Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review

Syahirah Faraheen Kabir Ahmad†, Umi Fazara Md Ali, Khairuddin Md Isa

School of Environmental Engineering, University Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Perlis 02600, Malaysia

ABSTRACT
In this paper the authors provide comparative evaluation of current research that used liquefaction and pyrolysis method for bio-oil production from various types of biomass. This paper review the resources of biomass, composition of biomass, properties of bio-oil from various biomass and also the utilizations of bio-oil in industry. The primary objective of this review article is to gather all recent data about production of bio-oil by using liquefaction and pyrolysis method and their yield and properties from different types of biomass from previous research. Shortage of fossil fuels as well as environmental concern has encouraged governments to focus on renewable energy resources. Biomass is regarded as an alternative to replace fossil fuels. There are several thermo-chemical conversion processes used to transform biomass into useful products, however in this review article the focus has been made on liquefaction and pyrolysis method because the liquid obtained which is known as bio-oil is the main interest in this review article. Bio-oil contains hundreds of chemical compound mainly phenol groups which make it suitable to be used as a replacement for fossil fuels.

Keywords: Biomass, Bio-oil, Liquefaction, Pyrolysis

1. Introduction

The search for cleaner energy sources is expanding each day due to the increasing of population and urbanization. Major energy resources such as petroleum, coal and natural gas might be depleted in the future. Global Energy Statistic reported that the overall energy demand is predicted to increase by 50% compare to energy demands reported in 2015. Besides that, burning of this energy sources can cause atmospheric pollution like global warming, acid rain and air pollution. With growing concerns for fossil fuel depletion and environmental threat, there is a strong interest in exploring renewable materials such as sunlight, wind, water and biomass as alternative feedstock for energy sources.

Biomass is readily available and renewable; it does not contain nitrogen and sulfur and does not affect the overall CO₂ concentration in the atmosphere. Hence biomass is considered to be a good source of energy.

2. Biomass

2.1. Definition
Biomass is an organic material originated from plants, animals, and microorganisms which is non-fossilized and biodegradable. Biomass also comes in the form of products, byproducts, residues and waste from agriculture, forestry and related industries as well as the non-fossilized and biodegradable organic fractions of industrial and municipal solid wastes. Gases and liquids recovered from the decomposition of non-fossilized and biodegradable organic material also can be considered as biomass [1].

2.2. Resources
Biomass exists in two forms, woody and non-woody. The woody biomass originates from plants while non-woody form originates from excess waste of animals, industry and crops. Biomass feedstock can be used in the form of liquid fuels, heat, electric power, and bio-based products. Fig. 1 shows most common biomass feedstock [2].
2.3. Biomass Resource in Asian and European Countries

Biomass is a renewable resource that is used to replace petroleum for the production of steam, heat and electricity. There are several Asian and European countries that have been using biomass as a source of energy such as United Kingdom, Spain, China, Kenya, Finland, Brazil, Sweden, Malaysia, Thailand, Pakistan and India. Biomass that is used in these countries is tabulated in Table 1.

Table 1. Biomass Used in Asian and European Countries

Country	Biomass resource	References
United Kingdom	Arable crops:	[3]
	- Wheat	
	- Barley	
	- Oats	
	- Rye, mixed corn and triticale	
	- Oilseed rape	
	- Linseed	
	- Potatoes	
	- Sugar beet	
	- Peas	
	- Maize	
	Horticultural crops:	
	- Grown outdoors vegetable	
	- Orchard fruit	
	- Soft fruit and wine grapes	
	- Outdoor plants and flowers	
	- Glasshouse crops	

Country	Biomass resource	References
Spain	Forest residue	[4]
	- Waste from the treatment and use of forest strand	
	- Wood agricultural residue	
	- Olives	
	- Vineyards and fruit trees	
	Herbaceous residue	
	- Cereal straw	
	- Corn cane	
	Energy crops	
	- Rapeseed	
	- Sorghum	
	- Ethiopian thistle	
China	Rice, wheat, maize, beans, yam, cotton, oilseed crops, sugar crops	[5, 6]
Kenya	Charcoal, wood fuel and agriculture waste	[7]
Finland	Woody plant	[8]
Brazil	Sugar and alcohol sector	[9]
	Paper and cellulose sector	
	Agricultural residue	
	Wood industry residue	
	Oleaginous plants	

