Childhood-Onset Schizophrenia: A Systematic Overview of Its Genetic Heterogeneity From Classical Studies to the Genomic Era

Arnaud Fernandez, Malgorzata Marta Drozd, Susanne Thümmler, Emmanuelle Dor, Maria Capovilla, Florence Askenazy, Barbara Bardoni

To cite this version:

Arnaud Fernandez, Malgorzata Marta Drozd, Susanne Thümmler, Emmanuelle Dor, Maria Capovilla, et al.. Childhood-Onset Schizophrenia: A Systematic Overview of Its Genetic Heterogeneity From Classical Studies to the Genomic Era. Frontiers in Genetics, Frontiers, 2019, 10, pp.1137. 10.3389/fgene.2019.01137. hal-02625267

HAL Id: hal-02625267
https://hal.archives-ouvertes.fr/hal-02625267
Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Childhood-onset schizophrenia (COS), a very rare and severe chronic psychiatric condition, is defined by an onset of positive symptoms (delusions, hallucinations and disorganized speech or behavior) before the age of 13. COS is associated with other neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder. Copy number variations (CNVs) represent well documented neurodevelopmental disorder risk factors and, recently, de novo single nucleotide variations (SNVs) in genes involved in brain development have also been implicated in the complex genetic architecture of COS. Here, we aim to review the genetic changes (CNVs and SNVs) reported for COS, going from previous studies to the whole genome sequencing era. We carried out a systematic review search in PubMed using the keywords “childhood(early)-onset schizophrenia(psychosis)” and “genetic(s) or gene(s) or genomic(s)” without language and date limitations. The main inclusion criteria are COS (onset before 13 years old) and all changes/variations at the DNA level (CNVs or SNVs). Thirty-six studies out of 205 met the inclusion criteria. Cytogenetic abnormalities (n = 72, including 66 CNVs) were identified in 16 autosomes and 2 sex chromosomes (X, Y), some with a higher frequency and clinical significance than others (e.g., 2p16.3, 3q29, 15q13.3, 22q11.21 deletions; 2p25.3, 3p25.3 and 16p11.2 duplications). Thirty-one single nucleotide mutations in genes principally involved in brain development and/or function have been found in 12 autosomes and one sex chromosome (X). We also describe five SNVs in X-linked genes inherited from a healthy mother, arguing for the X-linked recessive inheritance hypothesis. Moreover, ATP1A3 (19q13.2) is the only gene carrying more than one SNV in more than one patient, making it a strong candidate for COS. Mutations were distributed in various chromosomes illustrating the genetic heterogeneity of COS. More than 90% of CNVs involved in COS are also involved in ASD, supporting the idea that there may be genetic overlap between these disorders. Different mutations associated with COS are probably still unknown, and pathogenesis might also be explained by the
association of different genetic variations (two or more CNVs or CNVs and SNVs) as well as association with early acquired brain lesions such as infection, hypoxia, or early childhood trauma.

Keywords: childhood-onset schizophrenia, autism spectrum disorder, genetics, copy number variations, single nucleotide polymorphisms, exome sequencing

INTRODUCTION

Childhood-onset schizophrenia (COS) is a rare (< 1/40,000) and severe chronic psychiatric condition that shares with adult-onset schizophrenia (AOS) positive symptoms (delusions, hallucinations, and disorganized speech or behavior), but presents an early onset (before the age of 13) (Burd and Kerbeshian, 1987; Nicolson and Rapoport, 1999). It remains considered by many authors as an early and severe variant of AOS (Nicolson and Rapoport, 1999; Biswas et al., 2006). In COS, neurodevelopmental abnormalities (deficits in cognition, communication, or neuromotor impairments) and premorbid dysfunction are more frequent compared with AOS (Vourdas et al., 2003) and a clinical overlap exists with other neurodevelopmental disorders: 28% of patients with COS in the US cohort of the National Institute of Mental Health Child Psychiatry Branch met criteria for comorbid autism spectrum disorder (ASD) (Rapoport et al., 2009). In addition, more than 80% of children with schizophrenia or schizoaffective disorder present comorbid attention deficit and hyperactivity disorder (ADHD) (Ross et al., 2006). Few genetic studies of COS were reported, due to the very low prevalence (<1/40,000) (Burd and Kerbeshian, 1987) and to nosographic difficulties, which made it hard to obtain a consensual clinical definition of this disorder and to carry out etiological studies (Maier, 1999; Gochman et al., 2011). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) classification provides recent clarification in this area with schizophrenia no longer excluding the diagnosis of ASD (Petty et al., 1984; American Psychiatric Association, 2013). Thus, clinical overlap between COS and ASD is now formally accepted. Surprisingly, DSM-5 still does not recognize the existence of COS, which therefore remains considered an adult clinical presentation (AOS) (American Psychiatric Association, 2013). Indeed, COS is a very rare complex disorder related to other neurodevelopmental disorders, and it represents a real challenge for clinical diagnosis with, to date, no objective test based on genetics (Petty et al., 1984). However, a high heritability rate of COS (> 80%) has been suggested in early adoption/twin studies (Kallmann and Roth, 1956) and has been confirmed by familial aggregation studies (Asarnow and Forsyth, 2013). To determine the etiology of COS, it is indispensable to start by reviewing the publications that have linked COS to DNA changes.

Macro-lesional cytogenetic abnormalities such as copy number variations (CNVs), including the 22q11.21 deletion, are more frequent in COS than in AOS [10.6% of patients with COS (DSM-III-R, onset <13 years) vs. 2–5%, in AOS, p < 0.0001]. These anomalies in the general population would concern only 0.86% of newborns (Nicolson et al., 1999).

Recently, Next Generation Sequencing (NGS) or “high throughput sequencing” allowed, with unprecedented scalability and speed, to determine the DNA sequence of a given individual. This tool opened up new perspectives to understand complex neurodevelopmental disorders, with particular attention to de novo single nucleotide variations (SNVs) occurring in genes involved in brain development (Veltman and Brunner, 2012). Only one study used whole exome sequencing (WES), a NGS method, in a cohort of patients with COS. This study identified 20 de novo variants in 17 COS probands (rate: 1.17) in genes previously linked to neuronal function or to psychiatric disorders (Ambalavanan et al., 2016). These arguments (phenotypic overlap with other neurodevelopmental disorders, high heritability, disease-related CNVs, and de novo SNV rates) strongly support the neurodevelopmental and genetic bases of COS (Rapoport et al., 2012). In this context, the main aim of this study is to describe the COS genomic variation (CNVs and SNVs) in the scientific literature to identify interesting genes or genetic pathways in both clinical practice and research.

