Simulation and prediction of geologic hazards and the impacts on homestay buildings in scenery spots through BIM

Linfeng Zou, Weimin Gui
School of Management, Northwestern Polytechnical University, Shaanxi, China
* zoulinfeng8308@gmail.com

Abstract

The objectives are exploring the impacts of geologic hazards on the construction of homestays, improving the safety of homestay buildings, guaranteeing the safety of tourists, and enhancing the disaster-resistance of homestays in scenery spots. The computer simulation system and Building Information Modeling (BIM) technology are employed to construct a geologic hazard prediction model for homestays. The model utilizes a time history method to establish a complete early-warning and monitoring system by learning the geologic disaster data. The detection of various geologic hazards has verified the effectiveness of the proposed model. The results show that the model can reduce the losses in the case of water accumulation and landslides during storms, and the BIM technology-based homestay buildings will suffer fewer losses. In the case of earthquakes, BIM technology-based homestay buildings have no noticeable shaking and displacement. Compared to traditional construction methods, the displacement is reduced by 49.15%. In the case of a spontaneous fire, the burning area of the BIM technology-based homestay building is only 270m2. The most severe factors affecting the construction of homestay buildings are earthquakes and landslide risks. The BIM technology generates 3D building planning; therefore, planners can fully understand the problems in the building. In the meantime, the multi-source monitoring data of multiple geologic hazards can be monitored and fed back, thereby improving the timeliness of early-warning of geologic hazards. The results are of considerable significance to the prevention of losses caused by geologic hazards, which can significantly improve the understanding of geologic hazards.

1. Introduction

In China, as the economy boosts, traveling becomes popular, and most of the attractions are located in mountainous and coastal areas [1]. As a new traveling way, homestays become fashionable in recent years. The reasons are that this kind of traveling way allows tourists to not only experience the local culture but also enjoy the unique scenery. Therefore, homestays are widely accepted by young people [2]. Generally, a homestay refers to guest rooms in private residences. The homeowner is responsible for cleaning, booking, and receiving services.
Compared to ordinary hotels, homestays are small and have loose institutionalized services and management regulations [3]. However, competitions among homestays are fierce. Consequently, some homestay owners construct the buildings in places off the beaten tracks because the scenery there is beautiful without human damages, which can attract more tourists. With the assimilation of the tourism industry, most tourists are more willing to travel to some exciting places, and these areas that have experienced geologic movements have become their aspirations [4]. Due to their unique climate and geographic location, these areas are also very prone to geologic hazards, such as collapses, landslides, and mudslides [5]. Besides, since homestays do not have strict construction management measures, their resistance to natural disasters is weak. If the homestay building does not meet the disaster-resistance requirements and violates the building standards, once natural disasters (such as earthquakes, floods, mudslides, sandstorms, and typhoons) occur, the originally-neglected safety issues will bring huge losses [6]. Therefore, studying the safety issues of the homestay buildings in tourist attractions is essential to ensure the safety of tourists and improve the disaster-resistance of homestays in scenery spots.

Building Information Modeling (BIM) technology is a building information model, whose effect is pronounced in the construction and management of significant projects in China [7]. During the integration and simulation analysis of engineering data, various information within the project can be integrated and analyzed effectively; therefore, the planning, operation, and maintenance of the project can be better achieved, and the information of each working link is collected and shared [8]. Due to the apparent differences in the parameter data generated by different links in the project development process, it is necessary to continuously improve and enrich the data generated by BIM technology and propose corresponding solutions to ensure the project progress. In this way, the green and low-carbon design and construction can be achieved, and a working model that integrates many tasks, such as green construction, cost control, and convenient maintenance, can be formed [9]. Since BIM technology is based on the computer system for the design and construction of the homestay buildings, with scientific geologic hazard data, the possible impacts of geologic hazards on the homestay buildings will be evaluated adequately [10]. This technology can effectively simulate the geologic hazards, solve the problems that the homestay buildings encounter, improve the security of the homestay buildings, and provide thoughtful suggestions for the planning and designing of the homestay [11]. Therefore, while implementing the geologic hazard control projects, utilizing advanced technologies and methods to improve the building safety of homestays comprehensively is a scientific problem that needs to be resolved.

