Clinical Guidelines

Current Diagnosis of Venous Thromboembolism in Primary Care: A Clinical Practice Guideline from the American Academy of Family Physicians and the American College of Physicians*

Amir Qaseem, MD, PhD, MHA; Vincenza Snow, MD, MS; Patricia Barry, MD, MPH; E. Rodney Hornbake, MD; Jonathan E. Rodnick, MD; Timothy Tobolic, MD; Belinda Ireland, MD, MS; Jodi B. Segal, MD; Eric B. Bass, MD, MPH; Kevin B. Weiss, MD, MPH; Lee Green, MD, MPH; Douglas K. Owens, MD, MS; and the Joint American Academy of Family Physicians/American College of Physicians Panel on Deep Venous Thrombosis/Pulmonary Embolism

This guideline summarizes the current approaches for the diagnosis of venous thromboembolism. The importance of early diagnosis to prevent mortality and morbidity associated with venous thromboembolism cannot be overstressed. This field is highly dynamic, however, and new evidence is emerging periodically that may change the recommendations. The purpose of this guideline is to present recommendations based on current evidence to clinicians to aid in the diagnosis of lower extremity deep venous thrombosis and pulmonary embolism.

Ann Intern Med. 2007;146:454-458. www.annals.org

For author affiliations, see end of text.

Recommendations

Recommendation 1: Validated clinical prediction rules should be used to estimate pretest probability of venous thromboembolism (VTE), both deep venous thrombosis (DVT) and pulmonary embolism, and for the basis of interpretation of subsequent tests.

Good-quality evidence supports the use of clinical prediction rules to establish pretest probability of disease. The Wells prediction rules for DVT and for pulmonary embolism (Tables 1 and 2) have been validated and are frequently used to estimate the probability of VTE before performing more definitive testing on patients. The Wells prediction rule performs better in younger patients without comorbidities or a history of VTE than it does in other patients. Physicians should use their clinical judgment in cases where a patient is older or presents with comorbidities.

Recommendation 2: In appropriately selected patients with low pretest probability of DVT or pulmonary embolism, obtaining a high-sensitivity D-dimer is a reasonable option, and if negative indicates a low likelihood of VTE.

In selected patients who have a low pretest probability of VTE as defined by the Wells prediction rules, a negative high-sensitivity D-dimer assay for VTE has sufficiently high predictive value to reduce the need for further imaging studies. Currently, enzyme-linked immunosorbent assay (ELISA), quantitative rapid ELISA, and advanced turbidimetric D-dimer determinations are highly sensitive assays (sensitivity 96% to 100%), and their use is practical in diagnosis of VTE. D-dimer testing has the highest negative predictive value when used to exclude VTE in younger patients without associated comorbidity or history of VTE and with short duration of symptoms, because the Wells criteria more accurately predict a low pretest probability of VTE in such patients. In older patients, those with associated comorbidity, and long duration of symptoms, a D-dimer alone may not be sufficient to rule out VTE.

Recommendation 3: Ultrasound is recommended for patients with intermediate to high pretest probability of DVT in the lower extremities.

Use of ultrasound in diagnosing symptomatic thrombosis in the proximal vein of the lower limb is recommended for patients whose pretest probability of disease falls in the category of intermediate to high risk for DVT under the Wells prediction rule. Ultrasound is less sensitive in patients who have DVT limited to the calf; therefore, a negative ultrasound does not rule out DVT in these patients. Repeat ultrasound or venography may be required for patients who have suspected calf-vein DVT and a negative ultrasound and for patients who have suspected prox-

See also:

Web-Only
Conversion of tables into slides

*This guideline was originally published in the Annals of Family Medicine on 1 January 2007. Readers who wish to cite this article should use the following citation: Qaseem A, Snow V, Barry P, Hornbake ER, Rodnick JE, Tobolic T, et al. Current diagnosis of venous thromboembolism in primary care: A clinical practice guideline from the American Academy of Family Physicians and the American College of Physicians. Ann Fam Med. 2007;5:57-62.

