Concentration inequalities for ultra log-concave distributions

by

HESHAN ARAVINDA (Gainesville, FL),
ARNAUD MARSIGLIETTI (Gainesville, FL) and
JAMES MELBOURNE (Guanajuato)

Abstract. We establish concentration inequalities in the class of ultra log-concave distributions. In particular, we show that ultra log-concave distributions satisfy Poisson concentration bounds. As an application, we derive concentration bounds for the intrinsic volumes of a convex body, which generalizes and improves a result of Lotz, McCoy, Nourdin, Peccati, and Tropp (2019).

1. Introduction. A random variable X taking values in the set of natural numbers $\mathbb{N} = \{0, 1, 2, \ldots \}$ is called log-concave if its probability mass function p satisfies

$$p(n)^2 \geq p(n-1)p(n+1)$$

for all integers $n \in \mathbb{N}$, and X has contiguous support. For example, Bernoulli, binomial, geometric, and Poisson distributions are all log-concave. This class of discrete distributions appears naturally in probability theory and combinatorics (see, e.g., [17], [8], [34], [31], [7]), and has been an object of recent study [3, 30].

Ultra log-concave random variables, whose probability mass function satisfies

$$p(n)^2 \geq \frac{n+1}{n}p(n-1)p(n+1), \quad n \in \mathbb{N},$$

on a contiguous support, form an important subclass of log-concave random variables. Equivalently, such discrete random variables are log-concave with respect to the Poisson distribution. Examples include sums of independent binomial with arbitrary parameters and Poisson distributions. Ultra log-concave distributions share important features. For example, the sum of

2020 Mathematics Subject Classification: Primary 60E15, 60F10; Secondary 52A40.

Key words and phrases: log-concave, ultra log-concave, concentration inequality, intrinsic volume.

Received 5 June 2021; revised 29 September 2021.

Published online 31 January 2022.

DOI: 10.4064/sm210605-2-10
independent ultra log-concave distributions remains ultra log-concave (see [24], [14]), and an information-theoretic characterization of the Poisson distribution as maximizing the Shannon entropy among ultra log-concave distributions under a mean constraint is proven in [18] (see also [20]). Many sequences have been proven to be ultra log-concave in graph and matroid theory (see, e.g., [28], [15], [10], [23], [2]). Recently, a fundamental ultra log-concave sequence in convex geometry, namely the intrinsic volumes of a convex body, has been studied in [25], where concentration inequalities are established. Concentration of (conic) intrinsic volumes has been demonstrated to rigorously explain threshold phenomena in recovery of signals and convex optimization problems with random data (see [1]).

In this article, we establish concentration inequalities for all ultra log-concave sequences. Our main result extends the classical Poisson tail bounds to the whole class of ultra log-concave distributions. Let us recall the function

\[
h(x) = 2 \left(1 + x \right) \log(1 + x) - x, \quad x \in [-1, +\infty),
\]

sometimes called the Bennett function.

Theorem 1.1. Let \(X \) be an ultra log-concave random variable. Then

\[
P(X - \mathbb{E}[X] \geq t) \leq e^{-\frac{t^2}{2\mathbb{E}[X]}h\left(\frac{t}{\mathbb{E}[X]}\right)}, \quad \forall \ t \geq 0,
\]

and

\[
P(X - \mathbb{E}[X] \leq -t) \leq e^{-\frac{t^2}{2\mathbb{E}[X]}h\left(-\frac{t}{\mathbb{E}[X]}\right)}, \quad \forall \ 0 \leq t \leq \mathbb{E}[X].
\]

In the special case that \(X \) is Poisson, Theorem 1.1 is folklore. For this special case, an alternate proof can be obtained from an application of Bennett’s inequality to i.i.d. sums of Bernoulli random variables as outlined in [32] as Problem 16 (see also [6], [9], [35]).

