Design, Simulation and Feasibility Analysis of Bifacial Solar PV System in Marine Drive Road, Cox’s Bazar

Abdullah Al Mehadi, Mirza Muntasir Nishat, Fahim Faisal, Ahmed Raza Hasan Bhuian, Mohyeu Hussain and Md Ashraful Hoque
Department of Electrical and Electronic Engineering
Islamic University of Technology
Dhaka, Bangladesh

Email: {abdullahmehadi, mirzamuntasir,iaisaleed, ahmedraza, mohyeuhussain, mahoque}@iut-dhaka.edu

Abstract—This paper proposes a design and simulation based investigative analysis of a vertically mounted bifacial solar photovoltaic model in Marine Drive Road, Cox’s Bazar. Cox’s bazar is a famous tourist destination which seems to be a flexible site for implementing such energy harvesting system without affecting the nearby eco-system and solves the existing land shortage problem. Moreover, the infrastructure will provide insulation to noise related problem faced by nearby residents, arising from traffic noises. A model road of 200 meters is reconnoitered for energy harvesting by solar power using three prominent software namely PVSOL, PVsyst, and SAM where a promising mean annual yield of 70492.9 kWh is obtained, and the bifacial gain is calculated to be 12.26%. In addition, a deviation analysis is performed among each of the software and it is found that PVSOL and PVsyst have shown less deviation. Furthermore, a comprehensive financial analysis shows total installation cost to be 84759.74$. A considerable improvement is needed in the renewable energy sector as it accounts for only 3.3% of total production [7]. In-addition due to a shortage of land the country faces a huge challenge to construct a large power generation plant. This often leads to resident relocation or forest clearing to provide suitable land for power plants [8].

Due to the cost-effectiveness and eco-friendly nature, solar energy is one of the widely available carbon-free energy sources used all over the world [9]. Solar energy utilizes energy from the sun to produce electricity that can be supplied to the grid or stored in batteries. Furthermore, it does not emit anthropogenic gases into the atmosphere thus, provides a free source of clean energy [10]. Two categories of solar modules are commonly used, namely monofacial and bifacial solar modules. Bifacial PV panels showed a remarkable feat in harvesting energy from the sun. These modules can utilize the sunlight entering the module from both the front and rear sides of the panel, unlike the traditional monofacial panel [11-12]. Moreover, an increment in efficiency is observed up to 35% by using the bifacial modules, which also contributes to improve power density and reduce area requirements [13-14]. As the demand for renewable energy is increasing significantly in residential, commercial and even in tourist places like Cox’s– Bazar, implementation of novel energy model is a dire need. The large-scale deployment of solar energy would have a significant effect on our living environment. Bangladesh is a densely populated country where space is scarce. A few hundred square kilometers of solar PV farms would have to be implemented in order to meet our climate objectives. The large-scale roll-out of renewable energy would have a negative impact on our living condition. This dilemma cannot be overcome without the creative implementation of the PV system. The energy output of bifacial solar panels is less dependent on position and orientation since it can capture both direct and diffuse irradiation effectively, thus provides more opportunities for multifunctional usage or higher yield per hectare.

Several researches have been done in renewable system modeling in Bangladesh. Khan et. al proposed a hybrid off-grid energy system that can be implemented on Sandwip Island of Bangladesh [15]. However, Mahmud et. al designed a solar highway model for several national roads by using bifacial PV modules [16]. Furthermore, Kabir et. al contributed to modeling a hybrid power plant by
panels is quite a challenge, especially in a marine environment like Cox’s Bazar. Hence, software-based investigation with bifacial PV panels opens a new window to attain knowledge and ideas so that constructive decisions can be made before hardware implementation.

Therefore, our main objective is to design and develop a grid-connected PV system by utilizing vertically mounted bifacial modules to contribute in solving the problem of the energy crisis. This is primarily achieved with the help of three of the prominent PV designing software namely PVSOL, PVsyst, SAM (System Advisory Model). The software-based analysis will be able to contribute to speculating the feasibility and applicability of the system and thereby, making a proper estimation for hardware implementation. In Section II, details of the site and its weather profile are exemplified followed by the description of the solar PV model with 3D design in PVSOL. Afterward, in Section III, the results of the simulation of the model are presented and the performance of each of the software is demonstrated with deviation analysis. Hence, the work is concluded in Section IV declaring promising outcomes and immense potential.

