Distance and distance signless Laplacian spread of
connected graphs *

Lihua Youa,† Liyong Rena,‡ Guanglong Yub,§

a School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P.R. China

b, Department of Mathematics, Yancheng Teachers University, Yancheng, 224002, Jiangsu, P.R. China

Abstract For a connected graph G on n vertices, recall that the distance signless Laplacian matrix of G is defined to be $Q(G) = Tr(G) + D(G)$, where $D(G)$ is the distance matrix, $Tr(G) = diag(D_1, D_2, \ldots, D_n)$ and D_i is the row sum of $D(G)$ corresponding to vertex v_i. Denote by $\rho_D(G)$, $\rho_{min}(G)$ the largest eigenvalue and the least eigenvalue of $D(G)$, respectively. And denote by $q_D(G)$, $q_{min}(G)$ the largest eigenvalue and the least eigenvalue of $Q(G)$, respectively. The distance spread of a graph G is defined as $S_D(G) = \rho_D(G) - \rho_{min}(G)$, and the distance signless Laplacian spread of a graph G is defined as $S_Q(G) = q_D(G) - q_{min}(G)$. In this paper, we point out an error in the result of Theorem 2.4 in “Distance spectral spread of a graph” [G.L. Yu et al, Discrete Applied Mathematics. 160 (2012) 2474–2478] and rectify it. As well, we obtain some lower bounds on distance signless Laplacian spread of a graph.

Keywords: Distance matrix; Distance signless Laplacian; Spectral spread

1 Introduction

Throughout this article, we assume that G is a simple, connected and undirected graph on n vertices. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G)$. We denote by $deg(v_i)$ (simply, d_i) the degree of vertex v_i, and for $u, v \in V$, we denote by $d_G(u, v)$ the distance between u and v in G. Recall that the distance matrix is $D(G) = (d_{ij})$ where $d_{ij} = d_G(v_i, v_j)$. For any $v_i \in V(G)$, the transmission of vertex v_i, denoted by $Tr_G(v_i)$ or D_i, is defined to be $\sum_{v_j \in V(G), j \neq i} d_G(v_i, v_j)$, which is equal to the row sum of $D(G)$ corresponding to vertex v_i. Sometimes, D_i is called the distance degree. Let $Tr(G) = diag(D_1, D_2, \ldots, D_n)$ be the diagonal matrix of vertex transmissions of G. The distance signless Laplacian matrix of G is defined as $Q(G) = Tr(G) + D(G)$ (see Π).

For a nonnegative real symmetric matrix M, we denote by $P_M(\lambda) = |\lambda I - M|$ its the characteristic polynomial. Its largest eigenvalue is called the spectral radius of M. For

* L. You’s work was supported by the National Natural Science Foundation of China (Grant No. 11571123) and the Guangdong Provincial Natural Science Foundation(Grant No. 2015A030313377), and G. Yu’s work was supported by the NSF of China (Grant No. 11271315).

† Email address: ylhua@scnu.edu.cn

‡ Email address: 275764430@qq.com.

§ Corresponding author: yglong01@163.com.
a graph G, the spectral radius of $\mathcal{D}(G)$ and $\mathcal{Q}(G)$, denoted by $\rho^D(G)$ and $q^D(G)$, are also called the distance spectral radius and the distance signless Laplacian spectral radius, respectively. Denote by $\rho^D_{\text{min}}(G)$ and $q^D_{\text{min}}(G)$ the least eigenvalue of $\mathcal{D}(G)$ and the least eigenvalue of $\mathcal{Q}(G)$, respectively. The distance spread of graph G is defined as $S_D(G) = \rho^D(G) - \rho^D_{\text{min}}(G)$, and the distance signless Laplacian spread of graph G is defined as $S_Q(G) = q^D(G) - q^D_{\text{min}}(G)$. Without ambiguity, $S_D(G)$ and $S_Q(G)$ are shortened as S_D and S_Q sometimes.

From [3] [12], we know that the spread of a matrix is a very interesting topic. As a result, in algebraic graph theory, the spread of some matrices of a graph also becomes interesting (see [5], [8], [4]). These cause the interests of the researchers on the problem about the distance concerning the distance spectrum of a graph has been studied extensively recently (see [5], [8], [4]). These cause the interests of the researchers on the problem about the distance spectral spread of a graph ([14], [10]). Motivated by these, in this paper, we proceed to consider the distance and distance signless Laplacian spread of a graph.

In Section 3, we point out an error in the result of Theorem 2.4 in “Distance spectral spread of a graph” [G.L. Yu, etc, Discrete Applied Mathematics. 160 (2012) 2474–2478] and rectify it. In Section 4, some lower bounds on distance signless Laplacian spread of a graph are obtained.

2 Some preliminaries

In this section, we introduce some definitions, notations and working lemmas.

Let I_p be the $p \times p$ identity matrix and $J_{p,q}$ be the $p \times q$ matrix in which every entry is 1, or simply J_p if $p = q$. For a matrix M, its spectrum $\sigma(M)$ is the multiset of its eigenvalues.