Fig. 1. Sources and types of biomass [2].
2.4. Composition of Various Biomass

Lignocellulosic biomass has varying amounts of cellulose, hemicellulose and lignin [18]. Hemicelluloses are a polymer constituted of sugar units. Cellulose is a glucose polymer which contain (1, 4)-D-glucopyranose units link with 1-4 in the β-configuration. Hemicellulose is different from cellulose, as it consist of primarily xylose and other five-carbon monosaccharides[19]. Lignin consists of cross linked, three-dimensional polymer formed with phenyl-propane units. Generally, lignocellulosic biomass consist of 10-25% lignin, 20-30% hemicelluloses, and 40-50% cellulose [20]. The total amount of every component in lignocellulosic biomass is important to determine how effective the biomass can be converted into green fuels or valuable chemicals [21]. The weight percent of cellulose, hemicelluloses, and lignin varies depending on the type of biomass. Table 2 shows the compilations of lignocellulosic contents in different type of biomass.

Country	Biomass resource	References
Sweden	Forest industry: pulp, paper mills and sawmills	[10]
Malaysia	Shell, fiber, empty fruit brunch. Rice husks, rice straw Logging residue, plywood, sawmill	[11, 12]
Thailand	Bamboo biomass, woodchip, rice husks	[13, 14]
Pakistan	Animal dung	[15]
India	Rice husk, waste wood, agricultural residue	[16, 17]

2.5. Elemental Composition and Physical Properties of Various Biomass

Analysis of fuel is represented by the elemental composition (C, H, O, N and S), ash content, moisture content and higher heating value (HHV). The elemental composition of biomass is analyzed to evaluate the capability of the biomass to produce high value of bio-oil. The elemental analysis and physical properties of biomass is tabulated in Table 3. Table 3 illustrates the analysis of 11 types of lignocellulosic biomass.

Biomass	C (wt%)	H (wt%)	O (wt%)	N (wt%)	S (wt%)	ash	moisture	HHV	Reference	
EFB	51.78	7.04	40.31	0.72	0.16	4.64	7.38	18.74	[30]	
Sugarcane bagasse	58.14	6.05	34.57	0.69	0.19	4.34	16.07	18.61	[31]	
Rice husk	45.28	5.51	45.1	0.67	0.29	11.70	6.37	15.29	[24, 32, 33]	
Coconut shell	63.45	6.73	28.27	0.43	0.17	3.38	11.26	22.83	[31]	
Wood sawdust	52.00	6.07	41.55	0.28	-	0.10	-	20.407	[34]	
Corn stover	46.60	4.99	40.05	0.79	0.22	4.88	7.66	18.3	[35, 36]	
Wheat straw	47.3	6.8	37.7	0.8	-	4.1	-	-	[37]	
Municipal solid waste (paper waste)	39.71	7.14	53.15	-	-	6.03	6.51	-	[38]	
Banana stem	38.2	5.3	43.4	0.3	0.49	8.04	0.17	10.89±0.2	13.70±0.10	[39, 40]
Softwood (av.)	52.1	6.1	41.0	0.2	-	1.7	-	20.0	[41]	
Hardwood (av.)	48.6	6.2	41.1	0.4	-	2.7	-	18.8	[41]	
Biomass	Type of reactor	Operational condition	Pressure	Temperature (°C)	Bio-oil yield (%)	Type of process	Ref			
------------------	--------------------------	-----------------------	----------	------------------	-------------------	----------------------	------			
EFB	Fixed bed Reactor	Particle size: < 0.5 mm	100 kPa	540	48.4	Fast pyrolysis	[43]			
	Fluidized bed reactor	Biomass fed: 0.94 kg/h Particle size: 0.7 mm	atmospheric	478	48-54	Fast pyrolysis	[30]			
	Fluidized bed reactor	Biomass fed: 500 g/h Particle size: 0.21 mm	atmospheric	500	27.0	Fast pyrolysis	[44]			
	Incone. batch reactor	Biomass fed: 0.1000 g Particle size: < 710 um	25 MPa	390	37.30	Hydrothermal liquefaction	[45]			
Sugarcane bagasse	Fluidized bed reactor	Biomass fed: 2 kg/h Particle size: 0.512 mm	atmospheric	500	68.45	Fast pyrolysis	[46]			
	Fluidized bed reactor	Biomass fed: 0.0 g/h Particle size: < 2 mm	atmospheric	500	67.22	Fast pyrolysis	[47]			
	Fluidized bed reactor	Biomass fed: 200 kg/h Particle size: 0.55 mm	atmospheric	470	35.5	Fast pyrolysis	[48]			
	Semi batch reactor	Biomass fed: 15 g Particle size: 0.5-0.6 mm	atmospheric	500	45.23	Fast pyrolysis	[49]			
	Batch reactor	Biomass fed: 15 g Particle size: 0.5-1.0 mm	atmospheric	550	48.9	Fast pyrolysis	[50]			
	Autoclave	Particle size: 0.2-1.0 mm	30 MPa	533K	21.15	Hydrothermal liquefaction	[51]			
Rice husk	Conical spouted bed reactor (CSBR)	Biomass fed: 200 g/h Particle size: 0.63-1 mm	atmospheric	450	70.0	Fast pyrolysis	[52]			
	Fixe. bed reactor	Biomass fed: 10 g Particle size: 0.3-0.6 mm	atmospheric	550	49.91	Fast pyrolysis	[53]			
	Fixe. bed reactor	Biomass fed: 10 g Particle size: 355-500 um	atmospheric	450	35.5	Fast pyrolysis	[54]			
	Fixe. bed reactor	Biomass fed: 10 g Particle size: 0.3-0.6 mm Catalyst: zinc oxide	atmospheric	550	49.91	Fast pyrolysis	[53]			
	Fixe. bed reactor	Particle size: 355-840 um Catalyst: AL-MCM-41	atmospheric	450	49.91	Fast pyrolysis	[55]			
	Fluidized bed reactor	Fed: 1-3 ton/h Particle size: < 0.177 mm	atmospheric	550	48.1	Fast pyrolysis	[56]			
	Fluidized bed reactor	Fed: 10 g/min Particle size: 0.42-0.84 mm	atmospheric	600	29.44	Fast pyrolysis	[57]			
	Fixe. bed reactor	Fed: 10 g Particle size: 0.16 mm Catalyst: NaCl (3 wt%)	atmospheric	550	56.1	Fast pyrolysis	[58]			
Sample	Size (μm)	Pressure	Condition	Notes						
--------	----------	----------	-----------	-------						
[71]	3.33	550								
[72]	3.60-10	400-500								
[73]	3.67	550								
[74]	3.57	550								
[75]	4.59	500								
[76]	2.90	550								
[77]	2.79	550								
[78]	4.91	500								
[79]	3.52	550								
[80]	4.60	550								
[81]	4.00	550								
[82]	3.92	550								
[83]	4.60	550								
[84]	3.65	550								
[85]	4.60	550								
[86]	3.00	550								
[87]	3.57	550								
[88]	3.57	550								

