INSERTION OF A CONTRA-γ-CONTINUOUS FUNCTION BETWEEN TWO COMPARABLE REAL-VALUED FUNCTIONS

Majid Mirmiran

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.

Keywords and phrases: Insertion, Strong binary relation, Semi-open set, Preopen set, γ-open set, Lower cut set.

This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

Abstract A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a contra-γ-continuous function between two comparable real-valued functions.

1 Introduction

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 1964 [5]. A subset A of a topological space (X, τ) is called preopen or locally dense or nearly open if $A \subseteq \text{Int}(\text{Cl}(A))$. A set A is called preclosed if its complement is preopen or equivalently if $\text{Cl}(\text{Int}(A)) \subseteq A$. The term preopen, was used for the first time by A.S. Mashhour, M.E. Abi El-Monsef and S.N. El-Deeb [21], while the concept of a locally dense, set was introduced by H.H. Corson and E. Michael [5].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [18]. A subset A of a topological space (X, τ) is called semi-open if $A \subseteq \text{Cl}(\text{Int}(A))$. A set A is called semi-closed if its complement is semi-open or equivalently if $\text{Int}(\text{Cl}(A)) \subseteq A$.

Recall that a real-valued function f defined on a topological space X is called A-continuous [24] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [6, 12]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [7] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 4, 9, 10, 11, 13, 14, 23].

Hence, a real-valued function f defined on a topological space X is called contra-γ-continuous (resp. contra-semi-continuous , contra-precontinuous) if the preimage of every open subset of \mathbb{R} is γ-closed (resp. semi-closed , preclosed) in X[7].

Results of Katětov [15, 16] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [3], are used in order to give a necessary and sufficient conditions for the insertion of a contra-γ-continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g < f$) in
case \(g(x) \leq f(x)\) (resp. \(g(x) < f(x)\)) for all \(x\) in \(X\).

The following definitions are modifications of conditions considered in [17].

A property \(P\) defined relative to a real-valued function on a topological space is a \(c_\gamma\)–property provided that any constant function has property \(P\) and provided that the sum of a function with property \(P\) and any contra-\(c_\gamma\)–continuous function also has property \(P\). If \(P_1\) and \(P_2\) are \(c_\gamma\)–property, the following terminology is used: (i) A space \(X\) has the weak \(c_\gamma\)–insertion property for \((P_1, P_2)\) if and only if for any functions \(g\) and \(f\) on \(X\) such that \(g \leq f, g\) has property \(P_1\) and \(f\) has property \(P_2\), then there exists a contra-\(c_\gamma\)–continuous function \(h\) such that \(g \leq h \leq f\). (ii) A space \(X\) has the \(c_\gamma\)–insertion property for \((P_1, P_2)\) if and only if for any functions \(g\) and \(f\) on \(X\) such that \(g < f, g\) has property \(P_1\) and \(f\) has property \(P_2\), then there exists a contra-\(c_\gamma\)–continuous function \(h\) such that \(g < h < f\). (iii) A space \(X\) has the weakly \(c_\gamma\)–insertion property for \((P_1, P_2)\) if and only if for any functions \(g\) and \(f\) on \(X\) such that \(g < f, g\) has property \(P_1\), \(f\) has property \(P_2\) and \(f - g\) has property \(P_2\), then there exists a contra-\(c_\gamma\)–continuous function \(h\) such that \(g < h < f\).

In this paper, is given a sufficient condition for the weak \(c_\gamma\)–insertion property. Also for a space with the weak \(c_\gamma\)–insertion property, we give a necessary and sufficient condition for the space to have the \(c_\gamma\)–insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a contra-\(c_\gamma\)–continuous function, the necessary definitions and terminology are stated.

Let \((X, \tau)\) be a topological space, the family of all \(\gamma\)–open, \(\gamma\)–closed, semi-open, semi-closed, preopen and preclosed will be denoted by \(\gamma O(X, \tau), \gamma C(X, \tau), sO(X, \tau), sC(X, \tau), pO(X, \tau)\) and \(pC(X, \tau)\), respectively.