METHODS

We carried out a systematic review of the MEDLINE database accessible via the search engine PubMed (www.ncbi.nlm.nih.gov/pubmed/) with the following key words: “childhood-onset schizophrenia” or “childhood-onset psychosis” or “early-onset schizophrenia” or “early-onset psychosis” and “genetics” or “genetic” or “gene” or “genes” or “genomic” or “genomics.” Our search terms were not limited by language or date of publication and were manually reviewed. According to inclusion criteria, we considered all genomic changes occurring in COS patients (age of onset before 13). We excluded all abnormalities at RNA or protein levels (regardless the age of onset). Genomic variations were classified based on cytogenetic position (Table 1) and candidate gene names (Table 2).

All CNVs were manually annotated using the University of California Santa Cruz (UCSC) Genome Browser (UCSC Mar. 2006 [NCBI36/hg18 or NCBI37/hg19] assembly; http://genome.ucsc.edu/). Regarding their type (gain or loss), their size, their genomic content, and making comparisons with external databases, we ranked each CNV as “pathogenic,” “uncertain clinical significance,” or “benign” (according to the American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants). For each CNV, we checked on the Simons Foundation Autism Research Initiative (SFARI) Gene database (autism/genetic database, http://sfari.org) which CNV involved in COS was also involved in ASD. For each gene, we checked on the Phenocarta Database (https://gemma.
CHR	CNV region and type (length)	Sex, age of onset	Neurodevelopmental disorders, Comorbidities	Inheritance	coordinates (hg18-hg19)	SFARI	Clinical significance	Bibliography
1	DUP 1q21.3 (248 kb)	Male, 12 y	–	inherited	chr:1:151,514,380-151,762,871	+	UCS	Walsh et al., 2008
1 ; 7	t(1;7) (p22;q22)	Male, 9 y	ASD? - ADHD? - language, intellectual and motor impairments, dysmorphia, supraventricular tachycardia	inherited (father)	–	–	–	Gordon et al., 1994; Nicolson et al., 1999; Yan et al., 2000; Idol et al., 2008; Eckstrand et al., 2008; Addington and Rapoport, 2009*
2	DUP 2p14 (243 kb)	<13 y	–	inherited	chr:2:65,637,097-65,879,935	+	UCS	Walsh et al., 2008
2	DEL 2p16.3 (115 --> 112 kb) NROX1	<13 y	–	not known	chr:2:50,023,212-50,137,825 / chr:2:50,025,162-50,196,989	+	P	Walsh et al., 2008; Addington and Rapoport, 2009*, Ahn et al., 2014
2	DEL 2p16.3 (38 et 40kb) NROX1	Male, 12 y	Motoric and verbal delay, IQ 82, macrocéphaly and increase height (+3SD)	inherited (father)	chr:2:51,151,965-51,190,352 / chr:2:51,440,969-51,481,281	+	P	Duong et al., 2015
2	DUP 2p25.3 (216 --> 245 kb) MYT1L	<13 y	–	inherited (mother)	chr:2:1,618,945-1,835,426 / chr:2:1,591,064-1,836,375	+	P	Walsh et al., 2008; Addington and Rapoport, 2009*, Ahn et al., 2014; Lee et al., 2012
2	DUP 2p25.3 (143 --> 107kb) MYT1L	<13 y	–	not known	chr:2:1,713,636-1,857,129 / chr:2:1,720,133-1,827,317	+	P	Walsh et al., 2008; Addington and Rapoport, 2009*, Ahn et al., 2014; Lee et al., 2012
2	DEL 2q31.2-31.3 (2.5 Mb)	Male, 11 y	–	de novo or germline mosaicism in one of the parents	chr:2:179,643,864-182,145,339	-	UCS	Walsh et al., 2008; Addington and Rapoport, 2009*
3	DEL 3p12.2-p12.1 (2.2 Mb)	Female, 12 y	ASD, poor motor coordination, IQ 87	inherited (father)	–	-	UCS	Rudd et al., 2015
3	DUP 3p21.31 (117 Kb)	<13 y	–	inherited	chr:3:45,458,901-45,576,135	+	UCS	Walsh et al., 2008
3	DUP 3p25.3 (120 --> 134 kb) SRGAP3	Male, 11 y	poor peer relationships, general anxiety disorder, panic disorder, agoraphobia, and depression	inherited (father)	chr:3:9,100,744-9,220,529 / chr:3:9,111,177–9,245,155	+	P	Walsh et al., 2008; Addington and Rapoport, 2009*, Wilson et al., 2011
3	DEL 3q29 (1,58 Mb)	Male, 5 y	ASD, severe abnormal movements and tics	de novo	chr:3:197,161,073-198,851,029	+	P	Sagar et al., 2013

