Prediction model of bleeding after endoscopic submucosal dissection for early gastric cancer: BEST-J score

Waku Hatta,1 Yosuke Tsuji,2 Toshiyuki Yoshio,3 Naomi Kakushima,4 Shu Hoteya,5 Hisashi Doyama,6 Yasuaki Nagami,7 Takuto Hikichi,8 Masakuni Kobayashi,9 Yoshinori Morita,10 Tetsuya Sumiyoshi,11 Mikitaka Iguchi,12 Hideomi Tomida,13 Takuya Inoue,14 Tomoyuki Koike,7 Tatsuya Mikami,15 Kenkei Hasatani,16 Jun Nishikawa,17 Tomoaki Matsumura,18 Hiroko Nebiki,19 Dai Nakamatsu,20 Ken Ohnita,21 Haruhisa Suzuki,22 Hiroya Ueyama,23 Yoshito Hayashi,24 Mitsushige Sugimoto,25,26 Shinjiro Yamaguchi,27 Tomoki Michida,28 Tomoyuki Yada,29 Yoshiro Asahina,30 Toshiaki Narasaka,31 Shiko Kuribasyashi,32 Shu Kiyotoki,33 Katsuhiko Mabe,34 Tomohiro Nakamura,35 Naoki Nakaya,36 Mitsuhiro Fujishiro,37 Atsushi Masamune1

ABSTRACT

Objective Bleeding after endoscopic submucosal dissection (ESD) for early gastric cancer (EGC) is a frequent adverse event after ESD. We aimed to develop and externally validate a clinically useful prediction model (BEST-J score: Bleeding after ESD Trend from Japan) for bleeding after ESD for EGC.

Design This retrospective study enrolled patients who underwent ESD for EGC. Patients in the derivation cohort (n=8291) were recruited from 25 institutions, and patients in the external validation cohort (n=2029) were recruited from eight institutions in other areas. In the derivation cohort, weighted points were assigned to predictors of bleeding determined in the multivariate logistic regression analysis and a prediction model was established. External validation of the model was conducted to analyse discrimination and calibration.

Results A prediction model comprised 10 variables (warfarin, direct oral anticoagulant, chronic kidney disease with haemodialysis, P2Y12 receptor antagonist, aspirin, cilostazol, tumour size >30 mm, lower-third in tumour location, presence of multiple tumours and interruption of each kind of antithrombotic agents). The rates of bleeding after ESD at low-risk (0 to 1 points), intermediate-risk (2 points), high-risk (3 to 4 points) and very high-risk (>5 points) were 2.8%, 6.1%, 11.4% and 29.7%, respectively. In the external validation cohort, the model showed moderately good discrimination, with a c-statistic of 0.70 (95% CI, 0.64 to 0.76), and good calibration (calibration-in-the-large, 0.05; calibration slope, 1.01).

Conclusions In this nationwide multicentre study, we derived and externally validated a prediction model for bleeding after ESD. This model may be a good clinical decision-making support tool for ESD in patients with EGC.

INTRODUCTION

Gastric cancer is the fifth most common cancer and 50% to 70% of gastric cancers in Eastern Asian
countries are detected at an early stage. Endoscopic submu-
cosal dissection (ESD) is a minimally invasive treatment method
for early gastric cancer (EGC) with almost no risk of lymph
node metastasis. However, bleeding is one of the most frequent
adverse events in ESD. Specifically, bleeding after ESD occurs in
4.1% to 8.5% of patients undergoing gastric ESD.

Thus far, many factors, including male sex, comorbidities,
tumour characteristics and procedure time, have been identified as
high-risk factors for bleeding after gastric ESD, and among
them, antithrombotic (AT) agents are regarded as an important
risk factor for bleeding. AT agents include antiplatelet agents
(APAs) (aspirin, P2Y12 receptor antagonist (P2Y12RA),
cilostazol) and anticoagulants (ACs) (warfarin, direct oral AC
(DOAC)), and because of their different mechanisms of action,
these agents may carry different risks for bleeding after ESD.
However, few studies have appropriately evaluated the risk of
bleeding after ESD for each type of agent mainly because of the
small number of cases. Furthermore, according to the recent
Japanese guidelines for endoscopy with AT agents, aspirin
and cilostazol can be continued or interrupted, P2Y12RA can
be interrupted or replaced with aspirin or cilostazol and double
antiplatelet therapy can be changed to monotherapy with aspirin
or cilostazol. However, no studies that have evaluated the risk
factors for bleeding have considered these factors.

Recently, clinical prediction models have been used in several
fields to provide an estimate of the value of a therapy for an
individual patient. However, no prediction models have been
reported for bleeding after ESD for EGC. The haemostatic
procedure for preventing bleeding in ESD sometimes differs
among institutions with/without familiarity with ESD and among
different geographical areas. Thus, it is desirable to develop a
prediction model in a large-scale study that includes patients in
various areas. Therefore, we aimed to derive and externally vali-
date a clinically useful prediction model for bleeding after ESD
for EGC based on a nationwide multicentre study in Japan.

METHODS

This study was conducted in accordance with the guidelines
of the Declaration of Helsinki and was approved by the Ethics
Committee of Tohoku University Graduate School of Medicine
(2018-1-48) followed by the institutional review board of each
institution before the recruitment of patients. Written informed
consent for ESD was obtained from all patients before the proce-
dure. The need for informed consent of this study was waived
via the opt-out method on each participating hospital website.

