Cytokines, miRNAs, and Antioxidants as Combined Non-invasive Biomarkers for Parkinson’s Disease

Amr Ghit1,2 · Hany El Deeb3

Received: 1 November 2021 / Accepted: 4 February 2022 / Published online: 23 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Parkinson’s disease (PD) is one of the most common long-term degenerative disorders of the CNS that primarily affects the human locomotor system. Owing to the heterogeneity of PD etiology and the lack of appropriate diagnostic tests, blood-based biomarkers became the most promising method for diagnosing PD. Even though various biomarkers for PD have been found, their specificity and sensitivity are not optimum when used alone. Therefore, the aim of this study was directed to evaluate changes in a group of sensitive blood-based biomarkers in the same PD patients compared to healthy individuals. Serum samples were collected from 20 PD patients and 15 age-matched healthy controls. We analyzed serum levels of cytokines (IL10, IL12, and TNF-α), α-synuclein proteins, miRNAs (miR-214, miR-221, and miR-141), and antioxidants (UA, PON1, ARE). Our results showed an increase in sera levels of cytokines in PD patients as well as a positive correlation among them. Also, we found a significant increase in sera levels of α-synuclein protein associated with a decrease in miR-214 which regulates its gene expression. Lastly, we observed a decrease in sera levels of miR-221, miR-141, UA, PON1, and ARE, which have a prominent role against oxidative stress. Because of the many etiologies of PD, a single measure is unlikely to become a useful biomarker. Therefore, to correctly predict disease state and progression, a mix of noninvasive biomarkers is required. Although considerable work has to be done, this study sheds light on the role of certain biomarkers in the diagnosis of PD.

Keywords Parkinson’s disease · Blood-based biomarker · Cytokines · α-Synuclein · Oxidative stress · miRNA

Introduction
Parkinson’s disease (PD) is the second most common idiopathic neurodegenerative disorder after Alzheimer’s disease (AD). It affects approximately 1% of individuals above age 60 (Reeve et al. 2014). PD is characterized by motor symptoms (tremor at rest, bradykinesia, muscle rigidity, and postural instability) and non-motor symptoms (anxiety, fatigue, depression, sleep disturbance, cognitive impairment, and gastrointestinal dysfunction) (Poewe et al. 2017). PD is characterized also by two main pathological hallmarks: (1) death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), followed by a depletion of dopamine (DA) levels in the striatum; (2) abnormal deposition of α-synuclein protein in the cytoplasm of certain neurons in several different brain regions (Bridi and Hirth 2018; Ghit 2021). It is not yet clear what causes degeneration of dopaminergic neurons in SNpc. However, mitochondrial dysfunction, oxidative stress, and accumulation of misfolded proteins may be involved in PD pathogenesis (Ghit 2021; Guo et al. 2018; Maiti et al. 2017).

Elevated levels of inflammatory proteins in the brain and CSF have been reported (Mogi et al. 1996). Autopsy studies and animal models of PD showed the presence of activated microglia in the SN (Joers et al. 2017). Furthermore, using nonaspirin nonsteroidal anti-inflammatory drugs decreases the risk of PD (Gagne and Power 2010). MicroRNA (miRNA) is a small non-coding RNA (about 22 nucleotides) that regulates the expression of a wide range of target genes. MiRNA dysregulation is associated with the pathogenesis of PD (Arshad et al. 2017). Increasing reactive oxygen species...
(ROS) and/or impairment of the anti-oxidant mechanisms lead to oxidative stress (Barbieri and Sestili 2012) which initiate α-synuclein aggregation and dopaminergic neuron death in PD (Hijaz and Volpicelli-Daley 2020). Enzymatic (ex., Paraoxonase, PON1/arylesterase, ARE) and non-enzymatic (ex., uric acid, UA) systems both defend against oxidative stress and reduce the incidence of neurodegeneration (Crotty et al. 2017; Reichert et al. 2020).

