A test of CPT symmetry in K^0 vs $\bar{K}^0 \to \pi^+\pi^-\pi^0$ decays

XING Zhi-Zhong(邢志忠)1,2,1

1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2 Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China

Abstract I show that the CP-violating asymmetry in K^0 vs $\bar{K}^0 \to \pi^+\pi^-\pi^0$ decays differs from that in $K_L \to \pi^+\pi^-$, $K_L \to \pi^0\pi^0$ or the semileptonic K_L transitions, if there exists CPT violation in K^0-\bar{K}^0 mixing. A delicate measurement of this difference at a super flavor factory (e.g., the ϕ factory) will provide us with a robust test of CPT symmetry in the neutral kaon system.

Key words K^0-\bar{K}^0 mixing, CPT violation

PACS 11.30.Er, 13.25.Es, 14.40.Aq

1 The motivation

The CPT theorem claims that a Lorentz-invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry [1]. It is so far so good, because there is no convincing experimental hint at CPT violation [2]. The breaking of CPT symmetry, as expected in some “exotic” scenarios of new physics beyond the standard model (e.g., string theory) [3], would be a big deal. In any case, much more experimental tests of this theorem are desirable.

The K^0-\bar{K}^0 mixing system has been playing an important role in particle physics for testing fundamental symmetries (such as CP, T and CPT) and examining conservation laws (such as $\Delta S = \Delta Q$). The existing experimental evidence for CPT invariance in the mixing and decays of neutral kaon mesons remains rather poor [2]: it is not excluded that the strength of CP-violating interactions could be as large as about ten percentage of that of CP-violating interactions. This unsatisfactory situation will be improved in the near future, in particular after a variety of more delicate measurements are carried out at a super flavor factory [4] (e.g., the ϕ factory [5]).

There are several possibilities of probing CPT violation in K^0-\bar{K}^0 mixing with the decays of K_S and K_L mesons into the two-pion and (or) the semileptonic states [2]. A different approach towards testing CPT symmetry, with the help of neutral kaon decays into the three-pion states, has also been pointed out in Ref. [6]. The idea is simply that the CP-violating effect induced by K^0-\bar{K}^0 mixing in K^0 vs $\bar{K}^0 \to \pi^+\pi^-\pi^0$ transitions should not be identical to that in $K_L \to \pi^+\pi^-$, $K_L \to \pi^0\pi^0$ or the semileptonic K_L decays, if CPT symmetry is broken. Thus a careful comparison between these two types of CP-violating effects may provide us with a robust test of CPT invariance in K^0-\bar{K}^0 mixing.

An unfortunate fact is that no attention has so far been paid to the method advocated in Ref. [6]. In this talk, which is more or less an advertisement, I shall explain why a test of CPT symmetry is possible by measuring the time-dependent CP-violating asymmetry between $K^0(t) \to \pi^+\pi^-\pi^0$ and $\bar{K}^0(t) \to \pi^+\pi^-\pi^0$ decays. My result is hopefully useful for the upcoming experiments of kaon physics.

2 The idea

Let me outline the main idea. The mass eigenstates of K^0 and \bar{K}^0 can in general be written as

$$|K_S\rangle = \frac{1}{\sqrt{|p_1|^2 + |q_1|^2}} \left(p_1 |K^0\rangle + q_1 |\bar{K}^0\rangle \right),$$

$$|K_L\rangle = \frac{1}{\sqrt{|p_2|^2 + |q_2|^2}} \left(p_2 |K^0\rangle - q_2 |\bar{K}^0\rangle \right),$$

(1)
in which \(p_i \) and \(q_i \) (for \(i = 1, 2 \)) are complex mixing parameters. Note that \(p_1 = p_2 \) and \(q_1 = q_2 \) follow from CPT invariance [7]. The traditional characteristic quantities of \(CP \) violation in the \(K^0-\bar{K}^0 \) mixing system [2], \(\eta_{+-}, \eta_{00} \) and \(\delta_L \), are all related to \(K_L \) decays and thus the \((p_2, q_2) \) parameters. For example,

\[
\delta_L = \frac{|p_2|^2 - |q_2|^2}{|p_2|^2 + |q_2|^2}
\]

(2)

in the absence of \(\Delta S = -\Delta Q \) interactions. A measurement of \(CP \) violation associated with

\[
\delta_S = \frac{|p_1|^2 - |q_1|^2}{|p_1|^2 + |q_1|^2}
\]

