Dynamic Data-Driven Modelling of Water Allocation for the Internet of Things

Zhong Du1,2 and Zengchuan Dong1

1College of Hydrology and Water Resources, Hohai University, Nanjing, China
2Hydrology and Water Resources Survey Bureau of Liaoning Province, Shenyang, China

Correspondence should be addressed to Zhong Du; duzhongvip@hhu.edu.cn

Received 11 January 2022; Revised 25 February 2022; Accepted 5 March 2022; Published 27 March 2022

Academic Editor: Mohamed Elhoseny

Copyright © 2022 Zhong Du and Zengchuan Dong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The allocation of water resources is an important aspect of maintaining public security, but there are still many problems in water resources management. The application of IoT technology in water resources management mainly focuses on water quality detection and water flow monitoring. For the allocation of water resources, the application of the Internet of things technology is not deep and sufficient, and the advantages of the Internet of things technology in water resources management are not fully utilized. In view of the above problems in the current situation, this paper proposes solutions for smart water resources. Smart water resources combine geographic information technology and Internet of things technology to visualize a map of water resources and realize the whole process management from the source to the end user and automatic data collection and analysis. Therefore, an intelligent system with remote control function is constructed, which can be applied to the practice of water resources allocation and realize the full utilization of water resources.

1. Introduction

Water resources allocation is an important aspect of people’s livelihood projects and is the basis for the rapid development of the regional economy and an important guarantee. At present, there are many problems in China’s water resources, mainly in the following aspects: firstly, the lack of urban water resources and the lack of township water resources carrying capacity; secondly, the safety of water quality is not fully guaranteed; thirdly, the informatization construction level of water conservancy enterprises is low, and finally, water conservancy enterprises have complex business and large amount of data.

[1]. Most of the existing digital management systems for water resources equipment focus on the real-time monitoring of water resources equipment and the establishment of a supervisory control and data acquisition (SCADA) system for water resources, but the real-time monitoring system does not combine with geographic information technology and cannot be visualized on a map [2]. The existing SCADA systems are not integrated with geoinformation technology and cannot visualize the location of water resources facilities and networks on a map [3]. In addition, the existing SCADA system does not provide early warning, analysis, remote control, and other functions, and cannot achieve the level of intelligence, which leads to inefficient management of water resources in companies [4].

Information silos is a common phenomenon in the current process of implementation in various industries. To break the dilemma of information isolation without sharing, the project team proposed a set of effective sharing mechanisms for water resources data based on theories and methods related to the digital transformation of government in the literature [5]. On this basis, a water resources data resource sharing process is constructed. Data sharing within the industry should follow the relevant requirements of the Ministry of Water Resources for data resources management. A unified catalogue of water resources should be established, updated in a timely manner at a predetermined frequency, and data sharing at different levels within the industry should be achieved using the system docking, online querying, online browsing, or calling online services.
At the operational level, the provincial water resources information technology departments should build a water resources data warehouse in the government cloud, including business thematic data warehouses and public data warehouses, while developing a data sharing and exchange platform [6].

Sort out and exchange data related to water resources management departments according to the requirements of water resources management departments. If the data has been integrated, it can be shared through the data sharing platform [7]. If the data has not been summarized, the demand can be submitted through the data sharing platform, and then, the submitted water resources data can be reviewed. In the process of data review, the data processing department confirms the integrity and standardization of data items and relevant elements and associates them with the corresponding directory in the water resources data sharing platform to form a database and to realize data collection, classification, and sharing [8]. Data sharing outside the industry should follow the national and provincial government public data management rules and rely on the public data sharing and exchange platform built at the provincial level. High-frequency data that are used by all departments should be collected, and a unified data sharing mechanism should be established to achieve data reuse [9].

The application of Internet of things technology in water resources management mainly focuses on the detection of water quality and the monitoring of water flow. For the allocation of water resources, the application of Internet of things technology is not deep and full, and it does not give full play to the advantages of Internet of things technology in water resources management.

Based on the above problems in the current situation, this paper proposes a solution for smart water resources. Intelligent water resources combines geographic information technology and Internet of things technology, water resources visualization a map to achieve the whole process management from the source to the end user, and the automatic collection and analysis of data; so as to build intelligent systems with remote control functions, it can be applied to the allocation practice of water resources to realize the full utilization of water resources [10].

The structure of this paper is as follows: In Section 2, the basic techniques will be introduced. In Section 3, the intelligent water resources allocation system is illustrated. In Section 4, an optimal configuration model is introduced. In Section 5, this work will explain the system performance validation. In Section 6, the conclusion is given.

