Supporting information

Table S1 RDA analysis of the relationship between the environmental factor and community composition (bacteria, diatoms, and protists)

	Bacteria	RDA1	RDA2	r^2	$Pr(>r)$
NO$_2$	-0.00304	1.00000	0.08	0.391	
NO$_3$	-0.0861	0.99629	0.0681	0.447	
NH$_4$	-0.99995	0.00997	0.0178	0.815	
Nmin	-0.0885	0.99608	0.0695	0.444	
PO$_4$	0.29137	0.95661	0.0351	0.675	
SIO$_3$	0.06997	0.99755	0.0387	0.633	
TP	0.98132	-0.1924	0.1246	0.258	
SA	-0.79613	-0.60512	0.1628	0.142	
depth	-0.99703	-0.07699	0.1905	0.108	

	Diatoms	RDA1	RDA2	r^2	$Pr(>r)$
NO$_2$	-0.48244	0.87593	0.074	0.318	
NO$_3$	-0.54491	0.8385	0.036	0.444	
NH$_4$	0.83326	-0.55288	0.0033	0.968	
Nmin	-0.53714	0.84349	0.0382	0.431	
PO$_4$	-0.39966	0.91666	0.1065	0.271	
SIO$_3$	-0.44607	0.895	0.2011	0.09	
TP	0.91289	-0.4082	0.1968	0.106	
SA	-0.44603	-0.89502	0.0954	0.327	
depth	-0.23664	-0.9716	0.3416	0.014*	

	Protist	RDA1	RDA2	r^2	$Pr(>r)$
NO$_2$	0.81643	0.57745	0.073	0.326	
NO$_3$	0.68693	0.72672	0.0486	0.442	
NH$_4$	-0.3476	0.93764	0.1929	0.097	
Nmin	0.67858	0.73453	0.0524	0.432	
PO$_4$	0.96071	0.27756	0.0531	0.442	
SIO$_3$	0.88207	0.47112	0.0692	0.405	
TP	-0.42886	-0.90337	0.0788	0.381	
SA	-0.8641	0.50332	0.0544	0.495	
depth	-0.9847	0.17425	0.1288	0.244	

*, a significant level at 0.05. r^2, the square of the correlation index. $Pr(>r)$, the p-value (number of permutations: 999). SA, salinity. TP, total phosphorus. Nmin, total inorganic nitrogen.
Table S2 RDA analysis of the relationship between the environmental factor and community composition (bacteria, diatoms, and protists) in Pearl River estuary (PR) and Beibu Gulf regions (BG)

Bacteria PR	RDA1	RDA2	r²	Pr(>r)
NO2	-0.95612	0.29296	0.1697	0.426
NO3	-0.90746	0.42014	0.1826	0.429
NH4	0.3193	0.94765	0.0331	0.846
Nmin	-0.89566	0.44473	0.1641	0.474
PO4	-0.21967	-0.97557	0.3987	0.063
SIO3	-0.93344	-0.35873	0.194	0.331
TP	0.74912	-0.66243	0.0688	0.694
SA	-0.06893	0.99762	0.4365	0.048*
depth	-0.52616	0.85039	0.0216	0.901

Bacteria BG	RDA1	RDA2	r²	Pr(>r)
NO2	-0.96128	0.27556	0.106	0.747
NO3	-0.43697	0.89948	0.0279	0.956
NH4	0.10849	-0.9941	0.0076	0.982
Nmin	-0.61241	0.79054	0.0238	0.953
PO4	0.51153	0.85927	0.1946	0.548
SIO3	0.98432	0.17641	0.0431	0.881
TP	-0.97306	0.23055	0.0415	0.901
SA	-0.34998	0.93676	0.0317	0.925
depth	0.35317	0.93556	0.0819	0.784

