Development of new SNP and INDEL loci for the valuable African timber species *Lophira alata*

Celine Blanc-Jolivet · Malte Mader · Henri-Noël Bouda · Marie Massot · Kasso Daïnou · Germain Yene · Emmanuel Opuni-Frimpong · Bernd Degen

Received: 3 April 2020 / Accepted: 17 September 2020
© The Author(s) 2020

Abstract
The timber of the species *Lophira alata* (azobe) is very popular for outdoor constructions, which favours its overexploitation and illegal logging. We sampled individuals from Liberia, Ivory Coast, Ghana, Nigeria, Cameroon, Gabon, Congo Brazzaville and Republic Democratic of Congo to discover new nuclear and plastidial SNP and INDEL loci through restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing. From an initial set of 397 loci, a final set of 126 loci was selected for timber tracking purposes.

Keywords *Lophira alata* · Azobe · Single nucleotide polymorphism · MassARRAY

Lophira alata is a tropical pioneer timber species typical from secondary humid forests. Its distribution ranges from Sierra Leone in Western Africa to Congo in Central Africa. The timber is highly valuable because of its resistance against insects and moulding, which enables its use in outdoor constructions. Despite a minimum cutting diameter of at least 60 cm in all producer countries, this species is heavily exploited and classified as vulnerable in the IUCN red list.

The genus *Lophira* has been poorly studied until now and only consist of two species: *L. alata* typical from humid forest habitats while the species *L. lanceolata* is mostly found in savannahs. However, when both species are growing in sympatry, species identification is difficult (Biwole et al. 2012). Genetic studies are limited to the development and use of SSRs markers (Ewédjè et al. 2020; Pineiro et al. 2015), which aimed at studying the genetic structure and hybridisation between *L. alata* and *L. lanceolata*. With 10 SSRs, the presence of a cryptic species in *L. alata* was suggested in West Gabon (Ewédjè et al 2020). Thus, little information is available on the diversity and differentiation within both species.

After the entry into force of timber regulations (among others European Timber Regulation and US Lacey Act) requiring that the species identity and the country of origin are declared and correct, tracking tools to control the claims on species and origin received increasing attention (Dormontt et al. 2015). Although many genetic markers have been successfully developed on tropical and temperate species, the low DNA quality obtained from timber strongly hinders the use of SSRs markers in timber tracking (Blanc-Jolivet and Liesebach 2015). By contrast, SNP loci usually provide good results and sets of SNP loci for origin identification have already been developed for other African species (Jardine et al. 2016; Blanc-Jolivet et al. 2017, 2018).
Cambium or leaf samples from 103 individual trees stemming from West and Central Africa (Table 1) were dried in silica gel in the field. DNA was extracted according to Dumolin et al. (1995). Three and nine samples were selected for respectively, restriction site associated DNA sequencing [RADseq, (Miller et al. 2007)] and low coverage Illumina MiSeq genome sequencing (Straub et al. 2012). The use of both NGS methods allowed the SNP and INDEL discovery in the nuclear and in the plastidial genomes. A MassARRAY® iPLEX™ design [Assay Design Suite v2.0 (Agena Biosci-ence™, San Diego, USA)] included loci which showed polymorphism among sequenced individuals and for which the sequences did not show the presence of another SNP locus in a 50 bp neighbourhood. 397 loci were run in 12 multiplexes on a MassARRAY® iPLEX™ platform (Agena Bioscience™, San Diego, USA) using the iPLEX™ GOLD chemistry (Supplementary material S1) on 94 samples (Table 1). Genotyping was done with Typer Viewer v.4.0.24.71 (Agena Bioscience™, San Diego, USA).

In order to select loci showing a differentiation over the species distribution range, we grouped all individuals according to their country of origin. We estimated, when applicable, average diversity, Gregorius’ differentiation (Gregorius 1987) and correlation among genetic and geographic distance for each locus (Supplementary material S2). Because most African species show a strong genetic split between Western and Central African populations, we also estimated differentiation parameters within Western African and Central African countries to catch loci showing local genetic differentiation. On the three datasets, we selected the loci with the highest genetic differentiation, the highest genetic-geographic distance correlation, while loci with very low calling rates were excluded (GDA-NT, unpublished). 126 selected loci were included in four MassARRAY®