†Clinical Efficacy and Assessment Subcommitte of the American College of Physicians: Douglas K. Owens, MD, MS (Chair); Mark Aronson, MD; Donald E. Casey Jr., MD, MPH, MBA; J. Thomas Cross Jr., MD, MPH; Nancy C. Dolan, MD; Nick Fitterman, MD; E. Rodney Hornbake, MD; Paul Shekelle, MD, PhD; Katherine D. Sherif, MD; and Kevin Weiss, MD, MPH (Immediate Past Chair). Commission on Science of the American Academy of Family Physicians: Eric M. Wall, MD, MPH (Chair); Kevin A. Peterson, MD, MPH; James M. Gill, MD; Robert C. Marshall, MD, MPH; Jonathan E. Rodnick, MD; Kenneth G. Schellhaase, MD, MPH; Steven W. Strode, MD, MEd, MPH; Kurtis S. Elward, MD, MPH; James W. Mold, MD, MPH; Jonathan L. Temte, MD, PhD; Frederick M. Chen, MD, MPH; Thomas F. Kohnis, MD; Donya A. Powers, MD; Karl M. Kochendörfer, MD; Peter John Oppelt; Herbert F. Young, MD, MA; and Bellinda K. Schoof, MHA. Approved by the American College of Physicians Board of Regents on 4 April 2006. Approved by the American Academy of Family Physicians Board of Directors on 28 March 2006.
Venous thromboembolism comprises pulmonary embolism and DVT. Deep venous thrombosis usually occurs in the lower extremity. Thromboses in the deep veins proximal to the knee are associated with an increased risk for pulmonary embolism. Those that involve only the calf veins are not associated with an increased risk for pulmonary embolism, but are associated with development of postthrombotic syndrome. Upper extremity DVT is uncommon and is outside the scope of this guideline. The annual incidence of VTE in the United States is 600,000 cases (1) and is increasing with the aging of the population. Twenty-six percent of undiagnosed and untreated patients with pulmonary embolism will have a subsequent fatal embolic event, whereas another 26% will have a nonfatal recurrent embolic event that can eventually be fatal (2). Thus, the importance of early diagnosis to prevent mortality and morbidity associated with VTE cannot be overemphasized.

This guideline aims to present evidence-based recommendations for the diagnosis of lower extremity DVT and pulmonary embolism. The target audience for this guideline is all primary care physicians. The target patient population is all adults who have a probability of developing DVT or pulmonary embolism, including pregnant individuals.

METHODS

The guideline is based on a systematic review of the evidence as detailed in a comprehensive evidence report published in 2003 (3) and updated in the accompanying background paper by members of the Johns Hopkins University Evidence-based Practice Center that prepared the original report (4, 5). Those papers contain substantial additional detail about the evidence for each of the recommendations in this guideline. The American Academy of Family Physicians (AAFP) nominated this topic to the Agency for Healthcare Research and Quality Evidence-based Practice Centers (EPC) program, and the American College of Physicians (ACP) supported the nomination. This document covers diagnosis and is the first of 2 guidelines, the second by Snow and colleagues addresses management (6).

This guideline’s recommendations are based on the EPC review, which addressed the following questions on diagnosis formulated by the AAFP and ACP:

1. Are clinical prediction rules valuable for diagnosing DVT or pulmonary embolism, and does addition of the D-dimer assay improve the test characteristics of clinical prediction rules?
2. What are the test characteristics of D-dimer measurement alone when used for diagnosis or exclusion of lower extremity DVT or pulmonary embolism, and how does choice of assay affect the test characteristics?
3. What are the test characteristics of ultrasonography for diagnosis of DVT, including calf vein DVT?