Diatoms PR	RDA1	RDA2	r²	Pr(>r)
NO2	-0.81031	0.586	0.048	0.748
NO3	-0.98299	0.18366	0.0577	0.711
NH4	0.48022	0.87715	0.0461	0.821
Nmin	-0.94875	0.31604	0.0464	0.747
PO4	0.67619	-0.73673	0.207	0.25
SIO3	-0.60198	-0.79851	0.0539	0.732
TP	0.96833	-0.24969	0.0555	0.749
SA	-0.41618	0.90928	0.5283	0.041*
depth	-0.11938	0.99285	0.074	0.668

Diatoms BG	RDA1	RDA2	r²	Pr(>r)					
	NO2	NO3	NH4	Nmin	PO4	SIO3	TP	SA	depth
-----	-------	-------	-------	-------	-------	-------	-------	-------	-------
	-0.82084	0.57116	0.4989	0.132	0.77895	-0.89541	0.94152	0.99022	0.99729
	0.72427	0.68952	0.3151	0.324	0.80804	0.72427	0.77895	0.77895	0.77895
	0.31949	-0.94759	0.3136	0.341	-0.77895	0.31949	-0.94759	0.94759	-0.94759
	0.80804	0.58913	0.2174	0.489	-0.77895	0.31949	0.94759	0.94759	0.94759
	0.89541	0.44524	0.6751	0.029*	0.89541	0.89541	0.44524	0.44524	0.44524
	0.89541	0.44524	0.6751	0.029*	0.89541	0.89541	0.44524	0.44524	0.44524
	0.94152	-0.33695	0.7168	0.016*	0.94152	0.94152	-0.33695	-0.33695	-0.33695
	0.99022	-0.13951	0.7294	0.02*	0.99022	0.99022	-0.13951	-0.13951	-0.13951
	0.99729	0.07358	0.6888	0.033*	0.99729	0.99729	0.07358	0.07358	0.07358

Protist PR	RDA1	RDA2	r²	Pr(>r)
NO2	-0.8152	0.57917	0.0279	0.859
NO3	-0.85973	-0.51076	0.0075	0.962
NH4	-0.90989	-0.41484	0.059	0.745
Nmin	-0.94112	-0.33809	0.0103	0.944
PO4	-0.56182	0.82726	0.0777	0.634
SIO3	-0.66569	-0.74623	0.0017	0.99
TP	0.44497	-0.89554	0.2951	0.171
SA	-0.99815	0.06081	0.3438	0.122
depth	-0.7042	0.71	0.0172	0.933

Protist BG	RDA1	RDA2	r²	Pr(>r)
NO2	-0.33336	-0.9428	0.5054	0.082
NO3	0.01211	-0.99993	0.5367	0.059
NH4	0.84324	-0.53754	0.3724	0.23
Nmin	0.10333	-0.99465	0.5856	0.06
PO4	-0.98304	0.18338	0.2125	0.552
SIO3	-0.66342	-0.74825	0.3848	0.224
TP	0.33286	0.94298	0.3124	0.324
SA	0.29056	0.95686	0.3297	0.292
depth	-0.0077	0.99997	0.4375	0.155

