Ultrafast optical signal pulse descending time controlling with deformable mirror and spatial light modulators

Yong-ming Nie*, Yang Liu and Liu Jun-hui
Satellite Maritime Tracking and Controlling Department, Jiangyin, Jiangsu, China, 214431

*Corresponding author:yimonie@163.com

Abstract. A programmable ultrafast optical signal pulse descending time controlling apparatus is demonstrated based on micro-machined deformable mirrors (MDM) and liquid crystal spatial light modulators (LCSLM), which can smoothly modulate the phase and amplitude of the optical pulse frequency component linearly or nonlinearly.

1. Introduction
Femtosecond pulse shaping, which allows for generating specified temporal optical waveforms by parallel manipulation of the complex optical spectrum, has advanced dramatically since the advent of reliable generation of laser pulses below 100 fs in duration in 1981 with the invention of the colliding pulse mode locked (CPM) ring dye laser [1]. The temporal femtosecond pulse shaping technology has been widely adopted in various applications such as harmonic generation [2], coherent control [3], generation of two-dimension electronic spectra and temporal solutions [4], high-energy isolated attosecond pulse generating [5], compression of optical pulses [6], single cycle pulse generation [7], radio-frequency waveform generation [8], and optical communications [9]. Recently, the application has been further expanded. For example, in 2013, Ferreira P H D and his coworkers used shaped 30 fs pulses to accomplish the enhancement of laser induced Au nano-particle formation [10] and Yi Cai used carrier-envelope phase stabilization techniques to obtain a 1kHz, 90fs, 0.4mJ femtosecond pulse train with a total gain of 2×10^6 [11]. Bagayev S N obtained super-intense femtosecond multichannel laser system using parametric amplifier to overcome the phase distortions, which may be solved by Femtosecond pulse shaping techniques [12].

In this manuscript, a programmable femtosecond pulse shaping apparatus is designed based on MDM and LCSLM, which changes the phase and the amplitude of the frequency component of the pulse respectively. According to the fact that the time domain signal and its corresponding frequency
domain signal are Fourier transform pair, the pulse can be delayed or advanced by using the phase only MDM that just imposes a linear phase change onto its spectrum.

2. Theory analysis

Ultrafast optical signal pulse descending time controlling with deformable mirror and spatial light modulators refers two key factors which are temporal and spatial controlling.

2.1. Temporal controlling

In the time domain, the incident pulse electric field is denoted by $E_{in}(t)$ and the output pulse electric field is denoted by $E_{out}(t)$, so the output of a linear filter can be simply given by the following convolution product:

$$E_{out}(t) = R(t) * E_{in}(t)$$

(1)

where $R(t)$ is the impulse response of the pulse shaper. However, for femtosecond pulses, direct shaping in time is quite a hard task and most of the devices operate in the frequency domain and the output pulse can be written as following.

$$E_{out}(\omega) = H(\omega) \tilde{E}_{in}(\omega)$$

(2)

According to the formula (2), the temporal shaping can be accomplished through the spectral phase and amplitude controlling.

2.2. Spatial controlling

Fourier lens and LC-SLM constitute a conventional folded 4f zero-dispersion setup. The frequency components after being phase modulated by the LC-SLM were reflected back through the Fourier lens and recombined into a beam at the diffraction grating, which was anti-parallel by symmetry, and then a beam splitter separated out the retro-reflected beam. Hereto, the temporal shaping is accomplished.

According to the treatment of Kreuzer, the surface distribution of the two aspheric lenses in the Galilean shaping system can be represented as following [13].

$$z(r) = \int_0^r \left\{ (n^2 - 1) + \left[\frac{(n-1)d}{h(x) - x} \right]^2 \right\}^{-1/2} dx$$

$$Z(R) = \int_0^R \left\{ (n^2 - 1) + \left[\frac{(n-1)d}{h^{-1}(x) - x} \right]^2 \right\}^{-1/2} dx$$

(3)

The relationship between the surface and phase distribution of the first aspheric lens in Galilean shaping system can be expressed as following [14].

$$f_\rho (r) = \frac{2\pi(z_c - z(r) + nz(r))}{\lambda}$$

(4)

The LC-SLM imprints the phase distribution onto the input beam and the output beam with desired intensity distribution will be realized.
3. Experimental results

