Metabolic remodelling in diabetic cardiomyopathy

Cher-Rin Chong1*, Kieran Clarke1, and Eylem Levelt2

1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK; and 2Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK

Received 7 November 2016; revised 2 January 2017; editorial decision 16 January 2017; accepted 6 February 2017

Abstract
Diabetes is a risk factor for heart failure and cardiovascular mortality with specific changes to myocardial metabolism, energetics, structure, and function. The gradual impairment of insulin production and signalling in diabetes is associated with elevated plasma fatty acids and increased myocardial free fatty acid uptake and activation of the transcription factor PPARα. The increased free fatty acid uptake results in accumulation of toxic metabolites, such as ceramide and diacylglycerol, activation of protein kinase C, and elevation of uncoupling protein-3. Insulin signalling and glucose uptake/oxidation become further impaired, and mitochondrial function and ATP production become compromised. Increased oxidative stress also impairs mitochondrial function and disrupts metabolic pathways. The diabetic heart relies on free fatty acids (FFA) as the major substrate for oxidative phosphorylation and is unable to increase glucose oxidation during ischaemia or hypoxia, thereby increasing myocardial injury, especially in ageing female diabetic animals. Pharmacological activation of PPARγ in adipose tissue may lower plasma FFA and improve recovery from myocardial ischaemic injury in diabetes. Not only is the diabetic heart energetically-impaired, it also has early diastolic dysfunction and concentric remodelling. The contractile function of the diabetic myocardium negatively correlates with epicardial adipose tissue, which secretes proinflammatory cytokines, resulting in interstitial fibrosis. Novel pharmacological strategies targeting oxidative stress seem promising in preventing progression of diabetic cardiomyopathy, although clinical evidence is lacking. Metabolic agents that lower plasma FFA or glucose, including PPARγ agonism and SGLT2 inhibition, may therefore be promising options.

Keywords
Diabetes • Diabetic cardiomyopathy • Diabetic heart • Metabolism • Metabolic remodelling

This article is part of the Spotlight Issue on Metabolic Cardiomyopathies.

1. Diabetic cardiomyopathy: an individual entity

Although heart failure and diabetes were thought to co-exist as a single entity as early as in 1881,1 it was only in 1972 that Rubler and colleagues provided the first evidence in four diabetic patients with overt heart failure: they described ventricular hypertrophy and diffuse myocardial fibrosis, independent of alcohol consumption, structural, vascular, and coronary disease.2 The term ‘diabetic cardiomyopathy’ (DCM) was coined from then and is commonly used to describe myocardial structural and functional changes that occur in patients with diabetes. Although it is known that diabetes increases the risk of developing heart failure by two- to three-fold after adjustment for other cardiovascular (CV) risk factors,3 a clear diagnostic algorithm for DCM is lacking. Clinical distinction between DCM and cardiomyopathies of other aetiologies is limited, making it diagnostically impractical. Nevertheless, there are pathophysiological differences (discussed further in this Spotlight issue) and metabolic remodelling (discussed in this review) characteristic of DCM, suggesting that it is indeed a unique entity requiring further investigation and early intervention to halt disease progression.

2. Effects of diabetes on myocardial metabolism

2.1 The healthy heart

The heart, predominantly an aerobic organ, relies heavily on the oxidation of substrates, such as free fatty acids (FFA), glucose, lactate, ketone bodies, and some amino acids, to generate adenosine triphosphate (ATP), the major source of energy. The process of substrate selection is...
and [NADH]/[NAD+] triggers an increase in mitochondrial ratios of [acetyl-CoA]/[CoA].

Fatty acids enter the cytosolic compartment via transporters, such as FA translocase/CD36 (FAT/CD36), plasma membrane FA binding protein (FABPpm), and FA transport proteins (FATP1 and 6). In response to certain stimuli, such as increased insulin or activation of AMP-activated protein kinase (AMPK), FAT/CD36 ‘shuttles’ from intracellular vesicles to the sarcolemma to increase the uptake of FA. Upon entry into the cytosol, fatty acids (and potentially ketone bodies and other substrates) become increasingly relied on as the substrate for oxidation; parallels the upregulation of UCP-3. However, the uncoupling between uptake and oxidation of fatty acids leads to accumulation of toxic metabolites, which activates protein kinase C and further impairs insulin signalling. ACC, acyl-CoA carboxylase; ATGL, adipose triglyceride lipase; CPT-1/2, carnitine palmitoyl transferase-1/2; DAG, diacylglycerol; DGAT, diacylglycerol transferase; IR, insulin receptor; IRS1, insulin receptor substrate-1; FAT, fatty acid transporter; GDPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT, glucose transporter; HK, hexokinase; MCD, malonyl-CoA decarboxylase; MCT, monocarboxylate transporter; MPC, mitochondrial pyruvate carrier; O/IMM, outer/inner mitochondrial membrane; PDH, pyruvate dehydrogenase; PFK-1, phosphofructose kinase-1; PKC, protein kinase C; PPAR, peroxisome proliferator activated receptor; ROS, reactive oxygen species; SOD, superoxide dismutase; UCP, uncoupling protein; TAG, triacylglycerol; TXNIP, Thioredoxin interacting protein.

