A Novel Cluster-Based Cooperative MIMO Scheme for Multi-Hop Wireless Sensor Networks

Yong Yuan, Min Chen, and Taekyoung Kwon

1 Department of Electronics and Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Department of Electrical and Computer Engineering, University of British Columbia, BC, Canada V6T 1Z4
3 School of Computer Science and Engineering, Seoul National University, Seoul 151742, South Korea

Received 4 November 2005; Revised 11 April 2006; Accepted 26 May 2006

A cluster-based cooperative multiple-input-multiple-output (MIMO) scheme is proposed to reduce the adverse impacts caused by radio irregularity and fading in multi-hop wireless sensor networks. This scheme extends the LEACH protocol to enable the multi-hop transmissions among clusters by incorporating a cooperative MIMO scheme into hop-by-hop transmissions. Through the adaptive selection of cooperative nodes and the coordination between multi-hop routing and cooperative MIMO transmissions, the scheme can gain effective performance improvement in terms of energy efficiency and reliability. Based on the energy consumption model developed in this paper, the optimal parameters to minimize the overall energy consumption are found, such as the number of clusters and the number of cooperative nodes. Simulation results exhibit that the proposed scheme can effectively save energy and prolong the network lifetime.

Copyright © 2006 Yong Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Due to the limited energy and difficulty to recharge a large number of sensors, energy efficiency and maximizing network lifetime have been the most important design goals for wireless sensor networks (WSNs). However, channel fading, interference, and radio irregularity pose big challenges on the design of energy efficient communication and routing protocols in the multi-hop WSNs.

As the MIMO technology has the potential to dramatically increase the channel capacity and reduce transmission energy consumption in fading channels [1], cooperative MIMO schemes have been proposed for WSNs to improve communication performance [2–5]. In those schemes, multiple individual single-antenna nodes cooperate on information transmission and/or reception for energy-efficient communications. Cui et al. [2] analyzed a cooperative MIMO scheme with Alamouti code for single-hop transmissions in WSNs. Li [3] proposed a delay and channel estimation scheme without transmission synchronization for decoding for such cooperative MIMO schemes. Li et al. [4] also proposed a STBC-encoded cooperative transmission scheme for WSNs without perfect synchronization. Jayaweera [5] considered the training overhead of such schemes.

However, in the above proposals, the multi-hop routing and distributed operations in WSNs are not taken into consideration, which limits the practical use of the cooperative MIMO schemes in WSN. In this paper we study the feasibility of a cooperative MIMO scheme in multi-hop WSNs. Radio irregularity of wireless communications and multi-hop routing is considered with the cooperative MIMO scheme. On the other hand, due to its ability of frequency reuse and efficiency in processing highly correlated data, clustering is efficient in the design of WSNs. Therefore, we incorporate the cooperative MIMO scheme with the LEACH protocol, which is an efficient clustering protocol due to its energy-efficient, randomized, adaptive, and self-configuring cluster formation. As only single-hop communications from cluster heads to the sink are considered in the original LEACH protocol, we modify the LEACH protocol to allow cluster heads to form a multi-hop backbone and incorporate the cooperative MIMO scheme into each single-hop transmission. Based on the proposed scheme, we investigate the energy consumption of each transmission/reception. Then, the overall energy consumption model is developed, and the optimal parameters of the scheme are found such as the number of clusters and the number of cooperative nodes.
The remainder of the paper is organized as follows. In Section 2 we describe the design of the proposed cluster-based cooperative MIMO scheme (multi-hop MIMO-LEACH). The overall energy consumption of the proposed scheme is analyzed in Section 3. Section 4 presents simulation results and discussions. Section 5 concludes the paper.

2. THE MULTI-HOP MIMO-LEACH SCHEME

In this section, we will discuss the proposed multi-hop MIMO-LEACH scheme, which is illustrated in Figure 1. First, the strategy to find appropriate cooperative nodes in the single-hop communications between cluster heads is proposed in Section 2.1. Based on the strategy, the multi-hop MIMO-LEACH scheme is presented in Section 2.2.

2.1. Strategy to choose cooperative nodes

To maximize the performance of single-hop communications between cluster heads, an appropriate strategy should be taken to choose the optimal cooperative nodes. Suppose that the current cluster head will use \(f \) cooperative nodes to transmit data to its neighboring cluster head \(t \) by the cooperative MIMO scheme. An AWGN channel with squared power path loss is assumed for intracluster communications. For the intercluster communications, we assume the transmission from each cooperative node experiences frequency-nonselective and slow Rayleigh fading. Furthermore, the long distance between any two nodes in the network with respect to the wavelength gives rise to independent fading coefficients for the cooperative nodes. The rationale behind such channel assumptions is that the inter-cluster transmission distance is much larger than the intra-cluster transmission distance and the transmission environments are more complex in the inter-cluster communication.

Denote the distance between node \(j \) and its current cluster head by \(d_{jt} \). Also, denote the distance and path loss for node \(j \) to communicate with \(t \) as \(d_{jt} \) and \(k_{jt} \), respectively. For each single-hop transmission, the current cluster head will broadcast a data packet to the cooperative nodes. Then, the cooperative nodes will encode and transmit the transmission sequence according to the orthogonal space-time block codes (STBC) to cluster head \(t \) toward the sink node. The energy consumption for these two operations in the single-hop transmission will be modeled in the remainder of this section. Then, a novel strategy will be developed to find the optimal set of cooperative nodes to minimize the overall energy consumption. In developing the strategy, we assume BPSK is adopted as the modulation scheme and the bandwidth is \(B \) Hz.

(1) The energy consumption for the intracluster transmission

Denote by \(E_{\text{bt}}(1) \) the energy consumption for the current cluster head to broadcast one bit to the cooperative nodes. \(E_{\text{bt}}(1) \) can be broken down into two main components, the transmit energy consumption \(E_{\text{bt}}(1) \) and the circuit energy consumption \(E_{\text{bt}}(1) \).

The BER performance for BPSK is \(P_b = Q(\sqrt{r}) \). Here \(r \) is the signal-to-noise ratio (SNR), which is defined as \(r = P_t/(2BN_f\sigma^2) \) [6] under the assumption of AWGN channel, where \(P_t \) is the received signal power, \(\sigma^2 \) is the power density of the AWGN, and \(N_f \) is the receiver noise figure.

