Stellar dynamics observations of a double nucleus in M 83

N. Thatte¹ M. Tecza¹ and R. Genzel¹

Max Planck Institute für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany

e-mail: thatte@mpe.mpg.de

Received August 16, 2000

Abstract. We report on the discovery of a double nucleus in M 83, based on measurements of the line of sight velocity distribution of stars observed at near infrared wavelengths with the VLT ISAAC spectrograph. We observe two peaks separated by 2/7″ in the velocity dispersion profile of light from late-type stars measured along a slit 0/6′′ wide, centered on the peak of K band emission and with P.A. 51.7°. The first peak coincides with the peak of the K band light distribution, widely assumed to be the galaxy nucleus. The second peak, of almost equal strength, almost coincides with the center of symmetry of the outer isophotes of the galaxy. The secondary peak location has little K band emission, and appears to be significantly extincted, even at near infrared wavelengths. It also lies along a mid-infrared bar, previously identified by Gallais et al. (1991) and shows strong hydrogen recombination emission at 1.875 μm. If we interpret the observed stellar velocity dispersion as coming from a virialized system, the two nuclei would each contain an enclosed mass of 13.2 × 10⁶ M⊙ within a radius of 5.4 pc. These could either be massive star clusters, or supermassive dark objects.

Key words: galaxy nuclei – supermassive black holes – stellar dynamics – near-infrared stellar features – double nucleus

1. Introduction

M 83 is a very nearby grand design barred spiral (Hubble type SAB(s)bc), distance 3.7 Mpc, de Vaucouleurs et al. (1991) showing vigorous star forming activity in its nuclear region. It has been the object of numerous studies at all wavelengths, ranging from the X-ray (Immler et al. 1999), visible (Sofue and Wakamatsu 1994, Comte 1981), near-infrared (Gallais et al. 1991), mid-infrared (Telesco, Dressel and Wolstencroft 1993; Rouan et al. 1996), to the radio (Shizuki 1993). Significant dust extinction in the nuclear region (Turner, Ho and Beck 1987) implies that the true morphology of the starburst is revealed only at infrared and longer wavelengths.

Although the morphology of the nuclear star forming activity has been studied in detail, very few kinematic or dynamical studies at arc second resolution have been carried out. Radio measurements exist, but are hampered by the large beam size. Puxley, Doyon and Ward (1997) have performed low resolution near infrared spectroscopy along a single slit, characterizing the stellar population in a broad way. As part of a program to search for supermassive black holes in nearby spiral galaxies, we have conducted long slit medium resolution spectroscopy of the nuclear region of M 83 using the ISAAC near infrared spectrometer on the European Southern Observatory’s (ESO) Very Large Telescope VLT. Our observations are suggestive of the presence of a double nucleus.

2. Observations and Data Reduction

2.1. NTT SOFI imaging

As part of the near infrared imaging carried out for the supermassive black hole search pilot program, we obtained K band images of the central region of M83 using the SOFI near infrared camera on the ESO NTT telescope. M 83 was observed on 14-15 February 2000 for a total of 600 seconds with the Ks filter. Individual exposure times were 10 seconds long, grouped together in sets of 12 exposures. Three exposures on blank sky located 5′′ E of the galaxy nucleus were interposed after every group of on-target exposures. A jitter pattern with a 20″ throw in both R.A. and Dec was used to offset every group of on-target exposures relative to the previous one. The seeing was 0.9′′ during the observations. We used the large field mode of SOFI, with a pixel scale of 0.29″ and a total field of view of ~5′ × 5 ‴. The reference star GSPC S791-C was observed a few minutes later for use as a photometric reference.

