Københavns Universitet

Chronic intrahypothalamic rather than subcutaneous liraglutide treatment reduces body weight gain and stimulates the melanocortin receptor system

Kaineder, K; Birngruber, T; Rauter, G; Obermüller, B; Eichler, J; Münzker, J; Al-Zoughbi, W; Mautner, S I; Torekov, Signe Sørensen; Hartmann, Bolette; Kotzbeck, P; Pieber, T R

Published in:
International Journal of Obesity

DOI:
10.1038/ijo.2017.98

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Kaineder, K., Birngruber, T., Rauter, G., Obermüller, B., Eichler, J., Münzker, J., ... Pieber, T. R. (2017). Chronic intrahypothalamic rather than subcutaneous liraglutide treatment reduces body weight gain and stimulates the melanocortin receptor system. DOI: 10.1038/ijo.2017.98
ORIGINAL ARTICLE

Chronic intrahypothalamic rather than subcutaneous liraglutide treatment reduces body weight gain and stimulates the melanocortin receptor system

K Kaineder1, T Birngruber2, G Rauter3, B Obermüller3, J Eichler4, J Münzker1, W Al-Zoughbi5, SI Mautner2, SS Torekov6, B Hartmann6, P Kotsbeck1 and TR Pieber1,2

BACKGROUND: The GLP-1 receptor agonist liraglutide is marketed for obesity treatment where it induces body weight reduction possibly via the hypothalamus, which regulates energy homeostasis. In animal studies, acute liraglutide treatment triggers satiety, weight loss and activates thermogenesis in adipose tissue. However, the precise mechanisms how liraglutide affects in particular chronic weight loss are still under investigation.

OBJECTIVES: We aimed to evaluate whether chronic hypothalamic or chronic subcutaneous administration of liraglutide induces sustained weight loss through altered adipose tissue function and to what extent hypothalamic neuronal appetite regulators are involved in the liraglutide-induced weight loss in healthy lean rats on a normal diet.

MATERIALS/METHODS: We continuously administered liraglutide either intrahypothalamically (10 μg per day) or subcutaneously (200 μg kg⁻¹ per day) for 28 days to lean Sprague Dawley rats (n = 8 each). We assessed changes in body weight, adipose tissue mass, adipocyte size and adipose tissue volume in the abdominal region by using micro-CT. We analyzed genetic expression patterns of browning, thermogenic and adipocyte differentiation regulators in adipose tissues as well as particular neuronal appetite regulators in the hypothalamus.

RESULTS: Intrahypothalamic liraglutide administration induced an 8% body weight reduction at day 9 compared with the control group (P < 0.01) and a 7% body weight loss at day 9 compared with subcutaneous liraglutide treatment (P < 0.01), supported by a significant reduction in adipose tissue mass and volume with intrahypothalamic liraglutide administration (P < 0.05). Our data show that chronic intrahypothalamic liraglutide treatment triggered an 18-fold induction of the hypothalamic mc4r gene (P < 0.01) accompanied by a significant increase in circulating thyroxine (T4) levels (P < 0.05).

CONCLUSIONS: Chronic intrahypothalamic liraglutide administration resulted in a profound reduction in body weight and fat mass loss most likely mediated by the hypothalamic melanocortin system rather than by adipose tissue browning or improved thermogenesis.

International Journal of Obesity (2017) 41, 1263–1270; doi:10.1038/ijo.2017.98

INTRODUCTION

Liraglutide is a long-acting GLP-1 receptor (GLP-1R) agonist and has been FDA and EMA approved for the treatment of obesity.1 Liraglutide lowers blood glucose levels by stimulating insulin secretion and by inhibiting glucagon secretion in a glucose-dependent manner.2 In addition to its glucoregulatory effects, liraglutide reduces caloric intake and subsequently leads to sustained but moderate weight loss.3 The glucoregulatory mechanisms of liraglutide are well known, but the mediating mechanisms underlying the anorectic and body weight-reducing effects are less clear.4 Acute central liraglutide treatment (24 h, ventromedial hypothalamic nucleus) in rodents has been shown to result in body weight loss independent of caloric intake. Body weight loss was attributed to the stimulation of thermogenesis in the brown adipose tissue (BAT) and browning of white adipose tissue (WAT) via the hypothalamic AMP-activated protein kinase pathway.5 Peripheral liraglutide administration led to a reduced ability to suppress food intake and maintain body weight in diet-induced obese mice with a GLP-1 receptor knockdown in the central nervous system.6 In addition, peripheral liraglutide administration in rats with pharmacological antagonized GLP-1 receptors in the brain resulted in a reduced ability to suppress food intake.7 A recent study more specifically identified POMC/CART neurons in the arcuate nucleus of the hypothalamus as the main mediators of weight-reducing effects after chronic peripheral liraglutide treatment.8 But peripheral administration of liraglutide often leads to only limited effects mediated in the brain because only small amounts of the large liraglutide–albumin complex can cross the blood–brain barrier.9 In humans, such a limited passive transport of peripherally administered liraglutide to the cerebrospinal fluid did not correlate with the observed weight loss.9

