Abstract. The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.

Contents
1. Introduction
2. Notch signaling pathway
3. Notch signaling and neuroinflammation in cerebrovascular diseases
4. Notch signaling and oxidative stress in cerebrovascular diseases
5. Notch signaling and apoptosis in cerebrovascular diseases
6. Notch signaling and angiogenesis in cerebrovascular diseases
7. Notch signaling and BBB in cerebrovascular diseases
8. Conclusion and perspective

1. Introduction
Cerebrovascular diseases occur following acute cerebrovascular events whereby the arteries of the brain are blocked or a brain blood vessel ruptures. Poor blood flow to the brain subsequently results in cell death. There are three primary types of cerebrovascular diseases: Ischemic stroke, hemorrhagic stroke and transient ischemic attack (TIA). The high incidence of cerebrovascular diseases worldwide is largely due to failed management and prevention of modifiable risk factors, particularly in ischemic stroke, which accounts for >85% of total cerebrovascular diseases. Cerebrovascular diseases more commonly affect people who are overweight, aged ≥55, have an unhealthy lifestyle (limited exercise, heavy drinking, use of illicit drugs, smoking or poor work/life balance), and who have a family history of stroke, hypertension, moyamoya, vasculitis, arterial dissection or venous occlusive disease (1-6). Cerebrovascular disease is the leading cause of mortality and chronic disability in China, and the third leading cause of mortality and the leading cause of chronic disability in the USA (7,8).

Notch signaling is a major intercellular communication pathway, which is highly conserved in the majority of multicellular organisms. Notch signaling is a crucial regulator of numerous fundamental cellular processes, including proliferation, stem cell maintenance and differentiation, during embryonic development in vertebrate and invertebrate organisms (9-11). In addition, Notch signaling is involved in cell differentiation, proliferation, inflammation (12), oxidative stress and apoptosis in a variety of cell types in adults (10,13). The primary mechanisms underlying the Notch signaling pathway in cerebrovascular disease have been well-established by extensive investigation (10,14,15), and include enhancing inflammation (16-18), increasing oxidative stress (19), promoting apoptosis (20) and mediating adult subventricular zone neural progenitor cell proliferation and differentiation following stroke (21). It has been demonstrated that activation of the Notch signaling pathway exacerbates ischemic brain damage, whereas inhibiting the Notch signaling pathway decreases the infarct size and improves the functional outcome in a mouse model of stroke (18,22).

The present review discusses the role of the Notch signaling pathway in the pathogenesis of cerebrovascular diseases. It primarily focuses on the association between Notch signaling and neuroinflammation, oxidative stress and apoptosis in cerebrovascular diseases. An overview is provided for the proposed pathogenic mechanism underlying Notch signaling...
response to neurological damage and may be divided into acute and chronic process. A variety of inflammatory cytokines take part in the neuroinflammation. Evidence indicates that acute neuroinflammation is beneficial to damage repair in the nervous system, whereas chronic neuroinflammation aggraves the pathological events occurring in the brain (56-59). In addition, neuroinflammation has been demonstrated to be crucial for the pathogenesis of cerebrovascular diseases (56). Various studies have revealed that the activation of Notch signaling promotes the neuroinflammatory response associated with cerebrovascular diseases (Fig. 1) (18,22,60).

Notch signaling and cytokines. Previous studies have demonstrated that cerebral ischemia initiates an inflammatory response in the brain associated with the release of a variety of inflammatory cytokines, including tumor necrosis factor-\(\alpha \) (TNF-\(\alpha \)), interleukin (IL)-1\(\beta \), and IL-6 (55,61,62). Macrophages treated with Toll-like receptor (TLR) 3 or -4 agonists increase their production of interferon (IFN)-\(\beta \), TNF-\(\alpha \), IL-12 and IL-23. Activation of glial cells and their release of neurotrophic factors enhance inflammation in cerebrovascular disease. In addition, activated glial cells increase the expression of inflammatory cytokines in cerebral ischemia, including TNF-\(\alpha \), IL-1\(\beta \), IL-6, transforming growth factor \(\beta \) (TGF-\(\beta \)) and IL-8.

Notch signaling is evolutionarily conserved and critical for the development and homeostasis of various tissues. Activation of Notch signaling promotes macrophage polarization to the IFN-\(\gamma \)-producing M1 (inflammatory) subtype (63). Inhibition of Notch signaling by \(\gamma \)-secretase inhibitors (GSI) reduces nuclear factor-\(\kappa \)B (NF-\(\kappa \)B) activity and suppresses inflammatory responses. Previous studies have demonstrated that GSI significantly decreases peptidoglycan and poly (I:C)-induced secretion of M1 (TNF-\(\alpha \), IL-6, IFN-\(\gamma \) and IL-1\(\alpha \)) and the anti-inflammatory subtype M2 (IL-10) cytokines (63,64). Notch signaling is activated in response to TLR ligands, thus amplifying the inflammatory response by enhancing NF-\(\kappa \)B signaling. Activation of Notch signaling has been revealed to be involved in the sustained activation of NF-\(\kappa \)B and the resulting enhancement of inflammatory responses (65). It is becoming apparent that Notch signaling is central to chronic inflammatory events involved in the pathogenesis of cerebrovascular diseases, and Notch may therefore provide a novel target for therapeutic strategies (15,16,18-20,22,63,65).

An ischemic stroke rat model induced by a 90-min occlusion of the right middle cerebral artery demonstrated that inhibiting Notch activation with N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyester (DAPT) limited NICD release, and production of IL-6 and IL-1\(\beta \) in the ischemic penumbral cortex (18). Notch mutations may result in a predisposition to stroke and cerebrovascular atherosclerosis, and Notch mutations may also be involved in inflammation process, as genes encoded by Notch mutations include the IL-1 receptor and paraoxonase-1 (66).

Notch signaling and inflammatory mediators. Inflammatory mediators from plasma or cells, exert their effects via binding to specific receptors on target cells. Mediators may have one or numerous target cell types, and may even have varying effects in distinct cell and tissue types. It has been demonstrated that Notch signaling may reprogram mitochondrial metabolism for proinflammatory macrophage activation, inducing the release...
of inflammatory mediators (67). Nitric oxide (NO), which is produced by cells that express NO synthase (NOS), is a prevalent inflammatory mediator that may inhibit the activity of Notch1 signaling (68,69). A previous study indicates that inducible NOS (iNOS) is directly involved in the generation of NO and the inhibition of Notch1 signaling, and that NO inhibits the binding of Notch1-IC and CSL protein transcriptional complexes to a specific target sequence (69). The dysfunction of Notch signaling pathway increases the vulnerability of neurons and interacts with NF-κB to enhance the inflammatory response following cerebral ischemia (70,71). Numerous signaling pathways involved in neurodegenerative disorders are activated in response to reactive oxygen species (ROS), which induce apoptosis and increase NICD release and the expression of hairy and enhancer of split-1 (HES-1) in cerebral ischemia (71-73). The potential role of Notch signaling in stroke via inflammatory mediators is summarized in Table I.

Table I. Potential role of Notch signaling in stroke via inflammatory mediators.

Mediator	Source	Potential role in stroke	References
Histamine and serotonin	Mast cells, platelets	Enhancing vascular leakage, regulating cell proliferation and differentiation	74-76
Bradykinin	Plasma substrate	Enhancing vascular leakage and pain	77
C3a	Plasma protein via liver	Enhancing vascular leakage and the formation of opsonic fragment (C3b)	78
C5a	Macrophages	Enhancing vascular leakage, chemotaxis and leukocyte adhesion and activation	79
Prostaglandins	Mast cells from membrane phospholipids	Potentiating other mediators, vasodilation, pain and fever	80,81
Leukotriene B4	Leukocytes	Leukocyte adhesion and activation	82
Oxygen metabolites	Leukocytes	Endothelial damage and tissue damage	22,83-85
IL-1 and TNF-α	Macrophages, other	Acute phase reactions, enhancing vascular leakage, leakage and endothelial and tissue damage	18,65,68, 86-89
Chemokines	Leukocytes, others	Leukocyte activation, enhancing vascular leakage and endothelial and tissue damage	90-92
Nitric oxide	Macrophages, endothelium	Vasodilation and cytotoxicity	71

C, complement component; IL-1, interleukin-1; TNF-α, tumor necrosis factor α.

Figure 1. Potential underlying mechanisms by which the activation of Notch signaling may contribute to the pathogenesis of neuroinflammation in cerebrovascular diseases.

