Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B

Martina Musella1, Andrea Guarracino2,3, Nicoletta Manduca1, Claudia Galassi4, Eliana Ruggiero5, Alessia Potenza6, Ester Maccafeo1, Gwenola Manic6,7, Luca Mattiello6,7, Sara Soliman Abdel Rehim2,6, Michele Signore8, Marco Pietrosanto2, Manuela Helmer-Citterich2, Matteo Pallocca9, Maurizio Fanciulli10, Tiziana Bruno10, Francesca De Nicola10, Giacomo Corleone10, Anna Di Benedetto11, Cristiana Ercolani11, Edoardo Pescarmona11, Laura Pizzuti12, Francesco Guidi13, Francesca Sperati14, Sara Vitale1, Daniele Macchia15, Massimo Spada15, Giovanna Schiavoni16, Fabrizio Mattei16, Adele De Ninno17, Luca Businaro17, Valeria Lucarini18, Laura Bracci19, Eleonora Aricò19, Giovanna Ziccheddu20, Francesco Facchiano16, Stefania Rossi16, Massimo Sanchez21, Alessandra Boe22, Mauro Biffoni16, Ruggero De Maria16,13,23, Ilio Vitale16,23 and Antonella Sistigu16,13,22,23

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunomodulatory drugs to prevent CSC expansion and increase the long-term benefit of therapy.

CSCs, also known as tumor-initiating or tumor-propagating cells, are a relatively stem-like cell subpopulation within the tumor capable of self-renewal and multilineage differentiation, and responsible for tumor initiation, progression, spreading and therapy resistance1,2. Mounting evidence indicates that CSCs can evolve over space and time leading to a high degree of genotypic, phenotypic and functional heterogeneity2,3. Along with this, it is emerging that non-CSC subsets can adapt to the changes in the tumor microenvironment (TME), undergoing cell reprogramming and (re)generating CSCs4.

Epigenetic dysregulations critically affect cancer-immune cell interactions and coevolution during disease onset, progression and response to therapy by influencing cellular states and fates4. Not surprisingly given their role in normal stem cell maintenance, epigenetic mechanisms have also been involved in CSC preservation5. This feature, together with the inherent reversibility of epigenetic modifications, makes the use of epigenome-targeting drugs (epidrugs) a unique opportunity to rationally target CSCs in combination with conventional therapies6–8.

One key concept in tumor immunology is that some chemotherapeutics, including (but not limited to) anthracyclines (for example, doxorubicin, DOX), oxaliplatin (OXP) and cyclophosphamide9,10,11 induce cancer immunogenic cell death (ICD), a form of regulated cell death that initiates adaptive immune responses by the emission...
of damage-associated molecular patterns (DAMPs)\(^{12,13}\) and cytokines. In particular, the IFN-I family of proinflammatory cytokines, upon binding to the interferon \(\alpha\) and \(\beta\) receptor (IFNAR), triggers the production of the IFN-stimulated gene (ISG) C-C=X-C motif chemokine ligand 10 (CXCL10), a chemoattractant for inflammatory monocytes and T cells\(^1\). Nonetheless, depending on the duration and intensity of the transduced signaling and/or the nature of the unleashed ISGs, IFN-I can also display protumorigenic effects\(^2\), promoting the expression of the immune checkpoint (IC) ligand CD274 (best known as PD-L1)\(^3\)-\(^5\). Moreover, innate immune signaling upstream of IFN-I has been associated with nuclear reprogramming and malignant transformation\(^6\).

In this work, we elucidated the downside of IFN-I during ICD. We demonstrated that IFN-I reprograms cancer cells toward a more aggressive, stem-like phenotype by upregulating KDM1B, an epigenetic regulator also known as LSD2, which erases mono- and dimethyls on histone H3 at lysine 4 (H3K4me1 and H3K4me2)\(^7\). Such detrimental resetting represents a hitherto undescribed mechanism of tumor evolution, which drives acquired resistance and immune evasion.

Results

IFN-I administration drives enrichment and de novo induction of CSCs. To investigate the impact of the IFN-I\(\rightarrow\)IFNAR axis on the appearance of cancer cells with a stem-like phenotype (hereafter referred to as CSCs), we selected a panel of cancer cell lines of distinct origin (epithelial or mesenchymal) and species (human or mouse) and treated them for 72h with 6\(\times\)10\(^4\) U ml\(^{-1}\) IFN-I before, by flow cytometry, the levels of prominin 1 (Prom1), best known as CD133), CD24 and CD44 surface markers, whose expression, alone and in combination, has been associated with putative CSCs. In this setting, we observed that IFN-I favors the enrichment of rare CD133\(^+\)CD24\(^-\)CD44\(^-\) putative CSCs (IFN–CSCs) in all analyzed murine cancer cell lines. Specifically, we identified two main populations of IFN–CSCs in MCA205 sarcoma cells: the CD133\(^+\)CD24\(^-\)CD44\(^-\)H3K4me1\(\sim\)7 times higher compared with the untreated condition, (CTR)) and the CD133\(^+\)CD24\(^+\)CD44\(^-\)H3K4me2\(\sim\)9 times higher compared with the CTR) CSC subsets (Fig. 1a). Putative IFN–CSCs were also detected in AT3 breast carcinoma, namely the CD133\(^+\)CD24\(^-\)CD44\(^-\) (CD24L, \(\sim\)3.5 times higher compared with the CTR) and CD133\(^+\)CD24\(^+\)CD44\(^-\) (CD24H, \(\sim\)2.6 times higher compared with the CTR) CSC subsets, but we focused on the former, the widely recognized CSC subpopulation in breast carcinoma\(^8\) (Fig. 1a). Similarly, we found (1) CD133\(^+\)CD24\(^+\)CD44\(^-\) in CT26 colon carcinoma cell line and (2) CD133\(^+\)CD24\(^+\)CD44\(^-\) (CD24H, \(\sim\)9 times higher compared with the CTR) CSC subsets (Extended Data Fig. 1a). These results are in line with the intra- and intertumoral heterogeneity often ascribed to CSCs\(^9\). To assess whether this phenomenon was exclusive of the murine cancer model, we treated human osteosarcoma (U2OS), breast carcinoma (MCF7, HMler) and mammary epithelial (MCF10A) cells with recombinant human IFN-\(\alpha\)2a and then analyzed the expression of standard human CSC markers. We detected IFN–CSC subpopulations in U2OS (CD133\(^+\)CD24\(^+\) and CD44\(^+\)CD24\(^-\)) and MCF7 (CD44\(^+\)CD24\(^-\)low and CD44\(^+\)CD24\(^-\)low) but not in the nontumorigenic MCF10A and in the highly CSC-enriched HMler (CD44\(^+\)CD24\(^-\)) (Extended Data Fig. 1b).

We then isolated MCA205 CD133\(^+\) and CD133\(^-\) (that is, non-CSC) cell fractions by fluorescence-activated cell sorting (FACS) and exposed them to IFN-I. By flow cytometry, we found that IFN-I treatment led to a significant increase in the CD44H and CD44L cell fraction and in the levels of the pluripotency transcription factor (TF) SRY (sex determining region Y)-box 2 (SOX2) in both the CD133\(^+\) and CD133\(^-\) subsets (Fig. 1b). In parallel, by quantitative PCR with reverse transcription (qRT–PCR) analyses of common stem-related TFs and CSC markers, we found that exogenous IFN-I significantly upregulates Kruppel-like factor 4 (Klf4), POU domain, class 5, transcription factor 1 (Pou5f1, best known as Oct3/4), Sox2 and nestin (Nes) in FACS-isolated CD133\(^+\) cells and Nanog homeobox (Nanog) in FACS-isolated CD133\(^+\) and CD133\(^-\) cells (Fig. 1b). These results suggest that IFN-I-mediated CSC enrichment depends on the co-occurrence of positive selection of rare, pre-existing CSCs and de novo generation of CSCs.

Phenotypic and transcriptional profiles of IFN–CSCs revealed that IFN-I-treated epithelial cancer cells (AT3 and B16, F10) acquired a typical stem-like elongated morphology (Extended Data Fig. 1c). Moreover, IFN-I promoted the emergence of the side population (SP, a bona fide CSC feature) accompanied by a significant increase in cell death (Fig. 1c and Extended Data Fig. 1d). As expected, SP was significantly reduced by cotreatment with verapamil (VRP), the blocker of ATP-binding cassette transporters. Accordingly, IFN-I expression induced significant upregulation of Klf4, Oct3/4, Sox2, Nanog, hes family bHLH transcription factor 1 (Hes1) and Nes (Fig. 1d and Extended Data Fig. 1e), and endowed MCA205 and AT3 cancer cells with increased sphere-forming ability (Fig. 1c).

Moreover, when serially replated in standard CSC culture conditions, only spheres pre-exposed to IFN-I retained a CSC-related phenotypical and transcriptional profile (Extended Data Fig. 1f).

Notably, the local treatment of MCA205-derived tumors in syngeneic immunocompetent C57BL/6J mice with one single dose of 10\(^3\) U IFN-I promoted a significant accumulation of CD44H CSCs, while treatment with repeated doses of 2\(\times\)10\(^3\) U IFN-I did not enrich for CSCs (Fig. 1f). Moreover, at odds with one single 6\(\times\)10\(^4\) U ml\(^{-1}\) IFN-I administration (Fig. 1a), repeated treatment with lower doses IFN-I (3\(\times\)10\(^4\) U ml\(^{-1}\) and 10\(^4\) U ml\(^{-1}\)) did not induce CSC accumulation in MCA205 and AT3 cells (Extended Data Fig. 1g).

Fig. 1 | **Emergence of CSCs following IFN-I treatment.** a, Multiparametric flow cytometry analysis of the illustrated CSC surface markers in MCA205 and AT3 cells treated with mock (CTR) or IFN-I (6\(\times\)10\(^4\) U ml\(^{-1}\), 72h). Representative biparametric plots and histograms showing CD133\(^+\)CD24\(^+\)CD44\(^+\) percentages (mean \(\pm\) s.e.m. with individual data point, \(n = 3\) and \(n = 4\) independent experiments) are shown. For more details on gating strategies, see Supplementary Fig. 1. b, Flow cytometry analyses of CD44L and CD44H percentages (top) and qRT–PCR analyses of the reported TF (bottom) in FACS-isolated CD133\(^+\) and CD133\(^-\) cells treated as in a. Mean \(\pm\) s.e.m. with individual data point, \(n = 3\) independent experiments. qRT–PCR data are reported as mean fold change (FC) \(\pm\) s.e.m. over CTR after Ppia intrasample normalization, \(n = 3\) and \(n = 2\) independent experiments. \(P < 0.05, \ ^*\ P < 0.01, \ ^{**}\ P < 0.001\); for exact \(P\) values, see Supplementary Table 1. c, SP (Hoechst 33342\(^\text{−}\)positive with propidium iodide, PI\(^\text{+}\)) in MCA205 and AT3 cells left untreated (black), treated with VRP (100 \(\mu\)M, light green), IFN-I (blue) or VRP + IFN-I (dark green). Mean \(\pm\) s.e.m. with individual data point, \(n = 9\) and \(n = 6\) independent experiments. d, TF expression levels in IFN-I-treated MCA205 cells. Data are reported as in b, \(n = 3\) and \(n = 4\) independent experiments. \(P < 0.05, \ ^*\ P < 0.01, \ ^{**}\ P < 0.001\); for exact \(P\) values, see Supplementary Table 1 for exact \(P\) values. e, Clonogenicity of MCA205 and AT3 cells plated in soft-agar upon treatment as in a. The number (mean \(\pm\) s.e.m. and individual data point) of biologically independent samples collected over three independent experiments is shown. f, Ex vivo flow cytometry of CD44L and CD44H cells within the CD45 negative (CD45\(^-\)) fraction of MCA205 tumors from C57BL/6J mice either treated with one single dose (1\(\times\)10\(^4\) U) or repeated doses (2\(\times\)10\(^4\) U) of IFN-I. Mean \(\pm\) s.e.m. and individual data points for 10 mice per group from two experimental replicates.
Collectively, these data demonstrate that depending on the dose and time of administration, IFN-I may favor the appearance of putative CSCs in multiple murine and human cancer cell lines. IFN-I during immunogenic chemotherapy triggers cancer stemness. As IFN-I plays a role during ICD\(^1\), we asked whether immunogenic chemotherapy could enrich for CSCs. We took advantage of a
library of prevalidated MCA205-derived clones deficient for cardinal elements of the IFN-I pathway, including: (1) Ifnar1, (2) stimulator of interferon response eGAMP interactor 1 (Sting), best known as Sting), (3) toll-like receptor 3 (Tlr3), (4) toll-like receptor adapter molecule 1 (Ticam1, best known as Trif), (5) interferon induced with helicase C domain 1 (Ifih1, best known as Mda5) and (6) mitochondriaal antiviral-signaling protein (Mavs, also known as Lps-1) (Fig. 2a)1. We exposed these clones to the ICD inducer OXP (donor’ dying cells), then cocultured donor dying cells with untreated clones of the same genotype (‘receiving’ viable cells) for 24h, and, finally, analyzed receiving cells at phenotypic and transcriptional levels (Extended Data Fig. 2a). Wild-type (WT) clones responding to OXP displayed a significant increase in the two CD44H and CD44L CSC subpopulations (ICD–CSCs, Fig. 2b). On the contrary, the vast majority of clones deficient in the IFN-I pathway presented a certain degree of impairment of ICD–CSC enrichment (Fig. 2b), indicating dependence on IFN-I signaling. This effect was not parallelled by differential cell death induction, as all clones displayed similar sensitivity to OXP (Extended Data Fig. 2b). The comparison within each genotype revealed a significant ICD–CSC enrichment in OXP-treated versus untreated conditions in all but Ifnar~− clones, suggesting a compensation between nucleic acid-sensing pathways (Fig. 2b). Accordingly, both IFN-I and OXP treatment induced the accumulation of CSC-related transcripts in WT clones and, to a lesser and heterogeneous extent, in Sting−/−, Tlr3−/−, Ticam1−/−, Ifih1−/− and Mavs−/− clones, but failed to do so in Ifnar−/− clones (Fig. 2c). Moreover, the abrogation of the AIM2 and RIG-I signaling significantly reduced, but did not completely abrogate ICD–CSC enrichment (Extended Data Fig. 2d). Notably, following drug withdrawal, only CD44L cells survived and resisted rechallenge with distinct ICD treatments. We then exploited DOX red fluorescence, observing two distinct cell subsets (DOX−/− and DOX−/++ in DOX-treated MCA205 cancer cells differing for the capability to extrude DOX and Hoechst 33342 (Extended Data Fig. 2d). Notably, following drug withdrawal, only DOX−/++ cells survived and resisted rechallenge with distinct ICD inducers (Extended Data Fig. 2e), indicating multidrug tolerance/resistance1. To explore the in vivo appearance of ICD–CSCs, we evaluated the effect of DOX and CDDP on syngeneic immunocompetent mice bearing MCA205 tumor grafts, analyzing tumor growth control as well as CSC markers 15 days after (the first) treatment, that is, when starting to escape growth control1. We found a two-fold increase of CD44H and NANOG+ cells upon DOX, but not CDDP administration (Fig. 2e and Extended Data Fig. 2f). Also, when used as an adjunctive to DOX treatment, repeated doses of 2×10^4 U IFN-I prevented ICD–CSC accumulation, favoring tumor control and animal survival (Fig. 2f). Altogether, these results demonstrate that IFN-I production upon ICD can promote CSC enrichment, both in vitro and in vivo, pointing to this effect as an adaptive response deployed by cancer cells to escape therapy control.

