Novel Pesticidal Efficacy of *Araucaria heterophylla* and *Commiphora molmol* Extracts against Camel and Cattle Blood-Sucking Ectoparasites

Mohamed M. Baz 1,*, Hanem F. Khater 2, Rowida S. Baeshen 3, Abdelfattah Selim 4, Emad S. Shaheen 5, Yasser A. El-Sayed 1, Salama A. Salama 6,7 and Maysa M. Hegazy 1,6

1. Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt; yasser.abdelrahman@fsc.bu.edu.eg (Y.A.-S.); maysa.hegazy@fsc.bu.edu.eg (M.M.H.)
2. Parasitology Department, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; hanem.salem@fvtm.bu.edu.eg
3. Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia; rbaeshen@ut.edu.sa
4. Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt; abdelfattah.selim@fvtm.bu.edu.eg
5. Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia; emadshaheen@hotmail.com
6. Department of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia; sasalama@jazanu.edu.sa
7. Department of Zoology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
* Correspondence: mohamed.albaz@fsc.bu.edu.eg; Tel.: +20-01063070572

Abstract: Botanical insecticides are promising pest control agents. This research investigated the novel pesticidal efficacy of *Araucaria heterophylla* and *Commiphora molmol* extracts against four ectoparasites through treated envelopes. Seven days post-treatment (PT) with 25 mg/mL of *C. molmol* and *A. heterophylla* extracts completely controlled *Hyalomma dromedarii* and cattle tick, *Rhipicephalus (Boophilus) annulatus*. Against *H. dromedarii*, the median lethal concentrations (LC50s) of the methanol extracts were 1.13 and 1.04 mg/mL and those of the hexane extracts were 1.47 and 1.38 mg/mL, respectively. The LC50 values of methanol and hexane extracts against *R. annulatus* were 1.09 and 1.41 plus 1.55 and 1.08 mg/mL, respectively. Seven days PT with 12.5 mg/mL extracts completely controlled *Haematopinus eurysternus* and *Hippobosca maculata*; LC50 of *Ha. eurysternus* were 0.56 and 0.62 mg/mL for methanol extracts and 0.55 and 1.00 mg/mL for hexane extracts, respectively, whereas those of *Hi. maculata* were 0.67 and 0.78 mg/mL for methanol extract and 0.68 and 0.32 mg/mL, respectively, for hexane extracts. *C. molmol* extracts contained sesquiterpene, fatty acid esters and phenols, whereas those of *A. heterophylla* possessed monoterpene, sesquiterpene, terpene alcohols, fatty acid, and phenols. Consequently, methanol extracts of *C. molmol* and *A. heterophylla* were recommended as ecofriendly pesticides.

Keywords: *Boophilus annulatus*; *Hyalomma dromedarii*; *Hippobosca maculata*; *Haematopinus eurysternus*; phenols; sesquiterpene

1. Introduction

Blood-feeding arthropods are serious pests of worldwide distribution, including the camel tick, *Hyalomma dromedarii* (Koch, 1844); cattle tick, *Rhipicephalus (Boophilus) annulatus*, formerly *Boophilus annulatus* (Say, 1821), (Acaria: Ixodidae); the adult cattle louse fly, *Hippobosca maculata* Leach (Diptera: Hippoboscidae); and the shortnosed cattle louse, *Haematoptinus eurysternus* (Nitzsch, 1818), (Psocodea: Haematopinidae). Haematophagous pests cause dermal damage to be grazing animals, leading to severe economic loss because of blood loss, irritation, general stress, damaged skin and hide, retarded growth, weight loss,
depression of the immune system, decreased meat and milk production, and transmission of life-threatening diseases [1–3].

The prevention of arthropod-borne diseases relies on effective pest management strategies [4–6]. Even though the employment of conventional pesticides and repellents represent a worthy solution to avoid arthropod bites, they resulted in serious environmental risks and unfavorable effects on non-target creatures, animals, and humans, and contaminated dairy and meat products [6] and development of resistant strains of pests; therefore, searching for alternative ways of pests control is an urgent need [3,7–15].

Some other approaches could be used for controlling pests, such as botanicals and biological control, vaccination, photopesticides, and acids [16–23]. Searching for alternative control strategies, mainly from plant-based resources, is a promising field [5].

Botanicals have been well-known for their medicinal properties [24] since ancient times [25] and induce anthelmintic, antiprotozoal, antiviral, antifungal, and antibacterial [26–32] and pesticidal effects [14,15] such as ovicidal [33,34], larvicidal and insect growth regulating effects [19,35–48] as well as adulticidal and repellent properties [8,33,34,45,46,49–53]. Botanicals are characterized by high efficiency against pests and prevention of their associated diseases, safety to non-target organisms [5,10,44], and biodegradation [5,11].

Myrrh oil-resin, *Commiphora molmol* Engler (Sapindales: Burseraceae) is an oleo-gum resin that grows in North-east Africa and was used as a house fumigant for pest control by Ancient Egyptians [25]. It has antiparasitic [54] and molluscicidal effects [25,55] and its sesquiterpene-rich fractions induce antibacterial and antifungal activities [56]. *C. molmol* has pesticidal effects against the green bottle fly and mosquitoes [57–59].

The Polynesian pine, *Araucaria heterophylla* Salisb. (*A. excelsa*) (Pinales: Araucariaceae) is an ornamental evergreen coniferous tree. Araucaria plants exhibit several pharmaceutical potentials, including anti-inflammatory, antiulcerative, antiviral, antimicrobial, neuroprotective, and anti-depressant [60]. *A. heterophylla* has an insecticidal effect against mosquitoes [61,62]. It is worth mentioning that the safety of *C. molmol* [63,64] and *A. heterophylla* [59] had been confirmed. Because botanicals decay faster than most synthetic pesticides, they are more environmentally friendly and less likely to kill beneficial insects [14,15]. As a result, we hypothesize that *A. heterophylla* and *C. molmol* plant resins contain a variety of active biological components that could be used to control pests without contaminating the environment, making them a viable alternative to industrial pesticides. The study’s main goals were to investigate the novel pesticidal effect of methanol and hexane extracts of myrrh and Polynesian pine against four camel and cattle blood-sucking ectoparasites, calculate their lethal concentration values to kill 50, 90, and 95% of the exposed ectoparasites (LC$_{50, 60, 95}$, respectively), and investigated their phytochemical analyses.

2. Results and Discussion

2.1. Effect of the Plant Resin Extracts on Arthropods

Bloodsucking arthropods have an elegant method of delivery for a wide range of infectious agents [4], and their safe control is very crucial. This work evaluated two plant extracts of *A. heterophylla* and *C. molmol* against four arthropods, *H. dromedarii* (camel tick), *R. annulatus* (cattle tick), *Hi. maculata* (cattle louse fly), and *Ha. eurysternus* (cattle louse). The data expressed dose and time-dependent efficacy, a similar response was observed [52,65].

All plant extracts in this study showed moderate to high toxic effects against cattle and camel ectoparasites after 24 h of exposure, and methanol extracts were more effective than hexane extracts. The mortality percent (MO%) seven days PT of *H. dromedarii* with 12.5 mg/mL methanol extracts of *C. molmol* and *A. heterophylla* were 100% with LC$_{50}$ (50%, median lethal concentration) = 1.13 and 1.04 mg/mL, respectively; whereas those of hexane extracts were 100% PT with 25 mg/mL (LC$_{50}$ = 1.47 and 1.38 mg/mL, respectively (Tables 1 and 2).
Table 1. The efficacy of the plant extracts of *Commiphora molmol* and *Araucaria heterophylla* against the Camel tick, *Hyalomma dromedarii*.

Plant Extracts	Concentration (mg/mL)	Mortality % (Mean ± SE)	1 Day	3 Days	7 Days	1 Day	3 Days	7 Days
		Methanol						
		0	0.00 ± 0.0 fC *	3.33 ± 3.33 fB	6.67 ± 3.33 eA	0.00 ± 0.0 fC	3.33 ± 3.33 fB	6.67 ± 3.33 fA
Commiphora molmol	1.6	16.67 ± 6.67 eC	36.67 ± 3.33 eB	63.33 ± 3.33 dA	13.33 ± 3.33 eC	30.00 ± 5.77 eB	53.33 ± 6.67 eA	
		3.1	30.00 ± 5.77 dC	63.33 ± 3.33 dB	86.67 ± 3.33 cA	23.33 ± 3.33 dC	46.67 ± 3.33 dB	66.67 ± 6.67 dA
		6.3	53.33 ± 3.33 cC	73.33 ± 3.33 cB	93.33 ± 3.33 bA	40.00 ± 5.77 cC	66.67 ± 6.67 cB	76.67 ± 6.67 cA
		12.5	73.33 ± 8.82 bC	80.00 ± 5.77 bB	100.0 ± 0.0 aA	60.00 ± 5.77 bC	73.33 ± 8.82 bB	86.67 ± 8.82 bA
		25	86.67 ± 6.67 aC	90.00 ± 5.77 aB	100.0 ± 0.0 aA	76.67 ± 13.33 aC	80.00 ± 5.77 aB	100.0 ± 0.0 aA
		Araucaria heterophylla	0.00 ± 0.0 fC	3.33 ± 3.33 fB	6.67 ± 3.33 dA	0.00 ± 0.0 fC	3.33 ± 3.33 fB	6.67 ± 3.33 fA
		1.6	20.00 ± 0.0 eC	46.67 ± 3.33 eB	73.33 ± 3.33 cA	13.33 ± 6.67 eC	33.33 ± 3.33 eB	56.67 ± 8.82 eA
		3.1	43.33 ± 8.82 dC	73.33 ± 3.33 dB	86.67 ± 8.82 bA	30.00 ± 5.77 dC	56.67 ± 3.33 dB	76.67 ± 8.82 dA
		6.3	63.33 ± 8.82 cC	80.00 ± 10.00 eB	100.0 ± 0.0 aA	43.33 ± 3.33 cC	66.67 ± 6.67 eB	80.00 ± 5.77 cA
		12.5	80.00 ± 5.77 bC	90.00 ± 5.77 bB	100.0 ± 0.0 aA	60.00 ± 5.77 bC	76.67 ± 3.33 bB	90.0 ± 10.00 bA
		25	93.33 ± 3.33 aC	100.0 ± 0.0 aB	100.0 ± 0.0 aA	76.67 ± 3.33 aC	90.0 ± 10.00 aB	100.0 ± 0.0 aA

* letters refer to significant difference; a–f: There is no significant difference (p > 0.05) between any two means, those within the same column have the same superscript letter; A, B & C: There is no significant difference (p > 0.05) between any two means for the same solvent, those within the same row have the same superscript letter. Three replicates were used for each concentration and 10 adult pests per replicate were used.
Table 2. Lethal concentration values of plant extracts of Commiphora molmol and Araucaria heterophylla against Hyalomma dromedarii.