Notch signaling and glial cells (microglia and astrocytes). Microglia are mononuclear phagocytes with various functions in the CNS, with the stage and function of microglia indicated by morphological characteristics. The phagocytic function of microglia is critical for the removal of hematoma and other debris; however, they additionally produce inflammatory mediators (93). Microglia are typically classified into three forms: Amoeboid, ramified and activated. Microglia, as the resident immune cells of the CNS, continually sample the environment. Under normal conditions, they exist in a ramified form and phagocytose debris (94). Previous studies indicate that Notch signaling may regulate the different forms of microglia under different conditions (71,95-97). Notch signaling damages neurons by activating microglial cells and stimulating the infiltration of proinflammatory leukocytes (98). Following stroke, microglia are activated, become amoeboid and release inflammatory cytokines (M1 subtype). However,
microglia may be differentially activated, subsequently limiting inflammation and destroy tissue debris through phagocytosis (M2 subtype) (63,99). Microglia secrete various inflammatory molecules, including IL-1, IL-6, IFN-γ and TNF-α (22). Furthermore, Notch signaling may be involved in regulating microglia activation following hypoxia, partially via the TLR4/Myeloid differentiation primary response gene 88/TNF receptor associated factor 6/NF-κB signaling pathway (71,100). A model of focal ischemic stroke using mice transgenic for antisense Notch or wild-type mice treated with GSI demonstrated that inhibiting Notch activation reduced brain cell damage and improved functional outcome. This suggests that Notch activation exacerbates brain damage and functional outcome in ischemic stroke (98). Therefore, Notch signaling may be a potential target for inhibition of microglia activation implicated in brain damage (101).

Notch signaling and neuroinflammation in cerebrovascular diseases. Various studies have indicated that Notch activation induces NF-κB-mediated expression of proinflammatory genes in hypoxic astrocytes (102). Notch signaling regulates the activation state of microglia, thus contributing to the control of inflammatory reactions in the CNS (18,96). Notch-1 signaling is activated in hypoxic astrocytes, verified by increased NCIID and HES-1, regulating astrocytic proinflammatory activation and via the suppression of the vascular endothelial growth factor (VEGF) or NF-κB signaling pathways. Dysregulation of Notch may exert effects following stroke via the activation of microglia and astrocytes (63,72,87,103). NF-κB is crucial in promoting ischemic brain damage following stroke. Activation of NF-κB induces the expression of proinflammatory cytokines, the adhesion and migration of leukocytes, thus increasing the inflammatory response (102). The Notch1 signaling pathway regulates the NF-κB signaling pathway via Jagged1 and inhibitor of κB α (IκBα). The dysfunction of the Notch1 signaling pathway occurs with NF-κB following cerebral ischemia via activating microglia to produce inflammatory mediators (71,101,104). In addition, Notch activation enhances posts ischemic inflammation by directly modulating the microglial innate response (22,104). In rats with cerebral ischemia and in activated BV-2 microglia, Notch signaling induces the migration and morphological transformation of activated microglia (16). An ischemic rat model using middle-cerebral-artery occlusion demonstrated that Notch-Jagged signaling is involved in dysfunction of astrocyte-associated capillary network (103).

4. Notch signaling and oxidative stress in cerebrovascular diseases

Oxidative stress is broadly defined as a disturbance in the balance between ROS production and antioxidant defenses (105-107). In this state, abnormal levels of ROS, including free radicals (hydroxyl, nitric acid and superoxide) and non-radicals (hydrogen peroxide and lipid peroxide) result in oxidative damage to cells or tissue (105,108-111). The oxidation state is the sum of all redox processes producing ROS, reactive nitrogen species and other reactive intermediates (106,108,112-114). ROS are crucial for physiological processes, including apoptosis, regulation of neurotransmitters and chemotaxis (114-116). ROS may destroy cell function and promote injury to cellular lipids, nucleic acids and proteins, thus inducing apoptosis. Oxidative stress is associated with the pathological process of atherosclerosis, diabetes, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease (117,118), hypertension (119,120), cardiovascular diseases (121) and cerebrovascular diseases (122,123). These diseases may promote the production of ROS (105,107).

Oxidative stress and cerebrovascular diseases. Oxidative stress is involved in the pathogenesis of ischemic and hemorrhagic stroke (124-130) and appears to be a typical feature in diverse models of cerebrovascular disease. Additionally, oxidative stress may be involved in the pathogenesis of acute ischemic stroke (131-136). Oxidative stress regulates cerebral blood flow and controls permeability of the BBB (115,137), A high quantities of superoxide, NO and peroxides are generated during cerebral ischemia/reperfusion, and cellular macromolecules are destroyed by oxygen radicals, resulting in apoptosis (138-142). Oxygen radicals activate matrix metalloproteinases, resulting in the degradation of collagen and laminin proteins in the basilar membrane, and destroying the integrity of the vessel wall (143). In addition, ROS may induce cell death through oxidative modification and fragmentation of DNA mediated by nucleate endonuclease (144-146). Furthermore, oxidative stress promotes transmigration of neutrophilic granulocytes from peripheral blood to the CNS and the release of enzymes that degrade the blood vessel basement membrane, resulting in increased permeability of blood vessels (147-149). Oxidative stress may result in the dysregulation of endothelial cell function, caused by hyperglycemia, dyslipidemia and hyperinsulinemia, leading to impaired vasoregulation, inflammation and altered BBB function (150-152). The described pathological processes result in cerebral parenchymal hemorrhage, vasogenic brain edema and neutrophil infiltration, thus, aggravating cerebral ischemic injury (142,153,154).

Notch signaling and oxidative stress in cerebrovascular diseases. Studies have revealed that oxidative stress may activate multiple signaling pathways associated with cell death; the Notch signaling pathway is closely associated with oxidative stress following cerebral ischemia, suggesting that dysregulation of Notch signaling contributes to the occurrence of oxidative stress (Fig. 2) (155-158). Notch activation results in cell proliferation and metastasis, accompanied by a decrease in B-cell lymphoma-2 (Bcl-2) associated protein X (Bax), Bcl-2 antagonist/cytochrome c and caspase-3 and p53 expression and an increase in Bcl-2 expression (159). It has been reported that inhibiting Notch signaling abrogated cerebral ischemia/reperfusion injury via inhibiting oxidative stress (68,160,161). Inhibiting the Notch signaling pathway attenuates endothelial oxidative stress injury (158), suggesting that Notch inhibition protects against cerebrovascular diseases via decreasing oxidative stress-induced endothelial injury (158). A mutation in Notch3 has been associated with mitochondrial disease, in which oxidative stress caused by chronic hypoxia results in cerebral arteriopathy (162).

Ischemia/reperfusion injury increases the oxidative stress levels in tissue. The role of the Notch signaling pathway in the
oxidative stress-associated pathogenesis of cerebrovascular diseases has been researched extensively (163). Further investigations to elucidate the underlying molecular mechanisms of the Notch signaling pathway in cerebrovascular disease may uncover potential drug targets for the treatment of Notch-associated diseases. However, decreasing the activity of Notch1 increases the production of superoxide anion, iNOS, NO, nitrotyrosine and phosphatase and tensin homolog deleted on chromosome 10 in mice subjected to ischemia/reperfusion injury, whereas the phosphorylation levels of NOS and protein kinase B (Akt) are decreased (68,163,164). As the inhibition or activation of Notch signaling may be beneficial for the treatment of cerebrovascular diseases, Notch signaling may exert distinct functions under different conditions. Therefore, further studies are required to elucidate the mechanisms underlying the role of Notch signaling in cerebrovascular diseases.

5. Notch signaling and apoptosis in cerebrovascular diseases

Programmed cell death by apoptosis is crucial for the development of multicellular organisms, and defects in apoptosis are associated with a wide variety of diseases (165). Inappropriate apoptosis results in tissue atrophy, whereas a failure of apoptosis, as occurs in cancer, leads to uncontrolled cell proliferation. Certain factors, including Fas receptors and caspases, induce apoptosis, whereas others, including certain Bcl-2 family members, suppress it (166). Apoptosis is induced by either the extrinsic or intrinsic pathways (167,168). Extrinsic stimuli include the binding of ligands to cell surface death receptors, hormones, TNF-α, growth factors, NO and cytokines (169-171). Intrinsic signals result from cellular stress, including heat, radiation, nutrient deprivation and viral infection. The expression of pro- and anti-apoptotic proteins, the strength of the stimulus and the cell cycle stage all alter the response of the cell to the extrinsic or intrinsic trigger (172,173).

