On Quantum Capacity of Compound Channels

Igor Bjelaković†, Holger Boche‡, and Janis Nötzel§

Heinrich-Hertz-Chair for Mobile Communications, Technische Universität Berlin

(Dated: August 7, 2008)

In this paper we address the issue of universal or robust communication over quantum channels. Specifically, we consider memoryless communication scenario with channel uncertainty which is an analog of compound channel in classical information theory. We determine the quantum capacity of finite compound channels and arbitrary compound channels with informed receiver. Our approach in the finite case is based on the observation that perfect channel knowledge at the decoder does not increase the capacity of finite quantum compound channels. As a consequence we obtain coding theorem for finite quantum averaged channels, the simplest class of channels with long-term memory. The extension of these results to quantum compound channels with uninformed encoder and decoder, and infinitely many constituent remains an open problem.

I. INTRODUCTION

The determination of capacities of quantum channels in various settings is one of the most fundamental tasks of quantum information theory. The classical capacity of memoryless quantum channels has been identified in seminal work by Holevo [1] and Schumacher and Westmoreland [2]. A much sharper version of that coding theorem was obtained subsequently and independently by Winter [3], who proved the strong converse and achievable with von Neumann measurements, and Ogawa and Nagao [4] who gave another proof of the strong converse to the coding theorem. Concerning quantum capacity, Lloyd [5] provided a strong heuristic evidence that the quantum capacity of quantum memoryless channels is given by the regularized coherent information. The follow-up work of Shor [6] and Devetak [7] gradually removed the residual ambiguity and culminated in a rigorous proof of the direct part of the coding theorem for memoryless quantum channels in [7]. The converse coding theorem was already done by Barnum, Knill, and Nielsen [6].

The underlying assumptions on the quantum communication model considered in that fundamental work are a) that the quantum channel is perfectly known, and b) that there are no correlations between successive channel uses, i.e. the channel is memoryless. Both postulates are rarely fulfilled for real world communication systems. E.g. it is practically impossible to determine all parameters the channel depends on with infinite precision. Thus, we are forced to design protocols which work well for communication scenarios with channel uncertainty. Similarly, it is definitely too optimistic to presuppose that the channel under consideration operates in a memoryless fashion.

In this work we relax the first assumption while sustaining the memoryless character of the communication. Our model can be described as follows: We are given an arbitrary set \mathcal{I} of memoryless quantum channels. Both sender and receiver merely know that the actual channel belongs to this set. Consequently, they are forced to find and use codes that are reliable for the whole set \mathcal{I} of channels. This is exactly the quantum analog of compound channels from classical information theory. Moreover this is a channel version of the universal quantum data compression which has been introduced by Jozsa, M., P., and R. Horodecki [9].

The main results of the paper are:

1. The determination of the quantum capacity of compound channels in the case $|\mathcal{I}| < \infty$. Here we first prove the coding theorem for finite \mathcal{I} assuming that the decoder knows which channel is in use (informed decoder for short). Then we show that each rate achievable in this situation is also achievable without such prior knowledge. As a consequence we can determine the quantum capacity of finite averaged channels. Eventually, we determine the capacity of quantum compound channel with informed encoder in the case $|\mathcal{I}| < \infty$. Denoting the quantum capacities of \mathcal{I} with informed encoder by $Q_{IE}(\mathcal{I})$, and without any prior information by $Q(\mathcal{I})$, our results in this part of the paper can be roughly summarized by

$$Q(\mathcal{I}) = Q_{ID}(\mathcal{I}) \leq Q_{IE}(\mathcal{I}).$$

It can be shown, by generalizing an example given by Blackwell, Breiman, and Thomasian [10], that the inequality is strict in general.

2. We prove the coding theorem for arbitrary \mathcal{I} with informed decoder. Unfortunately, the techniques we employ do not allow an extension of the result for finite sets of channels to arbitrary \mathcal{I} without channel knowledge at the decoder.
A. Related Work

The capacity of compound channels in the classical setting was determined by Blackwell, Breiman, and Thomasian \cite{10} and Wolfowitz \cite{11,12}. It was Wolfowitz \cite{11,12} who realized the importance of channel knowledge at the encoder and the decoder of the compound channel and its theoretical implications. He showed, that the assumption of informed decoder does not imply a higher capacity of the compound channel. His approach was to establish first the direct part for the compound channel without channel knowledge at the decoder and to show that the upper bound of the converse part with informed decoder coincides with the lower bound obtained in the first step. So, our proof strategy described above is exactly the reverse to that of Wolfowitz.

In a beautiful paper \cite{13} Datta and Dorlas determined the classical capacity of finite averaged quantum channels, a channel model which is equivalent to finite quantum compound channels, i.e. $|\mathcal{I}| < \infty$. Somewhat later an independent approach in the finite case was given in \cite{14} by Farkas. Subsequently, two of us \cite{15} were able to identify the classical capacity of arbitrary quantum compound channels and, as a consequence thereof, the classical capacity of arbitrary averaged channels. Recently Hayashi \cite{16} obtained a similar result with a completely different proof technique. He used the Schur-Weyl duality and the packing lemma from \cite{17}.

B. Outline

The paper is organized as follows: Section II provides the necessary definitions concerning compound channels and codes in scenarios with and without informed decoder. The following section III contains a modified version of Klesse’s \cite{18} one-shot coding result which applies to finite arithmetic averages of quantum channels. Since good codes for such averaged channels are also good for quantum channels that are averaged over we obtain the basic building block of the coding theorem for finite compound channels with informed decoder which is derived in section IV. Moreover, using the elegant channel estimation strategy developed by Datta and Dorlas \cite{13} we are able to convert the codes for finite quantum compound channels with informed decoder into codes that do not require such prior information at the decoder. Section V concludes with the coding theorem for finite quantum compound channels with informed decoder. Discretization arguments via τ-nets and some simple approximation results concerning the coherent information and entanglement fidelity are presented in section VI. They are the basis for section VII in which we carry out the extension of the capacity result with informed decoder to the case of arbitrary set \mathcal{I}.

C. Notation and Conventions

All Hilbert spaces are assumed to have finite dimension and are over the field \mathbb{C}. $\mathcal{S}(\mathcal{H})$ is the set of states, i.e. positive semi-definite operators with trace 1 acting on the Hilbert space \mathcal{H}. The set of completely positive trace preserving (CPTP) maps between the operator spaces $\mathcal{B}(\mathcal{H})$ and $\mathcal{B}(\mathcal{K})$ is denoted by $\mathcal{C}(\mathcal{H},\mathcal{K})$. $C^1_1(\mathcal{H},\mathcal{K})$ stands for the set of completely positive trace decreasing maps between $\mathcal{B}(\mathcal{H})$ and $\mathcal{B}(\mathcal{K})$. Throughout the paper we use base two logarithms which are denoted by log. The von Neumann entropy of a state $\rho \in \mathcal{S}(\mathcal{H})$ is given by

$$S(\rho) := -\text{tr}(\rho \log \rho).$$

The coherent information for $\mathcal{N} \in \mathcal{C}(\mathcal{H},\mathcal{K})$ and $\rho \in \mathcal{S}(\mathcal{H})$ is defined by

$$I_{c}(\rho,\mathcal{N}) := S(\mathcal{N}(\rho)) - S((id_{\mathcal{H}} \otimes \mathcal{N})(|\psi\rangle\langle\psi|)),$$

where $\psi \in \mathcal{H} \otimes \mathcal{H}$ is a purification of the state ρ. A useful equivalent definition of $I_{c}(\rho,\mathcal{N})$ is given in terms of \mathcal{N} and the complementary channel \mathcal{E}: Due to Stein’s dilation theorem \mathcal{N} can be represented as $\mathcal{N}(\rho) = \text{tr}_{\mathcal{K}}(v \rho v^*)$ for $\rho \in \mathcal{S}(\mathcal{H})$ where $v : \mathcal{H} \rightarrow \mathcal{K} \otimes \mathcal{H}_{c}$ is a linear isometry. The complementary channel \mathcal{E} in $\mathcal{C}(\mathcal{H},\mathcal{H}_{c})$ to \mathcal{N} is given by

$$\mathcal{E}(\rho) := \text{tr}_{\mathcal{K}}(v \rho v^*) \quad (\rho \in \mathcal{S}(\mathcal{H})).$$

The coherent information can then be written as

$$I_{c}(\rho,\mathcal{N}) = S(\mathcal{N}(\rho)) - S(\mathcal{E}(\rho)).$$

As a last notational issue we recall the definition of entanglement fidelity. For $\rho \in \mathcal{S}(\mathcal{H})$ and $\mathcal{N} \in C^1_1(\mathcal{H},\mathcal{K})$ it is given by

$$F_{e}(\rho,\mathcal{N}) := \langle \psi, (id_{\mathcal{H}} \otimes \mathcal{N})(|\psi\rangle\langle\psi|)\psi \rangle,$$

with a purification $\psi \in \mathcal{H} \otimes \mathcal{H}$ of the state ρ.

II. CODES AND CAPACITY

Let $\mathcal{I} \subset \mathcal{C}(\mathcal{H},\mathcal{K})$. The memoryless compound channel associated with \mathcal{I} is given by the family $\{\mathcal{N}^{\otimes N} : \mathcal{S}(\mathcal{H}^{\otimes N}) \rightarrow \mathcal{S}(\mathcal{K}^{\otimes N})\}_{N \in \mathbb{N}}$. In the rest of the paper we will write simply \mathcal{I} for that family. Most of the time we will deal with compound channels with informed decoder, i.e. we suppose that the receiver knows which channel is in use. The definition of codes in this situation is as follows:

An (l, k_i)-code for \mathcal{I} with informed decoder consists of a subspace $\mathcal{F}_l \subset \mathcal{H}^{\otimes l}$ with $k_i = \dim \mathcal{F}_l$ and a family of CPTP maps $\{R^{l}_N : \mathcal{S}(\mathcal{K}^{\otimes N}) \rightarrow \mathcal{S}(\mathcal{H}^{\otimes N})\}_{N \in \mathbb{N}}$. A nonnegative number R is called an achievable rate for \mathcal{I} with informed decoder if there is a sequence of (l, k_i)-codes such that
Throughout the paper we will use the close relationship

\[I \]

It is clear from the definitions given above that

\[\text{We endow the encoder with a set of subspaces, one for each channel in } \mathcal{J}. \]

The capacity \(Q_{1D}(\mathcal{J}) \) of the memoryless compound channel \(\mathcal{J} \) with informed decoder is given by

\[Q_{1D}(\mathcal{J}) := \sup \{ R \in \mathbb{R}_+ : R \text{ is achievable for } \mathcal{J} \text{ with informed decoder} \}. \]

The definition of codes in the situation of an informed encoder is straightforward:

We endow the encoder with a set of subspaces, one for each channel in \(\mathcal{J} \).

An \((l,k_i)-\)code for \(\mathcal{J} \) with informed encoder thus consists of subspaces \(\{ \mathcal{F}_i^N \}_{N \in \mathbb{Z}} \) with \(\mathcal{F}_i^N \subset \mathcal{H}_i^{\otimes l_i} \) and \(k_i = \dim \mathcal{F}_i^N \) for all \(N \in \mathcal{J} \) and a recovery operation \(R_i^l : S(\mathcal{H}_i^{\otimes l_i}) \rightarrow S(\mathcal{G}_i^{\otimes l_i}) \).

A nonnegative number \(R \) is called an achievable rate for \(\mathcal{J} \) with informed encoder if there is a sequence of \((l,k_i)-\)codes such that

\[\begin{align*}
1. & \lim_{l \to \infty} \frac{1}{l} \log k_i \geq R, \quad \text{and} \\
2. & \lim_{l \to \infty} \inf_{N \in \mathbb{Z}} F_e(\pi_{F_i^N}, R_i^l \circ N_i^{\otimes l_i}) = 1
\end{align*} \]

hold with \(\pi_{F_i^N} := \frac{p_{F_i^N}}{\text{tr}(p_{F_i^N})} \) where \(p_{F_i^N} \) is the orthogonal projection onto \(\mathcal{F}_i^N \).

The capacity \(Q_{1E}(\mathcal{J}) \) of the memoryless compound channel \(\mathcal{J} \) with informed encoder is given by

\[Q_{1E}(\mathcal{J}) := \sup \{ R \in \mathbb{R}_+ : R \text{ is achievable for } \mathcal{J} \text{ with informed encoder} \}. \]

Codes and capacity for the memoryless compound channel \(\mathcal{J} \) with uninformed encoder and decoder are defined in a similar fashion. The only change is that we do not allow the recovery operation to depend on \(N \in \mathcal{J} \). I.e. An \((l,k_i)-\)code for \(\mathcal{J} \) is a pair \((\mathcal{F}_i, R_i^l)\) where \(\mathcal{F}_i \) is a subspace of \(\mathcal{H}_i^{\otimes l_i} \) and \(k_i = \dim \mathcal{F}_i \) and \(R_i^l \in \mathcal{C}(\mathcal{H}_i^{\otimes l_i}, \mathcal{G}_i^{\otimes l_i}) \).

