Efecto de la neurotoxicidad en la función visual de trabajadores de lavado en seco

Ingrid Astrid Jiménez Barbosa
Universidad de La Salle, Bogotá, revistasaludvisual@lasalle.edu.co

Sieu Khuu
The University of New South Wales, revistasaludvisual@lasalle.edu.co

Mei Ying Boon
The University of New South Wales, revistasaludvisual@lasalle.edu.co

Citación recomendada
Jiménez Barbosa IA, Khuu S y Ying Boon M. Efecto de la neurotoxicidad en la función visual de trabajadores de lavado en seco. Cienc Tecnom Salud Vis Ocul. 2012;(1): 13-24. doi: https://doi.org/10.19052/sv.89
Efecto de la neurotoxicidad en la función visual de trabajadores de lavado en seco

Effect of Neurotoxicity in the Visual Function of Dry Cleaners

Ingrid Astrid Jiménez Barbosa*
Sieu Khuu**
Mei Ying Boon***

RESUMEN
Los trabajadores de limpieza en seco están expuestos a los disolventes orgánicos como el perclo-roetileno (PERC). Esto puede afectar el Sistema Nervioso Central (SNC), provocar neurotoxicidad y asociarse con alteraciones visuales-neurológicas relacionadas con la función visual de sensibilidad al contraste (FSC) y la pérdida de la visión del color. **Objetivo**: determinar los déficits de sensibilidad al contraste (SC) por frecuencia espacial en un grupo de trabajadores de lavandería expuestos a niveles ocupacionales de PERC y su relación con síntomas neurotóxicos. **Materiales y métodos**: estudio de casos y controles en 40 trabajadores de lavandería y en 35 personas normales no expuestas a PERC en Bogotá, Colombia. La FSC se evaluó utilizando métodos psicofísicos; las frecuencias espaciales estudiadas fueron 0,5, 1,0, 2,0, 4,0, 8,0 y 16,0 cpd. La neurotoxicidad se evaluó mediante el cuestionario modificado Q16. **Resultados**: se observaron diferencias significativas en SC por encima de 1,0 cpd (p < 0,05). La correlación de Spearman mostró una relación negativa significativa entre la puntuación del cuestionario Q16 versión modificada y las frecuencias espaciales 2,0, 4,0 y 8 de cpd (Rho de Spearman p < 0,05) en los casos. La prueba de U de Mann Whitney mostró diferencias significativas entre casos y controles para el cuestionario Q16 modificado (p<0,05). **Conclusión**: la FSC fue significativamente menor en los expuestos a PERC para las frecuencias espaciales superiores a 1,0 cpd. La presencia de síntomas neurotóxicos en trabajadores de lavado en seco se asocia con pérdidas en las FSC en las frecuencias espaciales medias y altas.

Palabras clave: sensibilidad al contraste (SC), neurotoxicidad, cuestionario de síntomas neurotóxicos, perclo-roetileno.

ABSTRACT
Dry cleaning workers are exposed to organic solvents like perchloroethylene (PERC). This can affect the Central Nervous System (CNS), provoke neurotoxicity and associate to neuro-visual alterations related to the visual contrast sensitivity function (CSF) and the loss of color vision. **Objective**: To determine the deficits of contrast sensitivity (CSF) by spatial frequency in a group of dry cleaning workers exposed to occupational levels of PERC and its relation to the neurotoxic symptoms. **Materials and methods**: A case and control study in 40 dry cleaning workers and in 35 regular people with no exposure to PERC was done in Bogota, Colombia. The CSF was evaluated using psychophysical methods; the spatial frequencies studied were 0,5, 1,0, 2,0, 4,0, 8,0 and 16,0 cpd. Neurotoxicity was evaluated with the modified questionnaire Q16. **Results**: Significant differences were observed in CS above 1,0cpd (p<0,05). The Spearman correlation showed a significant negative relation between the punctuation of the modified version of the Q16 questionnaire and the spatial frequencies 2,0, 4,0 and 8 cpd (Spearman Rho <0,05) in the cases. The Mann Whitney U test showed significant differences between cases and controls for the modified Q16 questionnaire (p<0,05). **Conclusion**: the CSF was significantly lower in those exposed to PERC for the spatial frequencies above 1,0 cpd. The presence of neurotoxic symptoms in dry cleaning workers is associated with losses in CSF in medium and high spatial frequencies.

Keywords: Contrast sensitivity (CS), neurotoxicity, neurotoxic symptom questionnaire, perchloroethylene.

* Candidata a Ph.D. en Optometría, The University of New South Wales Sydney, Australia. Docente investigadora, Universidad de La Salle, Bogotá, Colombia. Becaria de Colciencias-Laspau, Universidad de La Salle.
** Bachelor Sc (Hons), Ph.D., The University of New South Wales. Senior Lecturer.
*** Bachelor Sc (Hons), Ph.D., The University of New South Wales. Lecturer.
INTRODUCCIÓN

Los trabajadores de limpieza en seco están expuestos a disolventes orgánicos como el percloroetileno (PERC), una de las más importantes sustancias utilizadas en este tipo de industria. Su toxicidad afecta al sistema nervioso central (SNC) y provoca neurotoxicidad (Spencer y Spencer, 1985; World Health Organization, 1985; Candura, 1991). La neurotoxicidad es definida como la capacidad de inducir efectos adversos sobre el SNC y los nervios periféricos u órganos de los sentidos. Se manifiesta como un grupo continuo de síntomas y los efectos dependen de la naturaleza de la sustancia química, la dosis, la duración de la exposición y características individuales como edad y contextura, entre otros factores (Baker, 1994).

La exposición a sustancias neurotóxicas produce tres tipos principales de alteraciones: a) sensorial: ninguno de los órganos de los sentidos se ve afectado; b) motora: causa parálisis a un mayor o menor grado; y c) los cambios en la retención de la memoria, capacidad de aprendizaje y estado de ánimo, con independencia de los cambios de humor o de personalidad que son comunes después de una lesión física u orgánica del cerebro (Baker, 1994).

