The Ameliorative Effects of L-Carnitine against Cisplatin-Induced Gonadal Toxicity in Rats

Adham Omar Sallam¹, Hanan A. Rizk⁴, Mahmoud Abdelghaffar Emam², Sabreen Ezzat Fadl³, Ehab Yahya Abdelhiee⁶, Hanem Khater⁷*, Ashraf Elkomy¹ and Mohamed Aboubakr¹

¹Department of Pharmacology; Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt; ²Department of Histology; Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt; ³Department of Parasitology; Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt; ⁴Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Egypt; ⁵Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, 51744 Matrouh, Egypt; ⁶Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Matrouh University, 51744 Matrouh, Egypt
*Corresponding author: hanemkhater@gmail.com; hanem.salem@fvtm.bu.edu.eg

INTRODUCTION

The testis plays a vital role in male reproductive function as it secretes testosterone, the male hormone, and responsible for androgenesis and spermatogenesis (Marty et al., 2003). Testosterone plays a critical role in growth, the appearance of sexual characteristics, maturation of male reproductive organs and spermatogenesis (Azarbarz et al., 2020)

Cisplatin (CP) is a potent anti-cancer medication used to treat a variety of tumors of the testes, ovary, bladder and lungs (Karwasra et al., 2016). However, several studies recorded that it induces testicular toxicity (Afsar et al., 2017; Almeer and Abdel Moneim, 2018; Azab et al., 2020; Azarbarz et al., 2020), inflammation, apoptosis, and oxidative stress (Meng et al., 2017) as well as, disorganization of the intermediate filaments (IFs) components of the cytoskeleton (Evans and Simpkins, 1998). Recently, vimentin (VIM) is considered as a mesenchymal marker for testicular toxicity and, cytokeratin (CKs) are known as cellular stress protein specially CK18 which is used as novel markers of testicular injuries (Banco et al., 2016).

Testicular dysfunction is the most reported consequence of CP toxicity, due to its high proliferative rate so the adverse effects of chemotherapy on the testis could be intense and irreversible causing the death of spermatogenic cells in the process of spermatogenesis and alterations in the sperm DNA, thus leading to the inability
to generate a sufficient number of viable sperms (oligozoospermia), azoospermia or even prolonged sterility (Ekinç Akdemir et al., 2019; Azarbarz et al., 2020).

L-carnitine (LC) is a natural nutrient that is synthesized from lysine and methionine essential amino acids. It is derived from dietary sources (75%) and endogenous biosynthesis (25%). It presents in the epididymis in high levels and plays a vital function in spermatogenesis, spermatozoon maturation as well as metabolism (Abdel Aziz et al., 2018). LC is necessary for the production of ATP by β-oxidation of fatty acids in mitochondria (Aboubakr et al., 2020). Therefore, LC could prevent mitochondrial oxidative stress-induced by mitochondrial damage and apoptosis in different cell types (Barhwal et al., 2007). Accordingly, this work assesses the ameliorative efficacy of L-carnitine (LC) against CP induced oxidative stress in rat testis via investigating testosterone and tissue oxidative/antioxidative parameters and revealing the histopathological alterations and immunohistochemical expressions of VIM and CK18 proteins.

MATERIALS AND METHODS

Chemicals: Cisplatin was obtained from EIMC United Pharmaceuticals (Badr City, Egypt); each vial (50mg/ 50ml) was dissolved in physiological saline (0.9% sodium chloride). L-carnitine was obtained from MEPACO Company (Inshas Elraml, Egypt). Kits used for biochemical analysis (MDA, GSH, and CAT) were obtained from Biodiagnostics Company (Dokki, Giza, Egypt).

Experimental animals: The present study was carried out on 28 white albino male rats weighing 175-195 gm. Rats were obtained from the Center of Laboratory Animal at the Faculty of Veterinary Medicine, Benha University, Egypt. They adapted to the Laboratory of the Department of Pharmacology for two weeks before experimenting. Animals received a balanced commercial diet and water ad libitum. The study protocol was approved by the ethical committee of the Faculty of Veterinary Medicine, Benha University, Egypt.

Experimental design: Male albino rats were randomly separated into four equal groups/seven each, the control group, group I, received saline (the vehicle) orally, once daily for 30 days in a row. Group II, LC group, received LC (100 mg/kg b.wt.), orally once daily for 30 days in a row (Avsar et al., 2014). Group III, the CP group, was injected with a single dose of CP 7.5 mg/kg, via IP route on the 27th day of the experiment (Boroja et al., 2018). Group IV, the LC+CP group, received a combination of treatments as both groups II and III.

