Supplementary Material

1 Supplementary Figures
Supplementary Figure 1. Expression profiling of cAMP signaling pathway components in WT and ΔGnas DCs. (A) Two well-characterized isoforms of GNAS are expressed at substantial levels in WT mice (> 1 TPM on average): GNASL (long) and GNASS (short) variants, also known as GNAS alpha-S2 and alpha-S1, respectively. Expression of both is significantly reduced (FDR<0.05) in ΔGnas DCs. WT n=5, ΔGnas n=4. (B and C) Ratio of GPCRs that are linked to different G protein families in B) WT and C) ΔGnas DCs. (D) Ga mRNA expression profile in WT DCs; n=6. ND = not detected. Data are normalized to the lowest-expressing detectable gene. (E and F) Fold-change of Ga’s in ΔGnas DCs compared to WT DCs via E) independent qPCR; n=6, p<0.0001, and F) RNA-Seq; n=4-5, FDR<0.05. (G) Expression profile of adenylyl cyclase isoforms in WT DCs; n=3. (H) Fold-change in adenylyl cyclase isoforms in ΔGnas DCs compared to WT DCs; n=6. (I) PKA mRNA expression profile in WT DCs; n=5. (J) AKAP expression profile in WT DCs; n=6. (K) Fold-change in mRNA expression of AKAPs in ΔGnas DCs compared to WT DCs; n=6. (L) MRP4 mRNA expression in WT and ΔGnas DCs. dCt values are relative to the housekeeping gene 18S; n=3. (M) Fold-change in MRP4 expression in ΔGnas DCs compared to WT DCs; n=3.
Supplementary Figure 2. PDE4B is the highest expressed PDE isoform in murine and human DCs. (A and B) PDE expression in single cell RNA-Seq data of murine lung DCs from (Bosteels et al. 2020) with A) average expression (Purple) and the number of cells expressing the gene of interest (Blue) plotted and B) visualized in UMAP. (C) PDE expression in human epidermal DC RNA-Seq data from (Bertram et al. 2019); n=4. (D and E) PDE4B transcript variant expression in TPM of D) WT and E) ΔGnas DCs that were detected at mean expression levels >1 TPM in DCs from mice with each genotype. WT n=5; ΔGnas n=4. (F) Percentage of PDE4B transcripts for each variant in WT and ΔGnas DCs. WT n=5; ΔGnas n=4.
Supplementary Figure 3. *PDE4B* expression is decreased by reduced cAMP levels and lack of PKA activity and is increased in murine DC2.4 cells in response to cAMP-elevating drugs. (A) Decreased cAMP accumulation in WT DCs treated with the adenylyl cyclase inhibitor MDL-12,330A (10µM, 2.5 h); n=5, **p<0.01. (B) Basal *PDE4B* expression in murine T cell Kin- S49 cells (which lack PKA activity) compared to WT S49 cells; n=3-5, *p<0.05. (C) *PDE4B* expression of DC2.4 cells incubated with PGE2 (10µM, 24h); n=4-5, p<0.0001. (D) *PDE4B* expression of DC2.4 cells incubated with the cAMP analogs (50µM, 24 hrs) CPT (non-selective cAMP analog), 6MB (PKA-selective cAMP analog), and 8ME (Epac-selective cAMP analog); n=5-11, *p<0.05, **p<0.01.
Supplementary Material

2 Supplementary Tables

	WT 1	WT 2	WT 3	WT 4	WT 5	Avg	Std Dev
0.2 - 1 TPM	41	44	34	34	36	38	4
1 - 10 TPM	51	52	52	48	44	49	3.1
10-50 TPM	25	26	25	22	26	25	1.5
>50 TPM	15	15	14	20	14	16	2.2
Total	132	137	125	124	120	128	6.1

Supplementary Table 1. GPCRs expressed by WT DCs. The number of GPCRs expressed (total and stratified according to level of expression) by 5 biological replicates of WT DCs (WT 1-5).

	KO 1	KO 2	KO 3	KO 4	Avg	Std Dev
0.2 - 1 TPM	54	39	51	42	47	6.2
1 - 10 TPM	44	51	45	51	48	3.3
10-50 TPM	27	31	26	25	27	2.3
>50 TPM	16	11	13	14	14	1.8
Total	141	132	135	132	135	3.7