Nucleic acid transfer transduces stem signaling between cancer cells. To dissect the molecular mechanisms underlying ICD–CSC enrichment, we cocultured OXP-treated donor MCA205 cells with untreated receiving MCA205 cells alone or in combination with benzozene (BNZase), which degrades all nucleic acids, or RNase A, RNase H or DNase, which selectively degrade single-strand RNAs, double-strand RNAs or DNA. We observed differential effects in the two CD44H and CD44L ICD–CSC subsets, with BNZase preventing the enrichment of both CSC populations, while RNase A, RNase H and DNase significantly affecting only CD44L cells (Fig. 3a). Accordingly, BNZase halved the proportion of ICD–CSCs in receiving AT3 and CT26 cells (Extended Data Fig. 3a). The observation that only the depletion of all nucleic acids nullifies ICD–CSC enrichment, again suggests that this phenomenon depends on intact IFN-I signaling.

We next investigated the involvement of extracellular vesicles (EVs) in ICD–CSC enrichment. EVs isolated from donor MCA205 cells and stained with the nontoxic fluorescent membrane dye PKH26 were added to receiving MCA205 cells (Extended Data Fig. 3b). EV uptake in receiving cells, confirmed by fluorescence microscopy and flow cytometry (Fig. 3b), induced a considerable increase in CD44H and CD44L cells and in the expression of most TFs, which was impaired by cotreatment with the actin inhibitor cytochalasin D (cyto D) (Fig. 3c,d). Intriguingly, EVs from OXP-treated cancer cells carried messenger RNAs (mRNAs) for TFs (Myc, Oct3/4, Sox2, Nanog, Hes1, Nes), invasion molecules (Twist-related protein 1 (Twist1, also known as bHLHta38), ICs (programmed cell death 1 ligand 2 (Pdcd1L2, also known as Pdld2), lectin, galactose binding, solube 9 (Lgals9, best known as g Alec tin-9) and ifnb1 (Fig. 3e), suggesting their contribution to cancer cell dedifferentiation and aggressiveness upon ICD.

Altogether, these data indicate that ICD–CSC enrichment occurs through paracrine processes involving free and EV-mediated transfer of nucleic acids and stem-related mRNAs.

Behavioral and immunogenic features of IFN–CSCs and ICD–CSCs. We then analyzed FACS-isolated CD44H and CD44L ICD–CSCs separately, and analyzed hallmark CSC features, including chemorefractoriness, tumorigenic/metakstatic potential and capability to escape immune control. We observed that CD44H and CD44L MCA205 cells exhibit a distinct sensitivity to ICD inducers, with only CD44H cells showing higher therapeutic resistance than parental (PAR) cells, both in vitro (Extended Data Fig. 4a) and in vivo, in immunocompetent mice (Fig. 4a). In vivo studies also revealed higher tumorigenicity and less immunogenicity of CD44H cells compared with PAR cells.

Fig. 2 | CSC promotion during immunogenic chemotherapy. a. Major intracellular pathways upstream of IFN-I and inflammation. b. Multifactorial parametric flow cytometry analysis of CSC surface markers in MCA205 derived clones with the indicated genotypes left untreated (CTR) or treated with OXP (300 μg/ml, 24h). The histograms represent the percentage (mean ± s.e.m. and individual data points, n=3 independent experiments) of CD44H and CD44L cells. c,d. Quantification by qRT-PCR of the expression levels of the illustrated reprogramming factors in MCA205 clones left untreated or exposed to OXP (3, 30, 300 μg/ml, 24h) or IFN-I (6×10^4 U/ml) (c) and in MCA205 and AT3 cells left untreated or administered with DOX (0.25, 2.5, 25 μg/ml), OXP (3, 30, 300 μg/ml) or CDDP (1.5, 15, 150 μg/ml) (d). Data are reported as mean FC over untreated condition after intrasample normalization to the expression levels of Ppia, n=2, for c, and n=3, for d. P<0.05, “P<0.01”, “P<0.001, see Supplementary Table 1 for exact P values. e,f. MCA205 tumors grown in C57Bl/6J mice treated intratumorally as illustrated. Ex vivo flow cytometric analysis of the percentage of CD44L and CD44H cells in the CD45 negative (CD45−) fraction are reported in e, while tumor growth curves (mean tumor surface ± s.e.m.) and the percentage of tumor-free mice are shown in f. In e, data are presented as mean ± s.e.m. along with individual data points for 6 and 8 mice from two experimental replicates; the results for CSC enrichment upon one single dose of 1×10^5 U of IFN-I or repeated doses of 2×10^5 U of IFN-I of this experiment are reported in Fig. 1f. In f, data are presented as mean ± s.e.m. along with individual data points for 6 and 8 mice from two experimental replicates. b, Unpaired two-sided Student’s t-test with Welch’s correction compared with CTR cells with each clone. d,e, Ordinary one-way ANOVA test followed by Bonferroni’s correction compared with CTR cells (d) and PBS-treated and DOX-treated mice (e). f, Ordinary two-way ANOVA test and log-rank (Mantel–Cox) test.
ICD–CSCs compared with CD44L ICD–CSCs. Although both sub-populations were able to generate tumors in immunocompromised NOD SCID γ (NSG) mice, only CD44H ICD–CSCs developed neoplasms at the lowest doses (Fig. 4b). Along with this, CD44H (but not CD44L) ICD–CSCs were able to overcome immunosurveillance, developing tumors at high incidence in immunocompetent hosts when injected at the highest number (Fig. 4b). Several findings confirmed the unique low immunogenicity of CD44H cells. First, DOX-treated PAR cells were able to vaccinate 85% of mice against PAR and CD44L ICD–CSCs, but only 30% of mice challenged with CD44H ICD–CSCs (Fig. 4c). Second, while only 15% of immunocompetent mice rejecting CD44H ICD–CSCs were

[Diagram and figures are not transcribed due to the nature of the content.]
vaccinated against viable PAR cells, CD44L ICD–CSCs and PAR cells conferred a higher long-term protection against this rechallenge (Extended Data Fig. 4b). Finally, when injected intravenously into immunocompetent mice, CD44H (but not CD44L) ICD–CSCs developed lung metastases (Fig. 4d). In this experiment, CD44L ICD–CSCs reacquired metastatic potential in immunocompetent mice.

Fig. 3 | Cell-to-cell horizontal transfer of nucleic acids and dedifferentiating factors during immunogenic chemotherapy.

a, Multiparametric flow cytometry analysis of CSC surface markers in receiving viable MCA205 cells upon coculturing with donor MCA205 cells left untreated or previously treated with OXP (300µM, 24 h) alone or in combination with the indicated nuclease. Columns represent the percentage of CD44H and CD44L cells, expressed as mean ± s.e.m. and individual data points. Number of biologically independent experiments are reported. **b**, Fluorescence microscopy (left) or flow cytometry (right) analysis of the internalization (at 37 °C and 4 °C) of donor cell-derived, PKH26-stained EVs by receiving MCA205 cells. Scale bar, 100 μm. One representative experiment out of two is shown.

c, Multiparametric flow cytometry analysis of CSC surface markers in receiving MCA205 cells cocultured with donor MCA205 cell-derived EVs in the presence of cyto D (0.5 μM). Data are expressed as mean ± s.e.m. and individual data points; number of biologically independent experiments is reported. **d, e**, Assessment of the expression levels of the indicated reprogramming factors by qRT–PCR in receiving MCA205 cells stimulated with donor MCA205 cell-derived EVs alone or in the presence of cyto D, as before (d) and inside EVs (e). Data are reported as mean FC ± s.e.m. over control conditions, n = 2 and n = 3, for d, n = 2, n = 3, n = 4, n = 6, n = 7, n = 9 and n = 10 for e, independent experiments, after intrasample normalization to Ppia expression levels. *P < 0.05, **P < 0.01, ***P < 0.001, see Supplementary Table 1 for exact P values. See also Extended Data Fig. 3. **a, c, d**, Ordinary one-way ANOVA test followed by Bonferroni’s correction. **e**, Unpaired two-sided Student’s t-test.
mice depleted of CD4 and CD8 T cells and, even more, in immunodeficient NSG mice (Fig. 4d and Extended Data Fig. 4c), thus confirming their immune control. Of note, while a considerable fraction of CD44H ICD–CSCs divided asymmetrically (a common CSC feature), the vast majority of CD44L ICD–CSCs underwent symmetric division (Fig. 4e,f). Altogether, these results indicated that CD44H but not CD44L can be considered bona fide CSCs.

We thus focused on the CD44H ICD–CSCs subset. To gain insights into their immunogenicity, we analyzed the proliferation rate of isolated CD8+ H-2Kb/ovalbumin (OVA)-specific OT-1 T cells previously primed with dendritic cells (DCs) that had taken up apoptotic OVA-expressing CD44H (CD44H-OVA) ICD–CSCs or PAR cells, and then boosted with viable cells of the same type. In line with the immune privileged nature observed in vivo (Fig. 4a–d), CD44H-OVA ICD–CSCs induced a significantly lower expansion of OT-1 CD8 T cells than PAR counterparts (Fig. 5a) and resisted CD8-mediated killing (Fig. 5b). These data prompted us to hypothesize that CD44H ICD–CSCs could escape immune control by inducing CD8 T cell exhaustion. To pursue this hypothesis, we analyzed common IC ligands, finding an increase in the percentage of cells positive to PD1L1, PDCD1IL2G, CEA1 and LGALS9 in CD44H cells (Fig. 5c). Consistently, CD8+ T tumor-infiltrating lymphocytes isolated from MCA205-bearing mice 15 days after intratumoral injection of DOX (when CSC enrichment occurs), but not of CD8D, displayed a significant increase in the fraction of cells expressing the LGALS9 receptor IC Hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM3) (Fig. 5d). We extended the characterization of ICD–CSCs to AT3 cells (that is, the CD24L cell subset), confirming the increase in the percentage of cells displaying PD1L1, PDCD1IL2G and LGALS9 (Fig. 5c).

To further characterize ICD–CSC immunogenicity, we measured cytokine production through Luminex Multiplex Assay, observing a unique chemokine secretion pattern in CD44H MCA205 and CD24L AT3 ICD–CSCs compared with their respective PAR cells. This encompasses reduced levels of proinflammatory chemokines CCL2 and CCL5, which mediate inflammatory monocyte trafficking and DC–T cell interactions22, and enhanced capability to secrete CXCL1 and CXCL2 (the latter in CD24L AT3 cells), which promote chemoresistance and metastasis31 (Fig. 5e). Notably, CD24L AT3 cells also showed higher levels of the regulatory T cell chemotactic CCL22 (ref. 19) than PAR AT3 cells. Accordingly, when CD24L ICD–CSCs or PAR AT3 cells were confronted with histocompatible splenocytes in ad hoc micromass cultures35 and then analyzed by videomicroscopy for their in vitro capability to recruit immune cells, only PAR cells were able to attract and stably interact with splenocytes at as early as 24 h (Fig. 5f and Supplementary Videos 1–4). At odds, CD24L ICD–CSCs failed to do so and, instead, migrated towards splenocytes starting a transient and unproductive interaction only upon 48 h. Finally, when we confronted PAR and CD24L AT3 cells in a microfluidic ‘competition’ device36 (Extended Data Fig. 4d), immune cells selectively migrated towards PAR cells, moving away from CSCs (Fig. 5h,i).

