Implementation of self-directed learning within clinical clerkships

Abstract

Background: The main aim of medical curricula is to prepare students for the first day at the work place. While teaching clinical competence is pivotal, clinical clerkships are often the last chance to close knowledge gaps with the help of clinical teachers. Self-directed learning is a dynamic field for research within medical education, though its curricular implementation is rare. This study focuses on the needs assessment of clinical clerkships using the concept of self-directed learning.

Methods: The study comprised an educational experience at the Ludwig-Maximilians Universität (LMU) Munich. Medical students (n=1446, 59% female) in their second clinical year were instructed to specify learning objectives (LOs) by Doran’s SMART criteria and to gauge the probability of their fulfilment prior to the mandatory clerkship. In a second questionnaire one week later, the students rated the actual subjective fulfilment of the LOs. Data was coded with regards to the German National Catalogue of Competence-Based Learning Objectives for Undergraduate Medical Education (NKLM) and investigated qualitatively. Factors that determine goal achievement were collected and coded binary (barrier vs. enabler). Univariate analysis was used when appropriate.

Results: The acquisition of “clinically practical abilities” (29%), “diagnostic methods” (21%) and “professional communication” (13%) were the LOs mentioned most. Throughout the week, subjective fulfilment diminished. Rich (vs. poor) availability to “practical exercise” (31%), “engagement of the physicians and other medical staff” (27%) and “personal initiative” (23%) resulted in higher subjective fulfilment.

Conclusions: The self-chosen LOs reflect the needs of students for which the clinical teacher should be prepared. Considering these findings, it seems possible to close practical training gaps. We support the consideration of establishing curricular anchored self-directed learning in clinical clerkships. Further empirical studies would be beneficial in revealing its positive effects on the learning progress.

Keywords: curricular development, clinical clerkship, learning objective, self-directed learning, undergraduate medical education

Background

The development of academic curricula is important to improve medical education. Curricular models set a clear structure how a planned educational experience best contributes to the learning progress [1]. Aside from other methods, such as seminars or simulation training, clinical clerkships are one of the teaching methods that convey the knowledge to medical students which they need for later for practice. Thereby, a consistent binding set in form of a medical curriculum for clinical clerkships enhances transparency for students, but also for teachers [2]. The measure for the quality of the clinical clerkship is how much it helps the medical students to gain working experience and acquire practical skills [3]. This is crucial, as even young medical professionals have difficulties putting theory into practice [4]. However, practical skills can only develop and be exercised if there is consolidated understanding and knowledge in the field. Therefore, and above all, the aim of clinical clerkships is knowledge growth by the means of problem-based learning [5], [6], [7]. Knowledge per se encloses several different aspects in medical sciences: conceptual knowledge, strategic knowledge, conditional knowledge and procedural knowledge are differentiated and map a spectrum from passive observation to performance [8], [9]. Higher level of knowledge not only correlates with progressed learning but also deeper professional competence [10]. What level of competence (see also Millers pyramid; i.e. knows, knows how, shows how, and do [11]) a student is expected to demonstrate after going through such a clinical clerkship is a relevant content in curriculum development. Apart from the mentioned structured education, the second quality that is key to medical skill development
in undergraduates is self-directed learning [5], [12]. Its two most prominent characteristics comprise the individual drive to learn independently and intrinsic motivation. As a state of mind, it has been scrutinized in the literature multiple times [13], [14]. Although there are reasons to believe that this non-practical competence may help medical students adapt to the challenges in the clinical environment [15], [16], its implementation to a medical curriculum is rare [17]. One crucial factor for this might be the lack of any general template to follow when designing novel approaches for self-directed learning. Overall, the concept of self-directed learning complies with lifelong learning. Conveying its importance to medical students within limited time (e.g. one week clinical clerkship) is one major obstacle, but student buy-in can be enhanced by fully describing the purpose of self-directed learning to them [18].

In this context, the aim of the current study was the critical analysis of medical students’ needs entering a one-week clinical clerkship. In particular, we wanted to find out if the definition of learning objectives by medical students themselves leads to a subjective learning progress. This approach complies with the concept of self-directed learning and might be an alternative solution to the structured approaches to improve learning progress, e.g. by given checklists for documentation. More specifically, we wanted to answer the following research questions:

1. What are the self-chosen learning objectives (LOs) and the competency levels (CLs) specified for the clinical clerkship?
2. Which of the self-chosen LOs and CLs specified could medical students actually fulfill during their clinical clerkship?
3. What are the barriers and enablers to medical students that affect whether the LOs can be achieved or not?

To answer these research questions we conducted a study among medical students who have successfully passed their theoretical and practical exams in internal medicine facing their obligatory one-week internal medicine clerkship.

Methods

Setting and sample

The study was conducted from April 2016 to March 2019 at Ludwig-Maximilians-Universität (LMU) Munich. During this period, no curricular changes nor substantial teaching staff replacements occurred. Participants in their second clinical year first received a short training on how to specify individual LOs. This training was built on the prior knowledge of the medical students to handle with LOs supported by a link to further documents they already had studied within finished e-learning modules. In order to raise awareness for their individual knowledge gaps in their pre-defined field of focus a specific self-assessment file was made available, too. After that, the students completed a double survey online, one before the one-week internal medicine clinical clerkship and the second after. In total, 1446 medical students (59.1% female) filled in the survey online, for which the request was sent out via e-mail. The participation in the survey was told to be obligatory for successful completion of the course. Its rate of return was 85% and 92% within the first and second questionnaire. In both surveys, they specified at least three LOs. The instructions on how to set the LOs comprised Doran’s SMART criteria. In fact, it uses the meaning of “specific, measurable, achievable, realistic and time-related goals” and helps to phrase goals in a uniform manner [19]. Once the LOs were specified, the medical students also had to rate the probability of their achievement. On day one of the clinical clerkship, the opportunity was given to discuss the individual and structured LOs with his or her supervisor. The quality of the LOs (e.g. too easy or too difficult) was not judged but individual support for goal achievement was made possible. This was followed by the practical competence development phase, after which the medical students rated the actual subjective fulfilment of their LOs. The difference between those ratings (before vs. after) was understood as subjective learning progress. Self-assessed reasons for the success or failure on goal achievement during the clerkship were collected, too. Figure 1 shows the course of the study with training on SMART criteria, a preliminary and closing survey online, and the educational experience in between realized by a one-week clinical clerkship.

Coding scheme

A coding scheme was established following the German National Catalogue of Competence-Based Learning Objectives for Undergraduate Medical Education (NKLM). This document gives clarity what knowledge and which abilities a newly licensed physician should have exactly [20]. In order to determine LO categorization, an inductive
approach has been selected: following Mayring’s recommendations [21], a relevant sample length of questionnaires – approximately 20% of the total material – was analysed for re-occurring student statements. Based on this analysis, a best-match approach to NKLM was applied resulting in below mentioned categories. Once established the induction step was carried out: application of the scheme to the whole sample set. The latter was possible without any deviations (i.e. no additional categories required, neither single samples). Consequently, the selected category subset was identified to be complete for our problem, while its intra-orthogonality was a priori guaranteed by restricting ourselves to NKLM theory. The final profile of the eight different LO categories comprised as follows:

1. clinically practical abilities
2. diagnostic methods
3. therapeutic principles and medication
4. reasons for encounter
5. professional communication
6. working routine on the ward
7. exam preparation
8. others

By definition, the NKLM describes the learning depth by competency levels (CLs). Within the catalogue “conceptual knowledge”, “procedural knowledge” and “professional practice” are differentiated and follow an ascending order of professional independence. As we did not explicitly ask the medical students to specify CLs, categorisation of each single statement was performed on deductive application of the NKLM’s category set. In order to solve our problem, e.g. capturing all students’ statements, this three CL set was completed by a forth category (“others”) serving as a pool for not further specified LOs. The definition used in the coding scheme is illustrated in table 1.

A final item in the questionnaire asked for the medical students’ explanations for what reasons they had reached (vs. missed) their self-chosen LOs. The received bouquet of arguments was sufficiently comprehensive on student level. However, it cannot be related to a single LO as it depicts the review of the entire one-week clinical clerkship. The collected statements were analysed by process-based category formation (cf. methodology above). As the learning progress is a result of the interaction between students, teachers and the learning environment (e.g. context) [22], [23], best-match to this umbrella three factors categorisation was applied. Subcategory assignment was carried out binary: in case of positive wording, the subcategories were estimated as enablers. Conversely, they were classified as barriers to achieve the self-chosen LOs if the wording was negatively formulated.

Data analysis

Data analysis was performed using the Statistical Package for the Social Sciences (SPSS 25.0, SPSS Inc., Chicago, IL). All statements were discussed jointly by two of the authors and assigned to the determined LOs categories and the operationalized definitions of CL described above. Data of 1446 participants were evaluated. If different LO categories or different CL categories took place at the same time, one response could be coded as more than one category (exemplary quotation that involved simultaneously assignment to category (1) and (2): “I’d like to derive and interpret ECG”). By this, the total number for analysis was 10,754 cases. For examples see table 1. The distribution of the CLs in combination with the self-chosen LOs was examined by the means of cross tables. Chi-squared tests were applied to verify the relationship of the LOs or CLs and participant variables like gender. Differences in the achievement of the self-chosen LOs and CLs were checked by descriptive analysis and comparative averaging. The medical students’ self-evaluation on the achievement of the self-chosen LOs was established in a binary form (enabler or barrier) for univariate analysis. A predefined alpha level set at $p<.05$ was used for all tests of significance. When the data was used multiple times for comparisons we Bonferroni corrected for alpha error accumulation and report results as significant accordingly.

