A SIMPLE BIJECTION BETWEEN BINARY TREES AND COLORED TERNARY TREES

Yidong Sun
Department of Mathematics, Dalian Maritime University, 116026 Dalian, P.R. China
sydmath@yahoo.com.cn

Abstract. In this short note, we first present a simple bijection between binary trees and colored ternary trees and then derive a new identity related to generalized Catalan numbers.

Keywords: Binary tree; Ternary tree; Generalized Catalan number

2000 Mathematics Subject Classification: Primary 05C05; Secondary 05A19

1. Introduction

Recently, Mansour and the author [1] obtained an identity involving 2-Catalan numbers and 3-Catalan numbers, i.e.,

\[\sum_{p=0}^{\lfloor n/2 \rfloor} \frac{1}{3p+1} \binom{3p+1}{p} \binom{n+p}{3p} = \frac{1}{n+1} \binom{2n}{n}. \]

In this short note, we first present a simple bijection between binary trees and ternary trees and then derive a general identity, i.e.,

\[\sum_{p=0}^{\lfloor n/2 \rfloor} \frac{m}{3p+m} \binom{3p+m}{p} \binom{n+p+m-1}{n-2p} = \frac{m}{2n+m} \binom{2n+m}{n}. \]

2. A bijective algorithm for binary and ternary trees

A colored ternary tree is a complete ternary tree such that all its vertices are signed a nonnegative integer called color number. Let \(T_{n,p} \) denote the set of colored ternary trees \(T \) with \(p \) internal vertices such that the sum of all the color numbers of \(T \) is \(n-2p \). Define \(T_n = \bigcup_{p=0}^{\lfloor n/2 \rfloor} T_{n,p} \). Let \(B_n \) denote the set of complete binary trees with \(n \) internal vertices. For any \(B \in B_n \), let \(P = v_1v_2 \cdots v_k \) be a path of length \(k \) of \(B \) (viewing from the root of \(B \)).

\(P \) is called a \(R \)-path, if (1) \(v_i \) is the right child of \(v_{i-1} \) for \(2 \leq i \leq k \) and (2) the left child of \(v_i \) is a leaf for \(1 \leq i \leq k \). In addition, \(P \) is called a maximal \(R \)-path if there exists no vertex \(u \) such that \(uP \) or \(Pu \) forms a \(R \)-path. \(P \) is called an \(L \)-path, if \(v_k \) is the left child of \(v_{k-1} \) for \(2 \leq i \leq k \). \(P \) is called a maximal \(L \)-path if there exists no vertex \(u \) such that \(uP \) or \(Pu \) forms an \(L \)-path.

Note that the definition of \(L \)-path is different from that of \(R \)-path. Hence, if \(P \) is a maximal \(R \)-path, then (1) the right child \(u \) of \(v_k \) must be a leaf or the left child of \(u \) is not a leaf; (2) \(v_1 \) must be a left child of its father (if exists) or the father of \(v_1 \) has a left child which is not a leaf. If \(P \) is a maximal \(L \)-path, then (1) \(v_k \) must be a leaf which is also a left child of \(v_{k-1} \); (2) \(v_1 \) must be the right child of its father (if exists).
Theorem 2.1. There exists a simple bijection ϕ between B_n and T_n.

Proof. We first give the procedure to construct a complete binary tree from a colored complete ternary tree.

Step 1. For each vertex v of $T \in T_n$ with color number $c_v = k$, remove the color number and add a R-path $P = v_1v_2 \cdots v_k$ of length k to v such that v is a right child of v_k and v_1 is a child of the father (if exists) of v, and then annex a left leaf to v_i for $1 \leq i \leq k$. See Figure 1(a) for example.

Step 2. Let T^* be the tree obtained from T by Step 1. For any internal vertex v of T^* which has out-degree 3, let T_1, T_2 and T_3 be the three subtree of v. Remove the subtree T_1 and T_2, annex a left child v' to v and take T_1 and T_2 as the left and right subtree of v' respectively. See Figure 1(b) for example.

It is clear that any $T \in T_n$, after Step 1 and 2, generates a binary tree $B \in B_n$.

Conversely, we can obtain a colored ternary tree from a complete binary tree as follows.

Step 3. Choose any maximal L-path of $B \in B_n$ of length $k \geq 3$, say $P = v_1v_2 \cdots v_k$, then each v_{2i-1} absorbs its left child v_{2i} for $1 \leq i \leq [(k-1)/2]$. See Figure 2(a) for example.

