Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species

Hee-Ju Nah, Hye-Rim Pyeon, Seung-Hoon Kang, Si-Sun Choi and Eung-Soo Kim *

Department of Biological Engineering, Inha University, Incheon, South Korea

Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts.

Keywords: Streptomyces, natural product, biosynthetic gene cluster, heterologous expression, large-sized

INTRODUCTION

Natural products (NPs) and their derivatives lead a huge pharmaceutical market share comprising 61% of anticancer drugs and 49% of anti-infection medicine in the past 30 years (Newman and Cragg, 2012). Especially, actinomycetes NPs are a major resource for drug discovery and development, mainly due to their structural novelty, diversity, and complexity (Donadio et al., 2007). Isolation and characterization of NP biosynthetic gene clusters (BGCs) have further accelerated our understanding of their molecular biosynthetic mechanisms, leading to the rational redesign of novel NPs through BGC manipulation (Fischer et al., 2003; Castro et al., 2015).

Some of these potentially valuable BGCs are, however, derived from non-culturable metagenomes or genetically recalcitrant microorganisms. Moreover, many of these BGCs are expressed poorly or not at all under laboratory culture conditions, which makes it challenging to characterize the target NPs (Galm and Shen, 2006). Since efficient expression of actinomycetes NP BGCs present a major bottleneck for novel NP discovery, various cryptic BGC awakening strategies such as regulatory genes control, ribosome engineering, co-culture fermentation, and heterologous expression have been pursued for NP development (Tang et al., 2000; Flinspach et al., 2014; Martinez-Burgo et al., 2014; Miyamoto et al., 2014).
A traditional method for BGC cloning involves cosmids library construction by partial digestion or random shearing of chromosomal DNA. A typical size of NP BGC is usually larger than 20 kb (sometimes over 100 kb), and a cosmids vector system can only accept a relatively small BGC (up to 40 kb) or only a part of a large BGC. Therefore, cloning and efficient overexpression of an entire BGC still remains challenging due to the ineffectiveness of current host cells including the genetic and metabolic characteristics in manipulating large BGCs for heterologous expression. This mini review summarizes the list of the actinomycetes NP BGCs that have been successfully cloned and expressed in Streptomyces heterologous hosts (Table 1). In addition, three cloning and heterologous expression systems, which are quite suitable for large NP BGCs, such as transformation-associated recombination (TAR) system, integrase-mediated recombination (IR) system, and plasmid Streptomyces bacterial artificial chromosome (pSBAC) system are introduced (Figure 1).

TRADITIONAL METHOD FOR HETEROLOGOUS EXPRESSION OF NP BGCs

We summarized about 90 actinomycetes NP BGCs that have been successfully expressed in Streptomyces heterologous hosts from the last several decades (Table 1). Relatively small BGCs encoding Type II polyketide were first to be isolated at the beginning of heterologous expression research. Many of the listed BGCs (about 83%) were isolated by cosmids/fosmid library construction and some of these BGCs were cloned into replicative or integrative vector by linear-plus-linear (recombination between two linear DNAs) or linear-plus-circular (recombination between linear and replicating circular DNA) homologous recombination. Approximately 60% of BGCs were integrated into the heterologous host chromosome and only 37% of BGCs existed in the heterologous host via replicative plasmid. Cosmid vectors such as pOJ446 and SuperCos1 were used to be replicative or integrative in the heterologous host, so the production level of the heterologously expressed NP BGC varied significantly. Some BGCs were isolated with two different vector systems, followed by heterologous expression via both integrative and replicative systems. For example, the epothilone BGC was expressed by both pSET152-based integration vector and SCP2*-based replication vectors, so that its expression level was increased from 0.1 mg/L in the original Sorangium cellulosum system to 20 mg/L in the epothilone BGC-expressing Streptomyces host (Tang et al., 2000). S. coelicolor and S. lividans were two major strains for heterologous expression, thanks to their well-characterized genetic and biochemical properties. About 12% BGCs were expressed in another popular heterologous host, S. albus, which has fast growth and an efficient genetic system (Zaburannyi et al., 2014). Comparing with the original NP producing strains, approximately 14% of NPs had a higher expression level and 12% lower when they were expressed in the heterologous hosts. When berminamycin BGC was heterologously expressed both in S. lividans and S. venezuelae, its production yield was increased 2.4-fold in S. lividans with no production in S. venezuelae (Malcolmson et al., 2013).

