1. Introduction

Let E be a holomorphic vector bundle over a compact Kähler manifold M, such that E admits a holomorphic connection compatible with its holomorphic structure. The following question is perhaps due to S. Murakami [M1], [M2], [M3]: does there exists a flat connection on E compatible with the holomorphic structure?

The same question can be posed for a more general principal G bundle where G is a complex Lie group. Murakami constructed examples of torus bundles over torus which admit holomorphic connection but do not admit compatible flat connection; thus providing a negative answer to the general question.

Let M be a compact connected Kähler manifold of complex dimension d, and let ω be a Kähler form on M. The degree of a torsion-free \mathcal{O}_M-coherent sheaf F is defined as [Ko, Ch. V, (7.1)]

\begin{equation}
\deg F := \int_M c_1(F) \wedge \omega^{d-1}.
\end{equation}

Consider the Harder-Narasimhan filtration of the holomorphic tangent bundle of M [Ko, page 174, Ch. V, Theorem 7.15]:

\begin{equation}
0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \mathcal{E}_2 \subset \mathcal{E}_3 \subset \cdots \subset \mathcal{E}_{l-1} \subset \mathcal{E}_l = T
\end{equation}

Let G be a connected affine algebraic reductive group over \mathbb{C}. Let P be a holomorphic principal G bundle on M (i.e. the transition functions of P are holomorphic). Assume that P admits a holomorphic connection D compatible with the holomorphic structure. This means the following: D is a holomorphic 1-form on P with values in the Lie algebra, \mathfrak{g}, of G, such that D is invariant for the action of G on P, and, when restricted to the fibers of P, this form coincides with the holomorphic Maurer-Cartan form. Using the natural identification of the holomorphic tangent space of P with its real tangent space, the holomorphic connection D gives a G connection on P.

A flat G connection on P is called compatible with respect to the holomorphic structure if the $(1,0)$ component of the connection form (which is a \mathfrak{g} valued 1-form on P) is actually a holomorphic 1-form. This is equivalent to the following: M can be covered by open set $\{U_i\}$ such that over each U_i the principal bundle P admits a holomorphic trivialization which is also constant (with respect to the connection). Clearly the $(1,0)$ component of such a flat connection compatible with the holomorphic structure gives a holomorphic connection compatible with the holomorphic structure.

Supported by the Académie des Sciences.
Our aim here is to prove the following theorem [Theorem 3.1]:

Theorem A. If the Kähler manifold M satisfies the condition that $\deg(T/E) \geq 0$, then a holomorphic principal G-bundle P on M admitting a compatible holomorphic connection is semistable. Moreover, if $\deg(T/E) > 0$, then such a bundle P actually admits a compatible flat G-connection.

So, in particular, if T is semistable with $\deg T > 0$, then a G-bundle P on M with a holomorphic connection admits a compatible flat connection. In the case where $G = GL(n, \mathbb{C})$, the above result was proved in [3].

The author is grateful to D. Akhiezer for some very useful discussions.

2. Preliminaries

We continue with the notation of Section 1.

Let D be a holomorphic connection on the holomorphic principal G bundle P compatible with its holomorphic structure.

Let $Ad(P)$ denote the vector bundle on M associated to P for the adjoint action of G on its Lie algebra \mathfrak{g}. The holomorphic structure of P will induce a holomorphic structure on the vector bundle $Ad(P)$. Let $\overline{\partial}_P$ denote the differential operator of order one defining the holomorphic structure of $Ad(P)$.

Let Ω^1_M denote the holomorphic vector bundle on M given by the holomorphic i-forms.

The holomorphic connection D on P induces a holomorphic connection on $Ad(P)$, which is again denoted by D. In other words,

$$D : Ad(P) \rightarrow Ad(P) \otimes \Omega^1_M$$

is a first order operator satisfying the Leibniz condition $D(f.s) = \partial f.s + fD(s)$, where f is a smooth function, such that the curvature, $(D + \overline{\partial}_P)^2$, of the connection $D + \overline{\partial}_P$ is a holomorphic section of $\Omega^2_M \otimes Ad(P)$. This condition implies that the operator D maps a holomorphic sections of $Ad(P)$ to a holomorphic section of $Ad(P) \otimes \Omega^1_M$.

