Research Article

Fundus-Vascular Responses to Color Deviation Caused by Non-Oxidative Blue Filtering

Jianqi Cai,1,2 Wentao Hao,3 Shanshan Zeng,2 Junkai Li,4 Ya Guo,2 Kai Tan,5 Yongyin Kang,6 Yitao Huang,5 Yue Zhang,5 Thebano Santos,7 Cheng Qian,8 and Aiqin Luo1

1School of Life Science, Beijing Institute of Technology, Beijing 100081, China
2Lab of Visual Health and Safety Protection, China National Institute of Standardization, Beijing 100191, China
3Beijing Yangming Zhidao Photoelectric Science and Technology Co., Ltd, Beijing 100102, China
4Hangzhou Innovei Technology Co., Ltd, Hangzhou 311199, China
5Guangzhou Shirui Electronics Co., Ltd, Guangzhou 510663, China
6Najing Technology Co., Ltd, Hangzhou 310052, China
7Center of Information Technology "Renato Archer" (CTI), Ministry of Science Technology Innovations and Communications, Brazil
8School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

Correspondence should be addressed to Jianqi Cai; caijq@cnis.ac.cn, Cheng Qian; cqian@buaa.edu.cn, and Aiqin Luo; bitluo@bit.edu.cn

Received 28 July 2022; Accepted 17 August 2022; Published 12 October 2022

Academic Editor: Ting Su

Copyright © 2022 Jianqi Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aims. Short-wavelength blue light damaged retina by the oxidative stress in the retinal pigment epithelial (RPE) cells. Filtering blue light from screen could reduce blue hazard, whereas it inevitably altered color-gamut coverage and color-deviation level. Although abnormal fundus-vascular density (FVD) sometimes indicated fundus disease, few researchers noticed its responses to the variation of color-gamut coverage and color-deviation level. Methods. In this study, we performed cellular experiments and analyzed the RPE cell viabilities (CVs) in spectrums with different blue (455-475 nm) ratios to describe the corresponding oxidative-stress levels. Further, we investigated the effects of color-gamut and deviation on FVD variations during the screen-watching task using human factor experiments with 30 participants (university students, including 17 males and 13 females, 21 to 30 years old). Results. RPE CVs were similar in different spectrums, implying that non-oxidative blue filtering hardly contributed to CV improvement. Color-deviation level seems to induce more significant effects on the visual function compared to color-gamut coverage, and MTF and FVD presents similar variation trends during the visual task. Conclusion. Oxidative-free blue filtering contributed little to decrease retinal oxidative stress yet caused color-deviation increase, which caused significant FVD reduction.

1. Introduction

Short-wavelength blue light threatens the RPE cells by increasing the risk of fundus diseases, comprising age-related macular degeneration (AMD) [1, 2], diabetic retinopathy (DR) [3, 4], idiopathic parafoveal telangiectasia (IPT) [5, 6], retinal vein occlusion (RVO) [7, 8], retinal artery occlusion (RAO) [9, 10], central serous chorioretinopathy (CSC) [11, 12], and polypoidal choroidal vasculopathy (PCV) [13, 14].

Although in display blue wavelength filtering reduced blue hazard, it caused other issues such as variations in color-deviation level and color-gamut coverage. Whether human eyes benefit from non-oxidative blue filtering remained unclear. Researchers have performed ergonomic studies to clarify the effects of display brightness [15–17] on visual and nonvisual effects [18–20], whereas they focused little on the fundus-vascular responses to different color-gamut coverages and color-deviation levels.
Generally, non-oxidative blue filtering is inevitably accompanied by several negative consequences, including complicated control circuits and algorithms [21], distorted display-input signals [22], and reduced color-deviation levels [23–25]. In this study, we measured FVD variations in different color-gamut coverages and color-deviation levels, which were caused by the non-oxidative blue filtering, during screen-watching tasks in experiences with human subjects. We also analyzed the correlation between FVD and MTF.

