Parabolic - hyperbolic boundary layer

MONICA DE ANGELIS

Abstract

A boundary value problem related to a parabolic higher order operator with a small parameter ε is analyzed. For ε tends to zero, the reduced operator is hyperbolic. When $t \to \infty$ and $\varepsilon \to 0$ a parabolic hyperbolic boundary layer appears. In this paper a rigorous asymptotic approximation uniformly valid for all t is established.

1 Introduction

The parabolic operator

$$L_\varepsilon = \partial_{xx}(\varepsilon \partial_t + c^2) - \partial_{tt}$$

(1.1)

is related to the well known Kelvin -Voigt viscoelastic model. Further, it characterizes also the principal part of numerous models with non linear dissipation, such as

$$L_\varepsilon = \beta(u, u_x, u_t).$$

(1.2)

Typical example is the perturbed Sine Gordon equation. Moreover, by

*Facoltà di Ingegneria, Dipartimento di Matematica e Applicazioni, via Claudio 21, 80125, Napoli.
means of (1.2), wave equations with non linear terms are regularized obtaining a priori estimates and considering the \(\varepsilon \) parameter vanishing.\cite{1}. Further third operators are also considered to value the Cauchy problem for a second order hyperbolic equation \cite{2} or to regularize parabolic forward-backward equations.\cite{3}

Singular perturbation problem related to equations like (1.2) have interest also to evaluate the influence of the dissipative causes on the wave propagation.\cite{4}. In particular, in the linear case \(\beta = f(x,t) \), it’s interesting to compare the effects of the diffusion with the pure waves which occur when \(\varepsilon = 0 \). In this case one has a parabolic-hyperbolic boundary layer with the unique singularity for \(t \to \infty \).

In this paper, we consider the strip problem for equation (1.2) and analyze the singular perturbation problem when \(\beta = f(x,t) \) is linear. The Green function related to this problem has been already determined in term of a rapidly decreasing Fourier series.\cite{5}.

An appropriate analysis of this series when \(\varepsilon \to 0 \) allows to obtain a rigorous asymptotic estimate of the solution, uniformly valid even \(t \to \infty \).

2 Statement of the problem

If \(v(x,t) \) is a function defined in

\[
\Omega = \{(x,t) : 0 < x < l, \ t \geq 0 \},
\]

with \(l \) arbitrary positive constant, let IBC the following system of initial-boundary conditions:

\[
\begin{aligned}
&v(x,0) = f_0(x), \ \ v_t(x,0) = f_1(x), \ x \in [0,l], \\
&v(0,t) = \psi_0, \ \ v(l,t) = \psi_1, \ t \geq 0,
\end{aligned}
\]

with \(f_i, \psi_i \ (i = 0,1) \) regular data.

Consider the operators:

\[
\begin{aligned}
\mathcal{L}_0 &= c^2 \partial_{xx} - \partial_{tt}; \quad \mathcal{L}_\varepsilon = \mathcal{L}_0 + \varepsilon \partial_{xx}t
\end{aligned}
\]
and denote by u_0 and u_ε the solutions of the problems:

\begin{align*}
\text{Problem } P_0 : & \quad \mathcal{L}_0 u_0 = -f \text{ with IBC } 21) \\
\text{Problem } P_\varepsilon : & \quad \mathcal{L}_\varepsilon u_\varepsilon = -f \text{ with IBC } 21),
\end{align*}

where $f(x,t)$ is a prefixed source term.

To obtain a rigorous approximation of u_ε when $\varepsilon \to 0$, we put

\begin{equation}
(2.3) \quad u(x,t,\varepsilon) = u_0(x,t) + \varepsilon r(x,t,\varepsilon)
\end{equation}

where u_0 is the well-known solution of the classical problem P_0, while the error term represent the solution of the $\text{Problem } P_r$:

\begin{equation}
(2.4) \quad \left\{ \begin{array}{l}
\mathcal{L}_r \varepsilon x r = -F(x,t) \quad (x,t) \in \Omega \\
v(x,0) = f_0(x), \quad v_t(x,0) = f_1(x), \quad x \in [0,l], \\
v(0,t) = \psi_0, \quad v(l,t) = \psi_1, \quad t \geq 0,
\end{array} \right.
\end{equation}

with $F(x,t) = \partial x xt u_0$. Therefore, following results in ??, one has:

\begin{equation}
(2.5) \quad r(x,t,\varepsilon) = -\int_0^t d\xi \int_0^t F(\xi,\tau,\varepsilon) G(x,\xi,t - \tau) d\tau
\end{equation}

where $G(x,\xi,t)$ is the Green function related to \mathcal{L}_ε operator.

