Influence of feeding enzymatically hydrolysed yeast cell wall + yeast culture on growth performance of calf-fed Holstein steers

J. Salinas-Chaviraa, M. F. Montanob, N. Torrenerab and R. A. Zinn

2Department of Animal Nutrition, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd. Victoria, Tamaulipas, México; bDepartment of Nutrition and Biotechnology of Ruminants, Instituto de Investigaciones en Ciencias Veterinarias-UABC, Mexicali, Baja California, México; cDepartment of Animal Science, University of California, Davis, CA, USA

ABSTRACT
One hundred and sixty-eight crossbred steers (133 ± 7 kg) were used in a 336-d experiment to evaluate the effects of enzymatically hydrolysed yeast cell wall plus yeast culture (EHY) supplementation on growth performance and carcass characteristics. Treatments consisted of steam-flaked corn-based diet supplemented with 0, 195, 390 or 585 mg/kg EHY. Supplemental EHY enhanced overall (336-d) dry matter intake (DMI, P < .01), average daily gain (ADG, P = .04), and final carcass weight (P = .04). Responses were maximal (quadratic effect, P ≤ .02) at the 195 mg/kg level of EHY supplementation. Feed intake enhancements were observed throughout each 112-d period of the study. Improvements in ADG were largely the result of increased DMI, as gain efficiency and estimated dietary net energy (NE) were not affected by EHY supplementation. Effects of supplemental EHY on other carcass measures were not appreciable (P > .20), except for a slight lowering (0.7%, P = .04) in carcass yield. We conclude that throughout the growing-finishing period, supplemental EHY will enhance ADG, resulting in marked increases in final carcass weight. This effect is due to consistent increases in DMI, as supplementation did not affect gain efficiency or estimated dietary NE.

1. Introduction
Supplementation with yeast and/or yeast cell wall components (mono- and oligosaccharides and beta glucans) has been associated with improved milk yield, enhanced immune status, and reduced incidence of mastitis and somatic cell counts in dairy cattle (Nocek et al. 2011; Liu et al. 2014) and improved health status, and reduced acute phase immune responses of cattle exposed to endotoxin challenge (Lowry et al. 2005; Chae et al. 2006; Li et al. 2006; Sanchez et al. 2013, 2014). Supplementation with enzymatically hydrolysed yeast cell wall plus yeast culture (EHY) enhanced average daily gain (ADG), and gain efficiency, and lowered rectal temperature in forage-fed lambs (Fabian et al. 2014). There is very limited information regarding the effects of EHY on growth performance of feedlot cattle. In a preliminary study, Sanchez-Mendoza et al. (2015) observed that a combination of EHY and chromium enhanced DMI and ADG of medium-weight feedlot steers during a period of high ambient temperature (average maximum temperature humidity index of 89.1). Likewise, Salinas-Chavira et al. (2015) observed that supplemental EHY enhanced DMI and ADG of medium-weight feedlot steers fed a steam-flaked corn-based growing-finishing diet. They also observed that supplemental EHY enhanced ruminal fibre digestion and decreased ruminal acetate:propionate molar ratios and estimated ruminal methane production. The objective of the present research was to evaluate influence of supplementing EHY on growth performance in calf-fed Holstein steers.

2. Materials and methods
All procedures involving animal care and management were in accordance with and approved by the University of California, Davis, Animal Use and Care Committee.

