Phenotypic and genotypic antimicrobial resistance and virulence genes of *Salmonella enterica* isolated from pet dogs and cats

Songsak Srisanga\(^1,2\), Sunpetch Angkititrakul\(^3\), Patcharee Sringam\(^3\), Phuong T. Le Ho\(^1,4\), An T. T. Vo\(^4\), Rungtip Chuanchuen\(^1,2,*\)

\(^1\)Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, and \(^2\)Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
\(^3\)Research Group for Prevention Technology in Livestock, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
\(^4\)Department of Veterinary Biosciences, Faculty of Animal Sciences and Veterinary Medicine, Nong Lam University, Ho Chi Minh 70000, Vietnam

Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012–2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the *dfrA12*- *aadA2* cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates (i.e., a serovar Krefeld and a serovar Enteritidis) carried *bla_TEM* and *bla_CTX-M*, and the *bla_TEM* gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only *qnrS* (4.9%) was detected. Most *Salmonella* isolates harbored *invA* (100%), *prgH* (91.8%), and *sipB* (91%). Positive associations between resistance and virulence genes were observed for *bla_PSE-1*/ *orgA*, *cmlA*/ *spaN*, *tolC*, and *sul1/tolC* (p < 0.05). The results suggest that companion dogs and cats are potential sources of *S. enterica* strains that carry resistance and virulence genes and that antimicrobial use in companion animals may select for the examined *Salmonella* virulence factors.

Keywords: *Salmonella enterica*, antimicrobial resistance, integrons, pets, virulence factors

Introduction

Strains of *Salmonella* (*S.*) *enterica* that are resistant to a wide range of antimicrobial drugs have emerged and are now a serious public health issue worldwide. Food animals have been decreed as major reservoirs for the transmission of multidrug resistant (MDR) *Salmonella* to humans and also for their part in the dissemination of resistance genes [31]. In previous studies, companion animals have been suggested as potential sources of antimicrobial-resistant *Salmonella* [26,33]; however, less attention has been given to their contribution to the spread of antimicrobial resistance (AMR) than that given to food animals.

In small animal practice, antimicrobial agents, including those licensed for human use and of primary importance in the treatment of human infections, are frequently used for infection treatment [17]. Bacterial culture and antimicrobial susceptibility testing are not always performed when making antimicrobial choices, leading to inappropriate empirical treatment. Veterinarians may prescribe broad-spectrum or newer generation antibiotics as first-line treatment drugs to ensure successful antimicrobial therapy. Such imprudent antimicrobial usage, similar to that observed in humans, could create selective pressure for AMR bacteria, including MDR *Salmonella* in companion animals. In modern society, the relationship between humans and their pet animals has drastically changed, and companion dogs and cats are usually kept inside the household. In such instances, close physical contact between pet animals and humans favors pet-to-human transmission of bacteria either by direct contact or through the domestic environment; moreover, children have the potential to be at higher risk than adults [17].

Currently, it is difficult to assess the impact of small animal-related AMR on public health due to limited availability...
of data. AMR in pet animals is not systematically monitored in most countries, and existing data is quite scattered. In addition, descriptions of linkages between resistance and virulence genes in *Salmonella* isolates from pet animals have not been reported. These knowledge gaps indicate the need for more studies into AMR in small animals. Therefore, in this study, we characterized phenotypic and genotypic characteristics of AMR and the prevalence of virulence factors in *S. enterica* isolated from pet dogs and cats.

Materials and Methods

Salmonella isolates

S. enterica (n = 122) isolated from household dogs (n = 113) and cats (n = 9) were obtained from the bacterial collection of the Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand. Khon Kaen is located in northeast Thailand, the most populous region of the country. All *S. enterica* strains were isolated from fecal samples obtained by rectal swabs from household dogs (n = 250) and cats (n = 50) presented for treatment at Khon Kaen Animal Hospital, Khon Kaen University, or four local veterinary clinics in Khon Kaen province during 2012–2015. The animals exhibited a variety of health conditions, but respiratory infection, parasitic infestation, heartworm disease, skin disorder, and diarrhea formed the majority of health conditions. The clinical symptoms of each animal were not available for inclusion in this study. Moreover, there were no exclusion criteria for the dogs or cats recruited, and details on their antibiotic treatment protocols were not revealed. *Salmonella* isolation was performed by using a standard method [22]. Briefly, each rectal swab was placed in 250 mL buffer peptone water (Merck, Germany) and incubated at 37°C overnight. The culture suspension was then spotted on modified semisolid Rappaport medium (Merck) and incubated at 42°C for 24 h. Next, the *Salmonella* isolates were isolated on xylose-lysine-desoxycholate agar (Merck) and Hektoen enteric agar (Merck) at 37°C for 24 h. Typical colonies of *Salmonella* were biochemically confirmed by using triple sugar iron agar (Merck) and motility indole-lysine agar (Merck). All isolates were serotyped by using a slide agglutination test at the Center of Antimicrobial Resistance Monitoring in Foodborne Pathogens (in cooperation with World Health Organization), Faculty of Veterinary Science, Chulalongkorn University, Thailand. One colony of each serotype in each positive sample was collected and stored in 20% glycerol at −80°C.