A nonnegative number \(R \) is called an achievable rate for \(\mathcal{J} \) if there is a sequence of \((l,k_i)-\)codes such that

\[\begin{align*}
1. & \lim_{l \to \infty} \frac{1}{l} \log k_i \geq R, \quad \text{and} \\
2. & \lim_{l \to \infty} \inf_{N \in \mathbb{Z}} F_e(\pi_{F_i^N}, R_i^l \circ N_i^{\otimes l_i}) = 1
\end{align*} \]

The capacity \(Q(\mathcal{J}) \) of the memoryless compound channel \(\mathcal{J} \) is given by

\[Q(\mathcal{J}) := \sup \{ R \in \mathbb{R}_+ : R \text{ is achievable for } \mathcal{J} \}. \]

It is clear from the definitions given above that

\[Q(\mathcal{J}) \leq \min \{ Q_{1E}(\mathcal{J}), Q_{1D}(\mathcal{J}) \} \tag{1} \]

holds for each \(\mathcal{J} \subset \mathcal{C}(\mathcal{H}, \mathcal{K}) \).

Throughout the paper we will use the close relationship between the quantum compound channels with \(|\mathcal{J}| < \infty \) and (finite) averaged channels. The latter are described as follows: Given any finite set \(\mathcal{J} = \{ N_1, \ldots, N_N \} \subset \mathcal{C}(\mathcal{H}, \mathcal{K}) \), real numbers \(\lambda_1, \ldots, \lambda_N > 0 \) with \(\sum_{i=1}^N \lambda_i = 1 \), and \(l \in \mathbb{N} \) we set

\[N_l := \sum_{i=1}^N \lambda_i N_i^{\otimes l_i}. \]

The averaged channel \(\mathcal{A}_{3,\lambda} \) associated with \(\mathcal{J} \) and \(\lambda := (\lambda_1, \ldots, \lambda_N) \) is then the family \(\{ N_l : S(\mathcal{H}_i^{\otimes l_i}) \rightarrow S(\mathcal{G}_i^{\otimes l_i}) \}_{l \in \mathbb{N}} \). The codes and capacities, \(Q_{1D}(\mathcal{A}_{3,\lambda}) \) and \(Q(\mathcal{A}_{3,\lambda}) \), with or without informed decoder are defined in a similar fashion as for compound channels.

Clearly, an \((l,k_i)-\)code for \(\mathcal{J} \) with informed decoder and

\[F_e(\pi_{F_i}, R_i^l \circ N_i^{\otimes l_i}) \geq 1 - \varepsilon \quad \forall i \in \{1, \ldots, N\} \]

implies

\[F_e(\pi_{F_i}, \sum_{i=1}^N \lambda_i R_i^l \circ N_i^{\otimes l_i}) \geq 1 - \varepsilon. \tag{2} \]

Conversely, \((2) \) implies

\[F_e(\pi_{F_i}, R_i^l \circ N_i^{\otimes l_i}) \geq 1 - \frac{\varepsilon}{\lambda_i} \quad \forall i \in \{1, \ldots, N\}. \]

Similar relation holds in the case of uninformed decoder. Thus we are led to the following simple consequence which will be used freely in the rest of the paper.

Lemma II.1 Let \(\mathcal{J} = \{ N_1, \ldots, N_N \} \subset \mathcal{C}(\mathcal{H}, \mathcal{K}) \) and real numbers \(\lambda_1, \ldots, \lambda_N > 0 \) with \(\sum_{i=1}^N \lambda_i = 1 \) be given. Then

\[Q_{1D}(\mathcal{J}) = Q_{1D}(\mathcal{A}_{3,\lambda}) \quad \text{and} \quad Q(\mathcal{J}) = Q(\mathcal{A}_{3,\lambda}). \]

III. ONE-SHOT CODING RESULT

Our coding result will be based on a one-shot result which is an extension of that for a single channel obtained in [18] by Klesse. A similar approach for a single channel is given in the paper [19] by Hayden, Horodecki, Yard, and Winter.

We start with subspaces \(\mathcal{F} \subset \mathcal{G} \subset \mathcal{H} \) of a given Hilbert space \(\mathcal{H} \) and states \(\pi_{\mathcal{F}} := p/\text{tr}(p) \) and \(\pi_{\mathcal{G}} := q/\text{tr}(q) \) where \(p \) and \(q \) are the projections onto \(\mathcal{F} \) and \(\mathcal{G} \) respectively. Recall the definition of the code entanglement fidelity as

\[F_{c,e}(\pi_{\mathcal{F}}, N) := \max_{R \in \mathcal{C}(\mathcal{K}, \mathcal{H})} F_e(\pi_{\mathcal{F}}, R \circ N), \]

where we admit any completely positive trace decreasing (CPTD) map \(N : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K}) \). The set of completely positive trace decreasing maps is denoted by \(\mathcal{C}(\mathcal{H}, \mathcal{K}) \). Klesse’s main result in [18] can be stated as follows:
Theorem III.1 (Klesse [18]) Let the Hilbert space \mathcal{H} be given and consider subspaces $\mathcal{F} \subset \mathcal{G} \subset \mathcal{H}$ with $\dim \mathcal{F} = k$. Then for any $\mathcal{N} \in C^1(\mathcal{H}, \mathcal{K})$ allowing a representation with n Kraus operators we have
\[
\int_{\mathcal{U}(\mathcal{G})} F_{e,v}(u \pi_{\mathcal{F}} u^*, N) du \geq \text{tr}(N(\pi_{\mathcal{G}})) - \sqrt{k \cdot n} ||N(\pi_{\mathcal{G}})||_2,
\]
where $\mathcal{U}(\mathcal{G})$ denotes the group of unitaries acting on \mathcal{G} and du indicates that the integration is with respect to the Haar measure on $\mathcal{U}(\mathcal{G})$.

Our main goal in this section will be a variant of Theorem III.1 which applies to finite arithmetic averages of CPTD maps.

Let $N_1, \ldots, N_N \in C^1(\mathcal{H}, \mathcal{K})$ and set
\[
\mathcal{N} := \frac{1}{N} \sum_{i=1}^{N} N_i \in C^1(\mathcal{H}, \mathcal{K}).
\]
As in Theorem III.1 we consider subspaces $\mathcal{F} \subset \mathcal{G} \subset \mathcal{H}$ and states $\pi_{\mathcal{F}}$ and $\pi_{\mathcal{G}}$.

Let $\psi \in \mathcal{H}_a \otimes \mathcal{K}$, $\mathcal{H}_a = \mathcal{H}$, be a purification of $\pi_{\mathcal{F}}$ and consider a Stinespring dilation of the channel \mathcal{N} given by
\[
\mathcal{N}(\cdot) \rightarrow \text{tr}_{\mathcal{H}_c}((1_{\mathcal{H}_a} \otimes p_e)\psi(\cdot)\psi^*),
\]
where \mathcal{H}_c is a suitable finite-dimensional Hilbert space, p_e is a projection onto a subspace of \mathcal{H}_c, and $\psi : \mathcal{H} \rightarrow \mathcal{K} \otimes \mathcal{H}_c$ is an isometry.

Let us define a pure state on $\mathcal{H}_a \otimes \mathcal{K} \otimes \mathcal{H}_c$ by the formula
\[
\psi' := \frac{1}{\text{tr}(N(\pi_{\mathcal{F}}))}(1_{\mathcal{H}_a} \otimes \rho_a)\psi(1_{\mathcal{H}_a} \otimes v)\psi.
\]
We set
\[
\rho' := \text{tr}_{\mathcal{H}_a \otimes \mathcal{K}}(|\psi'\rangle \langle \psi'|), \quad \rho_{ae}' := \text{tr}_{\mathcal{K}}(|\psi'\rangle \langle \psi'|),
\]
and
\[
\rho_a := \text{tr}_{\mathcal{H}}(|\psi\rangle \langle \psi|), \quad \rho_e := \text{tr}_{\mathcal{K} \otimes \mathcal{H}_c}(|\psi'\rangle \langle \psi'|).
\]
We borrow the following lemma from [18, 19] which will be the basis of the result we are going to derive in this section.

Lemma III.2 (Cf. [18, 19]) For any $\mathcal{N} \in C^1(\mathcal{H}, \mathcal{K})$ there exists a recovery operation $\mathcal{R} \in C(\mathcal{K}, \mathcal{H})$ with
\[
F_e(\rho, \mathcal{R} \circ \mathcal{N}) \geq w - ||w\rho_{ae}' - w\rho_a \otimes \rho_e'||_1,
\]
where $w = \text{tr}(N(\pi_{\mathcal{F}}))$.

The next, simple lemma is needed in the proof of theorem III.4

Lemma III.3 Let L and D be $N \times N$ matrices with non-negative entries which satisfy
\[
L_{jl} \leq L_{jj}, \quad L_{jl} \leq L_{ll},
\]
and
\[
D_{jl} \leq \max\{D_{jj}, D_{ll}\}
\]
for all $j, l \in \{1, \ldots, N\}$. Then
\[
\sum_{j,l=1}^{N} \frac{1}{N} \sqrt{L_{jl}D_{jl}} \leq 2 \sum_{j=1}^{N} \sqrt{L_{jj}D_{jj}}.
\]

Proof. Note that (5) implies
\[
D_{jl} \leq D_{jj} + D_{ll}.
\]
Therewith we obtain
\[
\sum_{j,l=1}^{N} \frac{1}{N} \sqrt{L_{jl}D_{jl}} \leq \sum_{j,l=1}^{N} \frac{1}{N} \sqrt{L_{jj}(D_{jj} + D_{ll})}
\]
\[
\leq \sum_{j,l=1}^{N} \frac{1}{N} \sqrt{L_{jj}D_{jj} + L_{ll}D_{ll}}
\]
\[
\leq \sum_{j,l=1}^{N} \frac{1}{N} \left(\sqrt{L_{jj}D_{jj}} + \sqrt{L_{ll}D_{ll}}\right)
\]
\[
= 2 \sum_{j=1}^{N} \sqrt{L_{jj}D_{jj}},
\]
where in (7) we have used (6), in (8) we employed (4), and (9) holds because $a + b \leq \sqrt{a} + \sqrt{b}$ for all non-negative real numbers a, b.

Our main result in this section can be stated as follows:

Theorem III.4 Let the Hilbert space \mathcal{H} be given and consider subspaces $\mathcal{F} \subset \mathcal{G} \subset \mathcal{H}$ with $\dim \mathcal{F} = k$. For any choice of $N_1, \ldots, N_N \in C^1(\mathcal{H}, \mathcal{K})$ each allowing a representation with n_j Kraus operators, $j = 1, \ldots, N$, we set
\[
\mathcal{N} := \frac{1}{N} \sum_{j=1}^{N} N_j.
\]
Then
\[
\int_{\mathcal{U}(\mathcal{G})} F_e,v(u \pi_{\mathcal{F}} u^*, N) du \geq \text{tr}(N(\pi_{\mathcal{G}})) - 2N \sum_{j=1}^{N} \sqrt{k n_j} ||N_j(\pi_{\mathcal{G}})||_2.
\]

Proof. We can assume without loss of generality that the numbering of the channels is chosen in such a way that $n_1 \leq n_2 \leq \ldots \leq n_N$ holds for the numbers of Kraus operators of the maps N_1, \ldots, N_N. From lemma III.2 we know that there is a recovery operation \mathcal{R} such that
\[
F_e(\pi_{\mathcal{F}} \circ \mathcal{N}) \geq w - ||w\rho_{ae}' - w\rho_a \otimes \rho_e'||_1.
\]
where we have used the notation introduced in the paragraph preceding lemma [11,2].

