Abstract

Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex “collides” with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to $G_{\alpha_{q11}}$, while even-numbered receptors prefer coupling to $G_{i/o}$. We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist $[^{3}H]$-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M_1 and M_2 receptors also pre-couple with non-preferential $G_{i/o}$ G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype and the class of G-protein.

Introduction

G-protein coupled receptors (GPCR) represent the largest family of receptors, with more than 900 encoding genes [1]. They process and transduce a multitude of signals elicited by hormones, neurotransmitter and odorants and are thus involved in a very wide array of physiological and pathological processes. This makes this class of receptors a major pharmacological target for drug development [2].

Agonist-stimulated GPCRs in turn activate heterotrimeric GTP-binding proteins (G-proteins) that activate various signaling pathways. Two distinctive types of interaction between a receptor and G-protein exist: collision coupling and pre-coupling. In the former case, an agonist binds to the free receptor, activates it and then the receptor with bound agonist “collides” with free G-protein and activates it. In the latter case, stable receptor-G-protein complexes exist in the absence of agonist, agonist binds to this complex, induces change in the receptor conformation that leads to G-protein activation and dissociation of the complex [3]. It should, however, be noted that the distinction between collision coupling and pre-coupling is rather a matter of kinetics of receptor-G-protein interaction, activation state and receptor to G-protein stoichiometry [4]. Additional modes of interaction intermediate between pure collision coupling and pre-coupling, like transient receptor to G-protein complexing (“dynamic scaffolding”), have been observed [5].

There is accumulating evidence for both collision coupling and pre-coupling of GPCRs. Interestingly, coimmunoprecipitation studies showed pre-coupling of $\alpha_2\Delta_2$-adrenergic receptors [6] with G_{α_i} G-proteins and β_2-adrenergic receptors with $G_{\alpha_i/o}$ G-proteins [7]. In contrast, rapid collision coupling of G-proteins with $\alpha_2\Delta_2$-adrenergic receptors has been demonstrated in resonance energy transfer studies [8] and with β_2-adrenergic receptors in living cell imaging studies [9]. Overall, current data on GPCR coupling suggest that the mode of receptor to G-protein coupling may differ depending on the receptor type, cell type and membrane composition [3,10]. Thus, understanding the dynamic behavior of GPCR systems including receptor-G-protein coupling is important in discovery and development of more organ-specific drugs.

Muscarinic acetylcholine receptors are GPCRs present at synapses of the central and peripheral nervous systems but also exist in non-innervated cells and tissues. There are five subtypes of

Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors

Jan Jakubík1*, Helena Janičková1, Alena Randáková1, Esam E. El-Fakahany2, Vladimír Doležal1

1 Department of Neurochemistry, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic, 2 Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, United States of America

Citation: Jakubík J, Janičková H, Randáková A, El-Fakahany EE, Doležal V (2011) Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors. PLoS ONE 6(11): e27732. doi:10.1371/journal.pone.0027732

* E-mail: jakubik@biomed.cas.cz
muscarinic receptors encoded by distinct genes without splicing variants [11]. Development of selective ligands for muscarinic receptors thus represents an enormous challenge due to their omnipresence, with only a few types of tissues being endowed by a single or predominant subtype of these receptors. So far very little is known about the nature of coupling of muscarinic receptors to G-proteins [12]. We have demonstrated that the M2 receptor can directly activate all three classes of G-proteins [13], and that it probably pre-couple to G\(_{i/o}\) but not to G\(_{s/olf}\) G-proteins [14]. To further clarify the mechanisms of muscarinic receptor subtypes signaling we analyzed the mode of coupling of M1 through M4 muscarinic receptors with G\(_{i/o}\), G\(_{s/olf}\) and G\(_{q/11}\) G-proteins in membranes from Chinese hamster ovary cells expressing individual receptor subtypes. We show that while M1 and M3 receptors pre-couple both with their preferential G\(_{q/11}\) and non-preferential G\(_{i/o}\) G-proteins, M2 and M4 receptors pre-couple only to preferential G\(_{i/o}\) G-proteins.

Results

Stimulation of \([^35]S\)GTP\(_S\) binding to G\(_{i/o}\), G\(_{s/olf}\) and G\(_{q/11}\) G-proteins

Membranes from CHO cells containing from 1.4 to 2.5 fmol of M1 through M4 muscarinic receptors per mg of protein were exposed to carbachol in concentrations ranging from 0.1 \(\mu\)M to 1 mM and binding of \([^35]S\)GTP\(_S\) to G-protein classes was determined using a scintillation proximity assay (SPA) (Fig. 1). Carbachol stimulated \([^35]S\)GTP\(_S\) binding to all three major classes of G-proteins via all four receptors, with highest potency (EC\(_{50}\) about 1 \(\mu\)M) and efficacy (more than 3-fold increase over basal) for preferential G-proteins (G\(_{q/11}\) for M1 and M3 and G\(_{i/o}\) for M2 and M4 receptors) (Table 1). The potency of carbachol in stimulating \([^35]S\)GTP\(_S\) binding to non-preferential G-proteins was 2-3 fold (M2 G\(_{s/olf}\)) to 10-fold (M2 G\(_{i/o}\)) lower than to preferential G-proteins.

Competition of carbachol with \([^3]H\)NMS binding at M1 through M4 receptors

Binding of the tritiated antagonist N-methylscopolamine (\([^3]H\)NMS) in the presence of agonist carbachol concentrations ranging from 10 nM to 10 mM (Fig. 2) was best described by competition for two sites (Eq. 5) at all four receptor subtypes. The equilibrium inhibition constant \(K_i\) of carbachol was similar among receptor subtypes, both for high and low affinity sites (Table 2). At M1 and M3 receptors that preferentially couple to G\(_{q/11}\) G-proteins carbachol displayed more low affinity binding sites than at M2 and M4 receptors that preferentially couple to G\(_{i/o}\) G-proteins. In some cases preincubation of membranes with antibodies directed against the C-termini of \(\alpha\)-subunits of individual classes of G-proteins led to an increase in the proportion of low affinity sites. The proportion of low affinity sites was increased by anti-G\(_{i/o}\) and anti-G\(_{q/11}\) antibodies at M1 and M3 receptors but only by anti-G\(_{i/o}\) antibodies at M2 and M4 receptors. The anti-G\(_{s/olf}\) antibody did not change the proportion of low affinity sites at any receptor subtype. None of the antibodies affected \(K_i\) of either the low or high affinity sites.