Sustancias neurotóxicas como el PERC pueden atravesar la barrera sanguínea del cerebro, debido a la alta solubilidad en lípidos, e interferir directamente en la función neurológica. A pesar de que algunas sustancias tienen una especial afinidad por ciertas regiones del SNC, los neurotóxicos tienen efectos generalizados sobre los procesos celulares implicados en el transporte de membrana en las reacciones químicas intracelulares y en la liberación de sustancias secretoras (White, 1997). Debido a que el PERC es un tóxico soluble en lípidos, sus principales efectos tienen que ver con las estructuras de lípidos del tejido nervioso, que tienen abundancia de ellos, y sobre la mielina que recubre los axones y las membranas de las células. Las principales rutas de exposición humana al PERC son la inhalación, la ingestión y el contacto cutáneo (Hake y Stewart, 1977). El vapor del PERC es bien absorbido después de ser inhalado, pero la exposición dérmica es marcadamente inferior a la de otros solventes (Lomax et ál., 2004).

El sistema visual se ve afectado por la exposición aguda generada por la inhalación de PERC (Cavalleri et ál., 1994). Las alteraciones visuales-neurológicas relacionadas con la función de sensibilidad al contraste visual (fsc) y la pérdida de la visión del color se han asociado con la exposición al PERC (Barone et ál., 1992; Cavalleri et ál. 1994; Mergler et ál., 1996; Muttray et ál., 1997; Gobba et ál., 1998; González et ál., 1998; Onofrj et ál., 1998; Sharanjeet-Kaur et ál., 1998; Gobba, 2000; Schreiber et ál.; 2002, Boeckelmann y Pfister, 2003; Gobba et ál., 2003; Ihrig et ál., 2003; Till et ál., 2003; Lomax et ál., 2004; Benignus, 2009).

La sensibilidad al contraste (sc) describe la capacidad de distinguir las diferencias de luminancia (Hohberger et ál., 2007). Las pruebas de sensibilidad al contraste pueden reflejar la percepción visual en la vida cotidiana con mayor precisión que las pruebas de agudeza visual (Ginsburg, 1981). La evaluación de la sc se ha utilizado en el análisis de los trastornos neurológicos causados por la intoxicación con disolventes. La sc se ha considerado como un indicador sensible de cualquier trastorno neuronal o daño neurológico (Regan et ál., 1977; Beck et ál., 1984).

Se ha estudiado la relación entre los niveles ocupacionales de la exposición a sustancias químicas solubles en lípidos, como disolventes y sc. Altman, Bottger et ál. (1990) y Mergler et ál. (1991) reportaron una menor sensibilidad al contraste, especialmente en las frecuencias intermedias de los trabajadores de microelectrónica expuestos a disolventes orgánicos, en comparación con sujetos normales. Los autores infirieron que los productos químicos oftalmotóxicos eran el factor de riesgo más probable (Frenette et ál., 1991; Mergler et ál., 1991). En otro estudio (Donoghue et ál., 1995) se examinaron 16 pacientes con diagnóstico de encefalopatía tóxica y se halló que la sensibilidad al...
Efecto de la neurotoxicidad en la función visual de trabajadores de lavado en seco

centesta deprimida. Se ha encontrado que pintores expuestos a disolventes orgánicos también sufren una reducción en la sc (Böckelmann et ál., 2003; Böckelmann y Pfister, 2003; Frenette et ál., 1991; Broadwell et ál., 1995; Campagna et ál., 1995; Donoghue et ál., 1995; Echeverría et ál., 1995; Castillo et ál., 2001).

Se han investigado los niveles de exposición no ocupacional a solvents; sin embargo, un estudio encontró que residentes de departamentos y trabajadores de guarderías en Nueva York expuestos indirectamente a perctuvieron una reducción de la sensibilidad al contraste, en comparación con controles pareados de la misma edad y sexo. Además, la exposición indirecta a los disolventes es un factor de riesgo para el desarrollo de enfermedades neurológicas (Schreiber et ál., 2002).

La medición de la fsc se puede realizar a través de diferentes técnicas. La más común se basa en la variación de contraste y frecuencia espacial de una rejilla (Campbell y Robson, 1964, 1968). La frecuencia espacial se puede manifestar en una rejilla de onda sinusoidal y es definida por la suma de las anchuras de una luz y oscuridad de la rejilla. La frecuencia espacial depende de la distancia a la que se ven los objetos y se expresa en términos del número de ciclos de la rejilla que se producen sobre una distancia determinada (ciclos por unidad de ángulo visual, ciclos por grado [cpd]) (Böckelmann et ál., 2003). Todos los estudios citados anteriormente evaluaron la fsc utilizando pruebas como vcts (Vision Contrast Test System), mcr (Multivision Contrast Tester) y fact (The Functional Acuity Contrast Test), las cuales son costoefficientes y rápidas de usar. Sin embargo, estas pruebas solo utilizan una gama limitada de contrastes y tamaños, dando lugar a una estimación del umbral para cada frecuencia espacial de una forma no tan precisa como las pruebas computarizadas de sc que emplean el método psicofísico de escalamento con pasos más pequeños en tamaño y utilizando por lo menos cuatro inversiones para estimar el umbral de sensibilidad (Wacksman, 2007).

Por lo tanto, el objetivo de este estudio fue determinar los déficits de sc por frecuencia espacial en un grupo de trabajadores de lavado en seco que están expuestos a niveles ocupacionales de perc y su relación con los síntomas neurotóxicos.

