ON INFINITESIMAL STREBEL POINTS

ALASTAIR FLETCHER

ABSTRACT. In this paper, we prove that if X is a Riemann surface of infinite analytic type and $[\mu]_T$ is any element of Teichmüller space, then there exists $\mu_1 \in [\mu]_T$ so that μ_1 is an infinitesimal Strebel point.

MSC2010: 30F60 (Primary) 30C62 (Secondary).

1. Introduction

If X is a hyperbolic Riemann surface and $M(X)$ denotes the set of Beltrami differentials on X, then Teichmüller space $T(X)$ is defined by the set of equivalence classes in $M(X)$ under the Teichmüller equivalence relation. Given $\mu \in M(X)$, we denote by $[\mu]_T \in T(X)$ the corresponding point of Teichmüller space. In the case where X is a closed surface, every $[\mu]_T$ different from the basepoint $[0]_T$ contains a uniquely extremal representative of the form

\begin{equation}
\mu = k|\varphi|/\varphi
\end{equation}

for $0 < k < 1$ and $\varphi \in A^1(X)$, that is, φ is an integrable holomorphic quadratic differential on X.

In the setting of infinite type surfaces, not every Teichmüller class has a uniquely extremal representative. The first such example to be constructed was the Strebel chimney [15]. If $X = \{z \in \mathbb{C} : \text{Im}(z) < 0 \text{ or } |\text{Re}(z)| < 1\}$ and $K > 1$, then for every $L \in [1/K, K]$

$$f_L(x + iy) = \begin{cases}
 x + iKy, & y \geq 0, |x| < 1 \\
 x + iLy, & y < 0
\end{cases}$$

is an extremal representative in its Teichmüller class $[\mu_f]_T$. Here $\mu_f \in M(X)$ denotes the complex dilatation of a quasiconformal mapping f.

Strebel points, introduced in [4, 13], are those points in an infinite dimensional Teichmüller space where the behaviour is, in some sense, tame. In particular, Strebel’s frame mapping criterion [6] states that every Strebel point can be represented by a uniquely extremal Beltrami differential of the form (1.1). It is known that the set of Strebel points is both open and dense in Teichmüller space.

We may also consider the infinitesimal class of $\mu \in M(X)$, namely those $\nu \in M(X)$ which induce the same linear functional $\Lambda_\nu(\varphi) = \int_X \nu\varphi$ on $A^1(X)$ as μ. The set of equivalence classes is denoted by $B(X)$ and a particular class is denoted $[\mu]_B$. We can consider extremality of representatives of an equivalence class in $B(X)$. If μ is extremal in its class in $B(X)$, it is called infinitesimally extremal. There is an analogous notion of an infinitesimal Strebel point, and the infinitesimal version of Strebel’s frame mapping criterion (see [3]) states that for such a point, it can again be represented by a uniquely infinitesimally extremal Beltrami differential of the form (1.1).

This work was supported by a grant from the Simons Foundation (#352034, Alastair Fletcher).
Typically \([\mu]_T\) and \([\mu]_B\) do not coincide but they share similar properties. In particular, \(\mu\) is extremal if and only if it is infinitesimally extremal, see [8, 12, 14]. Further, \(\mu\) is uniquely extremal if and only if it is uniquely infinitesimally extremal, see [2]. A point to note here is that not every uniquely extremal Beltrami differential has the form (1.1).

In [9], it was shown that if \(||\mu||_\infty\) is small then there exists \(\nu_1 \in [\mu]_T\) such that \([\nu_1]_B\) is an infinitesimal Strebel point and \(\nu_2 \in [\mu]_B\) such that \([\nu_2]_B\) is a Strebel point. Further, in [10] it was proved that for any \(\mu \in M(\mathbb{D})\) there exists \(\nu \in [\mu]_T\) such that \(\nu\) is an infinitesimal Strebel point. In this paper, we extend this latter result to all surfaces of infinite type.

