A Comparison of SERS and MEF of Rhodamine 6G on a Gold Substrate

Elizabeth Kohr
University of Rhode Island, ekohr18@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation
Kohr, Elizabeth, "A Comparison of SERS and MEF of Rhodamine 6G on a Gold Substrate" (2017). Open Access Master's Theses. Paper 1027.
https://digitalcommons.uri.edu/theses/1027

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
A COMPARISON OF SERS AND MEF OF RHODAMINE 6G ON A GOLD SUBSTRATE

BY

ELIZABETH KOHR

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

CHEMISTRY

UNIVERSITY OF RHODE ISLAND

2017
MASTER OF SCIENCE THESIS

OF

ELIZABETH KOHR

APPROVED:

Thesis Committee:

Major Professor William Euler
 James Smith
 Geoffrey Bothun
 Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2017
ABSTRACT

Rhodamine 6G is spin-cast onto gold surfaces and the reflectance, emission, excitation, and SERS spectra are reported. Electron microscopy shows that the particle sizes of the gold are uniform for all preparations. Reflection spectra show that the Rh6G aggregates for thicker films and that the gold plasmon band shifts due to the refractive index change on the surface. The intensity of the SERS spectra increases with increasing surface coverage but the rate of change modulates between submonolayer and multilayer surface densities. The emission spectra behave unexpectedly as a function of Rh6G coverage. At submonolayer coverage the emission is relatively strong, decreases as the surface density increases to a monolayer, and then increases as the Rh6G thickness increases. Excitation spectra demonstrate that the emitting species at low surface density is monomeric but for thicker layers the excited state responsible for emission is Rh6G aggregates. For the thicker films, the Rh6G acts as its own dielectric layer for metal enhanced fluorescence of the aggregates.
ACKNOWLEDGMENTS

I would like to acknowledge Dr. William Euler for his guidance and patience in my time as a graduate student. His quest for the knowledge of chemistry is truly remarkable. I would also like to thank his research group for their help in the laboratory and their support. Thank you to all my coauthors of this manuscript who have provided invaluable knowledge to this effort.

I would like to thank my parents George and Bethany LeCain. They have always supported me and believed in me. Thank you to my dad for editing this and many other papers over several years. Thank you to my mom for encouraging me and helping me to get everything else done. Finally, I’d like to thank my husband Jeffrey Kohr for everything he has done to put me through graduate school. It has meant the world to me to have you by my side. Thank you all for everything as I could not have done this without all of you.
PREFACE

This thesis has been prepared in manuscript format. This manuscript has been submitted to the American Chemical Society Journal of Physical Chemistry C and is currently under review for publication.
TABLE OF CONTENTS

Section	Page
ABSTRACT	ii
ACKNOWLEDGMENTS	iii
PREFACE	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vi
LIST OF FIGURES	vii
MANUSCRIPT	1
INTRODUCTION	2
EXPERIMENTAL	4
RESULTS AND DISCUSSION	6
CONCLUSION	16
ACKNOWLEDGMENTS AND REFERENCES	17
TABLE	PAGE
--	------
Table 1. Deconvoluted parameters for the emission spectra of Rh6G on gold and glass	11
LIST OF FIGURES

FIGURE	PAGE
Figure 1. SEM Micrographs	7
Figure 2. EDS spectra of Au coated with Rh6G	8
Figure 3. Reflectance spectra of Rh6G coated on gold for different surface coverages	8
Figure 4. Background corrected SERS spectra and peak intensity of selected peaks as a function of Rh6G concentration used in spin-casting	10
Figure 5. Emission spectra of Rh6G on Au as a function of the solution concentration used in spin-casting	11
Figure 6. Normalized excitation spectra for selected films of Rh6G spin-cast onto Au	13
MANUSCRIPT

Under review with The Journal of Physical Chemistry C

A Comparison of SERS and MEF of Rhodamine 6G on a Gold Substrate

Elizabeth Kohr, Buddini I. Karawdeniya, Jason R. Dwyer, Anju Gupta,* William B. Euler*

Corresponding Authors:

Dr. William B. Euler
Department of Chemistry
University of Rhode Island
Kingston, RI 02881
weuler@chm.uri.edu

Dr. Anju Gupta
Department of Chemical Engineering
Rochester Institute of Technology
Rochester, NY
argche@rit.edu
INTRODUCTION

The use of plasmonic structures to modulate spectroscopic properties has drawn substantial interest in the last few years. Surface Enhanced Raman Scattering (SERS)\(^1\text{-}\text{17}\) and Metal Enhanced Fluorescence (MEF)\(^\text{18}\text{-}\text{35}\) both exploit the electric field enhancement associated with a plasmon resonance to substantially increase the spectroscopic signal. Despite the mechanistic similarities between SERS and MEF, there are few reports of SERS and MEF on the same structures.\(^\text{36,37}\) This is because most fluorophores are substantially quenched when placed adjacent to a metal surface, so MEF requires that the emitting species be separated from the plasmon source by a few nm. In contrast, SERS does not suffer from this limitation, so enhancement occurs for molecules directly bound to the metal.

