Distribution of Sulfonamide Antibiotics and Resistance Genes and Their Correlation with Water Quality in Urban Rivers (Changchun City), China in Autumn and Winter

Ke Zhao  
Jilin Jianzhu University

Chunming Li  
Jilin Jianzhu University

Qian Wang  
Jilin Jianzhu University

Hai Lu (✉ haimm110@126.com)  
Changchun Sci-Tech University  https://orcid.org/0000-0003-2877-0755

Research Article

Keywords: antibiotics, resistance gene, water quality parameters, distribution characteristics, correlation analysis

Posted Date: September 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-843077/v1

License: ☝️ 📧 This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License
Abstract

With the extensive use of antibiotics, antibiotics contamination and antibiotic resistance genes (ARGs) in the water environment is becoming severe. In this study, the distribution characteristics of sulfonamide antibiotics and resistance genes in the urban section of the Yitong River in autumn and winter were studied. The correlation between them and water quality parameters was analyzed using liquid chromatography/mass spectrometry (LC/MS/MS) and polymerase chain reaction (PCR) fluorescence quantitative technology. The results showed that the concentration of seven sulfonamide antibiotics in surface water and sediment of the river was generally at the level of ng/L and ng/g; the total concentration range was 11.08-160.60ng/L and ND-85.68ng/g, respectively. The total concentrations of antibiotics were similar in autumn and winter, where SMX was the primary type of antibiotics. The results of Risk Quotients (RQs) showed that SMX and SDZ had moderate acute risk to the corresponding sensitive species in river water, SPD and SIZ had low acute risk, while the rest had no risk. The total bacterial abundance in surface water and sediment was in the range of \(10^5\) -10 \(10^6\) and \(10^8\) -10 \(10^{11}\) , respectively. The detection rates of three sulfonamide resistance genes were 100%; the relative abundance was in the range of \(10^{-3}\) -10 \(-1\) , and sul1 was the primary resistance gene. The correlation analysis showed that most antibiotics were significantly related. The three resistance genes had a positive correlation, negative correlation, and non-correlation, and most antibiotics had a weak correlation with resistance genes. Nutrients had a more significant impact on antibiotics, and other water quality indicators had a more negligible effect on antibiotics and resistance genes.

Introduction

In recent years, with the extensive use of antibiotics, the water environment antibiotics and resistance genes pollution are increasingly severe, posing a threat to human and aquatic ecological security. Antibiotics are a class of organic substances that are mainly produced or synthesized by microorganisms and can inhibit or affect the function of microorganisms. Like drugs, they are widely used in human medical treatment, animal disease prevention and treatment, animal husbandry, aquaculture, and other fields (Xiong et al. 2015). However, more than 30% of antibiotics cannot be absorbed by bio metabolism and are released into the environment with the patient’s urine and faeces (Wang et al. 2020). The correlation studies show that antibiotics have a higher detection rate in water, sediment, organisms, and other media (Chen et al. 2015; Fernandes et al. 2020; Li et al. 2012; Liang et al. 2013; Liu et al. 2019; Luo et al. 2011). Antibiotic residues cause chemical contamination in the environment and induce the generation of resistance genes. Antibiotic resistance genes, as new pollutants, can be propagated to the offspring through microorganisms and can be horizontally transferred between bacteria (Luo et al. 2010). Compared with antibiotics, they are more harmful and identified by the World Health Organization (WHO) as significant environmental problems in the 21st century (Rodriguez-Mozaz et al. 2015).

The Yitong River is an important tributary of the Songhua River. There are 48.82 kilometers of river sections flowing through the urban area and the north and south of Changchun City. The Yitong River accepts the discharge of sewage in the city area. Although part of the sewage is treated before being
discharged into the river, the sewage treatment plant is not ideal for removing antibiotics, and the river will still be polluted. There have been many studies on the contamination of antibiotics and resistance genes in the water environment. However, the contamination of antibiotics and resistance genes in the water environment of urban rivers in northern China is relatively rare, especially in the water environment of the Yitong River. The environment of the Yitong River belongs to the type of continental semi-humid monsoon climate in the northern temperate zone. The change of seasons is noticeable. Especially in autumn and winter, it has a low temperature, slight precipitation, and small runoff. Some studies have shown that the concentration of antibiotics in river water is higher in autumn and winter (Yang et al. 2011; Younes et al. 2019). Therefore, through the detection and analysis of sulfonamide antibiotics, resistance genes, and water quality indicators in the water environment of the Yitong River in autumn and winter, the distribution characteristics and correlation were studied. This provided the basis for environmental management and risk assessment of the Yitong River and provided data and reference for pollution control and ecological protection of Northern urban rivers in China.

**Materials And Methods**

1.1. Standard Samples and Reagent Drugs

The standard samples of seven sulfonamides antibiotics in this study were; sulfamerazine (SMZ1), sulfamethazine (SMZ), sulfamethoxazole (SMX), sulfoxazole (SIZ), sulfathiazole (STZ), sulfadiazine (SDZ) and sulfapyridine (SPD). The standard internal substance is sulfamethoxazole-d4. All standard products were purchased from the Beijing Tanmo Quality Technology Co., Ltd-China. The purity ≥ was 98%.

