Expanding and retracting from the self: Gains and costs in switching self-associations

Haixu Wang¹, Glyn Humphreys², Jie Sui¹,²

1. Department of Psychology, Tsinghua University, Beijing
2. Department of Experimental Psychology, Oxford University, Oxford

Author Note

Department of Experimental Psychology, University of Oxford

Oxford OX1 3UD, UK.

Telephone: 44 121 414 4930

Fax: 44 (0)1865271424

E-mail: jie.sui@psy.ox.ac.uk or glyn.humphreys@psy.ox.ac.uk
Abstract

We report two experiments to assess the strength of forming and breaking associations to the self, familiar and unfamiliar others in a simple shape-label matching task. In each experiment participants first formed shape-person associations (e.g., triangle-self). Subsequently they had to re-learn the associations with the shapes and labels re-arranged (self→stranger in E1; self→friend in E2) and they carried out a matching task where they judged if shape-label stimuli were as newly instructed or re-paired. There were faster responses and fewer errors on match trials for newly-formed self-associated stimuli. In contrast, after switching reaction times were slower and accuracy reduced on mismatch trials involving shapes previously associated with the self. The strength of the self-advantage in forming the new association on match trials correlated with the difficulty in switching from the old self-associated shape on mismatch trials. The results indicate that self-reference enhances the binding of associations in memory: this facilitates associations to new stimuli but there is a cost of interference from old associations.

Keywords: self-association, switching, memorial glue
Introduction

Self biases are pervasive, affecting memory (Cunningham, Turk, & Macrae, 2008; Rogers, Kuiper, Kirker, 1977), attention (Keyes & Brady 2010; Tong & Nakayama 1999) and perceptual matching (Sui, He, & Humphreys, 2012). Self biases typically take the form of processing enhancements. For example, memory is better to items encoded in relation to one’s self compared to items encoded in relation to others (Rogers et al., 1977). In face perception, responses to one’s own face are faster and more accurate than responses to the face of a familiar other (Ma & Han, 2010). However self-biases can also lead to processing costs – for example, when self-related information must be ignored. Brédart and colleagues (2006) reported that the presence of the participant’s own face and name can automatically attract attention away from task-related targets and hurt performance.

One way of conceptualizing the benefits and costs to self-associated stimuli in a task is to suggest that self-association is akin to having greater ‘memorial glue’. When associations are formed in memory, self-reference enhances the binding process so that different elements are more strongly linked and retrieved together, and this enhances memory performance (Rogers et al., 1977). For example, Cunningham et al. (2011) asked participants to categorize items as belonging to themselves or to someone else based on the color of the stimulus (e.g., red cues meant self-owned objects, and blue cues referred to objects owned by others). After encoding the items in relation to ownership by the self vs. others, participants carried out a surprise memory task. Cunningham et al. found that participants had better memory for self-
owned items compared with other-owned items irrespective of whether self-owned items were owned in reality or not. Moreover for remembered items participants were more accurate at judging that the stimuli had been categorized in relation to the self than at judging if the stimuli had been characterized in relation to another person. This enhancement of source memory is consistent with the better binding of elements to their context. Sui and Humphreys (2013) further reported self-reference enhanced source memory even in an amnesic individual who showed no effects of semantic elaboration on memory. This suggests that self-reference effects are independent of semantic elaboration.

Here we test two ideas that stem from the proposal that self-reference increases binding in memory. The tests are based on conditions in which participants form new associations between geometric shapes and labels referring to the self, a familiar other or an unfamiliar other (e.g., Sui et al., 2012). For example, Sui et al. (2012) had participants learn associations between simple shapes (square, triangle, circle) and personal labels (stranger, friend, you). Participants then had to judge if shape-label pairs were as originally presented (square-stranger, triangle-friend, circle-you) or whether they were re-paired (square-friend, triangle-you, circle-stranger). After forming these associations participants are typically faster at judging whether shape-label pairs match for the self and familiar other stimuli, compared with shape-label pairs for unfamiliar others; this effect is most pronounced for self-related stimuli (Sui et al., 2012). In this paper we assessed the idea that the enhanced perceptual matching and enhanced memory effects found for self-related stimuli specifically reflects
stronger binding (e.g., in the perceptual matching task between the neutral geometric shape and the personal label). The binding account makes two specific predictions. One is that there should be enhanced matching performance for self-related stimuli. As we have noted, this has been found previously (Sui et al., 2012). However, there is a flip-side to the effects of binding, which is when a new association has to be formed to a shape previously linked to the self. In this case, the prior binding of the shape to the self may make it difficult to re-form a new association of the shape to a different personal label (e.g., to your friend or to a stranger) – there should be a negative effect of strong binding on forming a new association. We evaluated this here. In two experiments participants first matched geometric shapes against labels corresponding to the self, a friend or a stranger. If self-reference enhances binding, then we expect that there will be faster and more accurate responses to new associations formed to self-associated stimuli (compared with stimuli associated with other people). This should facilitate the matching of the new self-associated stimuli (see Sui et al., 2012). The converse of this, however, should occur when self-associations have to be discarded. This is the case when a self-associated shape from the first association is presented as a mismatch stimulus, after the shape-label assignments have been switched. Here the presence of strong ‘associative glue’ may disrupt performance, as it should be difficult to retract the earlier matching response to the self-associated shape.