Data reduction was carried out using the ECLIPSE (Devillard 1999) jitter routines. The process consists of applying dark frame subtraction, flat field division and bad pixel correction to every group of exposures. The

¹ The ECLIPSE package (www.eso.org/eclipse) consists of a set of stand alone routines provided by ESO for SOFI and ISAAC data reduction.
responding to an instrumental resolution of (R ≈ \(\lambda/\Delta\lambda \)) 4750. The spectral coverage extended from 2.238 \(\mu \)m to 2.361 \(\mu \)m, with a scale of \(\Delta\lambda = 1.212\AA \) per pixel. We observed for a total on-source integration time of 4500 seconds per slit setting. Individual exposures were 300 seconds long. We nodded 30" along the slit after each on-target exposure. Due to the large spatial extent of the galaxy which spanned the entire length of the ISAAC slit (120"), we nodded the telescope to blank sky 5' E of the galaxy nucleus after every three on-target exposures. The seeing during the observations varied between 0"7 and 1"1. The star HD 118187 (F7/F8V) was observed as a spectroscopic calibrator on both nights, interleaved with the observations of M 83.

In addition, we obtained spectra of several late type giant stars (spectral types K1III to M5III) for use as spectral templates in the data analysis. Each star was observed using the same slit setting as M 83, and nodded 30" along the slit every 5 to 10 seconds. Details of the template stellar spectra will be presented in a subsequent paper.

We dark subtracted, flat-fielded and dead pixel corrected each spectroscopic exposure, and then transformed it onto a linear wavelength grid with dispersion axis precisely parallel to detector rows. Our sky subtraction was done using smoothed sky exposures so as not to degrade the signal to noise ratio (SNR). We smoothed each sky spectrum over 100 spatial pixels while maintaining the small scale spatial structure along the slit, to produce the smoothed sky. The results yielded useful galaxy spectra over the entire slit length with better SNR than using standard nodding-on-slit techniques. Atmospheric transmission corrections were made by dividing the sky subtracted, co-added galaxy spectra by spectra of the spectroscopic reference star, thus eliminating the only significant telluric absorption feature at 2.317\(\mu \)m. Finally, a second interactive dead pixel correction was employed to tag any hot or transient pixels. The continuum for each spatial pixel along the slit was normalized to unity over the wavelength range 2.255 – 2.300\(\mu \)m, excluding the Ca feature at 2.265\(\mu \)m.

The template star spectra were reduced in a manner similar to the galaxy spectra, with the exception that sky subtraction was performed by subtracting two nodded exposures from each other, shifting the positive maxima so that they overlay, and co-adding the data. A single spectrum was extracted for each template star using the apall routine within the twodspec package of IRAF.

2.3. Archival HST NICMOS images

We supplemented our broad band ground based images and medium resolution spectra with archival data from the HST NICMOS camera. (P.I. M. Rieke, Proposal I.D. 7218). In particular, we used 6 datasets obtained with the NIC2 camera, taken on 16 May 1998. Table lists the details of the archival data used. The NIC2 camera has a pixel scale of 0"075, corresponding to a total field of view of 19"2 x 19"2. The observations were made in mosaic mode using multiple readouts of the detector for each pointing.

We used pipeline calibrated data from the STSCI archive, processed by both the calnic and calnicb pipelines. These pipelines together provide dead pixel and cosmic ray correction, flat fielding, dark subtraction, photometric calibration and co-addition of individual pointings of a mosaic into a single image. We used the photo-
Table 1. Summary of NICMOS archival data

Dataset name	Filter	T_{exposure}	Feature
N4BV100D0_MOS	F160W	48 s	H band
N4BV100K0_MOS	F187N	160 s	Pa α
N4BV100N0_MOS	F190N	160 s	Pa α continuum
N4BV100G0_MOS	F212N	576 s	H₂S(1) continuum
N4BV100T0_MOS	F215N	576 s	H₂S(1) continuum
N4BV100X0_MOS	F222M	176 s	K band

3. Analysis and Results

3.1. Isohote fits: the location of the photometric centroid

We used the ELLFIT routine with the GIPSY\(^2\) (van der Hulst et al. 1992) package to perform elliptical isophote fits to the K band surface brightness distribution observed with SOFI. We fit points within a magnitude interval ranging from 5.00 to 3.75 of the peak intensity, with a width of 0.25 magnitudes for each fit, and a step size of 0.25 magnitudes. All fit parameters for the ellipses were unconstrained. Figure 4 shows some of the isophotals fits overlaid on a contour and grey scale image of the central region of M 83. The center of symmetry obtained from the fits lies 1\(^{\prime\prime}\)54 ± 0\(^{\prime\prime}\)27 South and 3\(^{\prime\prime}\)05 ± 0\(^{\prime\prime}\)30 West of the photometric peak. Wolstencroft 1988 also observed a similar offset (3\(^{\prime\prime}\) at P.A. 255\(^{\circ}\)) based on lower resolution K band data. At larger spatial scales (∼ 2\(^{\prime\prime}\)), the bar is easily identified in the K band image. We measure the positional angle of the bar from the SOFI image to be 51.7\(^{\circ}\)± 1\(^{\circ}\).

