Cerebral oxygen extraction fraction MRI: Techniques and applications

Dengrong Jiang1 | Hanzhang Lu1,2,3

1The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
2Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
3F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA

Correspondence
Hanzhang Lu, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 322, Baltimore, MD 21287, USA.
Email: hanzhang.lu@jhu.edu

Funding information
NIH (R01 NS106702, R01 NS106711, R01 AG064792, R1F AG071515, R1F NS110041, R21 AG058413, and P41 EB031771).

INTRODUCTION

The human brain constitutes 2% of the body’s total mass but uses 20% of the oxygen.1 The brain has limited capacity to store oxygen, and its oxygen utilization primarily relies on extraction from incoming arterial blood in real time. Therefore, the oxygen extraction fraction (OEF) is a key physiological parameter of the brain’s energy metabolism and has been suggested to be a potential biomarker in several diseases, such as Alzheimer disease (AD),2,3 carotid steno-occlusive disease,4 sickle cell disease (SCD),5,6 and brain tumor.7

Measurement of OEF and the related cerebral metabolic rate of oxygen (CMRO2) in humans used to be a niche market of PET with 15O-labeled radiotracers.8-10 Although 15O-PET is still widely regarded as the gold standard for OEF and CMRO2 mapping, its broad clinical applications have been hampered by the complex logistics,
exposure to radiation, and the requirement for an on-site cyclotron to produce the 15O isotope, which has a short half-life of 2 min.

With the advances in MRI, several techniques have been developed to quantify OEF, based on the associations between blood oxygenation and MRI properties, such as T_2, susceptibility, and magnetization phase, or by exploiting gas modulations. Among these techniques, some provide a global or whole-brain measure of OEF, while others aim to estimate OEF in specific brain regions. Some of these techniques have demonstrated potential clinical utility in brain diseases. The goal of this article is to provide a review of MRI-based OEF measurements. We will first introduce the physiological importance of OEF. We will then review major categories of MRI-based OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. Finally, we will highlight key clinical applications of these techniques, although they are not meant to be exhaustive.

2 | OEF AND BRAIN OXYGEN HOMEOSTASIS

As illustrated in Figure 1, when fully oxygenated arterial blood flows through the capillaries, it releases oxygen to the surrounding tissues. The fraction of oxygen extracted by the tissue is the OEF. Specifically, OEF is defined as:

$$OEF = \frac{Y_a - Y_v}{Y_a} \times 100\%$$ (1)

where Y_v is the venous oxygenation, defined as the fraction of oxyhemoglobin in the venous blood, and Y_a is the arterial oxygenation. Under normal conditions, $Y_a \approx 100\%$ and is relatively uniform throughout the body. Thus, OEF can often be simplified to:

$$OEF \approx 1 - Y_v.$$ (2)

Y_a can also be conveniently measured by a pulse oximeter at the fingertip, especially when abnormalities in Y_a are expected. The major challenge is, therefore, the measurement of Y_v.

In blood, oxyhemoglobin and deoxyhemoglobin have distinct magnetic properties: oxyhemoglobin is diamagnetic, while deoxyhemoglobin is paramagnetic. Inside the vessel, an increased concentration of deoxyhemoglobin leads to a larger microscopic magnetic field gradient. Diffusion and exchange of water molecules in this induced inhomogeneous field results in a reduction in blood T_2, similar to the well-known BOLD effect. A higher concentration of deoxyhemoglobin also increases the magnetic susceptibility of voxels containing blood. This susceptibility difference between blood and tissue results in an additional phase angle in the transverse magnetization of blood. Outside the blood vessel, the local field inhomogeneity induced by the paramagnetic deoxyhemoglobin in the vessel networks results in additional decay of the tissue signal. Finally, BOLD signal changes during hypercapnic and hyperoxic gas inhalations can be modeled as a function of deoxyhemoglobin, and the non-linear nature of this function enables the differentiation of different variables and the estimation of OEF (among other physiological parameters). The OEF methods described in this review are based on one or more of the above-mentioned effects.

Once OEF is quantified, it can be combined with cerebral blood flow (CBF) to calculate CMRO$_2$ based on the Fick's principle:

$$CMRO_2 = CBF \cdot \left(Y_a - Y_v \right) \cdot C_{hb} \cdot [Hb]$$
$$= CBF \cdot OEF \cdot Y_a \cdot C_{hb} \cdot [Hb]$$ (3)

where [Hb] is the total hemoglobin concentration (in gram hemoglobin/dL blood). C_{hb} is the oxygen carrying capacity of hemoglobin (1.34 ml or 59.8 μmol O$_2$/gram hemoglobin). The term $\left(Y_a - Y_v \right) \cdot C_{hb} \cdot [Hb]$ is sometimes called the arterio-venous difference in oxygen content (AVDO$_2$). CBF can be measured globally by using phase-contrast MRI to quantify blood flow in the feeding arteries, or regionally by using arterial spin labeling (ASL) MRI.

It should be pointed out that OEF reflects a balance between CBF (blood supply) and CMRO$_2$ (oxygen consumption), which can be considered the driving variables of OEF. In clinical applications, for some diseases, such as neurodegenerative diseases, CMRO$_2$ may be a better biomarker since it is more directly associated with neural function. For other diseases, such as stroke, OEF may be a more sensitive biomarker since it is also related to blood supply.

It is worth noting that non-invasive quantification of OEF and CMRO$_2$ is also possible with MR spectroscopic imaging of 17O, which is the only MR-active stable isotope...
of oxygen. Due to the very low natural abundance of ^{17}O, ^{17}O MRI is typically performed with ^{17}O-enriched tracers. A detailed review of ^{17}O MRI is beyond the scope of this article, and interested readers are referred to other dedicated reviews. In this article, we will focus on MRI OEF techniques that do not require exogenous tracers.

3 MRI TECHNIQUES FOR OEF MEASUREMENT

3.1 T$_2$-based methods

3.1.1 Measurement of venous T$_2$

Under a fixed hematocrit (Hct) level, blood oxygenation has a one-to-one correspondence to blood T$_2$. Therefore, Y_v (and OEF) can be measured by quantifying blood T$_2$. It is important to obtain a pure venous blood signal in this measurement, as partial volume contamination from tissue or CSF can cause bias in T$_2$ determination. While some researchers have relied on high image resolution to separate blood signal in large cerebral veins, more recent work has used special sequence designs to isolate the blood signal.

One example is T$_2$-relaxation-under-spin-tagging (TRUST) MRI. Figure 2A shows the TRUST pulse sequence diagram. TRUST labels blood spins on the venous side (Figure 2B), and uses the subtraction between control and labeled images (Figure 2C) to yield pure venous blood signal in the superior sagittal sinus (SSS). The venous blood T$_2$ is quantified by applying T$_2$-preparation with a varying number of refocusing pulses, which is characterized by the effective TE (eTE). The T$_2$-preparation pulses are applied to the entire brain, i.e., non-selectively, so that the degree of T$_2$ attenuation is not dependent on the flow velocity of the blood. Simple mono-exponential fitting of the blood signal as a function of eTE then yields venous T$_2$, which is converted to Y_v through a calibration model, based on the Hct level of the subject. Since the SSS drains the majority of the cerebral cortex, TRUST MRI is thought to assess the global OEF level of the brain.

TRUST has a scan time of 1.2 min, and its signal mechanism is relatively straightforward. Rater dependence in TRUST data processing is minimal, as it uses the top signal voxels for T$_2$ estimation and the manual region of interest (ROI) plays a negligible role in the final result as long as it contains the SSS. The test–retest reproducibility of TRUST MRI has been examined, with a same-day test–retest coefficient of variation (CoV) of 3% and a day-to-day CoV of 8% for OEF quantification. The sensitivity of TRUST to OEF changes has been evaluated in several physiological challenges, such as caffeine ingestion, hypercapnia, hypoxia, and hyperoxia, all of which showed expected OEF changes using TRUST. The reliability of TRUST MRI has also been studied in the context of multiple sites and different MR vendors. In a recent study, TRUST MRI was validated with ^{15}O-PET, which found a global OEF of 36.44 ± 4.07% with TRUST MRI and 36.45 ± 3.65% with ^{15}O-PET in 16 healthy adults. The two modalities also revealed a correlation (intraclass correlation coefficient = 0.90) in OEF measures. In addition to human studies, TRUST has also been implemented on animal MR imaging systems for OEF assessment in mice and rats.

Other interesting technical work on global T$_2$ assessment includes the use of high-spatial-resolution echo-planar or turbo-field-echo acquisition to obtain pure blood voxels, the combination of a T$_2$-preparation sequence with inversion recovery to simultaneously measure blood T$_1$ and the integration of flow measurement in the sequence to allow CMRO$_2$ measurement from a single sequence. While global OEF estimation has the obvious limitation of a lack of spatial information, these techniques tend to have a high reproducibility with a short scan duration, which makes them easy to incorporate into the workflow of clinical or research imaging. The global OEF can also serve as a useful reference or validation measure for comparison with regional OEF techniques.

T$_2$-based regional OEF techniques have also been reported. O’Brien et al. proposed to incorporate spatially selective saturation pulses into TRUST to isolate venous blood signal from localized regions of the brain, so that OEF can be measured for a specific hemisphere or a volume of interest. Another technique, T$_2$-relaxation-under-phase-contrast (TRUPC), uses phase-contrast complex subtraction to isolate flowing blood signal in the vessels. With this technique, OEF can be measured in regional cerebral veins, such as the internal cerebral vein (ICV), the great vein of Galen, the straight sinus, as well as the pial veins. TRUPC has a same-day CoV of 6% for OEF quantification. An accelerated version of TRUPC has also been proposed, which shortens the acquisition time from 5 min to approximately 2 min. TRUPC MRI has been validated against blood-gas oximetry of direct blood samples from the SSS on a piglet model. Three-dimensional and T$_2$-based implementations of TRUPC have also been demonstrated.

Further advancement of T$_2$-based methods attempted to provide voxel-wise OEF mapping. QUantitative Imaging of eXtraction of Oxygen and Tissue Consumption (QUIXOTIC) and Velocity-Selective Excitation with Arterial Nulling (VSEAN) are two techniques that use velocity-selective labeling or excitation to isolate the...
FIGURE 2 Illustration of TRUST MRI. A, The TRUST pulse sequence starts with a pre-saturation (pre-sat) pulse to suppress static tissue signal. Then, a label/control module is used to magnetically label the incoming venous blood. Images are acquired after a waiting period. This waiting period is selected to allow the labeled blood to flow into the imaging plane and to allow the inverted blood signal to recover to the positive magnetization, so that the phase of the magnetization is not a confounding factor for control-label subtraction. Before data acquisition, non-selective T2-preparation pulses are applied to modulate T2-weighting. The spin history is cleared by post-saturation (post-sat) pulses at the end of TR. B, Position of TRUST MRI. Imaging slice (yellow box) is placed approximately parallel to the anterior-commissure–posterior-commissure line and 20 mm above the sinus confluence. Blue box represents the labeling slab. C, Representative TRUST data. Subtraction between control and labeled images yields strong venous blood signal in the SSS (red box). The scatter plot shows venous signal as a function of eTEs. The resulting blood T2, Yv, and OEF are also shown.

post-capillary venous blood signal from tissues in the same voxel, allowing voxel-wise mapping of venous blood T2 and OEF. However, since the post-capillary venous blood comprises only 1–3% of the volume of a voxel,67 SNR and partial volume contamination represent potential obstacles in clinical applications. Approaches to shorten scan time,68 enhance SNR, and reduce CSF contamination69 have been proposed.

3.1.2 T2-Y conversion

All T2-based oximetry methods require the use of a calibration model to convert blood T2, which is an MR property, to oxygenation (Y), which is a physiological parameter. It should be noted that, under most circumstances, the same calibration plot can be used for different subjects and different studies. That is, it is not necessary to develop a calibration plot for each subject or each study. For applications in children and adults who have no hematological pathologies, the most commonly used T2-Y calibration model was proposed by Lu et al. (Figure 3),43 which was based on in vitro experiments on bovine blood samples. Bovine blood has characteristics similar to those of adult human blood in terms of the hemoglobin structure, red blood cell (RBC) shape and size,70 and diffusional water permeability.71 This bovine model has been demonstrated to provide Yv and OEF quantifications consistent with 15O-PET in healthy human adults.41

Some studies have also considered the effect of Hct on the T2-Y relationship. Blood T2 is indeed also dependent on Hct, although to a much lesser degree compared to oxygenation.43 To take Hct into consideration in the conversion, the calibration model can be used to obtain an Hct-specific T2-Y curve (most models provide a three-way relationship of Y, Hct, and T2; thus, it is straightforward to obtain Hct-specific curves). Then, based on the individual’s Hct value, which is sometimes available from the
Figure 3. The bovine T₂-Y calibration model: A. 3D mesh plot showing the dependence of blood T₂ on Y and Hct; B. Exemplary T₂-Y conversion curves extracted from the 3D mesh plot. With a fixed Hct, T₂ increases monotonically with Y; with a fixed Y, a lower Hct leads to a higher T₂.

