Sexual maturation and reproduction influence the status of a number of physiological processes and consequently the ecology and behaviour of cephalopods. Using *Octopus mimus* as study model, the present work was focused in the changes in biochemical compound and activity that take place during gonadal maturation of females and its consequences in embryo and hatchlings characteristics. To do that, a total of 31 adult females of *Octopus mimus* were sampled to follow metabolites (ovaries and digestive gland) and digestive enzyme activities (alkaline and acidic proteases) during physiological and functional maturation. Levels of protein (Prot), triacylglyceride (TG), cholesterol (Chol), glucose (Glu) and glycogen (Gly) were evaluated. Groups of eggs coming from mature females were also sampled along development and after hatching (paralarvae of one and three days old) to track metabolites (Prot, TG, Glu, Gly, TG, Chol), digestive enzymes activity (Lipase, alkaline proteases, and acidic proteases), and antioxidant defence indicators with embryos development. Based on the data obtained, we hypothesised that immature females store Chol in their ovaries, probably from the food they ingested, but switch to TG reserves at the beginning of the maturation processes. At the same time, results suggest that these processes were energetically supported by Glu, obtained probably from Gly breakdown by gluconeogenic pathways. Also, was observed that embryos metabolites and enzymes (digestive and detoxification/antioxidant enzymes) where maintained without significant changes and in a low activity during the whole organogenesis, meaning that organogenesis is relatively not energetically costly. In contrast, after organogenesis, a mobilization of nutrients and activation of the metabolic and digestive enzymes was observed, together with increments in consumption of yolk and Gly, and reduction in lipid peroxidation. Derived from our results we also have the
hypothesis that reactive oxygen species (ROS) were produced during the metabolic processes that occurs in ovarian maturation. Those ROS may be in part transferred to the egg provoking a ROS charge to the embryos. The elimination of ROS in embryos started when the activity of the heart and the absorption of the yolk around stages XIV and XV were evident. Altogether, these processes allowed the paralarvae to hatch with buffered levels of ROS and with the antioxidant defence mechanisms ready to support further ROS production derived from paralarvae higher life stage requirements (feeding and metabolic demands).
Maturation trade-offs in octopus females and their progeny: energy, digestion and defence indicators

Alberto Olivares1, Gabriela Rodríguez-Fuentes2,4, Maite Mascaró3,4, Ariadna Sánchez3, Karen Ortega5, Claudia Caamal-Monsreal3,4, Nelly Tremblay6 and Carlos Rosas3,4

1. Departamento de Biotecnología, Facultad de Ciencias del Mar y recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
2. Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
3. Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
4. Laboratorio Nacional de Resiliencia Costera (LANRESC), UNAM-CONACYT, Sisal, Yucatán, Mexico
5. Posgrado en Ciencias del Mar y Limnología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
6. Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Postfach 180, 27483 Helgoland, Germany

Corresponding author: Carlos Rosas: crv@ciencias.unam.mx
Abstract

Sexual maturation and reproduction influence the status of a number of physiological processes and consequently the ecology and behaviour of cephalopods. Using Octopus mimus as study model, the present work was focused in the changes in biochemical compound and activity that take place during gonadal maturation of females and its consequences in embryo and hatchlings characteristics. To do that, a total of 31 adult females of Octopus mimus were sampled to follow metabolites (ovaries and digestive gland) and digestive enzyme activities (alkaline and acidic proteases) during physiological and functional maturation. Levels of protein (Prot), triacylglyceride (TG), cholesterol (Chol), glucose (Glu) and glycogen (Gly) were evaluated. Groups of eggs coming from mature females were also sampled along development and after hatching (paralarvae of one and three days old) to track metabolites (Prot, TG, Glu, Gly, TG, Chol), digestive enzymes activity (Lipase, alkaline proteases, and acidic proteases), and antioxidant defence indicators with embryos development. Based on the data obtained, we hypothesised that immature females store Chol in their ovaries, probably from the food they ingested, but switch to TG reserves at the beginning of the maturation processes. At the same time, results suggest that these processes were energetically supported by Glu, obtained probably from Gly breakdown by gluconeogenic pathways. Also, was observed that embryos metabolites and enzymes (digestive and detoxification/antioxidant enzymes) where maintained without significant changes and in a low activity during the whole organogenesis, meaning that organogenesis is relatively not energetically costly. In contrast, after organogenesis, a mobilization of nutrients and activation of the metabolic and digestive enzymes was observed, together with increments in consumption of yolk and Gly, and reduction in lipid peroxidation. Derived from our results we also have the hypothesis that reactive oxygen species (ROS) were produced during the metabolic processes that occurs in ovarian maturation. Those ROS may be in part transferred to the egg provoking a ROS charge to the embryos. The elimination of ROS in embryos started when the activity of the heart and the absorption of the yolk around stages XIV and XV were evident. Altogether, these processes allowed the paralarvae to hatch with buffered levels of ROS and with the antioxidant defence mechanisms ready to support further ROS production.
derived from paralarvae higher life stage requirements (feeding and metabolic demands).

1. Introduction

Sexual maturation and reproduction influence the status of a number of physiological processes and consequently the animal’s ecology and behaviour (Zamora & Olivares 2004). Earlier studies realized in four cephalopods species indicated energy acquisition for egg production directly from food rather than from stored products in digestive glands or muscle (Farias et al. 2011; Rosa et al. 2004). This finding highlighted the importance of trophic ecology for optimal reproduction of those species, awaking the need for laboratory studies assessing the influence of each type of food on the biochemical characteristics of octopus eggs, embryos and hatchlings (Márquez et al. 2013; Steer et al. 2004). Studies made in Octopus maya demonstrated that the type of diet (fresh or formulated) during female maturation has influence on biochemical and morphological characteristics of embryos and hatchlings (Caamal-Monsreal et al. 2015; Tercero-Iglesias et al. 2015): octopus females fed with mixed diets (squid and crab; crab and fish) provide a higher yolk quality, allowing hatchlings a better performance during the first days of culture, in comparison with hatchlings from females fed with a mono-diet (only crab, squid or fish). So, the health status of O. maya females derived of their nutritional condition influences strongly the capacity of the animals to maintain their physiological integrity during post-spawning period, when female need to protect the eggs during the embryo development (Roumbedakis et al. 2017). In O. vulgaris, mixed maternal diet (crab and fish) provoked more hatchlings than mono diet (only crabs) (Márquez et al. 2013). This suggests that the relationship between the nutrients of the diet (amino and fatty acids) and the embryo characteristics previously observed in O. maya (Caamal-Monsreal et al., 2015) could be encountered in other octopus’ species. The way nutrients are processed in females during maturation, stored in eggs and used afterward by embryos for their development still remain unknown.

Recent studies have demonstrated steep physiological changes related with octopus embryo development, influencing the form in which nutrients stored in yolk are used to
synthesize organs and tissues when are exposed at different temperatures. Caamal-Monsreal et al. (2016) and Sánchez-García et al. (2017) showed that from stage XV onwards (after the completion of organogenesis), the yolk consumption of *O. maya* embryos was significantly higher than observed in previous stages indicating an acceleration of embryo metabolism to stimulate growth. From the same stage, there is an increment in catabolic enzymes activity that transform yolk in molecules physiologically useful for embryos (Caamal-Monsreal et al. 2016). That reserve mobilization is probably provoking, together with increment in oxygen consumption, higher production of reactive oxygen species (ROS), which at the end are temperature dependent (Repolho et al. 2014; Sánchez-García et al. 2017). In ectothermic organisms, as a result of aerobic metabolism endogenous ROS production (e.g. superoxide, peroxyl radical and hydroxyl radicals) could lead to oxidative stress (Regoli et al., 2011; Vinagre et al., 2014). Oxidative stress can damage lipids, proteins, and DNA, and cause impaired cellular function or apoptosis (Regoli and Giuliani, 2014). To pre-vent oxidative stress and keep the balance of the cellular redox state, aerobic organisms have evolved an efficient antioxidant defence system that consists of both non-enzymatic small antioxidant molecules (e.g. reduced glutathione (GSH), ascorbic acid, carotenoids, etc.) and a cascade of antioxidant enzymes (Regoli and Giuliani, 2014). Until now, no efficient ROS elimination antioxidant mechanisms have been identified in octopus embryos exposed to thermal changes (Repolho et al. 2014; Sánchez-García et al. 2017). For that reason, a solid base line providing the links between the use of yolk reserves and the detoxification/antioxidant defence mechanisms during octopus embryos development is essential to understand the possible defence responses against future environmental stressors.

