Construction of a mathematical model of the vibrational process of pipelines under internal and external loads

S A Nazarychev¹, S O Gaponenko², V E Zakharova²

¹ Kazan Federal University, 18, Kremlyovskaya str., Kazan 420008, Russia
² Kazan State Power Engineering University, 51, Krasnoselskaya, str., Kazan, 420066, Russia

E-mail: nazarychev.sa@gmail.com

Abstract. The article proposes a modal analysis of the natural vibrations of polyethylene pipelines, which is a calculation of the vertical and lateral pressure exerted by the soil on the pipelines, on the basis of which an oscillation study was conducted in the Ansys software package. The results of modal analysis for polyethylene pipes are presented for a laying scheme with inclined walls and various soils.

1. Soil pressure on underground pipelines

Before the development and before the construction of the underground pipeline into the soil in an unlimited array is in a state of natural or geostatic equilibrium under its own weight. At the same time, compressive stresses (pressures) act on the depth \(H \) in the soil mass (figure 1): vertical and horizontal [1-3].

![Figure 1. Underground pipeline in the ground](image)

The soil pressure on underground structures is different than the pressure in an untouched massif at the same depth, because: firstly, the structures have a different rigidity than the soil, and secondly, the movement of the soil has time to occur in the period between the development of the soil and the construction of the structure finally, thirdly, there are gaps between the structure and the massifs that allow some movement of the soil [4-5].

The pressure exerted by the soil on the structure depends on the depth of laying and rigidity of the latter; humidity and the degree of compaction of the soil above the structure and especially next to it...
and the method of construction of the structure. Three main cases of building construction should be distinguished:

- a structure in the embankment (Figure 2, a) erected or laid directly on the surface of the earth or in a very small recess compared to the width of the recess, followed by backfill; this is how culverts are usually constructed under road embankments;

- a structure in a recess or trench (Figure 2, b), when it is erected or laid in an open pit having a width that is small compared to depth and limited by more or less solid walls; the space near the structure and above it is filled with soil; water pipelines, sewers, drains, etc. are usually laid in this way;

- a structure constructed in a closed way (Figure 2, c), in which the soil mass is not disturbed from the surface, this method is used in the construction of tunnels and in trenchless laying of pipelines [6-7].

![Figure 2. Methods for the construction of pipelines in the soil.](image)

The soil pressure on the underground structure does not remain constant, but changes due to changes in temperature and humidity conditions and creep of the soil. In most cases, the pressure on the structure gradually increases over time, reaching its maximum value over a certain period of time, with a subsequent decrease sometimes [8].

2. **Analysis of natural vibrations of polyethylene pipelines**

For the analysis, 5 polyethylene pipes with the following characteristics were modeled: 125x3,1; 180x4,4; 250x6,2; 355x8,7 and 630x15,4 [9].

The pipeline is fixed on both sides at a distance of 0,22L (Figure 3).

The study was conducted for pipelines laid in a trench with inclined walls. Laying a slope on a flat base at a depth of 2,5 m in sandy soil (G-I) and heavy clay (G-VI). The specific gravity of the soil is 16,7kN/m³ and the soil deformation modulus is 1,1 MPa.

![Figure 3. The design scheme of the pipe line, fixed on both sides at a distance of 0,22L](image)
The analysis is shown in detail on the example of a polyethylene pipeline with an outer diameter of 180 mm.

To find the pressure exerted by the soil on the pipeline, we determined the vertical and lateral pressure of the soil on the pipeline with a pipe wall thickness of 4.4 mm [10-12].

Vertical soil pressure on a polyethylene pipe:

\[Q_s^v = n\gamma HD_{out}K_{out}, \]

where \(n \) – load factor for external, permanent and temporary loads;
\(\gamma \) – specific gravity of soil, kN/m\(^3\);
\(D_{out} \) – pipe outer diameter, m;
\(K_{out} \) – backfill soil concentration concentration coefficient when laying pipes on undisturbed soil in the embankment.

Lateral soil pressure on a polyethylene pipe:

\[Q_s^h = n\gamma(H + \frac{D_{out}}{2})D_{out}\lambda_{out}, \]

where \(H \) – pipeline immersion depth, m;
\(\lambda_{out} \) – coefficient at normal degree of compaction of the backfill.