Combining the existing data, acute pharmacological interventions do not necessarily reflect the physiological, chronic regulation of feeding by the brain. A direct comparison of chronic

1Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; 2Joanneum Research, Health – Institute for Biomedicine and Health Sciences, Graz, Austria; 3Division of Biomedical Research, Medical University of Graz, Graz, Austria; 4Division of Biomedical Research, Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Graz, Austria; 5Institute of Pathology, Medical University of Graz, Graz, Austria and 6Department of Biomedical Sciences and The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark. Correspondence: Dr TR Pieber, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.

E-mail: endo@medunigraz.at

Received 22 December 2016; revised 29 March 2017; accepted 2 April 2017; accepted article preview online 25 April 2017; advance online publication, 16 May 2017
central and chronic peripheral liraglutide administration in a single study would help to link existing studies investigating either central or peripheral administration. Such comparative data on chronic central and peripheral effects of liraglutide are necessary to identify new pathways to improve the pharmacological benefits of chronic obesity treatment.

We aimed to evaluate whether chronic hypothalamic or chronic subcutaneous administration of liraglutide induces sustained weight loss through altered adipose tissue function and to what extent hypothalamic neuronal appetite regulators are involved in the liraglutide-induced weight loss.

MATERIALS AND METHODS

Animal models
Male Sprague Dawley rats (12–15 weeks old and weight matched; Charles River Laboratories, Sulzfeld, Germany) were housed under conditions of controlled temperature (23 °C) and a 12 h light/dark cycle. The rats had ad libitum access to water and standard laboratory diet. Immediately after the rats were killed by rapid decapitation, tissue samples (hypothalamus, brown and white adipose tissue) were removed, frozen in liquid nitrogen and kept at −80°C until further analysis. All animal experiments were approved by the Austrian Federal Government (BMWF-66.010/0010-WP/N/3b/2015) and were performed in accordance with Directive 2010/63/EU on the protection of animals used for scientific purposes.

Study design
The study design (non-blinded) was based on four groups (each n = 8). Two groups received treatment (liraglutide) either intrahypothalamically (central) or subcutaneously (peripheral) and two groups received placebo (artificial cerebrospinal fluid (aCSF)) or 0.9% NaCl). Again either intrahypothalamically or subcutaneously. Group 1: intrahypothalamic liraglutide; group 2: intrahypothalamic vehicle (aCSF); group 3: subcutaneous liraglutide; group 4: subcutaneous vehicle (NaCl). Group 2 and group 4 were treated with placebo served as control groups.

To determine the acute (24 h) effects of liraglutide on body weight, adipose tissue mass and gene expression patterns (hypothalamus, WAT and BAT), liraglutide (10 μg per animal) or aCSF (2 μl) were injected just above the dorsal part of the paraventricular nucleus (stereotactic coordinates: anteroposterior: 1.7 mm, mediolateral: 0.6 mm, dorsoventral: 7.6 mm). For chronic administration, the rats were continuously treated for 28 days with either 10 μg per day per animal intrahypothalamic liraglutide or with 200 μg kg⁻¹ per day subcutaneous liraglutide via osmotic pumps. The administered dose of intrahypothalamic liraglutide was chosen on its ability to significantly inhibit feeding and induce body weight loss.8 The dose of subcutaneous administration was chosen to differentiate between the effect of peripheral (subcutaneous) and central (intrahypothalamic) liraglutide.

Implantation of osmotic pumps
Before implantation, rats were individually placed in an anesthesia induction chamber (Rothacher, Heitenried, Switzerland) induced with 4 vol% isoflurane (Isloflo, Esteve Farma, Carnaxide, Portugal) in 100% oxygen with a delivery rate of 5 l min⁻¹ until loss of righting reflex. The rats were anesthetized using 0.1 mg kg⁻¹ of an injectable anesthetic (0.5 mg kg⁻¹ midazolam, 5 μg kg⁻¹ fentanyl, 5 mg kg⁻¹ medetomidin; 1 ml per 1 kg body weight; ERVO Pharma GmbH, hameln pharma plus GmbH, Vienna, Austria). Anesthesia was maintained with isoflurane in 100% oxygen at a flow of 1.5 l min⁻¹. For 28 days continuous drug administration, we chose the pump models 2ML4 (1997.2 μl fill volume, 2.55 μl h⁻¹ flow rate) for subcutaneous and the model 2004 (234 μl fill volume, 0.22 μl h⁻¹ flow rate) for intrahypothalamic administration (ALZET Direct, Cupertino, CA, USA). Osmotic pumps were implanted according to the manufacturer’s instructions by creating a pocket at the midsapricular region using a hemostat and inserting the filled pump in the pocket.

