Identification and molecular characterization of simian endogenous retrovirus in *Macaca fascicularis* and *Macaca nemestrina* from captive breeding facilities in Bogor, Indonesia

Fitri Luthfianti Nur Annisa, Uus Saepuloh, Diah Iskandriati, and Joko Pamungkas

1. Primatology Graduate Study Program, Graduate School of IPB University, Bogor 16128, Indonesia; 2. Primate Research Center, IPB University, Bogor 16128, Indonesia; 3. Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia.

Co-authors: FLNA: fitri.luthfianti@gmail.com, US: uussaepuloh@yahoo.com, DI: atie@indo.net.id

Received: 12-02-2022, Accepted: 14-06-2022, Published online: 27-07-2022

Abstract

Background and Aim: Endogenous retroviruses (ERVs) found in all vertebrates, including non-human primates (NHPs), are known to be genetically inherited. Thus, recent studies have explored ERVs for human immunodeficiency virus vaccine development using human ERV (HERV) due to the hypervariability of exogenous retroviruses which cause conventional vaccines to be ineffective. HERV was also found to be able to induce an immune response in cancer patients. This study aimed to identify and molecularly characterize ERVs from Indonesian NHPs: *Macaca fascicularis* and *Macaca nemestrina*. Then, we described the phylogenetic relationship of these isolates with those of the simian ERVs (SERVs) characterized in other species and countries.

Materials and Methods: First, 5 mL of whole blood samples was taken from 131 long-tailed macaques and 58 pig-tailed macaques in captive breeding facilities at Bogor, Indonesia, for DNA extraction. Next, the DNA samples were screened using the SYBR Green real-time polymerase chain reaction (PCR) technique with specific primers for *env* (simian retroviruses [SRV]-1-5 7585U19 and SRV-1-5 7695L21). Positive SERV results were those with cycle threshold (CT) values < 24 (CT < 24) and melting temperature (TM) ranges of 80°C–82°C. Then, whole-genome nucleotide sequences from two pig-tailed macaque samples detected as positive SERV were generated using a nucleic acid sequencing technique which utilized the walking primer method. Subsequently, the sequences were analyzed using bioinformatics programs, such as 4Peaks, Clustal Omega, and BLAST (NCBI). Subsequently, a phylogenetic tree was constructed using the neighbor-joining method in MEGA X.

Results: SYBR Green real-time PCR amplification results indicated that SERV (Mn B1 and Mn B140910)-positive samples had CT values of 22.37–22.54 and TM of 82°C. Moreover, whole-genome sequences resulted in 7991 nucleotide sequences, comprising long terminal repeat, *gag*, *pro*, *pol*, and *env* genes identical between the sequenced samples. Furthermore, the phylogenetic tree results indicated that both samples from *M. nemestrina* had 99%–100% nucleotide identities to the Mn 92227 sample identified at the National Primate Center University of Washington (NaPRC UW) which was imported from Indonesia in 1998, confirmed as a novel SERV strain. The phylogenetic tree results also indicated that although SERV whole-genome nucleotide and *env* amino acid sequences were clustered with SRV-2 (identity values of 82% and 79%, respectively), they had a 99%–100% nucleotide identity to Mn 92227. Meanwhile, the *gag*, *pro*, and *pol* amino acids were clustered with SRV-1, SRV-3, SRV-4, SRV-5, SRV-8, and SERV/1997, with 82% and 88% identity values.

Conclusion: Based on the SYBR Green real-time PCR profiles generated, similarities with Mn 92227 were observed. Subsequent phylogenetic analysis confirmed that both samples (Mn B1 and Mn B140919) from pig-tailed macaques in the country of origin were novel SERV strains at NaPRC UW. Therefore, it could be used in biomedical research on ERVs.

Keywords: *Macaca fascicularis*, *Macaca nemestrina*, retrovirus, simian endogenous retroviruses.