Definition 2.1. Let \(A\) be a subset of a topological space \((X, \tau)\). We define the subsets \(A^A\) and \(A^V\) as follows:

\[
A^A = \cap\{O : O \supseteq A, O \in (X, \tau)\} \quad \text{and} \quad A^V = \cup\{F : F \subseteq A, F^c \in (X, \tau)\}.
\]

In [8, 19, 22], \(A^A\) is called the kernel of \(A\).

We define the subsets \(\gamma(A^A), \gamma(A^V), p(A^A), p(A^V), s(A^A)\) and \(s(A^V)\) as follows:

\[
\gamma(A^A) = \cap\{O : O \supseteq A, O \in \gamma O(X, \tau)\},
\]

\[
\gamma(A^V) = \cup\{F : F \subseteq A, F \in \gamma C(X, \tau)\},
\]

\[
p(A^A) = \cap\{O : O \supseteq A, O \in pO(X, \tau)\},
\]

\[
p(A^V) = \cup\{F : F \subseteq A, F \in pC(X, \tau)\},
\]

\[
s(A^A) = \cap\{O : O \supseteq A, O \in sO(X, \tau)\} \quad \text{and}
\]

\[
s(A^V) = \cup\{F : F \subseteq A, F \in sC(X, \tau)\}.
\]

\(\gamma(A^A)\) (resp. \(p(A^A), s(A^A)\)) is called the \(\gamma\)–kernel (resp. \(\gamma\)–prekernel, \(\gamma\)–semi–kernel) of \(A\).

The following first two definitions are modifications of conditions considered in [15, 16].

Definition 2.2. If \(\rho\) is a binary relation in a set \(S\) then \(\bar{\rho}\) is defined as follows: \(x \bar{\rho} y\) if and only if \(y \rho u\) implies \(x \rho u\) and \(u \rho y\) for any \(u\) and \(v\) in \(S\).

Definition 2.3. A binary relation \(\rho\) in the power set \(P(X)\) of a topological space \(X\) is called a strong binary relation in \(P(X)\) in case \(\rho\) satisfies each of the following conditions:

1. If \(A_1, \rho B_j\) for any \(i \in \{1, \ldots, m\}\) and for any \(j \in \{1, \ldots, n\}\), then there exists a set \(C\) in \(P(X)\) such that \(A_i \rho C\) and \(C \rho B_j\) for any \(i \in \{1, \ldots, m\}\) and any \(j \in \{1, \ldots, n\}\).
2. If \(A \subseteq B\), then \(A \bar{\rho} B\).
3. If \(A \rho B\), then \(\gamma(A^A) \subseteq B\) and \(A \subseteq \gamma(B^V)\).

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [3] as follows:
Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq \{x \in X : f(x) < \ell\}$ for a real number ℓ, then $A(f, \ell)$ is called a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which γ-kernel sets are γ-open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, \ell)$ and $A(g, \ell)$ in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f, t_1) \rho A(g, t_2)$, there then exists a contra-γ-continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f, t_1) \rho A(g, t_2)$.

Define functions F and G mapping the rational numbers Q into the power set of X by $F(t) = A(f, t)$ and $G(t) = A(g, t)$. If t_1 and t_2 are any elements of Q with $t_1 < t_2$, then $F(t_1) \bar{\rho} F(t_2), G(t_1) \bar{\rho} G(t_2)$, and $F(t_1) \rho G(t_2)$. By Lemmas 1 and 2 of [16] it follows that there exists a function H mapping Q into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \rho H(t_2)$, $H(t_1) \rho H(t_2)$ and $H(t_1) \rho G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in Q : x \in H(t)\}$.

We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G(t')$ for any $t' > t$; since x is in $G(t') = A(g, t')$ implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F(t')$ for any $t' < t$; since x is not in $F(t') = A(f, t')$ implies that $f(x) > t'$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = \gamma(H(t_2)^{\circ}) \setminus \gamma(H(t_1)^{\circ})$. Hence $h^{-1}(t_1, t_2)$ is γ-closed in X, i.e., h is a contra-γ-continuous function on X.

The above proof used the technique of theorem 1 in [15].

