Gender differences in hepatic ischemic reperfusion injury in rats are associated with endothelial cell nitric oxide synthase-derived nitric oxide

Ping Lü, Fang Liu, Chun-You Wang, Dao-Da Chen, Zhong Yao, Yuan Tian, Jing-Hui Zhang, Yi-Hua Wu

Abstract

AIM: This study was designed to examine the hypothesis that gender differences in I/R injury are associated with endothelial cell nitric oxide synthase (eNOS)-derived nitric oxide (NO).

METHODS: Wistar rats were randomized into seven experimental groups (12 animals per group). Except for the sham operated groups, all rats were subjected to total liver ischemia for 40 min followed by reperfusion. All experimental groups received different treatments 45 min before the laparotomy. For each group, half of the animals (six) were used to investigate the survival; blood samples and liver tissues were obtained in the remaining six animals after 3 h of reperfusion to assess serum NO, alanine aminotransferase (ALT) and TNF-α levels, liver tissue malondialdehyde (MDA) content, and severity of hepatic I/R injury.

RESULTS: Basal serum NO levels in female sham operated (FS) group were nearly 1.5-fold of male sham operated (MS) group (66.7±11.0 μmol/L vs 45.3±10.1 μmol/L, P<0.01). Although serum NO levels decreased significantly after hepatic I/R (P<0.01, vs sham operated groups), they were still significantly higher in female rat (F) group than in male rat (M) group (47.8±8.6 μmol/L vs 23.8±4.7 μmol/L, P<0.01). Serum ALT and TNF-α levels, and liver tissue MDA content were significantly lower in F group than in M group (370.5±46.4 U/L, 0.99±0.11 μg/L and 0.57±0.10 μmol/g vs 668.7±78.7 U/L, 1.71±0.18 μg/L and 0.86±0.11 μmol/g, respectively, P<0.01). I/R induced significant injury to the liver both in M and F groups (P<0.01 vs sham operated groups). But the degree of hepatocyte injury was significantly milder in F group than in M group (P<0.05 and P<0.01). The median survival time was six days in F group and one day in M group. The overall survival rate was significantly higher in F group than in M group (P<0.05). When compared with male rats pretreated with saline (M group), pretreatment of male rats with 17β-estradiol (E2) (M+E2 group) significantly increased serum NO levels and significantly decreased serum ALT and TNF-α levels, and liver tissue MDA content after I/R (P<0.01). The degree of hepatocyte injury was significantly decreased and the overall survival rate was significantly improved in M+E2 group than in M group (P<0.01 and P<0.05). The NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) treatment could completely abolish the protective effects of estrogen in both male and female rats.

CONCLUSION: The protective effects afforded to female rats subjected to hepatic I/R are associated with eNOS-derived NO.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Gender identity; Liver; Reperfusion injury; Endothelial constitutive nitric oxide synthase

Lü P, Liu F, Wang CY, Chen DD, Yao Z, Tian Y, Zhang JH, Wu YH. Gender differences in hepatic ischemic reperfusion injury in rats are associated with endothelial cell nitric oxide synthase-derived nitric oxide. World J Gastroenterol 2005;11(22): 3441-3445
http://www.wjgnet.com/1007-9327/11/3441.asp

INTRODUCTION

Hepatic ischemic reperfusion (I/R) injury is commonly seen in the field of hepatic surgery, such as in the course of hepatectomy, liver transplantation and resuscitation after shock. The injurious effect of I/R presents with a spectrum of clinical manifestations ranging from asymptomatic elevation of liver enzymes to acute liver failure and death. Although liver transplantation has become an accepted therapy for end-stage liver disease because of improved techniques, I/R injury resulting in primary liver graft dysfunction and failure continues to pose significant clinical problems[1].

An increasing body of evidence indicates that gender...
differences exist in cardiovascular and immunologic responses to various adverse circulatory conditions, including vascular occlusive disease, hypertension, stroke, shock, and atherosclerosis\[8,9\]. In addition, clinical studies have shown that female patients survived better than males after liver transplantation or hepatocellular carcinoma resection\[9,10\]. The underlying mechanism of these gender differences remains to be elucidated.

