Duality in a fermion-like formulation for the electromagnetic field

Everton M. C. Abreu* and Marcelo Hott

Departamento de Física e Química, Universidade Estadual Paulista,
Av. Aríbeto Pereira da Cunha 333, Guaratinguetá, 12500-000,
São Paulo, SP, Brazil,
e-mail: everton@feg.unesp.br and hott@feg.unesp.br
(March 28, 2022)

We employ the Dirac-like equation for the gauge field proposed by Majorana to obtain an action that is symmetric under duality transformation. We also use the equivalence between duality and chiral symmetry in this fermion-like formulation to show how the Maxwell action can be seen as a mass term.

PACS: 11.15.-q; 11.30.Cp; 11.30.Rd; 11.10.Ef

I. INTRODUCTION

Recently many papers have been published exploring the issue of duality. This production has been motivated by the relation between duality symmetry and theories with strong and weak coupling [1]. Another motivation has been due to the presence of various duality symmetries in the string theories [2], specifically, the target space duality (T-duality), which is the symmetry of the low energy effective field theory and the S-duality (the generalization of the electric/magnetic duality) which is the invariance under the $SL(2, R)$ duality transformations of the equations of motion for the bosonic sector of the heterotic string. Besides these, a very important interest resides in the electrically and magnetically charged black holes in the semiclassical view [3].

Consequently, one of the first dualities observed, the electric-magnetic duality in Maxwell’s equations, has received great attention. However, the problem that arises in preserving the duality symmetry and, at the same time, the manifest Lorentz covariance when the duality is implemented is a very difficult obstacle. The main objective in the literature is to construct a duality symmetric action which is also manifestly Lorentz invariant.

Schwarz and Sen (SS) [4] proposed a dual invariant action in which one more potential has been introduced generalizing the T-duality symmetric string action [5] to the case of the heterotic string. Although this formulation is not manifestly covariant it is classically and quantically Poincaré invariant. One way to recover the manifest Lorentz invariance is to produce a non-polynomial action, but this difficults the quantization. An alternative procedure is to use the Hamiltonian formalism in which, after the introduction of an infinite set of fields (this idea was first used to analyze chiral bosons [6]) it is possible to get suitable duality conditions [7]. The corresponding action, in ten dimensions, containing an infinite number of fields, is manifestly invariant under electromagnetic duality transformation. After compactification to four dimensions it results into a local Maxwell action with electric and magnetic sources [8]. The study of the dimensional dependence of the electromagnetic duality was carried out in [9] and the connection between duality and bosonization was shown in [10].

In the approach of the source-free Maxwell theory in an arbitrary background geometry, the duality symmetry under general electric/magnetic field rotations can be implemented in a non-local way, as was introduced by Deser and Teitelboim (DT) [11]. If the manifest covariance is lost, we can construct quadratic actions for these models. It can be proved that this formulation is equivalent to the Schwarz-Sen one’s [12] via path integral formalism. In reference [13] it was introduced sources into these non-manifestly invariant actions and the covariantization of this procedure has been accomplished in [14].

Khoudir and Pantoja (KP) [15], getting back the non-polynomial action scheme, suggested a Lorentz invariant version of the SS model by using an auxiliary time-like constant vector in the action. This vector in fact violates the manifest covariance. Pasti, Sorokin and Tonin (PST) [16], making good use of this idea, proposed a generalization of the DT, SS and KP duality symmetric actions presenting the KP unit norm auxiliary vector as a Lorentz frame vector field that can be related to the gravitation interaction. The action constructed is manifestly covariant.

In this work we use the fermion-like formulation of E. Majorana [17] for the Maxwell theory to propose an action that is invariant under relativistic and duality transformations. Fermion-like formulation for the electromagnetic theory has been studied extensively by Dvoeglazov [18], but their connections with duality has not been explored. The paper is organized as follows: in section 2 we review the work of Majorana and obtain a Dirac-like expression for the Maxwell equations in the absence of sources. This fermion-like formulation suggest us to explore the chiral aspects in the theory. This is accomplished in section 3 where we show that dail-

*Financially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
ity is a kind of chirality and in this context we propose
our action which is invariant under duality. In section 4
we demonstrate that the Poincaré generators obeys the
algebra on-shell. Finally, the conclusion and final obser-
vations are in section 5.