Theorem 2.2. Let P_1 and P_2 be $c\gamma$-property and X be a space that satisfies the weak $c\gamma$-insertion property for (P_1, P_2). Also assume that g and f are functions on X such that $g < f$, g has property P_1 and f has property P_2. The space X has the $c\gamma$-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a decreasing sequence (D_n) of subsets of X with empty intersection and such that for each n, $X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by contra-γ-continuous functions.

Proof. Assume that X has the weak $c\gamma$-insertion property for (P_1, P_2). Let g and f be functions such that $g < f$, g has property P_1 and f has property P_2. By hypothesis there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a sequence (D_n) such that $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and such that for each n, $X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by contra-γ-continuous functions. Let k_n be a contra-γ-continuous function such that $k_n = 0$ on $A(f - g, 3^{-n+1})$ and $k_n = 1$ on $X \setminus D_n$. Let a function k on X be defined by

$$k(x) = 1/2 \sum_{n=1}^{\infty} 3^{-n} k_n(x).$$

By the Cauchy condition and the properties of contra-γ-continuous functions, the function k is a contra-γ-continuous function. Since $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and since $k_n = 1$ on $X \setminus D_n$, it follows that $0 < k$. Also $2k < f - g$: In order to see this, observe first that if x is in $A(f - g, 3^{-n+1})$, then $k(x) \leq 1/4(3^{-n})$. If x is any point in X, then $x \notin A(f - g, 1)$ or for some n,

$$x \in A(f - g, 3^{-n+1}) - A(f - g, 3^{-n});$$

in the former case $2k(x) < 1$, and in the latter $2k(x) \leq 1/2(3^{-n}) < f(x) - g(x)$. Thus if $f_1 = f - k$ and if $g_1 = g + k$, then $g < g_1 < f_1 < f$. Since P_1 and P_2 are $c\gamma$-properties, then g_1 has property P_1 and f_1 has property P_2. Since X has the weak $c\gamma$-insertion property for (P_1, P_2), then there exists a contra-γ-continuous function h such that $g_1 \leq h \leq f_1$. Thus $g < h < f$, it follows that X satisfies the $c\gamma$-insertion property for (P_1, P_2). (The technique of this proof is by Katětov[15]).
Conversely, let \(g \) and \(f \) be functions on \(X \) such that \(g \) has property \(P_1 \), \(f \) has property \(P_2 \) and \(g < f \). By hypothesis, there exists a contra-\(\gamma \)-continuous function \(h \) such that \(g < h < f \). We follow an idea contained in Lane [17]. Since the constant function 0 has property \(P_1 \), since \(f - h \) has property \(P_2 \), and since \(X \) has the \(c\gamma \)-insertion property for \((P_1, P_2)\), there exists a contra-\(\gamma \)-continuous function \(k \) such that \(0 < k < f - h \). Let \(A(f - g, 3^{-n+1}) \) be any lower cut set for \(f - g \) and let \(D_n = \{ x \in X : k(x) < 3^{-n+2} \} \). Since \(k > 0 \) it follows that \(\bigcap_{n=1}^\infty D_n = \emptyset \). Since

\[
A(f - g, 3^{-n+1}) \subseteq \{ x \in X : (f - g)(x) \leq 3^{-n+1} \} \subseteq \{ x \in X : k(x) \leq 3^{-n+1} \}
\]

and since \(\{ x \in X : k(x) \leq 3^{-n+1} \} \) and \(\{ x \in X : k(x) \geq 3^{-n+2} \} = X \setminus D_n \) are completely separated by contra-\(\gamma \)-continuous functions \(\sup \{ 3^{-n+1}, \inf \{ k, 3^{-n+2} \} \} \), it follows that for each \(n \), \(A(f - g, 3^{-n+1}) \) and \(X \setminus D_n \) are completely separated by contra-\(\gamma \)-continuous functions.