Our work has targeted thin films of xanthene dyes for use in sensing applications.\(^\text{38,39}\) One of the best studied of this class of compounds is rhodamine 6G (Rh6G),\(^\text{40}\text{-}\text{65}\) which has both a high quantum yield for fluorescence and a large cross section for Raman scattering. Wavelength shifts in the absorbance and emission spectra of Rh6G imply that aggregates form in solution at higher concentrations, as suggested by either exciton\(^\text{66}\text{-}\text{68}\) or excimer theory.\(^\text{69}\) In thin films, the same electronic spectroscopic effects are also observed, and are a function of film thickness.\(^\text{65}\) The spectroscopic results indicate aggregation in the excited state (excitons and/or excimers) but we wondered if the aggregation also happened in the ground state of the thin films. Vibrational spectroscopy can be used to answer this question, and SERS on Rh6G was the logical choice to probe the ground state structure.
In this work we report the SERS and MEF spectra of Rh6G thin films on a gold substrate as a function of film thickness. The emission properties of fluorophores as a function of thickness when deposited on nonmetallic substrates has been reported.70-74 No emission was expected for Rh6G on the gold surface since metals typically quench fluorescence. In contrast, Rh6G can be observed in SERS down to single molecule levels when adsorbed to metal nanoparticles.75-77 To our surprise, not only was emission observed, but it demonstrated an unusual behavior with increasing film thickness. The spectroscopic signatures of excited state aggregation were still present, but the typical quenching associated with this was suppressed. The intensities of the emission and Raman spectra paralleled each other as a function of thickness up to a thickness of several monolayers, indicating that the emission enhancement was due to MEF and not a structural reorganization. This conclusion was supported by the observation that the Raman spectra showed no peak shifts as a function of film thickness, which also indicated that there is no ground state aggregation in Rh6G.
EXPERIMENTAL

A plating bath that was 0.025 M tin(II) chloride and 0.07 M trifluoroacetic acid in 50/50 methanol/water, an ammoniacal silver nitrate solution, and an aqueous plating bath of 7.9×10^-3 M sodium gold sulfite, 0.127 M sodium sulfite, and 0.625 M formaldehyde were prepared, all in accordance with Whelan, et al.78 The sodium gold sulfite solution was also prepared in accordance with Whelan, et al.78 Silicon chips were cut into squares of approximately 1.0 cm2. The silicon chips were sonicated in 95% ethanol, then distilled water, each for 15 minutes. For the drying step, the chips were left to air dry. Rhodamine 6G (Rh6G) solutions were prepared by dissolving 0.2394 g of Rh6G and diluting to approximately 40 mL. This was left to warm overnight and was later diluted to 50.00 mL to give a concentration of 1.0×10^-2 M. Serial dilutions were made of this solution resulting in concentrations of 7.5×10^-3, 5.0×10^-3, 2.5×10^-3, 1.0×10^-3, 7.5×10^-4, 5.0×10^-4, 2.5×10^-4, and 1.0×10^-4 M. The solutions were all kept in aluminum foil to prevent exposure to light. Each silicon chip was spun-cast for 45.0 s at 1200 rpm (acceleration of 1080 s-2) immediately after a 50 µL volume of Rh6G solution was deposited on each chip.

The morphology of the substrates was studied by a TESCAN Field Emission Mira III LMU (Czech Republic) at an accelerating voltage of 5 kV. The energy dispersive X-ray spectroscopy (EDS) measurements were done on Bruker Quantax EDS with XFLASH 5010 detector attached to a field emission scanning electron microscope MIRA II LMH. The reflection spectra were obtained using a Filmetrics F40 microscope with a tungsten-halogen light source from 400-1000 nm. Raman
spectra were obtained on an Agiltron PeakSeeker spectroscope with a 785 nm laser and an integration time of 30 seconds. Fluorescence measurements were made on a Horiba (JobinYvon) Fluorlog spectrometer at a 60° angle with slit widths of 2.0 nm for the light source and detector. The integration time was set to 1 s and wavelength increments to 1 nm. The samples were irradiated with a xenon arc lamp excitation source at a wavelength of 525 nm. The emission range was set to 535-800 nm. Excitation spectra were collected with fluorescence monitoring at 555 nm and 610 nm with two excitation ranges for each. For the monitoring at 555 nm the excitation ranges were 300-545 nm and 565-800 nm. For the monitoring at 610 nm the excitation ranges were 310-600 nm and 620-800 nm.
RESULTS AND DISCUSSION

Deposition of gold onto the silicon substrate followed the procedure previously reported. The gold surfaces were coated with Rh6G using spin-casting, using conditions previously used to coat glass. Direct measurement of the thickness of the Rh6G layer using optical or AFM methods proved to be ineffective. When spin-casting Rh6G onto glass the relationship between solution concentration and coating thickness was markedly nonlinear. For example, when \([\text{Rh6G}] = 1 \times 10^{-4} \text{ M}\), \(t_{\text{Rh6G}} \sim 1\) nm, when \([\text{Rh6G}] = 1 \times 10^{-3} \text{ M}\), \(t_{\text{Rh6G}} \sim 3\) nm, and when \([\text{Rh6G}] = 1 \times 10^{-2} \text{ M}\), \(t_{\text{Rh6G}} \sim 45\) nm. We expected similar, but not identical, behavior for spin-casting onto the gold substrate. For the remainder of this paper reference will only be made to the spin-casting concentration.
Figure 1 shows the SEM images of samples covered with different thicknesses of Rh6G. Each sample shows the same features: grains that are less than 100 nm in size that cover the whole surface with a few particles that are 0.5 to 1 μm in diameter. Both of these features are attributed to the gold coating, which mainly coats the
substrate as small grains but there are a few particles that grow to larger size. There are no morphological features that can be assigned to the Rh6G. This is reasonable since the Rh6G is expected to be less than 50 nm thick for all of the coating conditions used. However, the EDS spectra, shown in Figure 2, indicate the presence of the Rh6G. The primary elements observed are Au and C with smaller peaks for Si and O. As the Rh6G coating becomes thicker, the intensity of the Au peak decreases, and the C peak increases. This confirms that the Rh6G is present but does not affect the morphology of the substrate.

