Rapid and Efficient FISH using Pre-Labeled Oligomer Probes

Nomar Espinosa Waminal1,3, Remnyl Joyce Pellerin1, Nam-Soo Kim2, Murukarthick Jayakodi3, Jee Young Park3, Tae-Jin Yang3 & Hyun Hee Kim1

Fluorescence in situ hybridization (FISH) is used to visualize the distribution of DNA elements within a genome. Conventional methods for FISH take 1–2 days. Here, we developed a simplified, rapid FISH technique using pre-labeled oligonucleotide probes (PLOPs) and tested the procedure using 18 PLOPs from 45S and 5S rDNA, Arabidopsis-type telomere, and newly-identified Panax ginseng-specific tandem repeats. The 16 developed rDNA PLOPs can be universally applied to plants and animals. The telomere PLOPs can be utilized in most plants with Arabidopsis-type telomeres. The ginseng-specific PLOP can be used to distinguish P. ginseng from related Panax species. Differential labeling of PLOPs allowed us to simultaneously visualize different target loci while reducing the FISH hybridization time from ~16 h to 5 min. PLOP-FISH is efficient, reliable, and rapid, making it ideal for routine analysis, especially of newly sequenced genomes using either universal or specific targets, such as novel tandem repeats identified from whole-genome sequencing data.

Fluorescence in situ hybridization (FISH) is a powerful technique for visualizing the chromosomal location of a target DNA sequence in its native cellular environment. The technique has undergone several useful innovations since its first use in human chromosomes in 19861. There are many applications for FISH, such as the detection of repetitive elements and single genes on a chromosome2, integration of physical and genetic maps3, detection of chromosomal translocations4, clarification of phylogenetic relationships5, quantification of mRNA transcripts6, diagnosis of hematologic cancers7, validation of genome assemblies8, and investigation of plastid dynamics9.

The power of FISH relies on the nature of nucleic acid probes to hybridize to complementary target sequences, the availability of several probe-labeling systems, the wide array of available fluorochromes, and refinements in fluorescence microscopy10–12. A well-prepared chromosome spread and an efficiently labeled probe are prerequisites for a successful FISH experiment. Several enzymatic methods for labeling probes include nick-translation, random priming, and PCR. Of these, nick-translation is used most often11. In nick-translation, probes are labeled with nucleotide analogs conjugated with either a hapten or a fluorochrome, which is referred to as indirect and direct labeling, respectively11,13. Hapten binding is visualized using a subsequently applied antibody conjugated with a fluorochrome. Additional steps and reagents are needed for indirect labeling compared with direct labeling, although these techniques have their respective advantages and disadvantages in terms of signal sensitivity and ease.

The major drawbacks of conventional FISH include the excellent technical skills needed to produce good, reproducible results14, the high cost of individual reagents, and the sensitivity of the enzymes used in nick-translating labeling to repeated freeze-thaw cycles15,16. When setting up a FISH experiment, it is important to consider which approach to take based on the objectives of the experiment and the frequency with which FISH analysis will be carried out. For example, tandem repeat targets may require a slightly different probe design and FISH approach compared with unique genic targets. Moreover, readily available, specific predesigned probes are more efficient than nick-translation probes for routine FISH analysis.

In FISH karyotyping and cytotaxonomy, satellite DNAs (satDNAs) such as 5S and 45S ribosomal DNAs (rDNA) are frequently utilized as probes due to the high conservation of their coding regions among eukaryotic genomes17,18. The 45S rDNA and 5S rDNA sequences encode ribosomal RNAs that are needed for proper ribosome function and protein synthesis. Although not all repeat units are transcriptionally active, 45S and 5S rDNA are present in up to several thousand copies in tandem arrays at either single or multiple chromosomal

1Chromosome Research Institute, Department of Life Science, Sahmyook University, Seoul, 01795, Korea.
2Department of Molecular Biosciences, Kangwon National University, Chuncheon, 24341, Korea.
3Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea. Correspondence and requests for materials should be addressed to T.-J.Y. (email: tjyang@snu.ac.kr) or H.H.K. (email: kimhh@syu.ac.kr)
loci. In addition, the use of telomeric sequences has also been vital for elucidating the evolution of some plants as well as the pathophysiology of certain diseases such as cancer. These sequences, such as TTAGGG$_n$ and TTTAGGG$_n$, which are found in many vertebrates and plants, respectively, are vital for chromosome integrity and are therefore generally present in chromosome termini, although recent studies have revealed several variations from these canonical repeat sequences.

Conventional probe preparation involves cloning or PCR amplification and labeling of a relatively long repeat sequence, a time-consuming process. The use of pre-labeled oligonucleotides as probes would make FISH analysis both cost- and time-efficient. In this study, we developed a FISH analysis method by designing pre-labeled oligonucleotide probes (PLOP) and a highly efficient reproducible hybridization protocol (PLOP-FISH). We demonstrate a variety of applications for PLOP-FISH for examining universal targets, as well as species-specific high copy number tandem-repeat blocks that were newly identified from next-generation sequencing (NGS) platform-WGS data.