II. PROPOSED SYSTEM

A. Site Details

The Cox’s Bazar-Tekhnaf Marine Drive Road is approximately 80 km long comprising a magnificent view of the longest uninterrupted sea beach of the world and is situated at a height of 3m above sea level. The geographical location of the road and abundance of high solar irradiation in this vicinity has made it a suitable place for the utilization of solar energy.

Month	Direct Irradiance (W/m²)	Diffuse Irradiance (W/m²)	Temperature (°C)
Jan	150.7	37.1	21.2
Feb	154.4	45.0	23.6
Mar	184.3	75.1	26.7
Apr	189.0	85.1	28.4
May	177.0	89.7	29.1
Jun	152.7	90.1	28.2
Jul	125.7	90.2	28.2
Aug	143.8	91.6	28.4
Sep	144.3	70.9	28.2
Oct	151.2	73.3	28.3
Nov	152.6	38.9	25.7
Dec	150.1	28.2	23.0

The average annual solar radiation received by the coastline is around 4.77 kWh/m²/day [21]. Moreover, the climate of Cox’s Bazar is classified as tropical and so, rainfall is frequent in most months of the year, and the short dry season has little effect on lowering the annual rainfall.
The annual rainfall is 3770 mm (148.4 inches) [22]. However, the average annual temperature is observed to be 25.6 °C (78.2 °F). The global irradiance and temperature data are tabulated in Table I which are taken from Meteonorm.

B. Design of the system

The design of the proposed system is accomplished by using PVSOL software (Fig. 1 and Fig. 2). A length of 200 meters is taken into consideration for primary simulation and analysis. Hence, a total number of 117 modules were placed within the specified length. The schematic diagram of the overall system is depicted in Fig. 3.

III. SOFTWARE SIMULATION AND RESULTS

Three popular software namely PVSOL, PVsyst, SAM have been utilized to estimate the energy generated from the proposed PV energy model. At first, the 3D model is constructed and simulation parameters are considered according to Table II. After that, the PV panels are oriented and system components are configured. Then, meticulous simulations have been performed to achieve monthly energy profiles from each of the software.

LG bifacial modules have been chosen as solar PV modules as they exhibit relatively low degradation and longer life [23]. Moreover, a total of seven inverter rated at 5000W from Huawei technologies have been selected. Thus, DC to AC ratio of 1.17 was obtained for optimum operation. Albedo was considered as 0.65 to ensure maximum reflection from the white painted surface beside the road.

| TABLE II. SIMULATION PARAMETERS FOR BIFACIAL SYSTEM |
|---|---|---|---|
| Parameters | Values | Parameters | Values |
| PV Model | LG340N1T-v5 | Tilt | 90° |
| Panel rating | 340 W | Azimuth | 240° |
| No. of Panels | 117 | Albedo | 0.65 |
| Total Installed Capacity | 39.78 kW | Soiling loss | 5% |
| Nominal Efficiency | 20.6 | Mismatch Loss | 2% |
| Maximum Power | 340.2 W | Diode Loss | 0.5% |
| Maximum Power Voltage | 34.4 V | Mounting Height | 2 m |
| Maximum Power Current | 9.9 A | Length | 200 m |
| Open Circuit Voltage | 40.8 V | Bifaciality | 0.7 |
| Short Circuit Current | 10.4 A | Nominal Module Operating Temperature | 42 ± 3 |
| Number of Inverters | 7 | Inverter Rating | 5000 W |
| DC to AC ratio | 1.17 |

TABLE III. MONTHLY ENERGY PROFILE FOR BIFACIAL PANELS

Month	PVSOL (kWh)	PVsyst (kWh)	SAM (kWh)	Average (kWh)	Standard Deviation
Jan	5927.3	5789	5766.59	5827.63	71.07
Feb	5654.3	5635	5846.79	5712.03	95.61
Mar	6686.7	6645	6834.33	6722.01	81.23
Apr	6715.4	6914	6481.46	6703.62	176.78
May	6420.7	6402	5966.18	6262.96	210.00
Jun	5795.3	5652	4943.63	5463.64	372.33
Jul	5384.7	4807	5394.04	5195.25	274.56
Aug	5500.7	5422	5491.65	5471.45	35.16
Sept	5673.6	5450	5468.00	5530.53	101.43
Oct	6187.4	5739	5489.03	5805.14	288.91
Nov	6104.0	5698	5963.93	5921.98	168.38
Dec	6135.3	5714	5780.68	5876.66	184.90
Total	72,185.4	69,867	69,426.31	70,492.9	1210.22
vertically mounted modules suffer less from soiling loss compared to Monofacial panel [25]. Moreover, the mounting surface also plays an important role in receiving light from the surrounding which results in bifacial gain [26]. Thus, mounting height was considered as 2 m above the ground for receiving maximum reflected light off the ground and the tilt angle was set at 90, azimuth was considered as 240 degrees keeping it in-line with the orientation of the road. On the other hand, mismatch loss and diode loss were set at a default value of 2% and 0.5% respectively. The simulation parameters are tabulated in Table II.

