A partition of connected graphs

Gus Wiseman

Abstract

We define an algorithm k which takes a connected graph G on a totally ordered vertex set and returns an increasing tree R (which is not necessarily a subtree of G). We characterize the set of graphs G such that $k(G) = R$. Because this set has a simple structure (it is isomorphic to a product of non-empty power sets), it is easy to evaluate certain graph invariants in terms of increasing trees. In particular, we prove that, up to sign, the coefficient of x^q in the chromatic polynomial $\chi_G(x)$ is the number of increasing forests with q components that satisfy a condition that we call G-connectedness. We also find a bijection between increasing G-connected trees and broken circuit free subtrees of G.

We will work with finite labeled simple graphs. Usually we will identify a graph G with its edge set; this should not cause any serious ambiguities. If the vertex set is V then we say that G is a graph on V. A (spanning) subgraph Q of G is a graph with the same vertex set as G and a subset of the edges of G. The notation $Q \subseteq G$ means Q is a subgraph of G. A rooted graph is a graph with a distinguished vertex called the root.

Define $\text{link}(v, S)$ to be the set of all possible edges joining v to an element of S (so if $v \notin S$, $\text{link}(v, S)$ has $|S|$ elements). If G is a graph on V and $S \subseteq V$, we define the restriction of G to S, $G|_S$, to be the graph on S whose edge set consists of all edges of G with both ends in S.

We will use the symbols π and σ to denote set partitions. The notation $\pi \vdash S$ means π is a set partition of the set S. The length (number of blocks) of π is denoted by $\ell(\pi)$. A set partition σ is called a refinement of a set partition π if every block of σ is contained in some block of π.

To each graph G on V there corresponds a set partition $s(G)$ such that two vertices $v, w \in V$ are in the same block of $s(G)$ if and only if there is a path in G from v to w. Equivalently, $s(G)$ is the maximal set partition of V whose blocks are connected. The restriction of G to a block of $s(G)$ is called a component of G.

If G is a rooted connected graph on V with root r, we will call the set partition $\pi = s(G|_{V - \{r\}})$ of $V - \{r\}$ the depth-first partition of G. To obtain a connected subgraph of a rooted connected graph G on V, we can choose, for each block π_i of π, a connected
A subgraph of $G|_{\pi}$, and a nonempty set of edges (in G) connecting r to π_i. In fact, every connected subgraph of G can be obtained in this way. Our Theorem 1 may be regarded as an iteration of this correspondence. The depth-first partition and this correspondence have been studied by Gessel [3].

A forest is a graph with no circuits. A tree is a connected forest. A basic property of trees is that there is a unique path (a sequence of distinct, adjacent vertices) between any two vertices. The distance between two vertices is defined to be the length of this path. In a rooted tree, the height of a vertex is defined to be its distance from the root. A vertex w is called a descendant of a vertex v (or v is called an ancestor of w) if the heights of the vertices on the unique path from v to w are increasing (so in particular v is always a descendant of itself). We define the join of v and w to be their unique common ancestor on the unique path between them.

Let R be a rooted tree on the vertex set V, and let $v \in V$. We define $\text{des}(v, R) \subseteq V$ to be the set of descendants of v (including v). If v is not the root of R, we define $\text{parent}(v, R) \in V$ to be the closest vertex to v in R which is not a descendant of v. A rooted tree is increasing (according to a total order on V) if for each $v \in V$ and $w \in \text{des}(v, R)$ we have $v \preceq w$. Consequently, the root of an increasing tree must be the smallest element of V.

Definition 1 Let R be a rooted tree on the totally ordered vertex set V with root r, and let $v \in V - \{r\}$. Define $J(v, R) = \text{link}(\text{parent}(v, R), \text{des}(v, R))$. If G is a graph on V and if for each $v \in V - \{r\}$ we have $J(v, R) \cap G \neq \emptyset$ then we say that R is G-connected.

Note that the sets $J(v, R)$ (as v ranges over $V - \{r\}$) are disjoint. Also note that a G-connected tree need not be a subgraph of G and that G must be connected for any rooted tree to be G-connected.

Definition 2 For each connected graph G on a totally ordered vertex set V, define an increasing G-connected tree $k(G)$ by the following algorithm:

1. Let H be an empty graph on V, and set $S = V$.
2. Let π be the depth-first partition of $G|_{S}$ rooted at r=the smallest vertex in S. Add edges to H connecting r to the smallest vertex in each block of π.

