Quaternionic metamonogenic functions in the unit disk

J. Moraisa and R. Michael Porterb

aDepartment of Mathematics, ITAM, Río Hondo #1, Col. Progreso Tizapán, 01080 Mexico City, Mexico.
E-mail: joao.morais@itam.mx

bDepartment of Mathematics, CINVESTAV-Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla. Santiago de Querétaro, C.P. 76230 Mexico

Abstract

We construct a set of quaternionic metamonogenic functions (that is, in $\text{Ker}(D + \lambda)$ for diverse λ) in the unit disk, such that every metamonogenic function is approximable in the quaternionic Hilbert module L^2 of the disk. The set is orthogonal except for the small subspace of elements of orders zero and one. These functions are used to express time-dependent solutions of the imaginary-time wave equation in the polar coordinate system.

Keywords: Quaternionic analysis, Bessel functions, quaternionic functions, Moisil-Teodorescu operator.

1 Introduction

We consider the first-order partial differential quaternionic operator (sometimes called the Moisil-Teodorescu operator) $D + \lambda$ ($\lambda \in \mathbb{R} \setminus \{0\}$) in planar domains, where

$$D = \frac{\partial}{\partial x}i + \frac{\partial}{\partial y}j. \quad (1)$$

Here i and j are two of the three basic quaternionic units, and the Dirac operator D acts on the left on smooth quaternion-valued functions of a complex variable $z = x + iy$. This is a special case of Clifford-type operators for which there is a vast literature covering functions defined on spaces of diverse dimensions, beginning with W. Hamilton [14], continued by R. Fueter [7, 8] and followed by many others including [1, 2, 4, 5, 6, 12, 13, 19].

Functions defined in \mathbb{R}^2 taking values in Clifford algebras of dimension > 2 have been relatively less investigated. The case $\mathbb{R}^2 \rightarrow \mathbb{R}^4 \cong \mathbb{H}$ was considered
in [17], where a detailed investigation of $D + \lambda$ was carried out for quaternion-valued functions in the particular situation of elliptical domains. In [20], the authors constructed a one-parameter family of reduced quaternion-valued (\mathbb{R}^3-valued) functions of a pair of real variables lying in an ellipse, termed λ-metamonogenic Mathieu functions. Returning to the context $\mathbb{R}^2 \rightarrow \mathbb{H}$, we consider here the case of functions defined in the unit disk employing Bessel functions of the first kind in place of Mathieu functions. We produce a set of metamonogenic functions (that is, in $\text{Ker}(D + \lambda)$ for diverse λ), which is orthogonal in the unit disk for orders ≥ 2 and in a certain sense complete in $\text{Ker}(D + \lambda) \cap L^2$ for every λ. As an application, in the final section we use these functions to express time-dependent solutions of the imaginary-time wave equation in the disk.

2 Preliminaries

2.1 Metamonogenic functions

We consider the quaternionic operator D defined by (1). This is interpreted as follows, in fairly standard notation and terminology, in which $z = x + iy$ is a complex number, and a quaternion $a = a_0 + a_1i + a_2j + a_3k$. Here $a_m \in \mathbb{R}$ and i, j, k are the quaternionic imaginary units satisfying $i^2 = j^2 = k^2 = ijk = -1$. The set of real quaternions $\mathbb{H} = \mathbb{H}(\mathbb{R})$ is naturally identified with \mathbb{R}^4, which determines the usual component-wise addition and also induces the absolute value on \mathbb{H}. Thus D acts on \mathbb{H}-valued functions

$$f(x, y) = f_0(x, y) + f_1(x, y)i + f_2(x, y)j + f_3(x, y)k,$$

defined in domains in the complex plane \mathbb{C} applying the quaternionic multiplication rules, in principle, on the left or right, giving Df or fD. We will only consider the operator acting from the left, as the other case is analogous.

Let Ω be a domain in \mathbb{R}^2 (open and connected). Let $L^2(\Omega) = L^2(\Omega, \mathbb{H})$ denote the space of all \mathbb{H}-valued functions $f: \Omega \rightarrow \mathbb{H}$ such that the components f_m ($m = 0, 1, 2, 3$) are in the usual $L^2(\Omega, \mathbb{R})$. It is easily seen that $L^2(\Omega)$ is naturally a right \mathbb{H}-linear module and admits the \mathbb{H}-valued right inner product

$$\langle f, g \rangle_{\mathbb{H}} = \int_{\Omega} f(x, y) g(x, y) dxdy$$

(2)
for \(f, g \in L^2(\Omega) \). Thus \(L^2(\Omega) \) is a quaternionic right Hilbert module with the associated norm \(\|f\|_2 = \langle f, f \rangle_H^{1/2} = \langle f, f \rangle_R^{1/2} \), where \(\langle f, g \rangle_R = \text{Sc} \langle f, g \rangle_H \) coincides with the usual \(L^2 \)-norm for \(f \), viewed as an \(\mathbb{R}^4 \)-valued function in \(\Omega \) \[10, 11\].

For functions taking values in the 2-dimensional subspace \(\mathbb{R}i \oplus \mathbb{R}j \subseteq \mathbb{H} \), \(D \) echoes the classical Cauchy-Riemann operator \(2\partial/\partial z = \partial/\partial x + i\partial/\partial y \), but it sends such functions to the complementary subspace \(\mathbb{R} \oplus \mathbb{R}k \subseteq \mathbb{H} \).

