Single Molecule Magnets of Co$_2$ and Co$_2$La MOFs Synthesized by New Schiff Base Ligand N,N′-bis(o-Vanillinidene) Ethylenediamine (o-VEDH$_2$)

Mithun Kumar Ghosh1†, Barun Jana2*† and Tanmay Kumar Ghorai1,3*†

1Nanomaterials and Crystal Designing Laboratory, Department of Chemistry Indira Gandhi National Tribal University, Amarkantak, India, 2Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India, 3Nanomaterials and Crystal Designing Laboratory, Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, India

Schiff base ligand N,N′-bis(o-vanillinidene) ethylenediamine (o-VEDH$_2$) has been employed to synthesize new [CoIICoIV-o-VED(OAc)$_2$(µ$_2$-OAc)(OMe)]•MeOH (1) and [Co$^{IV}_2$(o-VED)$_2$(en)$_2$(NCCH$_3$)$_2$(OCH$_3$)]([La(NO$_3$)$_6$](NO$_3^-$)•2MeOH•MeCN•H$_2$O (2) metal–organic frameworks (MOFs) that have interesting single molecule magnets (SMMs) property. The synthesized complexes are characterized by single crystal X-ray diffraction, fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, and squid magnetic measurement. Single crystal X-ray data show that both complexes crystallize in the monoclinic crystal system with P_2_1/c (14) and P_2_1/n (14) space groups and generate unique MOF-like structures. Overall, both the metal centers of 1 form octahedral geometry with a butterfly core structure. Variable temperature (T) and field (H) solid-state direct-current (dc) and alternative current (ac) magnetic susceptibility measurements were performed on both the complexes over 1.8 to 300 K, which exhibited a ground state spins (S) of 4 and 5 of complexes 1 and 2, respectively. The AC out-phase and in-phase properties of complexes show SMMs. Other properties such as optical, sensing, and DNA-binding interactions were also investigated by the complexes. Complexes 1 and 2 have energy band gaps of 3.7 and 3.03 eV indicating semiconductor properties. Simultaneously, complex 1 was found to sense H$_2$O$_2$ with a rate constant (k) = 1.59 × 10$^{-4}$ s$^{-1}$, whereas complex 2 was found to bind with calf-thymus-DNA by intercalation mode with binding constant (K_b) of 1.22 × 105 M$^{-1}$.

Keywords: synthesis, schiff base, MOFs, SMMs, sensing and CT-DNA

INTRODUCTION

In the last few years, multifunctional homo/pseudoheterometallic metal–organic frameworks (MOFs) showing distinct physical properties have been reported not only for the basic intensive research but also for their potential applications in new technologies (Yang et al., 2015; Zhang et al., 2016; Clough et al., 2017; Dong et al., 2017; Long, 2019; Qi et al., 2019). In material science, multifunctional metal complexes having magnetomolecular properties are of interest because
they found potential applications in the field of sensors and biology (Chelebaeva et al., 2009; Montgomery et al., 2009; Yuan et al., 2018). In recent literatures, different groups have reported the syntheses of different bimetallic complexes with bifunctional magnetomaterial properties (Freitas et al., 2010; Kumar et al., 2019; Wu et al., 2019). Here, the magnetic properties of single molecules are of interest, and significant amount of results is available (Sessoli et al., 1993; Gatteschi and Sessoli, 2003; Tasiopoulos et al., 2004; Bogani and Wernsdorfer, 2010; Van Slageren, 2011; Vincent et al., 2012; Wu et al., 2019). The chemistry of single molecule magnets (SMMs) was started through the discovery of Mn12AC in 1993. It was found that large ground state spin (S) and negative zero field splitting (D) are the two essential factors that determine SMMs properties (Sessoli et al., 1993; Gatteschi and Sessoli, 2003; Tasiopoulos et al., 2004; Bogani and Wernsdorfer, 2010; Van Slageren, 2011; Vincent et al., 2012; Wu et al., 2019). In this regard, syntheses of lanthanide-based SMMs are quite of interest because of their various potential applications in high-density storage, quantum computers, and spintronics devices (Sessoli et al., 1993; Ishikawa et al., 2003; King et al., 2005; Tang and Zhang, 2015; Ding et al., 2016). Along with this, the mixed cobalt and lanthanide complexes with Schiff based ligands are also of significant interest because of their SMMs properties (Gupta et al., 2016; Modak et al., 2016). At the same time, metal complexes of Schiff base ligands are also of huge importance in the field of medicinal and pharmaceutical chemistry due to their antibacterial (Woodruff et al., 2013), antifungal (Lv et al., 2006), and antitumor activities (Alghool et al., 2013) and DNA-binding (Yang et al., 2000) properties. Effective anticancer drugs generally have an active site that mainly binds to the cancer cell's DNA and reduces cancer cell activity, which lead to death of the cells (Wang et al., 2006, 2011; Pathak et al., 2018). Medicines that are used to prevent cancer from interacting with DNA through electrostatic, intercalative, or groove binding depend on binding methods of anticancer drugs (Zuber et al., 1998; Li et al., 2010; Pages et al., 2015; Zeng et al., 2017). In the past few years, researchers have reported cobalt and lanthanum complexes of Schiff base ligands and investigated their calf-thymus (CT)–DNA binding (Yang et al., 2006; Santini et al., 2013; Wang et al., 2014).

In the biological field, it is well-known that reactive oxygen species (ROS) and reactive nitrogen species play a significant role in the development of cancer cells in the human body. ROS such as superoxide anion (O2⁻) and hydroxyl radical (•OH) are generally generated during the decomposition of hydrogen peroxide, which is the main reason for cancer cell generation (Tredwin et al., 2006; Shahabadi et al., 2010; Zhao et al., 2012). The development of practical and accurate H2O2 detection techniques is therefore necessary to ensure improved healthcare. Last few years, scientists have developed lanthanide/transition metal–based MOFs and investigated their different sensing activity (Droge, 2002; Gao et al., 2016; Koo et al., 2016; Zeng et al., 2016). Herein, we report the H2O2-sensing activity of Co-MOFs.

