The Julia sets of Chebyshev’s method with small degrees

Tarakanta Nayak · Soumen Pal

Received: 17 February 2022 / Accepted: 10 June 2022 / Published online: 13 July 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Given a polynomial \(p \), the degree of its Chebyshev’s method \(C_p \) is determined. If \(p \) is cubic, then the degree of \(C_p \) is found to be 4, 6 or 7 and we investigate the dynamics of \(C_p \) in these cases. If a cubic polynomial \(p \) is unicritical or non-generic, then it is proved that the Julia set of \(C_p \) is connected. The family of all rational maps arising as the Chebyshev’s method applied to a cubic polynomial which is non-unicritical and generic is parametrized by the multiplier of one of its extraneous fixed points. Denoting a member of this family with an extraneous fixed point with multiplier \(\lambda \) by \(C_\lambda \), we have shown that the Julia set of \(C_\lambda \) is connected whenever \(\lambda \in [-1, 1] \).

Keywords Chebyshev’s method · Extraneous fixed points · Connected Julia sets

Mathematics Subject Classifications (2010) 37F10 · 65H05

1 Introduction

Finding the roots of a given polynomial is a classical and widely studied topic. One can see [7] and references therein for an overall idea of the subject from a theoretical as well as from an application point of view. A root-finding method is a function that associates a polynomial \(p \) with a rational map \(F_p \) such that each root \(z \) of \(p \) is an attracting fixed point of \(F_p \), i.e., \(F_p(z) = z \) and \(|F'_p(z)| < 1 \). It is well-known that there is an open connected subset of the extended complex plane \(\hat{\mathbb{C}} \) containing the attracting fixed point such that every point in this set converges to the attracting fixed point under the iteration of \(F_p \). This is how a root of a polynomial can be approximated starting with a suitably chosen point.

The Fatou set of a rational map \(R \), denoted by \(\mathcal{F}(R) \) is the set of all points where \(\{R^n\}_{n>0} \) is equicontinuous, and its complement in \(\hat{\mathbb{C}} \) is called the Julia set of \(R \). The Julia set of \(R \) is denoted by \(\mathcal{J}(R) \). Complex dynamics is the study of the Fatou set and the Julia set of a given rational map. For an introduction to the subject, one may refer to a book by Beardon [1]. The root-finding methods present themselves as an interesting class of rational maps from a dynamical point of view.

A fixed point \(z_0 \in \mathbb{C} \) of a rational map \(R \) is called attracting, repelling or indifferent if the modulus of its multiplier \(|R'(z_0)| \) is less than, greater than or is equal to 1, respectively. The fixed point \(z_0 \) is called superattracting if \(R'(z_0) = 0 \). If \(\infty \) is a fixed point of \(R \), then its multiplier is defined as \(|h'(0)| \) where \(h(z) = \frac{1}{R(z)} \) and is called attracting, repelling or indifferent accordingly. The basin of attraction of an attracting fixed point \(z_0 \), denoted by \(A_{z_0} \), is the set
\[\{ z \in \hat{C} : \lim_{n \to \infty} R^n(z) = z_0 \}. \] This is an open set and is not necessarily connected. The component of \(A_{z_0} \) containing \(z_0 \) is called the immediate attracting basin of \(z_0 \). An indifferent fixed point is called rationally indifferent or parabolic if its multiplier is a root of unity. The basin of a parabolic fixed point \(z_0 \) of a rational map \(R \) is the set \(\{ z \in \hat{C} \setminus \mathcal{J}(R) : \lim_{n \to \infty} R^n(z) = z_0 \} \). Every component of this basin containing \(z_0 \) on its boundary is called an immediate parabolic basin. It is important to note that any point whose iterated image is \(z_0 \) is not in the basin of the parabolic fixed point \(z_0 \). The basin of an attracting or a parabolic fixed point is in the Fatou set. The immediate attracting basin (or the immediate parabolic basin) corresponding to a periodic point \(z \) of period \(p \) is defined by a change of coordinate using \(z \mapsto \frac{1}{z} \). This is an open set and \(\hat{C} \). The only other possible periodic Fatou component for a rational map is a Siegel disk or a Herman ring. The details can be found in [1].

One of the widely discussed root-finding methods is the Newton method and that is the first member of a family known as the König’s methods. A systematic study of König’s methods is done by Buff and Henriksen in [2]. A fixed point of a root-finding method \(F_p \) is called extraneous if it is not a root of \(p \). An important aspect of König’s methods is that all its extraneous fixed points are repelling. This article is concerned with a root-finding method for which an extraneous fixed point can be non-repelling.

For a non-constant, nonlinear polynomial \(p \), its Chebyshev’s method is defined as the rational map
\[
C_p(z) = z - \left(1 + \frac{1}{2} L_p(z) \right) \frac{p(z)}{p'(z)},
\]
where
\[
L_p(z) = \frac{p(z)p''(z)}{p'(z)^2}.
\]
This is a third order convergent method, i.e., its local degree (made precise in the following paragraph) is three at each simple root of the polynomial \(p \). Note that for a monomial or for a linear polynomial \(p \), \(C_p \) is a linear polynomial. We do not consider this trivial situation and are concerned with polynomials with degree at least two and which are not monomials. The goal of this article is to undertake a systematic study of the dynamics of the Chebyshev’s method. The degree of \(C_p \) is determined for every polynomial \(p \) and the dynamics of \(C_p \) is investigated for cubic polynomials \(p \).

The degree of a rational map is the first thing one needs to know for investigating its dynamics. While discussing a number of basic properties of \(C_p \), the authors in [5] mention that the degree of \(C_p \) is at most \(3d - 2 \) where \(d \) is the degree of the polynomial \(p \). We found that the exact degree of \(C_p \) depends not only on the number of distinct roots of \(p \) but on certain types of its critical points also. We determine the exact degree of \(C_p \) for every \(p \). Some discussion and definitions are required to state this result. If a rational map \(R \) is analytic at a point \(z_0 \) and its Taylor series about \(z_0 \) is
\[a_k(z - z_0)^k + a_{k+1}(z - z_0)^{k+1} + \cdots \]
for some \(k > 0 \) where \(a_k \neq 0 \), then we say the local degree of \(R \) at \(z_0 \), denoted by deg \((R, z_0) \), is \(k \). The map \(R \) is like \(z \mapsto z^k \) near \(z_0 \). The local degree of \(R \) at \(\infty \) or at a pole is defined by a change of coordinate using \(z \mapsto \frac{1}{z} \). More precisely, if \(R(\infty) \) is finite then deg \((R, \infty) \) is defined as the degree of \(R(\frac{1}{z}) \) at 0. If \(R(\infty) = \infty \) then deg \((R, \infty) \) is defined as deg \((\frac{1}{R(\frac{1}{z})}) \). Similarly, if \(z_0 \) is a pole of \(R \) then its local degree at \(z_0 \) is defined to be deg \((\frac{1}{R(z)} \cdot z_0) \).

A root \(\tilde{z} \) of a rational map \(R \) is said to have multiplicity \(k \) if \(R(\tilde{z}) = R'(\tilde{z}) = \cdots = R^{(k-1)}(\tilde{z}) = 0 \), but \(R^{(k)}(\tilde{z}) \neq 0 \) i.e., the local degree of \(R \) at \(\tilde{z} \) is \(k \). A root is called simple if its multiplicity is 1. It is called multiple if its multiplicity is at least two. A root with multiplicity exactly equal to two is called a double root. A point \(z \in \hat{C} \) is called a critical point of a rational map \(R \) if deg \((R, z) \geq 2 \). In particular, multiple roots and multiple poles are critical points. By definition, the multiplicity of a critical point \(z \) of \(R \) is deg \((R, z) - 1 \). A critical point is called simple if its multiplicity is one.

Definition 1.1 (Special critical point) For a polynomial \(p \), a critical point \(c \in \hat{C} \) is called special if \(p(c) \neq 0 \) but \(p''(c) = 0 \).

A finite critical point with multiplicity at least 2 and which is not a root is a special critical point. For example, 0 is a special critical point of \(p(z) = z^d + b \) whenever \(d \geq 3 \) and \(b \neq 0 \). But it is not so for \(b = 0 \). We now present the first result of this article.

Theorem 1.1 (Degree of \(C_p \)) Let \(p \) be a polynomial of degree \(d \). Let \(m, n \) and \(r \) denote the number of its distinct simple roots, double roots and roots of multiplicity bigger than 2, respectively. If \(p \) has \(s \) number of
distinct special critical points, then
\[
\deg(C_p) = 3(m + n + r) - 2 - B + s
\]
where \(B\) is the sum of multiplicities of all the special critical points. If \(p\) has no special critical point then
\[
\deg(C_p) = 3(m + n + r) - 2.
\]

A polynomial is called generic if all its roots are simple. If \(p\) is generic, then \(m = d\) and \(n = r = 0\), and we have an immediate consequence.

Corollary 1.1 If \(p\) is generic, then
\[
\deg(C_p) = \begin{cases}
3d - 2 - B + s & \text{if \(p\) has \(s\) many special critical points with total multiplicity \(B\)} \\
3d - 2 & \text{if \(p\) has no special critical point.}
\end{cases}
\]

The following corollary deals with some other special situations. A polynomial is called unicritical if it has only one finite critical point.

Corollary 1.2 1. If \(p\) has two distinct roots then
\[
\deg(C_p) = 4.
\]
In all other cases, \(\deg(C_p) \geq 6\). In particular, there is no polynomial \(p\) such that \(\deg(C_p) = 5\).

2. If \(\deg(p) = d\) and all its critical points are special then
\[
\deg(C_p) = 2d + s - 1\]
where \(s\) is the number of distinct special critical points of \(p\). Further, if \(p\) is unicritical then
\[
\deg(C_p) = 2d.
\]

The degree of the Chebyshev’s method applied to a cubic polynomial is found to be 4, 6 or 7. The remaining part of this article focusses on the dynamics of the Chebyshev’s method in these cases.

