_n) = y \iff t \ x_1 \cdots x_n = y \beta \eta \]

where \(x_1, \ldots, x_n, y \) are the images of \(x_1, \ldots, x_n, y \) under the map \(\{0 \mapsto s_1, 1 \mapsto s_2\} \) respectively. The type \(\mathcal{A} \) is functionally complete with regard to \(s_1 \) and \(s_2 \) if any function \(f : \{0,1\}^n \rightarrow \{0,1\} \) is represented by a closed term with regard to \(s_1 \) and \(s_2 \).

The following proposition is well-known.

Proposition 6.1 A type \(\mathcal{A} \) is functionally complete if and only if the Boolean not gate, the and gate, and the duplicate function, i.e., \(\{0 \mapsto \langle 0,0 \rangle, 1 \mapsto \langle 1,1 \rangle\} \) are represented over \(\mathcal{A} \).

So far Mairson [12] gave the functional completeness of type \(\mathbb{B}_{HM} = \langle 'a->'a->('a->'a->'a)->'a \rangle \) with regard to the two closed terms. Moreover van Horn and Mairson [9] gave the functional completeness of \(\mathbb{B}_{TWIST} \times \mathbb{B}_{TWIST} \) with regard to its two closed terms, where \(\mathbb{B}_{TWIST} = \langle 'a*->'a*->'a \rangle \). In fact, the following theorem holds.

Theorem 6.1 Let \(\mathcal{A} \) be a type that has two different closed terms \(s_1 \) and \(s_2 \). Then the type \(\mathcal{A} \) is functionally complete with regard to \(s_1 \) and \(s_2 \).

Proof: The representability of the not gate and the duplicate function are a direct consequence of strong typed Böhm theorem: while in the not gate we choose \(\mathcal{A} \) as \(\mathcal{B} \) in Theorem 5.1 and \(s_2 \) and \(s_1 \) as \(u_1 \) and \(u_2 \) respectively, in the duplicate function we choose \(\mathcal{A}* \mathcal{A} \) as \(\mathcal{B} \) and \(\langle s_1, s_1 \rangle \) and \(\langle s_2, s_2 \rangle \) as \(u_1 \) and \(u_2 \) respectively.

On the other hand, by Constant Function Lemma (Lemma 5.2), there is a term \(t \) with poly-type \(\mathcal{A} \rightarrow \mathcal{A} \) that represents the constant function \(\{0 \mapsto 0, 1 \mapsto 0\} \). Then we choose \(\mathcal{A} \rightarrow \mathcal{A} \) as \(\mathcal{A} \rightarrow \mathcal{B} \) in Theorem 5.2 and we choose \(t \) and \(I = fn(x) = x \) as \(u_1 \) and \(u_2 \) respectively. Then we get a term \(t' \) that represents the and gate.

Appendix C gives a functional completeness proof of \(\mathbb{B}_{HM} \), which is extracted from proofs shown above and is slightly different from that of [12]. Note that our construction of functional completeness is not compatible with the polymorphic λ-calculus by Girard and Reynolds (for example, see [7, 4]): For example, \(\text{Not}_{HM} \) can not be typed by \(\forall 'a.\mathbb{B}_{HM} \rightarrow \forall 'a.\mathbb{B}_{HM} \). As far as we know, the only type that is compatible with the polymorphic λ-calculus is \(\mathbb{B}_{Seq} = \langle 'a->('a->'a)->('a->'a)->'a \rangle \). Appendix D gives the functional completeness proof of \(\mathbb{B}_{Seq} \) that is compatible with the polymorphic lambda calculus. While the encoding derived from our proof of Theorem 6.1 is not compatible with the calculus, the modified version given in Appendix D is compatible. It would be interesting to pursue this topic, i.e., whether or not other types are compatible with the polymorphic λ-calculus.
7 Concluding Remarks

With regard to the functional completeness problem of the linear λ-calculus, Theorem 6.1 is not the end of the story. For example, we have already found some better Boolean encodings than that given by Theorem 6.1 (see Appendix D and [14]). We should discuss efficiency of various Boolean encodings in the linear λ-calculus and relationships among them. Moreover the extension to n-valued cases instead of the 2-valued Boolean case is open. Our result is the first step toward these research directions.

Acknowledgments. The author thanks an anonymous referee, who pointed out the simplified definition of the relation \leftrightarrow_c.

