Active Surveillance for Papillary Thyroid Microcarcinoma: Challenges and Prospects

Shuai Xue¹, Peisong Wang¹, Zachary A. Hurst², Yi Seok Chang² and Guang Chen¹*

¹ Thyroid Surgery Department, The First Hospital of Jilin University, Changchun, China, ² Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States

Active surveillance (AS) can be considered as an alternative to immediate surgery in low-risk papillary thyroid microcarcinoma (PTMC) without clinically apparent lymph nodes, gross extrathyroidal extension (ETE), and/or distant metastasis according to American Thyroid Association. However, in the past AS has been controversial, as evidence supporting AS in the management of PTMC was scarce. The most prominent of these controversies included, the limited accuracy and utility of ultrasound (US) in the detection of ETE, malignant lymph node involvement or the advent of novel lymph node malignancy during AS, and disease progression. We summarized publications and indicated: (1) US, performer-dependent, could not accurately diagnose gross ETE or malignant lymph node involvement in PTMC. However, the combination of computed tomography and US provided more accurate diagnostic performance, especially in terms of selection sensitivity. (2) Compared to immediate surgery patients, low-risk PTMC patients had a slightly higher rate of lymph node metastases (LNM), although the overall rate for both groups remained low. (3) Recent advances in the sensitivity and specificity of imaging and incorporation of diagnostic biomarkers have significantly improved confidence in the ability to differentiate indolent vs. aggressive PTMCs. Our paper reviewed current imagings and biomarkers with initial promise to help select AS candidates more safely and effectively. These challenges and prospects are important areas for future research to promote AS in PTMC.

Keywords: active surveillance, papillary thyroid microcarcinoma, imaging, biomarker, recurrence

INTRODUCTION

In an early era of medicine, cancer was diagnosed at advanced and incurable stages due to poor diagnostic technologies and limited therapeutic options. High mortality from cancer evoked fear and promoted “early detection and curative treatment” as the holy grail for oncologists (1). Improved technology shifted cancer diagnosis to earlier time-points at less advanced stages, the so called “stage migration.” Consequently, detection of sub-clinical small cancers became feasible (1, 2). Attributable to improvements in early detection and subsequent increased the number of novel diagnoses, the incidence of localized, in situ, cancers (particularly thyroid, melanoma, and kidney) doubled or tripled between 1975 and 2005 according to SEER database (https://seer.cancer.gov/). Despite the increased incidence, thyroid cancer mortality remains stable (3). Moreover, owing to indolent behavior and favorable prognosis of these cancers, high frequency of occult
Microcarcinoma in autopsy studies has been also reported (4–9). These evidence indicated that doctors were diagnosing and treating many inert cancers, which would never cause any harm or threaten patient’s lives even if left untreated.

Concerns about overdiagnosis and overtreatment lead to the introduction of active surveillance (AS) for indolent cancers, such as low-risk prostate cancer and papillary thyroid cancer, whose 5-year survival rates approached 100% (10). AS has become a routine treatment strategy for localized prostate cancer (11–13). A randomized controlled trial (ProtecT Trial) with median 10-year follow up reported prostate-cancer-specific-mortality was low among different treatment groups (AS, Surgery and Radiotherapy) and no significant difference existed in overall survival among the three treatment strategies. “Low risk” prostate cancer was defined as clinical stage T1-T2a (physical examination and imaging), Gleason Score ≤ 6 (biopsy), and prostate specific antigen <10 ng/mL (blood test) (14). To date, the most comprehensive study of AS in papillary thyroid microcarcinoma (PTMC) was conducted by the Kuma hospital in Japan. In their prospective trial, 8% of 1,235 PTMC patients demonstrated tumor enlargement ≥3 mm and 3.8% demonstrated novel lymph node metastases (LNMs) at 10-year follow-up (15). While prognosis for both the immediate surgery and AS cohorts remained excellent, there were significantly less unfavorable events (mainly surgery complications) and medical cost in AS group patients (15). Thus, an increasing number of low-risk PTMC patients in Kuma hospital chose AS as their initial management strategy (16). Per the Kuma hospital criteria, “low risk” PTMC was defined as: no N1 and M1; no sign or symptom of invasion to the recurrent laryngeal nerve (RLN) or trachea; no high-grade malignancy in cytology. In contrast to prostate cancer, whose 5-year survival rates approached 100% (17), the diagnostic accuracy of ultrasound (US) alone for gross ETE in PTMC is low (18). However, this suggestion was contested by doctors from United Kingdom, United States, China, and Italy, which meant AS was not equally accepted by all physicians around the world. Clinicians showed little acceptance of AS because they believed evidence to support AS in PTMC was insufficient (19). In contrast to prostate cancer, thyroid cancer patients have better prognoses and lower mortality. However, the utility of AS in thyroid cancer remains controversial. Patients and clinicians alike worry delaying immediate treatment, as would be indicated by AS, may result in more extensive surgical intervention should substantial disease progression occur from the time of initial diagnosis. To address these concerns, it is essential to critically evaluate the ability of diagnostic imaging and biomarkers to accurately stratify risk in PTMC patients.

Diagnostic Accuracy of Preoperative US

Extrathyroidal Extension (ETE)

ETE, defined as tumor spread outside of the thyroid gland and into the surrounding tissues, occurs in up to 30% of differentiated thyroid cancer cases (19–23). Minimal ETE, detectable only on histological examination, was not a risk factor for disease specific survival and disease related mortality. Gross ETE, or macroscopic ETE, predicted increased recurrence and mortality (24). Thus, the general consensus is to consider gross ETE as an absolute indication for total thyroideectomy and administration of postoperative radioactive iodine (25). Differentiating minimal from gross ETE is essential in the selection of candidates for AS, however, to date, there is no reliable data to evaluate the diagnostic accuracy of ultrasound (US) alone for gross ETE in PTMC. As shown in Table 1, several studies assessed diagnostic ability of US for ETE (minimal and gross) in PTC or PTMC (26–33). The sensitivity and specificity of US ranged from 25 to 100% and from 13 to 93%, respectively. The huge variation in accuracy of US among different studies may result from: ①: different percentage of minimal and gross ETE; ②: different diagnostic criteria of US; and ③: different levels of experience of the US technicians. Furthermore, we extracted 9 cases of T4 PTC patients from 5 articles and found that only 1 patient was diagnosed correctly by US, as shown in Table 2 (30, 34–37). That indicates US alone, which is dependent on the experience of the technician and interpreting physician, can’t be used to reliably diagnose gross ETE in PTMC.

Tracheal and RLN invasiveness are the most commonly observed gross ETE. Consequently, the Kuma hospital elected to implement “no signs or symptoms of invasion to RLN or trachea” as their selection criteria for AS in PTMC (15). In 2005, a study from Kuma hospital demonstrated US could diagnose tracheal invasion of PTC with extremely favorable sensitivity, specificity, and accuracy of 91, 93, and 93%, respectively (27). Moreover, Ito from Kuma hospital diagnosed tracheal invasion from low-risk PTMC based on the angles between tumor and tracheal wall with 100% sensitivity and 94.5% specificity, while diagnosis of RLN invasion was based on whether the normal rim of the thyroid was clearly present in the direction of RNL with 100% sensitivity and 90.3% specificity. However, 841 (74%) low-risk PTMC patients in this study were diagnosed with help of plain neck computed tomography (CT) because of uncertainty in US imaging. A study enrolled 377 PTC patients demonstrated the combination of US and CT scan decreased the false negative and false positive rates, improving ETE prediction accuracy. In a subgroup of PTMC, the combination of US and CT features also increased positive predictive value (PPV) remarkably (31). Choi et al. demonstrated that contrast-enhanced CT imaging correctly diagnosed a PTC patient as T4, while US alone would have categorized the patient as T3. However, they indicated the combined use of contrast-enhanced CT imaging and US did not improve accuracy for the diagnosis of minimal ETE in PTMC patients (35).
Currently, there are very few studies reporting RLN invasion in PTMC, presumably due to the low incidence of RLN invasion in PTMC. Ito et al. found only 9 of 1,143 PTMC patients with RLN invasion, all 9 of whom had a tumor diameter of 7 mm or larger. Consequently, Ito et al. concluded tumors of <7 mm in their largest diameter were unlikely to have RLN invasion. But PTMC was derived from abnormal follicular epithelial cell which meant it could be located anywhere within the thyroid. Small PTMCs (<5 mm) which invade RLN were more likely located in the dorsal part of thyroid. Inaccurate identification for boundaries of small PTMCs and dorsal membrane of thyroid by US may lead to misdiagnosis of gross ETE. Due to limitations in US at the time of evaluation, ETE in these patients was incorrectly diagnosed. Due to limitations in diagnostic ability for larger metastatic lymph nodes compared to micrometastases. The benefit of treating incidentally identified micro-metastases are not well-demonstrated. Consequently, the American Thyroid Association (ATA) recommended fine needle aspiration (FNA) only for suspicious cervical lymph nodes larger than 8–10 mm (25). Among the articles we summarized in Tables 3–5 studies focused on metastatic lymph nodes larger than 8–10 mm (26, 35, 37, 50, 52). However, the sensitivity of US for diagnosing CLNM remained low (26–53.2%). US didn’t show any advantages in diagnostic ability for larger metastatic lymph nodes compared with the micrometastases.

Shown in Figure 1 and Table 4, standalone CT imaging, or CT combined with US remarkably increased CLNM and LLNM diagnostic sensitivity and accuracy (35, 42, 43, 48, 50). In Choi’s study which focused on metastatic lymph nodes larger than 10 mm, combination of US and CT increased sensitivity of CLNM from 53.2 to 73%, and LLNM from 93.9 to 95.9% (35). A separate prospective study from United States demonstrated that the combination of US and CT increased sensitivity of detecting metastatic central and lateral lymph node significantly to 54, 97%, respectively. Accordingly, they suggested combination of US and CT could provide reliable preoperative macroscopic nodal metastasis information to design rational nodal surgery in PTC patients (50).

