The role of poly-herbal extract in sodium chloride-induced oxidative stress and hyperlipidemia in male Wistar rats

Olumide Fadahunsi
Ladoke Akintola University of Technology

Peter Adegbola
Ladoke Akintola University of Technology

Olayemi Adebola Akintola
Ladoke Akintola University of Technology

Bamidele Stephen Ajilore
Osun State University

olubukola sinbad Olorunnisola (osolorunnisola@lautech.edu.ng)
Ladoke Akintola University of Technology

Research Article

Keywords: Sodium chloride, Poly-herbal, Antioxidants, Lipid profile, Liver, Kidney, Aorta

DOI: https://doi.org/10.21203/rs.3.rs-420441/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract
Consistent consumption of high salt diet (HSD) has been associated with increased cellular generation of free radicals which has been implicated in the derangement of some vital organs and etiology of cardiovascular disorders. This study was designed to investigate the combined effect of some commonly employed medicinal plants on serum lipid profile and antioxidant status of aorta, kidney, and liver of high salt diet-fed animals. Thirty-five male Wistar rats were divided into 5 groups of 7 animals each. Group 1 and 2 animals were fed normal rat and 16% high salt diet only respectively. Animals in groups 3, 4, and 5 were fed 16% high salt diet with 800, 400, and 200 mg/kg bw poly-herbal extract (PHE) respectively once for 28 consecutive days. Serum low-density lipoprotein (LDL), triacylglycerol (TG), total cholesterol (TC) and high-density lipoprotein (HDL), malondialdehyde, nitric oxide, catalase, superoxide dismutase, glutathione peroxidase, glutathione concentration, and activities were assessed in the aorta, kidney, and liver. PHE \((p < 0.05)\) significantly reduced malondialdehyde and nitric oxide concentration and increased antioxidant enzymes and glutathione activity. Elevated serum TG, TC, LDL, and TC content in HSD-fed animals were significantly \((p < 0.05)\) reduced to normal in PHE-treated rats while HDL was significantly elevated \((p < 0.05)\) in a concentration-dependent manner in PHE treated animals. Feeding with PHE attenuated high salt diet imposed derangement in serum lipid profile and antioxidant status in the organs of the experimental rats.

Introduction
Nutrition is an important factor in maintaining the physiological and biochemical wellness of the biological system [1]. Constant consumption of diet deficient or excessive in micronutrients is associated with the development of degenerative and metabolic disorders [2]. Sodium chloride (NaCl) is probably the oldest spice in human history and has a multifunctional role in the modern-day food industry and biotechnology [3]. Recently, there is a considerable increase in the salt content of foods due to changes in human dietary habits vis-à-vis high consumption of industrialized, processed, and fast food [4,5]. Although, governmental and institutional awareness on the reduction of sodium consumption and negative health implications of high salt intake are well disseminated and publicized [6-9]. However, industrial suitability, gustatory delights, salt addiction, and consumer's acceptability are a few of the factors still influencing the continued demand, interest, and consumption of high salt diet (HSD) worldwide [3,10]. Sodium is involved in several trans-membrane and physiological processes and is dominantly supplied via dietary salt [11,12]. Unfortunately, uncontrolled and excessive consumption of salt has been linked to the development of cardiovascular disorders, endothelial dysfunction, lipid disorders, and Alzheimer disease [13,14]. Increased activities of reactive oxidative species (ROS), infiltration of immune cells have been postulated as the likely mechanisms of high salt-induced renal damage and hypertension [15-17]. Natural products and plants with medicinal importance are highly coveted, and sought for throughout the world (Harvey et al., 2010; Newman and Cragg, 2012; Harvey 2015; Ruhsam and Hollingsworth, 2017). Pharmacological activities vis-à-vis cardio-protective, anti-inflammatory, antioxidant, anti-cancer prowess of these botanicals have been documented and attributed to their different phytochemicals [22]. Traditionally, many of these plants are employed as a concoction of poly-herbal mixture in the management of various diseases. It is a common practice and accepted belief in folkloric medicine that a combination of herbal plants would have a rapid and potentiated effect against the targeted ailments [23, 24]. With this background understanding, this study was designed at investigating the combined effect of aqueous leaf extract of Annona muricata, Carica papaya, Moringa oleifera and Aloe barbadensis on oxidative status and lipid profile of rats fed with high salt diet.

Materials And Methods

Plant source and extraction
Annona muricata, Carica papaya, Moringa oleifera and Aloe barbadensis were collected in Ogbomoso town (8°08'N4°15'E) and were authenticated by a taxonomist from the Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria. The voucher numbers of the plants were deposited at the University Herbarium.
Preparation of Poly-herbal extracts (PHE)

Five hundred each of the fresh leaves of the four plants were pulverized using a kitchen blender and subsequently macerated and boiled in water at 100 degrees for 2 hours. It was left alone to cool under room temperature for 3 hours and was then filtered using a clean muslin cloth. The supernatant was freeze-dried and the lyophilized crude extract was stored in an airtight dark bottle and refrigerated until further use.

Acute toxicity and Determination of LD$_{50}$

Acute toxicity testing was carried out in two phases according to the method described by [25]. Firstly, nine animals were divided into three groups of three animals each. Each group of animals was administered 10, 100, and 1000 mg/kg of the poly-herbal extract, and no mortality was observed. In the second phase, 6 animals were distributed into 3 groups of two animals each and were administered higher 1600, 2900, and 5000 mg/kg of the PHE respectively. No mortality was observed after 24 to 48 hours among animals in all groups.