In *Octopus tehuelchus*, Fassiano et al (2017) find that lipid peroxidation (LPO) in the female ovaries is reduced with maturation, despite no changes in the antioxidant enzyme superoxide dismutase (SOD) activity or in the reduced glutathione (GSH) levels (a non-enzymatic antioxidant). In oviducal gland, SOD activity and LPO levels increased during maturation, while the highest values of GSH were recorded after the spawn. Based on these results and taking into account that lipid reserves are involved
in yolk production during vitellogenesis, we could hypothesize that part of the oxidized lipids in female could be placed into the yolk during the egg formation eventually affecting the ability of embryos to eliminate ROS, as was observed when oxidative stress is provoked by high temperatures in the growing phase (Repolho et al. 2014; Sánchez-García et al. 2017).

Our model, *Octopus mimus*, is one of the most important octopus species of the Pacific Ocean at the South of Ecuador, with a distribution from Callao (Peru) to San Vicente bay (Chile), sustaining important artisanal benthic fishing grounds in both countries (Cardoso et al. 2004; Cortez et al. 1999; Olivares et al. 1996). The species reproduces throughout the year, with one or two seasonal peaks (marked by mature females) that are specific for each country (Cardoso et al., 2004; Castro-Fuentes et al., 2002; Olivares et al., 1996). One individual egg laying can extend over 20 d due to asynchrony in oocyte development and the loss of ovarian function attributable to their semelparous reproductive strategy (Zamora and Olivares, 2004). The time required for embryonic development changes with environmental temperature: 67 to 68 d in winter (16°C) and 38 to 43 d in summer (20°C) (Castro-Fuentes et al., 2002; Warnke, 1999).

Many parameters have been investigated to enhance the spawns in laboratory conditions: 1) type of tanks, light and feeding (Cortez et al. 1995; Olivares et al. 1996; Zuñiga et al. 1995); 2) histology, biochemistry and reproduction (Cortez et al. 1995; Olivares et al. 2017; Olivares et al. 2003; Olivares et al. 2001; Zamora & Olivares 2004); 3) embryo development (Castro-Fuentes et al. 2002; Uriarte et al. 2012; Warnke 1999); 4) thermal tolerance of paralarvae (Zuñiga et al. 2013); 5) growth and nutrition (Baltazar et al. 2000; Carrasco & Guisado 2010; Gallardo et al. 2017); and 6) taxonomy and genetics (Perez-Losada et al. 2002; Söller et al. 2000). All those studies were stimulated in the view of aquaculture (minimum requirements for maximum yield) and to assess the potential effects of environmental changes in the natural populations (Zuñiga et al. 2014).

In attempt to define the relationship between physiological characteristics of cephalopod females, and the physiology of embryos and hatchlings of *O. mimus*, the present study
was designed to understand the changes that take place during gonadal maturation of
O. mimus females (energetic metabolites and digestive enzymes) and their effects in
embryo and paralarvae characteristics (energetic metabolites, digestive enzymes,
antioxidant/detoxification defences). A base line of those processes was constructed
and hypothesis were proposed to explain if maturation process into females affects the
physiological condition of octopus embryos during its development. To do that we
characterized: 1) The maturation processes of females both morphologically (maturity
stages) and biochemically (energetic metabolites in ovaries and digestive gland
together with digestive enzymes in the latter); 2) The embryo biochemical changes
along development including energetic metabolites, digestive proteinases and lipases
(as yolk consumption proxy), and some enzymes involved in the
detoxification/antioxidant defence mechanisms. Also, LPO and total GSH were
analysed as proxies of oxidative stress. Those evaluations were also done in hatched
paralarvae (PL) after one (PL1) and three (PL3) days.

2. Material and methods

The actual study was approved by the Animal Care committee of the Universidad de
Antofagasta, Chile and followed the Experimental Animal Ethics Committee of the
Faculty of Chemistry at Universidad Nacional Autónoma de México (Permit Number:
Oficio/FQ/CICUAL/100/15).

2.1. Animals

A total of 31 females *Octopus mimus* (body weight-BW of 1179 ± 651 g; mean ±
standard deviation) were collected by scuba diving and using the gear hook (the local
method), between 1 to 5 m depth, off Antofagasta, Chile (23°38'39 S, 70°24'39 W). All
captured females above these sizes have a developed reproductive system (Zuñiga et
al. 2014).

2.2. Reproductive condition

In the laboratory, 23 females were immersed in cold sea water (6-8°C), as
recommended for sub-tropical cephalopod species (Roper and Sweeney 1983), to
induce loss of sensation and enable humane killing (Andrews et al. 2013). Soon after dormancy, each octopus was weighed (BW ±0.001 g) and dissected to obtain the mass (±0.001 g) of reproductive and digestive organs: ovaries weight (OVW); reproductive system weight (RSW; composed of the ovaries with oviducts and oviducal glands); and digestive gland (DG) weight. DG and ovaries samples were placed in Eppendorf tubes and freeze at -80°C. After dissection, eviscerated body weight (EBW) was also obtained. From this information, several indices were calculated:

Reproductive system weight index (RSWI, %) = (RSW/BW – RSW) x 100
Gonadosomatic index (GI, %) = (OVW/BW – OVW) x 100
Digestive gland index (DGI, %) = (DG/BW - DG) x 100

A histological approach was used posteriorly to classify the maturation status of the females (Avila-Poveda et al. 2016; Olivares et al. 2017). Preserved ovary samples (one per each sampled female, n= 23) were cut through the middle level into transverse and longitudinal sections and washed in 70% ethanol. The sections were then dehydrated in ethanol series, cleared in benzene, and infiltrated and embedded in paraplast®. Serial sections were cut at a thickness of 5 μm using a manual rotary microtome (Leitz 1512, Germany), and were mounted on glass slides and stained using the routine Harris hematoxylin-eosin regressive method (HHE₂; Luna 1968, Howard and Smith 1983). Alcian blue at pH 1.0 was used to contrast acidic mucopolysaccharides (Humason 1962).

2.3. Embryo development
The remaining females (n = 8) were individually placed in 108 L tanks with open and aerated seawater flow in a semi-dark environment to stimulate the spawn, at optimum temperature of 16 to 20°C (Uriarte et al. 2012). Spawn occurred after 8 to 20 d. A rope of eggs from each female was sampled every 4 to 7 d. Each embryo was classified by stage of development according to Naef (1928) and individually stored at -80°C for biochemical analysis. Stages of O. mimus paralarvae of 1 and 3 days old were also individually preserved. Those paralarvae were not feed. At the end of the experiment,
all preserved samples were freeze dried to facilitate the transportation of samples to the Unidad Multidisciplinaria de Docencia e Investigación (Faculty of Science, Universidad Nacional Autónoma de México, Sisal, Mexico) for their biochemical analysis.

2.4. Biochemical analysis in females, embryos and paralarvae

2.4.1. Metabolites (females, embryos and paralarvae)

Samples were diluted 1:10 (w/v) and homogenized in cold buffer Tris pH 7.4 using a Potter-Elvehjem homogenizer. Homogenized samples were centrifuged at 10,000 g velocity for 5 min at 4°C, and the supernatant was separated and stored at -80°C until analysis. Metabolites were analysed with commercial kits following manufacturer’s instructions (ELITech, Paris, France): triacylglyceride (TGML5415), cholesterol (CHSL5505) and glucose (GPSL0507). Supernatants were diluted 1:300 for soluble protein determination using a commercial kit (Cat. 500-0006, Bio-Rad, Hercules, USA) (Bradford 1976). All the absorbances were recorded using a microplate reader (Benchmark Plus, Bio-Rad, Hercules, USA) and concentrations were calculated from a standard substrate solution and expressed in mg.mL⁻¹. Glycogen was determined using the method described by Carroll, Longley and Roe (1956) and expressed in mg.g⁻¹.

2.4.2. Digestive enzyme activity assays (females, embryos and paralarvae)

Alkaline proteases activity of the extracts was measured at pH 8 with the method of Kunitz (1947) modified by Walter (1984), using 1% (w/v) casein (1082-C Affymetrix, Santa Clara, USA) as substrate in 100 mM universal buffer. Acid proteases activity was evaluated at pH 4 according to Anson (1938) with adjustments, using a solution of 1% (w/v) hemoglobin (hammarsten quality 217500, BD-Bioxon, Mexico) in universal buffer (Stauffer, 1989). In both assays, 0.5 mL of the substrate solution was mixed in a reaction tube with 0.5 mL of universal buffer and 20 µL of enzyme preparation (1:100 sample dilution) and incubated for 10 min at 35 and 40°C for alkaline proteases and acid proteases, respectively. Then, the reaction was stopped by adding 0.5 ml of 20% (w/v) trichloroacetic acid and by cooling on ice for 15 min. The undigested substrate precipitated was separated by centrifugation at 13,170 g for 15 min. The absorbance of the supernatants was measured spectrophotometrically at 280 nm. Control assays
(blanks) had trichloroacetic acid solution before the substrate was added. Lipase activity was measured in microplate according to Gjellesvik et al. (1992) using 200 µL substrate solution (Tris(hydroxymethyl)aminomethane or Tris 0.5 M, pH 7.4, sodium taurocholate 5 mM, sodium chloride 100 mM, 4 nitrophenyl octanoate 0.35 mM) and 5 µL enzyme preparation (1:2 sample dilution in TRIS 0.5 M, pH 7.4). Absorbance was read at 415 nm, every minute, during 10 minutes. All digestive enzyme activities were expressed as activity unit (U; change in absorbance per minute) per milligram of protein. Lipase activity was only measured in embryos and paralarvae of one and three days old.

