ABSTRACT

We present a study of optical spectra of the Wolf–Rayet star AzV336a (= SMC WR7) in the Small Magellanic Cloud. Our study is based on data obtained at several observatories between 1988 and 2001. We find SMC WR7 to be a double lined WN+O6 spectroscopic binary with an orbital period of 19.56 days. The radial velocities of the He absorption lines of the O6 component and the strong HeII emission at λ4686\AA of the WN component describe antiphased orbital motions. However, they show a small phase shift of \sim1 day. We discuss possible explanations for this phase shift. The amplitude of the radial velocity variations of HeII emission is twice that of the absorption lines. The binary components have fairly high minimum masses, \sim18 M\odot and 34 M\odot for the WN and O6 components, respectively.

Key words: stars: binaries, spectroscopic—stars: individual (AzV 336a = SMC WR7)—stars: Wolf–Rayet—

1 INTRODUCTION

Many of the most luminous stars in the central cluster of the 30 Doradus Supergiant H\textsc{ii} region in the Large Magellanic Cloud are stars with emission lines of Nitrogen and Helium in their spectra (Massey & Hunter 1998), classified as Wolf–Rayet (WR) stars of WN type. The luminosities of these stars in 30 Dor, when compared with numerical evolutionary tracks of massive stars, would correspond to stars of initial masses of 80–120 M\odot. However, no stars more massive than \sim60M\odot are known from studies of binary star orbits, the most massive at present being R136-038, an eclipsing O3 star in the R 136 cluster (Massey, Penny & Vucovich 2001).

In our Galaxy, the most massive star known in a binary system, with a mass of 50-60 M\odot, is the WN type star HD 92740 in the Giant Carina H\textsc{ii} region (cf. Schweickhardt et al. 1999, and references therein). This seems to suggest that WN stars, at least those associated with Giant H\textsc{ii} regions, are related with the upper limit of the stellar masses. Indeed, the new stellar evolutionary tracks taking into account rotation (cf. Meynet & Maeder 2000), predict high mass loss rates at young age for the most massive stars. Empirical determination of stellar masses from binary star orbits are needed for stars with WN spectra in H\textsc{ii} regions to elucidate the role played by these stars at the upper mass limit.

In this paper we present a radial velocity study of a star with WR spectrum in an H\textsc{ii} region in the Small Magellanic Cloud (SMC), namely SMC WR7, showing it to be a double-lined spectroscopic binary with components of high minimum masses.

In their search for stars with WR spectra in the SMC, Azzopardi & Breysacher (1979) found a star that showed broad HeII 4686 emission in the optical spectrum. The star was called SMC/AB7, and interpolated with the number 336a in the catalog of SMC members (Azzopardi & Vigneau 1979). In their recent new survey for WR stars in the SMC, Massey & Duffy (2001) proposed to use the denomination of SMC WR7 instead, according to the IAU nomenclature recommendations, which we will follow here. Azzopardi & Breysacher (1979) considered the spectrum of SMC WR7 to be of peculiar WN3 type, because no N emission lines were observed. The presence of a companion was inferred from the observed strong continuum in the spectrum. Absorption lines were subsequently detected in the spectrum of SMC WR7 by Moffat (1988) and Conti et al. (1989). Moffat (1988) assigned an approximate spectral type O7: for the absorption line spectrum, and also found the radial velocity of the absorption and emission lines to be variable, but could not determine a binary period. Massey...
Table 1. Observational details used for digital (CCD) spectra of SMC WR7

Nr.	Observatory	Epoch(s)	Telescope	Spectrograph	disp. (Å/px)	Δλ (Å)	exp.time (min)	S/N
1	CTIO	1988 Nov.	1-m	2DF	.4	3750-5050	30	20
2	CTIO	1990 Dec.	1-m	2DF	.4	3750-5050	60	35
3	ESO	1992 Dec.	1.5-m	B&C	1.9	3700-7100	20	80
4	CASLEO	1994 Jan.	2.1-m	REOSC	2.2	3800-6000	15	80
5	ESO	1995 Jan.	1.5-m	B&C	.5	3900-4900	30	30
6	ESO	1995 Dec.	1.5-m	B&C	.5	3950-4950	60	40
7	CTIO	1996 Oct.	1.5-m	Cass.	1.1	3750-5050	10	45
8	CASLEO	1996 Dec., 1997 Dec.	2.1-m	B&C	2.2	3900-5000	30	120
9	CASLEO	1996 Jan., 1998 Sep.	2.1-m	REOSC	.3	4620-4750	45	30
10	CTIO	1999 Jan.	4.0-m	R-C	.4	3700-5000	10	100
11	CTIO	1999 Oct., 2000 Oct.	1.5-m	Cass.	.6	4100-4750	15	45
12	CASLEO	1999 Nov., 2000 July, Sep.	2.1-m	REOSC	1.8	3900-5500	60	200