Results

Designing universal 45S rDNA, 5S rDNA, and telomere PLOPs. We identified 414, 7,249, and 6,750 sequences for 18S, 5.8S, and 5S rDNAs, respectively, from public databases. We aligned the 18S and 5.8S rDNA sequences and the 55 rDNA sequences to the complete Panax ginseng 45S rDNA (KM036296) and 5S rDNA (KM036312) units as references, respectively. Of these, 76%, 66%, and 60% of the 18S, 5.8S, and 5S rDNA sequences, respectively, were mapped to the reference sequences (Supplementary Fig. S1a,b, Supplementary Table S1). The reference mapping generated a 1,851-bp, 201-bp, and 124-bp consensus sequences for 18S, 5.8S and 5S rDNA, respectively, with reads derived from fungi, animals, and plants (Fig. 1, Supplementary Fig. S1, and Supplementary Table S2). The species and accession numbers of the sequences that were mapped to the reference sequences are listed in Supplementary Tables S3–S5.

The PLOPs were designed based on the most highly conserved regions in 45S and 5S rDNA repeats based on sequence mapping and alignment. For the 45S rDNA repeat, the 18S and 5.8S rRNA genes showed conserved sequence homology among fungi, animal, and plants. Twelve universal PLOPs were designed based on the conserved regions of 4S rDNA genes, including eight from 18S rRNA and four from 5.8S rRNA. Four PLOPs were designed based on 55 rDNA (Fig. 1 and Table 1). All oligomers are 25–31 bp long, with melting temperatures (Tm) of 39 to 53 °C at 2 × SSC and 50% formamide (Fig. 1, Supplementary Fig. S1, and Table 1).

The 45S rDNA coding sequences show relatively diverse sequence similarities across distantly related taxa (Fig. 1c). The initial 5S rDNA FISH results for Ginkgo biloba using 5S rDNA PLOPs designed from angiosperm sequences showed weak hybridization. Signals were detected only in loose interphase chromatin and not in condensed metaphase chromosomes, even after several FISH attempts (Supplementary Fig. S2). A similar pattern was observed in the flounder fish Paralichthys olivaceus (Supplementary Fig. S3). These results indicate that the angiosperm-derived 5S rDNA PLOPs hybridize poorly to the highly packed G. biloba and P. olivaceus metaphase chromosomes due to sequence divergence of the angiosperm-derived PLOPs compared to those of gymnosperm and vertebrate 5S rDNA target sequences. To overcome this issue and to detect 5S rDNA loci in as many distantly related taxa as possible, we designed additional 5S rDNA PLOPs based on gymnosperm and cranial vertebrate sequences. To obtain a more comprehensive representation of 5S rDNA sequences from divergent taxa, we carried out independent multiple alignments for angiosperms, gymnosperms, and cranial vertebrates and designed PLOPs with manually substituted degenerate nucleotides for each group to include all possible sequences (Fig. 1d, Supplementary Table S2).

The 45S rDNA probe cocktail consisted of 12 PLOPs labeled with Cy3 at the 5′ end, whereas for 5S rDNA, four PLOPs labeled with FAM at the 3′ end were pooled to produce an independent 5S rDNA probe cocktail for angiosperms, gymnosperms, and cranial vertebrates. In addition to the rDNA PLOPs, we designed an Arabidopsis-type telomeric probe to produce a probe for plant telomeres (Table 1).

Optimization of PLOP-FISH. We initially tested the hybridization efficiency of the PLOP cocktails by measuring the signal intensity of each repeat in Zea mays metaphase chromosomes at different durations of hybridization. Distinct, reproducible signals for 45S rDNA, 5S rDNA, and Arabidopsis-type telomere were observed at 5 min, 1 hr, and 7 hrs (Supplementary Fig. S4a–c). Since the hybridization time did not affect the FISH signals, for the remaining experiments, hybridization was carried out for 1 hr. In addition, we evaluated the signal intensity of the PLOPs in interphase cells. Accordingly, distinct signals were observed in Z. mays interphase cells (Supplementary Fig. S4d). Altogether, these results indicate that the PLOPs hybridize efficiently to Z. mays target sequences at both the loose and condensed chromatin stages.

Universal rDNA PLOPs for diverse taxa. We evaluated the versatility of the “universal” PLOP-FISH cocktail by performing FISH analysis on ten angiosperm, two gymnosperm, and one animal species (Supplementary Table S6). The 45S rDNA signals showed efficient hybridization to all plant and animal species included in this study (Fig. 2, and Supplementary Figs S3 and S5–S6), indicating the universal utility of the 45S rDNA PLOPs. FISH analysis of the pooled angiosperm, gymnosperm, and cranial vertebrate-derived 5S rDNA PLOPs also allowed easy detection of 5S rDNA loci in interphase and metaphase chromosomes in all species investigated (Fig. 2 and Supplementary Figs S4–S6).

In addition, the background signal was low for both PLOPs in all chromosome spreads across all species, indicating that hybridization of the PLOPs was highly specific and that non-target signals were efficiently washed off. The very high signal-to-background ratio enabled us to detect very weak signals that could not easily be distinguished using conventional FISH methods. For example, several very weak 45S rDNA signals that were not previously observed were detected in Hordeum vulgare and Trigonella foenum-graecum (Fig. 2c,f). This approach allowed us to readily detect rDNA loci, revealing that most angiosperm species in this study had fewer than ten
45S rDNA loci, regardless of chromosome number. The gymnosperm Pinus densiflora had the highest number of 45S rDNA loci (14 loci, Fig. 2b), with the lowest chromosome number-to-45S rDNA loci ratio and the highest 45S-to-5S rDNA ratio (Supplementary Table S6). Except for *Triticum aestivum*, *H. vulgare*, and x*Triticosecale*, all species had equal numbers of 5S rDNA and 45S rDNA sequences or fewer 5S rDNA sequences.

