Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes

Kai Kai Li1,2,3, Chuek Lun Liu1,2,3, Hoi Ting Shiu1,2, Hing Lok Wong1,2,3, Wing Sum Siu1,2,3, Cheng Zhang1,2,3, Xiao Qiang Han1,2,3, Chuang Xing Ye4, Ping Chung Leung1,2,3 & Chun Hay Ko1,2,3

Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea.

Obesity is one of the most common metabolic diseases worldwide1. Excessive accumulation of body fat may have an adverse effect on health, leading to reduced life expectancy and increased health problems, for instance, hypertension, type II diabetes mellitus, cardiovascular disease, cancer, and osteoarthritis2,3. At cellular level, obesity is characterized by an increase in the number and size of adipocytes, which are differentiated from fibroblastic preadipocytes in adipose tissue4. Mouse 3T3-L1 preadipocytes have been extensively employed to study the cellular and molecular mechanisms of adipocyte differentiation5. Adipogenesis which involves preadipocyte proliferation and adipocyte maturation is driven by two major adipogenic transcription factors, C/EBP α and PPAR γ. These two transcription factors are known to coordinately activate adipogenesis hence are believed to play pivotal roles in modulating the entire differentiation process6–7. Upon activation, C/EBP α and PPAR γ cross-regulate each other to maintain high levels of expression. They also induce the expression of adipocyte-related proteins including SREBP-1c, FAT, FAS, ACC and SCD-18–10.

Inhibition of adipocyte differentiation presents a key strategy to control obesity since an increase in adipose mass is caused by both adipocyte hypertrophy and adipocyte hyperplasia11. The use of herbal extract as a health supplement for anti-adipogenesis is increasingly popular in the past decades. A number of phytochemicals, including green tea polyphenols, resveratrol, curcumin, and proanthocyanidins have demonstrated anti-adipogenic potencies in vitro and in vivo5,12–14. Green tea (Camellia sinensis) is one of the most popular herbal supplements in the world15. It is well documented that green tea extract exhibits anti-adipogenic, hypolipidemic and hypoglycemic properties, Hence, it is widely used for multiple health benefits. On the contrary, most types of

1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. 2State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. 3Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China. 4Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. Correspondence and requests for materials should be addressed to C.H.K. (email: gohey@cuhk.edu.hk)
green tea contain high levels of caffeine, suggesting it may not be suitable for individuals with caffeine sensitivity. In addition, there are several negative effects of caffeine on human behaviors including sleep deprivation16,17. Many researchers have attempted to remove caffeine from tea by organic solvent extraction and activated carbon adsorption18. However, the outcomes are rather undesirable due to high costs (for solvent and equipment) and loss of tea favor19.

Cocoa tea (\textit{Camellia ptilophylla}), which belongs to the genus \textit{Camellia}, is a naturally decaffeinated tea plant. It has been widely consumed by local inhabitants in the Longmen area of Guangdong Province in China20. It contains theobromine instead of caffeine, whereas the major catechin is (-)-gallocatechin gallate (GGC). Earlier work suggested that cocoa tea exhibited a profound cytotoxic effect on various cancer cell lines including HeLa, CNE2, and MGC-803, and HepG221,22. More recently, we showed that the administration of cocoa tea in high-fat diet-induced obesity mice resulted in dose-dependent reduction in body weight, fat pad mass, liver weight, total liver lipid, liver triglyceride and cholesterol, as well as plasma lipids (triglyceride and cholesterol)23. However, little is known about how cocoa tea influences adipogenesis and lipogenesis in adipocytes. Based on our \textit{in vivo} findings, we hypothesized that cocoa tea could directly inhibit the differentiation of preadipocytes to adipocytes. Hence, in order to investigate the unclear underlying mechanisms of the biological effects of cocoa tea extract in adipocyte metabolism, we carried out the present study using the cell line 3T3-L1 preadipocyte with the same species with \textit{in vivo} study to elucidate the anti-adipogenic effects of cocoa tea. Many reports suggest that mouse 3T3-L1 is one of the most well characterized and reliable \textit{in vitro} models for studying the commitment of preadipocytes to differentiation into adipocytes. This cell line possesses some phase 2 drug metabolizing enzymes, including ATP-Binding Cassette, Sub-Family C member 1, ATP-Binding Cassette, Sub-Family C member 4, Glutathione S-transferase A2, and Glutamate-cysteine ligase catalytic subunit24. In the present study, we used mouse 3T3-L1 preadipocyte cell line as a model to investigate the anti-adipogenic potential of cocoa tea and its underlying mechanism in modulating adipocyte metabolism.

\section*{Results}

\subsection*{HPLC analysis.}

HPLC chemical profile of cocoa tea extract (CTE) was different from green tea extract (GTE) (See Supplementary Information). Cocoa tea contains theobromine (8.43 ± 0.51\%) and GGC (10.78 ± 0.63\%) as the main alkaloid and catechin, respectively. For traditional green tea, the main alkaloid was caffeine (6.12 ± 0.03\%) while the major catechin was EGC\textsubscript{G} (8.54 ± 0.09\%). Particularly, the relative compositions of catechins in cocoa tea increased in the order: ECG < EGC < C < GGC. Whereas the relative compositions of catechins in green tea extract increased in the order: ECG < EC < EGC < GGC. In addition, the water extract of cocoa tea also demonstrated the presence of a proanthocyanidin, GC-\(\rightarrow\text{(4 \rightarrow 8)}\)-GCG (0.94 ± 0.28\%). No caffeine content was found in cocoa tea.

