Extension operators on balls and on spaces of finite sets

Antonio Avilés, joint work with Witold Marciszewski

Universidad de Murcia, Author supported by MINECO and FEDER under project MTM2014-54182-P

Warwick 2015
Extension Operators

\[C(K) = \{ f : K \rightarrow \mathbb{R} \text{ continuous} \} , \]
$C(K) = \{f : K \to \mathbb{R} \text{ continuous}\}$,

$\|f\| = \max\{|f(x)| : x \in K\}$.
Extension Operators

\[C(K) = \{ f : K \rightarrow \mathbb{R} \text{ continuous} \}, \]

\[\| f \| = \max \{ |f(x)| : x \in K \}. \]

Let \(K \subset L \) be compact sets,
Extension Operators

\[C(K) = \{ f : K \to \mathbb{R} \text{ continuous} \}, \]
\[\| f \| = \max \{ |f(x)| : x \in K \}. \]

Let \(K \subset L \) be compact sets,

Theorem (Tietze)

Every \(f \in C(K) \) extends to a function in \(C(L) \).
$C(K) = \{ f : K \rightarrow \mathbb{R} \text{ continuous}\}$,

$\|f\| = \max\{ |f(x)| : x \in K \}$.

Let $K \subset L$ be compact sets,

Theorem (Tietze)

Every $f \in C(K)$ extends to a function in $C(L)$.

An extension operator is an operator $E : C(K) \rightarrow C(L)$ that sends every $f \in C(K)$ to an extension.
Let $M(K) = C(K)^*$ be the regular Borel measures on K, with weak* topology.
Let $M(K) = C(K)^*$ be the regular Borel measures on K, with weak* topology.

Generalized retractions

Having an extension operator E is all the same as having a continuous $E^*: L \rightarrow M(K)$ such that $E^*(x) = \delta_x$ for $x \in K$.
Let $M(K) = C(K)^*$ be the regular Borel measures on K, with weak* topology.

Generalized retractions

Having an extension operator E is all the same as having a continuous $E^*: L \rightarrow M(K)$ such that $E^*(x) = \delta_x$ for $x \in K$. Moreover $\|E\| = \max\{\|E^*(x)\| : x \in L\}$.
Let $M(K) = C(K)^*$ be the regular Borel measures on K, with weak* topology.

Generalized retractions

Having an extension operator E is all the same as having a continuous $E^* : L \rightarrow M(K)$ such that $E^*(x) = \delta_x$ for $x \in K$. Moreover $\|E\| = \max\{\|E^*(x)\| : x \in L\}$.

$$E(f)(x) = \int f \ dE^*(x)$$
The Borsuk-Dugundji extension theorem

Theorem (Borsuk, Dugundji)

If K is metric, then there exists a positive extension operator $E : C(K) \to C(L)$ with $\|E\| = 1$.

In the non-metric case, we define

$$\eta(K, L) = \inf \{\|E\| : E : C(K) \to C(L) \text{ is an extension operator} \}$$

which might be ∞ if there is no such E exists.
The Borsuk-Dugundji extension theorem

Theorem (Borsuk, Dugundji)

If K is metric, then there exists a positive extension operator $E : C(K) \rightarrow C(L)$ with $\|E\| = 1$.

In the non-metric case, we define

$$\eta(K, L) = \inf \{\|E\| : E : C(K) \rightarrow C(L) \text{ is an extension operator}\}$$

which might be ∞ if there is no such E exists.
Balls in Hilbert space:

$$rB(\Gamma) = \{x \in \ell_2(\Gamma) : \|x\| \leq r\}$$

with the weak topology of \(\ell_2(\Gamma)\).
Our compact spaces

Balls in Hilbert space:

$$rB(\Gamma) = \{x \in \ell_2(\Gamma) : \|x\| \leq r\}$$

with the weak topology of $$\ell_2(\Gamma)$$.

Spaces of finite sets:

$$\sigma_n(\Gamma) = \{x \in \{0,1\}^\Gamma : |supp(x)| \leq n\}$$

with the pointwise topology of $$\{0,1\}^\Gamma$$.
Balls in Hilbert space:

$$rB(\Gamma) = \{ x \in \ell_2(\Gamma) : \| x \| \leq r \}$$

with the weak topology of $\ell_2(\Gamma)$.

Spaces of finite sets:

$$\sigma_n(\Gamma) = \{ x \in \{0,1\}^\Gamma : |\text{supp}(x)| \leq n \}$$

with the pointwise topology of $\{0,1\}^\Gamma$

$$\{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \ldots \longrightarrow \{1,2\}$$
Our main results

Theorem (Corson, Lindenstrauss 65)

1. $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and $r < s$.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and $r < s$.