Apoptosis and cerebrovascular diseases. In vivo and in vitro studies suggest that apoptosis is critical for the pathogenesis of cerebrovascular diseases (174-179). Increased expression of apoptotic proteins, including phosphorylated (p)-Arabidopsis serine/threonine kinase 1 (ASK1), p-c-Jun N-terminal kinase (JNK), p-p38, cleaved caspase-3 and cytochrome c in the ischemic penumbra has been observed following stroke (177). Studies have reported that the inhibition of apoptosis may prevent the development of cerebral ischemia/reperfusion injury (166,180-185). Thioredoxin-1 (Trx1) small interfering RNA increases ASK1 activation in response to apoptotic stress, Trx1 may therefore be anti-apoptotic and suppress cerebral ischemia/reperfusion injury (186-188), potentially via inhibition of the ASK1-JNK/p38 signaling pathway.

Notch signaling and apoptosis. Notch is involved in various physiological processes, via NICD translocation into the nucleus and binding to target genes (189-191), including apoptosis (172). During apoptosis of tumor cells, microRNA (miR)-100 was demonstrated to mediate Notch signaling (192). A previous study demonstrated that a Notch cis-regulatory element is responsive to loss and gain of Drosophila p53 (Dp53) function and that overexpression of Dp53 upregulates Notch mRNA and protein expression levels (165). Dp53-induced Notch activation and proliferation was revealed to occur even when apoptosis was inhibited, and Dp53 may have a dual role in regulating cell death and proliferation gene networks, to control the balance between apoptosis and proliferation (165). In addition, Notch may be important in the apoptosis- and drug-resistance of chronic lymphocytic leukemia cells. Notch signaling has a cardioprotective effect by regulating apoptosis via inhibiting Bcl-2 and the activation of caspase-3 and -9. Furthermore, the Notch signaling pathway mediates high-glucose-induced podocyte apoptosis via the Bcl-2 and p53 pathways (193-195). It has been reported that miR-34c overexpression increases the expression of anti-apoptotic Bcl-2, and decreases the expression of pro-apoptotic Bax and cleaved caspase-3 via targeting of Notch1 and Jagged1 (193).

Notch signaling and apoptosis in cerebrovascular diseases. The Notch signaling pathway leads to apoptosis of nerve cells and glia. Cell death in the brain following stroke is the result of an alteration in the balance between pro- and anti-apoptotic...
Notch signaling and angiogenesis in cerebrovascular diseases

Angiogenesis is a pathophysiological process of vessel branching to form a new capillary network via vascular endothelial cell proliferation and migration, and the sprouting and division of blood vessels (233-236). The vasculature is primarily comprised of vascular endothelial cells, VSMCs and extracellular matrix, the structure and activity of which affect the morphology and function of blood vessels. Angiogenesis is the result of the interaction between endothelial cells, stromal cells and cytokines mediated by a variety of positive and negative angiogenic modulators. Studies have revealed that VEGF/VEGFR (237), Delta-like ligand 4 (DLL4)/Notch are the two primary pathways involved in the promotion and coordination of angiogenesis (Fig. 4) (238,239).

Lumen formation is required to establish mature blood vessels with complete structure and function. Vascular endothelial cells are divided into acute (tip cell) and lotus cells (trunk cell) depending on their location and characteristics, and are involved in the formation of lumen. High concentrations of VEGF-A induce endothelial cells to differentiate into tip cells. Tip cells extend filopodia through the extracellular matrix, along the VEGF-A gradient, providing direction to the new blood vessel branch. The proliferation of trunk cells behind the tip cell induces vascular sprouting, and the formation of the lumen and extended vascular network. High levels of VEGF induce the synthesis of DLL4 by tip cells, and thus increase Notch1 expression in the adjacent trunk cells. The activation of the DLL4/Notch1 signaling pathway promotes lumen formation (240,241). DLL4 expression in mouse tip cells was reduced and angiogenesis attenuated following treatment with VEGF antagonists or gene silencing (242,243). Studies have indicated that DLL4/Notch regulate tip and trunk cell number and differentiation, to control blood vessels sprouting and branching. Vascular sprouting and branching proceeds via increasing the phosphorylation of Akt and promoting inactivation of Bcl-2-associated death promoter. Notch1 may be neuroprotective in the immature brain against ischemic injury, and future studies and clinical trials are required to investigate the suitability of Notch1 inhibitors as a treatment for perinatal ischemia. Inhibiting Notch2 was demonstrated to alter the levels of apoptosis-regulating proteins and slow the process of apoptosis in cerebral ischemia/reperfusion-induced mice (199). Loss-of-function mutations in Notch3 have been identified as the underlying cause of CADASIL (205,206), in addition to complex regulation of multiple pathways, including the Wnt/β-catenin signaling pathway, TGF-β and Notch-induced apoptosis (207).

In summary, the role of Notch signaling in stroke remains controversial. The majority of studies suggest that Notch signaling activation is damaging following stroke, promoting inflammation and apoptosis (20,83,98,202,206,208). However, certain studies have indicated that enhancing Notch signaling may improve stroke pathology (209-211). The effect of Notch on apoptosis is summarized in Table II. Therefore, further studies are required to fully elucidate the role of Notch signaling in stroke.
following Notch inhibition, however, these new blood vessels are dysfunctional (243,244).

Angiogenesis is a complex process regulated by numerous factors. The most well-known of these regulators is VEGF, which increases vascular permeability, promotes degradation of the extracellular matrix and migration and proliferation of vascular endothelial cells to induce angiogenesis. The expression of VEGF is controlled by multiple factors, including fibroblast growth factor, angiopoietins/Tie receptors, platelet-derived growth factor, TGF-β, hepatocyte growth factor, HIF-1α, forkhead box (Fox) c1/Foxc2, TNF-α, epidermal growth factor and matrix metalloproteinases (Table III).

VEGF, a growth factor expressed in vascular endothelial and other cells, acts directly on vascular endothelial cells to promote mitosis, induce proliferation and migration, maintain the integrity vessels and increase vascular permeability, and is thus critical for angiogenesis. VEGF-A is the most well-characterized of the VEGF family, and its receptor VEGFR2 is the primary receptor involved in angiogenesis (237). The mammalian Notch signaling pathway, comprised of four homologous Notch receptors (Notch1, Notch2, Notch3 and Notch4) and five cognate ligands (DLL1, DLL3, DLL4, Jagged1 and Jagged2) (254 -256), is important for angiogenesis. High concentrations of VEGF induce DLL4 expression, thus, increasing Notch1 expression on neighboring cells. The activation of DLL4-Notch signaling pathways promotes angiogenesis (47,257,258).

Studies have revealed that DLL4/Notch signaling mediates negative feedback; the expression of DLL4 may suppress the proliferation and migration of endothelial cells through the inhibition of VEGFR2 by HES-related protein 1 (259,260). VEGF, as a positive regulator of angiogenesis, initiates and promotes angiogenesis, whereas Notch signaling may negatively regulate the process to prevent endothelial cell hyperplasia and, in conjunction with VEGF, promote the formation of a well-differentiated vascular network (261-266).

Injection or nasal feeding of rats with human recombinant VEGF following focal cerebral ischemia in the middle cerebral artery promoted neovascularization of the ischemic area and the recovery of neurological function (267,268).

Table II. Associations between apoptosis biomarkers and Notch signaling.