The dynamics of the Chebyshev’s method for quadratic polynomials has been investigated by Kneisl in [8] who calls this as super-Newton method. The author gives an example of cubic polynomial whose Chebyshev’s method has a superattracting extraneous fixed point. Olivo et al. [4] consider a one parameter family of cubic polynomials and study their Chebyshev’s method. The case of cubic polynomials are also studied in [5] where the authors have discussed the cubic polynomials whose Chebyshev’s method has attracting extraneous fixed points and attracting periodic points. In all these results, the connectedness of the Julia set remains unexplored.

For a polynomial \(p\), the Chebyshev–Halley method of order \(\sigma\) is given by
\[
H^\sigma_p(z) = z - \left[1 + \frac{1}{2} \frac{p(z)p''(z)}{(p'(z))^2 - \sigma p(z)p''(z)} \right] \frac{p(z)}{p'(z)} \text{ where } \sigma \in \mathbb{C}.
\]

The Chebyshev’s method is a special member of the Chebyshev–Halley family. In fact, \(C_p = H^0_p\). The dynamics of the Chebyshev–Halley family applied to unicritical polynomials \(z \mapsto z^n - 1, n \in \mathbb{N}\) is investigated in [3]. A necessary and sufficient condition for disconnected Julia sets is found in the same paper. More precisely, it is proved that the Julia set of these root-finding methods is disconnected if and only if the immediate basin of 1 (which is a superattracting fixed point corresponding to a root of the polynomial) contains a critical point but no pre-image of 1 other than itself.

The numerical study done in this paper suggests the existence of disconnected Julia set for the Chebyshev–Halley family. In fact, \(\Lambda = H^0_p\) for several values of \(\sigma\) when \(p\) is a cubic or higher degree unicritical polynomial. However, the paper does not contain any theoretical proof for this statement.

Though the Julia set of Newton method (applied to a polynomial) is always connected [11], there are other members of König’s methods with a disconnected Julia set [6]. The Chebyshev’s method applied to non-generic cubic polynomials is dealt in [4], where the connectivity question of their Julia sets remains to be answered.

We prove that the Julia set of Chebyshev’s method of each cubic polynomial that are either unicritical or non-generic is connected. This is Proposition 4.4 of this article. In fact, this proposition shows that the Fatou set of \(C_p\) is the union of the immediate superattracting basins (and their pre-images) corresponding to the three roots of \(p\) when \(p\) is unicritical. Note that every unicritical polynomial is generic. For non-generic \(p\), the Fatou set of \(C_p\) is found to be the union of the two immediate attracting basins (and their pre-images) corresponding to the two roots of \(p\).

As noted earlier, the existence of an attracting or a rationally indifferent extraneous fixed point is a new feature of the Chebyshev’s method. Its dynamical relevance is revealed by parametrizing all the cubic polynomials in terms of the multiplier of an extraneous fixed point of its Chebyshev’s method. This is done in Lemma 4.5 of this article. More precisely, it is shown that for every \(\lambda \in \mathbb{C}\{5, 6\}\), if the Chebyshev’s method of a cubic, generic and non-unicritical polynomial has an extraneous fixed point with multiplier \(\lambda\) then it is conjugate to the Chebyshev’s method \(C_{\lambda}\) of \(p_{\lambda}(z) = z^3 + 3z + \frac{32 - 39\lambda + 124}{(5 - \lambda)^2 \sqrt{5 - \lambda}}\) where the
principal branch of the square root $\sqrt{5 - \lambda}$ is considered. Though other ways to parametrize the family \(\{ C_p : p \text{ is a cubic polynomial} \} \) are already known \cite{4,5}, ours is advantageous in the sense that the parameter itself reveals the nature of an extraneous fixed point. The case $\lambda = 5$ is possible when p is unicritical whereas there is no cubic polynomial which has an extraneous fixed point with multiplier equal to 6 (Remark 4.3(2)). Then we study the dynamics of C_λ for $\lambda \in [-1, 1]$ and prove the following.

Theorem 1.2 For $-1 \leq \lambda \leq 1$, the Julia set of C_λ is connected.

The proof of the theorem in fact describes the dynamics of C_λ completely. The Fatou set of C_λ is the union of the superattracting immediate basins corresponding to the three roots of p_λ and the immediate basin of the extraneous fixed point with multiplier λ - this is attracting if $\lambda \in (-1, 1)$ and rationally indifferent if $\lambda = \pm 1$.

Though both C_{-1} and C_1 have a rationally indifferent extraneous fixed point they differ in terms of the number of extraneous fixed points. In fact, the number of extraneous fixed points of C_{-1} is four whereas it is three for C_1. A fixed point of a rational map R is called multiple, with multiplicity $k \geq 2$ if it is a multiple root of $R(z) - z = 0$ with multiplicity k. Otherwise, it is called simple. Here C_1 has a multiple fixed point whereas all the fixed points of C_{-1} are simple.

The images of the Julia set of C_λ for $\lambda = -1$, 0 and 1 are given in Figs. 1, 2 and 3, respectively. In each figure, the three immediate basins corresponding to the

Fig. 1 The Julia set of C_{-1}

(a) Periodic Fatou components

(b) The immediate parabolic basin

Fig. 2 The Julia set of C_0

(a) Periodic Fatou components

(b) The immediate superattracting basin
roots of the polynomial are given in blue, green and pink. The immediate basin of the extraneous attracting (for \(C_0 \)) and parabolic (for \(C_{-1} \) and \(C_1 \)) fixed point is indicated in red whose zoomed version is also given in each figure.

Section 2 describes some useful properties of the Chebyshev’s method. The degree of this method is determined in Sect. 3. The dynamics of \(C_\lambda, -1 \leq \lambda \leq 1 \) is investigated in Sect. 4. The article concludes with Sect. 5 presenting several problems arising out of this work.

2 Some properties of the Chebyshev’s method

Recall that, for a polynomial \(p \),

\[
C_p(z) = z - \left(1 + \frac{1}{2}L_p(z)\right) \frac{p(z)}{p'(z)},
\]

and the derivative of the Chebyshev’s method is given by

\[
C_p'(z) = \frac{L_p(z)^2}{2} (3 - L_p(z))
\]

(1)

where \(L_p(z) = \frac{p(z)p''(z)}{p'(z)^2} \) and \(L_p'(z) = \frac{p'(z)p''(z)}{p'(z)^2} \).

Two rational maps \(R, S \) are conformally conjugate, in short conjugate if there is a Möbius map \(\phi \) such that \(S = \phi \circ R \circ \phi^{-1} \). Here \(\circ \) denotes the composition of functions. Since \(S^n = \phi \circ R^n \circ \phi^{-1} \) for all \(n \), the iterative behaviours of \(R \) and \(S \) are essentially the same. More precisely, we have the following.

Lemma 2.1 (Theorem 3.1.4 [1]) If \(S \) and \(R \) are two rational maps such that \(S = \phi \circ R \circ \phi^{-1} \) for a Möbius map \(\phi \) then \(J(S) = \phi(J(R)) \).

There are different polynomials giving rise to the same Chebyshev’s method up to conjugacy. The so-called Scaling Theorem, which is also true for the Chebyshev–Halley method makes it precise. For brevity we use \(H_p \) instead of \(H_p^\sigma \) for denoting the Chebyshev–Halley method of order \(\sigma \) applied to \(p \).

Theorem 2.2 (Scaling Theorem) Let \(p \) be a polynomial of degree at least two. Then \(H_p = H_{\lambda p} \) for all \(\lambda \neq 0 \). If \(T(z) = az + \beta \), with \(a, \beta \in \mathbb{C}, a \neq 0 \) and \(g = p \circ T \) then \(T \circ H_g \circ T^{-1} = H_p \).

Proof For \(g(z) = \lambda p(T(z)), g'(z) = \lambda p'(T(z))T'(z) = \lambda \alpha p'(T(z)) \) and \(g''(z) = \lambda \alpha^2 p''(T(z)). \) Then

\[
H_g(z) = z - \left[1 + \frac{1}{2} \left(\frac{g(z)g''(z)}{[g'(z)]^2 - \sigma g(z)g''(z)}\right) \frac{g(z)}{g'(z)}\right] = z - \left[1 + \frac{1}{2} \left(\frac{\lambda \alpha p'(T(z))p''(T(z))}{[\lambda \alpha p'(T(z))]^2 - \sigma \lambda \alpha^2 p(T(z))p''(T(z))}\right) \times \frac{\lambda p(T(z))}{\lambda \alpha p'(T(z))}\right] = z - \left[1 + \frac{1}{2} \left(\frac{p(T(z))p''(T(z))}{[p'(T(z))]^2 - \sigma p(T(z))p''(T(z))}\right) \times \frac{p(T(z))}{p'(T(z))}\right].
\]
This implies that
\[
T \circ H_{g}(z) = \alpha H_{g}(z) + \beta = T(z)
\]
and
\[
\begin{align*}
&\left[1 + \frac{1}{2} \left(\frac{p'(T(z))}{p'(T(z))} - \frac{\alpha p(T(z))}{p'(T(z))} \right) \right] \\
&\times \frac{p(T(z))}{p'(T(z))}.
\end{align*}
\]
This is nothing but \(H_{p}(T(z))\). Now putting \(T(z) = z\) we get \(H_{p} = H_{k,p}\). Similarly, for \(\lambda = 1\), we have \(T \circ H_{g} \circ T^{-1} = T_{p}\). \(\Box\)

Remark 2.1 1. For every polynomial \(p(z) = a_{d}z^{d} + \ldots + a_{0}\), there is an affine map \(T(z) = az + \beta\) where \(a = \frac{1}{a_{d}}\) and \(\beta = -\frac{a_{d-1}}{a_{d}}\) so that the coefficients of \(z^{d}\) and \(z^{d-1}\) in \((p \circ T)(z)\) are 1 and 0, respectively. It follows from the Scalling Theorem that \(C_{p}\) is conjugate to \(C_{p,T}\) leading to a considerable amount of simplification. We can assume without loss of generality that \(a\) is nonpositive or centered, or both as long as the dynamics of \(C_{p}\) is concerned.

