Diagnosis and management of acute appendicitis. EAES consensus development conference 2015

Ramon R. Gorter 1,2,22 · Hasan H. Eker 1 · Marguerite A. W. Gorter-Stam 1 · Gabor S. A. Abis 3 · Amish Acharya 4 · Marjolein Ankersmit 1 · Stavros A. Antoniou 5,6 · Simone Arollo 7 · Benjamin Babic 8 · Luigi Boni 9 · Marlieke Bruntink 2 · Dieuwertje A. van Dam 2 · Barbara Defoort 10 · Charlotte L. Deijen 11 · F. Borja DeLacy 12 · Peter MNYH Go 12 · Annelieke M. K. Harmsen 1 · Rick S. van den Helder 13 · Florin Iordache 14 · Johannes C. F. Ket 15 · Filip E. Muysoms 10 · M. Mahir Ozmen 16 · Michail Papoulas 17 · Michael Rhodes 18 · Jennifer Straatman 1 · Mark Tenhagen 2 · Victor Turrado 19 · Andras Vereczkei 20 · Ramon Vilallonga 21 · Jort D. Deelder 13 · Jaap Bonjer 1

Received: 4 August 2016 / Accepted: 9 September 2016 / Published online: 22 September 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Unequivocal international guidelines regarding the diagnosis and management of patients with acute appendicitis are lacking. The aim of the consensus meeting 2015 of the EAES was to generate a European guideline based on best available evidence and expert opinions of a panel of EAES members. After a systematic review of the literature by an international group of surgical research fellows, an expert panel with extensive clinical experience in the management of appendicitis discussed statements and recommendations. Statements and recommendations with more than 70 % agreement by the experts were selected for a web survey and the consensus meeting of the EAES in Bucharest in June 2015. EAES members and attendees at the EAES meeting in Bucharest could vote on these statements and recommendations. In the case of more than 70 % agreement, the statement or recommendation was defined as supported by the scientific community. Results from both the web survey and the consensus meeting in Bucharest are presented as percentages. In total, 46 statements and recommendations were selected for the
web survey and consensus meeting. More than 232 members and attendees voted on them. In 41 of 46 statements and recommendations, more than 70% agreement was reached. All 46 statements and recommendations are presented in this paper. They comprise topics regarding the diagnostic work-up, treatment indications, procedural aspects and post-operative care. The consensus meeting produced 46 statements and recommendations on the diagnostic work-up and management of appendicitis. The majority of the EAES members supported these statements. These consensus proceedings provide additional guidance to surgeons and surgical residents providing care to patients with appendicitis.

Keywords Appendicitis · Uncomplicated appendicitis · Complicated appendicitis · Appendectomy · Laparoscopic appendectomy

Acute appendicitis is a common gastrointestinal disease affecting 5.7–57 per 100,000 individuals each year with the highest incidence in children and adolescents [1–6]. The variation of incidence is due to variations in ethnicity, sex, age, obesity and season of the year [3, 6–11]. Based upon the entrenched idea that appendicitis is an irreversible progressive disease eventually leading to perforation, removal of the appendix is the gold standard of treatment. The medical profession has gained much experience in managing patients with acute appendicitis ever since Fitz’s first report in 1886 [12]. Large heterogeneity exists, however, between existing intercontinental, European and national guidelines regarding diagnosing and managing acute appendicitis. For instance, in the Netherlands, pre-operative imaging studies are promoted and considered mandatory in order to prevent negative appendectomies according to national guidelines, whereas in guidelines of other countries, it is not promoted nor considered mandatory [13]. Another example is the inconsistency regarding the management of an unexpected “normal appendix” during diagnostic laparoscopy [13, 14]. This heterogeneity prompted the need for an European consensus development conference for the diagnosis and management of acute appendicitis.

The European Association of Endoscopic Surgery (EAES) initiated a consensus development conference on the management of acute appendicitis for its 2015 meeting in Bucharest. The aim of this consensus meeting was to develop practical guidelines based on the available evidence combined with the expertise of a selected panel of EAES surgeons. The findings are reported in this manuscript.

Materials and methods

The coordinating team (HJB, RG, HE and MGS) invited ten surgeons from nine European countries to serve as experts in this consensus development conference. An international research team of 16 young surgical researchers across 11 European countries was formed to evaluate and process the existing literature on the management of acute appendicitis. The coordinators generated a list of topics on acute appendicitis to be addressed (Appendix 1). An exploratory literature search was conducted in order to identify any additional topics of interest. All topics were approved by the experts and subsequently divided into three main parts: pre-operative care, operative care and after care. Based upon the topics, research questions were formulated, reviewed and approved by the panel of experts.

Literature search and processing of the literature

Research questions were used as guidance to conduct literature searches. The searches were conducted in cooperation with a medical information specialist of the Vrije Universiteit. Searches were performed in the following databases: PubMed, Web of science and the Cochrane library from inception up to 31 December 2014. No limitation was used regarding year of publication. Searches have been attached in Appendix 2. All papers published in European languages, and all study types with the exception of case reports were included in the search.

All articles were screened and reviewed by teams of two research fellows for eligibility, based on title and abstract. If eligible for inclusion, full text articles were obtained. If no full text was available, the article was excluded. In case of disagreement between the two research fellows, the coordinator dedicated to the topic acted as referee. Full text articles were summarized, evaluated and discussed at research meetings to assess their eligibility for inclusion in the review process. All included studies were evaluated according to the GRADE system [15–18]. The GRADE system systematically evaluates the available literature and focuses on the level of evidence based upon the types of studies included. The level of evidence can be marked as high, moderate, low or very low. This could be either downgraded in case of significant bias or upgraded when multiple high-quality studies showed consistent results.
The highest levels of evidence (systematic reviews) were assessed first. If the systematic review was of sufficient quality, it was used to answer the research question. If no systematic review of sufficient quality was found, randomized controlled trials (RCTs) and cohort studies were evaluated. All selected studies were uploaded to a Mendeley database that was accessible to all research fellows, coordinators and experts.

After the literature search, an expert was assigned to every couple of researchers. This threesome was assigned research questions from the pre-operative care, operative care and after care. Hereafter they were responsible for formulating a statement/conclusion and, if possible, a recommendation on the assigned research questions. Again, the quality of the evidence was evaluated according to the GRADE/SIGN system [15–19]. The strength of the recommendation was based on the level of evidence and qualified as weak or strong. This was reflected in terms, using “recommend” in case of a strong recommendation and “suggest” in case of a weak recommendation.

A face-to-face consensus meeting among the experts was held in Amsterdam on the 1 May 2015 to discuss the final statements and recommendations. The coordinating team all experts and members of the international research team attended the meeting. A modified Delphi method was used. The Delphi method is a structured process, commonly used to develop healthcare quality indicator and consists of four key components; iteration, controlled acquisition of feedback, aggregation of responses and anonymity. As anonymity was not applicable in our situation, we used the term modified [20–22]. All statements and recommendations were shared with proposed levels of evidence with the entire group. After displaying the statements and recommendations, the experts casted their votes of agreement or disagreement. Refrain from voting was not allowed. No discussion was allowed between the experts at this point of time. In case of 100 % consensus, the statement and recommendation were accepted without further voting or discussion. In case of lack of consensus, the research team responsible for the statement presented the underlying considerations. After discussion between the experts, a second voting round was conducted. The statement or recommendation was accepted in case of at least 70 % consensus. Those statements and recommendations with less than 70 % consensus in the expert meeting were not included in the web survey or in the 2015 Bucharest meeting.

All finalized recommendations and statements with levels of evidence were entered into a web survey and distributed to all EAES members by e-mail. The web survey was open from 27 May until 3 July 2015. The recommendations or statements as well as the levels of evidence were open to several voting options: “agree”, “partly agree”, “disagree” or “don’t know”. The option “partly agree” meant that the voter agreed with the recommendation, but did not agree with the strength of recommendation.

All finalized recommendations and statements from the Amsterdam meeting with levels of evidence were presented at a plenary session of the 23rd annual meeting of the EAES on the 5 June 2015 in Bucharest. Live voting was performed using a digital voting system. Voting options were the same as the abovementioned.

Both results from the web survey and the Bucharest meeting are presented in the “Results” section.

Results

The literature search yielded 13,132 articles. The title, abstract and full text were reviewed. In total, 675 articles were selected and reviewed in detail to define 75 statements and recommendations, which were subsequently discussed at the Amsterdam meeting. (Appendix 1) During this meeting, the following statements and recommendations were excluded: on incidence and prevalence of appendicitis \((n = 4)\), on the place of NOTES in acute appendicitis \((n = 1)\), on the learning curve of appendectomy \((n = 1)\), on day surgery for acute appendicitis \((n = 1)\) and on the skeletonizing technique of the mesoappendix \((n = 1)\). Twenty-one statements were combined leaving a total of 46 statement and recommendations; 8 statements and 14 recommendations for pre-operative care, 1 statement and 15 recommendations for operative care and 2 statements and 6 recommendations for aftercare (Fig. 1). Of the 675 articles, 100 were excluded due to the fact that statements and recommendations were excluded or were combined, rendering 575 articles (Fig. 1; Appendix 3).

Web survey

In total, 317 EAES members responded to the web survey; 90 % were surgeons and 10 % surgical residents.

