RESEARCH ARTICLE
MATERIALS SCIENCE

Layer-by-layer epitaxy of multilayer MoS₂ wafers

Qinlin Wang¹,²,†, Jian Tang¹,²,†, Xiaomei Li¹,², Jinpeng Tian¹,², Jing Liang⁴, Na Li¹,³, Depeng Ji³, Lede Xian³, Yutuo Guo¹,², Lu Li¹,², Qinghua Zhang¹,², Yanbang Chu¹,², Zheng Wei¹,², Yanchong Zhao¹,², Luojun Du¹, Hua Yu¹,³, Xuedong Bai¹,², Lin Gu¹,², Kaimui Liu⁴, Wei Yang¹,², Rong Yang¹,²,³, Dongxia Shi¹,² and Guangyu Zhang¹,²,³,†

¹Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 10190, China;
²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
³Songshan Lake Materials Laboratory, Dongguan 523808, China;
⁴Collaborative Innovation Center of Quantum Matter and School of Physics, Peking University, Beijing 100871, China

*Corresponding author. E-mail: gyzhang@iphy.ac.cn
†Equally contributed to this work.

ABSTRACT
Two-dimensional (2D) semiconductor of MoS₂ has great potential for advanced electronics technologies beyond silicon. So far, high-quality monolayer MoS₂ wafers are already available and various demonstrations from individual transistors to integrated circuits have also been shown. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and current capacities over the monolayer. However, achieving high-quality multilayer MoS₂ wafers remains a challenge. Here we report the growth of high-quality multilayer MoS₂ 4-inch wafers via the layer-by-layer epitaxy process. The epitaxy leads to well-defined stacking orders between adjacent epitaxial layers and offers a delicate control of layer numbers up to 6. Systematic evaluations on the atomic structures and electronic properties were carried out for achieved wafers with different layer numbers. Significant improvements in device performances were found in thicker-layer field-effect transistors (FETs), as expected. For example, the average field-effect mobility (μFE) at room temperature (RT) can increase from ~80 cm²·V⁻¹·s⁻¹ for monolayers to ~110/145 cm²·V⁻¹·s⁻¹ for bilayer/trilayer devices. The highest RT μFE=234.7 cm²·V⁻¹·s⁻¹ and a record-high on-current densities of 1.70 mA/µm at Vds=2 V were also achieved in trilayer MoS₂ FETs with a high on/off ratio exceeding 10⁷. Our work hence moves a step closer to practical applications of 2D MoS₂ in electronics.
INTRODUCTION

Since the successful exfoliation of 2D MoS$_2$1, these ultrathin semiconductors have attracted great attention in the field of electronics2-13. Tremendous efforts have been devoted to exploring their scaled-up potentials, including both wafer-scale synthesis of high-quality materials and application of them in large-area devices, with a specific focus on the monolayer MoS$_2$ (ML-MoS$_2$)14-20. Up to now, high-quality ML-MoS$_2$ wafers are already available from various growth approaches including chemical vapor deposition (CVD)15-20 and metal-organic CVD (MOCVD)14. Depending on the growth approaches and substrates, the MOCVD/CVD ML-MoS$_2$ films are generally stitched from random/aligned domains with sizes featured at 1/100 micron level and have a state-of-the-art room temperature electron mobility of \sim300/70 cm2/V$^{-1}$/s-1 in average, an electronic quality comparable with or even better than the exfoliated monolayers.

In terms of a further improvement of the electronic quality of the large-scale 2D-MoS$_2$, structural imperfections should be eliminated as much as possible; however, there is not much space left for monolayer MoS$_2$ after ten years of synthesis optimizations in this field. Another direction is to switch to multilayer MoS$_2$, e.g. bilayers or trilayers, since they have intrinsically higher electronic quality than monolayers21-28. Indeed, with the increased number of MoS$_2$ layers, decreased bandgaps but enhanced electron mobilities and current densities have been demonstrated in exfoliated or CVD flakes21,27,28. However, it currently remains a significant challenge to produce high-quality and large-scale MoS$_2$ multilayers with a well-controlled number of layers. Previously, CVD and sulfurization have been used to produce multilayer MoS$_2$ in form of flakes. While those flakes are of good crystal quality, their sizes are small, typically less than \sim300 μm25,29. Large-scale multilayer MoS$_2$ films have been also synthesized, e.g. from sulfurization of precoated Mo/MoO$_3$ films30 and atomic layer deposition (ALD)31. As-produced films are typically polycrystalline with the many randomly oriented domains in sizes of less than 100 nm and include the co-existence of different layer thicknesses. Such poor crystalline quality subjected to bad domain stitching and less control on the number of layers, leads to low electronic performances even worse than those achieved in MoS$_2$ monolayers32-35. More details appear in Supplementary Information (Table S1&S2).

