Augmented Annotation of the *Schizosaccharomyces pombe* Genome Reveals Additional Genes Required for Growth and Viability

Danny A. Bitton,* Valerie Wood,† Paul J. Scutt,* Agnes Grallert,‡ Tim Yates,* Duncan L. Smith,§ Iain M. Hagan; and Crispin J. Miller*1

*Cancer Research UK Applied Computational Biology and Bioinformatics Group, †Cancer Research UK Cell Division Group, §Biological Mass Spectrometry Facility, Cancer Research UK, Paterson Institute for Cancer Research, The University of Manchester, Christie Hospital Site, Manchester M20 4BX, United Kingdom and ‡Cancer Research UK, London Research Institute, London WC2A 3PX, United Kingdom

Manuscript received September 23, 2010
Accepted for publication January 15, 2011

ABSTRACT

Genome annotation is a synthesis of computational prediction and experimental evidence. Small genes are notoriously difficult to detect because the patterns used to identify them are often indistinguishable from chance occurrences, leading to an arbitrary cutoff threshold for the length of a protein-coding gene identified solely by *in silico* analysis. We report a systematic reappraisal of the *Schizosaccharomyces pombe* genome that ignores thresholds. A complete six-frame translation was compared to a proteome data set, the Pfam domain database, and the genomes of six other fungi. Thirty-nine novel loci were identified, RT-PCR and RNA-Seq confirmed transcription at 38 loci; 33 novel gene structures were delineated by 5′ and 3′ RACE. Expression levels of 14 transcripts fluctuated during meiosis. Translational evidence for 10 genes, evolutionary conservation data supporting 35 predictions, and distinct phenotypes upon ORF deletion (one essential, four slow-growth, two delayed-division phenotypes) suggest that all 39 predictions encode functional proteins. The popularity of *S. pombe* as a model organism suggests that this augmented annotation will be of interest in diverse areas of molecular and cellular biology, while the generality of the approach suggests widespread applicability to other genomes.

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.110.123497/DC1.

†Corresponding author: Applied Computational Biology and Bioinformatics Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Rd., Manchester M20 4BX, United Kingdom. E-mail: cmiller@picr.man.ac.uk.

*Copyright © 2011 by the Genetics Society of America
DOI: 10.1534/genetics.110.123497

Genetics 187: 1207–1217 (April 2011)

THE fission yeast *Schizosaccharomyces pombe* is a widely exploited model organism that shares many critical pathways with *Homo sapiens*. It undergoes a limited, yet highly defined, differentiation program in its sexual cycle. The initial genome annotation (Wood et al. 2002) has been refined to a complement of 5027 protein-coding genes (Dutrow et al. 2008; Wilhelm et al. 2008; Quintales et al. 2010).

Since small protein-coding genes are notoriously difficult to detect against a random background of short open reading frames (ORFs), pioneering studies in *Saccharomyces cerevisiae* set a preliminary cutoff threshold of 100 amino acids for the annotation of a small protein-coding gene in the absence of other supporting evidence (reviewed in Fisk et al. 2006); any ORFs smaller than this 100-amino-acid threshold were ignored. The same threshold was applied in the first full annotation of the fission yeast genome (Wood et al. 2002). However, the subsequent discovery of an additional 63 small protein-coding genes combines with the realization that 94% of the genome is transcribed (Dutrow et al. 2008; Wilhelm et al. 2008; Quintales et al. 2010) to raise the distinct possibility that further small protein-coding genes await discovery.

A number of pipelines have successfully exploited high-throughput tandem mass-spectrometry (MS/MS) data to predict novel proteins in *H. sapiens* (Fermin et al. 2006; Tanner et al. 2007; Bitton et al. 2010), *Caenorhabditis elegans* (Schrömpf et al. 2009), *Drosophila melanogaster* (Schrömpf et al. 2009), Arabidopsis thaliana (Castellana et al. 2008), and bacteria (Gupta et al. 2007). We have therefore applied a pipeline that integrates this proteogenomics approach (Bitton et al. 2010) with comparative genomics and genome-wide domain prediction to augment the current annotation of *S. pombe*. Exploitation of data sets from vegetative and sexually differentiating cultures predicts an additional 0.8% expansion in the set of protein-coding genes. Complementary functional studies suggest that most genes are likely to represent *bona fide* protein-coding genes.

MATERIALS AND METHODS

Fission yeast techniques: Standard fission yeast and molecular biology methods were used throughout (Moreno et al. 1991). PCR deletion was done as described in Bahler et al.
(1998), using pFA8a natMX6 as a template (Hentges et al. 2005). For complementation of deletion strains, each predicted ORF was amplified from genomic DNA with an NdeI site at the initiator methionine codon and BamHI after the stop codon. This NdeI/BamHI fragment was cloned into pREP1, pREP41, and pREP81 vectors (Basi et al. 1993; Maundrell 1993) in which the LEU2 marker had been replaced with hygβ (A. Grallert and I. M. Hagan, unpublished results). Wild-type asynchronous haploid (972 h) and pat1.114 [pat1.114/pat1.114 ade6.M210/ade6.M216 h/h] diploid cells were grown in EMM2 media at 25°C, the pat1.114 diploids were transferred to 32°C to induce meiosis, and samples were taken before (0 hr) and 3, 5, and 10 hr after the temperature shift. Standard trichloroacetic acid-precipitated samples were run on 7, 10, and 12% acrylamide gels. The gels were cut into ~80 slices. To minimize redundancy between data sets, only the bottom 40 slices from the 7% gel, all slices from the 10% gel, and the top 40 slices from the 12% gel were subjected to liquid chromatography (LC)-MS/MS analysis. Calculfluor/DAPI staining and antitubulin/β-actin immunofluorescence staining were as described previously (Marks and Hyams 1985; Hagan and Yanagida 1995).