\subsection*{Effect of CTE on 3T3-L1 cell viability.}

The cytotoxic effects of CTE on cell viability were studied using MTT assay. As shown in Fig. 1, both of CTE and GTE had cytotoxic effect at high doses. Treatment of CTE and GTE for 48 hour (h) reduced preadipocyte proliferation and viability (Fig. 1). At 200 \(\mu\)g/ml, both CTE and GTE significantly decreased the cell viability (\(p < 0.01\)), resulting in an IC\textsubscript{50} value of 269.15 \(\mu\)g/ml and 234.42 \(\mu\)g/ml, respectively.

\subsection*{Effects of CTE on adipogenic differentiation.}

To investigate the anti-adipogenic effect of CTE, intracellular lipid accumulation was determined in mature adipocytes. Adipogenic differentiation of 3T3-L1 preadipocytes was examined on day 8 by Oil-Red O staining (Fig. 2A). Mature adipocytes were identified and characterized by a quantity of oil droplets in the cells which are not seen in undifferentiated cells. Based on microscopic observation, it showed that 3T3-L1 cells which were treated with CTE and GTE maintained the fibroblastic shape and contained less lipid droplets. At 50 \(\mu\)g/ml, CTE and GTE significantly reduced the formation of oil droplets to 75.08 ± 6.68\% and 71.23 ± 13.14\% compared to mature adipocytes (\(p < 0.01\) and \(p < 0.05\), respectively) (Fig. 2B).

The intracellular content of triglycerides (TG) was also quantified on day 8 of adipogenic differentiation. The treatment with CTE and GTE dramatically reduced lipid accumulation in cells. Whereas, the treatment...
with 3-isobutyl-1-methylxanthine (IBMX), Dexamethasone and Insulin (MDI) alone was found to significantly increase TG content, in the CTE and GTE treatment groups (See Fig. 3). TG content was significantly decreased to 30% and 22% by CTE and GTE at 200 μg/ml, respectively ($p < 0.001$). In addition, CTE and GTE were found to reduce intracellular TG content in a concentration dependent manner. There was no significant difference between CTE and GTE treated cells. Furthermore, a considerable higher amount of TG was found in the differentiation group compared to the group treated with 200 μg/ml of GTE. This might be due to the fact
that differentiating cells can produce a trace amount of TG. Secondly, 200 μg/ml of GTE and CTE significantly decreased the viability of 3T3-L1 cells as shown in our cytotoxicity test. Taken together, our results from Oil Red staining and triglyceride assay demonstrated that CTE and GTE inhibited the adipogenic differentiation of 3T3-L1 cells.

Effect of CTE on the expressions of adipogenic transcription factors. Adipogenic differentiation with lipid accumulation is accompanied by the expressions of master adipogenic transcription factors in preadipocytes, such as C/EBPα and PPARγ. We next investigated whether CTE and GTE influence the expressions of PPARγ and C/EBPα during adipogenic differentiation. As shown in Fig. 4, MDI significantly induced the expression of PPARγ and C/EBPα. Compared with the control group (MDI), CTE and GTE significantly suppressed the expressions of C/EBPα and PPARγ. For PPARγ, the inhibitory effect of CTE was stronger than that of GTE at same concentration on day 5 and day 8 (p < 0.05). For C/EBPα, the inhibitory effect of CTE at 100 μg/ml was stronger than that of GTE on both day 3 and day 8 (p < 0.05). Analysis of the protein levels of these transcription factors on day 3 and day 8 showed that both CTE and GTE treatments significantly decreased the expressions of PPARγ and C/EBPα, which was consistent with our mRNA expression results. As shown in Fig. 5, the expressions of PPARγ and C/EBPα were increased significantly in the control group, when compared with undifferentiated group (UD), at day 8. Although low dose (50 μg/ml) of GTE showed no significant inhibition on the expression of PPARγ and C/EBPα, GTE could inhibit the protein levels of PPARγ and C/EBPα at doses of 100 μg/ml and 200 μg/ml (p < 0.05). Similarly, CTE could dose-dependently inhibit PPARγ expression. However, CTE only inhibited C/EBPα at 200 μg/ml (p < 0.05).

Effects of CTE on the expressions of adipocyte-specific genes. In vitro differentiation of adipocyte is completed about one week after the initiation of MDI treatment. During differentiation, a series of key molecular events occur which determines the phenotype of adipocytes. Next, we investigated the effect of CTE on the expression of the adipocyte-specific genes such as FAS, SCD-1, FAT, ACC and SREBP-1c. As shown in Fig. 6 and Fig. 7, MDI significantly induced the mRNA and protein expressions of FAS, SCD-1, FAT, ACC and SREBP-1c. The increase in the mRNA levels of SREBP-1c, SCD-1, ACC, FAT, and FAS in 3T3-L1 cells were reversed by CTE and GTE. Treatments with CTE and GTE significantly decreased the protein levels of FAS, SCD-1, FAT, ACC and SREBP-1c, compared to those of positive control using mature adipocytes (Fig. 7). The expressions of these adipocyte-specific genes showed no significant difference between CTE and GTE treated adipocytes.
as well as inductions of lipolysis and adipocyte apoptosis. Our previous study indicated that cocoa tea has a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. In this study, we demonstrated that the addition of CTE to 3T3-L1 cells significantly reduced lipid droplet accumulation, triglyceride content, as well as the expressions of key adipogenic transcription factors and adipocyte-specific genes. The beneficial effect of dietary green tea on controlling plasma and hepatic lipid levels have been well documented in various animal studies. Positive findings from these pre-clinical studies have also been confirmed by a number of human clinical trials, indicating the anti-adipogenic effect of green tea.

