Gene Expression Changes in the Jejunum of Rats during the Transient Suckling-Weaning Period

Kazuki MOCHIZUKI, Satoko YORITA and Toshinao GODA*

Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences and Global COE, The University of Shizuoka, 52–1 Yada, Shizuoka, Shizuoka 422–8526, Japan
(Received September 3, 2008)

Summary It is well-known that the small intestine of rodents rapidly undergoes differentiation and maturation during the transient suckling-weaning period from postnatal days 13 to 27. In the present study, we examined the gene expression changes in the jejunum of rats during the transient suckling-weaning period by microarray analysis. In the microarray data, we found that the expressions of many genes related to digestion/absorption/excretion of nutrients/ions, such as members of the solute carrier (Slc) family and ATP-binding cassette (Abc) subfamily, were rapidly induced during this period. Furthermore, some transcriptional factors/cofactors (Thrsp, Ppurgc1a, Klf15 and Vdr), which are presumably important for the induction of intestinal gene expression after weaning, were rapidly induced during this period. In contrast, genes related to transport of nutrients, such as folate, zinc, fat and phosphate, which are important for early development, were highly expressed in the suckling period and then gradually decreased during weaning. These results indicate that the jejunum matures during the suckling-weaning period accompanied by changes in the expression of many genes related to digestion/absorption/excretion and some genes for transcriptional factors/cofactors.

Key Words transient suckling-weaning period, jejunum, solute carrier family, ATP-binding cassette subfamily, transcriptional factors/cofactors

The morphology of the small intestine in rodents changes dramatically during the first 2–3 wk after birth as they are gradually weaned. During this period, the diet composition changes from one with less carbohydrate (milk) to one rich in carbohydrate (solid food) (1). Several studies have already shown that the expressions of genes related to carbohydrate digestion/absorption, such as disaccharidases [sucrase-isomaltase (Sl) and trehalase (Treh)], which are involved in the digestion of starch/sucrose or trehalose into monosaccharides, and hexose transporters [SGLT1 (Slc5a1), GLUT5 (Slc2a5) and GLUT2 (Slc2a2)], which are involved in monosaccharide absorption from the lumen, are elevated between 2 and 3 wk after birth in rodents (2–5). In addition, we previously reported that the gene expressions of liver-type fatty acid-binding protein [L-FABP (Fabp1)] and cellular retinol-binding protein type II [CRBPII (Rbp2)], which are involved in transporting fatty acids and vitamin A, respectively, from the lumen to enterocytes, as well as a β-oxidation rate-controlling gene [acyl-CoA oxidase (Acox1)], were highly expressed in the transient suckling-weaning period, and declined after weaning (6, 7). Furthermore, the gene expression of peroxisome proliferator-activated receptor α [PPARα (Ppara)], a transcriptional factor for these genes, was associated with these gene expression changes (6).

These changes during the transient suckling-weaning period may be regulated by the nutritional changes as well as hormones, such as thyroid hormone and glucocorticoid hormone, because such hormones are induced in serum during this period (1). It is most likely that the expressions of many genes related to digestion/absorption, including the genes described above, are changed during this period to allow adaptation to the dietary transition from milk to solid food as well as the development of pups into adults.

Based on these observations, several studies have searched for genes upregulated and downregulated by nutrient factors and hormones in the postnatal small intestine of rodents using microarray analyses. Agbe- maile et al. (8) examined glucocorticoid hormone-responsive genes during the suckling period by microarray analysis. Cui et al. (9, 10) showed that fructose-responsive genes, such as glucose-6-phosphatase, fructose-1, 6-bisphosphatase and the PI3 kinase cascade, were upregulated by fructose perfusion in weaning rats. However, these observations only focused on glucocorticoid hormone- or fructose-responsive genes, and the detailed changes in gene expression in the rat small intestine during the transient suckling-weaning period remain unknown.

In the present study, we examined the jejunal gene expression changes between postnatal day 13 (start of the weaning period) and day 27 (end of the weaning period) by microarray analysis. Our results suggest that

*To whom correspondence should be addressed.
E-mail: gouda@u-shizuoka-ken.ac.jp
the small intestine matures during the transient suckling-weaning period with changes in the expressions of many genes related to digestion/absorption/excretion and some genes for transcriptional factors/cofactors.

