MutationalPatterns: an integrative R package for studying patterns in base substitution catalogues

Francis Blokzijl1, Roel Janssen1, Ruben van Boxtel1 and Edwin Cuppen1,*
1Department of Genetics, Center for Molecular Medicine, Cancer Genomics Netherlands, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands

*To whom correspondence should be addressed.

Abstract

Summary: Mutational processes leave characteristic footprints in genomic DNA. The MutationalPatterns R package provides an easy-to-use toolset for the characterization and visualization of mutational patterns in base substitution catalogues of e.g. tumour samples or DNA-repair deficient cells. The package covers a wide range of patterns including: mutational signatures, transcriptional strand bias, genomic distribution and association with genomic features, which are collectively meaningful for studying the activity of and molecular mechanisms behind mutational processes. The package provides functionalities for both extracting mutational signatures de novo and inferring the contribution of previously identified mutational signatures in a given sample. MutationalPatterns integrates with common R genomic analysis workflows and allows easy association with (publicly available) annotation data.

Availability and implementation: The MutationalPatterns R package is freely available for download at https://github.com/CuppenResearch/MutationalPatterns. The package documentation provides a detailed description of typical analysis workflows.

Contact: ecuppen@umcutrecht.nl

1 Introduction

Genomes of cells are constantly threatened by both endogenous and environmental sources of DNA damage, such as UV-light and spontaneous reactions. When lesions are either incorrectly or not repaired prior to replication, these can lead to mutation incorporation into the genome (Iyama and Wilson, 2013). Each mutational process leaves a distinct genomic mark. For example, spontaneous deamination of 5-methylcytosines results in C>T substitutions at CpG sites. Mutational patterns can therefore be used to infer which mutational processes have been active in a cell during life. In the past few years, large-scale analyses of tumour genome data across different human cancer types have revealed 30 “mutational signatures”, which are characterized by a specific contribution of base substitution types with a certain sequence context (Alexandrov et al., 2013). Each mutational signature is thought to reflect a single mutational mechanism, but the aetiology of most mutational signatures remains currently unknown. In order to functionally link mutational signatures to biological processes, assessment of the contribution of these mutational signatures in e.g. cells that are exposed to specific mutagens or cells that are deficient for a certain DNA repair pathway will be essential.

The MutationalPatterns package provides an extensive toolset to explore and visualize a collection of mutational patterns that are relevant for deciphering which mutational processes have been active in a sample. The package facilitates both (1) de novo mutational signature extraction and (2) quantification of the contribution of user-specified mutational signatures. While the first approach can be used to identify new mutational signatures, this is only meaningful for datasets with a large number of samples with diverse mutation spectra, as it relies on the dimensionality reduction method non-negative matrix factorization (NMF). The second approach can be used to study the activity of mutational processes in a single sample, and to further characterize previously-identified mutational signatures by assessing their contribution in different systems or under different conditions. Additionally, the package allows for exploration of other types of patterns such as transcriptional strand asymmetry, genomic distribution and associations with annotations such as chromatin organization and...
Mutational signatures can be extracted de novo using NMF, where the number of signatures is typically small compared to the number of samples in the mutation matrix (Fig. 1A). For mutational signatures with transcriptional strand features, the strand bias can be determined per base substitution type (B). The non-negative linear combination of a set of user-specified mutational signatures that best reconstructs the mutation profile of a sample, can be determined by minimizing the Euclidean norm of the residual. This well-studied non-negative least-squares constraints problem is solved using the pracma package (Borchers, 2016) for each sample in mutation matrix (Fig. 1C).

To test whether base substitutions appear more or less frequently in specific genomic regions, enrichment or depletion can be visualized and tested for statistical significance (Fig. 1D-E). The genomic regions are represented as a GRanges object (Lawrence et al., 2013) and can be based on experimental data or publicly available annotation data retrieved via e.g. BiomaRt (Durinck et al., 2005).

3 Discussion

Until now, somatic mutation catalogues have been mainly determined for tumour samples, owing to their clonal nature. Recent and ongoing advances in single cell sequencing (Gawad et al., 2016), extremely deep sequencing of clonal patches of healthy tissue (Martincorenac et al., 2015; Xie et al., 2014) and clonal cell cultures (Blokzijl et al., 2016) will allow determination of somatic mutation catalogues of non-cancerous cells of various tissues. Furthermore, advances in gene-editing enables researchers to specifically knock-out a certain repair mechanism and evaluate this effect on mutational load (Meier et al., 2014). *MutationalPatterns* aims to support the further dissection of mutational mechanisms by providing an extensive, easy-to-use toolset to characterize and visualize informative mutational patterns, not only for large collections of samples but also for single samples.

Funding

This work was financially supported by the NWO Gravitation Program Cancer Genomics.nl and the NWO/ZonMW Zenith project 93512003 to E.C. Conflict of Interest: none declared.

References

Alexandrov,L.B. et al. (2013) Signatures of mutational processes in human cancer. *Nature*, 500, 415–21.

Blokzijl,F. et al. (2016) Tissue-specific mutation accumulation in human adult stem cells during life. *Nature, in press*.

Borchers,H.W. (2016) pracma: Practical Numerical Math Functions.

Durinck,S. et al. (2005) BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. *Bioinformatics*, 21, 3439–3440.

Gawad,C. et al. (2016) Single-cell genome sequencing: current state of the science. *Nat. Rev. Genet.*, 17, 175–188.

Haradhvala,N.J. et al. (2016) Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair. *Cell*, 1–12.

Iyama,T. and Wilson,D.M. (2013) DNA repair mechanisms in dividing and non-dividing cells. *DNA Repair (Amst)*, 12, 620–36.

Lawrence,M. et al. (2013) Software for computing and annotating genomic ranges. *PLoS Comput. Biol.*, 9, e1003118.

Martincorenac,J. et al. (2015) High burden and pervasive positive selection of somatic mutations in normal human skin. *348*, 880–886.

Meier,B. et al. (2014) C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. *Genome Res.*, 1, 1624–1636.

Pleasance,E.D. et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. *Nature*, 463, 191–196.

Xie,M. et al. (2014) Age-related cancer mutations associated with clonal hematopoietic expansion. *Nat. Med.*, 20, 1472–1478.