The reagents used in the experiment were chromatographically pure, whiles the drugs were analytically pure. Methanol, acetonitrile, and formic acid were purchased from Thermo Fisher Technology Co., Ltd-China. Ammonia and ethylenediaminetetraacetic acid disodium (EDTA) were purchased in MACKLIN Company, and whiles the McIlvaine buffer solution was purchased in Shanghai Yuanmu Biological Technology Co., Ltd.-China. And the phosphate buffer solution was purchased in Biosharp Biotech Co., Ltd.-China. And the experimental water was purified water.

1.2. Study area and sample collection

This study selected the 48.82 km section of the Yitong River through the urban area of Changchun City as the research area and eight spots as sampling points. The sampling points include the Xinlicheng Reservoir, South City-round Expressway Bridge, South-third-ring South Barrier Gate, Rubber Dam of Small Slab Bridge, Free Barrier Gate, Xinghua Barrier Gate, Sihua Barrier Gate, and North Lake Bridge. The sampling point was recorded as S1-S8, and its distribution is as Fig. 1. S1 point was the source of the research area, with good water quality, few human populations, a large number of surrounding farmlands, and abundant aquatic plants, which is an important water source and flood control barrier of the city. S2,
S3-S7, and S8 points were the study's upper, middle, and lower reaches, densely populated, surrounded by many buildings, roads, parks, sluices, drainage outlets, and other facilities.

The sampling time was September and November 2020, in autumn and winter exchange seasons in the north of China. Organic glass water samplers and Peterson mud samplers were used to collect surface water and sediment samples. Three parallel samples were collected at each sampling point, and the collected samples were refrigerated in ice bags away from light and transported to the laboratory for testing.

1.3. Antibiotic detection

The pretreatment of antibiotics detection was carried out as done previously (Wang 2014). It was determined using a liquid chromatography-mass spectrometry (3200 Q TRAP LC/MS/MS system). The chromatography column was InfinityLab Poroshell 120 EC-C18(2.1×100mm, 2.7-Micron, Agilent, USA). The column was operated in the positive ion mode of electrospray ionization (ESI).

The concentration of antibiotics was determined by the standard internal method. The standard curves (10-50 μg/L) of each antibiotic showed an excellent linear relationship ($R^2 > 0.99$), which met the requirements of analysis. The recoveries of antibiotics in surface water and sediment were 77.66%-98.90% and 75.47%-95.30%, respectively. The detection limits were 0.01~0.31ng/L, and 0.01~0.15ng/g (S/N=3), and the quantitative limits were 0.03~0.72ng/L 0.03~0.45ng/g (S/N=10).

1.4. Detection of antibiotic resistance genes

1.4.1. DNA extraction

DNA extraction was carried out on the water filtration membrane, and sediment samples were stored in a -80°C refrigerator. The reagent kit (cat: M5635-02) produced by Omega Company was selected and operated strictly according to the kit’s instructions.

1.4.2. PCR amplification experiment

The corresponding resistance gene (sul1, sul2, sul3) and the internal control gene (16S rRNA) of sulfa antibiotics were detected by PCR. The primers used in this study were prepared by Shanghai Personalbio Gene Technology Co., Ltd. The primers sequence, target gene fragment size, and annealing temperature were shown in table 1.

| Table 1 | PCR primers and reaction conditions of target gene |
1.4.3. qPCR quantitative experiment

The PCR reaction solution configured according to the reaction system was placed on a Real-time PCR instrument for performing the PCR reaction. The reaction procedure was as follows: predenaturation at 95°C for 5min; denaturation at 95°C for 15s; elongation at 60°C for the 30s. Then, the cycle from denaturation to elongation was repeated 40 times. All samples were set up with three parallel samples. The ARG standard curve showed a good linear relationship with the correlation coefficient R>0.996 and the amplification efficiency between 80.80%-94.60%, which could calculate each gene's copy number and meet the experimental requirements.

1.5. Detection of water quality parameter

The surface water quality parameters such as pH, water temperature (WT), dissolved oxygen (DO), water transparency (SD), chemical oxygen demand (COD\textsubscript{Cr}), total nitrogen (TN), ammonia nitrogen (NH\textsubscript{3}-N), total phosphorus (TP), and chlorophyll a (Chl-a) were determined according to the "Standard Method of Water and Wastewater Monitoring (Fourth Edition)" issued by the Ministry of environmental protection of the people's Republic of China (Ministry of environmental protection of the people's Republic of China 2002). The related detection methods are listed in Table 2.