The healthy heart. The reciprocal relationship between myocardial substrate oxidation is governed by Randle cycle for mitochondrial generation of ATP, oxidation of fatty acid leads to increased fatty acyl-CoA which inhibits pyruvate dehydrogenase; whereas glucose oxidation increases cytosolic citrate, a precursor of malonyl-CoA which inhibits CPT-1. In healthy heart, the predominant substrate used is fatty acid and glucose, and occasionally lactate, pyruvate or ketone bodies. (B) The diabetic heart. Hyperglycaemia increases ROS and activates PARP, which then inhibits GDPDH and increases glycolytic intermediates. Under the transcription factor MondoA, TXNIP also shuttles from cytosol to plasma membrane and inhibits GLUT-1, reducing further uptake of glucose. Furthermore, as diabetes progresses, fatty acids (and potentially ketone bodies and other substrates) become increasingly relied on as the substrate for oxidation; parallels the upregulation of UCP-3. However, the uncoupling between uptake and oxidation of fatty acids leads to accumulation of toxic metabolites, which activates protein kinase C and further impairs insulin signalling. ACC, acyl-CoA carboxylase; ATGL, adipose triglyceride lipase; CPT-1/2, carnitine palmitoyl transferase-1/2; DAG, diacylglycerol; DGAT, diacylglycerol transferase; IR, insulin receptor; IRS1, insulin receptor substrate-1; FAT, fatty acid transporter; GDPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT, glucose transporter; HK, hexokinase; MCD, malonyl-CoA decarboxylase; MCT, monocarboxylate transporter; MPC, mitochondrial pyruvate carrier; O/IMM, outer/inner mitochondrial membrane; PDH, pyruvate dehydrogenase; PFK-1, phosphofructose kinase-1; PKC, protein kinase C; PPAR, peroxisome proliferator activated receptor; ROS, reactive oxygen species; SOD, superoxide dismutase; UCP, uncoupling protein; TAG, triacylglycerol; TXNIP, Thioredoxin interacting protein.

Free fatty acids enter the cytosolic compartment via transporters, such as FA translocase/CD36 (FAT/CD36), plasma membrane FA binding protein (FABPpm), and FA transport proteins (FATP1 and 6). In response to certain stimuli, such as increased insulin or activation of AMP-activated protein kinase (AMPK), FAT/CD36 ‘shuttles’ from intracellular vesicles to the sarcolemma to increase the uptake of FA. Upon entry into the cytosol, the non-esterified FA are esterified to fatty acyl-CoA. Depending on myocardial demand, fatty acyl-CoA is either stored in the myocardial lipid pool or enters the mitochondria for β-oxidation via the carnitine shuttle: carnitine palmitoyl transferase-1 (CPT-1) being the rate-limiting enzyme for mitochondrial uptake of FA. Oxidation of FFA triggers an increase in mitochondrial ratios of [acetyl-CoA]/[CoA] and [NADH]/[NAD+], both of which inhibit the activity of PDH complex. Ketone bodies, produced from FFA in the liver, can also be metabolised to acetyl-CoA for entry into Krebs cycle.

Glucose uptake is facilitated by transporters, most notably the insulin-independent GLUT1 and insulin-dependent GLUT4 in the heart. Similar to FAT/CD36, glucose transporters also ‘shuttle’ between intracellular vesicles and the sarcolemma in response to stimuli. After entering the cytosol, glucose is phosphorylated by hexokinase to glucose-6-phosphate, which enters glycolysis, glycogenesis, the pentose phosphate pathway, or the hexosamine biosynthetic pathway. Glycolysis generates a small amount of ATP independent of oxygen availability, and is regulated mainly by phosphofructokinase, which is inhibited by cytosolic citrate from the Krebs cycle. Cytosolic citrate is also the major precursor of malonyl-CoA, which inhibits CPT-1. The end product of glycolysis is pyruvate, which enters mitochondria for oxidation in normoxia or is reduced to lactate in the cytosol under hypoxia. Mitochondrial pyruvate dehydrogenase (PDH) is the key enzyme governing the oxidative decarboxylation of pyruvate to acetyl-CoA. Lactate, readily extracted from the bloodstream, can be converted to pyruvate in the cytosol and further metabolized to acetyl-CoA for ATP generation.

Aressing from the oxidation of a variety of substrates, acetyl-CoA enters the Krebs cycle to produce NADH and FADH2, which donate electrons to the electron transport chain thereby creating the proton electrochemical gradient needed to generate ATP. Oxidation of FFA generates more ATP compared to glucose, but at the expense of greater oxygen consumption. Therefore, when oxygen availability is low, glucose oxidation is more ‘metabolically efficient’.

