Melanotic Neuroectodermal Tumor of Infancy: the Use of Immunohistochemical Analysis

Melanotički neuroektodermalni tumor dojenačke dobi: primjena imunohistokemijske analize

Abstract
The Melanotic Neuroectodermal Tumor of Infancy (MNTI) is an asymptomatic, pigmented neoplasm characterized by a fast and locally aggressive growth along with a rare tissue formation. In the diagnostic process, the use of imaging exams can suggest a local destruction suggestive of malignancy, a sign of bone remodeling and expansion. Therefore, as any early diagnosis minimizes risks and improves the prognosis of treatment for the patient, the aim of this study was, based on a clinical case report, to corroborate the use of histopathological analysis associated with immunohistochemistry. Thus, we conclude that the immunohistochemical exam is of great importance for a better complementation of the MNTI diagnosis process. In addition, it can reveal signs of possible aggressive growth.

Received: September 18, 2021
Accepted: March 23, 2022
Address for correspondence
André Luca Araujo de Sousa
4854 Ave. São Sebastião, 4638 Nossa Sra. de Fátima, Parnaíba - Piauí, Brazil
ZIP Code: 64202-020
a.lucaaraujo10@gmail.com
MeSH terms: Neuroectodermal Tumor Melanotic; Early Diagnosis; Immunohistochemistry; Infant

Introduction
The Melanotic Neuroectodermal Tumor of Infancy (MNTI) is an asymptomatic, pigmented neoplasm characterized by a fast and locally aggressive growth, in addition to a rare tissue formation (1-6).

It predominantly affects individuals in the first year of life, with 90% of the cases of this pathology occurring in the head and neck region, most commonly in the maxillary bone (3, 5-8).

This tumor originates from the neural crest, due to a bi-phasic population of neuroectodermal melanocytic, primitive cells and an epithelioid cell component with an abundance of pigments (1, 3, 4, 6, 8, 9).

In the diagnostic process, the use of imaging exams can suggest a local destruction, suggestive of malignancy, that is,
signs of bone remodeling and expansion [8]. However, along with these tests, a histopathological analysis is needed and essential. Additionally, immunohistochemistry is useful in the diagnosis of MNTI (1, 2, 8, 9).

Therefore, since any early diagnosis minimizes the risks and increases the treatment prognosis for the patient, the objective of this study was, from a clinical case report, to corroborate the use of histopathological analysis associated with immunohistochemistry. The aim was also to briefly address the MNTI characteristics of the present clinical report in association with other studies in the literature.

Case Report

An 8-month-old male child was taken to a dental office with an expansive lesion in the oral cavity (Figure 1). The patient’s mother reported the appearance of this alteration in the 3rd month after birth and of rapid growth. The patient had no previous serious pathologies. On physical examination, an increase in volume in the anterior region of the maxilla was observed, being characterized as a fixed nodular lesion with similarly colored mucosa in the surrounding area. In addition, its growth did not cause rigidity. Also, there was no pulsation, and no production of liquids.

An excisional biopsy was indicated. Subsequently, the histological sections revealed a fragment of mucosa covered by parakeratinized stratified pavement epithelial tissue. In the lamina, there was a neoplasm organized in nests, tubules and alveolar structures intermingled with dense stroma. Neoplastic cells presented a biphasic pattern. In areas, some nests of small and round cells were noted, exhibiting sparse hyperchromatic cytoplasm, while in other areas, epithelioid and cuboid cells were noted, exhibiting cytoplasm and light nuclei and dark brown granules of melanin pigment (Figure 2).

On immunohistochemical examination, neoplastic cells were moderately positive for anti-CD99 antibody, stromal cells were diffusely positive for anti-Vimentin antibody. The proliferative index was evaluated using, for this purpose, the Ki-67 antibody, which was shown to be less than 5%. Neoplastic cells were negative for anti-S100 and BRAF-V600E antibodies (Figure 3). Having combined clinical, morphological and immunohistochemical characteristics, a final diagnosis of melanotic neuroectodermal tumor of infancy (MNTI) was established.