In the high SNR regime, we can approximate the BER performance as \(P_b = e^{-r} \) by the Chernoff bound [6]. Hence, we obtain \(P_t = -2BN_f\sigma^2\ln(P_b) \). As the assumption of squared power path loss, \(E_{\text{bt}}(1) \) can be modelled by

\[
E_{\text{bt}}(1) = E_{\text{int}}(1) + E_{\text{cr}}(1)
= -2(1+\alpha)N_f\sigma^2\ln(P_b)G_1d_{\text{max}}^2M_1 + \frac{P_{\text{ct}} + JP_{\text{cr}}}{B},
\]

where \(d_{\text{max}} \) is the maximum distance from the cooperative nodes to the cluster head, \(\alpha \) is the efficiency of the RF power amplifier, \(G_1 \) is the gain factor at \(d_{\text{max}} = 1 \), \(M_1 \) is the link margin, \(N_f \) is the receiver noise figure, and \(P_{\text{ct}} \) and \(P_{\text{cr}} \) are the circuit power consumption of the transmitter and receiver, respectively [2].

Let \(f_i(P_b) = -2N_f\sigma^2\ln(P_b) \) and \(H(d_{\text{max}}) = G_1Md_{\text{max}}^2 \).

Then, (1) can be rewritten as

\[
E_{\text{bt}}(1) = (1+\alpha)f_i(P_b)H(d_{\text{max}}) + \frac{P_{\text{ct}} + JP_{\text{cr}}}{B}.
\]

According to the definition, \(H(d_j) \) can be measured as follows. Let the current cluster head transmit a signal with transmit power \(P_{\text{out}} \). Then, the power of the received signal at its cluster member, node \(j \), is \(P_{\text{in}} = P_{\text{out}}/H(d_j) \). Therefore, \(H(d_j) \) can be measured as

\[
H(d_j) = \frac{P_{\text{out}}}{P_{\text{in}}^{\alpha}}.
\]
From (2), we can find that the energy consumption in the intra-cluster transmission, $E_{bt}(1)$, can be reduced by choosing the nearer cooperative nodes.

(2) The energy consumption for the inter-cluster transmission

To analyze the energy consumption for inter-cluster transmissions based on the cooperative scheme, denoted by $E_{bt}(2)$, we refine the results in [2]. In [2] an equal transmit power allocation scheme is used as the channel state information (CSI) is not available at the transmitter. If the average attenuation of the channel for each cooperative node pair can be estimated, we can use an equal signal-to-noise (SNR) policy [7] to allocate the transmit power for its effectiveness and simplicity. The average energy consumption per bit transmission by BPSK in such a scheme can be approximated by

$$E_{bt}(2) = (1 + \alpha) \frac{N_0}{P_b} \sum_{j=1}^{l} \frac{(4\pi)^2 d_{jt}^2}{G_t G_r \lambda^2} M_l N_f$$

$$+ \frac{(JP_{ct} + P_{tr})}{B},$$

where N_0 is the single-sided noise power spectral density, P_b is the desired BER performance, G_t and G_r are the transmit and receiver antenna gains, respectively, also, λ is the carrier wavelength [2]. The training overhead and transmission rate are not considered in (4), which will be considered in Section 3.

The average attenuation of the channel for node j can be estimated as follows. Assume the channel is symmetric, and t transmits a signal with transmit power P_{out}, then the power of the received signal at node j, P_{jt}, can be given by

$$P_{jt} = P_{out} \frac{G_t G_r \lambda^2}{(4\pi)^2 d_{jt}^2} M_l N_f = \frac{P_{out}}{G(d_{jt}, k_{jt})},$$

where $G(d_{jt}, k_{jt}) = P_{out}/P_{jt}$, $((4\pi)^2 d_{jt}^2/G_t G_r \lambda^2) M_l N_f$. Therefore, (4) can be reformulated as

$$E_{bt}(2) = (1 + \alpha) \frac{N_0}{P_b} \sum_{j=1}^{l} G(d_{jt}, k_{jt}) + \frac{(JP_{ct} + P_{tr})}{B}$$

$$= (1 + \alpha) f_2(P_b) \sum_{j=1}^{l} G(d_{jt}, k_{jt}) + \frac{(JP_{ct} + P_{tr})}{B}. \quad (6)$$

According to (6), the transmit power of node j to communicate with cluster head t can be described by

$$P_{out,jt} = G(d_{jt}, k_{jt}) \frac{N_0 B}{P_b^{1/f_2}}. \quad (7)$$

(3) The strategy to choose cooperative nodes

Based on (2) and (6), the overall energy consumption for the single-hop transmission can be written as (8)

$$E_{bt} = E_{bt}(1) + E_{bt}(2)$$

$$= (1 + \alpha) \left[f_1(P_b) H(d_{max}) + f_2(P_b) \sum_{j=1}^{l} G(d_{jt}, k_{jt}) \right]$$

$$+ \frac{(J + 1)(P_{ct} + P_{tr})}{B}.$$

From (8), the energy consumption for the intra-cluster transmission $E_{bt}(1)$ and inter-cluster transmission $E_{bt}(2)$ should be traded off to minimize E_{bt}. E_{bt} can be minimized by choosing an appropriate set of cooperative nodes, which can minimize $f_1(P_b) H(d_{max}) + f_2(P_b) \sum_{j=1}^{l} G(d_{jt}, k_{jt})$. In order to simplify the distributed strategy design, the cooperative nodes should be chosen as the nodes whose $f_1(P_b) H(d_{jt}) + f_2(P_b) G(d_{jt}, k_{jt})$ are minimal. In addition, in order to balance the energy consumption, the selection criterion is defined as

$$\beta_{jt} = \frac{E_j}{f_1(P_b) H(d_{jt}) + f_2(P_b) G(d_{jt}, k_{jt})},$$

where E_j is the remaining energy in the current round for node j. The rationale behind definition of β_{jt} is that the node, which has a good tradeoff between $E_{bt}(1)$ and $E_{bt}(2)$ and has more remaining energy, should have a larger chance to be selected as cooperative node. Therefore, J nodes with maximum β_{jt} will be chosen as the cooperative nodes to communicate with cluster head t.

2.2. Scheme design

In this section, we will discuss how to enable cluster heads to form a multi-hop backbone by incorporating the cooperative MIMO scheme into the LEACH protocol for each single-hop transmission. As assumed in the LEACH protocol, each node has a unique identifier (ID). The transmit power of each node can be adjusted, and the nodes are assumed to be always synchronized. Similarly, the operations of the proposed scheme are broken into rounds. Each round consists of three phases: (i) cluster formation phase, during which the clusters are organized and cooperative MIMO nodes are selected; (ii) routing phase, during which a routing table in each selected node is constructed; and (iii) transmission phase, during which data are transferred from the nodes to the cluster heads and forwarded to the sink according to the routing table.