Definition 2.1. Let M be a real matrix of order n described in the following block form

$$M = \begin{pmatrix}
M_{11} & \cdots & M_{1t} \\
\vdots & \ddots & \vdots \\
M_{m1} & \cdots & M_{mt}
\end{pmatrix},$$

(2.1)

where the diagonal blocks M_{ii} are $n_i \times n_i$ matrices for any $i \in \{1, 2, \ldots, t\}$ and $n = n_1 + \ldots + n_t$. For any $i, j \in \{1, 2, \ldots, t\}$, let b_{ij} denote the average row sum of M_{ij}, i.e. b_{ij} is the sum of all entries in M_{ij} divided by the number of rows. Then $B(M) = (b_{ij})$ (simply by B) is called the quotient matrix of M. If in addition for each pair i, j, M_{ij} has constant row sum, then $B(M)$ is called the equitable quotient matrix of M.

Consider two sequences of real numbers: $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, and $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_m$ with $m < n$. The second sequence is said to interlace the first one whenever $\lambda_i \geq \mu_i \geq \lambda_{n-m+i}$ for $i = 1, 2, \ldots, m$.

Lemma 2.2. ([8]) Let M be a symmetric matrix and have the block form as (2.1), B be the quotient matrix of M. Then the eigenvalues of B interlace the eigenvalues of M.

Lemma 2.3. ([13]) Let M be defined as (2.7), and for any $i, j \in \{1, 2, \ldots, t\}$, $M_{ii} = l_i J_{n_i} + p_i I_{n_i}$, $M_{ij} = s_{ij} J_{n_i n_j}$ for $i \neq j$, where l_i, p_i, s_{ij} are real numbers, $B = B(M)$ be the quotient matrix of M. Then

$$\sigma(M) = \sigma(B) \cup \{\lambda^{[t]} \mid i = 1, 2, \ldots, t\},$$

(2.2)

where $\lambda^{[t]}$ means that λ is an eigenvalue with multiplicity t. [2]
By Lemma 2.3 we can obtain the distance (signless Laplacian) spectrum of $K_{a,b}$ as follows immediately, where $n = a + b$.

$$
\sigma(D(K_{a,b})) = \left\{ (-2)^{\lfloor n/2 \rfloor}, n - 2 \pm \sqrt{n^2 - 3ab} \right\},
$$
and

$$
\sigma(Q(K_{a,b})) = \left\{ (2n-a-4)^{\lfloor b/2 \rfloor}, (2n-b-4)^{\lfloor a/2 \rfloor}, \frac{5n - 8 \pm \sqrt{9n^2 - 32ab}}{2} \right\}.
$$

Lemma 2.4. ([4]) Let H_n denote the set of all $n \times n$ Hermitian matrices, $A \in H_n$ with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, and B be a $m \times m$ principal matrix of A with eigenvalues $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_m$. Then $\lambda_i \geq \mu_i \geq \lambda_{n-m+i}$ for $i = 1, 2, \ldots, m$.

3 Results on S_D for a bipartite graph

In [14], the authors obtained a lower bound for $S_D(G)$ with the maximum degree Δ of G, but it is found that the result is incorrect when $\Delta \leq |V(G)| - 2$. In this section, we rectify it.

Let $G = (V, E)$ be a graph. For $v_i, v_j \in V$, if v_i is adjacent to v_j, we denote it by $v_i \sim v_j$ (simply, $i \sim j$). We let $t_v = \frac{\sum_{v_i \sim v} D_i}{d_v}$ be the average distance degree of v ([14]).

Proposition 3.1. ([14], Theorem 2.4) Let G be a simple connected bipartite graph on n vertices with $S = \sum_{i=1}^{n} D_i$ and maximum degree Δ. Suppose $\text{deg}(v_1) = \text{deg}(v_2) = \ldots = \text{deg}(v_k) = \Delta$. Then

(i) if $\Delta \leq n - 2$, we have

$$
S_D(G) \geq \max_{1 \leq i \leq k} \frac{\sqrt{a_i^2 - 4b_i(\Delta + 1)(n - \Delta - 1)}}{(\Delta + 1)(n - \Delta - 1)},
$$

where $a_i = 2(n - t_{v_i} - 1)\Delta^2 + (S - 2t_{v_i} - 2)\Delta + S$ and $b_i = \Delta^2(2S - t_{v_i}^2 - 2t_{v_i} - 1)$.

