Estimating mortality burden attributable to short-term PM$_{2.5}$ exposure: A national observational study in China

Tiantian Lia,1, Yuming Guob,1, Yang Liuc,1, Jiaonan Wanga, Qing Wanga, Zhiying Suna, Mike Z. Hed, Xiaoming Shia,*

aNational Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China

bDepartment of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia

cDepartment of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA

dDepartment of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA

Abstract

Studies worldwide have estimated the number of deaths attributable to long-term exposure to fine airborne particles (PM$_{2.5}$), but limited information is available on short-term exposure, particularly in China. In addition, most existing studies have assumed that short-term PM$_{2.5}$-mortality associations were linear. For this reason, the use of linear exposure-response functions for calculating disease burden of short-term exposure to PM$_{2.5}$ in China may not be appropriate. There is an urgent need for a comprehensive, evidence-based assessment of the disease burden related to short-term PM$_{2.5}$ exposure in China. Here, we explored the non-linear association between short-term PM$_{2.5}$ exposure and all-cause mortality in 104 counties in China; estimated county-specific mortality burdens attributable to short-term PM$_{2.5}$ exposure for all counties in the country and analyzed spatial characteristics of the mortality burden due to short-term PM$_{2.5}$ exposure in China. The pooled PM$_{2.5}$-mortality association was non-linear, with a reversed J-shape. We found an approximately linear increased risk of mortality from 0 to 62 μg/m3 and decreased risk from 62 to 250 μg/m3. We estimated a total of 169,862 additional deaths from short-term PM$_{2.5}$ exposure throughout China in 2015. Models using linear exposure-response functions for the PM$_{2.5}$-mortality association estimated 32,186 deaths attributable to PM$_{2.5}$ exposure, which is 5.3 times lower than estimates from the non-linear effect model. Short-term PM$_{2.5}$ exposure contributed greatly to the death burden in China, approximately one seventh of the estimates from the chronic effect. It is essential and crucial to incorporate short-term PM$_{2.5}$-related mortality estimations when considering the disease burden attributable to PM$_{2.5}$ in developing countries.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

*Corresponding author at: National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 7, Panjiayuan Nanli, Chaoyang District, Beijing 10021, China. shixm@chinacdc.cn (X. Shi).

Tiantian Li, Yuming Guo and Yang Liu are co-first authors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2019.01.073.
such as China. Traditional linear effect models likely underestimated the mortality burden due to short-term exposure to PM$_{2.5}$.

Keywords

PM$_{2.5}$; Short-term; Mortality burden; Non-linear

1. Introduction

Fine particulate matter (particles ≤2.5 μm in aerodynamic diameter; PM$_{2.5}$) has been a major public health concern in China over the past few decades, ranking fifth among risk factors for disease burden in China in 2010 (Forouzanfar et al., 2016). According to the most recent Global Burden of Disease (GBD) study, exposure to ambient PM$_{2.5}$ caused 4.2 million deaths globally in 2015 (Cohen et al., 2017). China leads the world in disease burden attributable to PM$_{2.5}$, which accounted for more than one-quarter of total PM$_{2.5}$-attributable deaths in the world in 2015 (Cohen et al., 2017). Many studies performed using the GBD methodology have confirmed that over one million deaths are attributable to PM$_{2.5}$ exposure in China (Wang et al., 2018; Lelieveld et al., 2015; Lim et al., 2012; J. Liu et al., 2016; M. Liu et al., 2016). Notably, all of these results from previous studies have focused on the estimations of deaths attributable to the chronic effects of PM$_{2.5}$.

Many studies have shown that short-term exposure to PM$_{2.5}$ is related to increased risks of mortality (Atkinson et al., 2014; Chen et al., 2018; Chen et al., 2017). Thus, the mortality burden due to short-term exposure to PM$_{2.5}$ may also be serious in China because of the combined impact of the high magnitude of PM$_{2.5}$ exposure and the large population. A quantitative estimate of the disease burden related to short-term PM$_{2.5}$ exposure is urgently needed in China to develop better emission control, disease control, and health policies.

