Graphical Review

Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation

Nadiezhda Cantu-Medellin a,b, Eric E. Kelley a,b,*

a Department of Anesthesiology, University of Pittsburgh, United States
b Vascular Medicine Institute, University of Pittsburgh, United States

ABSTRACT

Nearly 30 years have passed since the discovery of xanthine oxidoreductase (XOR) as a critical source of reactive species in ischemia/reperfusion injury. Since then, numerous inflammatory disease processes have been associated with elevated XOR activity and allied reactive species formation solidifying the ideology that enhancement of XOR activity equates to negative clinical outcomes. However, recent evidence may shatter this paradigm by describing a nitrate/nitrite reductase capacity for XOR whereby XOR may be considered a crucial source of beneficial *NO under ischemic/hypoxic/acidic conditions; settings similar to those that limit the functional capacity of nitric oxide synthase. Herein, we review XOR-catalyzed reactive species generation and identify key microenvironmental factors whose interplay impacts the identity of the reactive species (oxidants vs. *NO) produced. In doing so, we redefine existing dogma and shed new light on an enzyme that has weathered the evolutionary process not as gadfly but a crucial component in the maintenance of homeostasis.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Introduction

Xanthine oxidoreductase (XOR) is a molybdoflavin enzyme that catalyzes the terminal two reactions in purine degradation in primates; oxidation of hypoxanthine to xanthine and the subsequent oxidation of xanthine to uric acid. XOR is a homodimer of ~300 kD with each subunit consisting of four redox centers: a molybdenum cofactor (Mo-co), one FAD site and two Fe/S clusters, Fig. 1A. The Mo-co is the site of purine oxidation while NAD+ and O2 reduction occur at the FAD. The two Fe/S clusters provide the conduit for electron flux between the Mo-co and the FAD [1–3]. The enzyme is transcribed as a single gene product, xanthine dehydrogenase (XDH) where substrate-derived electrons reduce NAD+ to NADH, Fig. 1A. However, during inflammatory conditions, oxidation of key cysteine residues (535 and 992) and/or limited proteolysis converts XDH to xanthine oxidase (XO) [4]. In the oxidase form, affinity for NAD+ at the FAD is greatly decreased while affinity for oxygen is significantly enhanced resulting in univalent and divalent electron transfer to O2, generating O2•− and hydrogen peroxide (H2O2), respectively, Fig. 1B [5]. This capacity to reduce O2 led to XOR being identified as the first source of biological O2•− formation and subsequently as a significant

Keywords:
Free radicals
Hypoxia
Inflammation
Nitric oxide
Nitrite
Oxygen tension
Xanthine oxidoreductase

Contents

Introduction .. 353
Oxidant formation .. 354
XO-endothelial interaction .. 354
XOR knockouts and inhibition strategies 354
XOR-catalyzed *NO production 356
Acknowledgments .. 357
References ... 357

Abbreviations: GAGs, glycosaminoglycans; H2O2, hydrogen peroxide; I/R, ischemia/reperfusion; *NO, nitric oxide; NOS, nitric oxide synthase; O2•−, superoxide; ROS, reactive oxygen species; XDH, xanthine dehydrogenase; XO, xanthine oxidase; XOR, xanthine oxidoreductase.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Correspondence to: Department of Anesthesiology, School of Medicine, University of Pittsburgh, W1357 BST, 200 Lothrop Street, Pittsburgh 15213, PA, United States. Tel.: +1 412 648 9683; fax: +1 412 648 9587.
E-mail address: ekelley@pitt.edu (E.E. Kelley).

2213-2317/$ – see front matter © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.redox.2013.05.002
Fig. 1. XOR-Catalyzed Reactions. (A) For XDH, xanthine is oxidized to uric acid and electrons transferred via 2 Fe/S centers to the FAD where NAD⁺ is reduced to NADH. (B) For XO, xanthine is oxidized to uric acid and electrons are transferred to the FAD where O₂ is reduced to O₂⁻ and H₂O₂. Under normal O₂ tension and pH the Mo-co would reside more often in the oxidized +6 (VI) valence as electrons are rapidly transferred to O₂ at the FAD. (C) Nitrite (NO₂⁻) undergoes a 1 electron reduction to *NO at the Mo-cofactor of XO (electrons are donated directly to Mo by xanthine). (D) NO₂⁻ is reduced to *NO at the ox (electrons are supplied by NADH and transferred retrograde reducing the Mo). Under low O₂ tensions and pH the Mo-co would reside more often in the reduced +4 (IV) valence as electrons are more slowly transferred to O₂. This decrease in electron flow from the Mo-co to the FAD is depicted in (C) as diminished arrows whereas in (D) NADH-mediated electron donation at the FAD is out-competing O₂-mediated electron withdrawal and thus the arrows are reversed indicating flux from the FAD to the Mo-co.

