Mauro Serafini* and Ilaria Peluso

Functional Foods and Metabolic Stress Prevention Laboratory, Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy

Article History

Received: September 8, 2015
Accepted: November 15, 2016

DOE 10.2174/1381612823666161123

Keywords: Antioxidants, human, functional foods, inflammation, oxidative stress, plant foods.

1. INTRODUCTION

The regulation of endogenous antioxidant defences, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), involves the interaction with antioxidant responsive elements (ARE) which are present in the promoter regions of most of the genes inducible by oxidative stress [1]. In particular, nuclear factor-erythroid 2-related factor 2 (Nrf2) is the transcription factor responsible for both constitutive and inducible expression of ARE-regulated genes [2]. Under physiological conditions, Nrf2 is bound to kelch-like protein-1 (KEAP1) and is thereby sequestered in the cytoplasm; however, in the presence of oxidative stress, Nrf2 dissociates from KEAP1, translocates into the nucleus and induces the transcription of antioxidant enzymes. Oxidative stress represents also a key stimulus for the activation of nuclear factor- kappa B (NF-κB), which appears in the cytoplasm of non-stimulated cells forming a complex with its inhibitor IκB. Following stimulation, NF-κB is activated by phosphorylation and degradation of IκB, thus migrating to the nucleus, stimulating gene expression and inducing the synthesis of inflammatory cytokines. The close link between oxidative and inflammatory stress in the mechanisms of body defences against stress, is further highlighted in the oxidative burst of leucocytes, the innate immune response involving the activation of NADPH-oxidase (NOX) and myeloperoxidase (MPO) yielding a massive production of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) [3]. However, the presence of an excessive and uncontrolled ROS and cytokines production, a condition defined as “low-grade chronic inflammation” takes place and is associated with pre-pathological conditions such as obesity and degenerative diseases [4, 5].

Inflammatory and oxidative stress can rise also as a direct consequence of unbalanced dietary life style, such as the ingestion of high fat and high carbohydrate meals [6, 7]. Increase in postprandial lipopolsaccharide (LPS) and Toll-like receptor-4 (TLR4) is associated with increased levels of inflammatory cytokines, such as interleukin (IL)-6, IL-17 and tumor necrosis factor-alpha (TNF-α) [8], which in turn activate oxidative burst [9]. Given these premises, the importance of the diet, as inducer or preventer of inflammatory and oxidative stress, is paramount.

A large body of epidemiological and clinical evidence provides a solid rationale for the health benefits of diets based on foods of vegetable origin [10], thanks to their content of bioactive ingredients such as vitamins and flavonoids. In fact, flavonoids and their metabolites, in addition to their direct free radical scavenging capacity [11], impair the production of ROS and RNS by neutrophils and other phagocytic cells through the inhibition of NOX, MPO and inducible-Nitric Oxide Synthases (iNOS) [3]. However, herbs and spices used for culinary purposes also represent an excellent source of phytochemicals [12, 13]. Antioxidant and anti-inflammatory activities have been reported in vitro and in animal models for ginger (*Zingiber officinale*) [14], milk thistle (*Silybum marianum*) [15], hawthorn (*Crataegus monogyna*) [16, 17], passion flower (*Passiflora edulis*) [18] and chamomile (*Matricaria chamomilla*) [19, 20]. Therefore the health benefits of plant food-based diets could be related to both integrated antioxidant and anti-inflammatory mechanisms exerted by a wide array of phytochemicals present in fruit, vegetables, herbs and spices [21-24]. On this basis, there is mounting interest in identifying foods, food extracts and phytochemical formulations from plant sources which are able to efficiently modulate oxidative and inflammatory stress to prevent diet-related diseases [25]. This paper reviews available evidence about the effect of supplementation with selected fruits, vegetables, herbs, spices and their extracts or galenic formulation on combined markers of redox and inflammatory status in humans.

2. OVERVIEW OF IDENTIFIED STUDIES

We performed a search on MEDLINE and Google Scholar Databases for literature of human studies by using the search terms: (fruit* OR vegetable* OR herb* OR spice* OR cocoa) AND antioxidant AND (cytokines OR CRP) AND (subjects OR patients).

A total of 88 interventions from 74 studies reporting both markers of redox/oxidative and inflammatory status after consumption of plant-derived products were collected. Dietary interventions were grouped according to different categories, specifically vegetables...
Table 1. Overview of the reviewed intervention studies with vegetables and vegetable extracts in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/antioxidative status	Markers of inflammatory status	Refs.
Carrot (juice)	16 fl oz	Healthy	Longitudinal, 3 months	NEAC↑	CRP and IL-1↔	[26]
Tomato (juice)	280 ml	Healthy women	Longitudinal, 2 months	MDA↓	Adiponectin↑	[27]
Tomato-derived Lyc-O-Mato	45 mg lycopene	Asthmatic	Parallel, 14 weeks	IsoP↔	CRP↑	[28]
Tomato-derived Lyc-O-Mato	30 mg lycopene	Obese	Longitudinal, 4 weeks	Dienes ↔	CRP, TNF-α and IL-6↔	[29]
Tomato-derived Lyc-O-Mato	250 ml	Healthy	Crossover, 26 days	IsoP↔	TNF-α and IFN-γ ex vivo↓	[30]
Tomato-derived Lyc-O-Mato	80 mg lycopene	Healthy	Longitudinal, 1 week; postprandial (3h)	MDA ↔	CRP↔	[31]

CRP: C reactive protein; IFN-γ: interferon gamma; IL: interleukin; IsoP: isoprostanes; MDA: malondialdehyde; NEAC: non-enzymatic antioxidant capacity; TBARS: thiobarbituric acid reactive substances; TNF-α: tumor necrosis factor alpha.

As expected, multiple biomarkers were used to monitor different aspects of redox/oxidative and inflammatory status in biological fluids and cells. Markers of redox status included non-enzymatic antioxidant capacity (NEAC, n=29), reduced glutathione (GSH, n=8) or ratio of reduced/oxidized glutathione (GSH/GSSG) (n=1), antioxidant enzymes (n=29) (e.g. SOD, CAT and GPX), markers of lipid peroxidation (n=77) (i.e. oxidized low density lipoproteins (oxLDL), isoprostanes (IsoP), malondialdehyde (MDA), thiobarbituric acid reactive substances (TBARS), peroxides, 4-hydroxy-2-nonenal (4-HNE) and conjugated dienes), pro-oxidant-antioxidant balance (PAB, n=1), 8-hydroxy-2‘-deoxyguanosine (8-OHdG, n=2) and markers of protein oxidation (n=15). Inflammatory markers included C-reactive protein (CRP, n=69), heat shock protein 70 (HSP70, n=1), inflammatory cytokines (n=49), adiponectin (n=8) and markers of innate immunity-mediated ROS generation (n=10) [i.e. the oxidative burst, subunit p22phox of the NOX, iNOS and MPO].

3. STUDIES ON COMBINED ANTIOXIDANT AND ANTI-INFLAMMATORY EFFECT OF VEGETABLES AND VEGETABLE EXTRACTS

Table 1 describes the reviewed intervention studies on the combined antioxidant and anti-inflammatory effects of vegetables and vegetable extracts.

Three months of supplementation with carrot [26] juice decrease marker of lipid oxidation, increase plasma antioxidant defenses but did not show any effect on inflammatory markers in healthy subjects. On the contrary, drinking 280 mL of tomato juice for two months [27] decreased markers of lipid oxidation, without affecting antioxidant capacity status, but increasing the anti-inflammatory adiponectin in healthy subjects. On the other hand, tomato-derived Lyc-o-Mato supplement did not affect peroxidation markers, neither in the form of drink [30] nor as supplement [28, 31]. Besides Lyc-o-Mato increased CRP production in asthmatic subjects [28] without affecting plasma cytokines concentration in obese and asthmatic subjects [28, 29], but decreasing the ex-vivo production of interferon (IFN)-γ and TNF-α in healthy subjects [30].
Although only 28.6% (2/7) of the interventions improved the markers of red-ox or inflammatory status, however it must be taken into account that some of the intervention studies were not controlled for placebo [26, 27, 29, 31] and 4 studies out of seven were conducted on healthy subjects, supposedly not affected by oxidative/inflammatory chronic conditions.

