Remnant Lipoproteins Inhibit Malaria Sporozoite Invasion of Hepatocytes

By Photini Sinnis,* Thomas E. Willnow,§ Marcelo R. S. Briones,‡ Joachim Herz,§ and Victor Nussenzweig‡

From the *Department of Medical and Molecular Parasitology and §Michael Heidelberger Division of Immunology, Department of Pathology, New York University Medical Center, New York 10016; and the ‡Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75235

Summary

Remnants of lipoproteins, intestinal chylomicrons, and very low density lipoproteins (VLDL), are rapidly cleared from plasma and enter hepatocytes. It has been suggested that remnant lipoproteins are initially captured in the space of Disse by heparan sulfate proteoglycans (HSPGs), and that their subsequent internalization into hepatocytes is mediated by members of the LDL-receptor gene family. Similarly to lipoprotein remnants, malaria sporozoites are removed from the blood circulation by the liver within minutes after injection by *Anopheles* mosquitoes. The sporozoite's surface is covered by the circumsporozoite protein (CS), and its region II-plus has been implicated in the binding of the parasites to glycosaminoglycan chains of hepatocyte HSPGs. Lactoferrin, a protein with antibacterial properties found in breast milk and neutrophil granules, is also rapidly cleared from the circulation by hepatocytes, and can inhibit the hepatic uptake of lipoprotein remnants. Here we provide evidence that sporozoites, lactoferrin, and remnant lipoproteins are cleared from the blood by similar mechanisms. CS, lactoferrin, and remnant lipoproteins compete in vitro and in vivo for binding sites on liver cells. The relevance of this binding event for sporozoite infectivity is highlighted by our demonstration that apolipoprotein E-enriched β-VLDL and lactoferrin inhibit sporozoite invasion of HepG2 cells. In addition, malaria sporozoites are less infective in LDL-receptor knockout (LDLR−/−) mice maintained on a high fat diet, as compared with littermates maintained on a normal diet. We conclude that the clearance of lipoprotein remnants and sporozoites from the blood is mediated by the same set of highly sulfated HSPGs on the hepatocyte plasma membrane.

Chylomicron and very low density lipoprotein (VLDL) remnants, generated from the metabolism of intestinal chylomicrons and hepatic VLDL, are enriched in apolipoprotein E (apoE) and rapidly cleared from the circulation by the liver (for review see references 1 and 2). Clearance and liver uptake are apoE dependent (3–8). On the basis of a large body of evidence from cell culture (9, 10) and in vivo (11) studies it has been postulated that the initial sequestration of lipoprotein particles is mediated mainly by hepatic heparan sulfate proteoglycans (HSPGs), and that this facilitates their subsequent interiorization by the low density lipoprotein receptor (LDLR), and the LDLR-related protein (LRP) (12). Lactoferrin also binds to HSPGs and LRP (12–14), and competes with remnant lipoproteins for hepatic clearance from the circulation and for internalization by hepatocytes (15, 16).

There are intriguing similarities between the clearance patterns of the major surface protein of malaria sporozoites, the circumsporozoite protein (CS) (17), and remnant lipoproteins. Within minutes after intravenous injection into mice, CS accumulates in the space of Disse on the plasma membrane of hepatocyte microvilli (18). Heparinase treatment of liver sections that have been incubated with CS, and other in vitro experiments using hepatocytes and HepG2 cells as targets, demonstrate that CS binds to HSPGs (19, 20). The proteoglycan-binding portion of CS (19, 21) is region II-plus (22), a stretch of amino acids highly conserved in all species of malaria parasites (23). The region II-plus motif is also found in thrombospondin-related adhesive protein/sporozoite surface protein 2 (TRAP/SSP2), another surface protein of malaria sporozoites (24, 25) that binds to cell surface HSPGs (26, 27). Within re-
Materials and Methods

Materials. CS protein, the *Escherichia coli*-derived recombinant CS2I{\(\text{NANPNVDP}\)}[\(\text{NANP}\)]300-411, represents the complete *Plasmodium falciparum* CS sequence from the T4 isolate, except that the hydrophobic NH\(_2\)- and COOH-terminal amino acids 1-26 and 412-424 have been deleted and five histidine residues have been added to the COOH terminus to facilitate purification (32). The recombinant protein used in these studies was generously provided by Dr. Bela Takacs (F. Hoffmann-La Roche Ltd., Basel, Switzerland). Recombinant human apoE (E3 isoform), obtained from *E. coli* (33), was a gift from Dr. Tikva Vogel (Biotechnology General, Rehovot, Israel). mAb 2A10 is directed against an epitope contained in the (NANP)\(_n\) repeat domain of *P. falciparum* CS (34) and mAb 2E6, a gift from Dr. Moriya Tsuji (New York University Medical Center), reacts with the liver stage of *Plasmodium berghei* (35). \(\beta\)-migrating VLDL (\(\beta\)-VLDL; \(d < 1.006 \text{g/ml}\)) was prepared from the plasma of rabbits fed for 4 d with a 2% (wt/wt) cholesterol, 10% (vol/wt) coconut oil diet, as described (36). ApoE-enriched \(\beta\)-VLDL was prepared by coincubating apoE and \(\beta\)-VLDL at a ratio of 1:1 for 1 h at 37\(^\circ\)C before use.

