LOWER BOUND ON THE NUMBER OF NON-SIMPLE GEODESICS ON SURFACES

JENYA SAPIR

Abstract. We give a lower bound on the number of non-simple closed curves on a hyperbolic surface, given upper bounds on both length and self-intersection number. In particular, we carefully show how to construct closed geodesics on pairs of pants, and give a lower bound on the number of curves in this case. The lower bound for arbitrary surfaces follows from the lower bound on pairs of pants. This lower bound demonstrates that as the self-intersection number $K = K(L)$ goes from a constant to a quadratic function of L, the number of closed geodesics transitions from polynomial to exponential in L. We show upper bounds on the number of such geodesics in a subsequent paper.

1. Introduction

1.1. Statement of results. Let \mathcal{P} be a hyperbolic pair of pants with geodesic boundary, and let \mathcal{S} be a hyperbolic genus g surface with n geodesic boundary components. Given a particular surface, let \mathcal{G}^c be the set of closed geodesics. Set

$$\mathcal{G}^c(L, K) = \{ \gamma \in \mathcal{G}^c \mid l(\gamma) \leq L, i(\gamma, \gamma) \leq K \}$$

where $l(\gamma)$ is geodesic length and $i(\gamma, \gamma)$ is geometric self-intersection number. We are interested in the following question:

Question 1. If $K = K(L)$ is a function of L, then how does $\# \mathcal{G}^c(L, K)$ grow with L?

In this paper, we give a lower bound for growth. In future papers, we will get upper bounds on this number for an arbitrary surface, and tighter upper bounds on pairs of pants \mathcal{P}. The reason that the upper bounds are tighter on pairs of pants is that we have more control in how we construct geodesics there. In fact, we give a way to construct geodesics on pairs of pants in this paper.

Given a hyperbolic pair of pants, \mathcal{P}, let $l_{\text{max}} = l_{\text{max}}(\mathcal{P})$ be the larger of the length of the longest boundary component of \mathcal{P} or distance between boundary components of \mathcal{P}. We say that l_{max} is the length of \mathcal{P}.

We get the following lower bound for a pair of pants \mathcal{P}:

Theorem 1.1. Let \mathcal{P} be a hyperbolic pair of pants with length l_{max}, as defined above. If $L \geq 8l_{\text{max}}$ and $K \geq 12$, we have that

$$\# \mathcal{G}^c(L, K) \geq 2 + \frac{1}{2} \min\{2^{\frac{1}{8}} L, 2^{\sqrt{\frac{K}{12}}} \}$$

A direct consequence of this theorem is the following lower bound for an arbitrary surface \mathcal{S}:
Theorem 1.2. Let X be the hyperbolic metric on \mathcal{S}. Then whenever $K > 12$ and $L > 6s_X\sqrt{K}$ we have

$$\#G^c(L, K) \geq c_X \left(\frac{L}{6\sqrt{K}} \right)^{6g-6+2n} 2^{\frac{K}{6}}$$

where s_X and c_X are constants that depend only on the metric X.

The constant s_X is roughly the width of the collar neighborhood of the systole of X, and c_X is a constant related to the number of pairs of pants in \mathcal{S} whose total boundary length is at most L.

Theorem 1.2 demonstrates that as $K = K(L)$ goes from a constant to a quadratic function in L, the number of closed geodesics on \mathcal{S} transitions from polynomial to exponential in L. (See Section 1.2 for why we should expect such a transition.)

If K is a constant, and L is very large, this theorem says

$$\#G^c(L, K) \geq c_X(K) L^{6g-6+2n}$$

for $c_X(K)$ a new constant depending on X and the constant K. This is consistent with the asymptotic results in [Mir08, Riv12] when $K = 0$ and 1.

By [Bas13], for any $\gamma \in G^c$, $i(\gamma) \leq \kappa l(\gamma)^2$, where κ is a constant depending only on the metric. So we only need to consider functions $K(L)$ that grow at most like $O(L^2)$. For $K = O(L^2)$, however, we have that $\frac{L}{6\sqrt{K}} = O(1)$, and Theorem 1.2 gives an exponential lower bound on $\#G^c(L, K)$ in L. For example, if $K(L) = L^2$, then

$$\#G^c(L, L^2) \geq c'_X 2^{\frac{L^2}{\sqrt{2}}}$$

where c'_X is a new constant depending only on X. This is consistent with the growth of all closed geodesics with length at most L in [Mar70].

1.2. Previous results. The problem of counting closed geodesics in many contexts has been studied extensively. There is an excellent survey of the history of this problem by Richard Sharp that was published in conjunction with Margulis’s thesis in [MS04]. The following is a brief, but incomplete, overview.

Let

$$G^c(L) = \{ \gamma \in G^c \mid l(\gamma) \leq L \}$$

The famous result in Margulis’s thesis states that if \mathcal{S} is negatively curved with a complete, finite volume metric, then

(1.2.1) $$\#G^c(L) \sim \frac{e^{\delta L}}{\delta L}$$

where δ is the topological entropy of the geodesic flow, and where $f(L) \sim g(L)$ if $\lim_{L \to \infty} \frac{f(L)}{g(L)} = 1$ [Mar70]. (Note that $\delta = 1$ when \mathcal{S} is hyperbolic.) A version of this result for hyperbolic surfaces was first proven by Huber [Hub59]. There are also many other, later versions of this result for non-closed surfaces. For example, see [Cov85, Pat88, LP82, Lal87] and [Gui86].

Recently, there has been work on the dependence of the number of closed geodesics on their self-intersection number as well as length. The goal is to answer the following question.

Question 2. If $K = K(L)$ is a function of L, what is the asymptotic growth of $\#G^c(L, K)$ in terms of L?
As part of her thesis, Mirzakhani showed that for a hyperbolic surface S of genus g with n punctures,
\[
\#\mathcal{G}^c(L, 0) \sim c(S) L^{6g - 6 + 2n}
\]
where $c(S)$ is a constant depending only on the geometry of S [Mir08]. Rivin extended this result to geodesics with at most one self-intersection, to get that
\[
\#\mathcal{G}^c(L, 1) \sim c'(S) L^{6g - 6 + 2n}
\]
where $c'(S)$ is another constant depending only on the geometry of S [Riv12]. It should be noted that polynomial upper and lower bounds on $\#\mathcal{G}^c(L, 0)$ were first shown by Rees in [Ree81].

However, no asymptotics are yet known for arbitrary functions $K(L)$. This paper, and the one that follows, give bounds on $\#\mathcal{G}^c(L, K)$ for L and K large enough.

1.3. Idea of proof. Theorem 1.2 is a direct consequence of Theorem 1.1, which is proven as follows:

- In Section 2, we create a combinatorial model for geodesics on a pair of pants. Each geodesic γ can be represented as a cyclic word $w(\gamma)$ in a finite alphabet (Lemma 2.2). We then give some basic properties of these words in Section 2.2.

 These words are also the key ingredient in getting an upper bound on $\#\mathcal{G}^c(L, K)$ for pairs of pants. This is done in a subsequent paper.

- We show that if $w = w(\gamma)$, then
 \[
 l(\gamma) \approx |w|
 \]
 where $|w|$ denotes word length (Lemma 2.3), and
 \[
 i(\gamma, \gamma) \leq i(w, w)
 \]
 (Lemma 2.11), where $i(w, w)$ is an intersection number for words defined in Definition 2.10.

- Then in Section 3, we construct a set of distinct geodesics. We show that each geodesic γ arising from this construction lies in $\mathcal{G}^c(L, K)$ by bounding $|w(\gamma)|$ and $i(w(\gamma), w(\gamma))$ from above.

 We get a lower bound on the number of geodesics we construct, giving us a lower bound on $\#\mathcal{G}^c(L, K)$. For a more detailed summary, see Section 3.1.

We prove Theorem 1.2 in Section 4. We look at all geodesically embedded pairs of pants in S that have closed geodesics of length at most L. Summing $\#\mathcal{G}^c(L, K)$ over all these pairs of pants gives the theorem.

This paper is part of the author’s PhD thesis, which was completed under her advisor, Maryam Mirzakhani. The author would especially like to thank her for the many conversations that led to this work. The author would also like to thank Jayadev Athreya, Steve Kerckhoff and Chris Leininger for their help and support.

2. A combinatorial model for geodesics on pairs of pants

Let P be a hyperbolic pair of pants with geodesic boundary. In this section, we construct a combinatorial model for closed geodesics on P, and show that this model allows us to recover geometric properties of the corresponding geodesics. We
do this as follows. First, there is a unique way to write P as the union of two congruent right-angled hexagons. Take this decomposition (Figure 1).