2.4.3. Detoxification and oxidative stress indicators (embryos and paralarvae)
Lyophilized samples were homogenized in cold buffer Tris 0.05 M pH 7.4 at 1:100 (w/v) using a Potter-Elvehjem homogenizer (Thomas Scientific, Swedesboro, NJ, USA). Redox potential (E_{h}) was measured with a probe (ArrowDox Measurement System, ORP-146CXS, Los Angeles, USA) in each homogenate (in mV). Posteriorly, homogenate was divided for triplicate assays of activities of acetylcholinesterase (AChE), carboxylesterase (CbE), catalase (CAT), glutathione S-transferase (GST), and for levels of lipid peroxidation (LPO) and total glutathione (GSH). The homogenates were centrifuged at 10,000 g for 5 min at 4°C for the enzymatic assays. The supernatants were separated and stored at -80°C until analysis, together with the homogenates for LPO and GSH. All the enzyme activities were analysed at 25°C and reported in activity unit (U; nmol per minute) per milligram of protein.

AChE is an enzyme that catalyzes the breakdown of acetylcholine and other choline esters. This enzyme is mainly found at neuromuscular junctions and in synapses. AChE activity, was measured using a modification of the method of Ellman et al. (1961) adapted to a microplate reader (Rodríguez- Fuentes et al. 2008). Each well contained 10 µL of the supernatant and 180 µL of 5, 5′-dithiobis (2 nitrobenzoic acid) 0.5 M in 0.05 mM Tris buffer pH 7.4. The reaction started by adding 10 µL of acetylthiocholine iodide (final concentration 1 mM) and the rate of change in the absorbance at 405 nm was measured for 2 min. Carboxylesterases (CbE) are ubiquitous enzymes that catalase carboxylic esters to produce an alcohol and a carboxylate. These enzymes
participate in phase I metabolism of xenobiotics and in the hydrolysis of long chain fatty acid esters and thioesters (Ross et al., 2010, Lian et al, 2017). CbE activity was measured using p-nitrophenyl-α-arabinofuranoside substrate, as indicated by Hosokawa and Satoh (2001) with some modifications (25 μL of the supernatant and 200 μL of substrate were mixed and the reaction was recorded for 5 min at 405 nm).

SOD was evaluated using Sigma-Aldrich assay kit (19160), the reaction of which produces a water-soluble formazan dye upon reduction of O$_{2}^{−}$•−. The reduction rate of O$_{2}^{−}$•− is linearly related to the xanthine oxidase activity of the sample and is inhibited by SOD. CAT activity was measured using Goth (1991) method with the modifications made by Hadwan and Abed (2016). In this method, the undecomposed H$_2$O$_2$ is measured with ammonium molybdate after 3 min to produce a yellowish colour that has a maximum absorbance at 374 nm. GST activity was determined from the reaction between reduced glutathione and 1-chloro-2.4-dinitrobenzene at 340 nm (Habig and Jakoby 1981). Proteins were analysed in the supernatant according to Bradford (1976) and was used to normalize enzyme activities. Total glutathione (GSH) was measured with a Sigma-Aldrich Glutathione Assay Kit (CS0260) and was reported in nmol mL$^{-1}$. This kit uses an enzymatic recycling method with glutathione reductase (Baker et al., 1990). The sulfhydryl group of GSH reacts with Ellman’s reagent and produces a yellow coloured compound that is read at 405 nm. LPO was evaluated using PeroxiDetect Kit (PD1, Sigma-Aldrich, USA) following manufacturer’s instructions and was also reported in nmol mL$^{-1}$. The procedure is based on peroxides oxide iron (Fe$^{3+}$) that forms a colouring component with xylene orange at acidic pH measured at 560 nm.

2.5. Statistical analysis

With the aim to evaluate physiological condition of females, embryos and paralarvae in an integrative way, several multivariate sets of descriptors were analysed. Females were first classified following histological criteria developed by (Avila-Poveda et al. 2016; Olivares et al. 2017): 1) immature (Imm); 2) initial vitellogenesis (stage III of oocytes) or physiological maturation (Phys Mat); 3) eggs in reproductive coelom or early functional maturation (Ea Func Mat); and 4) eggs at the end of maturation process...
or late functional maturation (La Func Mat). Female octopus were then analysed using descriptors of: 1) reproductive condition, \textit{i.e.} body weight of, (BW), eviscerated body weight (EBW), ovaries weight (OW), reproductive system weight (RSW), and digestive gland (DG) weight; 2) metabolite concentration in ovaries: glycogen (Gly), glucose (Glu), triacylglyceride (TG), cholesterol (Chol), and soluble proteins (Prot); 3) metabolite concentration and enzyme activity in the digestive gland: Gly, Glu, TG, Chol, Prot, acid and alkaline protease activities.

\textit{Octopus mimus} embryos and paralarvae were classified considering three well recognized stages during embryo development and two distinct paralarval stages: 1) initial embryonic stages and beginning of organogenesis (Ini Organ); 2) the end of organogenesis with stages XIV and XV (Organ); 3) stages after organogenesis characterised by body growth (Post); 4) paralarvae with 1 day (1st); and 5) paralarvae with 3 days since hatching (3rd). The descriptors used in the multivariate analysis were: 1) metabolite concentration for the whole egg or paralarvae: Gly, Glu, TG, Chol, Prot; 2) acid and alkaline proteases activity and 3) oxidative stress indicators: redox potential (E\textsubscript{h}), superoxide dismutase (SOD) activity, catalase (CAT) activity, glutathione S-transferase (GST) activity, lipid peroxidation (LPO) and total glutathione (total GSH); 4) the detoxification indicators, \textit{i.e.} activity of acetylcholinesterase (AChE) and carboxylesterase (CbE). Barplots were used to show the changes of each physiological descriptor along the female maturation stage, embryo development and hatched paralarvae (one and three days old).

The multivariate approaches consisted of ordination by Principal Coordinate Analysis (PCoA) applied on Euclidean distance matrices of samples in each data set (Legendre and Legendre, 1998). Data were square root (female data) or log-transformed (embryo and paralarvae data) and normalised by centering and dividing between the standard deviation of each variable prior to analysis (Legendre and Legendre, 1998). A permutational multiple analysis of variance (MANOVA) was applied on the distance matrices to detect differences amongst female octopus in different stages of gonadic maturation (fixed factor: Imm, Phy Mat, Ea Func Mat, La Func Mat), and amongst embryos and paralarvae in different stage of development (Ini Organ, Organ, Post, 1st...
and 3rd day paralarvae). Permutational multiple paired t-tests were used to compare the centroids of the different stages in each data set; 9999 unrestricted permutations of raw data were used to generate the empirical F and t-distributions (Anderson, 2001; McArdle and Anderson, 2001). In an attempt to show data in a more conventional form, the relationship between the descriptors and female’s maturation and embryo’s developmental stage were also shown as figures with bars without statistical analysis, because such analysis was done using multivariate tests.

3. Results

3.1. Female *O. mimus*

Classification of the preserved ovaries of 23 female octopus using histological criteria resulted in 8 immature females (Imm) and 15 individuals in different stages of gonadic maturation: 4 in physiological maturation (Phys Mat); 6 in early functional maturation (Ea Func Mat); and 5 in late functional maturation (La Func Mat).

3.1.1. Reproductive condition

As predicted, the values of all descriptors increased with gonadic maturation, but did so in different proportion. Body and eviscerated body weights in early and late maturation stages resulted 3.2 and 2.7 higher than in immature females (Fig. 1A), whereas the weight of the reproductive system and ovaries increased 135 and 108-fold, respectively (Fig 1A). Increments in the corresponding indices (RSWI and GI) were also observed throughout gonadic maturation (Fig. 1B). Weight of the digestive gland showed its greatest increase (2.6-fold) from early to late functional maturation (Fig. 1A). By contrast, the DGI (%) reached a maximum at physiological maturation, i.e. just before eggs enter the reproductive coelom, but decreased towards the end of late functional maturation (Fig. 1B). Ordination by PCoA of the reproductive descriptors of female *O. mimus* showed 94.9 % of total variation explained in the first principal coordinate (PCoA1; Fig. 2A). Both eviscerated and total weight, as well as the weight of the ovary and the reproductive system were strongly correlated with PCoA1, suggesting they largely contributed to the separation of samples in the horizontal axis. Therefore,
samples with highest values were located at the right-hand side of the ordination map, whereas those with low values were located to the left (Fig. 2A). The second principal coordinate explained only 4.2% of total variation, and was mainly influenced by the weight of the digestive gland. Statistical results obtained with the MANOVA supported these observations since it showed overall significant differences in the descriptors between stages of gonadic maturations (Table 1). In addition, paired comparisons amongst centroids revealed that immature females and those in both early and late functional maturity differed significantly in their reproductive condition (Table 2). In summary, immature female *O. mimus* had significantly lower values of all reproductive condition descriptors than those in early and late functional maturation stages. Females in physiological and functional maturation stages, however, had statistically similar values (Table 2).