Antimicrobial susceptibility testing and screening of extended-spectrum-β-lactamases

All strains were tested for minimum inhibitory concentrations (MICs) by using the two-fold agar dilution technique described previously [11] (concentration breakpoints indicated in parentheses): ampicillin (32 μg/mL), ceftriaxone (64 μg/mL), chloramphenicol (32 μg/mL), gentamicin (8 μg/mL), ciprofloxacin (4 μg/mL), spectinomycin (128 μg/mL), streptomycin (32 μg/mL), sulfamethoxazole (512 μg/mL), tetracycline (16 μg/mL), and trimethoprim (16 μg/mL). Briefly, bacterial isolates were grown on Muller-Hinton agar (MHA; BD Diagnostic Systems, USA) at 37°C overnight. Subsequently, a bacterial suspension with turbidity equivalent to 0.5 McFarland was prepared in a 0.85% NaCl solution and then diluted 10-fold. The standardized suspension was inoculated by using a multipoint inoculatoronto MHA containing different concentrations of antibiotics. The inoculated MHA plates were incubated at 37°C for 16 to 18 h.

For initial screening of extended-spectrum-β-lactamase (ESBL) production, a disk diffusion method using cefotaxime (30 μg), cefpodoxime (10 μg) and ceftazidime (30 μg) was used [11]. Briefly, a standardized inoculum of the test isolate was applied on MHA plates. The antimicrobial disks were placed on the inoculated agar surface and the plates were incubated at 37°C for 16 to 18 h. Those isolates yielding an inhibition clear zone of at least 11 mm diameter were defined as resistant strains. The isolates showing resistance to at least one cephalosporin test were then subjected to ESBL-phenotypic confirmation by using a combination disk assay [11] using cefotaxime/cephotaxime (30 μg) + clavulanic acid (10 μg) and ceftazidime/ceftazidime (30 μg) + clavulanic acid (10 μg) (Oxoid, England). The isolates demonstrating an increase of ≥ 5 mm in the zone of inhibition in a combination disk were considered ESBL positive. The strains exhibiting concurrent resistance to three or more different classes of antimicrobials were considered MDR [38].

Escherichia coli ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, and *Staphylococcus aureus* ATCC 29213 were used as quality control bacteria.

DNA preparation, PCR amplification, and DNA sequencing

Total bacterial DNA of each isolate was prepared by boiling a bacterial pellet in sterile distilled water for 10 min [27], which was then used as template DNA in all PCR reactions, except those for amplifying the quinolone resistance-determining regions (QRDRs) in gyrA, gyrB, parC, and parE. The QRDR amplification used chromosomal DNA that was extracted by using a QIAamp DNA mini kit (Qiagen, Germany). All PCR amplifications were performed by using ReadyMix PCR MasterMix (Sigma-Aldrich, USA) according to the manufacturer’s instructions. The PCR amplification products were purified by using Nucleospin extract II (Macherey-Nagel, Germany) and the nucleotide sequences were determined at Macrogen (Korea). The DNA sequences were compared for homology with the GenBank sequence database by using the BLAST program (National Center for Biotechnology Information, USA).
Detection of class 1 integrons

Class 1 integrons were detected by performing PCR of intI1
[9,13]. The presence of inserted-gene cassettes in the intI1-positive isolates were determined by PCR assays using
primers specific for the conserved region (5′-3′ CS-PCR) and
DNA sequencing [27]. The PCR amplicons were collected from
gel, purified, and submitted for DNA sequencing.

Detection of resistance genes, virulence genes, and mutation
in QRDR

The isolates were grouped on the basis of resistance
phenotype and determined for the presence of corresponding
resistance genes: bla_{TEM}-1, and bla_{TEM} encoding β-lactam resistance
(n = 62); catA, catB, and cmlA encoding chloramphenicol
resistance (n = 28); aadB encoding gentamicin resistance (n=9);
tetA and tetB encoding tetracycline resistance (n = 47); dfrA1,
dfrA10, and dfrA12 trimethoprim resistance (n = 39); aadA1
and aadA2 encoding spectinomycin and streptomycin resistance
(n = 20); strA and strB encoding streptomycin resistance (n =
32); sulI, sul2, and sul3 encoding sulphonamide resistance (n =
122) [9,10]. The blac_{TXA}, blac_{SHV}, blac_{CMY}-1, and blac_{CMY}-2 were
additionally examined in the ESBL-positive strains (n = 2). All
Salmonella isolates were screened for plasmid-mediated low-
fluoroquinolone resistance (PMQR) genes including qnrA,
qunrB, qnrS [41], qepA [48], and aac(6′)-Ib-cr [32].

The presence of virulence genes associated with the
pathogenesis of Salmonella, including invA, pefA, sipB, spaC,
pgdH, spaN, orgA, tolC, and rck genes, was examined in all
Salmonella isolates [6,40].

Conjugation studies

The Salmonella isolates carrying class 1 integrons with
resistance gene cassettes (n = 5) and those with ESBL genes
(n = 2) were used as donors in our conjugation experiments [5].
E. coli K12Rif⁺, a rifampicin-resistant derivative of E. coli [K12
strain MG1655 (MIC = 256 μg/mL), was used as the recipient.
Transconjugants were selected on Luria-Bertani (LB) agar
(Difco, BD Diagnostic Systems, USA) containing rifampicin
(32 μg/mL) and one of the following antibiotics: ampicillin
(100 μg/mL), cefoperazone (2 μg/mL), trimethoprim (10 μg/
ML), or streptomycin (50 μg/mL) and were confirmed on
eosin methylene blue agar (EMB; Difco, USA). Transfer of class 1
integrons was confirmed by performing PCR as described
above.

