A generalization of IPMs for linear optimization to convex quadratic SDO based on a trigonometric kernel function

Pengyang Xie¹, Kangyang Luo² and Linfeng Hu³

¹Department of Economic Statistics, Division of Economics, Shanghai Business School, Shanghai 201400, China
²School of Management & School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
³School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China

Email: xiepengyang@163.com

Abstract. In this paper, we generalize primal-dual interior-point methods for linear optimization to convex quadratic semidefinite optimization, which is a wide class of optimization problems that contains linear optimization, convex quadratic optimization, second-order cone optimization and semidefinite optimization as special cases. Based on the Nesterov and Todd scaling scheme, we establish the currently best known complexity bounds of large- and small-update interior-point methods for convex quadratic semidefinite optimization, namely, \(O(\sqrt{n \log n \log(n/\epsilon)}) \) and \(O(\sqrt{n \log(n/\epsilon)}) \), respectively, which are as good as the linear optimization analogue.

1. Introduction

Kernel functions play an important role in the design and analysis of interior-point methods (IPMs). They are not only used for determining the search directions but also for measuring the distance between the given iterate and the \(\mu \) -center for the algorithms [1, 2]. Currently, Kernel function based on IPMs is one of the most effective methods for solving linear optimization (LO) [3-7], second-order cone optimization (SOCO) [8], semidefinite optimization (SDO) [9,10], and symmetric optimization (SO) [11] and a very active research areas in mathematical programming. For a comprehensive treatment of kernel-function based IPMs for SO and the Cartesian \(P_\kappa \)-linear complementarity problem over symmetric cones (the Cartesian \(P_\kappa \)-SCLCP) [12-14], we refer to the recent monographs on this subject [1, 2] and the references cited therein.

The so-called trigonometric kernel function was first studied by El Ghami et al. [3] for primal-dual IPMs in LO. They established the worst case complexity bounds for large- and small-update methods, namely, \(O(n^{3/4} \log(n/\epsilon)) \) and \(O(\sqrt{n \log(n/\epsilon)}) \), respectively. Subsequently, a class of trigonometric kernel functions was considered for various optimization problems and complementarity problems [4-7, 10, 13, 14]. Recently, Bouafia et al. [7] introduced a new kernel function with a trigonometric barrier term as follows...
They proposed a class of primal-dual IPMs for LO based on the parametric kernel function (1) and obtained the currently best known complexity bounds of large- and small-update methods. Later on, El Ghami [14] extended the kernel-function based IPMs for LO presented in [7] to the SDO analogue and the obtained complexity bounds coincide with the derived for LO.

The purpose of the paper is to generalize the primal-dual IPMs for LO based on the parametric kernel function presented in [7] to the extension of SDO, i.e., convex quadratic SDO (CQSDO), which is a wide class of optimization problems that contains LO, CQO, SOCO and SDO as special cases. The symmetricization of the search directions used in this paper is based on the Nesterov and Todd (NT) scaling scheme. Furthermore, we obtain the complexity bounds that match the currently best known complexity bounds for large- and small-update methods.

2. Properties of the kernel (barrier) function

For ease of reference, we list some useful properties of the parametric kernel function \(\psi(t) \) that are needed in this paper.

Lemma 2.1 (Lemma 3.2 in [7]): Let \(t > 0 \). Then \(\psi(\sqrt{t_1t_2}) \leq \frac{1}{2}(\psi(t_1)+\psi(t_2)). \)

The property described above is exponential convexity, which has been proven to be very useful in the analysis of primal-dual IPMs based on the eligible kernel functions [2].

Lemma 2.2 (Lemma 3.3 in [7]): Let \(t > 1 \). Then \(\psi(t) \leq \frac{p\pi + 8}{8}(t-1)^2. \)

Let \(V \in S^n \) and \(V = Q^T \text{diag}(\lambda_1(V), \ldots, \lambda_n(V))Q \), where \(Q \) is any orthonormal matrix that diagonalizes \(V \). The matrix valued function \(\psi(V) \) is given by

\[
\psi(V) = Q^T \text{diag}(\psi(\lambda_1(V)), \ldots, \psi(\lambda_n(V)))Q.
\]