Our research group focused on the synthesis of magnetomolecular materials that have multifunctional applications such as antibacterial, anticancer, antioxidant, cytotoxicity, and magnetic (Mandal et al., 2017; Pathak et al., 2019). From the literature examples, it is clear that multifunctional homometallic Co/Ce or pseudoheterometallic Co/La clusters might show properties relevant to sensing, biological, and magnetic properties. Herein, we report two new homometallic and pseudoheterometallic Co and Co–La–based metal clusters along with their SMMs, optical, sensing, and DNA-binding interaction properties.

RESULTS AND DISCUSSIONS

For the synthesis of pseudoheterometallic Co/La metal cluster, we have chosen the simple N,N′-bis(o-vanilindene) ethylenediamine (o-VEDH2) as our ligand system. Here, the presence of two different bonding atoms (O, N) may preferentially choose one above the other between Co and La, and that may result in the formation of our desired product. Accordingly, we have reacted to the readily synthesized (o-VEDH2) with a mixture of La(NO3)3·6H2O and Co(NO3)3·6H2O in methanol in 2:1:1 ratio. Subsequent work and crystallization resulted in the formation of black crystals. Elemental analysis and infrared spectroscopy indicated the formation of the pseudoheterometallic cluster (2). Determination of molecular structure via single crystal X-ray diffraction further confirmed the formation of a pseudoheterometallic Co/La metal cluster. For comparison purposes, we have also decided to synthesize a homometallic Co/Co molecular cluster via a 1:2 reaction of (o-VEDH2) and Co(OAc)2 in methanol. In this case, subsequent workup also led to the isolation of black crystals. Initial characterization utilizing elemental analysis and infrared spectroscopic data indicated the formation of a homometallic bis-Co cluster (1). The molecular geometry of cluster 1 was established via a single crystal X-ray diffraction study.

Structural Description

Complexes 1 and 2 are crystallized in the monoclinic system with P21/c and P21/n. Figure 1 shows molecular structures of 1 and 2. Crystal data and selected bond distances and angles are summarized in Tables 1, 2, respectively. In complex 1, two cobalt atoms are residing in two different electronic environments and surrounded by one o-VED ligand moiety, coordinated through both the oxygen and nitrogen atom, and OAc– anions either through µ2 or µ3 coordination mode. Both o-VED ligand nitrogen (N1 and N2), coordinated with the Co1 atom and o-VED’s two hydroxo-oxygen (O1 and O2) bridged with both the Co1 and Co2. Further, one of the acetate anions (O3 and O4) bridges both the Co atoms in a µ2 coordination mode. The octahedral coordination geometry of the two Co atoms has been achieved by the addition of terminally connected acetate groups via O8 and O10, respectively. Overall, both the metal centers form octahedral geometry with a butterfly core structure. The distance between Co1 and Co2 is 3.043(19) Å, which is relatively long for any covalent interaction among them. Interestingly, the average bond distance from Co1 to its two coordinating nitrogen atoms is 1.866 Å, whereas the average bond distance...
to its four coordinating oxygen atoms is 1.902 Å. Relatively short bond distances between Co-O and Co-N indicate that the Co atom may be present in +4 oxidation state. On the other hand, the average bond distance from Co2 atom to its six coordination oxygen atoms is 2.079 Å. Relatively higher Co-O bond lengths indicate that the Co2 present in a lower oxidation state as compared to Co1. Literature references indicate that in this case, Co2 may present in +2 oxidation state. Interestingly, complex 2 is a double salt of Co2 and La fragments. In complex 2, both the Co atoms are coordinated to two separate o-VED moieties through their oxygen atoms (O1 and O2 to Co1; O3 and O5 to Co2) and nitrogen atoms (N1 and N2 to Co1; N6 and N7 to Co2). In addition to this, both the central cobalt atoms are terminally coordinated to two different ethylene diamine groups through one of the nitrogen of –NH2 groups (N3 to Co1 and N8 to Co2). The octahedral coordination sphere of Co1 is completed via coordination of an additional acetonitrile group (N4), whereas the octahedral coordination of Co2 gets fulfilled via coordination of an –OMe group (O7). The anionic part is the nitrate coordinated lanthanum complex where six nitrate ions are coordinated to a single La atom. The nearest distances between Co1…Co2, Co1…La1, and Co2…La1 were 7.215 (11), 7.335 (10), and 9.497 (11) Å, respectively. The plausible coordination modes of complexes 1 and 2 are shown in Figure 1C.

Bond valence sum (BVS) calculations were carried out to determine the oxidation states of the metal atoms in complexes 1 and 2, and the results are summarized in Table 3 (Ghosh et al.,...
Table 1: Phase data of complexes 1 and 2.

Parameter	Complex 1	Complex 2
Formula	C_{26}H_{34}Co_{2}N_{2}O_{12}	C_{20}H_{66}Co_{2}La_{2}N_{17}O_{33}
Formula weight (g mol⁻¹)	684.41 g/mol	1,645.87 g/mol
Temperature (K)	101 K	100 K
Wavelength	0.7107/3 Å	0.7107/3 Å
Crystal system	Monoclinic	Monoclinic
Space group	P2₁/c (14)	P2₁/n (14)
Unit cell dimensions	a = 8.9157 (14) Å, b = 12.8836 (11) Å, c = 23.066 (4) Å	a = 90.602 (6) Å, b = 8.9157 (14) Å, c = 90.602 (6) Å
Density (g/cm³)	1.58595 g/cm³	1.68808 g/cm³
Radiation type	Mo K	Mo K
Absorption correction	Multiscan absorption	Multiscan absorption
Tmin, Tmax	0.867, 0.898	0.970, 0.975
Theta (max A⁻³)	71.360	27.115
Refinement R² > 2wR² > S	0.1239 (4,271), 0.3538	0.5665 (9,750), 0.1762
No. of reflections	4,562	14,277
No. of parameters	388	912
Data completeness	0.902	0.997

MOF channel with size side of 2.44x6.221 Å along with diagonal side of 5.88x7.601 Å as shown in ESI Supplementary Figure 1.

