Cold- or Heat-Tolerance of Leaves and Roots in Perennial Ryegrass Determined by 1H-NMR

Mari Iwaya-Inoue, Rina Matsui* and Masataka Fukuyama

(Laboratory of Crop Science, Department of Plant Resources, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan; *Department of Plant Resources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan)

Abstract: Dynamic states of water in the leaves and roots of perennial ryegrass (Lolium perenne L.) exposed to cold and heat stresses were studied by using 1H-NMR. NMR spin-lattice relaxation times (T_1) of leaves increased as temperature decreased from 20 to –20°C. However, spin-spin relaxation times (T_2) of the leaves decreased as temperature decreased below 0°C. The T_2 value of the long fraction (associated with vacuole) in leaves decreased to about 600µs at –25°C, but that of the short fraction was about 10µs, and the relative value of signal intensity of the long fraction decreased to about 0.2 at –25°C. The T_2 values of the two fractions in roots decreased to about 1ms at –10°C. Judging from T_2 and electrolyte leakage, both vacuolar and cytoplasmic compartments of leaves and roots froze at these temperatures. T_1 of the leaves decreased slightly as temperature increased from 20 to 40°C but greatly decreased as temperature increased further. The levels of electrolyte leakage from leaves exposed to the above heat stress was low suggesting that membrane was not severely injured. In conclusion, analysis of Arrhenius plots of T_1 and T_2 is a sensitive and non-invasive method to evaluate primary responses of perennial ryegrass organs to the temperature stresses.

Key words: Arrhenius plots, Cold stress, Dynamic states of water, Heat stress, NMR relaxation times (T_1, T_2), Organ, Perennial ryegrass, Water compartment.

Perennial ryegrass (Lolium perenne L.) has been widely cultivated as pasture plants in cool temperate region and it is important to select cold-tolerant perennial ryegrass genotypes for adaptation to northern climates (Ebdon et al., 2002). Many investigators assessed low-temperature tolerance using whole-plant survival and electrolyte leakage, and frost hardiness of stems of English ryegrass varieties has been studied by electrical impedance spectroscopy (Repo and Pulli, 1996). The over-wintering ability was mainly determined by the concentration of nonstructural carbohydrates in the roots rather than in the tops in four temperate perennial grasses including perennial ryegrass (Tamura and Moriyama, 2001). On the contrary, heat stress is also a major factor limiting the growth of the grasses during summer. Decline in photosynthetic rate, photochemical efficiency (Fv/Fm), and relative water content and the increase in electrolyte leakage occur in perennial ryegrass leaves exposed to heat stress (Jiang and Huang, 2001). To resolve these problems and maintain high productivity of perennial ryegrass through the year, it is important to elucidate the physiological response to temperature stresses of perennial ryegrass organs such as roots and leaves.

Although the mechanism of thermo-tolerance in plants has been extensively studied, little is known about dynamic states of water which affect cellular metabolism. Water is the major constituent of tissues in living cells. Since many metabolic processes such as enzymatic reactions, transportation and accumulation of materials occur in the cytosol, water in living tissues is considered to play an important role in their physiological condition. Therefore, the physical states of water reflect cellular activity. Nuclear magnetic resonance (NMR) allows nondestructive determination of changes in the state of water, and spin-lattice (T_1) and spin-spin (T_2) relaxation times are used as indicators of dynamic states of water in biological tissues since they reflect the motion of water molecules (Farrar and Becker, 1971). Since the mobility and characteristic of cell-associated water is closely related to the condition of the cells, NMR images represent physiological maps of the tissues (Kano et al., 1997; Ishida et al., 1997; 2000). In cases of disordered tissues in animals, relaxation times are greatly enhanced compared to those in the corresponding healthy ones (Damadian, 1971; Williams et al., 1980). Furthermore,
T_1 and T_2 of water protons have been applied to the studies of higher plant tissues exposed to thermal stresses (Kaku et al., 1985; Abass and Rajashekar, 1991; Iwaya-Inoue et al., 1993; Yoshida et al., 1997; Maheswari et al., 1999).

In chilling-injury studies Arrhenius plots of a variety of biological reaction rates have been examined, and non-linear temperature dependency or the presence of discontinuity has been seen as a diagnostic phase transition of membrane lipids and other parameters (Iwaya-Inoue et al., 1989; Caldwell, 1993; Schreiber, 1991; Iwaya-Inoue et al., 1993; Yoshida et al., 1997; Maheswari et al., 1999). In this study, we have characterized motional modes of tissue water in perennial ryegrass to determine cold and heat stress sensitivities of organs such as leaves and roots by using 1H-NMR spectroscopy.