Furthermore, we define the barrier function \(\Psi(V) \) and the norm-based proximity measure \(\delta(V) \) based on the parametric kernel function (1) as follows

\[
\Psi(V) := \text{Tr}(\psi(V)) = \sum_{i=1}^n \psi(\lambda_i(V)), \quad \delta(V) := \frac{1}{2} \| \nabla \Psi(V) \|,
\]

Respectively, where \(\nabla \Psi(V) \) is the gradient of the barrier function \(\Psi(V) \). It follows that \(\psi(1) = \psi'(1) = 0 \). Furthermore, the proposed parametric kernel function \(\psi(t) \) is strongly convex due to the fact that Lemma 3.2 in [7], i.e. \(\psi''(t) \geq 1 \). Then we can conclude that \(\Psi(V) \) is strictly convex with respect to \(V > 0 \) and vanishes at its global minimal point \(V = E \), i.e., \(\psi(E) = \psi'(E) = 0 \). Moreover, \(\Psi(E) = 0. \)

As a consequence of Lemma 2.1, we have the following lemma, which is crucial for the analysis of the algorithms.

Lemma 2.3 (Theorem 4 in [15]): Let \(V_1, V_2 \in S^+ \). Then \(\Psi\left(\left[V_1^{1/2}V_2V_1^{1/2}\right]^{1/2}\right) \leq (\Psi(V_1) + \Psi(V_2))/2. \)

In what follows, we need to derive a lower bound on \(\delta(V) \) in terms of \(\Psi(V) \).

Theorem 2.4 (Theorem 5 in [15]): Let \(\varphi: [0, +\infty) \to [1, +\infty) \) be the inverse function of the parametric kernel function \(\psi(t) \) for \(t \geq 1 \), and \(V \in S^+ \). Then \(\delta(V) \geq \psi'(\varphi(\Psi(V)))/2. \)

As a consequence of Theorem 2.4, we have the following corollary, which gives a lower bound on \(\delta(V) \) in terms of \(\Psi(V) \).

Corollary 2.5: Let \(V \in S^+ \) and \(\Psi(V) \geq 1. \) Then \(\delta \geq (\Psi(V))^{1/2} / 6. \)
It is well known that the largest values of $\Psi(V)$ occur just after the update of μ during the course of the algorithm [15, 16]. The analysis of the algorithms enables us to derive an estimate for the effect of a μ-update on the value of $\Psi(V)$.

Theorem 2.6 (Theorem 8 in [15]): Let $\beta \geq 1$ and $V \in S^n_{++}$. Then $\Psi(\beta V) \leq n\Psi\left(\beta\rho\left(\Psi(V) / n\right)\right)$.

As a consequence of Theorem 2.6, we have the following corollary, which yields an upper bound on $\Psi(V)$.

Corollary 2.7: Let $\Psi(V) \leq \tau$ and $V_\tau = V / \sqrt{1 - \theta}$ with $0 \leq \theta < 1$. Then $\Psi(V_\tau) \leq n\Psi\left(\rho(\tau) / \sqrt{1 - \theta}\right)$.

3. Kernel Function Based IPMs for CQSDO

3.1. The CQSDO problem

Consider the CQSDO problem in standard form

$$(P) \quad \min \{ C \cdot X + 0.5 X \cdot \Omega(X) : A_i \cdot X = b_i, i = 1,2,\ldots,m, X \succeq 0 \}$$

and its dual

$$(D) \quad \max \{ b^T y - 0.5 X \cdot \Omega(X) : \sum_{i=1}^{m} y_i A_j - \Omega(X) + S = C, S \succeq 0 \}$$

where $\Omega(X) : S^n \rightarrow S^n$ is a given self-adjoint positive semidefinite linear operation on S^n, i.e., for any $A, B \in S^n$, then $\Omega(A) \cdot B = A \cdot \Omega(B)$ and $\Omega(A) \cdot A \succeq 0$. To simplify matters, we will restrict ourselves to the following special case $\Omega(X) = \sum_{i=1}^{q} H_i^T X H_i$, where $H_i, i = 1,2,\ldots,q$ are the matrices in $\mathbb{R}^{n \times n}$ and q is an integer not greater than n^2. Throughout the paper, we assumption that the matrices $A_i, i = 1,2,\ldots,m$ are linearly independent.