Generally, to produce MoS$_2$ multilayers, the best practice is to begin with monolayers then increase their thicknesses by gradually growing additional layers. However, considering the case of free-standing MoS$_2$, this route is problematic in the thermodynamic point of view. The surface energy of free-standing MoS$_2$ increases with the number of layers36,37, it is thus energetically unfavorable to increase additional layers38. This fundamental thermodynamic limitation is likely to prevent large-area multilayer MoS$_2$ with well-controlled layer numbers from being demonstrated previously. It is expected that this thermodynamic limitation might be overcome by engineering the surface energy of MoS$_2$ via the proximity effect. According to our density functional theory (DFT) simulations, surface energies of mono- and bilayer MoS$_2$ on sapphire (0001) surface are significantly elevated, making the growth of an additional layer on top of them thermodynamically feasible. More details and discussions appear in Supplementary Information.

In this work, we developed a new technique, i.e. layer-by-layer epitaxy, to grow high-quality 4-inch multilayer MoS$_2$ wafers with a controlled number of layers. By using sapphire (0001) as the starting
substrate, we successfully achieved the growth of uniform NL-MoS$_2$ (N=1, 2, 3), where N is the number of layers, in a layer-by-layer manner. All sapphire wafers used in our growth are 4-inch wafers cut along the zero-degree plane, or C-Cut, which were vacuum annealed at ~1000°C to form atomically flat surfaces before epitaxy. Note that sapphire wafers are cheap and widely used for various semiconductor thin film epitaxy, and sapphire (0001) surface is so far one of the best substrates for MoS$_2$ epitaxy due to a negligible lattice mismatch. Two processes are involved in this layer-by-layer growth, i.e. heteroepitaxy of 1^{st} layer on sapphire and homoepitaxy of (N+1)$^{\text{th}}$ layer on NL with N > 0, as illustrated in Figure 1a.

RESULTS AND DISCUSSION

Both heteroepitaxy and homoepitaxy growth were performed in a multi-source oxygen-enhanced CVD system. This new CVD approach for monolayer MoS$_2$ growth features a greatly enhanced growth rate and excellent film uniformity across the entire 4-inch sapphire surface (benefited from the stable and uniform S- and Mo- source supply during the growth process)17. Usually, the 1^{st} layer epitaxy on sapphire starts from nucleation at multiple sites, proceeds with the edge growth of those nuclei, and eventually reaches a layer completion (i.e. full coverage on the substrate surface) via the domain-domain coalescence mechanism. Typically, the 1^{st} layer growth lasts for 30 minutes and a completed layer is stitched from two kinds of triangular domains inversely aligned along sapphire $<$11-20>, as illustrated in supplementary Fig. S6.

Note that monolayer MoS$_2$ growth on sapphire or SiO$_2$ substrates follows a unique self-limiting process15 in which additional layers can hardly be nucleated on the monolayer till its completion. After the 1^{st} layer completion, we can grow additional layers epitaxially on top of the 1^{st} layer by using this oxygen-enhanced CVD technique. One key process is to control the nucleation density of the 2^{nd} layer (more discussions appear in Supplementary Information). A higher temperature of Mo-source (T_{Mo}), in other words, a higher Mo-source flux, is found to be beneficial to achieving a higher nucleation density of the 2^{nd} layer. We thus increased both T_{Mo} and substrate temperature ($T_{\text{substrate}}$) to enable dense nucleation of the 2^{nd} layer to reach a saturation state under which additional layer nucleations are forbidden (see Supplementary Information for more discussions). As shown in the supplementary Fig. S7, 2^{nd} layer nucleations are dense and uniform across the entire 4-inch surface. In a similar way mentioned above, 2^{nd} layer nuclei grow then stitch for the layer completion, yielding a continuous and fully covered bilayer MoS$_2$ film eventually, as demonstrated in the supplementary Fig. S5. From Fig. S5, we can see that domains in the 1^{st} layer are triangular with sizes of ~200 µm in average; while in the 2^{nd} layer, they are hexagonal with sizes reduced to ~10 µm in average. Note that the domain shape is defined by the growth rate at Mo- (V_{Mo}) and S-terminated edges (V_S), and the hexagonal shape corresponds to $V_{\text{Mo}}$$\approx$$V_S$39; we intentionally modulated the shape of 2^{nd} domains to be hexagonal, as the hexagonal shape is beneficial for better domain-domain stitching from a geometrical point of view. After completing the 2^{nd} layer, we thus can repeat the homoepitaxy process by prolonging the growth time to achieve fully covered multilayers with controlled N in a layer-by-layer manner. A detailed sequential process for 3L-MoS$_2$ on sapphire is illustrated in supplementary Fig. S6.