MATERIALS AND METHODS

Animals. Suckling Sprague-Dawley rats (Japan SLC, Inc., Hamamatsu, Japan) were kept with their mothers, and both mothers and pups were given free access to a standard laboratory chow diet (MF; Oriental Yeast Co., Ltd., Tokyo, Japan) throughout the experimental period. The rat pups were killed by decapitation between 15:00 and 16:00 at 5, 13, 20, 27 and 42 d of age. The experimental period lasted from 6 animals at postnatal day 13 or 27 were individually converted to cRNA and labeled with biotin using a two-cycle labeling kit (Affymetrix, Tokyo, Japan) according to the manufacturer’s instructions. Aliquots (10 μg) of biotin-labeled cRNA from rats at postnatal days 13 and 27 were separately hybridized to Rat 2.0 Microarrays (Affymetrix) according to the manufacturer’s protocol. After washing steps, the microarray plates were analyzed with a GeneChip Scanner 3000 (Affymetrix). Data analysis was performed using the GeneChip Operating System (GCOS; Affymetrix) and Excel (Microsoft). Variable spots detected by the algorithm in GCOS in both plates were defined as non-expressed genes and removed. Normalization of biotin-labeled signals was carried out by the global median

Gene name	Sequence
Solute carrier family 13, member 1	5′-CGTGACCTTGTGCAGTCTCAT-3′
Cubulin (intrinsic factor-cobalamin receptor)	5′-GAGAAACGAGACTGACAACACCA-3′
Aquaporin 3	5′-CGCTGAGAAACACACTGAGA-3′
Solute carrier family 28 (sodium-coupled nucleoside transporter), member 1	5′-GAGTGGCTTGAGCAAGAAGAG-3′
Solute carrier family 16 (monocarboxylic acid transporters), member 3	5′-AGTGGATGGCAGAGGGCA-3′
ATP-binding cassette, sub-family G (WHITE), member 8	5′-ATTTTGTCGATCGAGCTGCTAG-3′
ATP-binding cassette, sub-family G (WHITE), member 5	5′-ATGTGTCGATCTGAGCTGCTT-3′
Trehalase (brush-border membrane glycoprotein)	5′-GAATGACACTAGGAGCCAAAAG-3′
Thyroid hormone-responsive protein	5′-GAGAATGAGGCTGCTGAAACA-3′
Peroxisome proliferative-activated receptor, gamma, coactivator 1	5′-ATTCCAAGCGATGCTCTCTGAG-3′
Kruppel-like factor 15	5′-CCAACTGTGAACTGCTCCCA-3′
Vitamin D receptor	5′-ATGTGTCGATCTGAGCTGCTT-3′
Solute carrier family 27 (fatty acid transporter), member 2	5′-ATCGGTTAGGAGCTGCTGAA-3′
Folate receptor 1 (adult)	5′-AACTACAACTCGTGCAGGAA-3′
Solute carrier family 30 (zinc transporter), member 2	5′-CTCCTTTTCAGGATGGAGA-3′
Solute carrier family 34 (sodium phosphate), member 3	5′-GAGGACCATTATAGAGTCTAC-3′
Potassium voltage-gated channel, Isk-related subfamily, member 1	5′-CTGCTGCAGGAAATGAGAAA-3′
18 S rRNA	5′-GAAACAGGACTGACCAACCA-3′
normalization. Data were represented by base 2 logarithms. Biological reproducibility was confirmed in 4–8 rats by real-time RT-PCR, as indicated in “Results.”

Quantitative reverse transcription-polymerase chain reaction (RT-PCR). Total RNA samples (1.5 μg) were converted into cDNA by RT using Super Script™ III reverse transcriptase (Invitrogen, Tokyo, Japan) according to the manufacturer’s instructions. To quantitatively estimate the mRNA levels of each gene, PCR amplification was performed using a Light-Cycler system (Roche Molecular Biochemicals, Tokyo, Japan). Real-time PCR amplifications were carried out in a total volume of 20 μL containing 400 nM each of gene-specific primers, cDNA and SYBR Premix Ex Taq (Takara, Shiga, Japan). The amplification conditions were as follows: denaturation at 94°C for 15 s, and annealing and extension at 60°C for 25 s. The cycle threshold (CT)-values of each gene and 18S rRNA detected by real-time RT-PCR were converted to signal intensities by the delta-delta method (12), which calculates the difference in one CT-value as a two-fold difference between the signal for each gene and the signal for a normalization gene (18S rRNA). The formula used was: $2^{\Delta CT\text{gene} - \Delta CT\text{18S rRNA}}$. The sequences of the PCR primer pairs and the fragment sizes are shown in Table 1.

Statistical analysis. Results were expressed as means±SE. The significance of differences between groups was determined by Dunn’s multiple range test based on the nonparametric Kruskal-Wallis test. Values of $p<0.05$ were considered to indicate statistical significance.

RESULTS

To examine whether jejunal gene expression is altered during the transient suckling-weaning period, we performed microarray analyses using total RNA extracted from the jejunum of rats at postnatal day 13 (start of the weaning period) and day 27 (end of the weaning period). Genes with signal ratios higher than 3 or lower than −3 by log2 between days 13 and 27 were regarded as significant changes and subjected to further analysis. Among the 21,167 gene signals detected, 131 genes were significantly upregulated (0.62%) and 185 genes were significantly downregulated (0.87%) in the jejunum of rats at postnatal day 27 compared with day 13. The upregulated and downregulated genes in the jejunum of rats at day 27 were classified into 7 groups based on their functions, i.e., cell cycle, digestion/absorption/excretion, energy/metabolism, signal transduction, structural protein, transcription and others/unknown (Tables 2–4). Many genes related to digestion/absorption/excretion (10.7%) and energy/metabolism (22.1%) were upregulated at day 27, whereas genes related to energy/metabolism (7.6%) were downregulated.

