Hepatoid Adenocarcinoma of the Stomach: Current Perspectives and New Developments

Ruolan Xia1,2†, Yuwen Zhou1,2†, Yuqing Wang1,2, Jiaming Yuan2,3 and Xuelei Ma1*

1 Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China, 2 West China School of Medicine, Sichuan University, Chengdu, China, 3 The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China

Hepatoid adenocarcinoma of the stomach (HAS) is a rare malignant tumor, accounting for only 0.17–15% of gastric cancers. Patients are often diagnosed at an advanced disease stage, and their symptoms are similar to conventional gastric cancer (CGC) without specific clinical manifestation. Morphologically, HAC has identical morphology and immunophenotype compared to hepatocellular carcinoma (HCC). This is considered to be an underestimation in diagnosis due to its rare incidence, and no consensus is reached regarding therapy. HAS generally presents with more aggressive behavior and worse prognosis than CGC. The present review summarizes the current literature and relevant knowledge to elaborate on the epidemic, potential mechanisms, clinical manifestations, diagnosis, management, and prognosis to help clinicians accurately diagnose and treat this malignant tumor.

Keywords: hepatoid gastric carcinoma, pathology, diagnosis, prognosis, treatment

INTRODUCTION

Hepatoid adenocarcinoma of the stomach (HAS), the Primer’s focus, is a scarce primary extrahepatic malignant neoplasm. The estimated annual incidence of HAS is 0.58–0.83 cases per million individuals. Most tumors have metastasized at diagnosis with a poor prognosis due to their aggressive behavior (1, 2). Hepatoid adenocarcinoma(HAC) has been reported to occur in the stomach (3), esophagus (4, 5), duodenum (6), jejunum (2), colon (7), peritoneum (8), pancreas (9–13), lung (14), ovary (15, 16), gallbladder (17), uterus (16, 18) and other sites (19). Of these locations, the stomach is the most common site of HAC. Histologically, HAC has similar morphology and immunohistochemistry to hepatocellular carcinoma (HCC). This is considered to be an underestimation in diagnosis due to its rare incidence, and no consensus is reached regarding therapy (20). Although numerous cases and a small sample of retrospective reports on HAS have been reported over the years, it has not been sufficiently identified. Herein, to deepen the comprehensive understanding of HAS, we elaborate on the epidemic, potential mechanisms, clinical manifestations, diagnosis, management, and prognosis of this neoplasm based on current literature and relevant materials to assist clinicians in diagnosing and treating this disease.
Epidemiology

HAS is a rare neoplasm and the annual incidence of HAS is approximately 0.58–0.83 cases per million people (2, 21). It is also a rare entity with an inconsistent reported incidence between 0.17% and 15.0% in all gastric carcinomas across several studies (20, 22). A large number of HAS case reports come from the Asian region, mainly from the Japanese and Chinese cohort (22). According to previously published reports, HAS predominantly occurred in around 65 years old male patients (21, 23). Although no specific risk factors have been reported to influence the occurrence and progression of HAS positively, several cases described patients diagnosed as HAS with HBsAg seropositivity (8, 24).

Pathogenesis

The exact molecular mechanism of HAS remains unclear. A possible hypothesis is that based on the stomach and liver, with a common embryonic and histological origin, originating from the endoderm and the primitive foregut during the development of the embryo (25–27). The major genotypes of gastric malignancy have been defined by The Cancer Genome Atlas (TCGA) Research Network as Epstein–Barr virus-positive (EBV), microsatellite-instable (MSI), genomically stable tumors (GS), and chromosomally instability tumors (CIN): HAS is excluded from any of these due to its scarcity and characteristics of geographical distribution (28). Nevertheless, HASs are genetically heterogeneous groups with a majority of HAC are “CIN” and a small number of HAC with “MSI” (29, 30). It has been speculated that HAS is the result of trans-differentiation, transitioning from the intestinal type to hepatoid phenotypic (31); and the emergence of Alpha-fetoprotein (AFP) leading to hepatoid and intestinal mucin phenotype differentiation (33). The intestinal component usually stains for CDX-2 (33, 38). HepPar-1 and Arginase-1 immunostainings are regarded as highly sensitive and specific markers of HCC, while the positive staining of these markers can be detected in some HAC, causing certain difficulties in distinguishing HAS from HCC (37, 39). Among epithelial markers, CK8/18, CK19, and AE1/AE3 are always positive for hepatoid adenocarcinoma; nevertheless, the expression of CK7, CK14, CK20 rarely appears in HAS (37). It has been reported that staining for CEA, CK19, and CK20 is detected more frequently in HAS than in HCC. Furthermore, palate, lung, and nasal epithelium clone protein (PLUNC) is a good marker for distinguishing HAS from HCC because it is often positive in the papillary and tubular adenocarcinoma components of HAS. Anecdotally, PLUNC-positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP (40). Though LIN28 is not as sensitive as SALL4, it is a particular marker (98% positive tumor cells cannot be stained by AFP.
related to more adverse bio-behavior than nonamplified tumors, including lower differentiation, greater nerve and vascular invasion, and more significant liver metastasis and is associated with worse prognosis (29, 42, 43). Moreover, the signaling pathway, including ErbB, PI3K-Akt, HIF-1 and p53 pathway regulating the pluripotency of stem cells, were specifically enriched in the mutated genes. In terms of Epigenetic modifications, GATA4 is not responsible for forming and maintaining the hepatocellular carcinoma-like phenotype (44).