Statistical analysis

Pearson’s chi-squared test was performed for the analysis of
associations between resistance and virulence genes by using
SPSS (ver. 17.0, SPSS, USA). Associations among genes were
considered significant when p values were < 0.05. Odds ratio
(OR) and 95% confidence intervals (CI) were calculated by
using the same software [16,37]. An OR > 1 indicated a
positive association while an OR < 1 represented a negative
association.

Results

Salmonella serotypes

Among the 122 Salmonella isolates, 33 serovars were identified.

Table 1. Salmonella isolates isolated from dogs and cats (n =
122)

Serotype	Number (%)
Aberdeen	2 (1.6%)
Agona	1 (0.8%)
Albany	1 (0.8%)
Anatum	1 (0.8%)
Bovismoribicans	2 (1.6%)
Brunei	5 (4.1%)
Eastbourne	3 (2.5%)
Enteritidis	2 (1.6%)
Emek	2 (1.6%)
Give	6 (4.9%)
Hadar	1 (0.8%)
Havana	1 (0.8%)
Hvittingfoss	5 (4.1%)
Kedougou	4 (3.3%)
Krefeld	1 (0.8%)
Lexington	1 (0.8%)
Mgulani	1 (0.8%)
Montevideo	1 (0.8%)
Muenser	1 (0.8%)
Panama	2 (1.6%)
Schwarzengrund	2 (1.6%)
ser. 4,[5],12:i:-	7 (5.7%)
ser. 8,20:--;	1 (0.8%)
ser. 9,12:1,5	1 (0.8%)
Rissen	10 (8.2%)
Stanley	11 (9.0%)
Typhimurium	17 (13.9%)
Virchow	7 (5.7%)
Urbana	1 (0.8%)
Wadsworth	1 (0.8%)
Wentworth	1 (0.8%)
Weltevreden	19 (15.6%)
Worthington	1 (0.8%)
Total	122

*Two isolates were from cats. †One isolate was from cats. ‡Four isolates
were from cats.
Serovar Weltevreden was predominant (15.6%) followed by serovars Typhimurium (13.9%), Stanley (9.01%), and Rissen (9.01%) (Table 1). Serovar Weltevreden was most common among the isolates from both dogs (n = 15) and cats (n = 4).

Antimicrobial resistance profile

Resistance to at least one antimicrobial agent was observed in all *Salmonella* isolates and 43% were MDR (Fig. 1). All isolates were resistant to sulfamethoxazole (100%), followed by resistance to ampicillin (50.8%) and tetracycline (32%). Resistance rates to ceftriaxone (2.5%) and ciprofloxacin (0.8%) were notably low. Only two dog isolates (*i.e.*, a serovar Krefeld and a serovar Enteritidis) were resistant to cephalosporins, including ceftaxime (1.6%) and cefpodoxime (1.6%), and were confirmed to be ESBL-positive strains. Among the cat isolates, a serovar Typhimurium isolate was resistant to multiple drugs (*i.e.*, ampicillin, streptomycin, sulfamethoxazole, and tetracycline) while the others were resistant to sulfamethoxazole only.

Characteristics and transfer of class 1 integrons

Fifteen (12.3%) isolates from dogs carried *intI1*, but no *intI1* was detected in the cat isolates. Analysis of the gene cassette arrays revealed that five *intI1*-positive isolates yielded cassette PCR amplicons of variable region of 2500 bp or 1300 bp. The others carried the 150 bp variable region of empty integrons. Two complete gene cassettes, which encoded dihydrofolate reductase responsible for trimethoprim resistance (*dfrA12*) and aminoglycoside adenyl transferase responsible for streptomycin-spectinomycin resistance (*aadA2*) were identified. Four Rissen serovar isolates carried class 1 integrons with the 2500 bp/*dfrA12-aadA2* variable region. A serovar Albany isolate harbored class 1 integron with the 1300/*dfrA12* variable region. Only class 1 integrons with the *dfrA12* gene cassette in the serovar Albany was horizontally transferred to the *E. coli* recipient.

Non-class 1 integron-borne resistance and ESBL genes

The resistance genes commonly detected were those encoding resistance to chloramphenicol (*catA*, 60.1%), streptomycin (*strA-strB*, 59.4%), gentamicin (*aadA1*, 55.6%), and tetracycline (*tetA* and *tetB*, 51.1% of each) (Table 2). Twenty-two isolates (18%) carried at least two genes encoding identical resistance phenotypes. The MDR serovar Typhimurium from cats carried multiple genes including *blaTEM*, *tetB*, and *strA-strB*. Up to 54% of the isolates did not carry any of the resistance-encoding genes.

