Abstract. Let X be a nondegenerate Peano unicoherent continuum. The family $CB(X)$ of proper subcontinua of X with connected boundaries is a G_δ-subset of the hyperspace $C(X)$ of all subcontinua of X. If every nonempty open subset of X contains an open subset homeomorphic to \mathbb{R}^n (such space is called π-n-Euclidean) and $2 \leq n < \infty$, then $C(X) \setminus CB(X)$ is recognized as an F_σ-absorber in $C(X)$; if additionally, no one-dimensional subset separates X, then the family of all members of $CB(X)$ which separate X is a $D_2(F_\sigma)$-absorber in $C(X)$, where $D_2(F_\sigma)$ denotes the small Borel class of differences of two σ-compacta.

All continua in the paper are metric. For a continuum X, we consider the hyperspaces
$$2^X = \{A \subset X : A \text{ is closed and nonempty}\}$$
and
$$C(X) = \{A \in 2^X : A \text{ is connected}\}$$
with the Hausdorff metric. Define
$$CB(X) = \{A \in C(X) \setminus \{X\} : Bd(A) \text{ is connected}\},$$
where $Bd(A)$ denotes the boundary of A in X.

1. Evaluation of the Borel complexity of $CB(X)$

K. Kuratowski observed in [7, p. 156] that, for any compact nondegenerate X, the function $\alpha : 2^X \setminus \{X\} \rightarrow 2^X$, $\alpha(A) = \overline{X \setminus A}$ is lower semicontinuous, hence of the first Borel class, while the function $Bd : 2^X \setminus \{X\} \rightarrow 2^X$, $A \mapsto Bd(A) = A \cap \overline{X \setminus A}$, is of the second Borel class for any nondegenerate continuum X. It means that, for each nondegenerate continuum X, the preimage $\alpha^{-1}(D)$ of a closed
subset $D \subset 2^X$ is G_δ and the preimage $Bd^{-1}(D)$ is $F_{\sigma\delta}$ in $2^X \setminus \{X\}$. It follows that the preimages are also G_δ and $F_{\sigma\delta}$ subsets of 2^X. Since $CB(X) = C(X) \cap Bd^{-1}(C(X))$, we have the following proposition.

Proposition 1.1. If X is a nondegenerate continuum, then $CB(X)$ is an $F_{\sigma\delta}$-subset of 2^X.

Actually, in many cases the Borel class of $CB(X)$ can be reduced. For example, one can easily see that

1. if X is the circle S^1 then $CB(X)\cap \text{top}$ is compact;
2. $CB(I)$ is homeomorphic to the real line \mathbb{R}, so it is an absolute G_δ-set;
3. if X is an indecomposable nondegenerate continuum, then the family $CB(X)$ is also G_δ since it is equal to $C(X) \setminus \{X\}$.

Lemma 1.2. If X is a nondegenerate unicoherent continuum then $CB(X) = C(X) \cap \alpha^{-1}(C(X))$.

Proof. If $C \in CB(X)$, then $Bd(C) = C \cap \overline{X \setminus C}$ is connected and since $X = C \cup \overline{X \setminus C}$ is connected, the set $X \setminus C$ is also connected by a well known fact [8, Corollary 5, p. 133]. Thus $C \in C(X) \cap \alpha^{-1}(C(X))$.

The converse implication follows directly from the unicoherence of X. \square

Since α is of the first Borel class, Lemma 1.2 implies the following proposition.

Proposition 1.3. If X is a nondegenerate unicoherent continuum then $CB(X)$ is a G_δ-subset of $C(X)$.

2. **Subcontinua with connected boundaries in π-Euclidean unicoherent Peano continua**

Recall that a family \mathcal{U} of nonempty open subsets of a space Y is a π-base of Y if each nonempty open subset of Y contains some $U \in \mathcal{U}$.

