Sex-specific Cutoff Values of Visceral Fat Area for Lean vs. Overweight/Obese Nonalcoholic Fatty Liver Disease in Asians

Sunyoung Lee1*, Kyoung Won Kim2 and Jeongjin Lee3

1Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; 2Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; 3School of Computer Science and Engineering, Soongsil University, Seoul, Republic of Korea

Received: 28 August 2021 | Revised: 17 October 2021 | Accepted: 30 October 2021 | Published: 7 January 2022

Abstract

Background and Aims: Visceral obesity is a risk factor for nonalcoholic fatty liver disease (NAFLD). We investigated sex-specific optimal cutoff values for visceral fat area (VFA) associated with lean and overweight/obese NAFLD in an Asian population. Methods: This retrospective study included 678 potential living liver donors (mean age, 30.8±9.4 years; 434 men and 244 women) who had undergone abdominal computed tomography (CT) imaging and liver biopsy between November 2016 and October 2017. VFA was measured using single-slice abdominal CT. NAFLD was evaluated by liver biopsy (≥5% hepatic steatosis). Receiver operating characteristic curve analysis was used to determine cutoff values for VFA associated with lean (body mass index [BMI] <23 kg/m²) and overweight/obese (BMI ≥23 kg/m²) NAFLD. Results: Area under the curve (AUC) values with 95% confidence intervals (CI) for VFA were 0.82 (95% CI, 0.75–0.88) for lean and 0.74 (95% CI, 0.69–0.79) for overweight/obese men with NAFLD. The AUC values were 0.67 (95% CI, 0.58–0.75) for lean and 0.71 (95% CI, 0.62–0.80) for overweight/obese women with NAFLD. The cutoff values for VFA associated with lean NAFLD were 50.2 cm² in men and 40.5 cm² in women. The optimal cutoff values for VFA associated with overweight/obese NAFLD were 100.6 cm² in men and 88.0 cm² in women. Conclusions: Sex-specific cutoff values for VFA may be useful for identifying subjects at risk of lean and overweight/obese NAFLD.

Citation of this article: Lee S, Kim KW, Lee J. Sex-specific Cutoff Values of Visceral Fat Area for Lean vs. Overweight/Obese Nonalcoholic Fatty Liver Disease in Asians. J Clin Transl Hepatol 2022;10(4):595–599. doi: 10.14218/JCTH.2021.00379.

Keywords: Hepatic steatosis; Adipose tissue; Liver biopsy; Computed tomography.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUC, area under the curve; BMI, body mass index; CI, confidence interval; CT, computed tomography; HDL, high-density lipoprotein; HS, hepatic steatosis; MR, magnetic resonance; NAFLD, nonalcoholic fatty liver disease; ROC, receiver operating characteristic; SD, standard deviation; US, ultrasound; VFA, visceral fat area.

*Correspondence to: Sunyoung Lee, Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. Tel: +82-2-2228-7400, Fax: +82-2-2228-8337, E-mail: carnival0126@gmail.com

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a major etiology of chronic liver disease worldwide. The diagnosis of NAFLD is confirmed by the presence of ≥5% hepatic steatosis (HS) either on imaging or histology in the absence of secondary causes for hepatic fat accumulation (e.g., excessive alcohol consumption, use of steatogenic medications, or hereditary disorders). Although NAFLD is associated with obesity and has been reliably established as a hepatic manifestation of the metabolic syndrome, it can also occur in lean patients, i.e., those having body mass indices (BMIs) of <23 kg/m² in Asians or <25 kg/m² in non-Asians. Recent studies have indicated that visceral obesity may have a more important role in development of the metabolic syndrome and NAFLD than generalized obesity.

While the diagnosis of NAFLD can be determined by imaging, including ultrasonography, the controlled attenuation parameter of transient elastography, computed tomography (CT), and magnetic resonance (MR) spectroscopy or proton density fat fraction, histological analysis of liver biopsies is regarded as the gold standard. For evaluation of visceral adiposity, CT imaging is considered the gold standard. Although many studies have identified values for visceral adiposity associated with the metabolic syndrome, few have focused on NAFLD. Moreover, appropriate cutoff values for visceral fat area (VFA) stratified by sex and BMI for NAFLD have not been identified in studies using gold-standard methods. We aimed to identify sex-specific optimal cutoff values for VFA, measured by CT imaging, and associated with lean and overweight/obese NAFLD assessed by liver biopsy, in an Asian population.