Notes:
- Pressure: 2-4 atm
- Temperature: 75°C
- Humidity: 70%
- Type of reactor: Fluidized bed reactor
- Condition: Superficial bed reactor

Material:
- Wood sawdust
- Corn stover
- Rice husk
- Palm kernel shell
- Gravel

Table 4 Continued
Biomass	Type of reactor	Operational condition	Pressure	Temperature (°C)	Bio-oil yield (%)	Type of process	Ref
Wheat straw	Glass reactor	Biomass fed: 10 g					
		Particle size: 0.5-2 mm					
	Fluidized bed reactor	Biomass fed: 150 g					
		Particle size: 0.5-2 mm					
	Stainless steel tubular reactor	Biomass fed: 3-5 g					
		Solvent: Water-Ethanol (50/50 wt%)					
	Fixed-bed stainless steel reactor	Biomass fed: 5 g					
		Particle size: 2-10 mm					
Municipal solid waste	Microwave oven	Biomass fed: Particle size: ~50 μm					
Banana stem	Fluidized bed reactor	Biomass fed: 12 kg/h					
		Particle size: < 1 mm					
Softwood	Fluidized bed reactor	Biomass fed: 400-600 um					
		Particle size: 400-600 um					
	Fixed bed reactor	Biomass fed: 700 g/h					
		Particle size: 0.40-0.92 mm					
	Fluidized bed reactor	Biomass fed: 250 g/h					
		Particle size: 300-500 um					
	Fluidized bed reactor	Biomass fed: 150 g					
		Particle size: 0.3 mm					
	Semi-batch reactor	Biomass fed: 1 g					
		Particle size: 0.1-2.0 mm					
Hardwood: Meranti wood	Fixed bed drop-type pyrolyzer	Biomass fed: 10 g					
sawdust (MSW)		Particle size: 0.15-3.50 mm					[85]
Hardwood: Rubber wood	Fixed bed drop-type pyrolyzer	Biomass fed: 10 g					
sawdust (RSW)		Particle size: 0.15-3.50 mm					
	Fixed bed reactor	Biomass fed: 200 g					
		Particle size: 0.71-0.1 mm					[90]
2.6. Compilation of Various Biomass Produce Bio-oil by Liquefaction and Pyrolysis Method