Materials and Methods

1. **Plant material**

Perennial ryegrass (Lolium perenne L. cv. Friend) is a cold-tolerant pasture plant widely cultivated in north Japan (Yukijirushi Shubyo Co. Ltd.). Seeds were sown in September in 2001 and February in 2002 in pots (11cm in diameter×10cm height) filled with a mixture of (1 : 1 : 1, v/v/v) vermiculite/kokuryuhabido (meadow chernozen soil)/"Akadama" soil (reddish brown silty soil) and grown in a greenhouse at a rate of 0.5g L$^{-1}$ at sowing, and the plants were kept well-watered. A compound fertilizer was N-P-K : 16-16-16. After 3 weeks these pots were moved to a growth chamber (CR-41LC, Hitachi Ltd., Tokyo, Japan) and grown under a light of 25µmol m$^{-2}$ s$^{-1}$, with a 12h/12h day/night cycle at 15°C for 3 to 4 weeks before experiments.

2. **1H-NMR analysis**

A 1H-NMR spectrometer with a magnet operating at 25MHz for 1H (Mu25A, JEOL Ltd., Tokyo, Japan) was used for the measurements of 1H-NMR spin-lattice relaxation time (T_1) and spin-spin relaxation time (T_2). Ten to twelve leaf pieces and 0.10 to 0.15g roots were used for the measurements of NMR relaxation times. Sample was put into an NMR tube (10mm in diameter) which was then set in the NMR spectrometer. For chilling treatment, the temperature of the samples was lowered in steps of 5°C from 20 to −15°C (or −25°C). The probe temperature was controlled with a thermostat connected to the sample chamber of the spectrometer using liquid nitrogen. For heat treatment, the temperature was raised in steps of 5°C from 20 to 50°C. The measurements were carried out after the NMR tubes were held at each temperature for 5 minutes.

For T_1 measurements, the saturation recovery method (90°-τ-90° pulse sequence) was used (Figs. 1, 3, 5). In this method, T_1 is determined from $M_i = M_e[1 - \exp(-\tau/T_1)]$, where M_i is the magnetization amplitude of proton at interval time τ, and M_e is the magnetization amplitude of proton in the equilibrium state. In this experiment, a free induction decay (FID) signal at every interval time τ, was obtained by the accumulation of 4 scans. For measurement of T_2, the repetition time of the sequence was always kept more than five times of T_2. T_2 was measured by the Carr-Purcell-Meiboom-Gill (CPMG) method (Figs. 2, 6, 7 Phases 1, 2, Fig.4). T_2 is determined from $M_{m}=M_0\exp(-2\pi T_2\tau)$, where M_0 in the magnetization amplitude of the proton signal occurring at time 2τ after the initial 90° pulse in CPMG (90°-τ-180°-τ-180°-τ...) pulse sequence. The T_2s were calculated based on 500 echo signals acquired by accumulation of 16 scans. The solid-echo (90°-τ-90°) method was also applied for measurement of T_2 below 1ms (Figs. 2, 6, 7 Phase3). For this T_2 measurement, repetition time of the pulse sequence was also kept more than five times of T_2.

The solid echo signal was obtained by accumulation of 128 scans. $M(t) = \Sigma a_i \times \exp[-(t/T_i)^\alpha]$ where a_i is the Weibull coefficient, and α is the signal intensity in each fraction. The relative value of fraction ratio, (f_i) is calculated by $f_i=a_i/\Sigma a_i$ (Sato, 1994).

A decay curve of echo signal was analyzed by using a non-linear least-square method on semi-log plots of signal intensity (Braga et al., 1997; Kumamoto et al., 1999). For detailed analysis, two component analysis was carried out. Changes in Arrhenius plots in organs exposed to cold stress were expressed by the T_1 value and relative value of signal intensity in two components (Fig. 5), by T_2 for organs (Fig. 6) and by T_2 for individual samples (Fig. 7).

3. **Measurement of water content**

Fresh and dry weights of leaves and roots were measured after drying in an oven at 80°C for 24h. The samples exposed to cold or heat-stress were also measured. Relative water content was expressed as the ratio of the amount of water to dry matter (g g$^{-1}$ dry matter).