2.2 The diabetic heart

Normally, with post-prandial elevated blood glucose, pancreatic β-cells take up glucose leading to increased generation of mitochondrial ATP, which closes the ATP-sensitive KATP channel, with accumulation of
Key ions that depolarise the plasma membrane. Depolarisation activates calcium channels, causing an influx of Ca$^{2+}$ and the eventual exocytosis of insulin. However, this process is defective in diabetes for various reasons, which may include decreased glucokinase activity and reduction in mitochondrial mass or in the ability to generate ATP. Metabolically, it is characterised by rapid defective (type 1 diabetes, T1D) or gradual diminution (type 2 diabetes, T2D) of insulin secretion, leading to increased extracellular glucose and greater reliance on fatty acid oxidation. Early in T2D, the lack of response to insulin in peripheral organs is over-compensated by increased insulin secretion, resulting in hyperinsulinaemia. Hyperinsulinaemia may be sustained for a long time, or may cause a gradual loss of pancreatic function, resulting in hypoinsulinaemia. Hyperinsulinaemia is characterised by rapid defective (type 1 diabetes, T1D) or gradual stress that leads to the cardiac dysfunction. The ketone bodies, acetoacetate and β-hydroxybutyrate, are generated by the liver from non-esterified FAs in response to hyperinsulinaemia and hypoglycaemia, and are oxidized by most body tissues to form acetyl-CoA. Ketosis has always been feared in patients with diabetes, being associated with life-threatening acidosis. However, a recent study showed that, amongst patients with type 2 diabetes who presented with hyperglycaemic crisis, those with ketosis (but not acidosis) had lower all-cause mortality than those without, suggesting that ketosis may potentially be protective in diabetes. Two recent independent studies also showed that ketone body metabolism is elevated in the failing (albeit non-diabetic) myocardium. Given that exogenous α-β-hydroxybutyrate, consumed as a ketone ester drink, was metabolised by exercising skeletal muscle to increase endurance performance in athletes, it may be that increased ketone metabolism in the diabetic heart is compensating for defects in mitochondrial energy transduction associated with acute insulin deficiency.

2.2.3 Ketosis: friend or foe for the diabetic heart?

The ketone bodies, acetoacetate and β-hydroxybutyrate (β-OHB), are generated by the liver from non-esterified FAs in response to hyperinsulinaemia and hypoglycaemia, and are oxidized by most body tissues to form acetyl-CoA. Ketosis has always been feared in patients with diabetes, being associated with life-threatening acidosis. However, a recent study showed that, amongst patients with type 2 diabetes who presented with hyperglycaemic crisis, those with ketosis (but not acidosis) had lower all-cause mortality than those without, suggesting that ketosis may potentially be protective in diabetes. Two recent independent studies also showed that ketone body metabolism is elevated in the failing (albeit non-diabetic) myocardium. Given that exogenous α-β-hydroxybutyrate, consumed as a ketone ester drink, was metabolised by exercising skeletal muscle to increase endurance performance in athletes, it may be that increased ketone metabolism in the diabetic heart is compensating for defects in mitochondrial energy transduction associated with acute insulin deficiency.

2.2.4 Uncoupling proteins

Uncoupling proteins (UCPs) are mitochondrial anion carriers that dissipate the proton electrochemical gradient by transferring protons, generated during oxidative phosphorylation, back into the mitochondrial matrix without the concomitant synthesis of ATP (Figure 1). In patients undergoing coronary bypass surgery, upregulation of cardiac UCP-3 correlated positively with plasma concentrations of FFA. In mice, elevation of UCP-3 expression is mediated via increased FFA stimulation of nuclear transcription factor, PPARα. In chronically infarcted or high-fat diet induced rat hearts, increased UCP-3 concentrations are associated with impaired mitochondrial respiration and ATP production. However, in different animal models of heart failure a high fat diet did not further impair cardiac and mitochondrial function, suggesting that the originating stimulus may be important.

2.2.2 Myocardial steatosis

Diabetic myocardium has an increased triacylglycerol (TAG) content, largely owing to greater FA availability than oxidation. In several clinical studies, proton (1H)-MRS has revealed that diabetic patients have between 1.5- and 2.3-fold higher myocardial TAG levels compared to non-diabetic controls. The levels predicting concentric left ventricular (LV) remodelling and subclinical contractile dysfunction. However, substrate oxidation and metabolic flexibility were not assessed in humans, making it difficult to determine whether it was the overabundance of substrate, or excessive substrate oxidation, leading to oxidative stress that leads to the cardiac dysfunction. Increased plasma FFA concentrations increase the flux through myocardial FFA oxidation via activation of the PPARα transcription factor, leading to the upregulation of enzymes involved in FFA oxidation, such as the acyl-CoA dehydrogenases. However, because cardiomyocytes are not specialised to store lipids, increased long-chain fatty acyl-CoA is diverted towards the production of diacylglycerol and ceramide (Figure 1). Such intermediates are thought to be toxic, compromising ATP production and overall cell viability, via the activation of several stress kinases, including protein kinase C (PKC; for review, see ref.27). PKC inhibits the metabolic action of insulin by phosphorylating the serine/threonine residues on the insulin receptor and/or its substrates, disrupting insulin signalling, inhibiting insulin-stimulated translocation of GLUT4, inducing apoptosis, and leading to lower basal expression of hypoxia inducible factor-1α and vascular endothelial growth factor. Importantly, pharmacological inhibition of PKC ameliorates FFA-mediated inhibition of basal and insulin-stimulated glucose oxidation and normalizes diastolic function in the STZ-treated T1D heart without altering the circulating metabolites.