Future work should consider individual-specific, in vivo calibrations for patients with hematological conditions such as SCD. Such calibration can be conducted by applying MRI T₂ measurements to the superficial veins in the arm, for example, followed by blood sampling to obtain its oxygenation. The venous oxygenation in the arm can be varied by using intermittent cuff occlusion to restrict blood flow, or by using hyperoxic/hypoxic gas inhalation, providing multiple data points to determine the subject-specific T₂-Y calibration curve. Such calibration data can then be applied to the venous T₂ of the brain to provide a more accurate estimation of OEF in the patient. Compared to previous calibration efforts, this approach can preserve the cell integrity of erythrocytes and their natural shape in vivo and will not have confounding factors related to blood preparation.

Finally, the above-mentioned models were primarily calibrated at 3T, with some conducted at 7T. Since T₂ varies with magnetic field strength, for applications at other field strengths, specific calibration models should be used. A unified calibration model based on quantitative theory and aggregated experiments has also been proposed.

3.2 Phase-based methods

Because of the paramagnetic property of deoxyhemoglobin, the susceptibility difference (Δχ) between blood and tissue has a linear relationship with blood oxygenation:

$$\frac{\Delta \chi}{Hct} = \Delta \chi_{do}(1 - Y) + \Delta \chi_{oxy}$$

where Δχ_{do} is the susceptibility difference between fully oxygenated and deoxygenated blood, and has been characterized in the literature. Δχ_{oxy} is the susceptibility difference between fully oxygenated blood and tissue. Δχ_{oxy} is much smaller than Δχ_{do} and is often omitted in many studies. The susceptibility of blood induces a
local magnetic field offset \(\Delta B_{\text{bl}} \), which results in an additional phase difference, \(\Delta \Phi \), between successive echoes. Although, in general, the inverse problem to solve \(\Delta \chi \) from \(\Delta \Phi \) is complex and ill-conditioned, in a special case where the blood vessel can be modeled as a long straight cylinder approximately parallel to the main magnetic field \(B_0 \), we have:

\[
\Delta \Phi_{\text{ie}} = \Delta \phi_{\text{intra}} - \Delta \phi_{\text{extra}} \tag{5}
\]

where \(\Delta \phi_{\text{intra}} \) and \(\Delta \phi_{\text{extra}} \) are the inter-echo phase difference within the vessel and in the neighboring extravascular tissue, respectively, and can be written as:

\[
\Delta \phi_{\text{intra}} = \gamma \cdot \Delta T E \cdot (\Delta B_{\text{bl,intra}} + \Delta B_{0,\text{intra}}) \tag{6}
\]

\[
\Delta \phi_{\text{extra}} = \gamma \cdot \Delta T E \cdot (\Delta B_{\text{bl,extra}} + \Delta B_{0,\text{extra}}) \tag{7}
\]

where \(\gamma \) is the gyromagnetic ratio and \(\Delta T E \) is the TE difference between successive echoes. \(\Delta B_{\text{bl,intra}} \) and \(\Delta B_{\text{bl,extra}} \) are the intra- and extravascular background \(B_0 \) inhomogeneity, respectively. \(\Delta B_{0,\text{intra}} \) and \(\Delta B_{0,\text{extra}} \) are the blood-induced field inside and outside the vessel accounting for the Lorentz sphere effect, respectively, and can be written as:

\[
\Delta B_{\text{bl,intra}} = \frac{\Delta \chi}{2} \left(\cos^2 \theta - \frac{1}{3}\right) B_0 \tag{8}
\]

\[
\Delta B_{\text{bl,extra}} = \frac{\Delta \chi}{2} \left(\sin^2 \theta - \frac{r^2}{\rho^2} \cdot \cos 2\omega\right) B_0 \tag{9}
\]

where \(\theta \) is the angle between the cylinder axis and \(B_0 \), \(r \) is the vessel radius, \(\rho \) is the distance to the vessel axis, and \(\omega \) is the azimuthal angle (Figure 4A). Assuming that the intra- and extravascular ROIs are sufficiently adjacent to each other, and thus, the effects of background \(B_0 \) inhomogeneity, that is, \(\Delta B_{0,\text{intra}} \) and \(\Delta B_{0,\text{extra}} \), are the same, \(\Delta \Phi_{\text{ie}} \) is primarily related to the deoxyhemoglobin content in the blood. Figure 4B shows a simulated blood-induced field map (Equations 8 and 9) for a hypothetical cylindrical vessel oriented at \(\theta = 20.1^\circ \). It can be seen that the extravascular term, \(\Delta B_{\text{bl,extra}} \), is very small when \(\theta \) is small, and also decays rapidly with the distance from the vessel. Therefore, in most experimental studies where the vessel is approximately parallel to \(B_0 \), \(\Delta B_{\text{bl,extra}} \) is negligible and Equation (5) can be written as:

\[
\Delta \Phi_{\text{ie}} = \frac{\Delta \chi}{2} \left(\cos^2 \theta - \frac{1}{3}\right) B_0 \gamma \Delta T E. \tag{10}
\]

Note that \(\theta \) can be measured from localizer or time-of-flight (TOF) vessel images. Combining Equations (4 and 10) and ignoring \(\Delta \chi_{\text{oxy}} \), \(Y_v \) can be calculated by:

\[
Y_v = 1 - \frac{2|\Delta \Phi_{\text{ie}}|}{\gamma B_0 \cdot \Delta T E \cdot \Delta \chi_{\text{do}} \cdot \text{Hct} \left(\cos^2 \theta - \frac{1}{3}\right)} \tag{11}
\]

To quantify OEF using the phase-based method, gradient-recalled-echo (GRE) sequences with multiple TEs are typically used. Flow compensation is usually applied to minimize the flow-induced phase accumulation. Figure 5A shows an exemplary flow-compensated multi-echo GRE sequence. Because the vessel is assumed to be a long straight cylinder, phase-based methods usually focus on large cerebral veins that are relatively parallel to \(B_0 \), such as internal jugular veins (IJVs) and the SSS, which can provide an estimation of global \(Y_v \) (and OEF) similar to the TRUST method. Figure 5B shows exemplary data of phase-based OEF at the level of the SSS. Some studies have also extended this technique to quantify OEF in selected regional veins that can be approximated as a long cylinder (length to diameter ratio >5).

The accuracy of phase-based \(Y_v \) quantification relies on the calibration of \(\Delta \chi_{\text{do}} \). For normal human adult blood, early work by Weisskoff et al. found a \(\Delta \chi_{\text{do}} \) around 0.18 ppm (centimeter-gram-second [cgs] system of units). A later study by Spees et al. obtained a
\(\Delta \chi_{do} \) of 0.27 ppm (cgs) using three independent methods, including MR measurements, superconducting quantum interference device measurements, and theoretical estimates based on Curie’s law and blood magnetic properties reported by Pauling and Coryell. Another study by Jain et al. also found a \(\Delta \chi_{do} \) of approximately 0.27 ppm (cgs). A recent study by Eldeniz et al. reported that \(\Delta \chi_{do} \) was 0.19 ppm (cgs) for normal adult blood and the \(\Delta \chi_{do} \) of sickled blood was not significantly different. For human neonatal blood, Portnoy et al. found a \(\Delta \chi_{do} \) of 0.21 ppm (cgs).

The sensitivity of phase-based methods to OEF changes have been demonstrated in various physiological challenges, such as hypercapnia, hypoxia, acetazolamide administration, caffeine ingestion, and breath-hold apnea.

Phase-based methods have been integrated with phase-contrast MRI to simultaneously measure global OEF and CBF levels in a single sequence dubbed OxFlow. OxFlow demonstrated a CoV of 5% for global OEF quantification in same-day and day-to-day test–retest experiments. Recently, OxFlow has been shown to provide global OEF values with no systematic bias compared to \(^{15} \)O-PET measurements on a porcine model. The original OxFlow sequence took 30 s. With extensive acceleration, the variants of OxFlow can achieve a temporal resolution of a few seconds.

It should be noted that actual cerebral veins often exhibit curvature and noncircular cross-sections, and thus, rarely conform to the straight cylinder model. For example, the SSS has a triangular cross-section. Fortunately, it has been demonstrated that the absolute error in \(Y_v \) caused by a non-circular cross-section is <5% when the vessel tilt angle is small \((\theta < 30^\circ \)) . Alternatively, Driver et al. proposed using a forward field calculation that takes into account the exact shape of the vessel to estimate \(Y_v \). Another major source of error is the phase errors induced by background \(B_0 \) inhomogeneities, which can be approximated as a second-order polynomial and then removed from the phase difference calculations in Equations (6 and 7). In addition, to minimize partial-volume effects, sufficient image resolution is required. Finally, the processing of the data requires the manual drawing of extravascular ROIs, which must be approached carefully to minimize rater dependence.

3.3 Methods based on quantitative susceptibility mapping

To estimate OEF in local veins with an arbitrary orientation and geometry, quantitative susceptibility mapping (QSM) methods have been developed. QSM solves the general inverse problem of determining regional \(\Delta \chi \) from \(\Delta \Phi \). Assuming that the vein is at least one-voxel wide, and thus, the \(\Delta \chi \) measured is linearly proportional to blood oxygenation but not due to blood volume fraction, regional \(Y_v \) can be estimated using Equation (4). As mentioned earlier, this inverse problem is complex and ill-conditioned. Various algorithms have been proposed to solve this problem and quantify \(Y_v \) and OEF in local veins, such as thresholded \(k \)-space division and L1-regularization. To further correct for the flow-induced phase errors in the veins, an adaptive-quadratic fitting method has been proposed. A potential caveat of these methods is that they may be sensitive to partial volume effects, i.e., the voxel is not 100% blood, which will result in an overestimation of venous oxygenation (thus underestimation in OEF), especially for small veins. Partial volume correction algorithms may be useful in improving the accuracy of OEF quantification.

In addition to local veins, QSM-based methods have been extended to measure voxel-wise OEF. This method does not require the vein(s) to occupy the entire...
voxel. For an arbitrary voxel in the brain, its susceptibility has contributions from various sources, including blood and non-blood tissues. To decouple these factors, QSM and CBF (e.g., using ASL) can be acquired in two isometabolic brain states to correct for the non-blood contributions (e.g., from tissue ferritin), which are assumed to remain the same between the two states. This has been carried out by using physiological challenges, such as caffeine ingestion, hyperventilation, hypercapnia, or hyperoxia. These challenges are generally considered to be isometabolic (i.e., does not change CMRO₂), although controversial findings exist in the literature. The blood contribution arises from both venous and arterial blood and is modulated by their respective cerebral blood volume (CBV). In these QSM-based methods, total CBV was estimated from CBF data by assuming CMRO₂ to have minimum local variance. A caveat of these methods is the large number of assumptions, for example, CBF-CBV relationship, arterial–venous CBV fractions, isometabolic challenge, and registration between EPI-based low-resolution ASL and GRE-based high-resolution QSM images. In addition, the accuracy of the measurement is expected to strongly depend on the reliability of the ASL CBF estimation in both baseline and challenged states, in the presence of confounding factors such as labeling efficiency, bolus arrival time, and arterial contaminations.

A few studies have compared QSM-based OEF measurements to PET-based OEF in healthy volunteers and in patients with arterial steno-occlusive diseases, in which the affected hemisphere is likely to have an elevated OEF. These studies showed significant correlations between QSM and PET in both the absolute OEF values and the affected/contralateral OEF ratio, although systematic biases were also reported.

3.4 Quantitative BOLD

Unlike the T₂-based and susceptibility-based methods that focus on the effect of blood oxygenation on “intravascular” signals, the quantitative BOLD (qBOLD) model focuses on the signal decay in the “extravascular” space due to the local field inhomogeneities induced by the paramagnetic deoxyhemoglobin in the vessel network. When studying the transverse signal decay due to deoxyhemoglobin, conventional BOLD models consider that the decay rate is related to both oxygenation level (i.e., OEF) and blood volume, but are unable to separate the effects of these two terms. That is, a faster BOLD signal decay could be due to either lower blood oxygenation or larger blood volume. Yablonskiy and colleagues, on the other hand, proposed a “static dephasing regime” BOLD model, in which the vessels were considered an ensemble of randomly oriented cylinders. The key advantage of this model is that the oxygenation and blood volume effects can be separated experimentally. Specifically, two asymptotic equations can be derived to describe the signal behavior around a spin-echo:

\[
\ln(S_s(\tau)) = \ln(S(0)) - (TE + \tau) \cdot R_2 \cdot 0.3 \cdot DBV \cdot (\delta \omega \cdot \tau)^2, \\
\text{if } |\tau| < 1.5/\delta \omega
\]

\[
\ln(S_v(\tau)) = \ln(S(0)) - (TE + \tau) \cdot R_2 \cdot R_2' \cdot |\tau| + DBV, \\
\text{if } |\tau| > 1.5/\delta \omega
\]

where \(\tau\) is the time gap between image acquisition and the spin-echo (\(\tau\) is negative if the image is sampled before the spin-echo); \(S_s\) and \(S_v\) are the extravascular tissue signal for short and long \(\tau\), respectively; \(R_2\) is the tissue transverse relaxation rate; and \(DBV\) is the deoxygenated blood volume, to which the veins mainly contribute, but which also contains the part of capillary adjacent to the venous side. TE here is the time of the spin-echo. \(\delta \omega\) is the deoxyhemoglobin-induced frequency shift; \(R_2'\) is the radiofrequency reversible transverse relaxation rate (\(R_2' = R_2 - R_2\)) and has the following relationship:

\[
R_2' = DBV \cdot \delta \omega = DBV \cdot \gamma \cdot \frac{4}{3} \cdot \pi \cdot \Delta \chi_{\text{do}} \cdot Hc \cdot (1 - Y_t) \cdot B_0
\]

Figure 6 shows a schematic of the qBOLD model. The linear part of the model (Equation 13) is used to measure \(R_2'\), while the mismatch between the fitted linear intercept and the spin-echo signal allows estimation of DBV. OEF can then be calculated using Equation (14).