Figure 1. The hexagon decomposition of P with boundary edges x_1 and x_2 and seam edge y_1 labeled.

Let E be the set consisting of two copies of each edge in the hexagon decomposition, one copy for each orientation. The set E consists of oriented edges x_1, \ldots, x_{12} that lie on the boundary of P and oriented edges y_1, \ldots, y_6 that pass through the interior of P. We call x_1, \ldots, x_{12} boundary edges and y_1, \ldots, y_6 seam edges.

We can model closed geodesics on P by looking at closed concatenations of edges in E. If p is a closed concatenation of edges in E, then it corresponds to a cyclic word w with letters in E. We want to look at the following subset of such words.

Definition 2.1. Let W be the set of cyclic words w with letters in E so that

- The letters of w can be concatenated (in the order in which they appear) into a closed path p.
- The curve p does not back-track.
- Lastly, we want a technical condition: each $w \in W$ can be written as $w = b_1s_1\ldots b_ns_n$ where b_i is a sequence of boundary edges, $|b_i| \geq 2$, and s_i is a seam edge ($|s_i| = 1$) for each i, unless $n = 1$, in which case $w = b_1$.

Clearly, there is a map $W \to G^c$. For each $w \in W$, we simply take the corresponding closed curve $p(w)$. Each closed curve on P has exactly one geodesic in its free homotopy class. Let $\gamma(w)$ be the geodesic in the free homotopy class of $p(w)$. Then the map $w \mapsto \gamma(w)$ is well-defined.

2.1. **Turning Geodesics into Words.** Conversely, we can explicitly construct a map going back. In fact, we can construct an injective map $G^c \to W$ sending each geodesic γ to some preferred word in W.

2.1.1. **The Projection $p(\gamma)$ of a Closed Geodesic $\gamma.$** For each closed geodesic γ, we first construct a closed curve $p(\gamma)$ that lies on the boundaries of the hexagons and is freely homotopic to γ. Then $p(\gamma)$ will be known as the projection of γ to the edges in E. We give the desired properties of $p(\gamma)$ in the following lemma. These properties will allow us to convert $p(\gamma)$ into a word $w(\gamma) \in W$.

Lemma 2.2 (Construction of $p(\gamma)$). Let γ be a closed geodesic on P. Then there is a closed curve $p(\gamma)$ that has the following properties:

1. $p(\gamma)$ is freely homotopic to γ.
2. $p(\gamma)$ is a concatenation of edges in E.
3. Each boundary edge in $p(\gamma)$ is concatenated to at least one other boundary edge.
Proof. Let \(\gamma \) be an oriented, closed geodesic. The idea of the construction is given in the following four steps. See Figure 2 for the accompanying illustration.

1. We break \(\gamma \) up into segments, which are pieces of \(\gamma \) that live entirely inside hexagons.
2. Each segment \(\sigma \) lying inside a hexagon \(h \) gets projected to a sub-arc \(p'(\sigma) \) of the boundary of \(h \) (Figure 3). We can concatenate the arcs \(p'(\sigma) \) to get a closed curve \(p'(\gamma) \), which lies entirely in the boundaries of the two hexagons and is homotopic to \(\gamma \). At this stage, \(p'(\gamma) \) need not be the concatenation of edges in \(E \).
3. We define a homotopy called Move 1 that we apply to finitely many disjoint sections of \(p'(\gamma) \). The result is a curve \(p''(\gamma) \) that is the concatenation of edges in \(E \).
4. Lastly, we force each boundary edge to be concatenated to another boundary edge via a homotopy called Move 2, which we apply to sections of \(p''(\gamma) \). This gives us a closed curve \(p(\gamma) \) satisfying Lemma 2.2.

Now we fill in the details. Let a segment \(\sigma \) of \(\gamma \) be a maximal sub-arc that lies entirely in some hexagon \(h \) of the hexagon decomposition of \(\mathcal{P} \). The projection \(p'(\sigma) \) of \(\sigma \) is the shortest sub-arc of the boundary of \(h \) that has the same endpoints as \(\sigma \) and contains exactly one boundary edge. If the boundary edge is \(x \), we will say that \(\sigma \) is projected onto \(x \) (Figure 3).

Since \(\sigma \) and \(p'(\sigma) \) have the same endpoints, and since \(\gamma \) is the concatenation of segments, we can concatenate all of the arcs \(p'(\sigma) \) into a closed curve \(p'(\gamma) \). By construction, \(p'(\gamma) \) is homotopic to \(\gamma \).
Move 1: The goal is to homotope $p'(\gamma)$ into a curve $p''(\gamma)$ that is the concatenation of edges in E. This is needed in the situation in Figure 4.

The orientation of γ gives a cyclic ordering to its segments. Suppose segment σ is followed by segment σ'. Write their projections as $p'(\sigma) = \hat{y}_1 \circ x \circ \hat{y}_2$ and $p'(\sigma') = \hat{y}'_2 \circ x' \circ \hat{y}'_3$, where x and x' are boundary edges and \hat{y}_i, \hat{y}'_i are pieces of the seam edge y_i for each $i = 1, 2, 3$. Note that because σ and σ' are consecutive segments, \hat{y}_2 and \hat{y}'_2 are both pieces of the same seam edge y_2. Furthermore, the endpoint of \hat{y}_2 is the start point of \hat{y}'_2. Thus the the concatenation $\hat{y}_2 \circ \hat{y}'_2$ is either null-homotopic relative to its endpoints (Figure 4) or it is all of y_2 (Figure 5).

Move 1 is to homotope away concatenations of the form $\hat{y} \circ \hat{y}'$ when they are null-homotopic. We apply it finitely many times to $p'(\gamma)$ to get a new closed curve $p''(\gamma)$ that is a concatenation of edges in E. In fact, the number of times we must apply Move 1 is at most the number of segments in γ. Note that $p''(\gamma)$ is still homotopic to γ.

Move 2: Now we homotope $p''(\gamma)$ to a new curve $p(\gamma)$ in which each boundary edge is concatenated to another boundary edge (Figure 6). If a boundary edge x is not concatenated to any other boundary edge, we call x an **isolated boundary edge**.

Note that $p'(\gamma)$ never has more than 3 consecutive edges lying on the boundary of the same hexagon. Let p'_1 be any closed concatenation of edges in E with this
Move 2. The boundary edge x_1 on the left is isolated, while the boundary edges x_2 and x_3 on the right are not.

Property. We claim that we can homotope p''_1 to a curve p''_2 with strictly fewer isolated boundary edges.

If p''_1 has an isolated boundary edge x_1, then it has a subarc of the form $y_2 \circ x_1 \circ y_3$ lying on the boundary of a single hexagon h, where y_2 and y_3 are seam edges. We will homotope it relative its endpoints to the other part of the boundary of h. This is an arc of the form $x_3 \circ y_1 \circ x_2$, where x_3 and x_2 are boundary edges and y_1 is a seam edge:

$y_2 \circ x_1 \circ y_3 \mapsto x_3 \circ y_1 \circ x_2$

This is Move 2 (Figure 6). It gives us a new arc p''_2.

We claim that p''_2 has at least one fewer isolated boundary edge than p''_1. This is the same as showing that x_2 and x_3 are not isolated in p''_2. We have that p''_1 never follows more than three consecutive sides of a hexagon at a time. So y_2 and y_3 must be concatenated in p''_1 to edges in the other hexagon. These can only be the boundary edges x'_2 and x'_3 which lie on the same boundary components as x_2 and x_3, respectively. Thus x_2 and x_3 are not isolated.

Therefore, p''_2 has strictly fewer isolated boundary edges than p''_1. Since $p''(\gamma)$ has finitely many (isolated) boundary edges, we can perform Move 2 finitely many times to get a closed curve $p(\gamma)$ with no isolated boundary edges.

Remark 2.3. Applying Move 2 can get rid of more than one isolated boundary edge at a time. Thus the final arc $p(\gamma)$ depends on the order in which we get rid of isolated boundary edges. For each closed geodesic γ, we make a choice of $p(\gamma)$ once and for all.

2.1.2. Defining the Cyclic Word $w(\gamma)$ for a Closed Geodesic γ. By Remark 2.3 we force the map $\gamma \mapsto p(\gamma)$ to be well-defined. Since $p(\gamma)$ is a concatenation of edges in \mathcal{E}, it corresponds to a cyclic word $w(\gamma)$ with letters in \mathcal{E}. Thus each $\gamma \in \mathcal{G}^c$ corresponds to a unique word $w(\gamma)$.