3.1.2. Metabolite concentration in the ovaries

Ovary samples of 23 female octopus were used to evaluate metabolites in reproductive tissues. Metabolite concentration in the ovaries of female *O. mimus* changed as gonadic maturation stages advanced, but were not all following the same trends (Fig. 3). Glycogen (Gly) decreased from immature (n = 8) to physiologically mature females (n = 4), and then reached the highest values in late functionally mature octopus (n = 5) (Fig. 3A). Glucose (Glu) monotonically decreased, and proteins (Prot) increased with gained maturity of the females (Fig. 3B-3C). Triacylglycerides (TG) increased from immature females to those in intermediate stages, but decreased during late functional maturation (Fig. 3D), whereas cholesterol (Chol) had the highest values amongst immature females (Fig. 3E). Ordination of metabolite concentration in the ovaries of female octopus showed that the PCoA1 and PCoA2 explained 74% of total variation in the data (54.8% and 19.2%, respectively; Fig. 2B). Concentration of Gly, Chol and Prot were positively correlated to PCoA1, hence contributed mostly to the position of samples on the horizontal axis (Fig. 2B). By contrast, Glu and TG were inversely correlated to PCoA2, contributing to situate samples high in Glu in the upper half of the ordination map, and those high in TG at the bottom (Fig. 2B). Results of the statistical procedures applied to the data (Table 1 & 2) showed significant differences between all stages of gonadic
maturation except for physiologically mature and early functional mature females, that were statistically similar (Table 2). In summary, ovary samples from immature females were high in Glu and Chol, but low in TG and Prot, when compared to samples from late functionally mature females; physiologically and early functional mature females presented intermediate concentrations of these metabolites in the ovary (Fig. 2B).

3. 1. 3. Metabolite concentration and enzyme activity in the digestive gland (DG)

Samples of DG of 23 female octopus were used to evaluate metabolites in those tissues. Levels of Gly were relatively low in in the digestive gland of immature female octopus (n = 8), but increased 2.4 times in those classified as physiologically mature (n = 4) (Fig. 3A). Gly decreased slightly and stabilised in females in functional maturity. Glu levels in the digestive gland were high and constant in the first stages of gonadic maturation, but decreased markedly in females in late functional maturation (n = 5) (Fig. 3B). Prot, TG and Chol levels remained constant throughout maturation stages, but the latter were particularly low in all samples analysed (Fig. 3C-2E). The activity of acid proteases increased slightly as females advanced in gonadic maturation (Fig. 3F), whereas alkaline proteases increased from immature females to physiological mature but were constant thereafter (Fig. 3G). The multivariate analysis of metabolite concentration and enzyme activity in the digestive gland of female O. mimus resulted in the first and second principal coordinates explaining 63.8% of the total variation in the data (39.5% and 24.3%, respectively; Fig. 2C). The percentage of total variation explained by the procedure increased to 79% when the third coordinate was considered. Glu was inversely correlated to Gly, TG and Chol, whilst Prot were inversely correlated to both acid and alkaline proteases in all three principal coordinates (Fig. 2C). Significant differences between stages of gonadic maturation were marginally detected by the MANOVA (Table 1). In addition, paired comparisons between centroids only revealed significant differences amongst extreme ends of the maturity gradient (Table 2), indicating that metabolite concentration and activity of proteases in the female digestive gland changed gradually as octopus became mature. It should be noted that values of these descriptors had an overall high dispersion in physiologically mature females, adding to the lack of statistical differences amongst stages (Fig. 2C). In
summary, immature females had high concentrations of Glu and, to a lesser extent soluble Prot. Late functionally mature females, by contrast had high levels of both acid and alkaline protease activity, but presented low concentrations of Prot and Glu (Fig. 2C).

3.2. Embryos and paralarvae of O. mimus

Ten samples of embryos of each stage, and of each paralarvae (1 and 3 days after hatch) of octopus were used to evaluate metabolites, digestive enzymes, oxidative stress and detoxification indicators. When necessary, in the earliest stages, pool of 3 to 5 eggs or paralarvae were used.

3.2.1. Metabolite concentration

Gly levels during the first embryonic stages were relatively similar, but decreased in paralarvae (Fig. 4A). Octopus embryos showed relatively low and constant concentrations of Glu and TG, but these increased in paralarvae (Fig. 4B & 4D). Soluble Prot decreased from the initial to the final embryonic stages, and presented its lowest concentration in paralarvae of the 3rd day (Fig. 4C). Chol, by contrast, varied around low concentrations during the initial stages of embryonic development, but increased towards the end, showing its highest concentration in paralarvae (Fig. 4E). The first and second PCoA explained 56.7 and 20% of total data variation in metabolite concentration of octopus embryos and paralarvae (Fig. 5A). Glu and TG were inversely correlated with Gly and Prot and contributed largely to sample ordination on the horizontal axis. Samples high in Gly and Prot were thus located to the left of the ordination map, whereas those high in TG were located to the right. Chol concentration contributed to order samples on the vertical axis (Fig. 5A), so those with high Chol were located at the upper right of the ordination map. The MANOVA detected overall significant differences amongst stages of embryo and paralarvae (Table 1), and significant differences in paired comparisons allowed to distinguish three groups: embryos in stages prior to organogenesis (Ini Organ); those in stages characterised by organogenesis and immediately after (Organ and Post); and the first and third day’s paralarvae. In
summary, embryos at the initial phases of organogenesis had high Gly and Prot concentration, but low Glu and TG concentration; embryos in late organogenesis and after had high Chol concentrations and intermediate values in all other metabolites; 1st and 3rd day paralarvae had high Glu and TG, and low Gly and Prot concentrations (Fig. 5A).

3. 2. 2. Digestive enzyme activity

Activity of both acid and alkaline proteases was markedly lower in octopus embryos compared to paralarvae (note the axis different scales for embryos [left] and paralarvae [right]; Fig 4F-G). However, alkaline proteases showed a slight increase in the last embryonic stages. Lipase activity, a yolk consumption proxy, was low in embryos at the initial stages of development, increased towards the end, presenting its highest activity in paralarvae of one day old, and was undetected in paralarvae of 3 days old (Fig 4H). Ordination of protease activity in embryos and paralarvae of *O. mimus* showed that the PCo1 explained 92.6% of total variation (Fig. 5B), thereby separating samples from left to right in the ordination map (Fig. 5B). Enzyme activity, in general, increased as embryos advanced from initial organogenesis towards paralarval stages, with the highest activity measured in the latter. The MANOVA showed significant change in enzyme activity throughout stages of development (Table 1), with differences detected between all pairs of centroids except those representing the 1st and 3rd paralarvae (Table 2). These results showed four distinct groups of samples regarding enzyme activity: embryos at the beginning of organogenesis, followed by those at the end and after organogenesis, and paralarvae of days 1 and 3 (Fig. 5B).

3. 2. 3. Oxidative stress and detoxification indicators

Concentrations of SOD, CAT and GST were low amongst embryos in the initial phases of organogenesis, increased throughout development, and attained the highest values in paralarvae (note the logarithmic scale for GST; Fig. 6C-E). A reduction of oxidative damage was observed throughout development, with LPO and GSH levels starting to decrease at stage XV and attaining the lowest values in paralarvae (Fig. 6F & 6H).
contrast, E_h remained similar throughout embryonic development and the first paralarvae (Fig. 6G). Analysis of the oxidative stress indicators in *O. mimus* embryos and paralarvae showed that the first and second PCoA explained 69.2 and 15.3% of total data variation (Fig. 5C). LPO was high amongst embryos in stages before organogenesis, and was inversely correlated to CAT, GST and SOD, which had the highest values among 1st and 3rd day paralarvae (Fig. 5C). Whilst the MANOVA showed overall significant differences throughout development (Table 1), paired tests amongst centroids revealed significant differences only between extreme stages (Table 2).

Activity of AChE and CbE showed much variation throughout embryonic stages of development (Fig 6A-6B). The former, however, showed an important tendency to increase in paralarvae (note the logarithmic scale; Fig 6A), whereas the later remained relatively constant. Multivariate analysis of the activity of these enzymes showed 78.8% of variation in the first principle coordinate, with samples from embryos low, and paralarvae high in AChE activity (Fig. 5D). Activity of CbE, however, only contributed moderately to the ordination of samples. Statistical tests applied to this data showed overall significant differences in AChE and CbE activity throughout stages of development (Table 1), but paired tests amongst centroids revealed significant differences only between extreme stages (Table 2).