A vector bundle E on M is called *stable* (resp. *semistable*) if for any O_M-coherent proper subsheaf $0 \neq F \subset E$, with E/F torsion-free, the following condition holds [Ko, Ch. V, §7]:

$$\mu(F) := \deg F / \text{rank} F < \mu(E) := \deg E / \text{rank} E \quad (\text{resp. } \mu(F) \leq \mu(E))$$

A vector bundle is called *quasistable* if it is a direct sum of stable bundles of same μ (slope).

Lemma 2.1. If $\deg(T/E) \geq 0$ then the vector bundle $Ad(P)$ on M is semistable. Moreover, if $\deg(T/E) > 0$, then $Ad(P)$ is quasistable.

The proof of this lemma is actually contained in [3]. However, to be somewhat self-contained, we will give some details of the proof.
Proof of Lemma 2.1. We will first prove that if \(\deg(T/E_{l-1}) \geq 0 \) then the bundle \(Ad(P) \) is semistable.

Suppose \(Ad(P) \) is not semistable. In that case it has a nontrivial Harder-Narasimhan filtration. Let

\[
0 = V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_{n-1} \subset V_n = Ad(P)
\]

be the Harder-Narasimhan filtration of the vector bundle \(Ad(P) \).

We restrict the domain of the operator \(D \) (which gives the holomorphic connection on \(Ad(P) \)) to the subsheaf \(V_1 \), and consider the induced operator

\[
D_1 : V_1 \rightarrow (Ad(P)/V_1) \otimes \Omega^1_M
\]

The Leibniz identity for \(D \) implies that \(D_1(f.s) = f.D_1(s) \), i.e. \(D_1 \) is \(\mathcal{O}_M \)-linear.

The largest semistable subsheaf (i.e. the first nonzero term in the Harder-Narasimhan filtration) of \(\Omega^1_M \) is the kernel of the surjective homomorphism

\[
q_{l-1} : \Omega^1_M \rightarrow E^*_{l-1}
\]

obtained by taking the dual of the inclusion in (1.2). Since the tensor product of two semistable sheaves is again semistable [MR, Remark 6.6 iii], the largest semistable subsheaf of \((Ad(P)/V_1) \otimes \Omega^1_M \) is

\[
W := (V_2/V_1) \otimes \ker(q_{l-1})
\]

The general formula for the degree of a tensor product gives \(\mu(W) = \mu(V_2/V_1) + \mu(\ker(q_{l-1})) \). From the property of the Harder-Narasimhan filtration we have that \(\mu(V_2/V_1) < \mu(V_1) \). The assumption that \(\deg(T/E_{l-1}) \geq 0 \) implies that

\[
\mu(\ker(q_{l-1})) = -\mu(T/E_{l-1}) \leq 0
\]

From these we conclude that

\[
\mu(V_1) > \mu(W)
\]

Let \(E \) denote the image of \(D_1 \) defined in (2.3). Assume that \(E \) is not the zero sheaf. Since \(V_1 \) is semistable and \(E \) is a quotient of \(V \), we have \(\mu(E) \geq \mu(V_1) \). On the other hand, since \(W \) is the largest semistable subsheaf of \((Ad(P)/V_1) \otimes \Omega^1_M \), we have \(\mu(E) \leq \mu(W) \). But this contradicts (2.5). So \(E \) must be the zero sheaf, i.e. the homomorphism \(D_1 \) in (2.3) must be the zero homomorphism. Thus we obtain that the subsheaf \(V_1 \) is invariant under the connection \(D \) on \(Ad(P) \).