Apoptosis biomarker	Notch Effect on apoptosis	References	
p53	Notch (↑)	Inhibiting	195,212,213
Bcl-2	Notch1, Notch2 (↓)	Anti-apoptosis	195,202,214
Bax (↑)	Notch 1 (↑)	Apoptosis (↑)	215
Caspase-9 and -3 (↑)	Notch (↓)	Initiating	216,217
JNK/p38	Notch (↑)	Apoptosis (↑)	198,218
Ca²⁺ (↑)	Notch 2 (↑)	Apoptosis (↑)	219,220
ERK	Notch (↑)	Apoptosis (↑)	221
miR-100 (HS3ST2↑)	Notch (↑)	Initiating	192,222
NF-κB	NICD (↑)	Apoptosis (↑)	188
EGFR	Notch-1	Positive correlation	223,224
Jagged2, angiopoietin 1, eNOS (↓)	Notch2, Notch4, Notch3 (jagged1)	Caspase 8 (↑)	225
P21/cyclin D	Notch 2 (↑)	Apoptosis (↑)	226
PI3K/Akt (↑)	Notch (↓)	Podocyte apoptosis (↓)	193,194,226,227
ROS	Notch (↑)	Apoptosis (↑)	228-230
GSIs	Notch (↑)	TRAIL (↑)	231,232

Bcl-2, B-cell lymphoma-2; Bax, Bcl-2 associated X protein; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-regulated kinase; miR, microRNA; GSI, γ-secretase inhibitor; ROS, reactive oxygen species; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

![Figure 4. VEGF and DLL/Notch regulation of angiogenesis. VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; DLL4, Delta-like ligand 4; HES, hairy and enhancer of split; HEY, hairy and enhancer of split-related protein.](image-url)
addition, delayed treatment with VEGF alleviates brain injury, enhances endothelial cell proliferation and augments total vascular volume following neonatal stroke (269). Furthermore, the overexpression of VEGF in close proximity to intracerebral hemorrhage lesions in mice undergoing transplantation of F3 human neural stem cells (NSCs) facilitated differentiation and survival of the grafted human NSCs, and resulted in renewed angiogenesis in the host brain and functional recovery of mice (270). Studies have revealed that strategies to enhance angiogenesis following focal cerebral ischemia may improve recovery from stroke (271–274). The VEGF/Notch signaling pathway is the primary signaling pathway regulating angiogenesis following cerebral ischemia (47,275,276). VEGF and Notch are upregulated in brain tissue following cerebral ischemia, which may significantly promote angiogenesis in the ischemic region (277–280). Therefore, regulating the Notch signaling pathway may provide a potential strategy for the treatment of cerebrovascular diseases (281).

7. Notch signaling and BBB in cerebrovascular diseases

The BBB is a highly selective permeable barrier separating circulating blood from the brain extracellular fluid, to regulate the CNS microenvironment. The BBB is formed of a complex network of endothelial cells, astroglia, pericytes, perivascular macrophages and a basal membrane. Under physiological conditions, BBB integrity is primarily maintained by endothelial cells, through tight junctions, and the basal lamina; however, the structural and functional integrity of the BBB is markedly altered during CNS disorders, including neoplasia, ischemia, trauma, inflammation and bacterial and viral infections.

Cerebrovascular BBB dysfunction is closely associated with stroke, including intracranial hemorrhage and brain ischemia disorders. Endothelial cells are critical for numerous neurovascular functions, including angiogenesis, BBB formation and maintenance, vascular stability and removal of cellular toxins. Cerebrovascular endothelial cells interact with pericytes to maintain a stable cerebral circulation in the CNS. A number of studies have revealed that endothelial cell dysfunction in the CNS results in breakdown of the BBB and brain hypoperfusion, leading to neurodegeneration. It has been reported that disruption of Smad4 signaling, the central intracellular mediator of TGF-β signaling (14), in endothelial cells leads to the pathogenesis of intracranial hemorrhage and BBB breakdown (14,282), indicating that Smad4 maintains cerebrovascular integrity and that TGF-β/Smad signaling is involved in the pathogenesis of cerebrovascular dysfunction. Notch signaling is also critical in controlling BBB integrity via regulating the normal function of endothelial cells and pericytes. However, the underlying mechanisms regulating cerebral endothelial cell functions remain to be elucidated.

The Notch signaling pathway is involved in blood vessel integrity and BBB stability and function in the mammalian vasculature (75,283–285). In vitro studies have correlated BBB endothelial dysfunction with decreased Notch4 expression (286). Upon activation, the constitutively expressed endothelial cell membrane protein Notch4 appears to become primarily involved in the stability and growth of mature endothelium (287). Permanent ischemia leads to the redistribution of claudin decomposition fragments, zona occludens 1 and occludin protein from the membrane to the cytoplasm in BBB. Additionally, the GSI, DAPT protects against permanent ischemia-induced BBB damage, potentially via the modulation of Notch/NICD/calcipatin homeostasis pathway in vascular endothelial cells.

8. Conclusion and perspective

Increasing evidence indicates that Notch signaling is critical in the pathogenesis of stroke, exerting effects via the following underlying mechanisms: Neuroinflammation, oxidative stress, apoptosis, angiogenesis and BBB function. Thus, regulating Notch signaling may be an effective strategy for the prevention and treatment of cerebrovascular diseases.

Studies have demonstrated that the activation of Notch signaling is harmful and contributes to the pathogenesis of cerebrovascular diseases including stroke (20,98,202,204,288–290).
Acute inhibition of Notch signaling has been revealed to rescue cerebral hyperperfusion, reduce apoptosis in penumbra, decrease brain infarct size, elicit certain morphologic features, including neurogenesis and angiogenesis, associated with brain repair and functional recovery, and enhance vascular densities in penumbra in the neonatal rat brain following stroke (288).

However, activation of the Notch signaling pathway may have a neuroprotective role via enhancing endogenous neuroregeneration and brain arteriogenesis following stroke (51, 291). In a murine transient global cerebral ischemia/reperfusion model, the neuroprotective effects of preconditioning were mediated via the Notch signaling pathway, and the expression of Notch1, NICD and HES-1 was upregulated (209). Notch signaling is widely accepted to be a fundamental pathway controlling cell fate acquisition through the regulation of adult neurogenesis. Studies have demonstrated that Notch signaling is crucial for the maintenance, proliferation and differentiation of NSCs in the developing brain (292, 293). Notch signaling induces the neuronal expansion and differentiation following stroke (21). Increasing the expression level of Notch signaling components may facilitate intrastraiatal transplantation therapy for ischemic stroke by promoting endogenous regeneration in the hippocampus (294). Promoting Notch signaling activity may facilitate increased arteriogenesis in a middle cerebral artery occlusion stroke rat model (54). In addition, Notch-induced rat and human bone marrow stromal cell grafts inhibited ischemic cell loss and abrogated behavioral deficits in chronic middle cerebral artery occlusion stroke rats (295).

Therefore, the results on the effect of Notch signaling on the pathogenesis of cerebrovascular diseases are contradictory. Notch signaling may be damaging, as it promotes inflammation, oxidative stress and apoptosis. However, the activation of the Notch signaling pathway may exert neuroprotective effects via enhancing endogenous neuroregeneration and brain arteriogenesis following stroke. What is the exact role of Notch signaling? Clarifying this question has potentially important implications for the treatment of cerebrovascular disease, and will provide novel strategies for future studies.

Acknowledgements

The present study was supported by grants from the Natural Science Foundation of Hubei Province (grant no. 2015CFB260), the Hubei Province Health and Family Planning Scientific Research Project (grant no. WJ2015MB219) the Shiyan Natural Science Foundation (grant no. 15K70) and the Renmin Hospital National Science Foundation (grant no. 2015CZY), to Dr Zhiyou Cai.

