RESEARCH ARTICLE

Genome-wide analysis of methylation in giant pandas with cataract by methylation-dependent restriction-site associated DNA sequencing (MethylRAD)

Yuyan You1,*, Chao Bai1*, Xuefeng Liu1, Maohua Xia2, Ting Jia1, Xiaoguang Li2, Chenglin Zhang1, Yucun Chen3, Sufen Zhao3, Liqin Wang4, Wei Wang1, Yanqiang Yin5, Yunfang Xiu3, Lili Niu4, Jun Zhou5, Tao Ma2, Yang Du2, Yanhui Liu2

1 Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China, 2 Beijing Zoo, Beijing, China, 3 Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China, 4 Chengdu Zoo, Chengdu, China, 5 Chongqing Zoo, Chongqing, China

☯ These authors contributed equally to this work.
☆ youyy351@163.com

Abstract

The giant panda (Ailuropoda melanoleuca) is a native species to China. They are rare and endangered and are regarded as the 'national treasure' and 'living fossil' in China. For the time being, there are only about 2500 giant pandas in the world. Therefore, we still have to do much more efforts to protect the giant pandas. In captive wildlife, the cataract incidence of mammalian always increases with age. Currently, in China, the proportion of elderly giant pandas who suffering from cataract has reached 20%. The eye disorder thus has a strong influence on the physical health and life quality of the elderly giant pandas. To discover the genes associated with the pathogenesis of cataract in the elderly giant panda and achieve the goal of early assessment and diagnosis of cataract in giant pandas during aging, we performed whole genome methylation sequencing in 3 giant pandas with cataract and 3 healthy giant pandas using methylation-dependent restriction-site associated DNA sequencing (MethylRAD). In the present study, we obtained 3.62M reads, on average, for each sample, and identified 116 and 242 differentially methylated genes (DMGs) between the two groups under the context of CCGG and CCWGG on genome, respectively. Further KEGG and GO enrichment analyses determined a total of 110 DMGs that are involved in the biological functions associated with pathogenesis of cataract. Among them, 6 DMGs including EEA1, GARS, SLITRK4, GSTM3, CASP3, and EGLN3 have been linked with cataract in old age.

Introduction

Nowadays, a growing number of wild animals have been successfully placed in Zoo. Although the captive animals in Zoo live longer than those in the wild, the aged captive animals (e.g., Malayan Tapir) always encounter various age-related diseases including cataract.
characterized by the opacification of eye lens, is the most common cause for the blindness of almost all mammals, such as dogs, rhesus monkeys, and humans[1–3]. In addition, increasing age is considered to be the most important risk factor for cataract and a considerable number of cataract are classified as age-related cataract[4]. The loss of vision caused by age-related cataract has great influences on the health status of aged animals. As showed by one previous investigation on the captive rhesus monkeys, cataract attacked 20% of the rhesus monkeys at age of 20–22 years and the rate was still increasing after 26 years of age [1]. In addition, the giant panda (Ailuropoda melanoleuca), a world’s most protected rare animals, is also attacked by cataract with age. The studies have shown that the average life span of wild giant pandas is about 15–20 years old, while those in captivity usually live longer and can reach to the age of about 25–30 years[5–6]. Generally, the lifespan of human is 4–4.5-fold longer than the giant panda. The giant panda at the age of 20 years approximately equals human at age of 80–90 years and those aged after 18 years are always served to be aged giant pandas. According to the national survey of eye diseases in aged giant pandas, conducted by Beijing Zoo in 2013, approximately 20% of the aged giant pandas suffered from cataract. Since the giant panda is still an endangered species, the protection of aged giant pandas from cataract has great significances.

Hitherto, a growing number of evidence has shown that genetic factors have large influences on the severity of cataract and play important roles in the development of cataract[7]. For instance, oxidative stress and DNA damage are two common contributors to the many changes in development of age-related cataract[8–10]. Abundant evidence has revealed that genes related to these activities (i.e., oxidative stress and DNA damage) play an important role in the pathogenesis of age-related cataract, such as SOD1, PRDX6, and CRYBA4[11–13]. Epigenetic modifications (e.g., DNA methylation, histone modifications, and non-coding RNA) refer to the alteration of gene activity without any changes in genomic sequence[14–15]. Currently, alteration in epigenetic patterns, in especial DNA methylation, has been closely linked with the cataractogenesis[16]. For example, a reduction of OGG1 and CRYAA expression caused by hypermethylation was observed in lens of eyes with age-related cataract[17–18]. All the existing evidence indicates that the abnormal DNA methylation changes have great contributions to the development of age-related cataract in giant pandas.

In this present study, we performed genome-wide DNA methylation analysis on 3 giant pandas with cataract and 3 healthy giant pandas by methylation-dependent restriction-site associated DNA sequencing (MethylRAD)[19]. Comparison of methylation patterns between the two groups led to the identification of a number of the differentially methylated genes (DMGs) according to the methylation level of CCGG/CCWGG sites. Further analyses showed that the DMGs are preferential located on KEGG pathways and GO terms that have close associations with cataract development. Among these DMGs, some genes (e.g., CASP3, HMGB1, EEA1, and GARS) indeed have been proved to be functioning in the pathogenesis of age-related cataract. Taken together, our study illustrates the epigenetic basis of cataract development in giant panda and identifies potential targets for drug intervention in the therapy of age-related cataract. This research work will facilitate the development of precision medical measures for cataract specific to giant pandas.

Materials and methods

Sampling and MethylRAD sequencing

The peripheral blood samples were collected from 6 female giant pandas, consisting of 3 cases with cataract and 3 healthy controls. A total of 2 ml blood was draw for each sample during the daily physical examination (without anesthetic). The genomic DNA of blood samples was
extracted using phenol-chloroform method (EMD Millipore-516726, Sigma-Aldrich). Blood samples were initially stored at -80°C. Construction of the MethylRAD library has been described by Wang et al.[19]. 3 μg genomic DNA for each sample was mixed with FspEI (SU/μl) by a volume ratio of 1:0.8. Then, 30 × Enzyme activator was added to the mixture for digestion reaction, with a volume ratio on 0.5:1. After ligation of adaptor, the product was enriched and purified, and then amplified with PCR reactions. PCR product was further purified using QIAquick PCR Purification Kit. Finally, the short DNA fragments in each library were sequenced on Illumina HiSeq platform by the mode of single-end, 50-bp (Illumina Inc., USA).

Quality control and reads alignment

To get the clean reads with high quality, we filtered out the poor-quality reads using the threshold of over 15% of bases in a read with quality value of less than 30. In addition, we also removed those reads with a percentage of N greater than 8%[18]. Then, the reads with enzyme sites (enzyme reads) were extracted for subsequent analyses.

The reference genome (AilMel 1.0) of giant panda was downloaded from the National Center for Biotechnology Information (NCBI) with the website: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/004/335/GCF_000004335.2_AilMel_1.0/GCF_000004335.2_AilMel_1.0_genomic.fna.gz). Then, we mapped the enzyme reads to the reference genome of AilMel 1.0 using SOAP version 2.21 (http://soap.genomics.org.cn/) with the parameters: -M 4 -v2 -r 0 [20].