Table 2. Distribution of antimicrobial resistance-encoding genes among the *Salmonella* isolates from dogs and cats (n = 122)

Resistant isolate (n)	Resistance gene	N (%)
Ampicillin (62)	blα*PSE1, blatEM	2 (3.2)
	both	1 (1.6)
Chloramphenicol (28)	catA	4 (14.3)
	cmlA	17 (60.7)
	both	1 (3.6)
Gentamicin (9)	aadB	4 (11.1)
Streptomycin (32)	aadA2	4 (12.5)
	both	1 (3.1)
	aadA1, aadA2	4 (13.1)
	aadA1, strA-strB	19 (59.4)
	aadA1, aadA2, strA-strB	3 (9.7)
Spectinomycin (20)	aadA1	16 (80.0)
	aadA2	2 (10.0)
	both	2 (10.0)
Sulfamethoxazole (122)	sul1	17 (13.9)
	sul2	1 (0.8)
	sul3	10 (8.2)
	sul1, sul2	1 (0.8)
	sul1, sul3	2 (1.6)
Tetracycline (47)	tetA	24 (51.1)
	tetB	24 (51.1)
	both	10 (21.3)
Trimethoprim (39)	dirA1	2 (5.1)
	dirA10	10 (25.6)
	dirA12	3 (7.7)
Quinolones (122)	qnrS	6 (4.9)
	qnrA	0
	qnrB	0
	qepA	0
	aac(6')-Ib-cr	0
genes tested (data not shown). Both ESBL-producing isolates carried blaTEM and blaCTX-M, of which only blaTEM was horizontally transferred in the conjugation experiments.

In addition, associations among the resistance genes were analyzed (Table 3). Only positive associations were observed (\(p < 0.05 \)), of which the strongest positive association was between sul3 and blaTEM.

The PMQR genes and mutations within the QRDRs of gyrA and parC

The only ciprofloxacin-resistant isolate was a serovar Stanley (CIP MIC = 16 \(\mu \)g/mL). This isolate did not carry any mutations in gyrA, gyrB, parC, and parE. Of the PMQR genes tested, only qnrS was identified in 6 Salmonella isolates from dogs (4.9%): 3 serovar Give (CIP MIC = 2 \(\mu \)g/mL) isolates and one isolate each of serovar Emek (CIP MIC = 1 \(\mu \)g/mL), serovar Enteritidis (CIP MIC = 2 \(\mu \)g/mL), and serovar Krefeld (CIP MIC = 2 \(\mu \)g/mL).

Occurrence of virulence genes

All Salmonella isolates from dogs and cats harbored invA (100%), and most isolates carried prgH (91.8%) and sipB (91%). The other virulence genes were present to lesser extents (100%), and most isolates carried prgH (91.8%) and sipB (91%). The latter was detected in one serovar Enteritidis isolate from a dog. None of the isolates were positive to spvC and pefA.

Positive associations (\(p < 0.05 \)) were observed between the following virulence gene pairs: sipB/prgH (OR 145.33, 95% CI 21.14-999.13) and spaN/tolC (OR 34.44, 9% CI 1.46-8.13). In addition, positive correlations (\(p < 0.05 \)) were found between resistance genes and virulence genes including \(\text{bla}_{\text{PSE}}/\text{orgA} \), cmlA/spaN, tolC, and sul1/tolC (Table 4).

Discussion

This study demonstrated the wide distribution of MDR Salmonella with virulence genes among pet dogs and cats, as well as the occurrence of significant correlations between the presence of resistance genes and virulence genes. However, because the isolates were not randomly collected, the results of this study do not necessarily represent the characteristics of other regions of Thailand. Despite that limitation, the data presented in this study can be used in comparisons with those in reports from other regions and on other animals. However, there are only a few reports on the study of AMR phenotypes and genotypes in companion animals.

The predominant serovars in this collection of Salmonella strains were Weltreveden and Typhimurium, which are also the most common serovars implicated in human salmonellosis in dogs and cats.

Table 3. Associations between resistance genes of Salmonella enterica isolated from dogs and cats (n = 122)

Associations of gene*, odds ratio (95% confidence interval)†	blapSE1	tetB	cmlA	strB	sul1	sul3	dirA10	dirA12	aadA1
blapSE1	NA	NA	–	NA	NA	–	NA	NA	–
	(1.90–13.56)	(1.56–13.61)		(1.56–13.61)	(6.40–455.63)	(1.22–17.40)	(4.37–47.873)		
blatem	NA	5.08	4.60	–	4.60	54	4.6	–	14.46
	(3.62–33.43)		(4.16–41.84)		(7.75–87.47)	(4.10–41.05)			
tetA	NA	11	–	13.19	NA	7.62	–	–	–
	(3.62–33.43)		(4.16–41.84)		(7.75–87.47)	(4.10–41.05)			
tetB	NA	26.04	–	12.97	–	–	–	–	–
	(7.75–87.47)		(4.10–41.05)						
cmlA	NA	NA	NA	–	–	5.08	–	–	5.18
						(1.26–20.40)	(1.58–17.02)		
catA	NA	NA	NA	NA	–	NA	19.33	NA	
						(1.00–276.41)			
strB	NA	26.04	–	7.60	–	–	–	–	NA
	(7.75–87.47)		(4.23–23.73)						
sul1	NA	12.97	–	NA	–	–	NA	NA	
	(4.10–41.05)								
sul3	–	–	–	–	–	NA	11.78	NA	15.30
						(2.60–53.26)	(3.69–63.00)		
dirA10	NA	5.077	–	–	–	11.78	NA	26.70	
	(1.26–20.40)					(2.60–53.26)			

*, no significant association (\(p \geq 0.05 \)); NA, indicates no result available (or result could not be calculated because none of the isolates carried one of the combinations of virulence genes and resistance genes or the value of one the genes was a constant or zero). †Only genes with a significant association (\(p < 0.05 \)) with virulence genes are shown. ‡Odds ratio for significant associations between genes (95% confidence interval in parenthesis).
many world regions [12,15]. Serovar Weltreveden has been frequently isolated from many sources including raw vegetables [43], seafood [19], as well as duck and water [1]. It has been suggested that water-related sources are the most-likely reservoirs for the widespread occurrences of serovar Weltreveden [19]. In addition, humans and dogs share exposure to common sources of potential Salmonella infection [45].