Table 2 Water quality indicator detection methods

| ARGs      | Primer | Primer sequence (5' to 3') | Primer length | Annealing temperature |
|-----------|--------|----------------------------|---------------|-----------------------|
| 16S rRNA  | 16s-F  | ATGGCTGTCGTCAGCT           | 337           | 60°C                  |
|           | 16s-R  | ACGGGCCTGTCCTGTA           |               |                       |
| sul1      | sul1-F | CGCACCGGAACAGTTGTGAG       | 163           | 65°C                  |
|           | sul1-R | TGAAGTTCCCGCCGAAGGCTG      |               |                       |
| sul2      | sul2-F | TCCGCTGGAGGCGGTATCTG       | 191           | 57.5°C                |
|           | sul2-R | CGGAATGCCATCTGCCTTG        |               |                       |
| sul3      | sul3-F | TCCGTTACGCGAATTGTGAC       | 143           | 61°C                  |
|           | sul3-R | TCGTTACGCTTACCCACAG        |               |                       |
### 1.6. Data analysis method

Statistical analysis of all the data was carried out using MS Excel, SPSS, and other software. In addition, the Pearson method was used for correlation analysis, and drawing charts were carried out by origin 2018.

### Results And Discussion

#### 3.1. Distribution characteristics of antibiotics in water environment

##### 3.1.1. Distribution of antibiotics in surface water

The concentration range and detection rate of antibiotics in surface water are shown in Table 3. In September, the total concentration range was 14.45-160.60ng/L, the average concentration was 69.26ng/L, and the detection rate ranged from 13% to 100%. The concentration of SMX was the highest, the range of concentration was 5.50-77.76ng/L, the average concentration was 29.67ng/L, the detection rate was 100%. The detection rates of SMZ (13%) and SIZ (38%) were low, and the detection rates of other species were 100%. In November, the total concentration range of the detection was 11.08-109.34ng/L, the average concentration was 61.84ng/L, and the detection rate ranges from 0% to 100%. Among them, the concentration of SMX was the highest, SMZ was not detected, and the detection rate of other species was 100%. Overall, the seven sulfonamide antibiotics were seen, the concentration was at
the level of ng/L, and the total concentration was similar in autumn and winter. SMX was the primary antibiotic species, which was consistent with previous studies (Kolpin et al. 2002). Due to its unique occurrence characteristics, SMX in water samples can produce resistance among microorganisms and persist in the ecosystem (Prasannamedha et al. 2020). This section's SMX concentration in surface water was higher (Chen et al. 2002). The low detection rate of SIZ in September and the high rate in November may be due to a source of such antibiotics in the vicinity of the river, which should be taken seriously.

Table 3 Antibiotic concentrations in surface water of the Yitong River

| Antibiotics | Range ng/L | Mean ng/L | Freq % |
|-------------|------------|-----------|--------|
| **September n=8, ng/L** | | | |
| SMZ1        | 1.10-4.03  | 2.50      | 100%   |
| SMZ         | ND-0.36    | 0.05      | 13%    |
| SMX         | 5.50-77.76 | 29.67     | 100%   |
| SIZ         | ND-2.64    | 0.73      | 38%    |
| STZ         | 1.38-10.32 | 5.89      | 100%   |
| SDZ         | 5.78-36.73 | 14.50     | 100%   |
| SPD         | 0.69-28.76 | 15.92     | 100%   |
| **November n=8, ng/L** | | | |
| SMZ1        | 1.91-4.88  | 3.54      | 100%   |
| SMZ         | ND-ND      | 0.00      | 0%     |
| SMX         | 5.98-36.31 | 20.28     | 100%   |
| SIZ         | ND-13.16   | 9.27      | 100%   |
| STZ         | 1.49-6.78  | 3.90      | 100%   |
| SDZ         | 1.36-22.80 | 11.61     | 100%   |
| SPD         | 0.34-25.41 | 13.24     | 100%   |

Note: ND means not detected.

The spatial distribution of antibiotic concentration in the surface water is shown in Fig. 2. The total concentration of the S7 site was the highest in September, which was 149.98ng/L. The concentrations of the S3-S6 sites were high, the range was 81.35-90.30ng/L, and the rest were low, ranging from 16.06 to 23.64ng/L. In November, the total concentration of the S7 site was the highest (97.94ng/L), S4-S6 sites concentrations were high, the range was 73.81-89.37ng/L, the rest were low, ranging from 22.87 to 52.42ng/L. Generally speaking, the total concentration of S1, S2, S8 points were low; meanwhile, the total concentration of S3-S7 point was high, which may be related to the surrounding environment of the river section. The surrounding of S3-S7 point is densely populated and has a sewage outlet. While S1 is the outlet of Xinlicheng Reservoir, S2 and S8 are located around parks with a good environment. SMX, SDZ,
and SPD concentrations were high, which were the main antibiotics in the reach, indicating that the three antibiotics were primarily used in the surrounding environment. However, the concentration of SIZ at each site was significantly high in November, meaning there was a potential source of this antibiotic around the area.

