An updated overview of the geographic and bathymetric distribution of Savalia savaglia

GIUSTI Mi.
Italian National Institute for Environmental Protection and Research (ISPRA)

CERRANO C.
Polytechnic University of Marche, Ancona, ITALY

ANGIOLILLO M.
Italian National Institute for Environmental Protection and Research (ISPRA)

TUNESI L.
Italian National Institute for Environmental Protection and Research (ISPRA)

CANESE S.
Italian National Institute for Environmental Protection and Research (ISPRA)

https://doi.org/10.12681/mms.890

Copyright © 2015

To cite this article:

GIUSTI, M., CERRANO, C., ANGIOLILLO, M., TUNESI, L., & CANESE, S. (2014). An updated overview of the geographic and bathymetric distribution of Savalia savaglia. Mediterranean Marine Science, 16(1), 128-135. doi:https://doi.org/10.12681/mms.890
An updated overview of the geographic and bathymetric distribution of Savalia savaglia

M. GIUSTI1, C. CERRANO2, M. ANGIOLILLO1, L. TUNESI1 and S. CANESE1

1 Italian National Institute for Environmental Protection and Research (ISPRA), Via Brancati 60, 00144 Roma, Italy
2 Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy

Received: 29 April 2014; Accepted: 8 October 2014; Published on line: 6 February 2015

Abstract

The distribution of golden coral Savalia savaglia is modified on the basis of bibliographic information and recent occurrence data collected by ROV (Remotely Operated Vehicle) and SCUBA divers. The species is long-lived, rare and has been exploited in the past by divers for collection purposes. S. savaglia is listed in Annex II of the SPA/BDA Protocol of the Barcelona Convention and has a wider distribution than previously thought, including both the Mediterranean Sea and the Atlantic Ocean. Our results highlighted that specimens mainly live at a depth range of 15-90 m, but may reach as deep as 900 m in the Mediterranean Sea. This species can form monospecific facies of hundreds of colonies, as observed in Montenegro (Adriatic Sea), between 10 and 20 m, and in the Canary Islands, at a depth range of 27-70 m. Recent data highlighted numerous cases of specimens that were endangered by lost fishing gear, which exposed this species to further threats. Considering its longevity and structural role, it is urgent to develop an effective protection measure for S. savaglia, thereby increasing research efforts and implementing protection areas for this species.

Keywords: Savalia savaglia, distribution, ROV, SCUBA divers, bibliographic records.

Introduction

The species Savalia (=Gerardia) savaglia (Bertoloni, 1819) (Fig. 1) is a zoanthid belonging to the family Savaliidae (Häussermann, 2003). Living colonies show a golden colour that can vary from pale to bright. Considered rare and endangered, it is listed in Annex II of the SPA/BDA Protocol of the Barcelona Convention and in Annex II of the Bern Convention for the conservation of European wildlife and natural habitats.

This species is unique in that it grows on its own skeleton (e.g. Ocaña et al., 2007) or it can generate a hard-layered proteinaceous skeleton, which grows on the stem of gorgonians for several hundreds of years (e.g. Paramuricea clavata, Eunicella spp.) (Sinniger et al., 2005; Cerrano et al., 2006; Sinniger et al., 2009), resembling the long-living Hawaiian coral Kulamanana haumeaeae (Sinniger et al., 2013).

S. savaglia creates elevated and complex tertiary structures, which can play the role of an important structural component of the twilight or mesophotic zone of the Mediterranean coraline assemblages. Colonies form an important three-dimensional habitat and increase the deposition of bioavailable substrata, thereby enhancing biodiversity (Cerrano et al., 2010).

The distribution of this species includes the western Mediterranean Sea (Strait of Gibraltar, Catalonian coast, Balearic Islands, Algerian coast, Ligurian and Tyrhenian Sea) (Schmidt, 1972; Arena & Li Greci, 1973; Zibrowius, 1985a, b; Gili et al., 1987; Pais et al., 1992; Cristo & Pais, 1997; Bussotti et al., 1999; Cristo, 2003; Ocaña & Brito, 2004; Cerrano et al., 2007; Barraquín et al., 2008; Coppo et al., 2009; Oceana, 2010b; Cossu et al., 2011; Pardo et al., 2011), Adriatic Sea (Kružič, 2007) and Ionian Sea (Salomidi et al., 2010), as well as the eastern Mediterranean basin, where it has been found in the Aegean Sea (Bell, 1891; Vafidis & Koukouras, 1998; Salomidou et al., 2009) and Marmara Sea (Artüz et al., 1990; Öztürk & Bourgue, 1990).