Results

The material presented a wide distribution of the self-chosen LOs, each with different CLs. Overall, “clinically practical abilities” (29%), “diagnostic methods” (21%) and “professional communication” (13%) were the LO categories most often mentioned. All LOs contained the whole spectrum of CL categories. The medical students mainly specified the CLs “professional practice” (38%) and “procedural knowledge” (33%). “Conceptual knowledge” as well as “others” were mentioned less frequently (14% each). Figure 2 shows how often each LO category contains the four CL categories. “Professional practice” was the leading CL within the LO category “exam preparation” (46%), the CL “procedural knowledge” was connected highest to the LO category “diagnostic methods” (40%), and the CL “conceptual knowledge” appeared primarily within the LO category “reasons for encounter” (23%). The CL “others” predominantly occurred within “working routine on the ward” (22%). Chi-squared tests revealed that the choice of LOs is gender-dependent ($X^2(8)=37.2, p=.00$). While female students strive for “exam preparation”, male students prioritize “working routine on the ward”. Differences between the genders in distributions over the other categories were not significant (p-values>.9).

In order to get more insight into the identified needs of the medical students, we investigated which of the self-chosen LOs and concomitant CLs they could actually fulfil during their clinical clerkship. Thus, average self-assessed achievement of each LO was calculated and compared to the average self-estimated values obtained prior to the one-week working experience. The same method was
Table 1: Operationalized definition of the competency level.

Dimension	Operationalized definition and examples
Conceptual knowledge	Knowledge on facts, repeated information ("text-book-knowledge").
	Examples: “I’d like to get to know invasive methods” (clinically practical abilities); “I’d like to get to know clinical diagnostics for the most current cardiological illnesses” (diagnostic methods); “I’d like to expand my knowledge on medication in oncology and its scope of application” (therapeutic principles and medication); “I’d like to get to know further risk factors for COPD” (reasons for encounter); “I’d like to gain background knowledge on IT, accounting and DRGs” (others)
Procedural knowledge	Knowledge about actions, profound understanding that allows deriving a judgement.
	Examples: “What are the specific steps in pleuracentesis and what should I pay attention to?” (clinically practical abilities); “I’d like to learn how to interpret the collected findings” (diagnostic methods); “I’d like to understand therapy with medication and be able to adjust it for patients’” (therapeutic principles and medication); “I’d like to attend critical dialogues with patients/relatives, thereby picking up future strategies” (professional communication); “I’d like to learn which aspects are listed in the doctor’s letter and how the document is written” (working routine on the ward)
Professional practice	Ability to fulfill activities in the medical workplace.
	Examples: “I’d like to establish vascular access, at least five times and in only 15 minutes at the pneumology department” (clinically practical abilities); “I’d like to make the diagnosis along with the physicians by means of the examination results” (diagnostic methods); “I’d like to discuss a sensitive diagnosis with a patient, in a time span of 30 minutes at the oncology department” (professional communication); “I’d like to perform medical ward rounds” (working routine on the ward); “I’d like to be well prepared for performance recording” (exam preparation);
Others	Knowledge acquired by observation and exposure to new, especially interpersonal clinical situations.
	Examples: “I’d like to see specific therapies in oncology” (therapeutic principles and medication); “I’d like to improve my social skills handling patients” (professional communication); “I’d like to see everyday life of a cardiology assistant doctor” (working routine on the ward); “I’d like to be included in the team and be involved in decision making processes” (others)

Figure 2: Comparison of the distribution of CLs in combination with self-chosen LOs, featured by absolute frequencies. A similar pattern occurred for the specified CLs. In the first survey, the collected data showed a 76%-77% probability, and the actual fulfilment decreased to 67%-73%. Figure 4 shows that statistically different alterations appeared for “procedural knowledge” and “professional practice”. The qualitative content analysis on the barriers and enablers of LO achievement provides more clarity which sets of subcategories in the dimensions “student”, “teacher” and “context” are relevant to our problem. 73.5%
(n=1062) of the medical students completed this question. Each given argument was scrutinized for either of two functions: if positively worded, it was classified as enabler, or, if negatively worded, as barrier. Table 2 provides information on the identified subcategories. Figure 5 differentiates to which proportion the medical students specified these factors as barriers or enablers. Aside this information, those factors significantly affecting goal achievement of students are highlighted. Details on comprising content of the boxes follow in the next paragraph.

“Practical exercise” was specified by 31% of the medical students as the cause of learning progress (see table 2). While 16% of this group complained about insufficient practical experience during the clinical clerkship, 84% considered the opposite as true. The latter group achieved

Table 2: Dimensions for learning progress

Dimension for learning progress with subcategories	Frequency (n=1062)	Percent
STUDENT		
complexity of tasks	136	9%
original formulation of learning objectives	177	12%
mastery of challenges (personal initiative)	338	23%
practical exercise	442	31%
TEACHER		
feedback	160	11%
teaching and knowledge transfer by the physicians	161	11%
engagement of the physicians and other medical staff	383	27%
CONTEXT		
patient care unit and their clinical pictures	218	15%
timescale	220	15%
mode of work organisation and resource management	222	15%
the self-chosen LO by 72%, whereas poor practical experience resulted in 48% LO achievement (difference 24%). Impact of the "engagement of the physicians and other medical staff" on the achievement of the LOs was mentioned by 27% of the participants. 24% from this group felt hampered by missing clinicians’ commitment, and 76% stated they felt supported to achieve their self-chosen LOs when they perceived engagement. This resulted in 30% better goal achievement. “Personal initiative” to master the upcoming challenges was indicated with a 23% frequency. Thereby, 5% admitted to an own deficit (= barrier), whereas 95% recognized the added value of being personally proactive. The benefit towards goal achievement with this learning strategy was self-estimated by 19%. Figure 5 displays all significant delta values of goal achievement comparing both conditions (barrier versus enabler).

Discussion

This study was conducted over a period of three years. Before entering a one-week clinical clerkship, medical students specified different LOs which were empirically coded and analysed. The method to self-specify needs when problem-solving fits in current research and investigates how learning progress might be supported [24]. None of the LOs on its own is a guarantee for sufficient working experience but the results of the needs assessment provide a more comprehensive picture. Referring to the NKLM, we could demonstrate that the medical students require competences of all sections mentioned in the catalogue. Most often they specified LOs in the field of medical knowledge, clinical skills and professional attitudes, which builds one block in the NKLM. The acquisition of “clinically practical abilities”, “diagnostic methods” and “therapeutic principles and medication” is of special interest to the medical students. On this condition we might make two assumptions:

1. the medical students know their own deficits when facing the clinical clerkship and try their best to eliminate their knowledge gaps
2. the medical students specify especially those LOs for which they anticipate good performance in knowledge-based and clinical assessments

We suppose that the specified LOs are a true representation of the needs that medical students have as they were novices in the clinical practice. The transition to the clinical part requires adjustments in the way of learning and many studies have shown that students do not adapt easily [6], [25]. Learning strategies that worked well in preclinical years are likely to be to the detriment of skill development during the rotations in the clinical environment [26], [27]. By means of, for instance self-directed learning, medical education could facilitate the process of adaption.

As the third most common of all LOs, the medical students specified the category “professional communication”. This outcome indicates that there is a need to empathize with the physician roles. However, it appears that medical curricula verbalize this competence only informally. So far, some researchers have questioned the so called “hidden” parts of medical curricula [28], [29], [30]. Our results confirm the prior importance of specific role education and training as key enabler for fulfilment of the role as a physician. As a matter of fact, it should be emphasized, such training cannot be approached in generalized manner (viz. a one-fits-all approach), but requires
individual adaption to a certain student’s strength/weaknesses.

Regarding the specified CLs, the high priority of “professional practice” and “procedural knowledge” is evident. This priority setting indicates the importance and notable challenge in gaining autonomy in medical practice and execution (the latter as THE major generic aspect required in the role training; refer to the prior paragraph). This observation cannot be related to a single reason, yet it should be regarded as a multi-root cause consequence, as follows:

1. late specialization, i.e. the multitude for mandatory courses in the curriculum hampers students’ self-directed learning skills [31],
2. ratio practical/theoretical education not appropriately balanced,
3. insufficient implementation/integration of medical quality control circles, with activities following the Deming cycle comprising the iterative for steps of plan-do-study-act (PDSA cycle) [32],
4. not all aspects of self-education/optimization can be sufficiently emulated in curricular training (even not more or less artificially scenario courses), but require experience collection during years of practice.

Interestingly, the medical students gave high accuracy ratings to the actual fulfilment of their self-chosen LOs (85%-95%) and CLs (89%-96%). While at first glance their self-assessment skills seem well-functioning, this positive self-evaluation also could have other possible causes: the students may have chosen less challenging tasks where they could demonstrate competence even though they might not have learnt anything new (see first paragraph of the discussion). Or, simultaneously, the psychological phenomenon of the so called Barnum effect might have influenced the observed response behaviour which generally occurs if someone is in the faith that something (here: the self-chosen LOs) is tailored specifically to him [33]. To meet these uncertainties and for a valid comparison, a teachers’ assessment of the students’ performance or – even better – examination results are needed. The results of the descriptive analysis of the barriers and enablers to learning progress confirm our above suggested arguments (i – iv). The concrete propositions used by the medical students underline these sweeping statements of what actions should be taken from an educational perspective. While the medical students recognize themselves as an important influencing factor in the achievement of their LOs, they consider the factors of teacher and context as relevant, too. Herein, from a strategic perspective, maintaining consistency is a logistical administrative challenge inherent to all small group teaching [34]. In the one-week clinical clerkship, with a maximum of two students per patient care unit, the implementation of the self-directed learning component depends on a bouquet of variables amongst them major drivers might be

1. student premedical experience,
2. facilitator expertise or
3. facilitator personal preferences.

The presence of a student in his or her practical year who provides careful supervision might be beneficial. To sum up, achieving consistency among the attendees is a point to bear in mind before setting the exact points at which the medical curriculum shall be reformed. Furthermore, it is absolutely necessary to conduct a second survey in which also teachers of the same peer-group of the actual questioned students are interviewed.