Mice. LDLR\(-/-\) mice were created by targeted gene disruption as described (37). All other mice, including apoE\(-/-\) mice, were purchased from The Jackson Laboratory (Bar Harbor, ME). Mice on special diets were fed either normal mouse chow (Purina rodent chow #5001; Purina Mills, St. Louis, MO) or a 1.25% cholesterol, high saturated fat diet as described (38) for 5 d before each experiment. Briefly, the high fat diet consisted of three parts normal chow mixed with one part mouse chow containing cholesterol, cocoa butter, casein, and sodium cholate (TD78399 from Harlan Teklad Premier Laboratory Diets, Madison, WI). The final high fat diet contained 1.25% cholesterol, 7.5% (wt/wt) cocoa butter, 7.5% casein, and 0.5% (wt/wt) sodium cholate.

Binding of CS to HepG2 Cells. Assays were carried out as described (22). Briefly, HepG2 cells were grown in 96-well plates, fixed with 4% paraformaldehyde, and blocked with 1% BSA in Tris-buffered saline (TBS/BSA). When lactoferrin or transferrin (both from Sigma Chemical Co., St. Louis, MO) was used as an inhibitor, cells were coincubated with 2.5 \(\mu\)g/ml of CS and the inhibitor at the indicated concentrations for 1 h at 37\(^\circ\)C. After washing, cells were incubated with \(^{125}\text{I}\)-labeled mAb 2A10, washed, and counted in a gamma counter. In the experiments with apoE, \(\beta\)-VLDL, and apoE-enriched \(\beta\)-VLDL, the inhibitors were preincubated with the cells for 30 min and then CS protein was added to a final concentration of 2.5 \(\mu\)g/ml. CS and the inhibitor were then coincubated with the cells for 45 min at 37\(^\circ\)C, and the assay was processed as above.

Clearance Experiments. Mice were anesthetized with intraperitoneal sodium pentobarbital injection (~80 \(\mu\)g/cm) and injected intravenously with \(7 \times 10^8\) cpm of \(^{125}\text{I}\)-labeled CS, prepared as described (18) and representing ~0.1 \(\mu\)g of protein in 200 \(\mu\)l TBS with 0.1% BSA. At the indicated time points, 50-ml blood samples were collected by retroorbital puncture and counted in a gamma counter. To study the effect of lactoferrin on CS clearance, radiolabeled CS was injected 5 min after the injection of 3 \(\mu\)g of lactoferrin in 250 \(\mu\)l TBS or TBS alone. CS clearance in LDLR\(-/-\) and apoE\(-/-\) mice was performed 5 d after the animals were put on a high fat diet, and plasma cholesterol levels were measured on the day of the clearance experiment using an assay kit obtained from Sigma Chemical Co. When organs were harvested for counting, the mice were injected with \(4 \times 10^8\) cpm of CS. 2 min later, the mice were killed, exsanguinated, and their organs were removed, rinsed in TBS, and counted in a gamma counter.

Assay for Sporozoite Infectivity In Vitro. This was performed as described (39, 40) with modifications as described (21). Briefly, HepG2 cells were plated in chamber slides, grown for 2 d, and incubated for 15 min with each inhibitor before 50,000 *P. berghei* sporozoites were added to each well. 2 h after parasites were added, the cells were washed and then grown for an additional 2 d after which they were fixed with methanol and stained with mAb 2E6, followed by goat anti-mouse Ig conjugated to horseradish peroxidase and 3,3'-'diaminobenzidine. The number of exoerythrocytic forms (EEF) in each well were counted microscopically using a \(\times 20\) light microscope objective.
Figure 2. Inhibition of CS binding to HepG2 cells by lactoferrin, apoE, and apoE-enriched β-VLDL. (A) Paraformaldehyde-fixed HepG2 cells in 96-well plates were coincubated with CS and either lactoferrin (circles) or transferrin (squares) for 1 h. After washing, cells were incubated with iodinated mAb 2A10, washed and bound antibody was counted in a gamma counter. Shown is percent inhibition of binding of CS to HepG2 cells in the presence of inhibitor compared with results obtained in the absence of inhibitor. Each inhibitor concentration was assayed in triplicate and standard deviations were not greater than 5%. (B) The assay was carried out as above except that cells were preincubated with apoE (open triangles), β-VLDL (closed circles), or apoE-enriched β-VLDL (closed triangles) for 30 min. CS was then added for an additional 45 min, cells were washed, and bound CS was quantified as above. (Inset) Results of a similar experiment using lower concentrations of apoE (open triangles) and apoE-enriched β-VLDL (closed triangles). Each inhibitor concentration was assayed in triplicate and standard deviations were less than 5%.