Using the standard properties of the Bennett function, namely that \(h \) decreases from 2 to 0, \(h(0) = 1 \), and \(h(x) \geq 1/(1 + x) \) for \(x \geq 0 \), and the trivial fact that \(P(X - \mathbb{E}[X] \leq -t) = 0 \) when \(t > \mathbb{E}[X] \) since \(X \) is supported on \(\mathbb{N} \), we deduce a sub-Gaussian bound for the small deviations of an ultra log-concave random variable, and a subexponential bound for the large deviations.

Corollary 1.2. Let \(X \) be an ultra log-concave random variable. Then, for all \(t \geq 0 \),

\[
P(X - \mathbb{E}[X] \geq t) \leq e^{-\frac{t^2}{2(\mathbb{E}[X] + t)}} \quad \text{and} \quad P(X - \mathbb{E}[X] \leq -t) \leq e^{-\frac{t^2}{2\mathbb{E}[X]}}.
\]

Since the sum of independent ultra log-concave random variables is ultra log-concave, Corollary 1.2 applies to \(X = S_n \), where \(S_n = \sum_{k=1}^{n} X_k, n \geq 1 \), with \(X_k \)’s independent ultra log-concave.
Let us note that Bennett type bounds have been established under a discrete Bakry–Émery type log-concavity, called $c\text{-log-concavity}$, by Johnson [19]. Proposition 8.1 in that paper gives the bound
\begin{equation}
\Pr(X \geq \mathbb{E}[X] + t) \leq e^{-\frac{ct^2}{2}h(ct)}
\end{equation}
for all $c\text{-log-concave}$ random variables. According to [19, Lemmas 5.1 and 5.3], if X is ultra log-concave then X is $c\text{-log-concave}$ and $c \leq \frac{1}{\mathbb{E}[X]}$. Since the function $x \mapsto xh(x)$ is increasing, we deduce that
\begin{equation}
e^{-\frac{t^2}{2\mathbb{E}[X]}h(\mathbb{E}[X])} \leq e^{-\frac{ct^2}{2}h(ct)}.
\end{equation}
Therefore, our bounds in Theorem 1.1 are always stronger than the bound (1.2) from [19] for all ultra log-concave distributions. In fact, for any $\varepsilon > 0$, there is an ultra log-concave distribution Z such that Z is $c\text{-log-concave}$ with $c < \varepsilon$ and $\frac{1}{\mathbb{E}[Z]}$ is bounded away from 0 (take, for example, a truncated Poisson distribution with parameter tending to $+\infty$). For such ultra log-concave distributions, the bound (1.2) becomes weak.

Our results imply concentration bounds for the intrinsic volumes of a convex body in terms of their central intrinsic volume (see Section 3 for the details). In the special case that Z_K is the intrinsic volume random variable associated to a convex body K in \mathbb{R}^n, an immediate application of Corollary 1.2 yields the bound
\begin{equation}
\Pr(|Z_K - \mathbb{E}[Z_K]| \geq t\sqrt{n}) \leq 2e^{-t^2/2}, \quad 0 \leq t \leq \sqrt{n};
\end{equation}
see Corollary 3.1. This improves the bounds $2e^{-3t^2/28}$ from Lotz, McCoy, Nourdin, Peccati, and Tropp [25].

As we will see in Section 3, our bounds give considerable improvement when the central intrinsic volume is of order less than n, since if $\mathbb{E}[Z_K]$ is less than, say, \sqrt{n}, then our bounds improve as the dimension grows to infinity, hence reflecting the high-dimensional aspect of the concentration bound. Specifically, if $\mathbb{E}[Z_K] \leq \sqrt{n}$, Corollary 1.2 yields
\begin{equation}
\Pr(|Z_K - \mathbb{E}[Z_K]| \geq t\sqrt{n}) \leq 2e^{-\frac{t^2}{2(n+1)}\sqrt{n}},
\end{equation}
which goes to 0 exponentially fast with the dimension, for any fixed $t > 0$.