Fourier Transform Infrared Spectroscopy (FTIR) Analysis

The FTIR spectra of complexes 1 and 2 are displayed in Figure 5, which shows the major peaks, wavenumber, and the interpretation of the possible functional groups. Selected IR data for complex 1 in cm⁻¹: 488 (b) for Co-N, 544 (m) for Co-O, 1,082 (m) for C-O, 1,225 (s) for C-N, 1,555 (m) for C≡N, 1,638 (m) for C≡C, and 3,260 (b) for C-H.

Selected IR data for complex 2 in cm⁻¹: 485 (b) for Co-N, 501 (b) for La-O, 545 (b) for Co-O, 1,082 (m) for C-O, 1,246 (s) for C-N, 1,607 (b) for C≡N, 1,634 (m) for C≡C, and 3,268 (b) for C-H.

Magnetic Study

DC Magnetic Study

The DC magnetic susceptibility of complexes (restrained in eicosane to prevent torqueing) was investigated under 3-300 K temperature and 0.1 T applied field. Figure 6 shows the plot of $\chi_M T$ vs. T for complexes 1 and 2. The observed room temperature value of $\chi_M T$ for compound 1 is 53.7 cm³ mol⁻¹ K⁻¹. This value is the sum of contributions from both the CoII and CoIV in an uncoupled regime. We can calculate the expected contribution to the room temperature momentum from the CoII ion (13.1 cm³ mol⁻¹ K⁻¹) using the following value for CoII (⁴S₄/₂, S = 3/2, L = 0, g = 2). However, the calculation of the contribution from the CoIV ion is not as straightforward. The $\chi_M T$ value appears to be higher than those expected in the spin-only case: CoIV (⁶S₅/₂, S = 5/2, L = 0, g = 2). Upon cooling down to 19 K, it steadily decreases to a value of 40.6 cm³ mol⁻¹ K and down to 2 K, after it increases dramatically up to 56.1 cm³ mol⁻¹ K, which suggests either ferromagnetic interaction or ferromagnetic behavior.

The $\chi_M T$ value in room temperature of complex 2 is -0.03 cm³ mol⁻¹ K⁻¹, which is very low than expected value of non-interacting two CoIV ions (⁶S₅/₂, S = 5/2, L = 0, g = 2) and one LaIII (⁴S₀, S = 0, L = 0, g = 1). The $\chi_M T$ for complex 2 remains constant at a value of approximately -0.03 cm³ mol⁻¹ K at 300 K, down to 55 K; it steadily increases to a value 0.47 cm³ mol⁻¹ K and down to 2 K at 0.34 cm³ mol⁻¹ K with dramatic decrease, which suggests either antiferromagnetic interaction or antiferromagnetic behavior. Total spin (S) and corresponding exchange coupling constant (J) values for complexes 1 and 2 are 4 and 5 and 0.260 cm⁻¹ and 0.043 cm⁻¹ respectively.

AC Magnetic Study

AC susceptibility (in phase and out phase) studies have been conducted for the complexes in between 1.8 and 15 K in a zero applied field with 3.5 Oe driving field to investigate for slow magnetic relaxation, i.e., SMM behavior. The AC susceptibility studies for complexes 1 and 2 have been performed at various frequencies such as 50, 250, and 550 Hz, and a plot of $\chi_M T$ vs. temperature is presented in Figures 7, 8, respectively.

The alternating current (ac) in-phase susceptibility of complexes 1 and 2 is in good agreement with the direct current...
TABLE 2 | Selected bond distances (Å) and bond angles (°) for complexes 1 and 2.

Bond type	Bond length (Å)	Complex 1	Bond type	Bond length (Å)	Complex 2	Bond type	Bond length (Å)
Co1-N2	1.856 (8)		La1-O24	2.585 (4)		Co1-N1	1.878 (5)
Co1-N1	1.876 (8)		La1-O14	2.604 (4)		Co1-N2	1.889 (4)
Co1-O8	1.920 (7)		La1-O29	2.613 (4)		Co1-O2	1.901 (4)
Co1-O2	1.902 (7)		La1-O27	2.625 (4)		Co1-O1	1.916 (4)
Co1-O4	2.004 (8)		La1-O23	2.651 (4)		Co1-N3	1.941 (4)
Co1-O7	2.065 (8)		La1-O26	2.651 (4)		Co1-N4	1.944 (5)
Co1-O5	2.14 (8)		La1-O21	2.652 (4)		Co2-N7	1.876 (4)
Co1-O3	2.062 (8)		La1-O18	2.654 (4)		Co2-N6	1.884 (4)
Co1-O1	2.069 (7)		La1-O20	2.659 (4)		Co2-O6	1.911 (4)
Co1-O2	2.137 (7)		La1-O17	2.663 (4)		Co2-O5	1.914 (4)
Co1-O4	2.137 (7)		La1-O15	2.749 (4)		Co2-O7	1.950 (4)