Theorem 1.1. Let \(X\) be a Riemann surface of infinite analytic type. Given any Beltrami differential \(\mu \in M(X)\), there exists \(\mu_1 \in [\mu]_T\) such that \(\mu_1\) is an infinitesimal Strebel point.

Before proving this theorem, we first recall some material from Teichmüller theory, see for example [5, 7] for more details.

Acknowledgements: The author would like to thank the referee for pointing out a gap in an earlier version of this paper.

2. Preliminaries

2.1. Beltrami differentials. Let \(X\) be a Riemann surface of infinite analytic type, that is, we require the genus of \(X\) or the number of punctures to be infinite. Denote by \(M(X)\) the set of Beltrami differentials on \(X\), that is, \((-1, 1)\)-differential forms given in local coordinates by

\[
\mu(z) \frac{d\bar{z}}{dz},
\]

and where \(||\mu||_\infty \leq k\) for some \(k < 1\).

There are two equivalence relations we may impose on \(M(X)\). The Teichmüller equivalence relation is defined as follows. Since \(X\) is a hyperbolic surface, it can be realized as \(\mathbb{D}/G\) for some group \(G\) of covering transformations. We may lift \(\mu, \nu \in M(X)\) to elements \(\tilde{\mu}, \tilde{\nu}\) in the unit ball of \(L^\infty(\mathbb{D})\) which are \(G\)-invariant in the sense that

\[
(\tilde{\mu} \circ g) \frac{\bar{g}}{g} = \tilde{\mu},
\]

for all \(g \in G\). Via the Measurable Riemann Mapping Theorem, there is a unique quasi-conformal mapping \(f^{\tilde{\mu}} : \mathbb{D} \to \mathbb{D}\) which solves the Beltrami differential equation \(f^{\tilde{\mu}} = \tilde{\mu} f_z\), extends continuously to the boundary \(\partial \mathbb{D}\) and fixes \(1, -1, i\). We then say that \(\mu \sim_T \nu\) if and only if

\[
f^{\tilde{\mu}}|_{\partial \mathbb{D}} = f^{\tilde{\nu}}|_{\partial \mathbb{D}},
\]

and denote an equivalence class by \([\mu]_T\). The set of equivalence classes is the Teichmüller space \(T(X)\) of \(X\).

The second equivalence class is defined as follows. Let \(A^1(X)\) be the Bergman space of integrable holomorphic quadratic differentials on \(X\), that is, \((2, 0)\)-differential forms give in local coordinates by

\[
\varphi(z) \, dz^2,
\]

where \(\varphi\) is holomorphic and satisfies

\[
||\varphi||_1 := \int_X |\varphi| < \infty.
\]
We remark that every such \(\varphi \) lifts to a holomorphic function \(\tilde{\varphi} \) on \(\mathbb{D} \) satisfying \((\tilde{\varphi} \circ g)(g')^2 = \tilde{\varphi} \) for all \(g \in G \). It is well-known that the cotangent space at the basepoint of Teichmüller space, \([0]_T\), is isomorphic to \(A^1(X) \). Every \(\mu \in M(X) \) induces a linear functional on \(A^1(X) \) defined by

\[
\Lambda_\mu(\varphi) = \int_X \mu \varphi.
\]

Note that the expression \(\mu \varphi \) in local coordinates is \(\mu(z)\varphi(z)|dz|^2 \) and so can be integrated. If \(\Lambda_\mu = \Lambda_\nu \) on \(A^1(X) \), then we say that \(\mu \) and \(\nu \) are infinitesimally equivalent and write \(\mu \sim_B \nu \). An equivalence class is denoted by \([\mu]_B\) and the set of equivalence classes is denoted by \(B(X) \), and is isomorphic to \(A^1(X)^* \). The norm of \(\Lambda_\mu \) is

\[
||\Lambda_\mu|| = \sup \left\{ \left| \int_X \mu \varphi \right| : ||\varphi||_1 = 1 \right\}.
\]

If \(\mu \) is extremal, then \(||\Lambda_\mu|| = ||\mu||_\infty \).

