Hom-prealternative superalgebras

IBRAHIMA BAKAYOKO1 AND SERGEI SILVESTROV2

1Département de Mathématiques, Université de N’Zérékoré,
BP 50 N’Zérékoré, Guinée.
ibrahimabakayoko27@gmail.com

2Division of Mathematics and Physics, School of Education, Culture and
Communication, Mälardalen University,
Box 883, 72123 Västerås, Sweden.
sergei.silvestrov@mdh.se

September 7, 2021

Abstract

The purpose of this paper is to introduce Hom-prealternative superalgebras
and their bimodules. Some constructions of Hom-prealternative superalgebras
and Hom-alternative superalgebras are given, and their connection with Hom-
alternative superalgebras are studied. Bimodules over Hom-prealternative su-
peralgebras are introduced, relations between bimodules over Hom-prealtern-
tive superalgebras and the bimodules of the corresponding Hom-alternative su-
peralgebras are considered, and construction of bimodules over Hom-prealter-
native superalgebras by twisting is described.

1 Introduction

Hom-Lie algebras and more general quasi-Hom-Lie algebras were introduced
first by Hartwig, Larsson and Silvestrov in [60] where a general approach to dis-
cretization of Lie algebras of vector fields using general twisted derivations (σ-
derivations) and a general method for construction of deformations of Witt and
Virasoro type algebras based on twisted derivations have been developed. The general quasi-Lie algebras, containing the quasi-Hom-Lie algebras and Hom-Lie algebras as subclasses, as well their graded color generalization, the color quasi-Lie algebras including color quasi-hom-Lie algebras, color hom-Lie algebras and their special subclasses the quasi-Hom-Lie superalgebras and hom-Lie superalgebras, have been first introduced in [60, 67–70, 98]. Subsequently, various classes of Hom-Lie admissible algebras have been considered in [78]. In particular, in [78], the Hom-associative algebras have been introduced and shown to be Hom-Lie admissible, that is leading to Hom-Lie algebras using commutator map as new product, and in this sense constituting a natural generalization of associative algebras as Lie admissible algebras leading to Lie algebras using commutator map. Furthermore, in [78], more general G-Hom-associative algebras including Hom-associative algebras, Hom-Vinberg algebras (Hom-left symmetric algebras), Hom-pre-Lie algebras (Hom-right symmetric algebras), and some other Hom-algebra structures, generalizing G-associative algebras, Vinberg and pre-Lie algebras respectively, have been introduced and shown to be Hom-Lie admissible, meaning that for these classes of Hom-algebras, the operation of taking commutator leads to Hom-Lie algebras as well. Also, flexible Hom-algebras have been introduced, connections to Hom-algebra generalizations of derivations and of adjoint maps have been noticed, and some low-dimensional Hom-Lie algebras have been described. Since the pioneering works [60, 67–70, 78], Hom-algebra structures have developed in a popular broad area with increasing number of publications in various directions. Hom-algebra structures are very useful since Hom-algebra structures of a given type include their classical counterparts and open broad possibilities for deformations, Hom-algebra extensions of homology and cohomology structures and representations, formal deformations of Hom-associative and Hom-Lie algebras, Hom-Lie admissible Hom-coalgebras, Hom-coalgebras, Hom-bialgebras and Hom-Hopf algebras, [6, 33, 45, 67, 72, 79–81, 94, 104, 106]. Hom-Lie algebras, Hom-Lie superalgebras, color Hom-Lie algebras, Hom-associative color algebras, Enveloping algebras of color Hom-Lie algebras, color Hom-Leibniz algebras, omni-Hom-Lie algebras, color omni-Hom-Lie algebras, biHom-Lie algebras, biHom-associative algebras, biHom-Frobenius algebras, Hom-Ore extensions Hom-algebras, Hom-alternative algebras, Hom-center-symmetric algebras, Hom-left-symmetric color dialgebras, Hom-dendriform algebras, Rota–Baxter Hom-algebras, Hom-tridendriform color algebras, Hom-Malcev algebras, Hom-Jordan algebras, Hom-Poisson algebras, Color Hom-Poisson algebras, Hom-Akivis algebras, Hom-Lie-Yamaguti algebras, nearly Hom-associative algebras, Hom-Gerstenhaber algebras and Hom-Lie algebroids, n-Lie algebras and Hom-Nambu-Lie algebras and other n-ary Hom-algebra structures have been further investigated in various aspects for example in [1–30, 32–37, 37–44, 46–
In particular, Color Hom-Poisson algebras [24] and modules over some color Hom-algebras [27], under the name of generalized Hom-algebras, have been considered. When the grading abelian group is \mathbb{Z}_2, the corresponding \mathbb{Z}_2-graded Hom-algebras are called Hom-superalgebras. Hom-Lie superalgebra structures such as Hom-Lie superalgebras and Hom-Lie admissible superalgebras [46], Rota-Baxter operator on pre-Lie superalgebras [2], Hom-Novikov superalgebras [102] have been considered in more details. Hom-alternative superalgebras have been considered in [1] as a \mathbb{Z}_2-graded version of Hom-alternative algebras [76] and their relationships with Hom-Malcev superalgebras and Hom-Jordan superalgebras are established [1].

The aim of this paper is to study the \mathbb{Z}_2-graded version of Hom-prealternative algebras and their bimodules. In Section 2, we recall some basic notions on Hom-alternative superalgebras and their bimodules. We prove that bimodules over Hom-alternative superalgebras are closed under twisting and direct product. We show that the tensor product of super-commutative Hom-associative superalgebras and Hom-alternative superalgebras is also a Hom-alternative superalgebra. Then we recall the definition of Hom-Jordan superalgebra. Section 3 is devoted to Hom-prealternative superalgebras and Hom-alternative superalgebras and their connections. We point out that to any Hom-prealternative superalgebra one may associate a Hom-alternative superalgebra, and conversly to any Hom-alternative superalgebra it corresponds a Hom-prealternative superalgebra via an O-operator. Construction of Hom-prealternative superalgebras by composition is given. Bimodules over Hom-prealternative superalgebras are introduced, relations between bimodules over Hom-prealternative superalgebras and bimodules of the corresponding Hom-alternative superalgebras are considered, and a construction of bimodules over Hom-prealternative superalgebras by twisting is described.

2 Hom-prealternative algebras and bimodules

In this section, we present important basic notions and provide some construction results for Hom-alternative superalgebras.

Firstly, let us recall necessary important basic notions and notations on graded spaces and algebras. Throughout this paper, all linear spaces are assumed to be over a field \mathbb{K} of characteristic different from 2.

Definition 2.1. Let G be an abelian group. A linear space V is called G-graded if $V = \bigoplus_{a \in G} V_a$ for some family $(V_a)_{a \in G}$ of linear subspaces of V.

(i) An element \(x \in V \) is said to be homogeneous of degree \(a \in G \) if \(x \in V_a \), and \(\mathcal{H}(V) = \bigcup_{a \in G} V_a \) denotes the set of all homogeneous elements in \(V \).

(ii) Let \(V = \bigoplus_{a \in G} V_a \) and \(V' = \bigoplus_{a \in G} V'_a \) be two \(G \)-graded linear spaces. A linear mapping \(f : V \to V' \) is said to be homogeneous of degree \(b \) if

\[
f(V_a) \subseteq V'_{a+b}, \quad \text{for all } a \in G.
\]

If, \(f \) is homogeneous of degree zero i.e. \(f(V_a) \subseteq V'_{a} \) holds for any \(a \in G \), then \(f \) is said to be even.

(iii) An algebra \((A, \cdot)\) is said to be \(G \)-graded if its underlying linear space is \(G \)-graded i.e. \(A = \bigoplus_{a \in G} A_a \), and if furthermore

\[
A_a \cdot A_b \subseteq A_{a+b}, \quad \text{for all } a, b \in G.
\]

(iv) A morphism \(f : A \to A' \) of \(G \)-graded algebras \(A \) and \(A' \) is by definition an algebra morphism from \(A \) to \(A' \), which is moreover an even mapping.

Let \(A \) be a \(\mathbb{Z}_2 \)-graded linear space with direct sum \(A = A_0 \oplus A_1 \). The elements of \(A_j \), are said to be homogeneous of degree (parity) \(j \in \mathbb{Z}_2 \). The set of all homogeneous elements of \(A \) is \(\mathcal{H}(A) = A_0 \cup A_1 \). Usually \(|x| \) denotes parity of a homogeneous element \(x \in \mathcal{H}(A) \).

Definition 2.2. Hom-superalgebras are triples \((A, \mu, \alpha)\) in which \(A = A_0 \oplus A_1 \) is a \(\mathbb{Z}_2 \)-graded linear space (\(\mathbb{K} \)-superspace), \(\mu : A \times A \to A \) is an even bilinear map, and \(\alpha : A \to A \) is an even linear map.

(i) Let \((A, \mu, \alpha)\) be a Hom-superalgebra. Hom-associator of \(A \) is the even trilinear map \(as_{\alpha,\mu} : A \times A \times A \to A \) given by

\[
as_{\alpha,\mu} = \mu \circ (\mu \otimes \alpha - \alpha \otimes \mu).
\]

In terms of elements, the map \(as_{\alpha,\mu} \) is given by

\[
as_{\alpha,\mu}(x, y, z) = \mu(\mu(x, y), \alpha(z)) - \mu(\alpha(x), \mu(y, z)),
\]

or in usual juxtaposition notation \(xy = \mu(x, y) \),

\[
as_{\alpha,\mu}(x, y, z) = (xy)\alpha(z) - \alpha(x)(yz).
\]

(ii) An even linear map \(f : (A, \mu, \alpha) \to (A', \mu', \alpha') \) is said to be a weak morphism of Hom-superalgebras if

\[
f \circ \mu = \mu \circ (f \otimes f),
\]

and a morphism of Hom-superalgebras if moreover \(f \circ \alpha = \alpha' \circ f \).
(iii) Hom-superalgebra \((A, \mu, \alpha)\) in which \(\alpha : A \to A\) is moreover an endomorphism of the algebra structure \(\mu\) is said to be multiplicative, and the algebra endomorphism condition
\[
\alpha \circ \mu = \mu \circ (\alpha \otimes \alpha)
\]
(2.1)
is called the multiplicativity of \(\alpha\) with respect to \(\mu\).

