Spatial modelling of emergency service response times

Benjamin M. Taylor

Lancaster University, UK

[Received March 2015. Final revision January 2016]

Summary. The paper concerns the statistical modelling of emergency service response times. We apply advanced methods from spatial survival analysis to deliver inference for data collected by the London Fire Brigade on response times to reported dwelling fires. Existing approaches to the analysis of these data have been mainly descriptive; we describe and demonstrate the advantages of a more sophisticated approach. Our final parametric proportional hazards model includes harmonic regression terms to describe how the response time varies with the time of day and shared spatially correlated frailties on an auxiliary grid for computational efficiency. We investigate the short-term effect of fire station closures in 2014. Although the London Fire Brigade are working hard to keep response times down, our findings suggest that there is a limit to what can be achieved logistically: the paper identifies areas around the now closed Belsize, Bow, Downham, Kingsland, Knightsbridge, Silvertown, Southwark, Westminster and Woolwich fire stations in which there should perhaps be some concern about the provision of fire services.

Keywords: Emergency service response times; Fire station closures; London Fire Brigade; Service provision; Spatial survival

1. Introduction

The thought of a fire in the home terrifies most people. In 2013–2014 UK fire and rescue services attended over half a million calls; there were a total of 322 fire-related deaths and 9748 non-fatal casualties due to fires of which 80% occurred in dwellings. There were 39 600 dwelling fires in the UK in 2013–2014, with most occurring between the hours of 8 p.m. and 9 p.m. at night and with misuse of equipment or appliances being the leading cause of around a third of these incidents (Department for Communities and Local Government, 2014). In London, 70% of fire-related deaths have been attributed to reporting-delays, but crucial in saving lives is the efficient response of emergency services to calls to the 999 or 112 telephone numbers (London Fire Brigade, 2013a).

The choice of where to locate emergency service stations (police, fire and ambulance) in cities has a direct influence on possible response times. From an academic perspective, this can be treated as an optimization problem: how do we balance the need to respond quickly to emergency situations given a finite resource allocation (Toregas et al., 1971; Kolesar and Blum, 1973)? Although such approaches are very useful in helping to decide where might be best to build emergency service stations in the first place, the urban environment is constantly changing and there is therefore a need to monitor and improve information on response times continually to ensure that safety standards are maintained. One aspect of this is the profiling and mapping of high risk groups, which has been undertaken in a limited way in the UK, one example being a...
pair of studies in Merseyside (Higgins et al., 2013, 2014). Another aspect is the study of response times to emergency calls, which is the subject of the present paper.

The analysis of emergency response times has received a modest amount of attention in the literature. Scott et al. (1978) is one exception to this, who sought to form a mathematical model for ambulance response times in Houston. Other statistical approaches have focused on predicting demand for emergency services such as Matteson et al. (2011), Vile et al. (2012) and Zhou et al. (2015). Recent concern over the UK Government’s cuts to public services and their potential effect on the ability of fire services to maintain safety standards has resulted in a resurgence of interest, albeit primarily from the media and opposition parties (London Fire Brigade, 2013b, c; Open Data Institute, 2013; Bannister, 2014; Caven, 2014; Foley, 2014; Johnson, 2014; Westminster’s Labour Councillors, 2014; Read, 2014; McCartney, 2015). The year 2014 saw 10 fire stations close: Belsize, Bow, Clerkenwell, Downham, Kingsland, Knightsbridge, Silvertown, Southwark, Westminster and Woolwich.

In the present paper our goal is to form a model for response times with the aim of providing emergency services with probabilistic information on where in space response times could be improved; clearly, faster response to fires in the home means more saved lives. Although in this paper we focus on urban fires, it is worth noting the marked difference in response times to fires in urban compared with rural areas (Claridge and Spearpoint, 2013; Torney, 2013). In rural areas response times are usually longer and the results that are presented in the present paper corroborate these findings: response times in the outskirts of the city, where there are fewer fire stations and there is generally more open space, are typically longer than near the centre of the city.

The London Fire Brigade is one of the largest fire and rescue services in the world; they collect and analyse substantial amounts of data on incident response times (London Fire Brigade, 2014a). In addition to presenting tables of average response time by ward, there has also been some investment in the mapping of response times at this level of aggregation (London Fire Brigade, 2013d, 2014b) and, in preparation for the proposed closures of 2014, an assessment of the potential effect of the closures was also carried out (Open Data Institute, 2013). Although these analytical efforts are to be highly commended, they could be further improved by the use of formal statistical models.

One of the main purposes of this paper is to demonstrate ways in which the modelling-oriented approach could help to improve the description and presentation of emergency response time data and consequently inform city planners in their decision-making processes. To achieve this, we apply recently developed techniques in survival analysis specifically designed for the modelling of large spatially referenced time-to-event data like the London Fire Brigade response times (Taylor, 2015). Specific goals of the analysis are

(a) to compare how well targets were met in 2014 with how well they were met in 2013 and 2012 and
(b) to identify regions around the closed fire stations that are not performing well with regard to the 6-min target.

The remainder of this paper is organized as follows. In Section 2 we introduce some basic concepts in spatial survival analysis and give details of the modelling approach proposed; in Section 3 we present results from the analysis of the London Fire Brigade data; and in Section 4 the paper concludes with a discussion.

