Excursions Above the Minimum for Diffusions *

P.J. Fitzsimmons

August 23, 2013

1. Introduction

Let $X = (X_t)_{t \geq 0}$ be a regular diffusion process on an interval $E \subset \mathbb{R}$. Let $H_t := \min_{0 \leq u \leq t} X_u$ denote the past minimum process of X and consider the excursions of X above its past minimum level: If $[a, b]$ is a maximal interval of constancy of $t \mapsto H_t$, then $(X_t : a \leq t \leq b)$ is the “excursion above the minimum” starting at time a and level $y = H_a$. These excursions, when indexed by the level at which they begin, can be regarded (collectively) as a point process. The independent increments property of the first-passage process of X implies that this point process is Poissonian in nature, albeit non-homogeneous in intensity. Moreover, intuition tells us that the distribution of an excursion above the minimum $(X_t : a \leq t \leq b)$ should be governed by the Itô excursion law corresponding to excursions above the fixed level $y = H_a(\omega)$.

Our first task is to render precise the ruminations of the preceding paragraph. This is accomplished in sections 2 and 3 by applying Maisonneuve’s theory of exit systems [10] to a suitable auxiliary process (\overline{X}_t) associated with X. The basic result, stated in section 2, affirms the existence of a “Lévy system” for the point process of excursions of X above its past minimum.

In sections 4, 5, and 6 we discuss several applications of the Lévy system constructed in section 3; these applications concern path decompositions of X involving the minimum process H. Such decompositions, and related results, have been found by various authors (see [6, 9, 11, 12, 14, 15, 16, 17, 18]), most often in the special case where X is Brownian motion. The possibility of using Lévy systems to give a unified treatment of path decompositions is, of course, not surprising. In an excellent synthesis [13] Pitman has shown how the existence of a Lévy system for a point process attached to a Markov process leads naturally to various path decompositions of the Markov process.

In section 4 we obtain a general version of Williams’ decomposition of a diffusion at its global minimum. A “local” version of Williams’ decomposition can be found in section 5. In section 6 we give a new proof of a result of Vervaat [17], which states that a Brownian bridge, when split at its minimum and suitably “rearranged” becomes a (scaled) Brownian

* This is a lightly edited form of a manuscript written in the spring of 1985.
excursion. Indeed, we produce an inversion of Vervaat’s transformation, showing how a Brownian excursion may be split and rearranged to yield Brownian bridge.

2. Notation and the basic result

Let \(X = (\Omega, \mathcal{F}, \theta_t, X_t, P^x) \) be a canonically defined regular diffusion on an interval \(E \subset \mathbb{R} \). Here \(\Omega \) denotes the space of paths \(\omega: [0,+\infty[\to E \cup \{\Delta\} \) which are absorbed in the cemetery point \(\Delta \notin E \) at time \(\zeta(\omega) \), and which are continuous on \([0,\zeta(\omega)]\). For \(t \geq 0 \), \(X_t(\omega) = \omega(t) \), and \(\theta_t \omega \) denotes the path \(u \mapsto \omega(u + t) \). The \(\sigma \)-fields \(\mathcal{F} \) and \(\mathcal{F}_t \) \((t \geq 0)\) are the usual Markovian completions of \(\mathcal{F} = \sigma\{X_u : u \geq 0\} \) and \(\mathcal{F}_t = \sigma\{X_u : 0 \leq u \leq t\} \) respectively. The law \(P^x \) on \((\Omega, \mathcal{F}^x)\) corresponds to \(X \) started at \(x \in E \). We shall also make use of the killing operators \((k_t)\) defined for \(t \geq 0 \) by

\[
 k_t \omega(u) = \begin{cases}
 \omega(u), & u < t, \\
 \Delta, & u \geq t.
 \end{cases}
\]

Let \(A = \inf E \), \(B = \sup E \), and write \(E^\circ =]A, B[\). We assume throughout the paper that \(A \notin E \), and that \(B \in E \) if and only if \(B \) is a regular boundary point which is not a trap for \(X \). In particular, these assumptions imply that the transition kernels of \(X \) are absolutely continuous with respect to the speed measure \(m \) (recalled below). See §4.11 of Itô-McKean [8].

Let \(s \) (resp. \(m \), resp. \(k \)) denote a scale function (resp. speed measure, resp. killing measure) for \(X \). Recall from [8] that the generator \(\mathcal{G} \) of \(X \) has the form

\[
(2.1) \quad \mathcal{G}u(x) \cdot m(dx) = du^+(x) - u(x) \cdot k(dx), \quad x \in E^\circ,
\]

for \(u \in D(\mathcal{G}) \), the domain of \(\mathcal{G} \). Here and elsewhere \(u^+ \) denotes the scale derivative:

\[
 u^+(x) = \lim_{y \downarrow x} \frac{u(y) - u(x)}{s(y) - s(x)}.
\]

Let \((U^\alpha : \alpha > 0)\) denote the resolvent family of \(X \). Subsequent calculations require an explicit expression for the density of \(U^\alpha(x,dy) \) with respect to \(m(dy) \). Recall from [8] that for each \(\alpha > 0 \) there are strictly positive, linearly independent solutions \(g_1^\alpha \) and \(g_2^\alpha \) of

\[
(2.2) \quad \mathcal{G}g(x) = \alpha g(x), \quad x \in E^\circ;
\]

\(g_1^\alpha \) (resp. \(g_2^\alpha \)) is an increasing (resp. decreasing) solution of \((2.2)\) which also satisfies the appropriate boundary condition at \(A \) (resp. \(B \)). Both \(g_1^\alpha \) and \(g_2^\alpha \) are uniquely determined
up to a positive multiple. We sometimes drop the superscript \(\alpha \), writing simply \(g_1 \) and \(g_2 \). Since \(g_1 \) and \(g_2 \) are linearly independent solutions of (2.2), the Wronskian \(W = g_1^+ g_2 g_2^- g_1^- \) is constant. The resolvent \(U^\alpha \) is given by

\[
U^\alpha f(x) = U^\alpha(x, f) = \int_E u^\alpha(x, y)f(y) \, m(dy),
\]

where

\[
u^\alpha(x, y) = \nu^\alpha(y, x) = g_1^\alpha(x)g_2^\alpha(y) / W, \quad x \leq y.
\]

See \(\S 4.11 \) of [8] and note that in (2.3) the mass \(m(\{B\}) \) is the “stickiness” coefficient occurring in the boundary condition at \(B \) for elements of \(D(G) \).