Serum Tumor Markers
The majority of cases reported the elevations in AFP concentration in patients with HAS (Figure 2), and the serum AFP concentration was associated with HAC cell component percentage: the higher HAC cell component ratio in a tumor, the more AFP could be secreted by the tumor (22, 42). Although a majority of cases reported the patient had been diagnosed as HAS with the elevation of serum AFP (22), it is of note that there were still patients with HAS whose serum AFP levels were negative despite pathological results that confirmed the presence of Hyaline globule and canalicular structures morphologically (26). Accordingly, HAS’s clinicopathological entity was extended, involving adenocarcinomas performing histological patterns of similarity to HCC morphologically regardless of AFP expression/production (36, 39, 45). Other hematological markers, such as the concentration of CA19-9, CA125, CEA, and CA72-4 in the blood, were also elevated in some cases.

IMAGING DIAGNOSIS
For primary sites, the findings of computed tomography (CT), covering the longest and mean short diameter of malignancy, the ratio of lesion attenuation to aorta CT attenuation, the ratio of the number of accrete lymph nodes (LN) on CT to the number of histologically proven metastatic LN and the strengthening indexes in arterial phase minus portal venous phase, were significant predictors for distinguishing HAS from other gastric cancer (46–48). For HAC liver metastasis, arterial phase hypoenhancement was more frequently encountered than HCC. Furthermore, the diffusion-weighted magnetic Resonance Imaging (MRI) was performed for a suspected HAS and clarified the diagnosis of HAS (49). The significance of positron emission tomography (PET)/CT had in diagnosing and staging HAS accurately (50–52).
CLINICAL PRESENTATIONS

HASs were often diagnosed at an advanced disease stage with lymphatic permeation, blood vessel, and regional lymph node metastasis. Among retrospective analysis, 61.5% of HAC patients were in the III or IV stages at the diagnosis time. The relapse rate of early-stage or locally advanced stage patients was 47% (53, 54). The most common sites in which HAC developed include LNs, liver, lungs, peritoneum, and the spleen from existing literature (2, 37). Lacking specific clinical symptoms, the clinical manifestation of HAS is similar to common gastric cancer with many initial symptoms cover epigastric pain (55), abdominal distention (8), backache (55), fatigue (56), reduced appetite, weight loss (57), hematochezia, hematemesis (57) and shortness of breath (58). The most common presentation of HAS is abdominal pain (Table 1). Moreover, paraneoplastic hypercholesterolemia has been demonstrated in one case of HAS accompanied by liver metastasis (76).

TREATMENT

Surgery

For patients with early-stage HAS, radical surgery is a cornerstone of therapy with curative intent (21, 35). Radical surgery in combination with adjuvant chemotherapy is regarded as the optimal treatment approach (2). Gastric and liver metastasis resection is occasionally performed for palliation in advanced/metastatic HAS patients (85). And it was suggested that salvage surgery following chemotherapy could achieve curative resection of HAS with portal vein tumor thrombus (PVTT) (70).

Chemotherapy

No standard therapies for HAS were recommended by randomized controlled trials currently. Although the feasibility of neoadjuvant or adjuvant therapy for HAS patients and indications and concrete proposals for auxiliary treatments is illegible (21), adjuvant chemotherapy has been reported as one of the independent factors for a better outcome (35, 68) especially for HAS patients diagnosed with LNs or/and distant organ metastasis (2, 68). It was also reported that FOLFOX might be a potential adjuvant therapy for HAS (72). Cisplatin-based chemotherapy is judged as a standard first-line systemic regimen for metastatic HAS (55). Two advanced HAS patients treated with a first-line chemotherapy regimen of cisplatin and etoposide achieved a complete response (21, 86). The effectiveness of other regimens like oxaliplatin, irinotecan, gemcitabine, and 5-FU, as the first- or second-line treatment, either alone or combined, for advanced HAS situations remains obscure (86).

