Quantitative estimates for the Bakry–Ledoux isoperimetric inequality II

Cong Hung Mai | Shin-ichi Ohta

1Department of Mathematics, Osaka University, Osaka, Japan
2RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan

Correspondence
Shin-ichi Ohta, Department of Mathematics, Osaka University, Osaka 560-0043, Japan.
Email: s.ohta@math.sci.osaka-u.ac.jp

Funding information
JSPS, Grant/Award Numbers: 20J11328, 19H01786

Abstract
Concerning quantitative isoperimetry for a weighted Riemannian manifold satisfying $\text{Ric}_{\infty} \geq 1$, we give an L^1-estimate exhibiting that the push-forward of the reference measure by the guiding function (arising from the needle decomposition) is close to the Gaussian measure. We also show L^p- and W_2-estimates in the 1-dimensional case.

MSC 2020
49Q10 (primary), 49Q20, 53C21 (secondary)

1 INTRODUCTION

This short article is devoted to several further applications of the detailed estimates in [15] to quantitative isoperimetry. In [15], on a weighted Riemannian manifold (M, g, m) (with $m = e^{-\Psi} \text{vol}_g$) satisfying $m(M) = 1$ and $\text{Ric}_{\infty} \geq 1$, we investigated the stability of the Bakry–Ledoux isoperimetric inequality [1]:

$$P(A) \geq I_{(\mathbb{R}, \gamma)}(m(A))$$

(1.1)

for any Borel set $A \subset M$, where $P(A)$ is the perimeter of A, $\gamma(dx) = (2\pi)^{-1/2} e^{-x^2/2} dx$ is the Gaussian measure on \mathbb{R}, and $I_{(\mathbb{R}, \gamma)}$ is its isoperimetric profile written as

$$I_{(\mathbb{R}, \gamma)}(\theta) = \frac{e^{-a_\theta^2/2}}{\sqrt{2\pi}}, \quad \theta = \gamma((-\infty, a_\theta]).$$

(1.2)

It is known by [16, Theorem 18.7] (see also [14, §3]) that equality holds in (1.1) for some A with $\theta = m(A) \in (0, 1)$ if and only if (M, g, m) is isometric to the product of $(\mathbb{R}, | \cdot |, \gamma)$ and a weighted
Riemannian manifold \((\Sigma, g_\Sigma, \mathfrak{m}_\Sigma)\) of \(\text{Ric}_\infty \geq 1\). Moreover, \(A\) is necessarily of the form \((-\infty, a_\theta] \times \Sigma\) or \([-a_\theta, \infty) \times \Sigma\) (so-called a half-space). Then, the stability result [15, Theorem 7.5] asserts that, if equality in (1.1) nearly holds, then \(A\) is close to a kind of half-space in the sense that the symmetric difference between them has a small volume.

The proof as well as the formulation of [15, Theorem 7.5] are based on the needle decomposition paradigm (also called the localization), which was established by Klartag [13] for Riemannian manifolds and has provided a significant contribution specifically in the study of isoperimetric inequalities (we refer to [6] for a generalization to metric measure spaces satisfying the curvature-dimension condition, and to [5] for a stability result). The half-space we mentioned above is in fact a sub-level or super-level set of the guiding function arising in the needle decomposition (see Section 3 and [15] for more details). The needle decomposition enables us to decompose a global inequality on \(M\) into the corresponding 1-dimensional inequalities on minimal geodesics in \(M\) (called needles or transport rays). Therefore, a more detailed 1-dimensional analysis on needles will furnish a better estimate on \(M\).

The 1-dimensional analysis in [15] is concentrated in Proposition 3.2 in it (restated in Proposition 2.1), which gives a very detailed estimate on the difference from the Gaussian measure \(\gamma\). In this article, as an application of the analysis developed in [15], we show an \(L^1\)-bound between \(\gamma\) and the push-forward measure \(u_* \mathfrak{m}\) of \(\mathfrak{m}\) by the guiding function \(u\):

\[
\|\rho \cdot e^{\Psi} - 1\|_{L^1(\gamma)} \leq C(\theta, \varepsilon)\delta^{(1-\varepsilon)/(9-3\varepsilon)},
\]

where \(u_* \mathfrak{m} = \rho dx\) and \(\gamma = e^{-\Psi} dx\) (see Theorem 3.1 for the precise statement). In the 1-dimensional case (on intervals), we also prove an \(L^p\)-bound with the improved (and sharp) order \(\delta^{1/p}\) (Proposition 2.2; see Example 2.3 for the sharpness) and an estimate of the \(L^2\)-Wasserstein distance \(W_2\) (Proposition 2.4). The use of \(L^p\) and \(W_2\) (instead of the volume of the symmetric difference) is inspired by stability results for the Poincaré and log-Sobolev inequalities (for example, [2, 4, 8, 11, 12]). We refer to Remark 3.2 for some further related works and open problems.

