O(12) limit and complete classification of symmetry schemes in proton-neutron interacting boson model

V.K.B. Kota
Physical Research Laboratory, Ahmedabad 380 009, India

Abstract: It is shown that the proton-neutron interacting boson model (pnIBM) admits new symmetry limits with $O(12)$ algebra which break F-spin but preserves the F_z quantum number M_F. The generators of $O(12)$ are derived and the quantum number v of $O(12)$ for a given boson number N is determined by identifying the corresponding quasi-spin algebra. The $O(12)$ algebra generates two symmetry schemes and for both of them, complete classification of the basis states and typical spectra are given. With the $O(12)$ algebra identified, complete classification of pnIBM symmetry limits with good M_F is established.

Keywords. Proton-neutron interacting boson model; pnIBM; symmetry limits; complete classification; F-spin; F-spin breaking; good M_F, $O(12)$ limit; $O(12) \supset O(6) \otimes O(2)$, $O(12) \supset O(2) \oplus O(10)$.

PACS: 21.60.Fw, 21.10.Re, 03.65.Fd
1. Introduction

The most significant aspect of the interacting boson model (IBM) of even-even nuclei is the dynamical symmetries of the model. In its most elementary version with scalar (s) and quadrupole (d) bosons, the model (called IBM-1) admits the well established (they are now part of several text books) vibrational $U(5)$, rotational $SU(3)$ and γ-unstable $O(6)$ symmetries starting with the $U(6)$ spectrum generating algebra (SGA) (the 6 in $U(6)$ corresponds to the sum of one degree of freedom from s bosons (with angular momentum $\ell = 0$) and five from d bosons ($\ell = 2$). Its extended version, with proton (π) and neutron (ν) degrees of freedom attached to s and d bosons, the proton-neutron interacting boson model (pnIBM or IBM-2) admits dynamical symmetries starting from its $U(12)$ SGA. An important development here is the introduction of the so-called F-spin; π and ν bosons are considered as two projections of a spin-$\frac{1}{2}$ boson. Going beyond IBM-1 and IBM-2 models, in the last five years, the dynamical symmetries of the isospin invariant IBM-3 and spin-isospin invariant IBM-4 models are also being studied as they are shown to have applications for nuclei near the proton drip line. Although the IBM-1 model was introduced nearly 20 years back, remarkably there is now new interest in re-examining the symmetries of these models with developments and interest in quantum chaos and phase transitions. In the context of the former, the importance of $O(6)$ and $SU(3)$ algebras is brought out and for the later the so-called $E(5)$ and $X(5)$ symmetries are introduced. Also new interpretations for the $SU(3)$ and $O(6)$ limits are proposed with higher-order interactions. Then an immediate question that arises is whether there are new symmetries in pnIBM that are not recognized before. This question is answered in the affirmative in this paper by identifying and analyzing the $O(12)$ limit group chains of pnIBM.
The sd boson pnIBM with $\pi - \nu$ degrees of freedom is a standard model for analyzing the properties of heavy even-even nuclei with protons and neutrons occupying different oscillator shells [1, 11]. The SGA of pnIBM is $U(12)$ as a single boson carries 12 degrees of freedom (6 from s and d and two from π and ν) in this model. Then there are the well known $U(6) \otimes SU_F(2)$ with the $SU_F(2)$ algebra generating F-spin and the $U_\pi(6) \oplus U_\nu(6)$ symmetry limits in this model; in addition there are also the $U_s(2) \oplus U_d(10)$ symmetry limits (see Section 4). The various group chains starting from $U(6) \otimes SU_F(2)$ and $U_\pi(6) \oplus U_\nu(6)$ are identified and studied in great detail in the past; see for example [1, 3, 4]. Let us point out that IBM-1 model corresponds to the $F = N/2$ states in pnIBM where N is the total number of bosons. The $F = N/2 - 1$ states are the so-called mixed symmetry states. In rotational $SU(3)$ nuclei they correspond to the now well known scissors states that are seen in many nuclei [12]. It should be emphasized that there are many new experiments, with the advent of the EUROBALL cluster detector, in the last five years in identifying the mixed symmetry states of pnIBM in $O(6)$ type nuclei, for example in 196Pt, 134,136Ba and 94Mo isotopes [13]. Though the focus is in identifying good F-spin states in $O(6)$ nuclei, it is well known that F-spin is broken in many situations [14]. In this paper, following the $O(18)$ and $O(36)$ symmetry limits of IBM-3 and IBM-4 models [5, 6], it is identified that pnIBM admits a $O(12)$ limit with broken F-spin but good F_z quantum number M_F. It should be mentioned that, although the existence of $O(12)$ limit is mentioned in the past in [13, 16], in this paper for the first time the $O(12)$ symmetry chains, as they are closely related to $O(6)$ nuclei, are analyzed in any detail. Section 2 gives the generators and the quadratic Casimir operator of $O(12)$ by identifying the corresponding quasi-spin algebra; also discussed here is the closely related $O(10)$ algebra in d boson space. Two group chains are possible with $O(12)$ and Section 3 gives classification of states and typical spectra for both of them. In Section 4 complete classification of pnIBM symmetry limits with good M_F is discussed in detail. Finally,
Section 5 gives concluding remarks.

2. \(O(12) \) symmetry in pnIBM

2.1 Preliminaries

The pnIBM, with proton - neutron degrees of freedom, can be described in general in terms of \(\pi - \nu \) representation or the equivalent \(F \)-spin representation with the identification \(|\pi\rangle = |F = \frac{1}{2}, M_F = \frac{1}{2}\rangle = |\frac{1}{2}, \frac{1}{2}\rangle \) and \(|\nu\rangle = |F = \frac{1}{2}, M_F = -\frac{1}{2}\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle \). In the \(F \)-spin representation, given the one boson creation and destruction operators \(b^\dagger_{\ell,m_1; \frac{1}{2}, m_f} \) and \(\tilde{b}_{\ell,m_1; \frac{1}{2}, m_f} \), the 144 double tensors \((b^\dagger_{\ell_1, \frac{1}{2}} \tilde{b}_{\ell_4, \frac{1}{2}})^{L_0,F_0}_{M_0,M_F} \) generate the \(U(12) \) SGA; note that for us \(\ell = 0(s) \) or \(2(d) \). Similarly, in the \(\pi - \nu \) representation, given the one boson creation and destruction operators \(b^\dagger_{\ell,m_1; \rho} \) and \(\tilde{b}_{\ell,m_1; \rho} = (-1)^{\ell + m_f + \frac{1}{2}} b_{\ell,-m_1; \frac{1}{2} - m_f} \), the 144 operators \((b^\dagger_{\ell, \rho} \tilde{b}_{\ell', \rho'})^{L_0}_{M_0,M_F} \) generate the \(U(12) \) algebra. These results follow directly from the following commutation relations,

\[
\left[(b^\dagger_{\ell_1, \frac{1}{2}} \tilde{b}_{\ell_4, \frac{1}{2}})^{L_{12},F_{12}}_{M_{12},M_{F_{12}}} \left(b^\dagger_{\ell_3, \frac{1}{2}} \tilde{b}_{\ell_2, \frac{1}{2}} \right)^{L_{34},F_{34}}_{M_{34},M_{F_{34}}} \right]_+ = \sqrt{(2L_{12} + 1)(2L_{34} + 1)(2F_{12} + 1)(2F_{34} + 1)} \left((-1)^{1+\ell_1+\ell_4} \sum_{L_0,F_0} \right) (1)
\]

\[
\langle L_{12} M_{12} | L_{34} M_{34} | L_0 M_0 \rangle \langle F_{12} M_{F_{12}} F_{34} M_{F_{34}} | F_0 M_{F_0} \rangle \left(-1 \right)^{L_0 + F_0} \times
\]

\[
-(-1)^{\ell_1 + \ell_2 + \ell_3 + \ell_4 + L_{12} + L_{34} + L_0 + F_{12} + F_{34} + F_0} \times
\]

