The Relationship of Histologic Activity to Serum ALT, HCV genotype and HCV RNA titers in Chronic Hepatitis C

It is unclear whether serum ALT levels or virological characteristics of hepatitis C virus (HCV) including HCV genotypes and HCV RNA titers, can reflect the degree of histological injury in chronic hepatitis C. The aim of this study was to investigate the relationships between the levels of histological damage and serum ALT levels, HCV genotypes or circulating HCV RNA titers in chronic hepatitis C. A total of 56 patients underwent liver biopsy and the histological activity index (HAI) was evaluated by Knodell's scoring system. HCV genotype by RT-nested PCR and HCV RNA quantitation by competitive RT-PCR were performed. Thirty-four patients were infected with HCV genotype 1b, 20 patients with genotype 2a, and 2 patients with undetermined type. Serum ALT levels were not positively correlated with total HAI score or HCV RNA titers, but showed a linear correlation with scores of piecemeal necrosis (r=0.32, p<0.05) and portal inflammation (r=0.27, p<0.05). HCV genotype had no significant correlation with RNA titers, HAI score or with serum ALT levels. Also, no statistical relationship was seen between HCV RNA titer and HAI score. These results suggest that liver histology is essential to evaluate the severity of chronic hepatitis C precisely.

Key Words: Hepatitis C, Chronic; Histology; Reverse Transcriptase-Polymerase Chain Reaction; Genotype; Alanine Transaminase

INTRODUCTION

The patients infected with hepatitis C virus (HCV) have different clinical outcomes, ranging from acute resolving hepatitis to chronic liver disease including liver cirrhosis or hepatocellular carcinoma. Approximately 25-30% of individuals with chronic HCV infections have persistently normal alanine aminotransferase (ALT) level (1, 2) and these individuals are usually referred to as “healthy carrier” of HCV (3). However, several studies have demonstrated that the histological features of most healthy carriers showed chronic liver damage of a variable degree, ranging from mild hepatitis to liver cirrhosis (4-8), and thus the existence of the true “healthy carrier” of HCV is still debatable.

Because the relationship of serum ALT level to liver damage or viral replication in chronic HCV carriers remain unclear, liver biopsy is essential to evaluate the degree of liver damage in these subjects. However, it is practically difficult to perform liver biopsy in all asymptomatic healthy carriers with normal ALT level (9, 10), and therefore, non-invasive approach is required to make an accurate diagnosis on such cases.

Recently, many studies have attempted to investigate the relationship between the characteristics of HCV at molecular level and histological liver damage or the clinical outcome of the patients with chronic hepatitis C, especially those receiving interferon therapy (11, 12). However, studies on the correlations between HCV RNA titers or HCV genotype, and the severity of liver damage have shown conflicting results (13-17). In addition, whether HCV RNA titer is a better predictor of underlying liver injury than serum ALT is not known.

For many years, chronic hepatitis has been classified into chronic persistent hepatitis (CPH), chronic active hepatitis (CAH), and chronic lobular hepatitis (CLH). However, this conventional classification has not fully provided the information to predict the natural course of chronic hepatitis. For liver biopsy specimens of chronic hepatitis, Knodell et al. proposed a numerical scoring system, the Histology Activity Index (HAI), which was graded into four categories: periportal necrosis, intralobular necrosis, portal inflammation, and fibrosis (12). Recently, this index is more commonly used for the evaluation of clinical course or therapeutic response of the patients with chronic hepatitis.

The aim of the present study was to determine whether the degree of histological damage correlates with virological features of HCV and serum ALT level in patients with chronic hepatitis C.
MATERIALS AND METHODS

Patients (Table 1)

Fifty-six consecutive subjects with hepatitis C who had undergone liver biopsy were enrolled from Kangnam St. Mary’s Hospital. They consisted of 36 men and 20 women with ages ranging from 18 to 73 yr (mean=46 yr). The diagnosis of chronic hepatitis C was made on the basis of elevated serum ALT level for more than 6 months, positivity for anti-HCV antibody by the second generation enzyme immunoassays (EIA), the confirmation of HCV RNA by reverse transcription-polymerase chain reaction (RT-PCR), and by histology of liver biopsy specimens. Patients with positive serum HBsAg or autoantibodies (antineutrophil antibody, anti-smooth muscle antibody, and antimitochondrial antibody), or history of alcohol abuse or taking a herbal medicine or clinical (ascites and variceal bleeding) hematological (leukopenia and thrombocytopenia) or biochemical (hypalbuminemia, hyperbilirubinemia, and prolonged prothrombin time) evidence of portal hypertension or hepatic failure by liver cirrhosis were excluded from the study.

