Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters

Rolf Hecker, Albert Taraboulos, Michael Scott, Keh-Ming Pan, Shu-Lian Yang, Marilyn Torchia, Klaus Jendroska, Stephen J. DeArmond, and Stanley B. Prusiner

Departments of Neurology, Pathology, and Biochemistry and Biophysics, University of California, San Francisco, California 94143 USA

Scrapie prions are composed largely, if not entirely, of PrPSc molecules. The prion isolates Sc237 and 139H exhibit markedly different incubation times in Syrian, Armenian, and Chinese hamsters, as well as in transgenic (Tg) 81 mice expressing Syrian hamster PrP (SHaPrP). Repassage of prions from transgenic mice or Chinese hamsters into Syrian hamsters revealed that the original properties of the prion isolates are retained. When Syrian hamsters were first inoculated with 139H prions and subsequently challenged with Sc237 prions, the incubation period was determined by the faster Sc237 isolate. Regional mapping studies demonstrated different kinetics and patterns of PrPSc accumulation for Sc237 and 139H prions in the brains of Syrian hamsters as well as Tg(SHaPrP)7 mice. That distinct prion isolates induce different region-specific accumulations of PrPSc in brain suggests a novel mechanism for propagation of isolates whereby they replicate in particular sets of neurons. The prion isolates could be targeted to specific CNS cells by differing conformations of PrPSc, post-translational modifications of PrPSc such as Asn-linked glycosylation, or an as yet undetected macromolecule complexed with PrPSc in the prion.

[Key Words: Prions; strains; PrP gene; transgenetics; histoblot; PrPSc]

Received February 5, 1992; revised version accepted April 30, 1992.

Studies with transgenic mice expressing foreign and mutant prion protein (PrP) genes have provided a wealth of new knowledge about the structure of the prion particle, the pathogenesis of prion diseases, and the events that feature in the replication of prions [Scott et al. 1989; Hsiao et al. 1990; Prusiner et al. 1990; Westaway et al. 1991]. Investigations of transgenic [Syrian hamster PrP] [Tg(SHaPrP)] mice expressing SHaPrP demonstrated that PrPSc in the inoculum dictates whether mouse prions (Mo prions) or Syrian hamster prions (SHa prions) will be produced. Furthermore, the scrapie incubation times and neuropathology are determined by the particular prion synthesized. Although no physical evidence is available, it seems likely that PrPC and PrPSc transiently form a complex during the synthesis of nascent PrPSc molecules [Prusiner et al. 1990; Prusiner 1991].

Early studies of Dickinson and colleagues not only identified inbred strains of mice with short or long incubation times, but also distinct isolates of the scrapie agent distinguishable by their different incubation times and neuropathologic lesions [Dickinson et al. 1968; Fraser and Dickinson 1968, 1973; Dickinson and Meikle 1971; Dickinson 1976; Bruce and Dickinson 1987; Bruce et al. 1991]. Distinct isolates of the scrapie agent have often been referred to as strains. Although earlier studies were complicated by the use of Prn-pa and Prn-pb mice [Carlson et al. 1986, 1988, 1989; Hunter et al. 1987; Westaway et al. 1987, 1991; Race et al. 1990], the existence of at least a few scrapie isolates in mice seems secure (Bruce and Dickinson 1987; Bruce et al. 1991). Derivation of new isolates in Syrian hamsters after passage from mice has also been reported [Kimberlin and Walker 1978; Kimberlin et al. 1987b, 1989]. The existence of distinct prion isolates poses a conundrum because both the molecular structure and the mechanism responsible for the different biological properties of these isolates seem to be without precedent. Diversity in biology is generally encoded within nucleic acids; yet no chemical, biological, or physical evidence argues for a scrapie-specific polynucleotide [Prusiner 1991].

To investigate the molecular processes that feature in the replication of prions, we first asked whether Mo prions injected together with SHa prions or sequentially into Tg(SHaPrP) mice might influence the replication of SHa prions. The replication of SHa prions was found to be independent of Mo prions producing longer incubation times. Similarly, two distinct isolates of SHa prions designated Sc237 and 139H and causing disease in ~75
Table 1. Scrapie incubation times in Tg(SHaPrP)81 mice inoculated with mixtures of mouse and Sc237 SHa prions

Inocula	Incubation times	Number	Illness death
Mo	SHa		days ± S.E.M.
log ID50 units			
2	6	277 ± 7	286 ± 5
6	8	192 ± 5	204 ± 5
2	8	104 ± 2	107 ± 2
4	6	81 ± 4	84 ± 4
7	7	66 ± 2	71 ± 2
6	2	101 ± 2	108 ± 2
4	4	83 ± 2	87 ± 2
2	7	67 ± 1	75 ± 2
4	7	84 ± 2	90 ± 2
7	7	131 ± 1	145 ± 2
7	8	>541	
6	2	131 ± 2	143 ± 3
4	4	145 ± 1	159 ± 3
2	3	147 ± 6	157 ± 8
2	7	166 ± 6	189 ± 4
6	1	135 ± 3	150 ± 3

Table 2. Scrapie incubation times in Tg(SHaPrP)81 mice inoculated with Sc237 SHa prions at various intervals after inoculation with Mo prions

Time of inoculation with SHa prions* (day)	Incubation times	Interval between inoculation with SHa prions and illness (day)
	Number	[days ± S.E.M.]
A. Tg(SHaPrP)81 mice		
0	10	76 ± 2 79 ± 1 76
1	3	79 ± 4 81 ± 5 78
10	13	86 ± 1 90 ± 2 76
30	2	97 ± 0 102 ± 2 67
60	11	140 ± 2 146 ± 2 80
100	12	169 ± 2 175 ± 2 69
20		194 ± 4 200 ± 3 69
B. Nontransgenic 81 mice		
0	14	138 ± 3 154 ± 3 138
1	4	128 ± 6 141 ± 4 127
10	12	138 ± 3 154 ± 3 128
30	6	121 ± 4 139 ± 3 91
60	15	136 ± 3 156 ± 4 76

*All mice were inoculated with ~10^6 ID50 units of Mo prions at day 0 and with ~10^5 ID50 units of SC237 SHa prions at the day designated.

B. Nontransgenic 81 mice

Time of inoculation with SHa prions* (day)	Incubation times	Interval between inoculation with SHa prions and illness (day)
	Number	[days ± S.E.M.]
A. Tg(SHaPrP)81 mice		
0	10	76 ± 2 79 ± 1 76
1	3	79 ± 4 81 ± 5 78
10	13	86 ± 1 90 ± 2 76
30	2	97 ± 0 102 ± 2 67
60	11	140 ± 2 146 ± 2 80
100	12	169 ± 2 175 ± 2 69
20		194 ± 4 200 ± 3 69
B. Nontransgenic 81 mice		
0	14	138 ± 3 154 ± 3 138
1	4	128 ± 6 141 ± 4 127
10	12	138 ± 3 154 ± 3 128
30	6	121 ± 4 139 ± 3 91
60	15	136 ± 3 156 ± 4 76

And ~165 days, respectively, were inoculated sequentially into Syrian hamsters. The replication of the Sc237 isolate was independent of the 139H isolates, as judged by scrapie incubation times.

End-point titrations of Syrian hamster brain extracts showed that both the Sc237 and 139H isolates produced ~10^9 ID50 units of prions per gram of brain tissue. In the brains of inoculated hamsters, each isolate produced similar amounts of PrP\(^{Sc}\), which was converted to PrP\(^{27-30}\) after limited proteolysis in vitro. The two prion isolates produced different kinetics and patterns of PrP\(^{27-30}\) accumulation in Syrian hamsters and Tg(SHaPrP) mice, raising the possibility that these isolates are synthesized in different sets of cells in the central nervous system (CNS). Distinct isolates of prions might derive their biological properties from different conformations of PrP\(^{Sc}\), post-translational chemical modifications, or non-covalently bound molecules (Prusiner, 1991; Weissmann, 1991).

Results

Synthesis of SHa prions in transgenic mice and Syrian hamsters

Tg(SHaPrP)81 and nontransgenic control mice were inoculated with mixtures of RML Mo and Sc237 SHa prions (Table 1), and the incubation times were measured. The incubation times in Tg81 mice were determined by SHa prions alone even if the dose of Mo prions in the inoculum was 10^4-fold greater than that of SHa prions. Non-Tg81 mice inoculated with ~10^6 ID50 units of Mo prions had incubation times of ~130 days, whereas Tg81 mice inoculated with Mo prions had times of ~180 days (Table 1) (Prusiner et al., 1990).

