On the Possible Long-Term Fate of Oil Released in the Deepwater Horizon Incident: Estimated by Ensembles of Dye Release Simulations
On the Possible Long-Term Fate of Oil Released in the Deepwater Horizon Incident: Estimated by Ensembles of Dye Release Simulations

Mathew Maltrud
Synte Peacock*
Martin Visbeck**

*National Center for Atmospheric Research, PO Box 3000, Boulder, CO.
**IFM-GEOMAR, Düstenbrooker Weg 20, D-24105, Kiel, Germany.
On the Possible Long-Term Fate of Oil Released in the Deepwater Horizon Incident: Estimated by Ensembles of Dye Release Simulations

Mathew Maltrud,¹ Synte Peacock,² and Martin Visbeck³

1. Los Alamos National Laboratory, Los Alamos, NM 87545; maltrud@lanl.gov 2. National Center for Atmospheric Research, Boulder, CO 80305 3. IFM-GEOMAR, Kiel, Germany

Abstract

We have conducted an ensemble of 20 simulations using a high-resolution global ocean model in which dye was continuously injected at the site of the Deepwater Horizon drilling rig for two months. We then extended these simulations for another four months to track the dispersal of the dye in the model. We have also performed five simulations in which dye was continuously injected at the site of the spill for four months and then run out to one year from the initial spill date. The experiments can elucidate the time and space scales of dispersal of polluted waters and also give a quantitative estimate of dilution rate, ignoring any sink terms such as chemical or biological degradation.

Our results indicate that there is a very high likelihood that oil-polluted waters from the Deepwater Horizon incident will, at some time over six months following the initial spill date, be transported at relatively low concentrations over a significant part of the North-West Atlantic Ocean. We present probabilities for the transport timescales and estimates of ensemble mean arrival times, and we briefly discuss the likely dispersion timescales and pathways of dye released in the subsurface ocean.

Introduction

An oil well blowout occurred on the Deepwater Horizon drilling rig on April 20, 2010, in the Gulf of Mexico at 28°53’N, 88°05’W. The total amount of oil released and how the oil is distributed with depth in the ocean are subject to large uncertainty.

One particular issue of concern is whether the oil will enter the swift Gulf of Mexico Loop Current and ultimately be transported into the Atlantic Ocean. The Loop Current, which is a part of the large-scale Western Boundary Current System of the Atlantic, is characterized by a clockwise surface circulation after it enters the Gulf through the Yucatan Channel and exits in the Florida Current via the Florida Straits [1]. The configuration of the current is highly variable in both space and time, sometimes extending as far as about 28°N and 93°W, at other times only reaching about 24°N and 87°W. Due to dynamical flow instabilities, the current sheds Loop Current Eddies at irregular intervals, generally between two and 17 months [2]. These eddies typically travel west, dissipating weeks to months later in the western Gulf, but sometimes reattaching to the Loop Current a number of times before fully detaching.

Short-term operational ocean circulation forecasts (days into the future), including estimates of oil trajectories, are currently being carried out by a number of groups [3]. On
a longer timescale (weeks to months), deterministic pathways of the oil-polluted surface waters in the upper ocean are not possible due to the unpredictable evolution of the ocean’s mesoscale. In particular, the advection by small-scale eddies in the northern Gulf of Mexico, the mixing by local winds, and the behavior of the Loop Current, are all factors that influence the oceanic behavior over these longer timescales.

On timescales longer than a few weeks, statistical estimates based on a variety of possible Loop Current behaviors can help address the question of whether oil from the spill is likely to remain confined to the Gulf of Mexico or whether the oil might disperse into a broader region and eventually be transported by ocean currents into the North Atlantic. In order to investigate a suite of scenarios for the possible fate of the oil on a timescale of several months to a year from the time of the spill, our approach has been to use an eddy-resolving (1/10th degree) global ocean model to conduct an ensemble of dye tracer release simulations each experiencing a different realization of ocean currents. Results are presented for the ensemble-mean behavior.