Days	Plant Extracts	Solvents	LC$_{50}$ (95%CL) *	LC$_{90}$ (95%CL)	LC$_{95}$ (95%CL)	Equation **	X2
1	Commiphora molmol	Methanol	5.76 (4.91–6.75)	30.29 (22.91–44.26)	48.48 (34.50–77.54)	1.779 ± 0.157X	0.975
		Hexane	36.08 (31.12–56.66)	442.56 (315.42–498.16)	1731 (1420.15–2125.02)	0.613 ± 0.140X	40.179
	Araucaria heterophylla	Methanol	4.16 (3.52–4.85)	19.94 (15.69–27.49)	31.10 (23.15–46.50)	1.880 ± 0.165X	0.705
		Hexane	8.07 (6.71–9.86)	60.03 (40.13–107.74)	106.00 (64.94–217.67)	1.471 ± 0.149X	0.867
3	Commiphora molmol	Methanol	2.47 (1.78–3.15)	24.22 (17.05–41.08)	46.25 (29.28–93.94)	1.293 ± 0.153X	4.165
		Hexane	4.08 (3.12–5.11)	48.16 (30.61–97.54)	96.95 (54.49–241.38)	1.195 ± 0.144X	0.350
	Araucaria heterophylla	Methanol	1.78 (1.31–2.22)	9.85 (7.84–13.47)	15.99 (11.94–24.42)	1.726 ± 0.188X	6.546
		Hexane	3.17 (2.42–3.93)	28.26 (19.87–47.55)	52.53 (33.48–103.88)	1.349 ± 0.151X	2.469
7	Commiphora molmol	Methanol	1.13 (0.79–1.45)	4.55 (3.85–5.54)	6.76 (5.55–8.80)	2.121 ± 0.233X	1.488
		Hexane	1.47 (0.79–2.13)	24.60 (15.41–56.27)	54.62 (28.92–175.54)	1.049 ± 0.167X	0.793
	Araucaria heterophylla	Methanol	1.04 (0.67–1.33)	3.13 (2.65–3.92)	4.27 (3.49–5.95)	2.687 ± 0.433X	0.199
		Hexane	1.38 (0.90–1.84)	10.09 (7.80–14.53)	17.73 (12.65–29.71)	1.483 ± 0.182X	7.301

* LC$_{50}$, 60, and 95 values = lethal concentration that kills 50, 90, and 95% of the exposed ectoparasite; (95%CL) = lower and upper confidence limit; ** Regression line equation; X2 = chi-square; Significant at p < 0.05 level.
Similar to the response of camel ticks, the results of this work showed that plant extracts effectively controlled the cattle tick, *R. annulatus* because 100% mortality% was reached seven days PT with 12.5 mg/mL methanol extracts of *C. molmol* and *A. heterophylla* (LC$_{50}$ = 1.09 and 1.41 mg/mL, respectively) whereas those of hexane extracts were reached PT with 25 mg/mL (LC$_{50}$ = 1.55 and 1.08%, respectively) (Tables 3 and 4).

Table 3. Efficacy of the plant extracts *Commiphora molmol* and *Araucaria heterophylla* on Cattle ticks, *Rhipicephalus (Boophilus) annulatus*.

Plant Extracts	Solvents	Concentration (mg/mL)	Methanol 1 Day	Methanol 3 Days	Methanol 7 Days	Hexane 1 Day	Hexane 3 Days	Hexane 7 Days
Commiphora molmol	Methanol	0.00 ± 0.0 IC *	3.33 ± 3.33 fB	6.67 ± 3.33 eA	0.0 ± 0.0 IC	3.33 ± 3.33 fB	6.67 ± 3.33 eA	
		1.6	20.00 ± 5.77 eC	40.00 ± 0.00 eB	66.67 ± 3.33 dA	16.67 ± 3.33 eC	33.33 ± 6.67 eB	56.67 ± 8.82 eA
		3.1	33.33 ± 8.82 dC	70.00 ± 5.77 dB	90.00 ± 5.77 cA	26.67 ± 3.33 dC	50.00 ± 5.77 dB	70.00 ± 10.00 dA
		6.3	56.67 ± 3.33 eC	76.67 ± 3.33 eb	96.67 ± 3.33 ba	43.33 ± 6.67 ec	70.00 ± 5.77 eb	80.00 ± 5.77 ca
		12.5	70.00 ± 5.77 bc	83.33 ± 3.33 bB	100.0 ± 0.00 aA	56.67 ± 3.33 bc	76.67 ± 8.82 bB	90.00 ± 5.77 bA
		25	83.33 ± 3.33 aC	93.33 ± 6.67 aB	100.00 ± 0.00 aA	70.00 ± 5.77 aC	83.33 ± 3.33 aB	100.00 ± 0.00 aA
Araucaria heterophylla	Methanol	0.00 ± 0.0 fC	3.33 ± 3.33 fC	6.67 ± 3.33 dA	0.0 ± 0.0 IC	3.33 ± 3.33 fC	6.67 ± 3.33 dA	
		1.6	23.33 ± 3.33 eC	50.00 ± 5.77 eB	76.67 ± 6.67 eA	16.67 ± 8.82 eC	36.67 ± 3.33 eB	60.00 ± 10.00 ea
		3.1	46.67 ± 12.02 dC	76.67 ± 3.33 db	86.67 ± 8.82 ba	40.00 ± 5.77 dC	60.00 ± 5.77 dC	80.00 ± 11.55 da
		6.3	66.67 ± 12.02 eC	83.33 ± 12.02 eB	100.00 ± 0.00 aA	53.33 ± 8.82 eC	70.00 ± 10.00 eB	83.33 ± 8.82 eA
		12.5	83.33 ± 8.82 bC	93.33 ± 3.33 bB	100.00 ± 0.00 aA	63.33 ± 6.67 bC	80.00 ± 0.00 bB	93.33 ± 6.67 bA
		25	96.67 ± 3.33 aC	100.00 ± 0.00 aB	100.00 ± 0.00 aA	80.00 ± 5.77 aC	93.33 ± 6.67 aB	100.00 ± 0.00 aA

* letters refer to significant difference; a–f: There is no significant difference (* p > 0.05) between any two means for the same solvent, those within the same row have the same superscript letter. Three replicates were used for each concentration and ten numbers of adult pests per replicate were used.

Table 4. Lethal concentration values of plant extracts of *Commiphora molmol* and *Araucaria heterophylla* against *Rhipicephalus (Boophilus) annulatus*.

Days	Plant Extracts	Solvents	LC$_{50}$ (95% CL)	LC$_{50}$ (95% CL)	LC$_{50}$ (95% CL)	Equation **	X2
1	*Commiphora molmol*	Methanol	5.26 (4.62–6.65)	38.19 (27.18–61.90)	65.95 (43.34–120.72)	1.530 ± 0.150X	0.628
		Hexane	9.24 (7.46–11.85)	96.45 (56.86–218.26)	87.47 (98.46–512.05)	1.258 ± 0.145X	0.172
3	*Commiphora molmol*	Methanol	3.68 (3.10–4.28)	17.30 (14.05–22.58)	26.81 (20.77–37.55)	1.908 ± 0.153X	0.568
		Hexane	6.09 (4.99–7.43)	51.83 (34.48–94.53)	95.07 (57.43–201.82)	1.379 ± 0.147X	3.420
7	*Commiphora molmol*	Methanol	2.42 (0.75–3.58)	16.91 (13.56–88.54)	29.31 (26.34–256.46)	1.520 ± 0.150X	10.917
		Hexane	3.40 (2.55–4.27)	37.60 (24.87–70.99)	74.29 (43.71–170.66)	1.228 ± 0.147X	2.769
1	*Araucaria heterophylla*	Methanol	1.41 (0.82–2.25)	12.97 (8.12–17.10)	24.33 (18.12–32.14)	1.330 ± 0.200X	25.761
		Hexane	2.71 (2.06–3.37)	21.64 (15.81–34.10)	38.96 (26.03–71.10)	1.422 ± 0.156X	2.660
7	*Araucaria heterophylla*	Methanol	1.09 (0.70–1.40)	3.58 (2.98–4.72)	5.00 (3.96–7.56)	2.496 ± 0.423X	0.875
		Hexane	1.55 (1.07–2.02)	10.62 (8.26–15.16)	18.31 (13.17–30.02)	1.537 ± 0.181X	5.304

* LC$_{50}$, 95% CI, and 95% values = lethal concentration that kills 50%, and 95% of the exposed ectoparasite; (95% CL) = lower and upper confidence limit; ** Regression line equation; X2 = chi-square; Significant at p < 0.05 level.

Analogous to our study, *Commiphora* spp. has an acaricidal effect, as *C. molmol* extract effectively controlled the fowl tick, *Argas persicus*, and its mortalities reached 63, 67, 76, 87, and 94% PT for 12 days PT with 0.625, 1.25, 2.5, 5, and 10%, respectively (LC$_{50}$ = 1.28, 0.88, 0.84, 0.50, and 0.42% PT for 1, 2, 3, 6, and 12 days, respectively) [65].
Commiphora swynnertonii (Burtt) exudate had a parallel strong acaricidal effect against ticks such as Rhipicephalus appendiculatus and Amblyomma variegatum (LC$_{50}$ = 1.72 and 1.91 mg/mL, respectively, and LC$_{90}$ were 3.5 and 3.7 mg/mL, respectively) and adversely affected their reproduction capability [66]. C. swynnertonii (Burtt) stem bark exudate also induced an acaricidal effect against Rhipicephalus appendiculatus and exhibited a significant ($p < 0.05$) mortality and inhibition of laid eggs of ticks PT with concentrations over 25 and 90 mg/mL, respectively, and no hatching of eggs was observed in all treated groups [67]. A similar study revealed the adulticidal effect of the C. swynnertonii stem bark ethyl acetate, petroleum ether, and methanolic extracts against R. appendiculatus and A. variegatum. The petroleum ether extract exhibited higher acaricidal activity (LC$_{50}$ = 72.31 and 71.67 mg/mL, respectively) and its MO%, 156 h PT, were 100 and 87% against Amblyomma variegatum and Rhipicephalus appendiculatus, respectively [67].

The gum Haggar, Commiphora holtziana, resin repelled the cattle tick, Boophilus microplus for up to 5 h with the hexane extract [68]. Additionally, myrrh not only controls ticks but also inhibited the propagation of blood parasites transmitted by ticks as bovine (Babesia bovis, B. bigemina, and B. divergens) and equine piroplasms (Theileria equi and B. caballi) [54]. C. molmol also induced molluscicidal and biological activities against Biomphalaria alexandrina and Bulinus truncatus (Mollusca: Gastropoda) [55].