\[
\left[\begin{array}{ccc} L_{12} & L_{34} & L_0 \\ \ell_1 & \ell_2 & \ell_4 \end{array} \right] \left[\begin{array}{ccc} F_{12} & F_{34} & F_0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right] \left(b^\dagger_{\ell_1, \frac{1}{2}} \tilde{b}_{\ell_4, \frac{1}{2}} \right)^{L_0,F_0}_{M_0,M_F} \delta_{\ell_2 \ell_3} \left[\begin{array}{ccc} \left(b^\dagger_{\ell_3, \frac{1}{2}} \tilde{b}_{\ell_2, \frac{1}{2}} \right)^{L_{12},F_{12}}_{M_{12},M_{F_{12}}} \delta_{\ell_1 \ell_4} \end{array} \right]
\]

\[
\left[\begin{array}{ccc} L_{12} & L_{34} & L_0 \\ \ell_3 & \ell_2 & \ell_1 \end{array} \right] \left[\begin{array}{ccc} F_{12} & F_{34} & F_0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right] \left(b^\dagger_{\ell_3, \frac{1}{2}} \tilde{b}_{\ell_2, \frac{1}{2}} \right)^{L_0,F_0}_{M_0,M_F} \delta_{\ell_1 \ell_4}
\]
and
\[
\left[\left(b_{1,\ell_1}^\dagger b_{2,\ell_2}^\dagger \right)_{M_{12}}^{L_{12}} \right. \left. \left(b_{3,\ell_3}^\dagger b_{4,\ell_4}^\dagger \right)_{M_{34}}^{L_{34}} \right] = \\
\sqrt{(2L_{12}+1)(2L_{34}+1)} (-1)^{\ell_1+\ell_4} \sum_{L_0} L_{12} M_{12} L_{34} M_{34} \left| L_0 M_0 \right> (-1)^{L_0} \times \\
\left\{ \begin{array}{c}
L_{12} \quad L_{34} \quad L_{0} \\
\ell_4 \quad \ell_1 \quad \ell_2
\end{array} \right\} \left(b_{1,\ell_1,\rho_1}^\dagger \tilde{b}_{\ell_2,\rho_2}^\dagger \right)_{M_0}^{L_0} \delta_{\ell_2 \ell_3} \delta_{\rho_2 \rho_3} \\
-(-1)^{\ell_1+\ell_2+\ell_3+\ell_4+L_{12}+L_{34}+L_0} \left\{ \begin{array}{c}
L_{12} \quad L_{34} \quad L_{0} \\
\ell_3 \quad \ell_2 \quad \ell_1
\end{array} \right\} \left(b_{1,\ell_3,\rho_3}^\dagger \tilde{b}_{\ell_2,\rho_2}^\dagger \right)_{M_0}^{L_0} \delta_{\ell_1 \ell_4} \delta_{\rho_1 \rho_4}
\right]
\]

Dynamical symmetry limits of pnIBM correspond to the group chains starting with $U(12)$ generating N and ending with $O_L(3) \otimes [SU_F(2) \supset O_{M_F}(2)]$ or $O_L(3) \otimes O_{M_F}(2)$ generating states with good (N, L, F, M_F) or only (N, L, M_F) respectively; note that $N = (N_\pi + N_\nu)$ and $M_F = (N_\pi - N_\nu)/2$; N_π and N_ν are proton and neutron boson numbers respectively. Before going further it is useful to write down the number, F-spin and angular momentum (L) operators:
\[
\hat{n} = \hat{n}_s + \hat{n}_d = \hat{n}_\pi + \hat{n}_\nu \\
= \sum_{\ell=0,2} \sqrt{2(2\ell+1)} \left(b_{1,\ell}^\dagger b_{2,\ell}^\dagger \right)_{\ell,0,0}^{0,0} = \sum_{\rho=\pi,\nu} (s_\rho^\dagger \tilde{\pi}^\rho) + \sqrt{5} \sum_{\rho=\pi,\nu} (d_\rho^\dagger \tilde{d}_\rho^\dagger)^0 \\
= \left[s_\pi^\dagger \tilde{\pi}_\pi + \sqrt{5} (d_\pi^\dagger \tilde{d}_\pi^\dagger)^0 \right] + \left[s_\nu^\dagger \tilde{\pi}_\nu + \sqrt{5} (d_\nu^\dagger \tilde{d}_\nu^\dagger)^0 \right]
\]
\[
L_\mu^1 = \sqrt{20} \left(d_{3/2}^\dagger \tilde{d}_3 \right)_{\mu,0}^{1,0} = \sqrt{10} \sum_{\rho=\pi,\nu} (d_\rho^\dagger \tilde{d}_\rho^\dagger)^1_{\mu,0} \\
F_\mu^1 = \frac{1}{\sqrt{2}} \sum_{\ell=0,2} \sqrt{2(2\ell+1)} \left(b_{1,\ell}^\dagger b_{2,\ell}^\dagger \right)_{\ell,0,\mu}^{0,1} ; \\
F_0^1 = \frac{1}{2} \left([\hat{n}_s;\pi + \hat{n}_d;\pi] - [\hat{n}_s;\nu + \hat{n}_d;\nu] \right) , \\
F_1^1 = -\frac{1}{\sqrt{2}} \left([s_\pi^\dagger s_\nu] + \sum_m [d_{m;\pi}^\dagger d_{m;\nu}] \right) , \\
F_{-1}^1 = \frac{1}{\sqrt{2}} \left([s_\nu^\dagger s_\pi] + \sum_m [d_{m;\nu}^\dagger d_{m;\pi}] \right) .
\]

The proton s and d boson and neutron s and d boson number operators $\hat{n}_s;\pi$, $\hat{n}_s;\nu$, $\hat{n}_d;\pi$ and $\hat{n}_d;\nu$ are defined by the third equality in (3) and similarly, the decompositions of
\[\text{in general it is easily seen that,} \left(b_{1,\ell_1}^\dagger b_{2,\ell_2}^\dagger \right)_{M_{0},0}^{L_{0},0} = \frac{1}{\sqrt{2}} \sum_{\rho=\pi,\nu} \left(b_{1,\ell_1,\rho}^\dagger b_{2,\rho}^\dagger \right)_{M_{0}}^{L_{0}} \]
L into π and ν parts and F components into s and d parts follow immediately from (3).

At the primary level, as pointed out in the introduction, identified by the first sub-algebra of $U(12)$, pnIBM has four symmetry limits \[15\]: (i) $U(6) \otimes SU_F(2)$; (ii) $U_\pi(6) \oplus U_\nu(6)$; (iii) $U_s(2) \oplus U_d(10)$; (iv) $O(12)$. With the condition that N, L and $M_F = (N_\pi - N_\nu)/2$ must be good quantum numbers, there will be no other chains in pnIBM except those related to (i)-(iv). Complete classification of group chains with good (N, L, M_F) in pnIBM will be discussed in detail in Section 4. In the present section the $O(12)$ algebra is studied in detail. As the $O(12)$ algebra is defined in sd boson space, it is more appropriate to start first with the corresponding $O(10)$ algebra in d boson space.