2 QUANTITATIVE ESTIMATES ON INTERVALS

We first consider the 1-dimensional case (on intervals) and establish quantitative stability estimates in terms of the \(L^p\)-norm and the \(W_2\)-distance. The \(L^1\)-bound will be instrumental to study the Riemannian case in the next section.

2.1 An \(L^p\)-estimate

Throughout this section, let \(I \subset \mathbb{R}\) be an open interval equipped with a probability measure \(\mathfrak{m} = e^{-\psi} dx\) such that \(\psi\) is 1-convex in the sense that

\[
\psi((1-t)x + ty) \leq (1-t)\psi(x) + t\psi(y) - \frac{1}{2}(1-t)t|x-y|^2
\]

for all \(x, y \in I\) and \(t \in (0, 1)\). This means that \((I, |\cdot|, \mathfrak{m})\) satisfies \(\text{Ric}_\infty \geq 1\) (or the curvature-dimension condition \(\text{CD}(1, \infty)\)), and (1.1) holds. The 1-dimensional isoperimetric inequality is well investigated in convex analysis. An important fact due to Bobkov [3, Proposition 2.1] is
that an isoperimetric minimizer can be always taken as a half-space of the form \((-\infty, a] \cap I\) or \([b, \infty) \cap I\). Now we restate [15, Proposition 3.2], which is the source of all the estimates. Recall that \(\gamma = e^{-\psi} \, dx\) is the Gaussian measure.

Proposition 2.1 [15]. Fix \(\theta \in (0, 1)\) and suppose that

\[
m((-\infty, a_{\theta}] \cap I) = \theta
\]

and
\[
e^{-\psi(a_{\theta})} \leq e^{-\psi_+(a_{\theta})} + \delta
\]

hold for sufficiently small \(\delta > 0\) (relative to \(\theta\)). Then we have

\[
\psi(x) - \psi_+(x) \geq (\psi'_+(a_{\theta}) - a_{\theta})(x - a_{\theta}) - C(\theta)\delta
\]

for every \(x \in I\), and

\[
\psi(x) - \psi_+(x) \leq (\psi'_+(a_{\theta}) - a_{\theta})(x - a_{\theta}) + C(\theta)\sqrt{\delta}
\]

for every \(x \in [S, T] \subset I\) such that \(\lim_{\delta \to 0} S = -\infty\) and \(\lim_{\delta \to 0} T = \infty\), where \(\psi'_+\) denotes the right derivative of \(\psi\) and \(C(\theta)\) is a positive constant depending only on \(\theta\).

The first condition (2.1) means that \(I\) is ‘centered’ in comparison with \(\gamma\) which satisfies \(\gamma((-\infty, a_{\theta}]) = \theta\) (as in (1.2)). Note also that \(e^{-\psi(a_{\theta})} \geq e^{-\psi_+(a_{\theta})}\) holds by the isoperimetric inequality (1.1) (since \(P((-\infty, a_{\theta}] \cap I) = e^{-\psi(a_{\theta})}\)), and then (2.2) tells that the deficit of \((-\infty, a_{\theta}] \cap I\) in the isoperimetric inequality is less than or equal to \(\delta\).

Besides the above proposition, we also need the following estimate in its proof (see [15, (3.9)]):

\[
\limsup_{\delta \to 0} \frac{|\psi'_+(a_{\theta}) - a_{\theta}|}{\delta} \leq C(\theta).
\]

The lower bound (2.3) enables us to obtain the following \(L^p\)-estimate between \(\gamma = e^{-\psi} \, dx\) and \(m = e^{\psi_+ - \psi} \gamma|_I\). (We remark that the upper bound (2.4) will not be used.)