In high dimension, Poisson type concentration bounds are optimal for intrinsic volume random variables. This can be seen by considering the following scaling of the unit cube: $K = \frac{\lambda}{n-\lambda}[0,1]^n$ for $\lambda > 0$. In this case, the intrinsic volume random variable $Z_K(n)$ is binomial with parameters n and $p = \lambda/n$, so that $Z_K(n)$ tends to a Poisson with parameter λ as $n \rightarrow \infty$.

Our main theorem also implies the following estimate on the variance of an arbitrary ultra log-concave random variable.
Proposition 1.3. Let X be an ultra log-concave random variable. Then
\[\text{Var}(X) \leq \mathbb{E}[X], \]
with equality when X is Poisson.

In short, among ultra log-concave variables of fixed expectation, the Poisson has maximum variance. In the context of intrinsic volumes, Proposition 1.3 says that the variance of an intrinsic volume random variable is less than its central intrinsic volume. Moreover, this variance bound is independent of the dimension of the convex body.

Bounded ultra log-concave random variables, say X supported on the set $\{0, \ldots, n\}$, satisfy $\text{Var}(X) \leq n$, by application of the trivial inequality $\mathbb{E}[X] \leq n$. Applying this to the particular case where X is the intrinsic volume random variable associated to convex body in \mathbb{R}^n improves the bound $\text{Var}(Z_K) \leq 4n$ from [25]. Again, since an arbitrary binomial can be realized as the distribution of an intrinsic volume random variable, Proposition 1.3 is sharp for intrinsic volume random variables.

The article is organized as follows. In Section 2 we prove our main result (Theorem 1.1), and derive Proposition 1.3. In Section 3 we apply our results to study the intrinsic volume random variables.

2. Proofs of Theorem 1.1 and Proposition 1.3. The main ingredient of the proofs is the following bound on the moment generating function of an ultra log-concave distribution.

Lemma 2.1. Let X be an ultra log-concave random variable. Then, for all $t \in \mathbb{R}$,
\[\mathbb{E}[e^{tX}] \leq \mathbb{E}[e^{tZ}], \]
where Z is a Poisson distribution with parameter $\mathbb{E}[X]$.

Lemma 2.1 tells us that Poisson distributions maximize the moment generating function in the class of ultra log-concave random variables, under a mean constraint.

The proof of Lemma 2.1 relies on a discrete localization technique recently developed by the second and third named authors in [27] (see also [21], [12], [13], [26], [11], [4], [5], [22] for other aspects of the localization technique). The main idea is to reduce the desired inequality to extreme points, and then prove the inequality for those extreme points. Let us recall the results from [27].

For $M, N \in \mathbb{Z}$, denote $[M, N] = \{M, \ldots, N\}$ and let $\mathcal{P}([M, N])$ be the set of all probability measures supported on $[M, N]$. Let γ be a measure with contiguous support on \mathbb{Z}, and let $h : [M, N] \to \mathbb{R}$ be an arbitrary function.
Let us consider the set $\mathcal{P}_h^\gamma([M, N])$ of all distributions \mathbb{P}_X in $\mathcal{P}([M, N])$ which are log-concave with respect to γ and satisfy $\mathbb{E}[h(X)] \geq 0$, that is,

$$\mathcal{P}_h^\gamma([M, N]) = \{ \mathbb{P}_X \in \mathcal{P}([M, N]) : X \text{ log-concave with respect to } \gamma, \mathbb{E}[h(X)] \geq 0 \}.$$

Consider probability mass functions of the form

$$p(n) = C p^n q(n) 1_{[k,l]}(n)$$

for some $C, p > 0, k, l \in [M, N]$, where q is the mass function of γ.