Animal grouping and experimental design

All animal procedures in this study were performed following the guidelines of the research and ethics committee, Ladoke Akintola University of Technology (LAUTECH) for the use of laboratory animals. Thirty-five (35) healthy male Wistar rats weighing 140-150 g were obtained from the animal house of the Department of Biochemistry, College of Basic of Medical Sciences, LAUTECH. They were housed in ventilated cages on a 12:12 hour light-dark cycle and acclimatized for 2 weeks and were separated into 5 groups of 7 animals each as depicted in Table 1

Groups	Treatment
1	Fed with normal rat chow only (positive control)
2	Fed with 16 % salt diet only (negative control)
3	Fed with 16% salt diet and 800 mg/kg of the poly-herbal extract once daily
4	Fed with 16% salt diet and 400 mg/kg of the poly-herbal extract once daily
5	Fed with 16% salt diet and 200 mg/kg of the poly-herbal extract once daily

Collection of blood serum and tissue preparation from treated rats

The animals were sacrificed through cervical dislocation on the 29th day after overnight fasting. Blood was collected through cardiac puncture using a 5 ml syringe and transferred into plain sample bottles. The blood samples were centrifuged at 4000 rpm for 10 minutes to obtain the serum. The kidney, liver, and aorta were excised, washed in cold washing buffer, and homogenized in phosphate buffer (10%w/v). The homogenates were centrifuged at 10,000 x gravitational force for 15 minutes at 4°C. The supernatants were collected and stored in the freezer at -18°C.

Antioxidant assays

Antioxidant enzyme activity and oxidative stress markers were estimated in the liver, aorta, and kidneys homogenates.

Determination of superoxide dismutase activity

Superoxide dismutase (SOD) activity was evaluated according to the method of [26]. One and a half mL each of 75 mM of Tris-HCl buffer (pH 8.2), 30 mM EDTA, and 2 mM of pyrogallol were added to 70 µL of tissue homogenate. Change in absorbance was recorded at 420 nm for 3 min in a spectrophotometer.
Determination of glutathione concentration

Glutathione (GSH) activity was estimated according to the procedure of Ellman [27]. One hundred (100 μL) of the tissue homogenate was diluted in 20 mL of phosphate buffer (0.1 M, pH 8). Forty mL of 0.01 M 5, 5'-dithiobis (2-nitrobenzoic acid) (DTNB) was added to 6mL of the mixture, and absorbance was read at 412 nm.

Determination of glutathione peroxidase activity

Glutathione peroxidase activity was determined according to the method of Reddy et al. [28]. To 3.0 ml of glutathione peroxidase substrate solution, 0.1 ml of the homogenate was added. To the test cuvette, 0.5ml of hydrogen peroxide was added and mixed. The change in absorbance was recorded every 30 seconds for 3 minutes in a spectrophotometer at 430nm.

Determination of catalase activity

Catalase activity was determined according to the method of Clairborne [29]. The reaction mixture contained 50 mM potassium phosphate buffer (pH 7.4), 19 mM H₂O₂ and 20 uL tissue homogenate. The degradation of H₂O₂ was read spectrophotometrically at 240 nm for 1 min. and the catalase activity was calculated according to the formula: K = 2.303/T x log (A1/A2)

Where: K: Rate of reaction; T: Time interval (minutes); A1: Absorbance at time zero; A2: Absorbance at 60 seconds interval.

Determination of malondialdehyde concentration

Estimation of malondialdehyde (MDA) concentration as an index of lipid peroxidation was assayed according to the method described by [30]. One mL of 20% trichloroacetic acid was added to 1 ml of the tissue homogenate thereafter 2 mL of 0.67% thiobarbituric acid was added. The mixture was incubated at 100°C for 15 min in a water bath and cooled. Six 8 ml of n-butanol was added and centrifuged at 3000 rpm for 15min. The absorbance of the clear pink supernatant was then read against a blank at 532 nm spectrophotometrically. The concentration of MDA is expressed in nmol / g of the tissue.

Determination of Nitric oxide concentration

The level of nitric oxide (NO) in the tissues was determined according to the method described by [31]. Succinctly, 200 μL of the samples was incubated with 200 μL of Griess reagent at 25 °C in the dark for 30 min. Absorbance was subsequently read at 548 nm.

Serum Lipid Assay

Collected serum samples were analyzed for lipid profile. High-density lipoprotein-cholesterol (HDL-C) was assayed using an assay kit (Elabscience, USA). Triglyceride (TG) content was evaluated by enzymatic method using an assay kit (Randox, England). Total cholesterol (TC) was determined according to the method of Parakh and Jank (1982). Low-density lipoprotein (LDL-C) and Very low-density lipoprotein – cholesterol (VLDL-C) was calculated according to Friedwald et al. (1972).

Statistical analysis

Data obtained in this study were expressed as mean ± SEM and subjected to one-way analysis of variance (ANOVA) using statistical package for social sciences 21.0. Duncan's multiple test was used to identify significance between means at P<0.05

Results
Antioxidant status of the liver

The antioxidant enzyme activities and concentration of oxidative stress markers in the liver of rats in all experimental groups are depicted in Table 2. Treatment with poly-herbal extract caused a significant (P<0.05) and a dose-dependent reduction in MDA concentration in the liver of the treated rats when compared with the HSD group only. An insignificant elevation in GSH concentration (3.25 µmol/g) was observed in 800 mg/kg PHE treated animals when compared with NRC, HSD and 400 mg/kg PHE. However, it was significantly different when compared with 2.04 µmol/g noticed in the 200 mg/kg PHE treated animals. GPx activity was significantly lowered in HSD only fed rats (0.55 µmol/g), NRC (0.63 µmol/g) and 200 mg/kg PHE (0.42 µmol/g when compared with 800 mg/kg PHE (0.81 µmol/g) and 400 mg/kg PHE (0.73 µmol/g) treated rats respectively. SOD, CAT, and GST activity was reduced in the liver of the high salt fed rats and were significantly (P<0.05) increased after treatment with 400 and 800 mg/kg PHE.