The use of blood-based biomarkers is suggested to be the most promising method for diagnosing PD because it is fast, easy, and inexpensive (Chahine et al. 2014). Despite the fact that several biomarkers of PD have been identified, their specificity and sensitivity when used alone are not ideal (Alamri et al. 2016; Lerche et al. 2016).

As a result, combining diverse blood-based biomarkers will considerably increase diagnostic accuracy and promote personalized medication (He et al. 2018). Accordingly, the current study is an attempt to evaluate three different sets of blood-based biomarkers in the same PD patients. The selection of biomarkers that included cytokines (IL10, IL12, and TNF-α), miRNAs (miR-214, miR-221, miR-141), and antioxidants (UA, PON1, and ARE) was based on previous studies of great importance for understanding the pathogenesis of PD.

Methods

Participants

A total of 20 patients with PD were recruited between 2017 and 2018 from outpatient clinics of Nariman Hospital at Faculty of Medicine, Alexandria University. The assessment of motor symptoms of PD was made in accordance with UK Parkinson’s Disease Society Brain Bank Clinical Diagnostic Criteria (Hughes et al. 1992). Baseline assessments included disease duration, family history, medication history, and comorbid conditions. In addition, 15 healthy individuals were selected from the same community as a control group. They had no signs or symptoms suggesting cognitive impairment or neurological disease, and they had a negative family history of movement disorders. The study was approved by the Ethics Committee Faculty of Medicine, Alexandria University. Written informed consent was obtained from all participants.

Blood Sample Collection

Venous blood samples (5 mL) were collected by vein puncture using coagulation-promoting tubes. The blood samples were left to stand for about 30 min at 4 °C before centrifugation at 2000 rpm for 15 min. Serum was removed and stored at – 80 °C in the centrifuge tubes until assays were performed.

Measurements

All assays were performed according to the manufacturer’s instructions mentioned below by experts at Department of Biochemistry, Faculty of Science, Alexandria University.

Immune Markers and α-Synuclein Proteins

Serum levels of circulating IL10, IL12, TNF-α, and α-synuclein proteins were measured with immunosassay using commercially available ELISA kits (BIOMATIK; EKU05178, EKU05193, EKU07946, EKU07560).

MiRNAs

RNA Extraction

All sera samples were placed on ice before being centrifuged at 20,000 g for 15 min at 4 °C to eliminate any leftover cell debris before RNA extraction. After that, 200 μL of serum were carefully transferred to RNase-free tubes for total RNA isolation using miRNeasy Serum/Plasma Kit (Qiagen, Germany) according to the manufacturer’s protocol as previously described (Li and Kowdley 2012). Briefly, serum was mixed with denaturing buffer, placed on a vortex mixer at 3000 rpm for 15 s, and left at room temperature for 5 min. Total RNAs were eluted by 50 μL of nuclease-free water (Ambion TX). The RNA concentration was measured using a NanoDrop spectrophotometer (NanoDrop Technologies, DE).

Reverse Transcription and Quantitative Real-Time PCR

MicroRNAs were reverse transcribed and the resulting cDNA was amplified using miScript SYBR Green PCR kit (Qiagen, Germany) and microRNA specific primers. Subsequently, 2 μL of the product was used to detect miRNA expression by quantitative real-time PCR using a QuantiTect SYBR Green PCR Kit (Qiagen, Germany). The PCR primer sequences were as follows: mir-141 (5’-TTCCATGGGTTG TGTCAGTG-3’); mir-214 (5’- ACAGCAGGACACAGGCTCAGGC -3’); mir-221 (5’- AGCTACATTGTCTGCTGGGT-3’). Expression levels of target miRNAs in each sample were normalized using the miRNeasy Serum/Plasma SpikeIn Control (cat. no. 219610) and corresponding Ce_miR-39_1 miScript Primer Assay that is recommended to monitor miRNA purification and amplification. The fold change of miRNAs expression was calculated based on the threshold cycle (CT) value using the following formula: $2^{-\Delta\Delta CT}$ (Livak and Schmittgen 2001).
**Antioxidants**

