ABSTRACT

The rainfall Intensity-Duration-Frequency (IDF) relationship is widely used for adequate estimation of rainfall intensity over a particular catchment. A 25 year daily rainfall data were collected from Nigerian Meteorological Agency (NIMET) Abuja for Akure station. Twenty five year annual maximum rainfall amounts with durations of 5, 10, 15, 20, 30, 45, 60, 90, 120, 180, 240, 300 and 420 minutes were extracted and subjected to frequency analysis using the excel solver software wizard. A total of six (6) return period specific and one (1) general IDF models were developed for return periods of 2, 5, 10, 25, 50 and 100 years using Gumbel Extreme Value Type-1 and Log Pearson type -3 distributions. Anderson Darling goodness of fit test was used to ascertain the best fit probability distribution. The R² values range from 0.982 to 0.985 for GEVT -1 and 0.978 to 0.989 for Log Pearson type -3 while the Mean Squared Error from 33.56 to 156.50 for GEVT -1 and 43.01 to 150.63 Log Pearson Type III distributions respectively. The probability distribution models are recommended for the prediction of rainfall intensities for Akure metropolis.

*Corresponding author: E-mail: ifynwaogazie@yahoo.com;
1. INTRODUCTION

The Rainfall Intensity Duration Frequency (IDF) relationship is one of the most commonly used tools for the design of hydraulic and water resources engineering control structures. The IDF relationship is a mathematical relationship between the rainfall intensity, duration and the frequency (return period). The establishment of such relationship was done as early as 1932 [1].

The knowledge of frequency of extreme events like floods, high, winds droughts and rainstorm helps in planning and design for these extreme events [2]. The planning and designing of various water resources projects requires the use of rainfall intensity-duration-frequency (IDF) relationship [3]. This relationship is determined through frequency analysis of data from meteorological stations. The IDF formulae are the empirical equations representing a relationship among maximum rainfall intensity (as dependent variable) and other parameters of interest such as rainfall duration and frequency (as independent variables). There are several commonly used functions found in the literature of hydrology applications [4]. Owing to its wide applications, accurate estimation of intensity-duration-frequency relationship has received attention from researchers and scientists from all over the world [5,6,7,8,9,10,11]. All functions have been widely applied in hydrology. The IDF relation is mathematically stated as follows:

\[I = f(T,d) \]

(1.1)

Where:

\(I \) = rainfall intensity (mm/hr); \(T \) = return period (years) and \(d \) = duration (minutes). Examples of three different types of empirical equations was documented by [12,13].

2. MATERIALS AND METHODS

2.1 Description of Area of Study

Akure is in Ondo State which is one of the States in Nigeria created on February 3, 1976 from the former Western Region. It lies within 7° 10’ N and 5° 05’ E. Akure is located in the rain forest of Nigeria. The available rainfall data (amount and duration) obtained from NIMET covered the period between 1986 and 2010. Precipitation is characterized by a double maxima rainfall which starts from April and ends in October, reaching its peak in June and September. The average annual rainfall is about 1,422 mm with some variations within the metropolis (analysed NIMET data).

2.2 Data Collection and Analysis

The major material used for this work is rainfall data comprising of rainfall amount and duration. The twenty five (25) year rainfall data included data ranging from 1986 to 2010. The data were obtained from Nigeria Meteorological Centre (NIMET) office Abuja, Nigeria. The data arrangement involved sorting the mean data according to years, rainfall intensities and durations. The rainfall intensities selected were the maximum values for each year for all the years analysed.

The annual maximum rainfall amount was obtained by selecting the maximum amount of rainfall for each year for 5, 10, 15, 20, 30, 45, 60, 90, 120, 180, 240, 300, and 420 (duration - minutes) for the 25 years. Table 1 shows the ranked observed annual maximum rainfall amounts for Akure.

The rainfall amounts in Table 1 were converted to intensity (mm/hr) by dividing the amount of rainfall by the duration then multiplying by 60. For instance given an amount of 70.3 mm and duration of 15 minutes yields 281.3 mm/hr. Table 2 shows all the intensities for various durations [14].

The magnitude of rainfall intensities was obtained using frequency analysis. Log Pearson Type 3 distribution was used to obtain the magnitude of rainfall intensities for different return periods.