Furthermore, the C. molmol resin extract displays pesticide action against many pests. It effectively controlled the blowfly, Lucilia sericata and its LC$_{50}$ values were 6.03, 7.96, and 6.55 mg/mL for the first, second and third larva stages, respectively, and induced morphological abnormalities in larvae, pupae, and adults [58]. C. molmol was toxic to the fowl tick Argas persicus (LC$_{50}$ = 1.28, 0.88, 0.84, 0.50 and 0.42 PT for one, two, three, six, and 12 days, respectively. Mortalities reached 63, 67, 76, 87, and 94% PT with 0.625, 1.25, 2.5, 5, and 10%, respectively [69].

Analogous studies showed the acaricidal effect of other plant extracts against ticks. Recently, the ethanol extracts of Vitex castus and Zingiber officinale had an acaricidal effect against H. dromedarii, as the mortality 15 days PT reached 80.8 and 84.7%, respectively, and LC$_{50}$ values three days PT were 12.2 and 11.8%, respectively, whereas their median lethal time (LT$_{50}$) values PT was 2.6 and 2.5 days, respectively [52]. Moreover, Protium spruceanum on resistant strains against R. annulatus induced mortality > 80 and 90% PT with 100 and 50 mg/mL ethanolic extract and ethyl acetate extracts, respectively [70]; ethyl alcohol and petroleum ether extracts of Melia azedarach and Artemisia herba-alba were also effective acaricides against embryonated eggs and engorged nymphs of H. dromedarii when compared to Butox®5.0 (Deltamethrin) [71].

A related study showed that the methanol extract of neem and Citrullus colocynthis produced an acaricidal effect against adult females, eggs, and larvae, and neem was more effective against H. dromedarii [72]. Some other materials are also effective in vitro acaricides such as peracetic acid against Boophilus annulatus and the fowl tick, Argas persicus [17] and A. persicus, infesting laying hens [18]. Moreover, some photosensitizers such as safranin and rose bengal had a strong acaricidal effect against H. dromedarii and suppressed the reproductive potential of its engorged females [16].

Lice infestation in cattle is mainly controlled by conventional insecticides [73], and to the best of our knowledge, there are no natural treatments for controlling such pests as. Data from this work showed that the methanol extracts of C. molmol and A. heterophylla effectively controlled the cattle lice, Ha. eurysternus, reaching 100% mortality PT with 6.35% of methanol extracts (LC$_{50}$ = 0.56 and 0.62 mg/mL, respectively, and 96.67 and 83.33%, respectively, PT with 6.3% hexane extracts (LC$_{50}$ = 0.55 and 1.00 mg/mL, respectively) (Tables 5 and 6).
Table 5. Efficacy of the plant extracts of Commiphora molmol and Araucaria heterophylla on cattle lice, Haematopinus eurysternus.

Plant Extracts	Concentration (mg/mL)	Methanol	Hexane			
	1 Day	3 Days	7 Days	1 Day	3 Days	7 Days
0	0.00 ± 0.0 IC *	3.33 ± 3.33 fB	6.67 ± 3.33 eA	0.0 ± 0.0 eC	3.33 ± 3.33 fB	6.67 ± 3.33 fA
0.8	20.00 ± 5.77 eC	40.00 ± 0.0 eB	66.67 ± 3.33 dA	20.00 ± 0.00 dC	36.67 ± 8.82 eB	63.33 ± 3.33 eA
1.6	33.33 ± 8.82 dC	70.00 ± 0.00 dC	90.00 ± 5.77 eA	30.00 ± 5.77 C	60.00 ± 0.00 dC	83.33 ± 3.33 dA
3.1	56.67 ± 3.33 cC	76.67 ± 3.33 bC	96.67 ± 3.33 bA	50.00 ± 5.77 C	76.67 ± 3.33 eB	90.00 ± 5.77 bA
6.3	83.33 ± 3.33 bC	90.00 ± 5.77 bB	100.00 ± 0.00 aA	73.33 ± 6.67 bC	83.33 ± 3.33 bB	96.67 ± 3.33 bA
12.5	100.00 ± 0.00 aC	100.00 ± 0.00 aB	100.00 ± 0.00 aA	86.67 ± 6.67 aC	93.33 ± 3.33 aB	100.00 ± 0.00 aA

* letters refer to significant difference; a–f: There is no significant difference (p > 0.05) between any two means for the same solvent, within the same column they have the same superscript letter. A, B & C: There is no significant difference (p > 0.05) between any two means for the same solvent, within the same row they have the same superscript letter. Three replicates were used for each concentration and ten numbers of adult pests per replicate were used.

Table 6. Lethal concentration values of plant extracts of Commiphora molmol and Araucaria heterophylla against Haematopinus eurysternus.

Days	Plant Extracts	Solvents	LC50 (95%CL) *	LC90 (95%CL)	LC95 (95%CL)	Equation **	X^2
1	Commiphora molmol	Methanol	2.27 (1.97–2.59)	8.49 (6.94–11.04)	12.34 (9.66–17.05)	2.240 ± 0.180	5.034
		Hexane	2.88 (2.43–3.39)	16.37 (12.16–24.66)	26.79 (18.61–44.58)	1.698 ± 0.561	1.345
	Araucaria heterophylla	Methanol	4.08 (3.36–5.04)	33.78 (21.83–64.49)	61.48 (36.10–136.45)	1.397 ± 0.148	1.329
		Hexane	6.65 (5.20–9.21)	80.76 (42.32–229.34)	163.87 (75.16–581.83)	1.183 ± 0.148	0.397
3	Commiphora molmol	Methanol	1.09 (0.86–1.32)	5.23 (4.22–6.99)	8.15 (6.21–11.93)	1.889 ± 0.190	6.631
		Hexane	1.28 (0.97–1.57)	8.91 (6.73–13.25)	15.45 (10.78–26.14)	1.521 ± 0.161	2.058
7	Commiphora molmol	Methanol	0.56 (0.38–0.71)	1.77 (1.49–2.24)	2.44 (1.99–3.38)	2.589 ± 0.379	0.876
		Hexane	0.55 (0.35–0.73)	2.86 (2.32–3.80)	4.57 (3.49–6.85)	1.791 ± 0.234	1.514
	Araucaria heterophylla	Methanol	0.62 (0.24–1.12)	3.07 (2.24–4.15)	4.82 (2.68–6.20)	1.856 ± 0.229	11.223
		Hexane	1.00 (0.64–1.68)	8.37 (5.88–11.32)	15.27 (9.85–21.15)	1.392 ± 0.159	11.114

* LC50, so, and s5 values = lethal concentration that kills 50, 90, and 95% of the exposed ectoparasite; (95%CL) = lower and upper confidence limit; ** Regression line equation; X^2 = chi-square; Significant at p < 0.05 level.

Studies about using botanicals against lice infesting large animals are very rare. A comparable study indicated that essential oils had in vitro and in vivo lousicidal potential against the buffalo louse, Haematopinus tuberculosis (Burmeister, 1839), in Egypt. Through filter paper contact bioassays, the LC50 values, four minutes PT, were 2.74, 12.35, 7.28, 22.79, and 18.67% for camphor (Cinnamomum camphora, Laurales: Lauraceae), peppermint (Mentha piperita L., Lamiales: Lamiaceae), onion (Allium cepa, Asparagales: Amaryllidaceae), rosemary oils (Rosmarinus officinalis Linn, Lamiales: Lamiaceae), and chamomile (Matricaria chamomilla L., Asterales: Asteraeace), respectively, and oils induced ovicidal effects except rosemary, which was not applied [33]. Moreover, essential oils of garlic, clove, pumpkin, onion, and marjoram effectively controlled the dog louse, Trichodectes canis.
in vitro [51] and camphor oil controlled the slender pigeon louse, Columbicola columbae, in vitro and in vivo [49].

This investigation indicated that complete mortalities were reached seven days PT for the cattle louse fly, Hi. maculata, with 12.5 mg/mL extracts of C. molmol and A. heterophylla (LC_{50} values PT with methanol extract were 0.67 and 0.78 mg/mL, respectively, whereas those of hexane extracts were 0.68 and 0.32 mg/mL, respectively. After treatment with a lower concentration, 6.3%, MO% reached 100 and 93.33% PT with methanol extracts and 90 and 100% PT with hexane extracts (Tables 7 and 8).

Table 7. Efficacy of the plant extracts of Commiphora molmol and Araucaria heterophylla against the cattle louse fly, Hippobosca melolontha.

Plant Extracts	Concentration (mg/mL)	Mortality % (Mean ± SE)					
	1 Day	3 Days	7 Days	1 Day	3 Days	7 Days	
Commiphora molmol	0	0.00 ± 0.0 IC	3.33 ± 3.33 fB	6.67 ± 3.33 eA	0.00 ± 0.0 IC	3.33 ± 3.33 fB	6.67 ± 3.33 fA
0.8	20.00 ± 5.77 eC	33.33 ± 6.67 eB	60.00 ± 5.77 dA	13.33 ± 6.67 eC	30.00 ± 5.77 eB	56.67 ± 3.33 eA	
1.6	40.00 ± 5.77 dC	60.00 ± 5.77 dB	83.33 ± 3.33 cA	23.33 ± 8.82 dC	53.33 ± 6.67 dB	76.67 ± 3.33 dA	
3.1	53.33 ± 3.33 eC	73.33 ± 3.33 cB	90.00 ± 5.77 bA	43.33 ± 8.82 cC	70.00 ± 10.00 dC	83.33 ± 12.02 cC	
6.3	83.33 ± 3.33 bC	86.67 ± 8.82 bB	100 ± 0.00 aA	66.67 ± 13.33 bC	76.67 ± 3.33 bB	90.00 ± 5.77 bA	
12.5	96.67 ± 3.33 aC	100.0 ± 0.00 aB	100.0 ± 0.00 aB	80.00 ± 11.55 aC	86.67 ± 8.82 aB	100.0 ± 0.00 aA	
Araucaria heterophylla	0	0.00 ± 0.0 IC	3.33 ± 3.33 fB	6.67 ± 3.33 eA	0.00 ± 0.0 IC	3.33 ± 3.33 fB	6.67 ± 3.33 eA
0.8	10.00 ± 5.77 eC	26.67 ± 6.67 eB	56.67 ± 6.67 eA	23.33 ± 3.33 eC	50.00 ± 5.77 eB	76.67 ± 6.67 dA	
1.6	20.00 ± 5.77 dC	53.33 ± 3.33 dB	73.33 ± 8.82 dA	46.67 ± 3.33 dC	76.67 ± 3.33 dA	86.67 ± 3.33 cA	
3.1	40.00 ± 5.77 cC	63.33 ± 3.33 cB	76.67 ± 3.33 cA	66.67 ± 8.82 cC	86.67 ± 6.67 cB	93.33 ± 6.67 bA	
6.3	50.00 ± 5.77 bC	70.00 ± 5.77 bB	93.33 ± 6.67 bA	86.67 ± 3.33 bC	93.33 ± 6.67 bA	100.0 ± 0.00 aA	
12.5	70.00 ± 5.77 aC	83.33 ± 12.02 aB	100.0 ± 0.00 aA	96.67 ± 3.33 aC	100.0 ± 0.00 aB	100.0 ± 0.00 aA	

* letters refer to significant difference; a–f: There is no significant difference (p > 0.05) between any two means, within the same column they have the same superscript letter; A, B & C: There is no significant difference (p > 0.05) between any two means for the same solvent, within the same row they have the same superscript letter. Three replicates were used for each concentration and ten numbers of adult pests per replicate were used.