2. In view of the previous remark, for a cubic polynomial \(p\), we assume without loss of generality that \(p(z) = z^{3} + az + b\) for some \(a, b \in \mathbb{C}\). Then \(p'(z) = 3z^{2} + a\), \(p''(z) = 6z\) and \(p'''(z) = 6\).

In this case,
\[
L_{p}(z) = \frac{(3z^{2} + a)(3z^{2} + a + 2b)}{3(z^{2} + a)^{2}}
\]
and
\[
L_{p'}(z) = \frac{3z^{2} + a}{6z^{2}}.
\]

Hence
\[
C_{p}(z)
\]
= \[
\frac{15z^{7} + 6az^{5} - 15bz^{4} - a^{2}z^{3} - 12abz^{2} - 3b^{2}z - a^{2}b}{(3z^{2} + a)^{2}}.
\]

As stated earlier, the roots of \(p\) are fixed points of \(C_{p}\). But every fixed point of \(C_{p}\) is not necessarily a root of \(p\).

Definition 2.1 A fixed point of \(C_{p}\) is called extraneous if it is not a root of \(p\).

An extraneous fixed point of \(C_{p}\) can be attracting, repelling or indifferent. This is where the Chebyshev’s method stands out from the comparatively well-studied König’s methods, where all the extraneous fixed points are repelling. Now we deal with all the fixed points of \(C_{p}\). Though the following is well-known, we choose to provide a proof for the sake of completeness.

Proposition 2.3 (Fixed points of \(C_{p}\)) Let \(C_{p}\) be the Chebyshev’s method applied to a polynomial \(p\) with degree \(d\) where \(d \geq 2\).

1. Every root of \(p\) with multiplicity \(k\) is a fixed point of \(C_{p}\) with multiplier \(k(k-1)(2k-1)\). In particular, every (simple) root of \(p\) is an attracting (superattracting) fixed point of \(C_{p}\).

2. The point at \(\infty\) is a fixed point of \(C_{p}\) with multiplier \(\frac{2p^{2}}{2d^{2} - 3d + 1}\). In particular, it is repelling.

3. A finite extraneous fixed point \(\xi\) of \(C_{p}\) is precisely a root of \(L_{p}(z) = -2\), and is attracting, repelling or indifferent if \(2|3 - L_{p}(\xi)|\) is less than, greater than or is equal to 1, respectively.

Proof 1. Let \(\alpha\) be a root of \(p\) with multiplicity \(k\). Then \(p(z) = (z - \alpha)^{k}g(z)\) for some polynomial \(g\) with \(g(\alpha) \neq 0\). Further,
\[
p'(z) = k(z - \alpha)^{k-1}g(z) + (z - \alpha)^{k}g'(z)
\]
= \[
(z - \alpha)^{k-1}\left[k\left(g(z) + (z - \alpha)g'(z) \right) \right],
\]
\[
p''(z) = k(k - 1)(z - \alpha)^{k-2}g(z) + 2k(z - \alpha)^{k-1}g'(z) + (z - \alpha)^{k}g''(z)
\]
= \[
(z - \alpha)^{k-2}\left[k(k - 1)g(z) + 2k(z - \alpha)g'(z) + (z - \alpha)^{2}g''(z) \right]
\]
and
\[
p'''(z) = k(k - 1)(k - 2)(z - \alpha)^{k-3}g(z) + 3k(k - 1)(z - \alpha)^{k-2}g'(z)
\]
+ \[
3k(z - \alpha)^{k-1}g''(z) + (z - \alpha)^{k}g'''(z)
\]
= \[
(z - \alpha)^{k-3}\left[k(k - 1)(k - 2)g(z) + 3k(k - 1)(z - \alpha)g'(z)
\]
+ \[
3k(z - \alpha)^{2}g''(z) + (z - \alpha)^{3}g'''(z) \right].
\]

Note that for \(k = 2\), the first term in the expression of \(p'''\) vanishes and we have \(p'''(z) = 6g'(z) + 6(z - \alpha)g''(z) + (z - \alpha)^{2}g'''(z)\). Hence we get
\[
L_{p}(z) = \frac{p(z)p''(z)}{p'(z)^{3}}
\]
= \[
\frac{g(z)[k(k - 1)g(z) + 2k(z - \alpha)g'(z) + (z - \alpha)^{2}g''(z)]}{[k\left(g(z) + (z - \alpha)g'(z) \right)]^{3}}.
\]
This gives
\[L_p(\alpha) = \frac{k - 1}{k}. \] (2)

Similarly it is found that \(L_p'(\alpha) = \frac{k - 2}{k - 1} \). Hence
\[
C_p'(\alpha) = \frac{[L_p(\alpha)]^2}{2} \left[3 - L_p'(\alpha) \right]
= \frac{(k - 1)^2}{2k^2} \left[3 - \frac{k - 2}{k - 1} \right] = \frac{(k - 1)(2k - 1)}{2k^2}.
\]

The rest is straightforward.

2. Since \(C_p = C_{lp} \) for each \(\lambda \in \mathbb{C}\setminus\{0\} \) and every polynomial \(p \), without loss of generality we assume that \(p \) is a monic polynomial. If \(\deg(p) = d \geq 2 \) then \(p(z) = z^d + a_1z^{d-1} + \cdots + a_d \), \(p'(z) = dz^{d-1} + (d - 1)a_1z^{d-2} + \cdots + a_d \) and \(p''(z) = d(d - 1)z^{d-2} + (d - 1)(d - 2)a_1z^{d-3} + \cdots + 2a_d \).

Now
\[
C_p(z) = z - \left(1 + \frac{1}{2} \frac{p(z)p''(z)}{[p'(z)]^2} \right) \frac{p(z)}{p'(z)}
= \frac{2z[p'(z)]^3 - 2p(z)[p'(z)]^2 - [p(z)]^2 p''(z)}{2[p'(z)]^3}.
\]

Here \(2z[p'(z)]^3 \), \(2p(z)[p'](z)^2 \) and \([p(z)]^2 p''(z) \) are all polynomials of the same degree \(3d - 2 \) with the leading coefficients \(2d^3, 2d^2 \) and \(d(d - 1) \), respectively. However \(2(p'(z))^3 \) is a polynomial with degree \(3d - 3 \) and its leading coefficient is \(2d^3 \). Therefore
\[
C_p(z) = \frac{(2d^3 - 3d^2 + d)z^{3d-2} + \alpha_3z^{3d-3} + \cdots + \alpha_0}{2d^3z^{3d-3} + \beta_3z^{3d-4} + \cdots + \beta_0},
\] (3)

for some \(\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_{3d-3}, \beta_0, \beta_1, \beta_2, \ldots, \beta_{3d-4} \in \mathbb{C} \). Hence \(C_p(\infty) = \infty \) and its multiplier is \(\frac{2d^3}{2d^3 - 3d^2 + d} = \frac{2d^2}{2d^2 - 3d + 1} \) (see page 41, [1]).

3. Each solution of \(L_p(z) = -2 \) is a fixed point of \(C_p \) but is not a root of \(p \). This is because the value of \(L_p \) at each root of \(p \) is in \((0, 1) \) by Eq. (2). Thus, the extraneous fixed points of \(C_p \) are precisely the roots of \(L_p(z) = -2 \). It now follows from Eq. (1) that the multiplier of an extraneous fixed point \(\xi \) is \(2(3 - L_p'(\xi)) \). The rest is obvious.

\(\square \)

Remark 2.2 1. It is possible that the numerator and the denominator of \(C_p \) in Eq. (3) have a common factor making the degree of \(C_p \) strictly less than \(3d - 2 \). For example, if \(p(z) = z^3 + c, c \neq 0 \) then \(\deg(C_p) = 6 \) (see Proposition 4.4 in Section 4). In this case, the leading coefficients of the numerator and the denominator of \(C_p \) change after cancelling the common factors. However, their ratio remains unchanged giving that the multiplier of infinity is well-defined.

2. Every fixed point of \(C_p \) which is not attracting is extraneous. But an extraneous fixed point of \(C_p \) can be attracting, repelling or indifferent depending on the nature of \(p \).

3 Degree of the Chebyshev’s method

A fixed point is multiple if and only if it is rationally indifferent with multiplier equal to 1 (see page 142, [10]). This fact is used in the following proof.

Proof of Theorem 1.1 Let \(p \) be a monic polynomial with simple root at \(\alpha_i, i = 1, 2, \ldots, m; \) double root at \(\beta_j, j = 1, 2, \ldots, n \) and root \(\gamma_k, k = 1, 2, \ldots, r \) with multiplicity \(a_k \geq 3 \). Then
\[
p(z) = \prod_{i=1}^m (z - \alpha_i) \prod_{j=1}^n (z - \beta_j)^2 \prod_{k=1}^r (z - \gamma_k)^{a_k}
\]
and \(\deg(p) = d = m + 2n + M \) where \(M = \sum_{k=1}^r a_k \).

If \(C_p(z) = \frac{F(z)}{G(z)} \) then \(\deg(F) = \deg(G) + 1 \) by Eq. (3) and therefore, the sum of all the roots of \(F(z) - zG(z) = 0 \) counting multiplicities is nothing but \(\deg(C_p) \). This is because the leading coefficients of \(F \) and \(G \) are different, \(\infty \) is a simple fixed point of \(C_p \) and the number of fixed points of \(C_p \), counting multiplicity is \(\deg(C_p) + 1 \). Each root of \(p \) is an attracting or a superattracting fixed point of \(C_p \), and these are simple roots of \(F(z) - zG(z) = 0 \). Every other fixed point of \(C_p \) is extraneous and is a root of \(L_p(z) + 2 = 0 \). As is evident, a multiple fixed point of \(C_p \) with multiplicity \(k \) is a multiple root of \(L_p(z) + 2 = 0 \) with the same multiplicity and vice-versa. Thus,
\[
\deg(C_p) = m + n + r + \deg(L_p).
\] (4)

Now we need to find \(\deg(L_p) \) in order to determine \(\deg(C_p) \).