2. Materials and Methods

2.1. Light Environment.

A light-emitting diode (LED) lamp fixed on a 2.1-m ceiling was used for lighting with the following characteristics: size of 90 cm × 90 cm and a correlated color temperature (CCT) of 5250 ± 250 K. The screen brightness was set to a value of 190 ± 10 cd/m². Spectral power distributions (SPD) of the screen and the ceiling lamp are shown in Figure 1. To obtain all of the color features in this study, color corrections were performed using Truecolor.
Table 3: Comparisons of ΔFVD between the adjacent color-gamut coverage pairs in multiple color-deviation levels; t represents Student’s t-test value, and P represents significance probability; $^*P < 0.05$ and $^{**}P < 0.01$.

Color-deviation Level	Color-gamut Coverages	t	P
0.9 < ΔE < 1.8	95% vs 89%	−0.589	0.561
	95% vs 82%	−1.132	0.267
	95% vs 77%	−0.659	0.515
	95% vs 71%	−1.410	0.169
	89% vs 82%	−0.553	0.585
	89% vs 77%	−0.181	0.858
	89% vs 71%	−1.072	0.293
	82% vs 77%	0.451	0.655
	82% vs 71%	−0.211	0.834
	77% vs 71%	−0.680	0.502

Color-deviation Levels	t	P
95% vs 89%	0.172	0.864
95% vs 82%	−0.421	0.677
95% vs 77%	−0.247	0.807
95% vs 71%	0.041	0.967
89% vs 82%	−0.652	0.520
89% vs 77%	−0.403	0.690
89% vs 71%	−0.115	0.910
82% vs 77%	0.230	0.820
82% vs 71%	0.545	0.590
77% vs 71%	0.390	0.700

Table 4: Comparisons of ΔFVD between the adjacent color-deviation level pairs in multiple color-gamut coverages; t represents Student’s t-test value, and P represents significance probability; $^*P < 0.05$ and $^{**}P < 0.01$.

Color-gamut Coverage	Color-deviation Levels	t	P
95%	1.5 vs 2.3*	2.503	0.018
	2.3 vs 3.3**	4.343	0.001
89%	1.5 vs 2.3**	3.452	0.002
	2.3 vs 3.3**	4.611	0.001
82%	1.5 vs 2.4**	3.452	0.002
	2.4 vs 3.3**	6.413	0.001
77%	1.6 vs 2.4**	3.417	0.002
71%	2.4 vs 3.3**	5.541	0.001
	1.6 vs 2.4**	4.019	0.001
	2.4 vs 3.4**	3.983	0.001
Figure 4: Continued.
Next, the color-recognition task was administered. For this, participants were asked to relax their eyes by looking into the distance for 20 mins. Before the tasks, participants were asked to attach their forehead and chin to the specified location on the instrument and to look at the target on the screen binocularly under natural conditions. FVD data were collected automatically by the instrument. A training trial simulating the complete task content was run for each participant before data collection until the task was well understood. Each participant was asked to identify which color option was in the same color as the reference color box on each page. Each participant was given 20 mins to complete the color-recognition task. During this time, participants also performed the video-watching task. For the video-watching task, participants watched the movie “Angry Birds” (produced by Rovio Mobile and released on May 20th, 2016). The duration of the video-watching task was also 20 mins.

2.4. Human Ocular Measurements. We measured the FVD of each screen user prior to and following the screen-watching task. FVD was measured using an Optical Coherence Tomography Angiography (OCTA) instrument with RS-3000 equipment. The areas of the fovea vascular and avascular zones were automatically calculated for each participant and are shown in Figure 2 with the red and green colors representing the vascular area and the optic-disk area, respectively. We calculated FVD variations (ΔFVD) by subtracting the FVD data following the screen-watching task with the data collected prior to the task.

Each participant was asked to attach his or her forehead and chin to the specified location on the instrument and to look at the target on the screen binocularly under natural conditions. FVD data were collected automatically by the instrument. A training trial simulating the complete task content was run for each participant before data collection until the task was well understood. We also collected the modulation-transfer function (MTF) as a supplementary piece of data. MTF was recorded using the NIDEK OPD Scan III, which collected data automatically. Likewise, all participants were allowed to blink during the measurement to avoid aggravation of ocular fatigue caused by extended interblink intervals. We calculated MTF variations (ΔMTF) by subtracting the final MTF (following the task) with the initial MTF (prior to the task).
To assess visual comfort levels by calculating the visual comfort (VICO) index, we measured the corneal-refractive power (KR), axial length (AL), ciliary accommodation (ACC), and high-order aberrations (HOAs): KR and AL values were measured using the NIDEK AL-Scan automatically. The NIDEK AR-1S instrument was used to collect the ACC automatically. For the HOA measurements, we used the NIDEK OPD Scan III to automatically collect the participants’ data.

