Factors associated with syphilis incidence in the HIV-infected in the era of highly active antiretrovirals

Shilaikh, Mohaned; Marzel, Alex; Braun, Dominique L; Scherrer, Alexandra U; Kovari, Helen; Young, Jim; Calmy, Alexandra; Darling, Katharine; Battegay, Manuel; Hoffmann, Matthias; Bernasconi, Enos; Thurnheer, Maria C; Günthard, Huldrych F; Kouyos, Roger D; Swiss HIV Cohort Study

Abstract: After several years of steady decline, syphilis is reemerging globally as a public health hazard, especially among people living with human immunodeficiency virus (HIV). Syphilis resurgence is observed mainly in men who have sex with men (MSM), yet other transmission groups are affected too. In this manuscript, we study the factors associated with syphilis incidence in the Swiss HIV cohort study in the era of highly effective antiretrovirals. Using parametric interval censored models with fixed and time-varying covariates, we studied the immunological, behavioral, and treatment-related elements associated with syphilis incidence in 3 transmission groups: MSM, heterosexuals, and intravenous drug users. Syphilis incidence has been increasing annually since 2005, with up to 74 incident cases per 1000 person-years in 2013, with MSM being the population with the highest burden (92% of cases). While antiretroviral treatment (ART) in general did not affect syphilis incidence, nevirapine (NVP) was associated with a lower hazard of syphilis incidence (multivariable hazard ratio 0.5, 95% confidence interval 0.2-1.0). We observed that condomless sex and younger age were associated with higher syphilis incidence. Moreover, time-updated CD4, nadir CD4, and CD8 cell counts were not associated with syphilis incidence. Finally, testing frequency higher than the recommended once a year routine testing was associated with a 2-fold higher risk of acquiring syphilis. Condomless sex is the main driver of syphilis resurgence in the Swiss HIV Cohort study; ART and immune reconstitution provide no protection against syphilis. This entails targeted interventions and frequent screening of high-risk populations. There is no known effect of NVP on syphilis; therefore, further clinical, epidemiological, and microbiological investigation is necessary to validate our observation.

DOI: https://doi.org/10.1097/MD.0000000000005849
Factors associated with syphilis incidence in the HIV-infected in the era of highly active antiretrovirals

Mohaned Shilaih, PhDa,b,*, Alex Marzel, MSc,a,b, Dominique L. Braun, MDa,b, Alexandra U. Scherrer, PhDa,b, Helen Kovari, MDa, Jim Youngc, Alexandra Calmy, MDd, Katharine Darling, MDd, Manuel Battegay, MDf, Matthias Hoffmann, MDg, Enos Bernasconi, PhDc, Maria C. Thurnheer, PhDd, Huldrych F. Günthard, PhDa,b, Roger D. Kouyos, PhDa,b,*, and the Swiss HIV Cohort Study

Abstract

After several years of steady decline, syphilis is reemerging globally as a public health hazard, especially among people living with human immunodeficiency virus (HIV). Syphilis resurgence is observed mainly in men who have sex with men (MSM), yet other transmission groups are affected too. In this manuscript, we study the factors associated with syphilis incidence in the Swiss HIV cohort study in the era of highly effective antiretrovirals. Using parametric interval censored models with fixed and time-varying covariates, we studied the immunological, behavioral, and treatment-related elements associated with syphilis incidence in 3 transmission groups: MSM, heterosexuals, and intravenous drug users. Syphilis incidence has been increasing annually since 2005, with up to 74 incident cases per 1000 person-years in 2013, with MSM being the population with the highest burden (92% of cases). While antiretroviral treatment (ART) in general did not affect syphilis incidence, nevirapine (NVP) was associated with a lower hazard of syphilis incidence (multivariable hazard ratio 0.5, 95% confidence interval 0.2–1.0). We observed that condomless sex and younger age were associated with higher syphilis incidence. Moreover, time-updated CD4, nadir CD4, and CD8 cell counts were not associated with syphilis incidence. Finally, testing frequency higher than the recommended once a year routine testing was associated with a 2-fold higher risk of acquiring syphilis. Condomless sex is the main driver of syphilis resurgence in the Swiss HIV Cohort study; ART and immune reconstitution provide no protection against syphilis. This entails targeted interventions and frequent screening of high-risk populations. There is no known effect of NVP on syphilis; therefore, further clinical, epidemiological, and microbiological investigation is necessary to validate our observation.