Serum urate concentration was determined by the colourimetric method (at λ = 570 nm) of the Uric Acid Assay Kit (ab65344) according to the manufacturer’s protocol as previously described (Kageyama and Ohnishi 1971). The activity of paraoxonase (PON1) was measured spectrophotometrically using paraoxon (O, O-diethyl-o-p-nitrophenyl phosphate; Sigma Chemical Co) as a substrate. The rate of production of 4-nitrophenol was measured at 412 nm with a spectrophotometer (Techcomp 8500 II UV/VIS, China) as already described (Juretić et al. 2001). Arylesterase activity was measured spectrophotometrically using phenylacetate (Sigma Co, London, UK) as a substrate and the rate of formation of phenol was measured by monitoring the increase in absorbance at 217 nm at 25 °C following an established procedure (Haagen and Brock 1992).

**Statistical Analysis**

All data were evaluated using Excel software and presented as the means ± standard deviations (SDs). Statistical analysis was performed using SPSS (version 23). Differences between PD patients and healthy individuals were evaluated using unpaired two-tailed student t-test. Results with P values of 0.05 or less were considered significant. Correlations between certain indices in the different groups were detected by Spearman’s tests and linear regression analysis.

**Results**

**Subjects**

The demographic and clinical characteristics of subjects are summarized in Table 1. No statistically significant differences were observed among patients with PD and healthy controls concerning age or sex.

| Table 1 Demographic and clinical characteristic of patients with PD and healthy controls |
|---------------------------------|---------------------------------|------------------|
| **PD patients (n = 20)** | **Healthy controls (n = 15)** | **p-value** |
| Male/female | 11/9 | 10/5 | 0.334 |
| Age (years) | 61.7 ± 14.6 | 61.8 ± 4.9 | 0.923 |
| Disease duration (years) | 4.3 ± 4.0 | - | - |
| Treatment duration (years) | 3.9 ± 3.4 | - | - |

Data are presented as mean ± standard deviation unless otherwise stated.

*Unpaired two-tailed student t-test

**Serum Levels of Immune and Non-immune Markers**

Laboratory findings of the PD patients and controls are summarized in Table 2. The mean serum levels of circulating cytokines (IL10, IL12, and TNF-α) and α-synuclein proteins in patients with PD were significantly higher than those in healthy individuals (p < 0.0001) (Fig. 1A, B, C, D). On the other hand, serum levels of microRNAs (miR-214, miR-221, miR-141) as well as antioxidants (UA, PON1, and ARE) in patients with PD were significantly lower than those in healthy individuals (p < 0.0001) (Fig. 1E, F, G, H).

Correlations among serum levels of immune and non-immune markers in PD patients and healthy controls are shown in Table 3. In PD patients, correlations among cytokines were significant at p-values < 0.01. Serum levels of IL10 and IL12 were positively correlated (R = 0.913, p < 0.0001) (Fig. 2A) with a related variance of 83%, serum levels of TNF-α and IL10 were positively correlated (R = 0.714, p = 0.002) (Fig. 2B) with a related variance of 51%, and serum levels of TNF-α and IL12 were positively correlated (R = 0.75, p < 0.0001) (Fig. 2C) with a related variance of 56%. Besides, the positive correlation between antioxidant enzymes, PON1, and ARE was significant (R = 0.651, p = 0.002) with 42% of a related variance (Fig. 2D). On the other hand, there was a negative correlation between serum levels of miR-221 and TNF-α (R = −0.564, p = 0.01) (Fig. 2E) with a related variance of 32%. Interestingly, there were no correlations among serum levels of the previously mentioned values in healthy controls (see right sides of Fig. 2).