Conclusion and outlook

Clerkships frequently serve as connection between acquired clinical knowledge and professional performance at the work setting. In this study, we used the concept of self-directed learning to enable medical students to close knowledge gaps. As this was a qualitative study, properties of the LOs like specificity and difficulty could not be stipulated. However, close proximity and self-evaluation were warranted. According to the concept of self-direction, priority setting of goals (here: LOs) inculcates responsibility in learners to fulfill tasks [14]. At best, it triggers supplementary key processes which many students lack like time management, learning strategies, self-attributions, seeking help and information, and important self-motivational beliefs, such as self-efficacy and intrinsic task interest. On this basis, we now need a controlled study that shows the difference in the achievement of LOs depending on given versus self-chosen LOs. A comparison between self-evaluation and exam results will eliminate bias caused by psychological phenomenon.

Abbreviations

- NKLM: German National Catalogue of Competence-Based Learning Objectives for Undergraduate Medical Education
- LMU: Ludwig-Maximilians-Universität
- LO: learning objective
- CL: competency level

Ethics approval

All analysed data was part of the routine course assessment. The data collection and analysis were completely anonymous. According to the ethical committee of the University Hospital Munich formal consent by the students was not necessary.

Authors’ contributions

NR served as responsible person for analysis and interpretation of the data, including statistics, and the drafting and finalisation of the manuscript. CL and LB substantially contributed to the study conception and design, the col-
lecion and interpretation of the data and the revision of the paper. **BL** and **JF** revised the final manuscript. **MF** contributed to the study design and final version of the manuscript. **RS** designed the study, contributed to data collection, analysis and interpretation, and the drafting and revision of the paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

1. Thomas PA, Kern DE, Hughes MT, Chen BY. Curriculum development for medical education: a six-step approach. 3rd ed. Baltimore: JHU Press; 2016.

2. Gensichen J, Fischer M, Schelling J, Lauffer LM. Lernziele und spezifische Curriculumsentwicklung für die Allgemeinmedizin an der LMU München. Online ZFA. 2019;8(9):274-278.

3. Bachli P, Meindl-Fridez C, Weiss-Breckwoldt AN, Breckwoldt J. Challenging cases during clinical clerkships beyond the domain of the "medical expert": an analysis of students’ case vignettes. GMS J Med Educ. 2019;36(3):Doc30. DOI: 10.3205/zaa001238

4. Schneider D, Roos M, Steinhäusler J. Mit welchem Kompetenzniveau kommen ärztliche Berufsanfänger im Beruf an? Eine Befragung von Weiterbildungsabsolventen in Bayern. Z Evid Fortbild Qual Gesundheitswesen, 2016;115:79-84. DOI: 10.1016/j.zefq.2016.08.001

5. Donnan T, Boshuizen H, King N, Scherbibier A. Experience-based learning: a model linking the processes and outcomes of medical students’ workplace learning. Med Educ. 2007;41(1):84-91. DOI: 10.1111/j.1365-2929.2006.02652.x

6. Ryan MS, Feldman M, Bodamer C, Browning J, Brock E, Grossman C. Closing the Gap Between Preclinical and Clinical Training: Impact of a Transition-to-Clinship Course on Medical Students’ Clerkship Performance. Acad Med. 2020;95(2):221-225. DOI: 10.1097/ACM.0000000000002934

7. Wood DF. Problem based learning. BMJ. 2003;326(7384):328-330. DOI: 10.1136/bmj.326.7384.328

8. Kiesewetter J, Ebersbach R, Tsalsal N, Holzer M, Schmidmaier R, Fischer MR. Knowledge is not enough to solve the problems - The role of diagnostic knowledge in clinical reasoning activities. BMC Med Educ. 2016;16(1):303. DOI: 10.1186/s12909-016-0821-z

9. Schmidmaier R, Eber S, Ebersbach R, Schiller M, Hege I, Holzer M, Fischer MR. Learning the facts in medical school is not enough: which factors predict successful application of procedural knowledge in a laboratory setting? BMC Med Educ. 2013;13:28. DOI: 10.1186/1472-6920-13-28

10. Förtsch C, Sommerhoff D, Fischer F, Fischer MR, Girwitz R, Obersteiner A, Reiss K, Stürmer K, Siebeck M, Schmidmaier R, Seidel T, Ufer S, Wecker C, Neuhaus BJ. Systematising Professional Knowledge of Medical Doctors and Teachers: Development of an Interdisciplinary Framework in the Context of Diagnostic Competences. Educ Sci. 2018;8(4):207. DOI: 10.3390/eduocs8040207

11. Miller GE. The assessment of clinical skills/competence/performance. Acad Med. 1990;65(9):S63-S67. DOI: 10.1097/00001888-199009000-00045

12. Ramamurthy S, Er HM, Devi Nadarajah V, Radhakrishnan AK. Medical students’ orientation toward lifelong learning in an outcome-based curriculum and the lessons learnt. Med Teach. 2019;1-6. DOI: 10.1080/0142159X.2019.1646894

13. Panadero E. A Review of Self-regulated Learning: Six Models and Four Directions for Research. Front Psychol. 2017;8(422):1-28. DOI: 10.3389/fpsyg.2017.00422

14. Zimmerman BJ. Becoming a Self-Regulated Learner: An Overview. Theory Into Practice. 2002;41(2):64-70. DOI: 10.1207/s15430421tp4102_2

15. Cho KK, Marjadi B, Langendyck V, Hu W. Medical student changes in self-regulated learning during the transition to the clinical environment. BMC Med Educ. 2017;17(1):59. DOI: 10.1186/s12909-017-0902-7

16. White CB. Smoothing Out Transitions: How Pedagogy Influences Medical Students’ Achievement of Self-regulated Learning Goals. Adv Health Sci Educ Theory Pract. 2007;12(3):279-297. DOI: 10.1007/s10459-006-9000-z

17. Walling A, Merando A. The fourth year of medical education: a literature review. Acad Med. 2010;85(11):1698-1704. DOI: 10.1097/ACM.0b013e3181f2dc6

18. Keator C, Vandre D, Morris A. The challenges of developing a project-based self-directed learning component for undergraduate medical education. Med Sci Educ. 2016;26(4):801-805. DOI: 10.1007/s40670-016-0298-9

19. Doran GT. There’s a SMART way to write management’s goals and objectives. AMA Forum. 1981;70(11):35-36.

20. Fischer MR, Bauer D, Karin Mohn N. Finally finished! national competence based catalogues of learning objectives for undergraduate medical education (NKLM) and dental education (NKLZ) ready for trial. GMS Z Med Ausbild. 2015;32(3):Doc35. DOI: 10.3205/zaa000977

21. Mayring P. Qualitative Inhaltsanalyse. Handbuch qualitativer Forschung in der Psychologie. Heidelberg, Berlin: Springer; 2010. p.601-613. DOI: 10.1007/978-3-531-92052-8_42

22. Hmelo-Silver CE. Problem-based learning: What and how do students learn? Educ Psycho Rev. 2004;16(3):235-266. DOI: 10.1023/B:EDPR.0000034022.16470F

23. Kim MK. Models of learning progress in solving complex problems: Expertise development in teaching and learning. Contemp Educ Psychol. 2015;42:1-16. DOI: 10.1016/j.cedpsych.2015.03.005

24. Ravens-Tauber G, Wunder A, Gütthin C, Koné I. Checkliste Blockpraktikum Allgemeinmed. Online ZFA. 2019;7(949):307-313.

25. Demioren M, Turan S, Oztuna D. Medical students’ self-efficacy in problem-based learning and its relationship with self-regulated learning. Med Educ Online. 2016;21:1-9. DOI: 10.3402/meo.v21.30049

26. Cartier S, Plante A, Tardif J. Learning by Reading: Description of Learning Strategies of Students Involved in a Problem-Based Learning Program. Montréal: Université de Montréal; 2001.

27. Woods NN, Melous B, Ely ES, Blyth N. Informal self-regulated learning: an analysis of students’ case vignettes. Acad Med. 2007;82(11):1066-1073. DOI: 10.1097/00001888-199804000-00013

28. Röcker et al.: Implementation of self-directed learning within clinical ...
30. Holmes CL, Harris IB, Schwartz AJ, Regehr G. Harnessing the hidden curriculum: a four-step approach to developing and reinforcing reflective competencies in medical clinical clerkship. Adv Health Sci Educ Theory Pract. 2015;20(5):1355-1370. DOI: 10.1007/s10459-014-9558-9

31. Mueller S, Weichert N, Stoecklein V, Hammitzsch A, Pascuito G, Krug C, Holzer M, Pfeiffer M, Siebeck M, Schmidmaier R. Evaluation of effectiveness of instruction and study habits in two consecutive clinical semesters of the medical curriculum Munich (MeCuM) reveals the need for more time for self study and higher frequency of assessment. BMC Med Educ. 2011;11:62. DOI: 10.1186/1472-6920-11-62

32. Deming WE. The New Economics. Cambridge, MA: MIT Press; 1993. p.135.

33. Dickson D, Kelly IW. The ‘Barnum Effect’in personality assessment: A review of the literature. Psychol Rep. 1985;57(2):367-382. DOI: 10.2466/pr0.1985.57.2.367

34. Morrow G, Rothwell C, Wright P. Self-directed learning groups: a vital model for education, support and appraisal amongst sessional GPs. Educ Prim Care. 2012;23(4):270-276. DOI: 10.1080/14739879.2012.11494120

Corresponding author:
Navina Röcker
Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Ziemssenstr. 1, D-80336 Munich, Germany, Phone: +49 (0)89/4400-52221
navina.roecker@med.uni-muenchen.de

Please cite as
Röcker N, Lottspeich C, Braun LT, Lenzer B, Frey J, Fischer MR, Schmidmaier R. Implementation of self-directed learning within clinical clerkships. GMS J Med Educ. 2021;38(2):Doc43. DOI: 10.3205/zma001439, URN: urn:nbn:de:0183-zma0014394

This article is freely available from https://www.egms.de/en/journals/zma/2021-38/zma001439.shtml

Received: 2020-04-29
Revised: 2020-09-03
Accepted: 2020-09-30
Published: 2021-02-15

Copyright
©2021 Röcker et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Implementierung selbstgesteuerten Lernens in klinische Praktika

Zusammenfassung

Hintergrund: Das höchste Ziel medizinischer Praktika ist es, die Studierenden auf ihren ersten Arbeitstag vorzubereiten. Obwohl die Lehre von klinischer Kompetenz von zentraler Bedeutung ist, bieten klinische Praktika oftmais die letzte Gelegenheit, Wissenslücken mit der Hilfe eines Lehrers aus dem klinischen Bereich zu schließen. Selbstgesteuertes Lernen erweist sich als ein dynamisches Forschungsgebiet in der medizinischen Ausbildung, und dennoch erfolgt keine curriculare Implementierung nur selten. Die vorliegende Studie konzentriert sich unter Anwendung des Konzepts des selbstgesteuerten Lernens auf die allgemeine Bedarfsanalyse klinischer Praktika.

