Is Idiopathic Benign Paroxysmal Positional Vertigo Associated with Serum 25-Hydroxy Vitamin D Deficiency?

Belgin Tutar, Güler Berkiten, Fatih Akgün, Semih Karaketir, Onur Üstün, Yavuz Uyar, Ömür Biltekin Tuna

Istanbul Okmeydanı Training and Research Hospital, Clinic of Ear Nose Throat, Istanbul, Turkey

Objective: Benign paroxysmal positional vertigo (BPPV) is a common cause of peripheral vertigo in the general population. We investigated the role of 25-hydroxy (25-OH) vitamin D deficiency in BPPV by comparing 25-OH vitamin D levels in healthy controls and in patients with BPPV.

Methods: 25-OH vitamin D levels of 125 patients with idiopathic BPPV who were diagnosed at our clinic between January 2018 and September 2018 and 101 healthy controls without vertigo were compared statistically.

Results: In this study, vitamin D deficiency was detected in patients diagnosed with BPPV, but there was no statistically significant difference with the control group.

Conclusion: The prevalence of the vitamin D deficiency is very high in our population. Despite the major studies in the literature, vitamin D deficiency was not related to BPPV as a result of this research.

Keywords: Benign paroxysmal positional vertigo, 25-hydroxy vitamin D, peripheral vertigo

INTRODUCTION

Benign paroxysmal positional vertigo (BPPV) is the most common cause of peripheral vertigo in the general population (1). BPPV is characterized by vertigo that is triggered by head movements and lasts for seconds, and accompanied by a feeling of imbalance and nausea. In the pathophysiology of BPPV, there are two theories called cupulolithiasis and canalithiasis. There are three semicircular canals located perpendicular to each other in the inner ear and sensing the angular movements of the head: posterior, lateral (horizontal), superior (anterior) canal crura are associated with the utricle, known as autolytic organ. Calcium (Ca) carbonate crystals are found in the otocional layer above the maculae found in the utricle. The otocinia separated from the utricle macula can pass into semicircular canals. Vertigo and nystagmus can occur when these otocinia stimulate cupula. The “canalithiasis” theory suggests that the free movement of these otocinia in the canal plays a role in the pathophysiology of the disease. It was first described by Hall, Ruby and McClure in 1979 and was first proven in vivo by Parnes and McClure in 1992. “Cupulolithiasis”, defined by Schuknecht in 1969, refers to the adherence of the otoconia to the cupula (2). Otoconia contains Ca carbonate in the form of Ca crystals and an organic core consisting mainly of glycoproteins. Ca metabolism also plays a primary role in the synthesis/absorption of otocinia and is therefore theoretically thought to be an etiological factor at the onset of BPPV (3). The aim of our study was to compare 25-hydroxy (25-OH) vitamin D levels in patients with idiopathic BPPV and healthy controls, and to investigate the role of 25-OH vitamin D in the development of BPPV.

METHODS

One hundred and twenty-five (100 female and 25 male, mean age=52±14 years) patients, who were admitted to the vertigo outpatient clinic between June 2018 and September 2018 and were diagnosed with idiopathic BPPV, were included in this retrospective case-control study. The patients had no history of Meniere’s disease, vestibular migraine, labyrinth hypofunction, head trauma or other vestibular diseases. The control group
consisted of 101 (74 female and 27 male, mean age=48±13 years) healthy volunteers. The patients had no history of neurological symptoms or vestibular disease. Patients with neurotologic symptoms and complaints of dizziness and imbalance were excluded from the study. All participants did not receive Ca or vitamin D treatment within the last year.

Vestibular evaluation was performed using computerized (videonystagmography: ICS Charter EP, GN Otometrics, USA). BPPV was diagnosed by Dix-Hallpike and Pagnini-McClure maneuvers. There was posterior canal involvement in 80 patients (64%), horizontal canal involvement in 38 patients (30.4%) and anterior canal involvement in seven patients (5.6%). Epley maneuver was used in patients with posterior canal involvement and Barbecue maneuver was applied to those with horizontal canal involvement. In the anterior canal involvement, “reverse Epley maneuver” was performed. Canalithiasis was detected in 72% (90 patients) of these patients and cupulolithiasis was responsible for the pathophysiology in 28% (35 patients) (Table 1). Blood was collected from patients with BBPV and healthy volunteers and 25-OH vitamin D levels were measured. 25-OH vitamin D levels were classified as normal (≥30 ng/mL), insufficient (>20 to <30 ng/mL) and deficiency (≤20 ng/mL). The approval of the Ethics Committee was obtained (dated: 6.11.2018, numbered: 48670771-514.10). Informed consent was obtained from the patients.

