Long Term 5-Year Survival of Persons with Cryptococcal Meningitis or Asymptomatic Subclinical Antigenemia in Uganda

Elissa K. Butler1, David R. Boulware1*, Paul R. Bohjanen1,2, David B. Meya1,2,3

1 Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America, 2 Infectious Disease Institute, Makerere University, Kampala, Uganda, 3 Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda

Abstract

Data presented previously as an abstract at the 2011 CUGH Global Health Conference in Montreal, Canada on 15 Nov 2011. The long-term survival of HIV-infected persons with symptomatic cryptococcal meningitis and asymptomatic, subclinical cryptococcal antigenemia (CRAG+) is unknown. We prospectively enrolled 25 asymptomatic, antiretroviral therapy (ART)-naive CRAG+ Ugandans with CD4<100 cells/mcL who received pre-emptive fluconazole treatment (CRAG+ cohort) and 189 ART-naive Ugandans with symptomatic cryptococcal meningitis treated with amphotericin (CM cohort). The 10-week survival was 84% (95%CI: 70–98%) in the CRAG+ cohort and 57% (95%CI: 50–64%) in the CM cohort. The CRAG+ cohort had improved five-year survival of 76% (95%CI: 59–93%) compared to 42% (95%CI: 35–50%) in the CM cohort (P = 0.001). The two cohorts had similar immunosuppression pre-ART with median CD4 counts of 15 vs. 21 CD4/mcL in the CRAG+ and CM cohorts, respectively (P = 0.45). Despite substantial early mortality, subsequent 5-year survival of persons surviving 6-months was excellent (>88%), demonstrating that long term survival is possible in resource-limited settings. Pre-ART CRAG screening with preemptive fluconazole treatment and improved CM treatment(s) are needed to reduce AIDS-attributable mortality due to cryptococcosis which remains 20–25% in sub-Saharan Africa.

Introduction

Cryptococcal meningitis (CM) is responsible for approximately 20–25% of AIDS-attributable mortality in sub-Saharan Africa [1,2]. Although early antiretroviral therapy (ART) prevents cryptococcosis, only three countries in Africa have accomplished >80% ART coverage. Thus, 1.8 million HIV-infected persons still died worldwide in 2010 [3]. The annual incidence of CM in sub-Saharan Africa is estimated at ~720,000 cases with hundreds of thousands of deaths annually [1]. The cryptococcal antigen (CA) is a highly sensitive and specific test in serum or plasma for detecting cryptococcal infection in AIDS patients, even in asymptomatic persons with subclinical infection. Pre-ART serum CRAG positivity is 100% sensitive and CRAG titers above 1:8 are 96% specific for predicting later development of CM during the first year of ART in asymptomatic persons with CD4 counts ≤100 cells/µL [4]. In persons with AIDS, CRAG is positive in serum at least a median of 22 days before symptoms and signs of cryptococcal meningitis become apparent [4–6]. The prevalence of cryptococcal antigenemia in HIV-infected persons with CD4 counts <100 cells/µL ranges from 2.5% to 12% in Sub-Saharan Africa and Southeast Asia [6], and cryptococcal antigen (CRAG) screening followed by preemptive treatment is cost saving in high-risk populations [6–8].

Among persons presenting with symptomatic CM, even with optimal treatment with amphotericin B and antiretroviral therapy (ART), mortality from CM remains high (30–50%) [9–11]. The long-term survival of persons with symptomatic cryptococcosis on ART has not been evaluated. The majority of studies assessing outcomes of cryptococcal meningitis have focused on 10-week survival [12–15]. In this study, comparing two previously described cohorts [6,16,17], we report the ongoing long term 5-year survival of Ugandans with AIDS and either asymptomatic cryptococcal antigenemia or symptomatic CM.