For each \(j \in \{1, \ldots, N\} \) let \(\{a_{ji}\} \) be the set of Kraus operators of \(\mathcal{N}_j \). Let \(\{f_1, \ldots, f_N\} \) and \(\{e_1, \ldots, e_N\} \) be arbitrary orthonormal bases of \(\mathbb{C}^N \) and \(\mathbb{C}^m \). Let the projection \(p_e \) and the isometry \(v \) in (3) be chosen in such a way that for each \(\phi \in \mathcal{H} \) the relation

\[
(1_\mathcal{H} \otimes p_e) v \phi = \sum_{j=1}^N \sum_{i=1}^{n_j} \frac{1}{\sqrt{N}} (a_{ji} \phi) \otimes e_i \otimes f_j,
\]

holds. For a purification \(\psi \in \mathcal{H}_a \otimes \mathcal{H} \) of the state \(\pi_x \) we consider a Schmidt representation

\[
\psi = \frac{1}{\sqrt{N}} \sum_{m=1}^k h_m \otimes g_m,
\]

with suitable orthonormal systems \(\{h_1, \ldots, h_k\} \) and \(\{g_1, \ldots, g_k\} \). A calculation identical to that performed by Klesse [18] shows that the states on the right hand side of (11) can be expressed with the help of representation (11) as

\[
w_{\rho} \rho_e' = \sum_{j,l=1}^N \sum_{i=1}^{n_j} \sum_{s,t=1}^k \frac{\text{tr}(a_{ji} g_s)}{\sqrt{N}} x_{s,t,i,j} \langle x_{t,r,l}, x_{s,i,j} \rangle,
\]

with \(x_{s,i,j} := h_s \otimes e_i \otimes f_j \), and

\[
w_{\rho} \rho_e' = \sum_{j,l=1}^N \sum_{i=1}^{n_j} \frac{\text{tr}(a_{ji} \pi_x a_{ij}^*)}{\sqrt{N}} \rho_a \otimes |y_{i,j}\rangle \langle y_{i,j}|,
\]

where \(y_{i,j} := e_i \otimes f_j \).

If we perform the unitary conjugation induced by the unitary map \(x_{s,i,j} = h_s \otimes e_i \otimes f_j \leftrightarrow x_{s,i,j}' = g_s \otimes e_i \otimes f_j \) followed by the complex conjugation of the matrix elements with respect to the matrix units \(\{x_{s,i,j}' \} \) we obtain an anti-linear isometry \(I \) with respect to the metrics induced by the trace distances on the operator spaces under consideration. A calculation identical to that in [18] shows that under this isometry the subnormalized states in (12) and (13) transform to

\[
I(w_{\rho} \rho_e') = \frac{1}{kN} \sum_{j,l=1}^N \sum_{i=1}^{n_j} \frac{\text{tr}(a_{ji}^* a_{ij})}{\sqrt{N}} p \otimes |y_{i,j}\rangle \langle y_{i,j}|,
\]

and

\[
I(w_{\rho} \rho_e') = \frac{1}{kN} \sum_{j,l=1}^N \sum_{i=1}^{n_j} \frac{\text{tr}(a_{ji}^* a_{ij}^*)}{\sqrt{N}} p \otimes |y_{i,j}\rangle \langle y_{i,j}|,
\]

with \(p = k\pi_x \) and \(y_{i,j} = e_i \otimes f_j \) for \(j = 1, \ldots, N \) and \(i = 1, \ldots, n_j \). In summary, using the isometry \(I \), and (15) the inequality (16) can be formulated as

\[
F_e(\pi_x, R \circ N) \geq w - ||D(p)||_1,
\]

with \(w = \text{tr}(N(\pi_x)) \) and

\[
D(p) := \sum_{j,l=1}^N \frac{1}{N} \sum_{i=1}^{n_j} \sum_{r=1}^{n_l} D(i,j)(r,l)(p) \otimes |e_i\rangle \langle e_i| \otimes |f_j\rangle \langle f_j|,
\]

where

\[
D(i,j)(r,l)(p) := \frac{1}{k} \left(p a_{ji}^* a_{r,l}^* - \frac{1}{k} \text{tr}(p a_{ji}^* a_{r,l}^*) \right).
\]

Let us define

\[
D_j(t)(p) := \sum_{i=1}^{n_j} D(i,j)(t,i)(p) \otimes |e_i\rangle \langle e_i| \otimes |f_j\rangle \langle f_j|.
\]

The triangle inequality for the trace norm yields

\[
||D(p)||_1 \leq \sum_{j,l=1}^N \frac{1}{N} ||D_j(t)(p)||_1 \leq \sum_{j,l=1}^N \frac{1}{N} \sqrt{k} \min\{n_j, n_l\} ||D_j(t)(p)||_2,
\]

\[
= \sum_{j,l=1}^N \frac{1}{N} \sqrt{k} \min\{n_j, n_l\} ||D_j(t)(p)||_2^2.
\]

where the second line is justified by the standard relation between the trace and Hilbert-Schmidt norm, \(||a||_1 \leq \sqrt{d} ||a||_2 \), \(d \) being the number of non-zero singular values of \(a \).

In the next step we will compute \(||D_j(t)(p)||_2^2 \). A glance at (17) shows that

\[
(D_j(t)(p))^* = \sum_{i=1}^{n_j} D(i,j)(t,i)(p)^* \otimes |e_i\rangle \langle e_i| \otimes |f_j\rangle \langle f_j|,
\]

and consequently we obtain

\[
||D_j(t)(p)||_2^2 = \text{tr}((D_j(t)(p))^* D_j(t)(p))
\]

\[
= \sum_{i=1}^{n_j} \text{tr}((D(i,j)(t,i)(p))^* D(i,j)(t,i)(p))
\]

\[
= \frac{1}{k^2} \sum_{i=1}^{n_j} \text{tr}(p a_{ji}^* a_{i,r}^*) p a_{ji}^* a_{i,r}^* - \frac{1}{k} \text{tr}(p a_{ji}^* a_{i,r}^*)^2 - \frac{1}{k} \text{tr}(p a_{ji}^* a_{i,r}^*)^2.
\]

Let \(U \) be a random variable taking values in \(U(\mathcal{G}) \) according to the Haar measure of \(U(\mathcal{G}) \). Then we can infer from (18) that

\[
\mathbb{E}(||D(U^p U^*)||_1) \leq \sum_{j,l=1}^N \frac{1}{N} \sqrt{L_{ij}} \mathbb{E}(||D_j(t)(U^p U^*)||_2^2),
\]

where we have used the concavity of the function \(\sqrt{\cdot} \) and Jensen’s inequality, and moreover, we abbreviated
$k \min \{n_j, n_l\}$ by L_{jl}. Now, starting with (20) and arguing as Klesse [18] we obtain that

$$\mathbb{E}(|D_{jl}(U_p U^*)|^2) \leq \text{tr}(N_j(\pi_g) N_l(\pi_g)) = \langle N_j(\pi_g), N_l(\pi_g) \rangle_{HS}, \quad (22)$$

where $(\cdot, \cdot)_{HS}$ denotes the Hilbert-Schmidt inner product. Similarly

$$\mathbb{E}(\text{tr}(N(U \pi_g U^*))) = \text{tr}(N(\pi_g)). \quad (23)$$

Now, using (10), (16), (20), (21), and (22) we arrive at

$$\mathbb{E}(F_{c,c}(U \pi_g U^*, N)) \geq \text{tr}(N(\pi_g)) - \frac{1}{N} \sum_{j=1}^{N} \sqrt{L_{jj} D_{jj}}, \quad (24)$$

where for $j, l \in \{1, \ldots, N\}$ we introduced the abbreviations

$$L_{jl} = k \min \{n_j, n_l\},$$

and

$$D_{jl} := \langle N_j(\pi_g), N_l(\pi_g) \rangle_{HS}.$$

It is obvious that

$$L_{jl} \leq L_{jj} \quad \text{and} \quad L_{jl} \leq L_{ll}$$

hold. Moreover, the Cauchy-Schwarz inequality for the Hilbert-Schmidt inner product justifies the following chain of inequalities

$$D_{jl} = \langle N_j(\pi_g), N_l(\pi_g) \rangle_{HS} \leq \|N_j(\pi_g)\|_2 \|N_l(\pi_g)\|_2 \leq \max\{\|N_j(\pi_g)\|_2^2, \|N_l(\pi_g)\|_2^2\} = \max\{D_{jj}, D_{ll}\}.$$

Therefore, an application of Lemma III.3 allows us to conclude from (24) that

$$\mathbb{E}(F_{c,c}(U \pi_g U^*, N)) \geq \text{tr}(N(\pi_g)) - 2 \sum_{j=1}^{N} \sqrt{\kappa n_j} \|N_j(\pi_g)\|_2,$$

which is what we aimed to prove.

\[\Box \]

IV. DIRECT PART OF THE CODING THEOREM: FINITE CASE

In this section we will prove the coding theorem for finite compound channels. This is done in subsection IV.C after recalling some well-known properties of frequency-typical subspaces and Kraus operators in subsections IV.A and IV.B we

A. Typical Projections

In this subsection we will collect some well-known results on typical projections. Let $\rho \in \mathcal{S}(\mathcal{H})$ be a state and consider any diagonalization

$$\rho = \sum_{i=1}^{d} \lambda_i |e_i\rangle \langle e_i|,$$

where $d := \dim \mathcal{H}$. Using this representation the state $\rho^{\otimes l}$ can be written as

$$\rho^{\otimes l} = \sum_{x \in A^l} \lambda_x |e_{x^l}\rangle \langle e_{x^l}|,$$

with $A = \{1, \ldots, d\}$, $x^l := (x_1, \ldots, x_l) \in A^l$, $\lambda_x := \lambda_{x_1} \cdots \lambda_{x_l}$, and $e_{x^l} := e_{x_1} \otimes \cdots \otimes e_{x_l}$. The frequency-typical set of eigenvalues of ρ is given by

$$T_{\delta, l} := \{x^l \in A^l : \|p_{x^l} - \lambda_1^1 | 1 < \delta, p_{x^l} \ll \lambda\},$$

where p_{x^l} denotes the empirical probability distribution on A generated by x^l, i.e.

$$p_{x^l}(x) := \left| \left\{ j \in \{1, \ldots, l\} : x_j = x \right\} \right|,$$

λ is the probability distribution on A defined by the eigenvalues of ρ, and $p_{x^l} \ll \lambda$ means that $p_{x^l}(x) = 0$ whenever $\lambda_x = 0$.

The frequency-typical projection $q_{\delta, l}$ of ρ given by

$$q_{\delta, l} := \sum_{x^l \in T_{\delta, l}} |e_{x^l}\rangle \langle e_{x^l}|$$

has the following well-known properties:

\textbf{Lemma IV.1} There is a real number $c > 0$ and a function $h : \mathbb{N} \to \mathbb{R}^+$ with $h > 0$ and $\lim_{l \to \infty} h(l) = 0$ such that for each $\delta \in (0, 1/2)$ there exists a number $\phi(\delta) > 0$, with $\lim_{\delta \to 0} \phi(\delta) = 0$, and for any $\rho \in \mathcal{S}(\mathcal{H})$ the frequency-typical projection $q_{\delta, l} \in \mathcal{B}(\mathcal{H})^{\otimes l}$ satisfies

1. $\text{tr}(\rho^{\otimes l} q_{\delta, l}) \geq 1 - 2^{-l(c\delta^2 - h(l))},$

2. $2^{-l(S(\rho) + \phi(\delta))} q_{\delta, l} \leq q_{\delta, l} \rho^{\otimes l} \leq 2^{-l(S(\rho) - \phi(\delta))} q_{\delta, l},$

3. $\eta(\delta) 2^{l(S(\rho) - \phi(\delta))} \leq \text{tr}(q_{\delta, l}) \leq 2^{l(S(\rho) + \phi(\delta))}$ where

$$\eta(\delta) := 1 - 2^{-l(c\delta^2 - h(l))}.$$

The rightmost inequalities in 2. and 3. imply

$$\|q_{\delta, l} \rho^{\otimes l} q_{\delta, l}\|^2 \leq 2^{-l(S(\rho) - 3\phi(\delta))}.$$

Moreover, $\phi(\delta)$ and h are given by

$$h(l) = \frac{d}{l} \log(l + 1) \quad \forall l \in \mathbb{N}$$

$$\phi(\delta) = -\delta \log \frac{\delta}{d}.$$

The proof of the lemma is fairly standard and rests on purely classical reasoning. It combines the Bernstein-Szeged trick (cf. [20], sect. III.1) and the type counting methods from [17].
B. Typical Kraus Operators

According to Kraus’ representation theorem we can find to any $\mathcal{N} \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ a family of operators $a_1, \ldots, a_n \in B(\mathcal{H}, \mathcal{K})$ with $\sum_{i=1}^{n} a_i^* a_i = 1_{\mathcal{H}}$ and

$$\mathcal{N}(\rho) = \sum_{i=1}^{n} a_i \rho a_i^*$$

for all $\rho \in S(\mathcal{H})$.