Abbreviations: HIV = human immunodeficiency virus, ART = antiretroviral treatment, MSM = men who have sex with men, HR = hazard ratio, SHCS = Swiss HIV Cohort study, HET = heterosexual, IDU = intravenous drug users, NRTI = nucleotide reverse transcriptase inhibitors, NNRTI = non-nucleotide reverse transcriptase inhibitors, PI = protease inhibitors, NVP = nevirapine, CI = confidence interval.

Keywords: HIV, HIV coinfections, nevirapine, syphilis, syphilis prevention
1. Introduction

Syphilis is a reemerging public health hazard that has been on the rise in recent years globally and locally in Switzerland. This is particularly the case for the human immunodeficiency virus (HIV)-infected population, with 1 review placing the mean prevalence of syphilis in the HIV-infected population at 9.5%. The importance of syphilis as a co-infection in HIV-infected individuals does not only stem from the negative effect of syphilis on the natural course of HIV infection (manifested as a temporary reduction in CD4 cells and an elevation in HIV viral load) but also from the enhancement of HIV transmission in individuals coinfected with syphilis. It is estimated that 60% of syphilis cases are asymptomatic, and syphilis infection enhances HIV transmission and other coinfections (e.g., Hepatitis B and Hepatitis C), which places syphilis coinfection in the forefront of HIV transmission and public health concerns.

Antiretroviral treatment (ART) has been shown to affect HIV and some of its coinfections through 3 main axes: immunological, behavioral, and direct. On the immunological front, ART enhances immune reconstitution in HIV-infected individuals leading to an enhanced protection against pathogens. More generally, there is a strong interaction between the immune system and syphilis (e.g., a low CD4 cell count is associated with a higher likelihood of developing neurosyphilis).

On the behavioral side, ART influences sexual risk behavior differently depending on the setting, with some evidence pointing toward no change in sexual risk behavior and other suggesting risk compensation. In the Swiss HIV Cohort Study (SHCS), a trend of increasing condomless sex in all transmission groups has been observed. This increase was especially evident in men who have sex with men (MSM): individuals under ART treatment in both stable and casual relationships are using condoms less frequently. Similar patterns of increased condomless sex among MSM have been observed in the United States as well.

Finally, ART has a direct effect on HIV coinfections including herpes simplex virus type 2 and Hepatitis B Virus. In addition, ART has been shown to have a wide array of targets for provisional effect of Nevirapine. A protective effect of Nevirapine on syphilis has not been reported in the literature and could be due to confounding thus requires further investigation.

Key Points

- Syphilis coinfection in the HIV infected is rising due to an increase in condomless sex in the younger MSM population in Switzerland.
- Antiretrovirals provide no additional protection against syphilis except for provisional effect of Nevirapine.
- A protective effect of Nevirapine on syphilis has not been reported in the literature and could be due to confounding thus requires further investigation.

2. Methods

The SHCS is a prospective cohort with ongoing enrollment for HIV-infected individuals in Switzerland since 1988. Clinical, laboratory, and sociodemographics information are collected every 6 months. This includes information about sexual behavior in terms of having a stable or occasional partner(s) in the past 6 months, and if so, whether sex was with or without a condom. All participants provided informed consent, and the study was approved and is conducted per the guidelines of the ethical committees of the respective participating center. The SHCS study was shown to be highly representative of the HIV-infected population in Switzerland, including “hard-to-reach” populations.

