Eigenvalue Dynamics for Multimatrix Models

Robert de Mello Koch1, David Gossman2, Lwazi Nkumane3 and Laila Tribelhorn4

National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of Witwatersrand, Wits, 2050, South Africa

ABSTRACT

By performing explicit computations of correlation functions, we find evidence that there is a sector of the two matrix model defined by the $SU(2)$ sector of $\mathcal{N} = 4$ super Yang-Mills theory, that can be reduced to eigenvalue dynamics. There is an interesting generalization of the usual Van der Monde determinant that plays a role. The observables we study are the BPS operators of the $SU(2)$ sector and include traces of products of both matrices, which are genuine multi matrix observables. These operators are associated to supergravity solutions of string theory.
1 Motivation

The large N expansion continues to be a promising approach towards the strong coupling dynamics of quantum field theories. For example, ’t Hooft’s proposal that the large N expansions of Yang-Mills theories are equivalent to the usual perturbation expansion in terms of topologies of worldsheets in string theory[1] has been realized concretely in the AdS/CFT correspondence[2]. Besides the usual planar limit where classical operator dimensions are held fixed as we take $N \to \infty$, there are non-planar large N limits of the theory [3] defined by considering operators with a bare dimension that is allowed to scale with N as we take $N \to \infty$. These limits are also relevant for the AdS/CFT correspondence. Indeed, operators with a dimension that scales as N include operators relevant for the description of giant graviton branes[4, 5, 6] while operators with a dimension of order N^2 include operators that correspond to new geometries in supergravity[7, 8, 9]. Despite these convincing motivations carrying out the large N expansion for most matrix models is still beyond our current capabilities.

One class of models for which the large N expansion can be computed are the singlet sector of matrix quantum mechanics of a single hermitian matrix[10]. We can also consider a complex matrix model as long as we restrict ourselves to potentials that are analytic in Z (summed with the dagger of this which needs to be added to get a real potential) and observables constructed out of traces of a product of Zs or out of a product of Z^\daggers[11]. In these situations we can reduce the problem to eigenvalue dynamics. This is a huge reduction in degrees of freedom since we have reduced from $O(N^2)$ degrees of freedom, associated to the matrix itself, to $O(N)$ eigenvalue degrees of freedom. Studying saddle points of the original matrix action does not reproduce the large N values of observables. This is a consequence of the large number of degrees of freedom: we expect fluctuations to be suppressed by $1/N^2$ so that if N^2 variables in total are fluctuating, then we can have fluctuations of size $1/N^2 \times N^2 \sim 1$ which are not suppressed as $N \to \infty$. In terms of eigenvalues there are only
variables fluctuating so that fluctuations are bounded by \(N \times 1/N^2 \sim 1/N \) which vanishes as \(N \to \infty \). Thus, classical eigenvalue dynamics captures the large \(N \) limit. For example, one can formulate the physics of the planar limit by using the density of eigenvalues as a dynamical variable. The resulting collective field theory defines a field theory that explicitly has \(1/N \) as a coupling constant \([12, 13]\). It has found both application in the context of the \(c = 1 \) string \([14, 15, 16]\) and in descriptions of the LLM geometries \([17]\).

Standard arguments show that eigenvalue dynamics corresponds to a familiar system: non-interacting fermions in an external potential \([10]\). This makes the description extremely convenient because the fermion dynamics is rather simple. This eigenvalue dynamics is also a very natural description of the large \(N \) but non-planar limits discussed above. Giant graviton branes which have expanded into the \(AdS_5 \) of the spacetime correspond to highly excited fermions or, equivalently, to single highly excited eigenvalues: the giant graviton is an eigenvalue \([5, 9]\). Giant graviton branes which have expanded into the \(S^5 \) of the spacetime correspond to holes in the Fermi sea, and hence to collective excitations of the eigenvalues where many eigenvalues are excited \([9]\). Half-BPS geometries also have a natural interpretation in terms of the eigenvalue dynamics: every fermion state can be identified with a particular supergravity geometry \([8, 9]\). The map between the two descriptions was discovered by Lin, Lunin and Maldacena in \([7]\). The fermion state can be specified by stating which states in phase space are occupied by a fermion, so we can divide phase space up into occupied and unoccupied states. By requiring regularity of the corresponding supergravity solution exactly the same structure arises: the complete set of regular solutions are specified by boundary conditions obtained by dividing a certain plane into black (identified with occupied states in the fermion phase space) and white (unoccupied states) regions. See \([7]\) for the details.

Our main goal in this paper is to ask if a similar eigenvalue description can be constructed for a two matrix model. Further, if such a construction exists, does it have a natural AdS/CFT interpretation? Work with a similar motivation but focusing on a different set of questions has appeared in \([18, 19, 20, 21, 22]\). We will consider the dynamics of two complex matrices, corresponding to the \(SU(2) \) sector of \(\mathcal{N} = 4 \) super Yang-Mills theory. Further we consider the theory on \(R \times S^3 \) and expand all fields in spherical harmonics of the \(S^3 \). We will consider only the lowest \(s \)-wave components of these expansions so that the matrices are constant on the \(S^3 \). The reduction to the \(s \)-wave will be motivated below. In this way we find a matrix model quantum mechanics of two complex matrices. Expectation values are computed as follows

\[
\langle \cdots \rangle = \int [dZdZ^\dagger dYdY^\dagger] e^{-S} \cdots \tag{1.1}
\]

At first sight it appears that any attempts to reduce (1.1) to an eigenvalue description are doomed to fail: the integral in (1.1) runs over two independent complex matrices \(Z \) and \(Y \).
which will almost never be simultaneously diagonalizable. However, perhaps there is a class of questions, generalizing the singlet sector of a single hermitian matrix model, that can be studied using eigenvalue dynamics. To explore this possibility, let’s review the arguments that lead to eigenvalue dynamics for a single complex matrix Z. We can use the Schur decomposition\cite{11,23,24},

$$Z = U^\dagger DU$$ (1.2)

with U a unitary matrix and D is an upper triangular matrix, to explicitly change variables. Since we only consider observables that depend on the eigenvalues (the diagonal elements of D) we can integrate U and the off diagonal elements of D out of the model, leaving only the eigenvalues. The result of the integrations over U and the off diagonal elements of D is a non trivial Jacobian. Denoting the eigenvalues of Z by z_i, those of Z^\dagger are given by complex conjugation, \bar{z}_i. The resulting Jacobian is\cite{11}

$$J = \Delta(z)\Delta(\bar{z})$$ (1.3)

where

$$\Delta(z) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ z_1 & z_2 & \cdots & z_N \\ \vdots & \vdots & \vdots & \vdots \\ z_1^{N-1} & z_2^{N-1} & \cdots & z_N^{N-1} \end{vmatrix} = \prod_{j>k}(z_j - z_k)$$ (1.4)

is the usual Van der Monde determinant. A standard argument now maps this into non-interacting fermion dynamics\cite{10}. Trying to apply a very direct change of variables argument to the two matrix model problem appears difficult. There is however an approach which both agrees with the above non-interacting fermion dynamics and can be generalized to the two matrix model. The idea is to construct a basis of operators that diagonalizes the inner product of the free theory. The construction of an orthogonal basis, given by the Schur polynomials, was achieved in \cite{8}. Each Schur polynomial $\chi_R(Z)$ is labeled by a Young diagram R with no more than N rows. In \cite{8} the exact (to all order in $1/N$) two point function of Schur polynomials was constructed. The result is

$$\langle \chi_R(Z)\chi_S(Z^\dagger) \rangle = f_R\delta_{RS}$$ (1.5)

where all spacetime dependence in the correlator has been suppressed. This dependence is trivial as it is completely determined by conformal invariance. The notation f_R denotes the product of the factors of Young diagram R. Remarkably there is an immediate and direct connection to non-interacting fermions: the fermion wave function can be written as

$$\psi_R(\{z_i, \bar{z}_i\}) = \chi_R(Z)\Delta(z)e^{-\frac{1}{2}\sum_i z_i\bar{z}_i}$$ (1.6)
This relation can be understood as a combination of the state operator correspondence (we associate a Schur polynomial operator on \(R^4 \) to a wave function on \(R \times S^3 \)) and the reduction to eigenvalues (which is responsible for the \(\Delta(z) \) factor)\cite{9}. In this map the number of boxes in each row of \(R \) determines the amount by which each fermion is excited. In this way, each row in the Young diagram corresponds to a fermion and hence to an eigenvalue. Having one very long row corresponds to exciting a single fermion by a large amount, which corresponds to a single large (highly excited) eigenvalue. In the dual AdS gravity, a single long row is a giant graviton brane that has expanded in the AdS\(_5\) space. Having one very long column corresponds to exciting many fermions by a single quantum, which corresponds to many eigenvalues excited by a small amount. In the dual AdS gravity, a single long column is a giant graviton brane that has expanded in the \(S^5 \) space.

The first questions we should tackle when approaching the two matrix problem should involve operators built using many \(Z \) fields and only a few \(Y \) fields. In this case at least a rough outline of the one matrix physics should be visible, and experience with the one matrix model will prove to be valuable.