If \(\alpha \) is a root of \(p \) with multiplicity \(l \), then it is a root of \(p' \) with multiplicity \(l - 1 \). Therefore
\[
p'(z) = \prod_{j=1}^n (z - \beta_j) \prod_{k=1}^r (z - \gamma_k)^{a_k - 1} g(z)
\]
and
\[p''(z) = \prod_{k=1}^{r}(z - \gamma_k)^{a_k-2}h(z), \] \hspace{1cm} (5)

where \(g \) and \(h \) are some polynomials such that \(g \) is non-zero at each \(\alpha_i, \beta_j \) and \(\gamma_k \) and \(h \) is non-zero at each \(\beta_j \) and \(\gamma_k \), for \(i = 1, 2, \ldots, m, j = 1, 2, \ldots, n, \) and \(k = 1, 2, \ldots, r \). Here we do not rule out \(h(\alpha_i) = 0 \) and that is possible, but not relevant here. Note that
\[\text{deg}(g) = \text{deg}(p') - n - \sum_{k=1}^{r}(a_k - 1) = (d - 1) - n - M + r = m + n + r - 1 \]
and
\[\text{deg}(h) = \text{deg}(p'') - \sum_{k=1}^{r}(a_k - 2) = (d - 2) - M + 2r = m + 2n + 2r - 2. \]

Now
\[L_p(z) = \frac{p(z)p''(z)}{[p'(z)]^2} = \frac{\prod_{i=1}^{m}(z - \alpha_i)\prod_{j=1}^{n}(z - \beta_j)^2\prod_{k=1}^{r}(z - \gamma_k)^{2a_k-2}h(z)}{\prod_{j=1}^{n}(z - \beta_j)^2\prod_{k=1}^{r}(z - \gamma_k)^{2a_k-2}[g(z)]^2} = \prod_{i=1}^{m}(z - \alpha_i)\frac{\tilde{h}(z)}{[g(z)]^2}. \]

Letting \(L_p(z) = \frac{P(z)}{Q(z)} \), we note that every common root of \(P \) and \(Q \) is a root of \(g \) and hence is different from each \(\alpha_i, \beta_j \) and \(\gamma_k \). Thus any such common root is not a root of \(p \). Further, it is a common root of \(g \) and \(h \), i.e., it is a critical point as well as an inflection point of \(p \) (\(p'' \) vanishes at this point). In other words, every common root of \(P \) and \(Q \), if exists, is a special critical point of \(p \). Conversely, every special critical point is a common root of \(P \) and \(Q \) (in fact of \(g \) and \(h \)).

Let \(p \) has \(s \) number of distinct special critical points, say \(c_j \), with multiplicity \(b_j \) for \(j = 1, 2, \ldots, s \). Then
\[g(z) = \prod_{j=1}^{s}(z - c_j)^{b_j}\tilde{g}(z) \quad \text{and} \quad h(z) = \prod_{j=1}^{s}(z - c_j)^{b_j-1}\tilde{h}(z) \]
where \(\tilde{g} \) and \(\tilde{h} \) are polynomials without any common root. In this case,
\[L_p(z) = \frac{\prod_{i=1}^{m}(z - \alpha_i)\prod_{j=1}^{s}(z - \gamma_k)^{2b_j-2}h(z)}{\prod_{j=1}^{s}(z - \gamma_k)^{2b_j}[\tilde{g}(z)]^2} = \frac{\prod_{i=1}^{m}(z - \alpha_i)\tilde{h}(z)}{\prod_{j=1}^{s}(z - \gamma_k)^{b_j+1}[\tilde{g}(z)]^2}. \]

Now \(\text{deg}(\tilde{g}) = \text{deg}(g) - \sum_{j=1}^{s}b_j = m + n + r - 1 - B \)
and \(\text{deg}(\tilde{h}) = \text{deg}(h) - \sum_{j=1}^{s}b_j - 1 = m + 2n + 2r - 2 - B + s \). Therefore, \(\text{deg}(\prod_{i=1}^{m}(z - \alpha_i)\tilde{h}(z)) = m + \text{deg}(\tilde{h}) = 2m + 2n + 2r - 2 - B + s \) and \(\text{deg}(\prod_{j=1}^{s}(z - c_j)^{b_j+1}\tilde{g}(z)^2) = \sum_{j=1}^{s}(b_j + 1) + 2\text{deg}(\tilde{g}) = B + s + 2m + 2n + 2r - 2 - 2B = 2m + 2n + 2r - 2 - B + s. \)

This implies that \(\text{deg}(L_p) = 2m + 2n + 2r - 2 - B + s \).

Hence by Eq. (4),
\[\text{deg}(C_p) = 3(m + n + r) - 2 - B + s. \]

If \(p \) has no special critical point then \(s = B = 0 \) and we get,
\[\text{deg}(C_p) = 3(m + n + r) - 2. \]

Proof of Corollary 1.2 1. If \(p \) has two distinct roots and \(p(z) = (z - a)^m(z - b)^n \) for some \(m, n \in \mathbb{N}, a, b \in \mathbb{C} \) then it has only one critical point different from the roots, namely \(\frac{mb + na}{m + n} \). Further, it is a simple critical point. Hence \(p \) has no special critical point and \(\text{deg}(C_p) = 4 \).

We assert that four is the minimum possible degree of \(C_p \) for every polynomial \(p \). To see it, let \(p \) have at least three distinct roots. Then \(\text{deg}(p) \geq 3 \). If \(p \) has no special critical point then it follows from Theorem 1.1 that \(\text{deg}(C_p) \geq 7 \). Now assume that \(p \) has at least one special critical point. Since each special critical point of \(p \) is a root of \(g \) and \(\text{deg}(g) = (m + n + r) - 1 \) where \(g, m, n, r \) are as given in the proof of Theorem 1.1, \(s \geq 1 \) and \(B \leq m + n + r - 1 \). Then \(\text{deg}(C_p) \geq 3(m + n + r) - 2 - (m + n + r - 1) + 1 = 2(m + n + r) \). Since \(m + n + r \geq 3 \), we have \(\text{deg}(C_p) \geq 6 \). It is clear that \(\text{deg}(C_p) = 5 \) is never possible for any polynomial \(p \).

2. Recall that a special critical point of a rational map is a critical point with multiplicity at least two which is not a root. If for a polynomial \(p \) with degree \(d \), all the critical points are special, then \(p \) has no multiple roots, i.e., \(p \) is generic. Clearly the number of roots of \(p \) is \(d \). Let \(p'(z) = \prod_{j=1}^{s}(z - c_j)^{b_j} \) where \(b_j \geq 2 \) and \(p(c_j) \neq 0 \) for any \(j = 1, 2, \ldots, s \). Then \(\text{deg}(p') = d - 1 = \sum_{j=1}^{s}b_j \) and \(p''(z) = \prod_{j=1}^{s}(z - c_j)^{b_j-1}q(z) \) where \(q(c_j) \neq 0 \) for any \(j = 1, 2, \ldots, s \). So \(\text{deg}(p'') = d - 2 = 1 \).
Lemma 4.3

Lemma 4.2 (Riemann-Hurwitz formula) If \(R : U \rightarrow V \) is a rational map between two of its Fatou components \(U \) and \(V \) then it is a proper map of some degree \(d \) and \(c(U) - 2 = d(c(V) - 2) + C \) where \(c(.) \) denotes the connectivity of a domain and \(C \) is the number of critical points of \(R \) in \(U \) counting multiplicity. Further, if \(c(V) = 1 \) and there is no critical point of \(R \) in \(U \) then \(c(U) = 1 \).

The following lemma is crucial to prove the simple connectivity of Fatou components of the Chebyshev’s method applied to polynomials.

Lemma 4.3 Let \(R \) be a rational map for which \(\infty \) is a repelling fixed point. If \(A \) is an unbounded invariant immediate basin of attraction then its boundary contains at least one pole of \(R \). Further, if all the poles of \(R \) are on the boundary of \(A \) and \(A \) is simply connected then the Julia set of \(R \) is connected.

Proof Let \(s > 0 \) and \(B_s = \{ z : \sigma(z, \infty) < s \} \) where \(\sigma \) denotes the spherical metric in \(\mathbb{C} \). Choose a sufficiently small \(s \) such that \(B_s \) does not contain any critical value of \(R \). This is possible as \(\infty \) is a repelling fixed point of \(R \). Then the set \(R^{-1}(B_s) \) has \(d = deg(R) \) components one of which, say \(N_0 \) contains \(\infty \). Further, \(R \) is one-one on \(N_0 \). Let all other components of \(R^{-1}(B_s) \) be denoted by \(N_i \), \(1 \leq i \leq d - 1 \). Let \(w \in (B_s \cap A) \{\infty\} \). As the degree of \(R : \mathbb{A} \rightarrow \mathbb{A} \) is at least two (as \(A \) contains at least one critical point by Lemma 4.1), at least two pre-images of \(w \) are in \(A \). Since \(R \) is one-one in \(N_0 \), there is a pre-image of \(w \) in \(A \cap N_j \) for some \(j \), \(1 \leq j \leq d - 1 \). This is true for all \(s' < s \) and for each \(w \in (B_s \cap A) \{\infty\} \). By considering a sequence \(s_n \rightarrow 0 \) and \(w_n \in (B_{s_n} \cap A) \{\infty\} \) so that \(w_n \)s are distinct and \(w_n \rightarrow \infty \), we get a sequence \(z_n \) in \(\bigcup_{1 \leq i \leq d - 1} A \cap N_i \) such that \(R(z_n) = w_n \). Since \(z_m \neq z_n \) for all \(m \neq n \), there is a subsequence \(z_{n_k} \) and \(j^* \in \{1, 2, \ldots, d - 1\} \) such that \(z_{n_k} \in A \cap N_{j^*} \) for all \(k \). This subsequence has a limit point and that cannot be anything but a pole of \(R \). This pole is clearly in the Julia set of \(R \) and thus on the boundary of \(A \).

