Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae

Jeong-Ho Kim
Washington University School of Medicine in St. Louis

Valerie Brachet
Washington University School of Medicine in St. Louis

Hisao Moriya
Washington University School of Medicine in St. Louis

Mark Johnston
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Kim, Jeong-Ho; Brachet, Valerie; Moriya, Hisao; and Johnston, Mark, "Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae." Eukaryotic Cell. 5,1. 167-173. (2006).
https://digitalcommons.wustl.edu/open_access_pubs/1879

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in *Saccharomyces cerevisiae*

Jeong-Ho Kim, Valérie Brachet, Hisao Moriya, and Mark Johnston*

Department of Genetics, Campus Box 8232, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110

Received 21 July 2005/Accepted 22 October 2005

Expression of the *HXT* genes encoding glucose transporters in the budding yeast *Saccharomyces cerevisiae* is regulated by two interconnected glucose-signaling pathways: the Snf3/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that regulate the function of the Rgt1 transcription factor, which binds to the *HXT* promoters. It is well established that glucose induces degradation of Mth1, but the fate of its paralogue Std1 has been less clear. We present evidence that glucose-induced degradation of Std1 via the SCF^{Grb1} ubiquitin-protein ligase and the 26S proteasome is obscured by feedback regulation of *STD1* expression. Disappearance of Std1 in response to glucose is accelerated when glucose induction of *STD1* expression due to feedback regulation by Rgt1 is prevented. The consequence of relieving feedback regulation of *STD1* expression is that reestablishment of repression of *HXT1* expression upon removal of glucose is delayed. In contrast, degradation of Mth1 is reinforced by glucose repression of *MTH1* expression: disappearance of Mth1 is slowed when glucose repression of *MTH1* expression is prevented, and this results in a delay in induction of *HXT3* expression in response to glucose. Thus, the cellular levels of Std1 and Mth1, and, as a consequence, the kinetics of induction and repression of *HXT* gene expression, are closely regulated by interwoven transcriptional and posttranslational controls mediated by two different glucose-sensing pathways.

Glucose is an important source of carbon and energy for many organisms. This is particularly apparent in the budding yeast *Saccharomyces cerevisiae*, whose sophisticated glucose-sensing and -signaling mechanisms enable it to sense a wide range of glucose concentrations and utilize glucose efficiently (2, 7, 13). One of the first responses of yeast cells to glucose is induction of expression of the *HXT* genes, encoding glucose transporters (3, 18, 21, 28, 40). This is achieved through a signal transduction pathway that begins at the cell surface with the Snf3 and Rgt2 glucose sensors and ends in the nucleus with the Rgt1 transcription factor, which binds to *HXT* gene promoters (5, 12, 14, 27, 31).

The glucose signal generated by Rgt2 and Snf3 at the cell surface alters Rgt1 function in the nucleus by stimulating degradation of Mth1 and Std1 (4, 23), paralogous proteins that bind to Rgt1 and are necessary for it to repress transcription (20, 30, 32). Mth1 and Std1 also interact with the C-terminal tails of the Rgt2 and Snf3 glucose sensors (19, 32). These places them in proximity to the Yck1 protein kinase, which is associated with the Snf3 and Rgt2 glucose sensors and is thought to catalyze phosphorylation of Mth1 and Std1 when glucose binds to the sensors (23, 37). Phosphorylated Mth1 and Std1 are targets of the SCF^{Grb1} ubiquitin-protein ligase, which is thought to catalyze their ubiquitination, thereby targeting them for degradation by the 26S proteasome (37). In the absence of Mth1 and Std1, Rgt1 loses its ability to repress transcription, leading to derepression of *HXT* gene expression (4, 20, 24, 30, 32).