According to the literature, MNTI occurs more frequently in the gnathic bones, in younger patients, with a predilection for males and with some peculiar clinical features. Several studies in the literature have reported similar characteristics related to this neoplasm, as can be seen in Table 2:

Regarding the immunohistochemical peculiarities and the results of interactions with agents for the individual characterization of pathology, several studies in the literature have also reported the properties that are able to distinguish MNTI from other lesions, as can be seen in Table 3:

Discussion

As previously reported, MNTI, in several studies, shares similar characteristics, which were also present in this case report. Therefore, since any early diagnosis minimizes the risks and increases the treatment prognosis for the patient, the objective of this study was, from a clinical case report, to corroborate the use of histopathological analysis associated with immunohistochemistry. The aim was also to briefly address the MNTI characteristics of the present clinical report in association with other studies in the literature.

Prikaz slučaj

Dječak od 8 mjeseci doveden je u stomatološku ordinaciju s ekspanzivnom lezijom u usnoj šupljini (slika 1.). Majka je prijavila tu promjenu u djetetovu 3. mjesecu i upozorila na njezin brzi rast. Prije toga kod pacijenta nije bila uočena neka značajna patologija. Fizikalnim pregledom uočeno je povećanje volumena u prednjem dijelu maksile, što se smatra fiksnom nodularnom lezijom sa ljudno obojanim sluznicom u okolnome području. Ali njezin rast nije prouzročio rigiditet, nije bilo pulsiranja i proizvodnje tekućine.

Indicirana je ekscizijska biopsija, pri čemu je histološkim rezovima otkriven ulomak sluznice prekriven parakeratiniziranim slojevima epitelnim tkivom. U laminu se nalazila novotorina organizirana u gnijezda, tubule i alveolarnine strukture pomiješane s gustom stromom. Tumorske stanice imale su duvazni uzorak. Na nekim područjima uočena su gnijezda malih i okruglih stanica s rijetkom hipkeratomskim citolazmom, a u ostalima su zabilježene epiteloidne i kockaste stanice s citolazmom i svijetlim jezgrama te tamnosrednim granulama pigmenta melanina (slika 2.).

Na imunohistokemijskom pregledu tumorske stanice bile su umjereno pozitivne na anti-CD99 antitijela, a stromalne stanice bile su difuzno pozitivne na antivimentin antitijela. Indeks proliferacije procijenjen je korištenjem Ki-67 antitijela i pokazalo se da je manji od 5 %. Tumorske stanice bile su negativne na antitijela anti-S100 i BRAF-V600E (slika 3.). Kombinirajući kliničku, morfološku i imunohistokemijsku obilježja, konačna dijagnoza glasila je dječji melanotički neuroektodermalni tumor.

Prema literaturi, MNTI se češće pojavljuje s nekim osebnim i kliničkim značajkama u čeljusnim kostima mladih pacijenata, uglavnom dječaka. U nekoliko istraživanja u literaturi autori izvješćuju o zajedničkim obilježjima te novotorine (vidi tablicu 2.).

Kad je riječ o imunohistokemijskim obilježjima i rezultatima interakcija s agensima za individualnu karakterizaciju patologije, u nekoliko istraživanja u literaturi autori također izvješćuju o svojstvima koja mogu razlikovati MNTI od drugih lezija (vidi tablicu 3.).

Rasprava

Kao što je prije istaknuto u nekoliko istraživanja, MNTI ima zajednička obilježja, a u ovom slučaju spol pacijenta od-
Figure 1 Photo showing a lesion in the oral cavity. Source: personal archive.

Slika 1. Lezija u usnoj šupljini (izvor – osobni arhiv)

Figure 2 Histological sections in hematoxylin and eosin showing a neuroectodermal lesion.

Slika 2. Histološki rezovi u hematoksilinu i eozinu koji pokazuju neuroektodermalnu leziju

Figure 3 Anti-CD99 immunohistochemical test with moderately positive labeling (A – G), diffusely positive for anti-Vimentin (H – M), proliferative index less than 5% with Ki-67 (N – P) and negative cell labeling for anti-S100 and BRAF-V600E (Q – S).