Implantation of intrahypothalamic cannula
The induction of anesthesia for stereotactic surgery was the same as for the implantation of osmotic pumps as described above. Stereotactic surgery and postsurgical pain control was performed as previously described.12 The brain cannula (PlasticsOne, Bilaney Consultants, Düsseldorf, Germany) was implanted just above the dorsal part of the paraventricular nucleus (stereotactic coordinates: anteroposterior: 1.7 mm, mediolateral: 0.6 mm, dorsoventral: 7.6 mm). For intrahypothalamic administration, the cannula was connected to the osmotic pump that was filled with liraglutide (1.91 μg h⁻¹; Novo Nordisk, Bagsværd, Denmark) dissolved in aCSF (Harvard Apparatus, March-Hugstetten, Germany). The coordinates were histologically verified after injection of 1% Evans Blue dye and spectrophotometrically by analyzing sodium fluorescein dye in hypothalamic tissues (Supplementary Material).

Assessment of body weight, adipose tissue mass and size
Body weight was continuously assessed on a precise laboratory scale (Competence CP3205-OCE, Sartorius AG, Göttingen, Germany). After 28 days, the rats were killed and freshly excised adipose tissue depots (inguinal WAT, epidydymal WAT, interscapular BAT) were isolated and weighed on an analytical balance (M-Power AZ214, Sartorius AG, Göttingen, Germany). Epidydymal (eWAT) and inguinal (iWAT) white adipose tissue and interscapular brown adipose tissue (iBAT) were isolated, fixed in 4% paraformaldehyde overnight at room temperature and embedded in paraffin. The embedded tissues were cut in 5 μm-thick sections and stained with hematoxylin and eosin. The adipose tissue sections were evaluated using the Olympus BX51 microscope and representative areas from these sections were captured using the Olympus camera 4A14690. The images were acquired with a standard v x20 microscope objective lens. The imaging area was selected according to a high prevalence of adipocytes with an intact cell membrane and minimal adjacent tissues such as blood vessels, muscle and inflammatory cells. Adipocytes with unclear cell borders were excluded from the analysis. Image annotation was performed manually by using the Olympus analySIS five software and the mean adipocyte size was calculated for each type of adipose tissue.

Assessment of visceral and subcutaneous adipose tissue volume
Abdominal adipose tissue volumes of visceral and subcutaneous depots were measured with a micro-CT scanner (Siemens Inveon micro-CT, Siemens Healthcare GmbH, Erlangen, Germany; energy settings: 200 mA, 80 kV, 1200 ms) with Siemens Inveon Acquisition Workplace software (version 1.2.2.2) before (baseline) drug treatment and after 28 days of chronic infusion of liraglutide or vehicle. Data were reconstructed using filtered back projection and algorithm of Feldkamp in Siemens Inveon Acquisition workplace. The reconstructed data sets were exported to DICOM format using Siemens Inveon Research Workplace and post processed regarding adipose tissue volumes using Materialise MIMICS v.19 (Materialise, Leuven, Belgium). We focused on the abdominal region, as scanning the abdominal adipose depots provides sufficient information to estimate the total body fat and monitor site-specific changes in adiposity and reduces scanning time.13

RNA isolation, complementary DNA transcription and reverse-transcribed-quantitative PCR
QiAzoL RNeasy Reagent (QIAGEN GmbH, Hilden, Germany) was used for tissue lysis. The total RNA content was isolated from homogenized adipose and hypothalamic tissue by using the RNeasy Mini Kit (QIAGEN GmbH, Hilden, Germany) including on-column DNasel treatment. RNA quantity was measured on NanoDrop (NanoDrop 2000c, ThermoFisherScientific GmbH, Vienna, Austria) and 1 μg total RNA was reverse transcribed to cDNA by using the Script advanced cDNA synthesis kit (Bio-Rad Laboratories, Vienna, Austria). Gene expression analysis via quantitative PCR was performed using TaqMan Universal PCR Master Mix (Life Technologies, Carlsbad, CA, USA) or LightCycler 480 SYBR Green I Master Mix (Roche, Vienna, Austria) according to the manufacturer’s instructions on a Roche LightCycler 480 Instrument (Roche Austria, Vienna, Austria). The sequences of primers and probes are listed in the Supplementary Material.