(ii) if $\Delta = n - 1$, we have

$$
S_D(G) = \begin{cases}
0, & \text{if } n = 1; \\
2, & \text{if } n = 2; \\
n + \sqrt{n^2 - 3n + 3}, & \text{if } n \geq 3.
\end{cases}
$$

Let $N(v_i) = \{v_{i_1}, v_{i_2}, \ldots, v_{i_A}\}$ be the neighbors set of v_i, and $N[v_i] = N(v_i) \cup \{v_i\}$. In the proof of [3.1], the authors partition $V(G)$ into two parts $N[v_i]$ and $V(G) \setminus N[v_i]$ for some $1 \leq i \leq k$. Corresponding to this partition, $D(G)$ can be written as

$$
D(G) = \begin{pmatrix}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 2 & \ldots & 2 \\
1 & 2 & 0 & \ldots & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 2 & \ldots & 0 \\
\ast & \ast & \ast & \ldots & \ast
\end{pmatrix}.
$$

3
Then the author presented the quotient matrix of $\mathcal{D}(G)$ as:

$$B_1 = \begin{pmatrix}
\frac{2\Delta^2}{\Delta+1} & \frac{t_{v_i} \Delta + \Delta - 2\Delta^2}{n - \Delta - 1} \\
\frac{t_{v_i} \Delta + \Delta - 2\Delta^2}{n - \Delta - 1} & \frac{s_{-2v_i} \Delta + 2\Delta^2 (\Delta - 1)}{n - \Delta - 1}
\end{pmatrix}.$$ \hspace{1cm} (3.3)

The following example shows that (3.3) is false.

![Graph](image)

Fig. 3.1. G_1

For the above graph (see Fig. 3.1), it is clear that $\Delta = 3$, $t_{v_1} = \frac{34}{3}$, $S = 84$ and

$$\mathcal{D}(G) = (d_{ij})_{7 \times 7} = \begin{pmatrix}
0 & 1 & 1 & 1 & 2 & 2 & 2 \\
1 & 0 & 2 & 2 & 1 & 1 & 3 \\
1 & 2 & 0 & 2 & 3 & 1 & 1 \\
1 & 2 & 2 & 0 & 3 & 3 & 3 \\
2 & 1 & 3 & 3 & 0 & 2 & 4 \\
2 & 1 & 1 & 3 & 2 & 0 & 2 \\
2 & 3 & 1 & 3 & 4 & 2 & 0
\end{pmatrix},$$ \hspace{1cm} (3.4)

and by (3.3), we have the quotient matrix $B_1 = \begin{pmatrix}
\frac{18}{3} & \frac{19}{3} & \frac{19}{3} \\
\frac{25}{3} & \frac{25}{3} & \frac{25}{3}
\end{pmatrix}$. In fact the quotient matrix can be computed by the definition of the quotient matrix and (3.4) immediately as $B_2 = \begin{pmatrix}
\frac{18}{3} & \frac{25}{3} & \frac{25}{3} \\
\frac{25}{3} & \frac{25}{3} & \frac{25}{3}
\end{pmatrix} \neq B_1$, it is a contradiction.

Noticing the error in (3.3), with the similar technique, we rectify (3.1) as follows.

Theorem 3.2. Let G be a simple connected bipartite graph on n vertices, Δ be the maximum degree of G, $S = \sum_{i=1}^{n} D_i$. Suppose that $\deg(v_1) = \deg(v_2) = \ldots = \deg(v_k) = \Delta \leq n - 2$ for some k ($1 \leq k \leq n$). Then

$$S_{\mathcal{D}(G)} \geq \max_{1 \leq i \leq k} \frac{\sqrt{a_i^2 + 4b_i(1 + \Delta)(n - \Delta - 1)}}{(1 + \Delta)(n - \Delta - 1)},$$ \hspace{1cm} (3.5)

where $a_i = (\Delta + 1)(S - 2D_i - 2t_{v_i} \Delta) + 2n\Delta^2$ and $b_i = D_i^2 - 2S\Delta^2 + 2D_i t_{v_i} \Delta + t_{v_i}^2 \Delta^2$.

Proof. $V(G)$ is partitioned into two parts which are $N[v_i]$ and $V(G) \setminus N[v_i]$ for some $1 \leq i \leq k$. Corresponding to this partition, $\mathcal{D}(G)$ is written as (3.2) and the quotient matrix B of $\mathcal{D}(G)$ is presented as follow:

$$B = \begin{pmatrix}
\frac{2\Delta^2}{\Delta+1} & \frac{t_{v_i} \Delta + \Delta - 2\Delta^2}{n - \Delta - 1} \\
\frac{t_{v_i} \Delta + \Delta - 2\Delta^2}{n - \Delta - 1} & \frac{s_{-2v_i} \Delta + 2\Delta^2 (\Delta - 1)}{n - \Delta - 1}
\end{pmatrix}.$$ \hspace{1cm} (3.3)

Then

$$P_B(\lambda) = |\lambda I - B| = \lambda^2 - \frac{(\Delta + 1)(S - 2D_i - 2t_{v_i} \Delta) + 2n\Delta^2}{(1 + \Delta)(n - \Delta - 1)} \lambda - \frac{D_i^2 - 2S\Delta^2 + 2D_i t_{v_i} \Delta + t_{v_i}^2 \Delta^2}{(1 + \Delta)(n - \Delta - 1)}.$$
Let $P_B(\lambda) = 0$. It follows that
\[
\lambda_{1,2} = a_i \pm \sqrt{a_i^2 + 4b_i(1 + \Delta)(n - \Delta - 1)} \quad \frac{2(1 + \Delta)(n - \Delta - 1)}{2(1 + \Delta)(n - \Delta - 1)},
\]
where $a_i = (\Delta + 1)(S - 2D_i - 2t_v, \Delta) + 2n\Delta^2$ and $b_i = D_i^2 - 2S\Delta^2 + 2D_it_v, \Delta + t_v^2\Delta^2$. Using Lemma 2.2 gets (3.5). \hfill \Box

