Abstract: The phosphoinositide 3-kinase (PI3K) signalling pathway is highly dysregulated in cancer, leading to elevated PI3K signalling and altered cellular processes that contribute to tumour development. The pathway is normally orchestrated by class I PI3K enzymes and negatively regulated by the phosphatase and tensin homologue, PTEN. Endometrial carcinomas harbour frequent alterations in components of the pathway, including changes in gene copy number and mutations, in particular in the oncogene PIK3CA, the gene encoding the PI3K catalytic subunit p110α, and the tumour suppressor PTEN. PIK3CB, encoding the other ubiquitously expressed class I isoform p110β, is less frequently altered but the few mutations identified to date are oncogenic. This isoform has received more research interest in recent years, particularly since PTEN-deficient tumours were found to be reliant on p110β activity to sustain transformation. In this review, we describe the current understanding of the common and distinct biochemical properties of the p110α and p110β isoforms, summarise their mutations and highlight how they are targeted in clinical trials in endometrial cancer.

Keywords: phosphoinositide 3-kinase; PIK3CA; PIK3CB; p110α; p110β; endometrial cancer

1. The Phosphoinositide 3-Kinase Pathway

The phosphoinositide 3-kinase (PI3K) signalling pathway is essential for a myriad of cellular processes and is among the most altered pathways in human cancers, including endometrial cancer [1,2]. Consequently, many cellular processes, coined as hallmarks of cancer [3], are dysregulated due to increased PI3K signalling and contribute to tumour development and progression [4–6]. In this review, we aim to give an overview of the mechanism of action of PI3K enzymes in the context of endometrial cancer, in which the PI3K pathway is highly dysregulated. We first summarise current understanding on the two ubiquitously expressed isoforms of class I PI3Ks, p110α and p110β, at the biochemical level and review mutational and other events affecting these two isoforms in endometrial cancer. Finally, clinical trials employing selective inhibitors for p110α and p110β in advanced endometrial carcinomas are summarised and outcomes are reviewed when reported.

1.1. Class I PI3K Enzymes

PI3Ks are lipid kinases which phosphorylate the 3’ hydroxyl group on the inositol ring of the glycerophospholipid phosphatidylinositol (PtdIns), or its derivatives, polyphosphoinositides (Figure 1A). This family is divided into three main classes: class I, II and class III depending on their
structure and substrate preference [7,8]. Class I PI3Ks, which are further divided into two sub groups, IA and IB, are heterodimers consisting of a catalytic and a regulatory subunit. Class IA consists of a catalytic subunit, p110 (α, β or δ, each encoded by separate genes PIK3CA, PIK3CB and PIK3CD) interacting with one of the regulatory subunits (p85α and splice variants p55α and p50α: encoded by PIK3R1, p85β: encoded by PIK3R2, p55γ: encoded by PIK3R3). The class IB catalytic subunit p110γ (encoded by PIK3CG) associates with p84/p87 or p101. In vivo, class I PI3K phosphorylates PtdIns(4,5)P₂ to generate PtdIns(3,4,5)P₃ [9,10] (Figure 1B). Both class II and III generate PtdIns3P, whereas class II can also produce PtdIns(3,4)P₂ [11–13]. We refer the reader to other reviews on the two latter PI3K classes [14,15] as the focus of this review is on class I PI3Ks.

Figure 1. Chemical structure of phosphatidylinositol and phosphoinositide 3-kinase (PI3K) enzyme reactions. (A) Phosphatidylinositol chemical structure PI(18:0/20:4(5Z,8Z,11Z,14Z)) downloaded from the LIPID MAPS Structure Database (LM ID: LMGP06010010) [16,17]. Hydroxyl groups located at positions 3, 4 and 5 of the myo-inositol head group that are targeted by phosphorylation by polyphosphophoinositide kinases are highlighted in red. (B) Main enzymatic reactions carried out by the different phosphoinositide 3-kinase (PI3K) classes. Only the inositol head groups are shown with sites of phosphorylation marked in red. Phosphate groups are indicated with a circled P.

1.2. Activation of Class I PI3Ks and the PI3K Pathway

The activation of class I PI3Ks occurs downstream of the activation of receptor tyrosine kinases (RTK) (for p110α, p110β and p110δ) or G protein coupled receptors (GPCR) (for p110β and p110γ) [7,18] (Figure 2). Upon stimulation of tyrosine kinase receptors, phosphorylation of several tyrosine residues in the intracellular domains leads to the recruitment of the p85/p110 dimer, which releases the inhibition of the p110 catalytic subunit by p85. The mode of activation by GPCR involves the interaction between the Gβ/γ heterodimer and the linker present between the C2 and helical domains in the catalytic unit and their recruitment to the membrane [19,20]. When active and on the membrane, the p110 catalytic subunit can phosphorylate PtdIns(4,5)P₂ to generate PtdIns(3,4,5)P₃ [21]. Target proteins, such as Akt (alias Protein Kinase B), phosphoinositide-dependent protein kinase 1 (PDK1), as well as Sin1 (component of the mammalian target of rapamycin complex 2 (mTORC2), can bind to PtdIns(3,4,5)P₃ through their plextrin homology (PH) domain, thus recruiting them to the plasma membrane [22–26]. Akt is then activated by PDK1 and mTORC2 by phosphorylation at Thr308 and Ser473, respectively [27,28]. Activated Akt, in turn, acts as a downstream signalling molecule, which triggers the activation of multiple other downstream pathways that participate in many cellular processes.
Figure 2. Class IA PI3K activation. Class IA PI3Ks consist of a catalytic subunit (p110) and a regulatory subunit (p85). Upon stimulation of receptor tyrosine kinase (RTK) or G-protein-coupled receptor (GPCR), the p85-p110 complex is targeted to the membrane via different mechanisms (due to tyrosine phosphorylation of RTKs or interaction with G-proteins \(\beta/\gamma \)). The p85 subunit loses its inhibitory effect on the catalytic activity of p110, and thereafter the p110 subunit phosphorylates phosphatidylinositol (4,5)-bisphosphate (PIP2) to generate phosphatidylinositol (3,4,5)-triphosphate (PIP3). PIP3 then targets proteins containing the pleckstrin homology (PH) domain—such as AKT, phosphoinositide-dependent kinase 1 (PDK1), as well as Sin1 (not shown), part of the mammalian target of rapamycin complex 2 (mTORC2) and locates them to the plasma membrane. AKT is then phosphorylated on Thr308 and Ser473 by PDK1 and mTORC2 respectively. Once these proteins are activated at the membrane, they trigger a signalling cascade that leads to multiple cellular functions. Phosphate groups are indicated with a circled \(\text{P} \).