Based on the data obtained, the pressure exerted by the soil on the pipeline was determined (Table 1):

\[q = \frac{Q_{eq}}{D_{Hout}}, \]

\[q = \frac{8.8435}{0.180} = 49.1286 \text{ kN/m}^2 \]

\(Q_{eq} \) - calculated linear reduced equivalent load, kN/m.

Table 1. Soil pressure on a pipeline laid in a trench with inclined walls.

Soil category	Name of soil	Soil pressure, kN/m\(^2\)				
G-I	Sands are gravelly, large and medium-sized	49.1724643	49.1286035	49.0739973	48.9908462	48.7741223
G-VI	Heavy clay	59.0183263	59.0018084	58.9809835	58.9495442	58.8673744
Then a modal analysis was carried out in the Ansys software package, based on which the results were obtained for 100 waveforms (Table 2, Table 3).

Table 2. Analysis results.

Mode	Meter pipeline								
	125x3,1	180x4,4	250x6,2						
	G-I	G-VI	G-I	G-VI	G-I	G-VI			
1	49,488	47,486	47,021	50,137	48,768	48,461	26,533	25,463	25,208
2	119,18	112,26	110,64	119	114,88	113,97	69,424	63,89	62,588
3	142,65	133,81	131,78	134,36	129,08	127,92	78,846	72,211	70,731
4	154,41	152,1	151,51	151,95	150,05	149,61	122,81	116,99	115,62
5	160,78	161,02	161,06	206,96	207,26	207,31	157,75	155,75	153,37
...
95	2114,6	2108,7	2107,5	1975	1973,3	1972,9	1577,1	1572	1572
96	2127,9	2123,6	2122,7	2001,7	1996,1	1995	1587,6	1586,8	1586,6
97	2144,6	2134,6	2132,5	2011,3	2009,6	2009,2	1595,8	1593,3	1592,8
98	2163,5	2153,3	2150,6	2016,4	2013,8	2013,2	1612,4	1608,4	1607,6
99	2172,6	2165,7	2164,7	2038,9	2032,5	2031,3	1636,3	1634,3	1633,8
100	2186,8	2183,2	2182	2051,5	2049,1	2048,5	1641,6	1639,5	1639

Table 3. Analysis results.

Mode	Meter pipeline					
	355x8,7	630x15,4				
	G-I	G-VI	G-I	G-VI	G-I	G-VI
1	12,608	11,096	10,598	4,6314	0	0
2	34,119	27,132	25,104	12,447	0	0
3	37,954	28,302	25,867	15,101	6,8391	4,4181
4	67,465	56,796	54,254	26,596	16,143	12,462
5	78,019	65,328	62,44	29,104	16,926	13,932
...
95	1128,8	1129,1	1129,2	646,88	643,05	642,23
96	1138	1136,8	1136,6	651,39	647,51	646,72
97	1142,8	1139,2	1138,5	659,82	655,48	654,11
98	1157,8	1152,1	1150,9	665,69	657,45	656,13
99	1169,7	1165,1	1164,1	670,93	663,27	661,74
100	1192,8	1189,9	1188,9	678,47	676,49	676,09

3. Construction of indicative graphs of changes in the natural frequencies of pipeline oscillations

Based on the calculation results, histograms of the dependence of the change in the natural frequencies of pipeline oscillations on the type of soil in which they are located were constructed. Figure 4 (a-e) shows graphs for 50 waveforms [13-18].
Figure 4. Graphs of natural frequencies of oscillations of 5 types of pipelines