\textbf{Remark 3.1}

\begin{figure}[h]
\centering
\begin{tikzpicture}
 \node (v1) at (0,0) {v_1};
 \node (v2) at (1,1) {v_2};
 \node (v3) at (1,0) {v_3};
 \node (v4) at (0,1) {v_4};
 \node (v5) at (-1,0) {v_5};
 \node (v6) at (-1,-1) {v_6};
 \node (v7) at (2,1) {v_7};
 \node (v8) at (2,0) {v_8};
 \node (v9) at (2,-1) {v_9};

 \draw (v1) -- (v2);
 \draw (v3) -- (v4);
 \draw (v5) -- (v6);
 \draw (v7) -- (v8);
 \draw (v9) -- (v1);
\end{tikzpicture}
\caption{G_2}
\end{figure}

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
\text{graph} & Theorem 3.2 & approximate value \\
\hline
G_1 & $S_D(G) \geq 15.5960$ & $S_D(G) \approx 17.6820$ \\
G_2 & $S_D(G) \geq 19.0059$ & $S_D(G) \approx 20.9674$ \\
\hline
\end{tabular}
\caption{Table 3.1.}
\end{table}

By computation with mathematica for graphs G_1 and G_2 (see Figs. 3.1, 3.2 and Table 3.1), it seems that Theorems 3.2 is useful to evaluate the distance spread of a bipartite graph.

From the proof of Theorem 3.2 and by Lemma 2.2, we have the following corollary immediately.

\textbf{Corollary 3.3.} Let G be a simple connected bipartite graph on $n \geq 3$ vertices with maximum degree $\Delta \leq n - 2$. Suppose that $\deg(v_1) = \deg(v_2) = \ldots = \deg(v_k) = \Delta$, a_i, b_i are defined as Theorem 3.2 for $1 \leq i \leq k$. Then
\begin{enumerate}
\item[(i)] $\rho^p(G) \geq \max_{1 \leq i \leq k} \frac{a_i + \sqrt{a_i^2 + 4b_i(1 + \Delta)(n - \Delta - 1)}}{2(1 + \Delta)(n - \Delta - 1)}$;
\item[(ii)] $\rho^p_{\text{min}}(G) \leq \min_{1 \leq i \leq k} \frac{a_i + \sqrt{a_i^2 + 4b_i(1 + \Delta)(n - \Delta - 1)}}{2(1 + \Delta)(n - \Delta - 1)}$.
\end{enumerate}

\section{On S_Q}

In this section, we show some bounds of S_Q for bipartite graphs and some bounds with some parameters.

\subsection{Bounds on S_Q for bipartite graphs}

For a graph G, $W(G) = \sum_{1 \leq i < j \leq n} d_{ij}$ is called Wiener index. Thus, $W(G) = \frac{1}{2} \sum_{i=1}^{n} D_i$ and $S = 2W(G)$. Similar to the proof of Theorem 3.2 and Corollary 3.3, we get the following theorem and one corollary in term of Wiener index.
Theorem 4.1. Let G be a simple connected bipartite graph on $n \geq 3$ vertices with maximum degree Δ and Wiener index W. Suppose that $\deg(v_1) = \deg(v_2) = \ldots = \deg(v_k) = \Delta$. Then

(i) if $\Delta \leq n - 2$, then

$$S_Q(G) \geq \max_{1 \leq i \leq k} \frac{a_i^2 + 4b_i(1 + \Delta)(n - \Delta - 1)}{(1 + \Delta)(n - \Delta - 1)},$$

where $a_i = 4(W - D_i - t_i\Delta)(\Delta + 1) + 2n\Delta^2 + nD_i + nt_i\Delta$ and $b_i = 4D_i^2 + 8D_i t_i\Delta + 4t_i^2\Delta^2 - 8W\Delta^2 - 4WD_i - 4Wt_i\Delta$.

(ii) if $\Delta = n - 1$, then $S_Q(G) = \sqrt{9n^2 - 32n + 32}$.

Remark 4.1

By computation with mathematica for graphs G_1 and G_2 (see Figs. 3.1, 3.2 and Table 4.1), it seems that Theorem 4.1 is useful to evaluate the signless Laplacian distance spread of a bipartite graph.