Competition of agonists with \([^3]H\)NMS binding at M1 and M2 receptors

All tested agonists at M1 receptors (carbachol, furmethide, oxotremorine, and pilocarpine) bound to two binding sites (Fig. 3,
full circles). Although they bound with different affinities they recognized the same proportion of low-affinity sites (Table 3). Anti-Gi/o and anti-Gq/11 antibodies increased the proportion of low affinity sites to a comparable extent for all tested agonists (Fig. 3, open circles and open diamonds). The anti-Gs/olf antibody did not change the proportion of the low-affinity binding sites for any of the agonists tested (Fig. 3, open squares). None of the antibodies affected KI values.

Similarly, all tested agonists bound to two binding sites at M2 receptors (Fig. 4, full circles). As in the case of the M1 receptor they bound with different affinities but they recognized the same proportion of low-affinity sites (Table 4). Similar to carbachol, the proportion of low-affinity sites was lower at M2 than at M1 receptors for all tested agonists (Table 4 vs. Table 3) and only the anti-Gi/o antibody increased the proportion of low affinity sites (Fig. 4, open circles). The anti-Gs/olf and anti-Gq/11 antibodies did not change either the proportion of low-affinity binding sites or KI for any of the agonists tested (Fig. 4, open squares and open diamonds).

Effects of mutations of M1 receptors that affect receptor activation

To further investigate the role of receptor activation in receptor-G-protein pre-coupling we prepared cell lines expressing mutant M1 receptor with mutations known to interfere with receptor signaling. Mutation of aspartate 71 in the middle of the second transmembrane domain to asparagine (D71N) has been shown to abolish receptor activation [15]. Mutation of aspartate 122 in the conserved E/DRY-motif at the intracellular edge of the third transmembrane domain to asparagine (D122N) has been shown to reduce the potency of muscarinic agonists [16]. Opsin arginine in the conserved E/DRY-motif at the intracellular edge of the third transmembrane domain has been shown to directly interact with the C-terminal cysteine of the α-subunit of G-protein [16]. At M1 muscarinic receptors mutation of corresponding arginine 123 asparagine (R123N) blocks activation of G-proteins [17]. The appropriate control CHO cell line expressing the wild-type receptor was also generated using the same expression vector. Expression levels of receptor mutants

G\textsubscript{i/o}	G\textsubscript{s/olf}	G\textsubscript{q/11}				
M1	5.31±0.05	2.01±0.05	5.44±0.05	1.92±0.05	5.96±0.05	3.90±0.08
M2	6.01±0.06	3.44±0.07	5.01±0.06	1.93±0.05	5.24±0.02	1.63±0.02
M3	5.32±0.05	2.16±0.06	5.54±0.05	2.16±0.05	5.83±0.04	3.31±0.06
M4	5.89±0.05	3.15±0.08	5.18±0.06	2.18±0.06	5.49±0.05	1.59±0.04

Data are means ± S.E.M. From 3 experiments performed in quadruplicates. E\textsubscript{MAX} is expressed as fold increase of basal binding.

doi:10.1371/journal.pone.0027732.t001

Figure 2. Effects of anti-G-protein antibodies on competition between carbachol and [3H]NMS binding at M1 to M4 receptors. Binding of 1 nM [3H]NMS to membranes from CHO cells expressing M1 (upper left), M2 (upper right), M3 (lower left) and M4 (lower right) receptors in the presence of increasing concentrations (abscissa, log M) of carbachol is expressed as per cent of control binding in the absence of carbachol. Filled circles, control binding in the absence of antibodies. Open symbols, binding in the presence of anti-G\textsubscript{i/o} (circles), anti-G\textsubscript{s/olf} (squares), and anti-G\textsubscript{q/11} (diamonds) antibodies. Data are means ± S.E.M of values from 3 experiments performed in quadruplicates. Curves were fitted using equation 3 and results of fits are shown in the Table 2.

doi:10.1371/journal.pone.0027732.g002
0.42 to 0.87 pmol per mg of protein) were the same as expression level of the wild-type receptor (0.63 to 0.71 pmol per mg of protein).

Association of 0.5 nM [35S]GTPγS with membranes from the newly prepared CHO cell line expressing M1 receptors occurred with observed association rate $k_{obs} = 0.036 \text{ min}^{-1}$ (Fig. 5 upper left, full circles, and Table 5). One hundred μM carbachol (Fig. 5, open circles) accelerated association of [35S]GTPγS two-times and increased equilibrium binding (B_{eq}) by one third. Mutations D71N (Fig. 5 upper right) and R123N (Fig. 5 lower right) did not change basal (in the absence of carbachol) association of [35S]GTPγS but they both abolished acceleration induced by carbachol. Mutation D122N accelerated basal association of [35S]GTPγS by 50%. One hundred μM carbachol further accelerated association of [35S]GTPγS. The rate of association as well as B_{eq} in the presence of carbachol at R123N receptors was the same as at control (M1 wt) (Fig. 5 and Table 5).

On the newly prepared cell line expressing M1 wt receptors carbachol displayed binding to two binding sites in competition with [3H]NMS with the same proportion of low affinity sites and similar affinities (Fig. 6, full circles) as in Fig. 2. While mutation D71N did not change the binding parameters of carbachol, mutation D122N brought about an increase in low affinity sites and mutation R123N completely abolished high-affinity binding (Fig. 6 and Table 6).