Methoden: Die Studie umfasste eine Lernerfahrung an der Ludwig-Maximilians-Universität (LMU) München. Medizinstudenten (n=1446, 59% weiblich) aus dem zweiten klinischen Jahr wurden angeleitet, Lernziele (LZ) mit Hilfe von Doran`s SMART Kriterien zu spezifizieren. Vor Aufnahme des Pflichtpraktikums sollten sie abschätzen, wie wahrscheinlich sie es hielten, diese LZ zu erfüllen. Eine Woche später schätzten sie in einem zweiten Fragebogen ihre tatsächliche und subjektive Zielerreichung. Die erhobenen Daten wurden mit Bezug auf den deutschen Nationalen Kompetenzbasierten Lernzielkatalog Medizin (NKLM) codiert und qualitativ untersucht. Weiterhin wurden bestimmende Faktoren für die Zielerreichung erhoben, und binär codiert (Hindernis vs. Wegbereiter). Sofern angemessen, fand die Methode der univariaten Datenanalyse Anwendung.

Ergebnisse: Das Erreichen von „Klinisch-praktische Fertigkeiten“ (29%), „Diagnostische Verfahren“ (21%) und „Ärztliche Gesprächsführung“ (13%) waren die am häufigsten angeführten LZ. Im Laufe der Woche nahm die Zuversichtlichkeit in die Zielerreichung ab. Letztere wurde höher bewertet sofern es reichlich (vs. wenig) Möglichkeiten gab für „Praxisübung“ (31%), „Engagement der Ärzte und des medizinischen Personals“ (27%) und „Eigeninitiative“ (23%).

Schlussfolgerungen: Die selbstgewählten LZ sind ein Spiegel des Bedarfs von Studierenden, auf welchen die Lehrer vorbereiten sich sollten. Unter Berücksichtigung dieser Ergebnisse könnten Lücken in der praktischen Ausbildung möglicherweise geschlossen werden. Wir unterstützen die Überlegung, selbstgesteuertes Lernen in klinischen Praktika curricular zu verankern. Mit Hilfe weiterer empirischer Studien sollten die positiven Effekte auf den Lernfortschritt eindeutig herausgestellt werden.

Schlüsselwörter: curriculare Entwicklung, klinisches Praktikum, Lernziel, selbstgesteuertes Lernen, medizinische Ausbildung

Hintergrund

Die Entwicklung akademischer Curricula ist grundlegend um die medizinische Ausbildung zu verbessern. Curriculare Modelle geben eine klare Struktur vor, nach welcher eine geplante Lernerfahrung am besten zum Lernerfolg beiträgt [1]. Neben anderen Lehrmethoden, seien es Seminare oder Simulationstraining, sind klinische Praktika wesentlich um dem Studenten das Wissen zu vermitteln, welches sie für ihre spätere Praxis brauchen. Hierbei schafft ein einheitlich verbindlicher Lehrplan in Form eines medizinischen Curriculums für klinische Praktika nicht nur mehr Transparenz für die Studierenden, sondern auch für ihre Lehrer [2]. Qualitätsmaß eines klinischen Praktikums ist es, wie sehr es den Medizinstudierenden hilft, Arbeitserfahrung zu sammein und praktische Fertigkeiten zu erlangen [3]. Dies ist ein äußerst entscheiden-
der Punkt, denn sogar junge Ärztinnen und Ärzte haben Schwierigkeiten die Theorie in die Praxis umzusetzen [4]. Praktische Fertigkeiten können sich allerdings nur dann entwickeln und geübt werden, wenn es ein gefestigtes Verständnis und Wissen in dem Gebiet gibt. Daher ist es das höchste Ziel klinischer Praktika Wissenszuwachs durch problembasiertes Lernen zu generieren [5], [6], [7]. Wissen per se in der Medizin schließt einige verschiedene Komponenten ein: differenziert werden Faktenwis- sen (engl. conceptual knowledge), strategisches Wissen (strategic knowledge), Begründungswissen (conditional knowledge) und Handlungswissen (procedural knowledge), wobei diese die Vielgestaltung von passiver Beobachtung bis hin zu eigener Durchführung abbilden [8], [9]. Ein höheres Wissensniveau korreliert nicht nur mit verbessertem Lernfortschritt, sondern auch einer ausgeprägteren Handlungskompetenz [10]. Je nachdem welches Kompetenzniveau (siehe hierzu insbesondere die sogenannte Miller-Pyramide ; d. h. „knows, knows how, shows how and do“ [11]) ein Student zeigen können muss, nachdem er ein solches klinisches Praktikum absolviert hat, ist von entscheidender Bedeutung in der Curriculumentwicklung. Außer der eben erwähnten strukturierten Form der Ausbildung, ist das zweite Prinzip, welches für die Entwicklung medizinischer Fertigkeiten im grundständigen Studium zentral ist, das selbstgesteuerte Lernen L5, [12]. Hierbei sind der individuelle Antrieb unabhängig zu lernen sowie die intrinsische Motivation die zwei vorstehenden Eigenschaften. Als Geisteshaltung wurde selbstgesteuertes Lernen in der Literatur vielfach untersucht [13], [14]. Obwohl es begründeter Weise anzunehmen ist, dass diese nicht-praktisch orientierte Kompetenz Medizinstudierenden helfen könnte, sich an die Herausforderungen im klinischen Umfeld anzupassen [15], [16], erfolgt ihre Implementierung in ein medizinisches Curriculum nur selten [17]. Ein dafür ursächlicher und entscheidender Faktor könnte es sein, dass eine allgemein gültige Vorlau- ge, anhand derer neuartige Konzepte zum selbstgesteu- erten Lernen entworfen werden könnten, nicht existiert. Im Allgemeinen entspricht die Idee des selbstgesteuerten Lernens der des lebenslangen Lernens. Eine der größten Hürden ist es, den Medizinstudenten ihre Wichtigkeit zu vermitteln, gerade innerhalb der begrenzt zur Verfügung stehenden Zeit (d. h. ein Blockpraktikum). Nichtsdestotrotz weniger ist es möglich die Aufgeschlossenheit der Studie- renden zu fördern, indem umfänglich erläutert wird, welcher Absicht sich hinter selbstgesteuertem Lernen verbirgt [18].

In diesem Zusammenhang war das Ziel der vorliegenden Studie die kritische Bedarfsanalyse von Medizinstudierenden, welche dabei sind, das Blockpraktikum aufzuneh- men. Im Speziellen wollten wir ermitteln, ob die eigenständige Lernzieldefinition von Medizinstudierenden zum subjektiven Lernfortschritt führt. Diese Herangehensweise entspricht dem Konzept des selbstgesteuerten Lernens und stellt möglicherweise einen alternativen Lösungs- weg dar zu den strukturierten Ansätzen, welche gefahren werden um den Lernfortschritt zu verbessern, beispiels- weise vorgegebene Dokumentationschecklisten. Konkret hatten wir die Absicht folgenden Forschungsfragen zu beantworten:

1. Welche selbstgewählten Lernziele (LZ) und Kompeten- zebenen (KE) werden für das klinische Praktikum genannt?
2. Welche der selbstgewählten LZ und KE konnten die Medizinstudierenden während ihres klinischen Praktikums tatsächlich erreichen?
3. Mit welchen Hindernissen und Wegbereitern werden die Medizinstudierenden konfrontiert, die Einfluss darauf haben, ob die LZ erreicht werden können oder nicht?

Um Antwort auf diese Forschungsfragen zu geben, führten wir eine Studie unter Medizinstudierenden durch, die ihre theoretischen und praktischen Prüfungen in der Inneren Medizin erfolgreich absolviert hatten und nun unmittelbar vor ihrem verpflichtenden Blockpraktikum Innere Medizin standen.