Measurement of metabolic and hormonal parameters
Plasma glucose levels were assessed by using the Accu-Check Performa System (Roche Diabetes Care Austria GmbH, Vienna, Austria). Non-esterified free fatty acids (NEFA) were measured via the enzymatic colorimetric NEFA-HR22 assay kit (Wako Diagnostics, Richmond, VA, USA). Plasma-free glycerol content was colorimetrically quantified using free glycerol reagent (Sigma Aldrich, Vienna, Austria). Plasma triglyceride concentrations were analyzed by using the Infinity Triglyceride Assay (ThermoScientific, Vienna, Austria). Circulating leptin, insulin, thyroxine, and corticosterone blood levels were analyzed by using the Lowners ELISA kit (HypoMetabolism, Vienna, Austria) and the Corticosterone EIA kit (HypoMetabolism, Vienna, Austria).
(T3) and thyroxine (T4) concentrations were measured with the Mesoscale Multiplex Array Elisa System (Mesoscale Diagnostics, Rockville, MD, USA). All the measurements were performed according to the manufacturer’s instructions.

Statistical analysis
The data are expressed as mean ± s.d. compared with the corresponding control or treatment group. The sample size was chosen based on published study design and to perform descriptive statistics. Shapiro–Wilk test was used to scrutinize normality. Either unpaired Student’s two-tailed t-test or Mann–Whitney U-test were used to determine statistical significance of data comparing the two groups. Subsequently, the P-values were corrected for multiple testing using the Benjamini–Hochberg procedure. To determine equality of variances between and within subjects, Levene’s and Mauchley’s sphericity tests with Greenhouse–Geisser correction were used. For repeated body weight measurements, we used two-way repeated-measures mixed-model analysis of variance plus Bonferroni and Mauchley’s sphericity tests with Greenhouse–Geisser correction were used. The calculations were performed in GraphPad Prism Mac 5.0b (La Jolla, CA, USA) and SPSS Statistics 23 (IBM, Ehningen, Germany). Relative gene expression levels (messenger RNA (mRNA)) were analyzed using the 2−ΔΔCt method.14

RESULTS
Central chronic liraglutide treatment reduces body weight gain and promotes adipose tissue mass reduction
Intrahypothalamic treatment resulted in a significant body weight loss of 4% at day 7 (P < 0.05) and 5% at day 9 (P < 0.05) compared with baseline. Compared with the control group (intrahypothalamic vehicle), chronic intrahypothalamic liraglutide treatment significantly reduced body weight gain by 6% at day 7 (P < 0.05), 8% at day 9 (P < 0.01), 6% at day 14 and day 16 (P < 0.05; Figure 1a). A 3% reduction in body weight gain was maintained from day 21 to day 28 compared with intrahypothalamic control group (Figure 1a). Intrahypothalamic liraglutide-treated rats had significantly reduced epididymal and inguinal fat mass compared with the control group (P < 0.05; Figure 1b). Chronic peripheral (subcutaneous) administration of liraglutide did neither affect body weight (Figure 1c), nor did it reduce adipose tissue mass (Figure 1d). Compared with the subcutaneous liraglutide treatment group, chronic intrahypothalamic liraglutide treatment induced a significant body weight loss at day 9 (P < 0.001), at day 14 and 16 (P < 0.01), at day 23 and 28 (P < 0.05; Figure 1e). Intrahypothalamic liraglutide treatment resulted in a significant reduction of inguinal white and interscapular brown adipose tissue compared with subcutaneous liraglutide treatment (P < 0.01; Figure 1f).

Central chronic liraglutide treatment reduces brown adipocyte size
Brown adipocytes were significantly smaller with chronic intrahypothalamic liraglutide administration compared with the control group (P < 0.05; Figures 2a and b). We found a trend towards reduced adipocyte size in eWAT and iWAT (Figure 2a).

Central chronic liraglutide treatment reduces visceral adipose tissue gain
After 28 days of intrahypothalamic liraglutide treatment, we found a significant decrease of visceral adipose tissue compared with the control group (P < 0.05; Figure 3a). The subcutaneous adipose tissue volume showed a trend towards reduced adipose tissue volume gain by intrahypothalamic liraglutide treatment (Figure 3b) compared with intrahypothalamic vehicle group.

DISCUSSION
This study aimed to identify differential effects of chronic central and peripheral liraglutide treatment. Central application of liraglutide induced a significant body weight loss and overall reduction in body weight gain, which was supported by a significant loss of adipose tissue mass and reduction in visceral adipose tissue gain. Furthermore, chronic intrahypothalamic liraglutide treatment led to a significant activation of hypothalamic mc4r gene expression and a significant increase in plasma T4 concentrations.