Experimental Setup

The simulations described here were performed using a fully global configuration of the Parallel Ocean Program [4] developed at Los Alamos National Laboratory, now the ocean component of the National Center for Atmospheric Research Climate Community System Model. The set-up is identical to that used by Maltrud et al. (2009) [5], and details of the model configuration can be found therein.

Each ensemble member was initialized with differing Loop Current configurations, with restart conditions selected from the 120-year climatologically forced control run described in Ref. 4. Based on the configuration of the Loop Current, using sea surface height (SSH) as a guide, we were able to select very different SSH evolution scenarios for each ensemble member. The dye tracers were added on April 20 and run for two (or four) months with a constant injection rate at the site of the Deepwater Horizon spill, after which time the source was turned off in the model and the simulations continued for several more months.

Because the future atmospheric state is not known, a decision needed to be made as to how to force the model. The choice was made to restrict the timescales introduced by the surface forcing by specifying the future atmospheric state on the repeat annual cycle (normal-year) Coordinated Ocean Reference Experiment (CORE) forcing dataset [6], with the six-hourly forcing averaged to monthly values. Wind stress was calculated offline using a sea surface temperature (SST) climatology [7] and bulk formulae [8]; evaporation and sensible heat flux were calculated online using the same bulk formulae and the model-predicted SST. Precipitation was also taken from the CORE forcing dataset.

It should be noted that this model does not use any kind of data assimilation, which is in contrast to the models that are being used to perform short-term predictions. Another important difference between this model and those used for the short-term predictions is that the tracer is released as a “dye” rather than using a finite number of particle trajectories to simulate the dispersal. The release rate was set to 1/day for the assumed
duration of the spill (April 21 to June 21 for the 20-member ensemble; April 21 to August 21 for the five-member ensemble). In each ensemble member, four distinct dye tracers were carried, each with a constant source vertically distributed over distinct depth intervals: 0–20 m, 20–210 m, 210–820 m, and 820–1,500 m.

The choice was made to simulate a passive dye tracer rather than oil in order to avoid the large uncertainties that would be inherent in attempting to model actual oil concentrations. To accurately simulate oil, it is necessary to parameterize physical processes such as evaporation, emulsification, and dissolution; chemical processes such as photo-oxidation; and biological processes such as microbial oxidation [9]. To further complicate matters, not only is the total amount of oil that has been (or will be) released unknown, but there are major efforts underway to remove parts of the oil from the surface by skimming and direct extraction from the containment cap. The inclusion of such processes will be an important next step in any attempt to model the possible fate of the oil.

Results

20-member Ensemble with Two-month Dye Source

An ensemble of 20 simulations was performed in which dye was continuously injected at the site of the spill between April 21 and June 21. After June 21, the existing dye continued to be advected and mixed in the ocean through October in the model. Each ensemble member “sees” a different underlying oceanic eddy field but identical atmospheric forcing. The differences in dye dispersal between the ensemble members, therefore, give a measure of how the response of an impulse injection of dye will differ when subjected to different oceanic eddy fields. It should be noted that any major anomalies in atmospheric forcing (from anomalous local winds to a hurricane, for example) would change the details of the dye’s response.

The results in this section focus on the dye injected into the uppermost two model levels (upper 20 m of the ocean model). At the model grid-point closest to the spill, an amount of dye necessary to create a concentration of 1 is injected each day into these layers. Because there is rapid local advection and mixing of the dye away from the site of the spill, the actual model dye concentrations averaged over a day at the spill site are significantly less than 1 (typically around 0.2); this number then progressively decreases as the dye is further diluted. We will be reporting the results in terms of a “dilution factor,” which is the ratio of the total amount of dye in the water column to the amount injected at the source.