The problems in the construction of homestays are analyzed. The BIM model and the time history method are adopted to construct a homestay geologic disaster prediction model. In the actual application process of this model, different types of engineering projects can be analyzed in 3D simulation software through the method of information integration, which can provide a more intuitive engineering structure model for subsequent analysis. The results are expected to provide a theoretical basis for realizing the rapid integration, analysis, and feedback of multi-source monitoring data of geologic hazards, and improving the early-warning of geologic hazards.

2. Literature review

Geologic hazards refer to geologic effects or geologic phenomena that are formed under the influence of natural or human factors and cause losses to human life and property, as well as damages to the environment. The distribution and changing laws of geologic disasters in time and space are not only restricted by the natural environment but also related to human
activities, which are often the results of the interaction between humans and nature [12]. Common types of geologic hazards include earthquakes, ground subsidence, ground fissures, desertification, soil erosion, and water pollution. The research on geologic hazards mainly focuses on the establishment of disaster prediction models. Irwansyah et al. (2017) established the assessment model for earthquake damage by using the fuzzy system. Its purpose is to assess the damage rate of buildings after the earthquake, establish the function and fuzzy membership degree for each decisive variable of the houses’ earthquake damage risk, and determine the earthquake damage risk of houses by using the three-stage fuzzy reasoning method [13].

To predict the landslide disaster, Liu and Wu (2018) proposed a landslide recognition framework and trained the deep-seated automatic coding network in the compression domain based on the advantages of high resolution and intuitiveness of remote sensing images. Moreover, they adopted an artificial neural network or support vector machine as a decision classifier, which can meet the real-time application requirements of landslide disaster recognition [14]. Orozco et al. (2019) studied the early warning system of the flood disaster, developed intelligent disaster prediction application program through microcontroller and sensor, applied statistical modeling algorithm to predict flood, and finally, confirmed that the method can be used for disaster prediction through 7-day observation [15].

Relevant research and application of BIM technology in various fields have been pervasive, and many experts and scholars have shown great interest in the application of this technology in the field of architecture. Xia (2020) proposed a BIM-based monitoring system with high deformation displacement monitoring accuracy and structural safety, which could effectively evaluate the reliability of bridge buildings [16]. Liu and Zhang (2016) combined BIM technology with the current intelligent building management system platform; the development of this system helped to analyze building structural hazards, effectively obtain critical data and information for construction, and prevent the occurrence of dangerous accidents [17]. Ismail et al. (2018) proposed that BIM could effectively help builders to build more reliable building measurement data, which would significantly reduce the total cost of the project [18]. Combined with multi-factor methods, Gao et al. (2019) applied the BIM analysis system based on machinery and monitoring to the research and protection of ancient underground caves [19]. Based on the resource service system and BIM technology, Leng et al. (2018) established a geologic hazard prediction model, which could provide decision support for disaster prevention and mitigation and effectively improve the level of geologic hazard prevention and control information [20]. Dong et al. (2019) used a technical framework (BIM) that combined GIS, computer-aided design (CAD), and building information models to provide global digital data control for urban rail transit construction, which offered new ideas and digital support for the intellectual development of urban rail transit [21]. Lee et al. (2020) proposed an optimized BIM-3DGIS gray model framework, which could effectively monitor the risk changes in deep excavations and provide visual decision support [22].

At present, there is more research on the application of BIM technology in disaster early warning and construction management, especially for the guidance of practical operation. However, studies about building construction guidance based on disaster risk analysis are rare; thus, a special building type, i.e., homestay building, is chosen as the research object to analyze the natural disasters.

3. Methods

3.1. Classification and characteristics of geological hazards

With the intensification of global warming, crustal activities have entered a relatively active period; in addition to the impact of human activities such as the construction of major
projects, countries all around the world are suffering from unprecedented threats of geological hazards. Sudden geological hazards such as collapses, landslides, and debris flows are increasing. Geological hazards have become a hot topic in contemporary earth sciences. The classification of geological hazards has different angles and criteria, which are extremely complicated. Geological hazards mainly caused by natural variation are called natural geological hazards, while geological hazards caused by human activities are called human geological hazards [23]. As far as the change speed of the geological environment or geological body is concerned, it can be divided into two categories: sudden geological hazards and slow-changing geological hazards. The former, such as collapse, landslide, debris flow, ground subsidence, and ground fissures, is a narrow-sense geological hazard customarily; the latter, such as soil erosion and land desertification, is also called environmental geological hazard. According to the geographic or geomorphological characteristics of the area where geological hazards occur, common geological hazards can be divided into mountain geological hazards, such as collapse, landslide, debris flow, plain geological hazards, and geological subsidence.