Proposition 2.2 (An \(L^p\)-estimate on \(I\)). Assume (2.1) and (2.2). Then we have

\[
\|e^{\psi_+ - \psi} - 1\|_{L^p(\gamma)} \leq C(p, \theta)\delta^{1/p}
\]

for all \(p \in [1, \infty)\) and sufficiently small \(\delta > 0\) (relative to \(\theta\) and \(p\)), where we set \(e^{\psi_+ - \psi} := 0\) on \(\mathbb{R} \setminus I\).

Proof. In this proof, we denote by \(C\) a positive constant depending on \(\theta\), and put \(a := a_{\theta}\) for brevity. Since \(e^{\psi_+ - \psi} - 1 \geq -1\) and \(m(I) = \gamma(\mathbb{R}) = 1\), we find
\[\| e^{\Phi_e - \psi} - 1 \|_{L^p(\mathcal{F})}^p = \int_I \left[e^{\Phi_e - \psi} - 1 \right]^+_p dy + \int_{-\infty}^{\infty} \left(1 - e^{\Phi_e - \psi} \right)^+_p dy \]
\[\leq \int_I \left[e^{\Phi_e - \psi} - 1 \right]^+_p dy + \int_{-\infty}^{\infty} \left(1 - e^{\Phi_e - \psi} \right)^+_p dy \]
\[= \int_I \left[e^{\Phi_e - \psi} - 1 \right]^+_p dy + \int_I \left[e^{\Phi_e - \psi} - 1 \right]^+_p dy, \]

where \([r]_+ := \max\{r, 0\} \). Thus, we need to estimate only \([e^{\Phi_e - \psi} - 1]_+ \). Observe that

\[\left[e^{(\Phi_e - \psi)(x)} - 1 \right]^+_p \leq (e^{C\delta|x-a|+C\delta} - 1)^p \leq e^{p(C\delta|x-a|+C\delta)} - 1 \]

from (2.3) and (2.5), and hence

\[\int_I \left[e^{\Phi_e - \psi} - 1 \right]^+_p dy \leq \int_{-\infty}^{\infty} \left(e^{p(C\delta|x-a|+C\delta)} - 1 \right) \mathcal{Y}(dx) \]
\[= \frac{e^{pC\delta}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{x^2}{2} + pC\delta |x-a| \right) dx - 1. \]

Dividing the integral into \((-\infty, a]\) and \([a, \infty)\), we continue the calculation as

\[\int_{-\infty}^{a} \exp \left(-\frac{x^2}{2} - pC\delta(x-a) \right) dx + \int_{a}^{\infty} \exp \left(-\frac{x^2}{2} + pC\delta(x-a) \right) dx \]
\[= \int_{-\infty}^{a} \exp \left(-\frac{(x+pC\delta)^2}{2} + \frac{(pC\delta)^2}{2} + pCa\delta \right) dx \]
\[+ \int_{a}^{\infty} \exp \left(-\frac{(x-pC\delta)^2}{2} + \frac{(pC\delta)^2}{2} - pCa\delta \right) dx \]
\[\leq \exp \left(\frac{(pC\delta)^2}{2} + pCa\delta \right) \left\{ \int_{-\infty}^{a} e^{-x^2/2} dx + pC\delta \right\} \]
\[+ \exp \left(\frac{(pC\delta)^2}{2} - pCa\delta \right) \left\{ \int_{a}^{\infty} e^{-x^2/2} dx + pC\delta \right\} \]
\[\leq \exp \left(\frac{(pC\delta)^2}{2} + pC|a|\delta \right) \left(\sqrt{2\pi} + 2pC\delta \right). \]

Therefore, we obtain

\[\int_I \left[e^{\Phi_e - \psi} - 1 \right]^+_p dy \leq \exp \left(pC\delta + pC|a|\delta + \frac{(pC\delta)^2}{2} \right) \left(1 + \frac{2pC\delta}{\sqrt{2\pi}} \right) - 1 \]
\[\leq C(p, \delta)\delta. \]

This completes the proof. \(\square \)
We remark that since
\[
\left\{ \exp \left(pC\delta + \frac{(pC\delta)^2}{2} \right) - 1 \right\}^{1/p} \geq \exp \left(C\delta + \frac{p(C\delta)^2}{2} \right) - 1,
\]
the constant \(C(p, \theta) \) given by the above proof necessarily depends on \(p \). The order \(\delta^{1/p} \) in Proposition 2.2 may be compared with \(L^p \)-estimates in [11] for the log-Sobolev inequality on Gaussian spaces. One can see that the order \(\delta^{1/p} \) is optimal from the following example.