Results

To examine the relationship between hepatocyte-binding sites for CS and apoE/lactoferrin, we performed in vitro competition experiments using HepG2 cells as targets. We have previously shown that CS binds to these cells in a saturable fashion, and that binding is abolished when cells are treated with heparitinase (19). Fig. 2 illustrates the inhibition of CS binding to HepG2 cells by lactoferrin and apoE. Between 80 and 90% inhibition is obtained with 1.6 μM lactoferrin. Transferrin, a protein with 59% identity to lactoferrin but lacking heparin-binding domains, has no effect on CS binding even at much higher concentrations. In Fig. 2 B, we compare the abilities of β-VLDL (isolated from plasma of hyperlipidemic rabbits and used as an experimental source of lipoprotein remnants), apoE, and apoE-enriched β-VLDL to inhibit CS binding to HepG2 cells. CS binding is inhibited by >80% with 1 μM recombinant apoE. While β-VLDL alone is inactive, upon addition of apoE, it inhibits CS binding in a dose-dependent fashion. This finding is in agreement with previous studies that have shown that β-VLDL must be enriched in apoE in order to bind with high avidity to cell surface proteoglycans and to LRP (9, 10, 38, 43). At low concentrations,
Table 1. Lactoferrin and ApoE-enriched Remnant Lipoproteins Inhibit Sporozoite Invasion of HepG2 Cells

Experiment	Inhibitor*	No. of EEF^	Percent inhibition~
1	Medium alone*	251,273,305^	11
	Transferrin 500 μg/ml	200,281,254	74
	Lactoferrin 500 μg/ml	63,67,81	43
	Lactoferrin 250 μg/ml	77,100,114	64
	Lactoferrin 125 μg/ml	138,137,190	43
2	Medium alone	779,730,725	14
	Transferrin 500 μg/ml	493,686,736	63
	Lactoferrin 500 μg/ml	274,266,270	38
	Lactoferrin 250 μg/ml	462,476,425	31
	Lactoferrin 125 μg/ml	479,515,535	31
3	Medium alone	459,488,424	68
	ApoE and β-VLDL 250 μg/ml	112,138,180	46
	ApoE and β-VLDL 125 μg/ml	220,253,265	23
	ApoE and β-VLDL 62 μg/ml	323,358,357	23
4	Medium alone	928,958,1068	51
	β-VLDL 250 μg/ml	1053,930,984	15
	β-VLDL 125 μg/ml	1051,981,981	15
	ApoE and β-VLDL 250 μg/ml	486,454,459	64
	ApoE and β-VLDL 125 μg/ml	769,938,792	51
5	Medium alone	166,114,149	64
	ApoE and β-VLDL 250 μg/ml	41,59,52	31
	ApoE and β-VLDL 125 μg/ml	69,105,122	24
	ApoE and β-VLDL 62 μg/ml	107,110,111	24

*HepG2 cells in chamber slides were incubated for 15 min with each inhibitor before 50,000 P. berghei sporozoites were added to each well. 2 h after parasites were added, the cells were washed and grown for an additional 2 d at which time they were fixed and stained.

^The number of EEF per 20 fields under ×20 magnification in triplicate wells.

~Calculated using the mean number of parasites in the control group, in which sporozoites were allowed to invade in the presence of medium alone, and the mean from the experimental group.

The inhibitory activity of apoE-enriched β-VLDL is higher than that of apoE alone (Fig. 2 B inset). The increased activity of apoE-enriched β-VLDL over apoE alone is probably greater than that shown in Fig. 2 B, since the molar concentration of apoE after incorporation into lipoprotein particles is lower than that of free apoE. Previous studies (9, 10, 12) have shown that the binding of apoE-enriched β-VLDL to HepG2 cells is inhibited by lactoferrin, or by prior heparitinase treatment of the cells. Our findings, together with these data, indicate that CS, lactoferrin, and apoE compete for the same set of HSPGs on the surface of HepG2 cells.