Study design and patient population

To establish a reliable prediction model for bleeding after ESD
for EGC, we conducted this retrospective study consisting of
three steps: (1) identification of clinically significant predictors
of bleeding after ESD for EGC using a large cohort, (2) develop-
ment of a simple prediction model for predicting bleeding and
(3) external validation of the model using an independent
data set. This study followed the Transparent Reporting of a

Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) reporting guidelines. The study population consisted of adult patients who under-
went ESD for EGC. Patients in the derivation cohort were recruited from 25 institutions throughout Japan, except from
the northern (Hokkaido and Tohoku) and southern (Kyushu and Shikoku) areas, between November 2013 and October 2016
online supplementary figure 1). The patients were excluded if
(1) ESD was not completed, (2) the follow-up duration after ESD
was <28 days, (3) closure of the ulcer or the shielding method
using polyglycolic acid sheets and fibrin glue was performed
after ESD, (4) they refused use of their clinical data, (5) they
underwent photodynamic therapy after ESD, (6) invasion of
the muscularis propria or a deeper layer was pathologically
confirmed or (7) ESD was performed on the remnant stomach.
An external validation was conducted in an independent cohort
of patients from eight institutions, which are located in the north
or south of Japan (online supplementary figure 1) using these
same inclusion and exclusion criteria.

ESD procedure and pathological evaluation

ESD was performed according to a standard ESD procedure at
all institutions. Briefly, the procedure consisted of the following
steps: (1) marking around the lesion, (2) submucosal injection of
a solution, (3) mucosal incision outside of the marked region, (4)
submucosal dissection and (5) retrieval of the specimen. Haemo-
ostasis of active bleeding and prophylactic coagulation of visible
vessels on the ESD ulcer were performed using haemostatic
forceps or clips during the procedure.

Scheduled second-look endoscopy (SLE) depended on the
institution. During and after ESD, proton pump inhibitor,
potassium-competitive acid blocker or H2 receptor antagonists
was administered to all patients according to the selection of the
doctors in charge. In those with intake of AT agents, the deci-
dion on continuing or interrupting the agents before ESD and,
where present, the timing of interruption, and the use of heparin
bridging were mainly based on the Japanese guidelines, which
have been available in Japan since 2012.

Candidates for predictive factors of bleeding after ESD for
EGC

On the basis of a comprehensive literature review, including a
prior systematic review, and clinical relevance, we identified that
the following variables were potentially associated with bleeding
after ESD: sex, comorbidities (ischaemic heart disease, liver
cirrhosis and chronic kidney disease (CKD) with haemodi-
alysis), AT therapy (aspirin, P2Y12RA, cilostazol, warfarin and
DOAC), the tumour characteristics (multiple tumours, lower-
third in tumour location, tumour size >30 mm, undifferenti-
ated type, submucosal invasion ≥500 µm from the muscularis
mucosa (SM2) and ulceration) and procedure (ESD procedure
time >120 min and SLE). We also selected characteristics that
may influence bleeding, including age (≥75 years), piecemeal
resection and mild/no endoscopic gastric atrophy according to
the Kimura and Takemoto classification.23 With regard to the AT
agents, the variables for the interruption of AT agents, heparin
bridging and replacement of APAs were included in the model
due to their possible influence on bleeding.

Data collection and definition

In each participating institution, demographic and clinical data
were collected from the medical records and endoscopy and
pathology reports.
Endoscopy

A. Patients with ESD for EGC throughout Japan, except the north and south area, between November 2013 and October 2016, n = 9,288

1. Failure to complete ESD, n = 17
2. Follow-up duration of <28 days after ESD, n = 231
3. Closure of ulcer or polyglycolic acid sheet after ESD, n = 326
4. Refusal for using the patients’ clinical data, n = 14
5. Photodynamic therapy after ESD, n = 4
6. Invasion of muscularis propria or deeper, n = 5
7. Remnant stomach, n = 384

Derivation cohort, n = 8,291 (25 institutions)

B. Patients with ESD for EGC in the north or south area of Japan between November 2013 and October 2016, n = 2,180

1. Failure to complete ESD, n = 5
2. Follow-up duration of <28 days after ESD, n = 9
3. Closure of ulcer or polyglycolic acid sheet after ESD, n = 75
4. Refusal for using the patients’ clinical data, n = 0
5. Photodynamic therapy after ESD, n = 0
6. Invasion of muscularis propria or deeper, n = 1
7. Remnant stomach, n = 61

Validation cohort, n = 2,029 (8 institutions)

Figure 1 The flowchart of patient enrolment for the derivation and validation cohorts. (A) Derivation cohort. (B) Validation cohort. ESD, endoscopic submucosal dissection; EGC, early gastric cancer.

According to a previous report,22 bleeding after ESD was defined as haemorrhage with clinical symptoms and confirmed by emergency endoscopy from the time of the completion of ESD to 28 days after ESD. We defined clinical symptoms as haematemesis, melena or a decrease in haemoglobin of >2 g/dL since the patient’s most recent laboratory test. Preventive haemostasis of visible vessels without evidence of bleeding during SLE was not regarded as bleeding after ESD.

 Interruption of AT agents was defined as stopping AT agents including temporary replacement by heparin and that by aspirin or cilostazol for the other APAs, the latter of which is referred to as replacement of APAs in this study. This variable was evaluated as interruption of each kind of AT agents.