Bond angle	Bond type	Angle (°)	Bond type	Angle (°)	Bond type	Angle (°)	
N2-Co1-N1	86.0 (4)		N1-Co1-N2	84.7 (2)		O24-La1-O14	175.53 (14)
N2-Co1-O8	95.7 (3)		N1-Co1-O2	93.56 (18)		O24-La1-O29	65.99 (13)
N1-Co1-O8	92.5 (3)		N2-Co1-O2	178.11 (18)		O14-La1-O29	110.64 (13)
N2-Co1-O2	95.5 (3)		N1-Co1-O1	177.3 (2)		O24-La1-O27	68.90 (14)
N1-Co1-O2	178.4 (3)		N1-Co1-O2	84.7 (2)		O14-La1-O27	107.52 (12)
O8-Co1-O2	87.8 (3)		N1-Co1-O2	93.56 (18)		O29-La1-O27	71.89 (14)
N2-Co1-O1	178.0 (3)		N2-Co1-O2	178.11 (18)		O24-La1-O23	48.55 (14)
N1-Co1-O1	94.0 (3)		N1-Co1-O1	177.3 (2)		O14-La1-O23	133.13 (14)
O8-Co1-O1	86.43 (3)		N1-Co1-N2	84.7 (2)		O29-La1-O23	110.73 (14)
O2-Co1-O1	84.4 (3)		N1-Co1-O2	93.56 (18)		O27-La1-O23	66.46 (13)
N2-Co1-O4	87.7 (3)		N2-Co1-O2	178.11 (18)		O24-La1-O26	110.94 (14)
N1-Co1-O4	88.1 (3)		N1-Co1-O1	177.3 (2)		O14-La1-O26	64.72 (12)
O8-Co1-O4	176.6 (3)		N1-Co1-O1	84.7 (2)		O29-La1-O26	70.08 (13)
O2-Co1-O4	91.4 (3)		N1-Co1-O2	93.56 (18)		O27-La1-O26	47.96 (12)
O1-Co1-O4	90.3 (3)		N2-Co1-O2	178.11 (18)		O23-La1-O26	111.21 (13)
O10-Co2-O7	91.7 (3)		N7-Co2-N6	84.88 (19)		O24-La1-O21	71.91 (13)
O10-Co2-O3	88.4 (3)		N7-Co2-O6	177.20 (18)		O14-La1-O21	110.10 (12)
O7-Co2-O6	173.3 (3)		N6-Co2-O6	94.15 (17)		O29-La1-O21	70.17 (14)
O10-Co2-O1	156.9 (3)		N7-Co2-O5	93.15 (17)		O27-La1-O21	133.63 (14)
O7-Co2-O1	91.6 (3)		N6-Co2-O5	177.96 (17)		O23-La1-O21	103.85 (13)
O3-Co2-O1	85.8 (3)		O6-Co2-O5	87.79 (15)		O26-La1-O21	133.96 (13)
O10-Co2-O2	127.0 (3)		N7-Co2-N8	91.12 (18)		O24-La1-O18	117.68 (14)

TABLE 3 | Bond valence sums\(^a\) for complexes 1 and 2\(^b\).

Complex 1	Complex 2			
Co\(_{1}^{IV}\)	Co\(_{2}^{IV}\)	Co\(_{1}^{IV}\)	Co\(_{2}^{IV}\)	La\(_{III}\)
4.13	1.97	4.43	4.14	3.34

\(^{a}\)The oxidation state of a particular atom is the nearest integer to the underlined value.

\(^{b}\)The underlined value is the closest to the charge for which it was calculated.

(dc) data at the same temperature. In the case of complex 1, \(\chi_M T\) value is a sharp decrease from 2 to 5 K, and then it is dramatically increased from 5 to 8 K, reaching the maximum \(\chi_M T\) value of 0.025 cm\(^3\) Kmol\(^{-1}\) (Figure 7) at about 7 K temperature. The frequency-dependent rise in the out-of-phase susceptibility is observed as a peak tail, indicating that 1 displays behavior characteristic of a SMM.

For complex 2, \(\chi_M T\) value is significantly increased with increasing the temperature, having a maximum value of 1.104 cm\(^3\) Kmol\(^{-1}\) at 10 K. Similarly, 1 continues to show a decrease in \(\chi_M T\) with increasing temperatures before a slight frequency-dependent drop is observed at low temperature. Also equal to 1, a frequency-dependent rise in the out-of-phase susceptibility is observed as peak tail, indicating that 2 also displays behavior characteristic of a SMM.
Other Studies

Optical Properties
The optical band gap of the complexes has been computed from Tauc’s equation (1) to explain the conductivity of isolated complexes:

\[(\alpha h\nu)^n = A(h\nu - E_g)\] (1)

where \(\alpha\) denotes the absorption coefficient, and it is calculated by \(\alpha = (2.303 \times \text{absorption})/t\), \(t = \text{cubet thickness (1 cm)}\), \(A\) refers to constant, \(E_g\) indicates the band gap energy, exponent \(n\) depends on the type of transition, and \(h\) denotes the Planck’s constant.

Equation 1 was used to plot \((\alpha h\nu)^2\) vs. \(h\nu\) (Figure 9) from which band gap energy \(E_g\) of the complexes was calculated by extrapolating the linear portion of the curve to
H$_2$O$_2$ Sensing

To determine the sensing capacity of the complexes we have used H$_2$O$_2$ as source materials. We have added 1 mL of 20 mM H$_2$O$_2$ to 3 mL solution of the complexes, and the electronic spectra were recorded at regular intervals. Figure 10A shows that the absorbance of complex 1 decreased with increasing the time in presence H$_2$O$_2$. After 10 min, we have observed that the characteristic peak of complex 1 at 274 nm was disappearing, and the color intensity of complex 1 turns from faded yellow to colorless. This is possible for the presence of Co(II), which should be oxidized to Co(III), and OH could be formed. During the decomposition reactions of H$_2$O$_2$ by complex 1, hydroxyl radicals (OH) are probably formed and acted as an oxidant, which oxidizes Co(II) to Co(III)/Co(IV) and itself produces H$_2$O; as a result, the absorbance of the solution mixture was decreased as observed in the UV-visible spectra. But such kind of H$_2$O$_2$ decomposition was not observed in complex 2, which may be because Co sites already exist in higher (+4) oxidation state, and they do not form radicals. Therefore, complex 2 does not show the H$_2$O$_2$ decomposition properties. The degradation of complex 1 was followed by first-order kinetic reaction, and the rate constant (k) was found to be 1.59 × 10$^{-4}$ S$^{-1}$ shown in Figure 10B.