Lymph Node Metastases

LLNM to the central and lateral compartments are common occurrences in PTC, and increase the rate of loco-regional recurrence and mortality, especially among old patients (38). Nearly 80% of PTC patients had micrometastatic lymph nodes on postoperative pathologic examination while 30% had clinical lymph nodes on initial presentation (39, 40). However, as shown in Table 3, the accuracy of preoperative US for diagnosing metastatic lymph nodes is low (26, 35, 36, 41–52). Appropriate selection of candidates for AS requires high sensitivity in order to prevent the enrollment of higher-risk PTMC patients. To predict central lymph node metastases (CLNM), sensitivity of US ranged from 22.6 to 55%, meaning nearly half of CLNM were not correctly diagnosed. This is perhaps due to the difficulty in detecting metastatic lymph nodes in the retropharynx, superior mediastinum, and deep trachea-esophageal groove. In contrast to CLNM, US sensitivity to detect lateral lymph node metastases (LLNM) was much better (62 to 100%). Of note, micrometastases are less important clinically compared to macrometastases. The benefit of treating incidentally identified micro-metastases are not well-demonstrated. Consequently, the American Thyroid Association (ATA) recommended fine needle aspiration (FNA) only for suspicious cervical lymph nodes larger than 8–10 mm (25). Among the articles we summarized in Tables 3–5 studies focused on metastatic lymph nodes larger than 8–10 mm (26, 35, 37, 50, 52). However, the sensitivity of US for diagnosing CLNM remained low (26–53.2%). US didn’t show any advantages in diagnostic ability for larger metastatic lymph nodes compared with the micrometastases.

TABLE 1 Diagnostic accuracy of preoperative ultrasound for extrathyroidal extension in thyroid cancer.

References	Country	Study	Patients
Shimamoto et al.	Japan	SR	35 of 77 with ETE (minimal and gross)
Tomoda et al.	Japan	SR	13 of 509 with TI
Kwak et al.	South Korea	SR	89 of 221 with ETE (N/A)
Kim et al.	South Korea	SR	67 of 75 with ETE (minimal and gross)
Lee et al.	South Korea	SR	174 of 377 with ETE (N/A)
Lee et al.	South Korea	SR	275 of 568 with ETE (minimal and gross)
Moon et al.	South Korea	SR	26 of 105 with EFI
Kamaya et al.	USA	SR	16 of 62 with ETE (minimal and gross)

Criteria	SE (%)	SP (%)	PPV (%)	NPV (%)	AC (%)
A	80	73.8	71.8	81.6	76.6
B					
C	91	93	25	99	90
D	65.2	81.8	70.7	77.7	N/A
E	78.5	79.5	46.8	94.1	79.3
F	66.1	65.1	72.2	58.3	N/A
G	83.3	68.9	71.6	81.5	75.9
H	46.2	97.5	85.7	84.6	84.8
I	25	93	57	78	N/A

Criteria category: A: focal bulging out or disruption of the thyroid capsule by tumor or more than 25% of perimeter of the tumor was abutting the thyroid capsule; B: vessels extending to or from the nodule were seen beyond the capsule on either color or power Doppler images; C: the absence of a clear adventitia, dilatation of the cartilaginous space or tumor extension into the space, or irregularity of the tracheal mucosa; D: loss of normal esophageal layer by tumor; the tumor was in contact with >180° or more of the circumference of the vessel and tumor invasion into the vessel lumen or a tumor occupying the tracheal esophageal groove; E: the loss of echo-genic perithyroidal fat tissue by tumor; SR, single center retrospective; ETE, extrathyroidal extension; TI, trachea invasion; EFI, extrathyroidal fat invasion; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value; AC, accuracy; N/A, not available.

TABLE 2 Diagnostic accuracy of preoperative ultrasound for pathologic T4 papillary thyroid carcinoma.

References	Country	Study	T4 Patients	Criteria	US accuracy
King et al.	Hong Kong	SP	3/14 of PTC	A	0/3
Choi et al.	South Korea	SR	1/299 of PTC	B	0/1
Park et al.	South Korea	SP	1/94 of PTC	B,C	0/1
Choi et al.	South Korea	SR	1/722 of PTC	B	1/1
Lee et al.	South Korea	SR	3/568 of PTC	B	0/3

Criteria category: A: poorly defined margin with heterogeneous echogenicity in adjacent fat or muscle or tumor invasion into the lumen; B: focal bulging out or disruption of the thyroid capsule by tumor or more than 25% of perimeter of the tumor was abutting the thyroid capsule; C: tumor diameter; SP, single center prospective; SR, single center retrospective; PTMC, papillary thyroid carcinoma; US, ultrasound.
TABLE 3 | Diagnostic accuracy of preoperative ultrasound for metastatic lymph nodes in thyroid cancer.

References	Country	Study	Patients	Criteria	Compartment	SE (%)	SP (%)	PPV (%)	NPV (%)	AC (%)
Shimamoto et al.	Japan	SR	49 N1 of 77 PTC	A,B	CLNM, LLNM	36.7	89.3	85.7	44.6	55.8
Jeong et al.	South Korea	SP	46 positive LNs of 312 LNs	A	CLNM, LLNM	53.6	97.9	73.7	95	N/A
Kim et al.	South Korea	SR	53 N1 of 165 PTC	A	CLNM	38	93	77	70	71
Sugitani et al.	Japan	SP	263 N1 of 361 PTC	A	CLNM	29	91	82	47.3	48.3
Ahn et al.	South Korea	SR	117 positive levels of 183 cervical level	A	CLNM	55	69	77	44	60
Choi et al.	South Korea	SR	119 N1 of 299 PTC	A,B	CLNM	53.2	79.8	60.8	74.3	69.9
Park et al.	South Korea	SR	34 N1 of 94 PTC	A	CLNM	22.6	98.6	87.5	74.5	70.1
Choi et al.	South Korea	SR	238 N1 of 589 PTC	A	LLNM	76.2	75	72.7	78.3	75.6
Lee et al.	Japan	SR	254 positive LNs of 331 LNs	A	CLNM, LLNM	47.2	94.8	90.4	63.5	70.6
Hwang et al.	USA	SR	30 N1 of 68 PTC	A,B	CLNM	30	86.8	64.3	N/A	N/A
Lee et al.	South Korea	SR	121 N1 of 252 PTC	A	LLNM	93.8	80	76.5	94.1	N/A
Yoo et al.	South Korea	SR	51 positive LNs of 124 LNs	A	CLNM	76.4	69.9	63.9	81	72.6
Lesnik et al.	USA	SP	162 PTC	A,B	CLNM	26	95	78	66	N/A
Lee et al.	South Korea	SR	136 N1 of 368 PTC	A	LLNM	39	88.4	66.3	71.2	70.1
Khokhar et al.	USA	SR	104 N1 of 227 PTC	A,B	CLNM	37.5	90.2	76.5	63.1	66.1

Criteria category: A: heterogeneous inner structure, loss of fatty hilum, rounded shape, taller-than-wide shape, cystic changes, microcalcifications, and peripheral vascularity; B: Lymph node size >6 mm, or 8 mm, or 1 cm; SR, single center retrospective; SP, single prospective; LN, lymph node; PTC, papillary thyroid carcinoma; CLNM, central lymph node metastasis; LLNM, lateral lymph node metastasis; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value; AS: accuracy; N/A, not available.

The limitations of US to detect thyroid nodule and cervical lymph nodes were operator-dependent, presumably due to difficulty in evaluating deep anatomic structures such as mediastinum, parapharyngeal, retropharyngeal and infraclavicular regions, acoustically shadowed by bone, calcification or air (66). As a result, the 2015 ATA guideline recommended preoperative CT as an adjunct to US for patients with large or invasive primary tumor or US suspected advanced disease (25). Nevertheless, is it possible to diagnose gross ETE with virtually 100% sensitivity, as reported by the Kuma hospital? Could we diagnose cervical macroscopic LNM with decent sensitivity only by US? As summarized above, it may be possible to approach this high sensitivity through the combination of diagnostic CT and US imaging, which demonstrated significant improvements in diagnostic performance compared to US alone.

Radiologist vs. Surgeon Performed US
Multiple studies demonstrated that radiologist-performed USs were less accurate and provided inadequate preoperative staging when compared to surgeon-performed USs (67–70). Nearly half of patients received incorrect initial surgery with high local recurrence when an operation decision was made only based on radiologist-performed USs. Denise Carneiro-Pla reported surgeon-performed US changed the therapeutic strategy of 45% thyroid cancer patients through the accurate identification of CLNM/LLNM and thyroid intrathoracic extension (69). Rosebel Monteiro demonstrated that metastatic lymph nodes were diagnosed more frequently by CT imaging than US (70.8 vs. 54%). Moreover, surgeon-performed US was only able to detect 45% of metastatic lymph nodes in a cohort comprised of patients with LLNM (67). In the Kuma hospital, US was performed by specially trained sonographers and retrospectively reviewed by surgeons (15). Thus, it is extremely important to note that the appropriate selection of low-risk PTMC patients for AS is limited by the experience, or inexperience, of diagnosing physicians. Addressing this issue means improvements in both imaging technologies and in the education of physicians play important roles in AS candidate selection.

NOVEL LNM DURING AS
Sixteen percent of AS patients will require surgical intervention due to disease progression (71, 72). However, despite disease progression, prognosis in these patients remains remarkably...
Diagnostic sensitivity was improved by CT alone or combination of US and CT for CLNM (A) and LLNM (B). Overall sensitivity of US and/or CT for LLNM was higher than for CLNM. Among Choi (43) and Lesnik (50) studies which only evaluated cervical lymph nodes larger than 10 mm, the combination of US and CT also provided highest sensitivity. The sensitivity for diagnosis of CLNM and LLNM by combination of US and CT was not evaluated in Ahn study (35).

TABLE 4: Diagnostic accuracy of preoperative ultrasound and computed tomography for metastatic lymph nodes in thyroid cancer.