In either equivalence class, we have the notion of extremality and unique extremality. If \(\sim \) is either \(\sim_T \) or \(\sim_B \), then we say that \(\mu \) is extremal if \(||\mu||_\infty \leq ||\nu||_\infty \) for all \(\nu \sim \mu \), and we say that \(\mu \) is uniquely extremal if the inequality is strict for all \(\nu \sim \mu \) and \(\nu \neq \mu \). We will use the language extremal for \(\sim_T \) and infinitesimally extremal for \(\sim_B \). From compactness considerations, there is always an extremal and infinitesimal extremal representative in each class.

2.2. Extremal distortion. The notation we use in this section is slightly non-standard but is intended to unify the ideas between the two equivalence classes. Writing \(k(\mu) = ||\mu||_\infty \) for \(\mu \in M(X) \), the corresponding extremal version is

\[
k_0([\mu]_T) = \inf \{ k(\nu) : \nu \sim_T \mu \}
\]

and the infinitesimally extremal version is

\[
k_1([\mu]_B) = \inf \{ k(\nu) : \nu \sim_B \mu \}.
\]

It is known that

\[
k_1([\mu]_B) = ||\Lambda_\mu|| = \sup_{||\varphi||_1 = 1} \text{Re} \int_X \mu \varphi.
\]

The boundary dilatation of \(\mu \in M(X) \) is

\[
h(\mu) = \inf \{ ||\mu||_{X \setminus E} ||_\infty : E \text{ is a compact subset of } X \}.
\]

The extremal version is

\[
h_0([\mu]_T) = \inf \{ h(\nu) : \nu \sim_T \mu \}
\]

and the infinitesimally extremal version is

\[
h_1([\mu]_B) = \inf \{ h(\nu) : \nu \sim_B \mu \}.
\]

It is clear that \(h_0([\mu]_T) \leq k_0([\mu]_T) \) and \(h_1([\mu]_B) \leq k_1([\mu]_B) \). In the first case, if \(h_0([\mu]_T) < k_0([\mu]_T) \) then \([\mu]_T \in T(X)\) is called a Strebel point, and otherwise a non-Strebel point. In the second case, if \(h_1([\mu]_B) < k_1([\mu]_B) \), then \([\mu]_B \in B(X)\) is called an infinitesimal Strebel point, and otherwise an infinitesimal non-Strebel point.

The case \(\mu = 0 \) gives a non-Strebel point \([0]_T \in T(X)\) and an infinitesimal non-Strebel point \([0]_B \in B(X)\).
2.3. Quasiconformal gluing. We will require the following result on quasiconformal gluing.

Theorem 2.1 ([11], Theorem 2). Let \(f_1 \) and \(f_2 \) be two \(K \)-quasiconformal mappings defined on disjoint simply connected subdomains \(\Omega_1 \) and \(\Omega_2 \) of \(\overline{\mathbb{C}} \) respectively and \(f_1(\Omega_1) \cap f_2(\Omega_2) = \emptyset \). Then for any two Jordan domains \(D_1 \) and \(D_2 \) with \(\overline{D}_1 \subset \Omega_1 \) and \(\overline{D}_2 \subset \Omega_2 \), there exists a quasiconformal mapping \(g \) of \(\overline{\mathbb{C}} \) such that
\[
g|_{D_1} = f_1|_{D_1} \quad \text{and} \quad g|_{D_2} = f_2|_{D_2}.
\]

3. Proof of Theorem 1.1

In [10], where the case \(X = \mathbb{D} \) is considered, a particular choice of \(\varphi = 1/\pi \in A^1(\mathbb{D}) \) is chosen to simplify estimates. In our situation, there isn’t an obvious choice of \(\varphi \). To deal with this, we will choose any \(\varphi \) of norm 1, decompose our surface \(X \) into three subsets and modify a given \(\mu \) on some of these subsets. The modified Beltrami differential will remain in the same Teichmüller class but will be an infinitesimal Strebel point.

