Age-related ceRNA networks and the mRNA/protein correlation in Drosophila ageing

Deying Yang
Sichuan Agricultural University

Ya Yuan
Sichuan Agricultural University

Zhi He
Sichuan Agricultural University

Jianbo Tu
Sichuan Agricultural University

Siqi Wang
Sichuan Agricultural University

Jiamei Li
Sichuan Agricultural University

Pu Zhang
Sichuan Agricultural University

Xueping Mao
Sichuan Agricultural University

Xiaolan Fan
Sichuan Agricultural University

Diyan Li
Sichuan Agricultural University

Bo Zeng
Sichuan Agricultural University

Qingyong Ni
Sichuan Agricultural University

Yan Li
Sichuan Agricultural University

Mingwang Zhang
Sichuan Agricultural University

Taiming Yan
Sichuan Agricultural University

Mingyao Yang (yangmingyao@sicau.edu.cn)
Sichuan Agricultural University
Abstract

Background

As *Drosophila* is a classic model organism, understanding of the regulatory networks has great significance in revealing the genetic mechanisms of ageing and human diseases. Competing endogenous RNA (ceRNA)-mediated regulation is an important mechanism of circular RNA (circRNA) and long non-coding RNA (lncRNA) regulation in ageing and age-related disease. However, extensive analyses of the multi-omics (circRNA/miRNA/mRNA, lncRNA/miRNA/mRNA, and mRNA/protein) characteristics of adult *Drosophila* ageing have not been reported. Our results determine the ceRNA networks and the mRNA/protein correlations of key differentially expressed genes in adult *Drosophila* aging, and provide a solid foundation for understanding mechanisms of human ageing and ageing-related diseases.

Results

Here, differentially expressed circRNAs and microRNAs (miRNAs) between 7 and 42 day old *Drosophila* were screened and identified. Then, the differentially expressed mRNAs, circRNAs, miRNAs, lncRNAs, and proteins between day 7 and day 42 were used to analyse fly age-related circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks and the mRNA/protein correlation in Drosophila ageing. Several key ceRNA networks were identified, such as the circ_0006913/miR-985-3p/*Abl*, circ_0009500/miR-14-5p/*SERCA*, XLOC_100429/miR-14-5p/*SERCA*, and XLOC_100429/miR-14-5p/*Vha100-4* networks. Subsequently, 16 pairs of differentially expressed interacting mRNAs/proteins were found, including 10 pairs with the same expression trends and 6 pairs with the opposite expression trends. Furthermore, real-time quantitative PCR (qPCR) was used to verify the expression level of those genes.

Conclusions

The discovery of these ceRNA networks and the mRNA/protein correlations in adult *Drosophila* ageing will provide new information for research on human ageing and age-related disease.

Background

Drosophila melanogaster is a classic and modern genetic model that has been used for more than 100 years to study various aspects of the life sciences. In particular, fruit flies have been widely utilized to study ageing [1] and multiple human diseases, such as cancer [2], neurodegenerative disease[3], obesity and diabetes [4], sterile inflammation [5], and regeneration [6]. *D. melanogaster* has also been utilized to study complex behavioural and developmental biology topics, including exercise [7], courtship [8], and foraging [9]. Recently, mounting evidence has suggested that *Drosophila* is an outstanding model for studying ageing and age-related disease [10–12]. Ageing is a physiologic/pathologic process featuring declines in normal physiological function and progressive impairment of cellular functions [13, 14]. The ageing phenomenon has been conserved during biological evolution; even yeast and other single-celled eukaryotes...
experience ageing [13]. Thus, in-depth study of the regulatory mechanism of ageing in *Drosophila* will be helpful for the study of human ageing and disease.

Current studies suggest that non-coding RNAs (ncRNAs) are involved in organismal ageing [15–18]. With the development of sequencing technology, dynamic changes in the transcriptome (including changes in mRNA, long non-coding RNA (IncRNA), microRNA (miRNA), and circular RNA (circRNA) [19–22]; the proteome [23]; and the metabolome [24, 25]) have been described in the context of *Drosophila* ageing. Most miRNAs, mRNAs, and proteins in fruit flies are evolutionarily conserved up to humans and regulate similar signalling pathways across organisms, such as the NF-κB, AMPK, mTOR, P53, PGC1α, and FoxO pathways [21, 26, 27]. Large studies have demonstrated that the circRNA/miRNA/mRNA axis and IncRNA/miRNA/mRNA axis play vital roles in ageing and age-related disease [26, 28–30].

As *Drosophila* is a workhorse model organism, thoroughly studying the characteristics of adult *Drosophila* from a multiomics perspective is necessary. However, extensive analyses of the multiomics (circRNA/miRNA/mRNA, IncRNA/miRNA/mRNA, and mRNA/protein) characteristics of adult *Drosophila* ageing have not been reported. In the present study, we investigated the circRNA/miRNA/mRNA axis, IncRNA/miRNA/mRNA axis, and mRNA/protein axis in adult *Drosophila* at two age points (day 7 and day 42) and determined the regulatory network of key differentially expressed (DE) genes in *Drosophila* ageing. The results will improve knowledge regarding the gene regulation network of adult *Drosophila* ageing and provide a solid foundation for understanding mechanisms of human ageing and ageing-related diseases.

Results

Overview of multiomics data

The DE genes and proteins in *Drosophila* between day 7 and day 42 were screened, and their networks were analysed (Table 1). A total of 537 DE mRNAs, 348 DE proteins, and 43 DE IncRNAs were obtained from a previous study in our laboratory (Dataset S1). A total of 6003 circRNAs and 226 miRNAs were identified at day 7 and day 42 (Dataset S2). Ultimately, 29 DE circRNAs and 30 DE miRNAs were found (Dataset S1). The merged sequences of novel circRNAs (Dataset S3, Dataset S4, and Dataset S5) and IncRNAs (Dataset S6) are shown in supplementary files.

	mRNA	Proteins	LncRNAs	CircRNAs	miRNAs
Total	537	348	43	29	24
Upregulated	194	134	15	21	11
Downregulated	343	214	28	8	13

DE circRNAs and miRNAs in *Drosophila* between day 7 and day 42
The DE circRNAs and miRNAs between 7 and 42-day-old *Drosophila* were analysed. Between day 7 and day 42, 29 DE circRNAs in *Drosophila* were identified, including 21 upregulated and 8 downregulated circRNAs at day 42 (Table 2). The circRNAs were derived from different source genes. Furthermore, 24 DE miRNAs (11 upregulated and 13 downregulated) were screened between day 7 and day 42 (Figure 1A). Dme-miR-9a-3p and dme-miR-985-3p were identified as canonical specific fruit fly miRNAs. Then, dme-miR-956-3p, dme-miR-284-3p, and dme-miR-289-5p were identified as non-canonical miRNAs. The rest of 19 DE miRNAs were canonically conserved miRNAs.

