Birth preparedness and complication readiness among pregnant women admitted in a rural hospital in Rwanda

Patrick Smeele\(^1\), Richard Kalisa\(^{2,3}\), Marianne van Elteren\(^1\), Jos van Roosmalen\(^{3,4}\) and Thomas van den Akker\(^4\)\(^*\)

Abstract

Background: With an aim to prevent adverse pregnancy outcomes, ‘birth preparedness and complication readiness’ (BP/CR) promotes timely access to skilled maternal and neonatal services. Objective of this study was to assess implementation of BP/CR among pregnant women admitted with obstetric emergencies in rural Rwanda.

Methods: A cross-sectional study among pregnant women who were referred to Ruhengeri hospital between July and November 2015. The ‘Safe Motherhood questionnaire’ as developed by Jhpiego’s Maternal and Neonatal Health Program was used to collect data. Women were asked to mention key danger signs and respond as to whether they had identified: (A) skilled birth attendant, (B) location to give birth, (C) mode of transport, (D) money to cover health care expenditure. Women who answered ‘yes’ to three or four items were labeled ‘well prepared’. Multivariate logistic regression analysis was conducted to compare the ‘well prepared’ and ‘less prepared’.

Results: With regard to complication readiness, out of 350 women, 296 (84.6%), 271 (77.4%) and 288 (82.3%) could mention at least one key danger sign during pregnancy, labor and postpartum respectively, but only 23 (6.6%) could mention three or more key danger signs during all three periods. With regard to birth preparedness, 46 (13.1%) women had identified a skilled birth attendant, 68 (19.4%) birth location, 76 (21.7%) mode of transport, and 306 (87.4%) had saved money for health care costs. Twenty-eight women (22.3%) were ‘well prepared’, associated factors being first time pregnancy (adjusted Odds Ratio (aOR) = 3.2; 95% CI; 1.2 – 5.8), knowledge of at least two danger signs (aOR = 2.8; 95% CI; 1.7 – 3.9) and having been assisted by a community health worker at the antenatal clinic (aOR = 2.2, 95% CI; 1.3 – 3.7).

Conclusion: Knowledge of obstetric danger signs was suboptimal and birth preparedness low. We recommend review of practices regarding health promotion in antenatal care, taking care not to exclude multiparous women from messages related to birth preparedness, and do promote use of community health workers to enhance effectiveness of BP/CR.

Keywords: Birth preparedness, Complication readiness, Obstetrics, High-risk pregnancy, Health promotion, Rwanda

Background

Maternal mortality remains a major global concern, especially in sub-Saharan Africa where the maternal mortality ratio, although declining, is still high [1–3]. One of the reasons is lack of Birth Preparedness and Complication Readiness (BP/CR), which is recognized as a key component of safe motherhood programs around the world [4, 5].

BP/CR is a comprehensive package to promote timely access to skilled maternal and neonatal health services. It also promotes active preparation and decision making for birth among pregnant women and their families [5–7]. A birth plan includes identifying a skilled birth attendant and location of the closest appropriate care facility, saving funds for birth-related and emergency expenses, arranging transport to a health facility for birth and obstetric emergencies and identification of compatible blood donors in...
case of need [5]. The latter criterion does not apply in Rwanda, where centralized blood banks taking blood from voluntary donors are in place [8].

Whilst BP/CR has been associated with reduced maternal and neonatal mortality [9], improved preventive behaviors [10–12], increased knowledge of danger signs [13–15] and more frequent seeking of professional care during emergencies [11, 16, 17], previous studies have shown low rates of BP/CR among women in Uganda [18], Ethiopia [4, 14, 15] and Burkina Faso [19]. The rate of BP/CR among women in Rwanda is unknown.