We fix the maximally mixed state π_G supported by the subspace \mathcal{G} of \mathcal{H}. It is easily seen (cf. [21]) that the Kraus operators a_1, \ldots, a_n of \mathcal{N} can always be chosen such that

$$\text{tr}(a_i \pi_G a_i^*) = \delta_{ij} \text{tr}(a_i \pi_G a_i^*),$$

for all $i, j \in \{1, \ldots, n\}$. With this choice of Kraus operators we can define a probability distribution r on the set $B := \{1, \ldots, n\}$ by

$$r(i) := \text{tr}(a_i \pi_G a_i^*), \quad (i \in B).$$

It is shown in [22] that the Shannon entropy of r is nothing else than the entropy exchange $S_e(\pi_G, \mathcal{N})$, i.e.

$$H(r) = S_e(\pi_G, \mathcal{N}).$$

In a similar vein as in the previous subsection we introduce the notion of frequency-typical subset for r, i.e we set

$$K_{\delta,l} := \{y \in B^l : ||p_{y} - r||_1 < \delta, \ p_{y} \ll r\}$$

with $\delta > 0$. With this we can introduce the notion of the reduced operation by setting

$$\mathcal{N}_{\delta,l} (\rho) := \sum_{y \in K_{\delta,l}} a_{y} \rho a_{y}^*, \quad (25)$$

where $a_{y} := a_{y_1} \otimes \cdots \otimes a_{y_l}$ and $\rho \in S(\mathcal{G}^\otimes l)$. Moreover, we set

$$n_{\delta,l} := |K_{\delta,l}|,$$

which is the number of Kraus operators of the reduced operation $\mathcal{N}_{\delta,l}$. The properties of frequency-typical sets (cf. [17, 20]) lead immediately to

Lemma IV.2 Let $\delta \in (0, 1/2)$, $l \in \mathbb{N}$, and fix the maximally mixed state π_G on the subspace \mathcal{G} of \mathcal{H}. There is a real number $\gamma(\delta) > 0$ with $\lim_{\delta \to 0} \gamma(\delta) = 0$ such that for each $\mathcal{N} \in \mathcal{C}(\mathcal{H}, \mathcal{K})$ the reduced operation $\mathcal{N}_{\delta,l}$ satisfies

1. $\text{tr}(\mathcal{N}_{\delta,l} (\pi_G^\otimes l)) = r^\otimes l (K_{\delta,l}) \geq 1 - 2^{-l(c \delta^2 - h'(l))}$, with a universal positive constant $c' > 0$,

2. $n_{\delta,l} \leq 2^{l(S_e(\pi_G, \mathcal{N}) + \gamma(\delta))}$.

The function $h' : \mathbb{N} \to \mathbb{R}_+$ is given by $h'(l) = \frac{4^2}{l} \log(l+1)$.

C. The Direct Coding Theorem for Finitely Many Channels

Let us consider a compound channel given by a finite set $\mathcal{F} := \{N_1, \ldots, N_N\} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ and two subspaces $\mathcal{E}_l, \mathcal{G}^\otimes l$ of $\mathcal{H}^\otimes l$ with $\mathcal{E}_l \subset \mathcal{G}^\otimes l \subset \mathcal{H}^\otimes l$. Let $k_l := \dim \mathcal{E}_l$ and consider the associated maximally mixed states $\pi_{\mathcal{E}_l}$ on \mathcal{E}_l and $\pi_{\mathcal{G}}$ on \mathcal{G}.

For $j \in \{1, \ldots, N\}$ and states $N_j (\pi_G)$ let $q_{j,\delta,l} \in B(\mathcal{G}^\otimes l)$ denote the frequency-typical projection of $N_j (\pi_G)$ defined in Sec. [V A] for $\delta > 0$ and $l \in \mathbb{N}$. Moreover, let $N_j (\pi_G)$ be the reduced operation associated with $N_j (\pi_G)$ for $j \in \{1, \ldots, N\}, \delta > 0$, and $l \in \mathbb{N}$ as considered in Sec. [IV B].

To every projection q on $\mathcal{H}^\otimes l$, associate the operation $\mathcal{Q}(\mathcal{H}^\otimes l, \mathcal{H}^\otimes l)$ defined by $\mathcal{Q}(\cdot) := q \cdot q$ and let q^\perp denote the ortho-complement of q.

In the following, for the compound channel \mathcal{F} and every $l \in \mathbb{N}$, we will consider the average code fidelity

$$F_{c,e,d}(\pi_{\mathcal{E}_l}, \mathcal{F}) := \max_{\mathcal{R}_{\mathcal{E}_l,\cdots,\mathcal{E}_l}} \frac{1}{N} \sum_{i=1}^{N} F_e(\pi_{\mathcal{E}_l}, \mathcal{R}_{\mathcal{E}_l} \circ N_{\mathcal{E}_l}^\otimes l)$$

where it is understood that $\mathcal{R}_{\mathcal{E}_l}$ are recovery operations. Note that for every $\epsilon \in (0, 1)$, $F_{c,e,d}(\pi_{\mathcal{E}_l}, \mathcal{F}) \geq 1 - \epsilon$ implies the existence of an (l, k_l) code with informed decoder for \mathcal{F} that satisfies $F_e(\pi_{\mathcal{E}_l}, \mathcal{R}_{\mathcal{E}_l} \circ N_{\mathcal{E}_l}) \geq 1 - N \cdot \epsilon$ for every $i \in \{1, \ldots, N\}$.

For given $\delta > 0$, $j \in \{1, \ldots, N\}$ and $l \in \mathbb{N}$ we define

$$N_j (\cdot) := \mathcal{Q}_{\delta,l} \circ N_j (\cdot)$$

and accordingly,

$$\tilde{N}_j (\cdot) := \frac{1}{N} \sum_{j=1}^{N} N_j (\cdot).$$

We show that, for every $j \in \{1, \ldots, N\}$,

$$F_{c,e}(\pi_{\mathcal{E}_l}, \tilde{N}_j^\otimes l) \geq F_{c,e}(\pi_{\mathcal{E}_l}, \tilde{N}_j).$$

(26)

Let $\mathcal{R} \in \mathcal{C}(\mathcal{K}^\otimes l, \mathcal{H}^\otimes l)$ be any recovery operation. Then

$$F_{c,e}(\pi_{\mathcal{E}_l}, \tilde{N}_j^\otimes l) \geq F_e(\pi_{\mathcal{E}_l}, \mathcal{R} \circ (Q_{j,\delta,l} \circ Q_{j,\delta,l}^\perp) \circ N_j^\otimes l)$$

$$= F_e(\pi_{\mathcal{E}_l}, \mathcal{R} \circ Q_{j,\delta,l} \circ N_j^\otimes l)$$

$$+ F_e(\pi_{\mathcal{E}_l}, \mathcal{R} \circ Q_{j,\delta,l}^\perp \circ N_j^\otimes l)$$

$$\geq F_e(\pi_{\mathcal{E}_l}, \mathcal{R} \circ Q_{j,\delta,l} \circ N_j^\otimes l)$$

$$\geq F_e(\pi_{\mathcal{E}_l}, \mathcal{R} \circ \tilde{N}_j).$$

The last inequality follows from the fact that \tilde{N}_j is a reduction of $Q_{j,\delta,l} \circ N_j^\otimes l$. Taking the maximum over all recovery operations \mathcal{R} proves the claim.
Using (26), we get the lower bound

\[F_{c,e,d}(\pi_{E_i}, I) = \frac{1}{N} \sum_{i=1}^{N} F_{c,e}(\pi_{E_i}, N_i^{\otimes l}) \geq \frac{1}{N} \sum_{i=1}^{N} F_{c,e}(\pi_{E_i}, \hat{N}_i) \geq F_{c,e}(\pi_{E_i}, \hat{N}) \]

(27)

Note that the inequality (27) is still valid if we replace \(\pi_{E_i} \) by \(u \pi_{E_i} u^* \) for any \(u \in \mathcal{U}(G^{\otimes l}) \). Consider \(F_{c}(G, I) := \mathbb{E}(F_{c,e,d}(U \pi_{E_i} U^*, I)) \), with a random variable \(U \) taking values in \(\mathcal{U}(G^{\otimes l}) \), and which is distributed according to the Haar measure. From (27) it follows that

\[F_{c}(G, I) \geq \mathbb{E}(F_{c,e}(U \pi_{E_i} U^*, \hat{N})). \]

(28)

Applying Theorem [11.3] to the right hand side of (28) we arrive at

\[F_{c}(G, I) \geq \mathbb{E}(F_{c,e}(U \pi_{E_i} U^*, \hat{N})) \geq \text{tr}(\hat{N}(\pi_{G}^{\otimes l})) - 2 \sum_{j=1}^{N} \sqrt{\text{tr}(\hat{N}_j(\pi_{G}^{\otimes l}))^2}, \]

(29)

where \(n_{j,\delta,l} \) stands for the number of Kraus operators of the reduced operation \(\hat{N}_j \).

Theorem IV.3 (Direct Part: Informed Decoder)

Let \(\mathcal{I} = \{ I_1, ..., I_N \} \subset \mathcal{C}(H, K) \) be a compound channel and \(\pi_G \) the maximally mixed state associated to a subspace \(G \subset H. \) Then

\[Q_{ID}(\mathcal{I}) \geq \min_{N_{i} \in \mathcal{I}} I_c(\pi_G, N_{i}). \]

Remark. Arguing as Klesse [18], an immediate consequence of this theorem is the inequality

\[Q_{ID}(\mathcal{I}) \geq \lim_{l \to \infty} \frac{1}{l} \max_{\rho \in \mathcal{S}(H^{\otimes l})} \min_{N_{i} \in \mathcal{I}} I_c(\rho, N_{i}^{\otimes l}). \]

See also the argument in section [VI]. Using the quantum Fano inequality and following the lines of [8], it is easy to establish the converse

\[Q_{ID}(\mathcal{I}) \leq \lim_{l \to \infty} \frac{1}{l} \max_{\rho \in \mathcal{S}(H^{\otimes l})} \min_{N_{i} \in \mathcal{I}} I_c(\rho, N_{i}^{\otimes l}). \]

(30)

Proof. We show that for every \(\epsilon > 0 \) the number

\[\min_{N_i \in \mathcal{I}} I_c(\pi_G, N_i) - \epsilon \]

is an achievable rate for \(\mathcal{I} \).

1. If \(\min_{N_i \in \mathcal{I}} I_c(\pi_G, N_i) - \epsilon \leq 0 \), there is nothing to prove.
2. Let \(\min_{N_i \in \mathcal{I}} I_c(\pi_G, N_i) - \epsilon > 0 \).
3. Choose \(\delta \in (0, 1/2) \) satisfying \(\gamma(\delta) + 3\varphi(\delta) < \epsilon \) with functions \(\psi, \varphi \) from Lemma [IV.3] [IV.2].

Pick a sequence of subspaces \((\pi_{E_i})_{l \in \mathbb{N}} \) with \(\pi_{E_i} \leq \pi_{G}^{\otimes l} \) for all \(l \in \mathbb{N} \) that are of dimension \(k_l = \lfloor \min_{N_i \in \mathcal{I}} I_c(\pi_G, N_i) - \epsilon \rfloor \). By \(S(\pi_G) \geq I_c(\pi_G, N_i) \) (see [8]), this is always possible. Obviously, \(\frac{1}{l} \log k_l \leq \min_{N_i \in \mathcal{I}} I_c(\pi_G, N_i) - \epsilon \).

We consider the terms in (28) separately.

\[\text{tr}(\hat{N}(\pi_{G}^{\otimes l})) \geq \frac{1}{N} \sum_{j=1}^{N} \text{tr}(\hat{N}_j(\pi_{G}^{\otimes l})) + \text{tr}(\hat{N}_j(\pi_{G}^{\otimes l})), \]

(31)

We used the fact that \(N_{j,\delta,l} \) is a reduction of \(\pi_{G}^{\otimes l} \) and Lemmas [IV.1] [IV.2].