(1) Cluster formation phase

In this phase, each node will elect itself to be a cluster head with a probability p as specified in the original LEACH protocol. After the cluster heads are elected, each cluster head will broadcast an advertisement message (ADV) by transmit power P_{out} using a nonpersistent CSMA MAC protocol. The
message contains the head’s ID. If a cluster head receives the advertisement message from another head t and the received signal strength (RSS) exceeds a threshold t_h, it will take cluster head t as a neighboring cluster head and record t’s ID. As for the noncluster head, node j, it will record all the RSSs of the received advertisement messages, and choose the cluster head whose RSS is the maximum. Then, it will calculate and save $H(d_j), G(d_{jt}, k_{jt}), \beta_{jt}$, and $P_{out_{jt}}$ by (3), (5), (7), and (9). Then node j will join the cluster by sending a join-request message (Join-REQ) to the chosen cluster head. This message contains the information of the node’s ID, the chosen cluster head’s ID, and the corresponding values of β_{jt}. After a cluster head has received all join-request messages, it will set up a TDMA schedule and transmit this schedule to its members as in the original LEACH protocol. If the sink receives the advertisement message, it will find the cluster head with the maximum RSS, and send the sink-position (Sink-POS) message to the cluster head and mark the cluster head as the target cluster head (TCH).

After the clusters are formed, each cluster head will select corresponding optimal J cooperative nodes for cooperative MIMO communications with each of its neighboring cluster heads. As stated in Section 2.1, J nodes with maximum β_{jt} will be chosen to communicate with a neighboring cluster head t. If no such J nodes can be found for t, t will be removed from the neighbor list, since too much energy is consumed for communicating with t. After selecting the cooperative nodes, the total energy per bit transmission for communications with t, E_{bit}, can be derived by (4). Then, E_{bit}, the ID set of the cooperative nodes for each neighboring cluster head, will be stored. At the end of this phase, the cluster head will broadcast a cooperate-request message (COOPERATE-REQ) to each cooperative node, which contains the ID of the cluster itself, the ID of the neighboring cluster head t, the IDs of the cooperative nodes, and the index of the cooperative nodes in the cooperative nodes set for each cluster head t. Each cooperative node that receives the cooperate-request message (COOPERATE-REQ) will store the ID of t, the index, and the transmit power $P_{out_{jt}}$ and send back a cooperate-ACK message (COOPERATE-ACK) to the cluster head.

(2) Routing table construction

To construct the routing table, the basic ideas of distance-vector-based routing will be used. Each cluster head will maintain a routing table, in which each entry contains destination cluster ID, next hop cluster ID, IDs of cooperative nodes, and mean energy per bit. Initially, only the neighboring cluster head will have a record in the routing table. Then each cluster head will simply inform its neighboring cluster heads of its routing table. After receiving route advertisements from neighboring cluster heads, the cluster head will update its routing table according to the route cost and advertise to its neighboring cluster heads the modified routes. After several rounds of route exchange and update, the routing table of each cluster head will be converged to the optimal one. Then, TCH will flood a target announcement message (TARGET-ANNOUNCEMENT) containing its ID to each cluster head to enable the creation of paths to the sink.

(3) Data transmission

In this phase, cluster members will transmit first their data to the cluster head by multiple frames as in the traditional LEACH protocol. In each frame, each cluster member will transmit its data during its allocated transmission slot specified by the TDMA schedule in cluster formation phase, and it will be sleep in other slots to save energy. The duration of a frame and the number of frames are the same for all clusters. Thus the duration of each slot depends on the number of members in the cluster. After a cluster head receives data frames from its cluster members, it will perform data aggregation to remove the redundancy in the data. After aggregating received data frames, the cluster head will forward the data packet to the TCH by multiple hops routing. In each single-hop communication, if there exist J-cooperative MIMO nodes, the cluster head will add a packet header to the data packet, which includes the information of source cluster ID, next-hop cluster ID, and destination cluster ID. Then the data packet is broadcasted. Once the corresponding cooperative nodes receive the data packet, they will encode the data packet by orthogonal STBC, and transmit the data as an individual antenna with transmission power $P_{out_{jt}}$ in the MIMO antenna array. In the cooperative MIMO scheme, the transmission delay and channel estimation scheme proposed in [3] can be used to solve the problem of imperfect synchronization in decoding.

3. THE ENERGY CONSUMPTION MODEL OF THE SCHEME

In this section, we will analyze the energy consumption of the scheme. Based on the result, we will develop an optimization model to find the optimal parameters in the scheme, including the number of clusters k_c, and the number of cooperative nodes J.

In analysis, we make the following assumptions. (1) There are N nodes distributed uniformly in an $M \times M$ region. (2) An AWGN channel with squared power path loss is assumed for the intracluster communication. (3) A flat Rayleigh fading channel with α-power path loss is assumed for the intercluster communication. (4) BPSK is used as the modulation scheme and the bandwidth is B Hz. (5) In each frame every node will send a packet with size s to the cluster head by probability P. The number of frames in each round is denoted by F_{tr}. (6) In maintaining the routing table in each round, each cluster head will broadcast the routing table, whose size is denoted by R_{ts} for R_{ts} times. (7) The energy consumption for data processing is ignored.

Now, we are ready to model the overall energy consumption in each round, denoted by $E(k_c, J)$. There are four energy consuming operations in each round. (1) The cluster members transmit data to the cluster head, whose energy consumption is denoted by $E_t(k_c)$. (2) The cluster heads construct the routing tables, whose energy consumption is
denoted by $E_r(k_c)$. (3) The cluster heads transmit aggregated data to the cooperative nodes in each single-hop transmission, whose energy consumption is denoted by $E_{e0}(k_c, J)$. (4) The cooperative nodes transmit the data to the next cluster head in each single-hop transmission; whose energy consumption is denoted by $E_c(k_c, J)$.

3.1. $E_b(k_c)$

In order to model $E_b(k_c)$, we will first analyze the energy consumption for the source nodes to transmit one bit to the cluster head, denoted by $E_{vb}(k_c)$.

Under the assumption of BPSK modulation and AWGN channel with squared power path loss, $E_{vb}(k_c)$ can be modelled in the same manner as $E_{vb}(1)$ in Section 2.1,

$$E_{vb}(k_c) = -2(1 + \alpha)N_f \sigma^2 \ln (P_b) G_1 E[d_{tc}^2] M_1 + \frac{P_{ct} + P_{ct}}{B}$$

$$= -\frac{1}{\pi k_c} (1 + \alpha)N_f \sigma^2 \ln (P_b) G_1 M_1^2 M_1 + \frac{P_{ct} + P_{ct}}{B},$$

where d_{tc} is the distance from the node to the cluster head, G_1 is the gain factor at $d_{tc} = 1$ m. In (10), we use the result in [8] that $E[d_{tc}^2] = M^2/2\pi k_c$.

On the other hand, when the number of clusters is k_c, the average number of members for each cluster is $[N/k_c]$. Hence, the total number of bits transmitted to the cluster head for each cluster by each round is $S_1(k_c) = [N/k_c] F_p N$. Therefore, $E_b(k_c) = k_c S_1(k_c) E_{vb}(k_c)$.