Introduction

Endogenous retroviruses (ERVs) are found in all vertebrates, including non-human primates (NHPs) [1–3]. Although their sequences are genetically inherited and have high copy numbers in the genomes of all species, most strains are unable to produce viruses [4, 5]. Therefore, ERVs are assumed to be inherited from parents through oocytes or embryos infected with exogenous retroviruses. Subsequently, nonpathogenic microorganisms are considered to undergo coevolution between the host and the pathogen, resulting in various ERVs [4].

While exogenous retroviruses are horizontally transmitted, ERVs are transmitted vertically from parents to offspring. For example, type D retroviruses in exogenous and endogenous forms were first discovered in Old World monkeys (OWMs). Exogenous simian retrovirus type D infection in Asian

Copyright: Annisa, et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Materials and Methods

Ethical approval

This study used whole blood samples of long-tailed macaques (M. fascicularis) and pig-tailed macaques (M. nemestrina). The Institutional Animal Care and Use Committee approved the use of these animals and procedures for blood collection (PSSP-LPPM IPB University number IPB PRC-18-B008).

Study period and location

The study was conducted from February to November 2020 in the Biotechnology Laboratory, Primate Research Center of IPB University, Bogor, Indonesia. The samples were collected from PT Wanara Satwa Loka in Cikarawang, Bogor, Indonesia, and the PSSP-LPPM IPB University Breeding Facility in Dramaga, Bogor, Indonesia.

Animals

In this study, whole blood (~ 5 mL) from 131 long-tailed macaques (15 males and 116 females) and 58 pig-tailed macaques (seven males and 51 females), both from PT Wanara Satwa Loka in Cikarawang, Bogor, Indonesia, and the PSSP-LPPM IPB University Breeding Facility in Dramaga, Bogor, Indonesia, was used. Before sample collection, all animals were anesthetized with ketamine (10 mg/kg body weight). Then, approximately 5 mL of blood sample was collected from the femoral vein of each animal and put into a blood tube containing ethylenediaminetetraacetic acid during general examinations.

Nucleic acid isolation

According to the manufacturer’s protocol, DNA from blood samples was extracted using a QiAamp™ DNA Extraction Blood Mini Kit (Qiagen, Hilden, Germany). Then, the DNA concentrations were measured using NanoDrop™ One (Thermo Scientific, Massachusetts, US).

DNA amplification

Real-time polymerase chain reaction (PCR) amplification was performed using primers for env genes designed by the National Primate Research Center, University of Washington, USA (Richard Grant, personal communication by Uus Saepuloh): SRV1-5 7585U19 (5’-CTGWCAGCCAAATGACG G-3’) and SRV1-5 7695L21 (5’-CGCCTGTCTTTAG GTTGGAGTG-3’). The PCR reaction comprised 0.5 μL each of the 10 pmol/μL forward and reverse primers, 10 μL Ssofast™ EvaGreen® Supermix, 2.5 μL DNA template, and 6.5 μL nuclease-free water. Then, amplification was conducted using a real-time PCR machine Bio-Rad iQ™5 (Bio-Rad, California, US) under the following conditions: Pre-denaturation at 98°C for 2 min, 40 cycles of denaturation at 98°C for 10 s, and annealing/elongation at 64°C for 20 s. Next, melting curve analysis was conducted at 60°C and 95°C, increasing every 0.5°C. SERV suspected samples were those with melting TM ranges of 80°C–82°C and CT values <24 [10].

Veterinary World, EISSN: 2231-0916 1828
Subsequently, whole-genome characterization of SERV was performed for suspected positive samples using the walking primer method developed at the Biotechnology Laboratory PSSP-LPPM IPB University (Table-1). The PCR reaction comprised 1 μL each of 10 pmol/μL forward and reverse primers, 12.5 μL GoTaq® Green Master Mix (Promega, Wisconsin, US), 2.5 μL DNA template, and 8 μL nuclease-free water. Then, amplification was conducted using a conventional PCR machine GeneAmp® PCR System 9700 (Applied Biosystems, Massachusetts, US) under the following conditions: Pre-denaturation at 94°C for 3 min, 40 cycles of denaturation at 94°C for 30 s, annealing (according to the TM of each primer) for 30 s, elongation at 72°C for 2 min, and extension at 72°C for 7 min. Finally, after the PCR products had been electrophoresed in 1% agarose gel and visualized using SYBR™ Safe (Invitrogen, Massachusetts, US) under UV Gel Doc 2000 (Bio-Rad), the bands were analyzed using the Quantity One® program (Bio-Rad), followed by amplicon sequencing at 1st BASE Laboratories Sdn. Bhd. (Malaysia).