MATERIALES Y MÉTODOS

Diseño del estudio

Se realizó un estudio de casos-controles sobre sensibilidad al contraste visual y neurotoxicidad en personas ocupacionalmente expuestas a perc (trabajadores de lavandería) y personas con exposición comunitaria a perc. El estudio se llevó a cabo en Bogotá, Colombia. Se obtuvo consentimiento informado de todos los participantes del estudio después de que se describiera en detalle la naturaleza de los procedimientos. Todos los estudios fueron realizados con la aprobación del Comité Ético de Investigación Humana de la Universidad de New South Wales, Sídney, Australia y del Comité de Ética de la Universidad de La Salle, Bogotá, Colombia.

Todas las funciones visuales fueron examinadas monocularmente (escogiendo el ojo con peor registro de agudeza visual), en condiciones estandarizadas y por el mismo examinador. Los participantes fueron refractados utilizando autorrefractómetro (TopconKR-3000). Los sujetos que necesitaban corrección refractiva fueron corregidos con lentes sin tintes o tratamientos y con ellos fue realizada la prueba computarizada de sc. Se utilizó cartilla Logmar para evaluar la agudeza visual de lejos y cartilla de prueba para visión próxima; esta última para evaluar la agudeza visual cercana (40 cm). Se realizó biomicroscopía (equipo CareOptical slm-j/h/z/2e/2l) para evaluar la presencia o ausencia de opacidades del cristalino, considerando el sistema de clasificación iii (loc5 iii) (Chylack et ál., 1993). Se realizó oftalmoscopía directa con el fin de establecer la normalidad del ojo (retina y superficie ocular). Fueron recolectados los datos sobre el número de bebidas alcohólicas ingeridas...
y cigarrillos fumados por día, debido a que se ha encontrado que las personas que beben o fuman presentan reducciones de la visión en todas las frecuencias espaciales (Nicholson et ál., 1995; Roquelaure et ál., 1995; Pearson y Timney, 1998; Ferreira y Timney, 2004). Por otra parte, se ha reportado que el metabolismo del alcohol en el cuerpo es similar al del perc (ATSDR, 1993; Newcombe, 2000; US Environmental Protection Agency, 2008).

Los participantes fueron reclutados en Bogotá, Colombia. Los criterios de inclusión para los casos en el estudio fueron: 18 a 40 años de edad, personas que trabajaban en los establecimientos de lavado en seco durante al menos un año. Los criterios de exclusión para los controles fueron: 18 a 40 años de edad, personas que nunca hubieran trabajado en los establecimientos de lavado en seco y que no utilizaran disolventes orgánicos en su trabajo. Los criterios de exclusión, tanto para los casos como para los controles, fueron: deficiencias congénitas en la visión de color, enfermedades sistémicas y neurológicas no relacionadas con tóxicos ambientales, enfermedades maculares y opacidades de córnea o cristalino. Hubo otros criterios considerados como exclusión para los controles, entre ellos: agudeza visual normal (más de 0,1 logMAR), personas que nunca hubieran trabajado en la industria de limpieza en seco, que nunca hubieran vivido con alguien que trabajara en lavandería o con solventes orgánicos; además, que no vivieran en el mismo edificio en donde se encontrara un establecimiento de limpieza en seco. Como los sujetos del grupo control pueden enviar sus ropas a lavar y planchar a los establecimientos de limpieza en seco, este otro factor fue considerado, dado que estas personas podrían estar expuestas a perc; por lo tanto, los datos sobre frecuencia de uso de los establecimientos de lavado en seco para lavar y planchar la ropa fueron considerados también como posible factor de confusión.

El número de participantes se estimó con base en un artículo titulado “Exposición ocupacional, solventes orgánicos y alteraciones en la visión en trabajadores de una empresa de hidrocarburos”. El tamaño de la muestra estimada fue de 35 casos (35 trabajadores de limpieza en seco) y 35 controles. Se calculó con una potencia del 80% y un nivel de confianza del 95%. Finalmente, el número de participantes fue de 40 trabajadores de lavado en seco y 35 controles.

Estímulo visual de sensibilidad de contraste

La FCS se evaluó mediante el procedimiento de dos opciones con elección forzada, usando un patrón de Gabor orientado, como se muestra en la figura 1. La tarea de los observadores era indicar la orientación del patrón de Gabor (que se encontraba inclinado hacia la izquierda o hacia la derecha a 45 grados) presentado sobre un fondo gris (55 cd/m²). El contraste del estímulo coincide con la amplitud del estímulo Gabor y fue modificado mediante un procedimiento de escalamiento que corresponde a un nivel de correcto rendimiento de 79%. Inicialmente, el contraste de partida del estímulo fue de 0,8 y el tamaño de paso de 0,08. Después de las inversiones de la primera y siguiente, el tamaño del paso se redujo a la mitad. Después de la inversión del tercero, el tamaño de paso fue de 0,01 y se mantuvo en este valor hasta el final de la prueba de escalamiento. El escalamiento se prolongó durante seis inversiones y el promedio de las últimas cuatro proporcionó el indicador del umbral de detección de contraste. No se dio retroalimentación al participante sobre si la respuesta emitida era correcta o no. La distancia de examen fue de 70 cm y todas las pruebas se llevaron a cabo con un solo ojo.

Figura 1. Dos orientaciones presentadas para la prueba de escogencia forzada utilizando estímulo de Gabor en la prueba computarizada de sensibilidad al contraste
La prueba de sc fue generada en un computador Apple Macintosh Mac Book Pro, el cual fue programado utilizando Matlab (The Math Works, Inc.) con el programa de herramientas en Psicofísica (Brainard, 1997; Pelli, 1997). El procedimiento antes mencionado (escalamiento) se repitió para las siguientes frecuencias espaciales: 0,5; 1,0 y 2,0; 4,0; 8,0 y 16,0 cpd.

