RESUMO
A distrofia muscular de Duchenne é a doença muscular mais comum observadas em crianças do sexo masculino. Atualmente, não há terapia eficaz disponível para distrofia muscular de Duchenne, portanto, é essencial o diagnóstico pré-natal e o aconselhamento genético para reduzir o nascimento desses meninos. Relatamos um caso de diagnóstico genético pré-implantação associado à distrofia muscular de Duchenne. O casal E.P.R., 38 anos, heterozigota, sintomática para uma mutação de deleção dos éxons 2 a 47 no gene DMD e G.T.S., 39 anos, buscaram aconselhamento genético sobre o processo de diagnóstico genético pré-implantação. O casal relatou que tiveram um filho de 6 anos que morreu devido a complicações da distrofia muscular de Duchenne. Os pacientes realizaram quatro ciclos de injeção intracitoplásica de espermatozoides (ICSI) e oito biópsias de embriões foram analisadas por reação em cadeia da polimerase (PCR) para análise de mutação específica, seguida hibridação genômica comparativa baseada em microarranjos (array CGH) para a pesquisa de aneuploidias. O diagnóstico genético pré-implantação revelou que dois embriões haviam herdado a mutação materna no gene DMD, um embrião tinha uma alteração cromossômica e cinco embriões eram normais. Um blastocisto foi transferido e resultou em gravidez bem sucedida. Os outros embriões permanecem vitrificados. Concluímos que a análise de embriões utilizando técnicas associadas de PCR e CGH array mostrou-se segura para a seleção de embriões em casos de doenças ligadas ao X, como a distrofia muscular de Duchenne.

Descritores: Distrofia muscular de Duchenne; Reação em cadeia da polimerase; Hibridização genômica comparativa; Cuidado pré-natal; Relatos de casos

ABSTRACT
Duchenne muscular dystrophy is the most common muscle disease found in male children. Currently, there is no effective therapy available for Duchenne muscular dystrophy patients. Therefore, it is essential to make a prenatal diagnosis and provide genetic counseling to reduce the birth of such boys. We report a case of preimplantation genetic diagnosis associated with Duchenne muscular dystrophy. The couple E.P.R., 38-year-old, symptomatic patient heterozygous for a 2 to 47 exon deletion mutation in DMD gene and G.T.S., 39-year-old, sought genetic counseling about preimplantation genetic diagnosis process. They have had a 6-year-old son who died due to Duchenne muscular dystrophy complications. The couple underwent four cycles of intracytoplasmic sperm injection (ICSI) and eight embryos biopsies were analyzed by polymerase chain reaction (PCR) for specific mutation analysis, followed by microarray-based comparative genomic hybridisation (array CGH) for aneuploidy analysis. Preimplantation genetic diagnosis revealed that two embryos had inherited the maternal DMD gene mutation, one embryo had a chromosomal alteration and five embryos were normal. One blastocyst was transferred and resulted in successful pregnancy. The other embryos remain vitrified. We concluded that embryo analysis using associated techniques of PCR and array CGH seems to be safe for embryo selection in cases of X-linked disorders, such as Duchenne muscular dystrophy.

Keywords: Muscular dystrophy, Duchenne; Polymerase chain reaction; Comparative genomic hybridization; Prenatal care; Case reports

INTRODUÇÃO
A distrofia muscular de Duchenne (DMD, MIM 310200) é uma doença de caráter recessivo ligado ao X causado por mutação no gene DMD (ID do gene: 1756) localizado em Xp21.1) A DMD é uma doença muscular mais comum entre crianças do sexo masculino, com incidência de 1:3.500 nascidos vivos.1) O gene distrofina é o maior gene humano identificado, contendo 79 éxons, pelo menos sete promotores diferentes tecido-específico e dois locais de poliadenilação. Contudo o RNA distrofina é diferencialmente processado produzindo múltiplos transcritos que codificam um conjunto de
isoformas da proteína.(1-3) A proteína traduzida a partir do transcrito maior é um proteína de citoesqueleto importante, que ajuda cada fibra muscular a conectar-se com a lámina basal subjacente. Alterações ou perda de distrofina força o excesso de cálcio na membrana celular, resultando em excesso de água na mitocôndria, portanto, o músculo do esqueleto afetado sofre distrofia, disfunção mitrocondrial, e necrose.(4)

