Diagnostic Yield of Genetic Testing in Young Patients With Atrioventricular Block of Unknown Cause

Johnni Resdal Dyssekilde, MD, PhD; Tanja Charlotte Frederiksen, MD; Morten Krogh Christiansen, MD, PhD; Rikke Hasle Sorensen, MSc; Lisbeth Nørum Pedersen, MSc, PhD; Peter Loof Møller, MSc; Lene Svendstrup Christensen, MD, PhD; Jacob Møesgaard Larsen, MD, PhD; Kristian Korsgaard Thomsen, MD, PhD; Tommi Bo Lindhardt, MD, PhD; Morten Böttcher, MD, PhD; Stig Molsted, MD, PhD; Ole Havndrup, MD, PhD; Thomas Fischer, MD; Dorthe Svenstrup Møller, MD, PhD; Finn Lund Henriksen, MD, PhD; Jens Brock Johansen, MD, PhD; Jens Cosedis Nielsen, MD, DMSc; Henning Bundgaard, MD, DMSc; Mette Nygaard, MSc, PhD; Henrik Kjærulf Jensen, MD, DMSc

BACKGROUND: The cause of atrioventricular block (AVB) remains unknown in approximately half of young patients with the diagnosis. Although variants in several genes associated with cardiac conduction diseases have been identified, the contribution of genetic variants in younger patients with AVB is unknown.

METHODS AND RESULTS: Using the Danish Pacemaker and Implantable Cardioverter Defibrillator (ICD) Registry, we identified all patients younger than 50 years receiving a pacemaker because of AVB in Denmark in the period from January 1, 1996 to December 31, 2015. From medical records, we identified patients with unknown cause of AVB at time of pacemaker implantation. These patients were invited to a genetic screening using a panel of 102 genes associated with inherited cardiac diseases. We identified 471 living patients with AVB of unknown cause, of whom 226 (48%) accepted participation. Median age at the time of pacemaker implantation was 39 years (interquartile range, 32–45 years), and 123 (54%) were men. We found pathogenic or likely pathogenic variants in genes associated with or possibly associated with AVB in 12 patients (5%). Most variants were found in the LMNA gene (n=5). LMNA variant carriers all had a family history of either AVB and/or sudden cardiac death.

CONCLUSIONS: In young patients with AVB of unknown cause, we found a possible genetic cause in 1 out of 20 participating patients. Variants in the LMNA gene were most common and associated with a family history of AVB and/or sudden cardiac death, suggesting that genetic testing should be a part of the diagnostic workup in these patients to stratify risk and screen family members.

Key Words: conduction ■ diagnostic testing ■ inherited heart diseases ■ LMNA

The cause of atrioventricular block (AVB) is unknown in approximately half of patients with AVB younger than 50 years of age at the time of first pacemaker implantation despite preimplantation diagnostic workup.1 The risk of death, heart failure hospitalization, ventricular tachyarrhythmia, and cardiac arrest is significantly higher in these patients compared with the general population.2 Whether the poor prognosis in young patients with AVB of unknown cause is because of undiagnosed pathogenic genetic variants is unknown.

Over the past decade, the use of genetic testing in cardiac diseases has increased.3 Several genes
associated with cardiac conduction abnormalities have been identified, and familial clustering in AVB has been described. However, the contribution of genetic variants in AVB in younger patients remains unknown. In this study we aimed to estimate the prevalence of AVB-associated genetic variants in a nationwide cohort of patients <50 years of age receiving a pacemaker for advanced AVB with no clinically identified cause at the time of pacemaker implantation.

METHODS

Study Population

The Danish Pacemaker and Implantable Cardioverter Defibrillator (ICD) Registry is a clinical database, founded in 1982, to which all pacemaker implantation procedures in Denmark are reported. Using the Danish Pacemaker and ICD Registry, we identified all patients younger than 50 years of age receiving a pacemaker because of AVB in Denmark in the period from January 1, 1996 to December 31, 2015. To identify patients with AVB of unknown cause, we performed a review of the medical records including the results from the diagnostic workup. The cause was registered as borreliosis, congenital AVB, or side effect to medical treatment if this was reported in the medical records. In cases with Steno-Fallot tetralogy, congenital corrected transposition, ventricular septal defect, or univentricular heart anatomy, the cause was registered as congenital heart disease. If a known pathogenic genetic mutation associated with AVB was identified, the cause was registered as hereditary. In cases with documentation of AVB during a tilt-table test, the cause was recorded as cardioinhibitory reflex. If there was documentation of His ablation in the medical records, this was registered as the cause. AVB was regarded as a complication to radiofrequency ablation, cardiac surgery, or alcohol septal ablation if the patient had sinus rhythm before the procedure and AVB within 2 weeks after, regardless of the indication for the procedure. In cases of endocarditis, this was registered as the cause in cases where the atroventricular conduction was affected in any way before surgery. Patients who were known to have cardiac sarcoidosis, cardiac myopathy, or muscular dystrophy were registered with those as the cause. For ischemic heart disease, this was considered the cause in cases where the patients developed AVB in relation to acute myocardial infarction. To ensure consistency, all medical records were reviewed by the same physician (J.R.D., overseen by H.K.J.). If the medical records were not available, patients were excluded. During the review process, we confirmed that the indication for pacemaker implantation followed the European Society of Cardiology indications for pacing guidelines. Thus, the indication for implantation was either (1) symptomatic first-degree AVB or symptomatic Mobitz type I AVB, (2) Mobitz type II AVB 2:1 or more advanced second-degree AVB, or (3) third-degree AVB. For all patients we reviewed, the documentation for AVB, which consisted of Holter monitoring, ECG, telemetric recording, loop recording, or a description of the AVB based on one of the mentioned modalities reported in the medical records. We excluded patients without documentation for AVB. Except for patients who had died since the pacemaker implantation, all remaining patients were invited to have genetic testing performed. The invitation was sent by letter, and if no reply was received within 3 weeks, a reminder was sent. Patients who volunteered to participate received written and oral information about genetic testing before signing the informed consent form. After signing the informed consent form, the patients had a sample of whole blood taken for genetic analysis. When the patients came for blood sampling, we collected data on family history of AVB, sudden cardiac death (SCD), and cardiomyopathy.