Furthermore, functional annotation was carried out for the source genes of DE circRNAs and DE miRNAs. These source genes were found to be involved in multiple molecular functions (Table 2). Evidently, the biological processes of the short lifespan-related source genes *arm* and *pan* were involved in the Wnt signalling pathway and had similar molecular functions, such as binding, protein binding, transcription factor binding, and transcription regulator activity. In addition, different circRNAs were observed to originate from the same mRNA transcript. For example, dme_circ_0008175 and dme_circ_0008173 were originated from *Nlg1* gene, and dme_circ_0009514 and dme_circ_0009500 were derived from *pan* gene. The Gene Ontology (GO) annotations of ageing-related DE miRNAs were investigated, and 17 DE miRNAs were clustered with 20 GO terms (Figure 1B), including cell fate commitment, programmed cell death, developmental growth, and regulation of circadian rhythm terms.

Table 2. DE circRNAs of *Drosophila* between day 7 and day 42
ID	CircBase ID	Fold change	P value	Source gene	Portion of biological process term(s) from Flybase database	
Dme_circ_0009372	Dme_circ_0005033	4.5034↑	0.007635	Asator	Protein serine/threonine kinase activity; ATP binding	
Dme_circ_0006708	Dme_circ_0005241	4.2791↑	0.012415	Dad	TGF-beta signalling pathway; negative regulation of BMP signalling pathway	
Dme_circ_0004259	Dme_circ_0002098	4.2083↑	0.014401	shot	Cytoplasmic microtubule organization; wound healing; branching involved in open tracheal system development; cilium organization	
Dme_circ_0002070	Dme_circ_0002195	3.9032↑	0.026301	Scp1	-	
Dme_circ_0010408	Dme_circ_0003710	3.8118↑	0.031385	CoRest	Negative regulation of transcription by RNA polymerase II; positive regulation of DNA methylation-dependent heterochromatin assembly; negative regulation of histone H4-K16 acetylation; negative regulation of histone H3-K27 methylation	
Dme_circ_0003904	Dme_circ_0003738	3.5948↑	0.045349	CG33144	Ubiquitin-dependent protein catabolic process	
Dme_circ_0008175	Dme_circ_0001709	3.5948↑	0.045412	Nlg1	Neuromuscular junction development; cellular process	
Dme_circ_0005030	Dme_circ_0002884	3.5765↑	0.046714	Ccn	Negative regulation of cell death; signal transduction; cell adhesion	
------------------	------------------	---------	-----------	-----	--	
Dme_circ_0006667	Dme_circ_0001321	3.5765↑	0.046714	gish	Positive regulation of Wnt-TCF and hedgehog signalling pathways; negative regulation of Hippo signalling pathway	
Dme_circ_0010536	Dme_circ_000629	3.559↑	0.048096	slgA	Arginine and proline metabolism	
Dme_circ_0008383	Dme_circ_004519	2.6054↑	0.043863	mura	Protein ubiquitination; long-term memory	
Dme_circ_0010134	Dme_circ_002087	1.1067↑	0.039466	Stim	Developmental process; cellular homeostasis	
Dme_circ_0009358	-	0.74476↑	0.002481	CaMKI	Protein phosphorylation	
Dme_circ_0000626	-	3.7656↑	0.03384	CG17646	Triglyceride metabolic process; transmembrane transport	
Dme_circ_0011075	-	3.7618↑	0.03415	Trf2	Post-embryonic development; response to organic cyclic compound; programmed cell death; respiratory system development; response to oxygen-containing compound	
Dme_circ_0006956	-	3.5884↑	0.045804	GluClalpha	Cellular process; transport; localization; establishment of localization; biological regulation	
CircRNA ID	miRNA ID	Fold Change	P-value	Gene Symbol	Pathway/Function	
------------	----------	-------------	---------	-------------	-----------------	
Dme_circ_0009667	-	3.559↑	0.048096	dlg1	Hippo signalling pathway-fly	
Dme_circ_0009514	-	4.0161↑	0.021197	pan	Canonical Wnt signalling pathway	
Dme_circ_0006334	-	3.8925↑	0.026799	CG42402	-	
Dme_circ_0008173	-	3.881↑	0.027405	Nlg1	Neuromuscular junction development; cellular process	
Dme_circ_0004404	-	0.61768↑	0.020721	Dbp80	Poly(A)+ mRNA export from nucleus	
Dme_circ_0003891	Dme_circ_0001623	-3.8065↓	0.033572	psq	Anterior/posterior axis specification, embryo; DNA binding	
Dme_circ_0006619	Dme_circ_0003501	-4.3746↓	0.010954	srp	Autophagy; cell fate commitment; midgut development	
Dme_circ_0004913	Dme_circ_0004913	-0.52833↓	0.047568	CG34347	Actomyosin structure organization	
Dme_circ_0004843	-	-0.48662↓	0.02228	CG15715		
Dme_circ_0010498	-	-0.73454↓	0.04614	CG1304	Proteolysis	
Dme_circ_0006913	-	-2.7169↓	0.042802	Cyp12a5	Oxidation-reduction process	
Dme_circ_0010310	-	-3.8065↓	0.033572	arm	Wnt signalling pathway	
Dme_circ_0009500	-	-4.0543↓	0.021183	pan	Canonical Wnt signalling pathway	

Notes: “↑” and “↓” mean upregulation and downregulation on day 42 compared to day 7, respectively.

DE circRNA/miRNA/mRNA networks in Drosophila ageing

In this section, the DE circRNA/miRNA/mRNA networks were analysed. Through the ceRNA mechanism, miRNAs can negatively regulate mRNA expression. Overall, 12 DE circRNAs, 21 DE miRNAs, and 30 DE
mRNAs had interactions (Figure 2A). According to the trends in expression quantity changes, three DE circRNAs (dme_circ_0006913, dme_circ_0008173, and dme_circ_0009500) targeted the DE miRNAs with opposite expression trends (Figure 2B). Based on qPCR results, the expression patterns of two circRNAs (dme_circ_0008173 and dme_circ_0009500), four miRNAs (dme-miR-289-5p, dme-miR-985-3p, dme-miR-286-3p, and dme-miR-14-5p), and four mRNAs (frizzled, CG31064, Abl, and SERCA) were consistent with RNA-seq data (Figure 2C). Importantly, the expression trend of dme_circ_0009500/dme-miR-14-5p/SERCA, dme_circ_0009500/dme-miR-289-5p/frizzled, and dme_circ_0009500/dme-miR-289-5p/CG31064 conformed to the ceRNA mechanism.