While there is ample evidence that glucose induces degradation of Mth1 via the 26S proteasome, conflicting results have been reported for the effect of glucose on Std1 (4, 23, 37). *STD1* expression is induced by glucose via the Rgt2/Snf3-Rgt1 signal transduction pathway (15), and our data suggest that Std1 degradation is dampened by this glucose induction of *STD1* expression via the Rgt2/Snf3-Rgt1 pathway. By contrast, *MTH1* expression is repressed by glucose via the Snf1-Mig1 glucose repression pathway, and our results suggest that this reinforces Mth1 degradation. Thus, opposing transcriptional regulation of *MTH1* and *STD1* expression provides for rapid induction of *HXT* gene expression in response to glucose and for prompt establishment of repression of *HXT* gene expression when the available glucose has been exhausted. Thus, the course of induction and repression of the *HXT* genes is the result of close collaboration between two different glucose-sensing pathways that helps ensure efficient utilization of this key nutrient.

MATERIALS AND METHODS

Yeast strains and plasmids. The yeast strains used in this study are listed in Table 1. Cells were grown on either YP (2% Bacto peptone, 1% yeast extract) or YNB [0.67% yeast nitrogen base plus 0.5% (NH₄)₂SO₄ lacking the appropriate amino acids] medium, supplemented with the appropriate carbon sources. Genes were disrupted by homologous recombination using HisG-URA3-HisG (1) or KanMX (39) cassettes. Sequences of the primers are available on request. To construct pBM4747 (MET25 promoter–green fluorescent protein [GFP]–*STD1*), pBM4748 (MET25 promoter–GFP–*MTH1*), and pBM4749 (MET25 promoter–GFP–Htr1-23), coding sequences of the genes were amplified by PCR and the resulting PCR products were cloned into the BamHI and SalI sites of pUG3 (pBM3642 ARSH4/CEN–HIS3–MET25 promoter–yeGFP–polylinker–CYC1 ter-

e Corresponding author. Mailing address: Department of Genetics, Campus Box 8232, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110. Phone: (314) 362-2735. Fax: (314) 362-7855. E-mail: mj@genetics.wustl.edu.

Glucose is an important source of carbon and energy for many organisms. This is particularly apparent in the budding yeast *Saccharomyces cerevisiae*, whose sophisticated glucose-sensing and -signaling mechanisms enable it to sense a wide range of glucose concentrations and utilize glucose efficiently (2, 7, 13). One of the first responses of yeast cells to glucose is induction of expression of the *HXT* genes, encoding glucose transporters (3, 18, 21, 28, 40). This is achieved through a signal transduction pathway that begins at the cell surface with the Snf3 and Rgt2 glucose sensors and ends in the nucleus with the Rgt1 transcription factor, which binds to *HXT* gene promoters (5, 12, 14, 27, 31).

The glucose signal generated by Rgt2 and Snf3 at the cell surface alters Rgt1 function in the nucleus by stimulating degradation of Mth1 and Std1 (4, 23), paralogous proteins that bind to Rgt1 and are necessary for it to repress transcription (20, 30, 32). Mth1 and Std1 also interact with the C-terminal tails of the Rgt2 and Snf3 glucose sensors (19, 32). These places them in proximity to the Yck1 protein kinase, which is associated with the Snf3 and Rgt2 glucose sensors and is thought to catalyze phosphorylation of Mth1 and Std1 when glucose binds to the sensors (23, 37). Phosphorylated Mth1 and Std1 are targets of the SCF^{Grb1} ubiquitin-protein ligase, which is thought to catalyze their ubiquitination, thereby targeting them for degradation by the 26S proteasome (37). In the absence of Mth1 and Std1, Rgt1 loses its ability to repress transcription, leading to derepression of *HXT* gene expression (4, 20, 24, 30, 32).

While there is ample evidence that glucose induces degradation of Mth1 via the 26S proteasome, conflicting results have been reported for the effect of glucose on Std1 (4, 23, 37). *STD1* expression is induced by glucose via the Rgt2/Snf3-Rgt1 signal transduction pathway (15), and our data suggest that Std1 degradation is dampened by this glucose induction of *STD1* expression via the Rgt2/Snf3-Rgt1 pathway. By contrast, *MTH1* expression is repressed by glucose via the Snf1-Mig1 glucose repression pathway, and our results suggest that this reinforces Mth1 degradation. Thus, opposing transcriptional regulation of *MTH1* and *STD1* expression provides for rapid induction of *HXT* gene expression in response to glucose and for prompt establishment of repression of *HXT* gene expression when the available glucose has been exhausted. Thus, the course of induction and repression of the *HXT* genes is the result of close collaboration between two different glucose-sensing pathways that helps ensure efficient utilization of this key nutrient.