References

1. Lamas S, Dolati P and Sutherland GR: Controversy in the management of lenticulostriate artery dissecting aneurysm: A case report and review of the literature. World Neurosurg 81: 441-449, 2014.
2. Dezmlai-Grbelja L, Bosnjak J, Lovrenčić-Huzjan A, Ivića M and Demarin V: Moyamoya disease in a patient with brain tumor: Case report. Acta Clin Croat 49: 459-463, 2010.
3. Sharpstein SR, Ahmed S, Islam MQ, Najjar MI and Ratushny V: Case of moyamoya disease in a patient with advanced acquired immunodeficiency syndrome. J Stroke Cerebrovasc Dis 16: 286-272, 2007.
4. Squizzato A, Gerdes VE, Brandjes DP, Büller HR and Stam J: Thyroid diseases and cerebrovascular disease. Stroke 36: 2302-2310, 2005.
5. Vetrano DL, Landi F, De Buysere SL, Carfi A, Zuccala G, Petrovic M, Volpato S, Cherubini A, Corsonello A, Bernabei R and Onder G: Predictors of length of hospital stay among older adults admitted to acute care wards: A multicentre observational study. Eur J Intern Med 25: 56-62, 2014.
6. Ciccioni P, Riolo N, Priami C, Tafaro L and Ettore E: Risk factors for cognitive impairment. Recenti Prog Med 95: 535-545, 2004 (In Italian).
7. Elkind MS: Epidemiology and risk factors. Continuum (Minneap Minn) 17: 1213-1232, 2011.
8. Jia Q, Liu LP and Wang YJ: Stroke in China. Clin Exp Pharmacol Physiol 37: 259-264, 2010.
9. Bhoopatip P, Chetty C, Doutula R, Gjugrat M, Dinh DH, Rao JS and Lakka SS: SPARC stimulates neuronal differentiation of medulloblastoma cells via the Notch1/STAT3 pathway. Cancer Res 71: 4908-4919, 2011.
10. Yuan TM and Yu HM: Notch signaling: Key role in intrauterine infection/inflammation, embryonic development, and white matter damage? J Neurosci Res 88: 461-468, 2010.
11. Veenendaal LM, Kranenburg O, Smakman N, Klomp A, Borel Rinkes IH and van Diest PF: Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol 30: 1-11, 2008.
12. Givogi MI, de Planell M, Galbiati F, Superti D, Gritti A, Vescovi A, de Vellis J and Bongarzone ER: Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 28: 81-91, 2006.
13. Guedard F and Charreau B: Impact of notch signaling on inflammatory responses in cardiovascular disorders. Int J Mol Sci 14: 6863-6888, 2013.
14. Li F, Lan Y, Wang Y, Wang J, Yang M, Meng F, Han H, Meng A and Yang X: Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 20: 291-302, 2011.
15. Dicgchans M: Genetics of ischaemic stroke. Lancet Neurol 6: 149-161, 2007.
16. Yuan Y, Rangarajan P, Kan EM, Wu Y, Wu C and Ling EA: Scyllerin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation 12: 11, 2015.
17. Cheng YL, Choi Y, Sobey CG, Arumugam TV and Jo DG: Emerging roles of the γ-secretase-notch axis in inflammation. Pharmacol Ther 147: 80-90, 2015.
18. Wang Z, Huang W and Zuo Z: Perioperative aspirin improves neurological outcome after focal brain ischemia possibly via inhibition of Notch 1 in rat. J Neuroinflammation 11: 56, 2014.
19. Li S, Zyang X, Wang Y, Ji H, Du Y and Liu H: DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and nuclear factor κB in rats. Neurosci Lett 533: 1257-1264, 2012.
20. Cheng YL, Park JS, Manzanoer S, Choi Y, Baik SH, Okun E, Gelderbloom M, Fann DY, Magnus T, Laukinions BS, et al: Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis 62: 286-295, 2014.
21. Wang L, Chopp M, Zhang RL, Zhang L, Letourneau Y, Feng YF, Jiang A, Morris DC and Zhang ZG: The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158: 1356-1363, 2009.
22. Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H and Chan SL: Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke 42: 2589-2594, 2011.
23. Morgan TH: The theory of the gene. Am Naturalist 51: 513-544, 1917.
24. Becker S, Oelschlaeger TA, Wullaert A, Vlantis K, Pasparakis M, Wehkamp J, Stange EF and Gersemann M: Bacteria regulate intestinal epithelial cell differentiation factors both in vitro and in vivo. PLoS One 8: e55620, 2013.
25. Maier D, Kurth P, Schulz A, Russell A, Yuan Z, Gruber K, Rinkes IH and van Diest PJ: Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol 30: 1-11, 2008.
26. Braune EB and Lendahl U: Notch-a goldilocks signaling pathway controlling cell fate acquisition through the regulation of adult neurogenesis. Studies have demonstrated that Notch signaling is crucial for the maintenance, proliferation and differentiation of NSCs in the developing brain (292, 293). Notch signaling induces the neuronal expansion and differentiation following stroke (21). Increasing the expression level of Notch signaling components may facilitate intrastralatal transplantation therapy for ischemic stroke by promoting endogenous regeneration in the hippocampus (294). Promoting Notch signaling activity may facilitate increased arteriogenesis in a middle cerebral artery occlusion stroke rat model (54). In addition, Notch-induced rat and human bone marrow stromal cell grafts inhibited ischemic cell loss and abrogated behavioral deficits in chronic middle cerebral artery occlusion stroke rats (295).

Therefore, the results on the effect of Notch signaling on the pathogenesis of cerebrovascular diseases are contradictory. Notch signaling may be damaging, as it promotes inflammation, oxidative stress and apoptosis. However, the activation of the Notch signaling pathway may exert neuroprotective effects via enhancing endogenous neuroregeneration and brain arteriogenesis following stroke. What is the exact role of Notch signaling? Clarifying this question has potentially important implications for the treatment of cerebrovascular disease, and will provide novel strategies for future studies.
27. Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML and Blacklow SC: Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961-32969, 1999.

28. Faux CH, Turnley AM, EPA R, Cappai R and Bartlett PF: Interactions between fibroblast growth factors and Notch regulate neuronal differentiation. J Neurosci 21: 5587-5596, 2001.

29. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y and Hirai H: Mouse jagged1 physically interacts with human Notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961-32969, 1999.

30. Zhang S, Chung WC, Wu G, Egan SE and Xu K: Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Cancer Res 63: 79-83, 2003.

31. Bresnick EH, Chu J, Christensen HM, Lin B and Norton J: Linking Notch signaling, chromatin remodeling, and T-cell leukemogenesis. J Cell Biochem Suppl 35 (Suppl): S46-S53, 2000.

32. Nam Y, Weng AP, Aster JC and Blacklow SC: Structural requirements for assembly of the CSL: Intraclutch Notch1. Mastermind-like 1 transcriptional activation complex. J Biol Chem 278: 21232-21239, 2003.

33. Portin P: General outlines of the molecular genetics of the Notch signalling pathway in Drosophila melanogaster: A review. Heredity 89: 97-108, 2002.

34. Li Y and Baker NE: Pronuclear enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Curr Biol 11: 330-338, 2001.

35. Wang J, Ye Z, Zheng S, Chen L, Wan Y, Deng Y and Yang R: Linking Notch signaling inhibitor DAPT promote differentiation of neural stem/progenitor cells into neurons. Brain Res 1634: 34-44, 2016.

36. Cardano M, Diaferia GR, Cattaneo M, Dessì SS, Long Q, Cardona -Gomez GP, Arboleda -Velasquez JF and Navarro C: Drosophila eye. Curr Biol 11: 330-338, 2001.

37. Faux CH, Turnley AM, Epa R, Cappai R and Bartlett PF: Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke 46: 520-528, 2015.

38. Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML and Blacklow SC: Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961-32969, 1999.

39. Zhang S, Chung WC, Wu G, Egan SE and Xu K: Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Cancer Res 63: 79-83, 2003.

40. Bresnick EH, Chu J, Christensen HM, Lin B and Norton J: Linking Notch signaling, chromatin remodeling, and T-cell leukemogenesis. J Cell Biochem Suppl 35 (Suppl): S46-S53, 2000.

41. Nam Y, Weng AP, Aster JC and Blacklow SC: Structural requirements for assembly of the CSL: Intraclutch Notch1. Mastermind-like 1 transcriptional activation complex. J Biol Chem 278: 21232-21239, 2003.

42. Portin P: General outlines of the molecular genetics of the Notch signalling pathway in Drosophila melanogaster: A review. Heredity 89: 97-108, 2002.

43. Li Y and Baker NE: Pronuclear enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Curr Biol 11: 330-338, 2001.

44. Wang J, Ye Z, Zheng S, Chen L, Wan Y, Deng Y and Yang R: Linking Notch signaling inhibitor DAPT promote differentiation of neural stem/progenitor cells into neurons. Brain Res 1634: 34-44, 2016.

45. Cardano M, Diaferia GR, Cattaneo M, Dessì SS, Long Q, Cardona -Gomez GP, Arboleda -Velasquez JF and Navarro C: Drosophila eye. Curr Biol 11: 330-338, 2001.

46. Faux CH, Turnley AM, Epa R, Cappai R and Bartlett PF: Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke 46: 520-528, 2015.

47. Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML and Blacklow SC: Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961-32969, 1999.

48. Zhang S, Chung WC, Wu G, Egan SE and Xu K: Tumor-suppressive activity of Lunatic Fringe in prostate through differential modulation of Notch receptor activation. Cancer Res 63: 79-83, 2003.

49. Bresnick EH, Chu J, Christensen HM, Lin B and Norton J: Linking Notch signaling, chromatin remodeling, and T-cell leukemogenesis. J Cell Biochem Suppl 35 (Suppl): S46-S53, 2000.

50. del Monte G, Casanova JC, Guadix JA, MacGregor D, Burch JB, Pérez-Pomares JM and de la Pompa JL: Differential Notch signaling in the epicardium is required for cardiac inflow remodeling and coronary vessel morphogenesis. Circ Res 108: 824-836, 2011.
Chem 288: 16761-16774, 2013.