Bucharest meeting

The 2015 EAES congress in Bucharest was attended by 1166 delegates. During the plenary consensus meeting, 232 delegates voted. Sixty-eight per cent were surgeons, 26 % surgical residents and 6 % scientists, physician assistants and others.
Pre-operative care

Establishing the diagnosis of acute appendicitis remains challenging. The clinical presentation of acute appendicitis can vary from mild symptoms to signs of generalized peritonitis and sepsis. Hence, the value of individual clinical variables to determine the likelihood of acute appendicitis in a patient is low [23, 24]. Biochemical testing is performed routinely in most patients. Its value in confirming acute appendicitis is debatable. A recent systematic review showed that elevated C-reactive protein levels render the highest diagnostic accuracy followed by increased numbers of leucocytes with an area under the curve of 0.75 [95 % CI 0.71–0.78] and 0.72 [95 % CI 0.68–0.76], respectively [24]. The area under the curve represents the ability of a test to correctly classify patients. In case the score is between the 0.7 and 0.8, it represents a fair test. Both clinical and biochemical variables have been combined into clinical predicting rules (CPR) such as the Alvarado score and paediatric appendicitis score (PAS) [25, 26]. This was done to increase the value of the individual variables. Ohle et al. [27] demonstrated that the Alvarado score was good at “ruling-out” appendicitis with an overall sensitivity and specificity of 96 and 81 %, respectively. In children, however, it has been shown that the PAS outperforms the Alvarado score [28]. To increase the predictive value of these two tests Ebell et al. [29] identified new cut-off values for the Alvarado score and PAS, which improved sensitivity and specificity rates. Based upon the Alvarado score, patients can now be categorised into low risk (Score < 4), intermediate (4–8) and high risk (≥9). The use of such CPRs appears useful to determine the likelihood of acute appendicitis. Distinguishing between low, intermediate and high risk provides guidance whether imaging studies are necessary.

Imaging studies in patients with a clinical suspicion of acute appendicitis can reduce the negative appendectomy rate, which has been reported to be as high as 15 %. Ultrasonography, abdominal computed tomography (CT) and magnetic resonance imaging (MRI) are most commonly used. Ultrasonography is non-invasive, avoids radiation and is associated with a sensitivity rate between 71 and 94 % and a specificity rate between 81 and 98 %. The positive likelihood ratio of ultrasonography is high at values between 6 and 46, while the negative likelihood ratio is moderate (0.08–0.30) [30–39]. Ultrasonography is therefore reliable to confirm presence of appendicitis but unreliable to exclude appendicitis. Furthermore, one should...
bear in mind that ultrasonography is highly operator dependent. Inconclusive ultrasonography findings, mostly due to failure visualizing the appendix, mandate additional imaging studies.

Abdominal computed tomography (CT) for suspected appendicitis has sensitivity and specificity rates between 76–100 % and 83–100 %, respectively, and, therefore, is superior to ultrasonography. Lower values of sensitivity and specificity can be explained by the use of enteral contrast [32, 33, 35–44]. However, the radiation exposure of abdominal CT is a concern particularly in children and during pregnancy. The estimated lifetime cancer-related mortality risk of developing a radiation-induced malignancy is approximately 0.18 % for a 1-year-old child and 0.11 % in a 15-year-old child if an abdominal CT is performed [45, 46]. Computed tomographies employing only a quarter of the standard radiation dose (low-dose CTs) provide similar imaging results as standard CTs and are, hence, an excellent alternative [47]. Regarding the administration of oral contrast, Andersson et al. [48] concluded in their meta-analysis that a CT scan without oral contrast was superior to CTs with oral contrast in terms of sensitivity and specificity. Therefore, low-dose CTs without oral contrast are preferable in patients with suspected appendicitis [48].

Magnetic resonance imaging (MRI) is used in pregnant patients and children with inconclusive findings at ultrasonography [49]. A recent meta-analysis on MRI in 363 patients with appendicitis, yielded a sensitivity rate of 97 % [95 % CI 92–99 %], a specificity rate of 95 % [95 % CI 94–99 %], a positive likelihood ratio of 16.3 [95 % CI 9.10–29.10] and a negative likelihood ratio of 0.09 [95 % CI 0.04–0.20] [50]. These rates are comparable to those of CT imaging, although these findings should be interpreted with care as most studies have been performed in a selected group of patients. MRI is associated with significant costs, and interpreting the images requires experience. Therefore, at the present time, use of MRI appears limited to pregnant women and children.

The algorithm associated with the Alvarado score (recommendation 4) is shown in Fig. 2.

In obese patients (definition depends on the reference study), the diagnostic accuracy of ultrasound is diminished due to an increase of the subcutaneous and intra-abdominal fat. Anderson et al. [51] demonstrated that the body mass index (BMI) does not alter the diagnostic accuracy of a CT scan. CT appears therefore more reliable than ultrasonography in obese patients with the exception of children and pregnancy.

Patients with appendicitis are classified as uncomplicated or complicated appendicitis based upon pre-operative, intra-operative and/or histopathological findings. In this report, uncomplicated appendicitis has been defined as an inflamed appendix without signs of gangrene, perforation, intra-peritoneal purulent fluid, contained phlegmon or intra-abdominal abscess (IAA). Complicated appendicitis applies to all patients with either a gangrenous inflamed appendix with or without perforation, intra-abdominal abscess, peri-appendicular contained phlegmon or purulent free fluid. Classification is necessary as treatment strategies may differ.

Uncomplicated appendicitis

Appendectomy is still considered to be the gold standard for uncomplicated appendicitis. Two main approaches to remove an inflamed appendix are available; the open approach (OA) or the laparoscopic approach (LA). In 2010, a large Cochrane review on 67 studies showed that LA significantly reduced the rate of surgical site infection (SSI) (OR 0.43; 95 % CI 0.34–0.54) but significantly increased the risk of an intra-abdominal abscess (IAA) (OR 1.77; 95 % CI 1.14–2.76) compared to the open approach [52]. It was stated that LA was associated with fewer superficial wound infections, less post-operative pain, shorter hospital stay and earlier return to work, but the higher rate of IAA raised concerns [52]. Ever since, inconsistent results have been reported regarding the potential higher incidence of IAA after LA [53–61]. Benefits of LA over OA reported in meta-analyses are: reduced incidence of SSI, post-operative and long-term bowel obstruction with better outcome in terms of shorter hospital stay, its diagnostic value, less pain, earlier return to work, earlier start of oral intake, improved scar and body satisfaction and fewer incisional hernias [54, 55, 58, 61–66]. Disadvantages besides the possible higher incidence of IAA are longer operating time and possibly increased costs [58, 63].

To reduce the surgical trauma even more, new treatment strategies have been introduced such as single-incision laparoscopic surgery (SILS) first reported by Pelosi et al. [67]. Since then, numerous studies (RCTs and SR) have been published on the potential advantages and disadvantages of the SILS technique. It can be concluded that SILS is associated with comparable post-operative morbidity rates compared to conventional LA [68–70]. The disadvantage is the fact that SILS is a more difficult technique as is reflected by the higher technical failure rate, longer operating time and conversion rate [71–78]. Main advantages of SILS would be less post-operative pain and better cosmetic outcomes, although inconsistent results have been reported [71, 75, 76, 79–81]. At the present time, evidence is lacking that SILS is superior to conventional LA [79, 82, 83]. SILS is, however, a safe and feasible alternative.
Recently, initial non-operative management of appendicitis has been investigated in the adult population. Five RCTs reported an effectiveness of 41–85% at 1-year follow-up [84–88]. Meta-analyses of these studies revealed that non-operative treatment of acute appendicitis is less effective but could avoid surgery in 60–85% of patients [89–94]. Opponents of this strategy raise concerns such as recurrent appendicitis, missing an underlying malignancy and progression of uncomplicated into complicated appendicitis. Due to the possible avoidance of surgery with an initial non-operative treatment strategy, morbidity was diminished [91, 93, 95]. However, both RCTs and meta-analyses showed significant heterogeneity of methodological quality, studies included and definitions of outcome parameters. Until higher qualitative evidence has been obtained regarding the potential benefits of initial non-operative management of acute appendicitis and the potential long-term effects have been investigated appropriately, appendectomy remains the gold standard in acute uncomplicated appendicitis.

Complicated appendicitis

Due to the heterogeneity of the definitions used in the literature, it is difficult to draw firm conclusions regarding the treatment of complicated appendicitis. In 2013, Dimitriou published a retrospective cohort study on 150 patients with complicated appendicitis (defined as perforated with an abscess or peritonitis). They showed that LA reduced the incidence of SSI, number of reoperations and length of hospital stay as compared to OA with no difference in IAA rate [96]. A RCT encompassing 81 patients with clinically and histopathologically confirmed complicated appendicitis showed similar outcomes after OA and LA [97]. It should be noted, however, that the incidence of IAA after LA for patients with complicated appendicitis was reported...
to be higher in some studies. Tuggle and colleagues reported that LA in patients with complicated appendicitis was associated with an incidence of IAA of 6.7 versus 3.7% in patients who underwent an open appendectomy [98]. The incidence of small bowel obstructions after LA is lower compared to OA (pooled odds ratio 0.44 [95% CI 0.26–0.74] with large heterogeneity regarding follow-up period) [65].