3. Results

3.1. CV Comparisons
We measured CVs in the color-deviation level of $0 < \Delta E < 1.8$, $1.8 < \Delta E < 2.7$, and $2.7 < \Delta E < 3.6$, and the results were 76.97%, 77.46%, and 77.15%, respectively (Figure 3). The CVs in the three color-deviation levels presented little differences, and the three corresponding spectrums were similar in their effects on CV. As the three spectrums were obtained by non-oxidative blue (455-475 nm) filtering, the non-oxidative blue light seemed to cause little damage to the retinal cells. Conversely, filtering the necessary blue light might induce color-deviation reduction.

3.2. ΔFVD Responses
We observed significant ΔFVD differences among the study participants (Table 3). Within the same color-deviation level, we did not identify any significant differences in ΔFVD values in different color-gamut coverages, implying that the variations of color-gamut coverage do not induce changes in ΔFVD. In contrast, we observed significant ΔFVD differences in different color-deviation levels (Table 4). In summary, differences in ΔFVD seemed to rely on the color-deviation level rather than the color-gamut coverage.

Color-deviation Level	Color-gamut Coverages	t	P
0.9 $< \Delta E < 1.8$	95% vs 89%	−0.367	0.717
	95% vs 82%	−0.711	0.483
	95% vs 77%**	−3.456	0.002
	95% vs 71%**	−3.269	0.003
	89% vs 82%	−0.317	0.754
	89% vs 77%*	−2.683	0.012
	89% vs 71%*	−2.247	0.033
	82% vs 77%*	−2.766	0.01
	82% vs 71%*	−2.506	0.018
	77% vs 71%	0.268	0.791
1.8 $< \Delta E < 2.7$	95% vs 89%	−1.204	0.238
	95% vs 82%	0.593	0.558
	95% vs 77%	−0.258	0.798
	95% vs 71%	0.162	0.873
	89% vs 82%	1.978	0.058
	89% vs 77%	0.772	0.446
	89% vs 71%	1.264	0.217
	82% vs 77%	−1.431	0.164
	82% vs 71%	−0.548	0.588
	77% vs 71%	0.708	0.458
2.7 $< \Delta E < 3.6$	95% vs 89%	0	1
	95% vs 82%	−0.187	0.853
	95% vs 77%	1.714	0.098
	95% vs 71%*	2.711	0.011
	89% vs 82%	−0.207	0.837
	89% vs 77%	1.791	0.084
	89% vs 71%**	2.823	0.009
	82% vs 77%	1.622	0.116
	82% vs 71%*	2.295	0.029
	77% vs 71%	1.409	0.170

Table 5: Comparing ΔMTF between the adjacent color-gamut coverage pairs in multiple color-deviation levels; t represents Student’s t-test value, and P represents significance probability; $^*P < 0.05$ and $^{**}P < 0.01$.
Figure 5: Continued.
We observed bell-shaped distribution curves for ΔFVD values collected for various color-gamut coverages and color-deviation levels. Although changes in the color-gamut coverage hardly affected the locations of the bell-shaped curves, it caused their deformations. For each color-deviation level, the distribution curves grew more dispersive with increases in color-gamut coverage and shifting toward higher values with a larger color-deviation level. The similar performances observed corresponded with their possible correlation, which was confirmed by correlation analysis using SPSS 20.0 software (Table 7). The correlation was significant for each color deviation and each type of color-gamut coverage. The MTF determines the spatial distribution of photos in photoreceptors, which attach to retinal vessels. The RVA describes blood circulation in retinal vessels. In our study, the ΔFVD-ΔMTF correlation indicated that retinal vessel circulation might vary with photoreceptor-activation distribution.