Theorem 2.2 ([27]). Let $\Phi: \mathcal{P}_h^\gamma([M, N]) \rightarrow \mathbb{R}$ be a convex function. Then

$$\sup_{\mathbb{P}_X \in \mathcal{P}_h^\gamma([M,N])} \Phi(\mathbb{P}_X) \leq \sup_{\mathbb{P}_X \in \mathcal{A}_h^\gamma([M,N])} \Phi(\mathbb{P}_X),$$

where $\mathcal{A}_h^\gamma([M,N]) = \mathcal{P}_h^\gamma([M,N]) \cap \{ \mathbb{P}_X : X \text{ with probability mass function of the form } (2.2) \}$.

Proof of Lemma 2.1. Fix an ultra log-concave random variable X_0. By approximation, one may assume that X_0 is compactly supported, say on $\{M, \ldots, N\}$. Fix $t \in \mathbb{R}$. By Theorem 2.2, applied to $\Phi(\mathbb{P}_X) = \mathbb{E}[e^{tX}]$, which is linear, and to the constraint function $h(n) = \mathbb{E}[X_0] - n$, it suffices to prove (2.1) for ultra log-affine random variables with respect to the Poisson measure, that is, for distributions of the form (2.2) with $q(n) = 1/n!$:

$$p(n) = C p^n n! 1_{[k,l]}(n)$$

for $p > 0$ and $0 \leq k \leq l$, where $1/C = \sum_{n=k}^l p^n n!$. In this case we wish to prove that for $t \in \mathbb{R},$

$$C \sum_{n=k}^l \frac{e^{tn} p^n}{n!} = \mathbb{E}[e^{tX}] \leq e^{\mathbb{E}[X]}(e^t-1) = e^{C \sum_{n=k}^l \frac{np^n}{n!} (e^t-1)}.$$

Write $y = e^t$ and define, for $K, L \in \mathbb{Z},$

$$\Psi_{K,L}(x) = \sum_{n=K}^L \frac{x^n}{n!}$$

if $L \geq K \geq 0$, $\Psi_{K,L} = \Psi_{0,L}$ if $K \leq 0 \leq L$, and $\Psi_{K,L} = 0$ if $L < 0$. Note that

$$\sum_{n=k}^l \frac{np^n}{n!} = p \sum_{n=k-1}^{l-1} \frac{p^n}{n!} = p\Psi_{k-1,l-1}(p), \quad C = \frac{1}{\Psi_{k,l}(p)},$$

$$\sum_{n=k}^l \frac{e^{tn} p^n}{n!} = \sum_{n=k}^l \frac{(yp)^n}{n!} = \Psi_{k,l}(yp).$$
Thus we wish to prove that for all $y \geq 0$,
\[
e^\frac{p\Psi_{k-1,l-1}(p)}{\Psi_{k,l}(p)}(y-1) \geq \frac{\Psi_{k,l}(yp)}{\Psi_{k,l}(p)}.
\]
Taking logarithms and rearranging, we see that this is equivalent to
\[
f(y) := \frac{p\Psi_{k-1,l-1}(p)}{\Psi_{k,l}(p)}(y-1) - \log \Psi_{k,l}(yp) + \log \Psi_{k,l}(p) \geq 0.
\]
To this end, we claim that $f(1) = f'(1) = 0$ and that $f(y)$ is convex.
Observe that
\[
f(1) = 0 - \log \Psi_{k,l}(p) + \log \Psi_{k,l}(p) = 0
\]
and
\[
\frac{d}{dx}\Psi_{k,l}(x) = \sum_{n=k}^{l} \frac{n x^{n-1}}{n!} = \sum_{n=k-1}^{l-1} \frac{x^n}{n!} = \Psi_{k-1,l-1}(x).
\]
Thus,
\[
f'(y) = \frac{p\Psi_{k-1,l-1}(p)}{\Psi_{k,l}(p)} - \frac{p\Psi_{k-1,l-1}(yp)}{\Psi_{k,l}(yp)}
\]
and $f'(1) = 0$. Finally,
\[
f''(y) = -p^2 \frac{\Psi_{k,l}(yp)\Psi_{k-2,l-2}(yp) - \Psi_{k-1,l-1}(yp)}{\Psi_{k,l}(yp)}
\]
Note that for fixed $x \geq 0$ and $m \in \mathbb{N}$, $z_l = \sum_{n=l-m}^{l} \frac{x^n}{n!}$, $l \geq m$, can be seen as the convolution of the sequences $\{x_n\}$ and $\{y_n\}$, where $x_n = \frac{x^n}{n!}$ for $n \geq 0$ and $x_n = 0$ for $n < 0$, and $y_n = 1$ for $n \in \{0, \ldots, m\}$ and $y_n = 0$ otherwise. Both $\{x_n\}$ and $\{y_n\}$ are log-concave sequences. Therefore, their convolution is also log-concave [16]. Hence, z_l is log-concave in l, and by choosing $m = l - k$ in the inequality $z_{l-1}^2 \geq z_l z_{l-2}$, we deduce that
\[
\Psi_{k,l}(yp)\Psi_{k-2,l-2}(yp) - \Psi_{k-1,l-1}(yp) \leq 0.
\]
Therefore, we conclude that $f''(y) \geq 0$, and our result follows.