Example 2.3. Let \(I = (-D, D) \) and \(m = (1 + \delta) \cdot \gamma \), where \(\delta > 0 \) is given by \(\gamma(I) = (1 + \delta)^{-1} \). Then, at \(\theta = 1/2 \), we have \(a_{1/2} = 0 \), \(m((-\infty, 0] \cap I) = 1/2 \),
\[
e^{-\psi(0)} - e^{-\psi(0)} = \frac{\delta}{\sqrt{2\pi}},
\]
and
\[
\|e^{\psi_g - \psi} - 1\|_{L^p(\gamma)} = \left(\frac{\delta^p}{1 + \delta} + \frac{\delta}{1 + \delta} \right)^{1/p} = \left(\frac{1 + \delta^{p-1}}{1 + \delta} \right)^{1/p} \delta^{1/p}.
\]

2.2 A \(W_2 \)-estimate

From Proposition 2.1, one can also derive an upper bound of the \(L^2 \)-Wasserstein distance between \(m \) and \(\gamma \). We refer to [21] for the basics of optimal transport theory. What we need is only the following Talagrand inequality with \(\gamma \) as the base measure (see [20], [21, Theorem 22.14]):

\[
W_2^2(m, \gamma) \leq 2 \text{Ent}_\gamma(m) = 2 \int_I (\psi_g - \psi)e^{\psi_g - \psi} \, d\gamma,
\]
(2.6)
where \(\text{Ent}_\gamma(m) \) is the relative entropy of \(m \) with respect to \(\gamma \). We remark that both \(\gamma \) and \(m \) have finite second moment (by the 1-convexity of \(\psi \)).

Proposition 2.4 (A \(W_2 \)-estimate on \(I \)). Assume (2.1) and (2.2). Then we have
\[
W_2(m, \gamma) \leq C(\theta) \sqrt{\delta}
\]
for sufficiently small \(\delta > 0 \) (relative to \(\theta \)).

Proof. We again denote \(a_0 \) by \(a \), and \(C \) will be a positive constant depending only on \(\theta \). Similarly to the proof of Proposition 2.2, we observe from (2.3) and (2.5) that
\[
\int_I (\psi_g - \psi)e^{\psi_g - \psi} \, d\gamma \leq \int_{-\infty}^{\infty} (C\delta|x - a| + C\delta)e^{C\delta|x - a| + C\delta \gamma}(dx)
\]
\[
= \frac{C\delta}{\sqrt{2\pi}} e^{C\delta} \int_{-\infty}^{\infty} (|x - a| + 1) \exp \left(-\frac{x^2}{2} + C\delta|x - a| \right) dx
\]
\[
\leq C\delta \left\{ \int_{-\infty}^{\infty} |x - a| \exp \left(-\frac{x^2}{2} + C\delta|x - a| \right) dx + C \right\},
\]
where we used
\[\int_{-\infty}^{\infty} \exp \left(-\frac{x^2}{2} + C\delta |x - a| \right) dx \leq C \]

from the proof of Proposition 2.2. Then we have

\[
\int_{-\infty}^{a} (a - x) \exp \left(-\frac{x^2}{2} - C\delta (x - a) \right) dx \\
= \exp \left(Ca\delta + \frac{(C\delta)^2}{2} \right) \int_{-\infty}^{a} (a - x) \exp \left(-\frac{(x + C\delta)^2}{2} \right) dx \\
\leq (1 + C\delta) \left\{ \int_{-\infty}^{a} \exp \left(-\frac{(x + C\delta)^2}{2} \right) dx + \left[\exp \left(-\frac{(x + C\delta)^2}{2} \right) \right]_{-\infty}^{a} \right\} \\
\leq (1 + C\delta) \left\{ a \int_{-\infty}^{a} e^{-x^2/2} dx + C\delta + \exp \left(-\frac{(a + C\delta)^2}{2} \right) \right\} \\
\leq a \int_{-\infty}^{a} e^{-x^2/2} dx + e^{-a^2/2} + C\delta.
\]