A jointly continuous version \((L^y_t : t \geq 0, y \in E) \) of \textit{local time} for \(X \) may be chosen, and normalized to be occupation density relative to \(m \), so that

\[
P^x \int_0^\infty e^{-\alpha t} \, dL^y_t = \nu^\alpha(x, y).
\]

Fixing a level \(y \in E \), the local time \((L^y_t : t \geq 0) \) is related to the Itô excursion law [7], for excursions from level \(y \), as follows. Let \(G(y) \) denote the (random) set of left-hand endpoints (in \(]0, \zeta[\) of intervals contiguous to the level set \(\{t > 0 : X_t = y\} \). Define the hitting time \(T_y \) by

\[
T_y = \inf\{t > 0 : X_t = y\} \quad (\inf \emptyset = +\infty).
\]

The Itô excursion law \(n_y \) is determined by the identity

\[
P^x \sum_{u \in G(y)} Z_u F \circ k_{T_y} \circ \theta_u = P^x \left(\int_0^\infty Z_u \, dL^y_u \right) \cdot n_y(F),
\]

where \(x \in E \), \(F \in pF^\circ \), and \(Z \geq 0 \) is an \((\mathcal{F}_t) \)-optional process. Under \(n_y \) the coordinate process \((X_t : t > 0) \) is strongly Markovian with semigroup \((Q^y_t) \) given by

\[
Q^y_t(x, f) = P^x(f \circ X_t; t < T_y).
\]

The entrance law \(n_y(X_t \in dz) \) is determined by the corresponding Laplace transform

\[
W^\alpha f(y) = W^\alpha(y, f) = n_y \int_0^\zeta e^{-\alpha t} f \circ X_t \, dt.
\]

Conversely, \(n_y \) is the unique \(\sigma \)-finite measure on \((\Omega, \mathcal{F}^\circ) \) which is carried by \(\{\zeta > 0\} \) and under which \((X_t : t > 0) \) is Markovian with semigroup (2.7) and entrance law (2.8).
Let V_y^α denote the resolvent of the semigroup (Q_t^y). Taking $Z_u = e^{-\alpha u}$, $F = \int_0^\zeta e^{-\alpha t} f(X_t) \, dt$ in (2.6), and using (2.5), we obtain the important identity

\[(2.9) \quad U^\alpha f(x) = V_y^\alpha f(x) + u^\alpha(x, y)[m(\{y\})f(y) + W^\alpha f(y)].\]

We also recall from §4.6 of [8] that the distribution of T_y is given by

\[(2.10) \quad P^x(e^{-\alpha T_y}) = \begin{cases} \frac{g_1^\alpha(x)}{g_1^\alpha(y)}, & x \leq y, \\ \frac{g_2^\alpha(x)}{g_2^\alpha(y)}, & x \geq y. \end{cases}\]

Finally, the point process of excursions above the minimum is defined as follows. For $t \geq 0$ set

\[
H_t(\omega) = \begin{cases}
\min_{0 \leq u \leq t} X_u(\omega) & \text{if } t < \zeta(\omega), \\
-\infty & \text{if } t \geq \zeta(\omega);
\end{cases}
\]

\[
M(\omega) = \{ u > 0 : X_u(\omega) = H_u(\omega) \};
\]

\[
R_t(\omega) = \inf \{ u > 0 : u + t \in M(\omega) \};
\]

\[
G(\omega) = \{ u > 0 : u < \zeta(w), R_u(\omega) = 0 < R_u(\omega) \}.
\]

Thus G is the random set of left-hand endpoints of intervals contiguous to the random set M. For $u \in G$ we have the excursion e^u defined by

\[
e_u^u = \begin{cases} X_{u+t}, & 0 \leq t < R_u, \\ \Delta, & t \geq R_u. \end{cases}
\]

The point process $\Pi = (e^u : u \in G)$ admits a Lévy system as follows. Define a continuous increasing adapted process $C = (C_t : t \geq 0)$ by

\[
C_t = \begin{cases}
s(H_0) - s(H_t), & \text{if } t < \zeta, \\ C_\zeta, & \text{if } t \geq \zeta.
\end{cases}
\]

\[(2.11) \quad \text{Theorem.} \quad \text{For } Z \geq 0 \text{ and } (F_t)\text{-optional, and } F \in pF^\alpha,
\]

\[
P^x \sum_{u \in G} Z_u F(e^u) = P^x \int_0^\infty Z_u n_{X_u}^\uparrow (F) \, dC_u
\]

\[(2.12) = P^x \int_A Z_{T_y} 1\{T_y < +\infty\} n_{T_y}^\uparrow (F) \, ds(y),
\]

where $n_{T_y}^\uparrow$ denotes the restriction of n_y to $\{ \omega : \omega(t) > y, \forall t \in]0, \zeta(\omega)[\}$.

\[(2.13) \quad \text{Remark.} \quad \text{The second equality in (2.12) follows from the first by the change of variable } u = T_y. \quad \text{The equality of the first and third terms in (2.12) amounts to the}
statement that the time-changed point process \((e^T_y : R_{T_y} - < R_T, A < y < x)\) is a
stopped Poisson point process under \(P^x\), with (non-homogeneous) intensity \(ds(y)n^\uparrow_y(d\omega)\),
stopped at the first level \(y\) for which \(T_y = +\infty\). See [14] for this result in the case of
Brownian motion, with or without drift. The general result (2.11) was suggested by §4.10
of [8].

3. Proof of Theorem (2.11)

Maisonneuve’s theory of exit systems [10] provides a Lévy system description of the point
process of excursions induced by a closed, optional, homogeneous random set. Unfortu-
nately the set \(M\) introduced in §2 is not \((\theta_t)\)-homogeneous; however the theory of [10]
can be brought to bear once we note that \(M\) is homogeneous as a functional of the strong
Markov process \((X_t, H_t), t \geq 0\). This key observation is due to Millar [12] and has been
formalized by Getoor in [4]. In the terminology of [4], the process \(H\) is a “min-functional”:
\(H_{t+u} = H_t \land H_u \circ \theta_t\). This property ensures that \(\Xi := (X, H)\) is Markovian, as a simple
computation shows.

Following [4] we first construct a convenient realization of \(\Xi\). Let \(\Omega = \Omega \times (E \cup \{-\infty\})\),
\(E = \{(x, a) \in E \times E : a \leq x\}\), and for \((\omega, a) \in \Omega\) set
\[
\Xi_t(\omega, a) = (X_t(\omega), a \land H_t(\omega)),
\]
\[
\theta_t(\omega, a) = (\theta_t(\omega), a \land H_t(\omega)).
\]
Clearly \(\Xi_t \circ \theta_u = \Xi_{t+u}, \theta_t \circ \theta_u = \theta_{t+u}\). Moreover, \(M\) can be realized over \(\Xi\) as
(3.1)
\[
\overline{M}(\omega, a) = \{t > 0 : \Xi_t(\omega, a) \in D\},
\]
where \(D = \{(x, x) : x \in E\}\). Let \(\overline{F} = \sigma\{\Xi_u : u \geq 0\}, \overline{F}_t = \sigma\{\Xi_u : 0 \leq u \leq t\}\), and
for \((x, a) \in E\) let \(\overline{P}^{x,a} = P^x \otimes \epsilon_a\). The usual Markovian completion of the filtration \((\overline{F}_t)\)
relative to the laws \((\overline{P}^{x,a} : (x, a) \in E)\) is denoted by \((\overline{F}_t)\). Clearly \(\overline{P}^{x,a}(X_0 = (x, a)) = 1\)
so that \(\Xi\) has no branch points. Appealing to §2 of [4] we have the following

(3.2) Lemma. (i) \(\Xi = (\Omega, \overline{F}, \overline{F}_t, \overline{\theta}_t, \Xi_t, \overline{P}^{x,a})\) is a right-continuous, strong Markov pro-
cess with state space \(\overline{E}\) and cemetery \(\Delta = (\Delta, -\infty)\). The semigroup of \(\Xi\) maps Borel
functions to Borel functions, so that \(\Xi\) is even a Borel right process.

