Adaptive fuzzy practical tracking control for flexible-joint robots via command filter design

Shuzhen Diao, Wei Sun and Wenxing Yuan

Abstract
This paper investigates the issue of finite-time tracking control for flexible-joint robots. In the design scheme, the unknown continuous function is identified by a fuzzy system. By introducing the command filter technique, "explosion of complexity" problem which arises from repeated differentiation of virtual controllers is avoided. Meanwhile, errors resulting from the first-order filters can be reduced with the introduced compensation signal. Besides, the proposed method ensures that the tracking performance could be achieved within a limited time. Eventually, the simulation is given to demonstrate the effectiveness of the proposed scheme.

Keywords
Flexible-joint (FJ) robots, adaptive tracking control, command filter backstepping, finite-time control

Introduction
Compared to the rigid-joint robots, flexible-joint (FJ) robots have many advantages of high performance, such as light mass, small size, and low energy consumption. They have been widely studied in the past decades.1–3 Therefore, the research on tracking control of FJ robots also is of great significance.4–8 For example, based on the singular perturbation method, Kim and Croft8 realize the full-state tracking control of FJ robots. With the aid of the tan-type barrier Lyapunov function, Sun et al.9 propose an adaptive tracking controller for FJ robot systems with full-state constraints. In fact, the FJ robot system is a typical under-actuated system, and the research about this kind of system can refer to the wheeled inverted pendulum system,10 the crane system,11,12 and so on.

The backstepping method is used in many of the above papers; however, one of its disadvantages is that it requires repeated derivatives, which can result in “explosion of complexity” problem and increase the complexity of controllers, especially for the system with a higher dimension. Although the above troubles were handled by the dynamic surface control (DSC) method in previous works,13–15 errors arising from the filters are not solved and the quality of the controller is also greatly reduced in this way. Another way is to apply the command filter technique to the backstepping design, by which the first problem can be successfully avoided. By introducing the compensated signal, the drawback of the DSC can be overcome (see the work by Farrell et al.,20 Hu and Zhang,21 and Niu et al.22). Considering the uncertain nonlinear systems with actuator faults, Li23 developed a fault-tolerant control scheme by the aid of command filter design. For the switched nonlinear systems in Hou and Tong,24 the issue of output feedback control is addressed with the command filter backstepping technique. For nonlinear systems with saturation input, the finite-time tracking control problem with command filter is investigated in Yu et al.25

As we know, due to the ability to deal with structural uncertainty, the adaptive control method is widely employed to address uncertain nonlinear systems. With the quality of approximating unknown function, fuzzy logic systems (FLS) play a crucial part in handling the unknown items needed in control design. Therefore, the successful application of FLS in adaptive control can properly avoid burdensome computations and significantly improve the control performance of systems; many results have been obtained.26–30 With the help of Nussbaum-type function in Sun et al.,27 an adaptive fuzzy control method is proposed for the nonlinear systems with unknown control directions. For the high-

School of Mathematics Science, Liaocheng University, Liaocheng, China

Corresponding author:
Wei Sun, School of Mathematics Science, Liaocheng University, Liaocheng 252000, China.
Email: sunw8617@163.com
order stochastic nonlinear systems, Sun et al.28 consider the issue of reduced adaptive fuzzy control. Similarly, the unknown and uncertainty problems in this paper are also addressed by the adaptive fuzzy control scheme.

Inspired by the above works, this paper studies the problem of finite-time tracking control for FJ robots and develops an adaptive fuzzy control algorithm with the help of the command filter technique. The main contributions are summarized as follows:

1. Compared with the design in Sun et al.,9 the explosion of complexity problem is avoided by applying the command filter technique to the backstepping design. Thus, the computing burden is also reduced to some extent. With the aid of compensated signals, the errors resulting from the utilization of DSC in Liu and Wu15 can be removed.

2. Different from the existing schemes that can only guarantee infinite-time stability, this paper considers the convergence rate of tracking error and makes full use of the finite-time stability criterion to design an adaptive fuzzy controller, which ensures that the tracking error can achieve practical finite stable.

System description and preliminaries

The dynamic model of an n-link FJ robot can be expressed as

\[
M(q)\ddot{q} + C(q, \dot{q}) + G(q) + F(\dot{q}) + Kq = Kq_m \tag{1}
\]

\[
J\ddot{q}_m + B\dot{q}_m + K(q_m - q) = u \tag{2}
\]

in which \(q, \dot{q}, \ddot{q} \in \mathbb{R}^n \) represent the link position, velocity, and acceleration vectors, respectively. \(M(q) \in \mathbb{R}^{n\times n} \) stands for the inertia matrix that is symmetric and positive definite, \(C(q, \dot{q}) \in \mathbb{R}^n \) is the Coriolis and centripetal forces, \(G(q) \in \mathbb{R}^n \) represents the gravity vector, and \(F(\dot{q}) \in \mathbb{R}^n \) denotes the friction term. \(q_m, \dot{q}_m, \ddot{q}_m \in \mathbb{R}^n \) represent the rotor angular position, velocity, and acceleration vectors, respectively. \(K, J, B \in \mathbb{R}^{n\times n} \) are constant positive definite diagonal matrices and denote the joint flexibility, the actuator inertia, and the natural damping term, respectively. \(u \in \mathbb{R}^n \) is the torque input at each actuator.