Next, we asked whether lactoferrin and apoE-enriched β-VLDL could prevent the infection of HepG2 cells by P. berghei, a rodent malaria parasite. Table 1 shows that 3.2 μM (250 μg/ml) lactoferrin, but not an equivalent amount of transferrin, inhibits sporozoite invasion by ~50%. Whereas β-VLDL alone is inactive, after its enrichment with apoE, it inhibits sporozoite invasion of HepG2 cells by 50–68%.

Lactoferrin and remnant lipoproteins compete with CS not only for binding to hepatocytes in vitro, but also for CS clearance by the liver. In Fig. 3 A we show that the removal of CS from the circulation is delayed when mice are preinjected with 3 mg of lactoferrin. To verify that lactoferrin was inhibiting clearance of CS because it was competing with CS for hepatic binding sites, we performed another experiment in which mice preinjected with lactoferrin were killed after radiolabeled CS injection and their organs were harvested and counted. As shown in Fig. 4 A, mice preinjected with 3 mg of lactoferrin had 24% of the injected counts in the liver, whereas control mice preinjected with either 3 mg of transferrin or buffer alone had 60% of the injected counts in their livers. Most of the remaining counts were found in the blood, and ~10% of the counts...
Figure 3. Lactoferrin and remnant lipoproteins inhibit CS clearance from the circulation. (A) Mice were anesthetized and intravenously injected with 3 mg of lactoferrin in 250 μl of TBS (closed circles) or with buffer alone (open circles). 125I-labeled CS was injected intravenously 5 min later and 50-μl blood samples were taken at the indicated time points. Values are expressed as a percentage of the radioactivity present in the plasma 30 s after CS injection. There were six mice in each group and error bars show the range of absolute values measured. (B) LDLR−/− mice were fed either normal mouse chow (open circles) or a 1.25% cholesterol, high saturated fat diet (closed circles) for 5 d before CS injection. Mice were anesthetized and measurement of CS clearance from the circulation was performed as above. Each group contained five mice and this experiment was performed three times with identical results. Error bars show the range of absolute values measured. (Inset) LDLR−/− mice (closed circles) and LDLR+/+ matched background controls (C57B6x129F2; open circles), both maintained on a normal diet were intravenously injected with radiolabeled CS and clearance from the circulation was measured as described above. Each group contained five mice and this experiment was repeated twice with identical results. (C) ApoE−/− mice were fed normal mouse chow (open triangles) or a 1.25% cholesterol, high saturated fat diet (open circles) for 5 d before radiolabeled CS injection. ApoE+/+ mice of the same background and age as the knockout mice (closed circles) were fed normal mouse chow. Mice were anesthetized and CS clearance from the circulation was performed as above. There were five mice per group and this experiment was performed twice with identical results.

were evenly distributed in various organs without any focal accumulation (data not shown).

To study the effect of lipoprotein remnants on CS clearance, we used LDLR−/− mice. When fed a normal diet, these mice accumulate LDL, but not lipoprotein remnants, and their total plasma cholesterol levels are slightly elevated (≈250 mg/dl; 37, 38). In preliminary studies we found that there was no significant difference in CS clearance between LDLR−/− and LDLR+/+ mice fed normal diets (inset, Fig. 3 B). When LDLR−/− mice are fed a diet high in saturated fat, their plasma cholesterol levels rise because of the accumulation of lipoprotein remnants and LDL (37, 38). As shown in Fig. 3 B, CS clearance was delayed in LDLR−/− mice fed a high fat diet (plasma cholesterol 1,120 ± 79 mg/dl) when compared with LDLR−/− littermates fed a normal diet (plasma cholesterol 179 ± 31 mg/dl). To verify that the delay in CS clearance was due to an inhibition of CS binding in the liver, we performed another experiment in which the mice were killed after radiolabeled CS injection. ApoE+/+ mice of the same background and age as the knockout mice (closed circles) were fed normal mouse chow. Mice were anesthetized and CS clearance from the circulation was performed as above. There were five mice per group and this experiment was performed twice with identical results.
Figure 4. Lactoferrin and remnant lipoproteins inhibit CS clearance to the liver. (A) Mice were injected with either 3 mg of lactoferrin or transferrin in 200 μl of TBS or with buffer alone. 5 min later they were injected with 125I-labeled CS and then killed 2 min later. The mice were exsanguinated, their organs harvested, and the radioactivity in the organs was determined. Values are expressed as a percentage of the radioactivity injected. There were three mice in each group and error bars show the range of absolute values measured. (B) LDLR−/− mice were fed either normal mouse chow or a 1.25% cholesterol, high saturated fat diet for 5 d. On day 5, the mice were injected with 125I-labeled CS and 2 min later the mice were killed, exsanguinated, and their organs were harvested and counted in a gamma counter. Values are expressed as a percentage of the radioactivity injected. There were six mice in each group.