Since the grading degree of Hom-associator \(\left| as_{\alpha,\mu}(x, y, z)\right| = |x| + |y| + |z|\) for \(x, y, z \in \mathcal{H}(A) = A_0 \cup A_1\) in any Hom-superalgebra \((A = A_0 \oplus A_1, \mu, \alpha)\),
\[
as_{\alpha,\mu}(A_0, A_0, A_0) \subseteq A_0,
\]
(2.2)
\[
as_{\alpha,\mu}(A_1, A_0, A_0) \subseteq A_1,
\]
(2.3)
\[
as_{\alpha,\mu}(A_0, A_1, A_0) \subseteq A_1,
\]
(2.4)
\[
as_{\alpha,\mu}(A_0, A_0, A_1) \subseteq A_1,
\]
(2.5)
\[
as_{\alpha,\mu}(A_1, A_1, A_0) \subseteq A_0,
\]
(2.6)
\[
as_{\alpha,\mu}(A_1, A_0, A_1) \subseteq A_0,
\]
(2.7)
\[
as_{\alpha,\mu}(A_0, A_1, A_1) \subseteq A_0,
\]
(2.8)
\[
as_{\alpha,\mu}(A_1, A_1, A_1) \subseteq A_1.
\]
(2.9)

Definition 2.3. Hom-associative superalgebras are those Hom-superalgebras \((A = A_0 \oplus A_1, \bullet, \alpha)\) obeying super \((\mathbb{Z}_2\text{-graded})\) Hom-associativity super identity,
\[
\forall x, y, z \in \mathcal{H}(A) = A_0 \cup A_1 : as_{\alpha,\bullet}(x, y, z) = 0,
\]
(super Hom-associativity)
(2.10)
equivalent in juxtaposition notation \(x \bullet y = \bullet(x, y)\) to
\[
(x \bullet y) \bullet \alpha(z) = \alpha(x) \bullet (y \bullet z).
\]
Hom-associativity super identity for Hom-superalgebras is equivalent to
\[
as_{\alpha,\bullet}(A_i, A_j, A_k) = \{0_A\}, \quad i, j, k \in \mathbb{Z}_2.
\]
(2.11)

Definition 2.4. Left Hom-alternative superalgebras are Hom-superalgebras \((A = A_0 \oplus A_1, \bullet, \alpha)\) obeying the left Hom-alternative super identity,
\[
\forall x, y, z \in \mathcal{H}(A) = A_0 \cup A_1 : as_{\alpha,\bullet}(x, y, z) + (-1)^{|x||y|} as_{\alpha,\bullet}(y, x, z) = 0,
\]
(2.12)
equivalent in juxtaposition notation \(x \bullet y = \bullet(x, y)\) to
\[
(x \bullet y) \bullet \alpha(z) - \alpha(x) \bullet (y \bullet z) = -(-1)^{|x||y|}(y \bullet x) \bullet \alpha(z) - \alpha(y) \bullet (x \bullet z).
\]
For \((x, y, z) \in A_{|x|} \times A_{|y|} \times A_{|z|}, \ |x|, |y|, |z| \in \mathbb{Z}_2\), the left super Hom-alternativity for \(|x||y| = 0\) or \(|x||y| = 1\) respectively is

\[
|x|y| = 0 : (x, y, z) \in ((A_0 \times A_0) \cup (A_1 \times A_0) \cup (A_0 \times A_1)) \times A_k, \ k \in \mathbb{Z}_2 : \\
(x \cdot y) \cdot \alpha(z) - \alpha(x) \cdot (y \cdot z) = -((y \cdot x) \cdot \alpha(z) - \alpha(y) \cdot (x \cdot z)),
\]

(2.13)

\[
|x|y| = 1 : (x, y, z) \in A_1 \times A_1 \times A_k, \ k \in \mathbb{Z}_2 : \\
(x \cdot y) \cdot \alpha(z) - \alpha(x) \cdot (y \cdot z) = (y \cdot x) \cdot \alpha(z) - \alpha(y) \cdot (x \cdot z).
\]

(2.14)

Definition 2.5. Right Hom-alternative superalgebra is a Hom-superalgebra \((A = A_0 \oplus A_1, \bullet, \alpha)\) obeying the right Hom-alternative super identity

\[
\forall x, y, z \in \mathcal{H}(A) = A_0 \cup A_1 : \\
as_{\alpha, \bullet}(x, y, z) + (-1)^{|y||z|}as_{\alpha, \bullet}(x, z, y) = 0,
\]

(2.15)

which, in juxtaposition notation \(x \cdot y = \bullet(x, y)\), is

\[
(x \cdot y) \cdot \alpha(z) - \alpha(x) \cdot (y \cdot z) = (-1)^{|y||z|}((x \cdot z) \cdot \alpha(y) - \alpha(x) \cdot (z \cdot y)).
\]

For \((x, y, z) \in A_{|x|} \times A_{|y|} \times A_{|z|}, \ |x|, |y|, |z| \in \mathbb{Z}_2\), the left super Hom-alternativity for \(|y||z| = 0\) or \(|y||z| = 1\) respectively is

\[
|y|z| = 0 : (x, y, z) \in A_k \times ((A_0 \times A_0) \cup (A_1 \times A_0) \cup (A_0 \times A_1)), \ k \in \mathbb{Z}_2, \\
(x \cdot y) \cdot \alpha(z) - \alpha(x) \cdot (y \cdot z) = -((x \cdot z) \cdot \alpha(y) - \alpha(x) \cdot (z \cdot y)),
\]

(2.16)

\[
|y|z| = 1 : (x, y, z) \in A_k \times A_1 \times A_1, \ k \in \mathbb{Z}_2, \\
(x \cdot y) \cdot \alpha(z) - \alpha(x) \cdot (y \cdot z) = (x \cdot z) \cdot (y \cdot z).
\]

(2.17)

Definition 2.6. Hom-alternative superalgebras are defined as both left and right Hom-alternative superalgebras.

Definition 2.7. Hom-flexible superalgebra is a Hom-superalgebra \((A, \mu, \alpha)\) obeying the Hom-flexible super-identity

\[
\forall x, y, z \in \mathcal{H}(A) = A_0 \cup A_1 : \\
as_{\alpha, \bullet}(x, y, z) + (-1)^{|x||y|+|x||z|+|y||z|}as_{\alpha, \bullet}(z, y, x) = 0,
\]

(2.18)

which, in juxtaposition notation \(x \cdot y = \bullet(x, y)\), is

\[
(x \cdot y) \cdot \alpha(z) - \alpha(x) \cdot (y \cdot z) = (-1)^{|x||y|+|x||z|+|y||z|}((z \cdot y) \cdot \alpha(x) - \alpha(z) \cdot (y \cdot x)).
\]

For \((x, y, z) \in A_{|x|} \times A_{|y|} \times A_{|z|}, \ |x|, |y|, |z| \in \mathbb{Z}_2\), the left super Hom-alternativity for \(|x||y| + |x||z| + |y||z| = 0\) or \(1\) respectively is

\[
|x||y| + |x||z| + |y||z| = 0 : (x, y, z) \in (A_1 \times A_0 \times A_0) \cup (A_0 \times A_1 \times A_0) \\
\cup (A_0 \times A_0 \times A_1) \cup (A_0 \times A_0 \times A_0),
\]

and

\[
|x||y| + |x||z| + |y||z| = 1 : (x, y, z) \in (A_1 \times A_0 \times A_0) \cup (A_0 \times A_1 \times A_0) \\
\cup (A_0 \times A_0 \times A_1) \cup (A_0 \times A_0 \times A_0),
\]
\[(x \cdot y) \circ \alpha(z) - \alpha(x) \circ (y \cdot z) = -((z \cdot y) \circ \alpha(x) - \alpha(z) \circ (y \cdot x)), \quad (2.19) \]

\[|x||y| + |x||z| + |y||z| = 1 : (x, y, z) \in (A_1 \times A_1 \times A_0) \cup (A_1 \times A_0 \times A_1) \cup (A_0 \times A_1 \times A_1), \]

\[(x \cdot y) \circ \alpha(z) - \alpha(x) \circ (y \cdot z) = (z \cdot y) \circ \alpha(x) - \alpha(z) \circ (y \cdot x). \quad (2.20) \]

Definition 2.8. A bimodule over a Hom-alternative superalgebra \((A, \bullet, \alpha)\) consists of a \(\mathbb{Z}_2\)-graded linear space \(V\) with an even linear map \(\beta : V \to V\) and two even bilinear maps

\[
> : \ A \otimes V \to V \quad < : \ V \otimes A \to V
\]

\[
x \otimes v \mapsto x > v \quad v \otimes x \mapsto v < x
\]

such that, for any homogeneous elements \(x, y \in A\) and \(v \in V\),

\[
(v < x) < \alpha(y) + (1)^{|x||v|}(x > v) < \alpha(y) - \alpha(x) - (1)^{|x||v|} \alpha(x) > (v < y) - \beta(v) > (x \cdot y) = 0, \quad (2.21)
\]

\[
\alpha(y) > (v < x) - (y > v) < \alpha(x) - \alpha(y) > (y \cdot x) - (1)^{|x||v|} \alpha(y) > (x > v) = 0, \quad (2.22)
\]

\[
(x \cdot y) > \beta(v) + (1)^{|x||y|}(y \cdot x) > \beta(v) - \alpha(x) > (y > v) - (1)^{|x||y|} \alpha(y) > (x > v) = 0, \quad (2.23)
\]

\[
\beta(v) < (x \cdot y) + (1)^{|x||y|} \beta(v) < (y \cdot x) - (v < x) < \alpha(y) - (1)^{|x||y|} (v < y) < \alpha(x) = 0. \quad (2.24)
\]

Remark 2.9. The notation \(x > v\) means the left action of \(x\) on \(v\) and \(v < x\) means the right action of \(x\) on \(v\) given by the linear operators on \(V\) defined by

\[
L_{>}(x)v = x > v, \quad R_{<}(x)v = v < x.
\]

Bimodules over Hom-alternative superalgebras are closed under twisting in the sense of Theorem 2.10.

Theorem 2.10. Let \((V, L_{>}, R_{<}, \beta)\) be a bimodule over the multiplicative Hom-alternative superalgebra \((A, \bullet, \alpha)\). Then, \((V, L^o_{>}, R^o_{<}, \beta)\) is a bimodule over \(A\), where \(L^o_{>} = L_{>} \circ (\alpha^2 \otimes \text{Id})\) and \(R^o_{<} = R_{<} \circ (\alpha^2 \otimes \text{Id})\).

Proof. We only prove (2.21), as (2.22), (2.23), (2.24) are proved similarly. With

\[
x \geq v = L^o_{>}(x)v = L_{>} \circ (\alpha^2 \otimes \text{Id})(x \otimes v) = \alpha^2(x) > v,
\]

\[
v \leq x = R^o_{<}(x)v = R_{<} \circ (\text{Id} \otimes \alpha^2)(v \otimes x) = v < \alpha^2(x),
\]

for any \(x, y \in A\) and any \(v \in V\),

\[
(v \leq x) \leq \alpha(y) + (1)^{|x||v|}(x \geq v) \leq \alpha(y)
\]
by using the multiplicativity of α in the last term, and then (2.21) for $\alpha^2(x)$ and $\alpha^2(y)$ in (V, L, R, α, β). \hfill \Box