We concentrate our work on generating the flat-top profile femtosecond pulse beam in the target plane in the near field. The pulse beam used in all the measurements is generated by the Mai Tai HP Ti: sapphire laser with central wavelength at 707 nm. The beam waist radius after beam expander is 1.2 mm. The phase only LC-SLM with 1920×1080, 9 um×9 um pixels is a product of Holoeeye Company. The phase level of each pixel is assigned between 0 and \(2\pi\). The CCD camera which has 1392×1040, 6.45 um×6.45 um pixels is a Dolphin F-145B modal 12 bit product of AVT Company. After passing through the shaping setup, the intensity distribution of the output beam is captured by the CCD camera and tested by the pulse checking component by Second Harmonic Generation Frequency Resolved Optical Gating (SHG-FROG) method. FROG is simply a spectrally resolved autocorrelation, which allows the use of a phase-retrieval algorithm to retrieve the precise pulse intensity and phase vs. time. It can measure both very simple and very complex ultrashort laser pulses, and it has measured the most complex pulse ever measured without the use of a reference pulse. The experimental setup is shown in Fig. 1.

![Figure 1. Schematic of the experimental setup. G1, G2 and G3 are three gratings of the same personality. L1, L2 and L3 are three lens of the same personality. LC SLM is liquid crystal spatial light modulations.](image-url)

In this manuscript, a programmable femtosecond pulse shaping apparatus is designed based on MDM and LCSLM, which changes the phase and the amplitude of the frequency component of the pulse respectively. According to the fact that the time domain signal and its corresponding frequency domain signal are Fourier transform pair, the pulse can be delayed or advanced by using the phase only MDM that just imposes a linear phase change onto its spectrum. The experimental results are shown in Fig. 2 and Fig.3.
Figure 2. Spatial profiles of input and output pulse beams, (a) spatial intensity profile of the input Gaussian pulse beam and its gray-scale image (inset), (b) Experimental result of spatial flat-top intensity profile shaping and its gray-scale image (inset).

Figure 3. Ultrafast optical signal pulse temporal descending time controlling results

The results above prove that this setup can not only controlling the spatial intensity profile but also the temporal waveforms.

4. Conclusions
Both theoretical and experimental results indicate that the ultrafast optical signal pulse descending time controlling with deformable mirrors and spatial light modulators demonstrated in this manuscript can controlling the descending time effectively. Moreover, optimization algorithms and deformable mirrors and spatial light modulators with better properties used can give better results.

Acknowledgments
This research was funded by the National Natural Science Foundation of China (NSFC) under no.61108089, no.61107005. We also acknowledge Doctor Jia-li Liao and Hao-tong Ma for fruitful discussions.

References
[1] Weiner A M 2000 Femtosecond pulse shaping using spatial light modulators Rev. Sci. Instrum. 71 1929-60.
[2] Bartels R, Backus S and Zeek E 2000 Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays Nature 406 164-2
[3] Cheng W, Zhang S and Jia T 2014 Quantum coherent control of blue, green and red emissions from codoped lanthanide ions of Er3C/Tm3C/Yb3C by two shaped infrared ultrashort laser beams Laser Phys. 24 015402-11

[4] Grumstrup E M, Shim S and Montgomery M A 2007 Facile collection of two-dimensional electronic spectra using femtosecond pulse shaping technology Opt. Express 15 16681-9.

[5] Terrari F, Calegari F and Lucchini M 2010 High-energy isolated attosecond pulse generated by above saturation few-cycle fields Nature Photonics 4 875-9

[6] Karasawa N, Li L M and Suguro A 2001 Optical pulse compression to 5.0fs by use of only a spatial light modulator for phase compensation J. Opt. Soc. Am. B 18 1742-6

[7] Shverdin M Y, Walker D R and Yavuz D D 2005 Generation of a single-cycle optical pulse Phys. Rev. Lett. 94 033904-9

[8] McKinney J D, Leaird D E and Weiner A M 2002 Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper Opt. Lett. 27 1345-7

[9] Saradesai H P, Chang C C and Weiner A M 1998 A Femtosecond Code-Division Multiple-Access Communication System Test Bed L. Lightwave Technol. 16 1953-64

[10] Ferreira P H D, Silva D L and Siqueira J P 2013 Enhancement of laser induced Au nanoparticle formation by femtosecond pulse shaping Laser Phys. 23 076004-9

[11] Cai Y, Li J and Lu X al 2013 1 kHz high energy femtosecond pulses with selfstabilized carrier-envelope phases Laser Phys. Lett. 10 125402-6

[12] Bagayev S N, Trunov V I and Pestryakov 2014 Super-intense femtosecond multichannel laser system with coherent beam combining Laser Phys. 24 074016-28

[13] Ma H T, Zhou P and Wang X L 2010 Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators Opt. Express 18 8251-60

[14] Ma H T, Zhang H C and Zhou P 2010 Adaptive conversion of multimode beam to near diffraction-limited flattop beam based on dual phase-only liquid-crystal spatial light modulators Opt. Express 18 27723-30