A Novel Mobile Element ICE_{Rsp}D18B in <i>Rheinheimera</i> sp. D18 Contributes to Antibiotic and Arsenic Resistance

Jiafang Fu^{1,2}, Chuanqing Zhong³, Peipei Zhang^{1,2,4}, Qingxia Gao², Gongli Zong^{1,2,4}, Yingping Zhou³ and Guangxiang Cao^{1,2,4*}

¹Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China, ²College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China, ³School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China, ⁴Key Laboratory for Biotech-Drugs of National Health Commission, Department of Microbiology, Jinan, China

Antibiotics and organoarsenical compounds are frequently used as feed additives in many countries. However, these compounds can cause serious antibiotic and arsenic (As) pollution in the environment, and the spread of antibiotic and As resistance genes from the environment. In this report, we characterized the 28.5 kb genomic island (GI), named as ICE_{Rsp}D18B, as a novel chromosomal integrative and conjugative element (ICE) in multidrug-resistant <i>Rheinheimera</i> sp. D18. Notably, ICE_{Rsp}D18B contains six antibiotic resistance genes (ARGs) and an arsenic tolerance operon, as well as genes encoding conjugative transfer proteins of a type IV secretion system, relaxase, site-specific integrase, and DNA replication or partitioning proteins. The transconjugant strain 25D18-B4 was generated using <i>Escherichia coli</i> 25DN as the recipient strain. ICE_{Rsp}D18B was inserted into 3'-end of the <i>guaA</i> gene in 25D18-B4. In addition, 25D18-B4 had markedly higher minimum inhibitory concentrations for arsenic compounds and antibiotics when compared to the parental <i>E. coli</i> strain. These findings demonstrated that the integrative and conjugative element ICE_{Rsp}D18B could mediate both antibiotic and arsenic resistance in <i>Rheinheimera</i> sp. D18 and the transconjugant 25D18-B4.

Keywords: antibiotic resistance, arsenic resistance, ICE_{Rsp}D18B, integrative and conjugative element, <i>Rheinheimera</i>

INTRODUCTION

In aquaculture systems, the indiscriminate use of chemical additives and antimicrobials (especially antibiotics) as preventative and curative measures for diseases has resulted in antimicrobial resistance among bacteria (Buschmann et al., 2012; Sun et al., 2016; Nakayama et al., 2017; Rico et al., 2017). Additionally, the transfer of antibiotic resistance elements from aquaculture facilities into the environment could have negative impacts on environmental biodiversity and human health as a result of further antimicrobial resistance development (Garcia-Aljaro et al., 2014; Xu et al., 2017). In addition to antibiotics, the metalloid arsenic (As) has been used as a feed additive, although it was ranked first on the priority list of
hazardous substances by the Agency for Toxic Substances and Disease Registry; arsenic has a significant impact on the aquaculture environment because of its toxic, persistent, and accumulative properties in organisms, which have devastating effects on the diversity of aquatic animals and on the ecological balance of aquaculture systems (Miazeck et al., 2015; Rahman and De Ley, 2017). Arsenic resistance genes, usually organized in ars operons, have been widely identified in bacteria (Fekih et al., 2018; Serrato-Gamino et al., 2018). Therefore, the aquaculture environment poses a potential risk for the dissemination of arsenic resistance genes as well as antibiotic resistance genes (ARGs) through mobile genetic elements (Abdelhamed et al., 2019).

Bacteria of the genus *Rheinheimera* are frequently isolated from freshwater and estuaries (Baek and Jeon, 2015; Chen et al., 2019); and saline and slightly alkaline lakes (Liu et al., 2012; Zhong et al., 2014). Currently, the genus comprises 27 species.\(^2\) Comparative genomics analysis of *Rheinheimera* genomes revealed that the core genome is relatively small (Presta et al., 2017), which may be related to the different ecological niches colonized by members of this genus (Wang et al., 2018; Panda et al., 2020). It has been reported that many *Rheinheimera* strains are multidrug-resistant (Liu et al., 2012; Mengoni et al., 2014; Suarez et al., 2014; Kumar et al., 2015), and a series of ARGs in the genomes of *Rheinheimera* spp. have been uncovered, such as *acrD* in *Rheinheimera* sp. EpR53, encoding an aminoglycoside efflux pump; *acrB* in *Rheinheimera* sp. KLI, encoding a multidrug resistance-nodulation-division efflux pump; and *tet(B)* in *Rheinheimera* sp. D18, encoding a tetracycline efflux major facilitator superfamily (MFS) transporter (O’Connor et al., 2015; Presta et al., 2017; Fu et al., 2020). In addition, bioinformatics analyses have predicted the widespread presence of arsenical resistance genes in *Rheinheimera*. However, the transferability of ARGs and arsenic resistance genes in *Rheinheimera* has not been well characterized.

