Research on a Kind of Adaptive Fuzzy Control Method and Its Application in Feeding System of CNC Honing Machine

Wanjun Zhang¹,²,³,* and Feng Zhang²
¹Quanzhou Institute of Information Engineering, 36200, China,
²Lanzhou Industry and Equipment Co, Ltd, Lanzhou 730050, China,
³School of Mechanical Engineering, Xian Jiaotong University, 710049, China

*Corresponding author e-mail: gszwj_40@163.com

Abstract. Controller design for industrial processes with large time delay still remains challenging at present. On the basis of brief introduction to the processing of honing machine, then the control system was conducted by using the tool of Simulink. The simulation result showed that the correction by using fuzzy controller, to numerical control honing machine feeding system for real-time control, system stability improvement at the same time, response speed, feed system and raises the comprehensive performance. Through the experiment simulation, the feasibility and validity of the adaptive fuzzy control in this paper are proved.

1. Introduction
The mathematical model of controlled object of CNC servo control system is generally unknown. Aiming at multi axis CNC servo control system, Lanzhou Industry and Equipment Co. Ltd, Lanzhou University of technology researchers [1-21] proposed an NURBS algorithms which based on real-time interpolation and compensating error. When using modern control theory and intelligent control to control, it is necessary to know the mathematical model of the system accurately.

Hengmoji, as an important equipment in the production of metal processing industry, began to expand to heavy cutting and rough machining direction, which also led to the improvement of honing processing speed, which also put higher requirements on the control system [22, 23]. As the key link of honing machine control, the reciprocating position control of honing machine directly affects honing machine's ability and quality [24]. For equipment such as honing machines, precise location accuracy is required in machining, especially in processing blind whole parts. Due to the limited size of the cutting slot, it is required that the overshoot should be as small as possible [25]. It is better to have no excess. Because of the existence of excess, a modified and effective control method must be chosen to reduce the excess [25-29]. Fuzzy control can improve the stability of the system, the overshoot is zero, the response speed is accelerated and the performance of feed system is improved synthetically.

In the paper, A kind of adaptive fuzzy control method and its application in feeding system of CNC honing machine is introduced .In the design of this adaptive fuzzy control, the controller and parameter updating strategy are designed with the recognition of the model set and the controlled object as a whole when the adaptive model set is adopted, which effectively guarantees the system stability. Through the experiment simulation, the feasibility and validity of the adaptive fuzzy control in this paper are proved.
2. Modeling of reciprocating motion of honing machine

2.1. Establishment of model of reciprocating motion control system

Servo control system has the characteristics of high positioning accuracy and good stability, so servo control system is used in some important situations. The control voltage is $u$ in figure. $y(s)$ is the output displacement of the hydraulic cylinder; $K_n$ is servo gain coefficient; $K_a$ for servo amplifier gain coefficient, $k_a = 0.775 \frac{A}{V}$ [8].

The mathematical model of the electrohydraulic servo valve available according to the instructions provided by the manufacturer is as follows:

$$G_v(s) = \frac{4444}{s^2 + \frac{2 \times 0.85}{500}} \frac{500}{s + 1} \quad (1)$$

In this paper, the hydraulic cylinder, we should give $\omega_n = 544.7, \xi_h = 0.15$, can be derived that the transfer function of the hydraulic cylinder is:

$$G_h(s) = \frac{0.0406}{s^2 \left( \frac{1500}{544.7} \right)^2 + \frac{2 \times 0.15}{544.7}} \frac{544.7}{s + 1} \quad (2)$$

Above all, the mathematical model of the reciprocating motion control system of the honing machine can be obtained, as shown in Figure 1.

![Figure 1. Frame diagram of electrohydraulic servo position control system.](image1)

2.2. Analysis of Overtone (Time Domain) [7]

Using MATLAB software to simulate the step response of servo control system. The fixed step $h$ (Fixed-step), H=0.001, and the algorithm ode 4 (longue-kuta) are used in the design. The unit step response curve of the closed-loop transfer function can be drawn by MATLAB software. As can be seen from Figure 2, maximum overshoot $\sigma = 15.142\%$; Time adjusted $t_s = 0.015s$; $s=0$, as shown in Figure 2.

![Figure 2. The Step Response Curve of Closed Loop System.](image2)
For this system, the error at the command input speed \( v = 25m/\text{min} \) is

\[
e_v = \frac{v}{K} = \frac{25}{60/136.2} = 0.003m
\]  

(3)

When there is interference input will cause the position error, the system is the equivalent of \( o \)-type. The system has a position error of

\[
e_p = -\frac{f}{k_ek_f} = \pm \frac{0.02 \times 300 \times 10^{-3}}{0.755 \times 1} = \pm 0.008cm
\]  

(4)

This position error is an estimate [8], the existence of zero drift factors are different with the working conditions.

From the error judgement, because of the existence of the error position, the NC honing machine in the processing of deep hole location, the need for accurate location, so it is best not to overtune the amount, but from the response curve data can be seen that the system does not meet the requirements, needs to be corrected, so the use of fuzzy control correction to meet the requirements.