3.2. $E_r(k_c)$

In this section, we will model the energy consumption in constructing the routing table, denoted by $E_r(k_c)$. When the number of clusters is k_c, the radius of each cluster can be approximated as radius $= M/\sqrt{\pi k_c}$ [8]. Therefore, the distance between each pair of direct neighboring clusters can be approximated as $d_{noc} = 2 \times \text{radius} = 2M/\sqrt{\pi k_c}$. We also assume that the number of direct neighbors of each cluster is 4. Under the assumption of flat Rayleigh fading channel, $E_r(k_c)$ can be approximated by [2]

$$E_r(k_c) = k_c R_{es} R_{brt} \left((1 + \alpha) \frac{N_0}{P_b} \frac{(4\pi)^2 (2M)^k}{GtGr^2(\pi k_c)^k/2} M_1^2 N_f + \frac{P_{ct} + 4P_{ct}}{B} \right).$$

3.3. $E_{e0}(k_c, J)$

In this section, we will analyze the energy consumption for the cluster head to transmit aggregated data to the cooperative nodes, denoted by $E_{e0}(k_c, J)$. When the cluster head broadcasts the data, J cooperative nodes will receive it. Similar to the analysis of $E_{vb}(k_c)$, the energy per bit for this operation, denoted by $E_{e0}(k_c, J)$, can be described by

$$E_{e0}(k_c, J) = \frac{1}{\pi k_c} (1 + \alpha) N_f \sigma^2 \ln (P_b) G_1 N_f^2 M_1^2 \frac{P_{ct} + 1P_{ct}}{B}.$$

We adopt the aggregation model in [9] to describe the aggregation operation. The amount of data after aggregation for each round is $S_2(k_c) = S_1(k_c)/([N/k_c] \text{agg} + 1)$, where agg is the aggregation factor. Therefore, $E_{e0}(k_c, J) = k_c S_2(k_c) E_{e0}(k_c, J)$.

3.4. $E_c(k_c, J)$

According to Section 2.1, J cooperative nodes of the current cluster will encode and transmit the transmission sequence according to the orthogonal STBC to the cluster head. In modelling the energy consumption of such operation, we need to consider the impacts of training overhead and transmission rate. Suppose that the block size of the STBC code is F symbols and in each block we include p_f training symbols, and the block will be transmitted in L symbols duration. F/L is called the transmission rate, denoted by R. Then, the actual amount of data to transmit the $S_2(k_c)$ bits is $S_2(k_c) = F S_2(k_c)/R(F - p_f)$. Therefore, $E_c(k_c, J)$ can be described by

$$E_c(k_c, J) = S_2(k_c) \left((1 + \alpha) \frac{N_0}{P_b} \frac{(4\pi)^2 (2M)^k}{GtGr^2(\pi k_c)^k/2} M_1^2 N_f + \frac{1P_{ct} + 1P_{ct}}{B} \right).$$

Based on the above analysis, the overall energy consumption in each round, $E(k_c, J)$ can be described as

$$E(k_c, J) = E_r(k_c) + E_r(k_c) + \overline{m} E_{e0}(k_c, J) + \overline{m} E_c(k_c, J),$$

where \overline{m} is the average number of hops. In order to simplify the analysis, we assume $\overline{m} = \sqrt{k_c}$, which is just the number of clusters along each edge of the sensed region.

Based on (14), we can formulate the optimization model to choose the optimal k_c and J as

$$(k_c^*, J^*) = \arg \min E(k_c, J) \text{ s.t. } J \leq 10, k_c \leq \frac{N}{5},$$

where the first constraint comes from the fact that more cooperative nodes will not improve the transmission energy efficiency but cost much circuit energy, and the rationale behind the second constraint is that the size of the cluster should not be too small to make efficient aggregation. Since the search space is not large, we can use exhaustive search method to solve (15).

4. Simulation Results

In the simulations, 400 nodes are randomly deployed on a 200×200 field. The location of the sink is randomly chosen...
in each round. The system parameters are summarized in Table 1.

The means of the entries in Table 1 are summarized as follows. \(a\) is the efficiency of the RF power amplifier, \(M_1\) is the link gain, \(G_1\) is the gain factor at \(1\) \(m\), \(k\) is the path loss, \(\sigma^2\) is the power density of the AWGN channel in the intracluster communication, \(N_f\) is the receiver noise figure, \(f_c\) is the carrier frequency, \(B\) is the bandwidth, \(P_b\) is the desired BER performance, \(P_{ct}\) and \(P_r\) are the circuit power consumption of the transmitter and receiver, respectively, \(F_n\) is the number of frames per round, \(G_t, G_r\) are the antenna gains of the transmitter and receiver, \(s\) is the packet size, \(P\) is the transmit probability of each node, \(R\) is the transmission rate, \(F\) is the number of symbols in each block, \(p\) is the number of required training symbols for each cooperative node, \(R_{by}\) is the times for exchanging the routing table for each round, and \(R_{ts}\) is the routing table size.

To simulate the phenomena of radio irregularity, the path loss of the communication between each pair of nodes is distributed randomly from 3 to 5.

Each node begins with 400 J of energy and an unlimited amount of data to send to the sink. When the nodes use up their limited energy during the course of the simulation, they can no longer transmit or receive data.

During the simulation, we tracked the overall number of packets transferred to the sink, the amount of energy and duration required to get the data to the sink, and the percentage of nodes alive. We are interested in the transmission quality and energy saving performance of the proposed scheme. The performance of the proposed multi-hop MIMO-LEACH scheme is compared with the original LEACH and the multi-hop LEACH scheme, in which cooperative MIMO communications is not implemented. The optimal value of \(k_c\) for the original LEACH is determined by the model in [8]. We also develop a similar model to find the optimal \(k_c\) for the multi-hop LEACH scheme, which will not be discussed here due to the limited space. In the investigated scenario, it is found that the optimal \(k_c\) for the original LEACH protocol, the multi-hop LEACH scheme, and the proposed scheme are 3, 41, and 27, respectively. The optimal \(J\) for the proposed scheme is found to be 3.

Due to the aggregation operation, the number of effective received packets by sink [8] is a good application-independent indication of the transmission quality. The effective received packets refer to the “real” packets represented by the aggregated packets. If no aggregation carries out, the number of effective received packets equals to the number of actual received packets. If the aggregation operation in transmission is information lossless, the number of effective received packets is just the number of total packets transferred by the source nodes.

Figures 2 and 3 show the total number of effective packets received at the sink over time and the total number of effective packets received at the sink for a given amount of energy.