Interventional Therapy

Transcatheter arterial chemoembolization (TACE)/hepatic arterial infusion chemotherapy (HAIC), local intra-arterial chemotherapy for liver metastasis of HAS, has a lower frequency of toxicity reactions than systemic chemotherapy because of high resistance and lower systemic toxicity (86).
Sex/age	Family history	Tumor location	Clinical Manifestation	Lymph nodes	Liver met	TNM	Clinicopathologic stage	Surgery	Treatment except surgery	Survival	Progression	PFS (month)		
Zhang et al. (26)	M/68	NO	Antrum	NA	NO	T4aN3aM0	IIIB	YES	5-FU	YES	NO	56		
Zhang et al. (26)	M/63	NO	Cardia	NA	YES	T4aN2M0	IIIA	YES	5-FU	NO	YES	28		
Zhang et al. (26)	M/58	NO	Body	NA	YES	T2N0M0	IIB	YES	5-FU	NO	YES	56		
Zhang et al. (26)	M/66	NO	Body	NA	NO	T4N0M0	IIIB	YES	5-FU	NA	NO	27		
Zhang et al. (26)	M/59	NO	Antrum	NA	YES	T4N1M0	IIB	YES	5-FU	NA	NO	6		
Zhang et al. (26)	F/65	NO	Antrum	NA	NO	T4N3aM0	IIIB	NO	5-FU	NA	NO	56		
Zhang et al. (26)	M/70	NO	Antrum	NA	YES	T4N1bM0	IIC	YES	5-FU	NO	NO	6		
Zhang et al. (26)	M/74	NO	Antrum	NA	NO	T4bN2M0	IV	YES	5-FU	NO	YES	11		
Zhang et al. (26)	M/71	NO	Antrum	NA	NO	T4bN1M0	IIB	YES	5-FU	NO	NO	1		
Yahaya et al. (5)	M/26	NA	Gastroesophagael junction	Colon	shortness of breath; loss of appetite/weight	NO	NA	NA	NA	NO	NA	NA		
Ilyas et al. (59)	M/62	NA	Colon	Hematemesis/melena	NO	YES	T4aN2aM1a	IV	NO	L-OHP + Cap	RT	NO	YES	5
Li et al. (60)	M/60	NA	Colon	Hematemesis/melena	NO	YES	T2N1Mx	NA	NA	L-OHP + Cap+ bevacizumab	RT	NO	NA	NA
Yoshizawa et al. (55)	M/61	NA	Antrum	Gastrointestinal obstruction; left-sided back pain	YES	YES	T4N2M1	IV	YES	FT/ CDHP/ S-1	YES	2		
Valle et al. (1)	M/61	NA	Lung	Abdominal distention; swelling of his bilateral lower extremities, jaundice, and dark urine, fatigue, melena; loss of weight	NO	NO	NA	NO	IMRT	YES	YES	12		
Hu et al. (61)	M/63	NO	Gastric	Abdominal distention; swelling of his bilateral lower extremities, jaundice, and dark urine, fatigue, melena; loss of weight	NO	NO	IVB	NO	NO	NA	NA	18		
Soreide et al. (56)	M/49	NA	Gastric	Fatigue, epigastric discomfort, nausea, anemia	YES	NO	T4bN1M0	NA	YES	NO	NO	3		
Soreide et al. (56)	F/81	NA	NA	Hematemesis/melena; loss of appetite/weight	NO	NO	NA	NO	L-OHP+5-Fu + Ca; TAX+ Cap#	NO	NO	YES	7	
Sun et al. (62)	M/66	NA	Antrum; Body	Hematemesis/melena	NO	NO	NA	NA	5-FU	NO	NA	NO		
Tong et al. (11)	M/56	NA	Antrum	Hematemesis/melena	NO	NO	T3N1	NA	YES	DCX+ Trastuzumab	NO	YES	9	
Fakhruddin et al. (63)	F/41	NO	Antrum	Hematemesis/melena; epigastric pain	NO	NO	T3N1	NA	YES	YES	NO	18		