Wang H, Tian Y, Wang J, Phillips KL, Binch AL, Dunn S, Cross A, Chiverton N, Zheng Z, Shapiro IM, et al: Inflammatory cytokine responses of Notch1 signaling in nucleus pulposus cells: Implications in intervertebral disc degeneration. J Biol Chem 288: 16761-16774, 2013.

98. Keuylian Z, de Baaij JH, Gueguen M, Glorian M, Rouxel C, Merlet E, Lipskaia L, Blaise R, Mateo V and Limon I: The Notch pathway attenuates interleukin 1β (IL-1β)-mediated induction of adenosine cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J Biol Chem 287: 24978-24989, 2012.

99. Miranda L, Apicella L, Colombo M, Yu Y, Berta DG, Platonova N, Lazzari E, Lancellotti M, Bulfamante G, Cobos E, et al: Anti-Notch treatment prevents multiple myeloma cells relocalization to the bone marrow: Reline the chemokine system CXCR4/SDF-1. Leukemia 27: 1558-1566, 2013.

100. Fukuda D, Aikawa E, Swirski FK, Novorontseva TI, Koteliianskii V, Gorgun CZ, Chudnovskiy A, Yamazaki H, Croce K, Weissleder R, et al: Notch ligand delta-like-4 blockade attenuates atherosclerotic lesions and metabolic disorders. Proc Natl Acad Sci USA 109: E1868-E1877, 2012.

101. Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanuele C and Madeddu P: Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res 107: 283-293, 2010.

102. Kumari B, Jain P, Das S, Ghosal S, Hazra B, Trivedi AC, Basu A, Chakrabarti J, Vrati S and Banerjee A: Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells. Sci Rep 6: 20263, 2016.

103. Yano C, Cao Q, Wu G, Zheng H, Du X, Sun L, Wang P, Zhu J, Cao X, Qiu HY, Wang HY, Zhao J: Notch signaling in the central nervous system with special reference to its expression in microglia. CNS Neurosci Disord Drug Targets 12: 807-814, 2013.

104. Salita E, Lau P, Sala Frigerio C, Coolsen M, Bally-Cuif L and De Strooper B: A self-organizing miR-132/Cbp2 circuit regulates bimodal notochord signals and glial progenitor fate choice during spinal cord maturation. Dev Cell 30: 423-436, 2014.

105. Grandbarbe L, Michelucci A, Heurtaux T, Hemmer K, Morga E and Heuselh P: Notch signaling modulates the activation of microglial cells. Glia 55: 1519-1530, 2007.

106. Morgan SC, Taylor DL and Pocock JM: Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 90: 89-101, 2004.

107. Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, et al: Gamma-secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med 12: 621-623, 2006.

108. Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, Zhang BF and Han H: N9 microglial cells polarized by LPS and IL4 show different responses to secondary environmental stimuli. Cell Immunol 278: 84-90, 2012.

109. Yao L, Kan EM, Kaur C, Dheen ST, Hao A, Lu J and Ling EA: Notch-1 signaling regulates microglia activation via NF-κB pathway after hypoxic exposure in vivo and in vitro. PLoS One 8: 76834, 2013.

110. Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST and Ling EA: Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in ameboid macrophage in postnatal rat brain and murine BV-2 cells. Glia 56: 1224-1237, 2008.

111. Morga E, Mouad-Amazzal L, Fellen P, Heurtaux T, Moro M, Michelucci A, Gabel S, Grandbarbe L and Heuselh P: Jagged1 regulates the activation of astrocytes via modulation of NFkappaB and JAK/STAT/SOC5 pathways. Glia 57: 1741-1753, 2009.

112. Nardai S, Dobolyi A, Pál G, Skopil J, Pintér N, Lakatos K, Merkely B and Nagy Z: Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci 33: 1-14, 2015.

113. Monsalve E, Ruiz-Garcia A, Baladron V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J and Díaz-Guerra MJ: Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol 39: 2536-2570, 2009.

114. Jones DP: Extracellular redox state: Refining the definition of oxidative stress in aging. Rejuvenation Res 9: 168-181, 2006.

115. Darley-Usmar V and Halliwell B: Blood radicals: Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 13: 649-662, 1996.

116. Yang Q, Kostren TK and Zhang XY: Free radicals, anti-oxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 46: 200-206, 2013.
NOTCH IN CEREBROVASCULAR DISEASES

108. Catarino MD, Alves-Silva JM, Pereira OR and Cardoso SM: Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Curr Top Med Chem 15: 105-119, 2015.
109. Lee JC and Won MH: Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol 47: 149-156, 2014.
110. Valko M, Morris H and Cronin MT: Metals, toxicity and oxidative stress. Curr Med Chem 12: 116-1208, 2005.
111. Wu D and Yotnda P: Production and detection of reactive oxygen species (ROS) in cultured human vascular endothelial cells. J Vis Exp 270, 2017.
112. Reiter RJ, Tan DX, Manchester LC and Qi W: Biochemical reaction of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem Biophys 34: 237-256, 2001.
113. Reiter RJ, Acuña-Castroviejo D, Tan DX and Burkhardt S: Free radical-mediated molecular damage: Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 939: 200-215, 2001.
114. Hemmani T and Parrah MS: Reactive oxygen species and oxidative DNA damage. Indian J Pharmacol 42: 440-452, 1998.
115. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A and Feuerhekke W: Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12: 698-714, 2013.
116. Oprea IE, Berteau M, Cintezá D and Manolescu BN: The effect of the ALAnerv nutritional supplement on some oxidative stress markers in postacute stroke patients undergoing rehabilitation. Appl Physiol Nutr Metab 38: 613-620, 2013.
117. Liang H, Yu B, Xia X, Wei T and Lou J: Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neuronal Regen Res 9: 1297-1302, 2014.
118. Braidy N, Jayasena T, Poljak A and Sachdev PS: Sirtuins in cognitive ageing and Alzheimer’s disease. Curr Opin Psychiatry 25: 226-230, 2012.
119. Nakane H, Kamouchi M, Hata J, Ibayashi S, Kusuda K, Omae T, Nagoa T, Ago T and Kitazono T: EMINENT Study Investigators: Effects of hydrochlorothiazide on oxidative stress and pulse pressure in hypertensive patients with chronic kidney disease. J Hypertens 30: 1927-1934, 2012.
120. Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, Toyama K, Kataoka K, Kobuchi N, Maeda M, et al: Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc 2: e000575, 2013.
121. Das UN: Can free radicals induce coronary vasospasm and acute myocardial infarction? Med Hypotheses 39: 90-94, 1992.
122. Manzanero S, Santoro T and Arumugam TV: Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem Int 62: 712-718, 2013.
123. Costarica JM, Gómez M, Saura V and Ionescu A: Evaluation of oxidative stress in patients with acute ischemic stroke. Rom J Intern Med 51: 97-106, 2013.
124. Icme F, Erel O, Avci A, Satar S, Gülen M and Achen A: The relation between oxidative stress parameters, ischemic stroke, and hemorrhagic stroke. Turk J Med Sci 45: 947-953, 2015.
125. Simão AN, Lehmann MF, Aliferi DF, Meloni MZ, Flavuzzo T, Scavuzzi BM, de Oliveira SR, Lozovoy MA, Dichi I and Reiche EM: Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients. Metab Brain Dis 30: 1409-1416, 2015.
126. Tsai NW, Chang YT, Huang CY, Lin YJ, Lin WC, Cheng BC, Su CM, Chiang YF, Chen SF, Huang CC, et al: Association between oxidative stress and outcome in different subtypes of acute ischemic stroke. Biomed Res Int 2014: 256879. 2014.
127. Pantcheva P, Elias M, Duncan K, Borlongan CV, Tajiri N and Pantcheva E, Berteanu M, Cintezá M and Acehan S: The Notch signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neuronal Regen Res 9: 1297-1302, 2014.
128. Icme F, Erel O, Avci A, Satar S, Gülen M and Achen A: The relation between oxidative stress parameters, ischemic stroke, and hemorrhagic stroke. Turk J Med Sci 45: 947-953, 2015.
129. Simão AN, Lehmann MF, Aliferi DF, Meloni MZ, Flavuzzo T, Scavuzzi BM, de Oliveira SR, Lozovoy MA, Dichi I and Reiche EM: Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients. Metab Brain Dis 30: 1409-1416, 2015.
130. Tsai NW, Chang YT, Huang CY, Lin YJ, Lin WC, Cheng BC, Su CM, Chiang YF, Chen SF, Huang CC, et al: Association between oxidative stress and outcome in different subtypes of acute ischemic stroke. Biomed Res Int 2014: 256879. 2014.
131. Pantcheva P, Elias M, Duncan K, Borlongan CV, Tajiri N and Pantcheva E, Berteanu M, Cintezá M and Acehan S: The Notch signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neuronal Regen Res 9: 1297-1302, 2014.
132. Icme F, Erel O, Avci A, Satar S, Gülen M and Achen A: The relation between oxidative stress parameters, ischemic stroke, and hemorrhagic stroke. Turk J Med Sci 45: 947-953, 2015.
149. Elmosry E, Elzalabany LM, Elsheikha HM and Smith PA: Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier. Brain Res 1583: 255-268, 2014.