We show in Lemma 2.5 that $w(\gamma) \in \mathcal{W}$, where \mathcal{W} is the set defined in Definition 2.1.

2.1.3. Injective Correspondence for Closed Geodesics. The most important relationship between closed geodesics in \mathcal{G}^c and words in \mathcal{W} is that distinct geodesics correspond to different words. This is because γ is homotopic to $p(\gamma)$, so if two geodesics correspond to the same word, they are homotopic as well. Since there is exactly one geodesic in each free homotopy class of non-trivial closed curves, the
map from closed geodesics to words is injective. We formalize this in the following remark.

Remark 2.4. If \(\gamma \neq \gamma' \) are two distinct closed geodesics on \(\mathcal{P} \) then \(w(\gamma) \neq w(\gamma') \).

2.2. Word Structure: Boundary Subwords

We want to examine the form of a word \(w(\gamma) \) in more detail. A closed geodesic \(\gamma \in \mathcal{G}^c \) spends most of its time twisting about boundary components of \(\mathcal{P} \). So its projection \(p(\gamma) \) spends most of its time winding around those boundary components. Note that to transition from one boundary component to another, \(p(\gamma) \) only needs to take a single seam edge (Figure 7). Thus, \(w(\gamma) \) has long sequences of boundary edges (called boundary subwords) separated by single seam edges (Lemma 2.5). Furthermore, \(w(\gamma) \) is completely determined by the sequence of boundary subwords that appear (Lemma 2.6). This is because there is at most one seam edge connecting one boundary edge to another.

![Figure 7. An approximation to \(p(\gamma) \)](image)

Lemma 2.5. For each \(\gamma \in \mathcal{G}^c \), the word \(w(\gamma) \) is in \(\mathcal{W} \), where \(\mathcal{W} \) is the set defined in Definition 2.1.

Proof. Let \(\gamma \in \mathcal{G}^c \). By construction, \(w(\gamma) \) can be concatenated into a closed curve \(p(\gamma) \), and this curve \(p(\gamma) \) does not back-track. We just need to show that

\[
w(\gamma) = b_1 s_1 \ldots b_n s_n
\]

where \(b_i \) consists only of boundary edges, with \(|b_i| \geq 2 \) and \(s_i \) is a single seam edge for each \(i \), unless \(n = 1 \), in which case \(w(\gamma) = b_1 \).

Note that \(w(\gamma) \) can always be written to start with a boundary edge and end with a seam edge, unless \(w(\gamma) \) consists only of boundary edges. (By construction, \(w(\gamma) \) always contains at least 1 boundary edge.) So we can always write

\[
w(\gamma) = b_1 s_1 \ldots b_n s_n
\]
where b_i is a non-empty sequence of boundary edges, and where s_i is a non-empty sequence of seam edges for each i, unless $w(\gamma) = b_1$.

The condition that each boundary edge is concatenated to another boundary edge guarantees that $|b_i| \geq 2$ for each i. The fact that $p(\gamma)$ does not back-track guarantees that each seam edge can only be concatenated to a boundary edges. So $|s_i| = 1$ for each i.

If $n = 1$, we want to show that $w(\gamma) = b_1$. But a (non-cyclic) word of the form b_1s_1 has endpoints on different boundary components of \mathcal{P}, and so does not close up into a closed curve. So if $n = 1$, then $w(\gamma) = b_1$.

We now get a few more properties of the structure of $w(\gamma)$.

Lemma 2.6. A cyclic word $w(\gamma)$ is completely determined by its sequence b_1, \ldots, b_n of boundary subwords. That is, if $w(\gamma) = b_1s_1\ldots b_ns_n$ and $w(\gamma') = b_1s_1'\ldots b_ns_n'$ (where the boundary subwords of w and w' are the same and in the same order), then $s_i = s_i'$ for each i.

Proof. This lemma follows from the fact that any two boundary subwords can be joined together by at most one seam edge. In particular, given two oriented boundary edges x and x' that lie on different boundary components of \mathcal{P}, there is at most one oriented seam edge y such that we can concatenate them into an oriented arc $x \circ y \circ x'$.

We assume that w and w' come from closed geodesics γ and γ'. If x is the last boundary edge in the subword b_i and x' is the first boundary edge in the subword b_{i+1}, then the existence of $p(\gamma)$ implies that there does exist a seam edge y such that $x \circ y \circ x'$ is an oriented arc. Thus $s_i = s_i'$ for each i. (Note that we number the boundary subwords modulo n, so $b_{n+1} = b_1$.)

Lastly, we note that because each $\gamma \in \mathcal{G}^c$ is primitive, so is the word $w(\gamma)$.

Lemma 2.7. Let $w' = w(\gamma')$. Suppose there exists a word w in the edges in \mathcal{E} such that

\[w' = w^n \]

for $n > 1$. Then γ' is not primitive.

Proof. Suppose $w = b_1s_1\ldots b_ns_n$ where all the subwords except for possibly s_n are non-empty. Then the fact that $w' = b_1s_1\ldots b_ns_nb_1\ldots$ implies that the concatenation $b_n \circ s_n \circ b_1$ corresponds to an oriented path in the edges of \mathcal{E}. Thus we can concatenate the edges in w into a closed path p. If p' is the closed curve corresponding to w', then $p' = p^n$. Every closed curve has a unique closed geodesic in its free homotopy class. Let γ be the geodesic in the free homotopy class of p. Then $p' = p^n$ implies that $\gamma' = \gamma^n$. Therefore γ' is not primitive.

2.3. Word and Geodesic Lengths. The word $w(\gamma)$ encodes geometric properties of γ for each $\gamma \in \mathcal{G}^c$. For example, we get the following relationship between the length of a closed geodesic γ and the word length of $w(\gamma)$.

Lemma 2.8. Let $\gamma \in \mathcal{G}^c$. If $|w(\gamma)|$ is the word length of $w(\gamma)$, then

\[\frac{1}{3} l_{\min} |w(\gamma)| \leq l(\gamma) \leq l_{\max} |w(\gamma)| \]

where l_{\min} is the length of the shortest boundary edge, and l_{\max} is the length of the longest boundary or seam edge in \mathcal{E}.
Proof. Let \(\gamma \in G^c \) and let \(w(\gamma) \in W \) be the associated word. Let \(p(\gamma) \) be the closed curve corresponding to \(w(\gamma) \). Throughout this proof, we will use that the number of edges in \(p(\gamma) \) is exactly the word length of \(w(\gamma) \).

To get the upper bound, we use that \(l(\gamma) \leq l(p(\gamma)) \) since a geodesic is the shortest curve in its free homotopy class. Thus, if \(l_{\text{max}} \) is the length of the longest edge in \(\mathcal{E} \), then

\[
l(\gamma) \leq l_{\text{max}}|w(\gamma)|
\]

To get the lower bound, set \(n \) to be the number of segments in \(\gamma \). We first compare \(n \) to \(|w(\gamma)| \). Let \(m \) to be the number of boundary edges in \(p(\gamma) \). Note that \(m \leq 2n \). To see this, look at the construction of \(p(\gamma) \) in the proof of Lemma 2.2. Each segment \(\sigma \) of \(\gamma \) got projected onto a single boundary edge, which then may have been replaced by two boundary edges when we did Move 2. Thus, the boundary edges in \(p(\gamma) \) account for at most two times the number of segments in \(\gamma \).

Two seam edges are never concatenated together and boundary edges appear in consecutive pairs. Thus, as least \(2/3 \) of all edges in \(p(\gamma) \) are boundary edges. In other words, \(\frac{2}{3}|w(\gamma)| \leq m \). Therefore,

\[
\frac{2}{6}|w(\gamma)| \leq \frac{1}{2}m \leq n
\]

where \(\gamma \) has \(n \) segments and \(p(\gamma) \) has \(m \) boundary edges.

Suppose a segment \(\sigma \) has endpoints on seam edges \(y \) and \(y' \). Because we broke \(P \) up into right angle hexagons, \(y \) and \(y' \) meet a common boundary edge \(x \) at right angles. By some hyperbolic geometry, any arc connecting \(y \) and \(y' \) will thus be at least as long as \(x \), i.e. \(l(\sigma) \geq l(x) \). Thus, if \(l_{\min} \) is the length of the smallest boundary edge in \(\mathcal{E} \), then \(l_{\min} \leq l(\sigma) \) for each segment \(\sigma \). Therefore, \(l_{\min}n \leq l(\gamma) \). So we get the lower bound:

\[
\frac{1}{3}l_{\min}|w(\gamma)| \leq l(\gamma)
\]

\(\square \)

2.4. An intersection number for words. We want a notion of word self-intersection number so that if \(i(w(\gamma), w(\gamma)) \leq K \), then \(i(\gamma, \gamma) \leq K \).