For the case of two matrices we can again construct a basis of operators that again diagonalizes the free field two point function. These operators \(\chi_{R,(r,s)ab}(Z,Y) \) are a generalization of the Schur polynomials, called restricted Schur polynomials\cite{25,26,27}. They are labeled by three Young diagrams \((R, r, s)\) and two multiplicity labels \((a, b)\). For an operator constructed using \(n \) \(Zs \) and \(m \) \(Ys \), \(R \vdash n + m, \ r \vdash n \) and \(s \vdash m \). The multiplicity labels distinguish between different copies of the \((r, s)\) irreducible representation of \(S_n \times S_m \) that arise when we restrict the irreducible representation \(R \) of \(S_{n+m} \) to the \(S_n \times S_m \) subgroup. The two point function is

\[
\langle \chi_{R,(r,s)ab}(Z,Y)\chi_{T,(t,u)cd}(Z^\dagger,Y^\dagger) \rangle = f_R \frac{\text{hooks}_R}{\text{hooks}_r \text{hooks}_s} \delta_{RT} \delta_{rt} \delta_{su} \delta_{ac} \delta_{bd} \quad (1.7)
\]
where f_R was defined after (1.5) and hooks_a denotes the product of the hook lengths associated to Young diagram a. These operators do not have a definite dimension. However, they only mix weakly under the action of the dilatation operator and they form a convenient basis in which to study the spectrum of anomalous dimensions$^{[28]}$. This action has been diagonalized in a limit in which R has order 1 rows (or columns), $m \ll n$ and n is of order N. Operators of a definite dimension are labeled by graphs composed of nodes that are traversed by oriented edges$^{[29, 30]}$. There is one node for each row, so that each node corresponds to an eigenvalue. The directed edges start and end on the nodes. There is one edge for each Y field and the number of oriented edges ending on a node must equal the number of oriented edges emanating from a node. See figure 1 for an example of a graph labeling an operator. This picture, derived in the Yang-Mills theory, has an immediate and compelling interpretation in the dual gravity: each node corresponds to a giant graviton brane and the directed edges are open string excitations of these branes. The constraint that the number of edges ending on a node equals the number of edges emanating from the node is simply encoding the Gauss law on the brane world volume, which is topologically an S^3. For this reason the graphs labeling the operators are called Gauss graphs. If we are to obtain a system of non-interacting eigenvalues, we should only consider Gauss graphs that have no directed edges stretching between nodes. See figure 2 for an example. In fact, these all correspond to BPS operators. We thus arrive at a very concrete proposal:

![Figure 2: An example of a graph labeling a BPS operator. Each node corresponds to an eigenvalue. There are no edges connecting the different nodes so that these eigenvalues are not interacting.](image)

If there is a free fermion description arising from the eigenvalue dynamics of the two matrix model, it will describe the BPS operators of the $SU(2)$ sector.

The BPS operators are associated to supergravity solutions of string theory. Indeed, the only one-particle states saturating the BPS bound in gravity are associated to massless par-
ticles and lie in the supergravity multiplet. Thus, eigenvalue dynamics will reproduce the supergravity dynamics of the gravity dual.

The BPS operators are all constructed from the s-wave of the spherical harmonic expansion on S^3\cite{9}. This is our motivation for only considering operators constructed using the s-wave of the fields Y and Z. One further comment is that it is usually not consistent to simply restrict to a subset of the dynamical degrees of freedom. Indeed, this is only possible if the subset of degrees of freedom dynamically decouples from the rest of the theory. In the case that we are considering this is guaranteed to be the case, in the large N limit, because the Chan-Paton indices of the directed edges are frozen at large N\cite{29}.

We should mention that eigenvalue dynamics as dual to supergravity has also been advocated by Berenstein and his collaborators\cite{31, 32, 33, 34, 35, 36, 37}. See also \cite{38, 39, 40, 41} for related studies. Using a combination of numerical and physical arguments, which are rather different to the route we have followed, compelling evidence for this proposal has already been found. The basic idea is that at strong coupling the commutator squared term in the action forces the Higgs fields to commute and hence, at strong coupling, the Higgs fields of the theory should be simultaneously diagonalizable. In this case, an eigenvalue description is possible. Notice that our argument is a weak coupling argument, based on diagonalization of the one loop dilatation operator, that comes to precisely the same conclusion. In this article we will make some exact analytic statements that agree with and, in our opinion, refine some of the physical picture of the above studies. For example, we will start to make precise statements about what eigenvalue dynamics does and does not correctly reproduce.

2 Eigenvalue Dynamics for $\text{AdS}_5 \times S^5$

To motivate our proposal for eigenvalue dynamics, we will review the $\frac{1}{2}$-BPS sector stressing the logic that we will subsequently use. The way in which a direct change of variables is used to derive the eigenvalue dynamics can be motivated by considering a correlation function of some arbitrary observables \cdots that are functions only of the eigenvalues. Because we are considering BPS operators, correlators computed in the free field theory agree with the same computations at strong coupling\cite{42}, so that we now work in the free field theory. Performing the change of variables we find

$$\langle \cdots \rangle = \int [d Z d Z^\dagger] e^{-\text{Tr} Z Z^\dagger} \cdots$$

$$= \int \prod_{i=1}^{N} d z_i d \bar{z}_i e^{-\sum_k z_k \bar{z}_k} \Delta(z) \Delta(\bar{z}) \cdots$$

$$= \int \prod_{i=1}^{N} d z_i d \bar{z}_i |\psi_{\text{BP}}(\{z_i, \bar{z}_i\})|^2 \cdots$$
where the groundstate wave function is given by

$$\psi_{gs}\left(\{z_i, \bar{z}_i\}\right) = \Delta(z)e^{-\frac{1}{2}\sum_i z_i\bar{z}_i} \quad (2.1)$$

We will shortly qualify the adjective “groundstate”. Under the state-operator correspondence, this wave function is the state corresponding to the identity operator. The above transformation is equivalent to the identification

$$[dZ]e^{-\frac{1}{2}\text{Tr}(ZZ^\dagger)} \leftrightarrow c \prod_{i=1}^{N} dz_i \psi_{gs}\left(\{z_i, \bar{z}_i\}\right) \quad (2.2)$$

where c is a constant that arises from integrating over U, U^\dagger and the off diagonal elements of D in (1.2). The role of each of the elements of the wave function is now clear:

1. Under the state operator correspondence, dimensions of operators map to energies of states. The dimensions of BPS operators are not corrected, i.e. they take their free field values. This implies an evenly spaced spectrum and hence a harmonic oscillator wave function. This explains the $e^{-\frac{1}{2}\sum_i z_i\bar{z}_i}$ factor. It also suggests that the wavefunction will be a polynomial times this Gaussian factor.

2. There is a gauge symmetry $Z \rightarrow UZU^\dagger$ that is able to permute the eigenvalues. Consequently we are discussing identical particles. Two matrices drawn at random from the complex Gaussian ensemble will not have degenerate eigenvalues, so we choose the particles to be fermions. This matches the fact that the wave function is a Slater determinant.

3. Under the transformation $Z \rightarrow e^{i\theta}Z$, dZ transforms with charge N^2. Since $\prod_i dz_i$ has charge N, $c\psi_{gs}\left(\{z_i, \bar{z}_i\}\right)$ must have charge $N(N-1)$. The constant c is obtained by integrating over the off diagonal elements of D in (1.2). Thus, c has charge $\frac{1}{2}N(N-1)$ and $\psi_{gs}\left(\{z_i, \bar{z}_i\}\right)$ itself has the same charge.

4. If we assign the dimension $[Z] = L$ it is clear that both $\psi_{gs}\left(\{z_i, \bar{z}_i\}\right)$ and c must have dimension $\frac{1}{2}N(N-1)$.

The wave function (2.1) satisfies these properties. Further, if we require that the wavefunction is a polynomial in the eigenvalues z_i times the exponential $e^{-\frac{1}{2}\sum_i z_i\bar{z}_i}$, then (2.1) is the state of lowest energy (we did not write down a Hamiltonian, but any other wave function has more nodes and hence a higher energy) so it deserves to be called the ground state. The wave function (2.1) is the state corresponding to the AdS$_5 \times$S5 spacetime in the $\frac{1}{2}$-BPS sector.

1We are assuming that any non-trivial measure depends only on the eigenvalues. This is a guess and we do not know a proof of this. We will make this assumption for the two matrix model as well.
The above discussion can be generalized to write down a wave function corresponding to the AdS$_5 \times $S5 spacetime in the $SU(2)$ sector. The equation (2.2) is generalized to

$$[dZdY]e^{-\frac{i}{2}\text{Tr}(ZZ^\dagger) - \frac{i}{4}\text{Tr}(YY^\dagger)} \rightarrow c \prod_{i=1}^{N} dz_i dy_i \Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\}) \quad (2.3)$$

where c is again a constant coming from integrating the non-eigenvalue variables out. The wave function must obey the following properties:

1. Our wave functions again describe states that correspond to BPS operators. The dimensions of the BPS operators take their free field values, implying an evenly spaced spectrum and hence a harmonic oscillator wave function. This suggests the wave function is a Slater determinant.

2. There is a gauge symmetry $Z \rightarrow UZU^\dagger$ and $Y \rightarrow UYU^\dagger$ that is able to permute the eigenvalues. Consequently we are discussing N identical particles. Matrices drawn at random will not have degenerate eigenvalues, so we choose the particles to be fermions. Thus we expect the wave function is a Slater determinant.

3. Under the transformation $Z \rightarrow e^{i\alpha}Z$ and $Y \rightarrow Y$ the measure $dZdY$ transforms with charge N^2. Since $\prod_{i} dz_i dy_i$ has charge N and c has charge $\frac{1}{2}N(N-1)$, the wave function $\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})$ must have charge $\frac{1}{2}N(N-1)$. Similarly, under the transformation $Z \rightarrow Z$ and $Y \rightarrow e^{i\alpha}Y$ the measure $dZdY$ transforms with charge N^2. Since $\prod_{i} dz_i dy_i$ has charge N and again c has charge $\frac{1}{2}N(N-1)$, the wave function $\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})$ should have charge $\frac{1}{2}N(N-1)$.

4. If we assign the dimension $[Z] = L = [Y]$ it is clear that both $\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})$ and c must have dimension $N(N-1)$.

5. The probability density associated to a single particle $\rho_{gs}(z_1, \bar{z}_1, y_1, \bar{y}_1)$ must have an $SO(4)$ symmetry, i.e. it should be a function of $|z_i|^2 + |y_i|^2$.