(Continued)
CHR	CNV region and type (length)	sex, age of onset	Neurodevelopmental disorders, Comorbidities	Inheritance	coordinates (hg18-hg19)	SFARI	Clinical significance	Bibliography
5	DUP 5q12.3 (142 Kb)	Female, 10 y	–	inherited	chr5:64,795,287-64,937,409	+	UCS	Walsh et al., 2008
	Paternal segmental iUPD 5q32-qter (35 Mb)	Female, 9 y	MDD, inattention, learning disability, intellectual impairments	de novo	−	−	−	Eckstrand et al., 2008; Addington and Rapoport, 2009; Seal et al., 2006
6	DEL 6p22.31 (144 kb)	Male, 9 y	OCD, expressive language disorder	inherited	chr6:119,596,633-119,740,850	+	UCS	Walsh et al., 2008
7	DUP 7p13 (120 Kb)	<13 y	−	not known	chr7:44,420,900-44,540,491	−	−	Walsh et al., 2008
	DUP 7q11.21-q11.22 (2.8 Mb)	<13 y	−	inherited	chr7:64,126,564-66,883,76	+	UCS	Walsh et al., 2008
8	DUP 8p22 (1.3 Mb)	Male, 11 y	−	inherited	chr8:13,400,795-14,679,483	+	UCS	Walsh et al., 2008
	DUP 8q11.23 (480 kb --> 493 kb)	<13 y	−	not known	chr8:53,563,161-54,043,684 / chr8:53,550,992-54,043,884	+	UCS	Walsh et al., 2008; Ahn et al., 2014
	DUP 8p24.3 (369 Kb)	12 y	−	not known	chr8:142,025,432-143,383,948	+	UCS	Walsh et al., 2008
9	DEL 8p24.2 (440 Kb)	11 y	−	−	chr9:3,104,250-3,544,339	+	UCS	Walsh et al., 2008
10	DUP 10p11.23 (176 Kb)	Male, 11 y	−	inherited	chr10:28,990,284-29,166,175	+	UCS	Walsh et al., 2008
	DUP 10p13 (145 Kb)	<13 y	−	inherited	chr10:15,688,654-15,833,865	+	UCS	Walsh et al., 2008
	DEL 10q22.3 (173 Kb)	Male, 12 y	−	de novo	chr10:81,415,378-81,588,86	+	UCS	Walsh et al., 2014
	DEL 15q11.2 (1386 kb)	<13 y	−	not known	chr15:18,818,086-20,203,694	+	UCS	Walsh et al., 2014
15	DEL 15q11.2 (575kb)	<13 y	−	inherited (mother)	chr15:20,203,694-20,778,963	+	P	Zhou et al., 2016
	DEL 15q13.3 (382kb)	<13 y	−	de novo	chr15:30,238,780-30,620,951	+	P	Zhou et al., 2016
	DEL 15q13.3 (475 kb)	<13 y	−	inherited (mother)	chr15:30,238,780-30,713,368	+	P	Zhou et al., 2016
	DUP 15q13.3 (503.5 Kb)	Female, 10 y	−	inherited (father)	chr15:32,012,361-32,515,849	+	P	Zhou et al., 2016
	CHRNA7	Male, 12 y	ADHD	−	chr15:32,019,919-32,620,127	+	P	Zhou et al., 2016

(Continued)
CHR	CNV region and type (length)	sex, age of onset	Neurodevelopmental disorders, Comorbidities	Inheritance	coordinates (hg18-hg19)	SFARI	Clinical significance	Bibliography
16	DUP 15q26.2-q26.3 (687 Kb)	<13 y	–	not known	chr15:96,246,764-96,933,404	+	UCS	Walsh et al., 2008
	DUP 16p11.2 (433 -- 604 Kb)	8 y	PDD-NOS, poor social and motor development	inherited (father)	chr16:29,652,656-30,085,308 / chr16:29,502,984-30,107,306	+	P	Walsh et al., 2008; Addington and Rapoport, 2009*; Ahn et al., 2014; Rapoport et al., 2009
	DUP 16p11.2 (578 -- 445 kb)	10 y	Poor social and motor development	chr16:29,657,405-30,235,818 / chr16:29,782,436-30,227,808	+	UCS	Ahn et al., 2014	
	DEL. 16p12.1 (449kb)	–	–	chr16:21,498,074-21,946,841	+	UCS	Brownstein et al., 2016	
	DEL. 16p13.11 (15 à 131 kb)	Male, 6 y	Motor dyscoordination, language impairments	father or de novo	chr16:1,51,32,266-1,51,47,411 (min) to 1,50,48,733-1,51,79,946 (max) chr16:1,48,97,767-1,62,76,117 to 1,47,80,303-1,64,58,270	+	UCS	Brownstein et al., 2016
	DUP 16p13.11 (1,4 à 1,7 Mb)	Female, 4 y	ASD, Epilepsy, Chiari 1	father	chr16:1,48,97,767-1,62,76,117 to 1,47,80,303-1,64,58,270	+	UCS	Brownstein et al., 2016
	DUP 16q22.2-ter (17 Mb)	Female, 11 y	Atypical Turner, motor, language and attention impairments	–	–	–	P	Eckstrand et al., 2008
	DUP 16q22.3-q24.3 (16,7 Mb)	Female, 12 y	ASD, poor motor coordination, IQ 67	de novo	–	–	P	Rudd et al., 2015
	DUP 16q23.3 (1,5 Mb)	Female, 9.5 y	–	inherited	chr16:80,737,839-82,208,451	+	UCS	Walsh et al., 2008
	DEL. 16q24.1 (111 Kb)	<3 y	–	inherited	chr16:82,997,582-83,108,554	+	UCS	Walsh et al., 2008
17	DUP 17q21.31 (384 kb)	<13 y	–	father	chr17:41,321,621-41,706,070	+	UCS	Ahn et al., 2014
18	DUP 18p11.31-p11.23 (510 kb)	<13 y	–	inherited	chr18:7,067,237-7,576,777	+	UCS	Walsh et al., 2008
	DUP 18q22.1 (768 Kb)	Male, 10 y	Asperger’s disorder	inherited	chr18:61,907,915-62,675,869	+	UCS	Walsh et al., 2008
19	DEL. 19p12 (397 Kb)	<13 y	–	not known	chr19:23,413,380-23,810,606	+	UCS	Walsh et al., 2008
20	DEL. 20p12.1 (113 Kb)	10 y	Poor social and motor development	inherited	chr20:14,921,777-15,034,862	+	UCS	Walsh et al., 2008

(Continued)
CHR	CNV region and type (length)	sex, age of onset	Neurodevelopmental disorders, Comorbidities	Inheritance	coordinates (hg18-hg19)	SFARI	Clinical significance	Bibliography
22	DEL 22q11.2 (3Mb) PRODH	Male, 9 y	Language, motor and social impairments, generalized anxiety disorder, dysthymia and ADHD, craniofacial dysmorphism, hypospadias	de novo	–	+	P	Nicolson et al., 1999; Eckstrand et al., 2008; Addington and Rapoport, 2009*, Rapoport et al., 2009; Yan et al., 1998; Usiskin et al., 1999; Liu et al., 2002; Sporn et al., 2004
		Female, 12 y	Language, motor and social impairments, craniofacial dysmorphism, celiac disease and ureteric reflux	de novo	–			Nicolson et al., 1999; Eckstrand et al., 2008; Addington and Rapoport, 2009*, Rapoport et al., 2009; Usiskin et al., 1999; Liu et al., 2002; Sporn et al., 2004
		Female, 10 y	Language, motor and social impairments, craniofacial dysmorphism	de novo	–			Eckstrand et al., 2008; Addington and Rapoport, 2009*, Rapoport et al., 2009; Sporn et al., 2004
	<13 y		Craniofacial dysmorphism	–	–			
	DEL 22q11.21 (3 Mb)	<13 y	–	de novo	chr22:17,092,563-20,077,678	+		Ann et al., 2014
	DEL 22q11.21 (2.6 Mb)	<13 y	–	de novo	chr22:17,224,632-19,842,333			
	DEL 22q11.21 (2.6 Mb)	<13 y	–	not known	chr22:17,257,787-19,855,248			
	DEL 22q11.21 (2.7 Mb)	<13 y	–	de novo	chr22:17,257,787-19,963,350			
	DEL 22q11.21 (2.9 Mb)	<13 y	–	de novo	chr22:17,269,794-20,128,199			
	DUP 22q13.32 (1.6 Mb)	8 y	PDD-NOS, poor social and motor development	de novo	chr22:47,903,228-49,557,485	+	UCS	Ann et al., 2014