Discussion

Here we show that CS, lactoferrin, and remnant lipoproteins compete for the same hepatic-binding sites. Although the nature of the liver molecules involved in the rapid clearance of these ligands from the circulation has not been unequivocally established, a large body of evidence derived from in vitro (for a review see reference 12) and in vivo (11) studies suggest that they are HSPGs. This idea is supported by the recent observation that the injection of heparinase into mice delays the clearance of lactoferrin and lipoprotein remnants from the circulation (45). Our data, demonstrating that CS can compete with these physiological ligands for clearance by hepatocytes, provide additional support for this hypothesis since injected CS binds almost exclusively to the microvilli on the basolateral domain of hepatocytes (18) and in vivo, this binding is completely eliminated when liver sections are treated with heparinase (19).

Although HSPGs are widely distributed in animal tissues, CS, apoE, and lactoferrin are retained almost exclusively in the liver, whereas 63% of the injected counts were found in the liver, whereas 63% of the injected counts were found in the livers of mice fed a normal diet (Fig. 4 B). Of note, the inhibition of CS clearance observed in mice preinjected with lactoferrin was greater than that observed in LDLR−/− mice fed a high fat diet (compare Fig. 3, A and B). This can be explained by differences in the plasma concentrations of the inhibitors. In the experiments with lactoferrin, plasma levels of the inhibitor were ~2 mg/ml, whereas in LDLR−/− mice maintained on a high fat diet, plasma apoE levels increase two- to fourfold, i.e., from 0.08 to 0.4 mg/ml (38, 44).

It could be argued that the delay in CS clearance in LDLR−/− mice fed a high fat diet is not due to CS competition with apoE-enriched remnant particles, but rather to secondary, nonspecific effects of high plasma cholesterol levels. To exclude this possibility, we compared CS clearance in apoE knockout mice (apoE−/−) and controls. ApoE−/− mice fed a normal diet have plasma cholesterol levels between 500 and 700 mg/dl. When fed a high fat diet, their cholesterol levels rise to over 2,000 mg/dl due to the accumulation of apoE-deficient remnant lipoproteins (7, 8, 38). As shown in Fig. 3 C, CS clearance is not significantly different between apoE−/− mice fed a normal diet (plasma cholesterol 726 ± 62 mg/dl) and those fed a high fat diet (plasma cholesterol 2,159 ± 496 mg/dl). In addition, CS clearance in apoE+/+ mice (plasma cholesterol <130 mg/dl) was not significantly different from clearance in apoE−/− mice. Thus, if apoE is missing, high levels of circulating remnant lipoproteins do not compete with CS for binding to liver HSPGs.

Finally, we tested whether we could inhibit malaria infection in a rodent model of the disease. Using a quantitative PCR assay, we compared the amounts of parasite rRNA in the livers of LDLR−/− mice infected with Plasmodium sporozoites 40 h earlier. We found that LDLR−/− mice fed a high fat diet had eightfold less parasite rRNA in their livers than LDLR−/− littermates fed a normal diet (Fig. 5).
Figure 5. Remnant lipoproteins inhibit infectivity of *P. yoelii* sporozoites in mice. LDLR−/− mice were fed either a normal or high fat diet (four mice per group) for 5 d and then injected intravenously with 7,500 *P. yoelii* sporozoites. 40 h after sporozoite injection, the mice were assayed for malaria infection by measurement of parasite rRNA using quantitative RT-PCR. Shown are PCR products of reactions using parasite rRNA primers and (A) 1 pg or (B) 5 pg of parasite rRNA competitor. (C) primers for mouse HPRT and 0.1 pg of the HPRT competitor were used. The competitor band is not visible in PCRs using cDNA from the four mice fed a normal diet, whereas faint bands can be seen in reactions using cDNA from the four mice fed a high fat diet (A). When the amount of competitor in the reactions is increased (B), the competitor band is clearly more abundant than the parasite target in the mice fed the high fat diet, and is less than or equal to the parasite target in mice fed normal chow. In reactions using HPRT primers and competitor, an equal ratio of the intensities of the competitor and target bands for all mice, regardless of diet, indicates that the efficiency of the RT reactions was equivalent in both groups. Molecular size markers (M); bp: 1,000, 750, 500, 300, 150, and 50. (D) The photograph in B was analyzed by densitometry. For each amplification reaction, a target/competitor ratio was calculated and this ratio was used to determine the amount of parasite RNA per microgram of liver RNA. The mean for each group of mice is plotted with error bars showing the range of values calculated.
cells is unknown although our results raise the possibility that sporozoites, like remnant lipoproteins, are interiorized by LDLR and/or LRP. Alternate, the attached sporozoites may use their own actin-based motility system to actively invade hepatocytes, an idea supported by videomicroscopic observations (34) and recent studies of cell invasion by Toxoplasma gondii (55), a parasite that belongs to the same phylum as Plasmodium.

