Staphylococcus aureus PhoU Homologs Regulate Persister Formation and Virulence

Yongpeng Shang1†, Xiaofei Wang1†, Zhong Chen1†, Zhihui Lyu1, Zhiwei Lin2, Jinxin Zheng2, Yang Wu1, Qiwen Deng2, Zhijian Yu2*, Ying Zhang3* and Di Qu1*

1 Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China. 2 Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China. 3 Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States

PhoU homologs are one of the determinant factors in the regulation of persister formation and phosphate metabolism in many bacterial species; however, the functions of PhoU homologs exhibit species-specific characteristics. The pathogenesis of Staphylococcus aureus is closely correlated with persister formation and virulence factors. The functions of two PhoU homologs, PhoU1 and PhoU2, in S. aureus are unclear yet. In this study, single- and double-deletion mutants of \textit{phoU1} and \textit{phoU2} were generated in strain USA500 2395. The \(\Delta\text{phoU1}\) or \(\Delta\text{phoU2}\) mutants displayed a change in persister formation and virulence compared to the parent strain; thepersisters to vancomycin and levofloxacin were decreased at least 1,000-fold, and the number of intracellular bacteria surviving in the A549 cells for 24 h decreased to 82 or 85%. The \(\alpha\)-hemolysin expression and activity were increased in the \(\Delta\text{phoU2}\) mutants. Transcriptome analysis revealed that 573 or 285 genes were differentially expressed by at least 2.0-fold in the \(\Delta\text{phoU1}\) or \(\Delta\text{phoU2}\) mutant vs. the wild type. Genes involved in carbon and pyruvate metabolism were up-regulated, and virulence genes and virulence regulatory genes were down-regulated, including type VII secretion system, serine protease, leukocidin, global regulator (\textit{sarA}, \textit{rot}), and the two-component signal transduction system (\textit{saeS}). Correspondingly, the deletion of the \textit{phoU1} or \textit{phoU2} resulted in increased levels of intracellular pyruvate and ATP. Deletion of the \textit{phoU2}, but not the \textit{phoU1}, resulted in the up-regulation of inorganic phosphate transport genes and increased levels of intracellular inorganic polyphosphate. In conclusion, both \textit{PhoU1} and \textit{PhoU2} in \textit{S. aureus} regulate virulence by the down-regulation of multiple virulence factors (type VII secretion system, serine protease, and leucocidin) and the persister generation by hyperactive carbon metabolism accompanied by increasing intracellular ATP. The results in \textit{S. aureus} are different from what we have previously found in \textit{Staphylococcus epidermis}, where only \textit{PhoU2} regulates biofilm and persister formation. The different functions of PhoU homologs between the two species of \textit{Staphylococcus} warrant further investigation.

Keywords: persisters, PhoU homolog, \textit{Staphylococcus aureus}, virulence, phosphate metabolism, ATP
INTRODUCTION

Staphylococcus aureus is a human pathogen that colonizes human skin and mucous membranes (Otto, 2010; Tong et al., 2015). It can invade phagocytic, epithelial, or endothelial cells and allows for the formation of persisters that can cause chronic and recurrent infections (Conlon, 2014). Moreover, the pathogenicity of S. aureus is closely correlated to its virulence factors (such as hemolysins, leukotoxins, enterotoxin, and coagulase) and biofilm formation (Dinges et al., 2000; Otto, 2014). Persisters are a subpopulation of bacterial cells that are tolerant to antibiotics without changes in minimum inhibitory concentration (MIC) values in the whole population and are one of the most important factors in the failure of antibiotic therapy (Wilmiaerts et al., 2019). Persister formation is often explained by multiple mechanisms such as the reduction of cellular energy, cessation of DNA replication, blocked transcription and translation, decreased intracellular antibiotic concentrations, and antibiotic-induced damage (El-Halfawy and Valvano, 2015; Fisher et al., 2017; Wilmiaerts et al., 2019).

PhoU homologs are associated with persister formation in species including Escherichia coli, Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Staphylococcus epidermidis (Li and Zhang, 2007; Shi and Zhang, 2010; Wang et al., 2017). The biological functions of the PhoU homologs in S. aureus are unclear and still require further investigation.

PhoU orthologs are found in many species of bacteria, but not in humans, and have been identified as phosphate-specific transport system accessory proteins (Morohoshi et al., 2002; Wang et al., 2013; de Almeida et al., 2015). In E. coli, PhoU protein is involved in the response to environmental Pi levels by interacting with PhoR and PstB (Gardner et al., 2014). A crystal structure analysis of PhoU protein in Thermotoga maritima revealed multinuclear iron clusters by a conserved E(D)XXD motif pair (Liu et al., 2005). Little is known about the function of PhoU besides being a phosphate regulator. One phoU homolog is in the pst operon of E. coli and P. aeruginosa, whereas two phoU homologs are found in M. tuberculosis, Mycobacterium marinum, S. epidermidis, and S. aureus. In 2007, Li and Zhang (2007) showed that the inactivation of phoU in E. coli resulted in persister reduction and an up-regulated transcription level of some functional genes involved in energy production, nutrient transportation, flagellar synthesis, and chemotaxis. In P. aeruginosa, a phoU mutant displayed increased levels of intracellular guanosine tetraphosphate (ppGpp) and polyphosphate (polyP), impacted antibiotic susceptibility, and decreased growth rate of planktonic bacteria; however, there was no effect on biofilm formation (de Almeida et al., 2015). Two phoU homologs from M. tuberculosis, phoY1 and phoY2, showed distinct functions in different strains. In the M. tuberculosis H37Rv strain, the phoY2 mutant, but not the phoY1 mutant, increased the susceptibility to rifampicin and pyrazinamide and decreased persister formation, while in the M. tuberculosis Erdman strain, phoY1 and phoY2 double mutants, but not the single mutants (deletion of phoY1 or phoY2), increased the susceptibility to rifampicin and decreased persister formation (Shi and Zhang, 2010; Namugenyi et al., 2017). Thus, the biological functions of PhoU homologs show species-specific characteristics, which require individual investigations.

Our previous studies found that in S. epidermidis, the biological functions and regulation of PhoU homologs are different from those of some other bacterial species in specific ways (Wang et al., 2017). In S. epidermidis, the genome contains two PhoU homologs: phoU1, in the same operon as that pst and it has high homology with the phoU of E. coli, and phoU2, which is located in the pit operon (Wang et al., 2017). PhoU2, but not PhoU1, is an important regulator of biofilm formation and of tolerance to multiple stresses (Wang et al., 2017). The deletion of phoU2 resulted in growth retardation, decreased persister formation, and biofilm reduction in S. epidermidis, while phoU1 deletion had no effect on the bacterial phenotypes tested (Wang et al., 2017). PhoU2 deletion alters cellular metabolic processes such as inorganic phosphate metabolism, galactose metabolism, the pentose phosphate pathway, and the tricarboxylic acid cycle (Wang et al., 2017). In the genus Staphylococcus, both S. aureus and S. epidermidis are important pathogens, but their pathogenic mechanisms differ. The main pathogenic mechanisms of S. aureus are secretions of a variety of toxins to destroy host cells, invasion and survival in cells, and biofilm formation (Fraunholz and Sinha, 2012; Otto, 2014; Moormeier and Bayles, 2017). By comparison, the pathogenesis of S. epidermidis is mainly due to the formation of biofilms on materials used for medical interventions that resist clearance by the immune system and antibiotics. Persisters are generated during S. aureus or S. epidermidis infection (Grassi et al., 2017). A genome analysis of S. aureus USA500 2395 allowed for the identification of two phoU homologs, phoU1 and phoU2, located in the pst operon and pit operon, respectively. Overton et al. (2011) analyzed the transcriptomes and the proteomics of the S. aureus ATCC 8325 strain and suggested that phoU1 is involved in persister formation in the presence of the cationic bacitracin (ranalexin) (Overton et al., 2011). The pit operon of the S. aureus HG003 strain contains the pitA and the phoU2 (pitR) genes. A single-point mutation in pitA (downstream of phoU2) resulted in high tolerance to daptomycin, and phoU2 (pitR) was required for the expression of this phenotype (Mechler et al., 2016). We therefore speculated that the regulatory functions of the two phoU homologs (phoU1 and phoU2) of S. aureus may differ from those in S. epidermidis. In S. aureus, the regulation of persister formation and virulence, and their interconnections, may be associated with the phoU homologs and requires further investigation.

In the present study, we generated phoU single mutants of S. aureus strain USA500 2395, named ΔphoU1 and ΔphoU2. The effects of these deletions on bacterial growth, persister formation, and metabolism were investigated. Comparisons of the transcriptome profiles of ΔphoU1 vs. the parent strain and of ΔphoU2 vs. the parent strain allowed for differentially expressed genes (DEGs) that were involved in phosphate metabolism, carbon and pyruvate metabolism, and virulence gene expression to be identified. We analyzed intracellular inorganic phosphate (Pi), polyP, glucose, pyruvate, ATP, bacterial survival in cells, and hemolysis, respectively. The deletion of phoU1 or phoU2 of S. aureus increased carbon metabolism...
and intracellular ATP levels, which may be associated with the decreased antibiotic tolerance of bacteria and the reduced intracellular survival of bacteria in human lung epithelial A549 cells. The results suggest that both PhoU1 and PhoU2 of S. aureus are involved in the regulation of persister generation and virulence.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, Growth Conditions, and Antibiotics

The bacterial strains and plasmids used for cloning are listed in Supplementary Table S1. The S. aureus strain USA500 2395 was used for the construction of gene knockout and complementation. S. aureus strain USA300 FPR3757 and SA113 were used for gene silencing. E. coli DC10B was used for staphylococcal cloning host. S. aureus strains were grown at 37°C in tryptic soya broth (TSB) (OXOID, Basingstoke, United Kingdom). E. coli was grown at 37°C in Luria broth (1% tryptone, 0.5% NaCl, and 0.5% yeast extract). B2 media (2.5% yeast extract, 1% tryptone, 0.5% glucose, 2.5% NaCl, and 0.1% K2HPO4) was used for preparing and recovering the electrocompetent cells of S. aureus after electroporation. The antibiotics were used at the following concentrations: ampicillin at 100 µg/ml, chloramphenicol at 10 µg/ml, and erythromycin at 10 µg/ml (Sigma, United States).