2.3 Gumbel’s Extreme Value Type 1 (GEVT-1) Distribution

Gumbel distribution is one commonly used probability distribution for obtaining the rainfall intensity values. The rainfall intensity values were obtained using Equation (2.1) [12].

\[X_T = \bar{x} + K_T S \]

(2.1)
Where X_T = rainfall intensity values (magnitude of hydrologic event)
$ar{x}$ = mean; K_T = Gumbel’s frequency factor; S = standard deviation

![Location Map of Akure in South-Western Nigeria](image)

Fig. 1. Location Map of Akure in South-Western Nigeria (Map data © 2019 Google)

Table 1. Ranked observed annual rainfall amounts for different durations for Akure

Rank	Duration of rainfall (minutes)	5	10	15	20	30	45	60	90	120	180	240	300	420
1	20	27.0	35.7	49.6	54.9	68.1	78.4	87.4	94.3	94.3	150.0	150.0	150.0	150.0
2	20	26.7	34.8	48.9	52.2	64.1	75.2	83.8	87.4	94.3	94.3	110.8		
3	20	22.7	33.4	43.9	49.6	60.3	75.0	78.4	84.0	86.8	87.4	88.9		
4	20	21.3	32.3	35.7	48.9	57.1	74.6	75.2	83.8	84.0	86.8	87.4	99.5	
5	20	20.6	32.2	33.4	43.9	54.9	68.1	75.0	78.4	86.6	86.8	87.4		
6	20	19.2	31.1	32.8	43.0	53.0	64.1	74.6	75.2	79.6	84.0	86.6		
7	20	17.3	30.3	32.3	36.1	49.6	60.3	68.4	75.0	75.2	79.6	82.5	84.0	86.6
8	20	14.5	29.0	32.2	35.7	48.9	57.1	68.1	74.6	75.0	79.0	79.6	79.6	79.6
9	20	14.3	28.6	32.1	33.4	43.9	56.8	60.3	68.4	74.6	75.2	77.4	79.6	79.6
10	20	13.6	23.2	31.6	32.3	41.3	54.9	59.3	68.1	74.6	75.0	78.0	78.0	79.6
11	20	13.2	21.2	31.1	32.2	40.8	53.0	57.1	60.3	68.4	74.8	75.2	75.2	78.0
12	20	13.1	20.6	30.6	32.1	35.1	49.6	56.8	59.5	68.1	74.6	74.8	74.8	75.2
13	20	13.1	20.6	30.3	30.6	33.4	48.9	54.9	59.3	65.5	71.7	74.6	74.6	74.6
14	20	12.7	20.2	29.0	30.3	32.3	47.2	54.8	57.1	60.3	70.7	71.7	71.7	74.6
15	20	12.3	18.1	28.3	29.0	32.2	44.9	53.0	56.8	59.3	68.6	68.6	71.7	
16	20	12.3	18.0	25.8	28.3	30.3	44.3	52.0	54.9	57.1	68.4	68.4		
17	20	12.1	17.1	24.1	24.1	29.3	43.9	49.6	54.8	56.8	68.1	68.1		
18	20	12.1	17.1	21.2	22.7	29.0	40.8	44.9	53.0	54.9	64.3	64.3		
19	20	12.0	16.7	20.6	21.5	25.9	35.1	44.3	52.4	52.4	64.1	64.1		
20	20	11.8	16.6	20.6	21.2	24.7	34.1	43.9	50.6	50.6	60.3	60.3		
21	20	11.4	16.5	20.2	21.0	24.1	33.4	40.8	49.6	48.2	59.3	59.3		
22	19.6	16.5	19.6	20.9	24.0	32.3	39.3	48.2	43.9	57.1	57.1	59.4		
23	19.1	16.0	20.8	23.9	29.7	38.8	43.9	48.2	49.8	56.8	56.8	59.3		
24	19.0	15.2	20.6	23.8	28.2	35.4	40.8	41.2	52.1	52.1	55.9	59.2		
25	18.9	15.2	20.2	23.1	27.5	32.7	39.7	40.8	47.2	51.9	54.0	58.0		
Table 2. Ranked observed annual rainfall intensities (mm/hr) for different durations (mins) for Akure