Altogether, these results indicate the existence of a mechanism of adaptation of cancer cells to immunogenic chemotherapy that actively contributes to intratumor heterogeneity, as the collection of induced CSC subpopulations has differential therapeutic response, aggressiveness and immunogenicity.

Global chromatin remodeling downstream of IFN-I. To dissect the mechanisms underlying cancer cell reprogramming downstream of IFN-I, we mapped the chromatin landscape of PAR (P) and CD44H (H) MCA205 cells by the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC–seq) (Fig. 6a–c). By analyzing ATAC–seq peaks, we conceived a closed-to-open (C → O) and an open-to-closed (O → C) logic, and stratified genes in four groups. The C′O′ and O′O′ groups comprise genes with peaks permanently closed (that is, putatively repressed) or open (that is, putatively expressed) in both samples, while the C′O′ and O′C′ groups comprise genes whose peaks are closed in PAR cells and open in CD44H IFN–CSCs and vice versa. In particular, we focused on the O′O′ group containing genes putatively more expressed in CSCs. As expected, we found genes dictating the CSC phenotype and behavior, including, but not limited to, cancer stemness (Myc and Sox) and epithelial–mesenchymal transition (EMT) (Gata6 and Tjcp2). We also found genes involved in immune evasion, including the negative regulator of the antigen presentation machinery Gpr17 and the inhibitor of granzyme activity Serpin (Fig. 6a). Consistently, the O′C′ group contains tumor suppressor genes (Cdh1, Cdk2ap1, Dlg2, Ripk3 and Fbxw2) and genes involved in antigen presentation machinery (Tap1, Tap2 and Ctsl) and inflammation (Il12, Il27, Gsdmd and Uba7) (Fig. 6a). Integration with RNA-sequencing (RNA-seq) analyses confirmed an increased expression of genes involved in tumorigenesis, tumor progression, invasiveness (Csf1r, Trp53, Il53, Wnt1, Btg2, Tgfβ and Spi1) and immune escape (Gpr17), coupled with repression of genes involved in tumor suppression and immune recognition (Cd91, Il12b, Tl5, Cdk2ap1, Il34, Il16 and Ctsl) in CD44H IFN–CSCs (Extended Data Fig. 5a).

Next, we performed TF-binding motif enrichment with the HOMER motif software, revealing considerable differences between CSCs and PAR cells for accessible motifs, indicating extensive global chromatin remodeling in CSCs (Fig. 6c and Supplementary Fig. 3a). In particular we found enrichment of motifs for various TFs of the helix–turn–helix superfamily (that is, RFX, Rfx1, Rfx2, Rfx5 and X-box), the Homeobox basic helix–loop–helix (BHLH) member Pitx1:Ebox, the Rel homology domain family member NfkB:p65 and the zinc-finger family member ZBTB.
in CD44H cells. Conversely, the zinc-finger motifs CTCF, BORIS and NRSF, the transcriptional enhanced associate domain (TEA, TEAD) motifs (that is, TEAD and TEAD1-4), the Rel homology domain-basic leucine-zipper superfamily member NFAT-AP1, the ETS, RUNT, the interferon-sensitive response element and the CCAAT box-binding transcription factor motifs were more accessible in PAR cells. We finally reconstructed protein–protein interaction subnetworks and biological processes specifically modulated in CD44H IFN–CSCs using the clusterProfiler and enrichPlot R packages (Fig. 6d and Supplementary Fig. 3b). Gene ontology (GO) analysis showed that most of the upregulated genes in CD44H cells (red module) have significant functional connections with stemness maintenance, tissue remodeling, immune suppression, response to stress and enhanced chromatin accessibility.

Altogether, these results provide clues about a global chromatin remodeling and a modular reorganization of specific pathways downstream of IFN-I.

Epigenetic regulation of cancer stemness by KDM1B. Among the genes specific for the CSC fraction (CD44H cells), we identified...
KDM1B correlates with stemness in BC patients. To investigate the clinical relevance of the IFN-I → KDM1B axis, we first calculated the correlation between KDM1B, IFN-I-related metagenes, stem-related reprogramming factors, IFN-I signatures and stemness signatures using publicly available transcriptomic data on BC patients responsive to anthracyclines. We observed that the expression levels of KDM1B positively correlated with a signature composed of Yamanaka factors and two previously described stemness signatures in at least two analyzed datasets (Fig. 7a). Moreover, we observed a positive correlation, in most analyzed databases, between stemness signatures (and in particular that reported in ref. 43) and IFN-I signatures, including a signature characterized in our previous work that we dubbed ‘viral mimicry’ (Fig. 7a and Extended Data Fig. 7a). Next, we used the BC cohort METABRIC (which includes 1,903 patients) and performed a multivariate survival analysis by stratifying patients into two groups, according to risk behavior. Of note, high-risk group patients exhibiting a significantly reduced disease-specific survival presented high expression of KDM1B and IFN-I or stemness signatures (Fig. 7b). Similar results were obtained for distant recurrence-free incidence (Extended Data Fig. 7b), indicating that KDM1B combined with IFN-I signature or with stemness signature positively associated with dismal prognosis.

To further correlate IFN-I and CSC signatures, we performed longitudinal immunohistochemistry (IHC) analyses on consecutive formalin-fixed paraffin-embedded BC biopsies, assessing the levels of KDM1B, IFN-I-related factors (MX1 and CXCL10) and CSC markers (CD44–CD24 and CD133) on CD45neg cancer cells at pre- (T0; at diagnosis) and post- (T1; at surgery) neoadjuvant anthracycline-based chemotherapy (Fig. 7c and Supplementary Table 4). We found increased CSC Allred scores (either CD44posCD24neg/low or CD133pos) in 15% of cases, which positively correlated with an increased KDM1B Allred score (Fig. 7c). Confirming the mutual correlation, KDM1B levels decreased in four out of six cases in which CSC marker levels were reduced at T1. When checking for other clinically relevant parameters, we observed that three patients with increased CSC and KDM1B levels at T1 were negative for the Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2, best known as HER2), of which two were triple-negative and one luminal A (Fig. 7c). Intriguingly, although no differential impact was observed in classical BC subtypes, KDM1B combined with
with IFN-I signature or with stemness signature positively associated with dismal prognosis in HER2 negative (HER2neg) but not in HER2 positive (HER2pos) tumors (Extended Data Fig. 7c,d).

Altogether, these results suggest a clinically relevant correlation between KDM1B levels and CSC markers during anthracycline-based immunogenic chemotherapy.

Discussion

IFN-I may either restrain or promote tumor growth depending on the duration and intensity of the transduced signaling, two features that jointly delineate the patterns of ISG expression, so-called IFN-I signature14, and shape the accessibility to chromatin, so-called IFN-mediated epigenomic signature35,36. The leverage of transcriptional and epigenetic changes defines cell responses to environmental hints, dictating the efficacy of natural and therapy-induced immunosurveillance4,10,37,38. Here, we provide preclinical and clinical evidence that, depending on the dosage and timing of administration, IFN-I can favor the appearance of CSCs. This occurs via positive selection of pre-existing CSCs and KDM1B-dependent de novo reprogramming of cancer cells toward stemness. Therefore, beyond stimulating antitumor immunity, IFN-I can foster malignant progression leaving a detrimental ‘imprint’ on cancer cells.
Fig. 6 | IFN-I-driven chromatin remodeling. a–d, ATAC-seq (a–c) and RNA-seq (d) analysis in PAR or CD44H MCA205 cells. Heatmap illustrating global open (O) or closed (C) genes and representative gene subgroups in PAR/P and CD44H/H are shown in a, representative Kdm1b loci within C’O’ group in b, TF binding motifs enriched more than twofold in PAR (black) or CD44H (purple) cells (x-axis, TF motif enrichment log FC in target/nontarget cells; y-axis, significance enrichment level) in c, and GO network analysis of upregulated (red) and downregulated (blue) genes in CD44H cells (nodes, enriched GO terms, node size, false discovery rate-adjusted enrichment P value (q value)) in d. e, Multiparametric flow cytometry analysis showing CD44H cell percentages upon OXP or OXP + TCP. f, Schematic experimental protocol of in vivo Kdm1b inhibition and multiparametric flow cytometry analysis of CD44H and CD8+TIM3 percentages in tumors from mice upon DOX + TCP treatment. g, In vivo MCA205 tumor growth control in mice treated as illustrated. Tumor growth curves (mean tumor size ± s.e.m.) for 15 and 16 mice per group from three experimental replicates. h, In vivo multiparametric flow cytometry analysis of CD44H percentages in PAR and Kdm1b-overexpressing (Kdm1bOVER) MCA205-derived tumors. i–k, One-sided binomial test. j, Ordinary one-way ANOVA test with Bonferroni’s correction. k, Kruskal–Wallis test with Dunn’s multiple comparisons. g, j, Ordinary two-way RM ANOVA test with Bonferroni’s correction (g) and log-rank (Mantel–Cox) test (g, j). h, Two-tailed Mann–Whitney test compared with PAR.
Our study sheds light on the debated and poorly investigated contribution of IFN-I signaling on tumor heterogeneity and CSC induction. On the one hand, we and others previously reported a hostprotecting role of IFN-I in HER2/neu transgenic mice and triple-negative BC, because the abrogation of steady-state endogenous IFN-I signaling leads to the emergence of breast CSCs. On the other hand, exogenous administration of IFN-I favored cancer stemness in mice models of pancreatic cancer and human BC and squamous carcinoma cell lines. Nonetheless, in these studies the molecular mechanisms underlying IFN-I-CSC expansion have not been analyzed, and this phenomenon has been neither investigated in the context of ICD, nor associated with potential cancer cell reprogramming. In this respect, it appears of interest that the induction of the ISG IFI27 in ovarian carcinoma biopsies and cell lines drives EMT, cancer stemness, invasiveness and therapeutic resistance. Whether IFI27 is involved in ICD–CSC expansion requires further investigations. Irrespective of this unknown, on the basis of our results, we surmise that, depending on its duration and intensity, IFN-I signaling can either limit CSC proliferation and survival, restraining tumor growth, or favor the survival of pre-existing CSCs and cancer cell dedifferentiation, potentially leading to therapy resistance/failure. The use of a reporting system measuring IFNAR signaling in the TME upon immunogenic therapies will provide formal confirmation of this hypothesis.

Here, we also found a certain degree of phenotypic and functional heterogeneity within IFN–CSCs, consistently with the current view of an adaptable, evolutive and dynamic nature of CSCs. In particular, we observed specific IFN-I–CSC subsets characterized by resistance to (immuno)chemotherapy, elevated tumorigenic and metastatic potential and low immunogenicity, in line with previous observations. In our setting, CSC immune privilege encompasses a reduced capability to attract and stably interact with effector immune cells, in part due to decreased secretion of proinflammatory chemokines and enhanced capability to suppress T cell activation, and in part due to upregulated expression of IC ligands and cognate receptors. Of note, IFN-I-related immune escape has been previously associated with the upregulation in cancer (stem) cells of (1) PD-L1 and LGALS9 (ref.), (2) nitric oxide synthase 2, which favors the recruitment of regulatory cells and (3) SERPINB9, which inhibits granzyme B activity and thus CD8 T cell cytotoxicity. Intriguingly, through ATAC–seq and RNA-seq analyses, we found, in CD44H IFN–CSCs, upregulation of Serpins and downregulation of Uba7, a tumor suppressor ISG which codes for a protein able to attract effector T cells. Whether these factors play a major role in protecting CSCs from immune attack remains to be established.

The ability of IFN-I to induce cancer stemness relies on an autocrine/paracrine cancer cell circuitry centered on the IFN-I → IFNAR → KDM1B signaling pathway. We propose a model whereby CSC induction lies on the horizontal transfer of nucleic acids and possibly stem-related encoding mRNAs from cancer cells undergoing ICD to viable cancer cells. In this regard, the cytotoxic effect of IFN-I on cancer cells can also have a contributive role by fueling this circuitry. Notably, such intercellular communication can also occur via EVs, according to the role recently ascribed to EVs in conferring resistance and metastatic recurrence to anchracyclines. Intriguingly, we showed that DNA from dying/dead cells triggers the STING pathway once internalized by bystanding cells. We surmise that such exogenous, yet self, DNA is internalized through EVs and then released in the cytosol of acceptors cells where it activates the cyclic GMP-AMP synthase (cGAS). Although the precise mechanisms underlying this transfer remain to be determined, we speculate that once transferred from dying to viable cells, nucleic acids act as DAMPs leading to IFN-I production, which ultimately drives KDM1B-mediated cancer cell reprogramming, and, thus, therapy failure and tumor regrowth.

