Foliage Plants Cause Physiological and Psychological Relaxation as Evidenced by Measurements of Prefrontal Cortex Activity and Profile of Mood States

Sin-Ae Park
Department of Environmental Health Science, Konkuk University, 05029, Seoul, South Korea

Chorong Song
Center for Environment, Health and Field Sciences, Chiba University, 277-0882, Chiba, Japan

Ji-Young Choi
Graduate School of Environmental Science, Konkuk University, 05029, Seoul, South Korea

Ki-Cheol Son
Department of Environmental Health Science, Konkuk University, 05029, Seoul, South Korea; and the Graduate School of Environmental Science, Konkuk University, 05029, Seoul, South Korea

Yoshifumi Miyazaki*
Center for Environment, Health and Field Sciences, Chiba University, 277-0882, Chiba, Japan

Additional index words. brain activity, horticultural therapy, human issues in horticulture, near-infrared spectroscopy, semantic differential method

Abstract. The study’s objective was to investigate the effects of foliage plants on prefrontal cortex activity and subjective assessments of psychological relaxation. In a crossover experimental design, 24 male university students in their 20s observed a container with and without foliage plants for 3 minutes while oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex was continuously measured with a portable near-infrared (NIR) spectroscopy device. Afterward, subjective evaluations of emotions were obtained via two self-report questionnaires: a modified semantic differential (SD) method and the Profile of Mood State questionnaire (POMS). Oxy-Hb concentration in the right prefrontal cortex was significantly lower in subjects who viewed the foliage plants than in those who did not, indicating a physiologically relaxed state. The subjects also reported in the SD method significantly more positive emotions (e.g., comfortable, natural, and relaxed) associated with viewing the foliage plants. In the POMS, a significant positive effect on psychological relaxation when subjects viewed the foliage plants was shown. Thus, we conclude that foliage plants have both physiological and psychological relaxation effects in males even after only short exposure.

In an urban society, city dwellers spend over 80% of their time in indoor environments (Yoo and Lee, 2014). Therefore, there are limited opportunities to experience nature or green plants (Lee, 2007). Furthermore, many city dwellers in modern society spend most of their time in a stressed state (Herzog et al., 1997; Kim et al., 2013). Various theories have been proposed to explain the importance of experiencing nature or green plants for human health and well-being. Kaplan and Kaplan (1989) proposed the attention restoration theory, which states that nature provides environmental stimulation, which alleviates the attention fatigue that occurs while performing cognitive tasks. Ulrich (1983) proposed that nature might allow stress recovery through innate, adaptive responses to the attributes of natural environments. Moreover, interest in the relationships between nature or green plants and human health has been increasing in recent years (Bowler et al., 2010).

Previous studies have reported the impact of visual stimulation by green plants on physiological and psychological relaxation. Ulrich (1983) reported that a natural environment led to the alleviation of stress-related negative emotions and autonomic nervous system activation. In addition, Ikei et al. (2014a) showed that viewing green plants in an indoor environment was associated with greater stabilization of the autonomic nervous system and parasympathetic activity by measuring heart rate variability. Son et al. (1998) reported that green plants in an interior space increased alpha waves in electroencephalographic activity, which was used as an index of emotional stabilization.

Measurements of brain function are routinely performed using electroencephalography, positron emission tomography, single-photon emission computed tomography, functional magnetic resonance imaging, and magnetoencephalography. However, the experimental environments for these techniques are quite different from normal daily environments, requiring strict motion restriction that may be stressful for the subjects. Furthermore, in vivo determination of the brain activity in humans requires flexible, accessible, and rapid monitoring techniques. Jöbsis (1977) demonstrated that near-infrared spectroscopy (NIRS) can be used as a tool to noninvasively monitor cerebral blood oxygenation. A major advantage of NIRS is better tolerance to head motion because of the temporal resolution of the device (Perrey, 2012) so that NIRS has been used in many studies of activation-induced changes in brain activity over the past 20 years (Perrey, 2012). Near-IR light penetrates tissue to a depth of several centimeters and allows to continuous measure for the noninvasive monitoring of hemodynamics in the prefrontal cortex of the brain (Jöbsis, 1977; Perrey, 2008).

The biological effects of viewing foliage plants on the well-being of individuals are not well understood. Because of the advantages of using NIRS to assess brain activity, the objective of this study was to use this technique to investigate the effects of foliage plants on prefrontal cortex activity and associate these effects with subjective assessments of psychological relaxation.