In case of a contained phlegmon or abscess (peri-appendicular mass), some authors opt for non-operative treatment while others advocate aggressive operative treatment. In 2007, Andersson et al. [99] demonstrated that immediate surgical treatment of patient with an abscess or phlegmon was associated with higher morbidity compared to initial non-operative treatment (OR 3.3 95% CI 1.9–5.6). Simlis et al. showed in their meta-analysis of 17 studies regarding this specific patient group that non-operative treatment was associated with fewer complications (SSI, IAA and bowel obstructions). It must be mentioned that this meta-analysis was subject to large heterogeneity [100]. Recent cohort studies draw opposite conclusions [101, 102]. They opt for a more aggressive surgical approach at time of presentation in case of an appendicular mass or appendicular abscess, based upon the idea that there is a relative high failure rate for non-surgical treatment [101, 102]. In our opinion, with this new evidence, a new systematic review should be performed. Until then, initial non-operative treatment of an appendicular mass is still subject of debate. Some opt for an interval appendectomy based upon the chance of missing an underlying and untreated malignancy (incidence 6%) and the chance of developing recurrent appendicitis (incidence 5–44%) [101–103]. Both can be avoided with an interval appendectomy, although data are lacking on its benefits.

Specific patient groups

Obese patients

Abdominal surgery in obese patients is challenging for both the anaesthesiologist and surgeon due to higher incidence of respiratory dysfunction, difficult access to the abdominal cavity, blurred anatomical landmarks and reduced working space in the abdominal cavity. Clarke et al. [104] performed a subgroup analysis among 37 patients (14 LA and 23 OA) with a BMI higher than 30 kg/m² and reported similar morbidity after LA and OA [104]. This was confirmed by a meta-analysis, although a reduced length of hospital stay was noted after LA [105]. More recently, two recent meta-analyses showed a reduction of mortality and morbidity rates after LA [106, 107].

Pregnancy

Pregnancy induces anatomical and physiological changes that challenge the surgeon. The potential effects of carbon dioxide and increased abdominal pressure during LA on the foetus remain unclear. Loss of the foetus is most feared. In 2008, Walsh et al. [108] published a systematic review of 637 laparoscopic appendectomies in pregnant patients and noted foetal loss in approximately 6% of the patients, with the highest incidence in patients with complicated appendicitis. Another review confirmed these findings and reported a nearly twofold increase of foetal loss in the LA group [109]. Both reviews, however, are mainly dominated by one study and based on low-grade evidence (retrospective studies with small numbers of patients) [108–110]. Recently, a review suggested that based upon the little available evidence no recommendation can be made regarding the preferred approach in pregnant patients [111]. More studies are necessary to ascertain the role of laparoscopic surgery during pregnancy. Until more evidence comes available, the surgical approach should be at the surgeon’s discretion. Based upon expert opinion, we recommend laparoscopy in case of sufficient experience. Although not supported by the literature, we strongly advise a multi-disciplinary approach to the pregnant patient with appendicitis [13, 54, 82, 111, 112].

Children

One meta-analysis included 107,624 children with both uncomplicated and complicated appendicitis [113]. Laparoscopic appendectomy in children with uncomplicated appendicitis LA was associated with a significant reduction of hospital stay with similar morbidity compared to open surgery. In children with complicated appendicitis, LA was associated with lower rates of morbidity, SSI, length of hospital admission and bowel obstruction. However, laparoscopic surgeries lasted longer and were followed by more intra-abdominal abscesses [113]. In more recent prospective cohort studies in children below 5 years of age, LA was associated with fewer complications [114]. Non-operative treatment of acute non-complicated appendicitis appears more promising in children than in adults [115, 116].

Elderly

Elderly patients have higher morbidity, reduced physiological reserves and impaired inflammatory responses,
which increases their peri-operative risks. All studies of laparoscopic appendectomy in elderly support the use of laparoscopic surgery [117–121]. One meta-analysis, comprising more than 15,000 patients reported that LA reduced post-operative mortality (0.24; 95 % CI 0.15–0.37), post-operative complications (0.61; 95 % CI 0.50–0.73) and length of hospital stay (−0.51; 95 % CI −0.64 to −0.37) compared to OA (Tables 1, 2, 3, 4)[119].

Timing

Determining the best moment to perform surgery in case of acute appendicitis is of crucial importance [122, 123]. Acute appendicitis has been considered to be an irreversible progressive disease although recent studies have questioned this dogma [84, 89, 124]. Nowadays, the idea is endorsed that two types of appendicitis exist: uncomplicated (non-perforating) and complicated (perforating) appendicitis. The aetiology and pathogenesis of acute appendicitis remain largely unknown. Predicting a mild or fulminant course of appendicitis is not possible. Delaying an appendectomy increases the risk of perforated appendicitis, which is associated with higher incidence of short and long-term morbidity [125–127]. Hence, it is recommended to perform appendectomy as soon as possible. Although it should be noted that some studies have revealed that the clinical outcome was not affected by time to surgery (when surgery was performed within 12 h after presentation at the emergency department) [128, 129].

Antibiotic prophylaxis

Antibiotic prophylaxis has been proven effective in prevention of superficial surgical site infections and intra-abdominal abscesses in patients with appendicitis [130–132]. Prophylaxis should be commenced at the time of establishing the diagnosis of acute appendicitis. The choice of antibiotics is dependent on the local microbiome and drug resistance pattern and is not influenced by age.

Technique

Open access to the abdominal cavity as well as closed access using the Veress needle are accepted techniques to perform laparoscopy [133–135]. The debate on the preferred technique continues. However, in children, the majority of surgeons employs open establishment of a pneumoperitoneum.

The placement of the camera port and the work ports depend on the anatomy of the patient and preference of the operating surgeon. Primary principle of trocar placement in laparoscopy is that a triangular working space should be pursued.

Intra-operative procedure

Increased employment of pre-operative radiologic testing (e.g. ultrasound, CT or MRI) in cases of suspected appendicitis has significantly reduced the incidence of a normal appearing appendix encountered during surgery [136]. Macroscopic distinction between a normal appendix and appendicitis during surgery can be difficult [137, 138]. The “gold standard” for defining appendicitis is histopathology. In some studies, histopathological assessment revealed abnormal findings in up to 26 % of macroscopically normal appearing appendices [139, 140]. Therefore, it is recommended to perform an appendectomy in case of a normal appearing appendix during surgery for suspected appendicitis.

Several studies have investigated the safety of different methods of securing the appendicular stump [82, 141–143]. None of the different closure methods has a clear advantage in case of a healthy appendix base. Stapler devices provide the most standardized and patent closure of the appendix base. Suturing of the appendix base provides sufficient closure as well, but is technically more demanding than other techniques [142]. In case of perforation of the appendicular base, clips or endoloops do not provide secure closure and staple devices or laparoscopic suturing is required [82].

Reduction of bacterial load by meticulous suction of intraperitoneal fluids is advised [144–146]. The right paracolic and pelvic area should be inspected to leave no fluid collections behind. Irrigation of the intra-peritoneal space in case of perforated appendicitis seems to be contra-productive leading to a higher number of abscesses [144, 145]. It is believed that irrigation of the intra-peritoneal space leads to spreading of bacteria. Routine use of drains does not reduce the incidence of abscesses [145, 147]. Necessity of a drain for special indications is left to the discretion of the surgeon.

Intra-operative unexpected findings

When an appendicular mass is encountered during surgery, one should restrain from continuing the operation. Continuation of the operation can necessitate bowel resection. Antibiotic treatment of phlegmon and drainage of any abscess should be performed [99, 148, 149].
The extent of surgical resection in case of suspected malignancy depends on the location and size of the appendicular mass [150–154]. Routine inclusion of the meso-appendix with the appendectomy is advised. Definitive histological findings determine whether an additional resection after total appendectomy is necessary.
Table 3 Pre-operative care: recommendations EAES meeting 2015

No.	Recommendation	LOE	SOR
1.	The combined variables of clinical assessment and biochemical testing in the Alvarado score should be used to determine the likelihood of appendicitis. LOE xxx, SOR Strong.		
2.	We recommend that ultrasound should be performed as a first level diagnostic imaging although it has lower diagnostic value in case radiological confirmation is desirable. LOE xxx, SOR Strong.		
3.	If after ultrasound the diagnosis of appendicitis is not confirmed nor ruled out we suggest that additional imaging studies (either a CT or MRI) should be performed. LOE xx□□□, SOR Weak.		
4.	In obese patients a CT or MRI is more accurate than ultrasonography. In case of diagnostic doubt we recommend a CT or MRI in these specific patients. LOE xx□□□, SOR Strong.		
5.	In pregnant patients radiation should be avoided. In case of diagnostic doubt we recommend an MRI in these specific patients. LOE xx□□□, SOR Strong.		
6.	In children radiation should be avoided; in case of diagnostic doubt we recommend an MRI in these specific patients. LOE xx□□□, SOR Strong.		
7.	Non-operative treatment (with antibiotics) of uncomplicated appendicitis in adults is not suggested as high quality evidence of superiority is still lacking. LOE xx□□□, SOR Weak.		
8.	Laparoscopic appendectomy is recommended as the procedure of choice in adults with uncomplicated acute appendicitis. LOE xxx, SOR Strong.		
9.	Laparoscopic appendectomy is suggested as the procedure of choice in patients with perforated appendicitis. LOE xx□□□, SOR Weak.		
10.	Non-operative treatment is suggested as the procedure of choice for patients with an appendiceal mass in the absence of diffuse peritonitis. Data are lacking on the benefits of interval appendectomy. LOE xx□□□, SOR Weak.		
11.	Laparoscopic appendectomy is recommended as the procedure of choice in obese patients with acute appendicitis. LOE xx□□□, SOR Strong.		
12.	Laparoscopic appendectomy is suggested as the procedure of choice in pregnant patients with acute appendicitis. It should even be considered in the third trimester. LOE xx□□□, SOR Weak.		
13.	Laparoscopic appendectomy is suggested as the procedure of choice in children with acute appendicitis and an indication for appendectomy. LOE xx□□□, SOR Weak.		
14.	Laparoscopic appendectomy is recommended as the procedure of choice in patients over 65 years of age. LOE xx□□□, SOR Strong.		