Antioxidant status of the kidney

Malondialdehyde, nitric oxide concentration, and antioxidant enzyme activities in the kidney of rats in all experimental groups are depicted in Table 3. Poly-herbal extract (400-800 mg/kg PHE) caused a dose-dependent and significant (P<0.05) reduction in MDA concentration in the kidney of the treated rats when compared with the HSD-fed-only group (40.97 µmol/g). The concentration of GSH in the kidney of HSD fed only (0.91 µmol/g) and 200 mg/kg PHE (1.09 µmol/g) fed animals were significantly (P<0.05) reduced when compared with NRC (1.61 µmol/g), 400 and 800 mg/kg PHE. Nitric oxide concentration was significantly (p<0.05) elevated in response to high salt loading. GPx activity of 0.31 µmol/g observed in HSD only fed was significantly (P<0.05) lower when compared with 0.55 µmol/g, 1.09 µmol/g, 0.76 µmol/g, 0.76 µmol/g noticed in NRC, 800, 400 and 200 mg/kg PHE treated rats respectively. CAT (10.78 µmol/g and 9.95 µmol/g) and GST activity (2.41 µmol/g) noticed in the kidney of normal chow and 800 mg/kg PHE treated rats respectively were significant (P<0.05) when compared with other treatment groups. Although, the lowest activities was observed in the HSD only fed rats.

Table 2: Antioxidant enzymes activities and concentration of oxidative stress markers in the liver of rats

Treatment	MDA (µmol/g)	GSH (µmol/)	NO (µmol/g)	GPX (µmol/)	SOD (µmol/g)	CAT (µmol/)	GST (µmol/)
NRC	40.77±0.43b	2.77±0.30ab	7.59±0.13b	0.63±0.04bc	26.74±2.38c	7.42±0.61bc	5.90±0.91b
HSD only	75.64±5.69c	2.29±0.44ab	13.31±0.59e	0.55±0.01ab	18.58±0.54ab	1.27±0.14a	3.34±0.54a
HSD +800 mg/kg PHE	26.86±0.86a	3.25±0.38b	5.75±0.12a	0.81±0.07d	34.20±3.60d	8.44±0.67c	6.37±0.81b
HSD +400 mg/kg PHE	29.62±1.69a	2.67±0.08ab	9.70±0.02c	0.73±0.01cd	24.74±0.35bc	8.38±1.20c	5.66±0.55b
HSD +200 mg/kg PHE	41.60±1.76b	2.04±0.23a	11.56±0.64d	0.42±0.05a	16.17±0.90a	3.24±0.97a	4.34±0.54ab

Data were expressed as mean ±SEM. Values with different superscripts down the column are significantly different (p<0.05). NRC; normal rat chow; HSD; high salt diet; PHE: poly-herbal extract

Table 3: Antioxidant enzymes activities and concentration of oxidative stress markers in the kidney of rats
Data were expressed as mean ±SEM. Values with different superscripts down the column are significantly different (p<0.05). NRC; normal rat chow; HSD; high salt diet; PHE: poly-herbal extract

Antioxidant status of the aorta

Antioxidant enzyme activities and concentration of oxidative stress markers in the aorta of rats in all experimental groups are depicted in Table 4. Malondialdehyde concentration of 61.54 µmol/ observed in the aorta of HSD only fed rats was significantly higher when compared to all treatment groups. The lowest MDA level of 26.85 µmol/ and 29.67 µmol/ were observed in 800 and 400 mg/kg PHE treated rats only. The highest GSH and SOD activity of 3.25 µmol/ and 25.27 µmol/ was observed in the aorta of 800 mg/kg PHE administered rats respectively, while a significantly (P<0.05) lowered activity was observed in the HSD only fed rats among all groups. The GPx, CAT and GST activity of the aorta was observed to increase in a dose dependent manner in response to the PHE (200-800 mg/kg) treatment. Although, the significantly (P<0.05) lowest activity of these enzymes was noticed in the HSD only fed rats. There was no significant difference in GPx, CAT and GST concentration in the aorta of the NRC and PHE (200-800 mg/kg) fed rats.

Table 4: Antioxidant enzymes activities and concentration of oxidative stress markers in the aorta of rats

Treatment	MDA (µmol/g)	GSH (µmol/g tissue)	NO (µmol/g tissue)	SOD (µmol/g tissue)	GPX (µmol/g tissue)	CAT (µmol/g tissue)	GST (µmol/g tissue)
NRC only	38.96±1.86c	2.77±0.3ab	6.65±0.60a	19.76±2.18ab	0.63±0.04b	7.42±0.61c	5.90±0.91b
HSD only	61.54±4.08d	1.93±0.25a	13.31±0.59c	17.17±1.50a	0.51±0.03a	1.24±0.14a	3.34±0.54a
HSD + 800 mg/kg PHE	26.85±0.86a	3.25±0.38b	6.70±0.62a	25.27±2.29b	0.71±0.04b	7.87±0.50c	6.37±0.81b
HSD + 400 mg/kg PHE	29.62±1.69ab	2.67±0.08ab	9.70±0.02b	21.46±3.15ab	0.66±0.05b	7.36±0.91c	5.61±0.55b
HSD + 200 mg/kg PHE	42.66±2.93c	2.03±0.23a	10.33±1.06b	18.56±2.12ab	0.68±0.04b	3.24±0.9b	4.34±0.54ab