source of reactive species mediating ischemia/reperfusion injury [6,7]. As the redox field progressed, several additional enzymatic and non-enzymatic sources of free radicals and reactive species have been identified yet, to date, XOR remains the most pharmacologically targetable thus incentivizing extensive exploration of inhibition strategies to address disease processes where elevated rates of reactive species formation are contributory.

Oxidant formation

Most reports refer to XO as a source of O₂⁻⁺ and assume H₂O₂ formation is a result of spontaneous dismutation of O₂⁻⁺. This premise is completely invalid as attainment of 100% O₂⁺⁺ generation requires XO turnover at pH 10.0 in an environment of 100% O₂ [8]. However, under room air and pH 7.4, XO transfers over 72% of its substrate-derived electrons to O₂ divalently to generate H₂O₂ and thus 28% to O₂⁻⁺ formation. This observation is critically important as it clearly demonstrates that, under conditions approaching those encountered in vivo, H₂O₂ is the major reactive product of XO-catalyzed O₂ reduction [8,9]. The prime determinate of the relative quantities of O₂⁻⁺ and H₂O₂ generated by XO is O₂ tension. For example, at pH 7.4 and 10% O₂ XO generates ~26% O₂⁻⁺ and thus ~74% H₂O₂ whereas at 1% O₂, XO forms ~90% H₂O₂ and only ~10% O₂⁻⁺. Fig. 2 [9]. In addition to O₂ tension, pH and purine concentration also play a significant role in divalent versus univalent electron transfer to O₂. The reaction of hypoxanthine/xanthine at the Mo-co of XO is based-catalyzed with a pH optimum of 8.9 and a Kₘ = ~6.5 μM. Under normal physiologic conditions, hypoxanthine + xanthine levels in humans are ~1–3 μM; however, under hypoxic/inflammatory conditions these levels have been reported as high as 50–100 μM while pH concomitantly drops below 7.0 [10–12]. When this occurs, total purine (hypoxanthine+xanthine) concentration is well above the Kₘ and thus will not significantly impact either rates of electron deposition at the Mo-co or resultant transfer to the FAD. However, acidic pH will significantly retard purine-Mo-co reaction thereby reducing the electron flux rate which favors divalent transfer to O₂ to generate H₂O₂. Therefore, under ischemic and/or hypoxic conditions, where both O₂ levels and pH are reduced, H₂O₂ formation is favored suggesting that XO activity may be influential in numerous signaling cascades where H₂O₂ has been noted to participate. However, this hypoxia-mediated proclivity for H₂O₂ production cannot overshadow the fact that rates of O₂⁻⁺ formation by XO under these same conditions are sufficient to mediate alterations in vascular function by reducing *NO bioavailability via direct reaction (*NO + O₂⁻⁺ → ONOO⁻⁻) [13–15].

While the post-translational conversion of XDH to XO has become synonymous with conversion from a source of reducing equivalents to a source of reactive oxygen species (ROS), it is important to recognize that under certain circumstances XDH effectively reduces O₂ to generate ROS. Although NAD⁺ is the preferred electron acceptor for XDH, when levels of this substrate are low XDH will utilize O₂ [16]. These conditions include hypoxia either localized, regional or systemic where O₂-dependent alterations in cellular respiration lead to decreased mitochondrial NADH oxidation and thus significant diminution of NAD⁺ levels [17]. This being said, care should be taken not to exclusively associate XDH with the form of XOR that does not produce ROS.