Proof of Theorem 1.1. Let X be an ultra log-concave random variable. It is standard that concentration bounds follow from upper bounds on the moment generating function (see, e.g., [6], [35]). Let $x \geq 0$. Applying Markov’s inequality, for all $t > 0$ we have
\[
P(X \geq \mathbb{E}[X] + x) = P(e^{tX} \geq e^{t(\mathbb{E}[X]+x)})
\leq e^{-t(\mathbb{E}[X]+x)}\mathbb{E}[e^{tX}] \leq e^{-t(\mathbb{E}[X]+x)}e^{\mathbb{E}[X](e^t-1)},
\]
where the last inequality comes from Lemma 2.1. Optimizing over $t > 0$,
that is, taking \(t = \log(1 + \frac{x}{\mathbb{E}[X]}) \), yields
\[
\mathbb{P}(X \geq \mathbb{E}[X] + x) \leq e^{-\frac{x^2}{2\mathbb{E}[X]}h(\frac{x}{\mathbb{E}[X]})},
\]
where the function \(h \) is defined in (1.1). The argument is similar for the small deviations. Let \(x \in [0, \mathbb{E}[X]] \). Then, for all \(t > 0 \),
\[
(2.3) \quad \mathbb{P}(X \leq \mathbb{E}[X] - x) = \mathbb{P}(e^{-tX} \geq e^{-t(\mathbb{E}[X] - x)}) \leq e^{t(\mathbb{E}[X] - x)}e^{\mathbb{E}[X](e^{-t} - 1)}.
\]
Optimizing over all \(t > 0 \), that is, taking \(t = -\log \left(1 + \frac{x}{\mathbb{E}[X]}\right) \) when \(x < \mathbb{E}[X] \), yields
\[
\mathbb{P}(X \leq \mathbb{E}[X] - x) \leq e^{-\frac{x^2}{2\mathbb{E}[X]}h(-\frac{x}{\mathbb{E}[X]})}.
\]
When \(x = \mathbb{E}[X] \), taking \(t \to \infty \) in (2.3) yields the result, as \(h(-1) = 2 \).

We also deduce Proposition 1.3 from Lemma 2.1.

Proof of Proposition 1.3. If \(X \) is ultra log-concave and \(\mathbb{E}[X] = \lambda > 0 \), then by Lemma 2.1,
\[
\mathbb{E}[e^{tX}] \leq \mathbb{E}[e^{tZ}],
\]
where \(Z \) is a Poisson random variable with parameter \(\lambda \). Expanding the inequality leads to
\[
1 + \lambda t + \frac{t^2}{2}\mathbb{E}[X^2] \leq 1 + \lambda t + \frac{t^2}{2}\mathbb{E}[Z^2] + o(t^2).
\]
Cancelling terms, dividing by \(t^2 \) and taking \(t \to 0 \) gives \(\mathbb{E}[X^2] \leq \mathbb{E}[Z^2] \), so that
\[
\text{Var}(X) \leq \text{Var}(Z) = \lambda.
\]

3. Concentration for the intrinsic volumes of a convex body. In this section, we apply our results to obtain concentration bounds for the intrinsic volumes of a convex body \(K \). Our bounds improve upon [25].