DNA Binding

Before adding CT-DNA to the complexes, the stability of complex 1, complex 2, and o-VEDH$_2$ in Tris-HCl buffer solution was measured by UV-visible spectroscopy at room temperature for 1 h (each in 150-min interval), and the absorption peaks were not changed. The UV-visible absorption spectra of complexes 1 and 2 are represented in Figures 11A, B, respectively. The absorption peaks at 384 nm of complex 1 and at 291 and 361 nm of complex 2 are assigned for the d–d transition. To study the binding characteristics of complexes 1 and 2 with CT-DNA, CT-DNA was stepwise added to the solution of the complexes in a cuvette separately, and absorption spectra were recorded in each step. In case of complex 1, except slight decrease in absorption, no characteristic change was observed. However, in case of complex 2 upon stepwise addition of 20, 40, 60, and 80 µL of CT-DNA, the characteristic absorption at 291 gradually shifts to 289, 288, 286, and 285 nm (blue shift), whereas the characteristic peak at 361 nm gradually changes to 360, 359, and 358 nm (blue shift), respectively. This change in absorption characteristics indicates some short of interaction between complex 2 and CT-DNA; however, the nature of this interaction is yet to be established. Complex 2 contains nitrate, which could form H-bond with CT-DNA shown in ESI S2, whereas for complex 1, the capability to form H-bond with CT-DNA is probably lower because all O, N, and H atoms of complex 1 should be busy in formation of intramolecular H-bonding.

The absorption spectra of the complex binding to DNA may be through intercalation, revealing that blue shift appears because of strong staking interaction between complex 2 and base pairs of DNA. The binding constant K_b of complex 2 was determined by the equation (Fu et al., 2005) as follows:

$$[\text{DNA}] \times (\varepsilon_a - \varepsilon_f)^{-1} = [\text{DNA}] \times (\varepsilon_b - \varepsilon_i)^{-1} + K_b^{-1} \times (\varepsilon_b - \varepsilon_i)^{-1}$$

where ε_a, ε_f, and ε_b were denoted as extinction coefficient of the complex, CT-DNA, and bound complexes, respectively. The binding constant of complex 2 was 1.22 × 108 M$^{-1}$ shown in Table 5. Therefore, binding constant values lies within the range of a characteristic of the CT-DNA binding by complexes through intercalative mode (Wolfe and Shimer, 1987; Patel et al., 2011).

CONCLUSION

In the present work, we have successfully synthesized two novel Co$_{12}$Co$_{12}$ and Co$_{16}$La$_{10}$ complexes utilizing o-VEDH$_2$ as Schiff base ligand from two different reaction conditions and investigated their SMMs properties, as well as multifunction activities, such as H$_2$O$_2$ sensors and DNA binders. In solid state, both the complexes show the formation of MOFs structures. Complexes 1 and 2 have optical band gap energy of 3.7 and 3.03 eV, which indicates that these may have semiconductor properties. Interestingly, it is also established that complex 1 has H$_2$O$_2$-sensing properties with a rate constant $(k) = 1.59 \times 10^{-4}$ s$^{-1}$, whereas complex 2 is bound to CT-DNA by intercalation binding mode with binding constant $k_b = 1.22 \times 10^5$ M$^{-1}$.

EXPERIMENTAL

Materials and Methods

All the reagent-grade chemicals were purchased from Sigma–Aldrich, India, and were used as received without further purification. All the reaction solvents were also used as received.
FIGURE 4 | Catenation 2D layers MOF (A) for complex 1 and (B) for complex 2 (central projection, along 100-a axis) in ball-and-stick model.
Syntheses
Schiff Base Ligand
The Schiff base ligand N,N’-bis(o-vanillinidene) ethylenediamine (o-VEDH₂) was synthesized in the following procedure (Scheme 1) and also reported in our earlier publication (Ghosh et al., 2019b):

\[
[\text{Co}^{II}\text{Co}^{IV}(\text{o-VED})(\text{OAc})_2(\mu_2-\text{OAc})(\text{OMe})]\cdot\text{MeOH} \quad (1)
\]

Co(acac)₂ (0.487g, 3 mmol) was dissolved in 10 mL methanol followed by dropwise addition of o-VEDH₂ (0.305g, 1 mmol) (separate solution in MeCN) and stirred for more than 2 h until a clear solution was obtained. Finally, the resulting solution was filtered and divided into two parts. One part of the black color filtrate was kept for slow evaporation, and another part was layered over diethyl ether. In a week, black single crystals were obtained in both the conditions in high yield. The single crystals were separated out from the mother solution and were washed with diethyl ether (two to three times). The analytically pure compound was obtained after drying under vacuum.

Yield: 33% (60 mg). Anal. Calcd. for C_{26}H_{34}Co₂N₂O₁₂ (1):
C, 28.32; H, 5.12; N, 3.94%. Found: C, 27.91; H, 4.89; N, 3.88%. Selected IR data in cm⁻¹: 488 (b), 544 (m), 1,082 (m), 1,225 (s), 1,555 (s), 1,638 (m), and 3,260 (b) (s = strong, m = medium, b = broad). Detailed discussion of IR spectrum of 1 is provided in Figure 5A.

\[
[\text{Co}^{IV}_2(\text{o-VED})_2(\text{en})_2(\text{NCCH}_3)(\text{OCH}_3)]
\]

\[
[\text{La(NO}_3]_6(\text{NO}_3^-)\cdot2\text{MeOH}·\text{MeCN}·\text{H}_2\text{O} \quad (2)
\]

Solution of La(NO₃)₃·6H₂O (0.054g, 1 mmol) in MeOH (10 mL) was added dropwise to a stirred solution of o-VEDH₂ (0.081g, 2
mmol) in MeCN (10 mL). The reaction mixture was kept stirring, and solid Co(NO₃)₂·6H₂O (0.037g, 1 mmol) was added after 15 min. Further, solid iodine (0.063 g, 2 mmol) was added to the reaction mixture and was vigorously stirred for additional 2 h to obtain a black color solution. The black color solution was filtered, and the filtrate was divided into two parts. One part of the filtrate was kept for slow evaporation, and the other part was layered over CH₃Cl. In a week, high-quality black single crystals were obtained from the CH₃Cl layered solution in high yield. The crystals were separated out and were washed with diethyl ether (two to three times) before drying under vacuum.