Although we are aware of the limitations of our study, and in particular the need for further confirmation in human models, we hypothesize that the activation of the IFN-I signaling directly stimulates CSCs in tumors undergoing ICD. We thus surmise the existence of a mechanism similar to that underlying virus-induced cell transdifferentiation that leads to the upregulation of core pluripotency genes. Supporting our hypothesis, IFN-I was recently ascribed to have a role in chromatin remodeling and gene expression reprogramming . Moreover, the expression of diverse KDMs has been correlated with ‘cold’ TMEs in different tumor models, as also the use of epidrugs with the reinstatement of inflammation. Of relevance, here, by combining the analysis on publicly BC databases and our retrospective studies on BC patients that had received anthracycline-based therapy, we found a mutual correlation between KDM1B and stemness. In particular, in our cohort, we reported clinical evidence of combined enrichment of CSCs and KDM1B upregulation upon immunogenic treatments, especially in a HER2-negative context. Further validation on a larger cohort of patients with patient follow-up will be launched.

In conclusion, we demonstrated that IFN-I can elicit a protective but ephemeral anticancer response. By triggering KDM1B, IFN-I promotes the appearance of CSCs with traits of immune privilege and therapy resistance. This evidence provides the basis for the use of epidrugs as adjunctives to anticancer immunogenic therapies, including conventional chemotherapies and current and upcoming immunotherapies, as therapeutic means to prevent CSC expansion and control tumor recurrence.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41590-022-01290-3.
Articles Nature Immunology

30. Hollern, D. P. et al. B Cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179, 1191–1206 e1121 (2019).

31. Shats, I. et al. Using a stem cell-based signature to guide therapeutic selection in cancer. Cancer Res. 71, 1772–1780 (2011).

32. Palmer, N. P., Schmid, P. R., Berger, B. & Kohane, I. S. A gene expression profile of stem cell pluripotentiality and differentiation is conserved across diverse solid and hematopoietic cancers. Genome Biol. 13, R71 (2012).

33. Reyes-Guzman, B. M. E. et al. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 8, e165964 (2019).

34. Weichselbaum, R. R. et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl Acad. Sci. USA 105, 18490–18495 (2008).

35. Barrat, F. J., Crow, M. K. & Ishakiev, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

36. Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 1104–1116 (2017).

37. Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

38. Bracci, L., Sistigu, A., Piovetti, E. & Moschella, F. The added value of type I interferons to cytotoxic treatments of cancer. Cytokine Growth Factor Rev. 36, 97–107 (2017).

39. Doherty, M. R. et al. Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proc. Natl Acad. Sci. USA 114, 13792–13797 (2017).

40. Castillo, L. et al. Disruption of IFN-I signaling promotes HER2/Neu tumor progression and breast cancer stem cells. Cancer Immunol. Res. 6, 658–670 (2018).

41. Zhu, Y. et al. Influence of interferon-alpha on the expression of the cancer stem cell markers in pancreatic carcinoma cells. Exp. Cell Res. 332, 146–156 (2014).

42. Ozturk, A. S. et al. CD163+Gas6 increases stemness in cancer cells by inducing a STAT1-dependent type I interferon response. Cell Rep. 28, 2573–2586 (2017).

43. Li, S. et al. Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness. J. Surg. Res. 193, 255–264 (2015).

44. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

45. Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

46. Macmillan, C., Volonte, A., Cimmiemini, C. & Parmiani, G. Immunology of cancer stem cells in solid tumours. A review. Eur. J. Cancer 50, 649–655 (2014).

47. Xiao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186 e1114 (2019).

48. Jacquelot, N. et al. Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 29, 846–861 (2019).

49. Chen, J. et al. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J. Clin. Invest. 129, 4224–4238 (2019).

50. Fan, J.B. et al. Type I interferon regulates a coordinated gene network to enhance cytotoxic T cell-mediated tumor killing. Cancer Discov. 10, 382–393 (2020).

51. Keklikoglou, I. et al. Chemotherapy elicits pro-metastatic extracellular vesicles via breast cancer models. Cell Res. 21, 190–202 (2019).

52. Wu, X. et al. Intrinsic immunity shapes viral resistance of stem cells. Cell 172, 423–438 e425 (2018).

53. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables tumor progression and breast cancer stem cells. Cell 178, 933–948 e914 (2019).

54. Lee, J. et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 151, 547–558 (2012).

55. Fang, R. et al. Human LSD2/KDM1b/AF01 regulates gene transcription by modulating intrinsic H3K4me2 methylation. Mol. Cell 39, 222–233 (2010).

56. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

57. Musella, M., Manic, G., De Maria, R., Vitale, I. & Sistigu, A. Type-I-interferons in infection and cancer: unanticipated dynamics with therapeutic implications. Oncoimmunology 6, e1314427 (2017).

58. Humphreys, W. et al. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

59. Benc, I. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178, 933–948 e914 (2019).

60. Lee, J. et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 151, 547–558 (2012).

61. Fang, R. et al. Human LSD2/KDM1b/AF01 regulates gene transcription by modulating intrinsic H3K4me2 methylation. Mol. Cell 39, 222–233 (2010).

62. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

63. Bocci, F. et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc. Natl Acad. Sci. USA 116, 148–157 (2019).

64. Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

65. Ballkwi, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

66. Acharya, S. et al. A CXCL11 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

67. Wiedemann, G. M. et al. Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5, e1175794 (2016).

68. Vecchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015).

69. Lucarini, V. et al. Combining Type I Interferons and 5-Aza-2′-Deoxycytidine to Improve Anti-Tumor Response against Melanoma. J. Invest Dermatol 137, 159–169 (2017).

70. Dixon, G. et al. QSER1 protects DNA methylation values from de novo methylation. Science 372, eabad0875 (2021).

71. Lu, H. et al. Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. J. Clin. Investig. 130, 4607–4623 (2020).

72. Zhang, W. et al. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol. Cell 81, 2148–2165.e9 (2021).

73. Hollern, D. P. et al. B Cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179, 1191–1206 e1121 (2019).

74. Shats, I. et al. Using a stem cell-based signature to guide therapeutic selection in cancer. Cancer Res. 71, 1772–1780 (2011).
Methods

Reagents. Further information and requests for resources and reagents are provided in Supplementary Table 5 and should be directed to and will be fulfilled by the Lead Contact, Antonia Sistig.

Cell lines and culture conditions. Unless otherwise indicated, plasticware was from Falcon, Corning B.V. Life Sciences. Cells were cultured in the reported growth media under standard culture conditions (37 °C, 5% CO2). Murine MCA205 Wt, Kdm1b+/−, Kdm1b−/−, MCA205-OVA fibroblasts, MCA205-derived clones (Wt, Ijirac, −/−, Tcyac, −/−, Ijirac, −/−, Mavs−/−, −/−, Sting1−/−, −/−, produced as in ref 1), AT3 mammary carcinoma, CT26 Wt, Kdm1b+/+, Kdm1b−/−, colon carcinoma cells: Roswell Park Memorial Institute (RPMI) 1640 plus fetal bovine serum (FBS, 10% v/v), 2 mM L-glutamine (L-glut), 100 U ml−1 penicillin G sodium salt (pen), 100 μg ml−1 streptomycin sulfate (strept) (R10). Murine B16.F10 Wt, Kdm1b+/+, Kdm1b−/−, melanoma cells, human MCF7 breast carcinoma, U2OS osteosarcoma cells, human breast ductal carcinoma cells: HuCAT, Modified Eagle Medium (MEM), DMEM/F12 plus pen, strept (as above), 10 ng ml−1 human epithelial growth factor. HMLER cells: 1:1 DMEM/F12 plus pen, strept (as above), 10 ng ml−1 human epidermal growth factor. HMLER cells: 1:1 DMEM/F12 plus pen, strept (as above), 10 ng ml−1 human epidermal growth factor. HMLER cells: 1:1 DMEM/F12 plus pen, strept (as above), 10 ng ml−1 granulocyte-macrophage colony-stimulating factor (GMCSF).

Further information and requests for resources and reagents are provided in Supplementary Table 5 and should be directed to and will be fulfilled by the Lead Contact, Antonia Sistig.

Cytofluorometric analysis, cell sorting. To assess CSC surface markers, 105 MCA205 CD44H IFN–CSC were labeled in 2 ml growth medium (6-well plates) and treated with purified mouse IFN-1 (1–3×105 U ml−1, 10 days or 6–10×105 U ml−1, 3 days), recombinant human Roferon-A (6–10×105 U ml−3, 3 days), DOX (25 μM), OXP (100 μM) ± TAP (10 μM) thalidomide (10 μg ml−1), amlexanox (5 μM), BX795 (100 μM) and MRT67307 (300 μM), 48 h. Cells were then washed in Dulbecco’s phosphate buffered saline solution (PBS) and stained with fluorescently labeled monoclonal antibodies (mAbs) anti CD44, anti CD133, anti CD24, anti CD44v6 (1:20) in cold D-PBS-1% FBS solution, 30 min on ice. Appropriate Alexa Fluor (AF)–488 secondary Ab (1:500) was added to CD44v6 stained cells. In all experiments 4,6-diamidino-2-phenylindole (DAPI)/Sytox blue/ Viability 405–452 were used to distinguish live from dead cells; only live cells were analyzed. All acquisitions were performed with FACSCount II (BD Biosciences), MACSQuant VYB Analyser-10 (Miltenyi Biotech), CytoFLEX (Beckman Coulter) cytoflowometers and data analyzed with the FlowJo software v10.07. Using the same staining protocol, specific CSC-like subsets were isolated by fluorescence-activated cell sorting (FACS, FACSAria, BD Biosciences) and further characterized by in vitro/in vivo assays. For gating strategies, see Supplementary Fig. 1.

DOX−350 and DOX−400 MCA205 cells were sorted post DOX treatment (2.5 μM, 48 h). For assessment of IC expression, FACS-isolated AT3 cells were loaded into the die reservoirs in 200 μl R10. Lapse-time recordings were collected in the incubator for 72 h with a Juli Scientifica video microscope (Budleigh, UK) and evaluated on a video microscope through every 2 min. ImageJ v1.5 software (Manual Tracking and Trackplug-plugs) was used for data analysis. For devices based on competition, 2×105 PAR and ICD–CSC AT3 cells were loaded into live-gated CD8+ cells and PI level analysis on live gated CD8+ cells and PI level analysis on live gated CD45+ cells.

Microfluidic devices. H.2Kb splenocytes (2×105) from C57Bl/6 mice and 5×105 PAR or ICD–CSC AT3 cells were loaded into the device reservoirs in 200 μl R10. Lapse-time recordings were collected in the incubator for 72 h with a Juli Scientifica video microscope (Budleigh, UK) and evaluated on a video microscope through every 2 min. ImageJ v1.5 software (Manual Tracking and Trackplug-plugs) was used for data analysis. For devices based on competition, 2×105 PAR and ICD–CSC AT3 cells were loaded into live-gated CD8+ cells and PI level analysis on live gated CD45+ cells.

Extracellular vesicle isolation and uptake. MCA205 cells (3×105) were seeded in 6-well plates (2 ml R10 per well), treated with OXP (300 μM OXP, 4 h (donor cells)) and washed. IV from supernatants were purified using exoasy Maxi Kit and added to receiving cells, 24 h, ± cyto D (0.5 μM). Receiving cells were analyzed by cytofluorometry and qRT–PCR. For uptake analysis, isolated EVs were labeled, washed with Exosome Spin Columns and cocultured, 4 h, with receiving cells either at 37 °C or 4 °C. Cells were washed, fixed in 4% PFA in D-PBS and analyzed by cytofluorometry and EVOS-FL fluorescence microscopy.

Luminescence assay. PAR and ICD–CSCs from MCA205 and AT3 cells were seeded in 24-well plates (1 ml R10 per well, 48 h). Supernatants were collected on ice, centrifuged and immediately frozen (−80 °C). Chemokines were measured by xMAP multiplex technology with Mouse Magnetic Luminescent assay multiplex panel as specified in Supplementary Table 5. Analysis was performed with 50 μl of twofold diluted samples. Quantification was performed on a Biotec 200 System (Bio-Rad) equipped with a magnetic workstation and a Bio-Plex Manager Software version 6.1. Chemokine levels were normalized to total cell number.

ATAC–seq, Chip–seq and RNA-seq. PAR, CD4+4H IFN–CSC, Kdm1b+/− and Kdm1b−/− MCA205 cells (1×106) were treated with DNsase I (37 °C, 30 min), washed and cryopreserved in R10 plus 5% dimethyl sulfoxide (DMSO) in 1.5-ml vials. Cryopreserved cells were either sent to Epigenetics Services Active Motif, Inc. for ATAC–seq or analyzed at the Regina Elena National Cancer Institute. Cells were thawed and tagedmented as in ref 1. Tagmented DNA was purified (MinElute PCR purification kit, amplified, repurified (Agencourt AMPure XP beads), quantified (KAPA Library Quantification Kit for Illumina platforms) and sequenced 2×100 bp on a Novaseq 6000 instrument (Illumina). For data analysis, reads were aligned to the mouse genome (mm10, BWA algorithm). Duplicate reads were removed and only reads matching as paired ends and only uniquely mapped reads (mapping quality ≥1) were considered. Alignments were extended in silico to their 3′-ends to a 200 bp length and assigned to 32 bins along the genome. The resulting histograms (genomic ‘signal maps’) were stored in bigWig files. Peaks were identified using the MACS 2.1.0 algorithm at a cutoff of P = 1×10−2, without control file, and with the nomodel option. Peaks on the ENCODE blacklist of known false ChIP–seq peaks were removed. Signal maps and peak locations were used as input data to Active Motifs proprietary analysis program. A peak calling strategy (using default parameters) was performed and PEAK-LIFE, Chip–seq analysis in MCA205 CD44H IFN–CSCs were performed as previously described in ref 61 using anti-LSD2 (1:80). Immunoprecipitations with no specific immunoglobulins
were performed as negative controls. Data analysis was performed as described in ref. 1. To determine the overall transcriptional profile, 2.5 × 10^6 PAR MCA205 cells and their IFN–CSC counterparts were harvested, washed and cryopreserved in RNA-seq analysis performed by Epigenetics Services Active Motif, Inc. Total RNA was isolated from cells (RNeasy Mini Kit, 2 μg of total RNA/sample was used in Illumina’s TrueSeq Stranded mRNA Library kit. Libraries were sequenced on Illumina NextSeq 500 as paired-end 42–nt reads. Sequence reads were analyzed with the STAR alignment – DESeq2, edgeR, limma-voom software pipelines.