These proposals were assessed in two experiments. In Experiment 1, after the initial matching phase, the self associated shape was re-assigned to the stranger label.
We found that match mismatch responses were slowed to the former self-associated shapes. However such a result may stem from re-pairing a familiar association (e.g., circle-you, square-friend) to form a new association to a label for an unfamiliar person on match trials (circle-stranger) and a familiar person on mismatch trials (e.g., circle-friend). In Experiment 2, the self associated shape was re-paired with the label for a friend, so that switching always created familiar referents on match trials (circle-you and square-friend to circle-friend) and the former self shape was paired with an unfamiliar referent on mismatch trials (circle-stranger). This rules out the possibility that slow performance with shapes formerly associated with the self was due to switching between familiar and unfamiliar referents. In addition, by replicating the results across two experiments we demonstrate the stability of the effects and we provide a more powerful test of the relations between the benefits and costs of self-binding (on forming new associations and switching associations), correlating one effect against the other across participants. Both experiments involved two parts. In part 1 participants formed associations between personal labels (self, friend and stranger) and individual shapes (square, triangle, and circle). In part 2 (swap trials), the shapes and labels were re-paired and participants carried out a sequential matching task in which they saw a shape followed by a label and they had to respond on the basis of whether the shape-label pair corresponded to the new assignments (on match they did; on mismatch trials shapes and labels were re-paired). We evaluated self-related associative matching both on the initial learning phase (part 1) and on trials where participants must switch associations (part 2). Is matching facilitated to self-
related stimuli in the initial association block (part 1)? Conversely, are there costs involved in breaking the old association of a shape to the self, when the self-related shape is subsequently linked to another label (in part 2)?

Experiment 1: Re-assignment 1

(*self to stranger, friend to self, stranger to friend*)

Method

Participants

Twenty-one college students took part (3 male; the age range was 19-27, mean ± std. = 22 ± 2.82). The sample size was determined by the prior studies in order to achieve a reasonable effect size (e.g., Sui et al., 2012). All participants were right-handed and had normal or corrected-to-normal vision. Informed consent was obtained based on procedures approved by a local ethics committee.

Stimuli and tasks

There were two phases in this experiment. Participants first had to learn shape-personal label associations (in part 1) followed by a second association matching task in which the shape-label assignments were switched (in part 2). There were three types of geometric shape (triangle, square, and circle). The shapes subtended 3.6°×3.6° of visual angle in width and height respectively and a central fixation cross subtended 0.8°×0.8° of visual angle. The labels subtended 1.3-2.6°×1.3° of visual angle in width and height respectively. In the first phase, shapes were randomly assigned to three personal-labels (‘Friend’, ‘You’, ‘Stranger’). The order of assignment was counterbalanced across participants. For instance, participants could
be told that a triangle represented their best, gender-matched friend (named by participants before the experiment), a square represented themselves, and a circle was associated with a gender-matched stranger (which was chosen by participants from a list of common names). After the associative instruction, participants had to choose which of the three labels matched the shape in a display. For this task, where the shape appeared above fixation and the three labels fell below, participants had to choose which label matched the shape by pressing the one of three keys. The center of shape and labels fell 3.2° away from fixation and the labels were randomly assigned to set locations for each participant (left, central, right). The task was terminated after six consecutive correct responses to each shape were made\(^1\). After the association task the shape-label assignments were switched. Participants were verbally instructed that the self-associated shape was now assigned to the stranger, the friend-associated shape to the self, and the stranger-associated shape to the friend. They then received trials in which a centrally presented shape was followed by a central label and the task was to judge whether the shape-label pair matched the switched relations.

The experiment was run on a PC with a 21-inch monitor (1024×768, 100Hz) using E-Prime software (Version 2.0).