Síntomas de neurotoxicidad

La neurotoxicidad se evaluó mediante el cuestionario de síntomas neurotóxicos Q16 (Lundberg et ál., 1997), versión modificada utilizando escala de Likert (Jiménez et ál., 2011). El cuestionario Q16 se utiliza comúnmente para controlar los efectos iniciales de la exposición a neurotóxicos en las poblaciones trabajadoras (Lundberg et ál., 1997). Contiene 16 preguntas cortas sobre los síntomas comúnmente descritos por los trabajadores expuestos a solventes, como: “Tengo una memoria corta”, “A veces tengo sensación de hormigueo doloroso en alguna parte de mi cuerpo”, o “siento que tengo menos sensibilidad o una pérdida completa de sensibilidad en algunas partes de los brazos o las piernas”. Estas preguntas son evaluadas por el sujeto de acuerdo con la escala de Likert. La repetibilidad y confiabilidad del examen psicofísico computarizado de sc y el cuestionario modificado Q16 fueron evaluados en experimentos preliminares (Jimenez et ál., 2011).

Análisis estadístico

Se aplicó un análisis de varianza (Anova) para medidas repetidas, con el fin de analizar las diferencias de sensibilidad al contraste (sc) entre los grupos. Se encontró una interacción significativa entre grupo y frecuencia espacial; por lo tanto, los dos grupos fueron tratados por separado y se aplicó la prueba de “t” independiente, a efectos de comprobar las diferencias entre los grupos en sc para cada frecuencia espacial.

La correlación de Pearson se utilizó para analizar las posibles correlaciones entre el consumo de alcohol y el tabaco, con el fsc por frecuencia espacial y grupo. También se utilizaron modelos de regresión lineal para determinar la relación entre alcohol, tabaco y síntomas neurotóxicos y las frecuencias espaciales. Para realizar la regresión se consideró el método de stepwise, considerando la frecuencia espacial con la mayor diferencia de medias entre los grupos de controles y casos. Los valores β estandarizados indican el grado en que la variable o combinación de variables predicen sc en la frecuencia espacial de 2,0 cpd. Se utilizaron pruebas no paramétricas de importancia (U de Mann-Whitney y correlación de Spearman) para los datos de la versión modificada del cuestionario Q16. Todos los análisis se realizaron con el paquete estadístico spss.

RESULTADOS

Caracterización de la muestra

La edad media de los sujetos en el grupo de expuestos ocupacionalmente (lavanderías) fue de 33,2 años (sd±6,6). El tiempo medio de exposición a solventes orgánicos (perc) fue de 7,5 (sd=7,1) años; fumadores 12,5 %, consumidores de alcohol 25 % y consumidores de medicamentos 20 %; entre los medicamentos consumidos se encontraron para alergias y dolor de cabeza. En el grupo con exposición comunitaria a perc la edad media fue 32,8 años (sd±7,21); fumadores 23 %, consumidores de alcohol 46 % y consumo de medicamentos 8,6 %; estos últimos para alergias e infecciones. En ambos grupos se pudo observar un mayor número de mujeres (30 trabajadoras de lavandería, 22 controles). No se encontró ninguna correlación entre el ser fumador por grupo y la frecuencia espacial (p>0,05).

Sensibilidad al contraste

En la figura 2 se presentan las puntuaciones medias de sensibilidad al contraste en todas las frecuencias espaciales y las desviaciones estándar para ambos grupos. Un análisis de varianza de medidas repetidas con corrección de Greenhouse-Greisser determinó
que la media de fsc difirió significativamente entre frecuencias espaciales (F(3,51, 256) = 93,53, p < 0,0005). Hubo un efecto significativo en la fsc por grupo (caso o control), Lambda de Wilks = 0,73, F(5, 69) = 4,98, p = 0,001 y una interacción significativa entre el grupo y la fsc. Por lo tanto, las diferencias entre grupos en sc se evaluaron para cada frecuencia espacial utilizando la prueba “t” independiente y aplicando la corrección Sidak-Bonferroni para comparaciones múltiples.

Se observaron diferencias significativas entre los grupos (p<0,05) en 1,0 cpd (167,45 ± 75,88 vs. 120,69 ± 90,30), 2,0 cpd (183,98 ± 63,49 vs. 97,53 ± 92,04), 4,0 cpd (161,12 ± 84,55 vs. 90,25 ± 102,67), 8,0 cpd (84,89 ± 68,25 vs. 30,75 ± 52,79), cpd 16,0 (15,01 ± 18,26 vs. 5,08 ± 2,45); pero no a 0,5 cpd (127,67 ± 69,21 vs. 123,87 ± 88,70).

Figura 2. Resultados de sensibilidad al contraste en trabajadores de lavandería y controles. Las barras verticales corresponden a la desviación estándar

Cuestionario modificado Q16:
cuestionario de síntomas neurotóxicos

Se encontraron correlaciones significativas entre la puntuación de la versión modificada del cuestionario Q16 y sc en las frecuencias espaciales 2,0 cpd (rho = -0,27, p = 0,017), 4,0 cpd (rho = -0,23, p = 0,04) y 8,0 cpd (rho = -0,25, p = 0,03), pero no para los 0,5 cpd (rho = 0,01, p = 0,90), 1,0 cpd (rho = -0,21, p = 0,06) y 16,0 cpd (rho = -0,16, p = 0,15) para el grupo de casos. La puntuación media ± SD para los trabajadores de limpieza en seco fue de 19,35 ± 13,02 y 13,8 ± 14,43 para los controles. Como era de esperar, los trabajadores de lavandería presentaron una puntuación significativamente mayor (Mann-Whitney U, p<0,05).

Efectos de la frecuencia de consumo de alcohol y uso de los servicios de limpieza en seco sobre la SC en casos y controles en la frecuencia espacial en 2,0 cpd

Hubo una correlación negativa significativa entre el consumo de alcohol y la distribución en la frecuencia espacial de 2,0 cpd (r = -0,40, n = 35, p = 0,015) en el grupo control. Los resultados (figura 3) muestran una depresión de la sc en 2,0 cpd, en comparación con la edad y los valores normales encontrados en otros estudios (Arundale, 1978; Sekuler y Owsley, 1983) que sugieren que nuestro grupo de control puede incluir a las personas cuyo consumo de alcohol ha tenido un efecto en su sc. Los valores de sc requirieron una transformación (raíz cuadrada) para lograr la normalidad y el posterior modelamiento de la regresión lineal que confirmó que en el grupo control, el alcohol es un predictor significativo de la disminución de la sc a 2,0 cpd. Un modelo significativo (F[1,33] = 6,24, p = 0,02) para la depresión sc a 2,0 cpd fue -0,404x (consumo de alcohol por día).