Table 1. Wells Prediction Rule for Diagnosing Deep Venous Thrombosis: Clinical Evaluation Table for Predicting Pretest Probability of Deep Venous Thrombosis

Clinical Characteristic	Score
Active cancer (treatment ongoing, within previous 6 months, or palliative)	1
Paralysis, paresis, or recent plaster immobilization of the lower extremities	1
Recently bedridden >3 days or major surgery within 12 weeks requiring general or regional anesthesia	1
Localized tenderness along the distribution of the deep venous system	1
Entire leg swollen	1
Calf swelling 3 cm larger than asymptomatic side (measured 10 cm below tibial tuberosity)	1
Pitting edema confined to the symptomatic leg	1
Collateral superficial veins (nonvaricose)	1
Alternative diagnosis at least as likely as deep venous thrombosis	–2

* Clinical probability: low, ≤0; intermediate, 1–2; high, ≥3. In patients with symptoms in both legs, the more symptomatic leg is used. Reprinted from Wells PS, Anderson DR, Bormanis J, et al. Value assessment of pretest probability of pulmonary embolism. JAMA. 1999;281:284–292. With permission from Elsevier.

Table 2. Wells Prediction Rule for Diagnosing Pulmonary Embolism: Clinical Evaluation Table for Predicting Pretest Probability of Pulmonary Embolism

Clinical Characteristic	Score
Previous pulmonary embolism or deep venous thrombosis	+1.5
Heart rate >100 beats per minute	+1.5
Recent surgery or immobilization	+1.5
Clinical signs of deep venous thrombosis	+3
Alternative diagnosis less likely than pulmonary embolism	+3
Hemoptysis	+1
Cancer	+1

* Clinical probability of pulmonary embolism: low, 0–1; intermediate, 2–6; high, ≥7. Reprinted from Am J Med. 2002; 113: Chagnon I, Bounameaux H, Aujesky D, et al., Comparison of two clinical prediction rules and implicit assessment among patients with suspected pulmonary embolism. 269–275. With permission from Elsevier.
4. What are the test characteristics of computed tomography (CT) for diagnosis of pulmonary embolism?

Clinical Prediction Rules Alone and in Combination with D-Dimer Assay for Diagnosis of VTE

A clinical prediction rule is used to calculate the pretest probability of VTE based on a clinical assessment of risk factors and physical findings. Of the various available prediction rules, the Wells prediction rules for DVT and pulmonary embolism (7, 8) were most frequently evaluated (17 of 19 studies for DVT [7, 9–24] and 3 of 8 for pulmonary embolism [25–27]). Individual clinical features are poorly predictive when not combined in a formal prediction rule (28).

Eleven studies combined the Wells prediction rule with a d-dimer assay (9, 14, 15, 17–19, 22, 23, 26, 27, 29). A systematic review concluded that patients with a low pretest probability and a negative d-dimer test had a 3-month incidence of DVT of 0.5%, whereas those with a negative d-dimer test and moderate or high pretest probability had incidences of 3.5% and 21.4%, respectively (30). A recent study of the Wells rule in primary care raised doubts about its negative predictive value, but the study included patients with recurrent DVT, and its implications are not yet clear (31).

In summary, the evidence supports the use of a clinical prediction rule for establishing pretest probability of VTE. Combination of a d-dimer assay with a clinical prediction rule provides sufficient negative predictive value to reduce the need for further imaging studies in appropriately selected patients with low pretest probability of disease.

Test Characteristics of D-Dimer Assays Alone for Diagnosis of VTE

Four systematic reviews (4) evaluated the use of d-dimer testing alone (i.e., without concomitant use of a clinical prediction rule) for diagnosis or exclusion of VTE. Two of these studies examined the use of d-dimer testing for excluding pulmonary embolism. These studies showed that both ELISA and latex turbidimetric assay had a high sensitivity and a high negative predictive value for pulmonary embolism in patients with a low to moderate clinical probability of the disease (using a d-dimer cutoff of 500 ng/mL) (32, 33). Specificity decreased, however, for patients with associated comorbidity, older age, and longer duration of symptoms. Stein and colleagues’ meta-analysis of d-dimer assays for diagnosis of DVT or pulmonary embolism using ELISA found that pooled specificities ranged from 40% to 50% (34).

In summary, the evidence suggests that a negative highly sensitive d-dimer test can help exclude the diagnosis of proximal DVT and pulmonary embolism in relatively healthy younger patients with short duration of symptoms who have a low pretest probability of VTE. There is variation in the sensitivity of d-dimer assays, however, and clinicians should be informed about the type of d-dimer assay used in their clinical setting relative to the population being tested and type of assay being used.