The MAPK pathways play a crucial role in signaling the gene expressions of C/EBP α and PPAR γ. To elucidate the effect of CTE on MAPK pathway, phosphorylations of ERK, JNK, and p38 were examined. Our data indicated that MAPKs phosphorylation were significantly reduced 2 hours after MDI treatment, which in line to some reports. These findings suggested that CTE strongly suppressed the adipogenic differentiation of 3T3-L1 preadipocytes by decreasing the expression of adipocyte-specific genes.

Effect of CTE on MAPKs phosphorylation. The MAPK pathways play a crucial role in signaling the gene expressions of C/EBP α and PPAR γ. To elucidate the effect of CTE on MAPK pathway, phosphorylations of ERK, JNK, and p38 were examined. Our data indicated that MAPKs phosphorylation were significantly reduced 2 hours after MDI treatment, which in line to some reports. These findings suggested that CTE strongly suppressed the adipogenic differentiation of 3T3-L1 preadipocytes by decreasing the expression of adipocyte-specific genes.

Discussion

It has been suggested that adiposity is reduced by the inhibition of adipogenesis, which is associated with reductions of number and lipid content of adipocytes. There are many therapeutic strategies for treating obesity, including balance in energy intake and expenditure, suppression in preadipocyte differentiation and lipogenesis, as well as inductions of lipolysis and adipocyte apoptosis. Our previous study indicated that cocoa tea has a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. In this study, we demonstrated that the addition of CTE to 3T3-L1 cells significantly reduced lipid droplet accumulation, triglyceride content, as well as the expressions of key adipogenic transcription factors and adipocyte-specific genes.

The beneficial effect of dietary green tea on controlling plasma and hepatic lipid levels have been well documented in various animal studies. Positive findings from these pre-clinical studies have also been confirmed by a number of human clinical trials, indicating the anti-adipogenic effect of green tea. The tea catechin, particularly EGCG, has been demonstrated to reduce body weight in animal models of obesity. Many mechanisms have been proposed for the anti-adipogenic activity of EGCG. These include suppression of preadipocyte survival and proliferation, induction of cell apoptosis, activation of AMP-activated protein kinase (AMPK), and modulation of the expression of adipocyte-related genes C/EBP α and PPAR γ. These suggestions were consistent with our findings that green tea inhibits adipocyte formation. Kim and Sakamoto (2012) showed that EGCG suppressed clonal expansion of preadipocytes by reducing the transcriptional activity of FoxO1 via the PI3K/Akt and MEK/ERK pathways. Ku et al. (2012) showed that EGCG suppressed IGF-I and IGF-II signaling in preadipocyte mitogenesis via 67LR but not AMPK pathway. Furthermore, some reports showed that the caffeine inhibited the adipogenic differentiation and reduced the body weight and adipose tissue weight in animal models.

Cocoa tea is a naturally decaffeinated tea. It is believed that the main components of cocoa tea, theobromine and GCG, play central roles in its anti-adipogenic effect. The stimulant effect of theobromine is 20% of that of caffeine. Previous work found that GCG and theobromine significantly reduced the plasma cholesterol and triglycerides. Jang et al. (2015) recently found that theobromine inhibited adipogenic differentiation of 3T3-L1 preadipocytes during early stages of adipogenesis by regulating the expressions of C/EBP α and PPAR γ through AMPK and ERK/JNK signalling pathways. Given that cocoa tea has a high content of theobromine, cocoa tea appears as a good source for theobromine supplement.
Figure 6. Effect of CTE and GTE on gene expressions of the adipocyte-specific genes of 3T3-L1 adipocyte differentiation. The cells were induced to differentiate into adipocytes in MDI medium with or without CTE and GTE. mRNA were extracted and the expression of SREBP-1c, FAS, ACC, FAT and SCD-1 genes were detected using one-step RT-PCR. CTE: cocoa tea extract; GTE: green tea extract. Each value represents the Mean ± SEM of triplicate test. *p < 0.05; **p < 0.01; ***p < 0.001 as compared to control group.
Obesity is caused by excessive growth of adipose tissue mass as a result of increase in number and size of adipocytes differentiated from preadipocytes. Our results showed that CTE and GTE at high dose significantly inhibited the viability of 3T3-L1 cells. They also remarkably suppressed the adipogenic differentiation in a concentration-dependent manner, as indicated by less mature adipocytes with oil droplets and reduced level of accumulated intracellular triglyceride. These results suggest that CTE inhibits adipogenesis and accumulation of lipid droplets during the differentiation of 3T3-L1 cells. This is also consistent with our previous results in mice that cocoa tea treatment reduced liver cholesterol at both 2% and 4% (55.9 ± 3.2%, p < 0.001, and 72.1 ± 1.6%, p < 0.001)23. Taken together, these findings suggested that CTE had an inhibitory role in the conversion of 3T3-L1 cells during adipogenesis, apart from its inhibitory effect on cell viability which is similar to that of GTE.