The study complies with the Declaration of Helsinki and was approved by the Danish Patient Safety Authority (record number: 3-3013-1970/1), the Danish Data Protection Agency (record number: 2018-60-1760), and the Danish National Board of Health (record number: M-2018-02-2215).
Genetic Classification Guidelines. Based on an analysis of genetic variants, small deletions, duplications, and indels, genetic variants were classified according to the Sherloc Classification Guidelines. Variants within ±10 bp were assessed including splice assessment of existing literature, variants were categorized into 3 categories; genes associated with AVB, genes possibly associated with AVB, and genes probably not associated with AVB. Relevant variants were verified using Sanger Sequencing, and biological family members were offered cascade screening. Screening of family members is currently an ongoing process.

Statistical Analysis
Continuous variables are expressed as median (interquartile range) and dichotomous variables as number (proportion). Comparisons were done using the \(\chi^2 \) test or the Mann-Whitney U test as appropriate. A \(P < 0.05 \) was considered statistically significant. Statistical analyses were performed using Stata version 15.1 (StataCorp, College Station, TX).

RESULTS
Clinical Characteristics
We identified 1242 patients younger than 50 years of age with AVB in the study period, of whom 154 patients had a missing medical report (Figure). The remaining 1088 patients were screened for inclusion. We excluded 571 patients because of either missing civil registration numbers (n=10), missing documentation of AVB (n=51), or known cause of AVB (n=510). We also excluded 4 patients with an already established genetic cause of AVB; these 4 all had variants in the LMNA gene (p.Ala132Pro, p.Trp514*, p.Arg471Cys, p.Glu355*). Thus, we identified 517 patients with AVB of unknown cause at the time of pacemaker implantation. Forty-six patients died after pacemaker implantation but before study enrollment, leaving 471 patients who were invited to participate in the study. The cause of death on the death certificates was registered as cardiovascular in 18 of 46 (39%) patients: acute myocardial infarction (n=4), cardiomyopathy (n=3), heart failure (n=3), pulmonary embolism (n=2), arrhythmias (n=2), aortic stenosis (n=1), mitral valve stenosis (n=1), endocarditis (n=1), and congenital heart disease (n=1). The remaining patients died of noncardiac causes.

Of the remaining 471 eligible patients, 226 (48%) signed an informed consent form and were included. The median age at time of pacemaker implantation was 39 years (interquartile range, 32–45 years), and 54% were men (Table 1). The vast majority of participants had second-degree Mobitz type II or more advanced AVB (93%); however, the proportion was slightly higher in nonparticipants (99%, \(P = 0.03 \)). Among the participants, 2 patients had symptomatic first-degree AVB, and 17 patients had symptomatic second-degree Mobitz type I AVB.

Comorbidity was infrequent, with hypertension (5% of participants) and atrial fibrillation/flutter (4% of participants) being the most prevalent. Nonparticipants were more likely to have ischemic heart disease (3% versus 0.4%, \(P = 0.05 \)), but otherwise there were no differences in characteristics between participants and nonparticipants.

Among participants, 12 (5%) had a family history of AVB before 50 years of age in a first-degree relative; 6 (3%) had a family history of SCD before 50 years of age in a first-degree relative, and 14 (6%) had a family history of dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) in a first-degree relative.

Genetic Findings and Associated Clinical Characteristics
We found a pathogenic, likely pathogenic, or variant of unknown significance in 20 patients (9%) (Table 2). All 20 patients had second-degree Mobitz type II or more advanced AVB. Twelve patients had a variant in a gene associated with or possibly associated with AVB (5%). Five patients (2%) had variants in the LMNA gene; 3 patients had a pathogenic variant (p.Arg321*, p.Ser143Pro, p.Glu82Lys), whereas the 2 remaining patients had likely pathogenic variants (p.Ala129Serfs*26, p.Gln656Argfs*42). Data on left ventricular ejection fraction on echocardiography at implantation time were available for 4 of the 5 patients. All 4 patients had a left ventricular ejection fraction above 50%. One patient with a pathogenic variant (p.Arg321*) had a dilated left ventricle on echocardiography. The 2 other patients with...
Resdal Dyssekkilde et al Yield of Genetic Testing in Atrioventricular Block

pathogenic variants in the LMNA gene (p.Ser143Pro and p.Glu82Lys) had a diagnosis of atrial fibrillation, whereas the remaining 2 did not have any comorbidities. Four of the 5 patients with variants in the LMNA gene had a family history of AVB, and 2 had a family history of SCD (Table 2). Thus, of the 12 patients with a family history of AVB before 50 years of age, 4 (33%) were carriers of variants in the LMNA gene, and of the 6 patients with

Figure 1. Flowchart for inclusion of patients with atrioventricular block of unknown cause treated with pacemaker implantation before the age of 50 years.
a family history of SCD before 50 years of age, 2 (33%) were LMNA-variant carriers. None of the patients had a family history of DCM or HCM.

We found variants in genes that are possibly associated with AVB in 7 patients (Table 2). None of the 7 patients had any comorbidities, and left ventricular ejection fraction was 60% in 4 patients, whereas data on left ventricular ejection fraction were missing in 3 patients. There was no family history of AVB, SCD, or cardiomyopathy in first-degree relatives of the 7 patients.