Quantitation and compare of methylation level between two groups

Since the consistency of amplification efficiency for the sequences with equal length, the methylation level of the sites (CCGG/CCWGG) can be quantified by the sequencing depth of the methylation tag. For the MethylRAD-sequencing, the methylation level of each site (CCGG/CCWGG) was represented by RPM (reads per million) as the following formula[21]:

\[
RPM = \frac{\text{site coverage reads number} \times 1,000,000}{\text{library high quality reads number}}
\]

In addition, the methylation level of one certain genic region including upstream/downstream 2000 bp of TSS (transcription start site), gene body, and upstream/downstream 2000 bp of TTS (transcription termination site) was calculated by the sum value of all the methylated sites that are located in the corresponding the region. The methylation data were then analyzed to identify the differentially methylated sites/genes (DMS/Gs) between the case and control groups using the edgeR Bioconductor package that is relied on the number of coverage reads on the sites or genes[22]. Here, the sites/genes with at least 3 reads coverage across the samples in at least one group were retained and those meeting the threshold of p value ≤ 0.05 and \(|\log2FC| > 1\) were determined as DMS/Gs, with hypermethylated and hypomethylated.

Gene annotation and enrichment analysis

The gene annotation information of giant panda was also downloaded from the National Center for Biotechnology Information (NCBI) with the website: ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/004/335/GCF_000004335.2_AilMel_1.0/GCF_000004335.2_AilMel_1.0_genomic.gff.gz. The UTR regions of the genes were calculated by using SnpEff tool based on the annotation information[23]. The distributions of the methylated sites on various genomic sequences were calculated by BEDTools[24]. To perform gene set enrichment analysis, we obtained the available gene information of pathways and biological functions from databases.
of Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and The Comparative Toxicogenomics Database (CDT)[25–27]. We utilized the hypergeometric test to calculate the statistical significance of genes enriched on each biological function.

Results

Source of the study samples

In 2013, we looked into 55 old giant pandas in Chinese Zoo, among which 11 (8 females and 3 males) were suffering from cataract. Most of the sufferers were female and over 20 years old. Here, we obtained the genomic DNA samples of peripheral blood cells from 3 female giant pandas with cataract, 2 healthy female giant pandas and 1 male giant panda to perform subsequent genome-wide methylation study. As presented in Table 1, we numbered the 6 giant panda samples as YY-Y, BD-Y, YY-XK, LL-D, JN-D, and XX-XK, respectively. Among these samples, the YY-Y and BD-Y, were healthy ones with an age of approximately 20 years old, YY-XK was healthy with an age of 29 years old. LL-D, JN-D, and XX-XK were ill ones with an age of 36, 32, and 25 years old, respectively. LL-D was died in 2018.

MethylRAD of the samples

The methylomes of the peripheral blood cells from the 6 giant pandas were generated on HiSeq platform using MethylRAD sequencing (see Materials and Methods)[19]. Here, we obtained 3.62 ± 0.17 million raw sequencing reads, on average, for each sample. After removing the reads with low quality and the reads without enzyme sites, we retained about 1.72 million clean enzyme (FspEi) reads that covering CCGG/CCWGG sites in each sample for the subsequent analyses. We mapped the enzyme reads to the reference genome (AilMel 1.0) of giant panda by using SOAP software version 2.21[20]. On average, about 1.31 million clean reads were mapped to the genome for each sample, the mapping ratio is about 76.66% (Table 2). In this study, we determined the reliable methylated sites by a cutoff of read-coverage no less than 3, and obtained 1 million CCGG sites and 0.32 million CCWGG sites, on average, for each sample. The average coverage depth of CCGG and CCWGG sites is 10.3 and 9.01, respectively (Table 3). Therefore, the sequencing reads satisfy the condition of following analyses.

Signatures of DNA methylation in the giant pandas

Then, we analyzed the distribution of the methylated CCGG/CCWGG sites on distinct genomic sequences, including Utr3prime, Utr5prime, Upstream, Exon, Intron, and intergenic regions (Fig 1). Among them, the sites were most located in intergenic and intron regions, the next in exon and upstream, and the least in Utr3prime and Utr5prime regions. In addition, results revealed that the distribution of methylated CCGG and CCWGG sites on various

Table 1. Basic characteristics of giant pandas.

Name	Spectrum number	Number	Birth year	Status	Sex	Remarks
YAER	493	YY-X	1999	Health	Female	-
BINGDIAN	520	BD-X	2000	Health	Male	-
YAYA	362	YY-XK	1990	Health	Female	-
LELE	320	LL-D	1986	Age-related cataract	Female	DEATH
JINI	403	JN-D	1993	Age-related cataract	Female	-
XINXING	253	XX-XK	1982	Age-related cataract	Female	-

https://doi.org/10.1371/journal.pone.0222292.t001
Genomic regions was very similar in the 3 healthy giant pandas, while a marked difference was observed in the 3 giant panda that suffering from cataract. For instance, the number of methylated CCGG and CCWGG sites located in the various genomic regions was fewest in LL-D, moderate in XX-XK, and largest in JN-D. In addition, we found that the methylated CCGG and CCWGG sites in LL-D and XX-XK were smaller than the healthy giant pandas. However, for the methylated sites in JN-D, the number of CCGG sites was larger than healthy giant pandas, while the number of CCWGG sites was similar with healthy giant pandas.

In addition, we analyzed the overall methylation pattern of different positions on the genic regions. As presented in Fig 2 and S1 Table, the methylation level based on CCGG and CCWGG sites was gradually rising from the initial position of genic region, occurred a turning point of rising tread, then continued to rise and reach the highest value at the end position. Moreover, no obvious differences were observed in the 6 giant pandas.

Genes differentially methylated in the case and control groups

In the present study, we calculated the methylation level of genes based on the CCGG and CCWGG sites, respectively, and identified the DMGs between the case and control groups using a threshold of \(P \) value \(\leq 0.05 \) and absolute log2FC value > 1 (see Materials and Methods). Here, we identified a total of 116 DMGs by the CCGG sites, including 75 hypermethylated genes and 41 hypomethylated genes. Moreover, we determined 242 DMGs by the CCWGG sites, including 164 hypermethylated genes and 78 hypomethylated genes. The heat-map plot showed a different methylation pattern between the two groups, with genes highly methylated in patients presenting low methylation level in the healthy samples and vice versa. For both the CCWGG and CCGG sites, there were a large number of genes with hypermethylation in healthy group (Fig 3). Among them, there were 20 DMGs that were identified by both the CCGG and CCWGG sites, containing 12 hypermethylated genes and 8 hypomethylated genes (Fig 4 and S2 Table).
Pathway-level functions of the DMGs in the development of cataract

