Search for neutrino-induced particle showers with IceCube-40

M. G. Aartsen,2 R. Abbasi,29 M. Ackermann,45 J. Adams,15 J. A. Aguilar,23 M. Ahlers,20 D. Altman,22 C. Arguelles,29 T. C. Arlen,42 J. Auffenberg,29 X. Bai,33 M. Baker,29 W. S. Barwick,25 V. Baum,30 R. Bay,7 J. J. Beatty,17,18 J. Becker Tjus,10 K.-H. Becker,44 S. BenZvi,29 P. Berghaus,45 D. Berley,16 E. Bernardini,45 A. Bernhard,32 D. Z. Besson,27 G. Bissok,4,8,7 D. Bindig,44 M. Bissok,1 E. Blaufuss,16 J. Blumenthal,1 D. J. Boersma,43 C. Bohm,36 D. Bose,38 S. Böser,11 O. Botner,43 L. Brayeur,13 H.-P. Bretz,45 A. M. Brown,15 R. Bruijn,26 J. Casey,5 M. Casier,13 D. Chirkin,29 A. Christov,23 B. Christy,16 K. Clark,39 L. Classen,22 F. Clevermann,20 S. Coenders,1 S. Cohen,26 D. F. Cowen,42,41 A. H. Cruz Silva,45 M. Danninger,36 J. Daughhetee,5 J. C. Davis,17 M. Day,29 J. P. A. M. de Andrè,42 C. De Clercq,13 S. De Ridder,24 P. Desiati,29 K. D. de Vries,13 M. de With,9 T. DeYoung,42 J. C. Diaz-Vélez,29 M. Dunkman,42 R. Eagan,42 B. Eberhardt,30 B. Eichmann,10 J. Eisch,29 S. Euler,1 P. A. Evenson,31 O. Fadíran,29 A. R. Fazely,6 A. Fedyntij,10 J. Feintzeig,29 T. Feusels,24 K. Filimonov,4 C. Finley,36 T. Fischer-Wasels,14 S. Flis,36 A. Franckowiak,11 K. Frantzen,20 T. Fuchs,20 T. K. Gaisser,33 J. Gallagher,28 L. Gerhardt,8,7 L. Gladstone,29 T. Glüsenkamp,45 A. Goldschmidt,8 G. Golup,13 J. G. Gonzalez,33 J. A. Good,16 D. Góra,22 D. T. Grandmont,21 D. Grant,21 P. Gretskov,1 J. C. Gros,42 A. Groß,32 C. Ha,8,7 A. Haj Ijaz,24 P. Hallen,1 A. Hallgren,43 F. Halzen,29 K. Hanson,12 D. Hebecker,11 D. Heereman,12 D. Heinen,1 K. Helbing,44 R. Hellauer,16 S. Hickford,15 G. C. Hill,2 K. D. Hoffman,16 R. Hoffmann,44 A. Homeier,11 K. Hoshina,29 F. Huang,42 W. Hulsensiek,15 P. O. Hult,36 K. Hultqvist,36 S. Hussain,33 A. Ishihara,14 J. Jacob,45 J. Jacobsen,29 K. Jagielski,1 G. S. Japaridze,4 K. Jero,29 O. Jelatí,24 B. Kaminsky,45 A. Kappes,22 T. Karg,45 A. Karle,29 M. Kauer,29 J. L. Kelley,29 J. Kiryluk,37 J. Klás,44 S. R. Klein,8,7 J.-H. Köhne,20 G. Kohnen,31 H. Kolanoski,9 L. Köpke,30 C. Kopper,29 S. Kopper,44 D. J. Koskinen,19 M. Kowalski,11 M. Krasberg,29 A. Kriesten,1 K. Krings,1 G. Kroll,1 J. Kunnen,13 N. Kurahashi,29 T. Kuwabara,33 M. Labare,24 H. Landsman,29 M. J. Larson,40 M. Lesiak-Bzdak,37 M. Leuermann,1 J. Leute,32 J. Lüne浜,30 O. Macías,15 J. Madsen,35 G. Maggi,13 R. Maruyama,29 K. Mase,14 H. S. Matis,8 F. McNally,29 K. Meagher,16 M. Merck,29 T. Meures,12 S. Mierecki,8,7 E. Middell,45 N. Milke,20 J. Miller,13 L. Mohrmann,45 T. Montaruli,23 R. Morse,29 R. Nahnahauer,45 U. Naumann,44 H. Niederhausen,37 S. C. Nowicki,21 D. R. Nygren,8 A. Obertacke,44 S. Odrowski,21 A. Olivas,16 A. Omairat,44 A. O’Murchadha,12 T. Palczewski,40 L. Paul,1 J. A. Pepper,40 C. Pérez de los Heros,43 C. Pfendner,17 D. Pieloth,29 E. Pinat,12 J. Posselt,44 P. B. Price,7 G. T. Przybylski,8 M. Quinnan,42 L. Rädel,1 M. Rameez,23 K. Rawlins,3 P. Redl,16 R. Reimann,1 E. Resconi,32 W. Rhode,20 M. Ribordy,26 M. Richman,16 B. Riedel,29 S. Robertson,2 J. P. Rodrigues,29 C. Rott,38 T. Ruhe,29 B. Ruzybayev,33 D. Ryckbosch,24 S. M. Saba,10 H.-G. Sander,30 M. Santander,29 S. Sarkar,19,34 K. Schatto,30 F. Scherianu,20 T. Schmidt,16 M. Schmitz,20 S. Schoenen,1 S. Schöneberg,10 A. Schönwald,45 A. Schukraft,1 L. Schulte,11 O. Schulz,32 D. Seckel,33 Y. Sestayo,32 S. Seunarine,35 R. Shanidze,45 C. Sheremeta,21 M. W. E. Smith,42 D. Soldin,44 G. M. Spiczak,35 C. Spiering,45 M. Statnikov,17 T. Staney,33 N. A. Stanislaus,42 A. Stasiak,11 T. Stezelberger,8 R. G. Stokstad,8 A. Stößl,45 E. A. Strahler,13 R. Ström,43 N. L. Strotjohann,11 G. W. Sullivan,16 H. Taavola,43 I. Taboada,5 A. Tamburro,9 A. Tepe,44 S. Ter-Antonyan,9 G. Tesi,42 S. Tilav,33 P. A. Toale,40 M. N. Tobin,29 S. Toscano,29 M. Tsengelidou,22 E. Unger,10 M. Usner,11 S. Vallecorsa,32 N. Van Eijndhoven,33 A. Van Overloop,24 J. van Santen,29 M. Vehring,1 M. Voge,11 M. Vraeghe,24 C. Walck,36 T. Waldenmaier,9 M. Wallraff,1 Ch. Weaver,29 M. Wellons,29 C. Wendt,29 S. Westerhoff,29 B. Whelan,2 N. Whitehorn,29 K. Wiebe,30 C. H. Wiebusch,31 D. R. Williams,40 H. Wissing,16 M. Wolf,36 T. R. Wood,21 K. Woschnagg,7 D. L. Xu,40 X. W. Xu,6 J. P. Yanez,45 G. Yodh,25 S. Yoshida,14 P. Zarzhitsky,40 J. Ziemann,20 S. Zierke,4 and M. Zoll36

(ICEcube Collaboration)

1III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
2School of Chemistry & Physics, University of Adelaide, Adelaide SA, 5005 Australia
3Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
4CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
5School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
6Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA
7Dept. of Physics, University of California, Berkeley, CA 94720, USA
8Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
9Institut für Physik & Astronomie, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
10Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
11Physikalisches Institut, Universität Bonn, Nussallee 12, D-53115 Bonn, Germany

arXiv:1312.0104v1 [astro-ph.HE] 30 Nov 2013
We report on the search for neutrino-induced particle-showers, so-called cascades, in the IceCube-40 detector. The data for this search was collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV lead to the observation of 14 cascade-like events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of $\Phi^{\nu}_{\text{lim}} \leq 7.46 \times 10^{-8} \text{GeVsr}^{-1}\text{s}^{-1}\text{cm}^{-2}$ (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicable to the energy range 25 TeV to 5 PeV, assuming an E^{-2} spectrum and a neutrino flavor ratio of 1 : 1 : 1 at the Earth. The third analysis utilized a larger and optimized sample of atmospheric muon background simulation, leading to a higher energy threshold of 100 TeV. Three events were found over a background prediction of 0.04 atmospheric muon events and 0.21 events from the flux of conventional and prompt atmospheric neutrinos. Including systematic errors this corresponds to a 2.7σ excess with respect to the background-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCube’s recently observed evidence for high-energy astrophysical neutrinos.

* Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
I. INTRODUCTION

One century after the discovery of cosmic rays the search for their sources is still ongoing. Astrophysical objects which are either confirmed or expected to be able to accelerate hadrons to the observed energies include supernova remnants [1], active galactic nuclei (AGN), gamma-ray bursts (GRBs), and shocks in star formation regions of galaxies. The cosmic-ray nuclei interact with ambient matter and radiation fields close to their source [2]. Charged pions produced in these interactions decay into neutrinos. Therefore, the detection of high-energy neutrinos from such objects provides a unique possibility to identify individual astrophysical objects as cosmic-ray sources. However, low fluxes and small interaction probabilities make the detection of high-energy neutrinos challenging. To date no astrophysical object has been conclusively identified as a source of TeV neutrinos. Previous searches have established limits enabling astrophysical models to be constrained [3] [4].