Biochemical and Serological tests

Anti-HCV assay was determined by second-generation EIA (Abbott Laboratories, Chicago, Ill, U.S.A.). HBsAg was tested with a radioimmunoassay (Abbott Laboratories, Chicago, Ill, U.S.A.). Serum ALT level was determined at the time of liver biopsy. Anti-nuclear, anti-smooth muscle, and antimitochondrial antibodies were determined by immunofluorescence and titers>1/40 were considered positive.

Histological Assessment

All subjects gave their informed consents to liver biopsy. Formalin-fixed, paraffin-embedded specimens were routinely stained with hematoxylin-eosin and histological examination was carried out by one pathologist according to the conventional criteria. Histological scores were determined according to the Knodell’s HAI scoring system which is most widely used. The HAI score (0-22 points) consists of four major elements: 1) portal/periportal bridging necrosis (0-10) 2) intralobular degeneration and focal necrosis (0-4); 3) portal inflammation (0-4), and fibrosis (0-4).

Detection and genotyping of HCV RNA

HCV RNA was detected from sera of the patients by RT-PCR using primers from the 5' non-coding region, as described previously (18). HCV genotypes were determined with type-specific primers on second round PCR following first amplification of the NS5 gene with universal primer pair as described elsewhere (19, 20). The nomenclature of HCV genotype followed to scheme proposed by Simmonds et al. (21). The oligonucleotide primer sequences used were as follows: universal primer, sense-5'-TGG GGA TCC CGT ATG ATA CCC GCT GCT; universal primer, antisense-5'-GGC GAA ATT CCT GGT CAT AGC CTC CGT GAA-3' for the first PCR; HCVQC1, sense-5'-CGA CAT CCGT ACG GAG GAGG-3'; genotype 1a, antisense-5'-CAG GCT GCC CGG GCC TGG AT-3'; genotype 1b, sense-5'-TGA CAT CCG TGT GGA GT-3'; genotype 1b, antisense-5'-CGG GCC GCA GAG GCC TCC AA-3'; genotype 2a, sense-5'-TAT GTT CAA CAG CAA GGG CCA GA-3'; genotype 2a, antisense-5'-CCT GTG CAT AGC CTC CGT GAA-3'.

Quantification of serum HCV RNA

Serum HCV RNA level was quantified by a competitive RT-PCR using a synthetic mutant HCV RNA as a competitive template as described previously (18). Briefly, the synthesis of cDNA following HCV RNA extraction was done by reverse transcription. An equal amount of sample RNA was put into a set of microtubes that already had 10-fold serially diluted mutant RNA plus annealing mixture containing primer KL70. After cDNA synthesis, second round PCR was performed. The sequences of primers used were: PCRs were performed. The sequences of primers used were:

- HCV QC1, sense-5′- GCC CGG GCC TGG AT-3′; genotype 1a, antisense-5′- CAG GCT GCC CGG GCC TGG AT-3′; genotype 1b, sense-5′- TGA CAT CCG TGT GGA GT-3′; genotype 1b, antisense-5′- CGG GCC GCA GAG GCC TCC AA-3′; genotype 2a, sense-5′- TAT GTT CAA CAG CAA GGG CCA GA-3′; genotype 2a, antisense-5′- CCT GTG CAT AGC CTC CGT GAA-3′.

where (19, 20). The nomenclature of HCV genotype followed to scheme proposed by Simmonds et al. (21). The oligonucleotide primer sequences used were as follows:

- universal primer, sense-5′- TGG GGA TCC CGT ATG ATA CCC GCT GCT; universal primer, antisense-5′- GCC GAA ATT CCT GGT CAT AGC CTC CGT GAA-3′ for the first PCR; HCVQC1, sense-5′- CGA CAT CCGT ACG GAG GAGG-3′; genotype 1a, antisense-5′- CAG GCT GCC CGG GCC TGG AT-3′; genotype 1b, sense-5′- TGA CAT CCG TGT GGA GT-3′; genotype 1b, antisense-5′- CGG GCC GCA GAG GCC TCC AA-3′; genotype 2a, sense-5′- TAT GTT CAA CAG CAA GGG CCA GA-3′; genotype 2a, antisense-5′- CCT GTG CAT AGC CTC CGT GAA-3′.
ethidium bromide and visualized by ultraviolet transilluminator. The titer of circulating HCV RNA was defined by log_{10}(copy number of HCV RNA per milliliter of serum).

Statistical Analysis

The correlations among histologic scores, the ALT level, and the HCV RNA titers were analyzed by the Spearman rank-order correlation coefficient. A p value less than 0.05 was considered statistically significant. To determine whether there was any difference in the histological features between the two genotypic groups, the mean ranks by genotypic group of the histological parameters were compared by Mann-Whitney test.

RESULTS

Correlation between HAI score and serum ALT level

Demographic and virological features of the patients are

Fig. 1. The relationship between serum ALT levels and total HAI score in patients with chronic hepatitis C. The correlation is not significant (r=0.2537, p>0.05).

Fig. 2. The relationship between serum ALT levels and individual component of HAI score: periportal inflammation (A), portal inflammation (B), intralobular degeneration (C) and fibrosis (D). Good correlations of periportal inflammation (r=0.3215, p<0.05) and portal inflammation (r=0.2672, p<0.05) to serum ALT levels are seen. However, there is no significant correlation between serum ALT levels and intralobular degeneration or fibrosis.
shown in Table 1. As the serum ALT increased, the total HAI score also increased, but significant correlation between the two groups was not observed (r=0.2537, p=0.057) (Fig. 1). In relationship between separate component of HAI and ALT level (Fig. 2), the degree of piecemeal necrosis (r=0.3215, p=0.037) and portal inflammation (r=0.2672, p=0.041) significantly correlated with ALT level. However, no significant correlation between the degree of intralobular degeneration (r=0.0812, p=0.115) or fibrosis (r=0.2595, p=0.082) and ALT level was seen.

Correlation between HAI score and circulating HCV RNA titer

Circulating HCV RNA levels through competitive RT-PCR assay were determined by comparing the signal intensities of two bands on agarose gel electrophoresis as shown in Fig. 3. Amplified PCR products derived from the target HCV RNA in sera and the mutant HCV RNA as internal template were 268 base pairs (bp) and 188 bp, respectively. Although the patients with worse histology had a trend toward higher HCV RNA titers, there was no significant correlation between circulating HCV RNA titers and the degree of liver injury (r=0.2495, p=0.058). (Table 2, Fig. 4). None of the individual components of the HAI score in relation to circulating HCV RNA levels showed statistically significant value.

Correlation between HAI score and Genotype of HCV

For the determination of HCV genotype, the HCV NS5 region was amplified by second round PCR with type-specific primers. Of the 56 patients, 34 (60.7%) were infected with genotype 1b, 20 (35.7%) with genotype 2a, and 2 (3.6%) with undetermined genotype. Histological differences between genotype 1b and genotype 2a were compared by the Mann-Whitney test and no significant differences were seen (Table 3).

DISCUSSION

Chronic HCV infection affects approximately 3% of the population worldwide and HCV accounts for approximately 20% of cases of acute hepatitis and 70% of cases of chronic hepatitis (1, 22). The clinical outcome of HCV infections is believed to depend mostly on the balance between the rate of replication of the infecting virus and the capacity of the immune system to mount rapid, multi-specific and efficient
Histology and ALT and Virological Characteristics of HCV

had a mild hepatitis (HAI
Interestingly, 38.5% of 26 patients with high viremic levels
circulating HCV RNA titers and the degree of liver injury.
our study, there was no significant correlation between cir-

In general, chronic hepatitis C patients with elevated ALT
levels and high HCV RNA titers in the sera are considered to
have active HCV replication in the liver and to be at risk for
continued liver injury in a clinical basis. Also, the serum
ALT level is recognized as a marker reflecting the degree of
the histological damage and has served as a parameter for
starting therapy or judging response to antiviral treatment in
chronic hepatitis C. However, a number of recent studies
showed ambivalent results in the relationships among the
degree of histological damage, serum ALT level, HCV RNA
titers and HCV genotype in chronic hepatitis C.