Slika 3. Anti-CD99 imunohistokemijski test s umjereno pozitivnim označavanjem (A – G), difuzno pozitivnim na antivimentin (H – M), proliferativnim indeksom manjim od 5 % s Ki-67 (N – P) i negativnim označavanjem stanica za anti-S100 i BRAF-V600E (Q – S)
port. Furthermore, the patient’s sex fits the predilection for a gender reported in the literature, with involvement in the first year of life. Also, regarding the characteristics of the lesion in the present study, these were similar to the literary findings, such as rapid and expansive growth with regional anatomical deformation; rigid and fixed lesion; in addition to the predilection for the maxillary bone (Table 2). However, it was observed that there was no pigmentation of the adjacent tissues surrounding the tumor lesion.

The diagnosis of MNTI can be performed mainly by radiological characteristics in association with histopathological examinations (4, 5). However, immunohistochemical analyses and molecular studies are useful and can contribute to the diagnosis of this neoplasm, especially in difficult cases and particularly in small biopsies with the possibility of differentiating this pathological change from other tumors present in childhood (6-9, 16).

Thus, some immunohistochemical characteristics have been described by several researchers by exposing pathological MNTI tissue to some reagents, such as cytokeratin, HMB45, S100, Ki-67 and others (Table 3) (12-14).

Positive anti-CD99 and anti-vimentin antibodies were observed in the present study and are reported in the literature as immunohistochemical characteristics of MNTI, in addition to anti-S100 antibody negativity (7-9, 12, 14, 17, 18) (Table 1 and 3). Besides, the prophylactic index with the use of the ki-67 antibody observed was similar to the study by Cuija, Maoa and Liaoa (14), with the value lower than 5%, but different from the study by Moreu et al. (3), with a mean value of 18%, in a survey of 11 patients (0 to 30%).

According to Souza et al. (12), positivity for the Ki-69 and anti-CD99 antibody, which was also observed in the present clinical case, may suggest an aggressive tumor growth, thus, giving a possible plausible explanation for the rapid growth of the tumor, usually in about 3 months.

Although histological evaluation is important for the final diagnosis of a pathological lesion, in cases of MNTI it is a poor indicator of clinical behavior (11). However, immunohistochemical analysis provides some information about the aggressiveness of these tumors (17).

Thus, with the rapid growth of MNTI, its malignant potential, in addition to recurrence rates, an early diagnosis is essential (12). Therefore, immunohistochemical analyses have become important because they can help confirm a melanotic neuroectodermal tumor of infancy diagnosis (12, 19, 20).
Neuroectodermal Tumor of Infancy

de Sousa et al.