CLONING SYSTEMS OF LARGE NP BGCs FOR HETEROLOGOUS EXPRESSION IN STREPTOMYCES

TAR System

The TAR system takes advantage of the natural in vivo homologous recombination of Saccharomyces cerevisiae (Larionov et al., 1994). It has also been applied to capture and express large biosynthetic gene clusters from environmental DNA samples (Feng et al., 2010; Kim et al., 2010). Yamanaka and colleagues designed TAR cloning vector, pCAP01, which consists of three elements, one from each of yeast, E. coli, and actinobacteria (Yamanaka et al., 2014). The target BGC can be directly captured and manipulated in yeast background, and the captured BGC can be shuttled between E. coli and actinobacteria species. It also has a pUC ori that could stably carry an over 50 kb insert in E. coli hosts. The pCAP01 vector contains orIT and attP-int that can transfer the target BGC by conjugation, and the DNA stability can be maintained by insertion into heterologous host chromosomes. To generate a capturing vector, both flanking homologous arms of the target BGC were PCR-amplified and cloned into the pCAP01. The linearized capturing vector and the restriction enzyme digested genomic DNA were co-transformed into yeast, then the target BGC was captured by yeast recombination activities (Figure 1A). The marpinypyrrole BGC (30 kb) and the taromycin A BGC (67 kb) were captured by this TAR system, and functionally expressed in Streptomyces coelicolor (Yamanaka et al., 2014).

IR System

Most cloning systems to clone a large DNA fragment directly from bacterial genome are based on different site-specific recombination systems that consist of a specialized recombinase and its target sites. The IR system is based on ΦBT1 integrase-mediated site-specific recombination and simultaneous Streptomyces genome engineering (Du et al., 2015). The actinorhodin BGC, the napsamycin BGC and the daptomycin BGC were successfully isolated by the IR system (Du et al., 2015). pUC119-based suicide vector and pKC1139 carrying mutated attP or attB, respectively, and an integrative plasmid containing the ΦBT1 integrase gene were used for the system (Figure 1B). The pUC119-based plasmid carrying mutated attB and a homologous region to 5′ end of the target BGC was introduced into the chromosome by single crossover. The pKC1139 carrying mutated attP and a homologous region to 3′ end of the BGC was transferred and integrated into chromosome by conjugation and single crossover through cultivation at high temperature above 34°C. Expression of ΦBT1 integrase leads to excision of the pKC1139 containing the target BGC. The pKC1139 containing BGC from original producing Streptomyces was extracted and transferred into E. coli for recovery. The IR system was only expressed in parental strain not heterologous
TABLE 1 | Heterologous expression of NP BGCs.