Annual syphilis testing ceased as of 1998 owing to a steady decline in the syphilis infection rate in Switzerland and an internal analysis that revealed that syphilis testing every 2 years imparted no decrement in incidence. Syphilis testing was restarted in 2004, hence only tests taking place thereafter were included here. Syphilis testing in the SHCS can be divided into 2 categories: non-treponemal and treponemal. The non-treponemal branch contains either Venereal Diseases Research Laboratory or Rapid plasma reagins, and the treponemal branch includes Treponema pallidum particle agglutination assay/Treponema pallidum hemaggulination assay, Liaison (CLIA), and Architect (CMIA). Only individuals with a negative result in a first baseline test according to both methods were included in the analysis. Individuals with missing tests in either arm were excluded, and a case was considered positive only if both markers turned positive. A positive treponemal test with a negative non-treponemal test was considered evidence for previous infections and those individuals/observation time were excluded. We included in the analysis all available individuals meeting the aforementioned criteria from 2004 to 2014. Owing to the limited number of syphilis cases in HET and IDU, the analysis was later restricted to MSM as they account for the vast majority of cases. This also allowed for a more homogenous population (and consequently a comparable risk behavior). The observation time was defined as the time between the first negative test and either the first positive syphilis test or the last negative test. Finally, only individuals who were observed for a year or more were analyzed. Note that the transmission group of a patient constitutes the most probable route of HIV infection as declared jointly by the patient and the clinician.
3. Statistical analysis

Given the inherent interval-censored nature of syphilis incidence (imprecise knowledge of the exact point of time where the infection occurred), we utilized univariable and multivariable parametric interval-censored models with time-fixed and time-varying covariates and an exponential hazard function (as in Ref. [115]). We tested the association of ART (exposure) and syphilis incidence (outcome variable), where ART was censored in several hierarchical ways: ART as a binary variable; ART divided into 4 classes of nucleotide reverse transcriptase inhibitors (NRTI), non-nucleotide reverse transcriptase inhibitors (NNRTI), protease inhibitors (PI), and other HIV antiretroviral drug classes (integrate and fusion inhibitors, primarily Raltegravir [87%]); ART divided into NRTI, PI, other HIV antiretroviral drug classes, and the individual drugs for the NNRTI class (as drugs of this class showed a weak protective association [table S1, http:// links.lww.com/MD/B519]). The exposure was subsequently subdivided into ART-treated and suppressed (HIV Ribonucleic acid (RNA) ≤ 50 copies/mL) or ART treated and nonsuppressed.

The univariable analysis was constructed to include variables that most likely influence syphilis incidence based on the literature and clinicians’ evaluation. The following covariates were examined in the univariable models: square root transformed CD4, CD8, and nadir CD4 cell count (lowest observed CD4 since enrollment). In addition, baseline CD4 cell count <200 (binary), log transformed HIV RNA copies/mL, smoking (binary), recreational drug use (binary, reflecting no drug use = 0, and any intravenous drug use 1), reporting of condomless sex with a stable or occasional partner (binary), ethnicity (binary, white, and non-white), age at infection (continuous per 5 years), and education (binary, attended a higher education institution).

The inclusion criteria for the multivariable analysis were based on clinical relevance, significance in the univariable analysis (P value ≤ 0.1), and in case of highly correlated variables, only 1 representative was chosen (e.g., for HIV RNA viral load and ART, ART was chosen as it is the explanatory variable of interest). The included variables were immunity markers (CD4 and nadir CD4), behavioral markers (condomless sex with a stable or occasional partner), ART, demographics (age at infection, ethnicity, and last center of follow-up), and calendar year (to account for the time trends of incidence).

For sensitivity analyses, the associations were estimated using a Weibull hazard function and Cox proportional hazard models. Analyses were conducted in Stata 14.1 (Stata Corp., Texas, United States) and R 3.3.1 (R Foundation for Statistical Computing, Vienna, Austria).