While individual neutrino sources might be too weak to be detectable with current instruments, they would still contribute to a collective astrophysical neutrino flux. Fermi shock acceleration is thought to be the main acceleration mechanism for cosmic-ray nuclei and therefore a power-law spectrum with an index of about -2 is expected for the nuclei in the interaction regions where the neutrinos are produced. Based on the energy density of ultra-high-energy cosmic rays and assuming the cosmic-ray sources are transparent, the all-flavor diffuse neutrino flux can be constrained theoretically to be lower than the Waxman-Bahcall bound of $E_\nu^2 \Phi \lesssim 3 \times 10^{-8}$ GeV sr$^{-1}$ s$^{-1}$ cm$^{-2}$ [5] [9]. As neutrinos are assumed to originate mainly from pion decays, at the source a flavor ratio of $\nu_e : \nu_\mu : \nu_\tau = 1 : 2 : 0$ is expected. This ratio would transform to $1 : 1 : 1$ on Earth due to neutrino oscillations [7] [8]. However, observing unequal or energy-dependent flavor contributions would be interesting, since for example the flavor ratio is sensitive to the assumed production mechanism at the source [9].

Recently, evidence for this diffuse astrophysical neutrino flux was found. Its all-flavor intensity is estimated to be $E_\nu^2 \Phi = (3.6 \pm 1.2) \times 10^{-8}$ GeV sr$^{-1}$ s$^{-1}$ cm$^{-2}$ with indications for a cutoff at ~ 2 PeV. It is consistent with an isotropic flux and a flavor ratio of $1 : 1 : 1$ (10) (11) and Fig. [1].

In order to measure the diffuse astrophysical neutrino flux at TeV energies, it has to be separated from two main sources of background, which both originate from the Earth’s atmosphere. These are atmospheric muons and neutrinos produced in cosmic-ray air showers. The atmospheric neutrino flux has two components. The so-called conventional atmospheric neutrinos are produced in decays of pions and kaons. Their intensity is well-measured up to 6 TeV for ν_e and up to 400 TeV for ν_μ [12] [13]. At higher energies the poor knowledge of the composition of the cosmic-ray flux, creating the neutrinos, causes significant uncertainties on the intensity. The spectrum of the conventional atmospheric neutrinos is steeper than the cosmic-ray spectrum due to pion and kaon energy losses in the atmosphere. The second component originates from the decay of charmed mesons, which have lifetimes several orders of magnitude smaller than charged pions and kaons. Accordingly, neutrinos from these decays are called prompt atmospheric neutrinos. Due to the short lifetime of the parent mesons the energy spectrum of the prompt atmospheric neutrinos is expected to follow the spectrum of the cosmic rays that create them. However, their intensity has never been measured and uncertainties in the relevant production cross sections lead to large uncertainties in the predicted flux. The presence of a prompt neutrino component, like an astrophysical neutrino component, introduces a break into the neutrino energy spectrum. Given the large uncertainties in the prompt neutrino predictions, identification and separation of the astrophysical and prompt components needs to be made through their respective spectral signatures (see Fig. [1]).

The IceCube Neutrino Observatory is located at the South Pole and is the first kilometer-scale Cherenkov neutrino telescope. An optical sensor array observes the Cherenkov radiation from secondary charged particles

† Corresponding author: stephanie.v.hickford@gmail.com
‡ Corresponding author: eike.middell@desy.de
§ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

FIG. 1. Neutrino energy spectrum above 100 GeV. The theoretical predictions and measurements for the atmospheric neutrino flux are shown, as well as the current estimate for the diffuse astrophysical neutrino flux.
produced in neutrino interactions deep in the ice. These are dominantly neutrino-nucleon interactions except for the Glashow resonance \cite{14} for electron anti-neutrinos at 6.3 PeV. Based on the signature of the neutrino interaction, which depends on the flavor of the incident neutrino and the type of the interaction, two main detection channels exist. Searches in the muon channel look for charged-current muon neutrino interactions. These have a muon in the final state whose direction is reconstructible with a resolution of about 1 degree \cite{15}. The large muon range also allows to detect neutrino interactions outside the instrumented volume. The cascade channel comprises all other interaction scenarios which have particle showers in the final state. Above PeV energies charged current ν_τ interactions exhibit more complex event signatures but at lower energies they appear in the cascade channel. Consequently, an astrophysical flux with equal neutrino flavor contributions would yield more cascade than track events starting inside of IceCube. If the neutrino interaction happens inside the detector, the Cherenkov light yield of particle showers scales nearly linearly with the deposited energy, leading to an energy resolution that is better than in the muon channel. On the other hand the angular resolution is rather poor ($>10^\circ$ for the completed IceCube detector). Overall, the cascade channel is best suited for searches for diffuse astrophysical neutrinos in which the neutrino energy measurement is more important than pointing capabilities \cite{16}.

This paper presents searches for neutrino-induced cascades in one year of data taken during the construction phase of IceCube, when about half the detector was operational (IceCube-40). The main objective of the searches was to identify an astrophysical flux of neutrinos. In addition, a sensitivity to atmospheric neutrinos in the few TeV energy range was maintained to allow a validation of the anticipated backgrounds in the data set.

A 2.7σ excess of events above 100 TeV was found, compatible with the all flavor astrophysical diffuse neutrino flux estimate obtained in IceCube’s high-energy starting events (HESE) analysis \cite{11}. In comparison to that analysis, the IceCube-40 cascade analysis provides an event sample with unprecedented low background contamination between 100 and 200 TeV. This is possible because both searches employed rather different event selection strategies. Methods outlined in this paper also prove powerful in cascade searches with later IceCube configurations \cite{18, 19}.

The paper is organized as follows: The IceCube detector and IceCube-40 dataset are described in section \ref{II}. The simulation used is presented in section \ref{III} followed by a description of the cascade reconstruction in section \ref{IX}. The details of the event selection and expected sensitivity are presented in section \ref{X}. A survey of the systematic uncertainties follows in section \ref{XI} before the results and implications are discussed in section \ref{XII}. A conclusion is given in section \ref{XIII}.

FIG. 2. The IceCube-40 detector configuration. The circles and squares are the positions of the strings. The point $(x, y) = (0, 0)$ is the centre of the complete 86-string detector. Particle showers with reconstructed vertices inside the instrumented volume are called contained events. The analyses presented in this work reject non-contained events in order to suppress atmospheric muons that enter the detector from the outside. The blue dashed and solid lines show the two differently tight containment requirements that are used. The strings denoted by red squares form the outer layer of the detector. They are used to veto incident atmospheric muons.

II. THE ICECUBE DETECTOR

The IceCube Neutrino Observatory \cite{20} consists of an in-ice array of optical sensors and a complementary surface air shower detector called IceTop. The analyses presented here utilized only the in-ice component so the following detector description will be limited to that.

The optical sensors, called Digital Optical Modules (DOMs) \cite{21}, are sensitive to Cherenkov photons between 350 nm and 650 nm. The DOMs are deployed between depths of 1450 m and 2450 m and are attached to strings that are formed by the readout cables. Each string has 60 DOMs attached. The vertical string spacing of the DOMs is approximately 17 m and the horizontal spacing between the strings is approximately 125 m. The data for this analysis was collected between April 2008 and May 2009 with a total of 367.1 days livetime. In this period 40 strings were deployed and operational. The detector layout is shown in Fig. 2. Before IceCube’s completion in 2010, the IceCube-59, and IceCube-79 configurations took data with 59 and 79 deployed strings, respectively. Each DOM consists of a 25 cm diameter photomultiplier Tube (PMT) \cite{22}, made by Hamamatsu Photonics, and a data acquisition system housed within a pressure sphere made of 13 mm thick borosilicate glass. The PMT’s dynamic range is 200 photoelectrons per 15 ns and it is designed to accurately record the amplitudes and widths of the pulses with a timing resolution of 5 ns. Their peak quantum efficiency is approximately 25% and they are operated at a gain of 10^7 to resolve single pho-
toelectrons.

The time-resolved PMT signal (waveform) is digitized in the DOM. For this purpose two digitization devices are available on the DOM mainboard: two Analog Transient Waveform Digitizers (ATWD) and a fast Analog-to-Digital Converter (fADC). The ATWDs have three channels operated in parallel at different gains to provide a large dynamic range (a fourth channel is used only for calibration purposes). Due to scattering in the ice the arrival times of photons emitted at the same point and time can vary by microseconds. The ATWDs provide a sampling rate of 300 Megasamples/s over a time window of 425 ns allowing them to record the earliest photons (i.e. those least affected by scattering in the ice) with high precision. The second digitizer, the fADC, has a coarser sampling of 40 Megasamples/s recording data over a longer time period for photons with larger delays of up to 6.4 μs. In order to reduce data readout volume due to noise, in IceCube-40 a local coincidence criterion is required. Only if a neighbouring DOM on the same string also detects light within the local coincidence time window of ±1000 ns, the PMT response is digitized, time-stamped, and transmitted to the surface for analysis. The surface data acquisition system combines the individual PMT responses and forms events when one of the several possible triggering criteria are fulfilled.