It has been suggested that the response of the hepatic endothelium to I/R plays a key role in the development of injury\[28,29\]. Estrogen has been postulated as a “survival factor” for endothelial cells\[30,31\]. Both women and men have functional α and β estrogen receptors expressed in endothelial cells\[31,32\]. Estrogen not only can rapidly induce the release of endothelial cell nitric oxide synthase (eNOS)-derived nitric oxide (NO) via a nongenomic manner\[31,32\], but also can transcriptionally activate the expression of eNOS in endothelial cells via the more classical genomic mechanisms\[33,34\]. Because we have previously demonstrated that constitutive isoform of NO synthase (eNOS, also known as eNOS)-derived NO plays an important role in limiting hepatic I/R injury in a model of full-size liver I/R\[10,19\], we hypothesized that the protective mechanism observed in females subjected to hepatic I/R may also depend on eNOS-derived NO.

MATERIALS AND METHODS

Animals

Normal male and female Wistar rats weighing 290-350 g were purchased from the Center of Experimental Animal in Tongji Medical College, Huazhong University of Science and Technology. This project was approved by the Tongji Medical College, and the procedures were carried out according to the routine animal-care guidelines.

Reagents

N'-nitro-L-arginine methyl ester (L-NAME) and 17-β-estradiol (E\(_2\)) were purchased from Sigma Chemical Co., St. Louis, MO, USA.

Model of total hepatic I/R

A model of total hepatic I/R was used as described previously\[18,19\]. Briefly, rats were anesthetized with ether inhalation, and the midline laparotomy was performed to expose the liver. The total hepatic ischemia was achieved by occluding the hepatic arterial and portal venous blood by using a microaneurysm clip. Rats were then given an ip dose of heparin (200 U/kg) to prevent blood coagulation. After 40 min of ischemia, reperfusion was initiated by removal of the clip. Sham operated control rats were treated in an identical fashion but without vascular clamping. The abdominal cavity was closed, and the rats were allowed to recover with free access to food and water. Rats were then observed daily until d 7 post-surgery to assess survival or were killed after 3 h of reperfusion, and blood samples and liver tissues were obtained for analysis.

Blood and tissue analyses

Serum alanine aminotransferase (ALT) was measured by using standard techniques with a serum analyzer (HITACHI 7170A autoanalyzer, Japan). TNF-α concentration was determined with a commercial radioimmunoassay kit (East Asia Immunotechnology Institute, Beijing, China). Serum NO products nitrite/nitrate (NO\(_2\)/NO\(_3\)) were detected using a colorimetric NO detection kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The liver tissue malondialdehyde (MDA) concentration was determined using thiobarbituric acid test (assay kit was purchased from Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

Morphometric assessment of I/R injury

Excised liver specimens were fixed in 40 g/L formaldehyde and embedded in paraffin. Hematoxylin-eosin-stained sections (5 μm) were evaluated at 200× magnification by a point-counting method for severity of hepatic injury by using an ordinal scale as follows\[20\]: grade 0, minimal or no evidence of injury; grade 1, mild injury consisting of cytoplasmic vacuolation and focal nuclear pyknosis; grade 2, moderate to severe injury with extensive nuclear pyknosis, cytoplasmic hypereosinophilia, loss of intercellular borders, and mild to moderate neutrophil infiltration; and grade 3, severe injury with disintegration of hepatic cords, hemorrhage, and severe polymorphonuclear cell infiltration. An average of 100 adjacent points on a 1-mm\(^2\) grid was graded for each specimen (n = 4).

Experimental design

Rats were randomized into seven experimental groups (12 per group). Apart from the sham operated groups, all rats were subjected to I/R injury. Each group received different treatments 45 min before the laparotomy. The seven groups consisted of group 1, male sham operated rats, 2 mL saline given intravenously (MS group); group 2, female sham operated rats, 2 mL saline given intravenously (FS group); group 3, male rats, 2 mL saline given intravenously (M group); group 4, female rats, 2 mL saline given intravenously (F group); group 5, female rats, L-NAME (10 mg/kg) dissolved in 2 mL saline, given intravenously (F + L-NAME group); group 6, male rats, E\(_2\) (4 000 μg/kg) dissolved in 2 mL saline, given intravenously (M+E\(_2\) group); and group 7, male rats, E\(_2\) (4 000 μg/kg)+L-NAME (10 mg/kg), dissolved in saline, given intravenously (M+E\(_2\)+L-NAME group). For each group, half of the rats (six) were used to investigate the survival, and blood samples and liver tissues were obtained in the remaining six rats for analysis after 3 h of reperfusion.