The data that are analysed in the paper and the programs that were used to analyse them can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets
2. Data and model

The statistical analysis of time-to-event data is the realm of survival analysis (Cox and Oakes, 1984; Klein et al., 2013). Most often, survival methods are applied in clinical studies assessing the potential effect of treatments or exposures on the survival time of patients. Because of patients dropping out and the fact that studies are finite in duration, survival data are typically ‘censored’, which means that the event of interest was not necessarily observed for all individuals. Survival methods handle the time to observed and censored events in a formal way.

Let \(T \) be a random variable, denoting the time after the call to the 999 or 112 telephone lines that the first fire engine arrives at the scene of a dwelling fire at location \(s \). We shall shortly introduce a model for the hazard function at location \(s \) defined formally by

\[
h(t, s) = \lim_{\Delta t \to 0} \left\{ \frac{\mathbb{P}(t \leq T \leq t + \Delta t | T \geq t, \text{ the fire is at location } s)}{\Delta t} \right\}.
\]

For any time \(t \), the interpretation of \(h(t, s) \) in this case is as the instantaneous arrival rate of the first engine at the scene of the fire at \(s \) conditionally on the engine having not arrived before time \(t \). The survival function, which is of particular interest in our current context, can be derived from the hazard function,

\[
S(t, s) = \mathbb{P}(T > t | \text{ the fire is at location } s) = \exp \left\{ - \int_0^t h(x, s) \, dx \right\},
\]

and represents the probability that the engine will arrive after time \(t \) at location \(s \).

Our ideal proportional hazards spatial survival model for the response times postulates the following form for the hazard function for the \(i \)th call:

\[
h\{t, s; \beta, Y(s)\} = h_0(t) \exp\{X(s)\beta + Y(s)\},
\]

where \(X(s) \) are covariates associated with a call at location \(s \), \(\beta \) are parameters, \(h_0 \) is the baseline hazard function (see below) and \(Y(s) \) is the value of a spatially continuous Gaussian process \(Y(s) \) at \(s \). We assume that the Gaussian process \(Y(s) \) has associated covariance function

\[
\text{cov}\{Y(s_1), Y(s_2)\} = \sigma^2 \rho(||s_1 - s_2||; \phi)
\]

where the parameter \(\sigma^2 \) is the unconditional variance of the process at any point and \(\rho \) is the correlation function with \(||s_1 - s_2|| \) the Euclidean distance between \(s_1 \) and \(s_2 \).

In this model \(h_0 \) describes the part of the hazard function that is common to all individuals and the remaining term, \(\exp\{X(s)\beta + Y(s)\} \), describes the relative risk for a call at location \(s \). The relative risk splits into two parts: the first, \(\exp\{X(s)\beta\} \), is the part of the risk that we can explain by the available covariates; and the second, \(\exp\{Y(s)\} \), is the unexplained risk. With regard to the latter, we choose \(\mathbb{E}[Y(s)] = -\sigma^2/2 \), so that \(\mathbb{E}[\exp\{Y(s)\}] = 1 \) for all \(s \) in the observation window of interest, a subset of \(\mathbb{R}^2 \). When survival models are used to measure time to death, a high hazard is regarded as bad, since it means that there is a high chance that an individual experiences the event. In the present context, however, we need to adopt the opposite meaning in which a low hazard is interpreted as bad: at time \(t \), if no engine has yet arrived at location \(s \) and \(h(t, s) \) is low, the chance of one arriving in the immediate future is also low.

The two main options for modelling the baseline hazard are

(a) to assume a parametric form for \(h_0 \), or
(b) to leave \(h_0 \) unspecified, which results in a semiparametric model.

Although the main advantage of the semiparametric approach is flexibility, in this paper we opt
for the former of these modelling paradigms because we are interested in probabilistic prediction. We considered two different parametric models for the hazard function for these data. The first is a simple Weibull model where

$$h_0(t; \alpha, \lambda) = \alpha \lambda t^{\alpha-1}, \quad \alpha, \lambda > 0,$$

so the baseline cumulative hazard takes the form

$$H_0(t; \alpha, \lambda) = \lambda t^\alpha.$$

In the second parametric model we mimic the flexibility of a semiparametric approach by modelling the baseline hazard by using B-splines as in Rosenberg (1995), setting

$$h_0(t; \omega) = \sum_{i=1}^{p} \exp(\omega_i) B_i^{(d)}(t),$$

where $\omega_1, \ldots, \omega_d$ are parameters to be estimated and $\{B_i^{(d)}(t) : i = 1, \ldots, p\}$ is the collection of B-spline basis functions of degree d (each of which is a piecewise positive polynomial); see Younes and Lachin (1997) for details on how to construct these. As it is piecewise polynomial, the baseline cumulative hazard function $H_0(t) = \int_0^t h_0(s) \, ds$, which is required in likelihood computation, is trivial to compute provided that we store the (piecewise) coefficients of the integrated basis functions:

$$H_0(t; \omega) = \sum_{i=1}^{p} \exp(\omega_i) \int_0^t B_i^{(d)}(x) \, dx.$$

Our final model is a slight modification of model (1) that was introduced in Taylor (2015); this modification concerns the frailties $Y(s)$. Rather than assume that these are spatially continuous we adopt a shared frailty approach, introducing an auxiliary grid of cells on which we wish to predict the response times; in other words, we approximate the spatially continuous process $Y(s)$ by a piecewise constant process on a fine grid. Our model for the hazard takes the form

$$h(t; s_i; \omega, \beta; Y(s_i)) = h_0(t; \omega) \exp\{X_i(s)\beta + Y(\mathcal{G}[s_i])\},$$