3 Applications

The abbreviations \(c\gamma c \), \(cpc \) and \(csc \) are used for contra-\(\gamma \)-continuous, contra-precontinuous and contra-\emph{semi}-\(\gamma \)-continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2, we suppose that \(X \) is a topological space whose \(\gamma \)-kernel sets are \(\gamma \)-open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \) of \(X \), there exist \(\gamma \)-closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) has the weak \(c\gamma \)-insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let \(f \) and \(g \) be real-valued functions defined on \(X \), such that \(f \) and \(g \) are cpc (resp. csc), and \(g \leq f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(p(A^\rho) \subseteq p(B^\rho) \) (resp. \(s(A^\rho) \subseteq s(B^\rho) \)), then by hypothesis \(\rho \) is a strong binary relation in the power set of \(X \). Since \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then

\[
A(f, t_1) \subseteq \{ x \in X : f(x) \leq t_1 \} \subseteq \{ x \in X : g(x) < t_2 \} \subseteq A(g, t_2);
\]

since \(\{ x \in X : f(x) \leq t_1 \} \) is a preopen (resp. semi-open) set and since \(\{ x \in X : g(x) < t_2 \} \) is a preclosed (resp. semi-closed) set, it follows that \(p(A(f, t_1)^\rho) \subseteq p(A(g, t_2)^\rho) \) (resp. \(s(A(f, t_1)^\rho) \subseteq s(A(g, t_2)^\rho) \)). Hence \(t_1 < t_2 \) implies that \(A(f, t_1) \rho A(g, t_2) \). The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \), there exist \(\gamma \)-closed sets \(F_1 \) and \(F_2 \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then every contra-precontinuous (resp. contra-\emph{semi}-\(\gamma \)-continuous) function is contra-\(\gamma \)-continuous.

Proof. Let \(f \) be a real-valued contra-precontinuous (resp. contra-\emph{semi}-\(\gamma \)-continuous) function defined on \(X \). Set \(g = f \), then by Corollary 3.1, there exists a contra-\(\gamma \)-continuous function \(h \) such that \(g = h = f \).

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \) of \(X \), there exist \(\gamma \)-closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) has the \(c\gamma \)-insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let \(g \) and \(f \) be real-valued functions defined on \(X \), such that \(f \) and \(g \) are cpc (resp. csc), and \(g < f \). Set \(h = (f + g)/2 \), thus \(g < h < f \), and by Corollary 3.2, since \(g \) and \(f \) are contra-\(\gamma \)-continuous functions hence \(h \) is a contra-\(\gamma \)-continuous function.

Corollary 3.4. If for each pair of disjoint subsets \(G_1, G_2 \) of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi-open, there exist \(\gamma \)-closed subsets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) have the weak \(c\gamma \)-insertion property for (cpc, cpc) and (csc, cpc).

Proof. Let \(g \) and \(f \) be real-valued functions defined on \(X \), such that \(g \) is cpc (resp. csc) and \(f \) is csc (resp. cpc), with \(g < f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(s(A^\rho) \subseteq s(B^\rho) \) (resp. \(p(A^\rho) \subseteq p(B^\rho) \)), then by hypothesis \(\rho \) is a strong binary relation in the power set of \(X \).
If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then
\[
A(f, t_1) \subseteq \{ x \in X : f(x) \leq t_1 \} \subseteq \{ x \in X : g(x) < t_2 \} \subseteq A(g, t_2);
\]
since \(\{ x \in X : f(x) \leq t_1 \} \) is a semi-open (resp. preopen) set and since \(\{ x \in X : g(x) < t_2 \} \) is a preclosed (resp. semi-closed) set, it follows that \(s(A(f, t_1)^o) \subseteq p(A(g, t_2)^c) \) (resp. \(p(A(f, t_1)^o) \subseteq s(A(g, t_2)^c) \)). Hence \(t_1 < t_2 \) implies that \(A(f, t_1) \rho A(g, t_2) \). The proof follows from Theorem 2.1. ■

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space \(X \) are equivalent:

(i) For each pair of disjoint subsets \(G_1, G_2 \) of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi-open, there exist \(\gamma \)-closed subsets \(F_1, F_2 \) of \(X \) such that \(G_1 \subseteq F_1, G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \).

(ii) If \(G \) is a semi-open (resp. preopen) subset of \(X \) which is contained in a preclosed (resp. semi-closed) subset \(F \) of \(X \), then there exists a \(\gamma \)-closed subset \(H \) of \(X \) such that \(G \subseteq H \subseteq \gamma(H^c) \subseteq F \).