We found variants in genes probably not associated with AVB in 8 patients (Table 2). One patient with a variant in the CACNA2D1 gene had a father with AVB before 50 years of age. Four patients had variants in genes associated with blood cholesterol regulation (LDLR and PCSK9). None of these patients had ischemic heart disease.

DISCUSSION

The present study provides, to our knowledge, the first estimate of the yield of genetic testing in young patients with AVB of unknown cause in a population-based cohort. We found a possible genetic cause of AVB in 1 of 20 patients participating in the study. Five of the patients had a pathogenic or likely pathogenic variant in the LMNA gene, which is strongly associated with conduction abnormalities and DCM. Three of the LMNA variants have been described as pathogenic in the literature (p.Arg321*, p.Ser143Pro, p.Glu82Lys), whereas 2 likely pathogenic variants have not previously been described (p.Ala129Serfs*26 and p.Gln656Argfs*42). In addition, 4 of the excluded patients who had a known cause of AVB had variants in the LMNA gene. LMNA variants are usually inherited in an autosomal dominant manner, and penetrance is high in LMNA genotype-positive family members, emphasizing the importance of family history and screening. In this present study, all patients with a LMNA variant had a family history of AVB and/or SCD in a first-degree relative and comprised 33% of patients with a family history of AVB and SCD, respectively. The incidence of AVB in patients with DCM with LMNA variants has been estimated in previous studies to be 60%, however, the true incidence of AVB in LMNA carriers is challenging to estimate because of the difficulties in identifying asymptomatic patients.

Table 1. Characteristics of Young Patients With Atrioventricular Block of Unknown Cause at Time of First Pacemaker Implantation

	Participants, n=226	Nonparticipants, n=245	Total, n=471	P value
Age at implant, y	39 (32–45)	41 (31–46)	40 (31–46)	0.70
Male sex	123 (54%)	147 (60%)	270 (57%)	0.31
Mobitz II/more advanced atrioventricular block	211 (93%)	242 (99%)	453 (96%)	0.03
Family history in first-degree relative
Atrioventricular block before 50 y of age	12 (5%)
Sudden cardiac death before 50 y of age	6 (3%)
Dilated or hypertrophic cardiomyopathy	14 (6%)
Symptoms at presentation				
Dizziness	122 (54%)	118 (48%)	240 (51%)	0.18
Syncope	99 (44%)	123 (50%)	222 (47%)	0.19
Dyspnea	51 (23%)	50 (20%)	101 (21%)	0.50
Malaise	46 (20%)	45 (18%)	91 (19%)	0.61
Angina	31 (14%)	33 (13%)	64 (14%)	0.88
Fatigue	28 (12%)	27 (11%)	55 (12%)	0.60
Cardiac arrest	2 (1%)	1 (0.4%)	3 (0.6%)	0.51
Asymptomatic	16 (7%)	22 (9%)	38 (8%)	0.48
Comorbidity				
Atrial fibrillation/flutter	9 (4%)	7 (3%)	16 (3%)	0.48
Hypertension	11 (5%)	19 (8%)	30 (6%)	0.22
Heart failure	1 (0.4%)	1 (0.4%)	2 (0.4%)	0.45
Hypercholesterolemia	6 (3%)	11 (4%)	17 (4%)	0.30
Diabetes	2 (1%)	6 (2%)	8 (2%)	0.20
Ischemic heart disease	1 (0.4%)	7 (3%)	8 (2%)	0.05
Connective tissue disease	4 (2%)	5 (2%)	9 (2%)	0.85

Data are presented as median (interquartile range) or number (percentage).
Gene symbol	Reference sequence	Literature references*	Nucleotide	Protein change	Pathogenicity class†	Age at implantation, y	Sex	Family history in first degree family member	Comorbidity	LVEF	AVB type	Other information
LMNA	NG_008692.2	12, 13,	c.961C>T	p.Arg321*	5	46	M	+	Dilated left ventricle	60%	Intermittent 3 degree	Coronary angiography performed, normal
LMNA	NG_008692.2	12, 14	c.427T>C	p.Ser143Pro	5	39	M	+	Atrial fibrillation	NA	Intermittent 3 degree	NA
LMNA	NG_008692.2	12, 15, 16	c.241G>A	p.Glu82Lys	5	45	M	M†	Atrial fibrillation	50%	Permanent 3 degree	NA
LMNA	NG_008692.2	12	c.383dup	p.Nla129Serfs*26	4	36	M	–	None	60%	Intermittent 3 degree	NA
LMNA	NG_008692.2	12	c.1967del	p.Gln656Argfs*42	4	48	M	+	None	60%	Intermittent 3 degree	NA
GAA	NG_009822.1	27	c.693-1G>A	Splicing error	5	34	F	–	None	60%	Intermittent 3 degree	NA
MYBPC3	NG_007667.1	21, 22	c.822-2A>T	Splicing error	5	42	F	–	None	60%	Intermittent 3 degree	NA
MYBPC3	NG_007667.1	21, 22	c.2827C>T	p.Arg943*	5	44	M	–	None	NA	Intermittent 3 degree	NA
GAA	NG_009822.1	27	c.2238G>C	p.Trp746Cys	5	35	M	–	None	60%	Intermittent 3 degree	NA
KCNQ1	NG_008935.1	28	c.592A>G	p.Ile198Val	4	18	38	F	None	NA	Intermittent 3 degree	NA
TTN	NG_01618.3	24	c.62000+2T>G	Splicing error	4	38	F	–	None	NA	Intermittent 3 degree	NA
GLA	NG_007119.1	25, 26	c.427G>A	p.Nla143Thr	4	24	F	–	None	NA	Intermittent 3 degree	NA
ACTN2	NG_009081.2	23	c.1840G>A	p.Val614Met	3	22	F	–	None	60%	Intermittent 3 degree	NA
LDLR	NG_009060.1	NA	c.2475C>G	p.Asn825Lys	5	25	M	–	None	60%	Intermittent Mobitz type II	NA

