Seasonal Variation in Tear Secretion and Tear-Film Stability among Adults in Enugu, Nigeria: A Longitudinal Study

Stella Ngozi Onwubiko*, Nkiru Zuadae Nwachukwu and Boniface Ikenna Eze
Department of Ophthalmology, University of Nigeria Teaching Hospital, Enugu, Nigeria

Abstract

Aim: To investigate the variation in tear-film secretion and function between rainy and dry seasons among healthy adults in Enugu, Nigeria.

Methods: This was a population-based, longitudinal study involving a cohort of 31 healthy adult Nigerians residing in Enugu in 2018. The objective tests for tear secretion (Schirmer’s test) and function (tear-film break-up time, TBUT) were conducted on the 62 eyes of the participants in January and July, the peaks of dry (D) and rainy (R) seasons, after obtaining their socio-demographic information. Their palpebral fissure height (PFH) and length (PFL) were also obtained.

Results: The participants comprised of more females, 20 (64.5%) than males, with a mean age of 33.7 ± 9.6 SD years. They were mainly civil servants with tertiary education. The mean TBUT -R was 30.0 ± 18.3 seconds and D, 15.6 ± 9.5. The mean Schirmer’s test-R was 25.2 ± 10.1 mm and D, 22.1 ± 11.2 mm. There was significant difference between these means in rainy and dry seasons. (p = 0.000, TBUT, p = 0.04 Schirmer’s test). When TBUT and Schirmer’s test in both seasons were correlated with PFH and PFL, only TBUT -R and PFH showed a significantly positive correlation (r = 0.54, p = 0.002).

Conclusion: A significant seasonal variation in tear-film secretion and function exists among adults in Enugu. The higher the PFH, the less the break-up of the tear-film during rainy season. These findings have great implications in the management of dry eyes. The use of therapeutic lubricant gels to prolong the TBUT time in dry seasons may therefore be preferred.

Introduction

It has been documented that the secretion and function of the pre-corneal tear-film is associated with both intrinsic and extrinsic factors, ranging from advancing age [1-4], female gender [1-3], weather and environmental factors such as humidity, temperature and wind [4-6], use of some medications as anti-depressant and anti-histamine [7], and activities that promote infrequent blinking such as working on a computer [8], among others.

These factors are quite challenging in the diagnosis and management of Dry Eye Disease, (DED), a clinical condition resulting from deranged tear-film. DED is of public health importance, a chronic disease of the ocular surface with bothersome symptoms, necessitating frequent hospital visits and use of eye lubricants, which greatly impacts on patients’ quality of life [9-11].

Understanding the influence of these extrinsic factors on the secretion and function of the pre-corneal tear-film would be of great help to the clinician to proffer differing management protocols, especially by modifying them to suit the individual patient with DED or other ocular surface disease.

Fewer studies have investigated the seasonal influence on the tear-film and invariably on DED [5,6]. In the US, symptoms of DED were exacerbated in the dry, cold, and windy environment of winter among patients from the Greater Boston Area [6], and in Miami [5], during winter and spring.

In Enugu, DED is of public health importance, with a prevalence of 19.2% [3]. To the best knowledge of the researchers, no similar study has been done. This study therefore sought to investigate the seasonal influence on the tear-film secretion and function and its possible association with the anthropometric characteristics of healthy subjects. The findings would assist the clinicians to make informed decision on the management of ocular surface diseases in the study area and elsewhere with similar settings.

Methods

Background

Enugu is the capital of Enugu State, one of the 36 states of the Federal Republic of Nigeria. It is one of the 5 states that make up the south-east geo-political zone. It is sub-divided into 17 Local Government Areas (LGAs), of these, Enugu-North, Enugu-East, and Enugu-South LGAs form Enugu urban.

Enugu is located in the tropical rainforest climatic region, with two seasons of the year, rainy (May to October) and dry (November to April) seasons. The population is predominantly Ibo's, with civil service, farming and trading as their major occupations.
Eligibility

Healthy adult Nigerians without ocular symptoms, who had resided in Enugu continuously for, more than one year and voluntarily gave an informed consent to participation.