Suddenness and harmfulness are two prominent characteristics of geological hazards. Generally, the probability of geological hazards occurring is lower. But once it occurs, the consequences are profoundly serious, and the hazards are unpredictable. Moreover, the sudden occurrence of geological hazards does not have a particularly obvious omen, which will lead to people not consciously making some avoidance and prevention measures, resulting in serious consequences, and finally, there is a feature that cannot be predicted.

3.2. Time history method

The complex structure of the geologic environment, the diverse characteristics, and the weak environmental carrying capacity are the critical factors that make the geologic hazards various in types, wide in distribution, notable in intensity, and high in frequency. Currently, the most common geologic hazards include landslides, mudslides, collapses, ground subsidence, and ground cracks. In China, the principal causes of large-scale landslides, collapses, and mudslides are extreme weather and heavy rains induced by the melting of glaciers and frozen soil. Such extreme weather causes geologic hazards and seriously affects the safety of both residents and tourists at homestays.

The time history analysis method is used to study the impact of geological hazards on the quality and safety of BIM-based homestay. Here, the effect of geological hazards scenarios is added. According to the material and elastic properties of building components, in the entire process from the beginning of the initial state of the building to the end of the geological hazards, the integral solution of the structural dynamic equation is obtained, which can accurately obtain the displacement and acceleration of building structure at each response time under the action of geological hazard wave [24]. The essence of time history analysis is the process of solving differential equations of motion by using numerical integration theory [25]. From the beginning of the initial state of the building, according to the set geological hazard parameters, after the integration of one response period, the next period is integrated based on its integration results. In this way, the integration is carried out gradually until the end of the role of geological hazards in the building. The data flowchart is shown in Fig 1.

3.3. Different analysis methods for geologic hazards

(1) Earthquakes are a type of disaster that is incredibly destructive and have a wide influencing range. Usually, the prediction of earthquake disasters is achieved directly by motion equations
through time-history analysis. The epicenter response equation is as follows:

\[\begin{align*}
\begin{bmatrix} m \end{bmatrix} \{ \ddot{x} \} + [c] \{ \dot{x} \} + [k] \{ x \} &= - [m] \{ \ddot{y}_0 \} \end{align*} \]

(1)

\[[m] \] indicates the diagonal matrix formed for the lumped mass system, \([c]\) is the damping matrix, \([k]\) refers to the stiffness matrix, \(\{x\}\) and \(\{x\}\) are the node acceleration matrix and the velocity matrix, respectively. The epicenter response equation of time history analysis is usually solved by the acceleration method, linear acceleration method, or Wilson \(\theta\) method.
(2) Rainfall is one of the major factors that trigger the formation of geological hazards. By analyzing the data distribution, the lower limit or critical reference value of geological disasters induced by rainfall is determined. At present, commonly used methods based on rainfall threshold analysis mainly include rainfall intensity-duration and cumulative rainfall-duration, which are expressed as Eqs (2) and (3):

\[I = c + \alpha \times D^\beta \]

\[E = c + \alpha \times D^\beta \beta \]

Where: \(I \) is the rainfall intensity (mm/h) inducing geological hazards; \(D \) is the rainfall duration (h) inducing geological hazards; \(E \) is the cumulative rainfall (mm); \(\alpha \) and \(\beta \) are statistical parameters; \(c \) is the approximation of long-term rainfall threshold (\(c \geq 0 \)).

(3) The landslide geological disaster phenomenon \(Y \) is affected by multiple factors \(x \), the size and nature of the role of each factor are different. For landslide geological hazards, the view of information prediction believes that the assessment of the risk of landslide geological disasters is related to the quantity and quality of the information of various factors obtained during the prediction and evaluation process, which is measured by the amount of information:

\[I(Y, x_1, x_2, x_3 \ldots x_n) = \ln \frac{P(Y, x_1, x_2, x_3 \ldots x_n)}{P(Y)} \]