Statistical analysis

All values are expressed as mean±SD. Statistical significance between two groups of parametric data was evaluated by using an unpaired Student’s t test. Survival was analyzed by using the Kaplan-Meier method, and the difference in overall survival rate was evaluated using the log rank test. Statistical significance was accepted at P<0.05.

RESULTS

Differences in serum NO, ALT and TNF-α levels, and liver tissue MDA content

There were no significant differences between MS and FS groups with respect to serum ALT (Figure 1) and TNF-α
levels (Figure 2), and liver tissue MDA (Figure 3) content. But serum NO levels were significantly higher in FS group than those in MS group (66.7±11.0 μmol/L vs 45.3±10.1 μmol/L, P<0.01, Figure 4). Serum ALT and TNF-α levels, and liver tissue MDA content increased significantly, whereas serum NO levels decreased significantly after hepatic I/R both in M and F groups (P<0.01 vs sham operated groups). As compared with M group, serum NO levels were significantly higher (47.8±8.6 μmol/L vs 23.8±4.7 μmol/L, P<0.01), but serum ALT and TNF-α levels, and liver tissue MDA content were significantly lower in F group (370.5±46.4 μmol/L vs 668.7±78.7 μmol/L, P<0.01). Pretreatment with L-NAME in female rats or co-pretreatment with E₂ and L-NAME in male rats significantly increased serum NO levels vs those in F or M+E₂ group animals, respectively, after hepatic I/R (P<0.01 or P<0.05).

Differences in degree of hepatocyte injury

No significant differences in degree of hepatocyte injury between the MS and FS groups were noted (Table 1). Liver architecture was well conserved and liver cells were morphologically normal with a typical plate appearance. I/R induced significant injury to the liver both in M and F groups (P<0.01 vs sham operated groups). But the degree of hepatocyte injury was significantly milder in F group vs M group determined by a point-counting method with an ordinal scale (P<0.05 and P<0.01).

Differences in survival

A survival advantage was seen in F group vs M group. The median survival time was six days in F group vs one day in M group. The overall survival rate was significantly higher in F group vs M group (P<0.05).

Worsening of hepatic I/R injury of female rats by NOS inhibitor L-NAME

Significantly lower serum NO levels and significantly higher serum ALT and TNF-α levels, and liver tissue MDA content were documented after I/R in female rats pretreated with L-NAME (F+L-NAME group) compared with female rats pretreated with saline (F group) (P<0.01, Figures 1-4). The degree of hepatic injury was exacerbated (Table 1) and the overall survival rate was significantly decreased after hepatic I/R in F+L-NAME group rats compared with F group rats (P<0.01 and P<0.05). The median survival time decreased from six days in F group to one day in F+L-NAME group.
Suppression of the protective effects of 17β-estradiol (E2) on hepatic I/R injury by L-NAME in male rats

When compared with male rats pretreated with saline (M group), pretreatment of male rats with E2 (M+E2 group) significantly increased serum NO levels and significantly decreased serum ALT and TNF-α levels, and liver tissue MDA content after I/R (P<0.01, Figures 1-4). The degree of hepatocyte injury was significantly decreased (Table 1) and the overall survival rate was significantly improved in M+E2 group vs M group (P<0.01 and P<0.05). The median survival time increased from one day in M group to less than seven days in M+E2 group. Significantly lower serum NO levels and significantly higher serum ALT and TNF-α levels, and liver tissue MDA content were shown after hepatic I/R in male rats pretreated with E2 and L-NAME (M+E2+L-NAME group) compared with male rats given E2 alone (M+E2 group) (P<0.01, Figures 1-4). The protection of E2 on I/R injury of the liver was completely reverted by the co-administration of L-NAME in male rats. The degree of hepatocyte injury was exacerbated (Table 1) and the overall survival rate was significantly decreased after hepatic I/R in M+E2+L-NAME group vs M+E2 group rats (P<0.01 and P<0.05). The median survival time decreased from less than seven days in M+E2 group to 1.5 d in M+E2+L-NAME group.