Figure 1. Design of the 45S and 5S rDNA PLOPs. (a) Diagram of the 45S rDNA unit of *P. ginseng* (KM036296), as commonly observed in most plant species. The consensus region was generated from mapping sequences downloaded from public databases (Supplementary Fig. S1). The 12 PLOP regions for 45S rDNA are indicated by red bars. The sequence conservation for each region of the 45S rDNA is represented by homologous sequence depth across 32 complete rDNA-IGS from different species. (b) Two examples of PLOPs in the 18S region of 45S rDNA. All sequences are conserved across different fungal, animal, and plant taxa. The bottom part of the figure shows the consensus sequence, sequence logo, and probe names. (c) Diagram of the 5S rDNA unit of *P. ginseng* (KM036312), as commonly observed in most plant species. The four 5S rDNA PLOP regions are indicated by red bars, and the sequence conservation is represented as the depth of homologous sequences across eight species. (d) An example of PLOPs based on 5S rDNA. The 5S rDNA coding regions are highly polymorphic across distantly related taxa. To address this issue, different PLOPs were designed for each lineage of angiosperm, gymnosperm, and cranial vertebrate species (see Table 1). The consensus sequence, sequence logo, and probe name are shown. Degenerate nucleotides (red nucleotides in the consensus sequences) were incorporated into the probes (thick green arrows) to include polymorphic regions, and each type was pooled to form the “universal” 5S rDNA FISH probe cocktail.
45S rDNAs were detected in the same chromosomal regions in (Fig. 2a). Additionally, seemingly colocalization in the IGS region with the 45S rDNA unit in some Asteraceae species and in G. biloba often localized in separate chromosomal regions, a few reports described the physical linkage of the 5S rDNA to the same chromosome spread. For example, whereas 5S and 45S rDNA sequences in most angiosperm species are (on the same chromosome), technique produced high-resolution signals and allowed us to readily detect colocalized rDNA signals using the appropriate narrow-band pass filters to select the specific emission wavelengths for each fluorochrome. Arabidopsis us to perform multiplex FISH analysis. Using Cy3, Alexa Fluor 488, and ATTO425 to modify the 45S rDNA, 5S rDNA from different repeat families using fluorochromes with different excitation and emission wavelengths allowed us to use PLOPs for rDNA and telomere detection. Multiplex FISH using PLOPs for rDNA and telomere detection. Modifying the oligonucleotides from different repeat families using fluorochromes with different excitation and emission wavelengths allowed us to perform multiplex FISH analysis. Using Cy3, Alexa Fluor 488, and ATTO425 to modify the 45S rDNA, 5S rDNA, and Arabidopsis-type telomere PLOPs, red, green, and blue signals were easily detected when using the appropriate narrow-band pass filters to select the specific emission wavelengths for each fluorochrome.

Multiplex PLOP-FISH analysis represents a marked improvement over the standard FISH procedure. This technique produced high-resolution signals and allowed us to readily detect colocalized rDNA signals using the same chromosome spread. For example, whereas 5S and 45S rDNA sequences in most angiosperm species are often localized in separate chromosomal regions, a few reports described the physical linkage of the 5S rDNA unit in the IGS region with the 45S rDNA unit in some Asteraceae species and in G. biloba. Indeed, all 5S and 45S rDNA sequences described in different refer to the same chromosome spread. For example, whereas 5S and 45S rDNA sequences in most angiosperm species are often localized in separate chromosomal regions, a few reports described the physical linkage of the 5S rDNA unit in the IGS region with the 45S rDNA unit in some Asteraceae species and in G. biloba. Indeed, all 5S and 45S rDNAs were detected in the same chromosomal regions in G. biloba (Fig. 2a). Additionally, seemingly colocalized 5S and 45S rDNA signals were observed in H. vulgare, T. foemina-gracaeum (Fig. 2c, f). Z. mays (Fig. 5), T. aestivum and Triticosecale (Fig. 5b, c) when we used 12 PLOPs for 45S rDNA. However, FISH using four of the 12 45S rDNA PLOPs (Table 1 nos. 1–4) and four angiosperm 5S rDNA (Table 1 nos. 13, 16, 19, 22) produced no colocalization in H. vulgare and T. foemina-gracaeum (Fig. 5). This indicates a false 45S and 5S colocalization in these species but rather a mere signal crosstalk of the Cy3 fluorochrome in the FITC filter, likely caused by over brightness of the 45S rDNA loci.

While we detected FISH signals in most species using the Arabidopsis-type telomere PLOP, there were some exceptions. The gymnosperms G. biloba and P. densiflora, which are phylogenetically distant from Arabidopsis, showed signals using the Arabidopsis-type telomere probe, while the monocot angiosperm Allium cepa did not show any hybridization, supporting the fact that the telomere repeat in this genus is divergent from that of the plant consensus sequence TTTAGGG found in A. thaliana. As expected, sequences from the animal species P. olivaceus failed to hybridize to the plant-derived Arabidopsis-type telomere PLOP (Supplementary Fig. S3).