Where: \(I(Y, x_1, x_2, x_3 \ldots x_n) \) is the amount of information provided by the evaluation factor \(x_1, x_2, x_3 \ldots x_n \) to the landslide geological disaster; \(P(Y, x_1, x_2, x_3 \ldots x_n) \) is the probability of the occurrence of the landslide geological disaster with the combination of the evaluation factor \(x_1, x_2, x_3 \ldots x_n \); \(P(Y) \) is the probability of the landslide geological hazards. According to the conditional probability operation, Eq (4) can be converted into:

\[P(Y, x_1, x_2, x_3 \ldots x_n) = I(Y, x_1) + I_1(Y, x_2) + \ldots + I_{n-1, x_2, \ldots, x_n} (Y, x_n) \]

Where: \(I_1(Y, x_2) \) is the amount of information that factor \(x_1 \) provides for landslide geological hazards when factor \(x_2 \) exists.

Before the risk assessment of landslide geological hazards by the information quantity method, it is necessary to establish an information quantity model. First, the information quantity that each factor \(x_i \) contributes to the occurrence of landslide geological disaster \(H \) is calculated:

\[I(x_i, H) = \ln \frac{N_i/N}{S_i/S} \]

Where: \(N \) represents the total number of landslide geological hazards in the study area, \(S \) represents the total number of evaluation units in the study area, \(N_i \) is the number of landslide geological hazards distributed within a specific level within the evaluation factor \(x_i \), and \(S_i \) is the number of units containing the evaluation factor \(x_i \) in the study area.

The total amount of information provided by the evaluation unit is calculated to provide landslide risk under the combination of \(n \) evaluation factors:

\[I_i = \sum_{i=1}^{n} I(x_i, H) = \sum_{i=1}^{n} \ln \frac{N_i/N}{S_i/S} \]

Where: \(I_i \) is the total information value of the evaluation unit, \(n \) is the total number of evaluation factors in the evaluation system, and the remaining parameters have the same meaning.
3.4. The overall framework of geologic hazard homestay simulation system based on BIM technology

For the simulation system of the impact of geological hazards on a homestay, first, the established geological hazard investigation data are stored in the geological hazard setting system, the geological hazard investigation data are analyzed, and the appropriate influencing factors of geological hazards are selected to establish the mathematical model of geological hazard prediction, thereby dividing the scope of geological hazards [26]. The hazard degree of geological hazards is evaluated, and a mathematical model is constructed to find the influencing factors of investigation factors. The situation of geological hazards on homestay quarters is simulated through simulation and inversion. Then, a model of homestay buildings is built based on BIM. Finally, simulation exercises are carried out. The visualization framework of the BIM building model for geological hazard scenario simulation is shown in Fig 2.

Geological hazard model: The core of setting and analyzing the systematic strength of geological hazards in advance is to analyze and study the data of homestay buildings based on BIM, as well as to select abundant and comprehensive data and influencing factors that meet the requirements of BIM to simulate the influence of geological hazards [27]. To realize the simulation of geological hazards, first, the data about geological hazards should be transmitted to the information management system. The multi-spatial dimension and the critical values of various safety parameters of homestay buildings are utilized, the actual historical data and monitoring data on geological hazards that have been gathered are combined, and the computer simulation system is utilized to simulate the occurrence process and scene of geological hazards [28]. According to the established mathematical model, the possible range of geological hazards is predicted to determine the degree of geological hazards. The factors and influencing factors that may cause geological hazards are collected and analyzed by creating an algorithm model. The analysis is repeated. Simulation and judgment are performed to predict the occurrence of geological hazards.

Homestay building model: A homestay building model is built, which mainly integrates the BIM design standards for buildings. Combine with the design of each housing parameter,
factors that may affect homestay buildings based on BIM are collected as possible, and these data are analyzed and transmitted to the database. According to the data and information of design requirements, the model of homestay buildings is established, and the factors that may affect the building based on BIM are analyzed and studied, which helps prevent geological hazards in advance and in time to ensure that the building designed in the model is a homestay building based on BIM technology.