* a significant level at 0.05. \(r^2 \), the square of the correlation index. \(Pr(>r) \), the \(p-value \) (number of permutations: 999). SA, salinity. TP, total phosphorus. Nmin, total inorganic nitrogen.
| Category | Bin1 | Bin99 | Bin114 | Bin159 | Bin168 | Bin265 | Bin275 | Bin292 | Bin326 | Bin330 | Bin338 | Bin353 | Bin378 | Bin380 |
|--------------------------------|------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Aging | 10 | 7 | 7 | 12 | 8 | 14 | 7 | 12 | 6 | 13 | 6 | 8 | 7 | 22 |
| Amino acid metabolism | 177 | 33 | 207 | 194 | 221 | 306 | 344 | 259 | 179 | 290 | 220 | 329 | 162 | 328 |
| Biosynthesis of other secondary metabolites | 14 | 5 | 30 | 22 | 28 | 30 | 28 | 23 | 25 | 30 | 12 | 30 | 20 | 32 |
| CanCancer: Overview | 17 | 4 | 8 | 9 | 10 | 21 | 19 | 11 | 9 | 17 | 14 | 21 | 6 | 20 |
| CanCancer: Specific types | 3 | 1 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 1 | 3 | 1 | 1 | 3 |
| Carbohydrate metabolism | 235 | 82 | 167 | 206 | 211 | 307 | 321 | 212 | 162 | 390 | 289 | 364 | 368 | 358 |
| Cardiovascular diseases | 2 | 0 | 1 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Cell growth and death | 25 | 12 | 10 | 17 | 14 | 23 | 23 | 17 | 8 | 13 | 7 | 22 | 11 | 18 |
| Cell motility | 31 | 10 | 46 | 0 | 6 | 24 | 11 | 4 | 6 | 4 | 15 | 66 | 2 | 87 |
| Circulatory system | 3 | 2 | 4 | 0 | 0 | 4 | 3 | 3 | 0 | 0 | 1 | 5 | 1 | 3 |
| Digestive system | 1 | 0 | 2 | 1 | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 2 | 2 | 1 |
| Drug resistance | 22 | 8 | 39 | 24 | 19 | 16 | 12 | 28 | 13 | 14 | 4 | 32 | 11 | 36 |
| Endocrine and metabolic diseases| 7 | 4 | 7 | 3 | 3 | 9 | 8 | 6 | 3 | 8 | 8 | 11 | 4 | 8 |
| Endocrine system | 16 | 4 | 14 | 15 | 13 | 26 | 14 | 14 | 10 | 28 | 28 | 12 | 9 | 18 |
| Energy metabolism | 113 | 50 | 99 | 121 | 100 | 163 | 151 | 110 | 83 | 160 | 109 | 162 | 86 | 189 |
| Environmental adaptation | 2 | 0 | 4 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 6 | 1 | 4 |
| Excretory system | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 |
| Folding, sorting and degradation| 39 | 17 | 36 | 41 | 35 | 43 | 34 | 36 | 28 | 45 | 23 | 60 | 31 | 49 |
| Global and overview maps | 1010 | 285 | 1076 | 1156 | 1078 | 1402 | 1526 | 1164 | 908 | 1588 | 993 | 1722 | 741 | 1723 |
| Glycan biosynthesis and metabolism| 22 | 6 | 31 | 35 | 57 | 26 | 34 | 28 | 25 | 25 | 10 | 44 | 27 | 34 |
| Immune diseases | 1 | 0 | 2 | 2 | 1 | 1 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 |
| Immune system | 0 | 0 | 2 | 2 | 2 | 0 | 1 | 2 | 2 | 2 | 0 | 2 | 2 | 2 |
| Infectious diseases: | | | | | | | | | | | | | | |
| Bacterial | 14 | 6 | 19 | 12 | 10 | 13 | 13 | 11 | 6 | 13 | 11 | 21 | 7 | 35 |
| Infectious diseases: | | | | | | | | | | | | | | |
| Parasitic | 4 | 0 | 3 | 0 | 2 | 4 | 3 | 1 | 2 | 3 | 0 | 2 | 3 | 3 |
| Infectious diseases: | | | | | | | | | | | | | | |
| Viral | 3 | 0 | 0 | 0 | 1 | 0 | 7 | 3 | 1 | 0 | 0 | 1 | 0 | 0 |
| Lipid metabolism | 51 | 15 | 67 | 78 | 55 | 94 | 86 | 77 | 51 | 76 | 106 | 97 | 40 | 66 |
| Membrane transport | 39 | 23 | 60 | 62 | 34 | 51 | 149 | 71 | 28 | 158 | 26 | 191 | 27 | 186 |
| Metabolism of cofactors and vitamins | 99 | 21 | 99 | 117 | 98 | 112 | 135 | 102 | 83 | 112 | 65 | 164 | 60 | 174 |
| Category | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--|----|----|----|----|----|----|----|----|----|----|----|
| Metabolism of other amino acids | 53 | 7 | 49 | 34 | 43 | 75 | 76 | 45 | 29 | 46 | 47 |
| Metabolism of terpenoids and polyketides | 31 | 4 | 23 | 37 | 28 | 45 | 41 | 31 | 26 | 28 | 38 |
| Nervous system | 0 | 2 | 3 | 2 | 4 | 2 | 6 | 1 | 8 | 2 | 5 |
| Neurodegenerative diseases | 16 | 8 | 16 | 7 | 7 | 15 | 21 | 20 | 6 | 2 | 4 |
| Nucleotide metabolism | 83 | 23 | 74 | 86 | 93 | 110| 106| 87 | 82 | 118| 48 |
| Replication and repair | 74 | 20 | 59 | 66 | 72 | 68 | 64 | 70 | 88 | 92 | 22 |
| Signal transduction | 58 | 17 | 77 | 59 | 36 | 65 | 64 | 61 | 27 | 62 | 43 |
| Signaling molecules and interaction | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| Substance dependence | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Transcription | 4 | 2 | 1 | 4 | 3 | 8 | 5 | 3 | 1 | 6 | 4 |
| Translational | 70 | 66 | 55 | 75 | 75 | 94 | 71 | 51 | 56 | 100| 59 |
| Transport and catabolism | 5 | 3 | 5 | 7 | 11 | 7 | 10 | 11 | 6 | 8 | 5 |
| Xenobiotics | 48 | 1 | 23 | 79 | 31 | 89 | 97 | 80 | 20 | 47 | 85 |