LOE level of evidence, SOR strength of recommendation
X means present, Box means not present

Agreement
Partial agreement
Disagreement
Don’t know
indicated. In cases of small neuroendocrine tumours (NET) or low-grade appendicular mucinous neoplasms (LAMN), a total meso-appendicular resection can be sufficient. In cases of a NET > 1 cm, LAMN grade 3–4 or an adenocarcinoma of the appendix, a formal right hemicolectomy is indicated to provide an oncologically sufficient resection. It is advised to perform a total meso-appendicular resection at the primary operation and an
additional hemicolectomy at a later stage when indicated (Tables 5, 6, 7, 8) [150–154].

Post-operative antibiotics

The incidence of SSI after appendectomy has been reported to range from 0 to 11 % [155–164]. The severity of appendicitis strongly influences the risk of developing post-operative complications resulting in a substantially higher complication rate (up to 2–4 times) in patients with complicated appendicitis. In this specific group, post-operative administration of antibiotics significantly reduces the rate of SSI. In addition, to reduce bacteraemia and sepsis, these patients are uniformly treated with a course of post-operative antibiotics [155–158, 163]. In uncomplicated appendicitis, there is no evidence supporting routine administration of post-operative antibiotics. Therefore, only one pre-operative dose is advised [155–158].

Advice on type of antibiotics depends on local microbiome and resistance patterns and therefore should be left up to the discretion of the surgeon [159, 160]. Available evidence on duration of treatment is limited and mainly focused on children. However, there is no firm evidence on the duration (3, 5, 7, 10 days) and route of administration (usually intravenous administration for 48 h, then oral administration) [156, 157, 159, 161, 162].

Post-operative complications

The incidence of post-operative complications ranges from 3.0 to 28.7 % [164–174]. Complications include small bowel obstruction (0–1.9 %), SSI (1.2–12.0 %), IAA (1.6–8 %), stump leakage and stump appendicitis [164–174]. Literature suggests a higher rate of complications in complicated appendicitis [166, 167, 171, 175].

Literature on stump leakage and stump appendicitis is limited, and no exact incidences have been reported in the literature, although it is assumed that it is more
It is suggested that there is no indication for routine postoperative nasogastric tube placement in children or adults. LOE x x x, SOR Strong

5. It is suggested that there is no indication for routine postoperative catheter placement in children or adults. LOE x x x, SOR Weak

6. Open: supine, one or both arms out, surgeon at the right side, assistant on the left side. Laparoscopic: supine, right arm out, left arm along body, surgeon and assistant on the left side. LOE x x x, SOR Weak

7. The consensus held a preference for open access to the peritoneal cavity because of rare but serious complications associated with the Veress needle. LOE x x x, SOR Strong

8. Based upon the literature no recommendation can be made which trocars should be used and their placement. This should be left at the surgeon's discretion. Three-port technique should be standard although in cases of sufficient experience single port is preferred.

9. It is suggested to remove the "normal" appearing appendix when operating for suspected appendicitis when no other pathology is identified. LOE x x x, SOR Weak

10. The use of stapler or suture is recommended over clips or endoloops when the appendix base is inflamed, necrotic or perforated.

11. It is recommended that extraction of the appendix should avoid direct contact of the appendix and the abdominal wall. There are several methods of achieving this and there is no evidence supporting one above the other. LOE x x x, SOR Strong

12. In general, meticulous suction of intra-peritoneal fluid or collections is suggested; the philosophy should be: "Leave no pus behind". Routine use of drains in appendectomy is not recommended. LOE x x x, SOR Weak/Strong

13. Primary wound closure is recommended for all cases of open appendectomy. LOE x x x, SOR Strong

14. It is recommended to treat an inflammatory mass conservatively. We recommend that when encountered during laparoscopy, refrain from appendectomy. During follow-up, additional imaging is advised. Data are lacking on the benefits of interval appendectomy.

15. It is suggested that definitive treatment of a suspected malignancy will depend on final histological and staging information after initial treatment of the operative findings and may require further surgery or adjunct treatment. LOE x x x, SOR Weak

LOE level of evidence, SOR strength of recommendation
X means present, Box means not present

common in patients with complicated appendicitis and after OA [176]. A recommendation to avoid stump leakage or stump appendicitis is to resect the appendix as a whole [176]. Therefore, the stump should be no longer than 0.5 cm and caecal taenia should be followed onto the appendix at removal to ensure complete resection. Stump appendicitis is significantly more associated with perforation, as diagnosis is delayed by misled attention. This is caused by the assumption that the appendix as a whole is resected. Prevention is crucial. In case of timely diagnosis, stump resection with laparoscopic or open approach is feasible. In case of perforation, extended bowel resection is usually required [176].

In the initial management of IAA after appendectomy conservative measures (i.e. non-operative with antibiotics) are effective in most patients. However, in case of lack of improvement or deterioration, a more invasive strategy
should be applied (percutaneous drainage or surgical (laparoscopic) drainage) [177–179].

Post-operative care

The use of prophylactic anti-emetics diminishes the incidence of post-operative nausea and vomiting. Increasing the diet is best determined by the patient’s ability to tolerate oral intake.

There is no evidence that a liberal diet causes complications in the post-operative period [164, 180].

Post-operative pain management should follow local protocol for pain management after abdominal surgery. Post-operative analgesia with PCA provides effective and safe pain relief in children and adults and is less time costly [181]. Recently positive results have been published regarding the pre-emptive incision site infiltration with a local anaesthetic. Studies demonstrated that this decreases the total opioid consumption and lowers pain

Table 8 Operative care: recommendations web survey

Recommendation	LOE	SOR
1. We recommend that surgery is performed as soon as feasible after diagnosis. LOE X, SOR Strong		
2. Prophylactic antibiotics are recommended in appendectomy in adults. LOE X, SOR Strong		
3. Prophylactic antibiotics are recommended in appendectomy in children. LOE X, SOR Strong		
4. It is suggested that there is no indication for routine postoperative nasogastric tube placement in children or adults. LOE X, SOR Weak		
5. It is suggested that there is no indication for routine postoperative catheter placement in children or adults. LOE X, SOR Weak		
6. Open supine, one or both arms out, surgeon at the right side, assistant on the left side. Laparoscopic supine, right arm out, left arm along body, surgeon and assistant on the left side. LOE X, SOR Weak		
7. The consensus held a preference for open access to the peritoneal cavity because of rare but serious complications associated with the Veress needle. LOE X, SOR Strong		
8. Based upon the literature no recommendation can be made which trocars should be used and their placement. This should be left at the surgeon’s discretion. Three-port technique should be standard although in cases of sufficient...		
9. It is suggested to remove the “normal” appearing appendix when operating for suspected appendicitis when no other pathology is identified. LOE X, SOR Weak		
10. The use of stapler or suturing is recommended over clips or endoloops when the appendix base is inflamed, necrotic or perforated. The use of alternative measures to secure the appendiceal stump in this case may be insufficient. If this is...		
11. It is recommended that extraction of the appendix should avoid direct contact of the appendix and the abdominal wall. There are several methods of achieving this and there is no evidence supporting one above the other. LOE X, SOR...		
12. In general, mesothelial suction of intra-peritoneal fluid or collections is suggested; the philosophy should be “leave no...” Routine use of drains in appendectomy is not recommended. LOE X, SOR Weak/Strong		
13. Primary wound closure is recommended for all cases of open appendectomy. LOE x, SOR Strong		
14. It is recommended to treat an inflammatory mass conservatively. We recommend that when encountered during laparoscopy, resect from appendix. During follow-up: additional imaging is advised. Data are lacking on...		
15. It is suggested that definitive treatment of a suspected malignancy will depend on final pathological and staging information after initial treatment of the operative findings and may require further surgery or adjunct treatment. LOE...		

LOE level of evidence, SOR strength of recommendation

X means present, Box means not present
The available evidence. Results from this meeting led to this paper, which can be used as a guideline for surgeons treating patients with appendicitis. Local guidelines, national guidelines and guidelines from scientific communities regarding appendicitis were available but showed great heterogeneity [13, 14, 203]. With this consensus meeting, we managed to gather experts from different European nations to compare and debate management of patients with acute appendicitis. This led to a consensus meeting in which 41 of the 46 statements and the majority of the members of the EAES supported recommendations. The transfer of knowledge between the member countries, the opportunity to discuss views and above all, the creation of a widely supported paper appears valuable.

Our list of topics was created by the coordinating team and expert panel and was thought to cover the most important topics in the field of acute appendicitis. Despite local differences, the general idea within the consensus group on the management of patients with acute appendicitis was comparable. In some cases, differences of treatment strategies between members of the expert panel were due to available surgical supplies and finances. This is reflected for instance on the statements and recommendations regarding SILS and MRI. However, we want to emphasize that in defining statements we refrained from stating specific procedures. We rather stated the general principles to follow. In this way, the results from this

Discussion

This EAES consensus development conference regarding the diagnosis and management of acute appendicitis resulted in 46 statements and recommendations based upon the available evidence. Results from this meeting led to this paper, which can be used as a guideline for surgeons treating patients with appendicitis. Local guidelines, national guidelines and guidelines from scientific communities regarding appendicitis were available but showed great heterogeneity [13, 14, 203]. With this consensus meeting, we managed to gather experts from different European nations to compare and debate management of patients with acute appendicitis. This led to a consensus meeting in which 41 of the 46 statements and the majority of the members of the EAES supported recommendations. The transfer of knowledge between the member countries, the opportunity to discuss views and above all, the creation of a widely supported paper appears valuable.