4. **Leakage of electrolytes**

After the NMR measurement the leaves cut into pieces (5 × 5mm) and roots (about 0.05 g) were used for measurement of electrolyte leakage. Fresh samples were used as controls. The pieces were immersed in 20mL of distilled water and shaken at 120 reciprocates min$^{-1}$ for 5h, and leakage of electrolytes was measured with an electrolyte conductivity meter (Toa conductivity meter, Model CM-20E, Toa Electronics Ltd., Tokyo, Japan) and the extent of leakage of electrolytes was expressed as the percentage of the total electrolytes leaked from each sample, to those from the samples killed by a cycle of freezing and thawing.
Results

1. Changes in NMR relaxation times (T_1, T_2) in leaves and roots exposed to cold stress

Mean value of T_1 in leaves and roots was about 497 ms and 732 ms, respectively, at 20°C (Table 1). T_1 was markedly shorter in leaves than in roots. Fig. 1 shows Arrhenius plots of T_1 in the leaves and roots of perennial ryegrass exposed to cold stress. In the temperature ranging from 20 to 0°C (Phase 1), T_1 in leaves and roots linearly decreased with the drop in temperature. T_1s in the leaves gradually increased when the temperature was further lowered from 0 to –20°C and could not be determined at –25°C (Fig. 1A Phase 2). On the other hand, T_1 in roots could not be determined even at –5°C.

T_2 values in roots were also longer than those in leaves like T_1. T_2 values were almost constant or slightly increased with the decrease in temperature from 20 to 0°C in both leaf and root tissues (Fig. 2 Phase 1). T_2 in leaves gradually increased when the temperature decreased from 0 to –20°C (Fig. 2A Phase 2), but that in roots gradually increased from 20 to –5°C and decreased when the temperature decreased from –5 to –10°C (Fig. 2B Phase 2).

Mean values of T_2 determined at 20°C in leaves and roots were 181 ms and 279 ms, respectively (Table 1). T_2 values in roots were also longer than those in leaves like T_1. T_2 values were almost constant or slightly increased with the decrease in temperature from 20 to 0°C in both leaf and root tissues (Fig. 2 Phase 1).

Mean values of T_2 determined at 20°C in leaves and roots were 181 ms and 279 ms, respectively (Table 1). T_2 values in roots were also longer than those in leaves like T_1. T_2 values were almost constant or slightly increased with the decrease in temperature from 20 to 0°C in both leaf and root tissues (Fig. 2 Phase 1).

T_2s in the leaves linearly decreased with the drop in temperature. T_2s in the leaves and roots linearly increased when the temperature was further lowered from 0 to –20°C and could not be determined at –25°C (Fig. 1A Phase 2). On the other hand, T_2 in roots could not be determined even at –5°C.

Mean values of T_2s determined at 20°C in leaves and roots were 181 ms and 279 ms, respectively (Table 1). T_2s values in roots were also longer than those in leaves like T_1. T_2s values were almost constant or slightly increased with the decrease in temperature from 20 to 0°C in both leaf and root tissues (Fig. 2 Phase 1).

The extent of injury is closely related with the increase of electrolyte conductivity in temperature-stressed perennial ryegrass tissues (Jiang and Huang, 2001; Ebdon et al., 2002). Leakage of electrolytes from the ryegrass leaf and root tissues after the abrupt decrease of T_2 which occurred at –25 and –15°C, respectively, was about 100% (Table 2). Judging from the ion leakage, these organs were severely damaged after the exposure to these temperatures. From these results, the drastic decrease in T_2 reflected the freezing of tissue water in leaves between –20 and –25°C, but in roots at –10°C in the perennial ryegrass cultivar ‘Friend’.

Table 1. T_1 and T_2 shown as one component model and two component model in leaves and roots of perennial ryegrass cv. ‘Friend’ exposed to 20°C.

Component	One component model	Two component model	
	Value, ms	Value, ms	Ratio
Leaves	T_1 497.3 ± 53.6	750.1 ± 75.8	0.57 ± 0.11
	T_2 181.0 ± 8.7	246.8 ± 11.4	0.58 ± 0.00
Roots	T_1 732.2 ± 50.3	1172.5 ± 129.2	0.49 ± 0.04
	T_2 279.0 ± 17.1	408.3 ± 9.8	0.49 ± 0.03

a Individual data indicate mean and S. D. of four replications.

Table 2. Electrolyte leakage and water content from leaves and roots in perennial ryegrass cv. ‘Friend’ exposed to cold or heat stress.