Bioinformatics

First, nucleotide sequences were manually edited based on their chromatograms using the 4Peaks program (https://4peaks.en.softonic.com/mac). Subsequently, the alignment of nucleotide sequences was conducted using the Clustal Omega program, after which the SERV alignment results were analyzed using the NCBI website (https://blast.ncbi.nlm.nih.gov) by selecting BLAST-N to identify the closest relatives. Then, the nucleotide sequences obtained were further analyzed using the MEGA-X program (https://www.megasoftware.net/) and translated into amino acids through an ORF finder. Finally, genetic distance estimation was performed using the pairwise distance method with the p-distance model, followed by a phylogenetic tree construction based on the neighbor-joining (NJ) method with 1000 repetitions.

Results

SERV screening test by real-time PCR SYBR Green

The detection of SERV-positive samples was based on proviral DNA amplification results, using env primer pairs (SRV1-5 7585 U19 and SRV1-5 7695 L21), which were TM characterized at 82°C and CT values of 22.37–22.54 (Table-2 and Figure-1). Subsequently, the positive results obtained for two samples from pig-tailed macaques were assigned identity numbers (Mn B1 and Mn B140910).

Gene amplification

PCR amplification of the target genes successfully yielded the following amplicons: long terminal repeat (LTR) (879 bp), gag (1928 bp), pro (1729 bp), pol (2243 bp), and env (2097 bp). The amplification results are presented in Figure-2.

| Table-1: List of primers used for whole-genome sequencing in this study. |
|-----------------|----------------|-------|----------------|----------------|
| Primers | Primer sequence | Ta | Amplicon (bp) | Reference |
| SERV1F | 5’TGTCGGGAGCGTGCAGGCGC3’ | 56 | 625 | Biotechnology Lab. PSSP-LPPM IPB design |
| SERV880R | 5’GGTCATTCTCCTACTCTGTTG3’ | 56 | 700 | |
| SERV441F | 5’GGCCAGCTTAAAGTAGGAAG3’ | 56 | 700 | |
| SERV1046F | 5’GGATGAGGAGCAGAACATT3’ | 56 | 700 | |
| SERV2369R | 5’GAAACTGACTGCCCCATAG3’ | 56 | 700 | |
| SERV3273F | 5’AGGACATTGGCTAAAGATG3’ | 56 | 700 | |
| SERV2744F | 5’AGTTCGGTTCCCTCAGACAT3’ | 56 | 700 | |
| SERV3972R | 5’TGGTTCGGAGGGCTTTAATG3’ | 56 | 700 | |
| SERV3802F | 5’GGGAAAAATGGAACAAAGT3’ | 56 | 700 | |
| SERV4421F | 5’TCTAGTGGTATATGCAAAT3’ | 56 | 700 | |
| SERV4984F | 5’GATCATGGACCAACCGCTTA3’ | 56 | 700 | |
| SERV5346F | 5’TGGTTCGGTTACATGCTTCA3’ | 56 | 700 | |
| SERV6045R | 5’ATGAGTGGTGGAG5’ | 56 | 700 | |
| SERV5346F | 5’GATGAGTGGTGGAG5’ | 56 | 700 | |
| SERV6245F | 5’GATGAGTGGTGGAG5’ | 56 | 700 | |
| SERV6847F | 5’GATGAGTGGTGGAG5’ | 56 | 700 | |
| SERV7322F | 5’GATGAGTGGTGGAG5’ | 56 | 700 | |
| SERV8021R | 5’TCTATATGCGGGGCAAG3’ | 56 | 700 | |