The aim of this study was to address whether there was a
correlation between the degree of histological damage and
serum ALT level or virological characteristics including HCV
RNA titers or HCV genotype in chronic hepatitis C.

The results of this study revealed no significant correla-
tion between serum ALT level and total HAI. But some
individual components of the HAI score such as piecemeal
necrosis and portal inflammation correlated with degree of
ALT elevation. Our observations are in agreement with pre-
vious reports that showed significant hepatic histological
abnormalities in patients with normal or near-normal serum
ALT levels (24) and poor correlation between higher serum
ALT levels and histological abnormalities (28, 30). These
results suggest that serum ALT levels do not accurately pre-
dict the presence of liver damage, although it seems to cor-
relate with the severity of architectural changes. Thus, it is
essential to assess the histological activity of liver damage in
order to reassure the subjects with minimal disease and to
identify patients with advanced chronic liver disease (4, 9).

Recently many studies regarding HCV RNA titer and its
correlation to HAI score have shown conflicting results. In
our study, there was no significant correlation between cir-
culating HCV RNA titers and the degree of liver injury.
Interestingly, 38.5% of 26 patients with high viremic levels
had a mild hepatitis (HAI \(\leq 5 \)), while 16.7% of 30 patients
with low viremic levels showed severe hepatitis (HAI \(\geq 11 \))
on liver biopsy. In addition, none of the individual compo-
nents of the HAI score in relation to circulating HCV RNA
levels should a statistically significant result. Previous data
showed discrepant results between HCV RNA titers and
HAI, while some studies revealed no correlation (15, 25, 28).
Still others showed a significant relationship (11, 13, 29).
Many factors may account for these discrepancies. Firstly,
the test used to quantitate HCV RNA was different accord-
ting to the studies. Gretch et al. indicated the limitations of
the bDNA assay for quantitation of HCV RNA, especially
when viremia is very low or very high (13). Secondly, because

The clinical outcome of HCV infection can be influenced
by the HCV genotype. Previous data revealed that genotype
1 was found in a higher percentage of chronic active hepatitis
and cirrhosis with respect to other genotypes (35), and
that the rate of response to interferon was higher in patients
infected with genotypes 2 and 3 (36). The absence of ALT
elevation despite evidence of chronic hepatitis might be
related to infection with a specific HCV genotype and/or to a
lower degree of viral replication (37). Genotype 2 was
mainly associated with persistently normal or near-normal
ALT levels, whereas genotype 1b was prevalent among sub-
jects with elevated ALT (37). However, in the present study,
no statistical relationship was found between liver damage
and HCV genotype. This observation is in consistent with
previous report demonstrating that HCV genotype have lit-	le influence on the progression of chronic liver disease (38).

In conclusion, our study shows that viral load or HCV
genotype does not accurately predict the degree of liver injury
in chronic HCV carriers, although serum ALT levels weakly
correlate with portal inflammation and periportal necrosis.
Thus, the histological evaluation would be the gold standard
to accurately assess the degree of liver damage and to decide
therapeutic plan in patients chronically infected with HCV.

ACKNOWLEDGMENT

This study was supported by a grant of the Korean Health
21 R&D Project, Ministry of Health & Welfare, Republic of
Korea (HMP-99-M-01-0008).

REFERENCES

1. Hoofnagle JH. Hepatitis C: the clinical spectrum of disease. Hepa-

tology 1997; 26: 135S-205.

2. Marcellin P, Levy S, Erlinger S. Therapy of hepatitis C: patients

with normal aminotransferase levels. Hepatology 1997; 26: 133S-

136S.