Proof. (i) \(\Rightarrow \) (ii) Suppose that \(G \subseteq F \), where \(G \) and \(F \) are semi-open (resp. preopen) and preclosed (resp. semi-closed) subsets of \(X \), respectively. Hence, \(F^c \) is a preopen (resp. semi-open) and \(G \cap F^c = \emptyset \).

By (i) there exists two disjoint \(\gamma \)-closed subsets \(F_1, F_2 \) such that \(G \subseteq F_1 \) and \(F^c \subseteq F_2 \). But
\[
F^c \subseteq F_2 \Rightarrow F_2^c \subseteq F,
\]
and
\[
F_1 \cap F_2 = \emptyset \Rightarrow F_1 \subseteq F_2^c
\]
hence
\[
G \subseteq F_1 \subseteq F_2^c \subseteq F
\]
and since \(F_2^c \) is a \(\gamma \)-open subset containing \(F_1 \), we conclude that \(\gamma(F^c_1) \subseteq F_2^c \), i.e.,
\[
G \subseteq F_1 \subseteq \gamma(F^c_1) \subseteq F.
\]
By setting \(H = F_1 \), condition (ii) holds.

(ii) \(\Rightarrow \) (i) Suppose that \(G_1, G_2 \) are two disjoint subsets of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi-open.

This implies that \(G_2 \subseteq G_1^c \) and \(G_1^c \) is a preclosed subset of \(X \). Hence by (ii) there exists a \(\gamma \)-closed set \(H \) such that \(G_2 \subseteq H \subseteq \gamma(H^c) \subseteq G_1^c \).

But
\[
H \subseteq \gamma(H^c) \Rightarrow H \cap \gamma((H^c)^c) = \emptyset
\]
and
\[
\gamma(H^c) \subseteq G_1^c \Rightarrow G_1 \subseteq \gamma((H^c)^c).
\]
Furthermore, \(\gamma((H^c)^c) \) is a \(\gamma \)-closed subset of \(X \). Hence \(G_2 \subseteq H, G_1 \subseteq \gamma((H^c)^c) \) and \(H \cap \gamma((H^c)^c) = \emptyset \). This means that condition (i) holds. ■

Lemma 3.2. Suppose that \(X \) is a topological space. If each pair of disjoint subsets \(G_1, G_2 \) of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi-open, can be separated by \(\gamma \)-closed subsets of \(X \) then there exists a contra-\(\gamma \)-continuous function \(h : X \to [0,1] \) such that \(h(G_2) = \{0\} \) and \(h(G_1) = \{1\} \).

Proof. Suppose \(G_1 \) and \(G_2 \) are two disjoint subsets of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi-open. Since \(G_1 \cap G_2 = \emptyset \), hence \(G_2 \subseteq G_1^c \). In particular, since \(G_1^c \) is a preclosed subset of \(X \) containing the semi-open subset \(G_2 \) of \(X \), by Lemma 3.1, there exists a \(\gamma \)-closed subset \(H_{1/2} \) such that
\[
G_2 \subseteq H_{1/2} \subseteq \gamma(H^c_{1/2}) \subseteq G_1^c.
\]
Note that \(H_{1/2} \) is also a preclosed subset of \(X \) and contains \(G_2 \), and \(G_1^c \) is a preclosed subset of \(X \) and contains the semi-open subset \(\gamma(H^c_{1/2}) \) of \(X \). Hence, by Lemma 3.1, there exists \(\gamma \)-closed subsets \(H_{1/4} \) and \(H_{3/4} \) such that
\[
G_2 \subseteq H_{1/4} \subseteq \gamma(H^c_{1/4}) \subseteq H_{1/2} \subseteq \gamma(H^c_{1/2}) \subseteq H_{3/4} \subseteq \gamma(H^c_{3/4}) \subseteq G_1^c.
\]
By continuing this method for every \(t \in D \), where \(D \subseteq [0, 1] \) is the set of rational numbers that their denominators are exponents of 2, we obtain \(\gamma \)-closed subsets \(H_t \) with the property that if \(t_1, t_2 \in D \) and \(t_1 < t_2 \), then \(H_{t_1} \subseteq H_{t_2} \). We define the function \(h \) on \(X \) by \(h(x) = \inf \{ t : x \in H_t \} \) for \(x \notin G_t \) and \(h(x) = 1 \) for \(x \in G_t \).