2. Basic Techniques

2.1. Real-Time Sensing for IoT. IoT is an inevitable product of the development of Internet technology and sensing technology into the modern era [11]. The massive amount of data collected by manpower in the past is a huge workload and has low collection frequency, and IoT sensing in real time can solve these problems. In the whole process of water resources, the types of sensors mainly include water quality monitoring sensors in reservoirs, water wells, river sources, water level monitoring sensors, water flow, and pipeline pressure sensors installed on the transmission pipeline, as well as pressure, flow, and water quality sensors in water plants and booster stations [12]. These sensing devices can replace the manual collection of the status of important points on the entire water resources loop in real time to ensure water resources pressure and water quality safety [13].

2.2. Geographic Information Support. The introduction of geoinformation technology has changed the original management mindset of the water resources industry. Managers entering the system are able to see all water resources related information (water sources, water resources equipment, booster pumping stations, transmission pipelines, and water plants [14]) on a map and manage them by means of a map, while real-time monitoring data is also easily and quickly displayed on the map. The system’s statistical analysis functions provide auxiliary decision support for the relevant work and can be used in conjunction with the work for scheduling and file management [15].

2.3. Multiple Data Fusion. The unified storage and management of basic spatial data, attribute data, and operation and management data of various types of water resources facilities require the establishment of a unified database management system. The comprehensive database of water resources network is an important support for the whole digital system and is the basis for storing, managing, and sharing various types of data [16].

The data content of the water resources pipeline database includes images, topography and other basic geographic information data, key urban address data, and water resources facilities and pipeline network data [17]. The topographic data mainly includes basic geographic data related to or adjacent to the pipeline (survey control points, independent features, topography, roads and water systems and other ancillary facilities, fences, and the above elements and notes); water resources facilities and pipeline data refer to graphical data of water resources pipelines and related facilities information, mainly obtained through pipeline detection and survey, mainly including X, Y, material, ancillary materials, ground elevation, bottom elevation, top elevation, burial method, pipe diameter, depth of burial, construction date, ownership unit, connection direction, and other attributes [18].

2.4. Big Data Analytics to Support Decision-Making. The system database covers the geographical information data of a city or even a province, but also the water resources business, water resources pipeline network, and facilities’ distribution data of the whole region, as well as the attribute data of various types of basic equipment and facilities. In the water resources management system, through the application of Internet technology, the sensor can receive important information such as water quantity, pressure, and water quality in real time, and the video data will not be interrupted. On the server side, the use of cloud storage and cloud computing model can realize large-scale data management and data
mining analysis, which provides decision support for water resources allocation management [19].

Big data analysis focuses on visual analysis of big data, optimization of data mining algorithms, data inspection, and data management, to improve the speed of data access while safeguarding the quality of data and data presentability [20].

3. Intelligent Water Resources Management and Allocation System Construction

3.1. Overall Design. The core of intelligent water resources allocation and management is to integrate existing resources and improve the comprehensive benefits of water resources allocation and management. In terms of the realization of the overall function, it meets the requirements of water resources monitoring, water resources prediction, water resources allocation, water supply prediction, water demand prediction, and water balance analysis. At the specific application level, realize water quality monitoring, tank farm water resource dispatching, domestic water dispatching, and optimal allocation of water resources. In order to build an intelligent water resources allocation and management system, it is also necessary to configure basic water conservancy facilities and relevant technical support. The overall framework is shown in Figure 1.

3.2. Design and Implementation of System Functions. The management of urban water resources pipelines is one of the most important aspects of urban infrastructure management [21]. The intelligent water resources management and allocation platform are a comprehensive system integrating a large database, complex professional models, and advanced software and hardware systems, mainly including the construction of a comprehensive database, application support platform, application software development, and the construction of related hardware platforms [22].

The GIS system of water resources network inputs all pipelines, equipment (pumps, valves, etc.), and structures (ponds, water towers, etc.) in the water resources system into the system; records static information (buried depth, material, age, diameter, connection, and purpose); provides graphic display and query positioning functions; and provides basic support for pipe network modeling, water resources dispatching, equipment maintenance, pipeline rupture treatment, engineering construction, and water quality management. The GIS system is equipped with global positioning system (GPS) interfaces and equipment to quickly measure and locate all pipelines and equipment in the water resources system [23].

The inspection and maintenance system are shown in Figure 2.