Yield: 20% (1.2 mg). Anal. Calcd. for C₄₇H₅₈Co₂LaN₁₇O₃₃(2): C, 28.32; H, 3.55; N, 14.37%. Found: C, 28.34; H, 3.52; N, 14.29%. Selected IR data in cm⁻¹: 485 (b), 501 (b), 545 (b), 1,082 (m), 1,246 (s), 1,607 (b), 1,634 (m), and 3,268 (b) [s = strong, m = medium, b = broad]. Detailed discussion of IR spectrum of 2 is provided in Figure 5B.

Physical Measurements
The ¹H NMR spectra of Schiff base ligand were recorded in a JEOL 400-MHz spectrophotometer. Infrared spectra were recorded in a PerkinElmer FTIR spectrometer in the solid state (KBr pellets) in the 400- to 4,000-cm⁻¹ range. Elemental analyses (C, H, and N) and X-ray crystallography were performed through central facilities at IACS, Kolkata. Shimadzu UV-1800 spectrophotometer was used to record the electronic spectrum of complexes. Quantum Design MPMS-XL SQUID magnetometer (IISER Bhopal) equipped with a 7-T magnet and operating in the 1.8- to 300-K range was used on vacuum dried solids to collect variable-temperature dc and ac magnetic susceptibility data. Samples were embedded in solid eicosane in a gel capsule to prevent torqueing. Diamagnetic and background contributions from the eicosane and gel capsule were measured as a blank and subtracted from the susceptibility. Magnetization vs. field and temperature data was fit using the program MAGNET (Davidson, 1999). Pascal’s
constants (Weast and Astle, 1984) were used to estimate the diamagnetic correction, which was subtracted from the experimental susceptibility to give the molar paramagnetic susceptibility (χ_M).

Crystallographic Data Collection and Refinement

On the Bruker SMART APEX CCD diffractometer with SMART/SANTI programming, a single-precious-stone X-beam data were collected for complexes 1 and 2 at 293 K/100 K (Sheldrick, 2008). MoKα graphite monochromatized (0.71073 Å) radiation was used for the collection of intensity information at 100 K. A coordinated strategy using SHELXS-2013, which was incorporated into WinGX, understood the structures (Farrugia, 2012, 2013; Sheldrick, 2013) SADABS was associated with exact corrections to the absorption (Sheldrick, 1996). Anisotropic displacement coefficient was used to refine all non-hydrogen particles. The particles of hydrogen carbon were integrated into geometric positions and given warm parameters 1, 2 those of the molecule to which they were attached. An initial search for reciprocal space exposed that both complexes are crystallized in monoclinic phase with P21/c and P21/n space group.

The consequences of the precious crystal data and structure refined information of complexes 1 and 2 are available in Table 1, respectively.

Hydrogen Peroxide Sensing Capacity of the Complexes

The H$_2$O$_2$ detection protocol is already discussed in our previous article (Bera and Raj, 2013; Ghosh et al., 2019b). Initially, complexes were dissolved in CH$_3$CN to obtain a
suitable dilute solution for the initial of UV-visible spectrum. In 3 mL of the above solution, 1 mL 20 mM H$_2$O$_2$ was added. Spectra were recorded at regular intervals in a UV-visible spectrophotometer.

DNA-Binding Study

CT-DNA was dissolved in Tris-HCl buffer (pH 7.25) solution, and its purity was confirmed from the obtained absorbance ratio of A260/A280 in the range of 1.8 to 1.9.
TABLE 5: Absorption titration data of complexes 1 and 2.

Absorption	[DNA]/(ε_a - ε_f) x 10^2 M^2 cm	[DNA] x 10^4 M	K_0 (M^{-1})
1.063	0.000	0.000	1.217 x 10^5 M^{-1}
1.038	0.861	4.226	
0.988	1.722	8.451	
0.937	3.446	16.909	
0.870	6.889	33.806	
0.686	13.779	67.611	

SCHEME 1: Preparation of Schiff base ligand N,N'-bis(o-vanillinidene)ethylenediamine (o-VEDH) (Ghosh et al., 2019b).

Metal complexes 1 and 2 were dissolved, and absorption titration experiments were performed using the increased concentration of CT-DNA with the constant amount of the metal complex.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

Synthesis and applications were performed by MKG. The crystallography of the complexes was performed by BJ. The manuscript was designed and written by MKG and TKG. All the authors have given approval to the final version of the manuscript.

FUNDING

This work was fully supported by Madhya Pradesh Council of Science & Technology, Govt. of India, Madhya Pradesh (File...
ACKNOWLEDGMENTS

Authors are thankful to IACS Kolkata and IISER Bhopal, Madhya Pradesh, India for measurement of single crystal X-ray crystallography and Squid measurement. Author's also thankful to Dr. Hari Singh, Gour University (Central University), Madhya Pradesh, India for measurement of 1H NMR.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2020.571223/full#supplementary-material

REFERENCES

Ahmed, A. H., Hassan, A. M., Gumaa, H. A., Mohamed, B. H., Eraky, A. M., and Omran, A. A. (2016). Copper (II)-oxalyldihydrazones complexes: physico-chemical studies: energy band gap and inhibition evaluation of free oxaloyldihydrazones toward the corrosion of copper metal in acidic medium. Arab. J. Chem. 12, 4287–4302. doi: 10.1016/j.arabjc.2015.06.015

Alghool, S., El-Halim, H. F. A., El-Sadek, M. A., Yahiya, I. S., and Wahab, L. A. (2013). Synthesis, thermal characterization, antimicrobial activity of lanthanum, cerium, thorium complexes of amino acid Schiff base ligand. J. Ther. Anal. Calorimetry 112, 671–681. doi: 10.1007/s10973-012-2628-4