### 3.1.2. Distribution of antibiotics in surface sediments

The concentration range and detection rate of antibiotics in surface sediments are shown in Table 4. In September, the total concentration ranged from 3.36 to 85.68ng/g, the average concentration was 18.78ng/g, and the detection rate ranged from 25% to 100%. SMX was the main component in surface sediment, the same as the main antibiotics in surface water. The concentration ranged from 3.01 to 54.20ng/g, the average concentration was 12.41ng/g, and the detection rate was 100%. Except for SMZ1 and SPD, the detection rates of other species were lower. The total concentration range of November was ND-24.31ng/g, the average concentration was 15.17ng/g, and the detection rate ranged from 0% to 88%, among which the concentration of SIZ was the highest, meanwhile, SMZ and STZ were not detected. Overall, the seven sulfonamides antibiotics were all detected, the concentration was at the level of ng/g, and the total concentration in autumn and winter was similar. Same as surface water, SMX was the primary type of antibiotic. SMX and SDZ had higher concentrations than other parallel rivers.

The spatial distribution of antibiotic concentrations in surface sediments is shown in Fig. 3. In September, the total concentration of the S1 site was the highest, thus 70.60ng/g, S3 site was the higher concentration, 40.21ng/g. The rest of the site concentration was low, and the range was 4.06-9.70 ng/g. In November, the concentration of each point was low; the range was ND-21.73ng/g. Generally speaking, SMX was the main antibiotic in September, and SIZ was dominant in November, respectively. Different levels of antibiotic pollution can reflect the characteristics of antibiotic use and discharge in the surrounding area of the urban river. The results in Fig. 3 show that the antibiotic concentration of most points was low, which indicated that the antibiotic pollution in the surface sediment of this section was relatively light. However, the potential sources of various antibiotics still need to be paid attention to.

| Table 4 | Concentration of antibiotics in surface sediments of the Yitong River |
### 3.1.3. Ecological risk assessment of antibiotics

The Risk Quotients method proposed by Hernando et al. was used to evaluate the risk of antibiotics (Hernando et al. 2006). According to the EU standards, the specific calculation formula is as follows (Garnier-Laplace et al. 2008):

\[
RQs = \frac{MEC}{PNEC}
\]

In the formula: MEC is the measured environmental concentration (ng/L), considering the worst risk situation, choose the maximum concentration as the risk evaluation value; PNEC is the predicted no-effect concentration (ng/L).

\[
PNEC = \frac{NOEC}{AF} = \frac{EC50}{AF}
\]

NOEC is the no observed effect concentration of the most sensitive species (mg/L); EC50 is the concentration for 50% of maximal effect (mg/L); AF is the assessment factor.

| Antibiotics | Range ng/g | Mean ng/g | Freq% |
|-------------|------------|-----------|-------|
| **September** n=8 ng/g | | | |
| SMZ1 | 0.31-3.62 | 0.92 | 100% |
| SMZ | ND-14.73 | 2.72 | 25% |
| SMX | 3.01-54.20 | 12.41 | 100% |
| SIZ | ND-8.23 | 1.46 | 50% |
| STZ | ND-1.49 | 0.37 | 38% |
| SDZ | ND-2.38 | 0.54 | 38% |
| SPD | 0.04-1.03 | 0.36 | 100% |
| **November** n=8 ng/g | | | |
| SMZ1 | ND-2.12 | 1.00 | 88% |
| SMZ | ND-ND | 0.00 | 0% |
| SMX | ND-3.70 | 2.46 | 88% |
| SIZ | ND-12.48 | 9.41 | 88% |
| STZ | ND-ND | 0.00 | 0% |
| SDZ | ND-3.71 | 1.39 | 75% |
| SPD | ND-2.30 | 0.91 | 88% |
Acute toxicity data were used in this study, where AF was 1000 (Park and Choi 2008). The value of PNEC was obtained using the EC50 toxicity data obtained in the literature; details are shown in Table 5 (Bienk-Bielinska et al. 2011). In addition, according to the RQs classification method proposed by Hernando et al., the risk assessment was divided into four levels: no risk (<0.01), low risk (0.01-0.1), medium risk (0.1-1), and high risk (>1) (Chen et al. 2020).

Table 5 Toxicological data of antibiotics for sensitive species

| Antibiotics | Species      | Toxic type | Evaluation factors | EC50(mg/L) | PNEC(ng/L) |
|-------------|--------------|------------|--------------------|-----------|------------|
| SMZ1        | Lemna minor  | acute      | 1000               | 0.68      | 680        |
| SMZ         | Lemna minor  | acute      | 1000               | 1.74      | 1740       |
| SMX         | Lemna minor  | acute      | 1000               | 0.21      | 210        |
| SIZ         | Lemna minor  | acute      | 1000               | 0.62      | 620        |
| STZ         | Lemna minor  | acute      | 1000               | 4.89      | 4890       |
| SDZ         | Lemna minor  | acute      | 1000               | 0.07      | 70         |
| SPD         | Lemna minor  | acute      | 1000               | 0.46      | 460        |

Fig. 4 shows the RQs of the target antibiotics in surface water in autumn and winter. The results showed that SMX and SDZ showed the moderate acute risk to the sensitive species in river water in September, SPD showed low acute risk, and others showed no risk. In November, SMX and SDZ showed moderate acute risk, SIZ and SPD showed low acute risk, and others showed no risk. Generally, there was a specific problem of antibiotic pollution in the water environment of the target river, but it had not reached the high risk. Therefore, the control and management should be strengthened to reduce the ecological risk.

