Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14\(\alpha\)-demethylase and aromatase

Jürg A. Zarn, Beat J. Brüschweiler, and Josef R. Schlatter

Food Toxicology Section, Swiss Federal Office of Public Health, Zürich, Switzerland

Azole fungicides show a broad antifungal activity and are used either to prevent fungal infections or to cure an infection. Therefore, they are important tools in integrated agricultural production. According to their chemical structure, azole compounds are classified into triazoles and imidazoles; however, their antifungal activity is due to the same molecular mechanism. The cell membrane assembly of fungi and yeast is disturbed by blocking the synthesis of the essential membrane component ergosterol. This fundamental biochemical mechanism is the basis for the use of azole fungicides in agriculture and in human and veterinary antimycotic therapies. The enzyme involved is sterol 14\(\alpha\)-demethylase, which is found in several phyla. In mammals, it converts lanosterol into the meiosis-activating sterols (MAS). These precursors of cholesterol have been recently discovered to modulate the development of male and female germ cells.

Aromatase is another target enzyme of azole compounds. In steroidogenesis, it converts androgens into the corresponding estrogens. The importance of androgens and estrogens for the development of reproductive organs, for fertility, and in certain sex steroid-dependent diseases is well known. Therefore, azole compounds can be directed against aromatase to treat estrogen-responsive diseases.

The broad use of biologically active compounds in human therapy as well as in non-human applications may involve some risks, as exemplified by emerging antibiotic resistance. In agriculture, fungi and yeast are well known to develop resistance to azoles, and some molecular mechanisms of resistance development have been described (Joseph-Horne and Hollomon 1997). The significance of the agricultural azole resistance for human clinical antimycotic therapies has been recently discussed in Europe, but is not clarified yet (Hof 2001).

The antifungal properties of azoles and the issue of azole resistance in agriculture and medicine, however, are not the topics of this review. Our focus is rather on the increasing evidence for adverse effects of high doses of azole fungicides on the mammalian steroid metabolism.

Use of Azoles

Azole fungicides in agriculture. According to the U.S. Environmental Protection Agency (EPA), in 1997 approximately 244,000 and 37,000 tons of fungicides were sold worldwide and in the United States, respectively (U.S. EPA 1999). Unfortunately, precise data on the proportion of azole fungicides are not available. In Switzerland, nearly 40 tons of azoles are sold per year, which is approximately 5% of active ingredients in fungicides.

Maximum residue limits (MRLs) of pesticides approved in Switzerland are listed in the Swiss Ordinance on Foreign Substances and Toxic Components in Foodstuffs (Federal Authorities of the Swiss Confederation 2000). Within the group of theazole fungicides, currently 16 triazoles (bitertanol, cyproconazole, difenoconazole, epoxiconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, metconazole, myclobutanil, penconazole, propiconazole, tebuconazole, triadimefon, triadimenol, triticonazole) and three imidazoles (imazalil, prochloraz, and triflumizole) are listed. Additionally, there are triazoles with nonfungalical applications (e.g., azocyclotin is used as an acaricide, paclobutrazole as a growth regulator, carfentrazone as a herbicide, and izophos as an insecticide). An imidazole moiety is also found in the chloroacetanilid herbicide metazachlor.

Identity, chemical structure and physicochemical and other properties of azole fungicides, as well as their metabolic pathways in animals, plants and soils, are described elsewhere (Roberts and Hutson 1999; Tomlin 1997).

Azoles in treatment of human diseases. In the treatment of systemic and dermal mycoses, azoles play a pivotal role (Bodey 1992; Georgopapadakou 1998). They show significantly fewer side effects in comparison with other antimycotics such as amphotericin B, they can be applied after the emergence of resistance to other antimycotics (Expinel-Ingropp 1997), and they are inexpensive.

Individual azole compounds found in many different antimycotic formulations. In Switzerland, three triazoles (terconazole, itraconazole, fluconazole) and eight imidazoles (clotrimazole, miconazole, econazole, ketoconazole, tioconazole, itraconazole, oxiconazole, and fenticonazole) are in use (Documed AG 2002).

Another significant application of azoles is the management of advanced estrogen-responsive breast tumors in postmenopausal women. This broad use of azoles is based on their inhibition of certain pathways of steroidogenesis by high-affinity binding to the enzymes sterol 14\(\alpha\)-demethylase and aromatase. Sterol 14\(\alpha\)-demethylase is crucial for the production of meiosis-activating sterols, which recently were shown to modulate germ cell development in both sexes of mammals. Aromatase is responsible for the physiologic balance of androgens and estrogens. At high doses, azole fungicides and other azole compounds affect reproductive organs, fertility, and development in several species. These effects may be explained by inhibition of sterol 14\(\alpha\)-demethylase and/or aromatase. In fact, several azole compounds were shown to inhibit these enzymes in vitro, and there is also strong evidence for inhibiting activity in vivo. Furthermore, the specificity of the enzyme inhibition of several of these compounds is poor, both with respect to fungal versus nonfungal sterol 14\(\alpha\)-demethylases and versus other P450 enzymes including aromatase. To our knowledge, this is the first review on sterol 14\(\alpha\)-demethylase and aromatase as common targets of azole compounds and the consequence for steroidogenesis. We conclude that many azole compounds developed as inhibitors of fungal sterol 14\(\alpha\)-demethylase are inhibitors also of mammalian sterol 14\(\alpha\)-demethylase and mammalian aromatase with unknown potencies. For human health risk assessment, data on comparative potencies of azole fungicides to fungal and human enzymes are needed.