DISCUSSION

In the present study we found that female rats were protected to a much greater extent from the injurious effects of hepatic I/R than were male rats, and E2 pretreatment could induce protection to male rats on hepatic I/R injury. We also found that the NOS inhibitor L-NAME could abolish these gender differences and revert protection induced by estrogen pretreatment on male rats. As we have previously proved that hepatic I/R does not induce the expression of inducible NOS (iNOS) in our model[14,22], the results of the current study clearly demonstrated that the protective effect afforded by estrogen was associated with eNOS-derived NO.

Estrogen may increase NO production from eNOS by genomic and/or nongenomic responses[13-17]. It was confirmed that estrogen might up-regulate eNOS gene expression to increase NO production in vascular endothelial cells as well as sinusoidal endothelial cells from liver[16,21]. Additionally, engagement of estrogen receptor-α for estrogen can mediate Ca²⁺ uptake and “activate” existing eNOS. It was demonstrated that this rapid nongenomic production of eNOS-derived NO involved a rapid, PI3-kinase-dependent activation of Akt and consequent serine phosphorylation of eNOS[14,22]. Consistent with these observations, we found that basal serum NO levels in female sham operated rats were nearly 1.5-fold of those in males. Although serum NO levels decreased significantly after hepatic I/R (P<0.01, sham operated groups), which was due to endothelial cell injury or dysfunction in our full size hepatic I/R model, they were still significantly higher in F group than those in M group rats (P<0.01). The precise mechanisms by which eNOS-derived NO protects female rats from the injurious effects of I/R remain to be identified. One possible mechanism may involve the antioxidant properties of eNOS-derived NO[23]. NO is known to inhibit reactive oxygen species (ROS)-mediated reactions and it has been suggested that the protective effects in a variety of conditions are due to the ability of NO to detoxify ROS such as O₂⁻, OH⁻; and/or ferryl hemoprotein[24]. This might be one of the main causes why liver tissue MDA content was significantly lower in F group than that in M group. Another mechanism by which eNOS-derived NO may exert protection in our model of I/R is vasodilation and enhanced perfusion of the posts ischemic tissue[14,25]. We have previously demonstrated that eNOS-derived NO may counteract the physiological effect of endothelin-1 (ET-1), a potent and long-lasting vasoconstrictive peptide[26,27]. Other mechanisms by which eNOS-derived NO may protect the liver from hepatic I/R-induced injury may be related to its inhibition of platelet aggregation and adhesion as well as attenuation of endothelium-leukocyte interactions, all of which may be beneficial to reduce hepatic I/R injury[26]. TNF-α has been shown to play a critical role in inflammatory responses during hepatic I/R[27]. We found in this study that serum TNF-α levels were significantly lower in F group than those in M group. It was postulated that the anti-inflammatory properties of estrogen might be due to its inhibition of transcription factor nuclear factor κB[28] and this might be via endogenous signal molecule NO or other signal molecules. It was also found that eNOS-derived NO may protect animals after hepatic I/R by protecting the liver from the injurious effects of TNF-α[29].

We also studied the protective effect of estrogen on I/R injury of the liver in male rats. In previous studies, administration of 4 000 μg/kg E2 was found to increase plasma E2 in mice comparable to levels seen in female mice in the proestrous state[30]. We found that male rats pretreated with 4 000 μg/kg E2 were protected from the injurious

Table 1 Degree of hepatocyte injury (determined by a point-counting method with an ordinal scale) (n = 4, mean±SD)

Group	Grade 0 (%)	Grade 1 (%)	Grade 2 (%)	Grade 3 (%)
MS	99.4±0.1	0.6±0.1	0	0
FS	99.4±0.2	0.6±0.2	0	0
M	0.2±0.1	8.6±1.7	76.9±2.4	14.4±7.2
F	2.7±1.0	37.2±3.7	52.2±3.2	7.9±1.4
F+L-NAME	1.0±0.3	16.0±4.6	75.1±4.1	8.0±1.0
M+E2	4.0±1.2	57.7±3.9	32.9±5.3	5.5±0.5
M+E2+L-NAME	1.6±0.6	28.5±1.9	62.3±3.1	7.6±1.3