There was a high prevalence of Salmonella isolates that were resistant to multiple drugs (43%), including common antimicrobials (e.g., sulfamethoxazole, ampicillin, and tetracycline), a result that supports those in previous studies from different countries [23,45]. This is not surprising because these antimicrobials have been widely used for infection treatment in dogs and cats. The sulfamethoxazole resistance rate in this study was much higher than that in a previous report on household and stray dogs in northern Taiwan [45]. In contrast, the streptomycin resistance rate in our study (25.4%) was much lower than those reported in previous studies in Trinidad [39], Ontario [26], and northern Taiwan [45]. In addition, the prevalence of ciprofloxacin resistance in our study was very limited (0.8%), which is similar to previous studies in which no ciprofloxacin resistance was reported [26,45]. Taken together, these observations indicate that AMR prevalence in the Salmonella isolates from dogs varies by geographical region and reflects different antimicrobial use in pet animals in different countries. It should be noted that the results may be, at least partly, affected by sample size and different antimicrobial susceptibility testing methods used in different laboratories.

When compared to livestock, resistance rates observed in this study were generally higher than those in healthy dairy cows [8]. This is likely due to more frequent use of antimicrobial in pets. In contrast, resistance rates of most antimicrobials (e.g., chloramphenicol, gentamicin, streptomycin, tetracycline, and trimethoprim), except sulfamethoxazole, were lower than those in broilers and pigs [10,24]. The apparent inconsistencies are likely attributable to different antimicrobial types and applications in different animal species.

Class 1 integron-mediated antimicrobial resistance is common among diverse Salmonella serovars and has been extensively studied in livestock and foods of animal origin. To our knowledge, the present study is the first to describe class 1 integrons in Salmonella isolates from household dogs and cats. The most prevalent resistance gene cassette was dfrA12-aadA2, which has been widely observed to be associated with class 1 integrons among Salmonella isolates from food animals [21,28] and was the most frequently occurring resistance gene cassette identified in isolates from pigs, broilers, dairy cow, pork, and chicken meat in Thailand [8,24,47]. In addition, the resistance genes observed in the present study were previously observed in Salmonella from humans, food animals, and food products [10]. The prevalence of some resistance genes (i.e., blaTEM, aadB, tetA, sul1, and sul3) was similar to the relatively high rate detected in broiler and pig isolates [10]. These results indicate the breadth of the circulation and exchange of resistance determinants among human, food animals, and pet animals. This is supported by the observation of horizontal transfer of class 1 integrons with the dfrA12 gene cassette in this study. However, it is difficult to ascertain the direction of the actual gene transfer [17].

Twenty-six percent of the Salmonella isolates in this study contained multiple genes specifying identical resistance phenotypes, which is similar to results in a previous study of diarrheic dogs [46]. It is possible that a resistance gene is chromosomally located while others are on plasmids. In addition, strong associations (p < 0.05) were observed for certain resistance genes pairs (e.g., blaTEM/sul3, dfrA10/aadA1, and tetB/strB), suggesting their colocalization on the same genetic elements (e.g., plasmids, transposons) and the possible co-selection of many resistance genes by a single antibiotic. However, the resistance-encoding genes tested were not found in many isolates (n = 66, 54%), indicating existence of other resistance mechanisms.

Table 4. Associations between resistance and virulence genes among Salmonella enterica isolated from dogs and cats (n = 122)

Virulence gene	Associations of gene*, odds ratio (95% confidence interval)†								
	blaTEM	tetB	cmlA	strB	sul1	sul3	dfrA10	dfrA12	aadA1
spaN	–	–	3.93	–	–	–	–	NA	–
(1.36–11.32)									
orgA	19	–	–	–	–	NA	NA	NA	NA
(1.06–342.15)									
tolC	–	–	3.78	–	3.78	–	–	NA	–
(1.03–13.94)									

*No significant association (p ≥ 0.05); NA, no result available (or result could not be calculated because none of the isolates carried one of the combinations of virulence genes and resistance genes or the value of one of the genes was a constant or zero. Only genes with a significant association (p < 0.05) with virulence genes are shown. †Odds ratio for significant associations between genes (95% confidence interval in parenthesis).
ESBL-producing *Salmonella* is a serious concern because cephalosporins are drugs of choice for Salmonellosis treatment in children [18]. In this study, a low incidence of ESBL-producing *Salmonella* was observed. This was likely because, due to their high price, use of cephalosporins is less common in companion animals in this region. Despite the limited occurrence, ESBL-producing *Salmonella* carrying *bla*TEM and *bla*CTX-M can have important implications with regard to the spread of ESBL genes. Unlike infectious diseases, AMR determinants can be transmitted from one bacterial host to another, even among low numbers of bacteria [17]. The latter was supported by the observation of *bla*TEM located on a conjugative plasmid in this study.