4. STUDIES WITH FRUITS, FRUIT JUICES, GRAPE SEEDS AND THEIR EXTRACTS

Within juice (Table 2), pomegranate juice (100cc/day, 1 year) [48] and concentrated juice (50g/day, four weeks) [44] decreased IL-6 [44, 48, 51] or MPO [50, 51], concomitantly increasing NEAC [44] or decreasing lipo-peroxidation and protein oxidation markers [48, 50] in type 2 diabetic patients [44], hemodialysis subjects [50, 51] and overweight/obese subjects [48].

Craberry juice (0.7 liters for 60 days in parallel design) significantly reduced markers of protein and lipid oxidation and increased the anti-inflammatory adiponectin in patients with metabolic syndrome [35].

In the study by Basu et al. [34], 480 mL of cranberry juice, in a similar period of time (8 weeks) and in patients with metabolic syndrome, decreased oxidative stress markers (oxLDL and MDA), increase plasma NEAC and in agreement with results from Simao’s [35], the juice did not affect CRP and IL-6 levels, while adiponectin of redox/oxidative stress or CRP in men with urinary tract infections [33]. Bilberry juice, in a parallel study on subjects with at least one risk factor for CVD was effective in modulating inflammatory markers without any impact on redox status or lipid oxidation [32]. On the contrary, in type 2 diabetic patients, freeze-dried strawberry 50g/day consumption for 6 weeks decreased CRP and MDA and increased NEAC [42].

One and half rio red grapefruit consumption for 6 weeks in parallel design, failed to display any effect on isoprostanes and CRP levels neither in obese nor in subjects with metabolic syndrome [54]. However, it is extremely interesting to notice that subjects with high baseline isoprostanes levels experienced a significant reduction in response to grapefruit consumption, highlighting once more the importance of a detectable oxidative/inflammatory stress for a significant effect [54, 98]. Marotta et al. [38, 39] showed that supplementation with 9 and 6 g of fermented papaya for 6 months in patients with HCV-related cirrhosis translated in an improvement of marker of redox status, in a decrease in marker of oxidative stress and in a parallel anti-inflammatory effect on TNF-α and TNF-α ex vivo production. In a different group of subjects, chronic consumption of 9 g of fermented papaya for 3 months decreased TNF-α and IL-6, increase Hsp-70 without changes in antioxidant enzymes in elderly subjects [37]. A quite surprising increase of oxidative burst in PBMN was described in Type 2 diabetic obese after supplementation with 9 g of sachets of fermented papaya [36]. Barona et al. [43] observed an increase of iNOS in subjects without dyslipidemia and a decrease in those individuals with dyslipidemia after 4 weeks of consumption of 46 g of freeze-dried whole grape powder. Also plasma adiponectin concentrations followed opposite outcomes based on dyslipidemia category (Table 2), whereas IL-6, IL-8, TNF-α, SOD, GPX, oxLDL and IsoP did not differ significantly between treatment periods regardless of dyslipidemia classification. On the contrary GPX increased in patients with Rheumatoid Arthritis after the consumption of pomegranate extract (500 mg) for 8 weeks [50].

Table 3 describes intervention trials with grape seeds in different forms: as capsules [55, 57], tablets [58] or added in yoghurt [56].

In the study by Kar et al. [58] where 600 mg of grape seeds extract was given to 32 diabetics for 4 weeks, showed a combined effect in increasing antioxidant status (GSH), and decreasing inflammation (CRP). In agreement with Kar’s findings, 200 mg of monomeric and oligomeric flavanols from grape seeds increased the GSH/GSSG ratio and decreased TNF-α in smokers. Higher doses of grape seed extract, 1300 mg and 2 g, did not show any effect on selected markers of redox, oxidative and inflammatory status [55, 56]. Nevertheless, two grams of grape seeds extracts displayed an antioxidant effect, decreasing isoprostanes and lipid oxidation, after fructose ingestion in overweight obese patients [57].

5. STUDIES WITH HERBS, GREEN TEA AND THEIR EXTRACTS

Overall, herb extracts are extremely effective in modulating oxidative and inflammatory status as shown in four studies out of the five identified (Table 4).

Ginseng-based steroid Rg1 (5 mg) decreased lipid oxidation and inflammatory TNF-α in healthy subjects after exercise [60] and ginsenosides, intravenously injected, decreased lipid oxidation and IL-6 and LPS production [62].

On the contrary, capsules of ginseng extracts did not affect CRP levels and antioxidant status [61]. Between the selected herbs, extracts of Silybum marianum (milk thistle) decreased CRP in subjects with Type 2 Diabetes in concomitance with an increase in NEAC and antioxidant enzymes (SOD and GPX), as well as with decreases in MDA levels [63]. Also the hydro alcoholic nettle (Urtica dioica) extract, 100 mg/kg of body weight for 8 weeks supplementation, increased NEAC and decreased IL-6 and CRP in patients with type 2 diabetes [64, 65].

Green tea extracts modulate both markers of oxidation and inflammation, as shown in three studies out of the four identified; at least one marker of inflammation was actively improved in all studies (Table 5).

In particular, in hemodialysis patients the decrease in peroxides levels of two different doses of green tea extract (455 and 910 mg) was associated with the reduction of markers of inflammation IL8 and TNF-α receptor, CRP and TNF-α both after acute and chronic consumption [70]. Similar results were obtained with 1 g of green tea extract in a longitudinal study of 3 and 6 months with a decline in oxLDL and of p22phox [69]. Furthermore green tea extract (379 mg) increased NEAC, concomitantly with a reduction of TNF-α and CRP after 3 months of supplementation in obese and hypertensive patients [68].

6. STUDIES WITH SPICES EXTRACTS

Spices often used for culinary purposes, namely curcumin and ginger, showed the capability to improve both oxidative stress and inflammatory status (Table 6).

Capsules of curcuminoids decreased lipid oxidation and CRP levels in patients undergoing coronary artery bypass [73]. Decrease of CRP and IL-8 concentration but with no antioxidant effect, was obtained with 200 mg of curcumin in healthy subjects [71].

Studies conducted with ginger involved patients with Type 2 diabetes [77], subjects on peritoneal dialysis [76], or patients with acute respiratory distress syndrome [78]. In two of these studies, ginger consumption improved redox and inflammatory markers. In another 4-week study on diabetic patients, with a randomized, controlled design, turmeric (2g) as an adjunct to standard metformin therapy determined a significant reduction in lipid peroxidation and MDA, reduced CRP and enhanced total antioxidant status [74].