3.2. The central path for CQSDO

Without loss of generality, we assume that (P) and (D) satisfy the interior-point condition (IPC), i.e.,

$$A_i \cdot X^0 = b_i, X^0 > 0, i = 1,2,\ldots,m, \sum_{i=1}^{m} y_i^0 A_j - \Omega(X^0) + S^0 = C, S^0 > 0.$$

Under the assumption of IPC, the optimality condition for (P) and (D) is equivalent to solve the following system

$$A_i \cdot X = b_i, i = 1,2,\ldots,m, X \succeq 0, \sum_{i=1}^{m} y_i A_i - \Omega(X) + S = C, S \succeq 0, XS = 0.$$

The third equation in the system (6) is the so-called complementarity condition for (P) and (D) of CQSDO. The core idea of primal-dual IPMs is to replace $XS = 0$ by the parameterized equation $XS = \mu E$ with $\mu > 0$. This yields the following system

$$A_i \cdot X = b_i, i = 1,2,\ldots,m, X \succeq 0, \sum_{i=1}^{m} y_i A_i - \Omega(X) + S = C, S \succeq 0, XS = \mu E.$$

The parameterized system (7) has a unique solution $(X(\mu), y(\mu), S(\mu))$ for each $\mu > 0$ due to the fact that the matrices A_i are linearly independent and the IPC holds. Let $X(\mu)$ and $(y(\mu), S(\mu))$ be the μ-center of (P) and the μ-center of (D), respectively. The set of μ-centers (with μ running through all the positive real numbers) gives a homotopy path, which is called the central path of (P).
and \((D)\). If \(\mu \to 0\), then the limit of the central path exists, and since the limit points satisfy the complementarity condition, the limit yields an optimal solution for \((P)\) and \((D)\).

3.3. The new search directions for CQSDO

IPMs follow the central path approximately and approach the optimal set of CQSDO by letting \(\mu\) go to zero. Applying Newton's method to the system (3), we have

\[
A_i \cdot \Delta X = 0, i = 1, 2, \ldots, m, \sum_{i=1}^{m} \Delta y_i A_i - \Omega(\Delta X) + \Delta S = 0, \Delta X + X \Delta S^{-1} = \mu S^{-1} - X. \tag{8}
\]

Similar to the SDO analogue, the above system unfortunately does not have a unique symmetric solution due to the third equation in the system (8). Many researchers have proposed methods for symmetrizing the third equation in the above Newton system such that the resulting new system has a unique symmetric solution [1, 9, 15].

In this paper, we use the symmetrization scheme from which the NT search direction is derived. The most motivation for this choice is that the NT scaling technique transfers the primal variable \(X\) and the dual \(S\) into the same space: the so-called \(V\)-space. Let \(P := X^{1/2} (X^{1/2} S X^{1/2})^{-1/2} X^{1/2}\), and also define \(D = P^{1/2}\). Then

\[
V := 1/ \sqrt{\mu D^{-1} X^{-1}} - 1/ \sqrt{\mu D S D}. \tag{9}
\]

By replacing the term \(X \Delta S^{-1}\) in the third equation of the system (8) by \(P \Delta S P\), we can compute the scaled NT-search directions from the following system

\[
\overline{A}_i \cdot D_{\chi} = 0, i = 1, 2, \ldots, m, \sum_{i=1}^{m} \Delta y_i \overline{A}_i - \overline{\Phi}(D_{\chi}) + D_{\chi} = 0, \quad D_{\chi} + D_{\delta} = V^{-1} - \nabla V, \tag{10}
\]

where

\[
\overline{A}_i := 1/ \sqrt{\mu} \Delta A \overline{D}, i = 1, 2, \ldots, m; \quad D_{\chi} := 1/ \sqrt{\mu D^{-1} X^{-1}}; \quad D_{\delta} := 1/ \sqrt{\mu D S D}, \tag{11}
\]

and

\[
\overline{\Phi}(D_{\chi}) := \sum_{i=1}^{m} D H^T D_{\chi} D H D. \tag{12}
\]

Now, following [15, 16] we turn to the new approach of this paper. We replace the right-hand side \(V^{-1} - \nabla V\) in the third equation in the system (10) by the negative gradient, i.e., \(-\nabla \Psi(V)\), of the barrier function \(\Psi(V) := \Psi(X, S; \mu)\). This yields the following system, which defines the scaled NT search directions.