| Table 2 Serum levels of immune and non-immune markers in PD patients and healthy controls |
|---------------------------------|---------------------------------|------------------|
| **PD (n = 20)** | **HC (n = 15)** | **p-value** |
| IL10 (pg/mL) | 10.7 ± 2.2 | 2.5 ± 0.3 | <0.0001 |
| IL12 (pg/mL) | 9.3 ± 1.7 | 2.1 ± 0.3 | <0.0001 |
| TNF-α (pg/mL) | 47.0 ± 10.0 | 14.2 ± 6.1 | <0.0001 |
| α-Synuclein (pg/mL) | 84.2 ± 2.6 | 69.4 ± 2.7 | <0.0001 |
| miR-214 | 0.2 ± 0.1 | 0.9 ± 0.2 | <0.0001 |
| miR-221 | 0.5 ± 0.1 | 0.9 ± 0.2 | <0.0001 |
| miR-141 | 0.4 ± 0.1 | 0.9 ± 0.2 | <0.0001 |
| UA (mg/dL) | 3.32 ± 0.3 | 5.4 ± 0.5 | <0.0001 |
| PON1 (U/mL) | 181.4 ± 7.9 | 425.2 ± 28.1 | <0.0001 |
| ARE (U/L) | 120.7 ± 16.8 | 196.9 ± 11.7 | <0.0001 |

PD = Parkinson’s disease, HC = healthy control, IL = interleukin, TNF-α = tumor necrotic factor-alpha, miR = microRNA, UA = uric acid, PON1 = paraoxonase 1, ARE = arylesterase, pg/ml = picogram per milliliter, mg/dl = milligrams per deciliter, U/mL = units per milliliter, U/L = units per liter

*Unpaired two-tailed student t-test. Values are mean ± SD
Discussion

Changes in the levels of cytokines may enhance apoptosis and subsequent phagocytosis of DA neurons (Nagatsu and Sawada 2005). Previous observations found that concentrations of IL-1β, IL-2, IL-6, IL-10, and TNF-α, and C-reactive protein increased in PD patients (Qin et al. 2016). Recently, a study found a positive correlation between serum levels of IL-10 and gastrointestinal symptoms in PD (Kim et al. 2018). In the current study, the mean serum levels of circulating cytokines (IL10, IL12, and TNF-α) in PD patients were higher than those in healthy controls (Fig. 1A, B, C), and this is consistent with results observed in previous studies (Brockmann et al. 2016; Williams-Gray et al. 2016). Immune markers are thus potential predictive biomarkers in the diagnosis

Table 3  Correlation between serum levels of immune and non-immune markers in PD patients and healthy controls evaluated by the Spearman rank correlation

|                  | PD   | HC   | P      | HC    | R²  | Related variance |
|------------------|------|------|--------|-------|-----|------------------|
| IL10; IL12       | 0.913| 0.364| <0.0001| 0.182 | 0.83| 0.13             | 83% 13% |
| TNF-α; IL10      | 0.714| 0.191| 0.002  | 0.494 | 0.51| 0.04             | 51% 4%  |
| TNF-α; IL12      | 0.75  | 0.087| <0.0001| 0.759 | 0.56| 0.01             | 56% 1%  |
| PON1; ARE        | 0.651| −0.327| 0.002  | 0.234 | 0.42| 0.11             | 42% 11% |
| miR-221; TNF-α   | −0.564| −0.323| 0.01   | 0.240 | 0.32| 0.10             | 32% 10% |

*P correlation coefficient
**Correlation is significant at the 0.01 level (2-tailed)
Fig. 2 Correlations between serum levels of immune and non-immune markers in PD patients and healthy controls. (A) IL10 and IL12; (B) TNF-α and IL10; (C) TNF-α and IL12; (D) PON1 and ARE; (E) miR-221 and TNF-α.
of PD. Although IL-10 is an anti-inflammatory cytokine that negatively regulates TNF-α and IL-12 (Rossato et al. 2012), the positive correlation between IL10 and IL12 ($R = 0.913$, $p < 0.0001$), and TNF-α and IL10 ($R = 0.714$, $p = 0.002$) indicate immunological disturbances in PD patients. On the other hand, the positive correlation between TNF-α and IL12 ($R = 0.75$, $p < 0.0001$), and its absence among healthy controls (Fig. 2A, B, C) suggest that neuroprotective mechanisms are involved in PD. These findings agree with a previous study showed increased levels of IL-10, as well as a positive correlation between IL10 and IL12 (Rentzos et al. 2009).

