Phytochemical and Pharmacological Investigations of *Lannea grandis* (Dennst.) Engl. Leaves Extracts

Sharmin Akhter¹, Sarrin Shahadat¹, Zilly Homa³, Md. Ruhul Kuddus², M Mohi Uddin Chowdhury⁴, Mohammed Ibrahim¹*

¹Department of Pharmacy, Southern University Bangladesh, Chittagong, Bangladesh
²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh

ABSTRACT

Medicinal plants can serve as a prominent source of bioactive secondary metabolites which can exert beneficial effects to combat against many human diseases. *Lannea grandis* (Dennst.) Engl, a member of Anacardiaceae family has several applications in the ethnomedicinal practices. In this study, the ethanol extract of *L. grandis* leaf (ELG) along with its petroleum-ether and chloroform fractions were subjected to phytochemical analysis along with the evaluation of antimicrobial, anti-diarrheal, and sedative activities using standard protocols. Phytochemical screening was performed according to common phytochemical tests. Antimicrobial assay was carried out by disc diffusion method where the ethanol extract of *L. grandis* showed significant activity against tested bacterial species (zone of inhibitions = 10.8±0.85 to 13.8±1.84 mm). The same extract also exhibited the highest antifungal activity against *Blastomyces dermatitidis* (zone of inhibition = 20.5±0.35 mm). The chloroform fraction of *L. grandis* at the dose of 400 mg/kg body weight produced a significant (p<0.05) anti-diarrheal effect with 40.69% inhibition of castor oil-induced diarrhea in mice. During sedative activity assay in mice, the plant extract at the dose of 400 mg/kg body weight produced mild reduction in the time of onset of sleep and increased the length of the sleeping time induced by a sedative, phenobarbitone. In conclusion, the plant *L. grandis* can be considered as a base for the development of new drugs and phytomedicine.

Keywords: *Lannea grandis*, phytochemical, antimicrobial, anti-diarrheal, sedative activity.

INTRODUCTION

Since the time immemorial, people have been using herbal remedies and medicines to cure various diseases¹.². The interest in drugs of plant origin is still increasing because plants are the valuable source of structurally diverse compounds, which possess therapeutic potential for treatment of human diseases². A lot of the clinically used therapeutic agents are of natural products origin. Thus, natural products have been well recognized and documented as a source of inspiration to drug discovery¹.².³. Traditional medical practice is still the main vehicle of health care delivery today especially in the rural areas of the country where conventional medical facilities are not within the reach of most people⁵. Increase in the patronage of herbal medicines is likely to carry on because of the global economic recession. Moreover, a large proportion of the world population rely on herbal medicines for their medical care⁶.

Lannea grandis (Dennst.) Engl. (Family: Anacardiaceae), Synonym: *Lannea coromandelica* (Houtt.) Merr is a medium-sized deciduous tree which grows up to 10 to 20 m in height. The plant is widely distributed in Bangladesh, India and some other tropical countries⁷. Locally it is common as Bhadi, and is cultivated as a hedge plant in the roadside areas. The folk people in Bangladesh used the plant for various diseases including pain, inflammation and infection⁸. The leaf of the plant is reported to be useful in scurvy, skin diseases, dysentery, and pain. Leaves and barks were reported to have astringent properties and applied in toothache⁹. The ethanol bark extract of *L. coromandelica* exhibited significant pain relieving activity in mice model¹⁰. In an earlier report, polyflavonoid tannins were isolated from the stem bark of *L. coromandelica* which showed sporocidal activity¹¹.

Although the plant *L. grandis* is traditionally very important, but the scientific reports regarding its pharmacological studies are inadequate. Therefore, as a continuation of our
research on medicinal plants,12-14 the present study was designed to identify the phytochemicals as well as to determine the level of antimicrobial, anti-diarrheal, and sedative activity of leaves of \textit{Lannea grandis} Engl.

MATERIALS AND METHODS

Collection and identification of plant material

Leaves of \textit{L. grandis} were collected from the hill of Forest Research Institute, Chittagong, Bangladesh and were identified by Forest Research Institute, Chittagong, Bangladesh.