Note that for every \(x \in X, 0 \leq h(x) \leq 1 \), i.e., \(h \) maps \(X \) into \([0,1]\). Also, we note that for any \(t \in D, G_2 \subseteq H_t \); hence \(h(G_2) = \{ 0 \} \). Furthermore, by definition, \(h(G_1) = \{ 1 \} \). It remains only to prove that \(h \) is a contra-\(\gamma \)-continuous function on \(X \). For every \(\alpha \in \mathbb{R} \), we have if \(\alpha \leq 0 \) then \(\{ x \in X : h(x) < \alpha \} = \emptyset \) and if \(0 < \alpha \) then \(\{ x \in X : h(x) < \alpha \} = \bigcup \{ H_t : t < \alpha \} \); hence, they are \(\gamma \)-closed subsets of \(X \). Similarly, if \(\alpha < 0 \) then \(\{ x \in X : h(x) > \alpha \} = X \) and if \(\alpha \leq 0 \) then \(\{ x \in X : h(x) \geq \alpha \} = \bigcup \{ (H^c_t) : t \geq \alpha \} \); hence, every of them is a \(\gamma \)-closed subset. Consequently \(h \) is a contra-\(\gamma \)-continuous function. ■

Lemma 3.3. Suppose that \(X \) is a topological space such that every two disjoint \(\text{semi-} \)open and \(\text{preopen} \) subsets of \(X \) can be separated by \(\gamma \)-closed subsets of \(X \). The following conditions are equivalent:

(i) Every countable covering of \(\text{semi-} \)-closed (resp. \(\text{preclosed} \)) subsets of \(X \) has a refinement consisting of \(\text{semi-} \)closed (resp. \(\text{semi-} \)-closed) subsets of \(X \) such that for every \(x \in X \), there exists a \(\gamma \)-closed subset of \(X \) containing \(x \) such that it intersects only finitely many members of the refinement.

(ii) Corresponding to every decreasing sequence \(\{ G_n \} \) of \(\text{semi-} \)-open (resp. \(\text{preopen} \)) subsets of \(X \) with empty intersection there exists a decreasing sequence \(\{ F_n \} \) of \(\text{semi-} \)-closed (resp. \(\text{semi-} \)-closed) subsets of \(X \) such that \(\bigcap_{n=1}^{\infty} F_n = \emptyset \) and for every \(n \in \mathbb{N} \), \(G_n \subseteq F_n \).

Proof. (i) \(\Rightarrow \) (ii) Suppose that \(\{ G_n \} \) is a decreasing sequence of \(\text{semi-} \)-open (resp. \(\text{preopen} \)) subsets of \(X \) with empty intersection. Then \(\{ G_n : n \in \mathbb{N} \} \) is a countable covering of \(\text{semi-} \)-closed (resp. \(\text{semi-} \)-closed) subsets of \(X \). By hypothesis (i) and Lemma 3.1, this covering has a refinement \(\{ V_n : n \in \mathbb{N} \} \) such that every \(V_n \) is a \(\gamma \)-closed subset of \(X \) and \(\gamma(V_n^c) \subseteq G_n^c \). By setting \(F_n = \gamma((V_n^c)^c) \), we obtain a decreasing sequence of \(\gamma \)-closed subsets of \(X \) with the required properties.

(ii) \(\Rightarrow \) (i) Now if \(\{ H_n : n \in \mathbb{N} \} \) is a countable covering of \(\text{semi-} \)-closed (resp. \(\text{preclosed} \)) subsets of \(X \), we set for every \(n \in \mathbb{N} \), \(G_n = (\bigcup_{i=1}^{n} H_i)^c \). Then \(\{ G_n \} \) is a decreasing sequence of \(\text{semi-} \)-open (resp. \(\text{preopen} \)) subsets of \(X \) with empty intersection. By (ii) there exists a decreasing sequence \(\{ F_n \} \) consisting of \(\text{preclosed} \) (resp. \(\text{semi-} \)-closed) subsets of \(X \) such that \(\bigcap_{n=1}^{\infty} F_n = \emptyset \) and for every \(n \in \mathbb{N} \), \(G_n \subseteq F_n \). Now we define the subsets \(W_n \) of \(X \) in the following manner:

\[W_1 \text{ is a } \gamma \text{-closed subset of } X \text{ such that } F_1 \subseteq W_1 \text{ and } \gamma(W_1^c) \cap G_1 = \emptyset. \]

\[W_2 \text{ is a } \gamma \text{-closed subset of } X \text{ such that } \gamma(W_1^c) \cup F_2 \subseteq W_2 \text{ and } \gamma(W_2^c) \cap G_2 = \emptyset, \text{ and so on.} \]

(By Lemma 3.1, \(W_n \) exists).

Then since \(\{ F_n : n \in \mathbb{N} \} \) is a covering for \(X \), hence \(\{ W_n : n \in \mathbb{N} \} \) is a covering for \(X \) consisting of \(\gamma \)-closed sets. Moreover, we have

(i) \(\gamma(W_n^c) \subseteq W_{n+1} \)

(ii) \(F_n \subseteq W_n \)

(iii) \(W_n \subseteq \bigcup_{i=1}^{n} H_i \).

Now setting \(S_1 = W_1 \) and for \(n \geq 2 \), we set \(S_n = W_{n+1} \setminus \gamma(W_{n+1}^c) \).

Then since \(\gamma(W_{n+1}^c) \subseteq W_n \) and \(S_n \supseteq W_{n+1} \setminus W_n \), it follows that \(\{ S_n : n \in \mathbb{N} \} \) consists of \(\gamma \)-closed sets and covers \(X \). Furthermore, \(S_i \cap S_j \neq \emptyset \) if and only if \(|i - j| \leq 1 \). Finally, consider the following sets:

\[
S_1 \cap H_1, \quad S_1 \cap H_2 \\
S_2 \cap H_1, \quad S_2 \cap H_2, \quad S_2 \cap H_3 \\
S_3 \cap H_1, \quad S_3 \cap H_2, \quad S_3 \cap H_3, \quad S_3 \cap H_4 \\
\vdots \\
S_i \cap H_1, \quad S_i \cap H_2, \quad S_i \cap H_3, \quad S_i \cap H_4, \quad \ldots, \quad S_i \cap H_{i+1} \\
\vdots
\]
These sets are γ–closed sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a γ–closed set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}, j = 1, \ldots, i + 1\}$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are γ–closed sets, and for every point in X we can find a γ–closed set containing the point that intersects only finitely many elements of that refinement.\blacksquare

Corollary 3.5. If every two disjoint semi–open and preopen subsets of X can be separated by γ–closed subsets of X, and in addition, every countable covering of semi–closed (resp. preclosed) subsets of X has a refinement that consists of preclosed (resp. semi–closed) subsets of X such that for every point of X we can find a γ–closed subset containing that point such that it intersects only a finite number of refining members then X has the weakly $c\gamma$–insertion property for (cpc, csc) (resp. (csc, cpc)).

Proof. Since every two disjoint semi–open and preopen sets can be separated by γ–closed subsets of X, therefore by Corollary 3.4, X has the weak $c\gamma$–insertion property for (cpc, csc) and (csc, cpc). Now suppose that f and g are real-valued functions on X with $g < f$, such that g is cpc (resp. csc), f is csc (resp. cpc) and $f - g$ is csc (resp. cpc). For every $n \in \mathbb{N}$, set