Key words: aromatase, CYP19, CYP51, endocrine disruption, follicle fluid meiosis-activating sterol (FF-MAS), lanosterol, meiosis-activating sterols, sterol 14\(\alpha\)-demethylase, testis meiosis-activating sterol (T-MAS). Environ Health Perspect 111:255–261 (2003). doi:10.1289/ehp.5785 available via http://dx.doi.org/[Online 30 October 2002]
women (Murray 2001; Santen and Harvey 1999). In these women, the estrogen levels dramatically decrease due to the lack of synthesis in the ovaries. At this time point, the adipose tissue becomes the main site of estrogen production. In patients suffering from breast cancer, the tumor and the surrounding tissues express aromatase and hence produce estrogen as well (Santner et al. 1997). This local production can substantially support the growth of estrogen-responsive tumors, and treatment with azole compounds (letrozole, anastrozole, vorozole, or fadrozole) suppresses estrogen production dramatically in these patients. Consequently, tumor growth can be blocked, and sometimes even regression occurs (Bhattacharjee et al. 2001; Bisagni et al. 1996; de Jong et al. 1997; Dixon et al. 2000). In Switzerland, currently the two triazoles letrozole and anastrozole are in use at recommended doses of 2.5 mg/day or 1 mg/day, respectively (Documed AG 2002), partially replacing the classical nonsteroidal antiestrogen tamoxifen.

In a clinical trial, anastrozole was also effective in the treatment of estrogen-dependent endometriosis (Takayama et al. 1998). Furthermore, letrozole was used to treat boys with delayed puberty and short stature to induce growth (Wickman et al. 2001). The rationale behind this treatment is that azoles inhibit estrogen-dependent bone maturation. This leads to a delayed closure of the epiphysial growth plates and thereby allows growth.

These examples demonstrate the increasing importance of azole compounds in sex-steroid hormone-dependent diseases.

Target Enzymes of Azoles in Steroidogenesis

In this section we review the molecular characteristics and the involvement in steroidogenesis of both the sterol 14α-demethylase (encoded by the CYP51 gene) and the aromatase (encoded by the CYP19 gene), and we summarize the results of inhibition studies with azole compounds.

Sterol 14α-demethylase. Sterol 14α-demethylase is a member of the superfAMILY of heme-containing cytochrome P450 enzymes involved in metabolism of endogenous and xenobiotic substances. The antifungal effect of azoles is due to inhibition of sterol 14α-demethylase in fungi and yeast, thereby blocking the biosynthesis of ergosterol (Espinello et al. 1997; Georgopapadakou 1998; Joseph-Horne and Hollomon 1997). The subsequent lack of ergosterol is detrimental because ergosterol is an essential sterol component in the membranes of fungi and yeast.

Sterol 14α-demethylase is not only expressed in fungi and yeast but is also found in many other species ranging from bacteria to mammals. The DNA sequences encoding sterol 14α-demethylase of many fungi and yeast are known, as well as the sequences of mice, rats, pigs, and humans (Debeljak et al. 2000; Kojima et al. 2000; Nitahara et al. 1999; Stromstedt et al. 1996). On the protein level, the amino acid sequences are highly conserved along the phylogenetic tree. This fact is considered by many authors as an indication of the pivotal role of sterol 14α-demethylase in all organisms. The homology of the amino acid sequence level between rats and humans is 93% and 40% between fungi and humans (Stromstedt et al. 1996). In humans, the sterol 14α-demethylase is expressed in many different tissues (Raucy et al. 1991).

The common linear precursor squalene is converted to the basic sterol structures in fungi, yeast, plants, and animals by complex reactions, including cyclizations. These sterols are the substrates of the sterol 14α-demethylase (Figure 1). In all species, the sterol 14α-demethylase oxidatively demethylates C-14 of these basic sterols. The reaction has been studied in detail and it was shown to closely resemble the demethylation reaction at C-10 catalyzed by aromatase (Shyadehi et al. 1996). In fungi, the sterol 14α-demethylase reaction leads to an important precursor of ergosterol. In plants, the sterol 14α-demethylase reaction metabolizes obtusifoliol and provides precursors for biosynthesis of phytosterols. In animals, the sterol 14α-demethylase reaction is part of the metabolic pathway leading to biosynthesis of cholesterol. Cholesterol in turn is the substrate for the production of many other steroids (e.g., the sex steroid hormones).

In more detail, C-14 demethylation of lanosterol in animals produces the follicle fluid meiosis-activating sterol (FF-MAS), which is further metabolized to the testis meiosis-activating sterol (T-MAS). Otherwise, if lanosterol is reduced by the sterol Δ24-reductase to 24,25-dihydrolanosterol before demethylation, the resulting metabolites are MAS-412 and MAS-414, respectively (Figure 2; Byskov et al. 1995).

Although the specific inhibition of fungal sterol 14α-demethylase by competitive, reversible binding to the heme moiety of the enzyme is the intended effect of azoles in agricultural and clinical antifungal treatments (Ji et al. 2000; Podust et al. 2001; Yoshida and Aoyama 1987), some azole compounds are not very specific in this respect. Clotrimazole, miconazole, sulconazole, tioconazole, and ketoconazole were shown to inhibit many different P450 enzymes (Zhang et al. 2002).