Statistical Analysis

Statistical analysis was performed using SPSS version 23.0. Descriptive data are presented using mean and standard deviation for normally distributed variables, and median, minimum and maximum values for non-normally distributed variables (and frequency tables for ordinal variables). Chi-square was used to compare categorical variables. The suitability of the measured variables to normal distribution was examined by visual (histogram) and analytical methods (Kolmogorov-Smirnov/ Shapiro-Wilk tests). Pairwise comparisons were performed using Student’s t-test for normally distributed parameters and Mann-Whitney U and Kruskal-Wallis tests for non-normally distributed parameters. P<0.05 was evaluated as statistically significant.

Results

The mean serum 25-OH vitamin D levels were 16.36 ng/mL (3.52-53.91) in the BBPV group and 17.09 ng/mL (4.46-53.51) in the control group. Vitamin D levels were low in both groups. In the BBPV group, 81 patients (65.3%) had serum 25-OH vitamin D deficiency, 33 patients (26.6%) had insufficient and 10 patients (8.1%) had normal levels. In the control group, 74 patients (73.3%) had serum 25-OH vitamin D deficiency, 16 patients (15.8%) had insufficient and 11 patients (10.9%) had normal levels (Table 2). There was no statistically significant difference between the BBPV

Table 1. Rate of semicircular canal involvement and 25-hydroxy vitamin D levels

Affected canal	n	%	Median (minimum-maximum)	Vitamin D levels	H	p*
Superior	7	5.6	14.52 (9.60-36.04)	0.645	0.724	
Posterior	38	30.4	18.00 (3.52-53.91)			
Lateral	80	64	16.18 (6.12-49.78)			

*Kruskal Wallis-H test

Table 2. Comparison of 25-hydroxy vitamin D levels between benign paroxysmal positional vertigo and control group

n	BPPV (n=125)	Control group (n=101)	Significance			
Gender	%	n	%	x²	p	
Male	25	20.0	74	26.7	1.429	0.232
Female	100	80.0	74	73.3	0.526	0.468
Age*	52±14	48±13	t=1.903	0.058		
Vitamin D groups	%	n	%	x²	p	
Deficient (≤20 ng/mL)	81	65.3	74	73.3	3.952	0.139
Insufficient (>20 to <30 ng/mL)	33	26.6	16	15.8	0.526	0.468
Normal (≥30 ng/mL)	10	8.1	11	10.9	0.526	0.468
Vitamin D groups	%	n	%	x²	p	
Deficient (<30 ng/mL)	114	91.9	90	89.1	0.526	0.468
Normal (≥30 ng/mL)	10	8.1	11	10.9	0.526	0.468

BPPV: Benign paroxysmal positional vertigo, *Mean ± standard deviation values are given, **Since vitamin D values do not show normal distribution, median (minimum-maximum) values are given, Pearson chi-square test, Independent samples t-test, Mann-Whitney U test
group and control group in terms of 25-OH vitamin D deficiency (p=0.139). There was no difference between 25-OH vitamin D levels in BPPV patients regarding affected canals (p=0.724).