3. Oxidative stress and metabolic dysfunction in diabetic cardiomyopathy

Diabetes is often linked to inflammation and is associated with increased levels of C-reactive protein and interleukin-6. Although there is a long-standing idea that insulin resistance and ectopic adiposity confer an increased risk of CV events, a new school of thought is that myocardial...
insulin resistance may be a defence against gluco toxicity and oxidative stress. This is based on pre-clinical evidence that impaired mitochondrial oxidative capacity is not an early event in the development of insulin resistance, but follows increased ROS production with inhibition of mitochondrial ROS production reversing insulin resistance. Mitochondrial respiration is the major source of ROS, central to a number of biological processes, including cell proliferation, differentiation, adaptation to hypoxia, autophagy, immune function, hormone signalling, and cell survival. ROS production is usually counterbalanced by clearance via cellular antioxidant defence systems, such as superoxide dismutase, glutathione peroxidase, catalase, the thioredoxin system, and antioxidant molecules, such as vitamin E. However, in diabetes, ROS accumulates and causes non-specific oxidative damage to DNA, proteins, lipids, or other macromolecules.

4. How does the diabetic heart cope with hypoxia or ischaemia?

Even in the normal heart, hypoxia or ischaemia cause profound changes in metabolic substrate utilization and oxidation. In particular, myocardial FFA oxidation, PPARα expression (together with its downstream targets, such as UCP3), and mitochondrial oxygen consumption are decreased in chronic hypoxia, whereas glycolysis is enhanced. In mice with activated PPARα, myocardial FFA oxidation is increased and associated with a reduction in cardiac efficiency and decreased recovery of contractile function post low-flow ischaemia, suggesting that mechanical dysfunction occurs as a result of the inability to increase glycolysis during a decrease in oxygen availability.

It is increasingly recognised that it is the lack of metabolic flexibility, rather than specific substrate preference that predisposes the diabetic heart to injury. Abnormal myocardial substrate metabolism was attenuated when high-fat/low dose STZ-induced T2D rats were subjected to chronic hypoxia; suggesting that the diabetic heart retained sufficient metabolic plasticity to adapt to hypoxia. Additionally, during low-flow ischaemia, the isolated T1D rat heart used FFA oxidation for oxidative phosphorylation and production of ATP, suggesting a protective non-deleterious role of FFAs when glucose metabolism was down-regulated. Myocardial TAG may be a dynamic, instead of inert, reservoir for FFAs (for review, see ref.70). Diabetic hearts contain a high TAG content, which contributes significantly to overall oxidative metabolism. While some studies suggested that accumulation of TAG is cardioprotective by virtue of channeling FFA oxidation away from toxic metabolites and improves cardiac function from ischaemia, others argue that lower TAG protects against DCM (in Akita and STZ-T1D mice and T2D patients). Overall, TAG contribution to ischaemic recovery has not been explored in diabetes.

Activation of AMPK by metformin, a metabolic-sensing ‘master switch’ that promotes both cellular uptake of glucose and β-oxidation of FFAs, not only reduces ischaemic-reperfusion injury and limits myocardial infarct size, but also attenuates remodelling and heart failure in diabetes. However, animal experiments involving pharmacological activation of PPAR in diabetic hearts are inconclusive; potentially due to the specificity of the agent for the various PPAR isoforms. Whilst all, except for tetradecyloacetic acid, TTA, a PPARγ agonist that also has potent antioxidant properties demonstrated reduction in circulating FFA and increased glucose oxidation, overall cardiac effects were inconsistent: those employing a PPARγ agonist rosiglitazone and TTA demonstrated improved ischaemic tolerance; whereas others using BM17.0744 or 2-(4-phenoxy-2-propylphenoxy)ethylindole-5-acetic acid (PPARα and PPARγ agonists, respectively) showed no difference. It has been suggested that there may be an interaction between substrate availability, PPARα activation and ceramide formation, in which rats treated with a PPARα agonist and fed with high fat diet (34% fat) have increased myocardial ceramide, when the effect was attenuated in rats fed with normal chow diet (3% fat). Although ceramide formation was not assessed, rats fed a high fat diet had increased PPARα expression, elevated FA oxidation, increased UCP3 expression, reduced glycolysis and consequent contractile dysfunction when subjected to hypoxia.