As usual, \(\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 \) will denote the Laplace operator in \(\mathbb{R}^2 \).

Definition 2.1. Let \(\Omega \subseteq \mathbb{R}^2 \). Given \(\lambda \in \mathbb{R} \setminus \{0\} \), a function \(f \in C^2(\Omega, \mathbb{R}) \) is said to be \(\lambda \)-metaharmonic when

\[(\Delta + \lambda^2)f = 0.\]

When \(f \in C^1(\Omega, \mathbb{H}) \) and

\[(D + \lambda)f = 0,\]

one says that \(f \) is \(\textit{left} \ \lambda \)-metamonogenic.

We thus have the spaces of left \(\lambda \)-metamonogenic functions

\[\mathcal{M}(\Omega; \lambda) = \text{Ker}(D + \lambda) \subseteq C^1(\Omega, \mathbb{H})\]

and

\[\mathcal{M}_2(\Omega; \lambda) = \mathcal{M}(\Omega; \lambda) \cap L^2(\Omega).\]

It is well known [23] that metaharmonic functions are of class \(C^\infty \), and so by the following factorization of the Laplacian via \(D \) (cf. [14, Section CVII] and [9]), metamonogenic functions are of class \(C^\infty \) also.

Proposition 2.2. \((D + \lambda)(D - \lambda) = -(\Delta + \lambda^2) \) for \(\lambda \in \mathbb{R} \setminus \{0\} \).

In polar coordinates \(x = \rho \cos \theta, \ y = \rho \sin \theta \), one has

\[D_{r,\theta} = \left(\cos \theta \frac{\partial}{\partial \rho} + \frac{\sin \theta}{\rho} \frac{\partial}{\partial \theta} \right)i + \left(\sin \theta \frac{\partial}{\partial \rho} - \frac{\cos \theta}{\rho} \frac{\partial}{\partial \theta} \right)j, \tag{3}\]

and the Helmholtz operator in polar coordinates is

\[\Delta_{\rho,\theta} + \lambda^2 = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \theta^2} + \lambda^2. \tag{4}\]
From Proposition 2.2, it is clear that the components of any $f \in \mathcal{M}(\Omega; \lambda)$ are λ-metaharmonic. The equation $(D + \lambda)f = 0$ is equivalent to the system of partial differential equations

\[
\begin{align*}
\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} - \lambda f_0 &= 0, \\
-\frac{\partial f_0}{\partial x} - \frac{\partial f_3}{\partial y} - \lambda f_1 &= 0, \\
\frac{\partial f_3}{\partial x} - \frac{\partial f_0}{\partial y} - \lambda f_2 &= 0, \\
-\frac{\partial f_2}{\partial x} + \frac{\partial f_1}{\partial y} - \lambda f_3 &= 0.
\end{align*}
\]

(5)

From this the following is immediate.

Proposition 2.3. Given any two scalar λ-metaharmonic functions f_1, f_2 in any domain $\Omega \subseteq \mathbb{C}$, there are unique ($\lambda$-metaharmonic) functions f_0, f_3 such that $f_0 + f_1i + f_2j + f_3k$ is λ-metamonogenic.

Indeed, take

\[
f_0 = \frac{1}{\lambda} \left(\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} \right), \quad f_3 = \frac{1}{\lambda} \left(\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial x} \right),
\]

and observe that the system (5) is satisfied. Similarly, given f_1, f_2 one has unique functions f_0, f_3 completing the components of a λ-metamonogenic function. One may think of the relationship of pairs (f_1, f_2) and (f_0, f_3) as a generalization of the notion of harmonic conjugates.

3 Quaternionic metamonogenic functions

This section introduces a family of λ-metamonogenic functions in the real Hilbert space L^2 of the unit disk, which is the object of study of this paper.

The factorization of Proposition 2.2 suggests that quaternionic λ-metamonogenic functions should play a role for the Laplace operator Δ, similar to the usual metaharmonic functions in two variables for the corresponding Helmholtz operator [22].

3.1 A class of λ-metamonogenic functions

First we define a continuous family of quaternionic metamonogenic functions. Let $J_n(z), \ z \in \mathbb{C}$ denote the n-th Bessel function of the first kind, $n = 0, 1, 2, \ldots$ \[15\]. We recall that $J_0(0) = 1, J_n(0) = 0 \ (n \neq 0)$, $J_1'(0) = 1, J_n'(0) = 0 \ (n \neq 1).$

Definition 3.1. Let $n \geq 0$ and $\lambda \in \mathbb{R} \setminus \{0\}$. For $z = x + iy = \rho e^{i\theta} \in \mathbb{C}$, the n-th standard λ-metamonogenic function is

$$F_n[\lambda](z) = \left(J'_n(\lambda\rho) + \frac{n}{\lambda\rho} J_n(\lambda\rho)\right) \cos(n-1)\theta + (J_n(\lambda\rho) \cos n\theta) \ i + (J_n(\lambda\rho) \sin n\theta) \ j - ((J'_n(\lambda\rho) + \frac{n}{\lambda\rho} J_n(\lambda\rho))) \sin(n - 1)\theta \ k \quad \text{if} \ z \neq 0$$

and for $z = 0$ the limiting value,

$$F_0[\lambda](0) = i, \quad F_1[\lambda](0) = 1, \quad F_n[\lambda](0) = 0 \ (n \geq 2).$$

In particular, $F_0[\lambda](z) = -J_1(\lambda\rho) \cos \theta + J_0(\lambda\rho) \ i - J_1(\lambda\rho) \sin \theta \ k$ because of the second of the recurrence relations

$$\frac{2n}{\zeta} J_n(z) = J_{n-1}(z) + J_{n+1}(z),$$
$$2J'_n(z) = J_{n-1}(z) - J_{n+1}(z),$$

with $J_{-1}(z) = -J_1(z)$.