Construction of Gene Knockout, Complementation, and Silencing Strains

The phoU1 and phoU2 deletion mutants of S. aureus USA500 2395 were constructed using the temperature-sensitive plasmid pKOR1 (Bae and Schneewind, 2006). The upstream and downstream fragments of phoU1 or phoU2 were amplified by PCR, ligated by T4 DNA ligase, and cloned into vector pKOR1, resulting in recombinant pKOR1-ΔphoU1 or pKOR1-ΔphoU2. The plasmids pKOR1-ΔphoU1 and pKOR1-ΔphoU2 were transferred into E. coli DC10Band then into USA500 2395. ΔphoU1 and ΔphoU2 were generated by the homologous recombination method of allelic exchange, as described (Bae and Schneewind, 2006). By transferring pKOR1-ΔphoU2 vector into ΔphoU1, the double-deletion mutant of phoU1 and phoU2 (∆phoU1ΔphoU2) was constructed. The gene deletion mutants were verified by PCR, quantitative reverse transcription-PCR (qRT-PCR), and sequencing.

Complementation of the ∆phoU1 and the ∆phoU2 was achieved by the E. coli–Staphylococcus shuttle vector pCN51 and pRB473. The phoU1 or the phoU2, with their promoter regions, was amplified by PCR and inserted into pCN51. The pCN51-phoU1 or pCN51-phoU2 plasmid was transferred into the corresponding deletion mutants by electroporation. The pRB473-phoU2 plasmid was constructed according to the abovementioned method. The complemented ΔphoU1ΔphoU2 was constructed by transferring the pCN51-phoU1 and pRB473-phoU2 by electroporation. The silencing strains of phoU1 or phoU2 were constructed by the shuttle plasmid pMX6 (Helle et al., 2011; Xu et al., 2017). The hairpin structure formed by the plasmid pMX6 was used for constructing antisense RNA (asRNA) expression. The plasmid of asRNA phoU1 or asRNA phoU2 was constructed by firstly amplifying a sequence of about 200 nt containing the start codon of the corresponding gene. Then, the sequence was inserted in the reverse direction downstream of the anhydrotetracycline-inducible promoter in pMX6. The plasmid of asRNA phoU1 or asRNA phoU2 was transferred into USA500 2395, USA300 FPR3757, and SA113 by electroporation, resulting in the silencing strains. Primers are listed in the Supplementary Tables S3, S4.

Bacterial Growth Curve and Viable Bacteria Count

S. aureus strains were grown to stationary phase (12 h) and then diluted (1:200) in TSB medium. For bacterial growth curves, bacteria were grown at 37°C with shaking at 220 rpm and monitored by measuring the OD600 at 1 h intervals for 24 h by Bioscreen C (Turku, Finland). For viable bacterial count, bacteria were grown at 37°C with shaking, and the cells were plated in serial dilutions on TSB agar at 4 and 12 h, then the colony-forming units (CFU) were counted.

MIC and MBC Determination

According to the CLSI National Committee for Clinical Laboratory, the MICs were determined by using serial twofold dilutions of the antibiotics (vancomycin, levofloxacin, gentamicin, and daptomycin) in Mueller–Hinton broth (MH, OXOID). The initial cell density was 10^5 CFU/ml. Then, the initial bacteria were inoculated into MH broth for 16–20 h. The MIC is defined as the lowest concentration of antibiotics that inhibited the visible growth of bacteria. MH broth without antibiotic served as the control. The minimal bactericidal concentration (MBC) values were identified by plating 100-µl samples, from tubes with no visible bacterial growth in MIC tests, onto MHB agar plates. The concentration that reduced the viability of the initial bacterial inoculum by ≥99.9% was the MBC.

Persisters Assay

Persisters were determined as described (Li and Zhang, 2007). S. aureus strains were grown in TSB for 12 h to reach the stationary phase. Different 25 × MIC antibiotics were added to the cultures (final concentrations: levofloxacin at 12.5 mg/L and vancomycin at 25 mg/L). At each time point (0, 4, 8, 12, 24, 48, and 72 h), 1 ml of bacteria was collected by centrifugation (6,000 rpm), washed twice with cold saline, serially diluted 10-fold, and plated on TSB agar. Then, the CFU were counted.

Sensitivity to H2O2 and SDS

Overnight cultures (12 h) of S. aureus strains were diluted 1:200 into 7 mM H2O2 or 0.005% sodium dodecyl sulfate (SDS) TSB and incubated at 37°C, and the OD600 was measured. Overnight cultures of S. aureus strains were serially diluted 10-fold. Five
microliters of the diluted samples was spotted onto TSA plates containing 7 mM H$_2$O$_2$ or 0.005% SDS and incubated at 37°C overnight. The plates with bacterial colonies were photographed.

RNA Extracting and Sequencing

Total RNA for RNA-Seq and qRT-PCR was extracted by RNeasy Mini kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions. In brief, *S. aureus* and the derivative strains were diluted 1:200 into 20 mM TSB and incubated at 37°C. At 12 h, 8 ml of bacteria was collected at 6,000 rpm and washed twice times with cold saline. With 0.5 ml of 0.1 mm zirconia-silica beads, the cells were homogenized for five rounds using a Mini-Bead beater (Biospec, Bartlesville, OK, United States) at 4,800 rpm for 1 min and were cooled on ice for 1 min. Then, the samples were centrifuged at 12,000 rpm, and RNA in the supernatant was extracted using the silica-based filter of Neasy Mini kit.

The samples were prepared according to the Illumina RNA Sequencing Sample Preparation Guide. In brief, three biological replicates for each of the *S. aureus* were treated with RNase-free DNase I (Takara) to remove the genomic DNA. The BioAnalyzer 2100 system was used to evaluate RNA quality. The samples were treated with the RiboZero rRNA removal kit (gram-positive organisms) to remove ribosomal RNA. Fragmented RNA was reverse-transcribed using random primers. The cDNA library included fragment sizes of 200–300 bp, which were prepared by the mRNA-Seq Sample Prep kit and verified on the BioAnalyzer 2100 system. Then, the fragment size is amplified by Illumina cBot and sequenced by Illumina HiSeq 2500.

RNA-Seq Data Analysis and qRT-PCR Validation

Quality control involves discarding of rRNA reads, sequencing adapters, short fragments, and other low-quality reads. The remaining reads were multi-mapped to the genome of *S. aureus* USA500 2395 at the NCBI website with the Bowtie2 software. BED Tools software was used to count the transcript expression levels. Per kilobase of gene per million mapped reads (RPKM) reported the RNA-seq gene expression values. Integrated Genomics Viewer was used to visualize the date. DEGseq software was used to quantify the differential expression of different transcripts. Significant differences in expression ratios were defined as at least 2.0- or 0.5-fold change in transcript level. The P-values cutoff was calculated (0.05). IPA Software was used to analyze differentially expressed genes in the canonical pathway. The number of genes mapped to the pathway vs. the total genes present in the canonical pathway determined the significance of the pathway.

A pool of 5 µg of total RNA for *S. aureus* strains was DNA-digested and reverse-transcribed into cDNA using PrimeScript TM RT reagent kit. Then, 100 ng/µl cDNA was used for qRT-PCR with TB green PCR reagents. All reagents were from Takara Biotechnology. The reactions were performed in a Mastercycler realplex system (Eppendorf AG, Hamburg, Germany) and normalized using gyrB (DNA gyrase subunit B) as the housekeeping gene. Each gene qRT-PCR was performed in triplicate.

Protein–Protein Interaction Network

Cytoscape software was used to construct a protein–protein interaction network (PPI) according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

Inorganic Phosphate Determination

Intracellular Pi was quantified with a commercially available kit (no. ab65622; Abcam), which was modified for *S. aureus* (Mechler et al., 2015). In brief, overnight cultures of *S. aureus* strains were diluted 1:200 into TSB and incubated at 37°C. After 12 h, the cells were harvested by centrifugation at 4,000 rpm for 10 min at 4°C. The cells were washed twice with ice-cold, double-distilled water and adjusted to OD600 ≈1; then, they were lysed with 0.1 mm glass-silica beads in a BeadBeater apparatus (BioSpec), followed by centrifugation to get the supernatant. The supernatant was used to measure OD650 (Thermo VARIOSKAN LUX). The Pi levels were determined according to the manufacturer’s instructions.