Procedure

The matching task (with shape-label assignments switched) was preceded by the association task. In the association task (part 1) a block started with a central fixation

\(^1\) This procedure differs from the perceptual matching task reported in Sui et al. (2012) and in part 2 of this study. This was because, in part 1, we were interested primarily in assessing whether there was a self-advantage on matching trials. The current procedure maximizes the number of matching trials as no mismatch trials were presented.
cross for 2000 ms. On each trial a shape was paired with three labels displayed for 1000 ms, followed by a blank screen with 2000 ms as maximal duration. Participants had to make a response during this 3000 ms time window using the one of three response keys on a keyboard. The display was terminated by a response (keys: B, N, and M, for the left, central and right stimuli). Feedback was given for 500 ms after the response. The experiment began after 6 practical trials. The task was terminated by 6 consecutively correct responses to each association. Participants took about average 4.10 minutes to get to the criteria in the association task in Part 1, and the variability across participants was 0.69–8.20 minutes.

In the matching task (part 2), participants were instructed to re-assign the shape-label relations: (i) the self-associated shape was linked to the label “Stranger”; (ii) the friend-associated shape was assigned to the label “You”; and (iii) the stranger-associated shape was assigned to the label “Friend”. After this instruction, participants undertook a shape-label matching task. The central fixation appeared for 500 ms. A shape was displayed for 100 ms, followed by a blank screen for 200 ms. After this, a label was displayed for 100 ms and then the blank screen was presented again for 1000 ms, during which time participants had to make a judgment whether the shape and label matched using the one of two response keys (Z or M, with the keys assigned for match and mismatch responses counter-balanced over participants). Feedback (“correct”, “incorrect” or “slow”) was given for 500 ms. There were 9 experimental conditions (3 shapes by 3 labels). There were 8 blocks of 81 trials in total, including 9 practice trials. There were thus 72 trials per condition.
We also ran a control experiment with an independent set of participants who only received the instructions for part 2 and who then judged whether shape-label pairings matched the instructions. This control condition provides a baseline to assess whether there was a cost on mismatch trials to shapes that would have been linked to the self on match trials (in the full Experiment 1), without any of the shapes previously having been associated to the self (as in part 1 here). In the control experiment, there were twenty-two college students (13 male; the range of age, 19-32, mean ± std. = 23.78 ± 4.11). The method was identical to part 2 (the switching task) in the experimental condition.

Data analyses

We report the error rates and reaction times (RTs) respectively.

First we conducted repeated measures ANOVAs with one factor - association (self, friend, or stranger) to examine the effect of self, and familiar other associations on identifying shape-label pairings (part 1).

Second, we measured the self- and friend-biases compared to the stranger association in the matching task (after switching, in part 2). We first assessed whether there was a self-bias in forming the new associations, on shape-label match trials (part 2). We then evaluated any difficulties in re-pairing the old self-shape with a new label, on mismatch trials (part 2). For this latter analysis we removed the exact pairings of the shapes and labels used in part 1, so that mismatch RTs were not contaminated by including the pairs that were originally associated.
All multiple comparisons were corrected by multiple Holm-Bonferroni corrections for $\alpha = .05$ (Holm, 1979).

Results

(1) **Self-bias in the association task (part 1)**

A repeated measures ANOVA was conducted on error rates with one within-subjects factor – association (self, friend, or stranger). This showed a significant effect of association, $F(2, 38) = 3.35, p < .05, \eta^2 = .15$; fewer errors were made in forming self- than friend-associations ($t(19) = -2.75, p = .013$). There was a trend for fewer errors to stranger- than friend-associations, but the effect was not significant ($t(19) = 1.86, p = .08$). There was no difference in errors between the self and stranger associations ($t(19) = -0.49, p = .63$) (Figure 1A).

A similar analysis on RTs demonstrated a significant effect of association, $F(2, 38) = 10.24, p < .001, \eta^2 = .35$; there were faster responses to self associations than friend associations ($t(19) = -3.60, p = .002$) and also stranger associations ($t(19) = -4.12, p = .001$); there was no difference between the friend and stranger associations ($t(19) = -0.25, p = .80$) (Figure 1B).

The data indicated a reliable advantage for matching self associations compared with friend- and stranger associations.

(2) **Self-bias following switching (part 2)**

(i) **Forming re-assigned associations (Match trials).** The analysis of the error rate on match trials showed a significant effect of association, $F(2, 38) = 7.65, p$
= .002, η² = .29 (Figure 2A); there were fewer errors when matching self-related stimuli than stranger-related stimuli (t(19) = -3.31, p = .004), marginally fewer errors when matching friend relative to stranger associations (t(19) = -2.41, p = .026), and marginally fewer errors when matching self relative to friend associations (t(19) = -2.07, p = .05) (Figure 3A).