We similarly find

\[
\int_{a}^{\infty} (x - a) \exp \left(-\frac{x^2}{2} + C\delta (x - a) \right) dx \\
= \exp \left(-Ca\delta + \frac{(C\delta)^2}{2} \right) \int_{a}^{\infty} (x - a) \exp \left(-\frac{(x - C\delta)^2}{2} \right) dx \\
\leq (1 + C\delta) \left\{ (a - C\delta) \int_{a}^{\infty} \exp \left(-\frac{(x - C\delta)^2}{2} \right) dx - \left[\exp \left(-\frac{(x - C\delta)^2}{2} \right) \right]_{a}^{\infty} \right\} \\
\leq (1 + C\delta) \left\{ -a \int_{a}^{\infty} e^{-x^2/2} dx + C\delta + \exp \left(-\frac{(a - C\delta)^2}{2} \right) \right\} \\
\leq -a \int_{a}^{\infty} e^{-x^2/2} dx + e^{-a^2/2} + C\delta.
\]

Therefore, together with the Talagrand inequality (2.6), we obtain the desired estimate

\[W_2^2(m, \gamma) \leq C\delta. \]

We do not know whether the order $\sqrt{\delta}$ in Proposition 2.4 is optimal. Since $W_p (m, \gamma) \leq W_2 (m, \gamma)$ for any $p \in [1, 2)$ by the Hölder inequality, we have, in particular, a bound of the L^1-Wasserstein distance:

\[W_1 (m, \gamma) \leq C(\theta) \sqrt{\delta}. \]

One can alternatively infer this estimate from the Kantorovich–Rubinstein duality (see [21]); in fact,

\[W_1 (m, \gamma) \leq \int_{-\infty}^{\infty} |x - a| \cdot |e^{(\psi_\delta - \psi)(x)} - 1| \gamma(dx) \leq C(\theta) \sqrt{\delta}. \]
We also remark that, when we take a detour via the reverse Poincaré inequality in [15, Proposition 5.1] and the stability result [8, Theorem 1.2], we arrive at a weaker estimate
\[W_1(\mathfrak{m}, \gamma) \leq C(\delta, \epsilon)\delta^{(1-\epsilon)/4}. \]

We refer to [7, 9] for stability results for the Poincaré inequality (equivalently, the spectral gap) on CD(\(N - 1, N\))-spaces and RCD(\(N - 1, N\))-spaces with \(N \in (1, \infty)\).

\section{AN L\(^1\)-ESTIMATE ON WEIGHTED RIEMANNIAN MANIFOLDS}

Next, we consider a weighted Riemannian manifold, namely a connected, complete \(C^\infty\)-Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) equipped with a probability measure \(\mathfrak{m} = e^{-\Psi} \text{vol}_g\), where \(\Psi \in C^\infty(M)\) and \(\text{vol}_g\) is the Riemannian volume measure. Assuming \(\text{Ric}_\infty \geq 1\), we have the Bakry–Ledoux isoperimetric inequality (1.1).

We begin with an outline of the proof of (1.1) via the needle decomposition (see [13]). Given a Borel set \(A \subset M\) with \(\theta = \mathfrak{m}(A) \in (0, 1)\), we employ the function \(f := \chi_A - \theta\) (\(\chi_A\) denotes the characteristic function of \(A\)) and an associated 1-Lipschitz function \(u : M \to \mathbb{R}\) attaining the maximum of \(\int_M f \phi \, d\mathfrak{m}\) among all 1-Lipschitz functions \(\phi\). Then, analyzing the behavior of \(u\), one can build a partition \(\{X_q\}_{q \in Q}\) of \(M\) consisting of (the image of) minimal geodesics (called needles), and \(Q\) is endowed with a probability measure \(\nu\). For \(\nu\)-almost every \(q \in Q\), \(u|_{X_q}\) has slope 1 (\(|u(x) - u(y)| = d(x, y)\) for all \(x, y \in X_q\)) and \(X_q\) is equipped with a probability measure \(\mathfrak{m}_q\) such that \(\mathfrak{m}_q(A \cap X_q) = \theta\) and \((X_q, |\cdot|, \mathfrak{m}_q)\) satisfies \(\text{Ric}_\infty \geq 1\). Moreover, we have
\[
\int_M h \, d\mathfrak{m} = \int_Q \left(\int_{X_q} h \, d\mathfrak{m}_q \right) \, \nu(dq),
\]
for all \(h \in L^1(\mathfrak{m})\). Then, (1.1) for \(A\) is obtained by integrating its 1-dimensional counterparts for \(A \cap X_q\) with respect to \(\nu\).