Although a large number of air pollution epidemiologic studies have shown that short-term exposure to PM$_{2.5}$ is associated with mortality, the assumption for the exposure-response relationship is critical for calculating the burden of disease. Generally, a linear exposure-response function is used to calculate the burden of disease due to short-term PM$_{2.5}$ exposure (Atkinson et al., 2014). However, recently, little evidence has suggested that the association between short-term PM$_{2.5}$ exposure and mortality is non-linear in China (Chen et al., 2017; Chen et al., 2011), which has not been found in previous studies in developed countries with low exposure levels (Daniels et al., 2000; Schwartz and Zanobetti, 2000; Schwartz et al., 2002). As such, the use of linear exposure-response functions for calculating disease burden of short-term exposure to PM$_{2.5}$ in China may not be appropriate.

To address the limitations listed above, this study investigated the national level mortality burden attributable to short-term exposure of PM$_{2.5}$ in China. Our objectives are as follows: (1) to explore the nonlinear association between short-term PM$_{2.5}$ exposure and all-cause mortality in 104 counties in China; (2) to estimate county-specific mortality burdens attributable to short-term PM$_{2.5}$ exposure for all counties in the country; and (3) to analyze spatial characteristics of the mortality burden due to short-term PM$_{2.5}$ exposure in China.
2. **Methods**

2.1. **Data**

We collected daily county level (a key unit for administration and policy making in China) mortality, PM$_{2.5}$ and meteorological data from 2013 to 2015 in 104 counties in China from SHEAP dataset (SHEAP data is from the project of short-term health effect of air pollution in China). The locations of the counties are shown in Fig. 1. Daily county-specific all-cause mortality data were collected from the Chinese Center for Disease Control and Prevention. Daily county-specific mean temperature and relative humidity were collected from the China Meteorological Data Sharing Service System. Daily county-specific PM$_{2.5}$ data were estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 level 2 aerosol optical depth (AOD) at 10 km resolution. We used multiple imputation to fill in missing satellite data and then divided the study domain into seven clusters to control for unobserved spatial heterogeneity. We trained a cluster-based random forest model with daily convolution layer of PM$_{2.5}$ constructed from ground PM$_{2.5}$ measurements as an input to account for the spatial autocorrelation of PM$_{2.5}$. The centroid of each 10 km grid was spatially joined with the selected 104 counties. An unweighted average of PM$_{2.5}$ concentrations was calculated when a county contained more than one PM$_{2.5}$ grid. If no PM$_{2.5}$ grids fell within the county, then the closest grid was assigned as the PM$_{2.5}$ concentration for that county.

Fig. S1 shows the workflow of PM2.5 modeling. First, we filled missing satellite data by multiple imputation including the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) from Aqua and Terra satellites, the MODIS cloud fraction (Platnick et al., 2003), the Community Multi-scale Air Quality (CMAQ) AOD simulations (Appel et al., 2012), and elevation data (Xiao et al., 2017). After gap-filling, the coverage of satellite retrieval increased to 100% in space and time. Second, the modeling domain was divided into seven clusters using geographically weighted regression (GWR), the K-means algorithm, and GIS methods. Dividing a large modeling domain into sub-regions controlled unobserved spatial heterogeneity and improved model performance. This cluster pattern was stable in time. Random forest models were trained in each region separately. Finally, we used the fitted random forest models to estimate daily PM$_{2.5}$ concentrations at grid cells without monitor. To evaluate model performance, the ten-fold cross validation results are shown in Fig. S2. The random forest model predictions were closely consistent with ground measurements, with R2 larger than 0.90 and slope close to 1.0.

To estimate the additional deaths attributable to PM$_{2.5}$ in China in 2015, we also extracted county-specific population and total mortality rate data for all of the counties in China from the sixth nationwide population census (National Bureau of Statistics of China, 2015). The county-specific daily PM$_{2.5}$ of all 2851 counties in China in 2015 was also modeled using the method mentioned above.
2.2. Statistical analysis

2.2.1. Non-linear effect model—A three-stage analysis was performed in this study. In the first stage, we estimated the county-specific non-linear PM$_{2.5}$-mortality relationships in 104 counties in China. During the second stage, we pooled the estimated county-specific exposure-response functions using a meta-regression model. In the third stage, we estimated the additional deaths due to short-term exposure to PM$_{2.5}$ in China in 2015 by combining the pooled PM$_{2.5}$-mortality association and county-level daily PM$_{2.5}$ exposure.