A maioria das mutações identificadas são deleções em aproximadamente 60-65% dos casos de DMD, duplicações têm sido observadas em 5%-15% e os casos remanescentes podem ser causados por pequenas mutações tais como microdeleções, microinserções, mutação de ponto, ou mutações de splicing.(1,2,5) Aproximadamente, em um terço dos pacientes com DMD, a doença originou-se de mutações novas enquanto o restante são herança materna ou surgem de moisacismo da doença originou-se de mutações novas enquanto o restante são herança materna ou surgem de moisacismo da mutação de deleção dos éxons 2 a 47 no gene \textit{DMD}.(6,7) A proteína traduzida a partir do transcrito maior é um proteína de citoesqueleto importante, que ajuda cada fibra muscular a conectar-se com a lámina basal subjacente. Alterações ou perda de distrofina força o excesso de cálcio na membrana celular, resultando em excesso de água na mitocôndria, portanto, o músculo do esqueleto afetado sofre distrofia, disfunção mitrocondrial, e necrose.(4)

Patologicamente, a DMD é caracterizada pela degeneração progressiva rápida e necrose dos músculos proximais e pseudo-hipertrofia de panturrilhas. A maioria dos pacientes com DMD mostra fraqueza muscular precoce na infância, e tornam-se cadeirantes por volta do 12 anos de idade, e morrem devido à insuficiência respiratória ou cardíaca no fim da adolescência ou início dos 20 anos. Atualmente, não há tratamento eficaz disponível para paciente com DMD. Portanto, é essencial o diagnóstico pré-natal e aconselhamento genético para reduzir o nascimento de meninos afetados com a doença.(4)

Relata-se caso de diagnóstico genético pré-implantacional associado a distrofia muscular de Duchenne.

RELATO DE CASO

E.P.R, 38 anos, paciente heterozigota sintomática para mutação de deleção dos éxons 2 a 47 no gene \textit{DMD} e G.T.S, 39 anos, procuram em fevereiro de 2014 o serviço de aconselhamento genético do Instituto Idea Fertil, Centro de Reprodução Humana e Genética da Faculdade de Medicina do ABC, Santo André, São Paulo, Brasil para saber sobre o processo de diagnóstico genético pré-implantacional (DGPI). Em 2012, os pacientes tiveram um filho que morreu aos 6 anos de idade devido a complicações por DMD. O casal realizou 4 ciclos de tratamento de reprodução humana assistida com injeção intracitoplasmática de espermatozoides (ICIS). A estimulação ovariana foi realizada com 200UI de hormônio folículo estimulante recombinante exógeno a partir do segundo dia do ciclo menstrual. Quando o maior folículo atingiu 17mm, a gonadotrofina coriónica humana (hCG) foi administrada em dose de 5000UI e 36 horas depois realizou-se a punção dos óvulos. O total de oito embriões biopsiados D5/D6 foram analisados por reação em cadeia da polimerase (PCR) para verificação da mutação específica, seguido por hibridação genômica comparativa baseada em microarranjos (array CGH) para análise de aneuploidia (triagem de 24 cromossomos) em laboratório especializado.

A análise genética constatou que dois embriões tinham herdado a mutação materna do gene \textit{DMD}, um embrião tinha alteração cromossômica [47,XY,del(8) (q24.11-qter),+18] e cinco embriões (três masculinos e dois femininos) eram normais. Um blastocisto foi transferido e resultou em gravidez bem sucedida. A criança foi uma menina, nascida após 38 semanas por meio de cesariana, pesando 2,970kg e medindo 43cm. Os outros embriões permaneceram vitrificados.