Fix a Riemann surface \(X \) of infinite analytic type and \(\varphi \in A^1(X) \) with \(||\varphi||_1 = 1 \). Let \(\mu \in M(X) \) with \(||\mu||_\infty = k < 1 \) and \(\epsilon > 0 \).

Step 1: find an appropriate decomposition of \(X \). Realize \(X \) as a union of pairs of pants, that is, topological three-holed spheres where some of the holes are allowed to be points, see for example [1]. Label the pants \(P_1, P_2, \ldots \) where for convenience we may assume \(\bigcup_{i=1}^n P_i \) is connected for each \(n \). Choose \(N \) large enough that if \(G_1 = \bigcup_{i=N+1}^\infty P_i \), then
\[
\int_{G_1} |\varphi| < \frac{\epsilon}{2}.
\]

Each \(P_i \) is obtained by gluing two hyperbolic geodesic hexagons together along three pairs of sides called seams. The three boundary components of \(P_i \) are called cuffs. For \(i = 1, \ldots, N \), let \(U_i \) be an open neighbourhood of the cuffs and seams in \(P_i \) so that \(P_i \setminus U_i \) consists of two components, one arising from each hexagon, and so that
\[
\int_{U_i} |\varphi| < \frac{\epsilon}{4N}.
\]
Note there is no issue if a boundary component of \(P_i \) reduces to a point. In this case, \(U_i \) will contain a neighbourhood of this puncture.

We next take closed neighbourhoods of each \(U_i \), say \(F_i \), which will consist of two components, each a topological annulus so that \(E_i := P_i \setminus (U_i \cup F_i) \) consists of two topological disks. We further require that
\[
\int_{F_i} |\varphi| < \frac{\epsilon}{4N}.
\]

Our disjoint decomposition of \(X \) is then defined by \(G = G_1 \cup \bigcup_{i=1}^N U_i \), \(F = \bigcup_{i=1}^N F_i \) and \(E = \bigcup_{i=1}^N E_i \). By construction, \(E \) and \(G \) are open, \(F \) is closed and
\[
(3.1) \quad \int_G |\varphi| = \int_{G_1} |\varphi| + \sum_{i=1}^N \int_{U_i} |\varphi| < \frac{3\epsilon}{4}, \quad \int_F |\varphi| = \sum_{i=1}^N \int_{F_i} |\varphi| < \frac{\epsilon}{4}, \quad \int_E |\varphi| > 1 - \epsilon.
\]

Step 2: Given a Beltrami differential \(\mu \) in \(M(X) \), we modify it on \(E \) and \(F \). Let \(f : X \to Y \) be a quasiconformal map with complex dilatation \(\mu \). Denote by \(\pi_1, \pi_2 \) the projections from
\[D \text{ to } X, Y \text{ respectively. We may lift } f \text{ to a quasiconformal map } \tilde{f} : \mathbb{D} \to \mathbb{D} \text{ which satisfies } \pi_2 \circ \tilde{f} = f \circ \pi_1. \text{ Since } \tilde{f} \text{ extends continuously to } \partial \mathbb{D}, \text{ we may extend } \tilde{f} \text{ to a quasiconformal map } \hat{f} : \overline{\mathbb{C}} \to \overline{\mathbb{C}} \text{ via reflection in } \partial \mathbb{D}. \]

Given a pair of pants \(P_i \) with \(i \in \{1, \ldots, N\} \), consider one of the two hexagons \(\sigma \) that are glued to give \(P_i \). Consider a component \(H \) of \(\pi_1^{-1}(\sigma) \), which is a geodesic hexagon in \(\mathbb{D} \). Let \(H' = \tilde{f}(H) \subset \mathbb{D} \). If we intersect \(H \) with \(\pi_1^{-1}(E) \) and \(\pi_1^{-1}(F) \) then we obtain an open topological disk \(D \) and a closed topological annulus \(A \) respectively. Let \(\Omega_1 \subset \mathbb{C} \) be an open neighbourhood of \(\mathbb{C} \setminus (A \cup D) \) and let \(\Omega_2 \subset \mathbb{C} \) be an open neighbourhood of \(\overline{D} \) so that \(\overline{\Omega_1} \cap \overline{\Omega_2} = \emptyset \) and both \(\Omega_1 \) and \(\Omega_2 \) are simply connected in \(\mathbb{C} \). Note that \(\partial \Omega_1 \) and \(\partial \Omega_2 \) are both contained in the interior of \(A \).