Table 8. Lethal concentrations of plant extracts of Commiphora molmol and Araucaria heterophylla against Hippobosca melolontha.

Days	Plant Extracts	Solvents	LC_{50} (95%CL) *	LC_{90} (95%CL)	LC_{95} (95%CL)	Equation **	X^2
1	Commiphora molmol	Methanol	2.31 (1.96–2.70)	11.24 (8.64–16.10)	17.60 (12.76–27.57)	1.866 ± 0.171	2.861
		Hexane	3.84 (3.27–4.56)	21.60 (15.68–33.70)	35.23 (23.91–60.73)	1.714 ± 0.156	0.733
	Araucaria heterophylla	Methanol	5.58 (4.60–7.02)	41.19 (26.40–79.38)	72.59 (42.51–160.78)	1.476 ± 0.153	1.476
		Hexane	1.80 (1.53–2.09)	7.47 (6.06–9.84)	11.18 (8.65–15.79)	2.079 ± 0.178	0.395
3	Commiphora molmol	Methanol	1.40 (1.15–1.64)	6.19 (5.01–8.20)	9.43 (7.25–13.53)	1.988 ± 0.183	5.842
		Hexane	1.72 (1.34–2.12)	15.08 (10.57–25.46)	27.86 (17.73–55.12)	1.326 ± 0.151	3.343
	Araucaria heterophylla	Methanol	2.07 (1.61–2.58)	22.23 (14.49–42.83)	43.53 (25.30–101.41)	1.245 ± 0.146	5.163
		Hexane	0.77 (0.56–0.97)	4.01 (3.31–5.11)	6.40 (5.03–8.89)	1.794 ± 0.181	2.148
7	Commiphora molmol	Methanol	0.67 (0.48–0.83)	2.51 (2.09–3.20)	3.65 (2.90–5.11)	2.233 ± 0.276	3.968
		Hexane	0.68 (0.45–0.91)	4.70 (3.67–6.66)	8.12 (5.87–13.28)	1.533 ± 0.187	5.665
	Araucaria heterophylla	Methanol	0.78 (0.18–1.05)	4.91 (3.56–18.20)	8.28 (6.51–51.32)	1.602 ± 0.187	7.916
		Hexane	0.32 (0.16–0.49)	2.06 (1.64–2.61)	3.49 (2.74–4.87)	1.586 ± 0.214	1.033

* LC_{50}, a, and 95 values = lethal concentration that kills 50, 90, and 95% of the exposed ectoparasite; (95%CL) = lower and upper confidence limit; ** Regression line equation; X^2 = chi-square; Significant at p < 0.05 level.
Parallel studies of using botanicals against *Hi. maculata* were also recorded. The leaf of *Ricinus communis*, *Malabarica malabarica*, and *Gloriosa superba* (methanol, chloroform, and chloroform extracts, respectively) effectively controlled *Hi. maculata* and the tick *Haemaphysalis bispinosa* [74]. The aqueous crude leaf extracts of Catharanthus roseus (methanol, chloroform, and chloroform extracts, respectively) effectively controlled *Hi. maculata* and the tick *Haemaphysalis bispinosa* [74]. The aqueous crude leaf extracts of *Cissus quadrangularis* (AgNO₃ solution, and synthesized Ag NPs against the cattle tick, *Rhipicephalus (Boophilus) microplus* larvae (LC₅₀ = 50.00, 21.72, and 7.61 mg/L, respectively) and the adult of *Hi. maculata* (LC₅₀ = 37.08, 40.35 and 6.30 mg/L, respectively) via the contact toxicity method [76].

Moreover, essential oils had repellent, adulticidal, larvicidal, and ovicidal effects against cycloraphan flies [34,38,39,42,53,77]. Essential oils and d-phenothrin repelled biting and non-biting flies infesting water buffalo, *Hippobosca equine*, *Haematobia irritans*, *Musca domestica*, and *Stomoxys calcitrans*, for six and three days PT, respectively [33]. It is worth mentioning that the essential oil of *Commiphora erythraea* (Opoponax) induced a larvicidal effect against *Culex restuans* Theobald, *Culex pipiens*, and *Aedes aegypti* L. (LC₅₀ = 19.05, 22.61, and 29.83 ppm, respectively) [57]. Likewise, in our findings, some Oil-resins had larvicidal activity against *Culex pipiens* such as *C. molmol*, *A. heterophylla*, *Boswellia sacra*, *Pistacia lentiscus*, and *Eucalyptus camaldulensis*. After treatment for 24 and 48 h PT with 1500 ppm, the best effect was observed PT with acetone extracts of *C. molmol*, 83.3% and 100% with LC₅₀ values were 623.52 and 300.63 ppm, as well as *A. heterophylla*, 75% and 95% with LC₅₀ values, were 826.03 and 384.71 ppm, respectively. On the other hand, the aqueous extract of *A. heterophylla* was highly effective against Cx. *pippis* (LC₅₀ = 2819.85 and 1652.50 ppm) followed by *C. molmol* (LC₅₀ = 3178.22 and 2322.53 ppm) 24 and 48 h PT, respectively [59]. As mosquito larvicides, *A. heterophylla* and *Azadirachta indica* (gum polysaccharides) were used for encapsulation of cyfluthrin-loaded superparamagnetic iron oxide nanoparticles [61].

2.2. Biochemical Analysis

It was noticed that most of the compounds belong to sesquiterpene, fatty acid esters and phenols were the most common compounds found in the methanol and hexane extracts of the myrrh, *C. molmol* plant while monoterpenic, sesquiterpenic, terpene alcohols, fatty acid, and phenols were found in in methanol and hexane extracts of *A. heterophylla* plant in larger amount.

Phytochemical analysis of this work revealed that the constituents of *C. molmol* and *A. heterophylla* extracts were identified by GC–MS analysis (Tables 9–12) indicating that *C. molmol* and *A. heterophylla* contained the main chemical compounds 1,8,11,14-Heptadecatetraene, (Z,Z,Z)-(16.27%), 2(3H)-Benzofuranone, 6-ethenylhexahydro-6-methyl-3-methylene-7-(1-methylethenyl), [3aS-(3a,6a,7a,7a)]-(22.67%), Azuleno [4,5-b]furan-2(3H)-one, decahydro-3,6,9-tris(methylene)-, [3aS-(3a,6a,9a,9b)]-(47.28) and 1,8,11,14-Heptadecatetraene, (Z,Z,Z)-(7.43), 2(3H)-Benzoferanone, 6-ethenylhexahydro-6-methyl-3-methylene-7-(1-methylethenyl), [3aS-(3a,6a,7a,7a)]-(19.90), and ETHANONE, 1-(7,8-DIHYDRO-3-HYDROXY-4-PROPYL-2-NAPHTHALENYL)-(67.27%)for methanol and hexane extracts.
Table 9. The major chemical constituents of Commiphora molmol methanol extracts.

No.	M. F. *	Chemical Name (99.98%)	Area (%)	RT	Nature of Compound
1	C\textsubscript{15}H\textsubscript{24}	Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-, (3R-trans)-	0.74	9.38	phenol
2	C\textsubscript{15}H\textsubscript{24}	(-)-\á-Bourbonene	3.78	10.33	fatty acid esters
3	C\textsubscript{15}H\textsubscript{24}	Tricyclo [2.2.1.0\textsubscript{2,6}]heptane, 1,7-dimethyl-7-(4-methyl-3-pentenyl)-, (-)	1.86	11.11	carboxylic acid
4	C\textsubscript{15}H\textsubscript{24}	\ç-Elemene	2.11	11.40	fatty acid esters
5	C\textsubscript{15}H\textsubscript{24}	1,6-CYCLODECADIENE, 1-METHYL-5-METHYLENE-8-(1-METHYLETHYL)-, [S-(E,E)]-	1.78	12.34	fatty acid esters
6	C\textsubscript{15}H\textsubscript{24}	Aromandendrene	0.65	12.43	fatty acid ester
7	C\textsubscript{15}H\textsubscript{24}	Azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethenyl)-, [1R-(1\textsubscript{à},3a\textsubscript{à},4\textsubscript{à},7\textsubscript{à})]-	0.06	12.61	terpenoids
8	C\textsubscript{15}H\textsubscript{20}O	Benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-	0.81	12.82	heterocyclic
9	C\textsubscript{15}H\textsubscript{20}O	Benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-	15.35	13.17	heterocyclic
10	C\textsubscript{15}H\textsubscript{24}	\ç-Muurolene	0.24	13.27	sesquiterpene
11	C\textsubscript{15}H\textsubscript{24}	Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)-	0.32	13.36	sesquiterpene
12	C\textsubscript{15}H\textsubscript{24}	\á-Longipinene	0.20	13.51	sesquiterpene
13	C\textsubscript{15}H\textsubscript{24}	Azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethenyl)-, [1R-(1\textsubscript{à},3a\textsubscript{à},4\textsubscript{à},7\textsubscript{à})]-	0.08	13.61	sesquiterpene
14	C\textsubscript{15}H\textsubscript{24}	1,5-Cyclodecadiene, 1,5-dimethyl-8-(1-methylethylidene)-, (E,E)-	2.04	13.92	sesquiterpene
15	C\textsubscript{15}H\textsubscript{18}O	3,5,8a-Trimethyl-4,6,8a,9-tetrahydronaphtho [2,3-b]furan	30.80	15.87	phenol
16	C\textsubscript{15}H\textsubscript{18}O	(4aS,8aS)-3,8a-Dimethyl-5-methylene-4,4a,5,6,8a,9-hexahydronaphthalen-2-yl	7.98	15.95	phenol
17	C\textsubscript{15}H\textsubscript{18}O	1-NAPHTHALENOL, 4,7-DIMETHYL-2-(1-METHYLETHYL)-	0.47	15.37	acetic acid
18	C\textsubscript{15}H\textsubscript{18}O	4aS,8aS)-3,8a-Dimethyl-5-methylene-4a,5,6,8a,9-hexahydronaphthal[2,3-b]furan	7.98	15.95	phenol
19	C\textsubscript{15}H\textsubscript{20}O	Benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-	0.89	16.16	heterocyclic
20	C\textsubscript{17}H\textsubscript{28}O	Cyclohexanemethanol, 4-ethenyl-\á,\á,4-trimethyl-3-(1-methylethenyl)-, acetate, [1R-(1\textsubscript{à},3a,\á)]-	2.37	16.35	sesquiterpene
21	C\textsubscript{18}H\textsubscript{32}O	(R,5E,9E)-8-Methoxy-3,6,10-trimethyl-4,7,8,11-tetrahydrocyclodeca[b]furan	12.72	17.25	sesquiterpene lactones
22	C\textsubscript{15}H\textsubscript{24}	AZULENE, 1,2,3,4,5,6,7-OCTAHYDRO-1,4-DIMETHYL-7-(1-METHYLETHYLIDENE)-, (1S-CIS)-	0.29	18.15	sesquiterpene
23	C\textsubscript{17}H\textsubscript{24}O	Acetic acid, 6-(1-hydroxymethyl-vinyl)-4,8a-dimethyl-3-oxo-1,2,3,5,6,7,8a-octahydronaphthalen-2-yl ester	2.03	19.08	phenol
24	C\textsubscript{15}H\textsubscript{20}O	Reynosin	0.11	19.24	fatty acid esters
25	C\textsubscript{23}H\textsubscript{34}O	Methyl 4,7,10,13,16,19-docosahexaenoate	0.18	19.32	steroids
26	C\textsubscript{17}H\textsubscript{24}O	6-[1-(HYDROXYMETHYL)VINYL]-4,8A-DIMETHYL-3-OXO-1,2,3,5,6,7,8,8a-OCTAHYDRO-2-NAPHTHALENYL ACETATE	10.35	20.16	fatty acid esters
27	C\textsubscript{15}H\textsubscript{20}O	FUROSARDONIN A	0.42	20.36	fatty acid esters
28	C\textsubscript{15}H\textsubscript{22}O	5,8-Dihydroxy-4a-methyl-4,4a,4b,5,6,7,8a,9,10-decahydro-2(3H)-phenanthreneone	0.36	21.82	fatty acid esters