For two convex bodies \(K, E \subset \mathbb{R}^n \), and \(t \in \mathbb{R}^+ \), the mixed volumes of \(K \) and \(E \), denoted by \(V_i(K, E) \), are defined as the coefficients of the following polynomial describing the volume (\(n \)-dimensional Lebesgue measure) of the Minkowski sum of \(K \) and \(tE \):
\[
(3.1) \quad V(K + tE) = \sum_{i=0}^{n} \binom{n}{i} V_i(K, E)t^i.
\]

Let \(B_2^n \) denote the \(n \)-dimensional Euclidean unit ball and \(\kappa_n \) denote the volume of \(B_2^n \). If \(E = B_2^n \), then (3.1) becomes the Steiner polynomial which can be written via the normalization \(V_i(K) = \binom{n}{i} V_{n-i}(K, B_2^n)/\kappa_{n-i} \) as
\[
V(K + tB_2^n) = \sum_{i=0}^{n} \kappa_{n-i} V_i(K)t^{n-i}.
\]
Here, \(V_i(K) \) is called the \(i \)th intrinsic volume of \(K \). We refer to \[33\] for further details about intrinsic volumes.

The total intrinsic volume of a convex body \(K \), called the Wills functional, is the quantity
\[
W(K) = \sum_{i=0}^{n} V_i(K).
\]
The normalized intrinsic volumes form the sequence \(\{\tilde{V}_i(K) : i = 0, \ldots, n\} \), where
\[
\tilde{V}_i(K) = \frac{V_i(K)}{W(K)}.
\]

Using the terminology from \[25\], the intrinsic volume random variable \(Z_K \) associated with a convex body \(K \) in \(\mathbb{R}^n \) takes non-negative integer values according to the following distribution:
\[
P(Z_K = j) = \tilde{V}_j(K), \quad j = 0, \ldots, n.
\]

It is a consequence of the Aleksandrov–Fenchel inequality that the intrinsic volumes of a convex body form an ultra log-concave sequence \[29\] (see also \[24\], \[14\]). Consequently, the intrinsic volume random variable \(Z_K \) is ultra log-concave. Therefore, Corollary 1.2 tells us the following.

Corollary 3.1. Let \(K \) be a convex body in \(\mathbb{R}^n \), and let \(Z_K \) be the intrinsic volume random variable associated with \(K \). Then, for all \(0 \leq t \leq \sqrt{n} \),
\[
P(|Z_K - \mathbb{E}[Z_K]| \geq t \sqrt{n}) \leq 2e^{-t^2/2}.
\]

Proof. If \(n < t \sqrt{n} + \mathbb{E}[Z_K] \), then trivially \(P(Z_K - \mathbb{E}[Z_K] \geq t \sqrt{n}) = 0 \) since \(Z_K \leq n \). If \(n \geq t \sqrt{n} + \mathbb{E}[Z_K] \), then by Corollary 1.2
\[
P(Z_K - \mathbb{E}[Z_K] \geq t \sqrt{n}) \leq e^{-\frac{t^2}{2} \frac{n}{t \sqrt{n} + \mathbb{E}[Z_K]}} \leq e^{-t^2/2}.
\]

For the small deviations, since \(\mathbb{E}[Z_K] \leq n \), by Corollary 1.2
\[
P(Z_K - \mathbb{E}[Z_K] \leq -t \sqrt{n}) \leq e^{-\frac{t^2}{2} \frac{n}{\mathbb{E}[Z_K]}} \leq e^{-t^2/2}.
\]