Transcription factor motif discovery and network analysis. Motif enrichment analysis was performed with HOMER software comparing TF motifs enriched in target set (from ATAC-seq) versus reference motifs (randomly selected background sequences). Only motif ratios ≥2 with P ≤0.05 (Benjamini–Hochberg correction) were considered biologically/statistically significant. The functional enrichment analysis was performed with the clusterProfiler package. Network visualizations were made with the enrichPlot package.

Generation of Kdm1bKD and Kdm1bOVER cells. MCA205, AT3, CT26 and B16-F10 cells were seeded at a 7.5 × 10^4 in 100 μl growth medium (96-well plates). For KD cells, lentiviral particle (LP) transduction was performed using polybrene (2 μg/ml) and 4 × 10^5 multiplicity of infection (MOI) of shRNA LP targeting Kdm1b or scrambled control. For OVER cells, cDNA encoding Kdm1b gene was cloned into a LP with a bidirectional promoter. Kdm1b (sense orientation) and ΔLNGFR (low affinity nerve growth factor receptor) reporter (antisense orientation) gene expression were driven by hPGK and mChSV promoter, respectively. LPs were packaged by an integrase-competent third-generation lentiviral vector. Generation construct and pseudotyped by the VSV envelope. LPs were added to target cells at 1 × 10^4 MOI. Cells were centrifuged (30 ºC, 1,800 × g, 90 min) and let in culture 24–48 h. KD cells were FACS-sorted for green fluorescence protein (GFP) expression and selected with puromycin (1:500). OVER cells were FACS-sorted for ΔLNGFR expression. Transduction efficiency was assessed by qRT–PCR and immunoblot.

Extreme limiting dilution analysis. Clonogenic ELDA assays were performed as in ref. 1. Kdm1bKD or Kdm1bOVER cells were seeded in 96-well plates at doses from 1 to 50 cells per well with 60 replicate wells per cell dose and analyzed as described‡. Wells containing viable adherent cells 2 weeks after plating were scored as positive.

Cell invasion, migration transwell assay. Migration ability of Kdm1bKD and Kdm1bOVER cells were measured using Transwell cell culture chambers (8 μm pore size). Cells, 1 × 10^5 well, were seeded in 200 μl matrigel diluted 1:4 in RPMI 0.5% FBS in the upper chamber of the Transwell insert. R10 was placed in the lower chamber and incubated, 72 h, in standard cell culture conditions. Migrated cells were fixed with 4% PFA and stained with 0.2% crystal violet. Nonmigrated cells were removed by wiping the membrane upper side with a cotton swab. Photomicrographs of migrated cells were obtained using an inverted microscope and the percentage of scratch area in five random fields measured using ImageJ v1.5 software.

Animals. Mice were maintained in specific pathogen-free standard housing conditions (20 ± 2 ºC, 50 ± 5% humidity, 12 h–12 h light–dark cycle, with food and water ad libitum). All in vivo experiments were in compliance with the EU Directive 63/2010 and included in an experimental protocol approved by the Institutional Animal Experimentation Committee at the Istituto Superiore di Sanità (Rome) and the Italian Ministry of Health (858/2015-PR). Six to seven week-old female C57Bl/6J, NSG, C57Bl/6-Tg(Ccr7cbrb)1100Mjb/J OT-1 mice were from Charles River, housed in the animal facility at the Istituto Superiore di Sanità and employed after a 7-day acclimatization period. All experiments followed the Guidelines for the Care and Use of Laboratory Animals. A maximal tumor size of 15 mm for the longest axis of the tumor was accepted and was observed during this study, with only the exception of later time points of therapy experiments (that is, Figs. 2f, 4e and 6g) as differences of tumor size 20–30 days observed during this study, with only the exception of later time points of therapy experiments (that is, Figs. 2f, 4e and 6g). Tumor models, vaccination and chemotherapy. Tumor induction and chemotherapy. Tumorogenicity assessment: 1 × 10^4–10^5–10^6 PAR, IFN–CSC, Kdm1bKD, Kdm1bOVER MCA205 cells were subcutaneously inoculated into the flank of C57Bl/6J mice and tumor growth was monitored weekly. When the tumor surface reached 35–45 mm^2, mice were randomized to control and treatment groups and injected with D-PBS, CDDP (2.5 mg/kg), DOX (2.5 mg/kg), IFN-I (2 × 10^6 U per mouse every other day or 1 × 10^5 U per mouse once) all intratumorally in 50 μl D-PBS, TCP (5 mg/kg) intraperitonally every 3 days. All experiments contained 5–10 mice per group and were run at least two times, yielding similar results. GraphPad Prism was used for data analysis.

Tumor dissection, flow cytometry and sorting. Tumors from mice treated with CDDP, DOX, D-PBS, TCP, DOX + TCP, IFN-I or IFN-I + DOX were carefully removed 15 days post-treatment. Tumor burdens were digested with scissors in RPMI 1640 plus 400 μM culture medium, 200 μl 1% DNase I and incubated (30 min, 37 ºC). Single cell suspensions were obtained by grinding the digested tissue and filtering through a 70 μm cell strainer and were purified using CD45 MicroBeads, MACS columns and sorters. CD45+ cells, including tumor-infiltrating lymphocytes, were resuspended at 1 × 10^6 cells/ml and stained (4 ºC, 30 min) with mAbs anti-CD45 (1:25); anti-CD8a (1:150); anti- TIM3 (1:100), CD45+ cells were stained with mAbs anti-CD43, anti-CD34, anti-CD24 and anti-Nanog (1:5). For gating strategies, see Supplementary Fig. 1.

In vivo inactivation assay. PAR, ICD–CSCs, Kdm1bKD and Kdm1bOVER MCA205 cells (2 × 10^5) were injected into the tail vein of C57Bl/6J mice. In some experiments, mice were treated with 200 μg per mouse anti-CD4 and anti-CD8 Abs in D-PBS, at day-1 and then every 4 days for 15 days. Then, lungs were explanted and macroscopic lung metastases counted. Lung CD4+CD8− in vivo depletion, at the end of the experiments, spleens were recovered and analyzed by cytofluorometry. Images of lung metastases were captured with a ZEISS STEMI 305 Stereo microscope (Carl Zeiss). GraphPad Prism was used for data analysis.

Immunohistochemistry. Sections (3 μm) of formalin-fixed paraffin-embedded BC biopsies and autologous surgical samples were dewaxed in xylene and ethanol slides (Menzel-Gläser). Immunoreactions were revealed by Bond Polymer Refine Detection and ChromoPlex TM1 Dual Detection in an automated autostainer (Bond III, Leica Biosystems) using the following mAbs: mouse anti-CD45 (1:500), rabbit anti-CD133 (1:1000), rabbit anti-CD44 (1:1000), mouse anti-CD24 (1:100), rabbit anti-PI10 (1:50), the polyclonal rabbit anti-MX1 (1:100) and the recombinant rabbit anti-LDH2/AOF1 (1:500). Chromogenic substrates were diaminobenzidine and Fast Red.

Patients included in neoadjuvant chemotherapy studies. Twenty patients (female, 30–77 years old, see Supplementary Table 4), with histologically confirmed BC by the Pathology Unit at the Regina Elena National Cancer Institute, were included. All patients underwent biopsies and received neoadjuvant anthracyclines. This retrospective study was conducted according to the Declaration of Helsinki and, being a part of standard-of-care patient management, did not require a dedicated protocol. All patients signed a written informed consent to treatment and data collection. For metagene correlation analyses, publicly available patient cohort expression codes (GSE5665, GSE2271, GSE82257, GSE1199, GSE32646, METABRIC) reported in refs. 12,13 were selected. Gene expression analyses were performed on tumor biopsies obtained at diagnosis. Survival analyses were performed by implementing Python (v.3.7.0) scripts. Kaplan–Meier curves for disease-specific survival and distant relapse-free incidence events were censored and drawn using the following Python libraries: lifelines (v.0.26.0, Davidson-Pilon, 2021), matplotlib (v.3.2.2, Hunter, 2007), seaborn (v.0.11.1, Waskom, 2011), numpy (v.1.17.4, Harris et al., 2020), pandas (v.1.0.4, Reback et al., 2021). Differences between Kaplan–Meier curves were evaluated by log-rank test (Bland & Altman, 1998) implemented in the logrank_test function of the SurvExpress online resource (Aguirre-Gamboa, 2013). Patients were stratified by splitting the ordered prognostic index by the median, obtaining two groups with (nearly) equal patient numbers. Gene signatures in correlation and survival analyses were included upon performing the gene set variation analysis as in ref. 14.

Statistical analysis. In vitro experiments: no statistical methods were used to determine sample size (n). Experiments were independently repeated at least three times with similar results, with few exceptions in which experiments were repeated twice or one replicate was excluded from the analysis due to technical problems (always specified in figures and/or figure legends). When data were not close to normal distribution or the central tendency, a non-parametric test was used (Mann–Whitney U test, χ^2 test). Differences were considered significant when P < 0.05. When several treatments were compared, Tukey’s test (Bland & Altman, 1998) was used to determine post-hoc differences. Statistical power. For each experiment every sample was processed identically and internal controls and normalization methods were included to avoid technical bias. In vivo experiments: n were defined based on our experience with the experimental models used to detect differences of ≥20% in continuous endpoints between 2 groups (0.05 significance level, 80% statistical power) and in each experimental group/condition, whether n represents technical or biological replicates, are reported in figures and/or figure legends. Data were analyzed with Microsoft Excel (Microsoft) and Prism (v.8.4.0, GraphPad Software), while
statistical analyses were performed using Prism and SPSS software (SPSS v.21, SPSS Inc-IBM). For each dataset of each in vitro experiment conducted at least three independent times, normal distribution was controlled with the Shapiro–Wilk test (SPSS and/or Prism). In case of normal distribution, statistical analysis was performed as follows. Comparisons of two sample groups: unpaired t-test, unpaired t-test with Welch’s correction, depending on the group variance equality (compared using the F-test). Comparisons involving more than two sample groups: ordinary one-way analysis of variance (ANOVA) followed by Bonferroni’s post-hoc test, Brown–Forsythe and Welch one-way ANOVA followed by Dunnett T3 post-hoc test depending on variance equality (assessed with Brown–Forsythe test). Alternatively, in case of data not normally distributed or of two independent experiments, Mann–Whitney and Kruskall–Wallis tests were applied. In vivo growth curves and in vitro splenocyte migration: ordinary two-way RM ANOVA followed by Bonferroni’s correction. IHC: Allred scores were calculated to assess the correlation between MX1, CXCL10, KDM1B, CD133 and CD44 – CD24 markers. P values <0.05 were considered to be statistically significant. All significant P values are reported in Figs. P values of qRT–PCR studies are reported in Supplementary Table 1. P values of Spearman correlation studies are reported in Supplementary Table 2. Statistics of ELDA assay are reported in Supplementary Table 6. In in vivo experiments involving normalization of treated on untreated conditions, controls are expressed as percentages or FC ± s.e.m. calculated upon normalization on the average of raw control data of all experiments included in each analysis. Data collection and analysis were not performed blind to the conditions of the experiments.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
All bulk ATAC–seq, ChIP–seq and RNA-seq datasets have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE173851. The following published GEO datasets were also accessed: GSE6861, GSE20271, GSE29063, GSE16446, GSE41998 and GSE32646. Source data are provided with this paper.

References
57. Manic, G. et al. CKH1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut 67, 903–917 (2018).
58. Golebiewska, A., Brons, N. H., Byerly, R. & Niclou, S. P. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8, 136–147 (2011).
59. Lorenzi, S. et al. Type I IFNs control antigen retention and survival of CD16(+)/CD32+ dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J. Immunol. 186, 5142–5150 (2011).
60. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).
61. Bruno, T. et al. Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Adv. 4, 5616–5630 (2020).
62. Edwals, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).
63. Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).
64. Hanzlikmann, S., Castelo, R. & Guinney, J. GSEA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. 14, 7 (2013).