In 2003, Rwanda adopted BP/CR as part of ‘focused antenatal care’ to increase access to skilled birth attendance [20, 21]. Part of this strategy is that health workers explain women the obstetric danger signs that may occur during pregnancy, childbirth and the postpartum period as well as methods to prevent mother-to-child transmission of HIV [20]. The introduction of focused antenatal care may have contributed to the reduction of the maternal mortality rate by roughly two-thirds from 750 in 2005 to 210 per 100,000 live births in 2015 and to the increased skilled birth attendance rate from 28 to 91% [22, 23].

This study aimed to assess practices around and factors associated with BP/CR among pregnant women admitted with obstetric emergencies in a rural Rwandan hospital.

Methods
Design
This was a cross-sectional study among pregnant women who were referred for obstetric emergencies to Ruhengeri hospital, Musanze district, Rwanda, between July and November 2015.

Setting
According to the Population Census, Musanze district had a population of 368,267 inhabitants with a total fertility rate of 4.6 births per woman in 2012. Health insurance coverage was 85.1%, and 65.3% of women who gave birth with assistance from a skilled birth attendant. Uptake of postnatal care by skilled personnel was 4.5% [24]. Health promotion and counseling as part of BP/CR are provided by community health workers in addition to other facility-based professionals. Community health workers sometimes escort laboring women to health facilities.

Ruhengeri hospital acts as a provincial referral hospital for women with high-risk pregnancies and referrals from health centers and other district hospitals in the northern province. Medical services offered are covered by community-based health insurance (‘Mutuelle de Santé’) at contribution of an annual fee of RWF 3000 (US$4.5), with a 10% surcharge for each episode of illness. In case of shortages of supplies, patients are requested to procure missing items from private pharmacies. During the study period, medical staff consisted of one specialist obstetrician, four medical officers, two intern doctors and 18 midwives.

Data collection
The study included all pregnant women who were referred to the maternity ward who consented to participation, using the consent form given in Additional file 1. Participants were followed up to discharge or death.

Two trained research assistants identified possible participants while the principal investigator verified suitability for study inclusion. The ‘Safe Motherhood questionnaire’ developed by the Maternal Neonatal Program of JHPIEGO, an affiliate of John Hopkins University [5] was used, and adapted to the local context to include a question regarding purchase of birth materials as a common birth preparedness practice (Additional file 1). The expert translator translated it from the English version to the local language (Kinyarwanda), and then another translator translated this text back into English to check whether the original meaning was still present.

The questionnaire pertained to socio-demographic variables such as age, residence, religion, education level, marital and employment status, and other variables with regard to antenatal care (including type of advice received and type of health worker seen), obstetric history, reasons for referral. With regard to knowledge of obstetric danger signs, we assessed whether a woman, when prompted, could mention danger signs and symptoms such as vaginal bleeding, fits, swelling of face or limbs, fever, loss of consciousness, headache, abdominal pain, prolonged labor and retained placenta.

Lastly, four ‘BP/CR questions’ verified whether the woman had taken one of the following four steps: A) identification of a skilled birth attendant, B) identification of the location of the closest appropriate care facility, C) identification of a means of transport to that facility, D) saving money for hospital costs/birth materials. Women answering ‘yes’ to at least three of these four BP/CR questions were labeled ‘well prepared’. Remaining women were labeled ‘less prepared’. We also assessed whether mentioning of at least two danger signs during pregnancy, childbirth or postpartum was associated with being well prepared.

Data analysis
Data were entered, coded, cleaned and analyzed using SPSS for Windows Version 18.0. After the initial descriptive analysis, bivariate analysis was done to test for associations between the dependent variable BP/CR and independent variables using Pearson’s chi square or Fischer’s exact test. Factors that were found to have p-values below 0.2 in the bivariate analysis were entered into multivariable logistic
regression model to compare women who were well prepared with those who were less prepared.

Results
Of all 350 women who were interviewed, mean age was 27.7 years. Characteristics are shown in Table 1.