To quantify OEF using the qBOLD model, many studies have used a Gradient-Echo-Sampling-of-Spin-Echo (GESSE) sequence, in which multiple gradient echoes are acquired with varying \(\tau\) from the spin-echo of a fixed TE. Figure 7 shows exemplary \(R_2'\). DBV, and OEF maps acquired with GESSE-based qBOLD. However, one drawback of this sequence is the varying \(R_2\)-weighting among the gradient echo signals (Equation 13), which must be accounted for when quantifying \(R_2'\). Alternatively, An et al. proposed an Asymmetric-Spin-Echo (ASE) sequence in which the position of the 180° refocusing pulse was varied to yield a different \(\tau\) while keeping...
FIGURE 6 Schematic of the qBOLD model describing the transverse MR signal decay in the presence of a blood vessel network. R_2' is inferred from the monoeponential regime ($T_c = 1.5/6\omega$, Equation 13) and DBV is inferred from the mismatch between the linear intercept of this fit and the spin echo signal ($\tau = 0$ ms). Baseline OEF can then be estimated by combining these two measurements. Adapted from Stone et al.132 with permission

Because the separation of the DBV and OEF effects in the qBOLD model relies on subtle differences in decay patterns (Equations 12 and 13), accurate estimation of DBV and OEF from the GESSE or ASE signals requires high SNR.131,144,145 To address this problem, several groups have developed a multiparametric-qBOLD (mqBOLD) scheme, in which CBV is measured using dynamic susceptibility contrast (DSC) MRI and R_2' is estimated by separately mapping R_2 with a multiple spin-echo sequence and R_2' by a multi-echo GRE sequence.146-148 However, the CBV measured by DSC is the total CBV rather than DBV. Therefore, the OEF produced by mqBOLD is a relative OEF.147,148

Alternatively, DBV could be separately measured through a hyperoxia challenge149 or by using velocity-selective labeling techniques,150,151 while R_2' could be quantified using sequences similar to GESSE or ASE.138,152,153 Stone et al. reported that OEF values obtained with separate DBV measurement had substantially better agreement with TRUST global OEF than those obtained using DBV values estimated from the ASE signal.152,153 This highlighted the importance of accurate DBV measurement in qBOLD-based OEF quantification.

A caveat of the qBOLD method is that the model described in Equations (12–14) considered a single extracerebral tissue compartment and assumed that R_2' is only related to the deoxygenated blood.26,131 However, in reality, R_2' is also sensitive to macroscopic B_0 inhomogeneity, which must be corrected either prospectively, using the z-shimming method,132,154 or retrospectively, using a high-resolution field map,135 or by modeling the voxel spread function.155,156 An actual imaging voxel can also contain other compartments, such as intravascular blood and CSF or interstitial fluid (ISF). To address this issue, He et al. extended the original qBOLD model to incorporate contributions from other compartments.135 However, solving this multi-compartmental model requires prior knowledge about the tissue composition and results in a large number of fitting parameters.135 Alternatively, contributions from other compartments can be minimized to...

FIGURE 7 qBOLD parametric maps from a representative subject. DBV, OEF, and R_2' maps are presented alongside an anatomic image. Adapted from He et al.135 with permission
simplify the model. For example, the intravascular contribution can be reduced by using flow crushing gradients,136 and the CSF/ISF signal can be suppressed by using a fluid-attenuated-inversion-recovery preparation pulse.132 Another important assumption of the qBOLD model is “static dephasing,” that is, neglecting the diffusion effects. However, it has been shown that diffusion introduces a vessel size-dependent effect on the signal decay, and ignoring this diffusion effect may lead to a systematic underestimation of OEF.157–160

3.5 Dual-calibrated fMRI

BOLD-based calibrated fMRI is a method to quantify changes in oxygen metabolism in response to neural stimuli.161,162 A detailed review of calibrated fMRI is outside the scope of this article, and interested readers are referred to other dedicated reviews.163 In this section, we will focus on a subset of calibrated fMRI techniques, dubbed dual-calibrated fMRI (dc-fMRI), which allows quantification of baseline OEF.22–24

The R2-weighted BOLD signal is dependent on CBV and the concentration of deoxyhemoglobin. Specifically, the relative BOLD signal change can be written as:161,162

\[
\frac{\Delta \text{BOLD}}{\text{BOLD}_0} = M \left(1 - \left(\frac{\text{CBF}_1}{\text{CBF}_0} \right)^a \left(1 - \frac{1}{Y_{v,1}} \right)^{\beta} \right)
\] \hspace{1cm} (15)

where the parameter M, the so-called calibration constant, is a composite constant related to field strength and TE, among other factors, and represents the maximum possible BOLD signal change that can be observed from the voxel. The subscript “0” denotes the baseline values while the subscript “1” denotes challenged state values. The constant a is the so-called “Grubb exponent” and is used to infer CBV from CBF (CBV \(\propto\) CBFa). The constant a was initially measured to be 0.38 by Grubb et al.,121 while later studies have suggested a lower a value of \(\sim 0.2\).154,155 The constant \(\beta\) indicates the relationship between deoxyhemoglobin concentration and R2, and is dependent on vascular morphology, water diffusion, and the field strength, typically assumed to be 1.3 or 1.5 at 3T field strength.22–24,161,166–168

Equation (15) is a general expression and is applicable to a variety of challenges, such as task activation and physiological maneuvers. The dc-fMRI OEF method applies this relationship to two gas inhalation regimes, hypercapnia and hyperoxia, to estimate baseline OEF.

First, hypercapnia via CO\textsubscript{2} inhalation is used to determine M. The MRI data acquisition involves the measurement of both BOLD and CBF (via ASL) at baseline and during the hypercapnia challenge. Based on Equations (2, 3, 15), we can derive that:

\[
\frac{\Delta \text{BOLD}_{hc}}{\text{BOLD}_0} = M \left(1 - \left(\frac{\text{CBF}_{hc}}{\text{CBF}_0} \right)^a \left(\frac{\text{CMRO}_{2, hc}}{\text{CMRO}_{2,0}} \right)^{\beta} \right)
\] \hspace{1cm} (16)

where the subscript “hc” denotes the values during hypercapnia. Under the assumption that hypercapnia is isometabolic (CMRO\textsubscript{2, hc} = CMRO\textsubscript{2,0}), M can then be estimated based on the hypercapnia-induced BOLD signal change and CBF change.

Next, a hyperoxia challenge is applied while BOLD and CBF changes are measured. To apply Equation (15) to hyperoxia, CMRO\textsubscript{2} is again assumed to be unchanged and the \(\frac{1-Y_{v,0}}{1-Y_{v,1}}\) term is rewritten as:24

\[
\frac{1 - Y_{v, ho}}{1 - Y_{v,0}} = \frac{\text{CBF}_0}{\text{CBF}_{ho}} - \frac{1}{1 - Y_{v,0}} \left\{ \frac{1}{C_{hb}[Hb]} \left(\text{CaO}_2, ho \right) - \left(\frac{\text{CBF}_0}{\text{CBF}_{ho}} \right) \left(\text{CaO}_2, ho \right) + \frac{\text{CBF}_0}{\text{CBF}_{ho}} - 1 \right\}
\] \hspace{1cm} (17)

where the subscript “ho” denotes the values during hyperoxia. [Hb] is the total hemoglobin concentration. C\textsubscript{hb} is the oxygen-carrying capacity of hemoglobin (59.8 \(\mu\)mol O\textsubscript{2}/gram hemoglobin).28 CaO\textsubscript{2} is the arterial oxygen content. Here, CaO\textsubscript{2} must consider the dissolved oxygen (which is no longer negligible), in addition to hemoglobin-bound oxygen, and can be written as:24

\[
\text{CaO}_2 = C_{hb} \cdot [Hb] \cdot \frac{1}{\left(\frac{23400}{(P_aO_2) + 150} P_aO_2 + 1 \right)} + P_aO_2 \cdot \varepsilon
\] \hspace{1cm} (18)

where the first term represents O\textsubscript{2} bound to hemoglobin while the second term is the dissolved O\textsubscript{2} in blood plasma. P\textsubscript{a}O\textsubscript{2} is the arterial oxygen partial pressure and can be approximated by the end-tidal oxygen partial pressure (P\textsubscript{ET}O\textsubscript{2}) measurement. \(\varepsilon\) is the coefficient of solubility of oxygen in blood (0.138 \(\mu\)mol O\textsubscript{2}/dL blood/mm Hg O\textsubscript{2} tension).48,169 Finally, based on Equations (2, 15–17), we can derive that:

\[
\text{OEF}_0 = 1 - Y_{v,0}
\]

\[
= \frac{1}{C_{hb} \cdot [Hb]} \left(\text{CaO}_2, ho - \left(\frac{\text{CBF}_0}{\text{CBF}_{ho}} \right) \text{CaO}_2, ho \right) + \frac{\text{CBF}_0}{\text{CBF}_{ho}} - 1
\]

\[
= \frac{\text{CBF}_0}{\text{CBF}_{ho}} \left(1 - \frac{\Delta \text{BOLD}_{ho}}{\text{BOLD}_0} M \right) \left(\frac{\text{CBF}_0}{\text{CBF}_{ho}} \right)^{\frac{1}{\beta}} \left(\frac{\text{CBF}_0}{\text{CBF}_{ho}} \right)^{\frac{1}{\beta}}
\] \hspace{1cm} (19)

Therefore, baseline OEF can be measured by acquiring the BOLD signal, CBF, and P\textsubscript{ET}O\textsubscript{2} (to estimate CaO\textsubscript{2} per Equation 18) at baseline and during two gas challenges: hypercapnia to calibrate M and hyperoxia to factor out
(1 − \(Y_{V,0}\)). A schematic of dc-fMRI experiments is shown in Figure 8.\(^{170}\) The total duration of a dc-fMRI experiment is typically about 18 min.\(^{22–24,170}\)

To simultaneously acquire both BOLD and CBF images at the baseline and during gas challenges, one approach is to use an ASL sequence with a relatively long TE (\(\sim 20\) ms) to increase the BOLD weighting. The BOLD signal is then extracted by averaging the adjacent ASL label and control images, while CBF is calculated from the label-control difference.\(^{23}\) However, the TE used in this approach is suboptimal for both ASL and BOLD, leading to a compromised contrast-to-noise ratio.\(^{170}\) Later studies of dc-fMRI have mainly used dual- or multi-echo ASL sequences in which the CBF images are acquired at an early echo with shortest TE to maximize SNR, while the BOLD images are acquired at a later echo with optimal BOLD contrast.\(^{22,24,119,167,171,172}\) The dual-echo sequence contains greater cross-talk between the CBF and BOLD effects. Thus, some studies have used dual-excitation schemes in which a conventional ASL readout is immediately followed by another excitation to acquire BOLD images.\(^{173–175}\)

Data processing of dc-fMRI is relatively complicated. One approach is to compute \(M\) and OEF separately using the hypercapnia and hyperoxia data,\(^{23}\) as described above, but may suffer from error propagations along the analysis pipeline. Alternatively, these parameters can be jointly estimated by fitting a generalized model using all data, which has been suggested to improve the robustness of OEF estimation.\(^{176}\) Machine-learning-based methods have also been proposed.\(^{177}\)

dc-fMRI allows simultaneous measurement of OEF, CBF, and CMRO\(_2\). In addition, cerebrovascular reactivity (CVR) can also be extracted from the dc-fMRI data,\(^{23,176}\) which itself is an important index of cerebrovascular health.\(^{178,179}\) Figure 9 shows exemplary parametric maps produced by dc-fMRI.\(^{23}\) The reproducibility of dc-fMRI measurements has been evaluated in two studies. Lajoie et al. reported a same-day CoV of 13.6% for OEF averaged across gray matter.\(^{180}\) Merola et al. showed that the CoV of OEF averaged across gray matter was 6.7% and 10.5% for same-day and day-to-day test–retest experiments, respectively.\(^{181}\) These CoV values are generally higher than some of the previously described methods. However, the advantage of the dc-fMRI method is that it provides spatially resolved maps of multiple hemodynamic and metabolic parameters in one scan. The sensitivity of dc-fMRI to OEF changes has been demonstrated in caffeine challenges.\(^{119}\)