(3)

has been assumed to be extremely difficult, if not impossible, due to the rapid decay of the \(K_S \) meson to the two-pion state or the semileptonic state. Nevertheless, I shall show that \(\delta_S \) can be measured from the rate asymmetry of \(K^0 \) and \(\bar{K}^0 \) mesons decaying into the three-pion state \(\pi^+\pi^-\pi^0 \). The difference between \(\delta_S \) and \(\delta_L \) signifies \(CP \) violation in \(K^0-\bar{K}^0 \) mixing. This point can be seen more clearly if one adopts the popular \((\epsilon, \delta)\) parameters to describe \(CP \)- and \(CPT \)-violating effects in the \(K^0-\bar{K}^0 \) mixing system [2]:

\[
P_1 = 1 + \epsilon + \delta,
\]

\[
P_2 = 1 + \epsilon - \delta,
\]

\[
q_1 = 1 - \epsilon - \delta,
\]

\[
q_2 = 1 - \epsilon + \delta.
\]

(4)

Then

\[
\delta_L = 2(\text{Re}\, \epsilon - \text{Re}\, \delta),
\]

\[
\delta_S = 2(\text{Re}\, \epsilon + \text{Re}\, \delta).
\]

(5)

It turns out that \(\delta_S - \delta_L = 4\text{Re}\, \delta \) is a clear signature of \(CP \) violation [6].

Let me quote two typical experimental constraints on the \(CPT \)-violating parameter \(\delta \) in \(K^0-\bar{K}^0 \) mixing: \(\text{Re}\, \delta = (2.9 \pm 2.6_{\text{stat}} \pm 0.6_{\text{syst}}) \times 10^{-4} \) obtained by the CPLEAR Collaboration [8] and \(\text{Im}\, \delta = (0.4 \pm 2.1) \times 10^{-5} \) obtained by the KLOE Collaboration [9]. A systematic analysis of the \(CP \)- and \(CPT \)-violating parameter space has already been done by the Particle Data Group in Ref. [2].

3 The approach

The \(CP \) eigenvalue for the \(\pi^+\pi^-\pi^0 \) final state is given by \((-1)^{l+1}\), where \(l \) is the relative angular momentum between \(\pi^+ \) and \(\pi^- \). Since the sum of the masses of three pions is close to the kaon mass, the pions have quite low kinetic energy \(E_{\text{CM}}(\pi) \) in the kaon rest-frame, and the states with \(l > 0 \) are suppressed by the centrifugal barrier [10]. Thus the \(K_L \) meson decays dominantly into the kinematics-favored \((l = 0)\) and \(CP \)-allowed \((CP = -1)\) component, and the kinematics-favored \((l = 0)\) but \(CP \)-forbidden \((CP = +1)\) component. This implies an interesting Dalitz-plot distribution for the \(K_L \) decays into \(\pi^+\pi^-\pi^0 \) transition: it is symmetric with respect to \(\pi^+ \) and \(\pi^- \) for the \(CP \)-violating amplitude, but anti-symmetric for the \(CP \)-conserving amplitude. Let the ratio of \(K_S \) and \(K_L \) decay amplitudes be

\[
\eta_{0-} = \frac{A(K_S \rightarrow \pi^+\pi^-\pi^0)}{A(K_L \rightarrow \pi^+\pi^-\pi^0)}.
\]

(6)

It is clear that \(\eta_{0-} \) depends only upon the \(CP \)-violating component of \(A(K_S \rightarrow \pi^+\pi^-\pi^0) \), if data are integrated over the whole Dalitz plot [10, 11]. The time-dependent rates for the initially pure \(K^0 \) and \(\bar{K}^0 \) states decaying into \(\pi^+\pi^-\pi^0 \), denoted by \(R(t) \) and \(\bar{R}(t) \) respectively, can be calculated with the help of Eqs. (1) and (6). I arrive at [6]

\[
\begin{align*}
R(t) & \propto \left| p_1^2 + |q_2|^2 \right| \eta_{0-} e^{-\Delta m t} + 2\text{Re}(q_1^* q_2 \eta_{0-} e^{i\Delta m t}) e^{-\Delta R t/2}, \\
\bar{R}(t) & \propto \left| p_1^2 + |q_2|^2 \right| \eta_{0-} e^{-\Delta m t} - 2\text{Re}(p_1^* p_2 \eta_{0-} e^{i\Delta m t}) e^{-\Delta R t/2},
\end{align*}
\]