Sampling: Twenty- four hours post-treatment; rats were anesthetized by inhalation of ether. Blood samples were collected by puncturing retro-orbital plexus in a sterilized dry centrifuge tube then left for 30 min at room temperature in a slanted position for coagulation before centrifugation at 1200 x g for 20 min to separate serum, which was stored at -20°C until used for biochemical studies. Following blood collection, the animals of all groups were euthanized by cervical dislocation then both testicles were removed from each rat and thoroughly washed with physiological saline, then tissue homogenates were prepared (mentioned below) and centrifuged. The supernatants were isolated and used for evaluation of oxidative stress markers in testicular tissues; whereas the rest of the testicular tissues were preserved in neutral buffered formalin (10%) for histopathological and immunohistochemical investigations.

Serum biochemical studies: The serum testosterone level was quantified using an enzyme-linked immunosorbent assay (ELISA) kits (Immundynamics Ltd., London, UK).

Preparation of testicular homogenates: The tissue was dissected and washed with phosphate-buffered saline (PBS) solution, pH 7.4 containing 0.16 mg/ml heparin for removal of any and clotted red blood cells. Using a homogenizer, a gram of each testicular tissue was homogenized in 5 ml of 5-10 ml cold buffer, 50 mM potassium phosphate, pH 7.5 1mM EDTA. Aliquots of tissue homogenates were centrifuged by cooling centrifuge 4000 rpm for 20min and stored at -20°C till used for biochemical analysis.

Detection of oxidative/antioxidant cascades: Oxidative status was done by determination of the activity of glutathione reductase (GSH), catalase (CAT), and malondialdehyde (MDA) levels using special kits purchased from Bio diagnostic company, Egypt.

Histological examination: Testicular tissues were fixed in neutral buffered formalin (10%) for 48 hours. Then, specimens were dehydrated using ascending grades of alcohol, cleared in xylene, and embedded in molten paraffin. Five-micron thickness paraffin sections were cut and stained by hematoxylin and eosin for histological examination (Bancroft et al., 2013).

Immunohistochemical studies: A streptavidin-biotin complex (ABC) method was used to localize CK18 and VIM immunohistochemically. Antigen retrieval then blocking of nonspecific staining was carried out after dewaxing, rehydration, and blocking of endogenous peroxidase activity. The testicular sections were incubated with the primary antibodies, rabbit monoclonal anti-cytokeratin 18 and anti-vimentin antibody (Abcam, Boston, USA) at 1:200 dilution, for 1 hr at RT. Next, sections were incubated with biotinylated donkey anti-mouse IgG (Abcam, Boston, USA) for 30 min at RT. A commercial ABC system (Santa Cruz Biotech, CA, USA) was used for visualization of the reactions. The sections were then subjected to diaminobenzene (DAB) as the chromogen and counterstained with hematoxylin.

Statistical analysis: Statistical analysis was done using one-way ANOVA using the Duncan test, SPSS (Version 20.0; SPSS Inc., Chicago, IL, USA). The data were expressed as mean ± SEM and P<0.05 was considered significant.

RESULTS

The biochemical parameters post-treatments were revealed (Table 1). Rats in the CP group had a significant
decrease in the serum testosterone level when compared to those of the other groups. The data revealed a significant (P<0.05) increase in the MDA level along with a decrease in GSH and CAT in the testicular tissues of CP-intoxicated rats. Meanwhile, animals in the LC+CP group showed a significant (P<0.05) decrease in MDA level along with elevations in GSH and CAT in renal and hepatic tissues when compared to that of the CP treated group.

Histopathologically, both control and LC groups revealed normal histo-architecture of the seminiferous tubules and interstitial tissues. Normal arrangements of spermatogenic cells and Leydig cells were seen (Figs. 1A, B). Meanwhile, CP treated group showed massive degeneration in some seminiferous tubules (Fig. 1C), cytoplasmic vacuolization, reduction of germ cell layers, congestion of blood vessels in other tubules (Fig. 1D), desquamation, and shedding of spermatogenic cells into tubular lumen (Figs. 1C, D) as well as widening of interstitial space with eosinophilic edema material (Fig. 1E). However, LC+CP treated group showed some improvements in the histological structure of both seminiferous tubules and interstitial tissues (Fig. 1F).