DISCUSSION

BPPV is the most common cause of peripheral vertigo at any age. The mechanism of BPPV is explained by the passage of the otoconia separated from the utricle into semicircular canals. There is no consensus on the factors that cause BPPV. Since the etiologic factors are unclear, most cases are considered idiopathic. Predisposing factors are senility, female gender, hormonal factors and viral causes (4). Inner ear consists of cochlea and labyrinth system. The bony labyrinth consists of three semicircular canals: superior (anterior), posterior and horizontal (lateral). There is a fluid called perilymph in the bony labyrinth. Membranous labyrinth consists of utricle, sacculle and membranous semicircular canals, and it contains endolymph. Membranous semicircular canals are located perpendicular to each other. The dilated parts are called ampulla. There are special cells in this region called “crista ampullaris” that is the sensory organ of balance. Within the wall of the utricle, there are cells called the macula of utricle, which lie horizontally and receive the sense of balance, and supporting cells. These cells have Ca$^{2+}$ particles called otoconia. Otoconia crystals have central and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5). Endolymphatic Ca$^{2+}$ concentration is critical for normal auditory and balance system (6-8). According to theoretical considerations, a link between otolytic disorders and vitamin D deficiency is highly probable. Endolymphatic (cochlea 23 μM and vestibule 280 μM) Ca concentration is much lower than perilymph. Yamauchi et al. (9) first demonstrated the expression of a complete Ca$^{2+}$ absorptive system in cochlear and peripheral portions. The core is predominantly organic with a lower Ca$^{2+}$ level and the periphery is largely inorganic with a higher Ca$^{2+}$ level (5).
The relationship between idiopathic BPPV and vitamin D deficiency is controversial in the literature. As in our country, vitamin D deficiency is common in populations with short and variable sun exposure. We found low levels of vitamin D in both study and control groups. In this respect, further studies are needed to investigate the relationship between BPPV and vitamin D deficiency.

CONCLUSION

Conflict of Interest: The authors declare no conflict of interest.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES

1. von Breven M, Radtke A, Lezius F, Feldmann M, Ziese T, Lempert T, et al. Epidemiology of benign paroxysmal positional vertigo: a population-based study. J Neurol Neurosurg Psychiatry 2007;78:710-5.
2. Parnes LS, Agrawal SK, Atlas J. Diagnosis and management of benign paroxysmal positional vertigo (BPPV). CMAJ 2003;169:681-93.
3. Karataş A, Acar Yüceant G, Yüce T, Hacı C, Cebi IT, Salviz M. Association of Benign Paroxysmal Positional Vertigo with Osteoporosis and Vitamin D Deficiency: A Case Controlled Study. J Int Adv Otol 2017;13:259-65.
4. Lee SB, Lee CH, Kim YJ, Kim HM. Biochemical markers of bone turnover in benign paroxysmal positional vertigo. PLoS One 2017;12:e0176011.
5. Jang YS, Kang MK. Relationship between bone mineral density and clinical features in women with idiopathic benign paroxysmal positional vertigo. Otol Neurotol 2009;30:95-100.
6. Tanaka Y, Asanuma A, Yanagisawa K. Potentials of outer hair cells and their membrane properties in cationic environments. Hear Res 1980;2:431-8.
7. Ohmori H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 1985;359:189-217.
8. Brookes GB. Vitamin D deficiency—a new cause of cochlear deafness. J Laryngol Otol 1983;97:405-20.
9. Yamauchi D, Raveendran NN, Pondugula SR, Kampalli SB, Sanneman JD, Harbridge DG, et al. Vitamin D upregulates expression of ECaC1 mRNA in semicircular canal. Biochem Biophys Res Commun 2005;33:1353-7.
10. Han W, Fan Z, Zhou M, Guo X, Yan W, Lu X, et al. Low 25-hydroxyvitamin D levels in postmenopausal female patients with benign paroxysmal positional vertigo. Acta Otolaryngol 2018;138:443-6.
11. Maslovara S, Butkovic Soldo S, Sestak A, Milinkovic K, Rogic-Namacinski J, Soldo A. 25 (OH) D3 levels, incidence and recurrence of different clinical forms of benign paroxysmal positional vertigo. Braz J Otorhinolaryngol. 2018;84:453-9.
12. Talat HS, Abuhadied G, Talat AS, Abdelaal MS. Low bone mineral density and vitamin D deficiency in patients with benign positional paroxysmal vertigo. Eur Arch Otorhinolaryngol 2015;272:2249-53.
13. Büki B, Ecker M, Jünger H, Lundberg YW. Vitamin D deficiency and benign paroxysmal positioning vertigo. Med Hypotheses 2013;80:201-4.
14. Jeong SH, Kim JS, Shin JW, Kim S, Lee H, Lee AY, et al. Decreased serum vitamin D in idiopathic benign paroxysmal positional vertigo. J Neurol 2013;260:832-8.