The goal of design is to construct the adaptive tracking controller which can guarantee that the link position \(q \) tracks the target signal \(q_d \) in a finite time and all signals in the closed-loop system remain bounded, where \(q_d \in \mathbb{C}^1, \dot{q}_d \) and \(\ddot{q}_d \) are bounded.

Let \(x_1 = q, x_2 = \dot{q}, x_3 = q_m, \) and \(x_4 = \dot{q}_m \), then equations (1) and (2) can be converted into

\[
\begin{aligned}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= M^{-1}(x_1)Kx_3 + M^{-1}(x_1) [-C(x_1, x_2) - G(x_1) - F(x_2) - Kx_1] \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= J^{-1}u + J^{-1}[-Bx_4 - K(x_3 - x_1)]
\end{aligned}
\tag{3}
\]

In what follows, for simplicity, we note

\[
\begin{aligned}
g_1 &= I \\
g_2 &= M^{-1}(x_1)K \\
g_3 &= I \\
g_4 &= J^{-1}F \\
f_1 &= M^{-1}(x_1)[-C(x_1, x_2) - G(x_1) - F(x_2) - Kx_1] \\
f_2 &= J^{-1}[-Bx_4 - K(x_3 - x_1)]
\end{aligned}
\tag{4}
\]

Hence, equation (3) can be rewritten as

\[
\begin{aligned}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= g_2x_3 + f_2 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= g_4u + f_4
\end{aligned}
\tag{5}
\]

Next, we will introduce some definitions and lemmas that are useful to achieve control objective.

Definition 1. For the nonlinear system \(\dot{x} = f(x(t)) \), the equilibrium \(x = 0 \) is practical finite-time stable, if for any initial condition \(x(0) \in x_0 \) there exists a constant \(\varepsilon > 0 \) and the settling time \(T(\varepsilon, x_0) < \infty \) such that31

\[
\|x(t)\| < \varepsilon, \forall t > T
\]

Lemma 1. For any real numbers \(\alpha, \beta > 0, 0 < p, \mu < 1, 0 < \gamma < \infty \), if there exists the function \(V(x) \) satisfying23

\[
\dot{V}(x) \leq -\alpha V(x) - \beta V^p(x) + \gamma
\]

then the trajectory of \(\dot{x} = f(x(t)) \) is practical finite-time stable, and the settling time \(T \) satisfies

\[
T \leq \frac{1}{\alpha(1 - p)} \ln \frac{\alpha V^{1-p}x(0) + \mu \beta}{\mu \beta}
\]

Lemma 2. For any constant \(b_i > 0 \) \((i = 1, 2, 3)\) and real variables \(x, y \), one has32

\[
|x|^{b_1} |y|^{b_2} \leq \frac{b_1}{b_2} |x|^{b_3} |y|^{b_4} + \frac{b_2}{b_1} |x|^{b_3} |y|^{b_4} + b_2
\]

FLS will be used to estimate the unknown continuous function in the subsequent design process.
IF-THEN Rules: If x_1 is F_1^i and ... and x_n is F_n^i, then y is G^i, $i = 1, ..., n$.

FLS can be expressed as

$$y(x) = \frac{\sum_{i=1}^{N} \Phi_i \prod_{j=1}^{n} \mu_{F_j}(x_j)}{\sum_{i=1}^{N} \left(\prod_{j=1}^{n} \mu_{F_j}(x_j) \right)}$$

(6)

Let

$$w_i(x) = \frac{\prod_{j=1}^{n} \mu_{F_j}(x_j)}{\sum_{i=1}^{N} \prod_{j=1}^{n} \mu_{F_j}(x_j)}$$

$$W(x) = [w_1(x), w_2(x), \ldots, w_N(x)]^T, \quad \Phi = [\Phi_1, \Phi_2, \ldots, \Phi_N]^T$$

then we have

$$y(x) = \Phi^T W(x)$$

(7)

Lemma 3. For any $\epsilon > 0$ and a continuous function $h(x)$ defined on a compact set U, there is an FLS $\Phi^T W(x)$ satisfying

$$\sup_{x \in U} |h(x) - \Phi^T W(x)| \leq \epsilon$$

(8)

Finite-time controller

This section is devoted to the design procedure of the command filtered controller.

Define the tracking error as

$$z_1 = x_1 - q_d$$
$$z_i = x_i - \tilde{\alpha}_i$$

(9)

(10)

where $\tilde{\alpha}_i \in R^n$ is the output of command filter with respect to α_i, which is defined as

$$\tilde{\alpha}_i = \hat{\alpha}_i, \quad \hat{\alpha}_i(0) = \alpha_i(0), \quad i = 2, 3, 4$$

with $\epsilon_i > 0$ being a designed constant.