Definition 2.1. A space Y is said to be π-Euclidean if there exist $n \in \mathbb{N}$ and a π-base of Y whose elements are homeomorphic to \mathbb{R}^n; such Y will be also called π-n-Euclidean.

In this section we assume that X is a nondegenerate unicoherent Peano continuum without free arcs. Then the hyperspace $C(X)$ is a Hilbert cube [4].

One can immediately notice that every subcontinuum of X is approximated (in the Hausdorff metric) by arcs and the arcs are nowhere dense in X, so they belong to $CB(X)$. Thus, we have
Proposition 2.2. $CB(X)$ is a dense $G_δ$-subset of $C(X)$.

Imposing yet an additional structure on X we can fully characterize the family $CB(X)$ in the next theorem which is our main result of this section.

Notice that if $n \geq 2$ then a π-Euclidean space contains no free arcs.

Theorem 2.3. If X is π-Euclidean, $n \geq 2$, then there is a homeomorphism $h : I^∞ \to C(X)$ such that $h((0,1)^∞) = CB(X)$.

In proving the theorem we will rather concentrate on the complement $C(X) \setminus CB(X)$ and show that it is an $F_σ$-absorber in $C(X)$. For a basic terminology and facts on such absorbers the reader is referred to [9] and [3]. Recall here that, given a class \mathcal{M} of spaces which is topological (i.e., if $M \in \mathcal{M}$ then each homeomorphic image of M is in \mathcal{M}) and closed hereditary (i.e., each closed subset of $M \in \mathcal{M}$ is in \mathcal{M}), a subset A of a Hilbert cube Q is called an \mathcal{M}-absorber in Q if

1. $A \in Q$,
2. A is strongly \mathcal{M}-universal, i.e. for each $M \subset I^ω$ from the class \mathcal{M} and each compact set $K \subset I^ω$, any embedding $f : I^ω \to Q$ such that $f(K)$ is a Z-set in Q can be approximated arbitrarily closely by an embedding $g : I^ω \to Q$ such that $g(I^ω)$ is a Z-set in Q, $g|K = f|K$ and $g^{-1}(A) \setminus K = M \setminus K$.
3. A is contained in a $σZ$-set in Q.

If $A \subset Q$ is an \mathcal{M}-absorber in Q and $B \subset I^∞$ is an \mathcal{M}-absorber in $I^∞$, then there is a homeomorphism $h : I^∞ \to Q$ such that $h(B) = A$ [9, Theorem 5.5.2].

We will be interested in two classes \mathcal{M}: the Borel class of $F_σ$-subsets of the Hilbert cube and the small Borel class $D_2(F_σ)$ of all subsets of the Hilbert cube that are differences of two $F_σ$-sets. In the first case, property (3) above is redundant in presence of (1) and (2) (see [1, Theorem 5.3]). The pseudo-boundary $\partial(I^∞) = \{(t_i) \in I^∞ : t_i \in \{0,1\} \text{ for some } i\}$ is a standard $F_σ$-absorber in $I^∞$, while $\partial(I^∞) \times (0,1)^∞$ is a $D_2(F_σ)$-absorber in $I^∞ \times I^∞$.

Proposition 2.4. If X contains an open subset homeomorphic to \mathbb{R}^n, $2 \leq n < ∞$, then $C(X) \setminus CB(X)$ is $F_σ$-universal, i.e., for each $F_σ$-subset M of the Hilbert cube $I^∞$, there is an embedding $φ : I^∞ \to C(X)$ such that

\[
φ^{-1}(C(X) \setminus CB(X)) = M.
\]
Proof. For convenience, assume that X contains $(-3, 3)^n$ as an open subset. Let us construct an embedding $\Theta : I^\infty \to C(X)$ such that

$$ (2.2) \quad \Theta((t_k)) \in C(X) \setminus CB(X) \quad \text{if and only if} \quad (t_k) \in \partial(I^\infty). $$