![Figure 2](image2.png)

Figure 2. EDS spectra of Au coated with Rh6G. The inset shows the integrated area of the C and Au peaks as a function of Rh6G concentration.

![Figure 3](image3.png)

Figure 3. Reflectance spectra of Rh6G coated on gold for different surface coverages.
Figure 3 shows the reflection spectra for Rh6G on gold for several surface coverages. The Au surface has a reflection minimum at ~480 nm, consistent for all preparations, and indicative of a pure gold surface with relatively large particle size.79 As the thickness of Rh6G is coated onto the surface, several spectral responses can be noted. First, as expected, the reflection from the gold is reduced as the Rh6G thickness increases. At the thinnest coverage, this is the only change that is observed – no feature associated with absorption by Rh6G is measurable. At intermediate thicknesses, a broad feature grows in, centered at about 590 nm. Finally, the thickest films show three peaks at 530, 575, and 630 nm. The peaks at 530 nm and 575 nm are assigned to monomeric and aggregated Rh6G respectively, consistent with the literature.40-65 The absorption located in the 590 – 630 region is assigned to the plasmon shifted gold resonance.

Figure 4 shows the background corrected Raman spectra of Rh6G coated onto Au as a function of the concentration used in the spin-casting solution. (The SERS spectra all have a fluorescence background, especially for thicker films.) As expected in a SERS response, as the film becomes thicker, the intensity of the Raman peaks increases. Three peaks at 1314, 1363, and 1512 cm-1 were fit to a Gaussian lineshape for each sample. As the film thickness increased, there was no substantial change in either the peak maxima or peak width (all fits agreeing within ±1 cm-1, less than the 4 cm-1 resolution of the measurement), indicating that there is no coupling between Rh6G molecules in the ground state. However, the intensity change as a function of surface coverage shows two regions, as indicated by the lines in Figure 4B. The break
occurs where the surface density of Rh6G molecules is expected to transition from a monolayer to multilayers.

Figure 4. A, Top: Background corrected SERS spectra of Rh6G on Au as a function of the solution concentration used in spin-casting. B, Bottom: Peak intensity of selected peaks as a function of Rh6G concentration used in spin-casting. The lines are guides for the eye.
Figure 5 shows the emission spectra of Rh6G as a function of surface coverage. The thinnest film (created using a 1.0×10^{-4} M solution for spin-casting) has a maximum at 555 nm. As the film thickness grows the emission intensity initially decreases and the wavelength maximum shifts to lower energy. This is consistent with what has been reported previously on glass. However, with further addition of Rh6G, the emission intensity begins to increase and the maximum wavelength continues to shift to lower energy.

Table 1. Deconvoluted parameters for the emission spectra of Rh6G on gold and glass (from reference 65). λ is the wavelength maximum (in nm) and Γ is the full-width-at-half-maximum (in nm). The uncertainty in λ and Γ are both ± 2 nm.

[Rh6G]	λ_1	Γ_1	λ_2	Γ_2	λ_3	Γ_3	λ_4	Γ_4
Gold	556	19	577	43	603-615	25	640-656	60
Glass	550	16	573	21	600	35	650	47
Assignment	Monomer	Excimer	Exciton	Aggregate				

Figure 5. Emission spectra of Rh6G on Au as a function of the solution concentration used in spin-casting. Excitation was done at 525 nm. Inset: Total area under the emission spectrum as a function of Rh6G concentration used in spin-casting.
Each emission spectrum was deconvoluted into two or three Gaussian peaks, as needed, to give an acceptable fit. For the films with the two lowest surface coverages only two peaks were required: one with a narrow lineshape with a maximum at 556 nm and a second broader peak located at 577 nm. The intensity and lineshape are similar to what was reported for thin films of Rh6G on glass65 so the peaks are assigned to monomers (556 nm) and excimers (577 nm). The intensity of the emission spectra at low surface coverage is surprising since a metal surface typically induces quenching of an adjacent fluorophore. As the surface coverage increases a third peak is required to fit the emission spectra. The maximum of this third peak varies between 603 and 615 nm for different film thicknesses, but the linewidth remains constant at 25 nm. This peak is assigned to an exciton emission. Finally, for the thickest films the feature at 556 nm is no longer detectable and a new peak arises, observed as a broad shoulder, with a maximum in the range of 640 – 656 nm, assigned to aggregates or crystallized Rh6G. All of these assignments are summarized in Table 1.

