Facile synthesis of Ge$_{1-x}$Sn$_x$ nanowires

Ying Xu,1,7 Najeh Al-Salim,1 Teck Hock Lim,1 Chris W Bumby,4 Soshan Cheong,3* and Richard D Tilley5,6

1Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
2Callaghan Innovation, PO Box 31-310,69 Gracefield Road, Lower Hutt, 5040, New Zealand
3Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
4Robinson Research Institute, Victoria University of Wellington, Wellington, New Zealand
5Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
6School of Chemistry, University of New South Wales, Sydney, Australia

*Author to whom any correspondence should be addressed.
E-mail: sherry.xu@auckland.ac.nz

Abstract

We report a facile one-pot solution phase synthesis of one-dimensional Ge$_{1-x}$Sn$_x$ nanowires. These nanowires were synthesized in situ via a solution-liquid-solid (SLS) approach in which triphenylchlorogermane was reduced by sodium borohydride in the presence of tin nanoparticle seeds. Straight Ge$_{1-x}$Sn$_x$ nanowires were obtained with an average diameter of 60 ± 20 nm and an approximate aspect ratio of 100. Energy-dispersive x-ray spectroscopy (EDX) and powder x-ray diffraction (PXRD) analysis revealed that tin was homogeneously incorporated within the germanium lattices at levels up to 10 at%, resulting in a measured lattice constant of 0.5742 nm. The crystal structure and growth orientation of the nanowires were investigated using high-resolution transmission electron microscopy (HRTEM). The nanowires adopted a face-centred-cubic structure with individual wires exhibiting growth along either the $\langle 111 \rangle$, $\langle 110 \rangle$ or $\langle 112 \rangle$ directions, in common with other group IV nanowires. Growth in the $\langle 112 \rangle$ direction was found to be accompanied by longitudinal planar twin defects.

1. Introduction

Ge$_{1-x}$Sn$_x$ has attracted much research interest as an exciting material with potential applications in next-generation rechargeable lithium-ion battery anodes and optoelectronic devices, due to their high carrier mobilities [1–3] and a direct band gap which can be tuned by varying the tin concentration [4–12]. Additionally, cubic Ge$_{1-x}$Sn$_x$ allows the lattice dimensions to be tuned over a wide range, which is beneficial when used as a buffer layer to reduce strain arising from lattice mismatch between III–V or II–VI compounds with silicon or germanium substrates [13–15].

The synthesis of Ge$_{1-x}$Sn$_x$ is challenging due to the low solubility of tin in germanium (<1%) [16], large lattice mismatch (~14%) and a tendency of metallic tin to segregate from germanium [17, 18]. Ge$_{1-x}$Sn$_x$ alloys are commonly fabricated using ion implantation, laser melting [4, 5, 19], molecular beam epitaxy (MBE) [7], and chemical-vapor deposition (CVD) approaches [6, 20–22]. Apart from these thin film based preparations, there are limited reports of the synthesis of anisotropic Ge$_{1-x}$Sn$_x$ nanostructures by top-down and bottom-up approaches [12, 23–28].

The most established synthetic approaches, for group IV nanowires (such as Ge and Ge$_{1-x}$Sn$_x$), involve the use of metal growth-promoters in bottom-up processes such as: vapour-liquid-solid (VLS), vapor-solid-solid (VSS), In-plane-solid-liquid-solid (IP-SLS), supercritical fluid-liquid-solid (SFLS) and solution-liquid-solid (SLS) mechanisms.[12, 18, 23, 26, 27, 29]. Amongst these, the SLS approach offers benefits such as low equipment cost, high scalability, mild-reaction conditions, easy control, and access to non-flammable germanium precursors (such as triphenylchlorogermane) [30]. To date, only a few studies have been conducted
on the growth of Ge1−xSnx nanowires via the SLS mechanism [28]. Ge1−xSnx nanowires produced from microwave-assisted decomposition of Sn(N(Si(CH3)3)2)2 and Ge(N(Si(CH3)3)2)2 precursors have been reported, but the presence of defects such as bending and twisting coupled to a low aspect ratio demand further improvements [28]. Geaney et al and Mullane et al have reported the synthesis of germanium nanowires using tin catalyst seeds at a decomposition temperature of more than 350 °C, but no Ge1−xSnx was formed in these processes [30, 31].