* Molecular formula.
Table 10. The major chemical constituents of *Commiphora molmol* hexane extracts.

No.	M. F.	Chemical Name (100%)	Area (%)	RT	Nature of Compound
1	C₁₅H₂₄	Cyclohexene, 4-ethyl-4-methyl-3-(1-methylene)-1-(1-methylethyl)-, (3R-trans)-	0.88	9.36	phenol
2	C₁₅H₁₂O₂	PHENOL, 2-METHOXY-4-(2-PROPENYL)-	1.65	10.30	fatty acid esters
3	C₁₅H₂₄	CYCLOHEXANE, 1-ETHENYL-1-METHYL-2,4-BIS(1-METHYLETHENYL)-, [1S-(1a,2a,4a)]-	4.53	10.59	carboxylic acid
4	C₁₅H₂₄	Tricyclo [2.2.1.0(2,6)]heptane, 1,7-dimethyl-7-(4-methyl-3-pentenyl)-, (-)-	1.51	11.08	fatty acid esters
5	C₁₅H₂₄	ç-Elemene	1.32	11.42	fatty acid esters
6	C₁₅H₂₄	1,6-CYCLODECADIENE, 1-METHYL-5-METHYLENE-8-(1-METHYLETHYL)-, [S-(E,E)]-	1.72	12.32	sesquiterpene
7	C₁₅H₂₄	Aromandendrene	0.65	12.43	fatty acid ester
8	C₁₅H₂₄	Azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethyl)-, [1R-(1a,3a,4a,7a)]-	0.57	12.41	sesquiterpene
9	C₁₅H₂₀O	5-ISOPROPENYL-3,6-DIMETHYL-6-VINYL-4,5,6,7-TETRAHYDRO-1-BENZOFURAN #	1.10	12.82	sesquiterpene
10	C₁₅H₂₀O	Benzofuran, 6-ethyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-	12.09	13.07	heterocyclic
11	C₁₅H₂₄	ç-Muurolene	0.38	13.17	sesquiterpene
12	C₁₅H₂₄	GERMACRENE B	2.39	13.87	sesquiterpene
13	C₁₅H₁₈O	3,5,8a-Trimethyl-4,6,8a,9-tetrahydronaphtho [2,3-b]furan	1.25	14.33	sesquiterpene
14	C₁₅H₁₈O	NAPHTHALENE, 4-METHOXY-1,2,6,8-TETRAMETHYL-	31.98	15.76	phenol
15	C₁₅H₁₈O	(4aS,8aS)-3,8a-Dimethyl-5-methylene-4,4a,5,6,8a,9-hexahydronaphtho [2,3-b]furan	8.15	15.84	phenol
16	C₁₅H₂₀O	Benzofuran, 6-ethyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-	0.82	16.05	heterocyclic
17	C₁₅H₂₄	(5E)-3,6,10-TRIMETHYL-4,7,8,11-TETRAHYDROCYCLODECA[8]FURAN	7.94	16.62	sesquiterpene
18	C₁₆H₁₂O₇	METHYL 3-(CIS-3’-HYDROXY-5’-OXOTETRAFURAN-2’-YL)-1,4-DIOXO-1,4-DIHYDROPHENANTHRENE-2-CARNOXYLATE	8.39	17.15	phenol
19	C₁₅H₂₄	AZULENE, 1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-(1-methylethyliden)-, (1S-CIS)-	0.23	18.10	sesquiterpene
20	C₁₇H₂₄O₄	Acetic acid, 6-(1-hydroxymethyl-vinyl)-4,8a-dimethyl-3-oxo-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-yl ester	10.88	20.09	phenol
21	C₁₃H₁₄N₂O	2-PYRAZOLIN-5-ONE, 4-ISOPROPYLIDENE-3-METHYL-1-PHENYL-	0.98	20.71	phenol
22	C₁₅H₂₂O₃	5,8-Dihydroxy-4a-methyl-4,4a,4b,5,6,7,8,8a,9,10-decahydro-2(3H)-phenanthrene	0.59	21.78	sesquiterpene
Table 11. The major chemical constituents of *Araucaria heterophylla* methanol extracts.

No.	M. F.	Chemical Name (100%)	Area (%)	RT	Nature of Compound
1	C₂₁H₄₈NO₅S	DL-Homocysteine	0.86	4.65	terpenoid
2	C₁₈H₁₆	1,4-CYCLOHEXADIENE, 1-METHYL-4-(1-METHYLETHYL)-	1.22	6.68	phenol
3	C₁₈H₁₆	(1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene	4.38	8.74	phenol
4	C₁₈H₁₆a	a-Pinene	3.24	9.40	monoterpene
5	C₁₈H₁₆	1,3,7-OCTATRIENE, 3,7-DIMETHYL-	1.44	10.09	fatty acid
6	C₁₈H₁₆a	a-Pinene	0.66	10.19	monoterpene
7	C₁₈H₁₆	BICYCLO [3.1.0]HEXANE, 4-METHYLENE-1-(1-METHYLETHYL)-	1.99	11.04	monoterpene
8	C₁₈H₁₆	CYCLOHEXENE, 1-METHYL-4-(1-METHYLETHENYL)-	12.95	13.07	monoterpene
9	C₁₈H₁₆	cis-p-mentha-1(7),8-dien-2-ol	1.85	16.67	monoterpene ketone
10	C₁₈H₁₆	a-Campholenal	1.29	17.70	monoterpene
11	C₁₈H₁₆	Isopinocarveol	2.38	18.19	monoterpene
12	C₁₈H₁₆	cis-Verbenol	3.8	18.49	monoterpene
13	C₁₈H₁₆	Isopinocarveol	0.68	19.57	monoterpene
14	C₁₈H₁₆	Bicyclo [3.1.1]hept-2-ene-2-methanol, 6,6-dimethyl-	0.97	20.77	terpene alcohols
15	C₁₈H₂₆	6-Tridecene, (Z)-	9.34	20.90	fatty acid
16	C₁₈H₂₆	(-)-MYRTENOL	1.33	21.52	glycosides
17	C₁₈H₂₆	Bicyclo [3.1.1]hept-3-en-2-one, 4,6,6-trimethyl-, (1S)-	2.24	22.49	terpene alcohols
18	C₁₈H₂₄	aL-Copaene	1.85	23.79	sesquiterpene
19	C₁₈H₂₄	Ylangene	1.13	24.79	sesquiterpene
20	C₁₈H₂₄	Copaene	7.96	25.41	sesquiterpene
21	C₁₈H₂₄	(-)-ß-Bourbonene	3.41	25.88	sesquiterpene
22	C₁₈H₂₄	Caryophyllene	2.63	27.22	sesquiterpene
23	C₁₈H₂₄	á-ylangene	1.22	28.05	sesquiterpene
24	C₁₈H₂₄	á-copaene	0.84	28.48	sesquiterpene
25	C₁₈H₂₄	ç-Muurolene	3.48	29.64	sesquiterpene
26	C₁₈H₂₄	Germacrene D	2.34	29.84	sesquiterpene
27	C₁₈H₂₄	ç-Muurolene	2.07	30.20	sesquiterpene
28	C₁₈H₂₄	Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)-	3.82	30.85	sesquiterpene
29	C₁₈H₂₄	á-copaene	1.4	31.59	sesquiterpene
30	C₂₂H₄₂O₅Si	OCTADECANOIC ACID, 9,10-EPoxy-18-(TRIMETHYLSILOXY)-, METHYL ESTER, CIS-	1.08	33.31	fatty acid
31	C₁₈H₂₄O	Caryophyllene oxide	10.39	34.01	phenol
32	C₁₈H₂₄O	4,12,12-TRIMETHYL-9-METHYLENE-5-OXATRICYCLO [8.2.0.0^4,6^]DODECANE	0.98	34.40	sesquiterpene
33	C₁₈H₂₄O	Caryophyllene oxide	1.18	35.04	sesquiterpene
34	C₁₈H₂₆O	1,1,4,7-TETRAMETHYLECAHYDRO-1H-CYCLOPROP[1]AZULEN-4-OL #	1.31	35.76	sesquiterpene
35	C₁₈H₂₆O	Caryophyllene oxide	1.50	36.42	phenol
36	C₁₈H₂₄O₃	Oxiraneoctanoic acid, 3-octyl-, cis-	0.79	37.75	sesquiterpene
Table 12. The major chemical constituents of *Araucaria heterophylla* hexane extracts.

