Schisandra chinensis is a deciduous woody vine plant that has been used in traditional medicine for thousands of years in China. In this study, we researched the complete chloroplast genome of S. chinensis. The complete chloroplast genome length is 147,779 bp, containing a large single-copy region (LSC) of 97,352bp, a small single-copy region (SSC) of 20,313 bp, and a pair of inverted repeat (IR) regions of 15,057 bp. The overall nucleotide composition is: A of 29.8%, T of 30.8%, C of 20.2%, and G of 19.2%, with a total GC-content of the chloroplast genome 39.4% and AT of 60.6%. Whole chloroplast genome of S. chinensis contains 126 genes, including 83 protein-coding genes (PCG), 35 transfer RNA (tRNAs) genes, and 8 ribosome RNA (rRNAs) genes. Phylogenetic and genetic analysis based on 30 herbal species confirmed the position of S. chinensis closely related to S. sphenanthera. The complete chloroplast genome of S. chinensis provides more molecular data for the genetic diversity and genetic evolutionary relationship of this species in China.

ABSTRACT

Schisandra chinensis is a deciduous woody vine plant that has been used in traditional medicine for thousands of years in China. In this study, we researched the complete chloroplast genome of *S. chinensis*. The complete chloroplast genome length is 147,779 bp, containing a large single-copy region (LSC) of 97,352 bp, a small single-copy region (SSC) of 20,313 bp, and a pair of inverted repeat (IR) regions of 15,057 bp. The overall nucleotide composition is: A of 29.8%, T of 30.8%, C of 20.2%, and G of 19.2%, with a total GC-content of the chloroplast genome 39.4% and AT of 60.6%. Whole chloroplast genome of *S. chinensis* contains 126 genes, including 83 protein-coding genes (PCG), 35 transfer RNA (tRNAs) genes, and 8 ribosome RNA (rRNAs) genes. Phylogenetic and genetic analysis based on 30 herbal species confirmed the position of *S. chinensis* closely related to *S. sphenanthera*. The complete chloroplast genome of *S. chinensis* provides more molecular data for the genetic diversity and genetic evolutionary relationship of this species in China.
model and used the number of bootstrap replicates with 5000. All of the nodes were inferred with strong support by the ML methods. The phylogenetic ML tree was represented using MEGA X (Kumar et al. 2018) and edited using iTOL Version 4 (Ivica and Peer 2019). The result (Figure 1) showed that the chloroplast genome of *S. chinensis* is clustered and the one closest to *S. sphenanthera* (No. NC_037145.1) provides more molecular data for the genetic diversity and genetic evolutionary relationship of herbal medicine in China.

Disclosure statement

No potential conflict of interest was reported by the author.

References

Ivica L, Peer B. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47:W256–W259.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35:1547–1549.
Liu YH, Luo XR, Wu RF, Zhang BN. 1996. Flora of China. Beijing: Science Press.

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41:W575–W581.

Lu Y, Chen D-F. 2009. Analysis of *Schisandra chinensis* and *Schisandra sphenanthera*. J Chromatogr A. 1216:1980–1990.

Meng G, Li Y, Yang C, Liu S. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47:e63.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313.

Zhang MY, Xu LP, Yang HJ. 2018. *Schisandra chinensis* fructus and its active ingredients as promising resources for the treatment of neurological diseases. Int J Mol Sci. 19:1970.