In particular, for all integer $n \geq 1$, letting:

\begin{equation}
(2.6) \quad \gamma_n = \pi l n \quad a_n = \frac{\varepsilon}{2} \gamma_n k = \frac{2c l}{\pi \varepsilon} \\
\quad b_n = \gamma_n c \sqrt{1 - (n/k)^2} \quad H_n = e^{a_n \frac{\sin(b_n t)}{b_n}},
\end{equation}

\begin{equation}
(2.7) \quad G(x,\xi,t) = \frac{2}{l} \sum_{n=1}^\infty H_n(t) \sin \gamma_n x \sin \gamma_n \xi
\end{equation}

with
\(H_n(t) = \frac{e^{-bn^2t}}{bn^2\sqrt{1 - (k/n)^2}} \sinh(bn^2t\sqrt{1 - (k/n)^2}) \)

and

\(b = \frac{\pi^2}{2l^2} = q\varepsilon, \quad k = \frac{2cl}{\pi\varepsilon}, \quad \gamma_n = \frac{\pi}{l} n. \)

Now, denote with \(u(x, t) \) the solution of the reduced problem obtained by (2.1) with \(\varepsilon = 0 \). To obtain an asymptotic approximation for \(w(x, t) \) when \(\varepsilon \to 0 \), we put:

\(w(x, t, \varepsilon) = e^{-\varepsilon t}u(x, t) + r(x, t, \varepsilon) \)

where the error \(r(x, t, \varepsilon) \) must be evaluated.

By means of standard computations one verifies that \(r(x, t, \varepsilon) \) is the solution of the problem:

\[
\begin{cases}
\partial_{xx}(\varepsilon r_t + c^2 r) - \partial_{tt} r = f(x, t, \varepsilon), & (x, t) \in D, \\
r(x, 0) = 0, & r_t(x, 0) = 0, \quad x \in [0, l], \\
r(0, t) = 0, & r(l, t) = 0, \quad 0 < t < T,
\end{cases}
\]

where the source term \(f(x, t, \varepsilon) \) is:

\(f(x, t, \varepsilon) = F'(x, t)(1 - e^{-\varepsilon t}) + e^{-\varepsilon t}[-\varepsilon \lambda_t + \varepsilon^2(u + u_{xx})] \)

with \(\lambda = 2u + u_{xx} \).

The problem (2.11) has already been solved in [5] and the solution is given by:

\(r(x, t, \varepsilon) = -\int_0^l d\xi \int_0^t f(\xi, \tau, \varepsilon)G(x, \xi, t - \tau) \, d\tau \)

where \(G(x, \xi, t) \) is:
(2.14) \[G(x, \xi, t) = \frac{2}{l} \sum_{n=1}^{\infty} H_n(t) \sin \gamma_n x \sin \gamma_n \xi \]

with

(2.15) \[H_n(t) = \frac{e^{-bn^2t}}{bn^2 \sqrt{1 - (k/n)^2}} \sinh(bn^2t \sqrt{1 - (k/n)^2}) \]

and

(2.16) \[b = \frac{\pi^2}{2l^2\varepsilon} = q\varepsilon, \quad k = \frac{2cl}{\pi\varepsilon} \quad \gamma_n = \frac{\pi}{l} n. \]

3 Analysis of \(G(x,t,\xi,\varepsilon) \) when \(\varepsilon \) tends to zero.

In order to investigate the behaviour of the Green function \(G \) when parameter \(\varepsilon \to 0 \), referring to the function \(G \) defined in (2.14), let:

(3.1) \[H_n^1(t) = \frac{e^{-bn^2t}}{bn^2 \sqrt{(k/n)^2 - 1}} \sin bn^2t \sqrt{(k/n)^2 - 1} \]

and

(3.2) \[G(x, \xi, t) = \frac{2}{l} \left(\sum_{n=1}^{[k]} H_n^1(t) + \sum_{[k]+1}^{\infty} H_n(t) \right) \sin \gamma_n x \sin \gamma_n \xi = G_1 + G_2. \]

If \(\alpha \) is an arbitrary constant such that:

(3.3) \[1/2 < \alpha < 1, \quad \bar{n} = \frac{2cl}{\pi\varepsilon^\alpha}, \]

the term \(G_1 \) of \(G \) can be given the forms:
\[
G_1(x, \xi, t) = \frac{2}{l} \left\{ \sum_{n=1}^{[\bar{n}]} H_n(t) + \sum_{[\bar{n}]+1}^{[k]} H_n(t) \right\} \sin \gamma_n x \sin \gamma_n \xi.
\]

