The antibiotic resistance and pathogenicity of a multidrug-resistant *Elizabethkingia anophelis* isolate

Mingxi Wang\(^1\)* | Hongzhi Gao\(^2\)* | Nanfei Lin\(^2\) | Yaping Zhang\(^3\) | Nan Huang\(^4\) | Edward D. Walker\(^5\) | Desong Ming\(^6\) | Shicheng Chen\(^5\) | Shaohua Hu\(^7\)*

\(^1\)Yun Leung Laboratory for Molecular Diagnostics, School of Medicine, Huaqiao University, Xiamen, Fujian, China
\(^2\)Clinical Center for Molecular Diagnosis and Therapy, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
\(^3\)Department of Pulmonary and Critical Care Medicine, Fujian Medical University 2nd Affiliated Hospital, Quanzhou, Fujian, China
\(^4\)Quanzhou Medical College, Quanzhou, Fujian, China
\(^5\)Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
\(^6\)Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
\(^7\)State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China

Abstract

Elizabethkingia anophelis 12012-2 PRCM was isolated from a patient with multiple organ dysfunction syndrome and lower respiratory tract infection in China. Minimum inhibitory concentration (MIC) analysis demonstrated that it was resistant to 20 antibiotics including trimethoprim/sulfamethoxazole and ciprofloxacin, which were effective for the elimination of other *Elizabethkingia* infections. To investigate multidrug resistance and pathogenicity mechanisms, we analyzed genome features of 12012-2 PRCM and compared them to the other *Elizabethkingia* species. The draft genome size was 4.02 Mb with a GC content of 32%, comparable to that of other *E. anophelis* strains. Phylogenetic analysis showed that *E. anophelis* 12012-2 PRCM formed a sister group with *E. anophelis* 502, distinct from clades formed by other clinical and environmental *E. anophelis* isolates. *E. anophelis* 12012-2 PRCM contained multiple copies of β-lactamase genes as well as genes predicted to function in antimicrobial efflux. It also contained 92 genes that were potentially involved in virulence, disease, and defense, and were associated with resistance and pathogenicity. Comparative genomic analysis showed high homology among three clinical and two environmental *E. anophelis* strains having a variety of similar antibiotic resistance and virulence factor genes, and similar genomic structure. Applications of this analysis will contribute to understanding the antibiotic resistance and pathogenic mechanisms of *E. anophelis* infections, which will assist in the management of infections as it increases in prevalence.

These authors have contributed equally to this work.
1 | INTRODUCTION

Elizabethkingia anophelis (*E. anophelis*) is an aerobic, nonmotile, gram-negative, rod-shaped bacterium (Kampfer et al., 2011). It is an emerging, opportunistic, nosocomial pathogen (Frank et al., 2013; Lau et al., 2016, 2015; Teo et al., 2013). Neonates (Frank et al., 2013; Teo et al., 2013), or old people with underlying diseases (Lau et al., 2016) are most susceptible to *E. anophelis* infections. It has caused infections and outbreaks in Singapore, Hong Kong, and the United States (Frank et al., 2013; Janda & Lopez, 2017; Lau et al., 2015; Teo et al., 2013). The largest outbreak in the United States (65 cases) was recorded in hospitalized, immune-compromised patients in the Great Lakes region, including Wisconsin, Michigan, and Illinois, with a high mortality rate (20/65, 30.8%) (https://www.cdc.gov/elizabethkingia/outbreaks/).

The unknown pathogenesis mechanisms, multidrug resistance mechanisms, and misclassifications as other bacteria complicate management of *E. anophelis* infections (Frank et al., 2013; Hu, Jiang, Zhang et al., 2017; Lau et al., 2016, 2015). Routine phenotypic and biochemical tests often fail to distinguish them from other bacteria; moreover, *E. anophelis* has been frequently misdiagnosed as *Chryseobacterium meningosepticum* (previously known as *Chryseobacterium meningosepticum*) with automated microbial identification systems (Kampfer et al., 2011; Lau et al., 2016, 2015; Nicholson et al., 2016; Teo et al., 2013). Often, molecular methods (i.e., the 16SrRNA sequencing, MALDI-TOF MS) fail to resolve different *Elizabethkingia* species (Breurec et al., 2016; Han et al., 2017). Empirical treatments are difficult because of multiple drug resistance and lack of drug susceptibility testing standards for these bacteria. Particularly, our knowledge of the antibiotic resistance spectra and the resistance mechanisms remain limited in *E. anophelis* because it is a relatively newly discovered bacterium. The pathogenesis mechanisms in *Elizabethkingia* remain unclear. Strains isolated during the outbreak in Wisconsin harbored a mutation in the MutY gene which is involved in DNA repair (Perrin et al., 2017), but the relevance of it to virulence is unknown.

Our *E. anophelis* strain, 12012-2 PRCM, was isolated from a patient with multiple organ dysfunction syndrome (MODS) (Hu, Jiang, Zhang et al., 2017). This isolate was not susceptible to any selected antibiotics, demonstrating it was a multidrug-resistant strain. Therefore, the aim of this study was to investigate drug resistance and pathogenesis mechanisms. We performed genome sequencing for *E. anophelis* 12012-2PRCM and conducted a comparative genomic analysis to those in other environmental and clinical isolates. Our results contribute to the management of *Elizabethkingia* infection and the better understanding the pathogenicity of *E. anophelis*.