4. Discussion

4.1. ΔFVD-ΔMTF Correlation. During the screen-watching tasks, we found that the participants’ ocular responses depended on both the color-deviation level and the color-gamut coverage. The ΔFVD and ΔMTF presented similar variation regularities, with their distribution curves deformed to be more dispersive with increases in color-gamut coverage and shifting toward higher values with a larger color-deviation level. The similar performances observed corresponded with their possible correlation, which was confirmed by correlation analysis using SPSS 20.0 software (Table 7). The correlation was significant for each color deviation and each type of color-gamut coverage. The MTF determines the spatial distribution of photos in photoreceptors, which attach to retinal vessels. The RVA describes blood circulation in retinal vessels. In our study, the ΔFVD-ΔMTF correlation indicated that retinal vessel circulation might vary with photoreceptor-activation distribution.

4.2. VICO Mapping. We used the VICO index to determine the effects of each color-deviation and color-gamut coverage on ocular fatigue. With a $\Delta E < 2.7$, increased color-gamut coverage led to a decreased VICO. Furthermore, a color-gamut coverage of 82% NTSC was an inflection point that divided the VICO curve into different-slope parts (Figure 6). With an $\Delta E > 2.7$, however, the VICO index did not change with the color-gamut coverage.

In this study, there were 15 combinations of color-deviation and color-gamut coverage (Table 2). By designating the color-gamut coverage as the horizontal coordinate and the color-deviation level as the vertical coordinate, we constructed the ΔMTF-distribution curves caused by various color-gamut coverages in the range of (a) 0.9 $< E < 1.8$, (b) 1.8 $< E < 2.7$, and (c) 2.7 $< E < 3.6$ and caused by different color-deviation levels in (d) 95%, (e) 89%, (f) 82%, (g) 77%, and (h) 71%.

Figure 5: ΔMTF-distribution curves caused by various color-gamut coverages in the range of (a) 0.9 $< E < 1.8$, (b) 1.8 $< E < 2.7$, and (c) 2.7 $< E < 3.6$ and caused by different color-deviation levels in (d) 95%, (e) 89%, (f) 82%, (g) 77%, and (h) 71%.

Table 6: Comparing ΔFVD between the adjacent color-deviation-level pairs in multiple color-gamut coverages; t represents Student’s t-test value, and P represents significance probability; * $P < 0.05$ and ** $P < 0.01$.

Color-gamut Coverage	Color-deviation Levels	t	P
95%	1.5 vs 2.3**	6.453	0.001
	2.3 vs 3.3**	7.973	0.001
	1.5 vs 2.3**	4.667	0.001
89%	2.3 vs 3.3**	11.829	0.001
	1.5 vs 2.4**	10.029	0.001
82%	2.4 vs 3.3**	6.696	0.001
	1.6 vs 2.4**	8.865	0.001
77%	2.4 vs 3.3**	11.258	0.001
	1.6 vs 2.4**	12.339	0.001
71%	2.4 vs 3.4**	11.333	0.001
and the color deviation as the vertical coordinate, we could graph all 15 combinations in a two-dimensional coordinate system as 15 dots, corresponding to 15 VICO values. Since the color-deviation and color-gamut coverage variations contributed to VICO values continuously, we simulated the VICO value for each dot in the two-dimensional coordinates (with a color-gamut range from 70% to 95% NTSC, and a color-deviation range from 1.5 to 5.5) using the Newton interpolation method (Figure 6). The VICO heat map showed that the color distribution contributed more significantly to VICO than the color-gamut coverage, and also showed that color-deviation modulated color-gamut coverage’s effects on VICO. In the heat map, the yellow color is likely a boundary whose shape highlights the color-gamut coverage at 82% as the inflection point.

5. Conclusion

In this study, we analyzed fundus-vascular responses to color-deviation reduction caused by non-oxidative blue filtering. Variations in FVD were used to indicate fundus-vascular responses. Our results showed that color-gamut coverage variations caused altered dispersions in the distribution curves for ΔFVD and ΔMTF, while color-deviation changes induced distribution’s curve shifts. We also discovered that ocular comfort relied on color deviation more than color-gamut coverage by VICO heat map, since the color transition was more rapid along the color-deviation-coordinate axis. Specifically, a color deviation of 2.7 seemed to be a VICO heat map boundary. Increased color-gamut coverage caused a reduction in VICO when ΔE < 2.7 and no longer induced VICO variation when ΔE > 2.7. As ΔMTF and ΔFVD were significantly correlated, we inferred that retinal-photon distribution determined the fundus-vascular activities in certain paths. Our findings showed that non-oxidative blue light did not damage retina; instead, it was necessary for display to decrease the reduction of fundus-vascular function. In display technology research and development, the role of non-oxidative blue wavelength is indispensable to limit the color-deviation increase and benefit visual function.