Table 4 represents the compilation of 11 types of lignocellulosic biomass used to produce bio-oil from recent research works which is 5 years back (2013-2018). These compilations mainly focus on the production of bio-oil by using liquefaction and pyrolysis method with varied operational conditions. Table 4 lists all the parameters that have been investigated from previous research such as types of reactor and process, operational conditions, pressure, temperature, and yield. From the table it can be deduced that several types of process have been implemented by researchers, for instance hydrothermal liquefaction, microwave pyrolysis, and slow pyrolysis, but the most frequent process used are fast pyrolysis. Fast pyrolysis process is favorable as it can maximize the yield of bio-oil approximately about 80% based on dry feed and operational conditions used. Liquefaction process is less attractive among researchers compare to pyrolysis process as it produce lower yield of bio-oil (between 20-55 wt%) and requires additional catalyst or other reactants to facilitate the process which is major drawback. Based on the compilation most of pyrolysis process takes place in a fixed bed reactor at atmospheric pressure within temperature range of 450°C to 600°C. Fixed bed reactor is more effective compared to other reactor designs as it consist of ideal plug flow behavior, lower maintenance cost and reduce loss due to attrition and wear [42]. The highest yield of bio-oil is recorded from rice husk, coconut shell, and softwood which are at 70.0%, 75.74%, and 74.1%.

2.7. Properties of Bio-oil from Various Biomass

Bio-oil is the product of depolymerization of biomass building blocks which are hemicelluloses, cellulose and lignin. Hence elemental composition of wood bio-oil is similar to biomass rather than petroleum oil. Table 5 shows comparison between properties of bio-oils from different feedstock. Water content in bio-oil comes from the original moisture in biomass and also from the product after pyrolysis process. High amounts of water content in bio-oil are considered as disadvantage for its usage as a fuel. The accepted range of water content in bio-oil is between 25-26 wt% [87]. Table 5 deduce that the water content in the bio-oil extracted from empty fruit bunch (EFB), sugarcane bagasse, banana stem and softwood are in acceptable range. On the other side bio-oil of rice husk, wheat straw and hardwood shows high amount of water content and may not be suitable to be used directly without further improvements. Density of bio-oil from all biomass was found to be in between of 900 to 1,548 kg/m³. These values are considered higher compare to the density of crude oil which around 860 kg/m³ [88]. High density values means that the bio-oil has high amount of oxygen instead of polycyclic aromatic which presence mostly in hydrocarbon oil. Bio-oil from woody biomass usually has low pH value which is around 3.7 only because it contains some organic acid such as acetic and formic acid [89]. Table 5 deduces that the pH of bio-oil from all the biomass is between 1.5-3.85 which is in the range of proposed literature. The proposed viscosity for bio-oil derived from biomass is 40-100 cP. Table 5 shows that the viscosity of bio-oil varied over a wide range depending on the type of biomass and also experimental conditions. The heating value of all the bio-oil is very low compared to heating value of heavy fuel oil which is at 40 MJ/kg [90]. This may due to the high amount of water content which results in the decreasing of energy in the oil.

2.8. Bio-oil Utilizations in Industry

Bio-oil is obtained from the burning of dried biomass in a reactor in the absence of oxygen at temperature about 500°C with sub-