2 | MATERIALS AND METHODS

2.1 | DNA extraction and antimicrobial susceptibility testing

A multidrug-resistant *E. anophelis* strain, designated 12012-2PRCM, was isolated from an 82-year-old male patient presenting with MODS and lower respiratory tract infection (Hu, Jiang, Zhang et al., 2017). Antimicrobial susceptibility testing (AST), bacteria culturing, and genomic DNA extraction were done as previously performed (Hu, Jiang, Zhou et al., 2017).

2.2 | Whole-genome sequencing, assembly, and annotation for *E. anophelis* 12012-2PRCM

Genome sequencing was done with the MiSeq instrument (Illumina, Inc., San Diego, CA) using 500 bp library preparations. Raw data processing and genome assembly were performed by the SOAPdenovo 2.04-r240 version (Li et al., 2010). After assembly, we obtained a 402,331,983-bp genome containing 83 contigs and 76 scaffolds. It was deposited into GenBank (LPXG00000000). The genome annotation was done with RAST (Aziz et al., 2008; Overbeek et al., 2014).

2.3 | Comparative genomic analysis of the *E. anophelis* isolates

The whole-genome phylogenetic tree of 22 *Elizabethkingia* species was constructed using REALPHY (Reference sequence Alignment-based Phylogeny builder) with default parameters (Bertels, Silander, Pachkov, Rainey, & Nimwegen, 2014). It included 14 clinically pathogenic strains, four human-associated strains, and four environmental isolates (Table 1).
Sources	Strain	Site of isolation	Type	Assembly No.	Level	Scaffold	Size (Mb)	GC (%)	Protein	rRNA	tRNA	Other RNA	Gene	Pseudo gene
Clinically pathogenic E. anophelis	NUHP1	cardiothoracic	Chr CP007547.1	complete	1	4.37	35.6	3.912	15	51	3	4039	58	
	FMS-007	sputum	Chr CP006576.1	complete	1	3.94	35.6	3.480	15	52	3	3593	43	
	CSID_3015183684	Blood	Chr CP015066.2	complete	1	3.93	35.8	3.472	15	52	3	3579	37	
	0422	blood	Chr CP016370.1	complete	1	3.99	35.6	3.564	15	50	3	3679	47	
	F3543	CSF	Chr CP014340.1	complete	1	3.97	35.6	3.512	15	52	3	3632	50	
	FDAARGOS_198	blood	Chr CP023010.1	complete	1	4.07	35.8	3.529	15	52	3	3738	139	
	502	wound swab	—	—	21	3.96	35.5	3.676	12	43	—	3731		
	NUHP2	cardiothoracic	—	—	59	4.33	35.5	3.891	N/A	42	3	4025	86	
	NUHP3	cardiothoracic	—	—	71	4.33	35.5	3.883	N/A	43	3	4031	99	
	NUH1	hygiene sink	—	—	59	4.33	35.5	3.895	N/A	44	3	4031	86	
	NUH4	hygiene sink	—	—	50	4.24	35.6	3.815	N/A	44	3	3949	84	
	NUH6	hygiene sink	—	—	74	4.12	35.6	3.712	N/A	44	3	3848	86	
	NUH11	hygiene sink	—	—	59	4.09	35.6	3.651	4	45	3	3792	89	
Environmental E. anophelis	Ag1	Anopheles gambiae	Chr CP023402.1	complete	1	4.09	35.5	3.676	15	52	3	3780	34	
	R26	Anopheles gambiae	Chr CP023401.1	complete	1	4.06	35.5	3.634	15	52	3	3737	33	
	AR4-6	Anopheles siNeNsis	Chr CP023404.1	complete	1	4.09	35.5	3.676	15	52	3	3780	34	
	AR6-8	Anopheles siNeNsis	Chr CP023403.1	complete	1	4.09	35.5	3.676	15	52	3	3780	34	
Human-associated E. anophelis	CSID_3015183678	N/A	Chr CP014805.2	complete	1	3.93	35.8	3.473	15	52	3	3578	35	
	CSID_3000521207	N/A	Chr CP015067.2	complete	1	3.85	35.7	3.400	15	52	3	3505	35	
	CSID_3015183681	N/A	Chr CP015068.2	complete	1	3.93	35.8	3.471	15	52	3	3578	37	
	3375	N/A	Chr CP016373.1	complete	1	4.01	35.7	3.578	15	54	3	3704	54	

Note. Chr: chromosome; N/A: not available, Bold values: We isolated and sequenced
The average nucleotide identity (ANI), pan-genome, and core genome were analyzed by EDGAR 2.0 (Blom et al., 2016). The CRISPs (Clustered Regularly Interspaced Short Palindromic repeat sequences) were predicted by CRISPR recognition tool (CRT) (Bland et al., 2007). ICEberg database was used to detect for integrative and conjugative elements (ICE) (Bi et al., 2012). The resistance genes and VFs were searched (BLASTp) against the CARD database (Jia et al., 2017; McArthur et al., 2013; McArthur & Wright, 2015) and the VFDB protein Set B database (Chen, Xiong, Sun, Yang, & Jin, 2012; Chen, Zheng, Liu, Yang, & Jin, 2016), respectively, by collaborating with Beijing Novogene Bioinformatics Technology Co., Ltd. (BNNT), followed by filtering with more stringent cutoff parameters as described previously (Hu et al., 2018) and two additional cutoff parameters, Match length >100 amino acids and Identical >100 amino acids.