(7)

where \(\Delta m > 0 \) and \(\Delta R > 0 \) denote the mass difference and the width difference of \(K_S \) and \(K_L \) mesons, respectively. To a good degree of accuracy, I obtain the following \(CP \)-violating asymmetry:

\[
\begin{align*}
A(t) & \equiv \frac{\bar{R}(t) - R(t)}{\bar{R}(t) + R(t)} = \delta_S - 2 e^{-\Delta R t/2} \left[\text{Re} \eta_{0-} \cos(\Delta m t) - \text{Im} \eta_{0-} \sin(\Delta m t) \right] \xi - 2 e^{-\Delta R t/2} \left[\text{Re} \eta_{0-} \sin(\Delta m t) + \text{Im} \eta_{0-} \cos(\Delta m t) \right] \zeta,
\end{align*}
\]

(8)

in which

\[
\begin{align*}
\xi & = \frac{\text{Re}(p_1 q_2^* - q_1 p_2^*)}{|p_1|^2 + |q_1|^2} = 1 + O(|\epsilon|^2) + O(|\delta|^2) + O(\text{Re}(\text{Re}\, \delta^*)) , \\
\zeta & = \frac{\text{Im}(p_1 q_2^* + q_1 p_2^*)}{|p_1|^2 + |q_1|^2} = O(\text{Im}(\text{Re}\, \delta^*)).
\end{align*}
\]

(9)

It is obvious that \(\delta_S \) can be determined through the measurement of \(A(t) \). In particular, the relationship \(\lim_{t \to \infty} A(t) = \delta_S \) holds.
As I have emphasized, the difference between δ_S and δ_L hints at CPT violation in K^0-\bar{K}^0 mixing. If $|\text{Re} \delta|/|\text{Re} \epsilon| \sim 0.1$, then the difference $\delta_S - \delta_L = 4\text{Re} \delta$ can be as large as 0.4 $\text{Re} \epsilon \sim 6.6 \times 10^{-4}$ in magnitude, where the experimental value $\text{Re} \epsilon \approx 1.65 \times 10^{-3}$ has been used [2]. Since both ϵ and δ are small quantities, it turns out that $\xi \approx 1$ and $\zeta \approx 0$ are good approximations. Eq. (8) is therefore simplified to

$$A(t) = \delta_S - 2e^{-\Delta t^2/2} \left[\text{Re} \eta_{+0} \cos(\Delta mt) - \text{Im} \eta_{+0} \sin(\Delta mt) \right].$$

In the neglect of CPT violation, namely, $\delta_S = 2\text{Re} \epsilon$, Eq. (10) can simply reproduce the result obtained in Ref. [10]. For illustration, I plot the behavior of $A(t)$ in Fig. 1, in which $\delta_S = 3 \times 10^{-3}$ and $|\eta_{+0}| = 5 \times 10^{-3}$ have typically been input. One may observe that $A(t)$ approaches δ_S for $t \geq 5\tau_S$ and reaches δ_S if $t \geq 10\tau_S$, where τ_S is the mean lifetime of the K_S meson. This implies a certain feasibility to determine δ_S from the time-dependent CP-violating asymmetry $A(t)$.

![Fig. 1. An illustrative plot for the CP-violating asymmetry $A(t)$ with the typical inputs $\delta_S = 3 \times 10^{-3}$ and $|\eta_{+0}| = 5 \times 10^{-3}$ [6].](image)

4 The discussion

In the above analysis I have taken an integration over the whole Dalitz plot, such that η_{+0} solely contains the CP-violating part of $A(K_S \to \pi^+ \pi^- \pi^0)$. To look at the CP-conserving component of $A(K_S \to \pi^+ \pi^- \pi^0)$, one may study the phase-space regions $E_{CM}(\pi^+) > E_{CM}(\pi^-)$ and $E_{CM}(\pi^+) < E_{CM}(\pi^-)$ separately [10]. In this case the corresponding CP-violating asymmetries between $R(t)$ and $\bar{R}(t)$ take the same form as $A(t)$ in Eq. (8) or Eq. (10), but η_{+0} should be replaced by $\eta_{+0} \pm \lambda$, where λ denotes the CP-conserving contribution to the ratio of K_S and K_L decay amplitudes [10]. Certainly, the CP-violating parameter δ_S can still be determined from measuring the time dependence of the relevant decay rate asymmetries.