To precisely control the pathway, lipid phosphatases regulate the levels of PtdIns(3,4,5)\(\text{P}_3 \). The tumour suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PtdIns(3,4,5)\(\text{P}_3 \) to PtdIns(4,5)\(\text{P}_2 \), thereby negatively regulating the pathway [29]. Other phosphatases that dephosphorylate PtdIns(3,4,5)\(\text{P}_3 \) are the 5' phosphatases, SH2 (Src homology 2)-domain-containing inositol phosphatase (SHIP) 1 and 2, that produce PtdIns(3,4)\(\text{P}_2 \) [30,31]. The action of these phosphatases allows PtdIns(3,4,5)\(\text{P}_3 \) to be kept at low levels in resting cells [32].

1.3. Properties of PI3K p110\(\alpha \) and p110\(\beta \) and Mode of Activation in Cancer

Both p110\(\alpha \) and \(\beta \) are ubiquitously expressed, unlike p110\(\delta \) and p110\(\gamma \), for which the expression tends to be restricted to the immune system [33]. Due to the context of this review, the focus is on p110\(\alpha \) and \(\beta \). Similarities and differences are summarised for these two isoforms (Table 1 and Figures 3 and A1) and we refer to two reviews for more detailed information [34,35]. Both p110\(\alpha \) and \(\beta \) are embryonically lethal in homozygous mice knockouts, suggesting non-redundant functions [36,37]. Following these early studies, homozygous knockin mice with inactivating mutations in the ATP binding site in p110\(\alpha \) (D933A) or p110\(\beta \) (D931A) both demonstrated embryonic lethality in an activity-dependent manner, albeit with different penetrance [38–40]. This strategy had the advantage of not disrupting the expression and stoichiometry of the catalytic/regulatory PI3K complex. In cell studies, p110\(\alpha \) was shown to have a role in cell survival and p110\(\beta \) in DNA synthesis or cell proliferation [41–44]. Their distinct cellular localisation can be a feature explaining their different cellular roles. p110\(\alpha \) is predominantly found in the cytoplasm, but can be detected at very low levels in the nucleus in some cells [45]. p110\(\beta \) is distributed in both the cytoplasm and nucleus including the nucleolus [43,45,46]. p110\(\beta \) has a nuclear localisation signal in the C2 domain, which is absent.
in p110α ([45], shown in Figures 3 and A1) and plays multiple nuclear roles such as in cell cycle progression, DNA replication, and repair of DNA double-strand breaks [42,43,45,47].

Figure 3. Domain structure of class IA PI3K catalytic and regulatory subunits. Domain structure and interaction of the catalytic subunits p110α and p110β and regulatory subunits p85α and p85β. The regulatory p85 subunit binds to p110 to inhibit and stabilise the lipid kinase. The interlinker domain of p85 binds to the ABD domain of the p110 subunit to stabilise the kinase (shown with an arrow). On the other hand, the nSH2 and interlinker domains in p85 have an inhibitory effect on both p110α and β. In addition, the p110β isoform can be inhibited by the cSH2 domain of p85. The figure is adapted from Reference [18]. Abbreviations: ABD, adaptor binding domain; RBD, Ras-binding domain, C2; protein-kinase-C-homology-2 domain, Helical; helical domain, Catalytic; kinase domain; NLS, nuclear localisation sequence; SH, Src homology; BH, breakpoint-cluster region homology; nSH2, N-terminal SH2; cSH2, C-terminal SH2, i, interlinker SH2 coiled-coiled domain.

Both enzymes share many structural and biochemical properties, since they use the same substrate to generate the same product, and thus activate the same effector proteins. They are multidomain proteins which have the same domain organisation and share the same mode of activation ([48], Figure 3, see also alignment of p110α and p110β in Figure A1). In particular, class IA p110 catalytic enzymes harbour an adaptor-binding domain (ABD) which interacts with the inter-SH2 linker (iSH2) of p85 and promotes stability. In addition, interaction of the N-terminal SH2 domain and iSH2 in p85 with the C2 and helical domain of p110 blocks basal catalytic activity [48]. Phosphorylated tyrosine residues on activated RTKs bind to the SH2 domains of p85 and release the inhibitory interaction of these domains with the p110 catalytic subunit. In p110β, an additional inhibitory contact between the C-terminal catalytic domain of p110 and the C-terminal SH2 domain of p85, entails a different mechanism to release the inhibitory interaction by phosphorylated RTKs [48,49].

In cancer, alterations in both catalytic isoforms have been reported, albeit at different frequencies [6]. Since the observation of high mutational frequency in human cancers suggests PIK3CA as a driver, much research effort has focused on this gene [50]. The most common activating mutations in PIK3CA are found in the helical domain (E542 and E545) and the kinase domain (H1047) and activate p110α through different mechanisms, such as reducing the inhibitory effect of p85 or facilitating the interaction with the lipid membrane [51–53]. In addition, mutations in p85 can lead to the stimulation of the p110 subunit, as shown not only for p110α but also for p110β [54,55]. A recent study by Thorpe et al. demonstrated that a decrease in p85α resulted in elevated p85-p110 complex signalling in vitro, correlating to increased tumour development in breast cancer mouse models [56]. As for PIK3CB, mutations are in general less frequent compared to PIK3CA, and PIK3CB can be
amplified or overexpressed in some solid tumours [6]. Importantly, p110β can promote oncogenic transformation when overexpressed in its wild type (WT) form, in contrast to p110α, which requires the presence of activating mutations [57].

A few key biochemical differences help explain the distinct mode of contribution in tumourigenesis for both isoforms. Firstly, a critical difference was identified in the C2 domain and this may explain their differential activation mode. Indeed, N345 in p110α is involved in hydrogen bond interactions with the iSH2 domain of p85. This residue aligns with K342 in p110β, which corresponds to oncogenic mutations found in p110α in some cancers, from N345 to K345 ([58], shown in Figures 3 and A1). This one residue difference decreases the inhibitory interaction of p110β with p85 [58] and may explain the transforming capacity, at least partially, of WT p110β compared to p110α, which requires mutation for transformation [57]. Secondly, in contrast to p110α, p110β can be activated by GPCRs through its direct association with the G protein subunits β/γ [19,59–62] and through the RAC (ras-related C3 botulinum toxin substrate) small GTPase [63]. Importantly, activation of p110β by GPCR was required for cell invasiveness in breast cancer cells [62]. Cell proliferation was also dependent upon GPCR-mediated activation of p110β in PTEN-negative prostate and endometrial cancer cells, but not PTEN-positive cells [19].