The 1-Lipschitz function \(u\) is called the guiding function. We can assume \(\int_M u \, d\mathfrak{m} = 0\) without loss of generality, and \(X_q\) will be identified with an interval via \(u\) (in other words, \(X_q\) is parametrized by \(u\)). Denote \(\mathfrak{m}_q = e^{-\sigma_q} \, dx\) and \(\mu := u_* \mathfrak{m} = \rho \, dx\). Note that \(\text{supp} \mu\) is an interval and may not be the whole \(\mathbb{R}\). Through the parametrization of \(X_q\) by \(u\), we deduce from (3.1) that
\[
\rho(x) = \int_Q e^{-\sigma_q(x)} \, \nu(dq),
\]
where we set \(e^{-\sigma_q(x)} := 0\) if \(x \notin X_q\).

Theorem 3.1 (An \(L^1\)-estimate on \(M\)). Assume \(\text{Ric}_\infty \geq 1\) and fix \(\epsilon \in (0, 1)\). If \(P(A) \leq I_{(\mathbb{R}, \gamma)}(\theta) + \delta\) holds for some Borel set \(A \subset M\) with \(\theta = \mathfrak{m}(A) \in (0, 1)\) and sufficiently small \(\delta\) (relative to \(\theta\) and \(\epsilon\)), then \(u_* \mathfrak{m} = \rho \, dx\) satisfies
\[
\|\rho \cdot \phi - 1\|_{L^1(\gamma)} \leq C(\theta, \epsilon)\delta^{(1-\epsilon)/(\theta - 3\epsilon)},
\]
where \(\rho\) is the guiding function associated with \(A\) such that \(\int_M u \, d\mathfrak{m} = 0\).
Proof. First of all, by (3.2) and Fubini’s theorem, we have

$$\|\rho \cdot e^{\Psi_\theta} - 1\|_{L^1(\gamma)} = \int_{-\infty}^{\infty} \left| \int_{Q} (e^{\Psi_\theta - \sigma q} - 1) \nu(dq) \right| dy \leq \int_{Q} \|e^{\Psi_\theta - \sigma q} - 1\|_{L^1(\gamma')} \nu(dq).$$

We shall estimate $\|e^{\Psi_\theta - \sigma q} - 1\|_{L^1(\gamma)}$ by dividing into ‘good’ needles and ‘bad’ needles. Note that $\nu(Q_{r'}) \geq 1 - \sqrt{\delta}$ holds for

$$Q_{r'} := \{ q \in Q \mid m_q(A \cap X_q) = \theta, \; P(A \cap X_q) < I_{(R, \gamma)}(\theta) + \sqrt{\delta} \}$$

by [15, Lemma 7.1], where $P(A \cap X_q)$ denotes the perimeter of $A \cap X_q$ in $(X_q, |\cdot|, m_q)$. Moreover, it follows from [15, Proposition 7.3] that there exists a measurable set $Q_c \subset Q$ such that $\nu(Q_c) \geq 1 - \delta^{(1-\varepsilon)/(9-3\varepsilon)}$ and

$$\max \{ |a_\theta - r_q^-|, |a_{1-\theta} - r_q^+| \} \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon)/(9-3\varepsilon)}$$

for all $q \in Q_c \cap Q_{r'}$, where $m_q((-\infty, r_q^-] \cap X_q) = m_q([r_q^+, \infty) \cap X_q) = \theta$ (recall that $\gamma((-\infty, a_\theta]) = \gamma([a_{1-\theta}, \infty)) = \theta$).