7. STUDIES WITH BEVERAGES AND EXTRACTS WITH MIXED PLANT FOOD COMPOSITION

Among different beverages, a mixed fruits juice did not affect neither TBARS nor CRP levels in healthy subjects after 12 weeks of 120 ml daily [79], whereas ingestion of 300 mL of citrus-based
Table 2. Overview of the reviewed intervention studies with fruits, fruit juices and fruits extracts in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and Duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Bilberry (juice)	330 ml	At least one risk factor for cardiovascular disease 62	Parallel, 4 weeks	NEAC, lipid peroxidation and GSH ↔	CRP and IL-6 ↓ IL-1, IL-2, IL-12, IL-17 and IFN-γ ↔ TNF-α ↑	[32]
Cranberries (dried powder)	1500 mg	Men with urinary tract infection 42	Parallel, 6 months	NEAC, SOD, MDA, GSH, GPX, CAT and AOPP ↔	CRP ↔	[33]
Cranberry (juice)	480 ml (polyphenols 458 mg)	Metabolic syndrome 31	Parallel, 8 weeks	NEAC ↑ MDA ↓ oxLDL ↓	CRP ↔ IL6 ↔	[34]
Cranberry (juice)	0.7 litres (polyphenols 104mg/100ml)	Metabolic syndrome 56	Parallel, 60 days	Lipid peroxidation and AOPP ↓	Adiponectin ↑ CRP, TNF-α, IL-1 and IL-6 ↔	[35]
Fermented papaya (sachets)	9 g	Type 2 diabetic obese 17	Longitudinal, 2 and 6 weeks	4-HNE ↔ Carbonils ↔	Oxidative burst ↑	[36]
Fermented papaya (supplement)	9 g	Elderly 40	Crossover, 3 months	SOD, GPX and GSH ↔	TNF-α and IL-6 ↓ CRP ↔ Hsp-70 ↑	[37]
Fermented papaya (supplement)	9 g	HCV-related cirrhosis 50	Longitudinal, 6 months	GSH and GPX↑ MDA and 8-OHdG↓	TNF-α↓	[38]
Fermented papaya (supplement)	6 g	HCV-related cirrhosis 32	Parallel, 6 months	4-HNE ↓ GSH ↑	TNF-α ex vivo ↓	[39]
Freeze-dried Strawberry	50g (polyphenols 2.0g)	Women with metabolic syndrome 16	Longitudinal, 4 weeks	4-HNE, MDA ↓ oxLDL ↔	CRP and adiponectin ↔	[40]
Freeze-dried strawberry	25g (low) (polyphenols 1.0g) 50g (high) (polyphenols 2.0g)	Obese with elevated serum lipids 60	Parallel, 12 weeks	MDA and HNE ↓ MDA and HNE ↓	CRP ↔	[41]
Freeze-dried strawberry	50g (polyphenols 2.0g)	Type 2 diabetic 36	Parallel, 6 weeks	NEAC ↑ MDA ↓	CRP ↓	[42]
Freeze-dried whole grape (powder)	46g (polyphenols 580 mg/100 g)	Dyslipidemia 11 Non-dyslipidemia 13	Crossover, 4 weeks	oxLDL, IsoP, SOD and GPX ↔ oxLDL, IsoP, SOD and GPX ↔	TNF-α, IL-6, IL-8 and NOX ↔ adiponectin↑ iNOS↓ TNF-α, IL-6, IL-8 and NOX ↔ adiponectin↓ iNOS↑	[43]
Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and Duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
-----------------------------------	--------------------------	-----------------------------------	---------------------------	-------------------------------------	--------------------------------	-------
Pomegranate (concentrated juice)	50 g (polyphenols 6.3 mg/100 g)	Type 2 diabetic 31	Longitudinal, 4 weeks	NEAC ↑	IL-6 and adiponectin ↓ TNF-α and CRP ↔	[44]
Pomegranate (capsules)	2 capsules (1.5 g polyphenol)	obese with type 2 diabetes 8 healthy 9	Longitudinal, 4 weeks	4-HNE, MDA ↓ oxLDL ↔	CRP ↔	[45]
Pomegranate (extract)	1g (600–755 mg of gallic acid equivalents)	Hemodialysis 33	Parallel, 6 months	NEAC, AOPP, 8-OHdG and ox-LDL ↔	IL-6 and CRP ↔	[46]
Pomegranate (extract)	2 capsules (500 mg, 40% ellagic acid)	Rheumatoid arthritis 55	Parallel, 8 weeks	MDA ↔	CRP ↔	[47]
Pomegranate (extract)	100mg	Overweight/obese 42	Parallel, 30 days	MDA ↓	CRP and IL-6 ↓	[48]
Pomegranate juice + pomegranate extract	100 mL Juice 1,050 mg extract	Hemodialysis 20	Crossover 4 weeks juice followed by 4 weeks extract or 4 weeks extract followed by 4 weeks juice, immediately before each dialysis treatment	IsoP ↔	CRP and IL-6 ↔	[49]
Pomegranate (juice)	100ml (polyphenols 0.7mmol/100 cc juice)	Hemodialysis 27	Parallel, during the first hour of a dialysis session	AOPP ↓	MPO ↓	[50]
Pomegranate (juice)	100 cc (polyphenols 0.7mmol/100 cc juice)	Hemodialysis 49	Parallel, during each dialysis (3 times/week), 1 year	MDA, AOPP and carbonyls ↓	TNF-α, IL-6 and MPO ↓	[51]
Red grape (concentrated juice)	100ml (polyphenols 0.64 g)	Hemodialysis 38 Healthy 15	Parallel, 2 weeks	NEAC ↑ oxLDL ↓	CRP ↔	[52]
Red grape (concentrated juice)	100ml (polyphenols 0.64 g)	Hemodialysis 16	Parallel, 2 weeks	oxLDL ↓	CRP ↔	[53]
Rio red grapefruit	Half 3 times/day	Obese Metabolic syndrome 74 29	Parallel, 6 weeks	IsoP ↔	CRP ↔	[54]

4-HNE: 4-hydroxynonenal; 8-OHdG: 8-hydroxy-2’–deoxyguanosine; AOPP: advanced oxidation protein products; CAT: catalase; CRP: C reactive protein; GPX: glutathione peroxidase; GSH: reduced glutathione; HCV: Hepatitis C Virus; Hsp-70: heat shock protein 70; IFN-γ: interferon gamma; IL: interleukin; iNOS: inducible nitric oxide synthase; IsoP: isoprostanes; MDA: malondialdehyde; NEAC: non-enzymatic antioxidant capacity; NOX: NADPH-oxidase; oxLDL: oxidized low density lipoproteins; ROS: reactive oxygen species; SOD: superoxide dismutase; TNF-α: tumor necrosis factor alfa; HCV: Hepatitis C Virus.
Table 3. Overview of the reviewed intervention studies with grape seeds in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/oxidative status	Markers of inflammatory status	Refs.
Grape seeds (capsules)	1300 mg	CVD risk factors	Crossover, 1 month	NEAC, MDA and IsoP→	CRP and IL-6 ↔	[55]
Grape seed extract (added in yoghurt)	2 g	CVD risk factors	Crossover, 4 weeks	oxLDL and IsoP↔	CRP↔	[56]
Grape seed extract (capsules)	2 g	Overweight/obese first degree relatives of type 2 diabetic patients	Parallel, 8 weeks + 6d fructose	week 8: carbonils ↓ IsoP and TBARS ↔ after fructose: IsoP and TBARS↓	week 8: CRP ↔ after fructose: CRP ↔	[57]
Grape seed extract (tablets)	600 mg	Type 2 diabetes	Crossover, 4 weeks	NEAC ↔ GSH ↑	CRP ↓	[58]
Monomeric and oligomeric flavanols from grape seeds (capsules)	200 mg	Male smokers	Parallel, 8 weeks	NEAC, SOD, CAT, GPX and IsoP→ GSH/GSSG ↑	CRP ↔ TNF-α ↓	[59]