A few mutations have recently been validated as oncogenic for PIK3CB. These include the helical domain mutation (E633K), identified in a Her2-positive breast tumour, which leads to increased p110β association with the membrane and increased basal activity [64]. A mutation in the PIK3CB kinase domain (D1067V), was shown to occur in several tumour types at low rates [65]. A gain-of-function mutation in the kinase domain of PIK3CB (E1051) was found to be an oncogenic driver and to promote cell growth and migration [66]. While studying the selective p110β inhibitor (GSK2636771) on solid tumours, a patient with castrate-resistant prostate cancer was found to have a mutation (L1049R) in the PIK3CB gene [67]. Functional characterisation of variants identified from cancer genome sequencing showed malignant transformation due to a rare mutation (A1048V) in the PIK3CB gene [68]. p110β also plays a role in the resistance of tumours to inhibitors of p110α [69,70]. A mutation (D1067Y) in PIK3CB has also been detected in cells resistant to pan-PI3K inhibition, which induced the activation of the PI3K signalling pathway [71]. Furthermore, p110β activity contributes to tumour progression and its expression correlates with poor prognosis and metastasis in breast cancer [59,72].

In 2008, a study which aimed to find the lipid kinase required to sustain and drive PI3K signalling in PTEN-deficient cancers showed that p110β played an essential role in these cancers and that its lipid kinase activity was required [73]. Later studies showed that, indeed, p110β activity is required in PTEN-deficient breast, prostate and haematological tumour growth [61,74,75], but not in other tissues which reported reliance on p110α or both isoforms [76,77]. A recent study showed that the PI3K pathway in PTEN-null tumours that rely on p110β is regulated by the Crk-like protein (CRKL) adaptor protein [78]. The study showed that CRKL has a preference to associate with p110β over p110α, and through its interaction with p110β/p85, it regulates the PI3K signalling pathway.

Table 1. Differences and similarities between p110α and p110β.

Property Description	p110α	p110β
Gene name	PIK3CA	PIK3CB
Regulatory subunit 1	p85α, p55α, p50α	p85α, p55α, p50α
Cellular localisation	cytoplasm	cytoplasm, nucleoplasm, nucleolus
Receptor activation	RTKs	GPCRs (dominant) and RTKs
Mutations in carcinomas	frequent	rare

1 p110α and p110β can, in theory, form heterodimers with any of the regulatory subunits, depending on the tissue of interest [33,79,80]. p85α and p85β are ubiquitously expressed, whereas the expression of the shorter isoforms p55α, p50α or p55γ is restricted to certain tissues [33,81]. Abbreviations: RTK: receptor tyrosine kinase. GPCR: G protein-coupled receptor.
2. Alteration of the PI3K Pathway in Endometrial Cancer

2.1. Endometrial Cancer

Endometrial cancer arises from lesions in the lining of the uterus (also known as the uterine corpus) which are, in up to 95% of cases, carcinomas with the remaining being sarcomas [82,83]. This gynaecological cancer is highly prevalent in developed countries, is highly associated with obesity and its incidence is rising [84,85]. Endometrial carcinomas have different histologies and were traditionally divided into two subtypes, type I and type II, according to the Bokhman classification [86]. Type I accounts for the majority of endometrial cancers and consists of low-grade tumours of endometrioid histology which are positive for hormone receptors and have a good prognosis [86,87]. These tumours are often referred to as endometrioid endometrial cancers (EEC). In contrast, type II tumours, also known as non-endometrioid (NEEC), are less common, of high grade, and hormone receptor negative with a poor prognosis [86,87]. Type II can display the following histologies: serous adenocarcinomas, clear cell adenocarcinomas and carcinosarcomas [86,87]. More recently, large-scale sequencing studies of primary endometrioid tumours (UCEC), initiated by The Cancer Genome Atlas (TCGA) genome network, suggested a classification of endometrial cancers into four major groups depending on different molecular signatures: (1) Polymerase ε (POLE), ultramutated with the highest survival outcome; (2) microsatellite instability (MSI), hypermutated with an intermediate outcome; (3) low copy number (endometrioid) with an intermediate outcome; and (4), high copy number (serous-like) with the poorest outcome [88]. This molecular classification has been further compared to and integrated with previous classification properties such as grade, genetic alterations and histology [87]. Type I tumours are hence considered endometrioid tumours with the following molecular characterisation: ultramutated POLE, microsatellite instability (MSI), hypermutated and a low copy number. Type II, including serous or clear cells, consists of the high copy number group. Specific molecular alterations representing each group can now be selected to evaluate endometrial tumours for diagnosis.

2.2. Alteration of PI3K PIK3CA and PIK3CB in Endometrial Cancer

The PI3K pathway is the most frequently altered in endometrial cancer [87–89]. The most frequent mutations are found in the PTEN, PIK3CA and PIK3R1 genes, particularly in type I endometrioid tumours [88,90–93]. The distribution of mutations of these genes obtained from the endometrial cancer TCGA study is shown in Figure 4A [88,94,95]. PTEN loss is the most frequent alteration in endometrioid tumours with a frequency of up to 80% and mutations are often seen in hyperplasias, considered precursor lesions to endometrial cancer [96–100]. PIK3CA is the second most mutated gene, with overall frequencies of 25% of tumours according to the Catalog of Somatic Mutations In Cancer (COSMIC, v86 [101]) as well as of 51% and 53% in TCGA-UCEC (release 13) and the TCGA endometrial cancer genomic data, respectively ([88,95] Figure 4A,B and Figure A1). Mutations occur in both type I endometrioid and serous carcinomas ([88,92,98,102–105], Figure 4A). The effect of PIK3CA mutations on clinical variables is conflicting, as positive and negative associations have been shown in relation to survival [106]. However, in a recent study of PIK3CA mutations in exon 9, corresponding to part of the helical domain, mutations were associated with poor survival [106]. PIK3CA mutations occur early in endometrial cancer progression and are of high clonality from primary lesions to metastasis [99,100,106]. Other types of alterations in PIK3CA have also been reported. PIK3CA mRNA levels were higher in non-endometrioid tumours and increased from primary tumours to their corresponding metastasis, and high mRNA levels correlated with lower survival [44,106]. In addition, PIK3CA amplification, which is associated with high level PI3K signalling, correlates with NEEC/type II aggressive endometrial cancer phenotype [88,104,107,108] (Figure 4A).
Figure 4. Overview of genomic alterations in PI3K pathway genes in endometrial cancer. (A) Overview of alterations in selected PI3K pathway genes in endometrial cancer, showing mutations and copy-number alterations, as well as the frequency of alterations. (B) Overview of mutations in PIK3CA displayed on the p110α protein structure. Note the hotspot mutational sites in p.E524, p.E545, p.Q546 and p.H1047, i.e., those with the highest number of lesions and the corresponding mutation. (C) Overview of mutations in PIK3CB displayed on the p110β protein structure by amino acid position. Panels were generated using the cBioPortal [94,95] with modifications with data from The Cancer Genome Atlas (TCGA) from a total of 240 patients with endometrial cancer [88]. Each dot corresponds to the occurrence of a specific mutation in a lesion. Mutations in (B) and (C) are colour-coded according to the key shown in (A) (green for missense mutations and brown for other in-frame mutations such as insertion and deletion). Abbreviations: ABD, adaptor binding domain; RBD, Ras-binding domain, C2; protein-kinase-C-homology-2 domain, Helical; helical domain, Catalytic; kinase domain.