Alignment of five *E. anophelis* genomes, including the strain described here, was completed with Progressive Mauve (Darling, Mau, & Perna, 2010). The genomic data of the four other strains were downloaded from the GenBank database. *E. anophelis* NUHP1 (CP007547) was isolated in 2012 from a patient in the cardiothoracic ICU ward of National University Hospital, Singapore. *E. anophelis* CSID3000521207 (CP015067) was isolated in 2016 from a patient in Wisconsin, USA. *E. anophelis* Ag1 (AHHG00000000) was isolated in 2010 from the gut of an *Anopheles gambiae* mosquito in a laboratory colony in New Mexico, USA. *E. anophelis* R26 (MAHN00000000) was isolated in 2006 from Anophelis gambiae G3 adults in a laboratory colony in Sweden. The latter two environmental strains (Ag1, R26) had been used as reference strains to analyze the genes of antibiotic resistance and VFs in the hospital isolated *E. anophelis* strains (Teo et al., 2014).

3 RESULTS AND DISCUSSION

3.1 Genomic features of *E. anophelis* 12012-2PRCM

The assembly of strain 12012-2PRCM sequence data generated 83 scaffolds. It had a genome of 4.02 M bp with an average GC content of 35.5%. *E. anophelis* 12012-2PRCM had 3,680 genes including 3,554 protein-encoding genes, 82 pseudogenes, and 42 rRNAs (Table 1). The RAST showed that *E. anophelis* 12012-2PRCM genome had 27 subsystems that consisted of 87 categories (Figure 1). At least 330, 275, 268, and 121 CDSs were assigned to the “amino acid and derivatives,” “carbohydrate metabolism,” “protein metabolism,” and “RNA metabolism” categories, respectively. Moreover, the “virulence, disease and defense” category contained 92 CDSs that were involved in resistance to antibiotics and toxic compounds, indicating that this strain was possibly resistant to multiple antibiotics (also see below).

3.2 Phylogenetic inferences

12012-2 PRCM showed a high ANI (>99%) with the typical species *E. anophelis* R26, and ANI (>98%) with all other selected *E. anophelis* strains (Figure 2), indicating that it is a strain of *E. anophelis*. The phylogenetic tree demonstrated that *E. anophelis* 12012-2 PRCM was clustered together with *E. anophelis* 502 that was isolated from a patient.
with a trauma wound in the United Kingdom (Figure 3). These two strains formed a separate group which departed from other clinical- or mosquito-associated isolates, indicating that they evolved following the different pathways. It is worth highlighting that Wisconsin outbreak isolates (E. anophelis CSID 3000521207, CSID 3015183678, CSID 3015183681, and CSID 3015183684) formed an independent clade from isolates from Singapore (e.g., NUHP2, NUH1, NUHP1, NUPH3, and NUH3), suggesting that they may originate from different sublines.

The predicted protein sequences were used for core and pan-genome development analysis among the selected 15 E. anophelis genomes. E. anophelis displayed an open pan-genome because the total number of genes in pan-genomes increased with the increasing input genome. Also, the number of core genes decreased with the increasing input genomes. A total of 4.8 new genes/added genome were expected using the formula derived from the singleton development plot (Figure 4). The core genome for the 15 selected E. anophelis was calculated to be 2,764 CDS per genome.

3.3 | Antibiotic susceptibility profiles of E. anophelis 12012-2PRCM

The antimicrobial susceptibility of E. anophelis remains unclear. E. anophelis 12012-2PRCM was highly resistant to 20 antibiotics in our drug susceptibility test, indicating that it was a multidrug-resistant strain. These drugs belong to seven classes including aminoglycosides, β-lactams, polypeptides, sulfonamides, chloramphenicol, quinolones, and tetracyclines (Table A1).

Resistance to tetracycline, trimethoprim/sulfamethoxazole, and ciprofloxacin raised a serious concern because these drugs have been widely used for treatment of infections of Elizabethkingia species. For example, all 51 E. anophelis isolates from South Korea were immediately sensitive or sensitive to piperacillin or piperacillin–tazobactam.
Furthermore, 25 Wisconsin outbreak strains were also susceptible to piperacillin–tazobactam tested by Kirby Bauer disk diffusion method (Perrin et al., 2017). The same observations were reported in *E. anophelis* EM361-97 isolated from Taiwan (Lin, Lai, Yang, Huang, & Lin, 2017). Our isolate was resistant to piperacillin and piperacillin–tazobactam, indicating that 12012-2PRCM had different antibiotic resistance mechanisms from the above strains. However, the antibiograms in various *Elizabethkingia* isolates are often controversially reported. For instance, most of the 100 *E. anophelis* strains isolated from Korea as well as strain EM361-97 from Taiwan were resistant to ciprofloxacin and levofloxacin, while most of the Wisconsin outbreak strains were susceptible to these quinolone drugs (Han et al., 2017; Lin et al., 2017; Perrin et al., 2017). These variations stress that different origins of *Elizabethkingia* isolates may evolve different antibiotic resistance mechanisms. However, it should be noted that the clinical significance of the above differences remains unknown due to the lack of interpretative breakpoints for antimicrobial resistance in *E. anophelis*.