No.	M. F.	Chemical Name (99.90%)	Area (%)	RT	Nature of Compound
1	C_{10}H_{16}	BICYCLO [3.1.1]HEPT-2-ENE, 2,6,6-TRIMETHYL-	0.84	5.22	terpenoid
2	C_{10}H_{16}	2,6,6-TRIMETHYLBICYCLO [3.1.1]HEPT-2-ENE	6.5	6.31	phenol
3	C_{10}H_{16}	D-Limonene	1.35	7.12	monoterpenes
4	C_{15}H_{24}	5,5-Dimethylimidazolidine-2,4-dione	3.57	8.34	sesquiterpenes
5	C_{4}H_{10}O	3-PENTEN-2-ONE, 4-METHYL-	1.62	8.54	alkene
6	C_{3}H_{4}DN	AZETIDINE-D1	8.28	9.41	saturated heterocyclic
7	C_{9}H_{14}O_{2}	2-PENTANONE, 4-METHOXY-4-METHYL-	1.26	10.32	phenol
8	C_{10}H_{16}	CYCLOHEXENE, 1-METHYL-4-(1-METHYLETHERHENYL)-	4.11	12.62	monoterpenes
9	C_{10}H_{15}NO_{2}	Benzenemethanol, 4-hydroxy-α-[1-(methylamino)ethyl]-, (R*,S*)-	0.39	14.62	saturated heterocyclic
10	C_{10}H_{16}O	à-Campholenal	0.69	15.04	monoterpenes
11	C_{8}H_{16}O	2-OCTANONE	0.44	17.38	organic aldehyde
12	C_{10}H_{16}O	Bicyclo [3.1.1]hept-3-en-2-ol, 4,6,6-trimethyl-, [1S-(1S,2S,5R)]-	2.90	21.19	terpenes
13	C_{15}H_{24}	4-Elemene	0.23	23.62	terpenes
14	C_{18}H_{34}O_{2}	9-OCTADECENOIC ACID (Z)-	14.60	25.95	terpenes
15	C_{15}H_{24}	BICYCLO [7.2.0]UNDEC-4-ENE, 4,11,11-TRIMETHYL-8-METHYLENE-, [1R-(1R*,4E,9S*)]-	0.22	26.72	terpenes
16	C_{15}H_{24}	à-Cubebene	0.31	27.23	terpenes
17	C_{15}H_{24}	1,4-METHANOAZULENE, DECADURO-4,8,8-TRIMETHYL-9-METHYLENE-, [1S-(1S,3A,3A,4A,8A)]-	0.49	28.09	terpenes
18	C_{15}H_{24}	(-)-à-Bourbonene	0.98	30.30	terpenes
19	C_{15}H_{24}	4-Elemene	0.96	31.22	terpenes
20	C_{18}H_{36}O_{2}	Hexadecanoic acid, ethyl ester	9.57	31.70	terpenes
21	C_{18}H_{34}O_{2}	9-OCTADECENOIC ACID (Z)-	3.18	32.98	terpenes
22	C_{15}H_{24}O_{2}	BICYCLO [4.4.0]DEC-2-EN-4-OL, 2-METHYL-9-(PROP-1-EN-3-OL-2-YL)-	1.42	33.79	terpenes
23	C_{16}H_{22}	4,4′-Dimethyl-2,2′-dimethylenebicyclohexyl-3,3′-diene	4.21	34.10	terpenes
24	C_{15}H_{24}	Aromandendrene	1.30	34.76	sesquiterpenes
25	C_{15}H_{24}	à-Longipinene	0.45	35.01	sesquiterpenes
26	C_{17}H_{36}O	CHOLEST-5-EN-3-OL (3α)-	19.15	35.54	fatty acid
27	C_{26}H_{44}O_{5}	Ethyl iso-allocholate	0.11	36.79	fatty acid
28	C_{18}H_{34}O_{2}	9-OCTADECENOIC ACID (Z)-	5.19	37.2	fatty acid
29	C_{16}H_{32}O_{2}	n-Hexadecanoic acid	2.13	37.63	fatty acid
30	C_{19}H_{26}O_{6}	ISOCHIAPIN B	3.45	40.03	fatty acid
C. molmol methanol extract in the present study mainly contained benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-(15.35%), 1-NAPHTHALENOL, 4,7-DIMETHYL-2-(1-METHYLETHYL)-(13.80%), (R,5E,9E)-8-Methoxy-3,6,10-trimethyl-4,7,8,11-tetrahydrocyclodec[a]furan (12.72%), and 6-[1-(HYDROXYMETHYL)VINYL]-4,8A-DIMETHYL-3-OXO-1,2,3,5,6,7,8,8A-OCTAHYDRO-2-NAPHTHALENYL ACETATE (10.35). On the other hand, C. molmol hexane extract mainly contained benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-(12.09%), NAPHTHALENE, 4-METHOXY-1,2,6,8-TETRAMETHYL-(13.98%), (4aS,8aS)-3,8a-Dimethyl-5-methylene-4,4a,5,6,8a,9-hexahydropregno [2,3-b]furan (8.15%).

The chemical analysis in this study indicated that A. heterophylla contains the main chemical compounds the à-Pinene (3.24%), CYCLOHEXENE, 1-METHYL-4-(1-METHYLETHENYL)-(12.95%), 6-Tridecene, (Z)-99.34%), Copaene (7.96%), and Caryophyllene oxide (10.39%) for methanol extract and AZETIDINE-D1 (8.28%), 9-OCTADECENOIC ACID (Z)-(14.60%), Hexadecanoic acid, ethyl ester (9.57%), and CHOLEST-5-EN-3-OL (3a)-(19.15%) for hexane extract.

Parallel studies demonstrated that the Araucariaceae family including A. heterophylla, produces several monoterpenes, such as pinene, camphene, and limonene as common compounds [78]. Araucaria spp. contains various sesquiterpenes like humulanes, cadinanes, caryophyllanes, and other compounds [79]. The resin of Araucaria columnaris is rich in aromadendrene and bicyclogermacrene and contains sesquiterpene hydrocarbons and oxygenated sesquiterpenes [80,81]. Similar studies indicated that A. heterophylla contained flavonoids, sesqui and di-terpenes, and phenylpropanoids [81]; two monoterpenic resins, b-pinene and a-pinene, were commonly found in wood found in Araucaria angustifolia and such compounds were detected in Norwegian spruce with many monoterpenoids in wood and bark [82].

Similar to our findings, GC–MS analysis revealed the presence of 4,4′-Dimethyl-2,2′-dimethylenebicyclohexyl-3,3′-diene (14.62%) and Copaene (13.64%) as the most prevailing constituents in C. molmol and A. heterophylla, respectively [59]. Bisabolene was the most abundant component in Commiphora erythraea essential oil (33.9%), fraction 2 (62.5%), and fraction 4 (23.8%), curzerene (32.6%), and α-santalene (30.1%) were the dominant chemical constituents in fractions 1 and 3, respectively [57]. Similar studies indicated that two resins, Commiphora myrrha and Commiphora africana, are rich in sesquiterpenes and sesquiterpene lactones through GC-MS analysis with anti-inflammatory and anticancer potential [83].

Finally, our data and others confirm that the presence of many secondary metabolites such as sesquiterpenes, phenols, aromatic terpenoids, fatty alcohol, eugenol, and many other bio-effective compounds may explain the effectiveness of A. heterophylla and C. molmol resin extracts against insect pests [82,84,85].

Phenolics are linked to toxicity against because they are important in plant-herbivore and pathogen interactions. Antioxidant characteristics were found in phenolic chemicals, which are thought to be the primary cause of the pesticide effect in nature [86]. The mode of action of C. molmol extract was revealed through histopathological and transmission election microscope of treated A. persicus via penetrating the cuticle towards the body cavity of treated ticks, destroying the epithelial gut cells, and ultimately resulted in the death of ticks. Moreover, lysing of epithelial gut cells with an irregularly distributed nucleus was commonly PT with low concentrations and rarely PT with high concentrations of C. molmol, whereas lysed epithelial gut cells (without nucleus or with aggregated one beside the basal lamina) were commonly observed PT with high concentrations and rare recorded PT with low concentrations [65,69]. Using plant-based pesticides had minimum or low toxicity for non-target organisms [5]. Specifically, the safety of Commiphora spp. was confirmed after oral toxicity in mice and rats [63].
3. Materials and Methods

3.1. Pest Collections

The collection of the adult stage of four pests of mixed sex was done from May to July 2021. The camel tick, *Hyalomma dromedarii* (Koch, 1844) and cattle tick, *Rhipicephalus (Boophilus) annulatus*, formerly *Boophilus annulatus* (Say, 1821), (Acari: Ixodidae), were collected from areas around infested camel and cattle, respectively, at the slaughterhouse in Jazan Province, Saudi Arabia. The adult cattle louse fly, *Hippobosca maculata* Leach (Diptera: Hippoboscidae) was collected from infested cattle mainly in the ears and tails. The cattle louse, *Haematopinus eurysternus*, was collected from the dewlap, cheeks, neck, flank, withers, and back of infested cattle. Pests were collected from and around animals that had no previous exposure to pesticides.

3.2. Collection of Plant Materials

A. heterophylla and *C. molmol* were collected from different areas in Saint Catherine (28°33′42″ N, 33°56′57″ E, altitude 2624), South Sinai Governorate, Egypt in May 2021. *C. molmol* resin was obtained as amber solid crystals, while *A. heterophylla* resin was a flexible white colloidal form (Figure 1). Plants were identified at the Flora and Phytotaxonomic section of the Agricultural Research Center in Giza, Egypt.

3.3. Preparation of Plant Extracts

Stock solutions of the plant oil-resins *A. heterophylla* and *C. molmol* were extracted by mechanically grinding 50 g of both plant oil-resins using a stainless-steel electric mixer and placing the powder in a Soxhlet apparatus for 6–8 h according to the type of solvent. Methanol and hexane were used as solvent, individually. The solution was filtered using Whatman No. 1 filter paper through a Buchner funnel, and the extracts were dried in an oven at 30 °C for 6 h. The extracts were stored in a dark bottle in a refrigerator at −5 °C for 24 h prior to the experiment [52].
3.4. Bioassays

The pesticide effectiveness of methanol and hexane extracts of A. heterophylla and C. molmol was evaluated against four ectoparasites, H. dromedarii, R. annulatus, Hi. maculate, and Ha. eurysternus. Preliminary experiments each containing 30 adult pests, grouped in three replicates, were made to evaluate the range of concentrations used for each pest. Treated envelopes were used [74]. The adult cattle and camel ticks were treated with the following concentrations: 1.6, 3.1, 6.3, 12.5, 25 mg/mL, while adult cattle louse fly and cattle louse were treated with the following concentrations: 0.8, 1.6, 3.1, 6.3, 12.5 mg/mL. Three replicates (each contained ten adult pests) were used for each concentration.

Each group of pests were added to a filter paper envelope, Whatman filter paper No.1, 125 mm diameter, and treated with a single concentration of the plant extracts as 3 mL test solution uniformly distributed with a pipette on internal surfaces of the envelopes. The control envelopes were impregnated with distilled water. The opening of the envelopes was folded and secured with a metallic clip with its identification marks like tested solution and concentration. Each treated replicate of pests was transported to a Petri dish lined with a filter paper. Treated pests were kept at 28 ± 2 °C and a relative humidity of 80 ± 5%. Mortalities were recorded one, three and seven days post-treatment (PT).