3. Calibration of fuzzy control

In order to facilitate sensitivity control and fuzzy rule analysis, we apply quantization factor \( K_e \) and \( K_c \) to quantify the error and its error change \( ES(k) \), map it to the fuzzy set universe, and finally act on the control system. The fuzzy domain is divided into 7 language variables, such as large NB, negative medium NM, negative small NS, zero ZE, positive small PS, middle PM and Zhengda PB, and so on.

The fuzzy control block diagram and flow chart are shown in figures 3 and 4.

![Figure 3. Block diagram of fuzzy control.](image)

![Figure 4. Flow diagram of fuzzy control for model reference.](image)
4. Design of Fuzzy Control

4.1. Design of Fuzzy Control
The fuzzy control designed in this paper uses real-time fuzzy control such as fuzzy operation, fuzzy reasoning, and fuzzy solution, also known as fuzzy logic control [9]. Compared with the traditional method of fuzzy table control, this method is convenient to adjust the parameters of membership, control rules and proportional factors. The fuzzy control block diagram and flowchart are shown in Figure 3 and 4.

In fuzzy control, we select the error signal $E$ and the error change signal $ES$ as the input variables of the fuzzy controller, and the output variables are the control variables $U$ and gain $Ke$ of the servo amplifier. Theoretically speaking, the enlargement of $Ke$ is equivalent to narrowing the basic field of error, increasing the control function of error variables, resulting in shorter rise time, but overshoot makes the transition time of the system longer.

4.2. Establishment of membership functions
The subject's subordinate editor is shown in Figure 5. The domain of $E$, $ES$ in the fuzzy control system is $[-6, 6]$ (NL, NM, NS, ZO, PS, PM, PB).

4.3. Fuzzy control rules
The control rules are shown in Table 1. Enter these 49 control rules in the Rules Editor window. For example, If $E$ is NB and $EC$ is PS then $U$ is PM table.

Table 1. Fuzzy Control Rule Table.

| Control quantity | Variation rate of input variable deviation ES |
|------------------|---------------------------------------------|
| Input deviation $E$ | NL | NM | NS | ZO | PS | PM | PL |
| NL               | PL | PL | PL | PL | PM | ZO | ZO |
| NM               | PL | PL | PL | PL | PM | ZO | ZO |
| NS               | PM | PM | PM | PM | ZO | NS | NS |
| ZO               | PM | PM | PS | ZO | NS | NM | NM |
| PS               | PS | PS | ZO | NM | NM | NM | NM |
| PM               | ZO | ZO | NM | NL | NL | NL | NL |
| PL               | ZO | ZO | NM | NL | NL | NL | NL |
5. Simulation and Analysis of Fuzzy Control System

5.1. Simulation of Fuzzy Control System
The model is built for system simulation in Matlab, as shown in Figure 6.

![System simulation](image)

**Figure 6.** System simulation.

We use the CNC honing machine tool servo testing machine to do the fuzzy control experiment of the servo testing system, which: CNC honing machine servo testing machine, as shown in Figure 6:

The results of Simulink's general control simulation and fuzzy control simulation are shown in Figure 8, 9.

![CNC honing machine servo testing machine](image)

**Figure 7.** CNC honing machine servo testing machine

![General control simulation curve](image)

**Figure 8.** General control simulation curve

![Simulation diagram of response curve of fuzzy control unit function](image)

**Figure 9.** Simulation diagram of response curve of fuzzy control unit function
5.2. Fuzzy Control System Analysis
Through Simulink software simulation, it can be concluded from the analysis of Figure 7 that the fuzzy control system has no overtone and can meet the requirements of honing industry.

6. Summary
1) After the fuzzy control method is adopted, the curve rises gently before the system reaches stability, and there is no shock.
2) Using fuzzy control to control the input system of logarithmic honing machine, the stability of the system is improved, the response speed is accelerated and the comprehensive performance of the feed system is improved.

Acknowledgements
The authors thank the financial supports from National Natural Science Foundation of China(Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

Author: Wanjun Zhang received the, M.S. and Ph.D. degrees from, Lanzhou University of technology, Xi'an Jiao tong University, in 2011 and 2018, respectively. I am currently an associate professor in the School of Mechanical Engineering, Xi'an Jiao tong University, and I am currently a Senior Engineer and senior economist in Lanzhou Industry and Equipment Co., Ltd. His research involved in artificial intelligence, NC, control of complex mechatronic system and failure diagnoses.

First author(communication author): Zhangwanjun, male, born in 1986, doctoral student in engineering(bachelor's degree in law and management), professorial senior engineer, senior economist(mechanical engineer, CNC senior craftsman), Senior member of China Society of Mechanical Engineering, Senior member of China Agricultural Machinery Society, Senior member of the China Agricultural Machinery Engineering Society, senior member of the China Instrument Society, member of the China Invention Society, director of the China Invention Society, director of the Gansu Invention Society, member of the Standing Committee of the Committee of Experts of the Modern Manufacturing Engineering (Chinese Core, Science and Technology Core), member, and review expert. Mainly engaged in numerical control technology equipment, new energy research and electromechanical transmission control work. We have authorized more than 250 patents for invention and utility models as the first applicant (patentee) and inventor, and nearly 200 patents for design as the first applicant (patentee) and inventor, and published more than 50 academic papers in core or above journals. SCI/EI/ISTP has more than 30 searches papers, including more than EI 20 papers, SCI 5 papers. Email: Gszwj_40@163.com.