Year	5	10	15	20	30	45	60	90	120	180	240	300	420
1	324.0	214.2	198.4	164.7	136.2	104.5	87.4	62.9	47.2	50.0	37.5	30.0	21.4
2	320.4	208.8	195.6	156.6	128.2	100.3	83.8	58.3	43.7	31.4	23.6	18.9	15.8
3	272.6	200.4	175.6	148.8	120.6	100.0	78.4	56.0	43.4	29.1	21.9	17.8	14.2
4	255.6	193.8	142.8	146.7	114.2	99.5	75.2	55.9	42.0	28.9	21.7	17.5	12.8
5	247.2	193.2	133.6	131.7	109.8	90.8	75.0	52.3	41.9	28.9	21.7	17.4	12.5
6	230.4	186.6	131.0	129.0	106.0	85.5	74.6	50.1	39.8	28.0	21.0	17.3	12.4
7	207.6	181.8	129.2	108.2	99.2	80.4	68.4	50.0	37.6	26.5	20.6	16.8	12.4
8	174.0	174.0	128.8	107.1	97.8	76.1	68.1	49.7	37.5	26.3	19.9	15.9	12.0
9	171.4	171.7	128.4	100.2	87.8	75.7	60.3	45.6	37.4	25.1	19.8	15.8	11.4
10	162.8	139.2	126.4	96.9	82.5	73.2	59.3	45.4	37.3	25.0	19.5	15.6	11.3
11	158.8	127.2	124.4	96.6	81.6	70.7	57.1	40.2	34.2	24.9	18.8	15.0	11.1
12	157.7	123.6	122.4	96.3	70.2	66.1	56.8	39.7	34.1	24.9	18.7	15.0	10.7
13	157.4	123.6	121.2	91.8	66.8	65.2	54.9	39.5	32.8	23.9	18.7	14.9	10.7
14	152.6	121.2	116.0	90.9	64.6	63.0	54.8	38.1	30.2	23.6	17.9	14.3	10.7
15	147.6	108.6	113.2	87.0	64.4	59.9	53.0	37.9	29.7	22.9	17.2	13.7	10.2
16	147.6	107.9	103.2	84.9	60.6	59.1	52.0	36.6	28.6	22.8	17.1	13.7	9.8
17	144.8	102.6	96.4	72.3	58.6	58.5	49.6	36.5	28.4	22.7	17.0	13.6	9.7
18	144.6	102.6	84.8	68.0	58.0	54.4	44.9	35.3	27.5	21.4	16.1	12.9	9.2
19	143.6	100.0	82.4	64.6	51.9	46.8	44.3	34.9	26.2	21.4	16.0	12.8	9.2
20	141.7	99.4	82.4	63.6	49.3	45.5	43.9	33.7	25.3	20.1	15.1	12.1	8.9
21	136.6	99.1	80.8	63.0	48.2	44.5	40.8	33.1	24.1	19.8	14.8	11.9	8.6
22	135.9	99.0	78.3	62.6	48.1	43.1	39.3	32.1	22.0	19.0	14.3	11.4	8.5
23	135.6	96.2	76.4	62.4	47.8	39.6	38.8	29.3	20.9	18.9	14.2	11.4	8.5
24	130.3	91.2	75.8	61.8	47.7	37.6	35.4	27.2	20.6	17.4	13.0	11.2	8.5
25	127.9	91.1	75.7	60.6	46.2	36.7	32.7	26.5	20.4	15.7	13.0	10.8	8.3
Mean	181.2	138.3	116.9	96.7	77.9	67.1	57.2	41.9	32.5	24.7	18.8	15.1	11.2

Standard Deviation: 59.0
Coefficient of Skewness: 1.16

David et al.; IJECC, 9(8): 457-466, 2019; Article no.IJECC.2019.039
The Gumbel’s frequency factor is obtained using Equation (2.2).

\[K_T = \frac{\sqrt{\pi}}{\sqrt{0.5772 + \ln\left(\frac{T}{\pi - 1}\right)}} \]

(2.2)

Where \(T \) = return period (years)

For example, Gumbel frequency factor for a 5 years return period

\[K_T = \frac{\sqrt{\pi}}{\sqrt{0.5772 + \ln\left(\frac{5}{\pi - 1}\right)}} = 0.719 \]

The resulting Gumbel \(K_T \) values for different return periods as calculated are shown in Table 3.