DE IncRNA/miRNA/mRNA networks in *Drosophila* ageing

According to the functional patterns of IncRNAs competing with mRNAs for binding to miRNAs, the interaction networks of DE IncRNAs/miRNAs/mRNAs were identified. In addition, DE miRNAs targeted DE mRNAs with opposite expression trends. Based on the DE genes in our database, 15 lncRNAs, 15 miRNAs, and 32 mRNAs had interactions (Figure 3A). Several specific lncRNA/miRNA/mRNA networks were found, such as XLOC_100429/dme-miR-14-5p/SERCA, XLOC_100429/dme-miR-14-5p/Vha100-4, and XLOC_073604/dme-miR-985-3p/Abl (Figure 3B). In XLOC_027736/dme-miR-985-3p/Abl and XLOC_189909/dme-miR-985-3p/Abl networks, the expression trend of these genes by qPCR analysis is consistent with the RNA-seq data from our study (Figure 3C).

Functional annotation of DE circRNA/IncRNA-associated networks

GO functional annotation of DE circRNAs/IncRNAs/mRNAs was carried out based on 74 target mRNA genes (Dataset S7). The first 30 GO terms based on the lowest P values are listed (Figure 5). In circRNA/mRNA GO terms, there were just two major GO categories in circRNA-associated networks, including biological processes (29 GO terms) and cellular components (1 GO term, perinuclear region of cytoplasm). Similarly, GO annotations of IncRNA-associated networks consisted of 25 GO terms in biological processes and 5 GO terms in cellular component.

In GO annotations of circRNA-associated networks, there were several aging-related biological processes in GO terms, such as homeostatic process (10 DE genes), cellular homeostasis (7 DE genes), cation homeostasis (5 DE genes), ion homeostasis (5 DE genes), cell-cell signalling (9 DE genes), cell fate determination (5 DE genes), and developmental growth (7 DE genes) (Figure 4A). Furthermore, the 13 out of 30 first GO terms of IncRNA-associated networks were related to homeostatic process, including cellular homeostasis, retina homeostasis, ion homeostasis, calcium ion homeostasis, cellular cation homeostasis, etc (Figure 4B).

mRNA/protein correlation in *Drosophila* ageing

To reveal the post-transcriptional regulatory network of gene expression in *Drosophila* at day 7 and day 42, the expression trends between proteins and mRNA were analysed. A relatively weak correlation (Pearson value 0.049) between mRNA and proteins was observed. A total of 2753 mRNAs and mapped proteins were found in *Drosophila* at day 7 and day 42 (Dataset S8). 16 pairs of interacting DE mRNAs/proteins were
identified, including 10 pairs with the same expression trends and 6 pairs with the opposite expression trends (Figure 5A, Dataset S8). GO annotation was performed for the 16 pairs of interacting mRNAs/proteins (Figure 5A). FBgn0035542 (Diabetes and obesity regulated, DOR) was enriched for the RNA processing term, FBgn0012042 (Attacin-A, AttA) was enriched for the extracellular region term, and FBgn0036948 (CG7298) was enriched for the carbohydrate derivative metabolic process term; the rest of the proteins/mRNAs were enriched for the response to biotic stimulus and organonitrogen compound metabolic process terms. Evidently, the mRNA levels of FBgn0001624 (discs large 1, dlg1), FBgn0052699 (lysophosphatidylcholine acyltransferase, LPCAT), FBgn0002707 (meiotic 9, mei-9), FBgn0086907 (cytochrome c distal, Cyt-c-d), and FBgn0265101 (suppressor-of-G2-allele-of-skp1, Sgt1) were not changed between day 7 and day 42; however, the proteins encoded by these mRNAs were DE between day 7 and day 42. Furthermore, dlg1, LPCAT, mei-9, Cyt-c-d, and Sgt1 were clustered into different KEGG pathways (Figure 5B).

10 mRNA genes were randomly selected for expression level detection via qPCR at day 7 and day 42. FBgn0034335 (Glutathione S transferase E1, GstE1), FBgn0034480 (CG16898) and FBgn0035542 (DOR) exhibited the same expression patterns as observed in the RNA-seq data (Figure 5C). When compared to 7 day-old fruit flies, GstE1 and CG16898 were upregulated in 42 day-old fruit flies, while DOR was downregulated at day 42.

Discussion

Increasing evidence has suggested that ceRNA networks play key roles in a variety of biological processes, such as cancer [31, 32], Alzheimer’s disease [33], skeletal muscle myogenesis [34], and ageing [35, 36]. Drosophila models are used to study multiple biological phenomena and various human diseases [7, 37-40]. Thus, identification and analysis of gene regulatory networks in Drosophila are very important and are necessary to improve the applicability of research on ageing and age-related diseases. In this study, DE circRNA/miRNA/mRNA networks, DE lncRNA/miRNA/mRNA networks, and the mRNA/protein correlation were analysed in 7 and 42-day-old Drosophila.

Most of the DE circRNAs were accumulated in elder age day 42 in Drosophila, which are similar to other findings in model organisms [16, 17]. circRNAs are highly stable molecules and have been demonstrated to play important roles in ageing [41] and age-related diseases [42, 43]. Additionally, six source genes of circRNAs were related to fruit fly ageing, including asator (short-lived, AsatorGD7323) [44], dad (short-lived, DadGD1335) [45], gish (short-lived, gishGD10588) [44, 46], pan (short-lived, panAN.UAS) [47, 48], psq (long-lived, psqBG01031) [49, 50], and arm (short-lived, armS10.UAS.Tag:MYC) [51]. Previous studies have demonstrated that IncRNAs are also involved in the regulation of ageing and multiple diseases [52, 53]. Furthermore, the ceRNA mechanism is a very important mechanism of circRNA and IncRNA regulation in the context of age-related disease [43, 54, 55]. miRNAs are the core molecules of the ceRNA regulatory system [34, 35]. Thus, screening of DE miRNAs is essential for research on ceRNA networks related to Drosophila ageing. miRNAs generally induce mRNA degradation or repress translation of target transcripts through sequence-specific binding to the transcript 3'UTR [56, 57]. Each transcript can be targeted by multiple miRNAs, and each
miRNA can target hundreds of different transcripts (mRNA, circRNA, and IncRNA transcripts) [21, 58, 59]. Thus, the miRNA regulatory network is far-reaching [21]. Previous studies have verified that miRNAs are important small regulatory ncRNA molecules that control a fairly large number of biological processes; their important functions have generated interest in their use as biomarkers and their roles as regulators of ageing [21, 60] and a number of cancer types [61-63]. Recent studies have also suggested that miRNAs are involved in the regulation of age-associated processes and pathologies in multiple mammalian tissues, including the brain, heart, bones, and muscles [21, 64-66]. In our study, 60% (18 out of 30 total miRNAs) of DE miRNAs between day 7 and day 42 were found to affect fruit fly ageing, including dme-miR-14 (short-lived, mir-14Δ1) [67] and dme-miR-276a/b-5p (short-lived, miR-276aKO) [68, 69], etc (Table S1). The results indicate that these miRNAs may act as sponges of circRNAs and IncRNAs involved in regulation of Drosophila ageing.