Outcomes and sample size considerations
The primary outcome of this study was to develop and validate a prediction model for bleeding after ESD for EGC. To fit a prediction model using logistic regression, a minimum of 10 events (ie, bleeding after ESD) per variable (EPV) are recommended.23–25 We evaluated 23 variables in the logistic regression model; thus, the sample size in the derivation stage was at least 230 events. The sample size for the external validation of the model was set as a minimum of 100 events, according to the recommendation of the sample size requirement for an external validation model.26 On the basis of the result of the meta-analysis, the assumed rate of bleeding after ESD would be 5.1%.20 Thus, we planned to collect at least 4510 and 1961 cases for the derivation and external validation cohorts, respectively.

In the subgroup analysis, the derived prediction model was evaluated for each centre-volume, which was divided into very high-volume (≥150 eligible patients per year), high-volume (≥100 and <150), intermediate-volume (≥50 and <100), and low-volume (<50) centres.

Statistical analysis
Categorical variables were summarised as n (%) and were compared using χ² tests. Continuous variables were summarised as medians and 25th to 75th percentiles, which were reported as P25 to P75, and were compared using the Wilcoxon rank-sum test.

In the derivation cohort, univariate and multivariate logistic regression analyses were used to test the associations of 23 candidate variables with bleeding after ESD. Multicollinearity among the variables was tested using the variance inflation factor (VIF). A cut-off value for inclusion of the assessed factors in the final prediction model was predefined as p<0.05. We assigned weighted points proportional to β regression coefficient values multiplied by 2 to the nearest integer for the factors determined in the multivariate analysis. Using these scores, we derived four risk categories, based on the risk of bleeding in previous reports:6–11 27 low (<4.1% risk), intermediate (≥4.1% and ≤8.5% risk), high (≥8.5% and ≤15.9% risk) and very high (>15.9% risk). The trend in the risk for bleeding among the four risk groups was evaluated using the Cochran-Armitage trend test. The model’s overall performance was tested using Brier scores and Nagelkerke R², and its discrimination was examined using the c-statistic. The derived prediction model was internally validated by bootstrap resampling, which used 1000 random samples drawn with replacement from the original derivation data set.28 29 Decision curve analysis (DCA), as proposed by Vickers and Elkin,30 was performed to assess the net clinical benefit of the models for predicting bleeding after ESD.

External validation was conducted in the validation cohort to analyse the same performance metrics, including overall performance and discrimination. According to the proposal for better clinical prediction model,31 model calibration was tested using the calibration-in-the-large and calibration slope.

In the subgroup analysis, discrimination and calibration were tested separately in very high-volume, high-volume, intermediate-volume and low-volume centres, using the derivation cohort in order to take advantage of its larger sample size. Patients with missing data for variables included in the final model were excluded from the final derivation and validation cohorts. Data were analysed using SPSS V23.0 for Windows software (IBM Corp, Armonk, New York, USA) and R software V3.5.1 (The R Foundation for Statistical Computing, Vienna, Austria). A p value of <0.05 was considered statistically significant. All statistical analyses were performed by an independent statistician (TN). All authors had access to the study data and had reviewed and approved the final manuscript.

RESULTS

Study flow diagram and patient demographics
The flowchart of patient enrolment is shown in figure 1. A total of 8291 patients were analysed as the derivation cohort. For the external validation cohort, independent 2029 patients met the eligibility criteria for this study. The patient demographics are shown in table 1, and the number of enrolled patients at each institution is described in online supplementary table 1. Several baseline characteristics, such as age and cilostazol intake, were different between the derivation and validation cohorts. The

Hatta W, et al. Gut 2021;70:476–484. doi:10.1136/gutjnl-2019-319926
bleeding rates after ESD in the two cohorts were 4.7% (387 events) and 5.0% (102 events), respectively.

Model derivation

We included 23 candidate predictors in the univariate and multivariate models. Online supplementary table 2 shows the results of the univariate analyses for each candidate. There was no interaction between any two AT agents (online supplementary table 3). In the multivariate model, 10 variables were identified as predictors of bleeding (table 2). The VIF (1.00 to 4.58) was less than 5 to 10, indicating that the multicollinearity was not present. On the basis of the adjusted regression coefficient, the scores of selected predictors were assigned an integer score: 4 points each for warfarin and DOAC; 3 points for CKD with haemodialysis; 2 points each for P2Y12RA and aspirin; 1 point each for cilostazol, a tumour size >30 mm, in tumour location and presence of multiple tumours and −1 point for interruption of each kind of AT agents (table 2). Then, we established a prediction model (BEST-J score: Bleeding after ESD Trend from Japan; table 3). The prediction model had good overall performance, with a Nagelkerke R^2 of 0.11 and a Brier score of 0.04, and showed moderately good discrimination, with a c-statistic of 0.71 (95% CI, 0.68 to 0.73; table 4). A cut-off of 1 point had high sensitivity for identifying patients with bleeding and a cut-off of 3 to 8 points had high specificity (online supplementary table 4). DCA revealed that this prediction model is useful for threshold probabilities between 3% and 50% (online supplementary figure 2). The model was then internally validated by bootstrap resampling procedure, which gave a mean c-statistic of 0.71 (95% CI, 0.68 to 0.73).