MATERIALS AND METHODS

Yeast strains and plasmids. The yeast strains used in this study are listed in Table 1. Cells were grown on either YP (2% Bacto peptone, 1% yeast extract) or YNB [0.67% yeast nitrogen base plus 0.5% (NH₄)₂SO₄ lacking the appropriate amino acids] medium, supplemented with the appropriate carbon sources. Genes were disrupted by homologous recombination using HisG-URA3-HisG (1) or KanMX (39) cassettes. Sequences of the primers are available on request. To construct pBM4747 (MET25 promoter–green fluorescent protein [GFP]–*STD1*), pBM4748 (MET25 promoter–GFP–*MTH1*), and pBM4749 (MET25 promoter–GFP–Htr1-23), coding sequences of the genes were amplified by PCR and the resulting PCR products were cloned into the BamHI and SalI sites of pUG3 (pBM3642 ARSH4/CEN–HIS3–MET25 promoter–yeGFP–polylinker–CYC1 ter-

e Corresponding author. Mailing address: Department of Genetics, Campus Box 8232, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110. Phone: (314) 362-2735. Fax: (314) 362-7855. E-mail: mj@genetics.wustl.edu.
TABLE 1. Yeast strains used in this study

Strain	Genotype
FM391	MATa his3Δ1 leu2Δ ura3Δ met15Δ (BY4741)
FM395	MATa/MATa his3Δ1/Δ his3Δ1 leu2Δ/Δ ura3Δ/Δ met15Δ/Δ
FM412	MATa trp1-901 leu2-3,112 ura3-32 his3-200 gal4Δ gal80Δ GAL2-ADE2 LYS2::GAL1-HIS3 met2::GAL7-lacZ
FM413	MATa trp1-901 leu2-3,112 ura3-32 his3-200 gal4Δ gal80Δ GAL2-ADE2 LYS2::GAL1-HIS3 met2::GAL7-lacZ
FM439	MATa ade2-1 his3-11,15 ura3-1 trp1-1 (CMY 18)
FM452	MATa his3-11,15 leu2-3,115 ura3-1 trp1-1 ade2-1 cdc34-2
FM524	MATa ura3 his3-11,15 leu2-3,112 can1 pre2-280
FM535	MATa cim5-1(Δ) ura3-52 his3-Δ200 leu2-Δ1
YM4127	MATa ura3-52 his3-200 ade2-101 lys2-801 leu2 trp1-903 tyr1-501
YM4509	MATa ura3-52 his3-200 ade2-101 lys2-801 leu2 trp1-903 tyr1 rgt1::HisG
YM6212	MATa ura3-52 his3-200 ade2-101 lys2-801 leu2 trp1-903 leu2-3,112 tyr1-501 snf3::His3 rgt2::His3
YM6244	MATa ura3-52 his3-11,15
YM6245	MATa ura3-52 his3-11,15 MTH1-23 (HTR1-23)
YM6265	MATa his3Δ leu2Δ met15Δ ura3Δ std1::KanMX2
YM6266	MATa his3Δ leu2Δ his3-2Δ ura3Δ std1::KanMX2
YM6269	MATa ura3-52 his3-200 ade2-101 lys2-801 leu2 trp1Δ rgt1::HisG
YM6292	MATa his3Δ leu2Δ met15Δ ura3Δ snl1::KanMX2 std1::KanMX2
YM6328	MATa his3Δ leu2Δ ura3Δ met1Δ snf3::HisG-URA3::HisG
YM6452	MATa ade2 ura3 his3 lys2 leu2 grr1::LEU2