Methods

HIV-infected subjects were enrolled in two prospective cohorts at the Infectious Disease Institute in Kampa, Uganda. The first cohort, as previously described [6], included 25 persons with asymptomatic cryptococcal antigenemia (CRAG+ cohort) who were identified through screening of 609 persons with CD4<200 cells/µL initiating ART in the clinic during 2004–2007 and who received preemptive fluconazole treatment (asymptomatic CRAG+ cohort) [6]. Of the 609 persons screened, 50 (8.2%)
were CRAG positive. CRAG+ persons with a remote history of treated CM (n = 17) were excluded from this analysis. Among persons with CD4≤100, the prevalence of incident CRAG+ was 0.8%. Eight CRAG+ asymptomatic subjects not receiving fluconazole preemptive treatment (25% survival at 2.5 year follow up) were excluded. The second cohort consisted of 189 ART-naive subjects with symptomatic CM recruited from the inpatient infectious disease ward at Mulago Hospital and enrolled from 2006–2009, as previously described (CM cohort) [17]. Inclusion criteria for both studies were (1) confirmed HIV-1, (2) stable residence within ≤20 km, (3) willingness to exclusively receive HIV care at the clinic for ≥2 years, (4) eligibility for ART according to the World Health Organization (WHO) 2003 guidelines and the Uganda National Ministry of Health Guidelines, and (5) provision of written informed consent. The CM cohort had diagnoses by CSF culture and/or CSF CRAG latex agglutination. CD4 and viral load testing were performed pre-ART in the outpatient clinic. The ethics committees of Makerere University and Uganda National Council for Science and Technology approved this research.

Those in the asymptomatic CRAG+ cohort were treated with fluconazole with doses ranging from 200–400 mg daily (400 mg n = 22, 200 mg n = 6, unknown dose n = 3 but ≤400 mg) for 2–4 weeks (4-weeks n = 7, 2-weeks n = 8, 1-week n = 1, unknown duration n = 9 but ≤4 weeks). At the time, no guidelines existed for preemptive treatment of asymptomatic cryptococcal antigenemia; thus, fluconazole dosage and treatment duration were at physician discretion. Subjects began ART within ~1 week of CRAG screening. Subjects in the symptomatic CM cohort were treated with 50 mg IV amphotericin B (approx. 0.7–1 mg/kg/day) for 14 days followed by oral fluconazole at 400 mg/day for 8 weeks, and then received secondary prophylaxis with 200 mg/day of fluconazole indefinitely. These subjects began ART at the first outpatient visit 4–5 weeks after discharge from the hospital. Among 95% of subjects with CM, this was their first AIDS-defining illness and new HIV diagnosis. Subjects were followed at regular intervals until end of life, transfer of care, or loss to follow up.

We assessed survival via Kaplan-Meier curve with comparison via Log Rank test of the two cohorts. Exploratory variables were evaluated using Cox proportional hazards regression analysis (SPSS 19.0.2, IBM). For demographics, Fischer’s exact Chi-square test compared categorical variables. Means were compared by Student t-test, and medians were compared by the Mann-Whitney U test.

Results

Cohort Characteristics

Twenty-five asymptomatic CRAG+ persons were enrolled into the CRAG+ cohort and 189 persons with symptomatic CM were enrolled into the CM cohort. Of the 214 persons enrolled in the two cohorts, demographic and clinical data are presented in Table 1. The mean age of persons was 36.6 years, and 118 (55%) were male. Subjects had a mean BMI of 19.3 ≤kg/m². The median CD4 cell count was 20 cells/µL (interquartile range [IQR]: 7–45 cells/µL) and median viral load was 5.3 log10 copies/mL (IQR: 5.0–5.8 log10 copies/mL). Fifteen (60%) persons in the asymptomatic CRAG+ cohort were categorized with WHO clinical stage 3 disease, and all persons with CM, by definition, had WHO clinical stage 4 disease. At pre-ART, the CRAG+ cohort had slightly higher viral loads (P=0.001), and similar CD4 counts (P=0.45) compared to the CM cohort.

