Profiling of inhibitory immune checkpoints in glioblastoma: Potential pathogenetic players

SALVO DANILE LOMBARDO, ALESSIA BRAMANTI, ROSELLA CIURLEO, MARIA SOFIA BASILE, MANUELA PENNISI, RITA BELLA, KATIA MANGANO, PLACIDO BRAMANTI, FERDINANDO NICOLETTI and PAOLO FAGONE

1CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria; 2IRCCS Centro Neurolesi Bonino Pulejo, I-98124 Messina; Departments of Biomedical and Biotechnological Sciences and Medical Sciences, Surgery and Advanced Technologies, University of Catania, I-95123 Catania, Italy

Received July 30, 2020; Accepted October 6, 2020

DOI: 10.3892/ol.2020.12195

Abstract. Glioblastoma (GBM) represents the most frequent glial tumor, with almost 3 new cases per 100,000 people per year. Despite treatment, the prognosis for GBM patients remains extremely poor, with a median survival of 14.6 months, and a 5-year survival less than 5%. It is generally believed that GBM creates a highly immunosuppressive microenvironment, sustained by the expression of immune-regulatory factors, including inhibitory immune checkpoints, on both infiltrating cells and tumor cells. However, the trials assessing the efficacy of current immune checkpoint inhibitors in GBM are still disappointing. In the present study, the expression levels of several inhibitory immune checkpoints in GBM (CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, LGALS9, NECTIN2 and CD48) were characterized in order to evaluate their potential as prognostic and eventually, therapeutic targets. Among the investigated immune checkpoints, TNFRSF14 and NECTIN2 were identified as the most promising targets in GBM. In particular, a higher TNFRSF14 expression was associated with worse overall survival and disease-free survival, and with a lower Th1 response.

Introduction

According to the World Health Organization (WHO) classification of the central nervous system (CNS) tumors, glioblastoma (GBM) is defined as a grade IV astrocytoma (1). GBM represents the most malignant glioma and it is characterized by necrosis, neovascularization and histological heterogeneity (2). GBM represents the most frequent glial tumor, with almost 3 new cases per 100,000 people per year (3). The current standard of care for GBM consists of surgical resection, followed by radiotherapy and chemotherapy with temozolomide (4). Despite treatment, the prognosis for GBM patients remains extremely poor, with a median survival period of 14.6 months, and the 5-year survival is less than 5% (4).

In recent years, great progress has been made in the area of immunotherapy and accumulating preclinical and clinical data seem to suggest potential novel therapeutic avenues for GBM patients (5,6). It is generally believed that GBM creates a highly immunosuppressive immunoregulatory microenvironment. Several checkpoint molecules capable of inhibiting the immune responses against neo-antigens, including CTLA4 and PD1/PDL-1, are expressed on both T cells and cancer cells. Immune checkpoint inhibitors, such as nivolumab, ipilimumab and pembrolizumab, have strikingly improved patient survival in solid tumors, such as non-small lung cancer and melanoma. However, the trials assessing the efficacy of immune checkpoint inhibitors in GBM are still disappointing (7). A retrospective study of the use of pembrolizumab in the treatment of recurrent CNS tumors, including GBM, demonstrated that patients treated with Pembrolizumab did not have improved survival (7). Another Phase III randomized trial comparing radiation and concomitant temozolomide with or without nivolumab showed that no progression-free survival benefits were obtained by the addition of nivolumab. However, in a Phase II trial, preoperative administration of nivolumab increased chemokine expression and T-cell receptor clonal diversity, which likely promotes immune-cell infiltration and antitumor immune response (7).

It is reasonable that targeting multiple immune checkpoints in combination with cytotoxic drugs could represent a promising strategy for GBM. The present study characterized the expression levels of several inhibitory immune checkpoints in GBM (i.e., CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, LGALS9, NECTIN2 and CD48) in order to evaluate their prognostic value. Moreover, their potential effects in regulating immune-cell infiltration was investigated.

Materials and methods

Profiling of inhibitory immune checkpoints in GBM. In order to evaluate the expression levels of inhibitory immune check-
Expression of inhibitory immune checkpoints in GBM. A significant upregulation in the expression levels of CD276,

\[\text{Figure 1. Expression of immune checkpoints in glioblastoma. Relative expression levels of the selected inhibitory immune checkpoints in glioblastoma, lower grade astrocytomas and normal brain samples are presented as heatmap (A). Correlation of the selected inhibitory immune checkpoints (B). Pearson correlation coefficient is presented in blue-red gradient and significance in yellow gradient.} \]
Table I. Expression of selected immune checkpoints in gliomas.

