Successful Treatment with High-dose Steroids for Acute Exacerbation of Idiopathic Pulmonary Fibrosis Triggered by COVID-19: A Case Report

Norihito Omote1,2, Yoshihiro Kanemitsu2,1, Takahiro Inoue2,4, Toshiyuki Yonezawa2,5, Takuji Ichihashi2, Yuichiro Shindo1,2, Koji Sakamoto1, Akira Ando1, Atsushi Suzuki1, Akio Niimi3, Satoru Ito5, Kazuyoshi Imaizumi4 and Naozumi Hashimoto1

Abstract:
We herein report a case of acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) triggered by COVID-19. An 87-year-old woman tested positive for COVID-19 on a polymerase chain reaction test, and computed tomography revealed ground-glass opacity (GGO) superimposed on a background pattern consistent with usual interstitial pneumonia. Considering these data, we diagnosed her with AE-IPF. She experienced worsening of dyspnea and expansion of the GGO. Therefore, we introduced high-dose steroids (methylprednisolone 250 mg/day for 3 days). After the treatment, the pulmonary infiltrates improved. She was discharged from our hospital without severe disability. High-dose steroids can be a viable treatment option for AE-IPF triggered by COVID-19.

Key words: COVID-19, acute exacerbation, idiopathic pulmonary fibrosis, high-dose steroid, case report

Background
Coronavirus disease 2019 (COVID-19) pneumonia is an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 infection. Several drugs, including steroids and remdesivir, have been shown to be effective in recent randomized controlled trials for patients with severe COVID-19 (1, 2). However, despite the development of therapeutic strategies, patients with COVID-19 still exhibit a high mortality rate, especially among the elderly and those with comorbidities, including diabetes, renal failure, and respiratory diseases (3, 4). In particular, respiratory diseases, such as chronic obstructive pulmonary disease and interstitial lung disease (ILD), are also strongly associated with a high mortality (3, 5).

Idiopathic pulmonary fibrosis (IPF) is an irreversible and progressive ILD with an unknown etiology. Some patients with IPF experience acute exacerbation (AE) of the disease, with episodes of the sudden acceleration of the disease process (6, 7). AE-IPF is a severe and life-threatening complication of IPF that occurs without any identifiable causes or triggers, such as surgical intervention or infection (8).

We herein report a patient with AE-IPF triggered by COVID-19 who was successfully treated with a high-dose steroid.

Case Presentation
An 87-year-old asymptomatic woman was diagnosed with COVID-19 by transcription polymerase chain reaction (PCR). Three days later, she was admitted to our hospital to...
quarantine her from her family. She had a cough and slightly worsening dyspnea without hypoxia (oxygen saturation of 98% on ambient air). There were no extra-thoracic manifestations suggesting the presence of an underlying connective tissue disease (CTD). Routine blood tests showed a white blood cell count of 2,880/mm³, C-reactive protein of 0.09 mg/dL, lactate dehydrogenase 204 U/ml, D-dimer 1.8 μg/mL, KL-6 370 U/mL, ferritin 106.7 ng/mL, and positivity for anti-SSA(Ro) antibody.

Chest X-ray and computed tomography (CT) showed bilateral ground-glass opacity (GGO) superimposed on a background reticular shadow and honeycomb in the bilateral lower lobes, suggesting the usual interstitial pneumonia pattern (Figure A, 2A-B, 3A). Given these findings, we diagnosed her with AE-IPF triggered by COVID-19 and placed her on favipiravir from the first day of admission.

Five days later, she experienced hemoptysis, worsening of dyspnea (without hypoxia), elevated D-dimer 4.3 μg/mL, and expansion of GGO on CT (Figure B, 2C-D, 3B). Therefore, we decided to initiate intravenous high-dose steroids (methylprednisolone 250 mg/day for 3 days followed by methylprednisolone 1.0 mg/kg/day, total 40 mg/day). In addition, we switched her anti-viral therapy from favipiravir to remdesivir. With this treatment, the dyspnea and pulmonary infiltrate of the left lower lobe gradually improved (Figure C, 2E-F, 3C). The systemic steroid was tapered from day 8 of steroid therapy initiation and discontinued entirely on day 32. Finally, she was discharged from our hospital on day 34 without severe disability.

Discussion

We successfully treated a patient with AE-IPF triggered by COVID-19 with high-dose steroids. The recent guidelines
Concerning the management of patients with COVID-19, recommend the short-term use of low dose steroids (e.g. dexamethasone 6.0 mg for 10 days) based on the Recovery study (1, 9, 10). However, the optimum dose and duration of steroid therapy, especially in high-risk groups, including those with IPF, remain unclear.

A recent study reported that high-dose steroids (methylprednisone 250 mg/day for 3 days) was a viable treatment option for severe COVID-19 (11). Kitayama et al. also reported a case of COVID-19 pneumonia resembling an AE-ILD rescued by pulse steroid therapy (12). Both patients with COVID-19 and IPF are exposed to hyperinflammatory states with elevated levels of cytokines, including IL-6 (13-15). Furthermore, high-dose steroids, including pulse therapy, are often used to manage AE-IPF (16, 17). These data imply that AE-IPF triggered by COVID-19 may need higher doses of steroids to suppress the disease activity than those with idiopathic and other triggers. Although the optimal duration of maintenance steroid therapy in AE-IPF is unclear, we terminated steroid therapy on day 32. This is because our patient was elderly, so we were concerned about adverse events with long-term maintenance steroid therapy. In addition, most studies have applied a short-term protocol of steroid therapy (3-10 days) for severe COVID-19 patients (1, 2, 11). In contrast, the Japanese guideline for the treatment of IPF suggests long-term maintenance of steroid therapy after an AE event (17). Further evidence is needed to answer clinical questions concerning maintenance steroid therapy in AE-IPF triggered by COVID-19.