Among the upregulated and downregulated genes, we focused on the groups of genes related to digestion/absorption/excretion and transcription. The upregulated genes included many transporters for sulfate [e.g., solute carrier family 13, member 1 (Slc13a1)], nucleosides [e.g., solute carrier family 28, member 1 (Slc28a1)], monocarboxylic acid [e.g., solute carrier family 16, member 3 (Slc16a3)], and lipids and sterols [e.g., ATP-binding cassette, sub-family G, member 8 (Abcg8), ATP-binding cassette, sub-family G, member 5 (Abcg5)], and genes concerned with carbohydrate digestion such as sucrase-isomaltase (Si) and trehalase (Treh). Several transcriptional factors, such as thyroid hormone-responsive protein (Thrsp), peroxisome proliferative-activated receptor, gamma coactivator 1α (Ppara1a), Kruppel-like factor 15 (Klf15) and vitamin D receptor (Vdr), which are presumably important for intestinal maturation and expression of genes related to digestion/absorption/excretion were also detected. Among the downregulated genes, we found transporters for fatty acids [e.g., solute carrier family 27, member 2 (Slc27a2)], zinc [e.g., solute carrier family 30, member 2 (Slc30a2)], phosphate [e.g., solute carrier family 34, member 2 (Slc34a2)] and folate [e.g., folate receptor 1 (Folr1)].

We performed real-time RT-PCR for selected genes in 4–8 animals of each group to confirm the microarray data. We tested 8 upregulated genes for digestion/absorption [Slc13a1, Treh, cubilin (Cubn), a receptor for intrinsic factor-vitamin B12], aquaporin (Aqp3), Slc28a1, Slc16a3, Abcg8 and Abcg5 (Fig. 1) and 4 upregulated genes for transcriptional factors/cofactors [Thrsp, Ppara1a, Klf15 and Vdr] (Fig. 2). We confirmed that the mRNA levels of all these genes except Slc16a3 were significantly elevated at postnatal day 27 compared with days 5 and 13 ($p<0.05$). The mRNA level of Slc16a3 was significantly higher at day 42 than at days 5 and 13. We also confirmed by real-time RT-PCR that the gene expressions of alkaline phosphatase 3, intestine (akp3) categorized under the energy/metabolism group and secretory carrier membrane protein 5 (Scamp5) categorized under the structural protein group were upregulated (data not shown).

Next, we tested 5 downregulated genes related to digestion/absorption/excretion [solute carrier family 34, member 3 (Slc34a3), potassium voltage-gated channel, member 1 (Kcnj1), solute carrier family 27 member 2 (Slc27a2), folate receptor 1 (Folr1) and solute carrier family 30, member 2 (Slc30a2)] by quantitative RT-PCR (Fig. 3). The mRNA levels of all these genes