An accurate measurement of δ_S from $K^0 \to \bar{K}^0 \to \pi^+ \pi^- \pi^0$ should be feasible at the ϕ factory, where a huge amount of $K^0\bar{K}^0$ events can be coherently produced [5]. Choosing the semileptonic decay of one kaon to tag the flavor of the other kaon decaying into $\pi^+ \pi^- \pi^0$ on the ϕ resonance, one should be able to construct the time-dependent rate asymmetry between $K^0(t) \to \pi^+ \pi^- \pi^0$ and $\bar{K}^0(t) \to \pi^+ \pi^- \pi^0$ decays in a way similar to Eq. (8). It is also expected that other super flavor factories may measure δ_S and δ_L to a good degree of accuracy.

Note that Lorentz invariance has been taken for granted in what I have discussed. As pointed out by Greenberg [12], "If CPT invariance is violated in an interacting quantum field theory, then that theory also violates Lorentz invariance". In my discussions, the dependence of the CPT-violating parameter δ on the sidereal time should in general be considered, since CPT violation may simultaneously imply a violation of Lorentz symmetry in the neutral kaon system. For simplicity, here I take δ to be a constant by assuming that the boost parameters of both K^0 and \bar{K}^0 are small and the corresponding Lorentz-violating effect is rotationally invariant in the laboratory frame [13]. In this approximation, my results are essentially valid as the averages over the sidereal time, such that the effect of Lorentz violation due to the direction of motion is negligible.

Finally, I like to mention that different approaches have been discussed to test CPT symmetry in D^0-\bar{D}^0, B^0_s-\bar{B}^0_s, or B^0-\bar{B}^0 mixing [14]. The idea presented here cannot directly be applied to those heavy neutral-meson systems. In this sense, it represents a unique way applicable in the K^0-\bar{K}^0 mixing system to test the CPT theorem.

5 The conclusion

To conclude, the CP-violating effect induced by K^0-\bar{K}^0 mixing in $K^0 \to \pi^+ \pi^- \pi^0$ decays is possible to deviate to some extent from that in $K_L \to \pi\pi$ or the semileptonic K_L transitions due to the violation of CPT symmetry. Measuring or constraining this tiny difference may serve as a robust test of CPT invariance in the neutral kaon system.

I would like to thank Changzheng Yuan and the organizing committee of PHIPSI09 for giving me this opportunity to present an "old" idea for the future.
References

1 Schwinger J. Phys. Rev., 1951, 82: 914; Lüders G. Kgl. Dansk. Vidensk. Selsk. Mat. Fys. Medd., 1954, 28: 1; Pauli W. In: Niels Bohr and the Development of Physics. New York: Pergamon Press. 1955. 30

2 Particle Data Group, Amsler C et al. Phys. Lett. B, 2008, 667: 1

3 Kostelecky V A. hep-ph/0104227

4 Hitlin D. In these proceedings

5 The DAΦNE Physics Handbook. Edited by Maiani L, Pancheri G, Paver N. Frascati. 1992.

6 XING Z Z. Phys. Rev. D, 2000, 62: 097901

7 Lee T D, WU C S. Ann. Rev. Nucl. Part. Sci., 1966, 16: 511

8 CPLEAR collaboration, Angelopoulos A et al. Phys. Lett. B, 1998, 444: 52

9 KLOE collaboration, Ambrosino F et al. JHEP, 2006, 0612: 011

10 CPLEAR collaboration, Adler R et al. Phys. Lett. B, 1995, 364: 239; 1996, 370: 167; 1996, 374: 313; 1997, 407: 193

11 Nakada T, Wolfenstein L. Eur. Phys. J. C, 1998, 3: 457

12 Greenberg O W. Phys. Rev. Lett., 2002, 89: 231602

13 Kostelecky V A. Phys. Rev. Lett., 1998, 80: 1818; Phys. Rev. D, 2001, 64: 076001

14 XING Z Z. Phys. Rev. D, 1994, 50: 2957; Phys. Rev. D, 1997, 55: 196; Phys. Lett. B, 1999, 450: 202; Phys. Lett. B, 2000, 487: 327; Ren P, XING Z Z. Phys. Rev. D, 2007, 76: 116001