4. Results

A total of 3575 individuals were routinely tested for syphilis at least once, following a negative baseline test between 2004 and 2014 (median observation start year 2005, inter-quartile range IQR 2004–2007) (Table 1). There were 226 incident syphilis cases reported in 19,041 person-years. The incidence rate was 26.8 cases per 1000 person-years for MSM (95% confidence interval [95% CI] 23.5–30.8), 1.3 (0.49–3.5) for IDU, and 1.8 (1.1–3.0) for HET. This corresponded to 207 (92%) syphilis cases in MSM, 4 (2%) in IDU, and 15 (6%) in HET.

During the study period (2004–2014), we found a significant increase of syphilis incidence over time (Pearson correlation between annual incidence and year 0.9, P < 0.01; Figs. 1 and 2, Tables 2 and 3). We did not observe a clear elevation of syphilis incidence immediately after the year 2008 (the year of the so-called Swiss statement[32]). However, the incidence rate of syphilis increased 2-fold by 2012, and a similar trend was reflected in the hazard of acquiring syphilis estimated by the model described in Section 3 (Tables 2 and 3). In addition, we observed that the MSM population is most affected by syphilis and accounts for the majority of incident cases (92%). Finally, the

![Figure 1](image-url)
condomless sex with a stable partner was also associated with syphilis incidence. Neither Ritonavir-boosted nor nonboosted PI was associated after adjusting for these variables (among others, Tables 2 and 3).

be mediated by immune markers as the association remained even with higher incidence of syphilis. A history of condomless sex only demographic association (univariable HR 0.7, 95% CI 0.1–0.8); neither ethnicity nor education had an effect (Table 3).

Hereafter, we focus on the MSM population, as it is the group with the highest incidence, and in which public health interventions would have the strongest impact.

We observed no association between being on ART and syphilis incidence (univariable hazard ratio [HR] 1.2, 95% CI 0.9–1.9). Breaking down ART treatment into individual drug classes revealed that NNRTI could potentially have a protective association against syphilis (HR 0.9, 95% CI 0.7–1.2; table S1, http://links.lww.com/MD/B519). Indeed, we found that nevirapine (NVP) was associated with lower syphilis incidence (multivariable HR 0.5, 95% CI 0.2–1.0) (Table 3). We also observed that the protective association of NVP was tightly coupled to viral load suppression (plasma RNA ≤ 50) (NVP and suppressed HR 0.4, 95% CI 0.2–0.9). No protective effect of NVP was present in nonsuppressed patients on NVP (HR 1.0, 95% CI 0.1–7.9). Furthermore, the effect of NVP did not seem to be mediated by immune markers as the association remained even after adjusting for these variables (among others, Tables 2 and 3). Neither Ritonavir-boosted nor nonboosted PI was associated with syphilis incidence.

A decrease in syphilis incidence with increasing age was the only demographic association (univariable HR 0.7, 95% CI 0.7–0.8); neither ethnicity nor education had an effect (Table 3).

On the behavioral side, risk behavior was generally associated with higher incidence of syphilis. A history of condomless sex with an occasional partner increased the hazard of acquiring syphilis (univariable HR 4.6, 95% CI 3.1–6.5). Interestingly, condomless sex with a stable partner was also associated with higher incidence of syphilis (univariable HR 1.4, 95% CI 0.9–2.1); however, this association was not statistically significant. While individuals who reported being in a stable partnership were less likely to engage in condomless sex with occasional partners (odds ratio 0.24, 95% CI 0.24–0.25), 12% reported such behavior. We also observed that intravenous drug use (compared to no drug use) was associated with higher incidence of syphilis (HR 11.6, 95% CI 2.1–65). However, only 9 individuals reported intravenous drug use for 0.07% of the total observation time; hence, this covariate was not included in the multivariable model as a marker of risk behavior. Moreover, smoking was associated with an increased syphilis incidence, yet the association was not statistically significant (HR 1.3, 95% CI 0.9–1.7, Tables 2 and 3). Finally, individuals who tested more frequently for syphilis also had a higher propensity to be infected (univariable HR 2.7, 95% CI 1.9–3.8).