Step 4. Choose any maximal R-path of T' derived from B by Step 3, say $Q = u_1u_2 \cdots u_k$, let u be the right child of u_k, then u absorbs all the vertex u_1, u_2, \ldots, u_k and assign the color number $c_u = k$ to u. See Figure 2(b) for example. Hence we get a colored ternary tree.
Given a complete ternary tree T with p internal vertices, there are totally $3p + 1$ vertices, choose $n - 2p$ vertices repeatedly, define the color number of a vertex to be the times of being chosen. Then there are $\binom{n + p}{n - 2p}$ colored ternary trees in \mathcal{S}_n generated by T. Note that $\frac{1}{3p + 1}\binom{3p + 1}{p}$ and $\frac{1}{2n + 1}\binom{2n + 1}{n}$ count the number of complete ternary trees with p internal vertices and complete binary trees with n internal vertices respectively [2]. Then the bijection ϕ immediately leads to (1.1).

To prove (1.2), consider the forest of colored ternary trees $F = (T_1, T_2, \ldots, T_m)$ with $T_i \in \mathcal{S}_{n_i}$ and $n_1 + n_2 + \cdots + n_m = n$, define $\phi(F) = (\phi(T_1), \phi(T_2), \ldots, \phi(T_m))$, then it is clear that ϕ is a bijection between forests of colored ternary trees and forests of complete binary trees. Note that there are totally $m + 3p$ vertices in a forest F of complete ternary trees with m components and p internal vertices, so there are $\binom{m + n + p - 1}{n - 2p}$ forests of colored ternary trees with m components, p internal vertices and the sum of color numbers equal to $n - 2p$. It is clear [2] that $\frac{m}{3p + m}\binom{3p + m}{p}$ counts the number of forests of complete ternary trees with p internal vertices and m components, and that $\frac{m}{3n + m}\binom{2n + m}{n}$ counts the number forests of complete binary trees with n internal vertices and m components. Then the above bijection ϕ immediately leads to (1.2).

3. Further Comments

It is well known [2] that the k-Catalan number $C_{n,k} = \frac{1}{kn + 1}\binom{kn + 1}{n}$ counts the number of complete k-ary trees with n internal vertices, whose generating function $C_k(x)$ satisfies

$$C_k(x) = 1 + xC_k(x).$$

Let $G(x) = \frac{1}{1-x}C_3\left(\frac{x^2}{(1-x)^3}\right)$, then one can deduce that

$$G(x) = \frac{1}{1-x}\frac{1}{C_3}\left(\frac{x^2}{(1-x)^3}\right)$$

$$= \frac{1}{1-x}\left(1 + \frac{x^2}{(1-x)^3}C_3\left(\frac{x^2}{(1-x)^3}\right)\right)$$

$$= \frac{1}{1-x}\left(1 + x^2G^3(x)\right),$$

which generates that $G(x) = C_3(x)$ which is the generating function for Catalan numbers.

By Lagrange inversion formula, we have

$$C_3^n(x) = \sum_{p \geq 0} \frac{m}{3p + m}\binom{3p + m}{p} x^p, \quad C_2^n(x) = \sum_{n \geq 0} \frac{m}{2n + m}\binom{2n + m}{n} x^n.$$

Then

$$G^n(x) = \sum_{p \geq 0} \frac{m}{3p + m}\binom{3p + m}{p} \frac{x^{2p}}{(1-x)^{3p+m}}$$

$$= \sum_{n \geq 0} \sum_{p=0}^{\lfloor n/2 \rfloor} \frac{m}{3p + m}\binom{3p + m}{p}\binom{n + p + m - 1}{n - 2p} x^n.$$

Comparing the coefficient of x^n in $C_2^n(x)$ and $G^n(x)$, one obtains Theorem 2.1.
Similarly, let \(F(x) = \frac{1}{1-x} C_k \left(\frac{x^{k-1}}{(1-x)^k} \right) \), then \(F(x) = \frac{1+x F(x)}{1-x^{k-1} F(x)} \), using Lagrange inversion formula for the case \(k = 5 \), one has

\[
\sum_{p=0}^{\lfloor n/4 \rfloor} \frac{m}{5p + m} \binom{5p + m}{p} \binom{n + p + m - 1}{n - 4p} = \sum_{p=0}^{\lfloor n/2 \rfloor} (-1)^p \frac{m}{m + n} \binom{m + n + p - 1}{p} \binom{m + 2n - 2p - 1}{n - 2p},
\]

which, in the case \(m = 1 \), leads to

\[
\sum_{p=0}^{\lfloor n/4 \rfloor} \frac{1}{4p + 1} \binom{5p}{p} \binom{n + p}{5p} = \sum_{p=0}^{\lfloor n/2 \rfloor} (-1)^p \frac{1}{n + 1} \binom{n + p}{n} \binom{2n - 2p}{n}.
\]

One can be asked to give a combinatorial proof of (3.1) or (3.2).

Acknowledgements

The authors are grateful to the anonymous referees for the helpful suggestions and comments.

References

[1] T. Mansour and Y. Sun, Bell polynomials and \(k \)-generalized Dyck paths, *Discrete Applied Math.*, to appear.

[2] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, 1999.