3.5. Biochemical Analysis

Biochemical analyses were made using GC/MS, a Thermo Scientific Trace GC Ultra/ISQ Single Quadrupole MS, TG-5MS fused silica capillary column, 0.1 mm, 0.251 mm, and 30 m thick. An electronic ionizer with 70 eV ionization energy was used. Helium gas was utilized as a carrier gas (flow rate = 1 mL/min). The injector and MS transmission line were set at 280 °C. The oven temperature was set at 50 °C, then increased to 150 °C at a rate of 7 °C per minute, then to 270 °C at a rate of 5 °C per minute (wait for 2 min), and finally to 310 °C at a rate of 3.5 °C/min (continued for 10 min). To investigate the quantification of all components found, a relative peak area was used. By comparing the retention periods and mass spectra of the chemicals with those of NIST, Willy Library data from the GC-MS instrument, and the chemicals were tentatively identified. The collective spectra of user-generated reference libraries were used for identification. Single-ion chromatographic reconstructions were used to assess peak homogeneity. Co-chromatographic analysis of reference compounds was performed whenever possible to confirm GC retention times [87,88].

3.6. Data Analyses

The data were analyzed by the software, SPSS V23 (IBM, New York, NY, USA), for doing the Probit analyses to calculate the lethal concentration (LC) values and the one-way analysis of variance (ANOVA) (Post Hoc/Turkey’s HSD test). The significant levels were set at $p < 0.05$.

4. Conclusions

It is crucial to safeguard livestock and domesticate animals from blood-feeding ectoparasites and vector-borne diseases. Worldwide, pest control is dependent on conventional pesticides, but resistance has developed to almost all classes of pesticides. Botanicals as eco-friendly pesticides represent conspicuous alternatives because of the wide diversity and high effectiveness of several plant-borne compounds. This study revealed, for the first time according to our knowledge, the efficacy of methanol and hexane extracts of C. molmol and A. heterophylla against four camel and cattle blood-sucking arthropods.

Our results confirmed that cattle lice and the louse fly were more susceptible (12.5 mg/mL) than cattle and camel ticks (25.0 mg/mL) to A. heterophylla and C. molmol extracts. Both methanol extracts were recommended as an ideal eco-friendly and inexpensive pest control approach that could be incorporated into integrated pest management used for the protection of large animals from vectors and vector-borne diseases. Further studies could be directed towards the field application and safety profile of C. molmol
and *A. heterophylla* against non-target organisms as well as studying the synergistic effects of surfactants.

Author Contributions: Conceptualization, M.M.B., A.S. and H.F.K.; methodology, M.M.B., M.M.H., A.S., H.F.K., E.S.S., S.A.S., Y.A.E.-S. and R.S.B.; software, M.M.B., S.A.S. and A.S.; validation, M.M.B., A.S., H.F.K., R.S.B. and Y.A.E.-S.; formal analysis, M.M.B., A.S., E.S.S., S.A.S. and H.F.K.; investigation, M.M.B., A.S., H.F.K. and R.S.B.; data management, M.M.B., H.F.K., E.S.S., M.M.H., Y.A.E.-S. and R.S.B.; writing—original draft preparation, M.M.B., M.M.H., A.S., E.S.S. and H.F.K.; writing—review and editing, M.M.B., A.S., H.F.K., R.S.B., S.A.S. and Y.A.E.-S.; supervision, M.M.B., A.S. and H.F.K.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science, Technology, and Innovation Funding Authority, (STIFA) Egypt. [Grant number 41608]; Project title: “Eco-friendly Pesticides against Pests of Medical, Veterinary, and Agricultural Importance”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The co-authors would like to thank the funding agency of this work, the Science, Technology, and Innovation Funding Authority, Egypt. [Grant number 41608] for funding the project title: “Eco-friendly Pesticides against Pests of Medical, Veterinary, and Agricultural Importance”.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Perveen, N.; Muzaffar, S.B.; Vijayan, R.; Al-Deeb, M.A. Microbial communities associated with the camel tick, *Hyalomma dromedarii*: 16S rRNA gene-based analysis. *Sci. Rep.* 2020, 10, 17035. [CrossRef] [PubMed]
2. Hussain, S.; Saqib, M.; Ashfaq, K. First Molecular Evidence of *Coxiella Burnetii* in Ticks Collected from Dromedary Camels in Punjab, Pakistan. *Pak. Vet. J.* 2022, 42, 276–280.
3. Rahman, A.; Kashif, M.; Nasir, A.; Idrees, A.; Jamil, M.; Qadir, I.; Khan, I.; Aziz, H.; Qazi, I.; et al. A Review of Tick and Tick Control Strategies in Pakistan. *Pak. J. Med. Health Sci.* 2022, 16, 652–655. [CrossRef]
4. Benelli, G.; Duggan, M.F. Management of Arthropod Vector Data–Social and Ecological Dynamics Facing the One Health Perspective. *Acta Trop.* 2018, 182, 80–91. [CrossRef]
5. Khatar, H.F. Prospects of botanical biopesticides in insect pest management. *J. Appl. Pharm. Sci.* 2012, 3, 641–656. [CrossRef]
6. Abbas, R.Z.; Zaman, M.A.; Colwell, D.; Gillard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. *Vet. Parasitol.* 2014, 203, 6–20. [CrossRef]
7. Pavoni, L.; Benelli, G.; Maggi, F.; Bonacuccia, G. Green Nanoemulsion Interventions for Bi-opesticide Formulations. In *Nano-Biopesticides Today and Future Perspectives*; Academic Press: Cambridge, MA, USA, 2019; pp. 133–160.
8. Khatar, H.F.; Selim, A.M.; Abouelella, G.A.; Abouelella, N.A.; Murugan, K.; Vaz, N.P.; Govindarajan, M. Commercial Mosquito Repellents and Their Safety Concerns. In *Malaria*; Fyson, K., Ed.; IntechOpen: London, UK, 2019; pp. 1–27.
9. Pinheiro, L.A.; Dader, B.; Wanumen, A.C.; Pereira, J.A.; Santos, S.A.P.; Medina, P. Side Effects of Pesticides on the Olive Fruit Fly Parasitoid *Psyttalia concolor* (Széppligeti): A Review. *Agronomy* 2020, 10, 1755. [CrossRef]
10. Khatar, H.F. Ecosmart Biorational Insecticides: Alternative Insect Control Strategies. In *Insecticides—Advances in Integrated Pest Management*; Farzana, P., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 17–60.
11. Khatar, H.F. Bioactivity of Essential Oils as Green Biopesticides: Recent Global Scenario. In *Recent Progress in Medicinal Plants*; Govil, J.N., Bhattacharya, S., Eds.; Studium Press LLC: Houston, TX, USA, 2013; pp. 151–218.
12. El-Ashtam, S.; Aboelhadid, S.M.; Kamel, A.A.; Mahrous, L.N.; Fahmy, M.M. First Report of Cattle Tick *Rhipicephalus (Boophilus) annulatus* in Egypt Resistant to Ivermectin. *Insects* 2019, 10, 404. [CrossRef]
13. Steve, P.; Jan, T. The Sophisticated Peptide Chemistry of Venomous Animals as a Source of Novel Insecticides Acting on Voltage-Gated Sodium Channels. In *Insecticides—Advances in Integrated Pest Management*; IntechOpen: London, UK, 2012, pp. 213–250. [CrossRef]
14. Ahmed, N.; Alam, M.; Saeed, M.; Ullah, H.; Iqbal, T.; Al-Mutairi, K.A.; Shahjeer, K.; Ullah, R.; Ahmed, S.; Ahmed, N.A.A.H.; et al. Botanical Insecticides Are a Non-Toxic Alternative to Conventional Pesticides in the Control of Insects and Pests. In *Global Decline of Insects*; IntechOpen: London, UK, 2021. [CrossRef]
15. Iqbal, T.; Ahmed, N.; Shahjeer, K.; Ahmed, S.; Al-Mutairi, K.A.; Khatar, H.F.; Ali, R.F. Botanical Insecticides and Their Potential as Anti-Insect/Pests: Are They Successful against Insects and Pests? In *Global Decline of Insects*; IntechOpen: London, UK, 2021.
16. Khatar, H.; Hendawy, N.; Govindarajan, M.; Murugan, K.; Benelli, G. Photosensitizers in the fight against ticks: Safranin as a novel photodynamic fluorescent acaricide to control the camel tick *Hyalomma dromedarii* (Ixodidae). *Parasitol. Res.* 2016, 115, 3747–3758. [CrossRef]

Acknowledgments: The co-authors would like to thank the funding agency of this work, the Science, Technology, and Innovation Funding Authority, Egypt. [Grant number 41608] for funding the project title: “Eco-friendly Pesticides against Pests of Medical, Veterinary, and Agricultural Importance”.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest.
46. Radwan, I.T.; Baz, M.M.; Khater, H.; Selim, A.M. Nanostructured Lipid Carriers (NLC) for Biologically Active Green Tea and Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against Culex pipiens. Molecules. 2022, 27, 1939. [CrossRef]

47. Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Nicoletti, M.; Madhyazhagan, P.; Benelli, G. Characterization and Bioticotoxicity of Hyphema musciformis-Synthesized Silver Nanoparticles as Potential Eco-Friendly Control Tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf. 2015, 121, 31–38. [CrossRef]

48. Alkenani, N.A.; Ahmed, M.M.M.; Al-Solami, H.M.; Anwar, Y.; Alghamdi, K.M.; Ahmad, M.S. Molecular Identification and Bio-Control of Mosquitoes Using Black Seeds Extract in Jeddah. Pak. Vet. J. 2021, 41, 2074–7764.

49. Khater, H.F.; El-Shorbagy, M.; Seddiek, S.A. Lousicidal Efficacy of Camphor Oil, D-Phenothrin, and Deltamethrin against the Slinger Pigeon Louse, Columbicula columbae. Int. J. Vet. Sci. Med. 2014, 2, 7–13. [CrossRef]

50. Baz, M.M.; Selim, A.; Radwan, I.T.; Alkhairabi, A.M.; Khater, H.F. Larvicidal and adulticidal effects of some Egyptian oils against Culex pipiens. Sci. Rep. 2022, 12, 4406. [CrossRef]

51. Abdel-Meguid, A.D.; Ramadan, M.Y.; Khater, H.F.; Radwan, I.T. Louicidal Efficacy of Adulticidal Oils against the Dog Louse, Trichodectes canis (Mammelopha: Trichodectidae). Egypt. Acad. J. Biol. Sci. E. Med. Entomol. Parasitol. 2022, 14, 1–16. [CrossRef]

52. Eltaly, R.; Mohamed, M.B.; Ibrahim, T.R.; Mohamed, Y.; Hossam, S.A.; Abdel fattah, S.; Hanan, A.A.T.; Ahmed, A.G.F.; Khater, H.F. Larvicidal and adulticidal effects of some Egyptian oils against Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against the Blowfly Lucilia sericata (Diptera: Calliphoridae). Int. J. Adv. Res. Biol. Sci. 2016, 3, 144–158.