The frequency of PIK3CB mutation is lower compared to the PIK3CA gene, with reported frequencies of 2% (COSMIC), 10% (TCGA-UCEC, release 13) and 8% (TCGA endometrial cancer genomic data [88,95], Figure 4B). So far, only two studies have reported the occurrence of PIK3CB
mutations in endometrial cancer, D1067V and A1048V within the kinase domain, and shown that they are oncogenic [65,68]. Other mutations were detected in the TCGA genomic study, highlighting other potential oncogenic mutations, which are to date uncharacterised for their oncogenic properties (Figure 4C). A more common alteration is an increase of its mRNA levels reported in two studies [44,109] and by COSMIC (v86) with a frequency of 6.8%. In particular, the mRNA levels of PIK3CB were shown to be higher in grade 1 endometrioid endometrial lesions when compared to complex hyperplasias and remained high in higher grades as well as in NEEC tumours [44]. Importantly, high levels of PIK3CB mRNA correlated with lower survival [44]. In cell line studies, the protein levels of p110β, but not of p110α, were elevated in endometrial cancer cells compared to non-transformed cells [44]. In addition, gene amplification was also detected, particularly in serous tumours (Figure 4A). Considering the transforming ability of p110β in its WT state, overexpression of this isoform may account for tumour development in endometrial cancer. Consistently, knock down of p110β in endometrial cancer cell lines induced cell death [109].

3. Targeting p110α and p110β in Endometrial Cancer

About 20% of endometrial tumours recur and respond poorly to currently available systemic therapy. Because the PI3K pathway is frequently altered in endometrial cancer, it is an attractive target for therapy, as recently validated by large-scale genomic sequencing reports [88,89,100,110,111]. PI3K chemical inhibitors have hence been tested in pre-clinical studies and used to target tumours with aberrant activation of the pathway.

3.1. PI3K Inhibitor Studies in Endometrial Cancer Cell Lines

A number of pre-clinical studies have been performed using endometrial cancer cell lines to test the efficacy of pan-PI3K inhibitors as well as selective p110α and p110β inhibitors [44,112,113]. PIK3CA mutant cancer cells were more prone to respond to pan-PI3K or selective p110α inhibition compared to WT cells [44,113].

Considering the importance of PIK3CB/p110β in PTEN-deficient tumours and the high frequency of PTEN mutations in endometrial cancer, the effect of p110β selective inhibition was evaluated in endometrial cancer cell lines, with or without PTEN loss [44,113]. Selective inhibition of p110α and p110β led to different effects on cell signalling and cell outcomes. p110α activity was correlated with cell survival and its inhibition led to decreased cell survival in PIK3CA mutant cells but not in WT cells [44,113]. In contrast, p110β inhibition had no effect on cell survival but rather decreased cell proliferation in PTEN-deficient cells [44,113]. Considering that endometrial tumours can harbour alterations in both PIK3CA and PTEN, combination treatment with both p110α and p110β may increase response efficacy compared to monotherapy [113]. The determination of the genetic status of PIK3CA and PTEN is of great importance for the most appropriate personalised treatment. In addition, the presence of genetic alteration in PIK3CB as well as increased levels of p110β may also influence treatment outcome in a few cases.

3.2. Clinical Trials in Endometrial Cancer

The pan-PI3K inhibitor Pictilisib (BKM120) was administered to patients with advanced or metastatic endometrial cancer but adverse side effects were observed, and the clinical trial was stopped ([114] NCT01397877). In contrast, Pilaralisib (SAR245408; XL147), another pan-PI3K inhibitor, used in a clinical trial of advanced or recurrent endometrial carcinomas, did not show any severe adverse events on patients but had only minimal anti-tumour activity ([115] NCT01013324). Finally, a trial planning to use the pan-PI3K inhibitor Copanlisib (BAY 80-6946) in patients with persistent or recurrent endometrial cancer with PIK3CA hotspot mutations was suspended (NCT02728258). Selective inhibitors for p110α and p110β are being used in clinical trials but the results in patients with endometrial cancer are scarce as they are part of large studies including different types of cancer. Patients with PIK3CA-altered advanced cancer were treated with the p110α selective inhibitor Alpelisib
(BYL719) and one patient with endometrial cancer showed a complete response and another showed a partial response to treatment ([116], NCT01219699). However, the study does not clearly state the total number of patients with this type of cancer and the respective mutational status.

A phase I trial with the p110β selective inhibitor GSK2636771 in PTEN-deficient solid advanced cancers, including three patients with endometrial cancer, was completed and reported (Reference [67] and Table 2). One patient out of three with endometrial cancer benefitted from progression-free disease for 33 weeks. Intriguingly, this patient did not harbour any mutation or gene copy variation in PTEN, PIK3CA, PIK3CB or AKT2. As we are writing this review, other clinical trials are currently recruiting patients with advanced solid tumours harbouring PTEN loss or with PIK3CB mutation and/or amplification and may include patients with endometrial cancer (Table 2).

Table 2. Completed and planned clinical trials using p110β inhibitors.

Drug Name	Molecular Condition for Trial	Types of Cancer	Phase	ID Number
GSK2636771	PTEN deficiency	advanced solid tumours	I	NCT01458067 (completed and results published [67])
GSK2636771	PTEN loss, mutation or deletion	Advanced-stage refractory solid cancers	II	NCT02465060 (recruiting patients)
AZD8186	PTEN loss, mutation or deletion	Advanced-stage refractory solid cancers	II	NCT02465060 (recruiting patients)
AZD8186 (with docetaxel)	PTEN loss or mutation, or PIK3CB Mutation	Advanced-stage solid cancers metastatic or unresectable	I	NCT03218826 (recruiting patients)

Information on clinical trials was retrieved from www.clinicaltrials.gov.

4. Conclusions

Alteration in the PI3K pathway is undoubtedly a key event in endometrial carcinomas with differences in molecular genetic features throughout histologies, stages and grades. Much of the research and clinical efforts have focused on PIK3CA/p110α but are starting to include PIK3CB/p110β in light of its association with loss of PTEN, the most frequent genetic alteration in endometrial carcinomas. To date, clinical trials include few patients with endometrial cancer, making it challenging to draw any reliable conclusions on the correlation between the genetic alteration status of the PI3K pathway and outcomes. Still, a positive outcome was reported for one patient treated with a selective p110β inhibitor who responded well to the treatment [67]. Several clinical trials with different p110β inhibitors are recruiting patients with advanced solid cancers with PTEN loss but also harbouring PIK3CB mutations or amplification. However, it is not yet known whether these will include endometrial carcinomas.