3.5. Construction of homestay geologic hazard simulation model based on BIM technology

In general, the BIM geologic hazard 3D model modeling process is mainly divided into three parts: (1) The CATIA software is used to create a 3D geometric model; (2) Information is stored, that is, regional spatial geometric information, engineering geological information, and monitoring information are import into the database; (3) Dynamic visualization of the 3D monitoring model is performed, that is, the monitoring database system is connected with the 3D geometric model to realize the information integration and collaborative change of the 3D model, i.e., the BIM model, which conforms to the characteristics of BIM collaboration and visualization. Emergency preview simulation: Based on the built geological hazard model and the homestay building model, the homestay situation under the geological hazard is simulated. The time history analysis method is adopted to analyze the impact effect. The simulation flowchart of the BIM model based on geological hazard is shown in Fig 3. To judge whether BIM-based housing is reliable in the event of geological hazards and whether the quality of housing can withstand the test of geological hazards, the main indexes include the problems that may arise in the quality and safety of building houses and the impact of BIM-based homestay buildings on the evacuation of personnel in the event of geological hazards. Therefore, the harm degree of different geological hazards is explored by using BIM building as reference.

3.6. Verification of homestay geologic hazard simulation model based on BIM technology

(1) Verification area: the research objects are two rural buildings in Qingdao City, Shandong Province: one is a traditional building built in May 2017, and the other is a homestay building.

![Fig 3. Geologic hazard homestay construction model based on BIM technology.](https://doi.org/10.1371/journal.pone.0238864.g003)
built in June 2018 based on BIM technology. Both buildings are located around the Laoshan Scenic Area in Qingdao City, Shandong Province, China. The landforms here mainly include three types: structural denudation, erosion-accumulation, and accumulation. The fault structure is developed, and the fold structure is not developed in this area. According to historical earthquake data records, no destructive earthquakes have occurred in this region in history, but several earthquakes have occurred in the past few decades. Due to the influence of terrain conditions, the precipitation in the entire region is different.

(2) Software platform: CATIA, a BIM software, is used to build the 3D geological model. The software has a powerful function of surface modeling, which uses the basic engineering geological information to create a 3D geological model quickly. According to the engineering geological plan within the survey scope, the topographic data reflecting the landslide area is extracted. The DSE module in CATIA is utilized to import discrete point data, which generates, edits, and optimizes the point cloud data, thereby obtaining surface model mesh surface and surface model data in QSR module, as shown in Fig 4.

(3) Data source and analysis: the data of geologic hazards used here come from the geologic cloud system database (http://geocloud.cgs.gov.cn/#/portal/home) in the China geologic Survey. The survey data for homestays mainly comes from the investigation and analysis of residents. The homestay building model uses BIM technology to achieve the organic combination of the two and judges the quality of the homestay buildings through geologic hazards. According to the actual engineering situation on-site, the methods of surface displacement monitoring and in-depth displacement monitoring are utilized to develop a monitoring plan. Through

![Fig 4. Ground surface model.](https://doi.org/10.1371/journal.pone.0238864.g004)
the Internet, the on-site monitoring situation can be viewed on the 3D model; by zooming and rotating the 3D geologic model, the spatial arrangement of monitoring instruments can be seen. According to the on-site monitoring data, and the original mechanical parameters, by updating the node displacement database, the coordinated change of the BIM model is realized.

4. Results and discussion

4.1. Risk of homestay based on BIM under rainstorms

Fig 5 shows the BIM-based water accumulation in homestay buildings under heavy rain. When the node displacement continues to increase, a slight change at the edge of the BIM geologic hazard model can be seen. For BIM-based homestay buildings, with the increase in precipitation, the water accumulation remains stable, only 1.0 cm. For ordinary homestay buildings, with the increase in precipitation, water accumulation in the building also increases.

![Figure 5: The ponding of homestay based on BIM in the case of rainstorms.](https://doi.org/10.1371/journal.pone.0238864.g005)
with a maximum of 3.5cm. The reason is that the BIM-based homestay building accurately predicts the weather in the area through sensors, and opens the drainage system in time, thereby reducing the damage and loss caused by rainstorms. Although heavy rains that have been simulated are fewer, a significant difference exists between homestays that have been processed and have not. The above results have verified the effectiveness of the proposed model.

4.2. Risk of BIM-based homestay under earthquake

Fig 6 shows the displacement of BIM-based homestay buildings under earthquake conditions. Under the same earthquake conditions, the sway displacement of BIM-based homestay buildings under the action of earthquakes is smaller than that of ordinary houses. Under earthquakes of magnitude 1–6, especially under an earthquake of magnitude 6, the displacement of ordinary homestay buildings is 1.18, while that of BIM-based homestay buildings is only 0.6, with a difference of 49.15%; meanwhile, their influence trends are the same. The reason is that the constructed BIM homestay buildings have strict earthquake risk prevention measures.