NP name (Class)	Original host	BGC size (kb)	Expression method	Heterologous host	WT titer (mg/L)	HH titer (mg/L)	References
A201A (Nucleoside)	*Saccharothrix mutabilis* subsp. *Capreolus*	34	PAC Integrative	*S. coelicolor* *S. lividans*	12	8	Saugar et al., 2016
A54145 (NRPS)	*S. fradiae* NRIIL 18160	~60	BAC Integrative	*S. ambofaciens* *S. roseosporus*	NR	100 ~ 385	Alexander et al., 2010
Actinorhodin (PKS II)	*S. coelicolor* M1-45	33	LLHR Integrative	*Streptomyces*	NR	NR	Chen and Qin, 2011
Amicetin (NRPS)	*S. vinaceusdrappus* NRRL 2363	37.3	Cosmid Replicative	*S. lividans*	NR	NR	Zhang et al., 2012
Ammosamides A-C (Alkaloid)	*S. sp. CNR-698*	35	TAR Integrative	*S. coelicolor*	4 ~ 6	17	Jordan and Moore, 2016
Anthracimycin (PKS I)	*S. fradiae*	53.2	PAC Integrative	*S. coelicolor*	NR	8.6 ~ 13.8	Alt and Wilkinson, 2015
Aristeromycin (Nucleoside)	*S. citreoroseus*	37.5	Cosmid Replicative	*S. albus*	NR	ND	Kudo et al., 2016
Aurorothin (PKS I)	*S. thioluteus* HK0-227	27	Cosmid Integrative	*S. lividans*	NR	NR	He and Hertweck, 2000
Barbamidine (PKS-NRPS)	*Moorea producens*	26	LLHR Replicative	*S. venezuelae*	NR	ND*	Kim et al., 2012
Bernimycin (Thiopeptide)	*S. fradiae*	12.9	LLHR Integrative	*S. lividans* *S. venezuelae*	NR	NR	Malcolmson et al., 2013
Blasticin (N-R-NS)	*S. coelicolor* M1-45	20	Cosmid Replicative	*S. lividans*	NR	NR	Cone et al., 2003
Catocibacin (Aminocoumarin)	*Catenulispora acidiphila*	20	LLHR Integrative	*S. coelicolor*	4.9	60	Zetter et al., 2014
Caerulomycin (PKS-NRPS)	*Actinoalloteichus cyanogriseus* WH1-2216-6	44.6	Cosmid Integrative	*S. coelicolor*	NR	NR	Zhu et al., 2012
Cephamycin C (NRPS)	*S. clavuligerus* ATOC 27064	35.6	Cosmid Integrative	*S. flavogriseus* *S. coeleo* S. albus	3640	8 ~ 300²	Martinez-Burgo et al., 2014
Chalcomycin (PKS I)	*S. bKhimenai*	80	LLHR Integrative	*S. fradiae*	NR	NR	Ward et al., 2004
Chlamyacin (PKS I)	*S. leeewenholoki*	80.2	PAC Integrative	*S. coelicolor*	NR	NR	Castro et al., 2015
Chloramphenicol (PKS-NRPS)	*S. venezuelae* ATOC 10712	NR	Cosmid Integrative	*S. coelicolor*	NR	1.6 ~ 26.33	Gomez-Escibano and Bobb, 2011
Chlororizanine A (PKS I)	*S. sp. CN 287*	42.4	Formid Integrative	*S. coelicolor*	NR	NR	Mantovani and Moore, 2013
Chrysonycin (PKS II)	*S. albicans* AD0819	34.65	Cosmid Integrative	*S. lividans*	NR	ND	Khare et al., 2010
Clavulanic acid (β-lactam)	*S. clavuligerus* ATOC 27064	20	Cosmid Integrative	*S. flavogriseus* *S. coeleo*	164.5	0.6	Alvarez-Avarez et al., 2013
Complestatin (Glycopeptide)	*S. chartreusis* AN1542	54.5	LLHR Integrative	*S. lividans*	5.57	0.24	Paj et al., 2016
Congocidine (NRPS)	*S. ambofaciens* ATOC23877	NR	Cosmid Integrative	*S. coelicolor*	NR	NR	Gomez-Escibano and Bobb, 2011
Courmerycin A1 (Aminocoumarin)	*S. rishinensis* DSM 40849	38.6	Cosmid Integrative	*S. coelicolor*	0.002 ~ 0.005	0.01	Wolkert et al., 2008
Cremoramide (Diazoquinone)	*S. cremoris* NRIIL 3241	18	BAC Integrative	*S. lividans*	NR	NR	Waldman et al., 2015
Cycloheximycin (Thiopeptide)	*S. hygroscopicus* 10-22	22.7	LLHR Integrative	*S. lividans*	NR	NR	Wang et al., 2010
Daptomycin (NRPS)	*S. roseosporus* NRIIL 11379	128	BAC Integrative	*S. lividans*	900	18	Miao et al., 2005
Desotamide (NRPS)	*S. scopuliridis* SCSIO	39	Cosmid Integrative	*S. coelicolor*	NR	ND*	Li et al., 2015
Epitholone (PKS-NRPS)	*Sorangium cellulorum* SHP 44	56	LLHR Replicative & Integrative	*S. coelicolor*	0.05 ~ 0.1	20	Tang et al., 2000
FK506 (PKS I)	*S. sp. KCOM 11116P*	120	LLHR Integrative	*S. albus*	NR	NR	Chen et al., 2014
Fluramycin (PKS II)	*Microscopularia SCSIO N160*	40	Cosmid Replicative	*S. coelicolor*	NR	NR	Yang et al., 2015
NP name (Class)	Original host	BGC size (kb)	Expression method	Heterologous host	WT titer (mg/L)	HH titer (mg/L)	References
----------------	---------------	---------------	-------------------	------------------	----------------	----------------	------------
Fostriecin PKS (PKS I)	S. pulveraceus ATCC31906	48.6	LLHR Replicative & Integrative	S. coelicolor S. lividans	NR	ND	Su et al., 2015
Galbonolide B (PKS I)	S. sp. L235	12.1	LLHR Integrative	S. coelicolor	NR	NR	Liu et al., 2015
GE2270 (Thiopeptide)	Planobispora rosea ATCC53733	21.4	LLHR Integrative	S. coelicolor	NR	0.08	Flinspach et al., 2014
GE3748 (Thiazolyl peptide)	S. sp. ATCC 55365	12.1	LLHR Integrative	S. coelicolor	5 ~ 7	2 ~ 3	Young and Walsh, 2011
Goadsporin (Azole)	S. sp. TP-A0584	14	LLHR Integrative	S. coelicolor	NR	0.08	Flinspach et al., 2014
Gougerotin (Nucleoside)	S. graminearus	23.7	LCHR Integrative	S. coelicolor	NR	ND	Niu et al., 2013
Gilvocarcin V (PKS II)	S. griseoflavus Gö 3592	32.9	Cosmid Replicative	S. lividans	NR	20 ~ 30	Fischer et al., 2003