(continued)
Table 2. Continued

Gene symbol	Reference sequence	Literature references*	Nucleotide	Protein change	Pathogenicity class†	Age at implantation, y	Sex	AVB	SCD	CM	Comorbidity	LVEF	AVB type	Other information
LDLR	NG_009060.1	NA	c.2475C>G	p.Asn825Lys	5	45	M	−	−	−	Surgery for coarctation of the aorta and bicuspid aortic valve at 13 years of age	60%	Intermittent 3 degree	NA
PCSK9	NG_009061.1	NA	c.1120G>A	p.Asp374Asn	5	44	M	−	−	−	None	60%	Intermittent 3 degree	NA
TNNI3	NG_007866.2	NA	c.497C>T	p.Ser166Phe	4	49	M	−	−	−	None	60%	Permanent 3 degree	NA
DSG2	NG_007072.3	NA	c.16G>T	p.Gly6*	4	35	M	−	−	−	None	NA	Intermittent 3 degree	NA
LDLR†	NG_009060.1	NA	c.2397_2405del	p.Val800_Leu802del	4	33	M	−	+	−	None	60%	Intermittent advanced 2 degree	Coronary angiography performed, normal; cardiac MRI performed, normal.
LDLR§	NG_009060.1	NA	c.1690A>C	p.Asn564His	4									
CACNA2D1	NG_009356.2	NA	c.1648G>T	p.Asp550Tyr	3	27	F	+	−	−	None	60%	Intermittent 3 degree	NA
MYL3	NG_007555.2	NA	c.520dup	p.Ala974Glyfs’13	3	43	F	−	−	−	Asthma	NA	Intermittent 3 degree	NA

AVB indicates atrioventricular block; CM, cardiomyopathy (dilated/hypertrophic); F, female; LVEF, left ventricular ejection fraction; M, male; MRI, magnetic resonance imaging; NA, not applicable; and SCD, sudden cardiac death.

*Numbers refer to the references list.
†Pathogenicity class: 3=variant of unknown significance, 4=likely pathogenic, 5=pathogenic.
‡The patient also had a class 4 mutation in the GLA gene (c.427G>A, p.Ala143Thr).
§The patient had a double variant and was heterozygote for each of the 2 LDLR variants.
A Norwegian study found a high risk of ventricular arrhythmia in *LMNA* variant carriers, especially in patients with AVB. Furthermore, mortality and risk of heart transplantation was high. Thus, early diagnosis and treatment is important in these patients to prevent malignant arrhythmia, heart failure, or SCD. Current guidelines recommend that an implantable cardioverter-defibrillator is considered in patients with DCM and a confirmed disease-causing variant in the *LMNA* gene. A recent descriptive study from Finland with 60 patients with variants in the *LMNA* gene found that 61.7% (n=37) of *LMNA*-variant carriers underwent pacemaker implantation; however, 27% (n=10) of patients with a pacemaker needed an upgrade of their device to either implantable cardioverter-defibrillator and/or cardiac resynchronization therapy device. In their study, the initial indication for device implantation typically was AVB. Because of the progressive nature of the phenotype, the authors recommend that the need for an implantable cardioverter-defibrillator is assessed early when planning device implantation. This highlights the importance of identification of *LMNA* variant carriers at time of implantation through genetic testing of young patients with AVB of unknown cause, in particular among patients with a positive family history of AVB, heart failure, and/or SCD.

In addition to *LMNA* variants, we found variants in genes that have previously been related to AVB, but with a less clear association. Several of these variants have also been identified in HCM. The *MYBPC3* gene is responsible for 40% to 50% of all cases of HCM, and complete AVB has been described in patients with *MYBPC3* variants both with and without HCM. In addition, *ACTN2* variants are associated with HCM, and in a study of a family with HCM, complete AVB was frequent in patients with *ACTN2* variants. Variants in the gene encoding titin, *TTN*, have been found in up to 25% of patients with DCM. In a study of 133 DCM probands, AVB was found in 14% of patients with *TTN* variants; however, this was significantly less frequent than in probands with *LMNA* variants. Besides AVB, the patients in our study with *TTN*, *MYBPC3*, and *ACTN2* variants did not show any signs of cardiomyopathy phenotypes, which could, however, be because of age-related penetrance. Furthermore, we found a variant in the *GLA* gene, which is associated with Fabry’s disease, a rare X-linked lysosomal storage disorder characterized by α-galactosidase A deficiency, which manifests in kidneys, skin, extremities, and the heart. However, solitary cardiac involvement with no other organ manifestations has been described in a family with a *GLA* variant. Another lysosomal storage disorder that can present with conduction abnormalities is Pompe disease. One patient had a variant in the *GAA* gene, in which there is a defect in patients with Pompe disease. This was a male patient, 35 years of age at time of pacemaker implantation, and he had no comorbidities. This patient also had a variant in the *KCNQ1* gene, which has been described to be associated with AVB but also to be associated with long-QT syndrome. However, this patient had a normal QT interval. Although the association between these genetic variants and AVB is less clear than with *LMNA*, these findings might provide better insight into the genetic background for AVB. Furthermore, findings of genetic variants in these younger patients with AVB might facilitate further clinical examination and family screening to uncover possible undiagnosed cardiac and multiorgan diseases. However, it is important to be aware of the risk of incidental findings in genetic testing. In this study we identified 4 patients with variants in genes related to blood cholesterol regulation and other variants of unknown significance. Thus, it is important to inform patients that genetic testing might lead to findings that require further examination and family screening.