DISCUSSÃO

A maioria (>90%) das mulheres com mutações no gene \textit{DMD} é assintomática. Apesar disso, a mulher portadora da mutação pode ser afetada pela DMD como resultado de mudanças no padrão da inativação do cromossomo X, síndrome de Turner (45,X) ou translocação do cromossomo X para um autossômio. Mulheres com sintomas de distrofia muscular são geralmente consideradas pacientes com distrofia muscular de cintura.(8) Até os dias atuais, existem poucos dados populacionais em relação a prevalência dessas portadoras, especialmente sobre as que são assintomáticas. O conhecimento sobre a condição do portador de mutação patogênica é importante para o aconselhamento genético, já que metade das crianças nascidas dessas portadoras podem ser afetadas pela doença e metade das crianças do sexo feminino serão portadoras do alelo mutado.

A importância de prevenção da DMD tem sido extensivamente enfatizada, uma vez que não há terapia curativa disponível. Para mulheres em risco, pode ser oferecido aconselhamento genético e alternativas para prevenir a transmissão do alelo mutado, tal como teste de portador, reprodução humana assistida com DGPI ou uso de óvulos doados e diagnóstico pré-natal.(8) O DGPI para seleção do sexo não é suficiente, especialmente em nosso caso, já que a menina poderia ser portadora de alelo mutado e desenvolver sintomas de DMD, também como a mãe. Um embrião do sexo masculino é testado para a análise direta da mutação familiar conhecida para determinar se será ou não afetado. O nascimento de meninos afetados pode ser prevenido por meio da interrupção da gravidez em países onde o
aborto é permitido. Nesses casos, os pais precisam enfrentar a carga emocional da possibilidade de abortar um garoto saudável, fato que sempre foi um das principais desvantagens do diagnóstico pré-natal de doenças ligadas ao X somente por meio da determinação do sexo. No DGPI, tanto embriões do sexo feminino ou masculino não afetados podem ser selecionados e transferidos para o útero.8 É importante enfatizar que para realização de DGPI nos casos de doenças monogênicas, é essencial conhecer a mutação, já que a análise genética é realizada em um pequeno número de células e o DGPI é específico para mutação daquela família. Portanto, se a família não tem o diagnóstico molecular, é necessário estudar previamente a mutação familiar por meio da análise de ligação. Além disso, com o conhecimento específico da mutação familiar e opções para prevenção do nascimento de meninos com a doença, o casal pode, assim, planejar seu futuro reprodutivo.

A análise de embriões por meio da associação de técnicas como a PCR e o array CGH mostrou-se segura para seleção de embriões em casos de doenças ligados ao X, como no caso de distrofia muscular de Duchene.

REFERÊNCIAS

1. Lee BL, Nam SH, Lee JH, Ki CS, Lee M, Lee J. Genetic analysis of dystrophin gene for affected male and female carriers with Duchenne/Becker muscular dystrophy in Korea. J Korean Med Sci. 2012;27(3):274-80.
2. Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2(12):731-40. Review.
3. Prior TW, Bridgeman SJ. Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J Mol Diagn. 2005;7(3):317-26. Review.
4. Chen C, Ma H, Zhang F, Chen L, Xing X, Wang S, et al. Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PloS One. 2014;9(9):e108038.
5. Hu XY, Ray PN, Murphy EG, Thompson MW, Worton RG. Duplicational mutation at the Duchenne muscular dystrophy locus: its frequency, distribution, origin, and phenotype-genotype correlation. Am J Hum Genet. 1990;46(4):682-95.
6. Hoffman EP, Pegoraro E, Scacheri P, Burns RG, Taber JW, Weiss L, et al. Genetic counseling of isolated carriers of Duchenne muscular dystrophy. Am J Med Genet. 1996;63(4):573-80.
7. Pikó H, Vancsó V, Nagy B, Bán Z, Herczegfalvi A, Karcagi V. Dystrophin gene analysis in Hungarian Duchenne/Becker muscular dystrophy families - detection of carrier status in symptomatic and asymptomatic female relatives. Neuromuscul Disord. 2009;19(2):108-12.
8. Helderman-van den Enden AT, Madan K, Breuning MH, van der Hout AH, Bakker E, de Die-Smulders CE, et al. An urgent need for a change in policy revealed by a study on prenatal testing for Duchenne muscular dystrophy. Eur J Hum Genet. 2013;21(1):21-6.