Polyphosphate Determination

Intracellular polyP levels were determined using 4′-6-diamidino-2-phenylindole (DAPI; Sigma) as described previously (Aschar-Sobbi et al., 2008). Overnight cultures of *S. aureus* strains were diluted 1:200 into TSB and incubated at 37°C. After 12 h, the cells were washed twice with Tris-HCl buffer (100 mM Tris, pH 7.4) and adjusted to OD600 ≈1. DAPI was added to a final concentration of 20 µM. After 15 min of agitation at room temperature in the dark, the fluorescence signal was determined using a microplate reader with excitation at 415 nm and emission at 550 nm (Thermo VARIOSKAN LUX).

Glucose and Pyruvate Detection

Glucose and pyruvate were measured using the Glucose Assay Kit (ab65333; Abcam) and Pyruvate Assay Kit (ab65342; Abcam) according to the manufacturer’s instructions (Liang et al., 2018; Schnack et al., 2019). *S. aureus* strains were diluted 1:200 into TSB and incubated at 37°C. After 12 h, culture supernatant and cells were harvested. The cells were washed twice with phosphate-buffered saline (PBS) and adjusted to OD600 ≈1 with assay buffer and then were lysed with 0.1-mm glass-silica beads in a BeadBeater apparatus (BioSpec), followed by centrifugation to obtain the supernatant. The fluorescence signal of the supernatant was determined using a microplate reader with excitation at 535 nm and emission at 587 nm (Thermo VARIOSKAN LUX).

Intracellular ATP Detection

The ATP levels of *S. aureus* strains were measured using a Promega BacTiter Glo kit according to the manufacturer’s instructions (Bonora et al., 2015). *S. aureus* strains were diluted 1:200 into TSB and incubated at 37°C. After 12 h,
the cells were washed twice with PBS and adjusted to OD₆₀₀ ≈1. A volume of BacTiter-GloTM Reagent was added equal to the volume of the cell culture medium present in each well. The complexes were mixed briefly and incubated for 5 min. Luminescence was determined using a microplate reader (Thermo VARIOSKAN LUX).

Invasion and Intracellular Survival Assays

An assay of bacterial invasion was performed as previously described (Liang et al., 2006; Sharma et al., 2013; Mechler et al., 2015). A549 human lung epithelial cells were cultured in Dulbecco’s modified Eagle’s medium/F-12 medium supplemented with 10% fetal calf serum, streptomycin (100 µg/ml), and penicillin (100 µg/ml) in a 5% CO₂ incubator at 37°C. The cells were passaged and expanded every 2 days. At 1 day prior to infection, 2 × 10⁵ cells were seeded in 24-well plates with an antibiotic-free cell culture medium and incubated at 37°C in a 5% CO₂ incubator. *S. aureus* strains were grown for 4 and 12 h in TSB. One milliliter of the bacterial culture was washed with ice-cold saline and resuspended in 1 ml of cell culture medium. Approximately 2 × 10⁶ CFU/ml of *S. aureus* strains were seeded in a 24-well plate. The plates were centrifuged at 1,000 rpm for 5 min to synchronize infection and then incubated for 1 h at 37°C in a 5% CO₂ incubator. The culture medium was removed. Extracellular bacteria were treated with 100 µg/ml gentamicin and 20 µg/ml lysostaphin (Sangon Biotech) for 30 min. The monolayer cells were washed three times with PBS (pH 7.4) and incubated for an additional 1 h (invasion capacity) or 24 h (intracellular survival). Intracellular bacteria were counted for the CFU by lysis of the host cells with 0.01% Triton X-100.

Rabbit Erythrocyte Lysis Assay

As rabbit erythrocytes were exquisitely sensitive to alpha-toxin (Bernheimer et al., 1968), assessment of the alpha-hemolysin activity was done by the analysis of rabbit erythrocytes lysis (Bernheimer et al., 1968), assessment of the alpha-hemolysin activity was done by the analysis of rabbit erythrocytes lysis (Bernheimer et al., 1968). Briefly, the *S. aureus* strains were diluted 1:200 into TSB and incubated at 37°C. After 12 h, the culture supernatant was harvested. The supernatant was removed with a 0.22 µm filter (Millipore). Commercial 4% rabbit erythrocytes (SBJ-RBC-RAB003, Sbjbio, China) stored in Alsevers solution were four times diluted with PBS. The supernatant was added, equal to the volume of 1% of rabbit erythrocytes, and then incubated at 37°C for 30 min. The OD₅₅₀ of each well was measured by a spectrophotometer. Then, 0.1% Triton X-100 served as the 100% hemolysis control (positive control), and PBS was the negative control. All experiments were performed in triplicate.

Extracellular Alpha-Hemolysin Western Blot Assay

The collected supernatant was added 5 × loading buffer and the mixture was heated at 100°C for 5 min. Equal volumes of the mixture were separated using SDS-PAGE (10%) and transferred to polyvinylidene fluoride membrane (pore size, 0.45 µm; Millipore) by electrotransfer. The membranes were blocked with 5% skim milk for 2 h at room temperature and then incubated with alpha-hemolysin polyclonal antibody (Sigma S7531) overnight at 4°C. After washing three times with PBST, the membranes were incubated with HRP-conjugated goat anti-rabbit IgG (Santa Cruz, Santa Cruz, CA, United States). The immunoreactive bands were detected by visualization using an enhanced chemiluminescence Western blotting system (Thermo Fisher Scientific, Waltham, MA, United States).

Statistical Analysis

All of the data were analyzed with SPSS (version 16.0) and compared using the independent-samples t-test. Differences with P-value < 0.05 were considered as statistically significant.

RNA-Seq Data Accession Number

The RNA-Seq data were submitted to the Gene Expression Omnibus database. The accession number was GSE139071.

RESULTS

Construction of phoU1 and phoU2 Deletion Mutant Strains

In the genome of *S. aureus*, strain USA500 2395 (GenBank accession number CP007499), two PhoU homologs are present: *phoU1* is located in the *pst* operon and *phoU2* is located in the *pit* operon. An alignment analysis of the PhoU homologs showed a high identity at the nucleotide level (>99%) and at the amino acid level (100%) in *S. aureus* strains (Supplementary Table S1). The identity of *S. aureus* PhoU1 or PhoU2, when compared with *S. epidermidis*, was 70 and 87%, respectively, at the nucleotide level and 95% for both proteins at the amino acid level (Supplementary Table S1).

Single or double mutants of *phoU1* and *phoU2* were constructed in the USA500 2395 strain using the temperature-sensitive plasmid pKOR1 and were named Δ*phoU1*, Δ*phoU2*, and Δ*phoU1*Δ*phoU2*. The mutants were verified by PCR, qRT-PCR, and sequencing (the data not shown). Complementation of the Δ*phoU1* and the Δ*phoU2* mutants was achieved using the vectors pCN51 and pRB473, which were named C-Δ*phoU1* and C-Δ*phoU2*, respectively. We then determined the growth curve and the viable bacterial counts of the 3 *pho* U mutants and the wild-type strain USA500 2395. Both the growth curve and the viable bacterial count of Δ*phoU1* or Δ*phoU2* were similar to USA500 2395 (Supplementary Figures S1A,B).

Antibiotic Tolerance of the phoU1 and phoU2 Deletion Mutants

Previous reports indicated that PhoU2, but not PhoU1, impacted antibiotic tolerance in *S. epidermidis* (Wang et al., 2017); therefore, we investigated the effects of deleting the *phoU* homolog on *S. aureus* antibiotic tolerance. The antibiotic tolerance of Δ*phoU1*, Δ*phoU2*, and USA500 2395 was
determined using a modified procedure described by Li and Zhang. The ΔphoU1, ΔphoU2, and USA500 2395 strains were incubated in TSB for 12 h (to reach stationary growth phase), followed by 5 days of incubation with 25 × MIC vancomycin (25 μg/ml) or levofloxacin (12.5 μg/ml). The surviving CFU were counted at different time points. The antibiotic tolerance of both ΔphoU1 and ΔphoU2 showed 4-log reductions when compared with USA500 2395, and no viable bacteria were detected in either ΔphoU1 or ΔphoU2 after vancomycin exposure with 25 × MIC for 48 h, whereas in USA500 2395, 3.8 × 10^4 CFU were detected (Table 1). Moreover, no viable bacteria were detected in either ΔphoU1 or ΔphoU2 after exposure to 25 × MIC levofloxacin for 24 h, compared to USA500 2395 where 5 × 10^4 CFU were detected (Table 1). The complemented strains C-phoU1 and C-phoU2 restored the antibiotic tolerance, while the P-phoU1 and P-phoU2 strains with empty plasmids performed the same as the phoU mutants. The MIC and MBC of ΔphoU1 and ΔphoU2 were similar to that of USA500 2395 (Supplementary Table S2).

Tolerance to H_2O_2 and SDS of phoU1 and phoU2 Deletion Mutants

We evaluated the tolerance of ΔphoU1 and ΔphoU2 to stresses (SDS and H_2O_2) and found that, when exposed in TSB containing 7 mmol H_2O_2, the lag phase of ΔphoU1 and ΔphoU2 was extended by 2 and 4 h, respectively, in comparison to USA500 2395 (Figure 1A). When cultured in 0.005% SDS TSB for 12 h, the OD_{600} values of ΔphoU1 and ΔphoU2 were 0.96 ± 0.013 and 0.84 ± 0.007, respectively, which were all lower than that of USA500 2395 (1.15 ± 0.023) (Figure 1C). When cultured in 7 mmol H_2O_2 (or 0.005% SDS) TSB for 6 h, bacteria were collected and plated on TSB agar plates in serial dilutions, and CFU were counted. The CFU of ΔphoU1 and ΔphoU2 were log_{10} 7.92 ± 1.74 (or log_{10} 7.6 ± 0.82) and log_{10} 7.48 ± 0.53 (or log_{10} 7.20 ± 0.43), respectively, which were all lower than that of USA500 2395, log_{10} 8.6 ± 0.72 (or log_{10} 8.5 ± 0.53) (Figures 1B,D). The complemented strains C-phoU1 and C-phoU2 restored the tolerance to H_2O_2 and SDS.