The trigger requirement for the IceCube-40 cascade search was the Simple Multiplicity Trigger, which requires that eight DOMs were hit within a 5000 ns time window. The data rate for IceCube-40 from this trigger was approximately 1000 Hz.

III. SIMULATION

Interactions of all flavors of neutrinos were simulated to model atmospheric and astrophysical neutrinos. The NuGEN software package maintained by the IceCube collaboration was used. It is based on the ANIS [23] neutrino generator, which produces neutrinos isotropically over the Earth’s surface and propagates them to interact in or near the detector volume. Neutrino attenuation and ν_e regeneration are accounted for using the PREM Earth model [24]. CTEQ5 structure functions [25] were used to model the deep-inelastic neutrino-nucleon scattering cross section. Throughout this paper the diffuse astrophysical neutrino flux is simulated isotropically, with a flavor ratio of 1:1:1 and, if not stated otherwise, with an unbroken power-law spectrum with index of −2 and an all-flavor intensity of $3.6 \times 10^{-8} \text{GeVsr}^{-1}\text{s}^{-1}\text{cm}^{-2}$.

Rate predictions for the atmospheric neutrinos are based on the HKKMS07 model [26] for conventional atmospheric neutrinos and the ERS model [27] for prompt atmospheric neutrinos. Extrapolations of the original calculations to higher energies provide rate predictions at the energy range relevant to this work. The steepening of the cosmic-ray spectrum around a few PeV (the so-called “knee”) causes a similar feature in the atmospheric neutrino spectrum which is not accounted for in the HKKMS07 model. A modification to the HKKMS07 model [28] was applied to account for the knee. For one of the presented analyses the Bartol model [29] was used to estimate the conventional atmospheric neutrino flux. Compared to the modified HKKMS07 model it predicts a higher ν_e contribution (see Fig. 1).

The propagation of muons and taus through the detector and their energy losses were simulated using the MCM program [31] and the cascade simulation inside the detector was handled by the CMC program [32]. Neutrino-induced cascades below a threshold of 1 TeV were simulated as point-like light sources, emitting an angular Cherenkov light profile typical of an electromagnetic shower [33]. Cascades of higher energies are split into segments along the direction of the shower development. Each cascade segment is then approximated by a point-like sub-shower with a light yield proportional to the light yield in the corresponding segment of the electromagnetic cascade. The elongation of electromagnetic cascades due to the suppression of bremsstrahlung and pair production cross sections above PeV energies (LPM effect [34]) is accounted for. Hadronic cascades are simulated as electromagnetic cascades with a smaller light yield per deposited energy to account for the neutral shower components which do not generate Cherenkov light [35].

The contribution from atmospheric muon events is estimated from simulations done with a modified version [36, 37] of the CORSIKA air shower simulation software [38]. A large number of background events must be generated due to the high background suppression that is necessary to reach an event sample dominated by neutrinos. Providing a large background sample is computationally challenging, mostly because of the sheer number of air showers needed but also due to the simulation of light propagation in the optically inhomogeneous ice. The figure of merit used to quantify the statistics of a simulated data sample is the effective livetime T_{eff}, i.e. the time that one would have to run the real experiment to obtain the same statistical error as in the simulated dataset.

The chemical composition of the cosmic rays is important for an estimate of the muon background. Previous cascade searches [41] have shown that protons are of prime importance. Proton primaries produce lower multiplicities of muons with higher individual energies than heavier primaries. Compared to air showers induced by heavier elements, which typically lead to muon bundles reaching the detector, proton showers are more likely to generate single high-energy muons. If such a high-energy muon has a single catastrophic energy loss, then the relative light yield between shower and muon can make the resulting event signature look shower-like.

We use a simplified cosmic-ray composition model in our simulation that nevertheless reflects these qualitative differences between light and heavy elements. This two-component model considers only the two extrema of
The created background sample provides more than a year of effective livetime above an energy per nucleon threshold of about $E/A > 90\text{ TeV}$. Below this threshold the statistics drop rather quickly and these low energetic events are underrepresented in the event sample. However, the risk of underestimating the background is low, since the fraction of air showers with a primary energy below 90 TeV which exhibit bremsstrahlung losses of 2 TeV (10 TeV) is only 1.8×10^{-3} (1.6×10^{-5}) (see Fig. 4).

IV. RECONSTRUCTION OF PARTICLE SHOWERS

Cherenkov light, emitted by charged particles, traverses the optically inhomogeneous detector material and is then sampled by the three-dimensional IceCube array with nanosecond precision. Hence, the light’s arrival times and amplitudes are the sole available information on any particle interaction in the detector. Previous analyses relied on reconstruction algorithms that used only parts of this information, i.e. by considering only the integrated amplitude of all light reaching a DOM or by using only the arrival time of the first photon. A new algorithm CRED0 was developed. By using the waveform information CRED0 is able to reconstruct not only the interaction vertex and the deposited energy but also the direction of the incident neutrino. CRED0 is the first IceCube cascade reconstruction algorithm which is able to estimate the direction of the neutrino. The measurement process is described with a probabilistic model and a maximum likelihood estimator allows information on the vertex of the neutrino interaction, the neutrino direction and the deposited energy to be inferred.

CRED0 considers the information on an event in the form of time intervals $(t, t + \Delta t)$ in which a DOM at position \vec{x} recorded a given amount of charge n. Formally, the event is then described with the set $\{n_i(\vec{x}, t, \Delta t)\}$, where the index i runs over all such intervals. It should be noted, that this set also contains time intervals in which no charge has been recorded, since these time intervals also carry constraining information. The particle showers are modeled as point-like Cherenkov emitters, in the same way as they are described in simulation. A particle shower is then fully specified by 7 parameters $\alpha = (t, x, y, z, \theta, \phi, E)$: the time and position of the vertex, two angles for the direction of the neutrino and the deposited energy. The scattering and absorption of light in the Antarctic ice are depth dependent. The PHOTONICS package is used to calculate the light propagation in the ice and to create tables with light arrival times and amplitudes as a function of the depth and the relative position between particle shower and DOM. In order to avoid binning effects the table values are interpolated by multidimensional spline fits prior to being used in the reconstruction.

The PHOTONICS tables are used to calculate for each time interval i an estimate of the mean expected charge...
\[\mu_i = \tilde{n}_i(x, t, \Delta t, \alpha) + r_{\text{noise}} \Delta t \]. In this sum \(\tilde{n}_i \) is the contribution due to the cascade \(\alpha \) and \(r_{\text{noise}} \Delta t \) is a continuous noise contribution. In each time interval a counting experiment is performed, and the probability of a given measurement \(\{n_i\} \) under the condition \(\alpha \) can be calculated:

\[
P\{\{n_i\}|\alpha\} = \prod_i \frac{\mu_i(\alpha)^{n_i}}{n_i!} \exp(-\mu_i(\alpha)). \tag{1}
\]

From this probability one can construct a maximum likelihood estimator, yielding the parameters \(\hat{\alpha} \) best supported by the measurement:

\[
\hat{\alpha} = \text{argmin}_\alpha \mathcal{L}(\alpha) \quad \text{where} \quad \mathcal{L}(\alpha) = -\log P\{\{n_i\}|\alpha\}. \tag{2}
\]

The search for the global maximum in the 7-dimensional likelihood space is performed by minimizing the negative logarithm of the likelihood using the SIMPLEX minimizer in the Minuit software package [44]. In order to avoid local minima the search is done iteratively, where in each step the minimizer starts at a different position in the parameter space. The iterative minimization and the many necessary table lookups for each time interval form a time-consuming procedure that cannot be applied to all events. However, this reconstruction finds the position of the particle shower with a resolution of 15m horizontally and, due to the smaller DOM spacing, 5m vertically. The energy resolution for an astrophysical neutrino spectrum is about 40% and the angular resolution is about 30°.

Other variants of the likelihood reconstruction described here have been developed and been used in more recent analyses. By incorporating improvements in the understanding of the detector response and a better modeling of the ice they provide better resolutions and determine IceCube’s performance on cascades today [45].

V. EVENT SELECTION & ANALYSIS METHOD

A small number of neutrino generated showers need to be isolated from a large background of atmospheric muons. This is achieved by finding and applying a set of conditions on the reconstructed event properties that neutrino induced showers fulfill, but atmospheric muons do not. In practice this selection is implemented as a multi-step process. The first steps in the process are aimed at conservatively reducing the background, allowing the use of computationally intensive reconstruction algorithms, that can be applied to a reduced set of events only. Each step in the event selection process is referred to as a “Level”. Level 1, the trigger condition, was described in section [1]. Level 2, the online filter applied at South Pole, and subsequent levels are outlined in this section. The section will first introduce the classification schemes and cut variables used for separation of the signal from the background and then turn to a description of the individual samples.