The water resources network inspection subsystem provides a full process, refined, and standardized management model. The inspection is carried out using a combination of handheld devices and the web, which allow for timely communication between the site inspectors and the monitoring center. In the inspection process, field personnel log in to the system via handheld devices, obtain the inspection route of the pipe network, make a record of the inspection for the day according to the agreed route, and combine with the GPS navigation function; the inspection personnel can quickly and easily find the equipment to be inspected, check the usage status of the equipment in real time, and upload it to the monitoring center in a timely manner, while the management personnel of the monitoring center can query and audit the inspection details and statistics by logging in to the web system. The management of the monitoring center can query and audit inspection details and statistics by logging into the web system, and can also send out urgent tasks, which can be quickly handled by the on-site inspectors upon receipt. The intelligent water resources management and allocation system improve the efficiency of water resources management and allocation with perfect functions and convenient operation.

4. Construction of an Optimal Configuration Model

Based on the water resources situation and the national economic and social development plan of the city, the minimum regional water shortage indicates the optimal social benefits, and the maximum regional net benefits indicate the optimal economic benefits.

The optimal social benefit objective function is calculated as

\[
\min f_1(X) = \min \left\{ \sum_{k=1}^{K} \sum_{j=1}^{J(k)} \left(\varphi^k_j - \sum_{i=1}^{I(k)} x^k_{ij} \right) \right\},
\]

(1)

where \(J \) is the number of water sectors; \(\varphi^k_j \) is the water demand of user \(j \) in subregion \(k \) source \(i \) to user \(j \) in subregion \(k \). Optimal economic efficiency objective function is calculated as

\[
\max f_2(X) = \max \left\{ \sum_{k=1}^{K} \sum_{j=1}^{J(k)} \left(b_{kj} - c_{kj} \right) x^k_{ij} \right\},
\]

(2)

where \(f_2(X) \) is the net benefit for user \(j \) in subzone \(k \); \(c_{kj} \) is the water cost for user \(j \) in subzone \(k \); \(a^k_i \) is the water sequencing factor from source \(i \) to subzone \(k \); and \(\lambda^k_j \) is the priority water factor for user \(j \) in subzone \(k \).

Based on the regional planning annual water supply and demand forecasts and development plans, and taking into account the total water use control and efficiency red lines, the main constraints of the model were determined in a comprehensive manner as follows, in addition to the variable nonnegative constraints.

The water resource carrying capacity constraint is calculated as

\[
\sum_{j=1}^{J(k)} x^k_{ij} \leq p^k_i,
\]

(3)

where \(p^k_i \) is the volume of water from source \(i \) to subzone \(k \) (million m³).
The water demand constraint is calculated as

\[D_{j\min}^k \leq \sum_{i=1}^{l(k)} X_{ij}^k \leq D_{j\max}^k, \tag{4} \]

where \(D_{j\min}^k \) and \(D_{j\max}^k \) denote the minimum and maximum water demand (million m\(^3\)) for user \(j \) in subzone \(k \), respectively, and the water demand quotas for each sector are within the range of the Hebei Provincial Local Standard “Water Quotas”, reflecting the implicit constraints on water use efficiency [24, 25].

Total water use control is calculated as

\[\sum_{i=1}^{l(k)} p_i^k \leq W, \tag{5} \]

where \(W \) is the total water use control target (million m\(^3\)).

The water transmission capacity constraint is calculated as

\[X_{ij}^k \leq Q_i^k, \tag{6} \]

where \(Q_i^k \) is the maximum water transfer capacity of source \(i \) to subzone \(k \) (million m\(^3\)).

5. System Performance Validation

Through online data for each water abstraction monitoring point, the cumulative water abstraction of each water abstractor in a certain period of time is calculated, and timely reminders are given for abstraction that is too slow or too fast. By monitoring water quality data, abnormal warnings are given to polluted and highly mineralized water sources [26]; by comparing water quotas and cumulative water consumption, excess water consumption is monitored;
Figure 2: Inspection and maintenance system.

Figure 3: Effect of different water allocations.

Figure 4: Water storage at different times.

Figure 5: Effectiveness of water measures.
and data results characterizing irregularities in water extraction are directly pushed to relevant law enforcement departments to achieve business collaboration, as shown in Figure 3.