Table 2. Effects of IgG antibodies directed against the α-subunits of individual subtypes of G-proteins on binding parameters of carbachol in membranes of CHO cells expressing individual subtypes of muscarinic receptors.

	control	anti-$G_{i/o}$	anti-$G_{s/olf}$	anti-$G_{q/11}$	
\log_{c}	\log_{c}	\log_{c}	\log_{c}	\log_{c}	
M1	pK_{h}	7.01±0.08	6.93±0.09	7.09±0.08	7.14±0.08
pK_{l}	5.21±0.07	5.25±0.06	5.27±0.07	5.30±0.07	
f_{low}	69±7	84±8*	74±7	92±8*	
M2	pK_{h}	6.81±0.08	6.70±0.07	6.93±0.08	6.88±0.07
pK_{l}	5.01±0.07	5.13±0.07	5.06±0.07	5.01±0.08	
f_{low}	56±8	89±8*	61±9	54±9	
M3	pK_{h}	7.03±0.08	7.15±0.09	7.23±0.08	7.14±0.09
pK_{l}	5.15±0.09	5.20±0.09	5.23±0.08	5.27±0.09	
f_{low}	72±7	89±9*	76±7	92±8*	
M4	pK_{h}	6.91±0.09	7.03±0.08	7.09±0.09	6.94±0.08
pK_{l}	5.01±0.09	4.95±0.08	5.08±0.09	5.00±0.08	
f_{low}	62±7	82±8*	66±7	58±7	

Data are means ± S.E.M. From 3 experiments performed in quadruplicates. f_{low}, fraction of low-affinity sites in percent; *, significantly different from control by t-test (P<0.05).

doi:10.1371/journal.pone.0027732.t002

Table 2. Effects of IgG antibodies directed against the α-subunits of individual subtypes of G-proteins on binding parameters of carbachol in membranes of CHO cells expressing individual subtypes of muscarinic receptors.

Figure 3. Effects of anti-G-protein antibodies on competition between different agonists and [3H]NMS binding at M1 receptors. Binding of 1 nM [3H]NMS to membranes from CHO cells expressing M1 receptors in the presence of increasing concentrations (abscissa, log M) of the agonists carbachol (upper left), furmethide (upper right), oxotremorine (lower left) and pilocarpine (lower right) is expressed as percent of control binding in the absence of agonist. Filled circles, control binding in the absence of antibodies. Open symbols, binding in the presence of anti-$G_{i/o}$ (circles), anti-$G_{s/olf}$ (squares) and anti-$G_{q/11}$ (diamonds) antibodies. Data are means ± S.E.M of values from 3 experiments performed in quadruplicates. Curves were fitted using equation 3 and results of fits are shown in Table 3.

doi:10.1371/journal.pone.0027732.g003
Effects of attenuation of expression of G\textsubscript{i/o} G-proteins in M\textsubscript{2}-CHO cells

Total binding capacity of (saturating) 500 nM \[^{35}\text{S}\]GTP\textsubscript{S} in control M\textsubscript{2}-CHO membranes (in the absence of GDP) showed prevalence of G\textsubscript{i/o} G-proteins over G\textsubscript{s/olf} and G\textsubscript{q/11} (37.5 ± 3.9, 22.0 ± 2.3 and 25.4 ± 2.8 pmol/mg prot., respectively; mean ± S.E.M., n = 3). Treatment of M\textsubscript{2}-CHO cells with siRNA directed to Gi/o G-proteins resulted in more than a 70% decrease in the \[^{35}\text{S}\]GTP\textsubscript{S} binding capacity of G\textsubscript{i/o} (10.1 ± 1.8 pmol/mg prot.; mean ± S.E.M., n = 3) without a change in the binding capacity of G\textsubscript{s/olf} and G\textsubscript{q/11} G-proteins (24.1 ± 2.2, 23.8 ± 2.5 pmol/mg prot., respectively; mean ± S.E.M., n = 3). This treatment resulted in a 10-fold decrease in the potency of carbachol in stimulation of \[^{35}\text{S}\]GTP\textsubscript{S} binding to G\textsubscript{i/o} G-proteins (Fig. 7 vs. Fig. 1 upper right, open circles; Table 7 vs. Table 1) and decreased its efficacy more than 5-times. The efficacy of carbachol in stimulation of \[^{35}\text{S}\]GTP\textsubscript{S} binding to G\textsubscript{s/olf} or G\textsubscript{q/11} G-proteins was unchanged while its potency increased about 3-times in both cases.

Based on competition binding of agonists and \[^{3}\text{H}\]NMS (Fig. 8; Table 8), attenuation of G\textsubscript{i/o} expression led to an increase in the proportion of low-affinity sites for all tested agonists (see controls in Table 4 and Table 8) without change in K\textsubscript{I} values. The anti-G\textsubscript{i/o} antibody further increased the proportion of low-affinity sites in Gi/o G-proteins-depleted membranes only for the full agonists carbachol and furmethide. In contrast to control M\textsubscript{2}-CHO cells, the proportion of low-affinity sites of the partial agonists oxotremorine and pilocarpine in Gi/o G-proteins-depleted mem-

Table 3. Effects of IgG antibodies directed against \(\alpha\)-subunits of individual subtypes of G-proteins on binding parameters of different muscarinic agonists in membranes of M\textsubscript{1} CHO cells.

	Control	anti-G\textsubscript{i/o}	anti-G\textsubscript{s/olf}	anti-G\textsubscript{q/11}
carbachol				
pK\textsubscript{I} high	7.01 ± 0.08	6.93 ± 0.09	7.09 ± 0.08	7.14 ± 0.08
pK\textsubscript{I} low	5.21 ± 0.07	5.25 ± 0.06	5.27 ± 0.07	5.30 ± 0.07
f\textsubscript{low}	69 ± 7	86 ± 8*	74 ± 7	92 ± 8*
furmethide				
pK\textsubscript{I} high	6.70 ± 0.07	6.59 ± 0.08	6.66 ± 0.07	6.63 ± 0.08
pK\textsubscript{I} low	4.82 ± 0.07	4.78 ± 0.07	4.81 ± 0.07	4.87 ± 0.07
f\textsubscript{low}	62 ± 7	84 ± 8*	62 ± 6	92 ± 8*
oxotremorine				
pK\textsubscript{I} high	8.12 ± 0.08	8.04 ± 0.08	7.96 ± 0.06	8.14 ± 0.08
pK\textsubscript{I} low	6.53 ± 0.06	6.47 ± 0.07	6.46 ± 0.06	6.49 ± 0.06
f\textsubscript{low}	69 ± 6	90 ± 8*	69 ± 6	95 ± 8*
pilocarpine				
pK\textsubscript{I} high	7.72 ± 0.07	7.64 ± 0.07	7.61 ± 0.07	7.66 ± 0.07
pK\textsubscript{I} low	5.84 ± 0.06	5.81 ± 0.06	5.80 ± 0.06	5.71 ± 0.06
f\textsubscript{low}	75 ± 7	92 ± 8*	73 ± 7	90 ± 8*

Data are means ± S.E.M. From 3 experiments performed in quadruplicates. f\textsubscript{low}, fraction of low-affinity sites in percent; *, significantly different from control by t-test (P < 0.05).

doi:10.1371/journal.pone.0027732.t003

Figure 4. Effects of anti-G-protein antibodies on competition between different agonists and \[^{3}\text{H}\]NMS binding at M\textsubscript{2} receptors.