Bera, R. K., and Raj, C. R. (2013). A facile photochemical route for the synthesis of triangular Ag nanoplates and colorimetric sensing of H_2O_2. J. Photochem. Photobiol A: Chem. 270, 1–6. doi: 10.1016/j.jphotochem.2013.07.005

Bogani, L., and Wernsdorfer, W. (2010). “Molecular spintronic using single-molecule magnets,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals in Nanoscience and Technology: A Collection of Reviews from Nature Journals. 45, 849–854. doi: 10.1107/S0021889812029111

Brown, I. D., and Altermatt, D. (1985). Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta. Crystallogr. Sect. B. 41, 244–247. doi: 10.1107/S0108768185002603

Chelebaeva, E., Larionova, J., Guarì, Y., Ferreira, R. A., Carlos, L. D., Paz, F. A. A., et al. (2009). Luminescent and magnetic cyano-bridged coordination polymers containing 4d– 4f ions: toward multifunctional materials. Inorg. Chem. 48, 5983–5995. doi: 10.1021/ic901376q

Clough, A. J., Skelton, J. M., Downes, C. A., de la Rosa, A. A., Yoo, J. W., Aron, W., et al. (2017). Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework. J. Am. Chem. Soc. 139, 10863–10867. doi: 10.1021/jacs.7b05742

Davidson, E. R. (1999). Indiana University: Bloomington, IN.

Ding, Y. S., Chilton, N. F., Winpenny, R. E., and Zheng, Y. Z. (2016). On Davidson, E. R. (1999). Indiana University: Bloomington, IN. Gatteschi, D., and Sessoli, R. (2003). Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297. doi: 10.1002/anie.200309099

Ghosh, M. K., Chandraker, S. K., Shukla, R., Mandal, M., Mandal, V., and Dhar, T. K. (2019a). Molecular interaction, antimicrobial, antioxidant, cytoxic and magnetic properties of Mn12 benzoate. J. Cluster Sci. 31, 575–589. doi: 10.1007/s10876-019-01633-5

Ghosh, M. K., Pathak, S., and Dhar, T. K. (2019b). Synthesis of two mononuclear Schiff base metal (M= Fe, Cu) complexes: MOF structure, dye degradation, H_2O_2 sensing, and DNA binding property. ACS Omega 4, 16068–16079. doi: 10.1021/acscemag.9b02628

Gupta, S. K., Rajeshkumar, T., Rajaraman, G., and Murugavel, R. (2016). An air-stable Dy (III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 7, 5181–5191. doi: 10.1039/C6SC02799J

Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. Y., and Kaizu, Y. (2003). Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695. doi: 10.1021/ja029629n

King, P., Wernsdorfer, W., Abboud, K. A., and Christou, G. (2005). Single-molecule magnets: a reductive aggregation route to new types of Mn$_2$ complexes. Inorg. Chem. 44, 8659–8669. doi: 10.1021/ic051150j

Koo, Won-Tae, Choi, Seon-Jin, Kim, Sang-Joon, Jang, Il-Soo, and Tuller, H. L.; Kim, Il-Doo. (2016). Heterogeneous sensitization of metal–organic framework driven metal/metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138, 13431–13437. doi: 10.1021/jacs.6b09167

Kumar, K., Stępińska, O., Chorazy, S., Nakabayashi, K., Skiełucka, B., Ohkoshi, S.-I. (2019). Effect of noble metals on luminescence and single-molecule magnet behavior in the cyanido-bridged Ln–Ag and Ln–Au (Ln = Dy, Yb, Er) complexes. Inorg. Chem. 58, 5677–5678. doi: 10.1021/acs.inorgchem.8b03634

Li, H. G., Yang, Z. Y., Wang, B. D., and Wu, J. C. (2010). Synthesis, crystal structure, antioxidant and DNA-binding properties of the Ln complexes with 1-phenyl-3-methyl-5-hydroxyprazole-4-carbaldhyde (benzoyl) hydrazone. J. Organomet. Chem. 693, 415–422. doi: 10.1016/j.jorganchem.2009.10.032

Long, J. (2019). Luminescent Schiff-base lanthanide single-molecule magnets: the association between optical and magnetic properties. Front. Chem. 7:63. doi: 10.3389/fchem.2019.00063

Iv, J., Liu, T., Cai, S., Wang, X., Liu, L., and Wang, Y. (2006). Synthesis, structure and biological activity of cobalt (II) and copper (II) complexes of valine-derived Schiff bases. J. Inorg. Biochem. 100, 1888-1896. doi: 10.1016/j.jinorgbio.2006.07.014

Mandal, A., Dasgupta, S., Ganguly, S., Baulá, A., Frontera, A., and Das, D. (2017). Cooperative influence of pseudohalides and ligand backbone of Schiff-bases on nuclearity and stereochemistry of cobalt (III) complexes: experimental and theoretical investigation. Dalton Trans. 46, 15257–15268. doi: 10.1039/C7DT03040A

Modak, R., Sikdar, Y., Thuijs, A. E., Christou, G., and Goswami, S. (2016). CoII$_4$, CoII$_7$, and a series of CoII$_2$LnIII (LnIII = Yb, Er) complexes. J. Inorg. Biochem. 55, 10192–10202. doi: 10.1016/j.inorgchem.2006.07.014

Montgomery, C. P., Murray, B. S., New, E. J., Pal, R., and Parker, D. (2009). Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc. Chem. Res. 42, 925–937. doi: 10.1021/ar00174z

Ghosh et al. A Co$_2$ Single Molecule Magnets
Pages, B. J., Ang, D. L., Wright, E. P., and Aldrich-Wright, J. R. (2015). Metal complex interactions with DNA. *Dalton Trans.*, 44, 3505–3526. doi: 10.1039/C4DT02700K

Patel, M. N., Gandhi, D. S., and Parmar, P. A. (2011). Synthesis, biological aspects and SOD mimetic activity of square pyramidal copper (II) complexes with the 3rd generation quinoline drug sparfloxacin and phenanthrolone derivatives. *Inorg. Chem. Commun.*, 14, 128–132. doi: 10.1016/j.inoche.2010.10.003