By the Measurable Riemann Mapping Theorem, we may find a quasiconformal map \(g : \Omega_2 \to f(\Omega_2) \) with complex dilatation \(\mu_1 = \frac{k_1 \overline{\varphi}}{|\varphi|} \),

where \(k_1 \) is to be determined and \(\overline{\varphi} \) is a lift to \(\mathbb{D} \) of the Beltrami differential \(\varphi \) on \(X \). We may then apply Theorem 2.1 with \(\Omega_1, \Omega_2 \) as above, \(f_1 = \tilde{f}, f_2 = g \) and \(D_1 = \mathbb{C} \setminus (A \cup D), D_2 = D \). Hence there is a quasiconformal map \(h : \mathbb{C} \to \mathbb{C} \) satisfying

\[h|_D = g, h|_{\mathbb{C} \setminus (A \cup D)} = \tilde{f}. \]

We then replace \(\tilde{f} \) on \(H \) by this new map \(h \).

Repeating this construction on the lift of each hexagon that makes up \(P_1, \ldots, P_N \), we end up with a quasiconformal map defined on a fundamental region of \(X \) in \(\mathbb{D} \) with image a fundamental region for \(Y \) in \(\mathbb{D} \). We can then obtain a quasiconformal map \(\tilde{f}_1 : \mathbb{D} \to \mathbb{D} \) by propagating to other fundamental regions in the domain and range via the covering groups. Projecting back to \(X \), we obtain a quasiconformal map \(f_1 \) on \(X \) which agrees with \(f \) outside a compact set and on a neighbourhood of the seams and cuffs, and agrees with a quasiconformal map with complex dilatation \(k_1 \overline{\varphi}/|\varphi| \) on a large subset. We will denote by \(\mu_1 \) the complex dilatation of \(f_1 \).

Step 3: \(\mu_1 \) is in the same Teichmüller class as \(\mu \). Recall that \(\tilde{f}_1 \) is a lift of \(f_1 \) to \(\mathbb{D} \). Since \(\tilde{f}_1 \) extends continuously to the boundary, we just need to show that the boundary map of \(\tilde{f}_1 \) agrees with that of \(\tilde{f} \). To see this, let \(w_0 \in \partial \mathbb{D} \). Since the components of \(\pi_1^{-1}(X \setminus G) \) in \(\mathbb{D} \) are pairwise disjoint and have uniformly bounded hyperbolic diameter, we can find a sequence of points \(z_n \) contained in \(\pi_1^{-1}(G) \) which converges to \(w_0 \) in the Euclidean metric. Since \(\tilde{f}_1 \) agrees with \(\tilde{f} \) on \(\pi_1^{-1}(G) \) and both maps extend continuously to \(\partial \mathbb{D} \), we see that \(\tilde{f}_1(w_0) = \tilde{f}(w_0) \). Since \(w_0 \) is arbitrary, by (2.1) it follows that these two maps determine the same two points of Teichmüller space.

Step 4: \(\mu_1 \) is infinitesimally extremal for an appropriate choice of \(k_1 \). Choose \(\epsilon > 0 \) small enough and let

\[k_1 > \frac{(1 + \epsilon)k + \epsilon}{1 - \epsilon}. \]