Table 1. Number of call-outs by incident group and property category between 2012 and 2014 inclusively

Type of fire	Number of call-outs for the following groups:		
	False alarm	Fire	Special service
Aircraft	54	13	198
Boat	36	40	97
Dwelling	61680	18769	60367
Non-residential	62281	6460	8197
Other residential	16699	1363	1937
Outdoor	6079	13845	6554
Outdoor structure	2452	15824	1278
Rail vehicle	68	47	156
Road vehicle	3410	6089	14865
where \(s_i \) is the location of the \(i \)th fire and \(Y_G[s_i] \) denotes the value of the process \(Y(s) \) in the cell containing \(s_i \). For each \(i \), \(G[s_i] \in \{1, \ldots, M\} \), where \(M \) is the total number of grid cells in the grid. The reason for introducing this auxiliary grid is primarily computational efficiency: model (1) incurs \(O(n^3) \) computational cost, where \(n \) is the number of observations, whereas model (4) incurs \(O(n) \). With there being around 6000 dwelling fires each year, a Markov chain Monte Carlo algorithm used to deliver inference for model (1) would be impractical.

For a discussion of other potential models for these data, see Section 4.

3. An analysis of the 2012–2014 data

The data on London Fire Brigade response times that are analysed in this paper are available from the London datastore (London Fire and Emergency Planning Authority, 2015). All analyses were carried out in the R statistical software (R Core Team, 2014). In this section, we present an analysis of the London Fire Brigade data from 2012 to 2014 inclusively.

3.1. Preliminary analyses and model choice

Table 1 shows the number of call-outs to fires, false alarms and special services by property type for the years 2012–2014 inclusively. We restrict our attention to analysing data from call-outs to fire events in dwellings because, as mentioned above, dwellings are where most fire-related deaths occur. Fig. 1 shows the locations of the 5769 dwelling fires in 2014 as well as the locations of the London Fire Brigade stations.

![Fig. 1. Locations of the 5769 dwelling fires in 2014 (+) and the London Fire Brigade stations (®, open stations; ●, closed stations)](image-url)
of all fire stations, including those that were closed in 2014. The pattern of the points roughly follows the distribution of the population in the city with higher concentration in the centre and with large open park areas being free of dwelling fires, for instance.

It can also be seen from Fig. 1 that the intensity of locations of fire stations is also more concentrated towards the centre of the city; a bivariate isotropic Gaussian smoothing of these points is shown in Fig. 2 (the intensity was scaled by a factor of 10^8). The bandwidth that was used to compute the smooth intensity was chosen by using the rule-of-thumb method of Baddeley and Turner’s `density.ppp` function from the `spatstat` package (Baddeley and Turner, 2005), resulting in a kernel standard deviation of 5737 (Taylor and Rowlingson, 2014). The result is quite a smooth approximation to the intensity of the fire stations, which is desirable for the use that we put it to. The relationship between response time to proximity of the nearest fire station is not clear cut: it is not necessarily the closest station that will respond to a call and, for this reason, we use the smoothed intensity as a covariate in our model. We expect the coefficient of this covariate to be positive, since, in places where there is a greater concentration of fire stations, fires are likely to be attended more swiftly.

Although the plot of response time by time of day, which is shown in Fig. 3, suggests no obvious trends, it is reasonable to assume that the time of day does influence the response time because of traffic congestion and local demand on the fire service. The demand by time of day is illustrated in Fig. 4; this shows that it is lowest at around 5.30 a.m., highest around 7 p.m. and
Modelling of Emergency Service Response Times

Fig. 3. First pump attendance time by hour of day: , LOWESS smoother

Fig. 4. Number of calls between 2012 and 2014 inclusively by hour of the day (the histogram includes call-out to fires, special services and also false alarms): , 5-min interval

generally higher in the daytime than at night. There was no obvious difference in response times comparing weekdays with weekends (Table 2): the median response time in 2014 for weekdays was 299 and for weekends it was 296.5 s; again, though, there is no obvious difference between these values, it is reasonable to assume that we might expect a difference in response times due in part to differing traffic patterns on weekdays compared with weekends.

Our overall model for the hazard function therefore includes the intensity of fire stations and a time trend through harmonic regression terms: \(\sin(2\pi kt/24) \) and \(\cos(2\pi kt/24) \) with \(k = 1, 2, 3, 4 \), i.e. with periodicity 1 day, \(\frac{1}{2} \) day, \(\frac{1}{3} \) day and \(\frac{1}{4} \) day. The number of harmonic terms was chosen by fitting a non-spatial version of the model to the 2010 data by using forward selection, terminating the process when both the sine and the cosine contributions were not significant at the 5% level. We initially fitted the spatial Weibull model which included a weekday or weekend indicator variable as an additional covariate but, since this was not found to be significant, we fitted the \(B \)-spline model without this term. For the \(B \)-spline model, the baseline hazard function \(h_0 \) was modelled by using a piecewise cubic \(B \)-spline function of the form (3) with five internal knots at the minimum, 0.2-, 0.4- and 0.6-quantiles and at the maximum response time; with a repeated
Table 2. Table of parameter estimates from the three models fitted