Note that the i and j components of $F_n[\lambda](z)$ are the classical solutions $J_n(\lambda\rho) \cos n\theta, J_n(\lambda\rho) \sin n\theta$ for the Helmholtz equation in polar coordinates, which are indeed complete in the space of all solutions in $L^2(\Omega_0, \mathbb{R})$, where $\Omega_0 = \{z \in \mathbb{C}: \ |z| < 1\}$ denotes the unit disk in the complex plane \[23\]. It follows directly from Proposition \[2.2\] that all $F_n[\lambda](z)$ are λ-metamonogenic.

We also note that $F_n[\lambda]$ may be constructed as

$$F_n[\lambda] = F_n^+[\lambda] i + F_n^-[\lambda] j,$$

5
in terms of the reduced-quaternionic valued functions

\[F_n^\pm[\lambda](z) = J_n(\lambda \rho)\Phi_n^\pm(z) - (\cos \theta i + \sin \theta j)J_n'(\lambda \rho)\Phi_n^\pm(z) \]

\[\mp \frac{n}{\lambda \rho} (\sin \theta i - \cos \theta j)J_n(\lambda \rho)\Phi_n^\pm(z), \]

where we write \(\Phi_n^+(z) = \cos n\theta \), \(\Phi_n^-(z) = \sin n\theta \).

3.2 Basic metamonogenics

Next we introduce a special subset of the \(\lambda \)-metamonogenic functions defined in the previous section. It is well known [15] that \(J_n \) has a countable collection of simple real zeros \(j_{n,m} \),

\[0 < j_{n,1} < j_{n,2} < \cdots. \]

The basic metamonogenic functions are defined by

\[F_{n,m}(z) = F_n[j_{n,m}](z). \]

(9)

for \(n \geq 0 \), \(m \geq 1 \). Thus

\[(D + j_{n,m})F_{n,m} = 0. \]

(10)

Some examples of \(F_{n,m} \) in \(\Omega_0 \) are given in Figure [1]. Our main result is as follows.

Theorem 3.2. (i) Let \((n_1, m_1) \neq (n_2, m_2)\). If \(\{n_1, n_2\} \neq \{0, 1\} \), then

\[\langle F_{n_1,m_1}, F_{n_2,m_2} \rangle_{\mathbb{H}} = 0, \]

(11)

while

\[\langle F_{0,m_1}, F_{1,m_2} \rangle_{\mathbb{H}} = -2\pi \frac{J_1(j_{0,m_1})J_0(j_{1,m_2})}{j_{0,m_1} - j_{1,m_2}} i, \]

(12)

\[\langle F_{1,m_1}, F_{0,m_2} \rangle_{\mathbb{H}} = -2\pi \frac{J_0(j_{1,m_1})J_1(j_{0,m_2})}{j_{1,m_1} - j_{0,m_2}} i. \]

(13)

(ii) The norms of these metamonogenic functions are given by

\[\|F_{n,m}\|_2^2 = 2\pi J_{n-1}^2(j_{n,m}) = 2\pi J_{n+1}^2(j_{n,m}). \]

(14)
Figure 1: The functions $F_{n,m}$ for assorted values of (n, m). The scalar parts are shown in the left column. The symmetries due to the presence of the functions Φ^\pm_n are clearly visible.

(iii) Let $f \in \mathcal{M}_2(\Omega_0; \lambda)$ where $\lambda \in \mathbb{R}\setminus\{0\}$. Then f is in the closed subspace of the right quaternionic Hilbert module $L^2(\Omega_0)$ spanned by $\{F_{n,m}: n \geq 0, m \geq 1\}$; that is, there are $c_{n,m} \in \mathbb{H}$ such that

$$f(z) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} F_{n,m}(z) c_{n,m}.$$

Proof. Since $F_{n,m}$ is continuous in fact in the whole plane, it is clearly in $L^2(\Omega_0)$. The proof divides naturally into parts.
(i) Orthogonality. We must show that
\[\int_{\Omega_0} \overline{F_{n_1,m_1}(z)} F_{n_2,m_2}(z) \, dx \, dy = 0 \]
whenever \((n_1, m_1) \neq (n_2, m_2)\) and \(\{n_1, n_2\} \neq \{0, 1\}\). We break down the integrand into quaternionic components as follows,
\[
\overline{F_{n_1,m_1}(z)} F_{n_2,m_2}(z) \\
= (A_1 - B_1 i - C_1 j - D_1 k)(A_2 + B_2 i + C_2 j + D_2 k) \\
= A_1 A_1 + B_1 B_2 + C_1 C_2 + D_1 D_2 + (A_1 B_2 - B_1 A_2 - C_1 D_2 + D_1 C_2)i \\
+ (A_1 C_2 - C_1 A_2 + B_1 D_2 - D_1 B_2)j + (-B_1 C_2 + C_1 B_2 + A_1 D_2 - D_1 A_2)k.
\]