Figure 2 shows that during its lifetime the LEACH protocol can obtain better latency performance compared to the multi-hop LEACH scheme and the proposed MIMO LEACH scheme. The reason is that the multi-hop operation in the multi-hop LEACH scheme and the multi-hop MIMO-LEACH scheme will increase the latency, and thus result in a less number of data packets sent to the sink for a given period of time. However, the better latency performance of the LEACH protocol comes from the more energy consumption compared to the other two schemes. Especially, in the fading channel environment, LEACH protocol will consume much more energy due to its single-hop transmission from the cluster heads to the sink, which will result in less network lifetime and less total number of transmitted packets. Figure 3 shows that, with the same amount of energy consumption, the multi-hop MIMO-LEACH scheme can transmit much more data packets compared to the LEACH protocol and the multi-hop LEACH scheme. From these simulation results, we can find that the multi-hop MIMO-LEACH scheme is more suitable for the application scenario which has large requirements on network lifetime but little requirements on latency.

Figure 4 shows the percentage of nodes alive over time. From Figure 4, we can find that the proposed multi-hop MIMO-LEACH scheme can improve the network lifetime greatly. If we define the network lifetime of WSN as the duration of more than 70% of network nodes are alive, then we can observe that the network lifetime of WSN with the original LEACH protocol, the multi-hop LEACH scheme, and the proposed multi-hop MIMO-LEACH scheme is about 0.7 \(\times\) 10^4, 8.2 \(\times\) 10^4, and 11 \(\times\) 10^4 s. The improvement on network lifetime obtained by the multi-Hop MIMO-LEACH scheme is significant.

However, the percentage of nodes alive over time is not always a good indication to the energy saving performance of a protocol. For example, during the same time, one protocol transmits less packets than other protocols. Then, though the energy saving performance of the protocol is worse than other protocols, it will still consume less energy. In order to further investigate the energy saving performance, we also simulate the performance in terms of the percentage of nodes alive per amount of effective data packets received at the sink, which is shown in Figure 5.

From Figure 5, we find that the proposed multi-hop MIMO-LEACH scheme needs significantly less energy to transmit the same amount of data packets. Therefore, the

Table 1: The system parameters.
Parameter
\(\alpha\)
\(M_1\)
\(G_1\)
\(k \in [3, 5]\)
\(N_f\)
\(f_c\)
\(B\)
\(P_b\)
\(P_{ct}\)
\(P_r\)
\(F_n\)
\(G_t, G_r\)
\(s\)
\(P\)
\(R\)
\(F\)
\(p\)
\(R_{by}\)
\(R_{ts}\)
improvement on network lifetime obtained by the multi-hop MIMO-LEACH scheme is significant.

On the other hand, the impacts of the parameters, including the number of cluster heads k_c and the number of cooperative nodes J, are also investigated in the simulation. Figures 6 and 7 show the percentage of nodes alive over time in different settings of k_c and J.

From the simulation results including those shown in Figures 6 and 7, we can find that the energy saving performance of the proposed scheme is impacted by the parameters. As for the number of cluster heads, too many cluster heads will reduce the distance for each single hop transmission, which will reduce the transmit energy consumption. More cluster heads will also generate a larger search space
for the routing table construction, which will also reduce the transmit energy consumption further. However, more cluster heads will result in more number of hops in transmission to the sink, which will consume more circuit energy for relaying the data packets. Therefore, the number of cluster heads should be chosen by trading off the transmit energy consumption and circuit energy consumption. As for the number of cooperative nodes, a certain number of cooperative nodes can form the effective independent multi-path transmission so as to energy-efficiently combat the fading effects. However, too many cooperative nodes will result in large circuit energy consumption, which will cause large overall energy consumption. Therefore, the number of cooperative nodes should also be chosen to trade off the transmit energy consumption and the circuit energy consumption.

5. CONCLUSION

In this paper, we proposed a cluster based cooperative MIMO scheme to reduce energy consumption and prolong the network lifetime. A cooperative MIMO scheme is adopted to mitigate the adverse impacts of fading while clustering is used to facilitate network control and coordination. In the proposed scheme, the original LEACH protocol is extended by incorporating the cooperative MIMO communications and multi-hop routing. An adaptive cooperative nodes selection strategy is also designed. Based on the scheme, we investigated the energy consumption of each operation. Then, the overall energy consumption model of the scheme is developed, and the optimal parameters of the scheme are found such as the number of clusters and the number of cooperative nodes. Simulation results exhibit that the proposed scheme minimizes energy consumption.

ACKNOWLEDGMENTS

The authors thank the editors and the anonymous reviewers for their valuable suggestions. This work was supported in part by KOSEF Grant no. R01-2004-000-10372-0.

REFERENCES

[1] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456–1467, 1999.
[2] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 1089–1098, 2004.
[3] X. Li, “Energy efficient wireless sensor networks with transmission diversity,” IEEE Electronics Letters, vol. 39, no. 24, pp. 1753–1755, 2003.
[4] X. Li, M. Chen, and W. Liu, “Application of STBC-encoded cooperative transmissions in wireless sensor networks,” IEEE Signal Processing Letters, vol. 12, no. 2, pp. 134–137, 2005.
[5] S. K. Jayaweera, “Energy analysis of MIMO techniques in wireless sensor networks,” in Proceedings of 38th Annual Conference on Information Sciences and Systems (CISS ’04), Princeton, NJ, USA, March 2004.
[6] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modulation optimization,” IEEE Transactions on Wireless Communications, vol. 4, no. 5, pp. 2349–2360, 2005.
[7] C. S. Park and K. B. Lee, “Transmit power allocation for BER performance improvement in multicarrier systems,” IEEE Transactions on Communications, vol. 52, no. 10, pp. 1658–1663, 2004.
[8] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670, 2002.
[9] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs for data gathering in wireless sensor networks,” in Proceedings of 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM ’04), vol. 1, pp. 244–255, Hong Kong, March 2004.

Yong Yuan received the B.E. and M.E. degrees from the Department of Electronics and Information, Yunnan University, Kunming, China, in 1999 and 2002, respectively. Since 2002, he has been studying at the Department of Electronics and Information, Huazhong University of Science and Technology, China, as a Ph.D. candidate. His current research interests include wireless sensor network, wireless ad hoc network, wireless communication, and signal processing.

Min Chen was born on December 1980. He received the BS, MS, and Ph.D degrees from the Department of Electronic Engineering, South China University of Technology, in 1999, 2001, and 2004, respectively. He is a postdoctoral fellow in the Communications Group, Department of Electrical and Computer Engineering, University of British Columbia. He was a postdoctoral Researcher in the Multimedia & Mobile Communications Lab., School of Computer Science and Engineering, Seoul National University, in 2004 and 2005. His current research interests include wireless sensor network, wireless ad hoc network, and video transmission over wireless networks.