Methods

The study was approved by the institutional review board of our institution. The requirement for written informed consent was waived because the analysis was retrospective.

Study population

Our institution’s databases were retrospectively searched to identify living liver donor candidates who had undergone an abdominal CT imaging examination and ultrasound.
Assessment of abdominal fat parameters

A single axial CT image at the level of the inferior endplate of the L3 lumbar vertebra was processed for each patient. Abdominal CT image analysis was performed with a fully convolutional network-based automatic segmentation technique. At optimal cutoff values, sensitivity and specificity with the sum of the sensitivity and specificity of Youden’s index. At optimal cutoff values, sensitivity and specificity with 95% CIs were determined. Statistical significance was set at a p-value of <0.05. Statistical analysis was performed with SPSS 23.0 (IBM Corp., Armonk, NY, USA) and MedCalc 16.2.1 (MedCalc Software, Ostend, Belgium).

Results

A total of 678 subjects (30.8±9.4 years of age, 434 men, and 244 women) were included in the analysis. Their baseline characteristics are summarized in Table 1. The BMI, serum AST, ALT, and triglycerides, and VFA were higher in men and age and serum HDL were higher in women.

The study cohort was divided into subgroups by BMI and sex. BMI was determined using ethnicity-specific cutoff values of <23 kg/m² for lean, 23–24.9 kg/m² for overweight, and ≥25 kg/m² for obese.12

Data collection

Demographic data (age and sex), anthropometric measurements (body weight and height), and laboratory parameters (serum AST, ALT, total cholesterol, triglycerides, high-density lipoprotein (HDL)) were collected. BMI (kg/m²) status was determined using ethnicity-specific cutoff values of <23 kg/m² for lean, 23–24.9 kg/m² for overweight, and ≥25 kg/m² for obese.12

Statistical analysis

Descriptive values are reported as mean±standard deviation (SD). Differences between male and female subjects were evaluated with two-sample t-tests. Subject characteristics were analyzed according to lean vs. overweight/obese status and the presence or absence of NAFLD using one-way analysis of variance, followed by post hoc analysis using the Bonferroni method. Receiver operating characteristic (ROC) curve analysis was used to assess the accuracy of identifying the presence of NAFLD in lean and overweight/obese subjects. Accuracy was measured by area under the curve (AUC) with 95% confidence intervals (CIs). Sex-specific cutoff values for VFA were chosen to maximize the sum of the sensitivity and specificity of Youden’s index. At optimal cutoff values, sensitivity and specificity with 95% CIs were determined. Statistical significance was set at a p-value of <0.05. Statistical analysis was performed with SPSS 23.0 (IBM Corp., Armonk, NY, USA) and MedCalc 16.2.1 (MedCalc Software, Ostend, Belgium).

Results

A total of 678 subjects (30.8±9.4 years of age, 434 men, and 244 women) were included in the analysis. Their baseline characteristics are summarized in Table 1. The BMI, serum AST, ALT, and triglycerides, and VFA were higher in men and age and serum HDL were higher in women.

Table 1. Participant characteristics

	Total (n=678)	Male (n=434)	Female (n=244)	p-value
Age, y	30.8±9.4	29.5±9.0	33.3±9.6	<0.001
Body mass index, kg/m²	23.6±3.1	24.0±2.9	22.9±3.5	<0.001
AST, IU/L	22.3±23.1	23.9±26.7	19.6±14.2	0.021
ALT, IU/L	21.9±29.5	25.3±34.6	16.0±15.5	<0.001
Total cholesterol, mg/dL	177.1±35.3	177.7±35.2	175.8±35.4	0.498
Triglyceride, mg/dL	109.3±74.8	122.9±80.9	86.2±56.3	<0.001
HDL, mg/dL	56.6±14.1	53.2±12.6	62.4±14.5	<0.001
Visceral fat area, cm²	68.3±45.9	78.3±49.1	50.5±32.7	<0.001

Data are mean±standard deviation. ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL, high-density lipoprotein.
Lee S. et al: Cutoff values of visceral fat area for NAFLD

NAFLD as lean without NAFLD, lean with NAFLD, overweight/obese without NAFLD, and overweight/obese with NAFLD. The subgroup characteristics subdivided by sex are shown in Table 2. In men, subgroup differences in age, BMI, serum ALT, total cholesterol, triglyceride, and HDL levels, and VFA were significant (p<0.004). In women, subgroup differences in BMI, serum triglyceride, and HDL levels, and VFA were significant (p<0.004). In both lean and overweight/obese subjects, VFA tended to be higher in those with NAFLD than in those without NAFLD, and post hoc analysis showed that the VFA in lean subjects with NAFLD and overweight/obese subjects with NAFLD were not significant (men, p>0.999 and women, p=0.189).