Data were expressed as mean ±SEM. Values with different superscripts down the column are significantly different (p<0.05). NRC; normal rat chow; HSD; high salt diet; PHE: poly-herbal extract

Serum lipid profile of treated rats
HDL and LDL levels in the serum of rats are depicted in Table 5. HDL concentration was significantly (P<0.05) elevated in the 800 and 400 mg/kg PHE treated rats, while LDL level was significantly (P<0.05) increased in HSD only treated animals. LDL level was however significantly reduced in a dose-dependent manner after treatment with the PHE. Triacylglycerol and cholesterol concentration in the serum of treated rats is shown in Figure 1. It was noted that triacylglycerol and cholesterol concentration in the serum of the HSD only fed rats were significantly (P<0.05) elevated when compared with other groups of experimental animals. There was a dose dependent decrease in serum TAG concentration after treatment with PHE. An appreciable and more pronounced reduction in cholesterol concentration was observed in 800 and 400 mg/kg PHE treated animals.

Table 5: Concentration of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in the serum of rats

Treatment	HDL (mg/dl)	LDL (mg/dl)
NRC only	6.63±0.43ab	35.06±1.97c
HSD only	4.91±0.85a	163.29±1.59f
HSD +800 mg/kg PHE	22.83±0.72d	9.67±1.67a
HSD +400 mg/kg PHE	21.99±0.64d	27.25±2.69b
HSD +200 mg/kg PHE	12.09±1.20c	89.30±3.76a

NRC; normal rat chow; HSD; high salt diet; PHE: poly-herbal extract

Gas chromatography mass spectrophotometry (GC-MS) analysis

GC-MS spectrum of PHE with peaks and retention time is shown in Figure 2. The analysis of the poly-herbal extract revealed the presence of about 61 compounds (Table 6) with compounds such as Benzene-2-tert-butyldimethylsilyloxy]-1-isopropyl-4-methyl- (8.83%), Deoxyqinghaosu (8.46%), Benzene, 1,1’-(1,2-cyclobutanediyl)-bis-,trans- (5.15%), N-2-Acetylcyclopentylidene-cyclohexylamine (4.18%), 9,10-Anthraquinone-monohydrazone (3.83%), scopoletin (3.66%), 2,3-Diphenylcyclopropyl-methylphenylsulfoxide (3.59%), Bicyclo[3.3.1]nonan-2-one,1-methyl-9-(1-methylethylidene (2.45%) detected to be notably present.

Table 6: Compounds detected in the poly-herbal extract using GC–MS Analysis
Retention time	Identified Compounds	Peak area %
1 2.651	Arsenous acid, tris(trimethylsilyl)ester	0.09
2 2.905	2,4-Cyclohexadien-1-one, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-1-Methyl-3-phenylindole	0.07
3 3.271	Cyclotrisiloxane, hexamethyl-	0.21
4 3.834	1,4-Bis(trimethylsilyl)benzene	1.18
5 4.341	Tris(tert-butyldimethylsilyloxy)arsane	0.05
6 4.398	11,1,3,5,5,5-Heptamethyltrisiloxane	0.06
7 4.764	4-Methyl-2-trimethylsilyloxy-acetophenone	0.13
8 4.905	13,5,7-Cyclooctatetraene	0.39
9 5.327	Cyclotetrasiloxane, octamethyl-	0.14
10 5.440	Trans-4-Dimethylamino-4′-methoxyx alcone	0.39
11 5.834	11,3,3,5,5,7,7-Octamethyl-7-(2-methylpropoxy) tetrasiloxan-1-ol	0.26
17 6.961	11,1,3,5,5,5-Heptamethyltrisiloxane	0.05
18 7.158	Arsenous acid, tris(trimethylsilyl) ester	0.04
19 7.468	1,2-Bis(trimethylsilyl)benzene	0.11
20 7.722	11,1,3,5,5,5-Heptamethyltrisiloxane	0.04
	1H-Indole, 1-methyl-2-phenyl	
22 8.510	Cyclopentasiloxane, decamethyl-	1.22
23 8.736	5-Methyl-2-phenyldizoline	0.12
24 9.017	3,3-Diisopropoxy-11,1,3,5,5,5-hexamethyltrisiloxane.	0.05
25 9.186	1,2,4Triazolo[1,5-a]pyrimidine-6-carboxylic acid, 4,7-dihydro-7-imino-, ethyl ester	0.04
26 9.327	Silane, trimethyl[5-methyl-2-(1-me thylethyl)phenoxy]-	0.10
27 9.863	Octasiloxane, 11,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl-	0.23
28 10.144	4-Bromo-3-chloroaniline	0.32
29 10.285	Cyclohexasiloxane, dodecamethyl-	1.47
30 10.651	Heptasiloxane, 11,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl-	0.54
31 10.961	Alpha-D-Ribofuranoside ((2-pyridyl l)-2,3-O-isopropylidene-1-thio-	1.28
No.	Value	Chemical Name
-----	---------	--
32	11.384	Coumarin
33	11.609	Cycloheptasiloxane, tetradecamethyl-
34	11.947	Anthracene, 9,10-diethyl-9,10-dihydro-
35	12.313	3-Quinolinecarboxylic acid, 6,8-di fluoro-4-hydroxy-, ethyl ester
36	12.595	2-Ethylacridine
37	12.680	Cyclooctasiloxane, hexadecamethyl-
38	12.792	5,5’-Di(ethoxycarbonyl)-3,3’-dimethyl-4,4’-dipropyl-2,2’-dipyrrylmethane
39	13.018	Trans-3-Ethoxy-b-methyl-b-nitrostyrene
40	13.187	Corydaldine
41	13.356	Benzene, 1,1’-(1,2-cyclobutanediy)bis-,trans-
42	13.778	Isopulegol
43	13.947	Bicyclo[4.1.0]hepta-2,4-diene, 2,3,4,5-tetraethyl-7,7-diphenyl-
44	14.144	2-Methyl-7-phenylindole
45	14.398	1H-Indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-tetrahydro-, isopropyl ester
46	14.539	Scopoletin
47	14.680	Bicyclo[3.3.1]nonan-2-one,1-methyl-9-(1-methylethylidene)-
48	14.933	2,4,6-Trimethylphenyl isothiocyanate
49	15.074	Deoxyqinghaosu
50	15.271	N-(2-Acetylcyclopentylidene)cyclohexylamine
51	15.412	Fluorenoneoxime
52	15.750	6-Methoxy-2-hydroxyquinoxaline-4-oxide
53	15.947	Benzo[h]quinoline, 2,4-dimethyl-
54	16.088	Tris(tert-butyldimethylsilyloxy)arsane
		Propiophenone, 2’-(trimethylsiloxy)-
55	16.257	9,10-Anthraquinone monohydrazone
56	16.426	1,2-Benzisothiazol-3-amine tms
57	17.215	Benzene, 2-{(tert-butyldimethylsil yl)oxy}-1-isopropyl-4-methyl-
58	17.863	1,2-Bis(trimethylsilyl)benzene
59	18.229	Tetrasiloxane, decamethyl-
		1,4-Bis(trimethylsilyl)benzene
60	18.595	2,3-Diphenylcyclopropyl)methylphenylsulfoxide, trans-
61	18.764	Trimethyl[4-(2-methyl-4-oxo-2-pent yl)phenoxy]silane
Discussion