In order to fabricate Ge1−xSnx nanowires incorporating high tin content, non-equilibrium introduction of tin into the germanium lattice has been proposed and demonstrated by several groups. These used either a VLS mechanism from liquid-injection CVD upon Au [18] or AuAg catalysts [12, 26], or IPSLS approach [23, 27]. However, reports focused on self-seeded SLS growth of high quality Ge1−xSnx nanowires from tin catalyst are rare.

Here we report a facile one-pot solution phase synthesis of uniform, straight Ge1−xSnx nanowires with high aspect ratio (~100) in high yield. Tin was homogeneously incorporated within the germanium matrix at up to 10 at%, with no tin segregation observed on either the surface or along the length of the nanowires. These nanowires were grown via the SLS mechanism through sequential reduction of SnI4 and Ge(Ph)3Cl with NaBH4. This synthesis is simple and time-efficient due to the use of commercially available precursors and conventional laboratory glassware.

2. Materials and methods

2.1. Materials

Tin iodide (SnI4, anhydrous, 98%) and sodium borohydride (NaBH4, 2.0 M in triethylene glycol dimethyl ether) were purchased from Sigma-Aldrich. Trioctylamine (TOA) and toluene were obtained from Acros Organics. Triphenylchlorogermane (Ge(Ph)3Cl) was purchased from ABCR.

2.2. Preparation of Ge1−xSnx nanowires

Ge1−xSnx nanowires were fabricated via a one-pot two-step synthesis. Tin nanoparticles were first formed by reducing SnI4 with NaBH4 at 300 °C in TOA in a three-neck round bottom flask, followed by the swift loading of Ge(Ph)3Cl and NaBH4 consecutively, and then maintaining the temperature at 300 °C for a few hours. The optimal molar ratio of SnI4 to Ge(Ph)3Cl used was 1:30. This produced a black precipitate which was repeatedly washed in toluene and methanol prior to characterisation. All reactions were carried out under N2 gas using Schlenk techniques to eliminate air and moisture.

2.3. Characterization

The washed and dried Ge1−xSnx nanowires were studied using scanning electron microscopy (SEM) (JEOL-6500F, equipped with an energy dispersive spectrometer EDS), transmission electron microscopy (TEM) (JEOL 2010 equipped with a field emission gun operated at 200 keV), and x-ray diffraction analysis (XRD Philips PW3710 diffractometer). XRD samples were prepared as drop-cast films of nanowires deposited on single crystal silicon substrate. The silicon substrate also served as an internal calibration standard since peaks due to silicon do not overlap those from cubic Ge1−xSnx in the range of 2θ from 20 to 60 degrees. The incorporation of Sn into the Ge lattice was determined by both x-ray diffraction (XRD) using Vegard’s law, and energy dispersive x-ray (EDX) spot analysis.

3. Results and discussion

SEM images in figures 1(a) and S1 are available online at stacks.iop.org/MRX/7/064004/mmedia (in supporting information) reveal that the synthesized material contained a high yield of Ge1−xSnx nanowires. The nanowires were largely straight with smooth surface morphology. Measurement of more than one hundred individual nanowires showed that the average nanowire diameter was 60 ± 20 nm (measured at the half length of the nanowires, see figure 1(b)) whilst the average nanowire length was 5.5 ± 2.0 μm, with more than 15% of the nanowires reaching a length of at least 10 μm.

Figure 1(b) shows that the as-synthesized Ge1−xSnx nanowires have slightly tapered ends which point away from the seed nanoparticle, indicating that the taper is formed during the early stages of nanowire growth. The tapered ends have diameters of 30–40 nm, similar to the initial diameter of the Sn nanoparticle seeds (figure S2). At high temperature, molten metal nanoparticles such as Sn are prone to quick agglomeration even in the presence of surfactant, as nanoparticles are thermodynamically unstable. The initial diameter of the Sn seeds used in this synthesis was around 30–40 nm, but as the reaction proceeded at 300 °C, these seeds grew bigger over time, leading to a progressive enlargement of the nanowire diameter. It is well-documented that during metal catalyzed VLS, VSS and SLS growth, the size of the metal catalyst determines the diameter of the nanowire
produced \cite{32, 33}, and similar observations of tapered nanowires have also been reported by others \cite{12, 28}. Another possible contribution reason for the tapered profile could be that at the start of the synthesis the concentration of germanium in the tin nanoparticles was low, which resulted in an initially exsolved nanowire being thinner than the seed particles. However, as the reaction progressed, more germanium dissolved in the tin seed and therefore the diameter of $\text{Ge}_1 - x\text{Sn}_x$ nanowires increased.