Table 4. Overview of the reviewed intervention studies with herbs extracts in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Study design and duration	Study design and duration	Markers of red-ox/oxidative status	Markers of inflammatory status	Refs.
Ginseng based steroid Rg1 (capsule)	5 mg Rg1	Healthy	Crossover, one night and one hour before exercise	TBARS ↓	IL6 ↔ TNF-α ↓	[60]
Ginseng extract (capsule)	250 mg, four capsules/day (7 mg ginsenosides)	Hyperlipidemic	Parallel, 8 weeks	PAB ↔	CRP↔	[61]
Ginsenosides (intravenously)	1.5 mL/kg (equal to 1.35 mg/kg ginsenosides and 0.15 mg/kg aconite alkaloid).	Children undergoing heart surgery for congenital heart defects	Parallel, 2 minutes before the start of cardiopulmonary bypass (CPB) and throughout the course of CPB.	MDA (1 and 2h after reperfusion) ↓	IL-6 and LPS (1 and 2h after reperfusion).	[62]
Silybum marianum (L.) Gaertn. (silymarin) extract (tablets)	140 mg silymarin three times/day	Type 2 diabetes	Parallel, 45 days	SOD↑ GPX↑ NEAC ↑ MDA↓	CRP↓	[63]
Nettle (*Urtica dioica*) (extract)	100 mg /kg of body weight	50 type 2 diabetes	Parallel, 8 weeks	NEAC ↑ SOD ↑ MDA→ GPX→	CRP and IL-6↓ TNF-α ↔	[64, 65]

CAT: catalase; CRP: C reactive protein; CVD: cardiovascular; GPX: glutathione peroxidase; GSH: reduced glutathione; GSSG: oxidized glutathione; IL: interleukin; IsoP: isoprostanes; MDA: malondialdehyde; NEAC: non-enzymatic antioxidant capacity; oxLDL: oxidized low density lipoproteins; SOD: superoxide dismutase; TBARS: thiobarbituric acid reactive substances; TNF-α: tumor necrosis factor alfa.
Table 5. Overview of the reviewed intervention studies with green tea and green tea extracts in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Green tea (Beverage)	2.4 g instant green tea (297.9 mg catechins)	Obese 19	Crossover, 5 days	IsoP ↓	CRP and IL6 ↔	[66]
Green tea extract (Beverage)	159 mg total catechins in 450ml	Male cyclists 9	Crossover, 21 days, After exercise (2h)	oxLDL and TBARS ↔ After exercise: oxLDL and TBARS ↔	CRP ↓ IL6 ↔	[67]
Green tea extract (capsule)	379 mg (208 mg EGCG)	Obese, hypertensive patients 9	Parallel, 3 months	NEAC ↑	TNF-α ↓ CRP ↓	[68]
Green tea extract (capsule)	1 g (483 mg of Camelia Sinensis powder and 100 mg of leaf extracts for a total of 68 mg catechins)	Chronic dialysis 20	Longitudinal, 3 and 6 months	oxLDL ↓ (only in 9 patients)	P22phox ↓	[69]
Green tea extract (Tablets)	455 and 910 mg of catechins during a single hemodialysis session.	Haemodialysis patients 44	Crossover, bolus, 1 and 3h post-dialysis Parallel, 7 months	peroxides ↓	IL-8 and TNF-α receptor↓	[70]

CRP: C reactive protein; EGCG: epigallocatechingallate; IL: interleukin; IsoP: isoprostanes; NEAC: non-enzymatic antioxidant capacity; oxLDL: oxidized low density lipoproteins; TBARS: thiobarbituric acid reactive substances; TNF-α: tumor necrosis factor alfa.

Table 6. Overview of the reviewed intervention studies with spices extracts in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Curcumin (phytosome)	200 mg	Healthy 19	Parallel, 48 hours prior and 24 hours after running test	NEAC↔ CAT ↔ GPX ↔	CRP ↓ (24h) IL-8 ↓ (2h) MPO ↔	[71]
Curcumin extracts (powder)	400 mg (80 mg curcumin)	Healthy 38	Parallel, 4 weeks	NEAC↑ CAT↑ SOD ↔	CRP ↔ MPO↑	[72]
Curcuminoids (capsules)	4 g	Undergoing coronary artery bypass grafting 121	Parallel, 3 days before the surgery and 5 days after surgery	MDA↓	CRP↓	[73]
Turmeric (capsules)	2 g	Type 2 diabetes on metformin therapy 60	Parallel, 4 weeks	NEAC↑ MDA↓ GSH, GPX, CAT and carbonyls ↔	CRP↓	[74]
Turmeric (capsules)	2.8 g	Overweight and obese women 98	Parallel, 4 weeks	IsoP and oxLDL↔	CRP, IL-6, IL-8 and TNF-α ↔	[75]
Ginger (capsule)	1000 mg	Peritoneal dialysis 36	Parallel, 10 weeks	MDA↔	CRP↔	[76]
vitamins, fish oil and polyunsaturated fatty acids (PUFA), containing resveratrol, tomato extract, green tea extract, antioxidant vitamins, fish oil and polyunsaturated fatty acids (PUFA), de-
than 5 and 10 days]

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Ginger (capsules)	3 g	Type 2 diabetes 45	Parallel, 3 months	NEAC↑	CRP↑	[77]
Ginger extract (enteral feeding)	120 mg	Acute respiratory distress syndrome 32	Parallel, 5 and 10 days	GSH (day 5)↑	IL-1 ↔ IL-6 (day 5)↓	[78]

Table 7. Overview of the reviewed intervention studies with beverages with mixed plant food composition in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Mixed fruit beverage^a	120 ml	Healthy	Longitudinal, 12 weeks	TBARS ↔	CRP↔	[79]
Citrus-based juice with melanocarpa^a	300 ml	Metabolic syndrome 33	Parallel, 6 months	oxLDL↓	CRP↓	[80]
Mixed fruit and vegetable beverage^a	360 mg/L polyphenols; 170 mg total proanthocyanidins and 9 mg anthocyanins in single dose	Healthy	Parallel, acute (0-4h)	IsoP↓	CRP↔	[81]
Pineapple, black currant and plum.	500 ml (32 mg anthocyanins, 2.5 mg flavan-3-ols and 20 mg flavonols)	Overweight	Crossover, acute, post-prandial with high fat and carbohydrates meal (0-8h)	IsoP↔ NEAC↔	TFN-α, IL-6 and IL-17↓	[8, 82]

CRP: C reactive protein; IFN: interferon; IL: interleukin; IsoP: isoprostanes; MDA: malondialdehyde; NEAC: non-enzymatic antioxidant capacity; oxLDL: oxidized low density lipoproteins; SOD: superoxide dismutase; TNF-α: tumor necrosis factor alfa.

Table 6. Contd....

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Ginger (capsules)	3 g	Type 2 diabetes 45	Parallel, 3 months	NEAC↑	CRP↑	[77]
Ginger extract (enteral feeding)	120 mg	Acute respiratory distress syndrome 32	Parallel, 5 and 10 days	GSH (day 5)↑	IL-1 ↔ IL-6 (day 5)↓	[78]

Table 7. Overview of the reviewed intervention studies with beverages with mixed plant food composition in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Mixed fruit beverage^a	120 ml	Healthy	Longitudinal, 12 weeks	TBARS ↔	CRP↔	[79]
Citrus-based juice with melanocarpa^a	300 ml	Metabolic syndrome 33	Parallel, 6 months	oxLDL↓	CRP↓	[80]
Mixed fruit and vegetable beverage^a	360 mg/L polyphenols; 170 mg total proanthocyanidins and 9 mg anthocyanins in single dose	Healthy	Parallel, acute (0-4h)	IsoP↓	CRP↔	[81]
Pineapple, black currant and plum.	500 ml (32 mg anthocyanins, 2.5 mg flavan-3-ols and 20 mg flavonols)	Overweight	Crossover, acute, post-prandial with high fat and carbohydrates meal (0-8h)	IsoP↔ NEAC↔	TFN-α, IL-6 and IL-17↓	[8, 82]

CRP: C reactive protein; IFN: interferon; IL: interleukin; IsoP: isoprostanes; MDA: malondialdehyde; NEAC: non-enzymatic antioxidant capacity; oxLDL: oxidized low density lipoproteins; SOD: superoxide dismutase; TNF-α: tumor necrosis factor alfa.

On the other hand, after acute consumption of a polyphenol-rich beverage containing an extremely variegated variety of mixed fruit and vegetable extracts improve redox markers without affecting CRP levels in healthy subjects [81].