II. FERMION-LIKE FORMULATION

The well known Maxwell’s equations are
\[\nabla \cdot \mathbf{E} = \rho \quad (1) \]
\[\nabla \cdot \mathbf{B} = 0 \quad (2) \]
\[\nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = \mathbf{j} \quad (3) \]
\[\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \quad . \quad (4) \]

Now we want to look for a fermion-like formulation of
these equations based on the work of Majorana [13]. In
his work Majorana enhanced the rôle in electrodynamics
of the complex quantity \(\mathbf{F} = \mathbf{E} - i\mathbf{B} \), which was empha-
sized lately by Weinberg [21] and others [22]. The main
motivation for this construction is the well known fact
that at statistical level, the electric and magnetic fields
\(\mathbf{E} \) and \(\mathbf{B} \) are connected (through the quantity \(\mathbf{E}^2 + \mathbf{B}^2 \))
to the local mean number of photons. Hence, an ex-
pression for the probability quantum wave of a photon
can be given in terms of \(\mathbf{E} \) and \(\mathbf{B} \). It provides a mean-
ing different of the usual one, where the electromagnetic
four-potential is introduced.

The first step is to build elements and vectors that
allow us to couple two equations in only one. To accom-
plish this we note that equations (3) and (4), for \(\mathbf{j} = 0 \),
can be rewritten as
\[i \frac{\partial \mathbf{E}}{\partial t} = \frac{1}{i} (\mathbf{s} \cdot \nabla) \mathbf{i} \mathbf{B} \quad (5) \]
and
\[i \frac{\partial (i \mathbf{B})}{\partial t} = \frac{1}{i} (\mathbf{s} \cdot \nabla) \mathbf{E} \quad (6) \]
where
\[\mathbf{E} = \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} B_1 \\ B_2 \\ B_3 \end{pmatrix} \quad . \quad (7) \]

Note that we have defined \(\mathbf{s} \) as three matrices 3 \(\times \) 3,
by \((\mathbf{s}^t)_{jk} = -i \epsilon_{ijk} \), where \(\epsilon_{ijk} \) is the Levi-Civita totally
antisymmetric tensor normalized so that \(\epsilon_{123} = 1 \) and
\((\mathbf{s} \cdot \nabla) \mathbf{B} = (s_i)_{jk} \partial_j B_k \).

With this definition the \(s^i \) matrices have the explicit
structure
\[s^1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad s^2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \quad (8) \]
which satisfy the angular-momentum algebra
\[[s_i, s_j]_{\pm} = -i \epsilon_{ijk} s_k \quad , \quad (i, j, k = 1, 2, 3) \quad , \quad (9) \]
and in this way the equation (5), for example, can be
rewritten as
\[i \frac{\partial E_i}{\partial t} = (s_i)_{jk} \partial_j B_k \quad (10) \]

In order to express equations (5) and (6) in a fermion-
like formulation we define two important 6 \(\times \) 6 matrices,
\[\Gamma_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \Gamma^t = \begin{pmatrix} 0 & \mathbf{s} \\ -\mathbf{s} & 0 \end{pmatrix} \quad . \quad (11) \]
\(\Gamma_0 \) and \(\Gamma^t \) play the rôle of the Dirac gamma matrices,
although they do not obey the usual gamma anticommu-
tation relations. We can also introduce a matrix that is
equivalent to Dirac’s \(\gamma_5 \),
\[\Gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad (12) \]
where \(\mathbb{1} \) is the 3 \(\times \) 3 identity matrix. One can check that
\{ \(\Gamma_5, \Gamma_\mu \) \} = 0 , \(\mu = 0, \ldots, 3 \).