Survival

The Kaplan-Meier method estimated survival for each cohort (Figure 1). The start time for analysis for persons in the asymptomatic CRAG+ cohort was the date of CRAG screening, which was ~1 week prior to ART initiation. For the CM cohort, the start time was the date of CM diagnosis, and ART was initiated a median of 5 weeks after CM diagnosis, which is consistent with WHO guidelines. Persons were right-hand censored if they were still living at the time of analysis (n=82), if they transferred their care to another clinic (n=7), or if they were lost to follow up (n=9). All requirements for survival analysis were met. The major difference in mortality between the two cohorts was due to the acute mortality associated with CM, particularly in the first four weeks. In the CRAG+ cohort, the 10-week survival was 84% (95% CI: 70% to 98%), and in the CM cohort, the 10-week survival was 57% (95% CI: 50% to 64%). The one-year survival was 80% (95% CI: 64% to 96%) for the asymptomatic CRAG+ cohort and 45% (95% CI: 37% to 52%) for the CM cohort. At 5 years, the asymptomatic CRAG+ cohort had a survival of 76% (95% CI: 59% to 93%), and the CM cohort had a survival of 42% (95% CI: 35% to 49%) (Log Rank test: P = 0.001). Of those with CM surviving to start ART, 6-month survival on ART was 65% (95% CI: 55% to 75%). Among those who survived 6 months on ART, the 5-year survival thereafter was 95% (95% CI: 86% to 100%) for the asymptomatic CRAG+ cohort and 88% (95% CI: 79% to 96%) for the CM cohort (P = 0.23).

Evaluation of Explanatory Variables

Evaluation of cohort, sex, age, BMI, baseline CD4 count, and viral load as explanatory variables in the Cox proportional hazards regression analysis revealed that only the presence of symptomatic CM was a significant predictor of mortality (hazard ratio = 3.58, 95% CI: 1.55 to 8.27). In follow up at 6-months, the asymptomatic CRAG+ cohort had a higher median CD4 count as compared to the CM cohort (146 vs. 103 cells/µL, P = 0.001).

Discussion

We describe the 5-year survival of those with asymptomatic, subclinical CRAG antigenemia and those with symptomatic CM. This is the first study to evaluate long-term survival at 5 years in persons with subclinical or overt cryptococcosis in sub-Saharan Africa. Previous studies assessing outcomes of CM showed poor short-term survival. Most of these studies investigated 2 and 10-week survival [12–15,18,19], and only four cohorts have evaluated survival at 6 months [20] or ≥1 year [16,21,22]. Like previous studies, our results showed high early mortality, with highest mortality in the first 6 months for both cohorts. Even after ART initiation, the mortality after CM in Uganda was higher than previously reported in Thailand during the first 6-months of ART (35% vs. 5%, respectively), although the timing of ART initiation differed (median: 5 weeks in Uganda vs. 11 weeks in Thailand) [21,23]. The long-term 5-year survival among those surviving 6-months was excellent (>88%) in Uganda, even for persons with symptomatic CM. These results are similar to the prior Thai experience [21], but our study shows that the survival benefit of ART extends five years or beyond. Thus, our long-term study provides valuable outcome data that can be utilized for cost-effectiveness analysis research to understand how enhancement of initial cryptococcal care to improve short term outcomes likely translates to improving long-term outcomes. The survival after 6-months that we observed is similar to a large Uganda cohort with AIDS without cryptococcosis [24]. Additional research is needed...
One fundamental conclusion is medical treatment of CRAG antigenemia, a subclinical pre-disease state, results in better outcomes than treatment of overt clinical disease due to CM.
Figure 1. Long-term survival among HIV-infected persons with cryptococcosis in Uganda. The Kaplan-Meier survival curve displays the long-term survival of 25 asymptomatic persons who tested positive for serum cryptococcal antigen (CRAG+) treated with fluconazole and ART compared to 189 symptomatic patients with cryptococcal meningitis (CM) treated with amphotericin B induction and then fluconazole consolidation therapy and then ART. Diamonds represent censored data. Persons were right-hand censored if they were still living at the time of analysis (n = 82), if
While this is an obvious conclusion, a second, perhaps more important, conclusion is that long-term survival among those surviving 6-months is excellent (>90%), suggesting that improvement in short-term survival through CRAG screening or better CM treatment will translate into long-term outcome benefits. Ultimately, cryptococcosis will be drastically reduced by earlier HIV testing, retention-in-care, and universal access to ART. However, in areas that continue to have substantial ART coverage, two further interventions should be pursued by stakeholders. First, preemptive treatment of asymptomatic CRAG+ persons with advanced AIDS identified by CRAG screening will result in improved long-term survival and prevent the high human and economic costs of overt cryptococcal meningitis. Second, more resources allocated toward better CM treatment could promote improved short-term survival which would translate into long-term survival. This manuscript demonstrates that long-term survival after cryptococcosis is possible with ART in resource-limited settings.