150. Sathanooiri R, Swärd K, Olde B and Erlinge D: The ATP Receptors P2X7 and P2X4 modulate high glucose and Palmitate-Induced inflammatory responses in rat cardiomyocytes. PLoS One 10: e0125111, 2015.

151. Okada R, Wu Z, Zhu A, Ni J, Zhang J, Yoshimine Y, Peters C, Santiki P and Nambushi H: Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood-brain barrier. Mol Cell Neurosci 64: 51-60, 2015.

152. Abdul-Muneer PM, Chandra N and Haorah J: Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51: 966-979, 2015.

153. Ste-Marie L, Hazell AS, Bémeur C, Butterworth R and Montgomery J: Immunohistochemical detection of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase following hypoglycemic focal cerebral ischemia. Brain Res 918: 10-19, 2001.

154. Kumura E, Yoshimine T, Kubo S, Tanaka S, Hayakawa T, Shiga T and Kosaka H: Effects of superoxide dismutase on nitric oxide production during reperfusion after focal cerebral ischemia is rats. Neurosci Lett 207: 182-186, 1995.

155. Al-Maghrebi M, af Renno WM: Genistein alleviates testicular ischemia and reperfusion injury-induced spermatogonic damage and oxidative stress by suppressing abnormal testicular matrix metalloproteinase system via the Notch 2/Jagged 1/Hes-1 and caspase-8 pathways. J Physiol Pharmacol 57: 361-376, 2006.

156. Xie F, Sun J, Chen Y, Zong M, Li S and Wang Y: EGCG attenuates uric Acid-Induced inflammatory and oxidative stress responses by mediating the NOTCH pathway. Oxd Med Cell Longev 2015: 214836, 2015.

157. Xie F, Cai W, Liu Y, Li Y, Du B, Feng L and Qiu L: Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling. Int J Mol Med 35: 135-142, 2015.

158. Yang Y, Duan W, Liang Z, Yi W, Yan J, Wang N, Li Y, Chen W, Yu S, Jin Z and Di Y: Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cell Signal 25: 615-629, 2013.

159. Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Garvichovil DI and Nefedova Y: Combined inhibition of Notch signaling and Bcl-2 proteins ratio and prevention of caspase-3 activation. J Neurosci 35: 129-137, 2015.

160. Chen C, Cui H, Li Z, Wang R and Zhou C: Normobaric oxygen for cerebral ischemic injury. Neurological Res 8: 2885-2889, 2013.

161. Zhu B, Yang P, Mammat N, Ding H, He J, Qian Y, Fei J and Al-Abed K: Aiwiexin, a traditional Uyghur medicinal formula, protects against chromium toxicity in Caenorhabditis elegans. BMC Complement Altern Med 15: 285, 2015.

162. Finsterer J: Neuromuscular implications in CADASIL: Cerebrovasc Dis 24: 401-404, 2007.

163. Santoni M, Pantano F, Amantini C, Nabissi M, Conti A, Nozaki T, Fukuda S, Yamamoto K and Kondo T: Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Urtson Sonochem 13: 388-396, 2006.

164. Santiago B, Galindo M, Palao G and Pablos JL: Intracellular regulation of Fas-induced apoptosis in human fibroblasts by extracellular factors and chemokine. J Immunol 172: 560-566, 2004.

165. Wang L, Song G, Liu M, Chen B, Chen Y, Shen Y, Zhu J and Zhou X: MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the Notch signal transduction pathway. Int J Mol Med 37: 47-55, 2016.

166. Aboutaleb N, Shamsaei N, Khaksari M, Erfani S, Rajabi H and Nikbakht F: Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. J Physiol Sci 65: 435-443, 2015.

167. Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, Zhao LY, Yang PB, Zhang JS and Tian YF: MicroRNA-25 negatively regulates cerebral Ischemia/Reperfusion Injury-Induced cell apoptosis through Fas/Fasl pathway. J Mol Neurosci 58: 851-862, 2016.

168. Xue R, Wu G, Wei X, Lv J, Fu R, Lei X, Zhang Z, Li W, He J, Zhao H et al: Tea polyphenols may attenuate the neurocognitive impairment caused by global cerebral ischemia/reperfusion injury via anti-apoptosis. Nutr Neurosci 19: 63-69, 2016.

169. Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA and Fang M: Autophagy induction and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm 2015: 120198, 2015.

170. Wu L, Zhao QS, Li TW, Li HY, Wang QB, Bi XY, Cai XK and Tang N: Yifei Xuanfei Jiangzhuo formula, a Chinese herbal decoction, improves memory impairment through inhibiting apoptosis and enhancing PKA/CREB signal transduction in rats with cerebral ischemia/reperfusion. Med Mol Rep 12: 4273-4283, 2015.

171. Saad MA, Abdelsalam RM, Kenawy SA and Attia AS: Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia-reperfusion in rats. Chem Biol Interact 232: 21-29, 2015.

172. Fan M, Jin W, Zhao H, Xiao J, Yia J, Yin J, Jiang X, Xu J, Meng N and Lv P: Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus. Behav Brain Res 291: 399-406, 2015.

173. Garrigue P, Giacomelli L, Bucci C, Muzio V, Filannino MA, Sabatier F, Dignat-George F, Pisano P and Guillet B: Single photon emission computed tomography imaging of cerebral blood flow, blood-brain barrier disruption, and apoptosis time course after focal cerebral ischemia in rats. Int J Stroke 11: 117-126, 2016.

174. Cao G, Zhou H, Jiang N, Han Y, Hu Y, Zhang Y, Qi J, Kou J and Yu B: YiqiFumai powder injection ameliorates cerebral ischemia by inhibiting endoplasmic reticulum Stress-Mediated neuronal apoptosis. Oxd Med Cell Longev 2016: 5493279, 2016.

175. Yan XG, Cheng BH, Wang X, Ding LC, Liu HQ, Chen J and Bai B: Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury. Neurological Res 10: 766-771, 2015.

176. Saad MA, Abdel Salam RM, Kenawy SA and Attia AS: Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia-reperfusion. Pharmacol Rep 67: 115-122, 2015.

177. Jiang Y, Li L, Tan X, Liu B, Zhang Y and Li C: miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem 134: 173-181, 2015.

178. Chopp M and Li Y: Apoptosis in focal cerebral ischemia. Acta Neurochir Suppl 66: 21-26, 1996.

179. Wu X, Li L, Zhang L, Wu J, Zhou Y, Zhou Y, Zhao Y and Zhao J: Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res 1599: 20-31, 2015.

180. Bao JX, Su YT, Cheng YP, Zhang HJ, Xie XP and Chang YM: Vascular spingolipids in physiological and pathological adaptation. Front Biosci (Landmark Ed) 21: 1168-1186, 2016.

181. Kagiya G, Ogasa K, Taboishi Y, Ferri LB, Nozaki T, Fukuda S, Yamamoto K and Kondo T: Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Utrason Sonochem 13: 388-396, 2006.
Brain infarcts and dementia. Brain Pathol 12: 371-384, 2002.

CADASIL: A common form of hereditary arteriopathy causing Kalimo H, Ruchoux MM, Viitanen M and Kalaria RN: Stroke 37: 2690-2695, 2006.

Neuronal cell death via the nuclear factor -kappaB-Bcl-2-internection gamma -secretase -mediated Notch signaling induces Pang M, Yu J and Liu J: Clostridium butyricum pretreatment Sun J, Ling Z, Wang F, Chen W, Li H, Jin J, Zhang H, Ma M, Wang X, Ding X, Teng J, Shao F and Zhang J: Numb Meng S, Su Z, Liu Z, Wang N and Wang Z: Rac1 contributes to Brain Res 1586: 193-202, 2014.