Table 2. Epidemiological data and clinical characteristics

Author • Autor	Case Report • Prikaz slučaja	Epidemiology • Epidemiologija	Clinical Characteristics • Klinička obilježja
Wu et al. (10)	Case report of a 3-month-old newborn with remarkable tumor growth in 4 days without previous trauma. • Prikaz slučaja tromjesečnoga novorodenčeta sa značajnim rastom tumora u 4 dana bez prethodne traume.	70% of cases are located in the maxilla, followed by the cranial, mandibular and cerebral regions. • 70% slučajeva nalazi se u maksili, zatim u kranijalnoj, mandibularnoj i cerebralnoj regiji.	Fast growing, pigmented, firm, sessile tumor with malignant potential. • Brzo rastući, pigmentirani, solidni, sessilni tumor sa zloćudnim potencijalom.
Moreu et al. (3)	Clinical research with 11 patients aged (months) ranging from 0 to 5 months and mean age of 3.18 months. • Kliničko istraživanje sa sudjelovanjem 11 pacijenata od 0 do 5 mjeseci i prosječne dobi od 3.18 mjeseci.	Prediction for the head and neck area, especially in the jaw bone. • Područje glave i vrata, posebno željst.	Painless, sessile, pigmented (black or blue) and non-ulcerated lesion. • Bezbolna, sessilna, pigmentirana (crna ili plava) i neulcerirana lezija.
Unsal; Yancin (9)	A 6-month-old male child with increased mandibular volume. • Djecak od 6 mjeseci s povećanim volumenom mandibule.	It affects more the head and neck region. And it predominantly affects the maxilla (70 to 80%), skull (10%), mandible (6%) and brain (4%). In addition to the predominance in babies. • Više utječe na regiju glave i vrata te pretežno zahvaća maksilu (70 do 80%), lunbu (10%), mandibulu (6%) i mozuq (4%). Prevadava kod novorodenčadi.	It presents as a rapidly growing, locally destructive, painless, immobile, black, brown, or blue pigmented swelling. • Prikazuje se kao brzo rastući, lokalno destruktivna, bezbolna, nepokretna, crna, smeđa ili plavo pigmentirana oteklina.
Pontes et al. (5)	Literature review. • Pregled literature.	Greater predominance in gnathic bones and slightly affect males (1,32: 1). • Prevadava u čeljusnim kostima s većom pojavnošću kod muškaraca (1,32: 1).	More satisfactory prognosis in younger patients, due to the size of the pathology and less chance of metastasis. • Zadovoljavajuća progonosa za mlađe pacijente zbog veličine patološkog procesa i manje vjerojatnosti metastatiziranja.
Santos et al. (2)	Anterior maxillary growth in a 6-month-old girl • Prednji maksilarni rast kod šestomjesečne djevojčice.	Prevalence in gnathic bones (maxilla) in males and occurs in the first year of life, especially in the first months. • Prevladica u čeljusnim kostima (maksili) kod dječaka, pojavljuje se u prvoj godini života, osobito u prvim mjesecima.	Rapid growth, invasive and causing deformities. Possibly malignant transformation and bone metastasis. • Brzi rast uzrokuje invazivne deformitetere. Moguća zločudna transformacija i metastazi u kosti.
Soles et al. (8)	Literature review. • Pregled literature.	Greater predominance in craniofacial bones (maxillary) and male predilection. • Veća sklonost u maksilu i sklonost kod muških.	Firm, lobulated change, well-defined mass, bluish-black hue. In addition to showing rapid growth and local infiltration into adjacent tissues. 8 Firm, lobulated change, well-defined mass, bluish-black hue. In addition to showing rapid growth and local infiltration into adjacent tissues.
Ren et al. (4)	Literature review. • Pregled literature.	Higher prevalence in cranial bones, observed in men and women, in addition to being diagnosed in the first years of life. • Veća prevalencija u kostima lunbe uočena kod muškaraca i žena, obično se dijagnosticira u prvim godinama života.	Progressive, asymptomatic growth and firm edema, with an intact epithelial surface. • Progresiván, asimptomatski rast i čvrst edem s intimatom površinom epitelata.
Tiwari; Yadav (6)	3-month-old girl with intraoral swelling and progressive growth and firm consistency. • Tromjesečna djecačica s intraoralnom oteklinom, progresivnim rastom i čvrstom konzistencijom.	More commonly in the craniofacial region, mainly the maxillary bone, followed by the skull, mandible and predilection in children under 1 year of age. • Čeće u kraniofacijalnoj regiji, uglavnom u maksilarnoj kosti, zatim u lunbani i mandibuli, predilekcija kod djece mlađe od godinu dana.	Pigmented and benign neoplasm, with high potential for rapid growth and locally destructive. • Pigmentirana i benigna novotvorina s visokim potencijalom za brzi rast i lokalno destruktivna.
Ebel et al. (1)	Case report of a 4-month-old boy with MNT1 in the skull and 2-week rapid growth • Prikaz slučaja četveromjesečnog novorodenčeta s MNT1-jem u lubanji i brzim rastom u dva tjedna	Greater involvement in the maxillary region, followed by the cranial region. • Veća zahvaćenost maksilarne regije, a zatim i kranijalne.	Rapid development, without symptoms, pigmentary and invasive edema. • Brz razvoj, bez simptoma, pigmentiran i invazivan edem.
Mengide et al. (11)	Extra-axial growth in the skull of an 8-year-old boy complaining of headache for about 3 months. • Ekstrakranijski rast u lubanji 8-godišnjeg dječaka koji se oko tri mjeseca žalio na glavobolju.	The most common location of the tumor is the craniofacial region, although other regions are described. Mainly in patients under 1 year of age. • Najčešća lokacija tumora je kraniofacijalna regija, iako su opisana i druga područja. Uglavnom nastaje kod mladih od 1 godine.	Solid and painless lesion, in addition to being pigmented and is a neoplasm causing deformity in regions of appearance. • Čvrsta i bezbolna lezija, osim što je pigmentirana – novotvorina koja uzrokuje deformitet u regijama u kojima se pojavljuje.