On the other hand, if \(\mathbb{E}[Z_K] \) is of order \(\sqrt{n} \), say \(\mathbb{E}[Z_K] \leq c \sqrt{n} \) for some absolute constant \(c > 0 \), Corollary 3.1 readily yields the bound
\[
P(|Z_K - \mathbb{E}[Z_K]| \geq t \sqrt{n}) \leq 2e^{-\frac{t^2 \sqrt{n}}{2(c+c^2)}}.
\]

In fact, any \(o(n) \) bound for \(\mathbb{E}[Z_K] \) will yield a concentration bound that decays to 0 as the dimension grows to \(\infty \), for any fixed \(t > 0 \).

Note that if \(K \) is a fixed convex body in \(\mathbb{R}^n \), there always is a dilation parameter \(r > 0 \) (possibly dependent on the dimension) such that \(\mathbb{E}[Z_rK] = o(n) \). As noted in \[25\], the intrinsic volume random variable of
the scaled unit cube $r[0, 1]^n$ has a binomial distribution with parameters n and $\frac{r}{1+r}$, therefore

$$\mathbb{E}[Z_r[0,1]^n] = n \frac{r}{1+r}.$$

Here, taking $r = o(1)$ will yield $\mathbb{E}[Z_r[0,1]^n] = o(n)$.

References

[1] D. Amelunxen, M. Lotz, M. B. McCoy and J. A. Tropp, *Living on the edge: phase transitions in convex programs with random data*, Inform. Inference 3 (2014), 224–294.

[2] N. Anari, K. Liu, S. O. Gharan and C. Vinzant, *Log-concave polynomials III: Mason’s ultra-log-concavity conjecture for independent sets of matroids*, arXiv:1811.01600 (2018).

[3] S. G. Bobkov, A. Marsiglietti and J. Melbourne, *Concentration functions and entropy bounds for discrete log-concave distributions*, Combin. Probab. Comput. 31 (2022), 54–72.

[4] S. G. Bobkov and J. Melbourne, *Localization for infinite-dimensional hyperbolic measures*, Dokl. Math. 91 (2015), 297–299.

[5] S. G. Bobkov and J. Melbourne, *Hyperbolic measures on infinite dimensional spaces*, Probab. Surv. 13 (2016), 57–88.

[6] S. Boucheron, G. Lugosi and P. Massart, *Concentration Inequalities: A Nonasymptotic Theory of Independence*, Oxford Univ. Press, Oxford, 2013, x+481 pp.

[7] P. Brändén, *Unimodality, log-concavity, real-rootedness and beyond*, in: Handbook of Enumerative Combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, 437–483.

[8] F. Brenti, *Unimodal, log-concave and Pólya frequency sequences in combinatorics*, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106 pp.

[9] C. L. Canonne, *A short note on Poisson tail bounds*, 2016, http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf.

[10] M. Chudnovsky and P. Seymour, *The roots of the independence polynomial of a clawfree graph*, J. Combin. Theory Ser. B 97 (2007), 350–357.

[11] R. Eldan, *Thin shell implies spectral gap up to polylog via a stochastic localization scheme*, Geom. Funct. Anal. 23 (2013), 532–569.

[12] M. Fradelizi and O. Guédon, *The extreme points of subsets of s-concave probabilities and a geometric localization theorem*, Discrete Comput. Geom. 31 (2004), 327–335.

[13] M. Fradelizi and O. Guédon, *A generalized localization theorem and geometric inequalities for convex bodies*, Adv. Math. 204 (2006), 509–529.

[14] L. Gurvits, *A short proof, based on mixed volumes, of Liggett’s theorem on the convolution of ultra-log concave sequences*, Electron. J. Combin. 16 (2009), no. 1, art. 5, 5 pp.

[15] Y. O. Hamidoune, *On the numbers of independent k-sets in a claw free graph*, J. Combin. Theory Ser. B 50 (1990), 241–244.