Methoden
Setting und Stichprobe

Die Studie umfasste den Erhebungszeitraum von April 2016 bis März 2019 an der Ludwig-Maximilians-Universität (LMU) München. Während dieses Zeitraums erfolgten keine curricularen Veränderungen oder Neubestellungen des Lehrpersonals. Zuerst erhielten die in ihrem zweiten klinischen Jahr befindlichen Teilnehmer eine kurze Ein- weisung darin, wie individuelle LZ zu spezifizieren sind. Diese Schulung baute auf dem bisherigen Wissen der Medizinstudierenden zum Umgang mit LZ auf und wurde unterstützt durch weitere verlinkte Dokumente, die sie bereits im Rahmen abgeschlossener E-Learning Module bearbeitet hatten. Um ihre Aufmerksamkeit auf ihre individuellen Wissenslücken in den angegebenen Teilbereichen zu lenken, erhielten sie außerdem Zugang zu einem spezifischen Selbstbewertungsinstrument. Anschließend füllten die Studenten zweimal einen Online- Fragebogen aus, davon einen im Vorfeld zum Wochenpraktikum in der Inneren Medizin und den zweiten danach. Insgesamt machten 1446 Medizinstudenten (59.1% weiblich) Angaben im Online-Fragebogen, für welche sie die Aufforde- rung zur Teilnahme per E-Mail erhalten hatten. Es wurde mitgeteilt, dass die Teilnahme für das erfolgreiche Beste- hen des Kurses verpflichtend ist. Die Rücklaufquote be- trug 85% für den ersten, und 92% für den zweiten Frage- bogen. In beiden Umfragen spezifizierten die Studenten mindestens drei LZ. Die Anweisungen wie die LZ aufzu- setzen sind, entsprachen Dorans SMART Kriterien. Letztendlich zieht es zur eindeutigen Zieldefinition die Bedeutung von „spezifischen, messbaren, erreichbaren, realistischen und terminierten Zielen“ heran [19]. Mit der individuellen LZ-Angabe sollten die Medizinstudierenden auch abschätzen wie wahrscheinlich sie es hielten, diese
zu erreichen. Am ersten Praktikumstag hatten sie die Möglichkeit ihre individuellen und strukturierten LZ mit ihrem jeweiligen Betreuer zu erörtern. Eine Beurteilung der Güte der LZ (d.h. zu einfach oder zu schwer) fand nicht statt, aber individuelle Unterstützung bei der Zielerreichung wurde eingeräumt. Daran schloss sich die praktische Phase des Kompetenzerwerbs an, im Anschluss an welche die Medizinstudierenden die tatsächliche subjektive LZ-Erreichung bewerteten. Die Differenz zwischen diesen Bewertungen (vorher vs. nachher) wurde als subjektiver Lernfortschritt verstanden. Des Weiteren wurden die selbsteingeschätzten Gründe für den Erfolg oder Misserfolg der Zielerreichung während des Praktikums erfasst. Abbildung 1 veranschaulicht den Ablauf der Studie mit Unterrichtung in die SMART Kriterien, einleitender und abschließender Online-Umfrage, und der dazwischenliegenden Lernerfahrung, welche im Blockpraktikum umgesetzt wurde.

Ein Codierschema wurde anhand des deutschen Nationale Kompetenzbasierten Lernzielkatalogs Medizin (NKLM) für die medizinische Ausbildung erstellt. Dieses Rahmen- dokument verschafft Klarheit darüber, welches Wissen und welche Fertigkeiten ein Arzt genau haben sollte, der jüngst seinen Abschluss gemacht hat [20]. Zum Aufsetzen der LZ-Kategorisierung wurde ein induktives Vorgehen gewählt: gemäß den Empfehlungen von Mayring [21] wurde eine entsprechende Stichprobengröße der Fragebögen – in etwa 20% des gesamten Materials – analysiert in Hinblick auf wiederkehrende studentische Aussagen. Auf Basis dieser Auswertung wurde weiter vorgegangen mit einem „Best-Match“-Ansatz zum NKLM, so dass daraus unten stehende Kategorien resultierten. Sobald einmal festgelegt, wurde der Induktionsschritt ausgeführt: die Anwendung des Schemas auf die gesamte Stichprobengröße. Letzteres konnte ohne jegliche Abweichungen erfolgen (d.h. zusätzliche Kategorien waren nicht erforderlich, auch nicht für Einzelproben). Schlussfolgernd war die gewählte Kategorien-Teilmenge komplett um unser Problem zu lösen, während ihre innere Orthogonalität im Vorfeld gewährleistet war, indem wir uns ausschließlich auf den NKLM bezogen. Das finale Profil der acht verschiedenen LZ-Kategorien setzte sich folgendermaßen zusammen:

1. Klinisch-praktische Fertigkeiten
2. Diagnostische Verfahren
3. Therapeutische Prinzipien und Medikation
4. Beratungsanlässe
5. Ärztliche Gesprächsführung
6. Arbeitsalltag auf Station
7. Prüfungsvorbereitung
8. andere

Definitionsgemäß beschreibt der NKLM die Lerntiefe in sogenannten Kompetenzebenen (KE). Der Lernzielkatalog unterscheidet hierbei zwischen „Faktenwissen“, „Handlungs- und Begründungswissen“ und „Handlungskompetenz“, wobei diese drei Ebenen mit zunehmender beruflicher Unabhängigkeit aufeinander aufbauen. Da wir die Medizinstudierenden nicht explizit darum baten, KE zu spezifizieren, erfolgte die Kategorisierung jeder einzelnen Aussage mittels deduktiver Kategorienanwendung des NKLM. Um unser Problem zu lösen, d.h. alle studentischen Aussagen zu erfassen, wurde dieses dreiteilige KE-Set um eine vierte Kategorie („andere“) ergänzt, in welche alle nicht weiter spezifizierten LZ aufgenommen wurden. Die in dem Codierschema angewandten Definitionen sind in Tabelle 1 dargestellt.

Ein letztes Item in dem Fragebogen erfasste, wie die Medizinstudierenden es sich erklärten, dass sie ihre selbstgewählten LZ erreicht (vs. verfehlt) hatten. Auf Ebene der Studenten war das gewonnene Bouquet an Argumenten ausreichend umfangreich. Dieses auf ein einzelnes LZ zu beziehen ist allerdings unangemessen, da es die Rückschau des gesamten Blockpraktikums darstellt. Die erhobenen Aussagen wurden mittels prozessbasierter Kategorienbildung ausgewertet (vgl. oben erwähnte Methodik). Nachdem der Lernfortschritt das Resultat ist aus der Interaktion zwischen Studierenden, Lehrenden und der Lernumgebung (d.h. Kontext) [22], [23], fand hierbei ein „Best-Match“ zu dieser Drei-Faktoren-Kategorisierung statt. Die Zuweisung zu den Unterkategorien geschah binär: bei positiver Formulierung wurden die Unterkategorien als Wegbereiter bewertet. Umgekehrt wurden sie bei negativer Formulierung als Hindernis für das Erreichen der LZ eingestuft.

Datenanalyse

Die Analyse der Daten wurde mit Hilfe der gängigen Statistiksoftware aus dem wissenschaftlichen Bereich durchgeführt (SPSS 25.0, SPSS Inc., Chicago, IL). Zwei der Autoren diskutierten gemeinschaftlich alle Aussagen
Tabelle 1: Operationalisierte Definitionen der Kompetenzebenen

Dimension	Operationalisierte Definition und Beispiele
Faktenwissen	Sachkenntnisse, idente Inhalte ("Wissen aus dem Lehrbuch"). Beispiele: "Ich möchte invasive Methoden kennen" (klinisch-praktische Fertigkeiten); "Ich möchte die klinisch-diagnostischen Verfahren für die meisten kardiovaskulären Erkrankungen wissen" (diagnostische Verfahren); "Ich möchte mehr wissen zur medikamentösen Therapie in der Onkologie und wie sie anzuwenden ist" (therapeutische Prinzipien und Medikation); "Ich möchte weitere Risikofaktoren für die COPD kennen lernen" (Beratungsanlässe); "Ich möchte mit Hintergrundwissen zur IT arbeiten, einschließlich der Abrechnung und DRGs" (andere)
Handlungs- und Begründungswissen	Kenntnisse über Handlungen, ein tiefes Verständnis welches zur Urteilsbildung beiträgt. Beispiele: "Welche spezifischen Schritte gibt es bei der Pleurazerreißung und worauf muss ich achten?" (klinisch-praktische Fertigkeiten); "Ich möchte Befunde interpretieren können" (diagnostische Verfahren); "Ich möchte die Medikamententherapie verstehen und in der Lage sein, sie für die Patienten anzupassen" (therapeutische Prinzipien und Medikation); "Ich würde gerne bei entsprechenden Gesprächen mit Patienten und ihren Angehörigen dabei sein, um mir Strategien für die Zukunft abzuarbeiten" (ärztliche Gesprächsführung); "Ich möchte lernen welche Aspekte ein ärztlicher Arzt für eine Patientensicherheit unterstreicht" (Prüfungsvorbereitung)
Handlungskompetenz	Fähigkeit am medizinischen Arbeitsplatz Aktivitäten durchzuführen. Beispiele: "Ich möchte einen venösen Zugang legen, manchmal fünf Mal und innerhalb von nur 15 Minuten auf der pneumologischen Station!" (klinisch-praktische Fertigkeiten); "Ich möchte zusammen mit den Ärzten anhand der Untersuchungsergebnisse die Diagnose stellen" (diagnostische Verfahren); "Ich möchte eine vertrauliche Diagnose mit einem Patienten besprechen, innerhalb von 30 Minuten auf der onkologischen Station" (ärztliche Gesprächsführung); "Ich möchte Stationsbesuche durchführen" (Arbeitssattag auf Station); "Ich möchte die Leistungserfassung gut vorbereitet sein" (Prüfungsvorbereitung)
Andere	Durch Beobachten erworbene Kenntnisse und die Aufnahme von neuen, insbesondere zwischenmenschlichen klinischen Situationen. Beispiele: "Ich möchte die für die Interna spezifische Therapie sehen" (therapeutische Prinzipien und Medikation); "Ich möchte meine sozialen Fertigkeiten im Umgang mit den Patienten verbessern" (ärztliche Gesprächsführung); "Ich möchte den Arbeitstag eines Assistenzärztes in der Kardiologie mitverfolgen" (Arbeitssattag auf Station); "Ich wünsche mir ins Team aufgenommen und in Entscheidungsprozesse involviert zu werden" (andere)

... und wiesen diese den festgelegten LZ-Kategorien und den oben beschriebenen operationalisierten KE-Definitionen zu. Die Auswertung umfasste die Daten von 1446 Teilnehmern. Wenn sich hinter einer einzelnen Aussage verschiedene LZ-Kategorien oder verschiedener Kategorien der Kompetenzebene verbargen, war ihre Zuweisung nicht auf nur eine Kategorie beschränkt (Beispielaussage mit gleichzeitiger Zuordnung zu LZ-Kategorie (1) und (2): "Ich möchte ein EKG ableiten und interpretieren"). Dieses Vorgehen beinhaltete, dass insgesamt 10.754 Fälle in die Analyse eingingen. Beispiele sind in Tabelle 1 zu sehen.