Gel slice destaining and washing: Coomassie blue-stained gel slices were destained with 5 × 20-min changes of 1 ml 200 mM ammonium bicarbonate and 40% (v/v) acetonitrile. Gel slices were dehydrated by the addition of 500 μl acetonitrile for 15 min followed by rehydration in 500 μl of water for a further 15 min. This dehydation–rehydration procedure was performed a total of three times followed by a final dehydration in acetonitrile.

In-gel tryptic digestion: Gel slices were rehydrated in 25 μl of 50 mM ammonium bicarbonate, 9% (v/v) acetonitrile, and 20 ng/μl sequencing grade trypsin (Sigma-Aldrich) for 20 min. The slices were then covered in 100 μl of 50 mM ammonium bicarbonate and 9% (v/v) acetonitrile and incubated at 37°C for 18 hr. Following digestion, samples were acidified by the addition of 10 μl of 10% (v/v) formic acid. The isolated supernatant was dried in a vacuum centrifuge at 40°C for 30 min before the peptides were resuspended in 20 μl of water and 0.1% trifluoroacetic acid (Sigma-Aldrich) prior to LC-MS/MS analysis.

Nano liquid chromatography-MS/MS analysis: Peptides were separated utilizing a Nano-Acquity UPLC system (Waters) as detailed below. Each sample was loaded onto a Waters C18 Symmetry trap column [180 μm internal diameter (ID), 5 μm 5 cm] in water, 0.1% (v/v) acetonitrile, and 0.1% (v/v) formic acid at a flow rate of 7 μl/min for 5 min. Peptides were then separated using a Waters NanoAcuity BEH C18 column (75 μm ID, 1.7 μm, 25 cm) with a gradient of 1–40% (v/v) of acetonitrile at 0.1% formic acid over 15 min at a flow rate of 400 nl/min. The nano liquid chromatography (nLC) effluent was sprayed directly into the LTQ-Orbitrap XL mass spectrometer aided by the Proxeon nano source at a voltage offset of 2.5 kV. The mass spectrometer was operated in parallel data-dependent mode where the MS survey scan was performed at a nominal resolution of 60,000 [at mass/charge (m/z) 400] in the Orbitrap analyzer in an m/z range of 400–2000. The top six multiply charged precursors were selected for collision induced dissociation (CID) in the LTQ at a normalized collision energy of 35%. Dynamic exclusion was enabled to prevent the selection of a formally targeted ion for a total of 20 sec.

Proteogenomics: The LC-MS/MS analysis of the six samples [pat1.114 diploids cultures, before (0 hr), 3, 5, and 10 hr after shift and asynchronous wild-type haploid (972 h)] generated six independent data sets (i.e., 7%, wild type; 7%, pat1.114, etc.). The S. pombe genome was downloaded from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov) and translated in all possible six frames as described in Bitton et al. (2010), producing 783,342 putative protein sequences. Each acquired data set (supporting information, Table S6) was searched independently once against the S. pombe six-frame database and once against the standard GeneDB protein database. Searches were performed using ProteinPilot (Shilov et al. 2007) [version 3.0, settings: Search—Rapid; Instrument—OrbiFT MS (1–3 ppm), LTQ MS/MS; Enzyme—Trypsin; FDR Analysis—Yes] against the target database concatenated to its decoy database counterpart (Tang et al. 2008). False discovery rates (FDRs) were calculated as described (Kall et al. 2008; Jones et al. 2009; Bitton et al. 2010) (Table S7). Only peptides with confidence levels >95% were considered. Peptide sequences obtained from the six-frame and standard searches were compared using the R statistical package (Gentleman et al. 2004). A second series of database searches was then conducted (settings as before) against a modified GeneDB database that includes all GeneDB database entries (5027), putative novel sequences (219), and all decoy hits reported by ProteinPilot (17,150, regardless of their assigned confidence). The 167 six-frame peptides that were re-identified with >95% confidence (FDR < 2%) were mapped back to their genomic coordinates (Perl, GeneDB annotation data). Each of these putative novel loci was then subjected to manual curation. (Raw proteomics data are available upon request.)

Comparative genomics: Six fungal genomes (Schizosaccharomyces japonicus, Schizosaccharomyces octosporus, Schizosaccharomyces cryophilus, S. cervisiae, Aspergillus fumigatus, and Neurospora crassa) were downloaded from the Fungal Genome Initiative webpage at the Broad Institute (http://www.broadinstitute.org/science/projects/fungal-genome-initiative). These and the S. pombe genome were translated in all possible reading frames [translations were carried out as described in Bitton et al. (2010), with the exception that proteins not containing arginine (R) or lysine (K) were retained]. Database sizes can be found in Table S5. Each protein database was then compared to the S. pombe six-frame database using InParanoid (Remm et al. 2001) (version 3.0, default settings plus bootstrapping). Ortholog and in-paralogue lists were compared (Table S5 and Figure 1) and mapped back to their genomic coordinates. Only intergenic orthologs/in-paralogues were retained. Each fungal database was also permuted and compared to the nonpermuted S. pombe database, as before, to evaluate the false-positive rate. Each of the putative intergenic ORFs was then subjected to manual curation.

Pfam scan: The S. pombe six-frame database was scanned using Pfasm software (Finn et al. 2010) (pfam_scan.pl) installed locally (available at ftp://ftp.sanger.ac.uk/pub/databases/). Domains were back to their genomic location and subjected to manual curation, as before.

RNA extraction: Total RNA was extracted from S. pombe cultures described previously (Lyne et al. 2003), and quality was determined using an Agilent 2100 Bioanalyzer.