Adipogenesis is a complex process which is tightly regulated by sequential activations of various transcriptional factors. Preadipocyte culture systems were well established for studying cellular and molecular mechanisms of adipocyte differentiation. Adipokines, such as C/EBPα and PPARγ, are some of the most important genes during adipogenesis. They have a direct impact on the development of fat cells. The expressions of both C/EBPα and PPARγ increased dramatically from undetectable levels in preadipocytes to detectable levels and full expressions two days and 5 days after the induction of differentiation, respectively53. In our present study, we investigated the effect of cocoa tea extract on the expression of PPARγ, C/EBPα on day 3 (early stage), day 5 (intermediate stage) and day 8 (final stage) during adipogenic differentiation. The reduced expression in protein levels of PPARγ and C/EBPα on day 3 and 8 is also in accordance with our suggestion. An extension of this study is to apply the inhibitor(s) and enhancer(s) of PPARγ, C/EBPα and also gene-knockout technology to further verify our findings. Similar to the bioactivity of green tea and EGCG, cocoa tea also inhibited the adipogenic differentiation of 3T3-L1, which is likely to be mediated by down-regulating the expressions of C/EBPα and PPARγ42,43.

C/EBPα and PPARγ are known to induce the expressions of adipocyte-specific genes which control fatty acid metabolism in adipocyte. These genes include fatty acid binding protein (aP2), FAS, SCD-1, FAT and lipoprotein lipase (LPL)34–36. FAS and SCD-1 regulate the expression of genes involved in lipogenesis and fatty acid desaturation57. ACC catalyzes the synthesis of malonyl-CoA, a metabolite that plays a pivotal role in the synthesis of fatty acids as the donor of “C2 units”. Hence we investigated the effect of cocoa tea extract on the expression of these adipocyte-specific genes in mature adipocytes. We found that CTE reduced mRNA and protein expressions of FAS and ACC, which are involved in the late stage of adipogenesis (See Figs 6 and 7). Furthermore, gene and protein expressions of FAT and SCD-1 were also reduced by cocoa tea treatment (See Figs 6 and 7). SREBP-1c is found to be a crucial transcriptional regulator involved in adipogenesis. It is associated with the production of an endogenous PPARγ ligand which reinforces PPARγ activity58. In our present study, we found that CTE significantly inhibited the expression of SREBP-1c. Taken together, it was suggested that the anti-adipogenic effect of cocoa tea was mediated by as of anti-adipogenic effect of traditional green tea down-regulation of the expressions of transcription factors such as PPARγ, CEBPα and SREBP1c during adipocyte differentiation. This is also consistent with our previous findings that cocoa tea treatment reduced the level of PPARγ dose-dependently in a high-fat induced obesity mice model59.

The extracellular signal-regulated kinases (ERK1/2), Jun amino terminal kinases (JNK), and p38 mitogen-activated protein kinases (p38) are the members of mitogen-activated protein kinases (MAPKs) that play a pivotal part in many essential cellular processes, including cell proliferation and adipocytes differentiation. Proteins of the MAPKs second messenger pathway, specifically pro-adipogenic ERK and anti-adipogenic p38 MAPK59,60, have been implicated to regulate preprogrammed adipocyte differentiation. The ERK pathway interacts primarily with mitogens and growth factors. It plays a key role in cell proliferation, survival, and differentiation61. It was reported that reduction of ERK1/2 activation in preadipocytes suppressed adipocytes differentiation.
differentiation. Moreover, the MAPK signaling pathway regulates the expression of C/EBP α and PPAR γ mRNA during adipogenesis in 3T3-L1 cells. We found that CTE inhibited the phosphorylations of ERK, p38 and JNK in a concentration dependent manner, similar to those observed with GTE. Thus, it is speculated that CTE induces apoptosis and inhibits adipogenesis in 3T3-L1 cell via suppression of ERK1/2, p38 and JNK phosphorylation which is partly dependent on MAPK kinase/ERK signaling pathway (See Fig. 8).

Little is known about the pharmacokinetic of cocoa tea. The chemical compositions of cocoa tea are very similar to traditional green tea, except the contents of theobromine and GCG. Oral absorption of theobromine from the digestive tract is slower (an estimated peak plasma time of 2.5 h) compared with caffeine (0.5 h). Recently, a double-blind study in human of Hodgson et al. measured the transient changes in total and free concentrations of catechins in plasma from healthy males following the consumption of a single green tea extract dose (559.2 mg total catechins, 120.4 mg caffeine). They found that the ratios of the maximum concentrations in plasma to the concentrations in the tradition green tea supplement relative to the total catechins, respectively, GCG was higher than EGCG. 22% of GCG existed in free form, while non-gallated catechins EGC, EC, and C mainly present in the conjugated form. Further investigations are needed to study the pharmacokinetic of high content of GCG-containing cocoa tea, instead of EGCG predominant green tea.