The total intensity of the emission spectra as a function of surface coverage is remarkable. As shown in the inset in Fig. 5, the emission intensity is high for the thinnest film and then decreases substantially as the surface density increases. At approximately one monolayer coverage the total emission intensity reaches a minimum. Then, as multiple layers accumulate, the intensity increases up to a maximum when the film thickness is estimated to be ~10 nm. For thicker films, which should be dominated by aggregates and crystallites, the emission slowly decreases as the films get thicker. In contrast, the intensity profile on glass as a function of film
thickness shows high emission for surface coverages less than one monolayer, but is substantially quenched for thicker films.

The rise in emission intensity of films of Rh6G which are a few monolayers thick is attributed to MEF, where the Rh6G is acting as its own dielectric. In this interpretation, the enhanced fluorophore is the aggregate structure, not isolated Rh6G molecules. The maximum MEF response is found when the Rh6G is ~10 nm thick, which is consistent with previous studies of the optimum dielectric thickness for MEF. A comparison of the Rh6G emission intensity for films created from a 5×10⁻³ M solution on glass vs gold implies an enhancement factor of ~10. The overlap between the shifted gold plasmon resonance and the aggregate emission peak is likely responsible for the electric field enhancement that causes the MEF response.

Figure 6 shows the normalized excitation spectra of Rh6G for several surface coverages. When the emission is detected at 555 nm, i.e. emission from the monomer excited state, the excitation spectra all have maxima at 534 nm, except for the thickest film (cast from [Rh6G] = 1×10⁻² M), which has a maximum in the range of the
detection wavelength. The absorption maximum of Rh6G on glass at 527 nm is associated with the monomer, consistent with the emission spectra. The thick film, with an excitation maximum of 555±10 nm indicates absorption from aggregates and the lineshape, displays little absorption in the monomer region. To better understand this behavior, the excitation spectra were also measured using detection at 610 nm, which selects for both exciton and aggregate excited states. Under these measurement conditions the excitation spectra exhibit two general profiles. For low surface coverages the excitation maximum is at 534 nm, again indicative of absorption by monomer. In contrast, for films greater than a monolayer thickness, the excitation spectra have a maximum at 556 nm, are very broad, and have significant absorption at 534 nm. This is consistent with absorption associated with monomer, exciton, and aggregates. However, the energy absorbed by the monomer at these multilayer thicknesses is transferred to exciton or aggregate excited states.

![Scheme 1](image)

Scheme 1 summarizes the observations. At low Rh6G coverages the emission signal is strong, arising from monomers, and the SERS signal is weak, because of the low number density. At monolayer coverage the emission spectrum is quenched, probably because of self-quenching and influence from the underlying gold surface. In contrast, the SERS signal is strong. Finally, at multilayer coverage both the emission
and SERS exhibit strong signals. The emission signal is enhanced because the fluorophores are sufficiently distant from the surface to allow MEF to occur, but the emission is from aggregate states, not monomers. The SERS signal is strong for two reasons: a large number density and electric field enhancement from the gold surface. The emission enhancement decreases at thicker films while the SERS intensity is still increasing. This change occurs because $I_{\text{emission}} \propto E^2$ while $I_{\text{SERS}} \propto E^4$, where E is the electric field, so that the SERS effect extends to thicker films than MEF.
CONCLUSION

Rh6G coated on gold has a complicated spectroscopic behavior as a function of coating thickness. The gold particles are synthesized to give reproducible sizes so that observed changes are not a result of the underlying gold layer. For submonolayer coverage, the structure of the Rh6G is primarily monomeric, as indicated by the emission spectrum. The emission, excitation, and SERS spectra all demonstrate changes as the film thickness exceeds a monolayer. In the case of SERS, this is observed as a change in the slope of the intensity vs coverage, with the change in slope occurring at about a monolayer thickness. For the fluorescence spectra, there are multiple changes observed as a function of Rh6G thickness. For submonolayer coverage, the emission intensity is high and arises from monomer excited state, but decreases substantially as the thickness increases. Surprisingly, with further coverage by Rh6G, the emission intensity increases, but the source of the emission is the aggregate excited state. The enhancements in both SERS and MEF rely on the electric field created by the underlying gold substrate.
ACKNOWLEDGMENTS AND REFERENCES

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Grant Award 2013-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. BIK acknowledges support from a URI Graduate Fellowship.

1. Jensen, T. R.; Schatz, G. C.; Van Duyne, R. P. Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet-Visible Extinction Spectroscopy and Electrodynamic Modeling. *J. Phys. Chem. B* 1999, 103, 2394 – 2401.

2. Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P. Nanosphere Lithography: Tunable Loaclized Surface Plasmon Resonance Spectra of Silver Nanoparticles. *J. Phys. Chem. B* 2000, 104, 10549 – 10556.

3. Tian, C.; Ding, C.; Liu, S.; Yang, S.; Song, X.; Ding, B.; Li, Z.; Fang, J.; Nanoparticle Attachment on Silver Corrugated-Wire Nanoantenna for Large Increases of Surface-Enhanced Raman Scattering. *ACS Nano* 2011, 5, 9442 – 9449.