El número de cigarrillos fumados por día, la edad y la frecuencia de uso de los establecimientos de lavado en seco fueron excluidos del modelo. Para los casos, dos modelos importantes se generaron utilizando el modelo de regresión lineal. El modelo de mejor ajuste fue (F[2,39] = 5,671, p = 0,007), lo cual confirma que el consumo de alcohol es un factor predictivo de presentar una reducción en la sc a 2,0 cpd, junto con el uso de los servicios de planchado de los establecimientos de lavado en seco. El modelo generado fue -0,328X (consumo de alcohol por día) + 0,366X (frecuencia de envío de prendas para ser planchadas en los establecimientos de lavado en seco).

Cuando los casos y los controles fueron considerados en conjunto como un grupo, la regresión...
lineal dio lugar a un modelo significativo (\(F[2,74] = 17,736, p < 0.001 \)) por grupo (caso o control), siendo estos predictores más fuertes (beta estandarizado = - 0,437) de la depresión de la sc que el consumo diario de alcohol (-0,290). Esto indica que los resultados de consumo de alcohol, incluso en peores déficits visuales en trabajadores de lavado en seco, sugieren un efecto aditivo en los efectos tóxicos del Perc y el alcohol.

DISCUSIÓN

En esta investigación, los valores medios de sc en el grupo expuesto (lavanderías) fueron significativamente menores que en el grupo control por encima de 1,0 cpd. Este hallazgo sugiere que el disolvente orgánico percloroetileno podría inducir daño en la FSC y que podría ser selectivo. Altman y Bottger (1990) reportaron una menor sensibilidad al contraste, especialmente en las frecuencias espaciales 0,8, 1,0 y 2,0 cpd en los trabajadores de microelectrónica expuestos a disolventes orgánicos, en comparación con sujetos normales. Nuestros resultados coinciden con estos autores solo para las frecuencias espaciales 1,0 y 2,0. Altman y Bottger no evaluaron la frecuencia espacial 0,5 cpd, quizá relacionada con diferencias con los productos químicos neurotóxicos evaluados por estos autores, que pueden tener diferentes efectos sobre el sistema visual en comparación con el Perc. Mergler et ál. (1991) detectaron que la FSC se vio afectada por la exposición crónica a disolventes para las frecuencias espaciales 3, 6 y 12. Aunque nuestro estudio no midió las frecuencias espaciales 3,0 y 12,0 cpd, estas caen dentro de la misma gama de nuestras mediciones (Campbell y Green, 1965; Campbell et ál., 1971).

Otros estudios que midieron la sc en trabajadores expuestos a solventes orgánicos o mezclas de disolventes informaron que hubo una reducción en todas las frecuencias espaciales superiores a 1,5 cpd (Frenette et ál., 1991; Mergler et ál., 1991; Broadwell et ál., 1995; Campagna et ál., 1995; Donoghue et ál., 1995; Echeverría et ál., 1995; Castillo et ál., 2001; Böckelmann et ál., 2003), lo que estaría de acuerdo con nuestro estudio. Estos estudios, sin embargo, no evaluaron frecuencias espaciales por debajo de 1,50 cpd, por lo que no se sabe si nuestra falta de una diferencia significativa a 0,5 cpd es solo específica para el Perc.

En nuestros casos y controles no se presentaron diferencias significativas a 0,5 cpd y ambos se desempeñaron mejor en la frecuencia espacial 0,5 cpd que en el estudio de Sekular (1983). La posible razón de este fenómeno podría estar relacionada con el tipo de estímulo que se utilizó en este estudio, de corta duración, en lugar de la larga que fue utilizada por Sekular (1983). Los estímulos de corta duración y baja frecuencia espacial activan el sistema magnocelular, lo que puede explicar la diferencia en los resultados a 0,5 cpd (Graham, 1989), en comparación con los resultados utilizando las mismas rejilla fijas empleadas en el estudio de Sekular y Owsley (1983). Es sabido que la codificación de contraste en el sistema visual está

FIGURA 3. FSC POR EDAD COMPARADA CON CONTROLES Y CASOS BOGOTÁ, COLOMBIA, 2011. VALORES NORMALES DE SC SEGÚN LA EDAD

Fuente: datos dibujados de nuevo, de acuerdo con Sekuler y Owsley (1983)
mediada por las corrientes de procesamiento de las vías alternativas magnocelular y parvocelular con propiedades diferentes de respuesta (Kaplan et ál., 1990; Merigan y Maunsell, 1993; Lee, 1996).

A nivel de retina y núcleo geniculado lateral, la vía magnocelular tiene una ganancia de alto contraste y saturación a niveles relativamente bajos de contraste; además, es más sensible en la detección y discriminación de cortos patrones acromáticos de bajo contraste y frecuencias espaciales bajas, mientras que la vía parvocelular tiene una función de respuesta más lineal a los contrastes que permite la percepción a niveles de alto contraste; adicionalmente, se piensa que esta vía interviene en la resolución visual y el procesamiento cromático (Lennie, 1993; McAnany y Alexander, 2006).