RESULTS

Mth1, Std1, and Rgt1 are required for repression of HXT gene expression. To verify the roles of Mth1, Std1, and Rgt1 in glucose signaling, we analyzed the effect of loss of these genes on expression of HXT1, which is induced by high levels of glucose (2%), and on expression of HXT3, which is induced by low levels of glucose (0.2% [a condition mimicked by 2% raffinose]), as well as by high glucose levels (28) (Table 2, genotype 1). As expected, removal of the Rgt1 repressor substantially relieved repression of the HXT genes (Table 2, genotype 2, Gal). Deletion of MTH1 relieved repression of the low-glucose-induced HXT3 gene but had little effect on expression of the high-glucose-induced HXT1 gene (Table 2, genotype 3, Gal). Further deletion of STD1 in an mth1 mutant relieved repression of HXT1 expression (Table 2, genotype 5). Deletion of STD1 alone had little effect on expression of HXT1 and HXT3 (Table 2, genotype 4). Thus, Mth1 seems to be responsible for repression of the low-glucose-induced HXT3 gene (and for that of HXT4, another low-glucose-induced gene [data not shown]), but either Std1 or Mth1 is sufficient for repression of the high-glucose-induced HXT1 gene in the absence of glucose. These results reinforce previously reported findings (4, 20, 32) and suggest that Mth1 and Std1 work together with Rgt1 to repress expression of the high-glucose-induced HXT1 gene, but that Mth1 acts alone to regulate expression of the low-glucose-induced HXT3 and HXT4 genes.

Mth1 and Std1 inhibit the ability of Rgt1 to activate transcription. Rgt1 is a transcriptional activator in cells grown on high levels of glucose but not in cells grown in the absence of glucose (on galactose) (29) (Table 3, genotype 1). Deletion of both MTH1 and STD1 causes Rgt1 to activate transcription in cells grown on galactose (Table 3, genotype 4), suggesting that Mth1 and Std1 play a role in inhibiting transcriptional activation, in addition to their roles in promoting transcriptional

TABLE 2. Roles of Rgt1, Mth1, and Std1 in regulation of HXT gene expression

Genotype	HXT1::lacZ	HXT3::lacZ					
	Gal	Raf	Glu	Gal	Raf	Glu	
1. Wild type	<1	29	1,220	<1	20	629	744
2. rgt1 MTH1 STD1	27	57	326	225	632	559	
3. RGT1 mth1 STD1	<1	<1	820	326	415	484	
4. RGT1 MTH1 std1	<1	30	951	42	474	485	
5. RGT1 mth1 std1	127	607	632	148	893	760	

a Precultures were grown to mid-log phase (OD600 = 1.5) in selective YNB medium with 2% galactose, shifted to YP medium containing the indicated sugars (all at 2%), grown for 4 h at 30°C, and then assayed for β-galactosidase activity.

b Values are means from at least four independent experiments. Standard deviations are less than 20% in all cases. Gal, galactose; Raf, raffinose; Glu, glucose.
repression in the absence of glucose. In mth1 and std1 single mutants, Rgt1 was unable to activate significant transcription in cells grown on galactose, indicating that Mth1 and Std1 are redundant inhibitors of the transcriptional activation function of Rgt1 when glucose levels are low. A form of Mth1 that is resistant to glucose-induced degradation (due to the dominant Rgt1 when glucose levels are low) is produced in the presence of high levels of glucose. Thus, in addition to promoting transcriptional repression by Rgt1 when glucose is absent (4, 30, 32), Mth1 and Std1 seem to inhibit transcriptional activation by Rgt1 when glucose levels are low. We believe that Mth1 and Std1 regulate Rgt1 function directly, because they interact with Rgt1 (20, 30, 38). In addition, Mth1 and Std1 are associated with HXT promoters (Fig. 1).

