Water quality indices for rainwater quality assessment in Bandung urban region

N Y Hasan¹, Driejana², A Sulaeman³ and H D Ariesyady²

¹Doctoral Program of Environmental Engineering, Faculty of Civil and Environmental Engineering Bandung Institute of Technology
²Faculty of Civil and Environmental Engineering, Bandung Institute of Technology
³Faculty of Mathematics and Natural Science, Bandung Institute of Technology

niayhasan@gmail.com

Abstract. Water quality indices (WQI) using STORET method has been used to assess rainwater quality in the Bandung urban regions, based on monitoring data at three locations (Coblong, Sumur Bandung, and Buah Batu). Rainwater samples were analyzed by detecting pH, SO₄²⁻, NO₃⁻, Cl⁻, and heavy metals (As, Cd, Cr, Pb, and Zn) compared with Indonesian Government Regulation No. 82 Year 2001. Rainwater quality showed polluted based on the parameters of the water quality indices analysis using the Class I and Class II criteria. Rainwater quality in Bandung urban region were lightly polluted (Coblong) and moderately polluted (Sumur Bandung and Buah Batu). Rainwater can potentially become a water sources alternative for domestic use and urban farming in Bandung urban region, but it requires further treatment for better quality.

1. Introduction

The water quality indices is a single number to state the quality of water sources, the determination of water quality indices is carried out through 4 (four) steps: (1) parameter selection, (2) parameter transformation which transforms unit differences and dimensions to the general scale, (3) parameter weighting, and (4) aggregation of sub-indices to produce the final indices value [1].

The research on the water quality indices in Izcombe of Niger Delta Region in monitoring the level of rainwater pollution and borehole water as the primary water source in the region compared to the drinking water quality standards from World Health Organization (WHO) showed that the parameters of temperature and color in rainwater exceeded WHO standards for drinking water. The results of analysis showed that the pH of rainwater samples was acidic with a pH range of 5.1-6.4 (average 5.8). This indicated that the rainwater was more acidic than borehole water [2].

The rainwater analysis in Africa to identify rainwater parameters as compared to water quality standards from WHO showed that rainwater in the Metropolis City of Uyo was not safe for drinking, where the total value of Pollution Index (PI) had indicated presence of Ni, Cd, Pb, and Fe which caused rainwater have a risk when consumed [3].

The use of rainwater in Indonesia has been regulated according to the Regulation of the Minister of Environment No. 12 Year 2009 about Rainwater Utilization were activities to collecting, using, and adsorbing rainwater into soil as groundwater conservation. Rainwater as raw water in Indonesia must meet water quality standard requirements based on Government Regulation No.82 Year 2001 about
Management of Water Quality and Water Pollution Control. The most widely used water quality indices method in Indonesia is the STORET (Storage and Retrieval) method.

Analysis of the water quality indices on raw water sources, especially rainwater, has shown that the water quality indices analysis method can produce recommendations regarding the feasibility of using rainwater as raw water for drinking water and domestic needs.

The Bandung urban region has high rainfall every year between 2,000-3,000 mm/year, but rainwater utilization must consider the potential contamination from air pollution due to human activities and industrialization both local and long-distance pollutant sources. Therefore, the water quality indices analysis can be used as a method for rainwater quality analysis in the Bandung urban region. This paper aims to explain the results of rainwater quality indices analysis in the Bandung urban region using the STORET method to determine the feasibility of rainwater before being utilized.

2. Material and Method

2.1. Study Region
Weekly rainwater samples were collected in bulk polyethylene bottle during rainfall from different locations at 3 (three) locations in the urban regions of Bandung: (1) Coblong region (06°55’11,07”S 107°36’04,54” E), (2) Sumur Bandung region (06°55’11,07”S 107°36’39,34”E), and (3) Buah Batu region (06°53’26,69”S 107°36’43,73”U), as explained in Figure 1. Sampling was carried out in 2016 and 2017, samples were collected and analyzed in the laboratory.