Goadsporin (Azole)	S. sp. Acta 1362	26	TAR Integrative	S. lividans	NR	0.08	Flinspach et al., 2014
Grecocycline (PKS II)	S. sp. Acta 1362	26	TAR Integrative	S. lividans	NR	0.08	Flinspach et al., 2014
Grincamycin (PKS II)	S. lusitanus SCSIO LR32	37	LCHR Integrative	S. coelicolor	NR	ND	Zhang et al., 2013
Holomycin (NRPS)	S. clavuligerus ATCC27064	24	LLHR Integrative	S. coelicolor	126.3	342.7	Haginaka et al., 2014
Gougerotin (Nucleoside)	S. graminearus	23.7	LCHR Integrative	S. coelicolor	NR	ND	Niu et al., 2013
Granaticin (PKS II)	S. violaceoruber	39	LLHR Integrative	S. coelicolor	NR	ND	Ichinose et al., 1998
Grecocycline (PKS II)	S. sp. Acta 1362	26	TAR Integrative	S. lividans	NR	0.08	Flinspach et al., 2014
Grincamycin (PKS II)	S. lusitanus SCSIO LR32	37	LCHR Integrative	S. coelicolor	NR	ND	Zhang et al., 2013
Holomycin (NRPS)	S. clavuligerus ATCC27064	24	LLHR Integrative	S. coelicolor	126.3	342.7	Haginaka et al., 2014
Gougerotin (Nucleoside)	S. graminearus	23.7	LCHR Integrative	S. coelicolor	NR	ND	Niu et al., 2013
Grincamycin (PKS II)	S. lusitanus SCSIO LR32	37	LCHR Integrative	S. coelicolor	NR	ND	Zhang et al., 2013
Holomycin (NRPS)	S. clavuligerus ATCC27064	24	LLHR Integrative	S. coelicolor	126.3	342.7	Haginaka et al., 2014
Gougerotin (Nucleoside)	S. graminearus	23.7	LCHR Integrative	S. coelicolor	NR	ND	Niu et al., 2013
Grincamycin (PKS II)	S. lusitanus SCSIO LR32	37	LCHR Integrative	S. coelicolor	NR	ND	Zhang et al., 2013
Holomycin (NRPS)	S. clavuligerus ATCC27064	24	LLHR Integrative	S. coelicolor	126.3	342.7	Haginaka et al., 2014
Gougerotin (Nucleoside)	S. graminearus	23.7	LCHR Integrative	S. coelicolor	NR	ND	Niu et al., 2013
Grincamycin (PKS II)	S. lusitanus SCSIO LR32	37	LCHR Integrative	S. coelicolor	NR	ND	Zhang et al., 2013
Holomycin (NRPS)	S. clavuligerus ATCC27064	24	LLHR Integrative	S. coelicolor	126.3	342.7	Haginaka et al., 2014
NP name (Class)	Original host	BGC size (kb)	Expression method	Heterologous host	WT titer (mg/L)	HH titer (mg/L)	References
----------------	---------------	---------------	-------------------	-------------------	-----------------	-----------------	------------
Phosphinothricin (NRPS)	S. viridochromogenes DSM 40736	40	Fosmid Integrative	S. lividans	NR	NR	Blodgett et al., 2005
Puromycin (Nucleoside)	S. alboniger	13	Cosmid Replicative	S. lividans	NR	4 ~ 15	Lacaille et al., 1992
R1128 (PKS II)	S. sp. R1128	17	Cosmid Replicative	S. lividans	NR	1.00	Marti et al., 2000
Ravidomycin PKS II	S. ravidus	33.28	Cosmid Replicative	S. lividans	NR	NR	Khael et al., 2010
Rebeccamycin (Indolocarbazole)	Saccharothrixa aerocoloniogenes ATCC 39243	25.6	Cosmid Replicative	S. albus	NR	NR	Sanchez et al., 2002
Resorcinomycin	Streptonocardium roseovaritatum	11	LLHR Replicative	S. lividans	NR	ND*	Ooya et al., 2015
Rimosamide (NRPS-PKS)	S. rimosus NRRL B-2659	30.5	Fosmid Integrative	S. lividans	NR	NR	McClure et al., 2016
Rishirilide A (PKS II)	S. bottropensis	50	Cosmid Integrative	S. albus, S. lividans	NR	NR	Yan et al., 2012
Salminomycin (PKS I)	S. albus DSM41398	106	LLHR Integrative	S. coelicolor	NR	NR	Yin et al., 2015
Sparsomycin (NRPS)	S. sp. R1128	30	TAR Integrative	S. lividans	NR	NR	Rui et al., 2015
Stauroporine (Indolocarbazole)	S. sanyensis FMA	34.6	Cosmid Integrative	S. coelicolor	NR	NR	Li T. et al., 2013
Streptocin (Lanthipeptide)	S. colinus Tü365	20	Cosmid Integrative	S. lividans	10.5	2.6	Onaka et al., 2002
Streptothricin (PKS II)	S. sp. TP-A0274	6	Cosmid Integrative	S. coelicolor	NR	5.4 ~ 110	Ittime et al., 2015
Tautomyxin (PKS I)	S. sp. TP-A0356	41	Cosmid Replicative	S. coelicolor	NR	NR	Li J. et al., 2013
Tetronycinomycin C (PKS II)	S. gigas	80	pSBAC Integrative	S. coelicolor, S. lividans	3.10	3.91 ~ 4.05	Nih et al., 2015
Tetracloromycin	S. sp. WP4669 S. rimosus NRRL3016	24	LLHR Replicative	S. lividans	NR	NR	Mortamed and Hutchinson, 1987
Tetracytomycin	S. sp.	40	LLHR Replicative	S. lividans	NR	NR	Hong et al., 1997
Thioniridamide (Ribosomal peptide)	S. olvorndis NA05001	14.5	LLHR Replicative	S. lividans	NR	NR	Izawa et al., 2013
TP-1161 (Thiopentade)	Nocardia sp. TF365-07	70	BAC Integrative	S. avermitilis	2.5	2.5	Izumikawa et al., 2015
Undecyprodigiosin (NRPS)	S. coelicolor M1-45	16	LLHR Integrative	S. parvus	NR	ND	Engelhardt et al., 2010
Validamycin (Pseudosaccharide)	S. hygroscopicus var. limoneus KTCC 1715	38	LLHR Replicative	S. lividans, S. albus	NR	NR	Malpartida et al., 1990
Venemycin (PKS I)	S. venezuelae	29.5	Cosmid Integrative	S. coelicolor	NR	ND	Thapanapathiti et al., 2016
Versipelostatin (PKS I)	S. versipellis 4083	108	BAC Integrative	S. albus	1.5	21.0	Hashimoto et al., 2015
YM-216391 (NRPS)	S. nobilis	<40	Cosmid Replicative	S. lividans	NR	0.18	Jan et al., 2012