Reverse transcription PCR: Following extraction and purification of total RNA, genomic DNA was digested using RNase-free DNase (Qiagen). Reverse transcription was performed using Taqman reverse transcription reagents (Applied Biosystems). The reaction mixture was incubated at 25°C for 10 min, 48°C for 30 min, and 95°C for 5 min. PCR was performed using 0.4 μM of each primer, 10 ng cDNA, 12.5 μl Jumpstart RedTaq PCR mastermix (Sigma), and RNase-free water to a volume of 25 μl. Cycling conditions included denaturation at 94°C for 5 min, 30 cycles of (1) denaturation at 94°C for 30 sec, (2) annealing at 60°C for 30 sec, and (3) extension at 72°C for 2 min, finishing with a final extension of 72°C for 5 min. PCR fragments were resolved using agarose gel electrophoresis, gel-purified (Qiagen), and TA-cloned into the pGEM-T Easy vector (Promega). Amplified vectors were subsequently sequenced for identification.
Table 1

Novel genes detected by the pipeline

Method	GeneDB accession	Assigned gene name	Description/product	Transcriptional evidence (PCR/RNASeq)	Deletion phenotype
CG	SPAC222.19	tam1	Sequence orphan	Yes/Yes	NA
CG	SPAC17G8.15	new1	Histone-like transcription factor	Yes/Yes	Slow growth
CG	SPAC1805.18	new2	Sequence orphan	Yes/Yes	NA
CG	SPAC1486.11	new3, fmc1	Mitochondrial matrix protein	Yes/Yes	NA
CG	SPAC4F10.22	new2	Sequence orphan	Yes/Yes	NA
CG	SPAC1B3.21	tam3	Mitochondrial conserved protein	Yes/Yes	NA
CG	SPRRNA.56	NA	rRNA	Yes/Yes	NA
CG	SPAC3F5.08	new6, vts1	Vps20-associated protein	Yes/Yes	NA
CG	SPAC912.19	new7, rsa3	Ribosome assembly protein RsA3	Yes/Yes	NA
PG	SPAC016.18	tam5	Sequence orphan	Yes/Yes	NA
CG	SPAC286.10	new9	Sequence orphan	Yes/Yes	NA
CG	SPAC17G12.17	new10	Enhancer of rudimentary homolog	Yes/Yes	NA
PG	SPAC23A1.20	new11	Pseudogene, truncated protein, no N-term methionine	Yes/Yes	NA
CG	SPAC17F.14	tam6	Mitochondrial conserved protein	Yes/Yes	NA
CG	SPAC4D7.15	new12	Sequence orphan	Yes/Yes	NA
CG	SPAC4D7.14	new13	Conserved fungal protein	Yes/Yes	NA
CG	SPBC839.20	new4	Dubious	No/No	NA
CG	SPBC0479.23	tam7	Conserved fungal protein	Yes/Yes	Slow growth
CG & PF	SPBC912.23	new5	Mitochondrial protein, ribosomal subunit L35 related	Yes/Yes	NA
CG	SPBC914.18	tam10	Sequence orphan	Yes/Yes	NA
CG	SPBC1711.18	tam9	Mitochondrial ribosomal protein subunit L36, MrpL36/YmL36	Yes/Yes	NA
CG	SPBC24G6.13	new6	Conserved eukaryotic protein	Yes/Yes	NA
CG	SPBC24F12.16	new7	Sequence orphan	Yes/Yes	NA
CG	SPBC30D10.21	new8	Mitochondrial protein	Yes/Yes	NA
CG	SPBC887.22	new9	Signal peptidase complex subunit Spcl	No/Yes	NA
CG	SPBC839.19	new20	Conserved eukaryotic protein, broadly conserved (to Metazoa)	Yes/Yes	NA
CG and PF	SPBC330.16	new21, ksh1	DUF1242 family protein	Yes/Yes	Inviable
CG and PG	SPBC14G8.19	tam10	Sequence orphan	Yes/Yes	NA
PG	SPBC17D1.17	tam11	Sequence orphan	Yes/Yes	NA
CG	SPBC1105.19	tam12	Sequence orphan	Yes/Yes	NA
CG	SPBC56F1.15	tam13	Sequence orphan	Yes/Yes	NA
PF	SPCP20C8.04	new22	DUF1773 (S. pombe specific family)	No/No	NA
CG	SPC3320.20	tam14	Sequence orphan—conserved outside Schizosaccharomyces	Yes/Yes	NA
CG	SPC60.09	new23	Dubious	Yes/Yes	NA
CG, PG, PF	SPC4B3.20	new24, cme2	Copper-binding protein of the mitochondrial inner membrane Cme1	Yes/Yes	NA
CG	SPC330.21	new25	Dubious	Yes/Yes	NA

