A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast *Pseudozyma tsukubaensis*

Azusa Saika¹, Hideaki Koike², Tokuma Fukuoka¹, Shuhei Yamamoto³, Takahide Kishimoto³, Tomotake Morita¹*

¹ Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan, ² Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan, ³ Toyobo Co., Ltd., Tsuruga Institute of Biotechnology, Tsuruga, Fukui, Japan

* morita-tomotake@aist.go.jp

Abstract

Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast *Pseudozyma tsukubaensis* produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in *Ustilago maydis* and *Pseudozyma antarctica*, the genetic basis for MEL biosynthesis in *P. tsukubaensis* is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in *P. tsukubaensis*. Among these genes, *PtEMT1*, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera *Ustilago*, *Melanopsischiu*, *Sporisorium* and *Pseudozyma*. However, phylogenetic analysis placed *PtEMT1p* in a separate clade from the other proteins. To investigate the function of *PtEMT1*, we introduced the gene into a *P. antarctica* mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that *PtEMT1p* catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.
Introduction

Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants which consist of mannosylerythritol (ME) as the hydrophilic moiety, and fatty acids as the hydrophobic moiety. MELs distinguish by conformation of ME. MELs which consist of 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) is termed conventional type of MELs, and consist of 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is termed diastereomer type of MEL (Fig 1). MELs have received a great deal of industrial attention, owing to factors such as their biodegradability, biocompatibility, and favorable interfacial and self-assembling properties [1–3]. MELs have also been used as an ingredient in cosmetics because of their beneficial role in damaged hair and skin repair, cell activation and anti-oxidation [4–7].

MELs are produced from feedstocks by various fungi such as the genera *Ustilago* and *Pseudozyma*. *Ustilago maydis*, a fungal plant pathogen, has been identified as a MEL producer [8, 9] and its complete genome has been sequenced and published [10]. *P. antarctica* T-34 (formerly *Candida antarctica* T-34) has also been isolated and found to be an excellent MEL producer, producing more than 100 g L⁻¹ of MELs [11]. Similarly, several other *Pseudozyma* species have been established as MEL producers [12, 13]. Recently, genome sequences of species from the genus *Pseudozyma* have been reported. These species include *P. antarctica* T-34 and JCM10317[14, 15], *P. aphidis* DSM70725 [16] and *P. hubeiensis* SY62 [17]. Gene expression vectors and transformation methods have also been developed for this genus [18–20]. Owing to their high productivity and the availability of gene manipulation techniques [21], these *Pseudozyma* species are promising candidates for the commercial production of MELs.

Of the yeast species in the genus *Pseudozyma*, *P. antarctica*, *P. parantarctica*, *P. aphidis* and *P. rugulosa* produce mainly MEL-A (more than 70% of all MELs produced) [11, 12, 22–26]. *P. graminicola*, *P. hubeiensis*, *P. siamensis* and *P. shanxiensis* primarily produce MEL-C [27–31], and various strains of *P. tsukubaensis* produce the diastereomer type of MEL-B (Fig 1B) in large quantities [32]. The physicochemical properties of these molecules depend on their chemical structure, including the acetylation pattern, the conformation of fatty acids and the sugar moiety. The hydrophilicity of MEL-A (di-acetylated MEL) is lower than those of MEL-B and MEL-C (mono-acetylated MELs). Also, the water-holding property of R-form ME in diastereomer type of MELs is higher than that of S-form ME [33]. Our previous reports showed that diastereomer type of MEL-B has self-assembling properties across a wide range of

Fig 1. Chemical structure of MELs. (A) Conventional type of MELs. (B) Diastereomer type of MEL-B.

doi:10.1371/journal.pone.0157858.g001
concentrations and temperatures [34] and shows higher hydration ability than conventional type of MELs [35]. Therefore, diastereomer type of MEL-B produced by *P. tsukubaensis* may facilitate the use of MELs in aqueous solutions.

Over the past decade, a gene cluster involved in the biosynthesis of various glycolipids (such as MELs, cellobiose lipids and sophorolipids) has been identified [36–40]. In *U. maydis*, the MEL biosynthetic pathway consists of five proteins: an erythritol/mannose transferase (Emt1p), two acyl transferases (Mac1p and Mac2p), an acetyltransferase (Mat1p) [36, 37] and a putative transporter (Mmf1p) (Fig 2). While the products of *P. antarctica* are similar to those of *U. maydis*, the sugar conformation of MEL produced by *P. tsukubaensis* differs from those of the other *Ustilago* and *Pseudozyma* species. Furthermore, the degree of acetylation of the mannose moiety in *P. tsukubaensis* differs from that of *P. antarctica*, because the main product of *P. tsukubaensis* is a monoacetylated MEL (MEL-B). Therefore, the reaction of MEL biosynthesis in *P. tsukubaensis* differs from the reactions in *P. antarctica* and *U. maydis*, particularly with respect to sugar conformation and acetylation. We therefore focused the current study on the gene cluster for MEL biosynthesis in *P. tsukubaensis*.