The analysis of RTs also showed a significant effect of association, F(2, 38) = 43.29, p < .001, η² = .70 (Figure 2B); there were faster responses in matching self-associated stimuli than friend-associated items (t(19) = -6.00, p < .001) and stranger-associated stimuli (t(19) = -8.54, p < .001); there were also faster responses to friend than stranger associations (t(19) = -3.73, p = .001) (Figure 3B).

(ii) Breaking first associations (Mismatch trials). The trials were sorted according to whether the shape was associated with the self, the friend or the stranger label in part 1 (the association task). There was no effect of shape on errors on mismatch trials, F(2, 38) = 1.66, p = .20, η² = .08 (Figures 2C and 3A). However, the analysis on RTs did demonstrate a significant effect of shape, F(2, 38) = 7.34, p = .002, η² = .28 (Figure 2D). There were slower responses to mismatch trials with the self-associated shape compared to those with the friend- (t(19) = 3.23, p = .004) and the stranger-associated shape (t(19) = 2.38, p = .028); the latter two conditions did not differ (t(19) = -1.67, p = .11) (Figure 3B).

The results demonstrate that it was hard to make a mismatching response to a shape when it was previously associated with and matched to a self label, compared to shapes that were previously associated with and matched to other labels (friend and
(iii) Comparisons with the control task.

The data for the three shapes in the mismatching conditions of the control experiment were extracted. A repeated measures ANOVA was conducted on the error results with one between-subjects factor (task: experimental vs. control task) and one within-subjects factor (association: self, friend, or stranger). There was no significant main effect of task, $F(1, 40) = 0.03, p = .87, \eta^2 = .00$. The effect of association was significant, $F(2, 80) = 4.20, p = .02, \eta^2 = .10$; there were fewer errors for friend relative to stranger associations ($p = .007$), but there were no differences between the self and friend associations ($p = .18$) nor between the self and stranger associations ($p = 1.0$). There was also a significant interaction between task and association, $F(2, 80) = 4.08, p = .02, \eta^2 = .09$. For the control task, the error analysis showed a significant effect of association, $F(2, 42) = 1.66, p = .20, \eta^2 = .08$ (Figure 2E); there were fewer error responses to the self ($t(21) = -2.97, p = .007$) and friend ($t(21) = -3.89, p = .001$) shapes on mismatching trials compared with the stranger association, but there was no difference between the self and friend associations ($t(21) = 1.04, p = .31$). We also conducted comparisons between the switch task and control task. In order to rule out task difficulty, we conducted pair-wise t tests on the relative scores (self bias = stranger – self; friend-bias = stranger – friend) between two tasks. The analyses revealed a significant difference in self-biases between the two tasks, $t(40) = -2.62, p = .01$, indicating fewer errors in the control task relative to the switch task. Similarly, there was significant difference in friend-biases between the two tasks, $t(40) = -2.24$,
\(p = .03 \), indicating few errors in the control task than to the switch task. In contrast, the analysis on RTs failed to show a significant effect of association in the control task, \(F(2, 42) = 2.75, p = .08, \eta^2 = .12 \) (Figure 2F).

The data demonstrated different patterns on mismatch trials between the experimental task (after switching shape assignments) and the control task (confirmed by the task x association interaction), with the self disadvantage only emerging for the switch experiment. The results indicate that the difficulty in responding to a self-associated shape on mismatch trials reflected the switching cost following the first association task, rather than being a simple product of the matching task (e.g., a bias on mismatch trials against the shape paired with the self on match trials).

In summary, the analyses showed benefits for self-related stimuli when matches were made to the initial shape-label associations (in part 1). Following switching of the shape-label pairs (part 2), match responses to new associations to the self were still advantaged. However there was now a cost on mismatch trials for shapes that were formerly related to the shapes. This result was not found in a control experiment without earlier switching of the shape-label assignments.

Experiment 2: Re-assignment 2

(self to friend; friend to stranger, stranger to self)

Method

There were twenty college students (12 male; the range of age, 18-30, mean ± std. = 23.70 ± 3.51). The sample size was determined by both Experiment 1 and prior
studies to achieve a reasonable effect size (e.g., Sui et al., 2012). Participants were
right-handed and had normal or corrected-to-normal vision. Informed consent was
obtained based on procedures approved by a local ethics committee.