Corollary 4.2. Let G be a simple connected bipartite graph on $n \geq 3$ vertices, $\Delta \leq n - 2$ be maximum degree of G. Suppose that $\deg(v_1) = \deg(v_2) = \ldots = \deg(v_k) = \Delta$ for some k ($1 \leq k \leq n$), a_i, b_i are defined as Theorem 4.1 for $1 \leq i \leq k$. Then

(i) $q^D(G) \geq \max_{1 \leq i \leq k} \frac{a_i + \sqrt{a_i^2 + 4b_i(1 + \Delta)(n - \Delta - 1)}}{2(1 + \Delta)(n - \Delta - 1)}$;

(ii) $q_{\min}^D(G) \leq \min_{1 \leq i \leq k} \frac{a_i + \sqrt{a_i^2 + 4b_i(1 + \Delta)(n - \Delta - 1)}}{2(1 + \Delta)(n - \Delta - 1)}$.

Lemma 4.3. Let $n \geq 4$ and a be positive integers with $2a \leq n$. Then $S_Q(K_{a,n-a}) \geq S_Q(K_{\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil})$ with equality if and only if $G \cong K_{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor}$.

Proof. By (2.4), we have

$$\sigma(Q(K_{a,n-a})) = \left\{ (2n - a - 4)^{[n-a-1]}, (n + a - 4)^{[a-1]}, \frac{5n - 8 \pm \sqrt{9n^2 - 32a(n-a)}}{2} \right\}.$$

It is checked that

$$5n - 8 + \frac{\sqrt{9n^2 - 32a(n-a)}}{2} > 2n - a - 4, \quad 5n - 8 - \frac{\sqrt{9n^2 - 32a(n-a)}}{2} > n + a - 4.$$

Then $q^D(K_{a,n-a}) = \frac{5n - 8 + \sqrt{9n^2 - 32a(n-a)}}{2}$, and

$$q_{\min}^D(K_{a,n-a}) = \left\{ \begin{array}{ll} n + a - 4, & a > 1 \\ \frac{5n - 8 - \sqrt{9n^2 - 32a(n-a)}}{2}, & a = 1. \end{array} \right.$$

When $0 < a \leq \frac{n}{2}$, it checked that $f(a) = \frac{5n - 8 + \sqrt{9n^2 - 32a(n-a)}}{2}$ is a decreasing function with respect to a, and $g(a) = n + a - 4$ is an increasing function with respect to a. Then we have $S_Q(K_{2,n-2}) > S_Q(K_{3,n-3}) > \ldots > S_Q(K_{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor})$.

Graph	Theorem 4.1	Approximate value
G_1	$S_Q(G) \geq 15.6400$	$S_Q(G) \approx 18.6100$
G_2	$S_Q(G) \geq 17.8520$	$S_Q(G) \approx 21.1870$

Table 4.1.
Noting that \(n \geq 4 \), by directly computation, we have
\[
S_Q(K_{1,n-1}) - S_Q(K_{2,n-2}) = \sqrt{9n^2 - 32n + 32} - \frac{(5n - 8 + \sqrt{9n^2 - 64n + 128})}{2} - (n - 2) > 0.
\]
Thus \(S_Q(K_{1,n-1}) > S_Q(K_{2,n-2}) > S_Q(K_{3,n-3}) > \ldots > S_Q(K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}) \). This completes the proof.

Let \(G \) be a simple connected bipartite graph on \(n \) vertices. If \(n = 4 \), \(G \) is isomorphic to one of the following three graphs: (1) \(K_{2,2} \), (2) \(P_4 \), (3) \(S_4 \); if \(n = 5 \), \(G \) is isomorphic to one of the following five graphs: (4) \(K_{2,3} \), (5) \(G_5 \), (6) \(G_6 \), (7) \(P_5 \), (8) \(S_5 \) (see Fig. 4.1).

![Graphs](image)

Fig. 4.1. \(K_{2,2}-S_5 \)

By direct calculation, we obtain the following two tables.

\(G \)	\(q^D \)	\(q^D_{\min} \)	\(S_Q(G) \)
\(K_{2,2} \)	8	2	6
\(P_4 \)	10.6056	2	8.6056
\(S_4 \)	9.4641	2.5359	6.9282

Table 4.1

\(G \)	\(q^D \)	\(q^D_{\min} \)	\(S_Q(G) \)
\(K_{2,3} \)	11.3723	3	8.3723
\(H_1 \)	13.3441	3.3113	10.0328
\(H_2 \)	15.3119	3.6075	11.7044
\(P_5 \)	17.1152	3.4385	13.6767
\(S_5 \)	13.4244	3.5756	9.8488

Table 4.2

Combining Lemma 4.3 and the results in Table 4.1, we get the following corollary.

Corollary 4.4. For positive integers \(n \) and \(a \) with \(2a \leq n \), \(S_Q(K_{a,n-a}) \geq S_Q(K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}) \) with equality if and only if \(G \cong K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor} \).

Comparing the results in Tables 4.1 and 4.2, and checking more graphs with computer, it seems that among bipartite graphs, \(S_Q(K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}) \) always has the minimum \(S_Q \). Thus, we propose the following problem for further research.