Taekyoung Kwon is an Assistant Professor in the School of Computer Science and Engineering, Seoul National University (SNU), since 2004. Before joining SNU, he was a postdoctoral Research Associate at UCLA and at City University New York (CUNY). He obtained the B.S., M.S., and Ph.D. degrees from the Department of Computer Engineering, SNU, in 1993, 1995, 2000, respectively. During his graduate program, he was a visiting student at IBM T. J. Watson Research Center and at the University of North Texas. His research interests lie in sensor networks, wireless networks, IP mobility, and ubiquitous computing.
Special Issue on

Novel Techniques for Analysis & Design of Cross-Layer Optimized Wireless Sensor Networks

Call for Papers

Sensor networks have been researched and deployed for decades already; their wireless extension, however, has witnessed a tremendous upsurge in recent years. This is mainly attributed to the unprecedented operating conditions of wireless sensor networks (WSNs), that is,

- a potentially enormous amount of sensor nodes,
- reliably operating under stringent energy constraints.

The wireless sensor networks’ virtually infinite degrees of freedom have ignited feverish research activities, having led to thousands of publications, white papers and patents in less than a decade, with new contributions emerging on a daily basis. The rich mathematical and technical toolboxes already available from the design of wireless cellular and ad hoc systems clearly aided the birth of new ideas tailored to the problems in WSNs.

To date, and this may very well change in forthcoming years, the main problem in deploying WSNs is their dependence on scarce battery power. A main design criterion is hence to extend the lifetime of the network without jeopardizing reliable and efficient communications between the sensor nodes as well as from the nodes to one or several data sinks. A prominent example of today’s non-optimized WSN deployment experiences is that the start-up alone costs the network half of its battery power.

Optimizing every facet of the communication protocols is hence vital and imperative; such stringent design requirements can be met by a plethora of approaches, for example, optimizing each layer of the protocol stack separately (traditional) or jointly (cross-layer), for each node separately (traditional) or for an ensemble of nodes (distributed and cooperative), and so forth. This has led to copious novel distributed signal processing algorithms, energy-efficient medium access control and fault-tolerant routing protocols, self-organizing and self-healing sensor network mechanisms, and so forth.

In the light of the above, the main purpose of this special issue is twofold:

- to obtain a coherent and concise technical synthesis from the abundance of recently emerged material in the area of WSNs,
- to promote novel approaches in analyzing, designing, and optimizing large-scale WSNs, preferably inspired by approaches from other disciplines, such as physics or biology.

As for the first one, very few papers are currently available which synthesize the large amount of fairly dispersed technical contributions; a coherent exposure, also touching upon open research issues, will certainly be appreciated by the academic and industrial research community. As for the second one, we believe that novel approaches, potentially inspired by entirely disjoint disciplines, may help considerably in dealing with networks of thousands of nodes.

Topics of Interest

Topics of interest in the area of energy-constraint WSNs include (but are not limited to):

- Network capacity w/o imperfections
- Joint source and channel coding
- Cooperative and distributed signal Data fusion and data aggregation processing
- Novel PHY, MAC, and network paradigms
- Cross-layer and cross-functionality design
- Security, robustness, and reliability
- Self-healing, self-stabilization, and self-organization
- Applications, architectures, and topologies
- (Macroscopic) information flows
- Physically and biologically inspired approaches

Authors should follow the EURASIP JWCN manuscript format described at http://www.hindawi.com/journals/wcn/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JWCN manuscript tracking system at http://www.mstracking.com/mts, according to the following timetable:
Manuscript Due October 1, 2006
Acceptance Notification February 1, 2007
Final Manuscript Due May 1, 2007
Publication Date 3rd Quarter, 2007

GUEST EDITORS:

Mischa Dohler, France Telecom R & D, France; mischa.dohler@francetelecom.com
Taieb Znati, University of Pittsburgh, USA; znati@cs.pitt.edu
Stavros Toumpis, University of Cyprus, Cyprus; toumpis@ucy.ac.cy
Lionel M. Ni, Hong Kong University of Science and Technology, Hong Kong, China; ni@cs.ust.hk

Hindawi Publishing Corporation
http://www.hindawi.com
Special Issue on
Smart Antennas for Next-Generation Wireless Systems

Call for Papers

The adoption of multiple-antenna techniques in future wireless systems is expected to have a significant impact on the efficient use of the spectrum, the minimisation of the cost of establishing new wireless networks, the enhancement of the quality of service, and the realisation of reconfigurable, robust, and transparent operation across multitechnology wireless networks. Although a considerable amount of research effort has been dedicated to the investigation of MIMO systems performance, results, conclusions, and ideas for future directions remain fragmental. Recent trends in MIMO research include reconfigurable multiple-antenna transceivers, cross-layer optimisation and efficient radio resource management for smart antenna networks, antenna technologies for reconfigurable multiple-antenna terminals, and smart antenna deployment issues.

The objective of this special issue is to invite contributions on the most recent developments and promising future directions in the field, with emphasis on reconfigurable transceiver design, efficient resource management, realistic performance evaluation, and implementation aspects.

Topics of interest include (but are not limited to):

- Reconfigurable MIMO transceivers
- Adaptive/reconfigurable coding
- Channel estimation for multiple-antenna systems
- Characterization of wideband MIMO channels
- Realistic performance evaluation and implementation aspects for multiple-antenna techniques
- Antenna array design and implementation
- Efficient radio resource management and cross-layer optimisation for multiple-antenna systems
- Network planning and business models with smart antennas

Authors should follow the EURASIP JWCN manuscript format described at http://www.hindawi.com/journals/wcn/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JWCN manuscript tracking system at http://www.mstracking.com/mts, according to the following timetable:

Event	Date
Manuscript Due	November 1, 2006
Acceptance Notification	March 1, 2007
Final Manuscript Due	June 1, 2007
Publication Date	3rd Quarter, 2007

GUEST EDITORS:

Angeliki Alexiou, Bell Laboratories, Lucent Technologies, UK; alexiou@lucent.com
Monica Navarro, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), 08860 Castelldefels, Barcelona, Spain; monica.navarro@cttc.es
Robert W. Heath Jr., Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0240, USA; rheath@ece.utexas.edu
GUEST EDITORS:

Dietmar Dietrich, Vienna University of Technology, Gusshausstrasse 25-27/E384, 1040 Vienna, Austria; dietrich@ict.tuwien.ac.at

Heinrich Garn, ARC Seibersdorf research GmbH, 2444 Seibersdorf, Austria; heinrich.garn@arcs.ac.at

Udo Kebschull, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany; kebschul@kip.uni-heidelberg.de

Christoph Grimm, Institute of Microelectronic Systems, University of Hannover, Appelstrasse 4, 30167 Hannover, Germany; grimm@ims.uni-hannover.de

Moshe Ben-Ezra, Real-Time Vision and Modeling Department, Siemens Corporate Research, 755 College Road East, 08540 Princeton NJ, USA; moshe.ben-ezra@siemens.com
Special Issue on

Trust and Digital Rights Management in Wireless Multimedia Networks and Systems

Call for Papers

With the widespread infusion of digital technologies and the ensuing ease of digital content transport over the Internet, multimedia data distribution is experiencing exponential growth. The use of emerging technologies and systems based on wireless networks has further facilitated the ubiquitous presence of multimedia data. These rapid advances are neither without cost nor without negative impact. With the increasing sophistication and ubiquity of sharing and dissemination of data over a plethora of networks, the complexity and challenges of untrustworthy behavior as well as cyber attacks may grow significantly. Moreover, the emerging unstructured, mobile, and ad hoc nature of today’s heterogeneous network environment is leading to problems such as the exploitation of resources due to selfish and malicious behavior by users and their agents in the networks.