One hundred and sixty-eight Holstein steer calves (133 ± 7 kg) were utilized to evaluate the influence of EHY (Celmanax, Arm and Hammer Nutrition, Princeton, NJ) supplementation on growth performance and dietary energetics. The trial was initiated 26 May 2015 and completed 25 April 2016. Calves were obtained from a commercial calf ranch (CalfTech, Tulare, CA). Upon arrival at the University of California Desert Research and Extension Center (Holtville, CA), steer calves were vaccinated for infectious bovine rhinotracheitis, bovine viral diarrhea, parainfluenza virus 3, and bovine respiratory syncytial virus (Bovi-shield® Gold One Shot, Zoetis Animal Health, New York, NY), clostridials (Ultrabac® 7, Zoetis Animal Health, New York, NY), treated against internal and external parasites (Dectomax, Zoetis Animal Health, New York, NY), injected with 1500 IU vitamin E (as d-alpha-tocopherol) and 50,000 IU vitamin A (as retinyl-palmitate) and 50,000 IU vitamin D3 (Vital E-AD, Stuart Products, Bedford, TX), and 300 mg tulathromycin (Draxxin, Zoetis Animal Health, New York, NY). Calves were blocked by initial shrink (off truck) weight into 7 groups and randomly assigned within weight groupings to 28 pens (6 steers per pen). Pens were 43 m² with 22 m² overhead shade, automatic waterers and 2.4 m fence-line feed bunks. Steers were allowed ad libitum access to feed and water. Fresh feed was
provided twice daily at 06:00 hours and 14:00 h, offering approximately 40% of daily consumption in the morning feeding and the remainder in the afternoon feeding. Dietary treatments consisted of a steam-flaked corn-based growing-finishing diet supplemented with 0, 195, 390, or 585 mg/kg Celmazax. Composition of experimental diets is shown in Table 1. Diets were prepared at weekly intervals and stored in plywood boxes located in front of each pen. On days 112 and 224, all steers were reinjected subcutaneously with 500,000 IU vitamin A (Vital E-A + D, Stuart Products, Bedford, TX) and implanted with Revalor-S (Intervet, Millsboro, DE).

Hot carcass weights (HCW) were obtained at the time of slaughter. After carcasses were chilled for 24 h, the following measurements were obtained: Longissimus (LM) area (cm²) by direct grid reading of the muscle at the 12th rib; subcutaneous fat (cm) over the LM at the 12th rib taken at a location 3/4 the lateral length from the chine bone end (adjusted by eye for unusual fat distribution); kidney, pelvic and heart fat (KPH) as a percentage of HCW; marbling score (USDA1997; using 3.0 as minimum slight, 4.0 as minimum small, 5.0 as minimum moderate, 6.0 as minimum moderate, etc.), and estimated retail yield of boneless, closely trimmed retail cuts from the loin, loin, rib and chuck as a percentage of HCW(Yield, % = 52.56 – 1.95 × subcutaneous fat – 1.06 × KPH + 0.106 × LM area – 0.018 × HCW; Murphey et al. 1960).

Energy gain (EG, Mcal/d) was calculated by the equation: \(EG = 0.0557W_{0.75} \times ADG^{0.997} \); where EG is the daily deposited energy and \(W \) is the body weight (NRC 1984). Maintenance energy (EM, Mcal/d) was calculated by the equation: \(EM = 0.084W_{0.75} \) (Garrett 1971). From the derived estimates of energy required for maintenance and gain, the net energy for maintenance and gain (NEm and NEg, respectively) values of the diet were obtained using the quadratic formula: \(x = (-b - \sqrt{b^2 - 4ac})/2a \), where \(a = -0.41EM, \ b = 0.877EM + 0.41DMI + EG, \) and \(c = -0.877DMI, \) and \(NEg = 0.877NEm - 0.41 \) (Zinn and Shen 1998).

The experimental data were analysed as a randomized complete block design experiment according to the following statistical model:

\[Y_{ij} = \mu + B_i + T_j + E_{ij} + \epsilon \]

where \(\mu \) is the common experimental effect, \(B_i \) represents initial weight group effect (df = 6), \(T_j \) represents dietary treatment effect (df = 3), and \(E_{ij} \) represents the residual error (df = 18). Treatments effects were tested using the following contrasts: 0 vs. EHY and linear and quadratic polynomials (Stastix 10, Analytical Software, Tallassee, FL).