The present patient met the diagnostic criteria for AE-IPF, and an AE event was triggered by COVID-19 (8). Previous studies have suggested that some cases of AE-IPF are induced by viral infections (18, 19). Song et al. noted no marked differences in the prognosis between patients with “idiopathic” AE and those whose condition was triggered by infection (20). In contrast, Kondoh et al. reported that AE-ILD triggered by COVID-19 had a worse prognosis than that triggered by other causes (21). Furthermore, Drake et al. reported that patients with COVID-19 with preexisting ILD had a significantly higher mortality than those without ILD (5). These data indicate that AE-IPF triggered by COVID-19 results in greater disease severity than idiopathic and other infection-triggered AE-IPF. Although the 90-day mortality rate of AE-ILD triggered by COVID-19 is especially high (75%), our patient recovered without severe disability with pulse steroid therapy from the early stage of the disease onset (21). These findings suggest that the early initiation of intensive treatment, including pulse steroid therapy, may be beneficial for patients with AE-IPF triggered by COVID-19.

In summary, we reported a patient with AE-IPF triggered by COVID-19 successfully treated with high-dose steroids. Both patients with COVID-19 and IPF are exposed to hyperinflammatory states. Therefore, high-dose steroids can be a useful treatment option for AE-IPF triggered by COVID-19 to control disease activity.

The authors state that they have no Conflict of Interest (COI).

Funding
Not applicable.

Acknowledgement
Not applicable.

Ethics approval and consent to participate
Written informed consent was obtained from the patient. Ethics approval is not applicable to case reports.

Consent to publish
Written informed consent was obtained from the patient for the publication of this case report and any accompanying images.

Availability of data and materials
The data that support this case report are available from the corresponding author on reasonable request, since respecting the Ethics Committee to protect patient confidentiality.

Declare of Conflict of Interest
None of the authors have conflicts of interest directly relevant to the content of this article.
References

1. Group RC, Horby P, Lim WS, Emberson JR, Mathun M, Bell JL, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med 384: 693-704, 2021.

2. Group WHO-FAIC-TW, Scl, Murthy S, Diaz JF, Slutsky AS, Villar J, et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 324: 1330-1341, 2020.

3. Grasselli G, Greco M, Zanella A, Albaso G, Antonelli M, Bellani G, et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med 180: 1345-1355, 2020.

4. Ioannou GN, Locke E, Green P, Berry K, O’Hare AM, Shah JA, et al. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10131 US Veterans With SARS-CoV-2 Infection. JAMA Netw Open 3: e2022310, 2020.

5. Drake TM, Docherty AB, Harrison EM, Quint JK, Adamali H, Agnew S, et al. Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study. Am J Respir Crit Care Med 202: 1656-1665, 2020.

6. Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE Jr, et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 176: 636-643, 2007.

7. Kondo Y, Taniguchi H, Kawabata Y, Yokoi T, Suzuki K, Takagi K. Acute exacerbation in idiopathic pulmonary fibrosis. Analysis of clinical and pathologic findings in three cases. Chest 103: 1808-1812, 1993.

8. Collard HR, Pyerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, et al. Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report. Am J Respir Crit Care Med 194: 265-275, 2016.

9. Coronavirus Disease 2019 (COVID-19) treatment guideline.: National Institutes of Health. Available at [Internet]. [cited 2020 Feb 18]. Available from: https://www.covid19treatmentguidelines.nih.gov/.

10. Adarsh Bhimraj, R L M, Amy Hirsch Shumaker, et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin Infect Dis ciaa478, 2020;Apr 27.

11. Maryam Edalatifar MA, Mohammadreza Salehi, Zohre Naderi, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID19 patients results from a randomised controlled clinical trial. Eur Respir J 56: 2002808, 2020;Dec 24.

12. Kitayama T, Kitamura H, Hagiwara E, Higa K, Okabayashi H, Oda T, et al. COVID-19 Pneumonia Resembling an Acute Exacerbation of Interstitial Pneumonia. Intern Med 59: 3207-3211, 2020.

13. Webb BJ, Peltan ID, Jensen P, Hoda D, Hunter B, Silver A, et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study. The Lancet Rheumatology 2: e754-e763, 2020.

14. Lee JH, Jang JH, Park JH, Jang HJ, Park CS, Lee S, et al. The role of interleukin-6 as a prognostic biomarker for predicting acute exacerbation in interstitial lung diseases. PLoS One 16: e0255365, 2021.

15. Arai T MH, Hirose M, Kida H, et al. Prognostic significance of serum cytokines during acute exacerbation of idiopathic interstitial pneumonias treated with thrombomodulin.pdf. BMJ Open Respir Res 8: e000889, 2021;Jul.

16. Kim DS, Park JH, Park BK, Lee JS, Nicholson AG, Colby T. Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. Eur Respir J 27: 143-150, 2006.

17. Homma S, Bando M, Azuma A, Sakamoto S, Sugino K, Ishii Y, et al. Japanese guideline for the treatment of idiopathic pulmonary fibrosis. Respir Investig 56: 268-291, 2018.

18. Wootton SC, Kim DS, Kondoh Y, Chen E, Lee JS, Song JW, et al. Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183: 1698-1702, 2011.

19. On R, Matsumoto T, Kushima H, Hirano R, Fujita M. Prevalence of viral infection in acute exacerbation of interstitial lung diseases in Japan. Respir Investig 2020.

20. Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J 37: 356-363, 2011.

21. Kondoh Y. Kataoka K, Ando M, Awaya Y, Ichikado K, Kataoka M, et al. COVID-19 and acute exacerbation of interstitial lung disease. Respir Investig 2021.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).