(Continued)
Sex/age Family history	Tumor location	Clinical Manifestation	Lymph nodes	Liver met	TNM	Clinicopathologic stag	Surgery	Treatment except surgery	Survival	Progression	PFS (month)			
Lakshmanan et al. (64)	M/75	NA	Antrum	fatigue epigastric pain	NO	NO	NA	NA	D2	NO	YES	NO	NA	
Shen et al. (65)	M/70	NA	Antrum	muscle weakness; palpitations	NO	YES	NA	NA	YES	L-OHP + Cap#	YES	NA	NA	
Ogbonna et al. (6)	M/66	NO	Duodenum	nausea, vomiting, constipation loss of appetite/weight epigastric pain	NA	YES	NA	IV	NO	NO	NO	YES	1	
Gaeta et al. (66)	M/72	NA	NA	Fatigue	NA	NO	T3N2M0	IIIb	YES	NA	NA	NA	NA	
Cheng et al. (57)	M/83	NA	NA	hematemesis/melena loss of appetite/weight	YES	YES	T3N3M1	IV	NO	NO	NO	NA	NA	
Zhou et al. (67)	F/72	NO	Antrum	abdominal distension	YES	NA	NA	NA	YES	L-OHP+ 5-FU+ olivic acid,	YES	NO	NA	
Xiao et al. (68)	M/47	NA	Body/5*3	abdominal distension	NA	NO	pT2aN3aM0	IIA	D2	SOX6	YES	NO	NA	
Xiao et al. (68)	M/63	NA	Antrum/5*3	abdominal distension	NA	NO	pT4aN3bM0	IIIC	D2	FOLFOXx4/#, TS-1	YES	NO	NA	
Xiao et al. (68)	F/76	NA	Cardia/7*5*3	abdominal distension	NA	NO	pT1bN0M0	Ia	D2	Cap+ TAX	YES	YES	18	
Xiao et al. (68)	M/61	NA	Antrum/5.5*4	abdominal distension	NA	NO	pT4aN2M0	IIIB	D2	SOX/#	YES	YES	11	
Xiao et al. (68)	M/69	NA	Antrum/3*2.5	abdominal distension	NA	NO	pT3N1M0	IIB	D2	SOX	YES	NO	NA	
Xiao et al. (68)	M/57	NA	Antrum/3*4	abdominal distension	NA	NO	pT4aN3M0	IIIC	D2	SOX	YES	NO	NA	
Xiao et al. (68)	M/67	NA	Cardia/4*3.2	abdominal distension	NA	NO	pT4aN3M0	IIIB	D2	SOX	YES	NO	NA	
Xiao et al. (68)	M/58	NA	Antrum/4.5*4	abdominal distension	NA	NO	pT4aN2M0	IIIB	D2	SOX	YES	YES	22	
Xiao et al. (68)	M/72	NA	Antrum/4*6	abdominal distension	NA	NO	pT4aN2M0	IIIb	D2	NO	YES	1		
Xiao et al. (68)	F/73	NA	Gastric/4*6	YES	YES	pT3N3am1	IV	NA	NA	NA	NA	NA		
Velut et al. (49)	M/63	NA	Distal stomach	abdominal pain	NA	NO	pT2aN1M0	NA	YES	FOLFOX	YES	NO	NA	
Nakao et al. (70)	M/63	NA	Body	positive fecal occult blood	NA	NO	NA	IB	D2	S-1+ CDDP	NA	NA	NA	
Liu et al. (34)	M/47	NA	NA	upper abdominal ache, nausea, vomiting, melena	YES	NO	NA	NA	YES	Chemotherapy + radical	YES	NO	NA	
Lin et al. (71)	M/64	NA	Body; Antrum	Epigastric discomfort	YES	YES	NA	NA	YES	Chemotherapy + TACE	NO	YES	19	
Lin et al. (71)	M/69	NA	Antrum	Body weight loss	NA	YES	NA	NA	YES	Chemotherapy	NO	YES	3	
Lin et al. (71)	M/78	NA	Antrum	Epigastric discomfort	YES	YES	NA	NA	YES	Chemotherapy	NO	YES	5	
Lin et al. (71)	M/63	NA	Cardia	Epigastric discomfort	YES	YES	NA	NA	YES	Chemotherapy + TACE	NO	YES	6	
Lin et al. (71)	F/70	NA	Body; Antrum	Palpable mass	YES	YES	NA	NA	NO	Chemotherapy + TACE	NO	YES	23	
Lin et al. (71)	F/69	NA	Body; Antrum	Epigastric discomfort	YES	YES	NA	NA	NO	Chemotherapy	NO	YES	9	
Lin et al. (71)	M/60	NA	Antrum	Epigastric discomfort	YES	YES	NA	NA	NO	Chemotherapy	NO	YES	3	
Lin et al. (71)	M/75	NA	Body	Body weight loss	YES	YES	NA	NA	NO	Chemotherapy	NO	YES	3	
Velut et al. (72)	M/63	NA	Epigastric pain, weight loss, anemia	YES	NA	T2N1	NA	NA	YES	FOLFOX4	YES	NO	NA	
Sun et al. (50)	M/73	NA	upper abdominal pain	YES	NA	T2N1M0	NA	NA	YES	FOLFOX4	YES	NO	NA	
Osada et al. (45)	F/66	NA	Body/5	Epigastric pain	YES	NA	NA	NA	NO	NA	NO	YES	13	
Osada et al. (45)	M/62	NA	Body/3.5	Epigastric pain	YES	NA	NA	NA	NO	NA	NO	YES	NA	
Osada et al. (45)	M/61	NA	Antrum/3.5	Epigastric pain	YES	NA	NA	NA	NO	NA	NO	YES	NA	
Sex/age	Family history	Tumor location	Clinical Manifestation	Lymph nodes	Liver met	TNM	Clinicopathologic stage	Surgery	Treatment except surgery	Survival	Progression	PFS (month)		
---------	----------------	----------------	------------------------	-------------	----------	-----	------------------------	---------	------------------------	----------	-------------	------------		
Osada et al. (45)	M/78	NA	Antrum/7	Epigastric pain	NA	NA	NA	NA	NA	NO	NA	NA	NA	NA
Osada et al. (45)	M/61	NA	Body/7	Fatigue, weight loss	NA	YES	NA	NA	NA	NA	NO	YES	NA	NA
Osada et al. (45)	M/75	NA	Diffuse/3.2	Fatigue, weight loss	NA	YES	NA	NA	NA	NA	NO	YES	3	
Mahajan et al. (73)	M/60	NA	Antrum	pain abdomen	NA	NO	NA	NA	D2	Chemotherapy	NA	NA	NA	NA
Lipi et al. (74)	M/50	NA	NA	Pain abdomen	YES	NA	NA	NA	NA	NO	YES	NA	NA	
Ye et al. (75)	F/58	NA	NA		NO	YES	T2N0M1	NA	YES	L-OHP+ Cap, TACE, CT-guided radiofrequency ablation	YES	NO	NA	NA
Osada et al. (45)	M/61	NA	Body/7	Fatigue, weight loss	NA	YES	NA	NA	NA	NA	NO	YES	NA	NA
Ye et al. (75)	M/54	NA	Gastroesophageal junction/4	retrosternal pain	NO	NO	pT2N0M0	IB	YES	L-OHP + 5-FU/ #	NO	YES	18	
Ye et al. (75)	M/67	NO	Body; Antrum	epigastric pain, weight loss	NA	NA	NA	NA	NA	NA	L-OHP + S-1	NO	YES	8
Sohda et al. (76)	M/68	HBV	Body/6		NO	YES	NA	NA	NA	NO	TS-1/adjuvant Cap+ CDDP/ 4M, FOLFI R	NO	YES	2
Nuevo et al. (77)	F/67	HBV	Antrum/3	fatigue, anorexia, weight loss, anemia	NO	NA	NA	NA	YES	CDDP+ EPI+ Cap/#	NA	YES	12	
Verma et al. (78)	M/59	HBV	Cardia/4	anemia	YES	NO	NA	NA	NA	NA	Subtotal/ D4	NO	NA	NA
Deng et al. (79)	M/49	HBV	Body/6		YES	NA	pT3N2M1	NA	NO	NA	TAX+ CBP	NO	YES	6
Yamanoi et al. (80)	M/100	NA	Body	abdominal distension, dyspnea, abdominal pain, weakness, weight loss	NA	YES	NA	NA	NA	NO	Distal	NA	NA	NA
Metzgeroth et al. (41)	M/21	NA	NA	melena	NA									
Lu et al. (81)	M/59	NA	Cardia	epigastric and right upper quadrant abdominal pain, weight loss	YES	YES	NA	NA	total	TACE	NA	YES	6	
Vlachostergios et al. (82)	F/85	NA	Antrum/7	YES	YES	NA	NO	NO	YES	4				
Lin et al. (83)	M/56	HBV	Body		NA	NA	NA	NA	NA	MMC+ 5-FU+ ADM	NO	YES	20	
Gálvez-Muñoz et al. (84)	M/75	NA	Cardia; Gastroesophageal junction		NA									
concentrations of the drug injected locally (87). Both are also effective for the remission of the liver nodules of mHAS, accompanied with radical surgery or/and systemic chemotherapy.