Binding of 1 nM \[^{3}\text{H}\]NMS to membranes from CHO cells expressing M\textsubscript{2} receptors in the presence of increasing concentrations (abscissa, log M) of the agonists carbachol (upper left), furmethide (upper right), oxotremorine (lower left) and pilocarpine (lower right) is expressed as percent of control binding in the absence of agonist. Filled circles, control binding in the absence of antibodies. Open symbols, binding in the presence of anti-G\textsubscript{i/o} (circles), anti-G\textsubscript{s/olf} (squares) and anti-G\textsubscript{q/11} (diamonds) antibodies. Data are means ± S.E.M of values from 3 experiments performed in quadruplicates. Curves were fitted using equation 3 and results of fits are shown in Table 4.

doi:10.1371/journal.pone.0027732.g004
branes was not changed by the anti-$G_{i/o}$ antibody. Similar to untreated M_2-CHO cells, the anti-$G_{i/o}$ and anti-$G_{q/11}$ antibodies had no effect on either the proportion of low affinity sites or K_I values in membranes with attenuated expression of $G_{i/o}$ G-proteins.

Discussion

Binding of an agonist to a G-protein-coupled receptor (GPCR) results in transforming the receptor to an active state that facilitates guanosine diphosphate (GDP) dissociation from the α-subunit of interacting heterotrimeric G-proteins and its exchange for guanosine trisphosphate (GTP) [18]. In principle there are many possible ways for receptor-G-protein interactions to take effect, with two extreme possibilities. In one scenario receptors and G-proteins diffuse freely within the plasma membrane, agonist binds to the free receptor that then randomly “collides” with G-proteins and activates them. Alternatively, receptors and G-proteins form stable complexes regardless of the receptor activation state and agonist binding, the agonist binds to this complex and induces conformational changes in the receptor protein that leads to G-protein activation and dissipation of the receptor-G-protein complex. We will refer to the former situation as “collision coupling” and the latter one as “pre-coupling” [3]. It should, however, be noted that even if receptors are partially pre-coupled to G-proteins, an agonist can also bind to free receptors and then “collide” with G-protein. Also the distinction between collision coupling and pre-coupling is rather a matter of kinetics of

Table 4

Effects of IgG antibodies directed against α-subunits of individual subtypes of G-proteins on binding parameters of different muscarinic agonists in membranes of M_2 CHO cells.

	Control	anti-$G_{i/o}$	anti-$G_{s/olf}$	anti-$G_{q/11}$	
carbachol	$pK_{i \text{ high}}$	6.81±0.08	6.70±0.07	6.93±0.08	6.88±0.07
	$pK_{i \text{ low}}$	5.01±0.07	5.13±0.07	5.06±0.07	5.01±0.08
	f_{low}	56±8	89±8*	61±9	54±9
furmethide	$pK_{i \text{ high}}$	6.99±0.08	6.98±0.07	7.19±0.07	7.08±0.08
	$pK_{i \text{ low}}$	4.70±0.08	4.79±0.07	4.84±0.08	4.73±0.07
	f_{low}	48±8	80±7*	49±8	53±9
oxotremorine	$pK_{i \text{ high}}$	7.74±0.09	7.76±0.08	7.83±0.08	7.93±0.08
	$pK_{i \text{ low}}$	6.17±0.08	5.78±0.08	6.22±0.09	6.27±0.08
	f_{low}	60±8	84±7*	65±8	61±7
pilocarpine	$pK_{i \text{ high}}$	7.10±0.09	7.05±0.11	7.22±0.09	7.00±0.10
	$pK_{i \text{ low}}$	5.58±0.09	5.67±0.09	5.62±0.09	5.60±0.09
	f_{low}	53±10	76±11*	53±10	57±11

Data are means ± S.E.M. From 3 experiments performed in quadruplicates. f_{low}, fraction of low-affinity sites in percent; *, significantly different from control by t-test ($P < 0.05$).

doi:10.1371/journal.pone.0027732.t004

Figure 5. Effects of point mutations of the M_1 receptor on carbachol-induced stimulation of of [35S]GTPγS. Binding of 0.5 nM [35S]GTPγS to all G-proteins in the presence of 50 μM GDP was measured in membranes from newly prepared CHO cell lines expressing either wild-type (M_1 wt) or mutant (D71N, D122N, R123N) M_1 receptors in the absence (full circles) or in the presence (open circles) of 100 μM carbachol. Data are means ± S.E.M of values from 3 experiments performed in quadruplicates. Curves were fitted using equation 4 and results of fits are shown in Table 5.

doi:10.1371/journal.pone.0027732.g005
receptor-G-protein interaction and activation and receptor to G-protein stoichiometry [4]. Thus a myriad of possible ways for interaction among receptor, G-protein and agonist exist, e.g., transient receptor to G-protein complexing (“dynamic scaffolding”) [5]. Receptor-G-protein pre-coupling plays an important role in signaling. It may accelerate kinetics of signal transduction. If receptor-G-protein complexes pre-exist, instantaneous activation of G-protein takes place upon agonist binding to the receptor [4].

As shown repeatedly [10,13,19,20] and also in Fig. 1, muscarinic acetylcholine receptors couple with all 3 major classes of G-proteins (G_i/o, G_s/olf and G_q/11). Our recent data show that at M2 receptors the agonist carbachol slows down the association of GDP with G_s/olf but not G_q/11 G-proteins [14]. This finding may evidence the pre-existence of a receptor/G-protein complex prior to carbachol binding. Data thus suggest that muscarinic M2 receptors pre-couple to G_s/olf but not to G_q/11 G-proteins. Alternatively, M2 receptors may pre-couple with G_q/11 but carbachol has no effect on GDP association. To exclude this possibility we analyzed in detail pre-coupling of all 3 major classes of G-proteins with M2 receptors and compared it with pre-coupling at other G_i/o preferring (M1) and G_q/11 preferring (M1 and M3) muscarinic receptors.