A key assumption in dc-fMRI is that hypercapnia and hyperoxia do not change CMRO\(_2\). However, it is under debate whether these two challenges are truly “isometabolic.”\(^{47,48,58,94,115–118}\) Simulations have demonstrated that violation of the isometabolic assumption results in a bias toward OEF estimation.\(^{182,183}\) Several approaches have been developed to account for possible alterations of CMRO\(_2\) during gas challenges. Bulte et al. incorporated a fixed 10% reduction of CMRO\(_2\) during hypercapnia in the model fitting.\(^{23}\) Englund et al. proposed measuring global \(Y_v\) together with CBF and BOLD to relax the isometabolic mandate, assuming that \(Y_v\) changes induced by gas challenges are spatially uniform.\(^{184}\) Driver et al. proposed using graded hypercapnia to determine \(M\) and dose-wise CMRO\(_2\) alterations.\(^{117}\)

A limitation of dc-fMRI is the need for gas challenges, which require complex set-ups and can lead to a considerable dropout rate for patients due to the discomfort of hypercapnia.\(^{171}\) A recent study has proposed replacing gas challenges with breath-hold modulations to quantify OEF using the BOLD signal model.\(^{185,186}\)

Another limitation of the dc-fMRI method is that the reliability of the measure primarily hinges upon the quality of the ASL MRI data. ASL is known to suffer from low SNR even for basal perfusion measurement. The reliability of quantifying changes in CBF due to hypercapnia or hyperoxia requires further examination. In addition, the ASL signal may have confounding factors, such as bolus
arrival time, T_2^*, and labeling efficiency, which are also expected to alter during physiological challenges.123–126

3.6 Comparison and combination among techniques

Table 1 shows a brief summary of the techniques described in previous sections and their strengths and weaknesses. In general, global OEF measurements have high SNR and some, such as TRUST and OxFlow, have been extensively tested and validated against gold standards.20,41,44,49,95,103 For the regional OEF measurement, a major challenge is the low SNR, because the local blood volume is very small and many techniques rely on complex model fittings that are sensitive to noise. Some authors have proposed exploiting machine-learning methods to denoise the OEF maps and reduce the computational cost.177,187,188 Future technical developments designed to improve the SNR are critical for the robustness of regional OEF measurement.

Several studies have compared the OEF values measured with different MRI-based techniques. For example, Barhoum et al. showed a significant correlation ($R^2 = 0.50$) between TRUST and OxFlow OEF measurements, while OxFlow yielded slightly lower OEF values.95 Significant correlations have also been reported between dc-fMRI and OxFlow189 and between dc-fMRI and a QSM-based regional OEF method ($R^2 = 0.39$),190 while dc-fMRI gave higher OEF values compared to the other two techniques. Overall, the correlations between different MRI methods were moderate and systematic differences in OEF quantification were observed.95,113,190–192

Combinations of different MRI OEF techniques have been proposed.193,194 For example, Cho et al. combined the QSM model of the phase data and the qBOLD model of the magnitude data to estimate OEF from complex multi-echo GRE signals.194–196 As mentioned earlier, previous QSM methods required assumptions about the CBF-CBV relationship to estimate CBV from CBF data (measured by ASL).17,112–114,122 In the QSM + qBOLD method, CBV, Y_v, and non-blood susceptibility are all treated as unknowns and are jointly estimated from the complex GRE signals, although the ratio of CBV to total CBV was still based on an assumption (0.77).194 Figure 10 shows representative parametric maps generated by the QSM + qBOLD method.194 Recently, this QSM + qBOLD method has been compared to 15O-PET.130 Although the averaged OEF values across subjects were not significantly different between QSM + qBOLD and 15O-PET, there has been no report of correlation between these two methods.130

4 CLINICAL APPLICATIONS OF MRI-BASED OEF

In the following sections, we will highlight several clinical applications for the MRI-based OEF techniques, although this list of applications is not meant to be exhaustive.

4.1 OEF across the human lifespan

A number of MRI studies have investigated the evolution of OEF from the fetus to elderly individuals.

For fetuses, a few studies have used QSM-based methods to measure Y_v in the SSS in the fetal brain,197–201 and showed that the median Y_v across fetuses decreased from 67.5% in the second trimester to 60.8% in the third trimester.200 Note that oxygen is delivered to the fetus from the placenta through the umbilical vein, which was reported to have an average oxygenation of 84%.202

For newborn infants, several MRI techniques have been adapted to measure OEF in the neonatal brain, including T_2-based57,62,203–205 and phase-based206 methods. In healthy neonates, Liu et al. reported an average
Method	Exemplary pulse sequences	Pros	Cons
T2-based global	• TRUST50 • T2-TRIR57 • High-resolution T2 mapping55	• High SNR	• Lack of spatial specificity • Dependence on T2-Y calibration model
		• Short scan time	
		• Straightforward data processing	
		• Excellent reproducibility	
T2-based regional	• TRUPC62 • QUIXOTIC65 • VSEAN66	• Vessel-specific or voxel-wise mapping of OEF	• Low SNR • Dependence on T2-Y calibration model
Phase-based global	• OxFlow20 • Flow-compensated multi-echo GRE19	• High SNR	• Lack of spatial specificity
		• Very short scan time	• Restriction on vessel orientation and shape
		• Excellent reproducibility	• Dependence on manual drawings of vessel and tissue ROIs • $\Delta\chi_{do}$ of special RBCs not fully characterized
QSM-based regional	• Flow-compensated multi-echo GRE15–17	• Vessel-specific or voxel-wise mapping of OEF	• Susceptible to partial volume effect • Need for prior assumptions • Relatively long scan time
qBOLD	• GESSE135 • ASE136	• Voxel-wise mapping of OEF	• Complex signal model • Confounding factors such as macroscopic field inhomogeneity • Relatively long scan time
dc-fMRI	• Dual-echo ASL22,24	• Voxel-wise mapping of OEF, CBF, CMRO$_2$ and CVR	• Need for gas challenges • Complex signal model • Low SNR due to the need to measure ASL during baseline and challenged states • Long scan time
global OEF of 31.8 ± 4.1%, which was similar to the adult OEF level.204

There is currently a paucity of human studies on age-related OEF changes in children of 1 to 18 years of age. A previous 15O-PET study found that OEF values in children were within the range of adult values regardless of the child’s age.207

During adulthood, many MRI-based studies have reported an age-related increase in OEF,2,4,9,74,208–210 which was accompanied by a reduction in CBF.74,209,210 Results regarding CMRO\textsubscript{2} are mixed.74,209–211 An increase in OEF with age has also been suggested in recent studies using non-MRI techniques, such as 15O-PET212 and near-infrared spectroscopy213–215 in human subjects.

4.2 Cognitive impairment

AD and vascular disease, as well as their co-occurrence, are the most common causes of cognitive impairment.216 There are some suggestions that OEF is differentially affected by AD and vascular disease.2 For example, AD pathology will lead to diminished neural activities, and thereby decreased glucose and oxygen metabolism.217 Thus, a decreased OEF is expected in the presence of a relatively intact blood supply. On the other hand, small-vessel vascular pathology will cause a reduction in blood supply218,219 and result in an elevated oxygen extraction (Figure 11).2 This notion is consistent with other recent MRI studies, which reported reduced OEF in cognitively impaired patients with minimal vascular risk factors.3,171 In addition, it has been shown that, among cognitively normal individuals, the carriers of the apolipoprotein-E4 gene, a major genetic risk factor for AD, manifested diminished global OEF.75

4.3 Cerebral large and small vessel diseases

In patients with unilateral stenosis/occlusion of major cerebral arteries, several MRI studies have reported an elevated OEF in the affected hemisphere,128,220–224 consistent with the “misery perfusion” pattern observed in previous 15O-PET studies,4,225–227 while a few other MRI studies found insignificant hemispheric differences in OEF.228–232
MRI techniques have also been used to evaluate OEF in patients before or after carotid stenting/endarterectomy.233,234 In patients with Moyamoya disease, Watchmaker et al. found an elevated MRI-based global OEF235 while 15O-PET studies have reported mixed results.236–238 In patients with cerebral small-vessel disease, a recent MRI study found an elevated OEF in white matter and watershed regions, while the OEF in gray matter was decreased.239

\subsection*{4.4 Stroke}

In acute ischemic stroke patients, a few MRI studies have reported that OEF was higher in the affected hemisphere than in the contralateral side.240–242 A study by An et al. further attempted to delineate the stroke penumbra using MRI-based OEF and CBF measures.243 Several other MRI studies have found a decreased CMRO\textsubscript{2}244–246 but increased OEF247 in the ischemic core of acute stroke patients.

A few studies reported elevated R′2 in ischemic tissues in acute stroke,248–251 but did not quantify OEF. Because R′2 is proportional to the product of OEF and DBV (see Section 3.4), consideration of DBV is crucial for the assessment of the extent of OEF changes using the R′2 data.248

\subsection*{4.5 Sickle cell disease}

A number of studies have investigated OEF changes in SCD but reported inconsistent results. Several groups have measured global OEF in SCD using T\textsubscript{2}-based techniques,5,54,81,235,252–257 but the OEF results varied when different calibration models were used to convert blood T\textsubscript{2} to Y\textsubscript{v} (see Section 3.1.2).258 Studies using the bovine calibration model43 showed that OEF was higher in SCD patients than controls,235,252 and OEF was reduced after blood transfusion.253 In contrast, studies using the SCD-specific models5,81 have reported either a reduced OEF in SCD patients,2,254–256 or no significant difference in OEF between SCD patients and controls.54 One study used the neonatal calibration model78 and showed that elevated OEF was associated with impaired cognitive processing speed (assessed using National Institutes of Health Toolbox Cognition Battery) in SCD patients.257

Another group used ASE-based qBOLD methods and consistently reported elevated whole-brain and regional OEF in children with SCD.6,259–262 In addition, in children receiving chronic transfusion therapy (CTT), CBF and OEF were reduced after transfusion, as shown in Figure 12.260

Two studies used susceptibility-based techniques, and one found reduced OEF in the SSS,263 while another study showed elevated OEF in the ICVs in SCD patients.264

The discrepancy in the literature suggests that the application of MRI-OEF techniques to pathological conditions with atypical RBC still presents some challenges. Future studies are needed to resolve the controversies in this field.

\subsection*{4.6 Brain injury}

In neonates, hypoxic ischemic encephalopathy (HIE) is a leading cause of neonatal mortality and neurological disabilities.265 A few MRI-based studies have reported that neonates with HIE had lower OEF than controls,57,266 and neonates with severe HIE had even lower OEF than those with moderate HIE,267 which is presumably due to a lower oxygen consumption rate.

In children and adults, traumatic brain injury (TBI) is among the most severe types of injury in terms of fatality and long-term impairment.268 Several MRI-based studies have suggested that OEF was reduced in patients with TBI.269–273 In addition, in patients with TBI, higher OEF predicted a better clinical outcome.269

\subsection*{4.7 OEF in response to physiological challenges}

A number of studies have investigated the change in OEF and CMRO\textsubscript{2} under various physiological challenges, including hypercapnia,47,58,94,115–117,274 hypocapnia (e.g., induced by hyperventilation),112,115,275–277 hyperoxia,48,118,278,279 hypoxia,48,116,278,280–282 caffeine ingestion,17,46,101,119,283,284 acetazolamide injection,101,255,285 and acute glucose ingestion.286 Table 2 summarizes the OEF, CBF, and CMRO\textsubscript{2} changes under different physiological challenges.

\subsection*{4.8 Other applications}

Elevated OEF was reported in patients with end-stage renal disease,287–289 hepatic encephalopathy,290 systemic lupus erythematosus,291 refractory epilepsy,292 and chronic cannabis usage.293 Increased OEF was also found in children with primary nocturnal enuresis294 and in preterm neonates with anemia.295

Reduced OEF was shown in patients with MELAS syndrome296 and multiple sclerosis,297,298 as well as in neonates with punctate white matter lesions.299
FIGURE 12 CBF and OEF maps from a child with SCD. This 7-y-old boy was first scanned before the initiation of CTT. After 17 mo of CTT, he was scanned before and after exchange transfusion. The whole-brain CBF was highest at his first scan; after 17 mo of CTT, his pre-transfusion CBF was lower than the initial scan and the post-transfusion CBF was further decreased. OEF was highest at the first scan but was dramatically reduced pre-transfusion and further decreased post-transfusion. Reproduced from Guilliamset al. 260 with permission.