Denote $D := I^n \setminus \left(\frac{1}{3}, \frac{2}{3}\right)^n$ and, for $t \in [0, 1]$,

$$ D(t) := D \setminus \left(\frac{1}{3}, \frac{1}{3}(1 + t)\right) \times \left[0, \frac{1}{3}\right] \times \left(\frac{1}{3}, \frac{2}{3}\right)^{n-2} $$

(let us agree that $D(t) = D \setminus \left(\frac{1}{3}, \frac{1}{3}(1 + t)\right) \times \left[0, \frac{1}{3}\right]$ if $n = 2$ and $D(0) = D$),

$$ D_k(t) := \left(\frac{1}{2k}, 0, \ldots, 0\right) + \frac{1}{2k} D(t(1 - t)), \quad k \in \mathbb{N}, $$

and consider segments $L_k(t)$ in $(-3, 3)^n$ from

$$ \left(\frac{1}{2k}, -\frac{t}{2k}, 0, \ldots, 0\right) \quad \text{to} \quad \left(\frac{1}{2k}, \frac{1 + t}{2k}, 0, \ldots, 0\right). $$

So, D is the cube I^n with the smaller open cube $D' = \left(\frac{1}{3}, \frac{2}{3}\right)^n$ subtracted; its boundary in $(-3, 3)^n$ has two components. $D(t)$ is obtained from D by removing a cube $D'(t) = \left(\frac{1}{3}, \frac{1}{3}(1 + t)\right) \times \left[0, \frac{1}{3}\right] \times \left(\frac{1}{3}, \frac{2}{3}\right)^{n-2}$ adjacent to the both components; the size of $D'(t)$ continuously depends on parameter t so that the boundary of $D(t)$ is connected if and only if $t > 0$. The sets $D_k(t_k)$ are copies of $D(t_k(1 - t_k))$ scaled by factors $\frac{1}{2k}$ and shifted by vectors $\left(\frac{1}{2k}, 0, \ldots, 0\right)$, correspondingly. The union of all $D_k(t_k)$’s compactified by the point $(0, \ldots, 0)$ is a continuum whose boundary is connected if and only if each parameter t_k is strictly between 0 and 1; moreover, the continuum continuously depends on sequence (t_k) but not in a one-to-one fashion. In order to get the one-to-one correspondence, we attach segments $L_k(t_k)$ (Figure 1). Formally, we define an embedding

$$ (2.3) \quad \Theta((t_k)) = \{(0, \ldots, 0)\} \cup \bigcup_{k=1}^{\infty} (L_k(t_k) \cup D_k(t_k)) \subset (-3, 3)^n. $$

Since the pseudo-boundary $\partial(I^\infty)$ is strongly F_σ-universal, it is F_{σ}-universal, in particular. So, there exists, for each F_{σ}-set $M \subset I^\infty$, an embedding $\chi : I^\infty \to I^\infty$ such that $\chi^{-1}(\partial(I^\infty)) = M$. Hence, the composition $\varphi = \Theta \chi : I^\infty \to C(X)$ satisfies (2.1).

\square
Lemma 2.5. If X is π-n-Euclidean, $2 \leq n < \infty$, then $C(X) \setminus CB(X)$ is strongly F_σ-universal.

Proof. The proof is based on a technique developed in [2, 3]. For our purpose, we closely follow its rough description given in [6, Section 3.2]. Without loss of generality, we can assume that φ from Proposition 2.4 satisfies

$$\varphi(I^\infty) \subset C((0,1)^n) \subset C(I^n) \subset C(X).$$

Given an F_σ-subset M of I^ω, for each open non-empty subset U of X and an open copy of $(0,1)^n$ in U, let $\varphi_U : I^\omega \to C(U)$ be a composition of φ with an embedding of $C(I^n)$ into the hyperspace of that copy. Then

$$\varphi^{-1}_U(C(X) \setminus CB(X)) = M$$

which means that

$$\varphi_U(q) \in C(X) \setminus CB(X) \text{ if and only if } \varphi(q) \in C(X) \setminus CB(X) \text{ if and only if } q \in M.$$