3. Brillanti S, Foli M, Gaianti S, Menci C, Miglioli M, Barbara L. Per-
sistent hepatitis C viraemia without liver disease. Lancet 1993;
4. Puoti C, Magrini A, Stati T, Rigato P, Montagnese F, Rossi P, Aldegneri L, Resta S. Clinical, histological, and virological features of hepatitis C virus carriers with persistently normal or abnormal alanine transaminase levels. Hepatology 1997; 26: 1393-8.

5. Puoti C, Stati T, Magrini A, Rigato P, Romagnoli G, Rossi P, Montagnese F, Resta S. Liver histology in anti-HCV positive subjects with normal ALT levels. Ital J Gastroenterol Hepatol 1997; 29: 383-4.

6. Alberti A, Morsica G, Chemello L, Cavalletto D, Noventa F, Pontisso P, Ruol A. Hepatitis C viremia and liver disease in symptomfree individuals with anti-HCV. Lancet 1992; 340(8821): 697-8.

7. Prieto M, Olaso V, Verdu C, Cordoba J, Gisbert C, Rayon M, Carrasco D, Berenguer M, Higon MD, Berenguer J. Does the healthy hepatitis C virus carrier state really exist? An analysis using polymerase chain reaction. Hepatology 1995; 22: 413-7.

8. Healey CJ, Chapman RW, Fleming KA. Liver histology in hepatitis C infection: a comparison between patients with persistently normal or abnormal transaminases. Gut 1995; 37: 274-8.

9. Seymour CA. Hepatitis C viraemia and liver disease in symptom-free individuals with anti-HCV. Lancet 1992; 340: 670-1.

10. Valori R, Christie J. Asymptomatic hepatitis C infection. Be cautious with liver biopsy. Br Med J 1994; 308(6938): 1235.

11. Magrin S, Craxi A, Fabiano C, Simonetti RG, Fiorentino G, Marino A, Puoti C, Stati T, Magrini A, Simonetti T, Date T. There are two major types of hepatitis C virus in Japan. Biochem Biophys Res Commun 1990; 170: 1021-5.

12. Yoon SK, Kim SS, Park YM, Shim KS, Lee CD, Sun HS, Park HY, Kim BS. Serum hepatitis C virus RNA levels in patients with hepatitis C and normal or near normal aminotransferase values. Am J Gastroenterol 1994; 89: 1671.

13. Yoon SK, Kim SS, Park YM, Shim KS, Lee CD, Sun HS, Park DH, Kim BS, Ryu WS, Cho JM. Predictive factors for beneficial response to interferon-alfa therapy in chronic hepatitis C. Korean J Intern Med 1995; 10: 94-102.

14. Naito M, Hayashi N, Hagiwara H, Hiramatsu N, Kasahara A, Fusamoto H, Kamada T. Serum hepatitis C virus RNA quantity and histological features of hepatitis C virus carriers with persistently normal ALT levels. Hepatology 1994; 19: 2739-45.

15. Kato N, Hijikata M, Otsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 1990; 87: 9524-8.

16. Booth JC, Foster GR, Levine T, Thomas HC, Goldin RD. The relationship of histology to genotype in chronic HCV infection. Liver 1997; 17: 144-51.

17. Puoti C, Stati T, Magrini A. Serum HCV RNA titer does not predict the severity of liver damage in HCV carriers with normal aminotransferase levels. Liver 1999; 19: 104-9.

18. Yoon SK, Park YM, Byun BH, Bae SH, Yang JM, Ahn BM, Lee YS, Lee CD, Sun HS, Kim BS. The relationship between virological characteristics of hepatitis C virus (HCV) and reactivity to the regional specific proteins of HCV. Korean J Intern Med 2000; 15: 109-16.

19. Kato N, Hijikata M, Otsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 1990; 87: 9524-8.

20. Enomoto N, Takada A, Nakao T, Date T. Asymptomatic infection with hepatitis C virus. Br Med J 1994; 308(6938): 1235.

21. Simmonds P, Holmes EC, Cha TA, Chan SW, McOmish F, Irvine B, Beall E, Yap PL, Kolberg J, Urdea MS. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol 1993; 74: 2391-9.