The inhibition of sterol 14α-demethylase by azoles, expressed as the half maximal inhibitory concentration (IC50), depends on theazole derivative and to a lesser extent on the source of sterol 14α-demethylase (Van den Bossche et al. 1987). For example, the IC50 values for triadimenol and tebuconazole on the sterol 14α-demethylase prepared from the phytopathogen fungus *Ustilago maydis* are 0.07 and 0.05 nM, respectively, whereas for sterol 14α-demethylase prepared from the

![Figure 1. Biosynthesis of phytosterols, ergosterol, and mammalian sex steroid hormones. Arrows indicate one or more enzymatic steps. Reactions catalyzed by sterol 14α-demethylase (1) and aromatase (2) are indicated.](image-url)
plant *Sorghum bicolor*, the IC_{50} values are only slightly higher (0.24 and 0.16 nM, respectively; Lamb et al. 2001). Ketoconazole and itraconazole, respectively, exhibited IC_{50} values of 60 and 80 nM on *Candida albicans* sterol 14α-demethylase and of 580 and 610 nM on human sterol 14α-demethylases, both enzymes heterologously expressed in yeast (Lamb et al. 1999). For ketoconazole, itraconazole, and fluconazole, IC_{50} values of 180 nM, 330 nM, and 170 µM, respectively, were reported for rat sterol 14α-demethylase expressed in *Escherichia coli* (Nitahara et al. 1999). In crude extracts of yeast, the sterol 14α-demethylase is inhibited by fluvalinate approximately 100 times more efficiently than in crude cell-free extracts from rat liver (Trzaskos and Henry 1989). This difference was nearly abolished upon further purification of the enzymes. According to the authors, the differences in the crude extracts are due to different contents in other azole-susceptible P450 enzymes that may scavenge the azoles.

In conclusion, the direct comparison of the IC_{50} values from different studies is hampered by considerable variations in the study designs and test materials used, such as enzyme purity.

Aromatase. Another important P450 enzyme involved in the steroidogenesis is aromatase. Like sterol 14α-demethylase, aromatase catalyzes the oxidative demethylation of sterols. In contrast to sterol 14α-demethylase, which has several substrates in different phyla, aromatase demethylates C10 and specifically converts androstenedione and testosterone, resulting in estrone and estradiol, respectively (Figure 1). However, other nonsteroid substrates of the aromatase, such as 7-ethoxyxoumarin are also known (Toma et al. 1996). The aromatase coding DNA sequences of several animals (Hickey et al. 1990; McPhaul et al. 1988; Tanaka et al. 1992; Trant 1994) and humans (Evans et al. 1986; Means et al. 1989; Toda and Shizuta 1993) have been published. On the protein level, the amino acid sequence homology between aromatase from fish and humans is about 50% (Trant 1994) and between rats and humans is about 78% (Hickey et al. 1990). In mammals, aromatase is mainly expressed in the brain and the gonads, but it is also found in placental, adipose, and bone tissue (Conley and Hinshelwood 2001).

The physiologic balance between different sex steroid hormones is crucial for the development, maintenance, and function of the reproductive system as well as for the differentiation of the sexual phenotype during ontogeny. Estrogens (estrone and estradiol) are products of the androgens (androstenedione and testosterone), and the reaction is catalyzed by aromatase. In mammals, differentiation of the male phenotype depends not only on testosterone but also on estradiol generated from testosterone by neuronal aromatase in central nervous system. Therefore, disturbances in aromatase expression and/or changes in its catalytic activity are expected to exhibit negative effects on reproduction parameters. In fact, in transgenic male mice overexpressing aromatase in the testis, the serum estradiol level is increased (Fowler et al. 2000). Half of these animals were infertile and had larger testes and a significantly increased incidence of Leydig cell tumors in testes. In male and female aromatase knockout mice (ArKO), the estradiol levels are below detection limits in both sexes. In males, the testosterone levels are elevated in the first 12–14 weeks only, and female ArKO mice showed a pronounced increase in testosterone levels (Fisher et al. 1998; Robertson et al. 1999).

Aromatase can be inhibited competitively and reversibly by azole compounds, as seen with sterol 14α-demethylase. The IC_{50} values of the azole fungicides prochloraz, imazalil, propiconazole, triadimenol, and triadimefon on microsomal aromatase from human placenta were 0.04, 0.34, 6.5, 21, and 32 µM, respectively (Andersen et al. 2002; Vinggaard et al. 2000). In a rat ovary aromatase assay, the therapeutic drugs anastrozole, fadrozole, and letrozole exhibited IC_{50} of 0.025, 0.007 and 0.007 µM, respectively (Odum and Ashby 2002). Not only azoles but also natural plant constituents such as flavonoids are able to significantly inhibit the aromatase (Jeong et al. 1999).

Biological Effects of Azole Compounds

Based on the inhibitory activity of azoles on key enzymes involved in sex steroid hormone synthesis, it is likely that effects on fertility, sexual behavior, and reproductive organ development will occur depending on dose level and duration of treatment of laboratory animals. Therefore, we reviewed the toxicology monographs of the Joint FAO/WHO (Food and Agriculture Organization/World Health Organization) Meeting on Pesticide Residues (JMPR) on some azole fungicides by focusing on effects that might be induced by disturbed steroidogenesis (Appendix).