Recently, a new record of S. savaglia was reported in north-western Spain (Altuna et al., 2010). This occurrence, with further sampling from the Canary Islands, re-examination of the morphological characteristics (Ocaña et al., 2007) and new observations collected from Oceana cruises (Oceana, 2010a), demonstrated that S. savaglia exhibited a wider distribution than previously thought, including the Atlantic Ocean. Regarding the taxonomic difference between S. savaglia and Antipathozoanthus macaronensis (=Gerardia macaronensis) (Ocaña & Brito, 2004) from the Macaronesian Islands, the issue is complex and has recently been clarified by Swain & Swain (2014).

Recent studies and monitoring programs of the Italian National Institute for Environmental Protection and
Research (ISPRA) and of the participation of volunteers in the Coastal Environment Monitoring Protocol (CEM; http://www.progettomac.it) provided new data on the distribution of *S. savaglia* in several Mediterranean locations.

The aim of the present study is to provide an overview of the distribution of this important species, using recent Italian records (by ISPRA and CEM) and all the data available to date that are published in scientific journals.

Material and Methods

Three different datasets were analysed in this study to update the distribution map of *S. savaglia*. The first dataset included observations and records of the species collected directly by the authors using underwater video surveys. These data were obtained from 680 ROV transects performed by the ISPRA within the past five years (2009-2013) on board the R/V Astrea, near the Italian coasts at a depth range between 20 and 500 meters. The second dataset consists of visual observations performed by trained SCUBA divers in the Mediterranean Sea, who voluntarily participated in the Coastal Environmental Monitoring (CEM) project. These data were stored in an online database. They were periodically confirmed and subsequently integrated into web-GIS to create species distribution maps that are freely available (http://www.progettomac.it). Data are validated and can also be confirmed by contacting the single volunteer who provided the information.

The third dataset consists of information regarding the presence of the species found in the literature. Both scientific papers and reports from field surveys were examined.

Results

Analysis of *S. savaglia* occurrences showed that approximately 1793 colonies were recorded: 784 in the Mediterranean Sea and 1009 in the Atlantic Ocean. Of these data, 50 occurrences were quantified from ROV video and photo analysis, 357 of which were computed from CEM project data analysis and 1386 were estimated from the literature dataset (Table 1). The species dwells at a depth range of 15-900 m.

Specimens were generally found between 15 and 700 m in the Mediterranean Sea and at a depth range of 26-415 m in the Atlantic Ocean.

In the Mediterranean Sea, colonies are mainly reported from the west side of the Italian peninsula (Tyrrhenian Sea) (Fig. 2).

The range of depth for this species in the Tyrrhenian Sea was usually between 15-90 m. Here, we recorded be-
lat.	long.	depth (m)	n. colonies	locality	sampling method	source
38.27	15.66	30-45	25	Italy	ROV ISPRA	
38.26	15.74	67-72	9	Italy	ROV ISPRA	
38.54	14.33	35	1	Italy	ROV ISPRA	
36.83	12.01	76-83	3	Italy	ROV ISPRA	
36.83	12.01	75-86	4	Italy	ROV ISPRA	
42.31	10.92	90	1	Italy	ROV ISPRA	
42.39	10.90	45	1	Italy	ROV ISPRA	
44.23	8.46	> 5	> 5	Italy	ROV ISPRA	
39.43	9.72	90	1	Italy	ROV ISPRA	
43.77	7.69	31	2	Italy	SCUBA CEM	
43.90	8.10	40	1	Italy	SCUBA CEM	
44.26	8.47	35-38	1	Italy	SCUBA CEM	
44.26	8.47	34-36	2	Italy	SCUBA CEM	
44.26	8.47	37	2	Italy	SCUBA CEM	
44.27	8.46	34-38	1	Italy	SCUBA CEM	
44.32	9.14	30-50	5	Italy	SCUBA CEM	
44.32	9.14	20-45	5	Italy	SCUBA CEM	
44.31	9.18	42	1	Italy	SCUBA CEM	
44.31	9.18	30-40	10	Italy	SCUBA CEM	
44.31	9.18	20-27	50	Italy	SCUBA CEM	
44.31	9.18	20-25	10	Italy	SCUBA CEM	
44.31	9.19	50	2	Italy	SCUBA CEM	
44.31	9.21	15-20	2	Italy	SCUBA CEM	
44.30	9.22	30-50	2	Italy	SCUBA CEM	
44.30	9.22	1	1	Italy	SCUBA CEM	
44.30	9.22	30	1	Italy	SCUBA CEM	
44.24	9.40	45	10	Italy	SCUBA CEM	
42.71	10.41	47-50	1	Italy	SCUBA CEM	
42.71	10.42	35	1	Italy	SCUBA CEM	
42.71	10.42	35	1	Italy	SCUBA CEM	
42.70	10.44	40-45	1	Italy	SCUBA CEM	
42.74	10.43	28	1	Italy	SCUBA CEM	
42.74	10.43	30-32	2	Italy	SCUBA CEM	
42.74	10.43	28	1	Italy	SCUBA CEM	
42.74	10.43	31-33	2	Italy	SCUBA CEM	
42.73	10.43	35-42	5	Italy	SCUBA CEM	
42.37	10.92	37	1	Italy	SCUBA CEM	
41.61	12.34	37	1	Italy	SCUBA CEM	
41.61	12.34	37	1	Italy	SCUBA CEM	
40.70	14.47	30-40	2	Italy	SCUBA CEM	
40.70	14.47	40-50	2	Italy	SCUBA CEM	
40.68	14.43	34-36	10	Italy	SCUBA CEM	
40.68	14.43	30-45	10	Italy	SCUBA CEM	
40.64	14.35	15-30	50	Italy	SCUBA CEM	
40.62	14.32	28-30	10	Italy	SCUBA CEM	