& Duffy (2001) classify the emission line spectrum as WN2, and the absorption line spectrum as O6 type.

SMC WR7 lies embedded in the bright HII region N76-A (Henize 1956), and is one of the few Pop.I stars surrounded by extended nebular emission of HeII 4686 (cf. Testor & Pakull 1989; Niemela, Heathcote & Weller 1991). The high ionization of the nebula led Pakull & Bianchi (1991) to propose a very high effective temperature for the WN star in the ionization of the nebula led Pakull & Bianchi (1991) to propose a very high effective temperature for the WN star in SMC WR7.

Massey et al. (2000) studied the surrounding OB association Hodge 53 predicting a very high progenitor mass (> 50) for SMC WR7 based upon the turn–off mass of the cluster. They also determined an absolute magnitude (V) = 5.9, and a lower limit for the bolometric correction (B.C.) of ~ -4.5. However, the coevality of star formation was ranked ‘questionable’ by Massey et al. (2000), and the binary nature of SMC WR7 was not yet fully recognized.

2 OBSERVATIONS

We have obtained 69 digital optical spectral CCD images of SMC WR7, mainly in the blue spectral region, with several telescopes and spectrographs between 1988 and 2001 at Cerro Tololo Interamerican Observatory (CTIO) and European Southern Observatory (ESO) in Chile, and the Complejo Astronómico El Leoncito (CASLEO) in Argentina. The telescopes and instrumental configurations are listed in Table 1. Our main aim was to determine the radial velocity orbit of this WN+O binary.

One-dimensional spectra were extracted from our two-dimensional spectral images using IRAF (CTIO and CASLEO spectra) or MIDAS (ESO spectra) routines. These spectra were subsequently wavelength calibrated for the determination of positions of spectral lines. Radial velocities for all spectra were determined using IRAF routines. For the absorption lines we fitted gaussian profiles to the lines. Because the nebular emission is strong in hydrogen Balmer absorptions, we chose to use only He lines, mainly HeII absorptions, for the mean radial velocities of the O type component. Depending on the observed wavelength range, the radial velocity of the O type component was determined as an average of the lines of HeII λ4686, 4541, 5411, occasionally including HeI λ4026, 4387, 4471, 5875 Å.

The spectrum of the WN component is dominated by the strong emission of HeII 4686 Å, the only emission line for which we could determine radial velocity values in all of our spectra. The radial velocities for this emission were determined both by fitting a gaussian, and determining the line center. When these two values were sensibly different, which happened when the emission appeared asymmetrical, then the line center was preferred, otherwise a mean of the two was used. The mean radial velocities of the absorption lines and the HeII 4686 emission are listed in Table 2.

3 RESULTS AND THEIR DISCUSSION

Early results of part of our observations showed that SMC WR7 indeed is a binary with a probable mass ratio of ~ 0.5 (Niemela 1994); and a preliminary orbital solution (Niemela & Morrell 1999) indicated very massive binary components.

3.1 The period

Clearly the data in Table 2 confirm the variability of the radial velocities. We have searched for periodicities in the radial velocity variations of both the absorptions and of the HeII emission listed in Table 2. We used the algorithm published by Cincotta et al. (1995). For the radial velocity variations of the HeII emission we also included the velocities published by Moffat (1988). We find the best period for the radial velocity variations of the absorption lines to be P = 19.563±0.003 days, and that of the HeII emission P = 19.560±0.0003 days. This latter period appears more accurate due to the longer time baseline in adding the previously published data. The previously published absorption line velocities appeared too noisy for an improvement in the period. Thus we have adopted the orbital period of SMC WR7 to be 19.560 days.
3.2 The radial velocity orbit

The radial velocities of the absorptions and the He\textsc{ii} emission listed in Table 2 describe opposite orbital motions when phased with the period of 19.56 days, thus confirming that SMC WR7 is a double lined O+WN binary system. However, there appears a small phase lag of ~ 1 day between the two radial velocity curves. This is illustrated in Figure 1, which depicts the radial velocities phased with the period of 19.56 days adopting a common origin for the phases. In this figure the maxima and minima of the radial velocities of the He\textsc{ii} emission and the absorption lines do not coincide exactly as expected from opposite orbital motion.