4. Discussion
The present study provides a strong base line to understand the energy reserves intake and loss during gonadal maturation of *Octopus mimus* females and the effect of those in embryo and paralarvae characteristics (energetic metabolites, digestive enzymes, oxidative stress/detoxification indicators). Looking at the whole individual organization level, all parameters measured in this study relatively to the weight of digestive and reproductive organs, and their indices, followed the same behaviour as was previously observed when reproductive condition of 991 *O. mimus* females were analysed (Cortez et al. 1995). Increments on reproductive system weight (RSW) and its index (RSWI) were observed along the reproductive maturity stages, indicating that during ovarian development there were mobilization of energy and nutrients to reproductive organs.
Previous studies made in *O. vulgaris*, *O. defilippi* (Rosa et al. 2004) and in the squids *Illex coindetii* and *Todaropsis eblanae* (Rosa et al. 2005) suggested that those species take the energy for egg production directly from food rather than from stored products in a specific tissue. That conclusion was based in the observation that, while mature females experience gonad increments on protein (Prot), lipid and glycogen (Gly) contents, the digestive gland and muscle where without apparent changes between both maturation stages, indicating that there were no evidences that storage reserves were transferred from digestive to ovarian tissue during maturation. Although the present study corroborates that conclusion, now we showed that, during maturation process, there were nutrients mobilization from both digestive gland and ovaries that where not observed early. Free glucose (Glu) in the digestive gland of *O. mimus* females resulted in an important source of metabolic energy, being highly concentrated along the maturation process until early functional maturation, when oogonia are growing in the ovaries. In *O. maya*, an elevated level of progesterone (hormone involved in oocytes vitellogenesis) was observed precisely during early functional maturation (Avila-Poveda et al. 2015), suggesting a high requirement of metabolizable energy to perform this phase. In this sense, previous results obtained in *O. mimus* and *O. maya* showed that digestive gland energy metabolites (Gly, Glu, Prot) were used as a source of metabolic energy during digestive processes (Gallardo et al. 2017), and during the growth of juveniles and pre-adults of *O. maya* (Aguila et al. 2007; Rosas et al. 2011) putting in evidence the importance of those nutrients in the physiology of cephalopods. According to Martínez et al. (2014), this energy is the result of gluconeogenic pathway that are supported by protein metabolism, that resulted from the carnivorous eating habits of cephalopods. For that reason we hypothesise that, as in digestive gland (Martinez et al., 2014), the Gly and Glu encountered in the ovaries followed also the glycogenic pathways (Hochachka & Fields 1982), as previously described in muscle of different cephalopod species (Gallardo et al. 2017; Hochachka & Fields 1982; Morales et al. 2017).

The dynamics of Gly and Glu observed in *O. mimus* ovaries suggest that there are biochemical regulatory mechanisms involved in the storage and mobilization of
nutrients. In the present study high Glu levels were observed in ovaries of immature females and until early functional maturation suggesting that glucose could be used as a source of energy during the complex processes involved in oocytes synthesis. However, the reduction of Glu levels recorded in the late functional maturation stage, when the vitellogenesis is at its maximum level, challenges the fact that Glu is the only source of energy. Two hypotheses are proposed to explain this: 1) the latest vitellogenesis taking place in the ovaries may require less energy than previous maturation stages, using facilitating transport mechanisms for vitellogenesis and for storage of yolk into the eggs; or 2) Glu may need to be reduced to avoid inhibitory effects as seen in insects (Kunkel et al., 1987). As Glu in excess could prevents vitellogenin uptake, octopus may maintain minimal glucose levels to be used as a source of metabolic energy, allowing in this form the adequate vitellogenin uptake. If some control mechanisms exist, then Gly synthesis and storage may also be involved. During early and late functional maturation, an increment of Gly was registered in ovarium compared to immatures females, suggesting that those molecules were directly stored into the eggs to be used as a source of energy during embryo development and/or to maintain the physiological integrity of females during parental care that occurs after the spawn (Roumbedakis et al. 2017).

As was previously observed in Octopus vulgaris (Rosa et al., 2004), no apparent mobilization of lipids from the digestive gland to the ovaries occurred in O. mimus, supporting the hypothesis that cephalopods channel nutrients to the ovaries from food intake rather than from tissue reserves, as was also observed in laboratory studies made in O. maya and O. vulgaris (Caamal-Monsreal et al. 2015; Rosa et al. 2005; Tercero-Iglesias et al. 2015). In the present work, high levels of Chol were registered in immature females, indicating that even before maturation, the females used the ovary as a lipid reserve site. In other words, although it is true that the nutrients come directly from the food and that these are not stored in muscle or digestive gland (Rosa et al., 2005), the results obtained now show that the ovary itself is a reserve site for the nutrients that will be used during maturation, at least at the beginning of the process. High Chol concentration may reflect crustaceans ingested during the stage of somatic
growth (Cardoso et al. 2004; Carrasco & Guisado 2010). Once the maturation processes started (physical maturation), an increment of triacylglycerides (TG) was observed followed by a reduction of Chol indicating that during oocytes growth, Chol was requested, probably to be used as structural component into the oocytes biological membranes (Zubay 1983). This process is characterized by the formation of oocytes, their growth, and their transformation into secondary oocytes surrounded by the follicle cells without yolk (Avila-Poveda et al. 2016). Once the vitellogenesis started (early functional maturation), high TG levels were registered, indicating that fatty acids are also stored in the ovaries, probably to be used in the yolk synthesis. The latter is evidenced by low TG levels at the end of the maturation process (late functional maturation) in the ovaries of the females, suggesting their transformation and storage into the eggs as yolk. As Chol accumulated with maturity progression from physiological maturation to late functional maturation, Chol may also be stored in the yolk to be used by the embryos throughout their development (Estefanell et al. 2017).

As can be expected, the biochemical and physiological processes in embryos are highly dynamics following two well identified developmental phases: organogenesis and growth (Boletzky 1987; Naef 1928). In many species, the first phase occurs between stage I to XII-XIII, when the first inversion allows the embryo to growth in the proximal side of the egg (Boletzky, 1987). During this phase, nervous system is developed and the retina pigmentation is evident around stage X, to reach the complete organogenesis in O. mimus embryos at stages XII-XIII (Castro-Fuentes et al. 2002). The organogenesis is characterized by gastrula stages when pairs of arm rudiments are evident joint with first visible organs at the disc-shaped animal pole (Boletzky 2003). Previous experiments with O. maya confirmed that Glu, synthesized via the gluconeogenic pathway, is the final energetic product of protein catabolism, when the amino acids and polypeptides were transformed into Gly via the gluconeogenesis pathway (Baeza-Rojano et al. 2013; Martinez et al. 2011; Rosas et al. 2011). Present results indicate that soluble Prot and other amino acids could be used, similar to juveniles, as a source of Gly allowing stable and permanent supply of Glu along embryo development, even during the growth phase. In this sense we can hypothesize that Glu
is not the most important source of energy for embryos and that regulation of gluconeogenic pathway works as a mechanism for Glu supply. If that regulation exists, it should be coupled with the phases of embryo development being without control until stage XI and control from stage XII onwards. Also, results obtained in the present study putted in evidence that energetic demands of the embryo in the first phase of development were relatively low, without significant mobilization of energetic substrates and its associated enzymes. Also, was registered that eggs were spawned with relatively high levels of LPO and GSH indicating that the maternal ROS production during ovarian maturation was placed in the egg to be eliminated during embryo development. In embryos, the antioxidant defence mechanisms were actuated after the stage XIV, when the circulatory systems were activated and an increment on use of yolk as a source of energy was registered (Caamal-Monsreal et al. 2016; Sánchez-García et al. 2017).