References
[1] Zhang Wan-Jun, Hu Chi-Bing, Zhang Feng, et al. Honing machine motion control card three B spline curve method of interpolation arithmetic for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8 (8), pp.40-43, August 2012.
[2] Zhang Wan-Jun, HU Chi-bing, WU Zai-xin, et, al. Research on modification algorithm of Three B Spline curve interpolation technology [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2 pp.141 - 143, Feburary 2013.
[3] Zhang Wan-Jun, Zhang Feng, Zhang Guo-hua. Research on a algorithm of adaptive interpolation for NURBS curve. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1600-1603, December 2014.
[4] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. Advances in Engineering Research, 2016, 12, Vol. 83. 507 - 512.
[5] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. Advances in Engineering Research, 2016, 12, Vol. 83. 513-518.
[6] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information
Technology Applications, 2016, 12, Vol.71. 507 - 512.

[7] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation. [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol.71. 513 - 518.

[8] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. A improved algorithm of three B-spline curve interpolation and simulation. [J]. Advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080004-1- 080004- 6.

[9] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. Innovation research on Taylor's iteration algorithm of NURBS curve and simulation. [J]. Advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080014-1- 080014-8.

[10] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. M NURBS curve method Taylor's launch type of interpolation arithmetic. [J]. advances in Engineering Research, 2016, 12, Vol. 118. 43 - 52.

[11] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. A Novel of Improved algorithm adaptive of NURBS curve. [J]. advances in Engineering Research, 2016, 12, Vol. 118. 53 - 60.

[12] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. A novel on high-grade CNC machines tools for B-Spline curve method of High-speed interpolation arithmetic. [J]. 2016 International Conference on Automotive Engineering, Mechanical and Electrical Engineering, 2017, 3, Vol. 118. 53 - 60.

[13] Zhang Wanjun, Zhang Gao Shanping, Zhang Sujia. Study on Embedded CNC system for NURBS curves method of interpolation arithmetic. [J]. advances in Engineering Research, 2017, 3, Vol. 118. 53 - 60.

[14] Zhang Wanjun, Zhang Feng, Zhang Guo-hua. Research on modification algorithm of Cubic B-spline curve interpolation technology. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1596-1599, December 2014.

[15] Zhang Wanjun, Zhang Feng, Zhang Wan-Liang. Research on a NURBS curve of timing / interrupt interpolation algorithm for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 4 (4), pp.183-187, April 2015.

[16] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on modification algorithm of Cubic B-spline curve interpolation technology. [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1596-1599, December 2014.

[17] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Research on cross coupled contour error compensation technology in CNC multi axis linkage of Machine tool [J]. Chinese Journal of Manufacturing Technology & Machine Tool, June. pp. 154 - 159, 2018.

[18] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Cross coupled contour error compensation technology. [J]. Marerials Science and Engineering, 2018, 8, Vol. 394. 032031: 1 - 5.

[19] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Research on the vector control system based on the difference frequency of wind turbine generator. [J]. Marerials Science and Engineering, 2018, 8, Vol. 394. 042020: 1 - 9.

[20] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters. [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1 - 14.

[21] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD. [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1 - 12.

[22] Ma Qinfan. Study on the Digital Control of Honing Machine Based on Motion Control [D]. Lanzhou: lanzhou university of technology, 2012.

[23] Shang Dong. Fuzzy Control Principle and Application [M]. Beijing: China Railway Press, 1995.

[24] Zhang Yundian. Modern honing techniques [M]. Beijing: Science Press, 2007.

[25] Zhang Pengjun, Pu yucheng, Yang zheng, etal. Application of Fuzzy Control in Hydraulic System [J]. Hydraulic and pneumatic, 2005, 152 (4): 363 - 370.
[26] David G. Johnson. Programmable controllers for factory automation [M]. New York and Basel: Marcel Dekker Inc, 1987.

[27] Ma Qinfan. Study on the Digital Control of Honing Machine Based on Motion Control [D]. Lanzhou: Lanzhou University of Technology, 2012.

[28] Ma Zhihong, Hu Chibing, Wu Jianmin. Position control of honing machine by means of servosystem with fuzzy control [J]. Journal of Lanzhou University of Technology, 2014, Vol. 32 No.5: 57 - 61.

[29] Sun Jing. A modified model reference adaptive control scheme for improved transient performance [J]. IEEE trans on Automatic Control, 1993, 38 (8): 1255 – 1264.

[30] Lee C C. Fuzzy, logic control systems: Fuzzy logic control- Pantr IEEE SMC, 1990, 90 (2), 404-418.