2.2.1.1. First stage analysis. We implemented a standard time series quasi-Poisson regression for each county to evaluate the effect of same-day PM$_{2.5}$ on all-cause mortality. We modeled the exposure-response curve with natural cubic splines with two internal knots at 35 μg/m3 and 75 μg/m3 of PM$_{2.5}$ concentrations for the main analysis. We applied a county-specific 95% percentile of PM$_{2.5}$ concentration as the cut-off point for PM$_{2.5}$ values to avoid extremely high values which affected the model performance. We controlled for day of the week as a categorical variable, daily mean temperature and relative humidity using a natural cubic spline with 3 degrees of freedom (df) respectively, and seasonal and long-term trends with a natural cubic spline with 5 df per year. We then predicted the county-specific log relative risk (RR) and standard error (SE) for daily PM$_{2.5}$ exposure.

2.2.1.2. Second stage analysis. In the second stage, we pooled the associations between PM$_{2.5}$ and mortality for 104 counties using a random-effect meta-regression with restricted maximum likelihood (REML) estimation.

The main model above is defined as Model 1. We conducted several sensitivity analyses to check the non-linear association. We used a linear model to examine the linear association between PM$_{2.5}$ and mortality (Model 2). We set natural cubic splines with three knots at 35 μg/m3, 50 μg/m3, and 75 μg/m3 (Model 3), and with four knots at 35 μg/m3, 50 μg/m3, 75 μg/m3, and 125 μg/m3 (Model 4). The knots were also changed in the first stage analysis for Model 3 and Model 4. We used I2 statistics to quantify the heterogeneity among models (Supplementary Table S3), and we selected model 1, which provided the lowest I2 value in the main analysis. We used 0 μg/m3 as the centering value and the reference PM$_{2.5}$ concentration to calculate the relative risks.

2.2.1.3. Third stage analysis. We finally applied model 1 to predict PM$_{2.5}$ and all-cause mortality associations in all 2851 counties in China to calculate the additional short-term all-cause deaths related to PM$_{2.5}$ in 2015 by incorporating county-specific modeled daily PM$_{2.5}$ concentrations, county-specific populations, and mortality rates from the sixth nationwide population census.

Daily additional deaths attributable to PM$_{2.5}$ for county i were calculated as follows:

$$\Delta \text{Mortality}_i = Y_i \times ERC_i \times POP_i.$$ (1)

Here, $\Delta \text{Mortality}_i$ is the daily PM$_{2.5}$-related additional deaths in county i, Y_i represents the baseline daily mortality rate in county i, POP$_i$ is the population in county i. ERC$_i$ is the
attributable percentage variation in mortality for a specified variation in PM$_{2.5}$, derived from the calculated relative risk at each PM$_{2.5}$ concentration from the meta-regression model in the second stage of analysis.

We calculated the daily death attributable to PM$_{2.5}$ by this method for all 365 days in 2015 in each county. We then calculated the sum of PM$_{2.5}$-related deaths in all counties in China in 2015.

2.2.2. Linear effect model—We also conducted the same analysis using a linear effect model for the PM$_{2.5}$-mortality association and mortality burden estimation for comparison with the non-linear effect models. A three-stage analysis was used to investigate the relationship of the PM$_{2.5}$ and morality and the mortality burden of PM$_{2.5}$.