An unresolved issue is the anatomical localization of the GAGs that bind lipoprotein remnants and, as suggested by the present results, malaria sporozoites. It is generally assumed that lipoprotein remnants traverse the fenestrated endothelium of the liver sinusoids and enter the space of Disse where they are retained by HSPGs. The diameter of sporozoites (1 μM), however, is greater than the average diameter of the fenestrae (0.1 μM; 56, 57), making this an unlikely model for sporozoite attachment to hepatic HSPGs. Another possibility is that the interaction between the GAG chains of hepatic HSPGs with their physiologic ligands, as well as with sporozoites, takes place not in the space of Disse, but within the sinusoids. If one considers the fact that the space of Disse is a narrow, loose matrix of proteins and proteoglycans rather than a true basement membrane, it is possible that the long HSPG GAG chains of the hepatocytes protrude through the fenestrae and are in direct contact with the blood circulation. This model, strengthened by the finding that the bulk of the sulfation of the hepatecty HSPG GAG chains is found along the distal portion of the molecules (47), would greatly increase the likelihood of productive encounters between the positively charged regions of the ligands and HSPGs.

The utilization by sporozoite and lipoprotein remnants of a common pathway of retention by the liver is unexpected, and brings together two different areas of research. Our findings raise the intriguing possibility that the lower parasite densities and fewer episodes of clinical malaria observed in neonates (58, 59) are, at least in part, due to the high concentration of lactoferrin (60) and the high fat content of breast milk (61). The present findings thus provide new perspectives for the development of prophylactic agents against malaria, and for the understanding of malaria pathology and epidemiology.

We thank Rita Altszuler and Chui Ng for superb technical assistance and Drs. Elizabeth Nardin and Jayne Raper for their critical reading of the manuscript.

P. Sinnis and V. Nussenzweig were supported by National Institutes of Health (NIH) grants K11 AI-01175 and PO1 AI-35703, respectively; M. Briones was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, São Paulo, Brazil; T. Willnow and J. Herz were supported by grants from the NIH (HL-20948), the Keck Foundation, and the Lucille P. Markey Charitable Trust.

Address correspondence to Dr. Photini Sinnis, Department of Medical and Molecular Parasitology, New York University Medical Center, 341 E. 25th St., New York, NY 10016.

Received for publication 20 May 1996.

References

1. Cooper, A.D. 1992. Hepatic clearance of plasma chylomicron remnants. Semin. Liver Dis. 12:386–396.

2. Goto, A.M., H.J. Pownall, and R.J. Havel. 1986. Introduction to the plasma lipoproteins. Methods Enzymol. 128:3–41.

3. Sherril, B.C., T.L. Innerarity, and R.W. Mahley. 1989. Rapid hepatic clearance of the canine lipoproteins containing only the E apoprotein by a high affinity receptor. Identity with the chylomicron remnant transport process. J. Biol. Chem. 255:1804–1807.

4. Shelburne, F., J. Hanks, W. Meyers, and S. Quarrfordt. 1980. Effect of apoproteins on hepatic uptake of triglyceride emulsions in the rat. J. Clin. Invest. 65:652–658.

5. Windler, E., Y.S. Chao, and R.J. Havel. 1980. Determinants of hepatic uptake of triglyceride-rich lipoproteins and their remnants in the rat. J. Biol. Chem. 256:5475–5480.

6. Schaefer, E.J., R.E. Gregg, G. Ghiselli, T.M. Forte, J.M. Ordovas, L.A. Zech, and H.B. Brewer. 1986. Familial apolipoprotein E deficiency. J. Clin. Invest. 78:1206–1219.

7. Zhang, S.H., R.L. Reddick, J.A. Piedrahita, and N. Maeda. 1992. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science (Wash, DC). 258: 468–471.