The ΔphoU1, ΔphoU2, and USA500 2395 strains were exposed onto TSB agar containing either H_2O_2 (7 mmol) or SDS (0.005%) and then incubated for 24 h at 37°C. The number of colonies on the plates displayed the final impact on the growth under the pressure of H_2O_2 and SDS. The ΔphoU1 and ΔphoU2 mutants displayed higher sensitivity to SDS than that of the parent strain, when 10^3 CFU was spotted onto TSB agar containing SDS (0.005%) (Supplementary Figure S4). However, the sensitivity of the ΔphoU1 and ΔphoU2 mutants to H_2O_2 was similar to that of the parent strain (Supplementary Figure S4).

Comparison of the Transcriptomes of ΔphoU1, ΔphoU2, and USA500 2395

For the analysis of ΔphoU1, ΔphoU2, and USA500 2395 transcriptomes, bacterial RNA was extracted at the stationary phase (after 12 h of growth) and analyzed by RNA-Seq. Transcriptome analysis indicated 573 differentially expressed genes between ΔphoU1 and USA500 2395, including 456 up-regulated and 117 down-regulated genes. Between ΔphoU2 and USA500 2395, 285 differentially expressed genes were identified, including 53 up-regulated and 232 down-regulated genes. We selected 65 DEGs for validation by RT-qPCR and established that 61 DEGs were consistent, following RNA-Seq. A PPI was constructed based on the KEGG database. This suggested that the DEGs between ΔphoU1 and USA500 2395 were widely involved in various metabolic pathways (including iron transport and the metabolism of carbon, fatty acids, and amino acids).

Table 1: Deletion of phoU1 or phoU2 decreased the persister formation in *Staphylococcus aureus* under the pressure of antibiotics.

Antibiotic/bacterial	Time point	CFU/ml						
	USA500 2395	Δ phoU1	P-Δ phoU1	C-Δ phoU1	Δ phoU2	P-Δ phoU2	C-Δ phoU2	
Van	Start	2.0 × 10^{10}	1.8 × 10^{10}	1.6 × 10^{10}	1.8 × 10^{10}	2.0 × 10^{10}	1.6 × 10^{10}	1.8 × 10^{10}
	4 h	8.0 × 10^{3}	6.3 × 10^{3}	7.1 × 10^{3}	6.8 × 10^{3}	8.0 × 10^{3}	8.0 × 10^{3}	6.0 × 10^{3}
	8 h	1.4 × 10^{4}	2.0 × 10^{4}	4.6 × 10^{4}	5.8 × 10^{4}	6.0 × 10^{4}	8.0 × 10^{4}	8.0 × 10^{4}
	12 h	1.0 × 10^{5}	2.5 × 10^{5}	4.3 × 10^{5}	9.2 × 10^{5}	2.0 × 10^{6}	4.0 × 10^{7}	1.4 × 10^{8}
	24 h	1.2 × 10^{6}	3.0 × 10^{6}	4.0 × 10^{6}	6.2 × 10^{6}	8.0 × 10^{6}	1.2 × 10^{7}	4.0 × 10^{7}
	48 h	3.8 × 10^{7}	0	0	2.3 × 10^{7}	0	0	8.0 × 10^{7}
	72 h	4.0 × 10^{8}	0	0	4.0 × 10^{8}	0	0	4.0 × 10^{8}
Lev	Start	2.0 × 10^{10}	1.8 × 10^{10}	1.6 × 10^{10}	1.8 × 10^{10}	2.0 × 10^{10}	1.6 × 10^{10}	1.8 × 10^{10}
	4 h	1.0 × 10^{3}	2.0 × 10^{3}	1.5 × 10^{3}	2.3 × 10^{3}	1.4 × 10^{3}	2 × 10^{3}	2.2 × 10^{3}
	8 h	1.6 × 10^{4}	6.9 × 10^{4}	9.7 × 10^{4}	2.7 × 10^{5}	8 × 10^{4}	1.2 × 10^{5}	1.6 × 10^{6}
	12 h	1.2 × 10^{5}	8 × 10^{5}	1.4 × 10^{5}	1.4 × 10^{5}	1.0 × 10^{5}	1.4 × 10^{5}	1.4 × 10^{5}
	24 h	5 × 10^{6}	0	0	2 × 10^{6}	0	0	0
	48 h	0	0	0	0	0	0	0
	72 h	0	0	0	0	0	0	0

Overnight cultures (12 h) of ΔphoU1, ΔphoU2, and USA500 2395 were added into tryptic soy broth medium containing 25 × MIC of vancomycin (Van, 25 μg/ml) or levofloxacin (Lev, 12.5 μg/ml) and incubated at 37°C until 72 h. The colony-forming units of the above strains were performed at the indicated time points. The complementation of ΔphoU1 or ΔphoU2 mutant was abbreviated as C-phoU1 or C-phoU2, which were transferred as pCN51-phoU1 or pCN51-phoU2 into the corresponding deletion mutants. The empty vectors of pCN51 transferred into the ΔphoU1 or ΔphoU2 mutants were named P-phoU1 or P-phoU2.
Deletion of *phoU1* or *phoU2* increased the sensitivity to H$_2$O$_2$ and sodium dodecyl sulfate (SDS) of *Staphylococcus aureus*. Overnight cultures (12 h) of 1*phoU1*, 1*phoU2*, C-*phoU1*, C-*phoU2*, and USA500 2395 strains were diluted at 1:200 into tryptic soya broth (TSB) containing either (A) hydrogen peroxide (H$_2$O$_2$; 7 mM) or (C) SDS (0.005%), then grown at 37°C with shaking at 220 rpm, and monitored by measuring the OD$_{600}$ at the indicated time points until 12 h. (B) H$_2$O$_2$ (7 mM) or (D) SDS (0.005%), collecting (A,C) 6 h culture; bacteria in serial dilutions were plated on TSB agar plates and colony-forming units were counted. The experiments were repeated three times, and error bars indicate the standard deviation. Mutant strains exhibited significant differences (**P < 0.01) when compared with the wild-type and the complemented strains C-*phoU1* or C-*phoU2*.

Verification of Metabolic Variation in *phoU1* and *phoU2* Deletion Mutants

Based on PPI analysis, we investigated the pathways of phosphate, carbon, and pyruvate metabolism using assays of Pi, polyP, glucose, pyruvate, and ATP, respectively.
TABLE 2 | Pathway analysis of differentially expressed genes of ΔphoU1 and USA500 2395.

Gene	Description	Fold change	RNA-seq	qRT-PCR
Carbon metabolism				
CH51_RS01175	Sorbitol dehydrogenase	2.04	ND	
CH51_RS14180	Gluconate permease	2.17	ND	
CH51_RS14185	Gluconokinase	2.52	ND	
CH51_RS14680	Acyl esterase	2.26	ND	
CH51_RS14690	Pantoate-beta-alanine ligase	2.14	ND	
CH51_RS14700	2-Dehydropanoate 2-reductase	2.63	ND	
CH51_RS11580	Carbohydrate kinase	2.33	ND	
CH51_RS11585	Sucrose-6-phosphate hydrolase	2.17	ND	
CH51_RS06555	Ribulose-phosphate 3-epimerase	2.16	ND	
CH51_RS08720	Glycine dehydrogenase	2.94	ND	
CH51_RS02915	Serine acetyltransferase	2.52	ND	
CH51_RS00820	Formate dehydrogenase	2.06	ND	
CH51_RS09725	Formate-tetrahydrofolate ligase	2.07	ND	
CH51_RS05415	Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase	2.04	ND	
Pyruvate metabolism				
CH51_RS03145	Acetyl-CoA acetyltransferase	2.58	ND	
CH51_RS00775	Aldehyde dehydrogenase	2.02	ND	
CH51_RS01035	Formate acetyltransferase	0.37	0.52 ± 0.12	
CH51_RS01095	Acyl CoA:acetate/3-ketoacid CoA transferase	2.74	ND	
CH51_RS10975	Aldehyde dehydrogenase	2.84	ND	
CH51_RS14295	Lactate dehydrogenase	0.43	ND	
CH51_RS04930	CoA-disulfide reductase	2.32	ND	
CH51_RS09730	Acetate-CoA ligase	2.31	ND	
CH51_RS14750	Acetyl-CoA synthetase	2.17	1.91 ± 0.61	
Glycolysis/gluconeogenesis				
CH51_RS03355	Zinc-dependent alcohol dehydrogenase	0.24	ND	
CH51_RS10975	Aldehyde dehydrogenase	2.84	ND	
CH51_RS09730	Acetate-CoA ligase	2.31	ND	
CH51_RS14750	Acetyl-CoA synthetase	2.17	ND	
CH51_RS00775	Aldehyde dehydrogenase	2.02	ND	
Propanoate metabolism				
CH51_RS08625	Alpha-ketoacid dehydrogenase subunit beta	2.2	ND	
CH51_RS08620	2-Oxo acid dehydrogenase subunit E2	2.44	ND	
Glyoxylate and dicarboxylate metabolism				
CH51_RS08725	Aminomethyltransferase	2.97	ND	
CH51_RS03045	HAD family hydrolase	2.01	ND	
Purine metabolism				
CH51_RS06550	GTPase	2.52	ND	
CH51_RS05100	GTP pyrophosphokinase	2.13	ND	
CH51_RS05450	Amidophosphoribosyl transferase	0.46	ND	
CH51_RS06795	DNA polymerase III subunit alpha	2.34	ND	
purE	Phosphoribosylaminomimidazole synthase	0.45	ND	
purS	Phosphoribosylformylglycinamidine synthase subunit	0.33	ND	
purQ	Phosphoribosylformyl glycinamidine synthase subunit	0.43	ND	
purL	Phosphoribosylformylglycinamidine synthase subunit	0.41	ND	
CH51_RS09215	Bifunctional (p)ppGpp synthetase/guanosine-3',5'-bis(diphosphate) 3',5'-pyrophosphohydrolase	2.16	ND	
CH51_RS09555	DNA polymerase III subunit alpha	2.42	ND	
CH51_RS02730	Hypoxanthine-guanine phosphoribosyltransferase	2.35	ND	