For two \mathbb{Z}_2-graded linear spaces $V = \oplus_{a \in \mathbb{Z}_2} V_a$ and $V' = \oplus_{a \in \mathbb{Z}_2} V'_a$, the tensor product $V \otimes V'$ is also a \mathbb{Z}_2-graded linear space such that for $a, a' \in \mathbb{Z}_2$,

$$(V \otimes V')_a = \sum_{a = a + a'} V_a \otimes V_a'.
$$

Theorem 2.11. Let (A, \cdot, α) be a super-commutative Hom-associative superalgebra and (A', \cdot', α') be a Hom-alternative superalgebra. Then the tensor product $(A \circ A', \ast, \alpha \circ \alpha')$ where for $x, y \in \mathcal{H}(A), a, b \in \mathcal{H}(A')$,

$$(\alpha \circ \alpha')(x \circ a) = \alpha(x) \circ \alpha'(a),$$

$$(x \circ a) \ast (y \circ b) = (-1)^{|a||b|}(x \circ y) \otimes (a \cdot b'),$$

is a Hom-alternative superalgebra

Proof. Let us set $X = x \circ a$, $Y = y \circ b$, $Z = z \circ c \in \mathcal{H}(A) \otimes \mathcal{H}(A')$. Then,

$$as_{\alpha \circ \alpha', \ast}(X, Y, Z) = as_{\alpha \circ \alpha', \ast}(x \circ a, y \circ b, z \circ c)$$

$$= ((x \circ a) \ast (y \circ b)) \ast ((\alpha \circ \alpha')(x \circ a) \ast ((y \circ b) \ast (z \circ c)))$$

$$= \left((x \circ a) \ast (y \circ b)\right) \ast (\alpha(z) \circ \alpha'(c)) - (\alpha(x) \circ \alpha'(a)) \ast ((y \circ b) \ast (z \circ c))$$

$$= (-1)^{|a||b|}(\alpha(x) \circ \alpha'(a)) \ast ((y \circ b) \circ (b \cdot c'))$$

$$= (-1)^{|a||b|} + |a| + |b|}(\alpha(x) \circ (y \circ z)) \ast (\alpha'(a) \circ (b \cdot c')).$$

$$as_{\alpha \circ \alpha', \ast}(X, Y, Z) + (-1)^{|X|Y|as_{\alpha \circ \alpha', \ast}(Y, X, Z)}$$

$$= as_{\alpha \circ \alpha', \ast}(x \circ a, y \circ b, z \circ c) + (-1)^{|x \circ a||y \circ b|} as_{\alpha \circ \alpha', \ast}(x \circ a, y \circ b, z \circ c)$$

$$= (-1)^{|a||b| + |a| + |b|}(\alpha(x) \circ (y \circ z)) \ast (\alpha'(a) \circ (b \cdot c'))$$

$$- (-1)^{|b||z| + |a||y||z|}(\alpha(x) \circ (y \circ z)) \ast (\alpha'(a) \circ (b \cdot c'))$$

8
and the right Hom-alternativity of (A, \cdot, α). Proof.

Hom-alternativity means both left and right Hom-alternativity. The left

Let $\beta: \text{averaging operator}$ and right averaging operator, meaning an even linear map (A, \cdot, α) be an element of the centroid, an even linear map such that for all $x, y, z \in A$

The left hand side vanishes by the left Hom-alternativity of A. Right averaging operator is defined as

Even linear map $\beta: \text{averaging operator}$ as

Definition 2.12 ([31]). Left averaging operator over a Hom-alternative superalgebra (A, \cdot, α) is an even linear map $\beta: A \to A$ satisfying

$$\alpha \circ \beta = \beta \circ \alpha,$$

$$\beta(x) \cdot \beta(y) = \beta(\beta(x) \cdot y) \quad \text{for all } x, y \in \mathcal{H}(A).$$

Right averaging operator over a Hom-alternative superalgebra (A, \cdot, α) is an even linear map $\beta: A \to A$ such that $\alpha \circ \beta = \beta \circ \alpha$ and

$$\beta(x) \cdot \beta(y) = \beta(x \cdot \beta(y)) \quad \text{for all } x, y \in \mathcal{H}(A).$$

Averaging operator over a Hom-alternative superalgebra (A, \cdot, α) is both left averaging operator and right averaging operator, meaning an even linear map $\beta: A \to A$ such that $\alpha \circ \beta = \beta \circ \alpha$ and

$$\beta(\beta(x) \cdot y) = \beta(x) \cdot \beta(y) = \beta(x \cdot \beta(y)).$$

Proposition 2.13. Let (A, \cdot, α) be a Hom-alternative algebra. Let $\beta: A \to A$ be an element of the centroid, an even linear map such that for all $x, y \in \mathcal{H}(A)$,

$$\beta \circ \alpha = \alpha \circ \beta,$$

$$\beta(x \cdot y) = \beta(x) \cdot y = x \cdot \beta(y).$$

Then $(A, \cdot, \beta = \beta \circ \cdot, \alpha)$ is a Hom-alternative superalgebra.

Proof. Hom-alternativity means both left and right Hom-alternativity. The left and the right Hom-alternativity of $(A, \cdot, \beta = \beta \circ \cdot, \alpha)$ are proved respectively as follows. For any $x, y, z \in \mathcal{H}(A)$,

$$as_{\alpha \circ \beta}(x, y, z) = (x \cdot \beta y) \cdot \beta \alpha(z) - \alpha(x) \cdot \beta (y \cdot \beta z)$$
On the other hand, exchanging the role of y:

$$\partial((\beta(x) \cdot y) \cdot \alpha(z) - \beta(\alpha(x) \cdot (\beta(y) \cdot z))$$

$$= \beta((\beta(x) \cdot y) \cdot \alpha(z) - \beta(\alpha(x) \cdot (\beta(y) \cdot z))$$

$$= (\beta(x) \cdot \beta(y)) \cdot \alpha(z) - \beta(\alpha(x)) \cdot (\beta(y) \cdot z)$$

$$= (\beta(x) \cdot \beta(y)) \cdot \alpha(z) - \alpha(\beta(x)) \cdot (\beta(y) \cdot z)$$

$$= \alpha(\beta(x), \beta(y), z) \quad (2.27)$$

(Proposition 2.14. Any Hom-alternative superalgebra (A, \cdot, α) with an averaging operator ∂ is a Hom-alternative superalgebra with respect to multiplication $\ast : A \ast A \to A$ defined by $x \ast y := x \cdot \partial(y)$ and the same twisting map α.

Proof. For any $x, y, z \in H(A)$,

$$(x \ast y) \ast \alpha(z) - \alpha(x) \ast (y \ast z) = \alpha(x) \cdot (\partial(y) \cdot \partial(z)) - \alpha(x) \cdot (\partial(y) \cdot \partial(z))$$

$$= \alpha(x) \cdot (\partial(y) \cdot \partial(z)) - \alpha(x) \cdot (\partial(y) \cdot \partial(z)) = 0.$$

On the one hand, exchanging the role of x and y, yields

$$(x \ast y) \ast \alpha(z) - \alpha(x) \ast (y \ast z) + (-1)^{|x||y|}(y \ast x) \ast \alpha(z) - \alpha(y) \ast (x \ast z) = 0.$$

On the other hand, exchanging the role of y and z, yields

$$(x \ast y) \ast \alpha(z) - \alpha(x) \ast (y \ast z) + (-1)^{|y||z|}(x \ast z) \ast \alpha(y) - \alpha(x) \ast (z \ast y) = 0.$$

□
This completes the proof.

Definition 2.15 ([1]). A Hom-Jordan superalgebra is a Hom-superalgebra \((A, \bullet, \alpha)\) satisfying super-commutativity and Hom-Jordan super identity

\[
\forall x, y, z, t \in \mathcal{H}(A) : \\
x \bullet y = (-1)^{|x||y|} y \bullet x, \quad \text{super-commutativity} \quad (2.28) \\
\sum_{\otimes(x,y,t)} (-1)^{|t|(|x|+|z|)} a_{x,\alpha}(xy, \alpha(z), \alpha(t)) = 0, \quad \text{Hom-Jordan super identity} \quad (2.29)
\]

where \(\sum_{\otimes(a,b,c)}\) is the summation over cyclically permutated \((a, b, c)\). Hom-Jordan super identity (2.29) in juxtaposition notation \(x \bullet y = \bullet(x, y)\) is

\[
\forall x, y, z, t \in \mathcal{H}(A) : \\
\sum_{\otimes(x,y,t)} (-1)^{|t|(|x|+|z|)} ((x \bullet y) \bullet \alpha(z)) \cdot \alpha^2(t) = \\
\sum_{\otimes(x,y,t)} (-1)^{|t|(|x|+|z|)} \alpha(x \bullet y) \bullet (\alpha(z) \bullet \alpha(t)).
\]

Remark 2.16. If \((x, y, z, t) \in (A_0 \times A_0 \times A_0 \times A_0) \cup (A_1 \times A_1 \times A_1 \times A_1)\), then \((-1)^{|t|(|x|+|z|)} = (-1)^{|x||y|+|z|} = (-1)^{|y||t|+|z|} = 1\), and Hom-Jordan super identity is

\[
\sum_{\otimes(x,y,t)} ((x \bullet y) \bullet \alpha(z)) \cdot \alpha^2(t) = \sum_{\otimes(x,y,t)} \alpha(x \bullet y) \bullet (\alpha(z) \bullet \alpha(t)). \quad (2.30)
\]

Theorem 2.17 ([1]). Any multiplicative Hom-alternative superalgebra is Hom-Jordan admissible, that is, for any multiplicative Hom-alternative superalgebra \((A, \bullet, \alpha)\), the Hom-superalgebra \(A^+ = (A, *, \alpha)\) is a multiplicative Hom-Jordan superalgebra, where \(x * y = xy + (-1)^{|x||y|}yx\).

3 Hom-prealternative and Hom-alternative superalgebras

In this section, we introduce Hom-prealternative superalgebras, give some construction theorems and study their connection with Hom-alternative superalgebras. The associated bimodules are also discussed.
3.1 Prealternative superalgebras

Definition 3.1. A Hom-prealternative superalgebra is a quadruple \((A, <, >, \alpha)\) in which \(A\) is a supervector space, \(<, >: A \otimes A \to A\) are even bilinear maps and \(\alpha: A \to A\) an even linear map such that, for any \(x, y, z \in H(A)\),

\[
\begin{align*}
(x \cdot x) > \alpha(y) - \alpha(x) > (x > y) &= 0, \quad (3.1) \\
(x < y) < \alpha(y) - \alpha(x) < (x \cdot y) &= 0, \quad (3.2) \\
(x > y) < \alpha(z) - \alpha(x) > (y < z) + \\
&\quad (-1)^{|x||y|}(y < x) < \alpha(z) - (-1)^{|y|} \alpha(y) < (x \cdot z) = 0, \quad (3.3) \\
(x > y) < \alpha(z) - \alpha(x) > (y < z) + \\
&\quad (-1)^{|y||z|}(x \cdot z) > \alpha(y) - (-1)^{|y||z|} \alpha(x) > (z > y) = 0, \quad (3.4)
\end{align*}
\]

where \(x \cdot y = x > y + x < y\).

Definition 3.2. Let \((A, <, >, \alpha)\) and \((A', <', >', \alpha')\) be two Hom-prealternative superalgebras. An even linear map \(f: A \to A'\) is said to be a morphism of Hom-prealternative superalgebras if, for any \(x, y \in H(A)\),

\[
\alpha' \circ f = f \circ \alpha, \quad f(x < y) = f(x) <' f(y) \quad \text{and} \quad f(x > y) = f(x) >' f(y).
\]

A Hom-prealternative superalgebra \((A, <, >, \alpha)\) in which \(\alpha: A \to A\) is a morphism is called a multiplicative Hom-alternative superalgebra.

Remark 3.3. Axioms (3.1) and (3.2) can be rewritten respectively as

\[
\begin{align*}
(x \cdot y) > \alpha(z) - \alpha(x) > (y > z) &+ \\
&\quad (-1)^{|x||y|}(y \cdot x) > \alpha(z) - (-1)^{|x||y|} \alpha(y) > (x > z) = 0, \quad (3.5) \\
(x < y) < \alpha(z) - \alpha(x) < (y \cdot z) &+ \\
&\quad (-1)^{|y||z|}(x < z) < \alpha(y) - (-1)^{|y||z|} \alpha(x) < (z \cdot y) = 0. \quad (3.6)
\end{align*}
\]

Remark 3.4. If \((A, <, >, \alpha)\) is a Hom-prealternative superalgebra, then so is \((A, <_\lambda = \lambda \cdot <, >_\lambda = \lambda \cdot >, \alpha)\).