In the first stage, generalized linear models assuming a quasi-Poisson distribution were used to generate county-specific PM$_{2.5}$-mortality associations. Same-day PM$_{2.5}$ concentrations were used in the main analysis (Table S2). We controlled for daily average temperature, relative humidity, day of the week, and calendar date in the model. The covariates were adjusted according to the following: a natural cubic spline with 3 degrees of freedom (df) for daily mean temperature and daily mean relative humidity, a natural cubic spline with 5 df per year for the long-term trend and day of the week. Sensitivity analyses were also conducted to check the robustness of the results in the main analysis (Table S1). In the second stage, we pooled the county-specific associations to generate an overall association between PM$_{2.5}$ and mortality by conducting a random-effect meta-analysis. In the third stage, we used the association from the second stage to calculate the additional short-term all-cause deaths related to PM$_{2.5}$ in 2015 by incorporating the county-specific modeled daily PM$_{2.5}$ concentrations, county-specific populations, and mortality rates from the sixth nationwide population census. We calculated the daily death attributable to PM$_{2.5}$ by this method for all 365 days in 2015 in each county. We then calculated the sum of PM$_{2.5}$-related deaths in all of the counties in China in 2015.

All of the analyses were performed using the R statistical software (version 3.3.1, 64-bit, Foundation for Statistical Computing, Vienna, Austria). The “mvmeta” and “dlnm” package in R software was used in this study.

3. Results

Fig. 1 presents PM$_{2.5}$ concentrations during the study period (2013–2015). The blue points show centroids of the 104 counties used in the first stage of analysis. The 104 counties cover all seven geographic regions in China (Eastern, Northern, Central, Southern, Southwestern, Northwestern, and Northeastern) and 31 provinces (except Hong Kong, Macao, and Taiwan). The highest PM$_{2.5}$ concentrations were observed in the Beijing-Tianjin-Hebei region, with annual mean concentrations above 100 μg/m3. Table S2 shows the descriptive statistics for mortality, PM$_{2.5}$, and meteorological data for the 104 counties. The dataset included 1,069,911 deaths. Approximately 9 all-cause deaths per day on average occurred during the study period, with the highest number of daily average, 28 deaths per day, recorded in Yongqiao County in Anhui Province. The overall mean daily concentrations of PM$_{2.5}$ were
61.6 μg/m\(^3\) in these 104 counties. The highest county-specific daily mean concentration of PM\(_{2.5}\) is 106.7 μg/m\(^3\), which was recorded in Xingtai County in Hebei Province. The lowest county-specific daily mean concentration of PM\(_{2.5}\) was 23.2 μg/m\(^3\), which was recorded in Meilan County in Hainan Province.

The association between daily PM\(_{2.5}\) concentration and relative risk of total mortality from model 1 is shown in Fig. 2. The association was non-linear, with approximately linear increasing mortality risk from 0 to 62 μg/m\(^3\). From 62 to 250 μg/m\(^3\), the risk decreases gradually. The RRs are 1.026 (95% CI: 1.014–1.038) and 1.031 (95% CI: 1.021–1.042) for PM\(_{2.5}\) concentration of 35 μg/m\(^3\) and 75 μg/m\(^3\) versus 0 μg/m\(^3\), respectively. The I\(^2\) of model 1 is 22%, which accounts for the minimum heterogeneity among all the models. The I\(^2\) statistics of all models is shown in Table S3, and model 2 (linear effect model) showed the most heterogeneity. The associations between PM\(_{2.5}\) and mortality estimated by model 2, model 3, and model 4 are shown in Figs. S3, S4, and S5, respectively.

Regional statistics of county level population, mortality rate, and annual PM\(_{2.5}\) concentration are shown in Table S4. The predicted number of additional deaths attributable to PM\(_{2.5}\) and the corresponding additional death rate in the seven regions of China in 2015 are shown in Table 1. The number of predicted additional deaths attributable to short-term PM\(_{2.5}\) exposure was 169,862 (95% CI: 97,994, 240,967), and the additional death rate was 13.78 (95% CI: 7.95–19.55) per 100,000 people throughout China in 2015. The highest additional death was observed in Eastern China, with 52,502 (95% CI: 30,505–74,266) deaths. The population of Eastern China is 358,863,351, and the average mortality rate is 6.0‰ with a mean annual PM\(_{2.5}\) concentration of 49.5 μg/m\(^3\). The highest additional death rate was 15.03 (95% CI: 8.51–21.49) per 100,000 people in Southwestern China, which has a population of 185,917,082, an average mortality rate of 6.5‰, and a mean annual PM\(_{2.5}\) concentration of 35.1 μg/m\(^3\). The mortality burden of PM\(_{2.5}\) estimated from linear effect model was 32,186 (95%CI: 10,705–53,631) in China, which is much lower than the estimation from the non-linear effect model.