2.2 $O(10)$ algebra in d boson space

In d boson space the SGA is $U(10)$ and starting with it there are two chains: (i) $U(10) \supset [U(5) \supset O(5) \supset O_L(3)] \otimes [SU_F(2) \supset O_{M_F}(2)]$ where F-spin is good; (ii) $U(10) \supset O(10) \supset [O(5) \supset O_L(3)] \otimes O_{M_F}(2)$ where only M_F is good. Here we are concerned with (ii), the $O(10)$ chain; chain (i) is considered in section 4 ahead. It is known that $U(M)$ admits $O(M)$ as a sub-algebra, thus $U(10) \supset O(10)$ is always possible. But the question is whether there is a $O(10)$ that preserves L and M_F. The answer is in the affirmative and this is seen from the generators of $O(10)$ which are identified to be,

$$
O(10) : A_{\mu}^{L=1,3} = \left(d_{\pi}^\dagger d_{\nu} \right)^{1,3}_\mu, \quad B_{\mu}^{L=1,3} = \left(d_{\nu}^\dagger d_{\pi} \right)^{1,3}_\mu, \\
C_{\mu}^{L=0-4} = \left[\left(d_{\pi}^\dagger d_{\nu} \right)^L_\mu + (-1)^{1+L} \left(d_{\nu}^\dagger d_{\pi} \right)^L_\mu \right]
$$

(4)

It is seen from (2) that $[A_{\mu_1}^{L_1} A_{\mu_2}^{L_2}]_\gamma = 0$, $[B_{\mu_1}^{L_1} B_{\mu_2}^{L_2}]_\gamma = 0$, $[A_{\mu_1}^{L_1} B_{\mu_2}^{L_2}]_\gamma$ is a sum of C_L's, $[B_{\mu_1}^{L_1} C_{\mu_2}^{L_2}]_\gamma$ is a sum of A_L's, $[B_{\mu_1}^{L_1} C_{\mu_2}^{L_2}]_\gamma$ is a sum of B_L's and finally $[C_{\mu_1}^{L_1} C_{\mu_2}^{L_2}]_\gamma$ is a sum of C_L's. The C_{μ}^{1} generate \bar{L}, C_{μ}^{0} generates M_F and $C_{\mu}^{L=1,3}$ generate $O(5)$ in
the chain \(O(10) \supset [O(5) \supset O_L(3)] \otimes O_{MP}(2) \). It is clear that, as \(F_{d \pm}^1 \) operators are not in (4), the \(O(10) \) chain breaks \(F \)-spin. In order to understand the physical meaning of \(O(10) \) and determine the \(O(10) \) irreducible representations (irreps) contained in the symmetric irreps \(\{ N_d \} \) of \(U(10) \) (\(N_d \) is number of \(d \) bosons), following [7], the corresponding quasi-spin \(SU_{S,d}(2) \) algebra is constructed. The generators \(S^\pm(d) \) and \(S_0(d) \) of \(SU_{S,d}(2) \) and their commutation relations are,

\[
S_+(d) = \sqrt{5} \left(d^\dagger_\pi d_\nu \right)^0, \quad S_-(d) = \sqrt{5} \left(\tilde{d}_\pi \tilde{d}_\nu \right)^0, \quad S_0(d) = \frac{(5 + \hat{n}_d)}{2} \tag{5}
\]

\[[S_+(d) S_-(d)]_- = -2S_0(d), \quad [S_0(d) S^\pm_+(d)]_\pm = \pm S^\pm_+(d) \]

With \(\{ S(d) \}^2 = S_0(d)(S_0(d) - 1) - S_+(d)S_-(d) \) and \(S_0(d) \) defining \(| S_d M_{S_d} \alpha' \rangle \) basis (\(\alpha' \) labels states with the same \(S_d \) and \(M_{S_d} \) values in the \(d \) boson space) and the results \(M_{S_d} = \frac{1}{2}(5 + N_d) \), \(S_d = M_{S_d} \), \(M_{S_d} + 1 \), \ldots and \(\langle \{ S(d) \}^2 \rangle^{S_d,M_{S_d}} \) \(= S_d(S_d - 1) \) give, using \(S_d = \frac{1}{2}(5 + v_d) \),

\[
S_+(d)S_-(d) = 5 \left(d^\dagger_\pi d_\nu \right)^0 \left(\tilde{d}_\pi \tilde{d}_\nu \right)^0 = \sum_{L=0}^{L_0} (-1)^L \left(d^\dagger_\pi \tilde{d}_\pi \right)^L \left(d^\dagger_\nu \tilde{d}_\nu \right)^L ,
\]

\[
\langle S_+(d)S_-(d) \rangle^{S_d,M_{S_d}} = \langle S_+(d)S_-(d) \rangle^{N_d} = \frac{1}{4}(N_d - v_d)(N_d + v_d + 8) ; \tag{6}
\]

\[
v_d = N_d, N_d - 2, \ldots, 0 \text{ or } 1
\]

The relationship between \(SU_{S,d}(2) \) and \(O(10) \) is derived by examining the quadratic Casimir operators of \(U(10) \) and \(O(10) \),

\[
C_2(U(10)) = \sum_k \left(d^\dagger_\pi \tilde{d}_\pi \right)^k \cdot \left(d^\dagger_\nu \tilde{d}_\nu \right)^k + \sum_k \left(d^\dagger_\nu \tilde{d}_\nu \right)^k \cdot \left(d^\dagger_\pi \tilde{d}_\pi \right)^k + \sum_k \left(d^\dagger_\pi \tilde{d}_\pi \right)^k \cdot \left(d^\dagger_\nu \tilde{d}_\nu \right)^k
\]

\[
C_2(O(10)) = 2 \sum_{k=1,3} \left(d^\dagger_\pi \tilde{d}_\pi \right)^k \cdot \left(d^\dagger_\nu \tilde{d}_\nu \right)^k + 2 \sum_{k=1,3} \left(d^\dagger_\nu \tilde{d}_\nu \right)^k \cdot \left(d^\dagger_\pi \tilde{d}_\pi \right)^k + \sum_L \left[\left(d^\dagger_\pi \tilde{d}_\pi \right)^L + (-1)^{1+L} \left(d^\dagger_\nu \tilde{d}_\nu \right)^L \right] \cdot \left[\left(d^\dagger_\nu \tilde{d}_\nu \right)^L + (-1)^{1+L} \left(d^\dagger_\pi \tilde{d}_\pi \right)^L \right] \tag{7}
\]

Following [7] it can be recognized that the four terms in \(C_2(U(10)) \) give \(\hat{n}_{d,\pi}(\hat{n}_{d,\pi} - 1) + 5\hat{n}_{d,\pi} \), \(\hat{n}_{d,\nu}(\hat{n}_{d,\nu} - 1) + 5\hat{n}_{d,\nu} \), \(\hat{n}_{d,\pi}\hat{n}_{d,\nu} + 5\hat{n}_{d,\pi} \) and \(\hat{n}_{d,\nu}\hat{n}_{d,\nu} + 5\hat{n}_{d,\nu} \) respectively. Similarly

\[
2 \sum_{k=1,3} \left(d^\dagger_\pi \tilde{d}_\pi \right)^k \cdot \left(d^\dagger_\nu \tilde{d}_\nu \right)^k = \hat{n}_{d,\pi}\hat{n}_{d,\nu} + 4\hat{n}_{d,\pi} - S_+(d)S_-(d) \]

\[
C_2(O(10)) = -4S_+(d)S_-(d) + \hat{n}_d(\hat{n}_d + 8) \tag{8}
\]
Now applying (6) gives finally,
\[
\begin{align*}
|U(10) \supset O(10)\rangle_{v_d}, \quad v_d &= N_d, N_d - 2, \ldots, 0 \text{ or } 1
\end{align*}
\]
(9)

\[\langle C_2(U(10)) \rangle^{N_d v_d} = N_d(N_d + 9), \quad \langle C_2(O(10)) \rangle^{N_d v_d} = v_d(v_d + 8)\]

Thus the pairs in the $O(10)$ limit are $\pi - \nu$ boson pairs and

\[
|N_d v_d \alpha'\rangle = \left\{\frac{(v_d + 4)!}{[(N_d - v_d)/2]! [(N_d + v_d + 8)/2]!}\right\}^{1/2} \left[\sqrt{5} \left(d_\pi^d d_\nu^\dagger\right)^0\right]^{(N_d - v_d)/2} |v_d v_d \alpha'\rangle
\]
(10)

\[2.3 \quad O(12) \text{ generators and the corresponding quasi-spin algebra}\]