3. For each block π_i of π with more than one element, return to step 2 with $S = \pi_i$.
4. Return $k(G) = H$.

Example 1 The 6 increasing trees on $V = \{1, 2, 3, 4\}$ are listed vertically. To the right of each increasing tree R are listed the subtrees T of the complete graph on V such that $k(T) = R$ (we have omitted the 22 connected subgraphs which are not trees). The breaks are indicated by dotted lines (see Theorem 3).
There is a different algorithm, called depth-first search, which produces subforests of G. Some enumerative applications of this algorithm have been studied by Gessel and Sagan [4]. A distinguishing difference between depth-first search and our algorithm is that depth-first search only follows the edges of G, whereas here we add edges connecting to the smallest vertex in each block of π regardless of whether these are edges of G. The algorithms are related in that if G is a connected graph and R is a depth-first search subtree of G then parts 2 and 3 of the next theorem hold (although the converse is not true).

Theorem 1 Let G be a connected graph on a totally ordered vertex set V, and let R be an increasing G-connected tree on V. Then the following are equivalent:

1. $k(G) = R$

2. For each vertex $v \in V$, $G|_{\text{des}(v,R)}$ rooted at v is connected and has the same depth-first partition as $R|_{\text{des}(v,R)}$ rooted at v.

3. For each non-root vertex $v \in V - \{r\}$ there is a nonempty set $E(v) \subseteq J(v,R)$ such that $G = \bigcup_{v \in V - \{r\}} E(v)$.

Proof. 1 \Leftrightarrow 2 This follows easily from Definition 2.

2 \Rightarrow 3 Let $E(v) = J(v, R) \cap G$. We need to show that every edge of G lies in some $E(v)$. Let $e \in G$ and let $v < w$ be the vertices of e. We will show that w is a descendant of v. Suppose this is false, and let u be their join. Then $e \in G|_{\text{des}(u, R)}$, so v and w are in the same block of the depth first partition of $G|_{\text{des}(u, R)}$. This is a contradiction because they are in different blocks of the depth first partition of $R|_{\text{des}(u, R)}$. Now, since w is a descendant of v, there is a unique vertex $z \in V$ (possibly equal to w) such that $\text{parent}(z) = v$ and $w \in \text{des}(z)$. Hence $e \in J(z, R) \cap G$.

3 \Rightarrow 2 This is certainly true if v (in part 2) is a leaf of R (its only descendant is itself).

Let $v \in V$ and suppose it is true for all $w \in \text{des}(v, R) - f \text{r} g$. Let $v \in V$ be a leaf of R because every edge of $J_G(w, R)$ (for any $w \in V$) connects a vertex to one of its descendants. This contradicts the fact that they are in different blocks of the depth-first partition of $R|_{\text{des}(v, R)}$. □

Remark 1 Actually the condition in Theorem 1 that R be G-connected is not necessary because if R is not G-connected then parts 1, 2 and 3 will be false.

Some algebraic invariants of graphs can be simply expressed in terms of connected subgraphs. We can use the algorithm k to express such invariants in terms increasing trees. Moreover, Theorem 1 shows that the set $k^{-1}(R)$ has a simple structure, as illustrated by the next theorem.

Definition 3 Let G be a connected graph on V. Define

$$\eta^G(t) = \sum_{Q \subseteq G \text{ connected}} t^{|Q|}$$

where $|Q|$ denotes the number of edges in Q.

Theorem 2

$$\eta^G(t) = \sum_{\substack{R \text{ increasing} \\ G-\text{connected}}} \prod_{v \in V - \{r\}} [(1 + t)^{|J(v, R) \cap G|} - 1]$$

Proof. We have

$$\eta^G(t) = \sum_{\substack{R \text{ increasing} \\ G-\text{connected}}} \sum_{Q \subseteq G} t^{|Q|}$$
Now, the generating function for the cardinality of nonempty subsets of a set S is

$$f_S(x) = \sum_{\emptyset \neq T \subseteq S} x^{|T|} = (1 + x)^{|S|} - 1$$

Hence from Theorem 1 part 3,

$$\sum_{Q \subseteq G} t^{Q|} = \sum_{Q = \bigcup_{v \in V-R} E(v) \atop \emptyset \neq E(v) \subseteq J(v,R) \cap G} t^{Q|} = \prod_{v \in V-R} f_{J(v,R) \cap G}(t)$$

from which the result follows. □

The chromatic polynomial $\chi_G(x)$ of a graph G is a polynomial which evaluates to the number of proper colorings of G with x colors. The subgraph expansion of $\chi_G(x)$ is

$$\chi_G(x) = \sum_{Q \subseteq G} (-1)^{|Q|} x^{c(Q)}$$

where $c(Q)$ is the number of components of Q. See [1] for background on the chromatic polynomial.