The Method in Experiment 2 was identical to Experiment 1, except that in the
switch task, the initial self-associated shape (in part 1) was re-assigned to the friend
label (in part 2), the friend-associated shape in part 1 was re-assigned to the stranger
label in part 2, and the stranger-associated shape in part 1 to the self label, on match
trials in part 2. On mismatch trials the initial self-associated shape was paired with
either the self or stranger label; the initial friend-associated shape was paired with the
self or friend label, and the initial stranger-associated shape was paired with the friend
or stranger label. As in Experiment 1, the data analysis on mismatch trials was based
on only the newly paired shape-label associations (extracting out data for trials where
the shape and label matched the original assignment in part 1). Participants took about
average 2.38 minutes to get to the criteria of the association task in Part 1, and the
variability across participants was 0.90–5.80 minutes.

Results

(1) Self-bias in the association task (part 1)

A repeated measures ANOVA on errors failed to show a significant effect of
association, $F(2, 38) = 0.02, p = .98, \eta^2 = .001$ (Figure 4A). The analysis on RTs
showed a significant effect of association, $F(2, 38) = 8.10, p = .001, \eta^2 = .30$ (Figure
4B); there were faster responses to self than friend ($t(19) = -3.04, p = .007$) and
stranger ($t(19) = -3.16, p = .005$) associations, but there was no difference between the friend and stranger associations ($t(19) = 0.07, p = .94$). The data indicated a reliable advantage for matching self associations than for matching friend- and stranger associations.

(2) Self-bias in the switching task (part 2)

(i) Forming re-assigned associations (Match trials). The analysis on errors showed a significant effect of association, $F(2, 38) = 3.93, p = .03, \eta^2 = .17$ (Figure 5A); there were marginally fewer errors in responding to second self associations than in responding to stranger associations ($t(19) = -2.39, p = .027$) and friend associations ($t(19) = -2.22, p = .039$); there was no difference in errors between friend and stranger associations ($t(19) = -0.49, p = .63$) (Figure 3C).

For the RT data there was a significant effect of association, $F(2, 38) = 17.35, p < .001, \eta^2 = .48$ (Figure 5B); there were faster responses to the new self associations than the new friend ($t(19) = -3.37, p = .003$) and stranger associations ($t(19) = -5.56, p < .001$), and faster responses to friend than stranger associations ($t(19) = -2.50, p = .022$) (Figure 3D).

In line with the results in the association task (part 1), the analyses in the switch task showed that, although shapes and labels were re-paired, there was a robust self-advantage in forming new associations compared to the friend and stranger conditions.

(ii) Breaking first associations (Mismatch trials). There was an effect of association on errors on mismatch trials, $F(2, 38) = 3.96, p = .027, \eta^2 = .17$ (Figure
5C); there were more errors to former self shapes than to former friend shapes ($t(19) = 3.22, p = .004$). There were trends for more errors to former self shapes than stranger shapes, and for more errors for former stranger shapes than friend shapes, but these effects were not reliable ($t(19) = 1.14, p = .27$ and $t(19) = -1.46, p = .16$) (Figure 3C).

The analysis on RTs demonstrated a significant effect of association, $F(2, 38) = 6.17, p = .005, \eta^2 = .25$ (Figure 5D); there were slower responses to shapes formerly associated with the self than the friend ($t(19) = 2.60, p = .018$) and stranger ($t(19) = 2.88, p = .010$). There were no differences in responding to stimuli formerly associated with the friend and stranger ($t(19) = 0.57, p = .57$) (Figure 3D).

The results confirm those found in Experiment 1. In the initial association phase, participants were better at matching self associated stimuli than stimuli associated to friend and stranger stimuli (part 1). After switching the shapes and labels there was also an advantage for match responses new associations to self labels, compared with match responses to new associations to friend and stranger labels (part 2). In contrast, mismatch responses were disrupted for shapes that were previously associated to the self (part 2). The pattern of these results is presented in Figure 3.

Correlation results

We evaluated the relations between forming the new association on match trials in part 2 of each experiment and breaking the old association, on mismatch trials in part 2. If self-association enhances binding, then participants who find it easier to bind new stimuli to the self (who show a larger self-advantage on match trials) will
also find it more difficult to break the old self-related association, when the shape formerly associated to the self is re-assigned a new pairing (showing a larger cost on mismatch trials). To test this, the self-advantage on match trials in part 2 was correlated with the self-cost on mismatch trials.