(continued)
lat.	long.	depth (m)	n. colonies	locality	sampling method	source
38.36	15.83	40	2	Italy	SCUBA	CEM
38.34	15.83	30-44	5	Italy	SCUBA	CEM
38.32	15.82	38-40	2	Italy	SCUBA	CEM
38.26	15.71	42	1	Italy	SCUBA	CEM
40.15	17.83	49-53	5	Italy	SCUBA	CEM
43.82	15.23	44-46	5	Croatia	SCUBA	CEM
36.80	12.05	50-88	10	Italy	SCUBA	CEM
36.80	12.05	60-87	50	Italy	SCUBA	CEM
36.83	12.01	50-80	50	Italy	SCUBA	CEM
41.08	9.61	38	1	Italy	SCUBA	CEM
41.26	9.20	33-38	10	Italy	SCUBA	CEM
41.44	9.10	27	2	France	SCUBA	CEM
41.67	8.87	45	1	France	SCUBA	CEM
42.02	8.62	40	2	France	SCUBA	CEM
41.08	9.61	20-36	4	Italy	SCUBA	Cristo & Pais, 1997; Cristo, 2003
41.25	9.18	34-36	> 15	Italy	SCUBA	Cristo & Pais, 1997; Cristo, 2003
39.21	9.23	27	1	Italy	SCUBA	Cristo & Pais, 1997; Cristo, 2003
42.05	3.22	45	1	Spain	SCUBA	Gili et al., 1987
35.90	-5.28	30	1	Spain	SCUBA	Ocaña & Brito, 2004
35.88	-5.28	30-35	1	Spain	SCUBA	Ocaña & Brito, 2004
42.48	3.13	40	1	France	SCUBA	Ocaña & Brito, 2004
36.39	-3.97	340*		Alboran Sea	ROV	Pardo et al., 2011
44.25	9.40	53-83		Italy	ROV	Coppo et al., 2009
40.73	28.17	40		Turkey	SCUBA, Cross of Saint Andrew, dredge	Artüz et al., 1990
40.53	27.48	32-52	16	Turkey	SCUBA, Agassiz trawl, fishing trawl	Öztürk & Bourguet, 1990
41.33	9.25	25	1	France	ROV, SCUBA	Meinesz, 1990
41.24	9.20	> 15		Italy	ROV, SCUBA	Cossu et al., 2011
38.33	21.93	40-45		Greece	SCUBA	Salomidi et al., 2009; Salomidi et al., 2010
39.32	24.53	35-90	11	Greece	SCUBA, Agassiz trawl, fishing trawl	Vafidis & Koukouras, 1998
40.89	9.70	51	4	Italy	SCUBA	Pais et al., 1992
38.12	24.61	37	1	Greece	SCUBA, spongefishers	Bell, 1891
38.82	15.25	58	1	Italy	SCUBA	Schmidt, 1972
44.04	14.99	65	1	Croatia	SCUBA	Kružić, 2007
43.95	15.06	51	1	Croatia	SCUBA	Kružić, 2007
43.77	15.30	47	1	Croatia	SCUBA	Kružić, 2007
38.41	11.00	505-650	1	Italy	SCUBA	Arena & Li Greci, 1973
42.50	18.67	10-20	> 300	Montenegro	SCUBA	Mačić V. (pers.comm.); Eusebio et al., 2007
38.95	2.00	500-900		Spain	ROV	Oceana, 2010b
between 25 and 100 specimens from four different sites: 25 specimens live in Capo Peloro (Sicily, Italy) (Giusti et al., 2013), 50 in the Marine Protected Area (MPA) of Portofino (Liguria, Italy), 50 in the MPA of Punta Campanella (Campania, Italy) and 100 at two different sites near Pantelleria Island (Sicily, Italy) (Fig. 2).