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Authors’ Contributions

Jianqi Cai contributed to the project administration, funding acquisition, supervision, validation, and resources. Wentao Hao contributed to the writing-review and editing and formal analysis. Shanshan Zeng contributed to the methodology and data curation. Junkai Li contributed to the methodology and data curation. Ya Guo contributed to the methodology and data curation. Kai Tan contributed to the supervision, validation, and resources. Yitao Huang contributed to the supervision, validation, and resources. Yungyin Kang contributed to the supervision, validation, and resources. Yongyin Kang contributed to the supervision, validation, and resources. Thebano Santos contributed to the writing-review and editing and formal analysis. Cheng Qian contributed to the writing-review and editing and formal analysis. Aiqin Luo contributed to the writing-review and editing and formal analysis.

Acknowledgments

The research was funded by the Research and Applications of Photo-biological Effects of Yellow Light on Human Body (512022Y-9447), the Running Insurance Program of Visual Health and Safety Protection Laboratory in 2022 (512022Z-9499), the Research and Development of the Optic-Fiber System for Human-Ocular Requirement (512022Z-9240), the China Association for Science and Technology (CAST) Program of International Collaboration Platform for Science and Technology Organizations in Belt and Road Countries (2021ZZGJ050616), the Research of Ocular Biological Characteristics based on Proteomics (512020Z-7422), and the Research of Thermal Damage and Ocular Biological Characteristics based on Proteomics and Road Countries (2021ZZGJB050616), the Research of Platform for Science and Technology Organizations in Belt and Road Countries (2021ZZGJB050616), the Research and Development of the Health and Safety Protection Laboratory in 2022 (512022Y-9447), the Running Insurance Program of Visual Comfort as a Function of Lightness Distribution (512020Y-4497).