The single particle probability density referred to in point 5 above is given, for any state $\Psi(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})$ as usual, by

$$\rho(z_1, \bar{z}_1, y_1, \bar{y}_1) = \int \prod_{i=2}^{N} dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \quad (2.4)$$

There is a good reason why the single particle probability density is an interesting quantity to look at: at short distances the eigenvalues feel a repulsion from the Slater determinant, which vanishes when two eigenvalues are equal. At long distances the confining harmonic oscillator potential dominates, ensuring the eigenvalues are clumped together in some finite region and do not wander off to infinity. In the end we expect that at large N the locus where the eigenvalues lie defines a specific surface, generalizing the idea of a density of eigenvalues.
for the single matrix model. This large N surface is captured by $\rho(z_1, z_1, y_1, \bar{y}_1)$. We will make this connection more explicit in a later section.

There appears to be a unique wave function singled out by the above requirements. It is given by

$$\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\}) = N\Delta(z, y)e^{-\frac{1}{2}\sum_k z_k\bar{z}_k - \frac{1}{2}\sum_k y_k\bar{y}_k}$$ \hspace{1cm} (2.5)$$

where

$$\Delta(z, y) = \left| \begin{array}{cccc}
 y_1^{N-1} & y_2^{N-1} & \cdots & y_N^{N-1} \\
 z_1y_1^{N-2} & z_2y_2^{N-2} & \cdots & z_Ny_N^{N-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 z_1^{N-2}y_1 & z_2^{N-2}y_2 & \cdots & z_N^{N-2}y_N \\
 z_1^{N-1} & z_2^{N-1} & \cdots & z_N^{N-1}
 \end{array} \right|$$ \hspace{1cm} (2.6)$$

generalizes the usual Van der Monde determinant and N is fixed by normalizing the wave function. Normalizing the wave function in the state picture corresponds to choosing a normalization in the original matrix model so that the expectation value of 1 is 1.

We can provide detailed tests of this wave function by using the equation

$$\int[dY dZ dY^\dagger dZ^\dagger] e^{-\text{Tr}(ZZ^\dagger) - \text{Tr}(YY^\dagger)} \cdots = \int \prod_{i=1}^N dz_id\bar{z}_idy_id\bar{y}_i |\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \cdots$$ \hspace{1cm} (2.7)$$
to compute correlators of observables (denoted by \cdots above) that depend only on the eigenvalues. We have already argued above that we expect that these observables are the BPS operators of the CFT. As a first example, consider correlators of traces $O_J = \text{Tr}(Z^J)$. These can be computed exactly in the matrix model, using a variety of different techniques - see for example [11, 43, 23]. The result is

$$\langle \text{Tr}(Z^J)\text{Tr}(Z^{J'}) \rangle = \frac{1}{J+1} \left(\frac{(J+N)!}{(N-1)!} - \frac{N!}{(N-J-1)!} \right)$$ \hspace{1cm} (2.8)$$
if $J < N$ and

$$\langle \text{Tr}(Z^J)\text{Tr}(Z^{J'}) \rangle = \frac{1}{J+1} \frac{(J+N)!}{(N-1)!}$$ \hspace{1cm} (2.9)$$
if $J \geq N$. These expressions could easily be expanded to generate the $1/N$ expansion if we wanted to do that. We would now like to consider the eigenvalue computation. It is useful to write the wave function as

$$\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\}) = \frac{\pi^{-N}}{\sqrt{N!}} e^{\sum_{a_1 \cdots a_n} z_0^{a_1} y_0^{a_2} \cdots z_{k-1}^{a_k} y_{N-k}^{a_k}} \sum_{k=0}^{N-1} \frac{z_0 \cdots z_{k-1}}{\sqrt{k!(N-k)!}} \sum_{k=0}^{N-1} \frac{y_0 \cdots y_{N-k}}{\sqrt{k!(N-k)!}} \cdots$$
\[
\cdots \frac{z_{aN}^{N-1}y_{aN}^{0}}{(N-1)!0!} e^{-\frac{1}{2} \sum_q z_q \bar{z}_q - \frac{1}{2} \sum_q y_q \bar{y}_q}
\] (2.10)

The gauge invariant observable in this case is given by

\[
\text{Tr}(Z^J)\text{Tr}(Z^{J'}) = \sum_{i=1}^{N} z_i \sum_{j=1}^{N} \bar{z}_j
\] (2.11)

It is now straightforward to find

\[
\int \prod_{i=1}^{N} dz_i dz_i dy_i d\bar{y}_i |\Psi(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \sum_i z_i^J \sum_j \bar{z}_j^J = \frac{1}{J+1} \frac{(J+N)!}{(N-1)!}
\] (2.12)

When evaluating the above integral, only the terms with \(i = j\) contribute. From this result we see that we have not reproduced traces with \(J < N\) correctly - we don’t even get the leading large \(N\) behavior right. We have, however, correctly reproduced the exact answer (to all orders in \(1/N\)) of the two point function for all single traces of dimension \(N\) or greater. For \(J > N\) there are trace relations of the form

\[
\text{Tr}(Z^J) = \sum_{i,j,\ldots,k} c_{i,j,k} \text{Tr}(Z^i)\text{Tr}(Z^j) \cdots \text{Tr}(Z^k)
\] (2.13)
i, j, ..., k \leq N and \(i + j + \cdots + k = J\). The fact that we reproduce two point correlators of traces with \(J > N\) exactly implies that we also start to reproduce sums of products of traces of less than \(N\) fields. This suggests that the important thing is not the trace structure of the operator, but rather the dimension of the state.

The fact that we only reproduce observables that have a large enough dimension is not too surprising. Indeed, supergravity can’t be expected to correctly describe the back reaction of a single graviton or a single string. To produce a state in the CFT dual to a geometry that is different from the AdS vacuum one needs to allow a number of AdS giant gravitons (eigenvalues) to condense. The eigenvalue dynamics is correctly reproducing the two point function of traces when their energy is greater than that required to blow up into an AdS giant graviton.

With a very simple extension of the above argument we can argue that we also correctly reproduce the correlator \(\langle \text{Tr}(Y^J)\text{Tr}(Y^{J'}) \rangle\) with \(J \geq N\). A much more interesting class of observables to consider are mixed traces, which contain both \(Y\) and \(Z\) fields. To build BPS operators using both \(Y\) and \(Z\) fields we need to construct symmetrized traces. A very convenient way to perform this construction is as follows

\[
\mathcal{O}_{J,K} = \frac{J!}{(J+K)!} \text{Tr}\left(Y \left(\frac{\partial}{\partial Z} \right)^K \right) \text{Tr}(Z^{J+K})
\] (2.14)

The normalization up front is just the inverse of the number of terms that appear. With this normalization, the translation between the matrix model observable and an eigenvalue
observable is
\[O_{J,K} \leftrightarrow \sum_i z_i^J y_i^K \]
\hspace{1cm} (2.15)

Since we could not find this computation in the literature, we will now explain how to evaluate the matrix model two point function exactly, in the free field theory limit. Since the dimension of BPS operators are not corrected, this answer is in fact exact. To start, perform the contraction over the \(Y, Y^\dagger \) fields
\[
\langle O_{J,K} O_{J,K}^\dagger \rangle = \frac{J!}{(J+K)!} \left(\frac{J+K}{J!} \right)^K \langle \text{Tr}(Z^{J+K}) \text{Tr}(Z^J) \text{Tr}(Z^J) \text{Tr}(Z^{J+K}) \rangle
\]
\hspace{1cm} (2.16)

Given the form of the matrix model two point function
\[
\langle Z_{ij} Z_{ij}^\dagger \rangle = \delta_{il} \delta_{jk} \]
\hspace{1cm} (2.17)

we know that we can write any free field theory correlator as
\[
\langle \ldots \rangle = e^{\text{Tr} \left(\frac{\partial}{\partial Z} \frac{\partial}{\partial Z^\dagger} \right) \ldots} \bigg|_{Z=Z^\dagger=0}
\]
\hspace{1cm} (2.18)

Using this identity we now find
\[
\langle O_{J,K} O_{J,K}^\dagger \rangle = \frac{J!}{(J+K+1)!} \left[\frac{(J+K+N)!}{(N-1)!} - \frac{N!}{(N-J-K-1)!} \right]
\]
\hspace{1cm} (2.20)

if \(J + K < N \) and
\[
\langle O_{J,K} O_{J,K}^\dagger \rangle = \frac{J!K!}{(J+K+1)!} \frac{(J+K+N)!}{(N-1)!}
\]
\hspace{1cm} (2.21)

if \(J + K \geq N \). Notice that for these two matrix observables we again get a change in the form of the correlator as the dimension of the trace passes \(N \).

Next, consider the eigenvalue computation. We need to perform the integral
\[
\langle O_{J,K} O_{J,K}^\dagger \rangle = \int \prod_{i=1}^{N} dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \sum_{k=1}^{N} z_k^J y_k^K \sum_{j=1}^{N} \bar{z}_j^{J-K} \bar{y}_j^K
\]
\hspace{1cm} (2.22)

After some straightforward manipulations we have
\[
\langle O_{J,K} O_{J,K}^\dagger \rangle = \pi^{-2N} \int \prod_{i=1}^{N} dz_i d\bar{z}_i dy_i d\bar{y}_i |z_i^{[0]}| y_i^{[2N-2]} \frac{1}{0!(N-1)!} \ldots |z_k^{[2k]}| y_k^{[2N-2k]} \frac{1}{(k-1)!(N-k)!} \ldots
\]
\[
\frac{|z_N|^{2N-2}|y_N|^0}{(N-1)!} \times e^{-\sum_q z_q \bar{z}_q - \sum_q y_q \bar{y}_q} \sum_{k,j=1}^N z_k^j y_k^j z_j^K \bar{y}_j^K \tag{2.23}
\]

Only terms with \(k = j \) contribute so that
\[
\langle O_{J,K} O_{J,K}^\dagger \rangle = \sum_{k=1}^N \frac{(N-k+K)!}{(N-k)!} \frac{(J-k+1)!}{(k-1)!} \frac{K!J!}{(K+J+1)!} \frac{(J+K+N)!}{(N-1)!} \tag{2.24}
\]

Thus, we again correctly reproduce the exact (to all orders in \(1/N \)) answer for the two point function of single trace operators of dimension \(N \) or greater.