Table 3 and Figure 1 report the AUC values of VFA for identifying lean and overweight/obese NAFLD. NAFLD was found in 37.3% lean and 46.7% of overweight/obese men and 15.6% of lean and 36.7% of overweight/obese women. The AUCs were 0.82 (95% CI, 0.75–0.88) for lean and 0.74 (95% CI, 0.69–0.79) for overweight/obese men and 0.67 (95% CI, 0.58–0.75) for lean and 0.71 (95% CI, 0.62–0.80) for overweight/obese women. The optimal cutoff values for VFA were 50.2 cm² for lean and 100.6 cm² for overweight/obese NAFLD. In men, the sensitivity and specificity at the optimal VFA cutoffs were 81.4% (95% CI, 69.1–90.3%) and 71.7% of lean and 61.6% of overweight/obese NAFLD. In women, the sensitivity and specificity at the optimal VFA cutoffs were 57.1% (95% CI, 49.6–68.0%) and 69.6% of lean and 70.0% of overweight/obese NAFLD.

Table 2. Features of study subjects stratified by BMI and NAFLD status and subdivided by sex

Male (n=434)	Lean without NAFLD	Lean NAFLD	Overweight/obese without NAFLD	Overweight/obese NAFLD	p-value
n	99	59	147	129	
Age, y	26.7±7.8	31.3±8.2	28.2±8.4	32.2±10.1	<0.001
Body mass index, kg/m²	21.1±1.4	21.6±1.3	25.3±2.1°	25.8±2.6°	<0.001
AST, IU/L	22.1±13.2	24.4±18.0	21.2±9.8	28.1±44.7	0.161
ALT, IU/L	17.9±12.8	28.2±23.2	22.0±14.2	33.4±57.6°	0.004
Total cholesterol, mg/dL	16.8±29.9	187.2±37.7	175.2±35.4	183.5±35.8°	
Triglyceride, mg/dL	98.8±70.8	132.9±98.8	116.8±66.1	146.5±87.9°	<0.001
HDL, mg/dL	58.2±13.3	52.1±11.5°	53.7±13.1°	48.7±10.4°	<0.001
Visceral fat area, cm²	41.4±27.7	80.5±35.6°	71.9±44.1°	113.0±49.6°	<0.001

Female (n=244)	Lean without NAFLD	Lean NAFLD	Overweight/obese without NAFLD	Overweight/obese NAFLD	p-value
n	114	21	69	40	
Age, y	33.6±8.4	34.9±8.7	31.1±9.8	35.4±12.3	0.109
Body mass index, kg/m²	20.5±1.6	20.7±1.4	25.6±2.5°	26.5±3.1°	<0.001
AST, IU/L	19.6±16.0	17.7±3.1	19.8±15.4	20.5±9.7	0.909
ALT, IU/L	14.1±14.2	14.7±5.5	17.7±17.9	18.9±17.9	0.258
Total cholesterol, mg/dL	174.2±30.7	179.2±40.2	171.8±40.1	186.3±63.1	0.185
Triglyceride, mg/dL	77.7±58.3	75.9±47.3	87.2±48.8	115.3±56.8°	0.004
HDL, mg/dL	65.8±14.0	66.1±17.0	60.2±14.4	54.2±10.9°	<0.001
Visceral fat area, cm²	32.1±19.0	47.1±27.2°	61.1±28.5°	86.8±35.9°	<0.001

Data are mean±standard deviation. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; HDL, high-density lipoprotein; NAFLD, nonalcoholic fatty liver disease. °p<0.05 by post hoc analyses vs. lean without NAFLD. °p<0.05 by post hoc analyses vs. lean NAFLD. °p<0.05 by post hoc analysis vs. overweight/obese without NAFLD.