Radiotherapy
Radiotherapy (RT) may be an inappropriate therapeutic option for HAS patients due to limited efficacy data. A scarce event reported that one patient with HAC of lung metastasizing to tonsils obtained an extraordinary symptomatic remission after the therapy of intensity-modulated radiation therapy (IMRT) (1). The palliative fractionation of RT was delivered to patients with PS (≥2) purely for symptom control, developing an unusual radiological adverse reaction to RT (59).

Anti-Angiogenesis Drugs
The introduction of anti-angiogenesis drugs has expanded treatment options of HAS. A case demonstrated that a HAS patient's resistance to chemotherapy had an evident clinical response to ramucirumab (RAM) monotherapy (87). The AFP concentration might be a potential marker to predict the response to ramucirumab and other anti-angiogenic drugs in gastric cancer. Besides, the positive Her-2 test rate of HAS patients was around 25%. Combined with chemotherapy, such as capecitabine and cisplatin, Trastuzumab could improve HER2-positive advanced HAS patients’ overall survival compared with those who received chemotherapy alone (63, 87–90). Sorafenib, a molecularly targeted drug via the unclear mechanism of its direct pro-apoptotic effects or anti-angiogenic properties, has been administrated in some HAC patients. But it was suspended attributable to early adverse reactions (21). No convincing evidence about the sensitivity of HAS to Sorafenib was reported. In addition, HAC of the ovary and peritoneum were insensitive to Sorafenib (8).

Immunotherapy
Immune checkpoint antibodies have been approved to be administrated in multiple solid tumors, incorporating carcinomas of lungs, liver, esophagus, kidney, and stomach. Currently, immunotherapy applied to HAS is rare to report. Only one case showed that one HAS patient managed with PD-L1 inhibitor represented a low curative effect, which might be related to its low expression of PD-L1. Further experimental verification is expected to be reached in future clinical trials (8).

PROGNOSTIC FACTORS
The prognosis of HAS is poor. HAS patients had notably lower survival rates and disease-free survival (DFS) compared to those with other types. It is revealed that the 5-year DFS of HAS patients was only 20.7% (2, 33, 91). It was concluded that pTNM stage, portal vein thrombosis, vascular invasion, and adjuvant treatments were independent risk factors for DFS and pTNM stage, entirely surgical resection, and adjuvant therapy were independent risk factors for disease-specific survival (DSS) (2). However, some case reports argued that survival was not associated with sex, location, type, the serum AFP level, the degree of differentiation, or the type of therapy received. Although the relationship between neuroendocrine differentiation and the prognosis of HAS remained vague, it was inclined to an unfavorable factor to give rise to low differentiation and prognosis (92).

Morphologically, clear cell histology, more than a threshold of 10% about the ratio of clear cells, harmed prognosis in patients within HAS (33, 38). No evidential relations were deemed between immunohistochemical staining and prognosis in HAC. Among epithelial markers, including CEA, CK7 and CK20 were crucial for survival assessment by immunohistochemistry stains (8). Patients with CEA, CK20, and CK7 staining positive lived a shorter life. Furthermore, the combination of PLUNC, SALL4, and Hep-Par-1 might be a way of a tried prognostic factor in HAS (40).

Also, the patients with higher AFP expression had a significantly more inferior OS (58). AFP was assumed to be adverse to tumor suppression due to inhibiting lymphocyte transformation (27). However, The AFP-positive cases had shown better outcomes than the AFP-negative instances in a series of HAC with enteroblastic differentiation (GAEDs) (43). Meanwhile, It was observed the expression of β-catenin has a significant correlation with survival time (27).

FUTURE PERSPECTIVES
Although the standard surgical and systemic chemotherapies have been proved to improve the prognosis of HAS, it still shows a poor clinical outcome. Cisplatin-based chemotherapy regimens are regarded as the first-line treatments for metastatic HAS, while the second-line systemic approaches for optimal management remain unclear. Further researches should be directed at exploring the radiobiological sensibility and radiational therapeutic effects in these patients (59). A significant step toward applying anti-angiogenesis drugs covering RAM combining with chemotherapy, the overall survival of advanced HAS patients has been significantly increased. Of note, the development of molecularly targeted treatments related to Sorafenib should be validated. Immunotherapy as a possible therapeutic means is to be further explored in patients with HAS.