XO-endothelial interaction

In humans, XOR is ubiquitously expressed with the liver and intestines displaying the highest specific activity [18]. Hypoxia as well as inflammatory cytokines (TNF-α, IL-1β, IFN-γ), induce XDH expression in tissues and vascular endothelial cells where it is released to the circulation, Fig. 2 [18,19]. Circulating XDH is rapidly (~1 min) converted to XO where it avidly binds to negatively charged glycosaminoglycans (GAGs) on the apical surface of vascular endothelial cells [20,21]. This XO–endothelium interaction is exemplified in animal models and clinical studies of cardiovascular disease where intravenous administration of heparin results in a substantive increase in plasma XO activity, suggesting heparin-mediated mobilization of XO from vascular endothelial GAGs [21–23]. While XO exhibits a net negative charge at physiologic pH, pockets of cationic amino acid motifs on the surface of the protein result in high affinity for GAGs (Kₛ = 6 nM) [21,24,25]. Binding to and sequestration of XO on GAGs: (1) amplifies local XO concentration and subsequent ROS generation; (2) alters O₂ dependence; (3) and (3) confers significant resistance to inhibition from the pyrazolopyrimidine-based inhibitors, allo/oxypurinol [26]. For example, when compared to XO in free in solution, XO–GAG association decreases substrate binding affinity and thus: (1) increases the Kₘ for xanthine over 3-fold (6.5–21.2 μM); (2) reduces O₂⁻⁺ production by 34% favoring H₂O₂ formation and (3) induces a 5-fold increase in the Kᵣ for allo/oxypurinol (85–451 μM) [26]. Taken together, inflammation-mediated up-regulation of XDH, export to the circulation, rapid conversion to XO and sequestration by the endothelium coalesce to generate a vascular milieu favoring increased rates of reactive species generation that can participate in mediating the loss of homeostasis, Fig. 2. This deleterious action of XO has been noted in various reports of vascular and cardiopulmonary diseases including...
Fig. 2. Hypoxic/inflammatory induction of XOR and vascular consequences. (Top) Inflammatory cytokines and/or hypoxia induce XDH transcription and resultant protein expression. In vascular endothelial cells XDH is exported to the circulation where it is rapidly converted to XO by plasma proteases. However, cellular export is not requisite for XDH conversion to XO as enhanced oxidative stress within the endothelium can induce oxidation of critical cysteine residues that mediate reversible conversion to XO. Once in the circulation, negatively charged glycosaminoglycans (GAGs) on the luminal surface of the endothelium bind and sequester XO by high affinity (K_M = 6 nM) interaction with pockets of cationic amino acids on the surface of the enzyme. This sequestration amplifies local XO levels creating a vascular milieu whereby, in the presence of hypoxanthine and/or xanthine, enhanced rates of O_2^- and H_2O_2 formation ensue. (Bottom) A key determinant regulating the relative amounts of O_2^- and H_2O_2 generated by XO is the concentration of molecular O_2. Shown is a cartoon representing the change in relative percentages of O_2^- and H_2O_2 formed by XO at 10% O_2 (~130 μM O_2) compared to 1% O_2 (~13 μM O_2). This range of O_2 tension is critically important as it represents from well above to 50% below the K_M for the FAD-cofactor of 27 μM or ~2% O_2. As the O_2 tension drops below this K_M, value the FAD-cofactor assumes more time in the fully reduced FADH2 state where, upon reaction with O_2, divalent electron transfer is preferred. This process assures constant electron from the Mo-co (e.g. [hypoxanthine=xanthine] above the 6.3 μM K_M at the Mo-co) which would be expected under conditions similar to those encountered in the lumen of an ischemic/hypoxic vessel. In addition, it is critical to note that XO-GAG association as well as acidic pH serves to further favor H_2O_2 formation. Taken together, moderate to severe hypoxia induces XDH expression, export and conversion to XO that is subsequently captured by GAGs in an environment the primed for catalyzing the formation of H_2O_2 as well as a little O_2**.

heart failure, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, sickle cell disease and Type I and II diabetes [14,27–30].