At all receptor subtypes carbachol displays a “two site” binding curve with high affinity binding in the nanomolar range and low affinity binding in the micromolar range (Fig. 2, Table 2). According to the ternary complex model of GPCRs [21] agonists bind with high affinity to the receptor-G-protein complex and with low-affinity to receptors uncoupled from G-proteins. The interface of interaction between the receptor and G-protein consists of the intracellular edge of the third, fifth and sixth transmembrane domains and adjacent parts of the third and fourth intracellular loops of the receptor and the C-terminus of the G-protein α-subunit [16,22]. Antibodies directed against the C-terminus of G-protein should prevent receptor-G-protein interaction (or break existing receptor-G-protein complex) and lower the affinity of the receptor for agonists. Indeed, IgG antibodies directed against the C-terminus of the G_s/olf class of G-proteins increased the fraction of low-affinity sites at all receptor subtypes including the G_i/o non-prefering M1 and M2 receptors. Similarly, IgG antibodies directed against the C-terminus of G_q/11 class of G-proteins increased the fraction of low-affinity sites only at their preferring M1 and M3 receptors, but IgG antibodies directed against the C-terminus of G_q/11 class of G-proteins had no effect. Antibodies only changed the proportion of low-affinity sites without an effect on receptor affinity. Our data also show that all receptors pre-couple with their preferential G-proteins (M1 and M3 with G_q/11 and M2 with G_i/o) and that M1 and M3 receptors also pre-couple with non-preferential G_i/o G-proteins. In contrast, pre-coupling of G_q/11 G-proteins was not detected at any subtype of muscarinic receptors. In other words, the interaction between receptor and G_s/olf is so short-lived that cannot be detected by antibodies. This is in agreement with our kinetic measurements at G_s/olf and M2 receptors [14].

Table 5. Rates of basal and carbachol-stimulated association of [35S]GTPγS in CHO membranes expressing wild type and mutant M1 receptors.

	M1 wt	D71N	D122N	R123N
control kobs [min⁻¹]	0.036±0.007	0.034±0.007	0.054±0.005#	0.038±0.007
Beq [fmol/g prot.]	101±6	107±12	103±8	105±6
+100 μM carbachol kobs [min⁻¹]	0.075±0.006*	0.033±0.006#	0.077±0.005*	0.036±0.007#
Beq [fmol/µg prot.]	133±8*	105±9#	126±6*	100±5#

Data are means ± S.E.M. From 3 experiments performed in quadruplicates.

*, Significantly different from control;
, significantly different from wild type (M1 wt), t-test (P<0.05).

doi:10.1371/journal.pone.0027732.t005

Table 6. Effects of single amino acid mutations of M1 receptor on the binding parameters of carbachol.

	M1 control	D71N	D122N	R123N
pK_a high	7.13±0.08	7.01±0.08	7.07±0.09	
pK_a low	4.91±0.06	4.85±0.05	4.92±0.05	4.80±0.07
f_2 low	72±6	74±7	86±7*	99±1*

Data are means ± S.E.M. From 3 experiments performed in quadruplicates. f_2, fraction of low-affinity sites in percent.
*, significantly different from control by t-test (P<0.05).

doi:10.1371/journal.pone.0027732.t006

Figure 6. Effects of point mutations of the M1 receptor on competition between carbachol and [3H]NMS binding. Binding of 1 nM [3H]NMS to membranes from newly prepared CHO cell lines expressing wild type and mutant M1 receptors in the presence of increasing concentrations carbachol is expressed as percent of control binding in the absence of agonist. Filled circles, binding to wild-type M1 receptors. Open symbols, binding to D71N (circles), D122N (squares) and R123N (triangles) mutant M1 receptors. Data are means ± S.E.M. of values from 3 experiments performed in quadruplicates. Curves were fitted using equation 3 and results of fits are shown in Table 6.

doi:10.1371/journal.pone.0027732.g006
We tested binding of four structurally different agonists (carbachol, furmethide, oxotremorine and pilocarpine) that also differ in potency and efficacy in activating muscarinic receptors [14] and binding kinetics [23]. Importantly, all tested agonists recognize the same proportion of low-affinity binding sites (Figs 3 and 4; Tables 3 and 4). It is very unlikely that these agonists induce the same proportion of transient high-affinity states (in collision coupling, dynamic scaffolding or a similar scenario). Rather receptor G-protein complexes preexist prior to agonists binding and their proportion is given by stoichiometry of receptors and G-proteins. Moreover, the antibodies have the same effect on binding of all agonists, further excluding the role of agonists in the formation of receptor-G-protein complexes.

To further investigate the role of receptor activation in receptor-G-protein pre-coupling we prepared cell lines expressing mutant M1 receptor with mutations known to interfere with receptor signaling. Mutation of aspartate 71 in the middle of the second transmembrane domain to asparagine (D71N) has been shown to prevent activation of the M1 receptor [15]. This residue is neither of G-proteins diminishes the efficacy of carbachol in pre-coupling. Mutation of aspartate 122 in the conserved E/DRY-motif at the intracellular edge of the third transmembrane domain to asparagine (D122N) has been shown to reduce the potency of muscarinic agonists [13]. Measurements of the association rate of GTPyS shows that at D122N receptors GTPyS binding under basal conditions (in the absence of agonist) is accelerated and that carbachol has smaller effect on GTPyS association rate than at wild-type M1 receptors (Fig. 5, lower left). Meanwhile, the proportion of low-affinity sites for carbachol is increased in D122N receptors in comparison with control (Fig. 6). Most likely, increased basal activity of D122N results in more activated G-proteins and thus more uncoupled receptors in membrane preparations. Crystal structure of complex of opsin and G-terminal cysteine [16]. At M1 muscarinic receptors mutation of arginine 123 to asparagine (R123N) blocks activation of G-proteins (Fig. 5, lower right). In accordance with the ternary complex model of GPCRs [21], R123N receptors (uncoupled from G-proteins) display only low-affinity for carbachol (Fig. 6, triangles).