Test Characteristics of Ultrasonography for Diagnosis of DVT

The EPC review found sensitivities of 89% to 96% and specificities of 94% to 99% for ultrasonography in the diagnosis of symptomatic thrombosis in the proximal veins of the lower extremity (12, 35–41). Sensitivity was lower (47% and 62%) for diagnosis of thrombi in proximal veins in asymptomatic patients (12, 38). There was also variation in sensitivity (73% to 93%) in symptomatic patients with DVT in the calf (37–39). For asymptomatic patients, however, sensitivities for detecting DVT limited to the calf were approximately 50%. All of the reviews used contrast venography as the reference standard point for inclusion criterion.

Hence, ultrasonography has high sensitivity and specificity for diagnosing proximal DVT of the lower extremity in symptomatic patients. Though specificity is maintained, sensitivity is diminished in patients who are asymptomatic or who have DVT in the calf.

Test Characteristics of Helical CT for Diagnosis of Pulmonary Embolism

The systematic reviews for use of helical CT in diagnosis of pulmonary embolism reported a wide range of summary sensitivities (66% to 93%) but a narrow range of summary specificities (89% to 98%) (42). Inclusion criteria and reference standards varied across different reviews, and heterogeneity was high across individual studies. Segal and colleagues (4) performed their own systematic review including prospective studies and those that uniformly applied pulmonary arteriography as the reference standard, and they confirmed the finding of wide variation in sensitivity (45% to 100%) and specificity (78% to 100%).

Interpretation of this evidence is controversial because of such factors as substantial referral bias associated with the published evidence. More important, the literature has lagged behind rapid recent advances in CT technology. The authors of the EPC report estimate that for diagnosis of pulmonary embolism, helical CT has at best a sensitivity of 90% and specificity of 95% compared with conventional pulmonary arteriography. Data published after the EPC review was completed suggested that current-generation multidetector CT technology may offer significantly higher sensitivity and similar specificity to the technology assessed in the EPC review (43). Even so, 2 recent systematic reviews conclude that helical CT alone may not be sufficiently sensitive to exclude pulmonary embolism in patients who have relatively high pretest probability (44,
Further imaging studies are likely needed in patients who have a high pretest probability of pulmonary embolism and a negative CT scan; options include single or sequential ultrasound assessment of the lower extremities or pulmonary angiography.

SUMMARY

Strong evidence supports the use of clinical prediction rules to establish pretest probability of VTE before further testing. Use of a high-sensitivity D-dimer assay in patients who have a low pretest probability of VTE has a high negative predictive value; it is highest for younger patients with low pretest probability, no associated comorbidity or previous DVT, and a short duration of symptoms. There is strong evidence supporting the use of ultrasonography for diagnosing proximal DVT in symptomatic patients; sensitivity is much lower in asymptomatic patients and for detecting calf vein DVT. Recent results suggest that new CT technology for diagnosis of pulmonary embolism might have a higher sensitivity and specificity than that seen in previous studies. In addition, it is likely that accuracy of CT will improve as the technology evolves further.

From the American College of Physicians, Philadelphia, Pennsylvania; Merck Institute for Aging and Health, Gloucester Point, Virginia; Had-lyme, Connecticut; University of California, San Francisco, San Francisco, California; Byron Family Medicine, Byron Center, Mississippi; American Academy of Family Physicians, Leawood, Kansas; BJ Health-Care, St. Louis, Missouri; Johns Hopkins University School of Medicine, Baltimore, Maryland; Hines Veterans Affairs Hospital and Northwestern University, Chicago, Illinois; University of Michigan, Ann Arbor, Michigan; and Veterans Affairs Palo Alto Health Care System and Stanford University, Stanford, California.

Disclaimer: No statement in this article should be construed as an official position of the Agency for Healthcare Research and Quality or the U.S. Department of Health and Human Services.

Note: Clinical guidelines are "guides" only and may not apply to all patients and all clinical situations. Thus, they are not intended to over-ride clinicians' judgment. All American College of Physicians clinical practice guidelines are considered automatically withdrawn or invalid 5 years after publication or once an update has been issued.