Conjecture 4.5. Let \(G \) be a bipartite graph with \(n \) vertices. Then \(S_Q(G) \geq S_Q(K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor}) \) with equality if and only if \(G \cong K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor} \).

Remark 4.2 In order to prove Conjecture 4.5, maybe it is better to show \(S_Q(G) \geq S_Q(K_{a,n-a}) \) holding for some \(a \) first, and then to using Lemma 4.3 to get the desired result.
4.2 Bound on S_Q with clique number

A clique of a graph G is a subgraph in which any pair of vertices is adjacent, and the clique number $\omega(G)$ (simply, ω) is the number of vertices of the largest clique in G. In this subsection, we present a lower bound on S_Q with clique number.

Theorem 4.6. Let G be a simple connected graph with n vertices, clique number $\omega \geq 2$ and Wiener index W. Suppose that G_1, G_2, \ldots, G_k are all the cliques with order ω, $s_i = \sum_{v_j \in V(G_i)} D_j$ for $1 \leq i \leq k$. Then

(i) if $\omega = n$, then $S_Q(G) = n$;

(ii) if $2 \leq \omega \leq n - 1$, then

$$S_Q(G) \geq \max_{1 \leq i \leq k} \frac{\sqrt{a_i^2 - 4b_i(n - \omega)\omega}}{(n - \omega)\omega},$$

(4.2)

where $a_i = n\omega(1 - \omega) + 4\omega(s_i - W) - ns_i$ and $b_i = 4W(\omega - 1) + 4s_i(W - s_i)$.

Proof. (i) If $\omega = n$, then $G \cong K_n$. By direct calculation, we have $q^P(G) = 2n - 2$ and $q^P_{\min}(G) = n - 2$. Thus $S_Q(G) = q^P(G) - q^P_{\min}(G) = n$.

(ii) If $\omega \leq n - 1$, for $1 \leq i \leq k$, suppose $V(G_i) = \{v_1, v_2, \ldots, v_{\omega}\}$. Then $V(G)$ is divided into two parts $V(G_i)$ and $V(G) \setminus V(G_i)$. Corresponding to this partition, the quotient matrix of $Q(G)$ is written as

$$B = \begin{pmatrix} s_i - s_i(\omega - 1) & s_i(\omega - 1) \\ s_i(\omega - 1) & W - 3s_i + s_i(\omega - 1) \end{pmatrix}.$$

Similar to the proof of Theorem 4.2 solving $P_B(\lambda) = 0$ and using Lemma 2.2 get 1.2).

Remark 4.3 Recall that a kite $K_{i_n,\omega}$ is the graph obtained from a clique K_ω and a path $P_{n-\omega}$ by adding an edge between an endpoint of the path and a vertex of the clique. For a kite $G = K_{i_5,3}$, by Theorem 4.6 we have $S_Q(G) \geq 10.6158$. On the other hand, by direct calculation, we obtain $S_Q(G) \approx 11.3395$. This shows that Theorem 4.6 is useful to evaluate the distance signless Laplacian spread of a graph with given clique number.

By Lemma 2.2 and Theorem 4.6 we have

Corollary 4.7. Let G be a simple connected graph with n vertices and clique number ω. Suppose that G_1, G_2, \ldots, G_k are all the cliques with order ω, a_i, b_i are defined as Theorem 4.6 for $1 \leq i \leq k$. Then

(i) $q^P(G) \geq \max_{1 \leq i \leq k} \left\{ -a_i + \sqrt{a_i^2 - 4b_i(n - \omega)\omega} \right\}$;

(ii) $q^P_{\min}(G) \leq \min_{1 \leq i \leq k} \left\{ -a_i - \sqrt{a_i^2 - 4b_i(n - \omega)\omega} \right\}$.

4.3 Bound on S_Q with diameter

In this subsection, we obtain a lower bound on S_Q of a graph with diameter. In a graph, a path is called a diameter path if its length is equal to the diameter of this graph.

Theorem 4.8. Let G be a simple connected graph with n vertices, diameter d and Wiener index W. Suppose that P_1, P_2, \ldots, P_k are all the diameter paths, and suppose that $s_i = \sum_{v_j \in V(P_i)} D_j$ for $1 \leq i \leq k$. Then
(i) if \(d = 1 \), then \(S_Q(G) = n; \)
(ii) if \(2 \leq d \), then
\[
S_Q(G) \geq \max_{1 \leq i \leq k} \frac{\sqrt{a_i^2 - 12b_i(d + 1)(n-1 - d)}}{3(d+1)(n-1 - d)}, \tag{4.3}
\]
where \(a_i = 12(1+d)(s_i - W) - nd(d+1)(d+2) - 3ns_i \) and \(b_i = 4d(d+1)(d+2)W + 12s_i(W-s_i). \)