Excessive consumption of dietary salt has been associated with increase production of free radicals which can overwhelm cellular anti-oxidant and defense mechanism [32, 33]. The deleterious effect and consequences of free radicals on vital organs have been clinically and experimentally established [34]. Reactive oxygen species when not appropriately regulated and/or quenched oxidizes important biological molecules in tissues [33, 35]. The kidney, liver, and heart are important organs that are central to the metabolic processes of the biological system. Hence, an oxidative insult to these organs will have a negative effect on overall cellular homeostasis. A considerable elevated MDA and NO level noted in the liver, kidney, and aorta homogenates of animals fed with 16% high salt diet without treatment indicate that there was a significant increase in lipid peroxidation and oxidation in these tissues relative to the NRC and 400 and 800 mg/kg PHE groups. Hence, suggesting a protective effect of the poly-herbal extract used in this study. Malondialdehyde is a product of membrane lipid peroxidation resulting from the harmful effect of superoxide anion (O$_2^-$), hydroperoxyl radicals (HO$_2^-$), lipid radicals (L), peroxy-radical (LOO$^-$), and peroxynitrite (ONOO-) [36, 37]. The consequence of this is a considerable distortion in the conformation, physiological architecture, and integrity of the membrane as any major alteration and oxidation of the membrane lipids might have significant and negative aftermath on the signaling capacity and process of the cell [36, 38-39]. Nitric oxide is a free radical which is generated as an immunological response in many cell types [40, 41]. Although, there are contrasting reports on its clinical significance, however, increased concentration of different nitric oxide isoforms have been reported to manifest in cardiac and vascular diseases [42, 43].

High salt diet significantly reduced the SOD, CAT, and selenocysteine peroxidase in the liver, kidney, and aorta HSD only fed red rats. No major antioxidant improvement in these organs was noticed at the lowest dose of the extract but was more buoyed and significantly (P<0.05) pronounced at higher dosages (400 and 800 mg/kg) of the PHE treatment.

Activities of enzymic antioxidants are useful indices and markers in the prognosis, progression, and prediction of some disease conditions [44]. Superoxide dismutase, catalase, and glutathione peroxidase are first-line defense antioxidants shielding the body against dangerous radicals vis-à-vis superoxide anion, peroxisomal, and mitochondrial hydrogen peroxide respectively [44].