Country	Region	Latitude	Longitude	MassARRAY	RADseq	MiSeq
Liberia	ICC	5.94558	−9.13793	6		
Liberia	Nimba	7.491659	−8.64969	3		
Ivory Coast	Abidjan Park Nat Bancu	5.38578	−4.04922	5		
Ghana	Benso	5.14737	−1.87558	7		
Ghana		5.40887	−2.21982	4		
Nigeria	Aking	5.41616	8.61443	8		
Nigeria	Oban	5.36878	8.43662	4		
Nigeria	Okomu	6.34772	5.34558	6		
Nigeria	Omo, Ogun State	6.833433	4.372517		2	
Nigeria	Ore, Ondo State	6.754733	4.721867	1	3	
Cameroon	UFA11_05 WJMA	5.526461	9.011186	2		
Cameroon	Mисолé	3.975417	9.920084	1		
Cameroon	Edea	3.830836	10.9161	2		
Cameroon		3.21841	10.25276	1		
Cameroon		3.22071	10.25768	1	1	
Cameroon	Pouma	3.853412	10.52089	1		
Cameroon	Matom	3.805921	11.05909	1		
Cameroon	“Arboretum” de Ebogo	3.401505	11.46693	1		
Cameroon	UFA 09-017	2.66518	11.56386	2		
Cameroon	UFA 10031	3.21349	14.27061	8		
Gabon	Carrefour SHM	0.2115	11.93266	7		
Gabon		0.02351	11.01862	2	1	
Congo Brazzaville	Jua-Ikié	2.00625	13.9066	3		
Congo Brazzaville	Ngombe	0.69312	15.95535	1	2	
Congo Brazzaville	UFA Lopola	3.0594	17.2624	4		
Congo Brazzaville	UFA Loundoungou	2.4237	16.9708	1		
DRC	Winagomo	−1.9002	17.02326	3		
DRC	Benye	−1.87318	17.15285	2		
DRC	Province d’Equateur, IFOM	0.48763	18.29331	10		

A total of 103 different individuals were included
iPLEX™ multiplexes (Supplementary material S3), from which 75, 20 and 28 SNP loci were located in the nuclear, chloroplastic and mitochondrial genome respectively. Two chloroplastic and one mitochondrial INDELs were also included. Theoretical performance for the verification of the country of origin reached 86% (self-assignment test with leave-one-Out procedure using the Bayesian criteria of Rannala and Mountain 1997) when we splitted the Nigeria and Cameroon individuals according to a STRUCTURE analysis with two putative genetic groups (Pritchard et al. 2000). Indeed, the genetic border between West and Central Africa seems to be located between Nigeria and Cameroon where both groups are present in sympatry.

Our new set of 126 loci including both nuclear and plastidial loci will be of great importance for further population genetics and biogeographic studies as well as timber origin tracking in Lophira alata.

Acknowledgements This research was supported by the German Federal Ministry of Food and Agriculture in the frame of the “Large scale project on genetic timber verification” (Project No. 281-001-01). Genotyping was performed at the Genome Transcriptome Facility of Bordeaux (Grants from ANR-10-EQPX-16), with the help of Erwan Guichoux and Adline Delcamp. The CNIAF of republic of Congo, the MINFOF of Cameroon, the Tshopo provincial ministry in charge of environment, the Institut Supérieur des Etudes Agronomiques de Bengamisa (ISEA), the Institut Faculté des Sciences Agronomiques de Yangambi (IFA/Yangambi) of DRC, the Forestry Commission of Cameroon, the Nigeria Forest Service assisted the sampling activities. Laboratory work was conducted by Susanne Bein and Maike Paulini, Lennart Meyer-Sand and Birte Pakull organised sampling, sample preparation and documentation.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Biwole AB, Bourland N, Dainou K, Doucet JL (2012) Definition of the ecological profile of Lophira alata (ekki), a major important African timber species: literature review and perspectives for future studies. Biotechnol Agron Soc Environ 16:217–228

Blanc-Jolivet C, Liesebach M (2015) Tracing the origin and species identity of Quercus robur and Quercus petraea in Europe: a review. Silvae Genet 64:182–193

Blanc-Jolivet C, Kersten B, Dainou K, Hardy O, Guichoux E, Delcamp A, Degen B (2017) Development of nuclear SNP markers for genetic tracking of Iroko, Milicia excelsa and Milicia regia. Conserv Genet Resour 9:531–533

Blanc-Jolivet C, Kersten B, Bourland N, Guichoux E, Delcamp A, Doucet JL, Degen B (2018) Development of nuclear SNP markers for the timber tracking of the African tree species Sapelli, Entandrophragma cylindricum. Conserv Genet Resour 10:539–541

Dormontt EE, Boner M, Braun B, Breulmann G, Degen B, Espinoza E, Gardner S, Guillery P, Hermanson JC, Koch G, Lee SL, Kanashiro M, Rimba waunto A, Thomas D, Wiedenhoeft AC, Yin Y, Zuhnen J, Lowe AJ (2015) Forensic timber identification: it’s time to integrate disciplines to combat illegal logging. Biol Conserv 191:790–798

Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

Èwèdè EBK, Jansen S, Kolli GK et al (2020) Species delimitation in the African tree genus Lophira (Ochnaceae) reveals cryptic genetic variation. Conserv Genet 21:501–514

Gregorius HR (1987) The relationship between the concepts of genetic diversity and differentiation. Theor Appl Genet 74:397–401

Jardine DJ, Blanc-Jolivet C, Dixon RR, Dormontt EE, Dunker B, Gerlach J, Kersten B, van Dijk KJ, Degen B, Lowe AJ (2016) Development of SNP markers for Ayous (Triplochiton scleroxylon K. Schum) an economically important tree species from tropical West and Central Africa. Conserv Genet Resour 8:129–139

Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

Pineiro R, Staquet A, Hardy OJ (2015) Isolation of nuclear microsatellites in the african timber tree Lophira alata (Ochnaceae) and cross-amplification in L-Lanceolata. Appl Plant Sci. https://doi.org/10.3732/apps.1500056

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.