Rheinheimera sp. D18 strain was previously isolated from mariculture environment in the Yellow Sea, which has been reported to be polluted by notable amounts of antibiotic residues (Du et al., 2017; Han et al., 2020) and arsenic (Jiang et al., 2015; Xiao et al., 2017), and D18 was found to have high-level resistance to tetracycline, florfenicol, amikacin, and sulfamethoxazole (Fu et al., 2020). In this study, the novel integrative and conjugative element ICE*RspD18B* was characterized in *Rheinheimera* sp. D18 genome. In addition to genes related to DNA replication/partitioning and conjugative transfer, ICE*RspD18B* was found to contain three repeated copies of a chloramphenicol/florfenicol efflux MFS transporter-encoding gene (*floR*), and several other ARGs. An arsenic tolerance operon was also identified in ICE*RspD18B*, indicating that ICE*RspD18B* mediates combined resistance to antibiotics and arsenic, and further analysis indicated that ICE*RspD18B* was transferable. This report characterized the first mobile genomic island (GI) ICE*RspD18B* that endows both antibiotic and arsenic resistance in the genus *Rheinheimera*, providing new insights into antibiotic and arsenic spread in the mariculture environment.

MATERIALS AND METHODS

Strains and Culture Conditions

Rheinheimera sp. D18 strain was previously isolated from maricultural environment (Fu et al., 2020). *Rheinheimera* sp. D18 was cultured in LB solid medium (tryptone 1%, yeast extract 0.5%, 1% sodium chloride, and agar 2%) at 28°C and was used as a donor in conjugation experiments. *Escherichia coli* strain 25DN was cultured at 37°C in LB medium and was used as recipient in conjugation experiments. Transconjugants from conjugation experiments were cultured on LB medium containing florfenicol (24 mg/l) and roxarsone (8 mM) at 37°C.

Identification of the Genomic Island

The *Rheinheimera* sp. D18 whole genome sequence has been deposited in GenBank (CP037745). The GIs were identified using Island Viewer 4 (Bertelli et al., 2017) and were further analyzed using ICEfinder (Liu et al., 2019). The genes in genomic island were annotated using the Prokaryotic Genome Annotation Pipeline on NCBI\(^3\) and RASTtk server (Overbeek et al., 2014; Brettin et al., 2015). Insertion sequence transposases were detected using IS-Finder (Siguier et al., 2012).

Comparative Analysis of ICE*RspD18B* With Other Genetic Elements

Pairwise alignment of ICE*RspD18B* and other relevant genetic elements was performed using the BLAST search tool and ICEberg WU-BLAST search tool (Liu et al., 2019). Further alignment between two sequences was performed using BioXM 2.6 software.

Conjugation Experiments

To determine whether the antibiotic and arsenic resistance genes in ICE*RspD18B* could be horizontal transferred among bacteria, conjugation experiments were carried out as previously described with some modification (Fu et al., 2020). Transconjugants were selected on LB agar plates with florfenicol (24 mg/l), roxarsone (8 mM), X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid), and sodium azide. The donor (*Rheinheimera* sp. D18) and the recipient (*E. coli* 25DN) strains are inhibited and only the transconjugants would survive on the selective agar plates. ICE*RspD18B* and its insertion site in the transconjugant were demonstrated by PCR and direct DNA sequencing. The ability of ICE*RspD18B* to form a ring in *Rheinheimera* sp. D18 was also verified by PCR and DNA sequencing. All the primers used in this report are listed in Supplementary Table S1.

\(^1\)https://www.atsdr.cdc.gov/spl/index.html

\(^2\)http://www.bacterio.net/rheinheimera.html

\(^3\)http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
Metalloid Arsenic and Antibiotic Susceptibility Testing

The broth microdilution method was used (CLSI, 2017) to determine the MICs for roxarsone, sodium hexafluoroarsenate and different antibiotics, including amikacin, florfenicol, and sulfamethoxazole. Escherichia coli 25DN strain was also tested for MICs.