4. Carles, R.; Farcau, C.; Bonafos, C.; Benassayag, G.; Bayle, M.; Benzo, P.; Groenen, J.; Zwick, A. Three Dimensional Design of Silver Nanoparticle Assemblies Embedded in Dielectrics for Raman Spectroscopy Enhancement and Dark-Field Imaging. *ACS Nano* 2011, 5, 8774 – 8782.
5. Zeiri, L.; Rechav, K.; Porat, Z.; Zeiri, Y. Silver Nanoparticles Deposited on Porous Silicon as a Surface-Enhanced Raman Scattering (SERS) Active Substrate. *Appl. Spectr.* **2012**, *66*, 294 – 299.

6. Kodiyath, R.; Papadopoulos, T. A.; Wang, J.; Combs, Z. A.; Li, H.; Brown, R. J. C.; Brédas, J.-L.; Tsukruk, V. V. Silver-Decorated Cylindrical Nanopores: Combining the Third Dimension with Chemical Enhancement for Efficient Trace Chemical Detection with SERS. *J. Phys. Chem. C* **2012**, *116*, 13917 – 13927.

7. Goh, M. S.; Lee, Y. H.; Pedireddy, S.; Phang, I. Y.; Tjiu, W. W.; Tan, J. M. R.; Ling, X. Y. A Chemical Route to Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application. *Langmuir* **2012**, *28*, 14441 – 14449.

8. Saison-Francioso, O.; Lévêque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.; Szunerits, S.; Boukherroub, R. Plasmonic Nanoparticles Array for High-Sensitivity Sensing: A Theoretical Investigation. *J. Phys. Chem. C* **2012**, *116*, 17819 – 17827.

9. Li, S.-L.; Miyazaki, H.; Song, H.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates. *ACS Nano* **2012**, *6*, 7381 – 7388.

10. McMahon, J. M.; Li, S.; Ausman, L. K.; Schatz, G. C. Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy. *J. Phys. Chem. C* **2012**, *116*, 1627 – 1637.

11. Mullin, J.; Schatz, G. C. Combined Linear Response Quantum Mechanics and Classical Electrodynamics (QM/ED) Method for the Calculation of Surface-Enhanced Raman Spectra. *J. Phys. Chem. A* **2012**, *116*, 1931 – 1938.
12. Vincenti, M. A.; Grande, M.; Bianco, G. V.; de Ceglia, D.; Stomeo, T.; De Vittorio, M.; Petruzzelli, V.; Bruno, G.; D'Orazio, A.; Scalora, M. Surface-Enhanced Raman Scattering from Finite Arrays of Gold Nano-Patches. *J. Appl. Phys.* **2013**, *113*, 013103.

13. Fernand, D.; Pardanaud, C.; Bergé-Lefranc, D.; Gallice, P.; Hornebecq, V. Adsorption of Rhodamine 6G on SiO$_2$ and Ag@SiO$_2$ Porous Solids: Coupling Thermodynamics and Raman Spectroscopy. *J. Phys. Chem. C* **2014**, *118*, 15308–15314.

14. Dia, Y.; Lenn, K. M.; Lee, W.-Y.; Blood-Forsythe, M. A.; Xu, J.; Mao, Y.; Kim, Y.; Reinspach, J. A.; Park, S.; Aspuru-Guzik, A.; Xue, G.; Clancy, P.; Bao, Z.; Mannsfeld, S. C. B. Understanding Polymorphism in Organic Semiconductor Thin Films through Nanoconfinement. *J. Am. Chem. Soc.* **2014**, *136*, 17046–17057.

15. Kumari, G.; Kandula, J.; Narayana, C. How Far Can We Probe by SERS? *J. Phys. Chem. C* **2015**, *119*, 20057–20064.

16. Qian, Z.; Li, C.; Fakhraai, Z.; Park, S.-J. Unusual Weak Interparticle Distance Dependence in Raman Enhancement from Nanoparticle Dimers. *J. Phys. Chem. C* **2016**, *120*, 1824–1830.

17. Lee, Y.; Kim, H.; Lee, J.; Yu, S. H.; Hwang, E.; Lee, C.; Ahn, J.-H.; Cho, J. H. Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. *Chem. Mater.* **2016**, *28*, 180–187.

18. Geddes, C. D.; Lakowicz, J. R. Metal-Enhanced Fluorescence. *J. Fluoresc.* **2002**, *12*, 121–129.
19. Geddes, C. D.; Cao, H.; Gryczynski, I.; Gryczynski, Z.; Fang, J.; Lakowicz, J. R. Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in vivo Imaging. J. Phys. Chem. A 2003, 107, 3443 – 3449.

20. Geddes, C. D.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz, J. R.; Metal-Enhanced Fluorescence: Potential Applications in HTS. Combin. Chem. High Through. Screening 2003, 6, 109 – 117.

21. Lakowicz, J. R. Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmon Emission. Anal. Biochem. 2005, 337, 171 – 194.

22. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Fast and Slow Deposition of Silver Nanorods on Planar Surfaces: Application to Metal-Enhanced Fluorescence. J. Phys. Chem. B 2005, 109, 3157 – 3162.

23. Zhang, Y.; Dragan, A.; Geddes, C. D. Wavelength Dependence of Metal-Enhanced Fluorescence. J. Phys. Chem. C 2009, 113, 12095 – 12100.