3.2. Distribution characteristics of resistance genes in water environment

Three sulfonamide resistance genes and 16S rRNA internal control genes in water environment samples were detected in the autumn and winter. The relative quantitative analysis of target gene abundance distribution was used to avoid the difference caused by DNA extraction efficiency and environmental microbial background value (Yang et al. 2016). The sampling points were S3, S5, and S7, and the sample names were NW9, ZW9, SW9, NW11, ZW11, and SW11.

3.2.1. Distribution of resistance genes in surface water
The absolute abundance of 16S rRNA in the surface water is shown in Fig. 5. The absolute abundance range was $1.92 \times 10^5$-$1.29 \times 10^6$ copies/μL in September and $1.87 \times 10^5$-$2.57 \times 10^5$ copies/μL in November. In general, the total bacterial abundance was similar in autumn and winter, in the range of $10^5$-$10^6$. The relative abundance of that three sulfonamide resistance genes is shown in Fig. 6. The detection rate was 100% in autumn and winter, and the total relative abundance range was $1.43 \times 10^2$-$9.98 \times 10^2$ copies/16S rRNA in September and $5.91 \times 10^2$-$1.19 \times 10^1$ copies/16S rRNA in November. Overall, sul1 was the main resistance gene in September, and sul2 was the main resistance gene in November. The total relative abundance was similar in the $10^{-2}$-$10^{-1}$ order of magnitude. In terms of temporal distribution, the relative abundance of resistance genes was November ($2.63 \times 10^{-1}$ copies/16S rRNA)>September ($1.50 \times 10^{-1}$ copies/16S rRNA). Again, in terms of spatial distribution, the relative abundance of sites ranged from $10^{-3}$-$10^{-2}$ orders of magnitude in September to $10^{-3}$-$10^{-1}$ orders of magnitude in November. Overall, the relative abundance of each site in autumn and winter was sul2 ($2.51 \times 10^{-1}$ copies/16S rRNA) > sul1 ($1.31 \times 10^{-1}$ copies/16S rRNA) > sul3 ($3.23 \times 10^{-2}$ copies/16S rRNA). The high detection rate and high abundance level of ARGs indicated that the widespread use of the corresponding types of antibiotics around the river and other human activities and pollution source distribution had caused some environmental risks in the region (Yang et al. 2017a). There were many people around these three sites and drainage ports, hospitals, and other construction facilities. Therefore, they received sewage treatment plants, hospitals, and domestic sewage discharge, resulting in strong ARGs pollution.

### 3.2.2. Distribution of resistance genes in surface sediments

The absolute abundance of 16S rRNA in surface sediments is shown in Fig. 7. The absolute abundance range of 16S rRNA was $7.45 \times 10^9$-$1.45 \times 10^{11}$ copies/g in September and $6.83 \times 10^8$-$3.48 \times 10^{10}$ copies/g in November. The difference in bacterial abundance between autumn and winter was large, in the range of $10^8$-$10^{11}$. The relative abundance of that three sulfonamide resistance genes is shown in Fig. 8. The detection rate was 100% in autumn and winter, and the total relative abundance range was $1.03 \times 10^2$-$6.02 \times 10^2$ copies/16S rRNA in September and $5.00 \times 10^3$-$5.27 \times 10^2$ copies/16S rRNA in November. In general, sul1 was the main resistance gene in autumn and winter, and the relative abundance was similar in the range of $10^{-3}$-$10^{-2}$. Based on temporal distribution, the relative abundance of resistance genes in September ($1.13 \times 10^{-1}$ copies/16S rRNA)>November ($9.59 \times 10^{-2}$ copies/16S rRNA). In autumn and winter, sul1 was the main resistance gene, and the relative abundance was in the range of $10^{-2}$-$10^{-1}$. In the spatial distribution, the relative abundance of each point in autumn and winter was in the range of $10^{5}$-$10^{2}$ orders of magnitude. Overall, the relative abundance of each site was sul1 ($1.70 \times 10^{-1}$ copies/16S rRNA)>sul2 ($3.84 \times 10^{-2}$ copies/16S rRNA)>sul3 ($3.44 \times 10^{-4}$ copies/16S rRNA). The high detection rate and high abundance level of ARGs indicated that the resistance gene pollution in the target river was relatively serious. A similar thread was seen in the survey results of resistance genes in surface sediments of many
3.3. Correlation analysis between antibiotic and resistance gene

As the antibiotics and resistance genes reservoir, the water environment plays an essential role in their storage and transmission. Studies have found a correlation between antibiotics and resistance genes (Guo et al. 2018). The Pearson correlation analysis was used to analyze the correlation between antibiotic concentration and the abundance of the corresponding resistance genes, as shown in Fig. 9 and Fig. 10. In surface water, sul1 was significantly negatively correlated with sul2 and positively correlated with sul3, while sul2 was significantly positively correlated with sul3. sul1 and sul3 were significantly positively correlated with SMZ and STZ, sul2 was significantly positively correlated with SIZ, while sul2 was weakly correlated with other antibiotics. This, thus, indicated that SMZ, STZ, and SIZ promoted the formation of sul1, sul3, and sul2, respectively. SMZ was significantly positively correlated with STZ, and SMZ1 was significantly positively correlated with SPD, which indicated that they had homology with each other. SIZ was significantly negatively correlated with SMZ, STZ, and SPD, while the other antibiotics showed a weak correlation. In the surface sediments, sul1 and sul2 showed a significant positive correlation, which indicated that sul1 and sul2 had some homology.