The annual yield was 72185.4 kWh, 69867 kWh, 69426.31 kWh in PVSOL, PVsyst, and SAM respectively. Hence the total average yield was 70492.9 kWh. Table III shows all the simulated data in each month for the three software as well as the standard deviation. The highest yield was obtained during March when both direct and diffuse irradiation was considerably high. Although April had the highest direct and diffuse irradiation value, the temperature was quite high causing the panels to lose efficiency. The yield falls gradually after April until the lowest yield was obtained in July due to rain and cloudy weather. The mean yield starts to increase from October which can be linked with increase in global irradiation and decrease in temperature. The graphical representation of the monthly energy profile of each of the software is illustrated in Fig. 4.

IV. DISCUSSION

Designing solar PV models in the marine environment emanates costs as this is frequently exposed to salty water due to winds and cyclones which make the panels vulnerable to rust. Moreover, salt deposit on the surface of the panel makes light propagation difficult [27]. Furthermore, the strong wind might cause the mounting system to break. These entire factors bring a negative consequence in annual yield and efficiency. Nevertheless, the average annual yield was found to be 70492.9 kWh for 200-meter road. If solar modules are planned for the entire length of the road (80 Km) total energy generated will be approximately 28,197,160 kWh which will carry an immensely positive impact on the energy generation of this coastal area. To estimate the accuracy of the simulation, deviation analysis was accomplished to investigate similarities and differences in algorithm and simulation method among each of the software which is presented below:

A. Deviation Analysis

The monthly deviation analysis among each of the PV simulation software is tabulated in Table IV. The graphical representation is depicted in Fig 5. There seems to be a large energy difference between PVSOL versus SAM and PVsyst versus SAM. The monthly energy difference was quite high in this case because SAM takes a few more losses into account. On the other hand, a small difference is seen between PVSOL and PVsyst as similar energy estimation algorithms are used in both software. Furthermore, there is a slight difference in the mathematical model used in each of the software and how irradiation value and yield are calculated.

Month	PVSOL and PVsyst (kWh)	PVSOL and SAM (kWh)	PVsyst and SAM (kWh)
Jan	138.3	160.71	22.41
Feb	19.3	-192.49	-211.79
Mar	41.7	-147.63	-189.33
Apr	-198.6	233.94	432.54
May	18.7	454.52	435.82
Jun	143.3	851.67	708.37
Jul	577.7	-9.34	-587.04
Aug	78.7	9.05	-69.65
Sep	223.6	205.6	-18
Oct	448.4	698.37	249.97
Nov	406	140.07	-265.93
Dec	421.3	354.62	-66.68

Fig. 5 Yield deviation among PVSOL, PVsyst, and SAM
The weather profiles used by each of the software accounts for the difference too, since the profiles are obtained from various sources depending on the software. The standard deviation shown in Table-III depicts a clear picture of the gap between the mean and obtained monthly result in each of the software. There is a large deviation seen during June, July and October, with the highest deviation of 372.33 seen on June. On the other hand, low deviation is seen during the month of January, February, March and August, with the lowest deviation of 35.16 is seen on August.

B. Financial Analysis

A rough estimation of the proposed project is illustrated for 200-meter model road where it is observed that the total installation cost becomes 84759.74$ approximately. The price of the solar panels is considered as 261.57$ [28]. The price of one inverter is $1495.41 [29]. The cost of the PV panel integrated noise barrier system is assumed to be 1S/W and wiring and other expenses such as fuses, switch gear and relays are considered to be 2378$. Based on total installation cost, the per unit energy cost is found to be 1.20$/kWh. Table V presents the financial analysis of the system.