Number: the number of genes
Table S4 The sampling information

Location	Region	Lab ID	S.depth	Num.	18S ID	16S ID	Metagenome ID		
ZS1	Pearl River estuary	ZJK-S1	0m	3	ZS1-0-1	ZS1-0-2	ZS1-0-3	ZS1-0	
ZS1	Pearl River estuary	ZJK-S1	7m	3	ZS1-20-1	ZS1-20-2	ZS1-20-3	ZS1-20	
ZS4	Pearl River estuary	ZJK-S4	0m	3	ZS4-0-1	ZS4-0-2	ZS4-0-3	ZS4-0	
ZS4	Pearl River estuary	ZJK-S4	20m	3	ZS4-20-1	ZS4-20-2	ZS4-20-3	ZS4-20	
ZF1	Pearl River estuary	ZJK-F1	0m	3	ZF1-0-2	ZF1-0-3	ZF1-0-4	ZF1-0	
ZF2	Pearl River estuary	ZJK-F2	16m	3	ZF1-20-1	ZF1-20-2	ZF1-20-3	ZF1-20	
ZF2	Pearl River estuary	ZJK-F2	20m	3	ZF2-20-1	ZF2-20-2	ZF2-20-3	ZF2-20	
ZF3	Pearl River estuary	ZJK-F3	0m	3	ZF3-0-1	ZF3-0-2	ZF3-0-3	ZF3-0	
ZF3	Pearl River estuary	ZJK-F3	20m	3	ZF3-20-1	ZF3-20-2	ZF3-20-3	ZF3-20	
ZF4	Pearl River estuary	ZJK-F4	0m	3	ZF4-0-1	ZF4-0-2	ZF4-0-3	ZF4-0	
ZF4	Pearl River estuary	ZJK-F4	20m	3	ZF4-20-1	ZF4-20-2	ZF4-20-3	ZF4-20	
ZF5	Pearl River estuary	ZJK-F5	0m	3	ZF5-0-1	ZF5-0-2	ZF5-0-3	ZF5-0	
ZF5	Pearl River estuary	ZJK-F5	20m	3	ZF5-20-1	ZF5-20-2	ZF5-20-3	ZF5-20	
ZF6	Pearl River estuary	ZJK-F6	0m	3	ZF6-0-1	ZF6-0-2	ZF6-0-3	ZF6-0	
ZF6	Pearl River estuary	ZJK-F6	20m	3	ZF6-20-1	ZF6-20-2	ZF6-20-3	ZF6-20	
ZF7	Pearl River estuary	ZJK-F7	0m	3	ZF7-0-1	ZF7-0-2	ZF7-0-3	ZF7-0	
ZF7	Pearl River estuary	ZJK-F7	20m	3	ZF7-20-1	ZF7-20-2	ZF7-20-3	ZF7-20	
ZF8	Pearl River estuary	ZJK-F8	0m	3	ZF8-0-1	ZF8-0-2	ZF8-0-3	ZF8-0	
ZF8	Pearl River estuary	ZJK-F8	20m	3	ZF8-20-1	ZF8-20-2	ZF8-20-3	ZF8-20	
ZF9	Pearl River estuary	ZJK-F9	0m	3	ZF9-0-1	ZF9-0-2	ZF9-0-3	ZF9-0	
ZF9	Pearl River estuary	ZJK-F9	20m	3	ZF9-20-1	ZF9-20-2	ZF9-20-3	ZF9-20	
JN5	Beibu Gulf,	JH-F1	0m	3	JF1-0-1	JF1-0-2	JF1-0-3	JF1-0	
JN5	Beibu Gulf,	JH-F1	20m	3	JF1-20-1	JF1-20-2	JF1-20-3	JF1-20	