A significant reduction of body weight gain during the first 16 days of intrahypothalamic liraglutide treatment was observed. The body weight remained lower in the liraglutide-treated group during the last week of treatment. We found that intrahypothalamic liraglutide treatment induced a significant body weight loss from day 9 to day 28 and a significant loss in adipose tissue deposits (iWAT, IBAT) after 28 days compared with subcutaneous liraglutide treatment. This is the first study on chronic intrahypothalamic treatment in animal trials but the acute studies...
In contrast to acute rat studies with central liraglutide administration,17,18 we showed that chronic (28 days) rather than acute (24 h) intrahypothalamic liraglutide treatment led to a reduction in body weight gain (Supplementary Material). The body weight regain at the end of our study (28 days) could be caused by GLP-1 receptor desensitization (tachyphylaxis) on continuous stimulation19 supported by the unchanged GLP-1R expression in the hypothalamus in our study after chronic intrahypothalamic liraglutide administration. Other physiological mechanisms such as reduced energy expenditure, increased appetite seen as an increase in ghrelin,20 reduced satiety or a reduction in plasma

Figure 1. Central IH administration of liraglutide leads to reduced overall body weight gain and adipose tissue mass reduction. (a) Reduced body weight gain over 28 days triggered by continuous IH administration of liraglutide (IH 10 μg per day) compared with the corresponding control group (vehicle, aCSF) interaction P = 0.0025, time P < 0.0001, treatment P < 0.0210. (b) Reduced adipose tissue weights from eWAT, iWAT and iBAT depots after 28 days of IH liraglutide administration. (c) No change in body weight from baseline to day 28 triggered by continuous SC administration of liraglutide (200 μg.kg⁻¹ per day) compared with corresponding control group (vehicle, 0.9% sNaCl) interaction P = 0.3379, time P < 0.0001, treatment P = 0.0295. (d) No change in adipose tissue weights from eWAT, iWAT and iBAT depots after 28 days of SC liraglutide administration. (e) Reduced body weight over 28 days after chronic IH liraglutide treatment compared with SC liraglutide treatment. Interaction P = 0.0010, time P < 0.0001, treatment P = 0.0024. (f) Reduced adipose tissue weights from eWAT, iWAT, iBAT after 28 days of IH liraglutide versus SC liraglutide administration. Data are given as mean ± s.d. of seven to eight animals per group. (*P < 0.05, **P < 0.01, ***P < 0.001). IH, intrahypothalamic; SC, subcutaneous.
leptin could be further explanations for the observed body weight regain.21–24 As we investigated the liraglutide effects in a healthy lean animal model without leptin resistance, an observed trend towards reduced plasma leptin levels after chronic intrahypothalamic treatment could be responsible for the body weight regain, as this reduction has been suggested to increase caloric intake.21,24 Thus, the body weight regain seems to be a natural protective counter-regulatory physiological response after weight loss, also seen in humans.3

In humans, 3 mg liraglutide causes a moderate weight loss of 6–8 kg in obese individuals with slight weight regain.3,4 Our animal study did not result in any reduction in body weight gain after subcutaneous chronic administration of liraglutide while similar subcutaneous liraglutide treatment has led to anorectic effects and body weight loss in diet-induced obese rats on high-fat diet.8 A more pronounced anorectic effect can be expected in such high-fat diet studies25,26 compared with our study design with lean rats on normal diet with the primary aim to test liraglutide effects in a healthy animal model.

Furthermore, the anorectic effect and body weight loss are affected by the liraglutide dosing regimen,3,27,28 the maximum dose of liraglutide used as obesity treatment is 3 mg, whereas...
1.2 mg or 1.8 mg are used for the treatment of type 2 diabetes. Such high dosing is necessary to decrease the caloric intake and reduce body weight compared with lower dosing, which is already sufficient to increase insulin secretion and lower blood glucose levels. Considering the measured liraglutide concentration in plasma on day 28 (2000 pmol l\(^{-1}\) ± 975), we assume that the continuous subcutaneous dosing of liraglutide in our study was not effective enough to stimulate the hypothalamic GLP-1 receptor to trigger body weight loss compared with a more effective bolus administration in other studies.\\(^{8,28}\)

Our combined results on body weight gain and adipose tissue reduction indicate that liraglutide exerts its body weight-reducing effects more potently via central rather than peripheral mechanisms. A recent 24 h study associated the acute administration of liraglutide with increased thermogenesis in brown adipose tissue and browning and of white adipose tissue through the AMP-activated protein kinase pathway in the ventromedial hypothalamus independent of food intake.\\(^{8}\) We found no significant changes in gene expression levels regarding the brown adipocyte marker \(ucp1\), transcription factors for browning/beiging (\(prdm16, ppargc1a\)), browning/beiging-enriched markers (\(cidea, cidec, tnfsf9, zic1, adrb1\)) and browning/beiging activators (\(fgf21, bmp7\)).\\(^{29-33}\) Our study does not support the involvement of increased thermogenic or browning capability in liraglutide-induced weight loss but this could be due to differences in the delivery site.\\(^5\) Several animal and human studies have attributed the weight-reducing effects mediated by GLP-1R agonists to caloric intake rather than to increased energy expenditure,\\(^{6,8,34,35}\) but our study was not designed to address this difference in more detail.