We identified the gene cluster responsible for biosynthesis of the diastereomer type of MEL-B in *P. tsukubaensis* NBRC1940 based on amino acid sequence analysis. The putative amino acid sequence encoded by the gene PtEMT1 exhibited high identity to that of *P. antarctica*, but had an independent position on the phylogenetic tree. We altered the sugar conformation of MELs in *P. antarctica* from *S*-form to *R*-form by introducing PtEMT1 from *P. tsukubaensis* into a gene-disrupted mutant of *P. antarctica* lacking MEL biosynthesis activity.

Materials and Methods

Pseudozyma strains and plasmid

Pseudozyma tsukubaensis NBRC1940 was purchased from NITE Biological Resource Center (NBRC; Tokyo, Japan). A gene-disrupted mutant of *P. antarctica* T-34, ΔPaEMT1, is our laboratory stock [21]. A PtEMT1 expression vector, pUXV1_neo::PtEMT1, and PaEMT1 expression vector, PUXV1_neo::PaEMT1 were introduced to a host strain, ΔPaEMT1, by electroporation [19], resulting in a strain complemented the lacking of MEL biosynthesis ability.

Sequence analysis

The draft genome sequence of *P. tsukubaensis* NBRC1940 was performed (reported elsewhere). The BLAST program was used for sequence similarity searching in a database available on the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple sequence alignments were displayed using the ClustalW program. Phylogenetic analysis was performed using the neighbor-joining method [41] with the program MEGA6 [42] and bootstrap analysis based on 1,000 replicates [43].

Plasmid construction

The plasmid pUXV1_neo::PaEMT1 (Fig 3A) was constructed in Morita et al. (2013) [44]. The plasmid pUXV1_neo::PtEMT1 (Fig 3B) was constructed as follows. A PtEMT1 fragment was amplified with BamHI site by PCR using the complementary DNA of *P. tsukubaensis* NBRC1940 as template, and a set of oligonucleotide primers: 5'-GTTTGGATCCATGAAAGTGGCACTGCTTTC-3' (forward), and 5'-CGGGATCCCATGAGGGAACTGATGTGCG-3' (reverse). The 1.8-kb PtEMT1 fragment was digested by BamHI, and then inserted at the corresponding site in pUXV1_neo, yielding the plasmid pUXV1_neo::PtEMT1.
Fig 2. The biosynthetic pathway of MELs. Emt1p: erythritol/mannose transferase. Mac1p and Mac2p: acyl transferases. Mat1p: acetyl transferase. Mmf1p: putative transporter.

doi:10.1371/journal.pone.0157858.g002
Transformation

The plasmid pUXV1_neo::PtEMT1 and pUXV1_neo::PaEMT1 were introduced into ΔPaEMT1 by electroporation according to Morita et al. [19] with suitable modification. ΔPaEMT1 was grown in 3 mL MEL production medium (1 g L⁻¹ of yeast extract, 3 g L⁻¹ of NaNO₃, 0.3 g L⁻¹ of KH₂PO₄ and 0.3 g L⁻¹ of MgSO₄·7H₂O) containing 10% (w/v) glycerol at 25°C for 3 days as a seed culture. One milliliter of seed culture was inoculated into 50 mL of MEL production medium containing 10% (w/v) glycerol and cultivated at 25°C for 15 h with 250 stroke min⁻¹. The cells were harvested by centrifugation at 5,000 rpm for 5 min and washed twice with chilled 1 M sorbitol. 0.1 mL of cell suspension containing about 3 μg of plasmid was pulsed by electroporation using the Bio-Rad Gene Pulser II with Pulse Controller Plus (Bio-Rad, Tokyo, Japan). The cells were pulsed twice with a square-wave electroporation pulse of 1000 V and a pulse length of 1.0 ms at a pulse interval of 5 s. The electroporated cells were immediately diluted in 0.9 mL of chilled 1 M sorbitol and 3 mL of YM medium and incubated at 25°C for 1 h. After incubation, an aliquot (0.2 mL) was spread on the YM medium plate containing 500 μg L⁻¹ G418, and the resulting colonies were grown at 25°C for 4 days.

MEL production

ΔPaEMT1 harboring pUVX1_neo::PtEMT1 or pUXV1_neo::PaEMT1 were cultivated in 2 mL YM medium (3 g L⁻¹ of yeast extract, 3 g L⁻¹ of malt extract, 5 g L⁻¹ peptone and 10 g L⁻¹ glucose) containing 200 μg mL⁻¹ G418 at 25°C for 3 days as a seed culture. In a 300-mL flask, the seed culture was inoculated with 30 mL MEL production medium containing 10% (w/v) glucose as a carbon source and incubated at 25°C for 7 days with 200 stroke min⁻¹. 200 μg mL⁻¹ of G418 was supplied in the culture medium to maintain the plasmid. The produced MELs were detected using TLC [19]. The MELs were extracted from the cell culture with an equal volume of ethyl acetate, and 50 μL of ethyl acetate extracts were analyzed by TLC using chloroform, methanol and NH₄OH in a 65:15:2 (v:v:v) ratio as an eluent. The MELs were detected on the TLC plate by spraying with 2% anthrone-sulfate reagent and heating at 90°C for 5 min. A mixture of purified MEL-A, MEL-B and MEL-C was used as a reference.