In sd boson space, following the results in Section 2.2, it is natural to expect the appearance of $U(12) \supset O(12)$ algebra. From Section 2.2 it is clear that the 45 generators $A_{L=1,3}^L, B_{L=1,3}^L$ and $C_{L=0-4}^L$ of $O(10)$ in d boson space (see (4)) and the generator $D^0 = (s_\pi^\dagger \bar{s}_\pi - s_\nu^\dagger \bar{s}_\nu) = 2F_{s;0}^1$ of $O(2)$ in s boson space will be in the $O(12)$ algebra. Then the remaining 20 generators of $O(12)$ need to be identified. From the generators of $O(6)$ in $U(6)$ of IBM-1, it is easily seen that $E_{s;0}^2 = \left[(s_\pi^\dagger \bar{d}_\nu) + \alpha (d_\pi^l \bar{s}_\nu)\right]_{\mu}^2$ and $F_{s;0}^2 = \left[(s_\nu^\dagger \bar{d}_\pi) + \beta (d_\nu^l \bar{s}_\pi)\right]_{\mu}^2$ will be in the $O(12)$ algebra. The commutators $[A_{\mu L} L^0, F_{s;0}^2]_\mu$ immediately give the remaining 10 generators $G_{s;0}^2 = \left[(s_\pi^\dagger \bar{d}_\nu) + \gamma (d_\pi^l \bar{s}_\nu)\right]_{\mu}^2$ and $H_{s;0}^2 = \left[(s_\nu^\dagger \bar{d}_\pi) + \delta (d_\nu^l \bar{s}_\pi)\right]_{\mu}^2$. By evaluating all the commutators, using (2), between the 66 generators $A_{\mu L=1,3}^L, B_{\mu L=1,3}^L, C_{\mu L=0-4}^L, D^0, E_{s;0}^2, F_{s;0}^2, G_{s;0}^2$ and $H_{s;0}^2$ it is seen for example that $[A F]_\mu$ gives G, $[A H]_\mu$ gives E and $[E F]_\mu$ gives a sum of D^0 and C^L only if $\alpha = \beta = \gamma = \delta$ and $\alpha^2 = 1$. Applying these conditions it is seen that the
following 66 operators generate the $O(12)$ algebra in pnIBM,

$$
O(12) : \quad A_{\mu}^{L=1,3} = (d^\dagger_{\alpha}d_{\nu})_{\mu}^{1,3}, \quad B_{\mu}^{L=1,3} = (d^\dagger_{\nu}d_{\pi})_{\mu}^{1,3},
$$

$$
C_{\mu}^{L=0-4} = [(d^\dagger_{\alpha}d_{\pi})_{\mu}^{L} + (-1)^{L+\nu} (d^\dagger_{\nu}d_{\pi})_{\mu}^{L}],
$$

$$
D^0 = (s^\dagger_\rho s_\nu - s^\dagger_\nu s_\rho),
$$

$$
E^2_{\mu} = \left [(s^\dagger_{\alpha}d_{\nu}) + \alpha (d^\dagger_{\alpha}d_{\nu}) \right]^2_{\mu}, \quad F^2_{\mu} = \left [(s^\dagger_{\nu}d_{\pi}) + \alpha (d^\dagger_{\nu}d_{\pi}) \right]^2_{\mu},
$$

$$
G^2_{\mu} = \left [(s^\dagger_{\nu}d_{\pi}) + \alpha (d^\dagger_{\nu}d_{\pi}) \right]^2_{\mu}, \quad H^2_{\mu} = \left [(s^\dagger_{\pi}d_{\pi}) + \alpha (d^\dagger_{\pi}d_{\pi}) \right]^2_{\mu},
$$

$$
\alpha = \pm 1.
$$

Thus there are two $O(12)$ algebras, one with $\alpha = 1$ and other with $\alpha = -1$. Now we will construct the corresponding quasi-spin algebras.

Combining the $SU_{s,d}(2)$ quasi-spin algebra in d-space and the corresponding algebra $SU_{s,s}(2)$ in s-space defined by

$$
S_+(s) = s^\dagger_\pi s^\dagger_\nu, \quad S_-(s) = \tilde{s}_\pi \tilde{s}_\nu, \quad S_0(s) = \frac{(1 + \hat{n}_s)}{2},
$$

it is straightforward to introduce the quasi-spin $SU_S(2)$ algebra in the total sd-space,

$$
S_+ = S_+(s) + \beta S_+(d), \quad S_- = S_-(s) + \beta S_-(d), \quad S_0 = \frac{(6 + \hat{n})}{2}; \quad \beta = \pm 1
$$

The relationship between α in (11) and β in (12) is established ahead. With the quasi-spin algebra (13), we have $|N \nu \alpha\rangle$ states exactly as in (6,9) and $\langle S_+ S_- \rangle^{N,\nu} = (N - \nu)(N + \nu + 10)/4$. In order to see this, let us first define $C_2(O(12))$,

$$
C_2(O(12)) = C_2(O(2)) + C_2(O(10)) + \alpha [E \cdot F + F \cdot E + G \cdot H + H \cdot G]
$$

where $C_2(O(2))$ is

$$
C_2(O(2)) = D^0 D^0 = n^2_s - 4S_+(s)S_-(s),
$$

$C_2(O(10))$ is defined by (8) and α is defined in (11). Recognizing that

$$
E \cdot F + F \cdot E = 2 [S_+(s)S_-(d) + S_+(d)S_-(s)] + \alpha [5n_\pi + n_d + 2n_{s;\pi}n_{d;\nu} + 2n_{d;\pi}n_{s;\nu}],
$$

$$
G \cdot H + H \cdot G = 2 [S_+(s)S_-(d) + S_+(d)S_-(s)] + \alpha [5n_\pi + n_d + 2n_{s;\nu}n_{d;\nu} + 2n_{d;\pi}n_{s;\pi}]
$$

(16)
and using (8), (13) and (15) it is seen that $C_2(O(12))$ can be written in terms of $S_+ S_-$ only when $\alpha = -\beta$. Then finally, with $\alpha = -\beta$,

$$C_2(O(12)) = -4 S_+ S_- + \hat{n}(\hat{n} + 10) \quad (17)$$

Thus the $O(12)$ defined by the generators in (11) correspond to the quasi-spin algebra defined by (13) when $\alpha = -\beta$. With this we have, just as in (9,10),

$$\langle C_2(O(12)) \rangle^{N,v} = v(v+10)$$

where $\beta = \pm 1$ and the α in the $O(12)$ generators in (11) is related to β by $\alpha = -\beta$.

3. Spectra in $O(12) \supset O(6) \otimes O(2)$ and $O(12) \supset O(2) \oplus O(10)$ limits

The $O(12)$ algebra admits $O(6) \otimes O(2)$ and $O(2) \oplus O(10)$ subalgebras with good M_F. In both cases one can write down the complete group chains with good (N, L, M_F). Hereafter these two chains are called $O(12) \supset O(6) \otimes O(2)$ and $O(12) \supset O(2) \oplus O(10)$ limits respectively of pnIBM. Let us point out that, in addition to M_F, the $O(12) \supset O(2) \oplus O(10)$ limit also preserves M_{F_s} and M_{F_d} and hence it is more restrictive.

3.1 $O(12) \supset O(6) \otimes O(2)$ limit

The group chain and irrep labels in the $O(12) \supset O(6) \otimes O(2)$ limit are given by,

$$\left| \begin{array}{c} U(12) \\ N(12) \otimes O(6) \\ [v] \otimes [\sigma_1 \sigma_2] \otimes [v_1 v_2] \otimes O_L(3) \otimes O_{M_F}(2) \end{array} \right| \quad (19)$$