Glutathione S-transferases catalyze the nucleophilic attack of glutathione (GSH) on electrophilic substrates, thereby decreasing their reactivity with cellular macromolecules [44]. Glutathione has many functions in the mammalian cell among which is the elimination and protection against reactive nitrogen and oxygen species [45]. In this present study, high salt diet reduced the concentration of GSH in the salt-treated animals, although not statistically different from the normal chow fed rats. GSH was only significantly elevated in 800 mg/kg extract-treated animals. The antioxidants depletion effect of high salt diet recorded in this study is in unison with previous scientific submission of [46]. As established by Bayorh et al. [47] Saidu et al.[48], the activity of antioxidant enzymes decreased, while ROS and MDA concentration increased in rats fed with 8% salt diet for 3 weeks. Batteries of experimental reports have documented that high sodium chloride can elicit derangement in lipid metabolism [49-51]. In this study, cholesterol, triglyceride, and low-density lipoprotein which are predictors of cardiovascular disorders [52] were elevated, while HDL level was reduced in the serum of salt-loaded rats. Nonetheless, the concentration of these markers was reversed to near normal after treatment with PHE. Oxidative stress has been reported to play a role in the derangement of lipid homeostasis through oxidation of accumulated low-density lipoprotein cholesterol in the plasma. This has been implicated in the development of atherosclerosis and heart attack [53]. The crude extracts and fractions of plants employed in this study have been discerned to contain different phenolics and important secondary metabolites such as caffeic acid, rutin, kaempferol, chlorogenic acid, procyanidins, catechin, and epicatechin with documented pharmacological and biological activities [54, 55]. Some empirical pieces of evidence have reported various extracts of *Annona muricata, C.papaya, Aloe barbdensis* and *M. oleifera* to demonstrate substantial anti-hyperlipidemic activities in experimentally induced pathological states [56-58]. Polyphenols such as flavonoids in plants and vegetables have been reported to modulate redox signaling pathways and induce transcription factors such as nuclear erythroid factor (Nrf2) which subsequently binds to antioxidant regulatory elements (ARE) in the DNA promoter region, thus
initiating the expression of cytoprotective and antioxidant genes with subsequently enhanced synthesis of enzymatic antioxidants [59-62]. Furthermore, active principles elicit anti-oxidant potential by donating and transferring hydrogen atom and single electron to free radicals thus disrupting their deleterious impact in the body [63]. It is worthy to note that compounds belonging to important classes of secondary metabolites vis-à-vis alkaloids, flavonoids, and terpenoids were recognized and detected in the chromatographic analysis. Active principles such as coumarin, scopoletin, and isoopulegol were detected in this study and have been documented to evoke antioxidant, inflammatory, anti-hyperlipidemic, and anti-bacteria activities [64-68]. Furthermore, isolated anthraquinones from different medicinal plants have exhibited in-vitro radical scavenging potentials [69, 70], while deoxyqinghaosu and corydaldine identified in this study have also been acclaimed to display arrays of biological activities [71].

Conclusion

High salt diet exposure elicited derangement in the antioxidant status in the assessed organs of the experimental rats. However, treatment with the different concentrations of the poly-herbal extracts caused a considerable increase in the concentration.

Declarations

Funding

Not Applicable

Conflicts of interest/Competing interests

The authors declares that no conflict of interest exists

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not Applicable

Authors' contributions

The research work was carried out in collaboration between all authors. OSO and OSF conceived and designed the study. Authors PIA, ODA and BSA managed experimental protocols and performed the experiments under the supervision of OSO. Author OSF managed the literature searches and wrote the first draft of the manuscript. Author PIA performed the statistical analysis. All authors read and approved the final draft of the manuscript.

Ethics approval

All animal procedures in this study were performed in accordance with the guidelines of the research and ethics committee, Ladoke Akintola University of Technology (LAUTECH) for the use of laboratory animals

Consent to participate

Not Applicable

Consent for publication
References

1. Jacka FN, Myklethun A and Berk M. (2012). Moving towards a population health approach to the primary prevention of common mental disorders. BMC Med 10, 149.

2. Garcia-Casal MN, Mowson R, Rogers L, Grajeda R (2018). Risk of excessive intake of vitamins and minerals delivered through public health interventions: objectives, results, conclusions of the meeting, and the way forward. Ann. N.Y. Acad. Sci. 1–16 C. Wiley Periodicals, Inc.

3. Soto-Escageda JA, Vidal EB, Victoria V, Chávez AV, Beltran MA, Rodríguez HB (2016). Does salt addiction exist. Salud Mental 39(3):175-181

4. He FJ, Marrero NM, MacGregor GA (2008). Salt intake is related to soft drink consumption in children and adolescents: A link to obesity? Hypertension 52:629-634.

5. Korošec Z, Pravst I (2014) Assessing the average sodium content of prepacked foods with nutrition declarations: The importance of sales data. Nutrients 6:3501-3515.

6. World Health Organization (2007). Reducing Salt Intake in Populations Report of a WHO Forum and Technical Meeting. WHO Document Production Services: Geneva, Switzerland

7. WHO (2012). Guideline: Sodium Intake for Adults and Children. WHO Document Production Services: Geneva, Switzerland

8. Trieu K, Neal B, Hawkes C, Dunford E, Campbell N, Rodriguez- Fernandez R (2015). Salt reduction initiatives around the world—A systematic review of progress towards the global target. PLoS One. 10:e0130247. DOI: 10.1371/journal.pone.0130247

9. Hyseni L, Elliot-Green A, Lloyd- Williams F, Kypridemos C, O’Flaherty M, McGill R (2017). Systematic review of dietary salt reduction policies: Evidence for an effectiveness hierarchy? PLoS One. 12:e0177535. DOI: 10.1371/journal.pone.0177535

10. Anderson CAM, Appel LJ, Okuda N, Brown JI, Chan Q, Zhao L (2010). Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc. 110(5):736–45.