For convenience, let us write \(j_1 = j_{n_1,m_1}, \ j_2 = j_{n_2,m_2}\). With this notation, one finds after a great deal of cancellation that
\[
A_1 A_2 = \left(J'_{n_1}(j_1 \rho) J'_{n_2}(j_2 \rho) + \frac{n_2}{j_2 \rho} J'_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) + \frac{n_1}{j_1 \rho} J_{n_1}(j_1 \rho) J'_{n_2}(j_2 \rho) \\
+ \frac{n_1 n_2}{j_1 j_2 \rho^2} J_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) \right) \left((\cos^2 \theta) \Phi^+_{n_1} \Phi^+_{n_2} + (\cos \theta \sin \theta) \Phi^+_{n_1} \Phi^-_{n_2} \right. \\
\left. + (\sin \theta \cos \theta) \Phi^-_{n_1} \Phi^+_{n_2} + (\sin^2 \theta) \Phi^-_{n_1} \Phi^-_{n_2} \right),
\]
\[
B_1 B_2 = J_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) \Phi^+_{n_1} \Phi^+_{n_2},
\]
\[
C_1 C_2 = J_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) \Phi^-_{n_1} \Phi^-_{n_2},
\]
\[
D_1 D_2 = \left(J'_{n_1}(j_1 \rho) J'_{n_2}(j_2 \rho) + \frac{n_2}{j_2 \rho} J'_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) + \frac{n_1}{j_1 \rho} J_{n_1}(j_1 \rho) J'_{n_2}(j_2 \rho) \\
+ \frac{n_1 n_2}{j_1 j_2 \rho^2} J_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) \right) \left((\sin^2 \theta) \Phi^+_{n_1} \Phi^+_{n_2} - (\sin \theta \cos \theta) \Phi^+_{n_1} \Phi^-_{n_2} \right. \\
\left. - (\cos \theta \sin \theta) \Phi^-_{n_1} \Phi^+_{n_2} + (\cos^2 \theta) \Phi^-_{n_1} \Phi^-_{n_2} \right).
\]

Now it is best to group the parts as follows: using \(\Phi^+_{n_1} \Phi^+_{n_2} - \Phi^-_{n_1} \Phi^-_{n_2} = \Phi^+_{n_1-n_2}\), first
\[
A_1 A_2 + D_1 D_2 = \left(J'_{n_1}(j_1 \rho) J'_{n_2}(j_1 \rho) + \frac{n_2}{j_2 \rho} J'_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) \\
+ \frac{n_1}{j_1 \rho} J_{n_1}(j_1 \rho) J'_{n_2}(j_2 \rho) + \frac{n_1 n_2}{j_1 j_2 \rho^2} J_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) \right) \Phi^+_{n_1-n_2},
\]
\[
B_1 B_2 + C_1 C_2 = J_{n_1}(j_1 \rho) J_{n_2}(j_2 \rho) \Phi^+_{n_1-n_2},
\]
and then we can integrate,

\[
\langle F_{n_1, m_1}, F_{n_2, m_2} \rangle_R = \int_0^{2\pi} \int_0^1 (A_1 A_1 + B_1 B_2 + C_1 C_2 + D_1 D_2) \rho \, d\rho \, d\theta \\
= \int_0^1 (\rho J'_{n_1}(j_{1}\rho)J'_{n_2}(j_{2}\rho) + \rho J_{n_1}(j_{1}\rho)J_{n_2}(j_{2}\rho) \\
+ \frac{n_2}{j_2} J'_{n_1}(j_{1}\rho)J_{n_2}(j_{2}\rho) + \frac{n_1}{j_1} J_{n_1}(j_{1}\rho)J'_{n_2}(j_{2}\rho) \\
+ \frac{n_1 n_2}{j_1 j_2} \rho^{-1} J_{n_1}(j_{1}\rho)J_{n_2}(j_{2}\rho)) \, d\rho \int_0^{2\pi} \Phi_{n_1 - n_2}^+ \, d\theta. \tag{15}
\]

For \(n_1 \neq n_2 \) the \(\theta \)-integral is zero, and so is the scalar product. Now suppose \(n_1 = n_2 = n \), and consider the \(\rho \)-integral. We will use the following orthogonality property [15] for Bessel functions scaled by distinct zeros,

\[
\int_0^1 J_n(j_{n,m_1}\rho)J_n(j_{n,m_2}\rho) \, \rho \, d\rho = 0 \tag{16}
\]

when \(m_1 \neq m_2 \), as well as (7).