According to the definition, the total score was categorised as low-risk (0 to 1 points), intermediate-risk (2 points), high-risk (3 to 4 points) or very high-risk (≥5 points) for bleeding after ESD. As a result, the rates of bleeding for each risk category were 2.8%, 6.1%, 11.4% and 29.7% (table 3), and a significantly increasing trend of risk from low-risk to very high-risk groups was observed (p<0.001, Cochran-Armitage trend test). The c-statistic of the risk classification was 0.68 (95% CI, 0.65 to 0.71).

Because ACs and CKD with haemodialysis were the strongest risk factors for bleeding after ESD, we evaluated the prediction ability of a simple model by combining these two factors. However, this model had only modest discrimination ability (c-statistic, 0.61; 95% CI, 0.57 to 0.64; online supplementary table 5). In DCA, the net benefit of the simple model in predicting bleeding after ESD was lower than that of the risk score and risk classification (online supplementary figure 2).

Interruption of AT agents

The time of interrupting AT agents before ESD, the time of resuming them after ESD and the duration of interrupting them differed according to AT agent (online supplementary table 6). Thus, we evaluated the effect of interruption of AT agents on bleeding after ESD, based on the time of interrupting/resuming AT agents and the kind of them. Statistical significance was observed only for ≥6 days interruption of aspirin before ESD (OR, 0.39; p=0.020), although adjusted ORs of interruption for bleeding tended to differ across the AT agents (online supplementary table 7).

Example

A 65-year-old male, who takes warfarin and aspirin, has an EGC with a maximal diameter of 22 mm, which is located in the middle-third of the stomach.

Total score=4 (for warfarin)+2 (for aspirin)=6.

Therefore, this patient falls in the very high-risk group with a total score of 6 (41.5%) risk of bleeding after ESD. When warfarin and aspirin are interrupted (=−2 points), the total score decreases to 4 points (14.5% risk of bleeding).

Model validation

In the external validation cohort, the distribution of the prediction model and the bleeding rates are shown in table 3. The discriminative ability of the prediction model as measured by the c-statistic in the external validation cohort was 0.70 (95% CI, 0.64 to 0.76). This model was well calibrated with a calibration-in-the-large of 0.05 and a calibration slope of 1.01, and the overall performance was also good (table 4).
Table 2 Multivariate logistic regression analysis of predictive factors for bleeding after ESD for EGC in the development cohort and the scoring system

	Adjusted OR	95% CI	P value	β regression coefficient	Points*	
Age	≥75 years	1.00	0.80 to 1.24	0.982	−0.002	–
Sex	Male	1.21	0.92 to 1.59	0.170	0.191	–
Ischaemic heart disease	Yes	1.41	0.97 to 2.03	0.069	0.341	–
Liver cirrhosis	Yes	1.25	0.61 to 2.59	0.544	0.225	–
CKD with haemodialysis	Yes	4.33	2.71 to 6.91	<0.001	1.464	3
Endoscopic gastric atrophy	Mild/no	0.84	0.54 to 1.30	0.436	−0.175	–
Aspirin	Yes	2.24	1.55 to 3.24	<0.001	0.807	2
P2Y12RA	Yes	3.13	1.91 to 5.12	<0.001	1.140	2
Clopidogrel	Yes	2.04	1.09 to 3.80	0.025	0.712	1
Warfarin	Yes	8.74	4.92 to 15.54	<0.001	2.168	4
DOAC	Yes	8.16	4.74 to 14.04	<0.001	2.099	4
Interruption of AT agents	Each kind of agents	0.67	0.46 to 0.97	0.033	−0.403	–
Heparin bridging	Yes	0.82	0.49 to 1.36	0.435	−0.205	–
Replacement of APAs	Yes	1.24	0.57 to 2.66	0.587	0.212	–
The number of tumours	Multiple	1.38	1.04 to 1.85	0.028	0.324	1
Tumour size	>30 mm	1.72	1.28 to 2.31	<0.001	0.545	1
Tumour location	Lower third	1.68	1.35 to 2.10	<0.001	0.520	1
Tumour differentiation	Undifferentiated	1.40	0.87 to 2.24	0.167	0.334	–
Ulceration	Positive	1.09	0.76 to 1.55	0.651	0.082	–
ESD procedure time	>120 min	1.25	0.95 to 1.64	0.110	0.222	–
Resection type	Piecemeal	0.76	0.17 to 3.48	0.721	−0.278	–
Second-look endoscopy	Yes	1.01	0.80 to 1.27	0.950	0.007	–

*Weighted points were assigned proportional to β regression coefficient values multiplied by 2 to the nearest integer in the significant predictive factors.

APA, antiplatelet agent; AT, antithrombotic; CKD, chronic kidney disease; DOAC, direct oral anticoagulant; EGC, early gastric cancer; ESD, endoscopic submucosal dissection; P2Y12RA, P2Y12 receptor antagonist; SM2, submucosal invasion ≥500 µm from the muscularis mucosae.

Subgroup analysis

Model discrimination of the BEST-J score in very high-volume, high-volume and intermediate-volume centres was moderately good with c-statistics that ranged from 0.70 to 0.72; however, in low-volume centre, it was modest (c-statistic, 0.69) (table 6). The results pertaining to the model calibration are presented in table 6.