Further, using the inequality \(||A + B||^2 \geq ||A||^2 + ||B||^2 \) valid for nonnegative operators \(A, B \in B(K^{\otimes l}) \) (see [18]), we get the inequality

\[||\hat{N}_j(\pi_{G}^{\otimes l})||^2 \leq ||\hat{N}_j(\pi_{G}^{\otimes l})||^2 + ||\hat{N}_j(\pi_{G}^{\otimes l})||^2 \leq 2||\hat{N}_j(\pi_{G}^{\otimes l})||^2 = 2||N_{j,\delta,l}^{\otimes l}(\pi_{G}^{\otimes l})||^2 \]

(32)

The last two inequalities follow from Lemma [IV.1]. Combining the inequalities (28), (31) and (32) with Lemma [IV.2] we finally see that

\[F_{c}(G, I) \geq 1 - 2^{-l((c^2 - h(l)) - 2l(c^2 - h(l)))} - 2^{-l(c^2 - h(l))} \]

(33)

This shows the existence of at least one sequence of \((l, k_l) \) codes for \(\mathcal{I} \) with informed decoder and

\[\lim_{l \to \infty} \frac{1}{l} \log k_l = \min_{N_i \in \mathcal{I}} I_c(\pi_G, N_i) - \epsilon. \]
as well as, for every $l \in \mathbb{N}$,
\[
\min_{N \in \mathcal{J}} F_e(\pi_{F_l}, \mathcal{R}_N \circ N^\otimes l) \geq 1 - N \cdot \epsilon_l
\]
with
\[
\epsilon_l = 2^{-l(\epsilon^2 - h(l))} + 2^{-l(\epsilon^2 - h(l))} + 2N \sqrt{2^{-l(\gamma - 3\eta^2)}}.
\]

Our next goal is to convert the codes for the given, finite set $\mathcal{J} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ with the informed decoder into truly compound codes. To this end, we need the channel estimation technique of Datta and Dorlas \[13\] which we recall now:

Theorem IV.4 (Datta & Dorlas \[13\])

Let $L = \{N_1, \ldots, N_N\} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ with $N \in \mathbb{N}$. Set $L = (\frac{1}{2})$. There is $f = f(\mathcal{J}) \in (0, 1)$ such that for each $m \in \mathbb{N}$ we can find mutually orthogonal projections $p_{i,m,L}, \ldots, p_{N,m,L} \in B(K^{(m)l})$ with $\sum_{i=1}^N p_{i,m,L} = 1_{R_m}$ and a pure state $\omega(m) \in \mathcal{S}(\mathcal{H}^{(m)l})$ such that

\[
\text{tr}(p_{i,m,L} N_i^{(m)l}(\omega(m))) \geq (1 - N \cdot f)^{N-1}
\]

holds for all $i \in \{1, \ldots, N\}$.

With the help of theorem IV.4 we will show that knowledge of the channel in the finite compound scenario does not increase the capacity.

Lemma IV.5 For any finite set $\mathcal{J} = \{N_1, \ldots, N_N\} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ we have

\[
Q_{ID}(\mathcal{J}) = Q(\mathcal{J}).
\]

Proof. The inequality $Q_{ID}(\mathcal{J}) \geq Q(\mathcal{J})$ is obvious from the definitions of these capacities. The proof will be complete if we show that each rate R achievable within the scenario of an informed decoder is also achievable without knowledge of the channel. Let $(F_l, \{R_i^l\}_{i=1}^N)$ be a (t, k_l)-code for $\mathcal{J} = \{N_1, \ldots, N_N\}$ with informed decoder and

\[
F_e(\pi_{F_l}, R_i^l \circ N_i^{\otimes l}) \geq 1 - \varepsilon
\]

for some $\varepsilon \in (0, 1)$ and all $i \in \{1, \ldots, N\}$.

Let the pure state $\omega^{(m)l}$ and projections $p_{i,m,L}, \ldots, p_{N,m,L}$ be as described in Theorem IV.4. Take $x_{m,L} \in \mathcal{H}^{(m)l}$ such that $\omega^{(m)l} = |x_{m,L}\rangle \langle x_{m,L}|$ and define a set of measurement operations $\tilde{R}_i^{mL} \in C^l(K^{(m)l}, \mathcal{H}^{(m)l})$ by $\tilde{R}_i^{mL} (\cdot) := \omega^{(m)l} \text{tr}(p_{i,m,L} \cdot p_{i,m,L})$. Set

\[
\mathcal{R}_i^{mL+l} := \sum_{i=1}^N \tilde{R}_i^{mL} \otimes R_i^l,
\]

\[
\mathcal{F}_i^{mL+l} := \{C \cdot x_{m,L}\} \otimes F_l
\]

and consider the averaged channel

\[
\mathcal{N}^{mL+t} = \frac{1}{N} \sum_{i=1}^N \mathcal{N}_i^{\otimes (mL+t)}.
\]

With the abbreviation

\[
F_e := F_e(\pi_{F_{mL+t}^l}, \mathcal{R}^{mL+t} \circ \mathcal{N}^{mL+t})
\]

we arrive at

\[
F_e = \frac{1}{N} \sum_{i,j=1}^N F_e(\omega^{(m)L} \otimes \pi_{F_l}, (\tilde{R}_i^{mL} \otimes R_j^l) \circ \mathcal{N}_i^{\otimes (mL+t)})
\]

\[
\geq \frac{1}{N} \sum_{i=1}^N \left(N \cdot f \cdot \mathcal{J} \right) \cdot \mathcal{R}_i^{mL} \circ \mathcal{N}_i^{\otimes l} (1 - \epsilon)
\]

\[
(1 - N \cdot f)^{N-1} (1 - \epsilon),
\]

by theorem IV.3 and \[39\]. We see from \[39\] that for each $i \in \{1, \ldots, N\}$

\[
F_e(\pi_{F_{mL+t}^l}, \mathcal{R}^{mL+t} \circ \mathcal{N}_i^{\otimes l}) \geq 1 - N^1(1 - \sigma(N, m, \varepsilon, f))
\]

with \(\sigma(N, m, \varepsilon, f) = (1 - N \cdot f)^{N-1} (1 - \epsilon)\). Replacing, for sufficiently large $l \in \mathbb{N}$, by $|\sqrt{l}|$, by $l - |\sqrt{l}|$, and ε by a sequence $(\varepsilon_l)_{l \in \mathbb{N}}$ with $\lim_{l \to \infty} \varepsilon_l = 0$ we obtain a sequence of (l, k_l)-codes (F_l^l, R_l^l) for \mathcal{J} with

\[
\lim_{l \to \infty} \min_{i \in \{1, \ldots, N\}} F_e(\pi_{F_l^l}, R_l^l \circ \mathcal{N}_i^{\otimes l}) = 1,
\]

and

\[
\liminf_{l \to \infty} \frac{1}{l} \log \dim F_l^l = \liminf_{l \to \infty} \frac{1}{l} \log k_l,
\]

which concludes the proof.

Lemma IV.11 Theorem IV.3 and \[30\] immediately imply the following coding theorem.

Theorem IV.6 (Coding Theorem: $|\mathcal{J}| < \infty$) For any finite set $\mathcal{J} = \{N_1, \ldots, N_N\} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ we have

\[
Q(\mathcal{J}) = \lim_{l \to \infty} \frac{1}{l} \max_{\rho \in S(\mathcal{H}^{(l)})} \min_{i \in \{1, \ldots, N\}} I(\rho, \mathcal{N}_i^{\otimes l}).
\]

Utilizing lemma IV.11 we obtain immediately the following capacity result for finite averaged quantum channels.
Corollary IV.7 (Capacity of Averaged Channels)
For any finite set $\mathcal{J} = \{N_1, \ldots, N_N\} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ and any $\lambda = (\lambda_1, \ldots, \lambda_N) \in \mathbb{R}^N$ with $\lambda_1, \ldots, \lambda_N > 0$, we have

$$Q(\mathfrak{A}_{\lambda}) = \lim_{t \to \infty} \frac{1}{t} \max_{\rho \in S(\mathcal{H}^{\otimes t})} \min_{i \in \{1, \ldots, N\}} I_c(\rho, \mathcal{N}_i^{\otimes t}),$$

where \mathfrak{A}_{λ} denotes the averaged channel defined by \mathcal{J} and λ.

We shall now briefly discuss the case of an informed encoder for finite compound channels.

Lemma IV.8 Let π_C be the maximally mixed state on a subspace $C \subset \mathcal{H}^{\otimes l}$ of dimension D and $\mathcal{E} : \mathcal{B}(\mathcal{H}^{\otimes l}) \to \mathcal{B}(\mathcal{H}^{\otimes l})$ such that

$$F_c(\pi_C, \mathcal{E}) \geq 1 - \epsilon.$$

To every $K \leq D$ there exists a subcode $C' \subset C$ of dimension $\dim C' = K$ such that

$$F_c(\pi_{C'}, \mathcal{E}) \geq 1 - \frac{D}{\lceil \frac{D}{K} \rceil} \cdot \epsilon.$$

Proof. Let P be the orthogonal projection onto C, that is $\pi_C = \frac{1}{\tr(P)} P$. Set $L := \lceil \frac{D}{K} \rceil$. Take a decomposition

$$C = \bigoplus_{i=1}^{L} C_i \bigoplus C_{L+1}$$

of C into pairwise orthogonal subspaces $C_i \subset C$ that satisfies $\dim C_i = K$, $i \in \{1, \ldots, L\}$ and $\dim C_{L+1} = D - K \cdot L$.

To every C_i, let the maximally mixed state on C_i be denoted by π_{C_i}. Clearly,

$$\pi_C = \sum_{i=1}^{L} \frac{K}{D} \pi_{C_i} + \frac{D - K \cdot L}{D} \pi_{C_{L+1}}.$$

By assumption and use of convexity of entanglement fidelity in the input distribution, this implies

$$1 - \epsilon \leq F_c(\pi_C, \mathcal{E}) \leq \sum_{i=1}^{L} \frac{K}{D} F_c(\pi_{C_i}, \mathcal{E}) + \frac{D - K \cdot L}{D} F_c(\pi_{C_{L+1}}, \mathcal{E}) \leq \frac{L}{D} \sum_{i \leq L, K} \max_{i \leq L, K} F_c(\pi_{C_i}, \mathcal{E})) + 1 - \frac{K}{D} \cdot \epsilon.$$

(36)

Clearly, (36) implies that there exists $j \in \{1, \ldots, L \}$ such that

$$1 - \frac{D}{L \cdot K} \epsilon \leq F_c(\pi_{C_j}, \mathcal{E}).$$

Set $C' = C_j$. □

Lemma IV.9 Let $n \in \mathbb{N}$, $A, B \in \mathbb{R}$ and $A > B > 0$. Then

$$\frac{|2^{nA}|}{|2^{nB} - \lfloor \frac{2^{nA}}{A} \rfloor^2 \cdot \lfloor \frac{2^{nB}}{B} \rfloor^2 \cdot \frac{1}{A} - \frac{1}{B} |} \leq 1 - 3 \cdot 2^{-nB}.$$

Proof. Let, for the moment, n be fixed. There are $\delta_1, \delta_2, \delta_B, \delta_1, \delta_B \in (0, 1)$ such that $\lfloor \frac{2^{nA}}{A} \rfloor = 2^{nA} + \delta_A$, $\lfloor \frac{2^{nB}}{B} \rfloor = 2^{nB} + \delta_B$ and $\lfloor \frac{2^{nA}}{A} \rfloor = 2^{nA} + \delta_A + \delta_B$. We will now derive a lower bound on the denominator.

$$(2^{nB} + \delta_B)(2^{nA} + \delta_A + \delta_B) \geq 2^{nB} \frac{2^{nA}}{2^{nB} + \delta_B} = 2^{(nA+B)} \frac{1}{2^{nB} + \delta_B} \geq 2^{(nA+B)} \frac{1}{2^{nB} + 1}.$$

(37)

With the help of (37) we get

$$\frac{|2^{nA}|}{|2^{nB} - \lfloor \frac{2^{nA}}{A} \rfloor^2 \cdot \lfloor \frac{2^{nB}}{B} \rfloor^2 \cdot \frac{1}{A} - \frac{1}{B} |} \leq \frac{2^{nA} + \delta_A + \delta_B}{(2^{nB} + \delta_B)(2^{nA} + \delta_A + \delta_B)} \leq \frac{2^{nA} + \delta_A}{2^{nB} + \delta_B} \leq 2^{nA} + 1.$$

□

Theorem IV.10 (Converse: Informed Encoder)
Let $\mathcal{J} = \{N_1, \ldots, N_N\} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ be a finite compound channel. The quantum capacity with informed encoder of \mathcal{J} is bounded from above by

$$Q_{IE}(\mathcal{J}) \leq \min_{N_j \in \mathcal{N}} Q(\mathcal{N}_j).$$

This is easily seen using standard techniques from [8].

We will now show that our upper bound is indeed achievable. To this end, we will now convert codes for single channels into codes for \mathcal{J} with informed encoder. Again, we need the channel estimation technique of Datta and Dorlas [13] which has already been stated in Theorem IV.3.

Theorem IV.11 (Direct Part: Informed Encoder)
For any finite set $\mathcal{J} = \{N_1, \ldots, N_N\} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ we have

$$Q_{IE}(\mathcal{J}) \geq \min_{N_i \in \mathcal{N}} Q(N_i).$$

Proof. Throughout the proof, we will write 'for all i' meaning 'for all $i \in \{1, \ldots, N\}$'.