Table 5. Comparison of Properties between Bio-oils from Different Feedstocks

Properties	EFB [91-93]	Sugarcane bagasse [46]	Rice husk [94]	Coconut shell [31, 59]	Wood sawdust [95]	Corn stover [93]	Wheat straw [96]	Municipal solid waste (paper waste) [38]	Banana stem [61]	Softwood [97]	Hardwood [98]	
Kinematic viscosity (cSt)	38.4	21.50	4.861-16.277	36	14 (cP, at 40°C)	13 (cP, at 40°C)	23.5	2.00	-	62	32.63	
Density (kg m⁻³)	900-1,548	1,150	1,138-1,170	1,090	1,060	1,020	-	1,205	1,200	1,188	1,232	
pH	2.8	3.85	2.85-3.2	3.15-3.26	2.07	2.64	2.4	1.5	3.18 ± 0.02	3.00	-	
HHV (MJ kg⁻¹)	36.06	23.50	14.285-21.742	38.6	20.38	20.39	24.2	13.10	7.97	27.9	14.34	
Water content (%)	7.90	11.60	26.18-41.32	-	-	-	26.7	-	20.0 ± 0.1	13.0	32.0	
Elemental analysis (%)	C	69.35	52.62	37.86 ± 0.21	75.4	24.86	13.00	50.78	40.80	9.70	62.6	54.59
	H	9.61	7.40	5.24 ± 0.01	11.7	7.17	8.08	3.20	6.29	11.21	7.0	6.74
	O	20.02	39.10	35.32 ± 2.15	10.5	67.61	78.39	44.42	52.91	50.42	29.0	38.57
	N	0.74	0.75	0.68 ± 0.06	2.4	0.35	0.53	1.37	-	28.67	1.1	0.10
	S	- < 0.07	-	-	-	-	-	-	< 0.1	-	-	-
sequent cooling. The physical appearance of bio-oil is dark-brown liquid with a strong odor [99]. Bio-oil produced from fast pyrolysis and thermal liquefaction can be utilized in many sectors. It can be used as heat and power generation, liquid fuels, and raw chemical products. Chemicals extracted from bio-oil are mostly used in construction, food flavorings, resins, adhesives, and agrichemicals. Table 6 describes the application of bio-oil in industry and its function.

3. Conclusions

It is crucial to select the best process to transform biomass into bio-oil which can be a viable alternative to fossil fuels. Thermo-chemical liquefaction and pyrolysis method is the best process to achieve this goal. From the literature it can be concluded that pyrolysis method has gained a huge amount of interest compared to liquefaction method as it produces large quantity of bio-oil and the quality is much better. Fast pyrolysis method with fluidized bed and fixed bed reactor has been used the most by researchers as it produce higher yield of bio-oil. This review article conclude that high yield of bio-oil was obtained from palm EFB, sugarcane bagasse, rice husk, coconut shell, wood sawdust, corn stover, wheat straw, municipal solid waste, banana stem, softwood and hardwood at atmospheric pressure and temperature range between 400°C to 615°C. Hydrothermal liquefaction, microwave pyrolysis and slow pyrolysis method which is another way to obtain bio-oil, is also a process of interest. Low quality of bio-oil properties such as high-water content, low pH and heat value limits its utilization. Hence further improvisation of bio-oil is required in order to produce a high-grade of liquid fuel.

Acknowledgments

The authors would like to express deep gratitude to Dr. Farzana Kabir Ahmad from University Utara Malaysia (UUM) who constantly gives encouragement throughout the preparation of this review article.

Products	Function	References
Asphalt binder	Asphalt or bitumen used in the road construction is produced from refining of crude oil. Bio-oil is mixed with the base binder to produce a bio modified binder.	[100]
Adhesive	Adhesive is known as glue. Phenol component in adhesive is extracted from crude oil. Bio-oil which comprises of phenolic compound is used to replace parts of the adhesive.	[101]
Resins	Resin originated from plant or synthetic can be used in the making of polymer. Bio-oil was used as a source of phenolic compounds in the production of a bio-based polymeric network.	[102]
Food flavoring	Vanillin which is an artificial vanilla flavour is made from lignin extracted from bio-oil.	[103]
Agrichemicals	Bio-oil have many organic compound that can be used in the making of bio-based fertilizers and pesticides.	[104]