If all the poles of \(R \) are on the boundary of \(A \) and \(A \) is simply connected then the unbounded component of the Julia set contains all the poles of \(R \). Let \(U \) be a multiply connected Fatou component of \(R \). Consider a Jordan curve \(\gamma \) in \(U \) that surrounds a point of the Julia set i.e., the bounded component of \(\mathbb{C} \setminus \gamma \) intersects the Julia set. As \(\infty \in J(R) \) and the backward orbit of \(\infty \) is dense in the Julia set, there is a point \(z \) surrounded by \(\gamma \) such that \(R^k(z) \) is a pole of \(R \). Without loss of generality, assume that \(k \) is the smallest natural number such that \(R^k(z) \) is a pole. Then the curve \(R^k(\gamma) \) surrounds a pole of \(R \) by the Open Mapping Theorem. The set \(R^k(\gamma) \) is completely contained in the Fatou set whereas there is a Julia component containing \(\infty \) and all the poles of \(R \). This is not possible proving that all the Fatou components are simply connected. In other words, the Julia set of \(R \) is connected.

Remark 4.1 It can follow from the arguments used in the above proof that even if \(A \) is not simply connected, all the Fatou components other than itself are simply connected whenever the boundary of \(A \) contains all the poles of \(R \).

Proposition 4.4 Let \(p \) be a cubic polynomial.

1. If \(p \) is unicritical then its Chebyshev’s method is conjugate to \(\frac{5z^6 + 5z^3 - 1}{9z^2} \) and its Julia set is connected.
2. If \(p \) is not generic then its Chebyshev’s method is conjugate to \(\frac{5z^4 + 15z^3 + 24z^2 + 22z + 6}{9(z+1)^3} \) and its Julia set is connected.
Let \(p(z) = (z - \alpha)^3 + \beta \) for some \(\alpha, \beta \in \mathbb{C}, \beta \neq 0 \). If \(\beta = re^{i\theta} \) for \(r > 0 \) and \(\theta \in [0, 2\pi) \) then \((p \circ T)(z) = -r e^{i\theta}(z^3 - 1) \) where \(T(z) = -r \frac{1}{e^{i\theta/3} z + \alpha} \). In view of the Scaling Theorem, we assume without loss of any generality that \(p(z) = z^3 - 1 \). Its Chebyshev’s method is

\[
C_p(z) = \frac{5z^6 + 5z^3 - 1}{9z^2} \quad \text{and} \quad C_p'(z) = \frac{5(z^3 - 1)^2}{9z^6}.
\]

Note that a rational map with degree \(d \) has \(2d - 2 \) critical points counting multiplicities and those are the three roots of \(p \) each with multiplicity two and the pole 0 with multiplicity four.

As \(\infty \) is a repelling fixed point, it is in the Julia set of \(C_p \) giving that \(0 \in \mathcal{J}(C_p) \). Hence none of the superattracting immediate basins contains any critical point other than the superattracting fixed point.

Hence each immediate basin is simply connected by Theorem 3.9 [10]. These are the only periodic Fatou components by Lemma 4.1. Every Fatou component different from these are simply connected by the Riemann-Hurwitz formula (Lemma 4.2).

2. Let \(p(z) = (z - a)^2 (z - b) \) for some \(a, b \in \mathbb{C} \) and \(a \neq b \). Then for the affine map \(T(z) = \frac{z - b}{z - a} \), \(p(T(z)) = (z - 1)^2 (z + 2) \). In view of the Scaling Theorem, we assume without loss of generality that \(p(z) = (z - 1)^2 (z + 2) \). Then

\[
C_p(z) = \frac{5z^4 + 15z^3 + 24z^2 + 22z + 6}{9(z + 1)^3} \quad \text{and} \quad C_p'(z) = \frac{(z + 2)^3 (5z^2 + 1)}{9(z + 1)^4}.
\]

The critical points are \(-1, -2\) and \(\pm \frac{i}{\sqrt{3}} \). Also \(-2\) is a superattracting fixed point of \(C_p \) whereas 1 is an attracting fixed point. Let \(A_{-2} \) and \(A_1 \) be the immediate basins of attraction of \(-2 \) and \(1 \), respectively. Note that \(-1 \in \mathcal{J}(C_p) \).

Since \(A_1 \) must contain a critical point of \(C_p \), it is either \(\frac{i}{\sqrt{3}} \) or \(-\frac{i}{\sqrt{3}} \). Since all the coefficients of \(C_p \) are real, \(C_p^n(z) = C_p^n(\overline{z}) \) for all \(n \) and \(z \in \mathbb{C} \). This gives that each Fatou component intersecting the real line is symmetric with respect to \(\mathbb{R} \). In particular, \(A_1 \) is symmetric with respect to \(\mathbb{R} \). This gives that \(A_1 \) contains both these critical points \(\pm \frac{i}{\sqrt{3}} \). Thus the only periodic Fatou components of \(C_p \) are \(A_1 \) and \(A_{-2} \), by Lemma 4.1.

If \(C_p(x) < x \) for any \(x < -2 \), then strictly increasingness of \(C_p \) in \((-\infty, -2)\) will give that \(\lim_{n \to \infty} C_p^n(x) = \infty \), which is not possible as \(\infty \) is a repelling fixed point. Therefore, \(C_p(x) > x \) for all \(x < -2 \) and \(\lim_{n \to \infty} C_p^n(x) = -2 \). In other words, \((-\infty, -2] \subset A_{-2} \) showing that \(A_{-2} \) is unbounded.

By Lemma 4.3, there is a pole of \(C_p \) on the boundary of \(A_{-2} \). But \(C_p \) has only one pole. As \(A_{-2} \) does not contain any critical point other than \(-2 \), it is simply connected (Theorem 3.9, [10]). Now it follows from Lemma 4.3 that the Julia set of \(C_p \) is connected.

The Fatou set of the Chebyshev’s method applied to the unicritical polynomial \(z^3 - 1 \) is given in Fig. 4a. The three superattracting basins are shown in blue, yellow and green. The two basins of the roots of the non-generic polynomial \((z - 1)^2 (z + 2) \) are shown in yellow and blue in Fig. 4b.

Remark 4.2 The Chebyshev’s method of each unicritical cubic polynomial has three finite extraneous fixed points, each with multiplier 5. For each non-generic cubic polynomial \(p \), the finite extraneous fixed points of \(C_p \) are with multipliers \(9 \) and \(\frac{49}{180} \). This is because the multipliers of fixed points remain unchanged under conformal conjugacy.

Note that \(\infty \) is always an extraneous fixed point of \(C_p \) and its multiplier is \(\frac{2d^2}{2d^2 - 3d + 1} \) where \(d = \deg(C_p) \). In order to deal with all non-unicritical and generic cubic polynomials, we use a parametrization in terms of the multiplier of a finite extraneous fixed point of the Chebyshev’s method. The forbidden value 5 in the following lemma corresponds precisely to unicritical polynomials whereas there is no cubic polynomial whose Chebyshev’s method has a finite extraneous fixed point with multiplier 6. In fact, the multiplier of \(\infty \) can also never be 6.

Lemma 4.5 For \(\lambda \in \mathbb{C} - \{5, 6\} \), if \(p \) is a non-unicritical and generic cubic polynomial whose Chebyshev’s method \(C_p \) has a finite extraneous fixed point with multiplier \(\lambda \) then \(C_p \) is conjugate to the Chebyshev’s method of \(p_{3, \lambda}(z) = z^3 + 3z + \psi(\lambda), \) where \(\psi(\lambda) = \frac{3\lambda^2 - 39\lambda + 124}{(5 - \lambda)\sqrt{5 - \lambda}} \) and \(\sqrt{5 - \lambda} \) denotes the principal branch of the square root.

Proof Let \(p \) be a non-unicritical and generic cubic polynomial. Then \(p(z) = z^3 + az + b \) where \(a \neq 0, \ b \in \mathbb{C} \) and all the roots of \(p \) are simple. Further, \(L_p(z) = \frac{6(z^3 + az + b)}{(3z^2 + a)^2} \) and \(L_p'(z) = \frac{3z^2 + a}{6z^2} \). If \(z \) is a
finite extraneous fixed point of \(C_p \) with multiplier \(\lambda \) then, in view of Proposition 2.3 (3),

\[
5 - \frac{a}{3z^2} = \lambda. \tag{6}
\]

Note that the above equation has no finite solution for \(\lambda = 5 \). Now either \(\sqrt{\frac{a}{3(5-\lambda)}} \) or \(-\sqrt{\frac{a}{3(5-\lambda)}} \) is the extraneous fixed point of \(C_p \). Recall that, a fixed point \(z \) of \(C_p \) is extraneous if and only if \(p(z) \neq 0 \) and \(L_p(z) = -2 \).

Since \(p \) is cubic, generic and non-unicritical, neither \(p \) and \(p' \) nor \(p' \) and \(p'' \) have any common root. A finite extraneous fixed point of \(C_p \) is a solution of

\[
\frac{p(z)p''(z)}{[p'(z)]^2} = -2, \tag{7}
\]

and any such solution is neither a root of \(p \) nor a root of \(p' \). Eq. (7) becomes

\[
12z^4 + 9az^2 + 3bz + a^2 = 0. \tag{8}
\]

For \(\lambda = 6 \), the point \(\pm \sqrt{\frac{a}{3(5-\lambda)}} = \pm i \sqrt{\frac{a}{3}} \) becomes a root of \(p' \) and hence has been avoided.

Considering \(-\sqrt{\frac{a}{3(5-\lambda)}} \) to be an extraneous fixed point, from Equation (8), we have \(b = \frac{a \sqrt{a}}{3} \psi(\lambda) \). Similarly assuming that \(\sqrt{\frac{a}{3(5-\lambda)}} \) is the extraneous fixed point we have \(b = -\frac{a \sqrt{a}}{3} \psi(\lambda) \).