Water content (g H2O g-1 dry wt.)	fresha	cold stressb	heat stressc
leaves	8.3 ± 2.0	4.5 ± 0.5	5.8 ± 0.5
roots	8.3 ± 0.3	4.9 ± 0.5	5.1 ± 1.5

Electrolyte leakage (%)	fresh	cold stress	heat stress
leaves	12.5 ± 2.3	99.6 ± 1.6	27.2 ± 4.8
roots	30.5 ± 12.1	93.0 ± 1.0	56.3 ± 13.9

aExposed to 20°C (control)

bAfter exposure to –15 or –25°C

cAfter exposure to 50°C
2. Changes in NMR relaxation times (T_1, T_2) in leaves and roots exposed to heat stress

Fig. 3 shows Arrhenius plots of T_1 in leaves and roots exposed to the rise in temperature from 20 to 50°C. T_1 in leaves was almost constant or slightly decreased from 20 to 35°C and clearly from 35 to 40°C (Fig. 3A), but that in roots decreased in linearly 20 to 50°C (Fig. 3B). On the other hand, T_2 values in both leaves and roots of perennial ryegrass decreased linearly with an increase in temperature (Fig. 4). Ion leakage in the leaves and roots after exposure to the heat stress was 27 and 56 %, respectively (Table 2). These results
suggested that leaves were more tolerant to heat than roots.

3. Changes in water compartments in ryegrass leaves and roots exposed to cold stress

T_1 and T_2 values analyzed for the tissue water as one component (Figs. 1,2,3,4) were each divided into two fractions (short and long) for the two-compartment analysis (Figs. 5,6). T_1 values of the two fractions in leaves were constant or linearly decreased as the temperature was lowered from 20 to 0°C (Fig. 5A Phase1) but T_1 of the long fraction gradually increased.

![Fig. 3](image1.png) Arrhenius plots of T_1 of leaves (A) and roots (B) of perennial ryegrass cv. Friend exposed to an increase in temperature from 20 to 50°C. Arrows indicate heating process.

![Fig. 4](image2.png) Arrhenius plots of T_2 of leaves (A) and roots (B) of perennial ryegrass cv. Friend exposed to an increase in temperature from 20 to 50°C. Arrows indicate heating process.
as the temperature decreased from 0 to −10°C (Phase 2). T_1 could not be determined at −20°C. The relative value of signal intensity in all leaves tested was almost constant at the temperature between 20 and −15°C (Fig. 5C). On the other hand, T_1 values of the two fractions in roots linearly decreased as temperature decreased from 20 to 0°C (Fig. 5B), and the relative value of signal intensity did not change in this temperature range (Fig. 5D). T_1 in roots could not be determined below −5°C. These results indicated that changes in T_1s of leaves and roots shown by one component analysis (Fig. 1) did not depend on the change in signal intensity but on the change in T_1 values (Fig. 5).

T_2 values of the two fractions in the leaves were constant at temperatures between 20 and 0°C (Fig. 6A Phase 1). In the temperature range from 0 to −20°C (Phase 2), gradual change of the T_2 value of the long fraction increased slightly, but that of the short fraction decreased linearly. T_2 values of the long fractions and those of the short fractions were less than 1ms and 30µs, respectively at −25°C (Fig. 6A Phase 3). Additionally, the relative value of signal intensity in the long fraction gradually increased as the temperature decreased from 0 to −20°C (Fig. 6C Phase 2), but it markedly decreased at −25°C (Phase 3). In all roots tested, T_2 values of both long and short fractions were constant at temperatures between 20 and 0°C (Fig. 6B Phase 1). In Phase 2...
temperatures ranging from 0 to –10°C, the T_2 value of both fractions decreased slightly. The relative value of signal intensity in the long T_2 fraction increased at –5°C but decreased at –10°C (Fig. 6D Phase 2). During the observation of an NMR signal the determination could not be carried out by the CPMG method. Therefore, T_2 was determined by the solid echo method at –10 and –15°C. In Phase 3, T_2 values of long fractions and those of short fractions were less than 5ms and 1ms, respectively (Fig. 6B Phase 3).

Discussion

1. Influences of cold stress on T_1

Water in plant tissues is often characterized by different proton relaxation times (Ishida et al., 1987; Isobe et al., 1999; Iwaya-Inoue and Nonami, 2003). T_1 and T_2 have been used to detect the water components in parenchyma tissue of apple (Snaar and Van As, 1992). In morning glory (Pharbitis nil Chois.) seeds, three components of water fractions characterized by different T_1s and chemical shifts were observed (Isobe et al., 1999). T_1 of the two components in ryegrass leaves and roots linearly decreased as the temperature decreased from 20 to 0°C (Fig. 5 Phase 1). T_1 values of seedlings in Pisum sativum linearly decreased as the temperature decreased from 20 to 0°C (Iwaya-Inoue et al., 1989). On the contrary, T_1 values of the two components in ryegrass leaves gradually increased as the temperature decreased from 0 to –10°C (Fig. 5A Phase 2). Seasonal changes in T_1 were closely correlated with water content and supercooling ability of azalea florets (Kaku et al., 1984). The water content of ryegrass fresh leaves was 8.3 g H$_2$O g$^{-1}$ dry wt, and it decreased to 4.5 g H$_2$O g$^{-1}$ after the cold stress (Table...
Therefore, changes in T_1 of leaves exposed to cold stress could not be solely ascribed to the change in water content.