Proof. (i). If \(d = 1 \), then \(G \cong K_n \). By direct calculation, \(q^D(G) = 2n-2, q^D_{\min}(G) = n - 2 \).
Thus, \(S_Q(G) = n \).
(ii). If \(2 \leq d \), for \(1 \leq i \leq k \), we let \(T = \sum_{v_i,v_j \in V(P_i)} d_{sj}. \) Then when \(d \) is even, we have
\[
T = 2(1 + 2 + ... + d) + 2[1 + 1 + 2 + 3 + ... + (d-1)] + ... \\
+ 2[1 + 1 + 2 + 3 + ... + (\frac{d}{2} - 1) + (\frac{d}{2} - 1) + \frac{d}{2} + (\frac{d}{2} + 1)] \\
+ 2[1 + 2 + ... + (\frac{d}{2} - 1) + \frac{d}{2}], \\
= d(d+1) + [(d-1)d + 2 \times 1] + [(d-2)(d-1) + 2 \times 3] + ... \\
+ [(\frac{d}{2} + 1)(\frac{d}{2} + 2) + (\frac{d}{2} - 1)\frac{d}{2} + \frac{d}{2}(\frac{d}{2} + 1)] \\
= 1^2 + 2^2 + 3^2 + ... + d^2 + 1 + 2 + 3 + ... + d \\
= \frac{d(d+1)(d+2)}{4}.
\]
When \(d \) is odd, we have
\[
T = 2(1 + 2 + ... + d) + 2[1 + 1 + 2 + 3 + ... + (d-1)] + ... \\
+ 2(1 + 2 + 3 + ... + \frac{d-1}{2} + \frac{d+1}{2} + \frac{d+1}{2}) \\
= d(d+1) + [(d-1)d + 2 \times 1] + [(d-2)(d-1) + 2 \times 3] + ... \\
+ (\frac{d+1}{2})(\frac{d+1}{2} + 1) + (\frac{d-1}{2})(\frac{d-1}{2} + 1) \\
= 1^2 + 2^2 + 3^2 + ... + d^2 + 1 + 2 + 3 + ... + d \\
= \frac{d(d+1)(d+2)}{4}.
\]
Now \(V(G) \) is partition into two parts which are \(V(P_i) \) and \(V(G) \setminus V(P_i) \). Corresponding to this partition, the quotient matrix of \(Q(G) \) can be written as
\[
B = \begin{pmatrix}
\frac{\frac{d(d+1)(d+2)}{4} + s_i}{d+1} & \frac{s_i - \frac{d(d+1)(d+2)}{4}}{n-d-1} \\
\frac{s_i - \frac{d(d+1)(d+2)}{4}}{n-d-1} & \frac{\frac{d(d+1)(d+2)}{4} + s_i}{d+1}
\end{pmatrix}.
\]

Similar to the proof of Theorem 3.2 solving \(P_B(\lambda) = 0 \) and using Lemma 2.2 get \([1.3]\).

Remark 4.4 For \(G_1 \) shown in Fig. 3.1, then by Theorem 4.8 we have \(S_Q(G) \geq 12.1198 \).
From the Table 4.1, we know that \(S_Q(G_1) \approx 18.6100 \). This shows that Theorem 4.8 is useful to evaluate the distance signless Laplacian spread of a graph with given diameter.

Corollary 4.9. Let \(G \) be a simple connected graph with \(n \) vertices and diameter \(d \). Suppose that the path \(P_1, P_2, ..., P_k \) are all the diameter of \(G \), \(a_i, b_i \) are defined as Theorem 4.8 for \(1 \leq i \leq k \). Then
(i) \(q^D(G) \geq \max_{1 \leq i \leq k} \left\{ \frac{-a_i + \sqrt{a_i^2 - 12b_i(d + 1)(n-1 - d)}}{6(d+1)(n-1 - d)} \right\}; \)
(ii) \(q^D_{\min}(G) \leq \min_{1 \leq i \leq k} \left\{ \frac{-a_i^2 - 12b_i(d + 1)(n-1 - d)}{6(d+1)(n-1 - d)} \right\}. \)
4.4 Bound On S_Q for cacti with given circumference

A connected graph G is a cactus if any two of its cycles have at most one common vertex. Circumference is the length of the longest cycle of a graph. In this section, we present a lower bound on S_Q of a cactus with given circumference.

Theorem 4.10. Let G be a cactus on n vertices with circumference l ($l \geq 3$) and Wiener index W. Suppose that cycles $C_1, C_2, ..., C_k$ are all with length l, $s_i = \sum_{v_j \in V(C_i)} D_j$ for $1 \leq i \leq k$. Then

$$S_Q(G) \geq \max_{1 \leq i \leq k} \frac{\sqrt{a_i^2 - 16b_i l(n - l)}}{4l(n - l)},$$

where

$$a_i = \begin{cases} t^3n + 4ns_i - 16l(s_i - W), & \text{if } l \text{ is even;} \\ t^3n + 4ns_i - ln - 16l(s_i - W), & \text{if } l \text{ is odd}, \end{cases}$$

and

$$b_i = \begin{cases} 4l^3W - 16s_i(s_i - W), & \text{if } l \text{ is even;} \\ 4(l^3 - l)W - 16s_i(s_i - W), & \text{if } l \text{ is odd}. \end{cases}$$

Proof. Corresponding to C_i, $V(G)$ is partitioned into two parts $V(C_i)$ and $V(G) \setminus V(C_i)$.