CircRNA/miRNA/mRNA and IncRNA/miRNA/mRNA interactions have essential roles in fly ageing. A previous study performed global identification of functional miRNA-mRNA interactions in Drosophila [70]. However, the circRNA/miRNA/mRNA and IncRNA/miRNA/mRNA interactions in fly ageing have remained unclear. In the present study, multiple networks of DE circRNAs/miRNAs/mRNAs and DE IncRNAs/miRNAs/mRNAs in Drosophila between day 7 and day 42 were identified. In previous studies, mutation of four miRNAs (dme-miR-276a/b-5p [68, 69], dme-miR-286-3p [68], and dme-miR-14-5p [67]) and two mRNA targets (Abl [44, 71] and SERCA (short-lived, SERCAGD436) [44]) within these DE circRNA/miRNA/mRNA networks was found to affect the lifespan of Drosophila. Thus, we determined that the circ_0006913/miR-985-3p/Abl and circ_0009500/miR-14-5p/SERCA networks merited further investigation. Two circRNAs (dme_circ_0006913 and dme_circ_0009500) and the frizzled gene were predicted to competitively bind to dme-miR-289-5p. Furthermore, frizzled has been reported to be involved in regulation of the mTOR signalling pathway and Wnt signalling pathway [72]. In XLOC_100429/miR-14-5p/SERCA and XLOC_100429/miR-14-5p/Vha100-4 networks, including mutants of miR-14 [67], SERCA [44], and Vha100-4 (long-lived, Vha100-4dsRNA,shRNA.UAS) [73], were predicted to affect fruit fly ageing. Furthermore, the IncRNAs XLOC_073604, CR44922, XLOC_027736, XLOC_189909, and XLOC_189798 and the mRNA Abl (FBgn0000017) were predicted to competitively bind to miR-985-3p. The ageing-related phenotype associated with the Abl mutant led to a shorter lifespan for flies with three specific alleles (Abll2, Ablj3, and AblGD1344) [44, 71, 74].

Several of the DE miRNAs in those networks have been predicted to interact with both DE circRNAs and DE IncRNAs, such as dme-miR-14-5p, dme-miR-276a-5p, and dme-miR-276b-5p. Based on our study findings, dme-miR-14-5p may target XLOC_100429 and thereby regulate SERCA and Vha100-4 mRNA expression. Recent studies have demonstrated that mir-14 is an abundant miRNA in S2 cells [75], and it is one of the most engaged miRNAs in AGO1-RNP complexes [70]. Furthermore, the expression trend of dme_circ_0009500/dme-miR-14-5p/SERCA network determined by qPCR was consistent with the RNA-seq data in our study. miR-14-mutant flies present defects related to apoptosis, the stress response, survival, and metabolism [76] and are more sensitive to nutrient deprivation than wild-type flies [67]. Drosophila miR-14 affects ageing by regulating insulin production and metabolism through its target, sugarbabe [67]. In male flies, miR-14 mutation can reduce survival during nutrient deprivation [67]. Therefore, miR-14 may be a
sponge of dme_circ_0009500 and XLOC_100429 to regulate Drosophila ageing. The specific regulatory mechanism will be the subject of future research.

GO annotations of the DE circRNA/miRNA/mRNA and DE lncRNA/miRNA/mRNA networks demonstrated that those DE circRNAs and lncRNAs may play an important part in Drosophila aging via various biological processes. Apparently, multiple GO terms of DE circRNA/miRNA/mRNA networks are related to aging, such as cellular homeostasis [77] and developmental growth [78]. Specifically, multiple GO terms are involved in regulation of sequestering of calcium ion, including inorganic ion homeostasis, cation homeostasis, and cellular calcium ion homeostasis, etc. Ca^{2+} dyshomeostasis is associated with several aging-related neurodegenerative diseases, such as Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) for altered Ca^{2+} buffering capacity, altered regulation of Ca^{2+} channels and pumps, and altered neuronal excitability [79]. Previous study demonstrated that aging was closely linked to dysregulation of Ca^{2+} homeostasis resulting in a chronically elevated level of cytosolic Ca^{2+} in experimental models of neuronal aging [80, 81]. As Drosophila aging-related DE mRNA targets of lncRNA XLOC_100429, Vha100-4 and SERCA were involved in inorganic ion homeostasis, cation homeostasis, ion homeostasis, cellular cation homeostasis, and cellular ion homeostasis. The activity of Vha100-4 and SERCA protein were related to the restoration of resting cytoplasmic Ca^{2+} concentrations and termination of such intracellular Ca^{2+} transients[82]. The results suggest that those DE circRNA/miRNA/mRNA and DE lncRNA/miRNA/mRNA networks may play a significant role in Drosophila aging.

In our present study, the mRNA/protein correlation in Drosophila ageing was analysed. The relatively weak correlation (Pearson value 0.049) may have been due to different post-translational protein regulatory mechanisms, such as protein modification (e.g., phosphorylation and ubiquitination)[83]. Explaining the mechanism of the same expression patterns between mRNAs and proteins is relatively simple. Ten pairs of DE mRNAs and proteins with the same expression were identified in this study. The mRNA and protein expression levels of AattA (short-lived with allele AttA^{GD17307}) [84], FBgn0034511 (GNBP-like3, short-lived with alleles GNBP-like3^{GD503}, GNBP-like3^{KK106085}, and GNBP-like3^{NIG13422R}) [84], and FBgn0038074 (Gnmt, long-lived with allele Gnmt^{UAS.cOa}) [85] were high in Drosophila at day 7 and day 42, which affected the lifespan of the flies. In contrast, in the present study, DOR exhibited relatively low expression in flies on day 7 and day 42. DOR is antagonized by insulin signalling via the product of foxo in the fat body and forms part of a feed-forward mechanism whereby ecdysone potentiates its own signalling[86], which also regulates autophagosome formation and protein degradation via ecdysone signalling [87, 88]. Therefore, the mRNA/protein correlation analysis provides an important foundation to parse the genetic process of Drosophila ageing.

Methods

Sample collection and preparation
Female flies (DahomeyWT) were bred under a 12 hr on/off light cycle at 25°C in 50% humidity. Sample collection of adult flies at day 7 and day 42 was performed as described by Yang et al. (2016)[20]. RNA-seq (of mRNA, lncRNA, and circRNA) and proteome sequencing was conducted on two biological replicates, while miRNA sequencing was conducted on three biological replicates. All samples were stored at -80°C until use.

LncRNA, mRNA, and protein data for Drosophila at day 7 and day 42

RNA-seq data of lncRNAs and mRNAs from *Drosophila* at day 7 and day 42 was carried out by Yang et al. (2016)[20]. The proteins from *Drosophila* at day 7 and day 42 were sequenced by Zhu (2017)[89]. These original data were from our laboratory.