The immunological status represented by square root transformed CD4, CD8, and nadir CD4 cell count was not associated with the hazard of contracting syphilis (Tables 2 and 3).

The estimates were qualitatively similar when using a Cox proportional hazard model or a Weibull hazard function for the current model (results not shown).

5. Discussion

In this study, we report on the factors associated with syphilis incidence in the era of highly effective ART in the SHCS. Most prominently, we observed a steady increase of syphilis incidence, with the highest burden falling on MSM. We showed that risk behavior (condomless sex or drug use) and young age were all associated with a higher risk of contracting syphilis, while NVP treatment was associated with a lower risk.

We observed no association between being on ART and syphilis incidence, which implies that immune reconstitution does not provide significant protection against syphilis. The protective effect of NVP was only present in individuals with viral suppression, that is, only NVP that achieved viral suppression (≤ 50 HIV RNA copies/mL) conferred a protective effect. This suggests the necessity of consistent drug administration and

Variable	HR 25% 97.5%
NNRTI	1.41 0.91 2.20
NNRTI	0.87 0.65 1.17
Other drugs	1.49 0.93 2.40
PI	1.09 0.82 1.46
ART	1.20 0.77 1.86
CD4	1.02 0.99 1.05
CD8	1.01 0.99 1.03
CD3	1.01 0.99 1.03
Nadir CD4	1.04 1.01 1.07
Log2 HIV RNA	0.98 0.80 1.08
Smoking	1.25 0.94 1.67
Intravenous Drug use	11.63 2.09 64.90
Condomless sex with a stable partner	1.38 0.92 2.06
Condomless sex with an occasional partner	4.55 3.18 6.50
Testing rate per year	2.70 1.93 3.76
Age at infection (per 5 years)	0.70 0.65 0.76
Ethnicity (non-White)	1.26 0.79 2.00
Education (higher than high school)	1.23 0.75 2.04
Calendar year	1.24 1.17 1.31
Center (out of Zurich)	1.04 0.79 1.37

ART = antiretroviral treatment, HIV = human immune deficiency virus. HR = hazard ratio, NNRTI = non-nucleotide reverse transcriptase inhibitors, NRTI = nucleotide reverse transcriptase inhibitors, other drugs = integrase and fusion inhibitors, PI = protease inhibitors.

Shilaih et al. Medicine (2017) 96:2 Medicine
adherence for NVP to exhibit its potential protective effect against syphilis.

Generally, we observed a lower overall incidence rate of syphilis in the SHCS than that of HIV-infected MSM in Canada,[13] the Netherlands,[14] and the United States[12] (27 per 1000 person-years for easier trend visualization, the blue line is a natural cubic spline fitted to the incidence rate, the gray shaded region shows the estimated 95% CI). The red dots show the absolute number of incident cases per year (the red line represents a natural cubic spline fitted to the absolute number of cases).

Our study demonstrates that syphilis incidence has been continuously increasing in recent years with the main driver being high-risk behavior. In addition, we demonstrate that ART generally does not provide a protective effect against syphilis. Given these findings, more frequent screening targeted for MSM is needed to limit syphilis spread (and other STIs) and the probably consequent increase of HIV infections. Moreover, we found an unexpected but intriguing protective association of NVP against syphilis incidence, which demands further investigation—epidemiologically and potentially in other settings such as prospective clinical trials. If proven effective, NVP could be recommended to high-risk individuals for its potential to reduce HIV transmission and syphilis acquisition.

Acknowledgments

Special thanks for Dr Claus Kadelka for his valuable editing of the manuscript. We thank the SHCS participants, clinicians, and nurses as this work would not have been possible without them.
References

[1] Patton ME, Su JR, Nelson R, et al. Primary and secondary syphilis—United States, 2005–2013. MMWR Morb Mortal Wkly Rep 2014;63: 402–6.

[2] Thurnheer MC, Weber R, Toutouzas-Trella L, et al. Occurrence, risk factors, diagnosis and treatment of syphilis in the prospective observational Swiss HIV Cohort Study. AIDS 2010;24:1907–16.