\[
\overline{A}_i \cdot D_{\chi} = 0, i = 1, 2, \ldots, m, \sum_{i=1}^{m} \Delta y_i \overline{A}_i - \overline{\Phi}(D_{\chi}) + D_{\chi} = 0, \quad D_{\chi} + D_{\delta} = -\nabla \Psi(V). \tag{13}
\]

The new search directions \((D_{\chi}, D_{\delta})\) are obtained by solving the system (13) so that \((\Delta X, \Delta S)\) are computed via (11). If \((X, y, S) \neq (X(\mu), y(\mu), S(\mu))\), then \((\Delta X, \Delta y, \Delta S)\) is nonzero. The new triple \((X_+, y_+, S_+)\) is given by \(X_+ := X + \alpha \Delta X, \quad y_+ := y + \alpha \Delta y, \quad S_+ := S + \alpha \Delta S\), where \(\alpha\) denotes the default step size, \(\alpha \in (0, 1]\), which has to be chosen appropriately.

The generic primal-dual IPMs for CQSDO as follows.

Algorithm1

Step0 Input a threshold parameter \(0 < \tau < 1\), an accuracy parameter \(\varepsilon > 0\), a fixed barrier update parameter \(0 < \theta < 1\), a strictly feasible \((X^0, y^0, S^0)\) and \(\mu^0 = 1\) such that \(\Psi(X^0, S^0; \mu^0) < \tau\). Set \(X := X^0; \quad y := y^0; \quad S := S^0; \quad \mu := \mu^0\).
Step 1 If \(n \mu < \varepsilon \), stop, \((X, y, S)\) is an optimal solution; otherwise, update \(\mu := (1 - \theta)\mu \), go to Step 2.

Step 2 If \(\Psi(X, S; \mu) \leq \tau \), go back to Step 1; otherwise, go to Step 3.

Step 3 Solve the system (13) and use (11) to obtain \((\Delta X, \Delta y, \Delta S)\), choose a default step size \(\alpha \), update \(X := X + \alpha \Delta X; y := y + \alpha \Delta y; S := S + \alpha \Delta S \), go back to Step 2.

The parameters \(\tau, \theta \) and the step size \(\alpha \) should be chosen in such a way that the algorithm is "optimized" in the sense that the number of iterations required by the algorithm is as small as possible [9, 15].

4. The Analysis and Complexity of the Algorithms
By taking a default step size \(\alpha \), we have
\[
X' = X + \alpha \Delta X = \sqrt{\mu D(V + \alpha D_X)D}, \quad S' = S + \alpha \Delta S = \sqrt{\mu D^{-1}(V + \alpha D_x)D^{-1}}. \tag{14}
\]

It follows from (5) that \(V' = 1/\sqrt{\mu (D^{-1}X_S D)^{1/2}} \). We can verify that \(V' \) is unitarily similar to the matrix \(X'^{1/2}S'X'^{1/2} \) and thus to \((V + \alpha D_x)^{1/2}(V + \alpha D_s)(V + \alpha D_x)^{1/2} \). This implies that the eigenvalues of \(V' \) are precisely the same as those of the matrix
\[
\overline{V}' := (V + \alpha D_x)^{1/2}(V + \alpha D_s)(V + \alpha D_x)^{1/2})^{1/2}. \tag{15}
\]

Then \(\Psi(V') = \Psi(\overline{V}') \). Furthermore, we have, by Lemma 2.3,
\[
\Psi(V') = \Psi(\overline{V}') \leq \frac{1}{2}(\Psi(V + \alpha D_x) + \Psi(V + \alpha D_s)). \tag{16}
\]

Let \(f(\alpha) := \Psi(V') - \Psi(V) = \Psi(\overline{V}') - \Psi(V) \), \(f_1(\alpha) := \frac{1}{2}(\Psi(V + \alpha D_x) + \Psi(V + \alpha D_s)) - \Psi(V) \).