Data Analysis

All the experiments in this study were carried out in triplicate. The differences in MICs for the transconjugant strain and E. coli 25DN strain were analyzed using the Student’s t-test (p < 0.05).

RESULTS

Structure of ICE_{Rsp}D18B in the <i>Rheinheimera</i> sp. D18 Strain

A chromosomal GI in <i>Rheinheimera</i> sp. D18 was identified using Island Viewer 4 (Figure 1), while it was not predicted as a typical integrative and conjugative element (ICE) by ICEfinder software. This GI extends from position 2,629,186 to 2,657,721 in the chromosome of D18 and contains 28,536 bp. Gene annotation indicated that it contains 33 open reading frames (ORFs; Supplementary Table S2), among which six ORFs were predicted to be ARGs, including one sulfonamide resistance gene (sul2), two aminoglycoside resistance genes (aph(3")-Ib and strB), and three repeated copies of a chloramphenicol/florfenicol resistance gene (floR); and four ORFs were predicted to be arsenic resistance genes, forming the operon <i>arsRHCB</i>. The GI also contains three identical copies of a relaxase-encoding gene (E0Z06_RS12465, E0Z06_RS12485, and E0Z06_RS12505) related to a type IV secretion system; three conjugative transfer protein-encoding genes (trbL, trbK, and trbJ); four genes associated with DNA replication or partitioning (repC, repA, E0Z06_RS12575, and E0Z06_RS12520); and genes encoding a site-specific integrase (int) and its transcriptional regulator (E0Z06_RS12590). Sequence examination further indicated that the GI was bordered by a 20-bp direct repeat (DR; 5’-ACAATNGAGTGGGAATNNNTT-3’) at both ends and that it was inserted into the <i>guaA</i> gene (E0Z06_RS12600) in the chromosome of D18. These findings suggest that this GI might be an ICE-like genomic island, named as ICE_{Rsp}D18B, and provide antibiotic and arsenic tolerance to <i>Rheinheimera</i> sp. D18, as we know, ICES are now recognized as a large and diverse class of chromosomal mobile genetic elements in bacteria that can transfer between bacteria through conjugation (Baranowski et al., 2018; Partridge et al., 2018).

Pairwise Alignment of ICE_{Rsp}D18B With Relevant DNA Sequences

The whole ICE_{Rsp}D18B nucleotide sequence was analyzed using BLAST, and results revealed that this ICE_{Rsp}D18B presents only in the <i>Rheinheimera</i> sp. D18 genome. GC content of ICE_{Rsp}D18B is 58.28%, different from that of the overall GC content of <i>Rheinheimera</i> sp. D18 genome (44.39%), indicating that this genomic island ICE_{Rsp}D18B was derived from other bacteria. Pairwise alignment of ICE_{Rsp}D18B with other relevant DNA sequences was performed, and the sequence alignment results are shown in Figure 2. BLASTn analysis indicated that genes relating to conjugative transfer and DNA replication or partitioning (from E0Z06_RS12595 to E0Z06_RS12545) in ICE_{Rsp}D18B were highly similar to genes in the <i>Klebsiella pneumoniae</i> NCTC9180 genome (GenBank accession number LR134202.1), and these genes were also predicted to be present in the <i>K. pneumoniae</i> NCTC9171 genome (GenBank accession number LR588410.1). A larger region that included the above genes and the arsenic operon (<i>arsRHCB</i>; from E0Z06_RS12595 to E0Z06_RS12510) in ICE_{Rsp}D18B showed 99% identity with a genomic region of <i>K. pneumoniae</i> NCTC9171. In addition, the ICE_{Rsp}D18B arsenic operon (<i>arsRHCB</i>) had 100% nucleotide sequence identity to the arsenic operon located in <i>Salmonella enterica</i> strain 20–56 plasmid 1 (GenBank accession number LR536427.1). Of particular note, there were three tandem repeats of a set of genes that includes IS911, floR, a relaxase-encoding gene, and a LysR family transcriptional regulator-encoding gene in ICE_{Rsp}D18B, one or two of these genes were also
predicted in ICEVhBan5 of *Vibrio cholerae* O1 Ban5 (GenBank accession number GQ463140) and ICEPmiChn3 of *Proteus mirabilis* JN28 (GenBank accession number KY437727). The structure of the remaining part of ICERspD18B, including genes related to aminoglycoside and sulfonamide resistance, showed high similarity to genes in the *Providencia rettgeri* Pr-15-2-50 genome (GenBank accession number CP039844.1).