![Figure 1. Sampling location in Bandung urban region](image)
2.2. Rainwater analysis

The pH of rainwater varied between 3.0-7.5 pH units, as measured using a pH meter with a measurement accuracy of ± 0.01 pH units at a measurement temperature of 25°C. The pH meter has been calibrated with standard solution of pH 4, pH 6.86, and pH 10.

Ion chromatography (IC) was used to measure rainwater concentration of sulfate ions, nitrate and chloride, while heavy metals (As, Cd, Cr, Pb, and Zn) using a multi-element method with inductively couple plasma (ICP) [4]. The detection limits for heavy metal analysis were As (< 0.002 mg/L), Cd (< 0.001 mg/L), Cr (< 0.001 mg/L), Pb (< 0.001 mg/L), and Zn (< 0.002 mg/L).

2.3. Data Analysis

STORET refers overall to "STORage and RETrieveal" was an electronic data system for water quality monitoring data developed by EPA. The STORET method is one commonly used method for determining the status of water quality in Indonesia. This method identifies which parameters meet or exceed water quality standards. The STORET method compares the water quality data with the adjusted water quality standard to determine water quality status.

The parameters analyzed to obtain indices values were pH, SO_4^{2-}, NO_3^-, Cl^-, As, Cd, Cr, Pb, and Zn. The parameter values were then compared with water quality criteria according to Government Regulation No. 82 Year 2001, as described in Table 1.

Parameter	Unit	Class I	Class II
pH	-	6 – 9	6 – 9
SO_4^{2-}	mg/L	400	(-)
NO_3^-	mg/L	10	(-)
Cl^-	mg/L	600	(-)
As	mg/L	0,05	1,00
Cd	mg/L	0,01	0,01
Cr	mg/L	0,05	0,05
Pb	mg/L	0,03	0,03
Zn	mg/L	0,05	0,05

The water quality classification used in this study was Class I and Class II criteria. Class I, is the raw water designated for drinking water, and/or other designation which requires water quality that is the same as the utility. Class II, is the water designated for water recreation facilities/ infrastructure, cultivation of freshwater fish, livestock, water for irrigating plantations, and/or other designations that require water quality that is the same as those uses. Thus, it is expected that rainwater can potentially be used as an alternative for raw water for drinking water and other domestic needs such as irrigating plants in urban regions (urban farming).

The determination of the status of water quality is through the value system from USEPA by classifying water quality in four classes, as described in Table 2. The classification of water quality base on STORET index were good condition, lightly polluted, moderately polluted, and heavy polluted.
3. Result and Discussion

3.1. Rainwater concentration

The concentration of rainwater parameter based on the result of data collection shows in Table 3. The results showed that the pH of rainwater in the Bandung region was 3.13-7.06. The concentration of sulfate ions in rainwater shows a range of 8.86-17.82 mg/L, nitrate with 0.56-7.02 mg/L and chloride with 0.12-2.74 mg/L. The range of heavy metal concentrations detected in the Bandung urban region were As (< 0.002-0.046), Cd (< 0.001-0.011 mg/L), Cr (< 0.001-0.011), Pb (< 0.001-0.593) and Zn (< 0.002-0.665).

3.2. Rainwater quality indices

Rainwater quality indices in Bandung urban region base on STORET method showed different quality status indices between different location, because of small spatial difference in this region. The rainwater quality indices result shows in Table 4. The rainwater quality indices at Coblong region based on the STORET calculation is categorized as lightly polluted with a score of -10. Parameters that did not meet Class I and Class II criteria were minimum pH value (3.13), average pH value (5.4), and maximum concentration of Pb (0.153 mg/L). Other metal parameters, Cd in Coblong region showed that the maximum concentration did not meet the quality standards Class II (0.011 mg/L).