All respondents had attended ANC at least once during this pregnancy; 131 women (37.4%) had completed the recommended four or more antenatal visits. Mean antenatal visits were 2.9 ± 0.9. Almost two out of three women (59.4%) had received education on the importance of knowing danger signs, knowing where to go in case of complications (73.1%) and where to give birth (76.3%), identifying transport (67.1%), identifying a skilled birth attendant (17.7%) and saving money (76.9%) (Table 2).

Regarding knowledge of key danger signs, vaginal bleeding was the most frequently mentioned complication by women during pregnancy (61.1%), labor/birth (73.1%) and postpartum (58%) (Table 3). Prolonged labor, which is one of the leading causes of maternal morbidity, was reported by only 13.7%. Most women knew at least one key danger sign during pregnancy (\(n = 296; 84.6\%\)), labor/birth (\(n = 271; 77.4\%\)) and postpartum (\(n = 288; 82.3\%\)). Only 23 women (6.6%) had knowledge of three or more key danger signs during the three periods.

In practice, 46 women (13.1%) had identified a skilled birth attendant, 68 (19.4%) a facility to give birth, and 76 (21.7%) a means of transportation. Most women (\(n = 306; 87.4\%\)) had saved money for hospital costs/birth materials

Table 1 Socio-demographic and obstetric characteristics

| Characteristics                  | Number (n) | Percent (%) |
|----------------------------------|------------|-------------|
| Age (Years) (Mean ± SD; 27.7 ± 6.0) |            |             |
| < 20                             | 35         | 10.0        |
| 21-29                            | 188        | 53.7        |
| > 30                             | 127        | 36.3        |
| Marital status                   |            |             |
| Married                          | 327        | 93.4        |
| Not currently married\(^a\)      | 23         | 6.6         |
| Residence (district)             |            |             |
| Musanze                          | 267        | 76.3        |
| Others\(^b\)                     | 83         | 23.7        |
| Education                        |            |             |
| None                             | 114        | 32.6        |
| Primary                          | 193        | 55.1        |
| Secondary and Above              | 43         | 12.3        |
| Occupation                       |            |             |
| Housewife                        | 195        | 55.7        |
| Own business/private employee    | 98         | 28.0        |
| Government/salaried employee     | 57         | 16.3        |
| Religion                         |            |             |
| Christianity                     | 318        | 90.9        |
| Islam                            | 32         | 9.1         |
| Parity (Mean ± SD; 2.6 ± 1.9)    |            |             |
| 1                                | 123        | 35.1        |
| 2–4                              | 176        | 50.3        |
| > 5                              | 51         | 14.6        |
| Prior stillbirth                 |            |             |
| No                               | 290        | 82.9        |
| Yes                              | 60         | 17.1        |
| Travel time to health facility   |            |             |
| < 1 h                            | 215        | 61.4        |
| ≥ 1 h                            | 135        | 38.6        |

\(^a\)Single, divorced and widowed  
\(^b\)Nyabihu/Rubavu/Burera/Gakeke

Table 2 Antenatal care uptake and advice given

| Characteristics                        | Number | Percent |
|----------------------------------------|--------|---------|
| Antenatal attendance (Mean ± SD; 2.9 ± 0.9) |        |         |
| ≥ 4                                    | 131    | 37.4    |
| 2–3                                    | 185    | 52.9    |
| 1                                      | 34     | 9.7     |
| Gestational age at first antenatal visit |        |         |
| 1st trimester                          | 267    | 76.3    |
| 2nd trimester                          | 60     | 17.1    |
| 3rd trimester                          | 23     | 6.6     |
| Personnel checked                      |        |         |
| Health professional                    | 147    | 41.7    |
| Community health workers               | 203    | 58.3    |
| Advice on danger signs during pregnancy, childbirth, or postpartum |        |         |
| Yes                                    | 208    | 59.4    |
| No                                     | 142    | 40.6    |
| Advise on where to go if danger signs happen |        |         |
| Yes                                    | 256    | 73.1    |
| No                                     | 94     | 26.9    |
| Advise on identifying health facility  |        |         |
| Yes                                    | 267    | 76.3    |
| No                                     | 83     | 23.7    |
| Advise on arrangement for transport    |        |         |
| Yes                                    | 235    | 67.1    |
| No                                     | 115    | 32.9    |
| Advise on saving money for delivery or emergency |        |         |
| Yes                                    | 269    | 76.9    |
| No                                     | 81     | 23.1    |
| Advise on identifying skilled birth attendant |        |         |
| Yes                                    | 62     | 17.7    |
| No                                     | 288    | 82.3    |
Table 3 Women’s awareness of obstetric danger signs during pregnancy, birth and postpartum