CG, comparative genomics; PG, proteogenomics; PF, Pfam scan.
Identification method	GeneDB accession/name	Status	Peptide sequence	Domain
PG	SPAC823.04	Revised gene structure	KKHAPQELSSK	NA
PG	SPAC688.11, end4	Revised gene structure	LQSDHMQSDASLMTSR	NA
PG	SPAC29A4.03c, mps9	Revised gene structure	IIIAEDVPK	NA
PG	SPAC887.04c, gvt3	Revised gene structure	IVWMLLEELKVPYEIK	NA
PG	SPAPB17E12.14c	Revised gene structure	LALIMVGLPAR	NA
PG	SPBC29A10.17	Revised gene structure	TPPSAEADMSLR	NA
PG	SPBP857.31	Revised gene structure	NSNLNLFLKL	NA
PG	SPBC651.06, mug166	Revised gene structure	TEIASQAVMDLSSLR	NA
PG	SPBC25H2.11c, spt7	Revised gene structure	FGSLTSSFK	NA
PG	SPAC29A4.03c, mps9	Revised gene structure	LLNLEINPQYEIR	NA
PG	SPBC14C8.09c	Part of known protein	SLEILDMQLSRR	NA
PG	SPBC14C8.09c	Part of known protein	LLNGLPLNLVK	NA
PG	SPCC4G3.12c, not2	Revised gene structure	QYMLESLLPIR	NA
PG	SPCC4G3.12c, not2	Revised gene structure	TGSTEELTETPADENAK	NA
PG	SPCC4G3.12c, not2	Revised gene structure	TGSTEELTETPADENAKQYMLESLLPIR	NA
PG	SPCC1322.16, phb2	Revised gene structure	QRFQYQMDNLMRK	NA
PG	SPCC1442.04c	Part of known protein	NSVNAKETIREDLQASK	NA
PG	SPAC1D3.11c	Status change from pseudogene to coding	MSVDPNIAALAK	NA
PG	SPBC13E7.01, cof22	Part of known protein	ALQAQLTDVNTPEYQR	NA
PG	SPBC13E7.01, cof22	Part of known protein	SINGLINKNK	NA
PG	SPBC4F6.10, vps901	Revised gene structure	LSSSDILLEMS	NA
PG	SPBC16H5.12c	Revised gene structure	SDIQAEPSTGTLNKR	NA
PG	SPBC16H5.12c	Revised gene structure	TYSDEENSTLDVSAQVILTNK	NA
PF	SPAC186.06	Status change from coding to pseudogene	NA	PhzC-PhzF
PF	SPAC186.06	Revised gene structure	NA	PhzC-PhzF
PF	SPCP20C8.01c	Part of known protein	NA	DUF1773
CG	SPAC3A11.03	Revised gene structure	NA	NA
CG	SPBC3F10.08, mdc2	Part of known protein	NA	NA
CG	SPBC1711.10c, npl4	Revised gene structure	NA	NA
CG	SPBC1709.12, rid1	Revised gene structure	NA	NA
CG	SPAC13F5.07c	Revised gene structure	NA	NA
CG	SPAC1811.05, gma18	Revised gene structure	NA	NA
CG	SPCP20C8.01c	Revised gene structure	NA	NA
CG	SPCC125.16, vma21	Part of known protein	NA	NA
CG	SPBC18H10.08c, ubp4	Part of known protein	NA	NA
CG	SPACUNK4.14, mdc1	Revised gene structure	NA	NA
CG	SPACI3F5.07c	Revised gene structure	NA	NA

CG, comparative genomics; PG, proteogenomics; PF, Pfam scan.
RESULTS

The search for novel proteins was conducted using a modified version of a pipeline that we have previously used to search for novel human protein-coding genes (Bitton *et al.* 2010). The entire *S. pombe* genome was translated in all six reading frames and partitioned at stop codons to create a database containing 783,342 candidate sequences. To provide a coverage of the overall proteome that was as comprehensive as possible, we assessed the proteomic profiles of vegetatively growing wild-type haploid cells (972 h⁻¹) and cultures representing all stages of sexual differentiation. These differentiating cultures were generated by manipulation of the *pat1.114* mutant. *pat1¹* encodes a protein kinase whose activity toward the meiotic inducer Mei2 during vegetative growth blocks commitment to sexual differentiation (Watanabe *et al.* 1997). Relief of Pat1 kinase inhibition of Mei2 is sufficient to induce sexual differentiation. Under normal circumstances, Pat1 activity is downregulated by the production of a pseudosubstrate called Mei3 (McLeod and Beach 1988; Li and McLeod 1996). However, temperature-dependent inactivation of the product of the *pat1.114* gene offers an equally effective route to relieve Mei2 inhibition (Iino and Yamamoto 1985; Nurse 1985). A key feature of this temperature-dependent inactivation of Pat1.114 is the immediate induction of sexual differentiation of all cells
within the culture, irrespective of factors that normally determine the potential to differentiate (cell cycle or mating-type status, nutrient level, and pheromone signaling). As progress through the different stages of sexual differentiation occurs at similar rates within each cell within these pat1.114-shifted cultures, differentiation proceeds in a largely synchronous fashion throughout the culture. The molecular changes that accompany sexual differentiation within such bulk cultures can therefore be taken as representative of the differentiation steps taken within the individual cells within the culture (MATA et al. 2002).

Samples from the pat1.114 culture were taken immediately before the temperature shift to 32°C to induce meiosis (0 hr) and at 3, 5, and 10 hr after. These were then pooled to give a single pat1.114 meiotic sample for proteomic analysis. In total, 199,788 (wild type) and 265,234 (pat1.114) spectra were identified and searched against both the S. pombe protein data set (WOOD et al. 2002; HERTZ-FOWLER et al. 2004) and the six-frame translation database. Overall, 167 novel peptides were identified at an FDR < 2% (Table S1). These peptides were mapped onto the existing genome annotation (WOOD et al. 2002) and subjected to manual curation; canonical gene structures not contained within an alternative ORF of a known gene were defined. We also set the criterion that gene structures should include a methionine initiation codon either within the predicted ORF or, by extension, to include a canonical splice site. Using these criteria, we predicted nine novel genes (Table 1 and Table S2) and corrected the annotation at another 14 loci, including one status change from pseudogene to coding (Table 2 and Table S3). Five additional peptides provided experimental confirmation for novel protein predictions independently submitted to GeneDB over the course of this study. The remaining 133 peptides, which lacked the necessary upstream and downstream signals of gene structure, were considered to be false positives (in correspondence with the estimated FDR), since they cannot physically be extended to create valid gene structures. This means that these peptides have an immediate upstream stop codon that has no intervening methionine or no acceptor that could provide the 3′ of an intron to negotiate the stop codon, or
they are in a different/reverse frame of a known coding gene. Thus, the rejected fragments must be false positives on the basis of our current knowledge of the biological mechanisms that make a functional protein.

All other peptides that could be extended to make a protein structure (regardless of other criteria) were included. Those that were unsupported by homology, or other methods, were designated as “dubious,” pending further investigation.