A kinetic study was performed in which SHa prions were inoculated at increasing intervals after the inoculation of Mo prions (Table 2A). Again, the scrapie incubation times in Tg81 mice were determined by the SHa prions alone. No influence of SHa prions on the incubation times in non-Tg81 mice inoculated with Mo prions could be discerned (Table 2B).

To extend the experiments with SHa and Mo prions, Syrian hamsters were challenged with Sc237 prions at increasing intervals after the inoculation with 139H prions (Table 3). The scrapie incubation times were determined only by the Sc237 prions and, thus, were independent of the 139H prions. Even if the 139H prions were inoculated as much as 63 days before the inoculation with Sc237 prions, the incubation time was the same as that for animals inoculated with Sc237 prions alone. These results contrast with those reported by others where mouse isolates with long incubation times inoculated prior to short incubation time isolates produced long incubation times. Such observations were interpreted as competition among isolates for replication sites (Dickinson et al., 1972; Kimberlin and Walker, 1985).

Biochemical and biological properties of two prion isolates

Because one infectious unit of Sc237 prions causes disease in hamsters ~140 days after inoculation (Marsh and Kimberlin, 1975; Kimberlin and Walker, 1977, Prusiner et al., 1990),
Table 3. Scrapie incubation times in Syrian hamsters inoculated with Sc237 prions at various intervals after inoculation with 139H prions.

Time of inoculation with Sc237 prionsa [day]	Incubation time interval between inoculation with Sc237 and onset of illness [days ± S.E.M.]	Number of illness	Number of death
0	85 ± 3, 94 ± 2	5	8
1	81 ± 2, 91 ± 1	8	80
10	85 ± 4, 94 ± 3	7	75
28	107 ± 2, 120 ± 3	5	79
63	151 ± 0, 178 ± 2	6	88
b	159 ± 1, 185 ± 3	6	88

a All groups of Syrian hamsters were inoculated with 139H prions on day 0.

b No Sc237 prions inoculated.

al. 1982b), we considered the possibility that 139H prions were produced as a consequence of the defective synthesis of Sc237 prions. To assess this possibility, hamsters were inoculated with 139H prions and sacrificed 172 days after inoculation, and the concentration of infectious prion particles was measured by end-point titrations. There was no difference between prion titers in 10% (wt/vol) brain homogenates prepared from Syrian hamsters with clinical signs of scrapie after inoculation with either Sc237 [Prusiner et al. 1982b] or 139H prions. Prion titers [log IDso U/ml ± S.E.M.] of 8.1 ± 0.33, 8.6 ± 0.45, and 7.8 ± 0.30 were found by end-point titrations for three brain extracts from hamsters inoculated with 139H prions. In Figure 1, results from end-point titrations of 139H and Sc237 in Syrian hamsters are plotted—the reciprocal of the incubation time as a function of the log10 of the dose. The slopes of the two lines are clearly different. A comparison of any two doses of 139H gives a larger change in incubation time than those of Sc237.

Previous studies had shown an excellent correlation between PrPSc concentrations and Sc237 prion titers [McKinley et al. 1983; Jendroska et al. 1991]. As expected, we found that the concentration of PrPSc in brains of terminally ill hamsters infected with 139H was similar to that with Sc237. Two different brain extracts prepared from Syrian hamsters with clinical scrapie after inoculation with Sc237 contained 70 and 80 μg of PrPSc/gram of protein, whereas four different extracts from hamsters inoculated with 139H had 72, 86, 84, and 83 μg of PrPSc/gram of protein.

To facilitate purification on a small scale, a discontinuous sucrose gradient ultracentrifugation [Prusiner et al. 1982a] was replaced by ultrafiltration with a membrane of 300-kD exclusion limit. The ultrafiltration was operated in a continuous dilution mode, that is, the volume lost in the course of the filtration was continuously replaced by the addition of fresh buffer. The prion rods were retained by the membrane, whereas most proteins, peptides, and other molecules with molecular mass <300 kD passed through the filter. After ~1000-fold dilution, the ultrafiltration was terminated, and the retentate was concentrated and analyzed by SDS-PAGE (Fig. 2A). Three major bands were found by silver staining: They correspond to PrP 27–30 with varying amounts of N-linked oligosaccharides [Oesch et al. 1985; Taraboulos et al. 1990a]. The ultrafiltration procedure yields PrP 27–30 of a purity similar to that obtained with sucrose gradients [Prusiner et al. 1982b, 1983]; in the silver-stained lanes in Figure 2A, no components other than PrP 27–30 are visible. PrP 27–30 is used to designate the protease-resistant portion of PrPSc; the amino-terminal ~67 amino acids of PrPSc are hydrolyzed when PrP 27–30 is generated by limited proteolysis [McKinley et al. 1983; Prusiner et al. 1991].

![Figure 1](https://example.com/fig1.png)

Figure 1. Scrapie incubation times plotted as a function of the dose of inoculum for two distinct prion isolates. The log10 dose, which is calculated from the titer × dilution, is on the x-axis; the reciprocal of incubation time is on the y-axis. The curves were fitted by linear regression analysis. Sc237 regression coefficient = 0.88, slope = 1.11, and y intercept = 4.88; 139H regression coefficient = 0.91, slope = 0.51, and y intercept = 2.82.
Hecker et al.

Figure 2. Scrapie prion proteins in brains of Syrian hamsters inoculated with Sc237 or 139H prions. (A) Analysis of 139H prion rods from Syrian hamster brains after purification by ultracentrifugation. A 12% SDS-polyacrylamide gel (Laemmli 1970) was stained with silver (Turk et al. 1988). (Lane 1) Molecular weight markers; (lane 2) denatured prion rods purified from 139H-infected hamster brain. The three bands represent PrP 27–30 with 2, 1, and no N-linked oligosaccharides. (B) Western blot of brain homogenates and purified PrP 27–30. PrP was visualized with the monoclonal antibody 13A5 (Barry and Prusiner 1986). (Lanes 1,2) 50 μg of brain extract from Syrian hamsters infected with Sc237 and 139H, respectively. The three bands represent the double, single, and non-N-linked glycosylated forms of PrP 33-35. (Lanes 3,4) Purified prion rods purified from the brains of hamsters infected with Sc237 and 139H, respectively. The three bands represent the variations in extent of glycosylation for PrP 27–30, as described above.

We compared PrPSc and PrP 27–30 from the brains of hamsters infected with Sc237 and 139H. In Figure 2B a Western blot of brain homogenate from terminally ill Syrian hamsters infected with either Sc237 or 139H is shown. In lanes 1 and 2, the patterns of PrP immunoreactivity for Sc237 and 139H were indistinguishable. With both isolates, double, single, and nonglycosylated forms of PrP were found. No difference in molecular mass, glycosylation, and immunogenicity could be discerned between PrP molecules in the two isolates. In lanes 3 and 4, purified PrP 27–30 from Sc237 and 139H is shown; again, no differences could be discerned from the two isolates.

Phenotypic properties of prion isolates upon passage in different hamster species

To assess the variation and distribution of scrapie incubation for the two SHa prion isolates, we assembled the data from 48 Syrian hamsters infected with Sc237 prions. These animals had mean incubation periods from inoculation to onset of illness of 77 ± 1 (S.E.M.) days and to death of 89 ± 2 (S.E.M.) days, whereas, 94 Syrian hamsters inoculated with 139H prions developed neurologic dysfunction at 167 ± 1 (S.E.M. and died at 206 ± 2 (S.E.M.) days. For Sc237 prions, the hamsters died ~12 days after the onset of illness while those hamsters with 139H prions showed a progressive neurologic disorder lasting ~39 days. Although other investigators state that 139H causes disease in Syrian hamsters in ~130 days (Kimberlin et al. 1987b, 1989), we have not been able to confirm their observations. They have not reported survival times so no objective comparison can be made.

Because the homology among the PrP gene products of three species of hamsters exceeds 96% (Lowenstein et al. 1990), we studied the behavior of two scrapie isolates in these animals. In Syrian hamsters, intracerebral inoculation of ~10^7 ID50 units of 139H (Table 4) requires almost 100 days longer to produce clinical signs of scrapie than does the Sc237 isolate. 139H prions inoculated into Armenian hamsters required ~40 days longer to produce disease than did Sc237 (Table 4). Upon passage of the two isolates in Chinese hamsters, we found that the phenotypes of the two scrapie prion isolates were reversed: 139H prions required 100 days less than that needed for Sc237 prions to produce clinical signs of scrapie (Table 4). Furthermore, the duration of illness in Chinese hamsters for 139H is ~15 days in contrast to Syrian hamsters, where the animals deteriorate progressively over a period of ~40 days. Because of the species barriers between the three hamster species presumably owing to differences in PrP sequence (Lowenstein et al. 1990), it was necessary to acquire data on prions passaged repeatedly in each species and passaged directly from Syrian to Chinese hamsters (Table 4A). Although the incubation times are longer, as expected upon crossing the species barrier, the relative characteristics of the changes attendant with passage of each scrapie isolate in different hamster species are similar.