Study	Criteria	Compartment	SE (%)	SP (%)	PPV (%)	NPV (%)	AC (%)
Author (year): Kim et al. (42) Country: South Korea Type: SR Patient: 53 N1 of 165 PTC	US: A	CLNM	38	93	77	70	71
Author (year): Ahn et al. (35) Country: South Korea Type: SR Patient: 117 of 183 cervical levels	US: A	CLNM	55	69	77	44	60
Author (year): Choi et al. (43) Country: South Korea Type: SR Patient: 119 N1 of 299 PTC	US: A, B	CLNM	53.2	79.8	60.8	74.3	69.9
Author (year): Lee et al. (45) Country: South Korea Type: SR Patient: 121 N1 of 252 PTC	US: A	CLNM	23	97	81	72	73
Author (year): Lesnik et al. (50) Country: USA Type: SP Patient: 162 PTC	US: A, B	CLNM	26	95	78	66	N/A

US criteria category: A: heterogeneous inner structure, loss of fatty hilum, rounded shape, taller-than-wide shape, cystic changes, microcalcifications, and peripheral vascularity; B: Lymph node size <1 cm; CT criteria category: C: round shape, calcification, cystic or necrotic change, heterogeneous enhancement, and strong enhancement without hilar vessel enhancement; D: Short axis >1 cm in axial plane; SR, single center retrospective; SP, single prospective; PTC, papillary thyroid carcinoma; US, ultrasound; CT, computed tomography; CLNM, central lymph node metastasis; LLNM, lateral lymph node metastasis; SE, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value; AS, accuracy; N/A, not available.
Consequently, immediate surgery will not prevent metastases to occur prior to, or at a very early stage of, PTMC diagnosis. Liberatore et al. (2017) reported neck lymph node(s) and these patients will have recurrence. A study from意大利 They found novel LNM appeared in cervical lymph nodes during follow-up after surgery (75). PTC recurs much more frequently at central or lateral lymph node than thyroid bed after surgery (55, 78, 79), suggesting that recurrent lymph nodes of the neck had an early dissemination event prior to excision of the primary PTC.

Microscopic metastasis in regional lymph nodes was present in up to 63.83% of PTMC patients, although the recurrence rate was much lower to 1–5% (17, 80). The mechanism of lymph node recurrence after initial surgery without prophylactic lymph node dissection was possibly the outgrowth of micro-metastatic deposits into overt tumors. Whether or not a population of microscopic tumor cells can transform into clinically apparent lymph nodes may depend on not only the intrinsic genetic alterations of the cancer cells themselves but also the state of the host environment (81). It is well-known that both the local tissue microenvironment and the systemic physiological environment play significant roles in regulating dormant disseminated tumor cells into gross metastasis. Additionally, the tumor microenvironment can change during multiple steps of tumor progression and metastases, which could either inhibit or facilitate the progression of microscopic lymph nodes to clinically apparent lymph nodes (82–84). Perhaps, however, there exists a connection between persistent tumor foci in the thyroid and the progression of LNM from microscopic to clinically apparent.

We summarized 13 PTMC cohorts, each containing more than 200 patients, who received immediate surgery, shown in Table 5 (53–65). We hypothesize, that AS patients should have a lower rate of novel clinically apparent metastatic lymph nodes than the rate of recurrent lymph nodes in PTMC cohort with gross ETE and/or palpable lymph nodes. However, as shown in Figure 2, we found novel LNM during AS was not less than lymph node recurrence rate among 6 of 11 PTMC cohorts with median follow-up time <10 years. Meanwhile, 5 of these 11 cohorts had relatively higher lymph node recurrence rates than AS group because all of these cohorts had patients with gross ETE and clinical involved lymph nodes. Among these 13 PTMC cohorts, there were two studies which enrolled low-risk PTMC patients without gross ETE or clinically apparent lymph nodes. Their lymph node recurrence rates were 1.2 and 0.7% with 5.4- and 5.8-year follow up, which were less than 1.5 and 2.1% of novel lymph node appearance rate with 5- and 6.2-year observation time in AS cohort from Kuma hospital (64, 65, 72, 76). With limited data, the rate of clinical apparent LNM in low-risk PTMC patients under AS seems to be a little higher than patients with immediate surgery. Considering cofounders between different patient’s cohorts, this preliminary result needs to be supported and proved by more evidence in the future. Oda et al. compared clinicopathological and prognostic features of low-risk PTMC between AS and immediate surgery groups with a comparable experimental timeline. They found novel LNM appeared in 6 of 1179 AS patients (0.5%), whereas only 2 of 974 (0.2%) patients choosing immediate surgery experienced recurrence in cervical lymph nodes although this difference was not statistically significant (85). A study from Italy which enrolled 312 very low-risk PTMC (No family history of thyroid cancer; No history of head and neck irradiation; Tumor staging: T1 1 cm or less, N0, M0; No extension beyond thyroid capsule; Unifocal; Not aggressive histologic subtype; Not locally invasive) with 6.7-year follow up demonstrated none of the patients had lymph node recurrence (86).

In addition, another study from Kuma hospital found up to 11% of PTMC in cohort of young patients aged 20 to 29 had novel LNM with median 5.5-year follow up (87). If novel LNM in AS group was completely comparable with lymph node recurrence in an immediate surgery cohort, should 11% of low-risk PTMC in 20 s group who underwent immediate surgery have lymph node recurrence after 5.5-year follow up? Patient age was believed to be predictor for novel lymph node appearance during AS (72, 87). However, age was not a risk factor for cervical lymph node recurrence in PTMC patients (79, 88).

In contrast to AS, the benefits of immediate surgery may include: ① A more accurate risk stratification can be made using information gathered from histological or genetic evaluation of a biopsy obtained from surgery, than can be obtained from imaging data alone. ② TSH suppression after surgery would
TABLE 5 | Cervical lymph node recurrence rate in different papillary thyroid microcarcinoma cohorts with immediate surgery.

References	Country	No. of patients	Gross ETE (n, %)	Clinical LN (n, %)	RAI (n, %)	FU (years)	TR (n, %)	LNR (n, %)
Wada et al. (53)	Japan	259	N/A	24 (9.3)	N/A	5.1	6 (2.3)	5 (1.9)
Pelizzo et al. (54)	Italy	403	N/A	260 (60.5)	8.5	6 (1.5)	1 (0.2)	
Hay et al. (55)	USA	900	N/A	155 (17)	17.2	51 (5.7)	36 (4)	
Besic et al. (56)	Slovenia	254	N/A	124 (49)	4.7	7 (2.7)	6 (2.4)	
Mercante et al. (57)	Italy	445	N/A	389 (87.4)	5.3	17 (3.8)	13 (2.9)	
So et al. (58)	South Korea	551	N/A	444 (80.6)	3.4	1 (0.2)	0	
Moon et al. (59)	South Korea	288	N/A	114 (39.6)	6	12 (4.2)	7 (2.4)	
Londero et al. (60)	Denmark	406	N/A	161 (40)	8	15 (3.7)	7 (1.7)	
Lee et al. (61)	South Korea	2014	18 (0.9)	51 (2.5)	11.2	126 (6.3)	98 (4.9)	
Gschwandtner et al. (62)	Austria	1391	N/A	255 (18.3)	7	5 (0.4)	5 (0.4)	
Kim et al. (63)	South Korea	5656	210 (3.7)	N/A	5.1	126 (2.2)	122 (2.2)	
Cecoli et al. (64)	Italy	437	0	152 (38.7)	5.8	6 (1.4)	3 (0.7)	
Kim et al. (65)	South Korea	8676	0	3,863 (44.5)	5.4	139 (1.6)	105 (1.2)	

ETE, extrathyroidal extension; LN, lymph node; RAI, radioactive iodine; FU, follow up; TR, total recurrence; LNR, lymph node recurrence; N/A, not available.

FIGURE 2 | Cervical lymph node recurrence rates (black dots and stars) among 13 different PTMC cohorts and novel LNM rates (red dots) in AS groups. With <10-year follow up, 5 PTMC cohorts had relatively higher lymph node recurrence than novel LNM rates in AS patients because all of these 5 cohorts had small group of PTMC with gross ETE and/or clinical apparent lymph node (detail seen Table 5). The lymph node recurrence rates of “low-risk” cohorts (black stars), which excluded patients with gross ETE and clinical apparent lymph node, were relatively less than novel LNM rates in AS groups.

ETHICAL ISSUES

In 2000, Emanuel et al. argued the most important ethical concerns in clinical trials was “the potential benefits to individuals must outweigh the risks (90).” However, with only US and FNA, we have little prognostic information, with the exception of age and tumor size, to evaluate the safety of AS. Consequently, Stack and Angelos recommended implementing only institutional review board-approved research protocols or surveillance contracts for educating patients, codifying the relationship between clinician and patient, and establishing medicolegal protections (91). But Morris et al. disagreed, instead believing these documents would jeopardize patient autonomy and influence their choice (92). Supporters of AS think higher risk among a small number of patients will and should be balanced by the advantage of avoiding surgery in a larger number of patients (93). However, is it ethical to risk the health of some patients, even a minority, for the greater good? Recently, Dr. Akira estimated the lifetime disease progression probabilities, stratified by patient age, of PTMC during AS, which were 60.3% (20 s), 37.1% (30 s), 27.3% (40 s), 14.9% (50 s), 9.9% (60 s), and 3.5% (70 s) (87). This study provided significant information for AS patients selection. In the future, we need more information from imaging and molecular signatures to provide more accurate risk stratifications of the clinical behavior and the risk for disease progression of PTMC patients during AS.

IMPROVEMENTS IN IMAGING

US

In terms of diagnostic accuracy, 3-dimensional (3D) US outperformed 2-dimensional (2D) US when compared to patients’ final histopathological outcome (94). A single sweep of 3D US provided imaging for reconstruction and overcame the major limitations of 2D US. Kim et al. evaluated 91 thyroid nodules from 85 consecutive patients and compared sensitivity and specificity between 3D and 2D US. They found 3D US had significantly higher sensitivities than 2D in predicting ETE (94). In contrast, a separate study from South Korea reported 3D US with tomographic ultrasound imaging algorithms alone was not superior to real-time 2D US (95). This discrepancy is perhaps attributable to the differences that variable image reconstruction...
parameters have on US interpretation. Slapa et al. summarized the advantages of 3D US as follows: distinct separation between imaging acquisition and analysis, better remote consultation, less operator dependency, and increased diagnostic accuracy (96).