(Continued)
CHR	CNV region and type (length)	sex, age of onset	Neurodevelopmental disorders, Comorbidities	Inheritance	coordinates (hg18-hg19)	SFARI	Clinical significance	Bibliography
X	expansion CGG (1.5 Kb) FMR1	Female, 9 y	Dysmorphia, learning and social impairments, mild MR	mother	chrX:8,384,117-8,726,291	+	UCS	Vantalon et al., 2005
	47, XXX	Female, <13 y	–	–	–	–	–	Eckstrand et al., 2008; Addington and Rapoport, 2009*
	46,X;i(X)(q10) (22%)/45,X(78%)	Female, <13 y	Mosaic Turner	de novo	chrX:6,456,036-6,139,238	–	–	Nicolson et al., 1999; Eckstrand et al., 2008; Addington and Rapoport, 2009*, Kumra et al., 1998
	DEL Xp24-qter	Female, 11 y	Atypical Turner, motor, language and attention impairments	de novo		-	P	Walsh et al., 2008
	DUP Xp22.31 (342 Kb) DEL Xp22.31 (1.66 Mb) STS	<13 y	–	not known	chrX:15,29,55,334-15,29,61,664 to 15,29,65,86 to 15,29,71,78 to 15,29,86,547	+	UCS	Malik et al., 2017
	DUP Xq28 (6 a 35 Kb)	Male, 11 y	Congenital ichthyosis, microcephalia, epilepsy, Language, motor, social, learning impairment, IQ 57, ADHD, ASD	de novo	chrX:2,638,514-2,682,255	+	UCS	Brownstein et al., 2016
	DEL Xq23-q28 (43 Mb)	Female, 12 y	ASD, poor motor coordination, IQ 67	de novo	chrY:14,441,161-14,623,937	+	UCS	Rudd et al., 2015
Y	DUP Yq11.221 (183 Kb)	Male, 8 y	Generalized anxiety disorder	de novo		+	UCS	Walsh et al., 2008

ADHD, Attention Deficit Hyperactivity Disorder; ASD, Autism Spectrum Disorder; CNV, Copy number variation; COPD, Chronic Obstructive Pulmonary Disease; DEL, Deletion; DUP, Duplication; iUPD, Uniparental isodisomy; ID, Intellectual disability; Kb, Kilobases; Mb, Megabases; MDD, Major Depressive Disorder; MR, Mental Retardation; OCD, Obsessive compulsive disorder; P, Pathogenic; PDD-NOS, Pervasive developmental disorder not otherwise specified; UCS, Uncertain Clinical Significance; VCF, Velocardiofacial; Y, Years; * Literature review.

When available, phenotypes (sex, age of onset, other neurodevelopmental disorders and comorbidities) are described.
TABLE 2 | Genomic microlesions (including single nucleotide variations) in COS patients with their localization, length, and type of inheritance.

Gene name	Gene localization	SNV ID number/mutation (protein level)	Population / Phenotypes	Inheritance	p-value	Bibliography
FAMILY BASED ASSOCIATION STUDY						
DAOA (G72) / DAOA-AS1 (G30)	13q33.2, 2p22.3	rs1935058, rs2391191, rs11558524	n=64 (53 COS trios, 11 COS dyads)	–	0.015 to 0.5	Addington et al., 2004
DNTBP1	2p31.1	rs3709034, rs2270335, rs2241165	n=66 (53 COS + PDD-NOS trios, 11 COS + PDD-NOS dyads)	–	0.005	Addington et al., 2005
GAD1	8p12	rs35753505s, rs2881272, rs327417	n=70 (59 COS + PDD-NOS trios, 11 COS + PDD-NOS dyads)	–	0.009 to 0.05	Addington et al., 2007
CASE CONTROL STUDY						
BDNF	11p13	val6met	65 patients (10.5 ± 3.7 y) vs 111 controls	–	0.03	Pakhomova et al., 2010
COMT	22q11.21	val158met	83 patients (<13 y) vs 208 controls	–	–	Raznahan et al., 2011
TPH1	11p15.3-p14	ala218cys	51 patients (<16 y) vs 148 controls	–	–	Sekizawa et al., 2004
GENES SEQUENCING (candidate genes or full exome)						
ATP1A3	19q13.2	val129met, asp801asn, glu815lys, ala813val	Male, onset: 6 y, motor delay	de novo	–	–
			Male, onset: 10 y, ASD, dysphoria, motor, intellectual and learning delays. Recurrent MDD	–	–	–
			Male, onset: 12 y, motor and communication impairments, dysphoria, ASD, intellectual delays	mother	–	–
FXYD1	19q13.12	arg90cys	Male, onset: 7 y, Asperger's disorder	inherited	–	–
FXYD6-FXYD2	11q23.3	val101ala	Male, onset: 13 y	–	–	–
FXYD6	11q23.3	gly73arg	Female, onset: 12 y	–	–	–
GPR153	1p36.31	arg73cys	Male, onset: 12 y	de novo	–	–
GTF2IRD1	7q11.23	arg357cys, glu357cys	Female, onset: 12 y	–	–	–
ITGA6	2q31.1	glu1053del	Female, onset: 12 y	–	–	–
LUZP4	Xq23	arg278fs*10	Male, onset: 7 y, Asperger’s disorder	de novo	–	–
OPHN1	Xq12	met461val	IQ 88, PDDNOS	–	–	–
PCDH19	Xq22.1	leu1022ile	–	–	–	–
RPS6KA3	Xp22.12	arg723his	IQ 64, PDDNOS	–	–	–
RYR2	1q43	glu746tyr	Male, onset: 8 y, PDDNOS, separation anxiety disorder, Asperger’s disorder	de novo	–	–
SEZ6	17q11.2	thr229, thr231del	Male, onset: 11 y	–	–	–
TTBK1	6p21.1	arg258gin	Male, onset: 7 y, Asperger’s disorder	–	–	–
UPF3B	Xq24	gin228fsX18	Male, 10 y, ADHD, PDDNOS, ASD	mother	–	–