Effective prediction of water resources and water demand is the basis for optimal allocation of water resources. The typical application scenario of water resources prediction is based on the water resources data of the current year, predict the rainfall, runoff, runoff yield coefficient, and other factors of water resources in a year, as well as the correlation between water resources, so as to predict the total amount of available water resources [27]. As shown in Figure 4, based on the data of the current year, analyze the impact of different water storage, and analyze the socio-economic influencing factors of water resources in a year, such as population, GDP, water price, water quota, crop planting structure, and irrigation area, so as to realize the accurate prediction of water demand. Based on the forecast of water resources and water demand at a certain time of the year for a given level of development of water resources, the relationship between water resources and water demand balance in each sector is analyzed.

Water-saving water resources evaluation is an important part of water resources allocation. Water-saving water resources evaluation is carried out based on water resources thematic data warehouses [28–30], with as little manual filling as possible; water resources-related planning and construction projects are evaluated for water saving, to prove the necessity and feasibility of water extraction, to analyze the advancedness of water-saving indicators, and to assess the effectiveness of water-saving measures. The effectiveness of water-saving measures is shown in Figure 5.

By analyzing the reporting rate, integrity, and timeliness of the monitoring data of the intelligent allocation and management system of water resources, an intelligent alarm will be issued in case of abnormal data report or poor data report quality [13]. By monitoring the parameters such as electricity and power, alerts are made for abnormal situations where the solar panel power supply facilities are aging and cause insufficient power supply; the gate opening and closing status are monitored, and abnormal opening degrees are investigated. Figure 6 shows the accuracy of the system verification.

6. Conclusions

Using IoT technology in water resources management primarily focuses on the detection and monitoring of water quality and water flow. We are not using the Internet of things technology to its full potential when it comes to water allocation. As a result of the issues raised above and the current state of affairs, this article makes recommendations for more intelligent use of water resources. GIS and the Internet of things combine to create a map of water resources that may be used to manage the entire water cycle, from the source to the end user, as well as automatically collecting and analyzing data. An intelligent system that may be used to allocate water resources and achieve full use of water resources has thus been developed. As part of a larger effort to improve and make full use of water resources, this article outlines the design aims, construction objectives, and construction content of intelligent water resources management and allocation system. Smart water resources management and allocation system can be built with the help of this guide, which gives construction ideas and serves as a model for similar intelligent water resources allocation and management project. A particular implementation plan has yet to be drawn up for this link, and further research is required.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Yadav, S. Luthra, and D. Garg, "Modelling internet of things (IoT)-driven global sustainability in multi-tier agri-food supply chain under natural epidemic outbreaks," Environmental Science and Pollution Research, vol. 28, no. 13, pp. 16633–16654, 2021.

[2] M. Yi, Q. K. Chen, and Z. Gang, “Multistage dynamic packet access mechanism of internet of things,” Mobile Information Systems, vol. 2018, Article ID 3601604, 16 pages, 2018.

[3] S. Y. Hashemi and F. S. Aliee, "Why dynamic security for the internet of things?," Journal of Computing Science and Engineering, vol. 12, no. 1, pp. 12–23, 2018.

[4] Y. J. Zhao, B. Du, and B. K. Liu, "Smart environmental protection: the new pathway for the application of the internet of things in environmental management," Applied Mechanics & Materials, vol. 411-414, pp. 2245–2250, 2013.

[5] N. Khelifi, E. Nataf, S. Otaefy, and H. Youssef, "Rescue-Sink: Dynamic sink augmentation for RPL in the Internet of Things," Transactions on Emerging Telecommunications Technologies, vol. 29, no. 2, 2018.

[6] S. P. A. Datta, "Dynamic socio-economic disequilibrium catalyzed by the internet of things," Journal of Innovation Management, vol. 3, no. 3, pp. 4–9, 2015.

[7] N. A. Zhukova, A. M. Thaw, and E. L. Evnevich, "Model of data collection control in the internet of things on the basis of social network technologies," Journal of Physics Conference Series, vol. 2021, no. 1, p. 012093, 2021.

[8] X. Tian, W. Huang, Z. Yu, and X. Wang, "Data driven resource allocation for NFV-Based internet of things," IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8310–8322, 2019.

[9] M. Ghahramani, Y. Qiao, M. C. Zhou, A. O. Hagan, and J. Sweeney, "AI-based modeling and data-driven evaluation for smart manufacturing processes," IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, pp. 1026–1037, 2020.

[10] L. Gou, X. Zeng, Z. Wang, G. Han, C. Lin, and X. Cheng, "A linearization model of turbofan engine for intelligent analysis towards industrial internet of things," IEEE Access, vol. 7, pp. 145313–145323, 2019.

[11] D. Kiritsis, "Closed-loop PLM for intelligent products in the era of the Internet of things," Computer-Aided Design, vol. 43, no. 5, pp. 479–501, 2011.