XOR knockouts and inhibition strategies

For an enzyme whose activity was described in 1889 followed by it being named xanthine oxidase in 1901 and first purified in 1939, surprisingly little detail is known regarding its regulation before 30 days of age due to kidney fibrosis and failure attributed to excessive hypoxanthine deposition [32,33]. Similar effects were obtained with heterozygous XDH knockouts where both nutrient absorption and kidney failure resulted in death in a similar timeframe as XDH**. These unfortunate side-effects have relegated investigators to utilize allo/oxypurinol-based inhibition or global XOR knockdown with dietary tungsten (W) supplementation for proof-of-principle experimentation. Dietary supplementation with sodium tungstate (NaW) results in replacement of the active site Mo with W producing an enzyme that is inactive with respect to hypo/xanthine oxidation to uric acid. However, it is important to note that W-mediated inactivation of the Mo-co does not affect the capacity of the FAD in XOR to be reduced by NADH and subsequently react with and reduce O_2 to produce O_2^- and H_2O_2. In addition, treatment with NaW also inactivates other members of the molybdopterin family including aldehyde oxidase, sulfite oxidase and mitochondrial amidoxime reducing component 1 (MARC1) which can lead to significant ambiguity regarding interpretation of results. On the other hand, inhibition of XOR with allo/oxypurinol is also not optimal as: (1) allopurinol can mediate effects on other purine catabolic pathways including those resulting in alteration of adenosine levels [34]; (2) reaction of allopurinol with XO induces enzyme turnover resulting in O_2^- and H_2O_2 formation [35] and (3) plasma allo/oxypurinol concentrations (~100–400 μM) well above those tolerated clinically (30–90 μM) are incapable of fully inhibiting XO when it is sequestered by vascular...
GAGs [26,35]. As a result of these limitations we have recently identified febuxostat (Uloric) to be more optimal for exploring contributions of XOR both in vivo and tissue culture. For example, febuxostat concentrations (25–50 nM) well below the reported plasma C_{max} (15 μM) for the clinic demonstrate over 3 orders of magnitude greater potency than allopurinol ($K_i=0.9$ nM vs. 1.6 μM), are not affected by XOR-vascular GAG association and do not alter other purine catabolism pathways [34,35]. In toto, these findings clearly demonstrate the potential benefit of using febuxostat to interrogate XOR-dependence in various experimental models.

XOR-catalyzed *NO production

For decades, the dogma in the field has been as described above; specifically that inflammation/hypoxia-induced enhancement of XO activity equates to elevated rates of XO-derived ROS generation, propagation/exacerbation of the disease process and ultimately poor clinical outcomes. This correlation has been substantiated in several disease models where XO inhibition leads to a reduction in symptoms and measurable restoration of function. However, recent reports have posed a bold challenge to the standing paradigm by demonstrating a nitrate/nitrite (NO_2^-) reductase function for XOR (1e$^-$ reduction of NO_2^- to *NO) suggesting XOR to be a source of beneficial *NO under some hypoxic/inflammatory conditions. In essence, these observations directly contravert a substantive body of literature indicating XO inhibition to be beneficial and as such affirm the need to more closely interrogate XOR-catalyzed reactions and potential factors that alter product formation. For example, reduction of NO_2^- to *NO is indeed catalyzed by purified XO under anoxic conditions when electrons are supplied by either xanthine or NADH [36–38]. Nitrite reduction occurs at the reduced Mo-co (Mo-co IV) and electrons driving this reaction can be supplied directly by xanthine (Fig. 1C) or indirectly by NADH via electron donation at the FAD with subsequent retrograde flow to the Mo-co, Fig. 1D [39]. At this point, it is critical to note that work with the purified enzyme has revealed two issues requiring resolution before the biological relevance of XOR-derived *NO can be substantiated. First, the NO_2^- reductase activity of XOR is inhibited by O$_2$ which results from oxidation of the Mo-co mediated by electron withdrawal from the FAD [40]. Second, the affinity for NO_2^- at the Mo-co of XOR is 3 orders of magnitude less than for xanthine (K_m-NO_2^- = 2.5 mM vs. K_m-xanthine = 6.5 μM) [38]. Despite these formidable issues, several reports demonstrate significant reduction
in or ablation of salutary outcomes attributable to NO2− treatment upon inhibition of XOR activity with allox/oxypurinol affirming the need for more vigorous investigation to fully elucidate this reductive process. For example, systemic inhibition of XOR activity has diminished protective effects of NO2− treatment in models of

[41] intimal hyperplasia [41], lung injury [42,43], myocardial infarction [44], pulmonary hypertension [45] and ischemia/reperfusion (I/R)-induced damage [46–49]. It is also important to note that plasma levels of NO2− are reported to be enhanced in an XOR-dependent manner by treatment with nitrate (NO3−) where XOR serves first as a NO2− reductase (NO2− + e− → NO3−) and ultimately a NO2− reductase (NO2− + e− → ·NO). This XO-catalyzed process was described over 50 years ago [50] and recently expanded to in vivo models [51]. In these experiments treatment of germ-free mice (void of bacterial NO3− reductases) with NO2− resulted in elevation of plasma NO2− levels that were not observed when mice received co-treatment with allopurinol and thus are consistent with previous biochemical reports demonstrating NO2− reductase activity for XOR [52]. In the aggregate, there is a new body of evidence suggesting a protective role for XOR under hypoxic and inflammatory conditions in the presence of elevated levels of NO2−, summarized in Fig. 3. However, several key issues remain unclear regarding the microenvironmental conditions necessary for operative and biologically relevant nitrite reductase activity of XOR in vivo and were recently extensively reviewed [53].