Die Verteilung der KE in Verbindung mit den selbstgewählten LZ wurde mit Hilfe von Kreuztabellen untersucht. Chi-Quadrat Tests sollten potentielle Unterschiede in den LZ oder KE aufdecken je nach Teilnehmermerkmalen wie etwa Geschlecht. Deskriptive Analyse und vergleichende Mittelwertsberechnungen wurden herangezogen, um auf Unterschiede im Erreichen der selbstgewählten LZ und KE zu prüfen. Die Selbsteinschätzung der Medizinstudierenden hinsichtlich dem Erfüllen ihrer selbstgewählten LZ wurde für die univariate Analyse binär aufgesetzt (Hindernis oder Wegbereiter). Alle Signifikanztests basierten auf dem vorab definierten Wert von p<0.05. Sobald mit den Daten mehrfach Vergleiche angestellt wurden, korrigierten wir den erhöhten alpha-Fehler nach Bonferroni und berichten signifikante Ergebnisse entsprechend.

Ergebnisse

Das Material zeigte eine große Verteilung an selbstgewählten LZ, wobei diese unterschiedliche KE aufwiesen. Insgesamt waren die am häufigsten genannten KE „Klinisch-praktische Fertigkeiten“ (29%), „Diagnostische Verfahren“ (21%) und „Ärztliche Gesprächsführung“ (13%). Alle LZ beinhalteten das gesamte KE-Spektrum. Die Medizinstudierenden spezifizierten überwiegend die KE „Handlungs-Kompetenz“ (38%) und „Handlungs- und Begründungswissen“ (33%), „Faktenwissen“ sowie „anderes“ wurden seltener erwähnt (beide zu 14%). Abbildung 2 zeigt, wie oft jede der vier Kompetenzebenen in den einzelnen LZ-Kategorien vertreten ist. Die KE „Handlungs-Kompetenz“ stand an erster Stelle in der LZ-Kategorie „Prüfungsvorbereitung“ (46%), „Handlungs- und Begründungswissen“ hing am deutlichsten mit der LZ-Kategorie „Diagnostische Verfahren“ (40%) zusammen, und die KE „Faktenwissen“ tauchte vornehmlich innerhalb der LZ-Kategorie „Beratungsanlässe“ (23%) auf. Die Kategorie der KE “anderes” zeigte sich vorwiegend innerhalb der Kategorie „Arbeitsalltag auf Station“ (22%). Chi-Quadrat Tests ergaben,
dass die Wahl der LZ geschlechtsabhängig ist. \(\chi^2(8) = 37.2, p = .00 \). Während weibliche Studenten „Prüfungsvorbereitung“ anstreben, priorisiert der männliche Anteil „Arbeitsalltag auf Station“. Über die Verteilung der anderen Kategorien hinweg waren die Geschlechterunterschiede nicht signifikant (p-Werte > .9).

Um einen tieferen Einblick in den identifizierten Bedarf der Medizinstudenten zu gewinnen, untersuchten wir, welche der selbstgewählten LZ und damit einhergehenden KE sie in ihrem klinischen Praktikum tatsächlich erreichen konnten. Hierzu wurde die durchschnittliche selbstbewertete Zielerreichung jeder einzelnen KE-Kategorie berechnet und verglichen mit den vor dem Wochenpraktikum gewonnenen Mittelwerten der Selbsteinschätzung. Die gleiche Methode fand Anwendung um Veränderungen im Erreichen der begleitenden KE zu ermitteln.

Zu Beginn des Wochenpraktikums standen die Teilnehmer dem Erfüllen ihrer selbstgewählten LZ positiv gegenüber. Durchschnittlich wurde hierzu die Wahrscheinlichkeit geschätzt auf Werte zwischen 73% und 78%. Im Laufe der Woche verschlechterte sich die tatsächliche Zielerreichung auf 66%-74%. Mit Ausnahme von „Diagnostische Verfahren“ waren alle Rückgänge in der Erfüllung der selbstgewählten LZ statistisch gleich (p-Werte > .9). Abbildung 3 liefert detailliertere Information zu den negativen Unterschiedsbeträgen.

Ein ähnliches Muster zeigte sich bei den spezifizierten KE. In der ersten Erhebung präsentierten die Daten eine Wahrscheinlichkeit von 76%-77%, und die tatsächliche Erfüllung ging auf 67%-73% zurück. Abbildung 4 markiert, dass statistisch signifikante Veränderungen auftreten bei „Handlungs- und Begründungswissen“ und „Handlungskompetenz“.

Die qualitative Inhaltsanalyse zu den Hindernissen und Wegbereitern der LZ-Erreichung schafft mehr Klarheit darüber, welche Unterkategorien in den Dimensionen „Student/in“, „Lehrer/in“ und „Kontext“ für unser Problem relevant sind. 73.5% (n=1062) der Medizinstudierenden beantworteten diese Frage. Jedes angegebene Argument wurde eingehend untersucht auf zwei alternative Funktionen: wenn positiv formuliert, wurde es als Wegbereiter klassifiziert, oder, wenn negativ formuliert, als Hindernis. Tabelle 2 informiert über die identifizierten Unterkategorien.

Abbildung 5 differenziert zu welchem Anteil die Medizinstudierenden diese Faktoren als Hindernisse oder Wegbereiter einstuften. Hervorgehoben sind außerdem diejenigen Faktoren, welche die Zielerreichung der Studierenden signifikant beeinflussten. Einzelheiten zum Informationsgehalt der Boxen folgen im nächsten Abschnitt.

31% der Medizinstudierenden gaben „Praxisübungen“ als Ursache für den Lernfortschritt an (siehe Tabelle 2). Während aus dieser Gruppe 16% über unzureichende praktische Erfahrung im klinischen Blockpraktikum klagten, stuften 84% das Gegenteil als zutreffend ein. Letzt genannte Gruppe erreichte die selbstgewählten LZ zu 72%, wohingegen wenig praktische Erfahrung zu 48% Zielerreichung führte (24% Unterschiedsbetrag). 27% der Teilnehmer gaben an, dass das „Engagement der Ärzte und des anderen medizinischen Personals“ einen Einfluss auf die Zielerreichung hatte. In dieser Gruppe fühlten sich 24% durch fehlendes Commitment der Kliniker beeinträchtigt, und 76% sagten aus, dass sie sich unterstützt fühlten ihre selbstgewählten LZ zu erreichen, wenn sie Engagement spürten. Dies schlug sich in 30% besserer Zielerreichung nieder. „Eigeninitiative“ beim Bewerkstelligen der auftretenden Herausforderungen wurde mit einer 23% Häufigkeit angeführt. Hierbei gestanden sich 5% ein eigenes Defizit (=Hindernis) ein, dagegen erkannten 95% den Mehrwert selbst proaktiv zu handeln. Der durch diese Lernstrategie erlangte Vorteil in der Zielerreichung wurde selbst eingestuft bei 19%. In Abbildung 5 sind alle signifikanten Unterschiedsbeträge in der Zielerreichung im Vergleich beider Bedingungen (Hindernis versus Wegbereiter) zu sehen.
Abbildung 3: Durchschnittliche prozentuale Zielerreichung der selbstgewählten LZ vor (t1) und nach (t2) dem klinischen Blockpraktikum.

Abbildung 4: Durchschnittliche prozentuale Zielerreichung der aus den selbstgewählten LZ abgeleiteten KE vor (t1) und nach (t2) dem klinischen Wochenpraktikum.

Tabelle 2: Lernfortschrittsdimensionen

Lernfortschrittsdimensionen mit Unterkategorien	Häufigkeit (n=1062)	Prozent
STUDENT		
Komplexität der Aufgaben	136	9%
Ursprüngliche Lernzielformulierung	177	12%
Bewerksstelligen der Herausforderungen (Eigeninitiative)	338	23%
Praxisübung	442	31%
LEHRER		
Feedback	160	11%
Lehre und Wissenstransfer der Ärzte	161	11%
Engagement der Ärzte und des anderen medizinischen Personals	363	27%
KONTEXT		
Station und ihre Krankheitsbilder	218	15%
Zeithorizont	220	15%
Arbeitsorganisation und Ressourcennmanagement	222	15%

Diskussion

Die Studie wurde über einen Zeitraum von drei Jahren durchgeführt. Zu Beginn des klinischen Blockpraktikums spezifizierten Medizinstudierende unterschiedliche LZ, welche empirisch kategorisiert und analysiert wurden. Die Methode beim Problemlösen eigenständig den Bedarf zu bestimmen, entspricht der aktuellen Forschung und untersucht, auf welche Art und Weise der Lernfortschritt möglicherweise unterstützt werden kann [24]. Keines der LZ ist für sich allein ein Garant für ausreichende Arbeitserfahrung, jedoch liefern die Ergebnisse der Bedarfsanalyse ein umfassendes Bild. Mit Bezug auf den NKLM konnten wir zeigen, dass die Medizinstudierenden nach Kompetenzen aus allen im Katalog implementierten Bereichen verlangen. Am häufigsten spezifizierten sie LZ aus dem Gebiet medizinisches Wissens, klinische Fähig-
Abbildung 5: Relative Häufigkeiten der Hindernisse und Wegbereiter für das Erreichen der selbstgewählten LZ. Anmerkung: jeder Balken ergänzt sich zu 100 Prozent (schwarzer plus grauer Anteil).