Role of sterol 14α-demethylase in germ cell development. As discussed above, in mammals, sterol 14α-demethylase either directly converts lanosterol into FF-MAS or, after preceding reduction of lanosterol by sterol Δ24-reductase into MAS-412, sterol Δ14-reductase then converts FF-MAS in T-MAS and MAS-412 in MAS-414 (Figure 2). These metabolites of lanosterol have been regarded only as precursors of cholesterol without any biological function in animals. This view dramatically changed recently with the observation that FF-MAS isolated from human follicle fluid and T-MAS isolated from bull testis as well as the MAS-412 and MAS-414 induced resumption of meiosis in cultivated mouse oocytes (Byskov et al. 1995).

In rats, expression of sterol 14α-demethylase in postmeiotic spermatids is significantly higher than in premeiotic spermatids (Stromstedt et al. 1998) and is restricted to...
discrete stages of the spermatid development (Majdic et al. 2000). In the developing rat testis, high levels of T-MAS were found. These increased T-MAS levels were due to the selective up-regulated expression of cholesterol genes, namely the pre-MAS genes such as sterol 14α-demethylase, and down-regulated post-MAS genes (Tacer et al. 2002). In the human hepatoma cell line HepG2 and in rat testes, progesterins inhibited the cholesterol biosynthesis, and consequently the levels of FF-MAS and T-MAS were increased (Lindenthal et al. 2001). In mouse oocytes, in vitro resumption of meiosis was induced by the specific blocking of the sterol A14-reductase, and hence the FF-MAS level was elevated (Leonardsen et al. 2000). In another study, only denuded oocytes responded to higher FF-MAS levels but not cumulus-cell–enclosed oocytes (Downs et al. 2001). Resumption of meiosis in vitro by increased FF-MAS levels was also observed in human oocytes (Cavilla et al. 2001). The biological significance of the MAS and their implications on fertilization were recently reviewed (Byskov et al. 2002; Rozman et al. 2002). However, other studies failed to show these pronounced effects of MAS on oocytes (Tsafriri et al. 1998, 2002; Vaknin et al. 2001).

Although the detailed function of the MAS is not fully understood yet, the existing studies indicate an important role of these sterols in the development of testis and spermatids and possibly also an impact on the oocyte development.

Effects induced by aromatase inhibition.

Azole fungicides described in the JMPR monographs (see Appendix) and azole compounds used in the management of breast cancer share some common effects in vitro and in vivo.

The potential of azoles to lower estradiol levels and to delay ovulation in rats has been known for several years as is exemplified by an isomer of flutiafol (Middleton et al. 1986; Milne et al. 1987).

Although on the molecular level (e.g., IC50 values) no profound species differences are seen, distinct effects are observed in laboratory animals afterazole treatment. In dogs, exposure to letrozole induced histopathologic changes in the testis, whereas in rats no such effects were observed (Walker and Nogues 1994). In female rats, letrozole (Sinha et al. 1998) and vorozole (De Coster et al. 1990) considerably lowered estrogen levels and reduced uterus weights. In a mouse MCF-7 xenograft model, tumor growth was effectively inhibited by letrozole (Lee et al. 1995). The same effect on rat mammary tumor growth was seen with letrozole and a derivative thereof, in addition to a prominent reduction of estradiol levels and uterus weights (Schieweck et al. 1993). In male cynomolgus monkeys, vorozole lowered the estradiol levels (Tuman et al. 1991) and in quails (Foidart et al. 1994) and in female musk shrews (Rismann et al. 1996) it changed sexual behavior. The treatment of growing male rats with vorozole impaired skeletal development and the mineralization of bones (Vanderschueren et al. 1997).

In European pond turtles (Belaid et al. 2001) and in whiptail lizards (Wennstrom and Crews 1995), letrozole affected sex determination, as did fadrozole in chickens and turkeys (Burke and Henry 1999). Juvenile sexually undifferentiated fathead minnows were shown to masculinize when exposed to fadrozole in combination with methyltestosterone (Zerulla et al. 2002). In another study on fathead minnows exposed to fadrozole, reduced brain aromatase activity was accompanied by reduced estradiol and vitellogenin levels, and a decrease in mature oocytes and an increase in sperms in testes was observed (Ankley et al. 2002). In nonhuman primates, it was shown that fadrozole, letrozole, and a derivative of letrozole inhibited the aromatase (Shetty et al. 1997, 1998). Although in female animals the estrogen levels were significantly decreased, the development of follicles seemed normal but the animals did not become pregnant. In the males, the treatment resulted in elevated testosterone levels, and the production of spermatocytes was significantly reduced within the first 30 days of treatment. In contrast, within the first 90 or 120 days of treatment, in ArKO mice the aromatogenesis seemed normal and the spermatozoa in vitro were as fertile as the wild-type spermatozoa (Fisher et al. 1998; Robertson et al. 1999). Yet there were fewer litters with these males. The authors suggest alterations in mounting behavior as being the reason for this discrepancy (Robertson et al. 2001). Additionally, elevated prostate weights without malignant changes were observed in ArKO male mice (McPherson et al. 2001).

Many of the effects described can be seen as the result of a disturbed balance of androgens and estrogens, provoked either by chemically blocking aromatase or by the lack of a functional aromatase in the case of knockout animals. In animal studies to investigate the chemical blockage of the aromatase by azoles, it cannot be excluded that the sterol 14α-demethylase also was blocked. Interpretations of these results therefore should include not only changed androgen and estrogen levels but also a disturbed balance of MAS levels.