References

[1] J. Q. Core, M. Pistilli, E. Daniel et al., “Predominantly persistent subretinal fluid in the comparison of age-related macular degeneration treatments trials,” Ophthalmology Retina, vol. 5, no. 10, pp. 962–974, 2021.
[2] X. Li, H. Li, J. Cheng et al., “Causal associations of thyroid function and age-related macular degeneration: a two-sample Mendelian randomization study,” American Journal of Ophthalmology, vol. 239, pp. 108–114, 2022.
[3] L. Fang and H. Qiao, “Diabetic retinopathy classification using a novel DAG network based on multi-feature of fundus images,” Biomedical Signal Processing and Control, vol. 77, article 103810, 2022.
[4] J. M. Coney and A. W. Scott, “Racial disparities in the screening and treatment of diabetic retinopathy,” Journal of the National Medical Association, vol. 114, no. 2, pp. 171–181, 2022.
[5] R. N. G. Vianna, G. Squier, R. Turquetti, O. F. M. Brasil, and M. N. Burnier Jr., “Intravitreal pegaptanib reduces fluorescein leakage in idiopathic paravertebral telangiectasis,” Canadian Journal of Ophthalmology. Journal Canadien D’ophthalmologie, vol. 43, no. 4, pp. 492–493, 2008.
[6] R. Windisch and V. Kozousek, “Intravitreal bevacizumab compared with photodynamic therapy with verteporfin for group 2a paravertebral telangiectasis,” Canadian Journal of Ophthalmology. Journal Canadien D’ophthalmologie, vol. 43, no. 4, pp. 489–490, 2008.
[7] D. R. Pur, L. L. Catherine Danielle Bursztyn, and Y. Iordanous, “Branch retinal vein occlusion in a healthy young man following mRNA COVID-19 vaccination,” American Journal of Ophthalmology, vol. 26, article 101445, 2022.
[8] A. Naranjo, N. Rayess, E. Ryan, M. Iv, and V. B. Mahajan, “Retinal artery and vein occlusion in calciphylaxis,” American Journal of Ophthalmology, vol. 26, article 101433, 2022.
[9] C. Zhao, D. Wei, X. Shi, and M. Zhao, “Unilateral isolated optic nerve infiltration combined with central retina artery occlusion in a patient with acute myeloid leukemia,” American Journal of Ophthalmology, vol. 26, article 101492, 2022.
[10] S. Hwang, S. W. Kang, K. J. Choi et al., “High-density lipoprotein cholesterol and the risk of future retinal artery occlusion development: a nationwide cohort study,” American Journal of Ophthalmology, vol. 235, pp. 188–196, 2022.
[11] T. Tran, M. Okada, J. Goh, T. Gin, and C. A. Harper, “Choroidal effusion as a manifestation of central serous choriorioretinopathy: a case report,” American Journal of Ophthalmology, vol. 25, article 101311, 2022.
[12] S. Sawaguchi, N. Terao, I. Managaka et al., “Scleral thickness in steroid-induced central serous choriorioretinopathy,” Ophthalmology Science, vol. 2, no. 2, article 100124, 2022.
[13] C. S. Tan, L. W. Lim, and P. Margaron, “Evolution of polypoidal lesions after treatment of polypoidal choroidal vasculopathy,” Ophthalmology Science, vol. 2, no. 1, article 100082, 2022.
[14] B. J. Fenner, K. Y. C. Teo, Y. C. Tham, U. Chakravarthy, and C. M. G. Cheung, “Prevalence of polypoidal choroidal vasculopathy using non-indocyanine green angiography-based criteria,” Retina, vol. 6, no. 2, pp. 179–181, 2022.
[15] H. Yu, T. Akita, T. Koga, and N. Sano, “Effect of character contrast ratio of tablet PC and ambient device luminance ratio on readability in low ambient illuminance,” Displays, vol. 52, pp. 46–54, 2018.
[16] H. Yu and T. Akita, “Influence of ambient-tablet PC luminance ratio on legibility and visual fatigue during long-term reading in low lighting environment,” Displays, vol. 62, article 101943, 2020.
[17] L. C. Ou, P. L. Sun, H. P. Huang, and M. Ronnier Luo, “Visual comfort as a function of lightness difference between text and background: a cross-age study using an LCD and a tablet computer,” Color Research and Application, vol. 40, no. 2, pp. 125–134, 2015.
[18] L. L. A. Price, L. Udovičič, T. Behrens et al., “Linking the nonvisual effects of light exposure with occupational health,” International Journal of Epidemiology, vol. 48, no. 5, pp. 1393–1397, 2019.
[19] J. C. G. Ortega, B. R. S. Figueiredo, W. J. da Graça, A. A. Agostinho, and L. M. Bini, “Negative effect of turbidity on prey capture for both visual and non-visual aquatic predators,” The...
[20] G. A. Manson, J. Blouin, A. S. Kumawat, V. A. Crainic, and L. Tremblay, "Rapid online corrections for upper limb reaches to perturbed somatosensory targets: evidence for non-visual sensorimotor transformation processes," *Experimental Brain Research*, vol. 237, no. 3, pp. 839–853, 2019.

[21] A. C. Hexley, A. Özgür Yöntem, M. Spitschan, H. E. Smithson, and R. Mantiuk, "Demonstrating a multi-primary high dynamic range display system for vision experiments," *Journal of the Optical Society of America. A*, vol. 37, no. 4, pp. A271–A284, 2020.

[22] K. K. Lee, J. W. Kim, J. H. Ryu, and J. O. Kim, "Ambient light robust gamut mapping for optical see-through displays," *Optics Express*, vol. 28, no. 10, pp. 15392–15406, 2020.

[23] Q. Xu, B. Zhao, G. Cui, and M. R. Luo, "Testing uniform colour spaces using colour differences of a wide colour gamut," *Optics Express*, vol. 29, no. 5, pp. 7778–7793, 2021.

[24] H. Song, H. Li, and X. Liu, "Studies on different primaries for a nearly ultimate gamut in a laser display," *Optics Express*, vol. 26, no. 18, pp. 23436–23448, 2018.

[25] H. W. Chen, R. D. Zhu, J. He et al., "Going beyond the limit of an LCD’s color gamut," *Light: Science & Applications*, vol. 6, article e17043, 2017.