Functional category	Number of upregulated genes	Number of downregulated genes	
Cell cycle-related	1 (0.76%)	2 (1.1%)	
Digestion/absorption/excretion	14 (10.7%)	6 (3.2%)	
Energy/metabolism	29 (22.1%)	14 (7.6%)	
Signal transduction	6 (4.6%)	8 (4.3%)	
Transcription	4 (3.1%)	4 (2.2%)	
Structural protein	2 (1.5%)	3 (1.6%)	
Others/unknown	76 (58.0%)	148 (80%)	
Total	131	185	
Unigene ID	Symbol	Description	Log2 ratio
------------	--------	-------------	------------
Rn.125257	Rbcb2	Regulator of chromosome condensation and BTB domain-containing protein 2	3.12
Rn.9699	Slc13a1	Solute carrier family 13, member 1	8.68
Rn.163015	Treh	Trehalase	6.94
Rn.3236	Cubn	Cubilin	5.64
Rn.161892	Abcg8	ATP-binding cassette, sub-family G, member 8	3.09
Rn.91079	Phlpb	Phospholipase B	3.03
Rn.74258	Abcg5	ATP-binding cassette, sub-family G, member 5	3.00
Rn.31786	Rdh7	Retinol dehydrogenase 7	10.27
Rn.24945	Ugt2b3	UDP glycosyltransferase 2 family, member 3	9.40
Rn.5722	Cyp4f1	Cytochrome P450, family 4F, polypeptide 2	9.13
Rn.54025	Abo	ABO blood group	8.86
Rn.33492	Cyp4a3	Cytochrome P450, subfamily 4A, polypeptide 11	6.40
Rn.51389	Car4	Carbonic anhydrase 4	5.96
Rn.4.2073	Tmem45b	Transmembrane protein 45b	5.87
Rn.10352	Cyp1a1	Cytochrome P450, family 1, subfamily a, polypeptide 1	5.86
Rn.1647	Ca3	Carbonic anhydrase 3	5.56
Rn.19324	Gba3_predicted	Glucosidase, beta, acid 3 (predicted)	5.55
Rn.14.2800	Cmah	Cytidine monophospho-N-acetylneuraminic acid hydroxylase	5.40
Rn.86561	Cyp4b1	Cytochrome P450, family 4B, subfamily b, polypeptide 1	5.08
Rn.91353	Cyp2b2	Cytochrome P450, family 2, subfamily b, polypeptide 15	4.93
Rn.92401	Cyp4a1	Cytochrome P450, family 4A, subfamily a, polypeptide 10	4.87
Rn.23676	Akr1b8	Aldo-keto reductase family 1, subfamily B8	4.61
Rn.6.687	Cda_predicted	Cytidine deaminase (predicted)	4.37
Rn.7.4044	Aldh1a7	Aldehyde dehydrogenase family 1, subfamily A4	4.17
Rn.1023	Scd1	Stearoyl-coenzyme A desaturase 1	4.07
Rn.14.2800	Cmah	Cytidine monophospho-N-acetylneuraminic acid hydroxylase	3.93
Rn.101932	Upp1	Uridine phosphorylase 1	3.81
Rn.13.145	Hmnt	Histamine N-methyltransferase	3.76
Rn.22.857	Chdh	Choline dehydrogenase	3.71
Rn.10.678	Fut2	Fucosyltransferase 2	3.54
Rn.5.5542	Duoax2	Dual oxidase 2	3.49
Rn.12.593	Gmps	Guanine monophosphate synthetase	3.47
Rn.10.383	Oxa1	2`,5`-oligoadenylate synthetase 1, 40/44 kDa	3.34
Rn.60.51	Dpep1	Dipetidylpeptidase 1	3.29
Rn.16.4424	Pups2_predicted	3 `-Phosphoadenosine 5 `-phosphosulfate synthase 2	3.20
Rn.9.8159	Adh4	Alcohol dehydrogenase 4, pi polypeptide	3.02

Cell cycle

Digestion
 absorption
 excretion

Digestion
 absorption
 excretion

Energy
 metabolism

Signal transduction

Transcription

Structural protein

Table 3. Upregulated genes in small intestine during the transient suckling-weaning period.
Jejunum Gene Expression Changes in Postnatal Rats 143

were significantly decreased in the jejunum of rats at postnatal day 27 compared with day 13 ($p<0.05$). We also confirmed by real-time RT-PCR that the gene expressions of claudin 14 (Cldn14), villin-like (Vill) and cadherin 10 (Cdh10) categorized under the structural protein group were downregulated (data not shown).

DISCUSSION

In the present study, we performed microarray analyses to identify jejunal genes that exhibited changes in expression during the transient suckling-weaning period. Interestingly, many genes related to digestion/absorption/excretion (10.7%) and energy/metabolism (22.1%) were upregulated at postnatal day 27 compared with day 13. In addition, the expressions of many genes related to energy/metabolism (7.6%) were downregulated. During this period, the diet composition changes from one with less carbohydrate (milk) to one rich in carbohydrate (solid food). It seems as though the expression changes of many genes related to digestion/absorption/excretion and energy/metabolism allow for adaptation to the nutritional changes occurring during this period.

In this study, we focused on genes related to diges-
tion/absorption/excretion because changes in the expressions of these genes are important for functions of the intestine. We found that the gene expressions of Si and Treh, belonging to the disaccharidase family, increased rapidly from postnatal days 13 to 27. These results are consistent with previous reports (2, 3, 5). In addition, several studies have shown that the expressions of hexose transporter genes are induced during this transient period (4, 13). Furthermore, we found that the expression of akp3, one of the subtypes of intestinal alkaline phosphatase, increased rapidly during the transient suckling-weaning period. It has already been reported that the gene expression of another type of intestinal alkaline phosphatase, alpi, an intestinal differentiation marker, increases rapidly in the rat jejunum during the transient suckling-weaning period (14). Taken together, these results indicate that the expressions of genes related to disaccharidases and hexose transporters increase during the transient suckling-weaning period accompanied by increased expressions of intestinal differentiation markers. Interestingly, our microarray analyses revealed that the expressions of many genes belonging to the solute carrier family, which are related to absorption of nutrients/ions, were higher at the end of the weaning period (postnatal day 27) than at the start of the weaning period (day 13). Real-time RT-PCR analyses showed that Slc13a1, a transporter for sulfate, which has important roles in growth and development as a substrate for bone and cartilage (15, 16), increased rapidly. Slc28a1, a transporter for nucleosides such as adenosine and uridine...
The heterodimer of Abcg5 and Abcg8 promotes the efflux of cholesterol and plant sterols from enterocytes back into the intestinal lumen for excretion (19). The reason why the expressions of Abcg5 and Abcg8 are induced during the transient suckling-weeping period may involve the excretion of cholesterol and plant sterols largely flowing from solid food in the small intestine after weaning. Cubn, a receptor for intrinsic factor-vitamin B12 complexes (20), and apg3, a water channel protein that facilitates the transport of nonionic small solutes such as urea and glycerol (21), were also elevated. It should be noted that vitamin B12 is largely absorbed from the ileum (20). Therefore, it is necessary to investigate cubn gene expression in the ileum during the postnatal period. Taking all these results together, the expressions of many genes related to digestion/absorption/excretion of nutrients/ions, which are presumably important for growth after weaning, were increased during the transient suckling-weeping period.