ADHD: Attention Deficit Hyperactivity Disorder; ASD: Autism Spectrum Disorder; CNV: Copy number variation; COS: Childhood Onset Schizophrenia; DEL: Deletion; DUP: Duplication; MDD: Major Depressive Disorder; PDD-NOS: Pervasive developmental disorder not otherwise specified; SNV: Single Nucleotide Variation; Y: Years. When available, phenotypes (sex, age of onset, other neurodevelopmental disorders, and comorbidities) are described.

The evidence linking genes to phenotypes of neurodevelopmental disorders (Figure 1, Venn diagram). Phenotypes were systematically described, if available.

The selection took place before September 2018. At this time, 36 articles (1994 to 2018) out of 205 (1982 to 2018) met the inclusion criteria. Article reviewing process, including selection and exclusion, is summarized in a PRISMA flow diagram (Figure 2). Two articles were added after the freezing of the inclusion process (41; 52). Mutations were identified in 21 chromosomes. The results were ranked either in ascending order of their chromosomal position for structural variants (cytogenetic abnormalities) (Table 1) or in alphabetical order according to their gene name for genetic variants (lesions at gene level) (Table 2).
FIGURE 1 | Venn diagram: evidence for genetic overlap in neurodevelopmental disorders (Phenocarta Database).

FIGURE 2 | PRISMA Flowchart diagram.
RESULTS

I) Cytogenetic Abnormalities Associated With COS

The following cytogenetic abnormalities (n = 72, including 66 CNVs) were identified in 16 autosomes (1, 2, 3, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, and 22) and two sex chromosomes (X and Y) of 46 patients (17–40). The results were ranked in ascending order of their chromosomal position (Table 1) and were summarized in a genomic map (Figure 3).

1) CNVs
a) Deletions (CNVs) from 15Kb to 43Mb: 2p16.3, 2q31.2-q31.3, 3p12.2-p12.1, 3q29, 6p22.31, 9p24.2, 10q22.3-23, 15q11.2, 15q13.3, 16p12.1, 16p13.11, 16q24.1-24.3, 19p12, 22q11.21, Xp22.31, Xq24–ter, and Xq23–q28;
b) Duplications (CNVs) from 120Kb to 17Mb: 1q21.3, 2p14, 2p25.3, 3p21.31, 3p25.3, 5q12.3, 7p13, 7q11.21-q11.22, 8p22, 8q11.23, 8q24.3, 10p11.23, 10p13, 15q11-q13, 15q13.3, 15q26.2–26.3, 16p11.2, 16p13.11, 16q22.2-ter, 16q22.3-q24.3, 16q23.3, 17q11.1, 18p11.31-p11.23, 18q22.1, 22q11.31, Xp22.31, Xq28, and Yq11.221.

Only six CNVs (9%) of our study are described in COS only: del2q31.2-q31.3 (smaller than the CNV described in ASD), del3p12.2-p12.1 (described in ASD as a duplication), delXq24-ter (larger than the CNV described in ASD), dup7p13 (described in ASD as a deletion), dup16q22.2-ter (larger than the CNV described in ASD), and dup16q22.3-q24.3 (larger than the CNV described in ASD).

In an on-site case series and literature review focusing on Childhood-Onset Schizophrenia Spectrum Disorders (SSDs; larger spectrum than COS), Giannitelli et al. (2018) showed that some CNVs, previously un-described in COS patients, are associated to childhood psychosis: 1q21.1 deletion, 1q21.1 duplication, Williams-Beuren region (7q11.23) duplication and 16p11.2 deletion (Giannitelli et al., 2018).

The phenotypes of only 15 out of the 46 patients were fully described (33%). The neurodevelopmental disorders that have been
presented are: motor impairments (fine or growth milestones delay, coordination disability, or tics) in 11/15 patients, language retardation in 7/15 patients, intellectual disability (IQ < 70) in two patients, and ASD in five patients [(including 1 Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS)]. Social impairment was present in six other patients with COS and ADHD in three patients. Inattention impairment was specified in only one patient. The psychiatric comorbidities that have been highlighted are: two cases with mood disorders (major depressive disorder or dysthymia) and two cases with anxiety disorders. The somatic comorbidities detected are: dysmorphia in four cases and epilepsy in two cases. Sporadic cases of hypospadias, ureteric reflux, congenital ichthyosis, Chiari type 1, or celiac disease were also described.

II) Genes Associated With COS

In total, 32 candidate genes have been described on 12 autosomes (1, 2, 3, 6, 7, 8, 11, 13, 15, 17, 19, and 22) and 1 sex chromosome (X) (Tables 1 and 2) through the following studies (Addington et al., 2004; Sekizawa et al., 2004; Gornick et al., 2005; Addington et al., 2005; Addington et al., 2007; Pakhomova et al., 2010; Addington et al., 2011; Raznahan et al., 2011; Smidemark-Margulies et al., 2016; Chaumette et al., 2018; Ambalavanan et al., 2019):

1) Genetic Association Studies (Table 2)

a. Family-Based “Transmission Disequilibrium Test” Studies (From 2004 to 2007)

Transmission disequilibrium test, a family-based association test for the presence of genetic linkage between a genetic marker and a trait, was used to describe the following candidate genes: DAOA, DAOA-ASI, DTNBP1, GAD1, and NRG1. The Linkage Disequilibrium Analyses for Quantitative and Discrete Traits (QTDT) program was used to make statistical analysis (p-values).