As shown above, the dedicated control of the growth kinetic process, e.g., nucleation and edge growth, is the key to achieving continuous layer epitaxy. In our growth tests, we achieved MoS$_2$
wafers with N up to 6 (supplementary Fig. S8). It was noticed that the ideal 2D growth mode is
difficult to keep for Nth layer when N ≥ 3, leading to the appearance of additional mono- or
multilayer domains on NL-/MoS2 (refer to supplementary Fig. S8). Such failure is more and more
significant with increasing N and the growth mode evolves gradually from 2D to 3D, in consistence
with the classical Stranski-Kranstanov growth mode40. This layer-dependent growth mode evolution
could be attributed to several reasons. Firstly, the surface proximity effect reduces quickly for those
thicker layers with upper surfaces farther away from the sapphire surface. Besides, once the
additional layers appear, their presence would be amplified in the subsequent growth. More detailed
discussions on energetics, growth kinetics, and analysis of practical growth parameters appear in
Supplementary Information.

Since as-grown MoS2 films are very uniform for mono-/bilayers and quite uniform for trilayers (as
characterized in supplementary Fig. S9) across entire 4-inch wafers, we thus mainly focus on the
bilayer and trilayer samples in the following characterizations. Fig. 1b shows typical optical images
of the as-grown 4-inch mono-, bi-, and trilayer MoS2 wafers. Fig. 1c-h show typical zoom-in optic
and atomic force microscope (AFM) images from these wafers, indicating the full coverage and
very clean surfaces. The trilayer continuous films have certain additional small quadrilayer
domains, and their coverage is ~30%. The layer numbers were further confirmed by high-resolution
cross-section high-angle annular dark-field transmission electron microscopy (HAADF-STEM)
imaging (Fig. 1i-k). We can see clearly that each layer consists of one-layer Mo and two-
layer S atoms with a layer thickness of ~0.62 nm and the interface between the adjacent layers is
atomically clean and sharp, reflecting the superiority of epitaxy.

To elucidate the layer stacking orders in these multilayer MoS2 wafers, we further performed
atomic structure characterizations by STEM. As shown in Fig. 2, there are two stacking orders in
our bilayer samples, i.e. AA stacking (2L-AA, 3R phase) and AB stacking (2L-AB, 2H phase), and
the corresponding atomic configurations are shown in Fig. 2a. Fig. 2b and c show STEM images of
a typical AA- and AB-stacked bilayer MoS2. Note that the AA stacked layers have no inversion
symmetry while the AB stacked layers have. Fig. 2d and e also show the TEM images of a bilayer
MoS2 film with a grain boundary. AA and AB stacked domains can be distinguished and these two
different stacking domains can coalesce together without any disconnect gap, revealing a crystalline
continuity. Fig. 2f shows the selected area electron diffraction (SAED) pattern at the grain boundary
area, exhibiting only one set of hexagonal diffraction spots, as expected. We also characterize the
trilayer samples. Different from the bilayer case, the stacking orders in trilayers are much more
complicated (supplementary Fig. S10). AAA, AAB/ABB, and ABA stacking configurations all
exist, as shown in Fig. 2g-i. All these STEM images for bi- or trilayers reveal our epitaxial
multilayer films having excellent lattice alignments. Benefiting from the epitaxy technique, the
seamless stitching of these aligned domains leads to high crystalline quality of multilayer MoS2 on
sapphire, as will be confirmed by our latter device characterizations.

Second harmonic generation (SHG) microscopy was also performed to further study the large-scale
stacking orders in our bilayer films due to the distinct intensity difference between AA and AB
stacked structures33. Note that the AA bilayers have stronger SHG intensities than monolayer MoS2
crystals due to the broken inversion symmetry while the AB bilayers have weak SHG intensities
due to the restored inversion symmetry41. As shown in Fig. S11a, the SHG mapping image of ~1.7
L MoS$_2$ shows obvious contrast of monolayers, 2L-AA, and 2L-AB layers. Fig. S11b shows the SHG mapping image of our bilayer continuous films, it shows two mainly contrasts with monolayer and trilayer areas barely seen, which confirms that our bilayer films consist of two stacking orders.