3.2. Recession velocity and velocity dispersion: discovery of a hidden nucleus

We used both Fourier correlation quotient and \(\chi^2\) fitting techniques to determine the recession velocity and the velocity dispersion as a function of slit position.

The reduced ISAAC data provided a normalized spectrum for each spatial pixel along the slit. We binned the spectra along the spatial direction with a binning width of four pixels (equal to the slit width), yielding spectra with enhanced SNR spaced every 0\(^{\prime\prime}\)6 along the slit. The total spatial extent of the major axis slit used for dynamical analysis was ∼ 13\(^{\prime\prime}\), based on an SNR cutoff of 20 per pixel in the continuum. Figure 4 shows some representative galaxy spectra around the region of the CO 0\(\rightarrow\)2 bandhead feature at 2.29\(\mu\)m, as well as a spectrum of a template star for comparison.

We measured the redshift and velocity dispersion as a function of spatial position along the slit by fitting a suitably broadened and shifted template stellar spectrum to the galaxy spectrum. The normalized galaxy and template star spectra were resampled onto a grid with equispaced velocity intervals (corresponding to logarithmic intervals in wavelength). The template star spectrum was convolved with a Gaussian broadening function whose width and mean velocity were free parameters. A least squares fit, minimizing the normalized mean square error, \(\chi^2\), between the broadened template star spectrum and the galaxy spectrum yielded the best fit values for the recession velocity and velocity dispersion. The range of the fit was optimized to include all significant spectral features (CO bandheads and Ca absorption lines) and a minimum of line-free continuum. The lack of continuum longward of the CO bandhead features can lead to incorrect estimates of the continuum level. Consequently, we also included a

\(^2\) The Groningen Image Processing SYstem
quadratic polynomial term to account for a mismatch in the continuum levels of the two spectra.

A thorough error analysis was carried out estimating both systematic errors (due to template mismatch) and random errors resulting from noise in the galaxy spectra. Systematic errors were estimated using template stars of varying spectral type (K3III to M2III) for the fit and measuring the observed differences in fit velocities and dispersions. Random errors were estimated using a reduced χ^2 technique. Artificially broadened template star spectra with added random noise (to appropriately mimic the observed SNR of the galaxy spectra) were fitted as described above. The change in fit parameters required to increase the reduced χ^2 by unity is a measure of the error in each fit parameter. The instrumental resolution corresponds to a σ of 27 km s$^{-1}$, and represents the limit of what can be resolved by these observations.

Figure 3 shows the results of the χ^2 fitting for the major axis of M 83. A velocity dispersion peak is coincident with the location of the K band photometric peak, believed to be the nucleus. We also observe a second velocity dispersion peak, of equal strength, offset 2.7 south-west from the nucleus (see figure 3 for a comparison of broadened CO bandhead profiles at the two peaks). The photometric peak is also associated with a sharp gradient in recession velocity, while no such jump is observed at the location of the secondary peak. The off-nuclear velocity dispersion peak could possibly be a second nucleus, hidden from our view at visible and near infrared wavelengths due to significant extinction. We elaborate on the properties of the second nucleus in section 4. The minor axis dynamics shows a single peak at the location of the photometric peak, with no other features. The line of sight recession velocity is remarkably consistent with the velocities of cold molecular gas observed by [Handa et al. 1990]. For a galaxy inclination of 24° to face-on (Comte 1981), the deprojected rotation velocities are a factor of 2.46 higher than the observed values.