Transfer of ICERspD18B to Escherichia coli

In order to determine whether the ICE-like chromosomal genomic island ICERspD18B could be horizontally transferred, conjugation experiments between the donor strain D18 and the recipient strain *E. coli* 25DN (sodium azide-resistant) were performed. Florfenicol and roxarsone were used as the selective pressure, and the transconjugation frequency was about 2.76×10^{-7} colony-forming units/donor. One of the transconjugants was isolated and named 25D18-B4. To determine whether ICERspD18B was inserted into the chromosome of *E. coli* 25D18-B4, PCR assays and DNA sequencing analysis were performed. The results demonstrated that genes *strB*, *floR*, and *arsB*, and the region between *repC* and *trfB* in ICERspD18B, were present in 25D18-B4 but not in strain 25DN (Figures 3A,B). Furthermore, these sequences had 100% identity with those of *Rheinheimera* sp. D18, revealing that ICERspD18B had been transferred to 25D18-B4. Results also revealed that this ICERspD18B had been excised from the chromosome and was present in a circular form in *Rheinheimera* sp. D18 (Figure 3C), which is considered to be the first step of conjugation.

Localization of ICERspD18B in the Transconjugant 25D18-B4

The 3'-ends of tRNA/tmRNA genes are known attachment sites of ICEs (Williams, 2002; Liu and Zhu, 2010; Del Canto et al., 2011). However, the 3'-end of the guanosine monophosphate synthetase-encoding gene guaA has also been reported as an insertion site of genomic islands (Song et al., 2012). As bioinformatics analysis had indicated that ICERspD18B was inserted into 3'-end of guaA in the *Rheinheimera* sp. D18 genome, we investigated its location in the transconjugant 25D18-B4 and whether integration was orientation-specific, using PCR and DNA sequencing. 25D18-B4 was analyzed by PCR using combinations of two primer pairs: Junction L-For/Junction L-Rev and Junction R-For/Junction R-Rev, with D18 and *E. coli* 25DN as controls (Figure 4). It should be noted that the sequence of the Junction L-For primer is also present in the guaA gene of D18, due to the high similarity of guaA in D18 and 25DN, and that Junction L fragments were amplified in both 25D18-B4 and D18 (Figure 4B). PCR results indicated that ICERspD18B had been inserted into the 3'-end of guaA gene of the transconjugant 25D18-B4 strain, and DNA sequence analysis of PCR products confirmed that ICERspD18B was inserted at this site.

Susceptibility of D18 and 25D18-B4 to Antibiotics and Arsenic

The susceptibility of transconjugant 25D18-B4 and *Rheinheimera* sp. D18 to metalloid arsenic and antibiotics was tested. As shown in Table 1, 25D18-B4 had acquired resistance to florfenicol (MIC, 92 mg/L), amikacin (MIC, 24 mg/L), sulfamethoxazole (MIC, 16 mg/L), sodium hexafluoroarsenate (MIC, 22 mM), and roxarsone (MIC, 14 mM). MIC testing revealed that the MICs for amikacin, florfenicol, sulfamethoxazole, sodium hexafluoroarsenate, and roxarsone in the transconjugant 25D18-B4 were higher than the MICs for the recipient strain 25DN (Table 1). The notable increase in antibiotic/arsenic resistance of 25D18-B4 suggested that ICERspD18B genes involved in antibiotic and arsenic resistance had been horizontally transferred to the *E. coli* strain.