TABLE 2 OEF, CBF, and CMRO2 under physiological challenges

Physiological challenge	CBF	OEF (or AVDO2)	CMRO2
Hypercapnia	Increased 47,58,94,116,274	Decreased 47,58,94,116,274	Mixed literature reporting decreased 47,116,117,274 or unchanged 84,115
Hypocapnia	Decreased 112,115,275–277	Increased 112,115,275–277	Unchanged 112,115,275–277
Hyperoxia	Decreased 48,315 or Unchanged 118,278,279	Decreased 48,118,278,279	Mixed literature reporting decreased 48 or unchanged 118,278,279
Hypoxia	Increased 48,116,278,280,281 or Unchanged 282	Decreased 48,278,280–282	Mixed literature reporting increased 48,116,280,281 or unchanged 278,282
Caffeine	Decreased 17,46,101,119	Increased 17,46,101,119	Mixed literature reporting decreased 17 increased 283 or unchanged 46,284
Acetazolamide	Increased 101,255,285	Decreased 101,255,285	Unchanged 101,255,285
Acute glucose ingestion	Unchanged 286	Decreased 286	Decreased 286

OEF and CMRO2 have also been studied in patients with glioma, 7,300–306 mountain sickness, 281 cocaine addiction, 307 anorexia, 308 bipolar disorder, 309 metabolic disorder, 310 and obstructive sleep apnea. 311,312 In addition to disease-related changes, alterations in OEF and CMRO2 have also been observed during natural sleep 313 and after fatiguing aerobic exercise. 314

5 | CONCLUSIONS

This review article provides an overview of emerging MRI techniques for OEF measurement. A number of MRI techniques have been developed over the past few years, and each has strengths and limitations. These MRI techniques have been applied in a range of physiological or
pathological conditions. Once further optimized, these techniques have strong potential for use in various basic science and clinical applications.

ORCID

Dengrong Jiang https://orcid.org/0000-0002-3843-1020
Hanzhang Lu https://orcid.org/0000-0003-3871-1564

REFERENCES

1. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731-758.
2. Jiang D, Lin Z, Liu P, et al. Brain oxygen extraction is differentially altered by Alzheimer’s and vascular diseases. J Magn Reson Imaging. 2020;52:1829-1837.
3. Thomas BP, Sheng M, Tseng BY, et al. Reduced global brain metabolism but maintained vascular function in amnestic mild cognitive impairment. J Cereb Blood Flow Metab. 2017;37:1508-1516.
4. Grubb RL Jr, Derdeyn CP, Fritsch SM, et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998;280:1055-1060.
5. Bush AM, Coates TD, Wood JC. Diminished cerebral oxygen extraction and metabolic rate in sickle cell disease using T2 relaxation under spin tagging MRI. Magn Reson Med. 2018;80:294-303.
6. Fields ME, Guilliams KP, Ragan DK, et al. Regional oxygen extraction predicts border zone vulnerability to stroke in sickle cell disease. Neurology. 2018;90:e1134-e1142.
7. Stadlbauer A, Zimmermann M, Kitzwogerer M, et al. MR imaging-derived oxygen metabolism and neovascularization characterization for grading and IDH gene mutation detection of gliomas. Radiology. 2017;283:799-809.
8. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracer and positron emission tomography. J Nucl Med. 1984;25:177-187.
9. Fan AP, An H, Moradi F, et al. Quantification of brain oxygen extraction and metabolism with [(15)O]-gas PET: a technical review in the era of PET/MRI. Neuroimage. 2020;220:117136.
10. Baron JC, Jones T. Oxygen metabolism, oxygen extraction and positron emission tomography: historical perspective and impact on basic and clinical neuroscience. Neuroimage. 2012;61:492-504.
11. Thulborn KR, Waterton JC, Matthews PM, Radza GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 1982;714:265-270.
12. van Zijl PC, Eleff SM, Ulatowski JA, et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med. 1998;4:159-167.
13. Li W, van Zijl PCM. Quantitative theory for the transverse relaxation time of blood water. NMR Biomed. 2020;33:e4207.
14. Weisskoff RM, Kihne S. MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med. 1992;24:375-383.
15. Haacke EM, Tang J, Neelavalli J, Cheng YC. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32:663-676.
16. Fan AP, Bilgic B, Gagnon L, et al. Quantitative oxygenation venography from MRI phase. Magn Reson Med. 2014;72:149-159.
17. Zhang J, Liu T, Gupta A, Spincemaille P, Nguyen TD, Wang Y. Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM). Magn Reson Med. 2015;74:945-952.
18. Haacke EM, Lai S, Reichenbach JR, et al. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp. 1997;5:341-346.
19. Fernandez-Seera MA, Tachawiboonwong A, Detre JA, Wehrli FW. MR susceptometry for measuring global brain oxygen extraction. Magn Reson Med. 2006;55:967-973.
20. Jain V, Langham MC, Wehrli FW. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab. 2010;30:1598-1607.
21. Fan AP, Benner T, Bolar DS, Rosen BR, Adalsteinsson E. Phase-based regional oxygen metabolism (PROM) using MRI. Magn Reson Med. 2012;67:669-678.
22. Gauthier CJ, Hoge RD. Magnetic resonance imaging of resting OEF and CMRO(2) using a generalized calibration model for hypercapnia and hyperoxia. Neuroimage. 2012;60:1212-1225.
23. Bulte DP, Kelly M, Germuska M, et al. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage. 2012;60:582-591.
24. Wise RG, Harris AD, Stone AJ, Murphy K. Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia. Neuroimage. 2013;83:135-147.
25. Wehrli FW, Fan AP, Rodgers ZB, Englund EK, Langham MC. Susceptibility-based time-resolved whole-organ and regional tissue oximetry. NMR Biomed. 2017;30:e3495.
26. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med. 1994;32:749-763.
27. Yablonskiy DA, Sukstanskii AL, He X. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches. NMR Biomed. 2013;26:963-986.
28. Guyton AC, Hall JE. Textbook of Medical Physiology. 11th ed. Etsiever Saunders; 2006:788-817.
29. Xu F, Ge Y, Lu H. Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med. 2009;62:141-148.
30. Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73:102-116.
31. Mellon EA, Beesam RS, Elliott MA, Reddy R. Mapping of cerebral oxidative metabolism with MRI. Proc Natl Acad Sci U S A. 2010;107:11787-11792.
32. Kurzhunov D, Borowiak R, Reisert M, Joachim Krafft A, Caglar Ozen A, Bock M. 3D CMRO2 mapping in human brain with direct (17O) MRI: comparison of conventional and proton-constrained reconstructions. Neuroimage. 2017;155:612-624.
33. Paech D, Nagel AM, Schultheiss MN, et al. Quantitative dynamic oxygen 17 MRI at 7.0 T for the cerebral oxygen metabolism in glioma. Radiology. 2020;295:181-189.

34. Zhu XH, Chen W. In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field. Prog Nucl Magn Reson Spectrosc. 2011;59:319-335.

35. Zhu XH, Chen W. In vivo(17)O MRS imaging - quantitative assessment of regional oxygen consumption and perfusion rates in living brain. Anal Biochem. 2017;529:171-178.

36. Gordji-Nejad A, Mollenhoff K, Oros-Peusquens AM, Pillai DR, Shah NJ. Characterizing cerebral oxygen metabolism employing oxygen-17 MRI/MRS at high fields. Magna. 2014;27:81-93.

37. Wright GA, Hu BS, Macovski A. 1991 I. Rabiaward. Estimation of oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging. 1991;1:275-283.

38. Oja JM, Gillen JS, Kauppinen RA, Kraut M, van Zijl PC. Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab. 1999;19:1289-1295.

39. Golay X, Silvennoinen MJ, Zhou J, et al. Measurement of tissue oxygen extraction ratios from venous blood T(2): increased precision and validation of principle. Magn Reson Med. 2001;46:282-291.

40. Lu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med. 2008;60:357-363.

41. Jiang D, Deng S, Franklin CG, et al. Validation of T2-based oxygen extraction fraction measurement with (15) O positron emission tomography. Magn Reson Med. 2021;85:290-297.

42. Xu F, Uh J, Liu P, Lu H. On improving the speed and reliability of T2-relaxation-under-spin-tagging (TRUST) MRI. Magn Reson Med. 2012;68:198-204.

43. Lu H, Xu F, Grbac K, Liu P, Qin Q, van Zijl P. Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn Reson Med. 2012;67:42-49.

44. Liu P, Xu F, Pekar JJ, Lu H. Test-retest reproducibility of a rapid method to measure brain oxygen metabolism. Magn Reson Med. 2013;69:675-681.

45. Jiang D, Liu P, Li Y, Mao D, Xu C, Lu H. Cross-vendor harmonization of T2-relaxation-under-spin-tagging (TRUST) MRI for the assessment of cerebral venous oxygenation. Magn Reson Med. 2018;80:1125-1131.

46. Xu F, Liu P, Pekar JJ, Lu H. Does acute caffeine ingestion alter brain metabolism in young adults? Neuroimage. 2015;110:39-47.

47. Xu F, Uh J, Brier MR, et al. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab. 2011;31:58-67.

48. Xu F, Liu P, Pascual JM, Xiao G, Lu H. Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab. 2012;32:1909-1918.

49. Liu P, Dimitrov I, Andrews T, et al. Multisite evaluations of a T2-relaxation-under-spin-tagging (TRUST) MRI technique to measure brain oxygenation. Magn Reson Med. 2016;75:680-687.

50. Wei Z, Xu J, Liu P, et al. Quantitative assessment of cerebral venous blood T2 in mouse at 11.7T: implementation, optimization, and age effect. Magn Reson Med. 2018;80:521-528.

51. Wei Z, Chen L, Hou X, van Zijl PCM, Xu J, Lu H. Age-related alterations in brain perfusion, venous oxygenation, and oxygen metabolic rate of mice: a 17-month longitudinal MRI study. Front Neurol. 2020;11:559.

52. Wei Z, Wang Q, Modi HR, et al. Acute-stage MRI cerebral oxygen consumption biomarkers predict 24-hour neurological outcome in a rat cardiac arrest model. NMR Biomed. 2020;33:e4377.

53. Wei Z, Xu J, Chen L, et al. Brain metabolism in tau and amyloid mouse models of Alzheimer’s disease: An MRI study. NMR Biomed. 2021;34:e4568.

54. Li W, Xu X, Liu P, et al. Quantification of whole-brain oxygenation extraction fraction and cerebral metabolic rate of oxygen consumption in adults with sickle cell anemia using individual T2-based oxygenation calibrations. Magn Reson Med. 2020;83:1066-1080.

55. Qin Q, Grbac K, van Zijl PC. Determination of whole-brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein. Magn Reson Med. 2011;65:471-479.

56. Petersen E, De Vis J, Alderliesten T, et al. Simultaneous OEF and haematocrit assessment using T2 prepared blood relaxation imaging with inversion recovery. Proceedings of Proc Intl Soc Magn Reson Med; ISMRM; 2012:472.

57. De Vis JB, Petersen ET, Alderliesten T, et al. Non-invasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates. Neuroimage. 2014;95:185-192.

58. Rodgers ZB, Englund EK, Langham MC, Magland JF, Wehrli FW. Rapid T2- and susceptometry-based CMRO2 quantification with interleaved TRUST (iTRUST). Neuroimage. 2015;106:441-450.

59. O’Brien C, Okell TW, Chiew M, Jezzard P. Volume-localized measurement of oxygen extraction fraction in the brain using MRI. Magn Reson Med. 2019;82:1412-1423.

60. Krishnamurthy LC, Liu P, Ge Y, Lu H. Vessel-specific quantification of blood oxygenation with T2-relaxation-under-phase-contrast MRI. Magn Reson Med. 2014;71:978-989.

61. Krishnamurthy LC, Mao D, King KS, Lu H. Correction and optimization of a T2-based approach to map blood oxygenation in small cerebral veins. Magn Reson Med. 2016;75:1100-1109.

62. Jiang D, Lu H, Parkinson C, et al. Vessel-specific quantification of neonatal cerebral venous oxygenation. Magn Reson Med. 2019;82:1129-1139.

63. Jiang D, Koehler RC, Liu X, et al. Quantitative validation of MRI mapping of cerebral venous oxygenation with direct blood sampling: a graded-O2 study in piglets. Magn Reson Med. 2021;86:1445-1453. doi:10.1002/mrm.28786

64. Mao D, Li Y, Liu P, Peng SL, Pillai JJ, Lu H. Three-dimensional mapping of brain venous oxygenation using R2* oximetry. Magn Reson Med. 2018;79:1304-1313.

65. Bolar DS, Rosen BR, Sorensen AG, Adalsteinsson E. QUantitative imaging of extraction of oxygen and Tissue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn Reson Med. 2011;66:1550-1562.

66. Guo J, Wong EC. Venous oxygenation mapping using velocity-selective excitation and arterial nulling. Magn Reson Med. 2012;68:1458-1471.