A. Background rejection methods and event property variables

The background rejection criteria used in neutrino cascade searches can be classified conceptually as belonging in the following four categories.

Reconstructed particle parameters: Four different likelihood reconstruction routines are used in the searches described here. The routines differ in runtime, precision, initial assumptions and in the number of neutrino parameters that they infer from the event. Three of the reconstruction routines return parameters with the hypothesis that the event is a particle-shower. The fourth routine used assumes the event contains a muon track.

At earlier cut levels the cscdL1lh likelihood reconstruction [46] is used. It doesn’t account for the optical inhomogeneities of the ice but provides a quick estimate for the vertex and a quality parameter \(r_{\text{logL}_{\text{cscd}}} \) that describes how well the event fits to the cascade hypothesis. Using the vertex estimate from cscdL1lh another estimate for the deposited energy, \(E_{\text{ACER}} \), is provided by the AtmCscdEnergyReco algorithm [47]. It is quick to compute and considers the optical inhomogeneities of the ice. At later levels the CREDO algorithm described in section IV provides the best estimates for the reconstructed vertex \(\tilde{x}_{\text{CREDO}} \), deposited energy \(E_{\text{CREDO}} \) and zenith angle \(\Theta_{\text{CREDO}} \). The superscript \((n) \) distinguishes, where necessary, applications of the CREDO algorithm with differing numbers of iterations.

All events are also reconstructed with another likelihood reconstruction [48], which assumes that the event contains a muon track. This routine gives a zenith angle estimate \(\Theta_{\text{track}} \) and provides a quality of fit parameter \(r_{\text{logL}_{\text{track}}} \) for the track hypothesis. The zenith angle estimator correctly identifies much of the muon background as downgoing. Particle showers are preferentially interpreted as either horizontally or diagonally passing tracks which allows for some signal-background separation.

Containment & Vetoing: A particularly problematic background are muon events which pass close to the edges of the detector producing a light distribution which is similar to that produced by cascades. To counter this background various containment conditions are placed on the position of the reconstructed vertex, the first-hit DOM and the DOM with the highest collected charge. Events are excluded if the first hit DOM or the DOM with the highest collected charge is inside the instrumented volume and not in the top or bottom 50m of the detector.

The reconstructed vertex \(\tilde{x}_{\text{CREDO}} \) is required to lie inside the instrumented volume and not in the top or bottom 50m of the detector. The analyses presented in this paper found different containment conditions on the \(xy \)-position of the vertex to be optimal, when combined with their particular selection cuts, for suppressing background while maintaining signal efficiency. The two alternative containment conditions are illustrated by the
solid and dashed lines in Fig. 2.

Topological Characteristics: The hit patterns of particle showers in IceCube are approximately spherical while the muon-track hit patterns are more elongated. A number of different quantities can be calculated to characterize the different topology of cascade and muon events and used to preferentially select cascades. For example, a quantity analogous to the tensor of inertia of a rigid body, is calculated for each event. The collected charge on each DOM takes the role of the rigid body’s mass distribution. The ratio of the smallest eigenvalue to the sum of all of the eigenvalues, $\lambda = \lambda_{\text{min}} / \sum \lambda_i$, tends to $\frac{1}{3}$ for spherical events while muon tracks typically have smaller eigenvalue ratios $\frac{1}{3}$.

Another way to select spherical events is to construct a spherical volume surrounding the reconstructed event vertex x_{CREDO} and consider the proportion of hit DOMs, versus the total number of DOMs, in this sphere. The radius of the sphere considered is chosen to scale with the average distance between reconstructed vertex x_{CREDO} and position of the hit DOMs – a robust estimate for the overall size of the hit pattern. The fill-ratio f denotes the fraction of DOMs, falling within the sphere, on which light is recorded hit DOMs. Hence, fill-ratios close to 100% are obtained for spherical hit patterns, while muon events yield lower values. The fill-ratio is especially efficient to suppress coincident muon events – two or more muons from different air showers that cross the IceCube detector within microseconds of each other. A second quantity, the difference Δf of two fill-ratios with different radii, is also used. This quantity provides further separation power due to the fill-ratio’s dependency on the chosen radius being slightly different for the differently shaped hit patterns of cascades and tracks.

Time Evolution and Charge Distribution: Below PeV energies the Cherenkov light of particle showers originates within a few meters of the interaction vertex and then propagates through the detector with the speed of light in ice c_{ice}. In contrast, muon tracks traverse the detector with velocities close to the speed of light in vacuum c and emit Cherenkov photons continuously along their track. Several approaches exploit this difference to separate cascade and track events.

A simple approach, that can be applied before the event vertex has been reconstructed, is the linefit algorithm. The hit pattern is fitted with a straight line propagating with velocity v_{hit}. Relativistic muons often yield linefit velocities close to c whereas lower velocities are obtained if the fit is applied to cascades.

If the interaction time and vertex are well reconstructed then causality can be used to provide a strong constraint on whether an event is a neutrino-induced particle shower event. For each DOM, light is expected to arrive at the earliest after the time necessary to cover the distance between the DOM and the vertex, at velocity c_{ice}. While delayed photon arrivals are common due to light scattering in the ice, much earlier arrival times indicate a problem with the cascade hypothesis. The difference between the expected (t_{expected}) and observed (t_{hit}) arrival time is calculated for all DOMs and Δt_{min} is defined as the smallest such delay time $\Delta t_{\text{min}} = \min(t_{\text{hit}} - t_{\text{expected}})$. Events with large negative values of Δt_{min} are removed.

Another approach is to sort the DOMs by the time they recorded light and then consider the unit vector from one hit DOM to a subsequent hit DOM as an individual dipole moment. The global dipole moment m is obtained by averaging over all individual dipole moments. Larger moments are expected from tracks and smaller moments from cascades hit.

Yet another way to emphasize the different hit pattern evolution of tracks and cascades is to divide the event into two parts based on the times of the hit DOMs. This splits tracks into two disjoint segments and cascades into two mostly concentric shells. The casc11h algorithm is used to obtain, for each half, the vertices \vec{x}_1 and \vec{x}_2. Large radial and vertical distances Δr_{12} and Δz_{12} between the vertices as well as large differences in the reconstructed time Δt_{12} are then indicative of tracks.

Another feature of cascade events, which is also related to the fact that the particle showers are only a few meters in length, is that most of the light is recorded close to the vertex and hence early in the event. In contrast, since muons emit light continuously along their track it is more likely to see later contributions to the total charge. The variable $\Delta t_{50\%-90\%}$ denotes the fraction of the event length in which the total collected charge rises from 50% to 90%. Greater $\Delta t_{50\%-90\%}$ values indicate a longer time interval for the second half of the event’s total charge to be collected and are more likely to occur for muon events.

Some discrimination power comes from DOMs where just enough light arrives to trigger the readout and hence only a single pulse is reconstructed from the waveform. A combination of light yield, scattering in the ice and the geometric shape of the hit pattern results in a slightly higher number of these DOMs for muons. The ratio $n_{\text{hit}}/q_{\text{hit}}$ of DOMs with only one reconstructed pulse over the total number of hit DOMs tends to smaller values for cascades.

Finally, a useful variable is the ratio of the charge collected in the DOM with the highest charge, compared to the total recorded charge $q_{\text{hit}}/q_{\text{tot}}$. Low energetic muons passing very close to one DOM can yield a high charge concentration in this DOM compared to others. These events can resemble cascade-like hit patterns and are prone to be overestimated in energy. Hence, requiring a low ratio $q_{\text{hit}}/q_{\text{tot}}$ is useful to reject this class of background events.

B. Analysis overview

Three event selections, named Ia, Ib and II, were developed to search for neutrinos in the IceCube-40 dataset. The multiple event selections allowed sensitivity to both high-energy astrophysical and low-energy atmospheric
neutrinos as well as providing a collaboration internal cross-check.

The different event selections rely on similar selection methods that are differently combined for the individual goals of the analyses. The event selections share the first three filter levels but differ at later filter steps, since analysis Ia aimed at measuring atmospheric neutrinos whereas analyses Ib and II were optimized towards an astrophysical neutrino flux. In order to avoid experimenter’s bias a blind analysis was performed. Each event selection was developed and tested on simulation and a 10% subset of the experimental data, sampled uniformly over the year. A simple cut-and-count experiment was done on the remaining 90%.

Analyses Ia and Ib were developed in parallel to analysis II, but only unblinded afterwards. The crucial difference is that they utilized a significantly improved background simulation described in section III resulting in the choice of tighter cuts and a purer neutrino sample. Consequently here the focus is put on samples Ia and Ib. An overview of the cuts performed to obtain the three samples is given in Table III. A comparison of the energy thresholds and event rates is given in Table IV.

Sizable systematic uncertainties must be considered in interpreting the result. Therefore for samples Ia and Ib a Bayesian approach was chosen (described in appendix A) and the result is reported in form of the posterior probability for the number of non-background events.