Recently, shear wave elastography (SWE) has emerged to diagnose and predict the pathologic prognostic factors of PTC using quantitative information about thyroid nodule elasticity. It is operator-independent and can display elastograms of estimated tissue stiffness. Yun et al. enrolled 208 PTC patients and found ETE was associated with the elasticity index determined by SWE, and quantification of the elasticity index could accurately predict pathologic ETE (97). Diagnostic accuracy of cervical lymph nodes was also significantly improved by SWE. Woo et al. reported the elasticity indices of SWE were significantly correlated with not only malignant lymph nodes, but also the number, size and ETE of involved lymph nodes. They concluded quantitative SWE could predict pathologic prognostic factors of cervical LNM (98). Azizi et al. evaluated 270 lymph nodes from 236 patients with both conventional US and SWE. Using single shear wave velocity cut off of 2.93 m/s, SWE could improve diagnostic sensitivity and specificity to 92.59 and 75.46%, respectively. Lymph node stiffness measured by SWE is reported to be an independent predictor of malignant lymph node (99). Xu from China also found predictive performance for CLNM in PTC was markedly improved with the combination of conventional US and SWE, which indicated SWE would be a useful tool for treatment planning (100).

CT and MRI

Liu et al. evaluated cervical metastatic lymph nodes using dual-energy spectral CT and found venous phase \(\lambda_{HU} \) (slope of the spectral Hounsfield unit curve) was the best parameter for diagnosis with sensitivity, specificity of 62.0 and 91.1%, respectively. Compared to conventional CT, quantitative assessment with gemstone spectral CT parameters improved accuracy for detecting cervical metastatic lymph nodes of PTC (101). Considering MRI, several studies have reported the apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging (DWI) could be used as a predictor for thyroid cancer aggressiveness (102–104). Hao et al. evaluated the predictive performance of ADC for ETE of PTCs in a cohort of 23 PTMC patients. PTCs with ETE had significant lower median ADC, 5th percentile ADC, and 25th percentile ADC while PTMCs had significant lower ADC only in 5th percentile ADC (102). Another study used DWI histogram analysis of whole tumor ADC to investigate the relationships between ADC parameters with histopathological features like LNM, ETE, Ki-67, and p53. They found ADC mean, ADC max, ADC median, ADC modus, ADC p75, and ADC p90 were all related significantly with p53, which was prognostic marker for thyroid cancer. Moreover, they identified an inverse correlation between ADC max, ADC p90, and Ki-67, which was regarded as predictor for disease progression during AS (105). Importantly, ADC histogram skewness and kurtosis were also identified to be parameters for predicting LNM (104). Meyer et al. demonstrated MRI texture analysis, which was a novel imaging technique derived from extensive data provided by conventional sequences, was a very useful tool to predict histopathological features in thyroid cancer although they only enrolled 13 thyroid cancer patients (4 PTC; 4 FTC; and 5 ATC) (103).

IMPROVEMENTS IN BIOMARKER

BRAF

Braf, as a member of RAF kinase family, served as a growth signal transduction protein kinase. Braf\(^{V600E}\) composed nearly 90% of all somatic mutated Braf and played an important oncogenic role in thyroid tumorigenesis (106). The replacement of valine with glutamate at codon 600 resulted from the substitution of thymine with adenine at nucleotide 1799, then activated its serine/threonine kinase constitutively, leading to further activation of MAPK pathway (107). The downstream effectors of mutated Braf, such as Mek and Erk, will be phosphorylated and take part in thyroid tumorigenesis (106, 107). Moreover, Braf\(^{V600E}\) could promote tumor formation and aggressiveness by regulating the expression of other genes epigenetically, either through hyper- or hypomethylation. The interaction between Braf\(^{V600E}\) and epigenetic alterations, which downregulated tumor suppressor genes (like TIMP3, SLC5A8, DAPK1, RAR\(\beta\)2) and upregulated oncopgenes (like HMGB2 and FGD1), increased tumor cell proliferation and invasion (108, 109).

In 2015, a meta-analysis was performed to investigate the correlation between Braf\(^{V600E}\) and clinical features for PTMC (110). In Li et al., the authors analyzed 3437 PTMC patients across 19 studies after searching PubMed, EMBASE, and the Cochrane library. They found that Braf\(^{V600E}\) mutation was associated with aggressive clinicopathological features like multifocality, ETE, LNM, and advanced stage of PTMC. Consequently, they suggested Braf\(^{V600E}\) could be used as a risk factor for the stratification and management of PTMC (110). Lee et al. predicted gross ETE of PTMC with 100% sensitivity through the use of tumor size, US features, and Braf\(^{V600E}\) mutation status. They categorized US features of the primary tumor into four groups: A: intraparechymal; B, tumor abutting the capsule <50% of diameter; C: tumor abutting >50% of diameter; and D: tumor destroyed the capsule. In a subgroup of Braf\(^{V600E}\)-negative patients, a tumor size of 0.7 cm and US categorizations B and C were cut-off values for gross ETE, with 100% sensitivity, whereas US categorizations A and B as cutoff value had 100% sensitivity for predicting gross ETE in the Braf\(^{V600E}\) mutation positive patients (111). Besides clinical risk features, Chen et al. also found PTMCs with Braf\(^{V600E}\) mutation were more likely to recur (OR 2.09 [95% CI:1.31–3.33]) by a meta-analysis of 2,247 PTMC patients from 4 published studies and 2 institutional cohort primary data (112). Niemeier et al. developed a molecular-pathological score (including superficial tumor location, intraglandular tumor spread/multifocality, tumor fibrosis, and Braf status) to stratify PTMC into different risk groups and successfully predict recurrence rate. In the diagnosis of aggressive PTMC, the combination of histologic features and Braf status increased diagnostic sensitivity from 77 to 96% and specificity from 68 to 80% (113). With mounting evidence, revisions to the ATA guidelines in 2015 began to consider Braf\(^{V600E}\) status as a risk
factor of structural disease recurrence in PTMC patients after initial therapy (25).

However, Miyauchi et al. in the Kuma hospital detected BRAFV600E status in 11 PTMC patients without disease progression, 10 PTMC with tumor size progression, and 5 with novel LNM. The percentage of BrafV600E was 64, 70, and 80% in each group, respectively (114). Consequently, the use of BRAFV600E alone is insufficient to accurately stratify risk in PTMC patients. If using BrafV600E alone as biomarker for selecting AS candidates, nearly 60% of PTMCs who may never have disease progression will be categorized wrongly. Considering high prevalence of BrafV600E mutation among PTMC, BrafV600E alone cannot be used as reliable biomarker for differentiating aggressive PTMC from indolent ones, and identifying potential disease progression cases from stable ones during AS. A possible reason may be that the oncogenic event driving PTMC aggressiveness requires additional mutations acting in conjunction with BRAFV600E and the MAPK signaling pathway (115). Thus, the identification of additional genetic variants, which are less abundant than BRAFV600E, could be important in predicting PTMC aggressiveness.

TERT

Telomerase reverse transcriptase (TERT) is the catalytic protein subunit of telomerase, which can maintain chromosomal integrity and genome stability (116). Malignant cancer cells, which were replicative immortal, required activation of telomerase and regulation of other growth controlling genes, pathways and molecular by TERT (117). First reported in 2013, TERT promoter mutation (C228T and C250T) in thyroid cancer has progressed rapidly in recent 5 years (118). Many studies have demonstrated TERT mutation was associated with more aggressive clinicopathological features of thyroid cancer, such as male gender, ETE, LNM, advanced stage, distant metastasis, recurrence, and mortality (119–122). Two meta-analyses in 2016 investigated clinicopathological significance of TERT promoter mutations in PTC and found the average prevalence of TERT promoter mutation was around 10%. Additionally, PTC patients with TERT promoter mutation displayed more aggressive histopathological features (121, 122). Kim et al. developed an effective risk stratification system using TERT promoter mutation status that reliably predicted structural recurrence and mortality in DTC patients (119).

Of note, the co-occurrence of Braf and TERT promoter mutations enhanced the predictive ability for prognosis of PTC. Moon et al. performed a meta-analysis including 13 studies with 4,347 PTC patients and found the co-occurrence of Braf and TERT promoter mutations was more significantly associated with aggressive clinicopathological features than either mutation alone (123). Accordingly, they believed these two mutations had a synergistic effect on prognosis and were useful in risk stratification of PTC. Liu et al. categorized 1,051 PTC patients according to mutation status of Braf and TERT promoter and demonstrated deaths per 1,000-person years in PTC patients with neither mutation, BrafV600E alone, TERT mutation alone, or both mutations were 0.80, 3.08, 6.62, and 29.86, respectively. Simple 4-genotype classification can predict disease-specific mortality accurately (124). Recently, this synergistic effect of Braf and TERT promoter has been demonstrated as BrafV600E → MAPK pathway → FOS → GABP → TERT signaling/transcription axis in human cancers (125). Firstly, mutated BrafV600E activated MAPK pathway, which phosphorylated FOS to be an active transcription factor for activating the GABPB promoter. Then increased expression of GABPB and formation of GABPA-GABPB complex activated the mutant TERT promoter. In this axis, phosphorylated FOS played important oncogenic bridging role between BrafV600E and TERT promoter mutations (125).

However, de Biase et al. detected TERT promoter mutations with next-generation sequencing in 431 PTMC patients assembled from six different institutions. They found the prevalence of TERT promoter mutations among PTMC was only 4.7%, less than the 10% reported in PTC patients. Moreover, the presence of TERT promoter mutations was not associated with unfavorable clinicopathological features (126). Also in Miyauchi’s study, no PTMC patients undergoing AS were positive for TERT promoter mutations, even in a subgroup of patients with increased tumor sizes and/or novel lymph node appearance (114). Therefore, with regard to its low prevalence in PTMC, TERT promoter mutations are unlikely to be reliable molecular markers of tumor aggressiveness/progression.

MicroRNA

MicroRNA is defined as a group of small endogenous, single stranded non-coding RNAs of 19–25 nucleotides that can exclusively regulate their proprietary mRNA expression (127). The miRNA-221-222 cluster, downstream of the MAPK pathway, played an important role in tumorigenesis and aggressiveness for PTC (128). Located on the X chromosome, miRNA-221-222 cluster was regulating PTC formation and invasion through negative regulation of p27 (129). Multiple studies have demonstrated that upregulated miR-221-222 cluster was associated with more unfavorable clinicopathological features, treatment resistance, increased recurrence rate, and worse prognosis (130–133). Because of that, the miRNA-221-222 cluster was considered as a potential biomarker for aggressive PTC. Additionally, miRNA-146b is another well-studied and overexpressed microRNA in PTC. Its expression level was positively associated with tumor aggressiveness and poor prognosis (131, 133). Study has shown miRNA-146b functioned in PTC through binding with the 3’UTR region of retinoic acid receptor beta (RARβ) (134). Moreover, advanced PTC patients could receive benefit from retinoic acid (a RARβ ligand) treatment. Retinoic acid treatment resulted in tumor shrinkage and increased radioiodine uptake in 38% and 26% of patients, respectively (135). These studies suggested that miRNA-146b might play important role in thyroid cancer initiation and progression. In addition to the two microRNAs discussed above, there are also other microRNAs which have been identified to be associated with tumor aggressiveness (especially ETE, LNM and distant metastasis) including miRNA135-b, 146-a, 146-5p and several others (Table 6) (129, 136–155).