Extraction

The leaves were first air-dried followed by oven drying at 35°C and ground to coarse powder with a grinder. About 250 g of powdered sample was taken in an amber bottle and extracted with 97.7% ethanol for 7 days. Meanwhile another 150 g of same plant powder was subjected to hot extraction with 97.7% ethanol using Soxhlet apparatus15. The extract was filtered through a cotton plug followed by Whatman filter paper no.1. The volume of the filtrate was condensed at reduced temperature and pressure to obtain a gummy concentrate which is designated as ethanol extract of \textit{L. grandis} (ELG). The resulting crude extract obtained by both cold and hot extraction was mixed together and was subjected to fractionation with petroleum-ether and chloroform subsequently to obtain petroleum-ether (PEF) and chloroform (CFF) soluble fractions, respectively. The amount of the ELG, PEF and CFF were 7.13 g, 4.56 g and 3.02 g, respectively.

Phytochemical screening

The ethanol crude extract of \textit{L. grandis} and its petroleum-ether and chloroform fractions were examined by qualitative tests for the existence of the phytochemical constituents by using the standard methods16,17 as mentioned in Table 1.

Antimicrobial activity

The antimicrobial susceptibility of \textit{L. grandis} was initially evaluated by the agar disc diffusion assay18 using a variety of test microorganisms (Table 2). Ciprofloxacin and fluconazole were used as standards. The organisms were obtained as pure culture from the Faculty of Biology, University of Chittagong, Bangladesh. The antimicrobial activity of the test agents was determined by measuring the diameter of zone of inhibition expressed in mm. The experiments were carried out in triplicate and the results have been shown as mean ± SD (Table 2).

Determination of minimum inhibitory concentration (MIC)

The minimum inhibitory concentration (MIC) of the plant samples that revealed a good activity in disc diffusion assay were subjected to determine the MIC value by the serial tube dilution technique19 in broth medium, containing graded concentration of the plant extracts inoculated with the test organisms.

Test animals

Swiss Albino mice of either sex (aged 4-5 weeks) weighing 25-30 g were collected from the Animal Resources Branch of the International Centre for Diarrheal Diseases and Research, Bangladesh (icddr,b). They were kept in standard laboratory conditions at room temperature (24 ± 2°C) and relative humidity (60-70%) in a 12 h light/12 h dark cycle. All the experiments were conducted according to the protocol20 approved by the institutional ethical committee.

Anti-diarrheal activity

The anti-diarrheal activity of \textit{L. grandis} was evaluated by castor oil-induced diarrhea model in mice21. The experimental animals were arbitrarily divided into five groups having five mice in each. Negative control group received vehicle (1% Tween-80 in water) at a dose of 10 ml/kg whereas the standard group received loperamide at a dose of 3 mg/kg as oral suspension. Test groups received plant extracts (ELG, PEF and CFF) at the dose of 400 mg/kg orally. Thirty min later diarrhea was induced by oral administration of 0.4 ml castor oil to each mouse. During the observation period (4 h), the total latency period and the number of diarrheic feces excreted by the animals were recorded.

Sedative activity

The sedative activity of \textit{L. grandis} was assessed by phenobarbitone sleeping time test in mice22. The test animals were randomly divided into five groups as mentioned above. The positive control group was given standard diazepam (1 mg/kg, i.p.) while the test groups received plant samples (ELG, PEF and CFF) orally at a dose of 400 mg/kg body weight. After 30 min of administration of test drugs, phenobarbitone at a dose of 40 mg/kg body weight was administered by intra-peritoneal route to all groups of mice to measure phenobarbitone induced sleeping time. The animals were observed for the latent period (time between phenobarbitone administration to loss of righting reflex) and duration of sleep (time between the loss and recovery of righting reflex).

Statistical analysis

Data were expressed as mean ± SD (standard deviation) and mean ± SEM (standard error of mean). The results were considered statistically significant when \(p<0.05 \).