Materials and Methods

Subjects. University male students in their 20s were recruited from Konkuk University, Seoul, South Korea. Researchers contacted students who were on a campus volunteer list by phone or face to face. In total, 24 male university students were recruited. Inclusion criteria were not having rhinitis symptoms (because these can affect the data) and not consuming caffeine or smoking 2 h before testing. Researchers provided the study’s purpose, procedures, schedule, and requirements to participants, and the subjects provided written informed consent.

The mean age of the subjects in this study was 24.0 ± 2.7 years. The mean height and weight were 172.9 ± 6.4 cm and 68.6 ± 11.4 kg, respectively. Body mass index (BMI) was 22.8 ± 2.9 kg·m⁻², which is in the normal range (WHO, 2006). After completion of the study, the subjects received $20 as an
Experimental procedures. A space (1.5 × 1.7 m) with a table and chair in a laboratory at the Konkuk University campus was used in this study. The experimental space in the laboratory was sectioned off by a curtain to avoid possible barrier factors, such as noise or interruption. The space was maintained at (mean ± SD) 25.4 ± 1.5 °C, 52.5 ± 5.8% relative humidity, and 1645 ± 189 lx illumination.

The experimental procedures are presented in Fig. 1. This study was of a crossover experimental design, which is a repeated measures design. In a crossover design, each experimental group crosses over from one treatment to another, which provides a more efficient comparison of treatments than a parallel design (Piantadosi, 2005). Each subject visited the laboratory once to complete this study.

A container with or without plants was covered by a cardboard box on the desk. After a 30-s resting period, each subject randomly observed either foliage plants (Epipremnum aureum) in a container (55 × 19 × 15 cm) or a container without foliage plants for 3 min while maintaining the sitting position (Fig. 2A and B). Before visual stimulation, the container with or without plants was covered by a cardboard box (Ikei et al., 2014a). During the testing procedure, oxy-Hb concentration in the prefrontal cortex was measured continuously with NIRS as an index of the physiological effects of viewing plants on the prefrontal cortex activity. After finishing the 3-min treatment, subjective evaluations of the emotional effects were measured by using surveys for about 1 min.

Before starting the testing, the subjects were provided with a detailed explanation about the procedures of this study. Body weight and height without shoes of each subject were measured by a body fat analyzer (ist 353; Jawon Medical, Gyeongsan, South Korea) and an anthropometer (Ok7979; Samhwa, Seoul, South Korea). The BMI was calculated with the data for body weight and height (BMI = [weight (kg)]/ [height (m)]^2).

Measurement for prefrontal cortex activity. Oxy-Hb concentrations in the prefrontal cortex were continuously measured using a portable NIRS (Pocket NIRS Duo; Dynasense, Shizukuoka, Japan; Watanabe et al., 2012) while each subject was viewing the containers with or without foliage plants and resting. Moreover, baseline data of oxy-Hb concentration in the prefrontal cortex in each subject was measured by NIRS by sitting on a chair for 3 min. NIRS was worn on the forehead of each subject (Fig. 3), and the oxy-Hb concentrations in the left and right prefrontal cortex were measured at 1 Hz.

Subjective evaluation. A subjective evaluation was conducted using the modified SD method (Osgood et al., 1957). The SD method uses three pairs of adjectives on 13 scales, including “comfortable-uncomfortable,” “natural-artificial,” and “relaxed-awakening.”

In addition, the POMS, originally developed by McNair et al. (2003) and then translated to Korean by Yeun and Shin-Park (2006), was conducted. The POMS questionnaire consists of 30 questions in six subcategories, such as tension-anxiety (T-A), depression-dejection (D), anger-hostility (A-H), fatigue (F), confusion (C), and vigor (V). The lower scores for the T-A, D, A-H, F, and C indicate a better emotional condition, but a higher score for the V indicate a better condition. The total mood disturbance (TMD) score is calculated by the formula: $TMD = \frac{(T-A) + (D) + (A-H) + (F) + (C) - (V)}{C}$ (Baker et al., 2002). A lower score of TMD indicates a better emotional condition. The Chronbach’s α was 0.7 (McNair et al., 1992).

Data analysis. Data on the oxy-Hb concentration difference between the control and treatment groups of oxy-Hb concentration were analyzed using a paired t test. The results from the SD method and POMS were analyzed by the Wilcoxon signed-rank test.

