LIGHT-FRONT CQM CALCULATIONS OF BARYON ELECTROMAGNETIC FORM FACTORS

F. Cardarelli (1), E. Pace (2), G. Salmè (3) and S. Simula (3)

(1) Dept. of Physics and Supercomputer Computation Research Institute, Florida State University, Tallahassee, FL 32306, USA

(2) Dipartimento di Fisica, Università di Roma ”Tor Vergata” and Istituto Nazionale di Fisica Nucleare, Sezione Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy

(3) Istituto Nazionale di Fisica Nucleare, Sezione Sanità, Viale Regina Elena 299, I-00161 Roma, Italy

Abstract

The parameter-free predictions for the $N - P_{11}(1440)$ and $N - P_{33}(1232)$ electromagnetic transition form factors, obtained within our light-front constituent quark model using eigenfunctions of a baryon mass operator which includes a large amount of configuration mixing, are reported. The effects due to small components in the baryon wave functions, such as S’- and D-wave, are also investigated.

aTo appear in Nuclear Physics A (1997): Proceedings of the International Workshop on Hadron dynamics with the new DAΦNE and CEBAF facilities, Frascati, Italy, 11-14 November 1996.
1 INTRODUCTION

The electromagnetic (e.m.) excitation of Nucleon resonances, in the space-like region, represents a very interesting tool for gathering information on the internal structure of baryons and it is one of the major issues of the TJNAF research programme [1]. For investigating this topic we have developed a phenomenological approach [2], based on a constituent quark (CQ) model which features: i) a proper treatment of relativistic effects, achieved by formulating the model on the light-front (LF), see e.g. [3]; ii) baryon eigenfunctions of a mass operator that describes fairly well the mass spectrum [4], at variance with the widely adopted gaussian-like ansatz, see e.g. Ref. [5]; iii) a one-body approximation for the e.m. current able to reproduce the experimental data on the Nucleon and pion form factors.

2 GENERAL FORMALISM

In the LF hamiltonian dynamics [3] a baryon state, in the $u - d$ sector, $|\Psi_{J\lambda_n}^{TT}, \vec{P}\rangle$, is an eigenstate of: i) isospin, T and T_3; ii) parity, π; iii) kinematical (non-interacting) LF angular momentum operators j^2 and j_n, where the vector $\hat{n} = (0, 0, 1)$ defines the spin quantization axis; iv) total LF baryon momentum $\vec{P} \equiv (P^+, \vec{P}_\perp) = \vec{p}_1 + \vec{p}_2 + \vec{p}_3$, where $P^+ = P^0 + \hat{n} \cdot \vec{P}$ and $\vec{P}_\perp \cdot \hat{n} = 0$. The state $|\Psi_{J\lambda_n}^{TT}, \vec{P}\rangle$ factorizes into $|\Psi_{J\lambda_n}^{TT}, \vec{P}\rangle |\vec{P}\rangle$, and the intrinsic part $|\Psi_{J\lambda_n}^{TT}, \vec{P}\rangle$ can be constructed from the eigenstate $|\psi_{J\lambda_n}^{TT}, \vec{P}\rangle$ of the canonical angular momentum, i.e. $|\Psi_{J\lambda_n}^{TT}, \vec{P}\rangle = \mathcal{R}^\dagger |\psi_{J\lambda_n}^{TT}, \vec{P}\rangle$, where the unitary operator $\mathcal{R}^\dagger = \prod_{j=1}^3 R_{Med}(\vec{k}_j, m_j)$, with $R_{Med}(\vec{k}_j, m_j)$ being the generalized Melosh rotation [3]. Then $|\psi_{J\lambda_n}^{TT}, \vec{P}\rangle$ satisfies the following mass equation

\begin{equation}
(M_0 + V) |\psi_{J\lambda_n}^{TT}, \vec{P}\rangle = M |\psi_{J\lambda_n}^{TT}, \vec{P}\rangle
\end{equation}

where $M_0 = \sum_{i=1}^3 \sqrt{m_i^2 + \vec{k}_i^2}$ is the free mass operator, m_i the CQ mass ($m_u = m_d = 0.220 \text{ GeV}$ accordingly to [1]), M the baryon mass, and $J(J + 1)$. J_n are the eigenvalues of the operators j^2, j_n, respectively. The interaction V has to be independent of the total momentum P and invariant upon spatial rotations and translations. We can identify Eq. (1) with the baryon mass equation proposed by Capstick and Isgur (CI) [1]. Their CQ interaction is composed by a linear confining term, dominant at large separations, and a one-gluon-exchange (OGE) term, dominant at short separations, given by a central Coulomb-like potential and a spin-dependent part, responsible for the hyperfine splitting of baryon masses. The mass equation [1] has been accurately solved by expanding the eigenstates onto a large harmonic oscillator (HO) basis (up to 20 HO quanta) and then by applying the Rayleigh-Ritz variational principle.