(Continued)
Gene	Description	Fold change	RNA-seq	qRT-PCR
Phosphate metabolism				
CH51_RS00745	Iron-regulated surface sugar transferase	2.3	ND	
CH51_RS04775	Iron-sulfur cluster assembly accessory protein	2.03	ND	
CH51_RS09715	Iron-regulated surface determinant protein H	5.38	ND	
CH51_RS06655	Iron-regulated surface determinant protein B	3.06	ND	
CH51_RS06607	Heme uptake system protein IsdE	2.67	ND	
Fatty acid metabolism				
CH51_RS01075	Acetyl-CoA C-acyltransferase	3.91	ND	
CH51_RS01080	3-Hydroxoyacyl-CoA dehydrogenase	4.12	ND	
CH51_RS01085	Glutaryl-CoA dehydrogenase	3.86	ND	
CH51_RS01090	Long-chain fatty acid-CoA ligase	4.2	ND	
fapR	Transcription factor FapR	2.51	ND	
CH51_RS06590	Phosphatase acyltransferase	2.73	ND	
CH51_RS06595	Malonyl CoA-ACP transacylase	2.3	ND	
CH51_RS06600	3-Oxoacyl	2.4	ND	
CH51_RS04990	3-Oxoacyl-ACP synthase III	2.44	ND	
CH51_RS03140	Long-chain-fatty-acid-CoA ligase	3.85	ND	
CH51_RS05715	Glycerophosphodiester phosphodiesterase	2.04	ND	
CH51_RS07225	Cardiolipin synthase	2.19	ND	
CH51_RS03620	NAD(P)-dependent oxidoreductase	2.95	ND	
CH51_RS03940	LTA synthase family protein	2.01	ND	
Biotin metabolism				
CH51_RS13710	Hypothetical protein	14.6	ND	
CH51_RS13715	6-Carboxyhexanoate-CoA ligase	19.84	ND	
CH51_RS13720	Aminotransferase class V-fold PLP-dependent enzyme	13.9	ND	
CH51_RS13725	Biotin synthase	15.64	ND	6.8 ± 0.81
CH51_RS13730	Adenosylmethionine-8-amino-7-oxononanoate aminotransferase BioA	38.04	10.36 ± 1.23	

(Continued)
PhoU homologs have been identified as phosphate-specific transport system accessory proteins. We quantified the Pi concentration of USA500 2395, ΔphoU1, and ΔphoU2 strains when grown in culture for 12 h. The intracellular Pi concentration of ΔphoU1 and ΔphoU2 was similar to that observed in USA500 2395 (Figure 3A). The intracellular polyP level was determined using a DAPI-based fluorescence approach. The ΔphoU2 mutant accumulated a significantly higher level of polyP (1.5-fold) than the parent strain after 12 h of growth (Figure 3B). The complemented strains of C-phoU1 and C-phoU2 exhibited restored polyP levels.

Glucose and pyruvate levels in the mutants ΔphoU1 and ΔphoU2 were determined using an Abcam assay kit after growth for 12 h. Our data indicated that the extracellular glucose levels of ΔphoU1 (68.05 ± 6.84) and ΔphoU2 (66.86 ± 8.34) were reduced when compared to those of USA500 2395 (182.93 ± 23.17; P < 0.01) (Figure 4A). The intracellular pyruvate level of ΔphoU1 (184.26 ± 15.70) and ΔphoU2 (109.3 ± 3.55) was significantly increased when compared to the parent strain (30.99 ± 6.11) (Figure 4B). The complemented strains of C-phoU1 exhibited restored glucose and pyruvate levels, but C-phoU2 had no difference with the wild-type strain.

The intracellular ATP level of ΔphoU1 and ΔphoU2 after growth for 12 h was determined using a Promega BacTiter Glo kit. The results showed that the ΔphoU1 and ΔphoU2 mutant cells accumulated a significantly higher level of ATP (1.4-fold) than the parent strain (Figure 4C). The complemented strains of C-phoU1 and C-phoU2 exhibited restored ATP levels.

TABLE 2 | Continued

Gene	Description	Fold change	RNA-seq	qRT-PCR
CH51_RS13735	Dethiobiotin synthase	35.98	ND	
CH51_RS13760	Hypothetical protein	16.1	ND	
CH51_RS07980	Biotin	2.03	ND	
CH51_RS12965	Biotin transporter BioY	6.42	ND	
Proline metabolism				
CH51_RS00845	Acetylglutamate kinase	2.01	ND	
CH51_RS04860	Ornithine aminotransferase 2	2.15	ND	
CH51_RS16020	Hypothetical protein	7.01	ND	
CH51_RS08555	Pyrrole-5-carboxylate reductase	2.49	ND	
Lysine biosynthesis				
CH51_RS07635	4-Hydroxy-tetrahydrodipicolinate reductase	2.12	ND	
CH51_RS07655	Diaminopimelate decarboxylase	2.37	ND	
CH51_RS13980	DUF2338 domain-containing protein	3.26	ND	
CH51_RS13990	Diaminopimelate epimerase	2.69	ND	
CH51_RS07275	Homoserine dehydrogenase	2.01	ND	
Glycine, serine, and threonine metabolism				
CH51_RS01330	Glycine-glycine endopeptidase LytM	3.59	ND	
CH51_RS07525	Glycine glycyltransferase FemB	2.14	ND	
CH51_RS01620	Glycine cleavage system protein H	2.57	ND	
CH51_RS01625	Hypothetical protein	2.32	ND	
CH51_RS01630	Deacetylase SIR2	2.86	ND	
CH51_RS01635	Lipoate-protein ligase A	3.03	ND	
CH51_RS096640	GAF domain-containing protein	2.16	ND	
Cysteine, histidine, and methionine metabolism				
CH51_RS00060	Homoserine O-acetyltransferaseisomerase	2.2	ND	
CH51_RS02430	Cysteine synthase family protein	2.16	ND	
CH51_RS13215	Urocanate hydratase	0.31	ND	
CH51_RS13210	Imidazolonepropionase	0.28	ND	

ND, not done.
(log phase) or 12 h (stationary phase), wild-type, \(\Delta \text{phoU1}\), and \(\Delta \text{phoU2}\) mutants were inoculated into A549 cells at a multiplicity of infection of 10:1. After incubation for 1 h, the viable bacterial count showed no significant difference between
ΔphoU1, ΔphoU2, and USA500 2395, whereas after 24 h of incubation, the 4- or 12-h viable bacterial count of ΔphoU1 (4.079 ± 0.10 log_{10})/(3.65 ± 0.09 log_{10}) and ΔphoU2 (3.90 ± 0.12 log_{10})/(3.53 ± 0.12 log_{10}) showed 15–18% significant decrease compared with that observed in USA500 2395 (4.55 ± 0.18 log_{10})/(4.05 ± 0.03 log_{10}) (Figure 5).

The hemolytic activity of the phoU homolog mutants at 12 h (stationary phase) was determined using rabbit erythrocytes. The α-hemolysin activity of ΔphoU2 (94.02%), was significantly enhanced compared with that of USA500 2395 (70.96%) (P < 0.01), whereas the α-hemolysin activity of ΔphoU1 (66.25%) was lower than that in USA500 2395 (70.96%) (Figure 6A). Western blot analysis indicated that the α-hemolysin levels in ΔphoU2 were significantly higher than in USA500 2395; however, no significant difference was found between the α-hemolysin level in ΔphoU1 and USA500 2395 (Figure 6B). Complementation of the ΔphoU1 and ΔphoU2 mutants restored the expression and the activity of α-hemolysin to the wild type’s level.