Our list of topics was created by the coordinating team and expert panel and was thought to cover the most important topics in the field of acute appendicitis. Despite local differences, the general idea within the consensus group on the management of patients with acute appendicitis was comparable. In some cases, differences of treatment strategies between members of the expert panel were due to available surgical supplies and finances. This is reflected for instance on the statements and recommendations regarding SILS and MRI. However, we want to emphasize that in defining statements we refrained from stating specific procedures. We rather stated the general principles to follow. In this way, the results from this

Table 9 After care: statements

LOE level of evidence	X means present, Box means not present
Agreement	Box
Disagreement	X
Don’t know	x

Table 10 After care: statements web survey

LOE level of evidence	X means present, Box means not present
Agreement	Box
Disagreement	X
Don’t know	x

 Springer
The methodology of a consensus guideline is always subject to discussion. In the literature, there are several ways to conduct consensus conferences [20, 204–206]. However, not one was suited for our situation. It was therefore decided to modify the Delphi method, as described in the method section, in order to systematically evaluate each statement and recommendation [20–22]. We decided to finalize only those statements and recommendation with 70 % or more consensus, which is the arbitrary cut-off value we selected. The results of both the web-based survey and the live voting at the EAES conference in Bucharest are presented independently rather than combined to rule out any bias. As expected, small differences were noted between the several voting rounds. Although supported by the experts, some statements and recommendations were not supported by the scientific community in both the web survey as in the Bucharest meeting. The topics that were not supported were on accuracy of MRI compared to CT, the application of SILS, extensive work-up in the elderly and treatment strategy for immune compromised patients and the open access to the peritoneal cavity. Explanations for these discrepancies might be related to local habits, experience and financial situation. Of more interest are the discrepancies noted between the outcome in the web survey and during the Bucharest meeting. Discrepancies were noted on the topic of MRI application in children, the preferred approach in pregnant patients and the use of local anaesthetics prior to incision. This can again be explained by the fact that local habits, experience, composition of the voting public and financial situation might influence the outcome. The question was raised if the web survey alone would be sufficient to reach a consensus for future meetings. Limiting a consensus meeting to only the web survey would limit the time as well as the costs involved. Moreover, a higher percentage of surgeons participated in the web survey. In our opinion, however, the integration of an actual face-to-face meeting in the consensus methodology raises more awareness, provides an opportunity to discuss views and encourages the transfer of knowledge eventually leading to the creation of a widely supported paper.

The literature review was ended in December 2014. No studies after that were integrated for the consensus meeting as this was decided in our methodology. Therefore, new studies might have been conducted on some topics. Future research should be focused on the laparoscopic appendectomy in pregnant patients, elucidating the value of MRI in specific patient groups, evaluating the outcomes of initial non-operative treatment for both uncomplicated and complicated appendicitis, specific patient groups and the need for interval appendectomy. We therefore propose that these statements are updated on a regular basis.

Table 11 After care: recommendations EAES meeting

LOE level of evidence, SOR strength of recommendation
X means present, Box means not present

| 1. It is recommended to send all appendices to the pathology department routinely and the operator will review the results. LOE xX0, SOR Strong |
| 2. We suggest the use of a local anesthetic for subcutaneous and muscular infiltration of incision sites prior to incision. LOE xX0, SOR Weak |
| 3. There is no reason to restrict the postoperative diet after an uncomplicated appendectomy. LOE xX0, SOR Weak |
| 4. In order to prevent stump appendicitis it is suggested that the appendiceal stump should be no longer than 0.5 cm. Timely diagnosis allows laparoscopic stump resection. Delayed diagnosis may require extended bowel resection. LOE xX0, SOR Weak |
| 5. Initial treatment of IA is conservative with antibiotics. In some patients this may need to be combined with radiological or surgical drainage. LOE xX0, SOR Weak |
| 6. In complicated appendicitis, postoperative antibiotics are recommended. LOE xX0, SOR Strong |

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Although some limitations can be identified in our methodology, we have integrated a new systematic method for a consensus meeting. In our opinion, this is the way forward and we need to efflorescence this method. Reproducibility, involving members of the scientific community and applicability are key components of a consensus meeting. We believe that only after evaluation of the general opinion within the EAES such guidelines should be put into order.

In conclusion, the consensus meeting of the EAES resulted in several statements and recommendations regarding the diagnosis and management of appendicitis based upon available evidence and expert opinion and was supported by the European surgical community. It provides guidance to surgeons and surgical residents facing patients with acute appendicitis.

Funding This project was supported by a grant from the EAES.

Compliance with ethical standards

Disclosures Dr. Antoniou received personal fees from the EAES (including Journal and Publication Committee) and from the European Hernia Society. Dr. Muyssoms received grants personal fees and non-financial support from Medtronic and Johnson & Johnson. He received grants and personal fees from B. Braun and Dynamesh. He received personal fees from BARD davol, Cousin Biotech, WL Gore® and Dansac outside the submitted work. Prof. Dr. Bonjer received grants and personal fees from Johnson & Johnson, Applied Medical, Medtronic and Olympus. He received personal fees from Cook. All outside the submitted work. Drs. Defoort, Dr. Go, Prof. Dr. Ozmen, Dr. Rhodes, Drs. Gorter, Dr. Eker, Drs Gorter-Stam, Drs. Abis, Drs. Acharya, Drs. Ankersmit, Drs. Arolfo, Drs. Babic, Prof. Dr. Boni, Drs. Brunink, Drs. Van Dam, Drs. Deijen, Drs. DeLacy, Drs. Harmsen, Drs. Van den Helder, Dr. Iordache, Drs. Ket, Drs. Papoulas, Drs. Strautman, Drs. Tenhagen, Drs. Turrado, Dr. Vereczki, Prof. Dr. Vilallonga and Drs. Deelder have no conflict of interest or financial ties to disclose.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Andersson R, Hugander A, Thulin A, Nyström PO, Olaison G (1994) Indications for operation in suspected appendicitis and incidence of perforation. BMJ 308:107–110
2. Basoli A, Zarba Meli E, Salvio A, Crovaro M, Scopelliti G, Mazzocchi P, Lomanto D, Fiocca F, Speranza V (1993) Trends in the incidence of acute appendicitis in Italy during the past 30 years. Minerva Chir 48:127–132
3. Elangovan S, Knapp DP, Kallail KJ (1997) Incidence of acute appendicitis confirmed by histopathologic diagnosis. Kans Med 98:10–13
4. Ilves I, Fagerström A, Herzig KH, Juvenon P, Miettinen P, Paajanen H (2014) Seasonal variations of acute appendicitis and nonspecific abdominal pain in Finland. World J Gastroenterol 20:4037–4042
5. Viniol A, Keunecke C, Biroga T, Stajde R, Dornieden K, Bösner S, Donner-Banzhoff N, Haasenritter J, Becker A (2014) Studies of the symptom abdominal pain—a systematic review and meta-analysis. Fam Pract 31:517–529
6. Wei PL, Chen CS, Keller JJ, Lin HC (2012) Monthly variation in acute appendicitis incidence: a 10-year nationwide population-based study. J Surg Res 178:670–676
7. Oguntola AS, Adeoti ML, Owemolade TA (2010) Appendicitis: trends in incidence, age, sex, and seasonal variations in South-Western Nigeria. Ann Afr Med 9:213–217
8. Petroianu A, Oliveira-Neto JE, Alerti LR (2004) Comparative incidence of acute appendicitis in a mixed population, related to skin color. Arq Gastroenterol 41:24–26
9. Brink CF, Prinsloo H, van der Poel JS (1985) The seasonal incidence of acute appendicitis. S Afr Med J 68:156–158
10. Blanco FC, Sandler AD, Nadler EP (2012) Increased incidence of perforated appendicitis in children with obesity. Clin Pediatr (Phila) 51:928–932
11. Walker AR, Shipton E, Walker BF, Manetsi B, Van Rensburg PS, Vorster HH (1989) Appendicectomy incidence in black and white children aged 0 to 14 years with a discussion on the disease’s causation. Trop Gastroenterol 10:96–101
12. Fitz RH (1886) Perforating inflammation of the vermiform appendix. Am J Med Sci 92:321–346
13. Bakker OJ, Go PM, Puylaert JB, Kazemier G, Heij HA, Werkgroep richtlijn Diagnostiek en behandeling van acute appendicitis (2010) Guidelines on diagnosis and treatment of acute appendicitis: imaging prior to appendectomy is recommended. Ned Tijdsschr Geneeskd 54:A303
14. Kornsorffer JR Jr, Fellinger E, Reed W (2010) SAGES guideline for laparoscopic appendectomy. Surg Endosc 24:757–761
15. Howick J (2009) Oxford centre for evidence-based medicine—levels of evidence. http://www.cebm.net/oxfords-centre-evidence-based-medicine-levels-evidence-march-2009. Accessed on the first of November 2014
16. Guyatt GH, Oxman AD, Vist G, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ (2008) Rating quality of evidence and strength of recommendations GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926
17. Golder G, Howick J (2013) Understanding GRADE: an introduction. J Evid Based Med 6:50–54
18. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O'Connell D, Oxman AD, Phillips B, Schünemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr, Zaza S, Donner-Banzhoff N, Vorster HH (2009) Scottish Intercollegiate Guidelines Network (SIGN) (1993). Sign methodology. http://www.sign.ac.uk/methodology/index.html. Accessed first of November 2014
19. Boukediad R, Abdoul H, Loustau M, Sibony O, Alberti C (2011) Using and reporting the Delphi method for selecting healthcare quality indicators: a systematic review. PLoS ONE. doi:10.1371/journal.pone.0020476
20. Dalkey NC, Helmer O (1963) An experimental application of the Delphi method to the use of experts. Manage Sci 9: 458–467
21. Hasson F, Keeney S, McKenna H (2000) Research guidelines for the Delphi survey technique. J Adv Nurs 32:1008–1015
22. Bundy DG, Byerley JS, Liles EA, Perrin EM, Katznelson J, Rice HE (2007) Does this child have appendicitis? JAMA 298:438–451
23. Andersen RE (2004) Meta-analysis of the clinical and laboratory diagnosis of appendicitis. Br J Surg 91:28–37
24. Alvarado A (1986) A practical score for the early diagnosis of acute appendicitis. Ann Emerg Med 15:557–564
25. Samuel M (2002) Pediatric appendicitis score. J Pediatr Surg 37:877–881
26. Ohle R, O’Reilly F, O’Brien KK, Fahey T, Dimitrov BD (2011) The Alvarado score for predicting acute appendicitis: a systematic review. BMC Med. doi: 10.1186/1710-1058-9-139
27. Kulik DM, Uleryk EM, Maguire JL (2013) Does this child have appendicitis? A systematic review of clinical prediction rules for children with acute abdominal pain. J Clin Epidemiol 66:95–104
28. Ebell MH, Shinholser J (2014) What are the most clinically useful cutoffs for the Alvarado and pediatric appendicitis scores? A systematic review. Ann Emerg Med 64:365–372
29. Carroll PJ, Gibson D, El-Faedy O, Dunne C, Coffey C, Hannigan A, Walsh SR (2013) Surgeon-performed ultrasound at the bedside for the detection of appendicitis and gallstones: systematic review and meta-analysis. Am J Surg 205:102–108
30. Douglas CD, Macpherson NE, Davidson PM, Gani JS (2000) Randomised controlled trial of ultrasonography in diagnosis of acute appendicitis, incorporating the Alvarado score. BMJ 321:919–922
31. Parker L, Nazarian LN, Gingold EL, Palit CD, Hoey CL, Frangos AJ (2014) Cost and radiation savings of partial substitution of ultrasound for CT in appendicitis evaluation: a national projection. AJR Am J Roentgenol 202:124–135
32. Doria AS, Moinedin R, Kellenberger CJ, Epelman M, Beyene J, Schnuh PS, Dick PT (2006) US or CT for diagnosis of appendicitis in children and adults? A meta-analysis. Radiology 241:83–94
33. Horton MD, Counter SF, Florence MG, Hart MJ (2000) A prospective trial of computed tomography and ultrasonography for diagnosing appendicitis in the atypical patient. Am J Surg 179:379–381
34. Kwok MY, Kim MK, Gorelick MH (2004) Evidence-based approach to the diagnosis of appendicitis in children. Pediatr Emerg Care 20:690–698
35. van Randen A, Bnipat S, Zuidenerman AH, Ubink DT, Stoker J, Boermeester MA (2008) Acute appendicitis: meta-analysis of diagnostic performance of CT and graded compression US related to prevalence of disease. Radiology 249:97–106
36. van Randen A, Laméris W, van Es HW, van Heesewijk HP, van Ramshorst B, Ten Hove W, Bouma WH, van Leeuwen MS, van Keulen EM, Bossuyt PM, Stoker J, Boermeester MA, OPTIMA Study Group (2011) A comparison of the accuracy of ultrasound and computed tomography in common diagnoses causing acute abdominal pain. Eur Radiol 21:1535–1545
37. Weston AR, Jackson TJ, Blamøy S (2005) Diagnosis of appendicitis in adults by ultrasonography or computed tomography: a systematic review and meta-analysis. Int J Technol Assess Health Care 21:368–379
38. Terasawa T, Blackmore CC, Bent S, Kohlwes RJ (2004) Systematic review: computed tomography and ultrasonography to detect acute appendicitis in adults and adolescents. Ann Intern Med 141:537–546
39. Hlibczuk V, Dattaro JA, Jin Z, Falzon L, Brown MD (2010) Diagnostic accuracy of noncontrast computed tomography for appendicitis in adults: a systematic review. Ann Emerg Med 55:51–59
40. Howell JM, Eddy OL, Lukens TW, Thiessen ME, Weingart SD, Decker WW, American College of Emergency Physicians
(2010) Clinical policy: critical issues in the evaluation and management of emergency department patients with suspected appendicitis. Ann Emerg Med 55:71–116