We estimated and mapped county-specific additional deaths associated with short-term exposure to PM\(_{2.5}\), as well as additional deaths rate (1/100,000) and additional deaths per 100 km\(^2\) (Figs. 3, 4, and S6). Regions of high additional deaths included the Beijing-Tianjin-Hebei area in Northern China, the Yangtze River Delta in Eastern China, the Changsha-Zhuzhou-Xiangtan and Wuhan area in Central China, the Sichuan Basin in Southwestern China, and the southwest coast of Guangdong Province in Southern China. The spatial pattern of the increase in death rates showed little difference than those for additional deaths. Aside from the Beijing-Tianjin-Hebei area in Northern China, the Yangtze River Delta in Eastern China and Sichuan Basin in Southwestern China, the North Tibet area in Southwestern China, the South Sinkiang area in Northwestern China and Liaoning Province in Northeastern China also exhibited high additional death rates. The spatial pattern of additional deaths per 100 km\(^2\) was similar to that of additional deaths except for southwest region.
4. Discussion

To the best of our knowledge, this is the first study to evaluate county-specific additional deaths due to short-term PM$_{2.5}$ exposure in China using a non-linear effect model. The impacts of short-term exposure to PM$_{2.5}$ on mortality were linearly positive from 0 to 62 μg/m3, and then decreasing RR from 62 to 250 μg/m3. We estimated the number of deaths related to short-term exposure of PM$_{2.5}$ from the non-linear model to be 169,862 (95% CI: 97,994 and 240,967) for the entire country in 2015. However, the linear effect model estimated only 32,186 deaths for the entire country in 2015.

Our findings suggest that in developing countries like China, often with a wide range of PM$_{2.5}$ concentrations, the relationship between PM$_{2.5}$ and mortality is non-linear. This study delivers the first insight into the burden of disease associated with short-term exposure to PM$_{2.5}$ in areas with high exposure to PM$_{2.5}$, which may provide a scientific foundation for implementing public health intervention policies. The use of a linear function may greatly underestimate the mortality burden attributable to short-term PM$_{2.5}$ exposure in China.