3.4 Resistome analysis

Antibiotic resistance genes were predicted by searching the CARD database (Jia et al., 2017; McArthur et al., 2013). At least eight classes of antibiotic resistance genes were found in *E. anophelis* 12012-2 PRCM (Table 2).

Elizabethkingia bacteria are well known to be highly resistant to β-lactam drugs as shown in this study and others. Piperacillin, an expanded-spectrum penicillin, can be hydrolyzed by several β-lactamases. *E. anophelis* 12012-2 PRCM carried at least four β-lactamase genes (CPS-1, ESP-1, PEDO-1, and LRA-17). CPS-1 encoding a subclass of B3 metal-beta-lactamase was first isolated from *Chryseobacterium piscium*. It conferred resistance to penicillin, cephalosporin, carbapenem as well as other β-lactams (Gudeta et al., 2015). The products of CPS-1 and PEDO-1 (encoding another subclass B3 metal-beta-lactamase) significantly increased the MICs of ampicillin, ceftazidime, cefpodoxime, cefoxitin, and meropenem (Gudeta et al., 2016). The clinically relevance of β-lactamase LRA-17 remains unclear, but the presence of this novel β-lactamase of environmental origin could contribute to the resistance spectrum of these bacteria (Allen, Moe, Rodbumrer, Gaarder, & Handelsman, 2009).

The resistance to the fluoroquinolones ciprofloxacin and levofloxacin can be explained by the mutational DNA gyrase A subunit (*gyrA*). For *Elizabethkingia*, two mutations (Ser83Ile and Ala709Ser) were found in the *gyrA* protein (Lin, Lai, Yang, Huang, & Lin, 2018). Ser83Ile possibly leads to the increased MICs to ciprofloxacin and levofloxacin in strain 12012-2PRCM as shown in a recent study. However, the effects of the second mutation (Ala709Ser) at C-terminal of *gyrA* on the fluoroquinolone resistance have not been documented in *Elizabethkingia*. Besides the mutational *gyrA*, the fluoroquinolone-resistant genes, *rpsJ* and *tetB(48)*, were discovered in strain 12012-2PRCM, which may also contribute to the resistance to fluoroquinolones.

Elizabethkingia anophelis 12012-2 PRCM carried the factor TetX, shown in *E. coli* to efficiently degrade tetracycline (Yang et al., 2004). All five *E. anophelis* strains contained many *catB* genes or cat variants (Table 2), which usually play a role in the composition of gene cassette or integron, and confer to the ability of antibiotic resistance. The resistance action mechanisms of *catB* were already clarified in our previous report (Hu et al., 2018). Genes such as *LpxC* and SPI-1, *ErmF*, and *Ern(35)* as well as *dfrE* conferred resistance to dianimopyrimidine, streptogramin, and elfamycin, respectively. *Elizabethkingia anophelis* 12012-2 PRCM also contained nine genes encoding antibiotic inactivation enzymes.

3.5 Comparative analysis of the virulence factor genes in *E. anophelis* strains

The homologs of the virulence factors (VFVs) in *E. anophelis* isolates were investigated using the VFDB Set B database (Chen
et al., 2012, 2016). Up to 25, 28, 26, and 26 VFs were identified in strains 12012-2PRCM, CSID3000521207, Ag1, and R26, respectively (Table 3). These VFs involved in the capsule formation, lipopolysaccharide or lipid biosynthesis and metabolism, iron transport protein, stress response (heat shock protein, catalase, peroxidase, superoxide dismutase), secretion system, and several others. Compared to Wisconsin strain CSID3000521207, some variations were found in these VFs in 12012-2PRCM. For example, the genes fcl, dfoC, dfoJ, rmlC, bplG, and gmd were absent in 12012-2PRCM. However, CSID3000521207 lacked virulence genes capL and pglC.

Strain 12012-2PRCM may be a truly emerging pathogen due to these conserved VFs widely identified in Elizabethkingia other pathogens. For example, katG encoding a bacterial catalase-peroxidase (heme enzyme) was found to be involved in the iron metabolism and stress response. Beside the iron metabolism, KatG activated the prodrug isoniazid, which was involved in Mycobacterium tuberculosis pathogenesis course (Pym et al., 2001). IlpA, a membrane-bound lipoprotein, has been known to function as an adhesion factor in Vibrio vulnificus. It helps the adhesion to human immune cells through its C-terminal domain. Consequentially, it induces cytokine production, which plays an important role in V. vulnificus infection (Goo, Han, Kim, Lee, & Park, 2007; Lee et al., 2010). One can assume the same physiological roles in 12012-2-PRCM due to their good amino acid sequence homology. The presence of IlpA in our strain 12012-2