In order to maximize power we merged data in the two experiments together, first normalising RTs to provide indices of the self-/friend-bias – the differential scores between the stranger and self (or friend) divided by the sum of the two conditions then multiplying 100. This means that a self-advantage on matching trials in part 2 shows as a positive value, while a self-cost on mismatching trials shows as a negative value. Pearson correlation analyses showed a significant negative correlation between the self-advantage when forming a new association on match trials and the disadvantage on making mismatch responses to former self-related stimuli, \(r(40) = -.42, p = .008 \) (Figure 6A). This shows that, the greater the self bias on forming a new association on match trials, the greater the cost of breaking the initial self-shape association on mismatch trials. There was a similar trend for a relationship between the advantage for forming a new association linked to the friend label on match trials and the cost on mismatch trials to the former friend-related stimulus, but it failed to reach significance, \(r(40) = -.24, p = .15 \) (Figure 6B). However there was no significant difference in the magnitudes of the self- and friend- correlations using Fisher’s r-to-z transformation, \(p = .46 \). The analyses on the errors did not reveal any significant correlations, \(r(40) < .51, p > .51 \).
Discussion

Similar to previous studies on simple shape-label associative learning we have shown that participants are biased in their responses to self-related stimuli compared with stimuli related to other people (here a best friend or a stranger) (Sui et al., 2012). This self-advantage occurred when participants had to match one of three labels to a shape (part 1) and when they sequentially matched a shape to a label (part 2). Critically we examined the effects of re-pairing shapes and label after the initial associations had been switched (part 2). Here we found three main results: (1) that new associations to a self label were responded to faster than new associations to the other labels (friend and stranger) (match trials in Experiments 1 and 2), (2) that it was more difficult to make mismatch responses to the self shape when it was paired with a new label (mismatch trials in Experiments 1 and 2), and (3) the advantage for self-related shapes on forming new match associations was correlated with the cost to rejecting former self-associated shapes on mismatch trials.

These results can be accounted for by the hypothesis that associating stimuli with the self benefits from a stronger ‘memorial glue’ than associating stimuli with representations for other people. This means that self-associations are in general stronger than associations to other people and support enhanced reaction times to match stimuli conforming to new self-association. This is demonstrated here in part 1 of each experiment. These data match many other results in the literature demonstrating that self-association enhances memory, including the binding of the memory to its source (Cunningham et al., 2008; 2011; Rogers et al., 1977; Sui &
Humphreys, 2013). It also means that new associations of shapes formerly paired with other stimuli (friend, stranger) can be rapidly assimilated with a self-label when new associations must be formed. In this sense it appears to be relatively easy to expand a self-representation by increasing the number of external stimuli that are linked to it. We suggest that the enhanced binding process means that we can rapidly acquire knowledge in relation to ourselves, and that this process is facilitated relative to when knowledge is acquired about other people. It is interesting to speculate whether this rapid acquisition of associations to the self is helpful for developing a self-representation.

There is also evidence for self-association improving perceptual matching (Sui et al., 2012), and facilitating perceptual integration (measured using redundancy gains (Sui & Humphreys, in press; Sui, Yankouskaya, & Humphreys., 2015). For example, Sui et al. (2015) evaluated effects of redundancy gains with stimuli related to the self or to other people. Redundancy gains occur when responses are facilitated when two targets are presented relative to when participants respond to a single target (Mordkoff & Danek, 2011; Yankouskaya, Booth & Humphreys, 2012). In Sui et al. (2015), participants first formed shape-label associations and then they had to make identification responses to either single or two shape exemplars (you or friend?). Redundancy gains were larger for pairs of self-related shapes compared with shapes related to a friend-association. Moreover, for self shapes only these redundancy gains violated assumptions based on the independent processing of the shapes (cf. Miller, 1982) and self-related shapes were processed with ‘super-capacity’ whereas friend-
related shapes showed mutual interference (Townsend & Eidels, 2011). These results suggest that self-related stimuli benefit from enhanced perceptual integration in their processing, so that responses to a ‘whole’ 2-item pair are greater than responses to a single item. These latter results are consistent with self-association also providing a form of ‘perceptual glue’ in addition to the evidence for increased ‘memorial glue’ which we have presented here. The converging evidence shows that self-reference has a broad influence on binding information.

However the other side of forming an association that is strongly bound to the self is that it becomes difficult to break that association, when a formerly associated shape must be linked to another person: it was difficult for participants to make mismatch responses to shapes formerly associated with the self.