Author Contributions: F.M.G. and A.E.L. drafted the manuscript. All authors provided suggestions and comments on the manuscript and generated figures. All authors agreed to the final version.

Funding: Research in our laboratories is funded by the University of Bergen (AEL and CK), the Meltzer foundation (AEL, FMG and RGJ), the Norwegian Cancer Society (AEL and CK), the Helse Vest (EAH) and the Norwegian Research Council (CK). This work was also partly supported by the Centre of Cancer Biomarkers, a Centre of Excellence funded by the Research Council of Norways funding scheme, project number 223250.

Conflicts of Interest: The authors declare no conflicts of interest.
Abbreviations

Abbreviation	Description
GPCR	G protein coupled receptor
PI3K	Phosphoinositide 3-kinase
PtdIns	Phosphatidylinositol
PtdIns(4,5)P_2	Phosphatidylinositol (4,5) bisphosphate
PtdIns(3,4,5)P_3	Phosphatidylinositol (3,4,5) triphosphate
PTEN	Phosphatase and tensin homologue
RTK	Receptor tyrosine kinase
SH2	Src homology 2

Appendix A

Figure A1. Cont.
Figure A1. Alignment of human p110α (UNIPROT P42336) and p110β (UNIPROT P42338) protein sequences using the pairwise sequence alignment web tool EMBOSS Needle. Mutations identified in the TCGA genome-wide sequencing in endometrial cancer are highlighted here for both isoforms with different colour code.

References

1. Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K signalling: The path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012, 13, 195–203. [CrossRef] [PubMed]

2. Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [CrossRef] [PubMed]

3. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef] [PubMed]

4. Chalhoub, N.; Baker, S.J. PTEN and the PI3-kinase pathway in cancer. Annu. Rev. Pathol. 2009, 4, 127–150. [CrossRef]

5. Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov. 2014, 13, 140–156. [CrossRef]

6. Thorpe, L.M.; Yuzugullu, H.; Zhao, J.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 2015, 15, 7–24. [CrossRef] [PubMed]

7. Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 2010, 11, 329–341. [CrossRef] [PubMed]

8. Jean, S.; Kiger, A.A. Classes of phosphoinositide 3-kinases at a glance. J. Cell Sci. 2014, 127, 923–928. [CrossRef]

9. Vanhaesebroeck, B.; Waterfield, M.D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 1999, 253, 239–254. [CrossRef]
10. Stephens, L.R.; Hughes, K.T.; Irvine, R.F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. *Nature* 1991, 351, 33–39. [CrossRef]

11. Auger, K.R.; Serunian, L.A.; Saltoff, S.P.; Libby, P.; Cantley, L.C. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. *Cell* 1989, 57, 167–175. [CrossRef]

12. Whitman, M.; Downes, C.P.; Keeler, M.; Keller, T.; Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. *Nature* 1988, 332, 644–646. [CrossRef] [PubMed]

13. Hawkins, P.T.; Stephens, L.R. Emerging evidence of signalling roles for PI(3,4)P2 in Class I and II PI3K-regulated pathways. *Biochem. Soc. Trans.* 2016, 44, 307–314. [CrossRef] [PubMed]

14. Backer, J.M. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. *Biochem. J.* 2016, 473, 2251–2271. [CrossRef] [PubMed]

15. Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; et al. LMSD: LIPID MAPS structure database. *Nucleic Acids Res.* 2007, 35, D527–532. [CrossRef] [PubMed]

16. Lietzke, S.E.; Bose, S.; Cronin, T.; Klarlund, J.; Chawla, A.; Czech, M.P.; Lambright, D.G. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. *Mol. Cell* 2016, 70, 719–731. [CrossRef] [PubMed]

17. Feng, X.; Feng, J.; Zhang, J.; Zhang, Y.; Peng, L.; Zhang, X.; Liu, Y.; Zhao, H.; Li, Y.; Wang, X.; et al. Characterization of a novel inositol phospholipid, phosphatidylinositol-3-phosphate. *J. Biol. Chem.* 2016, 291, 13288–13298. [CrossRef] [PubMed]
31. Pesesse, X.; Deleu, S.; De Smedt, F.; Drayer, L.; Erneux, C. Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem. Biophys. Res. Commun. 1997, 239, 697–700. [CrossRef] [PubMed]

32. Maffucci, T. An introduction to phosphoinositides. Curr. Top. Microbiol. Immunol. 2012, 362, 1–42. [PubMed]

33. Kok, K.; Geering, B.; Vanhaesebroeck, B. Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem. Sci. 2009, 34, 115–127. [CrossRef]

34. Ilic, N.; Roberts, T.M. Comparing the roles of the p110alpha and p110beta isoforms of PI3K in signaling and cancer. Curr. Top. Microbiol. Immunol. 2010, 347, 55–77.

35. Singh, P.; Dar, M.S.; Dar, M.J. p110alpha and p110beta isoforms of PI3K signaling: Are they two sides of the same coin? FEBS Lett. 2016, 590, 3071–3082. [CrossRef] [PubMed]

36. Bi, L.; Okabe, I.; Bernard, D.J.; Nussbaum, R.L. Early embryonic lethality in mice deficient in the p110alpha catalytic subunit of PI 3-kinase. Mamm. Genome 2002, 13, 169–172. [PubMed]

37. Bi, L.; Okabe, I.; Bernard, D.J.; Wynshaw-Boris, A.; Nussbaum, R.L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J. Biol. Chem. 1999, 274, 10963–10968. [CrossRef] [PubMed]

38. Foukas, L.C.; Claret, M.; Pearce, W.; Okkenhaug, K.; Meek, S.; Peskett, E.; Sancho, S.; Smith, A.J.; Withers, D.J.; Vanhaesebroeck, B. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 2006, 441, 366–370. [CrossRef] [PubMed]

39. Graupera, M.; Guillermet-Guibert, J.; Foukas, L.C.; Phng, L.K.; Cain, R.J.; Salpekar, A.; Pearce, W.; Meek, S.; Millan, J.; Cutillas, P.R.; et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 2008, 453, 662–666. [CrossRef]

40. Guillermet-Guibert, J.; Smith, L.B.; Halet, G.; Whitehead, M.A.; Pearce, W.; Rebourcet, D.; Leon, K.; Crepieux, P.; Nock, G.; Stromstedt, M.; et al. Novel Role for p110beta PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells. PLoS Genet. 2015, 11, e1005304. [CrossRef]

41. Benistant, C.; Chapuis, H.; Roche, S. A specific function for phosphatidylinositol 3-kinase alpha (p85alpha-p110alpha) in cell survival and for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 2000, 19, 5083–5090. [CrossRef] [PubMed]

42. Marques, M.; Kumar, A.; Cortes, I.; Gonzalez-Garcia, A.; Hernandez, C.; Moreno-Ortiz, M.C.; Carrera, A.C. Phosphoinositide-3-kinasas p110alpha and p110beta regulate cell cycle entry, exhibiting distinct activation kinetics in G1 phase. Mol. Cell Biol. 2008, 28, 2803–2814. [CrossRef]