The table summarizes some clinical cases with the epidemiological and clinical characteristics of MNT1 reported by the corresponding authors. • U tablici su sažeti neki klinički slučajevi s epidemiološkim i kliničkim obilježjima MNT1-ja koje su prijavili odgovarajući autori.

Source: Done by the authors • Izvor – autori
Table 3 Immunohistochemical characteristics described in the literature.

Author	Authorship	Tablica 3. Immunohistokemijska obilježja opisana u literaturi
Souza et al. (12)	The immunohistochemical profile of MNTI is generally positive for cytokeratin and HMB45 and negative for S100. And Ki-67 and CD99 expressions are quite uncommon and may be related to more aggressive tumor growth. • Immunohistokemijski profil MNTI-ja općenito je pozitivan na citozernom i HMB45, a negativan na S100. Ekspresija Ki-67 i CD99 dosta je rijetka i može biti povezana s agresivnijim rastom tumora.	
Albuquerque et al. (13)	Small cells of neural origin are confirmed by positivity for NSE, synaptophysin and chromogranin. And cells of ectodermal origin can be confirmed by the positivity of EMA, Ck, HMB-45. • Za male stanice neuralnoga podrijetla potvrđeno je da su pozitivne za NSE, sinaptofizin i kromogranin. A stanice ektozermalnog podrijetla mogu se povjeriti kao pozitivne za EMA, Ck, HMB-45.	
Cui; Mao; Liao (14)	Smaller round cells were melanoma-associated antigen 45 (HMB45) / vimentin / epithelial membrane antigen (+), no significant glial fibrillary acid protein staining (GFAP) / neuron-specific enolase (NSE) / synaptophysin (+), and the largest cells were cytokeratin (Ck) S-100. Scattered cells exhibited desmin immunoreactivity and ~2% of cells were Ki-67 (+). • Manje okrugle stanice bile su antigen 45 povezan s melanomom (HMB45)/vimentin/antigen epitelnih membrana (+), bez značajnijega bojenja proteina glijevnih fibrilarnih kiseline (GFAP)/ neuron-spesificna enolaza (NSE)/sinaptofizin (+), a najveće stanice bili su citozern (Ck)/S-100. Raspravljene stanice pokazale su desmit-imunoreaktivnost i < 2% stanica je Ki-67 (+).	
Batta et al. (7)	Larger epithelioid cells stain positively with cytokeratin, vimentin and HMB45, reflecting epithelial and melanocytic differentiation, in addition to generally not reacting with S-100 protein, helping to differentiate tumors such as melanoma. Smaller cell nests in MNTI are often positive for neurogenic markers such as synaptophysin, neuron-specific enolase, and glial fibrillary acid protein. • Veće epiteloidne stanice pozitivno se boje citozernom, vimentinom i HMB-45, odrzavajući diferencijaciju epitel i melanocita, osim što općenito ne reagiraju s proteinom S-100, pomažući u razlikovanju tumora kao što je melanom. Manja stanična gnjezda u MNTI-ju često su pozitivna na neurogene biljage kao što su sinaptofizin, neuron-spesificna enolaza i glijevalni fibrilarni kiseli protein.	
Strieder et al. (15)	Larger cells express cytokeratin (Cks), epithelial membrane antigen (EMA), glial fibrillary acid protein (GFAP), S100 and HMB45 protein, and smaller cells express CD56 and synaptofisin; both cells express neuron-specific enolase (NSE), PGP 9.5 and chromogranin A. • Veće stanice ekstraprimiraju citozern (Cks), antigen epitelnih membrana (EMA), glijevalni fibrilarni kiseli protein (GFAP), proteine S100 i HMB45, a one manje CD56 i sinaptofisin, obje stanične ekstraprimiraju neuron-spesificnu enolazu (NSE), PGP 9.5 i kromogranin A.	
Wu et al. (10)	The epithelioid component of large cells shows a small to moderate amount of eosinophilic cytoplasm and is positive for pancytokeratin and HMB45 immunostaining. The small blue primitive cell component does not show appreciable cytoplasm and is positive for synaptophysin. • Epiteloidna komponenta velikih stanica pokazuje malo dužumjera količinstva citoplazme i pozitivna je na pancytokeratin i HMB45. Komponenta male plave stanične ne pokazuje značajniju citoplazmu i pozitivna je na sinaptofisin.	