Within the \(\rho \)-integral at the end of (15) we find

\[
\int_0^1 (r J'_{n}(j_{1}\rho)J'_{n}(j_{2}\rho) + \frac{n^2}{j_1 j_2} \rho^{-1} J_{n}(j_{1}\rho)J_{n}(j_{2}\rho)) \, d\rho,
\]

which by (7) is equal to

\[
= \frac{1}{4} \int_0^1 ((J_{n-1}(j_{1}\rho) - J_{n+1}(j_{1}\rho))(J_{n-1}(j_{2}\rho) - J_{n+1}(j_{2}\rho)) \\
+ (J_{n-1}(j_{1}\rho) + J_{n+1}(j_{1}\rho))(J_{n-1}(j_{2}\rho) + J_{n+1}(j_{2}\rho)) \, \rho \, d\rho \\
= \frac{1}{2} \int_0^1 (J_{n-1}(j_{1}\rho)J_{n-1}(j_{2}\rho) + J_{n+1}(j_{1}\rho)J_{n+1}(j_{2}\rho) \, \rho \, d\rho.
\]

Also in (15) we have

\[
\int_0^1 \left(\frac{n}{j_2} J'_{n}(j_{1}\rho)J_{n}(j_{2}\rho) + \frac{n}{j_1} J_{n}(j_{1}\rho)J'_{n}(j_{2}\rho) \right) \, d\rho \\
= \frac{1}{2} \int_0^1 ((J_{n-1}(j_{1}\rho)J_{n-1}(j_{1}\rho) - J_{n+1}(j_{1}\rho)J_{n+1}(j_{1}\rho)) \, \rho \, d\rho,
\]

9
again with the help of (7). Combining these we find that

$$
\langle F_{n,m_1}, F_{n,m_2} \rangle = 2\pi \int_0^1 (J_n(j_1 \rho)J_n(j_2 \rho) + J_{n-1}(j_1 \rho)J_{n-1}(j_2 \rho)) \, \rho \, d\rho,
$$

which is zero by (16) as we are assuming $m_1 \neq m_2$.

Similarly, straightforward computations yield that the vector part of the quaternionic inner product is

$$
\text{Vec} \langle F_{n_1,m_1}, F_{n_2,m_2} \rangle = \left(\int_0^1 (J_{n_1-1}(j_1 \rho)J_{n_2}(j_2 \rho) - J_{n_1}(j_1 \rho)J_{n_2-1}(j_2 \rho)) \, \rho \, d\rho \int_0^{2\pi} \Phi_{n_1+n_2-1}^+ \, d\theta \right) i \\
+ \left(\int_0^1 (J_{n_1-1}(j_1 \rho)J_{n_2}(j_2 \rho) + J_{n_1-1}(j_1 \rho)J_{n_2-1}(j_2 \rho)) \, \rho \, d\rho \int_0^{2\pi} \Phi_{n_1+n_2-1}^- \, d\theta \right) j \\
+ \left(\int_0^1 (J_{n_1-1}(j_1 \rho)J_{n_2}(j_2 \rho) - J_{n_1}(j_1 \rho)J_{n_2-1}(j_2 \rho)) \, \rho \, d\rho \int_0^{2\pi} \Phi_{n_1-n_2}^- \, d\theta \right) k.
$$

Analogous computations involving the remaining three components show that $\text{Vec} \langle F_{n_1,m_1}, F_{n_2,m_2} \rangle = 0$ whenever $(n_1,m_1) \neq (n_2,m_2)$ and $\{n_1,n_2\} \neq \{0,1\}$, which establishes (11), while (12)–(13) follow directly from (17)–(18).

(ii) Norms. In [15, p. 303] we have for any λ that

$$
2 \int_{\rho_1}^{\rho_2} J_n(\lambda \rho)^2 \, \rho \, d\rho = \rho^2(J_n(\lambda \rho)^2 - J_{n-1}(\lambda \rho)J_{n+1}(\lambda \rho)) |_{\rho_1}^{\rho_2}.
$$

Thus with $\lambda = j_{n,m}$, (17)–(18) specialize to

$$
\|F_{n,m}\|^2 = 2\pi \int_0^1 (\rho J_n(j_{n,m} \rho)^2 + \rho J_{n-1}(j_{n,m} \rho)^2) \, d\rho.
$$

which gives (14).

(iii) Completeness. Now fix λ and suppose that $f = f_0 + f_1 i + f_2 j + f_2 k \in \mathcal{M}_2(\Omega_0; \lambda)$ is orthogonal to every $F_{n,m}$ in the sense of (2). Since every well defined function in Ω_0 is periodic in θ in polar coordinates, it follows from
Definition 3.1 that

\[0 = \langle f, F_{n,m} \rangle_{\mathbb{R}} \]