Ethics

Prior to the start of the study, ethics clearance compliant with 1964 Helsinki Declaration, was obtained from University of Nigeria Teaching Hospital’s Medical and Health Research Ethics Committee (Institutional Review Board).

Study period

The study was conducted in 2018, January for the dry season and July for rainy season.

Study design

This was a population-based, longitudinal survey involving a cohort of 31 healthy Nigerian adults residing in Enugu.

Study procedure

Information on their socio-demographic characteristics as well as their Palpebral Fissure Height (PFH), and Palpebral Fissure Length (PFL) were obtained. Assessment of tear secretion was done using the Schirmer’s test and the Tear film Break-Up Time (TBUT) was used to assess tear function. These tests were administered on all participants under the same room temperature conditions, 25-27°C, between 8.00 am (08 hours GMT) and 11.00 am (11 hours GMT). Firstly, TBUT was performed on both eyes. In order to minimize reflex tearing and ocular surface changes secondary to TBUT testing, a 10-minutes interval was observed, and then the Schirmer’s test was administered on both eyes.

To obtain the TBUT, a pre-cut fluorescein strip impregnated with 2% sodium fluorescein (Ophthalmic Technology Pvt. Ltd., India), wetted with a drop of sterile water was inserted into the inferior conjunctival fornix and removed after 1 minute. The participant was then instructed to blink and hold the eyes open. The broad beam of cobalt blue light of the slit-lamp biomicroscope was used to examine the tear-film for areas of dryness, which appears as dark spots on the cornea. A stop watch was activated when the participant stopped blinking, and deactivated when the first random dark spot appeared around the central cornea. The time interval between the last blink and the appearance of the first dark spot was noted as the TBUT. This was done three times on each eye and the average reading was documented.

To obtain the Schirmer’s test result, a 5 mm by 35 mm No. 41 Whatman’s filter paper (Ophthalmic Technology Pvt. Ltd., India) was used. The filter paper was folded 5 mm from the zero end and inserted into the inferior conjunctival fornix midway between the outer and the middle third of the lower lid, without prior instillation of topical anesthetic drops. The participant was then instructed to blink and close the eyes. The paper was removed after 5 minutes, and the amount of wetting from the folded end was measured.

Using a transparent plastic millimetre rule (China Arts Hangzhou Import and Export Inc., Hangzhou, China), with the participant and the observer seated in a well-lit room, and their eyes at the same horizontal level, the PFH was measured as the distance between the upper and lower lid margins at the pupillary midline, the PFL as the distance between the medial and lateral canthi.

Data management

Data were cleaned, edited, coded and analysed using the Statistical Package for Social Sciences (SPSS) software for windows, version 21.0 (SPSS Inc, Chicago, Illinois, USA). Data were subsequently categorised by socio-demographic variables and subjected to descriptive statistical evaluation to yield frequencies, percentages, and proportions. Student T-test was used to compare the mean values of TBUT and Schirmer’s during the two seasons. Pearson correlation was used to ascertain the relationship between TBUT and Schirmer’s test in both seasons and PFH, and PFL. The level of significance was at p-value of < 0.05.

Results

The participants comprised of more females, 20 (64.5%) than males, 11 (35.5%) with a mean age of 33.7 ± 9.6 SD years and a range of 20 to 50. They were mainly civil servants with tertiary education. The socio-demographic characteristics of participants are as shown in table 1.

Table 1: Socio-demographic characteristics of the participants; N = 31.

Variables	N (%)
AGE	
20 - 30	11 (35.5)
31 - 40	11 (35.5)
41 - 50	9 (29.0)
GENDER	
Male	11 (35.5)
Female	20 (64.5)
EDUCATIONAL STATUS	
Primary	4 (12.9)
Secondary	8 (25.8)
Tertiary	19 (61.3)
MARRITAL STATUS	
Single	14 (45.2)
Married	17 (54.8)
OCCUPATIONAL STATUS	
Unemployed	1 (3.2)
Civil services	21 (67.8)
Others	9 (29.0)
NEAR-WORK RELATED OCCUPATION	
Yes	22 (71.0)
No	9 (29.0)

The mean PFH was 34.5 ± 2.8 SD mm (range 29 to 40 mm) and PFL, 10.8 ± 1.2 SD mm (range 9 to 14 mm). The mean TBUT during rainy season was 30.0 ± 18.3 seconds (8.0 to 80.0), and in dry season, 15.6 ± 9.5s (3.0 to 35.0). The mean Schirmer’s test result in rainy season was 25.2 ± 10.1 mm (5.0 to 35.0) and in dry season, 22.1 ± 11.2 mm (4.0 to 35).