Phase lags between the He\textsc{ii} 4686 emission line and the orbit defined by the absorption lines of the binary companion are observed in other WR+OB binary systems, e.g. WR97 in our Galaxy (Niemela, Cabanne & Bassino 1995). However, the origin of these phase lags is not understood. Also in active binaries with compact components, e.g. the cataclysmic binaries and X-ray binaries, the He\textsc{ii} 4686 emission line orbit is slightly out of phase from the absorption line orbit. This effect is then ascribed to a hot spot in an accretion disc. Stars with Wolf-Rayet spectra are usually not thought to have discs, but (spherically symmetric?) strong winds. The phase lag may be related to the colliding winds of the binary components.
Table 2. Journal of observations of SMC WR7

HJD	Heliocentric Radial Velocity (km s\(^{-1}\))	HJD	Heliocentric Radial Velocity (km s\(^{-1}\))
	Nr. OD O6 abs.(n) He\(\text{II}\) 4686 em.		Nr. OD O6 abs.(n) He\(\text{II}\) 4686 em.
7469.630	1 235(3)	10432.628	8 116(2)
7474.720	1 394	10434.632	8 161(2)
7475.729	1 396	10435.628	8 190(2)
7477.702	1 328	10436.601	8 214(2)
7479.702	1 124(1) 272	10437.625	8 249(2) -6
7480.578	1	69	
7481.618	1 66	10810.589	8 275(3) 3
	10811.575	8 277(3) 16	
8249.592	2 270(5) -51		
8250.592	2 272(5) 13	10966.918	8 -27
8251.587	2 216(5) 148		
8252.587	2 168(4) 214	11077.649	9 324
8253.592	2 141(3) 264	11078.747	9 171
	11079.724	9 74	
8982.535	3 66(6) 355	11080.718	9 81
8982.643	3 62(3) 327	11083.706	9 0
8983.552	3 88(2) 328	11084.689	9 -71
8983.594	3 85(3) 267:	11085.689	9 -75
8983.619	3 80(2) 287	11182.543	10 272(4) -10
9372.602	4 347	11183.527	10 278(4) 36
9373.546	4 341	11185.527	10 262(4) 139
9374.558	4 341	11470.527	11 126(3) 136
9742.542	5 106(2) 322	11471.660	11 192(3) 122
9743.533	5 103(3) 382	11472.493	11 196(1) 67
9744.531	5 93(3) 383	11474.614	11 240(1) -27
9744.555	5 78(2) 386	11475.705	11 288(3) -10
9745.528	5 72(2) 377	11477.563	11 295(3) 67
9745.551	5 105(3) 389	11479.497	11 239(3) 154
	11480.515	11 209(3) 213	
10077.537	6 72(3)	387	
10077.563	6 92(2) 392	11496.620	12 258(3) 71
10079.541	6 107(3)	308	
10080.544	6 104(3) 232	11751.805	12 287(3) 86
10081.591	6 142(2) 180	11753.784	12 217(1) 201
10086.620	9 26	11806.746	12 247(3) 14
10383.579	7 215(2) 72	11827.496	11 289(3) -19
10385.497	7 189(3) 173	11828.511	11 271(2) 0
10386.495	7 142(2) 230	11829.500	11 270(2) 32
10387.493	7 261		

Notes: HJD = Heliocentric Julian Date − 2 440 000 d
Nr. OD refers to the observational details listed in Table 1.
(n) is the number of He absorption lines included in the mean velocity of the O6 component

We have performed an orbital fit separately for the radial velocities of the O star and the WN star. The orbital elements are listed in Table 3. These orbital elements are still to be considered preliminary, since the observed phase lag between the absorption line orbit and the He\(\text{II}\) 4686 emission casts some doubts on this last line as representative of the true orbital motion of the WN component. We note that the minimum masses of the binary components appear to be quite high, 34M\(_\odot\) and 18M\(_\odot\) for the O6 and WN2 components, respectively. With such high minimum masses we would expect to observe light variations, if not eclipses.