	CD276 (Log mean ± SD)	VTCN1 (Log mean ± SD)	CD47 (Log mean ± SD)	PVR (Log mean ± SD)	TNFRSF14 (Log mean ± SD)	CD200 (Log mean ± SD)	LGALS9 (Log mean ± SD)	CD48 (Log mean ± SD)	NECTIN2 (Log mean ± SD)
Glioblastoma	11.47±0.61	2.09±1.61	11.3±0.45	9.17±0.55	9.09±0.84	10.2±0.89	6.77±1.43	10.37±0.61	
Anaplastic astrocytoma	10.46±0.70	2.78±1.54	11.10±0.44	8.77±0.55	8.19±1.14	9.03±0.71	4.77±2.10	9.7±0.69	
Astrocytoma grade II	9.99±0.63	2.98±1.36	11.07±0.52	8.62±0.52	7.81±0.78	9.17±0.75	9.69±0.94	3.81±1.97	
Normal	8.79±0.36	0.15±0.83	12.17±0.13	9.69±0.51	7.75±0.46	10.91±0.46	8.59±0.49	3.21±0.93	

Glioblastoma vs. anaplastic astrocytoma
Adjusted P-value 1.38896E-30

Glioblastoma vs. astrocytoma grade II
Adjusted P-value 9.64928E-39

Glioblastoma vs. normal
Adjusted P-value 7.41774E-16

Anaplastic astrocytoma vs. astrocytoma grade II
Adjusted P-value 0.000115669

Anaplastic astrocytoma vs. normal
Adjusted P-value 6.24305E-07

Astrocytoma grade II vs. normal
Adjusted P-value 0.000601994
Table II. Overall survival for the selected immune checkpoints in glioblastoma.

	Mean Estimate	SE	Lower bound	Upper bound	Median Estimate	SE	Lower bound	Upper bound	Log-rank (Mantel-Cox)	
	95% CI				95% CI				Chi-square	Significance
CD276	Low	2,106.954	437.733	1,248.998	2,964.910					
	High	1,170.322	156.700	863.189	1,477.455					
	Overall	1,750.302	291.264	1,179.424	2,321.180					
VTCN1	Low	1,510.133	334.027	846.440	2,155.825					
	High	2,332.769	419.625	1,510.304	3,155.233					
	Overall	1,915.041	270.368	1,385.119	2,444.963					
CD47	Low	1,550.759	265.609	1,030.166	2,071.352					
	High	1,538.345	268.458	1,012.168	2,064.523					
	Overall	1,565.487	229.512	1,115.643	2,015.332					
PVR	Low	1,812.897	344.718	1,137.251	2,488.544					
	High	1,249.227	179.475	897.456	1,600.999					
	Overall	1,579.214	214.791	1,158.224	2,000.205					
TNFRSF14	Low	2,376.561	534.969	1,328.021	3,425.100					
	High	1,249.227	179.475	897.456	1,600.999					
	Overall	1,696.854	245.369	1,215.931	2,177.777					
CD200	Low	1,538.345	268.458	1,012.168	2,064.523					
	High	1,960.634	491.408	997.474	2,923.794					
	Overall	1,647.845	242.431	1,172.680	2,123.010					
LGALS9	Low	1,678.101	252.097	1,183.991	2,172.212					
	High	1,775.014	291.699	1,203.283	2,346.744					
	Overall	1,754.181	202.451	1,357.377	2,150.985					
NECTIN2	Low	1,914.122	383.529	1,162.406	2,665.839					
	High	1,467.364	265.874	946.251	1,988.477					
	Overall	1,693.007	232.899	1,236.525	2,149.490					
VTCN1, TNFRSF14, LGALS9, NECTIN2 and CD48 was observed in GBM as compared to normal brain samples (Fig. 1A, Table I). On the contrary, a significant downregulation of CD47 and CD200 was observed in GBM as compared to normal brain samples, while a trend of downregulation was observed for PVR (Fig. 1A, Table I). Along the same lines, with the exception of LGALS9 and CD200, a significant modulation in the expression levels of the investigated immune checkpoints was observed between the GBM and anaplastic astrocytoma groups of samples (Fig. 1A, Table I). Moreover, the expression levels of these immune checkpoints were associated with patient survival, as shown in Figures 2 and 3. Table II. Continued.