T_1 values of chilling-sensitive *Vigna radiata* hypocotyls have been reported to show a reversible gradual increase after the tissues were exposed to 0°C for 1h (Iwaya-Inoue et al., 1993). It is known that proteins are reversibly denatured at low temperatures as a result of weakening of hydrophobic bonds. A reversible change in conformation of H'-ATPase in the tonoplast of hypocotyls of *Vigna radiata* at 0°C, may cause cytoplasmic acidification (Yoshida et al., 1989). There was a close correlation between pH and T_1 in vitro; when the pH of a solution of paramagnetic ions and protein, in particular, Mn$^{2+}$ and bovine serum albumin (BSA), was lowered from 7.5 to 6.0, the T_1 value increased (Iwaya-Inoue et al., 1993). The range of pH values that affected T_1 significantly corresponded to the pH of the cytoplasm in *Vigna* cells in the culture exposed to 0°C (Yoshida et al., 1989). Therefore, it seems likely that the gradual prolongation of T_1 in plant tissues exposed to chilling stress depends partly on changes in cytoplasmic pH.

2. **Influences of cold stress on T_2 in organs**

The difference in T_2 values of biological tissues can also be interpreted in terms of the differences of the ratio of "free water" to "bound water" (Walter et al., 1989). Typical T_2 change in two water components in an individual measurement is shown in Fig. 7. The temperature dependency of the leaf tissues was not clear in T_2 values of both long and short fractions between 20 and 0°C (Fig. 7A Phase 1). T_2 changes in relation to chilling temperature have been discussed in animal cells; when chicken eggs were stored between 5 and 8°C for over 2 weeks, T_2 increased in comparison to unchilled eggs (Schwagele et al., 2001). T_2 of sugar solution depends less on temperature but T_1 linearly decreased as the temperature decreased from 30 to 0°C (Iwaya-Inoue et al., 2004). Thus, it was assumed
that the suppression of water mobility determined by T_2 was more intensified at higher temperatures.

In the leaf tissues, T_2 values in the long fraction increased but those in the short fraction linearly decreased as temperature decreased from 0 to $–20^\circ$C (Fig. 7A Phase2). T_2 in the long fraction indicating over 200 ms is thought to be mainly associated with vacuole and the fraction with the short T_2 less than 60ms is thought to be associated with the cytosol and apoplastic region in the leaves (Chen and Gusta, 1978). The prolongation of T_2 in the long fraction was accompanied by a gradual increase in signal intensity in the temperature range from 0 to $–20^\circ$C. In roots, T_2 values of the two components did not change when the temperature decreased from 20 to 0$^\circ$C but they decreased at $–10^\circ$C (Fig. 7B Phase2). The relative value of signal intensity of the long T_2 fraction increased at $–5^\circ$C but it decreased at $–10^\circ$C.

Abrupt decrease in T_2 value of the two components in both leaves and roots was accompanied with the decrease in signal intensity of the long fraction (Fig. 7 Phase3). The T_2 value of the long fraction in leaf tissues decreased to about 600μs at $–25^\circ$C, but that of the short fraction was about 10μs at $–25^\circ$C, and the relative value of signal intensity of the long fraction decreased to about 0.2 (Fig. 7A Phase3). The T_2 value below 100μs is thought to be associated with water tightly bound to macromolecules in cells (Hills and Remigereau, 1997). These results indicate that vacuolar water in leaf tissues disappeared at $–25^\circ$C. In root tissues, the component of the long T_2 fraction indicating over 300ms vanished and the T_2 values of both fractions was about 1ms at $–10^\circ$C equilibrium (Fig. 7B Phase3). The relative values of the signal intensity in the long fraction decreased from about 0.5 to 0.03 at $–10^\circ$C and the value did not change at $–15^\circ$C (Fig. 7B Phase3). In parenchyma tissue of apple, a peak of T_2 corresponding to the vacuole vanished at $–5^\circ$C showing that the vacuolar compartment had frozen, but the two peaks corresponding to the cytoplasm and cell wall compartments were observed indicating that these compartments remain unfrozen (Hills and Remigereau, 1997). The activity of 2,3,5-triphenyltetrazolium chloride (TTC) reduction in ryegrass leaves and roots which reflected the viability of the tissues vanished at $–25^\circ$C and $–15^\circ$C, respectively (data not shown). Furthermore, the leakage of electrolytes indicated that both leaves and roots exposed to subzero temperatures were severely damaged (Table 2). The shortening of T_1 has been attributed to a decline in membrane permeability under freezing injury in wheat crowns (Chen and Gusta, 1978). Therefore, the abrupt shortening of T_2 suggested that two water components in leaves froze at $–20$ to $–25^\circ$C and those in roots froze at $–10^\circ$C. The T_2 of cellular water is known to be dependent on plasmalemma and tonoplast permeability (Van As, 1992). Thus, a drastic decrease of the relative value of signal intensity as well as that of T_2 values in the two water components reflected the freezing of vacuoles and cytoplasmic water in the leaves and roots of perennial ryegrass cv. 'Friend'.