Although a large number of previous studies have assumed a linear relationship (Atkinson et al., 2014; Lu et al., 2015; Franklin et al., 2007) between PM$_{2.5}$ and mortality, some studies have provided clues suggesting that the shape of the PM$_{2.5}$-mortality exposure-response relationship is non-linear (Chen et al., 2017; Daniels et al., 2000; Schwartz and Zanobetti, 2000; Schwartz et al., 2002). Some US studies have investigated the shape of the relationship between short-term particulate matter and mortality. These studies focused on the evidence of a threshold at low concentrations. However, these studies found that the exposure-response relationship to be nearly linear, with no evidence of the presence of a threshold at low concentrations (Daniels et al., 2000; Schwartz and Zanobetti, 2000; Schwartz et al., 2002). The concentrations of PM$_{2.5}$ in these US studies were very low, normally daily PM$_{2.5}$ concentrations below 35 μg/m3 (Franklin et al., 2007). However, the PM$_{2.5}$ exposure in China has an extensive range of concentrations, the daily concentration of PM$_{2.5}$ normally ranged from a few to many hundreds. A recent short-term PM$_{2.5}$ and mortality study in 272 Chinese cities showed that the shape of PM$_{2.5}$ and mortality relationship is nonlinear, with the effect that magnitude tended to be lower at higher concentrations (Chen et al., 2017), which is very similar to our results in this study. We found that the non-linear model accounts for smaller heterogeneity than the linear model in China. In model 1, two knots showed very low heterogeneity with an I2 of 22%, which means that this non-linear model may explain the majority of the heterogeneity among effects under different exposure levels. Our study and previous evidence from Chinese studies confirmed that the shape of the association between PM$_{2.5}$ and mortality could be a non-linear curve in China, where the concentration of PM$_{2.5}$ can range from very low to extremely high. At low PM$_{2.5}$ exposure levels, our study found an approximately linear relationship between PM$_{2.5}$ and mortality, which is consistent with previous US studies. At the middle and high levels of PM$_{2.5}$, we found the magnitude of the effect to decrease as the concentration of PM$_{2.5}$ increased. The number of days during which PM$_{2.5}$ concentration was below 62 μg/m3 is quite high (about 68%). This phenomenon may be attributable to the “harvesting effect,” which means the most sensitive individuals among the population may have already died at lower levels of exposure (Costa et al., 2016).
Most studies have focused on estimation of the disease burden due to long-term exposure to PM$_{2.5}$ (Wang et al., 2018; Lelieveld et al., 2015; Lim et al., 2012; J. Liu et al., 2016; M. Liu et al., 2016). Earlier studies used exposure-response functions from Western countries with lower levels of PM$_{2.5}$ exposure to estimate the global burden of disease from long-term exposure to PM$_{2.5}$ (Cohen et al., 2005). In a country like China with high levels of exposure to PM$_{2.5}$, using a linear exposure-response relationship derived from the cohort studies performed in Western countries may overestimate the magnitude of the health effects. More and more studies have revealed that the association between long-term PM$_{2.5}$ exposure and mortality is non-linear (Yin et al., 2017; Burnett et al., 2014). In order to address this limitation, a GBD study developed the integrated exposure-response (IER) curve to estimate the long-term PM$_{2.5}$ exposure-response association from low exposure level to concentration as high as 1000 µg/m3 (Burnett et al., 2014). Many studies have used the IER model to estimate the number of long-term PM$_{2.5}$-related deaths in China (Wang et al., 2018). GBD 2010 studies reported 1.23 million additional deaths (Lim et al., 2012), while other studies reported additional deaths ranging from 1.23 to 1.37 million (Wang et al., 2018; Lelieveld et al., 2015; Lim et al., 2012; J. Liu et al., 2016; M. Liu et al., 2016).

While many studies already estimate deaths attributable to long-term PM$_{2.5}$ exposure, there are almost no studies that focus on the estimation of the number of additional deaths attributable to short-term PM$_{2.5}$ at the global and country levels. In China, no study has reported the short-term PM$_{2.5}$-related additional deaths throughout the entire country. One possible reason for this is that the health effects of acute PM$_{2.5}$ are far less pronounced than those of chronic exposure (Atkinson et al., 2014; Chen et al., 2017; Yin et al., 2017; Di et al., 2017), which may explain the very small burden of disease in developed countries with low levels of exposure and relatively small populations. In developing countries, however, the situation is completely different. Even with the relative small acute health effect, the burden of disease from short-term PM$_{2.5}$ exposure should not be disregarded with high levels of PM$_{2.5}$ exposure and a huge population, especially in China. We found approximately 0.17 million short-term PM$_{2.5}$-related additional deaths in China, which is about one seventh the size attributable to chronic effects. It is essential to include short-term PM$_{2.5}$-related mortality when considering the overall PM$_{2.5}$-related disease burden in China. For the most part, the linear exposure-response association was expected in few short-term PM$_{2.5}$-related health impact studies (Chen et al., 2017; Zhao et al., 2017; Lin et al., 2017). However, using the linear PM$_{2.5}$ and mortality associations rather than a non-linear relationship could substantially change the estimation of disease burden (Roberts and Martin, 2006). Previously, limited health impact estimation studies in China had considerable uncertainty because these studies did not use a nonlinear association between PM$_{2.5}$ and mortality (Chen et al., 2017; Zhao et al., 2017; Lin et al., 2017). In our study, we reported the 95% confidence interval for additional deaths attributable to short-term exposure to PM$_{2.5}$. Our work also showed a fairly wide range of estimated values, but it nonetheless provides more accurate results than most previous studies, which only reported estimates without acknowledging uncertainty.

