A NOTE ON ORDERABILITY AND DEHN FILLING

CHRISTOPHER HERALD AND XINGRU ZHANG

July 3, 2018

ABSTRACT. We improve upon a recent result of Culler and Dunfield on orderability of certain Dehn fillings by removing a difficult condition they required.

If M is the exterior of a knot K in an integral homology 3-sphere, μ and λ will be the canonical meridian and longitude in ∂M, i.e., μ bounds a meridian disk of K and λ is null-homologous in M. The set of slopes in ∂M will be identified with $\mathbb{Q} \cup \{1/0\}$ with respect to the chosen meridian and longitude in the usual way so that μ is identified with $1/0$ and λ with 0, and $M(r)$ will denote the Dehn filling of M with slope r. Recall that a group is called left-orderable if there is a total ordering on the group which is invariant under left multiplication. The purpose of this note is to update a recent result of Culler and Dunfield [CD] to the following

Theorem 1. Let M be the exterior of a knot in an integral homology 3-sphere such that M is irreducible. If the Alexander polynomial $\Delta(t)$ of M has a simple root on the unit circle, then there exists a real number $a > 0$ such that, for every rational slope $r \in (-a, 0) \cup (0, a)$, the Dehn filling $M(r)$ has left-orderable fundamental group.

The above theorem was proved in [CD] under the additional condition that every closed essential surface in $M(0)$ is a fiber in a fibration of $M(0)$ over S^1 ([CD, Theorem 1.2]) or under the additional condition that each positive dimensional component of the $PSL_2(\mathbb{C})$ character variety of $M(0)$ consists entirely of characters of reducible representations [CD, Theorem 7.1]. The former condition is very restrictive and the latter one is hard to verify in general. So the updated theorem will be much more applicable.

We also remark that if $M(0)$ is prime (which is always true if M is the exterior of a knot in S^3) then $\pi_1(M(0))$ is left-orderable since the first Betti number of $M(0)$ is positive ([BRW, Theorem 1.3]). In this case, we may replace the intervals $(-a, 0) \cup (0, a)$ in Theorem 1 by the interval $(-a, a)$.

The motivation for studying if a Dehn filling has left-orderable fundamental group is its connection to the following now well known

Conjecture 2. ([BGW]) For a closed connected orientable prime 3-manifold W, the following are equivalent:

1. W has left-orderable fundamental group.
2. W is not an L-space.
3. W admits a co-orientable taut foliation.
Combining Theorem 1 with [R, Theorem 4.7] as well as the fact that an L-space cannot have a co-orientable taut foliation [OS], we can update [CD, Corollary 1.3] to the following

Corollary 3. Let M be the exterior of a knot in an integral homology 3-sphere such that M fibers over the circle with pseudo-Anosov monodromy. If the Alexander polynomial of M has a simple root on the unit circle, then there is a real number $a > 0$ such that for every rational slope $r \in (-a,a)$ the Dehn filling $M(r)$ satisfies Conjecture 2.

Similarly combining Theorem 1 with [LR, Theorem 1.1] we have

Corollary 4. Let M be the exterior of a nontrivial knot in S^3. If the Alexander polynomial of M has a simple root on the unit circle, then there is an $a > 0$ such that for every rational slope $r \in (-a,a)$ the Dehn filling $M(r)$ satisfies Conjecture 2.

Now we proceed to prove Theorem 1. From now on we assume that M is the exterior of a knot in an integral homology 3-sphere such that M is irreducible.

The main new input is a quick application of some results from [H] which we recall now. Let F be a Seifert surface of genus g for M and let $F \times [-1,1]$ be a product neighborhood of F in M so that $F = F \times \{0\}$. If $\{x_i\}_{1 \leq i \leq 2g}$ is a basis for $H_1(F;\mathbb{Z})$, let x_i^+ denote the pushoff of x_i in $F \times \{1\}$. Define the linking matrix V by $V_{ij} = lk(x_i,x_j^+)$. The symmetrized Alexander matrix for M is the matrix

$$A(t) = t^{1/2}V - t^{-1/2}V^T$$

and $\Delta(t) = \det A(t)$ is the Alexander polynomial of M. Let $B(t) = (t^{-1/2} - t^{1/2})A(t)$. The complex values $t \neq \pm 1$ for which $B(t)$ is singular are exactly the roots of the Alexander polynomial $\Delta(t)$.

Identify $SU(2)$ with the set of unit quaternions and identify $U(1)$ with the unit circle in the complex plane. If $t \in U(1)$, then $B(t)$ is a Hermitian matrix and hence has only real eigenvalues. The equivariant knot signature of M, denoted by $\text{Sign}(B(t^2))$, is the function from $U(1)$ to \mathbb{Z} taking t to the number of positive eigenvalues minus the number of negative eigenvalues for $B(t^2)$, counted with multiplicity. This function is independent of the choice of F, $\{x_i\}$, and the product neighborhood of F. The relationship between $B(t)$ and the Alexander matrix $A(t)$ implies that $\text{Sign}(B(t^2))$ is continuous in $t \in U(1)$ except possibly at square roots of roots of the Alexander polynomial.