Any \(\mathcal{O}_M \) coherent sheaf with a holomorphic connection is a locally free \(\mathcal{O}_M \) module [B, p. 211, Proposition 1.7]. (This proposition in [3] is stated for integrable connections (\(D \)-modules), but the proof uses only the Leibniz rule which is valid for a holomorphic connection.)

Using the Chern-Weil construction of characteristic classes it is easy to show that for a vector bundle \(E \) on \(M \), equipped with a holomorphic connection, any Chern class \(c_i(E) \in H^{2i}(M, \mathbb{Q}), i \geq 1 \), vanishes.

So we have \(\deg V_1 = 0 = \deg Ad(P) \). If \(V_1 \neq Ad(P) \) then \(\mu(V_1) > \mu(Ad(P)) \). So \(Ad(P) = V_1 \), i.e. the bundle \(Ad(P) \) is semistable.
If $Ad(P)$ is stable then obviously it is quasistable. Suppose that $Ad(P)$ is not stable. Then there is a filtration \cite[Ch. V, §7, Theorem 7.18]{K} \[\begin{align*}
0 = W_0 \subset W_1 \subset W_2 \subset \ldots \subset W_{n-1} \subset W_n = Ad(P)\end{align*}\] such that $W_i/W_{i-1}, 1 \leq i \leq n$, is a stable sheaf with $\mu(W_i/W_{i-1}) = \mu(Ad(P))$.

Now, as done in the proof of Proposition 3.4 of \cite{Bi}, using the given condition that $\deg(T/E_{l-1})$ is strictly positive, it is possible to show that the filtration (2.6) splits, i.e. \[W_i = W_{i-1} \oplus (W_i/W_{i-1})\] where W_i/W_{i-1} is a locally free sheaf. The equality (2.7) proves that \[Ad(P) = \sum_{i=1}^n W_i/W_{i-1}\] This completes the proof of the lemma. \qed

In the next section we will use Lemma 2.1 to construct a flat connection on P.

3. Existence of a Flat Connection

Let G be a connected affine algebraic reductive group over \mathbb{C}. Let P be a holomorphic principal G bundle over M.

Let $i : U \rightarrow M$ be the inclusion of an open subset such that the complement $X - i(U)$ is an analytic subset of X of codimension at least two. For a \mathcal{O}_U coherent sheaf F on U, the direct image i_*F is a \mathcal{O}_M coherent sheaf. The degree of F is defined to be the degree of i_*F.

We will recall the definition of (semi)stability of P \cite[Definition 4.7]{RR}. Let $U \subset X$ be an open subset with $X - U$ being an analytic set of codimension at least two. Let Q be a parabolic subgroup of G, and let P' be a reduction of the structure group to Q of the restriction of the principal P to the open set U. The principal bundle P is said to be stable (resp. semistable) if for any such P', the degree of a line bundle on U associated to P for any character χ on Q dominant with respect to a Borel subgroup contained in Q, is strictly negative (resp. nonpositive).

Let D be a holomorphic connection on P (defined in Section 1). The following theorem is a generalization of Lemma 2.1.

Theorem 3.1. If $\deg(T/E_{l-1}) \geq 0$ then P is semistable. Moreover, if $\deg(T/E_{l-1}) > 0$, then P admits a flat G-connection compatible with the holomorphic structure.

Proof. Let $P' \subset P$ be a reduction of structure group of P to a maximal parabolic subgroup $Q \subset G$. This reduction is given by a section, σ, of the fiber bundle \[\rho : P/Q \rightarrow U\]

Let T_{rel} denote the relative tangent bundle for the map ρ.

From Lemma 2.1 of \cite{R} it follows that in order to check that P is semistable it is enough to show that $\deg(\sigma^*T_{rel}) \geq 0$.
The reduction $P' \subset P$ gives an injective homomorphism $Ad(P') \rightarrow Ad(P)$ of adjoint bundles on M. The bundle σ^*T_{rel} on M is the quotient bundle $Ad(P)/Ad(P')$.