Using the following notations [85], [59]:

\[
\begin{align*}
(x, y, z)_1 &= (x \cdot y) > \alpha(z) - \alpha(x) > (y > z), \quad (3.7) \\
(x, y, z)_2 &= (x > y) < \alpha(z) - \alpha(x) > (y < z), \quad (3.8) \\
(x, y, z)_3 &= (x < y) < \alpha(z) - \alpha(x) < (y \cdot z), \quad (3.9)
\end{align*}
\]

the axioms in Definition 3.1 of Hom-prealternative superalgebras can be rewritten for any \(x, y, z \in H(A)\) as

\[
(x, x, z)_1 = (y, x, x)_3 = 0 \quad (3.10)
\]
\[(x, y, z)_2 + (-1)^{|y|} (y, x, z)_3 = 0, \quad (3.11)\]
\[(x, y, z)_2 + (-1)^{|z|} (x, z, y)_1 = 0. \quad (3.12)\]

The following definition is motivated by [59, Definition 17, Definition 18].

Definition 3.5. A Hom-prealternative superalgebra \((A, \prec, \succ, \alpha)\) is said to be left Hom-alternative if
\[(x, y, z)_i + (-1)^{|x||y|} (y, x, z)_i = 0, \quad i = 1, 2, 3. \quad (3.13)\]
and right Hom-alternative if
\[(x, y, z)_i + (-1)^{|y||z|} (x, z, y)_i = 0, \quad i = 1, 2, 3. \quad (3.14)\]

Definition 3.6. A Hom-prealternative superalgebra algebra \((A, \prec, \succ, \alpha)\) is said to be flexible if
\[(x, y, x)_i = 0, \quad i = 1, 2, 3. \quad (3.15)\]

Theorem 3.7. If \((A, \prec, \succ, \alpha)\) is a left Hom-prealternative superalgebra, then \(\text{Alt}(A) = (A, \bullet, \alpha)\) is a left Hom-alternative superalgebra. If \((A, \prec, \succ, \alpha)\) is a right Hom-prealternative superalgebra, then \(\text{Alt}(A) = (A, \bullet, \alpha)\) is a right Hom-alternative superalgebra.

Proof. For any \(x, y, z \in \mathcal{H}(A)\),
\[
as_\bullet(z, x, y) = (z \bullet x) \bullet \alpha(y) - \alpha(z) \bullet (x \bullet y)
= (z \prec x + z \succ x) \prec \alpha(y) + (z \bullet x) \succ \alpha(y) -
\alpha(z) \prec (x \bullet y) - \alpha(z) \succ (x \bullet y)
= ((z \prec x) \prec \alpha(y) - \alpha(z) \prec (x \bullet y)) + ((z \succ x) \prec \alpha(y) - \alpha(z) \succ (x \succ y)) +
((z \bullet x) \succ \alpha(y) - \alpha(z) \succ (x \succ y))
= (z, x, y)_3 + (z, x, y)_2 + (z, x, y)_1
= -(-1)^{|x||y|} ((z, y, x)_3 + (z, y, x)_2 + (z, y, x)_1)
= -(-1)^{|x||y|} as_\bullet(z, y, x).
\]
The left alternatively is proved analogously. \(\Box\)

Note that the left and right Hom-alternativity for dialgebras is not defined in the same way that the one of algebras with one operation; so the two terminologies must not be confused.
Proposition 3.8. Let \((A, \prec, \succ, \alpha)\) be a flexible \(\text{Hom-prealternative superalgebra.} \) Then \((A, \bullet, \alpha)\) is a flexible \(\text{Hom-alternative superalgebra.} \)

Theorem 3.9. Let \((A, \prec, \succ, \alpha)\) be a \(\text{Hom-prealternative superalgebra.} \) Then \(A' = (A, \prec', \succ', \alpha)\) is also a \(\text{Hom-prealternative superalgebra with} \)
\[
x \prec' y = (-1)^{|x||y|} y \succ x,
\]
\[
x \succ' y = (-1)^{|x||y|} y \prec x.
\]

Proof. We prove only (3.3), as (3.1), (3.2) and (3.4) are proved similarly. For any \(x, y, z \in \mathcal{H}(A), \)
\[
(x \succ' y) \prec' \alpha(z) - \alpha(x) \succ' (y \prec z) +
(-1)^{|x||y|} (y \prec' x) \prec' \alpha(z) - (-1)^{|x||y|} \alpha(y) \prec' (x \bullet z)
\]
\[
= (-1)^{|x||y|} (y \prec x) \prec' \alpha(z) - (z \prec y) +
(-1)^{|x||y|} \alpha(z) \succ' (z \succ y) +
\]
\[
= (-1)^{|x||y| + |x||y| + |z|} \alpha(z) \succ (y \prec x) - (1)^{|x||y| + |x||y| + |z|} (z \succ y) \prec \alpha(x) +
\]
\[
= (-1)^{|x||y| + |x||y| + |z|} \alpha(z) \succ (z \bullet x) \succ \alpha(y) = 0
\]
by axiom (3.4) for \((A, \prec, \succ, \alpha). \)

Note that \(\text{Alt}(A') = \text{Alt}(A)^\text{op}, \) that is, \(x \bullet' y = (-1)^{|x||y|} y \bullet x, \) for \(x, y \in \mathcal{H}(A). \)

Theorem 3.10. Let \((A, \prec, \succ, \alpha)\) be a \(\text{Hom-prealternative superalgebra.} \) Let us define the operation \(x \bullet y = x \prec y + x \succ y \) for any homogeneous elements \(x, y \) in \(A. \) Then \(\text{Alt}(A) = (A, \bullet, \alpha)\) is a \(\text{Hom-alternative superalgebra.} \)

Proof. Let us prove the left alternativity. For any homogeneous \(x, y, z \in A, \)
\[
as_\bullet(x, y, z) + (-1)^{|x||y|} as_\bullet(y, x, z) =
\]
\[
(x \prec y) \prec \alpha(z) + (x \succ y) \prec \alpha(z) + (x \bullet y) \succ \alpha(z) - \alpha(x) \prec (y \bullet z)
\]
\[
- \alpha(x) \succ (y \succ z) - \alpha(x) \succ (y \prec z) + (-1)^{|x||y|} (y \prec x) \prec \alpha(z)
\]
\[
+ (-1)^{|x||y|} (y \succ x) \prec \alpha(z) + (-1)^{|x||y|} (y \bullet x) \succ \alpha(z) - (-1)^{|x||y|} \alpha(y) \prec (x \bullet z)
\]
\[
- (-1)^{|x||y|} \alpha(y) \succ (x \prec z) - (-1)^{|x||y|} \alpha(y) \succ (x \succ z).
\]
The left hand side vanishes by using one axiom (3.3) and twice axiom (3.6). \(\square\)
The Hom-alternative superalgebra \(\text{Alt}(A) = (A, \bullet, \alpha) \) in Theorem 3.10 is called the associated Hom-alternative superalgebra of \((A, \prec, \succ, \alpha)\). We call \((A, \prec, \succ, \alpha)\) a compatible Hom-prealternative superalgebra structure on the Hom-alternative superalgebra \(\text{Alt}(A) \).

Theorem 2.17, Theorem 3.9 and Theorem 3.10 yield the following corollary.

Corollary 3.11. Let \((A, \prec, \succ, \alpha)\) be a multiplicative Hom-prealternative superalgebra. Then \((A, *, \alpha)\) is a multiplicative Hom-Jordan superalgebra with

\[
 x * y = x \prec y + y \succ x + (-1)^{|x||y|} y \prec (-1)^{|x||y|} y \succ x.
\]

Let us define the notion of \(O\)-operator for Hom-alternative superalgebras.

Definition 3.12. Let \((V, L, R, \beta)\) be a bimodule of the Hom-alternative superalgebra \((A, \bullet, \alpha)\). An even linear map \(T : V \to A\) is called an \(O\)-operator associated to \((V, L, R, \beta)\) if for any \(u, v \in V\),

\[
 T(u) \bullet T(v) = T(L(T(u))v + R(T(v))u), \quad (3.16)
\]

\[
 T \circ \beta = \alpha \circ T. \quad (3.17)
\]

Theorem 3.13. Let \(T : V \to A\) be an \(O\)-operator of the Hom-alternative superalgebra \((A, \bullet, \alpha)\) associated to the bimodule \((V, L, R, \beta)\). Then \((V, \prec, \succ, \beta)\) is a Hom-prealternative superalgebra structure, where for all \(u, v \in V\),

\[
 u \prec v = R(T(v))u \quad \text{and} \quad u \succ v = L(T(u))v.
\]

Therefore, \((V, \bullet = \prec + \succ, \beta)\) is the associated Hom-alternative superalgebra of this Hom-prealternative superalgebra, and \(T\) is a homomorphism of Hom-alternative superalgebras. Furthermore, \(T(V) = \{T(v), v \in V\} \subseteq A\) is a Hom-alternative subalgebra of \((A, \bullet, \alpha)\), and \((T(V), \prec, \succ, \alpha)\) is a Hom-prealternative superalgebra, where for all \(u, v \in V\),

\[
 T(u) \prec T(v) = T(u \prec v) \quad \text{and} \quad T(u) \succ T(v) = T(u \succ v).
\]

The associated Hom-alternative superalgebra \((T(V), \bullet = \prec + \succ, \alpha)\) is just the Hom-alternative subalgebra structure of \((A, \bullet, \alpha)\), and \(T\) is a homomorphism of Hom-prealternative superalgebras.

Proof. For any homogeneous elements \(u, w, w \in V\),

\[
 (u \succ v) \prec \beta(w) - \beta(u) \succ (v \prec w) + (-1)^{|u||w|}(v \prec u) - \beta(w) =
\]

\[
 (-1)^{|u||w|}\beta(v) \prec (u \bullet w) = (T(u)v)T\beta(w) - T\beta(u)(vT(w)) + (-1)^{|u||w|}(vT(u))T\beta(w).
\]
\[
(-1)^{|u||v|}\beta(v)T(uT(w) + T(u)w) = (T(u)v)\alpha(T(w)) - \alpha(T(u))(vT(w)) + \\
(-1)^{|u||v|}(vT(u))\alpha(T(w)) - (-1)^{|u||v|}\beta(v)(T(u)T(w)) = 0. \quad \text{(by (2.21))}
\]

The other identities are checked similarly, and the rest of the proof is easy. \(\square\)

Definition 3.14. A Hom-alternative Rota-Baxter superalgebra of weight \(\lambda\) is a Hom-alternative superalgebra \((A, \cdot, \alpha)\) together with an even linear self-map \(R : A \to A\) such that \(R \circ \alpha = \alpha \circ R\) and
\[
R(x) \cdot R(y) = R \left(R(x) \cdot y + x \cdot R(y) + \lambda x \cdot y \right). \quad \text{(3.18)}
\]

Corollary 3.15. Let \((A, \cdot, \alpha)\) be a Hom-alternative superalgebra and \(R : A \to A\) a Rota-Baxter operator of weight 0 on \(A\). Then

(i) \(A_R = (A, <, >, \alpha)\) is a Hom-prealternative superalgebra, where
\[
x < y = x \cdot R(y) \quad \text{and} \quad x > y = R(x) \cdot y,
\]
for any homogeneous elements \(x, y \in \mathcal{H}(A)\).