It is easy to prove that if \(1 \leq n \leq [\bar{n}]\) it holds:

\[
\sqrt{(k/n)^2 - 1} \geq \frac{1 - \varepsilon^{2(1-\alpha)}}{\varepsilon^{1-\alpha}}; \quad e^{-bn^2t} \leq e^{-qt\varepsilon}.
\]

Otherwise, if \([\bar{n}] + 1 \leq n \leq [k]\):

\[
\sqrt{(k/n)^2 - 1} \geq \frac{\sqrt{\pi \varepsilon \beta} \sqrt{4cl - \beta \pi \varepsilon}}{2cl - \pi \varepsilon \beta}; \quad e^{-bn^2t} \leq e^{-2c^2t/\varepsilon^{2n-1}},
\]

where \(0 < \beta < 1\). In particular, if \(k\) is an integer we will assume \(\beta = 1\) and we will explicitly consider the term with \(n = k\), having \(te^{-2c^2t/\varepsilon}\).

Since (3.5) and (3.6), the following inequality holds:

\[
|G_1(x, \xi, t)| \leq N(\varepsilon)e^{-\alpha}e^{-qt\varepsilon} + N_1(\varepsilon) e^{-3/2} e^{-c^2t/\varepsilon^{2n-1}}
\]

where

\[
N(\varepsilon) = \frac{2\zeta(2)}{ql}[1 - \varepsilon^{2(1-\alpha)}]^{-1/2}; \quad N_1(\varepsilon) = \frac{2\zeta(2)(2cl - \pi \varepsilon \beta)}{ql\sqrt{\pi \beta} \sqrt{4cl - \beta \pi \varepsilon}}
\]

and \(\zeta(2)\) is the Riemann zeta function.

There remains to determine an upper bound for hyperbolic terms. This may be done using inequalities proved in [5]. So, being \(\forall n \geq [k] + 1\):

\[
b n^2t(1 \pm \sqrt{1 - (k/n)^2}) \geq c^2/\varepsilon,
\]

and since

\[
\sqrt{1 - (k/n)^2} \geq \frac{\pi \varepsilon (1 - \beta)[4cl + \pi \varepsilon (1 - \beta)]}{2cl + \pi \varepsilon (1 - \beta)},
\]
with \(\beta \equiv 0 \) if \(k \) is an integer, we can write:

\[
|G_2(x, \xi, t)| \leq C_1(\varepsilon) \varepsilon^{-2} e^{-c^2t/\varepsilon} \tag{3.11}
\]

where

\[
C_1(\varepsilon) = \frac{2\zeta(2)[cl + \pi\varepsilon(1 - \beta)]}{ql\pi(1 - \beta)[4cl + \pi\varepsilon(1 - \beta)]}. \tag{3.12}
\]

The previous results lead to prove the following

Theorem 3.1 - The Green function \(G(x, \xi, t) \) defined in (2.14) converges absolutely for all \((x, t) \in D\). Moreover, indicating by \(M(\varepsilon) = \max\{N_1(\varepsilon) \varepsilon^{-3/2}, C_1(\varepsilon) \varepsilon^{-2}\} \), it holds:

\[
|G(x, \xi, t)| \leq N(\varepsilon)\varepsilon^{-\alpha} e^{-qt\varepsilon} + M(\varepsilon)e^{-c^2t/\varepsilon^{2\alpha-1}}. \tag{3.13}
\]

4 **Asymptotic approximation**

Now, we are able to estimate function \(r(x, t, \varepsilon) \) i.e. it is possible to have an upper bound for the solution of problem (2.11). In fact, recalling expression (2.12)-(2.13), it holds:

\[
|r(x, t, \varepsilon)| \leq l\varepsilon \int_0^t e^{-\varepsilon\tau}\{|\lambda_t(x, \tau)| + \varepsilon|\lambda - u|\}|G(x, \xi, t - \tau)|d\tau +
\]

\[
+l\int_0^t |F(x, \tau)||1 - e^{-\varepsilon\tau}|G(x, \xi, t - \tau)|d\tau.
\]

So, choosing:

\[
3/4 < \alpha < 1 \quad \text{and} \quad 2(2\alpha - 1)^{-1} < \delta < 1,
\]
let:

\[\beta = \delta (2\alpha - 1) - 1/2, \quad 0 < \gamma < 1. \]