It is also interesting to consider multi trace correlators. We will start with the correlator between a double trace and a single trace and we will again start with the matrix model computation
\[
\langle O_{J_1,K_1} O_{J_2,K_2} O_{J_1+J_2,K_1+K_2}^\dagger \rangle = \frac{J_1!}{(J_1+K_1)!} \frac{J_2!}{(J_2+K_2)!} \frac{(J_1+J_2)!}{(J_1+K_1+J_2+K_2)!} \times \\
\langle \text{Tr} \left(Y \frac{\partial}{\partial Z} \right)^{K_1} \text{Tr}(Z^{J_1+K_1}) \text{Tr} \left(Y^\dagger \frac{\partial}{\partial Z^\dagger} \right)^{K_2} \text{Tr}(Z^{J_2+K_2}) \text{Tr}(Z^{J_1+K_1+J_2+K_2}) \rangle \tag{2.25}
\]

We could easily set \(K_1 = K_2 = 0 \) and obtain traces involving only a single matrix. Begin by contracting all \(Y, Y^\dagger \) fields to obtain
\[
\langle O_{J_1,K_1} O_{J_2,K_2} O_{J_1+J_2,K_1+K_2}^\dagger \rangle = \frac{J_1!}{(J_1+K_1)!} \frac{J_2!}{(J_2+K_2)!} \frac{(J_1+J_2)!}{(J_1+K_1+J_2+K_2)!} \times \\
\langle \text{Tr} \left(\frac{\partial}{\partial Z_{i,j_1}} \right) \text{Tr}(Z^{J_1+K_1}) \text{Tr} \left(\frac{\partial}{\partial Z_{i,j_1,K_1}} \right) \text{Tr}(Z^{J_2+K_2}) \text{Tr}(Z^{J_1+K_1+J_2+K_2}) \rangle \tag{2.26}
\]

It is now useful to integrate by parts with respect to \(Z^\dagger \), using the identity
\[
\langle \frac{\partial}{\partial Z_{ij}} f(Z) g(Z) \frac{\partial}{\partial Z_{ji}^\dagger} h(Z^\dagger) \rangle = n_f \langle f(Z) g(Z) h(Z^\dagger) \rangle \tag{2.27}
\]
where \(f(Z) \) is of degree \(n_f \) in \(Z \). Repeatedly using this identity, we find
\[
\langle O_{J_1,K_1} O_{J_2,K_2} O_{J_1+J_2,K_1+K_2}^\dagger \rangle = \frac{J_1!}{(J_1+K_1)!} \frac{J_2!}{(J_2+K_2)!} \frac{(J_1+J_2)!}{(J_1+K_1+J_2+K_2)!} \times \\
\langle \text{Tr}(Z^{J_1+K_1}) \text{Tr}(Z^{J_2+K_2}) \text{Tr}(Z^{J_1+K_1+J_2+K_2}) \rangle \tag{2.28}
\]
This last correlator is easily computed. For example, if \(J_1 + K_1 < N \) and \(J_2 + K_2 < N \) we have

\[
\langle O_{J_1,K_1} O_{J_2,K_2} O_{J_1+J_2,K_1+K_2}^\dagger \rangle = \frac{(J_1 + J_2)! (K_1 + K_2)!}{(J_1 + K_1 + J_2 + K_2 + 1)!} \frac{(J_1 + K_1 + J_2 + K_2 + N)!}{N!} \left[\frac{(N - 1)!}{(N + J_1 + K_1)!} - \frac{(N - J_1 - K_1 - J_2 - K_2 - 1)!}{(N - J_2 - K_2 - 1)!} \right] - \frac{(N - J_2 - K_2 - 1)!}{(N + J_2 + K_2)!} \right] - \frac{(N - J_1 - K_1 - 1)!}{N!}
\]

and if \(J_1 + K_1 \geq N \) and \(J_2 + K_2 \geq N \) we have

\[
\langle O_{J_1,K_1} O_{J_2,K_2} O_{J_1+J_2,K_1+K_2}^\dagger \rangle = \frac{(J_1 + J_2)! (K_1 + K_2)!}{(J_1 + K_1 + J_2 + K_2 + 1)!} \frac{(J_1 + K_1 + J_2 + K_2 + N)!}{(N - 1)!}
\]

It is a simple exercise to check that, in terms of eigenvalues, we have

\[
\langle O_{J_1,K_1} O_{J_2,K_2} O_{J_1+J_2,K_1+K_2}^\dagger \rangle = \int \prod_{i = 1}^N \langle \Psi \rangle^2 = \prod_{i = 1}^N \langle \Psi \rangle^2 \times \sum_{k = 1}^N \langle z_k^{J_1} y_k^{K_1} \rangle \sum_{i = 1}^N \langle z_i^{J_2} y_i^{K_2} \rangle \sum_{j = 1}^N \langle z_j^{J_1+J_2} y_j^{K_1+K_2} \rangle = \frac{(J_1 + J_2)! (K_1 + K_2)!}{(J_1 + K_1 + J_2 + K_2 + 1)!} \frac{(J_1 + K_1 + J_2 + K_2 + N)!}{(N - 1)!}
\]

so that once again we have reproduced the exact answer as long as the dimension of each trace is not less than \(N \). The agreement that we have observed for multi trace correlators continues as follows: as long as the dimension of each trace is greater than \(N - 1 \) the matrix model and the eigenvalue expressions agree and both give

\[
\langle O_{J_1,K_1} O_{J_2,K_2} \cdots O_{J_n,K_n} O_{J,K}^\dagger \rangle = \frac{N! K!}{(J + K + N)!} \frac{(J + K + N)!}{(J + K + 1)!} \frac{\delta_{J_1, \ldots, J_n, J} \delta_{K_1, \ldots, K_n, K}}{(N - 1)!}
\]

for the exact value of this correlator. We have limited our selves to a single daggered observable in the above expression for purely technical reasons: it is only in this case that we can compute the matrix model correlator using the identity \[2.27\]. It would be interesting to develop analytic methods that allow more general computations.

Finally, we can also test multi trace correlators with a dimension of order \(N^2 \). A particularly simple operator is the Schur polynomial labeled by a Young diagram \(R \) with \(N \) rows and \(M \) columns. For this \(R \) we have

\[
\chi_R(Z) = (\det Z)^M = z_1^M z_2^M \cdots z_N^M
\]

(2.33)
\[\chi_R(Z^\dagger) = (\det Z^\dagger)^M = z_1^M z_2^M \cdots z_N^M \] (2.34)

The dual LLM geometry is labeled by an annulus boundary condition that has an inner radius of \(\sqrt{M} \) and an outer radius of \(\sqrt{M+N} \). The two point correlator of this Schur polynomial is

\[\langle \chi_R(Z) \chi_R(Z^\dagger) \rangle = \int \prod_{i=1}^N dz_i d\bar{z}_i dy_i d\bar{y}_i |\chi_R(Z)\chi_R(Z^\dagger)| \Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \]

\[= \pi^{-2N} \int \prod_{i=1}^N dz_i d\bar{z}_i dy_i d\bar{y}_i \left| z_1^{0+2M} y_1^{2N-2} \cdots |z_k|^{2k-2+2M} y_k^{2N-2k} \right| \frac{0!}{(N-1)!} \cdots \frac{(N-k)!}{(N-k)!} \]

\[\times \cdots \frac{|z_N|^{2N-2+2M} y_N^0}{(N-1)!} \times e^{-\sum_q z_q \bar{z}_q - \sum_q y_q \bar{y}_q} \]

\[= \frac{\prod_{i=1}^N (i-1+M)!}{(i-1)!} \] (2.35)

which is again the exact answer for this correlator.

After this warm up example we will now make a few comments that are relevant for the general case. The details are much more messy, so we will not manage to make very precise statements. We have however included this discussion as it does provide a guide as to when eigenvalue dynamics is applicable. A Schur polynomial labeled with a Young diagram \(R \) that has row lengths \(r_i \) is given in terms of eigenvalues as (our labeling of the rows is defined by \(r_1 \geq r_2 \geq \cdots \geq r_N \))

\[\chi_R(Z) = \frac{\epsilon_{a_1 a_2 \cdots a_N} z_1^{N-1+r_1} z_2^{N-2+r_2} \cdots z_N^{r_N}}{\epsilon_{b_1 b_2 \cdots b_N} z_1^{N-2} z_2 \cdots z_{N-1}} \] (2.36)

Using this expression, we can easily write the exact two point function as follows

\[\langle \chi_R(Z) \chi_R(Z^\dagger) \rangle = \frac{1}{N! \pi^N} \int \prod_{i=1}^N dz_i d\bar{z}_i \epsilon_{a_1 a_2 \cdots a_N} z_1^{N-1+r_1} z_2^{N-2+r_2} \cdots z_N^{r_N} \]

\[\times \epsilon_{b_1 b_2 \cdots b_N} z_1^{N-2} z_2 \cdots z_{N-1} e^{-\sum_k z_k \bar{z}_k} \]

\[= \prod_{j=0}^{N-1} \frac{(j+rN-j)!}{j!} = f_R \] (2.37)

Using our wave function we can compute the two point function of Schur polynomials. The result is

\[\langle \chi_R(Z) \chi_R(Z^\dagger) \rangle = \int \prod_{i=1}^N dz_i d\bar{z}_i dy_i d\bar{y}_i |\chi_R(Z)\chi_R(Z^\dagger)| \Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \]

\[= \frac{1}{N! \pi^N} \int \prod_{i=1}^N dz_i d\bar{z}_i \epsilon_{a_1 a_2 \cdots a_N} |z_1|^{2N-2} |z_2|^{2N-4} \cdots |z_{N-1}|^2 \]
When the integration over the angles θ_i associated to $z_i = r_i e^{i \theta_i}$, are performed, a non-zero result is only obtained if powers of the z_i match the powers of the \bar{z}_i. The difference between the above expression and the exact answer is simply that in the eigenvalue expression these powers are separately set to be equal in the measure and in the product of Schur polynomials - there is a single matching term present in the product of the measure and the product of Schur polynomials. Thus, the eigenvalue computation may miss some terms that are present in the exact answer. For Young diagrams with a few corners and row lengths not well separated this point further and to quantify in general (if possible) what the corrections to the above expression and the exact answer is simply that in the eigenvalue expression these powers are set to be equal in the measure and in the product of Schur polynomials.