With these definitions equations (5) and (6) can be put
in a more compact form
\[i \frac{\partial \Psi}{\partial t} = \frac{1}{i} (\mathbf{s} \cdot \nabla) \Psi \Rightarrow (\partial_t + \mathbf{s} \cdot \nabla) \Psi = 0 \quad , \quad (13) \]
where \(\mathbf{s} \) is
\[\mathbf{s} = \begin{pmatrix} 0 & \mathbf{s} \\ -\mathbf{s} & 0 \end{pmatrix} \quad . \quad (14) \]

\(\text{Eq. (13) resembles the massless Dirac equation, and one} \)
can consider \(\Psi \) as a (quantum) wave function for the
photon of the type
\[\Psi = \begin{pmatrix} \mathbf{E} \\ i \mathbf{B} \end{pmatrix} \quad (15) \]
and
\[\overline{\Psi} = \begin{pmatrix} \mathbf{E}^\dagger \\ i \mathbf{B}^\dagger \end{pmatrix} \quad (16) \]
where \(\overline{\Psi} = \Psi^\dagger \Gamma_0 \) is an analog of the Hermitian conju-
gated definition. Notice that only \(\mathbf{E} \) and \(\mathbf{B} \) have physical
meaning and we will use \(\mathbf{E}^\dagger \) and \(\mathbf{B}^\dagger \) as auxiliary fields.
So, we can note that \(\overline{\Psi} \Psi = \mathbf{E}^2 + \mathbf{B}^2 \), with \(\mathbf{E}^\dagger = \mathbf{E} \) and
\(\mathbf{B}^\dagger = \mathbf{B} \). Now we can see the importance of the complex notation in the construction of \(\Psi \) which mimics a Dirac spinor.

In terms of the \(\Gamma \) matrices we may rewrite (13) as

\[
i \Gamma_0 \frac{\partial \Psi}{\partial t} = \frac{1}{i} (\Gamma_0 \mathbf{S} \cdot \nabla) \Psi \\
= \frac{1}{i} (\bar{\Gamma} \cdot \nabla) \Psi \\
\Rightarrow (\Gamma_0 \partial_t + \bar{\Gamma} \cdot \nabla) \Psi = 0 \\
\]

or compactly

\[
\Gamma^\mu \partial_\mu \Psi = 0 \ ,
\]

though it is not manifestly covariant.

III. CHIRALITY AND DUALITY TRANSFORMATIONS

We can also note that eq. (19) is invariant under the chiral transformation

\[
\Psi \rightarrow \Psi = e^{i \theta \Gamma_5} \Psi
\]

In terms of the fields \(\mathbf{E} \) and \(\mathbf{B} \) we have

\[
\mathbf{E} = \cos \theta \mathbf{E} - \sin \theta \mathbf{B} \\
\mathbf{B} = \cos \theta \mathbf{B} + \sin \theta \mathbf{E}
\]

which is a rotation and, particularly for \(\theta = -\pi/2 \) we recover the duality transformation.

This invariance can also be verified in the following Lagrangian density

\[
\mathcal{L} = i \alpha \bar{\Psi} (\Gamma_0 \partial_t + \bar{\Gamma} \cdot \nabla) \Psi ,
\]

or compactly \(\mathcal{L} = i \alpha \bar{\Psi} \Gamma^\mu \partial_\mu \Psi \), where the vectors \(\Psi \) and \(\Psi^\dagger \) must be taken conveniently as independent. In order to provide the correct dimension of the action in the natural units \((\hbar = c = 1) \) we have introduced a parameter \(\alpha \) whose dimension is mass\(^{-1}\) and does not modify the equations of motion.

In terms of \(\mathbf{E} \) and \(\mathbf{B} \) eq. (22) is given by

\[
\mathcal{L} = \alpha (i \mathbf{E}^\dagger \dot{\mathbf{E}} + i \mathbf{B}^\dagger \dot{\mathbf{B}} - \mathbf{E}^\dagger \mathbf{s} \cdot \nabla \mathbf{B} + \mathbf{B}^\dagger \mathbf{s} \cdot \nabla \mathbf{E})
\]

which is first-order in time derivative and consequently has a Hamiltonian formulation. The physical quantities of the theory are real and the main rôle of the auxiliary fields is in the mathematical construction of the Maxwell equations as we will see below.