JN9	Beibu Gulf,	JH-F6	0m	3	JF6-0-1	JF6-0-2	JF6-0-3	JF6-0	
JN9	Beibu Gulf,	JH-F6	20m	3	JF6-20-1	JF6-20-2	JF6-20-3	JF6-20	
JS2	Beibu Gulf,	JH-F8	0m	3	JF8-0-1	JF8-0-2	JF8-0-3	JF8-0	
JS2	Beibu Gulf,	JH-F8	20m	3	JF8-20-1	JF8-20-2	JF8-20-3	JF8-20	
JS9	Beibu Gulf,	JH-S9	0m	3	JF9-0-1	JF9-0-2	JF9-0-3	JF9-0	
JS9	Beibu Gulf,	JH-S9	20m	3	JF9-20-1	JF9-20-2	JF9-20-3	JF9-20	
JN22	Beibu Gulf,	JH-N22	0m	3	JN22-0-1	JN22-0-2	JN22-0-3	JN22-0	
JN22	Beibu Gulf,	JH-N22	20m	3	JN22-20-1	JN22-20-2	JN22-20-3	JN22-20	
JA6	Beibu Gulf,	JH-A6	0m	3	JA6-0-1	JA6-0-2	JA6-0-3	JA6-0	
JA6	Beibu Gulf,	JH-A6	20m	3	JA6-20-1	JA6-20-2	JA6-20-3	JA6-20	
JA9	Beibu Gulf,	JH-A9	0m	3	JA9-0-1	JA9-0-2	JA9-0-3	JA9-0	
JA9	Beibu Gulf,	JH-A9	20m	3	JA9-20-1	JA9-20-2	JA9-20-3	JA9-20	
JD1	the west Guangdong waters	JH-D1	0m	3	JD1-0-1	JD1-0-2	JD1-0-3	JD1-0	
JD1	the west Guangdong waters	JH-D1	20m	3	JD1-20-1	JD1-20-2	JD1-20-3	JD1-20	
JD6	the west Guangdong waters	JH-D6	0m	3	JD6-0-1	JD6-0-2	JD6-0-3	JD6-0	
JD6	the west Guangdong waters	JH-D6	20m	3	JD6-20-1	JD6-20-2	JD6-20-3	JD6-20	
JD9	the west Guangdong waters	JD9	0m	3	JD9-0-1	JD9-0-2	JD9-0-3	JD9-0	JD9-0
------	---------------------------	------	------	------	---------	---------	---------	-------	-------
JD9	the west Guangdong waters	JD9	20m	3	JD9-20-1	JD9-20-2	JD9-20-3	JD9-20	JD9-20
JH1	the east Guangdong waters	JH1	0m	3	JH1-0-1	JH1-0-2	JH1-0-3	JH1-0	JH1-0
JH1	the east Guangdong waters	JH1	20m	3	JH1-20-1	JH1-20-2	JH1-20-3	JH1-20	JH1-20
JH6	the east Guangdong waters	JH6	0m	3	JH6-0-1	JH6-0-2	JH6-0-3	JH6-0	JH6-0
JH6	the east Guangdong waters	JH6	20m	3	JH6-20-1	JH6-20-2	JH6-20-3	JH6-20	JH6-20
JH9	the east Guangdong waters	JH9	0m	3	JH9-0-1	JH9-0-2	JH9-0-3	JH9-0	JH9-0
JH9	the east Guangdong waters	JH9	20m	3	JH9-20-1	JH9-20-2	JH9-20-3	JH9-20	JH9-20