Since PMQR genes confer only low-level quinolone resistance [42], the PMQR genes were screened in all *Salmonella* isolates. Only *qnrS* was detected, and at a low rate (4.9%), in the ciprofloxacin-susceptible isolates. This is clinically important because a low prevalence of PMQR genes can facilitate the selection of higher-level resistance mutations and the ciprofloxacin-susceptible isolates may readily develop resistance to fluoroquinolones [35].

It is of particular interest to note that a serovar Stanley isolate lacking mutation in *gyrA*, *gyrB*, *parC*, and *parE* exhibited high-level ciprofloxacin resistance (16 μg/mL). This is in agreement with a previous study that reported the presence of *Salmonella* isolates harboring no mutations in both target genes and having a ciprofloxacin MIC comparable to that for the isolate in this study (8–16 μg/mL) [29]. The absence of mutations in *gyrB* and *parE* is not surprising because *gyrB* and *parE* mutation are rare in *Salmonella*, other than in serovar Typhimurium [30]. The results indicate the existence of uncharacterized mechanisms underlying ciprofloxacin resistance in this isolate. In general, the fluoroquinolone resistance phenotype can be associated with several mechanisms such as altered cell permeability, enzymatic inactivation, expression of an active drug efflux, and competitive inhibition of drug binding [36]. A previous study demonstrated that ciprofloxacin-resistant isolates with no *gyrA* and *parC* mutations had a reduced accumulation of ciprofloxacin, compared with that in the susceptible strains, and additionally, they were cross-resistant to other antibiotics in different classes [34]. Those authors suggested that drug efflux moderated the ciprofloxacin accumulation. The AcrAB-TolC efflux pump is a major contributor to multidrug resistance in Gram-negative bacteria and inactivation of the *acrAR* operon and/or *tolC* could lead to increased fluoroquinolone susceptibility [4]. Another study revealed alteration or disappearance of outer membrane proteins (*i.e.*, OmpA, OpmC, OmpD, and OmpF) in quinolone resistant *Salmonella* strains [36]. However, the mechanisms responsible for the high ciprofloxacin MIC were not described in that study.

In general, AMR is more common in pathogenic bacteria due to the more frequent and intense exposure to antimicrobial agents of pathogenic strains [3], and the associations between AMR and virulence traits has been reviewed previously [2]. The high prevalence of *invA*, *prgH*, and *sipB* observed in this study (91–100%) is in agreement with those in previous studies of various *Salmonella* sources, *i.e.*, pork, swine, and dogs [44,47] and indicates that pet dogs and cats serve as reservoirs of invasive *Salmonella*. Interestingly, 14.8% of the isolates lacked *tolC* encoding for an outer membrane protein with a common function in protein export and multidrug efflux [49]. These isolates were resistant only to sulfamethoxazole (data not shown). This is an uncommon observation and differed from those in previous studies [47]. Further investigations are warranted to elucidate the reason underlying the absence of *tolC* in these strains. The *rck* gene has been identified in virulence plasmids of serovar Typhimurium and serovar Enteritidis [40]. In the present study, only serovar Enteritidis isolate was positive to *rck*. In addition, the presence of some resistance genes was significantly associated with increased prevalence of certain virulence genes (*i.e.*, *bla*TEM/orfA; *cmdA*; *span; cmdA*/*tolC* and *sul1*/*tolC*), suggesting that antimicrobial use may co-select for virulence genes, and a possible linkage of virulence and resistance determinants on genetic elements such as plasmids and transposons may exist [25]. It is possible that both resistance and virulence genes are located on the same plasmid or on different but compatible plasmids. Plasmid analysis will help in elucidating the spread of virulence genotypes and antibiotic resistance; however, such investigation was not pursued in this study. Co-existence of resistance and virulence genes on a large drug resistance/virulence plasmid, pSCV, was previously characterized in serovar Choleraesuis [7], and it was suggested that the resistance genes (*i.e.*, *sul1* and *bla*TEM−) were likely acquired through recombination. A virulence/resistance hybrid plasmid, pUO-StVR2, carrying a complex resistance island and several virulence genes was demonstrated in serovar Typhimurium [20]. Taken together, these results indicate the presence of a connection between resistance and virulence genes in *Salmonella*. Further, the positive associations between resistance and virulence genes observed in this study suggest that antimicrobial use in household dogs and cats may generate selective pressure for co-selection of resistance and virulence determinants, which are or can become beneficial to the spread and persistence of both types of genes among the *Salmonella* population [14].

In conclusion, the results in this study highlight the role of household dogs and cats as potential sources of AMR *Salmonella* strains with a wide range of AMR determinants and virulence genes; strains that may spread to humans and into the environment. The results should be used to emphasize the responsibility of veterinarians and relevant authorities to develop prudent-use guidelines to minimize the emergence and spread of AMR in bacterial strains originating from companion
animals. The collection of reliable data on the frequency of AMR occurrence is a prerequisite to developing guidelines and regulations on the prudent use of antimicrobial agents. To date, such activity related to companion animals has been limited. Therefore, it is strongly recommended that AMR monitoring and surveillance programs should include bacteria originating from dogs, cats, and other pet animals.