To remove the filtering errors arising from the command filters, we employ the compensating signal ξ_i

$$\dot{\xi}_1 = -k_1 \xi_1 + (\alpha_2 - \alpha_3) + \xi_2 - L_1 \text{sgn}(\xi_1)$$
$$\dot{\xi}_2 = -k_2 \xi_2 + g_2(\alpha_3 - \alpha_4) - \xi_1 + g_2 \dot{\xi}_3 - L_2 \text{sgn}(\xi_2)$$
$$\dot{\xi}_3 = -k_3 \xi_3 + (\alpha_4 - \alpha_5) - g_2 \xi_2 + \xi_4 - L_3 \text{sgn}(\xi_3)$$
$$\dot{\xi}_4 = -k_4 \xi_4 + g_4(\alpha_5 - \alpha_3) - \xi_3 - L_4 \text{sgn}(\xi_4)$$

(11)

where $k_i > 0$, $\xi_i \in R^n$, $\xi_i(0) = 0$, $L_i = \text{diag}(l_{i1}, l_{i2}, \ldots, l_{in}) \in R^{n \times n}$, $l_i = [l_{i1}, l_{i2}, \ldots, l_{in}]^T \in R^n$, $l_{ij} > 0$, $i = 1, ..., 4$, $j = 1, ..., n$, and $\text{sgn}(\xi_i) = [\text{sgn}(\xi_{i1}), \text{sgn}(\xi_{i2}), \ldots, \text{sgn}(\xi_{in})]^T \in R^n$. Furthermore, define the compensating tracking error as

$$\chi_i = z_i - \xi_i, \quad i = 1, ..., 4$$

(12)

Before providing the following detailed design, we need to define a constant

$$\theta = \max\{\|\Phi_i\|^2\}, \quad i = 1, 2$$

and $\hat{\theta}$ is the estimation of θ.

Step 1. Taking the derivative of χ_1 yields

$$\dot{\chi}_1 = \dot{z}_1 - \dot{\xi}_1$$
$$= x_2 - \dot{q}_d - \dot{\xi}_1$$
$$= z_2 + (\alpha_2 - \alpha_3) + \alpha_2 - \dot{q}_d - \dot{\xi}_1$$
$$= \chi_2 + \alpha_2 - \dot{q}_d + k_1 z_1 - \dot{\xi}_1 + L_1 \text{sgn}(\xi_1)$$

Define

$$V_1 = \frac{1}{2} \chi_1^T \chi_1$$

(14)

then we have

$$\dot{V}_1 = \chi_1^T \chi_2 + \chi_1^T (\alpha_2 - \dot{q}_d + k_1 z_1)$$
$$= -k_1 \chi_1^T \chi_1 + \chi_1^T \chi_2 + \chi_1^T (\alpha_2 - \dot{q}_d + k_1 z_1)$$
$$= \chi_1^T \chi_2 + \chi_1^T (\alpha_2 - \dot{q}_d + k_1 z_1)$$
$$= \chi_1^T \chi_2 + \chi_1^T L_1 \text{sgn}(\xi_1)$$

(15)

By the aid of Young’s inequality, one has

$$\chi_1^T L_1 \text{sgn}(\xi_1) \leq \frac{1}{2} \chi_1^T \chi_1 + \frac{1}{2} \| L_1 \|^2 \| L_1 \|$$

(16)

The virtual controller α_2 is designed as

$$\alpha_2 = \dot{q}_d - k_1 z_1 - c_1 (\chi_1^T \chi_1)^{p-1}$$

(17)

with a known constant $c_1 > 0$. By plugging equations (16) and (17) into equation (15), we have

$$\dot{V}_1 \leq - \left(k_1 - \frac{1}{2} \right) \chi_1^T \chi_1 - c_1 (\chi_1^T \chi_1)^p + \chi_1^T \chi_2 + \frac{1}{2} \| L_1 \|^2 \| L_1 \|$$

(18)

Step 2. The time derivative of χ_2 is

$$\dot{\chi}_2 = \dot{z}_2 - \dot{\xi}_2$$
$$= g_2 x_3 + f_2 - \dot{\alpha}_2 - \dot{\xi}_2$$
$$= g_2 x_3 + g_2 (\alpha_3 - \alpha_4) + g_2 \alpha_3 + f_2 - \dot{\alpha}_2 - \dot{\xi}_2$$
$$= g_2 x_3 + g_2 (\alpha_3 - \alpha_4) + f_2 - \dot{\alpha}_2 - k_2 z_2 - k_2 \chi_2$$
$$+ \dot{\xi}_1 + L_2 \text{sgn}(\xi_2)$$

(19)

Choose

$$V_2 = V_1 + \frac{1}{2} \chi_2^T \chi_2 + \frac{1}{2} \theta^2$$

(20)

where $\dot{\theta} = \theta - \dot{\theta}$, and $r > 0$ is a known constant. Then, we could get
\(\dot{V}_2 = V_1 + x_2^T g_2 x_3 + g_2 \alpha_3 + f_2 - \dot{\alpha}_2 + k_2 z_2 = k_2 x_2 + k_2 x_2 \)
\[+ \xi_1 + L_{s2} sgn(\xi_2) - \frac{1}{r} \dot{\theta} \theta \]
\[\leq - \left(k_1 - \frac{1}{2} \right) x_1^T x_1 - c_1 (\chi_1^T x_1)^p + \chi_2^T g_2 x_3 \]
\[+ \frac{1}{2} \eta_i^2 + \frac{1}{r} \dot{\theta} \theta \]
\[+ \chi_2^T (z_1 + g_2 \alpha_3 - \dot{\alpha}_2 + k_2 z_2) + \| x_2^T \| \| f_2 \| \]
\[- k_2 x_2^2 + \chi_2^T L_{s2} sgn(\xi_2) \]
\[(21) \]