Note that since the function \(p(x) = ((1 + x)k + x)/(1 - x) \) satisfies \(p(0) = k \) and \(p'(0) > 0 \), this can be achieved.
We have by (2.2)
\[||\Lambda_{\mu_1}|| = \sup \left\{ \left| \Re \int_X \mu_1 \psi \right| : \psi \in A^1(X), ||\psi||_1 = 1 \right\} \]
\[\geq \left| \Re \int_X \mu_1 \varphi \right| \]
\[\geq \left| \Re \int_E \mu_1 \varphi + \Re \int_F \mu_1 \varphi + \Re \int_G \mu_1 \varphi \right| \]
\[\geq \left| \Re \int_E \mu_1 \varphi \right| - \left| \Re \int_F \mu_1 \varphi \right| - \left| \Re \int_G \mu_1 \varphi \right|. \]

By (3.1), we have
\[\Re \int_E \mu_1 \varphi = \int_E \mu_1 \varphi = \int_E k_1 |\varphi| > k_1(1-\epsilon), \]
and
\[\left| \Re \int_F \mu_1 \varphi \right| \leq ||\mu_1||_\infty \int_F |\varphi| < \epsilon. \]

The contribution on \(G \) is, again by (3.1)
\[\left| \Re \int_G \mu_1 \varphi \right| = \left| \Re \int_G \mu \varphi \right| \leq ||\mu||_\infty \int_G |\varphi| < k\epsilon. \]

Combining these estimates, we obtain
\[||\Lambda_{\mu_1}|| > k_1(1-\epsilon) - (k+1)\epsilon. \]

Finally, by (3.2), we obtain
\[k_1([\mu_1]_B) = ||\Lambda_{\mu_1}|| > k_1(1-\epsilon) - (k+1)\epsilon > k > ||\mu||_\infty \geq ||\mu_1|_{\infty} \geq h_1([\mu_1]_B), \]
and so \(\mu_1 \) is an infinitesimal Strebel point.

REFERENCES

[1] V. Alvarez, J. Rodriguez, Structure Theorems for Riemann and topological surfaces, J. London Math. Soc., (2) 69 (2004), 153-168.
[2] V. Bozin, N. Lakic, V. Markovic, M. Mateljevic, Unique extremality, J. Anal. Math., 75 (1998), 299-338.
[3] C.J. Earle, F. P. Gardiner, Geometric isomorphisms between infinite dimensional Teichmüller spaces, Trans. Amer. Math. Soc., 348 (1996), 1163-1190.
[4] C. J. Earle, Z. Li, Zhong, Isometrically embedded polydisks in infinite dimensional Teichmüller spaces, J. Geom. Anal., 9 (1999), no. 1, 51-71.
[5] A. Fletcher, V. Markovic, Quasiconformal Maps and Teichmüller Theory, Oxford Graduate Texts in Mathematics 11, Oxford University Press, 2007.
[6] F. P. Gardiner, Teichmüller Theory and Quadratic Differentials, Wiley-Interscience, New York, 1987.
[7] F. P. Gardiner, N. Lakic, Quasiconformal Teichmüller Theory, Math Surveys Monogr, 76, Providence, RI: Amer Math Soc, 2000.
[8] R.S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc., 138 (1969), 399-406.
[9] Y. Hu, Y. Shen, On Strebel points, Sci. China Ser. A, 52, no. 9 (2009), 2019-2026.
[10] H. Huang, B. Long, On the relation between Strebel points and infinitesimal Strebel points, to appear in Comp. Meth. Func. Th.
[11] Y. Jiang, Y. Qi, A gluing theorem for quasiconformal mappings, *Kodai Math. J.*, **35** (2012), 415-424.

[12] S. Krushkal, Extremal quasiconformal mappings, *Siberian Math. J.*, **10** (1969), 411-418.

[13] N. Lakic, Strebel points, *Proceedings of the Bers Colloquium*, AMS, 1997.

[14] E. Reich, K. Strebel, On the extremality of certain Teichmüller mappings, *Comment. Math. Helv.*, **45** (1970), 353-362.

[15] K. Strebel, Zur frage der eindeutigkeit extremaler quasikonformer abbildungen des einheitkreises I and II, *Comment. Math. Helv.*, **36** (1962), 306-323; **39** (1964), 77-89.

Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115-2888. USA

E-mail address: fletcher@math.niu.edu