Acknowledgements
We thank R. Dattilo, P. Di Matteo, R. Ricci, A. Pacca and M. T. D’Urso (Istituto Superiore di Sanità, Rome, Italy) for technical assistance, E. Proietti and P. Settiti (Istituto Superiore di Sanità, Rome, Italy) for providing IFN-I, L. Zitvogel (Gustave Roussy Cancer Campus, Villejuif, France) for providing MCA205-derived clones, M. Oliviero, R. Albano and the Cell Culture Center (CCC) facility (Candiolo Cancer Institute, FPO – IRCCS, Candiolo, Italy) for providing CT26, B16.F10, U2OS, MCF7 and MCF10 cells, O. Kepp and S. Zhang (Gustave Roussy Cancer Campus, Villejuif, France) for providing MCA205-OVA cells, R. Weinberg (Whitehead Institute for Biomedical Research, Cambridge, MA, USA) for providing HMLER cells and L. Tattoli (Università Cattolica del Sacro Cuore, Rome, Italy) for language and grammar editing. In vivo experiments were performed at Istituto Superiore di Sanità (Rome, Italy). This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC, Start-Up 2016 No. 18418 to A.S. and IG 2017 No. 20417 to I.V.) and the Ministero Italiano della Salute (grant No. RF_GR-2013-02357273 to A.S.). M.M. is supported by the AIRC-FIRC Fellowship No. 25558. L.M. is supported by the AIRC Fellowship No. 26604. The other authors are supported by the AIRC (IG 2018 No. 21366 to G.S.; IG 2019 No. 16895 to M.H.C.; 5x1000 No. 9979 to R.D.M.), the Ministero Italiano della Salute (grant Nos. RF_GR-2016-02364847 to E.R.; RF_RF-2018-12367044 to R.D.M.), the Italian Institute for Genomic Medicine (start-up grant to I.V.) and the Compagnia di San Paolo (grant to I.V.).

Author contributions
M.M. designed and performed the majority of in vitro and ex vivo experiments with the help of N.M., C.G., E.M. and G.M., and in vivo experiments with the help of A.S., F.G., S.Y., D.M. and M.S., analyzed and interpreted data, prepared figures and wrote the manuscript. A.G. analyzed data and performed bioinformatic studies with the help of M.P., M.P., G.C., N.F. and M.H.C. E.R. and A.P. provided lentiviral particles for gene overexpression. L.M. and S.S.A.R. performed immunofluorescence analysis. M.S. performed WB and stereomicroscopic analysis. F.S. performed statistical analysis. A.D.B., C.E. and E.P. performed IHC experiments and analysis. L.P. provided clinical data. T.B. and F.D.N. performed ATAC–seq and ChIP–seq studies. A.D.N. and L.M. designed and realized microfluidic systems. G.S., F.M. and V.L. performed and analyzed experiments on microfluidic devices. F.F. and G.Z. performed and analyzed Luminex assay. M.S. and A.B. analyzed flow cytometry data. L.B. and E.A. produced IFN-I. M.B. provided infrastructure and preclinical input on the project. I.V. obtained funding, supervised the project, designed experiments and wrote the manuscript. R.D.M. provided infrastructure, obtained funding, supervised the project, designed and performed experiments, analyzed data and wrote the manuscript. A.S. obtained funding, supervised the project, designed and performed experiments, analyzed data and wrote the manuscript. L.B. and E.A. produced IFN-I. M.B. provided infrastructure and preclinical input on the project. I.V. obtained funding, supervised the project, designed experiments and wrote the manuscript. F.G., S.V., D.M. and M.S. analyzed data and wrote the manuscript. A.G. analyzed data and performed bioinformatic studies with the help of M.P., M.P., G.C., N.F. and M.H.C. E.R. and A.P. provided lentiviral particles for gene overexpression. L.M. and S.S.A.R. performed immunofluorescence analysis. M.S. performed WB and stereomicroscopic analysis. F.S. performed statistical analysis. A.D.B., C.E. and E.P. performed IHC experiments and analysis. L.P. provided clinical data. T.B. and F.D.N. performed ATAC–seq and ChIP–seq studies. A.D.N. and L.M. designed and realized microfluidic systems. G.S., F.M. and V.L. performed and analyzed experiments on microfluidic devices. F.F. and G.Z. performed and analyzed Luminex assay. M.S. and A.B. analyzed flow cytometry data. L.B. and E.A. produced IFN-I. M.B. provided infrastructure and preclinical input on the project. I.V. obtained funding, supervised the project, designed experiments and wrote the manuscript. R.D.M. provided infrastructure, obtained funding, supervised the project, designed experiments and wrote the manuscript. M.M. is supported by the AIRC-FIRC Fellowship No. 26604. The other authors are supported by the AIRC (IG 2018 No. 21366 to G.S.; IG 2019 No. 16895 to M.H.C.; 5x1000 No. 9979 to R.D.M.), the Ministero Italiano della Salute (grant Nos. RF_GR-2016-02364847 to E.R.; RF_RF-2018-12367044 to R.D.M.), the Italian Institute for Genomic Medicine (start-up grant to I.V.) and the Compagnia di San Paolo (grant to I.V.).

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41590-022-01290-3.
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41590-022-01290-3.
Correspondence and requests for materials should be addressed to Ruggero De Maria, Ilio Vitale or Antonella Sistigu.
Peer review information Nature Immunology thanks Shicheng Su and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: N. Bernard, in collaboration with the Nature Immunology team.
Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Type I interferon (IFN-I)-mediated enrichment of putative cancer stem cells (CSCs). (a,b) Multiparametric flow cytometry analysis of the indicated CSC surface markers in CT26 colon carcinoma and B16.F10 melanoma murine cell lines (a), and in U2OS osteosarcoma, MCF7 and HMLER breast carcinoma human cell lines and MCF10A epithelial breast cell line (b). Cells were treated with mock (control; CTR) or purified IFN-I (murine cells) or recombinant IFN-α2a (human cells) (6 × 10^3 U ml^−1, 72 h). The percentage (mean ± s.e.m. and individual data points, n = 3 and n = 4 independent experiments) of CD133^+CD44^+CD24^− CT26 cells, CD133^+CD44^+CD24^−/CD44^−/CD24^− CD133^+CD44^+CD24^−/CD44^+CD24^−/CD24^−/CD44^+CD24^−/CD44^+CD24^− CD133^+CD44^+CD24^−/CD44^−/CD24^− B16.F10 cells, CD133^+CD44^+/CD44^+ CD133^+CD44^−/CD44^+CD24^−/CD44^−/CD24^−/CD44^+CD24^−/CD44^+CD24^− U2OS cells, CD44^+CD24^−/CD44^+CD24^− MCF7, MCF10A and HMLER cells is shown. (c) Representative pictures of AT3 and B16.F10 epithelial cell morphology under mock or purified IFN-I treatment (n = 3 independent experiments). Scale bar, 100 μm. (d) Flow cytometry analysis showing the proportion of viable (propidium iodide/PI^−) MCA205 and AT3 cells left untreated (black) or treated with verapamil (VRP, 100 μM, light green), or purified IFN-I (blue) or VRP + IFN-I (dark green). Data are presented as mean ± s.e.m. and individual data points, n = 3 and n = 4 independent experiments. (e) Expression levels of reprogramming factors in AT3, CT26 and B16.F10 cells treated with purified IFN-I. Data are reported as mean fold change (FC) ± s.e.m. (n = 2 biologically independent samples) over untreated cells after intrasample normalization to the levels of Ppia. (f) Representative images showing the capability of soft-agar-recovered IFN-I-treated MCA205 cells to grow as 3D spheres in standard CSC culture conditions and to maintain a CSC-like transcriptomic profile (n = 2 biologically independent samples). Scale bar, 100 μm. (g) Multiparametric flow cytometry analysis of CD133^+CD24^−/CD44^− (CD44L) and CD133^+CD24^−/CD44^+ (CD44H) in MCA205 cells and of CD133^+CD44^− (CD44L) and CD133^+CD44^+ (CD44H) in AT3 cells treated for 10 consecutive days with mock or IFN-I (1 × 10^3 and 3 × 10^3 U ml^−1). Representative biparametric plots and a histogram showing the percentage (mean ± s.e.m. with individual data point, n = 3 independent experiments) of CSCs are reported. (a, b) Unpaired two-sided Student’s t-test and unpaired two-sided Student’s t-test with Welch’s correction as compared to CTR cells. (d) Brown–Forsythe and Welch one-way ANOVA followed by Dunnett T3 post-hoc tests. (g) Ordinary one-way ANOVA test followed by Bonferroni’s correction.
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Immunogenic chemotherapy triggers putative cancer stem cell (CSC) appearance. (a) Schematic representation of the ‘donor’–‘receiving’ cell coculture experimental protocol. (b) Flow cytometry analysis showing the induction of cell death upon oxaliplatin treatment (OXP, 300 µM, 24 h) in MCA205 cells with the illustrated genetic background. Data are presented as mean ± s.e.m. and individual data points, n = 3 independent experiments. (c) Multiparametric flow cytometry analysis of CSC surface markers in MCA205 cells treated with OXP alone or combined with the AIM2 inhibitor thalidomide (AIM2 inh, 10 µg ml−1) or inhibitors of the RIG-I pathway amlexanox (RIG-I inh#1, 5 µM), BX795 (RIG-I inh#2, 100 nM) and MRT67307 (RIG-I inh#3, 500 nM). The histograms represent the percentage (mean ± s.e.m. and individual data points; the number of independent experiments) of CD133+CD24−CD44high (CD44H) and CD133+CD24+CD44low (CD44L) cells. (d) Flow cytometry analysis of doxorubicin (DOX) efflux ability in MCA205 cells left untreated (gray) or exposed to DOX (2.5 µM, 48 h). The two DOXlow (orange) and DOXhigh (red) cell subsets display high and low capability to efflux DOX and Hoechst 33342 (one representative experiment out of three independent experiments). (e) Representative pictures of FACS-isolated DOXlow and DOXhigh cells in standard culture conditions and under treatment with different chemotherapeutics (DOXhigh cells). MCA205 cells were firstly treated with 2.5 µM DOX for 48 h, and then FACS-isolated based on their low or high positivity for red fluorescence. DOXlow and DOXhigh sorted cells were then left untreated (control, CTR) or treated with OXP (30 µM), DOX (2.5 µM) or mitoxantrone (MTX, 0.04 µM) for 48 h. Representative pictures from one representative experiment out of two yielding similar results of CTR, DOXhigh and treated DOXlow cells are shown. The percentage of counted cells is indicated for each condition, as determined by cell counts on pictures using ImageJ software. Scale bar, 100 µm. (f) Ex vivo flow cytometric analysis of the percentage of NANOG+ MCA205 cells grown in C57Bl/6 J mice treated intratumorally with vehicle (PBS) or 2.9 mg/kg DOX or 2.5 mg/kg cisplatin (CDDP). Data are presented as mean FC ± s.e.m. and individual data points over PBS treatment for 10 mice/group from 2 experimental replicates. (b,c,f) Ordinary one-way ANOVA test followed by Bonferroni’s correction.
Extended Data Fig. 3 | Cancer stem cell (CSC) enrichment through nucleic acid transfer. (a) Flow cytometry analysis of CSC surface markers in ‘receiving’ viable AT3 breast carcinoma and CT26 colon murine carcinoma cells upon coculturing with ‘donor’ cells of the same type previously treated with oxaliplatin (OXP; 300 µM, 48 h) alone or in combination with benzonase (BNZase; 200 IU ml⁻¹, 48 h). Data are presented as mean ± s.e.m. and individual data points. Number of biologically independent experiments are reported. (b) Schematic representation of the extracellular vesicle (EV)-‘receiving’ cell coculture experimental protocol. (a) Ordinary one-way ANOVA test followed by Bonferroni’s correction.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Characterization of cancer stem cells (CSCs) enriched by type I interferons (IFN-I). (a) Evaluation of cell proliferation/viability by CellTiter-Glo® assay in parental (PAR) and FACS-isolated CD133+CD24−CD44low (CD44L) and CD133−CD24−CD44high (CD44H) MCA205 cells (upon enrichment via IFN-I administration) treated for 72 h with oxaliplatin (OXP), doxorubicin (DOX) and mitoxantrone (MTX) as indicated. Results are reported as mean ± s.e.m., n=3 biologically independent experiments. (b) In vivo evaluation of the prophylactic potential of PAR MCA205 and immunogenic cell death (ICD)-induced CSCs by using immunocompetent C57Bl/6J (Wild-type/Wt) mice or immunodeficient NSG mice that rejected the injections with PAR, CD44H and CD44L cells at the indicated dose in the experiment reported in Fig. 4b and rechallenging the animals with 1×10⁵ PAR MCA205 in the other flank. The percentage of tumor-free mice is shown. (c) Ex vivo flow cytometric analysis of CD4 and CD8 expression in splenocytes from C57Bl/6J mice treated intraperitoneally with vehicle (CTR) or 200 µg/mouse of anti-CD4 and anti-CD8 (200 µg/mouse at day -1 and then every 4 days for 2 weeks). One representative experiment out of two is shown. (d) Schematic representation of ‘competition’ microfluidic devices. CD24L, CD133−CD44−CD24low. (a) Ordinary one-way ANOVA test followed by Bonferroni’s correction. (b) Log-rank (Mantel-Cox) test.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Chromatin remodeling following type I interferon (IFN-I) exposure. (a) Patterns of gene expression as determined by RNA-seq for representative ATAC-seq-identified genes. Genes upregulated and downregulated in CD133+CD24+CD44high (CD44H) cells induced by IFN-I are in red and blue, respectively. (b) Western-blot (WB) analysis of the levels of KDM1B in the indicated parental (PAR) cell lines and the same cell lines engineered to overexpress or down-express KDM1B (Kdm1bOVER and Kdm1bKD). Actin beta (b-ACTIN) is used as loading control. The table reports data quantification from one experiment. (c) Evaluation of the impact on KDM1B on chromatin remodeling by ATAC-seq. Representative loci for the illustrated genes in Kdm1bOVER and Kdm1bKD MCA205 cells are reported. (d) Evaluation of gene regulatory mechanisms downstream of KDM1B by ChIP-seq on immunogenic cell death (ICD)-induced CD44H cells isolated from MCA205 cells and Gene Ontology (GO) terms enrichment analysis. Genes are categorized as illustrated. (d) One-sided hypergeometric test followed by Benjamini–Hochberg correction for multiple comparisons.
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | Impact of KDM1B on cancer stemness, tumorigenicity, and invasiveness. (a,b) Multiparametric flow cytometry analysis of cancer stem cell (CSC) surface markers (a) and qRT–PCR analyses of the reported reprogramming factors (b) in the indicated parental (PAR) cells and the same cell lines engineered to overexpress or down-express KDM1B (Kdm1bOVER and Kdm1bKD). The histograms in (a) represent the percentage (mean ± s.e.m. and individual data points, \(n=3\) biologically independent experiments) of the indicated CSC subpopulation including CD133\(^+\)CD24\(^-\)CD44\(^{\text{high}}\) (CD44H) MCA205 cells. qRT–PCR data are reported as mean fold change (FC) over untreated condition after intrasample normalization to Ppia expression levels. *\(P<0.05\), **\(P<0.01\), ***\(P<0.001\); the exact \(P\) values are in Supplementary Table 2. (c-e) Evaluation of the assessment of migration ability by transwell assay (c), therapeutic response to the reported immunogenic cell death (ICD) inducers and non inducers (d) and in vitro tumorigenicity and self-renewal potential by ELDA assay (e) in the indicated Kdm1bOVER and Kdm1bKD cells. Number of biologically independent samples (mean ± s.e.m. and individual data points for c and d) collected over three independent experiments is reported. (a,b) Ordinary one-way ANOVA test followed by Bonferroni’s correction as compared to control condition. (c-e) Unpaired two-sided Student’s t-test followed by Welch’s correction and two-tailed Mann–Whitney test. Exact calculations for ELDA assay are in Supplementary Table 2.
Extended Data Fig. 7 | See next page for caption.
Extended Data Fig. 7 | Clinical correlation between KDM1B, type I interferon (IFN-I) signature, and stemness signature in breast cancer (BC) patients. (a) Spearman correlations between expression scores of KDM1B and the reported IFN-I-related metagenes, stem-related reprogramming factors, IFN-I signatures and stemness signatures from microarray data of three publicly available cohorts of BC patients treated with neoadjuvant anthracycline-based chemotherapy. *P < 0.05, **P < 0.01, ***P < 0.001. (b) Kaplan–Meier plots depicting the distant relapse-free incidence (DRFI) in BC patients from the METABRIC cohort stratified according to risk behavior and boxplots reporting the expression levels of KDM1B and the illustrated stemness or IFN-I signatures. P value was calculated using the P Cox, Log-Rank (Mantel-Cox) test. P values <0.05 were considered statistically significant. The relative expression of the indicated genes and signatures is reported as mean ± s.e.m. from 1,903 patients. For statistics of boxplots see Supplementary Table 3. The correspondent disease-specific survival (DSS) is reported in Fig. 7b. (c,d) Analysis of the combined impact of KDM1B and the illustrated stemness and IFN-I signatures on DRFI and DSS on BC patients form the METABRIC database upon their stratification according positivity or negativity to the Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2, best known as HER2). P values are calculated as in (b). Ns, not-significant. (a) Two-sided Spearman’s rho.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection
Flow Cytometry: BD FACSDiva™ (BD Biosciences), MACSQuant® VYB Analyzer 10 (Miltenyi Biotech), CytExpert (Beckman Coulter)
Cell Sorting: BD FACSDiva™ (BD Biosciences)
Luminescence Detection: Multimode Detection Software (Beckman Coulter)
Conventional Immunofluorescence microscopy: EVOS® FL Imaging System operated by embedded Software v.1.4 (Life Technologies-Thermo Scientific), Leica DM13000 B microscope (HCX PL Fluotar, AN 1.3), Leica DFC 310FX camera, LAS X acquisition software (all from Leica Microsystems, Wetzlar, Germany)
Stereo microscopy: ZEN lite imaging (Zeiss)
Immunohistochemistry microscopy: LAS V4.8 (Leica)
qRT-PCR: StepOnePlus™ Real-Time PCR System operated by embedded StepOne™ Software (ThermoFisher Scientific)
RNA quantification: Nanodrop 2000C Spectrophotometer operated by embedded software (ThermoFisher Scientific), Qubit 4 Fluorometer operated by embedded software (ThermoFisher Scientific)
Luminesx: Bio-Plex Manager Software v.6.1 (Bio-Rad)