Let \(p_1(z) = z^3 + az + \frac{a \sqrt{a}}{3} \psi(\lambda) \) and \(p_2(z) = z^3 + az - \frac{a \sqrt{a}}{3} \psi(\lambda) \). Then \(p_1(z) = -p_2(-z) \) and by the Scaling Theorem, \(C_{p_1} \) and \(C_{p_2} \) are conformally (in fact, affine) conjugate. Now, for \(\phi(z) = \frac{a \sqrt{a}}{3} z \), \(p_1(\phi(z)) = \frac{a \sqrt{a}}{3} z^3 + 3z + \psi(\lambda) \). Again applying the Scaling Theorem, we conclude that the Chebyshev’s methods applied to \(p_1 \) and \(z^3 + 3z + \psi(\lambda) \) are conjugate.

\[\square \]

Remark 4.3

1. The extraneous fixed point of \(C_\lambda, \lambda \neq 5, 6 \) having its multiplier equal to \(\lambda = \frac{1}{\sqrt{5-\lambda}} \).

2. If \(\lambda = 5 \) then Equation (6) gives that \(a = 0 \) and \(p(z) = z^3 + b \) becomes an unicritical polynomial.

3. For \(\lambda = 6 \), the point that qualifies to be a finite extraneous fixed point of \(C_p \) is \(\pm i \sqrt{\frac{a}{3}} \). But \(p' \) is zero whereas \(p'' \) is not zero at this point. It cannot be a solution of Eq. (7). This gives that there is no extraneous fixed point of \(C_p \) with multiplier equal to 6 for any non-unicritical and generic polynomial \(p \).

4. As seen in Proposition 4.4 and the remark following it, there is also no unicolitical or non-generic cubic polynomial with an extraneous fixed point with multiplier equal to 6.

5. For all \(\lambda < 5, \psi(\lambda) \) is a real number and \(p_\lambda(z) = z^3 + 3z + \psi(\lambda) \) preserves the real axis. In fact, all the coefficients in the numerator and the denominator of \(C_\lambda \) are real and therefore \(C_\lambda(z) = \overline{C_\lambda(z)} \) for all \(z \). This gives that \(C_\lambda(z) = \overline{C_\lambda(z)} \) for all \(n \). In other words, the Fatou set of \(C_\lambda \) is symmetric about the

Fig. 4 The Julia set of \(C_p \) for unicritical and non-generic \(p \)

(a) Unicritical: \(p(z) = z^3 - 1 \)

(b) Non-generic: \(p(z) = (z - 1)^2(z + 2) \)
real line. If a Fatou component of C_λ intersects the real line then it is also symmetric about the real line.

6. It is observed from the graph of $\psi(\lambda)$ (Fig. 5) that for each $\lambda \in [-1, 1)$, there is a $\lambda' \in (1, \delta]$ where δ is the positive number satisfying $\psi(\delta) = \psi(-1)$ such that $\psi(\lambda) = \psi(\lambda')$. This gives that $p_\lambda = p_{\lambda'}$ and consequently, $C_\lambda = C_{\lambda'}$.

Now onwards, we consider $p_\lambda(z) = z^3 + 3z + \psi(\lambda)$ and let C_{p_λ} be denoted by C_λ for $\lambda \in \mathbb{C}\setminus\{5, 6\}$. Then

$$L_{p_\lambda}(z) = \frac{p_\lambda(z)2z}{9(z^2 + 1)^2},$$

$$C_\lambda(z) = \frac{5z^7 + 6z^5 - 5\psi(\lambda)z^4 - 3\psi(\lambda)^2z - \psi(\lambda)^2z^2 - 3\psi(\lambda)}{9(z^2 + 1)^3}. \tag{9}$$

and

$$C'_\lambda(z) = \frac{[p_\lambda(z)2z]}{9(z^2 + 1)^4}. \tag{10}$$

The following are some consequences of the above expressions.

Lemma 4.6 1. For $\lambda < 5$, the polynomial p_λ has a unique real root r_λ and the other two roots are complex conjugates of each other.

2. For $\lambda \in [-1, 1)$, in addition to $-\frac{1}{\sqrt{5-\lambda}}$ there are three extraneous fixed points, one is real, we denote it by α_λ and the other two are complex conjugates of each other.

3. For $\lambda = 1$, the extraneous fixed point $-\frac{1}{2}$ is multiple with multiplicity two and the other two are complex conjugates of each other.

4. For $\lambda \in [-1, 1)$, all the three roots of p_λ and the poles $\pm i$ are critical points of C_λ each with multiplicity two. The other two simple critical points of C_λ are $\frac{1}{\sqrt{5}}$ and $-\frac{1}{\sqrt{5}}$.

Proof 1. Since p_λ is monic and is of odd degree and also preserves the real line, $\lim_{x \to \infty} p_\lambda(x) = \infty$ and $\lim_{x \to -\infty} p_\lambda(x) = -\infty$. Since $p'_\lambda(x) > 0$ for all $x \in \mathbb{R}$, it is strictly increasing and hence it has a unique real root. Clearly the other two roots are complex conjugates of each other as all the coefficients of p_λ are real for all $\lambda < 5$.

2. Putting $a = 3$ and $b = \psi(\lambda)$ in Eq. (8) we get that the extraneous fixed points of C_λ are the solutions of

$$4z^4 + 9z^2 + \psi(\lambda)z + 3 = 0. \tag{11}$$

These are nothing but the solutions of $(z + \frac{1}{\sqrt{5-\lambda}})q(z) = 0$ where $q(z) = 4z^3 - 4z^2 + \frac{49-9\lambda}{5-\lambda}z + 3\sqrt{5-\lambda}$. Note that $q'(z) = 12z^2 - \frac{8}{5-\lambda} + \frac{49-9\lambda}{5-\lambda}$ and its discriminant is $-16(27 + \frac{8}{5-\lambda})$, and that is negative for $-1 < \lambda < 1$. The two roots of q' are non-real. This gives that $q'(z) \neq 0$ and is either positive or negative for all $z \in \mathbb{R}$, i.e., q is either strictly increasing or strictly decreasing on the real line. Since $q : \mathbb{R} \to \mathbb{R}$, $\lim_{z \to -\infty} q(z) = -\infty$ and $\lim_{z \to \infty} q(z) = \infty$, q is strictly increasing on \mathbb{R} and hence has a unique real root. This is the other real extraneous fixed point α_λ of C_λ. As all the coefficients of q are real, the other two roots are complex conjugates of each other which are nothing but the non-real extraneous fixed points of C_λ for $\lambda \in [-1, 1)$.

3. For $\lambda = 1$, it follows from Eq. (11) that $-\frac{1}{2}$ is a double root of $4z^4 + 9z^2 + 11z + 3 = 0$. The other two roots are found to be $\beta_1 = \frac{1}{2}(1 + i \sqrt{11})$ and $\beta_2 = \frac{1}{2}(1 - i \sqrt{11})$. These are the extraneous fixed points of C_1.

4. Since p_λ is generic, its three roots are simple and are superattracting fixed points of C_λ, each of which is a critical point with multiplicity two. The rest follows from Eqs. (9) and (10).

□

Some estimates are going to be useful.

Lemma 4.7 Let $-1 \leq \lambda \leq 1$.

1. If r_λ is the real root of p_λ then $-2 < r_\lambda < -1$ and $C_\lambda(\frac{1}{\sqrt{5}}) < r_\lambda$. Further, there is $x_0 \in (-\frac{1}{\sqrt{5}}, 0)$ such that $C_\lambda(x_0) = r_\lambda$.

2. If $-1 \leq \lambda < 1$ and α_λ is the real extraneous fixed point of C_λ different from $-\frac{1}{\sqrt{5-\lambda}}$ then $-\frac{2}{\sqrt{5-\lambda}} < \alpha_\lambda < -\frac{1}{\sqrt{5-\lambda}}$. For $\lambda = 1$, $\alpha_\lambda = -\frac{1}{\sqrt{5-\lambda}}$.

\[\square\]
Proof For $-1 \leq \lambda \leq 1$, $11 \leq \psi(\lambda) \leq \psi(-1) \approx 11.294$.

1. Note that $p_\lambda(-1) = -4 + \psi(\lambda) > 0$ and $p_\lambda(-2) = -14 + \psi(\lambda) < 0$ for $-1 \leq \lambda \leq 1$. This gives that $-2 < r_{\lambda} < -1$. For $-1 \leq \lambda \leq 1$, $\psi(\lambda) \geq 11$ and we have $C_\lambda(\frac{1}{\sqrt{5}}) = -\frac{1}{\sqrt{5}}(25\psi(\lambda)^2+140/5\psi(\lambda)+8) < -7.449$. Consequently, we have $C_\lambda(\frac{1}{\sqrt{5}}) < r_{\lambda}$.

It follows from Eq. (9) that $C_{\lambda}(z) = r_{\lambda}$ if and only if $S(z) = 5z^2 + 5\psi(\lambda)z^4 - 2z - \psi(\lambda)^2 z - 3\psi(\lambda) - 9r_{\lambda}(z^2 + 1)^3 = 0$. Note that $S(0) = -3(\psi(\lambda) + 3r_{\lambda}) < 0$ (because $\psi(\lambda) \geq 11$).

Further, $S(-\frac{1}{\sqrt{5}}) = \frac{25}{\sqrt{5}} - \frac{25\psi(\lambda)}{\sqrt{5}}(\psi(\lambda) - \frac{28}{\sqrt{5}})$. Note that $15 < \frac{25}{\sqrt{5}} - \frac{25\psi(\lambda)}{\sqrt{5}} < 31$ and the last term $\psi(\lambda)^2(\psi(\lambda) - \frac{28}{\sqrt{5}})$ is increasing as a function of $\psi(\lambda)$ (not of λ) with its minimum $11\sqrt{5}(11 - \frac{28}{\sqrt{5}}) \approx -7.487$. Thus $S(-\frac{1}{\sqrt{5}}) > 7$ and we are done by the Intermediate Value Theorem.