To seek evidence for the factors that regulate the induction of these gene expressions during the transient suckling-weeping period in the small intestine, we focused on upregulated genes related to transcription. We found that the expressions of 4 such genes [Thrsp, Ppargc1a, Klf15 and Vdr] were upregulated during the transient suckling-weeping period. Thrsp, which is normally referred to as Spot 14, was originally identified in liver and adipose tissues. It is thought that Thrsp may regulate the expressions of genes related to fatty acid synthesis in liver and adipose tissues because the expression of Thrsp in these tissues is closely associated with fatty acid synthesis and carbohydrate inflow (22). Several recent studies have revealed that THRSR acts as a coactivator by interacting with nuclear transcriptional factors such as thyroid hormone receptor (23, 24), chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1) (25) and the p53 coactivator ZAC1 (24). Another study supports the notion that THRSR acts as a coactivator of transcription because it promoted cell growth in breast cancer cell lines (26). In addition, we found that expression of Ppargc1a was increased during the transient suckling-weeping period. PPARGC1A regulates genes involved in energy metabolism as a transcriptional coactivator that interacts with many nuclear transcriptional factors, including PPARγ, nuclear respiratory factors (NRFs), cAMP response element-binding protein (CREB), hepatocyte nuclear factor 4 (HNF-4) and glucocorticoid receptor (GR) (27, 28). It is known that Slc2a5, one of the upregulated genes during the transient suckling-weeping period, is induced by cAMP and CREB is activated by cAMP (29). In addition, HNF-4 enhances the expression of intestinal genes, such as apolipoprotein A-IV (30) and guanylyl cyclase (31), although these genes are not listed among the upregulated/downregulated genes. It is reported not only that glucocorticoid hormone enhanced intestinal genes such as Slc2a5 and Treh (5, 13, 32), but also that GR directly regulated Slc2a5 expression (13, 33). PPARGC1A may enhance intestinal gene expressions by activating transcriptional factors such as CREB, HNF-4 and GR. KLF15, listed among the upregulated genes is a transcriptional factor that regulates differentiation and genes related to insulin sensitivity, such as glucose transporter (GLUT) 4, in adipocytes (34, 35) and gluconeogenesis by inducing phosphoenolpyruvate carboxykinase (PEPCK) gene expression in the liver (36, 37). Because these factors are categorized under the coactivator group (THRSR and PPARGC1A) and a transcriptional factor (KLF15) related to energy metabolism, and many genes related to digestion/absorption/excretion and transcription are presumably required for adapting to nutritional changes during the transient suckling-weeping period, the inductions of these gene expressions during this period may enhance the intestinal expression of genes categorized as upregulated genes in this study. In addition, we found that vitamin D receptor (Vdr) was induced during this period. Previous studies have shown that VDR regulates calcium absorption by regulating related genes such as calcium transporter 1 and calbindin-D9K in the small intestine (38–40). Our present results support the notion proposed in a previous study using Vdr null mice (41) that vitamin D is important for development after weaning. Although these genes such as calcium transporter 1 and calbindin-D9K were not listed among the upregulated genes, it was reported that these gene expressions were induced during the transient suckling-weeping period in the mouse small intestine (42). Furthermore, we detected upregulation of Slc13a1, a transporter for sulfate that plays important roles in growth and development as a substrate for bone and cartilage (15, 16), although it is unknown whether its expression is regulated by VDR. Further studies are required to investigate whether the induction of these gene expressions is regulated by VDR. It should be noted that the expressions of Ppargc1a, Klf15 and Vdr gradually increased from day 13 to day 42. The period in which the increases began corresponds to the timing when serum thyroid hormone and glucocorticoid hormones increase rapidly. The inductions of Ppargc1a, Klf15 and Vdr may be affected by these hormones. Regarding Thrsp, upregulation by Thrsp during postnatal development is limited to the period between day 20 and day 42. Thus, THRSR is not concerned with initial induction of genes in upregulated genes listed from day 13 to day 20. Considering that this period corresponds to the timing when the amount of carbohydrate inflow into the small intestine increases dramatically and that the expression of Thrsp is associated with inflow of carbohydrates in the liver (43), expression of Thrsp in the small intestine may be induced by carbohydrate flow and involved in enhancing gene expressions by dietary carbohydrates after day 20. It is necessary to further investigate whether these
transcriptional coactivators/factors regulate jejunal induction of gene expressions during the transient suckling-weaning period.