Definition 2.9. Let \(b_i \) be a boundary subword of \(w \in W \). Suppose \(\beta \) is a boundary component of \(P \). We write \(b_i \subset \beta \) and say that \(b_i \) lies on \(\beta \) if the boundary edges in \(b_i \) lie on \(\beta \).

We define the self-intersection number of a word as follows.

Definition 2.10. Let \(w = b_1s_1 \ldots b_ns_n \in W \). Let \(\beta_1, \beta_2 \) and \(\beta_3 \) be the boundary components of \(P \). Suppose \(w \) has \(n_j \) boundary subwords lying on \(\beta_j \), \(j = 1, 2, 3 \). Let \(\sigma_j : \{1, \ldots, n_j\} \to \{1, \ldots, n\} \) so that

- \(b_{\sigma_j(1)}, \ldots, b_{\sigma_j(n_j)} \subset \beta_j \)
- \(|b_{\sigma_j(1)}| \geq |b_{\sigma_j(2)}| \geq \cdots \geq |b_{\sigma_j(n_j)}| \)

Then, let

\[
i(w, w) = 2 \sum_{j=1, 2, 3} \sum_{i=1}^{n_j} i(b_{\sigma_j(i)})
\]
In other words, given a word \(w = b_1 s_1 \ldots b_n s_n \), we group the boundary subwords \(b_1, \ldots, b_n \) according to the component of \(\partial \mathcal{P} \) on which they lie, and then we order the boundary subwords in each group from largest to smallest word length. This gives us the re-indexing functions \(\sigma_j \), \(j = 1, 2, 3 \). Then we form the sum above.

Example 1 (Computing word self-intersection number). Suppose

\[w = b_1 s_1 \ldots b_5 s_5 \in \mathcal{W} \]

is a word with \(b_1, b_3, b_5 \subset \beta_1 \) and \(b_2, b_4 \subset \beta_2 \). Suppose further that \(|b_3| \geq |b_1| \geq |b_5| \) and \(|b_2| \geq |b_4| \). Then

\[i(w, w) = 2\left(|b_3| + 2|b_1| + 3|b_5|\right) + 2\left(|b_2| + 2|b_4|\right) \]

Lemma 2.11. Suppose \(w \in \mathcal{W} \) corresponds to the geodesic \(\gamma \in \mathcal{G}^c \). Then

\[i(\gamma, \gamma) \leq i(w, w) \]

Proof. Let \(w = b_1 s_1 \ldots b_n s_n \) be a cyclic word that corresponds to some closed geodesic \(\gamma \). We will show how to construct a closed curve \(\delta \) freely homotopic to \(\gamma \) where

\[|\delta \cap \delta| \leq i(w, w) \]

Let \(\beta_1, \beta_2, \beta_3 \) be the boundary components of \(\mathcal{P} \). Suppose \(w \) has \(n_j \) boundary subwords lying on \(\beta_j \), \(j = 1, 2, 3 \). Let \(\sigma_j : \{1, \ldots, n_j\} \to \{1, \ldots, n\} \) so that

- \(b_{\sigma_j(1)}, \ldots, b_{\sigma_j(n_j)} \subset \beta_j \)
- \(|b_{\sigma_j(1)}| \geq |b_{\sigma_j(2)}| \geq \cdots \geq |b_{\sigma_j(n_j)}| \)

These are the reordering functions from Definition 2.10.

First, we construct a region of \(\mathcal{P} \) homotopic to the one skeleton of its hexagon decomposition (Figure 8). Let \(R_1, R_2 \) and \(R_3 \) be disjoint neighborhoods of the three seam edges. For each boundary subword \(b_{\sigma_j(i)} \) lying on \(\beta_j \), let \(C_j^i \) be a cylinder embedded in \(\mathcal{P} \) that is homotopic to \(\beta_j \). Choose these cylinders so that any two cylinders \(C_j^i \) and \(C_k^j \) are pairwise disjoint. Lastly, choose \(C_j^i \) to be closer to \(\beta_j \) than \(C_j^{i+1} \) for each \(i, j \). The union of \(R_1 \cup R_2 \cup R_3 \) and the cylinders is homotopic in \(\mathcal{P} \) to the union of hexagon edges. (See Figure 8).

We now construct \(\delta \) so that

\[\delta \subset \bigcup_{k=1,2,3} R_k \bigcup_{i,j} C_j^i \]

Given a cylinder \(C_j^i \), we say its top is the boundary component closest to \(\beta_j \) and its bottom is the other boundary component. If \(b_{\sigma_j(i)} s_{\sigma_j(i)} b_{\sigma_j(n)} \) is a subword of \(w \), we draw a line \(l_j^i \) from the top of \(C_j^i \) to the bottom of \(C_k^j \). We draw \(l_j^i \) inside the unique region \(R_m, m \in \{1, 2, 3\} \) that connects the two cylinders. We require that all of the lines in the set \{\(l_j^i \mid j = 1, 2, 3, i = 1, \ldots, n_j \}\} are pairwise disjoint.

Let \(p_j^i \) be the endpoint of \(l_j^i \) on cylinder \(C_j^i \) and let \(q_k^j \) be the endpoint of \(l_j^i \) on cylinder \(C_k^j \). Since \(\gamma \) is closed, each cylinder \(C_j^i \) is now decorated with a point \(p_j^i \) on its top boundary and a point \(q_k^j \) on its bottom boundary. The boundary subword \(b_{\sigma_j(i)} \) determines a twisting direction about \(\beta_j \). So in each cylinder \(C_j^i \), we draw a curve from \(p_j^i \) to \(q_k^j \) that twists in this direction for \(|b_{\sigma_j(i)}| \) half-twists. Call this curve \(\delta_j^i \).
There is just one natural way to concatenate the twisting arcs δ_i^j with the lines l_i^j to form a closed curve. Call this concatenation δ. So,

$$\delta = \bigcup_{i,j=1}^{n} \delta_i^j \bigcup_{i,j=1}^{n} l_i^j$$

where we take the concatenations in the order that makes sense (Figure 9).

Figure 8. The curve δ will lie in the gray regions.

Figure 9. An example of a curve δ constructed from a word w.
Now we just need to count the self-intersections of δ. Since R_1, R_2 and R_3 are pairwise disjoint, and since any two pairs of cylinders are also disjoint, the only intersections occur when a curve δ^j_i in a cylinder C^j_i intersects a line L^j_k in a region R_k. If L^j_k passes through C^j_i, and if δ^j_i has $|b_{\sigma_j(i)}|$ half-twists, then

$$|L^j_k \cap \delta^j_i| \leq \frac{|b_{\sigma_j(i)}|}{2} + 1$$

By construction, the cylinder C^j_i lies between cylinders C^j_1, \ldots, C^j_{i-1} and the rest of \mathcal{P}. So, the curve δ^j_i is intersected only by lines with endpoints on the cylinders C^j_1, \ldots, C^j_{i-1}. In particular, both lines coming out of C^j_1, \ldots, C^j_{i-1} cross δ^j_i. However, δ^j_i is only intersected by the line with endpoint on the top boundary component of C^j_i, not the line whose endpoint is on the bottom boundary. Thus, each cylinder C^j_i contains at most $(2i-1)(\frac{1}{2}|b_{\sigma_j(i)}| + 1)$ unique intersection points of $\delta \cap \delta$. Therefore,

$$|\delta \cap \delta| \leq \sum_{j=1,2,3} \sum_{i=1}^{n_j} i(|b_{\sigma_j(i)}| + 2)$$

since $(2i-1)(\frac{1}{2}|b_{\sigma_j(i)}| + 1) = (|b_{\sigma_j(i)}| + 2)(i - 1)$ and $i - 1 \leq i$.