24. Deng, W.; Goldys, E. W. Plasmonic Approach to Enhanced Fluorescence for Applications in Biotechnology and the Life Sciences. Langmuir 2012, 28, 10152 – 10163.

25. Szmacinski, H.; Badugu, R.; Mahdavi, F.; Blair, S.; Lakowicz, J. R. Large Fluorescence Enhancements of Fluorophore Ensembles with Multilayer Plasmonic Substrates: Comparison of Theory and Experimental Results. J. Phys. Chem. C 2012, 116, 21563 – 21571.
26. Li, H.; Chen, C.-Y.; Wei, X.; Qiang, W.; Li, Z.; Cheng, Q.; Xu, D. Highly Sensitive Detection of Proteins Based on Metal-Enhanced Fluorescence with Novel Silver Nanostructures. *Anal. Chem.* **2012**, *84*, 8656 – 8662.

27. Guzatov, D. V.; Vaschenko, S. V.; Stankevich, V. V.; Lunevitch, A. Y.; Glukhov, Y. F.; Gaponenko, S. V. Plasmonic Enhancement of Molecular Fluorescence Near Silver Nanoparticles: Theory, Modeling, and Experiment. *J. Phys. Chem. C* **2012**, *116*, 10723 – 10733.

28. Aouani, H.; Rahmani, M.; Šípová, H.; Torres, V.; Hegnerová, K.; Beruete, M.; Homola, J.; Hong, M.; Navarro-Cia, M.; Maier, S. A. Plasmonic Nanoantennas for Multispectral Surface Enhanced Spectroscopies. *J. Phys. Chem. C* **2013**, *117*, 18620 – 18626.

29. Reineck, P.; Gómez, D.; Ng, S. H.; Karg, M.; Bell, T.; Mulvaney, P.; Bach, U. Distance and Wavelength Dependent Quenching of Molecular Fluorescence by Au@SiO$_2$ Core–Shell Nanoparticles. *ACS Nano* **2013**, *7*, 6636 – 6648.

30. Mulpur, P.; Podila, R.; Lingam, K.; Vemula, S. K.; Ramamurthy, S. S.; Kamisetti, V.; Rao, A. M. Amplification of Surface Plasmon Coupled Emission from Graphene-Ag Hybrid Films. *J. Phys. Chem. C* **2013**, *117*, 17205 – 17210.

31. Ray, K.; Lakowicz, J. R. Metal-Enhanced Fluorescence Lifetime Imaging and Spectroscopy on a Modified SERS Substrate. *J. Phys. Chem. C* **2013**, *117*, 15790 – 15797.

32. Choudhury, S. D.; Badugu, R.; Ray, K.; Lakowicz, J. R. Steering Fluorescence Emission with Metal-Dielectric-Metal Structures of Au, Ag, and Al. *J. Phys. Chem. C* **2013**, *117*, 15798 – 15807.
33. Canesi, E. V.; Capsoni, M.; Karnam, L.; Lucotti, A.; Bertarelli, C.; Del Zoppo, M. Solution Processed, Versatile Multilayered Structures for the Generation of Metal-Enhanced Fluorescence. J. Phys. Chem. C 2013, 117, 13197 – 13201.

34. Matoian, M. A.; Sweetman, R.; Hall, E. C.; Albanese, S.; Euler, W. B. Light Trapping to Amplify Metal Enhanced Fluorescence with Application for TNT Sensing. J. Fluoresc. 2013, 23, 877 – 880.

35. Canesi, E. V.; Capsoni, M.; Karnam, L.; Lucotti, A.; Bertarelli, C.; Del Zoppo, M. Solution Processed, Versatile Multilayered Structures for the Generation of Metal-Enhanced Fluorescence. J. Phys. Chem. C 2013, 117, 13197 – 13201.

36. Kim, K.; Lee, J. W.; Shin, K. S. Polyethylenimine-Capped Ag Nanoparticle Film as a Platform for Detecting Charged Dye Molecules by Surface-Enhanced Raman Scattering and Metal-Enhanced Fluorescence. ACS Appl. Mater. Interfaces 2012, 4, 5498 − 5504.

37. Gabudean, A. M.; Focsan, M.; Astilean, S. Gold Nanorods Performing as Dual-Modal Nanoprobes via Metal-Enhanced Fluorescence (MEF) and Surface-Enhanced Raman Scattering (SERS). J. Phys. Chem. C 2012, 116, 12240 − 12249.

38. Latendresse, C. A.; Fernandes, S. C.; You, S.; Zhang, H. Q.; Euler, W. B. A Fluorometric Sensing Array for the Detection of Military Explosives and IED Materials. Anal. Methods 2013, 5, 5457–5463.

39. Zhang, H. Q.; Euler, W. B. Detection of Gas-Phase Explosive Analytes Using Fluorescent Spectroscopy of Thin Films of Xanthene Dyes. Sens. & Actuat. B: Chem. 2016, 225, 553 – 562.
40. Selwyn, J. E.; Steinfeld, J. I. Aggregation Equilibria of Xanthene Dyes. *J. Phys. Chem.*, **1972**, 76, 762–774.

41. Kubin, R. F.; Fletcher, A. N. Fluorescence Quantum Yields of Some Rhodamine Dyes. *J. Luminesc.*, **1982**, 27, 455–462.