The upregulation of miRNA-221-222 cluster and miRNA-146b in BRAFV600E positive tumors, was suggested to be attributable to activation via the NF-κB pathway (156, 157).
Braf^{V600E} PTMC patients, it remains unknown what molecular events trigger disease progression during AS. Would it be possible to increase our ability to predict PTMC disease progression by screening FNA biopsies for clinically actionable somatic mutations and/or the expression of miRNAs?

Serum Circulating Biomarkers

Compared with inherent instability of mRNA, circulating miRNA is subjected to nuclease activity and resistant to environment. Because of that, miRNA, which can be readily detected in bloodstream, is believed as a potential ideal candidate serum biomarker for PTC (158). Yu et al. detected serum miRNA expression by Solexa sequencing and found increased miR-151-5p, detected in the serum, was associated with LNM of PTC (159). However, the evidence of using circulating miRNA to predict disease progression of PTMC during AS was absent. In addition, a prospective observational pilot study found circulating myeloid-derived suppressor cells, which were detected preoperatively by novel flow cytometry-based immunoassay, were positively associated with a higher TNM stage and disease recurrence (160). Lubitz et al. reported they only detected 63% circulating Braf^{V600E} mutation by novel RNA-based blood assay compared with conventional tissue assays on surgical specimens. They concluded detecting circulating Braf^{V600E} could be a surrogate for conventional FNA detection (161). In contrast, a separate study found only 37.3% of PTC patients with locally advanced and metastasis were detected to have circulating Braf^{V600E} mutation. These patients didn’t get any benefits from analysis of circulating tumor DNA (162). Accordingly, there are several challenges about the application of serum circulating biomarkers for PTMC which include: ① Molecular FNA diagnostics with biomarkers have high concordance with pathological results. In contrast, serum circulating biomarkers demonstrate only partial concordance with FNA determined pathology. Consequently, circulating biomarkers from blood are not superior to FNA biopsies in predicting aggressiveness. ② All studies about detecting serum circulating biomarkers enrolled cancer patients with advanced stage or distant metastasis. However, the serum circulating biomarkers identified in high-risk patients may not be detectable in low-risk PTMC patients. ③ Genetic background and alternations in circulating cells may be different with those in the primary tumor. Some cancer cells derived from the primary tumor may undergo changes that facilitate blood vessel invasion and then turn to circulating cells. ④ Other malignant tumors shared the same circulating miRNA or DNA with thyroid cancer. Differentiating where these circulating biomarkers came from is difficult.

TABLE 6 | Tissue microRNA as predictor for aggressiveness in papillary thyroid carcinoma.

MicroRNA	Change in APTC	ETE	LNM	DM	Target molecular	References
MiR-126-3p	↓	*	ADAM9,SLC7A5	(136)		
MiR-130b	↓	*	N/D	(137)		
MiR-135b	↑	*	N/D	(138)		
MiR-146a	↑	*	RARβ,PRKCE	(137, 139–142)		
MiR-146b	↑	*	KIT, SMAD4, ZNF33,RAK1, RARβ	(137–140, 142–142)		
MiR-16	↓	*	ITGA2	(145)		
MiR-199b-5p	↑	*	N/D	(149)		
MiR-221	↑	*	p27,TIMP3	(129, 132, 137, 138, 143, 145, 150)		
MiR-222	↑	*	p27,PPP2R2A,TIMP3	(129, 132, 137, 138, 143, 145, 151)		
MiR-2861	↑	*	N/D	(152)		
MiR-30a-3p	↓	*	N/D	(149)		
MiR-34b	↓	*	N/D	(137)		
MiR-363-3p	↓	*	PIK3CA	(152)		
MiR-451	↑	*	N/D	(152)		
MiR-613	↓	*	FN1	(145)		
MiR-622	↓	*	VEGFA	(154)		

APTC, aggressive papillary thyroid carcinoma; ETE, extrathyroidal extension; LNM, lymph node metastases; DM, distant metastases; N/D, not determined. ↑, up-regulated in aggressive PTC. ↓, down-regulated in aggressive PTC. *, related with aggressive features; **Related with central and lateral neck lymph node metastases.

TABLE 7 | Long Non-coding RNA as predictor for aggressiveness in papillary thyroid carcinoma.

LncRNA	Change in APTC	ETE	LNM	DM	Target molecular	References
ATB	↑	*	N/D	(167)		
CASC2	↓	*	N/D	(168)		
CNALPTC1	↑	*	miR-30 family	(169)		
GAS8-AS1	↑	*	N/D	(170)		
HIT00218960	↑	*	HMGA2	(165)		
HOXD-AS1	↑	*	N/D	(171)		
LINCO0271	↑	*	N/D	(166)		
LINCO1061	↑	*	mR-4316	(172)		
LOC100507661	↑	*	N/D	(163)		
MALAT1	↑	*	N/D	(173)		
MEG3	↓	*	Rac1	(174)		
NONHSAT037832	↓	*	N/D	(175)		
NONHSAT076754	↑	*	N/D	(176)		
NONHSAT129183	↑	*	N/D	(177)		
NONHSAT076747	↑	*	N/D	(178)		
NONHSAT122730	↑	*	N/D	(179)		
NR_08575.1	↑	*	N/D	(179)		
PVT1	↑	*	IGF1R	(180)		
RP11-402L8.1	↑	*	N/D	(181)		
XLOC_061122	↑	*	N/D	(182)		
XLOC_006074	↑	*	N/D	(182)		

APTC, aggressive papillary thyroid carcinoma; ETE, extrathyroidal extension; LNM, lymph node metastases; DM, distant metastases; N/D, not determined. ↑, up-regulated in aggressive PTC. ↓, down-regulated in aggressive PTC. *, related with aggressive features.
Besides genetic alternations, LncRNAs, which is defined as a class of RNAs containing over 200 nucleotides, play important roles. A meta-analysis of TCGA and GEO databases (183) indicated that LNC00271 was identified as an independent risk factor for ETE, LNM, TNM stage, and recurrence (184). Other LncRNAs, which related with aggressiveness of PTC, were also identified and summarized in Table 7 (164, 166–183). Epigenetic changes, particularly methylation of DAPK, RECS, TIMP3, CDH1, FGFR2 were also reported to be associated with aggressive behavior of PTC (184). Whether we can predict the aggressiveness of PTMC using these biomarkers derived from PTC patients remains to be investigated.

REFERENCES
1. Klutz L. Cancer overdiagnosis and overtreatment. Curr Opin Urol. (2012) 22:203–9. doi: 10.1097/MOU.0b013e32835259aa
2. Esserman LJ, Thompson IM Jr, Reid B. Overdiagnosis and overtreatment in cancer: an opportunity for improvement. JAMA (2013) 310:797–8. doi: 10.1001/jama.2013.108415
3. Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. (2010) 102:605–13. doi: 10.1093/jnci/djq099
4. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A "normal" finding in Finland. A systematic autopsy study. Cancer (1985) 56:531–8. doi: 10.1002/1097-0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2-3
5. Kovács GL, Gonda G, Vadász G, Ludmány E, Uhrin K. Epidemiology of thyroid microcarcinoma found in autopsy series conducted in areas of different iodine intake. Thyroid (2005) 15:152–7. doi: 10.1089/thy.2005.15.152
6. Martínez-Tello FJ, Martinez-azcaba R, Fernandez-diaz R, Lassooria C, Ballestín-carvallal C. Occult carcinoma of the thyroid. A systematic autopsy study from Spain of two series performed with two different methods. Cancer (1993) 71:4022–9. doi: 10.1002/1097-0142(19930615)71:12<4022::AID-CNCR2820711236>3.0.CO;2-O
7. Stamatiou K, Alevizos A, Agapitos E, Sofras F. Incidence of impalpable thyroid lesions in Greek male population: an autopsy study. J Pathol Transl Med. (2013) 50:278–86. doi: 10.1002/cncr.27787
8. Welch HG, Black WC. Using autopsy series to estimate the disease “reservoir” for ductal carcinoma in situ of the breast: how much more breast cancer can we find? Ann Intern Med. (1997) 127:1023–8. doi: 10.7326/0003-4819-127-11-199712010-00014
9. Yamamoto Y, Maeda T, Izuimi K, Otsuka H. Occult papillary carcinoma of the thyroid. A study of 408 autopsy cases. Cancer (1990) 65:1173–9. doi: 10.1002/1097-0142(19900301)65:5<1173::AID-CNCR2820650524>3.0.CO;2-2
10. Haymart MR, Miller DC, Hawley ST. Active surveillance for low-risk cancers - a viable solution to overtreatment? N Engl J Med. (2017) 377:203–6. doi: 10.1056/NEJMep1703787
11. Bul M, Zhu X, Valdagni R, Pickles T, Kakehi Y, Rannikko A, et al. Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol. (2013) 63:597–603. doi: 10.1016/j.eururo.2012.11.005
12. Tosoian JJ, Carter HB, Lepor A, Loeb S. Active surveillance for prostate cancer: current evidence and contemporary state of practice. Nat Rev Urol. (2016) 13:205–15. doi: 10.1038/nruro.2016.45
13. Welty CJ, Cowan JE, Nguyen H, Shinohara K, Perez N, Greene KL, et al. Extended followup and risk factors for disease reclassification in a large active surveillance cohort for localized prostate cancer. J Urol. (2015) 193:807–11. doi: 10.1016/j.juro.2014.09.094
14. Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med. (2016) 375:1415–24. doi: 10.1056/NEJMoa1606220
15. Miyauchi A, Ito Y, Oda H. Insights into the management of papillary microcarcinoma of the thyroid. Thyroid (2018) 28:23–31. doi: 10.1089/thy.2017.0227
16. Ito Y, Miyauchi A, Kudo T, Oda H, Yamamoto M, Sasai H, et al. Trends in the implementation of active surveillance for low-risk papillary thyroid microcarcinomas at Kuma Hospital: gradual increase and heterogeneity in the acceptance of this new management option. Thyroid (2018) 28:488–95. doi: 10.1089/thy.2017.0448
17. Leboulleux S, Tuttle RM, Pacini F, Schlumberger M. Papillary thyroid microcarcinoma: time to shift from surgery to active surveillance? Lancet Diabetes Endocrinol. (2016) 4:933–42. doi: 10.1016/s2213-8587(16)30180-2
18. Nickel B, Brito JP, Bazzart A, Jordan S, Moynihan R, McCaffrey K. Clinicians’ views on management and terminology for papillary thyroid microcarcinoma: a qualitative study. Thyroid (2017) 27:661–71. doi: 10.1089/thy.2016.0483
19. Chow SM, Law SC, Chan JK, Au SK, Yau S, Lau WH. Papillary microcarcinoma of the thyroid—Prognostic significance of lymph node metastasis and multifocality. Cancer (2003) 98:31–40. doi: 10.1002/cncr.11442
20. Pyo JS, Sohn JH, Kang G. Detection of tumor multifocality is important for prediction of tumor recurrence in papillary thyroid microcarcinoma: a retrospective study and meta-analysis. J Pathol Transl Med. (2016) 50:278–86. doi: 10.4132/jptm.2016.03.29
21. Riss JC, Peyrottes I, Chamorey E, Haudebourg J, Sudaka A, Benvisy D, et al. Prognostic impact of tumour multifocality in thyroid papillary microcarcinoma based on a series of 160 cases. Eur Ann Otorhinolaryngol Head Neck Dis. (2012) 129:175–8. doi: 10.1016/j.anorl.2011.11.003