It is worth noting that carbachol can activate all three classes of G-proteins at both M1 and M2 receptors (Fig. 1) and M1 receptors pre-couple both to preferential Gi/o and non-preferential Gq/11 G-proteins. In contrast, M2 receptors pre-couple only to preferential Gi/o G-proteins. Gi/o are the major class of G-proteins in membranes from CHO cells, representing almost half of all G-proteins. To exclude the possibility that M2 receptors do not pre-couple with Gi/o G-proteins due to competition with preferential Gi/o, G-proteins, we attenuated the expression of Gi/o α-subunits by siRNA to one quarter, making Gi/o G-proteins the least abundant class in CHO membranes. Such reduction in expression of Gi/o G-proteins diminishes the efficacy of carbachol in activating these preferential G-proteins to a level lower than at any of non-preferential G-proteins (Fig. 7). It also reduced its potency (Table 7 vs. Table 1). On the other hand, the potency of carbachol to stimulate GTPyS binding increases at non-preferential Gi/o and Gq/11 G-proteins, demonstrating competition among G-proteins for M2 receptors [25]. In concert, the proportion of low-affinity sites increases and the effect of the anti-Gi/o antibody is reduced (Fig. 8, cf. Table 4 and Table 8). Again, these findings indicate the presence of a lower proportion of high-affinity receptor/G-protein complexes. However, the anti-Gq/11 antibody has no effect on the proportion of low-affinity sites even after such reduction in the expression of Gi/o G-proteins. This suggests that the lack of pre-coupling of Gi/o G-proteins with M2 receptors is not due to competition with Gi/o G-proteins.

In summary, we show that muscarinic receptors pre-couple with their preferential class of G-proteins in the absence of an agonist. In contrast to the M1 and M3 receptors that pre-couple both with preferential Gi/o and non-preferential Gi/o G-proteins, the M2 and M4 receptors pre-couple only with their preferential Gi/o G-

Table 7. Stimulation of [35S]GTPyS binding by carbachol in membranes with reduced expression of the Gi/o subclass of G-proteins.

pEC50	E\text{MAX}	
Gi/o	5.01 ± 0.06	1.43 ± 0.08
Gi/o	5.54 ± 0.05	1.82 ± 0.06
Gq/11	5.65 ± 0.05	1.63 ± 0.04

Data are means ± S.E.M. From 3 experiments performed in quadruplicates. E\text{MAX} is expressed as fold increase of basal binding.

doi:10.1371/journal.pone.0027732.t007

Figure 7. Stimulation of [35S]GTPyS binding by carbachol at the M2 receptor after suppression of expression of Gi/o G-proteins. M2 receptor-mediated stimulation of [35S]GTPyS binding to Gi/o (circles), Gq/11 (squares) and Gq/11 G-proteins (diamonds) after suppression of expression of Gi/o G-proteins by siRNA was stimulated by increasing concentrations of carbachol (abscissa, log M). Response is expressed as fold over basal (ordinate). Data are means ± S.E.M. of values from 3 experiments performed in quadruplicates. Curves were fitted using equation 2 and results of fits are shown in Table 5.

doi:10.1371/journal.pone.0027732.g007

Pre-Coupling of Muscarinic Receptors

PLoS ONE | www.plosone.org 8 November 2011 | Volume 6 | Issue 11 | e27732

proteins. Lack of pre-coupling of the M2 and M4 receptors to Gq/11 G-proteins is not due to competition with preferential Gi/o G-proteins. None of the four subtypes of muscarinic receptors pre-couples to Gs/olf G-proteins. Thus, the mode of coupling of a given subtype of muscarinic receptors is governed by a combination of the receptor subtype and the class of G-protein. Advanced instrumental methods like fluorescence resonance energy transfer (FRET) between receptor and G-protein [7] and plasmon surface resonance [5] were developed to monitor kinetics of receptor G-protein interactions. Although these methods give better picture of receptor G-protein interaction, our simple method, that can only detect pre-coupling, does not require recombinant systems like FRET-based methods nor reconstituted systems like plasmon surface resonance methods and can be easily applied ex vivo, e.g. to tissues of experimental animals.

Materials and Methods

Materials

The radioligands [3H]-N-methylscopolamine chloride ([3H]NMS), guanosine-5'-[35S]triphosphate ([35S]GTP[S]), and anti-rabbit IgG-coated scintillation proximity beads were from Amersham (UK). Rabbit polyclonal antibodies against C-terminus of G-protein (Gi/o, C-10, and Gs/olf, C-18) were from Santa Cruz Biotechnology (Santa Cruz, CA). Carbamoylcholine chloride (carbachol), dithiotreitol, ethylenediaminotetraacetic acid (EDTA), guanosine-5'-biphosphate...

Table 8. Effects of IgG antibodies directed against α-subunits of individual subtypes of G-proteins on binding parameters of muscarinic agonists in membranes of M2 CHO cells with reduced expression of Gi/o G-proteins by siRNA.

	control	anti-Gi/o	anti-Gs/olf	anti-Gq/11
carbachol pK_h high	6.85±0.08	6.89±0.07	6.94±0.08	6.77±0.07
carbachol pK_l low	5.03±0.07	4.88±0.07	4.98±0.07	4.95±0.08
furmethide pK_h high	7.07±0.08	6.72±0.07	7.91±0.07	6.97±0.08
oxotremorine pK_h high	7.55±0.09	7.54±0.08	7.76±0.08	7.63±0.08
oxotremorine pK_l low	6.09±0.08	6.15±0.08	6.17±0.09	6.25±0.08
pilocarpine pK_h high	7.00±0.09	6.91±0.11	7.06±0.09	7.31±0.10
pilocarpine pK_l low	5.55±0.09	5.58±0.09	5.54±0.09	5.62±0.09

Data are means ± S.E.M. From 3 experiments performed in quadruplicates. f_{low}, fraction of low-affinity sites in percent; *, significantly different from control by t-test (P < 0.05).

doi:10.1371/journal.pone.0027732.t008

Figure 8. Effects of anti-G-protein antibodies on competition between agonists and [3H]NMS binding at M2 receptors after suppression of Gi/o G-proteins expression. Binding of 1 nM [3H]NMS to membranes from CHO cells expressing M2 receptors after suppression of expression of Gi/o G-proteins by siRNA was determined in the presence of increasing concentrations (abscissa, log M) of the agonists carbachol (upper left), furmethide (upper right), oxotremorine (lower left), and pilocarpine (lower right). Binding is expressed as per cent of control binding in the absence of agonist. Filled circles, control binding in the absence of antibodies. Open symbols, binding in the presence of anti-Gi/o (circles), anti-Gs/olf (squares) and anti-Gq/11 (diamonds) antibodies. Data are means ± S.E.M of values from 3 experiments performed in quadruplicates. Curves were fitted using equation 3 and results of fits are shown in Table 6.

doi:10.1371/journal.pone.0027732.g008
sodium salt (GDP), guanosine-5’-[γ-thio]triphosphate tetrithium salt (GTP[S]), N-methylscopolamine bromide (NMS), and pilocarpine hydrochloride were from Sigma (St. Louis, MO). Oxotremorine sesquifumarate was from RBI (Natick, MA) and Nonidet P-40 was from USB Corporation (Cleveland, OH). Furfarlyrimethylammonio- inum bromide (furmethide) was kindly donated by Dr. Shilkovnikov (University of St. Petersburg). Small interfering RNA (siRNA) was designed and synthesized by Ambion/Applied Biosystems, Czech Republic.