DISCUSSION

In this study, we reported the discovery and characterization of the ICE-like chromosomal genomic island ICERspD18B in the genus *Rheinheimera*. BLASTn analysis indicated that
only part sequence of ICE\(\text{sp.D18}\) exists in other species, and mainly derived from pathogenic bacteria such as \textit{Vibrio cholerae}, \textit{K. pneumoniae}, and \textit{P. rettgeri} (Figure 2). Further alignment with ICEberg WU-BLAST search tool revealed that the overall nucleotide sequence of ICE\(\text{sp.D18}\) has low similarity to that of previously described ICEs, although a portion of ICE\(\text{sp.D18}\) showed high similarity to ICE\(\text{Vvch}\)Ban5 of \textit{Vibrio cholerae} O1 Ban5 and ICE\(\text{PmiChn3}\) of \textit{P. mirabilis} JN28 (Figure 2). Additionally, our conjugation experiments indicated that ICE\(\text{sp.D18}\) has the ability to transfer among bacteria. Hence, we speculate that ICE\(\text{sp.D18}\) was transferred horizontally from other unsequenced strains. Moreover, ICE\(\text{sp.D18}\) contains genes predicted to encode a site-specific integrase, relaxases associated with a type IV secretory pathway, conjugative transfer proteins, and DNA replication or partitioning encoding genes (Supplementary Table S2), further suggesting that ICE\(\text{sp.D18}\) is an ICE.

\(\text{tRNA}, \text{tmRNA}, \text{and some small RNA genes are recognized as integration hotspots of genomic islands (Williams, 2002; Del Canto et al., 2011). However, the 3'}\text{-end of the guaA gene is also an insertion site of genomic islands (Song et al., 2012). Integrases in guaA-associated genomic islands are frequently phage P4 integrases, and genes encoding AlpA (the positive regulatory protein of P4 integrases) are located near the P4 integrase genes in these genomic islands (Song et al., 2012). The 8-bp consensus sequence 5’-GAGTGGGA-3’ within the DR flanking these genomic islands was reported to be the cutting site of the P4 integrases (Song et al., 2012). In our study, bioinformatics analysis revealed that the site-specific integrase in ICE\(\text{sp.D18}\) belongs to the phage P4 integrases and that the AlpA-encoding gene \textit{alpA} is next to the site-specific integrase-encoding gene \textit{int} (Supplementary Table S1). Additionally, the 8-bp consensus sequence 5’-GAGTGGGA-3’ was also found within the DR (5’-ACAATNGAGTGGGAATNNTT-3’) of ICE\(\text{sp.D18}\), and ICE\(\text{sp.D18}\) was confirmed to be inserted into the 3’ end of \textit{guaA} in the transconjugant 25D18-B4 (Figure 4). In addition, the circular, extrachromosomal form of ICE\(\text{sp.D18}\) was also observed in \textit{Rheinheimera} sp. D18 using PCR (Figure 3). These data suggest that ICE\(\text{sp.D18}\) was first excised from the donor \textit{Rheinheimera} sp. D18 chromosome, transferred via type IV secretory system-mediated conjugation and then inserted into 3’-end of \textit{guaA} gene of the \textit{E. coli} 25DN chromosome by site-specific recombination. These data also indicated that ICE\(\text{sp.D18}\) has the ability to transfer genes horizontally from \textit{Rheinheimera} sp. D18 to other bacteria. Considering that ICE\(\text{sp.D18}\) is also located at the 3’-end of \textit{guaA} in the \textit{Rheinheimera} sp. D18 genome, our results further demonstrate that the 3’-end of \textit{guaA} gene may be another integration hotspot of genomic islands.

Organoaarsenic arsenical compounds (such as p-arsanilic acid and roxarsone) are widely used as feed additives in many countries, and the land application of poultry or swine litter could cause serious arsenic pollution in the environment (Liang et al., 2014; Xie and Cheng, 2019), potentially resulting in arsenic resistance among environmental bacteria and the dissemination of their arsenic resistance genes to other bacterial species. Arsenic resistance genes are usually organized in \textit{ars} operons in bacteria, such as in \textit{Pseudomonas putida}, which has two \textit{arsRBCH} operons and which is highly resistant to...
The arsB gene encodes an As(III) efflux permease, arsC encodes an arsenate reductase for reduction of inorganic arsenate to As(III) and arsR encodes an As(III)-responsive transcriptional factor that controls expression of the operon (Yang et al., 2012). Arsenate [As(V)] is reduced to arsenite [As(III)] by the arsenate reductase ArsC prior to efflux, and then, arsenite is pumped out through ArsB (Shen et al., 2013). arsH encodes an organoarsenical oxidase that confers resistance to organoarsenic (Chen et al., 2015; Xie and Cheng, 2019). ICE_{Rsp}D18B contains one <i>ars</i> gene cluster, which includes <i>arsBCHR</i> (Figure 1). The transconjugant 25D18-B4, which acquired ICE_{Rsp}D18B, was found to have markedly higher MICs of roxarsone and sodium hexafluoroarsenate compared to those of the parental strain, <i>E. coli</i> 25DN (Table 1). These data suggest that ICE_{Rsp}D18B can contribute to the dissemination of arsenic resistance genes among bacteria.