Description	Unit price ($)	Quantity	Price ($)
LG PV modules	261.57	117	30603.69
Mounting system	1S/W	117	39780.00
Inverter	1495.41	7	10467.87
Wiring and miscellaneous cost			2378.00
ATV (5% of solar panel cost)			1530.18
Total Installation Cost/Capital Cost			84759.74
Maintenance and miscellaneous cost (%5 of total capital cost)			4237.987

C. Bifacial Gain

To analyze the prospect of bifacial system compared with traditional monofacial panel, a comparison analysis has been done to find the bifacial gain of the system. Monofacial system were set at 180-degree azimuth and tilted at 24 degrees for optimum setup. Necessary simulations were performed for monofacial system where the mean annual energy is obtained 62.8 MWh. Thus, annual bifacial gain is found to be 12.26%. Table VI shows the mean monthly energy production and bifacial gain between two systems. This is graphically represented in Fig.6.

Month	Mean Energy of Bifacial System (kWh)	Mean Energy of Monofacial System (kWh)	Energy Gain b (%)
Jan	5827.63	6101	-4.48
Feb	5712.03	5672	0.70
Mar	6722.01	6107	10.07
Apr	6703.62	5752	16.54
May	6262.96	5060	23.77
Jun	5463.64	4320	26.47
Jul	5195.25	3626	43.27
Aug	5471.45	4297	27.33
Sep	5530.53	4505	22.76
Oct	5805.14	5217	11.27
Nov	5921.98	5928	-0.10
Dec	5876.66	6220	-5.51
Total	70492.9	62805	12.26

V. Conclusion

In this paper, a design, simulation, and analysis of a bifacial solar PV panel integrated noise barrier infrastructure along the Marine drive road have been presented. Using three different types of software, a detailed 3D design was formed and the annual performance of the solar panels was simulated. The proposed design showed a promising yield of 70492.9 kWh annually by utilizing 117 modules rated 340W which is mounted beside a 200-meter-long road. If this is extrapolated for the entire road (almost 80 Km), the annual generated yield will be almost 28,197,160 kWh (approximately) while at the same time providing significant blockages to traffic noise after integrating with noise barrier infrastructure. Furthermore, an approximate financial analysis revealed the total installation cost to be 84759.74$. In-addition, a deviation analysis between 3 software showed less deviation between PVsOL and PVsyst while the comparison between bifacial and monofacial panel-based system showed an energy gain (Bifacial gain) of 12.26%. Hence, this clean energy initiative will prevent carbon emission that would otherwise be released from a conventional fossil fuel-based power plant. So, this promising source of green energy can be implemented in a popular tourist destination like Cox’s Bazar with a view to turning it into an eco-friendly city.
REFERENCES

[1] Diffenbaugh, Noah S., and Marshall Burke. "Global warming has increased global economic inequality." Proceedings of the National Academy of Sciences 116, no. 20 (2019): 9808-9813.

[2] An, I. P. C. C. "Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty." Intergovernmental Panel on Climate Change (2018).

[3] Lau, Lee Chung, Keat Teong Lee, and Abdul Rahman Mohamed. "Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment." Renewable and Sustainable Energy Reviews 16.7 (2012): 5280-5284.

[4] Al-Ghussain, Loiy. "Global warming: review on driving forces and mitigation." Environmental Progress & Sustainable Energy 38, no. 1 (2019): 13-21.

[5] Jebili, Mehdi Ben, Sabhi Farhani, and Khaled Guesmi. "Renewable energy, CO2 emissions and value added: Empirical evidence from countries with different income levels." Structural Change and Economic Dynamics (2020).

[6] "Present Installed Generation Capacity (MW) as on 30 June, 2018". bpdb.gov.bd. Bangladesh Power Development Board. Retrieved 17 July 2018.

[7] Islam, S. & Khan, Z.R. (2017). "A Review of Energy Sector of Bangladesh". Energy Procedia 110 (2017): 611-618.

[8] Mahmud, Muhammad Shifuddin, Dik Roth, and Jeroen Warner. "Rethinking “development”: Land dispossession for the Rampal power plant in Bangladesh." Land Use Policy 94 (2020): 104492.

[9] J. T., T. S., A. W. & O. M. Quirin Schiermeier, "Energy alternatives: Electricity without carbon," nature journal, vol. 454, pp. 816-823, 2008

[10] Panwar, N. L., S. C. Kaushik, and Surendra Kothari. "Role of renewable energy sources in environmental protection: A review." Renewable and sustainable energy reviews 15.3 (2011): 1513-1524.

[11] Mehadi, Abdullah Al, Mishbahul Alam Chowdhury, Mirza Muntasir Nishat, Fahim Faisal, and Md Minhajul Islam. "A software-based approach in designing a rooftop bifacial PV system for the North Hall of Residence, IUT." Clean Energy 5, no. 3 (2021): 403-422.