| Table-2: Summary of SERV detection using SYBR Green real-time PCR technique on long-tailed macaque and pig-tailed macaque samples in breeding captivity in Bogor, Indonesia. |
|-----------------|-------|----------------|-----------------|-----------------|-----------------|
| No. | Species | n | Sex | Positive | ID | CT value | TM value |
| 1 | Long-tailed macaque | 131 | Male: 15 Female: 116 | 0 of 131 | N/A | N/A | N/A |
| 2 | Pig-tailed macaque | 58 | Male: 7 Female: 51 | 2 of 58 | Mn B1 Mn B1409190 | 22.54 22.41 | 82.0 82.0 |

SERV=Simian endogenous retroviruses, CT=Cycle threshold, TM=Melting temperature, PCR=Polymerase chain reaction
Gene mapping

Subsequently, PCR amplification products (LTR, gag, pro, pol, and env) were sequenced to obtain the complete SERV genome sequence. MnB1 and Mn B140910 exhibited DNA lengths similar to the provirus of 7991 bp. Furthermore, the sequences comprised two LTRs (1–348 and 7808–7901 bp), gag (496–2463 bp), pro (2283–3226 bp), pol (3203–5806 bp), and env (5827–7602 bp) (Table 3). The genetic mapping results for Mn B1 and Mn140910 are presented in Figure 3.

Phylogenetic tree

At a bootstrap value of 100%, phylogenetic analysis using the NJ method with 1000 bootstraps (Figure 4) revealed that the whole nucleotide genomes of MnB1 and MnB140910 were grouped with Mn 92227 (National Primate Center University of Washington [NaPRC UW]). However, gag, pro, and pol amino acid phylogenies separated the sequences from exogenous SRV-2 and clustered with SRV-1, SRV-3, SRV-4, SRV-5, and SRV-8. Furthermore, amino acids of the env gene of MnB1 and MnB140910 grouped with exogenous SRV-2 had a bootstrap value of 98%, which separated and formed branches from other SRVs.

Discussion

Suspected novel SERV genome sequences were obtained from two blood samples of M. nemestrina, after which they were assigned identity numbers: Mn B1 and Mn B140910. Subsequently, the targeted SERV genome regions were amplified at TM of 82°C and CT values of 22.37–22.54 based on a previous report by Grant et al. [10] for obtaining novel SERV SYBR Green real-time PCR profiles. Smaller
CT values indicated a more significant number of amplified targets (amplicon) and vice versa. Grant et al. [10] also proposed that samples with CT values of approximately 23 should have 100,000 copies of amplicons per ng of DNA, similar to the PCR control DNA sample. Likewise, the animals experimentally infected with SRV-2 and SRV-5 showed CT values of 32–35, which were estimated to contain approximately 10–100 copies of amplicons per ng of DNA. Control DNA samples have highly conserved SERV genome regions with slower evolutionary rates and Ct values of 15–30 [18]. According to Ma et al. [5], although ERVs have high copy numbers in their genomes that can be translated into RNA, most of them disintegrate and fail to produce infective viruses.

A study also reported that the TM of SYBR Green real-time PCR amplification results for SRV serotypes could be grouped into two ranges: 79°C–79.5°C for exogenous SRV-2 and 80°C–82°C for endogenous SRV [9]. Similarly, at nucleotide position 7585–7695 (env), we observed 11 different nucleotide variables between novel SERV and exogenous SERV-2 that caused a shift in TM from 79°C–79.5°C to 80°C–82°C (Figure-5).

Suspected positive samples were amplified by PCR using the walking primer method designed at the Biotechnology Laboratory PSSP-LPPM IPB University. Primers were designed from novel Indonesian pig-tailed macaque SERV nucleotide sequences (Mn 92227), isolated at the NaPRC University of Washington (Richard Grant, personal communication by Uus Saepuloh). Based on SERV whole nucleotide sequences, we observed that Mn B1 and Mn B140910 samples were 99–100% similar. However, while these samples had the highest similarity to Mn 92227, confirmed as a novel SERV from pig-tailed macaque [10], they also had a similarity to SRV-2 of 82% (Table-3).