Moreau et al. (3)	In HE staining, a fibrocollagenous stroma surrounding an epithelioid and neuroblastic component organized in lobules or alveolar structures. And the neuroblastic component was discrete and masked by a large melanin-rich epithelioid component. • Epiteloid cells expressed epithelial and melanocytic markers (AE1/AE3; melan A, P50 100 and HMB 45, respectively). • U HE bojenu fibrokolagenasta stroma okružuje epitelioidnu i neuroblastičku komponentu organizirana u lobule ili alveolarnu strukturu. Neuroblastička komponenta bila je diskretna i maskirana velikom epitelioidnom komponentom bogatom melaninom. Epitelioidne stanice ekstraprimiraju epitelnol i melanocite biljage (AE1/AE3; melan A, P50 100 i HMB 45).	
Nicosia et al. (16)	They are usually positive for cytokeratin, vimentin, epithelial membrane antigen, HMB-45, glial fibrillary acid protein, and specific neuronal enolase. • Obično su pozitivni na citozern, vimentin, epitelnih membrana antigen, HMB-45, glijevalni fibrilarni kiseli protein i specifičnu neuronsku enolazu.	
Ussal; Yalgin (9)	The largest fraction of epithelioid cells expressed a number of cytokeratins - in most patients HMB-45, but rarely S-100.8 protein. Neuroblast-like cells are positive for neuron-specific enolase, CD 56, glial fibrillary acid protein and synaptophysin, and melanocenic cells are positive for HMB45, epithelial membrane antigen, citozern and vimentin. • Najveća frakcija epitelioidnih stanica ekstraprimirala je niz citozernih – kod većine pacijenata HMB-45, ali rijetko protein S-100.8. Stanice slične neuroblasta pozitivne su na neuron-spesificnu enolazu, CD 56, glijevalni fibrilarni kiseli protein i sinaptofisin, a melanocenicne stanice pozitivne su na HMB-45, antigen membrane epitelnoga antigena, citozern i vimentin.	
Emmerling; Yok; Cacacane (17)	There is identification of immunohistochemical markers, such as cell population frequently expressing cytokeratin, HMB-45 and vimentin, while S100 is much less common. And the small cell population usually expresses synaptophysin but is negative for another neuroendocrine marker, chromogranin A. • Postoji identifikacija immunohistokemijskih biljega kao što je stanična populacija s čestom ekspresijom citozernog, HMB-45 i vimentin, a S100 mnogo je rijetki. Populacija malih staništa obično ekstraprimira sinaptofizin, ali je negativna na drugi neuroendokriniji biljeg – kromogranin A.	
Santos et al. (2)	Other markers, such as HMB45, Melan A, cytokeratin, and neuroblastic markers, such as synaptophysin and neuron-specific enolase, can help in diagnosis. • Drugi bilježi poput HMB45, melana A, citozernih i neuroblastičkih biljaga kao što su sinaptofizin i enolaza specifična za neurone, mogu pomoći u dijagnozi.	
Soles et al. (8)	The cells present are positive for vimentin and neuron-specific enolase and negative for S100. Larger melanocenic epithelioid cells are commonly positive for cytokeratins and some differentiating markers of melanocytes (HMB-45, dopamine b-hydroksilaz, etc.). Smaller neurogenic cells are positive for synaptophysin and negative for cytokeratin, in addition to being positive for glial fibrillary acid protein (GFAP), but rarely for neurofilament and CD99. • Prisutne su stanične pozitivne na vimentin i neuron-spesificnu enolazu, a negativne na S100. Veće melanocenicne epitelioidne stanice pozitivne su na sinaptofizin i nekih staničnih svratah na neurofilament i CD99.	
Aratbashi-Moghadam Et Al. (18)	Epithelioid cells are positive for cytokeratin, HMB45 and NSE. Smaller cells are generally positive for NSE and CD56 and sometimes synaptophysin. Furthermore, MNTI are not expressed in the S-100 protein. Larger epithelioid cells express MDM-2, cyclin D1 and A. • Epiteloidne stanične pozitivne su na citozern, HMB-45 i NSE. Manje stanične općenito su pozitivne za NSE i CD56, a karij i na sinaptofizin. Nadalje, nisu izraženi proteini S-100. Veće epitelioidne stanične ekstraprimiraju MDM-2, ciklin D1 i A.	
Ebel et al. (1)	Immunohistochemically positive staining for markers such as HMB-45, synaptophysin and cytokeratin strengthens the diagnosis. A marker to differentiate between benign and malignant tumors does not exist so far. • Immunohistokemijski pozitivno bojenje na biljge kao što su HMB-45, sinaptofizin i citozern je još dijagnozom. Biljeg za razlikovanje benignih i malignih tumora zasad ne postoji.	