The average diameter of the interface between the tin nanoparticle seed and the $\text{Ge}_1 - x\text{Sn}_x$ nanowire was around 80 nm, with sizes ranging from 50 nm to 140 nm. For example, the diameter of the interface of the nanowire shown in figure 1(b) is about 110 nm, whilst the diameter of the interface region of the nanowire in figure 3(a) is about 75 nm (The corresponding magnified images are shown in figure S3.) The interface between the seed particle and nanowire is typically smaller than the diameter at half-length because of the growth mechanism involved in this type of nanowire synthesis \cite{28, 34–37}.

A typical XRD pattern of the $\text{Ge}_1 - x\text{Sn}_x$ nanowire is shown in figure 2. Three diffraction peaks were indexed and labelled as (111), (220) and (311) of the crystalline diamond structure of $\text{Ge}_1 - x\text{Sn}_x$. The scattering angle 2θ of each peak is shifted to low scattering angles, relative to those of pure germanium (space group Fd3m, $\alpha = 5.658$ Å). The corresponding d values were determined by employing Bragg’s law, using the (111) diffraction from the silicon substrate to provide a highly accurate internal calibration standard (space group Fd3m, $\alpha = 5.4309$ Å).

To determine of the molar fraction of Sn present in the nanowires, we derived x from the XRD peak shift by assuming the validity of Vegard’s law based on the previous theoretical and experimental studies of Ge-Sn system published \cite{14, 38, 39}. The lattice parameter α of Ge was calculated from the d values for the Ge (111),
(220) and (311) peaks, which established an average lattice constant of 5.742 ± 0.003 Å (inset of figure 2). According to work by Denton et al [39], this implies that about 10 at% Sn was incorporated into the Ge lattice.

Several peaks corresponding to the tetragonal phase of Sn are also observed in the diffraction pattern. These are also shifted slightly toward higher scattering angle, indicating a slight distortion of the tetragonal cell of β-Sn. No detectable XRD peaks corresponding to cubic phase α-Sn were observed.

The local elemental composition of several individual nanowires was investigated by EDX elemental mapping during SEM studies. Figure 3 shows a tin-rich nanoparticle at the tip of a Ge1−xSnx nanowire, once again confirming the SLS growth mechanism. EDX line scanning and mapping revealed homogeneously distributed tin throughout the nanowire with no evidence of tin segregation or a tin-rich shell has been observed in other work [18]. EDS spot analysis was performed on more than twenty individual Ge1−xSnx nanowires at the seed (A), growing zone (B), middle (C) and tip (D) sections. This showed that the tin composition decreased from about 80% at the seed to about 10% at the middle and taper sections of each nanowire (figure S4 in the supporting information). The x = 10% obtained by EDX-spot analysis of the nanowire is consistent with the XRD analysis result, supporting the validity of this value.

High-resolution TEM images and selected area diffraction patterns (SAED) of two individual nanowires are shown in figure 4. These confirm that the Ge1−xSnx nanowire adopted a face-centred cubic crystal structure, as found in the XRD analysis. The SAED pattern (shown as insets) indicate that the growth of the Ge1−xSnx nanowires was along the (111) (figure 4(a)) and (110) (figure 4(b)) directions respectively. In figure 5, an individual Ge1−xSnx nanowire with twin defects along the [112] axis was identified. The SAED pattern (inset, figure 5) clearly shows twin diffraction reflections, indicating the formation of longitudinal [111] twins. The twin boundary extends parallel to the growth direction.

Of the twenty Ge1−xSnx nanowires examined under high-resolution TEM, about 70 to 80% of the nanowires exhibited single crystal growth along the (110) or (111) directions (figure 4). The remaining 20%–30% of the nanowires exhibited growth along the (112) direction with accompanying twin defects.