To determine the signaling pathways potentially associated with age-related cataract, we first performed KEGG enrichment analysis and searched the available annotation information from CTD database[25, 27]. By using a threshold of \(P \) value \(<0.05\), we identified 15 and 55 enriched KEGG signaling pathways for the CCGG- and CCWGG-based DMGs, respectively. Among them, the CCGG-based signaling pathways contained 27 DMGs, including 22 hypermethylated genes and 5 hypomethylated genes; while the CCWGG-based signaling pathways contained 96 DMGs, including 80 hypermethylated genes and 16 hypomethylated genes. In addition, there were 3 enriched pathways according to both CCGG- and CCWGG-based DMGs. A total of 10 DMGs were located in these 3 signaling pathways, including 8 hypermethylated genes and 2 hypomethylated genes. We then summarized the findings of KEGG signaling pathways to assess their associations with cataract pathogenesis. The pathways associated with genetic information processing included base excision repair (cataract-related genes: \(HMGB1 \), hypomethylated in aged giant pandas with cataract), SNARE interactions in vesicular transport (\(STX19 \), hypermethylated), and RNA degradation (\(MPHOSPH6 \) and \(TTC37 \), both were hypermethylated). The pathways related with environmental information processing contained NF-kappa B signaling pathway (\(CCL19 \), hypomethylated), cAMP signaling pathway, HIF-1 signaling pathway (\(LOC100484901 \), \(PDK1 \), and \(EGLN3 \), all were hypermethylated). On the level of cellular process, there were 5 pathways, 3 of which had some associations with cataract, including cell cycle (\(ORC6 \) and \(CDC7 \), both were hypermethylated), apoptosis (\(CASP3 \), hypermethylated), p53 signaling pathway (\(TP53I3 \) and \(CASP3 \), both were hypermethylated). On the level of metabolism, there were 17 pathways, 7 of which were related with cataract, including drug metabolism-cytochrome P450 (\(FMO5 \) and \(GSTM3 \), both were hypermethylated), glycerolipid metabolism (\(LPL \), hypermethylated), beta-Alanine metabolism (\(LOC100474209 \), hypermethylated), tyrosine metabolism (\(LOC100474209 \), hypermethylated),
phenylalanine metabolism (LOC100474209, hypermethylated), metabolism of xenobiotics by cytochrome P450 (GSTM3, hypermethylated), steroid biosynthesis (MSMO1, hypermethylated). For organismal systems, there were 16 pathways, 1 of which was related with cataract (i.e., axon guidance). For the level of human disease, there were 19 pathways, 5 of which were associated with cataract. Those were Epithelial cell signaling in Helicobacter pylori infection (ATP6V1C1 and CASP3, both were hypermethylated), Platinum drug resistance (TOP2B, GSTM3, and CASP3, all were hypermethylated), Viral myocarditis (LOC100463889 and CASP3, both were hypermethylated), Fluid shear stress and atherosclerosis (LOC100484313, GSTM3, and ACVR2A, all were hypermethylated), Chemical carcinogenesis (GSTM3, hypermethylated) (Fig 5, Table 4 and S3 Table).

GO-level functions of the DMGs in cataract

Similarly, we also conducted GO enrichment analysis for the DMGs and then found the cataract-related GO term by CTD database[26–27]. The CCGG-based DMGs were enriched in 396 GO terms, containing 59 DMGs (36 hypermethylated genes, 23 hypomethylated genes). The CCWGG-based DMGs were enriched in 681 GO terms, including 129 DMGs (88 hypermethylated genes and 41 hypomethylated genes). There were 105 GO terms that were identified with both CCGG- and CCWGG-based DMGs. These terms contained 59 DMGs, among which 7 genes carried both differentially methylated CCGG and CCWGG sites. Under the cellular component, there were 102 enriched terms, among which 26 terms had an association with cataract. In addition, there were 13 terms containing DMGs with same directional
Fig 3. Cluster heat map of differentially methylated genes between group.

https://doi.org/10.1371/journal.pone.0222292.g003

Fig 4. Gene statistics of different methylation levels.

https://doi.org/10.1371/journal.pone.0222292.g004
methylation changes, such as intermediate filament (LOC105240942 and LOC100465932, hypermethylated), membrane raft (RRK2, LOC100476759, and GNAI1, hypermethylated), midbody (KIF20B, GNAI1, and ASPM, hypermethylated). For molecular function, the DMGs were enriched in 181 terms, among which 29 were associated with cataract. 16 of the 29 terms had DMGs showing same directional changes, such as structural constituent of cytoskeleton (LOC100473181 and TUBD1, hypermethylated), SNARE binding (STX19 and LRRK2, hypermethylated), beta-catenin binding (SOX9 and SOX17, hypomethylated), calmodulin binding (EEA1 and MIP, hypermethylated). For biological process, the DMGs were enriched in 690 terms, 219 of which were linked with cataract. 182 of the 219 terms had DMGs showing same directional changes, such as cardiac muscle tissue development (NKX2-5, hypermethylated), BMP signaling pathway (ACVR2A, TMEM100, and NKX2-5, hypermethylated), cellular metabolic process (PDP1 and PDK1, hypermethylated), cholesterol metabolic

Fig 5. Functional enrichment of genes related to different methylation levels.

https://doi.org/10.1371/journal.pone.0222292.g005
process (PCTP and LOC100476613, hypomethylated), and regulation of membrane potential (GABRG1, LRRK2, and LOC105234775, hypermethylated) (Fig 5, Table 5 and S4 Table).

Roles of the DMGs in cataract

In this study, we identified a total of 338 DMGs between the groups. Among the DMGs, 116 have been previously supposed to be potentially linked with the development of cataract (S5 Table). Based on the results of enrichment analysis, we selected 16 DMGs associated with the cataract-related KEGG pathways and 108 DMGs involved in the cataract-related GO terms. By combing the results of KEGG and GO enrichment analyses, we obtained a total of 110 DMGs (Table 6), among which 6 have been linked with the cataract in old age in previous reports that were EEA1, GARS, SLITRK4, GSTM3, CASP3, and EGLN3.