Acknowledgments

We thank the Genetic Strains Research Center, National Institute of Genetics, Japan for providing E. coli K12 MG1655 and the Khon Kaen animal hospital for facilitating sample collection. Drs. Wechsiri Wannaprasart, Suthathip Trongjit, and Sirawit Pakdeedamrogkit are acknowledged for their technical assistance. Phuong T. Le Ho was an exchange student within the Sirawit Pakdeedamrogkit and the Khon Kaen animal hospital for facilitating sample collection. Drs. Wechsiri Wannaprasart, Suthathip Trongjit, and the Khon Kaen animal hospital for facilitating sample collection. Drs. Wechsiri Wannaprasart, Suthathip Trongjit, and

Conflict of Interest

The author declare no conflict of interests.

References

1. Bangtrakulnonth A, Pornreungwong S, Pulskiarn C, Sawanpanyalert P, Hendriksen RS, Lo Fo Wong DMA, Aarestrup FM. Salmonella serovars from humans and other sources in Thailand, 1993-2002. Emerg Infect Dis 2004, 10, 131-136.
2. Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013, 26, 185-230.
3. Boerlin P, Travis R, Gyles CL, Reid-Smith R, Janecko N, Lim H, Nicholson V, McEwen SA, Friendship R, Archambault M. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl Environ Microbiol 2005, 71, 6753-6761.
4. Chen S, Cui S, McDermott PF, Zhao S, White DG, Paulsen I, Meng J. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 2007, 51, 535-542.
5. Chen S, Zhao S, White DG, Schroeder CM, Lu R, Yang H, McDermott PF, Ayers S, Meng J. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl Environ Microbiol 2004, 70, 1-7.
6. Chiu CH, Ou JT. Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and sprC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol 1996, 34, 2619-2622.
7. Chu C, Chiu CH, Wu WY, Chu CH, Liu TP, Ou JT. Large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Choleraesuis. Antimicrob Agents Chemother 2001, 45, 2299-2303.
8. Chuanchuen R, Ajarayakajorn K, Koowatananukul C, Wannaprasat W, Khentong S, Sanmanning S. Antimicrobial resistance and virulence genes in Salmonella enterica isolates from dairy cows. Foodborne Pathog Dis 2010, 7, 63-69.
9. Chuanchuen R, Khentong S, Padungtod P. Occurrence of qacE1/qacEΔ1 genes and their correlation with class 1 integrons in Salmonella enterica isolates from poultry and swine. Southeast Asian J Trop Med Public Health 2007, 38, 855-862.
10. Chuanchuen R, Padungtod P. Antimicrobial resistance genes in Salmonella enterica isolates from poultry and swine in Thailand. J Vet Med Sci 2009, 71, 1349-1355.
11. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard—Fourth edition. CLSI document VET01-04. Clinical and Laboratory Standards Institute, Wayne, 2013.
12. D’Ortenzio E, Weill FX, Ragonneau S, Lebon JA, Renault P, Pierre V. First report of a Salmonella enterica serovar Weltevreden outbreak on Reunion Island, France, August 2007. Euro Surveill 2008, 13, 393-395.
13. Ekapanboyotin C, Padungtod P, Chuanchuen R. Antimicrobial resistance of Campylobacter coli isolates from swine. Int J Food Microbiol 2008, 128, 325-328.
14. Fluic AT. Towards more virulent and antibiotic-resistant Salmonella? FEMS Immunol Med Microbiol 2005, 43, 11.
15. Galanis E, Lo Fo Wong DM, Patrick ME, Binsztein N, Cieslik A, Chalmerskit F, Aidara-Kane A, Ellis A, Angulo FJ, Wegener HC; World Health Organization Global Salm-Surv. Web-based surveillance and global Salmonella distribution, 2000-2002. Emerg Infect Dis 2006, 12, 381-388.
16. Gordis L. Estimating risk: is there an association? In: Epidemiology. 4th ed. pp. 201-214, Saunders Elsevier, Philadelphia, 2009.
17. Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 2004, 54, 321-332.
18. Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM. β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J Antimicrob Chemother 2005, 56, 115-121.
19. Heinitz ML, Ruble RD, Wagner DE, Tatini SR. Incidence of Salmonella in fish and seafood. J Food Prot 2000, 63, 579-592.
20. Herrero A, Rodicio MR, González-Hevia MA, Mendoza MC. Molecular epidemiology of emergent multidrug-resistant Salmonella enterica serotype Typhimurium strains carrying the virulence resistance plasmid pUO-StVR2. J Antimicrob Chemother 2006, 57, 39-45.
21. Hsu SC, Chiu TH, Pang J, Hsuan-Yuan CH, Chang GN.
Tsen HY. Characterisation of antimicrobial resistance patterns and class I integrons among *Escherichia coli* and *Salmonella enterica* serovar Choleraesuis strains isolated from humans and swine in Taiwan. Int J Antimicrob Agents 2006, 27, 383-391.

22. International Organization for Standardization (ISO). ISO 6579:2002(en). Microbiology of food and animal feeding stuffs—Horizontal method for the detection of *Salmonella* spp. International Organization for Standardization, Geneva, 2002.

23. Jay-Russell MT, Hake AF, Bengson Y, Thiptara A, Nguyen T. Prevalence and characterization of *Escherichia coli* and *Salmonella* strains isolated from stray dog and coyote feces in a major leafy greens production region at the United States-Mexico border. PLoS One 2014, 9, e113433.