(ii) Let \(\pi : (\omega, a) \rightarrow \omega\) denote the projection of \(\overline{\Omega}\) onto \(\Omega\). If \(Z\) is an \((\overline{F}_t)\)-optional
process, then \(Z \circ \pi\) is \((\overline{F}_t)\)-optional.

Now \(\overline{M}\) is an \((\overline{F}_t)\)-optional, \((\overline{\theta}_t)\)-homogeneous set, and each section \(\overline{M}(\omega, a)\) is closed
in \(]0, \zeta(\omega, a)[\). Set \(\overline{R} = \inf \overline{M}\), so that \(\overline{R}\) is an exact terminal time of \(\Xi\) with \(\text{reg}(\overline{R}) = \)}
\{(x, a) \in E : \overline{P}^{x,a}(R = 0) = 1\} = D. This last fact follows from the regularity of \(X\) and the identity
\[\overline{P}^{x,a}(R = T_{u} \circ \pi) = 1, \quad (x, a) \in E.\]

Let \(G\) denote the set of left-hand endpoints of intervals contiguous to \(M\). The properties of the Maisonneuve exit system \((*\overline{P}^{x,a}, \overline{K})\) for \(M\) are summarized in the next proposition. In what follows, \(\overline{E}^*\) and \(\overline{F}^*\) denote the universal completions of \(\overline{E}\) (the Borel sets in \(\overline{E}\)) respectively.

Proposition. [Maisonneuve] There exists a continuous additive functional (CAF), \(\overline{K}\), of \(X\) with a finite 1-potential, and a kernel \(*\overline{P}^{x,a}\) from \((\overline{E}, \overline{E}^*)\) to \((\overline{\Omega}, \overline{F}^*)\) such that
\[(*3.4) \quad \overline{P}^{x,a} \sum_{u \in G} Z_u \overline{F}_u \circ \theta = \overline{P}^{x,a} \int_{0}^{\infty} Z_u \overline{P}^{x,u}(\overline{F}_u) dK_u,\]
whenever \(Z \geq 0\) is \((\overline{F}_t)\)-optional and \((u, \omega) \mapsto \overline{F}_u(\omega)\) is a \(\mathcal{B}[0, +\infty[\otimes \overline{F}^*\)-measurable, positive function. The CAF \(\overline{K}\) is carried by \(D\). For each \((x, a) \in \overline{E}\), \(*\overline{P}^{x,a}\) is a \(\sigma\)-finite measure on \((\overline{\Omega}, \overline{F}^*)\) under which the coordinate process is strongly Markovian with the same transition semigroup as \(X\).

Remarks. The version of \((*\overline{P}^{x,a}, \overline{K})\) cited in (3.3) is a variant of that constructed in [10]; the difference stems from the possibility that \(\overline{P}^{x,a}(\zeta < +\infty)\) may be positive. The fact that \(\overline{K}\) is continuous (and so carried by \(D = \text{reg}(\overline{R})\)) follows from the construction in [10], since \(M = \{t > 0 : X_t \in D\}\) and \(D\) is finely perfect (with respect to \(X\)). Renormalizing the kernel \(*\overline{P}^{x,a}\) if necessary, we can and do assume that \(*\overline{P}^{y,y}(1 - e^{-R}) = 1\) for all \(y \in E\).

Our plan is to prove Theorem (2.11) by identifying \(*\overline{P}^{x,a}\) and \(\overline{K}\) explicitly, thereby deducing (2.12) from (3.4). First note that by taking \(x = y\) in (2.9) and using (2.4) we have
\[(*3.6) \quad W^\alpha f(y) = \int_{[A, y]} [g_1^\alpha(z)/g_1^\alpha(y)] f(z) m(dz) + \int_{[y, B]} [g_2^\alpha(z)/g_2^\alpha(y)] f(z) m(dz),\]
where \(y \in E, \alpha > 0, \) and \(f \geq 0\) is Borel measurable on \(E\).

To identify \(\overline{K}\) we define a second CAF of \(\overline{X}, \overline{C}\), by the formula
\[\overline{C}_t(\omega, a) = \begin{cases} s(a \wedge H_0(\omega)) - s(a \wedge H_t(\omega)) & \text{if } t < \overline{\zeta}(\omega, a), \\ \overline{C}_{\overline{\zeta}}(\omega, a) & \text{if } t \geq \overline{\zeta}(\omega, a); \end{cases}\]
and notice that \(\overline{C}_t(\omega, X_0(\omega)) = C_t(\omega)\). Clearly the fine support of \(\overline{C}\) is \(D\).

For \(x \in E\) put \(\psi(x) = W_{1|x, B)}(x)\).
(3.7) Proposition. The CAFs \overline{K} and $\int_0^t \psi(X_u) dC_u$ are equivalent.

Proof. By [1; IV(2.13)] it suffices to check that the CAFs in question have the same finite 1-potential (over X). An argument of Vervaat [17] shows that $P^x(t \in M) = 0$ for all $x \in E$ and all $t > 0$. Consequently, $P^{x,a}(t \in M) = 0$ for all $(x, a) \in \overline{E}$ and all $t > 0$. By Fubini’s theorem, $\int_0^\infty e^{-t}1_M(t) dt = 0$ a.s. $P^{x,a}$ for all $(x, a) \in \overline{E}$. Thus taking $Z_u(\omega) = e^{-u}$, $F_u(\omega) = 1 - \exp(-R(\omega) \wedge \zeta(\omega))$ in (3.4), we may compute

$$P^{x,a} \int_0^\infty e^{-u} dK_u = P^{x,a} \sum_{u \in G} e^{-u} \left(\int_0^{R \wedge \zeta} e^{-t} \right) d\theta_u$$