References

1. Demirbas A. Fuels from biomass. In: Biorefineries. Green energy and technology book series. London: Springer; 2010. p. 33-73.
2. Energy, carbon saving and sustainability [Internet]. [cited 26 February 2018]. Available from: http://clients.junction-18.com/beep/Biomass/#1.
3. National Statistics. Agriculture in the United Kingdom [Internet]. [cited 15 March 2018]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/208436/auk-2012-25jun13.pdf.
4. Yang J, Wang X, Ma H, Bai J, Jiang Y, Yu H. Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues. Appl. Energ. 2014; 114:717-723.
5. Report on the availability of biomass sources in Spain: Vineyards and olive groves [Internet]. [cited 7 May 2018]. Available from: https://www.researchgate.net/publication/321760198_Report_on_the_availability_of_Biomass_Sources_in_Spain_vineyards_and_olive_groves.
6. Tan Z, Chen K, Liu P. Possibilities and challenges of China’s forestry biomass resource utilization. Renew. Sust. Energ. Rev. 2015;41:368-378.
7. Vezzoli C, Ceschin F, Osanjo L, et al. Energy and sustainable development. In: Designing sustainable energy for all. Springer; 2018. p. 3-22.
8. Aalto M, Korpinen OJ, Loukola J, Ranta T. Achieving a smooth flow of fuel deliveries by truck to an urban biomass power plant in Helsinki, Finland—An agent-based simulation approach. Int. J. Forest Eng. 2018;29:21-30.
9. Lora ES, Andrade RV. Biomass as energy source in Brazil. Renew. Sust. Energ. Rev. 2009;13:777-788.
10. Ericsson K, Werner S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass Bioenerg. 2016;94:57-65.
11. Shafie SM, Mahlia TMI, Masjuki HH, Ahmad-Yazid A. A review on electricity generation based on biomass residue in Malaysia. Renew. Sust. Energ. Rev. 2012;16:5879-5889.
12. Mekhied S, Sairur R, Safari A, Mustaffa WESB. Biomass energy in Malaysia: Current state and prospects. Renew. Sust. Energ.
12. Assanees N, Boonvvan C. State of the art of biomass gasification power plants in Thailand. Energ. Procedia. 2011:9:299-305.
13. Darabant A, Haruthaithanasan M, Atkla W, Phudphong T, Thanavat E, Haruthaithanasan K. Bamboo biomass yield and feedstock characteristics of energy plantations in Thailand. Energ. Procedia. 2014:59:134-141.
14. Mirza UK, Ahmad N, Majeed T. An overview of biomass energy utilization in Pakistan. Renew. Sust. Energ. Rev. 2008;12:1988-1996.
15. Singh NB, Kumar A, Rai S. Potential production of bioenergy from biomass in an Indian perspective. Renew. Sust. Energ. Rev. 2014:39:65-78.
16. Williams CL, Westover TL, Emerson RM, Tumuluru JS, Li C. Sources of biomass feedstock variability and the potential impact on biofuels production. BioEnergy. Res. 2015:9:1-14.
17. Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech. 2014:5:337-353.
18. Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR. Continuous pH monitoring during pretreatment of yellow-poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 1998;72-79:99-111.
19. Šćiban M, Radetić B, Kveresnjaž K. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol. 2007;98:402-409.
20. Nishiumi H, Tan I, Sun Z-Y, Tang Y-Q, Kida K, Morimura S. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation. Waste Manage. 2016;48:644-651.
21. Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK. Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources. 2006:1:220-232.
22. Kim SW, Koo BS, Ryu JW, et al. Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Process. Technol. 2013:108:118-124.
23. Tsai WT, Lee MK, Chang YM. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrol. 2006:76:230-237.
24. Tsai W, Lee M, Chang Y. Fast pyrolysis of rice husk: Product yields and compositions. Bioresour. Technol. 2007;98:22-28.
25. Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR. Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Compos. Sci. Technol. 2010:70:840-846.
26. Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR. Contaminants of Indonesian biomass residues. Biomass Bioenerg. 1998:14:517-524.
27. Sellin N, Oliveira BG, Barreto RM. Bio-oil from fast pyrolysis of sugarcane bagasse and palm empty fruit bunch: Yield optimization and bio-oil characterization. J. Anal. Appl. Pyrol. 2015:108:284-294.
28. Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;76:431-434.
29. Demirbas A. Heterogeneous catalysis. Lecture 18: Catalysts test and Reactors types [Internet]. [cited 11 February 2019]. Available from: https://nptel.ac.in/courses/103103026/module2/lec18/1.html.
30. Vecino Mantilla S, Gauthier-Maradei P, Álvarez Gil P, Tarazona Cárdenas S. Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: Yield optimization and bio-oil characterization. J. Anal. Appl. Pyrol. 2014:108:284-294.
31. Chan YH, Yusup S, Quitain AT, Uemura Y, Sasaki M. Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energ. Procedia. 2015:65:162-169.
32. Chan YH, Yusup S, Quitain AT, Uemura Y, Sasaki M. Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction. J. Supercrit. Fluid. 2014;95:407-412.
33. Montoya JL, Valdés C, Chejne F, et al. Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. J. Anal. Appl. Pyrol. 2015;112:379-387.
34. Phan BMQ, Duong LT, Nguyen VD, et al. Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis. Biomass Bioenerg. 2014:62:74-81.
35. Chen YH, Quayyum Q, Uemura Y, Sasaki M. Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energ. Procedia. 2015:73:119-123.
M. Luengo CA, Cascarosa E. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor. Appl. Therm. Eng. 2013;56:167-175.