References

[1] H. Barendregt, W. Dekkers & R. Statman (2013): Lambda Calculus with Types. Cambridge University Press, doi:10.1017/CBO9781139032636.
[2] H. P. Barendregt (1981): The Lambda Calculus: Its Syntax and Semantics. North Holland.
[3] R. Blute & P. Scott (2004): Category Theory for Linear Logicians, pp. 3–64. LMS Lecture Note Series 316, Cambridge University Press, doi:10.2277/0521608570.
[4] R. L. Crole (1994): Categories for Types. Cambridge University Press, doi:10.1017/CBO9781139172707.
[5] L. Damas & R. Milner (1982): Principal Type-Schemes for Functional Programs. In: Conference Record of the Ninth Annual ACM Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 1982, pp. 207–212, doi:10.1145/582153.582176.
[6] J.-Y. Girard (1987): Linear Logic. Theoretical Computer Science 50, pp. 1–102, doi:10.1016/0304-3975(87)90045-4.
[7] J.-Y. Girard, Y. Lafont & P. Taylor (1989): Proofs and Types. Cambridge University Press.
[8] R. Hindley (1989): BCK-combinators and Linear λ-terms have Types. Theoretical Computer Science 64, pp. 97–105, doi:10.1016/0304-3975(89)90100-X.
[9] D. Van Horn & H. G. Mairson (2007): Relating complexity and precision in control flow analysis. In: Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, pp. 85–96, doi:10.1145/1291151.1291166.
[10] J. Lambek & P. Scott (1988): Introduction to Higher-Order Categorical Logic. Cambridge University Press.
[11] I. Mackie, L. Román & S. Abramsky (1993): An Internal Language for Autonomous Categories. Applied Categorical Structures 1, pp. 311–343, doi:10.1007/BF00873993.
[12] H. G. Mairson (2004): Linear Lambda Calculus and PTIME-completeness. Journal of Functional Programming 14(6), pp. 623–633, doi:10.1017/S0956796804005131.
[13] S. Matsuoka (2007): Weak Typed Böhm Theorem on IMLL. Annals of Pure and Applied Logic 145(1), pp. 37–90, doi:10.1016/j.apal.2006.06.001.
[14] S. Matsuoka (2015): A New Proof of P-time Completeness. In Geoff Sutcliffe Ansgar Fehnker, Annabelle McIver & Andrei Voronkov, editors: LPAR-20, 20th International Conferences on Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations, EPiC Series in Computer Science 35, EasyChair, pp. 119–130. Available at http://www.easychair.org/publications/download/A_New_Proof_of_P-time_Completeness_of_Linear_Lambda_Calculus.
[15] R. Milner, M. Tofte, R. Harper & D. MacQueen (1997): The Definition of Standard ML (Revised). MIT Press.
[16] R. Statman (1980): On the existence of closed terms in the typed λ-calculus. I, pp. 511–534. Academic Press.
A The relationship between linear λ terms and IMLL proof nets

A.1 Brief Introduction to IMLL proof nets

In this appendix, we introduce IMLL proof nets briefly. For a complete treatment, for instance see [13].

Definition A.1 (Plain and signed IMLL formulas) The plain IMLL formulas are defined in the following grammar:

$$A ::= p | A \otimes B | A \multimap B$$

where p is called a propositional variable. A signed IMLL formula has the form A^+ or A^-, where A is a plain IMLL formula.

Definition A.2 (Links) A link is an object with a few signed IMLL formulas. Any link is any of ID-, \otimes^+-, \otimes^--, \multimap^+-, or \multimap^--link shown in Figure 5.

A.2 A full and faithful embedding of the linear λ-calculus into IMLL proof nets

First we define our translation $[\cdot]$ of linear λ-terms into IMLL proof nets by Figure 9, where we identify IMLL proof nets up to $=$ defined by Definition 14 in [13] (or Appendix A.1). Then the following proposition holds.

Proposition A.1 If $t \rightarrow_{\beta\eta} t'$, then, $[t] = [t']$.
Figure 6: IMLL proof nets
Figure 7: Multiplicative reduction rules

Figure 8: η reduction rules
Figure 9: Translation of Linear λ-Terms into IMLL proof nets

Figure 10: Translation of β-redexes
When \(t \rightarrow_\beta t' \), Figure\[10\] proves the proposition. When \(t \rightarrow_\eta t' \), we consider Figure\[11\] In Figure\[11\] we normalize IMLL proof nets \(\Theta \) and \(\Pi \). Then the proposition should be obvious. When \(t \leftrightarrow_c t' \), \(t \) and \(t' \) are translated into the same IMLL proof net in each case. □

Moreover if both \(t \) and \(t' \) are normal forms of linear \(\lambda \)-terms with regard to \(\rightarrow_\beta \eta c \), then when \(\neg (t =_\beta \eta c t') \), it is obvious that \(\llbracket t \rrbracket \neq \llbracket t' \rrbracket \). So we have established the faithfulness. On the other hand, for any IMLL proof net \(\Theta \) whose conclusion is a type of the linear \(\lambda \)-calculus, it is easy to show that there is a linear \(\lambda \)-term \(t \) such that \(\llbracket t \rrbracket = \Theta \). So we have established the fullness. Therefore we conclude the existence of a full and faithful embedding stated above. So we can identify a normal linear \(\lambda \)-term with the corresponding normal IMLL proof net. We treat \(=_\beta \eta c \) as the legitimate equality of linear \(\lambda \)-terms. Note that while \(\eta \)-normal forms are natural in the linear \(\lambda \)-calculus, \(\eta \)-long normal forms are natural in the proof net formalism.