Glucose regulation of MTH1 and STD1 expression contributes to glucose signal transduction. It seems clear that Mth1 is degraded upon exposure of yeast cells to glucose, but there are conflicting reports regarding Std1 degradation in response to glucose (4, 23). Indeed, in our hands, degradation of Mth1 was reproducibly observed but degradation of Std1 in response to glucose was variable. We suspected that this was due to the different regulation of STD1 and MTH1 expression by glucose: STD1 expression is induced by glucose via the Rgt2/Snf3-Rgt1 pathway, while MTH1 expression is repressed by glucose via the Snf1-Mig1 pathway (15). Induction of STD1 expression by glucose would be expected to counteract glucose-induced deg-

Table 3. Activation of the lexO-lacZ reporter by LexA-Rgt1

Genotype	Active molecule(s)	β-Galactosidase activity (Miller units)	
		Galactose	Glucose
1. Wild type (FM391)	Mth1, Std1	<1	575
2. mth1 (YM6266)	Std1	4	293
3. std1 (YM6265)	Mth1	<1	325
4. mth1 std1 (YM6292)	Mth1, Std1	346	533
5. Wild type (YM6244)	Mth1, Std1	6	252
6. HTR1-23 (YM6245)	Mth1', Std1	3	2

* a The plasmids used are pBM1817 (lexO-lacZ reporter) and pBM3306 (LexA-Rgt1).
* b Refers to the molecules present in the cells that act on Rgt1.
* c All sugars were present at a concentration of 2% in the growth medium.
* d Mth1 constitutive repressor caused by the HTR1-23 mutation (6, 26, 33, 34).
radation of Std1 and obscure its disappearance. Conversely, repression of MTH1 expression by glucose should reinforce the glucose-induced degradation of Mth1, thereby enhancing its disappearance upon addition of glucose to cells.

We interrupted glucose regulation of STD1 and MTH1 by replacing their promoters with the promoter of MET25, which is not regulated by glucose. Expressing STD1 at the basal level of this promoter (by including methionine in the medium) makes degradation of Std1 in glucose-grown cells obvious (Fig. 2A, center panels) and significantly accelerates the rate of loss of Std1 after addition of glucose to cells (Fig. 2B). This suggests that induction of STD1 expression by glucose attenuates the glucose signal to Rgt1 by slowing the disappearance of Std1. By contrast, when repression of MTH1 expression by glucose is interrupted either by expressing MTH1 at the basal level of the MET25 promoter, by deleting MIG1 and MIG2, or by removing the Mig1/Mig2-binding sites from the MTH1 promoter, the extent (Fig. 2A) and rate (Fig. 2C) of degradation of MTH1 are reduced.

FIG. 3. Relieving transcriptional regulation of MTH1 and STD1 results in delayed induction and delayed repression, respectively, of HXT gene expression. (A) FM393 (wild type) (solid line) and YM6682 (mig1Δ mig2Δ) (dashed line) carrying HXT3::lacZ (pBM2819) were grown on 2% galactose. At time zero, 2% glucose was added to induce expression of HXT3. β-Galactosidase was assayed at the times indicated. (B) Cells (YM6292) carrying HXT7::lacZ (pBM2636) and expressing STD1 from its own promoter (pBM4540) or from the MET25 promoter (pBM4747) were grown in glucose. At time zero, the cells were pelleted, washed with water, and resuspended in 2% galactose to induce repression of HXT7 expression. Aliquots of the culture were assayed for β-galactosidase activity at the times indicated. During this time the cells approximately doubled in number.

FIG. 4. Rgt2 and Snf3 promote glucose-induced degradation of Std1 and Mth1. (A) GFP-Std1 (pBM4747) or GFP-Mth1 (pBM4748) expressed in wild-type (FM391) or rgt2 snf3 (YM6212) cells was detected by Western blotting. Control lanes (Ctl.) were loaded with extracts of cells containing the empty vector (GFP alone). (B) The dominant HTR1-23 mutation in MTH1 is resistant to degradation. GFP-Mth1 with the HTR1-23 mutation (pBM4749) was expressed in FM391 (wild type) and was detected by Western blotting.