Table 3. Optimal cutoff values for VFA for identifying lean and overweight/obese NAFLD subdivided by sex

Lean NAFLD	Overweight/obese NAFLD			
Male	Female	Male	Female	
AUC (95% CI)	0.82 (0.75–0.88)	0.67 (0.58–0.75)	0.74 (0.69–0.79)	0.71 (0.62–0.80)
Optimal VFA cutoff value, cm²	50.2	40.5	100.6	68.0
Sensitivity (95% CI), %	81.4 (69.1–90.3%)	57.1 (34.0–78.2%)	61.2 (52.3–69.7%)	70.0 (53.5–83.4%)
Specificity (95% CI), %	71.7 (61.8–80.3%)	81.6 (73.2–88.2%)	76.2 (68.5–82.8%)	69.6 (57.3–80.1%)

Optimal VFA cutoff values were defined by the maximal sum of sensitivity and specificity. AUC, area under the curve; CI, confidence interval; NAFLD, nonalcoholic fatty liver disease; VFA, visceral fat area.
The VFA tended to be higher in subjects with NAFLD than in those without NAFLD in both lean and overweight/obese potential living liver donors who underwent abdominal CT imaging and liver biopsy. We also identified optimal VFA cutoff values for identifying the presence of NAFLD stratified by sex and BMI status.

Although obesity is generally related to NAFLD, a considerable number of patients with NAFLD are nonobese or even lean, and a substantial proportion of overweight or obese individuals do not develop NAFLD. The development of NAFLD may be related to adipose tissue distribution, and visceral adipose tissue is widely accepted as a risk factor for NAFLD independent of generalized obesity. Our study also demonstrated that the mean VFA was higher in subjects with NAFLD than in those without NAFLD in both lean and overweight/obese groups. Visceral fat has higher lipolytic activity, and directly releases free fatty acids into the liver via the portal circulation, which may substantially contribute to HS. Increased visceral fat results in increased production of cytokines and adipokines, leading to disease progression in NAFLD. In addition, our study showed that the VFA was not significantly different between lean subjects with NAFLD and overweight/obese subjects without NAFLD in either sex, indicating that visceral fat accumulation was as high in lean subjects with NAFLD as it was in overweight/obese individuals, which is consistent with a previous study in a Chinese population that used MR imaging to detect HS and measure visceral fat.

Many studies have investigated the optimal cutoffs for visceral fat indices when screening for the metabolic syndrome, but to the best of our knowledge, there has only been one study that established optimal VFA cutoffs for NAFLD. In a study by Yoon et al., the optimal VFA cutoffs at the L4-L5 level for detecting NAFLD, measured by CT imaging, were 132 cm² in men and 119 cm² in women. In that study, the liver attenuation index derived from the difference between mean hepatic and splenic attenuation on unenhanced CT imaging was used in the diagnosis of NAFLD. Unlike that study, we generated sex-specific cutoff values for CT-measured VFA at the L3 level to separate metabolically normal Koreans from those with lean and overweight/obese NAFLD, as assessed by liver biopsy (i.e., the gold standard for an NAFLD diagnosis). We propose VFA cutoffs of 50.2 cm² in men and 40.5 cm² in women to identify those at risk for lean NAFLD, and 100.6 cm² in men and 68.0 cm² in women to identify those at risk for overweight/obese NAFLD.

Discussion

The VFA tended to be higher in subjects with NAFLD than in those without NAFLD in both lean and overweight/obese potential living liver donors who underwent abdominal CT imaging and liver biopsy. We also identified optimal VFA cutoff values for identifying the presence of NAFLD stratified by sex and BMI status.

Although obesity is generally related to NAFLD, a considerable number of patients with NAFLD are nonobese or even lean, and a substantial proportion of overweight or obese individuals do not develop NAFLD. The development of NAFLD may be related to adipose tissue distribution, and visceral adipose tissue is widely accepted as a risk factor for NAFLD independent of generalized obesity. Our study also demonstrated that the mean VFA was higher in subjects with NAFLD than in those without NAFLD in both lean and overweight/obese groups. Visceral fat has higher lipolytic activity, and directly releases free fatty acids into the liver via the portal circulation, which may substantially contribute to HS. Increased visceral fat results in increased production of cytokines and adipokines, leading to disease progression in NAFLD. In addition, our study showed that the VFA was not significantly different between lean subjects with NAFLD and overweight/obese subjects without NAFLD in either sex, indicating that visceral fat accumulation was as high in lean subjects with NAFLD as it was in overweight/obese individuals, which is consistent with a previous study in a Chinese population that used MR imaging to detect HS and measure visceral fat.