2.4 Log Pearson Type -3 (LPT -3) Distribution

Log Pearson type-3 distribution is one commonly used probability distribution for obtaining the rainfall intensity values. The rainfall intensity values were obtained using Equation (2.1)

\[\log X_T = \log \bar{X} + K_T \log S \]

(2.3)

Where \(X_T \) = rainfall intensity values (magnitude of hydrologic event)

Log-Pearson frequency factor can be obtained from the frequency table given in standard textbooks using the return period and the skewness from Table 3 as follows:

For example, Log-Pearson distribution frequency factor for a 10 minutes duration and 5 year return period with coefficient of skewness = 0.366734 was calculated to be 0.81866.

Table 4 gives the computed summary of \(K_T \) values for Log-Pearson distribution for various durations and different return periods computed.

2.5 Calibration of Sherman (1931) IDF Model

Sherman’s [16] modified IDF model is given as [4]:

\[I = \frac{c T^m}{T_d^n} \]

(2.4)

Equation (2.4) is non-linear power law that was calibrated for \(c, m, a \) parameters using intensity, duration and return period values in Table 1 and Excel Optimization Solver [5].

Table 3. Gumbel frequency factor for Akure IDF modelling

Return period	2	5	10	25	50	100
\(K_T \) values	0.1642	-1.1696	-1.3043	-2.044	-2.592	-3.156
Source: [15]						

Table 4. Log-Pearson frequency factors for various durations and return periods

Frequency Factor \(K_T \)	Duration (minutes)	\(C_s \)	Return Period				
	2	5	10	25	50	100	
5	1.091564	-0.17865	0.746097	1.340916	2.06406	2.581372	3.081517
10	0.366734	-0.06068	0.818661	1.314339	1.869688	2.244367	2.591381
15	0.251671	-0.04178	0.8269	1.305134	1.834018	2.185869	2.509203
20	0.305351	-0.05086	0.823572	1.309428	1.850659	2.213676	2.547999
30	0.272066	-0.04525	0.825676	1.306765	1.840341	2.196474	2.523888
45	-0.15695	0.026112	0.848278	1.263166	1.695498	1.968677	2.209856
60	-0.09628	0.016367	0.845851	1.270447	1.717303	2.002011	2.254576
90	0.051879	-0.00882	0.838887	1.287188	1.768639	2.081496	2.36439
120	-0.2684	0.044629	0.852052	1.249108	1.654691	1.907378	2.127382
180	1.037152	-0.16994	0.75317	1.340372	2.051545	2.557975	3.046149
240	1.115837	-0.18238	0.742941	1.340842	2.069326	2.591493	3.096819
300	1.232979	-0.19995	0.727713	1.33967	2.093926	2.639191	3.169447
420	1.209953	-0.19649	0.730706	1.3399	2.08909	2.629981	3.155171
2.5.1 Goodness of fit test

The result in Table 1 was subjected to Anderson-Darling test to ascertain the probability distribution that best fit the rainfall annual maximum amount. This is a nonparametric test of the equality of continuous, one dimensional probability distributions that can be used to compare a sample with a reference probability distribution [15]. Gumbel Extreme Value Type 1 (GEVT-1) and Log-Pearson Type -3 (LPT-3) best fit the rainfall intensities with significant values of 0.7570 and 0.7538 at 5% confidence level respectively.

3. FINDINGS AND DISCUSSION

3.1 Development of Intensity Duration Frequency (IDF) Models

Fig. 2 represents the rainfall intensity values for various durations for the different return periods using Gumbel Extreme Value Type I distribution.

The intensity duration frequency models were calibrated using the Microsoft Excel Solver. The method adopted uses the least square criteria to obtain the model parameters. Table 5 gives a distribution of developed IDF models for Gumbel Extreme Value Type -1 distribution.

Table 5 gives a distribution of developed IDF models for Gumbel Extreme Value Type -1 distribution.