Median	95% CI	Log-rank (Mantel-Cox)	Chi-square	Significance																							
Estimate	SE	Lower bound	Upper bound	Estimate	SE	Lower bound	Upper bound	Estimate	SE	Lower bound	Upper bound	Estimate	SE	Lower bound	Upper bound	Estimate	SE	Lower bound	Upper bound	Estimate	SE	Lower bound	Upper bound	Estimate	SE	Lower bound	Upper bound
CD48 Low	1,535.158	253.307	1,038.675	2,031.640	1,376.000	182.438	1,018.422	1,733.578	1,376.000	182.438	1,018.422	1,733.578	0.001	0.970													
High	1,685.861	357.415	985.327	2,386.395	1,275.000	260.223	764.962	990.956	1,275.000	260.223	764.962	990.956	0.001	0.970	0.001	0.970											
Overall	1,630.422	240.486	1,159.068	2,101.775	1,298.000	156.655	990.956	1,605.044	1,298.000	156.655	990.956	1,605.044	0.001	0.970	0.001	0.970	0.001	0.970									

Figure 2. Effect of immune checkpoint expression on overall survival in glioblastoma. Kaplan-Meier curve for the overall survival of glioblastoma patients stratified on the expression levels of TNFRSF14.

Figure 3. Effect of immune checkpoint expression on disease-free survival in glioblastoma. (A) Kaplan-Meier curve for the disease-free survival of glioblastoma patients stratified on the expression levels of CD276; (B) Kaplan-Meier curve for the disease-free survival of glioblastoma patients stratified on the expression levels of VTCN1; (C) Kaplan-Meier curve for the disease-free survival of glioblastoma patients stratified on the expression levels of TNFRSF14; (D) Kaplan-Meier curve for the disease-free survival of glioblastoma patients stratified on the expression levels of NECTIN2.
Table III. Disease-free survival for the selected immune checkpoints in glioblastoma.

	Mean 95% CI	Median 95% CI	Log-rank (Mantel-Cox)							
	Estimate	SE	Lower bound	Upper bound	Estimate	SE	Lower bound	Upper bound	Chi-square	Significance
CD276										
Low	19.417	4.607	10.386	28.447	11.270	1.527	8.277	14.263	10.000	0.002
High	6.726	1.132	4.507	8.945	4.300	0.760	2.810	5.790		
Overall	13.590	2.671	8.354	18.825	7.590	1.724	4.211	10.969		
VTCN1										
Low	8.510	1.615	5.346	11.675	4.730	0.966	2.836	6.624		
High	19.102	4.450	10.380	27.824	9.460	2.380	4.795	14.125		
Overall	13.618	2.366	8.981	18.255	5.980	1.070	3.883	8.077	5.944	0.015
CD47										
Low	11.583	2.051	7.562	15.603	8.510	1.797	4.987	12.033		
High	11.562	2.939	5.801	17.323	5.390	0.833	3.757	7.023		
Overall	11.544	1.811	7.994	15.094	7.030	1.056	4.960	9.100	0.182	0.670
PVR										
Low	13.275	3.278	6.851	19.699	5.910	2.202	1.593	10.227		
High	6.936	1.188	4.608	9.264	4.860	0.715	3.458	6.262		
Overall	10.343	1.906	6.608	14.078	5.190	0.506	4.199	6.181	2.563	0.109
TNFRSF14										
Low	19.741	5.110	9.725	29.756	7.620	1.766	4.158	11.082		
High	7.659	1.249	5.455	9.862	5.390	0.715	3.988	6.792		
Overall	13.405	2.628	8.253	18.557	5.910	0.974	4.000	7.820	4.168	0.041
CD200										
Low	8.966	1.925	5.194	12.738	5.160	0.873	3.448	6.872		
High	17.597	4.920	7.954	27.239	8.410	1.419	5.628	11.192		
Overall	12.064	2.308	7.539	16.588	6.670	0.761	5.179	8.161	2.805	0.094
LGALS9										
Low	14.228	2.693	8.950	19.507	10.580	2.960	4.779	16.381		
High	10.808	2.001	6.887	14.729	6.340	1.336	3.722	8.958		
Overall	12.388	1.641	9.171	15.604	7.620	1.210	5.248	9.992	1.283	0.257
NECTIN2										
Low	14.843	3.950	7.101	22.584	7.030	1.789	3.524	10.536		
High	7.493	1.462	4.627	10.359	4.860	0.698	3.491	6.229		
Overall	10.843	1.991	6.942	14.745	5.190	0.480	4.249	6.131	4.010	0.045
CD276, TNFRSF14, LGALS9 and CD48 resulted significantly upregulated in anaplastic astrocytoma samples as compared to grade II astrocytomas (Fig. 1A, Table I). A significant direct correlation was observed for CD276, PVR, TNFRSF14, NECTIN2 and CD48 (Fig. 1B). Among the GBM samples, a significant negative correlation was instead observed between VTCN1 and PVR, NECTIN2 and CD48 (Fig. 1B).