Regarding the Mediterranean Sea, three deep records of the species were reported from the literature data: Arena & Li Greci (1973) found a colony in a fishing net that was located between 505 and 650 m; Oceana (2010b) found the species between 500 and 900 m on the Seco de los Olivos seamount (Alboran sea); Pardo et al. (2011) recorded the species at 340 m on the Bank of Djibuti (Alboran Sea).

In the Mediterranean Sea, the maximum abundance documented in the bay of Kotor (Montenegro) was more than 300 colonies (Maciç V. & Trainito E. personal communication; Eusebio et al., 2007).

In the Atlantic Ocean, the deepest occurrence was reported between 230-600 m depth near Lanzarote (Canary Islands) (Oceana, 2010a), and until recently, the highest abundance was documented at “El Bajo de las Gerardias” (Canary Islands) inside the Marine Reserve of La Graciosa Island and islets north of Lanzarote with more than 1000 colonies of S. Savaglia (Ocaña et al., 2007; Rivera, 2010; Van den Berg, 2010).

The documented organic substrates that S. savaglia can exploit are Paramuricea clavata, Eunicella cavoilini (Fig. 3A-B), E. singularis and Leptogorgia sarmentosa.

Discussion

Analysis of the three datasets provided an updated overview of the geographic and bathymetric distribution of the species, adding more Mediterranean records to the literature data. Most of the occurrence data was obtained from the analysis of the CEM dataset, which highlighted that the involvement of trained volunteers in monitoring species was a practice that contributed to the collection of important datasets on many species, as confirmed by several studies performed in recent years (e.g. Tidball & Krasny, 2011; Tulloch et al., 2013).

In addition, bibliographic data highlighted that the species has a wider distribution than previously thought, including the Atlantic Ocean (Fig. 2). Our results indicated that in the Mediterranean Sea, the species was mainly reported in the Tyrrenhan Sea (Fig. 2); however, it presented a higher density in the Adriatic Sea, where it forms a dense monospecific facies of hundreds of colonies between 10 and 20 m in Montenegro (Adriatic Sea) and several colonies reported from Croatian waters. In the Atlantic Ocean and the Canary Islands, the species formed a monospecific facies too, at a depth range of 27-70 m, but usually with a lower density.

These observations indicate that S. savaglia could form monospecific facies with higher densities in the Mediterranean compared to the Atlantic Ocean, resulting in the hypothesis that in the past, it was present in dense forests, which are no longer living, most likely due to the three-dimensional rigid structure of the colonies. This type of morphology facilitates the entanglement of nets and fishing lines in their branches (Bavestrello et al., 1997; Maldonado et al., 2013; Bo et al., 2014), and rigidity increases its potential fragmentation and destruction. Other arborescent species (e.g. A. subpinnata, P. clavata, Ellisella paraplexauroides) are specifically threatened by fishing activities (i.e. trawling) and ghost nets, but their flexibility may limit the detachment of the entire colony with respect to the rigid S. savaglia.

Moreover, divers represent another potential threat for this species because, particularly in the past, a large number of sites where the species was identified were at depths accessible by SCUBA divers, who collected the beautiful skeletons of S. savaglia as souvenirs (Cristo, 2003; Ocaña & Brito, 2004; Oceana, 2007; Barrajon et al., 2008). From the cut bases left in situ, basal plates may develop and new colonies may grow (Fig. 3C).}