For each $0 < \alpha < \pi$, let $\rho_\alpha : \pi_1(M) \rightarrow SU(2)$ be the abelian representation determined by $\rho(\mu) = e^{i\alpha}$. The following results were obtained in [H].

Theorem 5. (1) ([H, Theorem 1]) If $e^{i2\alpha}$ is a root of $\Delta(t)$ for which the right and left hand limits

$$\lim_{\beta \rightarrow \alpha^\pm} \text{Sign}(B(e^{i2\beta}))$$

do not agree, then there is a continuous family of irreducible $SU(2)$ representations of $\pi_1(M)$ limiting to ρ_α.

(2) ([H, Corollary 2]) If $e^{i2\alpha}$ is a root of $\Delta(t)$ of odd multiplicity, then the condition in part
(1) holds and thus there is a continuous family of irreducible $SU(2)$ representations of $\pi_1(M)$ limiting to ρ_α.

(3) ([H, Corollary 3]) Suppose that $e^{i2\alpha}$ is a root of $\Delta(t)$ such that as $t \in U(1)$ moves through the value $e^{i\alpha}$, all eigenvalues of $B(t^2)$ touching zero cross zero transversely, and all do so in the same direction. Then all of the $SU(2)$ irreducible representations $\{\rho_s\}$ near ρ_α (provided by part (1)) send λ to $e^{i\sigma(\rho_s)}$ for some small $\sigma(\rho_s) \neq 0$.

What we need in this paper is the following special consequence of Theorem 5.

Corollary 6. If $e^{i2\alpha}$ is a simple root of $\Delta(t)$, then there is a continuous family of irreducible $SU(2)$ representations $\{\rho_s\}$ of $\pi_1(M)$ limiting to ρ_α. Moreover all of these ρ_s near ρ_α send λ to $e^{i\sigma(\rho_s)}$ for some small $\sigma(\rho_s) \neq 0$.

Proof. The first assertion is immediate by part (2) of Theorem 5. To get the second assertion, let $t_0 = e^{i\alpha}$ and we have

$$\det B(t^2) = (t^{-1} - t)^{2g} \Delta(t^2) = (t - t_0)f(t)$$

where $f(t)$ is a holomorphic function such that $f(t_0) \neq 0$. The product rule for derivative shows that the derivative of $\det B(t^2)$ at t_0 is not zero. As $\det B(t^2)$ is a product of its eigenvalues $\lambda_1(t), \ldots, \lambda_{2g}(t)$ for which we may assume that $\lambda_1(t_0) = 0$ and $\lambda_j(t_0) \neq 0$ for all $1 < j \leq 2g$, applying the product rule for derivative again we see that $\lambda_1(t)$ has nonzero derivative at t_0. So $\lambda_1(t)$ cross zero transversely as $t \in U(1)$ moves through the value $e^{i\alpha}$. The second assertion now follows from part (3) of Theorem 5.

Now let $R(M) = \text{Hom}(\pi_1M, SL_2(\mathbb{C}))$ be the $SL_2(\mathbb{C})$ representation variety of M and $X(M)$ the corresponding character variety. Recall that the character $\chi_\rho \in X(M)$ of a representation $\rho \in R(M)$ is the function $\chi_\rho : \pi_1M \to \mathbb{C}$ defined by $\chi_\rho(\gamma) = \text{trace}(\rho(\gamma))$ for $\gamma \in \pi_1M$. Two irreducible representations in $R(M)$ are conjugate if and only if they have the same character.

From now on we consider $SU(2)$ as a subgroup of $SL_2(\mathbb{C})$. So the abelian representation ρ_α sends μ to $\begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix}$. The following results were shown in [HPP].

Theorem 7. Suppose $e^{i2\alpha}$ is a simple root of the Alexander polynomial $\Delta(t)$ of M.

(1) ([HPP, Theorem 1.2]) The character χ_{ρ_α} of the abelian representation ρ_α is contained in a unique algebraic component X_0 of $X(M)$ which contains characters of irreducible representations and is a smooth point of X_0.

(2) ([HPP, Theorem 1.1]) The complex dimension of X_0 is one.

(3) ([HPP, Corollary 1.4]) The character χ_{ρ_α} is a middle point of a smooth arc of real valued characters $\{\chi_t: t \in (-\epsilon, \epsilon)\}$ in X_0 such that $\chi_0 = \chi_{\rho_\alpha}$, χ_t is the character of an irreducible representation for $t \neq 0$. Moreover χ_t is the character of a representation into $SU(2)$ for $t > 0$ and $SU(1,1)$ for $t < 0$.

Now consider a continuous family of irreducible $SU(2)$ representations $\{\rho_s\}$ limiting to the abelian representation ρ_α, provided by Corollary 6. Since the character of an irreducible representation cannot be equal to the character of a reducible representation, $\{\chi_{\rho_s}\}$ is a nonconstant
continuous family of characters limiting to $\chi_{\rho_{\alpha}}$. Hence by part (1) of Theorem 7, $\chi_{\rho_{s}} \in X_0$ for all $\chi_{\rho_{s}}$ sufficiently close to $\chi_{\rho_{\alpha}}$.