Case 1: l is even.

Then for any $v \in V(C_i)$, the sum of distance from vertex v to all other vertices on cycle $V(C_i)$ is $\frac{\ell^3}{4}$. Corresponding to the above partition, the quotient matrix of $Q(G)$ is written as

$$B = \begin{pmatrix} \frac{\ell^3}{4} + \frac{W}{4} & \frac{W}{4} - \frac{\ell^3}{4} \\ \frac{\ell^3 - W}{4} & 4W - 3\ell^3 + \frac{\ell^3}{4} \end{pmatrix}.$$

Similar to the proof of Theorem 3.2 solving $P_B(\lambda) = 0$ and using Lemma 2.2 get (4.2).

Case 2: l is odd.

Then for any $v \in V(C_i)$, the sum of distance from vertex v to all other vertices on cycle $V(C_i)$ is $\frac{\ell^3 - l}{4}$. Corresponding to the above partition, the quotient matrix of $Q(G)$ is written as

$$B = \begin{pmatrix} \frac{\ell^3 - 1}{4} + \frac{W}{4} & \frac{W}{4} - \frac{\ell^3 - 1}{4} \\ \frac{\ell^3 - W}{4} & 4W - 3\ell^3 + \frac{\ell^3}{4} \end{pmatrix}.$$

Similar to the proof of Theorem 3.2 solving $P_B(\lambda) = 0$ and using Lemma 2.2 get (4.2). \hfill \Box

![Fig. 4.2. G_4, G_4](image)

Remark 4.4 Let G_3, G_4 are as shown in Fig. 4.2. By Theorem 4.10 we have $s_Q(G_3) \geq 11.5$. On the other hand, by direct calculation, we have $s_Q(G_3) \approx 12.8$. By Theorem 4.10 we have $s_Q(G_4) \geq 13.4$. On the other hand, by direct calculation, we have $s_Q(G_4) \approx 16.3$. These two examples show that Theorem 4.10 is useful to evaluate the S_Q of the cacti with given circumference.
Corollary 4.11. Let G be a cactus on n vertices with given circumference $l \geq 3$. Suppose that cycles $C_1, C_2, ..., C_k$ are all with length l, a_i, b_i are defined as Theorem 4.10 for $1 \leq i \leq k$. Then

1. $q^D(G) \geq \max_{1 \leq i \leq k} \{-a_i + \sqrt{a_i^2 - 16b_il(n-l)}/8l(n-l)}$;

2. $q^D_{\min}(G) \leq \min_{1 \leq i \leq k} \{-a_i - \sqrt{a_i^2 - 16b_il(n-l)}/8l(n-l)}$.

References

[1] M. Aouchiche, P. Hansen, Two Laplacian for the distance matrix of a graph, Linear Algebra Appl. 493 (2013) 21–33.

[2] M. Aouchiche, P. Hansen, Distance spectra of graphs: A survey, Linear Algebra Appl. 458 (2014) 301–386.

[3] A.T. Balaban, D. Ciubotariu, M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors, J. Chem. Inf. Comput. Sci. 31 (1991) 517–523.

[4] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, third ed, Johann Ambrosius Barth Verlag Heidelberg, Leipzig, 1995.

[5] R.L. Graham, H.O. Pollack, On the addressing problem for loop switching, Bell Syst. Tech. J. 50 (1971) 2495–2519.

[6] D.A. Gregory, D. Hershkowitz, S.J. Kirkland, The spread of the spectrum of a graph, Linear Algebra Appl. 332–334 (2001) 23–35.

[7] I. Gutman, M. Medeleanu, On the structure-dependence of the largest eigenvalue of distance matrix of an alkane, Indian J. Chem. A 37 (1998) 569–573.

[8] W.H. Haemers, Interlacing eigenvalues and graph, Linear Algebra Appl. 226–228 (1995) 593–616.

[9] C.R. Johnson, R. Kumar, H. Wolkowicz, Lower bounds for the spread of a matrix, Linear Algebra Appl. 71 (1985) 161–173.

[10] H.Q. Lin, On the least distance eigenvalue and its applications on the distance spread, Discrete Mathematics. 338 (2015) 868–874.

[11] M.H. Liu, B.L. Liu, The signless Laplacian spread, Linear Algebra Appl. 432 (2010) 505–514.

[12] L. Mirsky, The spread of a matrix, Mathematica 3 (1956) 127–130.

[13] M. Yang, L.H. You, J.X. Li, Several spectral radius of connected graphs and strongly connected digraphs with given connectivity, submitted.

[14] G.L. Yu, H.L. Zhang, H.Q. Lin, Y.R. Wu, J.L. Shu, Distance spectral spread of a graph, Discrete Applied Mathematics. 160 (2012) 2474–2478.