The $O(6)$ algebra is generated by the 15 generators $C^{L_0=1,3}_\mu$ and $G^2 + \beta' H^2$ and similarly the $O_{M_F}(2)$ is generated by $D^0 + \sqrt{5} C^0$ where C^{L_0}, D^0, G^2 and H^2 are defined
in (11); the $O(5)$ and $O_L(3)$ algebras are generated by $C^{L=1,3}_\mu$ and C^4_μ respectively. For the $O(6)$ algebra in (19) to be same as the $O(6)$ in the $U(6) \otimes SU_F(2) \supset O(6) \otimes O_{M_F}(2)$ limit of pnIBM (as stated earlier, this limit was studied in detail in the past [1, 3]), one needs the conditions $\alpha = 1$ in (11) and $\beta' = 1$ in $G^2_\mu + \beta'H^2_\mu$ generators. With these conditions met, it is possible to compare the results in the these two limits and derive (see ahead) the new structures implied by (19). Before the results for irrep labels are given, it should be pointed out that for a given nucleus N, L and M_F are always good quantum numbers. The $N \rightarrow v$ reduction problem was already solved in Section 2 (see Eq. (18)) and the $v \rightarrow [\sigma_1\sigma_2]$ M_F reductions are given in Appendix A; note that here Table 1 with $r = 6$ will apply. The rule for $[\sigma_1\sigma_2] \rightarrow [v_1v_2]$ is well known [4, 18, 19], $\sigma_1 \geq v_1 \geq \sigma_2 \geq v_2 \geq 0$. Finally $[v_1v_2] \rightarrow L$ can be solved using (A4) and the general solution for $[\tau]_{O(5)} \rightarrow L$. For example $[0]_{O(5)} \rightarrow L = 0$, $[1]_{O(5)} \rightarrow L = 2$, $[2]_{O(5)} \rightarrow L = 2, 4$, $[11]_{O(5)} \rightarrow L = 1, 3$, $[3]_{O(5)} \rightarrow L = 0, 3, 4, 6$ and $[21]_{O(5)} \rightarrow L = 1, 2, 3, 4, 5$. Using these irrep reductions and writing the hamiltonian as a linear combination of the quadratic Casimir operators of the groups in (19) one can construct the typical spectrum in the $O(12) \supset O(6) \otimes O(2)$ limit. The hamiltonian and the energy formula in this limit are,

$$H = E_0(N, M_F) + a_1 C_2(O(12)) + a_2 C_2(O(6)) + a_3 C_2(O(5)) + a_4 C_2(O(3))$$

$$E(N, v, [\sigma_1\sigma_2], [v_1v_2], L, M_F) = E_0(N, M_F) + a_1 v(v + 10) + a_2 [\sigma_1(\sigma_1 + 4) + \sigma_2(\sigma_2 + 2)] + a_3 [v_1(v_1 + 3) + v_2(v_2 + 1)] + a_4 L(L + 1)$$

(20)

The operator form for $C_2(O(12))$ and the formula for its eigenvalues are given in Section 2. The corresponding results for $C_2(O(6))$, $C_2(O(5))$ and $C_2(O(3))$ are easy to write down [1, 4, 19]. In order to get IBM-1 like states to be lowest, for a given v we need $[\sigma_1\sigma_2] = [v, 0]$ to be lowest and therefore $a_2 < 0$ in (20). In order to get the ground $L = 0, 2, 4 \ldots$ band correctly we need $a_3 > 0$ and $a_4 \sim 0$. With these restrictions it is seen that the condition $a_1 > 0$ gives a spectrum similar to the spectrum in the $U(6) \otimes SU_F(2) \supset O(6) \otimes O_{M_F}(2)$ limit. As an example, for $N = 6$ and
$M_F = -1$ (then $N_\pi = 2$, $N_\nu = 4$) the typical spectrum in the $O(12) \supset O(6) \otimes O(2)$ limit is shown in Fig. 1 and this should be compared with the $U(6) \otimes SU_F(2) \supset O(6) \otimes O_{M_F}(2)$ limit spectrum given in Fig. 4 of Ref. [3]. Firstly the states with the $O(6)$ irreps [6] and [51] in Fig. 1 belong to $v = 6$ (i.e. $v = N$) and therefore it is not possible in general to separate them too far. Due to this, as seen from Fig. 1, the [51] states start appearing around 1.5 MeV excitation. Typically states with the irrep [6] are IBM-1 states and the [51] states are the mixed symmetry states. In the $U(6) \otimes SU_F(2) \supset O(6) \otimes O_{M_F}(2)$ limit the [6] and [51] $O(6)$ irreps belong to different $U(6)$ irreps and therefore in this limit it is possible to split them far by using the $U(6)$ Casimir operator (the Majorana operator [1, 3]). With this in the $U(6) \otimes SU_F(2) \supset O(6) \otimes O_{M_F}(2)$ limit the mixed symmetry states are expected around 3 MeV excitation as found in many nuclei. Unlike this, in the $O(12) \supset O(6) \otimes O(2)$ limit they are expected to appear around 1.5 to 2 MeV as in Fig. 1. Therefore to find empirical examples for this symmetry limit one has to look for $O(6)$ type even-even nuclei with 1^+ states (see Fig. 1) appearing around 1.5 MeV. In fact there are many such nuclei [20] and in order to establish their structure one need to study their $B(E2)$’s. It should be added that the $[\sigma_1 \sigma_2] = [N]$ and $[N - 1, 1]$ states with $v = N$ in the $O(12) \supset O(6) \otimes O(2)$ limit will have same structure as in the $U(6) \otimes SU_F(2) \supset O(6) \otimes O_{M_F}(2)$ limit as the corresponding $U(6)$ irreps are uniquely determined. Additional signatures for the $O(12) \supset O(6) \otimes O(2)$ limit come from the $v = N - 2$ (in Fig. 1 they correspond to $v = 4$) states which should start appearing around 2.2 - 2.5 MeV excitation (around this, states with $v = N$ and $O(6)$ irrep $[N - 2, 2]$ also will start appearing but they are not shown in the figure) and they will have one sd boson $\pi - \nu$ pair (see (18)). Therefore these states carry much more definite signatures of $O(12)$. For further understanding of the $O(12) \supset O(6) \otimes O(2)$ limit, it is necessary to study the structure of the eigenstates in this limit in terms of the amount of F-spin mixing they contain and also derive formulas for $B(E2)$’s.
and $B(M1)$'s between the states in this limit. They will be addressed in a future publication.

3.2 $O(12) \supset O(2) \oplus O(10)$ limit

The group chain and irrep labels in the $O(12) \supset O(2) \oplus O(10)$ limit are given by,

$$
\begin{align*}
| U(12) \supset O(12) \supset [O(10) \supset [O(5) \supset O_L(3)]] \otimes O_{M_Fd}(2) \oplus O_{M_Fs}(2) \supset O_L(3) \otimes O_{M_F}(2) | \\
\{N\} \quad \{v\} \quad \{v_d\} \quad \{v_1v_2\} \quad L
\end{align*}
$$

(21)

The generators of all the groups in (21) will follow from the results in Sections 2 and 3.1. The irrep labels in (21) are determined as follows. It is seen from (18) that $v = N, N - 2, \ldots, 0$ or 1. The $v \rightarrow (v_d, M_Fs)$ is given by the rule $[21]$ $v = v_s + v_d + 2k$, $k = 0, 1, 2, \ldots$ where $v_s = 2 |M_Fs|$. The rules for $v_d \rightarrow [v_1 v_2] M_{F_d}$ are given in Appendix A; note that here Table 1 with $r = 5$ will apply. The $[v_1 v_2] \rightarrow L$ reductions are same as in the case of $O(12) \supset O(6) \otimes O(2)$ limit. Now let us consider the hamiltonian and the energy formula in the $O(12) \supset O(2) \oplus O(10)$ limit,

$$
H = E_0(N, M_F) + b_1 C_2(O(12)) + b_2 C_2(O(10)) + b_3 C_2(O(5)) + b_4 C_2(O(3)) + b_5 \left(F_{d,0}^4 \right)^2
$$

(22)

$$
E(N, v, v_d, [v_1 v_2], L, M_{F_d}, M_F) = E_0(N, M_F) + b_1 v(v + 10) + b_2 v_d(v_d + 8) + b_3 [v_1(v_1 + 3) + v_2(v_2 + 1)] + b_4 L(L + 1) + b_5 (M_{F_d})^2
$$