Sulfonamide, chloramphenicol/florfenicol, and aminoglycoside have been used widely to treat bacterial and protozoan infections in aquaculture systems (Dang et al., 2007; Hoa et al., 2008). ICE_{Rsp}D18B also contains three copies of a chloramphenicol/florfenicol efflux MFS transporter-encoding gene (<i>floR</i>); one sulfonamide resistance gene (<i>sul2</i>); and two aminoglycoside resistance genes, <i>aph(3''Ib)</i> and <i>strB</i>. <i>Escherichia coli</i> is an opportunistic bacterium that can cause a wide variety of intestinal and extraintestinal infections (Riley, 2014). In this study, ICE_{Rsp}D18B was horizontal transferred to <i>E. coli</i> 25DN strain,

Strain	Amikacin[*]	Florfenicol	Sulfamethoxazole	Roxarsone[#]	Sodium hexafluoroarsenate[#]
D18	96	128	72	20	35
25DN	<2	<2	4	4	10
25D18-B4	24	92	16	14	22

[*]Concentrations of the three antibiotics are given in mg/L.

[#]Concentrations of roxarsone and sodium hexafluoroarsenate are given in mM.
and generated the transconjugant 25D18-B4 strain. The transconjugant 25D18-B4 was found to have notably higher MICs of amikacin, florfenicol, and sulfamethoxazole when compared to the parental strain, *E. coli* 25DN (Table 1), suggesting that the ARGs in ICErspD18B contribute to the antibiotic resistance profile of *Rheinheimera* sp. D18 as well as *E. coli* 25D18-B4. These data suggest that the ICE-like genomic island ICErspD18B has the ability to disseminate these ARGs, along with arsenic resistance genes, among bacteria in the environment.

In conclusion, the findings of this study demonstrate that ICErspD18B is an ICE that increases host tolerance to arsenic and several antibiotics. Our results also reveal that this mobilizable ICErspD18B could be horizontal transferred to *E. coli* 25DN strain, and the transconjugant 25D18-B4 also has resistance to arsenic and antibiotic. Continuous monitoring of the antibiotic/arsenic tolerance of bacteria detected in the aquaculture industry is recommended to reduce the spread of resistance genes.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

REFERENCES

Abdelhamed, H., Ramachandran, R., Ozdemir, O., Waldbieser, G., and Lawrence, M. L. (2019). Characterization of a novel conjugative plasmid in *Edwardsiella piscicida* strain MS-18-199. *Front. Cell. Infect. Microbiol.* 9:404. doi: 10.3389/fcimb.2019.00404

Baek, K., and Jeon, C. O. (2015). *Rheinheimera aestuarii* sp. nov., a marine bacterium isolated from coastal sediment. *Int. J. Syst. Evol. Microbiol.* 65, 2640–2645. doi: 10.1099/ijs.0.003312

Baranowski, E., Dordet-Frisioni, E., Sagne, E., Hygonen, M. C., Pretre, G., Claverol, S., et al. (2018). The integrative conjugative element (ICE) of *Myкопlasma agalactiae*: key elements involved in horizontal dissemination and influence of coresident ICES. *mBio* 9, e00873-e00918. doi: 10.1128/mBio.00873-18

Bertaini, C., Laird, M. R., Williams, K. P., Simon Fraser University Research Computing Group, Lau, B. Y., Hoad, G., et al. (2017). Islandviewer 4: expanded predication of genomic islands for large-scale datasets. *Nucleic Acids Res.* 45, W30–W35. doi: 10.1093/nar/gkx343

Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., et al. (2015). RASTk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. *Sci. Rep.* 5:8365. doi: 10.1038/srep08365

Buschmann, A. H., Tomova, A., Lopez, A., Maldonado, M. A., Henriquez, L. A., Ivanova, N. L., et al. (2012). Salmon aquaculture and antimicrobial resistance in the marine environment. *PLoS One* 7:e42724. doi: 10.1371/journal.pone.0042724

Canovas, D., Cases, I., and De Lorenzo, V. (2003). Heavy metal tolerance and metal homeostasis in *Pseudomonas putida* as revealed by complete genome analysis. *Environ. Microbiol.* 5, 1242–1256. doi: 10.1042/1462-2920.200300463.x