DISCUSSION

PhoU is a negative regulator of persister formation in most bacteria (Li and Zhang, 2007; Shi and Zhang, 2010). Mounting evidence has indicated the species-specific functions of PhoU homologs in bacteria; however, the impact of these proteins on bacterial growth, persister production, biofilm formation, and virulence of S. aureus is poorly understood. In this study, deletion of either phoU1 or phoU2 of S. aureus resulted in persister reduction in the presence of antibiotics (vancomycin or levofloxacin). The reduced persister formation in the ΔphoU1 and ΔphoU2 mutants is not due to a decreased intrinsic resistance to antibiotics as the MIC/MBCs of mutants show no change in antibiotic susceptibility tests. Our results suggest that both phoU1 and phoU2 are required for antibiotic tolerance in S. aureus, whereas a previous study showed that phoU2, but not phoU1, deletion resulted in persister reduction in S. epidermidis (Wang et al., 2017). Inactivation of phoU1 in E. coli and P. aeruginosa has been shown to reduce antibiotic susceptibility and persister formation (Li and Zhang, 2007; de Almeida et al., 2015). Deletion of phoU2 in M. tuberculosis H37Rv increased the susceptibility to pyrazinamide and rifampicin and reduced persister formation (Shi and Zhang, 2010). However, single deletions of phoY1 and phoY2 mutants of the M. tuberculosis Erdman strain showed no impact on drug susceptibility and persister formation (Namugenyi et al., 2017). By comparison, the double-deletion phoY1 and phoY2 mutants in the M. tuberculosis Erdman strain exhibited a decrease in persister formation and specifically enhanced the susceptibility to rifampicin, but not to other antimycobacterial drugs. Growth curve and survival assays were both measured in the presence of the cell wall-disrupting detergent sodium dodecyl sulfate and the reactive oxygen hydrogen peroxide (H$_2$O$_2$). Our results suggest that both phoU1 and phoU2 are required for resistance to SDS and H$_2$O$_2$ in S. aureus. Inactivation of phoU in E. coli, P. aeruginosa, and S. epidermidis has been shown to reduce tolerance to H$_2$O$_2$. This suggests that the functions and the regulatory mechanisms of phoU homologs in relation to antimicrobial susceptibility and persister formation are distinct in different bacteria.

Persisters are often slow growing or non-growing with reduced metabolism (Maisonuneuve and Gerdes, 2014; Prax and Bertram, 2014; Cabral et al., 2018; Kaldalu and Tenson, 2019). Deletion of phoU in E. coli and P. aeruginosa slowed the growth rates but increased the metabolism (Li and Zhang, 2007; de Almeida et al., 2015). Single ΔphoY1 or ΔphoY2 mutants of M. tuberculosis had no significant effects on bacterial growth but decreased the viable bacteria count of ΔphoY1ΔphoY2 double mutant at the stationary phase (Wang et al., 2013; Namugenyi et al., 2017). The S. epidermidis phoU2 deletion resulted in growth retardation, whereas the present study demonstrated that the growth curve and the viable bacterial count of S. aureus ΔphoU1 and ΔphoU2 were the same as that of the parent strain, which were confirmed by silenced phoU1 or phoU2 in USA500 2395, USA300, and SA113 strains (Supplementary Figure S2).

The mechanisms of persister formation are complex. Intracellular polyP level is associated with antibiotic tolerance and persister formation. PolyP accumulation has been associated with increased persister frequency in both E. coli and M. tuberculosis (Thayil et al., 2011; Singh et al., 2013; Chuang et al., 2015; Germain et al., 2015). Differently, the enhanced polyP accumulation, resulting from the inactivation or the deletion of phoU in M. tuberculosis, E. coli, P. aeruginosa, or S. epidermidis, was accompanied by a decreased sensitivity to antibiotics and persister generation (Morohoshi et al., 2002; Li and Zhang, 2007; de Almeida et al., 2015; Namugenyi et al., 2017; Wang et al., 2017). These data were consistent with our current study in terms of intracellular polyP accumulation and persister generation reduction in the ΔphoU1 and the ΔphoU2 strains of S. aureus.

The bacterial metabolic state is a major determinant of persister. This view can be used to explain the bacteria in the biofilm. Cells in the periphery of the biofilm, where metabolic activity is highest, indicate that antibiotic efficacy is highest. The cells in the center of the biofilm exhibit a marked dormancy and low antibiotic efficiency (Walters et al., 2003). Another example is starvation stress, which induces changes in the expression of metabolic pathways such as energy metabolism, amino acid metabolism, and lipid metabolism, while long-term starvation of M. tuberculosis reduces susceptibility to rifampicin, isoniazid, and metronidazole (Betts et al., 2002). Most antibiotics, such as quinolones, aminoglycosides, and β-lactams, kill bacteria by corrupting targets which are energy dependent. Quinolones inhibit the ligase activity of gyrase and topoisomerase and release DNA with single- and double-strand breaks that lead to cell death (Hooper, 2001). Aminoglycoside acts by producing toxic misfolded peptides (Davis, 1987). Beta-lactams exert their antibacterial effect by irreversibly binding to the Ser residue of the penicillin-binding protein active site, forcing a futile cycle of peptidoglycan synthesis (Cho et al., 2014). Those targets require ATP to function. Recent studies showed that lowering intracellular ATP with arsenate treatment could increase the level of persister formation in E. coli and S. aureus under fluoroquinolones (Conlon et al., 2016; Shan et al., 2017). Persister
Table 3: Pathway analysis of differentially expressed genes of ΔphoU2 and USA500 2395.

Gene	Description	Fold change (RNA-seq)	Fold change (qRT-PCR)
Carbon metabolism	2.3-Bisphosphoglycerate-independent phosphoglycerate mutase	0.42	ND
CH51_RS04260	Enolase	0.49	ND
CH51_RS04265	Triose-phosphate isomerase	0.42	ND
CH51_RS02745	Cysteine synthase	0.31	ND
CH51_RS04250	Phosphoglycerate kinase	0.36	ND
CH51_RS14740	Malate:quinone oxidoreductase	0.49	ND
CH51_RS04245	Aldehyde dehydrogenase	0.34	ND
Pyruvate metabolism	D-Lactate dehydrogenase	3.11	ND
CH51_RS14295	Pyruvate formate lyase	2.71	ND
CH51_RS14750	2-Isopropylmalate synthase	0.49	ND
Glycolysis/glucogenesis	Alcohol dehydrogenase	3.35	ND
CH51_RS03355	2-C-Methyl-D-erythritol 4-phosphate cytidylytranferase	0.39	ND
CH51_RS01195	Alcohol dehydrogenase	0.47	ND
Purine metabolism	5-(carboxyamino)imidazole ribonucleotide mutase	4.99	ND
CH51_RS05420	Polynucleotidyl nucleotidytranferase	0.35	ND
CH51_RS05425	5-(carboxyamino)imidazole ribonucleotide synthase	3.06	ND
Iron metabolism	Iron-siderophore ABC transporter substrate-binding protein	0.41	ND
CH51_RS00480	Iron-regulated surface determinant protein A	0.23	ND
CH51_RS06060	Iron-regulated surface determinant protein C	0.44	ND
Nitrogen metabolism	Nitrate reductase subunit alpha	3.1	ND
CH51_RS13560			
Phosphate metabolism	PhoU1 Phosphate transport system regulatory protein	22.2	35.56 ± 5.65
phoU1			
Nitrogen metabolism	PhoU1 Phosphate transport system regulatory protein	22.2	35.56 ± 5.65
phoU1			
Cysteine and methionine metabolism	GAF domain-containing protein	0.48	ND
CH51_RS09640	S-Adenosylmethionine synthase	0.39	ND
CH51_RS10035	Cystathionine gamma-synthase	0.32	ND
CH51_RS02435	Cysteine synthase family protein	0.5	ND
CH51_RS02430			
Alanine and aspartate metabolism	Aspartate carbamoyltransferase	0.36	ND
CH51_RS06445	Carbamoyl-phosphate synthase large chain	0.37	ND
CH51_RS06460	Carbamoyl-phosphate synthase small chain	0.38	ND

(Continued)
TABLE 3 | Continued

Gene	Description	Fold change	RNA-seq	qRT-PCR
Glycine, serine, and threonine metabolism				
CH51_RS14765	Oxygen-dependent choline dehydrogenase	2.71	ND	
CH51_RS14770	Betaine-aldehyde dehydrogenase	3.33	ND	

ND, not done.

FIGURE 3 | Intracellular Pi and polyP levels in ΔphoU1 and ΔphoU2 of Staphylococcus aureus. (A) Intracellular Pi. Bacteria were grown for 12 h; then, the cells were homogenized by OD_{600} and lysed with 0.1-mm glass-silica beads in a BeadBeater apparatus. Centrifugation to get the supernatant. The supernatant was used to measure OD_{650}. Pi levels were determined according to the manufacturer’s instructions. (B) Intracellular polyP. Bacteria were grown for 12 h; then, the cells were homogenized by OD_{600} and incubated for 15 mins with 4’-6-diamidino-2-phenylindole. The fluorescence signal was determined at an excitation of 415 nm and an emission of 550 nm. The experiments were repeated three times, and error bars indicate the standard deviation. ΔphoU2 exhibited significant differences (**P < 0.01) when compared with the wild-type and the complemented strains (C-ΔphoU2; *P < 0.05) in intracellular polyP. The complementation of ΔphoU1 or ΔphoU2 mutant was abbreviated as C-ΔphoU1 or C-ΔphoU2. The empty vectors of pCN51 transferred into the ΔphoU1 or ΔphoU2 mutant were named P-ΔphoU1 or P-ΔphoU2. n.s., no significance.