As mentioned above, MoS$_2$ multilayers would have N-dependent bandgaps. To confirm it in our epitaxial samples, we thus collected optical spectra for our mono-, bi-, and trilayer MoS$_2$ wafers. Corresponding Raman spectra are shown in Fig. 3a. In control samples of monolayer MoS$_2$ films, the peak frequency difference (Δ) between the E$_{2g}$ and A$_{1g}$ vibration modes is about ~20 cm$^{-1}$. As a comparison, Δ in the bilayer and trilayer films are wider to ~23 and ~24 cm$^{-1}$, respectively. Fig. 3b shows the photoluminescence (PL) spectra of our mono-, bi-, and trilayer MoS$_2$ films. We can see a strong A-exciton peak at ~1.88 eV in the monolayer, while A- and B-exciton peaks are greatly suppressed in bi- and trilayer films due to the transition from the direct bandgap to the indirect ones42,43. The indirect bandgaps are ~1.50 eV and ~1.42 eV for bilayers and trilayers, respectively, confirming the N-dependent band gaps of the multilayer MoS$_2$. Note that those sharp peaks at 1.79 eV are from sapphire substrates. Fig. 3c shows the optical transmittance spectra of mono-, bi-, and trilayer MoS$_2$ films transferred on quartz substrates, and the corresponding transmittances are 94.2%, 91.6%, and 84.5% at a wavelength of ~550 nm. Due to the release of the strain after the transfer, the A- and B-exciton peaks in the transmittance spectra are a little bit shifted. Using the Raman line scanning, we also investigated the wafer-scale uniformity of the as-grown mono-, bi-, and trilayer MoS$_2$ wafers, as shown in Fig. 3d-i. We can see these Raman peaks locate nearly the same along the entire wafer diameter, revealing a high uniformity.

Based on the obtained high-quality multilayer MoS$_2$ wafers, we hence fabricated FETs for performance benchmark testing. Please see Methods and Fig. S12 for details on device fabrications. Let’s look at the short channel trilayer MoS$_2$ FETs first. The structure of these back-gated MoS$_2$ FETs is illustrated in Fig. 4a. High-resolution STEM imaging at the MoS$_2$-Au interface (as illustrated in the bottom image of Fig. 4a) reveals a sharp contact interface without obvious damages, filamentous breaks, or wrinkles$^{44-46}$. The output and transfer curves of a device with a channel length (L_{ch}) of 40 nm are shown in Fig. 4b and c. Linear output characteristics at small bias voltages (V_{ds}) suggest the ohmic contact behavior, and the source-drain currents (I_{ds}) quickly approach to saturation at small gate voltages subjected to the employment of HfO$_2$ (ε_r=15-20) dielectric layer. The device features a high on/off ratio of $>10^7$, a sharp subthreshold swing (SS) of 200 mV/dec over 4 magnitudes, and a small hysteresis of $\Delta V_g$$\approx$0.02 V (at 0.1 μA/μm). The current density (I_{ds}/W, where W is the channel width) can reach 1.70/1.22/0.94 mA/μm at V_{ds}=2/1/0.65 V which is the highest ever achieved in MoS$_2$ transistors. Such high on-current density is above the target of high-performance logic transistors from the International Roadmap for Devices and Systems (IRDS) 2024. The transfer curve of the L_{ch}=40 nm trilayer FET at V_{ds}=0.65 V is shown in the supplementary Fig. S13.

Transfer curves of mono-, bi-, and trilayer devices with L_{ch}=100 nm are shown in Fig. 4d. We can see a significant improvement in the on-current densities while increasing the number of layers, and the corresponding I_{ds}/W of mono-, bi-, and trilayer devices are 0.40, 0.64, and 0.81 mA/μm, respectively, at V_{ds}=1 V and V_g=5 V (supplementary Fig. S14). It was also noted that thicker MoS$_2$ devices show saturated currents at much smaller V_g. In Fig. 4e, we plotted the current densities (V_{ds}=1 V) and on/off ratios of our devices, compared with previous data from the state-of-the-art
MoS\(_2\) devices (refer to the supplementary Table S3 for more details). The good balance between high current density and high on/off ratio suggests a great potential of these epitaxial multilayer MoS\(_2\) wafers for fabrication of integrated, high-performance, and low-power electronics.

Next, we also fabricated long-channel FETs with \(L_{ch}\) varying from 5 to 50 \(\mu\)m and \(W_{ch}\) varying from 10 \(\mu\)m to 30 \(\mu\)m based on our multilayer MoS\(_2\) wafers, as illustrated in the inset of Fig. 4f. Transfer curves of 150 randomly picked trilayer MoS\(_2\) FETs with different \(L_{ch}\) and \(W_{ch}\) are shown in Fig. 4f (similar data from mono- and bilayer MoS\(_2\) FETs can be found in the supplementary Fig. S15). We also show transfer curves of 100 randomly picked trilayer MoS\(_2\) FETs with the same \(L_{ch}=10\) \(\mu\)m and \(W_{ch}=10\) \(\mu\)m in the supplementary Fig. S16. The overall yield of all devices is \(>95\%\). All these devices exhibit small device-to-device variations, reflecting the uniformity of epitaxial wafers. On/off ratios, subthreshold voltages (\(V_{th}\)), and SS of these devices are also plotted in Fig. 4g. The highest on/off ratio can reach to \(10^8\)-\(10^9\) and averages at \(4.5\times10^8\), much higher than that achieved in the previous multilayer MoS\(_2\) devices\(^{32,35,47}\). \(V_{th}\) is mainly located at \(-1.25\pm0.4\) V and the average SS is \(~115\) mV/dec.