Table 1. List of oligoprobes used in this study. *At 2 × SSC and 50% Formamide.

No.	Probe	Sequence	Length	Position in consensus	Tm (°C)	Modification
1	18SrDNA_UniOP_1	CCGGAGAAGGACCTGAGAAAGCAGCTAC	28	386...413	49.2	5′-Cy3
2	18SrDNA_UniOP_2	ATCCAGAAGGACCTGAGACGGGCGGA	26	417...442	50.9	5′-Cy3
3	18SrDNA_UniOP_3	GGGCAAGTCTGGGCAACCGGCGGGG	28	555...582	53.4	5′-Cy3
4	18SrDNA_UniOP_4	TCGAACAGCATYGATACCCGTCTAGT	27	994...1020	40.4–43.4	5′-Cy3
5	18SrDNA_UniOP_5	CTGGAACATTAAAGAATTGAGAACGGA	27	1133...1159	40	5′-Cy3
6	18SrDNA_UniOP_6	GAGGACCTGCGCGTGTATTGTACCTAAC	27	1174...1200	45.0	5′-Cy3
7	18SrDNA_UniOP_7	GGTGGTGACATCGCCTGCTTATTGTTGCG	29	1272...1300	47.1	5′-Cy3
8	18SrDNA_UniOP_8	AGCTCTCCTGCTTTTATGACCAAGGCCTG	31	1622...1652	51.0	5′-Cy3
9	5.8SrDNA_UniOP_1	AAYGATCCTGCAACGGATATCTGAG	26	16...41	42.0–44.9	5′-Cy3
10	5.8SrDNA_UniOP_2	CWYGATCATGAGAAGCACTGACRA	25	45...69	42.2–45.2	5′-Cy3
11	5.8SrDNA_UniOP_3	GGATACCTTGTGAGATGAGAATGCA	27	73...90	42.0	5′-Cy3
12	5.8SrDNA_UniOP_4	GTGACACCCTGAGTTCGGAACGCA	28	102...129	43.4	5′-Cy3
13	5SrDNA_ang_1	GGATGACATACACCGACCTAAGCGGCG	30	1...30	48.2	5′-Cy3
14	5SrDNA_gym_1	GRTGCGATMATICACSCGTTAGTGYGA	27	1...27	38.4–48.0	5′-Cy3
15	5SrDNA_cranial_1	GGYTAYRGCGAATACCGCCTGRRHC	27	1...27	37.8–48.3	5′-Cy3
16	5SrDNA_ang_2	CCCATGACACTCCGAAGTATTAACGGTGCT	29	34...62	47.4	5′-Cy3
17	5SrDNA_gym_2	ATCCATGACACTCGCGAGATTAACGCR	27	32...58	39.7–45.6	5′-Cy3
18	5SrDNA_cranial_2	GACCTCGTCTGATGACTCCGAAGCTAAGC	27	31...57	45.6–46.8	5′-Cy3
19	5SrDNA_ang_3	GCGAGATGATAGGATAGGATGTTG	24	66...89	40.7	5′-Cy3
20	5SrDNA_gym_3	TTGGGYRGATGATGATCIRGATGGGTG	27	62...88	38.4–42.2	5′-Cy3
21	5SrDNA_cranial_3	GTCGGGCCYGGTYGATCTTGGATGGG	27	61...87	44.4–46.6	5′-Cy3
22	5SrDNA_ang_4	CCTCGGGAAGTMCCTGCTGTGATCATGGC	26	94...119	40.7–42.2	5′-Cy3
23	5SrDNA_gym_4	CTCYGGAGAACGCYRTRGCGACC	27	92...118	41.9–44.8	5′-Cy3
24	5SrDNA_cranial_4	CGGCACTGGAAATACCRGTTGGYGTARG	27	91...117	41.9–48.6	5′-Cy3
25	Tel_UniOP_Arabidopsis	TTATGGTTAGGTTTAGGTTTAGGTTTAGGGT	29	na	40.27	ATTO425
26	Pgm1	ACAATCTGTGACATCTCTTGCATACCATCTT	30	na	38.13	5′-Cy3
PLOP-FISH to detect a novel *Panax ginseng*-specific repeat. Universal PLOP-FISH analysis of rDNA sequences makes it easy to perform preliminary karyotyping, particularly for species without prior karyotype data. However, the use of rDNA signals often allows only a limited number of homologous chromosomes to be identified. Additionally, the distribution of rDNA signals may not vary in closely related species and may therefore not provide additional evolutionary information. Thus, identifying satDNAs unique to a certain group of taxa or species would be ideal for efficient karyotyping and genome evolutionary studies. Moreover, the
Several plant species, such as those in the order Asparagales, have telomere sequences that diverged from the order Panax. We gated the redundancy of Pgms1 by mapping WGS reads derived from four Panax species, including two diploids (P. notoginseng and P. vietnamensis) and two tetraploids (P. ginseng and P. quinquefolius). WGS reads mapping revealed that Pgms1 is specific to P. ginseng and is not found in the other species examined (Supplementary Fig. S8a). This result is supported by FISH data (Supplementary Fig. S8b–d). Pgms1 is localized in the short arm of P. ginseng chromosome 1 (Supplementary Fig. S8b), and it was not observed in P. notoginseng or P. quinquefolius (Supplementary Fig. S8c,d). In addition, we identified telomeric repeats using the same approach [21]; FISH revealed that all of these sequences are localized to all P. ginseng chromosome termini, with an additional interstitial site detected on one chromosome (Supplementary Fig. S8e).