Discussion

In the present study, we analyzed the methylation profile differences between the aged giant pandas suffering from cataract and healthy giant pandas and identified hundreds of DMGs in giant pandas with age-related cataract. Notably, we found no methylation differences on the genes (i.e., GLB1, CDKN2A and CDKN2B) highly correlated with aging[28–29], implying negligible effects of age on the DMGs. Further analysis showed that the genes with significant methylation differences between the case and control groups are indeed located on many biological processes related with cataract formation, such as base excision repair, p53 signaling pathway, and apoptosis[18, 30, 31]. Among them, p53 signaling pathway plays an important roles in the prevention of apoptosis of lens epithelial cells and cataractogenesis[31], the hypermethylation of genes (i.e., TP53I3 and CASP3) on this pathway would like to downregulate the
CClass	GO_id	GO_def	CCGG_pval	CCWGG_pval
Cellular_component	GO:0005882	intermediate filament	0.026127779	0.02394968
	GO:0005667	transcription factor complex	0.016392771	0.010378895
	GO:0016607	integral component of membrane	0.009779408	0.90683214
	GO:0016623	nuclear speck	0.032533867	0.24309679
	GO:0005645	cell	0.018123614	NA
	GO:0005615	extracellular space	0.03795066	0.376522069
	GO:0003018	Z-disc	0.049478525	0.218824299
	GO:0015102	extracellular matrix	0.038135622	0.14389526
	GO:0016636	nuclear matrix	0.038135622	NA
	GO:001903	early endosome membrane	0.0046239	0.20585267
	GO:0028399	dendrite cytoplasm	NA	0.00426355
	GO:0043204	perikaryon	NA	0.00424455
	GO:0034266	growth cone	NA	0.0446993
	GO:0000474	chromosome, telomeric region	NA	0.02660753
	GO:0049005	neuron protection	NA	0.040183436
	GO:0045123	membrane raf	NA	0.02576856
	GO:0030666	endocytic vesicle membrane	NA	0.029466371
	GO:0044291	cell-cell contact zone	NA	0.00426365
	GO:0034946	mitochondrion	NA	0.025032919
	GO:0005730	nucleolus	0.26912545	0.029526994
	GO:0005759	mitochondrial matrix	NA	3.68158E-05
	GO:0005921	gap junction	NA	0.08306393
	GO:0005637	nuclear inner membrane	NA	0.038072518
	GO:0042645	mitochondrial nucleoid	NA	0.04490081
	GO:0031233	spindle midzone	NA	0.01801158
	GO:0031410	cytoplasmic vesicle	NA	0.02437127
Molecular_function	GO:0043665	sequence-specific DNA binding	0.010490985	0.04697174
	GO:0044998	protein dimerization activity	0.00322677	0.01831505
	GO:0001228	transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-specific binding	0.001586706	0.019205381
	GO:0003690	double-stranded DNA binding	0.0038267	NA
	GO:0005200	structural constituent of cytoskeleton	0.028518085	0.13707187
	GO:0004149	SNAPE binding	0.00981659	0.05239303
	GO:0007000	transcription factor activity, sequence-specific DNA binding	0.043134111	0.610799417
	GO:000735	structural constituent of ribosome	0.043990434	0.305199845
	GO:0046992	protein heterodimerization activity	0.015107415	0.13882043
	GO:0004129	cytochrome-c oxidase activity	0.003867281	NA
	GO:0001077	transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding	0.0021344047	0.43540707
	GO:0003682	chromatin binding	0.0283346	0.547748796
	GO:0008013	beta-catenin binding	0.014292521	0.074006113
	GO:0002576	protein disulfide isomerase activity	NA	0.010811581
	GO:0016740	transerase activity	NA	0.02660753
	GO:0005056	iron ion binding	NA	0.02576856
	GO:0034148	L-ascorbic acid binding	NA	0.015108679
	GO:0016301	kinase activity	NA	0.002936508
	GO:0003432	ferrooxidase activity	NA	0.003395245
	GO:0005516	calmodulin binding	NA	0.00899542
	GO:0005215	transporter activity	NA	0.012989815
	GO:000254	C-4 methylsterol oxidase activity	NA	0
	GO:0031059	NF-kappaB binding	NA	0.00306393
	GO:0004364	glutathione transferase activity	NA	0.020016375
	GO:0004820	CTD phosphatase activity	NA	0.02660753
	GO:0004672	protein kinase activity	0.080285293	0.218824299
	GO:0015250	water channel activity	NA	0.003395245
	GO:0002122	structural constituent of eye lens	NA	0.01831505
	GO:0002166	nucleotide binding	NA	0.019035545

(Continued)
CClass	GO_id	GO_def	CCGG_pval	CCWGG_pval
Biological.process	0040738	cardiac muscle tissue development	0.000445093	0.00265811
	0055007	cardiac muscle cell differentiation	0.004207877	0.02360783
	00007283	spermatogenesis	0.0051856	0.04069737
	0001570	vasculogenesis	0.0103349	0.00059643
	00360821	protein stabilization	0.040750902	0.04436998
	0090090	negative regulation of canonical Wnt signaling pathway	0.004784129	0.000191203
	0060047	heart contraction	0.00867457	0.00519712
	0060038	cardiac muscle cell proliferation	0.00239694	0.00442798
	0030509	BMP signaling pathway	0.012527107	0.000792502
	0033007	heart morphogenesis	0.003867281	0.021781089
	00003161	cardiac conduction system development	9.63811E-05	0.000584755
	0031295	T cell costimulation	0.003867281	0.00486876
	00355008	cardiac muscle tissue morphogenesis	0.000334894	0.002006702
	0043491	protein kinase B signaling	0.002609396	0.013606467
	0043860	positive regulation of protein kinase activity	0.006961412	0.038072128
	0070328	triglyceride homeostasis	0.001638839	0.009521899
	00355050	embryonic heart tube development	0.00867457	0.007151247
	1901203	positive regulation of extracellular matrix assembly	4.83169E-05	0.000294308
	0060048	cardiac muscle contraction	0.005309692	0.029446371
	00003221	right ventricular cardiac muscle tissue morphogenesis	1.61479E-05	9.87507E-05
	0034504	protein localization to nucleus	0.00322772	0.01835105
	0010989	positive regulation of sequestering of triglyceride	0.00239694	0.00442798
	1903779	regulation of cardiac conduction	1.61479E-05	9.87507E-05
	0007017	microtubule-based process	0.005703272	0.011507479
	0046330	positive regulation of JNK cascade	0.008334034	0.049900881
	0008284	positive regulation of cell proliferation	0.014966279	0.402952797
	0030857	negative regulation of epithelial cell differentiation	0.000160215	NA
	0014068	positive regulation of phosphatidylinositol 3-kinase signaling	0.000105939	NA
	00069354	inflammatory response	0.001597038	0.158902846
	0043065	positive regulation of apoptotic process	0.025787421	NA
	0030154	cell differentiation	0.00966065	0.193072503
	00001934	positive regulation of protein phosphorylation	0.033549391	0.157750125
	0007507	heart development	0.006927629	0.071080057
	0009408	response to heat	0.003867281	NA
	0010458	exit from mitosis	0.003343694	NA
	0010628	positive regulation of gene expression	0.012535059	0.113861252
	0014032	neural crest cell development	0.000334694	NA
	0030903	notochord development	0.000160215	NA
	0070830	bicellular tight junction assembly	0.00652924	NA
	0031897	positive regulation of protein kinase B signaling	0.017457942	NA
	0060009	Sertoli cell development	0.000334694	NA
	0070374	positive regulation of ERK1 and ERK2 cascade	0.038996766	NA
	0031532	actin cytoskeleton reorganization	0.01862701	NA
	0010942	positive regulation of cell death	0.001038232	NA
	0032868	response to insulin	0.004207877	NA
	0001502	cartilage condensation	0.001038232	NA
	0032757	positive regulation of interleukin-8 production	0.001233799	NA
	0090023	positive regulation of neutrophil chemotaxis	0.000867457	NA
	0008584	male gonad development	0.011407572	0.060195631
	0050892	cell morphogenesis	0.01862701	NA
	0037090	regulation of catalytic activity	0.012527107	NA
	0007417	central nervous system development	0.034419441	NA
	0045666	positive regulation of neuron differentiation	0.020184093	0.101044793
	0071560	cellular response to transforming growth factor beta stimulus	0.004561885	NA
	0001494	tissue homeostasis	0.00607067	NA
	0032735	positive regulation of interleukin-12 production	0.000867457	NA