i) DAOA and DAOA-ASI (Addington et al., 2004): three Single Nucleotide Polymorphisms (SNPs) are associated with COS (rs1935058, rs3916967, and rs39191191 (p = 0.5, 0.015, 0.3, respectively)). The most significant SNP (p = 0.015) is rs3916967 (genomic sequence reference: NG_012694.1:g.4133T > C);

ii) DTNBP1 (Gornick et al., 2005): one SNP, rs11558324 (NG_009309.1:g.5154A > G), is associated with COS (p = 0.014) and two two-marker haplotypes (containing rs11558324) are also associated with COS (p = 0.021, 0.008),

iii) GAD1 (Addington et al., 2005): three four-marker haplotypes are associated with COS (p = 0.005);

iv) NRG1 (Addington et al., 2007): individual markers show association with COS (rs35753305, rs2881272, 420M9-1395 (microsatellite), and rs327417, with p-value between 0.009 and 0.05). The most significant SNP (p = 0.009) is rs327417 (NG_012005.2:g.341913G > A).

b. Population-Based “Case vs. Control” Studies (From 2004 to 2011)

A polymorphism (VAL66MET) in the BDNF (11p13) gene was associated with COS in a 65 patient cohort (10.5 ± 3.7 years old at onset) vs. 111 controls (p = 0.03; χ² test) (Pakhomova et al., 2010). A mutation (VAL158MET) in COMT (22q11.21) that increases protein activity levels in the brain accelerated adolescent cortical thinning (MRI findings) in both schizophrenia probands and their siblings (with resolution after a certain age for siblings), illustrating
the influence of dopaminergic disruption on brain cortical maturation. Authors analyzed data from an 83 COS patient cohort vs. 208 healthy controls (Raznahan et al., 2011). A mutation (A218C) in the TPH1 (11p15.3-p14) gene (p = 0.0058; χ² test) is described in 51 patients (early adolescent onset cohort before 16 years old) vs. 148 controls (Sekizawa et al., 2004).

2) Gene Sequencing Studies (2011 to Present)

Finally, five studies by DNA sequencing (candidate genes or whole exome sequencing) have allowed identifying the following 18 mutations in 11 genes (Addington et al., 2011; Ambalavanan et al., 2016; Smedmark-Margulies et al., 2016; Chaumette et al., 2018; Ambalavanan et al., 2019).

i. Six SNVs inherited from a healthy mother:

- Five X-linked recessive variants: LUZP4
 (arg278fs*10), OPHN1 (met461val), PCDH19
 (leu1022ile), RPS6KA3 (arg722his), and UFP3B
 gene (gln228fsX18) that also segregates in the
 sibling.
- One SNV (ala813val) in ATP1A3 (a boy with
 onset at 10 years old and co-morbid ASD).

ii. Three SNVs inherited (missense variants) in the
 FXYD gene family. FXYD1 (arg90cys), FXYD6-FXYD2
 (val101ala), and FXYD6 (gly73arg) genes. Only the
 mutation with the FXYD1 presents a co-morbid
 ASD (Asperger’s disorder).

iii. Nine de novo SNVs in the following genes: ATP1A3
 (val129met; asp801asn; glu815lys), GRPR153 (arg73cys),
 GTF2IRD1 (arg357cys), ITGA6 (gln228fsX18),
 SEZ6 (thr229_thr231del), and TTBK1
 (arg258ghn).

The ATPase Na⁺/K⁺ transporting Alpha-3 Polypeptide
(ATP1A3 gene) encodes the alpha-3 catalytic subunit of the
Na⁺/K⁺-ATPase transmembrane ion pump mapping at
19q12-q13.2 (Harley et al., 1988). The ATP1A3 isoform is
exclusively expressed in neurons of various brain regions,
including the basal ganglia, hippocampus, and cerebellum
(summary by Rosewich et al., 2012). Mutations in this gene
have been associated with a spectrum of disorders depending
on the domain they affect in the corresponding protein. The
majority of mutations associated with rapid-onset dystonia
parkinsonism, or dystonia-12 (DYT12), were located in exons
8 and 14 whereas those with alternating hemiplegia of
childhood-2 (AHC2) were located in exons 17 and 18 and in
general they seem to affect transmembrane and functional
domains, being the most severe dysfunctions. By genetic
analysis of clinical data from 155 patients with AHC2, 132
confirmed to have ATP1A3 mutations. Among those with
AHC2, the most frequent mutations were D801N (in 43%),
E815K (in 16%) and G947R (in 11%). E815K was associated
with a severe phenotype, with greater intellectual and motor
disability; D801N appeared to confer a milder phenotype and
G947R correlated with the most favorable prognosis. For those
with epilepsy, the age at seizure onset was earlier for patients
with the E815K or G947R mutations than for those with the
D801N mutation (Panagiotakaki et al., 2015). In 10 patients
from three unrelated families with cerebellar ataxia, areflexia,
pes cavus, optic atrophy, and sensorineural hearing loss
(CAPOs; 601338) (Demos et al., 2014), the same heterozygous
missense mutation in the ATP1A3 gene was identified (E818K;
OMIM 182350.0014).

The G Protein-coupled Receptor 153 (GPR153) gene, located
on 1p36.31, belongs to the large rhodopsin (RHO; OMIM
180380) family of GPCRs (Gloriam et al., 2005) and shows a
highest similarity to serotonin receptors, (Gloriam et al., 2005). Furthermore, knockdown of GPR153 in mice showed reduction
in food intake and increased anxiety according to the elevated
plus Maze test (Sreedharan et al., 2011).

The InTeGrin Alpha-6 (ITGA6) gene is located on 2q31.1
(Hogervorst et al., 1991). While functional absence of ITGA6 has
been associated with epidermolysis bullosa (Hogervorst et al.,
1991; Georges-Labouesse et al., 1996), a few works addressed the
role of ITGA6 in neurons. Alpha-6 integrin was initially reported
to be involved in neural migration (Yao et al., 2018). In addition,
recent data suggested that α6 and β1 integrins may play a role
in mediating Schwann cell interactions with axons and promote
axon regeneration (Chang et al., 2018).

The RYanodine Receptor 2 (RYR2) gene—located on
chromosome 1 between q42.1 and q43—encodes a calcium
channel that is located in the sarcoplasmic reticulum and is the
major source of calcium required for cardiac muscle excitation-
contraction coupling. (Bhuiyan et al., 2007). Ryr2-/- mice die at
approximately embryonic day 10 with morphologic abnormalities
in the heart tube. Ca²⁺ signaling has been associated with ASD
(Kabir et al., 2016; Stephenson et al., 2017; Castagnola et al., 2018)
and with other psychiatric and neurological diseases (Heyes
et al., 2015). It is not surprising that RYR2 was linked to ASD by
genetic studies (Lu and Cantor, 2012; Soueid et al., 2016; Chen
et al., 2017). However, it is very interesting to underline that an
SNP in this gene was associated with ASD in families with only
affected males in contrast with those with affected females (Lu
and Cantor, 2012) suggesting that RYR2 is a sex-related genetic
factor for ASD.