CircRNAs in Drosophila at day 7 and day 42

The circRNA analysis was based on the RNA-seq data for *Drosophila* at day 7 and day 42 from Yang et al. (2016)[20]. Overall, 95.79% clean reads were obtained from 26.7 GB of raw sequence data (SRP073695) and then aligned to the *D. melanogaster* genome from FlyBase (Dmel_Release_6, http://FlyBase.org/). The find_circ [90] and CIRI2[91] software tools were utilized to identify circRNAs. Then, the overlapping *Drosophila* circRNAs identified by both software programs were selected. The input data for circRNA differential expression analysis were readCount data obtained from the circRNA expression level analysis. Then, paired differential expression analysis of circRNAs between day 7 and day 42 was conducted with DESeq2[92] based on a negative binomial distribution. The *P* value was adjusted using Hochberg and Benjamini’s methods[93] to control the error discovery rate. A *P* value < 0.05 was considered to indicate a DE circRNA.

MiRNAs in Drosophila at day 7 and day 42

TRIzol Reagent (Invitrogen, CA) was used to extract total RNA from fruit flies at day 7 and day 42. Agarose gel electrophoresis was performed to verify the integrity of the total RNA samples. A NanoDrop ND-1000 instrument was used for accurate measurement of the concentrations and protein contamination of the total RNA samples. miRNA sequencing libraries were generated using rRNA-depleted RNA with a NEBNext Ultra™ Multiplex Small RNA library Prep Set Kit for Illumina® (New England Biolabs, USA) following the manufacturer’s recommendations. Subsequently, an Agilent 2100 Bioanalyzer and an Agilent DNA 1000 chip kit (Agilent, part #5067-1504) were utilized for accurate assessment of the quality and concentration of the sequencing libraries. The libraries were sequenced using an Illumina NextSeq 500. MiRNA Fragment Sequencing service provided by Aksomics company.

Clean reads were generated from the raw sequence data from the Illumina NextSeq instrument through real-time base calling and quality filtering. The clean reads were recorded in FASTQ format and contained the read information, sequences and quality encoding. Subsequently, the 5¢- and 3¢-adapter sequences were trimmed from the clean reads by Cutadapt, and reads with lengths shorter than 14 nt or longer than 40 nt were discarded. The trimmed reads were collapsed into FASTA format. The trimmed reads that did not map to mature or precursor tRNA sequences were aligned with an allowance of only one mismatch to miRNA...
reference sequences with miRDeep2[94]. The expression profiles of miRNAs were determined based on the counts of the reads mapped. The DE miRNAs were screened with the R package EdgeR based on the count values [95]. A fold change cutoff of 1.5 and a P value cutoff of 0.05 were applied only when replicates were used for screening of DE miRNAs. GO enrichment analysis of the DE miRNAs was implemented with the GOseq R package[96].

CeRNA analysis of IncRNA/circRNA-miRNA-mRNA pathways

LncRNAs, circRNAs, and miRNAs showed significantly different expression levels between day 7 and day 42 and thus were analysed. The potential ceRNAs were searched based on the sequences of the lncRNAs, circRNAs, and mRNAs. Offline software of MiRanda (http://cbio.mskcc.org/mirNA2003/miranda.html) was utilized to predict miRNA binding seed sequence sites, and overlap of the same miRNA binding sites on lncRNAs-miRNAs and circRNAs-mRNAs was taken to indicate a lncRNA/circRNA-miRNA-mRNA interaction.

Network analysis of mRNA/protein correlation

DE mRNAs and proteins between day 7 and day 42 were analysed. Expression regulation analysis was performed by integrating the mRNA and protein data with the Perl language. The Python program Matplotlib was used to integrate the mRNA and protein expression levels, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology-Based Annotation System (KOBAS) online database[97] was used to analyse the statistical enrichment of the DE mRNAs and proteins in KEGG pathways (http://www.genome.jp/kegg/). GO enrichment analysis of DE mRNAs and proteins was implemented with the GOseq R package[96]. GO terms with corrected P values less than 0.05 were considered significantly enriched for the DE genes.

qPCR detection

To evaluate the quality of ceRNA networks and mRNA/protein correlation, 8 miRNAs, 19 mRNAs, 6 lncRNAs, and 3 circRNAs were selected to qualify the expression using qPCR. The samples from fruit flies at 7 days (three biological duplicates) and 42 days (three biological duplicates) were used to isolated total RNA using TRIzol™ LS Reagent (ThermoFisher) according to the manufacturer's instructions. Total RNA (1 mg) from each sample was reverse transcribed with random primers using a RevertAid First-strand cDNA Synthesis Kit (ThermoFisher) according to the manufacturer's protocol, which was utilized to detect the expression level of mRNA, lncRNA, and circRNA. In addition, total RNA (1 mg) for miRNA expression detection in each sample was reverse transcribed using a TaqMan™ MicroRNA Reverse Transcription Kit (ThermoFisher) according to the kit instructions. All gene primers (Dataset S9) were designed using primer 5.0 software and purchased from Sangon Biotech. The SYBR green method was used for qRT-PCR with TransStart® Green qPCR SuperMix (TransGen Biotech) following the manufacturer's instructions. Gene expression levels were calculated by the cycle threshold values that were identified as 2-DDCT. Ribosomal protein L32 ($rp\ 49$) was used as the reference gene to calculate the relative mRNA, miRNA, lncRNA, and circRNA levels.

In summary, we screened and identified DE circRNAs and miRNAs in *Drosophila* between days 7 and 42. Then, we used the DE mRNAs, circRNAs, miRNAs, lncRNAs, and proteins between day 7 and day 42 to
analyse fly age-related circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks and the mRNA/protein correlation in the context of *Drosophila* ageing. These regulatory networks have the potential to reveal the genetic mechanisms of fly ageing and to eventually enhance our understanding of human ageing and age-related diseases.

Declarations

Supplementary Information

The online version contains supplementary material available at https://doi.org/xxxx/xxxx.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Raw read data of miRNA sequencing is available in the Sequence Read Archive (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=search_obj, accession number SRP311738).

Competing interests

The authors declare that they have no competing interests.

Funding

The study was supported by the National Natural Science Foundation of China (Grant No. NSFC31771338). The funding bodies had no role in the design of the study; the collection, analysis, and interpretation of the data; or the writing of the manuscript.