Since geodesics have the least number of self-intersections in their free homotopy class, this implies that

$$i(\gamma, \gamma) \leq \sum_{j=1,2,3} \sum_{i=1}^{n_j} i(|b_{\sigma_j(i)}| + 2)$$

Lastly, since $|b_i| \geq 2$ for each $i = 1, \ldots, n$, we have that $|b_{\sigma_j(i)}| + 2 \leq 2|b_{\sigma_j(i)}|$. Therefore, we arrive at

$$i(\gamma, \gamma) \leq \sum_{j=1,2,3} \sum_{i=1}^{n_j} 2i|b_{\sigma_j(i)}|$$

where the right-hand side is exactly the self-intersection number for words defined above. \hfill \square

3. Constructing geodesics in $\mathcal{G}^c(L, K)$ to get a lower bound

In this section, we prove the lower bound on $\#\mathcal{G}(L, K)$ for a pair of pants. Let us restate it here:

Theorem 1.1. Let \mathcal{P} be a hyperbolic pair of pants. Let l_{\max} be the longest edge in the hexagon decomposition of \mathcal{P}. If $L \geq 8l_{\max}$ and $K \geq 12$, we have that

$$\#\mathcal{G}^c(L, K) \geq 2 + \frac{1}{2} \min\{\frac{2\pi}{\max}, 2\sqrt{K}\}$$

In the version of Theorem 1.1 from the introduction, we define l_{\max} to be the longer of the length of the longest boundary component of \mathcal{P} or distance between boundary components of \mathcal{P}. This allowed us to define the l_{\max} without referring to a hexagonal decomposition of \mathcal{P}. That definition of l_{\max} is at most twice the l_{\max} defined in this formulation. In fact, the length of each boundary edge is half the length of the boundary component on which it lies. Also, the length of each seam edge is exactly the distance between the boundary components it connects. So when we prove this version of Theorem 1.1, we also prove the version stated in the introduction.
3.1. **Proof summary.** The proof of the theorem is organized as follows.

- We have a canonical surjection $\mathcal{W} \to \mathcal{G}^c$. The map $\mathcal{G}^c \to \mathcal{W}$ described in Section 2 is a section of this map. However, there is no easy way to describe the image of this section. So instead, we describe a large subset $\mathcal{W}_1 \subset \mathcal{W}$ so that the map $\mathcal{W}_1 \to \mathcal{G}^c$ is injective. This is done as follows:
 - In Lemma 3.2, we give a construction that turns closed paths in the graph Γ_E, found in Figure 11, into words that lie in \mathcal{W}. This means we get a map from closed paths τ in Γ_E to closed geodesics $\gamma(\tau) \in \mathcal{G}^c$:
 $$\tau \to w(\tau) \to \gamma(\tau)$$
 - In Lemma 3.5, we show that this map is one-to-one. So we get an injection from words in \mathcal{W} that come from closed paths in Γ_E to closed geodesics in \mathcal{G}^c.

If $\mathcal{W}_1(L, K) \subset \mathcal{W}_1$ is the set of words that map to $\mathcal{G}^c(L, K)$, we get a lower bound on $\#\mathcal{W}_1(L, K)$ as follows:

- We get conditions on closed paths τ in Γ_E so that $\gamma(\tau) \in \mathcal{G}^c(L, K)$. In fact, we find a function $N(L, K)$ so that if τ is a closed path in Γ_E and $\gamma(\tau)$ is the corresponding closed geodesic then
 $$|\tau| \leq N(L, K) \implies \gamma(\tau) \in \mathcal{G}^c(L, K)$$
 where $|\tau|$ is the path length of τ (Lemma 3.6).

 To find $N(L, K)$, we use the map $\tau \mapsto w(\tau) \in \mathcal{W}$ as an intermediary. The construction of $w(\tau)$ directly implies that
 $$|w(\tau)| \leq 4|\tau| \text{ and } i(w, w) \leq 3|\tau|^2$$

 We then apply Lemmas 2.8 and 2.11 that say
 $$l(\gamma) \leq l_{max}|w(\gamma)| \text{ and } i(\gamma, \gamma) \leq i(w(\gamma), w(\gamma))$$
 to get the relationship between $|\tau|$ and the quantities $l(\gamma(\tau))$ and $i(\gamma(\tau), \gamma(\tau))$.

- We get an explicit formula for the number of closed paths in Γ_E of length N (Lemma 3.7).

- Estimating the number of paths of length at most $N(L, K)$ gives a lower bound on $\#\mathcal{G}^c(L, K)$ for a pair of pants (Section 3.6).

3.2. **Building words that correspond to closed geodesics.** Consider the labeling of the (oriented) boundary edges in \mathfrak{E} given in Figure 10. If x_i is a labeled edge, then the same edge with the opposite orientation will be denoted x_i^{-1}.

![Figure 10. Labeled boundary edges](image)

Definition 3.1. We say a path is cyclic if it is a cyclic word in its vertices. It is primitive if the word is primitive.
Lemma 3.2. Any cyclic path τ in the directed graph Γ_E in Figure 11 corresponds to a cyclic word $w(\tau) \in W$ and an oriented closed geodesic $\gamma(\tau)$.

Example 2. The cyclic path $x_1x_2x_4^{-1}x_3^{-1}$ (the top square) corresponds to the cyclic word

$$w = (x_1x_4^{-1}x_1) \cdot s_1 \cdot (x_2x_5^{-1}) \cdot s_2 \cdot (x_4^{-1}x_1x_4^{-1}) \cdot s_3 \cdot (x_3^{-1}x_6) \cdot s_4$$

where s_1, \ldots, s_4 are the unique side edges that make w a word in W.

Proof. We start with a description of Γ_E. The vertices of Γ_E are the edges in E as labeled in Figure 11. The vertices on the front hexagon are labeled by edges x_1, \ldots, x_6 and the vertices on the back hexagon are labeled by edges $x_1^{-1}, \ldots, x_6^{-1}$. For each i, a directed edge labeled o goes from vertex x_i to x_{i+1} and from x_i^{-1} to x_{i-1}^{-1}. A bidirectional edge labeled e goes between vertices x_i and x_i^{-1}. (All indices are taken modulo 6.)

Take a cyclic path τ in Γ_E with $\tau = v_1 \ldots v_n$ (where v_i is a vertex of Γ_E for each i). We associate to each vertex v_i a boundary subword b_i. The first letter of b_i is the edge label of v_i. If v_i is joined to v_{i+1} by an edge labeled o, then $|b_i| = 3$. Otherwise $|b_i| = 2$. Note that specifying the initial letter and length of the boundary subword uniquely determines b_i.

In Example 2, v_1 has label x_1 and x_1 is joined to x_2 by an edge labeled o. So $b_1 = x_1x_4^{-1}x_1$ has length 3 and starts with x_1.

We claim that there are seam edges s_1, \ldots, s_n so that $b_1s_1 \ldots b_ns_n \in W$. There are four cases to check: v_i could have the form x_j or x_j^{-1} and the edge from v_i to v_{i+1} could be labeled either e or o. Suppose v_i is labeled x_j and the edge from v_i to v_{i+1} is labeled e, so $|b_i| = 2$. Then given the edge labels in Figure 11, $b_i = x_jx_{j+3}$.

The edge labeled e joins vertex x_j to vertex x_{j+1}. Thus, $b_{i+1} = x_{j+2}^{-1}$. So b_{i+1} starts with x_{j+2}^{-1}. There is a seam edge between x_{j+1} and x_{j+2} for all $j = 1, \ldots, 6$. So there is a seam edge s_i so that $b_is_is_{i+1}$ forms a non-backtracking path. The other cases can be checked in the same way.

Therefore, the cyclic path $\tau = v_1 \ldots v_n$ corresponds to a cyclic word $w(\tau) = b_1s_1 \ldots b_ns_n \in W$. Since each word in W corresponds to a closed geodesic, τ corresponds to a closed geodesic $\gamma(\tau) \in \mathcal{G}^c$.

3.3. Map from paths in Γ_E to geodesics injective. We now have maps

$$\tau \rightarrow w(\tau) \rightarrow \gamma(\tau)$$
We show that $w(\tau)$ actually lies in the following special class of words.

Definition 3.3. A cyclic word $b_1 s_1 \ldots b_n s_n \in \mathcal{W}$ is alternating if no two consecutive boundary edges lie on the same hexagon. In particular, the last edge of b_i does not lie in the same hexagon as the first edge of b_{i+1} for each i.

Claim 3.4. For each cyclic path τ in $\Gamma_\mathcal{P}$, the word $w(\tau)$ constructed in the proof of Lemma 3.2 is a cyclic alternating word.

Proof. Let $\tau = v_1 v_2 \ldots v_n$ be a cyclic path in $\Gamma_\mathcal{P}$. Then τ corresponds to a word $b_1 s_1 \ldots b_n s_n \in \mathcal{W}$. Inside each boundary subword, adjacent boundary edges lie on different hexagons. So we just need to check that the last boundary edge of b_i lies on a different hexagon than the first boundary edge in b_{i+1}. Once again, this can be done by considering four cases. We have the cases where v_i is of the form x_j or the form x_j^{-1} and the cases where v_i is joined to v_{i+1} by an edge labeled e or an edge labeled o.