On the contrary, half liter of a mixed fruit-based drink decreased the postprandial inflammatory stress induced by a high fat meal (1361 calories) without affecting redox markers in overweight subjects [8, 82] as displayed in Table 7.

As described in Table 8, when supplements with mixed composition were administered as capsules, tablets, powder or by infusion, three studies showed a combined effect on both markers of red-ox/diabetic and inflammatory status.

In particular, five weeks of supplementation with capsules containing resveratrol, tomato extract, green tea extract, antioxidant vitamins, fish oil and polyunsaturated fatty acids (PUFA), decreased isoprostanes concentration concomitantly with a reduction of IL-18 in overweight subjects [83]. After 8 weeks of consumption of capsules containing powder concentrate derived from acerola cherry, apple, bilberry, black currant, blueberry, beetroot, broccoli, cabbage, carrot, Concord grape, cranberry, elderberry, kale, orange, peach, papaya, parsley, pineapple, raspberry, red currant, spinach and tomato, were found a decrease in protein (carbonyls) and lipid (oxLDL) oxidative damage, as well as the exercise-induced increase of TNF-α [87]. Furthermore, 8 weeks of supplementation with capsule containing curcuminoids (1g) + piperine (10 mg) was able to modulate SOD in conjunction with a decrease in lipid peroxidation (MDA) and the inflammatory CRP [91]. In the study from Soare et al. [92] providing an extremely variegated composition of functional ingredients, ranging from resveratrol, to fish oil to green, black and white tea etc. for 6 months failed to show any results on redox/oxidative and inflammatory status. Negative results were also obtained by Nieman et al. [90], with green tea, blueberry and soy protein extracts, and by Braga et al. [93] with green tea extracts and vitamin C and E, in healthy and overweight individuals.
Table 8. Overview of the reviewed intervention studies with extracts with mixed composition in humans: characteristics, study design and effect on markers of redox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and Duration	Markers of red-ox/oxidative status	Markers of inflammatory status	Refs.
Capsule containing antioxidants, plant-food extracts and PUFA	Four capsules (resveratrol 6.3 mg, tomato extract (3.75 mg lycopene), green tea extract 94.5 mg, α-tocopherol 90.7 mg, vitamin C 125 mg, eicosapentaenoic acid (EPA) 380 mg, docosahexaenoic acid(DHA) 260 mg, other PUFA 60 mg)	Overweight 36	Crossover, 5 weeks	IsoP↓	CRP ↔ IL-18 ↓ MPO ↑	[83]
CHOLACTIV (capsule)	Two capsule Leucoselect® Phytosome® 250 mg; policosanol 15 mg; tomato extract (lycopene ≥ 10%) 75mg; Oenothera biennis oil (cis-γ-linolenic acid ≥ 9%) 250 mg)	Dyslipidemia 60	Parallel, 6 weeks	SOD ↔ GPX ↔ MDA ↔	CRP ↓	[84]
Fruits and vegetables capsules (FV)a	Three twice a day with meal	Healthy 117	Parallel, 60 days	SOD↑ CRP↔	SOD↑ CRP↔	[85]
FVB: FV with the addition of mixed berry juice powderb						
Capsule containing: ginseng roots, mulberry leaf water extract and banana leaf water extract.	6 g	Impaired glucose tolerance or mild T2D 94	Parallel, 24 weeks	oxDL↓	CRP ↔	[86]
Capsule containing powder concentrate derived from fruits and vegetablesc	Three twice a day with meal (6 capsules) (7.5mg β-carotene, 200mg vitamin C, 60 mg α-tocopherol)	Overweight and obese pre-menopausal women 42	Parallel, 8 weeks Pre- and post-30 min exercise	8 weeks: Carboxyls and oxDL↓ MDA ↔ Post-exercise: Carboxyls, oxDL and MDA ↔	8 weeks: TNF-α and IL-6 ↔ Post-exercise: TNF-α ↓ IL-6 ↔	[87]
Vitamins, minerals and mixed plant extractsd (Tablets)	2 tablets	Healthy 42	Longitudinal, 4 weeks	oxDL↓ IsoP↑	CRP ↔	[88]
Infusion of IMOD (urtica, carotenoids, urea, and selenium)	125 mg of IMOD*	Severe sepsis 16	Parallel, 14 days	NEAC, lipid peroxidation and SH ↔	TNF-α↓ IL-1, IL-2, IL-6 ↔	[89]
Powder containing: green tea extract, blueberry pomace extract, Soy protein complex	Soy protein complex 40 g. 2, 136 mg GAE.	Healthy 31	Parallel, 2 weeks 2.5-h exercise (3-day exercise period)	NEAC, carbonyls and IsoP ↔ NEAC, carbonyls and IsoP ↔	CRP, TNF-α IL-6 and IL-8 ↔ CRP, TNF-α IL-6 and IL-8 ↔	[90]
cancer patients, where only an effect on plasma NEAC was observed in Braga’s study. However, all these three studies suffered from potential bias due to lack or improper placebo. In particular, placebo was prepared from Soy protein isolate containing 1.38 mg/g gallic acid equivalents (GAE) in the study of Nieman et al. [90], it was a concentrate orange juice in the study of Braga et al. [93] and, in the study from Soare et al. [92] placebo was lacking and both groups received a daily multivitamin/mineral supplement. Studies from Gupta et al. [84] and Mahmoodpoor et al. [89] failed to display any effect on antioxidant status but showing a decrease of levels of CRP in patients with dyslipidaemia and TNF-α in patients with sepsis, respectively. A limited effect on SOD and LDL oxidation was observed after two months of supplementation with capsules containing a wide array of fruit and vegetables [85] or 24 weeks with capsules containing ginseng roots, mulberry and banana extracts [86] in healthy subjects and type 2 diabetes patients, respectively.

8. STUDIES WITH COCOA PRODUCTS

Table 9 describes the reviewed intervention studies with cocoa products, including dark chocolate, beverages and creams. Within these interventions decreases in peroxidation markers were observed in healthy [94], obese [66] and pre-hypertensive or stage-1 hypertensive subjects with high cholesterol [95]. In particular, the consumption of a cocoa beverage with a medium content of flavanols (400mg /day) for 5 days decreased IsoP, CRP and IL-6 levels in obese subjects, whereas beverages with lower (180mg/day) or higher (900mg/day) flavanols content increased IL-6 levels [66]. IL-6 did not decrease [95] after the consumption of a cocoa cream product (78g of cocoa + 30g hazelnuts + 2g phytosterols + 20 g fibre) that decreased levels of oxLDL and CRP [95]. Furthermore, others reported decreased levels of the anti-inflammatory IL-10 after the consumption of a cocoa powder (45.3mg flavanols) with 400 mL of semi-skimmed milk in both normo- and moderate hyper-cholesterolaemic subjects [96, 97].