Let $\epsilon > 0$ be arbitrary and $\{\pi_{G_1}, \ldots, \pi_{G_N}\}$ be maximally mixed states on corresponding subspaces $G_i \subset \mathcal{H}$. By the
we get

\[F_e(\pi_{\mathcal{F}_i}, \mathcal{R}_i^t \circ \mathcal{N}_i^{\otimes t}) \geq 1 - \epsilon_t \]

\[\dim \mathcal{F}_i^t = \left| 2^{(I_e(\pi_{\mathcal{F}_i} \mathcal{N}_i^{\otimes t}) - \epsilon_t)} \right|, \]

where \(\epsilon_t := \max_{1 \leq i \leq N} \epsilon^i_t \) and, clearly, \(\epsilon_t \downarrow 0 \).

We set \(E := \{ i | I_e(\pi_{\mathcal{F}_i}, \mathcal{N}_i) = \min_{1 \leq i \leq N} I_e(\pi_{\mathcal{F}_i}, \mathcal{N}_j) \} \) and denote the complement of \(E \) within \{1, ..., N\} by \(E^c \). We take \(k := \min\{i | i \in E\} \).

By definition, for every \(j \in E^c \) we have \(I_e(\pi_{\mathcal{F}_k}, \mathcal{N}_j) < I_e(\pi_{\mathcal{F}_i}, \mathcal{N}_j) - \epsilon \). By lemmas [V.18] and [V.9] for \(j \in E^c \) there exist subspaces \(\mathcal{F}_j^t \) with \(\dim \mathcal{F}_j^t = \left| 2^{(I_e(\pi_{\mathcal{F}_k} \mathcal{N}_j^{\otimes t}) - \epsilon)} \right| \) such that

\[F_e(\pi_{\mathcal{F}_j}, \mathcal{R}_j^t \circ \mathcal{N}_j^{\otimes t}) \geq 1 - \delta_t, \]

\[\lim_{t \to \infty} \frac{1}{t} \log \dim \mathcal{F}_j^t = I_e(\pi_{\mathcal{F}_k}, \mathcal{N}_j). \]

Replacing, for sufficiently large \(t \in \mathbb{N} \), \(m \) by \(\lfloor \sqrt{t} \rfloor \), \(l \) by \(l - \lfloor \sqrt{t} \rfloor \), we obtain a sequence of \((l, k_t)\)-codes for \(\mathcal{J} \) with informed encoder that achieves

\[\min_{1 \leq j \leq N} I_e(\pi_{\mathcal{J}_j}, \mathcal{N}_j) - \epsilon. \]

Since this holds true for every \(\epsilon > 0 \) we know that for every \(i \) the number \(\min_{1 \leq j \leq N} I_e(\pi_{\mathcal{F}_i}, \mathcal{N}_j) \) is an achievable rate.

Let \(\{ \sigma_i^{(m)} \}_{1 \leq i \leq N} \) be such that \(I_e(\sigma_i^{(m)}, \mathcal{N}_i^{\otimes m}) = \max_{\pi^{(m)}} I_e(\rho^{(m)}, \mathcal{N}_i^{\otimes m}) \) for all \(i \) and let \(\{ \eta_{\rho, i, \epsilon}^{(m)} \}_{1 \leq i \leq N} \) be the sequence of frequency typical states associated to \((\sigma_i^{(m)})_{n \in \mathbb{N}} \). We get the following chain of inequalities.

\[QIE(3) \geq \frac{1}{m} \lim_{n \to \infty} \frac{1}{n} QIE(3^{\otimes nm}) \geq \frac{1}{m} \lim_{n \to \infty} \frac{1}{n} \min_{1 \leq j \leq N} I_e(\pi_{n, \epsilon, j}^{(m)}, (\mathcal{N}_j^{\otimes m})^{\otimes n}) \]

\[\geq \lim_{n \to \infty} \frac{1}{n} \min_{1 \leq j \leq N} I_e(\pi_{j}^{(m)}, (\mathcal{N}_j^{\otimes m})^{\otimes n}) \]

\[\geq \min_{1 \leq j \leq N} \frac{1}{m} \max_{\rho} I_e(\rho^{(m)}, (\mathcal{N}_j^{\otimes m})^{\otimes n}). \]

Here, (1) is easily seen using using the fact that pure states can be transmitted with entanglement fidelity one over any channel by using a constant recovery operation. (2) has just been proven, while (3) is just continuity of the function \(\min \). In (4), we use the variant of BSST lemma [V.12] for single channel. The last line (5) follows by choice of \(\sigma_i^{(m)} \). Taking the limit \(m \to \infty \) proves the claim.

\[\square \]

V. Nets and Discrete Approximation in the Set of Quantum Channels

The purpose of this section is to collect and provide necessary building blocks for discretization arguments to follow in section [V]. We start with the existence of good discrete approximation in the set \(C(\mathcal{H}, K) \) with respect to the diamond norm \(\| \cdot \|_D \) in subsection [V.A]. The reasons for using this norm are that a) it is multiplicative with respect to tensor products of channels, and b) that it is easy to relate to the entanglement fidelity and coherent information. These relations are made precise in subsection [V.B].

A. Existence of Good Nets

Let \(C(\mathcal{H}, K) \) denote the set of CPTP maps with domain \(\mathcal{B}(\mathcal{H}) \) and range \(\mathcal{B}(K) \). Without loss of generality we assume that \(\mathcal{H} = \mathbb{C}^d \) and \(K = \mathbb{C}^d \). The constructions
to follow will be based on the diamond norm on the set of channels. It is defined by the prescription

$$||\mathcal{N}||_\diamond := \sup_{n \in \mathbb{N}} \max_{a \in B(\mathbb{C}^n \otimes \mathcal{H})} ||(id_n \otimes \mathcal{N})(a)||_1,$$

(40)

where $|| \cdot ||_1$ stands for the trace norm, $id_n : B(\mathbb{C}^n) \to B(\mathbb{C}^n)$ is the identity channel, and $\mathcal{N} : B(\mathcal{H}) \to B(\mathcal{K})$ is any linear map, not necessarily completely positive. $|| \cdot ||_\diamond$ is the dual norm to $|| \cdot ||_{cb}$, the norm of complete boundedness. We refer to [23] and [24] for additional information on these norms. It is an important fact that we need not maximize over all non-negative integers in (40), the norm stabilizes at the value $n = d = \dim \mathcal{H}$, i.e.

$$||\mathcal{N}||_\diamond = \max_{a \in B(\mathbb{C}^d \otimes \mathcal{H}), ||a||_1 = 1} ||(id_d \otimes \mathcal{N})(a)||_1.$$

(41)

Two different proofs of this fact can be found in [23] and [24].

It is well known, and not difficult to show, that for $\mathcal{N} \in C(\mathcal{H}, \mathcal{K})$ the relation

$$||\mathcal{N}||_\diamond = 1$$

holds. Consequently, $C(\mathcal{H}, \mathcal{K}) \subset \{ \Phi : B(\mathcal{H}) \to B(\mathcal{K}) : \Phi \text{ is linear and } ||\Phi||_\diamond = 1 \} := S_\diamond$. Moreover, it is clear that $C(\mathcal{H}, \mathcal{K})$ is a compact convex set.

A τ-net, $\tau > 0$, in $C(\mathcal{H}, \mathcal{K})$ is a set $\{ \mathcal{N}_i \}_{i=1}^N \subset C(\mathcal{H}, \mathcal{K})$ such that for each $\mathcal{N} \in C(\mathcal{H}, \mathcal{K})$ there is at least one $i \in \{ 1, \cdots, N \}$ with $||\mathcal{N} - \mathcal{N}_i||_\diamond < \tau$.

The following basic lemma shows the existence of τ-nets in $C(\mathcal{H}, \mathcal{K})$ the cardinality of which grows polynomially in $1/\tau$.

Lemma V.1 For any $\tau \in (0,1]$ there is a τ-net $\{ \mathcal{N}_i \}_{i=1}^N$ in $C(\mathcal{H}, \mathcal{K})$ with $N \leq \left(\frac{2}{\tau} \right)^{2(d-d')^2}$, where $d = \dim \mathcal{H}$ and $d' = \dim \mathcal{K}$.

Proof. The lemma is proved by simply imitating the proof of Lemma 2.6 in [23] where the corresponding result is shown for spheres in arbitrary finite dimensional normed spaces. We give the full argument for convenience. Let $\{ \mathcal{M}_i \}_{i=1}^M$ be an arbitrary subset of $C(\mathcal{H}, \mathcal{K})$ with the property that

$$||\mathcal{M}_i - \mathcal{M}_j||_\diamond \geq \tau,$$

for all $i \neq j$, $i, j \in \{ 1, \cdots, M \}$. We will establish an upper bound on the integer M now.

The open balls $B_\diamond(\mathcal{M}_i, \frac{\tau}{2}), i = 1, \cdots, M$, with centers at \mathcal{M}_i and radii $\tau/2$ are mutually disjoint and are contained in the ball $B_\diamond(0, 1 + \frac{\tau}{2})$ since $C(\mathcal{H}, \mathcal{K}) \subset S_\diamond$. So,

$$\bigcup_{i=1}^M B_\diamond(\mathcal{M}_i, \frac{\tau}{2}) \subset B_\diamond(0, 1 + \frac{\tau}{2}).$$

(42)

Let μ be the Borel-Lebesgue measure (or equivalently the Haar measure) on $(B(B(\mathcal{H}), B(\mathcal{K})), \Sigma_{Borel})$ where $B(B(\mathcal{H}), B(\mathcal{K}))$ denotes the set of linear maps from $B(\mathcal{H})$ to $B(\mathcal{K})$ and Σ_{Borel} is the σ-algebra of Borel sets. Computing the volume of the sets in (42) we obtain

$$\mu \left(\left(\frac{\tau}{2} \right)^{2(d-d')^2} \right) \leq \left(1 + \frac{\tau}{2} \right)^{2(d-d')^2} \mu(\mathcal{B}_\diamond(0, 1)),

(43)

where $\mathcal{B}_\diamond(0, 1)$ is the open unit ball with respect to the \diamond-norm and $2(d-d')^2$ is the dimension of $B(B(\mathcal{H}), B(\mathcal{K}))$ as a vector space over the field \mathbb{R}. This last inequality is equivalent to

$$M \leq \left(1 + \frac{2}{\tau} \right)^{2(d-d')^2}.$$

(43)

Now, let $\{ \mathcal{N}_i \}_{i=1}^N$ be a maximal set in $C(\mathcal{H}, \mathcal{K})$ with the property that $||\mathcal{N}_i - \mathcal{N}_j||_\diamond \geq \tau$ for all $i \neq j$. Then, clearly, $\{ \mathcal{N}_i \}_{i=1}^N$ is a τ-net and (43) holds. Due to our assumption that $\tau \in (0,1]$ we obtain

$$N \leq \left(1 + \frac{2}{\tau} \right)^{2(d-d')^2} \leq \left(\frac{3}{\tau} \right)^{2(d-d')^2}$$

and we are done.

\[\square \]

B. Discrete Approximation of Compound Quantum Channels

Let $\mathfrak{I} \subseteq C(\mathcal{H}, \mathcal{K})$ be an arbitrary set. Starting from a $\tau/2$-net $\mathfrak{N} := \{ \mathcal{N}_i \}_{i=1}^N$ with $N \leq \left(\frac{2}{\tau} \right)^{2(d-d')^2}$ as in Lemma V.1 we can build a $\tau/2$-net $\mathfrak{I}_\tau := \{ \mathcal{N}_i : \exists \mathcal{N} \in \mathfrak{I} \text{ with } ||\mathcal{N} - \mathcal{N}_i||_\diamond < \tau/2 \}$.

(44)

Let $\mathcal{U} \in C(\mathcal{H}, \mathcal{K})$ be the useless channel given by $\mathcal{U}(\rho) := \frac{1}{d'} \mathcal{K}, \rho \in S(\mathcal{H})$, and consider

$$\mathfrak{I}_\tau := \left\{ \left(1 - \frac{\tau}{2} \right) \mathcal{N} + \frac{\tau}{2} \mathcal{U} : \mathcal{N} \in \mathfrak{I}_\tau \right\},$$

(45)

where \mathfrak{I}_τ is defined in (44). For $\mathfrak{I} \subseteq C(\mathcal{H}, \mathcal{K})$ we introduce the abbreviation

$$I_c(\rho, \mathfrak{I}) := \inf_{\mathcal{N} \in \mathfrak{I}} I_c(\rho, \mathcal{N}),$$

for $\rho \in S(\mathcal{H})$. We list a few more or less obvious results in the following lemma that will be needed in the sequel.

Lemma V.2 Let $\mathfrak{I} \subseteq C(\mathcal{H}, \mathcal{K})$. For each positive $\tau \leq \frac{1}{e}$ let \mathfrak{I}_τ be the finite set of channels defined in (45).