Parameter	Year	Results for the following percentiles:		
		50%	2.5%	97.5%
Intensity	2012	0.101	7.64×10^{-2}	0.129
Weekend	2012	4.83×10^{-2}	-1.55×10^{-2}	0.113
α	2012	3.85	3.76	3.95
λ	2012	1.05×10^{-10}	6.05×10^{-11}	1.89×10^{-10}
σ	2012	0.879	0.823	0.94
ϕ	2012	772	652	929
Intensity	2013	9.82×10^{-2}	7.85×10^{-2}	0.118
Weekend	2013	-4.63×10^{-4}	-6.69×10^{-2}	6.45×10^{-2}
α	2013	3.73	3.64	3.82
λ	2013	2.18×10^{-10}	1.21×10^{-10}	3.76×10^{-10}
σ	2013	0.859	0.806	0.916
ϕ	2013	583	503	687
Intensity	2014	6.4×10^{-2}	4.52×10^{-2}	8.2×10^{-2}
Weekend	2014	1.64×10^{-2}	-5.79×10^{-2}	8.52×10^{-2}
α	2014	3.58	3.5	3.69
λ	2014	6.09×10^{-10}	3.41×10^{-10}	1.02×10^{-9}
σ	2014	0.861	0.809	0.926
ϕ	2014	537	458	634

Knot at each end point the spline has a total of seven parameters. We used an exponential covariance function for the spatial random effects, i.e.

$$\text{cov}\{Y(s_1), Y(s_2)\} = \sigma^2 \exp\{-\|s_1 - s_2\|/\phi\}.$$

3.2. Description of inferential procedure

Model (4) was fitted separately to the 2012, 2013 and 2014 data sets by using the R package spatsurv (Taylor and Rowlingson, 2014). This package implements a fully Bayesian adaptive Markov chain Monte Carlo algorithm, which delivers inference for the model parameters β and ω, the shared frailties $Y_i(G)$ and the parameters of the process $Y(s)$ (σ and ϕ). We used Gaussian priors for all parameters on an appropriately transformed scale: $\pi(\beta) \sim N(0, 10^2)$, $\log(\omega) \sim N(0, 10^2)$, $\log(\alpha) \sim N(0, 10^2)$, $\log(\lambda) \sim N(0, 10^2)$, $\log(\sigma) \sim N(0, 0.5^2)$ and $\log(\phi) \sim N\{\log(1000), 0.5^2\}$. As per the method described in Taylor (2015), we used an $N(0, 1)$ prior for a whitened version of the spatial process Γ where $Y(s) = -\sigma^2/2 + \Sigma_{\sigma,\phi}^{1/2} \Gamma$, where $\Sigma_{\sigma,\phi}$ is the covariance matrix of $Y(s)$ on the auxiliary grid; we retained the transformed samples $\{Y_j\}_{j=1}^{16384}$. We chose the size of cells in the computational grid to be 500 m × 500 m.

For all the Weibull models and for the 2014 and 2013 B-spline models, we ran the samplers for 500000 iterations with a 10000 iteration burn-in and retaining every 490th sample for inference and verified convergence by examining a plot of the log-posterior over the retained iterations (Fig. 5) which showed that the retained chain had left the transient phase and was at stationarity. The 2012 chain for the B-spline model required a longer burn-in period and was run for 600000 iterations with a 110000-iteration burn-in, again retaining every 490th sample. Plots of autocorrelation in the $Y(s)$ chains (for our final Weibull model) at lags 1, 5 and 10 that are shown in Fig. 6 confirm that the chain was mixing well: the autocorrelation in all cases had dropped to a negligible amount on or before the fifth lag. The B-spline chain mixed more slowly but by
lag 10 auto-correlation in the 2013 and 2014 chains was low; the 2012 chain was mixing a little more slowly. For model comparisons we considered these chains to be sufficiently well mixing to decide between the Weibull and B-spline models. Diagnostic plots for the other chains in our final Weibull model are available by following the links appearing in Section 5.

This is a challenging sampling problem: with around 6000 observations and for technical reasons $M = 256 \times 256 = 65536$ prediction points (reducing to an output grid of size 128×128) each chain takes around 7.5 h to run; we estimate that the full spatially continuous model would take over 5 months to run on a data set of this size.

We chose between the Weibull and B-spline models by using the deviance information criterion DIC, shown in Table 3. It is interesting that DIC from the simpler Weibull model is lower than that for the more flexible B-spline model in each of the years considered. The parameters of the baseline hazard function are well identified by the data since every observation provides information about them; in contrast each observation provides limited

Fig. 5. Log-posterior evaluated at the initial value and over all retained iterations of the chain, showing that initially the chain started far from a mode but had found one before the burn-in had finished.
Fig. 6. Auto-correlation in all sampled Y_i: (a) lag 1, 2014; (b) lag 5, 2014; (c) lag 10, 2014; (d) lag 1, 2013; (e) lag 5, 2013; (f) lag 10, 2013; (g) lag 1, 2012; (h) lag 5, 2012; (i) lag 10, 2012

Table 3. Table comparing DIC-values between the Weibull and B-spline models for each year