The reason for reporting results in terms of dilution factor instead of concentration units are twofold: first, the uncertainty in the rate of oil injection will directly map to uncertainties in concentration far from the source; and second, there is uncertainty as to the meaning and ecological interpretation of a concentration of oil per cubic volume of seawater. For example, if the oil is a surface slick tens of microns thick, it may have severe implications for bird life and coastal impacts, but still be in very low concentrations. At the same time, the estimated dilution factors can guide scenarios for oil removal due to
chemical reaction and biological consumption. In all of the results that follow, we will use a dilution factor of 0.01 as a threshold value for the presence of a significant amount of dye. This value has no physical meaning (i.e., it is not related to oil detectability or toxicity levels) but was chosen somewhat arbitrarily. A dilution factor of 0.01 represents a 100-fold dilution relative to the dye injected at the spill site.

In all 20 ensemble members, dye with a dilution factor of 0.01 or higher joins the Loop Current and exits into the Atlantic Ocean on a timescale of between 30 days and 150 days after April 21. Figure 1 shows the ensemble mean arrival time of the dye at each horizontal grid point location. Focusing on the exit location, it can be seen that the ensemble mean time taken for dye to arrive at the Florida Straits (81°W) is around 70 days. This does not imply that an actual dye released at the spill site would take 70 days to arrive there; the spread across the ensemble is large (see histogram in Figure 1). Note that the average time taken for dye to arrive on the West Coast of central and southern Florida is significantly longer than the time taken for dye to enter the Atlantic Ocean since the oceanic circulation tends to be relatively weak and isolated from the major currents in the eastern shelf region of the Gulf. Note also that on this timeframe, none of the ensemble members comes very close to the Texas or Mexico coastlines, nor are there any cases in which dye reaches the coastlines of North or South Carolina.

Figure 1: Ensemble mean arrival times (in days) of dye based on a 0.01 dilution factor in the 20-member ensemble. The insert histogram shows the ensemble distribution of arrival times in the Florida Strait.
The presence of dye in Figure 1 does not necessarily imply that there is a high probability that dye will reach a given place. Information about the likelihood that dye will be transported to a given location is illustrated in Figure 2, which shows the percentage of ensemble members that have reached each grid point 190 days after the initial spill.

The dark red color in Figure 2 indicates locations for which all ensemble members have experienced a dye dilution factor in excess of the threshold value of 0.01. On the other end of the scale, the purple regions indicate that very few of the ensemble members show dye having arrived there in the 190 days after the spill began. The model results indicate that it is very unlikely that there would be any dye transported by ocean currents near the shorelines of Texas, Mexico, Cuba, or the Bahamas 190 days post-spill. It is also of interest to note that it is quite unlikely that a concentration of dye with a dilution factor greater than 0.01 would be expected on the coast on most of the eastern seaboard of the United States on this timeframe. Conversely, there is a high chance that dye will be present in the Florida Current and in the Gulf Stream at 190 days post-spill. By 190 days post-spill, dye from most of the ensemble members has not yet made it (again, at a 0.01 threshold) into the interior of the Atlantic Ocean; the longer timescales required for dye to be mixed over large regions of the Atlantic Ocean are discussed in the following section.

![Figure 2: Percentage of ensemble members where dye (based on a 0.01 dilution factor) has reached a given location 190 days after the start of a two-month dye release.](image)

A measure of the total export of dye from the Gulf of Mexico into the Atlantic Ocean is provided by the relative volume of dye east of 81°W (Figure 3), which shows a remarkable spread across the 20-member ensemble. The simulation with the lowest
export leaves more than 75% of the dye in the Gulf of Mexico six months after the initial release. On the other extreme, one ensemble member has already exported more than 75% of the dye into the open North Atlantic Ocean after only four months.

Figure 3. Percentage of total dye that exits the Gulf of Mexico at 81°W for all 20 ensemble members (thin lines). The thick line with “+” symbols denotes the ensemble mean.

Five-member Ensemble with Four-month Dye Source

When we began our simulations (mid-May 2010), oil had been entering the Gulf for about a month, so we needed to speculate how long the spill would continue. With little information available, we chose to shut off the dye source after two months. However, as various attempts to stop the leak were not fully successful, we decided to perform additional runs (a five-member ensemble) with a four-month duration continuous dye source under the assumption that the oil spill would be capped sometime in late August 2010 after the completion of the relief wells. These four-month continuous source simulations are intended to provide a fairly realistic “worst-case scenario” envelope of possible trajectories and dilution factors for the dye dispersal.