| Obstetric danger signs | Awareness | Labor/Childbirth | Postpartum |
|-----------------------|-----------|-----------------|-----------|
|                        | n   | %   | n   | %   | n   | %   |
| Vaginal bleeding       | 214 | 61.1| 256 | 73.1| 203 | 58.0|
| Fits of pregnancy      | 15  | 4.3 | 11  | 3.1 | 2   | 0.6 |
| Swelling of face/lower limbs | 52  | 14.9 |         | 98  | 28.0|
| High grade fever       | 20  | 5.7 | 13  | 3.7 | 18  | 5.1 |
| Loss of consciousness  | 41  | 11.7| 3   | 0.9 | 29  | 8.3 |
| Severe headache        | 39  | 11.1| 19  | 5.4 | 67  | 19.1|
| Dizziness/blurred vision| 31  | 8.9 |        | 22  | 6.3 |
| Severe abdominal pain   | 50  | 14.3|        | 46  | 13.1|
| Baby does not move     | 22  | 6.3 |        |      |      |
| Difficulty in breathing| 14  | 4.0 |        | 9   | 2.6 |
| Severe weakness        | 67  | 19.1|        | 41  | 11.7|
| Water breaks without a labor | 88  | 25.1|      |      |      |
| Prolonged labor        |      |     | 48  | 13.7|      |      |
| Retained placenta      |      |     | 125 | 35.7|      |      |
| Foul smelling vaginal discharge |      |     |      | 30  | 8.6 |
| Do not know any of the above | 54  | 15.4| 79  | 22.6| 62  | 17.7|

(Table 4). About one in five women (n = 78; 22.3%) were considered ‘well prepared’ in terms of BP/CR.

The adjusted multivariate model showed that significant predictors for being well prepared were first time pregnancy (adjusted odds ratio (aOR) = 3.2; 95% CI 1.2–5.8), knowledge of at least two danger signs during pregnancy (aOR = 2.8; 95% CI 1.7–3.9) and having seen a community health worker (aOR = 2.2, 95% CI 1.3–3.7) (Table 5).

Discussion
Our findings show that involving community health workers in antenatal care, as well as counseling on danger signs during pregnancy may be two effective strategies to promote birth preparedness. Although factors such as advanced maternal age, higher education, better antenatal care attendance and occupation of a woman or her partner were previously found to be associated with increased BP/CR in other studies [12, 15, 25], this was not the case in our population.

Similar to other settings, a high proportion of women reported to have received advice on BP/CR [13, 18, 19]. This may be explained by the wide availability of community health workers throughout Rwanda. Community health workers engage women and their families into formulating birth plans on a one-to-one basis prior to childbirth [26]. Still, a number of women do miss out on BP/CR advice, even if they attend antenatal care. Moreover, a considerable number of women had not followed the advice they were given, perhaps due to poor