The factors that lead to these stronger binding effects for self-related items remain unclear. For example, it has been argued that self-biases may reflect underlying factors such as the reward-value (Northoff & Hayes, 2011) or the emotional value linked to self-related items (Ma & Han, 2010). For example there may be enhanced processing of self-related stimuli because they have intrinsic reward value and/or because they have positive emotional valence. There is evidence that brain structures such as the hippocampus are critically involved in binding features in memory and that hippocampal activity is modulated by reward. Indeed brain imaging indicates that the hippocampal structures that discriminate reward are also involved in binding associations in memory (Wolosin, Zeithamova & Preston, 2014 a,b). Similarly there is evidence that positive emotion can enhance integrative associative
memory (Murray & Kensinger, 2013, 2014). Thus both reward and emotion are candidate ‘drivers’ for the binding effects we observe in relation to the self. On the other hand, Sui et al. (2015) demonstrated that perceptual integration from reward-related stimuli was not as pervasive as the integration found with self-related items and suggested that perceptual binding related to the self was distinct and not modulated by reward. Whether the same holds for binding in memory is an empirical question. Stolte, Humphreys, Yankouskaya and Sui (sub.) have also shown that self-biases and emotion-related biases are not correlated, though this would be expected if they reflect common underlying processes. Clearly an important question for future work will be to tie-down what factors are critical for the enhancement of binding by self-reference. It is nevertheless interesting to note that we did not find strong evidence here for costs of binding for shapes formerly linked to friend-related stimuli, although friend-associations did benefit in matching (at least for Experiment 2). Also though there were trends for a correlation between the matching advantage for friend-related stimuli and the disadvantage for mismatching stimuli formerly related to the friend, this was not reliable\(^2\). Though we should be cautious in our interpretation, the data indicate that differential effects of familiarity may help new learning but don’t necessarily impair the re-assignment of old relations. The difficulty in re-assigning self-related associations may reflect a factor other than familiarity.

We conclude that self-association can either enhance or disrupt processing, depending on whether new associations are assessed or whether old associations have

\(^2\) Though we note that the difference in the magnitudes of the correlations to self- and friend-related stimuli did not differ.
to be discarded. The results fit with the idea that self-association leads to stronger binding in memory, a property that may facilitate the development of our self-representations.

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Project 31371017) and by grants from the Economic and Social Research Council (ES/J001597/1, UK) and the European Research Council (Pepe Grant 323883).

References

Cunningham, S. J., Turk, D. J., & Macrae, C. N. (2008). Yours or mine? Ownership and memory. *Consciousness & Cognition, 17*, 312–318.

Cunningham, S. J., Brady-Van den Bos M., & Turk, D. J. (2011). Exploring the effects of ownership and choice on self-memory biases. *Memory, 19*, 449-461.

Brédart S, Delchambre M, Laureys S. 2006. One’s own face is hard to ignore. *Quarterly journal of experimental psychology, 59*, 46–52.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics*. 6, 65-70.

Keyes, H., & Brady, N. (2010). Self-face recognition is characterized by “bilateral gain” and by faster, more accurate performance which persists when faces are inverted. *Quarterly journal of experimental psychology, 63*, 840-847.
Ma, Y., Han, S. (2010). Why respond faster to the self than others? An implicit positive association theory of self advantage during implicit face recognition. *Journal of Experimental Psychology: Human Perception and Performance*, 36, 619-633.

Miller, J. (1982). Divided attention: evidence for coactivation with redundant signals. *Cognitive Psychology, 14*, 247-279.

Mordkoff, J. T., & Danek, R. H. (2011). Dividing attention between color and shape revisited: Redundant targets coactivate only when parts of the same perceptual object. *Attention, Perception, & Psychophysics*, 73, 103–112.

Murray, B.D. & Kensinger, E.A. (2013) Age-related changes in associative memory for emotional and non-emotional integrative representations. *Psychology and Aging, 28*, 969-983.

Murray, B.D. & Kensinger, E.A. (2014) The route to an integrative associative memory is influenced by emotion. *PLOS ONE, 9*, e82372.

Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self-reference and the encoding of personal information. *Journal of Personality & Social Psychology, 35*, 677–688.

Sui, J., He, X. & Humphreys, G.W. (2012) Perceptual effects of social salience: Evidence from self-prioritization effects on perceptual matching. *Journal of Experimental Psychology: Human Perception and Performance, 38*, 1105-1117.

Sui, J., & Humphreys, G. W. (in press). More of me! Self-bias modulated redundancy gains in shape perception. *Attention Perception & Psychophysics*.
Sui, J., Yankoskaya, A., & Humphreys, G. W. (2015). Super-capacity me! Super-capacity and violations of race independence for self- but not for reward-associated stimuli. *Journal of Experimental Psychology: Human Perception and Performance, 41*, 441-452.