$$= P^{x,a} \int_{R \wedge \zeta} e^{-u} du$$

$$= P^{x,a} (e^{-R \wedge \zeta} - e^{-\zeta})$$

$$= P^x (e^{-T_a \wedge \zeta} - e^{-\zeta})$$

$$= P^x \int_0^\zeta e^{-t} dt - P^x \int_0^{T_a \wedge \zeta} e^{-t} dt$$

$$= U^1(x) - V^1_a(x)$$

$$= \frac{u^1(x, a)}{u^1(a, a)} U^1(a),$$

where the last equality follows easily from (2.9). On the other hand, our hypothesis regarding the boundary A implies that $g^1_1(A+) / g^1_2(A+) = 0$ (see [8; §4.6]). Thus

$$P^{x,a} \int_0^\infty e^{-t} \psi(X_t) dC_t = P^x \int_{T_a}^\infty e^{-t} \psi(X_t) dC_t$$

$$= P^x \int_0^a e^{-T_y} \psi(y) ds(y)$$

$$= \int_A [g^1_2(x) / g^1_2(y)] \psi(y) ds(y).$$

In (3.9) we have used the change of variables $t = T_y$ to obtain the second equality, and (2.1) to obtain the third. Now from the definition of the Wronskian W we see that $d(g_1/g_2) = W \cdot [g_2]^{-2} ds$. Using this fact and the expression for ψ provided by (3.6) we
may continue the computation begun in (3.9) with

\[
\begin{align*}
&= \int_A \left[g_2(x)/g_2(y) \right] \int_{[y,B]} \left[g_2(z)/g_2(y) \right] m(dz) ds(y) \\
&= \int_A \int_{[y,B]} \left[g_2(x)g_2(z)/W \right] m(dz) d(g_1/g_2)(y) \\
&= \int_E \int_A \left[g_1(z \wedge a)/g_2(z \wedge a) \right] \cdot \left[g_2(x)g_2(z)/W \right] m(dz) \\
&= [u^1(x,a)/u^1(a,a)] U^1_1(a).
\end{align*}
\]

The last equality in (3.10) follows from (2.3) and (2.4). In view of (3.8)–(3.10), we see that \(K \) and \(\int_0^t \psi(X_s) c_\xi \) have the same finite 1-potential and so the proposition is proved. \(\square \)

For \(y \in E \) define a measure \(\overline{Q}^y \) on \((\Omega, \mathcal{F}) \) by \(\overline{Q}^y(F) = \ast \overline{P}^{y,y}(F;\overline{k}_t) \), where \(\overline{k}_t \) is the killing operator on \(\overline{\Omega} \). Since \(\ast \overline{P}^{y,y}(\overline{R} \neq T_y \circ \pi) = 0 \), the first coordinate of \(\overline{X} \), namely \((X_t : t > 0) \), is Markovian under \(\overline{Q}^y \), with \((Q^y_t) \) as semigroup. Indeed, we claim that \(\psi(y) \pi(\overline{Q}^y) = n^1_\uparrow \), at least for \(ds \)-a.e. \(y \in E \). To verify this claim it suffices to compare the associated entrance laws.

(3.11) Lemma. Let \(f \) be a bounded positive Borel function on \(E \). Then for \(ds \)-a.e. \(y \in E \) we have

\[
\psi(y)\overline{Q}^y \int_0^\infty e^{-\alpha t} f(X_t) dt = W^\alpha f(y), \quad \forall \alpha > 0.
\]

Proof. Fix \(f \) as in the statement of the lemma and also fix \(\alpha > 0 \). For \(y \in E \) write

\[
\gamma(y) = \overline{Q}^y \int_0^\infty e^{-\alpha t} f(X_t) dt.
\]

As noted in the proof of (3.7), we have \(\int_0^\infty 1_M(t) dt = 0, \overline{P}^x.a.-a.s. \) for all \((x,a) \in \overline{E} \). Thus,
for $x \in E$,

$$U^\alpha f(x) = \mathcal{P}^{x,x} \sum_{u \in G} e^{-\alpha u} \left(\int_0^\infty e^{-\alpha t} f(X_t) dt \right) \circ \theta_u$$

$$= \mathcal{P}^{x,x} \int_0^\infty e^{-\alpha u} \mathcal{P}^u \left(\int_0^\infty e^{-\alpha t} f(X_t) dt \right) dK_u$$

(3.13)

$$= \mathcal{P}^{x,x} \int_0^\infty e^{-\alpha u} \gamma(X_u) \psi(X_u) dG_u$$

$$= P^x \int_A e^{-\alpha T} \gamma(y) \psi(y) ds(y)$$

$$= \int_A \left[g_2^\alpha(x)/g_2^\alpha(y) \right] \gamma(y) \psi(y) ds(y).$$

On the other hand, by (2.3) and (2.4), we have

(3.14) $$U^\alpha f(x) = \int_{[A,x]} [g_1^\alpha(x)g_2^\alpha(y)/W] f(y) m(dy) + \int_{[x,B]} [g_1^\alpha(y)g_2^\alpha(x)/W] f(y) m(dy).$$

If we equate the last line displayed in (3.13) with the right side of (3.14), divide the resulting identity by $g_2^\alpha(x)$, and then differentiate in x, we obtain

$$\left[\int_{[x,B]} [g_2^\alpha(y)/g_2^\alpha(x)] f(y) m(dy) \right] ds(x) = \gamma(x) \psi(x) ds(x)$$

as measures on E, and the lemmas follows. \qed

(3.15) Corollary. For ds-a.e. $y \in E$, $\psi(y) \pi(Q^y) = n^+_y$ as measures on $(\Omega, \mathcal{F}^\circ)$.

Proof. As noted earlier, both $\psi(y)\pi(Q^y)$ and n^+_y make the coordinate process on $(\Omega, \mathcal{F}^\circ)$ into a Markov process with transition semigroup (Q^y_t). It follows from Lemma (3.11) that these measures have the same one-dimensional distributions (and consequently the same finite dimensional distributions) for ds-a.e. y. Since $\mathcal{F}^\circ = \sigma(X_u : u \geq 0)$ is countably generated, the corollary follows. \qed

Proof of Theorem (2.11). Let $Z \geq 0$ be (\mathcal{F}_t)-optional and let $F \geq 0$ be \mathcal{F}°-measurable. By (3.2)(ii), the process $Z \circ \pi$ is (\mathcal{F}_t)-optional. We may now use (3.4), (3.7), and (3.15) to
compute
\[
P^x \sum_{u \in G} Z_u F(e^u) = \sum_{u \in G} Z_u \circ \pi F(\pi \circ \overline{K} \circ \overline{\theta}_u)
\]
\[
= \sum_{u \in G} Z_u \circ \pi F(\pi \circ \overline{K}) d\overline{K}_u
\]
\[
= \sum_{u \in G} Z_u \circ \pi F(\pi \circ \overline{K}) \psi(X_u) d\overline{C}_u
\]
\[
= P^x \int_0^\infty Z_u \circ \pi F(\pi \circ \overline{K}) dK_u
\]
\[
= P^x \int_0^\infty Z_u \circ \pi F(\pi \circ \overline{K}) d\overline{C}_u
\]

The proof of Theorem (2.11) is complete. □

4. Williams’ decomposition

In this section we use the Lévy system (2.12) to obtain a new proof (of a general version) of Williams’ decomposition [18] of a diffusion at its global minimum. A more “computational” proof of Williams’ theorem, based on the same idea used in the present paper, may be found in [3].