C. Filter Level 2 & 3

Triggered events are filtered online at the South Pole to reduce the data volume to the bandwidth available for data transfer from the Pole via satellite. The online filter, or Level 2 is a filter on easy-to-compute variables that retains the majority of the neutrino signal while removing a large fraction of the background. It requires the line-fit velocity to be \(v_{lf} < 0.13 \text{ m/s} \) and the tensor-of-inertia eigenvalue ratio to be \(\lambda > 0.12 \). The distributions of these variables are shown in Figs. 5(a) and 5(b). At this early stage of the event selection, where no event quality cuts are done yet, the distributions show some disagreement between data and simulation. Further steps in the event selection will reduce this disagreement, mostly by removing events that are too low in energy or that are not contained in the instrumented volume. The pole filter reduced the data rate by two orders of magnitude to approximately 16 Hz.

Due to the energy threshold of about 100 GeV and the steeply falling energy spectrum, the energy distribution of background events, passing Level 2 is strongly peaked at lower energies. As the majority of the events are still atmospheric muons most of the events are reconstructed as downgoing tracks (see Fig. 6(a)). Consequently, the Level 3 cuts concentrate on reducing the background at low energies.

All events with a reconstructed energy \(E_{ACER} > 10 \text{ TeV} \) are kept, whereas lower energetic events are subject to two more cuts. First, when reconstructed under a muon track hypothesis, events reconstructed as downgoing with zenith angles \(\Theta_{track} < 80^\circ \) are rejected. Secondly, those events are removed, where a \(\text{csd}_{11h} \) likelihood value of \(\text{logL}_{\text{csd}} > 10 \) indicates a poorly fitted event. After application of the Level 3 filter the data rate is reduced by another order of magnitude to approximately 1.8 Hz, while contained astrophysical (atmospheric) neutrinos were kept with an efficiency of 76.5% (56.6%).

D. Sample Ia

After Level 3, the analyses diverge. Event selection Ia aims at the observation of atmospheric neutrinos with

![Graph](image-url)
energies of a few TeV. Previous cuts aimed to provide an optimal efficiency for cascades regardless of their energy and position inside the detector. As a consequence at Level 3 a significant number of events, that are very low in energy or happening at the border of the instrumented volume, remain in the sample. For these events no reliable separation between signal and background could be found.

Therefore, a set of geometric conditions has been defined to remove such events: it is required that the first hit DOM is neither on the outer layer of IceCube-40 (red squares in Fig. 2) nor in the top or bottom 50 m of the detector. Also DOMs on at least five different strings must have recorded light. This cut reduces the data rate to 79 mHz, while contained astrophysical (atmospheric) neutrinos are kept with an efficiency of 56.1% (37.2%).

After these cuts, at the so-called Level 5, additional reconstructions but no cuts were performed. In particular the remaining sample was small enough to perform the CREDO likelihood reconstruction described in section IV with 8 iterations. Muon background still dominates over atmospheric neutrino-induced showers by three orders of magnitude at selection Level 5. Therefore, the vertex and energy estimates are used to apply another series of event selection conditions.

At Level 6, the energy threshold is set to $E^{(8)}_{\text{CREDO}} > 1.8$ TeV. In order to remove events where low energetic muons pass very close to a DOM and where their energy is likely to be overestimated, a cut on $q_{\text{max}}/q_{\text{tot}} < 0.3$ is applied. Furthermore, the containment requirement is enforced: the reconstructed vertex must lie inside the blue solid boundary shown in Fig. 2, its z-coordinate must be inside the instrumented depth interval and also the DOM with the highest recorded charge in the event may not be on the outer layer. A constraint on the minimum delay time $\Delta t_{\text{min}} > -75$ ns is used to remove events where causality rules out the cascade hypothesis. Together with requiring a fill-ratio $f > 0.6$, this set of cuts reduces the data rate by two orders of magnitude down to 660 µHz, while retaining efficiencies for contained astrophysical and atmospheric neutrinos of 66.4% and 20.1%, respectively. Overall agreement of event properties between simulation and experimental data is good (see Fig. 7). This is a necessary precondition for the final event selection step, which uses a multivariate algorithm to distinguish signal and background events.

The final step of the event selection is to remove the remaining background and obtain a sample dominated by neutrinos. For this purpose event properties that still provide separation power are used as input to a multivariate algorithm to obtain a single quality parameter for each event. The TMVA package is used to train a boosted decision tree (BDT). In total 11 variables are combined into one final event quality variable BDT$_I$. These are the casc4l11h algorithm’s quality parameter $\text{rlogL}_{\text{casc4l11h}}$, the vertical and radial distances $\Delta z_{12}, \Delta r_{12}$ of the time-split reconstructions, the fraction of DOMs with only one reconstructed pulse n_1/n_{hit} and the fraction of the event duration needed to accumulate the second half of the total charge $\Delta t_{50\% -90\%}$. The two zenith angle estimators $\Theta_{\text{CREDO}}^{(8)}$ and Θ_{track} enter the BDT as well as the dipole moment m and the fill-ratio difference for two radii Δf. Finally, the eigenvalue ratio λ and the minimum delay time Δt_{min} are used, too. They have already been used at earlier cut levels but still provide some discrimination power. The four variables ranked most important by the classifier are shown in Fig. 7.

The distribution of the BDT output variable and its ability to separate signal from background is shown in Fig. 8. At low values, the distribution is dominated by...
the atmospheric muon background and the experimental data is adequately described by the CORSIKA simulation. The signal distribution centers at higher BDT scores, but even there a contribution from atmospheric muons is present. Closer inspection reveals that these events are muons with prominent bremsstrahlung cascades and little to no hint of the muon track. The events resemble neutrino-induced particle showers rather well. The geometry of IceCube-40 with one dimension being much shorter than the others is obviously vulnerable to this class of background events. In the energy range below 100 TeV, with the given detector and the aforementioned background rejection methods, including their combination within a multivariate classifier, these events turn out to be irreducible background.

This limits the possible background suppression for sample Ia. Atmospheric neutrino signal and muon background are similarly distributed at BDT$_1$ scores > 0.5, so cutting at a higher value removes the atmospheric neutrino signal as much as the atmospheric muon background. As a consequence a BDT$_1$ value of 0.5 is the optimal separation point between background and signal that maximizes the detection potential [50] for an atmospheric neutrino flux. However, a rather large number of 71 events is expected in sample Ia from which 41 are expected to be atmospheric muons and 30 conventional and prompt neutrinos. Both numbers are affected by rather large systematic uncertainties, which are discussed in section VII.

E. Sample Ib

The remaining background events can be removed by increasing the energy threshold of the analysis. Because of their steeply falling spectrum conventional atmospheric neutrinos are severely reduced by an energy cut. However, the harder spectra of prompt neutrinos and the assumed diffuse astrophysical neutrino flux are not so much affected. This fact is used to define the data sample Ib with an energy threshold of $E_{\text{CREDO}}^{(8)} > 100$ TeV. A comparatively loose requirement on the BDT score of BDT$_1 > 0.1$ is then sufficient to remove all simulated background events (see Fig. 9). In contrast to sample Ia, which was designed to find atmospheric neutrinos, sample Ib has a significantly better performance for detecting a prompt or astrophysical neutrino flux.

For this sample, the background contribution from atmospheric muons cannot be determined from simulation anymore as all events have been removed. In order to estimate the muon rate, the reconstructed energy distribution is extrapolated from the low-energy region, where simulated events are still available, to higher energies. Up to PeV energies, the energy spectrum of the brightest bremsstrahlung cascades along simulated muon tracks can be described by a power-law $dN/dE \propto E^{-3.7}$. For
muon events, which pass the event selection, the corresponding energy spectrum is not necessarily the same, because of the energy-dependent performance of the cuts. E.g. muon events with bright bremsstrahlungs cascade are suppressed with increasing energy, since the muon becomes more likely to be detected in the veto region. On the other hand, the selection efficiency for particle showers rises with increasing deposited energy. Hence, the model used to extrapolate the muon background into the signal region is the product of two functions: the selection efficiency for particle showers as a function of deposited energy (derived from simulation) and a power-law with the index and normalization as free parameters.

This model provides a reasonable fit to the energy distribution of background muons below the energy threshold (see Fig. 11(b)) the same BDT1 score > 0.1 is required for these events as for the events in the high-energy sample). The fit is consistent with the expectation that the remaining background events are dominated by high bremsstrahlung cascade and that the energy estimator describes their energy spectrum. This confirms the physical motivation of the extrapolation in the signal region. From the extrapolation one can amount the muon contribution to 0.04±0.02 events, where the errors are derived from varying the parameters within the uncertainties obtained from the fit. An additional 0.21 events are expected from conventional and prompt atmospheric neutrinos.