In contrast to the six-month duration of the two-month source simulations, each member of the five-member ensemble was run for a year past the date of the spill, and results from these simulations give an idea of the possible longer-term dispersal of a dye released at the site of the Deepwater Horizon incident. If the flow from the well was significantly reduced prior to late August, or if the majority of the oil was captured on the surface before late August, the dilution factors would be expected to be lower than reported, but the spatial distribution would be expected to be very similar to that shown in Figure 4.

The upper left panel of Figure 4 shows the ensemble mean dilution factor (for the surface dye from the five-member ensemble with the four-month duration dye source) one year after the date of the initial spill. One year post-spill, the dye has entered the North Atlantic Ocean via the Gulf Stream and become highly diluted and mixed in the upper water.
column. Low concentrations of dye are apparent along the entire Gulf of Mexico coast, as well as the eastern seaboard of the United States up to the latitude of Cape Hatteras, North Carolina. The simulations also show that one year is not long enough for any dye to reach the coast of Europe or Maritime Canada.

Figure 4: Mean dilution factors based on a five-member ensemble one year after the initial spill: a) dye release at 0–20 m depth; b) dye release at 20–210 m depth; c) dye release at 210–800 m depth; d) dye release at 800–1,500 m depth. Color represents dilution factor on a logarithmic scale.

Summary of Results for Deeper Tracers

In addition to the surface dye, the simulations carried three additional dye releases at greater depths to better understand the vertical dependence of the dye transport. Figure 4 shows the ensemble mean dilution factor for these subsurface dyes across the five ensemble members at 12 months after the initial spill date. For the 20–210 m dye injection, both the dilutions and the spatial extent are very similar to the surface dye. There are also strong similarities between the spatial distribution of the 210–800 m dye and those at higher levels in the water column. This dye does not show up in high concentrations on the continental shelf areas, which are sufficiently shallow that this deep dye has difficulty reaching these regions. There is a signature of the 210–800 m depth dye in the Florida Current and Gulf Stream, although the amount of this dye that enters the Atlantic Ocean is significantly smaller than for the dyes injected higher in the water column. The broad similarity in the spatial distribution of the dyes in the upper 800 m of
the water column is to be expected, given that Florida Current and Gulf Stream system extends to a depth of about 800 m [10].

The ensemble mean dilution for the dye released between 800–1,500 m depth shows a very different behavior compared to the shallower dyes. Because of sluggish currents at these depths relative to higher in the water column, the dye spreads extremely slowly and is still largely confined to an area within a few hundred miles of the spill site one year later. Because this deep dye undergoes relatively little mixing and advection, the dilution factors are much higher one year after the spill than for the shallower dyes, showing values as high as 0.1 (a 10-fold dilution relative to the source) after one year.

Discussion/Conclusions

The goal of this study was to provide a range of scenarios tracking where a dye released at the Deepwater Horizon spill site might be likely to go and to provide estimates of the possible range of timescales over which oil might exit the Gulf and join the basin scale surface circulation in the Western North Atlantic Ocean. While it is not possible to deterministically forecast the fate of the oil on a timescale of weeks to months, it is possible to run a large number of ocean model simulations, each of which is characterized by a very different Loop Current evolution, and obtain a statistical (ensemble averaged) understanding of where a passive dye released at the site of the spill is likely to go and on what timescales.

It should be re-emphasized that the model described here is not a forecast model (such as a weather prediction model). The model ocean state knows nothing of the state of the true ocean in April 2010; that is, no data from satellites, buoys, floats, cruises, etc., are used to guide the integration of the model. This is why an ensemble of simulations is required to bracket the range of likely outcomes.