The surfactant assisted tin-seeded growth of Ge1−xSnx nanowires can be divided into four stages based on the SLS growth mechanism (figure 6). Firstly, SnI4 was reduced by NaBH4 at 300 °C to form nanoscale molten spherical tin droplets. Then Ge(Ph)3Cl was reduced to form Ge0. Ge0 attached on the surface of tin droplets where it could either diffuse around the outer surface of the droplet or penetrate and dissolve within it. In the third stage, a nucleation event occurred and the Ge1−xSnx nanowire started to grow. In the final stage, a high concentration of Ge0 was maintained in the tin seed resulting in the steady growth of long Ge1−xSnx nanowires.
Figure 4. (a) A high-resolution TEM image taken along the $[0\bar{1}1]$ zone axis of a Ge$_{1-x}$Sn$_x$ nanowire with $[111]$ growth direction, and a selected area diffraction pattern (SAED pattern) in the inset. The forbidden spot of (200) originates from double diffraction of (111) and (1\bar{1}1); (b) A high-resolution TEM image taken along the $[111]$ zone axis of a Ge$_{1-x}$Sn$_x$ nanowire with $[1\bar{1}0]$ growth direction and selected area diffraction pattern (SAED pattern) in the inset.

Figure 5. A high-resolution TEM image of a Ge$_{1-x}$Sn$_x$ nanowire with $[112]$ growth direction with longitudinal $\{111\}$ twins of taken along the $[10\bar{1}]$ zone axis. (inset: SAED pattern).
The high Sn content of the nanowires is attributed to non-equilibrium ‘solute-trapping’ phenomenon [40] which occurs at the nanowire-seed interface during the steady growth phase.

For practical applications in optoelectronic and electric devices, the thermal stability of Ge$_{1-x}$Sn$_x$ material is a crucial property which has been widely studied and reported [17, 23, 24, 41–45]. Zaumseil et al showed that the tin segregation temperature of Ge$_{1-x}$Sn$_x$ alloys increases with decreasing Sn content, and that Ge$_{0.91}$Sn$_{0.09}$ was stable at temperatures up to 400 °C [17]. This is consistent with the growth temperature of 300 °C used in this work, and hence the Ge$_{0.91}$Sn$_{0.09}$ nanowires produced here are expected to remain thermally stable at temperatures suitable for optoelectronic applications.

4. Conclusion

In summary, we have demonstrated a facile one-pot two-step synthesis of high aspect ratio Ge$_{1-x}$Sn$_x$ nanowires with an average diameter of 60 ± 20 nm and average length of 5.5 ± 2.0 μm. The nanowires were produced via self-catalyzed SLS growth in a process using low-cost commercially available precursors, namely Ge(Ph)$_3$Cl, SnI$_4$ and NaBH$_4$. Elemental analysis revealed highly homogeneous incorporation of Sn in the Ge matrix at up to 10 at%, as evidenced by results from both XRD and EDX spot analysis. SAED studies of individual nanowires indicated that the Ge$_{1-x}$Sn$_x$ nanowires adopted a face-centred cubic structure, with growth directions oriented in either the ⟨111⟩, ⟨110⟩ or ⟨112⟩ direction. Future studies will examine the formation mechanism of the twin defects and the optical properties of the synthesized Ge$_{1-x}$Sn$_x$ nanowires.

Acknowledgments

Y X, N A, T L, C B, S C and R D T thank FRST for funding through Grant IIOF VICX0601.