CONCLUSION
HAS is a scarce subtype of gastric cancer. It is often diagnosed with lymph node metastasis and distant organ metastasis and has a poor prognosis, which poses a significant challenge to clinicians’ diagnosis and treatment. Several immunohistochemical markers covering AFP, CEA, CK8/18, CK19, glypican 3, SALL4, CDX-2, and HepPar-1 can be performed to assist in pathological confirmation. The level of AFP serum is propitious to the early detection of HAS. The available radical surgery, chemotherapy, radiotherapy, and
Author Contributions

RX collected data, reviewed the literature, and wrote the manuscript. YZ collected data and wrote and revised the manuscript. YW collected data and rechecked the manuscript. JY assisted in drawing. XM designed and revised the manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Valle L, Thomas J, Kim C, Szabo E, Brown GT, Citrin D, et al. Hepatoid adenocarcinoma of the lung metastasizing to the tonsil. Mol Clin Oncol (2017) 6:705–7. doi: 10.3892/mco.2017.1215
2. Zeng XY, Yin YP, Xiao H, Zhang P, He J, Liu WZ, et al. Clinicopathological Characteristics and Prognosis of Hepatoid Adenocarcinoma of the Stomach: Evaluation of a Pooled Case Series. Curr Med Sci (2018) 38:1054–61. doi: 10.1007/s11396-018-1983-1
3. Gao HY, Zhang YP, Yan YW, Shen HF. [A case report of hepatoid adenocarcinoma of the stomach with liver and spleen metastasis misdiagnosed as advanced liver cancer]. Zhonghua gan zang bing za zhi = Chin J hepatology (2019) 27:719–20. doi: 10.3766/cma.j.issn.1000-3418.2009.09.013
4. Nagai Y, Kato T, Harano M, Satoh D, Choda Y, Tokumoto N, et al. [A case of AFP-producing esophagogastric junction cancer with liver metastases with a good response to chemotherapy]. Gan to kakaku ryoho Cancer Chemother (2014) 41:2349–51.
5. Yahaya A, Wa Kammal WS, Abd Shukor N, Osman SS. Oesophageal hepatoid carcinoma with liver metastases: a diagnostic dilemma. Malaysian J Pathol (2019) 41:59–63.
6. Ogbonna OH, Sakruti S, Suleiman M, Ali A, Shokrani B, Oneal P. Hepatoid Adenocarcinoma of the Duodenum: An Unusual Location. Case Rep Oncol (2016) 9:182–7. doi: 10.1159/000444746
7. Ogwara S, Furuhata M, Fukami K, Yamashita A, Yim C, Lee NJM. Primary hepatoid carcinoma of the ovary: A case report. Oncol Lett (2019) 41:59
8. Zou M, Li Y, Dai Y, Sun L, Huang T, Yuan X, et al. AFP-producing hepatoid carcinoma of the pancreas combined with neuroendocrine carcinoma. J Clin Mol Pathol (2013) 41:59
9. Williams NL, Palmer JD, Bar-Ad V, Anne
10. Sooﬁ L, Kancheira K, Abbas A, Aranze J, Bain A, Ylang L. Pancreatic hepatoid carcinoma: a rare form of pancreatic neoplasm. Diagn Cytopathol (2015) 43:251–6. doi: 10.1002/dc.23195
11. Tong L, Pan H, He J, Weng M, Zhang L. Hepatoid adenocarcinoma arising from heterotopic pancreas of the ilium: A case report. Medicine (2016) 95: e4067. doi: 10.1097/MD.0000000000004067
12. Kai K, Nakamura J, Ide T, Masuda M, Kitahara K, Miyoshi A, et al. Hepatoid carcinoma of the pancreas penetrating into the gastric cavity: a case report and literature review. Pathol Int (2012) 62:485–90. doi: 10.1111/j.1440-1827.2012.02814.x
13. Jung JY, Kim YJ, Kim HM, Kim HJ, Park SW, Song SY, et al. Hepatoid carcinoma of the pancreas combined with neuroendocrine carcinoma. Gut Liver (2010) 4:98–102. doi: 10.5009/gtl.2010.4.1.98
14. Cavalcante LB, Felipe-Silva A, de Campos FP, Martinez J. Hepatoid adenocarcinoma of the lung. Astropathy Case Rep (2013) 3:5–14. doi: 10.4322/acr.2013.002
15. Choi W, Cho D, Yim C, Lee NJM. Primary hepatoid carcinoma of the ovary: A case report and review of the literature. Medicine (Baltimore) (2020) 99: e20051. doi: 10.1097/MD.0000000000020051
16. Rotellini M, Messerini L, Stomaci N, Raspolini MR. Hepatoid adenocarcinoma of the ureter: unusual case presenting hepatic and ovarian metastases. Appl Immunohistochim Mol Morphol AJMIM (2011) 19:478–83. doi: 10.1097/PAL0b013e318216af63