For simplicity we assume that \(\gamma := H_{\zeta_-} \) satisfies \(P^x(\gamma > A) = 1 \) for all \(x \in E \). We also assume that \(\rho := \inf\{t > 0 : X_t = \gamma\} \) satisfies \(P^x(\rho < \zeta) = 1 \) for all \(x \in E \). Then \(\rho \) is the unique time at which \(X \) takes its global minimum value \(\gamma \) (cf. [17]). Note that for \(x \geq y \) (both in \(E \)),

\[
P^x(\gamma > y) = P^x(T_y = +\infty).
\]

Define a function \(r \) on \(E \) by

\[
r(x) = \begin{cases} P^x(T_{x_0} < +\infty), & x \geq x_0, \\ \frac{[P^{x_0}(T_x < +\infty)]^{-1}}{x < x_0}, & \end{cases}
\]

where \(x_0 \in E^\circ \) is fixed but arbitrary. Clearly \(r \) is strictly positive and decreasing. Arguing as in [8; pp. 128–129] one may check that \(r \) is the unique positive decreasing solution of \(G r \equiv 0 \) on \(E^\circ \) which satisfies \(r(x_0) = 1 \) and the boundary condition at \(B \). Note that

\[
P^x(T_y < +\infty) = r(x)/r(y), \quad x > y.
\]

Before proceeding to the decomposition theorem we need a preliminary result.

(4.3) Lemma. For \(y \in E^\circ \) let \(S_y = \inf\{t > 0 : X_t = y\} \). Then

\[
n^+_y(S_y = +\infty) = -\frac{r^+(y)}{r(y)}, \quad \forall y \in E^\circ.
\]
(Recall that $r^+ = d^+ r / ds^+$.)

Proof. Let q be an increasing solution of $Gq \equiv 0$ on E° such that q is linearly independent of r. We assume that q is normalized so that the Wronskian $q^+ r - r^+ q$ is identically 1.

Fix $a < b$ both in E° and let v_{ab} denote the potential density (relative to m) of X killed at time $T_a \wedge T_b$. One checks that for $x \leq y$,

$$v_{ab}(x, y) = v_{ab}(y, x) = \frac{D(a, x)D(y, b)}{D(a, b)},$$

where $D(x, y)$ is the determinant

$$\begin{vmatrix} q(y) & q(x) \\ r(y) & r(x) \end{vmatrix}.$$

Note that $D(x, y) > 0$ if $x < y$. Now let $y \in]a, b[$ and use (2.6) to compute

$$P_y^y(T_b < T_a) = P_y^y \sum_{u \in G(y)} 1_{\{u < T_a \wedge T_b\}} 1_{\{T_b < T_y\}} \cdot \theta_u$$

$$= P_y^y(L_{T_a \wedge T_b}^y) n_y(T_b < \zeta).$$

But clearly $P_y^y(T_b < T_a) = D(a, y)/D(a, b)$ while $P_y^y(L_{T_a \wedge T_b}^y) = v_{ab}(y, y)$, so that

$$n_y(T_b < \zeta) = [D(a, y)/D(a, b)]/v_{ab}(y, y) = D(y, b)^{-1}.$$

Finally,

$$n_y^+ (S_y = +\infty) = \lim_{x \downarrow y} n_y^+(T_x < +\infty, S_y = +\infty)$$

$$= \lim_{x \downarrow y} n_y^+(T_x < +\infty) P_x^y(T_y = +\infty)$$

$$= \lim_{x \downarrow y} n_y(T_x < \zeta)[1 - r(x)/r(y)]$$

$$= \lim_{x \downarrow y} \left[\frac{1}{r(y)} \cdot \frac{r(y) - r(x)}{s(x) - s(y)} \cdot \frac{s(x) - s(y)}{D(y, x)} \right]$$

$$= -r(y)^{-1} \cdot r^+(y),$$

since $\lim_{x \downarrow y}[s(x) - s(y)]/D(y, x)$ is the reciprocal of the Wronskian $q^+ r - r^+ q \equiv 1$.

Now define probability laws on (Ω, F°) by

(4.4) $$P_y^x(F) = P_x^x(F \circ k_{T_y} | T_y < +\infty),$$

(4.5) $$P_y^+ (F) = n_y^+ (F | S_y = +\infty),$$
whenever \(x > y > A \). The coordinate process is a diffusion under any of these laws: \(P_y^\downarrow \) is the law of \(X \) started at \(x \), conditioned to converge to \(A \), and then killed at \(T_y \); \(P_y^\uparrow \) is the law of \(X \) started at \(y \) and conditioned to never return to \(y \). These conditionings are accomplished by means of the appropriate \(h \)-transforms. In particular, the associated infinitesimal generators are given by

\[
G_y^\downarrow f(z) = r(z)^{-1} G(fr)(z), \quad z > y;
\]

\[
G_y^\uparrow f(z) = r_y(z)^{-1} G(fr_y)(z), \quad z > y,
\]

where \(r_y(z) = 1 - r(z)/r(y) \).

We can now state the general version of Williams’ theorem. Recall that \(\gamma = H_{\zeta^-} \) and \(\rho = \inf\{t > 0 : X_t = \gamma\} \).

\((4.8)\) Theorem. (a) The joint law of \((\gamma, \rho, \zeta)\) is given by

\[
P^x(f(\gamma)e^{-\alpha\rho-\beta\zeta}) = \int_A^x [g_2^\alpha+\beta(x)/g_2^\alpha+\beta(y)] f(y) P_y^\uparrow(e^{-\beta\zeta}) \int r(y) ds(y).
\]

(b) For \(F, G \in bF^\circ \) and \(\psi \) bounded and Borel on \(E \),

\[
P^x(F \circ k_\rho \psi(\gamma) G \circ \theta_\rho) = P^x(P_{\gamma}^\downarrow(F) \psi(\gamma) P_{\gamma}^\uparrow(G)).
\]

\((4.11)\) Remark. The intuitive content of (4.10) is that the processes \((X_t : 0 \leq t < \rho)\) and \((X_{\rho+t} : 0 \leq t < \zeta - \rho)\) are conditionally independent under \(P^x \), given \(\gamma \); and that the conditional distributions, given that \(\gamma = y \), are \(P_y^\downarrow \) and \(P_y^\uparrow \) respectively.