TABLE 2	The predicted antibiotic resistance genes in five E. anophelis isolates: 12012-2PRCM, CSID3000521207, NUHP1, Ag1, R26				
Category	12012-2 PRCM	CSID 3000521207	NUHP1	Ag1	R 26
Efflux pump complex or subunit conferring antibiotic resistance	qacH	qacH	qacH	qacH	qacH
abeS	abeS	abeS	abeS	abeS	
Determinant of elfamycin resistance	LpxC	LpxC	LpxC	LpxC	LpxC
SPM-1	SPM-1	SPM-1	SPM-1		
Determinant of phenicol resistance	catB2	catB2	catB2	catB2	catB2
catB6	catB6	catB6	catB6	catB6	
catB7	catB7	catB7	catB7	catB7	
catB8	catB8	catB8	catB8	catB8	
catB9	catB9	catB9	catB9	catB9	
catB10	catB10	catB10	catB10	catB10	
Antibiotic inactivation enzyme	tetX	—	tetX	tetX	tetX
catB3	catB3	catB3	catB3	catB3	
LRA-19	LRA-19	—	LRA-19	LRA-19	
PEDO-2	PEDO-2	—	PEDO-2	PEDO-2	
LRA-12	LRA-12	—	LRA-12	LRA-12	
PEDO-3	PEDO-3	PEDO-3	PEDO-3	PEDO-3	
—	TLA-1	TLA-1	—	—	
—	TLA-3	TLA-3	—	—	
arr-1	—	—	—	—	
Determinant of fluoroquinolone resistance	rpsJ	rpsJ	rpsJ	rpsJ	rpsJ
tetB(48)	tetB(48)	tetB(48)	tetB(48)	tetB(48)	
Determinant of β-lactam resistance	CPS-1	CPS-1	CPS-1	CPS-1	CPS-1
ESP-1	ESP-1	ESP-1	ESP-1	ESP-1	
PEDO-1	PEDO-1	PEDO-1	PEDO-1	PEDO-1	
LRA-17	LRA-17	—	LRA-17	LRA-17	
—	—	LRA-17	—	—	
—	—	PEDO-2	—	—	
—	—	TEM-113	TEM-113	TEM-113	
Determinant of streptogramin resistance	ErmF	—	—	—	—
Erm(35)	—	—	—	—	
Determinant of diaminopyrimidine resistance	dfrE	dfrE	dfrE	dfrE	dfrE

Note. –: not predicted
Wang et al. implied that it might also have the potential to cause septicemia. Other virulence factor genes such as clpP, tuf, rmlA, htpB, and DnaK may be involved in defense or invasion during the course of pathogenesis, already discussed in our previous report (Hu et al. 2018). In addition, it is worth noting that E. anophelis isolates from mosquitoes also shared these conserved virulence factors. However, their potential for pathogenicity in humans have not been investigated.

| TABLE 3 The predicted virulence factor genes in 12012-2PRCM, CSID3000521207, Ag1, and R26 |
|---|---|---|---|
| VF Classification | Genes coding for virulence factors | Environmentally | Clinically pathogenic |
| | | pathogenic E. anophelis | E. anophelis |
| | 12012-2 PRCM | CSID 3000521207 | Ag1 | R26 | 12012-2 PRCM | CSID 3000521207 | Ag1 | R26 | 12012-2 PRCM | CSID 3000521207 | Ag1 | R26 |
| Capsule | capL | – | capL | capL | Hypothetical protein |
| | + | + | + | + | M3Q_285 Nucleoside-diphosphate sugar epimerase |
| | ugd | ugd | ugd | ugd | UDP-glucose 6-dehydrogenase |
| Capsule biosynthesis and transport | – | fcl | – | – | GDP-fucose synthetase |
| Catalase | katA | katA | katA | katA | Catalase |
| Catalase-peroxidase | katG | katG | katG | katG | Catalase |
| ClpP | clpP | clpP | clpP | clpP | ATP-dependent Clp protease proteolytic subunit |
| Desferrioxamine | dfoA | dfoA | dfoA | dfoA | L-lysine 6-monooxygenase involved in desferrioxamine biosynthesis |
| | – | dfoC | dfoC | dfoC | Desferrioxamine siderophore biosynthesis protein dfoC |
| | – | dfoJ | – | – | Putative decarboxylase involved in desferrioxamine biosynthesis |
| EF-Tu | tuf | tuf | tuf | tuf | Translation elongation factor Tu |
| Exopolysaccharide | pgi | pgi | pgi | pgi | Glucose-6-phosphate isomerase |
| GPL locus | rmlA | rmlA | rmlA | rmlA | RmlA |
| Heme biosynthesis | hemL | hemL | hemL | hemL | Glutamate-1-semialdehyde aminotransferase |
| Hsp60 | htpB | htpB | htpB | htpB | 60-kDa chaperonin protein, Cpn60groEL protein Heat shock protein B |
| IlpA | ilpA | ilpA | ilpA | ilpA | Immunogenic lipoprotein A |
| Isocitrate lyase | icl | icl | icl | icl | Isocitrate lyase |
| LOS | – | + | + | + | CBJ_1084 Hypothetical protein |
| | galE | galE | galE | galE | UDP-glucose 4-epimerase |
| LPS | – | bplG | – | – | Probable sugar transferase |
| | – | gmd | – | – | GDP-mannose 4,6-dehydratase |
| Methionine sulphoxide reductase | msrA/BpiIIB | msrA/BpiIIB | msrA/BpiIIB | msrA/BpiIIB | Peptide methionine sulfoxide reductase |
| Mg2+ transport | mgtB | mgtB | mgtB | mgtB | Hypothetical protein |
| MOMP | DnaK | DnaK | DnaK | DnaK | Molecular chaperone |
| N-linked protein glycosylation | pglC | – | pglC | pglC | Putative galactosyltransferase |
| Polar flagella | fimH | fimH | fimH | fimH | 3-oxoacyl-ACP reductase |
| Streptococcal enolase | eno | eno | eno | eno | Phosphopyruvate hydratase |
| T4SS effectors | + | + | + | + | COXBURSA331_A0369 Trans-2-enoyl-CoA reductase (no unique name) |