Teniendo en cuenta lo antes citado, en contraste con nuestros resultados se puede decir que existe una reducción de la sfc en las frecuencias espaciales intermedias y superiores. Esto indica que tanto la vía magnocelular como la parvocelular se ven afectadas, pero que esta última puede verse afectada en mayor medida. La información de nuestros casos y controles indica que el consumo de alcohol puede reducir la sfc en los casos, siendo un efecto aditivo de acuerdo con el modelo de regresión lineal. En los controles, la depresión de la sfc 2,0 cpd es marcada en comparación con los datos por edad (Arundale, 1978; Sekuler y Owsley, 1983). Esto coincide con otros estudios que examinaron el consumo de alcohol y la sfc (Nicholson et ál., 1995; Roquelaure et ál., 1995; Ferreira y Timney, 2004).

¿Es esta reducción en la sfc de los trabajadores de lavado en seco una preocupación? Al comparar los hallazgos con la población normal, de acuerdo con la edad, se observa que los valores de la sfc presentan una reducción significativa en los casos (trabajadores de lavandería) para la mayoría de las frecuencias espaciales, a un nivel similar al de las personas de 70 a 80 años de edad (Sekuler y Owsley, 1983), a pesar de ser mucho más joven la población objeto de estudio (33,2 +/- 6,6 años). La figura 3 es una gráfica que presenta los hallazgos de nuestro estudio, comparados con los datos de edad normativos de Sekuler y Owsley (1983).

El déficit en la sfc por exposición ocupacional a perc es de aproximadamente la mitad del encontrado en las personas expuesta a niveles comunitarios de exposición a este disolvente. De acuerdo con Arundale (1978), las personas con visión normal y que tienen más de 45 años de edad son menos sensibles a las frecuencias medias y altas que las personas con niveles normales de visión con edades entre 18 y 39 años. Considera, así mismo, que tienen la misma sensibilidad a 0,5 cpd. Este comportamiento es similar a los hallazgos relacionados con los trabajadores de limpieza en seco de nuestro estudio; sin embargo, la edad promedio de los trabajadores de lavandería fue 33,2 años (sd ± 6,6), lo que indica que su sistema visual muestra funciones similares a un grupo de mayor edad.

Esta pérdida de sfc puede afectar distintas actividades de la vida cotidiana de los trabajadores de lavandería (casos). Las personas que presentan movilidad reducida y disminución de sfc podrían tener dificultad en situaciones de alto riesgo de conducción, en comparación con personas que tienen una visión normal (McGwin et ál., 2000); además, presentarían problemas al realizar labores que impliquen el realizar juicios a distancia, así como en la conducción nocturna y la movilidad (Rubin et ál., 1994). Otras tareas cotidianas pueden verse afectados por la pérdida de sensibilidad al contraste; por ejemplo, el reconocimiento de rostros (Owsley et ál., 2001). Las reducciones en la sfc también se asocian con mayor riesgo de caídas, tal vez debido a una mayor dificultad para la detección de objetos de bajo contraste y de los efectos sobre la postura, el equilibrio y la marcha (Wood et ál., 2009; Wood et ál., 2011). La figura 4a muestra la forma en que una persona con sensibilidad de contraste normal puede percibir una escena. La figura 4b, por su parte, representa una simulación acerca de cómo un trabajador de lavandería promedio vería la misma escena con una reducción de 50% en la sensibilidad al contraste.
Los hallazgos en la versión modificada del cuestionario Q16 mostraron una correlación significativa con las frecuencias espaciales 2,0, 4,0 y 8,0 cpd, coherente con los cambios importantes en la FSC en las frecuencias medias y más altas. Este resultado no se ha informado en el pasado. La puntuación en el cuestionario Q16 versión modificada fue mayor en los trabajadores de lavanderías (19,35) que en los controles (13,8). Estos últimos muestran una diferencia significativa (p < 0,05). Esto sugiere que los niveles ocupacionales de exposición al PERC están asociados positivamente con síntomas neurotóxicos, incluyendo síntomas visuales.

CONCLUSIONES

En conclusión, los resultados indican que si se compara con los controles, los trabajadores de limpieza en seco tienen un bajo desempeño en la FSC en las frecuencias espaciales superiores a 1,0 cpd. Vale decir que este mismo resultado ha sido encontrado en otras investigaciones (Altmann et ál., 1990; Frenette et ál., 1991; Mergler et ál., 1991; Broadwell et ál., 1995; Campagna et ál., 1995; Donoghue et ál., 1995; Echeverría et ál., 1995; Castillo et ál., 2001; Böeckelmann y Pfister, 2003); sin embargo, nuestros resultados presentan hallazgos para 0,5 cpd. Se encontró que el consumo de alcohol disminuyó la SC en ambos grupos (casos y controles), considerándose un efecto aditivo en los casos.

Así mismo, los trabajadores de lavanderías perciben la diferencia de contraste aproximadamente al mismo nivel que personas no expuestas ocupacionalmente de entre 70 y 80 años. La presencia de síntomas neurotóxicos en trabajadores de limpieza en seco se asocia con pérdidas en la FSC en las frecuencias espaciales medias y altas, lo que indica que la reducción en la FSC observada se asocia con neurotoxicidad. Esta pérdida de SC tiene implicaciones en la vida cotidiana; por ejemplo: al conducir, al caminar o en la capacidad de reconocimiento facial. La FSC en combinación con la versión modificada del cuestionario Q16 son indicadores útiles de la función neurológica; además, la FSC parece ser un signo de neurotoxicidad.

AGRADECIMIENTOS

A las lavanderías Vitaclin y La Esperanza en Barrios Unidos, Bogotá, Colombia.

A Colciencias-Laspau y a la Universidad de Lasalle Bogotá, Colombia, por la beca de estudios de Ph.D. de Ingrid Jiménez.

Esta investigación fue apoyada por el Australian Research Council (ARC) Discovery Project Grant (Grant number: DP110104713) por Dr. Sieu Khuu.
REFERENCIAS

Altmann, L., Bottger, A., et ál. (1990). Neurophysiological and Psychophysical Measurements Reveal Effects of Acute Low-Level Organic Solvent Exposure in Humans. Int Arch Occup Environ Health, 62 (7), 493-499.