There was a statistically significant difference between these means in rainy and dry seasons. (p =0.000 TBUT, P = 0.04 Schirmer’s test) (Table 2).
When TBUT and Schirmer’s test in both seasons were correlated with PFH, and PFL, only TBUT in rainy season and PFH showed a significantly positive correlation ($r = 0.54$, $p=0.002$), as shown in table 3; which implies that the higher the values for the PFH, the higher the tear-film during rainy season and PFH showed a significantly positive correlation, but it did not indicate any seasonal influence. On the contrary, the present study found that the higher the PFH, the higher the tear-film during rainy season. These findings have great implications in the management of dry eyes in the study environment. The use of therapeutic lubricant gels to prolong the TBUT time in dry seasons is therefore preferred.

Further studies should be designed to explore more on the relationship between the tear-film and these palpebral characteristics to allow for more elaborate comparisons.

Discussion

The participants comprised of more females, 20 (64.5%) than males, 11 (35.5%) with a mean age of 33.7 ± 9.6 SD years. They were mainly civil servants with tertiary education. The two closely related US studies [5,6] did not report on the socio-demography of the participants. Further discussion on this is therefore precluded. Future studies should report on the socio-demographic profile of participants for comparison among studies.

In this study, a significant seasonal variation was observed in tear-film secretion and function (evaporation), as evidenced by the lower mean values of Schirmer’s test and TBUT respectively during the dry season. Similar observations were made in the US studies [5,6] where symptoms of DED were exacerbated in the dry, cold, and windy environment of winter among patients from the Greater Boston Area [6], and in Miimi [5], during winter and spring. Even though, the present study was on healthy participants, the obvious seasonal influence on DED during the rainy season may explain this observation. Clinicians should therefore be guided on the management protocols of ocular surface disease for the different seasons.

Conclusion

A significant seasonal variation in tear-film secretion and function exists among adults in Enugu. The higher the PFH, the less the tear-film during rainy season. These findings have great implications in the management of dry eyes in the study environment. The use of therapeutic lubricant gels to prolong the TBUT time in dry seasons is therefore preferred.

Competing Interest

The authors declare no real or potential competing interests in this work.

References

1. Jie Y, Xu L, Wu YY, Jonas JB (2009) Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye 23: 688-693.
2. Gupta N, Prasad I, Jain R, D’Souza P (2010) Estimating the prevalence of dry eye among Indian patients attending a tertiary ophthalmology clinic. Ann Trop Med Parasit 104: 247-255.
3. Onwubiko SN, Eze BI, Udeh NN, Arinze OC, Onwasigwe EN, et al. (2014) Dry eye disease: prevalence, distribution and determinants in a hospital-based population. Cont Lens Anterior Eye 37: 157-161.
4. Sahai A, Malik P (2005) Dry Eye: Prevalence and Attributable risk factors in a hospital-based population. Indian J Ophthalmol 53: 87-91.
5. Kumar N, Feuer W, Lanza NL, Galor A (2015) Seasonal Variation in Dry Eye. Ophthalmology 122: 1727-1729.
6. Davis J, Ousler GW III, Langelier NA, Schindelar MR, Abelson R, et al. (2006) Seasonal Changes in Dry Eye Symptomatology. Invest Ophthalmol Vis Sci 47: 280.
7. Pouyeh B, Viteri E, Feuer W, Lee DJ, Florez H, et al. (2012) Impact of ocular surface symptoms on quality of life in a United States veterans affairs population. Am J Ophthalmol 153: 1061-1066.
8. Uchino Y, Uchino M, Yokoi N, Dogru M, Kawashima M, et al. (2014) Alteration of tear mucin 5AC in office workers using visual display terminals: The Osaka Study. JAMA Ophthalmol 132: 985-992.
9. Miljanvic B, Dona R, Sullivan DA, Schaumberg DA (2007) Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol 143: 409-415.