Year	DIC for the following models:	
	B-spline	Weibull
2012	71937.75	67976.35
2013	70454.97	65221.69
2014	66222.56	62177.38
Fig. 7. (a) Baseline hazard, (b) baseline cumulative hazard, (c) relative risk by time of day (compare this with Fig. 3, which shows no obvious trend) and (d) posterior covariance function (these plots are based on the results from 2014; similar plots from 2012 and 2013 are not materially different): - - - - -, 0.975 and 0.025; _____, 0.5

information about the Gaussian process $Y(s)$ except in the locality of the observation. The baseline hazard function for the Weibull model does not capture the shape of the hazard function well compared with the B-spline model (compare Fig. 7(a) with Fig. 8(a)). The lower DIC-values for the Weibull model therefore suggest that the Gaussian process term in that model explains the spatial variation in residual response times better when compared with the B-spline model. Although the two baseline hazard functions look dissimilar, for times less than about 370 s they are in fact quite similar; 74% of the response times in 2014 were under 370 s.

3.3. Summary of results
The result of fitting this model is a sample from the joint posterior density of all model parame-
Fig. 8. (a) Estimated B-spline baseline hazard function for the 2014 data and (b) baseline cumulative hazard.
Fig. 9. Plots showing $\mathbb{P}(S(360, s))$, the expected probability that the response time will be greater than 360 s for each location s that is within the Greater London region, (a) for the year 2012, (b) for the year 2013 and (c) for the year 2014 (+, open stations; +, stations that closed in 2014): □, [0, 0.2]; □, (0.2, 0.4]; □, (0.4, 0.6]; □, (0.6, 0.8]; □, (0.8, 1]

Beginning with the baseline hazard, we report here the shape of the baseline hazard and cumulative hazard. The plot of the baseline hazard gives the instantaneous arrival rate conditionally on there not having been an arrival so far, with the covariates and frailties in the model set to 0. Whereas the hazard function itself is more easily interpretable, it is more difficult to visualize as it varies according to location because both the fire station intensity and the frailties vary over space. The baseline hazard function is nevertheless a useful plot because it provides a global representation of the hazard, which is then scaled by the intensity of fire stations and the frailty terms in different areas of space. Under the conditions assumed, this plot shows the remarkable speed with which engines arrive at the scene of a fire: the baseline hazard is quite flat for around
the first 100 s and then starts to increase steadily. The baseline cumulative hazard (Fig. 7(b)) can be interpreted as the expected number of arrivals of first fire engines up to a given time if those events were repeatable, the other covariates in the model being set to 0. It is difficult to see from this plot because of the scale but, under the conditions assumed, we would expect one fire engine to arrive at the scene of a fire by around 6 min: the London Fire Brigade target response time.

Whereas the baseline hazard and cumulative hazard describe global properties of the process generating these data, the arrival rate of fire engines does depend on the time of day and space as will now be illustrated. Fig. 7(c) shows the relative risk by time of day: we do not present the coefficients of the harmonic regression terms here, as a plot is much simpler to interpret. This plot shows that there are two main times of day when services take longer than usual to arrive at the scene of a fire: between 3 a.m. and 7 a.m. and between 11 a.m. and 6 p.m. the relative risk is significantly below 1 and reaches its lowest value of around 0.7 at 5 a.m. It is interesting that this pattern was not observed in Fig. 3, in which arrival times appear to be independent of the time of day. Under our proposed model, the variation in response times has been broken down into variation that we can explain through the use of covariates and variation that we cannot explain through the inclusion of spatially correlated random effects. In Fig. 3, both of these sources of variation contribute to the observed variation in response times over the day; it would appear therefore that adjusting for the spatial variation in risk has bought out this trend.

Fig. 7(d) shows the posterior covariance function with 95% confidence interval. This shows that spatial correlation is over quite a short range, around 0–1000 m. Plots comparing the prior with the posterior for the parameters σ and ϕ showed that these were well identified by the data (the identifiability of ϕ is a common problem in spatial analyses). Table 2 gives the estimated coefficients from the Weibull model for the three years under consideration; it can be seen that the coefficients are quite similar for each year.

Using the spatial survival modelling framework, we can also illustrate answers to questions of substantive interest including

(a) where in space is the London Fire Brigade’s target response time of 6 min not being met and

(b) what have been the effects on target response times of the 2014 fire station closures?

We answer the first question by using the expected probability that the response time to a call will take longer than 6 min. For a response time in cell i of the computational grid and at location s, this is evaluated as

$$
\mathbb{E}[S(360, s)] = \frac{1}{1000} \sum_{j=1}^{1000} S(360, s; \beta^{(j)}, \omega^{(j)}, \eta^{(j)}, Y^{(j)}_{G[s]}),
$$