PKS, polyketide synthase; NRPS, non-ribosomal peptide synthase; S, Streptomyces; sp, species; TAR, transformation-associated recombination; PAC, phage P1 artificial chromosome; BAC, bacterial artificial chromosome; LLHR, linear-plus-linear homologous recombination; LCHR, linear-plus-circular homologous recombination; NR, not reported (but produced); ND, not detected (not produced); WT, wild type; HH, heterologous host; *Intermediate produced only; †expressed part of gene cluster; *produced by gene cluster modification (e.g., promoter substitution).
host, but it was presumed to be transferred and maintained by replication in heterologous host (Du et al., 2015).

pSBAC Vector System

In the early 1990s, Bacterial Artificial Chromosomes (BAC) was reported to carry inserts approaching 200 kb in length emerged (Shizuya et al., 1992). Various BAC vectors have been used extensively for construction of DNA libraries to facilitate physical genomic mapping and DNA sequencing efforts (Sosio et al., 2000; Martinez et al., 2004; Fuji et al., 2014; Varshney et al., 2014). Several *E. coli*-Streptomyces shuttle BAC vectors have been developed to carry the large-sized NP BGCs such as pStreptoBAC V and pSBAC (Miao et al., 2005; Liu et al., 2009). The utility of pSBAC was demonstrated through the precise cloning and heterologous expression of the tautomycetin BGC and the pikromycin BGC of the type I PKS biosynthetic pathway, as well as the meridamycin BGC of the PKS-NRPS hybrid biosynthetic pathways (Liu et al., 2009; Nah et al., 2015). Unique restriction enzyme recognition sites naturally existing or artificially inserted into both flanking regions of the entire BGC were used for capturing the BGCs. The pSBAC vector was also inserted within the unique restriction enzyme site by homologous recombination. And then the entire target BGC was captured in a single pSBAC through straightforward single restriction enzyme digestion and self-ligation (Figure 1C). The pSBAC contains two replication origins, ori2 and oriV, for DNA stability in *E. coli*, and oriT and ΦC31 attP-int for BGC integration into the surrogate host chromosome through integron conjugation. The recombinant pSBAC containing the large BGCs of varied length from 40 kb to over 100 kb have been successfully cloned and conjugated from *E. coli* to *S. coelicolor* and *S. lividans* (Liu et al., 2009; Nah et al., 2015), implying that the pSBAC system seems to be the most suitable for large BGC cloning comparing with TAR and IR systems.