The SEiZure-related 6 (SEZ6) gene is located on the
17q11.2 chromosome. Sez6 types 1 and 2 have an N-terminal
signal sequence, followed by a threonine-rich region, a Short
Consensus Repeat (SCR), a CUB-like domain, a second
SCR, a CUB-like domain, three tandem SCRs, a
transmembrane domain, and a cytoplasmic C-terminal tail.
They differ only in the region between the last SCR and the
transmembrane domain. SEZ6 was predicted to be involved
in neuronal maturation and plasticity (Miyazaki et al., 2006).
Recently mutations and altered expression of this gene have
been associated with Alzheimer’s and Niemann-Pick disease
(Causevic et al., 2018; Paracchini et al., 2018).

The Tau Tubulin Kinase 2 (TTBK2) gene, located on
15q15.2, encodes a member of the casein kinase (CK1) group
of eukaryotic protein kinases. TTK2 has been implicated in
Alzheimer’s disease (OMIM 104300) and in neurofibrillary
tangles formation (Sato et al., 2006). Mutations in this gene
can also cause spinocerebellar ataxia 11 (SCA11; 604432). SCA11
is a pure progressive cerebellar ataxia that has been linked to
15q14-q21 (Worth et al., 1999; Houlden et al., 2007). In an
8-generation English family they found a one-base insertion in the TTBK2 gene creating a premature stop codon and a truncation of the normal protein (OMIM 611695.0001). In a second family of Pakistani ancestry, a different mutation was found (OMIM 611695.0002). Goetz et al. (2012) concluded that TTBK2 is required for removal of CP110 for the initiation of ciliogenesis (Goetz et al., 2012).

3) Candidate Genes From Cytogenetic Studies (Table 1)

Interesting candidate genes deleted, duplicated, or truncated by the CNVs have also been found in cytogenetic studies (see above). These genes have brain expression and are mostly described in other neurodevelopmental or psychiatric disorders (Figure 1). Nine genes are described as putative COS-causing genes: CHRNA7 (15q13.3), DGCGR6 (22q11.2), FMR1 (Xq27.3), MYT1L (2p25.3), NRXN1 (2p16.3), PRODH (22q11.2), PTK2 (8q24.3), STS (Xp22.31), and SRGAP3 (3p25.3) (Yan et al., 1998; Nicolson et al., 1999; Usiskin et al., 1999; Liu et al., 2002; Sporns et al., 2004; Vantalon et al., 2005; Eckstrand et al., 2008; Walsh et al., 2008; Addington and Rapoport, 2009; Rapoport et al., 2009; Wilson et al., 2011; Lee et al., 2012; Ahn et al., 2014; Duong et al., 2015; Zhou et al., 2016; Malik et al., 2017).

CONCLUSIONS

COS is a neurodevelopmental disorder with several degrees of complexity (clinical and genetic heterogeneity). Clinically, getting the diagnostic is very challenging (severe disorder, comorbidities, and association with other neurodevelopmental disorders) (Gochman et al., 2011). The clinical overlap with ASD is well documented and in our study we found a co-morbidity rate (33%) nearly equal to the National Institute of Mental Health (NIMH) COS cohort rate (28%) (Rapoport et al., 2009). The genetic overlap with ASD is also well documented and we show that 91% of described CNVs are also described in ASD (SFARI). In the literature, we found only 20% of COS patients with co-morbid ADHD vs. 84% according to Ross et al. and we hypothesize that this trouble was under-diagnosed in schizophrenia studies (Ross et al., 2006). All intellectual, motor, communication, and learning impairments are also frequently observed in COS (Ross et al., 2006; Nicolson et al., 1999). Psychiatric comorbidities were rarely described (two cases of mood disorders and two cases of anxiety disorders), which was an unexpected outcome given the published literature (Ross et al., 2006). Here, we highlight that only one-third of the full phenotypes associated with the mutations published in the literature are described, which constitutes a significant loss of information for researchers. Therefore, it appears fundamental to carry out preliminary work before genetic testing: perform a rigorous and homogeneous phenotypic characterization using the International Classification of Disease (ICD-10 and DSM-5) with standardized and internationally validated psychiatric categorical assessments and in accordance with medical history (including perinatology), biography (with significant life event and trauma), and environmental factors (such as toxic exposure).

COS is characterized by a complex genetic architecture with both inherited and de novo mutations distributed in almost all chromosomes. Most of the genes causing COS are unknown yet. It is interesting that, the few that have been already proposed (see before) are involved both in neurodevelopmental and neurodegenerative disorders such as Parkinson, Alzheimer, or ataxia. Moreover, schizophrenia has been shown to have complex genetic traits with high polygenic risk (Ahn et al., 2016). Thus, a second hit (or more), in addition to CNV, is probably essential to explain the phenotypes. It includes de novo SNVs, other CNVs and/or environmental factors (e.g., trauma at early childhood, central nervous system infections or injuries) (Davis et al., 2016). At the interplay between genetic and environmental factors, epigenetics opens new perspectives to understand biological mechanisms of psychosis. In fact, recent findings suggest that pangenomic methylation changes during adolescence accompany conversion to psychosis (Kebir et al., 2018). In clinical practice, as suggested by Szego for ASD (Szego and Zawati, 2016), it would seem useful to propose to COS patients genetic sequencing instead or in addition to microarrays (Anagnostou et al., 2014; Soden et al., 2014) to improve genetic testing and to allow de novo SNV detection.

In research, the major challenge of the upcoming years will be the analysis of big data from NGS (prioritization and interpretation of DNA variations) (Richards et al., 2015) and the experimental validation of putative mutations. Sharing data with other teams around the world will be helpful to unravel the molecular pathology of COS and its underlying causes, paving the way for an early therapeutic intervention.

AUTHOR CONTRIBUTIONS

AF, FA, and BB: contributed to the conceptualization of the study and drafted the first version of the manuscript. All other authors MD, ST, ED, and MC have revised first version of the manuscript critically for important intellectual content and approved the final version.