Assuming $b_1 < 0$, the $v = N$ states will be lowest in energy. Then choosing $b_2 > 0$ in principle a phonon spectrum can be obtained. For $v_d = 0$ one has $L = 0$ with $M_{F_d} = 0$. Note that $M_{F_s} = \pm \frac{(v-v_d)}{2}, \pm \frac{(v-v_d-2)}{2}, \ldots, 0$ or $\pm \frac{1}{2}$ and given M_{F_d} the M_{F_s} value must be $M_{F_s} = M_F - M_{F_d}$. For $v_d = 1$ (one phonon excitation) one has $[v_1 v_2] = [1]$, $L = 2$ with $M_{F_d} = \pm \frac{1}{2}$. Similarly for $v_d = 2$ one has $L = 0, 2, 4$ with
$M_{F_d} = \pm 1$ and $L = (2, 4), (1, 3)$ with $M_{F_d} = 0$. These results follow from Table 1 as $[v_1v_2] = [0] \rightarrow L = 0$, $[1] \rightarrow L = 2$, $[2] \rightarrow L = 2, 4$ and $[11] \rightarrow L = 1, 3$. This construction extends to $v_d = 3$ etc. Then there will be similar states with $v = N - 2$ at energies higher than those of $v = N$ states and so on. With these, by choosing $b_5 = 0$ one has, a ground 0^+, 1-phonon excited 2^+ with $M_{F_d} = \pm \frac{1}{2}$, 2-phonon $(0^+, 2^+, 4^+)$ with $M_{F_d} = \pm 1$ and $(2^+, 4^+$), $(1^+, 3^+)$ with $M_{F_d} = 0$. Thus, because of the degeneracies due to good (M_F, M_{F_d}) in this symmetry limit, the spectrum is unrealistic. However by adding a term $b_6 \left[\frac{1}{2}v_d - M_{F_d} \right] [v_d + R_1 M_{F_d} + R_2]$ with b_6, R_1 and R_2 being some constants, in the energy formula (22), it is possible to lift the M_{F_d} degeneracies to give a spectrum that looks realistic. At present a two-body interaction with eigenvalues $\left[\frac{1}{2}v_d - M_{F_d} \right] [v_d + R_1 M_{F_d} + R_2]$ could not be constructed. In conclusion, it is probable that the $O(12) \supset O(2) \oplus O(10)$ limit will not be seen in real nuclei.

4 Complete classification of pnIBM symmetry limits with good M_F

With the $O(12)$ algebra identified and studied in Sections 2 and 3, it is natural to address the question of complete classification of the symmetry schemes (group-subgroup chains) in pnIBM. As already pointed out, they are associated with the four $U(12)$ subalgebras (i) $U(6) \otimes SU_F(2)$, (ii) $U_\pi(6) \oplus U_\nu(6)$, (iii) $U_\pi(2) \oplus U_d(10)$ and (iv) $O(12)$. In the $U(6) \otimes SU_F(2)$ limit, the $U(6)$ algebra is generated by $\left(b^\dagger_{\ell_1, \ell_2} \bar{b}_{\ell_2, \ell_1} \right)_{M_{\ell_1, \ell_2}, \ell_1, \ell_2 = 0, 2}$ and $SU_F(2)$ by the F-spin operators F^μ_μ in (3). All the group chains in this limit are well known \cite{11, 12} and they correspond to the the sub-algebras G‘s in $U(12) \supset [U(6) \supset G \supset \cdots \supset O_L(3)] \otimes [SU_F(2) \supset O_M(2)]; \quad G = U(5), SU(3), O(6)$. Obviously all these chains preserve (N, L, F, M_F) (note that we are not showing $O_L(3) \supset O_M(2)$ as L is an exact symmetry). In the $U_\pi(6) \oplus U_\nu(6)$ limit the $U_\rho(6)$ generators follow easily from (2) and they are $\left(b^\dagger_{\ell_1, \rho} \bar{b}_{\ell_2, \rho} \right)_{M_{\ell_1, \ell_2}, \ell_1, \ell_2 = 0, 2}$ and $\rho = \pi, \nu$. The boson numbers N_ρ are generated by $U_\rho(6)$ and therefore the group chains in the $U_\pi(6) \oplus U_\nu(6)$ limit will always preserve M_F. The various group chains in this limit are
obtained by writing down all the \(U_\rho(6)\) subalgebras with good \(L_\rho\) \((\rho = \pi, \nu)\), then coupling the \(\pi - \nu\) algebras at some level and further reducing this coupled algebra to \(O_L(3)\). All these group chains are well known \([1]\) and they are of the form \(U(12) \supset [U_\pi(6) \supset \ldots G_\pi \supset \ldots] \oplus [U_\nu(6) \supset \ldots G_\nu \supset \ldots] \supset G_{\pi+\nu} \ldots \supset O_L(3)\). In summary, the \(U(6) \otimes SU_F(2)\) symmetry limit group chains preserve \((N, L, F, M^F)\) and the \(U_\pi(6) \oplus U_\nu(6)\) symmetry limit group chains preserve only \((N, L, M^F)\) and all these group chains are known before.\(^2\)

In the \(U_s(2) \oplus U_d(10)\) limit, the \(sd\) boson space is decomposed into \(s\) and \(d\) spaces so that not only \(N\) but both \(N_s\) (generated by \(U_s(2)\)) and \(N_d\) (generated by \(U_d(10)\)) are good quantum numbers. The \(U_s(2)\) generates \(s\)-boson \(F\)-spin \(F_s = N_s/2\). The \(U_d(10)\) admits two subalgebras as pointed out in Section 2.2 and with this there are two group chains in the \(U_s(2) \oplus U_d(10)\) limit,

\[
\begin{align*}
U(12) \supset U_s(2) & \oplus [U_d(10) \supset \{U(5) \supset O(5) \supset O_L(3)\} \{N_s\}; F_s = N_s/2 \quad \{N_d\} \quad \{f_1, f_2\} \quad [v_1 v_2] \quad L \\
\otimes SU_{F_d}(2) & \supset SU_F(2) \supset O_{M_F}(2) \\
F_d = (f_1 - f_2)/2 & \quad \bar{F} = \bar{F}_s + \bar{F}_d \quad M_F
\end{align*}
\]

(23)

\[
\begin{align*}
U(12) \supset [U_s(2) \supset O(2)_{M_F_s} \} \oplus [U_d(10) \supset O(10) \supset \\
\{N\} \quad \{N_s\}; F_s = N_s/2 \quad M_{F_s} \quad \{N_d\} \quad [v_d] \}
\}
\{O(5) \supset O_L(3)\} \otimes O_{M_{F_d}}(2) \supset O_{M_F}(2) \\
[v_1 v_2] \quad L \quad M_{F_d} \quad M_F = M_{F_s} + M_{F_d}
\end{align*}
\]

(24)

In the first chain (23) \(F\)-spin is good and by examining the irrep reductions (basis states) it is easily seen that it is same as the \(U(6) \otimes SU(2)\) limit with \(U(6) \supset U(5)\)

\(^2\)In the \(U_\pi(6) \oplus U_\nu(6)\) limit, the special case of coupling at the \(U_\rho(6)\) level itself, i.e. coupling the \(U_\pi(6)\) and \(U_\nu(6)\) to give \(U_{\pi+\nu}(6)\), is equivalent to \(U(6) \otimes SU_F(2)\). This special case is often used in literature to describe the \(U(6) \otimes SU_F(2)\) symmetry schemes \([2, 3]\).
(see [9] and Fig. 2 in this reference); note that in (23), $N = N_s + N_d$, $f_1 + f_2 = N_d$, $f_1 \geq f_2 \geq 0$. The second chain (24) (hereafter called $U(2) \oplus [U(10) \supset O(10)]$ limit) is a new group chain in pnIBM. For this chain, the irrep reductions $N_d \rightarrow v_d$ and $v_d \rightarrow [v_1v_2] M_{F_d}$ follow from the results in Section 2 and Appendix A; results in Table 1 with $r = 5$ will apply here. The $[v_1v_2] \rightarrow L$ reductions are given in Section 3.1. It is straightforward to write down the hamiltonian and energy formula in this limit. Just as in the case of $O(12) \supset O(6) \otimes O(2)$, it is easily seen that the spectrum in the present case also will be unrealistic (with degeneracies due to good M_{F_d}). Thus both $U(2) \oplus [U(10) \supset O(10)]$ and $O(12) \supset O(2) \oplus O(10)$ which preserve (M_{F_s}, M_{F_d}), may not be seen in real nuclei but they should be useful for chaos and phase transition studies (see ahead).

