Transanal total mesorectal excision after incomplete endoscopic submucosal dissection for early-stage low rectal cancer: A small case series

Mamoru Miyasaka a,*, Shuji Kitashiro a, Shunichi Okushiba a, Tetsuya Sumiyoshi b, Hiroko Takeda c, Satoshi Hirano d

a Department of Surgery, Tonan Hospital, Japan
b Department of Gastroenterology, Tonan Hospital, Japan
c Department of Pathology, Tonan Hospital, Japan
d Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Hokkaido, Japan

ARTICLE INFO
Keywords:
Additional resection
Early stage
Endoscopic submucosal dissection
Low rectal cancer
Transanal total mesorectal excision
Case series

ABSTRACT
Endoscopic submucosal dissection (ESD) for colorectal cancer is challenging but is gradually being performed worldwide. It is less invasive than surgical resection and can be performed on lesions in which malignancy cannot be diagnosed. In low rectal cancers, changes such as scarring after ESD may make it challenging to preserve the anus when additional surgical resection is required. Transanal total mesorectal excision (TaTME) is a novel surgical technique involving transanal endoscopic manipulation. It is useful for lesions in the deep pelvis near the anus. Herein, we report six cases of TaTME after ESD for early-stage low rectal cancer that resulted in incomplete resection. As a representative case, a 77-year-old female was referred to our hospital, and colonoscopy revealed low rectal cancer. ESD was performed, and the pathological diagnosis was an invasion of the submucosal layer and microscopic lymphovascular invasion. We performed an additional laparoscopic low anterior resection with TaTME. Lymph node metastasis was observed, and the final diagnosis was pT1b, pN1a, pStage IIIa, and R0. In other cases, the anus can also be preserved, and the distal margin can be secured. TaTME enabled anal preservation without being affected by the ESD scars. It is considered useful for additional resection after ESD of low rectal cancer.

1. Introduction
Endoscopic submucosal dissection (ESD) is a novel treatment for benign colorectal tumors and early cancers that achieves en bloc mucosal resection with wider margins [1]. ESD is currently a widely used treatment with advances in techniques and equipment [2]. While diagnostic treatment is possible if additional resection is required (e.g., positive vertical margin or submucosal invasion in a malignant tumor), ESD scars make surgery challenging. Resection and anastomosis at the scar site may lead to anastomotic leakage and stenosis. In addition, anal preservation may be challenging because of the proper distal resection margin (DRM) from the ESD scar.

Low anterior resection (LAR) for low rectal cancer is challenging for lesions located closer to the anus. The narrow and deep pelvis has a poor field of view in open surgery and is restricted by fixed trocar positions and straight laparoscopic instruments, even during laparoscopic surgery. In recent years, transanal total mesorectal excision (TaTME) has become an attractive minimally invasive surgery. Performing a transanal “bottom-up” surgical approach can achieve an accurate DRM with adequate visualization during surgery [3]. Herein, we describe six cases of TaTME after ESD for early-stage low rectal cancer.

2. Case report
2.1. Patient & method
We performed additional resections in patients with low rectal cancer who could not undergo complete resection by ESD. Patients were retrospectively enrolled at a single center (Tonan Hospital) between January 2019 and December 2021, excluding patients aged ≥90 years and American Society of Anesthesiologists physical status classification (ASA-PS) ≥3. This study is registered with the ResearchRegistry and the

* Corresponding author at: Department of Surgery, Tonan Hospital, North-4 West-7, Chuo-ku, Sapporo, Hokkaido 060-0004, Japan.
E-mail address: mmiyasaka7@yahoo.co.jp (M. Miyasaka).

https://doi.org/10.1016/j.ijscr.2022.107590
Received 28 July 2022; Received in revised form 19 August 2022; Accepted 30 August 2022
Available online 2 September 2022
2210-2612/© 2022 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
unique identifying number is: researchregistry8205 (https://www.researchregistry.com/browse-the-registry#home/). This case series has been reported in line with the PROCESS Guideline [4]. Curative researchregistry.com/browse-the-registry#home/). This case series unique identifying number is: researchregistry8205 (https://www.

M. Miyasaka et al.

Table 1

Case	Age	Sex	BMI	Location of lesion	Histological type	Tumor size (mm)	Depth of invasion (μm)	Vascular invasion	Budding
1	72	F	24.8	Rb, 7 cm	tub1	28 × 26	1400	ly1, v0	BD1
2	45	F	26.1	Rb, 2.5 cm	tub1-muc	35 × 27	4000	ly0, v1	BD2
3	57	M	22.6	Rb, 6 cm	tub1-tub2	33 × 27	1000	ly1, v1	BD1
4	77	F	21.2	Rb, 7 cm	tub1	28 × 26	3000	ly1, v1	BD2
5	81	M	22.4	Rb, 7 cm	tub1 > tub2	25 × 20	4300	ly0, v1	BD1
6	55	M	19.1	Rb, 4 cm	tub2 > tub1, por1	27 × 21	7000	ly0, v1	BD1

* Distance from the anal verge to the lesion.