ORCID iDs

Ying Xu @ https://orcid.org/0000-0003-1165-9727

Soshan Cheong @ https://orcid.org/0000-0001-6133-0829

References

[1] Bodnarchuk M I, Kravchyk K V, Krumneich F, Wang S and Kovalenko M V 2014 Colloidal tin-germanium nanorods and their Li-Ion storage properties ACS Nano 8 2360–2368
[2] Moto K, Yoshimine R, Suenari T and Toko K 2018 Improving carrier mobility of polycrystalline Ge by Sn doping Sci. Rep. 8 14832
[3] Galluccio E, Doherty J, Biswas S, Holmes J D and Duffy R 2020 Field-Effect Transistor Figures of Merit for Vapor–Liquid–Solid-Grown Ge$_{1-x}$Sn$_x$ (x = 0.03–0.09) Nanowire Devices ACS Appl. Electron. Materials 2 1226–1234
[4] Tran T T, Pastor D, Gandhi H H, Smillie L A, Akey A J, Aziz M J and Williams J S 2016 Synthesis of Ge$_{1-x}$Sn$_x$ alloys by ion implantation and pulsed laser melting: towards a group IV direct bandgap material J. Appl. Phys. 119 183102
[5] Bhatia A, Hlaing O W M, Siegel G, Stone P R, Yu K M and Scarpulla M A 2012 Synthesis of Ge$_{1-x}$Sn$_x$ alloy thin films using ion implantation and pulsed laser melting (II-PLM) J. Electron. Mater. 41 837–844
[6] Grant P C et al 2019 UHV-CVD growth of high quality GeSn using SnCl$_4$: from material growth development to prototype devices Opt. Mater. Express 9 3277–3291
[7] Chen R, Lin H, Huo Y, Hitzman C, Kamins T I and Harris J S 2011 Increased photoluminescence of strain-reduced, high-Sn composition Ge$_{1-x}$Sn$_x$ alloys grown by molecular beam epitaxy Appl. Phys. Lett. 99 181125
[8] Esteves R J A, Ho M Q and Arachchige I U 2015 Nanocrystalline group IV alloy semiconductors: synthesis and characterization of Ge$_{1-x}$Sn$_x$ quantum dots for tunable bandgaps Chem. Mater. 27 1559–1568
[9] Alan Esteves R J, Hafiz S, Demchenko D O, Özgür U and Arachchige I U 2016 Ultra-small Ge$_{1-x}$Sn$_x$ quantum dots with visible photoluminescence Chem. Commun. 52 11665–11668
[10] Yang Q, Zhao X, Wu X, Li M, Di Q, Fan X, Zhu J, Song X, Li Q and Quan Z 2019 Facile synthesis of uniform Sn$_{1-x}$Ge$_x$ alloy nanocrystals with tunable bandgap Chem. Mater. 31 2248–2252
[11] Wang W, Vajandar S, Lim S L, Dong Y, D’Costa V R, Osipowicz T, Tok E S and Yeo Y C 2016 In-situ gallium-doping for forming p + germanium-tin and application in germanium-tin p-i-n photodetector Appl. Phys. Lett. 119 155704

[12] Biswas S, Doherty J, Saludukha D, Ramasse Q, Majumdar D, Upmanyu M, Singh A, Ochsali T, Morris M A and Holmes J D 2016 Non-equilibrium induction of tin in germanium: towards direct bandgap GeSn, nanowires Nat. Commun. 7 11405

[13] Roucka R, Tolle J, Cook C, Chizmeshya A V G, Kouvetakis J, D’Costa V, Menendez J, Chen Z D and Zollner S 2005 Versatile buffer layer architectures based on GeSn alloys Appl. Phys. Lett. 86 191912

[14] Chizmeshya A V G, Bauer M R and Kouvetakis J 2003 Experimental and theoretical study of deviations from Vegard’s law in the SnxGe1−x system Chem. Mater. 15 2511–2519

[15] Bauer M, Taraci J, Tolle J, Chizmeshya A V G, Zollner S, Smith D J, Menendez J, Hu C and Kouvetakis J 2002 Ge-Sn semiconductors for band-gap and lattice engineering Appl. Phys. Lett. 81 2992

[16] Oleinski R W and Abbasschian G J 1984 The Ge-Sn (Germanium-Tin) system Bull. Alloy Phase Diagrams 5 265–271

[17] Zaumseil P, Hou Y, Schubert M A, Von Den Driesch N, Stange D, Rainko D, Virgilio M, Buca D and Capellini G 2018 The thermal stability of epitaxial GeSn layers APL Mater. 6 076108

[18] Haffner T et al 2018 Growth of Ge1−xSnx nanowires by chemical vapor deposition via vapor–liquid–solid mechanism using GeH4 and SnCl4 Phys. Status Solidi (a) 215 1700743

[19] Wirths S et al 2015 Lasing in direct-bandgap GeSn alloy grown on Si Nat. Photonics 9 84–92

[20] Elzbi A et al 2020 Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys Nat. Photonics 14 375–382

[21] Mosleh A et al 2015 Direct growth of Ge1−xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system Front. Mater. 2 30

[22] Taraci J, Tolle J, Kouvetakis J, McCartney M R, Smith D J, Menendez J and Santana M A 2001 Simple chemical routes to diamond-cubic germanium-tin alloys Appl. Phys. Lett. 78 3607

[23] Azrak E, Chen W, Moldovsan S, Gao S, Duguay S, Pareige P and Roca I Cabarrocas P 2018 Growth of In-plane Ge1−xSnx nanowires with 22% Sn using a solid-liquid-solid mechanism J. Phys. Chem. C 122 26326–26324

[24] Lei D, Loo K H, Bao S, Wang W and Masudah-paneach S 2017 Thermal stability of Ge1−xSnx (GeSn) fi J. Phys. Chem. 111 252103