11. González-Campoy JM, Knox FG (1992) Integrated responses of the kidney to alterations in extracellular fluid volume. In: Seldin DW et al (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 2041–2098

12. Grau R, Andres A, Barat JM (2015). Principles of drying. In: Toldra F, editor. Handbook of Fermented Meat and Poultry. 2nd ed. West Sussex, UK: Wiley-Blackwell 31-38

13. Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H, Anai M, Onishi Y, Fujishiro M, Ono H, Shojima N, Inukai K, Fukushima Y, Kikuchi M, Fujita T(2001). Insulin resistance with enhanced insulin signaling in high-salt diet-fed rats. Diabetes. 50(3):573-83. doi: 10.2337/diabetes.50.3.573

14. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ (2013). Effect of lower sodium intake on health: Systematic review and meta-analyses. British Medical Journal. 346:f1326. DOI: 10.1136/bmj.f1326

15. Shimosawa, T. (2013). Salt, the renin–angiotensin–aldosterone system and resistant hypertension. Hypertens Res36, 657–660

16. Mattson, D.L (2014). Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. J. Physiol.; 307:F499-F508

17. Fehrenbach, D.J., Abais-Battad, J.M., Dasinger, J.H., Lund, H., & Mattson, D.L (2019) Salt-sensitive increase in macrophages in the kidneys of Dahl SS rats. Am J Physiol Renal Physiol317:F361-F374
18. Harvey, A.L.; Clark, R.L.; Mackay, S.P.; Johnston, B.F (2010). Current strategies for drug discovery through natural products. Expert Opin. Drug Discov. 5, 559–568.

19. Newman, D.J.; Cragg, G.M (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335

20. Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J (2015). The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129

21. Ruhsam, M. Hollingsworth, PM (2017). Authentication of eleutherococcus and rhodiola herbal supplement products in the United Kingdom. J. Pharm. Biomed. Anal. 149, 403–409

22. Ji, S, Fattahi, A.; Raffel, N.; Hoffmann, I., Beckmann, M.W.; Dittrich, R.; Schrauder, M (2017). Antioxidant effect of aqueous extract of four plants with therapeutic potential on gynecological diseases; semen persicae, Leonurus cardiaca, Hedyotis diffusa, and Curcuma zedoaria. Eur. J. Med. Res. 22, 50

23. Pole S (2013). Ayurvedic Medicine: The Principles of Traditional Practice. London: Jessica Kingsley Publishers

24. Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of ayurveda. Pharmacognosy reviews, 8(16), 73–80. https://doi.org/10.4103/0973-7847.134229

25. Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol 1983;54:275-87.

26. Misra, H. P., and I. Fridovich (1972). The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170-3175.

27. Ellman, G (1959). Tissue sulfhydryl groups. Arch Biochem Biophys 82:70 -7

28. Reddy, K. P., Subhani, S.M., Khan, P.A. and Kumar, K.B. 1995. Effect of light and benzyladenine and desk treated growing leaves, Changes in the peroxidase activity. Cell physiol. 26: 984

29. Clairborne A (1985). Catalase activity. In: Handbook of Methods for Oxygen Radical Research. Greenwald, R.A. ed Boca Raton, Fla: CRC Press 283-284.

30. Ohkawa H, Ohishi N, Yagi, K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Chem 95 (1979) 351–358.

31. Tsikas D (2005). Review methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic Res 39(8):797–815

32. Zhang, Z., Dmitrieva, N. I., Park, J. H., Levine, R. L., and Burg, M. B. (2004). High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc. Natl. Acad. Sci. U.S.A. 101, 9491–9496. doi: 10.1073/pnas.0402961101

33. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biomed Sci: 4:89.

34. Singh Z, Karthigesu I, Singh P, Kaur R (2014). Use of Malondialdehyde as a biomarker for assessing oxidative Stress in Different Disease Pathologies: A Review. Iranian J Publ Health, 43(3) 201:7-16

35. Lluis, J. M. Morales, A. Blasco. C. (2005). Critical role of mitochondrial glutathione in the survival of hepatocytes during hypoxia,” The Journal of Biological Chemistry. 280:5:3224–3232.
40. Nahrevanian H, Dascombe MJ (2003). The role of nitric oxide and its up/downstream molecules in malaria: cytotoxic or preventive? Southeast Asian J Trop Med Public Health 4:4-50

41. Bian K, Doursout MF, Murad F. Vascular system: role of nitric oxide in cardiovascular diseases. J Clin Hypertens (Greenwich). 2008;10(4):304–10.

42. Nahrevanian H, Amini M (2009). Nitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases. Iranian Journal of Basic Medical Sciences. 11 4), 197-204

43. Khazan M, Hdayati M (2015). The role of nitric oxide in health . Scimetr. 3(1): e20987.

44. Ighodaro O.M., Akinloye A (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase(CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 54;287–293

45. Franco, R., Schoneveld, O. J., Pappa, A. and Panayiotidis, M. I. (2007). The central role of glutathione in the pathophysiology of human diseases', Archives of Physiology And Biochemistry 113:4, 234 – 258

46. Liu, M., Deng, M., Luo, Q., Dou, X., & Jia, Z. (2020). High-Salt Loading Downregulates Nrf2 Expression in a Sodium-Dependent Manner in Renal Collecting Duct Cells. Frontiers in physiology, 10, 1565. https://doi.org/10.3389/fphys.2019.01565

47. Bayorh MA, Ganafa AA, Socci RR, Silvestrov N, Abukhalaf IK (2004). The Role of Oxidative Stress in Salt-Induced Hypertension, American Journal of Hypertension 17 (1), 31–36

48. Saidu Y, Bilbis, Si Suleiman A. Muhammad, and Mu’azu K. Nasir (2012). Serum Lipid Profile and Antioxidant Status of Salt- induced Hypertensive Rats Treated with an Antioxidants Rich Nutraceutical. Cameroon Journal of Experimental Biology 8 (1) 47-54.