43. Marques, M.; Kumar, A.; Poveda, A.M.; Zuluaga, S.; Hernandez, C.; Jackson, S.; Pasero, P.; Carrera, A.C. Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc. Natl. Acad. Sci. USA 2009, 106, 7525–7530. [CrossRef] [PubMed]

44. Karlsson, T.; Krakstad, C.; Tangen, L.L.; Hoivik, E.A.; Pollock, P.M.; Salvesen, H.B.; Lewis, A.E. Endometrial cancer cells exhibit high expression of p110β and its selective inhibition induces variable responses on PI3K signaling, cell survival and proliferation. Oncotarget 2017, 8, 3881–3894. [CrossRef] [PubMed]

45. Kumar, A.; Redondo-Muñoz, J.; Perez-García, V.; Cortes, I.; Chagoyen, M.; Carrera, A.C. Nuclear but Not Cytosolic Phosphoinositide 3-Kinase Beta Has an Essential Function in Cell Survival. Mol. Cell. Biol. 2011, 31, 2122–2133. [CrossRef] [PubMed]

46. Karlsson, T.; Altankhuyag, A.; Dobrovolskova, O.; Turcu, D.C.; Lewis, A.E. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem. J. 2016, 473, 2033–2047. [CrossRef] [PubMed]

47. Kumar, A.; Fernandez-Capetillo, O.; Carrera, A.C. Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc. Natl. Acad. Sci. USA 2010, 107, 7491–7496. [CrossRef]

48. Burke, J.E.; Williams, R.L. Dynamic steps in receptor tyrosine kinase mediated activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D exchange (HDX-MS). Adv. Biol. Regul. 2013, 53, 97–110. [CrossRef]

49. Zhang, X.; Vadas, O.; Perisic, O.; Anderson, K.E.; Clark, J.; Hawkins, P.T.; Stephens, L.R.; Williams, R.L. Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell 2011, 41, 567–578. [CrossRef]

50. Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004, 304, 554. [CrossRef]
51. Huang, C.H.; Mandelker, D.; Schmidt-Kittler, O.; Samuels, Y.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Gabelli, S.B.; Amzel, L.M. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. *Science* 2007, 318, 1744–1748. [CrossRef] [PubMed]

52. Mandelker, D.; Gabelli, S.B.; Schmidt-Kittler, O.; Zhu, J.; Cheong, I.; Huang, C.H.; Kinzler, K.W.; Vogelstein, B.; Amzel, L.M. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. *Proc. Natl. Acad. Sci. USA* 2009, 106, 16996–17001. [CrossRef] [PubMed]

53. Burke, J.E.; Perisic, O.; Masson, G.R.; Vadas, O.; Williams, R.L. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110alpha (PIK3CA). *Proc. Natl. Acad. Sci. USA* 2012, 109, 15259–15264. [CrossRef] [PubMed]

54. Jaiswal, B.S.; Janakiraman, V.; Kljavin, N.M.; Chaudhuri, S.; Stern, H.M.; Wang, W.; Kan, Z.; Dbouk, H.A.; Peters, B.A.; Waring, P.; et al. Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. *Cancer Cell* 2009, 16, 463–474. [CrossRef] [PubMed]

55. Sun, M.; Hillmann, P.; Hofmann, B.T.; Hart, J.R.; Vogt, P.K. Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. *Proc. Natl. Acad. Sci. USA* 2010, 107, 15547–15552. [CrossRef] [PubMed]

56. Thorpe, L.M.; Spangle, J.M.; Ohlson, C.E.; Cheng, H.; Roberts, T.M.; Cantley, L.C.; Zhao, J.J. PI3K-p110alpha mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85alpha. *Proc. Natl. Acad. Sci. USA* 2017, 114, 7095–7100. [CrossRef] [PubMed]

57. Kang, S.; Denley, A.; Vanhaesebroeck, B.; Vogt, P.K. Oncogenic transformation induced by the p110β isoform of phosphoinositide 3-kinase. *Proc. Natl. Acad. Sci. USA* 2006, 103, 1289–1294. [CrossRef]

58. Dbouk, H.A.; Pang, H.; Fiser, A.; Backer, J.M. A biochemical mechanism for the oncogenic potential of the p110β catalytic subunit of phosphoinositide 3-kinase. *Proc. Natl. Acad. Sci. USA* 2010, 107, 19897–19902. [CrossRef]

59. Ciraolo, E.; Iezzi, M.; Marone, R.; Marengo, S.; Curcio, C.; Costa, C.; Azzolino, O.; Gonella, C.; Rubinetto, C.; Wu, H.; et al. Phosphoinositide 3-kinase p110beta activity: Key role in metabolism and mammary gland cancer but not development. *Sci. Signal.* 2008, 1, ra3. [CrossRef]

60. Guillermet-Guibert, J.; Bjorklot, K.; Salpekar, A.; Gonella, C.; Ramadani, F.; Bilancio, A.; Meek, S.; Smith, A.J.; Okkenhaug, K.; Vanhaesebroeck, B. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. *Proc. Natl. Acad. Sci. USA* 2008, 105, 8292–8297. [CrossRef]

61. Jia, S.; Liu, Z.; Zhang, S.; Liu, P.; Zhang, L.; Lee, S.H.; Zhang, J.; Signoretti, S.; Loda, M.; Roberts, T.M.; et al. Essential roles of PI(3)K-p110beta activity in cell growth, metabolism and tumorigenesis. *Nature* 2008, 454, 776–779. [CrossRef] [PubMed]

62. Khalil, B.D.; Hsueh, C.; Cao, Y.; Abi Saab, W.F.; Wang, Y.; Condeelis, J.S.; Bresnick, A.R.; Backer, J.M. GPCR Signaling Mediates Tumor Metastasis via PI3Kbeta. *Cancer Res.* 2016, 76, 2944–2953. [CrossRef] [PubMed]

63. Fritsch, R.; de Krijger, I.; Fritsch, K.; George, R.; Reason, B.; Kumar, M.S.; Diefenbacher, M.; Stamp, G.; Downward, J. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. *Cell* 2013, 153, 1050–1063. [CrossRef] [PubMed]

64. Mateo, J.; Ganji, G.; Lemech, C.; Burris, H.A.; Han, S.-W.; Swales, K.E.; Decordova, S.; DeYoung, M.P.; Smith, D.A.; Kalyana-Sundaram, S.; et al. A first-time-in-human study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. *Clin. Cancer Res.* 2017, 23, 5981–5992. [CrossRef]
68. Kim, E.; Ilic, N.; Shrestha, Y.; Zou, L.; Kamburov, A.; Zhu, C.; Yang, X.; Lubonja, R.; Tran, N.; Nguyen, C.; et al. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles. *Cancer Discov.* 2016, 6, 714–726. [CrossRef]