Discussion
Pre-labeled oligomers have been widely utilized to detect specific bacterial strains and human cell lines in microbiology and human clinical studies by exploiting polymorphic DNA or RNA sequences [32-33]. This approach takes advantage of conserved and lineage-specific polymorphisms in ribosomal RNA genes (rDNA) [34]. By exploiting these features of rDNA, probes can be designed with varying specificity to identify different taxonomic groups at the species, genera, or even domain level [35]. In plants, PLOPs have been utilized to localize chromosome- or genome-specific repeats and unique sequences [30-36]. These have also been used to replace cumbersome BAC probe preparation in wheat and rye [37]. However, although the use of pre-labeled probes has been popular in microbiological and some plant studies, these probes have not been widely exploited as universal rDNA probes. Here, we bioinformatically designed PLOPs and performed FISH using an integrated method from previously published methods [32,33,36-38].

In plant cytogenetics, rDNAs are commonly utilized for preliminary FISH karyotyping for species without prior karyotype data. When this analysis is routinely conducted with different species, the labeling of cloned or PCR-amplified rDNA probes with haptens or fluorochromes through nick-translation is often costly and time-consuming and can yield inconsistent results [15,22]. Reduced enzyme activity after the inevitable repeated freeze-thaw cycles is one cause of batch-associated labeling inconsistencies. Here, we developed alternative approaches using PLOPs designed from highly conserved regions of rDNAs that can hybridize to target sequences of distantly related taxa, unlike the species-specific approach used in most microbiology studies. We further pooled these probes to serve as a “universal” rDNA FISH probe cocktail for routine analysis.

Our results demonstrate the potential of this approach for use at a diverse taxonomic level. Although we analyzed only a few species in this study, more species including fungi should be analyzed to further validate these PLOPs in future studies. However, we expect that reproducible signals will be obtained in other species, since these probes were designed based on highly conserved regions in plants, animals, and fungi, and all species included in this study showed excellent signals. However, it is important to use high-quality slides with good chromosome spreads for optimal hybridization and signal detection.

The Arabidopsis-type telomere repeat TTAGGG is considered to be a consensus sequence in higher plants [39]. Accordingly, most plant species in this study generated telomere signals using the Arabidopsis-type PLOP, albeit with varying signal intensities, except for A. cepa, which showed no signals (Fig. 2, Supplementary Figs S5–S6). Several plant species, such as those in the order Asparagales, have telomere sequences that diverged from the Arabidopsis-type sequence, instead consisting primarily of the vertebrate-type TTAGGG sequence [40]. In addition, a few genera in the Solanaceae family carry the TTTTTTGGG sequence [40], and telomere sequences of the genus Allium were recently shown to have diverged from the consensus sequence to CTCGGTTATGGG [21], which explains why no Arabidopsis-type telomere repeat signal was observed in A. cepa (Fig. 2d).

The rDNA FISH signals are consistent with a previous report of colocalization for the 5S and 45S rDNA loci in G. biloba [41]. The 5S and 45S rDNA clusters are linked together as one repeat unit (i.e., 5S rDNA is inserted in the IGS region of the 45S unit), which likely occurred during the early evolution of plants. This type of cluster is known as the L-type, in contrast to the separate (S)-type commonly observed in most higher plants [42]. The separation of the two rDNA repeat families is thought to have occurred in the early land plants, whereas the reintegration of 5S rDNA into the 45S rDNA IGS has been reported in some gymnosperm and angiosperm species [40,43-45]. Extensive molecular analyses have been performed in species within the gymnosperm families Ephedraceae, Ginkgoaceae, Podocarpaceae and the angiosperm genus Artemisia in the family Asteraceae, revealing the existence of either exclusive L-type rDNA organization or coexisting L-type and S-types [40,41-43]. However, more extensive molecular cytogenetic analysis across all plant species is necessary to get an even better understanding of the evolutionary dynamics of the two rDNA families, especially because the number of plant species with molecular cytogenetic data is still very low (<2,000) compared to the number of seed plants in the world (>400,000) [44,45].

The FISH results presented here demonstrate the robustness and reproducibility of the PLOP-FISH technique. For example, a minor 45S rDNA signal that had not previously been detected in the monocot Hordeum vulgare or the dicot T. foemem-graecum was observed using the PLOPs developed in this study (Figs 2c,f and 3) [24,25]. However, prudence is needed when using all 12 of the 45S rDNA PLOPs as they could also produce signal cross-talk with other filters. It is, therefore, important to either reduce the number of PLOPs of very intense targets (i.e. 45S rDNA) and avoid overexposure of fluorescence.

This method can be used to analyze the evolutionary relationships of related taxa using unique or common satDNAs. Furthermore, probes designed from InDel regions of rDNA repeats can be used to confirm genetic and evolutionary diversity through chromosomal visualization of sequence variants, as was done in several Allium species.
species. This approach can also be performed using other types of tandem repeats, such as micro- and minisatellites common to a specific group of species, for use as cytogenetic markers in comparative evolutionary studies, such as Pgms1 from \textit{P. ginseng}.