49. Lee EY and Cho KH. 2016. High-dose consumption of NaCl resulted in severe degradation of lipoproteins associated with hyperlipidemia, hyperglycemia, and infertility via impairment of testicular spermatogenesis Toxicol. Res., 2016, 5, 557

50. Omage K, Azele M, A, Omage SO. 2018. Evaluation of the efficacy of Acalypha wilkesiana leaves in managing cardiovascular disease risk factors in rabbits exposed to salt-loaded diets. Clinical 4:1

51. Uche, O.K and Osakpolor F.A. 2018. Kolaviron Attenuates Elevation in Blood Pressure and Ameliorates Dyslipidemia in Salt-Induced Hypertensive Sprague-Dawley Rats. J. Biomed. Res. 21 :219- 224

52. Ginsberg HN, Goldberg IJ (2001). Disorders of lipoprotein metabolism. In: Harrison'sPrinciples of Internal Medicine. 15th Ed. New York: McGraw Hill: 2245-2256

53. NCEP (1993). Summary of the Second Report of the National Cholesterol, Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Cholesterol in Adults (Adult Treatment Panel II). J.A.M.A. 269, 3015 – 3023

54. George, V.C., Kumar, D.R., Suresh, P.K., Kumar, R.A., 2014. Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts. J. Food Sci. Technol. 52 (4),2328–2335

55. Justino AB, Franco RR, Martins MM, daSilva NM, (2018). Annona muricata leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomedicine & Pharmacotherapy100: 83-92

56. Oyedepo TA, Babarinde SO and Ajayeoba TA (2013). Evaluation of Anti-hyperlipidemic Effect of Aqueous Leaves Extract of Moringa oleifera in Alloxan Induced Diabetic Rats. International Journal of Biochemistry Research & Review 3(3): 162-170

57. Venkateswaran V, Rassak RA Sudaram RS, Sambathkumar R. (2017). Evaluation of Antihyperlipidemic Activity of Ethanolic Root Extract of Carica Papaya in Poloxamer – 407 Induced Hyperlipidemia in Wistar Rats. Am. J. PharmTech Res. 7(6):36-43
58. Ukpabi C.F.; Chukwu M.N.; Onyemaechi, J.N.; Ibe P.; Onuh E.F. (2019). Antidiabetic and Antihyperlipidemic Effects of Aqueous Extract of Carica papaya Leaf on the Experimental Model against Single Alloxan Toxicity. World Scientific Research, 6(1): 14-18.

59. Mattson MP, Son TG, Camandola S (2007) Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 5(3):174–186 57.

60. Calabrese EJ (2008) Neuroscience and hormesis: overview and general findings. Crit Rev Toxicol 38(4):249–52

61. Scapagnini, G, Sonya V, Nader AG , Calogero C, Zella D, Fabio G (2011). Modulation of Nrf2/ARE Pathway by Food Polyphenols: A Nutritional Neuroprotective Strategy for Cognitive and Neurodegenerative Disorders. Mol Neurobiol 44:192–201

62. Barrajon-Catalan E, Herranz-Lopez M, Joven J (2014). Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties. Advances in experimental medicine and biology. 824:141-159

63. Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B (2019). Antioxidant compounds and their antioxidant mechanism. In Antioxidants; IntechOpen: London, UK, 2019.

64. Silva G, Neto A, Moura A, Sousa H, Lavor Ea, Vasconcelos P; Danielle Silveira Macêdo, Sousa D, Vasconcelos S, Sousa F (2008). Effects of isopulegol on pentylenetetrazol-induced convulsions in mice: Possible involvement of GABAergic system and antioxidant activity. Fitoterapia 80; 506–513

65. Roussaki M., Kontogiorgis C.A., Hadjipavlou-Litina D., Hamilakis S., Detsi A., 2010, A novel synthesis of 3- aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity, Bioorg. Med. Chem. Lett., 20, 3889-3892

66. Veselinović JB, Veselinović AM, Vitnik ŽJ, Vitnik VD, Nikolić GM (2014). Antioxidant properties of selected 4-phenyl hydroxycoumarins: Integrated in vitro and computational studies. Chem Biol Interact.

67. Sreekanth T, Kavitha N, Anusha S, Rajeshwar Y. (2015). Design, synthesis, characterization, antioxidant and in vitro cytotoxic activities of novel coumarin thiazole derivatives. Med Chem Res 24:1162–1169

68. Veselinović, J.B., Veselinović, A.M., Nikolić, G.M (2015). Antibacterial potential of selected 4-phenyl hydroxycoumarins: integrated in vitro and molecular docking studies. Med Chem Res 1626–1634

69. Locatellia M, Epifanoa F, Genovesea S, Carluccia S, Končićb MZ, Kosalecb I and Dario Kremera. Anthraquinone Profile, Antioxidant and Antimicrobial Properties of Bark Extracts of Rhamnus catharticus and R. orbiculatus. Natural product communication. 6; 1276-1280

70. Mellado M, Madrid A, Eña-Cortés H, López R, Jara C, Espinoza L Antioxidant Activity Of Anthraquinones Isolated From Leaves Of Muehlenbeckia Hastulata (J.E. Sm.) Johnst (Polygonaceae) (2013). Chem. Soc., 58; 1767-1770

71. Yang TC, Chao HF, Shi LS, Chang TC, Lin HC, Chang WL (2014). Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. Fitoterapia. 93:239-44. doi: 10.1016/j.fitote.2014.01.008.

Figures
Figure 1

Serum triacylglycerol and cholesterol concentration in the serum of rats. Data were expressed as mean ±SEM. Bar chat with different alphabets are significantly different (p<0.05).

Figure 2

GC-MS chromatogram of the investigated poly-herbal extract