The spatial distribution of PM$_{2.5}$ concentration, additional deaths, and death rate were somewhat different, mainly because the exposure-response differed across different PM$_{2.5}$ exposure concentration for a given population density in different counties. The spatial
distribution of high levels of mortality related to short-term PM$_{2.5}$ exposure is consistent with previous estimations of the health impact of the effects of chronic exposure to PM$_{2.5}$ (Wang et al., 2018). The Chinese government has released a series of air pollution prevention measures, such as those in the Air Pollution Prevention and Control Action Plan and the Three-year Plan on Defending the Blue Sky (2018–2020) (The State Council, 2017) and has already taken measures to correct these problems over the past several years, especially in the three key areas and 10 urban agglomerations identified in the action plan. These areas are essentially the same as those recognized as the high disease burden area in our study (State Department of People’s Republic of China, 2013). By population, China is the largest country in the world (Cohen et al., 2017). In 2015, the Chinese government announced a two-child policy to address the country’s accelerating aging problem (The 18th CPC central committee, 2015). For this reason, the disease burden attributable to PM$_{2.5}$ in China may remain high even as air quality improves because of the increasing size and age of the population. Although air pollution control measures have played a part in the government’s efforts, our findings and the future demographic trends indicate that prompt action to improve the air quality in China is urgently needed, which could rapidly reduce the acute health impacts from short-term PM$_{2.5}$ and also mitigate the disease burden in China attributable to long-term PM$_{2.5}$ exposure.

Our work has some limitations. The census data of county-level population and mortality rate in 2010 were used in this study to calculate the burden of disease in 2015. These are the latest and only available county-level statistical data in China from the nationwide extensive demographic census every 10 years. Our study provided only short-term PM$_{2.5}$-related all-cause mortality burden and does not address the disease burden of cause of death because of the lack of causespecific mortality data. Finally, we used modeled PM$_{2.5}$ concentration in this study because China’s PM$_{2.5}$ monitoring system cannot cover the entire country and PM$_{2.5}$ was the sole pollutant included. However, previous studies in China either used PM$_{2.5}$ alone to analyze the acute mortality effect (Chen et al., 2017) or showed that the acute mortality effect of PM$_{2.5}$ remained robust regardless of whether adding other pollutants (Chen et al., 2018).

Overall, this study adds significant new evidence on the short-term PM$_{2.5}$ exposure and mortality association across a broad PM$_{2.5}$ exposure range. Our estimates of disease burden attributable to short-term PM$_{2.5}$ exposure may inform future studies in developing countries that have high concentrations of PM$_{2.5}$.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (Grant No. 2016YFC0206500), the National Natural Science Foundation of China (Grant Nos. 81573247, 91543111), the National High-Level Talents Special Support Plan of China for Young Talents.
References

Appel KW, et al. , 2012. Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmos. Environ 53, 142–155.

Atkinson RW, Kang S, Anderson HR, Mills IC, Walton HA, 2014. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 10.1136/thoraxjnl-2013-204492.

Burnett RT, et al. , 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect 10.1289/ehp.1307049.

Chen R, et al. , 2011. Coarse particles and mortality in three Chinese cities: the China Air Pollution and Health Effects Study (CAPEs). Sci. Total Environ 409, 4934–4938. [PubMed: 21925709]

Chen R, et al. , 2017. Fine particulate air pollution and daily mortality. A nationwide analysis in 272 Chinese cities. Am. J. Respir. Crit. Care Med 196, 73–81. [PubMed: 28248546]

Chen C, et al. , 2018. Short-term exposures to PM2.5 and cause-specific mortality of cardiovascular health in China. Environ. Res 161, 188–194. [PubMed: 29154226]

Cohen AJ, et al. , 2005. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health A 68, 1301–1307. [PubMed: 16024504]

Cohen AJ, et al. , 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 Lond. Engl. [PubMed: 28408086]

Costa AF, Hoek G, Brunekreef B, Ponce de Leon ACM, 2016. Air pollution and deaths among elderly residents of São Paulo, Brazil: an analysis of mortality displacement. Environ. Health Perspect 125.