42. Kaiser S, Frenckner B, Jorulf HK (2002) Suspected appendicitis in children: US and CT—a prospective randomized study. Radiology 223:633–638

43. Neumayer L, Kennedy A (2003) Imaging in appendicitis: a review with special emphasis on the treatment of women. Obstet Gynecol 102:1404–1409

44. Stephen AE, Segev DL, Ryan DP, Mullins ME, Kim SH, Schnitzer JJ, Doody DP (2003) The diagnosis of acute appendicitis in a pediatric population: to CT or not to CT. J Pediatr Surg 38:367–371

45. Brenner DJ, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

46. Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimates of the cancer risks from pediatric CT radiation are not merely theoretical: comment on “point/counterpoint: in X-ray computed tomography, technique factors should be issues selected appropriate to patient size against the proposition”. Med Phys 28:2387–2388

47. Kim K, Kim YH, Kim SY, Kim S, Lee YJ, Kim KP, Lee HS, Ahn S, Kim T, Hwang SS, Song KJ, Kang SB, Kim DW, Park SH, Lee KH (2012) Low-dose abdominal CT for evaluating suspected appendicitis. N Engl J Med 366:1596–1605

48. Anderson BA, Salem L, Flum DR (2005) A systematic review of whether oral contrast is necessary for the computed tomography diagnosis of appendicitis in adults. Am J Surg 190:474–478

49. Fonseca AL, Schuster KM, Kaplan LJ, Maung AA, Lui FY, Davis KA (2014) The use of magnetic resonance imaging in the diagnosis of suspected appendicitis in pregnancy: shortened length of stay without increase in hospital charges. JAMA Surg 149:687–693

50. Barger RL Jr, Nandalur KR (2010) Diagnostic performance of magnetic resonance imaging in the detection of appendicitis in adults: a meta-analysis. Acad Radiol 17:1211–1216

51. Anderson SW, Rhea JT, Milch HN, Ozonoff A, Lucey BC, Soto JA (2010) Influence of body habitus and use of oral contrast on reader confidence in patients with suspected acute appendicitis using 64 MDCT. Emerg Radiol 17:445–453

52. Sauerland S, Jaschinki T, Neugebauer EA (2010) Laparoscopic appendectomy in uncomplicated appendicitis: a prospective randomised cohort study. Surg Endosc 24:266–269

53. Markar SR, Penna M, Harris AM (2014) Laparoscopic approach to appendectomy reduces the incidence of short- and long-term post-operative bowel obstruction: systematic review and pooled analysis. J Gastrointest Surg 18:1683–1692

54. Pelosi MA, Pelosi MA 3rd (1992) Laparoscopic appendectomy versus conventional laparoscopic appendectomy for acute appendicitis: a metaanalysis. Surg Endosc 25:1199–1208

55. Wei HB, Huang JL, Zheng ZH, Wei B, Zhe F, Qiu WS, Guo WP, Wang TB (2010) Laparoscopic versus open appendectomy: a prospective randomized comparison. Surg Endosc 24:266–269

56. Wei HB, Huang JL, Zheng ZH, Wei B, Zheng F, Qiu WS, Guo WP, Wang TB (2010) Laparoscopic versus open appendectomy for acute appendicitis: a metaanalysis. BMC Gastroenterol. doi:10.1186/1471-230X-10-129

57. Liu Z, Zhang P, Ma Y, Chen H, Zhou Y, Zhang M, Chu Z, Qin H (2010) Laparoscopy or not: a meta analysis of the surgical effects of laparoscopic versus open appendectomy. Surg Endosc 24:362–370

58. Othani H, Tamamori Y, Arimoto Y, Nishiguchi Y, Maeda K, Hirakawa K (2012) Meta-analysis of the results of randomized controlled trials that compared laparoscopic and open surgery for acute appendicitis. J Gastrointest Surg 16:1929–1939

59. Wilson DG, Bond AK, Ladwa N, Sajid MS, Baig MK, Sains P (2013) Intra-abdominal collections following laparoscopic versus open appendicectomy: an experience of 516 consecutive cases at a district general hospital. Surg Endosc 27:2351–2356

60. Markar SR, Karthikesalingam A, Di Franco F, Harris AM (2013) Systematic review and meta-analysis of single-incision versus conventional multiport appendicectomy. Br J Surg 10:1709–1718

61. Othani H, Tamamori Y, Arimoto Y, Nishiguchi Y, Maeda K, Hirakawa K (2012) Meta-analysis of the results of randomized controlled trials that compared laparoscopic and open surgery for acute appendicitis. J Gastrointest Surg 16:1929–1939

62. Li X, Zhang J, Fang L, Zhang W, Chu Z, Li X, Liu Y (2010) Laparoscopic versus conventional appendectomy—a meta-analysis of randomized controlled trials. BMC Gastroenterol. doi:10.1186/1471-230X-10-129

63. Wei HB, Huang JL, Zheng ZH, Wei B, Zhe F, Qiu WS, Guo WP, Wang TB (2010) Laparoscopic versus open appendectomy: a prospective randomized comparison. Surg Endosc 24:266–269