This event selection reduced the muon background by seven orders of magnitude from the rate after the online filter. This high suppression comes at the price of a low total efficiency of 5% (0.5%) for contained astrophysical (atmospheric) neutrinos. The energy-dependent selection efficiencies are presented in the form of effective areas for both samples in Fig. 10. Table I summarizes the performance of the event selection at different cut levels.
F. Sample II

Level 4 for the event selection sample II enforces a moderate energy cut of $E^{(1)}_{\text{CREDO}} > 2.5$ TeV and selection for cascade-like events using two of the topological variables described in Section V A. The difference between the split vertex reconstruction is restricted to $(\Delta t_{12} < 40 \text{ ns})$ and high fill-ratios ($f > 0.4$) are required. The CREDO reconstruction is performed with four iterations on the remaining events to increase the accuracy of the vertex and energy estimate. The next set of cuts focus on selecting contained events. The xy-coordinates of $\vec{x}^{(4)}_{\text{CREDO}}$ must lie inside the area circumscribed by the blue dashed line in Fig. 2 and the z-coordinate must lie between $\pm 450 \text{ m}$. The DOM with the highest charge is not allowed to be on the veto layer of strings.

As in samples Ia and Ib, a boosted decision tree is trained to combine the variables, which still have discrimination power, into one event quality parameter BDT I I. Eight variables are used: the zenith angle Θ_{track} and fit quality parameter $\log L_{\text{track}}$ of the track reconstruction; the online filter variables v_E and λ; the fill-ratio f and the vertex time difference Δt_{12}. Information on where in the detector the event occurred entered the BDT in the form of the z-coordinate of $\vec{x}^{(4)}_{\text{CREDO}}$ and the distance of $\vec{x}^{(4)}_{\text{CREDO}}$ to the detector center. A cut at BDTI I > 0.2 and $E^{(4)}_{\text{CREDO}} > 25$ TeV is found to be optimal to select astrophysical neutrinos.

The event selection criteria for sample II were finalized before those of sample Ia and Ib. The available statistics of simulated background events were limited and did not describe the data particularly well due to a lack of high-energy proton-induced air showers. Hence, unlike for samples Ia and Ib, the full simulation discussed in section III did not enter the optimization of the event selection. Instead, when training the BDT, experimental data was used for the background sample. The final energy threshold was set to 25 TeV, which—given the limited background simulation available at that time—lead to an optimal sensitivity for an astrophysical E^{-2} flux. The final numbers presented here for the background estimate are based on the full statistics. Further information about the event selection can be found in [51].

VI. SYSTEMATIC UNCERTAINTIES

The three event samples (Ia, Ib, II) share common sources of systematic uncertainties. The largest uncertainties on the expected event count arise from our limited knowledge of the optical ice properties at the South Pole, the selection efficiency of the muon background and the theoretical predictions for the atmospheric neutrino flux. Table III summarizes the systematic uncertainties for sample Ia and Ib. The systematic uncertainties associated with sample II are similar to those of sample Ib. The individual systematic errors are described in more detail below.

In calibration runs, where LEDs inside the DOMs il...
luminate the detector, data is obtained from which the characteristics of the light absorption and scattering at different points throughout the ice can be estimated. The estimated characteristics form a so-called ice model which contains the depth, wavelength, and temperature dependent optical properties throughout the detector and the surrounding ice and bedrock. The AHA ice model [52] was used in all simulations for this analysis. To carry out a study of the uncertainties arising from the ice model, simulated datasets were produced using an alternative ice model, called SPICE [53] which was developed after this analysis was complete. The systematic uncertainty from the ice models was estimated to be ±24% for an E^{-2} neutrino spectrum signal and ±11% for the atmospheric neutrino background for the three samples Ia, Ib and II.

The estimate of the rate of atmospheric muons that pass the selection cuts is also affected by a rather large uncertainty. The simulation falls short in providing an absolute rate estimate, by systematically underestimating the measured data rate. At cut levels before Level 6, where the data-to-simulation agreement is not yet optimal, cuts affect data and simulation events slightly differently. Hence, the rate discrepancy changes slightly between cut levels. At each of these levels the rate estimate from atmospheric muon simulation can be normalized to match the measured data rate by applying factors of 1.25–2. As described in section V, the event selection for sample Ia and Ib removes problematic event classes and creates a sample with good data-to-simulation agreement before training the boosted decision tree. At that point the normalization factor is 1.54 and is fixed for the rest of the analysis. The observed ±50% variation of this normalization factor at early cut levels is used as an estimate for the total systematic uncertainty on the muon rate for samples Ia and II, which estimate the atmospheric muon background from simulation. The variation encompasses uncertainties on the cosmic-ray spectrum and composition, the particle interactions within air showers, the DOM efficiencies (see below) and the optical properties of the ice. About 10% of it can be attributed to the uncertainty of the cosmic-ray energy spectrum. This value is obtained by varying the broken power law parameters in the range of their published uncertainties [50]. Optimally, the other uncertainties would be quantified by varying the respective parameters in the simulation. However, the generation of several additional sufficiently sized background samples is computationally intractable and we are hence left with the empirical estimate of 50% uncertainty for the atmospheric muon background.

For sample Ib the atmospheric muon background is estimated from a fit of the reconstructed energy distribution and its extrapolation to higher energies. From varying the fitted parameters within the uncertainties reported by the fit, the systematic uncertainty of the muon rate in sample Ib is estimated to be (−50%, +150%). This uncertainty is larger than for samples Ia and II. However, for sample Ib the background contribution of atmospheric muons is much smaller than the contribution from atmospheric neutrinos, which consequently dominate the total systematic uncertainty of the combined background.

A DOM’s efficiency is the ratio of the light collected by a DOM to the total light incident upon that DOM. The DOM efficiency includes the quantum efficiency of the PMT and the transmissivity of the optical gel and glass of each sphere. A ±10% uncertainty in DOM efficiency is estimated for IceCube DOMs [22]. By changing the DOM efficiency in the simulation the effect on astrophysical (atmospheric) neutrino event rates can be quantified to ±4% (±14%) for sample Ia and ±4% (±17%) for samples Ib and II.

The simulation for this analysis assumed neutrino-nucleon cross sections based on CTEQ5 parton distributions [54]. The updated CSS [55] calculation using the ZEUS global PDF fit predicts smaller cross sections. By comparing simulated neutrino datasets with both models the systematic uncertainty from the neutrino cross-section model is quantified as ±6% (±3%) for astrophysical (atmospheric) neutrinos.

The uncertainty in the atmospheric neutrino flux prediction has two components: the theoretical uncertainty from the original calculations and the uncertainty in modifying the HKKMS07 model to include the atmospheric neutrino knee. The theoretical uncertainty of the conventional neutrino flux in the HKKMS07 model is about 25% [26]. Since the ERS model is used as a baseline for the prompt component its uncertainties are adopted [27]. Combined, these result in a systematic uncertainty of the atmospheric neutrino flux of (−26%, +25%) and (−37%, 27%) in samples Ia and Ib, respectively. For sample II we conservatively assume the uncertainty from the high-energy sample Ib. The knee in the cosmic-ray spectrum should lead to a similar feature in the atmospheric neutrino spectrum. The effect depends on the respective model for the cosmic-ray spectrum and the energy transfer from the primary to the neutrino. Due to the different energy ranges the samples are affected differently. The uncertainty was quantified to be (−16%, +0%) for sample Ia and (−23%, +4%) for sample Ib. For sample II we adopt the larger values of the high-energy sample Ib.

Table [11] shows the resulting systematic uncertainty for the various samples, where the total uncertainties are obtained from adding each systematic uncertainty in quadrature.

VII. RESULTS & DISCUSSION

We have prepared three different event selections of cascade-like events, Ia, Ib and II, each aiming at somewhat different energies. In the following, we discuss the results starting with Ia, the analysis with the lowest energy threshold, and then move up in energy. The reported results refer to 90% of the experimental data,
The sample Ia with an energy threshold of about 2 TeV aimed at the observation of atmospheric neutrinos, which for this sample will be called the signal. In total 67 events were observed over an expectation of 41.1 events from atmospheric muons and 27.8 from conventional and 2.25 prompt atmospheric neutrinos, respectively. Accordingly, the excess above atmospheric muons is quantitatively well described by the atmospheric neutrino prediction by the HKKMS07 and ERS models. The rather large uncertainty of the atmospheric muon background requires a careful evaluation of the significance of the atmospheric neutrino excess. We marginalize over the uncertainty in background and signal prediction using the method described in Appendix A. The 90% credible interval ranges from 5 to 62 non-background events, or 16% to 206% of the predicted conventional and prompt neutrino flux. The significance of the excess over atmospheric muons including systematic errors is 1.1σ. No observation of atmospheric neutrinos is claimed. The average event energies of atmospheric neutrinos are 6 TeV and hence comparable to the highest energy bin of the completed analyses of contained events inside the DeepCore/IceCube 79-string configuration [13].