In summary, our findings suggested that cocoa tea has the potential to inhibit the cell viability and adipogenic differentiation of 3T3-L1 cells. To our best knowledge, this is the first study which demonstrates that cocoa tea exhibits attenuation of molecular events in adipogenesis in 3T3-L1 preadipocytes. We proposed that the underlying mechanisms of the anti-adipogenic activity of cocoa tea were similar to that of traditional green tea. These further suggested that cocoa tea might be able to inhibit obesity. In the present study, we aimed to study the direct effect and its molecular events of cocoa tea in adipogenesis using one of the key players, the preadipocytes. Future studies will include investigations of the bioavailability and systemic effect of cocoa tea, the interactions among immune cells, adipocytes cytokines and growth factors regulating adipogenesis, as well as the pharmacokinetic studies of cocoa tea in in vivo disease models. In addition, the molecular mechanism of how cocoa tea and its main chemical components such as theobromine and/or GCG exerted its anti-adipogenic effect remain to be further defined.

Methods

Herbal extraction and HPLC analysis of tea aqueous extract. Green tea leaves were purchased from renowned supplier in Guangdong Province, China. Cocoa tea leaves were obtained from the Tea Research Institute of Guangdong Province. The extraction protocol was used as described previously. High-performance liquid chromatography (HPLC) analysis was performed using Agilent 1100 series HPLC System, equipped with G1329A ALS Auto-sampler and G1315A Diode Array Detector (Agilent Technologies, USA). Sample solution was injected onto a Supelco Discovery RP Amide C16 guard column (15 cm × 4.6 mm, 5 μm) (Sigma-Aldrich, Inc., USA). A gradient elution was carried out using the following solvent systems: mobile phase A-0.05%-phosphoric acid; mobile phase B-acetonitrile. The elution was performed with a gradient procedure as follows: 0-1 min, 2% B; 2–30 min, from 2% B to 50% B. The sample injection volume was 10 μl. Elution was performed at a solvent flow rate of 0.8 ml/min. A standard mixture which contains theanine (Thea), theobromine (TB), caffeine (CAF), thearicin (TC), epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate (EGCG), galloatechin (GC), galloatechin gallate (GCG), and epicatechin gallate (ECG) in methanol was prepared and analyzed. Purine alkaloid and catechin compounds were identified by comparing the retention time and spectral data with those of authentic standards. All analyses were repeated three times.
was dissolved in DMSO (200 μl water extracts)/495 nm (control) medium supplemented with CTE or GTE at various concentrations for 48 h. MTT solution (5 mg/ml in PBS) was then added to the plate (20 μl/well) and incubated at 37 °C, 5% CO2 for 4 h. After that, the medium was replaced with DMEM supplemented with 10% fetal bovine serum (FBS) and insulin (10 μg/mL) for 2 days. After removal of culture media, the cells were washed twice with PBS, fixed with 10% Formalin, and stained with Oil red O (six parts 0.6% Oil red O dye in isopropanol and four parts water) for 30 min. After rinsing three times with distilled water, the cells were photographed under microscope. To quantify the lipid accumulation, intracellular lipid and Oil red O were dissolved in isopropanol and absorbance was measured by a microplate spectrophotometer.

Oil Red O Staining.
To investigate the effect of CTE on lipid accumulation in 3T3-L1 preadipocytes, the cells were differentiated in the presence of CTE or GTE at various concentrations. Troglitazone, a known PPAR γ agonist, was used as a positive control. Intracellular lipid accumulation was determined by Oil red O staining on day 8. After removal of culture media, the cells were washed twice with PBS, fixed with 10% Formalin, and stained with Oil red O (six parts 0.6% Oil red O dye in isopropanol and four parts water) for 30 min. After rinsing three times with distilled water, the cells were photographed under microscope. To quantify the lipid accumulation, lipid and Oil red O were dissolved in isopropanol and absorbance was measured by a microplate spectrophotometer at 495 nm. The percentage of oil red O stained material relative to control wells was calculated as 495 nm (tea

Triglyceride Content.
To analyze the intracellular content of triglycerides (TG), the cells were washed with PBS, harvested by trypsinisation and then resuspended in 1 ml PBS. The cell suspension was homogenized by sonication for 5 min. Triglyceride content was determined using a commercial triglyceride assay kit according to the manufacturer's protocol (GPO-PAP, Roche diagnostics, Mannheim, Germany). The protein concentration was measured using a Bradford reagent (Sigma, St. Louis, MO).

Quantitative Real-Time PCR Analysis.
Total RNA was extracted from 3T3-L1 cells at desired time points (Day 3, 5 and 8) after adipogenic differentiation with various concentrations of CTE and GTE. Selected genes were amplified and quantified by a one-step PCR using a Quantifast SYBR Green RT-PCR kit. The sequences of primers used for quantitative real-time PCR were showed in Table 1. PCR conditions were as follow: 1 cycle of 95 °C for 10 min, 40 cycles of 95 °C for 15 s, 60 °C for 30 s and 72 °C for 30 s, followed by 1 cycle of 95 °C for 1 min. Relative gene expression was expressed as relative mRNA level compared with a control, was calculated after normalization to GAPDH following the 2^−ΔΔCT method. CT value was presented as mean of duplicate measurements.

Protein extraction and Western Blot.
The cells on day 3 and day 8 were collected and lysed in a RIPA buffer for 30 min on ice. The lysate was centrifuged at 14000 rpm for 15 min at 4°C. Protein concentration was measured using a Bio-Rad Dc Protein Assay (Bio-Rad, Hercules, CA USA). Protein samples at same amount (40 μg) were separated on 8% SDS-polyacrylamide gel and electrophoretically transferred (100 V, 2 h) onto a nitrocellulose membrane (Pall Gelman Laboratory, Ann Arbor, MI USA). The membranes were blocked with 5% non-fat dry milk for 1 h, and incubated overnight at 4°C with primary antibodies. After washing, the membranes were incubated with secondary horseradish peroxidase-conjugated antibodies (Invitrogen, Carlsbad, CA, USA) for 1 h. The protein of interest was identified using an enhanced chemiluminescence assay kit (GE Healthcare, UK).