It is important to highlight that patients with known cause of AVB, such as congenital AVB and identified hereditary AVB, were excluded for this study. Thus, none of the patients in our study were children at the time of pacemaker implantation, which was presumably the reason we did not find genetic variants associated with congenital and hereditary AVB such as *SCN5A*.

Our findings suggest genetic testing be considered in patients with AVB of unknown cause, especially in those with a family history of AVB or SCD.

Limitations

Our study has some limitations. Importantly, only approximately half of the invited patients accepted participation in the study. Although clinical characteristics were comparable between participants and nonparticipants, there might be other factors that facilitated participation, which may have introduced selection bias. We have no information on family history in nonparticipants, including those who died before study enrollment. Thus, we cannot exclude that a positive family history might have encouraged patients to participate in the study. Nor can we exclude that there was a high prevalence of family history and genetic variants leading to a poor prognosis in the deceased patients, which might be underlined by the relatively high incidence of cardiovascular death in the 46 patients who died before study enrollment including death from cardiomyopathy, heart failure, and arrhythmias. This may have led to an underestimation of the proportion of patients with genetic variants.

Although the genetic variants we found to be possibly associated with AVB were previously described...
in the literature, it is important to highlight that these variants might not be causal of AVB in our study. Furthermore, our genetic screening was limited to a panel of 102 genes associated with inherited heart disease. Thus, the patients might have variants in other genes associated with AVB that we did not screen for.

CONCLUSIONS
In young patients with AVB of unknown cause, we found a possible genetic cause in 1 of 20 patients participating in the study. Variants were mostly found in the LMNA gene. Patients with LMNA variants all had a positive family history of AVB and/or SCD, suggesting that genetic testing should be a part of the diagnostic workup in these patients to stratify risk and screen family members.

ARTICLE INFORMATION
Received February 3, 2022; accepted March 7, 2022.

Affiliations
Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark (J.R.D., T.C.F., M.K.C., J.C.N., H.K.J.); Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark (T.C.F., J.C.N., H.K.J.); Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark (R.H.S., L.N.P.); Department of Biomedical Health, Aarhus University, Aarhus, Denmark (P.L.M., M.N.); Department of Cardiology, Hospital of Southern Jutland, Aabenraa, Denmark (L.S.C.); Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark (J.M.L.); Department of Cardiology, Hospital South West Jutland, Esbjerg, Denmark (K.K.T.); Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Hellerup, Denmark (T.B.L.); Department of Cardiology, Regional Hospital Herning, Herning, Denmark (M.B.); Department of Clinical Research, North Zealand Hospital, Hillerød, Denmark (S.M.); Department of Cardiology, Zealand University Hospital, Roskilde, Denmark (O.H.); Department of Cardiology, Vejle Hospital, Vejle, Denmark (T.F.); Department of Cardiology, Regional Hospital Central Jutland, Viborg, Denmark (D.S.M.); Department of Cardiology, Odense University Hospital, Odense, Denmark (F.L.H., J.B.J.); Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen, Denmark (H.B.); Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark (H.B.); and Department of Health Science and Technology, Aalborg, Denmark (M.N.).

Acknowledgments
All samples were whole-genome sequenced as part of a collaboration with deCODE genetics, Iceland.

Sources of Funding
This work was supported by unrestricted research grants from Skibskorder Per Hønsken, R. og nu trus Foundation, Danish Heart Foundation (16-R107-A6707-22968), the A. P. Møller Foundation for the Advancement of Medical Science, and the Novo Nordisk Foundation (NNF18CC0031258 to Jensen).

Disclosures
Dr Böttcher discloses advisory board participation for NOVO Nordisk, AstraZeneca, Bayer, Sanofi, and Acrax. Dr Nielsen received grants from the Novo Nordisk Foundation (NNF18CC0018658 and NNF17CC0029418) outside the current work. Dr Bundgaard received lecture fees from Amgen. Dr Jensen is supported by grants from the Novo Nordisk Foundation, Denmark (NNF18CC0031258 and NNF20CC0065151), and received lecture fees from Abbott Denmark and Biosense Webster, Europe. The remaining authors have no disclosures to report.