Die Prozentangaben in den Boxen geben beim Vergleich beider Bedingungen (Hindernis versus Wegbereiter) den Rückgang in der Zielerreichung an. Anmerkung: ausschließlich signifikante Unterschiedsbeträge sind dargestellt.

keiten und professionelle Haltungen, welche im NKLM einen Abschnitt formieren. Das Erreichen von „Klinisch-praktische Fertigkeiten“, „Diagnostische Verfahren“ und „Therapeutische Prinzipien und Medikation“ ist hierbei für die Medizinstudierenden von besonderem Interesse. Dieser Umstand veranlasst uns, zwei mögliche Annahmen zu treffen:

1. die Medizinstudierenden kennen bereits im Vorfeld des klinischen Blockpraktikums ihre eigenen Defizite und geben ihr Bestes um Wissenslücken zu schließen.
2. die Medizinstudierenden spezifizieren insbesondere diejenigen LZ, bei welchen sie ein gutes Ergebnis in wissensbasierten und klinischen Beurteilungen erwarten.

Wir gehen davon aus, dass die spezifizierten LZ ein wahres Bild des studentischen Bedarfs widerspiegeln, zumal da sie in der klinischen Praxis Neulinge sind. Der Übergang in den klinischen Abschnitt erfordert Anpassungen in der Art zu lernen und viele Studien zeigen, dass die Studierenden sich nicht leicht anpassen [6], [25]. Lernstrategien, welche in den vorklinischen Jahren gut funktionierten, scheinen während den Rotationen im klinischen Umfeld nachteilhaft für die Entwicklung der Fähigkeiten zu sein [26], [27]. Mit Hilfe von selbstgesteuertem Lernen etwa könnte die medizinische Ausbildung den Anpassungsprozess erleichtern.

Als dritthäufigstes aller LZ spezifizierten die Medizinstudenten die Kategorie „Ärztliche Gesprächsführung“. Dieses Ergebnis deutet auf den Bedarf hin, sich mit den Arztrollen zu identifizieren. Allerdings verbalisieren medizinische Curricula, wie es scheint, diese Kompetenz nur locker. Bisher haben einige Forscher die sogenannten „versteckten“ Abschnitte medizinischer Curricula hinterfragt [28], [29], [30]. Unsere Ergebnisse bestätigen, wie besonders wichtig die Ausbildung und das Einüben einer bestimmten Rolle ist, um wesentlich zu Erfüllen der Arztrolle zu befähigen. In der Tat sollte betont werden, dass solch eine Fertigkeit nicht mit einer generalisierten Methode angegangen werden kann (d.h. eine allumfassende Einheitslösung), sondern eine individuelle Anpassung an bestimmte Stärken/Schwächen der Studenten erfordert.

In Hinblick auf die spezifizierten KE wird die hohe Priorität von „Handlungskompetenz“ und „Handlungs- und Begründungswissen“ ersichtlich. Diese Priorisierung signalisiert die Bedeutung und auffallende Herausforderung, Eigenständigkeit in der medizinischen Praxis und Umsetzung zu erlangen (letzterer Aspekt ist Kernelement in der Ausbildung des Rollenverständnisses; siehe hierzu den vorherigen Abschnitt). Diese Beobachtung kann nicht singulär begründet werden, vielmehr sollte sie als Folge einer vielschichtigen Ursache gesehen, und auf folgende Komponenten zurückgeführt werden:

1. späte Spezialisierung, d.h. die Vielzahl an Pflichtkursen im Curriculum stört die studentischen Fertigkeiten zum selbstgesteuerten Lernen [31],
2. unausgewogenes Verhältnis von praktischer/theoretischer Ausbildung,
3. ungenügend Implementierung/Integration medizinischer Qualitäts-Kontroll-Zyklen, mit Aktivitäten wie sie dem Demingkreis folgen, und die iterativen vier Schritte „Planen – Umsetzen – Überprüfen – Handeln“ (PDCA-Zyklus) beinhalten [32],
4. nicht alle Aspekte der Selbsterziehung/-optimierung können in der curricularen Ausbildung zur Genüge emuliert werden (auch nicht in mehr oder minder artifiziellen Kursen), sondern brauchen das jahrelange Sammeln von Erfahrungen in der Praxis.
Interessanterweise schätzten die Medizinstudierenden sehr genau das Ausmaß der tatsächlichen Erfüllung ihrer selbstgewählten LZ (85%-95%) und KL (89%-96%). Während es auf den ersten Blick so aussieht, als würden ihre Fähigkeiten der Selbsteinschätzung tadelloser funktionieren, könnte diese positive Selbstbeurteilung auch andere Gründe haben: möglicherweise wählten die Studierenden weniger herausfordernde Aufgaben, bei derer Bewältigung sie Kompetenz vorweisen konnten, obwohl sie mutmaßlich nichts Neues gelernt hatten (siehe ersten Diskussionsabschnitt). Oder, etwa gleichzeitig, das psychologische Phänomen des so genannten Barnum Effekts hat das beobachtete Antwortverhalten beeinflusst, wovon allgemein auszugehen ist, wenn jemand in dem Glauben ist, dass etwas (hier: die selbstgewählten LZ) genau auf ihn zugeschnitten ist [33]. Um diesen Unsicherheiten zu begegnen und zum Zweck eines validen Vergleichs, ist eine Lehrerbeurteilung der studentischen Leistungen erforderlich oder – noch besser – die Prüfungsergebnisse. Die Ergebnisse der deskriptiven Analyse zu den Hindernissen und Wegbereitern für Lernfortschritt bestätigen unsere oben angeführten Argumente (i – iv). Die konkreten Aussagen der Medizinstudierenden betonen diese allgemein getroffenen Ausführungen dazu, welche Aktivitäten aus Ausbildungssicht unternommen werden sollten. Obwohl die Medizinstudierenden einsehen, dass sie selbst ein wichtiger Einflussfaktor für das Erreichen ihrer selbstgewählten LZ sind, halten sie die Faktoren Lehrer/in und Kontext ebenfalls für maßgeblich. Hierbei Konsistenz beizubehalten ist, aus strategischer Sicht, eine logistisch administrative Herausforderung, welche allgemein zum Unterricht in Kleingruppen dazugehört [34]. Während des klinischen Blockpraktikums, mit maximal zwei Studenten pro Station, ist die Implementierung der Komponente zum selbstgesteuerten Lernen abhängig von einer Vielzahl an Variablen, inmitten derer zentrale Treiber sind:

1. medizinisches Vorwissen des Studenten,
2. Expertise der Kursleiterin bzw. des Kursleiters oder
3. individuelle Vorlieben der Kursleiterin bzw. des Kursleiters.

Die Anwesenheit einer/s Studierenden im Praktischen Jahr, die/der sich um die Betreuung kümmert, ist möglicherweise vorteilhaft. Zusammenfassend, Konsistenz unter den Teilnehmern zu erzielen, ist ein Punkt, den es im Hinterkopf behalten gilt bevor genau definiert wird, an welchen Stellen das medizinische Curriculum reorganisiert werden soll. Des Weiteren ist es absolut notwendig eine zweite Erhebung vorzunehmen, in welcher auch die Lehrenden einer gleich Strukturen herkömmliche wie die aktuell untersuchte, befragt werden.

Zusammenfassung und Ausblick

Praktika dienen oftmals als Verbindungselement zwischen erworbenem klinischen Wissen und beruflicher Leistung am Arbeitsplatz. In dieser Studie nutzten wir das Konzept des selbstgesteuerten Lernens um Medizinstudierende zu aktivieren, Wissenslücken zu schließen. Nachdem dies eine qualitative Studie war, konnten Lernzieleigenschaften wie Spezifik und Schwierigkeitsgrad nicht vorgeschrieben werden. Jedoch waren unmittelbare Nähe und Selbstbeurteilung gesichert. Gemäß des Konzepts der Selbstbeurteilung schärft die Prioritätensetzung von Zielen (hier: Lernziele) die Verantwortung bei den Lernenden ihren Aufgaben nachzukommen [14]. Im besten Fall triggert sie zusätzliche Schlüsselprozesse welche viele Studierende nicht haben, wie Zeitmanagement, Lernstrategien, Selbstzuschreibung, Hilfe und Information suchen, und wichtige selbst-motivierende Auffassungen, so etwa Selbstwirksamkeit und intrinsisches Interesse an der Aufgabe. Auf dieser Basis brauchen wir nun eine kontrollierte Studie, welche den Unterschied in der Zielerreichung in Abhängigkeit von vorgegebenen versus selbstgewählten LZ aufzeigt. Eine Gegenüberstellung von Selbstbeurteilung und Prüfungsergebnissen wird Verzerrungen ausschließen, wie sie durch psychologische Phänomene ausgelöst werden.

Abkürzungen

- NKLM: Deutscher Nationaler Kompetenzbasierter Lernzielkatalog Medizin
- LMU: Ludwig-Maximilians-Universität
- LZ: Lernziel
- KE: Kompetenzebene

Ethikvotum und Einverständniserklärung

Alle analysierten Daten waren Teil der Routinebeurteilung des Kurses. Die Datenerhebung und Auswertung erfolgten komplett anonym. Laut der Ethikkommission der Universität München war eine studentische Einverständniserklärung nicht erforderlich.