We also analyzed the major and minor axis spectra using the Fourier cross correlation quotient method. The technique is described by [Bender 1990] and has been shown to work equally well for asymmetric line profiles, such as the 12CO bandhead by [Anders 1999, Tecza 1999] and others. Essentially, it consists of deconvolving the galaxy spectrum using an appropriate template star spectrum, so as to yield the line of sight velocity distribution (LOSVD) for each spatial resolution element. The deconvolution is achieved by cross-correlating the galaxy spectrum with the stellar spectrum, and dividing the result with the auto-correlation of the stellar spectrum. The deconvolutions are carried out in Fourier space, and a Wiener filter is used to limit the high frequency component of the result, so as to minimize noise amplification.

The Fourier cross correlation quotient (FCQ) technique is superior to a simple deconvolution since it suppresses those frequencies in the result where the template stellar spectrum contains little or no information. It has the additional advantage that it is relatively insensitive to template mismatch. The latter occurs when the spectral type of the template does not match that of the galaxy spectrum being deconvolved. The depth of the CO bandhead features is a function of spectral type and
luminosity class (Oliva et al. 1995), and χ^2 fitting techniques are prone to interpreting a deeper template feature as high velocity dispersion in the galaxy spectrum, and vice versa. FCQ techniques also make no assumption regarding the LOSVD being observed. The disadvantage of the FCQ technique is that it requires higher SNR spectra, precisely because it makes no apriori assumptions about the LOSVD. A cross-check of our dynamical analysis using FCQ techniques assuming a Gaussian LOSVD yielded almost identical results to those presented in figure 3. Single component, broad LOSVDs were observed at the location of both dynamical peaks.

3.3. Stellar population analysis: Extinction and luminous mass estimates

3.3.1. Magnitudes and colors

We have derived K band magnitudes for the nucleus, several star forming knots within the near infrared arc, and points along the mid infrared bar, based on the calibrated NICMOS K band image. A radial profile analysis of several of the star forming knots yielded a FWHM of ~3 pixels ($0.225''$), consistent with the diffraction limit at 2.2 μm. Consequently, we used an aperture with a radius of 5 pixels for our aperture photometry. The observed K band magnitudes, and positions relative to the photometric peak of several knots are listed in Table 2.

We adopt the nomenclature of Gallais et al. 1991, further extended by Elmegreen, Chromey and Warren 1993, for consistency. Note, however, that source 5 (location of SN 1968L, [Wood and Andrews 1974]) is resolved into two knots, 5a and 5b, by NICMOS, and source 6 (also referred to as source B by [Gallais et al. 1991]) also splits up into two sources 6a and 6b at HST resolution. Source 9 corresponds to compact emission $\sim2''$ north-west of source 5, which is only detected in the high resolution NICMOS images.

The H-K colours listed in table 3 have been corrected for a Galactic extinction corresponding to E(J-K) = 0.017 mag ([de Vaucouleurs et al. 1991]). Comparing the observed colours with those expected for an M type giant/super-giant population (H-K=0.25 [Koornneef 1983]), and assuming a screen model for dust extinction following the standard Galactic law ([Cox 2000]), we find that the extinction varies over a wide range within the nuclear region.

The nucleus and the southern part of the star forming arc appear only slightly extincted, with increasing extinction toward the south-west part of the star forming arc. Source 6 (10 micron source B) shows a very strong extinction gradient from 6a to 6b, leading us to postulate that we are only observing a small part of the star forming activity which occurs close to the near edge of the cloud. Source 8 (10 micron source A) shows the highest extinction toward the south-west part of the star forming arc. Source 8 (10 micron source A) shows the highest extinction, consistent with the conclusion of Gallais et al. 1991 that it is younger than B. Most of the region identified as the mid infrared bar by Gallais et al. 1991 is severely extincted (Av \sim 10 mag, see also Turner et al. 1987), including the location of the secondary nucleus. The high extinction is hiding most of the star formation activity within the bar from our view, even at near infrared wavelengths. The NICMOS Pa α image shows very strong emission all along the mid infrared bar, with a peak located