Proof of (4.8). Define \(J(y, \omega) = 1_{\{S_y = +\infty\}}(\omega) \) and observe that \(\rho(\omega) = u \) if and only if \(u \in G(\omega) \) and \(J(X_u(\omega), e^u(\omega)) = 1 \). Thus, using (2.11),

\[
P^x(F \circ k_\rho \psi(\gamma) G \circ \theta_\rho) = P^x \sum_{u \in G} F \circ k_u \psi(X_u) G(e^u) J(X_u, e^u)
\]

\[
= \int_A^x \int P^x(F \circ T_{\gamma}; T_{\gamma} < +\infty) \psi(y) n_{\gamma}^\uparrow(G \cdot J(y, \cdot)) ds(y) \int P_{\gamma}^\downarrow(F) \psi(y) P_{\gamma}^\uparrow(G) P^x(T_{\gamma} < +\infty)n_{\gamma}^\uparrow(S_{\gamma} = +\infty) ds(y).
\]

Taking \(F = G = 1 \) in (4.12) we see that

\[
P^x(\gamma \in dy) = P^x(T_{\gamma} < +\infty)n_{\gamma}^\uparrow(S_{\gamma} = +\infty) ds(y).
\]
Now (4.13) substituted into the last line of (4.12) yields (4.10). To obtain (4.9) use (4.10) with
\[F = e^{-(\alpha + \beta)\zeta} \text{ and } G = e^{-\alpha\zeta}, \]
noting that \(F \circ k_{\rho} = e^{-(\alpha + \beta)\rho} \) and \(\zeta = \rho + \zeta_{\theta_{\rho}} (P^x\text{-a.s.)} \)
since \(\rho < \zeta \), \(P^x\text{-a.s.} \). Thus
\[
P^x(f(\gamma)e^{-\alpha\rho}e^{-\beta\zeta}) = P^x(f(\gamma)[e^{-(\alpha + \beta)\zeta} \circ k_{\rho} [e^{-\beta\zeta} \circ \theta_{\rho}])
= P^x(P^x_{\gamma}e^{-(\alpha + \beta)\zeta})f(\gamma)P^x_{\gamma}(e^{-\beta\zeta}).
\]
Formula (4.9) now follows since
\[
P^x_{\gamma}(e^{-(\alpha + \beta)\zeta}) = P^x(e^{-(\alpha + \beta)T_{\gamma}})/P^x(T_{\gamma} < +\infty)
= [g_2^{\alpha+\beta}(x)/g_2^{\alpha+\beta}(y)]/P^x(T_{\gamma} < +\infty),
\]
and since \(n^+_y(S_y = +\infty) = -r^+(y)/r(y) \) (Lemma (4.3)). \(\square \)

(4.14) Corollary. \(P^x(\rho \in dt, \gamma \in dy) = P^x(T_{\gamma} \in dt) \frac{-dr(y)}{r(y)}. \)

5. A local decomposition

Fix \(t > 0 \) and define
\[
\rho_t = \inf\{u > 0 : X_u = H_t\} \land t.
\]
Arguing as in [17] one can show that, almost surely on \(\{t < \zeta\} \), \(\rho_t \) is the unique \(u \in]0, t[\)
such that \(X_u = H_t \). Our purpose in this section is to describe the conditional distribution of \(\{X_u : 0 \leq u \leq t\} \) under \(P^b \), given that \(H_t = y, \rho_t = u, \) and \(X_t = x \). This conditional distribution has been computed by Imhof [6] for the Brownian motion (and closely related processes). The joint law of \((H_t, \rho_t, X_t) \), again in the case of Brownian motion, has been found by Shepp [16]. See also [2, 9, 15] for related results.

We begin by computing the joint law of \((H_t, \rho_t, X_t) \). Recall from [8; §4.11] that the first passage distribution \(P^x(T_y \in dv) \) has a density \(f(v; x, y) \) on \(]0, +\infty[\) relative to Lebesgue measure. Note that if we set \(F_{t,y}(x) = P^x(t < T_y < +\infty), \) then (see [8; p. 154])
\[
(5.1) \quad f(t; x, y) = -\frac{\partial}{\partial t} F_{t,y}(x) = GF_{t,y}(x), \quad x > y \in E, t > 0.
\]
Applying \(Q^y(z, dx) \) to both sides of (5.1) and integrating over \(x \in]y, +\infty[\cap E \) (making use of the relation \(Q^y_s \mathcal{G} = \mathcal{G}Q^y_s \) on \(]y, +\infty[\)), we obtain
\[
f(t + s; z, y) = \int_{]y, +\infty[} Q^y_s(z, dx) f(t; x, y).
\]
In other words, \((t, x) \mapsto f(t; x, y)\) is an exit law for the semigroup \((Q^y_x)\).

Next, recall from §4.11 that the semigroup \((Q^y_t)\) has a density \(q^y(t; x, z)\) (for \(x \wedge z > y\)) relative to the speed measure \(m(dz)\); we have \(q^y > 0\) on \([0, +\infty) \times [|y, B]|^2\) and \(q^y(t; x, z) = q^y(t; z, x)\). The entrance law for \(n^+_y\) can now be expressed as

\[
(5.2) \quad n^+_y(X_t \in dx) = q^+_y(t; x) \, m(dx),
\]

where

\[
(5.3) \quad q^+_y(t; x) = \int_{[y, B]} n^+_y(X_{t-u} \in dz) q^y(u; z, x).
\]

Substituting (5.2) into (5.3) and using the symmetry of \(q^y\), we see that

\[
(5.4) \quad q^+_y(t + u; x) = \int_{[y, B]} Q^y_u(x, dz) q^+_y(t; z).
\]

But (5.4) means that \((t, x) \mapsto q^+_y(t; x)\) is also an exit law for \((Q^y_t)\). Finally, using (3.6), if \(\alpha > 0\) and \(h\) is positive, measurable, and vanishes off \([y, B]\), we may compute

\[
\int_0^\infty e^{-\alpha t} \left(\int_E q^+_y(t; x) h(x) \, m(dx) \right) dt = W^\alpha h(y)
\]

\[
= \int_{[y, B]} \left[g^0_2(x) / g^0_2(y) \right] h(x) \, m(dx)
\]

\[
= \int_{[y, B]} P^x(e^{-\alpha T^y}) h(x) \, m(dx)
\]

\[
= \int_0^\infty e^{-\alpha t} \left(\int_E f(t; x, y) h(x) \, m(dx) \right) dt.
\]

By Laplace inversion,

\[
(5.5) \quad q^+_y(t; x) = f(t; x, y)
\]

for \(dt \otimes dm\)-a.e. \((t, x)\) in \([0, +\infty) \times |y, B]\). Since both sides of (5.5) are exit laws (and so excessive functions in time-space), it follows that (5.5) holds identically for \(t > 0\), \(y \in E^\circ\) and \(E \ni x > y\). See §3 of [5], and especially (3.17) therein.