Although XOR has been studied for 114 years, it is clear from the information provided herein that we have only begun to understand the complexity regarding the interplay between crucial microenvironmental factors and the identity/generation of XOR-derived reactive products as well as their impact on cellular signaling both in normal and pathophysiology. Sufficient to say the long-standing dogma identifying XDH as a housekeeping enzyme and XO as a mediator of negative clinical outcomes is beginning to crumble as we uncover new roles for XOR in the network of adaptive responses that serve to maintain homeostasis.

Acknowledgments

This work was supported by AHA National Scientist Development Grant 10SDG3560005 and University of Pittsburgh, Department of Anesthesiology Development Grant (EEK).

References

[1] C. Enroth, B.T. Eger, K. Okamoto, T. Nishino, T. Nishino, E.F. Pai, Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion, Proceedings of the National Academy of Sciences USA 97 (2000) 10723–10728.

[2] T. Nishino, K. Okamoto, The role of the [2Fe–2S] cluster centers in xanthine oxidoreductase, Journal of Inorganic Biochemistry 82 (2000) 43–49.

[3] T. Iwasaki, K. Okamoto, T. Nishino, J. Mizushima, H. Hori, Sequence motif-specific assignment of two [2Fe–2S] clusters in rat xanthine oxidoreductase studied by site-directed mutagenesis, Journal of Biochemistry 127 (2000) 771–778.

[4] Y. Kusawara, T. Nishino, K. Okamoto, T. Matsumura, B.T. Eger, E.F. Pai, T. Nishino, Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase, Proceedings of the National Academy of Sciences USA 100 (2003) 8170–8175.

[5] C.M. Harris, V. Massey, The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism, Journal of Biological Chemistry 272 (1997) 28335–28341.

[6] J.N. Granger, G. Rutli, J.M. McCord, Superoxide radicals in feline intestinal ischemia, Gastroenterology 81 (1981) 22–29.

[7] J.M. McCord, I. Fridovich, Superoxide dismutase. An enzymatic function for erythrocytoperin (hemocuprein), Journal of Biological Chemistry 244 (1969) 6049–6055.

[8] I. Fridovich, Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase, Journal of Biological Chemistry 245 (1970) 4053–4057.

[9] E.E. Kelley, N.K. Khoo, J.N. Hundley, I.U. Malik, B.A. Freeman, M.M. Tarpey, Hydrogen peroxide is the major oxidant product of xanthine oxidase, Free Radical Biology & Medicine 48 (2010) 493–498.

[10] C. Lartigue-Mattei, J.L. Chabard, H. Bargnoux, J. Petit, J.A. Berger, J.M. Ristori, J.J. Busserie, P. Catilina, M.J. Catilina, Plasma and blood assay of xanthine and hypoxanthine by gas chromatography–mass spectrometry: physiological variations in humans, Journal of Chromatography 529 (1990) 93–101.

[11] E.J. Pesonen, N. Linder, K.O. Ravio, A. Santesto, R. Lapatto, K. Hockerstedt, H. Gisslinger, S. Anderson, Catalyzing xanthine oxidase and neopterin activation during human liver transplantation, Gastroenterology 114 (1998) 1009–1015.

[12] G.J. Quinlan, N.J. Lamb, R. Tilley, T.W. Evans, J.M. Gutteridge, Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality, American Journal of Respiratory and Critical Care Medicine 155 (1997) 479–484.

[13] M. Aslan, B.A. Freeman, Oxidant-impeded mediation of nitric oxide signaling in sickle cell disease—mechanisms and consequences, Cellular and Molecular Biology (Noisy-le-Grand) 50 (2004) 95–105.

[14] M. Aslan, T.M. Ryan, B. Adler, T.M. Townes, D.A. Parks, J.A. Thompson, A. Tousson, M.T. Gladwin, R.P. Patel, M.M. Tarpey, I. Batinic-Haberle, C.R. White, B.A. Freeman, Oxygen radical inhibition of nitric oxide-dependent vasodilation in sickle cell disease, Proceedings of the National Academy of Sciences USA 98 (2001) 15215–15220.

[15] C.R. White, V. Darley-Usmar, W.R. Berrington, M. McAdams, J.Z. Gore, J.A. Thompson, D.A. Parks, M.M. Tarpey, B.A. Freeman, Catalyzing plasma xanthine oxidase to vascular dysfunction: a new conceptual framework in hypercholesterolemic rabbits, Proceedings of the National Academy of Sciences USA 93 (1996) 8745–8749.