17. Devi NR, Sathyalakshmi R, Devi J, Lilly SM. Hepatoid Adenocarcinoma of the Gall Bladder: A Rare Variant. J Clin Diagn Res JCDDR (2015) 9:Ed09–10. doi: 10.7860/ICDR/2015/10799.6324
18. Gallego DF, Muñoz C, Jimenez CA, Carrascal E. Hepatoid Adenocarcinoma of the Urachus. Case Rep Pathol (2016) 2016:1871807. doi: 10.1155/2016/1871807.
19. Gardiner GW, Lajoie G, Keith H. Hepatoid adenocarcinoma of the papilla of Vater. Histopathology (1992) 20:541–4. doi: 10.1111/j.1365-2559.1992.tb0444x
20. Lin CY, Yeh HC, Hsu CM, Lin WR, Chiu CT. Clinicopathological features of gastric hepatoid adenocarcinoma. Biomed J (2015) 38:65–9. doi: 10.4103/2319-126860.
21. Soreide JA. Therapeutic Approaches to Gastric Hepatoid Adenocarcinoma: Current Perspectives. Ther Clin Risk Manage (2019) 15:1469–77. doi: 10.2147/TCRM.S204303
22. Inagawa S, Shimazaki J, Hori M, Yoshihisa F, Adachi S, Kawamoto T, et al. M.J.G.c.o.j.o.t. IGCA Itabashi, and t. JGC Association. Hepatoid Adenocarcinoma of the Stomach: A Case Report. Int J Surg Pathol (2011) 4:46–52. doi: 10.1087/ijsp201008016
23. Qu B, Bi W, Qu R, Qu T, Han X, Wang H, et al. PRISMA-Compliant Article: Clinical Characteristics and Factors Influencing Prognosis of Patients With Hepatoid Adenocarcinoma of the Stomach in China. Medicine (Baltimore) (2016) 95:3399. doi: 10.1097/MD.0000000000003399
24. Ahn JS, Jeon JR, Yoo HS, Park TK, Park CK, Sinn DH, et al. Hepatoid adenocarcinoma of the stomach: an unusual case of elevated alpha-fetoprotein with prior treatment for hepatocellular carcinoma. Clin Mol Pathol (2013) 19:173–8. doi: 10.3350/cmh.2013.19.2.173
25. Kinjo T, Taniguchi H, Kushima R, Sekine S, Oda I, Saka M, et al. Histologic and immunohistochemical analyses of α-fetoprotein-producing cancer of the stomach. Am J Surg Pathol (2012) 36:56–65. doi: 10.1097/PAS.0b013e31823a2a15
26. Zhang ZR, Wu J, Li HW, Wang T. Hepatoid adenocarcinoma of the stomach: Thirteen case reports and review of literature. World J Clin cases (2020) 8:1164–71. doi: 10.12998/wjcc.v8.i6.1164
27. Wang N, Kong R, Han W, Lu J. Aberrant β-catenin Activity in Hepatoid Adenocarcinoma of the Stomach. Curr Mol Med (2020). doi: 10.2174/092986732766620052215607
28. Araora K, Bal M, Shih A, Moyal A, Zuberker L, Brown I, et al. Fetal-type gastrointestinal adenocarcinoma: a morphologically distinct entity with unfavourable prognosis. J Clin Pathol (2018) 71:221–7. doi: 10.1136/jclinpath-2017-204535
29. Bass AJ, Laird PW, Shmulevich I, Zhu C, Thorsson T, Thorsson V, Schultz N, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature (2014) 513:202–9. doi: 10.1038/nature13480
30. Tsuruta S, Ohiishi Y, Fujiwara M, Ihara E, Ogawa Y, Oki E, et al. Gastric hepatoid adenocarcinomas are genetically heterogeneous group; most tumors show chromosomal instability, but MSI tumors do exist. Hum Pathol (2019) 88:27–38. doi: 10.1016/j.humpath.2019.03.006
31. Akiyama S, Tamura G, Endoh Y, Fukushima N, Ichihara Y, Aizawa K, et al. Histogenesis of hepatoid adenocarcinoma of the stomach: molecular evidence of identical origin with coexistent tubular adenocarcinoma. Int J Cancer (2003) 106:510–5. doi: 10.1002/ijc.11246
32. Fuji H, Ichikawa K, Takagaki T, Nakaniishi Y, Ikemagi M, Hirose S, et al. Genetic evolution of alpha-fetoprotein producing gastric cancer. J Clin Pathol (2003) 56:942–9. doi: 10.1136/jcp.56.12.942
33. Zhou K, Wang A, Ao S, Chen J, Ji K, He Q, et al. The prognosis of hepatoid adenocarcinoma of the stomach: a propensity score-based analysis. BMC Cancer (2020) 20:671. doi: 10.1186/s12885-020-07031-9
72. Velut G, Mary F, Wind P, Aparicio T. Adjuvant chemotherapy by FOLFOX for gastric hepatoid adenocarcinoma. *Digestive Liver Dis* (2014) 46:1135–6. doi: 10.1016/j.dld.2014.08.036