Together with the reduction of soluble Prot and Gly, an increment in lipases activity was recorded in embryos of stage XIV onward, indicating the beginning of yolk consumption. Studies made in O. maya and O. mimus embryos also found significant mobilization of yolk from stage XIV-XV, indicating stronger mobilization of nutrients from yolk synchronized with embryo growth (Caamal-Monsreal et al. 2016; Sánchez-García et al. 2017). In O. mimus, heart beats increase from stage XV onward, when growth of embryos become evident (Warnke 1999). Exponential growth rate of embryos was obtained from stage XII onwards in Enteroctopus megalocyathus (Uriarte et al. 2016), suggesting that this phase of growth after organogenesis is a common characteristic between octopus species. The metabolic demand of cephalopod embryos rises during development as was observed in Sepia officinalis and Loligo vulgaris (Pimentel et al. 2012), E. megalocyathus (Uriarte et al. 2016), O. vulgaris (Parra et al. 2000) O. mimus (Uriarte et al. 2012) and O. maya (Caamal-Monsreal et al. 2016; Sánchez-García et al. 2017). In parallel with this higher metabolic demands, reactive oxygen species (ROS) are produced, which consequently leads to oxidative stress if not eliminated by the antioxidant defence system (Regoli et al. 2011). A recent study on the role of the enzymatic antioxidant system in the thermal adaptation of O. vulgaris and O. maya
embryos suggests that early developmental stages of cephalopods have temperature-regulated mechanisms to avoid oxidative stress (Repolho et al. 2014; Sánchez-García et al. 2017). In the present study was observed that ROS in the eggs of *O. mimus* embryos were controlled during the growth phase of the embryo development. This was thanks to the activation of the antioxidant defence mechanisms in the stage XIV, indicating the coupling between metabolic demands and the functioning of the antioxidant defence system against oxidative stress. The GST was particularly increased in the paralarval stages, which could explain the lower levels of GSH in those stages as this is its substrate. It has been also found that AChE plays an important role during morphological modification (Fossati et al., 2013), supporting the hypothesis that AChE participates in the regulation of cell proliferation and apoptosis (Robitzki et al., 1998). The important increase of AChE in the paralarval stages was result to this transition between embryos and paralarve stages. In *O. maya* embryos, a marked increase in AChE at the beginning of the organogenesis has also been reported (Sánchez-García et al. 2017). No trends were observed regarding CbE activity in *O. mimus* embryos, which speaks for little role in yolk catabolism.

Studies made in *O. vulgaris* hatchlings revealed that during the burst of anaerobic swimming of paralarvae the energy is obtained from Glu and from Arginine phosphate system mediated by lactate dehydrogenase and octopine dehydrogenase respectively (Morales et al. 2017). Both systems require pyruvate, either by the gluconeogenic route or via the degradation of amino acids by transamination (Zubay 1983). Although we don’t have data to demonstrate what kind of mechanisms could be operating in *O. mimus* embryos, it is possible to hypothesize that those mechanism should be related with amino acids and lipid catalysis, because both substrates (mainly arginine and glycerol) are involved in pyruvate production in cephalopods (Morales et al. 2017). In this sense we think that undetected activity of lipases until stage IX, and the moderated activity of alkaline and acidic enzymes registered along *O. mimus* embryo development could be involved in physiological regulation of the energy supply in those organisms. Studies made in *O. maya* embryos demonstrated that the yolk consumption starts after
the stage XIV, when the organogenesis ends (Caamal-Monsreal et al. 2015; Sánchez-García et al. 2017), just when the antioxidant defences are activated.

5. Conclusion

Results obtained in the present study demonstrate that ovarium is a site for reserve of some nutrients for reproduction. Presumably, triacylglycerides are stored at the beginning of the maturation processes followed by cholesterol; we hypothesise that both were energetically supported by glucose, derived from glycogen following gluconeogenic pathways. These findings suggest the existence of a control mechanism of protein-glycogen-glucose operating in O. mimus' ovarian. We suggest that glucose, while is the energetic support for ovarian maturation at the beginning, could have a potential role as an inhibitor of vitellogenin uptake at the end of the maturation processes. Results obtained in the present study suggest that ROS produced during the metabolic processes that occur in ovarian maturation were in part transferred to the egg, provoking a ROS maternal charge to the embryo. The elimination of this ROS maternal charge started when the activity of the heart is initiated and the a higher absorption of the yolk is noted around stages XIV and XV. After stage XV the activation of the energetic metabolism and digestive enzymes, joint with increments in consumption of glycogen were also observed. All these processes could be key in preparing suitable antioxidant defence mechanisms for the paralarvae that are obligated to neutralize ROS production when they start their zooplankton life style, experiencing an increase in energetic requirements related to food acquisition.

Literature cited

Aguila J, Cuzon G, Pascual C, Domingues P, Gaxiola G, Sánchez A, Maldonado T, and Rosas C. 2007. The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: Digestive enzyme activity, blood metabolites, and energy balance. Aquaculture 273:641-655.

Avila-Poveda O, Móntez-Pérez RC, Koueta N, Benites-Villalobos F, Ramírez-Pérez JS, Jimenez-Gutierrez LR, and Rosas C. 2015. Seasonal changes of progesterone and testosterone concentrations throughout gonad maturation stages of the
Mexican octopus, *Octopus maya* (Octopodidae: Octopus). *Molluscan Research* 35:161-172.

Avila-Poveda OH, Koueta N, Benites-Villalobos F, Santos-Valencia J, and Rosas C. 2016. Reproductive traits of *Octopus maya* (Cephalopoda: Octopoda) with implications for fisheries management *Molluscan Research* 36:29-44.

Baeza-Rojano E, Domingues P, Camaal-Monsreal C, Guerra-García J, Capella S, Noreña E, and Rosas C. 2013. Use of marine and freshwater gammarids as alternative prey to culture *Octopus maya* hatchlings. *Aquaculture Research* 44:1602-1612, doi:10.1111/j.1365-2109.2012.03169.x.

Baltazar P, Rodríguez P, Rivera W, and Valdivieso V. 2000. Cultivo experimental de *Octopus mimus* Gould, 1852 en el Perú. *Revista Peruana de Biología* 7:151-160.

Boletzky SV. 1987. Embryonic phase. In: Boyle PR, editor. *Cephalopod Life Cycles*, vol II. London: Academic Press. p 5-31.

Boletzky SV. 2003. Biology of early life in cephalopod molluscs. *Advances in Marine Biology* 44:144-203.

Bradford MM. 1976. A refined and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *AnalBiochem* 72:248.

Caamal-Monsreal C, Mascaró M, Gallardo P, Gallardo P, Rodríguez S, Noreña-Barroso E, Domingues P, and Rosas C. 2015. Effects of maternal diet on reproductive performance of *O. maya* and its consequences on biochemical characteristics of the yolk, morphology of embryos and hatchlings quality. *Aquaculture* 441:84-94, doi: 10.1016/j.aquaculture.2015.1001.1020.

Caamal-Monsreal C, Uriarte I, Farias A, Díaz F, Sánchez A, Re AD, and Rosas C. 2016. Effects of temperature on embryo development and metabolism of *O. maya*. *Aquaculture* 451:156-162.
Cardoso F, Villegas P, and Estrella C. 2004. Observaciones sobre la biología de *Octopus mimus* (Cephalopoda: Octopoda) en la costa peruana. *Revista Peruana de Biología* 11:45-50.

Carrasco S, and Guisado C. 2010. Effects of alimentary regime on feeding, growth, and proximal composition of *Octopus mimus* Gould, 1852 (Cephalopoda: Octopodidae). *J Shellfish Res* 29:455–461.

Castro-Fuentes H, Olivares-Paz A, Quintana-Fellay A, and Zuñiga O. 2002. Description of embryonic development and paralarva of *Octopus mimus* (Gould, 1852) (Mollusca: Cephalopoda) in captivity. *Estud Oceanol* 21:13-25.

Cortez T, Castro BG, and Guerra A. 1995. Reproduction and condition of female *Octopus mimus* (Mollusca: Cephalopoda. *Mar Biol* 123:505-510.

Cortez T, Gonzalez AF, and Guerra A. 1999. Growth of cultured *Octopus mimus* (Cephalopoda: Octopodidae). *Fish Res* 40:81-89.

Estefanell J, Mesa-Rodríguez A, Ramírez B, La Barbera A, Socorro j, Hernández-Cruz CM, and Izquierdo M. 2017. Fatty Acid Profile of Neutral and Polar Lipid Fraction of Wild Eggs and Hatchlings from Wild and Captive Reared Broodstock of *Octopus vulgaris*. *Frontiers in Physiology* 8:1-8; doi: 10.3389/fphys.2017.00453.

Fariñas A, Navarro JC, Cerna V, Pino S, and Uriarte I. 2011. Effect of broodstock diet on the fecundity and biochemical composition of eggs of the Patagonian red octopus (Enteroctopus megalocyathus Gould 1852). *Ciencias Marinas* 37:11-21.

Gallardo P, Olivarez A, Martínez-Yañez R, Caamal-Monsreal C, Domingues P, Mascaró M, Sánchez A, Pascual C, and Rosas C. 2017. Digestive Physiology of *Octopus maya* and *O. mimus*: Temporality of Digestion and Assimilation Processes. *Frontiers in Physiology* 8:355, doi: 310.3389/fphys.2017.00355.
Hochachka PW, and Fields JHA. 1982. Arginine, glutamate, and proline as substrates for oxidation and for glycogenesis in cephalopod tissues. *Pac Sci* 36:325–335.

Márquez L, Quintana D, Lorenzo A, and Almansa E. 2013. Biometrical relationships in developing eggs and neonates of *Octopus vulgaris* in relation to parental diet. *Helgol Mar Res* 67:461-470.

Martinez R, Santos R, Alvarez A, Cuzon G, Arena L, Mascaró M, Pascual C, and Rosas C. 2011. Partial characterization of hepatopancreatic and extracellular digestive proteinases of wild and cultivated *Octopus maya* *Aquaculture International* 19:445-457.