(Continued)
Table 5. (Continued)

CClass	GO_id	GO_def	CCGG_pval	CCWGG_pval
GO:0030679	positive regulation of epithelial cell proliferation	0.006961412	NA	
GO:0030858	positive regulation of epithelial cell differentiation	9.63811E-05	NA	
GO:0046931	positive regulation of mitotic cell cycle	0.002111633	NA	
GO:0032496	response to lipopolysaccharide	0.026127779	NA	
GO:0014911	positive regulation of smooth muscle cell migration	0.00168839	NA	
GO:0006935	immune response	0.034996371	0.259172857	
GO:0070168	negative regulation of biomineral tissue development	1.61479E-05	NA	
GO:0071260	cellular response to mechanical stimulus	0.007406235	NA	
GO:0007257	activation of IJN kinase activity	0.004929193	NA	
GO:0010629	negative regulation of gene expression	0.04649987	NA	
GO:0030097	hemopoiesis	0.012527107	0.065604136	
GO:0030727	regulation of inflammatory response	0.006109824	NA	
GO:0030335	positive regulation of cell migration	0.049478525	NA	
GO:0032760	positive regulation of tumor necrosis factor production	0.00013679	NA	
GO:0043893	positive regulation of transcription, DNA-templated	0.048018346	0.24856192	
GO:0071564	cellular response to epidermal growth factor stimulus	0.001424041	NA	
GO:0030879	mammary gland development	0.001038232	NA	
GO:0060174	limb bud formation	0.000445093	NA	
GO:002062	chondrocyte differentiation	0.004207877	NA	
GO:0060174	skeletal system development	0.039821147	NA	
GO:0032755	positive regulation of interleukin-6 production	0.00350208	NA	
GO:0043123	positive regulation of PLC-pka/A kinase/NF-kappaB signaling	0.006502616	0.062602373	
GO:0032732	positive regulation of interleukin-1 production	0	NA	
GO:006935	chemotaxis	0.029333711	0.14047622	
GO:0030776	regulation of immune response	0.007406235	NA	
GO:0030718	positive regulation of interleukin-1 beta secretion	0.006711596	NA	
GO:0020020	positive regulation of male gonad development	9.63811E-05	NA	
GO:0032332	positive regulation of chondrocyte differentiation	0.006711596	NA	
GO:0007186	G-protein coupled receptor signaling pathway	0.001350659	0.352837434	
GO:0031216	cartilage development	0.00902699	NA	
GO:0018357	epithelial to mesenchymal transition	0.00168839	NA	
GO:006913	apoptotic process	0.018195573	0.08355214	
GO:0048469	cell maturation	0.004207877	NA	
GO:0007517	muscle organ development	0.019486784	NA	
GO:007626	locomotory behavior	0.023824179	NA	
GO:0001503	ossification	0.020184093	NA	
GO:0003388	chromatin remodeling	0.002314778	NA	
GO:0006309	apoptotic DNA fragmentation	0.006502616	NA	
GO:0001541	ovarian follicle development	0.00322677	NA	
GO:0007010	cytoskeleton organization	0.042634951	NA	
GO:0016042	lipid catabolic process	0.031835591	0.150790378	
GO:0010976	positive regulation of neuron projection development	0.008126164	NA	
GO:0071300	cellular response to retinoic acid	0.01961532	NA	
GO:0007595	lactation	0.002111633	NA	
GO:0045807	positive regulation of endocytosis	0.000867457	NA	
GO:0071599	ovot vesicle development	0.006502616	NA	
GO:0031175	neuron projection development	0.039823147	0.182544352	
GO:0047372	positive regulation of protein catabolic process	0.014292521	0.070406113	
GO:0032436	positive regulation of proteasomal ubiquitin-dependent protein catabolic process	NA	0.00630072	
GO:0092001	negative regulation of release of cytochrome c from mitochondria	NA	0.00421635	
GO:0044237	cellular metabolic process	NA	0.0012356	
GO:0014044	Schwann cell development	NA	0.00384755	
GO:0031092	positive regulation of NF-kappaB transcription factor activity	NA	0.00670258	
GO:0016310	phosphorylation	NA	0.00168676	
GO:0030316	osteoclast differentiation	NA	0.013866467	
GO:0030848	regulation of calcium-mediated signaling	NA	0.00986205	

(Continued)
CClass	GO_id	GO_def	CCGG_pval	CCWGG_pval
GO:0042789	mRNA transcription from RNA polymerase II promoter	NA	0.003395245	
GO:0002376	immune system process	NA	0.020163575	
GO:0031402	neuron apoptotic process	NA	0.001486876	
GO:0070509	calcium ion import	NA	0.02360783	
GO:0070940	dephosphorylation of RNA polymerase II C-terminal domain	NA	0.000968205	
GO:0030999	regulation of nitric-oxide synthase activity	NA	0.004216355	
GO:0032967	positive regulation of collagen biosynthetic process	NA	0.005119712	
GO:006090	pyruvate metabolic process	NA	0.000494847	
GO:0072593	reactive oxygen species metabolic process	NA	0.02360783	
GO:0071773	cellular response to BMP stimulus	NA	0.015108679	
GO:1900117	positive regulation of cytokine production involved in inflammatory response	NA	0.003395245	
GO:1901800	positive regulation of proteasomal protein catabolic process	NA	0.005119712	
GO:0070997	neuron death	NA	0.005119712	
GO:0018015	peptidyl-serine phosphorylation	NA	0.029703889	
GO:0043525	positive regulation of neuron apoptotic process	NA	0.000968205	
GO:0043537	negative regulation of blood vessel endothelial cell migration	NA	0.002006702	
GO:0030239	myosinfil assembly	NA	0.004216355	
GO:0008203	cholesterol metabolic process	NA	0.003453434	
GO:0032092	positive regulation of protein binding	NA	0.003360189	
GO:0014937	negative regulation of endothelial cell proliferation	NA	0.00096502	
GO:0030889	negative regulation of B cell proliferation	NA	0.003395245	
GO:006919	heart formation	NA	0.004247298	
GO:0007013	actin filament organization	NA	0.010784844	
GO:0021766	hippocampus development	NA	0.042616389	
GO:006914	autophagy	NA	0.040285359	
GO:006006	glucose metabolic process	NA	0.003797886	
GO:0090263	positive regulation of canonical Wnt signaling pathway	NA	0.030403443	
GO:0001615	MAPK cascade	0.079101181	0.02803752	
GO:0008853	carnitine shuttle	NA	0.004216355	
GO:0060135	maternal process involved in female pregnancy	NA	0.002006702	
GO:007080	mitotic metaphase plate congression	NA	0.038017218	
GO:006633	fatty acid beta-oxidation	NA	0.040219697	
GO:0010718	positive regulation of epithelial to mesenchymal transition	NA	0.012173591	
GO:0008340	determination of adult lifespan	NA	0.002006702	
GO:0048589	developmental growth	NA	0.015180679	
GO:0070035	mitochondrion organization	NA	0.014271521	
GO:007040	lysosome organization	NA	0.02549204	
GO:0016525	negative regulation of angiogenesis	NA	0.003453434	
GO:0007214	gamma-aminobutyric acid signaling pathway	NA	0.00096502	
GO:0031389	negative regulation of protein ubiquitination	NA	0.02549204	
GO:0008219	cell death	NA	0.018351505	
GO:0007049	cell cycle	NA	0.008002539	
GO:0030877	neurological system process	NA	0.010154547	
GO:0048812	neuron projection morphogenesis	NA	0.004637323	
GO:0021549	cerebellum development	NA	0.0294637	
GO:0042220	response to cocaine	NA	0.005119712	
GO:0042752	regulation of circadian rhythm	NA	0.042616389	
GO:0070519	skeletal muscle tissue development	NA	0.00242571	
GO:007200	renal system development	NA	0.002006702	
GO:008016	regulation of heart contraction	NA	0.009521989	
GO:0030896	response to stimulus	NA	0.016353363	
GO:1902476	chloride transmembrane transport	NA	0.02949468	
GO:008833	water transport	NA	0.004637323	
GO:0042593	glucose homeostasis	NA	0.02949468	
GO:0032091	negative regulation of protein binding	NA	0.040219697	
GO:1903215	negative regulation of protein targeting to mitochondrion	NA	0.002943408	