1. $||\mathfrak{I}_\tau|| \leq \left(\frac{2}{\tau} \right)^{2(d-d')^2}$

2. For $\mathcal{N} \in \mathfrak{I}$ there is $\mathcal{N}_i \in \mathfrak{I}_\tau$ with

$$||\mathcal{N} \otimes \mathcal{I} - \mathcal{N}_i \otimes \mathcal{I}||_\diamond < \frac{\tau}{2}.$$
Consequently, for N, N_i, and any CPTP map $R : B(K)^{\otimes l} \to B(F)$ the relation
\begin{equation}
|F_c(\rho, R \circ N^\otimes l) - F_c(\rho, R \circ N_i^\otimes l)| < l\tau \tag{47}
\end{equation}
holds for all $\rho \in S(H^\otimes l)$ and $l \in \mathbb{N}$.

3. For all $\rho \in S(H)$ we have
\begin{equation}
|I_c(\rho, J) - I_c(\rho, J_\tau)| \leq \tau + 2\tau \log \frac{d}{\tau}. \tag{48}
\end{equation}

Proof. 1. This is clear from definition of J_τ.
2. It is clear from construction of J_τ that there is at least one $N_i \in J_\tau$ with
\[||N - N_i||_0 < \tau. \]
We know from $[23, 24]$ that $||R_1 \otimes R_2||_0 = ||R_1||_0||R_2||_0$ holds, i.e. \diamond--norm is multiplicative. The inequality $\eqref{46}$ is easily seen using repeatedly the tensor identity
\[a_1 \otimes b_1 - a_2 \otimes b_2 = a_1 \otimes (b_1 - b_2) + (a_1 - a_2) \otimes b_2, \]
the multiplicativity of the \diamond--norm, and the fact that $||R||_0 = 1$ for CPTP maps.

Let $\psi \in H^\otimes l \otimes H^\otimes l$ be a purification of $\rho \in S(H^\otimes l)$. Let us denote the left hand side of $\eqref{17}$ by ΔF_c. By the definition of the entanglement fidelity we have
\[\Delta F_c = ||\langle \psi, id_\rho^\otimes \otimes (R \circ (N^\otimes l_i - N_i^\otimes l_i)(\langle \psi \rangle |\psi\rangle))||. \]
An application of the Cauchy-Schwarz inequality shows that
\[\Delta F_c \leq \|[id_\rho^\otimes \otimes (R \circ (N^\otimes l_i - N_i^\otimes l_i))(\langle \psi \rangle |\psi\rangle))|| \]
\[\leq \|[id_\rho^\otimes \otimes (R \circ (N^\otimes l_i - N_i^\otimes l_i))(\langle \psi \rangle |\psi\rangle))||_\infty \]
\[\leq \|[id_\rho^\otimes \otimes (R \circ (N^\otimes l_i - N_i^\otimes l_i))(\langle \psi \rangle |\psi\rangle))||_1 \]
\[= \|[(id_\rho^\otimes \circ R) \circ (id_\rho^\otimes \circ (N^\otimes l_i - N_i^\otimes l_i))(\langle \psi \rangle |\psi\rangle))||_1 \]
\[\leq ||R||_0||N^\otimes l_i - N_i^\otimes l_i||_0||\langle \psi \rangle |\psi\rangle||_1 \]
\[< l\tau, \]
where we have used $||R||_0 = 1$, $||\langle \psi \rangle |\psi\rangle||_1 = 1$, and $\eqref{40}$. 3. The proof of $\eqref{39}$ is based on Fannes inequality $\eqref{20}$ and uses merely standard conclusions. So, we will confine ourselves to a brief outline of the argument. Fannes inequality states that $|S(\sigma_1) - S(\sigma_2)| \leq \tau \log d - \tau \log \tau$ for all density operators with $|\sigma_1 - \sigma_2|_1 \leq \tau \leq 1/e$. To the given τ we can always find an $N' \in J$ with
\begin{equation}
I_c(\rho, N') \leq I_c(\rho, J) + \tau. \tag{49}
\end{equation}
On the other hand there is $N_i \in J_\tau$ with $||N' - N_i||_0 < \tau$. This implies immediately
\[||N'(\rho) - N_i(\rho)||_1 < \tau, \]
and
\[||id_\rho \otimes N'(\langle \psi \rangle |\psi\rangle) - id_\rho \otimes N_i(\langle \psi \rangle |\psi\rangle)||_1 < \tau \]
by the definition of \diamond--norm where $\psi \in H \otimes H$ is a purification of $\rho \in S(H)$. Since
\[I_c(\rho, N') = I_c(\rho, J) - S(id_\rho \otimes N'(\langle \psi \rangle |\psi\rangle))) \]
with a similar relation for N_i, an application of Fannes inequality leads to
\[I_c(\rho, N_i) \leq I_c(\rho, N') + 2(\tau \log d - \tau \log \tau). \]
This and $\eqref{49}$ show that
\[I_c(\rho, J_\tau) \leq I_c(\rho, J) + \tau + 2(\tau \log d - \tau \log \tau). \]
The inequality
\[I_c(\rho, J) \leq I_c(\rho, J_\tau) + 2(\tau \log d - \tau \log \tau) \]
is shown in a similar vein.

\section{VI. DIRECT PART OF THE CODING THEOREM: GENERAL CASE WITH INFORMED DECODER}

In this final section we will utilize our coding results for finite J, and the discretization techniques from the previous section to establish the coding theorem for arbitrary J with informed decoder.

Theorem VI.1 Let $J \in C(H, K)$ be an arbitrary compound channel and let π_G be the maximally mixed state associated with a subspace $G \subset H$. Then
\[Q_{ID}(\mathcal{J}) \geq \inf_{\mathcal{N} \in \mathcal{E}} I_c(\pi_G, \mathcal{N}). \]

Proof. We consider two subspaces $F_1, G^\otimes l$ of $H^\otimes l$ with $F_1 \subset G^\otimes l \subset H^\otimes l$. Let $k_l := \dim F_1$ and we denote as before the associated maximally mixed states on F_1 and G by π_{F_1} and π_G.
If $\inf_{\mathcal{N} \in \mathcal{E}} I_c(\pi_G, \mathcal{N}) \leq 0$ there is nothing to prove. Therefore we suppose that
\[\inf_{\mathcal{N} \in \mathcal{E}} I_c(\pi_G, \mathcal{N}) > 0 \]
holds. We will show that for each $\varepsilon \in (0, \inf_{\mathcal{N} \in \mathcal{E}} I_c(\pi_G, \mathcal{N}))$ the number
\[\inf_{\mathcal{N} \in \mathcal{E}} I_c(\pi_G, \mathcal{N}) - \varepsilon \]
is an achievable rate.
Let $\tau > 0$ with $\tau \in [\varepsilon, 1/4]$ which will be specified later. We consider the finite set of channels $J_\tau := \{N_1, \ldots, N_{N_\tau}\}$ associated to J given in $\eqref{39}$ with the properties listed in lemma $\eqref{V.2}$. We can conclude from the proof of theorem $\eqref{V.3}$ that for each $l \in \mathbb{N}$ there is a subspace $F_l \subset G^\otimes l$ of dimension
\begin{equation}
k_l = \lceil 2^{(\min_{\varepsilon \in (1/2, 1/4)} I_c(\pi_G, \mathcal{N}) - \varepsilon)} \rceil \tag{50}
\end{equation}
and for each $\mathcal{N}_i \in \mathcal{I}$, a recovery operation R_i such that
\[
F_e(R_i, R_i \circ N_i^{\otimes l}) \geq 1 - N_r(2^{-l(c \delta^2 - h(l))} + 2^{-l(c' \delta^2 - h'(l))}) + 2N_r \sqrt{2^{-l(\frac{1}{2} - \gamma(\delta) - 3\varphi(\delta))}},
\]
where we have chosen $\tau > 0$ and $\delta > 0$ small enough to ensure that
\[
\min_{i \in \{1, \ldots, N_r\}} I_c(\pi_{G'_i, \mathcal{N}_i}) - \frac{\varepsilon}{2} > 0,
\]
and
\[
\frac{\varepsilon}{2} - \gamma(\delta) - 3\varphi(\delta) > 0.
\]
By our construction of \mathcal{I}, we can find to each $\mathcal{N} \in \mathcal{I}$ at least one $\mathcal{N}_i \in \mathcal{I}$ with
\[
|F_e(R_i, R_i \circ N_i^{\otimes l}) - F_e(R_i, R_i \circ N_i^{\otimes l})| \leq l \cdot \tau
\]
according to lemma [V.2]. Note that by the last claim of lemma [V.2], we also have the following estimate on the dimension k_l of the subspace F_l:
\[
k_l \geq 2^{2\bigl(\inf_{\mathcal{N} \in \mathcal{I}} I_c(\pi_{G', \mathcal{N}}) - \frac{\varepsilon}{2} - \gamma(\delta) - 3\varphi(\delta)\bigl)}.
\]
(53)
The relations (52), (51), and (53) lead to the following conclusion: For each $l \in \mathcal{N}$ we can find a subspace $F_l \subset \mathcal{C}^{\otimes l} \subset \mathcal{H}^{\otimes l}$ of dimension
\[
k_l \geq 2^{2\bigl(\inf_{\mathcal{N} \in \mathcal{I}} I_c(\pi_{G', \mathcal{N}}) - \frac{\varepsilon}{2} - \gamma(\delta) - 3\varphi(\delta)\bigl)}
\]
(54)
such that for each $\mathcal{N} \in \mathcal{I}$ there is a recovery operation $R_\mathcal{N}$ with
\[
F_e(R_\mathcal{N}, R_\mathcal{N} \circ \mathcal{N}^{\otimes l}) \geq 1 - N_r(2N_r \sqrt{2^{-l(\frac{1}{2} - \gamma(\delta) - 3\varphi(\delta))}} + 2^{-l(c \delta^2 - h(l))} + 2^{-l(c' \delta^2 - h'(l))}) - l \cdot \tau.
\]
(55)
Finally, if we choose our approximation parameter τ in dependence of $l \in \mathcal{N}$ we can ensure that the entanglement fidelity of our code approaches one: Taking e.g. any sequence $(\tau_l)_{l \in \mathcal{N}}$ with $\tau_l \to 0$ as l tends to ∞, and $\lim_{l \to \infty} l \cdot \tau_l = 0$ we see immediately that the RHS of (55) tends to one, and that the RHS of (54) can be lower-bounded by
\[
2^{2\bigl(\inf_{\mathcal{N} \in \mathcal{I}} I_c(\pi_{G', \mathcal{N}}) - \varepsilon\bigr)}
\]
for all sufficiently large $l \in \mathcal{N}$.

The following lemma is the compound analog of a result discovered by Bennett, Shor, Smolin, and Thapliyal in [27] (BSST lemma for short). We will use the following abbreviations: For any $\mathcal{J} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ and $l \in \mathcal{N}$ we set
\[
\mathcal{J}^{\otimes l} := \{N^{\otimes l} : N \in \mathcal{J}\}.
\]
Recall also our earlier shortcut notation
\[
L_c(\rho, \mathcal{J}) = \inf_{N \in \mathcal{J}} L_c(\rho, N)
\]
for $\rho \in \mathcal{S}(\mathcal{H})$.

Lemma VI.2 (Compound BSST Lemma) Let $\mathcal{J} \subset \mathcal{C}(\mathcal{H}, \mathcal{K})$ be an arbitrary set of channels. For any $\rho \in \mathcal{S}(\mathcal{H})$ let $q_{\delta, l} \in \mathcal{B}(\mathcal{H}^{\otimes l})$ be the frequency-typical projection of ρ and set
\[
\pi_{\delta, l} := \frac{q_{\delta, l}}{tr(q_{\delta, l})} \in \mathcal{S}(\mathcal{H}^{\otimes l}).
\]
Then there is a positive sequence $(\delta_l)_{l \in \mathcal{N}}$ satisfying $\lim_{l \to \infty} \delta_l = 0$ with
\[
\lim_{l \to \infty} \frac{1}{l} \inf_{N \in \mathcal{J}} L_c(\pi_{\delta, l}, N^{\otimes l}) = \inf_{N \in \mathcal{J}} L_c(\rho, N).
\]

Proof. The proof is via reduction to Holevo’s proof [28] of the BSST lemma for single channel supplemented by a discretization argument. As in the proof of theorem VI.1 we choose a decreasing sequence $(\tau_l)_{l \in \mathcal{N}}$ with $\tau_l > 0$, $\lim_{l \to \infty} l \tau_l = 0$, and consider the finite set of channels $\mathcal{J}_\tau = \{N_1, \ldots, N_{N_r}\}$ defined in (45) associated to \mathcal{J}.