9. DISCUSSION

In this paper, for the first time, we reviewed available evidence about the effect of supplementation with selected fruits, vegetables, herbs, spices and their extracts or galenic formulations on combined markers of redox and inflammatory status in humans. Overall, 30.7% (27/88) of the interventions did not show any positive effect on any markers, while in the remaining 69.3% (61/88) there was an improvement of at least one of the two category markers. Among the 61 interventions showing an effect on the selected markers, 44.2% (27/61) improved both markers of redox and inflammatory status. More specifically, markers of red-ox and oxidative status change after the interventions as follows: NEAC increased in 48.3% (14/29), GSH in the 50.0% (4/8), antioxidant enzymes in the 31.0% (9/29), whereas marker of protein oxidation and markers of lipid peroxidation decreased in the 33.3% (5/15) and 48.0% (37/77), respectively. For what concerning markers of inflammatory stress, CRP decreased after intervention in 24.6% of the studies (17/69), the 44.9% (22/49) of the interventions reported decreases

Treatment	Substances	Subjects (healthy status and no.)	Study design and Duration	Markers of red-ox/ oxidative status	Markers of inflammatory status	Refs.
Curcuminoids + piperine (capsules)	curcuminoids (1g) + piperine (10mg)	Metabolic syndrome 100	Parallel, 8 weeks	SOD↑ MDA↓	CRP↓	[91]
Mixed plant extracts and fish oil capsules	One each supplement /day 100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil	Healthy 54	Parallel, 6 months	Carbons ↔	CRP ↔ and IL-6←	[92]
Powder containing green tea extract (1g) + vitamins C and E	Twice/day and one hour before surgery‡	Cancer patients 36	Parallel, three doses†	NEAC ↑ Isop↔	CRP ↔	[93]

CRP: C reactive protein; GPX: glutathione peroxidase; IL : interleukin; IsoP: isoprostanes; MDA: malondialdehyde; MPO: myeloperoxidase; NEAC: non-enzymatic antioxidant capacity; oxLDL: oxidized low density lipoproteins; PUFA: polyunsaturated fatty acids; SH: sulphydryls; SOD: superoxide dismutase; TNF-α: tumor necrosis factor alfa; T2D: Type 2 diabetes; ‡ : capsules blended fruit and vegetable juice powder concentrate derived from acerola cherry, apple, beet, broccoli, cabbage, carrot, cranberry, kala, orange, peach, papaya, parsley, pineapple, spinach, and tomato; †: bilberry, blackberry, black currant, blueberry, cranberry, Concord grape, elderberry, raspberry and red currant; ‡: acerola cherry, apple, bilberry, blackberry, black currant, blueberry, beetroot, broccoli, cabbage, carrot, Concord grape, cranberry, elderberry, kale, orange, peach, papaya, parsley, pineapple, raspberry, red currant, spinach and tomato; †: Citrus bioflavonoids, green coffee bean extract, pomegranate whole fruit extract, grape seed extract, blueberry fruit extract, green tea leaf extract, bitter melon fruit extract, prune skin extract, watercress herb 4:1 extract, Chinese cinnamon bark powder, Indian gum Arabic tree bark and heart wood extract, rosemary extract and artichoke leaf extract; *: in 100 ml of DW 5% infused over 1 hour on the first day, then 8 ml of IMOD in 100 ml/d; †: pancreaticoduodenectomy; ‡: 2 day before the operation and the third day of surgery 3 h before the anaesthesia.
Table 9. Overview of the reviewed intervention studies with cocoa products in humans: characteristics, study design and effect on markers of red-ox, oxidative and inflammatory status.

Treatment	Dose/day Standardization	Subjects (healthy status and no.)	Study design and duration	Markers of red-ox/oxidative status	Markers of inflammatory status
Dark chocolate + Cocoa beverage	36.9 g (Procyanidin 4.56mg/g) + 30.9 g (Procyanidin 15.6mg/g)	Healthy 25	Longitudinal, 6 weeks treatment and 6-weeks washout period	NEAC, IsoP ↔ oxLDL ↓	CRP ↔ Ex vivo IL-1β, IL-6, TNF-α ↔
Cocoa beverages	180 mg flavanols (low), 400 mg flavanols (medium), 900 mg flavanols (high)	Obese 19	Crossover, 5 days	IsoP ↔ oxLDL ↓	CRP ↔ IL-6 ↑ CRP ↓ IL-6 ↓ CRP ↔ IL-6 ↑
Cocoa cream products	78 g of: A: cocoa; B: cocoa + hazelnut (30 g); C: cocoa + hazelnuts + phytosterols (2 g); D: cocoa+hazelnuts+phytosterols+fiber (20 g).	Pre-hypertensive or stage-1 hypertensive, high cholesterol 113	Parallel, 4 weeks	oxLDL ↔ oxLDL ↔ oxLDL ↓	CRP and IL-6 ↔ CRP and IL-6 ↔ CRP and IL-6 ↔
Cocoa powder	45.3 mg flavanols / 400 mL semi-skimmed milk	Moderately hyper-cholesterolaemic 20	Cross-over, 4 wks	NEAC, MDA, Carboxylys ↔ IL-10 ↓ IL-1β, IL-6, IL-8, TNF-α ↔	NEAC, MDA, Carboxylys ↔ IL-10 ↓ IL-1β, IL-6, IL-8, TNF-α ↔

CRP: C reactive protein; IL: interleukin; IsoP: isoprostanes; MDA: malondialdehyde; NEAC: non-enzymatic antioxidant capacity; oxLDL: oxidized low density lipoproteins; TNF-α: tumor necrosis factor alpha.

in at least one inflammatory cytokines, whereas 40.0% of the interventions (4/10) reported increased in markers of ROS generation [i.e. the oxidative burst, iNOS and MPO].

Some considerations are essential for a more comprehensive evaluation of these findings. First, the high heterogeneity of the reviewed studies should be taken into account, as they involved not only wide and very different sources of food, food extracts and supplements, but also different doses, length of supplementation and characteristics of the subjects. Moreover, identified studies presented different robustness and designs, and sometimes a limited sample size. For what concerns the length of the study, in one-day trial it is possible having a clear experimental window of the investigated phenomenon, free of any interference from diet, physical activity and homeostatic controls. On the other hand, when dealing with long-term intervention studies, all the potential bias due to subjects variability, selection criteria, study design, food/extract/galenic composition must be taken into account. The choice of the biomarkers and the type of measurements also represent an important source of variability: markers of redox status can include assessment of endogenous antioxidant (NEAC, single antioxidants, enzymes etc.), while markers of oxidative stress status might involve lipid peroxidation (oxLDL, MDA, isoprostanes, and others) and markers for inflammatory stress are mainly CRP and cytokines. All these markers respond differently to the different types of supplementation, providing different physiological meanings. In our view, in order to obtain a clearer picture of the phenomenon, it is preferable to assess a battery of biomarkers for three interconnected but different responses. For lipid oxidation, despite isoprostane levels being considered a gold standard, it will be also useful to assess other markers such as LDL oxidation or hydro-peroxides levels in order to obtain more complete information. At the same time, the assessment of antioxidant status should include markers for NEAC [Ferric Reducing Antioxidant Potential (FRAP), Total-radical Trapping Antioxidant Parameter (TRAP) and oxygen radical absorbance capacity (ORAC)], endogenous antioxidants (GSH, uric acid and thiols) and endogenous enzymes, preferably in cellular systems (CAT, SOD, GPX). With respect to the inflammatory response it is crucial to understand the role that every single cytokine plays in the different type of pathology or metabolic conditions, keeping in mind that their supposedly low or undetectable levels in healthy and young people could be raised by specific stressors such as post-prandial stress or strenuous physical exercise.

In long term studies we need to consider the existence of physiological mechanism of homeostatic control for both oxidative and inflammatory stress, aimed to tune the antioxidant network and to optimize inflammatory response to the stress. As we showed in previous works [98, 99], in healthy condition such as the absence of specific risk factors for oxidative stress (smoking, obesity, old age etc.), the body require a minimum dose of nutritional antioxidant to maintain physiological red-ox homeostasis, translating in a lack of effect on markers of antioxidant status following long term supplementation. We showed that 58% of the intervention studies con-
ducted with fruit, vegetables, tea, wine, cocoa-products, olive oil and galenic flavonoids, reported a lack of effect in healthy subjects [99] with an effect size of 0.367 (p<0.001; n=1450) [98]. On the contrary when the studies were conducted on subjects characterized by different CVD risk factors (smoking, hypercholesterolemia, metabolic syndrome, hypertension etc.) involving the existence of an oxidative/inflammatory stress, the percentage of efficiency rise to 70% of the intervention studies and effect size of 0.937 (p<0.001; n=526) [98, 99].