FIG. 5. Degradation of Mth1 and Std1 requires the SCF^{Grr1} ubiquitin-protein ligase complex and the 26S proteasome. For Western blotting, cell extracts were prepared from yeast cells expressing GFP-Std1 (pBM4747) or GFP-Mth1 (pBM4748) and treated as described for Fig. 2A. Strains used were YM4127 (wild type), YM6542 (grr1Δ), FM542 (cdc34ts), and FM524 (pre2-2ts). Temperature-sensitive mutant strains were grown at 30°C overnight, then shifted to a medium containing 4% glucose, and incubated for 1 h at 30°C or 37°C. The GFP-Std1 and GFP-Mth1 proteins were then detected by Western blotting.
The effects of transcriptional regulation of \textit{MTH1} and \textit{STD1} on the rate of loss of Mth1 and Std1 are expected to be translated into effects on the rates of induction and repression of \textit{HXT} expression. We surmised that the glucose repression of \textit{MTH1} expression and the resulting acceleration of its disappearance from the cell after addition of glucose might serve to ensure speedy induction of \textit{HXT} expression. Indeed, in cells in which \textit{MTH1} expression is not repressed by glucose (due to deletion of the genes encoding the Mig1 and Mig2 glucose repressors), induction of \textit{HXT} expression by glucose is delayed relative to that in wild-type cells (Fig. 3A). Conversely, we speculated that glucose induction of \textit{STD1} expression might serve to replenish Std1 after its initial glucose-induced degradation so as to enable prompt establishment of repression of \textit{HXT} expression when glucose is exhausted in the culture. Indeed, in cells in which \textit{STD1} expression is not induced by glucose, repression of \textit{HXT} expression is established more slowly than in wild-type cells after addition of galactose (Fig. 3B). Thus, transcriptional regulation of \textit{MTH1} and \textit{STD1} significantly affects the course of induction and repression of \textit{HXT} gene expression.

Degradation of Std1 and Mth1 requires a glucose signal. Degradation of Std1 and Mth1 requires the glucose sensors Rgt2 and Snf3 (Fig. 4), as well as two components of the SCFGrr1 ubiquitin-protein ligase, Grr1 and Cdc34 (Fig. 5). Glucose addition does not cause Std1 and Mth1 to disappear in a temperature-sensitive \textit{pre2} mutant defective in a chymotrypsin-like activity of the proteasome (8–11) or in the presence of the proteasome inhibitor MG132 (Fig. 2). These results support the view that glucose binding to the Rgt2 and Snf3 glucose sensors causes them to initiate proteasome-mediated degradation of Mth1 and Std1 by targeting them for ubiquitination by the SCFGrr1 ubiquitin-protein ligase.

Potential ubiquitin attachment sites in Std1 are required for Std1 degradation. The SCFGrr1 ubiquitin-protein ligase catalyzes the covalent attachment of ubiquitin to lysine residues of the target protein (17, 22, 35, 36). Evidence has been presented that suggests that Mth1 is ubiquitinated (37), but similar evidence that Std1 is also modified in this way is lacking. Indeed,
our attempts to demonstrate this modification of Std1 have so far proven unsuccessful. We noticed 10 lysine residues in Std1 that are conserved in its orthologues in other yeasts (positions 207, 282, 287, 312, 334, 347, 354, 381, and 411). Conversion of 9 of these lysines to arginine (9KR) prevented glucose-induced degradation of Std1 (Fig. 6B) and severely reduced derepression of HXT1 expression (Fig. 6A). Changing fewer than 9 of these lysine residues (7KR and 5KR) had smaller effects on induction of HXT1 expression, suggesting that ubiquitination at only a few sites of Std1 is required to target the protein for degradation. These results provide indirect evidence supporting the idea that Std1 is targeted for degradation by ubiquitination.

DISCUSSION

Degradation of Std1 and Mth1 is the central event in transmission of the glucose signal to Rgt1, which results in induction of expression of the HXT genes. Glucose binding to the Snf3 and Rgt2 sensors stimulates degradation of Mth1 and Std1, probably by activating casein kinase (Yck1 and Yck2), which phosphorylates Mth1 and Std1, thereby making them substrates for the SCF^{Grr1} ubiquitin-protein ligase and targeting them for degradation in the proteasome (23, 37). It has been difficult to demonstrate directly that Mth1 and Std1 become modified by ubiquitination when glucose is added to cells (37) (our unpublished results). Our observations that the SCF^{Grr1} ubiquitin-protein ligase and several lysine residues in Std1 that are conserved in evolution are required for its glucose-induced degradation (Fig. 5 and 6) provide indirect evidence that ubiquitination of Std1 (and, by inference, of Mth1) plays a role in degradation (Fig. 5 and 6) provide indirect evidence that ubiquitination of Std1 (and, by inference, of Mth1) plays a role in degradation (Fig. 5 and 6) provide indirect evidence that ubiquitination of Std1 (and, by inference, of Mth1) plays a role in degradation (Fig. 5 and 6) provide indirect evidence that ubiquitination of Std1 (and, by inference, of Mth1) plays a role in degradation.