We define an increasing G-connected forest R to be a forest where each component $R|_{s(R)}$ is an increasing $G|_{s(R)}$-connected tree. For a graph G, let $t(G)$ be the (integer) partition whose parts are the sizes of the blocks of $s(G)$. For background on the chromatic symmetric function $X_G = X_G(x_1, x_2, \ldots)$ of a graph G, see [5] and [6]. For background on the chromatic symmetric function in non-commuting variables $Y_G = Y_G(x_1, x_2, \ldots)$, see [2].

Corollary 1 Let G be a graph on a totally ordered vertex set V with $|V| = n$.

1. The coefficient of $(-1)^{n-1}x$ in the chromatic polynomial $\chi_G(x)$ is the number of increasing G-connected trees.

2. The coefficient of $(-1)^{n-q}x^q$ in the chromatic polynomial $\chi_G(x)$ is the number of increasing G-connected forests with q components (or, equivalently, with $n-q$ edges).

3. The coefficient of $(-1)^{n-t(\lambda)} p_{\lambda}$ in the chromatic symmetric function X_G is the number of increasing G-connected forests R such that $t(R) = \lambda$.

4. The coefficient of $(-1)^{n-\ell(\pi)} p_{\pi}$ in the chromatic symmetric function in non-commuting variables Y_G is the number of increasing G-connected forests R such that $s(R) = \pi$.

Proof. 1. Let a^G be the coefficient of x in $\chi_G(x)$. From the subgraph expansion we have

$$a^G = \sum_{Q \subseteq G \text{ connected}} (-1)^{|Q|} = \eta^G(-1) = \sum_{R \text{ increasing } G\text{-connected}} \prod_{v \in V-R} (-1)$$

where $\eta^G(-1)$ is the number of increasing G-connected forests R such that $s(R) = \pi$. See [2].
We don’t need to worry about 0^0 because the G-connectedness of R implies that $J(v, R) \cap G$ is never empty.

4. We will prove part 4, the others being simple specializations. Let H^G_{π} be the number of increasing G-connected forests R such that $s(R) = \pi$, and let H^G be the number of increasing G-connected trees. Then using part 1 we have

$$H^G_{\pi} = \prod_{i=1}^{\ell(\pi)} H^G|_{s_i} = (-1)^{n-\ell(\pi)} \prod_{i=1}^{\ell(\pi)} \sum_{Q \subseteq G|_{s_i}} (-1)^{|Q|}$$

(1)

The subgraph expansion of Y_G is

$$Y_G = \sum_{Q \subseteq G} (-1)^{|Q|} p_s(Q)$$

Hence

$$Y_G = \sum_{\pi \vdash V} p_{\pi} \sum_{Q \subseteq G \ s(Q) = \pi} (-1)^{|Q|} = \sum_{\pi \vdash V} p_{\pi} \prod_{i=1}^{\ell(\pi)} \sum_{Q \subseteq G|_{s_i}} (-1)^{|Q|}$$

Substituting (1), we obtain the desired result. □

If G is a graph on a totally ordered vertex set V, we extend the ordering of the vertices to an ordering of the edges lexicographically. A broken circuit of $H \subseteq G$ is a set of edges $B \subseteq H$ such that there is some edge $e \in G$, smaller than every edge of B, such that $B \cup e$ is a circuit. Note that B being a broken circuit of H depends both on H and G. If $H \subseteq G$ contains no broken circuits then it is called broken circuit free. Note that if H contains a circuit then it also contains a broken circuit. Consequently, a broken circuit free subgraph is always a forest. If $T \subseteq G$ is a subtree of G and the edge $e \in G$, $e \notin T$ is the smallest edge in the unique circuit in $T \cup \{e\}$ then we will call e a break in T. Hence the set of breaks in a subtree T is in bijection with the set of broken circuits of T.