CONCLUSION
The utility of AS for low-risk PTMC patients requires improvements our abilities to accurate and confidently stratify patient risk. Due to the substantially improved diagnostic performance in identifying gross ETE and macroscopic cervical LNM, the combined use of US and CT imaging modalities is strongly recommended for use in AS. Patients should be informed and educated fairly and objectively according to the data that is currently available. Dynamic monitoring, risk stratification, and personal follow-up schedules are tantamount in minimizing the potential risks incurred by recommending patients against immediate surgery. Furthermore, the advent of increasingly sophisticated imaging technologies, and the screening for novel prognostic biomarkers have shown great promise, although future validation studies are warranted.

AUTHOR CONTRIBUTIONS
All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.
22. So YK, Kim MW, Son YI. Multifocality and bilaterality of papillary thyroid microcarcinoma. Clin Exp Otorhinolaryngol. (2015) 8:174–8. doi: 10.3342/ceo.2015.8.2.174

23. Zhao Q, Ming J, Liu C, Shi L, Xu X, Nie X, et al. Multifocality and total tumor diameter predict central neck lymph node metastases in papillary thyroid microcarcinoma. Ann Surg Oncol. (2013) 20:746–52. doi:10.1245/s10434-012-2654-2

24. Diker-Cohen T, Hirsch D, Shimon I, Bachar G, Akirav A, Duskin-Bitah H, et al. Impact of minimal extra-thyroid extension in differentiated thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab. (2018) 103:2100–6. doi:10.1210/jc.2018–00081

25. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. (2016) 26:2193–2294. doi:10.1089/thy.2015.0020

26. Shimamoto K, Satake H, Sawaki A, Ishigaki T, Funakoshi J, Harashima H. Preoperative staging of total tumor diameter predict central neck lymph node metastases in papillary thyroid microcarcinoma. Eur J Radiol. (1998) 29:4–10. doi:10.1016/S0720-048X(97)00184-8

27. Tomoda C, Uruno T, Takamura Y, Ito Y, Miya A, Kobayashi K, et al. Ultrasonography as a method of screening for tracheal invasion by papillary thyroid cancer. Surg Today (2005) 35:819–22. doi:10.1007/s00595-005-3037-0

28. King AD, Ahuja AT, To EW, Tse GM, Metreweli C. Staging papillary thyroid carcinoma with ultrasonography. Eur J Radiol. (2009) 70:234–9. doi:10.1016/j.ejrad.2008.08.034

29. Kim H, Kim JA, Son EJ, Youk JH, Chung TS, Park CS, et al. Preoperative ultrasonographic staging of papillary thyroid carcinoma based on the sixth edition AJR Am J Roentgenol. (2012) 198:66–72. doi:10.2214/AJR.11.7055

30. Kwak JY, Kim E-K, Youk JH, Kim MJ, Son EJ, Youk JH. Extrathyroidal extension of well-differentiated papillary thyroid microcarcinoma on US. Thyroid (2008) 18:609–14. doi:10.1089/thy.2007.0345

31. Kim H, Kim JA, Son EJ, Youk JH, Chung TS, Park CS, et al. Preoperative prediction of the extrathyroidal extension of papillary thyroid carcinoma with ultrasonography versus MRI: a retrospective cohort study. Int J Surg. (2014) 12:544–8. doi:10.1016/j.ijsu.2014.03.003

32. Lee CY, Kim SJ, Ko KR, Chung KW, Lee JH. Predictive factors for extrathyroidal extension of papillary thyroid carcinoma based on preoperative sonography. J Ultrasound Med. (2014) 33:231–8. doi:10.7863/ultra.33.2.231

33. Lim DY, Kwon TK, Sung MW, Kim KH, Hah JH. Prediction of extrathyroidal extension using ultrasonography and computed tomography. Int J Endocrinol. (2014) 2014:351058. doi:10.1155/2014/351058

34. Moon SJ, Kim DW, Kim SJ, Ha TK, Park HK. Ultrasound assessment of degrees of extrathyroidal extension in papillary thyroid microcarcinoma. Endocr Pract (2014) 20:1037–43. doi:10.4188/EP14016.0R

35. Kamaya A, Tahvdilari AM, Patel BN, Willmann JK, Jeffrey RB, Desser TS. Sonographic detection of extracapsular extension in papillary thyroid cancer. J Ultrasound Med. (2015) 34:2225–30. doi:10.7863/ultra.15.02006

36. King AD, Abuja AT, To EW, Tse GM, Metreweli C. Staging papillary carcinoma of the thyroid: magnetic resonance imaging vs ultrasound of the neck. Clin Radiol. (2000) 55:222–6. doi:10.1053/crad.1999.0373

37. Choi YI, Yun JS, Kook SH, Jung EC, Park YL. Clinical and imaging assessment of cervical lymph node metastasis in papillary thyroid carcinomas. World J Surg. (2010) 34:1494–9. doi:10.1007/s00268-010-0541-1

38. Lee K, Kawata R, Nishikawa S, Yoshimura K, Takenaka H. Diagnostic criteria of ultrasonographic examination for lateral neck metastasis of papillary thyroid carcinoma. Acta Otolaryngol. (2010) 130:161–6. doi:10.3109/16809301015143

39. Hwang HS, Orloff LA. Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer. Laryngoscope (2011) 121:487–91. doi:10.1002/lary.21227

40. Lee DW, Ji YB, Sung ES, Park JS, Lee YJ, Park DW, et al. Roles of ultrasonography and computed tomography in the surgical management of cervical lymph node metastases in papillary thyroid carcinoma. Eur J Surg Oncol. (2013) 39:191–6. doi:10.1016/j.ejso.2012.07.119

41. Yoo YH, Kim JA, Son EJ, Youk JH, Kwak JY, Kim EK, et al. Sonographic findings predictive of central lymph node metastasis in patients with papillary thyroid carcinoma: influence of associated chronic lymphocytic thyroiditis on the diagnostic performance of sonography. J Ultrasound Med. (2013) 32:2145–51. doi:10.7863/ultra.32.12.2145

42. Lesnik D, Cunnane ME, Zurakowski D, Acar GO, Ecevit C, Mace A, et al. Papillary thyroid carcinoma nodal surgery directed by a preoperative radiographic map utilizing CT scan and ultrasound in all primary and reoperative patients. Head Neck (2014) 36:191–202. doi:10.1002/hed.23277

43. Lee YJ, Kim DW, Park HK, Kim DH, Jung SJ, Oh M, et al. Pre-operative ultrasound diagnosis of nodal metastasis in papillary thyroid carcinoma patients according to nodal compartment. Ultrasound Med Biol. (2015) 41:294–300. doi:10.1016/j.ultrasmedbio.2015.01.003

44. Khokhar MT, Day KM, Sangal RB, Ahmedani NN, Pisharodi LR, Beland MD, et al. Preoperative high-resolution ultrasound for the assessment of malignant central compartment lymph nodes in papillary thyroid cancer. Thyroid (2015) 25:1351–4. doi:10.1080/10438351.2014.975207

45. Wada N, Duh QY, Sugino K, Iwasaki H, Kameyama K. Lymph node metastasis from 239 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg. (2003) 237:399–407. doi:10.1097/01.SLA.0000055273.58908.19

46. Pelizzo MR, Boschin IM, Tonato A, Pietto A, Bernante P, Pagetta C, et al. Papillary thyroid microcarcinoma (PTMC): prognostic factors, management and outcome in 403 patients. Eur J Surg Oncol. (2006) 32:1144–8. doi:10.1016/j.ejso.2006.07.001

47. Hay JD, Hutchinson ME, Gonzalez-Losada T, McIver B, Reinaldo ME, Grant CS, et al. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery (2008) 144:980–7. doi:10.1016/j.surg.2008.08.035

48. Besic N, Zgajnar I, Hocevar M, Petric R. Extent of thyroidectomy and lymphadenectomy in 254 patients with papillary thyroid microcarcinoma: a single-institution experience. Ann Surg Oncol. (2009) 16:920–8. doi:10.1007/s10434-009-3329-2
57. Mercante G, Frassoldati A, Pedroni C, Formisano D, Renna L. Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. *Thyroid* (2009) 19:707–16. doi: 10.1089/thy.2008.0270

58. So YK, Son YH, Hong SD, Seo MY, Baek CH, Jeong HS, et al. Subclinical lymph node metastasis in papillary thyroid microcarcinoma: a study of 351 resections. *Surgery* (2010) 148:526–31. doi: 10.1016/j.surg.2010.01.003