Supplemental Material
Table S1

REFERENCES
1. Rudbeck-Resdal J, Christiansen MK, Johansen JB, Nielsen JC, Bundgaard H, Jensen HK. Aetiology and temporal trends of atrioventricular block in young patients: a 20-year nationwide study. Europe. 2019;21:1710–1716. doi:10.1093/europace/euz208.
2. Dideriksen JR, Christiansen MK, Johansen JB, Nielsen JC, Bundgaard H, Jensen HK. Long-term outcomes in young patients with atrioventricular block of unknown aetiology. Eur Heart J. 2021;42:2060–2068. doi:10.1093/eurheartj/ehab060.
3. Musunuru K, Hershberger RE, Day SM, Klinedinst NJ, Landstrom AR, Parikh VN, Prakash S, Semsarian C, Sturm AC. Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2020;13:373–385. doi:10.1161/HGCO.0000000000000067.
4. Loscalzo DEHRCJ. A novel mutation in LAMIN A/C is associated with isolated early-onset atrial fibrillation and progressive atrioventricular block followed by cardiomyopathy and sudden cardiac death. Bone. 2011;31:1–7. doi:10.1016/j.bone.2010.01.037.
5. Thongnak C, Limparset P, Tangviprayaipoon D, Silivlarat S, Puangpetch A, Pasomsob E, Sukasem C, Chanthatra W. Exome sequencing identifies compound heterozygous mutations in SCNSA associated with congenital complete heart block in the Thai population. Dis Markers. 2016;2016:3684965. doi:10.1155/2016/3684965.
6. Milanesi R, Bucci A, Barusscotti M. The genetic basis for inherited forms of sinoatrial dysfunction and atrioventricular node dysfunction. J Interf Card Electrophysiol. 2015;43:121–134. doi:10.1007/s10840-015-9998-z.
7. Kaess BM, Andersson C, Duncan MS, Larson MG, Aasbjerg K, Gislason GH, Torp-Pedersen C, Vasan RS. Familial clustering of cardiac conduction defects and pacemaker insertion. Circ Arrhythm Electrophysiol. 2019;12:1–9. doi:10.1161/CIRCEP.119.007150.
8. Danish pacemaker and ICD register. Danish pacemaker and ICD register—annual report, 2019.
9. Carlson SK, Patel AR, Chang PM. Bradyarrhythmias in congenital heart disease. Card Electrophysiol Clin. 2017;9:177–187. doi:10.1016/j.ccep.2017.02.002.
10. Kasar T, Ayyildiz P, Tunca Sahin G, Ozturk E, Gokalp S, Haydin S, Guzelts A, Ergul Y. Rhythm disturbances and treatment strategies in children with congenitally corrected transposition of the great arteries. Congenit Heart Dis. 2018;13:450–457. doi:10.1111/chd.12595.
11. Nery PB, Beanlands RS, Nair GM, Green M, Yang J, Mccardle BA, Davis D, Ohira H, Gollob MH, Leung E, et al. Atrioventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol. 2014;25:875–881. doi:10.1111/jce.12401.
12. Strauss DG, Selvester RH, Lima JA, Araheen Haklan, Miller JM, Gerstenblith G, Marban E, Weiss RG, Tomassini GF, Wagner GS, et al. ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects. Circ Arrhythm Electrophysiol. 2008;1:327–336. doi:10.1161/CIRCEP.107.789660.
13. Groh WJ. Arrhythmias in the muscular dystrophies. Heart Rhythm. 2012;9:1890–1895. doi:10.1523/HREH.2012.08.0338.
14. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt O-A, Cieland J, Deharo J-C, Delgado V M, Elliott P, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Rev Esp Cardiol (Engl Ed). 2014;67:58. doi:10.1529/1560-4071-2014-4-5-6.
15. Jonsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, Hardarson MT, Hjörleifsson KE, Eggertsson HP, Guðjónsson SA, et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci Data. 2017;4:170115. doi:10.1038/sdata.2017.115.
16. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho Y-Y, Kobayashi Y, Patil N, Thrusberg J, Westbrook M, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19:1105–1117. doi:10.1038/gim.2017.37.
17. Rankin J, Elard S. The larnopathies: a clinical review. Clin Genet. 2006;70:261–274. doi:10.1111/j.1399-0004.2006.06077.x.
18. Al-Saaidi R, Rasmussen TB, Palmfeldt J, Nissen PH, Beqqali A, Hansen J, Pinto YM, Boesen T, Mogensen J, Bross P. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins. Exp Cell Res. 2013;319:3010–3019. doi:10.1016/j.yexcr.2013.08.024.
19. West G, Gullmets J, Virtanen L, Li-P S, Keinänen A, Shimi T, Mauermann M, Heili T, Kaartinen M, Ollila L, et al. Deleterious assembly of the lamin
A/C mutant p. S143P causes ER stress in familial dilated cardiomyopathy. J Cell Sci. 2016;129:2732–2743. doi: 10.1242/jcs.184150

Wu X, Wang QK, Gui LE, Liu M, Zhang X, Jin R, Li W, Yan LL, Du R, Wang Q, et al. Identification of a new lamin A/C mutation in a Chinese family affected with atrioventricular block as the prominent phenotype. J Huazhong Univ Sci Technolog Med Sci. 2010;30:103–107. doi: 10.1007/s11596-010-0119-z

Wang H, Wang J, Zheng W, Wang X, Wang S, Song L, Zou Y, Yao Y, Hui R. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect. Biochem Biophys Res Commun. 2006;334:17–24. doi: 10.1016/j.bbrc.2006.03.149

Sébillon P, Bouchier C, Bidot LD, Bonne G, Ahamed K, Charron P, Drouin-Garraud V, Millaire A, Desrumaux G, Benaché C, et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet. 2003;40:560–567. doi: 10.1136/jmg.40.8.560

Hasselberg NE, Haland TF, Saberniak J, Brekke PH, Berge KE, Leren TP, Edvardsen T, Hauaga KH. Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J. 2018;39:855–860. doi: 10.1093/eurheartj/ehx996

Van Berlo JH, de VoogtWG, van der Kooi AJ, van Tintelen JP, Bonne G, Yaou RB, Duboc D, Rossenbacker T, Heidbüchel H, de Visser M, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med. 2005;83:79–83. doi: 10.1007/s00109-004-0589-1

Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the Europe. Eur Heart J. 2015;36:2793–2867i. doi: 10.1093/eurheartj/ehv316

Ollila LH, Nikus K, Pankka H, Weckström S, Tiihonen H. Timing of pacemaker and ICD implantation in LMNA mutation carriers. Open Heart. 2021;8:e001622.