Rainwater quality indices in Sumur Bandung region was categorized as moderately polluted with a score of -20. Parameters that did not meet Class I and Class II criteria were minimum pH values (4.10), and average pH value (5.50). On the other hand, the parameters of heavy metals that did not meet the quality standards Class I and Class II criteria were maximum concentration of Cd (0.014 mg/L),

Table 2. Classification of water status base on the STORET indices

Class	Criteria	Score	Quality status
A	Very good condition	0	Good condition
B	Good condition	-1 ≤ x ≤ -10	Lightly polluted
C	Moderately good condition	-11 ≤ x ≤ -30	Moderately polluted
D	Bad condition	≤ -31	Heavy polluted

Table 3. Characteristic of rainwater in Bandung urban region

Parameter	Unit	Coblong	Sumur Bandung	Buah Batu						
pH	-	Min.	Max.	Mean	Min.	Max.	Mean			
SO4^2-	mg/L	0.86	3.15	1.54	9.24	4.01	1.00	17.82	3.92	
NO3^-	mg/L	0.69	4.19	1.66	0.69	3.90	1.75	0.56	7.02	1.68
Cl^-	mg/L	0.12	2.74	0.42	0.14	1.39	0.43	0.12	1.44	0.41
As	mg/L	< 0.002	0.034	< 0.002	0.046	0.011	< 0.002	0.032	0.010	
Cd	mg/L	< 0.001	0.011	< 0.001	0.004	0.014	< 0.001	0.007	0.001	
Cr	mg/L	< 0.001	0.011	< 0.001	0.004	0.001	< 0.001	0.002	< 0.001	
Pb	mg/L	< 0.001	0.153	< 0.001	0.593	0.040	< 0.001	0.110	0.016	
Zn	mg/L	< 0.002	0.015	< 0.002	0.326	0.016	< 0.002	0.665	0.022	
maximum and average concentration of Pb (0.593 mg/L and 0.040 mg/L), and maximum concentration of Zn (0.326 mg/L).

Rainwater quality indices in Buah Batu region was categorized as moderately polluted with a score of -12. Parameters that did not meet the Class I and Class II criteria were minimum pH values (4.3) and average pH value (5.52). The parameters of heavy metals that did not meet the quality standards Class I and Class II criteria include maximum concentration of Pb (0.110 mg/L), maximum and average concentration of Zn (0.665 and 0.022 mg/L).

Sampling region	Class I	Class II				
	Score index	Class	Quality Status	Score index	Grade	Quality Status
Coblong	-10	B	Good condition	-10	B	Good condition
Sumur Bandung	-20	C	Moderately polluted	-20	C	Moderately polluted
Buah Batu	-12	C	Lightly polluted	-12	C	Lightly polluted

The heavy metal of rainwater especially Pb and Zn in Sumur Bandung region was influence of local emissions of motorized vehicle activities in Bandung urban centers, while Zn emissions in Buah Batu region was possible from local industries emission. Coblong region was an urban area with densely populated and dominated by domestic activities. The differences of rainwater in 3 (three) region in Bandung urban area were impacted of different landuse.

The dominant anthropogenic sources of heavy metals in rainwater represent coal combustion, automobile exhaust, and industrial emissions [5,6,7,8]. Heavy metals from rainwater accumulate in the biosphere and may cause adverse human health and environmental effects [9,10].

Exposure to extreme water pH values on human health can irritate the eyes, skin, mucous membranes, and gastrointestinal tract in sensitive people. A pH value of less than 4 can cause red eyes and irritation, and if the pH is less than 2.5, it will cause irreversible and extensive damage to the epithelial tissue [11].

EPA explained that the solubility of oxides of nitrogen and sulfur dioxide in acid rain is related to health problems, especially irritation of the eyes and lung diseases such as asthma and bronchitis, NOx is a significant contributor to the formation of ozone in the atmosphere which also has disruptive health effects on resources such as contaminating food and water.

Rainwater utilization, such as rainwater harvesting systems, must pay attention to regional characteristics such as topography, season conditions, and air pollutants that can be sources of rainwater contaminants and their effects on health [12,13]. The rainwater can then be used for drinking water, agricultural irrigation, urban greening, and other needs that require good water quality [14].