JNK and Arumugam TV: Evidence that neuronal Notch -1 promotes Up-Regulation of hypoxia inducible Factor-1 Chen G, Xu H and Xu L: Electroacupuncture pretreatment 2015 is ischemia-reperfusion injury in mice via CAI O, et al.: Evidence that neuronal Notch -1 promotes proliferation of renal cell carcinoma cells through JNK pathway. Oncol Rep 35: 2795-2800, 2016.

Nature 467: 323-327, 2010.

Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling. PLoS One 7: e42828, 2012.

Zheng JP, Sun Y, Yao J, Li X, Hou L, Dong H, Wang Q, Wang S, Zhang X and Xiong L: Activation of canonical Notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice. Anesthesiology 117: 996-1005, 2012.

Yao J and Qian C: Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFalpha-induced apoptosis. Dig Liver Dis 41: 867-874, 2009.

Yang X, Klein R, Tian X, Cheng HT, Kopan R and Shen J: Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol 269: 81-94, 2004.

c-Jun activation and cell death following ischemic stress. Brain Res 1586: 193-202, 2014.

Sionov RV, Kfir‑Erenfeld S, Spokoiny R and Yefenof E: A role for bcl-2 in notch-1-dependent transcription in thymic lymphoma cells. Adv Hematol 2012: e24584, 2012.

Cao H, Hu Y, Wang P, Zhou J, Deng Z and Wen J: Down-regulation of Notch receptor signaling pathway induces caspase-dependent and caspase-independent apoptosis in lung squamous cell carcinoma cells. AMPIS 120: 441-450, 2012.

Brockhaus M, Grünberg J, Röhrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H and Haass C: Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 9: 1481-1486, 1998.

Wu K, Hu L and Hou J: Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38pathway. Oncol Rep 35: 2795-2800, 2016.

Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Guo Q, Wu W, Pohl NM, et al.: Notch activation of Ca(2+)
impairs CD15+/CD133+
tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 6: e24584, 2011.

Sionov RV, Kfir‑Erenfeld S, Spokoiny R and Yefenof E: A role for bcl-2 in notch-1-dependent transcription in thymic lymphoma cells. Adv Hematol 2012: e24584, 2012.

Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ and He LY: Silencing Notch-1 induces apoptosis and increases the chemosensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett 3: 879-884, 2012.

Cao H, Hu Y, Wang P, Zhou J, Deng Z and Wen J: Down-regulation of Notch receptor signaling pathway induces caspase-dependent and caspase-independent apoptosis in lung squamous cell carcinoma cells. AMPIS 120: 441-450, 2012.

Brockhaus M, Grünberg J, Röhrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H and Haass C: Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 9: 1481-1486, 1998.

Wu K, Hu L and Hou J: Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38pathway. Oncol Rep 35: 2795-2800, 2016.

Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Guo Q, Wu W, Pohl NM, et al.: Notch activation of Ca(2+)
impairs CD15+/CD133+
tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 6: e24584, 2011.

Sionov RV, Kfir‑Erenfeld S, Spokoiny R and Yefenof E: A role for bcl-2 in notch-1-dependent transcription in thymic lymphoma cells. Adv Hematol 2012: e24584, 2012.

Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ and He LY: Silencing Notch-1 induces apoptosis and increases the chemosensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett 3: 879-884, 2012.

Cao H, Hu Y, Wang P, Zhou J, Deng Z and Wen J: Down-regulation of Notch receptor signaling pathway induces caspase-dependent and caspase-independent apoptosis in lung squamous cell carcinoma cells. AMPIS 120: 441-450, 2012.

Brockhaus M, Grünberg J, Röhrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H and Haass C: Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 9: 1481-1486, 1998.

Wu K, Hu L and Hou J: Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38pathway. Oncol Rep 35: 2795-2800, 2016.

Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Guo Q, Wu W, Pohl NM, et al.: Notch activation of Ca(2+)
impairs CD15+/CD133+
tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 6: e24584, 2011.

Sionov RV, Kfir‑Erenfeld S, Spokoiny R and Yefenof E: A role for bcl-2 in notch-1-dependent transcription in thymic lymphoma cells. Adv Hematol 2012: e24584, 2012.

Ye QF, Zhang YC, Peng XQ, Long Z, Ming YZ and He LY: Silencing Notch-1 induces apoptosis and increases the chemosensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett 3: 879-884, 2012.

Cao H, Hu Y, Wang P, Zhou J, Deng Z and Wen J: Down-regulation of Notch receptor signaling pathway induces caspase-dependent and caspase-independent apoptosis in lung squamous cell carcinoma cells. AMPIS 120: 441-450, 2012.

Brockhaus M, Grünberg J, Röhrig S, Loetscher H, Wittenburg N, Baumeister R, Jacobsen H and Haass C: Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 9: 1481-1486, 1998.

Wu K, Hu L and Hou J: Selective suppression of Notch1 inhibits proliferation of renal cell carcinoma cells through JNK/p38pathway. Oncol Rep 35: 2795-2800, 2016.
angiogenesis-based cancer therapy? Contemp Oncol (Pozn) 17: 15-21, 2014.

2. Cao L, Arany PR, Wang YS and Mooney DJ: Promoting angiogenesis using Delta-like 4 (DLL4)-and Jagged1-mediated angiogenesis and lymphangiogenesis. Angiogenesis 17: 587-601, 2014.

3. Zhu Y: Implication in endothelial angiogenesis and in inherited cerebral cavernous malformations. J Cell Mol Med 17: 407-418, 2013.

4. Boas SE and Merks MA: Tip cell overtaking occurs as a side effect of sprouting in computational models of angiogenesis. J Theor Biol 216: 1371-1380, 2002.

5. Cao L, Arany PR, Wang YS and Mooney DJ: Promoting angiogenesis using Delta-like 4 (DLL4)-and Jagged1-mediated angiogenesis and lymphangiogenesis. Angiogenesis 17: 587-601, 2014.
2898 CAI et al.: NOTCH IN CEREBROVASCULAR DISEASES

268. Yang JP, Liu HJ and Liu XF: VEGF promotes angiogenesis and functional recovery in stroke rats. J Invest Surg 23: 149-155, 2010.

269. Dziekam M, Derugin N, Wendland MF, Vexler ZS and Ferriero DM: Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res 4: 189-200, 2013.

270. Lee HJ, Kim KS, Park HH and Kim SU: Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2: e156, 2007.

271. Esposito E, Hayakawa K, Maki T, Arai K and Lo EH: Effects of postconditioning on neurogenesis and angiogenesis during the recovery phase after focal cerebral ischemia. Stroke 46: 2691-2694, 2015.

272. Oh TW, Park KH, Jung HW and Park YK: Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis. BMC Complement Altern Med 15: 101, 2015.

273. Duan S, Shao G, Yu L and Ren C: Angiogenesis contributes to the neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Int J Neurosci 125: 625-634, 2015.

274. Hayward NM, Yanev P, Haapsalo A, Miettinen R, Hiltunen M, Grohn O and Jolkonen J: Chronic hyperperfusion and angiogenesis follow subacute hypoperfusion in the thalamus of rats with focal cerebral ischemia. J Cereb Blood Flow Metab 31: 1119-1132, 2011.

275. Guo F, Lv S, Lou Y, Tu W, Liao W, Yang D and Zeng: Bone marrow stromal cells enhance the angiogenesis in ischemic cortex after stroke: Involvement of notch signalling. Cell Biol Int 36: 997-1004, 2012.

276. Dao M, Tate CC, McGrogan M and Case CC: Comparing the angiogenic potency of naive marrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med 11: 81, 2013.

277. Lähteenvuoro JE, Lähteenvuor MO, Kivelä A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vähakängas E, Korpsalo P, et al: Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1 and neuropilin receptor-1-dependent mechanisms. Circulation 119: 845-856, 2009.

278. Semenza GL: Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. J Cell Biochem 102: 840-847, 2007.

279. Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389-395, 2000.

280. Buschmann I and Schaper W: Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. News Physiol Sci 14: 121-125, 1999.

281. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 20: 3427-3436, 2001.

282. Gunaratne A, Chan E, El-Chabib TH, Carter D and Di Guglielmo GM: aPKC alters the TGFβ response in NSCLC cells through both Smad-dependent and Smad-independent pathways. J Cell Sci 128: 487-498, 2015.