Acknowledgments

We would like to thank Drs. Andrew Kambuugo, Moses Kamya, Yukari Manabe, Barbara Castelnuovo, Agnes Kiragga, and Josh Rhein who were critical to assembling the prospective cohorts. We thank all the medical officers and nursing staff at the Infectious Disease Institute (IDI) as well as the IDI clients who volunteered and consented to participate in this research. We appreciate the generous institutional support from Drs. Alex Coutinho, Keith McAdam, and Aaron Friedman.

Author Contributions

Conceived and designed the experiments: DRB PRB DBM. Performed the experiments: DBM EKB. Analyzed the data: EKB DRB. Wrote the paper: EKB DRB.

References

1. Park BJ, Wannmenuehler KA, Marston BJ, Govender N, Pappas PG, et al. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 523–530.
2. Jarvis JN, Boulle A, Loye A, Bicanic T, Rebe K, et al. (2009) High ongoing burden of cryptococcal disease in South Africa after antiretroviral roll out. AIDS 23: 1102–1103.
3. UNAIDS (2011) World AIDS Day Report.
4. Jarvis JN, Lawn SD, Vogt M, Bangani N, Wood R, et al. (2009) Screening for cryptococcal antigenemia in patients accessing an antiretroviral treatment program in South Africa. Clin Infect Dis 49: 456–462.
5. French N, Gray K, Watene C, Nakinyingi J, Lugada E, et al. (2002) Cryptococcal infection in a cohort of HIV-1-infected Ugandan adults. AIDS 16: 1031–1038.
6. Meya DB, Manabe YC, Castelnuovo B, Cook BA, Elbireer AM, et al. (2010) Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count<or = 100 cells/µL who start HIV therapy in resource-limited settings. Clin Infect Dis 51: 448–455.
7. Jarvis JN, Meintjes G, Wood R, Harrison TS (2010) Testing but not treating: missed opportunities and lost lives in the South African antiretroviral therapy programme. AIDS 24: 1233–1235.
8. Jarvis JN, Lawn SD, Wood R, Harrison TS (2010) Cryptococcal antigen screening for patients initiating antiretroviral therapy: time for action. Clin Infect Dis 51: 1463–1465.
9. Bicanic T, Wood R, Meintjes G, Rebe K, Brouve A, et al. (2008) High-dose amphotericin B with flucytosine for the treatment of cryptococcal meningitis in HIV-infected patients: a randomized trial. Clin Infect Dis 47: 123–130.
10. Kambuugo A, Manabe Y, Meintjes G, O’Brian M, Johns EN, et al. (2008) Outcomes of cryptococcal meningitis in Uganda before and after the availability of highly active antiretroviral therapy. Clin Infect Dis 47: 1694–1701.
11. Rajasingham R, Rolles MA, Birkerkamp KE, Meya DB, Bouwhee DR (2012) Cryptococcal meningitis treatment strategies in resource-limited settings: A cost-effectiveness analysis. PLoS Med 9: e1001316.
12. van der Horst CM, Saag MS, Cloud GA, Hamill RJ, Graybill JR, et al. (1997) Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med 337: 15–21.
13. Muzoora CK, Khabhanda T, Orutu G, Ssentamu J, Hearn P, et al. (2012) Short course amphotericin B with high dose fluconazole for HIV-associated cryptococcal meningitis. J Infect 64: 76–81.
14. Sloan D, Dlamini S, Paul N, Dedicoat M (2008) Treatment of acute cryptococcal meningitis in HIV infected adults, with an emphasis on resource-limited settings. Cochrane Database Syst Rev: CD005647.
15. Pappas PG, Chetcuti P, Lanzo RA, Manosuthi W, Morris MI, et al. (2009) A phase II randomized trial of amphotericin B alone or combined with fluconazole in the treatment of HIV-associated cryptococcal meningitis. Clin Infect Dis 48: 1775–1783.