\[= \frac{1}{\lambda} \int_0^{2\pi} \int_0^1 \left(\frac{\partial f_1}{\partial \rho} \rho J_n'(j_{n,m} \rho) \Phi_n^+ + \frac{n}{j_{n,m}} \frac{\partial f_1}{\partial \rho} J_n(j_{n,m} \rho) \Phi_n^+ - \frac{\partial f_1}{\partial \theta} J_n'(j_{n,m} \rho) \Phi_n^- \right. \]
\[- \frac{n}{j_{n,m}} \rho^{-1} \frac{\partial f_1}{\partial \theta} J_n(j_{n,m} \rho) \Phi_n^- + \frac{\partial f_2}{\partial \rho} \rho J_n'(j_{n,m} \rho) \Phi_n^- \]
\[+ \frac{n}{j_{n,m}} \frac{\partial f_2}{\partial \rho} J_n(j_{n,m} \rho) \Phi_n^- + \frac{\partial f_2}{\partial \theta} J_n'(j_{n,m} \rho) \Phi_n^+ \]
\[+ \frac{n}{j_{n,m}} \rho^{-1} \frac{\partial f_2}{\partial \theta} J_n(j_{n,m} \rho) \Phi_n^+ \right) \, d\rho \, d\theta \]
\[+ \int_0^{2\pi} \int_0^1 f_1 J_n(j_{n,m} \rho) \Phi_n^+ \rho \, d\rho \, d\theta + \int_0^{2\pi} \int_0^1 f_2 J_n(j_{n,m} \rho) \Phi_n^- \rho \, d\rho \, d\theta. \quad (19) \]

We apply integration by parts to the second and third terms of the first integral:

\[\int_0^{2\pi} \int_0^1 \frac{n}{j_{n,m}} \frac{\partial f_1}{\partial \rho} J_n(j_{n,m} \rho) \Phi_n^+ \, d\rho \, d\theta - \int_0^{2\pi} \int_0^1 \frac{\partial f_1}{\partial \theta} J_n'(j_{n,m} \rho) \Phi_n^- \, d\rho \, d\theta \]
\[= \frac{1}{j_{n,m}} \int_0^1 J_n(j_{n,m} \rho) \left(\int_0^{2\pi} \frac{\partial f_1}{\partial \rho} (\Phi_n^-)' \, d\theta \right) \, d\rho - \int_0^{2\pi} \Phi_n^- \left(\int_0^1 \frac{\partial f_1}{\partial \rho} J_n'(j_{n,m} \rho) \, d\rho \right) \, d\theta \]
\[= -\frac{1}{j_{n,m}} \int_0^1 J_n(j_{n,m} \rho) \frac{\partial^2 f_1}{\partial \rho^2} \Phi_n^- \, d\rho \, d\theta + \frac{1}{j_{n,m}} \int_0^1 J_n(j_{n,m} \rho) \frac{\partial^2 f_1}{\partial \rho \partial \theta} \Phi_n^- \, d\rho \, d\theta \]
\[= 0 \]

when \(n > 0 \) by (6), and for the sixth and seventh terms,

\[\int_0^{2\pi} \int_0^1 \frac{n}{j_{n,m}} \frac{\partial f_2}{\partial \rho} J_n(j_{n,m} \rho) \Phi_n^- \, d\rho \, d\theta + \int_0^{2\pi} \int_0^1 \frac{\partial f_2}{\partial \theta} J_n'(j_{n,m} \rho) \Phi_n^+ \, d\rho \, d\theta = 0 \]
also when \(n > 0 \). Integrating the remaining integrals by parts, we have

\[
0 = \langle f, F_{n,m} \rangle_{\mathbb{R}} = \frac{1}{j_{n,m}^2} \int_0^{2\pi} \Phi_n^+ \left(\int_0^1 (\Delta_{\rho,\theta} f_1) J_n(j_{n,m}\rho) \rho \, d\rho \right) d\theta \\
- \frac{1}{j_{n,m}^2} \int_0^{2\pi} \Phi_n^- \left(\int_0^1 (\Delta_{r,\theta} f_2) J_n(j_{n,m}\rho) \rho \, d\rho \right) d\theta \\
+ \int_0^{2\pi} \int_0^1 f_1 J_n(j_{n,m}\rho) \Phi_n^+ \rho \, d\rho \, d\theta \\
+ \int_0^{2\pi} \int_0^1 f_2 J_n(j_{n,m}\rho) \Phi_n^- \rho \, d\rho \, d\theta
\]

when \(n > 0 \).

Since \(f_1, f_2 \) are \(\lambda \)-metaharmonic,

\[
(\lambda^2 + j_{n,m}^2) \left(\int_0^{2\pi} \int_0^1 f_1 J_n(j_{n,m}\rho) \Phi_n^+ \rho \, d\rho \, d\theta + \int_0^{2\pi} \int_0^1 f_2 J_n(j_{n,m}\rho) \Phi_n^- \rho \, d\rho \, d\theta \right) = 0
\]

when \(n > 0 \). Similar arguments using the \(i, j, k \) components enable one to show that in fact

\[
\int_0^{2\pi} \int_0^1 f_1 J_n(j_{n,m}\rho) \Phi_n^- \rho \, d\rho \, d\theta = 0,
\]

\[
\int_0^{2\pi} \int_0^1 f_2 J_n(j_{n,m}\rho) \Phi_n^+ \rho \, d\rho \, d\theta = 0
\]

for \(n > 0 \). By the completeness of the set \(\{ J_n(j_{n,m}\rho) \Phi_n^\pm \} \) in \(L^2(\Omega_0, \mathbb{R}) \) it follows that \(f_1 \) and \(f_2 \) are in the linear span of \(\{ J_0(j_{0,m}\rho) \Phi_0^\pm \} \). Since \(\Phi_0^+ = 1 \), \(\Phi_0^- = 0 \), we have the series representations