4. Conclusion
Determining rainwater quality in the Bandung urban region was important before rainwater was using for water resources of drinking water or other uses such as agriculture in urban regions (urban farming). Utilization of rainwater, it must pay attention to the quality of rainwater in each urban region despite the results of the analysis of rainwater quality showing the presence of heavy metals and do not meet the quality standards for Class I and Class II criteria. This is due to prevent the impact of rainwater utilization on human health. Therefore, with the detection of heavy metals such as Pb in rainwater, the possibility of Pb accumulation must be considered, especially in plants if consumed directly.
References

[1] Abbasi T and Abbasi S.A. 2012 Water Quality Indices Elsevier United Kingdom

[2] Ubouh, E.A., Akhionbare, S.M.O. 2013 Effectiveness of Water Quality Index in assessing water resources characteristic in Izombie, Oguta Local Government Region of Imo State, Nigeria, International Journal of Advanced Biological Research 3(1), 31 – 35

[3] Udousoro, I.I., dan Unanaowo, A.E. 2015 Rainwater Quality Assessment in Uyo Metropolis using Water Quality Index, Nigerian Journal of Chemical Research 20, 1 – 9.

[4] American Public Health Association (APHA). 1998 Standard Method for the Examination of Water and Wastewater 22nd Edition, American Public Health Association.

[5] Kaya, G. and Tuncel, G.1997 Trace element and major ion composition of wet and dry deposition in Ankara, Turkey, Atmosphere Environment 31, 3985–3998.

[6] Hu, G. P. and Balasubramanian, R. 2003 Wet deposition of trace metals in Singapore, Water Air Soil Pollution 144, 285 – 300.

[7] Cheng, M. C., You, C. F., Lin, F. J., Huang, K. F., and Chung, C. H. 2011 Sources of Cu, Zn, Cd and Pb in rainwater at a subtropical islet offshore northern Taiwan, Atmospheric Environment 45, 1919–1928, 2011.

[8] Chon, K., Kim, Y., Bae, D.H., 4, and Cho, J. 2015 Confirming anthropogenic influences on the major organic and inorganic constituents of rainwater in an urban area, Drinking Water Engineering Science 8, 35 – 48.

[9] Barrie, L. A., Lindberg, S. E., Chan, W. H., Ross, H. B., Arimoto, R., and Church, T. M. 1987 On the concentration of trace metals in precipitation, Atmosphere Environment 21, 1133 – 1135.

[10] Báez, A. P., Belmont, R. D., García, R. M., Padilla, H. G., and Torres, M. C. B. 2007 Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico, Atmosphere Resources 86, 61–75.

[11] Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 2003.

[12] Sazakli E., Alexopoulos A., dan Leotsinidis M. 2007 Rainwater harvesting, quality assessment and utilization Kefalonia Island, Greece, Water Research 41, 2039 – 2047.

[13] Lee, M., Kim, M., Kim, Y., Han, M. 2017 Consideration of rainwater quality parameters for drinking purposes: A case study in rural Vietnam. Journal of Environmental Management 200, 400–406.

[14] Laisheng, L., Linghua, L., Leixiang, W., Jiapeng, W., dan Weijie, H 2016 Problems and countermeasures on the safety of rainwater harvesting for drinking in China. MATEC Web of Conferences 6 (14006), 1 – 6.

[15] Anake, W. U., Benson, N. U., Akinsiku, A.A., Eromosele, C. O., Adeniyi, I. O. 2014 Assessment of trace metal in drinking water and groundwater sources in Ota, Nigeria 4(5), 1 – 4

[16] Mudgal, V., Madaan, N., Mudgal, A., Singh, R.B., dan Mishra, S. 2010 Effect of Toxic Metals on Human Health, Nutraceuticals Journal 3, 94 – 99.

Acknowledgements
This paper is part of Riset KK dan Inovasi ITB 2017 work entitled “Prediksi Dampak Kesehatan Lingkungan Depositi Basah Logam Berat di Wilayah Perkotaan Bandung” funded by Institut Teknologi Bandung.