Survival analysis. Samples were stratified in quartiles based on the expression of the genes of interest, and samples in the upper and lower quartiles were selected for comparison. As shown in Table II and Fig. 2, higher expression levels of TNFRSF14 in GBM were associated to a significantly lower overall survival. No significance was observed for any of the other immune checkpoints. Accordingly, higher TNFRSF14 levels were associated to a shorter disease-free time (Fig. 3 and Table III). Lower levels of CD276 and NECTIN2 were also significantly associated to better disease-free time (Fig. 3 and Table III). Unexpectedly, higher levels of VTCN1 were associated to a longer disease-free time (Fig. 3 and Table III).

Deconvolution analysis. Deconvolution analysis of cell infiltration in GBM was performed on samples dichotomized on the expression levels of the immune checkpoints associated to a significant modulation of survival, i.e., CD276, VTCN1, TNFRSF14 and NECTIN2. As shown in Fig. 4, higher levels of CD276, TNFRSF14 and NECTIN2 were associated with a significant lower proportion of infiltrating plasma cells. Higher VTCN1 levels were associated to higher proportions of infiltrating plasma cells, along with higher infiltration of Th1, aDCs and cDCs (Fig. 4B). Samples with high expression levels of TNFRSF14 were characterized by a significant lower infiltration of Th1 cells and cDC, and higher proportions of iDCs, aDCs, pDCs and of macrophages (both M1 and M2) (Fig. 4C). A significantly higher infiltration of iDCs, aDCs and M1 macrophages, along with reduced proportions of Th1, Th2 and CD8 T cells, were observed in GBM samples with high NECTIN2 expression levels (Fig. 4D).

Discussion

Conventional immune checkpoint inhibitors, Nivolumab/Pembrolizumab for PD-1/PDL1 blockade or Ipilimumab for CTLA4, have proven beneficial effects on the clinical course of different cancer types, including metastatic melanoma, non-small cell lung cancer, renal cell carcinoma, and Hodgkin lymphoma (9-11). However, these treatments have often failed in gliomas (12-14). A possible explanation for this outcome seems to be due to two main glioma features: the low tumor mutational burden (TMB) and a highly immunosuppressive microenvironment. Identifying genomic markers of response to immune checkpoint may benefit cancer patients by providing predictive biomarkers for patient stratification and identifying resistance mechanisms for therapeutic targeting.

The present investigation evaluated the potential role of a series of inhibitory immune checkpoints not previously studied or only marginally characterized in GBM, i.e., CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, LGALS9, NECTIN2 and CD48. To this aim, a computational analysis of RNA-seq data obtained from the TCGA (The Cancer Genome
Atlas) database was performed. Whole-genome expression data was largely used (15) to identify pathogenic pathways and therapeutic targets for several disorders, including autoimmune diseases (16-23) and cancer (24-29).

We found that VTCN1 and CD200 are highly over-expressed in GBM, anaplastic astrocytoma and astrocytoma grade II compared to normal brain. Previously, Yao et al (30) showed that VTCN1 has a crucial role in the creation and maintenance of the immunosuppressive microenvironment in gliomas, correlating with prognosis and malignant grades. Furthermore, lower levels of VTCN1 are associated with a higher survival in a clinical trial of DC based vaccination (31). This is in contrast with our observations, which appears to show a protective role for VTCN1 in GBM. The reasons for this counterintuitive data is currently object of further exploration.