The following inequality is similar to equation (16)
\[\chi_2^T L_{s2} sgn(\xi_2) \leq \frac{1}{2} \chi_2^T x_2^2 + \frac{1}{2} \eta_i^2 \]
\[(22) \]

In view of Lemma 3, \(\| f_2 \| \) is estimated by following FLS. For any \(\varepsilon_i > 0 \)
\[\| f_2 \| = \Phi_T W_1(x_i) + \delta_i(x_i), \]
\[\| \delta_i(x_i) \| \leq \varepsilon_i, \]
where \(\varepsilon_i(x_i) \) is the approximation error. With the completion of squares, it is obtained that
\[\| x_2^T \| \| f_2 \| = \| x_2^T \| \Phi_T W_1(x_i) + \| x_2^T \| \delta_i(x_i) \]
\[\leq \frac{\theta x_2^T x_1 W_1^T W_1}{2a_i^2} + \frac{x_2^T x_2}{2} + \frac{a_i^2}{2} + \frac{\varepsilon_i^2}{2} \]
\[(23) \]

Substituting equations (22) and (23) into equation (21) produces
\[\dot{V}_2 \leq - \frac{1}{2} \sum_{i=1}^{2} \left(k_i - \frac{1}{2} \right) x_i^T x_i - c_1 (\chi_i^T x_i)^p + \chi_2^T g_2 x_3 \]
\[+ \frac{1}{2} \sum_{i=1}^{2} \eta_i^2 + \frac{1}{r} \dot{\theta} \theta \]
\[+ \chi_2^T (z_1 + g_2 \alpha_3 - \dot{\alpha}_2 + k_2 z_2) + \frac{\theta x_2^T x_1 W_1^T W_1}{2a_i^2} \]
\[+ \frac{x_2^T x_2}{2} + \frac{a_i^2}{2} + \frac{\varepsilon_i^2}{2} \]
\[(24) \]

The virtual controller \(\alpha_3 \) is designed as
\[\alpha_3 = g_2 \]
\[\left[-z_1 + \dot{\alpha}_2 - k_2 z_2 - c_2 x_2 (\chi_2^T x_2)^{p-1} - \frac{\theta x_2^T x_1 W_1^T W_1}{2a_i^2} - \frac{x_2}{2} \right] \]
\[(25) \]

with \(c_2 > 0 \) being a known constant. By plugging equation (25) into equation (24), one can get
\[\dot{V}_2 \leq - \frac{1}{2} \sum_{i=1}^{2} \left(k_i - \frac{1}{2} \right) x_i^T x_i - \frac{1}{2} \sum_{i=1}^{2} c_i (\chi_i^T x_i)^p + \chi_2^T g_2 x_3 \]
\[+ \frac{1}{2} \sum_{i=1}^{2} \eta_i^2 + \frac{a_i^2}{2} + \frac{\varepsilon_i^2}{2} + \theta \left(\frac{x_2^T x_1 W_1^T W_1}{2a_i^2} - \frac{1}{r} \right) \]
\[(26) \]

Step 3. From equation (12), the derivative of \(x_3 \) gives
\[\dot{x}_3 = \dot{z}_3 - \dot{\xi}_3 \]
\[= z_4 - \dot{\alpha}_3 - \dot{\xi}_3 \]
\[= z_4 + (\dot{\alpha}_4 - \dot{\alpha}_3) + \dot{\alpha}_4 - \dot{\alpha}_3 - \dot{\xi}_3 \]
\[= x_4 + \alpha_4 - \dot{\alpha}_3 + k_3 z_3 - k_3 x_3 + g_2^T \xi_2 + L_3 sgn(\xi_3) \]
\[(27) \]

Choose
\[V_3 = V_2 + \frac{1}{2} \chi_3^T x_3 \]
\[(28) \]

The derivation of equation (28) is presented as
\[\dot{V}_3 = \dot{V}_2 + \chi_3^T [x_4 + \alpha_4 - \dot{\alpha}_3 + k_3 z_3 - k_3 x_3 + g_2^T \xi_2 + L_3 sgn(\xi_3)] \]
\[\leq - \sum_{i=1}^{3} \left(k_i - \frac{1}{2} \right) x_i^T x_i - \sum_{i=1}^{3} c_i (\chi_i^T x_i)^p + \chi_3^T x_3 \]
\[+ \frac{1}{2} \sum_{i=1}^{3} \eta_i^2 + \frac{a_i^2}{2} + \frac{\varepsilon_i^2}{2} + \theta \left(\frac{x_3^T x_3 W_1^T W_1}{2a_i^2} - \frac{1}{r} \right) \]
\[+ k_3 x_3^T x_3 + \chi_3^T L_3 sgn(\xi_3) \]
\[(29) \]

Similar to equation (16), we obtain
\[\chi_3^T L_3 sgn(\xi_3) \leq \frac{1}{2} \chi_3^T x_3 + \frac{1}{2} \eta_i^2 \]
\[(30) \]