Grant Support: The American College of Physicians and the American Academy of Family Physicians operating budgets.

Potential Financial Conflicts of Interest: None disclosed.

Request for Single Reprints: Amir Qaseem, MD, PhD, MHA, Amer-ican College of Physicians, 190 N. Independence Mall West, Philadel-phia, PA 19106.

References

1. Anderson FA Jr, Wheeler HB, Goldberg RJ, Hosmer DW, Patwardhan NA, Jovanovic B, et al. A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study. Arch Intern Med. 1991;151:933-8. [PMID: 2025141]

2. Barritt DW, Jordan SC. Anticoagulant drugs in the treatment of pulmonary embolism. A controlled trial. Lancet. 1960;1:1309-12. [PMID: 13797091]

3. Segal J, Eng J, Jenckes M. Diagnosis and Treatment of Deep VenousThrombosis and Pulmonary Embolism. Evidence Report/TechnologyAssessment. Rockville, MD: Prepared by the Johns HopkinsEvidence-based Practice Center under Contract No. 290-97-0007/2003. Publication No. 03-0E16.

4. Segal JB, Eng J, Tamariz LJ, Bass EB. Review of the evidence on diagnosis of deep venous thrombosis and pulmonary embolism. Ann Fam Med. 2007;5:63-73. [PMID: 17261866]

5. Segal JB, Steinfeld MB, Hoffman LV, Thornton K, Bass EB. Management of venous thromboembolism: a systematic review for a practice guideline. Ann Intern Med. 2007;146:211-2. [PMID: 17261856]

6. American College of Physicians. Management of venous thromboembolism: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2007;146:204-10. [PMID: 17261857]

7. Wells PS, Anderson DR, Bormanis J, Guy F, Mitchell M, Gray L, et al. Value of assessment of pretest probability of deep-vein thrombosis in clinical management. Lancet. 1997;350:1795-8. [PMID: 9428249]

8. Chiarion-Sileni V, Bounameaux H, Acevedo D, Reiter M, Birdsell AL, Jovanovic B, et al. Comparison of two clinical prediction rules and implicit assessment among patients with suspected pulmonary embolism. Am J Med. 2002;113:269-75. [PMID: 12361811]

9. Cornuz J, Ghali WA, Hayoz D, Stoianov R, Depaire M, Yersin B. Clinical prediction of deep venous thrombosis using two risk assessment methods in combination with rapid quantitative D-dimer testing. Am J Med. 2002;112:198-203. [PMID: 11893346]

10. Anderson DR, Wells PS, Steidl I, MacLeod B, Simms M, Gray L, et al. Thrombosis in the emergency department: use of a clinical diagnosis model to safely avoid the need for urgent radiological investigation. Arch Intern Med. 1999;159:477-82. [PMID: 10074956]

11. Kraaijenhagen RA, Ploevla F, Bernardi E, Verlato F, Beckers EA, Koopman MM, et al. Simplification of the diagnostic management of suspected deep vein thrombosis. Arch Intern Med. 2002;162:907-11. [PMID: 11966342]

12. Wells PS, Lensing AW, Davidson BL, Prins MH, Hirsh J. Accuracy of ultrasound for the diagnosis of deep vein thrombosis in asymptomatic patients after orthopedic surgery. A meta-analysis. Ann Intern Med. 1995;122:47-53. [PMID: 7985896]

13. Dryjski M, O’Brien-Irr MS, Harris LM, Hassett J, Janicke D. Evaluation of a screening protocol to exclude the diagnosis of deep vein thrombosis among emergency department patients. J Vasc Surg. 2001;34:1010-5. [PMID: 11743553]

14. Anderson DR, Wells PS, Steidl I, MacLeod B, Simms M, Gray L, et al. Management of patients with suspected deep vein thrombosis in the emergency department: combining use of a clinical diagnosis model with D-dimer testing. J Emerg Med. 2000;19:225-30. [PMID: 11033266]