64. Wei HB, Huang JL, Zheng ZH, Wei B, Zhe F, Qiu WS, Guo WP, Chen TF, Wang TB (2010) Laparoscopic versus open appendectomy: a metaanalysis of randomized controlled trials. Surg Endosc 25:1199–1208

65. Wei HB, Huang JL, Zheng ZH, Wei B, Zhe F, Qiu WS, Guo WP, Dong Y (2010) Laparoscopic versus open appendectomy for acute appendicitis: a metaanalysis. BMC Gastroenterol. doi:10.1186/1471-230X-10-129

66. Kapischke M, Friedrich F, Hedderich J, Schulz T, Caliebe A, Schmiedt S, Frenckner B, Jorulf HK (2002) Suspected appendicitis in a pediatric population: to CT or not to CT. J Pediatr Surg 38:367–371

67. Pelosi MA, Pelosi MA 3rd (1992) Laparoscopic appendectomy versus open appendectomy for acute appendicitis: a metaanalysis. Surgery 102:1404–1409

68. Antoniou SA, Koch OO, Antoniou GA, Lasithiotakis K, Chalkiadakis GE, Pointner R, Granderath FA (2014) Meta-analysis of randomized trials on single-incision laparoscopic versus conventional laparoscopic appendectomy. Am J Surg 207:625–629

69. Frutos D, Abrigueta J, Lujan J, Abellan I, Parrilla P (2013) Randomized prospective study to compare laparoscopic appendectomy versus umbilical single incision appendectomy. Ann Surg 257:413–418

70. Gill RS, Shi X, Al-adra DP, Birch DW, Kamali S (2012) Single-incision appendectomy is comparable to conventional laparoscopic appendectomy: a systematic review and pooled analysis. Surg Endosc 26:319–327

71. Cai YL, Xiong XZ, Wu SJ, Cheng Y, Lu J, Zhang J, Lin YX, Cheng NS (2013) Single-incision laparoscopic appendectomy vs conventional laparoscopic appendectomy: systematic review and meta-analysis. World J Gastroenterol 19:5165–5173

72. Cerverus M, Morante-Corral A, Moreno-Sanz C, Herrero-Bogado ML, Picazo-Yeste JS, Tadeo-Ruiz G (2014) Systematic review and meta-analysis of randomized controlled trials comparing single incision versus conventional laparoscopic appendicectomy. World J Surg 38:1937–1946

73. Markar SR, Karthikesalingam A, Di Franco F, Harris AM (2013) Systematic review and meta-analysis of single-incision versus conventional multiport appendicectomy. Br J Surg 10:1709–1718

74. Xu AM, Huang L, Li TJ (2015) Single-incision versus three-port laparoscopic appendicectomy for acute appendicitis: systematic...
75. Xue C, Lin B, Huang Z, Chen Z (2015) Single-incision laparoscopic appendectomy versus conventional 3-port laparoscopic appendectomy for appendicitis: an updated meta-analysis of randomized controlled trials. Surg Endosc 29:822–843

76. Zhou H, Jin K, Zhang J, Wang W, Sun Y, Ruan C, Hu Z (2014) Single incision versus conventional multiport laparoscopic appendectomy: a systematic review and meta-analysis of randomized controlled trials. Dig Surg 31:384–391

77. Li P, Chen ZH, Li QQ, Qiao T, Tian YY, Wang DR (2013) Safety and efficacy of single-incision laparoscopic surgery for appendectomies: a meta-analysis. World J Gastroenterol 19:4072–4082

78. Liang HH, Hung CS, Wang W, Tam KW, Chang CC, Liu HH, Yan KL, Wei PL (2014) Single-incision versus conventional laparoscopic appendectomy in 688 patients: a retrospective comparative analysis. Can J Surg 57:E89–E97

79. Gao J, Li P, Li Q, Tang D, Wang DR (2013) Comparison between single-incision and conventional three-port laparoscopic appendectomy: a meta-analysis from eight RCTs. Int J Colorectal Dis 28:1319–1327

80. Teoh AYB, Chiu PWY, Wong TCL, Poon MCM, Wong SKH, Leong HT, Lai PB, Ng EK (2012) A double blinded randomized controlled trial of laparosendoscopic single site access versus conventional 3-port appendectomy. Ann Surg 256:909–914

81. Lee WS, Choi ST, Lee JN, Kim KK, Park YH, Lee WK, Baek JH, Lee TH (2013) Single-Port Laparoscopic appendectomy versus conventional laparoscopic appendectomy: A prospective randomized controlled study. Ann Surg 257:214–218

82. Gorter RR, Heij HA, Eker HH, Kazemier G (2014) Laparoscopic appendectomy: state of the art. Tailored approach to the application of laparoscopic appendectomy? Best Pract Res Clin Gastroenterol 28:211–224

83. Hua J, Gong J, Xu B, Yang T, Song Z (2014) Single-incision versus conventional laparoscopic appendectomy: a meta-analysis of randomized controlled trials. J Gastrointest Surg 18:426–436

84. Hansson J, Körner U, Khorram-Manesh A, Solberg A, Lundholm K (2009) Randomized clinical trial of antibiotic therapy versus appendectomy as primary treatment of acute appendicitis in unselected patients. Br J Surg 96:473–481

85. Eriksson S, Granstrom L (1995) Randomized clinical trial of appendectomy versus antibiotic therapy for acute appendicitis. Br J Surg 82:166–169

86. Styrud J, Eriksson S, Nilsson I, Ahlberg G, Haapaniemi S, Neovius G, Rex L, Badume I, Granstrom L (2006) Appendectomy versus antibiotic treatment in acute appendicitis. A prospective multicentre randomized controlled trial. World J Surg 30:1033–1037

87. Malik AA, Bari S (2009) Conservative management of acute appendicitis. J Gastrointest Surg 13:966–970

88. Vons C, Barry C, Maitre S, Pautrat K, Leconte M, Costaglioli B, Neovius G, Rex L, Badume I, Granstrom L (2015) Appendectomy versus antibiotic management: a meta-analysis of post-intervention complications. J Infect 70:105–110

89. Ramadhani KK, Neal KR, Lobo DN (2012) Safety and efficacy of antibiotics compared with appendicectomy for treatment of uncomplicated acute appendicitis: meta analysis of randomised controlled trials. BMJ. doi:10.1136/bmj.e2156

90. Kirya A, Hobson RP, Burke D, Cleveland V, Ford G, West RM (2015) Appendicectomy for suspected uncomplicated appendicitis is associated with fewer complications than conservative antibiotic management: a meta-analysis of post-intervention complications. J Infect 70:105–110

91. Mason RJ, Moazzez A, Sohn H, Katkhouda N (2012) Meta-analysis of randomized trials comparing antibiotic therapy with appendectomy for acute uncomplicated (no abscess or phlegmon) appendicitis. Surg Infect (Larchmt) 13:74–84

92. Ansaloni L, Catena F, Coccolini F, Ercolani G, Gazzotti F, Pasqualini E, Pinna AD (2011) Surgery versus conservative antibiotic treatment in acute appendicitis: a systematic review and meta-analysis of randomized controlled trials. Dig Surg 28:210–221

93. Mason RJ, Moazzez A, Sohn H, Katkhouda N, Cheng BC, Olasky J, Sohn HJ, Moazzez A, Algra J, Chaghouri E, Berne TV (2011) Laparoscopic versus open appendectomy for acute uncomplicated appendicitis (abscess or phlegmon). A systematic review and meta-analysis. Surg Endosc 25:413–419

94. Similis C, Symeonides P, Shorthouse AJ, Tekkis PP (2010) A meta-analysis comparing conservative treatment versus acute appendectomy for complicated appendicitis (abscess or phlegmon). Surgery 147:818–829

95. Kim JK, Ryoo S, Oh HK, Kim JS, Shin R, Choe EK, Jeong SY, Park KJ (2010) Management of appendicitis presenting with abscess or mass. J Korean Soc Coloproctol 26:413–419

96. Deelder JD, Richir MC, Schoorl T, Schreurs WH (2014) How to treat an appendiceal inflammatory mass: operatively or nonopertatively? J Gastrointest Surg 18:641–645

97. Hall NJ, Jones CE, Eaton S, Stanton MP, Burge DM (2011) Interval appendicectomy justified after successful nonoperative treatment of an appendix mass in children? A systematic review. J Pediatr Surg 46:767–771

98. Clarke T, Katkhouda N, Mason RJ, Cheng BC, Olasky J, Sohn HJ, Moazzez A, Algra J, Chaghouri E, Berne TV (2011) Laparoscopic versus open appendicectomy in pregnant women with complicated appendicitis: a systematic review and meta-analysis. J Gastrointest Surg 15:1397–1405