Recently, a new cloning method named CATCH (Cas9-Assisted Targeting of Chromosome) based on the in vitro application of RNA-guided Cas9 nuclease was developed (Jiang and Zhu, 2016). The Cas9 nuclease cleaves target DNA in vitro from intact bacterial chromosomes embedded in agarose plugs, which can be subsequently ligated with cloning vector through Gibson assembly. Jiang and colleagues cloned the 36-kb jadomycin BGC from *S. venezuelae* and the 32-kb chlortetracycline BGC from *S. aureofaciens* by CATCH (Jiang et al., 2015).

STREPTOMYCES HETEROLOGOUS EXPRESSION OF NP BGCS

The *Streptomyces* genus is suitable for heterologous expression of large NP BGCs due to its intrinsic ability to produce various valuable secondary metabolites. Well-studied *Streptomyces* strains such as *S. coelicolor*, *S. lividans*, and *S. albus* have been mainly used as heterologous expression surrogate hosts (Table 1). The regulatory networks of secondary metabolite production have been well characterized in these strains, and thus several NP high-level producing strains have been constructed (Baltz, 2010; Gomez-Escribano and Bibb, 2011). In addition, some of these *Streptomyces* host genomes have been further engineered to eliminate precursor-competing biosynthetic BGCs, so that the extra precursors such as malonyl-CoA and acetyl-CoA could be funneled into the target polyketide NP biosynthesis (Gomez-Escribano and Bibb, 2011).
As shown in Table 1, most of the heterologously expressed NPs were detected as a final product, but some were detected as an intermediate due to their partial BGC expression. The NP production yield was similar to or slightly lower than that in WT. To increase the production level in heterologous hosts, it was devised to substitute with strong promoters or to increase the copy number of BGCs (Montiel et al., 2015; Nah et al., 2015). In case of pSBAC system, the tautomycetin production yield in the heterologous hosts was similar to that in the original producing strain. The selection marker on the tautomycetin BGC was changed and re-introduced into the heterologous host by tandem repeat, resulting in further yield increase from 3.05 to 13.31 mg/L in comparison with the heterologous host harboring only single copy of tautomycetin BGC. The heterologous host harboring tandem copies of tautomycetin BGC was proved to stably maintain two BGCs in the presence of appropriate antibiotic selection (Nah et al., 2015).

Meanwhile, the TAR system used yeast homologous recombination-based promoter engineering for the activation of silent natural product BGCs (Montiel et al., 2015). Bi-directional promoter cassettes were generated by PCR amplification of varied yeast selectable markers, which contains promoter-insulator-RBS combinations, and they were co-transformed with the cosmids or BAC clone harboring the target BGC into yeast. The rebeccamycin BGC was used as a model BGC. The promoter-replaced rebeccamycin BGC was transferred into S. albus by conjugation, and the production of rebeccamycin was examined in the heterologous host (Montiel et al., 2015). Using the TAR-based promoter engineering strategy, multiple promoter cassettes could be inserted simultaneously into the target BGC, thereby expediting the re-engineering process. The TAR-based promoter engineering strategy was also used to capture the silent tetramycin BGC and the silent, cryptic pseudogene-containing, environmental DNA-derived lazarimide BGC (Montiel et al., 2015).

In conclusion, Streptomyces heterologous expression systems have been proved to be a very attractive strategy to awaken cryptic NP BGCs, and could also be applied to overexpression of a variety of large NP BGCs in actinomycetes.

AUTHOR CONTRIBUTIONS

HN, SK, SC, and EK planned, outlined, and revised the manuscript. HN, HP, and EK wrote and revised the manuscript.

ACKNOWLEDGMENTS

This research was supported by “National Research Foundation of Korea (NRF)” (Project No. NRF-2014R1A2A1A11052236 & NRF-2016K2A92A10005545).