We will do the case where v_i is labeled x_j and v_i is joined to v_{i+1} by an edge labeled e. If v_i is labeled x_j and the edge is labeled e, then $b_i = x_j x_{j+3}^{-1}$. Since v_i is joined to v_{i+1} by an edge labeled e, we have that b_{i+1} starts with the letter x_{j+2}^{-1}.

We see from Figure 10 that x_{j+3}^{-1} and x_{j+2}^{-1} lie on different hexagons. The other 3 cases are shown in the same way. □

Lemma 3.5. Suppose $\tau \neq \tau'$ are two primitive cyclic paths in $\Gamma_\mathcal{P}$. Then $\gamma(\tau) \neq \gamma(\tau')$.

Proof. Let $w(\tau)$ and $w(\tau')$ be the words constructed from τ and τ', respectively. We know that $w(\tau)$ and $w(\tau')$ are cyclic alternating words. Because τ and τ' are primitive, $w(\tau)$ and $w(\tau')$ are primitive as well. We will show that if w and w' are primitive, cyclic alternating words, then their geodesics $\gamma(w)$ and $\gamma(w')$ are distinct.

Let w be a primitive, cyclic alternating word and let $\gamma(w)$ be the corresponding geodesic. Let $p(w)$ be the closed curve in \mathcal{P} formed by concatenating the edges in w. Lift $p(w)$ to a complete curve $\hat{p}(w)$ in the universal cover, $\hat{\mathcal{P}}$.

The hexagon decomposition of \mathcal{P} lifts to a hexagonal tiling of $\hat{\mathcal{P}}$. We get a graph Γ dual to this hexagonal tiling: Put a vertex in the middle of each hexagon, and join two vertices if their hexagons share a side edge. This graph is a valence 3 tree. (See Figure 12.)

Let $\Gamma(w)$ be the subgraph of Γ that has a vertex for every hexagon that contains a boundary edge of $\hat{p}(w)$ (see Figure 13). We want to show that $\Gamma(w)$ is an embedded line. If not, then $\Gamma(w)$ would have a valence 1 vertex. This would correspond to $\hat{p}(w)$ entering a hexagon h, traversing some of its boundary edges, and then leaving h through the same seam edge through which it entered. But this cannot be achieved if $\hat{p}(w)$ never has more than one consecutive boundary edge in the same hexagon. Thus $\Gamma(w)$ is an embedded line.

We can do the same construction for any other primitive, cyclic alternating word w'. Let $\gamma(w')$ be the geodesic corresponding to w' and let $p(w')$ be the concatenation of edges in w'. Lift $p(w')$ to a curve $\hat{p}(w')$ and construct the subgraph $\Gamma(w')$. This subgraph is again a line embedded in Γ.

Note that complete geodesics in \mathcal{P} are in one-to-one correspondence with embedded lines in Γ. Therefore, $\Gamma(w)$ corresponds to a unique complete geodesic $\hat{\gamma}$ that must be a lift of $\gamma(w)$, and likewise, $\Gamma(w')$ corresponds to a unique complete geodesic $\hat{\gamma}'$ that must be a lift of $\gamma(w')$ (see Figure 13).
Figure 12. A piece of the graph Γ dual to the hexagonal tiling of $\tilde{\mathcal{P}}$

Figure 13. The subgraph $\Gamma(w)$ goes through the same hexagons as $\tilde{\gamma}(w)$.

Suppose for contradiction that $\gamma(w) = \gamma(w')$ as oriented geodesics. So we could have chosen a lift $\tilde{p}(w')$ so that $\Gamma(w) = \Gamma(w')$ as oriented paths in Γ. (Note that the orientations on $\Gamma(w)$ and $\Gamma(w')$ come from the orientations of $p(w)$ and $p(w')$, respectively.) The vertices of $\Gamma(w)$ are in one-to-one correspondence with the hexagons traversed by $\tilde{p}(w)$, and the analogous statement is true for $\tilde{p}(w')$. So $\tilde{p}(w)$ and $\tilde{p}(w')$ pass through the exact same hexagons in $\tilde{\mathcal{P}}$.

Suppose $\Gamma(w)$ and $\Gamma(w')$ pass through consecutive hexagons h_1, h_2 and h_3. Then $\tilde{p}(w)$ and $\tilde{p}(w')$ both travel from h_1 to h_3 through the boundaries of these hexagons. Furthermore, they each pass through just one boundary edge in h_2. Therefore, they both pass through the same boundary edge of h_2 (see Figure 14). Thus, $\tilde{p}(w)$ and $\tilde{p}(w')$ pass through all the same boundary edges. But there is just one side edge that can lie between a pair of boundary edges. So $\tilde{p}(w)$ and $\tilde{p}(w')$ must have the same image in \mathcal{P}. Since w and w' are primitive, this implies $p(w) = p(w')$ as cyclic paths. So $w = w'$ as cyclic words.

We showed that if $\gamma(\tau) = \gamma(\tau')$ as oriented geodesics then $w(\tau) = w(\tau')$ as cyclic words. Since $w(\tau)$ always has more than one boundary subword, we can recover τ from $w(\tau)$. In other words, the map $\tau \rightarrow w(\tau)$ is injective. So $\tau = \tau'$ as cyclic
paths. Therefore two primitive, cyclic paths \(\tau \) and \(\tau' \) in \(\Gamma_E \) are equal if and only if \(\gamma(\tau) = \gamma(\tau') \) as oriented geodesics.

\[\square \]

3.4. Path length and geodesic length and intersection number.

Fix \(L \) and \(K \). We want to count the number of cyclic paths \(\tau \) in \(\Gamma_E \) so that the corresponding closed geodesic satisfies \(\gamma(\tau) \in G^c(L, K) \). First, we show that we can guarantee \(\gamma(\tau) \in G^c(L, K) \) with just an upper bound on path length \(|\tau| \).

Lemma 3.6. Fix \(L \) and \(K \). Suppose we have a cyclic path \(\tau \) in \(\Gamma_E \) of length at most \(N(L, K) \), for

\[
N(L, K) = \min \left\{ \frac{1}{4l_{\max}} L, \sqrt[3]{\frac{1}{3} K} \right\}
\]

Then \(\gamma(\tau) \in G^c(L, K) \), where \(\gamma(\tau) \) is the closed geodesic corresponding to \(\tau \).

Proof. Take a cyclic path \(\tau \) in \(\Gamma_E \) of length at most \(N(L, K) \). Then \(\tau \) corresponds to a word \(w(\tau) = b_1s_1 \cdots b_ns_n \). By construction,

\[
n = |\tau|
\]

where \(|\tau| \) denotes the path length of \(\tau \).

We constructed \(w(\tau) \) so that \(|b_i| \leq 3 \) for each \(i \). Thus, \(|b_is_i| \leq 4, \forall i \). Therefore,

\[
|w(\tau)| \leq 4|\tau|
\]

Furthermore, we can get a bound on \(i(w(\tau), w(\tau)) \) as follows. We have that

\[
i(w(\tau), w(\tau)) = 2 \sum_{j=1,2,3} \sum_{i=1}^{n_j} i|b_{\sigma(i)}|
\]
for appropriate indices $\sigma_1(i), \sigma_2(i)$ and $\sigma_3(i)$ and where n_j is the number of b_i that lie on boundary component β_j of \mathcal{P}. Thus,

$$i(w(\tau), w(\tau)) \leq \sum_{j=1}^{n_j} \sum_{i=1}^{n_i} 3i$$

$$= 3[(n_1^2 + n_1) + (n_2^2 + n_2) + (n_3^2 + n_3)]$$

$$\leq 3(n_1 + n_2 + n_3)^2$$

$$= 3n^2$$

$$= 3|\tau|^2$$

Note that we get the second inequality because n_1, n_2 and n_3 are non-negative integers. Therefore,

$$i(w(\tau), w(\tau)) \leq 3|\tau|^2$$

Let $\gamma(\tau)$ be the geodesic corresponding to τ (and $w(\tau)$). By Lemmas 2.8 and 2.11,

$$l(\gamma(\tau)) \leq l_{\text{max}}|w(\tau)|$$

and

$$i(\gamma(\tau), \gamma(\tau)) \leq i(w(\tau), w(\tau))$$

where l_{max} is the length of the longest boundary or seam edge in \mathcal{E}. Therefore,

$$l(\gamma(\tau)) \leq 4l_{\text{max}}|\tau|$$

and

$$i(\gamma(\tau), \gamma(\tau)) \leq 3|\tau|^2$$

In particular, if

$$|\tau| \leq \frac{1}{4l_{\text{max}}}L$$

and

$$|\tau| \leq \sqrt{\frac{K}{3}}$$

then $\gamma(\tau) \in \mathcal{G}^c(L, K)$.