Authors’ contributions

DY and MY conceived and designed the experiments. ZH, JT, SW, JL performed the experiments. YY and PZ analyzed the data. XM, XF, DL, BZ, QN, YL, MZ, TY contributed reagents, materials and tools and collected the samples. DY and YY wrote the manuscript and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References
1. Yu G, Wu Q, Gao Y, Chen M, Yang M. The Epigenetics of Aging in Invertebrates. Int J Mol Sci. 2019;20:4535.
2. Enomoto M, Siow C, Igaki T. Drosophila As a Cancer Model. Adv Exp Med Biol. 2018;1076:173–94.
3. Cha S J, Do H A, Choi H J, Lee M, Kim K. The Drosophila Model: Exploring Novel Therapeutic Compounds against Neurodegenerative Diseases. Antioxidants (Basel). 2019;8:
4. Musselman L P, Fink J L, Baranski T J. Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes. PLoS One. 2019;14:e0217096.
5. Nainu F, Salim E, Asri R M, Hori A, Kuraishi T. Neurodegenerative disorders and sterile inflammation: lessons from a Drosophila model. J Biochem. 2019;166:213–21.
6. Fox D T, Cohen E, Smith-Bolton R. Model systems for regeneration: Drosophila. Development. 2020;147:
7. Watanabe L P, Riddle N C. New opportunities: Drosophila as a model system for exercise research. J Appl Physiol (1985). 2019;127:482 – 90.
8. Liu W, Ganguly A, Huang J, Wang Y, Ni J D, Gurav A S, Aguilar M A, Montell C. Neuropeptide F regulates courtship in Drosophila through a male-specific neuronal circuit. Elife. 2019;8:
9. Khodaei L, Long T A F. Kin recognition and co-operative foraging in Drosophila melanogaster larvae. J Evol Biol. 2019;32:1352–61.
10. Brenman-Suttner D B, Yost R T, Frame A K, Robinson J W, Moehring A J, Simon A F. Social behavior and aging: A fly model. Genes Brain Behav. 2020;19:e12598.
11. Maruzs T, Simon-Vecsei Z, Kiss V, Csizmadia T, Juhasz G. On the Fly: Recent Progress on Autophagy and Aging in Drosophila. Front Cell Dev Biol. 2019;7:140.
12. Surguchov A, Emamzadeh F N, Surguchev A A. Amyloidosis and Longevity: A Lesson from Plants. Biology (Basel). 2019;8:43.
13. He Q Y, Liu G H, Bao Z J, Kong Q P, Tao J, Yu Y Q, Lei Y. Chinese aging and anti-aging experts agree. Geriatr Health Care. 2019;25:551–53.
14. Stallone G, Infante B, Prisciandaro C, Grandaliano G. mTOR and Aging: An Old Fashioned Dress. Int J Mol Sci. 2019;20:2774.
15. Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16:20190027.
16. Knupp D, Miura P. CircRNA accumulation: A new hallmark of aging? Mech Ageing Dev. 2018;173:71–79.
17. Kim S S, Lee S V. Non-Coding RNAs in Caenorhabditis elegans Aging. Mol Cells. 2019;42:379–85.
18. Tower J. Drosophila Flies in the Face of Aging. J Gerontol A Biol Sci Med Sci. 2019;74:1539–41.
19. Barter T T, Greenspan Z S, Phillips M A, Mueller L D, Rose M R, Ranz J M. Drosophila transcriptomics with and without ageing. Biogerontology. 2019;20:699–710.
20. Yang D, Lian T, Tu J, Gaur U, Mao X, Fan X, Li D, Li Y, Yang M. LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction. Aging (Albany NY). 2016;8:2182–203.
21. Kinser H E, Pincus Z. MicroRNAs as modulators of longevity and the aging process. Hum Genet. 2020;139:291–308.

22. Perry N, Volin M, Toledano H. microRNAs in *Drosophila* regulate cell fate by repressing single mRNA targets. Int J Dev Biol. 2017;61:165–70.

23. Brown C J, Kaufman T, Trinidad J C, Clemmer D E. Proteome changes in the aging *Drosophila melanogaster* head. Int J Mass Spectrom. 2018;425:36–46.

24. Laye M J, Tran V, Jones D P, Kapahi P, Promislow D E. The effects of age and dietary restriction on the tissue-specific metabolome of *Drosophila*. Aging Cell. 2015;14:797–808.

25. Song C, Zhu C, Wu Q, Qi J, Gao Y, Zhang Z, Gaur U, Yang D, Fan X, Yang M. Metabolome analysis of effect of aspirin on *Drosophila* lifespan extension. Exp Gerontol. 2017;95:54–62.

26. Wang J Y, Yang Y, Ma Y, Wang F, Xue A, Zhu J, Yang H, Chen Q, Chen M, Ye L, Wu H, Zhang Q. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother. 2020;121:109627.

27. Zha F, Qu X, Tang B, Li J, Wang Y, Zheng P, Ji T, Zhu C, Bai S. Long non-coding RNA MEG3 promotes fibrosis and inflammatory response in diabetic nephropathy via miR-181a/Egr-1/TLR4 axis. Aging (Albany NY). 2019;11:3716–30.

28. Ding B, Yao M, Fan W, Lou W. Whole-transcriptome analysis reveals a potential hsa_circ_0001955/hsa_circ_0000977-mediated miRNA-mRNA regulatory sub-network in colorectal cancer. Aging (Albany NY). 2020;12:5259–79.

29. Ruan Y, Li Z, Shen Y, Li T, Zhang H, Guo J. Functions of circular RNAs and their potential applications in gastric cancer. Expert Rev Gastroenterol Hepatol. 2020;14:85–92.

30. Greco S, Gaetano C, Martelli F. Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. Int J Mol Sci. 2019;20:3079.

31. Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli M M, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol. 2019;234:10080–100.

32. Wang Q, Cai J, Fang C, Yang C, Zhou J, Tan Y, Wang Y, Li Y, Meng X, Zhao K, Yi K, Zhang S, Zhang J, Jiang C, Zhang J, Kang C. Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-beta pathway. Theranostics. 2018;8:4733–49.

33. Zhang Y, Yu F, Bao S, Sun J. Systematic Characterization of Circular RNA-Associated CeRNA Network Identified Novel circRNA Biomarkers in Alzheimer's Disease. Front Bioeng Biotechnol. 2019;7:222.

34. Yue B, Wang J, Song C, Wu J, Cao X, Huang Y, Lan X, Lei C, Huang B, Chen H. Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis. Int J Biochem Cell Biol. 2019;117:105621.

35. Chen D, Liu J, Meng J, Li D, Zhao P, Duan Y, Wang J. Integrative Analysis of Long Non-Coding RNAs (IncRNAs), miRNAs, and mRNA-Associated ceRNA Network in Lung Tissue of Aging Mice and Changes After Treatment with Codonopsis pilosula. Med Sci Monit. 2020;26:e921580.

36. Zhao L, Hu K, Cao J, Wang P, Li J, Zeng K, He X, Tu P F, Tong T, Han L. IncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging (Albany NY).
2019;11:7098–122.

37. Capo F, Wilson A, Di Cara F. The Intestine of *Drosophila melanogaster*: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans. Microorganisms. 2019;7:336.

38. Mohr S E, Perrimon N. *Drosophila melanogaster*: a simple system for understanding complexity. Dis Model Mech. 2019;12:dmm041871.

39. Shinoda N, Hanawa N, Chihara T, Koto A, Miura M. Dronc-independent basal executioner caspase activity sustains *Drosophila* imaginal tissue growth. Proc Natl Acad Sci U S A. 2019;116:20539–44.