Arundale, K. (1978). An Investigation into the Variation of Human Contrast Sensitivity with Age and Ocular Pathology. British Journal of Ophthalmology, 62, 213-215.

Agency for Toxic Substances and Disease Registry (ATSDR), (1993). Toxicological Profile for Tetrachloroethylene. Atlanta, Georgia.

Baker, E. L. (1994). A Review of Recent Research on Health Effects of Human Occupational Exposure to Organic Solvents. Crit Rev J Occup Med, 36, 1079.

Barone, S. Jr., McGaughy, R., y Siegel, Scott, C. Weight of Evidence for the Neurotoxicity of Perchloroethylene. National Center for Environmental Assessment (NCEA).

Beck, R. W., Ruchman, M. C., et ál. (1984). Contrast Sensitivity Measurements in Acute and Resolved Optic Neuritis. Br J Ophthalmol, 68, (3).

Benignus, V., Geller, A. M., y Bushnell, P. J. (2009). Long-Term Perchloroethylene Exposure: A Meta-Analysis of Neurobehavioral Deficits in Occupationally and Residentally Exposed Groups. J Toxicol Environ Health A, 72 (13), 824-831.

Böckelmann, I., Lindner, H., et ál. (2003). Influence of Long Term Occupational Exposure to Solvents on Colour Vision. Ophthalmologe, 100 (2), 133-141.

Boeckelmann, I., y Pfister, E. A. (2003). Influence of Occupational Exposure to Organic Solvent Mixtures on Contrast Sensitivity in Printers. J Occup Environ Med, 45 (1), 25-33.

Broadwell, D. K., Darcey, D. J., et ál. (1995). Work-Site Clinical and Neurobehavioral Assessment of Solvent Exposed Microelectronics Workers. Am. J. Ind, 27, 677-698.

Campagna, D., Mergler, D., et ál. (1995). Visual Dysfunction among Styrene Exposed Workers. Scan J Work Environ Health, 21, 382-390.

Campbell, F. W., y Robson, J. G. (1964). Application of Fourier Analysis to the Modulation Response of the Eye. Opt Soc Am, 54, 581.

Campbell, F. W., y Robson, J. G. (1968). Application of Fourier Analysis to the Visibility of Gratings. J Physiol (Lon), (197), 551-566.

Candura, S. M. (1991). Trichloroethylene: Toxicology and Health Hazards. G Ital Med Lav, (13), 17-25.

Castillo, L., Baldwin, M., et ál. (2001). Cumulative Exposure to Styrene and Visual Function. Am. J. Ind, (39), 351-360.

Cavalleri A., Gobba F., et ál. (1994). Perchloroethylene Exposure Can Induce Colour Vision Loss. Neurosci Lett, 1-2, 162-166.

Chylack, L. T., Wolfe, J. K., et ál. (1993). The Lens Opacities Classification System III. Arch Ophthalmol, 111 (6), 831-836.

Donoghue, A. M., Dryson, E. W., et ál. (1995). Contrast Sensitivity in Organic-Solvent-Induced Chronic Toxic Encephalopathy. J. Occup. Environ, (37), 1357-1363.

Echeverría, D., White, R. F., et ál. (1995). A Behavioral Evaluation of pce Exposure in Patients and Dry Cleaners: A Possible Relationship between Clinical and Pre-Clinical Effects. JOEM, (37), 667-680.

Ferreira, M., y Timney, B. (2004). Alcohol Induce Changes in Visual Sensitivity: Are They Purely Sensory? Journal of Vision, 4 (8).

Frenette, B., Mergler, D., et ál. (1991). Contrast-Sensitivity Loss in a Group of Former Microelectronics Workers with Normal Visual Acuity. Optom Vis Sci., 68 (7), 556-560.

Ginsburg, A. P. (1981). Spatial Filtering and Vision: Implications for Normal and Abnormal Vision. En: L. M Proenz, J. M Enoch, y A. Jampolsky (Eds.), Clinical Applications of Visual Psychophysics (pp 70-106). Cambridge University Press.

Gobba, F. (2000). Color Vision: A Sensitive Indicator of Exposure to Neurotoxins. Neurotoxicology, 21 (5), 857-862.

Gobba, F., Righi, E., et ál. (2003). Perchloroethylene in Alvolar Air, Blood and Urine as Biologic Indices of Low-Level Exposure. J Occup Environ Med, (45), 1152-1157.
Efecto de la neurotoxicidad en la función visual de trabajadores de lavado en seco

Gobba F., Righie, E., et ál. (1998). Two-Year Evolution of Perchloroethylene-Induced Color-Vision Loss. Archives of Environmental Health, 53 (3), 196-198.

González, M., Velten, M., et ál. (1998). Increased Acquired Dyschromatopsia among Solvent-Exposed Workers: An Epidemiology Study on 249 Employees of an Aluminum-Foil Printing Factory. Int Arch Occup Environ Health, 71 (5), 317-324.

Hake, C. L., y Stewart, R. (1977). Human Exposure to Tetrachloroethylene: Inhalation and Skin Contact. Environmental Health Perspectives, (21), 231-238.

Höhberger, B., Laemmer, R., et ál. (2007). measuring Contrast sensitivity in normal Subjects with optec 6500 Influence of Age and Glare. Graefes Arch Clin Exp Ophthalmol, (245), 1805-1814.

Ihrig, A., Nasterlack, M., et ál. (2003). Pilot Study on Prevalence of Color Vision Dysfunction in Long-Term Solvent-Exposed Painters. Ind Health, 41 (1), 39-42.

Jiménez, I. A., Khuu Sieu, et ál. (2011). Modified Q16 Neurotoxic Symptoms Questionnaire. Ciencia y Tecnología para la Salud Visual y Ocular, 9 (1), 19-37.

Kaplan, E., Lee, B., et ál. (1990). New Views of Primate Retinal Function. Progress in Retinal Research, (4), 273-336.