3.5. **Counting paths.** By Lemma 3.6, we can get a lower bound on $\#\mathcal{G}^c(L, K)$ via a lower bound on the number of paths of length $N(L, K)$. In the following lemma, we count the number of cyclic paths of length exactly n.

Lemma 3.7. Let H_n be the number of cyclic paths in $\Gamma_\mathcal{E}$ of length exactly n. If n is odd, then $H_n = 0$. Otherwise,

$$H_{2n} = 2 + \frac{1}{n} \sum_{d|n} \phi(d)4^{n/d}$$

where $\phi(d)$ is the Euler totient function that counts the number of $k \leq d$ relatively prime to d.

This closed form for H_n was communicated to us by Alex Miller [Mil]. It follows from combining the eigenvalues of the edge adjacency matrix M for the graph $\Gamma_\mathcal{E}$ with Burnside’s lemma from group theory.

Proof. Take $\Gamma_\mathcal{E}$ and relabel the vertices 1, \ldots, 12 so that x_1, \ldots, x_6 are relabeled 1, \ldots, 6, respectively and $x_1^{-1}, \ldots, x_6^{-1}$ are relabeled 7, \ldots, 12, respectively. Form
its 12×12 edge adjacency matrix M. This is the matrix whose (i, j) entry is 1 if there is an edge from vertex i to vertex j, and 0 otherwise. So,

\[
M = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

where A is a matrix so that $A^6 = I$.

Suppose we take the nth power M^n of M. Then the (i, j) entry of M^n is exactly the number of paths going through $n + 1$ vertices, that start at vertex i and end at vertex j. Let Ω_n be the set of (non-closed) paths $v_1v_2\ldots v_n$ in Γ_E so that there is an edge from v_n to v_1. Then,

\[
tr(M^n) = \#\Omega_n
\]

The cyclic paths of length n in Γ_E correspond to exactly the elements of Ω_n up to cyclic permutation. So if C_n is the cyclic group of order n, then $H_n = \#(\Omega_n/C_n)$.

The Burnside lemma says that the number of C_n-orbits in Ω_n is the average number of fixed points of the C_n action. So,

\[
H_n = \frac{1}{n} \sum_{\sigma \in C_n} \#\{\omega \in \Omega_n \mid \sigma \omega = \omega\}
\]

Choose an element $\sigma \in C_n$. If $|\sigma| = d$, then σ is the product of n/d disjoint d-cycles. If $\omega \in \Omega_n$ is a word so that $\sigma(\omega) = \omega$, then $\omega = \nu^d$, where $\nu \in \Omega_{n/d}$. In other words, $|\sigma| = d$ implies the fixed set of σ is in one-to-one correspondence with $\Omega_{n/d}$. The number of order d elements of C_n is $\phi(d)$, where ϕ is the Euler totient function. Therefore,

\[
H_n = \frac{1}{n} \sum_{d|n} \phi(d)|\Omega_{n/d}|
\]

As previously noted, $|\Omega_{n/d}| = tr(M^{n/d})$. So we can write this sum as

\[
H_n = \frac{1}{n} \sum_{d|n} \phi(d)tr(M^{n/d})
\]

The trace of a matrix is the sum of its eigenvalues. The characteristic polynomial of M can be computed to be $-\lambda^6(\lambda - 2)(\lambda - 1)^2(\lambda + 1)^2(\lambda + 2)$, and so its non-zero
eigenvalues are $-2, -1, 1, 1, 1, 2$. Therefore,

$$tr(M^k) = (-2)^k + 2(-1)^k + 2^k + 2$$

$$= (2^k + 2)(1 + (-1)^k)$$

$$= \begin{cases}
0 & k \text{ odd} \\
2(2^k + 2) & k \text{ even}
\end{cases}$$

If n is odd, then n/d is odd, and so $tr(M^{n/d}) = 0$ for all $d | n$. Therefore, $H_n = 0$ if n is odd. If $n = 2m$ is even, note that $d | m$ if and only if n/d is even. So, we need only sum over those d that divide m:

$$H_{2m} = \frac{1}{2m} \sum_{d | m} \phi(d)2(2^{\frac{2m}{d}} + 2)$$

$$= \frac{1}{m} \sum_{d | m} \phi(d)2^{\frac{2m}{d}} + \frac{1}{m} \sum_{d | m} \phi(d)$$

$$= 2 + \frac{1}{m} \sum_{d | m} \phi(d)4^{\frac{m}{d}}$$

where the last equality comes from the fact that $\sum_{d | m} \phi(d) = m$. \(\square\)

3.6. Proof of Theorem 1.1

We now get a lower bound on $\# G^c(L, K)$.

In Lemma 3.7 we show that the number of length $2m$ cyclic paths in Γ_E is

$$H_{2m} = 2 + \frac{1}{m} \sum_{d | m} \phi(d)4^{\frac{m}{d}}$$

$$\geq 2 + \frac{1}{m} 4^m$$

$$\geq 2 + 2^m$$

where these inequalities hold for all $m > 0$. So we will use the simplified inequality $H_{2m} \geq 2 + 2^m$.

Any cyclic path of length exactly $2m$ can be reduced to a primitive cyclic path of length at most $2m$. So this gives a lower bound on the number of primitive cyclic paths of length at most $2m$.

By Lemma 3.6 if τ is a cyclic path in Γ_E with $|\tau| \leq N(L, K)$ for

$$N(L, K) = \min\{\frac{1}{4l_{max}}L, \sqrt{\frac{K}{3}}\}$$

then $\gamma(\tau) \in G^c(L, K)$. So we need to get a lower bound on the number of primitive, cyclic paths in Γ_E of length at most $N(L, K)$.

The function $2 + 2^m$ is increasing in m for all m. There is some even number between $N(L, K) - 2$ and $N(L, K)$. Assuming $N(L, K) - 2 > 0$, we can set $2m = N(L, K) - 2$, and get that the number of primitive, cyclic paths in Γ_E of length at most $N(L, K)$ is at least

$$\# G^c(L, K) \geq 2 + 2^{\frac{1}{2}N(L, K) - 1} = 2 + \frac{1}{2}2^{\frac{1}{2}N(L, K)}$$

If $N(L, K) = \sqrt{\frac{K}{4}}$, this tells us that $K \geq 12$ implies

$$\# G^c(L, K) \geq 2 + \frac{1}{2}2^{\sqrt{\frac{K}{4}}}$$
If \(N(L, K) = \frac{1}{L_{\text{max}}} L \), then \(L \geq 8l_{\text{max}} \) implies
\[
\#\mathcal{G}^c(L, K) \geq 2 + \frac{1}{2} 2^{\frac{1}{2} \frac{1}{L_{\text{max}}}} L
\]
Therefore, if \(L \geq 8l_{\text{max}} \) and \(K \geq 12 \),
\[
\#\mathcal{G}^c(L, K) \geq 2 + \frac{1}{2} \min\{2 \sqrt{K}, 2 \frac{1}{2} \frac{1}{L_{\text{max}}} L\}
\]

4. Lower bound for surfaces

Let \(S \) be an arbitrary surface. The lower bound for \(\#\mathcal{G}^c(L, K) \) on \(S \) follows from the lower bound on pairs of pants. The idea is that we will count geodesics in different pairs of pants inside \(S \). To make sure that we do not over-count, we need the following lemma.

Lemma 4.1. Let \(f_1, f_2 : P \to S \) be two embeddings of a pair of pants into \(S \). Suppose \(\gamma_1 \) and \(\gamma_2 \) are two non-simple closed curves on \(P \). If \(f_1 \) is not homotopic to \(f_2 \), then \(f_1(\gamma_1) \) is not freely homotopic to \(f_2(\gamma_2) \) inside \(S \).

Proof. Suppose \(f_1(\gamma_1) \) is freely homotopic to \(f_2(\gamma_2) \). Then the geodesic representatives of \(f_1(\gamma_1) \) and \(f_2(\gamma_2) \) are the same. Let \(\phi \) be the geodesic representative of these two curves.