Meanwhile, sul1 was weakly correlated with all the antibiotics tested, indicating other main influencing factors, such as environmental factors or pollutants, of resistance gene generation besides corresponding antibiotics in the water environment. sul3 was significantly negatively correlated with SMZ, SMX, and SMZ1, indicating that these antibiotics inhibited the production of sul3. On the other hand, SDZ was significantly positively correlated with SPD and significantly negatively correlated with most antibiotics. In addition, there was a significant correlation between most of the antibiotics, which indicated that they influenced each other immensely. Therefore, it could provide some reference for controlling and managing environmental pollution of sulfonamide antibiotics in urban rivers.

3.4. Correlation between antibiotic resistance genes and water quality parameter

The distribution of antibiotic resistance genes in the water environment is affected by antibiotics and is related to the water quality parameter (Li et al. 2018). Table 6 shows the test data of water quality parameter of the Yitong River. Furthermore, the correlation analysis results between water quality...
parameters and antibiotic concentration and resistance gene abundance are shown in Table 7 and Table 8.

**Table 6 Water quality parameter data**

| Index        | Min  | Max  | Mean  |
|--------------|------|------|-------|
| **September** |      |      |       |
| pH           | 7.239| 8.404| 7.765 |
| WT(°C)       | 11.9 | 19.2 | 15.6  |
| DO(mg/L)     | 6.20 | 12.60| 9.86  |
| SD(m)        | 0.15 | 1.02 | 0.48  |
| COD<sub>Cr</sub>(mg/L) | 8.28 | 48.91| 24.46 |
| TN(mg/L)     | 1.52 | 6.71 | 3.52  |
| NH<sub>3</sub>-N(mg/L) | 0.60 | 3.58 | 1.04  |
| TP(mg/L)     | 0.12 | 0.78 | 0.31  |
| Chl-a(mg/L)  | 0.18 | 4.42 | 2.20  |
| **November** |      |      |       |
| pH           | 7.791| 9.116| 8.125 |
| WT(°C)       | 0.0  | 4.0  | 1.8   |
| DO(mg/L)     | 4.41 | 13.16| 9.38  |
| SD(m)        | 0.10 | 0.75 | 0.34  |
| COD<sub>Cr</sub>(mg/L) | 24.83| 74.50| 46.18 |
| TN(mg/L)     | 0.47 | 2.32 | 0.94  |
| NH<sub>3</sub>-N(mg/L) | 0.09 | 0.33 | 0.15  |
| TP(mg/L)     | 0.15 | 0.51 | 0.27  |
| Chl-a(mg/L)  | 0.09 | 0.57 | 0.35  |

Table 7 shows that pH had a weak correlation with antibiotics; WT, DO, SD, and COD<sub>Cr</sub> strongly correlated with some antibiotics. TN was significantly positively correlated with SMX, STZ, and SDZ and significantly negatively correlated with SIZ. NH<sub>3</sub>-N was significantly positively correlated with SMX and SDZ; TP was significantly positively correlated with SMX and SDZ. Chl-a was significantly positively correlated with SMX, STZ, and SDZ and significantly negatively correlated with SIZ. Therefore, it was concluded that the nutrient greatly affected the antibiotics in the water environment. Table 8 shows that sul1 was not associated with all the water quality parameters; sul2 was significantly positively correlated with pH and COD<sub>Cr</sub>, and significantly negatively correlated with WT and TN. sul3 was significantly
negatively correlated with pH and COD\textsubscript{Cr}. In addition, the correlation between water quality parameters and resistance genes was weak, which indicated that water quality parameters had little effect on resistance genes in the water environment of this section of the Yitong River.

**Table 7** Correlation between water quality parameter and antibiotic concentration

|          | SMZ1 | SMZ  | SMX  | SIZ  | STZ  | SDZ  | SPD  |
|----------|------|------|------|------|------|------|------|
| pH       | 0.106| -0.256| -0.071| 0.448| -0.349| -0.343| -0.041|
| WT(℃)    | -0.323| 0.301| 0.335| -0.862**| 0.541*| 0.222| 0.288|
| DO(mg/L) | 0.477| 0.300| 0.382| 0.067| 0.433| 0.364| 0.590*|
| SD(m)    | 0.285| 0.066| 0.554*| -0.228| 0.778**| 0.465| 0.551*|
| COD\textsubscript{Cr}(mg/L)| 0.418| -0.188| 0.391| 0.596*| 0.010| 0.420| 0.430|
| TN(mg/L) | -0.061| 0.313| 0.717**| -0.679**| 0.622*| 0.659**| 0.481|
| NH\textsubscript{3}-N(mg/L)| -0.103| 0.049| 0.697**| -0.464| 0.239| 0.729**| 0.236|
| TP(mg/L) | 0.045| 0.045| 0.707**| -0.076| 0.169| 0.788**| 0.394|
| Chl-a(mg/L)| -0.165| -0.003| 0.765**| -0.579*| 0.532*| 0.588*| 0.478|

Note: * indicates significant correlation at the level of 0.05, and ** indicates significant correlation at the level of 0.01.