Summary

Several azole compounds were shown to inhibit the aromatase and to disturb the balance of androgens and estrogens in vivo. In fact, the clinical use ofazole compounds in estrogen-dependent diseases is based on this effect. Additionally, azole antifungals developed to inhibit the sterol 14α-demethylase of fungi and yeast in agriculture and medicine are also inhibiting aromatase. Therefore, these antifungals may unintentionally disturb the balance of androgens and estrogens. Until now, it is not clear whether this effect is compensated by an increased expression of aromatase or by other unknown mechanisms.

The actual target enzyme of azole antifungals, the fungal sterol 14α-demethylase, is expressed in many species including humans, and it is highly conserved through evolution. Hence, it seems reasonable to assume that most of theazole antifungals used in agriculture and medicine as well as azoles used in management of breast cancer also act as inhibitors on human sterol 14α-demethylase to an unknown extent. Unfortunately, there are few studies on the inhibition of mammalian sterol 14α-demethylases byazole compounds.

The impact of inhibition of the mammalian sterol 14α-demethylase on the cholesterol pool is not clear. Because dietary cholesterol may compensate disturbances in cholesterol levels, the cholesterol pool might be not a very sensitive parameter for sterol 14α-demethylase inhibition. However, spermatogenesis and oogenesis are in part controlled by MAS, and the conversion of lanosterol to MAS exclusively relies on sterol 14α-demethylase activity. The data available provide good evidence that azoles directed against the ergosterol biosynthesis of fungi and yeast have the potential to influence the levels of FF-MAS, T-MAS, androgens, and estrogens in animals and humans.

To our knowledge, structure–activity relationships of azoles with respect to their ability to discriminate between sterol 14α-demethylase and aromatase have hardly been investigated. There is also a lack of data on enzyme regulation of sterol 14α-demethylase and aromatase afterazole exposure and on the putative impact of dietary cholesterol. Inhibition of other P450 enzymes by azoles is even less investigated.

The toxicologic profiles of individual azole fungicides, as summarized in the Appendix, provide evidence for endocrine effects. In fact, many of these fungicides have effects on prostate, testis, uterus, and ovaries as well as on fertility, development, and sexual behavior. The current database does not allow us to establish causal relationships of these effects with inhibition of sterol 14α-demethylase and/or aromatase, but the overall view strongly suggests a connection with disturbed steroidogenesis.

Based on the clear effects on steroidogenic enzymes in vitro, animal studies should be performed with concomitant analysis of androgen, estrogen, and MAS levels and
investigations on inhibition of the fungal sterol 14α-demethylase, mammalian sterol 14α-demethylases, and aromatase are clearly necessary.

The Endocrine Disrupter Screening and Testing Advisory Committee (EDSTAC) of the U.S. EPA has recommended the aromatase inhibition assay as one of the possible testing system to identify endocrine disrupters (EDSTAC 1998). Since the publication of the EDSTAC report in 1998, recent studies on the impact of MAS on spermatogenesis and oogenesis have been published and, as a consequence, sterol 14α-demethylase should also be considered as a candidate testing system for identifying endocrine disrupters.

Exposure estimates based on residue values from supervised field trials are performed by JMPR. These estimates indicate that the average daily intake of individual azole fungicides is approaching at most a very low percentage of the acceptable daily intake (ADI) established by the JMPR. According to residue data from food random sampling, the MRLs are hardly ever exceeded. Nevertheless, several azole fungicides are found in the candidate list of putative endocrine disrupters within the European Union Community strategy for endocrine disrupters (European Commission DG ENV 2002).

In conclusion, azole fungicides interact with several P450 enzymes in different species and have the potential to affect the endocrine system by interacting with steroidogenesis. Due to the knowledge of the common mechanism on steroidogenesis in target organisms and mammals, we suggest that azole fungicides should be considered as a group when MRLs are allocated. It will be the challenge to design more specific inhibitors of fungal sterol 14α-demethylases that do not affect animal sterol 14α-demethylases and aromatases.

Appendix

Usually, the hazard assessments of pesticides by the JMPR are based on data of in vitro and animal studies providing no observable effect levels (NOEL) for delineation of individual ADIs in humans. Based on the ADI and residue levels in plants after application of recommended use levels, MRLs are allocated to individual foods by the authorities.

In vitro studies of some azole fungicides are summarized below with special focus on effects putatively connected to disturbed steroidogenesis. In the allocation procedure for an ADI by the JMPR, these effects are included.

Bitertanol was evaluated by the JMPR in 1998 (FAO/WHO 1999). An ADI of 0–0.01 mg/kg body weight (bw) was allocated based on a NOEL of 1 mg/kg bw in a three-generation rat study and reduced pup survival rates at 5 mg/kg bw. Histopathologic changes in the adrenal glands of dogs and rats were seen at 1.2 and ≥ 81 mg/kg bw, respectively. In dogs, at ≥ 5 mg/kg bw, cataracts and reduced prostate weight with histopathologic changes were seen. In male rats, at ≥ 300 mg/kg bw, the relative testis weights were increased, and in females, the absolute ovary and adrenal weights were decreased with histopathologic changes. At the maternotoxic level of 100 mg/kg bw, rat fetuses showed effects such as cleft palate and hydrocephalus.