Table 2. Magnitudes and colors for emission peaks

Source name	ΔRA from 1	ΔDec from 1	m$_K$ (r=5 pix)	m$_H$ (r=5 pix)	Av
1	0''00	0''00	12.31	12.63	0.9
3	-0''039	-7''03	15.27	15.56	0.5
4	-0''359	-4''76	14.44	14.86	2.5
5a	-0''473	-4''00	13.40	13.83	2.6
5b	-0''521	-3''55	14.22	14.73	3.8
6a	-0''771	4''57	13.86	14.35	3.5
6b	-0''723	4''48	14.60	15.30	6.7
8	-0''595	1''86	14.59	15.45	9.2
9	-0''547	-2''40	14.03	14.44	2.3
10	-0''333	0''50	15.32	15.67	1.4
near source 10 (table 2), confirming the presence of a large number of ionizing photons within the region. The Pa α emission peak also corresponds to an H α peak observed in HST WFPC narrow band images (archival data, P.I. S. Heap, Proposal I.D. 1213). Ishizuki (1993) observed a large concentration of cold molecular gas (map published by Sofue and Wakamatsu 1994) in the nuclear region of M 83, with a peak located in the close vicinity of the mid infrared bar.

3.3.2. Equivalent width, age and luminosity

Amongst all the K band emission peaks identified by Gallais et al. 1991 and mentioned in table 2, only the nucleus (source 1) lies within our major and minor axis slits. We measure an equivalent width for the 12CO bandhead of 10.4±0.4 A at the nuclear location, using the range 2.2931 – 2.2933 μm, as defined by Kleinmann and Hall 1987 (also used by Origlia, Moorwood, and Oliva 1993). Origlia et al. (1993) derive a correction for the observed equivalent width as a function of the velocity dispersion of the source. We have carried out a similar calibration for the ISAAC spectra at R ~ 4750. We artificially broadened template star spectra using a Gaussian broadening function with widths varying from σ = 0 to 250 km s⁻¹. We then measured the CO equivalent width over the specified bandpass. A linear least squares fit to the observed variation of equivalent width with velocity dispersion yields

\[W_{\text{true}} = W_{\text{obs}} \times \left(1 + 1.91 \times 10^{-3} \sigma \right). \]

(1)

Our calibration does not show any flattening at low σ values, in contrast to the relationship derived by Origlia et al. (1993). We attribute their observed flattening to the lower resolution of their spectra, since a change in equivalent width would only occur if the broadening caused by the velocity dispersion is comparable to the intrinsic instrumental resolution. We derive a corrected nuclear equivalent width of 11.9±0.5 A, using our formula and the observed nuclear velocity dispersion (figure 1).

We used the population synthesis models by Kovo and Sternberg 1999 to estimate the age of the nuclear star formation activity. We assumed a single burst of star formation decaying exponentially with a scaling time to 10⁶ years, a Salpeter IMF from 1 to 100 M☉, and solar metallicity for the modeling. The observed CO equivalent width would correspond to a burst of star forming activity between 25 and 60 million years ago. The observed K band luminosity would correspond to a total cluster mass of 2.5 × 10⁶ M☉, assuming a distance to M 83 of 3.7 Mpc (de Vaucouleurs 1979). The nuclear K band light appears to be dominated by a population of giant stars. We repeated our analysis using the models of Leitherer 1993, obtaining similar results. The observed equivalent width at the secondary nucleus, corrected for velocity dispersion, is 11.9±0.5 A, indicative of a giant population with age similar to the visible nucleus.

The star forming arc, in contrast, shows a significantly higher CO equivalent width of 13.7±0.5 A. The velocity dispersion at this location 7” from the nucleus along the major axis slit is only 18 km s⁻¹, yielding a corrected value of 14.2±0.5 A. We conclude that the K band light from the star forming arc is dominated by super-giant stars, although we note that the photometric peak along our major axis slit lies between sources 4 and 5. The large equivalent width also implies a younger age of 10 million years for the starburst in the arc, assuming the same population synthesis model parameters as for the nucleus. The observed very low value of velocity dispersion within the arc is consistent with a picture in which the star forming activity within the arc is very young, and has not reached dynamical equilibrium with the gravitational potential of the galaxy. The K band light we observe is dominated by the super giant stellar population which has an internal velocity dispersion too small to be accurately measured at our instrumental resolution. Gallais et al. 1991 also confirm that the observed colours of the star forming arc are consistent with a reddened giant/supergiant population.