By our construction of the set \mathcal{J}_τ we know that
\[
N_i(\rho) \geq \frac{\tau_l}{d^2} 1_{\mathcal{K}}
\]
(56)
holds for all $i \in \{1, \ldots, N_{N_r}\}$, which implies
\[
\log N_i(\rho) \geq \log \left(\frac{\tau_l}{d^2}\right) 1_{\mathcal{K}}
\]
(57)
uniformly in $i \in \{1, \ldots, N_{N_r}\}$. On the other hand let $\mathcal{J}_{\tau, e} = \{\mathcal{E}_1, \ldots, \mathcal{E}_{N_{N_r}}\} \subset \mathcal{C}(\mathcal{H}, \mathcal{H}_e)$ denote the complementary set of channels associated to \mathcal{J}_τ. We alter $\mathcal{J}_{\tau, e}$ by mixing a part of useless channel $\mathcal{U}_e \in \mathcal{C}(\mathcal{H}, \mathcal{H}_e)$ to each $\mathcal{E}_i \in \mathcal{J}_{\tau, e}$, i.e. we set
\[
\mathcal{J}_{\tau, e}' := \left(1 - \frac{\tau_l}{2}\right) \mathcal{J}_{\tau, e} + \frac{\tau_l}{2} \mathcal{U}_e.
\]
Note that then for each $\mathcal{E}'_i \in \mathcal{J}_{\tau, e}'$
\[
\mathcal{E}'_i(\rho) \geq \frac{\tau_l}{2 \dim(\mathcal{H}_e)} 1_{\mathcal{H}_e},
\]
and consequently
\[
\log \mathcal{E}'_i(\rho) \geq \log \left(\frac{\tau_l}{2 \dim(\mathcal{H}_e)}\right) 1_{\mathcal{H}_e}.
\]
(58)

Applying Holevo’s argument from [28] to each channel from $\mathcal{J}_{\tau, e}$ and $\mathcal{J}_{\tau, e}'$, with our notation from lemma IV.1 and uniform bounds (57), (58) we obtain for each $i \in \{1, \ldots, N_{N_r}\}$
\[
\frac{1}{l} S(\mathcal{E}'_i(\pi_{\delta, l})) - S(\mathcal{E}_i(\rho)) \leq - \frac{1}{l} \log \eta(\delta) + 2\varphi(\delta)
\]
\[
- d\delta \log \left(\frac{\tau_l}{2D}\right)
\]
(59)
where $\mathcal{E}_i, D \in \{(N_i, d'), (\mathcal{E}'_i, \dim \mathcal{H}_e)\}$. Since for each $i \in \{1, \ldots, N_{N_r}\}$
\[
||\mathcal{E}_i - \mathcal{E}'_i||_\infty \leq \tau_l,
\]
we obtain
\[||\mathcal{E}^\otimes_l - \mathcal{E}^\otimes_{l'}||_0 \leq l \tau_l.\]

Hence choosing \(l \) sufficiently large we can ensure that \(l \tau_l \leq \frac{1}{\varepsilon} \) and an application of Fannes inequality shows that
\[|S(\mathcal{E}'(\rho)) - S(\mathcal{E}(\rho))| \leq \tau_l \log \frac{\dim \mathcal{H}_e}{\tau_l}, \quad (60) \]
and
\[\left| \frac{1}{l} S(\mathcal{E}^\otimes_l(\pi_{\delta,l})) - \frac{1}{l} S(\mathcal{E}^\otimes_l(\pi_{\delta,l})) \right| \leq \tau_l \log \frac{\dim \mathcal{H}_e}{\tau_l}. \]

Inequalities (59), (60), and (61) show that
\[\left| \frac{1}{l} I_c(\pi_{\delta,l}, N^\otimes_l) - I_c(\rho, N_l) \right| \leq \Theta_l(\delta, d') + \Theta_l(\delta, \dim \mathcal{H}_e) + \tau_l \log \frac{\dim \mathcal{H}_e}{\tau_l} + \tau_l \log \frac{\dim \mathcal{H}_e}{\tau_l}
\]
\[=: \Delta_l(\delta, d', \dim \mathcal{H}_e). \]

for each \(i \in \{1, \ldots, N_\tau\} \). It is then easily seen utilizing (62) that
\[\left| \frac{1}{l} I_c(\pi_{\delta,l}, N^\otimes_l) - I_c(\rho, N_l) \right| \leq \tau_l + 2 \tau_l \log \frac{d}{\tau_l}. \]

Applying (63) to \(\rho, J \) and \(\pi_{\delta,l}, N^\otimes_l \) we obtain
\[|I_c(\rho, J_\tau) - I_c(\rho, J)| \leq \tau_l + 2 \tau_l \log \frac{d}{\tau_l}. \]

and
\[\left| \frac{1}{l} I_c(\pi_{\delta,l}, N^\otimes_l) - I_c(\rho, N_l) \right| \leq \Delta_l(\delta, d', \dim \mathcal{H}_e) + \tau_l + 2 \tau_l \log \frac{d}{\tau_l}
\]
\[+ \tau_l + 2 \tau_l \log \frac{d}{\tau_l}. \]

Using triangle inequality, (63), (64), and (65) we see that
\[\left| \frac{1}{l} I_c(\pi_{\delta,l}, N^\otimes_l) - I_c(\rho, J_\tau) \right| \leq \Delta_l(\delta, d', \dim \mathcal{H}_e)
\]
\[+ \tau_l + 2 \tau_l \log \frac{d}{\tau_l}
\]
\[+ \tau_l + 2 \tau_l \log \frac{d}{\tau_l}. \]

We are done now, since for any positive sequence \((\delta_l)_{l \in \mathbb{N}} \) with \(\lim_{l \rightarrow \infty} \delta_l = 0 \), \(\lim_{l \rightarrow \infty} \eta_l(\delta_l) = 1 \), and \(\lim_{l \rightarrow \infty} \delta_l \log \tau_l = 0 \) we can conclude from (60) that
\[\lim_{l \rightarrow \infty} \frac{1}{l} \inf_{N \in \mathcal{J}} I_c(\pi_{\delta,l}, N^\otimes) = \inf_{N \in \mathcal{J}} I_c(\rho, N). \]

It is easy now to prove the direct part of the coding theorem.

First observe that for each \(k \in \mathbb{N} \)
\[Q_{ID}(\mathcal{J}^\otimes) = k Q_{ID}(\mathcal{J}) \]
holds. For any fixed \(\rho \in \mathcal{S}(\mathcal{H}^\otimes) \) let \(q_{\delta,l} \in \mathcal{B}(\mathcal{H}^\otimes) \) be the frequency-typical projection of \(\rho \) and set \(\pi_{\delta,l} = q_{\delta,l} / \eta_l(\delta_l) \).

Then according to theorem VI.1 for each \(\delta \in (0, 1/2) \) we have
\[Q_{ID}(\mathcal{J}^\otimes) \geq I_c(\pi_{\delta,l}, \mathcal{J}^\otimes). \]

From (67), (68), and lemma VI.2 we obtain
\[Q_{ID}(\mathcal{J}) = \frac{1}{m} \lim_{l \rightarrow \infty} \frac{1}{l} Q_{ID}(\mathcal{J}^\otimes)
\]
\[\geq \frac{1}{m} \lim_{l \rightarrow \infty} \frac{1}{l} \inf_{N \in \mathcal{J}} I_c(\pi_{\delta,l}, (\mathcal{J}^\otimes)^\otimes)
\]
\[= \frac{1}{m} I_c(\rho, \mathcal{J}^\otimes). \]

Obviously, (69) implies the following theorem:

Theorem VI.3 (Direct Part: Informed Decoder)
Let \(\mathcal{J} \subset \mathcal{C}(\mathcal{H}, \mathcal{K}) \). Then the capacity of the compound quantum channel built up from \(\mathcal{J} \) in the scenario with informed decoder satisfies
\[Q_{ID}(\mathcal{J}) \geq \lim_{l \rightarrow \infty} \frac{1}{l} \max_{\rho \in \mathcal{S}(\mathcal{H}^\otimes)} \inf_{N \in \mathcal{J}} I_c(\rho, N^\otimes). \]

Since the converse to the coding theorem VI.3 follows easily from the converse part to the coding theorem for single memoryless channel [8] we can state our capacity result as follows:

Theorem VI.4 (Capacity with Informed Decoder)
The capacity of the compound channel built up from a set \(\mathcal{J} \subset \mathcal{C}(\mathcal{H}, \mathcal{K}) \) with informed decoder is given by
\[Q_{ID}(\mathcal{J}) = \lim_{l \rightarrow \infty} \frac{1}{l} \max_{\rho \in \mathcal{S}(\mathcal{H}^\otimes)} \inf_{N \in \mathcal{J}} I_c(\rho, N^\otimes). \]

Acknowledgments

IB would like to thank Nilanjana Datta for explaining to him parts of her joint work with Dorlas [13] and a very stimulating correspondence on classical capacities of compound quantum channels.

IB is supported by the Deutsche Forschungsgemeinschaft (DFG) via project “Entropie und Kodierung großer Quanten-Informationssysteme” at the TU Berlin. HB and JN are grateful for the support by the TU Berlin through the fund for basic research.
[1] A.S. Holevo, IEEE Trans. Inf. Th. Vol. 44, No. 1, 269-273, (1998)
[2] B. Schumacher, M.D. Westmoreland, Phys. Rev. A Vol. 56, No. 1, 131-138, (1997)
[3] A. Winter, IEEE Trans. Inf. Th. Vol. 45, No. 7, 2481-2485 (1999)
[4] T. Ogawa, H. Nagaoka, IEEE Trans. Inf. Th. Vol. 45, No. 7, 2486-2489 (1999)
[5] S. Lloyd, Phys. Rev. A 55, 1613 (1997)
[6] P. Shor, unpublished talk manuscript. Available at: http://www.msri.org/publications/ln/msri/2002/quantumcrypto/shor/1/
[7] I. Devetak, IEEE Trans. Inf. Th. Vol. 51, No. 1, 44-55 (2005)
[8] H. Barnum, E. Knill, and M.A. Nielsen, IEEE Trans. Inf. Th. 46, 1317-1329 (2000), H. Barnum, M.A. Nielsen, B. Schumacher, Phys. Rev. A Vol. 57, No. 6, 4153 (1998)
[9] R. Jozsa, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Letters Vol. 81, No. 8, 1714-1717 (1998)
[10] D. Blackwell, L. Breiman, A.J. Thomasian, Ann. Math. Stat. Vol. 30, No. 4, 1229-1241 (1959)
[11] J. Wolfowitz, Arch. Rational Mech. Anal. Vol. 4, No. 4, 371-386 (1960)
[12] J. Wolfowitz, Coding Theorems of Information Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 31, (3. Edition, Springer-Verlag, Berlin, Germany, 1978)
[13] N. Datta, T.C. Dorlas, J. Phys. A: Math. Theor. 40, 8147-8164 (2007)
[14] L. Farkas, arXiv:0704.2513 Available at: http://arxiv.org/abs/0704.2513
[15] I. Bjelakovic, H. Boche, arXiv:0710.3027 submitted to IEEE Trans. Inf. Th. Available at: http://arxiv.org/abs/0710.3027
[16] M. Hayashi, arXiv:0805.4092 Available at: http://arxiv.org/abs/0805.4092
[17] I. Csizsar, J. Korner, Information Theory; Coding Theorems for Discrete Memoryless Systems (Akademiai Kiado, Budapest/Academic Press Inc., New York 1981)
[18] R. Klesse, Phys. Rev. A 75, 062315 (2007)
[19] P. Hayden, M. Horodecki, J. Yard, A. Winter, arXiv:quant-ph/0702005-v1 Available at: http://arxiv.org/abs/quant-ph/0702005
[20] P.C. Shields, The Ergodic Theory of Discrete Sample Paths, Graduate Studies in Mathematics Vol. 13 (American Mathematical Society 1996)
[21] M.A. Nielsen, I. Chuang, Quantum Information and Computation, (Cambridge University Press, Cambridge, UK, 2000)
[22] B. Schumacher, Phys. Rev. A 54, 2614 (1996)
[23] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics 78 (Cambridge University Press, Cambridge, UK, 2002)
[24] A.Yu. Kitaev, A.H. Shen, M.N Vyalyi, Classical and Quantum Computation, Graduate Studies in Mathematics 47 (American Mathematical Society, Providence, Rhode Island, 2002)
[25] V.D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics 1200 (Springer-Verlag, Berlin, corrected second printing, 2001)
[26] M. Fannes, Commun. Math. Phys. 31, 291-294 (1973)
[27] C.H. Bennett, P.W. Shor, J.A. Smolin, and A.V. Thapliyal, IEEE Trans. Inf. Th. 48, 2637-2655 (2002)
[28] A.S. Holevo, Jour. Math. Physics Vol. 43, No. 9, 4326-4333 (2002)