4.1 Age and gender

Age-dependent studies in animals (db/db mice, Zucker fa/fa, and Goto-Kakizaki rats) reveal that diabetic hearts rely increasingly on FFA oxidation and less on glucose oxidation for the formation of acetyl-CoA with
increasing age, potentially due to substrate availability. Age was associated with increased FFA oxidation, reduced glucose oxidation, worsened contractility and decreased recovery from ischaemic insult. Compared to age-matched, non-diabetic counterparts, both the young and ageing diabetic rats had increased FFA oxidation. However, glucose uptake and lactate production were unchanged regardless of diabetes in the younger rats during ischaemia. On the other hand, the ageing

With respect to gender, female diabetic animals typically display greater myocardial abnormalities than those of the male, including increased cardiac hypertrophy and lower insulin-stimulated glucose uptake, mimicking clinical observations in diabetic patients. Female STZ-induced T1D animals developed diastolic and systolic dysfunction much earlier than their male counterparts, with earlier ventricular remodelling, including increased LV dilation and reduced ejection fraction. These changes were associated with down regulation of pro-survival Pim-1, and upregulation of pro-apoptotic signalling caspases, microRNA-1, and microRNA-208a (see ref. for comprehensive review).

5. Energetic changes in diabetic heart: evidence from magnetic resonance imaging studies

The clinical assessment of myocardial energetic status can be determined using the ratios of PCr to ATP (PCR/ATP) non-invasively via phosphorus-31 cardiac magnetic resonance spectroscopy (31P-MRS). 31P-MRS yields peaks for PCr and the three phosphorus atoms of ATP, all of which are proportional to the cellular concentration of the metabolites. The myocardial PCR/ATP ratio also correlates well with the New York Heart Association functional status, indices of systolic or diastolic function and survival rate in heart failure patients. Despite ‘normal’ cardiac function measured using echocardiography and the lack of known coronary artery disease or ECG detectable ischaemic changes, diabetic patients have a lower myocardial PCR/ATP than the matched healthy controls, suggesting that diabetic patients are ‘cardiac energy-deficient’. The PCR/ATP ratios also correlated negatively with fasting plasma FFA concentrations. Additionally, the pre-existing energetic deficit in DCM was exacerbated by exercise (Figure 2), supporting the notion that the cardiac metabolic reserve is impaired in T2D.

In 1999, Cline and colleagues used 13C- and 31P-MRS to measure intracellular concentrations of glucose, glucose-6-phosphate and glycogen in gastrocnemius muscle of T2D patients, to demonstrate that insulin-stimulated glycogen synthesis is impaired. Additionally, studies using [18F]-fluorodeoxyglucose positron emission tomography showed that T2D patients had lower insulin-stimulated glucose uptake in the skeletal muscle, with either normal or lower glucose uptake in the myocardium. The disparities in the glucose findings may be due to difference in the severity of diabetes.

Multidetector-computed tomography, MRI, ultrasonography, and 1H-MRS have been used to quantify lipid content within an organ, and to examine the association of fat depots with both systemic and local manifestations of disease as the distribution of excess fat may be an important determinant of CV risk. As compared to subcutaneous adiposity, ectopic, and visceral adiposity or ‘acquired lipodystrophy’ is linked to insulin resistance and diabetes. Epicardial adipose tissue (EAT), a form of visceral fat, has an anatomical barrier with the myocardium and by secreting proinflammatory adipokines and cytokines may play a significant role in diabetic heart. Supporting this, there is a negative correlation between EAT volumes and cardiac contractile function in obese T2D patients.

6. Myocardial structural and functional changes in diabetes

Although an increased LV mass is independently associated with diabetes, often the increase in patients with diabetes is modest. Frequently reported in patients with T2D, LV concentric remodelling represents the main structural characteristic and is more predictive of CV mortality than eccentric remodelling. Importantly, a stepwise multivariable regression study revealed myocardial steatosis to be the only independent predictor of concentric remodelling in patients with T2D. Although it is tempting to suggest that myocardial steatosis represents a major link between T2D and the development of LV concentric remodelling, a cause-effect relationship has yet to be established.

Interstitial fibrosis has also been implicated in the pathogenesis of LV hypertrophy and occurs in the more advanced stages of DCM in stable/early DCM the role of interstitial fibrosis is much less clear, as abnormal myocyte hypertrophy rather than fibrosis appears to predominate. Cardiac magnetic resonance (CMR) T1 mapping for extracellular volume (ECV) quantification allows the non-invasive measurement of fibrosis that correlates closely with collagen area in histology. Using this technique, two studies have demonstrated no significant increase in ECV and native (pre-contrast) T1 mapping in young patients with well-controlled T2D, suggesting the absence of significant fibrosis in the presence of LV concentric remodelling and diastolic dysfunction.

Diastolic abnormalities are an early functional defect in the diabetic heart, with the prevalence rates in asymptomatic, normotensive diabetic patients ranging from 15 to 75%. Yet, there is mild to little systolic dysfunction, which may depend on the severity or duration of disease. Detection of subclinical dysfunction is made available via the use of echocardiographic strain imaging or CMR, with reduced longitudinal contractility and impaired systolic circumferential strain.