Table 4 Birth preparedness among pregnant women

| Level of birth preparedness | Number | Percent |
|-----------------------------|--------|---------|
| Identified health facility   |        |         |
| Yes                         | 68     | 19.4    |
| No                          | 282    | 80.6    |
| Arranged for transport      |        |         |
| Yes                         | 76     | 21.7    |
| No                          | 274    | 78.3    |
| Saved money                 |        |         |
| Yes                         | 306    | 87.4    |
| No                          | 44     | 12.6    |
| Identified skilled birth attendant |    |         |
| Yes                         | 46     | 13.1    |
| No                          | 304    | 86.9    |
| Number of steps taken       |        |         |
| 0                           | 81     | 23.1    |
| 1                           | 129    | 36.9    |
| 2                           | 62     | 17.7    |
| 3                           | 66     | 18.9    |
| 4                           | 12     | 3.4     |
| At least 3 steps taken      | 78     | 22.3    |
understanding of what the components of BP/CR actually entail, or to poor delivery of the messages. This finding stresses the importance of improved training for health providers on how to better communicate BP/CR-related messages and the need to address additional barriers to the uptake of BP/CR.

There were marked differences with regard to how frequent various danger signs were mentioned. In line with previous reports by others, vaginal bleeding during pregnancy, childbirth and postpartum was the most commonly reported key danger sign [16, 18]. On the contrary, prolonged labor, which is another leading cause

Table 5 Characteristics of well-prepared women versus those less-prepared

| Characteristics                                | Birth preparedness | COR (95% CI) | \(^b\)aoR (95% CI) |
|------------------------------------------------|--------------------|--------------|-------------------|
| Age (Years)                                    |                    |              |                   |
| < 25                                           | 41 (52.6)          | 167 (61.4)   | 0.9 (0.4-2.0)     |
| ≥ 25                                          | 37 (47.4)          | 105 (38.6)   | 1.0               |
| Marital status                                 |                    |              |                   |
| Married                                       | 70 (89.7)          | 257 (94.5)   | 1.0               |
| Not currently married\(^c\)                    | 8 (10.3)           | 15 (5.5)     | 2.0 (0.8-4.8)     |
| Occupation                                     |                    |              |                   |
| Irregular income                               | 66 (84.6)          | 227 (83.5)   | 1.0               |
| Regular income                                 | 12 (15.4)          | 45 (16.5)    | 1.0 (0.4-1.9)     |
| Education                                      |                    |              |                   |
| None or Primary                                | 68 (87.2)          | 239 (87.9)   | 1.0               |
| Secondary and above                            | 10 (12.8)          | 33 (12.1)    | 1.3 (0.5-3.0)     |
| Parity                                         |                    |              |                   |
| 1                                             | 38 (48.7)          | 85 (31.3)    | 2.5 (1.4-4.3)     |
| 2-4                                           | 27 (34.6)          | 149 (54.8)   | 1.0               |
| ≥ 5                                           | 13 (16.7)          | 38 (13.9)    | 1.9 (0.9-4.0)     |
| Prior stillbirth                               |                    |              |                   |
| No                                            | 64 (82.1)          | 226 (83.1)   | 1.0               |
| Yes                                           | 14 (17.9)          | 46 (16.9)    | 1.1 (0.5-2.0)     |
| Antenatal attendance                           |                    |              |                   |
| < 4 times                                      | 3 (3.8)            | 216 (79.4)   | 1.0               |
| ≥ 4 times                                      | 75 (96.2)          | 56 (20.6)    | 1.9 (1.7-2.4)     |
| Personnel checked during ANC                   |                    |              |                   |
| Health professional                            | 22 (28.2)          | 125 (46.0)   | 1.0               |
| Community health worker                        | 56 (71.8)          | 147 (54.0)   | 1.4 (1.2-1.9)     |
| Knowledge of at least 2 danger signs during pregnancy |            |              |                   |
| Yes                                           | 41 (52.6)          | 70 (25.7)    | 3.1 (2.2-4.6)     |
| No                                            | 37 (47.4)          | 202 (74.3)   | 1.0               |
| Knowledge of at least 2 danger signs during childbirth |            |              |                   |
| Yes                                           | 31 (39.7)          | 27 (9.9)     | 2.3 (1.1-4.6)     |
| No                                            | 47 (60.3)          | 245 (80.1)   | 1.0               |
| Knowledge of at least 2 danger signs during postpartum |            |              |                   |
| Yes                                           | 16 (20.5)          | 38 (14.0)    | 1.5 (0.8-2.8)     |
| No                                            | 62 (79.5)          | 234 (86.0)   | 1.0               |