67. Hua J, Liu P, Kim T, et al. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage. 2019;187:17-31.
68. Stout JN, Adalsteinsson E, Rosen BR, Bolar DS. Functional oxygen extraction fraction (OEF) imaging with turbo gradient spin echo QUIXOTIC (turbo QUIXOTIC). Magn Reson Med. 2018;79:2713-2723.

69. Li W, Van Zijl P, Qin Q. Venous oxygenation mapping using Fourier-transform based velocity-selective pulse trains. In Proceedings of the 29th Annual Meeting of ISMRM. 2021. p. 0472.

70. Wood D, Quiroz-Rocha G. Normal hematology of cattle. In: Weiss D, Wardrop K, eds. Schalm’s Veterinary Hematology. 6th ed. Blackwell Publishing; 2010:829-835.

71. Benga G, Borza T. Diffusional water permeability of mammalian red blood cells. Comp Biochem Physiol B Biochem Mol Biol. 1995;112:653-659.

72. Qin Q, Strouse JJ, van Zijl PC. Fast measurement of blood T1 in the human jugular vein at 3 tesla. Magn Reson Med. 2011;65:1297-1304.

73. Xu F, Li W, Liu P, et al. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses. Hum Brain Mapp. 2018;39:344-353.

74. Peng SL, Dumas JA, Park DC, et al. Age-related increase of resting metabolic rate in the human brain. Neuroimage. 2014;98:176-183.

75. Lin Z, Sur S, Soldan A, et al. Brain oxygen extraction by using MRI in older individuals: relationship to Apolipoprotein E genotype and amyloid burden. Radiology. 2019;292:140-148.

76. Bush A, Borzage M, Detterich J, et al. Empirical model of human blood transverse relaxation at 3 T improves MRI T2 oximetry. Magn Reson Med. 2017;77:2364-2371.

77. Turgeon M. Erythrocyte morphology and inclusions. In: Turgeon M, ed. Clinical hematology: theory and procedures. 5th ed. Lippincott Williams & Wilkins; 2012:126-144.

78. Liu P, Chalak LF, Krishnamurthy LC, et al. T1 and T2 values of human neonatal blood at 3 tesla: dependence on hematocrit, oxygenation, and temperature. Magn Reson Med. 2016;75:1730-1735.

79. Blanco A, Blanco G. Proteins. In: Blanco A, Blanco G, eds. Medical Biochemistry. Academic Press; 2017:21-71. doi:10.1016/B978-0-12-803550-4.00003-3

80. Eldeniz C, Binkley MM, Fields M, et al. Bulk volume susceptibility difference between deoxyhemoglobin and oxyhemoglobin for HbA and HbS: a comparative study. Magn Reson Med. 2021;85:3383-3393.

81. Bush A, Vu C, Choi S, et al. Calibration of T2 oximetry MRI for subjects with sickle cell disease. Magn Reson Med. 2021;86:1019-1028.

82. Langham MC, Rodriguez-Soto AE, Schwartz N, Wehrli FW. In vivo whole-blood T2 versus HbO2 calibration by modulating blood oxygenation level in the femoral vein through intermittent cuff occlusion. Magn Reson Med. 2018;79:2290-2296.

83. Krishnamurthy LC, Liu P, Xu F, Uh J, Dimitrov I, Lu H. Dependence of blood T(2) on oxygenation at 7 T: in vitro calibration and in vivo application. Magn Reson Med. 2014;71:2035-2042.

84. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PC. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 tesla. Magn Reson Med. 2003;49:47-60.

85. Grgac K, Li W, Huang A, Qin Q, van Zijl PC. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities. Magn Reson Imaging. 2017;38:234-249.

86. Jain V, Abdulmalik O, Propert KJ, Wehrli FW. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med. 2012;68:863-867.

87. Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ. Water proton MR properties of human blood at 1.5 tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med. 2001;45:533-542.

88. Portnoy S, Milligan N, Seed M, Sled JG, Macgowan CK. Human umbilical cord blood relaxation times and susceptibility at 3 T. Magn Reson Med. 2018;79:3194-3206.

89. Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR Biomed. 2017;30:e3569.

90. Wang Y, Liu T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73:82-101.

91. Li C, Langham MC, Epstein CL, et al. Accuracy of the cylinder approximation for susceptometric measurement of intravascular oxygen saturation. Magn Reson Med. 2012;67:808-813.

92. Langham MC, Magland JF, Epstein CL, Floyd TF, Wehrli FW. Accuracy and precision of MR blood oximetry based on the long paramagnetic cylinder approximation of large vessels. Magn Reson Med. 2009;62:333-340.

93. Barhoum S, Langham MC, Magland JF, et al. Method for rapid MRI quantification of global cerebral metabolic rate of oxygen. J Cereb Blood Flow Metab. 2015;35:1616-1622.

94. Jain V, Langham MC, Floyd TF, Jain G, Magland JF, Wehrli FW. Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia. J Cereb Blood Flow Metab. 2011;31:1504-1512.

95. Barhoum S, Rodgers ZB, Langham M, Magland JF, Li C, Wehrli FW. Comparison of MRI methods for measuring whole-brain venous oxygen saturation. Magn Reson Med. 2015;73:2122-2128.

96. Hsieh CY, Cheng YC, Neelavalli J, Haacke EM, Stafford RJ. An improved method for susceptibility and radius quantification of cylindrical objects from MRI. Magn Reson Imaging. 2015;33:420-436.

97. Hsieh CY, Cheng YN, Xie H, Haacke EM, Neelavalli J. Susceptibility and size quantification of small human veins from an MRI method. Magn Reson Imaging. 2015;33:1191-1204.

98. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and Carbonmonoxidehemoglobin. Proc Natl Acad Sci U S A. 1936;22:210-216.

99. Miao X, Nayak KS, Wood JC. In vivo validation of T2- and susceptibility-based Sv O2 measurements with jugular vein catheterization under hypoxia and hypercapnia. Magn Reson Med. 2019;82:2188-2198.

100. Zaitse Y, Kudo K, Terae S, et al. Mapping of cerebral oxygen extraction fraction changes with susceptibility-weighted phase imaging. Radiology. 2011;261:930-936.
metabolic rate of oxygen consumption in response to apneic challenge. J Cereb Blood Flow Metab. 2013;33:1514-1522.

103. Narciso L, Sali T, Liu L, et al. A noninvasive method for quantifying cerebral metabolic rate of oxygen by hybrid PET/MRI: validation in a porcine model. J Nucl Med. 2021;62:1789-1796.

104. Cao W, Chang YV, Englund EK, et al. High-speed whole-brain oximetry by golden-angle radial MRI. Magn Reson Med. 2018;79:217-223.

105. Driver ID, Wharton SJ, Croal PL, Bowtell R, Francis ST, Golland PA. Global intravascular and local hyperoxia contrast phase-based blood oxygenation measurements. Neuroimage. 2014;101:458-465.

106. Langham MC, Magland JF, Floyd TF, Wehrli FW. Retrospective correction for induced magnetic field inhomogeneity in measurements of large-vessel hemoglobin oxygen saturation by MR susceptometry. Magn Reson Med. 2009;61:626-633.

107. Fan AP, Evans KC, Stout JN, Rosen BR, Adalsteinsson E. Regional quantification of cerebral venous oxygenation from MRI susceptibility during hypercapnia. Neuroimage. 2015;104:146-155.

108. Xu B, Liu T, Spincemaille P, Prince M, Wang Y. Flow compensated quantitative susceptibility mapping for venous oxygenation imaging. Magn Reson Med. 2014;72:438-445.

109. McFadden JJ, Matthews JC, Scott LA, Parker GJM, Lohezic M, Parkes LM. Optimization of quantitative susceptibility mapping for regional estimation of oxygen extraction fraction in the brain. Magn Reson Med. 2021;86:1314-1329.

110. Ward PG, Fan AP, Raniga P, et al. Improved quantification of cerebral vein oxygenation using partial volume correction. Front Neurosci. 2017;11:89.

111. McDaniel P, Bilgic B, Fan AP, Stout JN, Adalsteinsson E. Mitigation of partial volume effects in susceptibility-based oxygenation measurements by joint utilization of magnitude and phase (JUMP). Magn Reson Med. 2017;77:1713-1727.

112. Zhang J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Cerebral metabolic rate of oxygen (CMRO2) mapping with hyperventilation challenge using quantitative susceptibility mapping (QSM). Magn Reson Med. 2017;77:1762-1773.

113. Ma Y, Sun H, Cho J, Mazeroni EL, Wang Y, Pike GB. Cerebral OEF quantification: a comparison study between quantitative susceptibility mapping and dual-gas calibrated BOLD imaging. Magn Reson Med. 2020;83:68-82.

114. Ma Y, Mazeroni EL, Cho J, Sun H, Wang Y, Pike GB. Quantification of brain oxygen extraction fraction using QSM and a hyperoxic challenge. Magn Reson Med. 2020;84:3271-3285.

115. Chen JJ, Pike GB. Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI. J Cereb Blood Flow Metab. 2010;30:1094-1099.

116. Peng SL, Ravi H, Sheng M, Thomas BP, Lu H. Searching for a truly eiso-metabolic gas challenge in physiological MRI. J Cereb Blood Flow Metab. 2017;37:715-725.

117. Driver ID, Wise RG, Murphy K. Graded hypercapnia-calibrated BOLD: beyond the Iso-metabolic Hypercapnic assumption. Front Neurosci. 2017;11:276.

118. Diringer MN, Aiyagari V, Zazulia AR, Videen TO, Powers WJ. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg. 2007;106:526-529.

119. Merola A, Germuska MA, Warnert EA, et al. Mapping the pharmacological modulation of brain oxygen metabolism: the effects of caffeine on absolute CMRO2 measured using dual calibrated fMRI. Neuroimage. 2017;155:331-343.

120. Leenders KL, Perani D, Lammertsma AA, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain. 1990;113:27-47.

121. Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 1974;5:630-639.

122. Zhang J, Cho J, Zhou D, et al. Quantitative susceptibility mapping-based cerebral metabolic rate of oxygen mapping with minimum local variance. Magn Reson Med. 2018;79:172-179.

123. Aslan S, Xu F, Wang PL, et al. Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn Reson Med. 2010;63:765-771.

124. Ho YC, Petersen ET, Zimine I, Golay X. Similarities and differences in arterial responses to hypercapnia and visual stimulation. J Cereb Blood Flow Metab. 2011;31:560-571.

125. Heijtel DF, Mutsaerts HJ, Bakker E, et al. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography. Neuroimage. 2014;92:182-192.

126. Donahue MJ, Faraco CC, Strother MK, et al. Bolus arrival time and cerebral blood flow responses to hypercarbia. J Cereb Blood Flow Metab. 2014;34:1243-1252.

127. Kudo K, Liu T, Murakami T, et al. Oxygen extraction fraction measurement using quantitative susceptibility mapping: comparison with positron emission tomography. J Cereb Blood Flow Metab. 2016;36:1424-1433.

128. Uwano I, Kudo K, Sato R, et al. Noninvasive assessment of oxygen extraction fraction in chronic ischemia using quantitative susceptibility mapping at 7 tesla. Stroke. 2017;48:2136-2141.

129. Fujimoto K, Uwano I, Sasaki M, et al. Acetazolamide-loaded dynamic 7T MR quantitative susceptibility mapping in major cerebral artery steno-occlusive disease: comparison with PET. AJNR Am J Neuroradiol. 2020;41:785-791.

130. Cho J, Lee J, An H, Goyal MS, Su Y, Wang Y. Cerebral oxygen extraction fraction (OEF): comparison of challenge-free gradient echo QSM+qBOLD (QQ) with (15)O PET in healthy adults. J Cereb Blood Flow Metab. 2021;41:1658-1668.

131. Yablonskiy DA. Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom Study Magn Reson Med. 1998;39:417-428.

132. Stone AJ, Blockley NP. A streamlined acquisition for mapping baseline brain oxygenation using quantitative BOLD. Neuroimage. 2017;147:79-88.

133. An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab. 2000;20:1225-1236.

134. An H, Lin W. Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: effects of magnetic field variation. Magn Reson Med. 2002;47:958-966.

135. He X, Yablonskiy DA. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med. 2007;57:115-126.

136. An H, Lin W. Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume.
under normo- and hypercapnic conditions using an asymmetric spin echo approach. Magn Reson Med. 2003;50:708-716.

137. Yin Y, Zhang Y, Gao JH. Dynamic measurement of oxygen extraction fraction using a multiecho asymmetric spin echo (MASE) pulse sequence. Magn Reson Med. 2018;80:1118-1124.

138. Lee H, Wehrli FW. Whole-brain 3D mapping of oxygen metabolism using constrained quantitative BOLD. Neuroimage. 2022;250:118952.