where $S(360, s; \beta^{(j)}, \omega^{(j)}, \eta^{(j)}, Y^{(j)}_{G[s]}$) is the survival function at location s evaluated for the jth retained sample of each parameter in the model. In computing S in equation (5), we assumed that the fire occurred on a weekday at 8.30 p.m., since, as stated above, most dwelling fires occur between 8 p.m. and 9 p.m. The resulting plot is shown in Fig. 9, where we have masked the computational grid cells appearing outside the London boroughs. This plot shows that although there has been an improvement over the last three years in responding to reported fires in the outskirts of the city, there are some areas in the inner part of the city in 2014 where the expected probability that the response will take longer than 6 min is slightly elevated compared with the other years—the colour has shifted in some small areas, the largest stretching from below Westminster to around Camden Town and also of note the area around Gallions Point.
Fig. 10. (a) $P(S_{2014}(360, s) > S_{2012}(360, s) + 0.1)$, (b) $P(S_{2014}(360, s) > S_{2012}(360, s) + 0.25)$. (c), (d) comparison of 2014 with 2013, and (e), (f) comparison of 2013 with 2012 (see the main text for further details) (+, open stations; +, stations that closed in 2014). □, [0, 0.2]; □, (0.2, 0.4); □, (0.4, 0.6); □, (0.6, 0.8); □, (0.8, 1).
Fig. 11. (a) $P\{S_{2014}(360, s) > S_{2012}(360, s) + 0.1\}$, (b) $P\{S_{2014}(360, s) > S_{2013}(360, s) + 0.1\}$ and (c) $P\{S_{2013}(360, s) > S_{2012}(360, s) + 0.1\}$ (○, open stations; ●, stations that closed in 2014); □, probability between 0.6 and 0.8; ■, probability between 0.8 and 1
Modelling of Emergency Service Response Times

Marina. Some caution must be maintained in not overinterpreting these maps; as these are point estimates, they are subject to uncertainty.

To account for this uncertainty and to make a comparison between years and thus to address the second substantive question, in Fig. 10, we plotted $P\{S_{y_1}(360, s) > S_{y_2}(360, s) + c\}$ for $y_1, y_2 \in \{2014, 2013, 2012\}$ with $y_1 > y_2$ and $c \in \{0.1, 0.25\}$ and s inside the Greater London region. In the case that $y_1 = 2014$, $y_2 = 2012$ and $c = 0.1$ these probabilities were computed as

$$
\frac{1}{1000} \sum_{j=1}^{1000} I\{S_{2014}(360, s; \beta^{(j)}, \omega^{(j)}, \eta^{(j)}, Y^{(j)}_{S[s]} > S_{2012}(360, s; \beta^{(p(j)}, \omega^{(p(j)}, \eta^{(p(j)}, Y^{(p(j))}_{S[s]} + 0.1}\}
$$

(6)
for each location \(s \) and where \(p(j) \) denotes a permuted index of the sample. In computing \(S \), we again assumed that the fire occurred on a weekday at 8.30 p.m. The interpretation of \(\mathbb{P}\{S_{2014}(360) > S_{2012}(360, s) + 0.1\} \), for example, is the proportion of times that the probability of the response time in 2014 exceeded 360 s is at least 0.1 bigger than the probability that the response time in 2012 exceeded 360 s. Fig. 10 shows these probabilities on a map of London; Figs 10(a) and 10(b) compare 2014 with 2012, Figs 10(c) and 10(d) compare 2014 with 2013 and Figs 10(e) and 10(f) compare 2013 with 2012. The main points of interest from these plots are the areas around the now closed Belsize, Bow, Downham, Kingsland, Knightsbridge, Silvertown, Southwark, Westminster and Woolwich fire stations. Around or near these stations there are regions where we are over 80% confident that the probability that the response time is greater than 6 min in 2014 were at least 0.1 bigger than in 2013 or 2012. These plots give an idea about the size and location of regions potentially affected by the closures. Areas around the Clerkenwell station do not currently appear to have been affected, at least with respect to responses to dwelling fires.

These areas are more easily seen in Fig. 11, which shows the plots for \(c = 0.1 \) in an area around the closed stations. The important point to note here is that the spatial pattern of these probabilities comparing 2014 with 2012 and 2014 with 2013 are very similar, whereas the pattern of these probabilities comparing 2013 with 2012 is completely different. The grey areas in the 2014–2012 and 2014–2013 plots are the areas that have been most affected by the closures.

We used these probabilities to identify small 500 m \(\times \) 500 m squares near the closed fire stations that are of potential concern in terms of response time. We identified regions as those squares satisfying conditions

(a) \(\mathbb{P}\{S_{2014}(360, s) > S_{2013}(360, s) + 0.1\} > 0.7; \)
(b) \(\mathbb{P}\{S_{2014}(360, s) > S_{2012}(360, s) + 0.1\} > 0.7 \)
(c) \(\mathbb{P}\{S_{2013}(360, s) > S_{2012}(360, s) + 0.1\} < 0.3, \)

i.e. areas in which response times seemed higher in 2014 compared with 2013 and 2012, but in which the probability of an increase between 2012 and 2013 was low. We identified an area of interest around the closed fire stations by constructing the convex hull of the locations of the closed fire stations and extending it by a buffer zone of 4 km. Fig. 12(a) shows in grey the regions meeting criteria (a)–(c) above. Fig. 12(b) is a box-and-whisker plot of response times in those regions; there were a total of 702 calls in 2012–2014 in these small areas. Fig. 12(c) is the same but illustrates times for all small regions inside the area of interest; there were a total of 8250 of these. Calls within the grey regions of potential concern therefore accounted for 9% of all calls in the area of interest surrounding the closed stations. It can be seen from the two box-and-whisker plots that, whereas, in the region as a whole, the fire brigade appears mainly to be meeting their 6-min target (Fig. 12(c)) in these small areas of potential concern near to the closed fire stations there is a definite increase in response times in 2014; the median in these areas is 345 s, with 44% of responses over the 6-min target.