REFERENCES

Alexander, D. C., Rock, J., He, X., Brian, P., Miao, V., and Baltz, R. H. (2010). Development of a genetic system for combinatorial biosynthesis of lipopeptides in *Streptomyces fradiae* and heterologous expression of the A54145 biosynthesis gene cluster. *Appl. Environ. Microbiol.* 76, 6877–6887. doi: 10.1128/AEM.01248-10

Alt, S., and Wilkinson, B. (2015). Biosynthesis of the novel macrolide antibiotic antrimycin. *ACS Chem. Biol.* 10, 2468–2479. doi: 10.1021/acschembio.5b00525

Alvarez-Alvarez, R., Martinez-Burgo, Y., Perez-Redondo, R., Brana, A. F., Martin, J. F., and Liras, P. (2013). Expression of the endogenous and heterologous clavulanic acid cluster in *Streptomyces flavogriseus*: why a silent cluster is sleeping. *Appl. Microbiol. Biotechnol.* 97, 9451–9463. doi: 10.1007/s00253-013-5148-7

Baltz, R. H. (2010). *Streptomyces* and *Saccharopolyspora* hosts for heterologous expression of secondary metabolite gene clusters. *J. Ind. Microbiol. Biotechnol.* 37, 759–772. doi: 10.1007/s10295-010-0730-9

Bilky, O., Sekurova, O. N., Zotchev, S. B., and Luzhetskyy, A. (2016). Cloning and heterologous expression of the grecoycinine biosynthetic gene cluster. *PLoS ONE* 11:e0158682. doi: 10.1371/journal.pone.0158682

Binnie, C., Warren, M., and Butler, M. J. (1989). Cloning and heterologous expression in *Streptomyces lividans* of *Streptomyces rimosus* genes involved in oxytetracycline biosynthesis. *J. Bacteriol.* 171, 887–895. doi: 10.1128/JB.171.2.887-895.1989

Blodgett, J. A., Zhang, J. K., and Metcalf, W. W. (2005). Molecular cloning, sequence analysis, and heterologous expression of the phosphonothricin tripeptide biosynthetic gene cluster from *Streptomyces viridochromogenes* DSM 40736. *Antimicrob. Agents Chemother.* 49, 230–240. doi: 10.1128/AAC.49.1.230-240.2005

Brunker, P., McKinney, K., Sterner, O., Minas, W., and Bailey, J. E. (1999). Isolation and characterization of the naphthopyrrolone gene cluster from *Streptomyces arenace* DSM 40737 and heterologous expression of the polykide synthase genes. *Gene* 227, 125–135. doi: 10.1016/S0378-1119(98)00618-0

Cano-Prieto, C., Garcia-Salcedo, R., Sanchez-Hidalgo, M., Brana, A. F., Fiedler, H. P., Mendez, C., et al. (2015). Genome mining of *Streptomyces* sp. Tu 6176: characterization of the natazazole biosynthesis pathway. *ChemBioChem* 16, 1461–1473. doi: 10.1002/cbic.201500153

Castro, J. F., Razmilic, V., Gomez-Escribano, J. P., Andrews, B., Asenjo, J. A., and Bibb, M. J. (2015). Identification and heterologous expression of the chaxamycin biosynthesis gene cluster from *Streptomyces leuswenhoeki*. *Appl. Environ. Microbiol.* 81, 5820–5831. doi: 10.1128/AEM.01039-15

Chen, C., Zhao, X., Jin, Y., Zhao, Z. K., and Suh, J. W. (2014). Rapid construction of a bacterial artificial chromosomal (BAC) expression vector using designer DNA fragments. *Plasmid* 76, 79–86. doi: 10.1016/j.plasmid.2014.10.002

Chen, W., and Qin, Z. (2011). Development of a gene cloning system in a fast-growing and moderately thermophilic *Streptomyces* species and heterologous expression of *Streptomyces* antibiotic biosynthetic gene clusters. *BMC Microbiol.* 11:243. doi: 10.1186/1471-2180-11-243

Cone, M. C., Yin, X., Grochowski, L. L., Parker, M. R. and Zabriskie, T. M. (2003). The blastidicin S biosynthesis gene cluster from *Streptomyces griseochromogenes*: sequence analysis, organization, and initial characterization. *ChemBioChem* 4, 821–828. doi: 10.1002/cbic.200300583

Donadio, S., Monciardini, P., and Sosio, M. (2007). Polyclide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. *Nat. Prod. Rep.* 24, 1073–1109. doi: 10.1039/b514050c

Du, D., Wang, L., Tian, Y., Liu, H., Tan, H., and Niu, G. (2015). Genome engineering and direct cloning of antibiotic gene clusters via phage ΦBT1 integrase-mediated site-specific recombination in *Streptomyces*. *Sci. Rep.* 5:8740. doi: 10.1038/srep08740