40. Crews S T. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics. 2019;213:1111–44.

41. Weigelt C M, Sehgal R, Tain L S, Cheng J, Esser J, Pahl A, Dieterich C, Gronke S, Partridge L. An Insulin-Sensitive Circular RNA that Regulates Lifespan in *Drosophila*. Mol Cell. 2020;79:268–79.

42. Wang P, Xu L L, Zheng X B, Hu Y T, Zhang J F, Ren S S, Hao X Y, Li L, Zhang M, Xu M Q. Correlation between the expressions of circular RNAs in peripheral venous blood and clinicopathological features in hepatocellular carcinoma. Ann Transl Med. 2020;8:338.

43. Ren S, Lin P, Wang J, Yu H, Lv T, Sun L, Du G. Circular RNAs: Promising Molecular Biomarkers of Human Aging-Related Diseases via Functioning as an miRNA Sponge. Mol Ther Methods Clin Dev. 2020;18:215–29.

44. Neely G G, Kuba K, Cammarato A, Isobe K, Amann S, Zhang L, Murata M, Elmen L, Gupta V, Arora S, Sarangi R, Dan D, Fujisawa S, Usami T, Xia C P, Keene A C, Alayari N N, Yamakawa H, Elling U, Berger C, Novatchkova M, Kogleruber R, Fukuda K, Nishina H, Isobe M, Pospisilik J A, Imai Y, Pfeuffer A, Hicks A A, Pramstaller P P, Subramaniam S, Kimura A, Ocorr K, Bodmer R, Penninger J M. A global in vivo *Drosophila* RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell. 2010;141:142–53.

45. Kamiya Y, Miyazono K, Miyazawa K. Specificity of the inhibitory effects of Dad on TGF-beta family type I receptors, Thickveins, Saxophone, and Baboon in Drosophila. FEBS Lett. 2008;582:2496–500.

46. Fulford A D, Holder M V, Frith D, Snijders A P, Tapon N, Ribeiro P S. Casein kinase 1 family proteins promote Slimb-dependent Expanded degradation. Elife. 2019;8:e46592.

47. Buchon N, Osman D, David F P, Fang H Y, Boquete J P, Deplancke B, Lemaitre B. Morphological and molecular characterization of adult midgut compartmentalization in *Drosophila*. Cell Rep. 2013;3:1725–38.

48. Franz A, Shlyueva D, Brunner E, Stark A, Basler K. Probing the canonicity of the Wnt/Wingless signaling pathway. PLoS Genet. 2017;13:e1006700.

49. Magwire M M, Yamamoto A, Carbone M A, Roshina N V, Symonenko A V, Pasyukova E G, Morozova T V, Mackay T F. Quantitative and molecular genetic analyses of mutations increasing *Drosophila* lifespan. PLoS Genet. 2010;6:e1001037.

50. Bonchuk A, Denisov S, Georgiev PMaksimenko O. Drosophila BTB/POZ domains of “ttk group” can form multimers and selectively interact with each other. J Mol Biol. 2011;412:423–36.
51. Dupont P, Besson M T, Devaux J, Lievens J C. Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila. Neurobiol Dis. 2012;47:237–47.
52. Zhao Y, Zhang Y, Zhang L, Dong Y, Ji H, Shen L. The Potential Markers of Circulating microRNAs and long non-coding RNAs in Alzheimer's Disease. Aging Dis. 2019;10:1293–301.
53. Jiang X, Ning Q. The mechanism of IncRNA H19 in fibrosis and its potential as novel therapeutic target. Mech Ageing Dev. 2020;188:111243.
54. Liang Z Z, Guo C, Zou M M, Meng P, Zhang T T. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int. 2020;20:173.
55. Wang L, Cho K B, Li Y, Tao G, Xie Z, Guo B. Long Noncoding RNA (IncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int J Mol Sci. 2019;20:5758.
56. Bushati N, Cohen S M. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.
57. Chen P, Chen F, Lei J, Li Q, Zhou B. Activation of the miR-34a-Mediated SIRT1/mTOR Signaling Pathway by Urolithin A Attenuates D-Galactose-Induced Brain Aging in Mice. Neurotherapeutics. 2019;16:1269–82.
58. Dori M, Bicciato S. Integration of Bioinformatic Predictions and Experimental Data to Identify circRNA-miRNA Associations. Genes (Basel). 2019;10:642.
59. Zhou R S, Zhang E X, Sun Q F, Ye Z J, Liu J W, Zhou D H, Tang Y. Integrated analysis of IncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer. 2019;19:779.
60. Lai W F, Lin M, Wong W T. Tackling Aging by Using miRNA as a Target and a Tool. Trends Mol Med. 2019;25:673–84.
61. Wang L, Chen S, Liu Y, Zhang H, Ren N, Ma R, He Z. The biological and diagnostic roles of MicroRNAs in meningiomas. Rev Neurosci. 2020;31:771–78.
62. Liang Y, Liang Q, Qiao L, Xiao F. MicroRNAs Modulate Drug Resistance-Related Mechanisms in Hepatocellular Carcinoma. Front Oncol. 2020;10:920.
63. Mishan M A, Khazeei Tabari M A, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional Mechanisms of miR-192 Family in Cancer. Genes Chromosomes Cancer. 2020;12: 722–35.
64. Ullah M, Ng N N, Concepcion W, Thakor A S. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Res Rev. 2020;57:100979.
65. Zhao C, Li G, Li J. Non-coding RNAs and Cardiac Aging. Adv Exp Med Biol. 2020;1229:247–58.
66. John A, Kubosumi A, Reddy P H. Mitochondrial MicroRNAs in Aging and Neurodegenerative Diseases. Cells. 2020;9:1345.
67. Varghese J, Lim S F, Cohen S M. Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes Dev. 2010;24:2748–53.
68. Chen Y W, Song S, Weng R, Verma P, Kugler J M, Buescher M, Rouam S, Cohen S M. Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations. Dev Cell. 2014;31:784–800.
69. Chen X, Rosbash M. mir-276a strengthens *Drosophila* circadian rhythms by regulating timeless expression. Proc Natl Acad Sci U S A. 2016;113:E2965-72.

70. Wessels H H, Lebedeva S, Hirsekorn A, Wurmus R, Akalin A, Mukherjee N, Ohler U. Global identification of functional microRNA-mRNA interactions in *Drosophila*. Nat Commun. 2019;10:1626.

71. Belote J M, Hoffmann F M, McKeown M, Chorsky R L, Baker B S. Cytogenetic analysis of chromosome region 73AD of *Drosophila melanogaster*. Genetics. 1990;125:783–93.

72. Zeng H, Lu B, Zamponi R, Yang Z, Wetzel K, Loureiro J, Mohammadi S, Beibel M, Bergling S, Reece-Hoyes J, Russ C, Roma G, Tchorz J S, Capodieci P, Cong F. mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci U S A. 2018;115:E10362-E69.