4. Discussion

In this paper we have shown how advanced methods from spatial survival analysis can be used to model emergency service response times. We have applied these methods to the London Fire Brigade data and have illustrated the effect of the 2014 closures on response times. We have identified areas of potential concern surrounding the recently closed stations; in these areas 44% of response times exceed the London Fire Brigade’s target of 6 min.
Although there may be simpler ways to model these data such as kriging the log-response times, the fitting of a spatial survival model is advantageous. The survival analysis framework is a ‘natural’ way to handle these time-to-event data and also the hazard, cumulative hazard and survival functions are useful for describing properties of the data that are of genuine interest in this context (particularly the survival function). One possible criticism of the choice of methodology in this paper is that it is too complex because of the absence of censoring in our data; however, survival analyses are frequently used in the absence of censoring.

Other possible models for the data that are discussed here could have accounted for spatio-temporal dependence between the years under consideration in our analysis. For example a hazard function of the form

\[
h(t, s; \beta, Y(s, t)) = h_0(t) \exp\{X(s)\beta + Y(s, t)\},
\]

where \(Y(s, t)\) is a spatiotemporal Gaussian process, would account for such temporal dependence in the frailty process. To the author’s knowledge there is no available software to fit such a model; however, such software is currently under development in the \texttt{spatsurv} R package (Taylor and Rowlingson, 2014). Such a model would account for the correlation between years that is currently ignored in equation (6). One issue with such a spatiotemporal model for the hazard in the present context is the assumption that \(Y(s, t)\) is a Gaussian process: it is not clear that such a modelling choice could adequately model the abrupt changes in response times due to the station closures in 2014.

Another alternative to the model in equation (1) could include non-spatial frailties as well as spatial frailties:

\[
h(t, s; \beta, Y(s)) = h_0(t) \exp\{X(s)\beta + Y(s) + U(s)\},
\]

where \(U(s) \sim N(-\sigma_U^2/2, \sigma_U^2)\) are non-spatial random effects. In practice, these non-spatial random effects could be fitted at either the individual fire level, or at the level of the computational grid. We have not fitted such models in the present analysis, and these may lead to different areas of London being identified as ‘potentially problematic’. However, the areas that were identified in Fig. 12(a) together with the associated boxplots in Figs 12(b) and 12(c) remain an important issue to residents living in those areas, regardless of the manner in which these regions have been identified. Further analyses on these data could examine jointly the arrival times of first and second fire engines by using a bivariate model; again we have not pursued this matter in the present paper.

The inferential framework proposed is advantageous as it provides a sample from the joint posterior of all model parameters including the spatial process \(Y(s)\) on all prediction cells. These samples can be used to deliver posterior expectations of functionals of interest, some of which have been illustrated in this paper. The main drawback with the method is computational cost. We estimate that it would take over 5 months to run the full model in equation (1), so the 7.5 h that our sampler takes represents a substantial reduction in cost. Other techniques to speed up the Markov chain Monte Carlo algorithm such as using a Gaussian Markov random field to represent the spatial process on the auxiliary grid are also not as fast as the method proposed: the Fourier methods that were applied here scale as \(O(M \log(M))\) compared with \(O(M^{3/2})\) for sparse matrix methods, though the latter have the advantage of being able to work on non-regular and non-rectangular grids.

Acknowledgements

The map tiles are by Stamen Design, under Creative Commons Attribution 3.0 License. The data are by OpenStreetMap, under Open Data Commons Open Database License.
The London Fire Brigade data in this paper are subject to the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/.

Thanks go also to the referees of this paper, whose comments have helped to improve it.

Appendix A

(a) For the 2012 diagnostic plots see http://www.lancaster.ac.uk/staff/taylorbl/londonfires/2012/traceplots2012.html.

(b) For the 2013 diagnostic plots see http://www.lancaster.ac.uk/staff/taylorbl/londonfires/2013/traceplots2013.html.

(c) For the 2014 diagnostic plots see http://www.lancaster.ac.uk/staff/taylorbl/londonfires/2014/traceplots2014.html.

References

Baddeley, A. and Turner, R. (2005) spatstat: an R package for analysing spatial point patterns. J. Statist. Softwr., 12, no. 6, 1–42.

Bannister, A. (2014) Fire service cuts felt as response times rise in capital. (Available from http://www.ifsecglobal.com/effects-fire-service-cuts-felt-average-response-time-rises/.)

Caven, J. (2014) Fire brigade response times increase across Barnet. (Available from http://www.times-series.co.uk/news/11601145.print/.)

Claridge, E. and Spearpoint, M. (2013) New Zealand fire service response times to structure fires. Proc. Engng, 62, 1063–1072.

Cox, D. and Oakes, D. (1984) *Analysis of Survival Data*. London: Chapman and Hall.

Department for Communities and Local Government (2014) Fire statistics: Great Britain April 2013 to March 2014. Department for Communities and Local Government, London. (Available from https://www.gov.uk/government/statistics/fire-statistics-great-britain-2013-to-2014.)

Foley, F. (2014) Increase in fire brigade response time. (Available from http://www.kcwtoday.co.uk/2014/11/19/increase-in-fire-brigade-response-time/.)

Higgins, E., Taylor, M., Francis, H., Jones, M. and Appleton, D. (2014) The evolution of geographical information systems for fire prevention support. Fire Safy J., 69, 117–125.