CI confidence interval, OR odds ratio
\(^a\)Any 3 of 4 steps: identified a skilled birth attendant, identified a health facility, arranged for transport and saved money for emergency
\(^b\)Adjusted for all the independent variables indicated in the table
\(^c\)Single, divorced and widowed
of maternal deaths in Rwanda [22, 23] was mentioned by only few women in this study.

Our findings indicated low levels of knowledge of danger signs and birth preparedness respectively, lower than in other low-income countries [14, 18]. This may be due to our facility-based rather than community-based study setting. In addition, we applied the criterion of three out of four BP/CR components for being ‘well prepared’, where another study applied three out of five [14]. Nevertheless, the underlying principles and methods used to study BP/CR are the same.

Nulliparous women were better prepared than multiparous women, perhaps due to the misconception that after the first pregnancy BP/CR may not be required anymore. This is an indication that the frequency or quality of BP/CR messages given to multiparous women may be reduced, although these should clearly aim to also target multiparous women.

Women who knew at least two key danger signs were found more likely to be well prepared, which is similar to previous studies [12, 16, 18]. This illustrates that knowing danger signs may be an essential step towards behavioral change. This opens up possibilities for a number of potential interventions, such as the need for community-based health promotion programs and health promotion efforts at the facility in all stages of a woman’s reproductive life [27]. In addition, BP/CR requires that health services are equipped to meet the increased demand for care [28, 29].

Women who had seen community health workers had better outcomes with regard to BP/CR [26, 30]. This may be explained by the high level of community recognition for community health workers in Rwanda [26]. Therefore, in general, and particularly in settings where other health workers are scarce, community health workers should receive appropriate recognition and support [26, 31, 32].

The strength of this study is that the interview took place shortly after birth, minimizing recall bias. The fact that these women were referred for complications makes for a selected study population and it is difficult to infer our results to the general pregnant population. Moreover, some women may recall or provide information about BP/CR selectively, depending on their experience during birth or pregnancy outcome.

Nevertheless, we believe our study provides relevant information on possible opportunities to improve BP/CR. The fact that Rwanda is a densely-populated country with relatively widespread availability of health facilities (most women live less than an hour’s travel away from a facility), combined with increasing government investment in community-based health programs, performance-based financing, innovative community health insurance and SMS-based alert systems are all reasons why better implementation of BP/CR has the potential to lead to considerable improvements in pregnancy outcome in Rwanda [21, 33, 34].

Conclusions
This study revealed low levels of knowledge of obstetric danger signs and low levels of birth preparedness among women referred to a Rwandan hospital. Prenatal advice by community health workers and knowledge of danger signs during pregnancy are associated with being better prepared for birth. Investments in health promotion with regard to BP/CR, at all stages of a woman’s reproductive life, and with support from community health workers are much needed. We recommend a review of the quality and methods of antenatal care education, including an evaluation of how multiparous women are also to benefit from such education, in order to improve the effectiveness of BP/CR.

Additional file
Additional file 1: Consent form and questionnaire. Consent form as used in the study and questionnaire adapted from the ‘Safe Motherhood questionnaire’, as developed by the Maternal Neonatal Program of JHPIEGO, an affiliate of John Hopkins University. (DOCX 63 kb)

Abbreviations
aOR: Adjusted odds ratio; BP: Birth Preparedness; CR: Complication Readiness; OR: Odds ratio

Acknowledgements
We are grateful to the administration and staff of Ruhengeri hospital. We thank Desire Dusegimana, in particular, for support with data collection.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
RK designed the study and wrote the protocol. PS, RK collected data. RK worked on the data analysis, assisted by JvR and TvdA. PS and RK drafted the manuscript. MvE, JvR and TvdA critically revised the draft manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The Rwanda National Ethical Committee granted ethical clearance for the study (reference identification: N°582/RNEC/2013). Interviewers explained to the participants the contents of a written consent form, including their right to withdraw from participating at any point during data collection. All participants provided written informed consent to participate. All interviews were conducted in private and every precaution was taken to ensure confidentiality.