Autorenbeiträge

NR vervollständigte die Analysen und Interpretation der Daten, einschließlich der Statistik, entwarf das Manuskript und verfasste die endgültige Version des Manuskripts, CL und LB trugen wesentlich zum Konzept und Design der Studie bei, sammelten und interpretierten die Daten und nahmen bei der Entwicklung des Manuskripts teil. BL und JF bestätigten die endgültige Fassung des Manuskripts. MF trug zum Design der Studie und der endgültigen Fassung des Manuskripts bei. RS entwarf das Design der Studie, sammelte die Daten, trug zur Analyse und Interpretation bei, und nahm bei der Entwicklung und endgültigen Version des Artikels teil. Alle Autoren haben die endgültige Fassung des Manuskripts gelesen und zugestimmt.

GMS Journal for Medical Education 2021, Vol. 38(2), ISSN 2366-5017
Interessenkonflikt

Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur

1. Thomas PA, Kern DE, Hughes MT, Chen BY. Curriculum development for medical education: a six-step approach. 3rd ed. Baltimore: JHU Press; 2016.
2. Gensichen J, Fischer M, Schelling J, Lauffer LM. Lernziele und spezifische Curriculumsentwicklung für die Allgemeinmedizin an der LMU München. Online ZFA. 2019;6(948):274-278.
3. Bachli P, Meindl-Fridez C, Weiss-Breckwoldt AN, Breckwoldt J. Interessenkonflikt Zusammenhang mit diesem Artikel haben. Die Autor*innenerklären, dass sie keinen Interessenkonflikt
4. Schneider D, Roos M, Steinhäuser J. Mit welchem Kompetenzniveau kommen ärztliche Berufsangehörige in den Beruf an? Eine Befragung von Weiterbildungsabsolventen in Bayern. Z Evid Fortbild Qual Gesundheitswesen. 2016;115:79-84. DOI: 10.1016/j.zeqf.2016.08.001
5. Doman T, Boshuizen H, King N, Scherbijier A. Experience-based learning: a model linking the processes and outcomes of medical students' workplace learning. Med Educ. 2007;41(1):84-91. DOI: 10.1111/j.1365-2929.2006.02652.x
6. Ryan MS, Feldman M, Bodamer C, Browning J, Brock E, Grossman M, Dornan T, Boshuizen H, King N, Scherbijier A. Experience-based learning: a model linking the processes and outcomes of medical students' workplace learning. Med Educ. 2007;41(1):84-91. DOI: 10.1111/j.1365-2929.2006.02652.x
7. Wood DF. Problem based learning. BMJ. 2003;326(7384):328-330. DOI: 10.1136/bmj.326.7384.328
8. Kiesevertjer J, Ebersbach R, Tsalas N, Holzer M, Schmidmaier R, Fischer MR. Knowledge is not enough to solve the problems - The role of diagnostic knowledge in clinical reasoning activities. BMC Med Educ. 2016;16(1):303. DOI: 10.1186/s12909-016-0821-z
9. Schmidmaier R, Eiber S, Ebersbach R, Schiller M, Hege I, Holzer M, Fischer MR. Learning the facts in medical school is not enough: which factors predict successful application of procedural knowledge in a laboratory setting? BMC Med Educ. 2013;13:28. DOI: 10.1186/1472-6929-13-28
10. Förtsch C, Sommerhoff D, Fischer F, Fischer MR, Girwitz R, Obersteiner A, Reiss K, Stürmer K, Siebeck M, Schmidmaier R, Seidel T, Ufer S, Wecker C, Neuaus BJ. Systematisierende Professional Knowledge of Medical Doctors and Teachers: Development of an Interdisciplinary Framework in the Context of Diagnostic Competencies. Educ Sci. 2018;8(4):207. DOI: 10.3390/educsci8040207
11. Miller GE. The assessment of clinical skills/competence/performance. Acad Med. 1990;65(9):563-567. DOI: 10.1097/00001888-199009000-00045
12. Ramamurthy S, EHM, Devi Nadarajah V, Radhakrishnan AK. Medical students' orientation toward lifelong learning in an outcome-based curriculum and the lessons learnt. Med Teach. 2019;1-6. DOI: 10.1080/0142159X.2019.1646894
13. Panadero E. A Review of Self-regulated Learning: Six Models and Four Directions for Research. Front Psychol. 2017;8(422):1-28. DOI: 10.3389/fpsyg.2017.00422
14. Zimmermann BJ. Becoming a Self-Regulated Learner: An Overview. Theory Into Practice. 2002;41(2):64-70. DOI: 10.1207/s15430421tip4102_2
15. Cho KK, Marjadi B, Langendyk V, Hu W. Knowledge is not enough to solve the problems - The role of diagnostic knowledge in clinical reasoning activities. BMC Med Educ. 2016;16(1):303. DOI: 10.1186/s12909-016-0821-z
16. White CB. Smoothing Out Transitions: How Pedagogy Influences Medical Students' Achievement of Self-regulated Learning Goals. Adv Health Sci Educ Theory Pract. 2007;12(3):279-297. DOI: 10.1007/s10459-006-9000-z
17. Walling A, Merando A. The fourth year of medical education: a literature review. Acad Med. 2010;85(11):1698-1704. DOI: 10.1097/ACM.0b013e3181f52dc6
18. Keator C, Vandre D, Morris A. The challenges of developing a project-based self-directed learning component for undergraduate medical education. Med Sci Educ. 2016;26(4):801-805. DOI: 10.1007/s40670-016-0298-8
19. Doran GT. There's a SMART way to write management’s goals and objectives. AMA Forum. 1981;70(11):35-36.
20. Fischer MR, Bauer D, Karin Mohn N. Finally finished! national competence based catalogues of learning objectives for undergraduate medical education (NKLM) and dental education (NKZ) ready for trial. GMS Z Med Ausbild. 2015;32(3):Doc35. DOI: 10.3205/zma000977
21. Mayring P. Qualitative Inhaltsanalyse. Handbuch qualitative Forschung in der Psychologie. Heidelberg, Berlin: Springer; 2010. p.601-613. DOI: 10.1007/978-3-531-92052-8_42
22. Hmelo-Silver CE. Problem-based learning: What and how do students learn? Educ Psychol Rev. 2004;16(3):235-266. DOI: 10.1023/B:EDPR.0000034022.16470.f3
23. Kim MK. Models of learning progress in solving complex problems: Expertise development in teaching and learning. Contemp Educ Psychol. 2015;42:1-16. DOI: 10.1016/j.cedpsych.2015.03.005
24. Ravens-Taeuber G, Wunder A, Güthlin C, Koné I. Checkliste Blockpraktikum Allgemeinmedizin. Online ZFA. 2019;7(949):307-313.
25. Demiren M, Turan S, Oztuna D. Medical students' self-efficacy in problem-based learning and its relationship with self-regulated learning. Med Educ Online. 2016;21:1-9. DOI: 10.3402/meo.v21.30049
26. Cartier S, Plante A, Tardif J. Learning by Reading: Description of Learning Strategies of Students Involved in a Problem-Based Learning Program. Montréal: Université de Montréal; 2001.
27. Woods NN, Mylopoulos M, Brydges R. Informal self-regulated learning on a surgical rotation: uncovering student experiences in context. Adv Health Sci Educ Theory Pract. 2011;16(5):643-653. DOI: 10.1007/s10459-011-9285-4
28. Doja A, Bould MD, Clarkin C, Eady K, Sutherland S, Writer H. The hidden and informal curriculum across the continuum of training: A cross-sectional qualitative study. Med Teach. 2016;38(4):410-418. DOI: 10.3109/0142159X.2015.1073241
29. Hafferty F. Beyond curriculum reform: confronting medicine’s hidden curriculum. Acad Med. 1998;73(4):403-407. DOI: 10.1097/00001888-199804000-00013
30. Holmes CL, Harris IB, Schwartz AJ, Regehr G. Harnessing the hidden curriculum: a four-step approach to developing and reinforcing reflective competencies in medical clinical clerkship. Adv Health Sci Educ Theory Pract. 2015;20(5):1355-1370. DOI: 10.1007/s10459-014-9558-9
31. Cho KK, Marjadi B, Langendyk V, Hu W. Medical student changes in self-regulated learning during the transition to the clinical environment. BMC Med Educ. 2017;17(1):59. DOI: 10.1186/s12909-017-0902-7
31. Mueller S, Weichert N, Stoecklein V, Hammitzsch A, Pascuito G, Krug C, Holzer M, Pfeiffer M, Siebeck M, Schmidmaier R. Evaluation of effectiveness of instruction and study habits in two consecutive clinical semesters of the medical curriculum Munich (MeCuM) reveals the need for more time for self study and higher frequency of assessment. BMC Med Educ. 2011;11:62. DOI: 10.1186/1472-6920-11-62

32. Deming WE. The New Economics. Cambridge, MA: MIT Press; 1993. p.135.

33. Dickson D, Kelly IW. The 'Barnum Effect' in personality assessment: A review of the literature. Psychol Rep. 1985;57(2):367-382. DOI: 10.2466/pr0.1985.57.2.367

34. Morrow G, Rothwell C, Wright P. Self-directed learning groups: a vital model for education, support and appraisal amongst sessional GPs. Educ Prim Care. 2012;23(4):270-276. DOI: 10.1080/14739879.2012.11494120

Bitte zitieren als
Röcker N, Lottsprech C, Braun LT, Lenzer B, Frey J, Fischer MR, Schmidmaier R. Implementation of self-directed learning within clinical clerkships. GMS J Med Educ. 2021;38(2):Doc43. DOI: 10.3205/zma001439, URN: urn:nbn:de:0183-zma0014394

Artikel online frei zugänglich unter
https://www.egms.de/en/journals/zma/2021-38/zma001439.shtml

Eingereicht: 29.04.2020
Überarbeitet: 03.09.2020
Angenommen: 30.09.2020
Veröffentlicht: 15.02.2021

Copyright
©2021 Röcker et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.

Korrespondenzadresse:
Navina Röcker
Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Ziemssenstr. 1, 80336 München, Deutschland, Tel.: +49 (0)89/4400-52221
navina.roecker@med.uni-muenchen.de