Data analysis
Wet lab:
Flow Cytometry: FlowJo v.10.0.7 (FlowJo LLC, TreeStar, Inc.), Prism v.8.4 (GraphPad)
Analysis of images: Photoshop CC2015, ImageJ v.1.53, Excel 2013 (Microsoft), Prism v.8.4 (GraphPad), LAS X software
Tumor growth: Prism v.8.4 (GraphPad)
Luminesx assay: Bio-Plex Manager Software v.6.1
All other experiments: Excel 2013 (Microsoft), Prism v.8.4 (GraphPad)

In silico: |
| ATAC-seq and Chip-seq: BWA MEM v.0.7.17, MACS v.2.1.0, HOMER v.4.10, Python v.3.7, matplotlib v.3.2.2, seaborn v.0.11.1 |
| RNA-seq: GFF (General Feature Format) GENCODE Release M24 GRCm38 biomaRT v.2.42.1, org.Mm.eg.db v.3.10.0, STAR v.2.7.3a, GATK v.4.1.2.0, featureCounts v.2.0.0, DESeq2 v.1.26.0, edgeR v.3.28.1, limma-voom v.3.42.2, R v.3.6.3 |
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All data supporting the findings of this study will be available in a publicly accessible repository. The METABRIC patient dataset can be publicly accessed via https://www.cbioportal.org/study/clinicalData?id=brcametabirc. The molecular signature datasets can be publicly accessed at https://www.ncbi.nlm.nih.gov/geo/ with accession codes GSE6861, GSE20727, GSE25065, GSE16446, GSE41998 and GSE32646. All bulk ATAC-seq, Chip-seq, RNA-seq datasets have been uploaded to the Gene Expression Omnibus repository (accession no. HYPERLINK "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173851" GSE173851, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173851).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see https://www.nature.com/documents/nras-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

In vivo experiments: sample sizes were defined on the basis of our experience with the experimental models used in this study in order to detect differences of 20% or more in continuous endpoints between groups (0.05 significance level and 80% statistical power).

In vitro experiments: no statistical methods were used to determine sample size. A minimum of three biologically independent samples were tested, and experiments were performed in at least 2 independent instances (mostly 3) with similar results. When this turned out to be insufficient to clarify statistically sub-significant trends between groups, sample number was increased to improve statistical power.

Data exclusions

Outliers or mice with symptoms not linked to cancer were excluded.

Replication

All experiments were performed in at least 2 independent instances (mostly 3) with similar results. In each individual experiment, each technical replicate was measured once.

Randomization

Mice were randomly allocated to treatment group at tumor detection. For IHC analysis on breast biopsies, intensity score was obtained by calculating 8-10 different fields which were selected randomly. For IF experiments of symmetric vs. asymmetric division, >100 anaphases/telophases were randomly selected. For tracking experiments on microfluidic devices, trajectories of >800 splenocytes were randomly selected.

Blinding

In vivo and in vitro analyses were not blinded but kept as unbiased as possible. Data were analysed by software with objective outcomes, and hence blinding was not relevant for the study. For in vitro studies every sample was processed identically to avoid technical bias. Tumor injections and measurements were performed by the same researcher to ensure reproducibility. Proper internal controls and normalization methods were included in each study for internal bias.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

n/a	Involved in the study
	Antibodies
	Eukaryotic cell lines
	Palaeontology and archaeology
	Animals and other organisms
	Human research participants
	Clinical data
	Dual use research of concern

Methods

n/a	Involved in the study
	ChIP-seq
	Flow cytometry
	MRI-based neuroimaging

Antibodies

Antibodies used
Rat monoclonal anti-CD133 (13A4) ebioscience™ Cat# 17-1331-81, RRID:AB_823120 [https://www.thermofisher.com/antibody/product/CD133-Prominin-1-Antibody-clone-13A4-Monoclonal/17-1331-81]
Rat monoclonal anti-CD24 (M1/69) ebioscience™ Cat# 12-0242-82, RRID:AB_465602 [https://www.thermofisher.com/antibody/product/CD24-Antibody-clone-M1-69-Monoclonal/12-0242-82]
Rat monoclonal anti-CD44 (IM7) ebioscience™ Cat# 11-0441-82, RRID:AB_465045 [https://www.thermofisher.com/antibody/product/CD44-Antibody-clone-IM7-Monoclonal/11-0441-82]
Rat monoclonal CD44 (IM7) BioLegend® Cat#103020, RRID:AB_493683 [https://www.biolegend.com/en-us/products/pacific-blue-anti-mouse-human-cd44-antibody-3099]
Rat monoclonal anti-CD8a (53-6.7) ebioscience™ Cat# 17-0081-82, RRID:AB_469335 [https://www.thermofisher.com/antibody/product/CD8a-Antibody-clone-53-6-7-Monoclonal/17-0081-82]
Rat monoclonal anti-CD273 (122) ebioscience™ Cat# 11-9972-81, RRID:AB_465461 [https://www.thermofisher.com/antibody/product/CD273-B7-DC-Antibody-clone-122-Monoclonal/11-9972-81]
Mouse monoclonal anti-CD66a (CC1) ebioscience™ Cat# 12-0661-80, RRID:AB_1311201 [https://www.thermofisher.com/antibody/product/CD66a-CEACAM1-Antibody-clone-CC1-Monoclonal/12-0661-80]
Mouse monoclonal anti-H2-K1 [AF6-88.5.5.3] ebioscience™ Cat# 11-5958-80, RRID:AB_11151335 [https://www.thermofisher.com/antibody/product/MHC-Class-i-H-2Kb-Antibody-clone-AF6-88-5-5-3-Monoclonal/11-5958-80]
Rat monoclonal anti-CD274 (10F.9G2) BioLegend® Cat# 124312, RRID:AB_10612741 [https://www.biolegend.com/en-us/products/apc-anti-mouse-cd274-b7-h1-pd-11-antibody-6655]
Rat monoclonal anti-Galectin-9 (10B2) BioLegend® Cat# 137903, RRID:AB_10568785 [https://www.biolegend.com/en-us/products/pe-anti-mouse-galectin-9-antibody-6563]
Rat monoclonal anti-CD366 (RMT3-23) ebioscience™ Cat# 11-5870-82, RRID:AB_2668129 [https://www.thermofisher.com/antibody/product/CD366-TIM3-Antibody-clone-RMT3-23-Monoclonal/11-5870-82]
Rat monoclonal anti-CD45 (30-F11) ebioscience™ Cat# MCD4528, RRID:AB_10373710 [https://www.thermofisher.com/antibody/product/CD45-Antibody-clone-30-F11-Monoclonal/MCD4528]
Mouse monoclonal anti-CD271 (ME20.4) BioLegend® Cat#53-9400-42, RRID:AB_2802341 [https://www.biolegend.com/antibody/product/CD271-Ngfr-Receptor-Antibody-clone-ME20-4-Monoclonal/53-9400-42]
Mouse monoclonal anti-CD133/1 (AC133) Miltenyi Biotec Cat# 130-113-106 [https://www.miltenyibiotec.com/T-en/products/cd133-1-antibody-anti-human-ac133.html#spec:100-tests-in-200-ul]
Recombinant monoclonal anti-CD44 [REA690] Miltenyi Biotec Cat# 130-113-342 [https://www.miltenyibiotec.com/T-en/products/cd44-antibody-human-reality-ref:rea690.html#pec:100-tests-in-200-ul]
Human recombinant monoclonal anti-CD133/1 [REA753] Miltenyi Biotec Cat# 130-111-080 [https://www.miltenyibiotec.com/T-en/products/cd133-1-antibody-anti-human-reality-ref:rea753.html#ref]
Human recombinant monoclonal anti-CD24 (REA832) Miltenyi Biotec Cat# 130-112-845 [https://www.miltenyibiotec.com/T-en/products/cd24-antibody-anti-human-reality-ref:rea832.html#pec:100-tests-in-200-ul]
Human recombinant monoclonal anti-CD44 [REA690] Miltenyi Biotec Cat# 130-113-903 [https://www.miltenyibiotec.com/T-en/products/cd44-antibody-human-reality-ref:rea690.html#ref:30-tests-in-60-ul]
Human recombinant monoclonal anti-CD44 (REA259) Miltenyi Biotec Cat# 130-120-881 [https://www.miltenyibiotec.com/T-en/products/cd44-antibody-human-realease-ref:rea259.html#ref:100-tests-in-200-ul]
Rat monoclonal anti-CD4 (GK1.5) Miltenyi Biotec Cat# 130-120-750 [https://www.miltenyibiotec.com/T-en/products/cd4-antibody-
anti-mouse-gk1-5.html#biotin:30-ug-in-1-ml
Mouse monoclonal anti-CD24 (M15) BD Biosciences Cat# BBA13, RRID:AB_356935 https://www.rndsystems.com/products/human-
cd24-alexa-fluor-700-conjugated-antibody-m15-fab247n
Mouse monoclonal anti-CD44v6 (2F10) R&D Systems Cat# BBA13, RRID:AB_356935 https://www.rndsystems.com/products/human-
cd44v6-antibody-2f10_bba13
Rabbit polyclonal anti-MK1 Sigma-Aldrich Cat# HPA030917, RRID:AB_2680862 Lot. B115464 https://www.sigmaaldrich.com/catalog/
product/sigma/hpa030917?lang=en®ion=IT
Rabbit polyclonal anti-CD44 (SP37) Sigma-Aldrich Cat# SAB5500068 Lot. 161214C https://www.sigmaaldrich.com/catalog/product/
sigma/sab5500068?lang=en®ion=IT
Mouse monoclonal anti-CD24 (SN3) Millipore Cat# CB6561, RRID:AB_11221454 Lot. 2983172 https://www.merckmillipore.com/IT/IT/
product/Anti-CD24-Antibody-clone-SN3,MM_NF-CB6561
Mouse monoclonal anti-CD45 (2B11+PD7/26) Agilent Technologies Cat# M0701, RRID:AB_2661839 Lot. 20049267 https://
www.agilent.com/store/productDetail.jsp?catalogId=M070101-2
Rabbit monoclonal anti-CD133 (EPR16508) Abcam Cat# A9 222782 https://www.abcam.com/cd133-antibody-epr16508-
ab222782.html
Rabbit monoclonal-IP10 (EPR24674-12) Abcam Cat# A8 283681 https://www.abcam.com/ip10-antibody-epr24674-12-
ab283681.html
Goat anti-mouse Alexa Fluor® Plus 488 Thermo Scientific Cat# A32723 https://www.thermofisher.com/antibody/product/Goat-anti-
Mouse-igG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A32723
Goat anti-mouse Alexa Fluor™ 488 Thermo Scientific Cat# A21121 https://www.thermofisher.com/antibody/product/Goat-anti-
Mouse-igG1-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21121
Goat anti-Rabbit igG [H+L] Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 555 Invitrogen Cat# A-21429 https://
www.thermofisher.com/antibody/product/Goat-anti-Rabbit-igG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21429
Rabbit recombinant anti-15D2/AOF1 (EPR18508) Abcam Cat# AB193080 https://www.abcam.com/1sd2--aof1-antibody-epr18508-
ab193080.html
Mouse monoclonal anti-β-Actin Sigma-Aldrich Cat# A5441 https://www.sigmaaldrich.com/IT/en/product/sigma/a5441
Rabbit IgG HRP linked whole antibody GE Healthcare Cat# GEHNA9341ML https://www.euroclonengroup.it/search_result
Mouse IgG HRP linked whole antibody GE Healthcare Cat# GEHNA9311ML https://www.euroclonengroup.it/search_result
Rabbit anti-Numb (C29G11) Cell Signaling Technology Cat# 2756 https://www.cellsignal.com/products/primary-antibodies/humb-
c29g11-rabbit-mab/2756
InVivoMab rat anti-CD4 [GX1.5] Bio Cell Cat# BE0003-1 https://bxcell.com/product/m-cd4/
InVivoMab rat anti-CD8a [2.43] Bio Cell Cat# BE0061 https://bxcell.com/product/invivoplus-anti-m-lyt-2-2-cd8a/

