Electronic Supplementary Information

Simple fabrication of Co$_3$O$_4$ nanoparticles on N-doped laser-induced graphene for high-performance supercapacitors

Mahima Khandelwal1,*, Anh Phan Nguyen1,2, Chau Van Tran1, Jung Bin In1,2,*

1Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
2Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea

Equations for evaluating the electrochemical performance of a supercapacitor

The areal specific capacitance (C_A) was calculated based on the galvanostatic charge–discharge curves using Eq. (1):

$$C_A = \frac{I \Delta t}{A \Delta V},$$

(1)

where C_A (mF/cm2), I (A), Δt (s), A (cm2), and ΔV (V) are the areal specific capacitance, current, discharge time, active area of the electrode (1 × 1 cm2), and potential window after excluding the IR drop, respectively.

The areal energy density (E_A: µWh/cm2) and power density (P_A: mW/cm2) were calculated using Eqs. (2) and (3), respectively:

$$E_A = \frac{1}{2} \times C_A \times \frac{(\Delta V)^2}{3600},$$

(2)

*Corresponding authors. Tel: +82-2-820-5971. E-mail: mahimaiitr@gmail.com (M. Khandelwal), jbin@cau.ac.kr (J.B. In)
\[P_A = \frac{E_A \times 3600}{\Delta t}, \]

where \(C_A \) (mF/cm\(^2\)), \(\Delta V \) (V), and \(\Delta t \) are the areal specific capacitance at different current densities, potential window, and discharge time (s), respectively.
Figure S1. High-resolution (a) C1s and (b) N1s spectra of NLIG.

Figure S2. Cross-sectional images of NLIG (a) and Co$_3$O$_4$-NLIG-20 (b).
Figure S3. Selected area electron diffraction patterns of (a) NLIG and (b) Co$_3$O$_4$-NLIG-20.

Figure S4. Multiple cycle data at each current density.
Figure S5. EIS curve of Co_3O_4-NLIG-SC.
Figure S6: Capacitance retention of Co_3O_4-NLIG-SC under different bending radii at a current density of 1 mA/cm2.
Table S1. Elemental composition of carbon (C), oxygen (O), nitrogen (N), and cobalt (Co) elements present in Co$_3$O$_4$-NLIG and NLIG.

Sample(s)	C (at.%)	O (at.%)	N (at.%)	Co (at.%)
N-LIG	97.03	1.90	1.08	-
Co$_3$O$_4$-NLIG	92.02	4.4	0.87	2.71

Table S2. Electrochemical performance of Co$_3$O$_4$-NLIG-SC compared with previously reported heteroatom-doped LIG/LIG composites with metal oxide-based supercapacitors (SCs)/micro SCs (MSCs)/planar SCs (PSCs) obtained by CO$_2$ laser irradiation of commercial polyimide sheet.

Electrode material(s)	Type	Electrolyte	C_A (mF/cm2)	Ref(s)
Co$_3$O$_4$-NLIG-SC	Sandwich	PVA-H$_3$PO$_4$	17.96 at 0.1 mA/cm2	This work
B-LIG	MSC	PVA-H$_2$SO$_4$	16.5 at 0.05 mA/cm2	1
SN-LrGO	PSC	PVA-H$_3$PO$_4$	11.35 at 0.125 mA/cm2	2
Co$_3$O$_4$/LIG-80 J cm$^{-2}$	MSC	PVA-H$_3$PO$_4$	22.3 mF/cm2 at 0.05 mA/cm2	3
Co$_3$O$_4$/LIG-60	MSC	PVA-H$_2$SO$_4$	10.9 mF/cm2 at 5 mV/s	4
MnO$_2$/LIG	MSC	PVA-KOH	15.04 mF/cm2 at 5 mV/s	5
References

1. Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li, P. R. Smalley, J. Lin and J. M. Tour, ACS Nano, 2015, 9, 5868-5875.
2. A. Hamed, A. Hessein and A. Abd El-Moneim, Appl. Surf. Sci., 2021, 551, 149457.
3. W. Wang, L. Lu, Y. Xie, X. Mei, Y. Tang, W. Wu and R. Liang, Appl. Surf. Sci., 2020, 504, 144487.
4. R. Xu, P. Liu, G. Ji, L. Gao and J. Zhao, ACS Applied Energy Materials, 2020, 3, 10676-10684.
5. R. Xu, Z. Wang, L. Gao, S. Wang and J. Zhao, Applied Surface Science, 2022, 571, 151385.