Gene name	Forward primer	Reverse primer
GAPDH*	NM_008084	CGAAGGTGAAGAGGACTGTGAGTG
PPAR γ	NM_011146	CGAAGGTGGTGGAGACCATG
C/EBP α	NM_007678	GGCCTGACTATGCGAAGCACTTG
ACC	NM_133360	CTCAGTGGGCTTACATCTCT
FAS	NM_007988	AACAGGCTACAGGCCAGCAAT
SCD1	NM_009127	GATCCGCTGATCACCCCTTT
FAT	NM_007643	CAGTTCGATCACGCCCAT
SREBP-1c	NM_011480	AGATCCAGTTGACGTGG

Table 1. Primer sequences used in RT-PCR analysis. PPAR γ, peroxisome proliferator-activated receptor γ C/EBP α, CCAAT/enhancer-binding protein α ACC, Acetyl-CoA carboxylase FAS, fatty acid synthase SCD1, stearyl-CoA desaturase FAT, fatty acid translocase SREBP-1c, Sterol regulatory element binding transcription factor 1c. GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
Statistical Analysis. All values are presented as Mean ± SD unless otherwise specified. The data was analyzed by one-way ANOVA using SPSS version 16.0. The differences compared with control group were assessed using Duncan’s multiple range tests. Statistical significance was considered at p < 0.05.