8. Plump, A.S., J.D. Smith, T. Hayek, K. Aalto-Setala, A. Walsh, J.G. Versuyt, E.M. Rubin, and J.L. Breslow. 1992. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 71:343–353.

9. Ji, Z., S. Fazio, Y. Lee, and R.W. Mahley. 1994. Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans. J. Biol. Chem. 269:2764–2772.

10. Ji, Z., W.J. Brecht, R.D. Miranda, M.M. Hussain, T.L. Innerarity, and R.W. Mahley. 1993. Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells. J. Biol. Chem. 268:10160–10167.

11. Herz, J., Q. Shi-Qiang, A. Oesterle, H.V. DeSilva, S. Shafi, and R.J. Havel. 1995. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA. 92:4611–4615.

12. Mahley, R.W., Z. Ji, W.J. Brecht, R.D. Miranda, and D. He. 1994. Role of heparan sulfate proteoglycans and the LDL receptor-related protein in remnant lipoprotein metabolism.

952 Remnant Lipoproteins Inhibit Malaria Sporozoite Invasion
binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes. EMBO (Eur. Mol. Biol. Organ.) J. 12:2881–2889.

27. Robson, K.J.H., U. Frevert, I. Reckmann, G. Cowan, J. Beier, I.G. Scragg, K. Takehara, D.H.L. Bishop, G. Pradel, R. Sinden et al. 1995. Thrombospondin-related adhesive protein (TRAP) of Plasmodium falciparum: expression during sporozoite ontogeny and binding to human hepatocytes. EMBO (Eur. Mol. Biol. Organ.) J. 14:3883–3894.

28. Ziere, G.J., M.K. Bijsterbosch, and T.J.C. van Berkel. 1993. Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of β-very low density lipoprotein binding. J. Biol. Chem. 268:27069–27075.

29. Ziere, G.J., M.C.M. van Dijk, M.K. Bijsterbosch, and T.J.C. van Berkel. 1992. Lactoferrin uptake by the rat liver. J. Biol. Chem. 267:11229–11235.

30. Cardin, A.D., N. Hirose, D.T. Blankenship, R.L. Jackson, and J.A.K. Harmony. 1986. Binding of a high reactive heparin human apolipoprotein E: identification of two heparin-binding domains. BBRC (Biochem. Biophys. Res. Commun.) 134:783–789.

31. Weisgraber, K.H., S.C. Rall, R.W. Mahley, R.W. Milne, Y.L. Marcel, and J.T. Sparrow. 1986 Human apolipoprotein E: determination of the hepafin binding sites of apolipoprotein E3. J. Biol. Chem. 261:2068–2076.

32. Takacs, B.J., and M.F. Girard. 1991. Preparation of clinical grade proteins produced by recombinant DNA technologies. J. Immunol. Methods. 143:231–240.

33. Vogel, T., K.H. Weisgraber, M.I. Zeevi, H. Ben-Artzi, A.Z. Levanon, S.C. Rall, T.L. Innerarity, D.Y. Hui, J.M. Taylor, D. Kanner et al. 1985. Human apolipoprotein E protein expression during Escherichia coli: structural and functional identity of the bacterially produced protein with plasma apolipoprotein E. Proc. Natl. Acad. Sci. USA. 82:8696–8700.

34. Nardin, E.H., V. Nussenzweig, R.S. Nussenzweig, W.E. Collins, K.T. Harinasuta, P. Tapchaisri, and Y. Chomcharn. 1982. Circumsporozoite proteins of human malaria parasites Plasmodium falciparum and Plasmodium vivax. J. Exp. Med. 156:20–30.

35. Tsuji, M., D. Mattei, R.S. Nussenzweig, D. Eichinger, and F. Zavala. 1994. Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites. Parasitol. Res. 80:16–21.

36. Kowal, R.C., J. Herz, K.H. Weisgraber, R.W. Mahley, M.S. Brown, and J.L. Goldstein. 1990. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J. Biol. Chem. 265:10771–10779.

37. Ishibashi, S., M.S. Brown, J.L. Goldstein, R.D. Gerard, R.E. Hammer, and J. Herz. 1993. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92:883–893.

38. Ishibashi, S., J. Herz, N. Maeda, J.L. Goldstein, and M.S. Brown. 1994. The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl. Acad. Sci. USA. 91:4431–4435.

39. Hollingdale, M.R., M. McCullough, and R.L. Beaudoin. 1981. In vitro cultivation of the exsperoryctotic stage of Plasmodium berghei from sporozoites. Science (Wash. DC). 213:1021–1022.
40. Sinden, R.E., A. Suhrbier, C.S. Davies, S.L. Fleck, K. Hodivala, and J.C. Nicholas. 1990. The development and routine application of high-density exoerythrocytic-stage cultures of *Plasmodium berghei*. *Bull. W. H. O.* 68(suppl.)115–125.