Finally, let’s compare film conductivities of mono-, bi-, and trilayer MoS\(_2\). The sheet resistances (\(\rho\)) were extracted by transfer length method (TLM)\(^{48}\) as shown in Fig. 4h. At a carrier density of \(n=4\times10^{13}\) cm\(^{-2}\), \(\rho\) is 9.3, 5.4, and 3.0 k\(\Omega\) for mono-, bi-, and trilayer MoS\(_2\) channels, respectively, revealing that multilayer MoS\(_2\) is more conductive. Besides, the extracted contact resistance (\(R_c\)) is \(~0.61\) k\(\Omega\)\(\mu\)m at \(n=4\times10^{13}\) cm\(^{-2}\). Although the achieved \(R_c\) is slightly larger than that of Bi-contacts reported recently\(^{12}\), Au-contacts are advantageous considering that Au is stable and widely used in the nowadays semiconductor technology. Better device performances might be achievable in the future by further optimizing contact techniques. In Fig. 4i, we summarize the field-effect mobilities (\(\mu_{FE}\)) of these long-channel MoS\(_2\) FETs. A significant improvement on \(\mu_{FE}\) with channel layer numbers can be clearly seen, just as expected. The average \(\mu_{FE}\) is \(~80, ~110, \) and \(~145\) cm\(^2\) V\(^{-1}\) s\(^{-1}\) for mono-, bi-, and trilayer FETs, respectively. The mobility distributions in each type of device are fitted by Lorentz curves. The full width at the half maximum (FWHM) of the fitting is \(~40, ~50, \) and \(~60\) cm\(^2\) V\(^{-1}\) s\(^{-1}\) for mono-, bi-, and trilayer devices, and the increased FWHM with the number of layers is partially attributed to the inhomogeneity from additional layers and need to be optimized in further studies. Remarkably, the highest \(\mu_{FE}\) reaches 131.6, 217.3, and 234.7 cm\(^2\) V\(^{-1}\) s\(^{-1}\) in our mono-, bi-, and trilayer devices, and all these numbers are record-high in wafer-scale MoS\(_2\) devices. Considering that, in well-developed thin-film transistors (TFTs), \(\mu_{FE}\) is 10-40 cm\(^2\) V\(^{-1}\) s\(^{-1}\) for indium–gallium–zinc oxide (IGZO) TFTs and 50-100 cm\(^2\) V\(^{-1}\) s\(^{-1}\) for low-temperature polycrystalline silicon (LTPS) TFTs\(^{49}\), the competitive average \(\mu_{FE}\), i.e. larger than 100 cm\(^2\) V\(^{-1}\) s\(^{-1}\), achieved in this work also reveal a great potential of these multilayer MoS\(_2\) films for TFT applications.

CONCLUSION AND PERSPECTIVE

As shown above, the developed layer-by-layer epitaxy on sapphire can yield uniform and large-scale multilayer MoS\(_2\) with clean interfaces and a well-controlled number of layers, e.g. 1, 2, 3. In each layer, the high lattice continuity/quality are accomplished via seamless stitching of large domains aligned along sapphire\(<11-20>\). Bilayer and trilayer MoS\(_2\) wafers exhibit remarkably improved electrical quality over their monolayer counterparts, as evidenced by higher on-current
densities and higher electron mobilities, suggesting a great potential of using them for 2D electronics. Regarding technological improvements, further investigations are required. Firstly, the high-temperature growth process is less compatible with the conventional semiconductor processes and thus needs to be lowered. Secondly, steady improvements of wafer sizes and control of single-alignment of domains are also required for producing single-crystalline multilayers at a large scale. Besides, it is also very interesting to apply this layer-by-layer epitaxy technique for large-scale and high-quality heterogeneous 2D layers to broaden the application field of 2D semiconductors.