After passage of Sc237 and 139H prions into Chinese hamsters, these isolates were inoculated into Syrian hamsters to determine the incubation times for each isolate. 139H prions required ~100 days longer to produce clinical signs of scrapie than Sc237, showing that the phenotypic differences between the two strains are distinct for any given host (Table 4A). Although the difference in incubation times of 100 days for the two isolates is similar to that noted above for the Syrian to Syrian passage, the incubation times are longer owing to crossing of species barrier again. A second passage of either Sc237 or 139H in Syrian hamsters demonstrates that this is the case. Results similar to those with Chinese hamsters were obtained when Sc237 and 139H prions were passaged into Armenian hamsters (Table 4B). On first passage, the incubation time in Armenian hamsters was longer for Sc237 than for 139H prions, and on subsequent passage, the incubation times for both prions were similar. Passage of the two prion isolates from Armenian back into Syrian hamsters showed that each strain retained its original properties: 139H required ~100 days longer than Sc237 for the appearance of clinical signs of scrapie (Table 4B).

Characteristics of SHa prion isolates passaged in transgenic mice

We also studied the behavior of the two scrapie isolates Sc237 and 139H prions in Tg(SHaPrP)81 and Tg-
Replication of scrapie prions

Table 4. Scrapie incubation times for Syrian, Armenian, and Chinese hamsters inoculated with either Sc237 or 139H prions

Inoculuma	Hamsterb	Sc237c	139H				
		numberd	illness (days ± S.E.M.)	death (days ± S.E.M.)	numberd	illness (days ± S.E.M.)	death (days ± S.E.M.)
A. Chinese hamsters							
SHa → SHa	Syrian	48	77 ± 1	89 ± 2	94	167 ± 1	206 ± 2
SHa → SHa	Chinese	4	344 ± 7	358 ± 16	20	241 ± 3	284 ± 3
SHa → CHa	Chinese	9	265 ± 2	274 ± 3	8	226 ± 4	241 ± 7
SHa → CHa	Syrian	15	272 ± 3	307 ± 6	8	171 ± 5	181 ± 11
CHa → SHa	Syrian	16	121 ± 8	133 ± 6	9	229 ± 4	274 ± 7
CHa → SHa	Syrian	13	69 ± 2	79 ± 5	10	182 ± 3	194 ± 4
B. Armenian hamsters							
SHa → SHa	Armenian	4	174 ± 1	194 ± 2	7	146 ± 1	161 ± 1
SHa → AHa	Armenian	8	128 ± 3	153 ± 5	4	153 ± 0	154 ± 0
AHa → AHa	Armenian	16	125 ± 2	148 ± 3	8	165 ± 3	174 ± 3
SHa → AHa	Syrian	14	113 ± 2	129 ± 4	7	214 ± 7	232 ± 5

aPassage history of the inoculum. (SHa) Syrian hamster; (AHa) Armenian hamster; (CHA) Chinese hamster.
bSpecies of hamster inoculated intracerebrally.
cSome of the data for Sc237 prions in A and B are taken from Lowenstein et al. (1990).
dNumber of animals.
eIncubation period in days ± S.E.

Table 5. Scrapie incubation times for transgenic mice and Syrian hamsters inoculated with either Sc237 or 139H prions

Inoculum	Animala	Sc237	139H				
		number	illness [days ± S.E.M.]	death [days ± S.E.M.]	number	illness [days ± S.E.M.]	death [days ± S.E.M.]
A. Tg81 mice							
SHa → SHa	Syrian	48	77 ± 1	83 ± 2	94	167 ± 1	206 ± 2
SHa → SHa	Tg81	22	75 ± 2	75 ± 2	19	110 ± 2	115 ± 2
SHa → Tg81	Tg81	8	81 ± 2	83 ± 3	7	106 ± 3	110 ± 3
SHa → Tg81	Syrian	5	77 ± 2	91 ± 2	3	205 ± 1	214 ± 3
B. Tg7 mice							
SHa → SHa	Tg7	26	48 ± 1	51 ± 1	11	40 ± 3	42 ± 3
SHa → Tg7	Tg7	6	54 ± 1	58 ± 2	6	59 ± 2	63 ± 3
SHa → Tg7	Syrian	11	81 ± 1	95 ± 1	7	181 ± 6	188 ± 4
C. Nontransgenic mice							
SHa → SHa	non-Tg81	9	>700		11	499 ± 15	523 ± 15
CHa → CHa	CD-1	7	325 ± 17	346 ± 1610	10	>420	

aTransgenic mice, nontransgenic mice, and Syrian hamsters were inoculated intracerebrally.
Correlation of vacuolation and PrPSc for two prion isolates

In addition to incubation times, the distribution and amount of neuropil vacuolation have been used to define prion isolates [Fraser and Dickinson 1968, 1973]. Consistent with this, vacuolation was coarser in gray matter and was found in all layers of the cerebral cortex of hamsters inoculated with 139H prions, whereas it was more delicate and subtle with Sc237 and was largely confined to layers 4–6 (Fig. 4). Figure 4, A and C, shows layer II of the cerebral cortex while Figure 4, B and D, shows layer IV. Shrinkage artifact around blood vessels and some cells (A) can be readily distinguished from disease-related vacuolation in the neuropil between neurons (B). In Figure 4, C and D, widespread vacuolation is evident along with increased cell number owing to proliferation of astrocytes and infiltration of microglia. Vacuolation was also present in the caudate nucleus and cerebellum of Syrian hamsters inoculated with 139H prions in contrast to those inoculated with Sc237, in which pathology was not significant in these structures [DeArmond et al. 1987]. Reactive astrocytic gliosis and vacuolation colocalized with both isolates [Fig. 4]. Additionally, amyloid plaques composed of SHaPrP were found in the same subpial, subependymal, and subcallosal locations with both 139H and Sc237 prions [DeArmond et al. 1985].

The regional distribution PrPSc in the brains of Syrian hamsters was compared for Sc237 and 139H prions by use of "histoblots" immunostained with \(\alpha \)-PrP antibodies [Taraboulos et al. 1992] [Fig. 4]. The histoblots were pretreated with proteinase K to eliminate PrPC and then exposed to Gdn-HCl to denature PrPSc and thereby enhance its immunoreactivity. With 139H prions, PrPSc was distributed more diffusely in the gray and white matter than with Sc237. For example, PrPSc was uniformly distributed in all layers in the neocortex with 139H prions, whereas it was mostly confined to layers 4–6 in those infected with Sc237 (Fig. 4). Immunostaining of the caudate nucleus was intense in 139H-inoculated hamsters, but it was absent with Sc237 (data not shown). These results demonstrate that vacuolation, reactive astrocytic gliosis, and PrPSc colocalize in both 139H and Sc237 scrapie. Therefore, while the distribution of PrPSc and the accompanying neuropathologic changes are different for the two scrapie prion isolates, the relationship between PrPSc deposition and neuropathologic lesions remained constant.

Kinetics and patterns of PrPSc accumulation in Syrian hamsters

To extend observations on the patterns of PrPSc accumulation, the kinetics of PrPSc deposition in the brains of Syrian hamsters were compared for Sc237 and 139H prions. Seven to 14 days after unilateral intrathalamic inoculation with Sc237 prions, PrPSc became detectable at the inoculation site (Fig. 5A). Spread of PrPSc from this region occurred by at least two routes. Spread to the neocortex appeared to be by axonal transport, as the most intense immunostaining for PrPSc occurred in neocortical layers 4 and 6, the main termination sites of thalamocortical projections (Fig. 4; Fig. 5A: 65 days). Spread of PrPSc to the contralateral thalamus and the septum, which was detectable by 21 and 28 days, respectively, was probably not by axonal transport because there are few, if any, direct neuroanatomical interconnections between the two lateral halves of the thalamus or between the thalamus and the septum. Histoblots showed that the spread of PrPSc in the thalamus was not by a continuous, radially directed process starting from the initial site of PrPSc accumulation but, rather, by an apparently discontinuous process in which PrPSc was found within identical nuclei in the contralateral thalamus [Fig. 5A: 21, 28, 35 days]. By 35 days, PrPSc was distributed symmetrically in the thalamus within homologous nuclei. This pattern of accumulation suggests that PrPSc released from specific populations of neurons into the extracellular space has a propensity to target to homologous contralateral neurons. That PrPSc can be carried in the extracellular space from the unilaterally inoculated thalamus to the same contra-
Figure 4. Colocalization of neuropathological changes and PrPSc in the brains of Syrian hamsters with clinical signs of scrapie after inoculation with either Sc237 (70 days postinoculation) or 139H prions (168 days postinoculation). (Left panels) Vacuolation assessed on brain sections stained with hematoxylin and eosin (H & E). (Middle panels) Reactive astrocytic gliosis demonstrated by immunohistochemistry with antibodies to glial fibrillary acidic protein (GFAP). (Right panels) Location of PrPSc revealed by histoblots of coronal brain sections at the level of the thalamus and hippocampus. The lettered black and white dots in the histoblots indicate the approximate locations in the cerebral cortex of the photomicrographs in the left and middle panels. Note the difference in magnification: Bar on histoblot, 1 mm; bar on histologic sections, 50 \mu m.