(ii) \((A, \bullet, \alpha)\) is also a Hom-alternative superalgebra with
\[
x \bullet y = R(x) \cdot y + x \cdot R(y).
\]

Proposition 3.16. Let \((V, <, >, \beta)\) be a bimodule over the Hom-alternative superalgebra \((A, \cdot, \alpha)\) and \(R : A \to A\) be a Rota-Baxter operator of weight 0 on \(A\). Then, \((V, \triangleleft, \triangleright, \beta)\), where
\[
v \triangleleft x = v \cdot R(x) \quad \text{and} \quad x \triangleright y = R(x) \triangleright v,
\]
is a bimodule over \((A, \bullet, \alpha)\).

Proof. For any homogeneous elements \(x, y \in A\) and \(v \in V\),
\[
(v \triangleleft x) \triangleleft \alpha(y) - \beta(v) \triangleleft (x \bullet y) = (v \triangleleft R(x)) \triangleleft \alpha(y) - \beta(v) \triangleleft (R(x) \cdot y + x \cdot R(y)) = (v \triangleleft R(x)) \triangleleft \alpha(y) - \beta(v) \triangleleft (R(x) \cdot R(y)) = (-1)^{|x||y|} \left((R(x) \triangleright v) \triangleleft \alpha(y) - \alpha(x) \triangleright (v \triangleleft y) \right) \equiv (-1)^{|x||y|} \left((x \triangleright v) \triangleleft \alpha(y) - \alpha(x) \triangleright (v \triangleleft y) \right). \quad \text{(2.21)}
\]

The other identities are proved similarly. \(\square\)
Theorem 3.17. Let \((A, <, \succ, \alpha)\) be a Hom-prealternative superalgebra, and let \(\beta : A \to A\) be an even Hom-prealternative superalgebra endomorphism. Then \(A_\beta = (A, <_\beta = \beta \circ <, \succ_\beta = \beta \circ \succ, \beta \alpha)\) is a Hom-prealternative superalgebra. Moreover, suppose that \((A', <', \succ')\) is another prealternative superalgebra and \(\alpha' : A \to A'\) is a prealternative superalgebra endomorphism that satisfies \(f \circ \beta = \alpha' \circ f\), then

\[f : (A, <_\beta = \beta \circ <, \succ_\beta = \beta \circ \succ, \beta \alpha) \to (A', <'_{\alpha'}, \succ'_{\alpha'}, \alpha' \circ <', \alpha') \]

is a morphism of Hom-prealternative superalgebras.

Proof. For all \(x, y, z \in \mathcal{H}(A)\),

\[
(x \succ_\beta y) <_\beta \beta \alpha(z) - \beta \alpha(x) \succ_\beta (y <_\beta z) \\
= \beta((\beta(x) \succ \beta(y))) < \beta(\alpha(z)) - \beta(\alpha(x)) \succ \beta((\beta(y) < \beta(z))) \\
= \beta^2((x \succ y) < \alpha(z) - \alpha(x) \succ (y < z)) \\
= (-1)^{|x||y|}\beta^2(\alpha(y) < (x \bullet z) - (-1)^{|x||y|}(y < x) < \alpha(z)) \\
= (-1)^{|x||y|}\beta(\beta(\alpha(y)) < \beta(x \bullet z) - (-1)^{|x||y|}\beta(y < x) < \beta(\alpha(z))) \\
= (-1)^{|x||y|}\beta(\beta(\alpha(y)) < \beta(x \bullet z) - (-1)^{|x||y|}\beta(y < x) < \beta^2\alpha(z)) \\
= (-1)^{|x||y|}\beta(\beta(\alpha(y)) < \beta(x \bullet z) - (-1)^{|x||y|}\beta(y < x) < \beta(\alpha(z)))
\]

The other axioms are proved similarly. For the second part,

\[f \circ <_{\alpha} = f \circ \alpha \circ < = \alpha' \circ f \circ < = \alpha' \circ < \circ (f \otimes f) = <_{\alpha'} \circ (f \otimes f). \]

Analogue equalities hold for \(>_{\alpha}\) and \(>_{\alpha'}\).

Taking \(\beta = \alpha^{2^{n-1}}\) yields the following result.

Corollary 3.18. Let \((A, <, \succ, \alpha)\) be a multiplicative Hom-prealternative superalgebra. Then,

(i) For \(n \geq 0\), \(A^n = (A, <^{(n)} = \alpha^{2^{n-1}} \circ <, \succ^{(n)} = \alpha^{2^{n-1}} \circ \succ, \alpha^{2^n})\) is a multiplicative Hom-prealternative superalgebra, called the \(n\)th derived multiplicative Hom-prealternative superalgebra.

(ii) For \(n \geq 0\), \(A^n = (A, <^{(n)} = \alpha^{2^{n-1}} \circ (< + \succ), \alpha^{2^n})\) is a multiplicative Hom-alternative superalgebra, called the \(n\)th derived multiplicative Hom-alternative superalgebra.
3.2 Bimodules of Hom-prealternative superalgebras

Definition 3.19. Let \((A, \prec, \succ, \alpha)\) be a Hom-prealternative superalgebra. An \(A\)-bimodule is a supervector space \(V\) with an even linear map \(\beta: V \to V\) and four even linear maps

\[
\begin{align*}
L_\succ &: A \to \text{gl}(V) & L_\prec &: A \to \text{gl}(V) \\
x \mapsto L_\succ(x)(v) = x \succ v, & x \mapsto L_\prec(x)(v) = x \prec v, \\
R_\succ &: A \to \text{gl}(V) & R_\prec &: A \to \text{gl}(V) \\
x \mapsto R_\succ(x)(v) = v \succ x, & x \mapsto R_\prec(x)(v) = v \prec x,
\end{align*}
\]

satisfying the following relations:

\[
\begin{align*}
L_\succ(x \cdot y + (-1)^{|x||y|} y \cdot x)\beta(v) &= L_\succ(\alpha(x))L_\succ(y) + (-1)^{|x||y|} L_\succ(\alpha(y))L_\succ(x), \quad (3.19) \\
R_\succ(\alpha(y))(L_\bullet(x) + (-1)^{|x||v|} R_\bullet(x))v &= L_\succ(\alpha(x))R_\succ(y)v + (-1)^{|x||v|} R_\succ(x \succ y)\beta(v), \quad (3.20) \\
R_\prec(\alpha(y))L_\succ(x) + (-1)^{|x||v|} R_\prec(\alpha(y))R_\prec(x) &= L_\prec(\alpha(x))R_\prec(y) + (-1)^{|x||v|} R_\prec(x \circ y)\beta(v), \quad (3.21) \\
R_\prec(\alpha(y))R_\succ(x)v + (-1)^{|x||v|} R_\prec(\alpha(y))L_\prec(x)v &= L_\prec(\alpha(x))R_\prec(y)v + (-1)^{|x||v|} R_\prec(x \bullet y)\beta(v), \quad (3.22) \\
L_\prec(y \prec x)\beta(v) + (-1)^{|x||y|} L_\prec(x \succ y)\beta(v) &= L_\prec(\alpha(y))L_\bullet(x)v + (-1)^{|x||y|} L_\prec(\alpha(y))L_\succ(x)v, \quad (3.23) \\
R_\prec(\alpha(x))L_\succ(y) + (-1)^{|x||v|} L_\prec(\alpha(y) \succ x)\beta(v) &= L_\prec(\alpha(y))R_\succ(x)v + (-1)^{|x||y|} L_\prec(\alpha(y))L_\succ(x)v, \quad (3.24) \\
R_\prec(\alpha(x))R_\succ(y)v + (-1)^{|x||v|} R_\prec(\alpha(y))R_\bullet(x)v &= R_\succ(y \prec x)\beta(v) + (-1)^{|x||y|} R_\prec(x \succ y)\beta(v), \quad (3.25) \\
L_\prec(y \succ x)\beta(v) + (-1)^{|x||y|} R_\prec(\alpha(x))L_\bullet(y)v &= L_\prec(\alpha(y))L_\succ(x)v + (-1)^{|x||y|} L_\prec(\alpha(y))R_\succ(y)v, \quad (3.26) \\
R_\prec(\alpha(x))R_\prec(y)v + (-1)^{|x||v|} R_\prec(\alpha(y))R_\prec(x)v &= R_\prec(x \bullet y + (-1)^{|x||y|} y \cdot x)\beta(v), \quad (3.27) \\
R_\prec(\alpha(y))L_\prec(x) + (-1)^{|x||v|} L_\prec(x \prec y)\beta(v) &= L_\prec(\alpha(x))(R_\bullet(y) + (-1)^{|x||y|} L_\bullet(y))v, \quad (3.28)
\end{align*}
\]

where \(\text{gl}(V)\) is the set of even linear maps of \(V\) onto \(V\), \(\bullet = \prec + \succ\) and

\[
x \cdot y = x \prec y + x \succ y, \quad L_\bullet = L_\succ + L_\prec, \quad R_\bullet = R_\prec + R_\succ
\]

for any homogeneous \(x, y, v\).
Remark 3.20. Axioms (3.19)-(3.28) are respectively equivalent to

$$(x \bullet y + (-1)^{|y|}y \bullet x) \succ v \beta(v) = \alpha(x) \succ (y \succ v) + (-1)^{|y|}\alpha(y) \succ (x \succ v),$$

$$(3.29)$$

$$(x \bullet y + (-1)^{|y|}y \bullet x) \succ \alpha(y) = \alpha(x) \succ (v \succ y) - (-1)^{|y|}\alpha(x) \succ (v \succ y),$$

$$(3.30)$$

$$(v \prec x) < \alpha(y) + (-1)^{|y|}|x|v(x \succ y) < \alpha(y) = \beta(v) < (x \bullet y) + (-1)^{|y|}\alpha(x) \succ (v \prec y),$$

$$(3.31)$$

$$(v \prec x) < \alpha(y) + (-1)^{|y|}|x|v(x \succ y) < \alpha(y) = \alpha(x) \prec (v \bullet y) + (-1)^{|y|}\beta(v) \succ (x \bullet y),$$

$$(3.32)$$

$$(y \succ x) < \beta(v) + (-1)^{|y|}|y|y \succ x \prec \beta(v) = \alpha(y) \prec (x \bullet y) + (-1)^{|y|}|y|\alpha(x) \succ (y \succ x),$$

$$(3.33)$$

$$(y \succ x) < \beta(v) + (-1)^{|y|}|y|y \succ x \prec \beta(v) = \alpha(y) \succ (v \prec x) + (-1)^{|y|}|y|\alpha(y) \prec (x \succ y),$$

$$(3.34)$$

$$(v \succ y) < \alpha(x) + (-1)^{|y|}|y|y \bullet x \succ \alpha(y) = \beta(v) < (y \prec x) + (-1)^{|y|}|y|\beta(v) \succ (x \succ y),$$

$$(3.35)$$

$$(y \prec x) < \beta(v) + (-1)^{|y|}|y|y \bullet y \prec \alpha(x) = \alpha(y) \succ (x \prec y) + (-1)^{|y|}|y|\alpha(y) \prec (v \succ x),$$

$$(3.36)$$

$$(y \prec x) < \beta(v) + (-1)^{|y|}|y|y \bullet y \prec \alpha(x) = \beta(v) < (x \bullet y) + (-1)^{|y|}|y|\alpha(y) \succ (y \bullet x),$$

$$(3.37)$$

$$(x \prec y) < \alpha(y) + (-1)^{|y|}|y|y \bullet y \prec \beta(v) = \alpha(x) \prec (v \bullet y) + (-1)^{|y|}|y|\alpha(y) \succ (y \bullet y),$$

$$(3.38)$$

Proposition 3.21. Let $$(A, \prec, \succ, \alpha)$$ be a Hom-prealternative superalgebra.
Then $$(A, l_\prec, r_\succ, \alpha)$$ is a bimodule of the associated Hom-alternative superalgebra $${\text{Alt}}(A) = (A, \bullet, \alpha)$$.