59. Moon HJ, Kim EK, Chung WY, Yoon JH, Kwak JY. Minimal extrathyroidal extension in patients with papillary thyroid microcarcinoma: is it a real prognostic factor? *Ann Surg Oncol.* (2011) 18:1916–23. doi: 10.1245/s10434-011-1556-z

60. Londero SC, Krogdahl A, Bastholt L, Overgaard J, Trolle W, Pedersen HB, et al. Papillary thyroid microcarcinoma in Denmark 1996–2008: a national study of epidemiology and clinical significance. *Thyroid* (2013) 23:1159–64. doi: 10.1089/thy.2012.0595

61. Lee J, Park JH, Lee CR, Chung WY, Park CS. Long-term outcomes of total thyroidectomy versus thyroid lobectomy for papillary thyroid microcarcinoma: comparative analysis after propensity score matching. *Thyroid* (2013) 23:1408–15. doi: 10.1089/thy.2012.0463

62. Gschwandtner E, Klatte T, Swietek N, Bures C, Kober F, Ott J, et al. Increase of papillary thyroid microcarcinoma and a plea for restrictive treatment: a retrospective study of 1,391 prospective documented patients. *Surgery* (2016) 159:503–11. doi: 10.1016/j.surg.2015.06.015

63. Kim SK, Park I, Woo JW, Lee JH, Choe JH, Kim JH, et al. Predictive Factors for Lymph Node Metastasis in Papillary Thyroid Microcarcinoma. *Ann Surg Oncol.* (2013) 20:2866–73. doi: 10.1053/j.surg.00325-2252-0

64. Cecoli F, Ceresa M, Elminnawi V, Cabra M, Cappagli M, Montepagani A, et al. Therapeutic strategies and clinical outcome in papillary thyroid microcarcinoma: a multicenter observational study. *Eur Thyroid J.* (2016) 5:180–6. doi: 10.1159/000446746

65. Kim SK, Park I, Woo JW, Lee JH, Choe JH, Kim JH, et al. Total thyroidectomy versus lobectomy in conventional papillary thyroid microcarcinoma: analysis of 8,676 patients at a single institution. *Surgery* (2017) 161:485–92. doi: 10.1016/j.surg.2016.07.037

66. Yeh MW, Bauer AL, Bernet VA, Ferris RL, Loewner LA, Mandel SJ, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. *Thyroid* (2015) 25:3–14. doi: 10.1089/thy.2014.0096

67. Monteiro R, Han A, Etwifi M, Sweering E, Krishnamurthy V, Jin J, et al. Importance of surgeon-performed ultrasound in the preoperative nodal assessment of patients with potential thyroid malignancy. *Surgery* (2018) 163:112–7. doi: 10.1016/j.surg.2017.10.005

68. Kumbhar SS, O’Malley RB, Robinson TJ, Maximin S, Lalwani N. Why thyroid surgeons are frustrated with radiologists: lessons learned from a retrospective study of 1,391 prospective documented patients. *Eur Thyroid J.* (2015) 25:3–14. doi: 10.1089/thy.2014.0096

69. Carneiro-Pla D, Amin S. Comparison between preconsultation and nonincidental papillary thyroid microcarcinoma: analysis of 8,676 patients at a single institution. *Ann Surg Oncol.* (2016) 23:2866–73. doi: 10.1245/s10434-016-5225-0

70. Siddiqui S, White MG, Antic T, Grogan RH, Angelos P, Kaplan EL, et al. Differences in the recurrence and mortality outcomes of incidentally discovered and nonincidental papillary thyroid microcarcinoma: a systematic review and meta-analysis of 21,329 person-years of follow-up. *J Clin Endocrinol Metab.* (2014) 99:2834–43. doi: 10.1210/jc.2013-2118

71. Mehanna H, Al-Maqbili T, Carter B, Martin E, Campain N, Watkinson J, et al. Differences in the recurrence and mortality outcomes of incidental and nonincidental papillary thyroid microcarcinoma: a systematic review and meta-analysis. *PLoS ONE* (2015) 10:e0139021. doi. 10.1371/journal.pone.0139021

72. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. *Nat Cell Biol.* (2014) 16:717–27. doi: 10.1038/ncb3015

73. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of physical interactions and mechanical forces in metastasis. *Nat Rev Cancer* (2015) 15:488–8. doi: 10.1038/nrc3982

74. Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. *Nat Rev Cancer* (2011) 11:512–22. doi: 10.1038/nrc3380

75. Oda H, Miyauchi A, Ito Y, Yoshioh K, Nakayama A, Sasaki H, et al. Incidences of unfavorable events in the management of low-risk papillary microcarcinoma of the thyroid by active surveillance versus immediate surgery. *Thyroid* (2016) 26:150–5. doi: 10.1089/thy.2015.0313

76. Durante C, Attard M, Todolontano M, Ronga G, Monzani F, Costante G, et al. Identification and optimal postsurgical follow-up of patients with very low-risk papillary thyroid microcarcinomas. *J Clin Endocrinol Metab.* (2010) 95:4882–8. doi: 10.1210/jc.2010-0762

77. Miyauchi A, Kudo T, Ito Y, Oda H, Sasaki H, Higashiyama T, et al. Estimation of the lifetime probability of disease progression of papillary microcarcinoma of the thyroid during active surveillance. *Surgery* (2018) 163:48–52. doi: 10.1016/j.surg.2017.03.028

78. Siddiqui S, White MG, Antic T, Grogan RH, Angelos P, Kaplan EL, et al. Clinical and pathologic predictors of lymph node metastasis and recurrence in papillary thyroid microcarcinoma. *Surgery* (2016) 26:807–15. doi: 10.1089/thy.2015.0429

79. Tomoda C, Sugino K, Matsuzu K, Urano T, Ohkuwa K, Kitagawa W, et al. Cervical lymph node metastases after thyroidectomy for papillary thyroid carcinoma usually remain stable for years. *Thyroid* (2016) 26:1706–11. doi: 10.1089/thy.2016.0225

80. Emanuel EJ, Wendler D, Grady C. What makes clinical research ethical? *JAMA* (2010) 303:28–35. doi: 10.1001/jama.2010.9410

81. Stack BC Jr, Angelos P. The ethics of disclosure and counseling of patients with thyroid cancer. *JAMA Otolaryngol Head Neck Surg.* (2015) 141:957–8. doi: 10.1001/jamaoto.2015.2419

82. Morris LG, Wong RJ, Tuttle RM. Ethical considerations when counseling patients with thyroid cancer about surgery vs observation. *JAMA Otolaryngol Head Neck Surg.* (2016) 142:406–7. doi: 10.1001/jamaoto.2016.0038

83. Leboullec S, Tuttle RM, Pacini F, Schlumberger M. Papillary thyroid microcarcinoma and active surveillance – Authors’ reply. *Lancet Diabetes Endocrinol.* (2016) 4:976–7. doi: 10.1016/s2213-8587(16)30326-6

84. Kim SC, Kim JH, Choi SH, Yun TJ, Wi JY, Kim SA, et al. Off-site evaluation of three-dimensional ultrasound for the diagnosis of thyroid nodules: comparison with two-dimensional ultrasound. *Eur Radiol.* (2016) 26:3353–60. doi: 10.1007/s00330-015-4193-2

85. Yi YS, Kim SS, Kim WJ, Bae MJ, Kang JH, Choi BG, et al. Comparison of two- and three-dimensional sonography for the prediction of the extrathyroidal
extension of papillary thyroid carcinomas. Korean J Intern Med. (2016) 31:313–22. doi: 10.3904/kijm.2014.363

96. Slapa RZ, Jakubowski WS, Słowińska-Szrednicka J, Szopinski KT. Advantages and disadvantages of 3D ultrasound of thyroid nodules including thin slice volume rendering. Thyroid Res. (2011) 4:1. doi: 10.1186/1757-1628-4-1

97. Park YL, Kim JA, Son EH, Youk JH, Park CS. Quantitative shear wave elastography as a prognostic implication of papillary thyroid carcinoma (PTC): elasticity index can predict extrathyroidal extension (ETE). Ann Surg Oncol. (2013) 20:2765–71. doi: 10.1007/s10434-013-2927-4

98. Jung WS, Kim JA, Son EH, Youk JH, Park CS. Shear wave elastography in evaluation of cervical lymph node metastasis of papillary thyroid carcinoma: elasticity index as a prognostic implication. Ann Surg Oncol. (2015) 22:1116–7. doi: 10.1245/s10434-014-3627-4

99. Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, et al. Shear wave elastography and cervical lymph nodes: predicting malignancy. J Magn Reson Imaging. (2016) 44:1546–55. doi: 10.1002/jmri.25290

100. Meyer HJ, Schob S, Hohn AK, Surov A. MRI texture analysis reflects histopathological parameters in thyroid cancer - a first preliminary study. Transl Oncol. (2017) 10:911–6. doi: 10.1016/j.tranon.2017.09.003

101. Schob S, Meyer HJ, Dieckow J, Pervinder B, Pazaitis N, Hohn AK, et al. Histogram analysis of diffusion weighted imaging at 3T is useful for prediction of lymphatic metastatic spread, proliferative activity, and cellularity in thyroid cancer. Int J Mol Sci. (2017) 18:8821. doi: 10.3390/ijms18040821

102. Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. Mol Cancer. (2017) 10:2–27. doi: 10.1186/s12943-016-0447-8

103. Hu S, Liu D, Tufano RP, Carson KA, Rosenbaum E, Cohen Y, et al. TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr Relat Cancer. (2016) 23:813–23. doi: 10.1530/ERC-16-0219

104. Kim TH, Kim YE, Ahn S, Kim JY, Ki CS, Oh YL, et al. TERT promoter mutations and non-coding RNAs in thyroid cancer. Nat Commun. (2018) 9:579. doi: 10.1038/s41467-018-03033-1

105. de Biase D, Gandolfini G, Ragazzi M, Eslinger M, Sancisi V, Gugnani M, et al. TERT promoter mutations in papillary thyroid microcarcinomas. JAMA Oncol. (2017) 3:202–208. doi: 10.1001/jamaoncol.2016.3288

106. Liu R, Zhang T, Zhu G, Xing M. Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid carcinoma: a meta-analysis. Best Pract Res Clin Endocrinol Metab. (2016) 30:603–9. doi: 10.1016/j.beem.2016.10.001