PrPSc was released into the ventricles and that the septum and basal forebrain region appear to be unique to this structure because the caudate nucleus, whose walls also contained PrPSc by 7–14 days, did not begin to accumulate PrPSc until after 63 days (Jendroska et al. 1991). Specific targeting of the medial septal and diagonal band of Broca neurons by de novo-synthesized PrPSc supports the hypothesis that particular populations of neurons specify the behavior of PrPSc.

Syrian hamsters inoculated in the thalamus with 139H prions have scrapie incubation times of ~165 days, and the kinetics of PrPSc accumulation were correspondingly slower [Fig. 5B]. PrPSc was barely detectable in the thalamus at 40 days, indicating a significant delay in its appearance in contrast to hamsters inoculated with Sc237. There was little or no accumulation of PrPSc in the walls of the ventricles and no evidence for spread of prions through CSF routes with 139H prions. While PrPSc accumulated in the septum late in 139H scrapie, it

lateral structures was supported by the fate of unilateral injections of India ink [50 \mu l of a 1 : 10 dilution]. The ink was distributed rapidly and symmetrically to those subpial, subependymal, and subcallosal regions where PrP amyloid plaques occur [data not shown].

Specific targeting of PrPSc to distant neurons was also evident in the septum. In this case, PrPSc appeared to be transported by the cerebrospinal fluid (CSF). As early as 7 days postinoculation, PrPSc was detected in the walls of the lateral ventricles, which form the lateral surface of the septum and the medial surface of the caudate nucleus [Fig. 5A]. While a portion of this PrPSc could have been derived from the Sc237 inoculum, the majority appears to originate from newly formed PrPSc in the thalamus because the thickness and intensity of immunostaining at the ventricular wall increased over the next 3 weeks. By 28 days, PrPSc was detectable in the medial septal nucleus and the diagonal band of Broca. By day 35, the medial septal region was strongly immunopositive for PrPSc, and by day 70, PrPSc was present in both the medial and lateral septal regions. These results argue that some of the newly formed PrPSc in the thalamus is released into the ventricles and that the septum and basal forebrain region [diagonal band of Broca] are specifically targeted. Infection of the septum by the CSF appears to be unique to this structure because the caudate nucleus, whose walls also contained PrPSc by 7–14 days, did not begin to accumulate PrPSc until after 63 days (Jendroska et al. 1991). Specific targeting of the medial septal and diagonal band of Broca neurons by de novo-synthesized PrPSc supports the hypothesis that particular populations of neurons specify the behavior of PrPSc.

Syrian hamsters inoculated in the thalamus with 139H prions have scrapie incubation times of ~165 days, and the kinetics of PrPSc accumulation were correspondingly slower [Fig. 5B]. PrPSc was barely detectable in the thalamus at 40 days, indicating a significant delay in its appearance in contrast to hamsters inoculated with Sc237. There was little or no accumulation of PrPSc in the walls of the ventricles and no evidence for spread of prions through CSF routes with 139H prions. While PrPSc accumulated in the septum late in 139H scrapie, it
Kinetics and patterns of PrPsc accumulation in Syrian hamster brains after inoculation with either Sc237 or 139H scrapie prions. Cryostat coronal sections through the hippocampus–thalamus and the septum–caudate nucleus were taken from Syrian hamster brains at 7, 21, 28, 35, 50, and 65 days after inoculation with Sc237 prions (A) or at 40, 80, 120, and 170 days after inoculation with 139H prions (B). The prion inoculum contained ~107 ID\textsubscript{50} units, and 50 \textmu{l} was inoculated intracerebrally. Histoblots were stained for PrPsc with the PrP antiserum R073. (C) Diagrams identify major anatomical structures seen in coronal sections: [NC] neocortex; [Hp] hippocampus; [Th] thalamus; [Hy] hypothalamus; [S] septum; [Cd] caudate; [dB] diagonal band of Broca.

The differences in PrPsc kinetics and neuroanatomic distribution were even more striking in Tg(SHaPrP)7 mice [Fig. 6]. At ~49 days, PrPsc was found in most thalamic nuclei with 139H prions, whereas it was confined to the lateral–ventral tier of thalamic nuclei with Sc237 prions [Figs. 6 and 7]. Also, by day 49, high concentrations of PrPsc were found in Ammon's horn of the hippocampus and in the neocortex with 139H, whereas little or no PrPsc was detected in either structure with Sc237 prions. There were also striking differences in the distribution of PrPsc in the brain stem, particularly in the reticular formation of the midbrain, pons and medulla, but also in the vestibular nuclei and the deep cerebellar nuclei [Fig. 8]. An intense PrPsc accumulation in the corpus callosum was found with 139H prions while little or none was found with Sc237 prions. Other white matter tracts were less immunopositive with 139H.

The patterns of PrPsc accumulation in Tg(SHaPrP)7 mice did not begin at the
Replication of scrapie prions

Figure 6. Kinetics of PrPSc accumulation in the brains of transgenic mice expressing SHaPrP genes after inoculation with either Sc237 or 139H scrapie prions. Histoblots of coronal sections through the hippocampus and thalamus taken from Tg(SHaPrP)7 mouse brains at 21, 35, 49, and 56 days after inoculation with Sc237 or 139H prions. The prion inoculum contained ~10⁷ ID₅₀ units, and 30 µl was inoculated intracerebrally. Histoblots were developed with the PrP antiserum R073. The diagram (lower left) identifies anatomical structures seen in coronal sections: (Am) Amygdala; (CC) corpus callosum; (Hb) habenula; (Hp) hippocampus; (Hy) hypothalamus; (LTh) lateral–ventral tier of thalamic nuclei; (MTh) medial thalamic group of nuclei; (NC) neocortex.

Discussion

Although a converging body of evidence argues that infectious prions are devoid of foreign nucleic acids (Meyer et al. 1991; Prusiner 1991), the mechanism responsible for prion diversity remains enigmatic. The studies reported here offer a novel mechanism that might account for the diversity of prions in the absence of a scrapie-specific polynucleotide.

Although most studies of prion diversity have been performed with inbred mice, we chose to study two distinct isolates from Syrian hamsters with scrapie for the following reasons: (1) Incubation times of Sc237 and 139H prions are the shortest for any pair of distinct isolates (Kimberlin et al. 1987a); (2) the molecular properties of Sc237 prions and PrPSc are the most extensively characterized (Gabizon and Prusiner 1990); (3) other hamster species have closely related but distinct PrP genes (Lowenstein et al. 1990); and (4) transgenic mice expressing SHaPrP are well characterized with respect to Sc237 prions (Scott et al. 1989; Prusiner et al. 1990).

Molecular properties of scrapie isolates

PrPSc is the only component of the infectious prion particle identified to date. Copurification of Sc237 prion infectivity and PrPSc (or PrP 27–30) is well established (Prusiner et al. 1982a, 1983; Gabizon et al. 1988). Purification protocols similar to those used for Sc237 prions were employed for 139H prions, resulting in fractions highly enriched for PrPSc. Our finding that PrP 27–30 molecules of Sc237 and 139H prions are indistinguishable by silver staining and immunoblotting after SDS-
PAGE is in accord with earlier studies showing similar Western blotting patterns for various mouse and hamster isolates of scrapie prions [Kascak et al. 1985, 1986]. Digestion of PrP 27–30 by endoproteinase Lys C followed by reverse-phase high-performance liquid chromatography (HPLC) failed to show any differences between the PrP peptides prepared from Syrian hamster brains inoculated with either Sc237 or 139H prions, as assessed by liquid secondary ion and electrospray mass spectrometry (R. Hecker, M.A. Baldwin, N. Stahl, S. Hall, A.L. Burlingame, and S.B. Prusiner, in prep.). Similarly, studies on the structure of the glycoinositol phospholipid (GPI) anchor of PrPSc failed to reveal any differences between the covalent structures of the GPI glycans from the two isolates [Stahl et al. 1992].