The general IDF model (Equation 2.5) was developed using Excel Spread Sheet Solver tool. The least square equations were programmed accordingly.

\[I = \frac{407.886T^{0.175}}{P^{0.525}} \]

We note the following results: coefficient of determinant \(R^2 = 0.982 \); Mean Squared Error = 125.70 mm/hr

3.2 Development of Intensity Duration Frequency (IDF) Models

Fig. 3 shows the rainfall intensity values for various durations for the different return periods using Log Pearson Type -3 distribution.

The intensity duration frequency models were developed using the Microsoft Excel Solver. The method employs the least square criteria to obtain the model parameters.

Table 6 gives a distribution of developed IDF models for Log Pearson Type -3 distribution for Akure.

![Fig. 2. Intensity Duration Frequency (IDF) curves for Gumbel Extreme value Type -1 distribution for Intensities (mm/hr) against durations (mins) for Akure](image-url)
Table 5. Developed IDF Models for different return periods using Gumbel Extreme Value Type - 1 distribution rainfall intensities values for Akure

Return period	IDF model	Coefficient of determination (R^2)	Mean squared error (MSE)
2	I = \frac{4.766I}{T_d^{0.012}}	0.985	33.56
5	I = \frac{2.181I}{T_d^{0.039}}	0.985	60.27
10	I = \frac{1.646I}{T_d^{0.032}}	0.984	84.55
25	I = \frac{1.291I}{T_d^{0.025}}	0.983	122.738
50	I = \frac{1.170I}{T_d^{0.027}}	0.982	156.496
100	I = \frac{1.098I}{T_d^{0.028}}	0.982	194.51

± return period specific IDF models

A general IDF model was also developed (Equation 2.6). This model enables one to predict the intensity of rainfall of any duration and any return period.

\[I = \frac{402.607T_r^{0.201}}{T_d^{0.540}} \]

(2.6)

We note the following results: coefficient of determinant (R^2) = 0.984; and Mean Squared Error = 127.47

3.3 Comparison of Observed and Predicted Rainfall Intensity

The intensity duration frequency curves were obtained by plotting the predicted rainfall intensity values against corresponding durations for different return periods. The IDF curves for Akure are as shown in Figs. 4 – 6.

3.4 Comparison of Regression Approach and Excel Optimization Solver Results for Model Parameters Using R^2 and MSE

Excel Solver for Log Pearson Type -3 model parameters trial solution for 5 year return period specific IDF model has eleven (11) iterations before convergence (see Table 7).

Table 8 (an extension of Table 6) clearly shows the result from Excel Optimization Solver option

![Intensity Duration Frequency (IDF) curves for Log Pearson Type -3 distribution for Akure](image-url)
Table 6. Developed IDF Models for different return periods using Log Pearson Type -3 distribution rainfall intensity values for Akure

Return period	IDF Model	Coefficient of determination (R^2)	Mean squared error (MSE)
2	I = 4.747T_{0.366}^{0.500}	0.980	43.01
5	I = 2.167T_{0.300}^{1.400}	0.978	83.48
10	I = 1.642T_{0.231}^{2.376}	0.980	105.23
25	I = 1.295T_{0.234}^{1.986}	0.984	125.12
50	I = 1.185T_{0.350}^{1.609}	0.987	136.96
100	I = 1.105T_{0.368}^{1.493}	0.989	150.63

*Models are return period specific

Table 7. Excel Solver iteration distribution to convergence

S/NO	c	m	a
1	1	1	1
2	1.458558	1.738022	1.973125
3	1.754711	2.433231	2.973125
4	1.752072	2.426307	3.064671
5	2.033457	3.163496	3.247508
6	2.116898	3.355978	3.479676
7	2.145857	3.52741	4.79676
8	2.165626	3.398402	5.02807
9	2.167149	3.40017	5.05001
10	2.167155	3.400187	5.05003
11	2.167155	3.400187	5.05003

Fig. 4. Observed rainfall intensity compared with predicted for 2 and 10 year return periods for Log-Pearson Type-3 distribution

is superior to the normal regression method, the conventional simultaneous solution using matrix method i.e. Gauss elimination, inverse or determinant approach [6].