Supplementary Table 2. GPCRs expressed by ΔGnas DCs. The number of GPCRs expressed (total and stratified according to level of expression) by 4 ΔGnas biological replicates of ΔGnas DCs (KO 1-4).
Gene	Forward Primer	Reverse Primer
18s	GTAACCGTGTGAAACCCATTT	CCATCACTTGAGTAGTAGG
ADCY1	TCCACATCAAAAAAGAGACCC	CATCCTCTTGAGGTGTGTGA
ADCY2	CGACATCTCAGATGGTCT	CAGCTATCGCGCTGGTGGAAAAA
ADCY3	TCAATGACCAAGAAAGATGG	GGAAGGCTGAGACATGGTGA
ADCY4	TTCTTCACACTCTGGTCT	TACGACTTAGGTGAGTAGGTC
ADCY5	GGGAATTGATTCTAGTCTGGGGT	TACGCTATCGCGCTGGTGGAAA
ADCY6	GACCTTCCTAGCCATCTTGGGGG	TCAGGCTGAGGCGACTATGG
ADCY7	cGACATCCTCTCCAGCAGTTCT	TCTTCACAGCAGATCTGAGGG
ADCY8	GAGAGCCAGTACGAAAGAGAAATG	CATGACTATGTCAGACATGG
ADCY9	TCCAGGAAATGCATCCTTGGGGG	TCAGGCTGAGGCGACTATGG
ADCY10	ACACTGCTCTCATCTCATTTCC	TCTTCACAGCAGATCTGAGGG
AKAP1	TCTTGAGGTGGAGACTGACTG	CAGCTATCGCGCTGGTGGAAA
AKAP2	GAAGAGCAATGCCAAGAAATG	CATGACTATGTCAGACATGG
AKAP3	TTCTTCACACTCTGGTCT	TACGACTTAGGTGAGTAGGTC
AKAP4	GAGAGCAATGCCAAGAAATG	CATGACTATGTCAGACATGG
EPAC1	CCTTCCTGTGATCTCTCCTCA	TCTTCACAGCAGATCTGAGGG
GN1A	TCTTGCGACAGCTGACTAC	CATGACTATGTCAGACATGG
GN1B	CACCTCTCAGCCACCACAATTA	CGTTCAGACTTTCTTTGTCGCC
MRK4	GAGAGCAATGCCAAGAAATG	CATGACTATGTCAGACATGG
PDE1A	TGCTTGAAGAATCACTCTGGGGG	TCAGGCTGAGGCGACTATGG
PDE1B	GACATCGGCAACCCACCTGAA	CATGACTATGTCAGACATGG
PDE1C	GAGAGCAATGCCAAGAAATG	CATGACTATGTCAGACATGG
PDE2A	GACGAGTAGGAGAATGAGGAGG	CATGACTATGTCAGACATGG
PDE3A	TCTTCCTGTGATCTCTCCTCA	TCTTCCTGTGATCTCTCCTCA
PDE3B	GAAGAGCAATGCCAAGAAATG	CATGACTATGTCAGACATGG
PDE4A	CTCCTCGATCTCTCAACAC	CATGACTATGTCAGACATGG
PDE4B	TCTTCCTGCTCAGGAGACTG	CATGACTATGTCAGACATGG
PDE4C	CATTGCGACAGATGAGGAGG	CATGACTATGTCAGACATGG
PDE4D	CATCTTGGGGGTCAATCACT	TCTTCAGACTTTCTTTGTCGCC
PDE5A	CACCACTCTCATCTTGCTGG	CATGACTATGTCAGACATGG
PDE6A	GTCCTTCAAGATCACTCTGGGGG	TCAGGCTGAGGCGACTATGG
PDE6B	TGAGACTAGTCCATCTTGGGGG	TCTTCCTCTTTTCTTTGTCGCC
PDE6C	CCACAGAGCCCGCCTCAACTT	TCTTCCTGTGATCTCTCCTCA
PDE7A	ACTTACACTCTACCTACGAGGG	TCTTCCTCTTTTCTTTGTCGCC
PDE7B	GAAAGAAATGACTCTAGAAGCCTAACC	TCTTCCTGTGATCTCTCCTCA
PDE8A	CATCTCTGCTACCTCAACC	CATGACTATGTCAGACATGG
PDE8B	CACCTTCCCTCTCCTCA	CATGACTATGTCAGACATGG
PDE9A	TTGACTACAGCAAAGGGAGG	TCTTCAGACTTTCTCTCCTCA
PDE10A	TGAGAAAGAGTTGCTGGTCCT	TCTTCAGACTTTCTCTCCTCA
PDE11A	ATCAATGGAAGAATGAGGAGG	TCTTCAGACTTTCTCTCCTCA
PDKA	CCCGAGATTATCTGAGGCA	TCTTCCTCTCTCTCTCTCTCTCTCCTCCTCA
PDKB	CACCTTCCCTCTCCTCCTCA	TCTTCCTCTCTCTCTCTCTCTCCTCCTCCTCA
PK2A	TCTTGGAGGAGGAGGAGGAGG	TCTTCCTCTCTCTCTCTCTCCTCCTCCTCCTCA
PK2B	CACCTTCCCTCTCCTCCTCA	TCTTCCTCTCTCTCTCTCCTCCTCCTCCTCA
PK2C	TCTTGGAGGAGGAGGAGGAGG	TCTTCCTCTCTCTCTCTCCTCCTCCTCCTCA
PK2D	CACCTTCCCTCTCCTCCTCA	TCTTCCTCTCTCTCTCTCCTCCTCCTCCTCA

Supplementary Table 3. qPCR primer sequences.