METHODS
Layer-by-layer epitaxy of MoS$_2$

All growths were carried out in a home-built multi-source CVD system with three temperature zones, named zone-I, zone-II and zone-III. In a typical growth, one S-source (Alfa Aesar, 99.9%, 15 g) was loaded in zone-I and carried by Ar (40 sccm) and six MoO$_3$-source (Alfa Aesar, 99.99%, 30 mg each) were loaded in zone-II and carried by Ar/O$_2$ (40/1.7 sccm) individually. Sapphire substrates (single side polished, c-plane (0001) with off-set angle (M-axis) of 0.2±0.1 deg., 4-inch wafers) were loaded in zone-III. During the heteroepitaxy of MoS$_2$ on sapphire, the temperature in zone-I, zone-II, and zone-III is kept at 120°C, 540°C and 910°C, respectively; while the temperature in zone-II and zone-III was increased to 570°C and 940°C, respectively, for homoepitaxy of MoS$_2$.

Structural and spectroscopic characterizations

AFM imaging was performed with the Asylum Research Cypher S system. Raman and PL spectra were collected with Horiba Jobin Yvon LabRAM HR-Evolution Raman system with the excitation laser wavelength of 532 nm. SAED was performed in a TEM (JEOL Grand ARM 300 CFEG) operating at 80 kV, and atomic-resolution images were achieved with an Aberration-corrected scanning transmission electron microscope Grand ARM 300 (JEOL) operating at 80 kV.

SHG measurements

The SHG mapping was recorded using a home-built confocal microscope. The 1200 nm pulsed laser (100 fs, 76 MHz) was generated by a Ti: sapphire oscillator (Coherent Mira-HP) equipped with an optical parametric oscillator (Coherent Mira-OPO-X). The laser beam was sent through a linear polarizer followed by a half-wave plate to tune the polarization direction. Then the laser beam was focused on the sample at normal incidence by the objective (40x, N.A.=0.65). In the reflection geometry, the parallel component of SHG from the sample was extracted by a linear analyzer parallel to the incident polarization. The SHG signal at each point of the sample was recorded using a grating spectrograph with a charge-coupled device camera (Princeton SP-2500i).

Device Fabrications and Measurements

FETs were fabricated by lithography and etching process. The device fabrication process is illustrated in Fig. S6. First, buried back-gates of Ti/Au/Ti (1/5/1 nm) were patterned on substrates by lithography and e-beam evaporation at a deposition rate of 0.01-0.05 Å/s. Second, HfO$_2$ with a thickness of 5-15 nm was deposited by ALD (Savannah-100 system, Cambridge NanoTech. Inc. Precursors: H$_2$O and tetrakis dimethylamino hafnium; Deposition temperature: 200°C) as the gate dielectric layer. Third, MoS$_2$ films were etched off from sapphire substrates in KOH solution (1 M/L) at 110°C and transferred onto the as-prepared HfO$_2$/metal-gate/sapphire surfaces. After the transfer, lithography and oxygen plasma etching (Plasma Lab 80 Plus, Oxford Instruments Company) were used to define the MoS$_2$ channel region. Finally, e-beam evaporated Au (20 nm)
was deposited for source-drain contact metal. For short channel (L<100 nm) FETs, the substrate is SiO$_2$ and the channels were defined by standard e-beam lithography (EBL, Raith e-Line plus system) with PMMA (495 A2) as the resist layer (spin-coated at 2000-3000 rpm and baked at 180°C for 2 min). For long channel (L>2 "µm) FETs, the substrate is sapphire and the channels were defined by UV-lithography (MA6, Karl Suss) with AR-P 5350 (ALLRESIST GmbH) as the positive photoresist with a thickness of ~1 "µm (spin-coated at 4000 rpm and baked at 100°C for 4 min). Note that we also use oxygen plasma to clean the photoresist residues before depositing the Ti/Au/Ti back-gate electrodes before ALD. All electrical measurements were carried out in a four-probe vacuum station (base pressure: ~10$^{-6}$ mbar) equipped with a semiconductor parameter analyzer (Agilent B1500).

SUPPLEMENTARY DATA
Supplementary data are available at NSR online.

FUNDING
This work was supported by the National Key Research and Development Program (2021YFA1202900), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (XDB30000000), the Key-Area Research and Development Program of Guangdong Province (2020B0101340001), the National Science Foundation of China (11834017 and 61888102), and the Key Research Program of Frontier Sciences of CAS (QYZDB-SSW-SLH004).

AUTHOR CONTRIBUTIONS
G.Z. supervised this research. Q.W. performed the CVD growths and Raman characterizations. J.T. carried out device fabrications and electrical measurements with the assistance from Q.W.. X.L., Q.Z., X.B., and L.G. performed STEM characterizations. J.L. and K.L. performed SHG mapping. D.J. and L.X performed modeling and theoretical calculations. Q.W., J.T. and G.Z. wrote and all authors commented on the manuscript.

Conflict of interest statement. None declared.