Competing interests
Two of the authors are members of the editorial board of the journal: JvR is a section editor and TvdA an associate editor.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Medical Humanities, VU University Medical Center, Amsterdam, the Netherlands. 2Department of Obstetrics and Gynecology,
Ruhengeri Hospital, Musanze, Rwanda.  
3Athena Institute, VU University Medical Center, Amsterdam, the Netherlands.  
4Department of Obstetrics, Leiden University Medical Center, Leiden, the Netherlands.

Received: 8 June 2017  Accepted: 2 May 2018  
Published online: 30 May 2018

References

1. Alemna L, Chou D, Hogan D, et al. United Nations Maternal Mortality Estimation Inter-Agency Group collaborators and technical advisory group. Global, regional, and national levels and trends in maternal mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Maternal Mortality Estimation Inter-Agency Group. Lancet. 2016;387:462–74.

2. Sullivan TR, Hirst JE. Reducing maternal mortality: a review of progress and evidence-based strategies to achieve millennium development goal 5. Health Care Women Int. 2013;32:901–16.

3. Lozano R, Wang H, Foreman KJ, et al. Progress towards millennium development goals 4 and 5 on maternal and child mortality: an updated systematic analysis. Lancet. 2013;378:1193–65.

4. Haile M, Gebremariam A, Almessegaf E, et al. Birth preparedness and complication readiness among pregnant women in southern Ethiopia. PLoS One. 2011;6:e21432.

5. JHPIEGO/Maternal and Neonatal Health Program. Birth Preparedness and Complication Readiness: A Matrix of Shared Responsibility. Baltimore: Jhpiego Maternal and Neonatal Health Program; 2001. http://www.commonhealthin/neonatal-pdf/145.pdf.

6. McPherson RA, Khadka N, Moore JM, et al. Are birth-preparedness programmes effective? Results from a field trial in Siraha district, Nepal. Journal of Health Population and Nutrition. 2006;24:479–88.

7. Stanton CK. Methodological issues in the measurement of birth preparedness in support of safe motherhood. Eval Rev. 2004;28:179–200.

8. Hladik W, Katahaa P, MemmJ J, et al. Prevalence and screening costs of hepatitis C virus among Ugandan blood donors. Tropical Med Int Health. 2006;11:951–4.

9. Soubeiga D, Gauvin L, Hatem MA, et al. Birth preparedness and complication intervention readiness to reduce maternal and neonatal mortality in developing countries: systematic review and meta-analysis. BMC Pregnancy Childbirth. 2014;14:129.

10. Manandhar DS, Osrin D, Shrestha BP, et al. Members of the MIRA Makwanpur trial team. Effect of a participatory intervention with women’s groups on birth outcomes in Nepal: cluster-randomised controlled trial. Lancet. 2004;364:970–9.

11. Belda SS, Gebremariam M. Birth preparedness, complication readiness and other determinants of place of delivery among mothers in Goba District, bale zone, south East Ethiopia. BMC Pregnancy Childbirth. 2016;16:73.

12. Agarwal S, Sethi V, Srivastava K, et al. Birth preparedness and complication readiness among slum women in Indore City, India. J Health Popul Nutr. 2010;28:383–91.

13. Urassa DP, Pembe AB, Mqanga F. Birth preparedness and complication readiness among women in Mpwapwa district, Tanzania. Tanzania J Health Res. 2013;14:2–7.