Results

Prefrontal brain activity measured by NIRS. Changes in oxy-Hb concentration in the right prefrontal cortex over time under the two treatment conditions are shown in Fig. 4. NIRS revealed that the average oxy-Hb concentration in the right prefrontal cortex in the viewing foliage plant condition was...
observation period of 1–60 s, it was lower
period (plants’ condition for the 1- to 180-s testing
significantly lower than that in the “no
plants” condition and the 1- to 60-s testing period
(data not shown).

Subjective evaluation. The subjective
evaluation of the emotional impact of the
foliage plants showed an association with
positive effects in this study (Figs. 7–9). By
the modified SD method, the subjects
reported feeling significantly more comfort-
able, natural, and relaxed when viewing
foliage plants than when they were not
(P < 0.01; Fig. 7).
The results of the POMS questionnaire
also showed a positive effect on psycholog-
ical relaxation when subjects viewed the
foliage plants (Figs. 8 and 9). Specifically,
scores in the T-A, A-H, and F subcategories
were significantly lower and scores in the
V subcategory were higher when viewing
plants than when not viewing plants
(P < 0.05; Fig. 8). The TMD score was 1.9 in
the group with foliage plants and 4.3 in the
group with no foliage plants
(P < 0.01; Fig. 9).

Discussion
The subjects showed physiological and
psychological relaxation resulting from vi-
sual stimulation comprising the viewing of
foliage plants for 180 s. The oxy-Hb con-
centration in the right prefrontal cortex was
significantly lower when viewing the con-
tainer with, than without, foliage plants, and
the decrease started from as early as 1–60 s.
Thus, the visual stimulation of viewing fo-
ilage plants led to a physiological relaxation
effect. In addition, the positive physiological
responses of humans to foliage plants
appeared almost immediately.

Although few studies have previously
used NIRS to examine the effects of visual
stimulation on relaxation, a recent study
reported a physiological relaxation effect
associated with decreasing oxy-Hb concen-
tration in the right prefrontal cortex when
viewing a 3-dimensional image of a water lily
(Igarashi et al., 2014c). In addition, olfactory
stimulation with rose and orange oil induced
physiological and psychological relaxation
by decreasing the oxy-Hb concentration in
the right prefrontal cortex (Igarashi et al.,
2014a). Further, Hinoki cypress leaf oil
duced oxy-Hb concentration in the right pre-
frontal cortex and increased parasympathetic
nervous activity (Ikei et al., 2015). The
present study led the same results like the
previous findings in the physiological and
psychological relaxation by decreasing the
oxy-Hb concentration in the right prefrontal
cortex. When the local brain activity in-
creases, brain blood flow increases (Fox
and Raichle, 1986). The level of brain blood
flow is consistent with the level of oxy-Hb
(Hoshi et al., 2001), and NIRS can detect
this activity-related increase in oxy-Hb.
Consequently, it is considered that a de-
crease in the oxy-Hb concentration equates
to a physiological relaxation effect (Igarashi
et al., 2014a).

In this study, the left and right prefrontal
cortices differentially responded to the view-
ing of foliage plants. Oxy-Hb concentration
measured by NIRS significantly decreased in
the right prefrontal area but not in the left
prefrontal area. These results are consistent
with previous findings: most of the NIRS
studies on visual stimulation have reported
that only one prefrontal area is significantly
activated (Igarashi et al., 2014a, 2014b,
2014c, 2015). Moreover, a review of func-
tional NIRS studies reported hemispheric
differences in brain activation (Homae,
2014). The prefrontal region is involved in
decision-making and emotional processing
(Barrash et al., 2000; Tran et al., 2000).
Although it is unknown whether the right
and left prefrontal regions make asymmet-
cric contributions, considerable evidence
exists that supports a predominant role
for the right hemisphere in emotional
processing (Damasio, 1994, 1999), with,
in particular, a more dramatic effect on
autonomic responses (Angrilli et al., 1999;
Zahn et al., 1999). More studies are
needed using NIRS to investigate the
hemispheric differences in the response
to sensory stimulation to clarify the func-
tional implications.