(5.6) Proposition. For \(b \in E, x \in E, u \in [0, t[,\) and \(y \in [A, b \wedge x[\),

\[
(5.7) \quad P^b_H(t \in dy, \rho_t \in du, X_t \in dx) = f(u; b, y) f(t - u; x, y) ds(y) \, du \, m(dx).
\]
Proof. Let \(g, h, \) and \(\phi \) be bounded positive Borel functions on \(\mathbb{R} \), vanishing off \(E, E, \) and \(]0, t[\), respectively. Put \(J(v, y, \omega) = 1_{\{S_\omega > v\}}(\omega) \). Using (2.11) we have, since \(u = \rho_t(\omega) \) if and only if \(u \in G(\omega) \) and \(J(t - u, X_u(\omega), e^u(\omega)) = 1, \)

\[
P^b(g(H_t)\phi(\rho_t)h(X_t)) = P^b \sum_{u \in G} g(X_u)\phi(u)h(X_{t-u} \circ \theta_u)J(t - u, X_u, e^u)
= P^b \sum_{u \in G} g(X_u)\phi(u)h(e^u_{t-u})J(t - u, X_u, e^u)
= \int_A \int_{\Omega} g(y)\phi(T_y(\omega))n^\uparrow_y(h(X_{t-T_y(\omega)})P^b(d\omega) ds(y)
= \int_A \int_{]0, t]} g(y)\phi(u)n^\uparrow_y(h(X_{t-u})f(u; b, y) du ds(y).
\]

The proposition now follows from (5.2) and (5.5).

Our local decomposition of \(X \) will be expressed in terms of certain “bridges” of \(X \). First, let \(\hat{K}^{y, \ell, x} \) denote the \(h \)-transform of \(P^\uparrow_y \) by means of the time-space harmonic function

\[
h_{\ell, x}(t, z) = q^y(\ell - t; z, x) \left[\frac{r(y) - r(x)}{r(y) - r(z)} \right] 1_{]0, \ell[}(t),
\]

where \(\ell > 0 \) and \(x > y \). Straightforward computations show that the absolute probabilities and transition probabilities under \(\hat{K}^{y, \ell, x} \) are given by

\[
\hat{K}^{y, \ell, x}(X_t \in dz) = \frac{q^y(\ell - t; z, x)f(t; y, z)}{f(\ell; y, x)} m(dz),
\]

and

\[
\hat{K}^{y, \ell, x}(X_{t+v} \in dw|X_t = z) = \frac{q^y(v; z, w)q^y(\ell - t - v; w, x)}{q^y(\ell - t; z, x)} m(dw).
\]

Moreover (cf. [15])

\[
(5.8) \quad \hat{K}^{y, \ell, x}(\zeta = \ell, X_{\zeta-} = x) = 1,
\]

\[
\int_{[y, B]} \hat{K}^{y, \ell, x}(F) P^\uparrow_y(X_\ell \in dx) = P^\uparrow_y(F \circ k_\ell).
\]

Thus, \(\{\hat{K}^{y, \ell, x} : x \in [y, B]\} \) is a regular version of the conditional probabilities \(F \mapsto P^\uparrow_y(F \circ k_\ell|X_\ell = x) \).

Now let \(K^{x, \ell, y} \) denote the image of \(\hat{K}^{y, \ell, x} \) under the time-reversal mapping, taking \(\omega \) to the path \(\gamma_\ell \omega \) defined by

\[
(\gamma_\ell \omega)(t) = \begin{cases}
\omega(\ell - t), & 0 < t < \ell \\
\omega(\ell -), & t = 0 \\
\Delta, & t \geq \ell.
\end{cases}
\]
Like $\hat{K}^{y,\ell,x}$, $K^{x,\ell,y}$ is the law of a non-homogeneous Markov diffusion; from (5.8) we see that

$$K^{x,\ell,y}(X_0 = x, \zeta = \ell, X_{\zeta -} = y) = 1.$$

Moreover, computation of finite dimensional distributions shows that the transition probabilities for $K^{x,\ell,y}$ are given by

$$(5.9) \quad K^{x,\ell,y}(X_{t+u} \in dw|X_t = z) = \frac{q^y(v; z, w)f(\ell - t - v; w, y)}{f(\ell - t; z, y)}.$$

It follows that $\{K^{x,\ell,y}: \ell > 0\}$ is a regular version of the conditional probabilities

$$P^{x\downarrow}_y(\cdot|\zeta = \ell).$$

(5.10) **Theorem.** Let $b \in E$. Then under P^b the path fragments $(X_t: 0 \leq t < \rho_t)$ and $(X_{\rho_t+u}: 0 \leq u < t - \rho_t)$ are conditionally independent given (H_t, ρ_t, X_t) on $\{X_t \in E\} = \{t < \zeta\}$. Moreover, given that $H_t = y$, $\rho_t = u$, and $X_t = x$ ($0 < u < t$, $y > x$), the above processes have conditional laws $K^{b,u,y}$ and $\hat{K}^{y,t-u,x}$ respectively.

The proof of (5.10) is similar to that of (4.8) and is left to the interested reader as an exercise.

6. **A result of W. Vervaat**

In this last section we use the decomposition of §5 to give a new proof of a result of Vervaat [17] which concerns a path transformation carrying Brownian bridge into Brownian excursion.

In this section we take the basic process (X_t, P^x) to be standard Brownian motion on \mathbb{R}. Let P_0 denote the law of Brownian bridge; namely,

$$P_0(F) = P^0(F|X_1 = 0), \quad F \in \mathcal{F}_1.$$

Under P_0 the coordinate process is centered Gaussian with continuous paths, $X_0 = 0$, and covariance $P_0(X_uX_t) = u(1 - t)$ for $0 \leq u \leq t \leq 1$.

Next, Let P_+ denote the law of scaled Brownian excursion. Under P_+ the coordinate process $(X_t: 0 \leq t \leq 1)$ is a non-homogeneous Markov diffusion with absolute probabilities

$$(6.1)(a) \quad P_+(X_t \in dx) = \frac{2x^2}{\sqrt{2\pi t^3(1-t)^3}}e^{-x^2/2t(1-t)}.$$

16
and transition probabilities

\[(6.1)(b) \quad P_+(X_{t+v} \in dy | X_t = x) = p(v; y-x) \left(\frac{1-t}{1-t-v} \right)^{3/2} \frac{y \exp(-y^2/2(1-t-v))}{x \exp(-x^2/2(1-v))}, \]

where \(p(v; x) = (2\pi v)^{-1/2}e^{-x^2/2v}\) is the Gauss kernel, and \(0 < t < t+v < 1, 0 < x, y.\) Also, \(P_+ (\zeta = 1) = P_+ (X_t > 0, \forall t \in]0,1[) = P_+ (X_0 = X_1- = 0) = 1.\)

Computation of finite dimensional distributions now shows that the following identities hold:

\[k_u(P_+(\cdot|x_u = y)) = \hat{K}^{0,u,y},\]
\[\theta_u(P_+(\cdot|X_u = y)) = K^{y,1-u,0},\]

where \(\hat{K}^{0,u,y}\) and \(K^{y,1-u,0}\) are as defined in the last section, the basic process being standard Brownian motion.