Many studies have investigated the optimal cutoffs for visceral fat indices when screening for the metabolic syndrome, but to the best of our knowledge, there has only been one study that established optimal VFA cutoffs for NAFLD. In a study by Yoon et al., the optimal VFA cutoffs at the L4-L5 level for detecting NAFLD, measured by CT imaging, were 132 cm² in men and 119 cm² in women. In that study, the liver attenuation index derived from the difference between mean hepatic and splenic attenuation on unenhanced CT imaging was used in the diagnosis of NAFLD. Unlike that study, we generated sex-specific cutoff values for CT-measured VFA at the L3 level to separate metabolically normal Koreans from those with lean and overweight/obese NAFLD, as assessed by liver biopsy (i.e., the gold standard for an NAFLD diagnosis). We propose VFA cutoffs of 50.2 cm² in men and 40.5 cm² in women to identify those at risk for lean NAFLD, and 100.6 cm² in men and 68.0 cm² in women to identify those at risk for overweight/obese NAFLD.
Lee S. et al: Cutoff values of visceral fat area for NAFLD

of overweight/obese NAFLD. The values may be useful for identifying patients in whom visceral obesity places them at increased risk for lean or overweight/obese NAFLD. In addition, they may be used as therapeutic target values for visceral fat reduction to resolve NAFLD.

The study has several limitations. First, it was a preliminary retrospective study conducted at a single center, and the number of enrolled subjects was not large. Prospective multicenter, studies with more participants are needed to confirm our results. Second, the study included potential living donors who had undergone liver biopsy as part of a predonation workup. The inclusion criteria were implemented to assess NAFLD and VFA using gold standard diagnostic methods, but that may have resulted in selection bias. Also, noninvasive evaluation of HS by transient elastography was not performed in this study. In addition, the enrolled subjects were relatively young adults capable of donating their livers. Therefore, it is unclear whether they are representative of the general population. Third, we included only Korean subjects, which may have limited the generalizability of our findings to other ethnicities. So, our findings need to be validated by trials in a broader population. Fourth, the prevalence of NAFLD in lean men (37.3%) was much higher than previously reported, so it may have limited the better performance of AUC in lean men with NAFLD than in the other groups.

In conclusion, the cutoff values of CT-measured VFA for identifying NAFLD were influenced by sex and BMI. Sex-specific cutoff values for VFA may be useful for identifying lean and overweight/obese individuals at risk of NAFLD.

Conflict of interest

The authors have no conflict of interests related to this publication.

Author contributions

Contributed to the study concept and design, analysis and interpretation of data, drafting of the manuscript, material support, and study supervision (SL), acquisition of data (JL), critical revision of the manuscript for important intellectual content and administrative, technical support (KWK).

Data sharing statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

[1] Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64(1):73–84. doi:10.1002/hep.28431.

[2] Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of the Liver Diseases. Hepatology 2018;67(1):328–357. doi:10.1002/hep.29367.

[3] Kurnar R, Mohan S. Non-alcoholic fatty liver disease in lean subjects: Characteristics and implications. J Clin Transl Hepatol 2017;5(3):216–223. doi:10.14218/JCTH.2016.00068.

[4] Ye Q, Zou B, Yeo YH, Li J, Huang DQ, Wu Y, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5(8):739–752. doi:10.1016/S2468-1253(20)30077-7.

[5] Feldman A, Eder SK, Felder TK, Keneden L, Paulweber B, Stadlmaier A, et al. Clinical and metabolic characterization of lean caucasian subjects with non-alcoholic fatty liver. Am J Gastroenterol 2017;112(1):102–110. doi:10.1038/ajg.2016.318.

[6] Tobari M, Hashimoto E, Tanai M, Ikarashi Y, Kodama K, Kogiso T, et al. Characteristics of non-alcoholic steatohepatitis among lean patients in Japan: Not uncommon and not always benign. J Gastroenterol Hepatol 2019;34(8):1404–1410. doi:10.1111/jgh.14585.

[7] Stern C, Castlera L. Non-invasive diagnosis of hepatic steatosis. Hepatol Int 2011;5(1):70–77. doi:10.1016/j.hepo.2010.07.012.