(4.3)

So, if

\[\eta = \min\{\beta, \gamma, 1 - \alpha, 1/2\}; \]

(4.4)

and

\[A = \max\{\sup_D |F|, \sup_D |\lambda - u|, \sup_D |\lambda_t|\} \]

(4.5)

the following lemma holds:

Lemma 4.1 - If the function \(f(x, t, \varepsilon) \) defined in (2.12) is a continuous function in \(D \) with continuous derivative with respect to \(x \), then the function \(r(x, t, \varepsilon) \) satisfies the inequality:

\[|r| \leq A \varepsilon^\eta \left\{ t^2 Z(\varepsilon) + tY(\varepsilon) + \{t^{2-\delta} + t^{1-\delta}\} W(\varepsilon) + t^{1-\gamma} V(\varepsilon) \right\} +
\]

\[+ A \{ U(\varepsilon) e^{-c^2 t/\varepsilon} + S(\varepsilon) \} \]

with

\[Z(\varepsilon) = N(\varepsilon)/2; \quad Y(\varepsilon) = \max\{2N(\varepsilon), N_1(\varepsilon)\} \]

\[W(\varepsilon) = N_1(\varepsilon)(\delta/\varepsilon) \delta; \quad V(\varepsilon) = C(\varepsilon)[(1 + \gamma)/\varepsilon]^{1+\gamma(1-\gamma)^{-1}} \]

\[U(\varepsilon) = 2q\varepsilon/c^2 \zeta(2) + C(\varepsilon)/c^2 + \varepsilon/c^2; \quad S(\varepsilon) = 2q\varepsilon\zeta(2)/c^2 + \varepsilon/c^2. \]

Proof - Since the well known inequality [7]:

\[e^{-x} \leq [a/(ex)]^a \quad \forall a > 0, \forall x > 0 \]

(4.8)

and (4.1), it holds:
\[|r| \leq Al[\varepsilon^{1-\alpha}(t^2/2 + t + \varepsilon t)N + N_1[\varepsilon^\beta(\delta/e)^\delta(t^{2-\delta} + t^{1-\delta}) + t\sqrt{\varepsilon}] + \]

\[+C_1(\varepsilon)[(1 + \gamma)/e^{1+\gamma}(1 - \gamma)^{-1}t^{1-\gamma} + \varepsilon/c^2 + e^{\varepsilon t/\varepsilon}(\varepsilon/c^2 + c^{-2}) + \]

\[+2\varepsilon\zeta(2)q/c^2e^{-c^2t/\varepsilon} + 2q\varepsilon/c^2\zeta(2), \]

from which, taking into account (4.2), (4.3), lemma follows.

In this way, if we consider the set

\[Q_\varepsilon = \{(x, t) : 0 \leq x \leq l, 0 < t < \varepsilon^{-\eta/2}\} \]

the following theorem holds:

Theorem 4.1 - When \(\varepsilon \to 0 \), the solution of the parabolic problem (2.1) verifies the following asymptotic estimate

\[w(x, t, \varepsilon) = e^{-\varepsilon t}u(x, t) + r(x, t, \varepsilon) \]

where the error \(r(x, t, \varepsilon) \) is uniformly bounded every where in \(Q_\varepsilon \).

References

[1] A.I. Kozhanov N. A. Lar’kin, *Wave equation with nonlinear dissipation in noncylindrical Domains*, Dokl. Math 62, 2, 2000 17-19

[2] V.P. Maslov, P. P. Mosolov *Non linear wave equations perturbed by viscous terms* Walter deGruyher Berlin N. Y. 2000 pp 329

[3] G. I. Barenblatt, M. Bertsch, R. Del Passo M. Ughi, it Adegenerate pseudoparabolic regularization of a nonlinear forward- backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow. Siam J. Math Anal 24, no 6 1414-1439 (1993).
[4] Ali Nayfey *A comparison of perturbation methods for nonlinear hyperbolic waves* in Proc. Adv. sem. Wisconsin no 45 (1980).

[5] M. De Angelis *Asymptotic analysis for the strip problem related to a parabolic third-order operator*, Appl. Math. Lett. 14,4 pp 425-430 (2001)

[6] B. D’Acunto, M. De Angelis, P. Renno, *Fundamental solution of a dissipative operator*, Rend. Acc. Sc. Fis. Mat. (1997)

[7] D.S. Mitrinovic *Analytic Inequalities* Springer 1970