49. Varma AK, Mondal P. Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 2017;95:704-717.

50. Henkel C, Muley PD, Abdollahi KK, Marculescu C, Boldor D. Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor. Energ. Convers. Manage. 2016;109:175-183.

51. Liu Y, Yuan X, Huang H, Wang X, Wang H, Zeng G. Thermochromic liquefaction of rice husk for bio-oil production in mixed solvent (ethanol-water). Fuel Process. Technol. 2013;112:93-99.

52. Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 2014;128:162-169.

53. Zhou L, Yang H, Wu H, Wang M, Cheng D. Catalytic pyrolysis of rice husk by mixing with zinc oxide: Characterization of bio-oil and its rheological behavior. Fuel Process. Technol. 2013;106:385-391.

54. Naqvi SR, Uemura Y, Yusup SB. Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst. J. Anal. Appl. Pyrol. 2014;106:57-62.

55. Abu Bakar MS, Titiloye JO. Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrol. 2013;103:362-368.

56. Cai W, Liu R. Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production. Fuel 2016;182:677-686.

57. Hsu C-P, Huang A-N, Kuo H-P. Analysis of the rice husk pyrolysis products from a fluidized bed reactor. Procedia Eng. 2015;102:1183-1186.

58. Zhao N, Li B-X. The effect of sodium chloride on the pyrolysis of rice husk. Appl. Energ. 2016;178:346-352.

59. Rount T, Pradhan D, Singh KK, Kumari N. Exhaustive study of products obtained from coconut shell pyrolysis. J. Environ. Chem. Eng. 2016;4:3696-3705.

60. Gao Y, Yang Y, Qin Z, Sun Y. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. SpringerPlus 2016;5:333.

61. Siengchum T, Isenberg M, Chuang SSC. Fast pyrolysis of coconut biomass – An FTIR study. Fuel 2013;105:559-565.

62. Makihar J, Fernandez-Akaregi AR, Amutio M, Lopez G, Olazar M. Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. Fuel Process. Technol. 2015;137:283-289.

63. Özbay G. Catalytic pyrolysis of pine wood sawdust to produce bio-oil: Effect of temperature and catalyst additives. J. Wood Chem. Technol. 2015;35:302-313.

64. Nazari L, Yuan Z, Souzanchi S, Ray MB, Xu C (Charles). Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils. Fuel 2015;162:74-83.

65. Yorgun S, Yıldız D. Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. J. Anal. Appl. Pyrol. 2015;114:68-78.

66. Salehi E, Abedi J, Harding TG, Seyyedeyn-Azad F. Bio-oil from sawdust: Design, operation, and performance of a bench-scale fluidized-bed pyrolysis plant. Energy. Fuel. 2013;27:3332-3340.

67. Özbay G. Pyrolysis of firewood (Abies bresnii/Sequoia Matiff) sawdust: Characterization of bio-oil and bio-char.Drv. Ind. 2015;66:105-114.

68. Morali U, Yavuzel N, Şensoz S. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Bioresour. Technol. 2016;221:682-685.

69. Liu S, Xie Q, Zhang B, et al. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour. Technol. 2016;204:164-170.

70. Chen T, Liu R, Scott NR. Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover – Biochar, syngas and bio-oil. Fuel Process. Technol. 2016;142:124-134.

71. Mante OD, Aghileov FA. Catalytic pyrolysis for the production of refinery-ready biocrude oils from six different biomass sources. Greem Chem. 2014;16:3364-3377.

72. Ravikumar C, Senthil Kumar P, Subhasini SK, Tejaswini PV, Varshini V. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values. Sust. Mater. Technol. 2017;11:19-27.

73. Liu S, Zhang Y, Fan L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel 2017;196:261-268.

74. Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 2017;237:57-63.

75. Oudenhoven SRG, Westerhof RJM, Kersten SRA. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields. J. Anal. Appl. Pyrol. 2015;116:253-262.

76. Patil PT, Armbruster U, Martin A. Hydrothermal liquefaction of wheat straw in hot compressed water and subcritical water-alkohol mixtures. J. Supercrit. Fluid. 2014;93:121-129.