(Continued)
Table 5. (Continued)

CClass	GO_id	GO_def	CC{ }GG_pval	CW{ }GG_pval
	GO:0001816	cytokine production	NA	0.004216355
	GO:2000484	positive regulation of interleukin-8 secretion	NA	0.000584755
	GO:0046848	positive regulation of erythrocyte differentiation	NA	0.00806393
	GO:0009566	fertilization	NA	0.03362847
	GO:0042713	sperm ejaculation	NA	9.87507E-05
	GO:0008631	intrinsic apoptotic signaling pathway in response to oxidative stress	NA	0.0263811
	GO:0071158	positive regulation of cell cycle arrest	NA	0.006103617
	GO:2000573	positive regulation of DNA biosynthetic process	NA	0.001442798
	GO:0009777	DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest	NA	0.027441835
	GO:006096	glycolytic process	NA	0.031507479
	GO:0021987	cerebral cortex development	NA	0.00329129
	GO:0002444	hematopoietic progenitor cell differentiation	NA	0.018325705
	GO:2000469	negative regulation of peroxidase activity	NA	0
	GO:0016126	sterol biosynthetic process	NA	0.0265831
	GO:0019915	lipid storage	NA	0.016678719
	GO:0032016	keratinocyte differentiation	NA	0.02946371
	GO:0031091	positive regulation of sequence-specific DNA binding transcription factor activity	NA	0.00401609
	GO:0006633	fatty acid biosynthetic process	NA	0.047411578
	GO:0033038	negative regulation of cell growth	NA	0.03767988
	GO:0008357	regulation of transcription from RNA polymerase II promoter	0.102048797	0.021169358
	GO:0046678	negative regulation of insulin secretion	NA	0.01835105
	GO:1902236	negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway	NA	0.007166394
	GO:0045665	negative regulation of neuron differentiation	NA	0.00733058
	GO:0010906	regulation of glucose metabolic process	NA	0.00806393
	GO:1901213	negative regulation of neuron death	NA	0.000151247
	GO:0031398	positive regulation of protein ubiquitination	NA	0.00428969
	GO:0071346	cellular response to interferon-gamma	NA	0.027441835
	GO:0071850	mitotic cell cycle arrest	NA	7.8137E-05
	GO:0030713	positive regulation of cytokine secretion	NA	0.00806393
	GO:0009356	complement activation	NA	0.000584755
	GO:0045840	positive regulation of mitotic nuclear division	NA	0.006103617
	GO:0048144	behavioral response to cocaine	NA	0.001442798
	GO:0010508	positive regulation of autophagy	NA	0.027441835
	GO:0032555	response to estradiol	NA	0.047411578
	GO:0045997	positive regulation of cell differentiation	NA	0.01835105
	GO:0022038	corpus callosum development	NA	0.00098205
	GO:0031646	mitochondrion localization	NA	0.001442798
	GO:0019722	calcium-mediated signaling	NA	0.047411578
	GO:0031641	locomotory exploration behavior	NA	0.003395245
	GO:0090394	negative regulation of excitatory postsynaptic potential	NA	0.002006702
	GO:0048167	regulation of synaptic plasticity	NA	0.02036375
	GO:0030182	neuron differentiation	NA	0.044306918
	GO:2001214	positive regulation of vasculogenesis	NA	0.00265811
	GO:0043409	negative regulation of MAPK cascade	NA	0.001442798
	GO:1900701	positive regulation of ER-associated ubiquitin-dependent protein catabolic process	NA	0.003395245
	GO:1901741	positive regulation of myoblast fusion	NA	0.00519712
	GO:0006749	glutathione metabolic process	NA	0.02946371
	GO:0048514	blood vessel morphogenesis	NA	0.006103617
	GO:0042391	regulation of membrane potential	NA	0.012989815
	GO:0046855	inositol phosphate dephosphorylation	NA	0.00265811
	GO:1901214	regulation of neuron death	NA	0.006103617

https://doi.org/10.1371/journal.pone.0222292.t005
Table 6. Candidate gene.

Gene_ID	Gene_name	CCGG	CCWGG
Gene16474	EGLN3	NA	Up
Gene3969	MUT	NA	Down
Gene21049	FOXL2	Down	NA
Gene23019	PDIP1	NA	Up
Gene22580	SERPINA7	Down	NA
Gene11622	TLX2	NA	Down
Gene19027	RHEBL1	NA	Down
Gene6923	SYP	NA	Down
Gene466	ECSCR	NA	UP
Gene21566	AQP11	NA	UP
Gene18167	PLEKHF2	Up	NA
Gene12369	RPL8	Down	NA
Gene21551	NONO	NA	Down
Gene5891	MPHOSPH6	NA	UP
Gene6309	KIF20B	NA	Up
Gene16559	PNO1	UP	NA
Gene10955	HCST	Down	NA
Gene14033	PDLIM3	NA	Up
Gene5702	HOXB7	NA	Down
Gene21485	ITM2A	Down	NA
Gene17170	43357	NA	Up
Gene24124	SMNDC1	Up	NA
Gene22641	MRPL20	NA	Down
Gene7198	INPP1	NA	Down
Gene12913	S100A1	NA	Up
Gene6225	FAM169A	NA	Up
Gene17999	TOP2B	NA	Up
Gene16857	PCTP	NA	Down
Gene16714	KLHL12	NA	Up
Gene9820	LMBRD1	NA	Up
Gene8883	ASPM	NA	Up
Gene4484	RGCC	NA	Up
Gene23671	CCL19	Down	NA
Gene13542	MED23	NA	Up
Gene4051	CDK5	NA	Down
Gene17223	LRRK2	NA	Up
Gene14545	FRG1	Down	NA
Gene18760	CPA3	NA	Down
Gene11835	C1QTNF4	NA	Down
Gene24004	LPL	UP	NA
Gene24901	UBQLN2	NA	Down
Gene16856	TMEM100	NA	Up