2. Recall from the previous lemma that $q(z) = 4z^3 - \frac{4\psi^2}{\sqrt{5}-\lambda} + 9 + \frac{4\psi^2}{\sqrt{5}-\lambda}z + 3\sqrt{5} - \lambda$ and the real extraneous fixed point of C_{λ} different from $-\frac{1}{\sqrt{5}-\lambda}$ is a root of q. As $q(-\frac{2}{\sqrt{5}-\lambda}) = -\frac{1}{(\sqrt{5}-\lambda)^3}(71+12\lambda-3\lambda^2)$ and $71 + 12\lambda - 3\lambda^2 > 0$ for all $\lambda \leq 1$, we have $q(-\frac{2}{\sqrt{5}-\lambda}) < 0$. Similarly, $q(-\frac{1}{\sqrt{5}-\lambda}) = \frac{1}{(\sqrt{5}-\lambda)^3}(3(6-\lambda)(1-\lambda)) > 0$ for $-1 \leq \lambda < 1$. It is already observed in Lemma 4.6(2) that q is strictly increasing on \mathbb{R}. Therefore $-\frac{2}{\sqrt{5}-\lambda} < r_{\lambda} < -\frac{1}{\sqrt{5}-\lambda}$.

For $\lambda = 1$, $\alpha_\lambda = -\frac{1}{\sqrt{5}-\lambda}$ (see Lemma 4.6). \hfill \square

Remark 4.4 Let $-1 \leq \lambda \leq 1$. Then

1. $p_\lambda(-\frac{3}{\sqrt{5}-\lambda}) = \frac{3\sqrt{5}^2 - 30\lambda + 32}{(\sqrt{5}-\lambda)(\sqrt{5}-\lambda)} > 0$, $r_{\lambda} < -\frac{3}{\sqrt{5}-\lambda} < -\frac{1}{\sqrt{5}}$, and

2. $r_{\lambda} < -\frac{3}{\sqrt{5}-\lambda} < -\frac{2}{\sqrt{5}-\lambda} < \alpha_\lambda$.

Note that the real root of p_{λ} is a superattracting fixed point of C_{λ}. The following lemma describes its immediate basin.

Lemma 4.8 For $-1 \leq \lambda \leq 1$, let r_{λ} be the real root of p_{λ}. Then it is a superattracting fixed point of C_{λ} and its immediate basin A_{λ} is unbounded. Further, it is simply connected and both the poles of C_{λ} are on its boundary.

Proof Clearly, the root r_{λ} of p_{λ} is simple and is a superattracting fixed point of C_{λ}. Note that C_{λ} is strictly increasing in $(-\infty, -\frac{1}{\sqrt{5}})$, strictly decreasing in $(-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}})$ and strictly increasing thereafter. Let $c = -\frac{1}{\sqrt{5}}$. Since $r_{\lambda} < -c$ (by Remark 4.4(1)), C_{λ} is strictly increasing in $(-\infty, r_{\lambda})$. Further, by the preceding remark, the only other real extraneous fixed point of C_{λ} is greater than r_{λ}. Therefore, for all $x \in (-\infty, r_{\lambda})$, either $C_{\lambda}(x) < x$ or $C_{\lambda}(x) > x$. The first possibility leads to a strictly decreasing sequence $(C_{\lambda}^n(x))_{n \geq 0}$ which must converge to $-\infty$. But this is not possible as ∞ is a repelling fixed point of C_{λ}. Therefore $C_{\lambda}(x) > x$ and $C_{\lambda}^n(x) \to r_{\lambda}$ as $n \to \infty$ for all $x \in (-\infty, r_{\lambda}]$ giving that $(-\infty, r_{\lambda}] \subset A_{\lambda}$. In other words, A_{λ} is unbounded.

It follows from Lemma 4.7(1) that the critical value $C_{\lambda}(c) \in A_{\lambda}$. As the extraneous fixed point $-\frac{1}{\sqrt{5}}$ is either attracting or parabolic, its basin (attracting or parabolic) contains a critical point. But, the only available critical point is $-c$. Therefore $-c$ is in the immediate basin of attraction or immediate parabolic basin of $-\frac{1}{\sqrt{5}}$. So A_{λ} contains at most one critical point other than r_{λ} and that can be c only. We are going to show that this is not the case, i.e., $c \notin A_{\lambda}$.

Suppose on the contrary that $c \in A_{\lambda}$. Then $C_{\lambda}([x_0, c]) = [C_{\lambda}(c), r_{\lambda}]$ and it gives that $C_{\lambda}([x_0, c]) \subset A_{\lambda}$. Note that there is a real pre-image of r_{λ} in (c, ∞). Let it be x_1. Then C_{λ} maps $[c, x_1]$ onto the same interval $[C_{\lambda}(c), r_{\lambda}]$ giving that $x_1 \in A_{\lambda}$ whenever $c \in A_{\lambda}$. The locations of x_0, x_1, r_{λ} and the critical points are shown in Fig. 6 for $\lambda = -1, 0$ and 1, where the red dots represent the critical points.

The Böttcher coordinate ϕ is locally defined and univalent at r_{λ} (see Theorem 9.3, [10]), i.e., there is a simply connected domain $U \subset A_{\lambda}$ such that $\phi : U \to \phi(U) \subset \{z : |z| < 1\}$ is conformal. Since the critical point c is assumed to be in A_{λ}, ϕ cannot be extended conformally to the whole of A_{λ}. In other words, there is a maximal $r \in (0, 1)$ such that ϕ^{-1} is well-defined on $D_r = \{z : |z| < r\}$. Let $U = \phi^{-1}(D_r)$. Clearly $c \in \partial U$. Let $V = C_{\lambda}(U)$. Then $V \subset U$ because $\phi(U) = D_r$ and $\phi \circ C_{\lambda} \circ \phi^{-1}(z) = z^3$ on D_r (by Theorem 9.3, [10]), and $\overline{D_r} \subset D_r$. It also follows that $C_{\lambda} : U \to V$ is a proper map of degree three. Since ϕ^{-1} is well-defined and conformal on $D_r \supseteq D_{r_{\lambda}}$, $\phi^{-1}(D_{r_{\lambda}}) = V$ is a Jordan domain. Let $\gamma = \partial V \setminus \{C_{\lambda}(c)\}$. As the local degree of C_{λ} at c is two, there are two branches of C_{λ}^{-1} and each is well-defined on γ by the Monodromy

\[\square \]
Theorem. Since there is no critical value of C_λ on γ, the images of γ under each of these branches are Jordan arcs. Let these images be σ and σ'. Then $\sigma \cap \sigma' = \emptyset$ and each of $\overline{\sigma}$ and $\overline{\sigma'}$ is a Jordan curve with $\overline{\sigma} \cap \overline{\sigma'} = \{c\}$. In fact, the bounded components of $\hat{C} \setminus \overline{\sigma}$ and $\hat{C} \setminus \overline{\sigma'}$ are the images of V under the two branches of C_λ^{-1}. This is because the unbounded components of $\hat{C} \setminus \overline{\sigma}$ and $\hat{C} \setminus \overline{\sigma'}$ contain a point of the Julia set of C_λ, namely ∞ and therefore no such unbounded component can be mapped into V, which is in the Fatou set of C_λ. Clearly, these complementary bounded components are disjoint. One of these must be U. Assume without loss of generality that U is the bounded component of $\hat{C} \setminus \overline{\sigma}$. The possible figures of U and U' are given in the left-hand side image of Fig. 7.

Let U' be the bounded component of $\hat{C} \setminus \overline{\sigma'}$. Now $r_\lambda \in U$ and U' contains a pre-image, say x^* of r_λ such that $x^* \neq r_\lambda$.

Now consider a simply connected open set W_0 containing the closure of $U \cup U'$ and let W_1 be the component of $C_\lambda^{-1}(W_0)$ containing r_λ. Then $C_\lambda : W_1 \to W_0$ is a proper map with some degree d. Clearly $d \geq 4$ as

\[\text{Fig. 6 The fixed point and the preimages of } r_\lambda \text{ under } C_\lambda \]
there are at least four pre-images of \(r_\lambda \) in \(W_1 \) counting multiplicity, namely \(r_\lambda \) itself with multiplicity 3 and \(x^* \) with multiplicity 1. Since \(C_\lambda \) is a proper map (of degree 7) from \(\hat{\mathbb{C}} \) onto itself and \(W_1 \neq \hat{\mathbb{C}} \), the connectivity of \(W_1 \) is non-zero and finite. In fact, each component of \(\hat{\mathbb{C}} \setminus W_1 \) is mapped onto \(\hat{\mathbb{C}} \setminus W_0 \) and there cannot be more than seven such components. Since \(W_1 \) contains two critical points, namely \(r_\lambda \) with multiplicity 2 and \(c \) with multiplicity 1, it follows from the Riemann-Hurwitz formula (Lemma 4.2) that \(c(W_1) - 2 = d(c(W_0) - 2) + 3 = 3 - d \). This gives that the connectivity of \(W_1 \) is less than or equal to 1. Thus \(W_1 \) is simply connected and \(d = 4 \). Note that \(W_1 \) contains only one pre-image of \(r_\lambda \) different from itself and this must be \(x^* \). Applying this argument again we get that \(C_\lambda : W_2 \to W_1 \) is a proper map of degree 4, \(W_2 \) is simply connected and \(x^* \) is the only pre-image of \(r_\lambda \) different from itself, belonging to \(W_2 \) where \(W_2 \) is the component of \(C_\lambda^{-1}(W_1) \) containing \(r_\lambda \). It follows by induction that for each \(n \geq 1 \), if \(W_n \) is the component of \(C_\lambda^{-1}(W_{n-1}) \) containing \(r_\lambda \) then \(C_\lambda : W_n \to W_{n-1} \) is a proper map of degree 4, \(W_n \) is simply connected and \(x^* \) is the only pre-image of \(r_\lambda \), different from \(r_\lambda \) belonging to \(W_n \).