Chen, J., Bhattacharjee, H., and Rosen, B. P. (2015). ArsH is an organoarsenical metal homeostasis in *Pseudomonas putida* KPN1. *Arch. Microbiol.* 196, 1042–1052. doi: 10.1007/s00203-019-01657-5

Chen, W. M., Chen, W. T., Young, C. C., and Sheu, S. Y. (2019). *Rheinheimera riviphila* sp. nov., isolated from a freshwater stream. *Arch. Microbiol.* 201, 919–926. doi: 10.1007/s00203-019-01657-5

CLSI (2017). *Performance standards for antimicrobial susceptibility testing*. 27th Edn. Pennsylvania: CLSI.

AUTHOR CONTRIBUTIONS

JF: executed the experiments and manuscript preparation and submission. CZ: resources, review and editing. PZ and GZ: data curation and investigation. YZ and QG: methodology. GC: designed the work and revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Shandong key research and development program (No. 2019GSF107070 and ZR2015EM018) and the Academic Promotion Programme of Shandong First Medical University (JL001). We thank Dr. Susan T. Howard for critical reading of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.616364/full#supplementary-material

Dang, H., Zhang, X., Song, L., Chang, Y., and Yang, G. (2007). Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. *J. Appl. Microbiol.* 103, 2580–2592. doi: 10.1111/j.1365-2672.2007.03494.x

Del Canto, F., Valenzuela, P., Cantero, L., Bronstein, J., Blanco, J. E., Blanco, J., et al. (2011). Distribution of classical and nonclassical virulence genes in enterotoxigenic *Escherichia coli* isolates from Chilean children and tRNA gene screening for putative insertion sites for genomic islands. *J. Clin. Microbiol.* 49, 3198–3203. doi: 10.1128/JCM.02473-10

Du, J., Zhao, H., Liu, S., Xie, H., Wang, Y., and Chen, J. (2017). Antibiotics in the coastal water of the south yellow sea in China: occurrence, distribution and ecological risks. *Sci. Total Environ.* 595, 521–527. doi: 10.1016/j.scitotenv.2017.03.281

Fekih, I. B., Zhang, C., Li, Y. P., Zhao, Y., Alwehhanani, H. A., Saquib, Q., et al. (2018). Distribution of arsenic resistance genes in prokaryotes. *Front. Microbiol.* 9:2473. doi: 10.3389/fmicb.2018.02473

Fu, J., Zhong, C., Zhang, P., Zong, G., Liu, M., and Cao, G. (2020). Novel mobilizable genomic island GEI-D18A mediates conjugational transfer of antibiotic resistance genes in the multidrug-resistant strain *Rheinheimera* sp. D18. *Front. Microbiol.* 11:627. doi: 10.3389/fmicb.2020.00627

Garcia-Aljaro, C., Riera-Heredia, J., and Blanch, A. R. (2014). Antimicrobial resistance and presence of the SXT mobile element in *Vibrio* spp. isolated from aquaculture facilities. *New Microbiol.* 37, 339–346.

Han, Q. F., Zhao, S., Zhang, X. R., Wang, X. L., Song, C., and Wang, S. G. (2020). Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the yellow sea, North China. *Environ. Int.* 138:105551. doi: 10.1016/j.envint.2020.105551

Hoa, P. T. P., Nonaka, L., Viet, P. H., and Suzuki, S. (2008). Detection of the *sul1*, *sul2*, and *sul3* genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of North Vietnam. *Sci. Total Environ.* 405, 377–384. doi: 10.1016/j.scitotenv.2008.06.023

Jiang, H., Tang, S., Qin, D., Chen, Z., Wang, J., Bai, S., et al. (2015). Heavy metals in sea cucumber juveniles from coastal areas of bohai and yellow seas, North China. *Bull. Environ. Contam. Toxicol.* 94, 577–582. doi: 10.1007/s00128-014-4342-1

Kumar, A., Bajaj, A., Kumar, R. M., Kaur, G., Kaur, N., Singh, N. K., et al. (2015). Taxonomic description and genome sequence of *Rheinheimera mesophilica* sp. nov., isolated from an industrial waste site. *Int. J. Syst. Evol. Microbiol.* 65, 3666–3673. doi: 10.1099/ijsem.0.00471