16. Bouwhee DR, Meya DB, Bergemann TL, Wiener DL, Rhein J, et al. (2010) Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS Med 7: e1000304.
17. Bouwhee DR, Bonham SC, Meya DB, Wiener DL, Park GS, et al. (2010) Paucity of initial cerebrospinal fluid inflammation in cryptococcal meningitis is associated with subsequent immune reconstitution inflammatory syndrome. J Infect Dis 202: 962–970.
18. Jackson AT, Nasbaum JC, Phulura J, Namarika D, Chikaena M, et al. (2012) A phase II randomized controlled trial adding oral flucytosine to high-dose fluconazole, with short-course amphotericin B, for cryptococcal meningitis. AIDS 28: 1363–1370.
19. Loye A, Wilson D, Meintjes G, Jarvis JN, Bicanic T, et al. (2012) Comparison of the early fungicidal activity of high-dose fluconazole, voriconazole, and flucytosine as second-line drugs given in combination with amphotericin B for the treatment of HIV-associated cryptococcal meningitis. Clin Infect Dis 54: 121–126.
20. Bicanic T, Meintjes G, Rebe K, Williams A, Loye A, et al. (2009) Immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis: a prospective study. J Acquir Immune Defic Syndr 51: 130–134.
21. Chotnananupand S, Singhahavanon P, Kaewkungwal J, Chamronsomsakdi K, Manosuthi W (2007) Survival time of HIV-infected patients with cryptococcal meningitis. J Med Assoc Thai 90: 2104–2111.
22. Pinisuttithum P, Tanushahavasdi R, Simpson AJ, Howe PA, White NJ (2001) A prospective study of AIDS-associated cryptococcal meningitis in Thailand treated with high-dose amphotericin B. J Infect 41: 226–233.
23. Manosuthi W, Chotnananupand S, Sunghananparph S (2008) Mortality rate of early versus deferred initiation of antiretroviral therapy in HIV-1-infected patients with cryptococcal meningitis. J Acquir Immune Defic Syndr 48: 508–509.
24. Mills EJ, Bakanda C, Birungi J, Chan K, Ford N, et al. (2011) Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: a cohort analysis from Uganda. Ann Intern Med 155: 209–216.
25. Pongpaisal P, Atamasirikul K, Sunghananparph S (2010) The role of serum cryptococcal antigen screening for the early diagnosis of cryptococcosis in HIV-infected patients with different ranges of CD4 count. J Infect 60: 474–477.
26. Jarvis JN, Govender N, Chiller T, Park BJ, Longney N, et al. (2012) Cryptococcal antigen screening and preemptive therapy in patients initiating antiretroviral therapy in resource-limited settings: A proposed algorithm for clinical implementation. J Int Assoc Physicians AIDS Care. In Press.
27. Rajasingham R, Bouwhee DR (2012) Reconsidering Cryptococcal Antigen Screening in the U.S. Among Persons With CD4<100 cells/µL. Clin Infect Dis. In Press.
28. Rajasingham R, Meya DB, Bouwhee DR (2012) Integrating cryptococcal antigen screening and pre-emptive treatment into routine HIV care. J Acquir Immune Defic Syndr 59: e85–91.
29. WHO (2011) Rapid advice: Diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children. Geneva: World Health Organization. Available: www.wHo.int/hiv/pub/cryptococcoL_disease2011. Accessed: 2012 May 31.
30. Bicanic T, Muzoora C, Brouve AE, Meintjes G, Longney N, et al. (2009) Independent association between rate of clearance of infection and clinical outcome of HIV associated cryptococcal meningitis: an analysis of a combined cohort of 262 patients. Clin Infect Dis 49: 702–709.
31. Jarvis JN, Meintjes G, Rebe K, Williams GN, Bicanic T, et al. (2012) Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS 26: 1105–1113.