139. An H, Sen S, Chen Y, Powers WJ, Lin W. Noninvasive measurements of cerebral blood flow, oxygen extraction fraction, and oxygen metabolic index in human with inhalation of air and Carbogen using magnetic resonance imaging. Transl Stroke Res. 2012;3:246-254.

140. Ying C, Binkley MM, Kang P, Chen Y, Lee J, Ford AL, An H. Test–retest repeatability of brain oxygen metabolism measurement using MRI. In Proceedings of the 29th Annual Meeting of ISMRM, 2021. p. 4335.

141. He X, Zhu M, Yablonskiy DA. Validation of oxygen extraction fraction measurement by qBOLD technique. Magn Reson Med. 2008;60:882-888.

142. An H, Liu Q, Chen Y, Lin W. Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia. Stroke. 2009;40:2165-2172.

143. Christen T, Lemasson B, Pannetier N, et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed. 2011;24:393-403.

144. Sedlacik J, Reichenbach JR. Validation of quantitative estimation of tissue oxygen extraction fraction and deoxygenated blood volume fraction in phantom and in vivo experiments by using MRI. Magn Reson Med. 2010;63:910-921.

145. Sohlin MC, Schad LR. Theoretical prediction of parameter stability in quantitative BOLD MRI: dependence on SNR and sequence parameters. In Proceedings of the 17th Annual Meeting of ISMRM, 2009. p. 1623.

146. Christen T, Schmiedeskamp H, Straka M, Bammer R, Zaharchuk G. Measuring brain oxygenation in humans using a multiparametric quantitative blood oxygenation level dependent MRI approach. Magn Reson Med. 2012;68:905-911.

147. Kaczmarz S, Gottler J, Zimmer C, Hyder F, Preibisch C. Characterizing white matter fiber orientation effects on multi-parametric quantitative BOLD assessment of oxygen extraction fraction. J Cereb Blood Flow Metab. 2020;40:760-774.

148. Kaczmarz S, Hyder F, Preibisch C. Oxygen extraction fraction mapping with multi-parametric quantitative BOLD MRI: reduced transverse relaxation bias using 3D-GraSE imaging. Neuroimage. 2020;220:117095.

149. Blockley NP, Griffith VE, Germuska MA, Bulte DP, Buxton RB. An analysis of the use of hyperoxia for measuring venous cerebral blood volume: comparison of the existing method with a new analysis approach. Neuroimage. 2013;72:33-40.

150. Lee H, Wehrli FW. Venous cerebral blood volume mapping in the whole brain using venous-spin-labeled 3D turbo spin echo. Magn Reson Med. 2020;84:1991-2003.

151. Li W, Liu D, van Zijl PCM, Qin Q. Three-dimensional whole-brain mapping of cerebral blood volume and venous cerebral blood volume using Fourier transform-based velocity-selective pulse trains. Magn Reson Med. 2021;86:1420-1433.

152. Stone AJ, Blockley NP. Improving qBOLD based measures of brain oxygenation using hyperoxia BOLD derived measures of blood volume. In Proceedings of the 25th Annual Meeting of ISMRM, 2017. p. 1658.

153. Stone AJ, Blockley NP. Improving qBOLD based measures of oxygen extraction fraction using hyperoxia-BOLD derived measures of blood volume. bioRxiv. 2020. doi:10.1101/2020.06.14.151134

154. Blockley NP, Stone AJ. Improving the specificity of R2’ to the deoxyhaemoglobin content of brain tissue: prospective correction of macroscopic magnetic field gradients. Neuroimage. 2016;135:253-260.

155. Ulrich X, Yablonskiy DA. Separation of cellular and BOLD contributions to T2* signal relaxation. Magn Reson Med. 2016;75:606-615.

156. Yablonskiy DA, Sukstanskii AL, Luo J, Wang X. Voxel spread function method for correction of magnetic field inhomogeneity effects in quantitative gradient-echo-based MRI. Magn Reson Med. 2013;70:1283-1292.

157. Dickson JD, Ash TW, Williams GB, et al. Quantitative BOLD: the effect of diffusion. J Magn Reson Imaging. 2010;32:953-961.

158. Stone AJ, Holland NC, Berman AJL, Blockley NP. Simulations of the effect of diffusion on asymmetric spin echo based quantitative BOLD: an investigation of the origin of deoxygenated blood volume overestimation. Neuroimage. 2019;201:116035.

159. Kiselev VG, Posse S. Analytical model of susceptibility-induced MR signal dephasing: effect of diffusion in a microvascular network. Magn Reson Med. 1999;41:499-509.

160. Pannetier NA, Sohlin M, Christen T, Schad L, Schiff N. Numerical modeling of susceptibility-related MR signal dephasing with vessel size measurement: phantom validation at 3T. Magn Reson Med. 2014;72:646-658.

161. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998;95:1834-1839.

162. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med. 1999;42:849-863.

163. Blockley NP, Griffith VE, Simon AB, Buxton RB. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR Biomed. 2013;26:987-1003.

164. Chen JJ, Pike GB. BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR Biomed. 2009;22:1054-1062.

165. Chen JJ, Pike GB. MRI measurement of the BOLD-specific flow-volume relationship during hypercapnia and hypocapnia in humans. Neuroimage. 2010;53:383-391.

166. Bulte DP, Drescher K, Jezzard P. Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magn Reson Med. 2009;61:391-398.

167. Gauthier CJ, Hoge RD. A generalized procedure for calibrated MRI incorporating hyperoxia and hypoxia. Hum Brain Mapp. 2013;34:1053-1069.

168. Bright MG, Croal PL, Blockley NP, Bulte DP. Multiparametric measurement of cerebral physiology using calibrated fMRI. Neuroimage. 2019;187:128-144.
169. Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. *Neuroimage*. 2007;37:808-820.

170. Germuska M, Wise RG. Calibrated fMRI for mapping absolute CMRO2: practicalities and prospects. *Neuroimage*. 2019;187:145-153.

171. Lajoie I, Nugent S, Debacker C, et al. Application of calibrated fMRI in Alzheimer’s disease. *Neuroimage Clin*. 2017;15:348-358.

172. Germuska M, Bulte DP. MRI measurement of oxygen extraction fraction, mean vessel size and cerebral blood volume using serial hyperoxia and hypercapnia. *Neuroimage*. 2014;92:132-142.

173. Schmithorst VJ, Hernandez-Garcia L, Vannest J, Rajagopal A, Lee G, Holland SK. Optimized simultaneous ASL and BOLD functional imaging of the whole brain. *J Magn Reson Imaging*. 2014;39:1104-1117.

174. Fernandes-Seara MA, Rodgers ZB, Englund EK, Wehrli FW. Calibrated bold fMRI with an optimized ASL-BOLD dual-acquisition sequence. *Neuroimage*. 2016;142:474-482.

175. Germuska M, Chandler HL, Stickland RC, et al. Dual-calibrated fMRI measurement of absolute cerebral metabolic rate of oxygen consumption and effective oxygen diffusivity. *Neuroimage*. 2019;184:717-728.

176. Germuska M, Merola A, Murphy K, et al. A forward modelling approach for the estimation of oxygen extraction fraction by calibrated fMRI. *Neuroimage*. 2016;139:313-322.

177. Germuska M, Chandler H, Okell T, et al. A frequency-domain machine learning method for dual-calibrated fMRI mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO2). *Front Artif Intell*. 2020;3:12.

178. Liu P, De Vis JB, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review. *Neuroimage*. 2019;187:1104-1117.

179. Juttukonda MR, Donahue MJ. Neuroimaging of vascular reserve in patients with cerebrovascular disease. *Neuroimage*. 2019;187:192-208.

180. Lajoie I, Tancredi FB, Hoge RD. Regional reproducibility of BOLD calibration parameter M, OEF and resting-state CMRO2 measurements with QUO2 MRI. *PLoS One*. 2016;11:e0163071.

181. Merola A, Germuska MA, Murphy K, Wise RG. Assessing the repeatability of absolute CMRO2, OEF and haemodynamic measurements from calibrated fMRI. *Neuroimage*. 2018;173:113-126.

182. Blockley NP, Griffith VE, Stone AJ, Hare HV, Bulte DP. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction. *Neuroimage*. 2015;122:105-113.

183. Merola A, Murphy K, Stone AJ, et al. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration. *Neuroimage*. 2016;129:159-174.

184. Englund EK, Fernandes-Seara MA, Rodriguez-Soto AE, et al. Calibrated fMRI for dynamic mapping of CMRO2 responses using MR-based measurements of whole-brain venous oxygen saturation. *J Cereb Blood Flow Metab*. 2020;40:1501-1516.

185. Germuska M, Stickland R, Chandler H, Wise R. A new method for mapping baseline cerebral oxygen metabolism using breath-hold calibrated fMRI. In Proceedings of the 29th Annual Meeting of ISMRM, 2021. p. 2684.
232. De Vis JB, Petersen ET, Bhogal A, et al. Calibrated MRI to evaluate cerebral hemodynamics in patients with an internal carotid artery occlusion. *J Cereb Blood Flow Metab.* 2015;35:1015-1023.

233. Seiler A, Kammerer S, Guhl A, et al. Revascularization of high-grade carotid stenosis restores global cerebral energy metabolism. *Stroke.* 2019;50:1742-1750.

234. Nomura JI, Uwano I, Sasaki M, et al. Preoperative cerebral oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping predicts development of cerebral hyperperfusion following carotid endarterectomy. *AJNR Am J Neuroradiol.* 2017;38:2327-2333.

235. Watchmaker JM, Juttukonda MR, Davis LT, et al. Hemodynamic mechanisms underlying elevated oxygen extraction fraction (OEF) in moyamoya and sickle cell anemia patients. *J Cereb Blood Flow Metab.* 2018;38:1618-1630.

236. Kuroda S, Kashiwazaki D, Hirata K, Shiga T, Houkin K, Tamaki N. Effects of surgical revascularization on cerebral oxygen metabolism in patients with Moyamoya disease: an 15O-gas positron emission tomographic study. *Stroke.* 2014;45:2717-2721.

237. Kaku Y, Ihara K, Nakajima N, et al. Cerebral blood flow and metabolism of hyperperfusion after cerebral revascularization in patients with moyamoya disease. *J Cereb Blood Flow Metab.* 2012;32:2066-2075.

238. Iwama T, Akiyama Y, Morimoto M, Kojima A, Hayashida K. Comparison of positron emission tomography study results of cerebral hemodynamics in patients with bleeding- and ischemic-type moyamoya disease. *Neurosurg Focus.* 1998;5:e3.

239. Kang P, Ying C, Chen Y, Ford A, An H, Lee J-M. White matter and watershed ischemia in cerebral small vessel disease (95). *Neurology.* 2021;96:95.

240. Xia S, Uttriainen D, Tang J, et al. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. *Magn Reson Imaging.* 2014;32:1272-1276.

241. Luo Y, Gong Z, Zhou Y, et al. Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery. *Eur Radiol.* 2017;27:2381-2390.

242. Fan AP, Khalil AA, Fiebach JB, et al. Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. *J Cereb Blood Flow Metab.* 2020;40:539-551.

243. An H, Ford AL, Chen Y, et al. Defining the ischemic penumbra using magnetic resonance oxygen metabolic index. *Stroke.* 2015;46:982-988.

244. Lee JM, Vo KD, An H, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. *Ann Neurol.* 2003;53:227-232.

245. Gersing AS, Ankenbrink M, Schweiger BJ, et al. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke. *Neuroradiology.* 2015;57:1253-1261.

246. Zhang S, Cho J, Nguyen TD, et al. Initial experience of challenge-free MRI-based oxygen extraction fraction mapping of ischemic stroke at various stages: comparison with perfusion and diffusion mapping. *Front Neurosci.* 2020;14:535441.

247. Stone AJ, Harston GWJ, Carone D, Okell TW, Kennedy J, Blockley NP. Prospects for investigating brain oxygenation in acute stroke: experience with a non-contrast quantitative BOLD based approach. *Hum Brain Mapp.* 2019;40:2853-2866.

248. Seiler A, Deichmann R, Noth U, et al. Oxygenation-sensitive magnetic resonance imaging in acute ischemic stroke using T2’/R2’ mapping: influence of relative cerebral blood volume. *Stroke.* 2017;48:1671-1674.

249. Seiler A, Blockley NP, Deichmann R, et al. The relationship between blood flow impairment and oxygen depletion in acute ischemic stroke imaged with magnetic resonance imaging. *J Cereb Blood Flow Metab.* 2019;39:454-465.

250. Bauer S, Wagner M, Seiler A, et al. Quantitative T2’-mapping in acute ischemic stroke. *Stroke.* 2014;45:3280-3286.

251. Geiser BS, Brandhoff F, Fiehler J, et al. Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. *Stroke.* 2006;37:1778-1784.

252. Jordan LC, Gindvile MC, Scott AO, et al. Non-invasive imaging of oxygen extraction fraction in adults with sickle cell anemia. *Brain.* 2016;139:738-750.