Design the virtual controller \(\alpha_4 \) as
\[\alpha_4 = - g_2 z_2 + \dot{\alpha}_4 - k_3 z_3 - c_3 x_3 (\chi_3^T x_3)^{p-1} \]
\[(31) \]

where \(c_3 > 0 \) is a known constant. By substituting equations (30) and (31) into equation (29), we have
\[\dot{V}_3 \leq - \sum_{i=1}^{3} \left(k_i - \frac{1}{2} \right) x_i^T x_i - \sum_{i=1}^{3} c_i (\chi_i^T x_i)^p + \chi_3^T x_3 \]
\[+ \frac{1}{2} \sum_{i=1}^{3} \eta_i^2 + \frac{a_i^2}{2} + \frac{\varepsilon_i^2}{2} + \theta \left(\frac{x_3^T x_3 W_1^T W_1}{2a_i^2} - \frac{1}{r} \right) \]
\[(32) \]

Step 4. From equation (12), we have
\[\dot{x}_4 = \dot{z}_4 - \dot{\xi}_4 \]
\[= \dot{x}_4 - \dot{\alpha}_4 - \dot{\xi}_4 \]
\[= g_4 \alpha_5 + f_4 - \dot{\alpha}_4 + k_4 z_4 - k_4 x_4 + \xi_3 + L_4 sgn(\xi_4) \]
\[(33) \]

Choose the Lyapunov function as
\[V_4 = V_3 + \frac{1}{2} \chi_4^T x_4 \]
\[(34) \]

It can be concluded that...
\[\dot{V}_4 = \dot{V}_3 + \chi_4^T g_4 \alpha_5 + f_4 - \dot{\alpha}_4 + k_4 z_4 - k_4 x_4 + \xi_3 + L_4 \text{sgn}(\xi_4) \]

\[\leq - \frac{3}{2} \sum_{i=1}^{3} (k_i - \frac{1}{2}) \chi_i^T x_i - \frac{3}{2} \sum_{i=1}^{3} c_i(\chi_i^T x_i)^p + \sum_{i=1}^{3} \left(\frac{a_i^2}{2} + \frac{e_i^2}{2} \right) + \dot{\theta} \left(\frac{\chi_3^T \chi_2 W_1^T W_1}{2 a_i^2} - \frac{1}{r \dot{\theta}} \right) + \chi_4^T (z_3 + g_4 \alpha_5 - \dot{\alpha}_4 + k_4 z_4) + \|x_4^T\| \|f_4\| - k_4 x_4^T x_4 + \chi_4^T L_4 \text{sgn}(\xi_4) \]

(35)

By the aid of equation (8), \(\|f_4\| \) can be approximated by following FLS

\[\|f_4\| = \Phi_2^T W_2(X_2) + \delta_2(X_2) \]

\[|\delta_2(X_2)| \leq e_2 \]

where \(e_2 \) is an arbitrary positive constant and \(\delta_2(X_2) \) is the approximation error. Based on the completion of squares, it is concluded that

\[\|x_4^T\| \|f_4\| = \|x_4^T\| \|\Phi_2 W_2(X_2)\| + \|x_4^T\| |\delta_2(X_2)| \]

\[\leq \frac{\theta \chi_3^T \chi_4 W_2^T W_2}{2 a_i^2} + \frac{\chi_4^T x_4}{2} + \frac{a_i^2}{2} + \frac{e_i^2}{2} \]

(36)

Similar to equation (16), we obtain

\[\chi_4^T L_4 \text{sgn}(\xi_4) \leq \frac{1}{r} \chi_4^T x_4 + \frac{1}{2} \mu^2_4 \]

(37)

Substituting equations (36) and (37) into equation (35) yields

\[\dot{V}_4 \leq - \sum_{i=1}^{3} \left(k_i - \frac{1}{2} \right) \chi_i^T x_i - \sum_{i=1}^{3} c_i(\chi_i^T x_i)^p + \sum_{i=1}^{3} \frac{1}{r \dot{\theta}} \dot{\theta} \]

\[+ \sum_{i=1}^{3} \left(\frac{a_i^2}{2} + \frac{e_i^2}{2} \right) + \chi_4^T (z_3 + g_4 \alpha_5 - \dot{\alpha}_4 + k_4 z_4) + \frac{\theta \chi_3^T \chi_4 W_2^T W_2}{2 a_i^2} + \frac{\chi_4^T x_4}{2} \]

(38)

Design the actual controller \(u \) and the adaptive law \(\dot{\theta} \) as

\[u = \alpha_5 = g_4^{-1} \]

\[\begin{bmatrix} \dot{z}_3 + \dot{\alpha}_4 - k_4 z_4 - c_4 x_4 \dot{\alpha}_4 \end{bmatrix} \]

\[\dot{\theta} = \left(\frac{\chi_3^T \chi_2 W_1^T W_1}{2 a_i^2} + \frac{\chi_4^T x_4^T W_2^T W_2}{2 a_i^2} \right) - \frac{\chi_4^T x_4}{2} \]

(39)

(40)

where \(c_4 > 0 \) and \(q > 0 \) are known constants.