In summary, combining the symmetry schemes in the $U(6) \otimes SU_F(2)$, $U_{\pi}(6) \oplus U_{\nu}(6)$ and $U_s(2) \oplus U_d(10)$ limits with the two $O(12)$ symmetry limits analyzed in Section 3, one has the complete classification of symmetry schemes with good (N, L, M_F) in pnIBM.

5. Conclusions

Proton-neutron interacting boson model admits a new $O(12)$ symmetry limit which breaks F-spin but preserves the F_z quantum number M_F. The $O(12)$ algebra is analyzed in detail, for the first time in this paper, by identifying the corresponding quasi-spin algebra. With $O(12)$ there are two symmetry limits in pnIBM, $O(12) \supset O(6) \otimes O(2)$ and $O(12) \supset O(2) \oplus O(10)$ limits. In both cases complete classification of the basis states and typical energy spectra are given. It is argued that some $O(6)$ type (γ soft) nuclei may exhibit the $O(12) \supset O(6) \otimes O(2)$ limit and two important signatures here are the appearance of $O(6)$ $[N - 1, 1]$ states around 1.5 MeV excitation and the 0^+_3 (or 0^+_4) states around 2.5 MeV with a correlated $\pi - \nu$ boson pair. Search for empirical examples is under progress.
Searching for complete classification of pnIBM symmetry schemes, it is found that, within the \(U_s(2) \oplus U_d(10) \) algebra of \(U(12) \), there is a new \(U(2) \oplus [U(10) \supset O(10)] \) limit. This may be relevant for \(U(5) \) (vibrational) type nuclei. For the three new symmetry limits discussed in this paper, \(O(12) \supset O(6) \otimes O(2) \), \(O(12) \supset O(2) \oplus O(10) \) and \(U(2) \oplus [U(10) \supset O(10)] \) given by (19), (21) and (24) respectively (note that they all preserve \(M_F \) and in general break the \(F \)-spin), results for electromagnetic transition strengths (\(B(E2)'s \) and \(B(M1)'s \)) and structure of wavefunctions in terms of the amount of \(F \)-spin mixing they contain, will be presented elsewhere. The group theoretical problems needed for these are being solved.

With the \(O(12) \) limit studied in Section 3, another important problem addressed and solved in this paper is the complete classification of pnIBM symmetry schemes with good \(M_F \). Let us point out that a major application of the complete classification is in the studies of quantum chaos and phase transitions in finite quantum systems where one can use pnIBM as a model. Such studies with great success are carried out using IBM-1 [8, 9, 22, 23] and only recently a beginning is made in this direction using pnIBM [24].

Acknowledgments

Collaboration with Mr Gautum Kumar for his help in generating some of the results in this paper is acknowledged.

Appendix A

The problem of \([\tau] \rightarrow [\tau_1 \tau_2] \) \(M_F \) irrep reductions in the group-subgroup chain

\[
\begin{vmatrix}
U(2r) & O(2r) & O(r) \otimes O(2) \\
\{N\} & [\tau_1 \tau_2] & M_F \\
\end{vmatrix} ; \quad \tau = N, N-2, N-4, \ldots, 0 \text{ or } 1 \quad (A1)
\]

17
is solved by using the group chain

\[
\begin{aligned}
&U(2r) \supset U(r) \otimes SU(2) \supset O(r) \otimes O(2) \\
&\{N\} \quad \{f_1 f_2\} \quad F \quad [\tau_1 \tau_2] \quad M_F \end{aligned}
\]

\[f_1 + f_2 = N, \quad f_1 \geq f_2 \geq 0, \quad F = (f_1 - f_2)/2, \quad M_F = -F, (-F + 1), \ldots, F\]

(A2)

The \(\{f_1 f_2\} \rightarrow [\tau_1 \tau_2]\) reduction in (A2) is obtained by the well known rules for the \(U(r)\) and \(O(r)\) Kronecker (\(\otimes\)) products \([18]\) and the \(U(r) \supset O(r)\) reductions for the symmetric \(U(r)\) irreps,

\[
\{f_1\}_{U(r)} \otimes \{f_2\}_{U(r)} - \{f_1 + 1\}_{U(r)} \otimes \{f_2 - 1\}_{U(r)} = \{f_1, f_2\}_{U(r)}
\]

(A3)

\[
[k]_{O(r)} \otimes [\ell]_{O(r)} = \sum_{p=0}^{\ell-p} \sum_{q=0}^{\ell} [k - \ell + p + 2q, p]_{O(r)} \oplus, \quad \ell \leq \kappa
\]

(A4)

\[
\{f\}_{U(r)} \rightarrow \{f\}_{O(r)} \oplus \{f - 2\}_{O(r)} \oplus \ldots \oplus \{0\}_{O(r)} \quad \text{or} \quad \{1\}_{O(r)}
\]

(A5)

By writing all allowed \(\{f_1 f_2\}\) in (A2) for a given \(N\) and then applying (A3), (A5) and (A4) in that order will give \(\{N\} \rightarrow [\tau_1 \tau_2]\) \(M_F\) reductions. Starting with \(N = 1, 3, 5 \ldots\) and by successive substraction of the \(\{N\} \rightarrow [\tau_1 \tau_2]\) \(M_F\) reductions will give, via \(N \rightarrow \tau\) in (A1), the \([\tau]_{O(2r)} \rightarrow [\tau_1 \tau_2]_{O(r)} (M_F)_{O(2)}\) irrep reductions for odd \(N\). Similarly, starting with \(N = 0, 2, 4, \ldots\) will give the reductions for even \(N\). This procedure is easily implemented on a computer. Table 1 gives the results for \(\tau \leq 6\).

From the table it is seen that, in general,

\[
[\tau]_{O(2r)} \rightarrow [\tau_1 \tau_2]_{O(r)} (M_F)_{O(2)} = [\tau] \pm \left(\frac{\tau}{2}\right), \pm \left(\frac{\tau}{2} - 1\right), \ldots, 0 \quad \text{or} \quad \pm \frac{1}{2}
\]

\[\oplus [\tau - 1, 1] \pm \left(\frac{\tau}{2} - 1\right), \pm \left(\frac{\tau}{2} - 2\right), \ldots, 0 \quad \text{or} \quad \pm \frac{1}{2}
\]

\[\oplus [\tau - 2, 2] \pm \left(\frac{\tau}{2} - 2\right), \pm \left(\frac{\tau}{2} - 3\right), \ldots, 0 \quad \text{or} \quad \pm \frac{1}{2}
\]

\[\oplus \ldots
\]

\[\oplus [\tau - 2] \pm \left(\frac{\tau}{2}\right), \pm \left(\frac{\tau}{2} - 1\right), \ldots
\]

\[\oplus \ldots
\]

(A6)
Table 1. $[\tau]_{O(2r)} \rightarrow [\tau_1 \tau_2]_{O(r)} \ (M_F)_{O(2)}$ irrep reductions for $\tau \leq 6$. The results in the table are verified using the dimension formulas \[18\] for $r = 5, 6$, $d([\tau_1 \tau_2]_{O(5)}) = (2\tau_1 + 3)(2\tau_2 + 1)(\tau_1 - \tau_2 + 1)(\tau_1 + \tau_2 + 2)/6$, $d([\tau_1 \tau_2]_{O(6)}) = (\tau_1 + 2)^2(\tau_2 + 1)^2(\tau_1 - \tau_2 + 1)(\tau_1 + \tau_2 + 3)/12$. Used also is the formula $d([\tau]_{O(2r)}) = \left(\frac{\tau + 2r - 1}{\tau} \right) - \left(\frac{\tau + 2r - 3}{\tau} \right)$ for any r.