Daniels MJ, Dominici F, Samet JM, Zeger SL, 2000. Estimating particulate matter mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am. J. Epidemiol 152.

Di Q, et al. , 2017. Air pollution and mortality in the medicare population. N. Engl. J. Med 376, 2513–2522. [PubMed: 28657878]

Forouzanfar MH, et al. , 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724. [PubMed: 27733284]

Franklin M, Zeka A, Schwartz J, 2007. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J. Expo. Sci. Environ. Epidemiol 17, 279–287. [PubMed: 17006435]

Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A, 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371. [PubMed: 26381985]

Lim SS, et al. , 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260. [PubMed: 23245609]

Lin H, et al. , 2017. Using daily excessive concentration hours to explore the short-term mortality effects of ambient PM 2.5 in Hong Kong. Environ. Pollut 229, 896–901. [PubMed: 28760525]

Liu J, Han Y, Tang X, Zhu J, Zhu T, 2016. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ 10.1016/j.scitotenv.2016.05.165.

Liu M, et al. , 2016. Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012. Environ. Int 10.1016/j.envint.2016.10.003.

Lu F, et al. , 2015. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ. Res 136, 196–204. [PubMed: 25460637]

National Bureau of Statistics of China, 2015. Total population in China Available at. http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0301&sj=2015.
Platnick S, et al., 2003. The MODIS cloud products: algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens 41, 459–473.
Roberts S, Martin MA, 2006. The question of nonlinearity in the dose-response relation between particulate matter air pollution and mortality: can Akaike’s information criterion be trusted to take the right turn? Am. J. Epidemiol 164, 1242–1250. [PubMed: 17005626]
Schwartz J, Zanobetti A, 2000. Using meta-smoothing to estimate dose-response trends across multiple studies, with application to air pollution and daily death. Epidemiology 11, 666–672.
Schwartz J, Laden F, Zanobetti A, 2002. The concentration-response relation between PM2.5 and daily deaths. Environ. Health Perspect 110, 1025–1029.
State Department of People’s Republic of China, 2013. Air Pollution Control Action Plan
The 18th CPC central committee, 2015. Official Report of the Fifth Plenary Session of the 18th CPC Central Committee
The State Council, 2017. Three-year Plan on Defending the Blue Sky (2018–2020)
Wang Q, Wang J, He MZ, Kinney PL, Li TA, 2018. County-level estimate of PM2.5 related chronic mortality risk in China based on multi-model exposure data. Environ. Int 110, 105–112. [PubMed: 29097050]
Xiao Q, et al., 2017. Full-coverage high-resolution daily PM 2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ 199, 437–446.
Yin P, et al., 2017. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environ. Health Perspect 125.
Zhao Y, et al., 2017. Ambient fine and coarse particulate matter pollution and respiratory morbidity in Dongguan, China. Environ. Pollut 222, 126–131. [PubMed: 28041838]
Fig. 1. Map of PM$_{2.5}$ concentration during the study period (2013–2015). Blue points indicate the geographic centers of 104 counties. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Association between daily \(\text{PM}_{2.5} \) concentration and relative risk of total mortality using random-effect meta-regression with a natural cubic spline model for \(\text{PM}_{2.5} \) with 2 knots (Model 1).
Fig. 3.
Predicted short-term PM$_{2.5}$-related additional deaths in China in 2015 as indicated by Model 1.
Fig. 4.
Predicted short-term PM$_{2.5}$-related increase in the death rate (1/100,000) in China in 2015 as indicated by Model 1.
Table 1
Predicted PM$_{2.5}$-related additional deaths and increase in death rates in different regions of China in 2015, with non-linear PM$_{2.5}$-mortality association estimated using Model 1.

Region	Additional deaths (95%CI: 30,505–74,266)	Increase in death rate (1/100,000) (95%CI: 8.50–20.69)
Eastern China	52,502	14.63
Northern China	18,032	13.67
Central China	29,899	14.59
Southern China	15,263	10.41
Southwestern China	27,945	15.03
Northwestern China	11,944	12.60
Northeastern China	14,277	13.00
China	169,862	13.78