MiRNAs are quite stable in serum and plasma among individuals in the same species (Mitchell et al. 2008). The stability of miRNAs in the blood may be due to the protection of binding proteins or microvesicles which encapsulate miRNAs (Zhang et al. 2010). Pathological conditions may influence the secretion of microvesicles in which in turn can alter the blood miRNA profile. Since the miRNA can be directly detected in the blood, it can be used as a diagnostic biomarker for various diseases (Condrat et al. 2020; Mori et al. 2019).

The significance of miRNAs in the pathogenesis of PD as well as the challenges of using them as biomarkers were discussed in detail (Arshad et al. 2017; Grasso et al. 2014; Roser et al. 2018). Aggregation of α-synuclein proteins forming Lewy bodies represents the pathological hallmark of PD (Bridi and Hirth 2018; Ghit 2021). In our study, serum levels of α-synuclein protein (Fig. 1D) were increased in parallel with the significant decline in miR-214 (Fig. 1E) which regulate α-synuclein gene expression (Wang et al. 2015). Therefore, circulating α-synuclein protein and miR-214 may play a role in diagnosing PD. However, we cannot say that they are useful for monitoring the degree of progression and severity of PD because, in some studies, α-syn levels were correlated to PD severity, but not in others (Atik et al. 2016).

Interestingly, miR-221 decreased the expression of pro-apoptotic genes (Bim, BNIP3L, Foxo3a, and BMF) which in turn promote neuronal survival against oxidative stress (Oh et al. 2018). Ding et al. (2016) suggested that increased serum levels of miR-195 and decreased serum levels of miR-221 may be used as non-invasive biomarkers for the diagnosis of PD (Ding et al. 2016). Likewise, miR-141 downregulates Keap1 gene expression which has a direct effect on the activation of the transcription factor Nrf2 which in turn regulates the expression of antioxidant enzymes (Shi et al. 2015). In addition, miR-141 and miR-214 were decreased significantly in serum of PD patients compared with healthy individuals (Dong et al. 2016). In agreement with the previous studies, we found a significant decline in serum levels of miR-221 and miR-141 in PD patients than those in healthy controls (Fig. 1E) reflecting their role in the protection of dopaminergic neurons against oxidative stress and apoptosis. Therefore, a combination of miR-214, miR-221, and miR-141 may help in distinguishing PD patients from healthy individuals. Of note, increasing the severity of neuro-inflammation is suggested to be related to the level of oxidative stress in PD (Solleiro-Villavicencio and Rivas-Arancibia 2018), which can be supported by the negative correlations between miR-221 and TNF-α which have been absent from healthy controls (Fig. 2E).

Post-mortem studies on brains from PD patients found decreased amounts of antioxidants in the SN suggested that oxidative stress in the CNS damages the SN, which in turn promote dopaminergic neuronal loss (Hattori and Mizuno 2002). A recent study found that serum levels of uric acid are a potential biomarker for motor and non-motor features and disease progression (Huang et al. 2018). Low levels of serum uric acid have been reported in PD patients with memory impairment, depression, anxiety, and cardiovascular symptoms (Moccia et al. 2014). In agreement with the previous observations, we found a decrease in serum levels of UA in PD patients.

PD is marked by an imbalance between acetylcholine (ACh) and DA in CNS which mainly results from the degeneration of dopaminergic neurons in the SN (Spehlmann and Stahl 1976). Free radicals such as peroxide and organophosphate oxons attack and inhibit acetylcholinesterase, thus increasing acetylcholine, which in turn exacerbates the imbalance between ACh and DA. These free radicals are blocked by paraoxonase 1 (PON1) enzyme (is a glycoprotein enzyme synthesized in the liver) preventing the imbalance between ACh and DA (Menini and Gugliucci 2014; Précourt et al. 2011). In the current study, the decrease in the level of PON1 and ARE enzymes (Fig. 1G, H) as well as the positive correlation between them in PD patients (Fig. 2D; $R = 0.651$, $p = 0.002$) without any notable correlation among healthy controls supporting their role against oxidative stress in PD. Therefore, circulating UA, PON1, and ARE can be used in diagnosing of PD.