99. Walsh CA, Tang T, Walsh SR (2008) Laparoscopic versus open appendicectomy in pregnancy: a systematic review. Int J Surg 6:339–344
and titanium endoclips in laparoscopic appendiceal stump closure. Surg Laparosc Endosc Percutan Tech 22:226–231
143. Kazemier G, ’t Hof KH, Saad S, Bonjer HJ, Sauerland S (2006) Securing the appendiceal stump in laparoscopic appendectomy: evidence for routine stapling? Surg Endosc 20:1473–1476
144. St Peter SD, Adibe OO, Iqbal CW, Fike FB, Sharp SW, Juang D, Lanning D, Murphy JP, Andrews WS, Sharp RJ, Snyder CL, Holcomb GW, Ostlie DJ (2010) Irrigation versus suction alone during laparoscopic appendectomy for perforated appendicitis. Ann Surg 256:581–585
145. Akkoyun I, Tuna AT (2012) Advantages of abandoning abdominal cavity irrigation and drainage in operations performed on children with perforated appendicitis. J Pediatr Surg 47:1886–1890
146. Hartwich JE, Carter RF, Wolfe L, Goresky M, Heath K, Peter S (2013) The effects of irrigation on outcomes in cases of perforated appendicitis in children. J Surg Res 180:222–225
147. Allemann P, Probst H, Demartines N, Schäfer M (2011) Prevention of infectious complications after laparoscopic appendectomy for complicated acute appendicitis-the role of routine abdominal drainage. Langenbecks Arch Surg 396:63–68
148. St Peter SD, Aguayo P, Fraser JD, Keckler SC, Sharp SW, Leys CM, Murphy JP, Snyder CL, Sharp RJ, Andrews WS, Holcomb GW, Ostlie DJ (2010) Initial laparoscopic appendectomy versus initial nonoperative management and interval appendectomy for perforated appendicitis with abscess: a prospective, randomized trial. J Pediatr Surg 45:236–240
149. Olsen J, Skovdal J, Vquist N, Bisgaard T (2014) Treatment of appendiceal mass—a qualitative systematic review. Dan Med J 61:A4881
150. Misraji J, Yantiss RK, Graeme-Cook FM, Balis UJ, Young RH (2003) Appendiceal mucinous neoplasms: a clinicopathologic analysis of 107 cases. Am J Surg Pathol 27:1089–1103
151. McDonald JR, O’Dwyer ST, Rout S, Chakrabarty B, Sikand K, Fulford PE, Wilson MS, Renehan AG (2012) Classification of and cytoreductive surgery for low-grade appendiceal mucinous neoplasms. Br J Surg 99:987–992
152. Arnason T, Kamionek M, Yang M, Yantiss RK, Misraji J (2015) Significance of proximal margin involvement in low-grade appendiceal mucinous neoplasms. Arch Pathol Lab Med 139:518–521
153. Henderson L, Fehily C, Folaranmi S, Kelsey A, McPartland J, Arnason T, Kamionek M, Yang M, Yantiss RK, Misraji J (2015) Appendiceal carcinoids in children—management and outcomes. J Surg Res 192:250–253
154. Coakley B, Sussman E, Wolfson T, Bhagavath A, Choi J, Kays DW, Larson SD, Islam S (2014) Appendiceal carcinoids in children—management and outcomes. J Surg Res 192:250–253
155. van Rossem CC, Schreinemacher M, Treskes K, Hogezem AD, Geloven AAW (2014) Duration of antibiotic treatment after appendicectomy for acute complicated appendicitis. Br J Surg 101:715–719
156. Pinto DJ, Sanderson PJ (1980) Rational use of antibiotic therapy after appendectomy. Br J Surg 280:275–277
157. Ambrose NS, Donovan IA, Wise R, Lowe P (1983) Metronidazole and ticarcillin in the prevention of sepsis after appendicectomy. Am J Surg 146:346–348
158. Campbell WB (1980) Prophylaxis of infection after appendicectomy: a survey of current surgical practice. BMJ 281:1597–1600
159. Buckels JA, Brookitstein R, Bonser R, Bullen B, Alexander-Williams J (1985) A comparison of the prophylactic value of cefotetan and metronidazole appendectomy. World J Surg 9:814–818
160. Nadler E, Reblock KK, Ford HR, Gaines BA (2003) Monotherapy versus multi-drug therapy for the treatment of perforated appendicitis in children. Surg Infect (Larchmt) 4:327–333
161. Yu TC, Hamill JKM, Evans SM, Price NR, Morreau PN, Upadhyay VA, Ferguson RS, Best EJ, Hill AG (2013) Duration of postoperative intravenous antibiotics in childhood complicated appendicitis: a propensity score-matched comparison study. Eur J Pediatr Surg 24:341–349
162. Lau WY, Fan ST, Yiu TF, Wong SH (1983) Prophylaxis of post-appendicectomy sepsis by metronidazole and ampicillin: a randomized, prospective and double-blind trial. Br J Surg 70:155–157
163. Lau DHW, Yau KKK, Chuang CC, Leung FCS, Tai YP, Li MKW (2005) Comparison of needleless appendectomy versus conventional laparoscopic appendectomy: a randomized controlled trial. Surg Laparosc Endosc Percutan Tech 15:75–79
164. Andersson RE (2001) Small bowel obstruction after appendicectomy. Br J Surg 88:1387–1391
165. Emil S, Elkady S, Sihat L, Youssef F, Baird R, Laberge JM, Puligandla P, Shaw K (2014) Determinants of postoperative abscess occurrence and percutaneous drainage in children with perforated appendicitis. Pediatr Surg Int 30:1265–1271
166. Fleming FJ, Kim MJ, Messing S, Gunzler D, Salloum R, Monson JR (2010) Balancing the risk of postoperative surgical infections: a multivariate analysis of factors associated with laparoscopic appendectomy from the NSQIP database. Ann Surg 252:895–900
167. Bahar MM, Jangjoo A, Amouzeshi A, Kavianifar K (2010) Wound infection incidence in patients with simple and gangrenous or perforated appendicitis. Arch Iran Med 13:13–16
168. Guller U, Hervey S, Purves H, Muhlbaier LH, Peterson ED, Eubanks S, Pietrobon R (2004) Laparoscopic versus open appendectomy: outcomes comparison based on a large administrative database. Ann Surg 239:43–52
169. Isaksson K, Montgomery A, Moberg AC, Andersson R, Tingstedt B (2014) Long-term follow-up for adhesive small bowel obstruction after open versus laparoscopic surgery for suspected appendicitis. Ann Surg 259:1173–1177
170. Boomer LA, Cooper JN, Deans KJ, Minneci PC, Leonhart K, Diefenbach KA, Kenney BD, Besner GE (2014) Does delay in appendectomy affect surgical site infection in children with appendicitis? J Pediatr Surg 49:1026–1029
171. Graat LJ, Bosma E, Roukema JA, Heisterkamp J (2012) Appendectomy by residents is safe and not associated with a higher incidence of complications. Ann Surg 255:715–719
172. Gadanglia G, Ghanee KR, Sood A, Meyers JR, Sammon JD, Schmid M, Varda B, Briganti A, Montorsi F, Sun M, Menon M, Kibel AS, Trinh QD (2014) Effect of minimally invasive surgery on the risk for surgical site infections: results from the National Surgical Quality Improvement Program (NSQIP) Database. JAMA Surg 149:1039–1044
173. Advani V, Ahad S, Gonzcy C, Markwell S, Hassan I (2012) Does resident involvement effect surgical times and complication rates during laparoscopic appendectomy for uncomplicated appendicitis? An analysis of 16,849 cases from the ACS-NSQIP. Am J Surg 203:347–351
174. Galli R, Banz V, Fenner H, Metzger J (2013) Laparoscopic approach in perforated appendicitis: increased incidence of surgical site infection? Surg Endosc 27:2928–2933
175. Kanona H, Al Samarasee A, Nice C, Bhattacharya V (2012) Stump appendicitis: a review. Int J Surg 10:425–428
176. Clark JJ, Johnson SM (2011) Laparoscopic drainage of intraabdominal abscess after appendectomy: an alternative to...
laparotomy in cases not amenable to percutaneous drainage. J Pediatr Surg 46:1385–1389
178. Ben Dhaou M, Ghorel S, Chouik T, Charieg A, Nouiare F, Ramezani MA, Dehghani MR (2007) Relationship between Carcinoid In’t Hof K, Wal HC, Kazemier G, Lange JF (2008) Carcinoid and its clinical significance. World J Surg Oncol. doi: 10.1186/1824-7288-36-36
180. Contresas-Dominguez V, Carbonell-Bellilio C (2008) Prophylactic antiemetic therapy for acute abdominal surgery. A comparative study of Droperidol, Metoclopramide, Tropisetron, granisetron and Dexamethasone. Rev Bras Anesthesiol 58:35–44
182. Jalil RMA, Yahya N, Sulaimn O, Mat WRW, Teo R, Izaham A, Kube R (2010) Primary appendiceal carcinoma–epidemiology, presenting as acute appendicitis. Am Surg 76:808–810
184. Cho S, Kim YJ, Kim DY, Chung SS (2013) Postoperative analgesic efficacy of paracetamol and diclofenac in children receiving PCA morphine. Br J Anaesth 82:715–717
186. Sieren LM, Collins JN, Weireter LJ, Britt RC, Reed SF, Novosel TJ (2010) The incidence of benign and malignant neoplasia and its clinical significance and potential therapeutic prospects. Orphanet J Rare Dis. doi: 10.1186/1750-1172-9-7
188. Charfi S, Sellami A, Affes A, Yaich K, Mzali R, Boudawara TS (2007) Histopathological findings in appendectomy specimens. ANZ J Surg 82:844–847
190. In’t Hof K, Wal HC, Kazemier G, Lange JF (2008) Carcinoid tumour of the appendix: an analysis of 1,485 consecutive emergency appendectomies. J Gastrointest Surg 12:1436–1438
192. Ramezani MA, Dehghani MR (2007) Relationship between Enterobius vermicularis and the incidence of acute appendicitis. Southeast Asian J Trop Med Public Health 38:20–23
194. Khan SA, Khokhar HA, Nasr AR, Carton E (2013) Incidence of right-sided colonic tumours (non-appendiceal) in patient’s 40 years of age presenting with features of acute appendicitis. Int J Surg 11:301–304
196. Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL (2014) Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis. doi: 10.1186/1750-1172-9-7