Kouakam C, Boule S, Brigadéau F. High-degree atrioventricular block revealing hypertrophic cardiomyopathy related to a mutation in MYBP3 gene. Presse Med. 2019;48:68–71. doi: 10.1016/j.pjmm.2018.11.012

Mastroianno S, Palumbo P, Castellana S, Leone MP, Massaro R, Potenza DR, Maizza T, Russo A, Castori M, Carella M, et al. Double missense mutations in cardiac myosin-binding protein C and myopalladin genes: a case report with diffuse coronary disease, complete atrioventricular block, and progression to dilated cardiomyopathy. Ann Noninvasive Electrocardiol. 2020;25:e12687. doi: 10.1111/anec.12687

Girolami F, Iascone M, Tombrili B, Sardi B, Benelli M, Marsiglio G, Pescucci C, Pezzoli L, Sana ME, Basso C, et al. Novel α-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhythmias. Circ Cardiovasc Genet. 2014;7:741–750. doi: 10.1161/CIRCGENETICS.113.000486

Jansweijer JA, Nieuwhof K, Russo F, Hoornjte ET, Jongbloed JDH, Lekanne Deprez RH, Postma AV, Bronk M, van Rijssen IAW, de Haij S, et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail. 2017;19:512–521. doi: 10.1002/ejhf.673

Choi J-H, Lee BH, Heo SH, Kim G-H, Kim Y-M, Kim D-S, Ko JM, Sohn YB, Hong YH, Lee D-H, et al. Clinical characteristics and mutation spectrum of GLA in Korean patients with Fabry disease by a nationwide survey. Medicine (Baltimore). 2017;96:1–5. doi: 10.1097/MD.00000000000007387

Vallotta K, Nino-Quintero J, Hedman M, Lottonen-Raikaslehto L, Latinen T, Maria M, Kantola I, Naukkarinen A, Laakso M, Kuusisto J. Cardiomyopathy associated with the Ala143Thr variant of the α-galactosidase A gene. Heart. 2020;106:609–615. doi: 10.1136/heartjnl-2019-315933

Sacconi S, Wahbi K, Theodore G, Garcia J, Salvati L, Bouhour F, Vial C, Duboc D, Laforêt P, Desnuelle C. Atrio-ventricular block requiring pacemaker in patients with late onset Pompe disease. Neuromuscul Disord. 2014;24:648–650. doi: 10.1016/j.nmd.2014.04.005

Yang Y, Liu Y, Dong X, Kuang Y, Lin J, Su X, Peng L, Jin Q, He Y, Liu B, et al. Human KCNQ1 S140G mutation is associated with atrio-ventricular blocks. Heart Rhythm. 2007;4:611–618. doi: 10.1016/j.hrthm.2007.01.029

Vink AS, Neumann B, Lieve KVV, Sinnen MF, Hofman N, El Kadi S, Schoemaker MHA, Staghekke HMJ, de Jong JSSG, Clur S-A, et al. Determination and interpretation of the QT interval: comprehensive analysis of a large cohort of long QT syndrome patients and controls. Circulation. 2018;138:2345–2358. doi: 10.1161/CIRCULATIONNAHA.118.033943

Baruteau AE, Pass RH, Thambo JB, Behaghe A, Le Pennec S, Perdreau E, Combès N, Liberman L, McLeod CJ. Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management. Eur J Pediatr. 2016;175:1238–1248. doi: 10.1007/s00431-016-2748-0
SUPPLEMENTAL MATERIAL
Table S1. MOMA Heart Gene Panel version 4.