3. **Influences of heat stress on T_i and T_2 in organs**

Arrhenius plots of T_is in leaves exposed to a rise in temperature from 20 to 50$^\circ$C are presented in Fig. 3A. T_is in leaves were almost constant or slightly decreased when the temperature was raised from 20 to 35$^\circ$C and they markedly decreased above 40$^\circ$C, whereas T_2 values in roots decreased linearly with the increase in temperature (Fig. 3B). On the other hand, T_2 values in leaves and roots gradually decreased with an increase in temperature (Fig. 4). Thus, T_i and T_2 in both organs exposed to heat stress decreased in temperature from 20 to 50$^\circ$C. The water content of plant tissues is a main factor affecting water status of the tissues (Burke et al., 1974). Water contents of both fresh ryegrass leaves and roots were 8.3 g H$_2$O g$^{-1}$ dry wt, but after the heat stress the water contents of leaves and roots were 5.8 and 5.1g H$_2$O g$^{-1}$, respectively (Table 2). Therefore, the decrease in T_i and T_2 of both organs exposed to the heat stress is partly ascribed to decrease in the water content.

Electrolytes leakage in leaves exposed to heat stress suggested the absence of severe damage (Table 2). Abass and Rajashekar (1991) reported that T_2 of the major fraction in grape leaves decreases steadily with an increase in temperature and sharply decreased at 48 and 45$^\circ$C, which correspond to the lethal temperature measured by both electrolyte leakage and TTC reduction tests. T_is in leaves markedly decreased above 40$^\circ$C, whereas those in roots decreased linearly with the increase when the temperature was raised from 20 to 50$^\circ$C (Fig. 3). Heat shock treatment (40 ºC for 4h) lowered the T_i values in hypocotyls of mung bean and it induced 71, 73 and 76kD proteins (Iwaya-Inoue et al., 1993). In the seedlings of the same species, members of heat shock protein HSP70 family are induced by heat shock at 41ºC for 4h (Kawata and Yoshida, 1988). The HSP70 family members in yeast cells might stabilize denatured proteins and might play a role as a "surfactant" in cells (Komatsu et al., 1990).

4. **Differences in the response to temperature stresses between leaves and roots**

Although there is a little information on the supercooling ability of herbaceous plants, T_2 determination revealed that perennial ryegrass 'Friend' has supercooling ability at $–20$ to $–25^\circ$C in leaves and at $–10^\circ$C in roots. Furthermore, the temperature dependency of T_1 at 40ºC in leaf tissues might reflect a primary response against heat stress because the level of electrolyte leakage was low even at 50ºC. Heat shock has been reported to induce HSP family in leaves of maize (Ristic et al., 1999) and pea (Dudley et
the ryegrass organs cannot decide (Table 1). This means that the water content alone of (Table 2), difference in water contents between leaves and roots of the leaves and roots. Although there was no dynamic states of water reflected the thermo-tolerance attended technical support. grateful to Mr. S. Nagai of JEOL Datum Ltd. for his provided by Yukijirushi Shubyo Co. Ltd. We are also advice. Seeds of ryegrass cv. 'Friend' were kindly Ntnl. Food Res. Inst. for giving M. I. I. their valuable both cold and heat stresses. and non-invasive way for evaluating tissue response to both cold and heat stresses.

These results show the importance of selecting temperature resistant perennial ryegrass organs for adaptation to cool and warm climates. Arrhenius plots of NMR relaxation times (T_1, T_2) in the leaves and roots of perennial ryegrass cultivar provided sensitive and non-invasive way for evaluating tissue response to cold and heat stresses.