From Lemma 2.1 we know that if $\deg(T/E_{l-1}) \geq 0$, the adjoint bundle $Ad(P)$ is semistable. Since G is reductive, the Lie algebra \mathfrak{g} admits a nondegenerate G invariant bilinear form. This implies that $Ad(P) = Ad(P)^\ast$. Hence $\deg Ad(P) = 0$. Now the semistability of $Ad(P)$ implies that $\deg(Ad(P)/Ad(P')) \geq 0$. This proves that the principal bundle P is semistable.

If $\deg(T/E_{l-1}) > 0$ then from Lemma 2.1 we know that $Ad(P)$ is quasistable. So from the main theorem of [UY] it follows that the vector bundle $Ad(P)$ admits a Hermitian-Yang-Mills connection. We will denote this Hermitian-Yang-Mills connection by ∇. This connection ∇ is unique (though the Hermitian-Yang-Mills metric is not unique), and it is irreducible if and only if $Ad(P)$ is stable.

We want to show that this connection ∇ induces a connection on the principal G bundle P.

Let Z_0 denote the connected component of the center of G containing the identity element (the center has finitely many components). Define

$$G_0 = G/Z_0$$

which is a semisimple group. The group G_0 acts on the Lie algebra \mathfrak{g} (of G) by conjugation and gives an homomorphism

$$(3.2) \quad \theta : G_0 \rightarrow GL(\mathfrak{g})$$

which has a finite group as the kernel.

From a theorem of Chevalley [H, Theorem 11.2] we know that there is a linear representation of the group $GL(\mathfrak{g})$

$$(3.3) \quad \phi : GL(\mathfrak{g}) \rightarrow GL(V)$$

in a vector space V over \mathbb{C} and a line L in V such that

$$\phi \circ \theta(G_0) = \{ g \in GL(\mathfrak{g}) \mid \phi(g)(L) = L \}$$

Since G_0 is semisimple, it does not have any nontrivial character. This implies that $\phi \circ \theta(G_0)$ fixes the line L point-wise. Let $0 \neq v \in L$ be a nonzero vector. So the isotropy subgroup of v for the action of $GL(\mathfrak{g})$ on V is precisely $\phi \circ \theta(G_0)$. It is not difficult to see that the homomorphism ϕ can be so chosen that it maps the center of the Lie algebra of $GL(\mathfrak{g})$ into the center of the Lie algebra of $GL(V)$. We will choose ϕ such that it satisfies this condition.

Let $q : G \rightarrow G_0$ denote the obvious projection. Let $P(G_0)$ denote the principal G_0 bundle on M obtained by extending the structure group of P to G_0 using the homomorphism q. The vector bundle $Ad(P)$, which can be identified with a principal $GL(\mathfrak{g})$ bundle, is obtained by extending the structure group of $P(G_0)$ to $GL(\mathfrak{g})$ using the homomorphism θ defined in (3.2).

Using the homomorphism ϕ we may extend the structure group of $Ad(P)$ to $GL(V)$. The vector bundle on M associated to this principal $GL(V)$ bundle for the natural action of $GL(V)$ on the vector space V will be denoted by E.
The Hermitian-Yang-Mills metric on the vector bundle $Ad(P)$ gives a reduction of the structure group of $Ad(P)$ to $U(\mathfrak{g})$, a maximal compact subgroup of $GL(\mathfrak{g})$. Since the image $\phi(U(\mathfrak{g}))$ is a compact subgroup of $GL(V)$, it is contained in some maximal compact subgroup of $GL(V)$. So the reduction of $Ad(P)$ to $U(\mathfrak{g})$ will induce a reduction of E to a maximal compact subgroup of $GL(V)$ (i.e. the vector bundle E will be equipped with a hermitian metric) such that the connection on E obtained by extending the connection ∇ (on $P(\mathfrak{g})$) is the hermitian connection (for the hermitian metric on E). Since the metric on $Ad(P)$ is a Hermitian-Yang-Mills metric, the metric on E obtained above is also a Hermitian-Yang-Mills metric. Indeed, the Hermitian-Yang-Mills condition of the connection on $Ad(P)$ implies that the curvature is a 2-form on M with values in the center of the endomorphism bundle $Ad(P)^* \otimes Ad(P)$. Since ϕ maps the center of the Lie algebra of $GL(\mathfrak{g})$ into the the center of the Lie algebra of $GL(V)$, the induced connection on E is a Hermitian-Yang-Mills connection. Let ∇' denote the Hermitian-Yang-Mills connection on E obtained this way.