In sample II with an energy threshold of about 25 TeV we observed 14 events after event selection, on an expected background of 3.0 atmospheric neutrino events and 7.7 atmospheric muon events. As the analyses was optimized for highest sensitivity towards a diffuse E^{-2} spectrum — harder than the spectrum of atmospheric neutrino and muon events — the analysis has a higher energy threshold. However, it was only realized after unblinding, that protons were underrepresented at high energies in the simulation of the cosmic-ray spectrum (see section III), leading to an underrepresentation of the muon background and suboptimal loose final cuts. As a result, the purity of the sample is only comparable to that of sample Ia. A small and insignificant excess of events is observed over the background of atmospheric neutrinos and muons. We calculate an all-flavor flux limit [50] using the TRolke method [56] to include systematic errors. For an E^{-2} astrophysical neutrino spectrum and assuming a 1 : 1 : 1 flavor ratio at the Earth, the all-flavor flux limit at a 90% confidence level is

$$E^2 \Phi_{\text{lim}} \leq 7.46 \times 10^{-8} \text{GeVsr}^{-1} \text{s}^{-1} \text{cm}^{-2}.$$ \hfill (3)

The energy range for this calculation containing 90% of the signal is from 25 TeV to 5 PeV.

TABLE III. Overview on systematics uncertainties on the event count for analyses Ia and Ib. The systematic uncertainties associated with sample II are similar to those of sample Ib. See section VI for further details.

Source of Uncertainty	Sample Ia (low energies)	Sample Ib (high energies)
E	Atm. ν	Atm. ν
E^{-2}	Atm. ν	Atm. ν
DOM efficiency	14%	4%
Ice model	24%	11%
ν cross sections	3%	6%
Theoretical	$-26\% + 25\%$	n/a
Neutrino knee	$-16\% + 6\%$	n/a
Total	$-41\% + 37\%$	13%
Atm. μ (simulated)	50%	$-50\% + 150\%$

FIG. 11. The reconstructed energy distributions for the samples Ia (a) and Ib (b). The atmospheric muon and neutrino components are stacked on top of each other. The experimental data shown comprises 100% of the sample. For bins in which no event was observed a 68% C.L. upper limit is shown. The white hatched area shows the distribution of atmospheric muons and neutrinos, including systematic and statistical uncertainties. The orange hatched area denotes the prediction of astrophysical neutrinos according to the flux estimate from [11].

which were kept blind during the development of the event selections. A summary of the results from the three analyses is presented in Table IV.
The sample Ib, with an energy threshold of 100 TeV, is the high-energy counterpart of sample Ia, differing only in the lower BDT cut and higher energy cut. The cuts were optimized for highest sensitivity towards an E^{-2} spectrum and the tighter cuts lead to a purer neutrino sample. In total 3 events were found over an expectation of 0.04 from atmospheric muons and 0.21 from atmospheric conventional and prompt neutrinos. At these higher energies the expected contribution from prompt neutrinos exceeds the conventional neutrinos by a factor of 3. One additional event with more than 100 TeV was also in the 10% sample used to develop the analysis. It is not considered in the significance calculation. Images illustrating the hit pattern of all four events are shown in Fig. 12.

The 3 events found are a rather large excess, not only above the muonic background but also above the atmospheric neutrinos. It corresponds to 2.7σ above both classes of background. We have employed the method described in Appendix A allowing us the inclusion of all systematic and statistical errors on the background expectation to calculate the posterior probability for the potential signal flux shown in Fig. 13. As a consequence of the observed excess the posterior peaks around a flux normalization for an unbroken all-flavor E^{-2} flux of 5×10^{-8} GeV sr$^{-1}$ s$^{-1}$ cm$^{-2}$. The 90% credible interval covers the range $(2 - 14) \times 10^{-8}$ GeV sr$^{-1}$ s$^{-1}$ cm$^{-2}$. For a 1 : 1 : 1 flavor ratio at Earth of the expected events, 64% would stem from electron neutrinos, 23% from tau neutrinos and 13% from muon neutrinos.

The flux estimate derived from sample Ib is compatible with the astrophysical flux derived in [11], taking into account the systematic uncertainties. The flux is higher than the upper limit found in a search for high-energy muon neutrinos with the larger IceCube-59 [29]. This is not necessarily a contradiction, since the upper limit is set under the assumption of an unbroken power law - a practical premise until measurements of high energetic neutrinos provide a handle on any cutoff in the spectrum. A non-equalized flavor ratio or a slightly different slope of the neutrino spectrum could explain this, too.

The results from the sample Ia, Ib and II are consistent, with an excess appearing only towards larger energies. In addition, one can compare the overlap between the samples as a crosscheck. Due to the different energy thresholds, one expects sample II to be largely a sub-sample of Ia. However, due to the difference in selection criteria and general low efficiency of only ~10% with which signal events are selected, a perfect overlap can not be expected. We find that of the 14 events of sample II, 7 are also contained in Ia, where the majority of the remaining have not passed the different containment cut. All three high-energy events of sample Ib are also contained in sample II. Only two of them are also in sample Ia.

TABLE IV. Event count predictions and results for the different samples and for models of conventional, prompt and astrophysical neutrinos. The model predictions are calculated for 90% of the experimental data. Where they are derived from simulation the statistical errors are given. The three lines of the ERS model show the uncertainty band.

Sample	Ia	II	Ib
E_{cut}	2 TeV	25 TeV	100 TeV
10% sample	7	2	1
90% sample	67	12	3
atm. μ	41.1 ± 9.5	7.7 ± 1.8	0.04
Bartol (no knee) [30]	25.5 ± 2.8	2.12 ± 0.2	0.078 ± 0.012
HKKMS07 (+knee) [26, 28, 29]	27.8 ± 3.0	1.68 ± 0.16	0.054 ± 0.009
ERS [27] (max.)	2.76 ± 0.07	1.21 ± 0.03	0.198 ± 0.005
ERS [27] (min.)	2.25 ± 0.06	0.95 ± 0.02	0.155 ± 0.004
Martin GBW [57]	1.29 ± 0.03	0.57 ± 0.01	0.090 ± 0.002
$3.6 \times 10^{-7} E^{-2}$	1.14 ± 0.03	0.48 ± 0.01	0.078 ± 0.002

FIG. 12. Three cascade-like events above 100 TeV were found in the samples II and Ib. An additional event was already found in the 10% sample used to develop the analysis. The event displays visualize the light distribution in the detector: Each DOM is shown as a sphere, which size scales with the recorded time of the light at the DOM ranging from red (early hits) over green to blue (late hits).

VIII. SUMMARY

We have reported on a search for astrophysical and atmospheric neutrino-induced particle showers in the IceCube-40 detector. The data was taken between April 2008 and May 2009 with a total of 367.1 days livetime.

Three different event selections, Ia, Ib and II, each tailored to different energy ranges, were developed and applied to the data. The low and intermediate energy...
samples Ia and II have an energy threshold of 2 TeV and 25 TeV, respectively, and have sensitivity to atmospheric neutrinos. In both samples, an excess over the atmospheric muon background was observed that can be well explained by conventional atmospheric neutrinos.

With an energy threshold of 25 TeV, analysis II also has sensitivity to a high-energy astrophysical neutrino flux. In the absence of an excess of events above the combined background of atmospheric neutrinos and muons we are left with an upper limit (90% confidence level) of $E^2\Phi_{\mu m} \leq 7.46 \times 10^{-8}$ GeVsr$^{-1}$s$^{-1}$cm$^{-2}$ on the all-flavor astrophysical neutrino flux, assuming an E^{-2} spectrum and a 1:1:1 neutrino flavor ratio at the Earth. For this limit, 90% of the expected signal events have energies in the range between 25 TeV to 5 PeV. The upper limit is below that reported from cascade searches using the IceCube-22 detector \cite{29} and approaches the Waxman-Bahcall limit \cite{5, 6}.

Finally, sample Ib was optimized towards the largest sensitivity for high energy astrophysical neutrinos. Compared to sample II, it profited from a larger sample of simulated muon background during the optimization of the event selection. In 90% of the available data, three events were observed above the energy threshold of 100 TeV, with an expectation of only 0.25 events from atmospheric neutrinos (both conventional and prompt) as well as atmospheric muons — a 2.7σ excess. The 10% burn sample contains a fourth event, which has not entered the significance calculation.

The excess seen above 100 TeV in sample Ib is noteworthy. Although not significant enough to claim evidence for an astrophysical neutrino flux, it is consistent with similar excesses found in diffuse neutrino searches with IceCube-59 \cite{29} using muon neutrino events, the two PeV events \cite{10} and the 28 events found in \cite{11}, the strongest single evidence that IceCube is seeing a high-energy neutrino flux of astrophysical neutrinos. This analysis thereby provides three neutrino event candidates between 140 TeV and 220 TeV — an intermediate energy scale — with unprecedented low background contamination of conventional atmospheric neutrinos and muons. The constraints on the all-flavor normalization of the high-energy neutrino flux of astrophysical neutrinos with equal flavor contributions are summarized in Fig. 13. A 90% credible interval covers the range $(2 - 14) \times 10^{-8}$ GeVsr$^{-1}$s$^{-1}$cm$^{-2}$ and is compatible with the more stringent flux estimate established by \cite{11}.

However, the sensitivity towards a diffuse flux of high-energy neutrinos was reached using data from only 50% of the final IceCube configuration. It is the good energy resolution and the little intrinsic background associated with the signature of neutrino-induced cascades, that is thereby providing the large sensitivity to the diffuse flux \cite{10}. The IceCube detector is now completed with 86 strings and an instrumented volume of 1 km3. Future cascade searches benefit from the more favorable detector geometry, which allows for even better suppression of the background from atmospheric muons and improved cascade detection efficiency \cite{18, 19}. Neutrino-induced cascades will hence continue to play a prime role in further exploring the high-energy astrophysical neutrino flux.