Note. +: presence;—: absence; bold: were discussed in Hu et al. 2018; underlined: consistent to the virulence factors in R26, Ag1 predicted by Breurec et al. (Breurec et al., 2016).
3.6 | Prophages and conjugative transposons in the selected *Elizabethkingia*

All five *E. anophelis* genomes contained incomplete prophage (Figure A1). In our strain 12012-2 PRCM, only one prophage was identified. It had nine CDs located at 47,038 bp-56041 bp (9 kb). The strain CSID 3000521207 also contained one 7.8-kb prophage extending from 2,136,491 bp to 2,144,356 bp. NUHP1 was predicted to carry four prophages (8.3 kb, 7.8 kb, 79 kb, and 7.2 kb, respectively) (Figure A1). Strains Ag1 and R26 shared three prophages (8.9 kb, 7.2 kb, and 6.2 kb, respectively), although the prophages were located on different sites in two of the genomes (Figure A1), implying that genome rearrangements existed. Of interest, our strain 12012-2 PRCM shared one prophage of Ag1 and R26 while prophage of CSID 3000521207 was similar to the one in NUHP1 (Figure A1), demonstrating that prophages in *E. anophelis* species were conserved. However, among these predicted prophages, many elements were lost. For example, a significant component integrase (a marker for mobile DNA elements and participating in bacteria pathopoiesis (Liu et al., 2015) was not predicted in any of the above prophages.

Horizontal gene transfer (HGT) plays a huge role in microbial evolution, allowing microbes to acquire new genes and phenotypes (Banuelos-Vazquez, Torres Tejerizo, & Brom, 2017). Integrative and conjugative elements (ICEs), also called conjugative transposons, are a diverse group of mobile genetic elements found in both gram-positive and gram-negative bacteria (Johnson & Grossman, 2015; Wozniak & Waldor, 2010). ICEs use a range of mechanisms to promote their core functions of integration, excision, transfer, and regulation, contributing to bacterial pathogenesis (Banuelos-Vazquez et al., 2017; Johnson & Grossman, 2015; Wozniak & Waldor, 2010). In our strain 12012-2 PRCM, using the database ICEberg 2.0, a putative ICE region (location: 2,558,736 to 2,565,836 bp) was identified. In this mobile genetic element, both relaxase and integrase (TIGR02249) were predicted (Figure A2). The CSID 3000521207, one present representative isolate of the outbreak in Wisconsin, has the integrative and conjugative element ICEa1 (Perrin et al., 2017). ICEa1 consists of VirD4 ATPase (T4CP), relaxase, integrase, and several Tra proteins. This transposon element inserted into and disrupted the gene MutY (an adenine DNA glycosylase that is required for fixing G-A mis-pairs), making the strain more liable to mutation and outbreak infection (Perrin et al., 2017). Recent research showed that ICEs were ubiquitous in *E. anophelis* species; 31 of selected 36 *E. anophelis* strains (86%) harbored 32 ICEs (Xu, Pei, Nicholson, Lan, & Xia, 2018). These ICEs were classified into three types: ICEa1, ICEa1l, and ICEa1ll. For example, conjugative elements ICEa1l and ICEa1ll were identified in the Singapore outbreak strain NUHP1. Also, the Anophelles mosquito strains Ag1 and R26 contained ICEa1ll (Xu et al., 2018). More detailed analysis of ICEs will clarify pathogenesis and drug resistance mechanisms of *E. anophelis*.

3.7 | Synteny analysis of five *E. anophelis* strains

The selected *E. anophelis* genomes had some chromosomal rearrangements with some inversions (Figure A3) and syntenic rearrangements. However, the genome arrangement of the three clinical isolates mimicked each other. Instead, the clinical and environmental isolates showed less similarity (Figure A3).

3.8 | CRISPR prediction in *E. anophelis* strains

Our analysis revealed that only *E. anophelis* FMS-007 contained one complete CRISPR (GTTATATCACAAAGATATCCAAAATTGAAAGC). The other selected genomes had no CRISPR. The defense of the invasions of foreign genetic elements such as plasmids, transposons, or phages may require both restriction modification systems (RMs) and CRISPRs in *Elizabethkingia*. However, the detailed mechanisms need to be further investigated.

4 | CONCLUSION

Genomic analysis provided partial insight on the antibiotic resistance and pathogenicity mechanisms of *E. anophelis* isolates. This could prove useful information in the development of future therapeutic regimens to eliminate the infections caused by the emerging pathogen *E. anophelis*.