![Fig 6. The displacement of BIM-based homestay under earthquake conditions.](https://doi.org/10.1371/journal.pone.0238864.g006)
Therefore, as the earthquake level increases, although the sway displacement of the building is increasing, it is within a controllable range compared with ordinary buildings.

4.3. Risk of BIM-based homestay under fire

Fig 7 shows the burning area of a BIM-based homestay building in the case of spontaneous fire. Compared to ordinary buildings, the burning area of buildings based on BIM is 1600m2 under the same environmental and time conditions when a spontaneous fire occurs, while the burning area of BIM-based buildings is only 270m2, which shows apparent advantages. In contrast, the fire has only spread to smaller areas in BIM-based buildings. However, due to the countless combustibles in homestay buildings, fires are currently one of the most significant risks of BIM homestays. It is challenging to control fires in a short period, and its consequences are also challenging to predict. The BIM-based homestay building construction has noticeable effects against fire.

Fig 7. The burning area in homestay buildings based on BIM.

https://doi.org/10.1371/journal.pone.0238864.g007
5. Conclusions

The computer simulation system and BIM technology are utilized. Through the 3D digital module, the planar plans are made into 3D structures so that the problems in the building plans can be understood thoroughly. Through the application of geologic data in time history method, geologic hazards in homestays are predicted, and the rapid integration and analysis are achieved; meanwhile, the multi-source monitoring data of several geologic hazards are fed back to improve the timeliness of early-warning of geologic hazards. In the case of an earthquake, there is no perceptible shaking and displacement of the homestay building; in the case of a spontaneous fire, the danger caused by the burning of the building is extremely dangerous and uncontrollable; in the case of water accumulation and landslides during a storm, specially-constructed homestay buildings will suffer even smaller losses. The above results have verified the effectiveness of the proposed model system. Although all the situations are analyzed as much as possible, limitations are inevitable. First, the geologic hazard simulation in the homestay building is too complicated and involves multiple tasks. The temporarily unpredictable factors are ignored, which reduces the persuasiveness of the results to some extent. Second, only the known geologic hazards are analyzed and researched, which lacks more extensive experimental data. In the future, these two aspects will be explored more deeply, hoping that the system can be applied to practice as soon as possible.

Supporting information

S1 Data.
(XLS)

Author Contributions

Conceptualization: Weimin Gui.
Writing – original draft: Linfeng Zou.
Writing – review & editing: Weimin Gui.

References

1. Anfuso G.; Williams A.T.; Martínez G.C.; Botero C.; Hernández J.C.; Pranzini E. Evaluation of the scenic value of 100 beaches in Cuba: Implications for coastal tourism management. Ocean & Coastal Management 2017, 142, 173–185.
2. Wang L.; Hu M.; Guo Z.; Sun P.; Geng F.; Voon B. China Tourists’ Experiences with Longhouse Homestays in Sarawak. International Journal of Service Management and Sustainability 2019, 4, 25–50.
3. Norkin V.I. B&B method for discrete partial order optimization. Computational management science 2019, 16, 577–592.
4. Long F.; Liu J.; Zhang S.; Yu H.; Jiang H. Development characteristics and evolution mechanism of homestay agglomeration in Mogan Mountain, China. Sustainability 2018, 10, 2964–2973.
5. Xu Y.; Qiu X.; Yang X.; Lu X.; Chen G. Disaster risk management models for rural relocation communities of mountainous southwestern China under the stress of geological disasters. International Journal of Disaster Risk Reduction 2020, 101697–101703.
6. Rindrasih E. Under the Volcano: Responses of a Community-Based Tourism Village to the 2010 Eruption of Mount Merapi, Indonesia. Sustainability 2018, 10, 1620–1631.
7. Sanhudo L.; Ramos N.M.; Martins J.P.; Almeida R.M.; Barreira E.; Simões M.L.; Cardoso V. Building information modeling for energy retrofitting—A review. Renewable and Sustainable Energy Reviews 2018, 89, 249–260.
8. Li X.; Shen G.Q.; Wu P.; Yue T. Integrating building information modeling and prefabrication housing production. Automation in Construction 2019, 100, 46–60.
9. Saber N.I.; Wali K.I. A Study of Current situation, Difficulties, and Advantages of implementing BIM in the Construction Sector in Northern Iraq. Zanco Journal of Pure and Applied Sciences 2020, 32, 93–106.