3. Results and discussion

Morbidity during the study was low, averaging 1.2 ± 1.7% and not affected (\(P = .60 \)) by dietary treatments. Treatment effects on growth performance are shown in Table 2. Supplemental EHY enhanced overall (336-d) DMI (\(P < .01 \)) and ADG (\(P = .04 \)). Responses were maximal (quadratic effect, \(P \leq .02 \)) at the 195 mg/kg level of EHY.

From the practical standpoint, the objective of a titration study, such as this, is not only to verify responses, but also to ascertain minimum levels of supplementation where optimal responses are obtained. In a previous study involving crossbred steers, Salinas-Chavira et al. (2015) observed a maximal gain response to EHY supplementation at 240 mg/kg DMI (>130 and ≤ 240 mg/kg). Our findings, with calf-fed Holstein steers, are supportive of this earlier observation.

Consistent with previous studies evaluating EHY in feedlot cattle (Salinas-Chavira et al. 2015; Sanchez-Mendoza et al. 2015), improvements in ADG were largely the result of increased DMI, as gain efficiency and estimated dietary NE were not affected by EHY supplementation (Table 2). Finck et al. (2010) observed increased ADG associated with increased DMI in feedlot steers fed a receiving diet supplemented to provide 830 mg/kg yeast cell wall. In a 50-d feeding trial, Lei et al. (2013) observed increased ADG and gain efficiency in feedlot steers fed 2 g/kg of a yeast cell wall product.

The basis for enhanced energy intake with EHY supplementation is not certain, but may be attributable to modulating effects of EHY on immune status (Nocke et al., 2011; Lei, et al., 2013; Sanchez et al., 2013, 2014). Supplemental EHY has a selective effect against pathogenic bacteria (Ganner et al., 2010), effectively binding lipopolysaccharides within the intestine, preventing their translocation into the circulation (Lei et al., 2013).

Consistent with overall treatment effects on ADG, EHY supplementation enhanced (\(P = .04 \)) carcass weight. Again, response tended to be maximal (15.6 kg; quadratic effect, \(P = .07 \)) at the 195 mg/kg level of Celmazax supplementation. Treatment effects on other carcass measures (Table 3) were not statistically significant (\(P > .20 \)) with the exception of estimated carcass boneless closely trimmed retail yield, which was slightly lower (0.7%, \(P = .04 \)) with EHY supplementation.

Table 1. Composition of experimental diets (DM basis).

Item	Celmazx level (mg/kg diet DM)
Sorghum Sudan	8.00
Alfalfa hay	4.00
Tallow	2.50
Molasses, cane	4.00
Distillers Grains w/solubles	10.00
Steam-flaked corn	68.10
Urea	1.15
Limestone	1.68
Dicalcium phosphate	0.10
Magnesium oxide	0.15
Rumenin 90	0.01820
TM Salt*	0.30
Celmazx (mg/kg)	0
Nutrient composition, DM basis (NRC 2000)	
Dry matter (%)	87.9
NE (Mcal/kg)	2.21
NEm (Mcal/kg)	1.54
Crude protein (%)	1.54
Ash (%)	5.76
Nonstructural CHO (%)	58.0
Calcium (%)	1.77
Phosphorus (%)	0.80
Potassium (%)	0.77
Magnesium (%)	0.28
Sulphur (%)	0.19

*Trace mineral salt contained: CoSO4, 0.068%; CuSO4, 1.04%; FeSO4, 3.57%; ZnO, 0.75%; MnSO4, 1.07%; Ks, 0.052%; and NaCl, 93.4%.
4. Conclusions

Supplementation with EHY enhances DMI and ADG of calf-fed Holstein steers throughout all phases of the growing-finishing period. However, effects of supplemental EHY on gain efficiency and dietary net energy were not appreciable. Improvement in daily weight gain is reflected in marked increase (15 kg) in final carcass weight.