Substituting equations (39) and (40) into equation (38), we obtain

\[\dot{V}_4 \leq - \sum_{i=1}^{3} \left(k_i - \frac{1}{2} \right) \chi_i^T x_i - \sum_{i=1}^{3} c_i(\chi_i^T x_i)^p + \sum_{i=1}^{3} \frac{1}{r \dot{\theta}} \dot{\theta} \]

\[+ \sum_{i=1}^{3} \left(\frac{a_i^2}{2} + \frac{e_i^2}{2} \right) + \frac{q}{r \dot{\theta}} \dot{\theta} \]

(41)

\[\textbf{Stability analysis} \]

\textbf{Theorem 1.} Consider the nonlinear system (equation (3)), under the virtual controller (equations (17), (25), and (31)), the actual controller (equation (39)), and the adaptive law (equation (40)), the tracking error is practical finite stable and all signals in the resulting system are bounded.

\textbf{Proof.} According to \(\dot{\theta} = \theta - \hat{\theta} \), one has

\[\frac{q}{r \dot{\theta}} \dot{\theta} \leq - \frac{q}{2 r} \dot{\theta}^2 + \frac{q}{2 r} \theta^2 \]

(42)

Substituting equation (42) into equation (41) produces

\[\dot{V}_4 \leq - \sum_{i=1}^{3} \left(k_i - \frac{1}{2} \right) \chi_i^T x_i - \sum_{i=1}^{3} c_i(\chi_i^T x_i)^p + \sum_{i=1}^{3} \frac{1}{r \dot{\theta}} \dot{\theta} \]

\[+ \sum_{i=1}^{3} \left(\frac{a_i^2}{2} + \frac{e_i^2}{2} \right) - \frac{q}{2 r} \dot{\theta}^2 + \frac{q}{2 r} \theta^2 \]

\[= - \sum_{i=1}^{3} \left(k_i - \frac{1}{2} \right) \chi_i^T x_i - \sum_{i=1}^{3} c_i(\chi_i^T x_i)^p + \sum_{i=1}^{3} \frac{1}{r \dot{\theta}} \dot{\theta} \]

\[+ \sum_{i=1}^{3} \left(\frac{a_i^2}{2} + \frac{e_i^2}{2} \right) - \frac{q}{2 r} \dot{\theta}^2 + \frac{q}{2 r} \theta^2 - \frac{q}{2 r} \theta^p \]

(43)

Using Lemma 2 to the term \(q(\dot{\theta}^2/2r)^{\frac{p}{2}} \), the following inequality holds

\[q \left(\frac{\dot{\theta}^2}{2r} \right)^{\frac{p}{2}} \leq \sqrt{q_1} q \frac{\dot{\theta}^2}{2r} + q(1 - p) \left(\frac{p}{q_1} \right)^{\frac{p}{2}} \]

(44)

with \(0 < q_1 < 1 \). By substituting equation (44) into equation (43), it can be proved that
\[V_4 \leq - \sum_{i=1}^{4} \left(k_i - \frac{1}{2} \right) x_i^p + \sum_{i=1}^{4} c_i (x_i^p) + \sum_{i=1}^{4} \frac{1}{2} \dot{q}_i^2 \\
\leq - \sum_{i=1}^{4} k_i \xi^p_i + \sum_{i=1}^{4} \frac{\xi^p_i}{2} \left| g(\alpha_i + \alpha_i + 1) - L \text{sgn}(\xi_i) \right| \\
= - \sum_{i=1}^{4} k_i \xi^p_i - \sum_{i=1}^{4} \left| \xi^p_i \right| \left| g(\alpha_i + \alpha_i + 1) - L \text{sgn}(\xi_i) \right| \\
\leq - \sum_{i=1}^{4} k_i \xi^p_i - \sum_{i=1}^{4} \left| \xi^p_i \right| \left(\left| L \text{sgn}(\xi_i) \right| - \left| g(\alpha_i + \alpha_i + 1) \right| \right) \\
(47) \]

According to the lemma in Farrell et al., \[||\alpha_i + 1 - \alpha_i + 1|| \leq \eta \] can be obtained in the fixed time \(T_2 \) with a known constant \(\eta \). Hence, we obtain the following conclusion by choosing a suitable matrix \(L_i \):

\[\dot{V}_3 \leq - \sum_{i=1}^{4} k_i \xi^p_i - \sum_{i=1}^{4} \left| \xi^p_i \right| \left(||L \text{sgn}(\xi_i)|| - ||g(\alpha_i + \alpha_i + 1)|| \right) \]

\[\leq - k_m V_3 - k_a V_3^2 + \gamma \]

(48)

where \(k_m = 2 \min \{ k_i \} \) and \(k_a = \sqrt{2} \min \{ ||L \text{sgn}(\xi_i)|| - ||g|| \eta \} \).

Based on Lemma 1, we know that \(\xi_i \) can converge to the origin in a finite time \(T_3 \). It can be concluded that \(z_i \) is practical finite stable within the fixed time \(T = T_1 + T_2 + T_3 \).