MEL purification

The ethyl acetate fractions containing MELs were evaporated. The concentrated MELs were dissolved in chloroform and purified using silica gel (Wako-gel C-200) column
chromatography with a gradient elution of chloroform/acetone (10:0 to 0:10, v/v) mixtures as solvent systems [23]. The purified MEL-A was used in the following experiments.

Structural analysis
The structure of the purified MEL-A was characterized by 1H and 13C nuclear magnetic resonance spectroscopy (NMR) with a Bruker AVANCE 400 (400 MHz) at 30°C in a CDCl$_3$ solution. Tetramethylsilane [(CH$_3$)$_4$Si] was used as an internal chemical shift standard and the purified MEL-A was used as a reference for NMR analysis.

Results
Identification of the gene cluster of MEL biosynthesis in P. tsukubaensis NBRC1940
Based on BLASTP analyses, the genes involved in MEL biosynthesis (emt1, mac1, mac2, mmf1 and mat1 for U. maydis; PaEMT1, PaMAC1, PaMAC2, PaMMF1 and PaMAT1 for P. antarctica) were found in the draft genome of P. tsukubaensis NBRC1940 (PtEMT1, PtMAC1, PtMAC2, PtMMF1 and PtMAT1, respectively) (Fig 4). The gene arrangement in the MEL biosynthesis cluster of P. tsukubaensis NBRC1940 is more similar to U. maydis than P. antarctica strains JCM10317 and T-34 (Fig 4). The PtEMT1 and PtMAC2 of P. tsukubaensis NBRC1940 are rearranged, as well as U. maydis, compared with P. antarctica JCM10317 and T-34.

The amino acid sequence homology of five proteins involved in the biosynthesis of MELs (PtEMT1p, PtMAC1p, PtMAC2p, PtMMF1p and PtMAT1p) was compared to those from U. maydis and P. antarctica strains JCM10317 and T-34 (Table 1). According to BLASTP analysis, PtEMT1p, PtMAC1p, PtMAC2p and PtMMF1p have high (over 50%) homology to the corresponding proteins in U. maydis and P. antarctica.

![Gene clusters of MEL biosynthesis](image-url)
Amino acid sequence analysis of PtEMT1 from *P. tsukubaensis* NBRC1940

The amino acid sequence of PtEMT1p is similar to those of the corresponding proteins in *U. maydis* and *P. antarctica*. However, the sugar conformation of MEL produced by *P. tsukubaensis* differed from those of other MEL producers. We thus performed further amino acid sequence analysis (Table 2). PtEMT1p consists of 612 amino acids, and the corresponding proteins from *U. maydis* UM521, *P. antarctica* JCM10317 and *P. antarctica* T-34 consist of 615, 617 and 617 amino acids, respectively. Surprisingly, only nine proteins, from strains in the genera *Ustilago*, *Melanopsichium*, *Sporisorium* and *Pseudozyma*, showed high sequence identities with PtEMT1p (69–72%) (Table 2). All of these strains, except for those in the genus

Table 2. The homologous proteins of PtEMT1p by BLASTP analysis.

#	Accession a	Description a	Strains a	e-value b	Identity (%) b
1	CDR99457.1	hypothetical protein	Sporisorium scitamineum	0	72
2	CCF52717	uncharacterized protein	Ustilago hordei	0	70
3	CDI53946	conserved hypothetical protein	Melanopsichium pensylvanicum	0	70
4	ETS61959	mannosyltransferase	Pseudozyma aphidis DSM 70725	0	69
5	GAC96558	glycosyltransferase	Pseudozyma hubeiensis SY62	0	70
6	GAK68006	glycosyltransferase	Pseudozyma antarctica	0	69
7	GAC75887	hypothetical protein	Pseudozyma antarctica T-34	0	70
8	CBQ73522	conserved hypothetical protein	Sporisorium reilianum SRZ2	0	70
9	XP_011389468	erythritol-mannosyl-transferase involved in MEL production	Ustilago maydis 521	0	69
10	BA177915	mannosyltransferase	Pseudozyma antarctica	0	68
11	XP_006666634	putative glycosyltransferase	Cordyceps militaris CM01	5E-101	37
12	XP_681404	hypothetical protein	Aspergillus nidulans FGSC A4	4.62E-94	35
13	XP_008597660	mannosyltransferase-like	Beauveria bassiana ARSEF 2860	9.3E-92	35
14	KH93740	UDP-glucuronosyl/UDP-glucosyltransferase	Metarhizium album ARSEF 1941	1.13E-86	39
15	KGQ12602	putative UDP-glucuronosyltransferase	Beauveria bassiana D1-5	3.8E-65	38
16	KIM30075	glycosyltransferase family 1 protein	Serendipita vermifera MAFF 305830	6.33E-23	24
17	CCP99492	unnamed protein	Malassezia sympodialis ATCC 42132	4.33E-19	37
18	XP_001730757	hypothetical protein	Malassezia globosa CBS 7966	3.22E-18	35
19	XP_001728828	hypothetical protein	Malassezia globosa CBS 7966	1.47E-17	36
20	KIM75119	glycosyltransferase family 1 protein	Piloderma croceum F 1598	1.4E-15	47