Validation
All antibodies were commercial. Specificity and validation were provided by manufacturer’s technical datasheets and confirmed in
literature. Link to technical datasheet has been provided above. No further validation was performed.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s)
MCA205 (#5CC173) and AT3 (#5CC178) cells were purchased from Merck Sigma-Aldrich, CT26, B16.F10, U2OS, MC7 and
MCF10A were from ATCC, MCA clones were kindly provided by Pr. Laurence Zitvogel (Gustave Roussy Cancer Campus,
France), OVA-expressing MCA205 cells were kindly provided by Dr. Oliver Kripp (Gustave Roussy Cancer Campus, France),
HMLER cells were kindly provided by Pr. Robert Weinberg, Kdm1b OVER and Kdm1b KD MCA205, CT26 and B16.F10 cells
were specifically produced for this work.

Authentication
MCA205 and AT3 cells were used shortly after receipt from commercial vendors and hence were not authenticated. CT26,
B16.F10, U2OS, MCF7, MCF10A were routinely validated at Candiolo Cancer Institute, just after thawing via STR Profile System
using PowerPlex® 16 HS (Promega), HMLER and MCA.205-OVA cells were not authenticated but in all experiments
low passage number cells were used. Properties relevant to the experiments (e.g., OVA and MHC-I expression) were routinely
confirmed by flow cytometry or (e.g., Kdm1b overexpression or depletion) western blot and qRT-PCR.

Mycoplasma contamination
All cell lines were routinely confirmed to be free from Mycoplasma contamination by PCR.
Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Laboratory animals
Six-to-7 week-old female C57BL/6J, NOD SCID gamma (NSG) and C57BL/6-Tg(TeraTcrb)1100Wjbj/ OT1 mice were purchased from Charles River (Calco, Italy), housed in the animal facility at the Istituto Superiore di Sanità (Rome, Italy) and employed after an acclimatization period of 7 days. Mice were maintained in specific pathogen-free conditions in a temperature-controlled environment (20°C +/- 2°C) with 12h light - 12h dark cycles and received food and water ad libitum.

Wild animals
None

Field-collected samples
None

Ethics oversight
All the in vivo experimentations were in compliance with the EU Directive 63/2010 and included in an experimental protocol approved by the Institutional Animal Experimentation Committee at the Istituto Superiore di Sanità (Rome) and the Italian Ministry of Health [approval number B58/2015-PR].

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy Information about studies involving human research participants

Population characteristics
Twenty breast cancer patients [all with biotic material before, at diagnosis, and after, at surgery, neoadjuvant anthracycline-based chemotherapy] attending the Division of Medical Oncology 2 at the IRCCS Regina Elena National Cancer Institute (Rome, Italy) were included in this study as part of their standard-of-care clinical management, upon acquisition of written informed consent, between January 2015 and March 2018. Clinical characteristics: median age = 53.5 (30-77), histological type = invasive ductal carcinoma 95%, ductal carcinoma in situ 0%, invasive lobular carcinoma 5%, histological grade at diagnosis = II 30%, III 30%, III 35%, unknown 5%, ER status at diagnosis = positive 75%, negative 25%, PR status at diagnosis = positive 65%, negative 35%, HER2 status at diagnosis = positive 80%, negative 20%, Ki-67 status at diagnosis = positive 95%, unknown 5%, number of chemotherapy cycles = 4 5, 5.5, 7.5, 8 70, 10 5, unknown 10%, histological grade at surgery = II 20%, III 65%, unknown 15%, ER status at surgery = positive 70%, negative 30%, PR status at surgery = positive 50%, negative 50%, HER2 status at surgery = positive 65%, negative 35%, Ki-67 status at surgery = positive 95%, unknown 5%, Diagnostic and surgical biopsies were studied.

Recruitment
Participants were retrospectively included in this study as a part of their standard-of-care management at the IRCCS Regina Elena National Cancer Institute (Rome, Italy). The only criteria for inclusion were treatment with anthracyclines before surgical resection [neoadjuvant regimen] and sample availability.

Ethics oversight
IRCCS Regina Elena National Cancer Institute (Rome, Italy). This study was retrospective as a part of standard-of-care patient management, and hence did not require a dedicated study protocol. This study was conducted in accordance with the Declaration of Helsinki. All the patients signed a written informed consent to treatment and data collection.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq

Data deposition

☒ Confirm that both raw and final processed data have been deposited in a public database such as GEO.

☒ Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication.

Files in database submission
Provide a list of all files available in the database submission.

Genome browser session (e.g. UCSC)
Provide a link to an anonymized genome browser session for “Initial submission” and “Revised version” documents only, to enable peer review. Write “no longer applicable” for “Final submission” documents.

Methodology

Replicates
Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth
Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.

Antibodies
Rabbit recombinant anti-LSD1/AOF1 (EPR18508) Abcam Cat# AB193080
Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

In vitro experiments: to assess the expression of specific surface markers on putative-induced CSCs, 1 x 105 murine and human tumor cells were cultured in 6-well plates in 2 ml of growth medium and treated 72h with purified mouse IFN-α/β or recombinant human Roferon-A® (6000 U/ml) or with DOX (25 μM) or OXP (300 μM) alone or in combination with TCP (10 μM) for 48h. Cells were then collected, washed in Dulbecco’s Phosphate-Buffered Saline (D-PBS) and stained with fluorescently labeled mAbs directed against human/murine CD44, CD133 and/or CD24, or with purified CD44v6 mAb, at optimal mAb concentrations (dilution 1:20, as previously determined by titration), in a cold D-PBS solution containing 1% FBS (D-PBS-FBS 1%). Samples were incubated in the dark on ice for 30min and then washed twice with cold D-PBS-FBS 1% solution. Thereafter, cells stained with CD44v6 mAb, were co-stained with the appropriate Alexa Fluor® 488 secondary Ab (diluted at 1:500 in D-PBS-FBS 1%) on ice for 30min. Cells were washed twice before the addition of 150 μL growth medium supplemented with 1 μg/mL DAPI. For the assessment by flow cytometry of the expression of immune checkpoint molecules, FACS-isolated ICD-CSCs from AT3 and MCA20S cells were stained at 4°C for 30min in the dark with the following murine fluorochrome-conjugated mAbs directed against: PD-L1 (diluted at 1:100); PD-L2CD11G (diluted at 1:100), LGALS9 (diluted at 1:20) and CEACAM1 (diluted at 1:100). DAPI was used to distinguish live and dead cells, and analysis of the expression of immune checkpoint molecules was made only in live cells. To evaluate how free nucleic acids contribute to the acquisition of CSC traits, 3 x 105 murine tumor cells were cultured in 6-well plates (2 ml of medium/well) and treated with 300 μM OXP for 24h (“donor” cells). Thereafter, “donor” cells were collected, washed from OXP and incubated at 37°C for up to 4h in 1.5 ml-epipendorf microtubes containing growth medium, supplemented or not, with 200 IU/ml. BcMAze, 10 IU/ml. RNase A, 10 IU/ml RNase H or 100 IU/ml. DNase. Next, such “donor” cells were cocultured with untreated live cells (“receiving” cells) for 24h in the presence or not of the indicated nucleases before cytofluorometric-mediated assessment of CSC surface markers on “receiving” cells. For the side-population (SP) assay, 1 x 105 murine tumor cells were cultured in 6-well plates (2 ml of medium/well) and treated with 6000 U/ml IFN-α/β for 72h, or 2.5 μM DOX for 48h. Cells were then collected, washed and incubated in pre-warmed growth medium in the presence or not of 100 μM VP for 30min at 37°C. Five μg/mL Hoechst 33342 was added to cell suspension for 30min at 37°C in the dark. For T cell proliferation and cancer cell killing assays, MCA20S-OVA were UV irradiated and co-cultured with BM-derived DCs at 2:1 ratio for 24h. DCs were then cultured at a 5:1 ratio with splenic purified CD8+ OT-1 cells for 72h. Cross-primed CD8+ OT-1 cells were then labelled with 1 μM CFSE dye for 10min at 37°C, and re-stimulated with live parental or CD44 MCA20S-OVA cells at 1:5 ratio. Three days later, cells were recovered and analyzed for CFSE levels on live gated CD8+ cells and PI levels on CD45- cells.

Ex vivo experiments: tumors from mice either treated with CDDP, DOX, D-PBS, TCP, DOX+TCP, acute high dose IFNs-1, chronic low dose IFNs-I, chronic low dose IFNs+DOX were carefully removed 15 days after treatment. Tumor burdens were cut into small pieces with scissors within digesting buffer (400 U/ml Collagenase A and 200 U/ml DNase I in RPMI 1640) and incubated for 30min at 37°C. Single cell suspensions obtained by grinding the digested tissue and filtering them through a 70-μm cell strainer were then purified based on CD45 expression, by using mouse CD45 Microbeads, MACS columns and separators (used following manufacturer’s recommendations). After washing with D-PBS, CD45+ cells, including tumor infiltrating lymphocytes (TILs), were re-suspended at 1 x 107 cells/ml and stained at 4°C for 30min in the dark with the following murine-specific fluorochrome-conjugated mAbs directed against: CD45 (diluted at 1:25), CD8a (diluted at 1:150); and TIA-1 (diluted at 1:100). Similarly, the CD45- cellular fraction (including tumor cells) was stained as follows: CD45, CD133, CD44, CD24 and Nanog (diluted at 1:5). DAPI and Sytox blue were used to distinguish live and dead cells and only live cells were included in the analysis.

Instrument

BD FACS CantoTM II (BD Biosciences), MACSQuant® VYB Analyzer 10 (Miltenyi Biotec), CytoFLEX (Beckman Coulter)

Software

FlowJo v.10.0.7 (FlowJo LLC, TreeStar, Inc.)

Cell population abundance

Sorted cells were >90% pure, as determined by FACS reanalysis

Gating strategy

A relevant gating strategy is described in Extended Data 1. Briefly, surface or intracellular markers were quantified within DAPI- cells upon gating on cells (SSC-A vs FSC-A) and singlets (SSC-A vs SSC-H).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.