On the contrary, CD200 expression levels resulted in significantly reduced astrocytomas in comparison to normal brain. CD200 is a type I transmembrane glycoprotein that plays an inhibitory role in the activation of microglia. For this reason, many studies have shown that its expression is enhanced in brain tumors (32), and especially in higher grade tumors (33). However, its role is still controversial, indeed in the same study Wang et al (33) found that CD200 down-expression can lead to a particular microglia tumor microenvironment that promotes tumor progression, in agreement with our results. Recent studies in dogs also showed that targeting CD200, enhanced the capacity of antigen-presenting cells to prime T-cells to mediate an anti-glioma response (34).

PVR and CD47 were also found down-expressed in astrocytomas when compared to normal brain, while higher levels of expression were found for LGALS9, TNFRSF14, CD48, CD276 and NECTIN2. PVR has been described as regulator of cell adhesion in a rat model of GBM (35) and a recent study in mice proved that the combination of anti-PD-1 and anti-PVR leads to a better survival (36).

CD47 is a member of the immunoglobulin superfamily that activates the signal regulatory protein-α (SIRP-α) expressed on macrophages, preventing phagocytosis. In contrast with previous studies (37,38), we found decreased levels in gliomas compared to normal brain. We consider that this down-expression can represent an attempt to maintain homeostasis. Recent studies have associated CD47 with the tumor-associated macrophages (TAMs) in the GBM microenvironment. Zhang et al (39) have also proven that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. A combination of anti-CD47 treatment and temozolomide has also been reported (40).

TNFRSF14 was found to be elevated in aggressive gliomas and its expression seemed to be associated with amplification of EGFR and loss of PTEN (41). TNFRSF14 plays an important role in the recruitment and activation of immune system in the tumor microenvironment. We showed that TNFRSF14 seems to have a significant impact on both the overall survival and the disease-free time. Interestingly, in metastatic melanoma, TNFRSF14 shows a similar behavior (42), further reinforcing our observations and suggesting that similar mechanisms can be shared also in glioma and that a combinatory blocking strategy can improve patients outcome.

Finally, we performed a deconvolution analysis showing that higher levels of CD276, TNFRSF14 and NECTIN2 are associated with a significant lower proportion of infiltrating plasma cells, while higher levels of VTCN1 were associated to higher proportions of infiltrating plasma cells, Th1, aDCs and cDCs. Higher levels of TNFRSF14 were associated with a major infiltration of iDCs, aDCs, pDCs and macrophages, but lower levels of Th1 cells and cDCs. Higher expression of NECTIN2, associated with shorter survival, is associated with reduced proportions of Th1, Th2 and CD8 T cells. Together these findings suggest that the main immune cell types that
help to reduce the tumor mass and improve the survival are Th1 and cDCs, and that their expression is strictly dependent on these immune checkpoints. In agreement with our hypothesis, previous studies have shown that in gliomas, there is a prevalent Th2 response and that switching from Th2 to Th1 can help to block glioma growth (43). Additionally, recent studies have proven that combinational therapy that blocks more immune checkpoints is a possibility to create a more vigorous Th1 antitumor response (44,45) and its association with better outcome (46). Future preclinical and clinical studies are necessary to ascertain whether, in addition to the prognostic value we have highlighted, the dysregulated expression of the inhibitory immune checkpoint presently studied may translate into clinical applications, as novel immunotherapeutic approaches for the treatment of gliomas and possibly other types of cancers.

Collectively, in this study, we evaluated the expression of several inhibitory immune checkpoints that can play a role in glioma progression. Among the investigated immune checkpoints, TNFRSF14 and NECTIN2 were identified as the most promising targets in GBM. In particular, TNFRSF14 expression is associated with worse overall survival and disease-free survival, correlating with a lower Th1 response and suggesting that it could become an interesting biomarker or therapeutic target.

Acknowledgements

Not applicable.

Funding

This study was supported by current research funds 2020 of IRCCS ‘Centro Neurolesi Bonino-Pulejo’, Messina, Italy.

Availability of data and materials

All the data in this study are available for download from TCGA (The Cancer Genome Atlas) databank.