4. The nature of the second nucleus

The two peaks in the stellar velocity dispersion profile correspond to dynamically hot systems, if we assume that the stars used to trace the gravitational potential are dynamically relaxed. It is unlikely that we are seeing a very young (and potentially unrelaxed) star cluster, as the observed equivalent widths are those observed for giant rather than super-giant stars. In any case, a very young cluster would exhibit a very low velocity dispersion, in contrast to the observed peaks. A second possible mechanism to create such dynamical peaks without mass concentrations is via velocity anisotropy (orbit crowding or streaming motions), but such a large effect (FWHM ~ 175 km s⁻¹) has not been observed in any galaxy nucleus. M 83 is inclined at 24° to the plane of the sky, making it implausible for any rotation within the galactic plane to cause the observed peak (required deprojected velocity 430 km s⁻¹). We conclude that both peaks likely represent dynamically hot nuclei.

If we assume that the stellar system is an isothermal sphere, we derive an enclosed mass of 1.3 × 10⁷ M☉ within 5.4 pc, using the Jeans equation. The mass estimate is even higher if we use the Virial or Bahcall-Tremaine estimators for a system dominated by a point mass. The observed mass could be either in stars or a dark mass concentration. For the visible nucleus (K band photometric peak), we derive a mass estimate of 2.5 × 10⁶ M☉ for the stellar component, using population synthesis models. The rest of the mass could conceivably exist as a dark mass. A strong parallel may be drawn with the Milky Way, where Genzel et al. 1996 have observed a central dark mass of 2.8 × 10⁶ M☉, and the enclosed mass at a radius of 5 pc is 1.5 × 10⁷ M☉.
No such conclusion about the mass concentration at the second nucleus can be made, as it is substantially extincted and we are unable to make an accurate estimate of its intrinsic K band luminosity. However, we note that the location of the second nucleus coincides almost exactly with the center of symmetry of the outer isophotes of M83, which ought to represent the dynamical center of the galaxy.

Telesco et al. (1993) observe a bar like morphology of the mid infrared emission. Elmegreen et al. (1998), using extinction maps, argue for the presence of a bar within a bar, with the inner bar orthogonal to the outer one. Such structures have been predicted and observed in several galaxies (Maciejewski and Sparke 2000). However, in no case does the inner bar appear to be offset from the nucleus as it does in M83. Dynamical arguments would place the galaxy nucleus exactly along the inner bar, as is the case for the second nucleus observed by us. The outer dust ring seen by Elmegreen et al. (1998), possibly associated with the inner Lindblad resonance, also appears to be centered on the location of the second nucleus. The visible nucleus might, together with the star forming arc and source B, form a ring of star formation activity centered at the location of the second nucleus.

The nearest normal spiral galaxy, M31, also shows evidence for a double nucleus (Kormendy and Bender 1999). Statler et al. 1999, Bacon et al. 1994). While the nature and cause of the double nucleus is not well understood, transient phenomena, such as interaction with a companion, could be responsible (Bacon et al. 1994). Interaction between NGC 5253 and M83 has been postulated by Wolstencroft 1988, it could also be responsible for triggering the starburst activity in M83. The nuclear region is also a strong X ray source (Immler et al. 1999), although the spatial resolution available to date is inadequate to identify whether it is associated with either of the two dynamical peaks.

5. Conclusions

We have carried out medium resolution long slit spectroscopy along the major and minor axis of M83, covering the nuclear region. Using the deep, sharp CO bandhead features longward of 2.29\,\mu m, we have analyzed the dynamics of the stellar population in the nuclear region, measuring the recession velocity and velocity dispersion. The velocity dispersion profile shows two peaks, one located at the photometric peak of K band light, and the other offset 2.7 south west of it. Each of the two peaks imply an enclosed dynamical mass of $1.3 \times 10^7 \, M_{\odot}$ within 5.4 pc, if the stellar population is dynamically relaxed. The K band emission observed toward the photometric peak is dominated by light from giant stars, with ages between 25 and 60 million years, estimated using population synthesis models for an instantaneous burst. The estimated total mass of such a stellar cluster is $2.5 \times 10^6 \, M_{\odot}$.