Finally, we focused on downregulated genes categorized under the digestion/absorption group in the jejunum during the transient suckling-weaning period. We found that an isozyme belonging to the long-chain fatty-acid-coenzyme A ligase family, Slc27a2 (44), was among the downregulated genes. Slc27a2 plays a key role in β-oxidation (44). Higher expression of Slc27a2 during the suckling period in the jejunum may be important for energy generation from fat because milk contains large amounts of fat and our previous studies showed that the gene expressions of rate-controlling enzymes of β-oxidation, such as acyl-CoA oxidase, are highly expressed during the suckling-weaning period (6, 7). We also detected the zinc transporter Slc30a2 (45) among the downregulated genes. Zinc is an important nutrient for mammals, particularly during the suckling period (46). Our data support this notion because Slc 30a2 was highly expressed during the suckling period. The sodium phosphate transporter Slc34a3 (47) and folate receptor 1 (Folr1) (48) found among the downregulated genes at postnatal day 27 are reportedly important for development/cell growth, although their intestinal functions during the suckling-weaning period are unclear. These results indicate that several nutrient transporters, which are reported to be important for early development, may be important for nutrient transport in suckling rats. Although it remains unknown which transcriptional factors regulate gene expressions listed among the downregulated genes during the suckling period, we detected transcriptional factors such as Tfec, Ncor1, Shox2 and Cudsp1 among the downregulated genes. It is necessary in further studies to examine whether these transcriptional factors regulate the genes downregulated during the suckling-weaning period. Our recent studies indicated that the expressions of genes related to dietary fat absorption and β-oxidation in the rat small intestine during suckling are enhanced by dietary fat in milk through activation of the nuclear receptor PPARα, which directly binds fatty acids as ligands (6, 7). Another recent study revealed that Slc27a2 in the mouse small intestine is induced by PPARα (49). Thus, PPARα is one of the transcriptional factors that enhance gene expression in the rat small intestine during the suckling period.

Overall, we have demonstrated that the expressions of many genes, particularly those related to digestion/absorption/excretion and transcription, are upregulated during the transient suckling-weaning period. These expression changes during the transient suckling-weaning period are associated with small intestinal morphological changes as well as the change in diet from milk to solid food. Therefore, the changes may be due to stimulation for intestinal differentiation/maturation as well as stimulation by nutrients. Indeed, it was reported that endogenous stimulation by thyroid hormones and glucocorticoid hormones in suckling rats induces intestinal maturation (50). Furthermore, it is known that glucocorticoid hormones (Sl, Slc2a5 and Treh) and thyroid hormones (Si, Slc2a5 and Treh) enhance intestinal gene expressions during the transient suckling-weaning period (4, 5, 13, 32). In addition, the expressions of these genes are known to be upregulated by dietary carbohydrate (9, 10, 51, 52). Therefore, the changes in gene expression between days 13 and 27 detected in our microarray analysis may be regulated by these hormones and dietary factors.

In conclusion, the results of the present study suggest that the expressions of genes related to digestion/absorption and transcription in the small intestine are changed during the transient suckling-weaning period. The issues of which nutritional/hormonal factors regulate these changes in gene expression during this period remain to be clarified.

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (18590220, 18790171), and grants from the Uehara Memorial Foundation, Global COE Program, the Center of Excellence for Innovation in Human Health Sciences, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

1) Koldovsky O. 1985. Response of the gastrointestinal tract to premature weaning in experimental animals. *Pediatrics* 75: 199–206.
2) Fukushima A, Goda T, Motohashi Y, Sakuma K. 2004. The specific expression patterns of lactase, sucrase and calbindin-D_{9k} in weaning rats are regulated at the transcriptional level. *J Nutr Sci Vitaminol* 50: 265–271.
3) Krasinski SD, Estrada G, Yeh KY, Yeh M, Traber PG, Rings EH, Buller HA, Verhave M, Montgomery RK, Grand RJ. 1994. Transcriptional regulation of intestinal hydroxylase biosynthesis during postnatal development in rats. *Am J Physiol* 267: G584–594.
4) Mochizuki K, Yagi E, Sakaguchi N, Mochizuki H, Takabe S, Kuranuki S, Suzuki T, Shimada M, Goda T. 2007. The critical period for thyroid hormone responsiveness through thyroid hormone receptor isoform α in the postnatal small intestine. *Biochim Biophys Acta* 1770: 609–616.
5) Gartner H, Shukla P, Markesich DC, Solomon NS, Oesterreicher TJ, Henning SJ. 2002. Developmental expression of trehalase: Role of transcriptional activation. *Biochim Biophys Acta* 1574: 329–336.
6) Mochizuki K, Mochimuki H, Kawai H, Ogura Y, Shimada M, Takase S, Goda T. 2007. Possible role of fatty acids in milk as the regulator of the expression of cytosolic binding proteins for fatty acids and vitamin A through PPARα in developing rats. *J Nutr Sci Vitaminol* 53: 515–521.
7) Mochizuki K, Suruga K, Yagi E, Takase S, Goda T. 2001. The expression of PPAR-associated genes is modulated through postnatal development of PPAR subtypes in the small intestine. *Biochim Biophys Acta* 1531: 68–76.
8) Agbemame BM, Oesterreicher TJ, Shaw CA, Henning SJ. 2005. Immediate early genes of glucocorticoid action on the developing intestine. *Am J Physiol Gastrointest*
Liver Physiol 288: G897–906.