Notice that the equivalences remain valid if, given $q \notin K$, we add to the one-dimensional part $A(q)$, appearing in the construction of embedding $g(q)$, finitely many pairwise disjoint sets $\varphi_{U_i}(q)$, $i < m$ for some $m \in \mathbb{N}$, such that $A(q) \cap \varphi_{U_i}(q)$ is a singleton for each i. It follows that $g^{-1}(C(X) \setminus CB(X)) \setminus K = M \setminus K$. Now, the construction of embedding g, as presented in [6, Section 3.2], satisfies all the required conditions.

\[\square\]

Proof of Theorem 2.3. By Proposition 1.3 and Lemma 1.2, $C(X) \setminus CB(X)$ is an F_σ-absorber in $Q = C(X)$. Hence, there exists a homeomorphism $h : I^\infty \to C(X)$ such that $h(\partial(I^\infty)) = C(X) \setminus CB(X)$. \[\square\]
Separators with connected boundaries.

Now, let $S(X) := \{C \in 2^X : C \text{ separates } X\}$, $N(X) := \{C \in 2^X : \text{int } C = \emptyset\}$.

By [6 Proposition 5.1] and Proposition 1.3 we get

Proposition 2.6. $S(X) \cap CB(X) \in D_2(F_\sigma)$.

It is proved in [6 Theorem 5.8] that $S(X) \cap N(X) \cap C(X)$ is a $D_2(F_\sigma)$-absorber in $C(X)$ if X satisfies hypotheses of Theorem 2.3 $n \geq 3$ and no subset of dimension ≤ 1 separates X. In a similar way, we will show that $S(X) \cap CB(X)$ is also a $D_2(F_\sigma)$-absorber in $C(X)$ for such X.

Proposition 2.7. If X contains an open subset homeomorphic to \mathbb{R}^n, $2 \leq n < \infty$, then $S(X) \cap CB(X)$ is $D_2(F_\sigma)$-universal in $C(X)$, i.e., for each $D_2(F_\sigma)$-subset M of I^∞, there is an embedding $f : I^\infty \to C(X)$ such that

$$f^{-1}(S(X) \cap CB(X)) = M.$$

Proof. Without loss of generality, we can again assume that $(-3, 3)^n$ is an open subset of X. In [6 Proposition 5.2], an embedding $\Psi : I^\infty \to C(X)$ is constructed such that

$$\Psi((q_k)) \in S(X) \text{ if and only if } (q_k) \in \partial(I^\infty).$$

For each (q_k), continuum $\Psi((q_k))$ can be located in $[-1, 0] \times [-1, 1]^{n-1}$ as a subset consisting of the segment $L' = [-1, 0] \times \{0, \ldots, 0\}$ and of a subset of the union of cubes $[\frac{1}{2k}, \frac{1}{2k+1}] \times [\frac{1}{2k}, \frac{1}{2k}]^{n-1}$, $k \in \mathbb{N}$.

We can now combine both embeddings $\Theta(2.3)$ and $\Psi(2.6)$ to define an embedding $\Phi : I^\infty \times I^\infty \to C(X)$ satisfying

$$\Phi((q_k), (t_k)) \in S(X) \cap CB(X) \text{ if and only if } ((q_k), (t_k)) \in \partial(I^\infty) \times (0, 1)^\infty,$$

by putting

$$\Phi((q_k), (t_k)) = \Psi((q_k)) \cup \Theta((t_k)).$$

Since $\partial(I^\infty) \times (0, 1)^\infty$ is strongly $D_2(F_\sigma)$-universal in $I^\infty \times I^\infty$, there exists, for each $D_2(F_\sigma)$-set $M \subset I^\infty$, an embedding $\tau : I^\infty \to I^\infty \times I^\infty$ such that $\tau^{-1}(\partial(I^\infty) \times (0, 1)^\infty) = M$. Hence, the composition $f = \Phi \tau : I^\infty \to C(X)$ satisfies 2.8. Similarly as in 2.4, we can additionally assume that $(0, 1)^n$ is an open subset of X and