Table 1

lat.	long.	depth (m)	n. colonies	locality	sampling method	source
29.30	-13.54	27-70	> 1000	Spain	ROV, SCUBA	Ocaña et al., 2007; Oceana, 2010a; Rivera, 2010; Van den Berg, 2010
27.86	-15.38	30	1	Spain	ROV	Oceana, 2010a
42.55	-8.96	29	3	Spain	SCUBA	Altuna et al., 2010
42.51	-8.94	26	1	Spain	SCUBA	Altuna et al., 2010
27.86	-15.34	30	1	Spain	SCUBA	Ocaña et al., 2007
29.41	-13.56	40	1	Spain	SCUBA	Oceana et al., 2007
28.46	-16.56	35	1	Spain	SCUBA	Oceana et al., 2007
29.14	-13.72	230-600		Spain	ROV	Oceana, 2010a

In the Atlantic Ocean, the deepest occurrence was reported between 230-600 m depth near Lanzarote (Canary Islands) (Oceana, 2010a), and until recently, the highest abundance was documented at “El Bajo de las Gerardias” (Canary Islands) inside the Marine Reserve of La Graciosa Island and islets north of Lanzarote with more than 1000 colonies of S. Savaglia (Ocaña et al., 2007; Rivera, 2010; Van den Berg, 2010).

The documented organic substrates that S. savaglia can exploit are Paramuricea clavata, Eunicella cavoilini (Fig. 3A-B), E. singularis and Leptogorgia sarmentosa.

Discussion

Analysis of the three datasets provided an updated overview of the geographic and bathymetric distribution of the species, adding more Mediterranean records to the literature data. Most of the occurrence data was obtained from the analysis of the CEM dataset, which highlighted that the involvement of trained volunteers in monitoring species was a practice that contributed to the collection of important datasets on many species, as confirmed by several studies performed in recent years (e.g. Tidball & Krasny, 2011; Tulloch et al., 2013).

In addition, bibliographic data highlighted that the species has a wider distribution than previously thought, including the Atlantic Ocean (Fig. 2). Our results indicated that in the Mediterranean Sea, the species was mainly reported in the Tyrrenhan Sea (Fig. 2); however, it presented a higher density in the Adriatic Sea, where it forms a dense monospecific facies of hundreds of colonies between 10 and 20 m in Montenegro (Adriatic Sea) and several colonies reported from Croatian waters. In the Atlantic Ocean and the Canary Islands, the species formed a monospecific facies too, at a depth range of 27-70 m, but usually with a lower density.

These observations indicate that S. savaglia could form monospecific facies with higher densities in the Mediterranean compared to the Atlantic Ocean, resulting in the hypothesis that in the past, it was present in dense forests, which are no longer living, most likely due to the three-dimensional rigid structure of the colonies. This type of morphology facilitates the entanglement of nets and fishing lines in their branches (Bavestrello et al., 1997; Maldonado et al., 2013; Bo et al., 2014), and rigidity increases its potential fragmentation and destruction. Other arborescent species (e.g. A. subpinnata, P. clavata, Ellisella paraplexauroides) are specifically threatened by fishing activities (i.e. trawling) and ghost nets, but their flexibility may limit the detachment of the entire colony with respect to the rigid S. savaglia.

Moreover, divers represent another potential threat for this species because, particularly in the past, a large number of sites where the species was identified were at depths accessible by SCUBA divers, who collected the beautiful skeletons of S. savaglia as souvenirs (Cristo, 2003; Ocaña & Brito, 2004; Oceana, 2007; Barrajon et al., 2008). From the cut bases left in situ, basal plates may develop and new colonies may grow (Fig. 3C). Regarding the Mediterranean Sea, there are hot spot areas with high densities, as reported in the Portofino Promontory and Punta Manara in the Ligurian Sea (Fig. 3C), and in Kotor in Montenegro. These areas are characterised by high densities of gorgonians, where S. savaglia can settle and its growth is enhanced by its fast asexual reproduci-
tion on the surrounding gorgonians. In this case, there is continuous physical contact between colonies (Previti et al., 2010). Only two of the five sites at which we found the major number of specimens were in MPAs, which confirmed the importance of increasing the number of these areas to preserve this long-lived species. In the Atlantic Ocean, the species was present with a rich forest in the Marine Reserve of La Graciosa Island and islets north of Lanzarote, but the population structure was more scattered, which mirrored the structure of the surrounding gorgonians. Depth occurrences for the species, both in the Mediterranean Sea and Atlantic Ocean, have been reported in the literature. In this case also, the presence of *S. savaglia* could indicate the occurrence of a previous living substratum, such as deep-living gorgonians.