53. Baz, M.M.; Eltaly, R.I.; Debboun, M.; Selim, A.; Radwan, I.T.; Ahmed, N.; Khater, H.F. The Contact/Fumigant Adulticidal Effect of Egyptian Oils against the House Fly, Musca domestica (Diptera: Muscidae). Int. J. Vet. Sci. 2021, 10, 355. [CrossRef]

54. AbouLaila, M.; El-Sayed, S.; Omar, M.; Al-Aboody, M.; Aziz, A.A.; Abdel-Daim, M.; Rizk, M.; Igarashi, I. Myrrh Oil in Vitro Inhibitory Growth on Bovine and Equine Piroplasm Parasites and Babesia microti of Mice. Pathogens 2020, 9, 173. [CrossRef]

55. Muturi, E.J.; Hay, W.T.; Doll, K.M.; Ramirez, J.L.; Selling, G. Insecticidal Activity of Commiphora erythraea Essential Oil and Its Liposoluble Biological Activities on Bulinus truncatus and Biomphalaria alexandrina (Mollusca, Gastropoda). Egypt. J. Exp. Biol. Zool. 2015, 2, 207–219.

56. Baz, M.M.; Hegazy, M.M.; Khater, H.F.; El-Sayed, Y.A. Comparative Evaluation of Five Oil-Resin Plant Extracts against the Mosquito Larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. 2021, 41, 2074–7764.

57. Baz, M.M.; Selim, A.; Khater, H.F.; El-Sayed, Y.A. Larvicidal Efficacy of Essential Oils against the Dog Louse, Ctenocephalides canis. Egypt. Acad. J. Biol. Sci. E. Med. Entomol. Parasitol. 2020, 57, 1835–1842. [CrossRef]

58. Hoda, S.M.; Fahmy, M.M.; Attia, M.M.; Rabab, M.; Slender Pigeon Louse, Columbicola columbae and Their Toxicity on Swiss Albino Mice. Int. J. Vet. Sci. Med. 2020, 1835–1842. [CrossRef]

59. Hoda, S.M.; Fahmy, M.M.; Attia, M.M.; Rabab, M.; Shalaby, H.A.; Massoud, A.M. The Insecticidal Activity of Two Medicinal Plants (Commiphora molmol) and (Balantiaegia aegyptia) against the Blowfly Lucilia sericata (Diptera: Calliphoridae). Int. J. Adv. Res. Biol. Sci. 2016, 3, 144–158.

60. Hoda, S.M.; Fahmy, M.M.; Attia, M.M.; Rabab, M.; Shalaby, H.A.; Massoud, A.M. The Insecticidal Activity of Two Medicinal Plants (Commiphora molmol) and (Balantiaegia aegyptia) against the Blowfly Lucilia sericata (Diptera: Calliphoridae). Int. J. Adv. Res. Biol. Sci. 2016, 3, 144–158.

61. Samrot, A.V.; Bhavya, K.S.; Angalene, J.L.A.; Roshini, S.M.; Preethi, R.; Steffi, S.M.; Kumar, S.S. Utilization of Gum Polysaccharide of Melia azedarach as Potential Eco-Friendly Control Tool against Aedes aegypti and Plutella xylostella. Int. J. Herb. Med. 2014, 2014, 19–25.

62. Divvela, H.N.D.; Duppala, L.; Kolapalli, V.R.M. Isolation and Acute Oral Toxicity Studies of Araucaria heterophylla charide of Araucaria heterophylla and Azadirachta indica for Encapsulation of Cyfluthrin Loaded Super Paramagnetic Iron Oxide Nanoparticles for Mosquito Larvicidal Activity. J. Biol. Macromol. 2020, 153, 1024–1034. [CrossRef]

63. Jasim, G.A.; Al-Zubaidy, A.A.; Hussein, S.M.; Sahib, H.B.; Ahmed, B.S. The Acute Toxicity of Commiphora molmol Oleo-Gum-Resin Methanol Extract. Int. J. Pharm. Sci. Res. 2015, 33, 109–114.

64. Massoud, A.M.; Kutkat, M.A.; El-Khateeb, R.M.; Labib, L.M. Acaricidal Efficacy of Myrrh [Commiphora molmol] on the Fowl Tick Argas persicus [Acari: Argasidae]. J. Egypt. Soc. Parasitol. 2005, 35, 667–686.

65. Temba, S.G. Acaricidal Investigation of Commiphora swynnertoni (Burrt) Stem Bark Extracts against Common Ticks in Tanzania. Int. J. Herb. Med. 2012, 4, 19–25.

66. Mangkara, M.; Erasto, P.; Chacha, M. Acaricidal Activity of Commiphora Swynnertoni (Burrt) Stem Bark Extracts against Adult Rhicophilus appendiculatus Newman and Amblyomma variegatum. Am. J. Res. Commun. 2014, 2, 82–92.

67. Birkett, M.A.; Al Abassi, S.; Krober, T.; Chamberlain, K.; Hooper, A.M.; Guerin, P.M.; Wadhams, L.J. Anticoepartasitic Activity of the Gum Resin, Gum Hagggar, from the East African Plant, Commiphora holtsziana. Phytochemistry 2008, 69, 1710–1715. [CrossRef]

68. Nisbet, A.J. Azadirachtin from the neem tree Azadirachta indica: Its action against insects. Anais Sociedade Entomológica Brasil 2000, 29, 615–632.

69. Figueiredo, J.C.G.; Nunes, Y.R.F.; Vasconcelos, V.D.O.; Arruda, S.R.; Morais-Costa, F.; Santos, G.S.C.; Alvez, FS; Duarte, E.R. Effects of leaf extracts of Proteus spirucaenum against adult and larval Rhicophilus microplus. Exp. Appl. Acarol. 2019, 79, 447–458. [CrossRef]

70. Abdel-Ghany, H.S.; Abdel-Shafy, S.; Abuowarda, M.; El-Khateeb, R.M.; Hoballah, E.M.; Fahmy, M.M. Acaricidal Activity of Artemisia Herba-Alba and Melia azedarach Oil Nanoemulsion against Hyalomma dromedarii and Their Toxicity on Swiss Albino Mice. Exp. Appl. Acarol. 2021, 84, 241–262. [CrossRef]
72. Mahran, M.O.; Wahba, A.A.; Mansour, K.M. In Vitro Acaricidal Effect of Neem Leaves (Azadirachta Indica) and Citrullus colocynthis Extracts against the Camel Ticks, Hyalomma dromedarii (Acari: Ixodidae). J. Ecosyst. Ecography 2020, 10, 264–300. [CrossRef]

73. Campbell, J.; Boxler, D.; Davis, R. Comparative efficacy of several insecticides for control of cattle lice (Mallophaga: Trichodectidae and Anoplura: Haematopinidae). Vet. Parasitol. 2001, 96, 155–164. [PubMed]

74. Zahir, A.A.; Rahuman, A.A.; Bagavan, A.; Santhoshkumar, T.; Mohamed, R.R.; Kamaraj, C.; Rajakumar, G.; Elango, G.; Jayaseelan, C.; Marimuthu, S. Evaluation of Botanical Extracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach. Parasitol. Res. 2010, 107, 585–592. [PubMed]

75. Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Jayaseelan, C.; Bagavan, A.; Kirthi, A.V.; Kamaraj, C.; Zahir, A.A.; Elango, G.; et al. Evaluation of Catharanthus roseus Leaf Extract-Mediated Biosynthesis of Titanium Dioxide Nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol. Res. 2012, 11, 2329–2337. [CrossRef] [PubMed]

76. Santhoshkumar, T.; Rahuman, A.A.; Bagavan, A.; Marimuthu, S.; Jayaseelan, C.; Kirthi, A.V.; Kamaraj, C.; Rajakumar, G.; Zahir, A.A.; Elango, G.; et al. Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp. Parasitol. 2012, 132, 156–165. [CrossRef]

77. Khater, H.F. Bioactivities of Some Essential Oils against the Camel Nasal Botfly, Cephalopina titillator. Parasitol. Res. 2014, 113, 593–605. [CrossRef]

78. Wang, X.; Liu, Y.-S.; Nair, U.B.; Armstrong, D.W.; Ellis, B.; Williams, K.M. Enantiomeric composition of monoterpenes in conifer resins. Tetrahedron Asymmetry 1997, 8, 3977–3984. [CrossRef]

79. Otto, A.; Wilde, V. Sesqui-, Di-, and Triterpenoids as Chemosystematic Markers in Extant Conifers—A Review. Bot. Rev. 2001, 67, 141–238. [CrossRef]

80. Lebouvier, N.; Hnawia, E.; Lesaffre, L.; Menut, C.; Nour, M. Acaricidal Activity of Essential Oils from Five Endemic Conifers of New Caledonia on the Cattle Tick Rhipicephalus (Boophilus) microplus. Parasitol. Res. 2013, 112, 1379–1384. [CrossRef]

81. Abdel-Sattar, E.; Monem, A.R.A.; Ezzat, S.M.; El-Halawany, A.; Mouneir, S.M. Chemical and Biological Investigation of Araucaria heterophylla Salisb. Z. Naturforsch. C 2009, 64, 819–823. [CrossRef]

82. Perotti, J.C.; da Silva Rodrigues-Corrêa, K.C.; Fett-Neto, A.G. Control of Resin Production in Araucaria angustifolia, an Ancient South American Conifer. Plant Biol. 2015, 17, 852–859. [CrossRef]

83. Gadir, S.A.; Ahmed, I.M. Commiphora Myrrha and Commiphora africana Essential Oils. J. Chem. Pharm. Res. 2014, 6, 151–156.

84. Shameem, I. Phytochemical & Therapeutic Potentials of Murr Makki (Commiphora myrrha): A review. Indian J. Appl. Res. 2018, 8, 102–104.

85. Da Silva, J.P.; Florean, E.O.P.T.; Silva, R.B.; Santos, Y.D.; Pereira, M.M.S.; da Silva, L.R. Relationship of the Species Commiphora Leptophloeos with Aedes Aegypti: A Review. Res. Soc. Dev. 2022, 11, e48711326735. [CrossRef]

86. Ukoroije, B.R.; Otayor, A.R. Review on the Bio-Insecticidal Properties of Some Plant Secondary Metabolites: Types, Formulations, Modes of Action, Advantages and Limitations. Asian J. Res. Zool. 2020, 3, 27–60.

87. Ashmawy, N.A.; Salem, M.Z.M.; El-Hefny, M.; Abd El-Kareem, M.S.M.; El-Shanhorey, N.A.; Mohamed, A.A.; Salem, A.Z.M. Antibacterial activity of the bioactive compounds identified in three woody plants against some pathogenic bacteria. Microb. Pathog. 2018, 121, 331–340. [CrossRef]

88. El-Hefny, M.; Mohamed, A.A.; Salem, M.Z.M.; Abd El-Kareem, M.S.M.; Ali, H.M. Chemical composition, antioxidant capacity and antibacterial activity against some potato bacterial pathogens of fruit extracts from Phytoleca dioica and Ziziphus spinachristi grown in Egypt. Sci. Hortic. 2018, 233, 225–232. [CrossRef]