The table summarizes some histopathological and immunohistochemical characteristics of MNTI based on studies in the literature. • Tablica sažima neka patohistološka i immunohistokemijska obilježja MNTI-ja na temelju istraživanja u literaturi. Source: Done by the authors. • Izvor autora.
Conclusion

In conclusion, the immunohistochemical exam is of great importance for a better complementation of the MNTI diagnosis process. In addition, it can help detect any serious signs and symptoms of potentially aggressive growth.

Authors’ contribution: A.S. B. P. and V.A.M.M. – the idealization of the study was carried out; A.L.A.S., W.C.A.A., J.P.M., A.S.B.P. - The writing and planning of the pre-project were produced. Finally, the assistance, production and revision of the manuscript were realized by all authors.

Zaključak

Zaključujemo da je imunohistokemijski pregled veoma važan za bolju nadopunu dijagnostičkoga postupka MNTI-ja jer dodatno upozorava na znakove mogućeg agresivnog rasta.

Doprinos autora: S. B. P. i V. A. M. M. – idealizacija studije/ predložili temu za studiju; A. L. A. S., W. C. A. A., J. P. M., A. S. B. P. – planirali i pisali predprojekt. Svi su autori pisali i revidirali tekst.

References

1. Ebel F, Thieringer FM, Kunz C, Klein-Franke A, Scheinemann K, Guzman R, et al. Melanotic neuroectodermal tumor of infancy to the skull: case-based review. Childs Nerv Syst. 2020 Apr;36(4):679-688.
2. Santos HBP, Luna AHB, Goes PFM, Sverzut AT, Nonaka CFW, de Souza DF, Sendyk DI, Seo J, da Fonseca EV, Naclério-Homen Mda G, Deboni MC. Melanotic neuroectodermal tumor of infancy in the maxilla. Einstein (Sao Paulo). 2018 May 14;16(2):eRC4025.
3. Moreau A, Galmiche L, Minard-Colin V, Rachwalski M, Belhous K, Orbach D, et al. Melanotic neuroectodermal tumor of infancy (MNTI) of the head and neck: A French multicenter study. J Cranio-maxillofac Surg. 2018 Feb;46(2):201-206.
4. Ren Q, Chen H, Wang Y, Xu J. Melanotic Neuroectodermal Tumor of Infancy Arising in the Skull and Brain: A Systematic Review. World Neurosurg. 2019 Oct;130:170-178.
5. Pontes FSC, de Souza LI, Luchá DCC, Joaquim AMC, do Nascimento LS, da Mata Bezende DDS, et al. Melanotic neuroectodermal tumor of infancy: a review of factors influencing survival and recurrence. Head Neck. 2018 Dec;40(12):2747-2756.
6. Tiwari A, Yadav ML. Melanotic Neuroectodermal Tumor of Infancy: A Rare Case Report. Cureus. 2019 Dec 31;11(12):e6521.
7. Batta N, Narang V, Kaur H, Selhi PK, Sood N. Melanotic neuroectodermal tumor of infancy: Cytology and histopathology of a rare lesion at an uncommon site. Diagn Cytopathol. 2017 Feb;45(2):173-175.