Cyproconazole induced cleft palate, hydrocephalus, and hydronephrosis in rat embryos after treatment of the dams with 20 mg/kg bw (the lowest dose tested); ≥ 50 mg/kg bw increased incidences of resorptions and dead fetuses were observed (Machera 1995).

Flusilazole was evaluated by the JMPR in 1995 (FAO/WHO 1996). An ADI of 0–0.001 mg/kg bw was allocated based on a NOEL of 0.14 mg/kg bw in a 1-year dog study. At ≥ 0.7 mg/kg bw, effects on the liver of the dogs were observed. In a 14-day rat study, the levels of testosterone and estradiol were reduced at ≥ 20 mg/kg bw. In isolated Leydig cells, the IC₅₀ for testosterone production was 3.5 µM for flusilazole and 1 µM for ketoconazole. In a 2-year rat study, 31 mg/kg bw flusilazole induced Leydig cell tumors of the testis; flusilazole was fetotoxic and embryotoxic at ≥ 9 mg/kg bw in a developmental study. Toxicity to the dams was observed at ≥ 27 mg/kg bw. In in vitro teratogenicity assays with rat embryos, changes at the branchial apparatus were seen at 6.25 µM (Menegola et al. 2001).

Hexaconazole was evaluated by the JMPR in 1990 (FAO/WHO 1991). An ADI of 0–0.005 mg/kg bw was allocated based on a NOEL of 0.47 mg/kg bw in a 2-year rat study. At 4.7 ≥ mg/kg bw an increased incidence of Leydig cell tumors in testis was observed. In a 90-day rat study, histopathologic changes were observed in the adrenal glands at ≥ 2.5 mg/kg bw, and reduced testis and adrenal weights were observed at 250 mg/kg bw. In rats, hexaconazole was fetotoxic at ≥ 25 mg/kg bw. Isolated rat Leydig cells showed reduced testosterone and increased progesterone production on exposure to hexaconazole (0.1–30 µM).

In a 29-day mouse study, lack of corpora lutea and smaller ovaries were observed in females and histopathologic changes in the testis and epididymis and enlarged adrenals were observed in males at ≥ 14 mg/kg bw. In a 90-day dog study, weights of ovaries and testes were reduced at ≥ 125 mg/kg bw.

Imazalil was evaluated by the JMPR in 2000 (FAO/WHO 2001). In a 1-year dog study, an ADI of 0–0.03 mg/kg bw was allocated based on a NOEL of 2.5 mg/kg bw and effects on body weight, the liver, and clinical symptoms at 20 mg/kg bw. At a dose range of 5–20 mg/kg bw imazalil was fetotoxic in rats, mice, and rabbits.

Myclobutanil was evaluated by the JMPR in 1992 (FAO/WHO 1993b). An ADI of 0–0.03 mg/kg bw was allocated based on a NOEL of 3 mg/kg bw and reduced testis weight with atrophic changes at ≥ 17 mg/kg bw in a 1-year dog study. In long-term studies, increased prostate weights were observed in mice at ≥ 9.8 mg/kg bw and in rat testis at 202 mg/kg bw. In a two-generation rat study, relative ovary weights were increased at ≥ 125 mg/kg bw. At the maternotoxic level of 500 mg/kg bw, penconazole was also fetotoxic.

Procionazole was evaluated by the JMPR in 2001 (FAO/WHO 2002). An ADI of 0–0.01 mg/kg bw was allocated based on a NOEL of 1.3 mg/kg bw and liver effects at ≥ 5 mg/kg bw in a 2-year rat study. In a 90-day rat study, ovary and thyroid weights were increased in females at ≥ 6 mg/kg bw. In a 90-day dog study, reduced testis and prostate weights were observed at ≥ 7 mg/kg bw. In a rat reproduction study, at ≥ 27 mg/kg bw a tendency to prolonged gestation, increased total litter losses, smaller litter sizes, and increased pup mortality was observed. In trout, 25 nM (9.4 µg/L) prochloraz impaired the spermatogenesis (Le Gac et al. 2001).

Propiconazole was evaluated by the JMPR in 1987 (FAO/WHO 1988). An ADI of 0–0.04 mg/kg bw was allocated based on a NOEL of 4 mg/kg bw slight effects on the liver and hematology parameters at ≥ 20 mg/kg bw in a 2-year rat study. In a rat reproduction study, reduced testes and epididymis weights in pups were observed at ≥ 21 mg/kg bw. However, testis weights of rats were increased at 256 mg/kg bw in a short-term study.

Tebuconazole was evaluated by the JMPR in 1994 (FAO/WHO 1995). An ADI of 0–0.03 mg/kg bw was allocated based on a NOEL of 3 mg/kg bw and histopathologic...
changes in the adrenal glands and question-
able catecholamines at 4.5 mg/kg bw in a 1-year
dog study. In a 90-day rat study, histopatho-
logic changes in the adrenals were found at
\(\geq 36 \) mg/kg bw. In rat reproduction studies,
reduced litter sizes and reduced survival
indices were observed at \(\geq 73 \) mg/kg bw. In
a mouse teratogenicity study, increased inci-
dences of runts and malformations such as
cleft palate were observed at \(\geq 30 \) mg/kg bw.
In rats and rabbits, malformations and
embryotoxicity occurred at \(\approx 100 \) mg/kg bw.