A detailed description of the nutritional, antioxidant as well as bioactive ingredient composition of the tested food or extracts is crucial for characterizing the tested matrix and for defining the “effective dose” able to display an antioxidant/anti-inflammatory effect in humans. However, most of the studies lack this information and the majority of the compounds present in the food or in the extracts were not identified. However, between the different ingredients, flavonoids, with their considerable in vitro antioxidant capacity [100-102], might play a role in the modulation of redox-regulated genes as well as in the anti-inflammatory activity of plant foods [103, 104]. Flavonoids, such as catechins from green tea, curcumin from turmeric and grape seed procyanidins [1, 104-106] exert their anti-inflammatory and antioxidant effects through the activation of Nrf2, inducing the antioxidant enzymes transcription, and the inhibition of NF-kB, key transcription factors in inflammatory responses. In this framework, it must be taken into account that not only flavonoids, but also other bioactive phytochemicals like triterpenes, centella saponin, asiaticoside, and scelefoleoside, asiatic acid, madecassic acid, phenolic acid avenanthramides and others can affect Nrf2 and/or NF-kB pathways [107-109]. The mechanism suggested for Nrf2 and/or NF-kB modulation by polyphenols, phenolic acids, saponins and triterpenoids is the interaction of electrophiles with cysteine residues of KEAP1-I-kB and/or I-kappa kinases (IKK) [110-119].

However, due to the extensive metabolic activity during digestion, leading to different metabolites endowed with different bioactive ingredients from parental compounds, it is still unclear which are the bioactive ingredients or metabolites responsible of the effect and their relevance in humans [98, 99, 120].

CONCLUSION

In this review, we have shown that some fruits, vegetables, herbs, spices, cocoa and their extracts display a perceived functional activity increasing antioxidant status and at the same time modulating oxidative and inflammatory stress in humans. Interestingly, the modulatory effect of plant foods seems much more efficient in subjects characterized by different risk factors and high level of inflammatory and oxidative stress. In order to fully identify the food items, their functional ingredients as well as the mechanism of action able to display mutual antioxidant/anti-inflammatory activities, more evidence in humans is needed. Meanwhile, it is highly recommended to fully utilize the “functional heritage” of the wide array of different phytochemicals with multi-factorial synergistic interactions contained in fruits, vegetables, herbs and spices and their extracts to efficiently prevent the raise of oxidative and inflammatory stress, major determinants of degenerative diseases.

LIST OF ABBREVIATIONS

4-HNE = 4-hydroxynonenal
8-OHdG = 8-hydroxy-2’–deoxyguanosine
ARE = Antioxidant responsive elements
CAT = catalase
CRP = C-reactive protein
CVD = cardiovascular disease
FRAP = ferric Reducing Antioxidant Potential
GAE = gallic acid equivalents
GPX = glutathione peroxidase
GSH = glutathione
GSH/GSSG = ratio of reduced/oxidized glutathione
HSP70 = heat shock protein 70
IFN = interferon
IkB = inhibitor of NF-kB
IKK = I-kappa kinases
IL = interleukin
iNOS = inducible nitric oxide synthases
IsoP = isoprostanes
KEAP1 = kelch-like oxide-1
LPS = lipopolysaccharide
MDA = malondialdehyde
MPO = myeloperoxidase
NEAC = non-enzymatic antioxidant capacity
NF-kB = nuclear factor- kappa B
NFR2 = nuclear factor-erythroid 2-related factor 2
NOX = NADPH-oxidase
ORAC = oxygen radical absorbance capacity
oxLDL = oxidized low density lipoproteins
PAB = pro-oxidant- antioxidant balance
PUFA = polyunsaturated fatty acids
RNS = reactive nitrogen species
ROS = reactive oxygen species
SOD = superoxide dismutase
TBARS = thiobarbituric acid reactive substances
TLR4 = toll-like receptor-4
TNF-α = tumour necrosis factor-alpha
TRAP = total-radical trapping antioxidant parameter

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

Editorial assistance was provided by Luca Giacomelli, PhD, on behalf of Content Ed Net; this assistance was funded by PGT Healthcare.

REFERENCES

[1] Serafini M, Del Rio D, Yao DN, Bettuzzi S, Peluso I. Health Benefits of Tea. In: Benzie IFF, Wachtel-Galor S, Eds. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. Boca Raton (FL): CRC Press 2011; Chapter 12.
[2] Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal 2010; 13(11): 1679-88.
[3] Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 1994; 102 (Suppl 10): 5-12.
[4] Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol 2015; 40: 99-106.
[5] Magrone T, Jirillo E. Mechanisms of neutrophil-mediated disease: innovative therapeutic interventions. Curr Pharm Des 2012; 18(12): 1609-19.
[6] Burton-Freeman B. Postprandial metabolic events and fruit-derived phenolics: a review of the science. Br J Nutr 2010; 104 (Suppl 3): S1-14.
Morabito G, Kucan P, Serafini M. Prevention of postprandial metabolic stress in humans: role of fruit-derived products. Endocr Metab Immune Disord Drug Targets 2015; 15(1): 46-53.

Peluso I, Raguzzini A, Villano DV, et al. High fat meal increase of IL-17 is prevented by ingestion of fruit juice drink in healthy overweight subjects. Curr Pharm Des 2012; 18(1): 85-90.

Dopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endothoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care 2010; 33(5): 991-7.

Trichopoulou A, Bamia C, Trichopoulous D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 2009 Jun 23; 338: b2317.

Kumar S, Pandey AK. Free Radicals: Health Implications and their Mitigation by Herbs. Br J Med Med Res 2015; 7: 438-57.

Opara EI, Chohan M. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci 2014; 15(10): 19183-202.

Bower A, Marquez S, De Mejia EG. The health benefits of selected culinary herbs and spices found in the traditional mediterranean diet. Crit Rev Food Sci Nutr 2016; 56(16): 2728-46.

Marshadi NS, Ghiasvand R, Askari G, Hariri M, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med 2013; 4(Suppl 1): S36-42.

Vaid M, Katiyar SK. Molecular mechanisms of inhibition of phocarcinogenesis by silimarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) Int J Oncol 2010; 36(5): 1053-60.

Hatipoglu M, Saglam M, Kosoglu S, Koksal E, Kelen A, Esen HH. The Effectiveness of Crataegus orientalis M. Biber. (Hawthorn) Extract Administration in Preventing Alveolar Bone Loss in Experimental Periodontitis. PLoS One 2015; 10(6): e0128134.

Zhang J, Liang R, Wang L, et al. Effects of an aqueous extract of Crataegus pinnatifida Bge. var. major N.E.Br. fruit on experimental atherosclerosis in rats. J Ethnopharmacol 2013; 148(2): 563-9.

Silva RO, Damasceno SR, Brito TV, et al. Polysaccharide fraction isolated from Passiflora edulis inhibits the inflammatory response and the oxidative stress in mice. J Pharm Pharmacol 2015; 67(7): 1017-27.

Drummond EM, Harbourne N, Marete E, Jacquier JC, O'Riordan D, Gibney ER. An in vivo study examining the antiinflammatory effects of chamomile, meadowsweet, and willow bark in a novel functional beverage. J Diet Suppl 2013; 10(4): 370-80.

Kolodziejczyk-Czepas J, Bijak M Saluk J, et al. Radical scavenging and antioxidative effects of Matriaria chamomilla polyphenolic polysaccharide conjugates. Int J Biol Macromol 2013; 62: 1152-8.

Georgiev V, Ananga A, Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014; 6(1): 391-415.

Serban C, Sahbekar A, Antal D, Ungur C, Ural S, Banach M. Effects of supplementation with green tea catechins on plasma C-reactive protein concentration and thioredoxin level and TNF-alpha signalling in cirrhotic patients. Antioxid Redox Signal 2015; 22(4): 339-45.