Figure 4. Central intrahypothalamic (IH) administration of liraglutide neither induces browning nor thermogenesis. (a) Relative mRNA levels (fold changes) in eWAT in IH liraglutide treatment (28 days) compared with control group (vehicle, aCSF). (b) Relative mRNA levels (fold changes) in iWAT of IH 28 days liraglutide treatment compared with control group (vehicle, aCSF). (c) Relative mRNA levels (fold changes) in iBAT of IH 28 days liraglutide treatment compared with control group (vehicle, aCSF). Rpl4 and PPla were used as reference genes. Data are given as mean±s.d. of seven to eight animals per group.

Table 1. Central IH administration of liraglutide increases circulating T4 concentration

IH vehicle	IH liraglutide (10 µg per day)	SC vehicle	SC liraglutide (200 µg kg\(^{-1}\) per day)	
FG (µmol ml\(^{-1}\))	13.21 ± 2.94	13.43 ± 2.73	11.98 ± 1.54	11.39 ± 1.71
NEFA (µmol ml\(^{-1}\))	14.67 ± 4.14	15.54 ± 5.4	15.85 ± 5.0	17.76 ± 5.77
TAG (µmol l\(^{-1}\))	0.08 ± 0.02	0.08 ± 0.03	0.10 ± 0.03	0.10 ± 0.04
Leptin (ng ml\(^{-1}\))	25.20 ± 14.0	14.96 ± 13.54	8.20 ± 5.74	8.18 ± 5.48
Insulin (ng ml\(^{-1}\))	1.71 ± 0.61	1.23 ± 0.45	1.24 ± 0.57	1.07 ± 0.12
Glucose (mmol l\(^{-1}\))	7.04 ± 0.33	7.29 ± 0.69	7.90 ± 0.63	6.56 ± 0.89
T3 (ng dl\(^{-1}\))	24.35 ± 5.6	25.95 ± 7.3	24.99 ± 8.6	24.34 ± 7.8
T4 (ng dl\(^{-1}\))	57.78 ± 8.2	80.61 ± 23.3*	61.0 ± 12.6	58.42 ± 14.8
TSH (ng ml\(^{-1}\))	1.20 ± 0.30\(^a\)	1.12 ± 0.35\(^a\)	1.75 ± 1.20\(^a\)	1.20 ± 0.31\(^a\)

Abbreviations: FG, free glycerol; NEFA, non-esterified fatty acids; T3, triiodothyronine; T4, thyroxine; TAG, triglyceride; TSH, thyroid-stimulating hormone. *TSH levels are only measured for day 21 due to lack of samples. Circulating plasma levels of markers for glucose metabolism (glucose, insulin), lipid metabolism (leptin, NEFA, TAG, FG) and thyroid hormones (T3, T4) at day 28 after chronic intrahypothalamic (IH; 10 µg per day) and subcutaneous (SC; 200 µg kg\(^{-1}\) per day) liraglutide treatment. Data are given as mean ± s.d. of seven to eight animals per group (\(^*\)p < 0.05). Italic values are indicate a different time point of TSH measurements compared to the other plasma hormone levels.
Similar to the reduction in body weight gain, the chronic intrahypothalamic liraglutide treatment in our study led to a sustained reduction of eWAT and iWAT mass as well as a reduced gain in visceral adipose tissue volume, but we found no such effect after subcutaneous liraglutide administration. White adipocytes showed a trend towards reduced size in eWAT and iWAT after intrahypothalamic liraglutide administration. IBAT mass was unaffected, whereas iBAT adipocytes were significantly reduced in size after chronic intrahypothalamic liraglutide treatment. A previous study using acute liraglutide treatment in diet-induced obese mice attributed a 14-day fat mass reduction to central GLP-1 receptor signaling, which supports our assumption that the reduction in visceral adipose tissue is mainly mediated by hypothalamic neural mechanisms as indicated by the clear difference between the effects of intrahypothalamic and subcutaneous liraglutide administration found in our study.