Since \(x_0, x_1 \in A_\lambda \), one of them, say \(x_1 \) is different from \(x^* \). Thus \(x_1 \notin W_n \) for any \(n \). Consider an arc in \(A_\lambda \) joining \(r_\lambda \) with \(x_1 \). This arc cannot be contained in \(W_n \) and intersects its boundary for each \(n \).

Let \(w_n \) be a point of such intersection. Then \(w_n \) has an accumulation point, say \(w \in A_\lambda \). Considering a sufficiently small neighborhood \(N_w \) of \(w \) contained in \(A_\lambda \) we observe that \(C_\lambda^n(N_w) \) intersects the boundary of \(W_0 \) for all sufficiently large \(n \). However, there is an \(n_0 \) such that \(C_\lambda^n(N_w) \subset V \subset \bar{V} \subset W_0 \) for all \(n > n_0 \). This is a contradiction and we prove that \(c \notin A_\lambda \).

It now follows from a well-known result (Theorem 9.3, [10]) that \(A_\lambda \) is simply connected.

By Lemma 4.3, there is a pole of \(C_\lambda \) on the boundary of \(A_\lambda \). The Fatou component \(A_\lambda \) is symmetric about the real line by Remark 4.3(5). Since the poles are complex conjugates of each other, the other pole is also on the boundary of \(A_\lambda \).

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2 Note that \(C_\lambda \) has a fixed point at \(\infty \) and that is repelling. It follows from Lemma 4.8 that the immediate basin \(A_\lambda \) of the real superattracting fixed point of \(C_\lambda \), corresponding to the real root of \(p_\lambda \), is unbounded, simply connected and contains both the poles of \(C_\lambda \) on its boundary. Now it follows from Lemma 4.3 that the Julia set of \(C_\lambda \) is connected.

5 Concluding remarks

For \(C_\lambda, \lambda \in [-1, 1] \), all the critical points except the poles are in the attracting or parabolic basins. In fact, the Fatou set of \(C_\lambda \) is the union of the basins of the three superattracting fixed points corresponding to the three roots of \(p_\lambda \) and the basin of the extraneous fixed point (which is parabolic for \(\lambda = \pm 1 \) and attracting otherwise). In particular, the Fatou set of \(C_\lambda \) does not contain any Siegel disk or any Herman ring.

It follows from Remark 4.3(6) that Theorem 1.2 is true for all \(\lambda \in [-1, \delta] \) where \(\delta > 0 \) is such that \(\psi(\delta) = \psi(-1) \). In terms of the real extraneous fixed points it means the following. For \(\lambda \in [-1, 1] \), the multiplier of \(-\frac{1}{\sqrt{\lambda - 1}} \) is \(\lambda \) whereas the multiplier of the second real extraneous fixed point \(\alpha_\lambda \) is in \((1, \delta)\) and hence is repelling. For \(\lambda \in (1, \delta) \), the extraneous fixed point \(-\frac{1}{\sqrt{\lambda - 1}}\) becomes repelling making \(\alpha_\lambda \) attracting.

For \(\lambda \in [-1, 1] \), the forward orbits of the critical points, \(\pm \frac{1}{\sqrt{3}} \), remains on the real line. This along with Lemma 4.1 give that the two non-real extraneous fixed points cannot be attracting or parabolic. These are in fact, repelling. To see it, recall that each extraneous
fixed point other than \(-\frac{1}{\sqrt{5} - \lambda}\) is a solution of \(q(z) = 4z^3 - 4\sqrt{\frac{2}{5} - \lambda}z + 3\sqrt{\frac{5}{2} - \lambda} = 0\). Among them one, namely \(\alpha_\lambda\), is already known to be real and other two say, \(\xi\) and \(\bar{\xi}\) are complex conjugates of each other. Since \(q(z) = 4(z - \alpha_\lambda)(z - \xi)(z - \bar{\xi})\), comparing the constant terms we get, \(\alpha_\lambda \bar{\xi} = -\frac{3\sqrt{\frac{5}{2} - \lambda}}{4}.\) In other word, \(|\xi|^2 = \frac{3\sqrt{\frac{5}{2} - \lambda}}{4\alpha_\lambda}.\) Since \(-\frac{2\sqrt{\frac{5}{2} - \lambda}}{\alpha_\lambda} < \alpha_\lambda < -\frac{1}{\sqrt{5} - \lambda}\) (by Lemma 4.7 (2)), we have \(\frac{1}{8} < \frac{3\sqrt{\frac{5}{2} - \lambda}}{4\alpha_\lambda} < \frac{\frac{5}{2}}{4}\) Consequently, \(\frac{3}{2} < |\xi|^2 < \frac{9}{2}\) and \(\frac{13}{3} \approx 5 < \frac{1}{|\xi|^2} < \frac{43}{9}.\) Recall that \(|\lambda \xi| = |\lambda \bar{\xi}|\) and this is \(|\xi|^2 = 5 - \frac{1}{|\xi|^2}\) and this is greater than \(\frac{13}{4}\).

We conclude by presenting several problems for further investigation.

1. The Julia set of the Chebyshev’s method applied to a cubic polynomial with an attracting extraneous fixed point (with non-real multiplier) may be connected. But the arguments used in this article seem to be insufficient to verify it.

2. The images in Figs. 1, 2 and 3 suggest that the attracting/parabolic domain corresponding to the extraneous attracting/parabolic fixed point is bounded. However, this is yet to be proved.

3. We believe that all the immediate basins of attractions of the superattracting fixed points corresponding to the roots of \(p_\lambda\) are unbounded for \(\lambda \in [-1, 1]\). This article proves it only for the real root of \(p_\lambda\).

4. A rational map is called geometrically finite if \(\mathcal{P}_R \cap \mathcal{J}(R)\) is finite where the postcritical set \(\mathcal{P}_R\) is the union of all the forward orbits of all the critical points of \(R\). It follows from the proof of Theorem 1.2 that \(C_\lambda\) is geometrically finite for \(\lambda \in [-1, 1]\). It is also clear from Proposition 4 that \(C_\rho\) is geometrically finite for all cubic unicritical and non-generic polynomials. Since the Julia set is connected in each of these cases, it is locally connected by [9]. The nature of the boundaries of the Fatou components can be explored.

5. For \(\lambda \in (-\infty, -1) \cup (\delta, 5)\), \(\psi(\lambda)\) is a real number and \(p_\lambda\) preserves the real line, and it has a unique real root. The dynamics of \(C_\lambda\) is symmetric about the real line by Remark 4.3(5). The forward orbits of the two real critical points of \(C_\lambda\) remain in the real line. It seems plausible to analyze these forward orbits and determine the dynamics of \(C_\lambda\).

6. The study of change in dynamics of functions in a parametrized family with respect to the parameter is an important theme in Complex dynamics. The simplest such instance is the quadratic family \(z \mapsto z^2 + c\). The Mandelbrot set \(\mathcal{M} = \{c : \text{Julia set of } z^2 + c \text{ is connected}\}\) is widely studied and it is a motivation for the study of higher degree polynomials (i.e., \(z^n + c, n = 2, 3, \ldots\)). Further generalization to higher dimensions can be found in [12–16]. We consider \(\mathcal{M}_C = \{\lambda : \mathcal{J}(C_\lambda) \text{ is connected}\}\) and are able to prove that \([-1, \delta] \subseteq \mathcal{M}_C\) where \(\psi(\delta) = \psi(-1)\) (see Lemma 4.5). The complete study of this set remains to be done.

Funding The second author is supported by the University Grants Commission, Govt. of India.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of Interest The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflict of interest.

References

1. Beardon, A.F.: Iteration of Rational Functions. Graduate Texts in Math, vol. 132. Springer, Berlin (1991)
2. Buff, X., Henriksen, C.: On König’s root-finding algorithms. Nonlinearity 16(3), 989–1015 (2003)
3. Campos, B., Canela, J., Vindel, P.: Connectivity of the Julia set for the Chebyshev-Halley family on degree \(n\) polynomials. Commun. Nonlinear Sci. Numer. Simul. 82, 105026 (2020)
4. García-Olivo, M., Gutiérrez, J.M., Magreñán, Á.A.: A complex dynamical approach of Chebyshev’s method. SeMA J. 71, 57–68 (2015)
5. Gutiérrez, J.M., Varona, J.L.: Superattracting extraneous fixed points and \(n\)-cycles for Chebyshev’s method on cubic polynomials. Qual. Theory Dyn. Syst. 19(2), 23 (2020)
6. Honorato, G.: On the Julia set of König’s root-finding algorithms. Proc. Am. Math. Soc. 141, 3601–3607 (2013)
7. Hubbard, J., Schleicher, D., Sutherland, S.: How to find all roots of complex polynomials by Newton’s method. Invent. Math. 146(1), 1–33 (2001)
8. Kneisl, K.: Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method. Chaos 11(2), 359–370 (2001)
9. Lei, T., Yongcheng, Y.: Local Connectivity of the Julia sets for geometrically finite rational maps. Sci. China Ser. A 39(1), 39–47 (1996)
10. Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)
11. Shishikura, M.: The Connectivity of the Julia Set and Fixed Points Complex Dynamics, pp. 257–276. A K Peters, Wellesley (2009)
12. Wang, X., Song, W.: The generalized M-J sets for bicomplex numbers. Nonlinear Dyn. 72(1–2), 17–26 (2013)
13. Wang, X., Jin, T.: Hyperdimensional generalized M-J sets in hypercomplex number space. Nonlinear Dyn. 73(1–2), 843–852 (2013)
14. Wang, X., Ge, F.: Quasi-sine Fibonacci M set with perturbation. Nonlinear Dyn. 69(4), 1765–1779 (2012)
15. Wang, X., Chang, P.: Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques. Appl. Math. Comput. 175(2), 1007–1025 (2006)
16. Wang, X., Chang, P., Gu, N.: Additive perturbed generalized Mandelbrot–Julia sets. Appl. Math. Comput. 189(1), 754–765 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.