S.depth, sampling depth. Num, the number of samples.
Sample ID	F-barcode	R-barcode
16S		
J6-0	ATCGTA	TCTACC
J6-20	GGTTGT	CGATGT
J9-0	CCACAA	GCCAAT
J9-20	TCGAAG	AGTGGAA
JD1	AGTCC	TGATGAG
JD1-20	GTACTT	CCAAGTC
JD6-0	CAGATC	GTGAAA
JD6-20	TAATCG	ACTGGA
JF1-0	CTCACA	GCCCTA
JF1-20	TGACCA	ATCCAGC
JF6-0	AGTCC	TGAATG
JF6-20	TAATCG	ACTGGA
JF8-0	CAGATC	GTGAAA
JF8-20	TAATCG	ACTGGA
JH1-0	CCGGTG	GAGTGGG
JH1-20	TCGCAG	ATCCAGA
JH6-0	ATCGTA	TCTACC
JH6-20	GGTTGT	CGATGT
JH9-0	CCACAA	GCCAAT
JH9-20	TCGAAG	AGTGGAG
JN22-0	CCGGTG	GAGTGG
JN22-20	TCGCAG	AGTCCAG
JN2-0	ATCGTA	TCTACC
JN2-10	TCGAAG	AGTGGAG
JZ1-0	ATCGTA	TCTACC
JZ1-20	GAGATA	ATCCAGT
JZ2-0	CCGGTG	GAGTGG
JZ2-10	TCGAAG	AGTGGAG
JZ3-0	ATCGTA	TCTACC
JZ3-20	GGTGGAG	ATCCAGT
JZ4-0	CCACAA	GCCAAT
JZ4-20	TCGAAG	AGTGGAG
JZ5-0	ACAGTG	TCGGAC
JZ5-20	GGTGGAG	ATCCAGT
JZ6-0	TCGCAG	ATCCAGA
JZ7-0	TCGGCG	ATCCAGA

Sample ID	F-barcode	R-barcode
18S		
ZF1-0	CAGATC	GTGAAA
ZF1-20	ATCGTA	TCTACC

Sample ID	F-barcode	R-barcode
ZF2-0	CAGATC	GTGAAA

Sample ID	F-barcode	R-barcode
ZF3-0	ATCGTA	TCTACC
ZF3-20	GGTGGAG	ATCCAGT
ZF4-0	CCACAA	GCCAAT
ZF4-20	TCGAAG	AGTGGAG
ZF5-0	ACAGTG	TCGGAC
ZF5-20	GGTGGAG	ATCCAGT
ZF6-0	TCGCAG	ATCCAGA
ZF7-0	TCGGCG	ATCCAGA