77. Tomás-Pejó E, Fermoze J, Herrador E, et al. Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel 2017;199:403-412.

78. Suriapparao DV, Vini R. Bio-oil production via catalytic microwave pyrolysis of model municipal solid waste component mixtures. RSC Adv. 2015;5:57619-57631.

79. Sellin N, Krohl DR, Marangoni C, Souza O. Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Bioenerg. Energy. 2016;96:56-64.

80. Abdullah N, Sulaiman F, Taib RM, Miskam MA. Pyrolytic oil of banana (Musa spp.) pseudo-silm via fast process. In: AIP Conference Proceeding; 24 April 2015.

81. Torri IDV, Paasikallio V, Facini CS, et al. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization. Bioresour. Technol. 2016;200:680-690.

82. Charon N, Ponthus J, Espinat D, et al. Multi-technique characterization of fast pyrolysis oils. J. Anal. Appl. Pyrol. 2015;116:18-26.

83. Kim KH, Kim T-S, Lee S-M, et al. Comparison of physicochemical features of biocrude and biochars produced from
various woody biomasses by fast pyrolysis. Renew. Energ. 2013;50:188-195.

84. Papari S, Hawboldt K, Helleur R. Pyrolysis: A theoretical and experimental study on the conversion of softwood sawmill residues to biooil. Ind. Eng. Chem. Res. 2015;54:605-611.

85. Mazlan MAF, Uemura Y, Osman NB, Yusup S. Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer. Energ. Convers. Manage. 2015;98:208-214.

86. Ahiekpor JC, Kuye AO, Achaw OW. Optimization of the pyrolysis of hardwood sawdust in a fixed bed reactor using surface response methodology. Lignocellulose 2017;6:98-108.

87. Oasmaa A, Meier D. Characterisation, analysis, norms and standards. In: Bridgwater AV, ed. Fast pyrolysis of biomass: A handbook. United Kingdom; 2005. p. 19-60.

88. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A. Gen. 2011;407:1-19.

89. Oasmaa A, Meier D. Analysis, characterization and test methods of fast pyrolysis liquids. In: Bridgwater AV, ed. Fast pyrolysis of biomass: A handbook. Newbury; 2002. p. 23-35.

90. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: A critical review. Energ. Fuel. 2006;20:848-889.

91. Abdullah N, Gerhauser H, Sulaiman F. Fast pyrolysis of empty fruit bunches. Fuel 2010;89:2166-2169.

92. Solikhah MD, Pratiwi FT, Heryana Y, et al. Characterization of bio-oil from fast pyrolysis of palm frond and empty fruit bunch. In: IOP conference series: Materials science and engineering. Volume 349. IOP Publishing; 2018.

93. Chang SH. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenerg. 2014;62:174-181.

94. Cai W, Liu R, He Y, Chai M, Cai J. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process. Technol. 2018;171:308-317.

95. Borges FC, Du Z, Xie Q, et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour. Technol. 2014;156:267-274.

96. Mullen CA, Boateng AA, Hicks KB, Goldberg NM, Moreau RA. Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams. Energ. Fuel. 2010;24:699-706.

97. Ba T, Chaala A, Garcia-Perez M, Rodrigo D, Roy C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ. Fuel. 2004;18:704-712.

98. Tzanetakis T, Ashgriz N, James DF, Thomson MJ. Liquid fuel properties of a hardwood-derived bio-oil fraction. Energ. Fuel. 2008;22:2725-2733.

99. Wikipedia. Pyrolysis oil [Internet]. [cited 5 September 2018]. Available from: https://en.wikipedia.org/w/index.php?title=Pyrolysis_oil&oldid=845786946.

100. Abdul Raman NA, Hainin MR, Abdul Hassan N, Ani FN. A review on the application of bio-oil as an additive for asphalt. J. Teknol. 2015;72:105-110.

101. Mathias J-D, Grédiac M, Michaud P. Bio-based adhesives. In: Biopolymers and biotech admixtures for eco-efficient construction materials. Cambridge: Woodhead Publishing; 2016. p. 369-385.

102. Sibaja B, Adhikari S, Celikbag Y, Via B, Auad ML. Fast pyrolysis bio-oil as precursor of thermosetting epoxy resins. Polym. Eng. Sci. 2018;58:1296-1307.

103. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B. Vanillin, a promising biobased building-block for monomer synthesis. Green Chem. 2014;16:1987-1998.

104. Maheshwari DK. Composting for sustainable agriculture. Switzerland: Springer International Publishing; 2014.