Table 3 Distribution of risk scores and risk classification for bleeding after ESD for EGC in the derivation cohort

Total points	Patients (n=8288)*	Bleeding (n=387)	Rate of bleeding (95% CI) (%)
0	2923	58	2.0 (1.5 to 2.6)
1	3344	117	3.5 (2.9 to 4.2)
2	1059	65	6.1 (4.8 to 7.8)
3	471	45	9.6 (7.1 to 12.6)
4	269	42	14.5 (10.7 to 19.1)
5	123	26	21.1 (14.3 to 29.4)
6	53	22	41.5 (28.1 to 55.9)
7	16	7	43.8 (19.8 to 70.1)
8	10	5	50.0 (18.7 to 81.3)

*There were missing data in three cases.

Management after ESD

In the whole cohort, the periods of hospital stay after ESD for each risk category in those with and without bleeding after ESD are shown in online supplementary figure 3. The median periods of hospital stay in patients with bleeding after ESD in the low-risk, intermediate-risk, high-risk and very high-risk categories were 8, 10, 10 and 12 days, respectively, and those without...
bleeding were 6, 6, 7 and 7 days, respectively. The differences were significant in all risk categories (p<0.001).

We also evaluated the effect of SLE for bleeding after ESD in each risk category in the whole cohort. As a result, no significant difference in the bleeding rate after ESD was observed between patients with and without SLE in all the risk categories (online supplementary table 8).

DISCUSSION

Given the relatively low incidence of bleeding after ESD for EGC, the availability of a prediction score would be of extreme importance. In the present study, we evaluated 23 candidate predictors and found 10 independent factors associated with bleeding. Our study highlights the strong impact of ACs, that is, warfarin and DOAC, on bleeding among AT agents. In addition, we first found the risk of P2Y12RA and cilostazol for bleeding after ESD. Toya et al reported the usefulness of combining the factors of ACs and resection size ≥35 mm for predicting bleeding after ESG for EGC. However, this study has the limitations of not evaluating the role of APA in detail and a small sample size from a single institution. A recent study established a risk-scoring model for predicting bleeding after colorectal ESD. In this model, points were assigned to use of AT agents except for aspirin alone and tumour size ≥30 mm, in addition to recto-sigmoid area. However, because of low event rates and small sample size from a single institution, the variables of ACs and CKD were not adequately evaluated and the discrimination ability of this model (c-statistic, 0.634) was limited; a c-statistic of ≥0.70 is typically considered sufficient to make clinically useful individual predictions. In terms of existing bleeding scores, several scores for patients with atrial fibrillation are also available. However, these scores also have only modest discrimination (c-statistic ≤0.63) in the external validation cohort. Our prediction model (c-statistic, 0.70) satisfied the clinically useful discrimination ability in the external validation cohort. However, the c-statistic just reached its satisfactory value; thus, it should be noted that our model may not be very reliable. Moreover, since the lower limit of 95% CI was <0.70, further external validation using a larger cohort is required for elucidating whether this model has an acceptable discrimination ability or not. Nevertheless, since this model was established based on the analysis of almost all known key candidate predictors for many patients throughout Japan and achieved good results in the overall performance, calibration ability and net benefit, we believe that this model could be applied as a simple aid to clinical decision-making in routine practice.

Table 5 Distribution of the total risk score and risk classification for bleeding after ESD for EGC in the validation cohort

Risk score	Patients (n=2029)	Bleeding (n=102)	Rate of bleeding (95% CI) (%)	Risk classification	Patients (n=2029)	Bleeding (n=102)	Rate of bleeding (95% CI) (%)
0	749	22	2.9 (1.8 to 4.4)	Low-risk	1481	41	2.8 (2.0 to 3.7)
1	732	19	2.6 (1.6 to 4.0)				
2	268	11	4.1 (2.1 to 7.2)	Intermediate-risk	268	11	4.1 (2.7 to 7.2)
3	146	21	14.4 (9.1 to 21.1)				
4	78	12	15.4 (8.2 to 25.3)	High-risk	224	33	14.7 (10.4 to 20.1)
5	41	11	26.8 (14.2 to 42.9)				
6	10	5	50.0 (18.7 to 81.3)	Very high-risk	56	17	30.4 (18.8 to 44.1)
7	3	1	33.3 (8.8 to 90.6)				
8	2	0	0.0 (0.0 to 84.2)				

ESD, endoscopic submucosal dissection; EGC, early gastric cancer.
We here provide a new proposal for patient management after ESD, which is based on individual bleeding probabilities in the prediction model. Despite that patients at a low risk for bleeding can be safely managed, we found that the period of hospital stay of patients who underwent ESD without bleeding, which reflects the standard schedule of hospital stay for each risk category, did not differ among the risk categories (6 to 7 days was the median for the four categories). Thus, we propose a shortened hospital stay (eg, 3 to 4 days after ESD) in patients with low risk, which may contribute to lowering the cost.