Let $f_{\lambda} : X_0 \to \mathbb{C}$ be the function defined by $f_{\lambda}(\chi_{\rho}) = \chi_{\rho}(\lambda) - 2$. Then f_{λ} is a regular function on the irreducible variety X_0. Note that $\rho_{\alpha}(\lambda) = I$ and by Corollary 6 $\rho_{s}(\lambda) \neq I$ for all ρ_{s} sufficiently close to ρ_{α}, where I is the identity matrix of $SL_2(\mathbb{C})$. Since $\rho_{s}(\lambda) \in SU(2)$, its trace cannot be 2. It follows that the function f_{λ} is non-constant on X_0. Since $dim_{\mathbb{C}} X_0 = 1$ by part (1) of Theorem 7, any regular function on X_0 is either a constant function or has finitely many zero points. Hence the function f_{λ} can have only finitely many zeros in X_0. In particular we may assume that f_{λ} is never zero valued on the curve $\{\chi_t; t \in (-\epsilon,0)\}$, provided by part (3) of Theorem 7 (by choosing smaller $\epsilon > 0$ if necessary). The proof of [HPP, Corollary 1.4] given in [HPP, Section 5] actually shows that there is a smooth path of irreducible $SU(1,1)$ representations $\{\rho_t; t \in (-\epsilon,0)\}$ of $\pi_1(M)$ limiting to ρ_{α} as $t \to 0$ such that $\chi_t = \chi_{\rho_{t}}$. So for ρ_t, $t < 0$, we have $\rho_t(\lambda) \neq I$.

Recall that $SU(1,1)$ is the subgroup of $SL_2(\mathbb{C})$ consisting of matrices $\left\{ \begin{pmatrix} x & y \\ y & x \end{pmatrix} : x - y = 1 \right\}$, which is conjugate to $SL_2(\mathbb{R})$ by the element $\begin{pmatrix} 1/\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$. Hence the path of irreducible $SU(1,1)$ representations $\{\rho_t; t \in (-\epsilon,0)\}$ given above is conjugate to a path of irreducible $SL_2(\mathbb{R})$ representations $\{\rho'_t; t \in (-\epsilon,0)\}$ limiting to the abelian representation ρ'_α as $t \to 0$, where ρ'_α sends μ to $\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$. Of course $\rho'_t(\lambda) \neq I$ for $t \in (-\epsilon,0)$.

Now the argument in [CD, Section 7] shows that the existence of a path of $SL_2(\mathbb{R})$ representations ρ'_t as given in the preceding paragraph will imply the conclusion of Theorem 1. More concretely, this path ρ'_t will lift to a path of $SL_2(\mathbb{R})$ representations $\tilde{\rho}'_t$ of $\pi_1(M)$, where $SL_2(\mathbb{R})$ is the universal covering group of $SL_2(\mathbb{R})$, and moreover there is an $a > 0$ such that for each slope $r \in (-a,0) \cup (0,a)$ some $\tilde{\rho}'_t$ will factor through $\pi_1(M(r))$ yielding a nontrivial representation $\pi_1(M(r)) \to SL_2(\mathbb{R})$. Since M can have at most three Dehn fillings yielding reducible manifolds by [GL], we may assume that $a > 0$ has been chosen so that $M(r)$ is irreducible for each slope $r \in (-a,0) \cup (0,a)$. Hence $\pi_1(M(r))$ is left-orderable, by [BRW, Theorem 1.1].

References

[BGW] S. Boyer, C. Gordon and L. Watson, *On Lspaces and left-orderable fundamental groups*, Math. Ann. 356 (2013) 1213–1245.

[BRW] S. Boyer, D. Rolfsen and B. Wiest, *Orderable Smanifold groups*, Ann. Inst. Fourier (Grenoble) 55 (2005) 243–288.

[CD] M. Culler and N. Dunfield, *Orderability and Dehn filling*, Geometry & Topology 22 (2018) 1405–1457.

[GL] C. Gordon and J. Luecke, *Reducible manifolds and Dehn surgery*, Topology 35 (1996) 385–409.

[H] C. Herald, *Existence of irreducible representations for knot complements with nonconstant equivariant signature*, Math. Ann. 309 (1997) 21–35.
[HPP] M. Heusener, J. Porti and E. Peiro, Deformations of reducible representations of 3-manifold groups into $SL_2(\mathbb{C})$, J. reine angew. Math. 530 (2001) 191–227.

[LR] T. Li and R. Roberts, Taut foliations in knot complements, Pacific J. Math. 269 (2014) 149–168.

[OS] P. Ozsvath, Z. Szab, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334.

[R] R. Roberts, Taut foliations in punctured surface bundles, II, Proc. London Math. Soc. 83 (2001) 443–471.

Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557

E-mail address: herald@unr.edu

Department of Mathematics, University at Buffalo, Buffalo, NY 14260

E-mail address: xinzhang@buffalo.edu