Cell culture and membrane preparation

Chinese hamster ovary cells stably transfected with the human M₄ to M₄ muscarinic receptor genes (CHO cells) were kindly donated by Prof. T. L. Bonner (National Institutes of Health, Bethesda, MD). Cell cultures and crude membranes were prepared as described previously [18]. Briefly, cells were grown to confluency in 75 cm² flasks in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum. Two million of cells were subcultured to 100 mm Petri dishes. Medium was supplemented with 5 mM butyrate for the last 24 hours of cultivation to increase receptor expression. Cells were detached by mild trypsinization on day 5 after subculture. Detached cells were washed twice in 50 ml of phosphate-buffered saline and 3 min centrifugation at 250 x g. Washed cells were suspended in 20 ml of ice-cold incubation medium (100 mM NaCl, 20 mM Na-HEPES, 10 mM MgCl₂; pH = 7.4) supplemented with 10 mM EDTA and homogenized on ice by two 30 sec strokes using Polytron homogenizer (Ultra-Turrax; Janke & Kunkel GmbH & Co. KG, IKA-Labortechnik, Staufen, Germany) with a 30-sec pause between strokes. Cell homogenates were centrifuged for 30 min at 30,000 x g. Supernatants were discarded, pellets resuspended in fresh incubation medium and centrifuged again. Resulting membrane pellets were kept at −20°C until assayed within 10 weeks at a maximum.

Attenuation of expression of Gₛ/o G-proteins

Expression of Gi/o G-proteins α-subunits was attenuated by siRNAs of following sequences (5’→3’ sense): Go, GGC UCC AAC ACC UAU GAA Gtt; Gi₁, CCU CAA CAA AAG AAA GGA Ctt; Gi₃, CCU CCA UCA UGC UCC UCC Utc; Gi₄, GGG AGU GAC AGC AUA UAU Ctt. Cells were treated with complexes of all 4 siRNAs and lipofectamine 48 hours prior to experiment.

Preparation of new stable cell lines

New stable CHO cell lines expressing wild-type M₁ and mutant M₁ receptors have been prepared. Coding sequence of wild-type human M₁ muscarinic receptor (in expression vector pcDNA ver. 3.2, cDNA resource center, University of Missouri-Rolla, MO, USA) was mutated by PCR and mismatch primers using Qiagen QuickChange kit. Mutations were verified by sequencing of complete receptor coding sequence. Then CHO-K1 cells were transfected with either original M₁-pcDNA or mutated plasmid using Lipofectamine 2000 (Lipofectamine 10 µl/ml, DNA 0.5 µg/µl). After 48 hours geneticine was added to cultivation medium to final concentration of 800 µg/ml. After selection, the concentration of geneticine was lowered to 50 µg/ml and maintained during cultivation.

Equilibrium radioligand binding experiments

All radioligand binding experiments were optimized and carried out as described earlier [20]. Briefly, membranes were incubated in 96-well plates at 30°C in the incubation medium described above that was supplemented with freshly prepared dithiothreitol at a final concentration of 1 mM. Incubation volume was 200 µl or 800 µl for [³H]NMS saturation experiments. Approximately 50 and 10 ng of membrane proteins per sample were used for [³H]NMS and [³H]GTP[S] binding, respectively. N-methylscopolamine binding was measured directly in saturation experiments using six concentrations (30 pM to 1000 pM) of [³H]NMS for 1 hour. Depletion of radioligand was smaller than 20% for the lowest concentration. For calculations, radioligand concentrations were corrected for depletion. Agonist binding was determined in competition experiments with 1 nM [³H]NMS. Membranes were first precultured 60 min with agonists and IgG antibodies against C-terminus of α-subunits of G-proteins, if applicable, and then incubated with [³H]NMS for additional 100 min. Final dilution of antibodies was 1:200 for G₁₁, and G₁₇, and 1:500 for G₁₁. Nonspecific binding was determined in the presence of 10 µM NMS. Agonist stimulated [³H]GTP[S] binding was measured in a final volume of 200 µl of incubation medium with 200 pM (M₁ or M₃ receptors) or 500 pM (M₂ or M₄ receptors) of [³H]GTP[S] and 5 µM (M₁ or M₂ receptors) or 50 µM (M₂ or M₃ receptors) GDP for 20 min at 30°C after 60 min preincubation with GDP and agonist. Nonspecific binding was determined in the presence of 1 µM unlabeled GTP[S]; incubations were terminated by filtration through Whatman GF/F glass fiber filters (Whatman) using a Tomtech Mach III cell harvester (Perkin Elmer, USA). Filters were dried in vacuum for 1 h while heated at 60°C and then solid scintillator Meltilex A was melted on filters (105°C, 90 s) using a hot plate. The filters were cooled and counted in Wallac Microbeta scintillation counter.

Scintillation proximity assay

In case of scintillation proximity assay, incubation with [³H]GTP[S] as described above was terminated by membrane solubilization by the addition of 20 µl of 10% Nonidet P-10. After 20 min 10 µl of individual primary antibodies against C-termini of G-protein α-subunits were added and incubation was continued for 1 h. The final dilution was 1:500 in case of anti-G₁₁ and anti-G₁₇ antibodies and 1:1000 in case of the anti-G₁₇-α₂ antibody. One batch of anti-rabbit IgG-coated scintillation beads was diluted in 20 ml of incubation medium and 50 µl of the suspension was added to each well for 3 h. Then plates were spun for 15 min at 1,000 x g and counted using the scintillation proximity assay protocol in a Wallac Microbeta scintillation counter.