Immunohistochemically, most of the Leydig cells in both control and LC groups showed moderate CK18 immunolabeling (Fig. 2A, 2B). While very weak CK18 immunolabeling was seen in few Leydig cells of the CP treated group (Fig. 2C). An increase in the number and intensity of CK18 positive Leydig cells was identified in LC+CP treated group (Fig. 2D) when compared with that of the CP group. On other hand, strong VIM staining was observed in spermatogonia, spermatozoa, and Leydig cells in both control and LC treated groups (Figs. 3A, 3B), but CP treated group revealed a weaker response to VIM staining (Fig. 3C) compared to that control and LC groups. VIM staining nearly returned to normalcy in LC+CP treated group (Fig. 3D) compared with that of Fig. 3C.

DISCUSSION

Most chemotherapeutics used for treating cancer induce toxicity and oxidative injury in different organs as testes (Azarbarz et al., 2020). In the present work, CP significantly lowered serum testosterone levels. Such a result could be explained as the Leydig cell dysfunction, which produces gonadotropin as well as decreasing the activity of both mitochondrial side-chain cleavage as well as cytochrome P₄₅₀ (García et al., 2012). Also, CP causes adverse effects on the function of Sertoli cells and lowers the androgen-binding protein expression. Furthermore, hormonal disorders caused by CP are mediated by its effects on the hypothalamic-pituitary-gonadal axis (Almeer and Abdel Moneim, 2018). A similar finding was recorded in previous studies (Afsar et al., 2017; Almeer and Abdel Moneim 2018; Azab et al., 2020). Moreover, CP-induced reduction in testosterone levels was significantly reverted by L-carnitine administration in the current work. The positive impact of L-carnitine on the level of L-carnitine...
on the level of testosterone may be explained as its anti-
oxidative activity which counteracts the oxidative
stress-induced Leydig cell damage (Ghanbarzadeh et al.,
2014).

In this study, CP considerably elevated MDA and
depleted GSH, CAT, and SOD activities in the testicular
tissue. A similar imbalance was recorded (Anand et al.,
2015) indicating that the levels of antioxidant enzymes
were insufficient for eliminating free radicals produced by
CP (Azarbarz et al., 2020). Such reduction of antioxidant
enzymatic molecules might be because of an uncontrollable
generation of H2O2, which impairs antioxidant defense systems of the testis. Results of the
present work come along with those of previous investigations (Asfar et al., 2017; Ekinci Akdemir et al.,
2019; Yadav, 2019). However, treatment with LC counteracted the oxidative stress of testes and enhanced the
testicular antioxidant defense system, representing that LC
suppresses oxidative stress in testes (Ghanbarzadeh et al.,
2014). Also, LC reduces lipid availability for peroxidation
by transporting fatty acids to the mitochondria for β-
oxidation and consequently mitigates the production and
accumulation of lipid peroxidation products (Aboubakr et
al., 2020). LC is a natural antioxidant acting as a free radical scavenger (Abdel Aziz et al., 2018). Furthermore,
LC could regulate carbohydrate metabolism and preserve
the structure of the cell membrane, cellular vitality, and it
is considered as an essential cofactor in the process of long-
chain fatty acids oxidation (Caloglu et al., 2009).

Histologically, the testicular specimens of both control
and LC groups showed normal histo-architecture for the
seminiferous tubules and interstitial tissues. Similar
findings were reported (Eid et al., 2016; Aktoz et al., 2017).
CP administration causes massive degeneration, cytoplasmic vacuolization, and reduction of spermatogenic
cell layers, congestion of blood vessels, desquamation, and
shedding of spermatogenic cells into the tubular lumen as
well as edema of interstitial space. such findings were
reported (Almeer and Abdel Moneim, 2018; Grevrek and
Erdemir, 2018; Prihatno et al., 2018). Such impairment of spermatogenesis might be due to a remarkable reduction of the
testosterone level in addition to, the increased production of free radicals due to severe damages of Leydig
cells (Tousson et al., 2014; Kaya et al., 2015). After
administration of LC to CP treated group, structural improvement of the seminiferous tubules and interstitial
tissue was observed indicating tissue repair which was
similar to findings of Eid et al. (2016). These findings
could be attributed to the anti-oxidative property of LC that
prevents oxidative-stress induced Leydig cell impairment;
consequently, LC can restore testosterone level
(Ghanbarzadeh et al., 2014). Noteworthy, LC improves