Electron microscopy was used to evaluate the ultrastructure of prion rods in purified fractions isolated from brains of Syrian hamsters inoculated with either Sc237 or 139H prions. Although prion rods were formed from both isolates under similar conditions [McKinley et al. 1991], the 139H rods appeared to be thicker and longer than those commonly found in Sc237 preparations [M. McKinley and R. Hecker, unpubl.]. The parallel subfilaments of the 139H rods are reminiscent of rods found in purified fractions from human brains of patients dying of Creutzfeldt-Jakob disease (CJD) [Bockman et al. 1985]. These straight subfilaments contrast sharply with the helically wound subfilaments of scrapie-associated fibrils found in extracts of scrapie and CJD brains [Merz et al. 1981, 1983]. Additional studies are needed to determine the structural basis of the apparent differences in the morphology of the prion rods in the Sc237 and 139H prion preparations.

Replication of distinct isolates of Syrian hamster prions

The first distinct isolates of scrapie prions exhibiting distinguishable phenotypes were found in goats based on their clinical signs and were designated either “drowsy” or “scratching” [Gordon and Pattison 1957; Pattison and Millson 1961; Pattison 1966]. Later, priori isolates, or strains, were studied in mice on the basis of incubation time measurements and neuropathologic changes [Dickinson et al. 1968; Dickinson and Meikle 1971; Bruce and Dickinson 1987; Carp and Callahan 1991]. Although the use of Prn-p^a and Prn-p^b strains of mice unknowingly complicated the study of distinct scrapie isolates [Westaway et al. 1987; Carlson et al. 1989], the existence of a limited number of isolates with distinct properties based on both incubation times and neuropathologic lesion profiles seems firmly established [Bruce et al. 1991].
Figure 8. Histoblots of PrPSc in transverse sections of the rostral pons and medulla 49 days after inoculation with Sc237 or 139H prions in Tg(SHaPrP)7 mice. Structures that accumulate PrPSc common to both prion isolates include the nucleus of locus coeruleus and raphe nuclei. Clinical signs of scrapie were the same with both inocula.

Our results with Sc237 prions inoculated into Syrian hamsters at increasing intervals after inoculation with 139H prions [Table 3] contrast with those reported by Dickinson and colleagues. They reported that inoculation of mice with a long incubation time isolate prevented replication of a short incubation time isolate that was inoculated later [Dickinson and Fraser 1972; Dickinson et al. 1975; Kimberlin and Walker 1985]. For Sc237 and 139H prions, the lack of competition between these two isolates [Table 3] is consistent with the hypothesis that they are synthesized in different cells. Studies with Tg(SHaPrP) mice indicate that the replication of SHa prions is independent of Mo prions [Table 1], also raising the possibility of the two prions being replicated in the same or different populations of CNS cells. It will be important to determine whether murine prion isolates that are thought to compete with each other, replicate in the same cells or different ones.

Fidelity of prion replication

Investigations with transgenic mice contend that prions multiply through a mechanism where PrPC/PrPSc complexes feature as replication intermediates [Prusiner et al. 1990]. Although recent studies with hsp60 and p53 proteins [Cheng et al. 1990; Milner and Medcalf 1991] provide interesting precedents for the hypothesis that the conversion of PrPC to PrPSc involves a conformational change, explaining multiple, stable scrapie isolates in terms of multiple, stable conformations of PrPSc remains unprecedented. If the conformation of PrPSc determines the properties of the Sc237 and 139H prions, then passage into Chinese or Armenian hamsters must initiate the synthesis of different CHaPrPSc or Armenian hamster PrPSc [AHaPrPSc] molecules for each isolate [Table 4]. In Chinese and Armenian hamsters with PrP gene sequences that differ from that of the Syrian hamster at 7 and 8 codons, respectively [Lowenstein et al. 1990], 139H produces incubation times that are either shorter or similar to those observed with Sc237 [Table 5]. Upon repassage into Syrian hamsters, the Sc237 or 139H CHaPrPSc and AHaPrPSc molecules presumably direct the synthesis of Sc237 or 139H SHaPrPSc molecules, respectively. These observations argue that heritable features can be perpetuated by transfer between PrPSc molecules in spite of changes in PrP sequence among these three hamster species. Under these experimental conditions, the properties of the Sc237 and 139H isolates seem to be independent of the primary structure of PrP. However, passage of prions between species with larger differences in PrP primary structures such as those that distinguish MoPrP from SHaPrP seem to result in the frequent emergence of new isolates [Kimberlin et al. 1987b, 1989].

Distinct prion isolates produce different patterns of PrPSc accumulation

Although the concentration of PrPSc and prion titers in brain homogenates was similar for the Sc237 and 139H isolates, the kinetics and patterns of PrPSc accumulation for the two isolates were different [Figs. 4 and 5]. The kinetics of PrPSc accumulation in Syrian hamster brains inoculated with Sc237 prions, as determined by serial
New approaches to prion diversity

many of itself in the absence of a nucleic acid is rather reminiscent of early theories concerning the diversity and unorthodox. In some respects, this hypothesis is reminiscent of prion diversity and would provide a mechanism through which multiple distinct isolates could replicate in a single host. While there were many more differences than similarities in the sites of PrPSc accumulation for the two prion isolates, those regions in which prion isolates induced similar levels of PrPSc require explanation. First, synthesis of PrPSc could occur in the same cells, but this would seemingly limit the diversity of prions. Second, PrPSc synthesis might proceed in different but adjacent cells in the same region. Third, the formation of PrPSc might occur in different cells outside the region followed by transport to it.

That vacuolation correlates with the sites of PrPSc accumulation (Fig. 4) is of interest with respect to many earlier studies on different prion isolates in mice. Murine scrapie isolates were characterized extensively by scoring the degree of neuropil vacuolation in different mouse brain regions [Fraser and Dickinson 1968, 1973]. Those results, together with the correlative neuropathology and PrPSc accumulation patterns (Fig. 4) reported here, raise the possibility that each prion isolate may have a distinct pattern of PrPSc accumulation in brain.

Using immunohistochemical procedures (DeArmond et al. 1987), other investigators found that the intensity of regional PrP staining increased with scrapie and was specific for individual prion strains [Bruce et al. 1989]. Although their conclusions are similar to ours in some respects, the immunostaining procedures that they used were not capable of distinguishing among several possibilities including increased PrPSc synthesis, diminished PrPSc degradation, and PrPSc accumulation. The histoblot technique permits assignment of the immunostaining signal to PrPSc [Taraboulos et al. 1992].

New approaches to prion diversity

Many molecular models have been offered to explain the diversity and inheritable properties of prions. Despite the lack of physical, chemical, and biological evidence for a scrapie-specific nucleic acid, the remote scenario that such a molecule exists remains a formal possibility to explain the distinct isolates of prions. The hypothesis that a given scrapie isolate can catalyze the synthesis of more of itself in the absence of a nucleic acid is rather unorthodox. In some respects, this hypothesis is reminiscent of early theories concerning the diversity and synthesis of antibodies [Burnet and Fenner 1949]. Such theories now appear to be largely, if not entirely, incorrect because DNA rearrangements and somatic mutations seem to account for the diverse set of antibody molecules generated by mammals [Tonegawa 1983]. Attempts to demonstrate DNA rearrangements, as well as alternative splicing and RNA editing of PrP transcripts, have been unsuccessful [Oesch et al. 1985; Basler et al. 1986]. Studies of PrPSc prepared from Sc237 prions have established that the amino acid sequence of PrPSc is identical to that predicted from the PrP gene sequence [N. Stahl, M. Baldwin, and S.B. Prusiner, in prep.].

A second hypothesis suggests that PrPSc alone can cause scrapie with the properties of Sc237 but that the 139H isolate contains an accessory RNA molecule that modulates the properties of this prion [Weissmann 1991]. Such accessory RNAs are hypothesized to be of cellular origin and thus would not be detected by subtractive hybridization and differential cloning studies. A third hypothesis considers the possibility that scrapie isolates may have their origin in a non-PrP molecule that purifies with PrPSc but is not a nucleic acid and, as yet, is undetected. A fourth possibility is that different chemical or conformational modifications of PrPSc are responsible for the particular biological properties exhibited by scrapie prion isolates. Whether a particular isolate of infectious prions is composed of a uniform population of PrPSc molecules or oligomers containing heterogeneously modified PrPSc molecules remains to be determined.