Authors’ contributions

Conceptualization: FN and PF; data curation: SDL, RB, KM and PF; formal analysis: MP and KM; funding acquisition: AB, PB and FN; investigation: RC; project administration: PB; supervision: FN; visualization: MSB; writing-original draft: SDL, RC, MSB, MP and RB; writing-review and editing: AB, KM, PB, FN and PF.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97-109, 2007.
2. Bacher M, Schrader J, Thompson N, Kuschela K, Gemsa D, Wucherer G and Schlegel J: Up-regulation of macrophage migration inhibitory factor gene and protein expression in glial tumor cells during hypoxic and hypoglycemic stress indicates a critical role for angiogenesis in glioblastoma multiforme. Am J Pathol 162: 11-17, 2003.
3. Fritz L, Dirven L, Reijneveld JC, Koekkoeck JA, Stiggelbout AM, Pasman HR and Taphoorn MJ: Advance care planning in glioblastoma patients. Cancers (Basel) 8: 102, 2016.
4. Huang B, Zhang H, Gu L, Ye B, Jian Z, Stary C and Xiong X: Advances in immunotherapy for glioblastoma multiforme. J Immunol Res 2017: 3597613, 2017.
5. Reardon DA, Wen PY, Wucherpfennig KW and Sampson JH: Immuno modulation for glioblastoma. Curr Opin Neurol 30: 361-369, 2017.
6. Srinivasan VM, Ferguson SD, Lee S, Weathers P-S, Kerrigan BCP and Heimberger AB: Tumor vaccines for malignant gliomas. Neurotherapeutics 14: 345-357, 2017.
7. Sanders S and Debinski W: Challenges to successful implementation of the immune checkpoint inhibitors for treatment of glioblastoma. Int J Mol Sci 21: 21, 2020.
8. Aran D, Hu Z and Butte AJ: xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18: 220, 2017.
9. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J, Cowey C and Lao C: Combined nivolumab and ipilimumab or monotherapy in previously untreated melanoma. N Engl J Med 373: 23-34, 2015.
10. Ritprajak P and Azuma M: Intrinsinc and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol 51: 221-228, 2014.
11. Massari F, Santoni M, Ciccarese C, Santini D, Alfieri S, Martignoni G, Brunelli M, Piva F, Berardi R, Montiromi R, et al: PD-1 blockade therapy in renal cell carcinoma: Current studies and future promises. Cancer Treat Rev 41: 114-121, 2015.
12. Tan AC, Heimberger AB and Khassaw M: Immune checkpoint inhibitors in gliomas. Curr Oncol Rep 19: 23, 2017.
13. Desai K, Hubben A and Ahluwalia M: The role of checkpoint inhibitors in glioblastoma. Target Oncol 14: 375-394, 2019.
14. Caccese M, Indraccolo S, Zagonel V and Lombardi G: PD-1/PD-L1 immune-checkpoint inhibitors in glioblastoma: A concise review. Crit Rev Oncol Hematol 135: 128-134, 2019.
15. Gustafsson M, Edström M, Gawel D, Nestor CE, Wang H, Zhang H, Barrenás F, Tojo J, Kockum I, Olsson T, et al: Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment. Genome Med 6: 17, 2014.
16. Fagone P, Mazonz E, Cavalli E, Bramanti A, Petralia MC, Mangano K, Al-Bed Y, Bramati P and Nicoletti F: Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: In silico and in vivo evidences. J Neuroimmunol 322: 46-56, 2018.
17. Mangano K, Cavalli E, Mammana S, Basile MS, Caltabiano R, Pesce A, Puleo S, Atanasov AG, Magro G, Nicoletti F, et al: Involvement of the Nrf2/HO-1/CO axis and therapeutic intervention with the CO-releasing molecule CORM-A1, in a murine model of autoimmune hepatitis. J Cell Physiol 233: 4156-4165, 2018.
18. Mammana S, Bramanti P, Mazonz E, Cavalli E, Basile MS, Fagone P, Petralia MC, McCubrey JA, Nicoletti F and Mangano K: Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis. Oncotarget 9: 8263-8277, 2018.
19. Fagone P, Muthumani K, Mangano K, Magro G, Meroni PL, Kim JI, Sardesai NY, Werner DB and Nicoletti F: VGX-1027 modulates genes involved in lipopolysaccharide-induced Toll-like receptor 4 activation and in a murine model of systemic lupus erythematosus. Immunology 142: 594-602, 2014.
20. Nicoletti F, Mazonz E, Fagone P, Mangano K, Mammana S, Cavalli E, Basile MS, Bramanti P, ScalaBrino G, Lange A, et al: Prevention of clinical and histological signs of MOG-induced experimental allergic encephalomyelitis by prolonged treatment with recombinant human eGF. J Neuroimmunol 332: 224-232, 2019.
21. Fagone P, Mazzon E, Mammana S, Di Marco R, Spinasanta F, Basile MS, Petralia MC, Bramanti P, Nicoletti F and Mangano K: Identification of CD4+ T cell biomarkers for predicting the response of patients with relapsing-remitting multiple sclerosis to natalizumab treatment. Mol Med Rep 20: 678-684, 2019.