[16] S. G. Hoggar, *Chromatic polynomials and logarithmic concavity*, J. Combin. Theory Ser. B 16 (1974), 248–254.

[17] K. Joag-Dev and F. Proschan, *Negative association of random variables, with applications*, Ann. Statist. 11 (1983), 286–295.

[18] O. Johnson, *Log-concavity and the maximum entropy property of the Poisson distribution*, Stochastic Process. Appl. 117 (2007), 791–802.
[19] O. Johnson, *A discrete log-Sobolev inequality under a Bakry–Émery type condition*, Ann. Inst. H. Poincaré Probab. Statist. 53 (2017), 1952–1970.

[20] O. Johnson, I. Kontoyiannis and M. Madiman, *Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures*, Discrete Appl. Math. 161 (2013), 1232–1250.

[21] R. Kannan, L. Lovász and M. Simonovits, *Isoperimetric problems for convex bodies and a localization lemma*, Discrete Comput. Geom. 13 (1995), 541–559.

[22] B. Klartag, *Needle decompositions in Riemannian geometry*, Mem. Amer. Math. Soc. 249 (2017), no. 1180, v+77 pp.

[23] M. Lenz, *The f-vector of a representable-matroid complex is log-concave*, Adv. Appl. Math. 51 (2013), 543–545.

[24] T. M. Liggett, *Ultra logconcave sequences and negative dependence*, J. Combin. Theory Ser. A 79 (1997), 315–325.

[25] M. Lotz, M. B. McCoy, I. Nourdin, G. Peccati and J. A. Tropp, *Concentration of the intrinsic volumes of a convex body*, in: Geometric Aspects of Functional Analysis, Vol. II, Lecture Notes in Math. 2266, Springer, Cham, 2020, 139–167.

[26] L. Lovász and M. Saks, *A localization inequality for set functions*, J. Combin. Theory Ser. A 11 (2006), 726–735.

[27] A. Marsiglietti and J. Melbourne, *Geometric and functional inequalities for log-concave probability sequences*, arXiv:2004.12005v3 (2021).

[28] J. H. Mason, *Matroids: unimodal conjectures and Motzkin’s theorem*, in: Combinatorics (Oxford, 1972), Inst. Math. Appl., Southend-on-Sea, 1972, 207–220.

[29] P. McMullen, *Inequalities between intrinsic volumes*, Monatsh. Math. 111 (1991), 47–53.

[30] J. Melbourne and T. Tkocz, *Reversal of Rényi entropy inequalities under log-concavity*, IEEE Trans. Inform. Theory 67 (2021), 45–51.

[31] R. Pemantle, *Towards a theory of negative dependence*, J. Math. Phys. 41 (2000), 1371–1390.

[32] D. Pollard, *MiniEmpirical*, 2015, Chapter 2, http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf

[33] R. Schneider, *Convex Bodies: The Brunn–Minkowski Theory*, 2nd ed., Encyclopedia Math. Appl. 151, Cambridge Univ. Press, Cambridge, 2014, xxii+736 pp.

[34] R. P. Stanley, *Log-concave and unimodal sequences in algebra, combinatorics, and geometry*, in: Graph Theory and Its Applications: East and West (Jinan, 1986), Ann. New York Acad. Sci. 576, New York Acad. Sci., New York, 1989, 500–535.

[35] R. Vershynin, *High-Dimensional Probability: An Introduction with Applications in Data Science*, Cambridge Ser. Statist. Probab. Math. 47, Cambridge Univ. Press, Cambridge, 2018.

Heshan Aravinda, Arnaud Marsiglietti
Department of Mathematics
University of Florida
Gainesville, FL 32611, USA
E-mail: heshanaravinda.p@ufl.edu
a.marsiglietti@ufl.edu

James Melbourne
Probabilidad y Estadística
Centro de Investigación en Matemáticas (CIMAT)
Guanajuato, Gto 36023, México
E-mail: james.melbourne@cimat.mx