Theorem (A., Marciszewski)

$\eta(\sigma_m(\Gamma), \sigma_n(\Gamma))$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:

1. If $|\Gamma| \leq \aleph_0$.
2. $n - 2m + 1$, if $|\Gamma| = \aleph_1$.

$\sum_{m \leq k} (n^k)(n - k - 1)^{m-k}$, if $|\Gamma| \geq \aleph_\omega$.
Our main results

Theorem (Corson, Lindenstrauss 65)

1. $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and $r < s$.
2. $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and $r < s$.

Theorem (A., Marciszewski)

$\eta(\sigma_1(\Gamma), L)$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:

1. 1, if $|\Gamma| \leq \aleph_0$.
2. $n - 2m + 1$, if $|\Gamma| = \aleph_1$.
3. $\sum_{m,k=0}^{\infty} (n^k)(n - k - 1)^{m-k}$, if $|\Gamma| \geq \aleph_\omega$.

Our main results

Theorem (Corson, Lindenstrauss 65)

1. $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and $r < s$.
2. $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and $r < s$.
Our main results

Theorem (Corson, Lindenstrauss 65)

1. $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and $r < s$.
2. $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and $r < s$.

Theorem (A., Marciszewski)

$\eta(\sigma_m(\Gamma), \sigma_n(\Gamma))$ is an odd integer that depends on m,n, and $|\Gamma|$. It takes values:

1. 1, if $|\Gamma| \leq \aleph_0$.
2. $n - 2m + 1$, if $|\Gamma| = \aleph_1$.
3. $\sum_{m=k}^{n} \binom{n}{k} \binom{n-k-1}{m-k}$, if $|\Gamma| \geq \aleph_\omega$.
Our main results

Theorem (Corson, Lindenstrauss 65)

1. $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and $r < s$.
2. $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and $r < s$.

Theorem (A., Marciszewski)

$\eta(\sigma_m(\Gamma), \sigma_n(\Gamma))$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:

1. 1, if $|\Gamma| \leq \aleph_0$.
Our main results

Theorem (Corson, Lindenstrauss 65)
1. $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and $r < s$.
2. $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)
There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and $r < s$.

Theorem (A., Marciszewski)
$\eta(\sigma_m(\Gamma), \sigma_n(\Gamma))$ is an odd integer that depends on m,n, and $|\Gamma|$. It takes values:
1. 1, if $|\Gamma| \leq \aleph_0$.
2. $2n - 2m + 1$, if $|\Gamma| = \aleph_1$.
Our main results

Theorem (Corson, Lindenstrauss 65)

1. $rB(\Gamma)$ is not a retract of $sB(\Gamma)$ for Γ uncountable and $r < s$.
2. $\eta(\sigma_1(\Gamma), L)$ is either odd integer or ∞.

Theorem (A., Marciszewski)

There is no extension operator from $rB(\Gamma)$ to $sB(\Gamma)$ for Γ uncountable and $r < s$.

Theorem (A., Marciszewski)

$\eta(\sigma_m(\Gamma), \sigma_n(\Gamma))$ is an odd integer that depends on m, n, and $|\Gamma|$. It takes values:

1. 1, if $|\Gamma| \leq \aleph_0$.
2. $2n - 2m + 1$, if $|\Gamma| = \aleph_1$.
3. $\sum_{k=0}^{m} \binom{n}{k} \binom{n-k-1}{m-k}$, if $|\Gamma| \geq \aleph_\omega$.
What is an extension operator from $\sigma_m(\Gamma)$ to $\sigma_n(\Gamma)$?

Let us think of $m = 1$, $n = 2$.
What is an extension operator from $\sigma_m(\Gamma)$ to $\sigma_n(\Gamma)$?

Let us think of $m = 1$, $n = 2$. We need to associate to each set of cardinality ≤ 2, a measure on the sets of cardinality ≤ 1.

The function $\{x < q\} \mapsto q\delta\{p\} + 1q\delta\{q\}$ gives an extension operator of norm 1 when $\Gamma = N$. The function $\{x, y\} \mapsto \delta\{x\} + \delta\{y\} - \delta/0$ gives an extension operator of norm 3. This is optimal for sizes $\geq \aleph_1$.
Let us think of $m = 1$, $n = 2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1.

The function $\{p < q\} \mapsto q - 1 \delta\{p\} + 1 q \delta\{q\}$ gives an extension operator of norm 1 when $\Gamma = N$. The function $\{x, y\} \mapsto \delta\{x\} + \delta\{y\} - \delta/0$ gives an extension operator of norm 3. This is optimal for sizes $\geq \aleph_1$.

What is an extension operator from $\sigma_m(\Gamma)$ to $\sigma_n(\Gamma)$?
What is an extension operator from $\sigma_m(\Gamma)$ to $\sigma_n(\Gamma)$?