Proposition 3.22. Let $$(V, \prec, \succ, \beta)$$ be a bimodule over the Hom-alternative superalgebra $$(A, \bullet, \alpha)$$ and $${\mathcal{R}} : A \rightarrow A$$ be a Rota-Baxter operator on A. Then $$(V, 0, \triangleright, 0, \triangleleft, \beta)$$, with $x \triangleright v = {\mathcal{R}}(x) \succ v$ and $v \triangleleft x = v \prec {\mathcal{R}}(x)$, is a bimodule over the Hom-prealternative superalgebra $A_{\mathcal{R}} = (A, \prec, \succ, \alpha)$.

Proof. For any homogeneous elements $x, y \in A$ and $v \in V$,

$$(v \triangleleft x) \triangleleft \alpha(y) + (x \triangleright v) \triangleleft \alpha(y)$$

$$= (v \triangleleft {\mathcal{R}}(x)) \triangleleft {\mathcal{R}}(\alpha(y)) + ({\mathcal{R}}(x) \triangleright v) \triangleleft {\mathcal{R}}(\alpha(y))$$

$$= (v \triangleleft {\mathcal{R}}(x)) \triangleleft \alpha({\mathcal{R}}(y)) + ({\mathcal{R}}(x) \triangleright v) \triangleleft \alpha({\mathcal{R}}(y))$$

$$= {\mathcal{B}}(v) \triangleleft ({\mathcal{R}}(x) \cdot {\mathcal{R}}(y)) + \alpha({\mathcal{R}}(x)) \triangleleft (v \triangleleft {\mathcal{R}}(y))$$

$$= (v \triangleleft {\mathcal{R}}(x)) \triangleleft {\mathcal{R}}(\alpha(y)) + ({\mathcal{R}}(x) \triangleright v) \triangleleft {\mathcal{R}}(\alpha(y))$$

$$= {\mathcal{B}}(v) \triangleleft ({\mathcal{R}}(x) \cdot {\mathcal{R}}(y)) + \alpha({\mathcal{R}}(x)) \triangleleft (v \triangleleft {\mathcal{R}}(y))$$

$$= (v \triangleleft {\mathcal{R}}(x)) \triangleleft \alpha({\mathcal{R}}(y)) + ({\mathcal{R}}(x) \triangleright v) \triangleleft \alpha({\mathcal{R}}(y))$$

$$= {\mathcal{B}}(v) \triangleleft ({\mathcal{R}}(x) \cdot {\mathcal{R}}(y)) + \alpha({\mathcal{R}}(x)) \triangleleft (v \triangleleft {\mathcal{R}}(y))$$
Proof. For any homogeneous elements \(x, y \in A\) and \(v \in V\),

i) The statement (i) follows from axioms (3.29), (3.31), (3.34) and (3.37).

ii) For (ii), the axiom (2.23) is verified as follows,

\[
(x \cdot y) \cdot \beta(v) + (-1)^{|y||x|} (y \cdot x) \cdot \beta(v) - \alpha(x) \cdot (y \cdot v) - (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v)
= (x \cdot y) \cdot \beta(v) + (x \cdot y) \cdot \beta(v) + (x \cdot y) \cdot \beta(v)
+ (-1)^{|y||x|} (y \cdot x) \cdot \beta(v) + (-1)^{|x||y|} (y \cdot x) \cdot \beta(v)
+ (-1)^{|x||y|} (x \cdot x) \cdot \beta(v)
- \alpha(x) \cdot (y \cdot v) - \alpha(x) \cdot (y \cdot v) - \alpha(x) \cdot (y \cdot v)
- (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v) - (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v)
- (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v).
\]

The left hand side vanishes by axioms (3.29) and (3.33). The other axioms are verified analogously: axiom (2.24) comes from axioms (3.35) and (3.37); axiom (2.22) comes from axioms (3.34), (3.36) and (3.38); axiom (2.21) comes from axioms (3.30), (3.31) and (3.32).

iii) It suffices to take \(R_{\succ} = 0\) and \(L_{\prec} = 0\).

\[\square\]

Theorem 3.23. Let \((V, L_{\prec}, R_{\prec}, L_{\succ}, R_{\succ}, \beta)\) be a bimodule over the Hom-prealternative superalgebra \((A, \prec, \succ, \alpha)\) and \(\text{Alt}(A) = (A, \bullet, \alpha)\) the associated Hom-alternative superalgebra. Then

(i) \((V, L_{\succ}, R_{\succ}, \beta)\) is a bimodule over \(\text{Alt}(A)\).

(ii) \((V, L_{\bullet} = L_{\prec} + L_{\succ}, R_{\bullet} = R_{\prec} + R_{\succ}, \beta)\) is a bimodule over \(\text{Alt}(A)\).

(iii) If \((V, L, R, \beta)\) is a bimodule of \(\text{Alt}(A)\), then \((V, 0, R, L, 0, \beta)\) is a bimodule over \((A, \prec, \succ, \alpha)\).

Proof. For any homogeneous elements \(x, y \in A\) and \(v \in V\),

i) The statement (i) follows from axioms (3.29), (3.31), (3.34) and (3.37).

ii) For (ii), the axiom (2.23) is verified as follows,

\[
(x \cdot y) \cdot \beta(v) + (-1)^{|x||y|} (y \cdot x) \cdot \beta(v)
- \alpha(x) \cdot (y \cdot v) - (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v)
= (x \cdot y) \cdot \beta(v) + (x \cdot y) \cdot \beta(v) + (x \cdot y) \cdot \beta(v)
+ (-1)^{|y||x|} (y \cdot x) \cdot \beta(v) + (-1)^{|x||y|} (y \cdot x) \cdot \beta(v)
+ (-1)^{|x||y|} (x \cdot x) \cdot \beta(v)
- \alpha(x) \cdot (y \cdot v) - \alpha(x) \cdot (y \cdot v) - \alpha(x) \cdot (y \cdot v)
- (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v) - (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v)
- (-1)^{|x||y|} \alpha(y) \cdot (x \cdot v).
\]

The left hand side vanishes by axioms (3.29) and (3.33). The other axioms are verified analogously: axiom (2.24) comes from axioms (3.35) and (3.37); axiom (2.22) comes from axioms (3.34), (3.36) and (3.38); axiom (2.21) comes from axioms (3.30), (3.31) and (3.32).

iii) It suffices to take \(R_{\succ} = 0\) and \(L_{\prec} = 0\).

\[\square\]

Theorem 3.24. Let \((V, L_{\prec}, R_{\prec}, L_{\succ}, R_{\succ}, \beta)\) be a bimodule over the multiplicative Hom-prealternative superalgebra \((A, \prec, \succ, \alpha)\), and let \(\text{Alt}(A) = (A, \bullet, \alpha)\)
be the associated Hom-alternative superalgebra. Then both $(V, L_\prec, R_\prec, \beta)$ and $(V, L_\succ = L_\prec + L_\succ, R_\succ = R_\prec + R_\succ, \beta)$ are bimodules over $\text{Alt}(A)$, where

\begin{align*}
L_\alpha^\alpha &= L_\prec \circ (\alpha^2 \otimes \text{Id}), & L_\alpha^\alpha &= L_\succ \circ (\alpha^2 \otimes \text{Id}), \\
R_\alpha^\alpha &= R_\prec \circ (\alpha^2 \otimes \text{Id}), & R_\alpha^\alpha &= R_\succ \circ (\alpha^2 \otimes \text{Id}).
\end{align*}

Proof. We only prove (2.23) in detail, as the other axioms are verified similarly. Putting $\succ_\alpha = L_\alpha^\alpha$, for any homogeneous elements $x, y \in A$ and $v \in V$,

\begin{align*}
(x \circ y + (-1)^{|x||y|} y \circ x) \succ_\alpha \beta(v) &= \alpha^2(x \circ y + (-1)^{|x||y|} y \circ x) \succ \beta(v) \\
&= (\alpha^2(x) \circ \alpha^2(y) + (-1)^{|x||y|} \alpha^2(y) \circ \alpha^2(x)) \succ \beta(v) \\
&= \alpha^3(x) \succ (\alpha^2(y) \succ v) + (-1)^{|x||y|} \alpha^3(y) \succ (\alpha^2(x) \succ v) \\
&= \alpha(x) \succ (y \succ v) + (-1)^{|x||y|} \alpha(y) \succ (x \succ v). \square
\end{align*}

Acknowledgments

Dr. Ibrahima Bakayoko is grateful to the research environment in Mathematics and Applied Mathematics MAM, Division of Mathematics and Physics of the School of Education, Culture and Communication at Mälardalen University for hospitality and an excellent and inspiring environment for research and research education and cooperation in Mathematics during his visit in Autumn of 2019, which contributed towards expanding research and research education capacity and cooperation development in Africa and impact of the programs in Mathematics between Sweden and countries in Africa supported by Swedish International Development Agency (Sida) and International Program in Mathematical Sciences (IPMS). Partial support from Swedish Royal Academy of Sciences is also gratefully acknowledged.

References

[1] Abdaoui, E. K., Ammar, F., Makhlouf, A.: Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras. Bull. Malays. Math. Sci. Soc. 40, 439–472 (2017). (arXiv:1304.1579v1[math.RA] (2013))

[2] Abdaoui, E. K., Mabrouk, S., Makhlouf, A.: Rota–Baxter Operators on Pre-Lie Superalgebras. Bull. Malays. Math. Sci. Soc. 42, 1567–1606 (2019). (arXiv:1512.08043 (2015))

https://doi.org/10.1007/s40840-017-0565-x
[3] Abdaoui, K., Ammar, F., Makhlouf, A.: Constructions and cohomology of Hom-Lie color algebras, Comm. Algebra, 43(11), 4581-4612 (2015)

[4] Abramov, V., Silvestrov, S.: 3-Hom-Lie algebras based on σ-derivation and involution, Adv. Appl. Clifford Algebras, 30, 45 (2020). https://doi.org/10.1007/s00006-020-01068-6

[5] Ammar, F., Ayadi, I., Mabrouk, S., Makhlouf, A.: Quadratic color Hom-Lie algebras, In: Siles Molina, M., El Kaoutit, L., Louzari, M., Ben Yakoub, L., Benslimane, M. (eds), Associative and Non-Associative Algebras and Applications. MAMAA 2018. Springer Proceedings in Mathematics and Statistics, vol 311. Springer, Cham., 287-312, (2020). https://doi.org/10.1007/978-3-030-35256-1_16

[6] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras, J. Lie Theory, 21(4), 813-836 (2011)

[7] Ammar, F., Makhlouf, A.: Hom-Lie superalgebras and Hom-Lie admissible superalgebras, J. Algebra, 324(7), 1513-1528 (2010)

[8] Ammar, F., Mabrouk, S., Makhlouf, A.: Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras, J. Geom. Phys. 61(10), 1898-1913 (2011). https://doi.org/10.1016/j.geomphys.2011.04.022