The equations of motion for \(\mathbf{E}^\dagger \) and \(\mathbf{B}^\dagger \) can be obtained from the Euler-Lagrange equations

\[
\frac{\partial \mathcal{L}}{\partial \mathbf{E}_i} - \partial_t \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{E}}_i} - \partial_j \frac{\partial \mathcal{L}}{\partial (\partial_j \mathbf{E}_i)} = 0
\]

and

\[
\frac{\partial \mathcal{L}}{\partial \mathbf{B}_i} - \partial_t \frac{\partial \mathcal{L}}{\partial \dot{\mathbf{B}}_i} - \partial_j \frac{\partial \mathcal{L}}{\partial (\partial_j \mathbf{B}_i)} = 0
\]

with the following result,

\[
- i \frac{\partial \mathbf{E}^\dagger}{\partial t} = \frac{1}{i} (\mathbf{s} \cdot \nabla) \mathbf{B}^\dagger
\]

and

\[
- i \frac{\partial (i \mathbf{B}^\dagger)}{\partial t} = \frac{1}{i} (\mathbf{s} \cdot \nabla) \mathbf{E}^\dagger
\]

which are the Hermitian conjugates of (18) and (19) respectively. The equations of motion for \(\mathbf{E} \) and \(\mathbf{B} \) are obtained from

\[
\frac{\partial \mathcal{L}}{\partial \mathbf{E}_i} = 0 \quad \text{and} \quad \frac{\partial \mathcal{L}}{\partial \mathbf{B}_i} = 0
\]

and as a result we have equations (20) and (21).

Equations (1) and (2) for \(\rho = 0 \) comes from the fact that \(\mathbf{E} \) and \(\mathbf{B} \) are orthogonal to the propagation vector, namely

\[
\mathbf{k} \cdot \mathbf{E} = 0 \quad \text{and} \quad \mathbf{k} \cdot \mathbf{B} = 0
\]

The mass term. It is well known that a term like \(\overline{\Psi} \Psi \) breaks the chiral invariance. In this formulation it is given by

\[
\overline{\Psi} \Psi = \mathbf{E}^\dagger \cdot \mathbf{E} - \mathbf{B}^\dagger \cdot \mathbf{B}
\]

which resembles the Maxwell Lagrangian density (with \(\mathbf{E}^\dagger = \mathbf{E} \), \(\mathbf{B}^\dagger = \mathbf{B} \)) and highlights the connection between chiral symmetry and duality. A mass term in the Dirac form is not invariant under chiral transformation and the Maxwell Lagrangian is not invariant under duality transformation.

IV. THE GENERATORS OF THE POINCARÉ ALGEBRA

Notice that, as the Schwarz-Sen model, eq. (23) is not a Lorentz scalar. However, it is our task now to demonstrate that the theory is relativistically invariant as it obeys the Poincaré algebra.

We have computed the generators of the Poincaré algebra in the usual way, that is, by using the energy-momentum tensor as

\[
\Theta_{\mu \nu} = \frac{\partial \mathcal{L}}{\partial (\partial^\mu \phi_i)} \frac{\partial \phi_i}{\partial x^\nu} - g_{\mu \nu} \mathcal{L}
\]

(31)
where ϕ_i are the basic fields $E_i(E_i^\dagger)$ and $B_i(B_i^\dagger)$. Consequently the linear and angular momenta are given by,

$$H = P_0 = \int d^3 x \Theta_{00}$$
$$= \alpha \int d^3 x [E^\dagger \mathbf{s} \cdot \nabla \mathbf{B} - \mathbf{B}^\dagger \mathbf{s} \cdot \nabla \mathbf{E}]$$

$$P_k = \int d^3 x \Theta_{0k}$$
$$= i \alpha \int d^3 x [E^\dagger \partial_k \mathbf{E} + \mathbf{B}^\dagger \partial_k \mathbf{B}] , \tag{32}$$

and

$$M_{\mu\nu} = i \alpha \int d^3 x \left[x_\mu \left(E^\dagger \partial_\nu \mathbf{E} + \mathbf{B}^\dagger \partial_\nu \mathbf{B} \right) \right.$$
$$\left. - x_\nu \left(E^\dagger \partial_\mu \mathbf{E} + \mathbf{B}^\dagger \partial_\mu \mathbf{B} \right) \right] , \tag{33}$$

where $\mu, \nu = 0, \ldots, 3$ and $k = 1, \ldots, 3$. Finally it can be shown in a straightforward calculation that they obey the Poincaré algebra on-shell, i.e.,

$$\{ P_k, P_0 \} = 0$$
$$\{ M_{\mu\nu}, P_0 \} = 0$$
$$\{ M_{\mu\nu}, P_k \} = g_{k\mu} P^\mu_\nu - g_{k\nu} P^\nu_\mu$$
$$\{ M_{\mu0}, P_k \} = g_{k\mu} P_0$$
$$\{ M_{\mu\nu}, M_{\lambda} \} = g_{\nu\lambda} M_{\mu\lambda} - g_{\mu\lambda} M_{\nu\lambda}$$
$$- g_{\mu\sigma} M_{\nu\lambda} - g_{\nu\sigma} M_{\mu\lambda} . \tag{34}$$

So, we have demonstrated that the action in eq. (24) describes a theory that is relativistically invariant on-shell.