By contrast, some clinical approaches are recommended for patients at high risk. First, when such patients take AT agents, interruption of these can reduce the risk of bleeding and the effect of interruption depends on the number of kinds of AT agents interrupted, although the risk of thromboembolism by the interruption should also be considered. Second, caution would be given to endoscopists to look for possible bleeding sources, which would lead to more careful prophylactic coagulation of visible vessels on mucosal defect after resection. Furthermore, intensive monitoring of high-risk patients may prevent the onset of severe conditions even if bleeding occurs. On the other hand, SLE did not help prevent bleeding after gastric ESD, which is in accordance with a previous report in patients without AT agents. According to a recent study, the polyglycolic acid sheet with fibrin glue could not also decrease the risk of bleeding after ESD. However, several studies have reported the effect of mucosal defect closure for preventing bleeding after endoscopic resection. Thus, patients with a high risk for bleeding are candidates for this technique after resection. Although endoclips are sometimes insufficient to maintain closure of a large mucosal defect after ESD, recent advanced techniques such as endoloop, hand-suturing and OverStitch endoscopic suturing technique may overcome this issue.

Several strengths of the current study warrant mention. First, the designs of the derivation and the external validation are robust, according to the TRIPOD guidelines. The method also conformed with recent developments for improved prediction model assessment, including DCA. Furthermore, the sample size in this study was calculated based on the recommendations for deriving and externally validating a prognostic model, thereby increasing the reliability of the prediction model. Although we enrolled twice as many patients as the preplanned sample size, which was based on 10 EPV, in the derivation stage, this increase in sample size may have led to the better prediction model, because model performance was reported to be better as EPV increases from 10 to 50. Second, the data for deriving a prediction model were obtained from the largest cohort. Third, missing values were minimal, and actually, whole data are available for over 99% of the enrolled patients. Finally, the management of the AT agents during the perioperative period in the enrolled patients was mainly based on the recent Japanese guidelines, which are similar to the European and American guidelines.

This study has several potential limitations. First, this study is retrospective in nature. Second, the prediction model was developed and externally validated in Japan, which leads to two potential issues. One of them is that it is unclear whether this model is applicable to other geographical areas, such as Europe. The other issue is that points assigned to each variable may be different when the model is derived from other areas with less ESD expertise. Hence, fully independent validation in these areas is required and, if this prediction model has the poor performance, a new prediction model using the international cohort should be considered. Third, the timing of bleeding after ESD was not considered in this prediction model. Moreover, some reports showed that risk factors for early and late bleeding were different. Fourth, we should be careful about interpreting the risk of heparin bridging, as described previously. Lastly, our subgroup analysis in the low-volume centre did not reach a satisfactory value of discrimination; however, this analysis did not have enough power because of the small number of events.

In summary, we derived and externally validated a prediction model (BEST-J score) for bleeding after ESD for EGC, with good performance metrics. We, therefore, believe that this model can be used in routine practice to optimise the management of patients after ESD based on individual bleeding risk. However, further external validation in other geographical areas is required.

Author affiliations

1. Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
2. Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
3. Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
4. Division of Endoscopy, Shizuoka Cancer Centre, Shizuoka, Japan
5. Department of Gastroenterology, Toranomon Hospital, Tokyo, Japan
6. Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
7. Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
8. Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
9. Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
10. Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
11. Department of Gastroenterology, Tottori University School of Medicine, Tottori, Japan
12. Department of Gastroenterology and Hepatology, Osaka General Medical Centre, Osaka, Japan
13. Division of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
14. Division of Endoscopy, Tokyo Metropolitan Juntendo University, Tokyo, Japan

Table 6 Discrimination and calibration of the prediction model based on the centre-volume in the derivation cohort

Centre-volume	Very high-volume	High-volume	Intermediate-volume	Low-volume
The number of patients, n	2358	2990	2278	665
The number of bleeding, n	120	123	117	27
c-statistic (95% CI)	0.70 (0.65 to 0.75)	0.72 (0.67 to 0.77)	0.70 (0.65 to 0.76)	0.69 (0.57 to 0.80)
Calibration-in-the-large	0.20	−0.21	0.09	−0.18
Calibration slope	1.12	1.01	1.01	0.88
Acknowledgements We thank Yohei Ogata (Tohoku University Graduate School of Medicine) for his insightful comments and advice for statistical analyses in this study. We also thank all collaborators in the Fight-Japan study group for the enrollment of patients and data collection: Sho Shiroma (Cancer Institute Hospital, Japanese Foundation for Cancer Research), Hiroyuki Ono (Shizuoka Cancer Centre), Hiroki Odagiri (Topanom Hospital), Kazuhiro Matsunaga and Shigenori Wakita (Ishikawa prefectural central hospital), Huijie Fukunaga, Masaki Ominami, and Taishi Sakai (Osaka City University Graduate School of Medicine), Yoko Miura (The University of Tokyo), Minami Hashimoto, Jun Nakamura, and Ko Watanabe (Fukushima Medical University Hospital), Ryusuke Ariendo (Kobe University Graduate School of Medicine), Yutaka Okagawa, Takeyoshi Minagawa, and Ryoji Fujii (Tosan Hospital), Takao Maekata and Kazuhiro Fukatsu (Wakayama Medical University), Yuichi Hiasa (Ehime University Graduate School of Medicine), Daici Sano, Hidezumi Kikuchi, and Tetsuya Tatsuta (Hirosaki University Hospital), Atsushi Goto (Yamaguchi University Graduate School of Medicine), Daici Manou, Kenichiro Okimoto, and Naoki Akizoe (Chiba University Graduate School of Medicine), Tomooi Yamasa, Takehisa Suekane, and Yu Yasui (Osaka City General Hospital), Tatsuo Toda, Tetsuo Nishida and Masahisa Yamamoto (Toyooka Municipal Hospital), Keiichi Hashiguchi and Naoyuki Yamaguchi (Nagasaki University Hospital), Yoichi Akazawa and Hiroki Komori (Junendo University School of Medicine), Yohji Tsuji, Hideki Iijima, and Tetsuo Takehara (Osaka University Graduate School of Medicine), Masahiro Murata (Shiga University Medical Science Hospital), Takashi Ohta (Kansai Rosai Hospital), Hitokori Takabayashi (Saitama Medical Centre), Yoshiyuki Itakura (Kohnodai Hospital, National Centre for Global Health and Medicine), Kazuya Kitamura (Kohnodai Hospital, National Centre for Global Health and Medicine, Ichikawa, Japan), and Naoyuki Yamaguchi (Nagasaki University Hospital), Yoichi Hiasa (Ehime University Graduate School of Medicine), Hiroyuki Ono (Shizuoka Cancer Centre), and Naoyuki Yamaguchi (Nagasaki University Hospital).