B Why Need Poly-Types?

In this appendix, we show that the method of \[13\] can not be extended without poly-types.

We let \(\mathbb{B}_{HM} = 'a->'a->('a->'a->'a)->'a \) and \(\mathbb{B}_{Seq} = 'a->('a->'a)->('a->'a)->'a \) and \(\text{fun True } x \ y \ z = z \ x \ y; \)
\(\text{fun False } x \ y \ z = z \ y \ x; \)
\(\text{fun TrSeq } x \ f \ g = g (f \ x); \)
\(\text{fun FlSeq } x \ f \ g = f (g \ x); \)
The terms \(\text{True} \) and \(\text{False} \) are closed terms of \(\mathbb{B}_{HM} \) and \(\text{TrSeq} \) and \(\text{FlSeq} \) are that of \(\mathbb{B}_{Seq} \). Then we show that for any type \(A \), we cannot find a closed term \(s \) of type \(\mathbb{B}_{Seq}[A/'a]->\mathbb{B}_{HM} \) such that

\[s \text{ TrSeq} =_\beta \eta c \text{ True} \quad \text{and} \quad s \text{ FlSeq} =_\beta \eta c \text{ False}. \]

We suppose that there is such a closed term \(s \). Then \(A \) must be \(\mathbb{B}_{HM} \). Moreover there must be closed
terms f and g of type $\mathbb{B}_{\text{HM}} \to \mathbb{B}_{\text{HM}}$ such that

$$f(gt) = \beta\eta \text{True} \quad \text{and} \quad g(ft) = \beta\eta \text{False}$$

where t is True or False. But f and g must be identity or not gate, because $\mathbb{B}_{\text{HM}} \to \mathbb{B}_{\text{HM}}$ does not allow any constant functions. This is impossible.

C Functional Completeness of \mathbb{B}_{HM}

The terms Not$_{\text{HM}}$, Copy$_{\text{HM}}$, And$_{\text{HM}}$ below are derived from our construction.

```plaintext
fun True  x y z = z x y;
fun False x y z = z y x;
fun I x = x;
fun u_2 x1 x2 = x1 (x2 I);
fun u_3 x1 x2 x3 = x1 (x2 (x3 I));
fun proj_1 x1 x2 = x2 I I u_2 x1;
fun Not$_{\text{HM}}$ x = x False True proj_1;
fun LDTr$_{\text{Pair}}$ p x y f z w h l
    = let val (u,v) = p in l (u x y f) (v z w h) end;
fun proj_Pair_1 x1 x2 = LDTr$_{\text{Pair}}$ x2 I I u_2 I I u_2 u_2 x1;
fun Copy$_{\text{HM}}$ x = x (True,True) (False,False) proj_Pair_1;
fun constTr h x f g = g (f (h TrSeq x I I));
fun conv h z = let val (f,g) = h in let val (x,y) = z
    in (f x,g y) end end;
fun CopySeq x =
    x (TrSeq,TrSeq) (conv (NotSeq,NotSeq)) (conv (constTr, constTr));
fun constFlFun h k x f g = f (g (k (h FlSeq x I I) I I));
fun idFun h k x f g = k (h TrSeq x I I) f g;
fun AndSeq x = x I constFlFun idFun;
```

D Functional Completeness of \mathbb{B}_{seq}

The terms NotSeq, CopySeq, AndSeq below are compatible with the polymorphic lambda calculus of Girard-Reynolds.

```plaintext
fun TrSeq x f g = g (f x);
fun FlSeq x f g = f (g x);
fun NotSeq h x f g = h x g f;
fun constTr h x f g = g (f (h x I I));
fun conv h z = let val (f,g) = h in let val (x,y) = z
    in (f x,g y) end end;
fun CopySeq x =
    x (TrSeq,TrSeq) (conv (NotSeq,NotSeq)) (conv (constTr, constTr));
fun constFlFun h k x f g = f (g (k (h FlSeq x I I) I I));
fun idFun h k x f g = k (h TrSeq x I I) f g;
fun AndSeq x = x I constFlFun idFun;
```