Lee, B. (1996). Receptive Field Structure in the Primate Retina. Vision Res, (36), 631-644.

Lennie, P. (1995). Role of the M and P Pathway. Contrast sensitivity (pp. 201-213). Cambridge ma, Estados Unidos: MIT Press.

Lomax, R. B., Ridgway, P., et ál. (2004). Does Occupational Exposure to Organic Solvents Affect Colour Discrimination? Toxicol Rev, 23 (2), 91-121.

Lundberg I., Högb erg, M., et ál. (1997). Evaluation of the Q16 Questionnaire on Neurotoxic Symptoms and a Review of its Use. Occup Environ Med., 54 (5), 343-350.

McAnany, J. J., y Alexander, K. R. (2006). Contrast Sensitivity for Letter Optotypes vs. Grating Under Conditions Biased toward Parvocellular and Magnocellular Pathways. Vision Res, 46, 1574-1584.

MCGwin, G., Chapman, V., et ál. (2000). Visual Risk Factors for Driving Difficulty among Older Drivers. Accid Anal Prev, (32), 735-744.

Mergler, D., Huel, G., et ál. (1996). Surveillance of Early Neurotoxic Dysfunction. Neurotoxicology, 17 (3-4), 803-812.

Mergler, D., Huel, G., et ál. (1991). Visual Dysfunction among Former Microelectronics Assembly Workers. Arch Environ Health., 46 (6), 326-334.

Merigan, W. H., y Maunsell, J. H. (1993). How Parallell Are the Primate Visual Pathways. Annual Review of Neuroscience, (16), 369-402.

Mutchray A., W. u., et ál. (1997). Blue-Yellow Deficiency in Workers exposed to Low Concentrations of Organic Solvents. Int Arch Occup Environ Health, 70 (6), 407-412.

Nakatsuka, H., Watanabe, T., et ál. (1992). Absence of Blue-Yellow Color Vision Loss among Workers Exposed to Toluene or Tetrachloroethylene, mostly at Levels below Occupational Exposure Limits. Int Arch Occup Environ Health, 64 (2), 113-117.

Newcombe, R. (2000). Pechloroethylene (PERC) in Dry Cleaning Establishments. Principles of Environmental Toxicology. University of Idaho.

Nicholson, M. E., Andre, J. T, et ál. (1995). Effects of Moderate Dose Alcohol on Visual Contrast Sensitivity for Stationary and Moving Targets. J Stud. Alcohol, (56), 261-266.

Onofrj, M., Thomas, A., et ál. (1998). Optic Neuritis with Residual Tunnel Vision in Perchloroethylene Toxicity. J Toxicol Clin Toxicol, 36 (6), 603-607.

Owsley, C., McGwin, G., et ál. (2001). Timed Instrumental Activities of Daily Living Tasks: Relationship to Visual Function in Older Adults. Optom Vis Sci, (78), 350-359.

Pearson, P., y Timney, B. (1998). Effects of Moderate Blood Alcohol Concentrations on Spatial and Temporal Contrast Sensitivity. Journal of Studies on Alcohol, 59, 163-173.

Regan, D., Silver, R., et ál. (1977). Visual Acuity and Contrasts in Multiple Sclerosis-Hidden Visual Loss. Brain, (100), 563-579.

Roquelaure, Y., Le Gargasson JF, et ál. (1995). Alcohol Consumption and Visual Contrast Sensitivity. Alcohol & Alcoholism, 30 (5), 681-685.
Rubin, G. S., Roche, K. B., et al. (1994). Visual Impairment and Disability in Older Adults. *Optom Vis Sci*, (71), 750-760.

Schreiber, J. S., Hudnell, H. K., et al. (2002). Apartment Residents’ and Day Care Workers’ Exposures to Tetrachloroethylene and Deficits in Visual Contrast Sensitivity. *Environ Health Perspect*, 110 (7), 655-664.

Sekuler, R., and Owsley, C. J. (1983). Visual Manifestations of Biological Aging. *Experimental Aging Research*, (9), 253-255.

Sharanjeet-Kaur, M. A., et al. (1998). Effect of Petroleum Derivatives and Solvents on Colour Perception. *Arch Environ Health*, 53 (3), 196-198.

Spencer, P., and Spencer, S. H. (1985). Organic Solvent Neurotoxicity - Facts and Research Needs. *Scand J Work Environ Health*, 11 (1), 53-60.

Till, C., Rovet, J., et al. (2003). Assessment of Visual Functions following Prenatal Exposure to Organic Solvents. *Neurotoxicology*, (24), 725-731.

US Environmental Protection Agency (2008). *Toxicological Review of Perchloroethylene (Tetrachloroethylene)*. EPA Protection. Washington: EPA 40.

Wacksman, J. C. (2007). Contrast Sensitivity in Occupational and Environmental Neurotoxicology: What Does it Really Mean? *Archives of Environmental & Occupational Health*, 62 (4), 177.

White, P. S. (Ed.). (1997). *Solvents and Neurotoxicity*. Lancet.

Wood, J. M., Lancherez, P., et al. (2009). Postural Stability and Gait among Older Adults with Age-Related Maculopathy. *Invest Ophthalamol Vis Sci*, 50 (1), 482-487.

Wood, J. M., Lancherez, P., et al. (2011). Risk of Falls, Injurious Falls, and Other Injuries Resulting from Visual Impairment among Older Adults with Age-Related Macular Degeneration. *Invest Ophthalamol Vis Sci*, 52 (8), 5088-5092.

World Health Organization (1985). *Chronic Effects of Organic Solvents on the Central Nervous System and Diagnostic Criteria*. Ministers. Copenhagen, Dinamarka.

Recibido: 12 de febrero del 2012

Aceptado: 8 de marzo del 2012

CORRESPONDENCIA

Ingrid Jiménez Barbosa
injmenez@unisalle.edu.co

Sieu Khuu
s.khuu@unsw.edu.au