Whitney’s Broken Circuit Theorem [7] shows that if G is a connected graph with n vertices, the coefficient of $(-1)^{n-1}x$ in $\chi_G(x)$ is the number of broken circuit free subtrees of G. Hence there should be a bijection between broken circuit free subtrees and increasing G-connected trees.

Theorem 3 Let V be a totally ordered vertex set with smallest element r, and let G be a connected graph on V. Let $T \subseteq G$ be a subtree of G, and let $R = k(T)$. Let $E(v)$ for $v \in V - \{r\}$ be as in Theorem 1 part 3. Then $E(v)$ contains only one element $e(v)$ (otherwise T would have more than $|V|-1$ edges so it could not be a tree). For $v \in V - \{r\}$, let $d(v)$ be the set of elements of $J(v, R) \cap G$ which are smaller than $e(v)$. Then the set of breaks in T is

$$\bigcup_{v \in V - \{r\}} d(v)$$
Proof. Let \(J = \bigcup_{v \in V - \{v\}} J(v, R) \cap G \). Since \(k(G) \) may be different from \(R \), \(J \) may be different from \(G \). We will first show that if \(e \in G \) but \(e \notin J \) then \(e \) is not a break. Let \(v < w \in V \) be the vertices of \(e \). Then \(w \) is not a descendant of \(v \) because otherwise we would have \(e \in J \). Let \(u \in V \) be the join of \(v \) and \(w \) in \(R \). Then Theorem 1 part 2 implies that \(u \) is also the join of \(v \) and \(w \) in \(T|_{\text{des}(v)} \) (rooted at \(u \)). Therefore, the cycle created by adding \(e \) to \(T \) contains an edge connected to \(u \). Since \(u < v < w \), \(e \) cannot be a break.

Now suppose \(e \notin J(v, R) \cap G \) is smaller than \(e(v) \). We will show that \(e \) is a break. Let \(H = T|_{\text{des}(v)} \cap \text{parent}(v) \). Then \(\text{parent}(v) \) is the smallest vertex in the vertex set of \(H \). Therefore, \(e \) is smaller than any other edge in \(H \). Since \(H \) is a tree, adding \(e \) would create a unique circuit in \(H \). Hence \(e \) is a break.

Now suppose \(e \in J(v, R) \cap G \) is larger than \(e(v) \). Then, letting \(H \) be as before, we see that \(e(v) \) must belong to the circuit which \(e \) creates. But \(e(v) \) is smaller than \(e \), so \(e \) cannot be a break. \(\square \)

Corollary 2 The function

\[
f(R) = \bigcup_{v \in V - \{v\}} \min(J(v, R) \cap G)
\]

is a bijection between increasing \(G \)-connected trees and broken circuit free subtrees, and \(f^{-1}(T) = k(T) \).

Of course, this bijection generalizes to a bijection between increasing \(G \)-connected forests with \(q \) components and broken circuit free subforests of \(G \) with \(q \) components.

References

[1] Norman Biggs. *Algebraic graph theory*. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 1993.

[2] David D. Gebhard and Bruce E. Sagan. A chromatic symmetric function in noncommuting variables. *J. Algebraic Combin.*, 13(3):227–255, 2001.

[3] Ira M. Gessel. Enumerative applications of a decomposition for graphs and digraphs. *Discrete Math.*, 139(1-3):257–271, 1995. Formal power series and algebraic combinatorics (Montreal, PQ, 1992).

[4] Ira M. Gessel and Bruce E. Sagan. The Tutte polynomial of a graph, depth-first search, and simplicial complex partitions. *Electron. J. Combin.*, 3(2):Research Paper 9, approx. 36 pp. (electronic), 1996. The Foata Festschrift.

[5] Richard P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. *Adv. Math.*, 111(1):166–194, 1995.
[6] Richard P. Stanley. Graph colorings and related symmetric functions: ideas and applications: a description of results, interesting applications, & notable open problems. *Discrete Math.*, 193(1-3):267–286, 1998. Selected papers in honor of Adriano Garsia (Taormina, 1994).

[7] Hassler Whitney. A logical expansion in mathematics. *Bull. Amer. Math. Soc.*, 38:572–579, 1932.