Now let \(\Omega_0 = \{\omega \in \Omega : \omega(0) = \omega(1-) = 0, \zeta (\omega) = 1\}\) and \(\overline{\Omega} = \Omega_0 \times]0,1[.\) Define a map \(\Phi: \overline{\Omega} \to \Omega_0\) by

\[\Phi(\omega, u)(t) = \Phi_u(\omega)(t) = \begin{cases} \omega(u + t) - \omega(u), & 0 \leq t < 1 - u, \\ \omega(u + t - 1) - \omega(u), & 1 - u \leq t < 1. \end{cases}\]

In the following we regard \(P_+\) and \(P_0\) as measures on \(\Omega_0\). Define \(\mathcal{P}\) on \(\Omega_0\) by \(\mathcal{P} = P_+ \otimes \lambda\), where \(\lambda\) is Lebesgue measure on \([0,1[.\) Set \(U(\omega, u) = u\) and \(V = 1 - U\) on \(\Omega_0\).

Proposition. The joint law of \((\Phi, V, X_U)\) under \(\mathcal{P}\) is the same as the joint law of \((\omega, \rho_1, -H_1)\) under \(P_0\).

Proof. For paths \(\omega\) and \(\omega'\), and \(t \in]0,1[\) let \(\omega/t/\omega'\) denote the spliced path

\[(\omega/t/\omega')(u) = \begin{cases} \omega(u), & 0 \leq u < t, \\ \omega'(u-t), & t \leq u < 1, \end{cases}\]

and let \(\tau_y \omega(t) = \omega(t) - y.\) Let \(p_+(u, y) = P_+(X_u \in dy)/dy.\) Note that if \(\omega(u) = \omega'(0),\) then

\[\Phi(\omega/u/\omega', u) = (\tau_y \omega'/1 - u/\tau_y \omega),\]

where \(0 < u < 1\) and \(y = \omega(u)\). Thus,

\[\mathcal{P}(F \circ \Phi \psi(V, X_U)) = \int_0^1 P_+(F \circ \Phi_u \psi(1-u, X_u)) \, du\]

\[= \int_0^1 \int_0^\infty \int_\Omega \int F(\Phi_u(\omega/u/\omega')) \psi(1-u, y) \hat{K}^{0,u,y}(dw) K^{y,1-u,0}(d\omega') p_+(u, y) \, dy \, du\]

\[= \int_0^1 \int_0^\infty \int_\Omega \int F(\tau_y \omega'/1 - u/\tau_y \omega) \psi(1-u, y) \hat{K}^{0,u,y}(dw) K^{y,1-u,0}(d\omega') p_+(u, y) \, dy \, du\]

\[= \int_0^1 \int_0^\infty \int_\Omega \int F(\omega'/1 - u/\omega) \psi(1-u, y) K^{0,1-u,-y}(d\omega') K^{-y,1-u,0}(d\omega) p_+(u, y) \, dy \, du\]

\[= P_0(F \cdot \psi(\rho_1, -H_1)).\]
(6.3) Corollary. (Vervaat): Define a transformation $\Psi : \Omega_0 \to \Omega_0$ by
\[
(\Psi \omega)(t) = \begin{cases}
\omega(\rho_1(\omega) + t) - H_1(\omega), & 0 \leq t < 1 - \rho_1(\omega), \\
\omega(\rho_1(\omega) + t + 1) - H_1(\omega), & 1 - \rho_1(\omega) \leq t < 1.
\end{cases}
\]
Then $\Psi(P_0) = P_+$. That is, the P_0-law of $(X_t \circ \Psi : 0 \leq t < 1)$ is P_+.

Proof. It is easy to check that $\Psi \circ \Phi(\omega, u) = \omega$ for all $(\omega, u) \in \Omega$. Using Proposition (6.2),
\[
P_0(F \circ \Psi) = \overline{P}(F \circ \Pi)
= \overline{P}(F \circ \pi_1)
= P_+(F),
\]
where $\pi_1 : (\omega, u) \to \omega$. □

References

[1] Blumenthal, R.M. and Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, New York-London 1968.
[2] Chung, K.L.: Excursions in Brownian motion. Ark. Mat. 14 (1976) 155–177.
[3] Fitzsimmons, P.J.: Another look at Williams’ decomposition theorem. Seminar on Stochastic Processes, 1985, pp 79–85, Birkhäuser Boston, 1986.
[4] Getoor, R.K.: Splitting times and shift functionals. Z. Wahrsch. verw. Gebiete 47 (1979) 69–81.
[5] Getoor, R.K. and Sharpe, M.J.: Excursions of dual processes. Adv. Math. 45 (1982) 259–309.
[6] Imhof, J.-P.: Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications. J. Appl. Probab. 21 (1984) 500–510.
[7] Itô, K.: Poisson point processes attached to Markov processes. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III, pp. 225–239. Univ. California Press, Berkeley, 1972.
[8] Itô, K. and McKean, H.P.: Diffusion Processes and their Sample Paths. (Second printing, corrected.) Springer-Verlag, Berlin-New York, 1974.
[9] Louchard, G.: Kac’s formula, Lévy’s local time and Brownian excursion. J. Appl. Probab. 21 (1984) 479–499.
[10] Maisonneuve, B.: Exit systems. Ann. Probab. 3 (1975) 399–411.
[11] Millar, P.W.: Zero-one laws and the minimum of a Markov process. *Trans. Amer. Math. Soc.* **226** (1977) 365–391.

[12] Millar, P.W.: A path decomposition for Markov processes. *Ann. Probab.* **6** (1978) 345–348.

[13] Pitman, J.W.: Lévy systems and path decompositions. *Seminar on Stochastic Processes, 1981*, pp. 79–110, Birkhäuser, Boston, 1981.

[14] Rogers, L.C.G.: Itô excursion theory via resolvents. *Z. Wahrsch. verw. Gebiete* **63** (1983) 237–255.

[15] Salminen, P.: One-dimensional diffusions and their exit spaces. *Math. Scand.* **54** (1984) 209–220.

[16] Shepp, L.A.: The joint density of the maximum and its location for a Wiener process with drift. *J. Appl. Probab.* **16** (1979) 423–427.

[17] Vervaat, W.: A relation between Brownian bridge and Brownian excursion. *Ann. Probab.* **7** (1979) 143–149.

[18] Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions, I. *Proc. London Math. Soc.* (3) **28** (1974), 738–768.