Then \(f(0) = f_1(0) \) and \(f(\alpha) \leq f_1(\alpha) \). This implies that \(f_1(\alpha) \) gives an upper bound for the decrease of the barrier function \(\Psi(V) \). It is worth pointing out that \(f_1(\alpha) \) is convex and in general \(f(\alpha) \) is not convex. Furthermore, we have
\[
\begin{align*}
f_1'(\alpha) &= \frac{1}{2}(\psi'(V + \alpha D_x)D_x + \psi'(V + \alpha D_s)D_s), \tag{17} \\
f_1''(\alpha) &= \frac{1}{2}Tr(\psi''(V + \alpha D_x)D_x^2 + \psi''(V + \alpha D_s)D_s^2). \tag{18}
\end{align*}
\]

Below we use the following notation \(\delta := \delta(V) \). The following lemma provides an upper bound of \(f_1''(\alpha) \), which plays an important role in the analysis of the algorithms.

Lemma 4.1: One has \(f_1''(\alpha) \leq 2\delta^2\psi''(\lambda_{\min}(V) - 2\alpha \delta) \).

The idea underlying our approach is that the default step size should be chosen such that \(X' \) and \(S' \) are feasible and \(f(\alpha) = \Psi(V') - \Psi(V) \) decreases sufficiently. Let \(\alpha^* := \max\{\alpha : f_1'(\alpha) \leq 0\} \). The default step size that we are going to use will satisfy \(f_1'(\alpha) \leq 0 \), and as a consequence also \(\alpha \leq \alpha^* \). Following the strategy considered in [15, 16], we briefly recall how to choose the default step size. Suppose that the step size \(\alpha \) satisfies
\[
-\psi'(\lambda_{\min}(V) - 2\alpha \delta) + \psi'(\lambda_{\min}(V)) \leq 2\delta, \tag{19}
\]

Then \(f_1'(\alpha) \leq 0 \). The largest possible value of the step size of \(\alpha \) satisfying (19) is given by
where $\rho(s):[0, +\infty) \to (0,1]$ is the inverse function of $-\psi(t)/2$ for $t \in (0,1]$. Furthermore, we have $\bar{\alpha} := 1/\psi^n(\rho(2\delta))$. Similar to the LO analogue [7], we use $\bar{\alpha} := 1/1320p\delta^{1/(p+1)} \leq \bar{\alpha}$ as the default step size.

The following lemma provides an upper bound for the decreasing value of the barrier function $\Psi(V)$ in each inner iteration.

Lemma 4.2 (Lemma 4.7 in [15]): Let $\alpha \leq \bar{\alpha}$. Then $f(\alpha) \leq -\alpha\delta^2$.

It follows from Corollary 2.5 that $\delta \geq 1/6$. We have the following theorem, by Lemma 4.2 in [15].

Theorem 4.3: One has $f(\bar{\alpha}) \leq -\Psi(V)^{p/(2p+2)} \times 7920p$.

Let Ψ_0 be the value of $\Psi(V)$ after the μ-update and Ψ_k, $k=1, 2, \ldots, K$ be the subsequent values in the same outer iteration, where K denotes the total number of inner iterations in the outer iteration. It follows from the decrease of $f(\bar{\alpha})$ obtained in Theorem 4.3 that

$$\Psi_{k+1} \leq \Psi_k - \beta(\Psi_k)^{-\gamma}, \quad k = 0, 1, \ldots, K-1,$$

where $\beta = 1/7920p$, and $\gamma = p + 2/(p+1)$.

From Lemma 9 in [7], we have the following lemma, which provides an estimate for the number of inner iterations between two successive barrier parameter updates, in terms of Ψ_0.

Theorem 4.5: One has $K \leq 7920p\Psi_0^{(p+2)/(2p+2)}$.

By multiplying the number of outer iterations, i.e., $1/\Theta \log n/\varepsilon$, and the number of inner iterations we get an upper bound for the total number of iterations, namely,

$$\frac{7920p\Psi_0^{(p+2)/(2p+2)}}{\Theta} \log n/\varepsilon.$$

(22)

Recall that $\psi'(t) \geq 1$. Let $t \geq 1$. Then $s = \psi(t) = \int_1^t \psi'(\zeta) d\zeta \geq \int_1^t d\zeta = (t-1)/2$. This implies that $t = g(s) \leq 1 + \sqrt{2s}$. It follows from Corollary 2.7, and $\psi(t) \leq (t^2 - 1)/2$ when $t \geq 1$, after some elementary reductions, we have $\Psi_0 \leq \Theta n + 2\sqrt{2\tau n} + 2\tau$. From (22), we have the following theorem, which gives the complexity bound for large-update methods.