REFERENCES
1 Novoselov KS, Jiang D and Schedin F et al. Two-dimensional atomic crystals. *Proc Natl Acad Sci USA* 2005; **102**: 10451-3.
2 Mak KF, Lee C and Hone J et al. Atomically thin MoS$_2$: a new direct-gap semiconductor. *Phys Rev Lett* 2010; **105**: 136805.
3 Fiori G, Bonaccorso F and Iannaccone G et al. Electronics based on two-dimensional materials. *Nat Nanotechnol* 2014; **9**: 768-79.
4 Desai SB, Madhvapathy SR and Sachid AB et al. MoS$_2$ transistors with 1-nanometer gate lengths. *Science* 2016; **354**: 99-102.
5 Manzeli S, Ovchinnikov D and Pasquier D et al. 2D transition metal dichalcogenides. *Nat Rev Mater* 2017; **2**: 17033.
6 Lin Z, Liu Y and Halim U et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018; 562: 254-8.

7 Akinwande D, Huyghebaert C and Wang C-H et al. Graphene and two-dimensional materials for silicon technology. Nature 2019; 573: 507-18.

8 Wang Y, Kim JC and Wu RJ et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019; 568: 70-4.

9 Polyushkin DK, Wachtler S and Mennel L et al. Analogue two-dimensional semiconductor electronics. Nat Electron 2020; 3: 486-91.

10 Li N, Wang Q and Shen C et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat Electron 2020; 3: 711-7.

11 Daus A, Vaziri S and Chen V et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat Electron 2021; 4: 495-501.

12 Shen P-C, Su C and Lin Y et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021; 593: 211-7.

13 Liu Y, Duan X and Shin H J et al. Promises and prospects of two-dimensional transistors. Nature 2021; 591: 43-53.

14 Kang K, Xie S and Huang L et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015; 520: 656-60.

15 Yu H, Liao M and Zhao W et al. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS Nano 2017; 11: 12001-7.

16 Yang P, Zou X and Zhang Z et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun 2018; 9: 7979.

17 Wang Q, Li N and Tang J et al. Wafer-Scale Highly Oriented Monolayer MoS2 with Large Domain Sizes. Nano Lett 2020; 20: 7193-9.

18 Yang P, Zhang S and Pan S et al. Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au (111). ACS Nano 2020; 14: 5036-45.

19 Aljarb A, Fu J-H and Hsu C-C et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat Mater 2020; 19: 1300-6.

20 Li T, Guo W and Ma L et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol 2021; 16: 1201-7.

21 Cheng R, Jiang S and Chen Y et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014; 5: 5143.

22 Lee G-H, Yu Y-J and Cui X et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013; 7: 7931-6.

23 Li S-L, Wakabayashi K and Xu Y et al. Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett 2013; 13: 3546-52.

24 Xu H, Zhang H and Guo Z et al. High-Performance Wafer-Scale MoS2 Transistors toward Practical Application. Small 2018; 14: e1803465.

25 Zhang X, Nan H and Xiao S et al. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat Commun 2019; 10: 598.

26 Kim S, Konar A and Hwang WS et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun 2012; 3: 1011.

27 Das S, Chen H-Y and Penumatcha AV et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 2013; 13: 100-5.

28 Zheng J, Yan X and Lu Z et al. High-Mobility Multilayered MoS2 Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition. Adv Mater 2017; 29: 1604540.

29 Gao Q, Zhang Z and Xu X et al. Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat Commun 2018; 9: 4778.

30 Lin Y-C, Zhang W and Huang J-K et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012; 4: 6637-41.

31 Liu H, Chen L and Sun Q-Q et al. Atomic layer deposited 2D MoS2 atomic crystals: from material to circuit. Nano
32 Shi Y, Li H and Li L-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem Soc Rev 2015; 44: 2744-56.

33 Ahn C, Lee J and Kim H-U et al. Low-Temperature Synthesis of Large-Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasma-Enhanced Chemical Vapor Deposition. Adv Mater 2015; 27: 5223-29.

34 Hong S, Zagni N and Choo S et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS₂ transistor circuitry. Nat Commun 2021; 12: 3559.

35 Zhang L, Dong J and Ding F. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem Rev 2021; 121: 6321-72.

36 Guo Y, Wang Z and Zhang L et al. Thickness dependence of surface energy and contact angle of water droplets on ultrathin MoS₂ films. Phys Chem Chem Phys 2016; 18: 14449-53.

37 Shang L, Lindwall G and Wang Y et al. Lateral versus vertical growth of two-dimensional layered transition-metal dichalcogenides: thermodynamic insight into MoS₂. Nano Lett 2016; 16: 5742-50.

38 Bauer E and Merwe J. Structure and growth of crystalline superlattices: From monolayer to superlattice. Phys Rev B 1986; 33: 3657-71.

39 Yu H, Yang Z and Du L et al. Precisely Aligned Monolayer MoS₂ epitaxially grown on h-BN basal plane. Small 2017; 13: 1603005.