After making a replacement of this type, we recover the exact answer. This replacement is not exact - we need to appeal to large N to justify it. It would be very interesting to explore this point further and to quantify in general (if possible) what the corrections to the above replacement are. For Young diagrams with many corners, row lengths are not well separated and there is no similar grouping that occurs, so that the eigenvalue description will not agree with the exact result, even at large N. A good example of a geometry with many corners is the superstar. The corresponding LLM boundary condition is a number of very thin concentric annuli, so that we effectively obtain a gray disk, signaling a singular supergravity geometry. It is then perhaps not surprising that the eigenvalue dynamics does not correctly reproduce this two point correlator.

Having discussed the two point function of Schur polynomials in detail, the product rule

$$\chi_R(Z)\chi_S(Z) = \sum_T f_{RST} \chi_T(Z)$$

with f_{RST} a Littlewood-Richardson coefficient, implies that there is no need to consider correlation functions of products of Schur polynomials.

2This is the reason why (2.12) only captures one of the terms present in the two point function for $J < N$.

3 Other backgrounds

In the \(\frac{1}{2} \) BPS sector there is a wave function corresponding to every LLM geometry. The (not normalized) wave function has already been given in (1.6). In this section we consider the problem of writing eigenvalue wave functions that correspond to geometries other than \(\text{AdS}_5 \times \text{S}^5 \). The simplest geometry we can consider is the annulus geometry considered in the previous section, where we argued that the eigenvalue dynamics reproduces the exact correlator of the Schur polynomials dual to this geometry. Our proposal for the state that corresponds to this LLM spacetime is

\[
\Psi_{\text{LLM}}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\}) = \pi^{-N} \frac{a_1 a_2 \cdots a_N}{N!} \frac{z_1^M y_1^{N-1}}{\sqrt{M!(N-1)!}} \cdots \frac{z_k^{k+1} y_k^{N-k}}{\sqrt{(k+1+M)!(N-k)!}} \cdots \frac{z_N^{N+1} y_N^{N}}{\sqrt{(N+1+M)!N!}} e^{-\frac{1}{2} \sum_{\alpha} z_{\alpha} \bar{z}_{\alpha}} - \frac{1}{2} \sum_{\alpha} y_{\alpha} \bar{y}_{\alpha} \quad (3.1)
\]

This is simply obtained by multiplying the ground state wave function by the relevant Schur polynomial and normalizing the resulting state. The connection between matrix model correlators and expectation values computed using the above wave function is the following:

\[
\langle \cdots \rangle_{\text{LLM}} = \frac{\langle \cdots \rangle_{\chi R(Z)\chi R(Z^\dagger)} \rangle}{\langle \chi R(Z)\chi R(Z^\dagger) \rangle} = \int \prod_{i=1}^N dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi_{\text{LLM}}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \cdots (3.2)
\]

We can use this wave function to compute correlators that we are interested in. Traces involving only \(Z \)s for example lead to

\[
\langle \text{Tr}(Z^J)\text{Tr}(Z^I) \rangle_{\text{LLM}} = \int \prod_{i=1}^N dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi_{\text{LLM}}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \sum_{k=1}^N z_k^J \sum_{l=1}^N \bar{z}_l^I = \sum_{k=0}^{N-1} \frac{(J+k+M)!}{(k+M)!} \frac{1}{J+1} \left[\frac{(J+M+N)!}{(M+N-1)!} - \frac{(J+M)!}{(M-1)!} \right] \quad (3.3)
\]

which agrees with the exact result, as long as \(J > N - 1 \). Thus, in this background, eigenvalue dynamics is correctly reproducing the same set of correlators as in the original \(\text{AdS}_5 \times \text{S}^5 \) background. Traces involving only \(Y \) fields are also correctly reproduced

\[
\langle \text{Tr}(Y^J)\text{Tr}(Y^I) \rangle_{\text{LLM}} = \int \prod_{i=1}^N dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi_{\text{LLM}}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2 \sum_{k=1}^N y_k^J \sum_{l=1}^N \bar{y}_l^I
\]

\(^3 \)The new normalization for matrix model correlators is needed to ensure that the identity operator has expectation value 1. This matches the normalization adopted in the eigenvalue description.
where \(J \geq N \). Notice that these results are again exact, i.e. we reproduce the matrix model correlators to all orders in \(1/N \). Finally, let’s consider the most interesting case of traces involving both matrices. The LLM wave function we have proposed does not reproduce the exact matrix model computation. The matrix model computation gives

\[
\langle O_{J,K} O_{J,K}^\dagger \rangle_{\text{LLM}} = \frac{1}{J + 1} \frac{(J + N)!}{(N - 1)!} (3.4)
\]

if \(J + K \geq N \). Next, consider the eigenvalue computation. We need to perform the integral

\[
\langle O_{J,K} O_{J,K}^\dagger \rangle_{\text{LLM,eigen}} = \int \prod_{i=1}^{N} dz_i dz_i y_i dy_i |\Psi_{\text{LLM}}(\{ z_i, \bar{z}_i, y_i, \bar{y}_i \})|^2 \sum_{k=1}^{N} \bar{z}_k y_k^j \sum_{j=1}^{N} \bar{z}_j y_j^K \]

\[
= \frac{N}{(N - k)!} \frac{(J + K)!}{(J + M + k - 1)!} \frac{N}{(M + k - 1)!} (3.6)
\]

It is not completely trivial to compare (3.5) and (3.6), but it is already clear that they do not reproduce exactly the same answer. To simplify the discussion, let’s consider the case that \(M = O(\sqrt{N}) \). In this case, in the large \(N \) limit, we can drop the second term in (3.5) to obtain

\[
\langle O_{J,K} O_{J,K}^\dagger \rangle_{\text{LLM}} = \frac{J! K!}{(J + K + 1)!} \frac{(J + K + M + N)!}{(M + N - 1)!} (1 + \cdots) (3.7)
\]

where \(\cdots \) stand for terms that vanish as \(N \to \infty \). In the sum appearing in (3.6), change variables from \(k \) to \(k' - M \) and again appeal to large \(N \) to write

\[
\langle O_{J,K} O_{J,K}^\dagger \rangle_{\text{LLM,eigen}} = \sum_{k' = M+1}^{M+N} \frac{(N + M - k' + K)! (J + k' - 1)!}{(N + M - k')! (k' - 1)!}
\]

\[
= \sum_{k' = 1}^{M+N} \frac{(N + M - k' + K)! (J + k' - 1)!}{(N + M - k')! (k' - 1)!} (1 + \cdots)
\]

\[
= \frac{J! K!}{(J + K + 1)!} \frac{(J + K + M + N)!}{(M + N - 1)!} (1 + \cdots) (3.8)
\]

In the last two lines above \(\cdots \) again stands for terms that vanish as \(N \to \infty \). Thus, we find agreement between (3.5) and (3.6). It is again convincing to see genuine multi matrix
observables reproduced by the eigenvalue dynamics. Notice that in this case the agreement is not exact, but rather is realized to the large N limit. This is what we expect for the generic situation - the AdS$_5 \times$S$_5$ case is highly symmetric and the fact that eigenvalue dynamics reproduces so many observables exactly is a consequence of this symmetry. We only expect eigenvalue dynamics to reproduce classical gravity, which should emerge from the CFT at $N = \infty$.

Much of our intuition came from thinking about the Gauss graph operators constructed in [29, 30]. It is natural to ask if we can write down wave functions dual to the Gauss graph operators. The simplest possibility is to consider a Gauss graph operator obtained by exciting a single eigenvalue by J levels, and then attaching a total of K Y strings to it. The extreme simplicity of this case follows because we can write the (normalized) Gauss graph operator in terms of a familiar Schur polynomial as

$$
\hat{O} = \sqrt{\frac{J!K!}{(J+K)!}} \frac{(N-1)!}{(N+J+K-1)!} \text{Tr} \left(Y \frac{\partial}{\partial Z} \right)^K \chi_{(J+K)}(Z)
$$

where we have used the notation (n) to denote a Young diagram with a single row of n boxes. Consider the correlator

$$
\langle \hat{O} \text{Tr}(Y^\dagger)^K \text{Tr}(Z^{1/J}) \rangle = \langle \text{Tr} \left(\frac{\partial}{\partial Y} \right)^K \hat{O} \text{Tr}(Z^{1/J}) \rangle = \sqrt{\frac{J!K!}{(J+K)!}} \frac{(N+J+K-1)!}{(N-1)!}
$$

This answer is exact, in the free field theory. In what limit should we compare this answer to eigenvalue dynamics? Our intuition is coming from the $1/2$- BPS sector where we know that rows of Schur polynomials correspond to eigenvalues and we know exactly how to write the corresponding wave function. If we only want small perturbations of this picture, we should keep $K \ll J$. In this case we should simplify

$$
\sqrt{\frac{J!K!}{(J+K)!}} \frac{(N-1)!}{(N+J+K-1)!} \rightarrow \frac{1}{JK} \frac{(N+J+K-1)!}{(N+J-1)!} \frac{(N+J-1)}{(N-1)!}
$$