(Continued)
Gene_ID	Gene_name	CCGG	CCWGG
Gene13441	PYGO1	NA	Down
Gene10329	NDUFA9	NA	UP
Gene1943	TP53I3	NA	UP
Gene10316	BBOX1	NA	UP
Gene17497	IGSF6	UP	NA
Gene20189	UBE2C	Down	NA
Gene22225	MED17	NA	UP
Gene21475	HOXD12	UP	NA
Gene9863	DHX15	NA	UP
Gene19229	NFATC2IP	NA	Down
Gene23893	ABT1	NA	UP
Gene14704	TF82M	NA	UP
Gene8524	LMOD2	NA	UP
Gene12573	PTMS	NA	Down
Gene3328	ERP44	NA	UP
Gene15160	AP0C4	Down	Down
Gene22228	HEPHL1	NA	UP
Gene21241	SRPK3	NA	Down
Gene14716	SOX9	Down	NA
Gene5821	NKX2-5	UP	UP
Gene2007	PPRC1	NA	UP
Gene12983	PSMD10	NA	Down
Gene5916	OPALIN	NA	UP
Gene12986	ATP6V1C1	NA	UP
Gene16429	EMC4	UP	NA
Gene19144	MSMO1	NA	Down
Gene16982	SOX17	NA	Down
Gene24358	MAGEH1	Down	NA
Gene19794	SCGB3A1	NA	UP
Gene11028	WDR83	NA	Down
Gene3820	PGM2L1	NA	Down
Gene11525	FDX1L	NA	UP
Gene10761	GPR88	UP	NA
Gene21912	RPS7	NA	UP
Gene7562	GNAI1	NA	UP
Gene8984	SRD5A3	NA	Down
Gene17461	SLC25A20	NA	UP
Gene13012	CLUL1	NA	UP
Gene13916	TUBD1	NA	UP
Gene20231	EDA2R	NA	Down
Gene13768	ACVR2A	NA	UP
Gene14993	CLDN17	UP	NA
Gene6350	BTLA	NA	UP
Gene703	TMEM158	NA	Down
Gene17409	LUC7L3	NA	UP
Gene21871	ADAM2	NA	UP
Gene14058	HOXC6	NA	Down

(Continued)
functions of p53-mediated signaling pathway and promote the development of cataract. In addition, other direct evidence comes from the certain genes that have been previously reported to be associated with cataract pathogenesis. For example, Glutathione S-Transferase Mu 3 (GSTM3, hypermethylated in giant pandas with cataract) was considered to prevent the age-related cataract by protecting the lens from oxidative stress and a decreased expression level of GSTM3 was observed in the lens tissue of patients with age-related cataract, which correlated with the hypermethylation of GSTM3 promoters[32].

Since DNA methylation is reversible and can be influenced by the external factors[33], the research on the appropriate epigenetic drugs based on the specific cataract-associated genes would be wildly used in prevention of age-related cataract development in giant pandas. In this study, we shed light on the methylation characteristics of giant panda suffering from cataract and provide a number of candidate epigenetic therapeutic targets for the prevention and treatment of cataract in the aged giant panda. Nevertheless, the small sample size and the lack of functional experiments limit the practical utility of the findings in this study. Therefore, further efforts are needed to address the issues as follows: 1) the validation of DMGs in a large giant panda population; 2) the influences of certain aberrant DNA methylation events on gene activity; 3) the key genes with major contributions to the cataract development in age giant pandas; 4) the molecular mechanisms of key genes in the pathogenesis of age-related cataract. In addition, we also observed that some giant pandas with cataract can be self-healing after their living environments were changed. The contribution of reversible epigenetic modifications (e.g., DNA methylation) caused by environmental stimulus to this phenomenon will be explored in our future studies.

Conclusion

In short, we determined a number of DMGs that had potential roles in regulating the activity of cataract-related pathways, such as base excision repair, apoptosis, and p53 signaling pathway. Moreover, these findings were further supported by detailed genes with abnormal methylation pattern in giant pandas with cataract. For example, the CASP3 gene encodes a cysteine-aspartic acid protease that served to as an apoptosis executor, and has been linked with cataract
HMGB1 plays an important role in protecting the keratinocytes from ultraviolet radiation-induced cell death and is thus involved in cataract formation[36]. Overall, all the results argue for an important role of aberrant methylation changes in the development of cataract in aged giant pandas.

Supporting information

S1 Table. Methylation level of gene region.
(XLSX)

S2 Table. Genes associated with different methylation levels.
(XLS)

S3 Table. KEGG enrichment of genes related to different methylation levels.
(XLSX)

S4 Table. GO enrichment of genes related to different methylation levels.
(XLSX)

S5 Table. Cataract related genes have been reported.
(XLS)

Author Contributions

Conceptualization: Yuyan You, Xuefeng Liu.

Data curation: Yuyan You.

Formal analysis: Yuyan You.

Funding acquisition: Yuyan You.

Investigation: Yuyan You.

Methodology: Chao Bai.

Resources: Yuyan You, Xuefeng Liu, Maohua Xia, Ting Jia, Xiaoguang Li, Chenglin Zhang, Yucun Chen, Sufen Zhao, Liqin Wang, Wei Wang, Yanqiang Yin, Yunfang Xiu, Lili Niu, Jun Zhou, Tao Ma, Yang Du, Yanhui Liu.

Software: Yuyan You.

Visualization: Yuyan You.

Writing – original draft: Yuyan You, Chao Bai.

References

1. Uno HJA. Age-related pathology and biosenescence markers in captive rhesus macaques. Age. 1997; 20:1–13. https://doi.org/10.1007/s11357-997-0001-5 PMID: 23604287

2. Asbell PA, Dualan I, Mindel JS, Brocks D, Ahmad M, Epstein SPJTL. Age-related cataract. The Lancet. 2005; 365:599–609.

3. Urfer SR, Greer K, Wolf NS. Age-related cataract in dogs: a biomarker for life span and its relation to body size. Age. 2011; 33:451–60. https://doi.org/10.1007/s11357-010-9158-4 PMID: 20607428

4. Truscott RJWJEER. Age-related nuclear cataract-oxidation is the key. Experimental Eye Research. 2005; 80:709–25. https://doi.org/10.1016/j.exer.2004.12.007 PMID: 15862178

5. Jin Y, Lin W, Huang S, Zhang C, Pu T, Ma W, et al. Dental Abnormalities in Eight Captive Giant Pandas (*Ailuropoda melanoleuca*) in China. Journal of Comparative Pathology. 2012; 146:357–64. https://doi.org/10.1016/j.jcpa.2011.08.001 PMID: 21906751
6. Jin Y, Chen S, Chao Y, Pu T, Xu H, Liu X, et al. Dental Abnormalities of Eight Wild Qinling Giant Pandas (Ailuropoda Melanoleuca Qinlingensis), Shaanxi Province, China. Journal of Wildlife Disease. 2015; 51:849–59.