The CQ momentum distribution calculated from the baryon eigenfunctions of Eq. (1), with the CI interaction, has a striking feature [3]: for a CQ three-momentum larger than 1 GeV/c, it is order of magnitude larger than momentum distributions evaluated from model functions, such as gaussian or power-law functions (cf. [3]). This fact is due to the smoothly singular OGE part and has immediate consequences on the interpretation of the
resonances, for instance, the Roper resonance is not a simple (first) radial excitation of the Nucleon and it has a large mixed-symmetry S’ component ($P_{S_{Roper}} = 9.3\%$).

In the LF formalism the space-like e.m. form factors are related to the matrix elements of the plus component of the current, $I^+ = T^0 + \hat{n} \cdot \vec{I}$, with the standard choice $q^+ = q^0 + \hat{n} \cdot \vec{q} = P_f^+ - P_i^+ = 0$, that allows to suppress the contribution of the pair creation from the vacuum $|\bar{\psi}_{vf}\psi_f\rangle$.

For a $\frac{1}{2}^+$ baryon in the final state, e.g. the Nucleon ($f = N$) or the Roper resonance ($f = R$), the Dirac and Pauli form factors, $F^{I\tau}_{1(2)}(Q^2)$ ($\tau = p$ or n, are given by

$$F^{I\tau}_{1}(Q^2) = \frac{1}{2} \text{Tr}[I^+(\tau)] \quad , \quad F^{I\tau}_{2}(Q^2) = i \frac{M_f + M_N}{2Q} \text{Tr}[\sigma_{2} I^+(\tau)]$$

with $I^+_{\nu,\nu}(\tau) = \bar{u}_L(\hat{P}_f, \nu_f) \left\{ F^{I\tau}_{1}(Q^2) \gamma^\nu + F^{I\tau}_{2}(Q^2) i\sigma^{\nu\rho}q_\rho/(M_f + M_N) \right\} u_L(\hat{P}_i, \nu)$, where $Q^2 = -q \cdot q$ is the squared four-momentum transfer, $\sigma^{\nu\rho} = \frac{i}{2}[\gamma^\nu, \gamma^\rho]$, $u_L(\hat{P}_i, \nu)$ [$u_L(\hat{P}_f, \nu_f)$] the Nucleon [final baryon] LF-spinor, σ_2 a Pauli matrix. For the excitation to a Δ resonance, or in general to a $\frac{3}{2}^+$ baryon, the kinematic-singularity free form factors $G_{1,2,3}$ [7] are related to the LF matrix elements of I^+ as follows

$$I^+_{\frac{1}{2}} = \frac{Q}{\sqrt{2}} \left[G_1(Q^2) + M_\Delta - \frac{M_N}{2} G_2(Q^2) \right]$$
$$I^+_{\frac{1}{2}} = -\frac{Q^2}{\sqrt{6}} \left[G_1(Q^2) + M_\Delta \frac{G_2(Q^2)}{2} - \frac{M_\Delta - M_N}{M_\Delta} G_3(Q^2) \right]$$
$$I^+_{\frac{1}{2}} = \frac{Q}{\sqrt{6}} \left[G_1(Q^2) \frac{M_N}{M_\Delta} - \frac{M_\Delta - M_N}{2M_\Delta} G_2(Q^2) - \frac{Q^2}{M_\Delta} G_3(Q^2) \right]$$
$$I^+_{\frac{1}{2}} = -\frac{Q^2}{2\sqrt{2}} G_2(Q^2)$$

with $I^+_{\nu,\nu}(\tau) = \langle \frac{1}{2}\tau, 10|TT_3| \bar{u}_L(\hat{P}_f, \nu_f) \Gamma^\nu + u_L(\hat{P}_i, \nu) \rangle$, with $\Gamma^\nu = G_1(Q^2) K_{1\nu}^+ + G_2(Q^2) K_{2\nu}^+ + G_3(Q^2) K_{3\nu}^+$ (tensors K_{im}^ν are defined in [4]). Differently from the case of a $\frac{1}{2}^+$ baryon, the number of form factors for the excitation of a $\frac{3}{2}^+$ baryon is not equal to the one of the LF matrix elements of I^+, cf. Eq. (3). For the exact current the inversion of Eq. (3) is unique. Since we adopt a one-body approximation for I^+ (see below) different choices of LF matrix elements can lead to different predictions for the G_i form factors. In the actual calculation for the N-Â transition we consider two different prescriptions for extracting the G_i form factors from Eq. (3): i) G_1 and G_3 are obtained from the first three equations in (3), while G_2 is directly taken from the fourth one (prescription I); ii) all the G_i form factors are extracted from the first three equations (prescription II).