Choose the Lyapunov function as

\[V = V_3 + \frac{1}{2} \gamma \left(\frac{\gamma}{1 - \mu} \right)^3, \quad 0 < \mu < 1 \]

and \(\|x_i\| \) is bounded in a fixed time \(T_1 \). Because \(z_i = x_i + \xi_i \), we can conclude that \(z_i \) is convergent in a fixed time if \(\xi_i \) is bounded. Next, we will deal with this problem. Construct the Lyapunov function

\[V_3 = \sum_{i=1}^{4} \frac{1}{2} \xi^p_i, \]

(46)

It is concluded that

\[\dot{V}_3 = - k_i \xi^p_i + \xi_i g(\alpha_i + \alpha_i + 1) - \xi^p_i L \text{sgn}(\xi_i) \\
- k_i \xi^p_i + \xi_i g(\alpha_i + \alpha_i + 1) - \xi^p_i L \text{sgn}(\xi_i) \\
- k_i \xi^p_i + \xi_i g(\alpha_i + \alpha_i + 1) - \xi^p_i L \text{sgn}(\xi_i) \\
- k_i \xi^p_i + \xi_i g(\alpha_i + \alpha_i + 1) - \xi^p_i L \text{sgn}(\xi_i) \\
= - \sum_{i=1}^{4} k_i \xi^p_i + \sum_{i=1}^{4} \xi_i g(\alpha_i + \alpha_i + 1) - \sum_{i=1}^{4} \xi^p_i L \text{sgn}(\xi_i) \\
= - \sum_{i=1}^{4} k_i \xi^p_i + \sum_{i=1}^{4} \xi_i g(\alpha_i + \alpha_i + 1) - \sum_{i=1}^{4} \xi^p_i L \text{sgn}(\xi_i) \]

Simulation example

To examine the efficiency of the proposed approach, we will carry out a simulation study for the single-link FJ manipulator

\[m \ddot{q} + g q + F(q) + Kq = Kq_m \]

\[J \ddot{q}_m + B \dot{q}_m + K(q_m - \dot{q}) = \dot{u} \]

(49)

where \(q, q_m \in R \). Let \(m = 1 \text{ kg}, l = 1 \text{ m}, \ J = 1 \text{ kg\cdot m}^2, \ g = 10 \text{ m/s}^2, F(q) = \theta_1 \sin(q), \ K = 1, \) and \(B = \theta_2, \) where \(\theta_1 \) and \(\theta_2 \) are unknown parameters, \(g = 1/2 \sin t \) is the expected trajectory. The following equations are the fuzzy membership functions required in the simulation

\[\mu_{\theta_1} = e^{-0.5(x + 1.5)^2}, \quad \mu_{\theta_2} = e^{-0.5(x + 1.5)^2}, \quad \mu_{\theta_3} = e^{-0.5(x + 0.5)^2}, \]

\[\mu_{\theta_4} = e^{-0.5(x - 0.5)^2}, \quad \mu_{\theta_5} = e^{-0.5(x - 1)^2}, \quad \mu_{\theta_6} = e^{-0.5(x - 1.5)^2}. \]

To achieve the control objective, we construct the virtual and actual controllers as equations (17), (25),
Figure 1. The trajectories of q and q_d.

Figure 2. The trajectory of $q - q_d$.

Figure 3. The trajectories of states \dot{q}, q_m, and \dot{q}_m.
(31), and (39) according to the method previously designed. Figures 1–5 show the simulation results under the initial conditions $q(0) = 0.01$, $\dot{q}(0) = 0$, $q_m(0) = 0.01$, and $\dot{q}_m(0) = 0$. Figure 1 expresses the trajectories of the position state q and reference signal q_d. The trajectory of $q - q_d$ is shown in Figure 2, which indicates that $q - q_d$ can converge to a small neighborhood of zero in the finite time. That is, position state q can follow target signal q_d within a limited time. Figures 3–5 are the trajectories of states \dot{q}, q_m, \dot{q}_m, input u, and adaptive law $\dot{\theta}$, respectively. It is found that states \dot{q}, q_m, \dot{q}_m, input u, and adaptive law $\dot{\theta}$ are bounded. As a result, the proposed method can achieve the control objective.

Conclusion

In this paper, the proposed scheme settles the issue of finite-time tracking control for FJ robots. With the help of the command filtered technology, both explosion of complexity and singularity problems in the standard backstepping design are avoided. By the aid of the finite-time control technique, the tracking error can achieve convergence quickly. The effectiveness of the proposed scheme is illustrated by simulation results. In this research direction, how to apply command filtered technology to under-actuated mechanical systems is meaningful work, such as the crane system.34–36

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The work was supported by the National Natural Science Foundation of China under Grants 61603170 and Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions under Grant 2019KJI010.
References