$[\tau]_{O(2r)}$	$[\tau_1 \tau_2]_{O(r)}$	$(M_F)_{O(2)}$	$[\tau]_{O(2r)}$	$[\tau_1 \tau_2]_{O(r)}$	$(M_F)_{O(2)}$
[0]	[0]	0	[5]	[5]	$\pm \frac{5}{2}$, $\pm \frac{3}{2}$, $\pm \frac{1}{2}$
[1]	[1]	$\pm \frac{1}{2}$	[41]		$\pm \frac{3}{2}$, $\pm \frac{1}{2}$
[2]	[2]	$\pm 1, 0$	[32]		$\pm \frac{1}{2}$
[11]	0	[3]	$\pm \frac{5}{2}$, $\pm \frac{3}{2}$, $(\pm \frac{1}{2})^2$		
[0]	± 1	[21]		$\pm \frac{3}{2}$, $\pm \frac{1}{2}$	
[3]	[3]	$\pm \frac{3}{2}$, $\pm \frac{1}{2}$	[1]	$\pm \frac{5}{2}$, $\pm \frac{3}{2}$, $\pm \frac{1}{2}$	
[21]	$\pm \frac{1}{2}$	[6]	[6]		$\pm 3, \pm 2, \pm 1, 0$
[1]	$\pm \frac{3}{2}$, $\pm \frac{1}{2}$	[51]		$\pm 2, \pm 1, 0$	
[4]	[4]	$\pm 2, \pm 1, 0$	[42]		$\pm 1, 0$
[31]	$\pm 1, 0$	[33]		[33]	0
[22]	0	[4]	$\pm 3, \pm 2, (\pm 1)^2, (0)^2$		
[2]	$\pm 2, \pm 1, (0)^2$	[31]		$\pm 2, \pm 1, (0)^2$	
[11]	± 1	[22]		± 1	
[0]	$\pm 2, 0$	[2]	$\pm 3, \pm 2, (\pm 1)^2, 0$		
		[11]	$\pm 2, 0$		
		[0]	$\pm 3, \pm 1$		
References

[1] F. Iachello and A. Arima, *The Interacting Boson Model* (Cambridge University Press, Cambridge, 1987).

[2] I. Talmi, *Simple Models of Complex Nuclei: The Shell Model and the Interacting Boson Model* (Harwood, New York, 1993); K.L.G. Heyde, *The Nuclear Shell Model*, 2nd edition (Springer, Berlin, 1994); W. Greiner and J.A. Maruhn, *Nuclear Models* (Springer, Heidelberg, 1996).

[3] P. Van Isacker, K. Heyde, J. Jolie and A. Sevrin, *Ann. Phys.* (N.Y.) **171**, 253 (1986).

[4] A. Frank and P. Van Isacker, *Algebraic Methods in Molecular and Nuclear Physics* (Wiley, New York, 1994).

[5] V.K.B. Kota, *Ann. Phys.* (N.Y.) **265**, 101 (1998); J.E. Garcia-Ramos and P. Van Isacker, *Ann. Phys.* (N.Y.) **274**, 45 (1999).

[6] V.K.B. Kota, *Ann. Phys.* (N.Y.) **280**, 1 (2000).

[7] Q.Z. Hahn, H.Z. Sun and G.H. Li, *Phys. Rev.* C35, 784 (1987); P. Halse, P. Van Isacker and B.R. Barrett, *Phys. Lett.* B363, 145 (1995); P. Van Isacker and D.D. Warner, *Phys. Rev. Lett.* 78, 3266 (1997); V.K.B. Kota, *Pramana- J. Phys.* **51**, 727 (1998); V.K.B. Kota, *J. Phys.* G24, 1535 (1998).

[8] D. Kusnezov, *Phys. Rev. Lett.* 79, 537 (1997); A.M. Shirokov, N.A. Smirnova and Yu.F. Smirnov, *Phys. Lett.* B434, 237 (1998); A.M. Shirokov, N.A. Smirnova, Yu.F. Smirnov, O. Castanos and A. Frank, in *Nuclear Models 1998*, edited by G. Lo. Bianco (University of Camerino press, Camerino, Italy, 1999); P. Cejnar and J. Jolie, *Phys. Rev.* E58, 387 (1998), *Phys. Rev.* E61, 6237 (2000).

[9] F. Iachello, *Phys. Rev. Lett.* 85, 3580 (2000), *Phys. Rev. Lett.* 87, 052502 (2001).

[10] Yu.F. Smirnov, N.A. Smirnova and P. Van Isacker, *Phys. Rev.* C61, 041302 (2000); P. Van Isacker, *Phys. Rev. Lett.* 83, 4269 (1999).

[11] K.H. Kim, A. Gelberg, T. Mizusaki, T. Otsuka and P. von Brentano, *Nucl. Phys.* A604, 163 (1996).

[12] D. Bohle et al, *Phys. Lett.* B137, 27 (1984); A. Richter, *Prog. Part. Nucl. Phys.* 34, 261 (1995); U. Kneissl, H.H. Pitz and A. Zilges, *Prog. Part. Nucl. Phys.* 37, 349 (1996).

[13] P. von Brentano et al, *Phys. Rev. Lett.* 76, 2029 (1996); H. Maser et al, *Phys. Rev.* C54, R2129 (1996); N. Pietralla et al, *Phys. Rev.* C58, 796 (1998), *Phys. Rev. Lett.* 83, 1303 (1999), *Phys. Rev. Lett.* 84, 3375 (2000).

[14] A. Novoselski and I. Talmi, *Phys. Lett.* B160, 13 (1985); O. Engel, A. Richter and H.J. Wortche, *Nucl. Phys.* A565, 596 (1993); A. Wolf, O. Scholten and R.F. Casten, *Phys. Lett.* B312, 372 (1993).
[15] V.K.B. Kota, in Structure of Atomic Nuclei, edited by L. Satpathy (Narosa publishing, New Delhi, India, 1999) p.203.

[16] V.S. Lac, J.P. Elliott and J.A. Evans, Phys. Lett. B394, 231 (1997).

[17] V.K.B. Kota and Y.D. Devi, Nuclear shell model and the interacting boson model: Lecture notes for practitioners (IUCDAEF-CC, Kolkata, India, 1996).

[18] B.G. Wybourne, Symmetry Principles in Atomic Spectroscopy (John Wiley and Sons, New York, 1970); D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups (Oxford University Press, Oxford, London, 1950).

[19] V.K.B. Kota, Pramana- J. Phys. 48, 1035 (1997).

[20] P.C. Sood, D.M. Headly and R.K. Sheline, Atomic data and nuclear data tables 47, 89 (1991), 51, 273 (1992).

[21] V.K.B. Kota, J. Math. Phys. 38, 6639 (1997).

[22] Y. Alhassid, A. Novoselsky and N. Whelan, Phys. Rev. Lett. 65, 2971 (1990); N. Whelan, Y. Alhassid and A. Leviatan, Phys. Rev. Lett. 71, 2208 (1993); N. Whelan and Y. Alhassid, Nucl. Phys. A556, 42 (1993).

[23] J. Jolie, R.F. Casten, P. von Brentano and V. Werner, Phys. Rev. Lett. 87, 162501 (2001).

[24] E. Canetta and G. Maino, Phys. Lett. B483, 55 (2000).
Figure Caption

Fig. 1. Typical energy spectrum in the $O(12) \supset O(6) \otimes O(2)$ limit of pnIBM for $N = 6$ bosons with $M_F = -1$ (i.e. $N_\pi = 2$, $N_\nu = 4$). The parameters in the energy formula (20) are chosen to be $a_1 = 30$ keV, $a_2 = -125$ keV, $a_3 = 35$ keV and $a_4 = 10$ keV. The $O(5)$ quantum numbers $[v_1 v_2]$ are shown to the left of each energy level and to the right shown are L^π values. Energy levels for $v = 6$ with $[\sigma_1 \sigma_2] = [6]$ and $[51]$ and $v = 4$ with $[\sigma_1 \sigma_2] = [4]$ are shown in the figure.
$O(12) \supset O(6) \otimes O(2)$

Energy (MeV)

$N=6, M_F=-1$

$[0] \quad 0^+$

$[1] \quad 2^+$

$[2] \quad 4^+$

$[3] \quad 6^+$

$[4] \quad 2^+$

$[5] \quad 4^+$

$[6] \quad 0^+$