How should we scale J as we take $N \rightarrow \infty$? The Schur polynomials are a sum over all possible matrix trace structures. We want these sums to be dominated by traces with a large number of matrices (N or more) in each trace. To accomplish this we will scale $J = O(N^{1+\epsilon})$ with $\epsilon > 0$. In this case, at large N, we can replace

$$
\frac{1}{JK} (N+J-1)^K \rightarrow 1
$$
and hence, the result that should be reproduced by the eigenvalue dynamics is given by

$$\langle \hat{O}\text{Tr}(Y^\dagger)^K\text{Tr}(Z^IJ) \rangle = \sqrt{K! \frac{(N + J - 1)!}{(N - 1)!}}$$

(3.13)

In the eigenvalue computation, we will use the wave function of the ground state and the wave function of the Gauss graph operator ($\Psi_{GG}\{\{z_i, \bar{z}_i, y_i, \bar{y}_i\}\}$) to compute the amplitude

$$\int \prod_{i=1}^{N} dz_i d\bar{z}_i dy_i d\bar{y}_i \Psi^*_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\}) (\sum_i \bar{y}_i)^K \sum_j \bar{z}_j \Psi_{GG}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})$$

(3.14)

We expect the amplitude [3.14] to reproduce [3.13]. Our proposal for the wave function corresponding to the above Gauss graph operator is

$$\Psi_{GG}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\}) = \frac{\pi^{-N}}{\sqrt{N!}} e^{a_1 a_2 \cdots a_n} \frac{z_{a_1} y_{a_1}^{-N-1}}{\sqrt{0!(N - 1)!}} \cdots \frac{z_{a_k} y_{a_k}^{-N-k}}{\sqrt{(k - 1)!(N - k)!}} \cdots \frac{z_{a_{N-2}} y_{a_{N-2}}^{-N-2}}{\sqrt{(N - 2)!!}} \frac{z_{a_{N-1}} y_{a_{N-1}}^{-N-1}}{\sqrt{(N - 1)!}} \frac{z_{a_N} y_{a_N}^{-1}}{\sqrt{(J + N - 2)!}} e^{-\frac{1}{2} \sum y \bar{y} - \frac{1}{2} \sum y \bar{y}}$$

(3.15)

The eigenvalue with the largest power of z (i.e. z_{a_N}) was the fermion at the very top of the Fermi sea. It has been excited by J powers of z and K powers of y. It is now trivial to verify that (3.14) does indeed reproduce (3.13).

Finally, the state with three eigenvalues excited by $J_1 > J_2 > J_3$ and with $K_1 > K_2 > K_3$ strings attached to each eigenvalue is given by

$$\Psi_{GG}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\}) = \frac{\pi^{-N}}{\sqrt{N!}} e^{a_1 a_2 \cdots a_n} \frac{z_{a_1} y_{a_1}^{-N-1}}{\sqrt{0!(N - 1)!}} \cdots \frac{z_{a_k} y_{a_k}^{-N-k}}{\sqrt{(k - 1)!(N - k)!}} \cdots \frac{z_{a_{N-3}} y_{a_{N-3}}^{-N-3}}{\sqrt{(N - 4)!!}} \frac{z_{a_{N-2}} y_{a_{N-2}}^{-N-2}}{\sqrt{(N - 3)!!}} \frac{z_{a_{N-1}} y_{a_{N-1}}^{-N-1}}{\sqrt{(N - 2)!!}} \frac{z_{a_N} y_{a_N}^{-1}}{\sqrt{(N - 1)!}} e^{K_1 J_1 + K_2 J_2 + K_3 J_3}$$

(3.16)

The generalization to any Gauss graph operator is now clear.

4 Connection to Supergravity

In this section we would like to explore the possibility that the eigenvalue dynamics of the $SU(2)$ sector has a natural interpretation in supergravity. The relevant supergravity solutions have been considered in [45, 46, 47, 48].
There are 6 adjoint scalars in the $\mathcal{N} = 4$ super Yang-Mills theory that can be assembled into the following three complex combinations

$$Z = \phi^1 + i\phi^2 \quad Y = \phi^3 + i\phi^4 \quad X = \phi^5 + i\phi^6$$ \hspace{1cm} (4.1)$$

The operators we consider are constructed using only Z and Y so that they are invariant under the $U(1)$ which rotates ϕ^5 and ϕ^6. Further, since our operators are BPS they are built only from the s-wave spherical harmonic components of Y and Z, so that they are invariant under the $SO(4)$ symmetry which acts on the S^3 of the $R \times S^3$ spacetime on which the CFT is defined. Local supersymmetric geometries with $SO(4) \times U(1)$ isometries have the form [45, 48]

$$ds^2_{10} = -h^{-2}(dt + \omega)^2 + h^2 \left[\frac{2}{Z + \frac{1}{2}} \partial_a \bar{\partial}_b K dz^a d\bar{z}^b + dy^2 \right] + y(e^G d\Omega^2_3 + e^{-G} d\psi^2)$$ \hspace{1cm} (4.2)$$

$$d\omega = \frac{i}{y} \left(\partial_a \bar{\partial}_b K dz^a d\bar{z}^b - \partial_a Z dz^a dy + \bar{\partial}_a Z d\bar{z}^a dy \right)$$ \hspace{1cm} (4.3)$$

Here z^1 and z^2 is a pair of complex coordinates and K is a Kahler potential which may depend on y, z^a and \bar{z}^a. y^2 is the product of warp factors for S^3 and S^1. Thus we must be careful and impose the correct boundary conditions at the $y = 0$ hypersurface if we are to avoid singularities. The $y = 0$ hypersurface includes the four dimensional space with coordinates given by the z^a. These boundary conditions require that when the S^3 contracts to zero, we need $Z = -\frac{1}{2}$ and when the ψ-circle collapses we need $Z = \frac{1}{2}$ [45, 48]. There is a surface separating these two regions, and hence, defining the supergravity solution. So far the discussion given closely matches what is found for the $\frac{1}{2}$-BPS supergravity solutions. In that case the $y = 0$ hypersurface includes a two dimensional space which is similarly divided into two regions, giving the black droplets on a white plane. The edges of the droplets are completely arbitrary, which is an important difference from the case we are considering. The surface defining local supersymmetric geometries with $SO(4) \times U(1)$ isometries is not completely arbitrary - it too has to satisfy some additional constraints as spelled out in [48]. It is natural to ask if the surface defining the supergravity solution is visible in the eigenvalue dynamics?

To answer this question we will now review how the surface defining the local supersymmetric geometries with $SO(4) \times U(1)$ isometries corresponding to the $\frac{1}{2}$-BPS LLM geometries is constructed. According to [48], the boundary condition for these geometries have walls between the two boundary conditions determined by the equation

$$z^2 \bar{z}^2 = e^{-2D(z^1, \bar{z}^1)}$$ \hspace{1cm} (4.4)$$

This next equation is (6.35) of [48]. We will relate z^1 and z^2 to z_i (the eigenvalues of Z) and y_i (the eigenvalues of Y) when we make the correspondence to eigenvalues.
where \(\hat{D}(z^1, \bar{z}^1) \) is determined by expanding the function \(D \) as follows (it is the \(y \) coordinate that we set to zero to get the LLM plane)

\[
D = \log(y) + \hat{D}(z, \bar{z}) + O(x) \quad (4.5)
\]

The function \(D \) is determined by the equations

\[
y \partial_y D = \frac{1}{2} - Z \quad V = -i(dz \partial_z - d\bar{z} \partial_{\bar{z}}) \hat{D} \quad (4.6)
\]

where \(Z(y, z^1, \bar{z}^1) \) is the function obeying Laplace’s equation that determines the LLM solution and \(V(y, z^1, \bar{z}^1) \) is the one form appearing in the combination \((dt + V)^2\) in the LLM metric.

Consider an annulus that has an outer edge at radius \(M + N \) and an inner edge at a radius \(M \). This solution has (these solutions were constructed in the original LLM paper [7])

\[
Z(y, z^1, \bar{z}^1) = -\frac{1}{2} \left(\frac{|z^1|^2 + y^2 - M + 1}{\sqrt{(|z^1|^2 + y^2 + M - 1)^2 - 4|z^1|^2(M - 1)}} + \frac{|z^1|^2 + y^2 - M - N}{\sqrt{(|z^1|^2 + y^2 + M + N)^2 - 4|z^1|^2(M + N)}} \right)
\]

\[
V(y, z^1, \bar{z}^1) = \frac{d\phi}{2} \left(\frac{|z^1|^2 + y^2 + M - 1}{\sqrt{(|z^1|^2 + y^2 + M - 1)^2 - 4|z^1|^2(M - 1)}} + \frac{|z^1|^2 + y^2 + M + N}{\sqrt{(|z^1|^2 + y^2 + M + N)^2 - 4|z^1|^2(M + N)}} \right)
\]

Evaluating at \(y = 0 \), the second of (4.6) says

\[
V = -i(dz \partial_z - d\bar{z} \partial_{\bar{z}}) \hat{D} \quad (4.7)
\]

Setting \(z^1 = re^{-i\phi} \) and assuming that \(\hat{D} \) depends only on \(r \) we find

\[
r \frac{\partial \hat{D}}{\partial r} = -\frac{M + N}{r^2 - M - N} + \frac{M - 1}{r^2 - M + 1} \quad (4.8)
\]

which is solved by

\[
\hat{D} = \frac{1}{2} \log \left| \frac{z^1 \bar{z}^1 - M + 1}{|z^1 \bar{z}^1 - M - N|} \right| \quad (4.9)
\]

Thus, the wall between the two boundary conditions is given by

\[
|z^2|^2 = \frac{M + N - 1 - z^1 \bar{z}^1}{z^1 \bar{z}^1 - M + 1} \quad (4.10)
\]

The same analysis applied to the \(\text{AdS}_5 \times S^5 \) solution gives

\[
|z^1|^2 + |z^2|^2 = N - 1 \quad (4.11)
\]
For the pair of geometries described above, we know the wave function in the eigenvalue description. We will now return to the eigenvalue description and see how these surfaces are related to the eigenvalue wave functions.