From photometric observations Seggewiss et al. (1991) found SMC WR7 to be slightly variable. In Figure 1 we have plotted these light variations with the same ephemeris as the radial velocity curves in Figure 1. The minimum light then occurs just after the WR star passes in front of the system. This could be a wind eclipse, but more numerous data are needed to confirm the nature of the light variations. A wind eclipse would indicate an orbital inclination of at most ∼ 60 deg, which would bring the individual masses of the binary components to 28M\(_\odot\) for the WN component, and 54M\(_\odot\) for the O6 component.

SMC WR7 has also been observed by the Optical Gravitational Lensing Experiment (OGLE) (cf. Udalski et al. 1998) where it appears as the star SMC SC9 37124. OGLE did not detect photometric variations of SMC WR7 in their
Figure 2. Photoelectric light variations of SMC WR7 phased with the same ephemeris as the radial velocity variations in Figure 1. Data are from Seggewis et al. (1991).

Figure 3. Continuum rectified spectrum of SMC-WR7 obtained at CTIO in 1999, January. Absorption lines are identified below, and emission lines above the continuum.

14 B, 23 V, and 108 I broad band observations to within 0.015, 0.019 and 0.024 mag in each band, respectively. However, since the individual data are not published, their distribution according to the binary orbit is not known.

3.3 Spectra of the binary components

The blue spectrum of SMC WR7 is illustrated in Figure 3 which shows a spectrum obtained at CTIO in 1999, January. The spectral type corresponding to the OB absorption lines in Figure 3 confirms the classification as O6 from the relative intensities of Hε 4471 and Hη 4542 absorptions. The luminosity class is difficult to ascertain, since the WN emission dominates the Heii 4686, which is the main luminosity indicator for early O type spectra in the blue spectral region. We also note that the O6 spectrum seems to dominate the continuum, hence the absolute magnitude $M_V = -5.9$ of SMC WR7 (Massey et al. 2000) mainly corresponds to the O6 component of the binary.

In several of our spectra there appears a faint emission
line at $\sim \lambda 4640$ Å, which we identify as N^iii. We have been able to determine the radial velocity of this feature in 17 of our spectra. When we phased these velocities with the same ephemeris as those in Figure 1, it is clear that the N^iii emission follows the same orbital motion as the O6 component of the binary. Figure 4 illustrates the radial velocity variations of the N^iii emission in the spectrum of SMC WR7.

Table 3. Preliminary Orbital Parameters for SMC WR7.

Parameter	abs. HeI 4686 em.
$a \sin i$ [R$_\odot$]	39±1
K [km s$^{-1}$]	101±2
V_0 [km s$^{-1}$]	172±2
$M \sin^3 i$ [M$_\odot$]	34±4
e	0.10±0.02
ω [deg]	28±12
T_0 [HJD] 2,440.000+	7468.0±0.6
P [days]	19.560±0.0005

3.4 Comparison with the theoretical WNE mass–luminosity relation.

If stars with Wolf-Rayet spectra are bare He–burning cores, they should obey a tight mass–luminosity relation (e.g. Schaerer & Maeder 1992). In this relation, the high minimum mass of the WN2 component of SMC WR7, namely 18M$_\odot$, would imply M_{bol} higher than -9.5.

Considering that the WN2 star of the SMC WR7 binary appears as the source of the very high ionization in the HII region N76-A, which shows strong nebular HeI4686 Å emission, Pakull & Bianchi (1991) estimated a black body Zanstra temperature of 80kK for the WN2 component. Such a high temperature implies a large B.C., certainly higher than the minimum B.C. ~ -4.5 determined by Massey et al. (2000).

Adopting the approximate relation between B.C. and temperature published by Vacca et al. (1996), results in B.C. = -5.8 for the WN2 star. This is in keeping with the average B.C.~ -6.0 for WNE stars found previously (cf. Massey et al. 2000, and references therein).