ACKNOWLEDGEMENTS

Our sincere thanks are due to Department of Quanzhou First Hospital, Fujian, China for providing the *E. anophelis* strain. We express gratitude towards the Beijing Novogene Bioinformatics Technology Co., Ltd, BNNT for providing technical support.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

AUTHORS CONTRIBUTION

Conception and design of the work: MW, SH, and SC. Data collection: MW, HG, NL, DM, and SH. Data analysis and interpretation, manuscript writing, and critical revision of the article: all authors. Revision and editing: EDW and SC. Approval of the final version of the article: all authors.

ETHICS STATEMENT

A informed consent was obtained from the patient’s relatives to retrieve and analyze this bacterial isolate. The research was approved by the Ethics Committee of Quanzhou First Hospital.

DATA ACCESSIBILITY

All genomic data are available through the NCBI (https://www.ncbi.nlm.nih.gov) using the corresponding accession numbers provided.
Diversity of Carbapenem-Hydrolyzing beta-Lactamases of Potential Clinical Relevance. *Antimicrobial Agents and Chemotherapy*, 60(1), 151–160.

Han, M. S., Kim, H., Lee, Y., Kim, M., Ku, N. S., & Choi, J. Y. (2017). Relative prevalence and antimicrobial susceptibility of clinical isolates of *Elizabethkingia* species based on 16S rRNA. *Gene Sequencing*, 55(1), 274–280. https://doi.org/10.1128/JCM.01637-16

Hu, S., Cao, L., Wu, Y., Zhou, Y., Jiang, T., Wang, L., ..., Wang, M. (2018). Comparative genomic analysis of *Myroides orydogalaminus* isolates. *Microbiolopen*. e00634. https://doi.org/10.1002/mbo3.634

Hu, S., Jiang, T., Zhou, Y., Ming, D., Gao, H., & Wang, M. (2017). Genomic analysis of the multi-drug-resistant clinical isolate *Myroides orydogalaminus* PR63039. *Molecular Genetics and Genomics*, 292(1), 133–144.

Hu, S., Jiang, T., Zhang, X., Zhou, Y., Yi, Z., Wang, Y., ..., Chen, S. (2017). *Elizabethkingia anophelis* isolated from patients with multiple organ dysfunction syndrome and lower respiratory tract infection: Report of two cases and literature review. *Frontiers in Microbiology*, 8, 382.

Janda, J. M., & Lopez, D. L. (2017). Mini review: New pathogen profiles: *Elizabethkingia anophelis*. *Diagnostic Microbiology and Infectious Disease*, 88(2), 201–205. https://doi.org/10.1016/j.diagmicrobio.2017.03.007

Jia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., ..., McArthur, A. G. (2017). CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. *Nucleic Acids Research*, 45(D1), D566–D573. https://doi.org/10.1093/nar/gkw1004

Johnson, C. M., & Grossman, A. D. (2015). Integrative and conjuga
tive elements (ICEs): What they do and how they work. *Annual Review of Genetics*, 49, 577–601. https://doi.org/10.1146/anurev-genet-112014-050518

Kampfer, P., Matthews, H., Glaesser, S. P., Martin, K., Lodders, N., & Faye, I. (2011). *Elizabethkingia anophelis* sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. *International Journal of Systematic and Evolutionary Microbiology*, 61(Pt 11), 2670–2675.

Lau, S. K., Chow, W. N., Foo, C. H., Curreem, S. O., Lo, G. C., Teng, J. L., ..., Woo, P. C. (2016). *Elizabethkingia anophelis* bacteremia is associated with clinically significant infections and high mortality. *Scientific Reports*, 6, 26045. https://doi.org/10.1038/srep26045

Lau, S. K., Wu, A. K., Teng, J. L., Tse, H., Curreem, S. O., Tsui, S. K., ..., Woo, P. C. (2015). Evidence for *Elizabethkingia anophelis* transmission from mother to infant, Hong Kong. *Emerging Infectious Diseases*, 21(2), 232–241.

Lee, K. J., Lee, N. Y., Han, Y. S., Kim, J., Lee, K. H., & Park, S. J. (2010). Functional characterization of the IlpA protein of Vibrio vulni
cificus as an adhesin and its role in bacterial pathogenesis. *Infection and Immunity*, 78(6), 2408–2417. https://doi.org/10.1128/IAI.01194-09

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., ..., Wang, J. (2010). De novo assembly of human genomes with massively parallel short read sequencing. *Genome Research*, 20(2), 265–272. https://doi.org/10.1101/gr.097261.109

Lin, J. N., Lai, C. H., Yang, C. H., Huang, Y. H., & Lin, H. H. (2017). Genomic features, phylogenetic relationships, and comparative genomics of *Elizabethkingia anophelis* strain EM361-97 isolated in Taiwan. *Scientific Reports*, 7(1), 14317. https://doi.org/10.1038/s41598-017-14841-8

Lin, J. N., Lai, C. H., Yang, C. H., Huang, Y. H., & Lin, H. H. (2018). Clinical manifestations, molecular characteristics, antimicrobial susceptibility patterns and contributions of target gene mutation to fluoroquinolone resistance in *Elizabethkingia anophelis*. *Journal of Antimicrobial Chemotherapy*. https://doi.org/10.1093/jac/dky197