a Referred from NCBI database.
b Analyzed by BLASTP.

doi:10.1371/journal.pone.0157858.t002
Pseudozyma, have been reported as plant pathogens [9, 45, 46]. Table 3 shows Emt1p sequence identities among *P. tsukubaensis* NBRC1940 and nine other strains. While PtEMT1p has approximately 70% identity with homologous proteins, other pairs of species (e.g. *P. aphidis* and *P. antarctica* or *S. scitamineum* and *S. reilianum*) share more than 90% sequence identity.

We aligned nine proteins that exhibited high identity to PtEMT1p using ClustalW. While sequence identity was greater than 69%, we found three regions with relatively low identity (Fig 5). The three regions in *P. tsukubaensis* NBRC1940 each consisted of about 30 amino acids. The amino acid position of regions I, II and III were from 272 to 300, 372 to 397, and 569 to 597, respectively (Fig 6). Putative sugar binding domain was not found. Phylogenetic analysis based on the amino acid sequences of Emt1p indicated that PtEMT1p diverged significantly from the other nine proteins (Fig 7). Thus, amino acid sequence analysis suggests that PtEMT1p is a novel structure that differs substantially from homologous proteins.

MEL production by *P. antarctica* ΔPaEMT1 harboring pUXV1_neo::PtEMT1 from *P. tsukubaensis* NBRC1940

Because ΔPaEMT1 derived from *P. antarctica* T-34 had its PaEMT1 function disrupted, it provides a useful host to investigate the function of PtEMT1 in MEL production. The plasmid harboring PtEMT1 from *P. tsukubaensis* NBRC1940 was introduced into ΔPaEMT1. The empty vector pUXV1_neo was used as a negative control, and pUXV1_neo::PaEMT1 which harboring PaEMT1 from *P. antarctica* T-34 was used as a positive control.

The ΔPaEMT1 harboring pUXV1_neo::PtEMT1 was cultivated in MEL production medium containing 10% (w/v) glucose for 7 days at 25°C. The produced MELs were extracted by ethyl acetate and detected by thin-layer chromatography (TLC) analysis (Fig 8). ΔPaEMT1 harboring pUXV1_neo::PtEMT1 and pUXV1_neo::PaEMT1 produced MELs from glucose, whereas ΔPaEMT1 harboring empty vector PUVX1_neo failed to produce MELs, as expected. Thus, the gene PtEMT1 from *P. tsukubaensis* NBRC1940 restored MEL production in ΔPaEMT1.

![Table 3. Comparison of amino acid sequence homology of PtEMT1p and homologous proteins.](image)

Subject sequence	Identity (%)a									
	Pt. tsu	S. sci	U. hor	M. pen	P. aph	P. hub	P. ant	P. ant T-34	S. rei	U. may
P. tsu	-	72	70	70	69	70	69	70	71	69
S. sci	72	-	80	82	77	81	78	77	93	82
U. hor	70	80	-	78	75	77	76	76	79	78
M. pen	70	82	79	-	78	80	78	77	82	79
P. aph	69	77	76	78	-	77	97	94	78	75
P. hub	70	81	77	80	77	-	78	77	80	82
P. ant	69	78	77	78	97	78	-	95	78	76
P. ant T-34	70	77	77	77	94	77	95	-	77	75
S. rei	70	92	77	81	77	80	78	77	-	80
U. may	69	82	78	79	75	82	76	75	81	-

a Analyzed by BLASTP.