FUNDING

This study was supported by INSERM, CNRS, Université Côte d’Azur and Hôpitaux pédiatriques de Nice CHU-Lenval; ANR-11-LABX-0028-01 and ANR-15-CE16-0015 to BB; Monaco Against Autism (MONAA) Foundation to AF, MC, FA, and BB. MD is recipient of a Signalife-LabEx Program international Ph.D.

ACKNOWLEDGMENTS

The authors are indebted to T. Maurin for discussion and to F. Aguila for artwork.
Idol, J. R., Addington, A. M., Long, R. T., Rapoport, J. L., and Green, E. D. (2008). Sequencing and analyzing the t(1;7) reciprocal translocation breakpoints associated with a case of childhood-onset schizophrenia/autistic disorder. J. Autism Dev. Disord. 38 (4), 668–677. doi:10.1007/s10803-007-0435-8
Kabir, Z. D., Lee, A. S., and Rajadhyaksha, A. M. (2016). L-type Ca(2+) channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes. J. Physiol. 594 (20), 5823–5837. doi: 10.1113/JP270673.
Kallmann, F. J., and Roth, B. (1956). Genetic aspects of preadolescent schizophrenia. Am. J. Psychiatry 112 (8), 599–609. doi: 10.1176/ajp.112.8.599
Kehir, O., Chaumette, B., and Krebs, M. O. (2018). Epigenetic variability in conversion to psychosis: novel findings from an innovative longitudinal methylytic analysis. Transl. Psychiatry 8 (1), 93. doi: 10.1038/s41372-018-0188-2
Kumra, S., Wiggs, E., Krasnewich, D., Meck, J., Smith, A. C., and Bedwell, J. (1998). Brief report: association of sex chromosome anomalies with childhood-onset psychotic disorders. J. Am. Acad. Child Adolesc. Psychiatry 37 (3), 292–296. doi:10.1097/00004583-199803000-00014
Lee, Y., Mattai, A., Long, R., Rapoport, J. L., Gogtay, N., and Addington, A. M. (2012). Microduplications disrupting the MYT1L gene (2p25.3) are associated with schizophrenia. Psychiatr. Genet. 22 (4), 206–209. doi:10.1097/ YPG.0b013e328353e3ad
Liu, H., Heath, S. C., Bobin, C., Roos, J. L., Galke, B. L., and Blundell, M. L. (2002). Genetic variation at the 22q11 PRODH/DCGR6 locus presents an unusual pattern and increased susceptibility to schizophrenia. Proc. Natl. Acad. Sci. U S A 99 (6), 3717–3722. doi:10.1073/pnas.04270099
Lu, A. T., and Cantor, R. M. (2012). Allowing for sex differences increases power in a GWAS of multiplex Autism families. Mol. Psychiatry 17 (2), 215–222. doi:10.1038/mp.2010.127.
Maier, W. (1999). Diagnostic classification of psychiatric disorders and familial-genetic research. Dialogues Clin. Neurosci. 1 (3), 191–196.
Malik, A., Amer, A. B., Salama, M., Haddad, B., Alrifai, M. T., and Balwi, M. A. (2016). L-type Ca(2+) channels to psychosis: novel findings from an innovative longitudinal methylomic analysis. Proc. Natl. Acad. Sci. U S A 113 (26), 7212–7217. doi:10.1073/pnas.1605108113
Usiskin, S. I., Nicolson, R., Krasnewich, D. M., Yan, W., Lenane, M., and Wudarsky, M. (1999). Velocardiofacial syndrome in childhood-onset schizophrenia. *J. Am. Acad. Child Adolesc. Psychiatry* 38 (12), 1536–1543. doi: 10.1097/00004583-199912000-00015

Vantalon, V., Briard-Luginbuhl, V., and Mouren, M. C. (2005). [Fragile X syndrome and very early onset schizophrenia: a female case study]. *Arch. Pediatr.* 12 (2), 176–179. doi: 10.1016/j.arcped.2004.11.019

Veltman, J. A., and Brunner, H. G. (2012). De novo mutations in human genetic disease. *Nat. Rev. Genet.* 13 (8), 565–575. doi: 10.1038/nrg3241

Vourdas, A., Pipe, R., Corrigall, R., and Frangou, S. (2003). Increased developmental deviance and premorbid dysfunction in early onset schizophrenia. *Schizophr. Res.* 62 (1–2), 13–22. doi: 10.1016/s0920-9964(02)00429-2

Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., and Cooper, G. M. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. *Sci.* 320 (5875), 539–543. doi: 10.1126/science.1155174

Wilson, N. K., Lee, Y., Long, R., Hermetz, K., Rudd, M. K., and Miller, R. (2011). A novel microduplication in the neurodevelopmental gene SRGAP3 that segregates with psychotic illness in the family of a COS proband. *Case Rep. Genet.* 2011, 585893. doi: 10.1155/2011/585893

Worth, P. F., Giunti, P., Gardner-Thorpe, C., Dixon, P. H., Davis, M. B., and Wood, N. W. (1999). Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. *Am. J. Hum. Genet.* 65 (2), 420–426. doi: 10.1086/302495

Yan, W., Jacobsen, L. K., Krasnewich, D. M., Guan, X. Y., Lenane, M. C., and Paul, S. P. (1998). Chromosome 22q11.2 interstitial deletions among childhood-onset schizophrenics and "multidimensionally impaired". *Am. J. Med. Genet.* 81 (1), 41–43.

Yan, W. L., Guan, X. Y., Green, E. D., Nicolson, R., Yap, T. K., and Zhang, J. (2000). Childhood-onset schizophrenia/autistic disorder and t(1;7) reciprocal translocation: identification of a BAC contig spanning the translocation breakpoint at 7q21. *Am. J. Med. Genet.* 96 (6), 749–753. doi: 10.1006/ajmg.2000.1204

Yao, H., Price, T. T., Cantelli, G., Ngo, B., Warner, M. J., and Olivere, L. (2018). Leukaemia hijacks a neural mechanism to invade the central nervous system. *Nat.* 560 (7716), 55–60. doi: 10.1038/s41586-018-0342-5

Zhou, D., Gochman, P., Broadnax, D. D., Rapoport, J. L., and Ahn, K. (2016). 15q13.3 duplication in two patients with childhood-onset schizophrenia. *Am. J. Med. Genet. B Neuropsychiatr. Genet.* 171 (6), 777–783. doi: 10.1002/ajmg.b.32439.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Fernandez, Drozd, Thimmler, Dor, Capovilla, Askenazy and Bardoni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.