The numerous sugar chain structures found in Asn-linked complex type oligosaccharides of PrPSc (Endo et al. 1989, Prusiner 1989) make them candidates to regulate the apparent cell-specific targeting of prions. Asn-linked oligosaccharides seem likely to possess sufficient variation to account for the diversity of prion isolates that have been recorded. Many studies have shown that oligosaccharides as well as glycoproteins can bind to the surface of cells and act as ligands in cell-cell adhesion, modulators of neurite outgrowth, mediators of viral infection, and regulators of some hormonal activities [Wiley and Skehel 1987; Brandley et al. 1990; Doherty et al. 1991; Key and Akeson 1991; Takeuchi and Kobata 1991]. However, studies with scrapie-infected cultured cells have shown that PrPSc can be formed in the presence of tunicamycin and from recombinant PrP vectors with open reading frames (ORFs) mutated at the recognition sites for Asn-linked glycosylation [Taraboulos et al. 1990b]. Whether unglycosylated PrPSc can transmit disease and initiate production of more PrPSc molecules is unknown. While the structures of the Asn-linked sugar chains of PrPSc isolated from Syrian hamsters inoculated with Sc237 prions have been defined [Endo et al. 1989, Haraguchi et al. 1989], we have no knowledge of those linked to PrPSc of 139H prions. Although lectin-binding studies have failed to reveal any differences in PrPSc oligosaccharides among three Mo prion isolates [Somerville and Ritchie 1990], such studies can provide only limited information about the structure of the sugar chains. It is unlikely that the glycans of the GPI anchors...
attached to PrPSc from Sc237 and 139H prions are isolate specific. Both GPI anchors have indistinguishable sugar chains, including sialic acid [Stahl et al. 1992], but many of the specific chemical bonds linking these sugars are unknown. A third possibility, as noted above, is that the diversity of prion strains might reside in the tertiary structure of PrPSc. Studies on two isolates of transmissible mink encephalopathy (TME) prions in hamsters support this hypothesis. One isolate with a 75-day incubation period shows PrPSc protease resistance similar to that exhibited by Sc237, whereas the isolate with a 160-day incubation period is considerably less protease resistant in contrast to 139H scrapie prions [Bessen and Marsh 1992].

Determining the limits of prion diversity and the mechanism by which “heritable” information is transferred during the replication of prions is of considerable interest. The results presented here offer a new view of prion replication in which prion diversity may be perpetuated by cell-specific replication. Studies with transgenic mice present convincing evidence that PrPSc directs the synthesis of nascent PrPSc molecules [Prusiner et al. 1990], and the results of studies reported here support that hypothesis (Tables 1 and 2). If the replication of prions in specific cell types proves to be responsible for the properties of distinct isolates, then the cell-specific modification of PrPSc must direct PrPSc molecules to enter similar cells in the inoculated recipient for the isolate to “breed true.” This hypothesis argues that cell-specific tropism generates a unique set of biological properties that are characteristic of an individual isolate.

Materials and methods

Passage history and derivation hamster scrapie isolates

After multiple passages in random-bred Syrian golden hamsters [Marsh and Kimberlin 1975], the scrapie agent was passed in an Lak/LHC inbred Syrian hamster and the brain was given to us by Dr. Richard Marsh [Prusiner et al. 1980]. Upon three subsequent passages in Lak/LVG hamsters, the pool of prions was enlarged and the fourth passage pool was designated Sc237 [Scott et al. 1989]. Repeated passage of the scrapie agent in Lak/LVG hamsters at limiting dilution produced the cloned isolate 263K [Kimberlin and Walker 1978]. Many studies have been performed with Sc237 and 263K prions; they seem to exhibit similar properties in Syrian hamsters [Marsh and Hanson 1977; Prusiner et al. 1982b]. After >20 passages of the Chandler isolate in mice, an isolate designated 139A was obtained [Dickinson 1976]. Passage of mouse 139A prions in Lak/LVG Syrian golden hamsters produced the 139H isolate [Kimberlin et al. 1987b]. After six passages in Syrian hamsters, 139H prions were provided to us by Drs. Richard Kimberlin and Richard Carp.

Determination of scrapie incubation periods and prion bioassays

Lak/LVG random-bred Syrian hamsters [Charles River Breeding Laboratories, Inc., Wilmington, MA] and inbred Armenian hamsters and Chinese hamsters [Cytogen, West Roxberry, MA] were inoculated with brain extracts as described previously [Prusiner et al. 1982a]. Clinical diagnosis of scrapie in Syrian hamsters inoculated with ~10^7 IDso units of Sc237 prions has been described [Prusiner et al. 1982b]. In Syrian hamsters inoculated with ~10^7 IDso units of 139H, the first evidence of altered behavior appeared after 100–125 days. The hamsters exhibited agitation, increased aggressiveness, and frequent fighting with each other. Subsequently, neurologic dysfunction and weight gain became evident. By ~160 days, the hamsters exhibited signs of neurologic impairment manifest by truncal ataxia and bradykinesia. We used these signs to define the onset of illness for incubation time measurements. As clinical illness progressed, hamsters showed increasing difficulty righting themselves from a supine position. Syrian hamsters inoculated with 139H prions were obese compared with uninoculated controls. At the onset of illness, the inoculated hamsters weighed 233 ± 3 grams (n = 31), and age-matched uninoculated controls weighed 145 ± 5 grams (n = 16). Hamsters inoculated with Sc237 prions weighed 143 ± 5 grams (n = 8) at the onset of illness. Tg[SHaPrP] mice were constructed and produced at the University of California, San Francisco. Inoculation of these animals and determination of incubation times have been described [Scott et al. 1989; Prusiner et al. 1990].

End-point titrations of the scrapie agent were performed by intracerebral inoculation of six weanling female hamsters at 10-fold dilutions ranging from 10^-1 to 10^-12, as described [Prusiner et al. 1982a]. Hamsters inoculated with dilutions at 10^-1 to 10^-5 of 139H prions were housed three per cage. Because hamsters seem to grow more aggressive as they get older and fighting is more frequent resulting in non-scrapie-related deaths [Prusiner 1987], we housed hamsters receiving dilutions at 10^-6 to 10^-12 individually. Prion titers (IDso/ml) were calculated by use of the method of Spearman and Kärber (Dougherty 1964).

Scrapie prion purification and measurement of PrP

Large-scale purification of Sc237 prions was performed with a protocol employing discontinuous sucrose gradient centrifugation in a zonal rotor [Prusiner et al. 1983]. Purification of 139H prions was performed on a smaller scale, typically with 100–200 brains from Syrian hamsters sacrificed ~150 days after intracerebral inoculation with ~10^7 IDso units by use of a protocol described previously [Prusiner et al. 1982a]. Fraction P4 was either subjected to sucrose gradient centrifugation [Prusiner et al. 1982a] or to ultrafiltration. For ultrafiltration, the fraction P4 was adjusted to 2% Triton X-100 and 0.8% SDS and incubated at room temperature for 15 min. The buffer for the ultrafiltration was 20 mM Tris-OAc (pH 8.3), 1 mM EDTA, 1 mM DTT, and 0.2% Sarkosyl. Before starting the ultrafiltration, fraction P4 was adjusted to 2% Triton X-100 and 0.8% SDS and incubated at room temperature for 15 min. The buffer for the ultrafiltration was 20 mM Tris-OAc (pH 8.3) containing 2% Sarkosyl. The ultrafiltration was carried out in a 10-ml Omega cell [Filtron, Northboro, MA] with an Omega membrane [exclusion limit, 300 kD]. After 16 hr, ~150 ml of flowthrough accumulated. The retentate containing the prion rods was precipitated with 10 volumes of cold ethanol (~20°C), or used directly.

The quantitation of PrP from brain homogenates was determined by a modified enzyme-linked immunosorbent assay (ELISA) as described in Prusiner et al. (1990), except that the 10% brain homogenate was prepared in 0.32 M sucrose. All samples were measured in triplicate.

Neuropathologic studies and histobLOTS

Brain tissue was immersion or perfusion fixed in 10% buffered formalin or periodate/llysin/0.5% pararformaldehyde fixative [DeArmond et al. 1987]. In all cases, the brain tissue was embedded in paraffin, and 8-μm-thick histological sections were...
prepared. The sections were then treated with proteinase K (5 μg/ml) for 10 min at room temperature followed by three rinses with PBS. Each section was treated with 3 μl guanidinium thiocyanate for 10 min because this denaturation step was found to greatly enhance immunoreactivity of proteinase K-resistant PrP on Western transblots (Serban et al. 1990; Taraboulos et al. 1990a).

Cryostat sections (8 μm thick) on glass slides were blotted onto nitrocellulose membranes, as described previously (Taraboulos et al. 1992). To determine the precise neuroanatomical localization of PrP accumulation in histobLOTS, adjacent serial sections were mounted on glass slides and stained with hematoxylin and eosin.