Pathak, S., Ghosh, M. K., and Ghori, T. K. (2018). Luminiscence, dye degradation and DNA binding properties of a dinuclear nona-coordinated Y(III) complex. *Chem. Sci.* 3, 13501–13506. doi: 10.1039/s10.18.10182

Pathak, S., Ghosh, M. K., Mandal, M., Mandal, V., Bhattacharya, A., and Ghori, T. K. (2019). Synthesis of a new acetate bridged Cu(ii) building block generated 1D polymer and studies on structural, magnetic, antibacterial and anticancer properties. *New J. Chem.*, 43, 2019–2029. doi: 10.1039/C8NJ04937H

Qi, X., Tian, H., Dang, X., Fan, Y., Zhang and Huimin Zhao (2019). A bimetallic Co/Mn metal-organic-framework with a synergetic catalytic effect as peroxidase for the colorimetric detection of H$_2$O$_2$. *Anal. Methods* 11, 1111–1124. doi: 10.1039/C6MA02514B

Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F., and Marzano, C. (2013). Advances in copper complexes as anticancer agents. *Chem. Rev.* 114, 815–862. doi: 10.1021/cr400135x

Sengupta, S. K., Pandey, O. P., Srivastava, B. K., and Sharma, V. K. (1998). Synthesis, structural and biochemical aspects of titanocene and zirconocene chelates of acetylferrocenylthiosemicarbazones. *Transition Met. Chem.* 23, 349–353. doi: 10.1023/A:1009696111435

Sessoli, R., Gatteschi, D., Caneschi, A., and Novak, M. A. (1993a). Magnetic bistability in a metal-iron cluster. *Nature* 365:141. doi: 10.1038/365141a0

Shahabadi, N., Kashanian, S., and Darabi, F. (2010). DNA binding and DNA cleavage studies of a water soluble cobalt (II) complex containing dinitrogen Schiff base ligand: the effect of metal on the mode of binding. *Eur. J. Med. Chem.* 45, 4239–4245. doi: 10.1016/j.ejmech.2010.06.020

Sheldrick, G. M. (1996). 2010 SADABS. Göttingen: University of Göttingen.

Sheldrick, G. M. (2008). A short history of SHELX. *Acta Crystallogr. Sect. A.* 64, 112–122. doi: 10.1107/S0001889807043930

Sheldrick, G. M. (2013). SHELXL2013. Germany: University of Göttingen.

Tang, J., and Zhang, P. (2015). *Labanthine Single Molecule Magnets*, Berlin: Springer. 41-90. doi: 10.1007/978-3-662-46999-6_2

Tasiopoulos, A. J., Vinslava, A., Wernsdorfer, W., Abboud, K. A., and Christou, G. (2014). Study of structure and spectral characteristics of the Zinc(II) and 8-hydroxyquinoline Schiff base and β-diketone: magnetic properties and near-infrared luminescence. *Dalton Trans.* 48, 1392-1403, (b) Tang, Y., Feng, Y., Gan, X., Tan, M., Yu K. (1996). Preparation and structure of [bis[8-(quinoxyloxy)ethyl]ether: H$_3$O$_2$[La(NO$_3$)$_3$]: A hexanitran lanthanum complex of a hydronium ion pod complexes. *Polyhedron* (1996), 15, 3219–3223. doi: 10.1016/S0277-5387(00)03652-3

Yang, L., Xu, C., Ye, W., and Liu, W. (2015). An electrochemical sensor for H$_2$O$_2$ based on a new Co-metal-organic framework modified electrode. *Sens. Actuators B Chem.* 215, 489–496. doi: 10.1016/j.snb.2015.03.104

Yang, Z. Y., Wang, B. D., and Li, Y. H. (2006). Study on DNA-binding properties and cytotoxicity in L1210 of La(III) complex with PMBP-ionicotinolylhydrazide. *J. Organomet. Chem.* 691, 4159–4166. doi: 10.1016/j.jorganchem.2006.06.002

Yang, Z. Y., Yang, R. D., Li, F. S., and Yu, K. B. (2000). Crystal structure and antitumor activity of some rare earth metal complexes with Schiff base. *Polyhedron* 19, 2599–2604. doi: 10.1016/S0277-5387(00)03652-3

Yuan, S., Qin, J.-S., Lollar, C. T., and Zhou, H.-C. (2018). Stable metal–organic frameworks with group 4 metals: current status and trends. *ACS Cent. Sci.* 4, 440–450. doi: 10.1021/acscentsci.8b00073

Zeng, H. H., Qiu, W. B., Zhang, L., Liang, R. P., and Qiu, J. D. (2016). Lanthanide coordination polymer nanoparticles as an excellent artificial peroxidase for hydrogen peroxide detection. *Anal. Chem.* 88, 6342–6348. doi: 10.1021/acs.analchem.6b00630

Zeng, H. H., Zhang, L., Rong, L. Q., Liang, R. P., and Qiu, J. D. (2017). A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection. *Biosens. Bioelectron.* 89, 721–727. doi: 10.1016/j.bios.2016.11.020

Zhang, T., Manna, K., and Lin, W. (2016). Metal–organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. *J. Am. Chem. Soc.* 138, 3241–3249. doi: 10.1021/jacs.6b00849

Zhao, W., Wang, Z., and Li, Q. (2012). Fabrication of a nichrome electrode coated with silver microwafers, and its application to sensing hydrogen peroxide. *Anal. Methods.* 4, 1105–1109. doi: 10.1039/c2ay05904e

Zuber, G., Quada, J. C., and Hecht, S. M. (1998). Sequence selective cleavage of a DNA octanucleotide by chlorinated bithiazole and bleomycins. *J. Am. Chem. Soc.* 120, 9368–9369. doi: 10.1021/ja981937e

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ghosh, Jana and Ghorai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.