formation is associated with ATP depletion in E. coli and S. aureus (Conlon et al., 2016; Shan et al., 2017). ATP can be produced by multiple cellular pathways, including oxidative phosphorylation, ATP synthase, and polyP, which can be converted to ATP (Resnick and Zehnder, 2000; Bonora et al., 2012). The change of metabolism pathways may be an association with various factors, and more comprehensive considerations are required. Hence, the results of metabolic products would become more convincing. Our result showed that the S. aureus ΔphoU1 and ΔphoU2 mutant decreased the level of persister formation by hyperactive carbon metabolism (decreased extracellular glucose and intracellular pyruvate) accompanied by increasing intracellular ATP. In the S. aureus ΔphoU1 mutant, the transcriptome analysis revealed that 26 genes up-regulated by twofold and three genes down-regulated by two- to threefold, identified to be involved in carbon, pyruvate, and glycolysis metabolism, consistent with the hyperactive carbon metabolism and increasing intracellular ATP. In the S. aureus ΔphoU2 mutant, our analysis showed that 13 genes up-regulated by three- to 24-fold of transported phosphate. The increasing intracellular polyP was consistent with the high intracellular ATP content in the ΔphoU2 mutant. However, three genes (D-lactate dehydrogenase, pyruvate formate lyase, and alcohol dehydrogenase) were up-regulated by threefold and 10 genes were down-regulated by twofold in carbon, pyruvate, and glycolysis metabolism. Lactate dehydrogenase (catalyzes the interconversion of pyruvate and lactate), pyruvate formate lyase (regulates the formation of acetyl-CoA, which is important in the production of energy), and alcohol dehydrogenase (converts pyruvate to acetaldehyde and involved in the production of ATP) play an important part in carbon, pyruvate, and glycolysis metabolism (Garvie, 1980; Lamed and Zeikus, 1981; Hasona et al., 2004). It is possible that the result of the ΔphoU2 mutant presented decreased extracellular glucose and intracellular pyruvate (Wang et al., 2017). Those results suggest that, in S. aureus ΔphoU1 or ΔphoU2, decreased tolerance to antibiotics or stresses of SDS and H_2O_2 may be associated with higher levels of carbon metabolism and intracellular ATP. Complementary strains C-ΔphoU1, C-ΔphoU2, and C-ΔphoU1ΔphoU2 restored the majority of phenotypes, and only the C-ΔphoU2 strains failed to restore the phenotypes of glucose and pyruvate, indicating that the results were not due to a secondary mutation elsewhere on the chromosome. The reason may be due to the PhoU, a global metabolic repressor. Regulation has a dual function which is reflected in the induced response to phosphate limitation but also inhibited when Pi is in excess (Gardner et al., 2014; Lubin et al., 2015; diCenzo et al., 2017). The expression of the phoU1 or the
phoU2 in the complementary strains C-\textit{phoU}1 and C-\textit{phoU}2 were around three- or fivefold higher than that in the wild-type strain. Excessive \textit{phoU2} expression may cause diminished compensation function in glucose and pyruvate phenotypes. This may not be a unique reason as bacteria have a complex metabolism regulatory system and thus need further study.

The intracellular invasion and the survival rates of \textit{S. aureus} are crucial for the pathogenicity of chronic infection (Rollin et al., 2017; Tan et al., 2019). Several virulence factors play a critical role in the pathogenic process. We found that either \textit{phoU1} or \textit{phoU2} is required for the intracellular survival of \textit{S. aureus} in human lung epithelial A549 cells. In the method of invasion and intracellular survival assays, gentamicin (10 \(\mu\)g/ml) was added in the culture medium to restrict the extracellular growth of bacteria when \textit{S. aureus} and A549 cells were co-incubated. Gentamicin and erythromycin may have an antagonizing effect (Penn et al., 1982), so we could not perform the invasion and the intracellular survival assays on the complemented strains of C-\textit{phoU}1 and C-\textit{phoU}2. However, a previous report, as a piece of supporting evidence, showed that a single-point mutation in \textit{pitA} (downstream of \textit{phoU2}) resulted in a decrease in the intracellular survival of \textit{S. aureus} in human epithelial cells (Mechler et al., 2015). The deletion of \textit{phoU1} or \textit{phoU2} in \textit{S. aureus} resulted in the down-regulation of multiple virulence systems, including the type VII secretion system, serine protease, and leucocidin, which could explain the decreased survival of the \textit{phoU1} and the \textit{phoU2} mutants.

The \(\alpha\)-hemolysin is a major virulence factor in \textit{S. aureus} infections (Kebaier et al., 2012; Vandenesch et al., 2012). We
Shang et al.

S. aureus PhoU Regulates Persisters

FIGURE 5 | Invasion and intracellular survival of USA500 2395, ΔphoU1, and ΔphoU2 in the human lung epithelial cell line A549. Bacteria grown for 4 and 12 h were used to inoculate the A549 cells at a multiplicity of infection of 10:1. (A) Intracellular bacteria were counted for the colony-forming units after 1 h to determine the invasion capacity and (B) after 24 h to assay intracellular survival. The experiments were repeated three times, and error bars indicate the standard deviation. The 4- and 12-h-culture ΔphoU1 and ΔphoU2 exhibited significant differences (**P < 0.01; *P < 0.05)** when compared with the wild type after 24 h of intracellular survival.

FIGURE 6 | Extracellular alpha-hemolysin activity and secretion of USA500 2395, ΔphoU1, and ΔphoU2. Bacteria were grown for 12 h; then, the culture supernatant was harvested and filtered through a 0.22 µm filter. (A) Extracellular alpha-hemolysin activity. The supernatant was added equal to the volume of 1% of rabbit erythrocytes and then incubated at 37°C for 30 min, followed by centrifugation to obtain the supernatant. The supernatant was used to measure OD550; 0.1% triton X-100 served as the 100% hemolysis control (positive control), and 1 x phosphate-buffered saline was the negative control. (B) Western blot analysis of extracellular alpha-hemolysin. The experiments were repeated three times, and error bars indicate the standard deviation. ΔphoU2 exhibited significant differences (**P < 0.01)** when compared with the wild-type and the complemented strain C-ΔphoU2. The complementation of ΔphoU1 or ΔphoU2 mutant was abbreviated as C-ΔphoU1 or C-ΔphoU2. The empty vector of pCN51 transferred into the ΔphoU1 or ΔphoU2 mutant was named P-ΔphoU1 or P-ΔphoU2.

observed that the α-hemolysin activity and its expression were increased in ΔphoU2, while there was no effect noted in ΔphoU1. This suggests that phoU2, but not phoU1, is a negative regulator of α-hemolysin. However, the transcription of α-hemolysin in ΔphoU2 was reduced after 12 h of growth when assessed by RNA-Seq and RT-PCR.

The virulence regulation mechanisms of *S. aureus* are very complex (Bronner et al., 2004). The virulence regulatory systems include two-component systems, including AgrAC, SaeRS, ArlRS, etc., and the global regulator, including cytoplasmic SarA-family, CodY, Rot, etc. (Haag and Bagnoli, 2017). Among them, AgrAC, SarA, and SaeRS are positive regulators, whereas CodY and Rot are negative regulators of virulence genes (Pragman and Schlievert, 2004). The deletion of phoU1 resulted in a decreasing expression of sarA and saceS and increasing expressions of codY. The deletion of phoU2 resulted in decreasing expressions of sarA family (sarA, sarR, and sarZ), codY, and rot and an increasing expression of phoRP, the function of which is unknown. Therefore, the regulatory mechanisms of phoU1 and phoU2 in relation to virulence require further study.

S. aureus biofilm formation also plays an important role in persister production during chronic infections (Archer et al., 2011; Conlon, 2014). *S. aureus* SA113 is a biofilm positive strain characterized by rsbU, tcaR, and agr mutants (Herbert et al., 2010). Our results showed that silencing phoU2, but not phoU1, can reduce biofilm formation in the *S. aureus* SA113 strain (Supplementary Figure S3). This is consistent with the previous finding in *S. epidermidis* that PhoU2, but not PhoU1, is an important regulator of biofilm formation.

In summary, both PhoU1 and PhoU2 of *S. aureus* regulate persister generation and bacterial virulence. The deletion of phoU1 or phoU2 of *S. aureus* resulted in a decrease in intracellular bacterial survival rate in human epithelial cells by down-regulation of multiple virulence factors, including the...
type VII secretion system, serine protease, and leucocidin. In a follow-up work, the double mutant of ΔphoU1ΔphoU2 was constructed, and the metabolic variation was similar to the single mutant in extracellular glucose, intracellular pyruvate, ATP, and intracellular polyP levels (Supplementary Figure S5). The results in S. aureus are different from what we have previously found in S. epidermidis, where only PhoU2 regulates biofilm and persister formation. In S. aureus, transcriptome analysis revealed that 573 or 285 genes were differentially expressed in the ΔphoU1 or the ΔphoU2 mutant vs the wild type. In S. epidermidis, deletion of phoU1 just led to 92 differentially expressed genes, while deletion of phoU2 could result in 945 differentially expressed genes (Wang et al., 2017). In S. aureus, both phoU1 and phoU2 regulate virulence by the global regulator (sarA, rot, and codY) and persister generation by the hyperactive carbon metabolism accompanied by increasing intracellular ATP. In the S. epidermidis ΔphoU2 mutant, the reduction of biofilm and persister can be explained by the down-regulated expression of several important genes involved in growth (including yycFG, rsuU, pflA, and nrdD) and increased ATP by up-regulated ATP synthase (Dubrac et al., 2008; Wang et al., 2017). In the previous studies, we found that the regulatory mechanisms of some global regulators (SaerS, YycFG, SrrAB, and ArlRS) have different roles between S. epidermidis and S. aureus (Lou et al., 2011; Wu et al., 2012, 2015; Xu et al., 2017). These observations hint that different mechanisms occur in the regulation of S. aureus and S. epidermidis, even though they belong to the staphylococcus. Therefore, the different regulation mechanisms of PhoU homologs in S. aureus and S. epidermidis warrant further investigation in the future.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.