Approved symbol	Approved name	HGNC ID	Location
ABCC9	ATP binding cassette subfamily C member 9	HGNC:60	12p12.1
ACTC1	actin, alpha, cardiac muscle 1	HGNC:143	15q14
ACTN2	actinin alpha 2	HGNC:164	1q43
AKAP9	A-kinase anchoring protein 9	HGNC:379	7q21.2
ANK2	ankyrin 2	HGNC:493	4q25-q26
ANKRD1	ankyrin repeat domain 1	HGNC:15819	10q23.31
ANO1	anoctamin 1	HGNC:21625	11q13.3
APOB	apolipoprotein B	HGNC:603	2p24.1
BAG3	BCL2 associated athanogene 3	HGNC:939	10q26.11
BEST3	bestrophin 3	HGNC:17105	12q15
CACNA1C	calcium voltage-gated channel subunit alpha1 C	HGNC:1390	12p13.33
CACNA2D1	calcium voltage-gated channel auxiliary subunit	HGNC:1399	7q21.11
	alpha2delta 1		
CACNB2	calcium voltage-gated channel auxiliary subunit	HGNC:1402	10p12
	beta 2		
CALM1	calmodulin 1	HGNC:1442	14q32.11
CALM2	calmodulin 2	HGNC:1445	2p21
CALM3	calmodulin 3	HGNC:1449	19q13.32
CASQ2	calsequestrin 2	HGNC:1513	1p13.1
CAV3	caveolin 3	HGNC:1529	3p25.3
CDH2	cadherin 2	HGNC:1759	18q12.1
Gene	Description	HGNC	Chromosome
--------	--	--------	------------
CRYAB	crystallin alpha B	2389	11q23.1
CSRP3	cysteine and glycine rich protein 3	2472	11p15.1
CTNNA3	catenin alpha 3	2511	10q21.3
DES	desmin	2770	2q35
DMD	dystrophin	2928	Xp21.2-p21.1
DNAJC19	DnaJ heat shock protein family (Hsp40) member C19	30528	3q26.33
DSC2	desmocollin 2	3036	18q12.1
DSG2	desmoglein 2	3049	18q12.1
DSP	desmoplakin	3052	6p24.3
DTNA	dystrobrevin alpha	3057	18q12.1
EMD	emerin	3331	Xq28
EYA4	EYA transcriptional coactivator and phosphatase 4	3522	6q23.2
FHL1	four and a half LIM domains 1	3702	Xq26.3
FHL2	four and a half LIM domains 2	3703	2q12.2
FKTN	fukutin	3622	9q31.2
FLNC	filamin C	3756	7q32.1
FXN	frataxin	3951	9q21.11
GATA4	GATA binding protein 4	4173	8p23.1
GLA	galactosidase alpha	4296	Xq22.1
GPDL1	glycerol-3-phosphate dehydrogenase 1 like	28956	3p22.3
GAA	glucosidase alpha, acid	4065	17q25.3
Symbol	Description	HGNC	Chromosome
--------	--	-----------	------------
HCN4	hyperpolarization activated cyclic nucleotide gated potassium channel 4	HGNC:16882	15q24.1
JPH2	junctophilin 2	HGNC:14202	20q13.12
JUP	junction plakoglobin	HGNC:6207	17q21.2
KCND3	potassium voltage-gated channel subfamily D member 3	HGNC:6239	1p13.2
KCNE1	potassium voltage-gated channel subfamily E regulatory subunit 1	HGNC:6240	21q22.12
KCNE2	potassium voltage-gated channel subfamily E regulatory subunit 2	HGNC:6242	21q22.11
KCNE3	potassium voltage-gated channel subfamily E regulatory subunit 3	HGNC:6243	11q13.4
KCNE5	potassium voltage-gated channel subfamily E regulatory subunit 5	HGNC:6241	Xq23
KCNH2	potassium voltage-gated channel subfamily H member 2	HGNC:6251	7q36.1
KCNJ2	potassium voltage-gated channel subfamily J member 2	HGNC:6263	17q24.3
KCNJ5	potassium voltage-gated channel subfamily J member 5	HGNC:6266	11q24.3
KCNJ8	potassium voltage-gated channel subfamily J member 8	HGNC:6269	12p12.1
Genes	Description	HGNC	Chromosome
-----------	--	-------	-------------
KCNQ1	potassium voltage-gated channel subfamily Q member 1	HGNC:6294	11p15.5-p15.4
LAMA4	laminin subunit alpha 4	HGNC:6484	6q21
LAMP2	lysosomal associated membrane protein 2	HGNC:6501	Xq24
LDB3	LIM domain binding 3	HGNC:15710	10q23.2
LDLR	low density lipoprotein receptor	HGNC:6547	19p13.2
LMNA	lamin A/C	HGNC:6636	1q22
MYBPC3	myosin binding protein C, cardiac	HGNC:7551	11p11.2
MYH6	myosin heavy chain 6	HGNC:7576	14q11.2
MYH7	myosin heavy chain 7	HGNC:7577	14q11.2
MYL2	myosin light chain 2	HGNC:7583	12q24.11
MYL3	myosin light chain 3	HGNC:7584	3p21.31
MYOZ2	myozenin 2	HGNC:1330	4q26
MYPN	myopalladin	HGNC:23246	10q21.3
NEBL	nebulette	HGNC:16932	10p12.31
NEXN	nexilin F-actin binding protein	HGNC:29557	1p31.1
PCSK9	proprotein convertase subtilisin/kexin type 9	HGNC:20001	1p32.3
PKP2	plakophilin 2	HGNC:9024	12p11.21
PLN	phospholamban	HGNC:9080	6q22.31
PRDM16	PR/SET domain 16	HGNC:14000	1p36.32
PRKAG2	protein kinase AMP-activated non-catalytic subunit gamma 2	HGNC:9386	7q36.1
PSEN1	presenilin 1	HGNC:9508	14q24.2
Gene	Description	HGNC	Chromosome
--------	---	--------	------------
PSEN2	presenilin 2	HGNC:9509	1q42.13
PTPN11	protein tyrosine phosphatase, non-receptor type 11	HGNC:9644	12q24.13
RAF1	Raf-1 proto-oncogene, serine/threonine kinase	HGNC:9829	3p25.2
RANGRF	RAN guanine nucleotide release factor	HGNC:17679	17p13
RBM20	RNA binding motif protein 20	HGNC:27424	10q25.2
RYR2	ryanodine receptor 2	HGNC:10484	1q43
SCN10A	sodium voltage-gated channel alpha subunit 10	HGNC:10582	3p22.2
SCN1B	sodium voltage-gated channel beta subunit 1	HGNC:10586	19q13.11
SCN2B	sodium voltage-gated channel beta subunit 2	HGNC:10589	11q23.3
SCN3B	sodium voltage-gated channel beta subunit 3	HGNC:20665	11q24.1
SCN4B	sodium voltage-gated channel beta subunit 4	HGNC:10592	11q23.3
SCN5A	sodium voltage-gated channel alpha subunit 5	HGNC:10593	3p22.2
SGCD	sarcoglycan delta	HGNC:10807	5q33.2-q33.3
SLC4A3	solute carrier family 4 member 3	HGNC:11029	2q35
SNTA1	syntrophin alpha 1	HGNC:11167	20q11.21
TAZ	tafazzin	HGNC:11577	Xq28
TCAP	titin-cap	HGNC:11610	17q12
TMEM43	transmembrane protein 43	HGNC:28472	3p25.1
TMPO	thymopoietin	HGNC:11875	12q23.1
TNNC1	troponin C1, slow skeletal and cardiac type	HGNC:11943	3p21.1
TNNI3	troponin I3, cardiac type	HGNC:11947	19q13.4
TNNT2	troponin T2, cardiac type	HGNC:11949	1q32.1
Gene	Description	HGNC	Chromosome
--------	---	----------	------------
TPM1	tropomyosin 1	HGNC:12010	15q22.2
TRDN	triadin	HGNC:12261	6q22.31
TRPM4	transient receptor potential cation channel subfamily M member 4	HGNC:17993	19q13.3
TTN	titin	HGNC:12403	2q31.2
TTR	transthyretin	HGNC:12405	18q12.1
VCL	vinculin	HGNC:12665	10q22.2
ZBTB17	zinc finger and BTB domain containing 17	HGNC:12936	1p36.13

HGNC = HUGO Gene Nomenclature Committee; MOMA = Department of Molecular Medicine, Aarhus University Hospital, Denmark.