Integrating Gene Regulatory Networks to identify cancer-specific genes

Valeria Bo1, Dimple Chudasama2, Emmanouil Karteris2 and Allan Tucker1

1Department of Computer Science, Brunel University, London, UK
2Department of Life Sciences, Brunel University, London, UK
Motivations

• Microarrays: simultaneous expression of thousands of genes under different conditions

• Improving techniques and data storage → large increase of data

• Several computational tools to decrypt information

• Analysis of multiple studies → consensus network

Unique networks & unique genes
Unique-networks

Network 1

Network 2

Network 3

Unique Network 1

Bo V. et al. Discovering Study-Specific Gene Regulatory Networks. PLoS ONE. 2014.
Study ID	Study title	Samples
GSE18864	Triple Negative Breast Cancer	84
GSE9891	Ovarian Tumour	285
GSE21653	Medullary Breast Cancer	266
GSE10445	Adenocarcinoma and large cell Lung Carcinoma	72
Unique-networks

Gene Expression Omnibus (GEO)

PCA
Sd thr

Genes

Data Matrix D

Samples

1 2
M Studies

glasso

Detect unique edges and corresponding genes

Unique Networks

Internal vs External Prediction

Biological support

Subset S1 of Matrix D

Subset S2 of Matrix D

Unique Genes

Samples

i ...

j ...

M

...
Unique-networks

Unique-network for Medullary-breast cancer

Unique-network for Lung cancer
Unique-networks

Study ID	Study title	Samples	P-value
GSE18864	Triple Negative Breast Cancer	84	0.55
GSE9891	Ovarian Tumour	285	0.00
GSE21653	Medullary Breast Cancer	266	0.02
GSE10445	Adenocarcinoma and large cell Lung Carcinoma	72	0.00
Unique genes

Same logic behind unique-networks

List 1

List 2

List 3

List 4
Unique genes
Unique genes

Unique genes for condition 1

GeneCards
The Human Gene Compendium

GeneALaCart
GeneCards Batch Queries
NBH probability score *

Given cluster, i of size s_i, contains x genes from a defined functional group of size k_j, then the chance of this occurring by chance follows a binomial distribution. But when k_j and x are very large → normal approximation

$$z = \frac{x - \mu}{\sigma}, \mu = k_j p, \sigma = \sqrt{k_j p q}$$

Study ID	s_i	k_j	x	n	z-score	p-value
GSE18864	117	2982	11	54675	1.83	$\leq 3.4\%$
GSE9891	61	692	4	54675	3.68	$\leq 1\%$
GSE21653	89	0	0	54675	N/A	$\leq 1\%$
GSE10445	80	240	3	54675	4.47	$\leq 1\%$

*Swift S. et al. Genome biology 2004
ONCOMINE data for RAD51AP1

Ovarian Cancer

KM Plots for RAD51AP1

	Number at risk
low	791 223
high	791 182

Expression
- low
- high

HR = 1.17 (1.03 - 1.34)
logrank P = 0.02
ONCOMINE data for RAD51AP1

Breast Cancer

KM Plots for RAD51AP1

HR = 1.64 (1.29 – 2.08)
log rank P = 4.4e-05
ONCOMINE data for RAD51AP1

KM Plots for RAD51AP1

Lung Cancer

Box plots and Kaplan-Meier (KM) plots illustrating the expression levels of RAD51AP1 in lung cancer. The box plots show the distribution of log2 median-centered intensity across different expression levels, while the KM plots highlight the survival analysis with hazard ratios and log-rank statistics.
Logic Application

Choose the original data file .RData File
Choose File: display passed data.RData
Upload complete

Choose the adjacency matrix .RData File
Choose File: cency studies thr.RData
Upload complete

Choose the studies description .csv File
Choose File: shiny_display/studies.csv
Upload complete

AND studies
1 4

NOT studies
2

Study Description
1 1 Breast Cancer
2 2 Ovarian Cancer
3 3 Medullary Breast Cancer
4 4 non small cell Lung Cancer

Save sub-networks

GUI
Conclusions

• Identify unique sub-networks and genes based upon a number of microarray studies

• Support results using prediction accuracy and NBH probability score

• Application interface to combine different studies through AND and NOT logic operators

• Highlights structures and nodes that could be potential targets for further research

• Pipeline code available soon!

• valeria.bo@cruk.cam.ac.uk