There were no significant differences between MS and FS groups with respect to degree of hepatocyte injury. *P*<0.01 vs MS group, *P*<0.01 vs FS group, *P*<0.05 vs M group, *P*<0.01 vs M group, *P*<0.05 vs F group, *P*<0.01 vs F group. Significant lower serum NO levels, and liver tissue MDA content were shown after hepatic I/R in male rats pretreated with E2 (M+E2 group) compared with male rats given E2 alone (M+E2 group) (P<0.01, Figures 1-4).
effects of hepatic I/R to an extent not less than that of female rats. The role of eNOS-derived NO as a crucial component for the protective effects afforded by estrogen was confirmed in studies using L-NAME-treated female and male rats. Since some of the protective effects of estrogen are NO-independent, it was puzzling that L-NAME treatment could completely abolish the protective effects of estrogen in both male and female rats in this study. We postulated that L-NAME treatment would aggravate endothelial cell injury or dysfunction in our full size hepatic I/R model, which might conceal the NO-independent protective effects of estrogen.

In conclusion, the results of this study demonstrate that the protective effects afforded to female rats subjected to hepatic I/R are associated with eNOS-derived NO. These results may have important implications for the design of novel strategies against ischemic reperfusion injury in the future.

REFERENCES

1. Arranz J, Soriano A, Garcia I, Garcia J, Concepcion MT, Navarro J, Arteaga A, Filella X, Gonzalez F, Fernandez C, Barrera M, Munoz L, Perera AJ, Pozo JL, Jimenez A, Macia M, Arteaga I. Association between anatomicopathologic graft disorders during reperfusion and vena cava sI-2r in orthotopic liver transplantation. *Transplant Proc* 2003; 35: 1880-1883

2. Shearman AM, Cupples LA, Demissie S, Peter I, Schmid CH, Karas RH, Mendelsohn ME, Housman DE, Levy D. Association between estrogen receptor alpha gene variation and cardiovascular disease. *JAMA* 2003; 290: 2263-2270

3. Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. *Cardiovasc Res* 2002; 53: 688-708

4. Hayward CS, Kalnins WV, Kelly RP. Gender-related differences in left ventricular chamber function. *Cardiovasc Res* 2001; 49: 340-350

5. Jain A, Reyes J, Kashyap R, Dodson SF, Demetris AJ, Ruppert K, Abu-Elmagd K, Marsh W, Madariaga J, Mazariogos G, Geller D, Bonham CA, Gayowski T, Cacciarelli T, Fontes P, Starzl TE, Fung JJ. Long-term survival after liver transplantation in 4,000 consecutive patients at a single center. *Ann Surg* 2000; 232: 490-500

6. Lee CC, Chau GY, Lui WY, Tsay SH, King KL, Loong CC, Hsia CY, Wu CW. Better post-resectional survival in female cirrhotic patients with hepatocellular carcinoma. *Hepatogastroenterology* 2000; 47: 446-449

7. Sakamoto N, Sun Z, Brengman ML, Maemura K, Ozaki M, Bulkley GB, Klein AS. Hepatic reticuloendothelial system dysfunction after ischemia-reperfusion: role of P-selectin-mediated neutrophil accumulation. *Liver Transpl* 2003; 9: 940-948

8. Khandoga A, Biberthaler P, Enders G, Teupser D, Axmann S, Luchting B, Hutter J, Messmer K, Krombach F. P-selectin mediates platelet-endothelial cell interactions and reperfusion injury in the mouse liver in vivo. *Shock* 2002; 18: 529-535

9. Mendelsohn ME. Genomic and nongenomic effects of estrogen in the vasculature. *Am J Cardiol* 2002; 90: 37-6F

10. Spyridopoulos I, Sullivan AB, Kearney M, Isner JM, Losordo DW. Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis. Estradiol as a survival factor. *Circulation* 1997; 95: 1505-1514

11. Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ERα) in human endothelial cells. *Proc Natl Acad Sci USA* 2003; 100: 4807-4812

12. Hodges YK, Tung L, Yan XD, Graham JD, Horwitz KB, Horwitz LD. Estrogen receptors alpha and beta: prevalence of estrogen receptor beta mRNA in human vascular smooth muscle and transcriptional effects. *Circulation* 2000; 101: 1792-1798

13. Simoneini T, Genazzani AR, Liao JK. Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. *Circulation* 2002; 105: 1368-1373

14. Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kanda Y, Nishio Y, Adachi K, Tasaka K, Miyoshi E, Fujiwara N, Taniguchi N, Murata Y. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. *J Biol Chem* 2001; 276: 3459.