References

1. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, et al. The global burden of cancer 2013. JAMA Oncol 2015;1:505–27.
2. Kim YG, Kong SH, Oh SY, et al. Effects of screening on gastric cancer management: comparative analysis of the results in 2006 and in 2011. J Gastrointest Cancer 2014;14:129–34.
3. Ono H, Kondo H, Gotoda T, et al. Endoscopic mucosal resection for treatment of early gastric cancer. Gut 2001;48:225–9.
4. Suh M, Choi KS, Lee YY, et al. Trends in cancer screening rates among Korean men and women: results from the Korean National cancer screening survey, 2004-2012. Cancer Res Treat 2013;45:86–94.
5. Saito I, Tsuji Y, Sakaguchi Y, et al. Complications related to gastric endoscopic submucosal dissection and their management. Clin Endosc 2014;47:398–403.
6. Yano T, Tanabe S, Ishido K, et al. Different clinical characteristics associated with acute bleeding and delayed bleeding after endoscopic submucosal dissection in patients with early gastric cancer. Surg Endosc 2017;31:5452–50.
7. Sato C, Hirasawa K, Koh R, et al. Postoperative bleeding in patients on antithrombotic therapy after gastric endoscopic submucosal dissection. World J Gastroenterol 2017;23:5557–66.
8. Miyahara K, Iwaki N, Shimoda R, et al. Perforation and postoperative bleeding of endoscopic submucosal dissection in gastric tumors: analysis of 1190 lesions in low- and high-volume centers in SAGA, Japan. Digestion 2012;86:273–80.
9. Toyokawa T, Inaba T, Omote S, et al. Risk factors for perforation and delayed bleeding associated with endoscopic submucosal dissection for early gastric neoplasms: analysis of 1123 lesions. J Gastroenterol Hepatol 2012;27:907–12.
10. Nam HS, Choi CW, Kim SI, et al. Risk factors for delayed bleeding by onset time after endoscopic submucosal dissection for gastric neoplasm. Sci Rep 2019;9:2674.
11. Lim JH, Kim SG, Kim JW, et al. Do antiplatelets increase the risk of bleeding after endoscopic submucosal dissection of gastric neoplasms? Gastrointest Endosc 2012;75:719–27.
12. Takeuchi T, Ota K, Harada S, et al. The postoperative bleeding rate and its risk factors in patients on antithrombotic therapy who undergo gastric endoscopic submucosal dissection. BMC Gastroenterol 2013;13:136.
13. Toya Y, Endo M, Ozumi T, et al. Risk factors for Post-gastric endoscopic submucosal dissection bleeding with a special emphasis on antiplatelet therapy. Dig Dis Sci 2020;65:557–64.
14. Fujimoto K, Fujishiro M, Kato M, et al. Guidelines for gastroenterological endoscopy in patients undergoing antiplatelet therapy. Dig Endosc 2014;26:1–14.
15. Dulea PS, Boland BS, Singh S, et al. Development and Validation of a Scoring System to Predict Outcomes of Vedolizumab Treatment in Patients With Crohn’s Disease. Gastroenterology 2018;155:687–95.
16. Yu D, Shu X-O, Rivera ES, et al. Urinary levels of trimethylamine-N-oxide and incident coronary heart disease: a prospective investigation among urban Chinese adults. J Am Heart Assoc 2019;8:e010606.
17. Hatta W, Gotoda T, Oyama T, et al. A Scoring System to Stratify Curability after Endoscopic Submucosal Dissection for Early Gastric Cancer: “eCura system.” J Gastroenterol 2017;112:874–81.
18. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 2015;350:g7594.
19. Gotoda T, Yamamoto H, Soetikno RM. Endoscopic submucosal dissection of early gastric cancer. J Gastroenterol 2006;41:929–42.
20. Llibadio D, Costa MN, Pimentel-Nunes P, et al. Risk factors for bleeding after gastric endoscopic submucosal dissection: a systematic review and meta-analysis. Gastrointest Endosc 2016;84:572–86.
21 Kimura K, Takeuchi T. An endoscopic recognition of the atrophic border and its significance in chronic gastritis. *Endoscopy* 1969;1:87–97.

22 Mochizuki S, Uedo N, Oda I, et al. Scheduled second-look endoscopy is not recommended after endoscopic submucosal dissection for gastric neoplasms (the safe trial): a multicentre prospective randomised controlled non-inferiority trial. *Gut* 2015;64:393–405.