8. Soles BS, Wilson A, Lucas DR, Heider A. Melanotic Neuroectodermal Tumor of Infancy. Arch Pathol Lab Med. 2018 Nov;142(11):1358-1363.
9. Unsal HY, Yalçın M. Melanotic Neuroectodermal Tumor of Infancy in the Maxilla. J Craniofac Surg. 2018 Jan;29(1):e28-e30.
10. Wu X, Shankar S, Munday WR, Malhotra A. Melanotic neuroectodermal tumor of infancy. J Clin Neurosci. 2016 Sep;31:205-7.
11. Mengide JP, Jaimovich SG, Lubieniecki FJ, Rugilo C, Lamas G, Manst B. Melanotic neuroectodermal tumor of infancy arising from the skull: report of an unusual case, review of the literature, and a diagnostic approach. Childs Nerv Syst. 2020 Mar;36(3):469-475.
12. de Souza DF, Sendyk D, Seo J, da Fonseca EV, Naclério-Homen Mda G, Deboni MC. Melanotic neuroectodermal tumor of infancy in the maxilla. Case Rep Dent. 2013;2013:726815.
13. Albuquerque AF, Cunha JF, Avelar RL, de Oliveira AC, Costa FW, Macedo MS. Extensive Melanotic Neuroectodermal Tumor of Infancy. Head Neck Pathol. 2016 Sep;10(3):349-353.
14. Cui Y, Mao Z, Liao C. Melanotic neuroectodermal tumor of infancy: A case report and review of the surgical treatment. Oncol Lett. 2015 Jan;9(1):29-34.
15. Strieder L, Carlos R, León JE, Ribeiro-Silva A, Costa V, Kamishakura E. Promotumorigenic M2-like phenotype cell infiltration in the melanotic neuroectodermal tumor of infancy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Feb;121(2):173-9.
16. Nicosia G, Spennato P, Aliberti F, Cascone D, Quaglietta L, Errico ME, Muto M, Ionna F, Cinniall G. Giant melanotic neuroectodermal tumor of infancy (melanotic progonoma) of the head and neck: report of a malignant case. J Neurosurg Pediatr. 2017 May;19(5):535-545.
17. Strieder L, Carlos R, León JE, Ribeiro-Silva A, Costa V, Kamishakura E. Promotumorigenic M2-like phenotype cell infiltration in the melanotic neuroectodermal tumor of infancy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Feb;121(2):173-9.
18. Nicosia G, Spennato P, Aliberti F, Cascone D, Quaglietta L, Errico ME, Muto M, Ionna F, Cinniall G. Giant melanotic neuroectodermal tumor of infancy (melanotic progonoma) of the head and neck: report of a malignant case. J Neurosurg Pediatr. 2017 May;19(5):535-545.
19. Fernandes PM, Elias RA, Santos-Silva AR, Rocha AC, Vargas PA, Lopes MA. Melanotic Neuroectodermal Tumor of Infancy: a Clinicopathological Case Report. Braz Dent J. 2018 Jul-Aug;29(4):400-404.
20. Gowsami M, Bhushan U, Mohanty S. Melanotic Neuroectodermal Tumor of Infancy. J Clin Diagn Res. Junho de 2016;10(6):ZJ07-8.