Engelhardt, K., Degnes, K. F., and Zotchev, S. B. (2010). Isolation and characterization of the gene cluster for biosynthesis of the thiopseudomonadin antibiotic TP-1161. *Appl. Environ. Microbiol.* 76, 7093–7101. doi: 10.1128/AEM.01442-10

Feng, Z., Kim, J. H., and Brady, S. F. (2010). Fluostatins produced by *Streptomyces* clavulanicus and characterization of the naphthocyclinone gene cluster from *Saccharopolyspora strain TM133*. *J. Chem. Soc. Perkin Trans. 1, 1213–1218. doi: 10.1039/b916236j

Frontiers in Microbiology | www.frontiersin.org 7 March 2017 | Volume 8 | Article 394
Yang, C., Huang, C., Zhang, W., Zhu, Y., and Zhang, C. (2015). Heterologous expression of the grincamycin gene cluster in Streptomyces hygroscopicus. Appl. Environ. Microbiol. 81, 4703–4712. doi: 10.1128/AEM.04703-15

Ward, S. L., Hu, Z., Schirmer, A., Reid, R., Revill, W. P., Reeves, C. D., et al. (2014). Cloning and heterologous expression of three type II PKS gene clusters from Streptomyces bottropensis in different hosts, tailoring the L-rhodinose moiety. Org. Lett. 16, 2424–2427. doi: 10.1021/ol500589r

Yamanaka, K., Reynolds, K. A., Kersten, R. D., Ryan, K. S., Gonzalez, D. J., Nizet, V., et al. (2014). Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin. Proc. Natl. Acad. Sci. U.S.A. 111, 1957–1962. doi: 10.1073/pnas.1319584111

Yan, X., Probst, K., Linnenbrink, A., Arnold, M., Paululat, T., Zeck, A., et al. (2012). Cloning and heterologous expression of three type II PKS gene clusters from Streptomyces bottropensis. ChemBioChem 13, 224–230. doi: 10.1002/cbic.201100574

Yang, C., Huang, C., Zhang, W., Zhu, Y., and Zhang, C. (2015). Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. Org. Lett. 17, 5324–5327. doi: 10.1021/acs.orglett.5b02683

Yin, J., Hoffmann, M., Bian, X., Tu, Q., Yan, F., Xia, L., et al. (2015). Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2). Sci. Rep. 5:15081. doi: 10.1038/srep15081

Yin, S., Li, Z., Wang, X., Wang, H., Jia, X., Ai, G., et al. (2016). Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process. Appl. Microbiol. Biotechnol. 100, 10563–10572. doi: 10.1007/s00253-016-7873-1

Ylihonko, K., Hakala, J., Kunnari, T., and Mantsala, P. (1996). Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalatere nogalamycin biosynthesis genes. Microbiology 142(Pt 8), 1965–1972. doi: 10.1099/13500872-142-8-1965

Young, T. S., and Walsh, C. T. (2011). Identification of the thiazolyl peptide GE37468 gene cluster from Streptomyces ATCC 55365 and heterologous expression in Streptomyces lividans. Proc. Natl. Acad. Sci. U.S.A. 108, 13053–13058. doi: 10.1073/pnas.1110435108

Zaburannyi, N., Rabyk, M., Ostash, B., Fedorenko, V., and Luzhetskyy, A. (2014). Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics 15:97. doi: 10.1186/1471-2164-15-97

Zetterl, J., Xia, H., Burkard, N., Kulik, A., Grond, S., Heide, L., et al. (2014). New aminocoumarins from the rare actinomycete Catenulispora acidiphila DSM 44928: identification, structure elucidation, and heterologous production. Chembiochem 15, 612–621. doi: 10.1002/cbic.201300712

Zhang, G., Zhang, H., Li, S., Xiao, J., Zhang, G., Zhu, Y., et al. (2012). Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation. Appl. Environ. Microbiol. 78, 2393–2401. doi: 10.1128/AEM.07185-11

Zhang, Y., Huang, H., Chen, Q., Luo, M., Sun, A., Song, Y., et al. (2013). Identification of the grinacymycin gene cluster unveils divergent roles for GcnQ in different hosts, tailoring the L-rhodinose moiety. Org. Lett. 15, 3254–3257. doi: 10.1021/ol401253p

Zhu, Y., Fu, P., Lin, Q., Zhang, G., Zhang, H., Li, S., et al. (2012). Identification of caerulomycin A gene cluster implicates a tailoring amidohydrolase. Org. Lett. 14, 2666–2669. doi: 10.1021/ol300589r

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Nah, Pyeon, Kang, Choi and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.