42. Arbeloa, F.; Gonzalez, I. L.; Ojeda, P. R.; Arbeloa, I. L. Aggregate Formation of Rhodamine 6G in Aqueous Solution. *J. Chem. Soc., Faraday Trans* **1982**, 78, 989–994.

43. Penzkofer, A.; Lu, Y. Fluorescence Quenching of Rhodamine 6G in Methanol at High Concentration. *Chem. Phys.* **1986**, 103, 399–405.

44. Lu, Y.; Penzkofer, A. Absorption Behaviour of Methanolic Rhodamine 6G Solutions at High Concentration. *Chem. Phys.* **1986**, 107, 175–184.

45. Penzkofer, A.; Leupacher, W. Fluorescence Behaviour of Highly Concentrated Rhodamine 6G Solutions. *J. Lumin.* **1987**, 37, 61–72.

46. Ojeda, P. R.; Amashta, I. A. K.; Ochoa, J. R.; Arbeloa, I. L. Excitonic Treatment and Bonding of Aggregates of Rhodamine 6G in Ethanol. *J. Chem. Soc. Faraday Trans. 2* **1988**, 84, 1–8.

47. O. Valdes-Aguilera and D. C. Neckers, “Aggregation Phenomena in Xanthene Dyes,” *Acc. Chem. Res.*, **1989**, 22, 171–177.

48. K. Kemnitz and K. Yoshihara, “Entropy-Driven Dimerization of Xanthene Dyes in Nonpolar Solution and Temperature-Dependent Fluorescent Decay of Dimers,” *J. Phys. Chem.*, **1991**, 95, 6095–6104.
49. Kemnitz, K.; Yoshihara, K. Entropy-Driven Dimerization of Xanthene Dyes in Nonpolar Solution and Temperature-Dependent Fluorescence Decay of Dimers. *J. Phys. Chem.* 1991, 95, 6095–6104.

50. Tapia Estevez, M.; López Rbeloa, F.; López Rbeloa, T.; López Rbeloa, I.; Schoonheydt, R. Spectroscopic Study of the Adsorption of Rhodamine 6G on Laponite B for Low Loadings. *Clay Min.* 1994, 29, 105–113.

51. Arbeloa, F.; Estevez, M.; Arbeloa, T.; Arbeloa, I. Spectroscopic Study of the Adsorption of Rhodamine 6G on Clay Minerals in Aqueous Suspensions. *Clay Miner.* 1997, 32, 97–106.

52. Antonov, L.; Gergov, G.; Petrov, V.; Kubista, M.; Nygren, J. UV-Vis Spectroscopic and Chemometric Study on the Aggregation of Ionic Dyes in Water. *Talanta* 1999, 49, 99–106.

53. Micheau, J.; Zakharova, G.; Chibisov, A. Reversible Aggregation, Precipitation and Re-Dissolution of Rhodamine 6G in Aqueous Sodium Dodecyl Sulfate. *Phys. Chem. Chem. Phys.* 2004, 2, 2420–2425.

54. Martínez, V. M.; Arbeloa, F. L.; Prieto, J. B.; Arbeloa, I. L. Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 2 Fluorescence Spectroscopy. *J. Phys. Chem. B* 2005, 109, 7443–7450.

55. De, S.; Das, S.; Girigoswami, A. Environmental Effects on the Aggregation of Some Xanthene Dyes Used in Lasers. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* 2005, 61, 1821–1833.

56. Anedda, A.; Carbonaro, C. M.; Corpino, R.; Ricci, P. C.; Grandi, S.; Mustarelli, P. C. Formation of Fluorescent Aggregates in Rhodamine 6G Doped Silica Glasses. *J. Non. Cryst. Solids* 2007, 353, 481–485.
57. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles. *J. Am. Chem. Soc.* **2007**, *129*, 7647–7656.

58. A. Tomioka and Y. Kamiyama, “Dewetting-Assisted Formation of Novel Dequenched Aggregates of Rhodamines: Comparison with J- and H-Aggregates,” *Mol. Cryst. Liq. Cryst.*, **2009**, *505*, 193/[431] – 202/[440].

59. Lasio, B.; Malfatti, L.; Innocenzi, P. Photodegradation of Rhodamine 6G Dimers in Silica Sol–Gel Films. *J. Photochem. Photobiol. A Chem.* **2013**, *271*, 93–98.

60. Lofaj, M.; Valent, I.; Bujdak, J. Mechanism of Rhodamine 6G Molecular Aggregation in Montmorillonite Colloid. *Cent. Eur. J. Chem.* **2013**, *11*, 1606–1619.

61. De Queiroz, T. B.; Botelho, M. B. S.; De Boni, L.; Eckert, H.; De Camargo, A. S. S. Strategies for Reducing Dye Aggregation in Luminescent Host-Guest Systems: Rhodamine 6G Incorporated in New Mesoporous Sol-Gel Hosts. *J. Appl. Phys.* **2013**, *113*, 113508-1 – 113508-11.

62. Zehentbauer, F. M.; Moretto, C.; Stephen, R.; Thevar, T.; Gilchrist, J. R.; Pokrajac, D.; Richard, K. L.; Kiefer, J. Fluorescence Spectroscopy of Rhodamine 6G: Concentration and Solvent Effects. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* **2014**, *121*, 147–151.