**Table 8** Correlation between water quality parameter and resistance genes abundance

|          | sul1 | sul2     | sul3    |
|----------|------|----------|---------|
| pH       | -0.524| 0.827*   | -0.920**|
| WT(℃)    | 0.551| -0.950**| 0.734   |
| DO(mg/L) | 0.394| -0.021   | -0.176  |
| SD(m)    | -0.262| -0.553   | 0.250   |
| COD\textsubscript{Cr}(mg/L)| -0.684| 0.869*   | -0.870*|
| TN(mg/L) | 0.430| -0.850*  | 0.403   |
| NH\textsubscript{3}-N(mg/L)| 0.145| -0.594   | -0.123  |
| TP(mg/L) | -0.026| -0.129   | -0.361  |
| Chl-a(mg/L)| -0.015| -0.784  | 0.228   |
Conclusion

In the urban area of Changchun, the Yitong River, it has been widely polluted by antibiotics. Seven kinds of sulfonamide antibiotics were detected in surface water and sediment; the concentration was generally at the level of ng/L and ng/g. The total concentration range was 11.08-160.60ng/L and ND-85.68ng/g, among which SMX was the primary antibiotic. In autumn and winter, the total concentration of antibiotics was similar, and the pollution was more severe in the dense area of human activity. RQs showed that SMX and SDZ in surface water showed moderate acute risk to sensitive species in river water in autumn and winter, while SPD and SIZ showed low acute risk and others showed no risk. Generally, there were some problems of antibiotic pollution in the water environment of the target river section. Still, the high risks were not reached, so the control and management should be strengthened to reduce the ecological risks. In autumn and winter, the total bacterial abundance in surface water and sediment was in the range of $10^5$-$10^6$ and $10^8$-$10^{11}$, respectively. The detection rate of all three sulfonamide resistance genes was 100%, the relative abundance was in the order of $10^{-3}$-$10^{-1}$, and sul1 was the primary resistance gene. The results were similar to other watersheds in China, which indicated that the water environment of many watersheds in China had become an essential reservoir for resistance genes.

The correlation analysis results showed a positive, negative, and no correlation among the three resistance genes. Most antibiotics had a weak correlation with resistance genes, indicating other main influencing factors, such as environmental factors or pollutants, of resistance gene generation besides corresponding antibiotics in the water environment. On the other hand, most antibiotics showed a significant positive correlation, which stated that they were homologous and provided some reference for controlling and managing antibiotic pollution in urban rivers. In addition, nutrients have a more significant impact on antibiotics, while other water quality indicators have a more negligible effect on antibiotics and resistance genes.

Declarations

Acknowledgments The authors would like to thank the National Natural Science Foundation of China for its financial support (grant number: 51478206) for this research.

Author contributions Conceptualization: Ke Zhao and Hai Lu; methodology: Hai Lu; software: Chunming Li and Qian Wang; validation: Chunming Li; formal analysis: Qian Wang; investigation: Chunming Li and Qian Wang; resources: Ke Zhao; data curation: Ke Zhao; writing—original draft preparation: Ke Zhao; writing—review and editing: Hai Lu; visualization: Hai Lu; supervision: Hai Lu; project administration: Ke Zhao; funding acquisition: Ke Zhao. All authors have read and agreed to the published version of the manuscript.
Funding  This research was funded by the National Natural Science Foundation of China, grant number 51478206.

Data availability  The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate: “Not applicable.

Consent for publication: “Not applicable”.

Conflict of interest: The authors declare no competing of interests.

References

1. Bialk-Bielińska A, Stolte S, Arning J, Uebers U, Böschen A, Stepnowski P, Matzke M (2011) Ecotoxicity evaluation of selected sulfonamides. Chemosphere, 85: 928-933. https://doi.org/10.1016/j.chemosphere.2011.06.058

2. Chen H, Liu S, Xu, XR, Liu SS, Zhou GJ, Sun KF, Zhao JL, Ying GG (2015) Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Mar Pollut Bull 90: 181-187. https://doi.org/10.1016/j.marpolbul.2014.10.053

3. Chen Y, Xie, QM, Wan JQ, Yang S, Wang Y, Fan HM (2020) Occurrence and risk assessment of antibiotics in multifunctional reservoirs in Dongguan, China. Environ Sci Pollut R 27: 13565–13574. https://doi.org/10.1007/s11356-019-07436-5

4. Fernandes MJ, Paíga P, Silva A, Llaguno CP, Carvalho M, Vázquez FM, Delerue-Matos C (2020) Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere, 239:124729. https://doi.org/10.1016/j.chemosphere.2019.124729