Acknowledgments

This work was supported by research grants from the National Institutes of Health and the American Health Assistance Foundation, as well as by gifts from Sherman Fairchild Foundation and National Medical Enterprises. R.H. was supported by a European Molecular Biology Organization fellowship. We thank Drs. Rudi Meyer, George Carlson, and Charles Weissmann for stimulating discussions. The technical support of Dallas Foster, Darlene Groth, and Hana Serban is gratefully acknowledged.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Barry, R.A. and S.B. Prusiner. 1986. Monoclonal antibodies to the cellular and scrapie prion proteins. J. Infect. Dis. 154: 518–521.

Basler, K., B. Oesch, M. Scott, D. Westaway, M. Wälchli, D.F. Groth, M.P. McKinley, S.B. Prusiner, and C. Weissmann. 1986. Scapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46: 417–428.

Bessen, R.A. and R.F. Marsh. 1992. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66: 2096–2101.

Bockman, J.M., D.T. Kingsbury, M.P. McKinley, P.E. Bendheim, and S.B. Prusiner. 1985. Creutzfeldt-Jakob disease prion proteins in human brains. N. Engl. J. Med. 312: 73–78.

Brandley, B.K., S.J. Swiedler, and P.W. Robbins. 1990. Carbohydrate ligands of the LEC cell adhesion molecules. Cell 63: 861–863.

Bruce, M.E. and A.G. Dickinson. 1987. Biological evidence that the scrapie agent has an independent genome. J. Gen. Virol. 68: 79–89.

Bruce, M.E., P.A. McBride, and C.F. Farquhar. 1989. Precise targeting of the patholgy of the sialaglycoprotein, PrP, and vascular degeneration in mouse scrapie. Neurosci. Lett. 102: 1–6.

Bruce, M.E., I. McConnell, H. Fraser, and A.G. Dickinson. 1991. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: Implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol. 72: 595–603.

Burnet, F.M. and F. Fenner. 1949. The production of antibodies—Monograph of the Walter and Eliza Hall Institute, Melbourne. Macmillan and Company, London, England.

Carlson, G.A., D.T. Kingsbury, P.A. Goodman, S. Coleman, S.T. Marshall, S.J. DeArmond, D. Westaway, and S.B. Prusiner. 1986. Linkage of prion protein and scrapie incubation time genes. Cell 46: 503–511.

Carlson, G.A., P.A. Goodman, M. Lovett, B.A. Taylor, S.T. Marshall, M. Peterson-Torcha, D. Westaway, and S.B. Prusiner. 1988. Genetics and polymorphism of the mouse prion gene complex: The control of scrapie incubation time. Mol. Cell. Biol. 8: 5528–5540.

Carlson, G.A., D. Westaway, S.J. DeArmond, M. Peterson-Torcha, and S.B. Prusiner. 1989. Primary structure of prion protein may modify scrapie isolate properties. Proc. Natl. Acad. Sci. 86: 7475–7479.

Carp, B.I. and S.M. Callahan. 1991. Variation in the characteristics of 10 mouse-passaged scrapie lines derived from five scrapie-positive sheep. J. Gen. Virol. 72: 293–298.

Cheng, M.Y., F.U. Hartl, and A.L. Horwich. 1990. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 348: 455–458.

DeArmond, S.J., M.P. McKinley, R.A. Barry, M.B. Braunfeld, J.R. McColloch, and S.B. Prusiner. 1985. Identification of prion amyloid filaments in scrapie-infected brain. Cell 41: 221–235.

DeArmond, S.J., W.C. Mobley, D.L. DeMott, R.A. Barry, J.H. Beckstead, and S.B. Prusiner. 1987. Changes in the localization of plasma prion proteins during scrapie infection. Neurology 37: 1271–1280.

Dickinson, A.G. 1976. Scrapie in sheep and goats. In Slow virus diseases of animals and man (ed. R.H. Kimberlin), pp. 209–241. North-Holland Publishing, Amsterdam, The Netherlands.

Dickinson, A.G. and V.M.H. Meikle. 1971. Host-genotype and agent effects in scrapie incubation: Change in allelic interaction with different strains of agent. Mol. Gen. Genet. 112: 73–79.

Dickinson, A.G. and H. Fraser. 1972. Scrapie: Effect of Dh gene on the incubation period of extraneurally injected agent. Hereditas 29: 91–93.

Dickinson, A.G., V.M.H. Meikle, and H. Fraser. 1968. Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J. Comp. Pathol. 78: 293–299.

Dickinson, A.G., H. Fraser, V.M.H. Meikle, and G.W. Outram. 1972. Competition between different scrapie agents in mice. Nat. New Biol. 237: 244–245.

Dickinson, A.G., H. Fraser, and G.W. Outram. 1975. Scrapie incubation time can exceed natural lifespan. Nature 256: 732–733.

Doherty, P., L.H. Rowett, S.E. Moore, D.A. Mann, and F.S. Walsh. 1991. Neurite outgrowth in response to transfected N-CAM and N-cadherin reveals fundamental differences in neuronal responsiveness to CAMs. Neuron 6: 247–258.

Dougherty, R. 1964. Animal virus titration techniques. In Techniques in experimental virology (ed. R.J.C. Harris), pp. 169–224. Academic Press, New York.

Endo, T., D. Groth, S.B. Prusiner, and A. Kobata. 1989. Diversity of oligosaccharide structures linked to asparagines of the cellular and scrapie prion proteins. J. Infec. Dis. 112: 293–299.

Gabizon, R. and S.B. Prusiner. 1985. Identification of prion liposomes. Proc. Natl. Acad. Sci. 82: 3480–3488.

Gabizon, R.A. and R.F. Marsh. 1992. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66: 2096–2101.

Bockman, J.M., D.T. Kingsbury, M.P. McKinley, P.E. Bendheim, and S.B. Prusiner. 1985. Creutzfeldt-jakob disease prion proteins in human brains. N. Engl. J. Med. 312: 73–78.

Brandley, B.K., S.J. Swiedler, and P.W. Robbins. 1990. Carbohydrate ligands of the LEC cell adhesion molecules. Cell 63: 861–863.

Bruce, M.E. and A.G. Dickinson. 1987. Biological evidence that the scrapie agent has an independent genome. J. Gen. Virol. 68: 79–89.

Bruce, M.E., P.A. McBride, and C.F. Farquhar. 1989. Precise targeting of the patholgy of the sialaglycoprotein, PrP, and vascular degeneration in mouse scrapie. Neurosci. Lett. 102: 1–6.

Bruce, M.E., I. McConnell, H. Fraser, and A.G. Dickinson. 1991. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: Implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol. 72: 595–603.

Burnet, F.M. and F. Fenner. 1949. The production of antibodies—Monograph of the Walter and Eliza Hall Institute, Melbourne. Macmillan and Company, London, England.

Carlson, G.A., D.T. Kingsbury, P.A. Goodman, S. Coleman, S.T. Marshall, S.J. DeArmond, D. Westaway, and S.B. Prusiner. 1988. Immunoaffinity purification and neutralization of
scrapie prion infectivity. *Proc. Natl. Acad. Sci.* **85**: 6617–6621.

Gordon, W.S. and I.H. Pattison. 1957. The experimental production of scrapie in goats. *Vet. Rec.* **69**: 1444.

Haraguchi, T., S. Fisher, S. Olofsson, T. Endo, D. Groth, A. Tarantino, D.R. Borchelt, D. Teplow, L. Hood, A. Burlingame, E. Lycke, A. Kobata, and S.B. Prusiner. 1989. Asparagine-linked glycosylation of the scrapie and cellular prion proteins. *Arch. Biochem. Biophys.* **274**: 1–13.

Hsiao, K.K., M. Scott, D. Foster, D.F. Groth, S.J. DeArmond, and S.B. Prusiner. 1990. Spontaneous neurodegeneration in transgenic mice with mutant prion protein of Gerstmann-Sträussler syndrome. *Science* **250**: 1587–1590.

Hunter, N., J. Hope, I. McConnell, and A.G. Dickinson. 1987. Linkage of the scrapie-associated fibril protein (PrP) gene and Sinc using congenic mice and restriction fragment length polymorphism analysis. *J. Gen. Virol.* **68**: 2711–2716.

Jendroska, K., F.P. Heimzel, M. Torchia, L. Stowring, H.A. Kretzschmar, A. Kon, A. Stern, S.B. Prusiner, and S.J. DeArmond. 1991. Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. *Neurology* **41**: 1482–1490.

Kascak, R., J., R. Rubenstein, P.A. Merz, R.I. Carp, H.M. Wisniewski, and H. Diringer. 1985. Biochemical differences among scrapie-associated fibrils support the biological diversity of scrapie agents. *J. Gen. Virol.* **66**: 1715–1722.