69. Juric, D.; Castel, P.; Griffith, M.; Griffith, O.L.; Won, H.H.; Ellis, H.; Ebbesen, S.H.; Ainscough, B.J.; Ramu, A.; Iyer, G.; et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. *Nature* 2014. [CrossRef]

70. Costa, C.; Ebi, H.; Martini, M.; Beausoleil, S.A.; Faber, A.C.; Jakubik, C.T.; Huang, A.; Wang, Y.; Nishtala, M.; Hall, B.; et al. Measurement of PIP3 levels reveals an unexpected role for p110beta in early adaptive responses to p110alpha-specific inhibitors in luminal breast cancer. *Cancer Cell* 2015, 27, 97–108. [CrossRef]

71. Nakanishi, Y.; Walter, K.; Spoerke, J.M.; O’Brien, C.; Huw, L.Y.; Hampton, G.M.; Lackner, M.R. Activating Mutations in PIK3CB Confer Resistance to PI3K Inhibition and Define a Novel Oncogenic Role for p110beta. *Cancer Res.* 2016, 76, 1193–1203. [CrossRef] [PubMed]

72. Carvalho, S.; Milanezi, F.; Costa, J.L.; Amendoeira, I.; Schmitt, F. PIKing the right isoform: The emergent role of the p110beta subunit in breast cancer. *Virchows Arch.* 2010, 456, 235–243. [CrossRef] [PubMed]

73. Wee, S.; Wiederschain, D.; Maira, S.M.; Loo, A.; Miller, C.; de Beaumont, R.; Stegmeier, F.; Yao, Y.M.; Lengauer, C. PTEN-deficient cancers depend on PIK3CB. *Proc. Natl. Acad. Sci. USA* 2008, 105, 13057–13062. [CrossRef]

74. Ni, J.; Liu, Q.; Xie, S.; Carlson, C.; Von, T.; Vogel, K.; Riddle, S.; Benes, C.; Eck, M.; Roberts, T.; et al. Functional characterization of an isoform-selective inhibitor of PI3K-p110beta as a potential anticancer agent. *Cancer Discov.* 2012, 2, 425–433. [CrossRef] [PubMed]

75. Yuzugullu, H.; Baitsch, L.; Von, T.; Steiner, A.; Tong, H.; Ni, J.; Clayton, L.K.; Bronson, R.; Roberts, T.M.; Gritsman, K.; et al. A PI3K p110beta-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis. *Nat. Commun.* 2015, 6, 8501. [CrossRef] [PubMed]

76. Berenjeno, I.M.; Guillermet-Guibert, J.; Pearce, W.; Gray, A.; Fleming, S.; Vanhaesebroeck, B. Both p110alpha and p110beta isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. *Biochem. J.* 2012, 442, 151–159. [CrossRef] [PubMed]

77. Wang, Q.; Liu, P.; Spangle, J.M.; Von, T.; Roberts, T.M.; Lin, N.U.; Krop, I.E.; Winer, E.P.; Zhao, J.J. PI3K-p110alpha mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. *Oncogene* 2016, 35, 3607–3612. [CrossRef] [PubMed]

78. Zhang, J.; Gao, X.L.; Schmit, F.; Adelmant, G.; Eck, M.J.; Marto, J.A.; Zhao, J.J.; Roberts, T.M. CRKL Mediates p110 beta-Dependent PI3K Signaling in PTEN-Deficient Cancer Cells. *Cell Rep.* 2017, 20, 549–557. [CrossRef] [PubMed]

79. Geering, B.; Cutillas, P.R.; Nock, G.; Gharbi, S.I.; Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. *Proc. Natl. Acad. Sci. USA* 2007, 104, 7809–7814. [CrossRef] [PubMed]

80. Backer, J.M. The regulation of class IA PI3-kinase by inter-subunit interactions. *Curr. Top. Microbiol. Immunol.* 2010, 346, 87–114. [PubMed]

81. Fruman, D.A. Regulatory subunits of class IA PI3K. *Curr. Top. Microbiol. Immunol.* 2010, 346, 225–244. [PubMed]

82. Le Gallo, M.; Bell, D.W. The emerging genomic landscape of endometrial cancer. *Clin. Chem.* 2014, 60, 98–110. [CrossRef] [PubMed]

83. Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. *Lancet* 2016, 387, 1094–1108. [CrossRef]

84. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* 2018. [CrossRef] [PubMed]

85. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. *CA Cancer J. Clin.* 2018, 68, 7–30. [CrossRef] [PubMed]

86. Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. *Gynecol. Oncol.* 1983, 15, 10–17. [CrossRef]

87. Murali, R.; Soslow, R.A.; Weigelt, B. Classification of endometrial carcinoma: More than two types. *Lancet Oncol.* 2014, 15, e268–e278. [CrossRef]

88. Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. *Nature* 2013, 497, 67–73.
89. Myers, A.P. New strategies in endometrial cancer: Targeting the PI3K/mTOR pathway—the devil is in the details. *Clin. Cancer Res.* 2013, 19, 5264–5274. [CrossRef]

90. Levine, R.L.; Cargile, C.B.; Blazes, M.S.; van Rees, B.; Kurman, R.J.; Ellenson, L.H. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. *Cancer Res.* 1998, 58, 3254–3258.

91. Miyake, T.; Yoshino, K.; Enomoto, T.; Takata, T.; Ugaki, H.; Kim, A.; Fujiwara, K.; Miyatake, T.; Fujita, M.; Kimura, T. PIK3CA gene mutations and amplifications in uterine cancers, identified by methods that avoid confounding by PIK3CA pseudogene sequences. *Cancer Lett.* 2008, 261, 120–126. [CrossRef] [PubMed]

92. Cheung, L.W.; Hennessy, B.T.; Li, J.; Yu, S.; Myers, A.P.; Djordjevic, B.; Lu, Y.; Stemke-Hale, K.; Dyer, M.D.; Zhang, F.; et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. *Cancer Discov.* 2011, 1, 170–185. [CrossRef] [PubMed]

93. Jones, N.L.; Xiu, J.; Chatterjee-Paer, S.; Buckley de Meritens, A.; Burke, W.M.; Tergas, A.I.; Wright, J.D.; Hou, J.Y. Distinct molecular landscapes between endometrioid and nonendometrioid uterine carcinomas. *Int. J. Cancer* 2017, 140, 1396–1404. [CrossRef] [PubMed]

94. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012, 2, 401–404. [CrossRef] [PubMed]

95. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci. Signal.* 2013, 6, pl1. [CrossRef] [PubMed]