On the one hand, for $q \in Q_c \cap Q_{r'}$, note that either $P(A \cap X_q) \geq e^{-\sigma q(r_q^-)}$ or $P(A \cap X_q) \geq e^{-\sigma q(r_q^+)}$ holds by [3, Proposition 2.1] (recall Subsection 2.1). When $P(A \cap X_q) \geq e^{-\sigma q(r_q^-)}$, we put

$$\gamma_q(dx) = e^{-\Psi_{\theta q}(x)} dx := e^{-\Psi_{\theta q}(x+a_\theta-r_q^-)} dx,$$

which is a translation of γ satisfying $\gamma_q((-\infty, r_q^-]) = \theta$. Then, it follows from Proposition 2.2 (with $e^{-\sigma q(r_q^-)} \leq P(A \cap X_q) \leq e^{-\Psi_{\theta q}(r_q^-)} + \sqrt{\delta}$) and Cavalieri’s principle that

$$\|e^{\Psi_\theta - \sigma q} - 1\|_{L^1(\gamma)} \leq \|e^{\Psi_{\theta q} - \sigma q} - 1\|_{L^1(\gamma_q)} + \|e^{-\Psi_{\theta q}} - e^{-\Psi_\theta}\|_{L^1(dx)}$$

$$\leq C(\theta) \sqrt{\delta} + 2 \frac{|a_\theta - r_q^-|}{\sqrt{2\pi}}$$

$$\leq C(\theta, \varepsilon) \delta^{(1-\varepsilon)/(9-3\varepsilon)}.$$

We have the same bound also in the case where $P(A \cap X_q) \geq e^{-\sigma q(r_q^+)}$ by reversing I in Proposition 2.2.

On the other hand, for $q \in Q \setminus (Q_c \cap Q_{r'})$, we have the trivial bound

$$\|e^{\Psi_\theta - \sigma q} - 1\|_{L^1(\gamma)} \leq \|e^{\Psi_\theta - \sigma q}\|_{L^1(\gamma)} + \|1\|_{L^1(\gamma)} = 2.$$

Therefore, we obtain

$$\|\rho \cdot e^{\Psi_\theta} - 1\|_{L^1(\gamma)} \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon)/(9-3\varepsilon)} + 2\left(1 - \nu(Q_c \cap Q_{r'})\right) \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon)/(9-3\varepsilon)}. \quad \square$$

Note that $q \in Q_c \cap Q_{r'}$ is well behaved and can be handled by the 1-dimensional analysis, whereas one has a priori no information of $q \in Q \setminus (Q_c \cap Q_{r'})$. This could be a common problem
for stability estimates via the needle decomposition (see, for example, [15, Theorem 6.2] showing a reverse Poincaré inequality on a manifold from a sharper estimate on intervals). In particular, it may be difficult to achieve the same order δ as in the 1-dimensional case (Proposition 2.2) by the needle decomposition. In the L^p-case, it is unclear (to the authors) with what we can replace the trivial bound $\|e^{\psi_g-q} - 1\|_{L^1(\gamma)} \leq 2$. For the Wasserstein distance W_2 or W_1, we have the same problem on the control of $q \in Q \setminus (Q_c \cap Q_r)$.

Remark 3.2 (Further related works and open problems).

(a) Theorem 3.1 holds true also for reversible Finsler manifolds by the same proof (see [15, Remark 7.6(c)] and [17, 18]).

(b) As we mentioned in the introduction, our L^p- and W_2-estimates are inspired by the quantitative stability for functional inequalities. We refer to [4, 10–12] for the study of the log-Sobolev inequality on the Gaussian space:

$$\text{Ent}_\gamma(f \gamma) \leq \frac{1}{2} I_\gamma(f \gamma) = \frac{1}{2} \int_{\mathbb{R}^n} \frac{\|\nabla f\|^2}{f} \, d\gamma,$$

where $I_\gamma(f \gamma)$ is the Fisher information of a probability measure $f \gamma$ with respect to γ. They investigated the difference between γ and $f \gamma$, in terms of the additive deficit $\delta(f) = I_\gamma(f \gamma)/2 - \text{Ent}_\gamma(f \gamma)$. For instance, W_2-bounds (under certain convexity and concavity conditions on f) were given in [4, 12], and L^1- and L^p-bounds can be found in [11]. In the setting of weighted Riemannian manifolds satisfying $\text{Ric}_\infty \geq 1$ (as in Theorem 3.1), we have only the rigidity (see [19]) and the stability is an open problem.