7. Rescuing diabetic cardiomyopathy: clinical perspectives

Over the past 10–20 years, the therapeutic approach to the prevention and/or treatment of DCM has largely been aimed at both reducing the incidence of CV events associated with diabetes and halting the progression of diabetic heart towards heart failure. After concerns of cardiac adverse events related to the use of the PPARγ activator, Rosiglitazone, were raised, it has become mandatory for national drug regulatory bodies to enforce the evaluation of CV safety of new anti-diabetic medications. One such medication is Empagliflozin, a renal sodium-glucose cotransporter-2 (SGLT2) inhibitor. Initially designed to evaluate CV safety, the EMPA-REG OUTCOME trial showed significant reduction of CV or all-cause mortality and the incidence of new heart failure, even though the impact on glucose concentrations was modest (about 0.4% reduction of HbA1c over 94 weeks in the empagliflozin arm compared
The mortality benefits were remarkable, as the beneficial effect was almost immediate (< 3 months), suggesting that the benefits may well extend beyond SGLT2 inhibition. Explanations for the effects include the inhibition of renin-angiotensin-aldosterone system beyond ACE-inhibition, activation of AMPK and improved energetics via induction of mild ketosis. Plasma concentrations of β-OHB rose from 0.25 to 0.56 mM after 4 weeks of treatment; ketone body oxidation yields more ATP per oxygen consumption than palmitate, so being more ‘energy-efficient’.

A number of other metabolic agents have also been proposed to benefit the diabetic heart. Theoretically PPARγ agonism may be beneficial, but the clinical utility is limited by the associated sodium/water retention properties. Agents that lower substrate availability by means of slowing gastric emptying (such as a glucagon-like-peptide), inhibiting hepatic gluconeogenesis (such as glucagon antagonist and metformin), or inhibiting renal reabsorption of glucose (such as SGLT2 inhibitors) have yielded relatively positive CV outcomes.

Newer therapeutic approaches towards DCM have focused on reducing oxidative stress associated with diabetes (for comprehensive review, see ref.113). Epidemiological studies show that inhibition of the renin-angiotensin-aldosterone-system reduces CV adverse events in T2D. The mechanism(s) of benefit are not completely understood, although prevention of mitochondrial dysfunction and oxidative stress are commonly postulated. By virtue of reducing cellular oxidative activity, several other agents, including calcium channel antagonists and statins may also limit DCM. Pre-clinical therapies of DCM targeting oxidative stress include upregulation of enzymes such as catalase, superoxide dismutase, glutathione peroxidase or thioredoxin, and antioxidants such as...
References