Acknowledgments

We would like to thank Dr. H. Kano of Ntnl. Inst. Agrobiol. Res. and Drs. N. Ishida and M. Koizumi of Ntnl. Food Res. Inst. for giving M. I. I. their valuable advice. Seeds of ryegrass cv. 'Friend' were kindly provided by Yukijirushi Shubyo Co. Ltd. We are also grateful to Mr. S. Nagai of JEOL Datum Ltd. for his attentive technical support.

References

Abass, M. and Rajaeshker, C. B. 1991. Characterization of heat injury in grapes using 1H nuclear magnetic resonance methods. Plant Physiol. 96 : 957-961.

Braga, M.M., Yoshida, M.I., Sinisterra, R.D. and Carvalh, C.F. 1997. Thermal behaviour and isothermal kinetics of Rhodium(II) acetate. Thermoch. Acta. 296 : 141-148.

Burke, M. J., Bryant, R. G. and Weiser, C. J. 1974. Nuclear magnetic resonance of water in cold acclimating red osier dogwood stem. Plant Physiol. 54 : 392-398.

Caldwell, C. R. 1993. Estimation and analysis of cucumber (Cucumis sativus L.) leaf cellular heat sensitivity. Plant Physiol. 101 : 939-945.

Chen, P. M. and Gusta, L. V. 1978. Changes in membrane permeability of winter wheat cells following freeze-thaw injury as determined by nuclear magnetic resonance. Plant Physiol. 61 : 878-882.

Damadian, R. 1971. Tumor detection by nuclear magnetic resonance. Science 171 : 1151-1153.

Dudley, P., Wood, C.K., Pratt, J.R. and Moore, A.L. 1997. Developmental regulation of the plant mitochondrial matrix located hsp70 chaperone and its role in protein import. FEBS Lett. 417 : 321-324.

Ebdon, J.S., Gagne, R.A. and Manley, R.C. 2002. Comparative cold tolerance in diverse turf quality genotypes of perennial ryegrass. HortScience. 37 : 826-830.

Farrar, T.C. and Becker, E.D. 1971. Pulse and Fourier Transform NMR. Academic Press, New York. 1-115.

Hills, B.P. and Remigereau, B. 1997. NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing. Inter. J. Food Sci. Technol. 32 : 51-61.

Ishida, N., Kano,H., Kobayashi,T., Hamaguchi, H. and Yoshida, T. 1987. Estimation of biological activities by NMR in soybean seeds during maturation. Agric. Biol. Chem. 51 : 301-307.

Ishida, N., Ogawa, H., Koizumi, M. and Kano, H. 1997. Ontogenetic changes of the water status and accumulated soluble compounds in growing cherry fruits studied by NMR Imaging. Mag. Reson. Chem. 35 : 22-28.

Ishida, N., Koizumi, M. and Kano, H. 2000. The NMR microscope : a unique and promising tool for plant science. Ann. Bot. 86 : 259-278.

Isoe, S., Ishida, N., Koizumi, M., Kano, H. and Hazlewood, C.F. 1999. Effect of electric field on physical states of cell-associated water in germinating morning glory seeds observed by 1H-NMR. Bioch. Biophys. Acta 1426 : 17-31.

Iwaya-Inoue, M., Sakaguchi, K. and Kaku, S. 1989. Statistical studies using AIC methods to decide the question of "Break" or "Straight" in Arrhenius plots of water proton NMR relaxation times in chilling-sensitive Vigna and insensitive Pisum seedling. Plant Cell Physiol. 30 : 309-361.

Iwaya-Inoue, M., Yoshimura, K., Yamashita H. and Saku, S. 1993. Characteristic changes in relaxation times of water proton in Vigna radiata seedlings exposed to temperature stress. Plant Cell Physiol. 34 : 705-711.

Iwaya-Inoue, M., Matsuji, R., Sultana, N., Saito, K., Sakaguchi, F. and Fukuyama, M. 2004. 1H-NMR method enables early identification of degeneration in the quality of sweet potato tubers. J. Agr. Crop Sci. 190 : 65-72.

Iwaya-Inoue, M. and Nonami, H. 2003. Effects of trehalose on flower senescence from the view point of physical states of water. Environ. Cont. Biol. 41 : 3-15.

Jiang, Y.W. and Huang, B.R. 2001. Physiological responses to heat stress alone or in combination with drought : A comparison between tall fescue and perennial ryegrass. Hortscience 36 : 682-686.