Markovits N, Ben Amotz A, Levy Y. The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. Isr Med Assoc J 2009; 11(10): 598-601.

Riso P, Visioli F, Grande S, et al. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 2006; 54(7): 2563-6.

Vaid M, Katiyar SK, Paur I, Bohin SK, et al. Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr 2010; 49(6): 345-55.

Karlsson A, Paur I, Bohin SK, et al. Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr 2010; 49(6): 345-55.

Vidlar A, Vostalova J, Ulrichova J, et al. The effectiveness of dried cranberries (Vaccinium macrocarpon) in men with lower urinary tract symptoms. Br J Nutr 2010; 104(8): 1181-9.

Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res 2011; 31(3): 190-6.

Simão TN, Lozovoy MA, Simão AN, et al. Reduced-energy cranberry juice increases folate acid and adiponectin and reduces homeostatic and oxidative stress in patients with the metabolic syndrome. Br J Nutr 2013; 110(10): 1885-94.

Dickerson R, Banergee J, Raukkhorst A, et al. Does oral supplementation of a fermented papaya preparation correct respiratory burst function of innate immune cells in type 2 diabetes mellitus patients? Antioxid Redox Signal 2015; 22(4): 339-45.

Marotta F, Koike K, Lorenzetti A, et al. Nutraceutical strategy in aging: targeting heat shock protein and inflammatory profile through understanding interleukin-6 polymorphism. Ann N Y Acad Sci 2007; 1119: 196-202.

Marotta F, Yoshida C, Barreto N, Naito Y, Packer L. Oxidative-inflammatory damage in cirsiosity: effect of vitamin E and a fermented papaya preparation. J Gastroenterol Hepatol 2007; 22(5): 697-703.

Marotta F, Chui DH, Jain S, et al. Effect of a fermented nutraceutical on thioredoxin level and TNF-alpha signalling in cirrhotic patients. J Biol Regul Homeost Agents 2011; 25(1): 37-45.

Basu A, Wilkinson M, Penugonda K, Simmons B, Betts NM, Lyons TJ. Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: baseline and post intervention effects. Nutr J 2009; 8: 43.

Ghavipour M, Sotoudeh G, Tavakoli E, Mowla K, Hasanzadeh J, et al. Differential effects of high fat meal increase of postprandial dyslipidemia on plasma antioxidants and biomarkers of inflammation, immunomodulation and oxidation in severe obesity. Isr Med Assoc J 2009; 11(10): 598-601.

Riso P, Visioli F, Grande S, et al. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 2006; 54(7): 2563-6.

Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res 2011; 31(3): 190-6.

Shahzad G, Nauman M, Tavasoli S, Yasar M, Tavasoli S. Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. Complement Ther Clin Pract 2016; 22: 44-50.
Ginsenosides from Panax ginseng attenuate oxidative stress, inflammation, and infection of remote organs in hemodialysis patients: a randomized placebo-controlled trial. Free Radic Biol Med 2012; 53(2): 297-304.

Pomegranate juice intake attenuates inflammatory markers, oxidative stress, and proinflammatory cytokines. J Int Soc Sports Nutr 2014; 11: 31.

The effects of flavonoids and polyphenols from grape seed extract in Type 2 diabetic subjects at high cardiovascular risk factors. J Int Soc Sports Nutr 2014; 11(2): 165-70.

Effects of green tea intake decreases oxidative stress, inflammation, and incidence of cardiovascular disease in hemodialysis patients: a randomized placebo-controlled trial. J Int Soc Sports Nutr 2014; 11(1): 54-64.

Comparison of green tea antioxidants and their molecular biological based assessment of green tea on oxidative stress and cardiac remodeling in dialysis patients. Clin Nutr 2014; 33(3): 437-42.

Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. J Am Coll Nutr 2007; 26(5): 1539-47.

Dietary cocoa and green tea improve biomarkers of oxidative stress and insulin sensitivity. Diabet Med 2009; 26(5): 526-31.

Effects of grapefruit for 6 weeks reduces urine F2-isoprostanes in overweight adults with high baseline values but has no effect on plasma high-sensitivity C-reactive protein or soluble vascular cellular adhesion molecule 1. J Nutr 2013; 143(10): 1586-92.

One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of cardiovascular disease in hemodialysis patients: a randomized placebo-controlled trial. Free Radic Biol Med 2012; 53(2): 297-304.

Pomegranate juice intake attenuates inflammation and hemostasis in obese adults at risk for insulin resistance. Eur J Clin Nutr 2012; 66(10): 1153-9.

Eichenberger P, Mettler S, Arnold M, Colombani PC. No effects of three-week consumption of a green tea extract on time trial performance in endurance-trained men. Int J Vitam Nutr Res 2010; 80(1): 54-64.
Kim HI, Yoon KH, Kang MJ, et al. A six-month supplementation of mulberry, Korean red ginseng, and banana decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes. Evid Based Compl Alter Med 2012; 2012: 735191.

Lamprecht M, Obermayer G, Steinbauer K, et al. Supplementation with a juice powder concentrate and exercise decrease oxidation and inflammation, and improve the microcirculation in obese women: randomised controlled trial data. Br J Nutr 2013; 110(9): 1685-95.

Lerman RH, Desai A, Lamb JJ, Chang JL, Darland G, Konda VR. A phytochemical-rich multivitamin-mineral supplement is bioavailable and reduces serum oxidized low-density lipoprotein, myeloperoxidase, and plasminogen activator inhibitor-1 in a four-week pilot trial of healthy individuals. Glob Adv Health Med 2014; 3(2): 34-9.

Mahmoodpoor A, Eslami K, Mojahedzadeh M, et al. Examination of Setarud (IMOD®) in the management of patients with severe sepsis. Dan T 2010; 18(1): 23-8.

Nieman DC, Gillitt ND, Knab AM, et al. Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: a randomized trial using a metabolomics approach. PLoS One 2013; 8(8): e72215.

Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A. Antioxidant and anti-inflammatory effects of curcumoid-piperine combination in subjects with metabolic syndrome: A randomised controlled trial and an updated meta-analysis. Clin Nutr 2015; 34(6): 1101-8.

Soare A, Weiss EP, Hollosy JO, Fontana L. Multiple dietary supplements do not affect metabolic and cardiovascular health. Aging (Albany NY) 2013; [Epub ahead of print].

Braga M, Bissolati M, Rocchetti S, Beneduce A, Pecorelli N, Di Carlo V. Oral preoperative antioxidants in pancreatic surgery: a double-blind, randomized, clinical trial. Nutrition 2012; 28(2): 160-4.

Mathur S, Devaraj S, Grundy SM, Jialal I. Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr 2002; 132(12): 3663-7.

Solá R, Valls RM, Godás G, et al. Cocoa, hazelnuts, sterols and soluble fiber cream reduces lipids and inflammation biomarkers in hypertensive patients: a randomized controlled trial. PLoS One 2012; 7(2): e31103.

Martinez-Lopez S, Sarria B, Sierra-Cinos JL, Goya L, Mateos R, Bravo L. Realistic intake of a flavanol-rich soluble cocoa product increases HDL-cholesterol without inducing anthropometric changes in healthy and moderately hypercholesterolemic subjects. Food Funct 2014; 5(2): 364-74

Sarria B, Martinez-Lopez S, Sierra-Cinos JL, Garcia-Diz L, Mateos R, Bravo L. Realistic consumption of a cocoa product improves the cardiometabolic profile in healthy and moderately hypercholesterolaeic adults. Br J Nutr 2014; 111(1): 122-34.

Lettieri-Barbato D, Tomé F, Sancini A, Morabito G, Serafini M. Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis. Br J Nutr 2013; 109(9): 1544-56.

Serafini M, Miglio C, Peluso I, Petrosino T. Modulation of plasma isoprostanes in humans: a systematic review. Crit Rev Food Sci Nutr 2014; 54(9): 1202-21.