Since $\theta(G_0)$ fixes the vector v, this vector v will give a nowhere zero section of E (since E is obtained by extending the structure group of P to $GL(V)$); let s denote this section of E.

The holomorphic connection D on P will induce a holomorphic connection on E. As we noted in Section 2, using the Chern Weil construction it is easy to see that the existence of a holomorphic connection on E implies that any Chern class, $c_i(E)$, $i \geq 1$, vanishes.

From [Ko, Ch. IV, Corollary 4.13] it follows that Hermitian-Yang-Mills connection ∇' is a flat connection. Since ∇' is a flat unitary connection, any holomorphic section of E must be a flat section for the connection ∇'. Indeed, the Laplacian of a flat unitary connection operator is twice the Laplacian of the Dolbeault operator. In particular, the space of harmonic sections for these two Laplacians coincide. Since any holomorphic section is a harmonic section for the Dolbeault Laplacian, it must be a flat section. So, in particular, the section s is flat.

Let $P(\mathfrak{g})$ denote the principal $GL(\mathfrak{g})$ obtained by extending the structure group of P to $GL(\mathfrak{g})$ using the homomorphism $\theta \circ q$. Since $P(\mathfrak{g})$ is an extension, the fiber bundle, $P(\mathfrak{g})/G$, with fiber $GL(\mathfrak{g})/G$ has a natural section (which gives the reduction of the structure group of $P(\mathfrak{g})$ to G). Let α denote this section of $P(\mathfrak{g})/G$.

Since $\theta(G_0)$ fixes v for the homomorphism ϕ in (3.3), we have an embedding of the fiber bundle $P(\mathfrak{g})/G$ in the total space of E (given by the orbit of v for the action of $GL(\mathfrak{g})$ using ϕ).

It is easy to see that the image of the section α by the above embedding of $P(\mathfrak{g})/G$ in E is precisely the section s.

Now, since s is a flat section for the connection ∇', the connection ∇ induces a G_0 connection on the principal G_0 bundle $P(G_0)$ on M as follows: Let

$$p : P(G_0) \rightarrow P(\mathfrak{g})$$

denote the holomorphic map induced by θ in (3.2). Take $x \in p(P(G_0))$, and let $v \in T_xP(\mathfrak{g})$ be a horizontal vector for the connection ∇ on $P(\mathfrak{g})$. Let w be the image
of v by the differential of the map

$$P(g) \rightarrow E$$

induced by the homomorphism ϕ in (3.3). Since s is flat, the tangent vector w lies in the submanifold of the total space of E given by the section s. But this implies that the tangent vector v lies in the image of $TP(G_0)$ under the map given by the differential of p. Thus the connection ∇ on $P(g)$ induces a connection on the principal bundle $P(G_0)$ with structure group G_0. We will call this connection on $P(G_0)$ as ∇_0. Since ∇ is a flat connection, ∇_0 is also flat.

The commutator subgroup $G' := [G, G] \subset G$ is a semisimple group, and the restriction of q to G' is a surjective homomorphism with a finite kernel. So their Lie algebras are isomorphic. So

$$G = Z_0 . G'$$

with a finite intersection $\Gamma := Z_0 \cap G'$.

The abelian Lie group Z_0/Γ is a product of copies of \mathbb{C}^*, since G is assumed to be affine. Let

$$f : G \rightarrow Z_0/\Gamma$$

denote the obvious projection (obtained from (3.4)).