41. Briones, M.R.S., M. Tsuji, and V. Nussenzweig. 1996. The large difference in infectivity for mice of *Plasmodium berghei* and *Plasmodium yoelii* sporozoites cannot be correlated with their ability to enter into hepatocytes. *Mol. Biochem. Parasitol.* 77:7–17.

42. Reiner, S.L., S. Zheng, D.B. Corry, and R.M. Locksley. 1993. Constructing polycompetitor cDNAs for quantitative PCR. *J. Immunol. Methods.* 165:37–46.

43. Kowal, R.C., J. Herz, J.L. Goldstein, V. Esser, and M.S. Brown. 1989. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. *Proc. Natl. Acad. Sci. USA.* 86:5810–5814.

44. Lusis, A.J., B.A. Taylor, D. Quon, S. Zollman, and R.C. LeBoeuf. 1987. Genetic factors controlling structure and expression of apolipoproteins B and E in mice. *J. Biol. Chem.* 262:7594–7604.

45. Ji, Z., D.A. Sanan, and R.W. Mahley. 1995. Intravenous heparinase inhibits remnant lipoprotein clearance from the plasma and uptake by the liver: *in vivo* role of heparan sulfate proteoglycans. *J. Lipid Res.* 36:583–592.

46. Kjellen, L., and U. Lindahl. 1991. Proteoglycans: structures and interactions. *Annu. Rev. Biochem.* 60:443–475.

47. Lyon, M., J.A. Deakin, and J.T. Gallagher. 1994. Liver heparan sulfate structure. *J. Biol. Chem.* 269:11208–11215.

48. Gallagher, J.T., and A. Walker. 1985. Molecular distinctions between heparan sulphate and heparin. *Biochem. J.* 230:665–674.

49. Yoshida, N., R.S. Nussenzweig, P. Potocnjak, V. Nussenzweig, and M. Akawa. 1980. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. *Science (Wash. DC).* 207:71–73.

50. Kjellen, L., A. Oldberg, and M. Hook. 1980. Cell-surface heparan sulfate. *J. Biol. Chem.* 255:10407–10413.

51. Yanagishita, M., and V. Hascall. 1992. Cell surface heparan sulfate proteoglycans. *J. Biol. Chem.* 267:9451–9454.

52. Charoenvit, Y., M.F. Leef, L.F. Yuan, M. Sedegah, and R.L. Brudin. 1987. Characterization of *Plasmodium yoelii* monoclonal antibodies directed against stage-specific sporozoite antigens. *Infect. Immun.* 55:604–608.

53. Cowan, G., S. Krishna, A. Crisanti, and K. Robson. 1992. Expression of thrombospondin-related anonymous protein in *Plasmodium falciparum* sporozoites. *Lancet.* 339:1412–1413.

54. Vanderberg, J., S. Chew, and M.J. Stewart. 1990. *Plasmodium* sporozoite interactions with macrophages *in vivo*: a videomicroscopic analysis. *J. Protozool.* 37:528–536.

55. Dobrowolski, J.M., and L.D. Sibley. 1996. Malaria invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. *Cell.* 84:933–939.

56. Khusmith, S., M. Sedegah, and S.L. Hoffman. 1994. Complete protection against *Plasmodium yoelii* by adoptive transfer of a CD8+ cytotoxic T-cell clone recognizing sporozoite surface protein 2. *Infect. Immun.* 62:2979–2983.

57. Wisse, E., R.B. De Zanger, P. Van der Smussen, and R.S. McCuskey. 1985. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. *Hepatology.* 5:683–692.

58. Brabin, B. 1990. An analysis of malaria parasite rates in infants: 40 years after MacDonald. *Trop. Dis. Bull.* 87:R1–R21.

59. Greenwood, B.M. 1991. An analysis of malaria parasite rates in infants: 40 years after MacDonald — a response. *Trop. Dis. Bull.* 88:R1–R3.

60. Knapp, R.D., and T.W. Hutchens. 1994. Maternal lactoferrin in the urine of preterm infants. Evidence for retention of structure and function. *Adv. Exp. Med. and Biol.* 357:177–181.

61. Motil, K.J. 1987. Breast Feeding: Public Health and Clinical Overview. In *Pediatric Nutrition.* R.J. Grand, J.L. Sutphen, and W.H. Dietz, editors. Butterworth, Stoneham, MA. 251–263.