V. CONCLUSIONS

We have analyzed an already known fermion-like formulation for the electromagnetic theory and proposed a corresponding Lagrangian invariant under duality transformation. This invariance can be seen as a particular case of chiral transformation in the fermion-like formulation. We have carried out our analysis in order to verify the Poincaré invariance of this formulation, and have found that, although not being manifestly covariant, it is relativistically invariant on-shell. We also have compared the chiral variant mass term with the Maxwell Lagrangian, which is duality noninvariant. As a perspective for the future we intend to study the duality symmetry in other formulations of the electromagnetism.

VI. ACKNOWLEDGMENTS

The authors would like to thank the financial support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), a brazilian research agency, professors A. S. Dutra and C. Wotzasek for valuable discussions and professor V. Dvoeglazov for helpful comments.

[1] C. Montonen and D. Olive, Phys. Lett. B 72 (1977) 117; P. Goddard, J. Nyuts and D. Olive, Nucl. Phys. B 125 (1977) 1.
[2] A. Font, L. Ibañez, D. Lust and F. Quevedo, Phys. Lett. B 249 (1990) 35; S. J. Rey, Phys. Rev. D 43 (1991) 526.
[3] S. Deser, M. Henneaux and C. Teitelboim, Phys. Rev. D 55 (1997) 826.
[4] J. H. Schwarz and A. Sen, Nucl. Phys. B 411 (1994) 35.
[5] A. Tseytlin, Phys. Lett. B 242 (1990) 163; Nucl. Phys. B 350 (1991) 395.
[6] C. Wotzasek, Phys. Rev. Lett. 66 (1991) 129.
[7] B. McClain, Y. S. Wu and F. Yu, Nucl. Phys. B 343 (1990) 689.
[8] I. Bengtsson and A. Kleppe, Int. J. Mod. Phys. A 12 (1997) 3397.
[9] N. Berkovits, Phys. Lett. B 395 (1997) 28.
[10] A. Tseytlin, Phys. Rev. D 58 (1998) 125026.
[11] C. Wotzasek and R. Banerjee, Nucl. Phys. B 527 (1998) 402.
[12] S. Deser and C. Teitelboim, Phys. Rev. D 13 (1976) 1592.
[13] H. O. Girotti, M. Gomes, V. O. Rivelles, A. J. da Silva, Phys. Rev. D 56 (1997) 6615.
[14] S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, Phys. Lett. B 400 (1997) 80.
[15] R. Medina and N. Berkovits, Phys. Rev. D 56 (1997) 6388.
[16] A. Khoudeir and N. Pantoja, Phys. Rev. D 53 (1996) 5974.
[17] P. Pasti, D. Sorokin and M. Tonin, Phys. Lett. B 352 (1995) 59; Phys. Rev. D 52 (1995) R4277; Phys. Rev. D 56 (1997) 2473.
[18] E. Majorana, “Scientific Manuscripts”, unpublished, deposited at the “Domus Galilaeana”, Pisa, quaderno 2, p.101/1; 3.p. 11,160; 15. p. 16; 17. p. 83,159; E. Majorana, Nuovo Cim. 9 (1932) 335.
[19] R. Mignani, E. Recami and M. Baldo, Lett. Nuovo Cim. 11 (1974) 568.
[20] V. V. Dvoeglazov, Hadr. J. 16 (1993) 459; Aperon 5 (1998) 69.
[21] S. Weinberg in 1964, “Lectures on Particles and Field Theory”, edited by S. Deser and K. W. Ford, p. 405.
[22] L. Landau and E. Lifshitz, “Theorie du Champ”, (Moscow, 1966); D. Weingarten, Ann. Phys. 76 (1973) 510; J. M. Leinaas, Nuovo Cim. A 15 (1973) 740; E. Recami and R. Mignani, Riv. Nuovo Cim. 4 (1974) 209.