Subject sequence	Identity (%)a									
	Pt. tsu	S. sci	U. hor	M. pen	P. aph	P. hub	P. ant	P. ant T-34	S. rei	U. may
P. tsu	-	72	70	70	69	70	69	70	71	69
S. sci	72	-	80	82	77	81	78	77	93	82
U. hor	70	80	-	78	75	77	76	76	79	78
M. pen	70	82	79	-	78	80	78	77	82	79
P. aph	69	77	76	78	-	77	97	94	78	75
P. hub	70	81	77	80	77	-	78	77	80	82
P. ant	69	78	77	78	97	78	-	95	78	76
P. ant T-34	70	77	77	77	94	77	95	-	77	75
S. rei	70	92	77	81	77	80	78	77	-	80
U. may	69	82	78	79	75	82	76	75	81	-

P. tsu, *Pseudozyma tsukubaensis* NBRC1940; S. sci, CDR99457.1,_Sporisorium scitamineum_; U. hor, CCF52717,_Ustilago hordei_; M. pen, CDI53946,_Melanopsichium pennsylvanicum_ 4; P. aph, ETS61999,_Pseudozyma aphidis_ DSM70255; P. hub, GAC96558,_Pseudozyma hubeiensis_ SY62; P. ant, GAK68006,_Pseudozyma antarctica_; P. ant, GAC75887,_Pseudozyma antarctica_ T-34; S. rei, CDR99457.1,_Sporisorium reilianum_ SRZ2; U. may, XP_011389468,_Ustilago maydis_ 521.

doi:10.1371/journal.pone.0157858.t003
Fig 5. Amino acid sequence alignment of the PtEMT1p from *P. tsukubaensis* NBRC1940 and nine homologous proteins. (I), (II) and (III) show low-identity regions I, II, and III, respectively. Identical residues are shown on a black background. GAC96558_P.hub: *Pseudozyma hubeiensis* SY62. XP_011389468_U.may: *Ustilago maydis* 521. CDR94457.1_S.sci: *Sporisorium scitamineum*. CBQ73522_S.rei: *Sporisorium reilianum* SRZ2. CDI53946_M.pen: *Melanopsichium pennsylvanicum* 4. CCF52717_U.hor: *Ustilago hordei*. ETS61959_P.aph: *Pseudozyma aphidis*. MEL Biosynthesis Gene Cluster from *P. tsukubaensis* PLOS ONE | DOI:10.1371/journal.pone.0157858 June 21, 2016 9/1 6
Structural analysis of diastereomer type of MEL-A biosynthesized by ΔPaEMT1 harboring pUXV1_neo::PtEMT1

To determine the structure of MEL-A produced by ΔPaEMT1 expressing PtEMT1, we subjected purified MEL-A to NMR analysis and compared the signal pattern to that of conventional type of MEL-A produced by ΔPaEMT1 expressing PaEMT1 (Fig 9A and 9B). Each signal was assigned as previously described [47–49]. The diastereomer and conventional type of MELs showed very similar 1H NMR spectra (Fig 9A). However, two resonances arising from H-4a and H-4b in the erythritol moiety were significantly different. In conventional type of MEL the H-4 signals were widely separated (H-4b: 3.98–4.01 ppm; H-4a: 3.80–3.83 ppm), while the signals observed from diastereomer type of MEL overlapped with one another (H-4a and H-4b: 3.87–3.97 ppm). Moreover, the H-1 signal from the mannose anomeric hydrogen was shifted to a lower field in MEL-A produced by recombinant strain ΔPaEMT1 harboring pUXV1_neo::PtEMT1 (from 4.73 ppm to 4.74 ppm). In 13C NMR analyses (Fig 9B), we observed a...
Fig 7. The phylogenetic relationships among *P. tsukubaensis* NBRC1940 and homologous strains, based on the Emt1p amino acid sequence.

doi:10.1371/journal.pone.0157858.g007

Fig 8. TLC analysis of MEL production by Δ*PaEMT1* harboring pUXV1_neo::PtEMT1. STD: standard MELs containing MEL-A, MEL-B and MEL-C. Δ*PaEMT1*::neo: Δ*PaEMT1* harboring pUXV1_neo. Δ*PaEMT1*::neo_PaEMT1: Δ*PaEMT1* harboring pUXV1_neo::PaEMT1. Δ*PaEMT1*::neo_PtEMT1: Δ*PaEMT1* harboring pUXV1_neo::PtEMT1. Each strain was cultivated in MEL production medium containing 10% (w/v) glucose for 7 days at 25°C. The spots were visualized using anthrone reagent.

doi:10.1371/journal.pone.0157858.g008
characteristic chemical shift in the C-2 and C-3 signals of the erythritol moiety (from 72.0 ppm to 71.8 ppm and 71.3 ppm to 71.5 ppm, respectively), which corresponded to the C-2 and C-3 signals in diastereomer type of MEL-A [47–49]. Based on these observations, we concluded that ΔPaEMT1 harboring pUXV1_neo::PtEMT1 produced the diastereomer type of MEL-A.

Discussion

In this study, we obtained for the first time the gene cluster involved in the diastereomer type of MEL-B biosynthesis in *P. tsukubaensis*. The gene PtEMT1, which plays a crucial role in determining the sugar conformation of ME, was introduced into ΔPaEMT1. PtEMT1 restored MEL production in ΔPaEMT1 and the product was determined to be diastereomer type of MEL-A.