Tong, F., & Nakayama, K. (1999). Robust representations for faces: Evidence from visual search. *Journal of Experimental Psychology: Human Perception and Performance, 25*, 1016–1035.

Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: a unified methodology for response time measures of efficiency as workload is varied. *Psychon Bulletin & Review, 18*, 659-681.

Wolosin, S.M., Zeithamova, D. & Preston, A.R. (2014a) Distributed hippocampal patterns that discriminate reward context are associated with enhanced associative binding. *Journal of Experimental Psychology, 142*, 1264-1276.

Wolosin, S.M., Zeithamova, D. & Preston, A.R. (2014b) Reward modulation of hippocampal subfield activity during successful associative encoding and retrieval. *Journal of Cognitive Neuroscience, 24*, 1532-1547.

Yankouskaya, A., Booth, D.A., & Humphreys, G.W. (2012). Interactions between facial emotion and identity in face processing: evidence based on redundancy gains. *Attention, Perception & Psychophysics, 74*, 1692-1771.
Figure captions

Figure 1. The performance in the error rates and reaction times (ms) in corrected trials as a function of association (self, friend, or stranger) in the association task in Experiment 1. The error bars represent one standard deviation.

Figure 2. The performance in the switch task in Experiment 1. (A-B) Forming second associations after shape-label repairing in the switch task, data in label-based match trials as a function of association (self, friend, or stranger) in the error rates and reaction times (ms) in corrected trials. (C-D) Breaking first associations formed in the association task, data based on the former shapes on mismatch trials as a function of association (self, friend, or stranger) in the error rates and reaction times (ms) in corrected trials. (E-F) Performance in the control task was extracted to match those in breaking first associations as a function of association (self, friend, or stranger) in the error rates and reaction times (ms) in corrected trials. The error bars represent one standard deviation.

Figure 3. The cost of switching in self- and friend-bias in forming first association, breaking first association, and forming second associations in the error rate (A, C) and reaction times (B, D) in Experiments 1 and 2. The data on RTs were indexed by the differential scores between the stranger and self (or friend) divided by the sum of the two conditions then multiplying 100. The data on errors were indexed by the differential scores between the stranger and self (or friend) divided by the sum of the two conditions. The error bars represent one standard deviation.

Figure 4. The performance in the error rates and reaction times (ms) in corrected
trials as a function of association (self, friend, or stranger) in the association task in Experiment 2. The error bars represent one standard deviation.

Figure 5. The performance in the switch task in Experiment 2. (A-B) Forming second associations after shape-label repairing in the switch task, data in label-based match trials as a function of association (self, friend, or stranger) in the error rates and reaction times (ms) in corrected trials. (C-D) Breaking first associations formed in the association task, data based on the former shapes on mismatch trials as a function of association (self, friend, or stranger) in the error rates and reaction times (ms) in corrected trials. The error bars represent one standard deviation.

Figure 6. The correlations in RTs between forming second associations and breaking first associations in self-bias (A) and friend-bias (B) across the two experiments.
Figure 1

A

B

Forming first associations

Prop. of error responses

0.5

0.4

0.3

0.2

0.1

0.0

Self
Friend
Stranger

1300

1200

1100

1000

900

800

Self
Friend
Stranger

* ns

** ns
Figure 2

Forming second associations

A

Prop. of error responses

0.0
0.1
0.2
0.3
0.4
0.5

Self
Friend
Stranger

B

Reaction times (ms)

400
500
600
700
800
900

Self
Friend
Stranger

Breaking first associations

C

Prop. of error responses

0.0
0.1
0.2
0.3
0.4

Self
Friend
Stranger

D

Reaction times (ms)

400
500
600
700
800
900

Self
Friend
Stranger

Control for breaking first associations

E

Prop. of error responses

0.0
0.1
0.2

Cself
Cfriend
Cstranger

F

Reaction times (ms)

400
500
600
700
800

Cself
Cfriend
Cstranger

Figure 2
Figure 3
Figure 4
Figure 5

A) Forming second associations

B) Reaction times (ms)

C) Breaking first associations

D) Reaction times (ms)

Prop. of error responses

Self Friend Stranger

Self Friend Stranger

ns ns

ns

** ns

* ns

** ns

* ns

Self Friend Stranger

Self Friend Stranger

ns

** ns

* ns

** ns

Figure 5
Figure 6

A Self-bias

\[r = -0.42^{**} \]

B Friend-bias

\[r = -0.24 \]