14. Gebre M, Gebremariam A, Abebe TA. Birth preparedness and complication readiness among pregnant women in Duguna Fango District, Wolayta Zone, Ethiopia. PLoS One. 2015;10:e013750.

15. Kasi M, Addisse M. Birth preparedness and complication readiness in robe Woreda, Arsi zone, Oromia region, Central Ethiopia: a cross-sectional study. Reprod Health. 2014;11:55.

16. Binataba D, Mohamed M, Mghamba J, et al. Birth preparedness and complication readiness among recently delivered women in chamwino district, central Tanzania: a cross sectional study. Reprod Health. 2015;12:44.

17. Mushii D, Mpembeni R, Jahn A. Effectiveness of community based safe motherhood promotors in improving the utilization of obstetric care. The case of Mtwarara Rural District in Tanzania. BMC Pregnancy Childbirth. 2010;10:1.

18. Kabakyenga JK, Östergren PO, Turyakira E, et al. Knowledge of obstetric danger signs and birth preparedness practices among women in rural Uganda. Reprod Health. 2011;18:33.

19. Moran AC, Sangi G, Dineed R, et al. Birth preparedness for maternal health: findings from Koupela district, Burquina Faso. J Health Pop Nutr. 2006;24:489–97.

20. Rwandan Ministry of Health: National Reproductive Health Policy. Kigali, Rwanda; 2003.

21. Ngafo B, Banamwana R, Nyirasafari D, et al. Every death counts: use of maternal death audit data for decision making to save the lives of mothers in Rwanda. Pan Africa Medical Journal. 2012;13:31.

22. National Institute of Statistics of Rwanda. Demographic and health survey 2005–2006. Available at https://dhsprogram.com/pubs/pdf/FR183/FR183.pdf.

23. National Institute of Statistics of Rwanda. Rwanda demographic and health survey 2014–15. Calverton: ICF International; 2014.

24. National Institute of Statistics of Rwanda. Rwanda fourth population and housing census. Thematic report: characteristics of households and housing. Kigali, Rwanda. 2012.

25. Kawika O, Kaye D, Osinde MO. Male involvement in birth preparedness and complication readiness for emergency obstetric referrals in rural Uganda. Reprod Health. 2011;18:12.

26. Condo J, Mugeni C, Naughton B, et al. Rwanda’s evolving community health worker system: a qualitative assessment of client and provider perspectives. Hum Resour Health. 2014;12:71.

27. Edmonds JK, Paul M, Sibley L. Determinants of place of birth decisions in uncomplicated childbirth in Bangladesh: an empirical study. Midwifery. 2012;28:55–60.

28. Solnes Miltenburg A, Roggeveen Y, van Elteren M, et al. A protocol for a systematic review of birth preparedness and complication readiness programs. Syst Rev. 2013;2:11.

29. Solnes Miltenburg A, Roggeveen Y, Shields L, et al. Impact of birth preparedness and complication readiness interventions on birth with a skilled attendant: a systematic review. PLoS One. 2015;10(1):e0143392.

30. August F, Pembe AB, Mpembeni R, et al. Community health workers can improve male involvement in maternal health: evidence from rural Tanzania. Glob Health Action. 2016;9:30064.

31. Haver J, Brieuer W, Zoungrana J, et al. Experiences engaging community health workers to provide maternal and newborn health services: implementation of four programs. Int J Gynecol Obstet. 2015;130:S32–9.

32. Lassi ZS, Bhutta Z. Community-based intervention packages for reducing maternal and neonatal morbidity and mortality and improving neonatal outcomes. Cochrane Database Syst Rev. 2015;11:CD007754.

33. Rusila L, Ngrabeke J, Janssen W, et al. Performance-based financing for better quality of services in Rwandan health centres: 3-year experience. Tropical Med Int Health. 2009;14:830–7.

34. Binagwaho A, Kyamanywa P, Farmer PE, et al. The human resources for health program in Rwanda—a new partnership. N Engl J Med. 2013;369:2054–9.