We can tighten the boundary curves of \(f_1(P) \) and \(f_2(P) \) to get pairs of pants \(P_1 \) and \(P_2 \) with geodesic boundary. Then \(\phi \) is a non-simple geodesic that lies in both \(P_1 \) and \(P_2 \). Using the Euler characteristic, we see that connected components of \(P_1 \cap P_2 \) can be disks, cylinders, or a pair of pants. Since \(\phi \) is non-simple, it cannot lie in a disk or a cylinder. So some component of \(P_1 \cap P_2 \) must be a pair of pants. But this means \(P_1 = P_2 \). Since homotopies of simple closed multicurves can be extended to ambient homotopies, \(f_1 \) is homotopic to \(f_2 \). \(\square \)

We will now prove the main theorem for arbitrary surfaces. We give a more precise, but messier, version of the theorem here.

Theorem 1.2. Let \(S \) be a genus \(g \) surface with \(n \) geodesic boundary components, and let \(X \) be a negatively curved metric on \(S \). Then whenever \(K > 12 \) and \(L > 3s_X \sqrt{K} \) we have
\[
\#\mathcal{G}^c(L, K) \geq c(X)(\frac{L}{6 \sqrt{K}})^{6g-6+2n}(2 + \frac{1}{2} 2^{\frac{1}{2} \frac{1}{L_{\text{max}}}} L)
\]
where \(s_X \) and \(c_X \) are constants that depend only on the metric \(X \).

NB: The constant \(s_X \) is related to the width of a collar neighborhood of the systole in \(X \).

Proof. Consider the set of all pairs of pants \(P \) with geodesic boundary components inside \(S \). Given any such \(P \subset S \), let \(l_{\text{max}}(P) \) be the length of the longest boundary component or longest arc connecting boundaries of \(P \) at right angles, inside \(P \). Then by Theorem 1.1 and Lemma 4.1
\[
\#\mathcal{G}^c(L, K) \geq \sum_{\substack{P \subset S \ \text{ s.t. } L \geq 8l_{\text{max}}(P) \geq 8l_{\text{max}} \ \text{and } K \geq 12}} 2 + \frac{1}{2} \min\{2 \sqrt{K}, 2 \frac{1}{2} \frac{1}{L_{\text{max}}(P)} L\}
\]

The condition \(L \geq 8l_{\text{max}}(P) \) on each pair of pants \(P \) in the above sum comes from Theorem 1.1. The other condition (that \(K \geq 12 \)) is already assumed. Furthermore,
simple closed curves are not counted by Theorem 1.1. A simple closed curve would be encoded by a length 1 path in Γ_F that stays at a single vertex, but Γ_F has no edges from a vertex to itself. So, we do not have to worry about overcounting them.

Choose a pair of pants P. Let $l(P)$ be the sum of the lengths of its boundary components. Then we claim that $l_{\text{max}}(P) \leq l(P) + s_X$ for some constant s_X depending only on the metric X on S. Cut P into two right-angled hexagons, and consider just one of them. Suppose s is a seam edge and that it is adjacent to boundary edges a and b, and opposite boundary edge c. Let $Z_a(r)$ and $Z_b(r)$ be collar neighborhoods of radius r about a and b, respectively. Let r_a and r_b be the largest radii so that these collar neighborhoods are embedded. Then $r_a \leq \sinh^{-1}\left(\frac{\text{Area}(P)}{l(a)}\right)$ and $r_b \leq \sinh^{-1}\left(\frac{\text{Area}(P)}{l(b)}\right)$

Note that $Z_a(r_a) \cup Z_b(r_b)$ covers at least two of the seam edges. In fact, there is a path between the endpoints of s of length at most $l(a) + l(b) + l(c) + r_a + r_b$ (Figure 15).

![Figure 15. The possible curves joining the endpoints of s.](image)

Let l_{sys} be the length of the systole in X and let $s_X = 3 \sinh^{-1}(\frac{\text{Area}(X)}{l_{\text{sys}}})$. Since $\sinh^{-1}(x)$ is an increasing function, we have $l(s) \leq s_X + l(P)$

Thus, $l_{\text{max}}(P) \leq l(P) + s_X$ for all pairs of pants embedded in S.

Fix L and K. Let $l_0 = \frac{\sqrt{3}L}{4\sqrt{K}}$. Note that if $l_0 \geq l_{\text{max}}(P)$ then

$$\frac{1}{8l_{\text{max}}(P)}L > \sqrt{\frac{K}{12}}$$

This implies that $\min\{\frac{1}{8l_{\text{max}}(P)}L, \sqrt{\frac{K}{12}}\} = \sqrt{\frac{K}{12}}$. Since $K \geq 12$, then $l_0 \geq l_{\text{max}}(P)$ also implies that $L \geq 8l_{\text{max}}(P)$. Thus, we can simplify inequality (4.0.1) as follows:

$$\#G^c(L, K) \geq \sum_{P \subset S, l_{\text{max}}(P) \leq l_0} 2 + \frac{1}{2}2\sqrt{\frac{K}{12}}$$

By [Mir08], the number of pairs of pants P with length at most L grows asymptotically like $c(X)L^{6g-6+2n}$. So there is some constant $c'(X)$ so that this number is bounded below by $c'(X)L^{6g-6+2n}$ for all $L > l_{\text{sys}}$, where l_{sys} is the length of the
shortest closed geodesic on S. If $l(P) < l_0 - s_X$ then $l_{\text{max}}(P) < l_0$. The number of pairs of pants with $l(P) < l_0 - s_X$ is at least $c'(X)(l_0 - s_X)^{6g-6+2n}$. So there are at least $c'(X)(l_0 - s_X)^{6g-6+2n}$ pairs of pants so that $l_{\text{max}}(P) < l_0$. So whenever $l_0 - s_X > l_{\text{sys}}$ and $K > 12$, we have

$$(4.0.2) \quad \#G^c(L, K) \geq c'(X)(l_0 - s_X)^{6g-6+2n}(2 + \frac{1}{2}2\sqrt{\frac{K}{12}})$$

for some constant $c'(X)$ depending only on the metric X.

Note that $l_0 - s_X > l_{\text{sys}}$ if and only if $L > \frac{4}{\sqrt{3}}(s_X + l_{\text{sys}})\sqrt{K}$. Let

$$s_X' = s_X + l_{\text{sys}}$$

Then we get inequality $(4.0.2)$ whenever $L \geq \frac{4}{\sqrt{3}}s_X'K$ and $K \geq 12$. We had $l_0 = \frac{\sqrt{3}}{4\sqrt{K}}$. Note that $\frac{4}{\sqrt{3}} < 3$, so we replace $\frac{4}{\sqrt{3}}$ by 3 to use nicer numbers in the statement of the theorem. Furthermore, if $L > 6s_X'\sqrt{K}$, then $\frac{L}{3\sqrt{K}} - s_X \geq \frac{L}{6\sqrt{K}}$. Thus, inequality $(4.0.2)$ implies

$$\#G^c(L, K) \geq c'(X)(\frac{L}{6\sqrt{K}})^{6g-6+2n}(2 + \frac{1}{2}2\sqrt{\frac{K}{12}})$$

□

References

[Bas13] Ara Basmajian. Universal length bounds for non-simple closed geodesics on hyperbolic surfaces. J. Topol., 6(2):513–524, 2013.

[CdV85] Yves Colin de Verdière. Sur le spectre des surfaces de riemann d’aire infinie. Astérisque, 132:259–125, 1985.

[Gui86] Laurent Guillopé. Sur la distribution des longueurs des géodésiques fermées d’une surface compacte à bord totalement géodésique. Duke Math. J., 53(3):827–848, 1986.

[Hub59] Heinz Huber. Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen. Math. Ann., 138:1–26, 1959.

[Lal89] Steven P. Lalley. Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits. Acta Math., 163(1-2):1–55, 1989.

[LP82] Peter D. Lax and Ralph S. Phillips. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal., 46(3):280–350, 1982.

[Mar70] G. A. Margulis. On some aspects of the theory of Anosov flows. PhD thesis, Moscow State University”, 1970.

[Mil] Alexander Miller. Private communication.

[Mir08] Maryam Mirzakhani. Growth of the number of simple closed geodesics on hyperbolic surfaces. Ann. of Math. (2), 168(1):97–125, 2008.

[MS04] Gregori Aleksandrovitsch Margulis and Richard Sharp. On some aspects of the theory of Anosov systems. Springer Verlag, 2004.

[Pat88] S. J. Patterson. On a lattice-point problem in hyperbolic space and related questions in spectral theory. Ark. Mat., 26(1):167–172, 1988.

[Ree81] Mary Rees. An alternative approach to the ergodic theory of measured foliations on surfaces. Ergodic Theory Dynamical Systems, 1(4):461–488 (1982), 1981.

[Riv12] Igor Rivin. Geodesics with one self-intersection, and other stories. Adv. Math., 231(5):2391–2412, 2012.