Conclusions

Because of the numerous causes of PD, a single measure is difficult to become a potential biomarker. In order to effectively predict disease status and development, various types of biomarkers must be evaluated. Although much remains to be done, this study highlights the involvement of specific cytokines, miRNAs, and antioxidants in understanding the pathogenesis of PD more clearly, and will aid in the clinical diagnosis of the disease.

**Abbreviations**

AC h: Acetylcholine; AD: Alzheimer’s disease; ARE: Arylesterase; DA: Dopamine; ELISA: Enzyme-linked immunosorbent assay; IL: Interleukin; miRNAs: MicroRNAs; PD: Parkinson’s disease; PON1: Paraoxonase; ROS: Reactive oxygen species;
SNpc: Substantia nigra pars compacta; TNF-α: Tumor necrotic factor-alpha; UA: Uric acid

**Author Contribution** AG conceived and designed the study. HED examined patients clinically and selected the appropriate cases. AG and HED collected samples and patient data. AG performed statistical data analysis and interpretation, and wrote the manuscript. HED revised statistical data analysis and interpretation. The authors read and approved the final manuscript.

**Data Availability Statement** The datasets generated during and/or analyzed during the current study are available on request from the corresponding author.

**Declarations**

**Ethics Approval and Consent to Participate** The study was approved by the Ethics Committee Faculty of Medicine, Alexandria University. Written informed consent was obtained from all participants.

**Consent for Publication** Not applicable.

**Conflict of Interests** The authors declare no competing interests.

**References**

Alamri Y, MacAskill M, Anderson T (2016) Commentary: aiming for study comparability in Parkinson’s disease: proposal for a modular set of biomarker assessments to be used in longitudinal studies. Frontiers in Aging Neuroscience 8:331. https://doi.org/10.3389/fnagi.2016.00331

Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA (2017) MicroRNAs and target genes as biomarkers for the diagnosis of early onset of parkinson disease. In Frontiers in Molecular Neuroscience. https://doi.org/10.3389/fnmol.2017.00352

Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for parkinson’s disease. Brain Pathology (zurich, Switzerland) 26(3):410–418. https://doi.org/10.1111/bpa.12370

Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Signal Transduction. https://doi.org/10.1155/2012/982794

Bridi JC, Hirth F (2018) Mechanisms of α-synuclein induced synaptopathy in Parkinson’s disease. Front Neurosci 12:80. https://doi.org/10.3389/fnins.2018.00080

Brockmann K, Apel A, Schulte C, Schneiderhan-Marra N, Pont-Sunyer C, Vilas D, Ruiz-Martinez J, Langkamp M, Corvol J-C, Cormier F, Knorpp T, Joos TO, Gasser T, Schulte B, Aasly JO, Foroud T, Marti-Masso JF, Brice A, Tolosa E, Maetzler W (2016) Inflammatory profile in LRRK2-associated prodromal and clinical PD. J Neuroinflammation 13(1):122. https://doi.org/10.1186/s12974-016-0588-5

Chahine LM, Stern MB, Chen-Plotkin A (2014) Blood-based biomarkers for Parkinson’s disease. Parkinsonism & Related Disorders 20 Suppl1(01):S99–103. https://doi.org/10.1016/S1353-8028(13)70025-7

Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9(2). https://doi.org/10.3390/cells9020276

Crotty GF, Ascherio A, Schwarzschild MA (2017) Targeting urate to reduce oxidative stress in Parkinson disease. Exp Neurol 298(Pt B):210–224. https://doi.org/10.1016/j.expneurol.2017.06.017

Ding H, Huang Z, Chen M, Wang C, Chen X, Chen J, Zhang J (2016) Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord. https://doi.org/10.1016/j.parkreldis.2015.11.014

Dong H, Wang C, Lu S, Yu C, Huang L, Feng W, Xu H, Chen X, Zen K, Yan Q, Liu W, Zhang C, Zhang C-Y (2016) A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers : Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals 21(2):129–137. https://doi.org/10.3109/1554750X.2015.1118544

Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology. https://doi.org/10.1212/WNL.0b013e3181d5a4a3

Ghit A (2021) Protective Role of Heat Shock Proteins During Neurodegeneration in Parkinson’s Disease. In A. A. A. Asea & P. Kaur (Eds.), Heat Shock Proteins in Inflammatory Diseases (pp. 33–51). Springer International Publishing. https://doi.org/10.1007/7515_2020_23

Grasso M, Piscopo P, Confalonii A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorders. In Molecules. https://doi.org/10.3390/molecules19056891

Guo J-D, Zhao X, Li Y, Li G-R, Liu X-L (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med 41(4):1817–1825. https://doi.org/10.3892/ijmm.2018.3406

Haagen L, Brock A (1992) A new automated method for phenotyping aryloesterase (EC 3.1.1.2) based upon inhibition of enzymatic hydrolysis of 4-nitrophenyl acetate by phenyl acetate. Clinical Chem Lab Med. https://doi.org/10.1515/cclm.1992.30.7.391

Hattori N, Mizuno Y (2002) Mitochondrial dysfunction in Parkinson’s disease. In Nippon rinsho. Japanese J clinical med 60 Suppl 4 (Issue 2, pp. 406–411). https://doi.org/10.5607/en.2015.24.2.103

He R, Yan X, Guo J, Xu Q, Tang B, Sun Q (2018) Recent advances in biomarkers for Parkinson’s disease. Frontiers in Aging Neuroscience 10:305. https://doi.org/10.3389/fnagi.2018.00305

Hijaz BA, Volpicelli-Daley LA (2020) Initiation and propagation of α-synuclein aggregation in the nervous system. Mol Neurodegener 15(1):19. https://doi.org/10.1186/s13024-020-00368-6

Huang X, Ng SYE, Chia NSY, Acharyya S, Setiawan F, Lu ZH, Ng E, Tay KY, Au WL, Tan EK, Tan LCS (2018) Serum uric acid level for parkinson’s disease. In Parkinsonism Relat Disord. https://doi.org/10.1016/j.parkreldis.2018.05.010

Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184. https://doi.org/10.1136/jnnp.55.3.181

Joers V, Tansey MG, Mulas G, Carta AR (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155:57–75. https://doi.org/10.1016/j.pneurobio.2016.04.006

Juretic D, Tadijanovic M, Rekić B, Simeon-Rudolf V, Reiner E, Baricic M (2001) Serum paraoxonase activities in hemodialyzed uremic patients: cohort study. Croatian Medical J

Kageyama T, Ohnishi E (1971) Carbohydrate metabolism in the eggs of the silkworm, Bombyx mori. I. Absence of phosphofructokinase in the diapausing egg. Development, Growth & Differentiation. https://doi.org/10.1111/j.1440-169X.1971.00097.x

Kim R, Kim HJ, Kim A, Jang M, Kim A, Kim Y, Yoo D, Im JH, Choi JH, Jeon B (2018) Peripheral blood inflammatory markers in early Parkinson’s disease. J Clin Neurosci. https://doi.org/10.1016/j.jocn.2018.10.079
Lerche S, Heinzel S, Alves GW, Barone P, Behnke S, Ben-Shlomo Y, Berendse H, Bloem BR, Burn D, Dodel R, Grosset DG, Hipp G, Hu MT, Kasten M, Krüger R, Liepelt-Scarfone I, Maetzler W, Moccia M, Mollenhauer B, Berg D (2016) Aiming for study comparability in Parkinson’s disease: proposal for a modular set of biomarker assessments to be used in longitudinal studies. Frontiers in Aging Neuroscience 8:121. https://doi.org/10.3389/fnagi.2016.00121

Li Y, Kowdley KV (2012) MicroRNAs in common human diseases. In Genomics, Proteomics and Bioinformatics. https://doi.org/10.1016/j.gpb.2012.07.005

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. https://doi.org/10.1006/meth.2001.1262

Maiti P, Manna J, Dunbar GL, Maiti P, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. In Translational Neurodegeneration. https://doi.org/10.1186/s40035-017-0099-z