Higgins, E., Taylor, M., Jones, M. and Lisboa, P. (2013) Understanding community fire risk—a spatial model for targeting fire prevention activities. Fire Safy J., 62, 20–29.

Johnson, A. (2014). Brigade response time increase ‘a risk to lives’ months after closure of Clerkenwell fire station. (Available from http://www.islingtontribune.com/news/2014/nov/brigade-response-time-increase-%E2%80%99%E2%80%99-risk-lives%E2%80%99%E2%80%93-months-after-closure-clerkenwell-fire-s/)

Klein, J., Ibrahim, J., Scheike, T., van Houwelingen, J. and Van Houwelingen, H. (2013) *Handbook of Survival Analysis*. Boca Raton: Chapman and Hall–CRC.

Kolesar, P. and Blum, E. H. (1973) Square root laws for fire engine response distances. Mngmnt Sci., 19, 1368–1378.

London Fire Brigade (2013a) Incident response times. London Fire Brigade, London. (Available from http: //www.london-fire.gov.uk/responsetimes.asp.)

London Fire Brigade (2013b) Fifth London safety plan 2013–2016. London Fire Brigade, London. (Available from http://www.london-fire.gov.uk/sp5.asp.)

London Fire Brigade (2013c) London Fire Brigade publishes savings proposals. London Fire Brigade, London. (Available from http://www.london-fire.gov.uk/news/C92C30A17C554727C728EF4B9A8B530_LSPaavingsproposals-110113.asp#.VNIcWdX7uS8.)

London Fire Brigade (2013d) London Fire Brigade borough stats package. London Fire Brigade, London. (Available from http://www.london-fire.gov.uk/borough-stats-package/.)

London Fire Brigade (2014a) Fire facts: incident response times 2005–2013. London Fire Brigade, London.

London Fire Brigade (2014b) LFB incident maps. London Fire Brigade, London. (Available from http://www.london-fire.gov.uk/LFBIncidentMaps.asp.)

London Fire and Emergency Planning Authority (2015) London fire brigade incident records. London Fire and Emergency Authority, London. (Available from http://data.london.gov.uk/dataset/london-fire-brigade-incident-records.)

Matteson, D. S., McLean, M. W., Woodard, D. B. and Henderson, S. G. (2011) Forecasting emergency medical service call arrival rates. Ann. Appl. Statist., 5, 1379–1406.

McCartney, J. (2015) Fire brigade response times missing 6 minute target in Enfield and Haringey after Boris Johnsons fire brigade cuts. (Available from http://joannemccartney.co.uk/2015/01/22/fire-
brigade-response-times-missing-6-minute-target-in-enfield-and-haringey-after-boris-johnsons-fire-brigade-cuts/)

Open Data Institute (2013) London fire stations. Open Data Institute, London. (Available from http://london-fire.labs.theodi.org/)
R Core Team (2014) *R: a Language and Environment for Statistical Computing*. Vienna: R Foundation for Statistical Computing.
Read, C. (2014) Residents kept waiting longer than target response time for London Fire Brigade following Woolwich and Downham station closures. (Available from http://www.thisislocallondon.co.uk/news/11624413.Greenwich_and_Lewishamwards_see_London_Fire_Brigade_response_times_rise/?ref=mr.)
Rosenburg, P. S. (1995) Hazard function estimation using B-splines. *Biometrics*, 51, 874–887.
Scott, D. W., Factor, L. E. and Gorry, G. A. (1978) Predicting the response time of an urban ambulance system. *Health Serv. Res.*, 13, 404–417.
Taylor, B. M. (2015) Auxiliary variable Markov chain Monte Carlo for spatial survival and geostatistical models. To be published. (Available from http://arxiv.org/abs/1501.01665.)
Taylor, B. M. and Rowlingson, B. S. (2014) spatsurv: an R package for Bayesian inference with spatial survival models. *J. Statist. Software.*, to be published. (Available from http://www.lancaster.ac.uk/staff/taylorb1/preprints/spatsurv.pdf.)
Toregas, C., Swain, R., ReVelle, C. and Bergman, L. (1971) The location of emergency service facilities. *Oper. Res.*, 19, 1363–1373.
Torney, K. (2013) How quickly did the fire service respond to emergencies where you live? (Available from http://www.thedetail.tv/issues/187/fire-response-times/how-quickly-did-the-fire-service-respond-to-emergencies-where-you-live.)
Vile, J. L., Gillard, J. W., Harper, P. R. and Knight, V. A. (2012) Predicting ambulance demand using singular spectrum analysis. *J. Oper. Res. Soc.*, 63, 1556–1565.
Westminster’s Labour Councillors (2014) Westminster residents at risk as fire brigade response times go up by more than a minute. (Westminster Labour Councillors, London. (Available from https://labourwestminster.wordpress.com/2014/11/14/westminster-residents-at-risk-as-fire-brigade-response-times-go-up-by-more-than-a-minute/.)
Younes, N. and Lachin, J. (1997) Link-based models for survival data with interval and continuous time censoring. *Biometrics*, 53, 1199–1211.
Zhou, Z., Matteson, D. S., Woodard, D. B., Henderson, S. G. and Micheas, A. C. (2015) A spatio-temporal point process model for ambulance demand. *J. Am. Statist. Ass.*, 110, 6–15.