15. Fünfsinns N, Caliezi C, Biasiutti FD, Korte W, Z’Brun A, Baumgartner I, et al. Rapid D-dimer testing and pre-test clinical probability in the exclusion of deep venous thrombosis in symptomatic outpatients. Blood Coagul Fibrinolysis. 2001;12:165-70. [PMID: 11414629]

16. Constants J, Nelay ML, Salmi LR, Skopinski S, Saby JC, Le Métayer P, et al. Clinical prediction of lower limb deep vein thrombosis in symptomatic hospitalized patients. Thromb Haemost. 2001;86:985-90. [PMID: 11680356]

17. Changron C, Ginsberg JS, Drucker JD, Reiter M, Bratlid Edwards P, Weitz JI, et al. Management of suspected deep venous thrombosis in outpatients by using clinical assessment and D-dimer testing. Ann Intern Med. 2001;135:108-11. [PMID: 11453710]

18. Aschwanden M, Labs KH, Jeanneret C, Gehrig A, Jaeger KA. The value of rapid D-dimer testing combined with structured clinical evaluation for the diagnosis of deep vein thrombosis. J Vasc Surg. 1999;30:929-35. [PMID: 10550192]

19. Schutgens RE, Ackerman PH, Haas FJ, Nieuwenhuis HK, Peltenburg HG, Pilman AH, et al. Combination of a normal D-dimer concentration and a non-high pretest clinical probability score is a safe strategy to exclude deep venous thrombosis. Circulation. 2003;107:593-7. [PMID: 12566372]

20. Shields GP, Turnipseed S, Panacek EA, Melnikoff N, Gosselin R, White RH. Validation of the Canadian clinical probability model for acute venous thrombosis. Acad Emerg Med. 2002;9:561-6. [PMID: 12045068]

21. Tick LW, Ton E, van Voorthuizen T, Hovens MM, Leeuwenburgh I, Lobatto S, et al. Practical diagnostic management of patients with clinically suspected deep vein thrombosis by clinical probability test, compression ultra-