[8] Park BJ, Kim YJ, Kim DH, Kim W, Jung YJ, Yoon JJ, et al. Visceral adipose tissue area is an independent risk factor for hepatic steatosis. J Gastroenterol Hepatol 2008;23(6):900–907. doi:10.1111/j.1440-1746.2007.05212.x.

[9] Oka R, Kobayashi J, Yagi K, Tanih H, Miyamoto S, Asano A, et al. Reassessment of the cutoff values of waist circumference and visceral fat area for identifying Japanese subjects at risk for the metabolic syndrome. Diabetes Res Clin Pract 2008;79(3):474–481. doi:10.1016/j.diabres.2007.10.016.

[10] Seo IA, Kim BG, Cho H, Kim HS, Park J, Baik SH, et al. The cutoff values of visceral fat area and waist circumference for identifying subjects at risk for metabolic syndrome in elderly Korean: Ansan Geriatric (AGE) cohort study. BMC Public Health 2009;9:443. doi:10.1186/1471-2458-9-443.

[11] Kim HJ, Kim JT, Yu SH, Kwak SH, Jang HC, Park KS, et al. Gender differences in diagnostic values of visceral fat area and waist circumference for predicting metabolic syndrome in Koreans. J Korean Soc Gastroenterol 2011;26(7):906–913. doi:10.3346/jkms.2011.26.7.906.

[12] Matsuhashi Y, Nakagawa T, Yamamoto S, Takahashi Y, Yokoyama T, Mizoue T, et al. Visceral fat area cutoff for the detection of multiple risk factors of metabolic syndrome in Japanese: The Hitachi Health Study. Obesity (Silver Spring) 2012;20(8):1744–1749. doi:10.1038/oby.2011.285.

[13] Doyle SL, Bennett AM, Donohoe CL, Mongan AM, Howard JM, Litherland FE, et al. Estimating computed tomography-defined visceral fat area threshold for use in obesity-related cancer research. Nutr Res 2013;33(2):171–179. doi:10.1016/j.nutres.2012.12.007.

[14] Tsukiyama H, Nagai Y, Matsuara F, Shimizu H, Iwamoto T, Yamanouchi E, et al. Proposed cut-off values of the waist circumference for metabolic syndrome based on visceral fat area in a Japanese population. J Diabetes Invest 2016;7(4):587–593. doi:10.1111/jdi.12254.

[15] Yoo HJ, Park MS, Lee CH, Yang SJ, Kim TN, Lim KJ, et al. Cutoff points of abdominal obesity indices in screening for non-alcoholic fatty liver disease in Asians. Liver Int 2010;30(8):1189–1196. doi:10.1111/j.1478-7924.2010.02300.x.

[16] Park HJ, Shin Y, Park J, Kim H, Lee IS, Seo DW, et al. Development and validation of a deep learning system for segmentation of abdominal muscle and fat on computed tomography. Korean J Radiol 2020;21(1):88–100. doi:10.3348/kr.2019.0470.

[17] Fan JG, Kim SY, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol 2017;67(4):862–873. doi:10.1016/j.jhep.2016.07.003.

[18] Li L, Liu DW, Yan HY, Wang ZY, Zhao SH, Wang B. Abdominal obesity indices in screening for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. Obes Rev 2016;17(6):510–519. doi:10.1111/obr.12407.

[19] Finelli C, Tarantino G. Should visceral fat, strictly linked to hepatic steatosis, be depleted to improve survival? Hepatol Int 2013;7(2):413–428. doi:10.1007/s12072-012-9406-z.

[20] Chiyotaka C, Wong VW, Wong GL, Chan HL, Hui SCN, Yeung DKW, et al. Implications of abdominal adipose tissue distribution on non-alcoholic fatty liver disease and metabolic syndrome: A Chinese general population study. Clin Transl Gastroenterol 2021;12(2):e00300. doi:10.14309/ctg.0000000000000305.

[21] Shi Y, Wang Q, Sun Y, Zhao X, Kong Y, Ou X, et al. The prevalence of lean/nonobese nonalcoholic fatty liver disease: A systematic review and meta-analysis. J Clin Gastroenterol 2020;54(4):378–387. doi:10.1097/MCG.0000000000001270.

[22] Lu FB, Zheng KJ, Rios RS, Tangher G, Byrne CD, Zheng MH. Global epidemiology of lean non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Gastroenterol Hepatol 2020;35(12):2041–2050. doi:10.1111/jgh.15156.