1. Leyden E. Asthma and diabetes mellitus. *Deutsch Arztl Wochenschr* 1987;113:358–64.
2. Rubler S, Dlugaj J, Tucozewg JZ, Kumar T, Brainard AW, Grishman A. A new type of cardiomyopathy associated with diabetic glomerulosclerosis. *Am J Cardiol* 1973;30:595–602.
3. Aksnes TA, Kjeldsen SE, Raastup M, Omvik P, Hua TA, Julius S. Impact of new-onset diabetes mellitus on cardiac outcomes in the Valsartan Antihypertensive Long-term Use Evaluation (VALUE) trial population. *Hypertension* 2007;50:467–73.
4. Neubauer S. The failing heart—an engine out of fuel. *N Engl J Med* 2007;356:1140–1151.
5. Heath LC, Clarke K. Metabolism, hypoxia and the diabetic heart. *J Mol Cell Cardiol* 2011;50:598–605.
6. Heath LC, Cole MA, Atherton HJ, Coumans WA, Evans RD, Tyler DJ, Glatz JF, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. *J Clin Invest* 2002;109:121–130.
7. Pawlosky R, Rawlins JN, Tyler DJ, Griffin JL, Robertson J, Veech RL, Clarke K. Novel peroxisome proliferator-activated receptor alpha regulates mitochondrial fatty acid oxidative enzyme gene expression. *Proc Natl Acad Sci USA* 1994;91:10102–10106.
8. Taegtmeyer H, Beauleye C, Harmancey R, Huet L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. *Am J Physiol Heart Circ Physiol* 2013;305:H1693–H1697.
9. Bethune WA, Qian F, Behringer JB, Luptak I, Calamaras TD, Siwik DA, Miller EJ, Liesa M, Shihrai OS, Pimentel DR, Cohen RA, Bachschmid MM, Colucci WS. Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of induced metabolic heart disease. *J Am Heart Assoc* 2015;4:e002555.
10. Chez DJ, Krailos R, O’Shea KM, Xu W, Stanley WC. A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. *Am J Physiol Heart Circ Physiol* 2009;297:H1585–1593.
11. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme expression. *Cardiovasc Res* 2006;70:288–296.
12. Delbridge LM, Benson VL, Ritchie RH, Mellor KM. Diabetic cardiomyopathy: the case for a role of fructose in disease etiology. *Diabetes* 2016;65:3521–3528.
13. Cole MA, Murray AJ, Cochin LE, Heath LC, McAleese S, Knight NS, Sutton E, Jamil AA, Parassol N, Clarke K. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. *Basic Res Cardiol* 2011;106:447–457.
14. Sverdlov AL, Elezzy A, Qin F, Behringer JB, Luptak I, Calamaras TD, Siwik DA, Miller EJ, Liesa M, Shihrai OS, Pimentel DR, Cohen RA, Bachschmid MM, Colucci WS. Mitochondrial reactive oxygen species mediate cardiac structural, functional, and mitochondrial consequences of induced metabolic heart disease. *J Am Heart Assoc* 2015;4:e002555.
15. Chez DJ, Krailos R, O’Shea KM, Xu W, Stanley WC. A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. *Am J Physiol Heart Circ Physiol* 2009;297:H1585–1593.
16. O’Donnell JM, Fields AD, Sorokina N, Lewandowski ED. The absence of endogenous triglyceride turnover in isolated working hearts of acutely diabetic rats. *Am J Physiol Endocrinol Metab* 2007;292:E87–E102.
17. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. *Circulation* 2007;116:1170–1175.
18. Rijzewijk LJ, van der Meer RW, Smit JWA, Diamant M, Bax JJ, Hammer S, Romijn JA, de Roos A, Lamb HJ. Mitochondrial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. *J Am Coll Cardiol* 2008;52:1793–1799.
19. C.-R. Chong et al.
ketone diet enhances physical and cognitive performance. FASEB J 2010;24:402–412.
35. Sato K, Kishiwa Y, Keon CA, Tsuchiya N, King MT, Radzi GK, Chance B, Clarke K, Veech RL. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 1995;9:651–658.
36. Murray AJ, Anderson RE, Watson GC, Radzi GK, Clarke K. Uncoupling proteins in human heart. Lancet 2004;364:1786–1788.
37. Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, Neubauer S, Clarke K. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 2008;46:694–700.
38. Banke NH, Lewandowski ED. Impaired cytosolic NADH shuttling and elevated UCP3 contribute to inefficient citric acid cycle flux support of postischemic cardiac work in diabetic hearts. J Mol Cell Cardiol 2015;79:13–20.
39. Mailloux RJ, Seifert EL, Boullaud F, Aguer C, Collins S, Harper ME. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 2011;286:21863–21875.
40. Pradhan AD, Manson JE, Rifa B, Fomovsky GM, Lee S, Tan M, Wang BF, Patwari P, Yoshioka J. Deletion of the mitochondrial protein Noxo2 improves mitochondrial function and survival in an animal model of diabetes. J Clin Invest 2010;120:2201–2212.
41. Zhang Y, Tocchetti CG, Krieg T, Moens AL. Oxidative and nitrosative stress in the diabetic heart. Diabetes 2003;52:1531–1540.
42. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shiratori T, Ichinose K, Brownlee M, Araki E, Radda GK, Chance B, Clarke K, Korbut G, Haemmerle G, Zechner R, Dyck JR. Myocardial adipose triglyceride lipase (ATGL) regulates cardiac triglyceride lipase expression and activity in type 2 diabetic mice. J Biol Chem 2011;286:1049–1057.
43. Turdi S, Li Q, Lopez FL, Ren J. Catalase alleviates cardiomyocyte dysfunction in diabetic mice. J Mol Cell Cardiol 2013;51:1336–1343.
44. Pradhan AD, Manson JE, Rifa B, Fomovsky GM, Lee S, Tan M, Wang BF, Patwari P, Yoshioka J. Deletion of the mitochondrial protein Noxo2 improves mitochondrial function and survival in an animal model of diabetes. J Clin Invest 2010;120:2201–2212.
45. Zhang Y, Tocchetti CG, Krieg T, Moens AL. Oxidative and nitrosative stress in the diabetic heart. Diabetes 2003;52:1531–1540.
46. Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo C. The role of eNOS in kidney injury. Am J Physiol Cell Physiol 2005;289:C1669–C1676.
47. Szaleczky E, Prechl J, Feher J, Somogyi A. Alterations in enzymatic antioxidant defense system in streptozotocin-induced diabetic heart. J Mol Cell Cardiol 2003;35:1336–1343.
48. Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN. Catalase promotes HIF-1α accumulation and hypoxia sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of the HIF-1α promoter. J Biol Chem 2011;286:21863–21875.
49. Turdi S, Li Q, Lopez FL, Ren J. Catalase alleviates cardiomyocyte dysfunction in diabetic mice. J Mol Cell Cardiol 2013;51:1336–1343.
Baranowski M, Blachnio A, Zabelski P, Gorski J. PPARalpha agonist induces the accumulation of ceramide in the heart of rats fed high-fat diet. J Physiol Pharmacol 2007;58:57–72.

Asum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 2003;52:434–441.

Desros M, Clarke K, Lan C, Dalmasso C, Cole M, Portha B, Cozzone PJ, Bernard M. Upregulation of eNOS and unchanged energy metabolism in increased susceptibility of the aging type 2 diabetic GK rat heart to ischemic injury. Am J Physiol Heart Circ Physiol 2010;299:H1679–H1686.

Desros M, Sidell RJ, Gauquier D, Davey CL, Radda GK, Clarke K. Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2 diabetic rat heart. J Mol Cell Cardiol 2004;37:547–555.

Galdieri M, Anderson K, Wilson PWF, Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (The Framingham Heart Study). Am J Cardiol 1991;68:85–89.