To ensure that the 133 rejected loci were indeed false predictions, we also sought transcriptional evidence at these loci, using an RNA sequencing data set (AB SOLID v3+) produced from asynchronous wild type (972 h−1) and pat1.114 cultures immediately before temperature shift to 32°C (0 hr) and at 3, 5, and 10 hr after temperature shift, as before (two biological replicates were processed; D. Britton, A. Grallert, J. Bradford, Y. Li, T. Yates, P. Scutt, Y. Hey, S. Pepper, I. Hagan, and C. Miller, unpublished results). As expected, at the majority of these loci (89), no 50mer sequence reads aligned perfectly to the genome (in any sample), while at the remaining 44 loci some transcriptional activity was observed in at least one of the 10 samples tested. Nevertheless, in most cases, the predicted peptide was in an alternate reading frame to that of a known protein (29 loci), making it impossible to distinguish between transcription that would result in the novel peptide and transcription that would result in the known protein being expressed. An additional set of loci was on the complementary strand to a known protein (8 loci) or positioned within untranslated regions (UTRs) (2 loci), in line with their initial classification as false positives (Table S4). The remaining 5 loci were located in intergenic regions and displayed low transcriptional activity, but the lack of conventional signals of gene structure precluded prediction of the complete architecture of these genes.

The relationship between S. pombe and other fungi was then assessed using comparative genomics. We extended the InParanoid algorithm (Remm et al. 2001) to make use of a complete, unbiased, six-frame translation of the S. pombe genome. We compared this data set to six other fungi (S. japonicus, S. octosporus, S. cryophilus, S. cerevisiae, A. fumigatus, and N. crassa) via their six-frame protein translations. To estimate the FDR, searches were also performed against databases produced by random permutation of the original data. The resultant ortholog sets were compared (Table S5) to produce a list of all conserved loci in S. pombe (44,900; FDR 0%; no matches in the permuted data set). These

foci of Sad1 staining [cell 2: F(II)]. Highly condensed, unsegregated chromosomes cluster around these Sad1 foci [cell 2: F(IV)]. F(IV) and F(IV’) show the same DAPI images of chromatin merged with two different focal planes in the Sad1 channel because the different spindle pole bodies (SPBs) in cells 1 and 2 reside in different focal planes.

Figure 4.—Phenotypic characterization of knockout strains. (A–E) Calcofluor DAPI staining of the indicated strains. S. pombe cells grow by linear extension until they reach a critical size threshold. Nuclear division is then initiated, followed by the contraction of the cytokinetic F-actin ring, resulting in separation of the two cytoplasms of the incipient daughter cells. F-actin ring contraction is coupled with the deposition of the cell-wall material of the primary septum that stains strongly as a white bar across the cell equator between the separated nuclei (Marks and Hyams 1985). This primary septum is subsequently degraded to separate the two daughter cells. Thus, the length of cells with the transecting bright calcofluor-positive stain is a direct indication of the timing at which cells commit to mitosis (Nurse 1975). It is clear from B–D that the cells with this bright bar in strains new5Δ, tam11Δ, and tam7Δ are longer than the wild-type controls in A and so are delayed in division. (E) The accumulation of excessive regions of calcofluor staining in new1Δ cells is indicative of severe defects in septation in some cells in the culture. (F) Anti-tubulin, anti-Sad1 immunofluorescence of new1Δ cells. DAPI staining of chromatin either alone or in combination with differential interference contrast imaging visualizes the position of the chromatin relative to the cell periphery, as indicated on each panel in the figure. A range of mitotic defects was apparent, including, most notably, a failure in chromosome segregation along elongating spindles (cell 1) and the formation of monopolar spindles with expansive arrays of red microtubules extending from single green

foci of Sad1 staining [cell 2: F(II)]. Highly condensed, unsegregated chromosomes cluster around these Sad1 foci [cell 2: F(IV)]. F(IV) and F(IV’) show the same DAPI images of chromatin merged with two different focal planes in the Sad1 channel because the different spindle pole bodies (SPBs) in cells 1 and 2 reside in different focal planes.
were then mapped onto an existing annotation. The vast majority of conserved sequences (99.9%) were found to be within existing genes. However, an additional 59 hits to six-frame translations of the genomes of the most recently diverged species (S. japonicus, S. cryophilus, and S. octosporus; Figure 1) were identified in the fission yeast intergenic regions. These were then subjected to the same manual curation criteria used to filter the MS/MS data above. A further 35 novel genes, six gene extensions, and one protein-coding gene, previously annotated as a pseudogene, were identified. Five of these 35 genes overlapped with those found by proteogenomics. A major challenge with any prediction algorithm is to find the right balance between true and false positives. Typically, parameter settings are chosen to err on the side of caution; underprediction is generally preferred instead of populating the databases with incorrectly identified genes. Since we were able to predict homology to S. cerevisiae for 16 of these novel loci using PSI-Blast (Altschul et al. 1997), we believe that the settings used here were similarly stringent. Importantly, since no matches were found to be significant with the permuted data, it remains likely that more protein-coding genes may remain.

We then scanned gene-free regions of the fission yeast six-frame translation for matches to Pfam protein domains (Finn et al. 2010). Six additional protein-coding domains were identified outside the known protein-coding regions (P-value, 3.9 × 10⁻⁹). Three of these genes had been identified within the compar-

Figure 5.—Spot-test analysis demonstrates complementation of the compromised growth phenotype of new1::nat, new5::nat, new8::nat, and tam7::nat following exogenous provision of mRNA encoding the appropriate ORF. Cells from cultures of the indicated strains were grown to mid-log phase in rich YES liquid medium containing 100 µg·ml⁻¹ hygromycin to select for the presence of the plasmid and plated in fivefold serial dilutions, so that the final dilution plated around five cells on YES plates that were then incubated at 25°C. The provision of the appropriate reading frame rescued the slow-growth phenotype in each case. The subtlety of the growth defect in new5::nat meant that the differential colony size relative to wild-type controls is only transiently visible in spot-test analyses (compare the clear complementation here with the apparent wild-type growth in new5::nat cells in Figure 3); however, it is clear that, even in this case, the exogenous provision of the appropriate mRNA complements the slow growth arising from deletion of this gene.