The subjective evaluation of the emo-
tional impact of viewing foliage plants also
showed a significant positive effect in this
study. The subjects felt comfortable, natural,
and relaxed by viewing foliage plants. Fur-
thermore, the subjects reported significantly
decreased tension, anxiety, and fatigue and
increased vigor. In a previous study, high
school students also reported on the SD
questionnaire that foliage plants led to posi-
tive associations, such as feeling comfort-
able, relaxed, and natural (Ikei et al., 2014a).
Moreover, viewing real pansies compared
with artificial pansies produced similar
positive emotions in the SD method (Igarashi
et al., 2015). Further, via the POMS ques-
tionnaire, office workers reported psycholog-
ical relaxing effects when viewing roses, such
as decreased tension, depression, anger, fa-
tigue, and confusion and increased vigor
(Ikei et al., 2014b).
TMD score was calculated by the formula

\[TMD = (T - A) + (D) + (A - H) + (F) + (C) - (V) \]

Values are means ± SE * * \(p < 0.01 \); \(N = 24 \).

Previous studies have reported that exposure to environments with plants can have physiological and psychological benefits (Hartig et al., 1991; Ulrich, 1981; Ulrich, 1991; Ulrich and Parsons, 1992). For example, Ulrich (1991) reported that a natural environment led to recovery from stress. In addition, interior spaces with green plants induced stable autonomic nervous system activity (Ikei et al., 2014a) and increased emotional stability as inferred based on increased alpha wave activity in electroencephalographic measurements (Son et al., 1998). Chang and Chen (2005) comprehensively investigated the effects of window views and indoor plants on human psychophysiological responses in workplace environments by measuring electroencephalography, electroencephalography, blood volume pulse, and state anxiety. The results of this study showed that participants were notably less nervous or anxious when viewing nature or indoor plants. Finally, a review of 21 studies concluded that passive interactions with indoor plants provide psychological benefits, such as stress reduction and increased pain tolerance (Bringslimark et al., 2009).

As our data indicate, even a small number of plants can offer psychophysiological benefits. In accordance with our findings, Ikei et al. (2014a) reported that as few as three foliage plants that were 55–60 cm in height provided significant physiological and psychological relaxation in high school students. Moreover, Choi (2015) reported that an index of greenness equivalent to 5% foliage green plants within an interior space resulted in psychophysiological stability in male university students.

In conclusion, in the current study, viewing foliage plants led to physiological and psychological relaxation in male subjects in their 20s. Future study is needed to investigate the effects on brain function from sensory stimulation for various age groups and gender differences. Furthermore, it would be of interest to determine whether foliage plants could alleviate aggressiveness or emotional instability in individuals with special needs.

Literature Cited

Angrilli, A., D. Palomba, A. Cantagallo, A. Maietti, and L. Stegagno. 1999. Emotional impairment after right orbitofrontal lesion in a patient without cognitive deficits. Neuroreport 10:1741–1746.

Baker, F., M. Denniston, J. Zabora, A. Polland, and W.N. Dudley. 2002. A POMS short form for cancer patients. Psychometric and structural evaluation. Psychooncology 11:273–281.

Barrash, J., D. Tanel, and S.W. Anderson. 2000. Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Dev. Neuropsychol. 18:355–381.

Bowler, D., L.M. Buyung-Ali, T.M. Knight, and A.S. Pullin. 2010. The importance of nature for health: Is there a specific benefit of contact with green space? Systematic review. CEE review 40:1–57.

Bringslimark, T., T. Hartig, and G.G. Patil. 2009. The psychological benefits of indoor plants: A critical review of the experimental literature. J. Environ. Psychol. 29:422–433.

Chang, C.Y. and P.K. Chen. 2005. Human response to window views and indoor plants in the workplace. HortScience 40:1354–1359.

Choi, J.Y. 2015. Psychophysiological response according to the index of greenness of interior space. MS thesis, Konkuk Univ., Seoul, Korea.

Damasio, A. 1994. Descartes’ error: Emotion, reason and the human mind. p. 195–201. Putnam, New York, NY.

Damasio, A.R. 1990. The feeling of what happens: Body and emotion in the making of consciousness. Harcourt Brace, San Diego, CA.

Fox, P.T. and M.E. Raichle. 1986. Focal physiologic uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. 83:1140–1144.

Hartig, T., M. Mang, and G.W. Evans. 1991. Restorative effects of natural environment experiences. Environ. Behav. 23:3–26.

Herzog, T.R., A.M. Black, K.A. Fountaine, and D.J. Knotts. 1997. Reflection and attentional recovery as distinctive benefits of restorative environments. J. Environ. Psychol. 17:165–170.

Homae, F. 2014. A brain of two halves: Insights into interhemispheric organization provided by near-infrared spectroscopy. Neuroimage 85:354–362.