MEL biosynthesis clusters have been previously reported in conventional type of MEL producers such as *U. maydis, P. antarctica, P. aphidis* and *P. hubeiensis* [14–17, 36, 37]. Earlier
studies assessed the function of Emt1 using gene disruption methods and found that Emt1 is essential for MEL biosynthesis [21, 36]. Therefore, we strongly expected Emt1 to contribute to the chirality of MEL-B in P. tsukubaensis. To investigate this hypothesis, we introduced the plasmid pUXV1_neo::PtEMT1 into ΔPaEMT1, which lacks MEL production. NMR analyses revealed that the MEL produced was diastereomer type of MEL-A (Fig 9). We therefore concluded that PtEMT1p plays a critical role in the formation of the sugar moiety in MELs.

Morita et al. [50] reported that P. tsukubaensis JCM16987 synthesizes mannosyl-L-arabitol lipid-B from L-arabitol as a substrate but does not utilize D-arabitol. In contrast, P. parantarc-tica, a conventional type of MEL-A producer, biosynthesized only mannosyl-D-mannitol lipid from D-arabitol. This suggests that substrate specificity in P. tsukubaensis differs from that of conventional type of MEL producers [50]. Based on Emt1p amino acid sequence alignment (Fig 5), we observed three low-identity regions in the C-terminal half of P. tsukubaensis NBRC1940. We predict that these regions may be related to the substrate specificity of sugar alcohols in P. tsukubaensis. Important avenues for future research, include chimeric enzyme construction, crystal structure analysis, and determination of the active site of PtEMT1p, will provide us with greater insight into the function of PtEMT1p.

To our knowledge, P. tsukubaensis and P. crassa are the only species that biosynthesize diastereomer type of MEL [48, 49]. P. crassa biosynthesizes a mixture of diastereomer type of MELs containing MEL-A, MEL-B and MEL-C; however, the genomics of this species has not yet been studied. Therefore, genetic and structural analysis of Emt1p in P. crassa will help to elucidate the catalytic mechanism of sugar conformation.

Various homologs of conventional type of MELs have been reported to date, such as MEL-A, MEL-B, MEL-C and MEL-D. Other MEL homologs, containing D-arabitol, D-mannitol and ribitol instead of erythritol, have also been biosynthesized [51, 52]. In previous studies, diastereomer type of MEL-B and MEL-D exhibited higher hydrophilicity and water-holding properties than conventional type of MELs [35]. Based on these findings, it was determined that the sugar conformation of ME affects the function of MELs. Hitherto, MEL-B is the only diastereomer type of MEL capable of commercial-scale production. Diastereomer type of MEL-A and MEL-C are biosynthesized by P. crassa; however, this species produces only small amounts of MELs. While diastereomer type of MEL-D can be obtained in vitro by enzymatic reaction, there is no previously reported means of producing this glycolipid through microbial biosynthesis. In the present study, we demonstrated that diastereomer type of MEL-A can be produced by a conventional type of MEL-A producer modified to express PtEMT1. Further investigation of the PtEMT1p enzyme will facilitate the expansion of structural and functional varieties of MELs through gene engineering methods.

In conclusion, we identified for the first time the gene cluster involved in diastereomer type of MEL-B biosynthesis and demonstrated that PtEMT1p plays a crucial role in sugar conformation. Further elucidation of the MEL biosynthesis gene cluster will provide opportunities for metabolic engineering using this biosynthetic pathway.

Acknowledgments

This work has been supported by Japan Science and technology Agency (JST) under Adaptable and Seamless Technology Transfer Program through Target-driven R&D.

Author Contributions

Conceived and designed the experiments: AS TM. Performed the experiments: AS HK TF SY TK TM. Analyzed the data: AS HK TF SY TK TM. Wrote the paper: AS TM.
References

1. Kitamoto, D., Isoda, H., Nakahara, T. (2002) Functions and potential application of glycolipid biosurfactant -from energy-saving materials to gene delivery carriers-. J Biosci Bioeng 94: 187–201. PMID: 1233292

2. Kitamoto, D., Morita, T., Fukuoka, T., Konishi, T., Imura, T. (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14: 315–328.

3. Imura, T., Yanagishita, H., Kitamoto, D. (2004) Coacervate formation from natural glycolipid: one acetyl group on the headgroup triggers coacervate-to-vesicle transition. J Am Chem Soc 126: 10804–10805. PMID: 15393140

4. Morita, T., Kitagawa, M., Yamamoto, S., Sagabe, A., Imura, T., Fukuoka, T., et al. (2010) Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair. J Oleo Sci 59: 267–272. PMID: 20451244

5. Morita, T., Kitagawa, M., Yamamoto, S., Suzuki, M., Sagabe, A., Imura, T., et al. (2010) Activation of fibroblast and papilla cells by glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 59: 451–455. PMID: 20625237

6. Takahashi, M., Morita, T., Fukuoka, T., Imura, T., Kitamoto, D. (2012) Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H2O2-induced oxidative stress in cultured human skin fibroblasts. J Oleo Sci 61: 457–464. PMID: 22864517

7. Yamamoto, H., Morita, T., Fukuoka, T., Imura, T., Yanagidani, S., Sagabe, A., et al. (2012) The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin. J Oleo Sci 64: 407–412.