Data analysis

In general binding data were analyzed as described previously [20]. Data were preprocessed by Open Office version 3.2 (www.openoffice.org) and subsequently analyzed by Grace version 5.1 (plazma-gate, weizman.ac.il) and statistic package R version 2.13 (www.r-project.org) on Scientific Linux version 6 distribution of GNU/Linux.

The following equations were fitted to data:

Saturation of radioligand binding

\[y = B_{MAX} * x / (x + K_D) \] (1)

where

\[y \] = binding of radioligand at free concentration of radioligand \[x \];

\[B_{MAX} \] = maximum binding capacity; \[K_D \] = equilibrium dissociation constant.

Concentration-response

\[y = 1 + (E_{MAX}-1) / (1 + (EC_{50}/x)^{\beta}) \] (2)
y, radioactivity in the presence of agonist at concentration x normalized to radioactivity in the absence of agonist; E_{max}, maximal increase by agonist; $E_{\text{C}_{50,\text{high}}}$, concentration of agonist producing 50% of maximal effect; h_i, Hill coefficient.

Interference of agonist with $[^{3}H]NMS$

\[
y = \frac{(100 - f_{\text{flow}})}{1 + x^{(\frac{-1}{(IC_{50,\text{high}} - x)})}} + f_{\text{flow}} + f_{\text{low}} = \frac{(1-x)/(IC_{50,\text{low}} + x)) + f_{\text{low}} + f_{\text{flow}}}{1 + x^{(\frac{-1}{(IC_{50,\text{low}} - x)})}}
\]

(3)

y, binding of radioligand at a concentration of displacer x normalized to binding in the absence of displacer; f_{flow}, percentage of low affinity sites; $IC_{50,\text{high}}$, concentration causing 50% decrease in binding to high affinity sites; $IC_{50,\text{low}}$, concentration causing 50% decrease in binding to low affinity sites. Equilibrium dissociation constant of displacer (K_D) was calculated according to Cheng and Prusoff [26].

Rate of association

\[
y = B_{eq} = (1-e^{-k_{obs}x})
\]

(4)

y, binding of radioligand at a time x; B_{eq}, equilibrium binding; k_{obs}, observed rate of association.

Author Contributions

Conceived and designed the experiments: JJ AR HJ EEE VD. Performed the experiments: JJ AR HJ. Analyzed the data: JJ AR HJ EEE VD. Wrote the paper: JJ AR HJ EEE VD.

References

1. Kroese WK, Shefler DJ, Roth BL (2003) G-protein-coupled receptors at a glance. J Cell Sci 116: 4067–4069.
2. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5: 993–996.
3. Heip P, Bünemann M (2009) Coupling mode of receptors and G proteins. Naunyn Schmiedebergs Arch Pharmacol 379: 435–443.
4. Shea LD, Neubig RR, Linderman JJ (2000) Timing is everything the role of agonist association of G proteins with beta 2AR is independent of the state of receptor activation. Cell Signal 11: 523–533.
5. Hynes TR, Mervine SM, Yost EA, Sabo JL, Berlot CH (2004) Live cell imaging of Gs and the beta2-adrenergic receptor demonstrates that both alphas and betalamma7 internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the beta2-adrenergic receptor. J Biol Chem 279: 44101–44112.
6. Okuma Y, Reisine T (1992) Immunoprecipitation of alpha 2a-adrenergic receptor-GTP-binding protein complexes using GTP-binding protein selective antiserum. Changes in receptor/GTP-binding protein interaction following agonist binding. J Biol Chem 267: 14826–14831.
7. Lachance M, Ethier N, Wolbring G, Schnetkamp PP, Hebert TE (1999) Stable receptor-G protein coupling in living cells. EMBO J 24: 4106–4114.
8. Hein P, Bünemann M (2009) Coupling mode of receptors and G proteins. Trends Pharmacol Sci 30: 279: 44101–44112.
9. Okuma Y, Reisine T (1992) Immunoprecipitation of alpha 2a-adrenergic receptor-GTP-binding protein complexes using GTP-binding protein selective antiserum. Changes in receptor/GTP-binding protein interaction following agonist binding. J Biol Chem 267: 14826–14831.
10. Sony K, Dong C, Wu G, Lambert NA (2011) Inactive-state preassembly of G(q)-protein-coupled receptors. Nat Chem Biol 7: 740–747.
11. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, et al. (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455: 497–502.
12. Zhuo S, Wang S, Hu J, El-Fakahany EE (1994) An arginine residue conserved in most G protein-coupled receptors is essential for the function of the m1 muscarinic receptor. Mol Pharmacol 45: 517–523.
13. Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9: 60–71.
14. Jakubík J, Janíčková H, El-Fakahany EE, Doležal V (2011) Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br j Pharmacol 162: 1029–1044.
15. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, et al. (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455: 497–502.
16. Jakubík J, Janíčková H, El-Fakahany EE, Doležal V (2011) Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br J Pharmacol 162: 1029–1044.
17. Fraser CM, Wang CD, Robinson DA, Gocayne JD, Venter JC (1989) Site-directed mutagenesis of m1 muscarinic acetylcholine receptors: conserved aspartic acids play important roles in receptor function. Mol Pharmacol 36: 840–847.
18. Heitman J, Stadel JM, Lekkowitz R (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255: 7108–7117.
19. Gilchrist A, Mazzoni MR, Dineen B, Dice A, Linden J, et al. (1998) Antagonists of the receptor-G protein interface block Gi-coupled signal transduction. J Biol Chem 273: 14912–14919.
20. Sykes DA, Dowling MR, Charbon SJ (2009) Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. Mol Pharmacol 76: 565–666.
21. De Lean A, Stadel JM, Lekkowitz R (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255: 7108–7117.
22. Hein P, Frank M, Hoffmann C, Lohse MJ, Bünemann M (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24: 4106–4114.
23. Michal P, Rudajev V, El-Fakahany EE, Doležal V (2009) Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur J Pharmacol 606: 50–60.
24. Bouyer T (1989) The molecular basis of muscarinic receptor diversity. Trends Neurosci 12: 148–151.
25. Nobles M, Benians A, Tinker A (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci U S A 102: 16706–16711.
26. Michal P, El-Fakahany EE, Doležal V (2007) Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J Pharmacol Exp Ther 320: 607–614.
27. Cooney MP, El-Fakahany EE, Doležal V (2007) Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J Pharmacol Exp Ther 320: 607–614.
28. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, et al. (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455: 497–502.