Theorem 4.5: For large-update method, one takes $\Theta = \Theta(1)$, and $\tau = O(n)$. The iteration bound then becomes $O(\tau n^{(p+2)/(2p+2)} \log (n/\varepsilon))$.

Corollary 4.7: Let $p = O(\log n)$. Then the iteration bound reduces to $O(\sqrt{n} \log n \log (n/\varepsilon))$, which matches the currently best known complexity bound for large-update methods.

For the analysis of the complexity bound of small-update methods, we need to estimate the upper bound of Ψ_0 more accurately. From Corollary 2.7, Lemma 2.2 and $1 - \sqrt{1-\theta} \leq \theta$, after some elementary reductions, we have $\Psi_0 \leq \frac{p\pi + 8}{8(1-\theta)} (\theta \sqrt{n} + \sqrt{2\tau})^2$. From (22), we have the following theorem, which yields the complexity bound for small-update methods.
Theorem 4.8: For small-update method, one takes $\theta = \Theta(1/\sqrt{n})$ and $\tau = O(1)$. The iteration bound then becomes $O(\sqrt{n} \log(n/\epsilon))$, which matches the currently best known complexity bound for small-update methods.

5. Conclusions
In this paper, we have shown that a class of primal-dual IPMs for LO based on the parametric kernel function presented in [7] can be extended to the context of CQSDO. The currently best known complexity bounds for large- and small-update IPMs are established, namely, $O(\sqrt{n} \log n \log(n/\epsilon))$ and $O(\sqrt{n} \log(n/\epsilon))$, respectively. Moreover, this unifies the analysis for the LO, CQO, SOCO, and SDO analogues.

The generalization of SO and the Cartesian $P_\kappa(k)$-SCLCP deserves to be investigated.

Acknowledgments
This project is sponsored by Shanghai University of Engineering Science Innovation Fund for Graduate Students (No. 18KY0325) and University Students' Innovative Training Program of Shanghai (No. CS1721001).

References
[1] Bai Y Q 2010 Kernel Function-Based Interior-Point Algorithms for Conic Optimization Beijing: Science Press
[2] Wang G Q and Bai Y Q 2014 Interior-Point Methods for Symmetric Complementarity Problems: Theoretical Analysis and Algorithm Implementation Harbin: Harbin Institute of Technology Press In Chinese
[3] El Ghami M, Guennounb Z A, Bouali S and Steihaug T 2012 Journal of Computational and Applied Mathematics 236 3613-3623
[4] Cai X Z, Wang G Q, El Ghami M and Yue Y J 2014 Abstract and Applied Analysis 2014 710158
[5] Peyghami M R, Hafshejani S F and Shirvani L 2014 Journal of Computational and Applied Mathematics 255 74-85
[6] Li X and Zhang M W 2015 Operations Research Letters 43 471-475
[7] Bouafia M, Benterki D and Yassine A 2016 Journal of Optimization Theory and Applications 170 528-545
[8] Bai Y Q, Wang G Q and Roos C 2009 Nonlinear Analysis. Theory, Methods & Applications 70 3584-3602
[9] Wang G Q, Bai Y Q and Roos C 2005 Journal of Mathematical Modelling and Algorithms 4 409-433
[10] Hafshejani S F, Jahromi A F and Peyghami M R 2018 Optimization 67 113-137
[11] Vieira M V C 2012 Optimization Methods & Software 27 513-537
[12] Wang G Q and Bai Y Q 2012 Journal of Optimization Theory and Applications 152 739-772
[13] Cai X Z, Li L, El Ghami M, Steihaug T and Wang G Q 2017 Pacific Journal of Optimization 13 547-570
[14] El Ghami M 2017 International Journal of Pure and Applied Mathematics 114 797-818
[15] Wang G Q and Zhu D T 2011 Numerical Algorithms 57 537-558
[16] Wang G Q and Bai Y Q 2009 Nonlinear Analysis. Theory, Methods & Applications 71 3389-3402