Liu, C. J., Wang, R., Gong, F. M., Liu, X. F., Zheng, H. J., Luo, Y. Y., & Li, X. R. (2015). Complete genome sequences and comparative genome analysis of *Lactobacillus plantarum* strain 5–2 isolated from fermented soybean. *Genomics*, 106(6), 404–411. https://doi.org/10.1016/j.ygeno.2015.07.007
McArthur, A. G., & Wright, G. D. (2015). Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Current Opinion in Microbiology, 27, 45–50. https://doi.org/10.1016/j.mib.2015.07.004

McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., & Wright, G. D. (2013). The comprehensive antibiotic resistance database. Antimicrobial Agents and Chemotherapy, 57(7), 3348–3357. https://doi.org/10.1128/AAC.00419-13

Nicholson, A. C., Whitney, A. M., Emery, B. D., Bell, M. E., Gartin, J. T., Humrighouse, B. W., ... McQuiston, J. R. (2016). Complete Genome Sequences of Four Strains from the 2015–2016 Elizabethkingia anophelis Outbreak. Genome Announcements, 4(3), e00563–e0564.

Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., ... Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), D206–D214. https://doi.org/10.1093/nar/gkt1226

Perrin, A., Larsonneur, E., Nicholson, A. C., Edwards, D. J., Gundlach, K. M., Whitney, A. M., ... Brisse, S. (2017). Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nature Communications, 8, 15483. https://doi.org/10.1038/ncomms15483

Pym, A. S., Domenech, P., Honore, N., Song, J., Deretic, V., & Cole, S. T. (2001). Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Molecular Microbiology, 40(4), 879–889. https://doi.org/10.1046/j.1365-2958.2001.02427.x

Teo, J., Tan, S. Y., Liu, Y., Tay, M., Ding, Y., Li, ... L. (2014). Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis. Genome Biol Evol, 6(5), 1158–1165. https://doi.org/10.1093/gbe/evu094

Teo, J., Tan, S. Y., Tay, M., Ding, W., Kjelleberg, S., Givskov, M., ... Yang, F. (2013). First case of Elizabethkingia anophelis outbreak in an intensive-care unit. Lancet, 382, 855–856. https://doi.org/10.1016/S0140-6736(13)61859-9

Wozniak, R. A., & Walder, M. K. (2010). Integrative and conjugative elements: Mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Reviews Microbiology, 8(8), 552–563. https://doi.org/10.1038/nrmicro2382

Xu, J. N., Pei, D., Nicholson, A., Lan, Y. H., & Xia, Q. (2018). In silico identification of three types of integrative and conjugative elements (ICEs) in Elizabethkingia anophelis strains isolated from around the world. https://dx.doi.org/10.1101/402107

Yang, W., Moore, I. F., Koteva, K. P., Bareich, D. C., Hughes, D. W., & Wright, G. D. (2004). TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. Journal of Biological Chemistry, 279(50), 52346–52352. https://doi.org/10.1074/jbc.M409573200

How to cite this article: Wang M, Gao H, Lin N, et al. The antibiotic resistance and pathogenicity of a multidrug-resistant Elizabethkingia anophelis isolate. *MicrobiologyOpen*. 2019;8:e804. https://doi.org/10.1002/mbo3.804

APPENDIX 1

TABLE A1 Antimicrobial resistance profile of Elizabethkingia anophelis 12012-2PRCM

Antibiotic class	Antimicrobial	MIC (µg/ml)	SIR
Aminoglycoside	Amikacin	>32	R
	Gentamicin	>8	R
β-lactam	Imipenem	>8	R
	Meropenem	>8	R
	Cefazolin	>16	R
	Ceftazidime	>16	R
	Cefotaxime	>32	R
	Cefepime	>16	R
	Aztreonam	>16	R
	Ampicillin	>16	R
	Piperacillin	>64	R
	Amoxicillin/Clavulanate	>16/8	R
	Ampicillin/Sublactam	>16/8	R
	Piperacillin/Tazobactam	>64/4	R
Polypeptide	Colistin	>2	R
Sulfonamide	Trimethoprim/Sulfamethoxazole	>2/38	R
Chloramphenicol	Chloramphenicol	>16	R
Quinolone	Ciprofloxacin	>2	R
	Levofloxacin	>8	R
	Moxifloxacin	>4	R
Tetracycline	Tetracycline	>8	R

Note. MIC: minimum inhibitory concentration; SIR: sensitive (S), intermediately sensitive (IS), resistant (R)
FIGURE A1 Prophage regions with predicted elements in selected *Elizabethkingia anophelis* strains. Different colored rectangles meant different phage elements. Pro: protease; Plp: phage-like protein; Hyp: hypothetical protein; Sha: tail shaft; Pro: portal protein
FIGURE A2 Structure of ICE identified in 12012-2 PRCM genome. Rectangles indicate different ORFs. The yellow color highlights Integrative and Conjugative Elements. The location of ICE ranged from 2,558,736 bp to 2,565,836 bp.

FIGURE A3 Alignment of *Elizabethkingia anophelis* 12012-2PRCM, NUHP1, CSID3000521207, Ag1 and R26 with the progressive MAUVE software. Colored blocks: a region of the genome sequence which was assumed to be homologous and internally free from genomic rearrangement. Regions outside blocks: no homology among these genomes. Completely white areas: not aligned and possibly containing specific sequence elements to a certain genome.