8. Haskins, RH, Thorn, JA, Boothroyd, B. (1955) Biochemistry of the Ustilaginales, XI. Metabolic products. Meth 70: 519–527. doi:10.1263/jbb.104.517 PMID: 18215641

9. Kahmann, R., Basse, C., Feldbrügge, M. (1999) Fungal-plant signaling in the Ustilago maydis-maize pathosystem. Curr Opin Microbiol 2: 133–141. doi: 10.1016/S0956-0897(99)00016-5 PMID: 10607627

10. Kämper, J., Kähnemann, R., Böker, M., Ma, LJ, Brefort, T., Saville, BJ., et al. (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97–101. PMID: 17080091

11. Kitamoto, D., Ikegami, T., Suzuki, GT, Sasaki, A., Takeyama, Y., Imura, T., et al. (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudomyza (Candida antarctica). Biotechnol Lett 23: 1709–1714.

12. Morita, T., Konishi, M., Fukuoka, T., Imura, T., Kitamoto, HK, Kitamoto, D. (2007) Characterization of the genus Pseudozyma by the formation of glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 56: 286–292. PMID: 17328742

13. Morita, T., Fukuoka, T., Imura, T., Kitamoto, D. (2015) Mannosylerythritol lipids: production and applications. J Oleo Sci 64: 133–141. doi: 10.5650/jos.es14185 PMID: 25748373

14. Morita, T., Koike, H., Koyama, H., Hori, T., Fukuoka, T., et al. (2013) Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritol lipids. Genom A 1: e00064–13.

15. Saika, A., Koike, H., Hori, T., Fukuoka, T., Sato, S., Habe, H., et al. (2014) Draft genome sequence of the yeast Pseudozyma antarctica type strain JCM10317, a producer of the glycolipid biosurfactants, mannosylerythritol lipids. Genome Announc: 2. e00878–14. doi: 10.1128/genomeA.00878-14 PMID: 25291760

16. Lorenz, S., Guenther, M., Grumaz, C., Rupp, S., Zibek, S., Sohn, K. (2014) Genome sequence of the basidiomycetous fungus Pseudozyma aphidis DSM70725, an efficient producer of biosurfactant mannosylerythritol lipids. Genome Announc: 2. e00053–14. doi: 10.1128/genomeA.00053-14 PMID: 24526638

17. Konishi, M., Hara, K., Horii, J. (2013) Draft sequence of the basidiomycetous yeast-like fungus Pseudozyma hubeiensis SY62, which produces as abundant amount of the biosurfactant mannosylerythritol lipids. Genome Announc: 1. e00409–13. doi: 10.1128/genomeA.00409-13 PMID: 23814110

18. Marchand, G., Fortier, E., Neveu, B., Bolduc, S., Belzile, F., Bélanger, RR. (2007) Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus. J Microbiol Meth 70: 519–527.

19. Morita, T., Habe, H., Fukuoka, T., Imura, T., Kitamoto, D. (2007) Convenient transformation of anamorphic basidiomycetous yeasts belonging to genus Pseudozyma induced by electroporation. J Biosci Bioeng 104: 517–520. doi:10.1263/jbb.104.517 PMID: 18215641

20. Konishi, M., Yoshida, Y., Ikarashi, M., Horii, J. (2015) Efficient and simple electro-transformation of intact cells for the basidiomycetous fungus Pseudozyma hubeiensis. Biotechnol Lett 37: 1679–1685. doi: 10.1007/s10529-015-1837-x PMID: 25851954

21. Morita, T., Ito, E., Kitamoto, HK, Takegawa, K., Fukuoka, T., Imura, T., et al. (2010) Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica. Yeast 27: 905–917. doi: 10.1002/yea.1794 PMID: 20564650
22. Kitamoto D, Haneishi K, Nakamura T, Tabuchi T. (1990) Production of mannosylerythritol lipids by Candida antarctica from vegetable oil. Agric Biol Chem 54: 37–40.

23. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D. (2006) Discovery of Pseudozyma rugulosa NBRC10877 as a novel producer of glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol 73: 305–313. PMID: 16733733

24. Morita T, Konishi M, Fukuoka T, Imura T, Sakai H, Kitamoto D. (2008) Efficient production of di- and triacylated mannosylerythritol lipids as glycolipid biosurfactants by Pseudozyma parantarctica JCMI1752T. J Oleo Sci 57: 557–565. PMID: 18781056

25. Rau U, Nguyen LA, Schulz S, Wary V, Nimtz M, Roeper H, et al. (2005) Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 66: 551–559. PMID: 15248042

26. Rau U, Nguyen LA, Roeper H, Koch H, Lang S. (2005) Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 68: 607–613. PMID: 15729556

27. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D. (2007) Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by basidiomycetous yeast, Pseudozyma shanxiensis. J Oleo Sci 56: 435–442. PMID: 17898510

28. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D. (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78: 37–46. PMID: 18071643

29. Konishi M, Nagahama T, Fukuoka T, Morita T, Imura T, Kitamoto D, et al. (2011) Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. J Biosci Bioeng 111: 702–705. doi: 10.1016/jbiosci.2011.02.004 PMID: 21393057

30. Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D. (2008) Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J Biosci Bioeng 105: 493–502. doi: 10.1263/jbb.105.493 PMID: 18558340

31. Morita T, Konishi M, Fukuoka T, Imura T, Yamamoto S, Kitagawa M, et al. (2008) Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Oleo Sci 57: 123–131. PMID: 18198469

32. Morita T, Takakshima M, Fukuoka T, Konishi M, Imura T, Kitamoto D. (2010) Isolation of basidiomyceteous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Appl Microbiol Biotechnol 88: 679–688. doi: 10.1007/s00253-010-2762-5 PMID: 20652239

33. Yoshikawa J, Morita T, Fukuoka T, Konishi M, Imura T, Kakugawa K, et al. (2014) Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts. Appl Microbiol Biotechnol 98: 823–830. doi: 10.1007/s00253-013-5376-x PMID: 24272368

34. Worakitkanchanakul W, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, et al. (2008) Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf B Biointerfaces 65: 106–112. doi: 10.1016/j.colsurfb.2008.03.009 PMID: 18456469

35. Fukuoka T, Yanagihara T, Imura T, Morita T, Sakai H, Abe M, et al. (2012) The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration. Carbohydr Res 351: 81–96. doi: 10.1016/j.carres.2012.01.019 PMID: 22341919

36. Hewald S, Josephs K, Bölker M. (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71: 3033–3040. PMID: 15932999

37. Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M. (2006) Identification of a gene cluster of biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72: 5469–5477. PMID: 16885300

38. Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M. (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66: 525–533. PMID: 17850255

39. Teichmann B, Labbé C, Lefebvre F, Bölker M, Linne U, Bélanger RR. (2011) Identification of a biosynthesis gene cluster for flocculon in a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa. Mol Microbiol 79: 1483–1495. doi: 10.1111/j.1365-2958.2010.07533.x PMID: 21255122

40. Van Bogaert INA, Holvoet K, Roelants SLKW, Li B, Lin YC, Peer YV, et al. (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88: 501–509. doi: 10.1111/mmi.12200 PMID: 23516988

41. Saitou N, Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425. PMID: 3447015
42. Tamura K, Dudley J, Nei M, Kumar S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599. PMID: 17488738

43. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. Confidence limits on phylogenies: an approach using the bootstrap

44. Morita T, Fukuoka T, Imura T, Kitamoto D. (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97: 4691–4700 doi: 10.1007/s00253-013-4858-1 PMID: 23584242

45. Feldbrügge M, Kellner R, Schipper K. (2013) The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol 97: 3253–3265. doi: 10.1007/s00253-013-4777-1 PMID: 23455565

46. Sharma R, Michra B, Runge F, Thines M. (2014) Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsisichium pennsylvanicum. Genome Biol Evol 6: 2034–2049. doi: 10.1093/gbe/evu148 PMID: 25062916

47. Circh D, Mora MA, Cruz R (2002) Synthesis of the mannosyl erythritol lipid MEL A; confirmation of the configuration of the meso-erythritol moiety. Tetrahedron 58: 35–44.

48. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D. (2008) A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr Res 343: 555–560. PMID: 18083152

49. Fukuoka T, Kawamura M, Morita T, Imura T, Sakai H, Abe M, et al. (2008) A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydr Res 343: 2947–2955. doi: 10.1016/j.carres.2008.08.034 PMID: 18805521

50. Morita T, Fukuoka T, Kosaka A, Imura T, Sakai H, Abe M, et al. (2015) Selective formation of mannosyl-L-arabitol lipids by Pseudozyma tsukubaensis JCM16987. Appl Microbiol Biotechnol 99: 5833–5841. doi: 10.1007/s00253-015-6575-4 PMID: 25957491

51. Morita T, Fukuoka T, Konishi M, Imura T, Yamamoto S, Kitagawa M, et al. (2009) Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Appl Microbiol Biotechnol 83: 1017–1025. doi: 10.1007/s00253-009-1945-4 PMID: 19296097

52. Morita T, Fukuoka T, Imura T, Kitamoto D. (2012) Formation of two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Appl Microbiol Biotechnol 96: 931–938. doi: 10.1007/s00253-012-4230-x PMID: 22722912