The OGLE photometry of SMC WR7 gives V = 13.221 and B-V = -0.194. Because the O6 component dominates the visual light, the intrinsic (B-V)$_o$ = -0.32. Adopting the distance modulus 18.9 for the Small Magellanic Cloud (e.g. van den Bergh 2000), then results in M_v = -6.1 for the binary system. This is similar to the previously published values M_v = -5.9 (Massey et al. 2000), and M_v = -6.2 found by Crowther (2000), who also estimated M_v = -5.2 for the WN component of the binary. If this component contributes only 30% to the optical light of the system (cf. Pakull & Bianchi 1991), then the WN2 star has M_v \sim -4.6. With the B.C. = -5.8 (see above), this star would then have M_{bol} = -10.4. Within the uncertainties, this value corresponds for a star of 28M$_\odot$ according to the mass–luminosity relation for models of WNE stars (Schaerer & Maeder 1992), indicating an orbital inclination close to ~60 degrees for the SMC WR7 binary system. Further discussion on the mass–luminosity relation shall await a careful photometric analysis of the SMC WR7 binary system in order to establish a reliable estimate of the orbital inclination.

4 SUMMARY

From spectral observations of SMC WR7 over several years, we find the following:
(i) Opposite radial velocity variations of the absorption lines and He\textsc{ii} \(\lambda 4686\) \AA\ emission show this star to be a double-lined O6+WN2 spectroscopic binary system.

(ii) The most probable period of the radial velocity variations is 19.560 days.

(iii) In this period, the radial velocity orbit of He\textsc{ii} \(\lambda 4686\) \AA\ emission describes an orbit with a small phase lag of \(\sim 1\) day relative to the orbit defined by the absorption lines.

(iv) Minimum masses of the binary components are quite high, 18M\(\odot\) and 34M\(\odot\) for the WN and O6 components, respectively.

(v) Published photoelectric data of SMC WR7 phased with the 19.560 days period, may indicate a wind eclipse of the O6 star when the WN component is in front of the system, precluding high orbital inclinations.

(vi) If the WN2 component obeys the theoretical mass–luminosity relation for WNE stars (Schaerer & Maeder 1992), an orbital inclination of the order of 60 degrees is predicted.

5 ACKNOWLEDGEMENTS

We thank the directors and staff of CASLEO, CTIO and ESO for the use of their facilities over many successful observing runs. We also thank Nidia Morrell for a spectrum of SMC WR7. Interesting comments by an anonymous referee contributed to improve the discussion. The use at CASLEO of the CCD and data acquisition system supported under U.S. NSF grant AST-90-15827 to R. M. Rich is acknowledged.

REFERENCES

Azzopardi, M., and Breysacher, J.: 1979, Astron. Astrophys. 75, 120
Azzopardi, M., and Vigneau, J.: 1979, Astron. Astrophys. 35, 353
Cincotta, P., Mendez, M., and Nuñez, J.: 1995, Astrophys. J. 449, 231
Conti, P. S., Massey, P., and Garmany, C. D.: 1989, Astrophys. J. 341, 113
Crowther, P.: 2000, Astron. Astrophys. 356, 191
Henize, K. G.: 1956, Astrophys. J. Suppl. 2, 315
Massey, P., and Duffy, A. S.: 2001, Astrophys. J. 550, 713
Massey, P., and Hunter, D.: 1998, Astrophys. J. 493, 180
Massey, P., Penny, L. R., and Vukovich, J.: 2002, Astrophys. J. 565, 982
Massey, P., Waterhouse, E., and DeGioia-Eastwood, K.: 2000, Astron. J. 117, 2217
Meynet, G., and Maeder, A.: 2000, Astron. Astrophys. 361, 101
Moffat, A. F. J.: 1988, Astrophys. J. 330, 766
Niemela, V. S.: 1994, in IAU Symp. 163, Wolf-Rayet Stars, Colliding Winds, Binaries, ed. K. A. van der Hucht and P. M. Williams, (Dordrecht: Kluwer), p. 223
Niemela, V. S., Cabanne, M. L., and Bassino, L. P.: 1995, Rev. Mex. Astron. Astrophys. 31, 45
Niemela, V. S., Heathcote, S. R., and Weller, W. G.: 1991, in IAU Symp. 143, Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, ed. K. A. van der Hucht and B. Hidayat, (Dordrecht: Kluwer), p. 425
Niemela, V. S., and Morrell, N. I.: 1999, in IAU Symp. 190, New Views of the Magellanic Clouds, ed. Y. H. Chu, N. B.