3 RESULTS

Elastic and transition form factors have been evaluated using eigenvectors of Eq. (11) and approximating the I^+ component of the e.m. current by the sum of one-body CQ currents.
the N-Roper helicity amplitudes $A^{(n)}_{5/2}$ can provide an overall description of relative-ly small quantities, such as the ratios E_1/M_1 and S_1/M_1. After fixing the CQ form factors, we have calculated, without free parameters, the N-Roper helicity amplitudes $A^{(n)}_{1/2}(Q^2)$ and $S^{(n)}_{1/2}(Q^2)$, shown in Fig. 1 (see [2](c)).

Our results both for $A^{(n)}_{1/2}(Q^2)$ and $S^{(n)}_{1/2}(Q^2)$ exhibit a remarkable reduction (bringing our predictions closer to the experimental analyses [2](a,b,c)) with respect to non-relativistic [3] as well as relativistic [4] predictions, based on simple gaussian-like wave functions. It is worth noting that the helicity amplitudes $S^{(n)}_{1/2}(Q^2)$ and $S^{(n)}_{3/2}(Q^2)$ are sizably sensitive to the presence of the mixed-symmetry S' component in the CI wave function.

The magnetic form factor $G^{N-\Delta}_{M_{1/2}}(Q^2)$ and the ratios $E_1/M_1 = -G^{N-\Delta}_{E}(Q^2) / G^{N-\Delta}_{M_{1/2}}(Q^2)$ and $S_1/M_1 = (\sqrt{K^+K^-}/4M^2) G^{N-\Delta}_{C}(Q^2) / G^{N-\Delta}_{M_{1/2}}(Q^2)$ (see Ref. [3] for the relation with the G_i form factors), calculated within our model without free-parameters (see also [2](b)) are shown in Fig. 2 (a,b,c), respectively. The differences between the prescription I and II are not so relevant for $G^{N-\Delta}_{M_{1/2}}$ as they are for E_1/M_1 and S_1/M_1; however the effect due to the D-wave component is always small for both prescriptions (indeed $P^{1/2} = 1.1\%$). Although two-body CQ currents are lacking in the approximation [2] it is encouraging that our effective current can provide an overall description of relatively small quantities, such as the ratios E_1/M_1 (≈ 5 %) and S_1/M_1 (≈ 10 %) for Q^2 up to few GeV/c2. Finally in Fig. 2 (d) the ratio of $G^{N-\Delta}_{M_{1/2}}(Q^2)$ (obtained in prescription II) and the isovector part of the Nucleon magnetic form factor, $G^{0}_{M}(Q^2) - G^{0}_{M}(Q^2)$, is shown. It can clearly be seen that this ratio is largely insensitive to the presence of CQ form factors, whereas it is sharply affected by the spin-dependent part of the CI potential, which is generated by the chromomagnetic interaction.

In conclusion, we have reported the calculations of the e.m. form factors for the transition $N-P_{11}(1440)$ and $N-P_{33}(1232)$, obtained within our approach based on a relativistic CQ model, baryon eigenfunctions of a mass operator and an effective one-body CQ current. The results allow an overall description of the data, but they also indicate the necessity of the introduction of at least a two-body term in the CQ current, in order to give accurate predictions for ”small” form factors (like, e.g. E_1 or S_1 for the $N-\Delta$ transition). Finally, we have shown that the determination of $G^{N-\Delta}_{M_{1/2}}(Q^2) / (G^{0}_{M}(Q^2) - G^{0}_{M}(Q^2))$ could provide relevant information on SU(6) breaking effects in N and Δ wave functions, without substantial model dependence.
4 ACKNOWLEDGEMENT

One of the authors (F.C.) acknowledges a warm hospitality by Simon Capstick and the partial support by the U.S. Department of Energy through Contract DE-FG05-86ER40273, and by the Florida State University Supercomputer Computations Research Institute (SCRI) which is partially funded by the Department of Energy through Contract DE-FC05-85ER250000.

References

[1] For a review of the N^* program at TJNAF, see, e.g., V.D. Burkert, Proc. of the XIV Int. Conf. on Few-Body Problems in Physics, Williamsburg (USA), May 1994, ed. F. Gross, AIP Conf. Proc. 334 (1995) 127.