When performing routine high-throughput analysis, time is a crucial factor; more data obtained in a shorter timespan means higher productivity. The method presented here allows high-quality data to be acquired using a hybridization time as short as 5 min instead of the usual 16-h incubation time required using conventional nick-translation-derived rDNA probes. In addition, no incubator is required since hybridization is performed at room temperature. Ordering of fluorochrome-prelabeled oligonucleotide sequences eliminates the labeling step but may take some days to be delivered. Probe preparation for both conventional and PLOP-FISH may vary depending on the nature of probe source. The general processes and number of steps required for PLOP-FISH are reduced compared with conventional FISH, thus reducing the chances for error, while simplifying and expediting downstream analyses. Inset images in the left and right panels show conventional and PLOP-FISH signals of 45S rDNA, 5S rDNA, and telomere (top to bottom), respectively. Bars = 10 μm.

Figure 3. Schematic diagram comparing the conventional FISH and PLOP-FISH workflows. (a) Probe preparation prior to FISH may involve cloning or PCR amplification of a target sequence and subsequent nick-translation labeling with either haptens (indirect) or fluorochromes (direct), producing ~200–500 bp probes. FISH using these relatively long double-stranded DNA probes involves overnight hybridization at 37 °C, and if the probe is labeled with a hapten, immunodetection should be carried out. Conventional FISH using indirectly labeled probes by nick-translation typically involves additional steps such as RNase and protease treatment prior to the hybridization reaction (not shown in diagram) and an immunodetection step. Probes directly labeled with fluorochromes may or may not be treated with RNase and protease. Both methods need overnight hybridization, making them more time consuming and labor intensive than PLOP-FISH. (b) PLOP-FISH begins with the design of probes from bioinformatically analyzed sequences to optimize probe length (~30 bp) and melting temperature (~45–50 °C at 2 × SSC and 50% formamide) for rapid hybridization at room temperature. Ordering of fluorochrome-prelabeled oligonucleotide sequences eliminates the labeling step but may take some days to be delivered. Probe preparation for both conventional and PLOP-FISH may vary depending on the nature of probe source. The general processes and number of steps required for PLOP-FISH are reduced compared with conventional FISH, thus reducing the chances for error, while simplifying and expediting downstream analyses. Inset images in the left and right panels show conventional and PLOP-FISH signals of 45S rDNA, 5S rDNA, and telomere (top to bottom), respectively. Bars = 10 μm.
and 0.01 USD/slide, compared to 2.16 and 0.54 USD for the direct-labeling method. Therefore, the current technique represents a highly simplified, rapid, reproducible, and cost-efficient FISH process (Fig. 3).

This rapid PLOP-FISH method can expedite routine karyotyping analysis using tandemly repeated sequences (Fig. 4). The mining of abundant repetitive elements can be carried out using a de novo repeat analyzer such as the RepeatExplorer or TAREAN. This process does not require the use of scaffold assemblies, instead requiring only low-coverage WGS reads28,29, thereby accelerating FISH analysis for high-resolution visualization of complex chromosomes, even for genomes without prior genome assembly data.

Methods
PLOP Design. Eukaryote 5S, 5.8S, and 18S rDNA sequences were obtained from the NCBI nucleotide database (https://www.ncbi.nlm.nih.gov/). Additional 5S rDNA sequences were obtained from the 5S rDNA database (http://combio.pl/rrna)/47. To identify conserved regions for each rDNA family across a wide range of species, individual downloaded sequences from each rDNA family were treated as a single read, and the sequences were mapped if a minimum of 50 nt matched the reference sequence using a medium stringency parameter in CLC Main Workbench Version 7.8.1 software (CLC Inc., Rarhus, Denmark). The 5S rDNA sequences were mapped to the Panax ginseng 5S rDNA reference sequence (KM036312), and the 5.8S and 18S rDNA sequences were mapped to the Panax ginseng 45S rDNA reference sequence (KM036296), using CLC Main Workbench. Consensus sequences were generated through mapping, and probes were designed based on the consensus sequences. Twelve 24–31 bp PLOPs spanning the 18S and 5.8S consensus sequences were designed, whereas four were designed for 5S rDNA (Fig. 1 and Supplementary Fig. S1). The 5.8S and 18S rDNA PLOPs were pooled to detect the 45S rDNA site. In addition to rDNA probes, a probe was designed based on the Arabidopsis-type telomeric DNA sequence (TTTAGGG)_c. The PLOPs were 5’-labeled with Alexa Fluor 488 (5S rDNA), Cy3 (5.8S and 18S), and Atto425 (Arabidopsis-type telomere) through chemical method as provided by Bioneer Corporation (South Korea).

Plant and animal samples used for FISH analysis. The institutions listed in Supplementary Table S6 provided the plant and animal materials used to validate the efficiency of the PLOPs across various distantly related taxa. Fixed gonads of P. olivaceus were received from Dr. Woo Jin Kim in National Institute of Fisheries Science, Pusan 46083, Republic of Korea.