Let us think of $m = 1$, $n = 2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1. This has to extend continuously to

\[\{x\} \mapsto \delta_{\{x\}} \text{ and } \emptyset \mapsto \emptyset. \]
What is an extension operator from $\sigma_m(\Gamma)$ to $\sigma_n(\Gamma)$?

Let us think of $m = 1$, $n = 2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1. This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto 0$.

- The function $\{p < q\} \mapsto \frac{q-1}{q} \delta_{\{p\}} + \frac{1}{q} \delta_{\{q\}}$ gives an extension operator of norm 1 when $\Gamma = \mathbb{N}$.

What is an extension operator from $\sigma_m(\Gamma)$ to $\sigma_n(\Gamma)$?

Let us think of $m = 1$, $n = 2$. We need to associate to each set of cardinality ≤ 2, a measure (a formal linear combination) on the sets of cardinality ≤ 1. This has to extend continuously to $\{x\} \mapsto \delta_{\{x\}}$ and $\emptyset \mapsto \emptyset$.

- The function $\{p < q\} \mapsto \frac{q-1}{q} \delta_{\{p\}} + \frac{1}{q} \delta_{\{q\}}$ gives an extension operator of norm 1 when $\Gamma = \mathbb{N}$.

- The function $\{x, y\} \mapsto \delta_{\{x\}} + \delta_{\{y\}} - \delta_{\emptyset}$ gives an extension operator of norm 3. This is optimal for sizes $\geq \aleph_1$.
The results can be interpreted without appealing to uncountable cardinals.
The results can be interpreted without appealing to uncountable cardinals. For example:
Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_m and σ_n
The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_m and σ_n to a family of extension operators $E_\Gamma : C(\sigma_m(\Gamma)) \to C(\sigma_n(\Gamma))$
The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_m and σ_n to a family of extension operators $E_\Gamma : C(\sigma_m(\Gamma)) \rightarrow C(\sigma_n(\Gamma))$ such that all diagrams

\[
\begin{array}{cccc}
C(\sigma_m(\Gamma)) & \xrightarrow{E_{\Gamma}} & C(\sigma_n(\Gamma)) \\
\uparrow & & \uparrow \\
C(\sigma_m(\Delta)) & \xrightarrow{E_{\Delta}} & C(\sigma_n(\Delta))
\end{array}
\]

commute for $\Delta \subset \Gamma$.

Theorem (A., Marciszewski)

$\eta(\sigma_m(\aleph_\omega), \sigma_n(\aleph_\omega))$ equals the least norm of a natural extension operator from σ_m to σ_n.

Cardinals and naturality

The results can be interpreted without appealing to uncountable cardinals. For example:

Natural extensions

Let us call a natural extension operator between σ_m and σ_n to a family of extension operators $E_\Gamma : C(\sigma_m(\Gamma)) \rightarrow C(\sigma_n(\Gamma))$ such that all diagrams

\[
\begin{array}{ccc}
C(\sigma_m(\Gamma)) & \xrightarrow{E_\Gamma} & C(\sigma_n(\Gamma)) \\
\uparrow & & \uparrow \\
C(\sigma_m(\Delta)) & \xrightarrow{E_\Delta} & C(\sigma_n(\Delta))
\end{array}
\]

commute for $\Delta \subset \Gamma$.

Theorem (A., Marciszewski)

$\eta(\sigma_m(\aleph_\omega), \sigma_n(\aleph_\omega))$ equals the least norm of a natural extension operator from σ_m to σ_n.
There is essentially a unique formula for a natural extension operator from σ_m to σ_n:

$$A \mapsto \sum_{B \in [A] \leq m} (-1)^{m-|B|} \left(\binom{|A| - |B| - 1}{m - |B|} \right) \delta_B$$
Getting free sets

Suppose $|\Gamma| \geq \aleph_n$.
Getting free sets

Suppose $|\Gamma| \geq \aleph_n$. Let F be a function that sends each finite subset of Γ to another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A| = n + 1$ such that $F(A) \cap Z \neq \emptyset$ for all $A \subset Z$.

Getting free sets (case $n = 1$)

Suppose $|\Gamma| \geq \aleph_1$. Let F be a function that sends each finite subset of Γ to another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z| = 2$ such that $F(A) \cap Z \neq \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \aleph_1$ and any $n \in \mathbb{N}$. Let F be a function that sends each finite subset of Γ to another disjoint finite subset of Γ. Then, there exists $Z = \{z_1, \ldots, z_n\} \subset \Gamma$ such that $F(A) \cap Z \neq \emptyset$ for all intervals $A \subset Z$.
Getting free sets

Suppose $|\Gamma| \geq \aleph_n$. Let F be a function that sends each finite subset of Γ to another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A| = n + 1$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.
Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_n$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A| = n + 1$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case $n = 1$)