Trust and digital rights management (DRM) of data and the underlying systems and networks have therefore become of critical concern. Moreover, satisfying users’ quality of service (QoS) requirements while implementing trust and DRM mechanisms may overburden the already resource-constrained wireless networks.

The objective of this solicitation is to encourage cutting-edge research in trust and digital rights management in wireless networks and systems. Dissemination of research results in formulating the trust and DRM issues, and emerging solutions in terms of technologies, protocols, architecture, and models are expected to contribute to the advancement of this field in a significant way. Topics of interests include but are not limited to:

- DRM issues (copyright protection, tracking, tracing, fingerprinting, authentication, concealment, privacy, access control, etc.) in wireless multimedia
- Wireless multimedia traffic modeling, analysis, and management
- Tradeoff between QoS, security, dependability, and performability requirements
- Context, behavior, and reputation specification, modeling, identification, and management
- Trust and DRM models, architectures, and protocols
- Trust and DRM in applications (telemedicine, ubiquitous commerce, etc.)
- Trust and DRM in wireless ad hoc, mesh, sensor and heterogeneous networks
- Trust and DRM technologies for wireless multimedia (digital watermarking, encryption, coding, and compression, and their interplay)
- Test beds for experimental evaluation of trust and DRM models.

Authors should follow the EURASIP JWCN manuscript format described at http://www.hindawi.com/journals/wcn/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP JWCN manuscript tracking system at http://www.hindawi.com/mts/, according to the following timetable:

Event	Date
Manuscript Due	December 1, 2006
Acceptance Notification	April 1, 2007
Final Manuscript Due	June 1, 2007
Publication Date	4th Quarter, 2007

GUEST EDITORS:

Farid Ahmed, Department of Electrical Engineering and Computer Science The Catholic University of America, Washington, DC, 20064, USA; ahmed@cua.edu

Mohamed Eltoweissy, The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Advanced Research Institute, Arlington, VA 22203, USA; toweissy@vt.edu

Kamesh Namuduri, Department of Electrical and Computer Engineering Wichita State University, Wichita KS 67260, USA; kamesh.namuduri@wichita.edu

Hindawi Publishing Corporation
http://www.hindawi.com
GUEST EDITORS:

Leonel Sousa, INESC-ID, IST, Universidade Técnica de Lisboa, 1000-029 Lisboa, Portugal; las@inesc-id.pt

Noel O’Connor, School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; noel.oconnor@eeng.dcu.ie

Marco Mattavelli, Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; marco.mattavelli@epfl.ch

Antonio Nunez, IUMA, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain; nunez@iuma.ulpgc.es
Special Issue on
Multimedia over Wireless Networks

Call for Papers

Scope

In recent years there has been a tremendous increase in demand for multimedia delivered over wireless networks. The design and capabilities of the mobile devices and the services being offered reflect the increase in multimedia usage in the wireless setting. Applications that are in the process of becoming essential to users include video telephony, gaming, or TV broadcasting. This trend creates great opportunities for identifying new wireless multimedia applications, and for developing advanced systems and algorithms to support these applications. Given the nature of the channel and of the mobile devices, issues such as scalability, error resiliency, and energy efficiency are of great importance in applications involving multimedia transmission over wireless networks.

The papers in this issue will focus on state-of-the-art research on all aspects of wireless multimedia communications. Papers showing significant contributions are solicited on topics including but are not limited to:

- Error resilience and error concealment algorithms
- Rate control for wireless multimedia coding
- Scalable coding and transmission
- Joint source-channel coding
- Joint optimization of power consumption and rate-distortion performance
- Wireless multimedia traffic modeling
- Wireless multimedia streaming
- Wireless multimedia coding
- QoS for wireless multimedia applications
- Distributed multimedia coding

Authors should follow the EURASIP Journal on Wireless Communications and Networking manuscript format described at http://www.hindawi.com/journals/wcn/. Prospective authors should submit an electronic copy of their complete manuscript through the EURASIP Journal on Wireless Communications and Networking’s Manuscript Tracking System at http://www.hindawi.com/mts/, according to the following timetable:

Event	Date
Manuscript Due	March 1, 2007
Acceptance Notification	July 1, 2007
Final Manuscript Due	October 1, 2007
Publication Date	4th Quarter, 2007

GUEST EDITORS:

- **Dan Lelescu**, R&D lab, Imaging Division, Micron Technology, Inc., 2125 O’Nel Drive, San Jose, CA 9513, USA; danlelescu@yahoo.com
- **Peter Schelkens**, Department of Electronics and Information Processing (ETRO), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium; Peter.Schelkens@vub.ac.be
- **Kameswara Rao Namuduri**, Department of Electrical and Computer Engineering, Wichita State University, 1845 Fairmount, Wichita, 67260 KS, USA; kamesh.namuduri@wichita.edu

Hindawi Publishing Corporation
http://www.hindawi.com
Smart Antennas—State of the Art brings together the broad expertise of 41 European experts in smart antennas. They provide a comprehensive review and an extensive analysis of the recent progress and new results generated during the last years in almost all fields of smart antennas and MIMO (multiple input multiple output) transmission. The following represents a summarized table of content.

Receiver: space-time processing, antenna combining, reduced rank processing, robust beamforming, subspace methods, synchronization, equalization, multiuser detection, iterative methods

Channel: propagation, measurements and sounding, modeling, channel estimation, direction-of-arrival estimation, subscriber location estimation

Transmitter: space-time block coding, channel side information, unified design of linear transceivers, ill-conditioned channels, MIMO-MAC strategies

Network Theory: channel capacity, network capacity, multihop networks

Technology: antenna design, transceivers, demonstrators and testbeds, future air interfaces

Applications and Systems: 3G system and link level aspects, MIMO HSDPA, MIMO-WLAN/UMTS implementation issues

This book serves as a reference for scientists and engineers who need to be aware of the leading edge research in multiple-antenna communications, an essential technology for emerging broadband wireless systems.

For any inquiries on how to order this title please contact books.orders@hindawi.com
Ultra-wideband (UWB) communication systems offer an unprecedented opportunity to impact the future communication world.