RESULTS AND DISCUSSION

The preliminary phytochemical screening study revealed that the crude ethanol extract, petroleum-ether fraction and chloroform fraction of \textit{L. grandis} were rich of some vital chemical groups like alkaloids, steroids, tannins, saponins, glycosides and gummy types plants secondary metabolites (Table 1) which are responsible for exposing different types of pharmacological activity23.
Table 1: Phytochemicals present in the ELG, PEF and CFF of *L. grandis*.

Examination	Name of the test	Plant sample		
		ELG	PEF	CFF
Reducing sugar	Fehling’s solution test	+	–	–
	Benedict’s test	+	+	+
Steroids	Salkowski & Libermann-burchared test	+	–	–
Glycosides	Salkowski & Libermann-burchared test	–	–	–
	Potassium dichromate test	+	–	+
Tannins	Keller-Kiliani test	–	–	+
	Ferric chloride Test	+	–	–
	Mayer’s test	+	+	–
	Dragendorff’s reagent test	+	–	–
Alkaloids	Wagner’s reagent test	+	–	–
	Hager’s reagent test	–	–	–
	Tannic acid test	–	–	–
Flavonoids	--	–	–	–
Saponins	--	–	+	–
Gums	--	–	–	+
Amides	--	–	–	–

[* = presence; − = absent. ELG=Ethanol crude extract of *L. grandis* leaf, PEF = Petroleum ether fraction, CFF=Chloroform fraction of *L. grandis*]

The demand for novel antimicrobial agents from natural sources is mounting day by day. In order to find out the prospective antimicrobial principles, the plant *L. grandis* was subjected for preliminary antimicrobial screening by disc diffusion method. During antimicrobial test, the plant samples showed mild to moderate activity against tested organisms (Table 2). The ethanol extract showed antibacterial activity with zone of inhibition ranging from 10.8±0.85 to 13.8±1.84 mm. The maximum antibacterial potential was observed by ethanol extract of *L. grandis* against *S. aureus* (13.8±1.31 mm) and *E. coli* (13.8±1.84). The petroleum-ether fraction exhibited no activity against any test microorganisms while the chloroform fraction showed activity against *Shigella dysenteriae* (10.7±0.47) and *Escherichia coli* (11.8±1.03).

Table 2: Antimicrobial activity of different extract of *L. grandis*, ciprofloxacin and fluconazole:

Test organisms	Zone of inhibition (MZI±SD) mm	ELG	CFF	Standard
Gram positive bacteria				
Bacillus subtilis	13±1.63	nd	28.2±0.85	
Staphylococcus aureus	13.8±1.31	nd	28.5±1.087	
Gram negative bacteria				
Escherichia coli	13.8±1.84	11.83±1.03	30.2±1.43	
Salmonella Typhi	12±1.63	nd	30.7±2.57	
Shigella dysenteriae	10.8±0.85	10.7±0.47	29.2±1.85	
S. sonnei	10.8±1.03	nd	30.2±0.62	
Vibrio cholerae	12.5±1.5	nd	27.7±2.1	
Fungi				
Blastomyces dermatitidis	20.5±0.35	13.3±1.08	23.5±0.94	
Candida albicans	nd	11.3±1.47	25.5±0.54	
Cryptococcus neoformans	13.7±1.34	nd	23±2.16	
Microsporum spp.	13.2±1.14	nd	25.3±1.78	

* [nd: Not detected; MZI: Mean zone of inhibition (mm); SD = Standard deviation; Zone of inhibition under 8 mm was considered as less active and was discarded]
In case of antifungal screening, the ethanol extract of *L. grandis* showed strong antifungal activity against *B. dermatitidis* (zone of inhibition = 20.5±0.35 mm) while the chloroform fraction revealed moderate activity against *B. dermatitidis* (zone of inhibition = 13.3±1.08 mm) and *C. albicans* (zone of inhibition = 11.3±1.47 mm). During the MIC determination, the extracts displayed low MIC value of 15.625 µg/ml against *B. dermatitidis*. This result suggested the presence of antimicrobial compounds in the extractives. The manifestation of antimicrobial activity of *L. grandis* against both bacteria and fungi may be considered as a good source of bioactive compounds having antimicrobial properties25.