Disclosure statement
No potential conflict of interest was reported by the authors.

References
Chae BJ, Lohakare JD, Moon WK, Lee SL, Park YH, Hahn TW. 2006. Effects of supplementation of β-glucan on the growth performance and immunity in broilers. Res Vet Sci. 80:291–298.
Fabian F, Verla NS, Michael C, Ahmed MA. 2014. Effect of Celmanax on feed intake, live weight gain and nematode control in growing sheep. African J Ag Res. 9:695–700.

Finck D, Parr S, Young TR, Carroll JA, Corley J, Estefan A, Johnson B. 2010. Interactive effects of yeast and yeast cell wall material on feedlot performance during the receiving period of stressed beef cattle. J Anim Sci. 88(E-Supplement 2:383; abstract).

Ganner A, Stoiber C, Wieder D, Schatzmayr G. 2010. Quantitative in vitro assay to evaluate the capability of yeast cell wall fractions from Trichosporon mycotoxinivorans to selectively bind gram negative pathogens. J Microbiol Met. 83:168–174.

Garrett W. 1971. Energetic efficiency of beef and dairy steers. J Anim Sci. 31:452–456.

Lei CL, Dong GZ, Jin L, Zhang S, Zhou J. 2013. Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livest Sci. 158:168–174.

Li J, Li DF, Xing JJ, Cheng ZB, Lai CH. 2006. Effects of beta-glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J Anim Sci. 84:2374–2381.

Liu J, Ye G, Zhou Y, Liu Y, Zhao L, Liu Y, Chen X, Huang D, Liao SF, Huang K. 2014. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress. J Anim Sci. 92:2494–2502.

Lowry VK, Farnell MB, Ferro PJ, Swaggerty CL, Bahl A, Kogut MH. 2005. Purified β-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against salmonella enterica serovar enteritidis. Int J Food Microbiol. 98:309–318.

Murphy CE, Hallett DK, Tyler WE, Pierce Jr. JC. 1960. Estimating yields of retail cuts from beef carcasses. Paper presented at: The 62nd meeting of the American Society of Animal Production; Chicago, IL, Nov 26.

Nocek JE, Holt MG, Oppy O. 2011. Effects of supplementation with yeast culture and enzymatically hydrolyzed yeast on performance of early lactation dairy cattle. J Dairy Sci. 94:4046–4056.

NRC. 1984. Nutrient requirements of beef cattle, 6th rev. ed. Washington, DC: National Academy Press.

NRC. 2000. Nutrient requirements of beef cattle, 7th rev. ed. Washington, DC: National Academy Press.

Salinas-Chavira J, Arzola C, González-Vizcarra V, Manriquez-Núñez OM, Montaño-Gómez MF, Navarro-Reyes JD, Raymundo C, Zinn RA. 2015. Influence of feeding enzymatically hydrolyzed yeast cell wall on growth performance and digestive function of feedlot cattle during periods of elevated ambient temperature. Asian Australas J Anim Sci. 28:1288–1295.

Sanchez NCB, Young TR, Carroll JA, Corley JR, Rathmann RJ, Johnson BJ. 2013. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate Immunity. 19:411–419.

Sanchez NCB, Young TR, Carroll JA, Corley JR, Rathmann RJ, Johnson BJ. 2014. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate Immunity. 20:104–112.

Sanchez-Mendoza B, Montelongo-Terriquez A, Plascencia A, Torrenera N, Ware RA, Zinn RA. 2015. Influence of feeding chromium-enriched enzymatically hydrolyzed yeast on growth performance, dietary energetics and carcass characteristics in feedlot cattle under conditions of high ambient temperature. J Appl Anim Res. 43:390–395.

USDA. 1997. United States standards for grading of carcass beef. Washington, DC: Agricultural Marketing Service, USDA.

Zinn RA, Shen Y. 1998. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J Anim Sci. 76:1280–1289.