7. Hammond CJ, Duncan DD, Snieder H, De Lange M, West SK, Spector TD, et al. The heritability of age-related cortical cataract: The twin eye study. Investigative Ophthalmology & Visual Science. 2001; 42:601–5.

8. Ottonello S, Foroni C, Carta A, Petrucco S, Maraini GJO. Oxidative Stress and Age-Related Cataract. Ophthalmologica. 2000; 214:78–85. https://doi.org/10.1159/000027474 PMID: 10657746

9. Ho M, Peng Y, Chen S, Chioo SJJoCG, Geriatrics. Senile cataracts and oxidative stress. Journal of Clinical Gerontology and Geriatrics. 2010; 1:17–21.

10. Tinaztepe OE, Ay M, Esen EJCER. Nuclear and Mitochondrial DNA of Age-Related Cataract Patients Are Susceptible to Oxidative Damage. Current Eye Research. 2017; 42:1–6. https://doi.org/10.1080/02713683.2016.1175019

11. Billingsley G, Santhiya ST, Paterson AD, Ogata K, Wodak SJ, Hosseini SM, et al. CRYBA4, a Novel Human Cataract Gene, Is Also Involved in Microphthalmia. American Journal of Human Genetics. 2006; 79:702–9. https://doi.org/10.1086/507712 PMID: 16960806

12. Hasanova N, Kubo E, Kumamoto Y, Takamura Y, Akagi YJBJoO. Age-related cataracts and Prdx6: correlation between severity of lens opacity, age and the level of Prdx 6 expression. British Journal of Ophthalmology. 2009; 93:1081–4. https://doi.org/10.1136/bjo.2008.152272 PMID: 19429582

13. Zhang Y, Zhang L, Sun D, Li Z, Wang L, Liu PJMV. Genetic polymorphisms of superoxide dismutases, catalase, and glutathione peroxidase in age-related cataract. Molecular Vision. 2011; 17:2325–32. PMID: 21921984

14. Kim JK, Samaranayake M, Pradhan SJC, Sciences ML. Epigenetic mechanisms in mammals. Cellular and Molecular Life Sciences. 2009; 66:596–612. https://doi.org/10.1007/s00018-008-8432-4 PMID: 18985277

15. Xiao F, Kong Q, Perry B, He Y. Progress on the role of DNA methylation in aging and longevity. Briefings in Functional Genomics. 2016; 15:454–9. https://doi.org/10.1093/bfgp/elw009 PMID: 27032421

16. Liu X, Luo Y, Zhou P, Lu YJO, Science V. DNA methylation mediated and oxidative stress related genes CRYAA and GJA3 in nuclear age-related cataract (ARC) and its mechanism. Investigative Ophthalmology & Visual Science. 2015; 56:5877.

17. Zhou P, Luo Y, Liu X, Fan L, Lu YJTFJ. Down-regulation and CpG island hypermethylation of CRYAA in age-related nuclear cataract. The FASEB Journal. 2012; 26:4897–902. https://doi.org/10.1096/fj.12-213702 PMID: 22889833

18. Wang Y, Li F, Zhang G, Kang L, Qin B, Guan HJCER. Altered DNA Methylation and Expression Profiles of 8-Oxoguanine DNA Glycosylase 1 in Lens Tissue from Age-related Cataract Patients. Current Eye Research. 2015; 40:815–21. https://doi.org/10.3109/02713683.2014.957778 PMID: 25310012

19. Wang S, Lv J, Zhang L, Dou J, Sun Y, Li X, et al. MethylRAD: a simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes. Open Biology. 2015; 5:150130. https://doi.org/10.1098/rsob.150130 PMID: 26581575

20. Li R, Yu C, Li Y, Lam TW, Yu S, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009; 25:1966–7. https://doi.org/10.1093/bioinformatics/btp336 PMID: 19497933

21. Shu X, Shu S, Cheng H, Tang S, Yang L, Li H, et al. Genome-Wide DNA Methylation Analysis During Palatal Fusion Reveals the Potential Mechanism of Enhancer Methylation Regulating Epithelial Mesenchyme Transformation. DNA and Cell Biology. 2018; 37:560–73. https://doi.org/10.1089/dna.2018.4141 PMID: 29608334

22. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139–40. https://doi.org/10.1093/bioinformatics/btp166 PMID: 19910308

23. Cingolani P, Platts AE, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012; 6:80–92. https://doi.org/10.4161/fly.19695 PMID: 22728672

24. Quinlan AR, Hall IMJB. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2. https://doi.org/10.1093/bioinformatics/btp033 PMID: 2101278

25. Kanehisa M, Goto SJNAR. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999; 28:27–30.

26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler HL, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nature Genetics. 2000; 25:25–9. https://doi.org/10.1038/75556 PMID: 10802651
27. Davis AP, King BL, Mockus S, Murphy CG, Saracenirichards CA, Rosenstein MT, et al. The Comparative Toxicogenomics Database: update 2011. Nucleic Acids Res. 2011; 39:1067–72.

28. Li BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell. 2006; 5:187–95. https://doi.org/10.1111/j.1474-9726.2006.00199.x PMID: 16626397

29. Lawless C, Wang C, Jurk D, Merz A, Zglinicki T, Passos J. Quantitative assessment of markers for cell senescence. Experimental Gerontology. 2010; 45:772–8. https://doi.org/10.1016/j.exger.2010.01.018 PMID: 20117203

30. Charakidas A, Kalogeraki A, Tsilimbaris MK, Koukoulomatis P, Brouzas D, Delides G. Lens epithelial apoptosis and cell proliferation in human age-related cortical cataract. European Journal of Ophthalmology. 2005; 15:213–20. https://doi.org/10.1177/112067210501500206 PMID: 15812762

31. Ji W, Science V. αA-Crystallin Regulates p53-Mediated Signaling Pathway to Prevent Apoptosis of Lens Epithelial Cells and Cataractogenesis. Investigative Ophthalmology & Visual Science. 2012; 53:1043–1043.

32. Li B, Zhou J, Zhang G, Wang Y, Kang L, Wu J, et al. Relationship Between the Altered Expression and Epigenetics of GSTM3 and Age-Related Cataract. Investigative Ophthalmology & Visual Science. 2016; 57:4721–32.

33. Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. The Lancet. 2018; 392:777–786.

34. Doshna CW, Fortner JH, Pfohl JC, Aleo ME, Verdugo M. Investigation of the Role of Apoptosis in Drug-induced Cataract Formation. Investigative Ophthalmology & Visual Science. 2002; 43:2377.

35. Galichanin K, Svedlund J, Soderberg P. Kinetics of GADD45α, TP53 and CASP3 gene expression in the rat lens in response to exposure to double threshold dose of UV-B radiation. Experimental Eye Research. 2012; 97:19–23. https://doi.org/10.1016/j.exer.2012.02.003 PMID: 22559303

36. Mou K, Liu W, Han D, LiPJ. HMGB1/RAGE axis promotes autophagy and protects keratinocytes from ultraviolet radiation-induced cell death. Journal of Dermatological Science. 2017; 85:162–9. https://doi.org/10.1016/j.jdermsci.2016.12.011 PMID: 28012822