40 Stranski IN and Krastanov L. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Sitzungsbericht Akademie der Wissenschaften Wien, Math.-naturwiss. Kl. Iib 1938; 146: 797-810.

41 Shinde SM, Dhakal KP and Chen X et al. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS₂. NPG Asia Mater 2018; 10: e468.

42 Chen J, Zhao X and Grinblat G et al. Homoepitaxial Growth of Large-Scale Highly Organized Transition Metal Dichalcogenide Patterns. Adv Mater 2018; 30: 1704674.

43 Splendiani A, Sun L and Zhang Y et al. Emerging photoluminescence in monolayer MoS₂. Nano Lett 2010; 10: 1271-5.

44 Liu Y, Guo J and Zhu E et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018; 557: 696-700.

45 Allain A, Kang J and Banerjee K et al. Electrical contacts to two-dimensional semiconductors. Nat Mater 2015; 14: 1195-205.

46 Kim C, Moon I and Lee D et al. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. ACS Nano 2017; 11: 1588-96.

47 Park S, Lee A and Choi K-H et al. Layer-Selective Synthesis of MoS₂ and WS₂ Structures under Ambient Conditions for Customized Electronics. ACS Nano 2020; 14: 8485-94.

48 Xie L, Liao M and Wang S et al. Graphene-Contacted Ultrashort Channel Monolayer MoS₂ Transistors. Adv Mater 2017; 29: 1702522.

49 Mynk K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron 2018; 1: 30-9.
Figure 1. Layer-by-layer epitaxy of multilayer MoS$_2$ wafers. (a) Schematic illustration of epitaxy process. (b) Photographs of 4-inch MoS$_2$ wafers: (i) monolayer, (ii) bilayer, (iii) trilayer. (c-e) Optical images of wafers shown in (b). Quadrilayer domains on the trilayer film is marked by white arrow. Scale bars: 30 μm. (f-h) AFM amplitude images taken from mono-, bi-, and trilayer wafers. Scale bars: 500 nm. (i-k) Cross-sectional HAADF-STEM images of epitaxial mono-, bi- and trilayer MoS$_2$. Scale bars: 3 nm.
Figure 2. Stacking configurations in the epitaxial multilayer MoS$_2$. (a) Side and top view in ball-and-stick mode of the atomic structures for AA and AB stacked MoS$_2$ bilayer. (b and c) STEM images of AA and AB stacked bilayer MoS$_2$, respectively. (d) STEM image of two emerged flakes with AA and AB stacking orders. (e and f) STEM and SAED image of the boundary area shown in (d). (g-i) STEM images of the AAA stacked (g), AAB/ABB stacked (h) and ABA (i) stacked trilayer MoS$_2$.
Figure 3. Spatial uniformity of multilayer MoS$_2$ wafers. (a-c) Raman, PL, and transmittance spectra of the as-grown mono-, bi-, and trilayer MoS$_2$ wafers. (d-i) Color-coded images of typical Raman line scan mapping along the horizontal and longitudinal direction of (d and g) monolayer, (e and h) bilayer and (f and i) trilayer MoS$_2$ wafers. Each line scan along either X- or Y-direction of the wafer includes 31 data points.
Figure 4. Bench-mark testing of multilayer MoS$_2$ FETs. (a) Schematic view (top) of back-gated MoS$_2$ FET, and cross-section STEM image (bottom) of a trilayer FETs at the MoS$_2$-Au contact region. Scale bar: 1 nm. (b and c) Typical output/transfer curves of a trilayer MoS$_2$ FET. L$_{ch}$=40 nm, t$_{HfO_2}$=5 nm. Inset to (b) shows the SEM image of the channel. (d) Comparison of transfer curves of mono-, bi- and trilayer MoS$_2$ FETs with L$_{ch}$≈100 nm. (e) The comparisons of current densities (@V$_{ds}$=1 V) and on/off ratios with previous works. The detailed device parameters are shown in Table S1. (f) Transfer curves of 150 trilayer MoS$_2$ FETs at V$_{ds}$=1 V, L$_{ch}$=5-50 μm, t$_{HfO_2}$=10 nm. Inset to (f) shows photograph of wafer-scale MoS$_2$ FET array. (g) Statistical distribution of on/off ratio (red), threshold voltage (green) and subthreshold swing (blue) from the 150 trilayer MoS$_2$ FETs. (h) The sheet resistance ρ and contact resistance R_c extracted from mono-, bi-, and trilayer MoS$_2$ FETs. (i) Statistical distribution of device mobility of mono-, bi- and trilayer MoS$_2$ FETs. The yellow stars indicate the maximum values achieved in each type of devices.