Let $P(f)$ denote the principal Z_0/Γ bundle on M obtained by extending the structure group of P using the homomorphism f.

The holomorphic connection D on P induces a holomorphic connection on $P(f)$, which we will denote by $D(f)$.

Any holomorphic line bundle on M admitting a holomorphic connection actually admits a compatible flat connection. Indeed, if ∂ is a holomorphic connection on a holomorphic line bundle L whose holomorphic structure is given by the operator $\overline{\partial}$, then the curvature $(\partial + \overline{\partial})^2$ is a holomorphic 2-form which is exact (since the cohomology class represented by it is of the type $(1, 1)$). So it is of the form $\partial \beta$, where β is a $(1, 0)$-form. The new connection

$$\partial - \beta + \overline{\partial}$$

on L is a flat connection compatible with the holomorphic structure.

Recall that Z_0/Γ is a product of copies of \mathbb{C}^*. In view of the above remark, the the existence of the holomorphic connection $D(f)$ implies that the principal Z_0/Γ bundle $P(f)$ admits a flat connection. Let ∇_1 be a flat connection on $P(f)$.

Since the exact sequence of the Lie algebras

$$0 \rightarrow \mathfrak{i}_0 \rightarrow \mathfrak{g} \rightarrow \mathfrak{g}_0 \rightarrow 0$$

has a natural splitting (given by the Lie algebra of G''), the two flat connections ∇_0 and ∇_1 combine together to induce a flat G connection on P as follows: The horizontal subspace of the tangent space at a point $p \in P$ is defined to be the intersection of the inverse images of the horizontal subspaces of $P(G_0)$ and $P(f)$ (horizontal subspaces for the flat connections ∇_0 and ∇_1 respectively) for the obvious projections of P onto $P(G_0)$ and $P(f)$ respectively. The integrability of ∇_0 and ∇_1 will imply that the
connection on P obtained above is actually flat. This completes the proof of the theorem.

References

[B] A. Borel et al.: Algebraic D-modules. Perspectives in Mathematics, Vol. 2 (Ed. J. Coates, S. Helgason), Academic Press, 1987.

[Bi] I. Biswas: On Harder-Narasimhan filtration of the tangent bundle. To appear in Comm. Anal. Geom.

[H] J. Humphreys: Linear algebraic groups. Graduate Texts in Math. 21, Springer-Verlag, New York Heidelberg Berlin, 1975.

[Ko] S. Kobayashi: Differential geometry of complex vector bundles. Publications of Math. Soc. of Japan, Iwanami Schoten Pub. and Princeton University Press, 1987.

[M1] S. Murakami: Sur certains espaces fibrés principaux admettant des connexions holomorphes. Osaka Math. Jour. 11 (1959) 43-62.

[M2] S. Murakami: Sur certains espaces fibrés principaux holomorphes dont le groupe est abélien connexe. Osaka Math. Jour. 13 (1961) 143-167.

[M3] S. Murakami: Harmonic connections and their applications. SEA Bull. Math. Special Issue (1993) 101-103. World Sci. Pub. Company.

[MR] V. Mehta, A. Ramanathan: Semistable sheaves on projective varieties and their restriction to curves. Math. Ann. 258 (1982) 213-224.

[RR] S. Ramanan, A. Ramanathan: Some remarks on the instability flag. Tôhoku Math. J. 36 (1984) 269-291.

[R] A. Ramanathan: Stable principal bundles on a compact Riemann surface. Math. Ann. 213 (1975) 129-152.

[UY] K. K. Uhlenbeck, S. T. Yau: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39 (1986) 257-293.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, INDIA

Current address: Université de Grenoble 1, Institut Fourier, 100 rue des Maths, B.P. 74, 38402 Saint-Martin-d’Hères, FRANCE

E-mail address: indranil@math.tifr.res.in and biswas@puccini.ujf-grenoble.fr