Glucose also regulates the levels of Mth1 and Std1 in cells by regulating MTH1 and STD1 transcription via feedback and feedforward regulatory mechanisms that operate through two different glucose signal transduction pathways (15). Glucose-induced disappearance of Std1 is attenuated by feedback regulation of STD1 expression via the Snf3/Rgt2-Rgt1 signal transduction pathway (Fig. 2), which causes STD1 expression to be induced by glucose, thereby replenishing Std1 soon after its degradation is initiated by addition of glucose to cells. We believe this feedback regulation evolved to provide sufficient levels of Std1 to ensure efficient reestablishment of repression of HXT expression as soon as cells exhaust the available glucose. Indeed, interruption of this regulation of STD1 expression results in slower establishment of repression of HXT expression upon removal of glucose from cells (Fig. 3B). In contrast, Mth1 degradation is reinforced by glucose repression of MTH1 expression mediated by the Snf1-Mig1 glucose-signaling pathway. Disappearance of Mth1 is slowed in cells missing Mig1 and Mig2 or lacking their binding site in the MTH1 promoter (Fig. 2). We believe the purpose of this regulation is to ensure rapid removal of Mth1 from cells when glucose becomes available so as to enable prompt induction of HXT gene expression. This idea is supported by our observation that interruption of this regulation results in delayed induction of HXT3 expression in response to glucose (Fig. 3A).

Even though Std1 and Mth1 are paralogues, they appear to have different functions in the glucose induction pathway: Mth1 collaborates with Rgt1 to repress expression of HXT1 and HXT3, whereas Std1 seems to be dedicated to regulating expression of the high-glucose-induced HXT1 gene (Table 2) (14, 32). Our results suggest that Mth1 plays a role in maintaining repression of the HXT7 genes in the absence of glucose, while Std1 may primarily be responsible for reestablishment of repression of HXT expression when the cells run out of glucose (Fig. 7). This intricate and highly evolved regulatory network ensures stringent regulation of glucose utilization.

ACKNOWLEDGMENTS

This work was supported by a grant from the NIH (GM32540) and a fellowship from the Juvenile Diabetes Association awarded to V.B.