(c) We have seen in [15, §6] that the reverse forms of the Poincaré and log-Sobolev inequalities can be derived from the isoperimetric deficit. The reverse Poincaré inequality then implies a W_1-estimate for the push-forward by an eigenfunction due to [2, Theorem 1.3] (see also [9]). We also expect a direct W_1- or W_2-estimate for the push-forward by the guiding function, which remains an open question (see [15, Remark 7.6(g)]).

(d) Another direction of research is a generalization to negative effective dimension, that is, $\text{Ric}_N \geq K > 0$ with $N < -1$. We have established rigidity in the isoperimetric inequality in [14], thereby it is natural to consider quantitative isoperimetry, though it seems to require longer calculations.

ACKNOWLEDGEMENTS

We are grateful to Emanuel Indrei, whose question on the L^p-estimate led us to write this paper. CHM was supported by Grant-in-Aid for JSPS Fellows 20J11328. SO was supported in part by JSPS Grant-in-Aid for Scientific Research (KAKENHI) 19H01786.

JOURNAL INFORMATION

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.
REFERENCES

1. D. Bakry and M. Ledoux, *Lévy–Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator*, Invent. Math. 123 (1996), 259–281.
2. J. Bertrand and M. Fathi, *Stability of eigenvalues and observable diameter in RCD(1,∞) spaces*, Preprint, arXiv:2107.05324, 2021.
3. S. Bobkov, *Extremal properties of half-spaces for log-concave distributions*, Ann. Probab. 24 (1996), 35–48.
4. S. G. Bobkov, N. Gozlan, C. Roberto, and P.-M. Samson, *Bounds on the deficit in the logarithmic Sobolev inequality*, J. Funct. Anal. 267 (2014), 4110–4138.
5. F. Cavalletti, F. Maggi, and A. Mondino, *Quantitative isoperimetry à la Lévy–Gromov*, Comm. Pure Appl. Math. 72 (2019), 1631–1677.
6. F. Cavalletti and A. Mondino, *Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds*, Invent. Math. 208 (2017), 803–849.
7. F. Cavalletti, A. Mondino, and D. Semola, *Quantitative Obata’s theorem*, Anal. PDE. Preprint, arXiv:1910.06637, 2019.
8. T. A. Courtade and M. Fathi, *Stability of the Bakry–Émery theorem on \(\mathbb{R}^n \)*, J. Funct. Anal. 279 (2020), 108523.
9. M. Fathi, I. Gentil, and J. Serres, *Stability estimates for the sharp spectral gap bound under a curvature-dimension condition*, Preprint, arXiv:2202.03769, 2022.
10. M. Fathi, E. Indrei, and M. Ledoux, *Quantitative logarithmic Sobolev inequalities and stability estimates*, Discrete Contin. Dyn. Syst. 36 (2016), 6835–6853.
11. E. Indrei and D. Kim, *Deficit estimates for the logarithmic Sobolev inequality*, Differential Integral Equations 34 (2021), 437–466.
12. E. Indrei and D. Marcon, *A quantitative log-Sobolev inequality for a two parameter family of functions*, Int. Math. Res. Not. 2014 (2014), 5563–5580.
13. B. Klartag, *Needle decompositions in Riemannian geometry*, Mem. Amer. Math. Soc. 249 (2017), no. 1180.
14. C. H. Mai, *Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian manifolds*, Geom. Dedicata 202 (2019), 213–232.
15. C. H. Mai and S. Ohta, *Quantitative estimates for the Bakry–Ledoux isoperimetric inequality*, Comment. Math. Helv. 96 (2021), 693–739.
16. F. Morgan, *Geometric measure theory, A beginner’s guide*, 5th edn. Elsevier/Academic Press, Amsterdam, 2016.
17. S. Ohta, *Needle decompositions and isoperimetric inequalities in Finsler geometry*, J. Math. Soc. Japan 70 (2018), 651–693.
18. S. Ohta, *Comparison Finsler geometry*, Springer Monographs in Mathematics, Springer, Cham, 2021.
19. S. Ohta and A. Takatsu, *Equality in the logarithmic Sobolev inequality*, Manuscripta Math. 162 (2020), 271–282.
20. M. Talagrand, *Transportation cost for Gaussian and other product measures*, Geom. Funct. Anal. 6 (1996), 587–600.
21. C. Villani, *Optimal transport, old and new*, Springer, Berlin, 2009.