5. Garnier-Laplace J, Copplestone D, Gilbin R, Alonzo F, Ciffroy P, Gilek M, Augeero A, Bjoerk M, Oughton DH, Jaworska A (2008) Issues and practices in the use of effects data from FREDERICA in the ERICA Integrated Approach. J Environ Radioact 99:1474-1483. https://doi.org/10.1016/j.jenvrad.2008.04.012

6. Guo XP, Yang Y, Lu DP, Niu ZS, Feng JN, Chen YR, Tou FY, Garner E, Xu J, Liu M (2018) Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Res 129: 277-286. https://doi.org/10.1016/j.watres.2017.11.029

7. Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334-342. https://doi.org/10.1016/j.talanta.2005.09.037

8. Kolpin D, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-
9. Li AL, Chen LJ, Zhang Y, Tao YL, Xie H, Li S, Sun WL, Pan JG, He ZD, Mai CA, Fan YY, Xian HC, Zhang ZB, Wen DH (2018) Occurrence and distribution of antibiotic resistance genes in the sediments of drinking water sources, urban rivers, and coastal areas in Zhuhai, China. Environ Sci Pollut R 25:26209-26217. https://doi.org/10.1007/s11356-018-2664-0
10. Li WH, Shi YL, Gao LH, Liu JM, Cai YQ (2012) Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 89: 1307-1315. http://dx.doi.org/10.1016/j.chemosphere.2012.05.079
11. Liang XM, Chen, BW, Nie XP, Shi Z, Huang XP, Li XD (2013) The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 92: 1410-1416. http://dx.doi.org/10.1016/j.chemosphere.2013.03.044
12. Liu XH, Zhang GD, Liu Y, Lu SY, Qin P, Guo XC, Bi B, Wang L, Xi BD, Wu FC, Wang WL, Zhang TT (2019) Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ Pollut 246:163-173. https://doi.org/10.1016/j.envpol.2018.12.005
13. Luo Y, Mao DQ, Rysz M, Zhou QX, Zhang HJ, Xu L, Alvarez PJJ (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44:7220-7225.
14. Luo Y, Xu Lin, Rysz M, Wang YQ, Zhang H, Alvarez PJJ (2011) Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environ Sci Technol 45: 1827-1833. https://doi.org/10.1021/es104009s
15. Ministry of environmental protection of the people's Republic of China (2002) Method of Water and Wastewater Monitoring (Fourth Edition). China Environmental Science Press, Beijing.
16. Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 17:526-538. https://doi.org/10.1007/s10646-008-0209-x
17. Prasannamedha G, Kumar PS (2020) A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. J Clean Prod, 250, 119553. https://doi.org/10.1016/j.jclepro.2019.119553
18. Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sanchez-Melsio A, Borreao CM, Barcelo D, Balcazara JL (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234-242. http://dx.doi.org/10.1016/j.watres.2014.11.021
19. Wang N (2014) Pollution characteristics and risks of sulfonamides antibiotics and their resistance genes in the environment. Nanjing University.
20. Wang Q, Duan, YJ. Wang, SP, Wang LT, Hou ZL, Cui YX, Hou J, Das R, Mao DQ, Luo Y (2020) Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population. J Hazard Mater 383: 121129. https://doi.org/10.1016/j.jhazmat.2019.121129
21. Xiong WG, Sun YX, Zhang T, Ding XY, Li YF, Wang MZ, Zeng ZL (2015) Antibiotics, Antibiotic Resistance Genes, and Bacterial Community Composition in Fresh Water Aquaculture Environment in
22. Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Liu YS (2011) Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. J Environ Sci Heal B 46:272-280. http://dx.doi.org/10.1080/03601234.2011.540540

23. Yang YY, Cao XH, Lin H, Wang J (2016) Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Microb Ecol 72: 791-801. https://doi.org/10.1007/s00248-016-0814-9

24. Yang YY, Xu C, Cao XH, Lin H, Wang J (2017a) Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology 26:831-840. https://doi.org/10.1007/s10646-017-1814-3

25. Yang YY, Liu W, Xu C, Wei B, Wang J (2017b) Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics. Chemosphere, 2017, 178: 19-25. https://doi.org/10.1016/j.chemosphere.2017.03.041

26. Younes HA, Mahmoud HM, Abdelrahman MM, Nassar HF (2019) Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt. Environ Nanotechnol Monit Manage 12:100239. https://doi.org/10.1016/j.enmm.2019.100239

Figures
Figure 1

Distribution of sampling points in the Yitong River
Figure 2

The concentration of antibiotics in surface water of the Yitong River

Figure 3

The concentration of antibiotics in surface sediments of the Yitong River
Figure 4

Target antibiotics RQs in surface water
Figure 5

Absolute abundance of 16S rRNA in surface water
Figure 6

Relative abundance of resistance genes in surface water
Figure 7

Absolute 16S rRNA abundance in surface sediments
Figure 8

Relative abundance of resistance genes in surface sediments
Figure 9

Correlation between antibiotics and resistance genes in surface water

Figure 10
Correlation between antibiotics and resistance genes in surface sediments