23 Wynants L, Bouwmeester W, Moons KGM, et al. A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data. *J Clin Epidemiol* 2015;68:1406–14.

24 Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. *J Clin Epidemiol* 1996;49:1373–9.

25 Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. *Stat Med* 1996;15:361–87.

26 Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. *Stat Med* 2016;35:214–26.

27 So S, Ahn JY, Kim N, et al. Comparison of the effects of antithrombotic therapy on delayed bleeding after gastric endoscopic resection: a propensity score-matched case-control study. *Gastrointest Endosc* 2019;89:277–85.

28 Steyerberg EW, Harrell FE, Borsboom GI, et al. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. *J Clin Epidemiol* 2001;54:774–81.

29 Steyerberg EW, Bleeker SE, Moll HA, et al. Internal and external validation of predictive models: a simulation study of bias and precision in small samples. *J Clin Epidemiol* 2003;56:441–7.

30 Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. *Med Decis Making* 2006;26:565–74.

31 Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. *Eur Heart J* 2014;35:1925–31.

32 Kim JH. Multicollinearity and misleading statistical results. *Korean J Anesthesiol* 2019;72:558–69.

33 Douketis JD, Spyropoulos AC, Kaatz S, et al. Perioperative bridging anticoagulation in patients with atrial fibrillation. *N Engl J Med* 2015;373:823–33.

34 Seo M, Song EM, Cho JW, et al. A risk-scoring model for the prediction of delayed bleeding after colorectal endoscopic submucosal dissection. *Gastrointest Endosc* 2019;89:990–8.

35 Pencina MJ, D’Agostino RB, Demler OV. Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. *Stat Med* 2012;31:101–13.

36 Lip GYH, Nieuwlaat R, Fister R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro heart survey on atrial fibrillation. *Chest* 2010;137:263–72.

37 Fang MC, Go AS, Chang Y, et al. A new risk scheme to predict warfarin-associated hemorrhage: the atria (anticoagulation and risk factors in atrial fibrillation) study. *J Am Coll Cardiol* 2011;58:395–401.

38 O’Brien EC, Simon DN, Thomas LE, et al. The orbit bleeding score: a simple bedside score to assess bleeding risk in atrial fibrillation. *Eur Heart J* 2015;36:ehv476–64.

39 Apostolakis S, Lane DA, Guo Y, et al. Performance of the HEMORRH2HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in patients with atrial fibrillation undergoing anticoagulation: the AMADEUS (evaluating the use of SRI34006 compared to warfarin or aminocoumarin in patients with atrial fibrillation) study. *J Am Coll Cardiol* 2012;60:861–7.

40 Apostolakis S, Lane DA, Guo Y, et al. Performance of the HEMORRH2HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in nonwarfarin anticoagulant atrial fibrillation patients. *J Am Coll Cardiol* 2013;61:386–92.

41 Kataoka Y, Tsuji Y, Hirasaki K, et al. Endoscopic tissue shielding to prevent bleeding after endoscopic submucosal dissection: a prospective multicenter randomized controlled trial. *Endoscopy* 2019;51:619–27.

42 Zhang Q-S, Han B, Xu J-H, et al. Clip closure of defect after endoscopic resection in patients with larger colorectal tumors decreased the adverse events. *Gastrointest Endosc* 2015;82:904–9.

43 Choi KD, Jung H-Y, Lee GH, et al. Application of metal hemoclips for closure of endoscopic mucosal resection-induced ulcers of the stomach to prevent delayed bleeding. *Surg Endosc* 2008;22:1882–6.

44 Maekawa S, Nomura R, Murase I, et al. Complete closure of artificial gastric ulcer after endoscopic submucosal dissection by combined use of a single over-the-scope clip and through-the-scope clips (with videos). *Surg Endosc* 2015;29:500–4.

45 Lee B-L, Kim B-W, Kim H-K, et al. Routine mucosal closure with a detachable SNARE clip and clips after endoscopic submucosal dissection for gastric epithelial neoplasms: a randomized controlled trial. *Gut Liver* 2011;5:454–9.

46 Goto O, Sasaki M, Akimoto T, et al. Endoscopic hand-suturing for defect closure after gastric endoscopic submucosal dissection: a pilot study in animals and in humans. *Endoscopy* 2017;49:792–7.

47 Sakurai T, Adachi T, Kono M, et al. Prophylactic suturing closure is recommended after endoscopic treatment of colorectal tumors in patients with Antplatelet/Anticoagulant therapy. *Oncology* 2017;93 Suppl 1:127–9.

48 Kantevecov SV, Bittner M, Mitrokov AA, et al. Endoscopic suturing closure of large mucosal defects after endoscopic submucosal dissection is technically feasible, fast, and eliminates the need for hospitalization (with videos). *Gastrointest Endosc* 2014;79:503–7.

49 ASGE Standards of Practice Committee, Acosta RD, Abraham NS, et al. The management of antithrombotic agents for patients undergoing GI endoscopy. *Gastrointest Endosc* 2016;83:3–16.

50 Veltich AM, Vanbiervliet G, Gershlick AH, et al. Endoscopy in patients on antithrombotic or anticoagulant therapy, including direct oral anticoagulants: British Society of gastroenterology (Bsg) and European Society of gastrointestinal endoscopy (EsgE) guidelines. *Gut* 2016;65:374–89.