References

1. Formiguera, Cantón A. Obesity: epidemiology and clinical aspects. Best Pract Res Clin. Gastroenterol. 18(6), 1125–1146 (2004).
2. Kopelman, P. G. Obesity as a medical problem. Nature. 404, 635–643 (2000).
3. Balkau, B. et al. A review of the metabolic syndrome. Diabetes Metab. 33, 405–413 (2007).
4. Furuhashi, T. et al. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPAR-γ and C/EBPαs in 3T3-L1 cells. Biosci Biotechnol. Biochem. 68(11), 2353–2359 (2004).
5. Noh, J. R. et al. Scopolamine inhibits adipocyte differentiation through down-regulation of peroxisome proliferators-activated receptor γ in 3T3-L1 preadipocytes. Food Chem. 141(2), 723–730 (2013).
6. Lane, M. D., Lin, E. T., MacDougald, O. A. & Vaseur-Cognet, M. Control of adipocyte differentiation by CCAAT/enhancer binding protein alpha (C/EBP alpha). Int. J. Obes. Relat. Metab. Disord. Suppl. 3, 591–596 (1996).
7. Hamm, J. K. et al. Role of PPAR gamma in regulating adipocyte differentiation and insulin-responsive glucose uptake. Ann. N. Y. Acad. Sci. 892, 134–145 (1999).
8. Farmer, S. R. Transcriptional control of adipocyte formation. Cell Met. 4, 263–273 (2006).
9. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. 7, 885–896 (2006).
10. Kim, H. & Sakamoto, K. (-)-Epigallocatechin gallate suppresses adipocyte differentiation through the MEK/ERK and PI3K/Akt mechanisms. Eur. J. Biochem. 275, 235–245 (2008).
11. Lee, S. M. & Yen, G. C. Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling. Biofactors. 34, 293–302 (2008).
12. Mumford, G. K. et al. Absorption rate of methylxanthines following capsules, cola and chocolate. J. Agric. Food Chem. 56, 313–318 (2008).
13. Basu, A. et al. Anti-adipogenic action of pitavastatin occurs through the coordinate regulation of PPAR-γ and Pref-1 expression. Brit. J. Pharmacol. 151(6), 807–815 (2007).
14. Hsu, C. L. & Yen, G. C. Inhibitory effects of cocoa tea (Camellia sinensis) against human prostate cancer. Pharm. Res. 27, 1128–1137 (2010).
15. Chang, H. T. et al. In vitro and in vivo effects of water extract of white cocoa tea (Camellia sinensis) against human prostate cancer. J. Agric. Food Chem. 56, 893–899 (2008).
16. Wang, Y. W. & Jones, P. J. Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int. J. Obes. Relat. Metab. Disord. 28, 941–953 (2004).
17. Knocko, S. M. et al. Beneficial effects of green tea: a literature review. Chin. Med. 5, 13 (2010).
18. Ye, J. H. et al. Preparation of partially decaffeinated instant green tea. J. Agric. Food Chem. 55, 3498–3502 (2007).
19. Lee, S. M. et al. Sensory characteristics and consumer acceptability of decaffeinated green tea. J. Food Sci. 74, SI35–141(2009).
20. Chang, H. T. et al. A discovery of new tea resource–Cocoa tea tree containing theobromine from china. Acta Scientiarum Naturalium Universitatis Suntysenians. 3, 131–133 (1988).
21. Peng, L. et al. In vitro and in vivo effects of water extract of white cocoa tea (Camellia sinensis) against human prostate cancer. Pharm. Res. 27, 1128–1137 (2010).
22. Yang, X. R. et al. Inhibitory effects of cocoa tea (Camellia sinensis) in human hepatocellular carcinoma HepG2 in vitro and in vivo through apoptosis. J. Nutr. Biochem. 23, 1051–1057 (2012).
23. Yang, X. R. et al. Effect of Dietary Cocoa Tea (Camellia sinensis) Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice. Evid Based Complement Alternat. Med. 2013, 783860. 2013
24. Takahashi, T. & et al. Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem. Biophys. Res. Commun. 382(1), 549–554 (2009).
25. Otto, T. C. & Lane, M. D. Adipose Development: From Stem Cell to Adipocyte. Crit. Rev. Biochem. Mol. 40, 229–242 (2005).
26. Wang, Y. W. & Jones, P. J. Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int. J. Obes. Relat. Metab. Disord. 28, 941–953 (2004).
27. Chacko, S. M. et al. Beneficial effects of green tea: a literature review. Chin. Med. 5, 13 (2010).
28. Grote, K. A. & Lambert, J. D. Laboratory, epidemiological, and human intervention studies show that tea (Camellia sinensis) may be useful in the prevention of obesity. J. Nutr. 140, 446–453 (2010).
29. Basu, A. et al. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 29, 31–40 (2010).
30. Wu, Z. et al. Cross regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell. 3, 151–158 (1999).
31. Chan, C. Y. et al. (-)-Epigallocatechin gallate blocks 3T3-L1 adipocyte conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci. 89(21-22), 779–785 (2011).
32. Hwang, I. et al. Gemistene, ECGG, and capsacin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338, 694–699 (2005).
33. Hsu, C. L. & Yen, G. C. Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol. Nutr. Food Res. 52, 53–61 (2008).
34. Lee, M. S., Kim, C. T. & Kim Y. Green tea (−)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann. Nutr. Metab. 54, 151–157 (2009).
35. Moon, H. S. et al. Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity (Silver Spring). 15, 2571–2582 (2007).
36. Hashimoto, T. et al. Caffeine inhibits cell proliferation by G0/G1 phase arrest in J86 cells. Cancer Res. 64, 3344–3349 (2004).
37. Yun, J. W. et al. The effects of BADGE and caffeine on the time-course response of adiponectin and lipid oxidative enzymes in high fat diet-fed C57BL/6 mice. Exp. Anim. 57, 461–469 (2008).
38. So, S. H. et al. Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells. Toxicol. in Vitro 27, 1830–1837 (2013).
39. Nakabayashi, H. et al. Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3-L1 adipocytes. BioFactors. 34, 293–302 (2008).
40. Mumford, G. K. et al. Absorption rate of methylxanthines following capsules, cola and chocolate. Eur. J. Clin. Pharmacol. 51, 319–325 (1996).
41. Beda, I. et al. Heat-epimerized tea catechins rich in gallicotellatin gallate and catechingallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. J. Agric. Food Chem. 51(25), 7303–7307 (2003).
42. Lee, S. M. et al. GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats. Lipids. 43, 419–429 (2008).
43. Kobayashi, M. et al. Heat-epimerized tea catechins have the same cholesterol-lowering activity as green tea catechins in cholesterol-fed rats. Biosci. Biotechnol. Biochem. 69(12), 2455–2458 (2005).
44. Eteng, M. U. & Ettarh, R. R. Comparative effects of theobromine and cocoa extract on lipid profile in rats. *Natur. Res.* **20**, 1513–1517 (2000).
45. Jang, Y. J., Koo, H. I., Sohn, E. H., Kang, S. C., Rhee, D. K. & Pyo, S. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways. *Food Funct.* **6**, 2365–2374 (2015).