Hormonal parameters for glucose metabolism and fatty acid metabolism were largely unaffected by chronic intrahypothalamic liraglutide treatment except a significant increase in circulating T4 concentrations. In humans, weight loss and maintenance of body weight have been associated with increased peripheral conversion of T4 to the bioactive enantiomer reverse T3, but we found no changes in the expression of type II iodothyronine deiodinase (DIO2) in IBAT (data not shown), which is required for the intracellular conversion of T4 to T3. We also tested the effect of chronic intrahypothalamic liraglutide treatment on neuronal centers known to regulate caloric intake and energy homeostasis. In contrast to other studies, we observed no change in the hypothalamic mRNA content of orexigenic (agp) or anorexigenic (pomc) neurons, but we found a significant 18-fold induction of mc4r mRNA in the hypothalamus after 28 days of intrahypothalamic liraglutide administration. These results indicate an alternative pathway for liraglutide to activate the anorectic MC4R was beside the previously described POMC/CART produced melanocyte-stimulating hormone α-MSH signaling in the hypothalamus. To our knowledge, we are first to show that continuous, chronic liraglutide administration in the hypothalamus leads to a significant activation of the MC4R. Recently, a 5-day combination therapy including the MC4R agonist RM-493 and liraglutide in diet-induced obese mice showed improved body weight and fat mass reduction compared with monotherapy. There is also evidence that the melanocortin signaling is involved in the reward system, which was previously shown with monotherapy. There is also evidence that the melanocortin agonist RM-493 and liraglutide in diet-induced obese mice showed improved body weight and fat mass reduction compared with monotherapy.

We conclude that continuous chronic intrahypothalamic liraglutide treatment rather than peripheral administration leads to an improvement in terms of reduced body weight and adipose tissue weight and unchanged metabolic regulators. The activation of the anorectic MC4R mechanism shows that liraglutide is a potent regulator of energy homeostasis and that there is an alternative pathway to stimulate the melanocortin system other than POMC/Cα-MSH. Identification of novel anorectic targets in the hypothalamus triggering the melanocortin system and its downstream system can help to develop safer low-dose combination therapies to reduce side effects and improve the chronic response and metabolic control.

Follow-up studies will help to disclose new targets linking the melanocortin and thyroid systems responsible for the chronic effects of liraglutide and consequently new therapies for obesity treatment.

CONFLICT OF INTEREST

SST has financial holdings in Novo Nordisk. The remaining authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This study was funded by the Medical University of Graz through the PhD Program Molecular Fundamentals of Inflammation (DK-MOLIN) via the Austrian Science Fund (FWF, project number W1241). We thank the supporting team members of the Medical University of Graz, in particular, Kaddour Bounab and Verena Zachhuber.

REFERENCES

1. FDA. FDA approves weight-management drug Saxenda, 2014. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427913.htm.
2. Degrange J, Juhl CB, Sturis J, Jakobsen G, Brock B, Chandramouli V et al. One week's treatment with the long-acting glucose release in patients with type 2 diabetes. Diabetologia 2004; 53: 1187–1194.
3. Astrup A, Rössner S, Van Gaal L, Niskanen L, Al Hakim M et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 2009; 374: 1606–1616.
4. Iepsen EW, Torekov SS, Holst JJ. Liraglutide for Type 2 diabetes and obesity: a 2015 update. Expert Rev Cardiovasc Ther 2015; 13: 753–767.
5. Bieroa D, Imbemon M, Gallego R, Senra A, Herranz D, Villarroya F et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 2014; 63: 3346–3358.
6. Siely S, Gutierrez-Aguilar R, Scott M, D’Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest 2014; 124: 2456–2463.
7. Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 2011; 152: 3103–3112.
8. Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, Dalborge LS et al. The arcuate nucleus mediates GLP-1 receptor agonist anorexigenic effects in human. J Clin Invest 2012; 124: 4223–4226.
9. Christensen M, Sparell-Ulrich AH, Hartmann B, Grevstad U, Rosenkilde MM, Holst JJ et al. Transfer of liraglutide from blood to cerebrospinal fluid uId is minimal in patients with type 2 diabetes. Int J Obes 2015; 39: 1651–1654.
10. Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 1997; 138: 4445–4455.
11. Tang-Christensen M, Larsen PJ, Gjøk R, Fink-Jensen A, Jessop DS, Moller M et al. Central administration of food and water intake of GLP-1 (7–36) in rats amide inhibits food and water intake in rats. Am J Physiol 1996; 271: R848–R856.
12. Birnbruger T, Ghosh A, Hochmeister S, Asslaber M, Kroath T, Pieber TR et al. Long-term implanted COFM probe causes minimal tissue reaction in the brain. PLoS One 2014; 9: 1–7.
13. Judex S, Luu YK, Oz civici E, Adler B, Lublinsky S, Rubin CT. Quantification of adiposity in small rodents using micro-CT. Methods 2010; 50: 243–251.
14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and. Methods 2001; 25: 402–408.
15. Siely S, Smith K, Sandoval DA, Seeley RJ. Differences in acute anorectic effects of long-acting GLP1R agonists in rats. Peptides 2014; 58: 1–6.
16. Meeran K, Shea DO, Edwards CMB, Tortun MD, Heath MM, Gunn I et al. Repeated intracerebroventricular administration of GLP-1 or exendin alters body weight in the rat. Endocrinology 1999; 140: 244–250.
17. Tortun MD, O’Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K et al. A role for GLP-1 in the central regulation of feeding. Nature 1996; 379: 69–72.
18. Donahye JC, van Dijk G, Woods SC, Seeley RJ. Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res 1998; 779: 75–83.
19. Nauck MA, Kemmeries G, Holst JJ, Meier JJ. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 2011; 60: 1561–1565.
20. Iepsen EW, Lunding J, Holst JJ, Madsbad S, Torekov SS. Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3-36. Eur J Endocrinol 2016; 174: 775–784.
21. Meeran E, Lunding J, Dirksen C, Jensen J, Pedersen O, Hanssen T et al. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int J Obes 2014; 39: 1–8.
22. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365: 1597–1604.
23. Rehbaum M, Leibl RL. Adaptive thermogenesis in humans. Int J Obes 2010; 34: 47–55.
24. Kissileff HR, Thornton JC, Torres MI, Pavlovich K, Mayer LS, Kaliar V et al. Leptin reverses declines in satiation in weight-reduced obese humans. Am J Clin Nutr 2012; 95: 309–317.
Chronic effects of liraglutide on body weight