Figure 6.—A cartoon representing the gene detection pipeline. The entire genome is translated in all three forward and reverse reading frames and segmented at putative stop codons. Data from different sources are compared to these translations and mapped back to the genome. Matching features that do not overlap with existing genes are used to infer novel genes and/or to refine gene structures. (1) MS/MS data searched against all putative protein sequences that could be expressed from the genome identify novel protein-coding genes (2) and refine 5' and 3' ends of others (3). MS/MS data matching pseudogenes, and genes annotated as noncoding, confirm translation and lead to altered annotation (4). Pfam searches against six-frame translations identify additional protein domains (5). Comparative genomic searches between whole-genome protein translations of six fungal species to S. pombe are used to infer novel protein coding genes (6).
ative genomics work flow, and one also matched the peptide data. One domain led to the discovery of a novel protein-coding gene, not identified by the other methods, and one a gene that had been previously annotated as a pseudogene. Two domains were found to extend a known human MAWBP homolog (SPAC186.06). However, this domain extension introduces two frameshifts, making it unlikely that this gene is correctly translated or that there are errors in the genomic sequence.

We next sought to confirm transcription at these loci by RT-PCR and RNA sequencing. Transcription was confirmed at 38/40 of the loci in either the asynchronous wild-type or pat1.114-induced meiotic cultures (Table 1, Table S2; Figure S1, Figure S2). The inherent synchrony of sexual differentiation that is induced by a shift of a pat1.114 diploid strain to 32°C enabled us to qualitatively assess whether the level of transcription for any of the new genes fluctuated with progression through the meiotic differentiation program. Fourteen transcripts were differentially expressed during meiosis as including errors in chromosome segregation (cell type 1; Figure 4E) alongside a range of mitotic defects in- 30 new8, new10, enhancer of rudimentary homolog-like protein, identified by comparative genomics.

Figure 7.—Examples of loci identified by the pipeline and confirmed by 5′ and 3′ RACE. Part of the S. pombe genome represented by the X-Map genome browser (http://xmap.picr.man.ac.uk) is shown. The chromosome runs across the middle of the figure with genes on the forward strand shown above the center line and those on the reverse strand, below. Boxes represent genes, with the transcript structure and exons indicated by the smaller boxes within. (A) The 5′ extension to SPBC16H51c identified by two novel peptides. The original and revised gene structures are shown; the revised gene structure incorporates a locus previously annotated as a ncRNA (noncoding RNA). (B) Location of new10, enhancer of rudimentary homolog-like protein, identified by comparative genomics.

identified tam4 as encoding the S. pombe counterpart of the microtubule-nucleating γ-tubulin ring complex called Mozart (although the Hutchins et al. study prediction uses an initiator methionine that is 5′ of the ORF that we propose).

Next, three criteria were used to select seven genes (tam2, new1, new5, tam7, new8, tam11, and new21) for functional assessment by one-step PCR-mediated destruction (Bahl er et al. 1998): evidence of transcription, the absence of close neighbors, and the prediction of a phenotype based on predictions arising from deletion of the S. cerevisiae homolog. While tam2Δ was viable, new21 was not (Figure 2); it has human (TMEM167A) and S. cerevisiae (YNL024C-A) orthologs whose functions are suggested to lie within the secretory pathway (Wendler et al. 2009). new5Δ and tam11Δ displayed an elongated cellular morphology at division, typical of cells in which commitment to mitosis is delayed (Figure 3; Figure 4, B and C; Figure 5). Both new8Δ and tam7Δ cells grew extremely slowly at all temperatures tested (25°C, 30°C, 32°C, and 36°C; Figure 2 and Figure 3). tam7Δ cells were also delayed in mitotic commitment (Figure 4D). The new1Δ strain exhibited slow growth at 25°C but was inviable at 32°C (Figure 2 and Figure 3). Cell division was severely perturbed by the loss of this putative histone-like transcription factor (Table 1 and Table S2). Aberrant cell-wall deposits accumulated during septation (Figure 4E) alongside a range of mitotic defects including errors in chromosome segregation (cell type 1; Figure 4F; Figure S4; Figure S5) and spindle formation (cell type 2; Figure 4F; Figure S4; Figure S5).

Complementation analysis was used to address whether the phenotypes observed in the “deletion” strains genuinely arose from the loss of the protein.
corresponding to the ORF from the proteome or from some other consequence of the alteration to the genomic sequence. The new1r, new55, new88, new21r, and tam7r ORFs were cloned into versions of the pREP1, pREP41, and pREP81 vectors in which the LEU2 gene had been replaced with hygR (pREP1, pREP4H and pREP8H, respectively; A. Grallert and I. M. Hagan, unpublished results) and transformed into the appropriate heterozygous deletion/wild-type ORF diploids. Haploid deletion strains harboring the plasmids were subsequently isolated and subjected to spot-test analysis at 25\textdegree C. In each case, a strain harboring the empty pREP8H vector served as a control to define the basal level of growth of the deletion strain. The provision of the corresponding ORF complemented the slow-growth phenotype of new1r/nat, new55/nat, new88/nat, and tam7r/nat (Figure 5). Transformation of the new21r/nat/new21r heterozygous diploid strain with any pREP or its derivative failed repeatedly. We assume that this is due to the poor growth of this diploid, which would be consistent with a requirement for two copies of new21r for healthy growth of diploid S. pombe cells.

DISCUSSION

The systematic pipeline developed here (Figure 6) has expanded the gene repertoire of the fission yeast S. pombe with the identification of 39 new genes and one rRNA gene (equivalent to an ~0.8% increase to the proteome) (Table 1 and Table S2). We have also refined the sequence coordinates that define 21 more loci (Table 2; Table S3; Figure 7A). The verification of the majority of the genes by RT-PCR, RNA sequencing, and RACE, the supporting evidence at the protein level for 10 genes, and the association of a deletion phenotype for six of seven candidates tested strongly suggest that all are bona fide genes. However, our appraisal of the new11 locus illustrates the challenge in setting a threshold for the definition of a gene. Despite substantial evidence, including MS/MS data, transcriptional support, and most of the signals of conventional gene structure, our inability to locate a suitable 5' "ATG" leads us to annotate this "gene" as a "pseudogene." In other words, considerable potential remains for extending the catalog of protein-coding genes in S. pombe still further as new technologies emerge and our understanding of gene structure advances.