Hoshi, Y., N. Kobayashi, and M. Tamura. 2001. Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. J. Appl. Physiol. 90:1657–1662.

Igarashi, M., M. Aga, H. Ikei, T. Namekawa, and Y. Miyazaki. 2015. Physiological and psychological effects on high school students of viewing real and artificial pansies. Int. J. Environ. Res. Public Health. 12:2521–2531.

Igarashi, M., H. Ikek, C. Song, and Y. Miyazaki. 2014a. Effects of olfactory stimulation with rose and orange oil on prefrontal cortex activity. Complement. Ther. Med. 22:1027–1031.

Igarashi, M., C. Song, H. Ikei, and Y. Miyazaki. 2014b. Effects of olfactory stimulation with perilla essential oil on prefrontal cortex activity. J. Altern. Complement. Med. 20:545–549.

Igarashi, M., T. Yamamoto, J. Lee, C. Song, H. Ikei, and Y. Miyazaki. 2014c. Effects of stimulation by three-dimensional natural images on prefrontal cortex and autonomic nerve activity: A comparison with stimulation using two-dimensional images. Cogn. Process. 15:551–556.
Ikei, H., C. Song, and Y. Miyazaki. 2015. Physiological effect of olfactory stimulation by Hinoki cypress (Chamaecyparis obtusa) leaf oil. J. Physiol. Anthropol. 34:44.

Ikei, H., C. Song, M. Igarashi, T. Namekawa, and Y. Miyazaki. 2014a. Physiological and psychological relaxing effects of visual stimulation with foliage plants in high school students. Adv. Hort. Sci. 28:111–116.

Ikei, H., M. Komatsu, C. Song, E. Himoro, and Y. Miyazaki. 2014b. The physiological and psychological relaxing effects of viewing rose flowers in office workers. J. Physiol. Anthropol. 33:6.

Ogroid, C.E. 1952. The nature and measurement of meaning. Psychol. Bull. 49:197–237.

Ogroid, C.E., G.J. Suci, and P.H. Tannenbaum. 1957. The measurement of meaning. University of Illinois Press, Chicago, IL.

Perrey, S. 2008. Non-invasive NIRS spectroscopy of human brain function during exercise. Methods 45:289–299.

Perrey, S. 2012. NIRS for measuring cerebral hemodynamic responses during exercise, p. 335–349. In: H. Boecker, C.H. Hillman, L. Scheef, and H.K. Strüder (eds.). Functional neuroimaging in exercise and sport sciences. Springer-Verlag, New York, NY.

Piantadosi, S. 2005. Crossover designs, p. 515–527. In: P. Steven (ed.). Clinical Trials: A methodologic perspective. Wiley, New York, NY.

Son, K.C., J.S. Lee, and J.E. Song. 1998. Effect of visual recognition of indoor plants on changes of human brain electroencephalography. J. Kor. Soc. Hort. Sci. 39:858–862.

Tranel, D., A. Bechara, and A.R. Damasio. 2000. Decision making and the somatic marker hypothesis, p. 1047–1061. In: M.S. Gazzaniga (ed.). The new cognitive neurosciences. The MIT Press, Cambridge, MA.

Ulrich, R.S. 1981. Natural versus urban scenes some psychophysiological effects. Environ. Behav. 13:523–556.

Ulrich, R.S. 1983. Aesthetic and affective response to natural environment, p. 85–125. In: I. Altman and J.F. Wohlwill (eds.). Behavior and the natural environment. Springer US, Plenum Press, New York, NY.

Ulrich, R.S. 1991. Psychophysiological indicators of leisure, p. 73–89. In: B.L. Driver, P.J. Brown, and G.L. Peterson (eds.). Benefits of leisure. Venture Publishing Inc, State College, PA.

Ulrich, R.S. and R. Parsons. 1992. Influences of passive experiences with plants on individual well-being and health, p. 93–105. In: D. Relf (ed.). The role of horticulture in human well-being and social development. Timber press, Portland, OR.

Watanabe, T., T. Mizuno, T. Shikayama, and M. Miwa. 2012. Development of a wireless near-infrared tissue oxygen monitor system with high sampling rate. In Biomedical Optics (pp. JM3A-11). Optical Soc. Amer.

Yeun, E.J. and K.K. Shin-Park. 2006. Verification of the profile of mood states-brief: Cross-cultural analysis. J. Clin. Psychol. 62:1173–1180.