464
Fig. 5. Observed rainfall intensity compared with predicted for 5 and 25 year return periods for Log-Pearson Type-3 distribution for Akure

Table 8. Results from regression approach and excel solver optimization approach (Log Pearson Type -3 and 2 year return period)

Method	C	m	a	R^2	MSE
Regression	65.52	3.544	0.675	0.885	324.40
Excel Solver	4.74	6.366	0.500	0.980	43.01

4. CONCLUSION

The developed model for Log Pearson Type -3 is in agreement with literature theory which shows higher intensity occurring at lower duration and lower intensity at higher duration. The prediction of rainfall intensity with the PDFs showed a good match with observed intensity values. The log Pearson Type -3 model ranked as the best with respect to MSE 43.01 and R^2 0.980 in the return
period specific model when compared with GEVT-1 with MSE 324.4 and R^2 0.885. The comparison of PDF and non-PDFs shows that the former has lesser MSE value than the later; 43.01 and 324.40 respectively.

ACKNOWLEDGEMENT

The authors wish to appreciate the World Bank African Centre of Excellence in Oilfield Chemicals Research (ACEFOR), University of Port Harcourt, Rivers State, Nigeria and Olabisi Onabanjo University, Ago Iwoye, Ogun State, Nigeria for granting Adekunle O. David leave for this study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Bernard MM. Formulas for rainfall intensities of long duration. Transactions, ASCE, 96 (Paper No.1801). 1932:592624.
2. Hosking JRM, Wallis JR. Regional frequency analysis: An approach based on L-moments. Cambridge University Press, Cambridge, U.K.; 1997.
3. El-Sayed EA. Generation of rainfall intensity duration frequency curves for ungauged sites. Nile Basin Water Science & Engineering Journal. 1961;4(1):112-124.
4. Chow VT, Maidment DR, Mays LW. Applied hydrology. McGraw-Hill International Editions, New York, USA. 2. Gupta, B.L. and Gupta, A. 2008; 1988.
5. Mohammad Zakwan. Application of optimization technique to estimate IDF parameters. Water and Energy International; 2016.
6. Ekeng BE. Effective implementation of urban storm water drains: A case study of Calabar. In Tropical Environmental Forum, Conference Proceeding in the Polytechnic Calabar, Calabar; 1998.
7. Hershfeld DM. Estimating the probable maximum precipitation. Journal of the Hydraulic Division, Proceeding of the ASCE, HY5. 1961;99–116.
8. Kothyari UC, Garde RJ. Rainfall intensity duration frequency formula for India. J. Hydr. Engrg. ASCE. 1992;118(2):323-336.
9. Chow VT. Generalized formula for hydrologic frequency analysis. Trans. Am. Geophys. Union. 1951;32:231–237.
10. Nwaogazie IL, Ekwueme MC. Rainfall intensity-duration-frequency (IDF) models for Uyo city, Nigeria. International Journal of Hydrology. 2017;1(3). DOI: 15406/ijh.2017.01.00112
11. Chen CL. Rainfall intensity-duration – frequency formulas. Journal of Hydraulic Engineering. ASCE. 1983;109(12):1603-1621.
12. Nwaogazie IL, Masi S. Probability and non-probability rainfall intensity – duration – frequency modelling for Port-Harcourt metropolis, Nigeria. International Journal of Hydrology. 2019;3(1):66-75.
13. Ologhadien I, Nwaogazie IL. Rainfall-intensity-duration-frequency models for selected cities in Southern Nigeria. Nigerian Journal of Technology. 2016;36(4):1296–1302. Available:http://dx.doi.org/10.4314/njt.v36i4.40
14. Nwaogazie IL, Okonkwo SC. Rainfall-intensity-duration-frequency modelling and comparative analysis of developed models for Abakaliki, Ebonyi State, Nigeria. Int'I Journal of Trend Res & Dev. 2017;4(2):776-783. Available:Online@www.ijtrd.com
15. David AO, Nwaogazie IL, Agunwamba JC. Modelling rainfall intensity by optimization technique in Abeokuta, South-West, Nigeria. Journal of Engineering Research and Reports. 2019;6(4):1–10.
16. Shera CW. Frequency and intensity of excessive rainfalls at Boston, Massachusetts. Am. Soc. of Civil Engrgs. 1931;95:951–960.

© 2019 David et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: http://www.sdiarticle3.com/review-history/50616