24. Pham CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. *Liu S, Liu K, Shen J, Wu C.* International Organization for Standardization (ISO). 2002.

25. Lay KK, Koowattananukul C, Chansong N, Chuanchuen R. Antimicrobial resistance, virulence, and phylogenetic characteristics of *Escherichia coli* isolates from clinically healthy swine. Foodborne Pathog Dis 2012, 9, 992-1001.

26. Leonard EK, Pearl DL, Finley RL, Janecko N, Reid-Smith RJ, Peregrine AS, Weese JS. Comparison of antimicrobial resistance patterns of *Salmonella* spp. and *Escherichia coli* recovered from pet dogs from volunteer households in Ontario (2005-06). J Antimicrob Chemother 2012, 67, 174-181.

27. Lévesque C, Pichè L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995, 39, 185-191.

28. Li R, Lai J, Wang Y, Liu S, Li Y, Liu K, Shen J, Wu C. Prevalence and characterization of *Salmonella* species isolated from pigs, ducks and chickens in Sichuan Province, China. Int J Food Microbiol 2013, 163, 14-18.

29. Lin D, Chen K, Wai-Chi Chan E, Chen S. Increasing prevalence of ciprofloxacin-resistant food-borne *Salmonella* strains harboring multiple PMQR elements but not target gene mutations. Sci Rep 2015, 5, 14754.

30. Ling JM, Chan EW, Lam AW, Cheng AF. Mutations in topoisomerase genes of fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob Agents Chemother 2003, 47, 3567-3573.

31. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 2011, 24, 718-733.

32. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of *aad(6)-lb-cr* encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006, 50, 3953-3955.

33. Pedersen K, Pedersen K, Jensen H, Finster K, Jensen VF, Heuer OE. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. J Antimicrob Chemother 2007, 60, 775-781.

34. Piddock L, Rice V, McLaren I, Griggs DJ. Role of mutation in the *gyrA* and *parC* genes of nalidixic-acid-resistant *Salmonella* serotypes isolated from animals in the United Kingdom. J Antimicrob Chemother 1998, 41, 635-641.

35. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006, 6, 629-640.

36. Rushdy AA, Mabrouk MI, Abu-Sef FAH, Kheiralla ZH, Abdel-All SM, Saleh NM. Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of *Salmonella enterica*. Braz J Infect Dis 2013, 17, 431-437.

37. Sackett DL, Deeks JJ, Altman DG. Down with odds ratios. Evid Based Med 1996, 1, 164-166.

38. Sahm DF, Thornberry C, Mayfield DC, Jones ME, Karlowsky JA. Multidrug-resistant urinary tract isolates of *Escherichia coli*: prevalence and patient demographics in the United States in 2000. Antimicrob Agents Chemother 2001, 45, 1402-1406.

39. Seepersadsingh N, Adesiyun AA, Seebarsangirh RK. Prevalence and antimicrobial resistance of *Salmonella* spp. in non-diarrhoeic dogs in Trinidad. J Vet Med B Infect Dis Vet Public Health 2004, 51, 337-342.

40. Skyberg JA, Logue CM, Nolan LK. Virulence genotyping of *Salmonella* spp. with multiplex PCR. Avian Dis 2006, 50, 77-81.

41. Stephenson S, Brown PD, Holness A, Wilks M. The emergence of *qnr*-mediated quinolone resistance among *Enterobacteriaceae* in Jamaica. West Indian Med J 2010, 59, 241-244.

42. Strahtlevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009, 22, 664-689.

43. Thong KL, Goh YL, Radu S, Noorzaleha S, Yasir R, Koh YT, Lim VKE, Rusul G, Puthucheary SD. Genetic diversity of clinical and environmental strains of *Salmonella enterica* serotype Weltevreden isolated in Malaysia. J Clin Microbiol 2002, 40, 2498-2503.

44. Torkan S, Khamesipour F, Anyanwu MU. Detection of virulence and antibacterial resistance genes in *Salmonella* isolates from diarrhoeic dogs in Iran. Rev Med Vet (Toulouse) 2015, 166, 221-228.

45. Tsai HJ, Huang HC, Lin CM, Lien YY, Chou CH. *Salmonellae* and campylobacters in household and stray dogs in northern Taiwan. Vet Res Commun 2007, 31, 931-939.

46. Ulaya W, Hang’ombe BM, Zulu V, Nalubamba K, Mulenga E, Isogai H, Isogai E. Distribution of virulence genes and antimicrobial susceptibility of *Salmonella* isolated from dogs and chickens in Zambia. Int J Agro Vet Med Sci 2012, 6, 360-367.

47. Wannaprasat W, Padungtod P, Chuanchuen R. Class 1 integrons and virulence genes in *Salmonella enterica* isolates from pork and humans. Int J Antimicrob Agents 2011, 37, 457-461.

48. Yamane K, Wachino J, Suzuki S, Arakawa Y. Plasmid-mediated *gyeA* gene among *Escherichia coli* clinical isolates from Japan. Antimicrob Agents Chemother 2008, 52, 1564-1566.

49. Zgurskaya HI, Nakaide H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of *Escherichia coli*. Proc Natl Acad Sci U S A 1999, 96, 7190-7195.

www.vetsci.org