Triadimefon was evaluated by the
JMPR in 1981/1985 (FAO/WHO 1982, 1986). An
ADI of 0–0.03 mg/kg bw was allocated based on
a NOEL of 2.5 mg/kg bw and body weight effects and reduced
hematopoesis at \(\approx 25 \) mg/kg bw in a 2-year
rat study. In a rat reproduction study, the
male/female sex ratio in F1 was reduced at
77 mg/kg bw and the female fertility index was
one-third of control. In a supplementing
study, treated males (77 mg/kg bw) were
mated with untreated females. The pregn-
ancy rate was significantly lower, but the
ratio of pregnant to inseminated females was
not affected. It was concluded that triade-
minef impaired the sexual behavior of the
males. The testosterone level of these male
rats was doubled. In *in vitro* teratogenicity
studies with rat embryos, changes at the
branchial apparatus were seen at 25 µM for
both triadimefon and triadimenol (Menegola
et al. 2000).

Triadimenol was evaluated by the
JMPR in 1989 (FAO/WHO 1990). An
ADI of 0–0.05 mg/kg bw was allocated based on
a NOEL of 5 mg/kg bw in a rat
two-generation study and on retarded devel-
opment of pups at 20 mg/kg bw. In a
mouse short-term study and a dog long-
term study, changes in the cholesterol levels
were seen at 170 mg/kg bw and 45 mg/kg bw,
respectively, and in a 2-year rat study, ovary
weights were reduced at 144 mg/kg bw.
In rat and rabbit teratogenicity studies,
increased incidences of resorptions were
observed at \(\approx 120 \) mg/kg bw.

References

Andersen HR, Vinggaard AM, Rasmussen IM,
Borne-Jørgensen EC. 2002. Effects of currently used
pesticides in assays for estrogenicity, androgenicity,
and aromatase activity in vitro. Toxicol Appl Pharmacol
178:1–12.

Anley GT, Kahl MD, Jensen KM, Hornung MW, Korte, JI,
Makynen EA, et al. 2002. Evaluation of the aromatase
inhibitor fadrozole in a short-term reproduction assay with
the fathead minnow (*Pimephales promelas*). Toxicol
Sci 71:121–130.

Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bodey GP. 1992. Azole antifungal agents. Clin Infect Dis
14:Suppl 7:99–102.

Bodey GP. 1999. Bitertanol. Pesticide Residues in Food – 1998
Production and Protection Paper 148. Rome:FAO, 54–59.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C, Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Burke WH, Henry MH. 1999. Gonadal development and growth
Bodey GP. 1999. Bitertanol. Pesticide Residues in Food – 1998
Production and Protection Paper 148. Rome:FAO, 54–59.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.

Bisagni G, Cocconi G, Scaglione F, Fraschini F, Pfister C,
Belaid B, Richard-Mercier N, Pieau C, Dorizzi M. 2001. Sex
embryotoxicity occurred at 36 mg/kg bw. In rat reproduction studies,
malformations and cleft palate were observed at \(\geq 25 \) µM.
vitro effects of prochloriz and nonlyphenol ethoxylates on trout spermagogenesis. Aquat Toxicol 53:187–200.

Lee K, Macaslay VM, Nicholas JE, Detre S, Ashworth A, Dowsett M. 1995. An in vivo model of intratumoral aromatase using aromatase-transfected MCF7 human breast cancer cells. Int J Cancer 62:297–302.

Leonzard L, Stromsted M, Jacobsen D, Kristensen KS, Baltsen M, Andersen CV, et al. 2000. Effect of inhibition of sterol delta 14-reductase on accumulation of meiosis-activating sterol and meiotic resumption in cumulus-enclosed mouse oocytes in vitro. J Reprod Fertil 118:171–179.

Lindenthal B, Holleran AL, Aldaghasa T, Ruan B, Schroepfer GJ Jr, Wilson WK, et al. 2001. Progestins block cholesterol synthesis to produce meiosis-activating steroids. FASEB J 15:775–784.

MacKercher K. 1995. Developmental toxicity of cyproconazole, an inhibitor of fungal ergosterol biosynthesis, in the rat. Bull Environ Contam Toxicol 54:363–369.

Malec G, Parvinen M, Bellamine A, Harwood HK Jr, Ku WW, Waterman MR, et al. 2000. Lanosterol 14aalpha-demethylase (CYP51), NADPH-cytochrome P450 reductase and squinate synthase in spermagogenesis: late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol. J Endocrinol 166:463–474.

McPhaul MJ, Noble JF, Matsumine H, Wilson JD. 1988. Cloning and expression of the chicken ovary aromatase P-450: expression of aromatase mRNAs in tissues of the Sebright and Leghorn chicken. Trans Assoc Am Physicians 101:219–225.

McPherson SJ, Wang H, Jones ME, Pedersen J, Ismaia TP, Werflod NF, et al. 2001. Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland. Endocrinology 142:2458–2467.

Meends GD, Mahendroo MS, Corbin CJ, Mathis JM, Powell FE, Mendelson CR, et al. 1989. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem 264:19305–19311.

Menegola E, Broccia ML, Di Renzo F, Giavini E. 2001. Antifungal activity of two antifungal triazoles: In vitro teratogenic potential of two antifungal triazoles: cyproconazole and triadimefon and triadimenol. In Vitro Cell Dev Biol Anim 37:421–427.

Menegola E, Broccia ML, Di Renzo F, Giavini E. 2001. Antifungal triazoles induce malformations in vitro. Reprod Toxicol 15:421–427.