[12] J. Tian and L. Gao, "Using data monitoring algorithms to physiological indicators in motion based on internet of things in smart city," Sustainable Cities and Society, vol. 67, no. 4, p. 102727, 2021.

[13] H. Yang, W.-D. Zhong, C. Chen, A. Alphones, and X. Xie, "Deep-reinforcement-learning-based energy-efficient resource management for social and cognitive internet of things," IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5677–5689, 2020.

[14] M. Younan, E. H. Houssein, M. Elhoseny, and A. A. Ali, "Challenges and recommended technologies for the industrial internet of things: a comprehensive review," Measurement, vol. 151, p. 107198, 2020.

[15] Z. Zhi, "A dynamic management method of domestic internet of things based on cloud computing architecture," Journal of Computational and Theoretical Nanoscience, vol. 13, no. 12, pp. 9963–9967, 2016.

[16] V. Borella, G. Queiroz, T. S. Araujo et al., "P1h.039 time-course of changes in lipid peroxidation after acute exposure to GBR 12909 in brain areas of mice," European Neuropsychopharmacology, vol. 24, pp. S292–S292, 2014.

[17] Y. Chen, N. Zhang, Y. Zhang, and X. Chen, "Dynamic computation offloading in edge computing for internet of things," IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4242–4251, 2019.

[18] S. Bohez, T. Verbelen, P. Simoens, and D. Bhodet, "Discrete-event simulation for efficient and stable resource allocation in collaborative mobile cloudlets," Simulation Modelling Practice and Theory, vol. 50, pp. 109–129, 2015.

[19] S. Sicari, A. Rizzardi, D. Mirandini, and A. Coen-Porisini, "Dynamic policies in internet of things: enforcement and synchronization," IEEE Internet of Things Journal, vol. 4, 2017.

[20] X. Wang, F. Lin, L. Zhou, X. Zhang, J. Hu, and D. Shen, "Research on intelligent monitoring technology of grouting based on dielectric characteristics," IOP Conference Series: Earth and Environmental Science, vol. 861, no. 7, article 072110, 2021(8pp).

[21] X. Wang, Y. Zhang, R. Shen, Y. Xu, and F. C. Zheng, "DRL-based energy-efficient resource allocation frameworks for uplink NOMA systems," IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7279–7294, 2020.

[22] O. S. Guma’A, Q. M. Hussein, and Z. T. M. Al-Ta’I, "Dynamic keys generation for internet of things," TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 18, no. 2, pp. 4897–4909, 2019.

[23] E. Bertino, "ACM Press the 2017 Workshop-Dallas, Texas, USA (2017.10.30-2017. 10.30)," in Proceedings of the 2017 Workshop on Women in Cyber Security-Cyber W ‘17- Keynote: Research Challenges and Opportunities in IoT Security, p. 5, 2017.

[24] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou, "Dynamic resource provisioning with fault tolerance for data-intensive meteorological workflows in cloud," IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6172–6181, 2020.

[25] Z. Hemel, D. M. Groenewegen, L. C. L. Kats, and E. Visser, "Static consistency checking of web applications with Web DSL,” Journal of Symbolic Computation, vol. 46, no. 2, pp. 150–182, 2011.

[26] L. Wang, C. Zhang, Q. Chen et al., "A communication strategy of proactive nodes based on loop theorem in wireless sensor networks," in 2018 Ninth international conference on intelligent control and information processing (ICICIP), pp. 160–167, IEEE, 2018.

[27] H. Li, D. Zeng, L. Chen, Q. Chen, M. Wang, and C. Zhang, "Immune multipath reliable transmission with fault tolerance in wireless sensor networks," in International Conference on Bio-Inspired Computing: Theories and Applications, pp. 513–517, Springer, Singapore, 2016.

[28] C. H. Cao, Y. N. Tang, D. Y. Huang, G. WeiMin, and Z. Chunji, "IIBE: an improved identity-based encryption algorithm for WSN security," Security and Communication Networks, vol. 2021, Article ID 8527068, 8 pages, 2021.
[29] W. Dong and Q. Yang, “Data-driven solution for optimal pumping units scheduling of smart water conservancy,” *IEEE Internet of Things Journal*, vol. 7, no. 3, pp. 1919–1926, 2019.

[30] D. Meng, Y. Xiao, Z. Guo et al., “A data-driven intelligent planning model for UAVs routing networks in mobile internet of things,” *Computer Communications*, vol. 179, pp. 231–241, 2021.