Table 3: Anti-diarrheal effect of *L. grandis* extractives in mice

Treatment	MLP (h)	%MLP	TLP	% Inhibition of defecation	TNF (240 min)
Control (1% Tween80)	0.81	100.0	4.05±6.36	0	86±3.049
Loperamide 3 mg/kg	1.40	172.84	7.00±7.17a	62.79	32±1.48
ELG 400 mg/kg	1.07	132.09	5.35±3.82b	5.81	81±2.33a
PEF 400 mg/kg	0.94	116.05	4.70±6.17a	19.77	69±2.72b
CFF 400 mg/kg	0.87	107.41	4.35±4.22a	40.69	51±2.08a

[*p<0.05, bp<0.1; % MLP = (test group MLP×100)/Control MLP; TLP = Total latent period (MLP×5 ± SEM); TNF = Total number of feces (MD×5 ± SEM)]

Medicinal plants are gifted source of new anti-diarrheal drugs. There are a huge number of plant-based medicines that are reported to be helpful in treating diarrhea. Therefore, to find out a new anti-diarrheal agent from plant source, *L. grandis* was investigated for the evaluation of anti-diarrheal activity by castor oil-induced diarrhea in mice. Ricinoleic acid, the principal ingredient of castor oil is reported to bring out enhanced peristaltic movement and finally induces diarrhea26. In the castor oil induced diarrheal test, the different extracts of the *L. grandis* at the doses of 400 mg/kg reduced the total number of diarrheal feces as well as increased the latency period in mice to a considerable extent and these effects are comparable to the control groups (Table 3). The chloroform fraction of *L. grandis* reduced the diarrheal episode by 40.69% inhibition. The standard loperamide produced 62.79% inhibition of diarrhea in mice. The ethanol extract, petroleum ether and chloroform fraction reduced the total number of feces to 81±2.33, 69±2.72 and 51±2.08, respectively. From the above experiment it should be claimed that the plant was found to be effective in the management of diarrheal. The anti-diarrheal effect of *L. grandis* might be caused by the bioactive phytoconstituents present in the test sample, however further studies are required27.

Table 4: Sedative activity of *L. grandis* extractives in mice.

Treatment	TLP (min)	TST (min)
Diazepam 1 mg/kg	43±1.61a	235±3.04a
ELG 400 mg/kg	141±3.65a	123±3.46a
PEF 400 mg/kg	82±2.23a	84±3.03a
CFF 400 mg/kg	104±3.05a	61±2.03a

[*p<0.01, bp<0.05, bp<0.1; TLP(Total latent period); (mean×5) ± SEM; TST (Total sleeping time); (mean×5) ± SEM; SEM = Standard Error of Mean]

The test samples (400 mg/kg body weight) moderately reduced the latency period as well as prolonged the phenobarbitone-induced sleeping time, with respect to the control (Table 4). These findings revealed that the plant samples may have sleep inducing properties. The prolongation of sleeping time is probably through a CNS depressant action or a sedative action28 of the test samples.

CONCLUSION

From these studies it was found that the crude extracts of the plant *L. grandis* contained important chemical groups like alkalioids, steroids, tannins, sapoponins, glycosides and gummy types. The plant also possesses significant antimicrobial, anti-diarrheal and sedative activity when compared with corresponding standard drugs. So, advance research is imperative to discover the bioactive principles and exact mechanisms of action.

ACKNOWLEDGEMENT

The authors would like to acknowledge the Forest Research Institute, Chittagong, Bangladesh for plant identification.

CONFLICT OF INTEREST

No competing interests.

REFERENCES

1. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta 2013; 1830:3670-3695.
2. Martins E. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology 2014; 4:1-10.
3. Cragg GM, Newman DJ. Natural product drug discovery in the next millennium. Pharmaceutical Biology 2001; 39 Suppl 1:8-17.
4. Cragg GM, Newman DJ. Discovery and development of antineoplastic agents from natural sources. Cancer Investigation 1999; 17(2):153-163.
5. Mukherjee PW. Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals. New Delhi, India: Business Horizons Publishers, 2002.
6. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology 2014; 4:177.
7. Islam MT, Tahara S. Dihydroflavonols from *Lannea coronandela*. Phytochemistry 2000; 54(8):901-907.
8. Yusuf M, Chowdhury JU, Wahab MA, Begum J. Medicinal plants of Bangladesh. Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh; 1994; p. 1-340.