Appendix A: Calculation of the posterior probabilities

The experiment under consideration is a counting experiment in the presence of background. In order to incorporate systematic and statistical uncertainties into the interpretation of the result, a Bayesian approach was chosen. The probability to have observed n_{obs} events in the presence of n_{sig} events, signal selection efficiency ϵ and n_{bg} background events is given by the Poisson probability:

$$P(n_{\text{obs}}|n_{\text{sig}}, n_{\text{bg}}) = \frac{(\epsilon n_{\text{sig}} + n_{\text{bg}})^{n_{\text{obs}}}}{n_{\text{obs}}!} \exp(-\epsilon n_{\text{sig}} + n_{\text{bg}}).$$

(A1)

From having observed n_{obs} we want to infer, whether a given value of n_{sig} is supported or ruled out by the experimental result. This information is given by the posterior probability of n_{sig}, which can be obtained by applying Bayes theorem. In order to use the theorem, available information on the expected signal as well as the uncertainty of the other parameters must be quantified in the form of priors. By marginalizing over all parameters other than n_{sig}, remaining uncertainties are then incorporated into the final result.
The background uncertainties from model predictions and selection efficiencies are described by $p(n_{\text{bg}})$. For the signal we model all uncertainties with $p(\epsilon)$ and the prior belief with $p(n_{\text{sig}})$. The posterior probability can then be calculated:

$$P(n_{\text{sig}}|n_{\text{obs}}) \propto \int dn_{\text{bg}} d\epsilon P(n_{\text{obs}}|n_{\text{sig}}, n_{\text{bg}}) p(n_{\text{bg}}) p(\epsilon) p(n_{\text{sig}})$$

(A2)

A constant is chosen for the signal prior to reflect no prior knowledge on the signal. For the background prior a Gaussian is used. The mean is centered at the rate prediction, the width represents the modeled uncertainty and it is truncated at zero since rates have to be positive. The uncertainty in the signal efficiency is modeled with a Gaussian centered at 1 and having a width corresponding to the systematic uncertainty. It is also truncated at zero.

ACKNOWLEDGMENTS

We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Felders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF)

[1] M. Ackermann et al. Detection of the characteristic pion-decay signature in supernova remnants. Science, 339(6121):807–811, 2013.
[2] A.M. Hillas. Cosmic Rays: Recent Progress and some Current Questions. astro-ph/0607109, 2006.
[3] R. Abbasi et al. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature, 484:351–353, 2012.
[4] M.G. Aartsen et al. Search for time-independent neutrino emissions from Astrophysical sources with 3 years of IceCube. ApJ, to be published.
[5] E. Waxman and J.N. Bahcall. High-energy neutrinos from astrophysical sources: An Upper bound. Phys.Rev., D59:023002, 1999.
[6] E. Waxman. High energy cosmic ray and neutrino astronomy. arXiv:1101.1155, 2011.
[7] H. Athar, M. Jezabek, and O. Yasuda. Effects of neutrino mixing on high-energy cosmic neutrino flux. Phys.Rev., D62:103007, 2000.
[8] J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa, and T.J. Weiler. Measuring flavor ratios of high-energy astrophysical neutrinos. Phys.Rev., D68:093005, 2003.
[9] T. Kashti and E. Waxman. Flavoring astrophysical neutrinos: Flavor ratios depend on energy. Phys.Rev.Lett., 95:181101, 2005.
[10] M.G. Aartsen et al. First observation of PeV-energy neutrinos with IceCube. Phys.Rev.Lett., 111:021103, 2013.
[11] IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342, 1242856, 2013.
[12] R. Abbasi et al. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube. Phys.Rev., D83:012001, 2011.
[13] M.G. Aartsen et al. Measurement of the Atmospheric νe flux in IceCube. Phys.Rev.Lett., 110:151105, 2013.
[14] S.L. Glashow. Resonant Scattering of Antineutrinos. Phys. Rev., 118:316–317, 1960.
[15] M.G. Aartsen et al. Observation of the cosmic-ray shadow of the Moon with IceCube. arXiv:1305.6811, 2013.
[16] M. Kowalski. Measuring diffuse neutrino fluxes with IceCube. JCAP, 0505:010, 2005.
[17] R. Abbasi et al. A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector. Phys.Rev., D84:082001, 2011.
[18] A. Schönwald, A.M. Brown, and L. Mohrmann. Search for diffuse astrophysical neutrinos with cascades events in the IceCube-59 detector. Proceedings of the 33rd ICRC, Rio de Janeiro, Brazil, 2013.
[19] M. Lesiak-Bzdak and A. Stößl. Search for extraterrestrial neutrino-induced cascades using IceCube 79-strings. Proceedings of the 33rd ICRC, Rio de Janeiro, Brazil, 2013.
[20] A. Achterberg et al. First year performance of the IceCube neutrino telescope. Astroparticle Physics, 26(3):155–173, 2006.
[21] R. Abbasi et al. The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping. Nucl.Instrum.Meth., A601:294–316, 2009.
[22] R. Abbasi et al. Calibration and Characterization of the IceCube Photomultiplier Tube. Nucl.Instrum.Meth.,
A.M. Dziewonski and D.L. Anderson. Preliminary reference earth model. *Phys. Earth Planet. Interiors*, 25:297–356, 1981.

H.L. Lai et al. Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions. *Eur. Phys. J.*, C12:375–392, 2000.

M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. *Phys. Rev.*, D75:043006, 2007.

R. Enberg, M.H. Reno, and I. Sarcevic. Prompt neutrino fluxes from atmospheric charm. *Phys. Rev.*, D78:043005, 2008.

J.R. Hörandel. On the knee in the energy spectrum of cosmic rays. *Astropart. Phys.*, 19:193–220, 2003.

R. Abbasi et al. First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector. *Phys. Rev.*, D84:072001, 2011.

J. Lundberg, P. Micicinovic, T. Burgess, J. Adams, S. Hundertmark, et al. Light tracking for glaciers and oceans: Scattering and absorption in heterogeneous media with Photonics. *Nucl. Instrum. Meth.*, A581:619–631, 2007.

N. Whitehorn, J. van Santen, and S. Lafebre. Penalized splines for smooth representation of high-dimensional Monte Carlo datasets. *Computer Physics Communications*, 184(9):2214 – 2220, 2013.

F. James and M. Roos. Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations. *Comput. Phys. Commun.*, 10:343–367, 1975.

M.G. Aartsen et al. Energy Reconstruction Methods and Performance in the IceCube Neutrino Detector. arXiv:1311.4767, 2013.

R. Abbasi, Y. Abdou, T. Abu-Zayyad, O. Actis, J. Adams, et al. Search for neutrino-induced cascades with five years of AMANDA data. *Astropart. Phys.*, 34:420–430, 2011.

M. D’Agostino. First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector. Ph.D. Thesis, 2009.

J. Ahrens et al. Muon track reconstruction and data selection techniques in AMANDA. *Nucl. Instrum. Meth.*, A524:169–194, 2004.

A. Hoecker, P. Speckmayer, J. Stelzer, F. Tegenfeldt, and H. Voss. TMVA, toolkit for multivariate data analysis with ROOT. arXiv:physics/0703039, 2007.

G.C. Hill and K. Rawlins. Unbiased cut selection for optimal upper limits in neutrino detectors: The Model rejection potential technique. *Astropart. Phys.*, 19:393–402, 2003.

S. Hickford. A Cascade Analysis for the IceCube Neutrino Telescope. Ph.D. Thesis, 2012.

M. Ackermann et al. Optical properties of deep glacial ice at the South Pole. *Geophys. Res.*, 111(D13203):282–300, 2006.

R. Abbasi et al. Study of South Pole ice transparency with IceCube flashers. *Proceedings of the 32nd ICRC*, Benjing, China, 2011.

R. Gandhi, C. Quigg, M.H. Reno, and I. Sarcevic. Ultrahigh-energy neutrino interactions. *Astropart. Phys.*, 5:81–110, 1996.

A. Cooper-Sarkar and S. Sarkar. Predictions for high energy neutrino cross-sections from the ZEUS global PDF fits. *JHEP*, 0801:075, 2008.

J. Lundberg, J. Conrad, W. Rolke, and A. Lopez. Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0. *Comput. Phys. Commun.*, 181:683–686, 2010.

A.D. Martin, M.G. Ryskin, and A.M. Stasto. Prompt neutrinos from atmospheric $c\bar{c}$ and $b\bar{b}$ production and the gluon at very small x. *Acta Phys. Polon.*, B34:3273–3304, 2003.

R. Abbasi et al. Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II. *Phys. Rev.*, D79:102005, 2009.

M.C. Gonzalez-Garcia, M. Maltoni, and J. Rojo. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data. *JHEP*, 0610:075, 2006.