Kascak, R.J., R. Rubenstein, P.A. Merz, R.I. Carp, H.M. Wisniewski, and H. Diringer. 1986. Immunological comparison of scrapie-associated fibrils isolated from animals infected with four different scrapie strains. *J. Virol.* **59**: 676–683.

Key, B. and R.A. Akeson. 1991. Delineation of olfactory pathways in the frog nervous system by unique glycoconjugates and N-CAM glycoforms. *Neuron* **6**: 381–396.

Kimberlin, R. and C. Walker. 1977. Characteristics of a short incubation model of scrapie in the golden hamster. *J. Gen. Virol.* **34**: 295–304.

——. 1978. Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. *J. Gen. Virol.* **39**: 487–496.

——. 1985. Competition between strains of scrapie depends on the blocking agent being infectious. *Intervirology* **23**: 74–81.

Kimberlin, R.H., S. Cole, and C.A. Walker. 1987a. Pathogenesis of scrapie is faster when infection is intraspinal instead of intracerebral. *Microb. Pathog.* **2**: 405–415.

——. 1987b. Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. *J. Gen. Virol.* **68**: 1875–1881.

Kimberlin, R.H., C.A. Walker, and H. Fraser. 1989. The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. *J. Gen. Virol.* **70**: 2017–2025.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. *Nature* **227**: 680–685.

Lowenstein, D.H., D.A. Butler, D. Westaway, M.P. McKinley, S.J. DeArmond, and S.B. Prusiner. 1990. Three hamster species with different scrapie incubation times and neuropathological features encode distinct prion proteins. *Mol. Cell. Biol.* **10**: 1153–1163.

Marsh, R.F. and R.P. Hanson. 1977. The Syrian hamster as a model for the study of slow virus diseases caused by unconventional agents. *Fed. Proc.* **37**: 2076–2078.

Marsh, R.F. and R.H. Kimberlin. 1975. Comparison of scrapie and transmissible mink encephalopathy in hamsters. II. Clinical signs, pathology and pathogenesis. *J. Infect. Dis.* **131**: 104–110.

McKinley, M.P., D.C. Bolton, and S.B. Prusiner. 1983. A protease-resistant protein is a structural component of the scrapie prion. *Cell* **35**: 57–62.

McKinley, M.P., R. Meyer, L. Kenaga, F. Rabbar, R. Cotter, A. Serban, and S.B. Prusiner. 1991. Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. *J. Virol.* **65**: 1440–1449.

Merz, P.A., R.A. Somerville, H.M. Wisniewski, and K. Iqbal. 1981. Abnormal fibrils from scrapie-infected brain. *Acta Neuropathol.* **54**: 63–74.

Merz, P.A., R.A. Somerville, H.M. Wisniewski, L. Manueldis, and E.E. Manueldis. 1983. Scrapie-associated fibrils in Creutzfeldt-Jakob disease. *Nature* **306**: 474–476.

Meyer, N., V. Rosenbaum, B. Schmidt, K. Gilles, C. Mirenda, D. Groth, S.B. Prusiner, and D. Riesner. 1991. Search for a putative genome in purified prion fractions reveals a paucity of nucleic acids. *J. Gen. Virol.* **72**: 37–49.

Milner, J. and E.A. Medcalfe. 1991. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. *Cell* **65**: 765–774.

Oesch, B., D. Westaway, M. Wältchli, M.P. McKinley, S.B.H. Kent, R. Aebersold, R.A. Barry, F. Tempst, D.B. Teplow, L.E. Hood, S.B. Prusiner, and C. Weissmann. 1985. A cellular gene encodes scrapie PrP 27–30 protein. *Cell* **40**: 735–746.

Pattison, I.H. 1966. The relative susceptibility of sheep, goats and mice to two types of the goat scrapie agent. *Res. Vet. Sci.* **7**: 207–212.

Pattison, I.H. and G.C. Millson. 1961. Scrapie produced experimentally in goats with special reference to the clinical syndrome. *J. Comp. Pathol.* **71**: 101–108.

Prusiner, S.B. 1987. The biology of prion transmission and replication. In Prions—Novel infectious pathogens causing scrapie and Creutzfeldt-Jakob disease (ed. S.B. Prusiner and M.P. McKinley), pp. 83–112. Academic Press, Orlando, FL. ——. 1989. Scrapie prions. *Annu. Rev. Microbiol.* **43**: 345–374.

——. 1991. Molecular biology of prion diseases. *Science* **252**: 1515–1522.

Prusiner, S.B., D.F. Groth, S.P. Cochran, F.R. Masiarz, M.P. McKinley, and H.M. Martinez. 1980. Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. *Biochemistry* **19**: 4883–4891.

Prusiner, S.B., D.C. Bolton, D.F. Groth, K.A. Bowman, S.P. Cochran, and M.P. McKinley. 1982a. Further purification and characterization of scrapie prions. *Biochemistry* **21**: 6942–6950.

Prusiner, S.B., S.P. Cochran, D.F. Groth, D.E. Downey, K.A. Bowman, and H.M. Martinez. 1982b. Measurement of the scrapie agent using an incubation time interval assay. *Ann. Neurol.* **11**: 353–358.

Prusiner, S.B., M.P. McKinley, K.A. Bowman, D.C. Bolton, P.E. Bendheim, D.F. Groth, and G.G. Glenner. 1983. Scrapie prions aggregate to form amyloid-like birefringent rods. *Cell* **35**: 349–358.

Prusiner, S.B., M. Scott, D. Foster, K.-M. Pan, D. Groth, C. Mirenda, M. Torchia, S.-L. Yang, D. Serban, G.A. Carlson, P.C. Hoppe, D. Westaway, and S.J. DeArmond. 1990. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. *Cell* **63**: 673–686.

Race, R.E., K. Graham, D. Ernst, B. Caughey, and B. Chesebro. 1990. Analysis of linkage between scrapie incubation period and the prion protein gene in mice. *J. Gen. Virol.* **71**: 493–497.

Replication of scrapie prions
Hecker et al.

Scott, M., D. Foster, C. Mirenda, D. Serban, F. Coufal, M. Wahlchli, M. Torchia, D. Groth, G. Carlson, S.J. DeArmond, D. Westaway, and S.B. Prusiner. 1989. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59: 847–857.

Serban, D., A. Taraboulos, S.J. DeArmond, and S.B. Prusiner. 1990. Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology 40: 110–117.

Somerville, R.A. and L.A. Ritchie. 1990. Differential glycosylation of the protein (PrP) forming scrapie-associated fibrils. J. Gen. Virol. 71: 833–839.

Stahl, N., M.A. Baldwin, R. Hecker, K.-M. Pan, A.L. Burlingame, and S.B. Prusiner. 1992. Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry [in press].

Takeuchi, M. and A. Kobata. 1991. Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1: 337–346.

Taraboulos, A., M. Rogers, D.R. Borchelt, M.P. McKinley, M. Scott, D. Serban, and S.B. Prusiner. 1990a. Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc. Natl. Acad. Sci. 87: 8262–8266.

Taraboulos, A., D. Serban, and S.B. Prusiner. 1990b. Scrapie prion proteins accumulate in the cytoplasm of persistently-infected cultured cells. J. Cell Biol. 110: 2117–2132.

Taraboulos, A., K. Jendroska, D. Serban, S.-L. Yang, S.J. DeArmond, and S.B. Prusiner. 1992. Regional mapping of prion proteins in brains. Proc. Natl. Acad. Sci. [in press].

Tonegawa, S. 1983. Somatic generation of antibody diversity. Nature 302: 575–581.

Turk, E., D.B. Teplow, L.E. Hood, and S.B. Prusiner. 1988. Purification and properties of the cellular and scrapie hamster prion proteins. Eur. J. Biochem. 176: 21–30.

Weissmann, C. 1991. A “unified theory” of prion propagation. Nature 352: 679–683.

Westaway, D., P.A. Goodman, C.A. Mirenda, M.P. McKinley, G.A. Carlson, and S.B. Prusiner. 1987. Distinct prion proteins in short and long scrapie incubation period mice. Cell 51: 651–662.

Westaway, D., C.A. Mirenda, D. Foster, Y. Zebarjadiand, M. Scott, M. Torchia, S.-L. Yang, H. Serban, S.J. DeArmond, C. Ebeling, S.B. Prusiner, and G.A. Carlson. 1991. Paradoxical shortening of scrapie incubation times by expression of prion protein transgenes derived from long incubation period mice. Neuron 7: 59–68.

Wiley, D.C. and J.J. Skehel. 1987. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56: 365–394.
Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters.

R Hecker, A Taraboulos, M Scott, et al.

Genes Dev. 1992, 6:
Access the most recent version at doi:10.1101/gad.6.7.1213