9. Kirtikar KR, Basu BD. Indian medicinal plants. 2nd ed. Bishen Singh-MahendraPal Singh, India 1975; 664-666.

10. Rahman M, Khatun A, Uddin S, Shilpi JA. Comparative effect of Lannea coromandelica (Houtt.) Merr. leaves and stem barks on acetic acid induced pain model in mice and chromogenic reagents: exploring the analgesic potential and phytochemical groups. Pharmacologyonline 2016; 3(1):146-152.

11. Islam MT, Ito T, Sakasai M, et al. Zoosporicidal activity of polyflavonoid tannin identified in Lannea coromandelica stem bark against phytopathogenic oomycete Aphanomyces cochlioides. The Journal of Agricultural and Food Chemistry 2002; 50:6697-6703.

12. Islam M, Jannat T, Kuddus MD, Rachid MA, Haque, MR. In vitro and in vivo evaluation of pharmacological potentials of Campsis radicans L. Clinical Phytoscience 2019; 5:42.

13. Arif M, Kuddus MR, Islam MT, Ibrahim M. Evaluation of In vivo and In vitro biological activities of Gardenia latifolia Ait leaf. GSC Biological and Pharmaceutical Sciences 2019; 7(03):116-123.

14. Moniruzzaman M, Kuddus MR, Chowdhury AMS and Rashid MA. Antioxidant, antimicrobial, anti-diarrheal and analgesic activities of Diospyros malabarica (Desr.) Kostel. Bangladesh Pharmaceutical Journal 2019; 22(1):27-33.

15. Azwanida NN. A Review on the Extraction Methods Used in Medicinal Plants, Principle, Strength and Limitation. Medicinal & Aromatic Plants 2015; 4:196.

16. Ghani A. Medicinal Plants of Bangladesh. 2nd ed. Bangladesh: The Asiatic Society of Bangladesh; 2003. p. 31-40, 418, 500-504.

17. Tewse GE and Evans WC. Phenols and phenolic glycosides, in Textbook of Pharmacognosy, vol. 12, p. 343-383, Balliese, Tindall and Co Publishers, London, UK, 1989.

18. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 1966; 45(4):493-496.

19. Bussmann RW, Malca-García G, Glenn A, et al. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies. Journal of Ethnopharmacology 2010; 132(1):101-108.

20. Zämmern M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16:109-110.

21. Shoba FG, Thomas M. Study of anti diarrhoeal activity of four medicinal plants in castor oil induced diarrhea. Journal of Ethnopharmacology 2001; 76(1):73-76.

22. Kar DM, Maharana L, Rout SP. CNS activity of aerial parts of Hybanthus emeaspernum Mull. Pharmacologyonline 2010; 3:959-981.

23. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances 2015; 33(8):158-1614.

24. Hossan MS, Jindal H, Maisha S, et al. Antibacterial effects of 18 medicinal plants used by the Khyang tribe in Bangladesh. Pharmaceutical Biology 2018; 56(1):201-208.

25. Manandhar S, Luitel S, Dahal RK. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. Journal of Tropical Medicine 2019; Article ID 1895340, 5pages.

26. Khatun NH, Nesa ML, Islam R, Ripa FA, Mamun A, Kadir S. Anti diabetic and anti-diarrheal effects of the methanolic extract of Pylanthus reticulatus leaves in mice. Asian Pacific Journal of Reproduction 2014; 3:121-127.

27. Naher S, Aziz MA, Akter ML, Rahman SMM, Sajon SR, Mazumder K. Anti-diarrheal activity and brine shrimp lethality bioassay of methanolic extract of Cordyline fruticosa (L) A. Chev. Leaves. Clinical Phytoscience 2019; 5:15.

28. Rout SK, Kar DM. Sedative, anxiolytic and anticonvulsant effects of different extracts from the leaves of Ipomoea carnea in experimental animals. International Journal of Drug Development and Research 2013; 5(2):232-243.