$$f(I^\infty) \subset C(I^n) \subset C(X).$$

\qed
Theorem 2.8. If X is π-n-Euclidean and no subset of dimension ≤ 1 separates X, then there is a homeomorphism $h : I^\infty \times I^\infty \to C(X)$ such that $h(\partial I^\infty \times (0,1)^\infty) = S(X) \cap \text{CB}(X)$.

Proof. Since subsets of dimension ≤ 1 do not separate X, $n = \dim X \geq 3$.

1. By Proposition 2.6, family $S(X) \cap \text{CB}(X)$ is $D_2(F_\sigma)$.

2. To prove the strong $D_2(F_\sigma)$-universality, we proceed similarly as in the proof of Lemma 2.5. We just replace φ with embedding f from Proposition 2.7 satisfying (2.9) and family $C(X) \setminus \text{CB}(X)$ with $S(X) \cap \text{CB}(X)$. Then, for an arbitrary fixed $D_2(F_\sigma)$-set $M \subset I^\infty$, we have

$$\varphi_U(q) \in S(X) \cap \text{CB}(X) \text{ if and only if } f(q) \in S(X) \cap \text{CB}(X) \text{ if and only if } q \in M.$$

For $q \notin K$, attaching finitely many pairwise disjoint sets $\varphi_U(q)$, to the one-dimensional part $A(q)$ at single points does not change the above equivalences (no one-dimensional set separates X) which means that the required embedding g satisfies

$$g^{-1}(C(X) \setminus \text{CB}(X)) \setminus K = M \setminus K.$$

3. $S(X) \cap \text{CB}(X)$ is contained in the F_σ-absorber $S(X) \cap C(X)$ in $C(X)$ (see [6, Theorem 5.3]), so in a σZ-set in $C(X)$.

Thus we conclude that $S(X) \cap \text{CB}(X)$ is a $D_2(F_\sigma)$-absorber in $C(X)$ and the required homeomorphism h exists.

Acknowledgments

The author is indebted to the organizers of the 11th Workshop on Continuum Theory and Hyperspaces at UNAM, Cuernavaca, México, 2017, for invitation and its participants for inspiring discussions on the class $\text{CB}(X)$. Rusell-Aaron Quiñones-Estrella initiated the study of continua with connected boundaries (at the 10th Workshop in 2016) and Norberto Ordoñez asked about the Borel complexity and characterization of $\text{CB}(X)$; they are also coauthors of recent paper [5] devoted to the continua.

References

1. J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182.
2. T. Banakh and R. Cauty, Hyperspaces of nowhere topologically complete spaces, (Russian) Mat. Zametki 62 (1997), 35–51; translation in Math. Notes 62 (1997), 30–43 (1998).
3. R. Cauty, Suites F_σ-absorbantes en théorie de la dimension, Fund. Math. 159 (1999), 115–126.
4. D. Curtis and M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), 19–38.
5. R. Escobedo, N. Ordoñez, R. A. Quiñones-Estrella and H. Villanueva, The hyperspace of connected boundary subcontinua of a continuum, preprint.
6. P. Krupski and A. Samulewicz, More absorbers in hyperspaces, Topology Appl. 221 (2017), 352–369.
7. K. Kuratowski, Les fonctions semi-continues dans l’espace des ensembles fermés, Fund. Math. 18 (1932), 148–159.
8. K. Kuratowski, Topology. Vol. II, Academic Press-PWN, 1968.
9. J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland, 2002.

E-mail address: pawel.krupski@pwr.edu.pl

Department of Computer Science, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspińskiego 27, 50-370 Wroclaw, Poland.