Comparisons with *S. cerevisiae* databases predict localization for 18 genes and an inferred function for 13. For example, new10 (Figure 7B), which was identified solely by comparative genomics, is broadly conserved from humans to protozoa. The gene encodes enhancer of rudimentary homolog, a putative transcriptional repressor implicated in cell cycle regulation and significantly upregulated in malignant breast and ovarian cancer cells (Zafarakas et al. 2008).

The length of the majority of the novel protein-coding genes was below the 100-amino-acid cutoff set for the original annotation pipeline (Wood et al. 2002). Since similar size criteria have been used for other organisms, it is reasonable to expect that the application of similar direct pipelines to interrogate genome annotation in other model organisms should provide similar refinements to their gene complement and bring us closer to the desired catalog of protein-coding genes.

This work was supported by Cancer Research UK grant no. CI47/A6058. V.W. is supported by Cancer Research UK, and work on bioinformatics resources for *S. pombe* at Cambridge University is supported by Wellcome Trust grant WT090548MA to S.G. Oliver and V.W. Genome sequences of *S. japonicus* and *S. octopus* were generated by the Broad Institute and that of *S. cryophillus* was generated by the Stowers Institute.

LITERATURE CITED

Altenschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, et al., 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

Bahler, J., J. Q. Wu, M. S. Longtine, N. G. Shah, A. McKenzie, III et al., 1998 Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943–951.

Basi, G., E. Schmid and K. Maundrell, 1993 TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131–136.

Bitton, D. A., D. L. Smith, Y. Connolly, P. J. Scutt and C. J. Miller, 2010 An integrated mass-spectrometry pipeline identifies novel protein coding-regions in the human genome. PLoS One 5: e9849.

Castellana, N. E., S. H. Payne, Z. Shen, M. Stanke, V. Bajna et al., 2008 Discovery and revision of Arabidopsis genes by proteonomics. Proc. Natl. Acad. Sci. USA 105: 21034–21038.

Dutrow, N., D. A. Nix, D. Holt, B. Milash, B. Dalley et al., 2008 Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping. Nat. Genet. 40: 977–986.

Fermin, D., B. B. Allen, T. W. Blackwell, R. Menon, M. Adamski et al., 2006 Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics. Genome Biol. 7: R53.

Finn, R. D., J. Mistry, J. Tate, P. Coggill, A. Heger et al., 2010 The Pfam protein families database. Nucleic Acids Res. 38: D211–D222.

Fisk, D. G., C. A. Ball, K. Dolinski, S. R. Engel, E. L. Hong et al., 2006 Saccharomyces cerevisiae 328SC genome annotation: a working hypothesis. Yeast 23: 857–865.

Gentleman, R. C., V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling et al., 2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5: R80.

Gupta, N., S. Tanner, J. Jaitly, N. J. Adkins, M. Lipton et al., 2007 Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res. 17: 1362–1377.

Hagan, I., and M. Yanagida, 1995 The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129: 1033–1047.

Hentges, P., B. Van Driessche, L. Tafoforea, J. Vandenhauver and A. M. Carr, 2005 Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22: 1013–1019.

Hertz-Fowler, C., C. S. Peacock, V. Wood, M. Aslett, A. Kerhornou et al., 2004 GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res. 32: D339–D343.

Hutchens, J. R., Y. Toyoda, B. Hegemann, I. Poser, J. K. Heriche et al., 2010 Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328: 593–599.
BMC Proteomics 12:17

Discovery of Novel *S. pombe* Proteins

Remm, M., C. E. Storm and E. L. Sonnhammer, 2001 Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol. 314: 1041–1052.

Schrimpf, S. P., M. Weiss, L. Retter, C. H. Ahrens, M. Jovanovic et al., 2009 Comparative functional analysis of the Caenorhabditis elegans and *Drosophila* melanogaster proteomes. PLoS Biol. 7: e48.

Shilo, I. V., S. L. Seymour, A. A. Patel, A. Loboda, W. H. Tang, J. D. Storey, R., G. Burns et al., 2007 The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics 6: 1658–1665.

Tang, W. H., I. V. Shilo and S. L. Seymour, 2008 Nonlinear fitting method for determining local false discovery rates from decoy database searches. J. Proteome Res. 7: 3661–3667.

Tanner, S., Z. Shen, J. Ng, L. Florea, R. Guigo et al., 2007 Improving gene annotation using peptide mass spectrum similarity. Genome Res. 17: 231–239.

Watanabe, Y., S. Shinozaki-Yabana, Y. Chikashige, Y. Hiraoka and M. Yamamoto, 1997 Phosphorylation of RNA-binding protein CstF-64 regulates the switch between cell proliferation and sporulation. Mol. Cell. Biol. 17: 1041–1052.

Wilhelm, B. T., S. Marguerat, S. Watt, F. Schubert, V. Wood et al., 2008 Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453: 1239–1243.

Wood, V., R. Cowilliam, M. A. Rajandream, M. Lyne, R. Lynne et al., 2002 The genome sequence of *Schizosaccharomyces pombe*. Nature 415: 871–880.

Zafra, I., M. Rosen, R. Knuchel and E. Dahl, 2008 Enhancer of rudimentary gene homologue (ERH) expression pattern in sporadic human breast cancer and normal breast tissue. BMC Cancer 8: 145.