Our results, which were derived from the literature and collected by SCUBA divers and ROV that studied the seafloor until a depth of nearly 500 m, confirm that the species in the Tyrrhenian Sea prefers the upper circalittoral hard bottoms within a range of depth that makes the species vulnerable to illegal collection by SCUBA divers, to nets and to the improper use of artisanal fishing tools. For these reasons and because *S. savaglia* is an endangered species able to create an important three-dimensional habitat enhancing biodiversity (Cerrano et al., 2010), it is fundamental to develop specific protection measures, starting in the areas where the presence of the species has been confirmed.

To achieve this protection, new efforts must be made to increase knowledge about the habitat requirement of this species and its actual distribution.

Acknowledgements

We are grateful to the captain and crew of RV ‘Astrea’ for their precious help and work during field operations and to the SCUBA volunteers of Reef Check Italia Onlus. Many thanks also to Dr. Vesna Mačič who provided the record of Montenegro, Cristina Linares and Oscar Ocaña for their comments that helped us to improve our work.

References

Altuna, A., Sinninger, F., Aldrey, J.M., 2010. Occurrence of *Savalia savaglia* (Anthozoa: Zoantharia) in the Ría de Arousa (Galicia, north-western Spain, north-eastern Atlantic). *Marine Biodiversity Records*, 3, e110.

Arena, P. & Li Greci, F.L., 1973. Indagine sulle condizioni faunistiche e sui rendimenti di pesca dei fondali batiali della Sicilia occidentale e della bordura settentrionale dei banchi della soglia Sicul-Tunisina. *Quaderni del Laboratorio di Tecnologia della Pesca*, 1 (5), 157-201.

Artüz, M.I., Artüz, M., Artüz, O.B., 1990. Mercan Türlerine Getirilen Yasaclar İle İlgili Görüşler. T.C. Çevre Bakanlığı Raporu K. K. G. M. Su Ürünleri Sirküleri Düzenlenmeleri 1990.

Barrajón, D.A., Moreno Lampreave, D., Arroyo Tenorio, M.C., López-González, P.J., 2008. *Gerardia savaglia* (Bertoloni, 1883) growing on a *Eunicella cavolinii* colony at Portofino Promontory; the same in 2004 and 2008. (C) A high density facies of *Savalia savaglia* with both evident basal plates (white arrows) and branching colonies at Punta Manara (Ligurian Sea, Italy) (photocredits Portofino Divers). In the inset a cross section of the base of one of the colonies showing the holdfast of *P. clavata* in the middle and the *S. savaglia* skeleton secreted around.

http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 24/05/2020 01:04:44 |
ki, J., 2005. Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes. Marine Biology, 147, 1121-1128.

Sinniger, F., Reimer, J.D., Pawlowski, J., 2009. The Parazoanthidae (Hexacorallia: Zoantharia) DNA taxonomy: description of two new genera. Marine Biodiversity, doi:10.1007/s12526-009-0034-3.

Sinniger, F, Ocaña O.V., Baco, A.R., 2013. Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids. PLoS ONE 8(1): e52607. doi:10.1371/journal.pone.0052607

Swain T.D., Swain L.M., 2014. Molecular parataxonomy as taxon description: examples from recently named Zoanthidea (Cnidaria: Anthozoa) with revision based on serial histology of microanatomy. Zootaxa 3796 (1), 081-107.

Tidball, K.G., Krasny M.E., 2011. Toward an ecology of environmental education and learning. Ecosphere, 2 (2):art21 doi:10.1890/ES10-00153.1

Tulloch, A.I., Possingham, H.P., Joseph, L.N., Szabo, J. & Martin, T. G., 2013. Realising the full potential of citizen science monitoring programs. Biological Conservation, 165, 128-138.

Vafidis, D., Koukouras, A., 1998. Antipatharia, Ceriantharia and Zoantharia (Hexacorallia Anthozoa) of the Aegean Sea with a check list of the Mediterranean and Black Sea species. Annales de l’Institut Oceanographique, Paris, 74 (2), 115-126.

Van den Berg, E., 2010. Gran Angular: El Bajo de las Gerardias. National Geographic (ed. Española), 26 (6).

Zibrowius, H., 1985a. Gerardia savaglia (Cnidaria: Anthozoa: Zoantharia) nouvel hôte de Balssia gesti (Crustacea: Decapoda: Pontoniinae). Rapports et Proce`s-verbaux des R´eunions. Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 29, 349–350.

Zibrowius, H., 1985b. Comportement agressif du Zoanthaire Geradia savaglia contre le Gorgonaire Paramuricea clava-ta (Cnidaria: Anthozoa). Rapports et Proce`s-verbaux des Re´unions. Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 29, 351-353.