73. Overend G, Luo Y, Henderson L, Douglas A E, Davies S A, Dow J A. Molecular mechanism and functional significance of acid generation in the *Drosophila* midgut. Sci Rep. 2016;6:27242.

74. Huang C H, Lin T Y, Pan R L, Juang J L. The involvement of Abl and PTP61F in the regulation of Abi protein localization and stability and lamella formation in Drosophila S2 cells. J Biol Chem. 2007;282:32442–52.

75. Kozomara A, Hunt S, Ninova M, Griffiths-Jones S, Ronshaugen M. Target repression induced by endogenous microRNAs: large differences, small effects. PLoS One. 2014;9:e104286.

76. Xu P, Vernooy S Y, Guo M, Hay B A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13:790–5.

77. Hartl F U. Cellular Homeostasis and Aging. Annu Rev Biochem. 2016;85:1–4.

78. Clarke G D, Li J, Kuo A H, Moody A J, Nathanielsz P W. Cardiac magnetic resonance imaging: insights into developmental programming and its consequences for aging. J Dev Orig Health Dis. 2020;1–17.

79. Bezprozvanny I B. Calcium signaling and neurodegeneration. Acta Naturae. 2010;2:72–82.

80. Duncan R S, Goad D L, Grillo M A, Kaja S, Payne A J, Koulen P. Control of intracellular calcium signaling as a neuroprotective strategy. Molecules. 2010;15:1168–95.

81. Thibault O, Gant J C, Landfield P W. Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store. Aging Cell. 2007;6:307–17.

82. Kraus J G, Koulen P. Resveratrol Directly Controls the Activity of Neuronal Ryanodine Receptors at the Single-Channel Level. Mol Neurobiol. 2020;57:422–34.

83. Zhang T, Chen D, Lee T H. Phosphorylation Signaling in APP Processing in Alzheimer's Disease. Int J Mol Sci. 2019;21:209.

84. Arefin B, Kucerova L, Dobes P, Markus R, Strnad H, Wang Z, Hyrsl P, Zurovec M, Theopold U. Genome-wide transcriptional analysis of *Drosophila* larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J Innate Immun. 2014;6:192–204.

85. Obata F, Miura M. Enhancing S-adenosyl-methionine catabolism extends *Drosophila* lifespan. Nat Commun. 2015;6:8332.
86. Francis V A, Zorzano A, Teleman A A. dDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling. Curr Biol. 2010;20:1799–808.

87. Mauvezin C, Orpinell M, Francis V A, Mansilla F, Duran J, Ribas V, Palacin M, Boya P, Teleman A A, Zorzano A. The nuclear cofactor DOR regulates autophagy in mammalian and Drosophila cells. EMBO Rep. 2010;11:37–44.

88. Delanoue R, Leopold P. Developmental biology: a DOR connecting growth and clocks. Curr Biol. 2010;20:R884-6.

89. Zhu C X, Comparative study on proteomics between dietary restriction and unrestricted in Drosophila melanogaster, in Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province. 2017, Sichuan Agricultural University: Chengdu.

90. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak S D, Gregersen L H, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

91. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16:4.

92. Varet H, Brillet-Gueguen L, Coppee J Y, Dillies M A. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS One. 2016;11:e0157022.

93. Hinkley T, Brown H, Carson V, Teychenne M. Cross sectional associations of screen time and outdoor play with social skills in preschool children. PLoS One. 2018;13:e0193700.

94. Friedlander M R, Mackowiak S D, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.

95. Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

96. Young M D, Wakefield M J, Smyth G K, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.

97. Liu L, He C, Zhou Q, Wang G, Lv Z, Liu J. Identification of key genes and pathways of thyroid cancer by integrated bioinformatics analysis. J Cell Physiol. 2019;234:23647–57.

Figures
Expression and GO annotations of DE miRNAs in Drosophila between day 7 and day 42. A, the expression level of 30 DE miRNAs in Drosophila between day 7 and day 42; “↑” and “↓” mean upregulation and downregulation on day 42 compared to day 7 in RNA-seq data. B, GO annotations of 17 DE miRNAs in Drosophila between day 7 and day 42. Grey, no target genes of miRNA were enriched in GO terms; Color, the target genes of these miRNAs were significantly enriched in GO terms (P≤0.01), and the darker presents the higher of the enrichment degree.
Figure 2

DE circRNA/miRNA/mRNA networks of Drosophila at day 7 and day 42. A, circRNA/miRNA/mRNA interaction networks; yellow, circRNAs; red, mRNAs; green, miRNAs. B, specific circRNA/miRNA/mRNA networks; “↑” and “↓” mean upregulation and downregulation on day 42 compared to day 7 in RNA-seq data, respectively. C, data on relative expression of circRNA, miRNA, and mRNA detected by qPCR analysis.
Figure 3

DE lncRNA/miRNA/mRNA networks in Drosophila at day 7 and day 42. A, IncRNA/miRNA/mRNA interaction networks; yellow, lncRNAs; red, mRNAs; green, miRNAs. B, specific IncRNA/miRNA/mRNA networks; “↑” and “↓” indicate upregulation and downregulation on day 42 compared to day 7, respectively. C, data on relative expression of lncRNA, miRNA, and mRNA by qPCR analysis. 7 d, 7 days; 42 d, 42 days.
Figure 4

GO annotations of DE circRNA-/lncRNA-associated networks. A, GO annotations of DE circRNA/miRNA/mRNA networks. B, GO annotations of DE IncRNA/miRNA/mRNA networks. LogP values indicate the enrichment degree of targets in corresponding GO term, and the smaller value represents the higher of the enrichment degree. Number of genes represents the number of target genes enriched in GO terms.
Figure 5

Expression trends between proteins and mRNAs in Drosophila at day 7 and day 42. A, GO annotations of DE proteins and DE mRNAs. B, KEGG pathways of DE proteins and DE mRNAs. C, data on relative expression of DE mRNA by qPCR analysis. 7 d, 7 days; 42 d, 42 days. Protein and mRNA expression level were presented in different colour in Figure 5A and 5B. A positive number indicates upregulation and a negative number means downregulation in 42 day when compared to 7 day. The “+” in Figure 5C means the same expression patterns between qPCR results and RNA-seq data.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- DatasetS1 information of DEmRNAs IncRNA circRNA proteins and miRNAs between 7 day and 42 day.xlsx
- DatasetS2 circRNA and miRNA sequence between 7 day and 42 day.xlsx
- DatasetS3 novel circRNA seq merged 1.pdf
- DatasetS4 novel circRNA seq merged 2.pdf
- DatasetS5 novel circRNA seq merged 3.pdf
- DatasetS6 IncRNA sequences of Drosophila.gtf
- DatasetS7 GO annotation of ceRNA networks.xlsx
- DatasetS8 protein mRNA correlation.xlsx
- DatasetS9 qPCR primers.xlsx
- TableS1.docx