FISH analysis. Mitotic metaphase chromosome spreads were produced following a previous method10. Thirty-two microliters of FISH hybridization master mix (50% formamide, 10% dextran sulfate, and 2 × SSC) and 25 ng of each PLOP (5S and 45S rDNAs and Arabidopsis-type telomeric repeats) were combined, followed by the addition of distilled water to a total volume of 40 µl. Chromosomal DNA on a glass slide was denatured at 80 °C for 5 min after the addition of hybridization mix. To determine the most rapid FISH procedure that did not compromise FISH signal quality, hybridization durations of 5 min, 1 h, and 7 h at room temperature were evaluated. Stringency washes were performed using 2 × SSC at room temperature for 5 min, 0.1 × SSC at 42 °C for 10 min, and 2 × SSC for 5 min at room temperature. The slides were dehydrated in an ethanol series of 70%, 90%, and 100%, air-dried, and counterstained with premixed 4′,6-diamidino-2-phenylindole (DAPI) solution (1 µg/ml; DAPI in Vectashield, Vector Laboratories, Burlingame, CA, USA). Images were captured under a model BX53 fluorescence microscope (Olympus, Tokyo, Japan) equipped with a DFC365 FS CCD camera (Leica Microsystems, Wetzlar, Germany) and processed using Cytovision ver. 7.2 (Leica Microsystems). Further image enhancements and karyogram construction were performed with Adobe Photoshop CC (Adobe Systems, San Jose, CA, USA).
Repeat identification and WGS read mapping. Approximately 0.014× of ginseng WGS reads were used to analyze the repeats in ginseng using TAREAN36. Randomly extracted WGS reads from four *Panax* species (Supplementary Table S7) were mapped to a concatenated 11-bp Pgms1 using CLC Assembly Cell ver. 4.21 (http://www.clicbio.com/products/clc-assembly-cell/), using default parameters.

Data availability. The *P. ginseng* sequencing data have been deposited at the National Agricultural Biotechnology Information Center (NABIC) with the accession code NN-0076-000001 (https://nabic.rda.go.kr:2360/ostd/basic/ngsSraView.do)46.

References

1. Pinkel, D., Straume, T. & Gray, J. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. *PNAS* **83**, 2934–2938 (1986).

2. Khrustaleva, L. I. & Kik, C. Localization of single-copy T-DNA insertion in transgenic shallots (*Allium cepa*) by using ultra-sensitive FISH with tyramide signal amplification. *Plant J.* **25**, 699–707 (2001).

3. Sainz, D. et al. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. *Plant J.* **56**, 627–637 (2008).

4. Huang, S. et al. The genome of the cucumber, *Cucumis sativus* L. *Nature Genet.* **41**, 1275–1281 (2009).

5. Siljak-Yakovlev, S., Pustahija, F., Vicic, V. & Robin, O. Molecular cytogenetics (FISH and fluorochrome banding): resolving species relationships and genome organization. *Methods Mol. Biol.* **1115**, 303–323 (2014).

6. Teck, T. et al. Single-mRNA counting using fluorescent *in situ* hybridization in budding yeast. *Nat. Protoc.* **7**, 408–419 (2012).

7. Hu, L. et al. Fluorescence *in situ* hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. *Biomark. Res.* **2**, 3 (2014).

8. Chamala, S. et al. Assembly and validation of the genome of the nonmodel basal angiosperm *Amborella*. *Science* **342**, 1516–1517 (2013).

9. Martis, M. M. et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. *PNAS* **109**, 13343–13346 (2012).

10. Sommerauer, M. & Feuerbacher, I. *In Fluorescence in situ hybridization (FISH)—application guide* (ed. T. Liehr) 85–97 (Springer, Berlin, Heidelberg, 2009).

11. Morrison, L. E., Ramakrishnan, R., Ruffalo, T. M. & Wilber, K. A. In *Molecular Cytogenetics: Protocols and Applications* (ed. Yao-Shan Fan) 21–40 (Humana Press, 2003).

12. Liehr, T. In *Quality Issues in Clinical Genetic Services* (eds Ulf Kristoffersson, Jörg Schmidtknecht, & J. C. Cassiman) 315–320 (Springer Netherlands, 2010).

13. Liehr, T. & Pellestor, F. in *Fluorescence In Situ Hybridization (FISH)—Application Guide* 23–34 (2009).

14. Gozetti, A. & Le Beau, M. M. Fluorescence in situ hybridization: uses and limitations. *Semin. Hematol.* **37**, 320–333 (2000).

15. Kato, A., Albert, P. S., Vega, J. M. & Birchler, J. A. Sensitive fluorescence *in situ* hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. *Biotech. Histochem.* **81**, 71–78 (2006).

16. Jensen, E. Technical Review: *In Situ Hybridization*. *Anat. Rec.* **297**, 1349–1353 (2014).

17. Martins, C. & Wasko, A. P. *In Focus in genome research* (ed. C. R. Williams) Ch. 10, 335–363 (Nova Science Publishers, Inc., 2004).

18. Solits, P. S. et al. The phylogenetic of land plants inferred from 185 rDNA sequences: pushing the limits of rDNA signal? *Mol. Biol. Evol.* **16**, 1774–1784 (1999).

19. O’Sullivan, J. M., Pai, D. A., Criddle, A. G., Engelke, D. R. & Ganley, A. R. D. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? *Biomol. Concepts*. 4, 277–286 (2013).

20. Long, E. O. & Dawid, I. B. Repeated genes in eukaryotes. *Annu. Rev. Biochem.* **49**, 77–94 (1978).

21. Fajkus, P. et al. *Allium* telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGA), is synthesized by telomerase. *Plant J.* **85**, 337–347 (2016).

22. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. *PNAS* **101**, 17312–17315 (2004).

23. Silitatornog, A., Pfundheller, H., Koschkin, A., Tommerup, N. & Kauppinen, S. LNA-modified oligonucleotides are highly efficient as FISH probes. *Cytogenet. Genome Res.* **107**, 32–37 (2004).

24. Brown, S. E., Stephens, J. L., Lapitan, N. L. & Knudson, D. L. FISH landmarks for barley chromosomes (* Hordeum vulgare* L.). *Genome* **42**, 274–281 (1999).

25. Ahmad, F., Acharya, S. N., Mir, Z. & Mir, P. S. Localization and activity of rDNA genes on fenugreek (*Trigonella foenum-graecum*) chromosomes by *in situ* hybridization and silver staining. *Theoret. Appl. Genet.* **98**, 179–185 (1999).

26. Wicke, S., Costa, A., Muñoz, J. & Quandt, D. Restless 5S: The re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. *Mol. Phylogenet. Evol.* **61**, 321–332 (2011).

27. Richards, E. J. & Ausibel, F. M. Isolation of a higher eukaryotic telomere from *Arabidopsis thaliana*. *Cell* **53**, 127–136 (1988).

28. Pflüger, S., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. *RepeatExplorer*: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. *Bioinformatics* **29**, 792–793 (2013).

29. Novák, P. et al. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. *Nucleic Acids Res.* **45**, e111 (2017).

30. Waminal, N. E. et al. A refined *Panax ginseng* karyotype based on an ultra-high copy 167-bp tandem repeat and ribosomal DNAs. *J. Ginseng Res.* **41**, 469–476 (2017).

31. Waminal, N. E., Pellerin, R. J., Jang, W., Kim, H. H. & Yang, T. I. Characterization of chromosome-specific microsatellite repeats and telomere repeats based on low coverage whole genome sequence reads in *Panax ginseng*. *Plant Breed. Biotech.* **6**, 74–81 (2018).

32. Bradley, S., Zamecek, L. & Aurich-Costa, J. *In Fluorescence in Situ Hybridization (FISH)—Application Guide* (ed. T. Liehr) 67–73 (2009).

33. Aaman, R. & Fuchs, B. M. Single-cell identification in microbial communities by improved fluorescence *in situ* hybridization techniques. *Nat. Rev. Microbiol.* **6**, 339–348 (2008).

34. Jensen, M. A., Webster, J. A. & Strauss, N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. *Appl. Environ. Microbiol.* **59**, 945–952 (1993).

35. Han, Y., Zhang, T., Thammapichai, P. & Weng, T. Chromosome-specific painting in *cucumis* species using bulked oligonucleotides. *Genetics* (2015).

36. Fu, S. et al. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. *Sci. Rep.* **5**, 10552 (2015).

37. Tang, Z., Yang, Z. & Fu, S. Oligonucleotide replacing the roles of repetitive sequences pAsl, pSc119.2, pFa-353, pFa71, CCS1, and pAWRC.1 for FISH analysis. *J. Appl. Genet.* **55**, 313–318 (2014).

38. Kato, A., Lamb, J. C. & Birchler, J. A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. *PNAS* **101**, 13554–13559 (2004).

39. Šýkorová, E. et al. Telomere variability in the monocotyledonous plant order Asparagales. *Proc. R. Soc. Lond., B. Biol. Sci.* **270**, 1893–1904 (2003).
40. Peška, V. et al. Characterisation of an unusual telomere motif (TTTTTTAGGG), in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J. 82, 644–654 (2015).
41. Galian, J. A., Rosato, M. & Rossello, J. A. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity 108, 640–646 (2012).
42. Garcia, S. et al. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 118, 85–97 (2009).
43. Garcia, S. & Kovarik, A. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 111, 23–33 (2013).
44. Govaerts, R. & xeb. How many species of seed plants are there? Taxon 50, 1085–1090 (2001).
45. Vitales, D., D’Ambrosio, U., Gálvez, F., Kovarik, A. & Garcia, S. Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes. Plant Syst. Evol. 303, 1115–1121 (2017).
46. Son, J.-H. et al. Sequence variation and comparison of the 5S rRNA sequences in Allium species. J. Plant. Biol. 55, 15–25 (2012).
47. Szymanski, M., Barciszewska, M. Z., Erdmann, V. A. & Barciszewski, J. 5S Ribosomal RNA Database. Nucleic Acids Res. 30, 176–178 (2002).
48. Yevshin, I., Sharipov, R., Valeev, T., Kel, A. & Kolpakov, F. GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 45, D61–D67 (2017).

Acknowledgements
This work was carried out with the support of Sahmyook University Research Fund (RI22016025), the Cooperative Research Program for Agriculture Science & Technology Development (PJ01100801 and PJ01100802), Rural Development Administration, Korea.

Author Contributions
T.J.Y. and H.H.K. planned and organized the research, N.E.W. carried out the research, T.J.Y., N.S.K., H.H.K., and N.E.W. wrote and revised the manuscript, and R.J.P. helped with the FISH experiments, M.J. and J.Y.P. helped with NGS data analysis. All authors approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26667-z.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018