96. Mutter, G.L.; Lin, M.C.; Fitzgerald, J.T.; Kum, J.B.; Baak, J.P.; Lees, J.A.; Weng, L.P.; Eng, C. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. *J. Natl. Cancer Inst.* 2000, 92, 924–930. [CrossRef] [PubMed]

97. Sun, H.; Enomoto, T.; Fujita, M.; Wada, H.; Yoshino, K.; Ozaki, K.; Nakamura, T.; Murata, Y. Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. *Am. J. Clin. Pathol.* 2001, 115, 32–38. [CrossRef]

98. Hayes, M.P.; Wang, H.; Espinal-Witter, R.; Douglas, W.; Solomon, G.J.; Baker, S.J.; Ellenson, L.H. PIK3CA and PTEN mutations in uterine endometrioid carcinoma and complex atypical hyperplasia. *Clin. Cancer Res.* 2006, 12, 5932–5935. [CrossRef]

99. Berg, A.; Hoivik, E.A.; Mjos, S.; Holst, F.; Werner, H.M.; Tangen, I.L.; Taylor-Weiner, A.; Gibson, W.J.; Kusonmano, K.; Wik, E.; et al. Molecular profiling of endometrial carcinoma precursor, primary and metastatic lesions suggests different targets for treatment in obese compared to non-obese patients. *Oncotarget* 2015, 6, 1327–1339. [CrossRef] [PubMed]

100. Gibson, W.J.; Hoivik, E.A.; Halle, M.K.; Taylor-Weiner, A.; Cherniack, A.D.; Berg, A.; Holst, F.; Zack, T.I.; Werner, H.M.; Staby, K.M.; et al. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. *Nat. Genet.* 2016, 48, 848–855. [CrossRef]

101. Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; et al. COSMIC: Mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. *Nucleic Acids Res.* 2011, 39, D945–D950. [CrossRef] [PubMed]

102. Oda, K.; Sato, D.; Taketani, Y.; McCormick, F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. *Cancer Res.* 2005, 65, 10669–10673. [CrossRef] [PubMed]

103. Rudd, M.L.; Price, J.C.; Fogolars, S.; Godwin, A.K.; Sgroi, D.C.; Merino, M.J.; Bell, D.W. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. *Clin. Cancer Res.* 2011, 17, 1331–1340. [CrossRef] [PubMed]

104. Kuhn, E.; Wu, R.C.; Guan, B.; Wu, G.; Zhang, J.; Wang, Y.; Song, L.; Yuan, X.; Wei, L.; Roden, R.B.; et al. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. *J. Natl. Cancer Inst.* 2012, 104, 1503–1513. [CrossRef] [PubMed]

105. Le Gallo, M.; O’Hara, A.J.; Rudd, M.L.; Urick, M.E.; Hansen, N.F.; O’Neil, N.J.; Price, J.C.; Zhang, S.; England, B.M.; Godwin, A.K.; et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. *Nat. Genet.* 2012, 44, 1310. [CrossRef] [PubMed]
106. Mjos, S.; Werner, H.M.J.; Birkeland, E.; Holst, F.; Berg, A.; Halle, M.K.; Tangen, I.L.; Kusonmano, K.; Mauland, K.K.; Oyan, A.M.; et al. PIK3CA exon9 mutations associate with reduced survival, and are highly concordant between matching primary tumors and metastases in endometrial cancer. *Sci. Rep.* 2017, 7, 10240. [CrossRef] [PubMed]

107. Salvesen, H.B.; Carter, S.L.; Mannelqvist, M.; Dutt, A.; Getz, G.; Stefansson, I.M.; Raeder, M.B.; Sos, M.L.; Engelsen, I.B.; Trovik, J.; et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. *Proc. Natl. Acad. Sci. USA* 2009, 106, 4834–4839. [CrossRef] [PubMed]

108. Konopka, B.; Janiec-Jankowska, A.; Kwiatkowska, E.; Najmola, U.; Bidzinski, M.; Olszewski, W.; Goluda, C. PIK3CA mutations and amplification in endometrioid endometrial carcinomas: Relation to other genetic defects and clinicopathologic status of the tumors. *Hum. Pathol.* 2011, 42, 1710–1719. [CrossRef] [PubMed]

109. An, H.J.; Cho, N.H.; Yang, H.S.; Kwak, K.B.; Kim, N.K.; Oh, D.Y.; Lee, S.W.; Kim, H.O.; Koh, J.J. Targeted RNA interference of phosphatidylinositol 3-kinase p110-beta induces apoptosis and proliferation arrest in endometrial carcinoma cells. *J. Pathol.* 2007, 212, 161–169. [CrossRef] [PubMed]

110. Salvesen, H.B.; Haldorsen, I.S.; Trovik, J. Markers for individualised therapy in endometrial carcinoma. *Lancet Oncol.* 2012, 13, e353–e361. [CrossRef] [PubMed]

111. Rodriguez-Freixinos, V.; Karakasis, K.; Oza, A.M. New Targeted Agents in Endometrial Cancer: Are We Really Making Progress? *Curr. Oncol. Rep.* 2016, 18, 23. [CrossRef] [PubMed]

112. Aslan, O.; Cremona, M.; Morgan, C.; Cheung, L.W.; Mills, G.B.; Hennessy, B.T. Preclinical evaluation and reverse phase protein Array-based profiling of PI3K and MEK inhibitors in endometrial carcinoma in vitro. *BMC Cancer* 2018, 18, 168. [CrossRef] [PubMed]

113. Weigelt, B.; Warne, P.; Lambros, M.; Reis-Filho, J.; Downward, J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. *Clin. Cancer Res.* 2013. [CrossRef] [PubMed]

114. Heudel, P.E.; Fabbro, M.; Roemer-Becuwe, C.; Kaminsky, M.C.; Arnaud, A.; Joly, F.; Roche-Forrestier, S.; Meunier, J.; Foa, C.; You, B.; et al. Phase II study of the PI3K inhibitor BKM120 in patients with advanced or recurrent endometrial carcinoma: A stratified type I-type II study from the GINECO group. *Br. J. Cancer* 2017, 116, 303–309. [CrossRef] [PubMed]

115. Matulonis, U.; Vergote, I.; Backes, F.; Martin, L.P.; McMeekin, S.; Birrer, M.; Campana, F.; Xu, Y.; Egile, C.; Ghamande, S. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma. *Gynecol. Oncol.* 2015, 136, 246–253. [CrossRef] [PubMed]

116. Juric, D.; Rodon, J.; Tábernero, J.; Janku, F.; Burris, H.A.; Schellens, J.H.M.; Middleton, M.R.; Berlin, J.; Schuler, M.; Gil-Martin, M.; et al. Phosphatidylinositol 3-Kinase alpha-Selective Inhibition With Alpelisib (BYL719) in PIK3CA-Altered Solid Tumors: Results From the First-in-Human Study. *J. Clin. Oncol.* 2018, 36, 1291–1299. [CrossRef] [PubMed]