Menegola E, Broccia ML, Di Renzo F, Prati M, Giavini E. 2000. In vitro teratogenic potential of two antifungal triazoles: triadifenum and triadimenol. In Vitro Cell Dev Biol Anim 36:88–95.

Middelton MC, Milne CM, Moreland S, Hasmall RL. 1986. Ovulation in rats is delayed by a substituted triazole. Steroids 43:414–418.

Moudgal RN. 1997. Effect of estrogen deprivation on the expression of mRNA in tissues of the Sebright and Leghorn trout spermatogenesis. Aquat Toxicol 53:187–200.

Nishara Y, Aoyama Y, Horiuchi T, Noshiro M, Yoshida Y. 1999. Interaction of azole antifungal agents with cytochrome P-450 purified from Candida albicans. J Antimicrob Chemother 43:107–106.

Shetty G, Krishnamurthy H, Krishnamurthy HN, Bhatnagar AS, Mogdall NR. 1999. Effect of long-term treatment with aromatase inhibitor on testicular function of adult male bonnet monkeys (Macaca radiata). Steroids 64:433–436.

Shetty G, Krishnamurthy H, Krishnamurthy HN, Bhatnagar S, Mogdall RN. 1997. Effect of estrogen deprivation on the reproductive physiology of male and female primates. J Steroid Biochem Mol Biol 61:157–166.

Shaydehi AZ, Lamb DC, Kelly SL, Kelly DE, Schunck WH, Wright JN, et al. 1996. The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14alpha-demethylase. J Biol Chem 271:21245–21250.

Sinha S, Kaseta J, Santner SJ, Demers LM, Bremmer WJ, Santen RJ. 1999. Effect of CDS 20267 on ovarian aromatase and gonadotropin levels in the rat. Breast Cancer Res Treat 48:45–51.

Stromsted M, Rozman D, Waterman MR. 1996. The ubiquitously expressed human CYP19 cytochrome P450 whose expression is regulated by oestrogens. Arch Biochem Biophys 329:73–81.

Stromsted M, Waterman MR, Haugen TB, Tasken K, Parvinen M, Rozman D. 1998. Effect of expression of lanosterol 14alpha-demethylase (CYP51) and the synthesis of oocyte meiosis-activating sterol in postmeiotic germ cells of male rats. Endocrinology 139:2314–2321.

Takeshi K, Haugen TB, Balsman M, Debeljak N, Rozman D. 2002. Tissue-specific transcriptional regulation of the cholesterol biosynthetic pathway leads to accumulation of testis meiosis-activating sterol (T-MAS). J Lipid Res 43:82–88.

Takahaya K, Zeitz T, Gunby RT, Sasso H, Carr BR, Bulen SE. 1998. Treatment of severe postmenopausal endometriosis with an aromatase inhibitor. Fertil Steril 69:709–713.

Tananaka M, Teilemyck TM, Fukushima S, Adachi S, Chen S, Nagahama Y. 1991. Cloning and sequence analysis of the CDNA encoding P-450 aromatase (P450arom) from a rainbow trout (Oncorhynchus mykiss) ovary: relationship between the amount of P450arom mRNA and the production of oestra-dial-17 beta in the ovary. J Mol Endocrinol 8:63–81.

Toda K, Shizuta Y. 1993. Molecular cloning of a cDNA showing high homology to the human aromatase cDNA. Mol Endocrinol 7:179–187.

Van den Bossche H, Marichal P, Gorrens J, Bellens D, Van den Bossche H, Marichal P, Gorrens J, Bellens D, et al. 1987. Interaction of azole-based fungicide flusilazole on yeast and mammalian cells. In: Symposium on Gibberellin and Sterol Synthesis Inhibitors, 5 March 1987, London, UK. Pestic Sci 21:298–308.

Vandescheuren D, van Herck E, Nijs J, Eevedeen AG, De Coster R, Bouillon R. 1997. Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 138:2301–2307.

Vinggaard AM, Hinda G, Breinholt V, Larsen JC. 2000. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol In Vitro 14:222–234.

Walker UL, Noguez V. 1994. Changes induced by treatment with aromatase inhibitors in testicular Leydig cells of rats and dogs. Exp Toxic Pathol 46:211–213.

Weekstrom KL, Crews D. 1995. Making males from females: the effects of aromatase inhibitors on a parthenogenetic species of whiptail lizard. Gen Comp Endocrinol 99:316–322.

Wickman S, Sipila I, Ankarberg-Lindgren C, Norjavaara E, Pharmacol 1:33–40.

Waterman MR, Ostergaard J, Shutting CR, et al. 2002. Metabolic role of aromatase inhibitors on parthenogenetic species of whisktail lizard. Gen Comp Endocrinol 139:2301–2307.

Yoshida Y, Aoyama Y. 1987. Interaction of azole antifungal agents with cytochrome P-450arom purified in Saccharomyces cerevisiae microsomes. Biochem Pharmacol 36:229–235.

Zerulla M, Lange R, Steger-Hartmann T, Pantor G, Hutchinson T, Dietrich DR. 2002. Morphological sex reversal upon short-term exposure to endocrine modifiers in juvenile fathead minnow (Pimephales promelas). Toxicol Lett 131:51–63.

Zhang W, Ramamorthy Y, Kilicaslan T, Nolte H, Tydal RF, Sellers EM. 2002. Inhibition of cytochrome P450 by antiandrogenic derivatives. Drug Metab Dispos 30:314–318.