Jinn, T.L., Chang, P.F.L., Chen, Y.M., Key, J.L. and Lin, C.Y. 1997. Tissue-type-specific heat-shock response and immunolocalization of class I. Low-molecular-weight heat-shock proteins in soybean. Plant Physiol. 114 : 429-438.

Kako, S., Iwaya-Inoue, M. and Gusta, L. 1984. Relationships of nuclear magnetic resonance relaxation time to water content and cold hardiness in flower buds of evergreen azalea. Plant Cell Physiol. 25 : 873-882.

Kako, S., Iwaya-Inoue, M. and Gusta, L. V. 1985. Estimation of the freezing injury in flower buds of evergreen azaleas by water proton nuclear magnetic resonance relaxation times. Plant Cell Physiol. 26 : 1019-1025.

Kano, H., Ishida, N. and Koizumi, M. 1997. Physical states of water in plant tissues, possible probes for non-destructive quality estimation of agricultural products and foods by NMR. Recent Res. Dev. Agr.Biol.Chem. 1 : 125-145.

Kawata, T. and Yoshida, S. 1988. Alterations in protein synthesis in vivo in chilling sensitive mung bean hypocotyls caused by
chilling stress. *Plant Cell Physiol.* 29: 1423-1427.
Komatsu, Y., Kaul, S.C., Iwahashi, H. and Obuchi, K. 1990. Do heat shock protein provide protection against freezing? *FEMS Microbiol. Lett.* 72: 159-162.
Komamoto, Y., Watanabe, G. and Iwaya-Inoue, M. 1998. Changes of bound water and free water components traced by 1H-NMR in immature and mature fruit. *Cryobiol. Cryotechnol.* 44: 29-37.
Maheswari, M., Joshi, D. K., Saha, R., Nagarajan, S. and Gambhir, P. N. 1999. Transverse relaxation time of leaf water protons and membrane injury in wheat (*Triticum aestivum* L.) in response to high temperature. *Ann. Bot.* 84: 741-745.
Repo, T. and Pulli, S. 1996. Application of impedance spectroscopy for selecting frost hardy varieties of English ryegrass. *Ann. Bot.* 78: 605-609.
Ristic, Z., Yan, G.P. and Bhadula, S.K. 1999. Two-dimensional gel analysis of 45 kD heat shock proteins from a drought and heat resistant maize line. *J. Plant Physiol.* 154: 264-268.
Sato, K. 1994. *Kotai NMR no Gijyutsu to Sokutei no Jissai.* *(Guidelines for Technique and Measurement by Solid-State NMR).* In I. Ando ed., *Kobunshi no Kotai NMR.* *(Solid-State NMR of Polymers).* Kodansha Scientific, Tokyo. 29-59 (in Japanese).
Schreiber, L. 2001. Effect of temperature on cuticular transpiration of isolated cuticular membrane and leaf discs. *J. Exp. Bot.* 52: 1893-1900.
Schwagele, F., Poser, R. and Krockel, L. 2001. Application of low-resolution NMR spectroscopy of intact eggs - Measurement of quality determining physical characteristics. *Fleischwirtschaft.* 81: 103-106.
Snaar, J. E. M. and Van As, H. 1992. Probing water compartments and membrane permeability in plant cells by 1H NMR relaxation measurements. *Biophys. J.* 63: 1654-1658.
Tamura, Y. and Moriyama, M. 2001. Nonstructural carbohydrate reserves in roots and the ability of temperate perennial grasses to overwinter in early growth stages. *Plant Prod. Sci.* 4: 56-61.
Van As, H. 1992. NMR in horticulture: *in situ* plant water balance studies with NMR. *Acta Hort.* 304: 103-112.
Walter, L., Balling, A., Zimmermann, U., Haase, A. and Kuhn, W. 1989. Nuclear-magnetic-resonance imaging of leaves of *Mesembryanthemum crystallinum* L. plants grown at high salinity. *Planta* 178: 524-530.
Williams, E.S, Kaplan, J.I., Thatcher, F., Zimmerman, G. and Knoebel, S.B. 1980. Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. *J. Nucl. Med.* 21: 449-453.
Yoshida, M., Abe, J., Moriyama, M., Shimokawa, S. and Nakamura, Y. 1997. Seasonal changes in the physical state of crown water associated with freezing tolerance in winter wheat. *Physiol. Plant.* 99: 363-370.
Yoshida, S., Matsuura, C. and Etani, S. 1989. Impairment of tonoplast H$^+$-ATPase as an initial physiological response of cells to chilling in mung bean (*Vigna radiata* L. Wilczek). *Plant Physiol.* 89: 634-642.

* Translated from Japanese by the authors.