The LTR positions of samples were at 5′ (1–348) and 3′ (7808–7990) ends. While a “TGTCC” sequence determines LTR borders in other SRV-type D viruses, U5 (GGACA) was found at the other end of the LTR [7]. Furthermore, the presumed position of a “TATA” box was at nucleotide positions 209–215 (TATATAA). According to Zao et al. [19], the TATA or the Goldberg–Hogness box is a sequence region that functions as a transcriptional promoter. Moreover, the Poly-A signal (ATTAAA) was 17 bp downstream from the TATA box. Downstream (350–367) of the 5′LTR (TGGCGCCCAACGTGGGGC) is a conserved primary binding site, which allows cellular tRNA as a primer to bind and initiate negative-strand DNA synthesis during reverse transcription process. The positions 7791–7805 were located upstream of the 3′LTR polypurine tract (ppt) (AATAAAAGGGGGGA), functioned as a primer for positive-strand viral DNA synthesis [7]. LTR has also been proposed to function in integrating viral DNA into the host chromosome, viral DNA synthesis, and viral gene expression [20]. Although the LTR of ERV contains many regulatory sequences, such as promoters, amplifiers, polyadenylation signals, and binding factor sites, it is often fragile as a transcriptional promoter compared with exogenous viruses [21]. In addition, it affects the expression of surrounding genes [22]. This study found a 19% (64/349) LTR nucleotide variation between exogenous and endogenous SRV strains.

Gag is translated at position 497, starting from codon ATG [7]. Furthermore, it has a proviral genome length of 1967 bp and encodes 655 amino acids. Amino acid sequence analysis revealed a 100% identity between the two samples and Mn 92227. Subsequent comparison with SERV from baboons also indicated that SRV1-5 and SRV-8 had an amino acid identity of 82%–87% (Table-3). In this study, one-stop codons were found in MnB1 and MnB140910. Therefore, we propose that the presence of a stop codon might cause differences in the structure of the gag sample compared with that of exogenous SRV.

Alternatively, **pro** has a length of 943 bp and encodes 314 amino acids. In a study, some overlapping sequences at downstream gag and upstream pol,
including a frameshift, were proposed to be used in expressing precursor polyproteins (gag-pro and gag-pro-pol) [23]. Nevertheless, amino acid sequences in this study demonstrated that pro domains were 100% identical between samples and Mn 92227. Comparison with baboon simian endogenous retroviruses (U85505.1), 92227, simian retroviruses (SRV) 1-5, and SRV-8 for gag amino acid (b), pro amino acid (c), pol amino acid (d), and env amino acid (e).

Pol is 2603 bp long and encodes 867 amino acids. The investigated amino acid sequences showed that the pol domain had 100% identity to the samples identified in this study and 99%–100% to Mn 92227. Comparison with baboon SERV, SRV1-5, and SRV-8, also showed an identity of 82%–88% (Table-3).
Since pol is the coding domain part of a polyprotein (gag-pro-pol), its protein products are reverse transcriptase RT and integrase (IN) enzymes. The reverse transcriptase uses specific cellular tRNA primers to initiate negative-strand DNA synthesis and RNase-H-resistant PPT to initiate positive-strand DNA synthesis. Alternatively, integrase removes two bases from the end of an LTR and inserts a linear double-stranded DNA copy of a retroviral genome into the host cell DNA (proviral formation) [22].

However, env is 1776 bp long and encodes 591 amino acids. Although amino acid sequences showed that env domains were 100% identical between the obtained samples and Mn 92227, comparisons with baboon SERV and SRV1-5, including SRV8, exhibited 65%–79% identity (Table-3). Env is the binding target for antibodies produced by host immune cells for viral neutralization. Therefore, the virus makes changes in the env surface area to counteract the host immune system’s attack, accounting for the observed high variations in this area [18, 24, 25].