[9] Ammar, F., Makhlouf A., Saadaoui, N.: Cohomology of Hom-Lie superalgebras and q-deformed Witt superalgebra, Czechoslovak Math. J. 68, 721-761 (2013)

[10] Ammar, F., Makhlouf, A., Silvestrov, S.: Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras, J. Phys. A: Math. Theor. 43(26), 265204 (2010). https://doi.org/10.1088/1751-8113/43/26/265204

[11] Aragón Periná, M. J., Calderón Martín, A. J.: On graded matrix Hom-algebras, Electronic J. Linear Algebra, 24, 45-65 (2012)

[12] Aragón Periná, M. J., Calderón Martín, A. J.: Split regular Hom-Lie algebras, J. Lie Theory 25(3), 875-888 (2015)

[13] Armakan A., Farhangdoost, M. R.: Geometric aspects of extensions of Hom-Lie superalgebras, Int. J. Geom. Methods Mod. Phys. 14, 1750085 (2017)

[14] Armakan A., Silvestrov S.: Enveloping Algebras of Certain Types of Color Hom-Lie Algebras, In: Silvestrov, S., Malyarenko, A., Rančić, M. (Eds.), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, 317, Springer, Ch. 10, 257-284 (2020). https://doi.org/10.1007/978-3-030-41850-2_10
[15] Armakan, A., Silvestrov, S., Farhangdoost, M. R.: Enveloping algebras of color Hom-Lie algebras, Turk. J. Math. 43(1), 316-339 (2019). (arXiv:1709.06164 [math.QA] (2017))

[16] Armakan, A., Silvestrov, S., Farhangdoost, M. R.: Extensions of Hom-Lie color algebras, Georgian Math. J. 28(1), 15-27 (2021). (arXiv:1709.08620 [math.QA] (2017)) https://doi.org/10.1515/gmj-2019-2033

[17] Armakan, A., Silvestrov, S.: Color Hom-Lie algebras, color Hom-Leibniz algebras and color omni-Hom-Lie algebras, arXiv:2010.06160 [math.RA] (2020)

[18] Arnlind, J., Kitouni, A., Makhlouf, A., Silvestrov, S.: Structure and cohomology of 3-Lie algebras induced by Lie algebras, In: Makhlouf, A., Paal, E., Silvestrov, S. D., Stolin, A., Algebra, Geometry and Mathematical Physics, Springer Proceedings in Mathematics and Statistics, 85, Springer, 123-144 (2014) https://doi.org/10.1007/978-3-642-55361-5_9

[19] Arnlind, J., Makhlouf, A., Silvestrov, S.: Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras, J. Math. Phys. 51(4), 043515, 11 pp (2010) https://doi.org/10.1063/1.3359004

[20] Arnlind, J., Makhlouf, A. Silvestrov, S.: Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras, J. Math. Phys. 52(12), 123502, 13 pp (2011) https://doi.org/10.1063/1.3653197

[21] Ataguema, H., Makhlouf, A., Silvestrov, S.: Generalization of n-ary Nambu algebras and beyond. J. Math. Phys. 50, 083501 (2009). https://doi.org/10.1063/1.3167801

[22] Bakayoko, I.: Laplacian of Hom-Lie quasi-bialgebras, Int. J. Algebra, 8(15), 713-727 (2014)

[23] Bakayoko, I.: L-modules, L-comodules and Hom-Lie quasi-bialgebras, African Diaspora Journal of Mathematics, 17, 49-64 (2014)

[24] Bakayoko, I.: Modules over color Hom-Poisson algebras, J. Gen. Lie Theory Appl. 8(1), 1000212, 1-6 (2014).

[25] Bakayoko, I.: Hom-post-Lie modules, O-operator and some functors, arXiv:1610.02845[math.RA] (2016)

[26] Bakayoko, I., Bangoura, M.: Left-Hom-symmetric and Hom-Poisson algebras, Konuralp J. Math., 3(2), 42-53 (2015).

[27] Bakayoko, I., Diallo, O. W.: Some generalized Hom-algebra structures, J. Gen. Lie Theory Appl. 9(1) 1000226, 1-7, (2015).
[28] Bakayoko, I., Silvestrov, S.: Hom-left-symmetric color dialgebras, Hom-tridendriform color algebras and Yau’s twisting generalizations, Afr. Mat. 32, 941–958 (2021). (arXiv:1912.01441[math.RA])
https://doi.org/10.1007/s13370-021-00871-z

[29] Bakayoko, I., Silvestrov, S.: Multiplicative n-Hom-Lie color algebras, In: Silvestrov, S., Malyarenko, A., Rančić, M. (Eds.), Algebraic structures and applications, Springer Proceedings in Mathematics and Statistics, 317, Springer, Ch. 7, 159-187 (2020). (arXiv:1912.10216[math.QA]).
https://doi.org/10.1007/978-3-030-41850-2_7

[30] Bakayoko, I., Touré, B. M.: Constructing Hom-Poisson color algebras, Int. J. Algebra, 13(1), 1-16 (2019)

[31] Bakayoko, I., Touré, B. M.: Some color Hom-algebra structures, submitted.

[32] Beites, P. D., Kaygorodov, I., Popov, Y.: Generalized derivations of multiplicative n-ary Hom-Ω color algebras, Bull. of the Malay. Math. Sci. Soc. 41 (2018),

[33] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76, 38-60 (2014)

[34] Ben Abdeljelil, A., Elhamdadi, M., Kaygorodov, I., Makhlouf, A.: Generalized Derivations of n-BiHom-Lie algebras, In: Silvestrov, S., Malyarenko, A., Rančić, M. (Eds.), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, Vol 317, Ch. 4, 81-97, Springer (2020). (arXiv:1901.09750[math.RA])

[35] Bäck, P., Richter, J., Silvestrov, S.: Hom-associative Ore extensions, J. Physics: Conference Series, 965(1), 012006 (2018).
https://doi.org/10.1088/1742-6596/965/1/012006

[36] Bäck, P., Richter, J., Silvestrov, S.: Hom-associative Ore extensions and weak unitalizations, International Electronic J. Algebra, 24 174–194 (2018). https://doi.org/10.24330/ieja.440245

[37] Bäck, P., Richter, J.: Hilbert’s basis theorem for non-associative and Hom-associative Ore extensions, arXiv:1804.11304 [math.RA] (2018)

[38] Bäck, P.: Notes on formal deformations of quantum planes and universal enveloping algebras, J. Physics: Conference Series, 1194(1), 012011 (2019). https://doi.org/10.1088/1742-6596/1194/1/012011

[39] Bäck, P.: Multi-parameter formal deformations of ternary Hom-Nambu-Lie algebras. In: Dobrev V. (Eds.), Lie Theory and its Applications in Physics, Springer Proceedings in Mathematics and Statistics, 335,
[40] Bäck, P., Richter, J.: On the Hom-associative Weyl algebras, J. Pure Applied Algebra, 224(9), 106368 (2020).
https://doi.org/10.1016/j.jpaa.2020.106368

[41] Calderón Martín, A. J.: Regular Hom-algebras admitting a multiplicative basis, Georgian Math. J., 28(4), 555-565 (2021).
https://doi.org/10.1515/gmj-2020-2068

[42] Cao, Y., Chen, L.: On split regular Hom-Lie color algebras, Comm. Algebra 40, 575-592 (2012)

[43] Cheng, Y. S., Su, Y. C.: (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin.(Engl. Ser.) 27, 813-830 (2011)

[44] Dassoundo, M. L., Silvestrov, S.: Nearly associative and nearly Hom-associative algebras and bialgebras, arXiv:2101.12377 [math.RA] (2021)

[45] Elchinger, O., Lundengård, K., Makhlouf, A., Silvestrov, S. D.: Brackets with (τ,σ)-derivations and (p,q)-deformations of Witt and Virasoro algebras, Forum Math. 28(4), 657-673 (2016).
https://doi.org/10.1515/forum-2014-0132

[46] Elhamdadi, M., Makhlouf, A.: Deformations of Hom-alternative and Hom-Malcev algebras, Algebra, Groups and Geometries, 28(2), 117-145 (2011)

[47] Fregier, Y., Gohr, A.: On Hom-type algebras, J. Gen. Lie Theory Appl. 4, G101001, 16 pp., 2010.

[48] Fregier, Y., Gohr, A., Silvestrov, S.: Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theory Appl. 3, 285-295 (2009)

[49] Graziani, G., Makhlouf, A., Menini, C., Panaite, F.: BiHom-Associative Algebras, BiHom-Lie Algebras and BiHom-Bialgebras, SIGMA 11, 086, 34 pp (2015)

[50] Guo, L., Zhang, B., Zheng, S.: Universal enveloping algebras and Poincare-Birkhoff-Witt theorem for involutive Hom-Lie algebras, J. Lie Theory, 28(3), 735-756 (2018). (arXiv:1607.05973[math.QA], (2016))

[51] Guan, B., Chen, L., Sun, B.: On Hom-Lie superalgebras, Adv. Appl. Clifford Algebras, 29(16) (2019)

[52] Gaparayi, D., Issa, A. N.: A twisted generalization of Lie-Yamaguti algebras, Int. J. Algebra, 6(7), 339-352 (2012)
[53] Hassanzadeh, M., Shapiro, I., Sütli, S.: Cyclic homology for Hom-associative algebras, J. Geom. Phys. 98, 40-56 (2015)

[54] Hellström, L.: Strong Hom-associativity, In: Silvestrov, S., Malyarenko, A., Rančić, M. (eds.), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, vol. 317, 317–337, Springer (2020). https://doi.org/10.1007/978-3-030-41850-2_12

[55] Hellström, L., Makhlouf, A., Silvestrov, S. D.: Universal algebra applied to Hom-associative algebras, and More, In: Makhlouf A., Paal E., Silvestrov S., Stolin A. (eds), Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics and Statistics, vol 85. Springer, Berlin, Heidelberg, 157-199 (2014). https://doi.org/10.1007/978-3-642-55361-5_11

[56] Hounkonnou, M. N., Dassoundo, M. L.: Center-symmetric algebras and bialgebras: relevant properties and consequences. In: Kielanowski P., Ali S., Bieliavsky P., Odzijewicz A., Schlichenmaier M., Voronov T. (eds), Geometric Methods in Physics. Trends in Mathematics. Birkhäuser, Cham, 281–293 (2016)

[57] Hounkonnou, M. N., Dassoundo, M. L.: Hom-center-symmetric algebras and bialgebras, arXiv:1801.06539 [math.RA]

[58] Hounkonnou, M. N., Houndedji, G. D., Silvestrov, S.: Double constructions of biHom-Frobenius algebras, arXiv:2008.06645 [math.QA]

[59] Felipe, R.: Dendriform algebras and Rota-Baxter operators revisited in several directions, Communicacion del CIMAT No I-13-01/29-07-2013

[60] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using σ-derivations, J. Algebra 295(2), 314-361 (2006) (Preprint in Mathematical Sciences 2003:32, LUTFMA-5036-2003, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, 52 pp. (2003)) https://doi.org/10.1016/j.jalgebra.2005.07.036

[61] Issa, A. N.: Hom-Akivis algebras, Commentationes Mathematicae Universitatis Carolinae, 52(4), 485-500 (2011)

[62] Jin, Q., Li, X.: Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra, 319, 1398–1408 (2008)

[63] Kitouni, A., Makhlouf, A., Silvestrov, S.: On (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras, Georgian Math. J. 23(1), 75-95 (2016). https://doi.org/10.1515/gmj-2015-0063