The enormous available bandwidth, the wide scope of the data rate/range trade-off, as well as the potential for very-low-cost operation leading to pervasive usage, all present a unique opportunity for UWB systems to impact the way people and intelligent machines communicate and interact with their environment.

The aim of this book is to provide an overview of the state of the art of UWB systems from theory to applications.

Due to the rapid progress of multidisciplinary UWB research, such an overview can only be achieved by combining the areas of expertise of several scientists in the field.

More than 30 leading UWB researchers and practitioners have contributed to this book covering the major topics relevant to UWB. These topics include UWB signal processing, UWB channel measurement and modeling, higher-layer protocol issues, spatial aspects of UWB signaling, UWB regulation and standardization, implementation issues, and UWB applications as well as positioning.

The book is targeted at advanced academic researchers, wireless designers, and graduate students wishing to greatly enhance their knowledge of all aspects of UWB systems.
Creating exact 3D moving images as ghost-like replicas of 3D objects has been an ultimate goal in video science. Capturing 3D scenery, processing the captured data for transmission, and displaying the result for 3D viewing are the main functional components. These components encompass a wide range of disciplines: imaging and computer graphics, signal processing, telecommunications, electronics, optics and physics are needed.

The objective of the 3DTV-Conference is to bring together researchers and developers from academia and industry with diverse experience and activity in distinct, yet complementary, areas so that full scale 3D video capabilities are seamlessly integrated.

3DTV Capture and Processing
- 3D time-varying scene capture technology
- Multi-camera recording
- 3D photography algorithms
- Synchronization and calibration of camera arrays
- 3D view registration
- Multi-view geometry and calibration
- Holographic camera techniques
- 3D motion analysis and tracking
- Surface modeling for 3-D scenes
- Multi-view image and 3D data processing

3DTV Transmission
- Systems, architecture and transmission aspects of 3D
- 3D streaming
- Error-related issues and handling of 3D video
- Hologram compression
- Multi-view video coding
- 3D mesh compression
- Multiple description coding for 3D
- Signal processing for diffraction and holographic 3DTV

3DTV Visualization
- 3D mesh representation
- Texture and point representation
- Object-based representation and segmentation
- Volume representation
- 3D motion animation
- Dense stereo and 3D reconstruction
- Stereoscopic display techniques
- Holographic display technology
- Reduced parallax systems and integral imaging
- Underlying optics and VLSI technology
- Projection and display technology for 3D videos
- Human factors

3DTV Applications
- 3D imaging in virtual heritage and virtual archaeology
- 3D Teleimmersion and remote collaboration
- Augmented reality and virtual environments
- 3D television, cinema, games and entertainment
- Medical and biomedical applications
- 3D Content-based retrieval and recognition
- 3D Watermarking

First Call For Papers
Prospective contributors are invited to submit full papers electronically using the on-line submission interface, following the instructions available at http://www.3dtv-con.org. Papers should be in Adobe PDF format, written in English, with no more than four pages including figures, using a font size of 11. Conference proceedings will be published online by the IEEE.

Important Dates
- 1 December 2006: Special sessions and tutorials proposals
- 15 December 2006: Regular Paper submission
- 9 February 2007: Notification of acceptance
- 2 March 2007: Submission of camera-ready papers

General Chairs
Georgios Triantafyllidis
Centre for Research and Technology Hellas, GR
Levent Onural
Bilkent University, TR

Technical Chairs
Aljoscha Smolic,
Fraunhofer Gesellschaft, DE
Jörn Ostermann
Leibniz University of Hannover, DE
John Watson
University of Aberdeen, UK
Reha Civanlar
Koc University, TR
Thomas Sikora,
Technical University of Berlin, DE

Finance Chair
Nikos Grammalidis
Centre for Research and Technology Hellas, GR

Publication Chair
Xenophon Zabulis
Centre for Research and Technology Hellas, GR

Publicity Chair
Atanas Gotchev
Tampere University of Technology, FI

Industry Liaison
Ismo Rakkolainen
FogScreen, FI

American Liaison
Yiannis Aloimonos
University of Maryland, US

Special Sessions and Tutorials Chair
Aydin Alatan
METU, TR

Webmaster
Georgios Litos
Centre for Research and Technology Hellas, GR
The International ITG / IEEE Workshop on Smart Antennas
WSA 2007
February 26-27, 2007
Vienna

Call for Papers

The International ITG / IEEE Workshop on Smart Antennas WSA 2007 provides a forum for presentation of the most recent research on smart antennas. The objective is to continue, accelerate, and broaden the momentum already gained with a series of ITG Workshops held since 1996: Munich and Zurich’96, Vienna and Kaiserslautern’97, Karlsruhe’98, Stuttgart’99, Ilmenau’01, Munich’04, Duisburg’05, and Ulm’06. This call for papers intends to solicit contributions on latest research of this key technology for wireless communication systems.

Workshop topics include, but are not limited to:

- Antennas for beamforming and diversity
- Channel measurements
- Spatial channel modeling
- Beamforming
- Diversity concepts
- Space-time processing
- Space-time codes
- MIMO Systems
- Multicarrier MIMO
- Multiuser MIMO
- Cooperative and sensor networks
- Crosslayer optimisation
- Radio resource management
- Cellular systems
- Link, system and network level simulations
- Hard- and software implementation issues

There will be oral as well as poster presentations.

The workshop will be jointly organized by the Institute of Communications and Radio Frequency at Vienna University of Technology and the ftw. Telecommunications Research Center Vienna in cooperation with the VDE, ÖVE, and the IEEE on February 26-27, 2007 in Vienna, Austria

Organizers and Workshop Chairs

Markus Rupp,
E-Mail: mrupp@nt.tuwien.ac.at
Christoph Mecklenbräuker,
E-Mail: cfm@ftw.at
Information about the workshop can soon be found at: http://www.ftw.at/

Technical program committee

Jørgen Bach-Andersen David Gesbert Michael Meurer Werner Teich
Sergio Barbarossa Martin Haardt Werner Mohr Reiner Thomä
Ezio Biglieri Dirk Heberling Ralf Müller Wolfgang Utschick
Holger Boche Ari Hottinen Josef A. Nossek Alle-Jan van der Veen
Helmut Bölcskei Thomas Kaiser Björn Ottersten Mats Viberg
Ernst Bonek Anja Klein Steffen Paul Emanuele Viterbo
Andreas Czywik Miguel Lagunas Ana I. Pérez-Neira Tobias Weber
Armin Dekorsy Geert Leus Arpad L. Scholtz Joachim Wehinger
Gerhard Fettweis Jürgen Lindner Nikos Sidiropoulos Werner Wiesbeck
Bernard H. Fleury Gerald Matz Michael Tangemann Thomas Zemen
Javier Fonollosa Utz Martin Giorgio Taricco Abdelhak Zoubir
Alex Gershman Tadashi Matsumoto

Austria