At large N, since fluctuations are controlled by $1/N^2$, we expect a definite eigenvalue distribution. These eigenvalues will trace out a surface specified by the support of the single fermion probability density

$$\rho(z_1, \bar{z}_1, y_1, \bar{y}_1) = \int \prod_{i=2}^{N} dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2$$

(4.12)

Denote the points lying on this surface using coordinates z, y.

Using the wave function $\Psi_{gs}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})$ corresponding to the AdS$_5 \times$S5 spacetime, the probability density for a single eigenvalue is

$$\rho(z, \bar{z}, y, \bar{y}) = \frac{1}{N \pi^2} \sum_{i=0}^{N-1} \frac{(z\bar{z})^i}{i!} \frac{(y\bar{y})^{N-i-1}}{(N-i-1)!} e^{-z\bar{z}-y\bar{y}}$$

(4.13)

As y and z vary, the dominant contribution comes from a term with a specific value for i. When the ith term dominates the sum, the value of the eigenvalue coordinate is given by

$$\frac{(z\bar{z})^i}{i!} = 1 \quad |z|^{2i} = i! \approx i^i$$

$$\frac{(y\bar{y})^{N-i-1}}{(N-i-1)!} = 1 \quad |y|^{2(N-i-1)} = (N-i-1)! \approx (N-i-1)^{N-i-1}$$

(4.14)

This leads to the following points

$$|z^{(i)}|^2 = i \quad |y^{(i)}|^2 = N - i - 1 \quad i = 0, 1, 2, ..., N - 1$$

(4.15)

Thus, if we identify the points $z^{(i)}, y^{(i)}$ and the supergravity coordinate z^1, z^2 as follows

$$z^2 = y^{(i)} \quad z^1 = z^{(i)}$$

(4.16)

we find

$$|z^1|^2 + |z^2|^2 = i + (N - i - 1) = N - 1$$

(4.17)

so that the eigenvalues condense on the surface that defines the wall between the two boundary conditions.

Let's now compute the positions of our eigenvalues, using $\Psi_{LLM}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})$. The probability density for a single eigenvalue is easily obtained by computing the following integral

$$\rho(z_1, \bar{z}_1, y_1, \bar{y}_1) = \int \prod_{i=2}^{N} dz_i d\bar{z}_i dy_i d\bar{y}_i |\Psi_{LLM}(\{z_i, \bar{z}_i, y_i, \bar{y}_i\})|^2$$

22
\[
N\pi^2 \sum_{i=0}^{N-1} \frac{(z_1 \bar{z}_1)^{M+i}}{(M+i)!} \frac{(y_i \bar{y}_i)^{N-i-1}}{(N-i-1)!} e^{-z_1 \bar{z}_1 - y_i \bar{y}_i} \quad (4.18)
\]

Following the analysis we performed above, we find that the complete set of points on the eigenvalue surface is given by

\[
|z_{(i)}|^2 = (M + i) \quad |y_{(i)}|^2 = N - i - 1 \quad i = 0, 1, 2, ..., N - 1 \quad (4.19)
\]

Thus, if we identify the points \(z_{(i)}, y_{(i)}\) and the supergravity coordinate \(z^1, z^2\) as follows

\[
\begin{align*}
z^2 &= \frac{y_{(i)}}{\sqrt{|z_{(i)}|^2 - M + 1}} \\
z^1 &= z_{(i)} \quad (4.20)
\end{align*}
\]

we find that (4.10) gives

\[
\frac{|y_{(i)}|^2}{i + 1} = \frac{M + N - 1 - |z_{(i)}|^2}{|z_{(i)}|^2 - M + 1} \quad (4.21)
\]

in complete agreement with where our wave function is localized. This again shows that the eigenvalues are collecting on the surface that defines the wall between the two boundary conditions. Although these examples are rather simple, they teach us something important: the map between the eigenvalues and the supergravity coordinates depends on the specific geometry we consider.

The fact that eigenvalues condense on the surface that defines the wall between the two boundary conditions is something that was already anticipated by Berenstein and Cotta in [33]. The proposal of [33] identifies the support of the eigenvalue distribution with the degeneration locus of the three sphere in the full ten dimensional metric. Our results appear to be in perfect accord with this proposal.

5 Outlook

There are a number of definite conclusions resulting from our study. One of our key results is that we have found substantial evidence for the proposal that there is a sector of the two matrix model that is described (sometimes exactly) by eigenvalue dynamics. This is rather non-trivial since, as we have already noted, it is simply not true that the two matrices can be simultaneously diagonalized. The fact that we have reproduced correlators of operators that involve products of both matrices in a single trace is convincing evidence that we are reproducing genuine two matrix observables. The observables we can reproduce correspond to BPS operators. In the dual gravity these operators map to supergravity states corresponding to classical geometries. The local supersymmetric geometries with \(SO(4) \times U(1)\) isometries are determined by a surface that defines the boundary conditions needed to obtain a non-singular supergravity solution. At large \(N\) where we expect classical geometry,
the eigenvalues condense on this surface. In this way the supergravity boundary conditions appear to match the large N eigenvalue description perfectly.

The eigenvalue dynamics appears to provide some sort of a coarse grained description. Correlators of operators dual to states with a very small energy are not reproduced correctly: for example the energy of states dual to single traces has to be above some threshold (N) before they are correctly reproduced. For complicated operators with a detailed multi trace structure we would thus expect to get the gross features correct, but we may miss certain finer details - see the discussion after (2.38). Developing this point of view, perhaps using the ideas outlined in [38], may provide a deeper understanding of the eigenvalue wave functions.

The eigenvalue description we have developed here is explicit enough that we could formulate the dynamics in terms of the density of eigenvalues. This would provide a field theory that has $1/N$ appearing explicitly as a coupling. It would be very interesting to work out, for example, what the generalization of the Das-Jevicki Hamiltonian[49] is.

The picture of eigenvalue dynamics that we are finding here is almost identical to the proposal discussed by Berenstein and his collaborators[31, 32, 33, 34, 35, 36, 37], developed using numerical methods and clever heuristic arguments. The idea of these works is that the eigenvalues represent microscopic degrees of freedom. At large N one can move to collective degrees of freedom that represent the 10 dimensional geometry of the dual gravitational description. This is indeed what we are seeing. They have also considered cases with reduced supersymmetry and orbifold geometries[50, 51, 52]. These are natural examples to consider using the ideas and methods we have developed in this article. Developing other examples of eigenvalue dynamics will allow us to further test the proposals for wave functions and the large N distributions of eigenvalues that we have put forward in this article.

An important question that should be tackled is to ask how one could derive (and not guess) the wave functions we have described. Progress with this question is likely to give some insights into how it is even possible to have a consistent eigenvalue dynamics. One would like to know when an eigenvalue description is relevant and to what classes of observables it is applicable.

Another important question is to consider the extension to more matrices, including gauge and fermion degrees of freedom. The Gauss graph labeling of operators continues to work when we include gauge fields and fermions[53, 54], so that our argument goes through without modification and we again expect that eigenvalue dynamics in these more general settings will be an effective approach to compute these more general correlators of BPS operators. Another important extension is to consider the eigenvalue dynamics, perturbed by off diagonal elements, which should allow one to start including stringy degrees of freedom. Can this be done in a controlled systematic fashion? In this context, the studies carried out in
will be relevant.

Acknowledgements: We would like to thank Joao Rodrigues for interest in this work and for discussions. This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF and DST do not accept any liability with regard thereto.

References

[1] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B 72, 461 (1974). doi:10.1016/0550-3213(74)90154-0

[2] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

[3] V. Balasubramanian, M. Berkooz, A. Naqvi and M. J. Strassler, “Giant gravitons in conformal field theory,” JHEP 0204, 034 (2002) [hep-th/0107119].

[4] J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravitons from Anti-de Sitter space,” JHEP 0006, 008 (2000) doi:10.1088/1126-6708/2000/06/008 [hep-th/003075].

[5] A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their field theory dual,” JHEP 0008, 051 (2000) doi:10.1088/1126-6708/2000/08/051 [hep-th/0008016].

[6] M. T. Grisaru, R. C. Myers and O. Tafjord, “SUSY and goliath,” JHEP 0008, 040 (2000) doi:10.1088/1126-6708/2000/08/040 [hep-th/0008015].

[7] H. Lin, O. Lunin and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004) [hep-th/0409174].

[8] S. Corley, A. Jevicki and S. Ramgoolam, “Exact correlators of giant gravitons from dual N=4 SYM theory,” Adv. Theor. Math. Phys. 5, 809 (2002) [hep-th/0111222].

[9] D. Berenstein, “A Toy model for the AdS / CFT correspondence,” JHEP 0407, 018 (2004) doi:10.1088/1126-6708/2004/07/018 [hep-th/0403110].

[10] E. Brezin, C. Itzykson, G. Parisi and J. B. Zuber, “Planar Diagrams,” Commun. Math. Phys. 59, 35 (1978). doi:10.1007/BF01614153
[11] J. Ginibre, “Statistical Ensembles of Complex, Quaternion and Real Matrices,” J. Math. Phys. 6, 440 (1965). doi:10.1063/1.1704292

[12] A. Jevicki and B. Sakita, “The Quantum Collective Field Method and Its Application to the Planar Limit,” Nucl. Phys. B 165, 511 (1980). doi:10.1016/0550-3213(80)90046-2

[13] A. Jevicki and B. Sakita, “Collective Field Approach to the Large N Limit: Euclidean Field Theories,” Nucl. Phys. B 185, 89 (1981). doi:10.1016/0550-3213(81)90365-5

[14] K. Demeterfi, A. Jevicki and J. P. Rodrigues, “Scattering amplitudes and loop corrections in collective string field theory,” Nucl. Phys. B 362, 173 (1991). doi:10.1016/0550-3213(91)90561-B

[15] K. Demeterfi, A. Jevicki and J. P. Rodrigues, “Scattering amplitudes and loop corrections in collective string field theory. 2.,” Nucl. Phys. B 365, 499 (1991). doi:10.1016/S0550-3213(05)80030-6

[16] K. Demeterfi, A. Jevicki and J. P. Rodrigues, “Perturbative results of collective string field theory,” Mod. Phys. Lett. A 6, 3199 (1991). doi:10.1142/S0217732391003699

[17] A. Donos, A. Jevicki and J. P. Rodrigues, “Matrix model maps in AdS/CFT,” Phys. Rev. D 72, 125009 (2005) doi:10.1103/PhysRevD.72.125009 [hep-th/0507124].