63. Fedoseeva, M.; Letrun, R.; Vauthey, E. Excited-State Dynamics of Rhodamine 6G in Aqueous Solution and at the Dodecane/Water Interface. *J. Phys. Chem. B* **2014**, *118*, 5184–5193.
64. Leonenko, E. V.; Telbiz, G. M.; Bogoslovskaya, A. B.; Manoryk, P. A. Effect of Aggregation of Rhodamine 6G on the Spectral and Luminescence Characteristics of Hybrid Mesostructured Silica Films. *Theor. Exp. Chem.* **2015**, *50*, 358–363.

65. Chapman, M.; Mullen, M.; Novoa-Ortega, E.; Alhasani, M.; Elman, J. F.; Euler, W. B. Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass. *J. Phys. Chem. C* **2016**, *120*, 8289 – 8297.

66. Kasha, M. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. *Radiat. Res.* **1963**, *20*, 55–70.

67. Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M. The Exciton Model in Molecular Spectroscopy. *Pure Appl. Chem.* **1965**, *11*, 371–392.

68. Zhu, X.; Monahan, N. R.; Gong, Z.; Zhu, H.; Williams, K. W.; Nelson, C. A. Charge Transfer Excitons at van de Waals Interfaces. *J. Am. Chem. Soc.* **2015**, *137*, 8313 – 8320.

69. Birks, J. Excimers. *Rep. Prog. Phys.* **1975**, *38*, 903–974.

70. Golberg, D.; Zhang, C.; Xu, Z. Cubic Lattice Nanosheets: Thickness-Driven Light Emission. *ACS Nano* **2014**, *8*, 6516 – 6519.

71. Xu, J.; Ding, L.; Chen, J.; Gao, S.; Li, L.; Zhou, D.; Li, X.; Xue, G. Sensitive Characterization of the Influence of Substrate Interfaces on Supported Thin Films. *Macromolecules* **2014**, *47*, 6365 – 6372.

72. Höfle, S.; Lutz, T.; Egel, A.; Nickel, F.; Kettlitz, S. W.; Gomard, G.; Lemmer, U.; Colsmann, A. Influence of the Emission Layer Thickness on the
Optoelectronic Properties of Solution Processed Organic Light-Emitting Diodes. *ACS Photonics* **2014**, *1*, 968 – 973.

73. McCrate J. M.; Ekerdt, J. G. Coverage Dependent Luminescence from Two-Dimensional Systems of Covalently Attached Perylene Fluorophores on Silica. *J. Phys. Chem. C* **2014**, *118*, 2104 – 2114.

74. Debnath, P.; Chakraborty, S. Deb, S.; Nath, J.; Bhattacharjee, D.; Hussain, S. A. Reversible Transition Between Excimer and J-Aggregate of Indocarbocyanine Dye in Langmuir-Blodgett (LB) Films. *J. Phys. Chem. C* **2015**, *119*, 9429 – 9441.

75. Hildebrandt, P.; Stockburger, M.; Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver. *J. Phys. Chem.* **1984**, *88*, 5935 – 5944.

76. Nie, S.; Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. *Science* **1997**, *275*, 1102 – 1106.

77. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of Plasmon and Molecular Resonances for Rh6G Adsorbed on Silver Nanoparticles. *J. Am. Chem. Soc.* **2007**, *129*, 7647 – 7656.

78. Whelan, J. C.; Karawdeniya, B. I.; Bandara, Y. M. N. D. Y.; Velleco, B. D.; Masterson, C. M.; Dwyer, J. R. Electroless Plating of Thin Gold Films Directly onto Silicon Nitride Thin Films and into Micropores. *ACS Appl. Mater. Interfaces* **2014**, *6*, 10952 – 10957. Whelan, J. C.; Karawdeniya, B. I.; Bandara, Y. M. N. D. Y.; Velleco, B. D.; Masterson, C. M.; Dwyer, J. R., Correction to Electroless Plating of Thin Gold Films Directly onto Silicon Nitride Thin Films and into Micropores. *ACS Appl. Mater. Interfaces* **2015**, *7*, 26004.
79. Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanoparticle Thin Films. *Colloids and Surf.* **2002**, *202*, 119 – 126.

80. Fu, B.; Flynn, J. D.; Isaacoff, B. P.; Rowland, D. J.; Biteen, J. S. Super-Resolving the Distance-Dependent Plasmon-Enhanced Fluorescence of Single Dye and Fluorescent Protein Molecules. *J. Phys. Chem. C* **2015**, *119*, 19350 – 19358.

81. Lin, H.-H.; Chen, I.-C. Study of the Interaction between Gold Nanoparticles and Rose Bengal Fluorophores with Silica Spacers by Time-Resolved Fluorescence Spectroscopy. *J. Phys. Chem. C* **2015**, *119*, 26663 – 26671.

82. Li, H.; Kang, J.; Yang, J.; Wu, B. Distance Dependence of Fluorescence Enhancement in Au Nanoparticles@Mesoporous Silica@Europium Complex. *J. Phys. Chem. C* **2016**, *120*, 16907 – 16912.