253. Juttukonda MR, Lee CA, Patel NJ, et al. Differential cerebral hemometabolic responses to blood transfusions in adults and children with sickle cell anemia. *J Magn Reson Imaging.* 2019;49:466-477.

254. Juttukonda MR, Donahue MJ, Waddle SL, et al. Reduced oxygen extraction efficiency in sickle cell anemia patients with evidence of cerebral capillary shunting. *J Cereb Blood Flow Metab.* 2021;41:546-560.

255. Vaclavu L, Petri J, Petersen ET, et al. Cerebral oxygen metabolism in adults with sickle cell disease. *Am J Hematol.* 2020;95:401-412.

256. Vu C, Bush A, Choi S, et al. Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias. *Am J Hematol.* 2021;96:901-913.

257. Prussien KV, Compas BE, Siciliano RE, et al. Cerebral hemodynamics and executive function in sickle cell anemia. *Stroke.* 2021;52:1830-1834.

258. Lin Z, McIntyre T, Jiang D, et al. Brain oxygen extraction and metabolism in pediatric patients with sickle cell disease: comparison of four calibration models. *Front Physiol.* 2022;13:814979.

259. Fields ME, Guilliams KP, Ragan D, et al. Elevations in MR measurements of whole brain and regional cerebral blood flow and oxygen extraction fraction suggest cerebral metabolic stress in children with sickle cell disease unaffected by overt stroke. *Blood.* 2015;126:69.

260. Guilliams KP, Fields ME, Ragan DK, et al. Red cell exchange transfusions lower cerebral blood flow and oxygen extraction fraction in pediatric sickle cell anemia. *Blood.* 2018;131:1012-1021.

261. Fields ME, Guilliams KP, Ragan D, et al. Hydroxyurea reduces cerebral metabolic stress in patients with sickle cell anemia. *Blood.* 2019;133:2436-2444.

262. Wang Y, Fella S, Fields ME, et al. Cerebral oxygen metabolic stress, microstructural injury, and infarction in adults with sickle cell disease. *Neurology.* 2021;97: e902-e912.

263. Croal PL, Leung J, Phillips CL, Serafin MG, Kassner A. Quantification of pathophysiological alterations in venous oxygen...
saturation: a comparison of global MR susceptibility techniques. *Magn Reson Imaging*. 2019;58:18-23.

264. Shen J, Coates T, Wood JC. Lower Oxygen Saturation in the Internal Cerebral Vein of Patients with Sickle Cell Disease Revealed by Qsm-MRI. *Blood* 2019;134:984.

265. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. *Early Hum Dev*. 2010;86:329-338.

266. Jiang D, Golden WC, Parkinson C, Oishi K, Pan L, Lin Z, Lu H, Tekes A, Northington FJ, Liu P. Reduced brain oxygen extraction in hypoxic ischemic encephalopathy: association with 10min Apgar score. In Proceedings of Pediatric Academic Societies Meeting, 2020. p. E-PAS2020:2829.2484.

267. Shetty AN, Lucke AM, Liu P, et al. Cerebral oxygen metabolism during and after therapeutic hypothermia in neonatal hypoxic-ischaemic encephalopathy: a feasibility study using magnetic resonance imaging. *Pediatr Radiol*. 2019;49:224-233.

268. Brazinova A, Rehorcikova V, Taylor MS, et al. Epidemiology of traumatic brain injury in Europe: a living systematic review. *J Neurotrauma*. 2021;38:1411-1440.

269. Ragan DK, McKinstry R, Benzinger T, Leonard J, Pineda JA. Depression of whole-brain oxygen extraction fraction is associated with poor outcome in pediatric traumatic brain injury. *Pediatr Res*. 2012;71:199-204.

270. Ragan DK, McKinstry R, Benzinger T, Leonard JR, Pineda JA. Alterations in cerebral oxygen metabolism after traumatic brain injury in children. *J Cereb Blood Flow Metab*. 2013;33:48-52.

271. Stone AJ, Lawrence TP, Okell TW, Voets NL, Blockley NP. Investigating Tissue Oxygenation in Acute Traumatic Brain Injury Using Arterial Spin Labelling and Quantitative-BOLD. In Proceedings of the 26th Annual Meeting of ISMRM, 2018:4944.

272. Doshi H, Wiseman N, Liu J, et al. Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. *PLoS One*. 2015;10:e0118061.

273. Chai C, Guo R, Zuo C, et al. Decreased susceptibility of major veins in mild traumatic brain injury is correlated with post-concussive symptoms: a quantitative susceptibility mapping study. *Neuroimage Clin*. 2017;15:625-632.

274. Deckers PT, Bhogal AA, Dijsselhof MB, et al. Hemodynamic and metabolic changes during hypercapnia with normoxia and hyperoxia using pCASL and TRUST MRI in healthy adults. *J Cereb Blood Flow Metab*. 2022;42:861-875.

275. Diringer MN, Viden TO, Yunrdt K, et al. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. *J Neurosurg*. 2002;96:103-108.

276. Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. *Crit Care Med*. 2007;35:568-578.

277. Diringer MN, Yunrdt K, Viden TO, et al. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury. *J Neurosurg*. 2000;92:7-13.

278. Ainslie PN, Shaw AD, Smith KJ, et al. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. *Clin Sci (Lond)*. 2014;126:661-670.

279. Rockswoold SB, Rockswoold GL, Zau DA, et al. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. *J Neurosurg*. 2010;112:1080-1094.

280. Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, et al. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study. *J Cereb Blood Flow Metab*. 2016;36:1046-1058.

281. Smith ZM, Krizay E, Guo J, Shin DD, Scadeng M, Dubowitz DJ. Sustained high-altitude hypoxia increases cerebral oxygen metabolism. *J Appl Physiol*. 1985;1913:11-18.

282. Moller K, Paulson OB, Hornbein TF, et al. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude. *J Cereb Blood Flow Metab*. 2002;22:118-126.

283. Griffith VE, Perthen JE, Buxton RB. Prospects for quantitative fMRI: investigating the effects of caffeine on baseline oxygen metabolism and the response to a visual stimulus in humans. *Neuroimage*. 2011;57:809-816.

284. Perthen JE, Lansing AE, Liu J, Liu TT, Buxton RB. Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: a calibrated BOLD fMRI study. *Neuroimage*. 2008;40:237-247.

285. Vorstrup S, Henriksen L, Paulson OB. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. *J Clin Invest*. 1984;74:1634-1639.

286. Xu F, Liu P, Pascual JM, Xiao G, Huang H, Lu H. Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism. *Hum Brain Mapp*. 2015;36:707-716.

287. Zheng G, Wen J, Lu H, et al. Elevated global cerebral blood flow, oxygen extraction fraction and unchanged metabolic rate of oxygen in young adults with end-stage renal disease: an MRI study. *Eur Radiol*. 2016;26:1732-1741.

288. Chai C, Liu S, Fan L, et al. Reduced deep regional cerebral venous oxygen saturation in hemodialysis patients using quantitative susceptibility mapping. *Metab Brain Dis*. 2018;33:313-323.

289. Chai C, Wang H, Chu Z, et al. Reduced regional cerebral venous oxygen saturation is a risk factor for the cognitive impairment in hemodialysis patients: a quantitative susceptibility mapping study. *Brain Imaging Behav*. 2020;14:1339-1349.

290. Zheng G, Lu H, Yu W, et al. Severity-specific alterations in CBF, OEF and CMRO2 in cirrhotic patients with hepatic encephalopathy. *Eur Radiol*. 2017;27:4699-4709.

291. Miyata M, Kakeda S, Kudo K, et al. Evaluation of oxygen extraction fraction in systemic lupus erythematosus patients using quantitative susceptibility mapping. *J Cereb Blood Flow Metab*. 2019;39:1648-1658.

292. Ebrahimi T, Tafakkori A, Hashemi H, Ali OM. An inter-ictal measurement of cerebral oxygen extraction fraction in MRI-negative refractory epilepsy using quantitative susceptibility mapping. *Phys Med*. 2021;85:87-97.

293. Filibey FM, Aslan S, Lu H, Peng SL. Residual effects of THC via novel measures of brain perfusion and metabolism in a large Group of Chronic Cannabis Users. *Neuropsychopharmacology*. 2018;43:700-707.
294. Yu B, Huang M, Zhang X, Ma H, Peng M, Guo Q. Noninvasive imaging of brain oxygen metabolism in children with primary nocturnal enuresis during natural sleep. *Hum Brain Mapp*. 2017;38:2532-2539.

295. Morris EA, Juttukonda MR, Lee CA, et al. Elevated brain oxygen extraction fraction in preterm newborns with anemia measured using noninvasive MRI. *J Perinatol*. 2018;38:1636-1643.

296. Yu L, Xie S, Xiao J, Wang Z, Zhang X. Quantitative measurement of cerebral oxygen extraction fraction using MRI in patients with MELAS. *PLoS One*. 2013;8:e79859.

297. Ge Y, Zhang Z, Lu H, et al. Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI. *J Cereb Blood Flow Metab*. 2012;32:403-412.

298. Fan AP, Govindarajan ST, Kinkel RP, et al. Quantitative oxygen extraction fraction from 7-tesla MRI phase: reproducibility and application in multiple sclerosis. *J Cereb Blood Flow Metab*. 2015;35:131-139.

299. Qi Y, Liu P, Lin Z, Lu H, Wang X. Hemodynamic and metabolic assessment of neonates with punctate white matter lesions using phase-contrast MRI and T2-relaxation-under-spin-tagging (TRUST) MRI. *Front Physiol*. 2018;9:233.

300. Toth V, Forschler A, Hirsch NM, et al. MR-based hypoxia measures in human glioma. *J Neurooncol*. 2013;115:197-207.

301. Saitta L, Heese O, Forster AF, et al. Signal intensity in T2’ magnetic resonance imaging is related to brain glioma grade. *Eur Radiol*. 2011;21:1068-1076.

302. Oughourlian TC, Yao J, Hagiwara A, et al. Relative oxygen extraction fraction (rOEF) MR imaging reveals higher hypoxia in human epidermal growth factor receptor (EGFR) amplified compared with non-amplified gliomas. *Neuroradiology*. 2021;63:857-868.

303. Wiestler B, Kluge A, Lukas M, et al. Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma. *Sci Rep*. 2016;6:35142.

304. Stadlbauer A, Mouridsen K, Doerfler A, et al. Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia. *J Cereb Blood Flow Metab*. 2018;38:422-432.

305. Stadlbauer A, Zimmermann M, Doerfler A, et al. Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma. *Neuro Oncol*. 2018;20:1536-1546.

306. Stadlbauer A, Kinfe TM, Eyupoglu I, et al. Tissue hypoxia and alterations in microvascular architecture predict glioblastoma recurrence in humans. *Clin Cancer Res*. 2021;27:1641-1649.

307. Liu P, Lu H, Filley FM, Tamminga CA, Cao Y, Adinoff B. MRI assessment of cerebral oxygen metabolism in cocaine-addicted individuals: hypoactivity and dose dependence. *NMR Biomed*. 2014;27:726-732.

308. Sheng M, Lu H, Liu P, Thomas BP, McAdams CJ. Cerebral perfusion differences in women currently with and recovered from anorexia nervosa. *Psychiatry Res*. 2015;232:175-183.

309. Karthikeyan S, Fiksenbaum L, Grigorian A, Lu H, MacIntosh BJ, Goldstein BI. Normal cerebral oxygen consumption despite elevated cerebral blood flow in adolescents with bipolar disorder: putative neuroimaging evidence of anomalous energy metabolism. *Front Psych*. 2019;10:739.

310. Pascual JM, Liu P, Mao D, et al. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. *JAMA Neurol*. 2014;71:1255-1265.

311. Rodgers ZB, Leinwand SE, Keenan BT, Kini LG, Schwab RJ, Wehrli FW. Cerebral metabolic rate of oxygen in obstructive sleep apnea at rest and in response to breath-hold challenge. *J Cereb Blood Flow Metab*. 2016;36:755-767.

312. Wu PH, Rodriguez-Soto AE, Wiemken A, et al. MRI evaluation of cerebral metabolic rate of oxygen (CMRO2) in obstructive sleep apnea. *J Cereb Blood Flow Metab*. 2022. doi:10.1177/0271678X211071018:271678X211071018

313. Caporale A, Lee H, Lei H, et al. Cerebral metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution OxFlow MRI with concurrent EEG. *J Cereb Blood Flow Metab*. 2021;41:780-792.

314. Bao D, Zhou J, Hao Y, et al. The effects of fatiguing aerobic exercise on the cerebral blood flow and oxygen extraction in the brain: a piloting neuroimaging study. *Front Neurol*. 2019;10:654.

315. Bulte DP, Chiarelli PA, Wise RG, Jezzard P. Cerebral perfusion response to hyperoxia. *J Cereb Blood Flow Metab*. 2007;27:69-75.

How to cite this article: Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. *Magn Reson Med*. 2022;88:575-600. doi: 10.1002/mrm.29272