[18] M. Masuku and J. P. Rodrigues, “Laplacians in polar matrix coordinates and radial fermionization in higher dimensions,” J. Math. Phys. 52, 032302 (2011) doi:10.1063/1.3553456 [arXiv:0911.2846 [hep-th]].

[19] Y. Kimura, S. Ramgoolam and D. Turton, “Free particles from Brauer algebras in complex matrix models,” JHEP 1005, 052 (2010) doi:10.1007/JHEP05(2010)052 [arXiv:0911.4408 [hep-th]].

[20] M. Masuku and J. P. Rodrigues, “How universal is the Wigner distribution?,” J. Phys. A 45, 085201 (2012) doi:10.1088/1751-8113/45/8/085201 [arXiv:1107.3681 [hep-th]].

[21] M. Masuku, M. Mulokwe and J. P. Rodrigues, “Large N Matrix Hyperspheres and the Gauge-Gravity Correspondence,” JHEP 1512, 035 (2015) doi:10.1007/JHEP12(2015)035 [arXiv:1411.5786 [hep-th]].

[22] M. Masuku and J. P. Rodrigues, “De Alfaro, Fubini and Furlan from multi Matrix Systems,” JHEP 1512, 175 (2015) doi:10.1007/JHEP12(2015)175 [arXiv:1509.06719 [hep-th]].

[23] C. Kristjansen, J. Plefka, G. W. Semenoff and M. Staudacher, “A New double scaling limit of N=4 superYang-Mills theory and PP wave strings,” Nucl. Phys. B 643, 3 (2002) doi:10.1016/S0550-3213(02)00749-6 [hep-th/0205033].
[24] Y. Takayama and A. Tsuchiya, “Complex matrix model and fermion phase space for bubbling AdS geometries,” JHEP 0510, 004 (2005) doi:10.1088/1126-6708/2005/10/004 [hep-th/0507070].

[25] V. Balasubramanian, D. Berenstein, B. Feng and M. x. Huang, “D-branes in Yang-Mills theory and emergent gauge symmetry,” JHEP 0503, 006 (2005) [hep-th/0411205].

[26] R. Bhattacharyya, S. Collins and R. d. M. Koch, “Exact Multi-Matrix Correlators,” JHEP 0803, 044 (2008) [arXiv:0801.2061 [hep-th]].

[27] R. Bhattacharyya, R. de Mello Koch and M. Stephanou, “Exact Multi-Restricted Schur Polynomial Correlators,” JHEP 0806, 101 (2008) [arXiv:0805.3025 [hep-th]].

[28] V. De Comarmond, R. de Mello Koch and K. Jefferies, “Surprisingly Simple Spectra,” JHEP 1102, 006 (2011) [arXiv:1012.3884 [hep-th]].

[29] R. d. M. Koch, M. Dessein, D. Giataganas and C. Mathwin, “Giant Graviton Oscillators,” JHEP 1110, 009 (2011) [arXiv:1108.2761 [hep-th]].

[30] R. de Mello Koch and S. Ramgoolam, “A double coset ansatz for integrability in AdS/CFT,” JHEP 1206, 083 (2012) doi:10.1007/JHEP06(2012)083 [arXiv:1204.2153 [hep-th]].

[31] D. Berenstein, “Large N BPS states and emergent quantum gravity,” JHEP 0601, 125 (2006) doi:10.1088/1126-6708/2006/01/125 [hep-th/0507203].

[32] D. Berenstein and R. Cotta, “Aspects of emergent geometry in the AdS/CFT context,” Phys. Rev. D 74, 026006 (2006) doi:10.1103/PhysRevD.74.026006 [hep-th/0605220].

[33] D. Berenstein and R. Cotta, “A Monte-Carlo study of the AdS/CFT correspondence: An Exploration of quantum gravity effects,” JHEP 0704, 071 (2007) doi:10.1088/1126-6708/2007/04/071 [hep-th/0702090].

[34] D. Berenstein, R. Cotta and R. Leonardi, “Numerical tests of AdS/CFT at strong coupling,” Phys. Rev. D 78, 025008 (2008) doi:10.1103/PhysRevD.78.025008 [arXiv:0801.2739 [hep-th]].

[35] D. Berenstein, “A Strong coupling expansion for N=4 SYM theory and other SCFT’s,” Int. J. Mod. Phys. A 23, 2143 (2008) doi:10.1142/S0217751X08040688 [arXiv:0804.0383 [hep-th]].

[36] D. Berenstein and Y. Nakada, “The Shape of Emergent Quantum Geometry from an N=4 SYM Minisuperspace Approximation,” arXiv:1001.4509 [hep-th].

[37] D. Berenstein, “Sketches of emergent geometry in the gauge/gravity duality,” Fortsch. Phys. 62, 776 (2014) [arXiv:1404.7052 [hep-th]].
[38] V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, “The Library of Babel: On the origin of gravitational thermodynamics,” JHEP **0512**, 006 (2005) doi:10.1088/1126-6708/2005/12/006 [hep-th/0508023].

[39] S. E. Vazquez, “Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains,” Phys. Rev. D **75**, 125012 (2007) [arXiv:hep-th/0612014].

[40] H. Y. Chen, D. H. Correa and G. A. Silva, “Geometry and topology of bubble solutions from gauge theory,” Phys. Rev. D **76**, 026003 (2007) [arXiv:hep-th/0703068].

[41] R. de Mello Koch, “Geometries from Young Diagrams,” JHEP **0811**, 061 (2008) doi:10.1088/1126-6708/2008/11/061 [arXiv:0806.0685 [hep-th]].

[42] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, “Three point functions of chiral operators in D = 4, N=4 SYM at large N,” Adv. Theor. Math. Phys. **2**, 697 (1998) [hep-th/9806074].

[43] S. Corley and S. Ramgoolam, “Finite factorization equations and sum rules for BPS correlators in N=4 SYM theory,” Nucl. Phys. B **641**, 131 (2002) doi:10.1016/S0550-3213(02)00573-4 [hep-th/0205221].

[44] R. C. Myers and O. Tafjord, “Superstars and giant gravitons,” JHEP **0111**, 009 (2001) doi:10.1088/1126-6708/2001/11/009 [hep-th/0109127].

[45] A. Donos, “A Description of 1/4 BPS configurations in minimal type IIB SUGRA,” Phys. Rev. D **75**, 025010 (2007) doi:10.1103/PhysRevD.75.025010 [hep-th/0606199].

[46] A. Donos, “BPS states in type IIB SUGRA with SO(4) x SO(2)(gauged) symmetry,” JHEP **0705**, 072 (2007) doi:10.1088/1126-6708/2007/05/072 [hep-th/0610259].

[47] B. Chen, S. Cremonini, A. Donos, F. L. Lin, H. Lin, J. T. Liu, D. Vaman and W. Y. Wen, “Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity,” JHEP **0710**, 003 (2007) doi:10.1088/1126-6708/2007/10/003 [arXiv:0704.2233 [hep-th]].

[48] O. Lunin, “Brane webs and 1/4-BPS geometries,” JHEP **0809**, 028 (2008) doi:10.1088/1126-6708/2008/09/028 [arXiv:0802.0735 [hep-th]].

[49] S. R. Das and A. Jevicki, “String Field Theory and Physical Interpretation of D = 1 Strings,” Mod. Phys. Lett. A **5**, 1639 (1990). doi:10.1142/S0217732390001888

[50] D. Berenstein, “Strings on conifolds from strong coupling dynamics, part I,” JHEP **0804**, 002 (2008) doi:10.1088/1126-6708/2008/04/002 [arXiv:0710.2086 [hep-th]].

[51] D. E. Berenstein and S. A. Hartnoll, “Strings on conifolds from strong coupling dynamics: Quantitative results,” JHEP **0803**, 072 (2008) doi:10.1088/1126-6708/2008/03/072 [arXiv:0711.3026 [hep-th]].
[52] D. E. Berenstein, M. Hanada and S. A. Hartnoll, “Multi-matrix models and emergent geometry,” JHEP 0902, 010 (2009) doi:10.1088/1126-6708/2009/02/010 [arXiv:0805.4658 [hep-th]].

[53] R. de Mello Koch, P. Diaz and H. Soltanpanahi, “Non-planar Anomalous Dimensions in the sl(2) Sector,” Phys. Lett. B 713, 509 (2012) doi:10.1016/j.physletb.2012.06.057 [arXiv:1111.6385 [hep-th]].

[54] R. de Mello Koch, P. Diaz and N. Nokwara, “Restricted Schur Polynomials for Fermions and integrability in the su(2—3) sector,” JHEP 1303, 173 (2013) doi:10.1007/JHEP03(2013)173 [arXiv:1212.5935 [hep-th]].

[55] R. de Mello Koch, J. Smolic and M. Smolic, “Giant Gravitons - with Strings Attached (I),” JHEP 0706, 074 (2007) [hep-th/0701066].

[56] R. de Mello Koch, J. Smolic and M. Smolic, “Giant Gravitons - with Strings Attached (II),” JHEP 0709, 049 (2007) [hep-th/0701067].

[57] D. Bekker, R. de Mello Koch and M. Stephanou, “Giant Gravitons - with Strings Attached. III.,” JHEP 0802, 029 (2008) [arXiv:0710.5372 [hep-th]].