Morales A, Cardenete G, Hidalgo MC, Garrido D, Martín MV, and Almansa E. 2017. Time course of metabolic capacities in paralarvae of the common octopus, *Octopus vulgaris*, in the first stages of life. Searching biomarkers of nutritional imbalance. *Frontiers in Physiology* 8:1-8; doi: 10.3389/fphys.2017.00427.

Naef A. 1928. Die Cephalopoden (Embryologie) *Fauna e flora del Golfo di Napoli* 35:1-375.

Olivares A, Avila-Poveda OH, Leyton V, Zuñiga O, Rosas C, and Northland-Leppe I. 2017. Oviducal glands throughout the gonad development stages: a case study of *Octopus mimus* (Cephalopoda). *Molluscan Research* 37:229-241, doi:210.1080/13235818.13232017.11334275.

Olivares A, Bustos-Obregón E, Castillo Alvarez V, and Zuñiga O. 2003. Testicular function variation in adult *Octopus mimus* *IntJMorphol* 21:315-323.

Olivares A, Zamora M, Portilla P, and Zuñiga O. 2001. Estudio histológico de la ovogénesis y maduración ovárica en *Octopus mimus* (Cephalopoda: Octopodidae) de la II región de Chile. *Estud Oceanol* 20:13–22.
Olivares A, Zúñiga O, Castro G, Segura C, and Sánchez J. 1996. Bases biológicas para el manejo de Octopus mimus: Reproducción y crecimiento. *Estud Oceanol* 15:61–74.

Parra G, Villanueva R, and Yúfera M. 2000. Respiration rates in late eggs and early hatchlings of the common octopus, *Octopus vulgaris*. *J Mar Biol Ass UK* 80:557-558.

Perez-Losada MP, Guerra A, and Sanjuan A. 2002. Allozyme divergence supporting the taxonomic separation of Octopus mimus and Octopus maya from Octopus vulgaris (Cephalopoda : Octopoda). *Bulletin of Marine Science* 71:653-664.

Pimentel MS, Trübenbach K, Faleiro F, Boavida-Portugal J, Repolho T, and Rosa R. 2012. Impact of ocean warming on the early ontogeny of cephalopods: a metabolic approach. *Mar Biol* 159:2051-2059, doi: 10.1007/s00227-0012-01991-00229.

Regoli F, Giuliani ME, Benedetti M, and Arukwe A. 2011. Molecular and biochemical biomarkers in environmental monitoring: A comparison of biotransformation and antioxidant defense systems in multiple tissues. *Aquatic Toxicology* 1055:56-66.

Repolho T, Baptista M, Pimentel MS, Dionísio G, Trübenbach K, Lopes VM, Lopes AR, Calado R, Diniz M, and Rosa R. 2014. Developmental and physiological challenges of octopus (*Octopus vulgaris*) early life stages under ocean warming. *J Comp Physiol B* 184:55-64.

Rosa R, Costa PR, Bandarra N, and Nunes AJP. 2005. Changes in Tissue Biochemical Composition and Energy Reserves Associated With Sexual Maturation in the Ommastrephid Squids *Illex coindetii* and *Todaropsis eblanae* *BiolBull* 208:100-113.

Rosa R, Costa PR, and Nunes L. 2004. Effect of sexual maturation on the tissue biochemical composition of *Octopus vulgaris* and *O. defilippi* (Mollusca: Cephalopoda). *MarBiol* 145:563-574.
Rosas C, Sanchez A, Pascual C, Aguila y Elvira J, Maldonado T, and Domingues P. 2011. Effects of two dietary protein levels on energy balance and digestive capacity of Octopus maya Aquacult Int 19:165-180.

Roumbedakis K, Mascaró M, Martins ML, Gallardo P, Rosas C, and Pascual C. 2017. Health status of post-spawning Octopus maya (Cephalopoda: Octopodidae) females from Yucatan Peninsula, Mexico. Hydrobiologia doi: 10.1007/s10750-017-3340-y.

Sánchez-García A, Rodríguez-Fuentes G, Díaz F, Galindo-Sánchez C, Ortega K, Mascaró M, López E, Caamal-Monsreal C, Juárez O, Noreña-Barroso E, Re D, and Rosas C. 2017. Thermal sensitivity of O. maya embryos as a tool for monitoring the effects of environmental warming in the Southern of Gulf of Mexico. Ecological Indicators 72:574-585.

Söller R, Warnke K, Saint-Paul U, and Blohm D. 2000. Sequence divergence of mitochondrial DNA indicates cryptic biodiversity in Octopus vulgaris and supports the taxonomic distinctiveness of Octopus mimus (Cephalopoda: Octopodidae). Mar Biol 136:29-35.

Steer MA, Moltschaniwskyj N, Nichols DS, and Miller M. 2004. The role of temperature and maternal ration in embryo survival: using the dumpling squid Euprymna tasmanica as a model. JExpMarBiolEcol 307:73-89, doi:10.1016/j.jembe.2004.10.017.

Tercero-Iglesias JF, Rosas C, Mascaró M, Poot-López GR, Domingues P, Noreña E, Caamal-Monsreal C, Pascual C, Estefanell J, and Gallardo P. 2015. Effects of parental diets supplemented with different lipid sources on Octopus maya embryo and hatching quality. Aquaculture 448:234-242.

Uriarte I, Espinoza V, Herrera M, Zuñiga O, Olivares A, Carbonell P, Pino S, Farias A, and Rosas C. 2012. Effect of temperature on embryonic development of Octopus mimus under controlled conditions. J Exp Mar Biol Ecol 416-417:168-175.
Uriarte I, Martinez-Montaño E, Espinoza V, Rosas C, Hernández J, and Farias A. 2016. Effect of temperature increase on the embryonic development of Patagonian red octopus *Enteroctopus megalocyathus* in controlled culture. *Aquacult Res* 47:2582-2593.

Warnke K. 1999. Observations on the embryonic development of *Octopus mimus* (Mollusca: Cephalopoda) from Northern Chile. *Veliger* 42:211-217.

Zamora M, and Olivares A. 2004. Variaciones bioquímicas e histológicas asociadas al evento reproductivo de la hembra de *Octopus mimus* (Mollusca: Cephalopoda). *IntJMorphol* 22 207-216.

Zubay G. 1983. *Biochemistry*. USA: Addison-Wesley Publishing Company.

Zuñiga O, Olivares A, and Ossandón L. 1995. Influence of light in female sexual maturation of *O. mimus*. *Estud Oceanol* 14:75-76.

Zuñiga O, Olivares A, and Rosas C. 2014. Octopus mimus. In: Iglesias J, Fuentes L, and Villanueva R, eds. *Cephalopod Culture*. Dordrecht: Springer, 397 - 413.

Zuñiga O, Olivarez A, Rojo M, Chimal ME, Díaz F, Uriarte I, and Rosas C. 2013. Thermoregulatory behavior and oxygen consumption of *Octopus mimus* paralarvae: The effect of age. *Journal of Thermal Biology* 38:86-91.
Results of one-way permutational multiple MANOVAs applied on six multivariate sets of data obtained from *O. mimus*.

Results of one-way permutational multiple MANOVAs applied on six multivariate sets of data obtained from *O. mimus*: 1) female reproductive condition; 2) metabolite concentration in female ovaries; 3) metabolite concentration and enzyme activity in the digestive gland of female; 4) metabolite concentration; 5) enzyme activity; and 6) antioxidant defence mechanisms in embryos and paralarvae. The degrees of freedom (df), multivariate sum of squares (SS), mean square (MS), pseudo-F and p-values, and the number of unique permutations is given for each test.

Table 1 (on next page)

Results of one-way permutational multiple MANOVAs applied on six multivariate sets of data obtained from *O. mimus*.
Table 1. Results of one-way permutational multiple analysis of variance (MANOVAs) applied on six multivariate sets of data obtained from *Octopus mimus*: 1) female reproductive condition; 2) metabolite concentration in female ovaries; 3) metabolite concentration and enzyme activity in the digestive gland of female; 4) metabolite concentration; 5) enzyme activity; 6) oxidative indicators; and 7) detoxification indicators in embryos and paralarvae. The degrees of freedom (df), multivariate sum of squares (SS), mean square (MS), pseudo-F and p-values, and the number of unique permutations is given for each test.