The off-nuclear dynamical peak might correspond to a mass concentration located at the dynamical center of M83, as evidenced by the center of symmetry of stellar isophotes. Very little K band emission is observed at the location of the second nucleus. It is likely that it is hidden from our view by >10 magnitudes of extinction, since its position lies within a bar of mid-infrared emission and high extinction. We postulate that the bar represents gas flowing toward the dynamical center of the galaxy. Star formation triggered within the bar is likely responsible for the observed mid-infrared emission.

Acknowledgements. We would like to thank the ESO Paranal staff, especially Jean-Gabriel Cuby and Gianni Marconi, for extensive help with the ISAAC observations. The ESO La Silla and Garching staff deserve credit for carrying out the SOFI observing in service mode. We thank the referee for insightful comments. This research made use of the STSCI HST archive, the ESO ST-ECF archive, and the NED and SIMBAD databases. We thank them all for the support.

References

Anders, S., 1999, Ph.D. Thesis, Ludwig Maximilians Universit"at, Munich
Bacon, R., Emsellem, E., Monnet, G., and Nieto, J., 1994, A&A, 281, 691
Bender, R., 1990, A&A, 229, 441
Comte, G., 1981, A&AS, 44, 1981
Allen’s Astrophysical Quantities, 4th edition, ed. Cox, A. N., New York AIP Press, Springer, 2000
Devillard, N., 1999, in Proc. of Astronomical Data Analysis Software & Systems VIII, ASP Conference Series, 172, 333
de Vaucouleurs, G., 1979, AJ, 84, 1270
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H., Jr., Buta, R., Paturel, G., and Fouque, P., 1991, Third Reference Catalogue of Bright Galaxies, Springer, New York
Elmegreen, D. M., Chrome, F. R., and Warren, A. R., 1998, AJ, 116, 2834
Erwin, D., and Sparke, L., 1999, ApJ, 521, L37
Gallais, P., Ronan, D., Lacombe, F., Tiphene, D., and Vauglin, I., 1991, A&A, 243, 309
Genzel, R., Thatte, N., Krabbe, A., Kroker, H., and Tacconi-Garman, L. E., 1996, ApJ, 472, 153
Handa, T., Nakai, N., Sofue, Y., Hayashi, M., and Fujimoto, M., 1990, PASJ, 42, 1
Immler, S., Vogler, A., Ehle, M., and Pietsch, W., 1999, A&A, 352, 415
Ishizuki, S., 1993, Ph.D. Thesis, University of Tokyo
Kleinmann, and Hall, D., 1987, ApJS,
Kormendy, J., and Bender, R., 1999, ApJ, 522, 772
Koornneef, J., 1983, A&A, 128, 84
Leitherer, C. et al., 1999, ApJS, 123, 3
Maciejewski, W., and Sparke, L., 2000, MNRAS, 313, 745
Oliva, E., Origlia, L., Kotilainen, J., and Moorwood, A., 1995, A&A, 301, 55
Origlia, L., Moorwood, A., and Oliva, T., 1993, A&A, 280, 536
Puxley, P. J., Doyon, R., and Ward, M. J., 1997, ApJ, 476, 120
Rouan, D., et al., 1996, A&A, 315, L141
Sofue, Y., and Wakamatsu, K., 1994, AJ, 107, 1018
Statler, T., King, I., Crane, P., and Jedrzejewski, R., 1999, AJ, 117, 894
Kovo, O., and Sternberg, A., 1999, in preparation
Tecza, M., 1999, Ph.D. Thesis, Ludwig Maximilians Universität, Munich
Telesco, C. M., Dressel, L. L., and Wolstencroft, R. D., 1993, ApJ, 414, 120
Turner, J., Ho, P., and Beck, S., 1987, ApJ, 313, 644
van der Hulst, J., Terlouw, J., Begeman, K., Zwitser, W., and Roelfsema, P., 1992, in Proc. of Astronomical Data Analysis Software and Systems I, ASP Conference Series, 25, 131
Wolstencroft, R., 1988, in New Ideas in Astronomy, eds. Bertola, F., Sulentic, J., and Madore, B., Cambridge University Press, p. 79
Wood, R., and Andrews, P., 1974, MNRAS, 167, 13