Menini T, Gugliucci A (2014) Paraoxonase 1 in neurological disorders. In Redox Report. https://doi.org/10.1179/1742163013Y.0000000071

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0804591105

Moccia M, Picillo M, Ezro R, Vitale C, Longo K, Amboni M, Santangelo G, Spina E, De Rosa A, De Michele G, Santoro L, Barone P, Pellecchia MT (2014) Is serum uric acid related to non-motor symptoms in de novo Parkinson’s disease patients? Parkinsonism Relat Disord. https://doi.org/10.1016/j.parkreldis.2014.03.016

Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett. https://doi.org/10.1016/0304-3940(96)12706-3

Mori MA, Ludwig RG, Garcia-Martín R, Brandão BB, Kahn CR (2019) Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab 30(4):656–673. https://doi.org/10.1016/j.cmet.2019.07.011

Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des. https://doi.org/10.2174/13816120538381620

Oh SE, Park HJ, He L, Skibiel C, Junn E, Mouradian MM (2018) The Parkinson’s disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol. https://doi.org/10.1016/j.redox.2018.07.021

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkman J, Schrag A-E, Lang AE (2017) Parkinson Disease Nature Reviews Disease Primers 3:17013. https://doi.org/10.1038/ndr.2017.13

Précourt LP, Amre D, Denis MC, Lavoie JC, Delvin E, Seidman E, Levy E (2011) The three-gene paraoxonase family: physiologic roles, actions and regulation. In Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2010.08.076

Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y (2016) Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol 73(11):1316–1324. https://doi.org/10.1001/jamaneurol.2016.2742

Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? In Ageing Research Reviews. https://doi.org/10.1016/j.arr.2014.01.004

Reichert CO, Levy D, Byblowski SP (2020) Paraoxonase role in human neurodegenerative diseases. Antioxidants (Basel, Switzerland) 10(1). https://doi.org/10.3390/antiox10010011

Rentzos M, Nikolaou C, Andreoudis E, Paraskevas GP, Rombos A, Zoga M, Tsoutsou A, Boubouli F, Kapaki E, Vassilopoulos D (2009) Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand. https://doi.org/10.1111/j.1600-0404.2008.01103.x

Roser AE, Caldi Gomes L, Schünemann J, Maass F, Lingor P (2018) Circulating miRNAs as diagnostic biomarkers for Parkinson’s disease. Front Neurosci 12:625. https://doi.org/10.3389/fnins.2018.00625

Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperrini S, Mariotti B, De Luca M, Mirolo M, Cassatella MA, Locati M, Bazzoni F (2012) IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1209100109

Shi L, Wu L, Chen Z, Yang J, Chen X, Yu F, Zheng F, Lin X (2015) MiR-141 activates Nrfl2-dependent antioxidant pathway via down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 35(6):2333–2348. https://doi.org/10.1159/000374036

Solleiro-Villavicencio H, Rivas-Arancibia S (2018) Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4(+) T cells in neurodegenerative diseases. Front Cell Neurosci 12:114. https://doi.org/10.3389/fncel.2018.00114

Speghmann R, Stahl S (1976) Dopamine acetycholine imbalance in Parkinson’s disease. Possible regenerative overgrowth of cholinergic axon terminals. Lancet (London, England) 1(7962):724–726. https://doi.org/10.1016/S0140-6736(76)93995-6

Wang ZH, Zhang JL, Duan YL, Zhang QS, Li GF, Zheng DL (2015) MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacotherapy = Biomedicine & Pharmacotherapy = Biomedicin og farmacie 74:252–256. https://doi.org/10.1016/j.biopha.2015.08.025

Williams-Grey CH, Wijeyekoon R, Yarnall AJ, Lawson RA, Brenn DP, Evans JR, Cummins GA, Duncan GW, Kho TK, Burn DJ, Barker RA (2016) Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Movement Disorders : Official Journal of the Movement Disorder Society 31(7):995–1003. https://doi.org/10.1002/mds.26563

Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang CY (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. https://doi.org/10.1016/j.molcel.2010.06.010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.