[25] Gupta S, Chen R, Huang Y C, Kim Y, Sanchez E, Harris J S and Saraswat K C 2013 Highly selective dry etching of germanium over germanium-tin (Ge1−xSnx): a novel route for Ge1−xSnx nanostructure fabrication Nano Lett. 13 3783–3790

[26] Doherty J, Biswas S, McNulty D, Downing C, Raha S, O’Regan C, Singh A, O’Dwyer C and Holmes J D 2019 One-Step fabrication of GeSn branched nanowires Chem. Mater. 31 (11) 4016–4024

[27] Azrak E, Chen W, Moldovsan S, Duguay S, Pareige P and Roca I Cabarrocas P 2020 Low-temperature plasma-assisted growth of core-shell GeSn nanowires with 50% Sn J. Phys. Chem. C 124 (1) 1220–1226

[28] Seifert M S, Bigger F, Lugstein A, Bernardi J and Barth S 2015 Microwave-assisted Ge1−xSnx nanowire synthesis: precursor species and growth regimes Chem. Mater. 27 6125–6130

[29] O’Regan C, Biswas S, Petkov N and Holmes JD 2014 Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control J. Mater. Chem. C 2 14–33

[30] Geaney H, Mullane E and Ryan K M 2013 Solution phase synthesis of silicon and germanium nanowires J. Mater. Chem. C 1 4996–5007

[31] Mullane E, Kennedy T, Geaney H, Dickinson C and Ryan K M 2013 Synthesis of tin catalyzed silicon and germanium nanowires in a solvent–vapor system and optimization of the seed/nanowire interface for dual lithium cycling Chem. Mater. 25 1816–1822

[32] Cui Y, Laihun L J, Gudiksen M S, Wang J and Lieber C M 2001 Diameter-controlled synthesis of single-crystal silicon nanowires Appl. Phys. Lett. 78 2214

[33] Zhu L, Phillips M R and Ton-That C 2015 Coalescence of ZnO nanowires grown from modispspered Au nanoparticles Cryst. Eng. Comm. 17 4987–4991

[34] Tessarek C et al 2016 Self-catalyzed growth of vertically aligned InN nanorods by metal-organic vapor phase epitaxy Nano Lett. 16 3415–3425

[35] Colombo C, Spirkoska D, Frimmer M, Abstreiter G and Fontcuberta I Morral A 2008 Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy Phys. Rev. B 77 155326

[36] McIntyre P C and Fontcuberta I Morral A 2020 Semiconductor nanowires: to grow or not to grow Mater. Today Nano 9 100058

[37] Thombare S V, Marshall A F and McIntyre P C 2013 Kinetics of germanium nanowire growth by the vapor-solid-solid mechanism with a Ni-based catalyst APL Mater. 1 061101

[38] Toko K, Oya N, Saitoh N, Yoshizawa N and Suenasu T 2015 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge Appl. Phys. Lett. 106 082109

[39] Denton A R and Ashcroft N W 1991 Vegard’s law Phys. Rev. A 43 3161

[40] Doherty J, Biswas S, Saludukha D, Ramasse Q, Bhattacharya T S, Singh A, Ochsali T and Holmes J D 2018 Influence of growth kinetics on Sn incorporation in direct bandgap GeSn, nanowires J. Mater. Chem. C 6 8738–8750

[41] Sadofyev Y G, Martovitsky V P, Klekovkin A V, Saraikin V V and Vasil ‘Evsik I S 2015 Thermal stability of GeSn nanowires grown by MBE on (001) Si/Ge virtual wafers Phys. Procedia 72 411–418

[42] Wang W, Li L, Zhou Q, Pan J, Zhang Z, Tok E S and Yeo Y C 2014 Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial GeSn, layer on Ge(0 0 1) substrate Appl. Surf. Sci. 312 240–244

[43] Grossi H, Glaser M, Schatz M, Brehm M, Gerthsen D, Roth D, Bauer P and Schäffler F 2017 Free-running Sn nanoparticles: an efficient phase separation mechanism for metastable GeSn, epiarrays Sci. Rep. 7 16114

[44] Ragan R and Atwater H A 2000 Measurement of the direct energy gap of coherently strained SnxGe1−x/Ge(001) heterostructures Appl. Phys. Lett. 77 3418

[45] Wang W, Li L, Tok E S and Yeo Y C 2015 Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate Journal of Applied Physics 117 225304