Communicating editor: P. J. Oefner
Augmented Annotation of the *Schizosaccharomyces pombe* Genome Reveals Additional Genes Required for Growth and Viability

Danny A. Bitton, Valerie Wood, Paul J. Scutt, Agnes Grallert, Tim Yates, Duncan L. Smith, Iain M. Hagan and Crispin J. Miller

Copyright © 2011 by the Genetics Society of America
DOI: 10.1534/genetics.110.123497
FIGURE S1.—RT-PCR providing transcriptional evidence for 37 predicted genes throughout different stages of meiotic differentiation. *alp2* – tubulin alpha - 2 chain (positive control); *tam1* - *tam14* - transcript altered in meiosis; Asyn – Asynchronous (972 h-). Diploid cells were grown to mid-log phase at 25°C, the *pat1* ΔΔ diploids were transferred to 32°C to induce meiosis and samples taken before (0) and 3, 5, and 10 hours after temperature shift. Reverse transcription was performed using random hexamers and DNA amplified for 30 cycles. All PCR products were cloned and positively identified by sequencing. Transcription at all loci except *new14*, *new22* and *new23* was also confirmed by RNA sequencing.
FIGURE S2.—RNA Sequence data for each of the loci identified in Table 1. Total RNA was extracted and sequenced from the same samples used to generate the proteomics data described here (AB SOLiD v3+; Bitton et al. submitted). Each panel in the figure is a screen shot from the X:Map genome browser representing each of the 40 novel loci identified the pipeline. Data for nda2 and nmt1/thi3 are included for reference. Black bars represent the location of individual genes, while coloured graphs represent the number of 50mer RNA fragments aligning uniquely to the genome at that point. Data are presented on a log2 scale. The height of the plots represents the number of reads with alignments starting at that point. Since many of these loci are very small, and some are expressed at low levels, coverage is not uniform. However, when combined with the RT-PCR data in Figure S1, transcription is confirmed at 38/40 loci. Data are summarised in Table 1 and Table S2.
FIGURE S3.—Western blot analysis providing evidence for translation from the predicted ORFs at the new13 and tam2 loci. Three copies of the “Pk” (SV5 epitope) tag were inserted in frame before stop and termination sequences at the 3' end of the new13 and tam2 predicted ORFs using standard PCR cassette mediated tagging [17] and extracts were prepared from the resultant strain and wild type cells for immuno-blotting using standard techniques. In each case a single band was detected in the tagged strain, but not the isogenic untagged wild type control.
FIGURE S4.—Mitotic defects in new1Δ cells. Mitotic errors arising as a consequence of the loss of the new1 gene as in main figures; Figure 4. Comparison of the merged images in (D) and (E) shows that the highly condensed chromosomes (C) in cell 1 are not segregating to either pole of the bipolar spindle. In contrast cell 2 failed to generate a bipolar spindle. Instead microtubules (red in D) extend from one of the two foci of Sad1 staining (green in D). Highly condensed chromosomes associate with this monopolar spindle while another group are seen towards the other end of the cell.
Figure S5.—Mitotic defects in new1Δ cells. Mitotic errors arising as a consequence of the loss of the new1 gene as in main figures; Figure 4. In this field, cell 1 has highly fragmented chromatin (C) and multiple Sad1 foci in different focal planes (B and B’) while lagging chromosomes are stretched along the elongating spindle in cell 2.
TABLE S1

Peptides identified following each database search

Search/Level	pat1.114 unique peptides	Asynchronous WT unique peptides	>95% confidence	>95% confidence
GeneDB	12,419	7,628		
Six-frame	12,207	7,496		
Pre-screening				
Overlap	12,085	7,384		
GeneDB unique	334	244		
Six-frame unique	122	112		
Second database search	Putative novel peptides	84	83	
	FDR = 1.3%	FDR = 1.9%		
TABLE S2

Novel genes detected by the pipeline

Table S2 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.123497/DC1.
TABLE S3

Novel extensions and revised gene structures

Table S3 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.123497/DC1.
TABLE S4
Peptides identified by the pipeline (MS/MS) but rejected by manual curation

Table S4 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.123497/DC1.
TABLE S5

Orthologue sequences identified following each pairwise comparison

Pairwise comparison	Accessions compared	Orthologues detected	S. pombe Six-Frame accessions	Accessions retained after annotation filtering	Matches to permuted database
S. pombe - S. octosporus	776,680	13,056	13,317	47	0
S. pombe - S. cryophilus	779,138	13,037	13,203	48	0
S. pombe - S. japonicus	670,238	8,596	9,053	21	0
S. pombe - S. cerevisiae	809,008	2,877	3,106	0	0
S. pombe - A. fumigatus	1,592,707	3,195	3,263	0	0
S. pombe - N. crassa	2,100,849	2,924	2,958	0	0
Total unique	N/A	N/A	N/A	59	0
TABLE S6

Number of Spectra used for each database search

	pat1.114 spectra	WT spectra				
7%	51,727	37,297				
10%	171,191	130,721				
12%	42,316	31,770				
Total	**265,234**	**199,788**				
Condition	Gel/Database Six-Frame	GeneDB	Gel/Database Six-Frame	GeneDB	Gel/Database Modified GeneDB database	Modified GeneDB database
--------------------	------------------------	--------	------------------------	--------	--------------------------------------	--------------------------
Confidence level	95% 99% 95% 99%		95% 99% 95% 99%		95% 99%	
1st Database Search	7% 1.36% 0.28% 0.36% 0.03% 1.18% 0.3% 0.14% 0.04%		10% 0.7% 0.17% 0.17% 0.03% 1.42% 0.39% 0.21% 0.09%		12% 0.78% 0.22% 0.19% 0.11% 0.72% 0.38% 0.21% 0.12%	
Combined FDR	1.1% 0.27% 0.27% 0.06%		1.7% 0.52% 0.26% 0.11%		1.3% 0.33% 1.9% 0.55%	
2nd Database Search	7% 1.76% 0.5%		1.12% 0.32%		10% 0.74% 0.17% 1.6% 0.43%	
	12% 0.98% 0.21%		0.9% 0.36%		1.3% 0.33% 1.9% 0.55%	
Combined FDR	1.3% 0.33% 1.9% 0.55%					