Table 1: Effect of CP and/or LC treatment on serum testosterone and oxidative stress markers in testicular tissues in rats (n=7)

Parameters	Control	LC	CP	LC+CP
Testosterone (ng/ml)	2.38±0.09a	2.29±0.03a	1.23±0.06b	2.04±0.19ab
MDA (nmol/l)	48.5±4.21e	4.78±0.05e	3.26±0.14e	4.03±0.05e
GSH (mg/g)	29.26±0.79a	28.88±0.46a	17.80±0.52a	25.74±1.42a

LC, L-carnitine at the dose of 100 mg/Kg PO; CP, cisplatin at the dose of 7.5 mg/Kg IP. Data are expressed as the mean ± SE. Different superscript letters in the same row indicate statistical significance at P≤0.05.

histopathological changes in the ipsilateral testes of albino rats (Gawish et al., 2011). Also, Ahmed et al. (2014) and
Yuncu et al. (2015) reported that LC prevents spermatic changes after CP exposure.

Immunohistochemically, low expressions of both
CK18 and VIM in the testicular tissue after CP
administration were observed in the current study. A
similar finding is observed by Prihatno et al. (2018). Additionally, this study reported the restoration of CK18 and
VIM in the testicular tissue of the LC+CP group indicating the protective role of LC against CP-induced
testicular histopathological changes.

Conclusions:

The present study revealed the adverse effect of CP on rat testis as inflammation and structural alterations
through induction of oxidative stress determined by
increased generation of MDA and reduced activity of
antioxidant enzymes. This is the first study, according to
our knowledge, to investigate the immunohistochemical
expressions of IFs proteins, VIM, and CK18, following
administration of LC as a protective agent against CP
induced testicular toxicity in rats. It is recommended to
supplement LC to protect the testes against CP induced
toxicity due to its antioxidant and anti-inflammatory
properties.

Authors contribution:

AS, HR, AE, and MA; contributed to the study design, experimental work, and statistical
analysis and writing the manuscript. Mahmoud AE;
performed the histopathological and immunohistochemical
parts of the study. SF and EA; analyzed the sera and tissue
samples. HK; critically revised the manuscript for
important intellectual contents and submitted the
manuscript. All authors interpreted the data and approved
the final version.

REFERENCES

Abdel Aziz RL, Abdel-Wahab A, Abo El-Ela Fl, et al., 2018. Dose-dependent ameliorative effects of quercetin and l-Carnitine against atrazine- induced reproductive toxicity in adult male Albino rats. Biomed Pharmacother 102:855-64.

Aboubakr M, Elsayad F, Soliman A, et al., 2020. L-Carnitine and vitamin E ameliorate cardiotoxicity induced by tilmicosin in rats. Environ Sci Pollut Res Int 27:23026-34.

Asfar T, Razak S, Khan MR, et al., 2017. Acacia hydaspica ethyl acetate extract protects against cisplatin-induced DNA damage, oxidative stress and testicular injuries in adult male rats. BMC Cancer 17:883. doi: 10.1186/s12885-017-3898-9.

Ahmed MM, Ibrahim ZS, Alkafsfi M, et al., 2014. L-carnitine protects against testicular dysfunction caused by gamma irradiation in mice. Acta Histochem 116:1046-55.

Aktoz T, Caloglu M, Yurucu-Caloglu V, et al., 2017. Histopathological and biochemical comparisons of the protective effects of amifostine and l-carnitine against radiation-induced acute testicular toxicity in rats. Andrologia 49:e12754. doi: 10.1111/and.12754.

Almeer RS and Abdel Moneim AE, 2018. Evaluation of the protective effect of olive leaf extract on cisplatin-induced testicular damage in rats. Ovod Med Cell Longev 8487248. doi: 10.1155/2018/8487248.

Anand H, Haro MM, Sharma SB, et al., 2015. Protective effects of Eugenia jambohana extract versus N-acetyl cystine against cisplatin-induced damage in rat testes. Andrologia 47:194-208.

Avsar UZ, Avsar U, Aydin A, et al., 2014. L-carnitine alleviates sciatric nerve crush injury in rats: functional and electron microscopy assessments. Neural Regen Res 9:1020-4.