REFERENCES

1. Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
2. Heinemeyer, M. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202–207.
3. Didierich, J. A., M. Scheppeer, P. van Hoek, M. A. Luttik, J. P. van Dijken, J. T. Pronk, P. Kaassen, H. F. Boelens, M. J. de Mattos, K. van Dam, and A. L. Krueger. 1999. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274:15350–15359.
4. Flick, K. M., N. Spiewellev, T. K. Kalashnikova, M. Guaderrama, Q. Zhu, H. G. Chang, and C. Wittenberg. 2003. Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol. Biol. Cell 14:3230–3241.
5. Forsberg, H., and P. O. Ljungdahl. 2001. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40:91–109.
6. Gamo, F., M. Laffuente, and C. Gancedo. 1994. The mutation DTG1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. J. Bacteriol. 176:7423–7429.
7. Gano, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334–361.
8. Ghislain, M., A. Udvardy, and C. Mann. 1993. S. cerevisiae 263 protease mutants arrest cell division in G₁/metaphase. Nature 366:358–362.
9. Heinemeyer, W., A. Gruber, V. Mohrle, Y. Mahe, and D. H. Wolf. 1993. PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chytromyotropic activity and degradation of ubiquitinated proteins. J. Biol. Chem. 268:5115–5120.
10. Heinemeyer, W., J. A. Kleinschmidt, J. Saidowsky, C. Escher, and D. H. Wolf. 1991. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 10:555–562.
11. Hochstrasser, M., P. R. Johnson, C. S. Arendt, A. Amerik, S. Swaminathan, R. Swanson, S. J. Li, J. Laney, R. Pal-Sylaardsam, J. Nowak, and P. L. Connerly. 1999. The Saccharomyces cerevisiae ubiquitin-proteasome system. Philos. Trans. R. Soc. Lond. B 354:1513–1522.
12. Holsbeeks, I., O. Lagatie, A. Van Nuland, S. Van de Velde, and J. M. Theweelen. 2004. The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem. Sci. 29:556–564.
13. Johnston, M. 1999. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 15:29–33.
14. Johnston, M., and J. H. Kim. 2005. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem. Soc. Trans. 33:247–252.
15. Kaniak, A., Z. Xue, D. Macolod, J. H. Kim, and M. Johnston. 2004. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot. Cell 3:221–231.
16. Kim, J. H., J. Polish, and M. Johnston. 2003. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol. Cell. Biol. 23:5208–5216.
17. Kishi, T., T. Seno, and F. Yamao. 1998. Grr1 functions in the ubiquitin pathway in Saccharomyces cerevisiae through association with Skp1. Mol. Gen. Genet. 257:143–148.
18. Ko, C. H., H. Liang, and R. F. Gaber. 1993. Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:638–648.
19. Laffuente, M. J., C. Gancedo, J. C. Jauniaux, and J. M. Gancedo. 2000. Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol. Microbiol. 35:161–172.
20. Lakshmanan, J., A. L. Mosley, and S. Ozcan. 2003. Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr. Genet. 40:207–212.
21. Lewis, D. A., and L. F. Bisson. 1991. The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol. Cell. Biol. 11:3804–3813.
22. Li, F. N., and M. Johnston. 1997. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16:5629–5638.

23. Moriya, H., and M. Johnston. 2004. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. USA 101:1572–1577.

24. Mosley, A. L., J. Lakshmanan, B. K. Aryal, and S. Ozcan. 2003. Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J. Biol. Chem. 278:10322–10327.

25. Nehlin, J. O., and H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J. 9:2891–2898.

26. Ozcan, S., K. Freidel, A. Leuker, and M. Ciriacy. 1993. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J. Bacteriol. 175:554–569.

27. Ozcan, S., and M. Johnston. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:554–569.

28. Ozcan, S., and M. Johnston. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564–1572.

29. Ozcan, S., T. Leong, and M. Johnston. 1996. Rgl1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol. Cell. Biol. 16:6419–6426.

30. Polish, J. A., J. H. Kim, and M. Johnston. 2005. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169:583–594.

31. Rolland, F., J. Winderickx, and J. M. Thevelein. 2002. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2:183–201.

32. Schmidt, M. C., R. R. McCartney, X. Zhang, T. S. Tillman, H. Solimeo, S. Wolff, C. Almone, and S. C. Watkins. 1999. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4561–4571.

33. Schulte, F., and M. Ciriacy. 1995. HTR1/MTH1 encodes a repressor for HXT genes. Yeast 11:5239.

34. Schulte, F., R. Wieczorke, C. P. Hollenberg, and E. Boles. 2000. The HTR1 gene is a dominant-negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J. Bacteriol. 182:540–542.

35. Skowyra, D., K. L. Craig, M. Tyers, S. J. Elledge, and J. W. Harper. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219.

36. Skowyra, D., D. M. Koepp, T. Kamura, M. N. Conrad, R. C. Conaway, S. J. Elledge, and J. W. Harper. 1999. Reconstitution of G1 cyclin ubiquitination with complexes containing SCF^Grr1 and Rbx1. Science 284:662–665.

37. Spielewoy, N., K. Flick, T. I. Kalashnikova, J. R. Walker, and C. Wittenberg. 2004. Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Mol. Cell. Biol. 24:8994–9005.

38. Tomas-Cobos, L., and P. Sanz. 2002. Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene. Biochem. J. 368:657–663.

39. Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.

40. Wendell, D. L., and L. F. Bisson. 1994. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. J. Bacteriol. 176:3730–3737.