$$A(f - g, 3^{-n+1}) = \{ x \in X : (f - g)(x) \leq 3^{-n+1} \}.$$

Since $f - g$ is csc (resp. cpe), hence $A(f - g, 3^{-n+1})$ is a semi–open (resp. preopen) subset of X. Consequently, $\{A(f - g, 3^{-n+1})\}$ is a decreasing sequence of semi–open (resp. preopen) subsets of X and furthermore since $0 < f - g$, it follows that $\bigcap_{n=1}^{\infty} A(f - g, 3^{-n+1}) = \emptyset$. Now by Lemma 3.3, there exists a decreasing sequence $\{D_n\}$ of preclosed (resp. semi–closed) subsets of X such that $A(f - g, 3^{-n+1}) \subseteq D_n$ and $\bigcap_{n=1}^{\infty} D_n = \emptyset$. But by Lemma 3.2, the pair $A(f - g, 3^{-n+1})$ and $X \setminus D_n$ of semi–open (resp. preopen) and preopen (resp. semi–open) subsets of X can be completely separated by contra-γ–continuous functions. Hence by Theorem 2.2, there exists a contra-γ–continuous function h defined on X such that $g < h < f$, i.e., X has the weakly $c\gamma$–insertion property for (cpc, csc) (resp. (csc, cpc)).\blacksquare

References

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, *European J. Pure. Appl. Math.* 2(2), 213–230 (2009).

[2] D. Andrijevic and M. Ganster, On PO-equivalent topologies, *IV International Meeting on Topology in Italy (Sorrento, 1988)*, Rend. Circ. Mat. Palermo (2) Suppl. 24, 251–256 (1990).

[3] F. Brooks, Indefinite cut sets for real functions, *Amer. Math. Monthly* 78, 1007–1010 (1971).

[4] M. Caldas and S. Jafari, Some properties of contra-β–continuous functions, *Mem. Fac. Sci. Kochi. Univ.* 22, 19–28 (2001).

[5] H.H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.* 8, 351–360 (1964).

[6] J. Dontchev, The characterization of some peculiar topological space via α– and β–sets, *Acta Math. Hungar.* 69(1-2), 67–71 (1995).

[7] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, *Internat. J. Math. Math. Sci.* 19(2), 303–310 (1996).

[8] J. Dontchev, and H. Maki, On sg-closed sets and semi–λ–closed sets, *Questions Answers Gen. Topology* 15(2), 259–266 (1997).

[9] E. Ekici, On contra-continuity, *Annales Univ. Sci. Budapest* 47, 127–137 (2004).

[10] E. Ekici, New forms of contra-continuity, *Stud. Inform. Math. J. Math.* 24(1), 37–45 (2008).

[11] A.I. El-Maghrabi, Some properties of contra-continuous mappings, *Int. J. General Topol.* 3(1-2), 55–64 (2010).

[12] M. Ganster and I. Reilly, A decomposition of continuity, *Acta. Math. Hungar.* 56(3-4), 299–301 (1990).

[13] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, *Iranian J. Sci. & Tech.* 2, 153–167 (2001).

[14] S. Jafari and T. Noiri, On contra-precontinuous functions, *Bull. Malaysian Math. Sc. Soc.* 25, 115–128 (2002).
[15] M. Katětov, On real-valued functions in topological spaces, *Fund. Math.* **38**, 85–91 (1951).
[16] M. Katětov, Correction to, "On real-valued functions in topological spaces", *Fund. Math.* **40**, 203–205 (1953).
[17] E. Lane, Insertion of a continuous function, *Pacific J. Math.* **66**, 181–190 (1976).
[18] N. Levine, Semi-open sets and semi-continuity in topological space, *Amer. Math. Monthly* **70**, 36–41 (1963).
[19] S. N. Maheshwari and R. Prasad, On $R_{0\alpha}$—spaces, *Portugal. Math.* **34**, 213–217 (1975).
[20] H. Maki, Generalized Λ—sets and the associated closure operator, *The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement*, 139–146 (1986).
[21] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, *Proc. Math. Phys. Soc. Egypt* **53**, 47–53 (1982).
[22] M. Mrsevic, On pairwise R and pairwise R_1 bitopological spaces, *Bull. Math. Soc. Sci. Math. R. S. Roumanie* **30**, 141–145 (1986).
[23] A.A. Nasef, Some properties of contra-continuous functions, *Chaos Solitons Fractals* **24**, 471–477 (2005).
[24] M. Przemski, A decomposition of continuity and α—continuity, *Acta Math. Hungar.* **61**(1-2), 93–98 (1993).

Author information

Majid Mirmiran, Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran.
E-mail: mirmir@sci.ui.ac.ir

Received: April 2, 2019.
Accepted: August 9, 2019.