\[
f_1 = \sum_{m=1}^{\infty} c_{1,m} J_0(j_{0,m}\rho), \quad f_2 = \sum_{m=1}^{\infty} c_{2,m} J_0(j_{0,m}\rho), \quad (20)
\]
converging in L^2 for real constants $c_{1,m}, c_{2,m}$. By Proposition 2.3

$$f_0 = \frac{1}{\lambda} \left(\frac{\partial}{\partial x} \sum_{m=1}^{\infty} c_{1,m} J_0(j_0, m \rho) + \frac{\partial}{\partial y} \sum_{m=1}^{\infty} c_{2,m} J_0(j_0, m \rho) \right)$$

$$= \sum_{m=1}^{\infty} \frac{j_0, m}{\lambda} J_0'(j_0, m \rho)(c_{1,m} \cos \theta + c_{2,m} \sin \theta),$$

$$f_3 = \frac{1}{\lambda} \left(\frac{\partial}{\partial y} \sum_{m=1}^{\infty} c_{1,m} J_0(j_0, m \rho) - \frac{\partial}{\partial x} \sum_{m=1}^{\infty} c_{2,m} J_0(j_0, m \rho) \right)$$

$$= \sum_{m=1}^{\infty} \frac{j_0, m}{\lambda} J_0'(j_0, m \rho)(-c_{2,m} \cos \theta + c_{1,m} \sin \theta).$$

Let $m' \geq 1$. Using these series representations, first we look at the scalar part of the hypothesis

$$0 = \langle F_{0,m'}, f \rangle_H$$

$$= \langle -J_1(j_{0,m'} \rho) \cos \theta + J_0(j_{0,m'} \rho) \mathbf{i} - J_1(j_{0,m'} \rho) \sin \theta \mathbf{k},$$

$$\sum_{m=1}^{\infty} \frac{j_0, m}{\lambda} J_0'(j_0, m \rho)(c_{1,m} \cos \theta + c_{2,m} \sin \theta) + f_1 \mathbf{i} + f_2 \mathbf{j}$$

$$+ \left(\sum_{m=1}^{\infty} \frac{j_0, m}{\lambda} J_0'(j_0, m \rho)(-c_{2,m} \cos \theta + c_{1,m} \sin \theta) \right) \mathbf{k} \rangle_H = 0.$$

By L^2 convergence,

$$0 = -\sum_{m} c_{1,m} \frac{j_0, m}{\lambda} \int_{0}^{1} \rho J_1(j_0, m' \rho) J_0'(j_0, m \rho) d\rho \int_{0}^{2\pi} \cos^2 \theta d\theta$$

$$-\sum_{m} c_{2,m} \frac{j_0, m}{\lambda} \int_{0}^{1} \rho J_1(j_0, m' \rho) J_0'(j_0, m \rho) d\rho \int_{0}^{2\pi} \cos \theta \sin \theta d\theta$$

$$-\int_{0}^{2\pi} \int_{0}^{1} J_0(j_0, m' \rho) f_1 \rho d\rho d\theta$$

$$-\sum_{m} c_{2,m} \frac{j_0, m}{\lambda} \int_{0}^{1} \rho J_1(j_0, m' \rho) J_0'(j_0, m \rho) d\rho \int_{0}^{2\pi} \sin \theta \cos \theta d\theta$$

$$+\sum_{m} c_{1,m} \frac{j_0, m}{\lambda} \int_{0}^{1} \rho J_1(j_0, m' \rho) J_0'(j_0, m \rho) d\rho \int_{0}^{2\pi} \sin^2 \theta d\theta.$$
Thus f_1 is orthogonal to $J_{0,m'}$ and hence is orthogonal in fact to all $J_{n,m}\Phi^\pm_n$, which implies $f_1 = 0$. When one expands the k component of the inner product it is seen similarly that $f_2 = 0$. In consequence, $f = 0$ identically as required.

The information (12)–(13) permits one to orthogonalize (say via the Gram-Schmidt process) the subspace generated by \{\(F_{0,m}, F_{1,m}: m \geq 1\}\}, which by (11) will combine with the remaining $F_{n,m}$ to give a full orthogonal basis. The resulting functions are not particularly interesting, so we will omit the details.

4 Time-dependent solutions

Consider the partial differential equation

\[(\Delta + K^2 \frac{\partial^2}{\partial t^2})v = 0\]

for $v(z,t) \in \mathbb{H}, z \in \Omega_0, t \geq 0$. This can be interpreted as a wave equation using imaginary time it. (cf. the Wick transformation \[\text{[3]}\]).

We consider the natural quaternionic extensions of the real-valued solutions of (21). Since

\[(D + K \frac{\partial}{\partial t})(D - K \frac{\partial}{\partial t}) = -(\Delta^2 + K^2),\]

we are led to consider the companion equation

\[(D + K \frac{\partial}{\partial t})v = 0.\]

Since the operator $\Delta + K^2(\partial^2/\partial t^2)$ has only real ingredients, it operates independently on each component of $v = v_0 + v_1i + v_2j + v_3k$.