REFERENCES

Archer, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., and Shirliff, M. E. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2, 445–459. doi: 10.4161/viru.2.5.17724
Aschar-Sobbi, R., Abramov, A. Y., Diao, C., Kargacin, M. E., Kargacin, G. J., French, R. J., et al. (2008). High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J. Fluoresc. 18, 859–866. doi: 10.1007/s01095-008-0315-4
Bae, T., and Schneewind, O. (2006). Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55, 58–63. doi: 10.1016/j.plasmid.2005.05.005
Bernheimer, A. W., Avigad, L. S., and Grushoff, P. (1968). Lytic effects of staphylococcal alpha-toxin and delta-hemolysin. J. Bacteriol. 96, 487–491. doi: 10.1128/jb.96.2.487-491.1968
Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A., and Duncan, K. (2002). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731. doi: 10.1046/j.1365-2958.2002.02779.x
Bonora, M., Paternagni, S., Rimessi, A., De Marchi, E., Suski, J. M., Bononi, A., et al. (2012). ATP synthesis and storage. Purinergic Signal. 8, 343–357. doi: 10.1007/s11302-012-9305-8

AUTHOR CONTRIBUTIONS

DQ, YZ, and ZY designed the research. YS, XW, and ZC participated in most of the experiments. ZLr, ZLi, JZ, YW, and QD analyzed the data. YS drafted the manuscript. DQ, YZ, and ZY revised the manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (81871622, 81271791, 81571955, 81671982, and 81991532), the National Major Scientific and Technological Projects in “Infectious Disease” (2018ZX10734401), “Development of Key Technologies and Drugs for the Prevention of Drug-Resistant Bacteria” (2019ZX09721001), and “Research on Biosafety Technology of High-Level Biosafety Laboratory and Important Pathogen Laboratory” (2018ZX10734401-04), and the Sanming Project of Medicine in Shenzhen (SMGC201705029).

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. Tao Xu (Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China) for his suggestions on the gene knockout.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.00865/full#supplementary-material

Bonora, M., Wieckowski, M. R., Chionopoulos, C., Kepp, O., Kroemer, G., Galluzzi, L., et al. (2015). Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34,1608. doi: 10.1038/onc.2014.462
Bronner, S., Monteil, H., and Prévost, G. (2004). Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol. Rev. 28, 183–200. doi: 10.1016/j.femsre.2003.09.003
Cabral, D. J., Wurster, J. L., and Belenky, P. (2018). Antibiotic persistence as a metabolic adaptation: stress, metabolism, the host, and new directions. Pharmaceuticals 11,14. doi: 10.3390/ph11010014
Cho, H., Uchera, T., and Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311. doi: 10.1016/j.cell.2014.11.017
Chuang, Y.-M., Bandyopadhyay, N., Rifat, D., Rubin, H., Bader, J. S., and Karakousis, P. C. (2015). Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. mBio 6:e02428-14. doi: 10.1128/mBio.02428-14
Conlon, B. P. (2014). Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells: an investigation of persister cells, their formation and their role in S. aureus disease. Bioessays 36, 991–996. doi: 10.1002/bies.201400080
Herbert, S., Ziebandt, A. K., Ohlsen, K., Schafer, T., Hecker, M., Albrecht, D., Haag, A. F., and Bagnoli, F. (2017). The role of two-component signal transduction

Lamed, R. J., and Zeikus, J. G. (1981). Novel NADP-linked alcohol–aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria.

Garvie, E. I. (1980). Bacterial lactate dehydrogenases.

Fisher, R. A., Gollan, B., and Helaine, S. (2017). Persistent bacterial infections and persister cells.

Kebaier, C., Chamberland, R. R., Allen, I. C., Gao, X., Broglie, P. M., Hall, J. D., Prax, M., and Bertram, R. (2014). Metabolic aspects of bacterial persisters.

Overton, I. M., Graham, S., Gould, K. A., Hinds, J., Botting, C. H., Shirran, S., et al. (2010). Repair of global regulators in Staphylococcus aureus (2011). Vectors for improved Tet repressor-dependent gradual gene induction.

Aronson, S. B., Aagesen, A. M., Elliott, S. R., and Tischler, A. D. (2017). Generation of persister cells of Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents.

Huang, Y., and Zhang, Y. (2007). PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092–2099. doi: 10.1128/AAC.00052-07

Liang, X., Yee, S. W., Chien, H. C., Chen, E. C., Luo, Q., Zou, L., et al. (2018). Organic cation transporter 1 (OCT1) modulates multiple cardiac metabolic traits through effects on hepatic thiamine content. PLoS Biol. 16:e2002907. doi: 10.1371/journal.pbio.2002907

Liu, J., Lou, Y., Yokota, H., Adams, P. D., Kim, R., and Kim, S. H. (2005). Crystal structure of a PhoU protein homologue: a new class of metalloprotein containing multinuclear iron clusters. J. Biol. Chem. 280, 15960–15966. doi: 10.1074/jbc.M41417200

Liu, Q., Zhu, T., Hu, J., Ben, H., Yang, J., Yu, F., et al. (2011). Role of the SaRS two-component regulatory system in Staphylococcus epidermidis autoxidation and biofilm formation. BMC Microbiol. 11:146. doi: 10.1186/1471-2180-11-14

Lubin, E. A., Henry, J. T., Fiebig, A., Crosson, S., and Labb, M. T. (2015). Identification of the PhoB regulon and role of pho in the phosphate starvation response of Caulobacter crescentus. J. Bacteriol. 198, 187–200. doi: 10.1128/JB.00658-15

Maisononneue, E., and Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell 157, 529–548. doi: 10.1016/j.cell.2014.02.050

Mechler, L., Bonetti, E.-J., Reichert, S., Flötenmeyer, M., Schrenzel, J., Bertram, R., et al. (2016). Daptomycin tolerance in the Staphylococcus aureus pitA mutant is due to upregulation of the dlt operon. Antimicrob. Agents Chemother. 60, 2684–2691. doi: 10.1128/AAC.03022-15

Mechler, L., Herbig, A., Paprotka, K., Franholzh, M., Nieselt, K., and Bertram, R. (2015). A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 5366–5376. doi: 10.1128/AAC.00643-15

Moormeier, D. E., and Bayles, K. W. (2017). Staphylococcus aureus biofilm: a complex developmental organism. Mol. Microbiol. 104, 365–376. doi: 10.1111/mmi.13634

Morohoshi, T., Maruo, T., Shirai, Y., Kato, J., Ikeda, T., Takiguchi, N., et al. (2002). Accumulation of inorganic polyphosphate in mutants of Escherichia coli and Synechocystis sp. Strain PCC6803. Appl. Environ. Microbiol. 68:4107. doi: 10.1128/AEM.68.4.4107-4110.2002

Namugenyi, S. B., Aagesen, A. M., Elliott, S. R., and Tischler, A. D. (2017). Mycobacterium tuberculosis PhoY proteins promote persister formation by mediating pseX3-RegX3 phosphate sensing. mbio.8:e00494-17. doi: 10.1128/mBio.00494-17

Otto, M. (2014). Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev. Dermatol. 9, 183–195. doi: 10.1586/edm.13.30

Otto, M. (2017). Staphylococcus aureus biofilm: a complex developmental organism. Mol. Microbiol. 104, 365–376. doi: 10.1111/mmi.13634

Penn, R. L., Ward, T. T., and Steigbigel, R. T. (1982). Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of Listeria monocytogenes. Antimicrob. Agents Chemother. 22, 289–294. doi: 10.1128/ AAC.00289-00

Pragman, A. M., and Schlievert, P. M. (2004). Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation. Pathog. Dis. 42, 147–154. doi: 10.1016/j.femsdis.2004.05.005

Prax, M., and Bertram, R. (2014). Metabolic aspects of bacterial persisters. Front. Cell. Infect. Microbiol. 4:148. doi: 10.3389/fcimb.2014.00148

Resnick, S. M., and Zehnder, A. J. (2000). In vitro ATP regeneration from adenylate kinase from Escherichia coli. Biochim. Biophys. Acta 1509, 198–206. doi: 10.1016/S0005-2728(00)00013-7

Rollin, G., Tan, X., Tros, F., Dupuis, M., Nassi, X., Charbit, A., et al. (2017). Intracellular survival of Staphylococcus aureus in endothelial cells: a matter of growth or persistence. Front. Microbiol. 8:1354. doi: 10.3389/fmicb.2017.01354
Schnack, L., Sohrabi, Y., Lagache, S. M. M., Kahles, F., Bruemmer, D., Waltenberger, J., et al. (2019). Mechanisms of trained innate immunity in oxLDL primed human coronary smooth muscle cells. Front. Immunol. 10:13. doi: 10.3389/fimmu.2019.00013

Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., and Conlon, B. P., and Thayil, S. M., Morrison, N., Schechter, N., Rubin, H., and Karakousis, P. C. (2013). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661. doi: 10.1128/cmrr.00134-14

Vandenesch, F., Lina, G., and Henry, T. (2012). Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2:12. doi: 10.3389/fcimb.2012.00012

Walters, M. C. III, Roe, F., Bugnicourt, A., Franklin, M. J., and Stewart, P. S. (2003). Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 317–323. doi: 10.1128/aac.47.1.317–323.2003

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.