Source of variation	df	SS	MS	pseudo-F	p	Unique permutations
1. Female reproductive condition						
Stage	3	70.60	23.53	32.54	< 0.001	9949
Residuals	13	9.40	0.72			
2. Metabolites in female ovaries						
Stage	3	39.66	13.22	3.57	< 0.01	9945
Residuals	19	70.34	3.70			
3. Metabolites and digestive enzyme activity in female digestive gland						
Stage	3	35.52	11.84	2.01	< 0.05	9931
Residuals	13	76.48	5.88			
4. Metabolites in embryos and paralarvae						
Stage	4	202.95	50.74	19.81	< 0.001	9927
Residuals	75	192.05	2.56			
5. Digestive enzyme activity in embryos and paralarvae						
Stage	4	96.88	24.22	58.66	< 0.001	9944
Residuals	56	23.12	0.41			
6. Oxidative stress indicators in embryos and paralarvae						
Stage	4	84.81	21.20	9.64	< 0.001	9928
Residuals	16	35.19	2.199			
7. Detoxification indicators in embryos and paralarvae						
Stage	4	25.98	6.49	7.42	< 0.001	9948
Residuals	16	14.01	0.88			
Table 2 (on next page)

Results of permutational paired t-tests that compared centroids representing data in six multivariate sets obtained from female *O. mimus* in different stages of gonadic maturation, and from embryos and paralarvae in different stage of development.

Results of permutational paired t-tests that compared centroids representing data in six multivariate sets of data obtained from female *O. mimus* in different stages of gonadic maturation (Imm: immature, PhyMat: physiological maturity, EarFuncMat: early functional maturity, and LatFuncMat: late functional maturity), and from embryos and paralarvae in different stage of development (Pre, Organ and Post: stages before, during, and after organogenesis, respectively, and 1st and 2nd paralarvae). Values are permutational *p*-values for each test.
Table 2. Results of permutational paired t-tests that compared centroids representing data in six multivariate sets of data obtained from female *Octopus mimus* in different stages of gonadic maturation (Imm: immature, PhyMat: physiological maturity, EarFuncMat: early functional maturity, and LatFuncMat: late functional maturity), and from embryos and paralarvae in different stage of development (Ini Organ, Organ, Post: initial, final and after organogenesis, respectively, and 1st and 3rd day paralarvae). Values are permutational *p*-values for each test.

1. Female reproductive condition	Imm	PhyMat	EarFuncMat
PhyMat	0.053	-	-
EarFuncMat	< 0.05	0.102	-
LatFuncMat	< 0.01	0.100	0.100

2. Metabolites in female ovaries	Imm	PhyMat	EarFuncMat
PhyMat	< 0.05	-	-
EarFuncMat	< 0.05	0.351	-
LatFuncMat	< 0.01	< 0.05	< 0.05

3. Metabolites and digestive enzyme activity in female digestive gland	Imm	PhyMat	EarFuncMat
PhyMat	0.225	-	-
EarFuncMat	0.271	0.498	-
LatFuncMat	< 0.01	0.204	0.104

4. Metabolites in embryos and paralarvae	Ini Organ	Organ	Post	1st
Organ	< 0.01	-	-	-
Post	< 0.001	0.161	-	-
1st	< 0.001	< 0.001	< 0.001	-
3rd	< 0.001	< 0.01	< 0.01	0.567

5. Digestive enzyme activity in embryos and paralarvae	Ini Organ	Organ	Post	1st
Organ	< 0.001	-	-	-
Post	< 0.001	< 0.05	-	-
1st	< 0.001	< 0.001	< 0.01	-
3rd	< 0.001	< 0.01	< 0.01	0.617

6. Oxidative stress indicators in embryos and paralarvae	Ini Organ	Organ	Post	1st
Organ	0.0915	-	-	-
Postn	< 0.01	0.206	-	-
1st	< 0.01	0.096	0.103	-
3rd	< 0.01	0.101	0.099	0.099
7. Detoxification in embryos and paralarvae

	IniOrgan	FinOrgan	PosOrgan	1st
FinOrgan	0.605	-	-	-
PosOrgan	0.208	0.499	-	-
1st	< 0.01	0.103	0.200	-
3rd	< 0.01	0.099	0.097	0.302
Figure 1

Body condition descriptors and indices of *Octopus mimus* females along the maturation stages.

(A) Weight (g) of body (BW; left axis), eviscerated body (EBW; left axis), digestive gland (DG; right axis), ovaries (OVW; right axis), and reproductive system (RSW; right axis) in immature (Imm; green bars), physiologically mature (Phys Mat; blue bars), early functionally mature (Ea Func Mat; cyan bars) and late functionally mature (La Func Mat; red bars) females. Body condition descriptors from Cortes et al. (1995) are also shown (Phys Mat: Black; La Func Mat: Grey); Values as mean ±SD. (B) Indices (%) of reproductive system weight (RSWI; left axis; black circle and continued line), gonadosomatic (GI; right axis; white circle and dashed line), and digestive gland (DGI; right axis; white triangle and dotted line) along the maturation stages (same as above). GI (white square) and DGI (black triangle) from Cortes et al. (1995) are also shown.
Figure 2

Principal coordinate analyses (PCoA) of *Octopus mimus* females of different reproductive stages.

PCoA ran with: (A) body condition descriptors: Weight of body (BW), eviscerated body (EBW), digestive gland (DG), ovaries (OVW), and reproductive system (RSW); (B) metabolite concentration (Glycogen, Glucose, Triacyl= Triacylglycerides, Chol= Cholesterol, Prot= proteins) in ovaries; and (C) metabolite concentration (Glycogen, Glucose, Triacyl= Triacylglycerides, Chol= Cholesterol, Prot= proteins) and enzymes in digestive gland (Alkaprot: alkaline proteases and Acidprot: acid proteases). Immature (Imm; green triangle), physiologically mature (Phys Mat; blue triangle), early functionally mature (Ea Func Mat; cyan square) and late functionally mature (La Func Mat; red diamond) females are categorized.
Figure 3

Metabolites and digestive enzymes determined in Octopus mimus females of different reproductive stages.

Metabolites were measured in the ovaries (white bars; left axis) and in the digestive gland (grey bars; right axis) of immature (Imm), physiologically mature (Phys), early functionally mature (Ea) and late functionally mature (La) females. The metabolites were: (A) Glycogen (mg g⁻¹), (B) Glucose (mg mL⁻¹), (C) Protein (mg mL⁻¹), (D) Triacylglycerides (mg mL⁻¹), and (E) cholesterol (mg mL⁻¹). The digestive enzymes (F) acid proteases (U mg protein⁻¹) and (G) alkaline proteases (U mg protein⁻¹) were measured in the digestive gland only. Values as mean ±SD.
Figure 4

Metabolites and digestive enzymes determined in *Octopus mimus* embryos and paralarvae maintained at 16°C in the laboratory.

Metabolites and digestive enzymes were measured in ten embryonic stages (white bars; left axis) and in paralarvae of one and three days old (grey bars; right axis). The metabolites were: (A) Glycogen (mg g⁻¹), (B) Glucose (mg mL⁻¹), (C) Protein (mg mL⁻¹), (D) Triacylglycerides (mg mL⁻¹), and (E) cholesterol (mg mL⁻¹). The digestive enzymes (F) acid proteases (U mg protein⁻¹), (G) alkaline proteases (U mg protein⁻¹) and (H) lipase were measured in the whole egg or paralarva. Values as mean ±SD.
Figure 5

Principal coordinate analyses (PCoA) of *Octopus mimus* embryos and paralarvae maintained in laboratory conditions (16°C) at different developmental stages.

PCoA ran with: (A) metabolite concentration (Glycogen, Glucose, Triacyl= Triacylglycerides, Chol= Cholesterol, Prot= proteins); (B) digestive enzymes (Alkaprot: alkaline proteases and Acidprot: acid proteases); (C) oxidative stress indicators: superoxide dismutase (SOD) activity, catalase (CAT) activity, glutathione S-transferase (GST) activity, total glutathione concentration (GSH), redox potential (Eₜₗ), and lipid peroxidation levels (LPO); and (D) detoxification indicators: acetylcholinesterase (AChE) activity and carboxylesterase (CbE) activity. Start of organogenesis (Ini Organ; stages I to XII; green triangle), completed organogenesis (Organ; blue triangle), post-organogenesis (Post; cyan square) stages and paralarvae age groups (para-larvae 1: red diamond and para-larvae 3: pink circles) are categorized.
Figure 6

Detoxification and oxidative stress indicators determined in *Octopus mimus* embryos and paralarvae maintained in laboratory conditions (16°C).

Indicators were measured in five embryonic stages (white bars) and in paralarvae of one and three days old (grey bars). The indicators were: activities of (A) Acetylcholinesterase (AChE; U mg protein\(^{-1}\); logarithmic transformation), (B) carboxylesterase (CbE; U mg protein\(^{-1}\)), (C) superoxide dismutase (SOD; U mg protein\(^{-1}\)), (D) catalase (CAT; U mg protein\(^{-1}\)), (E) glutathione S-transferase (GST; U mg protein\(^{-1}\); logarithmic transformation), (F) total glutathione concentration (GSH; nmol mL\(^{-1}\)), (G) redox potential (E\(_{h}\); in mV), and (H) lipid peroxidation levels (LPO; nmol mL\(^{-1}\)). Values as mean ±SD.