SERV U85505/1997 is an ERV from baboons (Papio), ungrouped with MnB1, MnB140910, and Mn 92227. Hence, we propose the possibility of a mutation in nucleotides that caused its amino acids to translate differently, resulting in a grouping shift in the phylogenetic tree. Studies have demonstrated the phylogeny tree for nucleotides and amino acids of Mn B1 and Mn B140910 samples always groups with Mn 92227 as a novel SERV. Based on these findings, we confirmed that SERV was detected in pig-tailed macaques from Indonesia. Therefore, it could be used in biomedical research on ERVs. Nevertheless, further studies should be conducted on known offspring animal samples to ensure that these SERVs are germline inherited.

Authors’ Contributions

US, JP, and DI: Designed the study. FLNA and US: Conducted laboratory work and analyses. FLNA: Drafted and revised the manuscript. JP, US, and DI: Supervised the project. All the authors have read and approved the final manuscript.

Acknowledgments

This study was funded partially by USAID-PREDICT Project through EcoHealth Alliance (Funding Source# 07-306-7119-52283) to JP, C/o Primate Research Center-IPB University, Indonesia. The authors are thankful to Dr. Huda S. Darusman and the Primate Research Center of IPB University for providing the laboratory facilities. We also thank Dr. Richard Grant for the env SRV1-5 primers and Mn92227 sequence references.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliation.

References

1. Herniou, E., Martin, J., Miller, K., Cook, J., Wilkinson, M. and Tristem, M. (1998) Retroviral diversity and distribution
in vertebrates. *J. Virol.*, 72(7): 5955–5966.

2. Grandi, N., Cadeddu, M., Blomberg, J., Mayer, J. and Tramontano, E. (2018) HERV-W group evolutionary history in non-human primates: Characterization of ERV-W orthologs in Catarrhini and related ERV groups in Platyrrhini. *BMC Evol. Biol.*, 18(1): 6.

3. Greenwood, A.D., Ishida, Y., O’Brien, S.P., Roca, A.L. and Eiden, M.V. (2018) Transmission, evolution, and endogonization: Lessons learned from recent retroviral invasions. *Microbiol. Mol. Biol. Rev.*, 82(1): 1–33.

4. Stoye, J.P. (2001) Endogenous retroviruses: Still active after all these years? *Curr. Biol.*, 11(22): R914–R916.

5. Ma, H., Ma, Y., Ma, W., Williams, D.K., Galvin, T.A. and Khan, A.S. (2011) Chemical induction of endogenous retrovirus particles from the vero cell line of African green monkeys. *J. Virol.*, 85(13): 6579–6588.

6. van der Kuyl, A.C., Dekker, J.T. and Goudsmit, J. (1995) Distribution of baboon endogenous virus among species of African monkeys suggests multiple ancient cross-species transmissions in shared habitats. *J. Virol.*, 69(12): 7877–7887.

7. van der Kuyl, A.C., Mang, R., Dekker, J.T. and Goudsmit, J. (1997) Complete nucleotide sequence of simian endogenous Type D retrovirus with intact genome organization: Evidence for ancestry to simian retrovirus and baboon endogenous virus. *J. Virol.*, 71(5): 3666–3676.

8. Mang, R., Maas, J., van der Kuyl, A.C. and Goudsmit, J. (2000) *Papio cynocephalus* endogenous retrovirus among old world monkeys: Evidence for coevolution and ancient cross-species transmissions. *J. Virol.*, 74(3): 1578–1586.

9. van der Kuyl, A.C. (2021) Contemporary distribution, estimated age, and prehistoric migrations of old world monkey retroviruses. *Épidemiologia*, 2(1): 46–67.

10. Grant, R.F., Keele, B., Kuller, L., Watanabe, R., Perret, A. and Smedley, J. (2017) Identification of novel simian endogenous retroviruses that are indistinguishable from simian retrovirus from archived tumor tissues. *J. Med. Primatol.*, 46(4): 158–161.