10. Schaumberg DA, Geerling G (2008) The epidemiology of dry eye disease; reducing the burden of a major public health problem. Ophthalmol Times Europe 4: 1-3.

11. Galor A, Kumar N, Feuer W, Lee DJ (2014) Environmental factors affect the risk of dry eye syndrome in a United States veteran population. Ophthalmology 121: 972-973.

12. Pansell T, Porsblad M, Abdi S (2007) The effect of vertical gaze position on ocular tear film stability. Clin Exp Optom 90: 176-181.
Journal of Anesthesia & Clinical Care
Journal of Addiction & Addictive Disorders
Advances in Microbiology Research
Advances in Industrial Biotechnology
Journal of Agronomy & Agricultural Science
Journal of AIDS Clinical Research & STDs
Journal of Alcoholism, Drug Abuse & Substance Dependence
Journal of Allergy Disorders & Therapy
Journal of Alternative, Complementary & Integrative Medicine
Journal of Alzheimer’s & Neurodegenerative Diseases
Journal of Angiology & Vascular Surgery
Journal of Animal Research & Veterinary Science
Archives of Zoological Studies
Archives of Urology
Journal of Atmospheric & Earth-Sciences
Journal of Aquaculture & Fisheries
Journal of Biotech Research & Biochemistry
Journal of Brain & Neuroscience Research
Journal of Cancer Biology & Treatment
Journal of Cardiology: Study & Research
Journal of Cell Biology & Cell Metabolism
Journal of Clinical Dermatology & Therapy
Journal of Clinical Immunology & Immunotherapy
Journal of Clinical Studies & Medical Case Reports
Journal of Community Medicine & Public Health Care
Current Trends: Medical & Biological Engineering
Journal of Cytology & Tissue Biology
Journal of Dentistry: Oral Health & Cosmesis
Journal of Diabetes & Metabolic Disorders
Journal of Dairy Research & Technology
Journal of Emergency Medicine Trauma & Surgical Care
Journal of Environmental Science: Current Research
Journal of Food Science & Nutrition
Journal of Forensic, Legal & Investigative Sciences
Journal of Gastroenterology & Hepatology Research
Journal of Gerontology & Geriatric Medicine
Journal of Genetics & Genomic Sciences
Journal of Hematology, Blood Transfusion & Disorders
Journal of Human Endocrinology
Journal of Hospice & Palliative Medical Care
Journal of Internal Medicine & Primary Healthcare
Journal of Infectious & Non Infectious Diseases
Journal of Light & Laser: Current Trends
Journal of Modern Chemical Sciences
Journal of Medicine: Study & Research
Journal of Nanotechnology: Nanomedicine & Nanobiotechnology
Journal of Neonatology & Clinical Pediatrics
Journal of Nephrology & Renal Therapy
Journal of Non Invasive Vascular Investigation
Journal of Nuclear Medicine, Radiology & Radiation Therapy
Journal of Obesity & Weight Loss
Journal of Orthopedic Research & Physiotherapy
Journal of Otolaryngology, Head & Neck Surgery
Journal of Protein Research & Bioinformatics
Journal of Pathology Clinical & Medical Research
Journal of Pharmacology, Pharmaceutics & Pharmacovigilance
Journal of Physical Medicine, Rehabilitation & Disabilities
Journal of Plant Science: Current Research
Journal of Psychiatry, Depression & Anxiety
Journal of Pulmonary Medicine & Respiratory Research
Journal of Practical & Professional Nursing
Journal of Reproductive Medicine, Gynaecology & Obstetrics
Journal of Stem Cells Research, Development & Therapy
Journal of Surgery: Current Trends & Innovations
Journal of Toxicology: Current Research
Journal of Translational Science and Research
Trends in Anatomy & Physiology
Journal of Vaccines Research & Vaccination
Journal of Virology & Antivirals
Archives of Surgery and Surgical Education
Sports Medicine and Injury Care Journal
International Journal of Case Reports and Therapeutic Studies

Submit Your Manuscript: http://www.heraldopenaccess.us/Online-Submission.php