46. Kuritara, H. *et al.* Evaluation of the hypolipemic property of Camellia sinensis V. *Pilophylla* on postprandial hypertriglyceridemia. *J Agric. Food Chem.* **54**, 4977–4981 (2006).
47. Camp, H. S., Ren, D. & Leff, T. Adipogenesis and fat-cell function in obesity and diabetes. *Trends Mol. Med.* **8**, 442–447 (2002).
48. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. *Nature* **444**, 847–853 (2006).
49. Yang, J. Y. *et al.* Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. *Life Sci.* **82**, 1032–1039 (2008).
50. Tang, Q. Q., Zhang, J. W. & Daniel Lane, M. Sequential gene promoter interactions of C/EBP beta, C/EBP alpha, and PPAR gamma during adipogenesis. *Biochem. Biophys. Res. Commun.* **319**, 235–239 (2004).
51. Yin, M. J. *et al.* Suppressive effects of Amaroaciuxanthinin A on 3T3-L1 adipocyte differentiation through down-regulation of PPAR gamma and C/EBP alpha mRNA expression. *J Agric. Food Chem.* **59**, 1646–1652 (2011).
52. Gregoire, F. M., Smas, C. M. & Sul, H. S. Understanding adipocyte differentiation. *Physiol. Rev.* **78**, 783–809 (1998).
53. White, U. A. & Stephens, J. M. Transcriptional factors that promote formation of white adipose tissue. *Mol. Cell Endocrinol.* **318**, 10–14 (2010).
54. Christy, R. J. *et al.* CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. *Proc. Natl. Acad. Sci. USA.* **88**, 2593–2597 (1991).
55. Farmer, S. R. Regulation of PPAR gamma activity during adipogenesis. *Int. J Obes.* **29**, S13–S16 (2005).
56. Hassan, M. *et al.* Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. *Biochem. Biophys. Res. Co.* **361**, 208–213 (2007).
57. Oppi-Williams, C., Suagee, J. K. & Cori, B. A. Regulation of lipid synthesis by liver X receptor α and sterol regulatory element-binding protein 1 in mammary epithelial cells. *J Dairy Sci.* **96**, 112–121 (2013).
58. Kim, J. B., Wright, H. M., Wright, M. & Spiegelman B. M. ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand. *Proc. Natl. Acad. Sci USA.* **95**, 4333–4337 (1998).
59. Bost, F. *et al.* The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. *Diabetes* **54**, 402–411 (2005).
60. Aoudadi, M. *et al.* Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. *Diabetes* **55**, 281–289 (2006).
61. Cobb, M. H. MAP kinase pathways, *Prog. Biophys. Mol Biol.* **82**, 235–239 (2004).
62. Kimura, Y., Taniguchi, M. & Baba, K. Antitumor and antimetastatic activities of 4HD isolated from Angelica keiskei roots. *J Agric. Food Chem.* **51**, 4333–4337 (1998).
63. Oppi-Williams, C., Suagee, J. K. & Cori, B. A. Regulation of lipid synthesis by liver X receptor α and sterol regulatory element-binding protein 1 in mammary epithelial cells. *J Dairy Sci.* **96**, 112–121 (2013).
64. Kim, J. B., Wright, H. M., Wright, M. & Spiegelman B. M. ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand. *Proc. Natl. Acad. Sci USA.* **95**, 4333–4337 (1998).
65. White, U. A. & Stephens, J. M. Transcriptional factors that promote formation of white adipose tissue. *Mol. Cell Endocrinol.* **318**, 10–14 (2010).
66. Christy, R. J. *et al.* CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. *Proc. Natl. Acad. Sci. USA.* **88**, 2593–2597 (1991).
67. Farmer, S. R. Regulation of PPAR gamma activity during adipogenesis. *Int. J Obes.* **29**, S13–S16 (2005).
68. Hassan, M. *et al.* Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. *Biochem. Biophys. Res. Co.* **361**, 208–213 (2007).
69. Oppi-Williams, C., Suagee, J. K. & Cori, B. A. Regulation of lipid synthesis by liver X receptor α and sterol regulatory element-binding protein 1 in mammary epithelial cells. *J Dairy Sci.* **96**, 112–121 (2013).
70. Kim, J. B., Wright, H. M., Wright, M. & Spiegelman B. M. ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand. *Proc. Natl. Acad. Sci USA.* **95**, 4333–4337 (1998).
71. Bost, F. *et al.* The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. *Diabetes* **54**, 402–411 (2005).
72. Aoudadi, M. *et al.* Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. *Diabetes* **55**, 281–289 (2006).
73. Cobb, M. H. MAP kinase pathways, *Prog. Biophys. Mol Biol.* **82**, 235–239 (2004).
74. Kimura, Y., Taniguchi, M. & Baba, K. Antitumor and antimetastatic activities of 4HD isolated from Angelica keiskei roots. *Planta Med.* **70**, 211–219 (2004).
75. Miyakoa, Y., Tanaka, M., Naiki, T. & Miyajima, A. ncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. *J Biol. Chem.* **281**(49), 37913–37920 (2006).
76. Kim, K. A. *et al.* Pref-1 (preadipocyte factor 1) activates the MEK/extracellular signal-regulated kinase pathway to inhibit adipocyte differentiation. *Mol. Cell Biol.* **27**(6), 2394–308 (2007).
77. Rhee, S. D. *et al.* Leptin inhibits rosiglitazone-induced adipogenesis in murine primary adipocytes. *Mol. Cell Endocrinol.* **294**(1-2), 61–69 (2008).
78. Prusty, D. D. *et al.* Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPAR gamma) and C/EBP alpha gene expression during the differentiation of 3T3-L1 preadipocytes. *J Biol. Chem.* **277**, 46226–46232 (2002).
79. Mumford, G. K. *et al.* Absorption rate of methylxanthines following capsules, cola and chocolate. *Eur. J Clin. Pharmacol.* **51**, 319–325 (1996).
80. Hodgson, A. B. *et al.* Acute effects of green tea extract intake on exogenous and endogenous metabolites in human plasma. *J Agric. Food Chem.* **62**(5), 1198–1208 (2014).

Acknowledgements

This study was supported by grants of the State Key Laboratory of Phytochemistry and Plant Resources in West China (CUIHK) from HKSAR and CUHK. Authors are indebted to the Ming Lai Foundation and Hong Kong and Macau Tam Wah Ching Chinese Medicine Resource Centre support given to the team responsible for the study.

Author Contributions

W.S.S., C.X.Y., P.C.L. and C.H.K. designed the experiments. K.K.L., H.L.W. and C.L.L. performed the cell culture and Western blotting experiments. C.Z. conducted molecular experiments. X.Q.H. was responsible for herbal extraction and phytochemical analysis. K.K.L., C.L.L. and H.T.S. drafted the manuscript. P.C.L. and C.H.K. reviewed the draft. All authors read and approved the final version of the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, K. K. *et al.* Cocoa tea (Camellia pilothylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes. *Sci. Rep.* **6**, 20172; doi: 10.1038/srep20172 (2016).