[16] C.M. Harris, V. Massey, The reaction of reduced xanthine dehydrogenase with molecular oxygen. Reaction kinetics and measurement of superoxide radical, Journal of Biological Chemistry 272 (1997) 8370–8379.

[17] L. Zhou, W.C. Stanley, G.M. Saidel, X. Yu, M.E. Cabrera, Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies, Journal of Physiology 569 (2005) 925–937.

[18] R. Harrison, Structure and function of xanthine oxidoreductase—where are we now? Free Radical Biology & Medicine 31 (2001) 774–797.

[19] E.E. Kelley, T. Hock, N.K. Khoo, G.R. Richardson, K.K. Johnson, P.C. Powell, G. N. Cantu-Medellin, E.E. Kelley / Redox Biology 1 (2013) 353–358.
Nitrite reduction by xanthine oxidase family enzymes: a new class of nitrite reductases, Journal of Biological Inorganic Chemistry 16 (2011) 443–460.

H. Li, A. Samouilov, X. Liu, J.I. Zweier, Characterization of the effects of oxygen on xanthine oxidase-mediated nitrite oxide formation, Journal of Biological Chemistry 279 (2004) 16939–16946.

M.J. Alef, R. Vallabhaneni, E. Carchman, S.M. Morris Jr., S. Shiva, Y. Wang, E.E. Kelley, M.M. Tarpey, M.T. Gladwin, E. Tzeng, B.S. Zuckerbraun, Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague Dawley rats, Journal of Clinical Investigation 121 (2011) 1646–1656.

A.A. Samal, J. Honavar, A. Brandon, K.M. Bradley, S. Doran, Y. Liu, C. Dunaway, C. Steele, E.M. Postlethwait, G.L. Squadrito, M.V. Fanucchi, S. Matalon, R.P. Patel, Administration of nitrite after chlorine gas exposure prevents lung injury: effect of administration modality, Free Radical Biology & Medicine 53 (2012) 1431–1439.

P.A. Pickworth, M.J. Emery, R. Zarndt, W. Martin, R.C. Francis, W. Boemke, E.R. Swenson, Sodium nitrite mitigates ventilator-induced lung injury in rats, Anesthesiology 117 (2012) 592–601.

E.J. Baker, J. Su, X. Fu, A. Hsu, G.J. Gross, J.S. Tweddell, N. Hogg, Nitrite confers protection against myocardial infarction: role of xanthine oxidoreductase, NADPH oxidase and K(ATP) channels, Journal of Molecular and Cellular Cardiology 43 (2007) 437–444.

B.S. Zuckerbraun, S. Shiva, E. Ifedigbo, M.A. Mathier, K.P. Mollen, J. Rao, P.M. Bauer, J.J. Choi, E. Curtis, A.M. Choi, M.T. Gladwin, Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation, Circulation 121 (2010) 98–109.

R. Sugimoto, T. Okamoto, A. Nakao, J. Zhan, Y. Wang, J. Kohmoto, D. Tokita, C.F. Farver, M.M. Tarpey, T.R. Billiar, M.T. Gladwin, K.R. McCurry, Nitrite reduces acute lung injury and improves survival in a rat lung transplantation model, American Journal of Transplantation 12 (2012) 2938–2948.

F. Tripatara, N.S. Patel, A. Webb, K. Rathod, F.M. Lecomte, E. Mazzon, S. Cuzzocrea, M.M. Yaqoob, A. Ahluwalia, C. Thiemermann, Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase, Journal of the American Society of Nephrology 18 (2007) 570–580.

A. Webb, R. Bond, P. McLean, R. Uppal, N. Benjamin, A. Ahluwalia, Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage, Proceedings of the National Academy of Sciences USA 101 (2004) 13683–13688.

P. Lu, F. Liu, Z. Tao, C.Y. Wang, D.D. Chen, Y. Tian, J.H. Zhang, Y.H. Wu, Nitrite-derived nitric oxide by xanthine oxidoreductase protects the liver against ischemia-reperfusion injury, Hepatobiliary & Pancreatic Diseases International 4 (2005) 350–355.

L. Huang, S. Borniquel, J.O. Lundberg, Enhanced xanthine oxidoreductase expression and tissue nitrate reduction in germ free mice, Nitric Oxide 22 (2010) 191–195.

Fridovich I. and Handler P., Xanthine oxidase. V. Differential inhibition of the kinetics of xanthine oxidoreductase-catalyzed reduction of various electron acceptors., J Biol Chem., 237:916.