[3] Kalichman SC, Pellowes J, Turner C. Prevalence of sexually transmitted co-infections in people living with HIV/AIDS: systematic review with implications for using HIV treatments for prevention. Sex Transm Infect 2011;87:183–90.

[4] Buchacz K, Patel P, Taylor M, et al. Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections. AIDS 2004;18:2075–9.

[5] Sadiq ST, McSorley J, Copas AJ, et al. The effects of early syphilis on CD4 counts and HIV-1 RNA viral loads in blood and semen. Sex Transm Infect 2005;81:380–5.

[6] Solomon MM, Mayer KH, Glidden DV, et al. Syphilis predicts HIV incidence among men and transgender women who have sex with men in a preexposure prophylaxis trial. Clin Infect Dis 2014;59:1020–6.

[7] Tien PC, Kovacs A, Bacchetti P, et al. Association between syphilis, antibodies to herpes simplex virus type 2, and recreational drug use and hepatitis B virus infection in the Women's Interagency HIV Incidence Study. Clin Infect Dis 2004;39:1363–70.

[8] Wandeler G, Gsponer T, Bregenzer A, et al. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem 2007;14:36–45.

[9] Wu Q, Xu J, Zou H, et al. Risk factors associated with prevalent and incident syphilis among an HIV-infected cohort in Northeast China. BMC Infect Dis 2014;14:658.

[10] Shilaih M, Marzel A, Scherrer AU, et al. Dually active HIV/HBV antiretroviral therapy and sero-adaptive strategies. AIDS 2016;30: 1985–90.

[11] Celum C, Morrow RA, Donnell D, et al. Daily oral tenofovir and hepatitis C virus infections in populations with high HIV prevalence: evidence report and systematic review for the US Preventive Services Task Force. JAMA 2016;315:2328–37.

[12] Kouyos RD, Hasse B, Calmy A, et al. Increases in condomless sex in the advanced HIV disease. Science 1997;277:112–6.

[13] Kojima N, Davey DJ, Klausner JD. Pre-exposure prophylaxis for HIV infection: a systematic review. AIDS 2016;30:2251–60.

[14] Mitchell SJ, Engelman J, Kent CK, et al. Azithromycin-resistant syphilis in HIV-infected MSM justifying routine screening. Eur J Intern Med 2016;27:337–42.

[15] Burchell AN, Allen VG, Gardner SL, et al. High incidence of diagnosis with syphilis co-infection among men who have sex with men in an HIV cohort in Ontario, Canada. BMC Infect Dis 2015;13:536.

[16] Branger J, van der Meer JTM, van Ketel RJ, et al. High incidence of asymptomatic syphilis in HIV-infected MSM justifies routine screening. Sex Transm Infect 2009;36:84–5.

[17] Kantor AG, Pappas M, Daeges M, et al. Screening for syphilis: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2016;315:2328–37.

[18] Kohn P, Schmidt AJ, Cavassini M, et al. The HIV care cascade in Switzerland: reaching the UNAIDS/WHO targets for patients diagnosed with HIV. AIDS 2013;29:2509–15.

[19] Kojima N, Davey DJ, Klauser RD. Pre-exposure prophylaxis for HIV infection and new sexually transmitted infections among men who have sex with men. AIDS 2016;30:2251–2.

[20] Marra CM, Sahi SK, Tantalo LC, et al. Enhanced molecular typing of treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis 2010;202:1380–8.

[21] Michell SJ, Engelman J, Kent CK, et al. Azithromycin-resistant syphilis infection: San Francisco, California, 2000–2004. Clin Infect Dis 2006;42:337–45.

[22] Karp G, Schlaeffer F, Jotkowitz A, et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2016;2:16245.

[23] Arora N, Schuennemann VJ, Jäger G, et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2016;2:16245.

[24] Ho EL, Lukehart SA. Syphilis: using modern approaches to understand an old disease. J Clin Invest 2011;121:4584–92.