† ly: lymphatic vessels invasion; v; vein invasion.

‡ BD; budding grade.
agencies in the public, commercial, or not-for-profit sectors.

Provenance and peer review

Not commissioned, externally peer-reviewed.

Ethical approval

This is an observational study. The Tonan Hospital Research Ethics Committee has confirmed that no ethical approval is required.

Consent

The subjects provided informed consent, and patient anonymity was preserved.

Registration of research studies

This study is registered with the ResearchRegistry and the unique identifying number is: researchregistry8205 (https://www.researchregistry.com/browse-the-registry#home/).
Guarantor

Mamoru Miyasaka

CRediT authorship contribution statement

Conception and study design: M. Miyasaka, S. Kitashiro
Acquisition of data: M. Miyasaka, S. Kitashiro, S. Okushiba, T. Sumiyoshi, H. Takeda
Analysis and/or interpretation of data: M. Miyasaka, S. Kitashiro
Drafting the manuscript: M. Miyasaka, S. Kitashiro
Revising the manuscript critically for important intellectual content: M. Miyasaka, S. Kitashiro, S. Hirano
Approval of the version of the manuscript to be published (the names of all authors must be listed): M. Miyasaka, S. Kitashiro, S. Okushiba, T. Sumiyoshi, H. Takeda, S. Hirano

Declaration of competing interest

There are no conflicts of interest to declare.

Acknowledgments

The participant has consented to the submission of the case report to the journal.

The work has been reported in line with the PROCESS criteria.

Agha RA, Sohrabi C, Mathew G, Franchi T, Kerwan A, O’Neill N for the PROCESS Group. The PROCESS 2020 Guideline: Updating Consensus Preferred Reporting Of CasE Series in Surgery (PROCESS) Guidelines, International Journal of Surgery 2020;84:231-235.

References

[1] A. Repici, C. Hansen, D. De Paula Penna, et al., Efficacy and safety of endoscopic submucosal dissection for colorectal neoplasia: a systematic review, Endoscopy 44 (2012) 137–150.
[2] K. Boda, S. Oka, S. Tanaka, et al., Clinical outcomes of endoscopic submucosal dissection for colorectal tumors: a large multicenter retrospective study from the Hiroshima GI endoscopy research group, Gastrointest. Endosc. 87 (2018) 714–722.
[3] Z. Zeng, S. Luo, J. Chen, Y. Cai, X. Zhang, L. Kang, Comparison of pathological outcomes after transanal versus laparoscopic total mesorectal excision: a prospective study using data from randomized control trial, Surg. Endosc. 34 (2020) 3956–3962.
[4] R.A. Agha, C. Sohrabi, G. Mathew, T. Franchi, A. Kerwan, N. O’Neill, for the PROCESS Group, The PROCESS 2020 guideline: updating consensus Preferred Reporting Of CasE Series in Surgery (PROCESS) guidelines, International Journal of Surgery 84 (2020) 231–235.
[5] Y. Hashiguchi, K. Muro, Y. Saito, et al., Japanese Society for Cancer of the colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer, Int. J. Clin. Oncol. 25 (2020) 1–42.
[6] D. Dindo, N. Demartines, P.A. Clavien, Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey, Ann. Surg. 240 (2004) 205–213.
[7] G.L. Beets, N.F. Figueiredo, R.G.H. Beets-Tan, Management of rectal cancer without radical resection, Annu. Rev. Med. 68 (2017) 169–182.
[8] N. Matsubara, H. Miyata, M. Gotoh, Mortality after common rectal surgery in Japan: a study on low anterior resection from a newly established nationwide large-scale clinical database, Dis. Colon Rectum 57 (2014) 1075–1081.
[9] S.S. Hon, S.S. Ng, T.C. Wong, et al., Endoscopic submucosal dissection vs laparoscopic colorectal resection for early colorectal epithelial neoplasia, World J. Gastrointest. Endosc. 7 (2015) 1243–1249.
[10] M.H. van der Pas, E. Haglind, M.A. Coenra, et al., Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial, Lancet Oncol 14 (2013) 210–218.
[11] S.X. Roodbeen, A. Spinelli, W.A. Bemelman, et al., Local recurrence after transanal total mesorectal excision for rectal cancer: a multicenter-cohort study, Ann. Surg. 274 (2021) 359–366.
[12] Z. Li, J. Xiao, Y. Hou, et al., Transanal versus laparoscopic total mesorectal excision in male patients with low tumor location after neoadjuvant therapy: a propensity score-matched cohort study, Gastroenterol. Res. Pract. 2022 (2022) 238746A.