Table S5 The barcode sequences for each sample in this study
ZF7-20	CTGCTG	GTGGCC	JF1-20-1	GGTGTT	CGATGT	ZF8-0-1	CGCGGT	GAGTGG	ZS4-20-1	GGTGTT	CGATGT
ZF8-0	TAACGA	ATATGT	JF1-20-2	CCACAA	GCCAAT	ZF8-0-2	TGGGCA	AGTCAA	ZS4-20-2	CCACAA	GCCAAT
ZF8-20	AGAGTA	TTAGGC	JF1-20-3	TCGAGG	AGTGGG	ZF8-0-3	ATGTTA	TCTACC	ZS4-20-3	TCGAGG	AGTGGG
ZF9-20	GGAAGA	CTCAGA	ZF2-0-1	ACAGTG	TTCAGA	JF8-20-1	TCCCGA	ATGTCA	JS9-0-1	CTGCTG	GTGGCC
ZS1-0	AGTCCG	TAACGA	ZF2-0-2	GGTGAA	CACGTA	JF8-20-2	CGGAAT	GGTAGC	JS9-0-2	TAACGA	ATATGT
ZS1-20	GTACCT	CCAGCT	ZF2-0-3	CGTAGG	GCGCGG	JF8-20-3	GTTGGG	TTTACC	JS9-0-3	AGAGTA	TTAGGC
ZS4-0	CAGATC	GTGAAA	ZF2-20-1	TCCCCG	ATGTCA	ZF8-20-1	GGTGTT	CGATGT	JS9-20-1	GGAAGA	CTCAGA
ZS4-20	TAATCG	ACTTGA	ZF2-20-2	CGGAAT	GGTAGC	ZF8-20-2	CCACAA	GCAAT	JS9-20-2	CTTCCA	GCCTTA
ZF2-20-3	GGTGCG	ATGAGA	ZF8-20-3	TCGAGG	AGTGGG	JS9-20-3	TGACCA	ATGCTT			
Figure S1 The PCA clustering analysis on the samples from 24 collecting site based on the Bray-Curtis distance using environmental factors measured in this study. 10, water depth at 10m. 40, water depth at 40m. 100, water depth at 100m. 200, water depth at 200m. In the left hierarchical tree, each shape represented one average sample in each sample collecting site in this study.
Figure S2 Water-depth patterns for bacteria, diatoms, and protists in alpha diversity in Pearl River estuary region. The relationships between water depth and alpha diversity were modeled using the linear and quadratic models. The better model was selected based on the lower value of Akaike's information criteria (Yamaoka, et al. 1978).
Figure S3 Water-depth patterns for bacteria, diatoms, and protists in alpha diversity in Beibu Gulf region. The relationships between water depth and alpha diversity were modeled using the linear and quadratic models. The better model was selected based on the lower value of Akaike's information criteria (Yamaoka, et al. 1978).
Figure S3 The significant relationship (spearman) between the diatoms and environmental factors. Green line, positively significant (0.05). Red line, negatively significant (0.05).
Figure S4 The heatmap of the main diatom species in this study. 10, water depth at 10m. 40, water depth at 40m. 100, water depth at 100m. 200, water depth at 200m. In the left hierarchical tree, each node represented one average sample in each sample collecting site in this study.
Figure S5 The significant relationship (spearman) between the bacteria and environmental factors. Green line, positively significant (0.05). Red line, negatively significant (0.05).
Figure S6 The heatmap of the main bacteria genera in this study. 10, water depth at 10m. 40, water depth at 40m. 100, water depth at 100m. 200, water depth at 200m. In the left hierarchical tree, each node represented one average sample in each sample collecting site in this study.
Figure S7 The significant relationship (spearman) between the protists and environmental factors. Green line, positively significant (0.05). Red line, negatively significant (0.05).
References
Yamaoka K, Nakagawa T, Uno T. 1978. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of pharmacokinetics and biopharmaceutics 6:165-175.