26
[64] Kitouni, A., Makhlouf, A., Silvestrov, S.: On solvability and nilpotency for n-Hom-Lie algebras and (n+1)-Hom-Lie algebras induced by n-Hom-Lie algebras, In: Silvestrov, S., Malyarenko, A., Rancic, M. (Eds.), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, 317, Springer, Ch 6, 127-157 (2020). \(\text{https://doi.org/10.1007/978-3-030-41850-2_6 } \)

[65] Kitouni, A., Makhlouf, A., Silvestrov, S., On n-ary generalization of BiHom-Lie algebras and BiHom-associative algebras, In: Silvestrov, S., Malyarenko, A., Rancic, M. (Eds.), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, Vol 317, Ch 5 (2020). \(\text{https://doi.org/10.1007/978-3-030-41850-2_5 } \)

[66] Larsson, D., Sigurdsson, G., Silvestrov, S. D.: Quasi-Lie deformations on the algebra \(\mathbb{F}[t]/(t^N) \), J. Gen. Lie Theory Appl. 2, 201-205 (2008)

[67] Larsson, D., Silvestrov, S. D.: Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288, 321-344 (2005) (Preprints in Mathematical Sciences 2004:3, LUTFMA-5038-2004, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2004)). \(\text{https://doi.org/10.1016/j.jalgebra.2005.02.032 } \)

[68] Larsson, D., Silvestrov, S. D.: Quasi-Lie algebras. In ”Noncommutative Geometry and Representation Theory in Mathematical Physics”. Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 241-248 (2005) (Preprints in Mathematical Sciences 2004:30, LUTFMA-5049-2004, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2004))

[69] Larsson, D., Silvestrov, S. D.: Graded quasi-Lie agebras, Czechoslovak J. Phys. 55, 1473-1478 (2005). \(\text{https://doi.org/10.1007/s10582-006-0028-3 } \)

[70] Larsson, D., Silvestrov, S. D.: Quasi-deformations of \(sl_2(\mathbb{F}) \) using twisted derivations, Comm. Algebra, 35, 4303-4318 (2007). \(\text{https://doi.org/10.1080/00927870701545127 } \)

[71] Larsson, D., Sigurdsson, G., Silvestrov, S. D.: Quasi-Lie deformations on the algebra \(\mathbb{F}[t]/(t^N) \), J. Gen. Lie Theory Appl. 2(3), 201-205 (2008)

[72] Larsson, D., Silvestrov, S. D.: On generalized N-complexes coming from twisted derivations, In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, Springer-Verlag, Ch. 7, 81-88 (2009). \(\text{https://doi.org/10.1007/978-3-540-85332-9_7 } \)
[73] Ma, T., Zheng, H.: Some results on Rota–Baxter monoidal Hom-algebras, Results Math. 72 (1-2), 145-170 (2017). https://doi.org/10.1007/s00025-016-0641-9

[74] Mabrouk, S., Ncib, O., Silvestrov, S.: Generalized Derivations and Rota-Baxter Operators of \(n \)-ary Hom-Nambu Superalgebras, Adv. Appl. Clifford Algebras, 31, 32, (2021). (arXiv:2003.01080[math.QA]) https://doi.org/10.1007/s00006-020-01115-2

[75] Makhlouf, A.: Paradigm of nonassociative Hom-algebras and Hom-superalgebras, In: J. Carmona Tapia, A. Morales Campoy, A. Miguel Peralta Pereira, M. Ramírez Álvarez, (Eds.), Proceedings of Jordan Structures in Algebra and Analysis Meeting. Tribute to El Amin Kaidi for his 60th birthday, Almería, Spain, May 20–22, 2009, Univ. de Almería, Departamento de Álgebra y Análisis Matemático, Almería, 143–177 (2010)

[76] Makhlouf, A.: Hom-alternative algebras and Hom-Jordan algebras, Int. Electron. J. Algebra, 8, 177-190 (2010)

[77] Makhlouf, A.: Hom-dendriform algebras and Rota–Baxter Hom-algebras, In: Bai, C., Guo, L., Loday, J.-L. (eds.), Operads and Universal Algebra, Nankai Ser. Pure Appl. Math. Theoret. Phys., 9, World Sci. Publ., 147–171 (2012). https://doi.org/10.1142/9789814365123_0008

[78] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(2), 51–64 (2008) (Preprints in Mathematical Sciences 2006:10, LUTFMA-5074-2006, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2006). arXiv:math/0609501[math.RA])

[79] Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, Springer-Verlag, Berlin, Heidelberg, Ch. 17, 189-206 (2009) (Preprints in Mathematical Sciences, Lund University, Centre for Mathematical Sciences, Centrum Scientiarum Mathematicarum (2007:25) LUTFMA-5091-2007. arXiv:0709.2413 [math.RA] (2007)) https://doi.org/10.1007/978-3-540-85332-9_17

[80] Makhlouf, A., Silvestrov, S.: Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22(4), 715-739 (2010) (Preprints in Mathematical Sciences, Lund University, Centre for Mathematical Sciences, Centrum Scientiarum Mathematicarum, (2007:31) LUTFMA-5095-2007. arXiv:0712.3130v1 [math.RA] (2007)) https://doi.org/10.1515/forum.2010.040

28
[81] Makhlouf, A., Silvestrov, S. D.: Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9(4), 553-589 (2010) (arXiv:0811.0400 [math.RA] (2008). Preprints in Mathematical Sciences, Lund University, Centre for Mathematical Sciences, Centrum Scientiarum Mathematicarum, (2008:19) LUTFMA-5103-2008.)
https://doi.org/10.1142/S0219498810004117

[82] Makhlouf, A., Yau, D.: Rota-Baxter Hom-Lie admissible algebras, Comm. Alg., 23(3), 1231-1257 (2014)

[83] Mandal, A., Mishra, S. K.: On Hom-Gerstenhaber algebras, and Hom-Lie algebroids, J. Geom. Phys. 133, 287-302 (2018)

[84] Mishra, S. K., Silvestrov, S.: A review on Hom-Gerstenhaber algebras and Hom-Lie algebroids, In: Silvestrov S., Malyarenko A., Rančić, M. (eds), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, 317, Springer, Ch. 11, 285-315 (2020).
https://doi.org/10.1007/978-3-030-41850-2_11

[85] Ni, X., Bai, C.: Prealternative algebras and prealternative bialgebras, Pacific J. Math. 248(2), 355-391 (2010) (arXiv:0907.3391[math-ph])

[86] Ongong’a, E., Richter, J., Silvestrov, S. D.: Classification of 3-dimensional Hom-Lie algebras, J. Phys. Conf. Ser. 1194(1), 012084 (2019).
https://doi.org/10.1088/1742-6596/1194/1/012084

[87] Ongong’a, E., Richter, J., Silvestrov, S. D.: Hom-Lie structures on 3-dimensional skew symmetric algebras, J. Phys. Conf. Ser. 1416(1), 012025 (2019). https://doi.org/10.1088/1742-6596/1416/1/012025

[88] Ongong’a, E., Richter, J., Silvestrov, S: Hom-Lie Structures on Complex 4-Dimensional Lie Algebras, In: Dobrev V. (eds), Lie Theory and Its Applications in Physics. LT 2019, Springer Proceedings in Mathematics and Statistics, 335, Springer, 373-381 (2020).
https://doi.org/10.1007/978-981-15-7775-8_28

[89] Ongong’a, E., Richter, J., Silvestrov, S: Classification of low-dimensional Hom-Lie Algebras. In: Silvestrov S., Malyarenko A., Rančić, M. (Eds.), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, 317, Springer, Ch 9, 223-256 (2020).
https://doi.org/10.1007/978-3-030-41850-2_9

[90] Remm, E., Goze, M.: On the algebraic variety of Hom-Lie algebras. arXiv:1706.02484 [math.RA]

[91] Richard, L., Silvestrov, S. D.: Quasi-Lie structure of σ-derivations of \(\mathbb{C}[t^{\pm}]\), J. Algebra, 319(3), 1285-1304 (2008).
https://doi.org/10.1016/j.jalgebra.2007.09.029
[92] Richard, L., Silvestrov, S.: A note on quasi-Lie and Hom-Lie structures of \(\sigma \)-derivations of \(\mathbb{C}[z_1^{\pm 1}, \ldots, z_n^{\pm 1}] \), In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, Springer-Verlag, Berlin, Heidelberg, Ch. 22, 257-262 (2009). https://doi.org/10.1007/978-3-540-85332-9_22

[93] Saadaou, N, Silvestrov, S.: On \((\lambda, \mu, \gamma)\)-derivations of BiHom-Lie algebras, arXiv:2010.09148 [math.RA]

[94] Sheng, Y.: Representations of Hom-Lie algebras, Algebr. Represent. Theory, 15, 1081-1098 (2012)

[95] Sheng, Y., Chen, D.: Hom-Lie 2-algebras, J. Algebra 376, 174-195 (2013)

[96] Sheng, Y., Bai, C.: A new approach to Hom-Lie bialgebras, J. Algebra, 399, 232-250 (2014)

[97] Sheng, Y., Xiong Z.: On Hom-Lie algebras, Linear and Multilinear Algebra, 63(12), 2379-2395 (2015)

[98] Sigurdsson, G., Silvestrov, S.: Graded quasi-Lie algebras of Witt type, Czechoslovak J. Phys. 56, 1287-1291 (2006)

[99] Sigurdsson, G., Silvestrov, S.: Lie color and Hom-Lie algebras of Witt type and their central extensions, In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (Eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, Springer-Verlag, Berlin, Heidelberg, Ch. 21, 247-255 (2009)

[100] Silvestrov, S.: Paradigm of quasi-Lie and quasi-Hom-Lie algebras and quasi-deformations, In ”New techniques in Hopf algebras and graded ring theory”, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 165-177 (2007)

[101] Silvestrov, S., Zargeh, C.: HNN-extension of involutive multiplicative Hom-Lie algebras, arXiv:2101.01319 [math.RA]

[102] Sun, B.: The construction of Hom-Novikov superalgebras, Mathematica Aeterna, 6(4), 605-609 (2016)

[103] Wang, C., Zhang, Q., Wei, Z.: Hom-Leibniz superalgebras and hom-Leibniz poisson superalgebras, Hacettepe J. Math. and Statistics, 44(5), 1163-1179 (2015)

[104] Yau, D.: Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2(2), 95–108 (2008)

[105] Yau, D.: Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A, 42, 165202 (2009)

[106] Yau, D.: Hom-algebras and homology, J. Lie Theory, 19(2), 409-421 (2009)
[107] Yau, D.: Non-commutative Hom-Poisson algebras, arXiv:1010.3408

[108] Yau, D.: Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra, 8, 45-64 (2010). (arXiv:0810.4866[math.RA] (2008))

[109] Yau, D.: A Hom-associative analogue of n-ary Hom-Nambu algebras, arXiv:1005.2373 [math.RA] (2010)

[110] Yau, D.: On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62, 506–522 (2012)

[111] Yau, D.: Hom-Malcev, Hom-alternative and Hom-Jordan algebras, Int. Electron. J. Algebra, 11, 177-217 (2012)

[112] Yuan, L.: Hom-Lie color algebra structures, Comm. Algebra, 40(2), 575-592 (2012)

[113] Zhou, J., Chen, L., Ma, Y.: Generalized derivations of Hom-Lie superalgebras, Acta Math. Sinica (Chin. Ser.) 58, 3737-3751 (2014)