www.annals.org
sonography, and d-dimer test. Am J Med. 2002;113:630-5. [PMID: 12505112]
22. Ruiz-Giménez N, Fricera A, Artieda P, Caballero P, Sanchez Molini P, Morales M, et al. Rapid d-dimer test combined a clinical model for deep vein thrombosis. Validation with ultrasonography and clinical follow-up in 383 patients. Thromb Haemost. 2004;91:1237-46. [PMID: 15175813]
23. Ikhlanipour K, Wolfson AB, Walker H, Giljo J, Holniak S, Crockley P, et al. Combining clinical risk with d-dimer testing to rule out deep vein thrombosis. J Emerg Med. 2004;27:233-9. [PMID: 15388207]
24. Wells PS, Anderson DR, Bormanis J, Guy F, Mitchell M, Gray L, et al. Application of a diagnostic clinical model for the management of hospitalized patients with suspected deep-vein thrombosis. Thromb Haemost. 1999;81:493-7. [PMID: 10235426]
25. Wells PS, Ginsberg JS, Anderson DR, Kearon C, Gent M, Turpie AG, et al. Use of a clinical model for safe management of patients with suspected pulmonary embolism. Ann Intern Med. 1998;129:997-1005. [PMID: 9867786]
26. Wells PS, Anderson DR, Rodger M, Ginsberg JS, Kearon C, Gent M, et al. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED d-dimer. Thromb Haemost. 2000;83:416-20. [PMID: 10744147]
27. Wells PS, Anderson DR, Rodger M, Steil I, Dreyer JF, Barnes D, et al. Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer. Ann Intern Med. 2001;135:98-107. [PMID: 11453709]
28. Goodacre S, Sutton AJ, Sampson FC. Meta-analysis: The value of clinical assessment in the diagnosis of deep venous thrombosis. Ann Intern Med. 2005;143:129-39. [PMID: 16027455]
29. Lennox AF, Delis KT, Serunkuma S, Zarla ZA, Daskalopoulos SE, Nicolaides AN. Combination of a clinical risk assessment score and rapid whole blood d-dimer testing in the diagnosis of deep vein thrombosis in symptomatic patients. J Vasc Surg. 1999;30:794-803. [PMID: 10550176]
30. Fancher TL, White RH, Kravitz RL. Combined use of rapid d-dimer testing and estimation of clinical probability in the diagnosis of deep vein thrombosis: systematic review. BMJ. 2004;329:821. [PMID: 15383452]
31. Oudega R, Hooe AW, Moons KG. The Wells rule does not adequately rule out deep venous thrombosis in primary care patients. Ann Intern Med. 2005;143:100-7. [PMID: 16027451]
32. Brown MD, Lau J, Nelson RD, Kline JA. Turbidimetric d-dimer test in the diagnosis of pulmonary embolism: a metaanalysis. Clin Chem. 2003;49:1846-53. [PMID: 14578316]
33. Brown MD, Rowe BH, Reeves MJ, Birmingham JM, Goldhaber SZ. The accuracy of the enzyme-linked immunosorbent assay d-dimer test in the diagnosis of pulmonary embolism: a meta-analysis. Ann Emerg Med. 2002;40:133-44. [PMID: 12140491]
34. Stein PD, Hull RD, Patel KC, Olson RE, Ghali WA, Brant R, et al. d-dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review. Ann Intern Med. 2004;140:589-602. [PMID: 15096330]
35. White RH, McGahan JP, Daschbach MM, Hartling RP. Diagnosis of deep-vein thrombosis using duplex ultrason. Ann Intern Med. 1989;111:297-304. [PMID: 2667418]
36. Becker DM, Philbrick JT, Abbitt PL. Real-time ultrasonography for the diagnosis of lower extremity deep venous thrombosis. The wave of the future? Arch Intern Med. 1989;149:1731-4. [PMID: 2669660]
37. Cogo A, Lensing AW, Wells P, Prandoni P, Bülter HR. Noninvasive objective tests for the diagnosis of clinically suspected deep-vein thrombosis. Haemostasis. 1995;25:27-39. [PMID: 7896220]
38. Kearon C, Julian JA, Newman TE, Ginsberg JS. Noninvasive diagnosis of deep venous thrombosis. McMaster Diagnostic Imaging Practice Guidelines Initiative. Ann Intern Med. 1998;128:663-7. [PMID: 9537941]
39. Gottlieb RH, Wijdjaja J, Tian L, Rubens DJ, Voci SL. Calıf sonography for detecting deep venous thrombosis in symptomatic patients: experience and review of the literature. J Clin Ultrasound. 1999;27:415-20. [PMID: 10477882]
40. Mustafa BO, Rathbun SW, Whitsett TL, Raskob GE. Sensitivity and specificity of ultrasonography in the diagnosis of upper extremity deep vein thrombosis: a systematic review. Arch Intern Med. 2002;162:401-4. [PMID: 11863471]
41. Kassai B, Boissel JP, Cucherat M, Sonie S, Shah NR, Lezirorozic A. A systematic review of the accuracy of ultrasound in the diagnosis of deep venous thrombosis in asymptomatic patients. Thromb Haemost. 2004;91:655-66. [PMID: 15045125]
42. Rathbun SW, Raskob GE, Whitsett TL. Sensitivity and specificity of helical computed tomography in the diagnosis of pulmonary embolism: a systematic review. Ann Intern Med. 2000;132:227-32. [PMID: 10651604]
43. Winer-Muram HT, Rydberg J, Johnson MS, Tarver RD, Williams MD, Shah H, et al. Suspected acute pulmonary embolism: evaluation with multi-detector row CT versus digital subtraction pulmonary arteriography. Radiology. 2004;233:806-15. [PMID: 15564410]
44. Roy PM, Colombet I, Durieux P, Chatellier G, Sors H, Meyer G. Systematic review and meta-analysis of strategies for the diagnosis of suspected pulmonary embolism. BMJ. 2005;331:259. [PMID: 16052057]
45. Quiroz R, Kucher N, Zou KH, Kipfmueller F, Costello P, Goldhaber SZ, et al. Clinical validity of a negative computed tomography scan in patients with suspected pulmonary embolism: a systematic review. JAMA. 2005;293:2012-7. [PMID: 15855435]