22. Alter MJ. Epidemiology of hepatitis C in the West. Semin Liver Dis. 1995; 15: 5-14.

23. Doherty PC, Ahmed R. Immune response to viral infection. In: Nathanson N, ed. Viral pathogenesis. Philadelphia: Lippincott-Raven; 1997: 143-61.

24. Filipak CL, Gordon SC, Silverman AL. Liver histology and hepatitis C RNA levels in patients with hepatitis C and normal or near normal aminotransferase values. Am J Gastroenterol 1994; 89: 1671.

25. Lai JY, Davis GL, Kniffen J, Qian KP, Urdea MS, Chan CS, Mizokami M, Neuwald PD, Wilber JC. Significance of serum hepatitis C virus RNA levels in chronic hepatitis C. Lancet 1993; 341 (8859): 1501-4.

26. Kumar U, Thomas HC, Monjadino J. Serum HCV RNA levels in chronic hepatitis C measured by quantitative PCR assays: correlation with serum AST. J Virol Methods 1994; 47: 95-102.

27. Brillanti S, Garson J, Foli M, Whitby K, Deaville R, Masci C, Miglioli M, Barbara L. A pilot study of combination therapy with ribavirin plus interferon for interferon alpha-resistant chronic hepatitis C. Gastroenterology 1994; 107: 812-7.

28. Naito M, Hayashi N, Hagiwara H, Hiramatsu N, Kasahara A, Fusamoto H, Kamada T. Serum hepatitis C virus RNA quantity and histological features of hepatitis C virus carriers with persistently normal ALT levels. Hepatology 1994; 19: 871-5.

29. Kato N, Yokosuka O, Hosoda K, Ito Y, Ohito M, Omata M. Quantification of hepatitis C virus by competitive reverse transcription-polymerase chain reaction: increase of the virus in advanced disease. Hepatology 1993; 18: 16-20.

30. Haber MM, West AB, Haber AD, Reuben A. Relationship of aminotransferases to liver histological status in chronic hepatitis C. Am J Gastroenterol 1995; 90: 1250-7.

31. Zeuzem S, Schmidt JM, Lee JH, Ruster B, Roth WK. Effect of interferon alfa on the dynamics of hepatitis C virus turnover in vivo. Hepatology 1996; 23: 366-71.

32. Muller HM, Pfaff E, Goeser T, Kolberg J, Urdea MS. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol 1993; 74: 2391-9.

33. Ballardini G, Manzin A, Giostra F, Francesconi R, Groff P, Grassi A, Solforgi D, Zauli D, Clementi M, Bianchi FB. Quantitative liver parameters of HCV infection: relation to HCV genotypes, viremia and response to interferon treatment. J Hepatology 1997; 26: 779-86.

34. McGuinness PH, Bishop GA, Lien A, Wiley B, Parsons C,
McCaughan GW. Detection of serum hepatitis C virus RNA in HCV antibody-seropositive volunteer blood donors. Hepatology 1993; 18: 485-90.

35. Silini E, Bono F, Cividini A, Cerino A, Bruno S, Rossi S, Belloni G, Brugnetti B, Civardi E, Salvanesi L. Differential distribution of hepatitis C virus genotypes in patients with and without liver function abnormalities. Hepatology 1995; 21: 285-90.

36. Yoshioka K, Kakumu S, Wakita T, Ishikawa T, Itoh Y, Takayanagi M, Higashi Y, Shibata M, Morishima T. Detection of hepatitis C virus by polymerase chain reaction and response to interferon-alpha therapy: relationship to genotypes of hepatitis C virus. Hepatology 1992; 16: 293-9.

37. Rossini A, Ravaggi A, Agostinelli E, Bercich L, Gazzola GB, Radaelli E, Callea F, Cariani E. Virological characterization and liver histology in HCV positive subjects with normal and elevated ALT levels. Liver 1997; 17: 133-8.

38. Mita E, Hayashi N, Kanazawa Y, Hagiwara H, Ueda K, Kasahara A, Fusamoto H, Kamada T. Hepatitis C virus genotype and RNA titer in the progression of type C chronic liver disease. J Hepatol 1994; 21: 468-73.