9) Cui XL, Schlesier AM, Fisher EL, Cerqueira C, Ferraris RP. 2005. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am J Physiol Gastrointest Liver Physiol 288: G310–1320.

10) Cui XL, Soteropoulos P, Tolias P, Ferraris RP. 2004. Fructose-responsive genes in the small intestine of neonatal rats. Physiol Genomics 18: 206–217.

11) Chomczyński P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159.

12) Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression using real-time quantitative PCR and the 2(-delta delta C(t)) method. Methods 25: 402–408.

13) Douard V, Cui XL, Soteropoulos P, Ferraris RP. 2008. Dexamethasone sensitizes the neonatal intestine to fructose induction of intestinal fructose transporter (SLC2A5) function. Endocrinology 149: 409–423.

14) Hodin RA, Meng S, Chamberlain SM. 1994. Thyroid hormone responsiveness is developmentally regulated in the rat small intestine: A possible role for the a-2 receptor variant. Endocrinology 115: 564–568.

15) Markovich D, Murer H. 2004. The slc13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch 447: 594–602.

16) Lee H, Hubbert ML, Osborne TF, Woodford K, Zerangue N, Edwards PA. 2007. Regulation of the sodium/sulfate co-transporter by farnesoid X receptor alpha. J Biol Chem 282: 21653–21661.

17) Gray JH, Owen RP, Giacomini KM. 2004. The concentrative nucleoside transporter family. SLC28. Pflugers Arch 447: 728–734.

18) Haleystrap AP, Meredith D. 2004. The slc16 gene family from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447: 619–628.

19) Lammert E, Wang DQ. 2005. New insights into the genetic regulation of intestinal cholesterol absorption. Gastroenterology 129: 718–734.

20) Kosyraki R. 2001. Cubulin, a multifunctional epithelial receptor: An overview. J Mol Med 79: 161–167.

21) Ma T, Verkman AS. 1999. Aquaporin water channels in gastrointestinal physiology. J Physiol 517 (Pt 2): 317–326.

22) LaFaye LT, Augustin LB, Mariash CN. 2006. S14: Insights from knockout mice. Endocrinology 147: 4044–4047.

23) Chou WY, Cheng YS, Ho CL, Liu ST, Liu PY, Kuo CC, Chang HP, Chen YH, Chang GG, Huang SM. 2007. Human spot 14 protein interacts physically and functionally with the thyroid receptor. Biochem Biophys Res Commun 357: 133–138.

24) Chou WY, Ho CL, Tseng ML, Liu ST, Yen LC, Huang SM. 2008. Human spot 14 protein is a p53-dependent transcriptional coactivator via the recruitment of thyroid receptor and ZAC1. Int J Biochem Cell Biol 40: 1826–1834.

25) Compe E, de Sousa G, Francois K, Roche R, Rahmani R, Torresani J, Raymondjean M, Planells R. 2001. Spot 14 protein interacts and co-operates with chicken ovalbumin upstream promoter-transcription factor 1 in the transcription of the L-type pyruvate kinase gene through a specificity protein 1 (SP1) binding site. Biochem J 358: 175–183.

26) Martel PM, Bingham CM, McGraw CJ, Baker CL, Mangemelli PM, Meng ML, Armstrong JM, Moncur JT, Kinlaw WB. 2006. S14 protein in breast cancer cells: Direct evidence of regulation by SRBP-1c, superinduction with progesterin, and effects on cell growth. Exp Cell Res 312: 278–288.

27) Herza S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. 2001. CREB regulates hepatic glucose-neogenesis through the coactivator PGC-1. Nature 413: 179–183.

28) Puigserver P, Spiegelman BM. 2003. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator. Endor Rev 24: 78–90.

29) Mahrourni L, Takeda J, Mesonero J, Chantret I, Dussaulx E, Bell GI, Brot-Larocque E. 1994. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem J 301 (Pt 1): 169–175.

