Complete Genome Sequence of the Highly Virulent Aeromonas hydrophila AL09-71 Isolated from Diseased Channel Catfish in West Alabama

Julia W. Pridgeon, a Dunhua Zhang, a Lee Zhang b
Aquatic Animal Health Research Unit, USDA, ARS, Auburn, Alabama, USA a; Genomics and Sequencing Laboratory, Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA b

Aeromonas hydrophila AL09-71 was isolated from diseased channel catfish in west Alabama during a 2009 disease outbreak. The full genome of A. hydrophila AL09-71 is 5,023,861 bp. The availability of this genome will allow comparative genomics to identify genes involved in pathogenesis or immunogens for the purpose of vaccine development.

Received 23 April 2014 Accepted 5 May 2014 Published 22 May 2014
Citation Pridgeon JW, Zhang D, Zhang L. 2014. Complete genome sequence of the highly virulent Aeromonas hydrophila AL09-71 isolated from diseased channel catfish in west Alabama. Genome Announc. 2(3):e00450-14. doi:10.1128/genomeA.00450-14.

Acknowledgments This study was supported by the USDA/ARS CRIS project 6420-32000-024-00D. The use of trade, firm, or corporate names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

We thank Dr. Victor Panangala (USDA-ARS) and Dr. Mark Liles (Auburn University) for critical reviews of the manuscript. We thank William Hemstreet (Alabama Fish Farming Center, Department of Fisheries, Auburn University) for providing the isolate and Beth Peterman (USDA-ARS) for her technical support.

REFERENCES
1. Harikrishnan R, Rani MN, Balasundaram C. 2003. Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture 221: 41–50. http://dx.doi.org/10.1016/S0044-8486(03)00023-1.

Genome Announcements
2. Mastan SA, Qureshi TA. 2001. Role of bacteria in the epizootic ulcerative syndrome (EUS) of fishes. J. Environ. Biol. 22:187–192.

3. Karunasagar I, Rosalind GM, Karunasagar I, Gopal Rao K. 1989. *Aeromonas hydrophila* septicemia of Indian major carps in some commercial fish farms of West Godavari District, Andhra Pradesh. Curr. Sci. 58:1044–1045.

4. Hemstreet B. 2010. An update on *Aeromonas hydrophila* from a fish health specialist for summer 2010. Catfish J. 24:4.

5. Pridgeon JW, Klesius PH. 2011. Molecular identification and virulence of three *Aeromonas hydrophila* isolates cultured from infected channel catfish during a disease outbreak in west Alabama (USA) in 2009. Dis. Aquat. Organ. 94:249–253. http://dx.doi.org/10.3354/dao02332.

6. Pridgeon JW, Klesius PH. 2011. Virulence of *Aeromonas hydrophila* to channel catfish Ictalurus punctatus fingerlings in the presence and absence of bacterial extracellular products. Dis. Aquat. Organ. 95:209–215. http://dx.doi.org/10.3354/dao02357.

7. Griffin MJ, Goodwin AE, Merry GE, Liles MR, Williams MA, Ware C, Waldieser GC. 2013. Rapid quantitative detection of *Aeromonas hydrophila* strains associated with disease outbreaks in catfish aquaculture. J. Vet. Diagn. Invest. 25:473–481. http://dx.doi.org/10.1177/1040638713494210.

8. Tekedar HC, Waldieser GC, Karsi A, Liles MR, Griffin MJ, Vamenta S, Sonstegard T, Hossain M, Schroeder SG, Khoo L, Lawrence ML. 2013. Complete genome sequence of a channel catfish epidemic isolate, *Aeromonas hydrophila* strain ML09-119. Genome Announc. 1(5):e00755-13. http://dx.doi.org/10.1128/genomeA.00755-13.

9. Hossain MI, Waldieser GC, Sun D, Capps NK, Hemstreet WB, Carlisle K, Griffin MJ, Khoo L, Goodwin AE, Sonstegard TS, Schroeder S, Hayden K, Newton JC, Terhune JS, Liles MR. 2013. Implication of lateral genetic transfer in the emergence of *Aeromonas hydrophila* isolates of epidemic outbreaks in channel catfish. PLoS One 8:e80943. http://dx.doi.org/10.1371/journal.pone.0080943.

10. Pridgeon JW, Klesius PH, Song L, Zhang D, Kojima K, Mobley JA. 2013. Identification, virulence, and mass spectrometry of toxic ECP fractions of west Alabama isolates of *Aeromonas hydrophila* obtained from a 2010 disease outbreak. Vet. Microbiol. 164:336–343. http://dx.doi.org/10.1016/j.vetmic.2013.02.020.

11. Grim CJ, Kozlova EV, Sha J, Pitts EC, van Lier CJ, Kirtley ML, Joseph SJ, Read TD, Burd EM, Tall BD, Joseph SW, Horneman AJ, Chopra AK, Shah JR. 2013. Characterization of *Aeromonas hydrophila* wound pathotypes by comparative genomic and functional analyses of virulence genes. mBio 4(2):e00664-13. http://dx.doi.org/10.1128/mBio.00664-13.

12. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108. http://dx.doi.org/10.1093/nar/gkm160.

13. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. 2004. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32: W273–W279. http://dx.doi.org/10.1093/nar/gkh053.

14. Aziz RK, Bartels D, Best AA, DeLongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil IK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.