Because of (10), a time-dependent function given by a series of the form

\[v(z,t) = \sum_{n=0}^\infty \sum_{m=1}^\infty F_{n,m}(z) c_{n,m} e^{jn,m t}\]

converging in $L^2(\Omega_0)$ clearly satisfies (23). One may propose a boundary value problem for this equation with an initial condition given by an arbitrary $v(z) \in \mathcal{M}_2(\Omega_0; \lambda)$, whose coefficients $c_{n,m} \in \mathbb{H}$ are given according to
Theorem 3.2

\[v(z) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} F_{n,m}(z)c_{n,m}. \]

(25)

(In fact, one may prescribe only \(v_0 \) and \(v_3 \) in \(\text{Ker}(\Delta + \lambda^2) \) according to Proposition 2.3). It is not difficult to show by means of the Cauchy-Kovalevskaya theorem [21] that this is the only real-analytic solution \(z \) satisfying the initial conditions \(v(z,0) = g(z) \) and

\[\frac{\partial}{\partial t} \bigg|_{t=0} v_0(z,t) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} j_{n,m} F_{n,m}(z)c_{n,m}. \]

(26)

Figure 2: The initial condition \((t = 0, \text{top row}) \) contains high order terms which are not visible in the graphics until approximately \(t > 0.3 \), when the exponential terms in time in the become sufficiently large.
(A similar result for reduced-quaternion-valued functions in elliptical domains is worked out in detail in [20]).

An example of the evolution of a wave function [25] is given in Figure 2.

5 Acknowledgments

The first author’s work was supported by the Asociación Mexicana de Cultura, A. C.

References

[1] M. Abul-Ez and D. Constales. “Basic sets of polynomials in Clifford analysis”. Complex Var., 14(1–4), pp. 177–185 (1990).

[2] F. Brackx, R. Delanghe and F. Sommen. Clifford analysis. Pitman Advanced Publishing Program (1982).

[3] M. Burgess. Classical covariant fields. Cambridge University Press (Virtual Publishing) (2002)

[4] I. Caccao, M. I. Falcon and H. Malonek. “Laguerre derivative and monogenic Laguerre polynomials: an operational approach”. Math. Comput. Modeling, 53, pp. 1084–1094 (2011).

[5] R. Delanghe. “On homogeneous polynomial solutions of the Riesz system and their harmonic potentials”. Complex Var. Ellipt. Equ., 52(10-11), pp. 1047–1062 (2007).

[6] R. Delanghe. “On Homogeneous polynomial solutions of the Moisil-Théodoresco system in \mathbb{R}^3”. Comput. Methods Funct. Theory, 9(1), pp. 199–212 (2009).

[7] R. Fueter. “Reguläre Funktionen einer Quaternionenvariablen”. Lecture notes, Spring Semester, Math. Inst. Univ. Zürich (1940).

[8] R. Fueter. “Functions of a Hyper Complex Variable”. Lecture notes written and supplemented by E. Bareiss, Math. Inst. Univ. Zürich, Fall Semester (1949).
[9] K. Gürlebeck. “Hypercomplex factorization of the Helmholtz equation”. Zeitschrift für Analysis und ihre Anwendungen, 5 125–131. (1986).

[10] K. Gürlebeck and W. Sproessig. Quaternionic analysis and elliptic boundary value problems. Akademie Verlag, Berlin (1989).

[11] K. Gürlebeck and W. Sproessig. Quaternionic calculus for engineers and physicists. John Wiley and Sons, Chichester (1997).

[12] K. Gürlebeck, K. Habetha and W. Sprössig. Holomorphic functions in the plane and n-dimensional space, Birkhäuser Verlag, Basel-Boston-Berlin, (2008).

[13] K. Gürlebeck, K. Habetha and W. Sprössig. Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser Verlag, Basel - Boston - Berlin, (2016).

[14] W. R. Hamilton. Lectures on Quaternions. Containing a systematic statement of a new mathematical method. Hodges and Smith, Grafton-Street, Dublin (1853).

[15] A. Jeffrey and H.-H. Dai. Handbook of mathematical formulas and integrals, Fourth Edition, Elsevier, Amsterdam (2008).

[16] V. Kravchenko. Applied quaternionic analysis. Research and Exposition in Mathematics. Lemgo: Heldermann Verlag, Vol. 28 (2003).

[17] M.E. Luna-Elizarrarás, M.A. Pérez-de la Rosa, R. M. Rodríguez-Dagnino and M. Shapiro. “On quaternionic analysis for the Schrödinger operator with a particular potential and its relation with the Mathieu functions”. Math. Methods Appl. Sci., 36(9), pp. 1080–1094 (2013).

[18] J. Morais, S. Georgiev and W. Sprössig. Real Quaternionic Calculus Handbook. Birkhäuser, Basel (2014).

[19] J. Morais. A Quaternionic Version Theory related to Spheroidal Functions, Habilitation thesis, TU Bergakademie Freiberg (2021).

[20] J. Morais, R. M. Porter, “Reduced-quaternionic Mathieu functions, time-dependent Moisil-Teodorescu operators, and the imaginary-time wave equation”, to appear.
[21] **I.G. Petrovsky.** *Lectures on Partial Differential Equations.* Translated from the Russian by A. Shenitzer. Interscience Publishers, New York, (1954).

[22] **I. Vekua.** *New methods for solving elliptic equations,* John Wiley (1968).

[23] **I. Vekua.** *On metaharmonic functions,* Lect. Notes TICMI, Vol.14, Tbilisi University Press, Tbilisi (2013).