10. Lin C.-L. Establishing environment sustainability strategies for urban and rural/town tourism based on a hybrid MCDM approach. Current Issues in Tourism 2019, 1–36.

11. Ha S.; Yang Z. Suitability Assessment of the Tools Under a Three-Dimension System of Landscape Monitoring: A Case Study in the NWHS of Bogda. Sustainability 2020, 12, 649–652.

12. Wang J.; Zhu S.; Luo X.; Chen G.; Xu Z.; Li Y. Refined micro-scale geological disaster susceptibility evaluation based on UAV tilt photography data and weighted certainty factor method in Mountainous Area. Ecotoxicology and Environmental Safety 2020, 189, 110005–110011. https://doi.org/10.1016/j.ecoenv.2019.110005 PMID: 31791729

13. Irwansyah E, Hartati S, Hartono. Three-Stage Fuzzy Rule-Based Model for Earthquake Non-Engineered Building House Damage Hazard Determination. Journal of Advanced Computational Intelligence & Intelligent Informatics, 2017, 21(7), 1298–1311.

14. Liu Y, Wu L. High Performance Geological Disaster Recognition using Deep Learning. Procedia Computer Science, 2018, 139, 529–536.

15. Orozco M M, Caballero J M, Nader A. Smart disaster prediction application using flood risk analytics. EDP Sciences, 2018, 189, 10006–10016.

16. Xia Y. Research on dynamic data monitoring of steel structure building information using BIM. Journal of Engineering, Design and Technology 2020, 25–33.

17. Liu Z.; Zhang F. A BIM-Based Preliminary Database Framework for Structural Hazard Prevention Analysis. The Open Civil Engineering Journal 2016, 10, 695–705.

18. Ismail N.A.A.; Idris N.H.; Ramli H.; Sahamir S.R.; Rooshdi R.R.R.M. Sustainable BIM-based cost estimating for quantity surveyors. Chemical Engineering Transactions 2018, 63, 235–240.

19. Gao B.; Zhang H.; Yang Z.; Fu Y.; Luo L. The development mechanism and control technology visualization of the vault cracks in the ancient underground cavern of Longyou. Episodes Journal of International Geoscience 2019, 42, 287–299.

20. Leng X.; Liu D.; Luo J.; Mei Z. Research on a 3D geological disaster monitoring platform based on REST service. ISPRS International Journal of Geo-Information 2018, 7, 226–244.

21. Dong L.; Wu J.; Wang W.; Xie Y. Full lifecycle digital control of urban rail transit property based on the integration between CAD, GIS and BIM. Advances in Transportation Studies 2019, 15–26.

22. Lee P.C.; Zheng L.L.; Lo T.P.; Long D.B. A Risk Management System for Deep Excavation Based on BIM-3DGIS Framework and Optimized Grey Verhulst Model. KSCE Journal of Civil Engineering 2020, 24, 715–726.

23. Song R.; Qin X.; Tao Y.; Wang X.; Yin B.; Wang Y.; Li W. A semi-automatic method for 3D modeling and visualizing complex geological bodies. Bulletin of Engineering Geology and the Environment 2019, 78, 1371–1383.

24. Teng Y.; Zuo R.; Xiong Y.; Wu J.; Zhai Y.; Su J. Risk assessment framework for nitrate contamination in groundwater for regional management. Science of The Total Environment 2019, 697, 134102–134111. https://doi.org/10.1016/j.scitotenv.2019.134102 PMID: 32380605

25. Houston D.; Cheung W.; Basolo V.; Feldman D.; Matthew R.; Sanders B.F.; Karlin B.; Schubert J.E.; Goodrich K.A.; Contreras S. The influence of hazard maps and trust of flood controls on coastal flood spatial awareness and risk perception. Environment and Behavior 2019, 51, 347–375.

26. Li Y. Design a management information system for financial risk control. Cluster Computing 2019, 22, 8783–8791.

27. Zheng M.; Deng K.; Fan H.; Huang J. Monitoring and analysis of mining 3D deformation by multi-platform SAR images with the probability integral method. Frontiers of Earth Science 2019, 13, 169–179.

28. Li S.; Tang H. Classification of Building Damage Triggered by Earthquakes Using Decision Tree. Mathematical Problems in Engineering 2020, 36–41.