K Kaineder et al

25 Alhadeff AL, Baird J-P, Swick JC, Hayes MR, Grill HJ. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. *Neuropsychopharmacology* 2014; 39: 2233–2243.

26 Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. *Endocrinology* 2012; 153: 647–658.

27 Hayes MR, Kanoski SE, Alhadeff AL, Grill HJ. Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats. *Obesity* 2011; 19: 1342–1349.

28 Jelsing J, Vrang N, Hansen G, Raun K, Knudsen LB. Liraglutide: short-lived effect on gastric emptying—long lasting effect on body weight. *Diabetes Obes Metab* 2012; 14: 531–538.

29 Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. *Nat Med* 2013; 19: 1252–1263.

30 Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. *J Clin Invest* 2011; 121: 96–105.

31 Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang A et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. *Cell* 2013; 150: 366–376.

32 Kopecky J, Clarke G, Enerbäck S, Spiegelman B, Kozak LF. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. *J Clin Invest* 1995; 96: 2914–2923.

33 Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epidemiologically derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. *J Biol Chem* 2010; 285: 7153–7164.

34 Can J, Sloth B, Jensen C, Flint A, Blaak E, Saris W. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. *Int J Obes* 2013; 38: 784–793.

35 Flint A, Raben A, Rehfeld JF, Holst JJ, Astrup A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. *Int J Obes* 2000; 24: 288–298.

36 Rosenbaum M, Hirsch J, Murphy E, Leibel RL. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. *Am J Clin Nutr* 2000; 71: 1421–1432.

37 Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. *Diabetes* 2012; 61: 2753–2762.

38 Adan RA, Cone RD, Burbach JP, Gispren WH. Differential effects of melanocortin peptides on neutral melanocortin receptors. *Mol Pharmacol* 1994; 46: 1182–1190.

39 Caruso C, Camiglia L, Durand D, Gonzalez PV, Scimonelli TN, Lasaga M. Melanocortin 4 receptor activation induces brain-derived neurotrophic factor expression in rat astrocytes through cyclic AMP - Protein kinase A pathway, *Mol Cell Endocrinol* 2012; 348: 47–54.

40 Ramirez D, Saba J, Camiglia L, Durand D, Lasaga M, Caruso C. Melanocortin 4 receptor activates ERK-c-fos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus. *Mol Cell Endocrinol* 2015; 411: 28–37.

41 Clemmensen C, Finan B, Fischer K, Tom RZ, Legutko B, Seherer L et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. *EMBO Mol Med* 2015; 7: 288–298.

42 Tapinc DE, Ilgin R, Kaya E, Gozen O, Uğur M, Köyü EO et al. Gene expression of pro-opiomelanocortin and melanocortin receptors is regulated in the hypothalamus and mesocorticollimbic system following nicotine administration. *Neurosci Lett* 2016; 24: 30901–30906.

43 Boghossian S, Park M, York DA. Melanocortin activity in the amygdala controls appetite for dietary fat. *Am J Physiol Regul Integr Comp Physiol* 2010; 298: R385–R393.

44 Raun K, Voss P, Gof fredsen CF, Golo zozoubova V, Rolin B, Knudsen LB. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vir daglaptin, does not. *Diabetes* 2007; 56: 8–15.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/