Moore A, Shindikar A, Fornson-Nurse I, Riu F, Munasinghe PE, Ram TP, Saxena P, Coffey S, Bunton RW, Galvin IF, Williams MJ, Emanuelli C, Madeddu P, Kataro R. Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1. Cardiovasc Diabetol 2014;13:68.

Reichert ME, Mellor KM, Bell JR, Chandramouli C, Headrick JP, Delbridge LM. Sex, sex steroids, and diabetic cardiomyopathy: making the case for experimental focus. Am J Physiol Heart Circ Physiol 2013;305:H1779–H1792.

Schievein-Freestome M, MP, Panners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 2003;107:3040–3046.

Levolt E, Rodgers CT, Clarke WT, Mahmood M, Ariga R, Francis JM, Liu A, van der Velden J, Stienen GJM, Laarmann GJ, Niesen HWM, Paulus WJ. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resten tension. Circulation 2008;117:43–51.

White SK, Sado DM, Fontana M, Banyersad SM, Maestrini V, Flett AS, Piechnik SK, Robson MD, Hauenschild D, Sheikh AM, Hawkins PN, Moen JC. T1 mapping for myocardial extracellular volume measurement by cmr: bolus only versus primed inversion technique. JACC Cardiovasc Imaging 2015:6:955–962.

Liu S, Han J, Nacif M, Jones J, Kavel N, Kellman P, Sibley C, Blumenk D. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: size considerations for clinical trials. J Cardiovasc Magn Reson 2012;14:90.

Boyer J, Thanigai, Schechtman KB, Pérez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 2004;93:870–875.

Schannwell CM, Schnepplenheim M, Perings S, Plehn G, Stæger BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 2002;98:33–39.

Zinman B, Wanner C, Lachin JM, Fitchett D, Buhimki E, Hante S, Mathieu M, Devins T, Johansen OE, Roehe HR, Broedl UC, Ureczke SE, Investigators E-RO. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117–2128.

Cerello A, Genovese S, Mannucci E, Gronda E. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol 2015;3:929–930.

Hawley SA, Ford RJ, Smith BK, Owans GJ, Mancini SJ, Pitt RD, Day EA, Salt IP, Steinberg GR, Hardie DG. The Na+/glucose cotransporter in human cardiac tissue enhances AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 2016;65:2784–2794.

Ferrannini E, Balduini S, Fraccarola S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 2016;65:1190–1195.

Mudalal S, Allojo S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? a unifying hypothesis. Diabetes Care 2016;39:1115–1112.

Cecc VL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004;70:309–319.

Inoue T, Inoguchi T, Sonoda N, Hidemoto H, Makimura H, Sasaki Y, Yokomizo H, Fujimura Y, Murata D, Takayamag Y, GPL-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 2015;240:250–259.

Inuzu SE, Masoudi FA, Wang Y, Kosiboirad M, Foody JM, Setojo JF, Havanek EP, Kruhoff HM. Inulin-sensitizing antihyperglycemic drugs and mortality after acute myocardial infarction: insights from the National Heart Care Project. Diabetes Care 2005;28:1680–1689.

McAlister FA, Eurch DT, Majumdar SR, Johnson JA. The risk of heart failure in patients with type 2 diabetes treated with oral agent monotherapy. Eur Heart J 2008;30:703–708.

Huynh K, Bernardo BC, Mcmullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatments strategies targeting antioxidant signaling pathways. Pharmaco Ther 2014;142:375–415.

Loon E, Yusuf S, Hoogeve D, Pogue J, Yi Q, Zinnan B, Boss J, Dagenson G, Mann JF, Gerstein HC. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 2002;25:1919–1927.

Sahyoun NR, Jacques PF, Russell RM, Carotenoids, vitamins C and E, and mortality in an elderly population. Am J Epidemiol 1996;144:501–511.

Liu Y, Lei S, Gao X, Mao X, Wang T, Wang GT, Vanhouette PM, Irwin MG, Xia Z. PKCbeta inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 2012;122:161–173.

Al-Onazi AS, Al-Rashed NH, Atia HA, Al-Rashed NHM, Ahmed RM, Al-Amin P, Pozait C. Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-beta1/Smad and GRAP pathways. J Pharm Pharmacol 2016;68:219–222.

Yokota T, Ma RC, Park JF, Ishikis K, Sotropoulos KB, Raunier RK, Bornfeldt KE, King GL. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes 2003;52:838–845.

Sheetz MJ, Aissel LP, Shah N, Davis MD, Kles KA, Danis RP, Madovl Study G. Effect of ruboxistaurin (RBX) On visual acuity decline over a 6-year period with cessation and reinstitution of therapy: results of an open-label extension of the Protein Kinase C Diabetic Retinopathy Study 2 (PKC-DRS2). Retina 2011;31:1053–1059.

Cherney DZ, Reith HN, Scholey JW, Lai V, Slorach C, Zinnan B, Bradre TJ. Systemic hemodynamic function in humans with type 1 diabetes treated with protein kinase Cbeta inhibition and renin-angiotensin system blockade: a pilot study. Can J Physiol Pharmacol 2015;93:113–121.