Saguaro: An Edge Computing-Enabled Hierarchical Permissioned Blockchain

Mohammad Javad Amiri1 Ziliang Lai2 Liana Patel3 Boon Thau Loo1 Eric Lo2 Wenchao Zhou4

1University of Pennsylvania, 2Chinese University of Hong Kong, 3Stanford University, 4Georgetown University
Scalable deployment of blockchain applications over wide-area networks
Edge network structure

Cloud Servers (Height 3)

Fog Servers (Height 2)

Edge Servers (Height 1)

Edge Devices (Height 0)
Saguaro

Processing cross-domain transactions using a coordinator-based approach by relying on the lowest common ancestor of all involved domains.

Aggregating data by propagating (a summarized version of) the ledgers up the hierarchy.

Optimistically processing cross-domain transactions and rely on higher-level nodes to detect inconsistencies.

Supports the mobility of nodes by relying on edge servers in the local and remote height-1 domains.
Scalability over wide-area networks

• **Coordinator-based sharding** (e.g., AHL [SIGMOD’19])
 • Runs two-phase commit on top of BFT
 • The coordinator node (cluster) is either close to clients or the data shards
 • Cannot avoid slow network links when cross-shard transactions take place.

• **Flattened sharding** (e.g., SharPer [SIGMOD’21])
 • Run consensus among all nodes of all involved shards
 • Requires several rounds of communication over high-latency low bandwidth Internet links.

• **Full replication of the entire ledger on every cluster** (e.g., GeoBFT [VLDB’20])
 • Clusters process disjoint sets of transactions and sync after each round
 • Shifts the wide-area communication from running the consensus protocol across data centers to ledger synchronization messages over a wide-area network.
Coordinator-based consensus protocol

• **Transactions:**
 - Initiated by edge devices (height-0)
 - Executed by edge servers in height-1 domains

• **Transaction types:**
 - Internal: access records within a single domain
 - Cross-domain: access records across different height-1 domains

• **Consensus protocol:**
 - Internal: depending on the failure model of nodes (CFT vs BFT)
 - Cross-domain: coordinator-based protocol
Internal transactions

Crash failure: fail by stopping, no malicious behavior

Byzantine failure: exhibit arbitrary, potentially malicious, behavior

(Multi-)Paxos

PBFT
Coordinator-based cross-domain consensus

- Inspired by the traditional coordinator-based commitment protocols
- **Coordinator**: the Lowest Common Ancestor (LCA) of all involved height-1 domains
 - LCA domain has the optimal location to minimize the total distance
An example of Saguaro blockchain ledger
Lazy propagation of blockchain ledgers

- Perform data aggregation over transactions executed by edge servers in height-1
- Each domain maintains (a summarized version of) their child domains data.
- Block message: Transactions + an abstract version of the state updates
Optimistic consensus protocol

- Each involved height-1 domain **optimistically** commits a cross-domain transaction **independent** of other involved domains
- Keep a list of data-dependent transactions for each cross-domain transaction
Mobile consensus

• What if a node moves from a local to a remote domain?
 • The remote domain does not have access to the state of the mobile node
Experimental settings

• Platform: Amazon EC2

• Measuring performance
 • Throughput & Latency

• Application:
 • Micropayment

• Network:
 • A typical four-level edge network (f=1 in each cluster)

• Systems:
 • AHL [SIGMOD’19]
 • SharPer [SIGMOD’21]
 • Saguaro: Coordinator-based
 • Saguaro: Optimistic (contention: 10%, 50%, 90%)
Cross-domain transactions (crash-only)

Domains: Frankfurt, Milan, London, and Paris (RTT: 9-25 ms)

20% cross-domain transactions:
- Optimistic approach with 10% contention shows the best performance
 - only 0.16% of transactions appended to the ledgers in an inconsistent order
- Coordinator-based approach: 17% higher throughput compared to AHL

80% & 100% cross-domain transactions:
- Larger performance gap between the coordinator-based approach and existing systems
Cross-domain transactions (Byzantine)

Domains: Frankfurt, Milan, London, and Paris (RTT: 9-25 ms)

- Similar behavior, with lower throughput and higher latency
A mobile node initiates 10 transactions within the remote domain before moving back to its local domain.

- 20% mobile transactions: 4% reduction in throughput
- Increasing mobile devices from 0% to 100% (crash-only): 25% reduction in throughput
- Increasing mobile devices from 0% to 100% (Byzantine): 36% reduction in throughput
Wide-area networks

Domains: California, Oregon, Virginia, Ohio, Tokyo, Seoul, and Hong Kong

- Conflicting transactions significantly reduce the performance of the optimistic protocol in high contention workloads
- Larger gap between the performance of the coordinator-based approach and AHL
- AHL demonstrates better performance compared to SharPer
- Increasing mobile devices from 0% to 100% (crash-only): 38% reduction in throughput
Evaluation Summary

- The coordinator-based protocol outperforms SharPer and AHL
 - Scalable solution that can be practically deployed over wide-area networks

- The optimistic protocol processes transactions efficiently in low-contention workloads

- The protocol performance is significantly reduced in high-contention workloads
 - due to inconsistency between the ledgers of different domains

- While SharPer outperforms AHL in nearby domains, AHL demonstrates better performance in far apart domains.

- Saguaro supports mobility over wide-area networks efficiently
Thank You!

Questions?

mjamiri@seas.upenn.edu