Azab SS, Kamel I, Ismail NN, et al., 2020. The defensive role of taurine against gonadotoxicity and testicular apoptosis effects induced by cisplatin in rats. J Infect Chemother 26:51-7.
Azarbarz N, Shafiei Seifabadi Z, Moaeedi MZ, et al. 2020. Assessment of the effect of sodium hydrogen sulfide (hydrogen sulfide donor) on cisplatin-induced testicular toxicity in rats. Environ Sci Pollut Res 27:8119-28.

Banco B, Grilli G, Giudice C, et al., 2016. Immunophenotyping of rabbit testicular germ and Sertoli cells across maturational stages. J Histochem Cytochem 64:715-26. doi:10.1369/0022155416669918.

Bancroft JD, Layton C and Suvarna SK, 2013. Bancroft’s Theory and Practice of Histological Techniques. Amsterdam, the Netherlands: Elsevier.

Boroja T, Katanic J, Rosic G, et al., 2018. Summer savory (Satureja hortensis L.) extract: Phytochemical profile and modulation of cisplatin-induced liver, renal and testicular toxicity. Food Chem Toxicol 118:252-63.

Caloglu M, Yurut-Caloglu V, Durmus-Altun G, et al., 2009. Histopathological and scintigraphic comparisons of the protective effects of L-carnitine and amifostine against radiation-induced late renal toxicity in rats. Clin Exp Pharmacol Physiol 36:523-30.

Eid AH, Abdelkader NF, Abd El-Raouf OM, et al., 2016. Protective effect of L-carnitine against cisplatin-induced testicular toxicity in rats. Az J Pharm Sci 5:143-60.

Ekinci Akdemir FN, Yildirim S, Kandemir FM, et al., 2019. The antiapoptotic and antioxidant effects of eugenol against cisplatin-induced testicular damage in the experimental model. Andrologia 51:e13353. doi: 10.1111/and.13353.

Evans RM and Simpkins H, 1998. Cisplatin induced intermediate filament reorganization and altered mitochondrial function in 3T3 cells and drug-sensitive and resistant Walker 256 cells. Exp Cell Res 245:69-78.

Garcia MM, Acquire A, Suarez G, et al., 2012. Cisplatin inhibits testosterone synthesis by a mechanism that includes the action of reactive oxygen species (ROS) at the level of P450 scc. Chem Biol Interact 199:185-91.

Gawish MF, Asmy AM and El-Haleem MRA, 2011. A histological study of ipsilateral testes after experimentally induced varicocele in albino rats and the role of L-carnitine supplementation. Egypt J Histol 34:166-77.

Gevrek F and Erdemir F, 2018. Investigation of the effects of curcumin, vitamin E and their combination in cisplatin-induced testicular apoptosis using immunohistochemical technique. Turk J Urol 44:16-23.

Ghanbarzadeh S, Garjani A, Zaeem M, et al., 2014. CoQ10 and L-carnitine attenuate the effect of high LDL and oxidized LDL on spermatogenesis in male rats. Drug Res 64:510-5.

Karwasa R, Kalra P, Gupta YK, et al., 2016. Antioxidant and anti-inflammatory potential of pomegranate rind extract to ameliorate cisplatin-induced acute kidney injury. Food Funct 7:3891-101.

Kaya K, Ciftci O, Cotin A, et al., 2015. Hesperidin protects testicular and spermatological damages induced by cisplatin in rats. Andrologia 47:793-800.

Marty MS, Chapin RE, Parks LG, et al., 2003. Development and maturation of the male reproductive system. Birth Defects Res B Dev Reprod Toxicol 68:125-36.

Meng H, Fu G, Shen J, et al., 2017. Ameliorative effect of Daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death. Oxid Med Cell Longev 2017:5608650. doi: 10.1155/2017/5608650.

Prihatno SA, Padeta I, Larasati AD, et al., 2018. Effects of secretome on cisplatin-induced testicular dysfunction in rats. Vet World 11:1349-56.

Tousson E, Hafez E, Masoud A, et al., 2014. Abrogation by curcumin on testicular toxicity induced by Cisplatin in rats. J Cancer Res Treat 2:64-8.

Yadav YC, 2019. Effect of cisplatin on pancreas and testes in Wistar rats: biochemical parameters and histology. Heliyon 5:e02247. doi: 10.1016/j.heliyon.2019.e02247.

Yuncu M, Bukucu N, Bayat N, et al., 2015. The effect of vitamin E and L-carnitine against methotrexate-induced injury in rat testis. Turk J Med Sci 45:517-25.