[12] Al Mehadi, Abdullah, Mishbahul Alam Chowdhury, Mirza Muntasir Nishat, Fahim Faisal, and Md Minhajul Islam. "Design, simulation and analysis of monofacial solar pv panel based energy system for university residence: a case study." In IOP Conference Series: Materials Science and Engineering, vol. 1045, no. 1, p. 012011. IOP Publishing, 2021.

[13] Hezel, R. "A novel high-efficiency rear-contact solar cell with bifacial sensitivity." High-Efficient Low-Cost Photovoltaics. Springer, Berlin, Heidelberg, 2009. 65-93.

[14] Abotaled, A., and A. Abdallah. "Performance of bifacial-silicon heterojunction modules under desert environment." Renewable Energy 127 (2018): 94-101.

[15] Khan, Nishat Anjum, Amit Kumar Sikder, and Shammya Shananda Saha. "Optimal planning of off-grid solar-wind-tidal hybrid energy system for sandwip island of Bangladesh." In 2nd International Conference on Green Energy and Technology, pp. 41-44. IEEE, 2014.

[16] Mahmud, Md Sultan, Md WazedurRahman, MS Hossain Lipu, Abdullah Al Mamun, Tania Amru, Md Mazharul Islam, Md Mahbubur Rahman, and Md Aminul Islam. "Solar Highway in Bangladesh Using Bifacial PV." In 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1-7. IEEE, 2018.

[17] Kabir, Kazi Mehranjul, Alok Nath, Snehadhit Mazumder, and Md Onik Islam. "Modelling & simulation of a grid connected hybrid power plant with photovoltaic, wind & diesel power for Cox's Bazar." In 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), pp. 1-4. IEEE, 2016.

[18] Islam, Asif, Mohammad Shariuli Islam, Mehedi Hasan, and Aimal Haque Khan. "Analysis of Wind Characteristics and Wind Energy Potential in Coastal Area of Bangladesh: Case Study-Cox's Bazar." world 21, no. 26, 998 (2014): 32-46.

[19] Clavadetscher, L. and Nordmann, Th. (1999) 100 kWp Grid-Connected PV-Installation along the A13 Motorway in Switzerland - Plant Monitoring and Evaluation - Operation and Maintenance, Annual.

[20] Borg, N.I.C.M., Jansen, M.I.: Photovoltaic noise barrier at the A9-highway in The Netherlands - Results of the monitoring programme; Nuon International, European Commission, 2001.

[21] Kabir, Kazi Mehranjul, and Mahmud Abdul Matin Bhuiyan. "Design & simulation of hydrogen based hybrid green power system using sea water for Cox’s Bazar." Cogent Engineering, no. 1 (2017): 1347029.

[22] https://en.climate-data.org/asia/bangladesh/chittagong-division/cox-s-bazar-56253/.

[23] Şenol, M., S. Abbasoğlu, O. Kükrer, and A. A. Babatunde. "A guide in installing large-scale PV power plant for self consumption mechanism." Solar Energy 132 (2016): 518-537.

[24] J. E. (Oliver, Encyclopedia of World Climatology, Springer Netherlands, 2005.

[25] Bluduri, Sonali, and Anil Kottantharayil. "Mitigation of soiling by vertical mounting of bifacial modules." IEEE Journal of Photovoltaics 9, no. 1 (2018): 240-244.

[26] Sun, Xingshu, Mohammad Ryyan Khan, Chris Deline, and Muhammad Ashraful Alam. "Optimization and performance of bifacial solar modules: A global perspective." Applied energy 212 (2018): 1601-1610.

[27] Setiawan, Firdaus, Tresna Dewi, and Syahirman Yusi. "Sea Salt Deposition Effect on Output and Efficiency Losses of the Photovoltaic System; a Case Study in Palembang, Indonesia." In Journal of Physics: Conference Series, vol. 1167, no. 1, p. 012028. IOP Publishing, 2019.

[28] Lg bifacial transparent solar panel. Accessed on: 19 December,2021.[Online] Available:https://www.zerohomebills.com/product/lg-neon2-lg340n1t-v5-340w-bifacial-transparent-solar-panel/.

[29] Sun 2000L-5ktl. Accessed on: 19 December,2021.[Online] Available: https://www.europe-solarstore.com/huawei-sun2000l-5ktl.html