15. Mendelsohn ME. Nongenomic, ER-mediated activation of endothelial nitric oxide synthase: how does it work? What does it mean? *Circ Res* 2000; 87: 956-960

16. Sakamoto M, Uen T, Nakamura T, Hashimoto O, Sakata R, Kin M, Ogata R, Kawaguch T, Torimura T, Sata M. Estrogen upregulates nitric oxide synthase expression in cultured rat hepatic sinusoidal endothelial cells. *J Hepatol* 2001; 34: 858-864

17. Nuedling S, Kahler S, Loebbert K, Doevendans PA, Meyer R, Vetter H, Gröhe C. Beta-estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in vitro and in vivo. *Cardiovasc Res* 1999; 43: 666-674

18. Lü P, Chen D, Tian Y, Zhang JH, Wu Y. The effect of nitric oxide/endothelins system on the hepatic ischemia/reperfusion injury. *J Huazhong Univ Sci Technolog Med Sci* 2002; 22: 216-217, 227

19. Lü P, Chen DD, Tian Y, Zhang JH, Wu YH. The protection of the hepatic ischemic preconditioning is concerned with the NO/ET-1 system. *Zhongguo Bingli Shengli Zaoshi* 2000; 16: 101-105

20. Camargo CA, Madden JE, Gao W, Selvan RS, Clavien PA. Interleukin-6 protects liver against warm ischemia/reperfusion injury and promotes hepatocyte proliferation in the rodent. *Hepatology* 1997; 26: 1513-1520

21. Kleinert H, Wallerath T, Euchenhofer C, Issrig-Biedert I, Li H, Forstermann U. Estrogens increase transcription of the human endothelial NO synthase gene: analysis of the transcription factors involved. *Hypertension* 1999; 31: 582-588

22. Haynes MP, Li L, Sinha D, Russell KS, Hisamato K, Baron R, Collinge M, Sessa WC, Bender JR. Srr kinase mediates phosphatidylinositol 3-kinase/Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen. *J Biol Chem* 2003; 278: 2118-2123

23. Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, Vitik M, Feeldish M, Grisham MB. Mechanisms of the antioxidant effects of nitroglycerin. *Antioxid Redox Signal* 2001; 3: 203-213

24. Grisham MB, Jourd’Heuil D, Wink DA. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites:implications in inflammation. *Am J Physiol* 1999; 276: H315-H321

25. Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, Sessa WC, Bender JR. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. *Circ Res* 2000; 87: 677-682

26. Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. *Curr Hypertens Rep* 2003; 5: 473-480

27. Iwasaki Y, Takagi M, Hattori Y, Yamaguchi K, Kubota K. Protective effect of ischemic preconditioning against intermittent warm-ischemia-induced liver injury. *J Surg Res* 2002; 107: 82-92

28. Wen Y, Yang S, Liu R, Perez E, Yi KD, Koulou P, Simpkins JW. Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia. *Brain Res* 2004; 1008: 147-154

29. Rai RM, Lee FY, Rosen A, Yang SQ, Lin HZ, Koteish A, Liew FY, Zaragoza C, Lowenstein C, Diehl AM. Impaired liver regeneration in inducible nitric oxide synthase deficient mice. *Proc Natl Acad Sci USA* 1998; 95: 13829-13834

30. Knofer MW, Diodato MD, Angele MK, Ayala A, Cioffi WG, Bland KL, Chaudy IH. Do female sex steroids adversely or beneficially affect the depressed immune responses in males after trauma-hemorrhage? *Arch Surg* 2003; 138: 425-433

31. Nascimento CA, Farias RM, Lopes EM. Effect of 17beta-estradiol in hypercholesterolemic rabbits with severe endothelial dysfunction. *Am J Physiol* 1999; 276: H1788-H1794