1. Spong MW. Adaptive control of flexible joint manipulators. *Syst Control Lett* 1989; 13(1): 15–21.
2. Han J, Chen Y-H, Zhao XM, et al. Optimal design for robust control of uncertain flexible joint manipulators: a fuzzy dynamical system approach. *Int J Control* 2018; 91(4): 937–951.
3. Li YM, Tong SC and Li TS. Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. *Nonlinear Anal-Real* 2013; 14(1): 483–494.
4. Abdollahi F, Talebi HA and Patel HV. A stable neural network-based observer with application to flexible-joint manipulators. *IEEE T Neural Netw* 2006; 17(1): 118–129.
5. Kim MJ and Chung WK. Disturbance-observer-based PD control of flexible joint robots for asymptotic convergence. *IEEE T Robot* 2015; 31(6): 1508–1516.
6. Kim MS and Lee JS. Adaptive tracking control of flexible-joint manipulators without overparametrization. *J Robotic Syst* 2004; 21(7): 369–379.
7. Chang Y-C and Wu M-F. Robust tracking control for a class of flexible-joint time-delay robots using only position measurements. *Int J Syst Sci* 2016; 47(14): 3336–3349.
8. Kim J and Croft EA. Full-state tracking control for flexible joint robots with singular perturbation techniques. *IEEE T Contr Syst T* 2017; 27(1): 63–73.
9. Sun W, Su S-F, Xia JW, et al. Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. *IEEE T Syst Man Cyb* 2019; 49(11): 2201–2209.
10. Sun W, Su S-F, Xia JW, et al. Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. *IEEE T Cybernetics*. Epub ahead of print 20 December 2018. DOI: 10.1109/TCYB.2018.2884707.
11. Sun N, Fu Y, Yang T, et al. Nonlinear motion control of complicated dual rotary crane systems without velocity feedback: design, analysis, and hardware experiments. *IEEE T Autom Sci Eng*. Epub ahead of print 14 January 2020. DOI: 10.1109/TASE.2019.2961258.
12. Zhang M, Zhang Y, Ouyang H, et al. Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. *Nonlinear Dyn*. Epub ahead of print 18 January 2020. DOI: 10.1007/s11071-020-05471-3.
13. Wang D and Huang J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. *IEEE T Neural Netw* 2005; 16(1): 195–202.
14. Edalati L, Sedigh AK, Shooredeli MA, et al. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints. *Mech Syst Signal Pr* 2018; 100: 311–329.
15. Liu Z-G and Wu Y-Q. Modelling and adaptive tracking control for flexible joint robots with random noises. *Int J Control* 2014; 87(12): 2499–2510.
16. Yu JP, Shi P, Dong WJ, et al. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors. *IEEE T Neural Net Lear* 2015; 26(3): 640–645.
17. Li YM, Tong SC and Li TS. Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. *IEEE T Cybernetics* 2015; 45(1): 138–149.
18. Liu Y-H, Huang LP and Xiao DM. Adaptive dynamic surface control for uncertain nonaffine nonlinear systems. *Int J Robust Nonlin* 2017; 27(4): 535–546.
19. Zhang TP, Xia MZ, Yi Y, et al. Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties. *IEEE T Syst Man Cyb* 2017; 47(8): 2378–2387.
20. Farrell JA, Polycarpou M, Sharma M, et al. Command filtered backstepping. *IEEE T Autom Control* 2009; 54(6): 1391–1395.
21. Hu JC and Zhang HH. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles. *Automatica* 2013; 49(7): 2160–2167.
22. Niu H, Yu JP, Yu HS, et al. Adaptive fuzzy output feedback and command filtering error compensation control for permanent magnet synchronous motors in electric vehicle drive systems. *J Frankl Inst* 2017; 354(15): 6610–6629.
23. Li Y-X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. *Automatica* 2019; 106: 117–123.
24. Hou YX and Tong SC. Command filter-based adaptive fuzzy backstepping control for a class of switched nonlinear systems. *Fuzzy Set Syst* 2017; 314: 46–60.
25. Yu JP, Shi P, Dong WJ, et al. Command filtering-based fuzzy control for nonlinear systems with saturation input. *IEEE T Cybernetics* 2017; 47(9): 2472–2479.
26. Wang M, Chen B and Dai S-L. Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems. *Fuzzy Set Syst* 2007; 158(24): 2655–2670.
27. Sun W, Xia JW, Zhuang GM, et al. Adaptive fuzzy asymptotically tracking control of full state constrained nonlinear system based on a novel Nussbaum-type function. *J Frankl Inst* 2019; 356(4): 1810–1827.
28. Sun W, Su S-F, Dong GW, et al. Reduced adaptive fuzzy tracking control for high-order stochastic nonstrict feedback nonlinear system with full-state constraints. *IEEE T Syst Man Cyb*. Epub ahead of print 5 March 2019. DOI: 10.1109/TSMC.2019.2898204.
29. Tong SC and Li YM. Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. *Fuzzy Set Syst* 2009; 160(12): 1749–1764.
30. Wang HQ, Liu WX, Qiu JB, et al. Adaptive fuzzy decentralized control for a class of strong interconnected nonlinear systems without modeled dynamics. *IEEE T Fuzzy Syst* 2018; 26(2): 836–846.
31. Zhu Z, Xia YQ and Fu MY. Attitude stabilization of rigid spacecraft with finite-time convergence. *Int J Robust Nonlin* 2011; 21(6): 686–702.
32. Wang F, Chen B, Liu XP, et al. Finite-time adaptive fuzzy tracking control design for nonlinear systems. *IEEE T Fuzzy Syst* 2018; 26(3): 1207–1216.
33. Sun W, Su S-F, Wu YQ, et al. Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. *IEEE T Cybernetics*. Epub ahead of print 15 January 2019. DOI: 10.1109/TCYB.2018.2890256.
34. Chen H and Sun N. Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification. *IEEE T Ind
35. Sun N, Liang DK, Wu YM, et al. Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints. *IEEE T Ind Inform* 2020; 16: 969–979.

36. Zhang MH, Zhang YF, Ji B, et al. Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects. *Meas Control* 53: 141–150.