73. Mahajan V, Gupta N, Gupta S, Sharma R. Hepatoid adenocarcinoma of stomach: case report of a rare histological variant. *Indian J Pathol Microbiol* (2014) 57:116–9. doi: 10.4103/0377-4929.130917

74. Lipi L, Sachdev R, Gautam D, Singh J, Mopapatra I. Triple composite tumor of stomach: a rare combination of alpha fetoprotein positive hepatoid adenocarcinoma, tubular adenocarcinoma and large cell neuroendocrine carcinoma. *Indian J Pathol Microbiol* (2014) 57:98–100. doi: 10.4103/0377-4929.130917

75. Ye MF, Tao F, Liu F, Sun AJ. Hepatoid adenocarcinoma of the stomach: a case report. *Clin J Gastroenterol* (2013) 6:424–2. doi: 10.1007/s12328-013-0420-z

76. Sohda T, Kusuhara H, Egashira Y, Egashira K, Eguchi K, Aoyagi K, et al. Alpha-Fetoprotein-Producing Extrahepatic Tumor: Clinical and Histopathological Significance of a Case. *J Gastrointestinal Cancer* (2012) 43 Suppl 1:S28–31. doi: 10.1007/s12328-011-9310-0

77. Verma M, Loughrey MB. Hepatoid gastric adenocarcinoma in a patient with type 1 neurofibromatosis. *Histopathology* (2011) 58:799–801. doi: 10.1111/j.1365-2559.2011.03828.x

78. Deng Z, Yin Z, Chen S, Peng Y, Wang F, Wang X. Metastatic splenic alpha-fetoprotein-producing adenocarcinoma: report of a case. *Surg Today* (2011) 41:854–8. doi: 10.1007/s00595-010-4336-7

79. Yamanoi K, Kondoh Y, Fujii T, Kurihara N, Mukai M, Sakamoto M. Hepatoid adenocarcinoma of the stomach with multi-nucleated giant cell proliferation and absence of any commercial or financial relationships that could be construed as a potential conflict of interest. *Histopathology* (2010) 60:750–4. doi: 10.1111/j.1365-2559.2010.02588.x

80. Lu CC, De-Chuan C, Lee HS, Chu HC. Pure hepatoid adenocarcinoma of the stomach with multi-nucleated giant cell proliferation in a 100-year-old man. *Pathol Int* (2010) 60:750–4. doi: 10.1111/j.1340-1827.2010.02588.x

81. Lu CC, De-Chuan C, Lee HS, Chu HC. Pure hepatoid adenocarcinoma of the stomach with spleen and lymph-node metastases. *Am J Surg* (2010) 199:42–4. doi: 10.1016/j.amjsurg.2009.05.038

82. Vlachostergios PJ, Voutsadakis IA, Barbanis S, Karasavvidou Papandreou CN. AFP-producing hepatoid adenocarcinoma of the stomach: a case report. *Cases J* (2009) 2:9296. doi: 10.1186/1757-1626-2-9296

83. Lin CW, Hsu CC, Chang HC, Sun YC, Sun PL, Hsu CY, et al. Pemetrexed, Hepatoid adenocarcinoma of the stomach with liver metastasis mimicking hepatocellular carcinoma: a case report. *Cases J* (2009) 2:6317. doi: 10.4076/1757-1626-2-6317

84. Gálvez-Muñoz E, Gallego-Plazas J, González-Orozco V, Menarguez-Pina F, Ruiz-Macía JA, Morcillo MA. Hepatoid adenocarcinoma of the stomach - a different histology for not so different gastric adenocarcinoma: a case report. *Int Semin Surg Oncol ISSO* (2009) 6:13. doi: 10.1186/1477-7800-6-13

85. Wang FQ, Lu Q, Yan J, Peng YY, Xie CR, Su YJ, et al. Ex vivo hepatectomy and partial liver autotransplantation for hepatoid adenocarcinoma: a case report. *OncoLett* (2015) 9:2199–2204. doi: 10.3892/ol.2015.3041

86. Simmet V, Noblecourt M, Lizee T, Morvant B, Girault S, Soulé P, et al. Chemotherapy of metastatic hepatoid adenocarcinoma: Literature review and two case reports with cisplatin etoposide. *OncoLett* (2018) 15:48–54. doi: 10.3892/ol.2017.7263

87. Doi Y, Takii Y, Mitsugi K, Mihara K, Mihara K. The Effectiveness of Hepatic Arterial Infusion Chemotherapy with 5-Fluorouracil/Cisplatin and Systemic Chemotherapy with Ramucirumab in Alpha-Fetoprotein-Producing Gastric Cancer with Multiple Liver Metastases. *Case Rep Oncol Med* (2018) 2018:5402313. doi: 10.1155/2018/5402313

88. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. *Lancet (London England)* (2010) 376:687–97. doi: 10.1016/S0140-6736(10)61211-X

89. Hayashi K, Nagasaki E, Nakada K, Tamura M, Arakawa Y, Uwagawa T, et al. Chemotherapy for alpha-fetoprotein producing gastric cancers expressing human epidermal growth factor receptor 2. *J Infection Chemother* (2018) 24:298–301. doi: 10.1016/j.jiac.2017.10.019

90. Arakawa Y, Tamura M, Aiba K, Morikawa K, Iizumi M, Ikegami K, et al. Significant response to ramucirumab monotherapy in chemotherapy-resistant recurrent alpha-fetoprotein-producing gastric cancer: A case report. *OncoLett* (2017) 14:3039–42. doi: 10.3892/ol.2017.6514

91. Liu X, Cheng Y, Sheng W, Lu H, Xu X, Xu Y, et al. Analysis of clinicopathologic features and prognostic factors in hepatoid adenocarcinoma of the stomach. *Am J Surg Pathol* (2010) 34:1465–71. doi: 10.1097/PAS.0b013e3181f8a873

92. Nantomi K, Futami K, Arima S, Iwashita A. Malignant potential regarding mucin phenotypes and endocrine cell differentiation in gastric adenocarcinoma. *Anticancer Res* (2003) 23:441–2. doi: 10.1245/ASO.2003.08.924

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xia, Zhou, Wang, Yuan and Ma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.