[2] a) F. Cardarelli, E. Pace, G. Salmè and S. Simula, Phys. Lett. B357 (1995) 267; Few-Body Systems Suppl. 8 (1995) 345; b) F. Cardarelli, E. Pace, G. Salmè and S. Simula, Phys. Lett. B371 (1996) 7, and to be published; c) F. Cardarelli, E. Pace, G. Salmè and S. Simula, nucl-th 9609047, submitted to Phys. Lett. B.

[3] For a review, see B.D. Keister and W.N. Polyzou, Adv. in Nucl. Phys. 20 (1991) 225 and F. Coester, Progress in Part. and Nucl. Phys. 29 (1992) 1.

[4] S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809.

[5] S. Capstick and B. Keister, Phys. Rev. D51 (1995) 3598.

[6] See, e.g., L.L. Frankfurt and M.I. Strikman, Nucl. Phys. B 148 (1979) 107.

[7] R.C.E. Devenish, T.S. Eisenschitz and J.G. Korner, Phys. Rev. D14 (1976) 3063.

[8] Z. Li, V. Burkert and Z. Li, Phys. Rev. D46 (1992) 70.

[9] Particle Data Group, R.M. Barnett et al., Phys. Rev. D54 (1996) 1.

[10] (a) C. Gerhardt, Z. Phys. C4 (1980) 311; (b) B. Boden and G. Krosen, in Proceedings of the Conference on Research Program at CEBAF II, Report of the 1986 Summer Study Group, edited by V. Burkert et al., CEBAF (USA), 1986.

[11] (a) W. Bartel et al., Phys. Lett. B 28 (1968) 148; (b) P. Stoler, Phys. Rep. 226 (1993) 103; (c) C. Keppel, in "CEBAF at Higher Energies", eds. N. Isgur and P. Stoler (CEBAF, Newport News, April 1994) p. 237; d) R.M. Davidson and N.C. Mukhopadhyay, Phys. Lett. B 353 (1995) 131.

[12] (a) J.C. Alder et al., Nucl. Phys. B46 (1972) 573; (b) R. Siddle et al., Nucl. Phys. B35 (1971) 93; (c) V.D. Burkert and L. Elouadrhiri, Phys. Rev. Lett. 75 (1995) 3614, and private communication.
Figure 1. The $N-P_{11}(1440)$ helicity amplitudes $A_{1/2}^{p(n)}(Q^2)$ and $-S_{1/2}^{p(n)}(Q^2)$ vs. Q^2. Solid line: LF calculation obtained by using baryon wave functions corresponding to the CI interaction and the e.m. current with the CQ form factors determined in (a); dashed line: the same as the solid one, but without the S' component in the baryon eigenfunctions; dot-dashed line: LF calculation obtained by using the gaussian functions of Ref. without CQ form factors. The long-dashed and triple-dot-dashed lines correspond to the non-relativistic q^3G and q^3 models of Ref. . Full dots: PDG values; full squares and open dots: phenomenological analyses of Ref. (a) and (b), respectively. Within the hybrid q^3G model $S_{1/2}^{p(n)}(Q^2) = 0$, whereas within the non-relativistic q^3 model only $S_{1/2}^{n}(Q^2) = 0$. (After (c))
Figure 2. (a) $G_{M}^{N-\Delta}(Q^2)/3G_{D}(Q^2)$, with $G_{D}(Q^2) = 1/(1 + Q^2/0.70)^2$, vs Q^2. The thick and thin lines correspond to the LF calculations with and without the D-wave in the Δ eigenstate. The e.m. current (4) with the CQ form factors determined in [2](a) has been adopted. Solid lines: prescription I (see text). Dashed lines: prescription II (see text). Triangles: [11](a); full squares: [11](b); open dots: [11](c); full dots: [11](d). - (b) The same as in (a), but for E_1/M_1. Full dots: PDG [9]; diamonds: [12](a); open squares: [12](b); triangles: [12](c). - (c) The same as in (b) but for S_1/M_1. - (d) The ratio $G_{M}^{N-\Delta}(Q^2)/(G_{M}^{p}(Q^2) - G_{M}^{n}(Q^2))$ vs Q^2. Solid line: our calculation (prescription II) with the CI baryon eigenfunctions and CQ form factors; dashed line: the same as the solid line, but without CQ form factors; short-dashed line: the same as the dashed line, but with the baryon eigenfunctions corresponding to the spin-independent part of the CI interaction [4]; dotted line: the same as the dashed line, but retaining only the confining part of the CI potential. (After [3](b)).