Suppose $|\Gamma| \geq \aleph_1$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z| = 2$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \aleph_1$ and any $n \in \mathbb{N}$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z = \{z_1, \ldots, z_n\} \subset \Gamma$ such that $F(A) \cap Z = \emptyset$ for all intervals $A \subset Z$.
Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_n$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A| = n + 1$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case $n = 1$)

Suppose $|\Gamma| \geq \aleph_1$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z| = 2$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \aleph_1$ and any $n \in \mathbb{N}$.
Combinatorics behind optimality

Getting free sets

Suppose $|\Gamma| \geq \aleph_n$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A| = n + 1$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case $n = 1$)

Suppose $|\Gamma| \geq \aleph_1$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z| = 2$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \aleph_1$ and any $n \in \mathbb{N}$. Let F be a function that sends each finite subsets of Γ to a another disjoint finite subset of Γ.
Getting free sets

Suppose $|\Gamma| \geq \aleph_n$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A| = n + 1$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case $n = 1$)

Suppose $|\Gamma| \geq \aleph_1$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z| = 2$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)

Suppose $|\Gamma| \geq \aleph_1$ and any $n \in \mathbb{N}$. Let F be a function that sends each finite subset of Γ to a another disjoint finite subset of Γ. Then, there exists $Z = \{z_1, \ldots, z_n\} \subset \Gamma$ such that $F(A) \cap Z = \emptyset$ for all
Combinatorics behind optimality

Getting free sets
Suppose $|\Gamma| \geq \aleph_n$. Let F be a function that sends each finite subset of Γ to another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|A| = n + 1$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Getting free sets (case $n = 1$)
Suppose $|\Gamma| \geq \aleph_1$. Let F be a function that sends each finite subset of Γ to another disjoint finite subset of Γ. Then, there exists $Z \subset \Gamma$ with $|Z| = 2$ such that $F(A) \cap Z = \emptyset$ for all $A \subset Z$.

Theorem (A., Marciszewski)
Suppose $|\Gamma| \geq \aleph_1$ and any $n \in \mathbb{N}$. Let F be a function that sends each finite subset of Γ to another disjoint finite subset of Γ. Then, there exists $Z = \{z_1, \ldots, z_n\} \subset \Gamma$ such that $F(A) \cap Z = \emptyset$ for all intervals $A \subset Z$.
Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_{ω}.

The combinatorics behind it are again free sets.

The new free set property in \aleph_1 is not strong enough to solve this problem.
Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_ω.
Another related Banach space problem

Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_ω. The combinatorics behind it are again free sets.
Problem (Enflo, Rosenthal 73)

Does a nonseparable $L_p(\mu)$ have an unconditional basis when $p \neq 2$?

They get a negative answer for density at least \aleph_ω. The combinatorics behind it are again free sets. The new free set property in \aleph_1 is not strong enough to solve this problem.
For every $r < s$ we can produce diagrams:

\[
\begin{align*}
B(\Gamma) & \longrightarrow sB(\Gamma) \\
\sigma_m(\Gamma) & \longrightarrow \sigma_n(\Gamma) \quad \subseteq \quad \{0, 1/\sqrt{m}\}^\Gamma
\end{align*}
\]
For every $r < s$ we can produce the following diagrams:

\[
B(\Gamma) \rightarrow \rightarrow sB(\Gamma) \\
\sigma_m(\Gamma) \rightarrow \rightarrow \sigma_n(\Gamma) \rightarrow \rightarrow \{0, 1/\sqrt{m}\}^\Gamma
\]

with the left vertical arrow admitting an extension operator of norm 1, and $n - m$ arbitrarily large.
For every $r < s$ we can produce diagrams:

$$
B(\Gamma) \longrightarrow sB(\Gamma)
$$

$$
\sigma_m(\Gamma) \longrightarrow \sigma_n(\Gamma) \longrightarrow \{0, 1/\sqrt{m}\}_\Gamma
$$

with the left vertical arrow admitting extension operator of norm 1, and $n - m$ arbitrarily large. But $\eta(\sigma_m(\Gamma), \sigma_n(\Gamma)) \geq 2n - 2m + 1$...
For every $r < s$ we can produce produce diagrams:

\[
\begin{align*}
B(\Gamma) & \xrightarrow{} sB(\Gamma) \\
\uparrow & \quad \uparrow \\
\sigma_m(\Gamma) & \xrightarrow{} \sigma_n(\Gamma) \xrightarrow{\subset} \{0, 1/\sqrt{m}\}^\Gamma
\end{align*}
\]

with the left vertical arrow admitting extension operator of norm 1, and $n - m$ arbitrarily large. But $\eta(\sigma_m(\Gamma), \sigma_n(\Gamma)) \geq 2n - 2m + 1$...

Open Problem: A non-separable Miljutin theorem?

Is $C(B(\Gamma))$ isomorphic to $C(\sigma_1(\Gamma)^\mathbb{N})$?