30) Carriere V, Vidal R, Lazou K, Lacasa M, Delers F, Ribeiro A, Rousset M, Chambuz J, Lacorte JM. 2005. HNF-4-dependent induction of apolipoprotein A-IV gene transcription by an apical supply of lipid micelles in intestinal cells. J Biol Chem 280: 5406–5413.

31) Swenson ES, Mann EA, Jump ML, Giannella RA. 1999. Hepatocyte nuclear factor-4 regulates intestinal expression of the guanylin/heat-stable toxin receptor. Am J Physiol 276: G728–736.

32) Leeper LL, McDonald MC, Heath JP, Henning SJ. 1998. Sucrase-isomaltase ontogeny: Synergism between glucocorticoids and thyroxine reflects increased mRNA and no change in cell migration. Biochem Biophys Res Commun 246: 765–770.

33) Takabe S, Mochizuki K, Goda T. 2008. De-phosphorylation of GR at Ser203 in nuclei associates with GR nuclear translocation and GLUT5 gene expression in Caco-2 cells. Arch Biochem Biophys 475: 1–6.

34) Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Bantjerjee S, DePina A, Haspel R, Jain MK. 2002. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem 277: 34322–34328.

35) Mori T, Sakaue H, Iiguchi H, Gomi H, Okada Y, Taka-shima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuoka Y, Ogawa W, Hiramatsu R, Kasuga M. 2005. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280: 12867–12875.

36) Gray S, Wang B, Orihuela Y, Hong BG, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK. 2007. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab 5: 305–312.

37) Teshigawara K, Ogawa W, Mori T, Matsuoka Y, Watanabe E, Hiramatsu R, Inoue H, Miyake K, Sakaue H, Kasuga M. 2005. Role of Kruppel-like factor 15 in expression of the liver-enriched transcription factor HNF4alpha. Biochem Biophys Res Commun 327: 920–926.

38) Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmellet P, Bouillon R, Carmeliet G. 2001. Duodenal calcium absorption in vitamin D receptor-knockout mice: Functional and molecular aspects. Proc Natl Acad Sci USA 98: 13324–13329.

39) Bolt MJ, Cao LP, Kong J, Sitrin MD, Li YC. 2005. Vitamin
D receptor is required for dietary calcium-induced repression of calbindin-D_{9K} expression in mice. *J Nutr Biochem* **16**: 286–290.

40) Zheng W, Xie Y, Li G, Kong J, Feng JQ, Li YC. 2004. Critical role of calbindin-D_{28K} in calcium homeostasis revealed by mice lacking both vitamin D receptor and calbindin-D_{28K}. *J Biol Chem* **279**: 52406–52413.

41) Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kuwakami T, Arioka K, Sato H, Uchiyama Y, Masushige S, Fukami A, Matsumoto T, Kato S. 1997. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. *Nat Genet* **16**: 391–396.

42) Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, Fleet JC, Christakos S. 2003. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. *Endocrinology* **144**: 3885–3894.

43) Towle HC, Kaytor EN, Shih HM. 1997. Regulation of the expression of lipogenic enzyme genes by carbohydrate. *Annu Rev Nutr* **17**: 405–433.

44) Gimeno RE. 2007. Fatty acid transport proteins. *Curr Opin Lipidol* **18**: 271–276.

45) McMahon RJ, Cousins RJ. 1998. Mammalian zinc transporters. *J Nutr* **128**: 667–670.

46) Mutch PB, Hurley LS. 1974. Effect of zinc deficiency during lactation on postnatal growth and development of rats. *J Nutr* **104**: 828–842.

47) Murer H, Forster I, Biber J. 2004. The sodium phosphate cotransporter family SLC34. *Pflugers Arch* **447**: 763–767.

48) Piedrahita JA, Oetama B, Bennett GD, van Waes J, Kamen BA, Richardson J, Lacey SW, Anderson RG, Finnell RH. 1999. Mice lacking the folic acid-binding protein FOLBP1 are defective in early embryonic development. *Nat Genet* **23**: 228–232.

49) Hirai T, Fukui Y, Motojima K. 2007. PPARα agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. *Biol Pharm Bull* **30**: 2185–2190.

50) Henning SJ, Rubin DC, Shulman RJ. 1994. Ontogeny of the intestinal mucosa. In: Physiology of the Gastrointestinal Tract (Johnson LR, ed), 3rd ed, p 571–611. Elsevier Academic Press, London.

51) Honma K, Mochizuki K, Goda T. 2007. Carbohydrate/fat ratio in the diet alters histone acetylation on the sucrase-isomaltase gene and its expression in mouse small intestine. *Biochem Biophys Res Commun* **357**: 1124–1129.

52) Kishi K, Tanaka T, Igawa M, Takase S, Goda T. 1999. Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum. *J Nutr* **129**: 953–956.