107. Bourafqech M, Klubo-Gwiezdzinska J, Kebebew E. MicroRNAs in the thyroid. Best Pract Res Clin Endocrinol Metab. (2016) 30:603–9. doi: 10.1016/j.beem.2016.10.001

108. Zhang R, Hardin H, Chen J, Guo Z, Lloyd RV. Non-coding RNAs in thyroid cancer. Endocr Pathol. (2016) 52:447–59. doi: 10.1530/END-16-0222

109. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. (2017) 10:911–6. doi: 10.1016/j.tranon.2017.09.003

110. M. Li, D. Si, J. Hu, M. Cui, Y. Zhong, W. Song, et al. MiRNA-221/222 expression in thyroid cancer: a meta-analysis. J Cell Mol Med. (2017) 11:1941–6. doi: 10.1111/jcem.2017.10.001

111. Lee JC, Zhao JT, Clifton-Bligh RJ, Gill A, Gundara JS, Ip JC, et al. MicroRNA-22 and microRNA-146b are tissue and circulating biomarkers of papillary thyroid microcarcinoma. Cancer. (2012) 118:2069–77. doi: 10.1002/cncr.26423

112. Yataba T, Matsuse M, Hirokawa M, Yamashita S, Matsuake N, Miyauchi A. TERT promoter mutations were not found in papillary thyroid microcarcinomas that showed disease progression on active surveillance. Thyroid. (2017) 27:1206–11. doi: 10.1089/thy.2016.0645

113. Li D, Gao M, Li X, Xing M. Molecular aberrance in papillary thyroid microcarcinoma bearing high aggressiveness: identifying a “Tibetan Mastiff Dog” from puppies. J Cell Biochem. (2016) 117:1491–6. doi: 10.1002/jcb.25506

114. Pestana A, Vinagre J, Sobrinho-Simoes M, Soares P. TERT biology and function in cancer: beyond immortalisation. J Mol Endocrinol. (2017) 58:R129–46. doi: 10.1530/JME-16-0195

115. Xue et al. AS in PTMC: Challenges and Prospects
of recurrent papillary thyroid cancer. *Cancer* (2013) 119:4358–65. doi: 10.1002/cncr.28254

134. Oridate N, Lotan D, Xu XC, Hong WK, Lotan R. Differential induction of apoptosis by all-trans-retinoic acid and N-(4-hydroxyphenyl)retinamide in human head and neck squamous cell carcinoma cell lines. *Clin Cancer Res.* (1996) 2:855–63.

135. Simon D, Korber C, Krausch M, Segering M, Segering J, Groth P, Gorges R, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. *Eur J Nucl Mol Imaging* (2002) 29:775–82. doi: 10.1007/s00259-001-0737-6

136. Xiong Y, Kotian S, Zeiger MA, Zhang L, Kebbe E. miR-126-3p inhibits thyroid cancer cell growth and metastasis, and is associated with aggressive thyroid cancer. *PLoS One* (2015) 10:0130496. doi: 10.1371/journal.pone.0130496

137. Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. *Ann Surg Oncol.* (2011) 18:2035–41. doi: 10.1245/s10434-011-1733-0

138. Wang Z, Zhang H, He L, Dong W, Li J, Shan Z, et al. Association of microRNA genes in papillary thyroid carcinoma. *Proc Natl Acad Sci USA.* (2015) 112:7760–5. doi: 10.1073/pnas.1504172112

139. Sun M, Fang S, Li W, Li C, Wang L. Associations of miR-146a and miR-146b expression and clinical characteristics in papillary thyroid carcinoma. *Cancer Biomark.* (2015) 15:33–40. doi: 10.3233/CBM-140431

140. Qiu Z, Li H, Wang J, Sun C. miR-146a and miR-146b in the diagnosis and prognosis of papillary thyroid carcinoma. *Oncol Rep.* (2017) 38:2735–40. doi: 10.3829/oz.2017.5994

141. Zhang X, Li D, Li M, Ye M, Ding L, Cai H, et al. MicroRNA-146a targets IRAK1, a target of miR-146b, reduces cell aggressiveness of human head and neck squamous cell carcinoma cell lines. *Am J Cancer Res.* (2016) 6:281–90. doi: 10.2147/OTT.S43014

142. Czajka AA, Wojcik A, Kubiak A, Kotlarek M, Bakula-Zalewska E, Koperski L, et al. Family of microRNA-146 regulates RARbeta in papillary thyroid carcinoma. *PLoS ONE* (2016) 11:e0151968. doi: 10.1371/journal.pone.0151968

143. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. *Proc Natl Acad Sci USA.* (2005) 102:19075–80. doi: 10.1073/pnas.0509603102

144. Chou CK, Chen RF, Chou FF, Chang HW, Chen YJ. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. *Thyroid* (2010) 20:489–94. doi: 10.1089/thy.2009.0027

145. Yang Z, Yuan Z, Fan Y, Deng X, Zheng Q. Integrated analyses of microRNA and mRNA expression profiles in aggressive papillary thyroid carcinoma. *Mol Med Rep.* (2013) 8:1353–8. doi: 10.3892/mmr.2013.1699

146. Geraldo MV, Yamashita AS, Kimura ET. MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer. *Oncogene* (2012) 31:1910–22. doi: 10.1038/onc.2011.381

147. Deng X, Wu B, Xiao K, Kang J, Xie J, Zhang X, et al. MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNFRF3. *Cell Physiol Biochem.* (2015) 35:71–82. doi: 10.1159/000369676

148. Chou CK, Chi SY, Huang CH, Chou FF, Huang CC, Liu RT, et al. IRAK1, a target of miR-146b, reduces cell aggressiveness of human papillary thyroid carcinoma. *J Clin Endocrinol Metab.* (2016) 101:4353–66. doi: 10.1210/jc.2016-2276

149. Peng Y, Li C, Luo DC, Ding JW, Zhang W, Pan G. Expression profile and clinical significance of microRNAS in papillary thyroid carcinoma. *Molecules* (2014) 19:11586–99. doi: 10.3390/molecules190111586

150. Diao Y, Fu H, Wang Q. MiR-221 Exacerbate cell proliferation and invasion by targeting TIMP3 in papillary thyroid carcinoma. *Am J Ther.* (2017) 24:e137–e28. doi: 10.1097/MT.0000000000000420

151. Huang Y, Yu S, Cao S, Yin Y, Hong S, Guan H, et al. MicroRNA-221 promotes invasion and metastasis of papillary thyroid cancer through targeting protein phosphatase 2 regulatory subunit B alpha expression. *Thyroid* (2018) 28:1162–73. doi: 10.1089/thy.2017.0665
172. Xu K, Feng Y. HOXD-AS1 is a predictor of clinical progression and functions as an oncogenic lncRNAs in papillary thyroid cancer. *J Cell Biochem* (2018). doi: 10.1002/jcb.27809. [Epub ahead of print].

173. Wu X, Yan Y, Li H, Ji N, Yu T, Huang Y, et al. DNA copy number gain-mediated lncRNA LINC01061 upregulation predicts poor prognosis and promotes papillary thyroid cancer progression. *Biochem Biophys Res Commun.* (2018) 503:1247–53. doi: 10.1016/j.bbrc.2018.07.032

174. Liu J, Dong H, Yang Y, Qian Y, Liu J, Li Z, et al. Upregulation of long noncoding RNA MALAT1 in papillary thyroid cancer and its diagnostic value. *Future Oncol.* (2018). doi: 10.2217/fon-2018-0416. [Epub ahead of print].

175. Wang C, Yan G, Zhang Y, Jia X, Bu P. Long non-coding RNA MEG3 suppresses migration and invasion of thyroid carcinoma by targeting of Rac1. *Neoplasma* (2015) 62:541–9. doi: 10.4149/ne_2015_065

176. Lan X, Sun W, Zhang P, He L, Dong W, Wang Z, et al. Downregulation of long noncoding RNA NONHSAT037832 in papillary thyroid carcinoma and its clinical significance. *Tumour Biol.* (2016) 37:6117–23. doi: 10.1007/s13277-015-4461-4

177. Xia S, Wang C, Ni X, Ni Z, Dong Y. NONHSAT076754 aids ultrasonography in predicting lymph node metastasis and promotes migration and invasion of papillary thyroid cancer cells. *Oncotarget* (2017) 8:2293–306. doi: 10.18632/oncotarget.13725

178. Ding J, Wang F, Xiang T, Qiao M. Expression and function of long noncoding RNA NONHSAT129813 in papillary thyroid cancer. *Oncol Res.* (2018) 26:1047–53. doi: 10.3727/096504018X15152037713570

179. Wang Q, Yang H, Wu L, Yao J, Meng X, Jiang H, et al. Identification of specific long non-coding RNA expression: profile and analysis of association with clinicopathologic characteristics and BRAF mutation in papillary thyroid cancer. *Thyroid* (2016) 26:1719–32. doi: 10.1089/thy.2016.0024

180. Sun W, Lan X, Wang Z, Dong W, He L, Zhang T, et al. Overexpression of long non-coding RNA NR_036575.1 contributes to the proliferation and migration of papillary thyroid cancer. *Med Oncol.* (2016) 33:102. doi: 10.1007/s12032-016-0816-y

181. Feng K, Liu Y, Xu LJ, Zhao LF, Jia CW, Xu MY. Long noncoding RNA PVT1 enhances the viability and invasion of papillary thyroid carcinoma cells by functioning as ceRNA of microRNA-30a through mediating expression of insulin like growth factor 1 receptor. *Biomed Pharmacother.* (2018) 104:686–98. doi: 10.1016/j.biopha.2018.05.078

182. Du Y, Xia W, Zhang J, Wan D, Yang Z, Li X. Comprehensive analysis of long noncoding RNA-mRNA co-expression patterns in thyroid cancer. *Mol Biosyst.* (2017) 13:2107–15. doi: 10.1039/c7mb00375g

183. Liyanarachchi S, Li W, Yan P, Bundschuh R, Brock P, Senter L, et al. Genome-wide expression screening discloses long noncoding RNAs involved in thyroid carcinogenesis. *J Clin Endocrinol Metab.* (2016) 101:4005–13. doi: 10.1210/jc.2016-1991

184. Asa SL, Ezzat S. The epigenetic landscape of differentiated thyroid cancer. *Mol Cell Endocrinol.* (2018) 469:3–10. doi: 10.1016/j.mce.2017.07.012

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Xue, Wang, Hurst, Chang and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.