The dye tracer employed here is essentially a “food coloring” and has no physical resemblance to true oil. This dye is not buoyant (it has the same density as the surrounding water), it does not coagulate or form slicks, is not exposed to surface containment efforts, and is not subject to physical, biological, or chemical breakdown. However, this is fundamentally an advection-diffusion problem for which most of the neglected effects are perturbations. In fact, it can be argued that ad-hoc representations of these effects could lead to less realistic simulations. If there is a small benefit to the modeling community resulting from this disaster, it is that more advanced models of the behavior of oil in seawater will be developed.

Given that most of the neglected processes would tend to reduce the concentration of oil, the spatial extent of dye predicted by the model simulations is likely to be over-estimated relative to actual oil. On the other hand, there is little or no sensitivity of arrival time and spatial extent when comparing the simulations with a two-month source with a four-month source; it is primarily the concentrations at longer times that change in this case. It is also important to note that the actual evolution of the Loop Current (as observed by satellite altimetry) exhibited the shedding of an eddy, which our simulations indicate will skew the exit of oil from the Gulf toward longer times.
Despite all the above caveats associated with the model simulations, it is possible to conclude with a high degree of confidence that it is highly likely that oil in some form will enter the Atlantic Ocean in one to six months after the leak began. How much oil, and how soon it will arrive in the Atlantic, remains uncertain. It is highly unlikely that any of the oil released in the Deepwater Horizon incident will reach Europe in detectable amounts; rather, it will most likely become highly diluted in a region centered around the Gulf Stream within the North Atlantic Ocean. It is likely that long-term ecological and coastal impacts will be small within the Atlantic Ocean due to the very high dilution factors, but these impacts remain unquantifiable at this time.

Acknowledgments

The simulations described here were performed at the New Mexico Computer Applications Center and at the National Center for Computational Sciences.

References

[1] Schmitz, W. and P. Richardson, On the sources of the Florida current, Deep-Sea Res., 38 (suppl. 1): S379-S409, 1991.

[2] Gulf of Mexico Altimeter Viewer, Real-Time Altimetry Project, Colorado Center for Astrodynamic Research, http://argo.colorado.edu/~realtime/gsfc_gom-real-time_ssh/

[3] The West Florida Shelf ROMS hindcast/forecast system from University of South Florida, the Gulf of Mexico HYCOM nowcast/forecast system from Naval Research Laboratory, the SABGOM nowcast/forecast system from North Carolina State University, the Global HYCOM + NCODA Analysis from the HYCOM Consortium, and the RTOFS (Atlantic) hindcast/forecast system from NOAA Environmental Modeling Center (http://ocg6.marine.usf.edu/~liu/oil_spill_ensemble_forecast.html).

[4] Dukowicz, J. K. and R. D. Smith, Implicit free-surface method for the Bryan-Cox-Semtner ocean model, J. Geophys. Res. 99: 7991-8014, 1994.

[5] Maltrud, M., F. Bryan, and S. Peacock, Boundary impulse response functions in a century-long eddying global ocean simulation, Environmental Fluid Mechanics, DOI: 10.1007/s10652-009-9154-3, 2010.

[6] Large, W. and S. Yeager, Diurnal to decadal global forcing for ocean and sea-ice models: The datasets and flux climatologies, NCAR Technical Note TN-460-STR, National Center for Atmospheric Research, 2004.

[7] Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosiniski, A new sea surface temperature and sea ice boundary data set for the community atmosphere model, J. Climate 21: 5145-5153, 2008.

[8] Large, W. and S. Pond, Sensible and latent heat flux measurements over the oceans, J. Phys. Oceanogr 12:464-482, 1982.
[9] Oil in the Sea III: Inputs, Fates, and Effects. Ocean Studies Board; Marine Board; Transportation Research Board, 2003.

[10] Sturges, W., E. Chassignet, and T. Ezer. Strong mid-depth currents and a deep cyclonic gyre in the Gulf of Mexico: Final report. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Regions, New Orleans, LA. OCS Study MMS 2004-040, 89pp, 2004.