11. Odhiambo, J. (2018) HIV vaccine clinical trials: An overview. *Med. Writ.*, 27(1): 23–29.

12. Holloway, J.R., Williams, Z.H., Freeman, M.M., Bulow, U. and Coffin, J.M. (2019) Gorillas have been infected with the HERV-K (HML-2) endogenous retrovirus much more recently than humans and chimpanzees. *Proc. Natl. Acad. Sci. U. S. A.*, 116(4): 1337–1346.

13. Veazey, R.S. and Lackner, A.A. (2017) Nonhuman primate models and understanding the pathogenesis of HIV infection and AIDS. *ILAR J.*, 58(2): 160–171.

14. Garrison, K.E., Jones, R.B., Meiklejohn, D.A., Anwar, N., Ndholu, L.C., Chapman, J.M., Erickson, A.L., Agrawal, A., Spotts, G., Hecht, F.M., Rakoff-Nahoum, S., Lenz, J., Ostrowski, M.A. and Nixon, D.F. (2007) T-cell responses to human endogenous retroviruses in HIV-1 infection. *PLoS Pathog.*, 3(11): 1617–1627.

15. Marsh, A.K., Willer, D.O., Skokovets, O., Iwajomo, O.H., Chan, J.K. and MacDonald, K.S. (2012) Evaluation of cynomolgus macaque (*Macaca fascicularis*) endogenous retrovirus expression following simian immunodeficiency virus infection. *PLoS One*, 7(6): e40158.

16. Grandi, N. and Tramontano, E. (2018) HERV envelope proteins: Physiological role and pathogenic potential in cancer and autoimmunity. *Front. Microbiol.*, 9(1): 462.

17. Gao, Y., Yu, F. and Chen, T. (2020) Human endogenous retroviruses in cancer: Expression, regulation and function (review). *Oncol. Lett.*, 21(2): 121.

18. Li, J., Zhang, Z., Xu, C., Wang, D., Lv, M. and Xie, H. (2020) Identification and validation of reference genes for real-time RT-PCR in *Aphelenchoides besseyi*. *Mol. Biol. Rep.*, 47(6): 4485–4494.

19. Zhao, C.L., Armstrong, K., Tomanek, L., Cooke, A., Berger, R., Estep, J.S., Marx, P.A., Trask, J.S., Smith, D.G., Yee, J.L. and Lerche, N.W. (2010) The complete genome and genetic characteristics of SRV-4 isolated from cynomolgus monkeys (*Macaca fascicularis*). *Virology*, 405(2): 390–396.

20. Petropoulos, C. (1997) Retroviral taxonomy, protein structures, sequences, and genetic maps. In: Coffin, J.M., Hughes, S.H. and Varms, H.E., editors. Retroviruses. Cold Spring Harbor Laboratory Press, New York, United States and America. p757–805.

21. Goff, S.P. (2012) Retroviridae: The retroviruses and their replication. In: Knipe, D. and Howley, P.M., editors. Fields Virology. Lippincott Williams and Wilkins, Philadelphia, United States and America. p1424–1472.

22. Khodorevich, K., Lebedev, Y. and Sverdlav, E. (2002) Endogenous retroviruses and human evolution. *Comp. Funct. Genom.*, 3(6): 494–498.

23. Sonigo, P., Barker, C., Hunter, E. and Wain-Hobson, S. (1986) Nucleotide sequence of Mason-Pfizer monkey virus: An immunospressive D-type retrovirus. *Cell*, 45(3): 375–385.

24. Grant, R.F., Malinak, C.J., Wu, H., Sabo, A. and Tsai, C.C. (1995) PCR amplification and DNA sequencing of SRV-2 from archived tumor tissues. *Virus Res.*, 36(2–3): 187–200.

25. Nandi, J.S., Bhavalkar-Potdar, V., Tikute, S. and Raut, C.G. (2007) Identification and validation of reference genes for real-time RT-PCR in *A. besseyi*. *Mol. Biol. Rep.*, 44(6): 4485–4494.