22. Fagone P, Mangano K, Coco M, Pericavalle V, Garotta G, Romao CC and Nicoletti F: Therapeutic potential of carbon monoxide in multiple sclerosis. Clin Exp Immunol 167: 179-187, 2012.

23. Patti F, Cataldi ML, Nicoletti F, Reggio E, Nicoletti A and Reggio A: Combination of cyclophosphamide and interferon-β halts progression in patients with rapidly transitional multiple sclerosis. J Neurol Neurosurg Psychiatry 71: 404-407, 2000.

24. Presti M, Mazzon E, Basile MS, Petralia MC, Bramanti A, Colletti G, Bramanti P, Nicoletti F and Fagone P: Overexpression of macrophage migration inhibitory factor and functionally-related genes, D-DT, CD74, CD44, CXCR2 and CXCR4, in glioblastoma. Oncol Lett 16: 2881-2886, 2018.

25. Fagone P, Caltabiano R, Russo A, Lupo G, Anfuso CD, Basile MS, Longo A, Nicoletti F, De Pasquale R, Libra M, et al: Identification of novel chemotherapeutic strategies for metastatic uveal melanoma. Sci Rep 7: 44564, 2017.

26. Basile MS, Mazzon E, Russo A, Mammana S, Longo A, Bonfiglio V, Falcillo M, Caltabiano R, Fagone P, Nicoletti F, et al: Differential modulation and prognostic values of immune-escape genes in uveal melanoma. PLoS One 14: e0210276, 2019.

27. Mangano K, Mazzon E, Basile MS, Di Marco R, Bramanti P, Mammana S, Petralia MC, Fagone P and Nicoletti F: Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach. Oncotarget 9: 17951-17970, 2018.

28. Nicoletti F, Fagone P, Meroni P, McCubrey J and Bendtz K: mTOR as a multifunctional therapeutic target in HIV infection. Drug Discov Today 16: 715-721, 2011.

29. Rothweiler F, Michaelis M, Brauer P, Otte J, Weber K, Fehse B, Doerr HW, Wiese M, Kreuter J, Al-Abed Y, et al: Anticancer effects of the nitric oxide-modified saquinavir derivative saquinavir-NO against multidrug-resistant cancer cells. Drug Discov Today 16: 715-721, 2011.

30. Yao Y, Ye H, Qi Z, Mo L, Yue Q, Baral A, Hoon DSB, Vera JC, Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, Li J, Achrol AS, Richard C, Sommerkamp P, et al: Anti-CD47 therapy targets phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS One 11: e0153550, 2016.

31. von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, et al: Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumor immunity. Nat Commun 11: 1508, 2020.

32. Han MZ, Wang S, Zhao WB, Ni SL, Yang N, Kong Y, Huang B, Chen AJ, Li XG, Wang J, et al: Immune checkpoint molecule herpes virus entry mediator is overexpressed and associated with poor prognosis in human glioblastoma. EBioMedicine 43: 159-170, 2019.

33. Malissen N, Macagno N, Granjeaud S, Granier C, Moutardier V, Gaudry-Marquez C, Habel N, Mandavlit M, Guillot B, Pasero C, et al: HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. OncoImmunology 8: e1665976, 2019.

34. Li G, Hu YS, Li XG, Zhang QL, Wang DH and Gong SF: Expression and switching of TH1/TH2 type cytokines gene in human gliomas. Chin Med Sci J 20: 268-272, 2005.

35. Jahan N, Talat H, Alonso A, Saha D and Curry WT: Triple combination immunotherapy with GVAX, anti-PD-1 monoclonal antibody, and agonist anti-OX40 monoclonal antibody is highly effective against murine intracranial glioma. OncoImmunology 8: e1577108, 2019.

36. Jahan N, Talat H and Curry WT: Agonist OX40 immunotherapy improves survival in glioma-bearing mice and is complementary with vaccination with irradiated GM-CSF-expressing tumor cells. Neuro-oncol 20: 44-54, 2018.

37. Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, Baras AS, Patel SS, Anders RA, Rimm DL, et al: Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31: 214-234, 2018.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.