References
[1] Gaponenko S O Akustiko-rezonansnyj informacionno-izmeritel'nyj kompleks i metodika kontrolya mestopolozheniya zaglublennyh truboprovodov [Acoustic-resonant information-measuring complex and methods for monitoring the location of buried pipelines]. Extended Abstract of Cand. (EngineeringSci.) Dissertation, Kazan, KSPEU publ., 2017, p. 22. (in Russian).
[2] Gaponenko S O, Kondratiev A E Metodika poiska skrytyh polyh ob"ektov v grunte [Technique for finding hidden hollow objects in the ground] Nauchnomu progressu – tvorchestvo molodyh [Scientific progress - the creativity of young]. Yoshkar-Ola: VSUTpubl., 2017, No. 2-4, pp. 115-118. (in Russian).
[3] Ewins D J Modal testing: Theory, practice and application. New York: John Wiley & Son, 2000, 562 p.
[4] Nazarychev S A, Gaponenko S O, Kondratiev A E 2019 IIOAB JOURNAL 10 2 pp 23-27
[5] Babakov I M Teoriya kolebanij [Oscillation theory]. Moscow: Drofa, 2004, pp593 (in Russian)
[6] Shirman A, Soloviev A «Practical vibration diagnostics and monitoring of mechanical equipment» Moscow 1996 pp 276
[7] SP66.13330.2011. Proektirovanie i stroitel'stvo napornyh setej vosdosnabzeniya i vodoootvedeniya s primenieniem vysokoprochnyh trub iz chuguna s sharovidnym grafitom (slzmenieniyami N 1, 2) [Set of Rules 66.13330.2011. Design and construction of pressure water supply and drainage networks using high-strength nodular cast iron pipes]. Moscow, Standartinform Publ., 2011 pp116
[8] Trubynapornyepolyetilena.technicheusloviya [Polyethylenepressurepipes]. Specifications : InterstateStandartGOST 18599-2001: insteadGOST 18599-83: introduced 2003-01-01 / Interstate council for standartization of metrology and certification - Moscow: Standartinform, 2008 III 34
[9] Gaponenko S O, Kondratiev A E Perpektivnye metody I metodiki poiska skrytyh kanalov, polostey i truboprovodov vibroakusticheskim metodom // Vestnik Severo-Kavkazskogo federalnogo universiteta, 2 (47), 2015, pp 9-13
[10] Agapkin V M, Borisov N S, Krivoshein B L Pipeline Design Reference Guide Text. M.: Nedra, 1987 pp 190
[11] SP 66.13330.2011. Proektirovanie i stroitel'stvo napornyh setej vosdosnabzeniya i vodoootvedeniya s primenieniem vysokoprochnyh trub iz chuguna s sharovidnym grafitom (slzmenieniyami N 1, 2) [Set of Rules 66.13330.2011. Design and construction of pressure water supply and drainage networks using high-strength nodular cast iron pipes]. Moscow, Standartinform Publ., 2011 pp 116
[12] Leontiev N V Primenenie sistemy ANSYS k resheniyu zadach modal'nogo i garmonicheskogo analiza [Application of the ANSYS system to solving modal and harmonic analysis problems]. NizhniiNovgorod, 2006
[13] Bryaka V A, Fokin V G, Soldusova E A, Glazunova N A, Adeyanov I E Engineering Analysis at ANSYS Workbench: Textbook - Samara: Samar. Gos. Tech. kn-t, 2010 pp 271
[14] Halen Ward. Modal analysis: theory and testing / Ward Heilen, Stefan Lammens, Paul Sas. - M.: Novatest LLC, 2010 pp 319
[15] Solving contact problems in ANSYS 6.1. Representation CADFEM. –M., 2003
[16] Ansys / CFX program manual version 13.0 - 2010
[17] Bryuka V A, Fokin V G, Soldusova E A, Glazunova N A, Adeyanov I E Inzhenernyj analiz v ANSYS Workbench [Engineering Analysis at ANSYS Workbench]. Samara: SSTU publ., 2010, pp 271 (in Russian)
[18] Gaponenko S O, Kondratiev A E Model'naya ustanovka dlya razrabotki sposobopredeleniya mestopolozheniya skrytyh truboprovodov [Model plant for developing a method for determining the location of hidden pipelines] Izvestiya yyyshih uchenyh zavedenij. Problemy energetiki. Kazan: KSPEU publ., 2014, 7-8, pp 123-129 (in Russian)
[19] Gaponenko S O, Kondratiev A E Perspektivnye metody i metodiki poiska skrytyh kanalov, polostey i truboprovodov vibroakusticheskim metodom [Prospective methods and techniques for finding hidden channels, cavities and pipelines by the vibro-acoustic method] Vestnik Severo-Kavkazskogo federal'nogo universiteta. Stavropol: NCFU publ., 2015, 2 (47), pp 9-13 (in Russian)
[20] Gaponenko S O, Kondratiev A E Izmeritel'nodo–diagnosticheskij kompleks dlya opredeleniya raspolozheniya skrytyh truboprovodov [Measuring and diagnostic complex to determine the location of hidden pipelines] Izvestiya yyyshih uchenyh zavedenij. Problemy energetiki. Kazan: KSPEU publ., 2013, 3-4, pp 138-141 (in Russian)
[21] Gaponenko S O, Kondratiev A E, Zagretdinov A R 2016 Procedia Engineering 150 pp 2321-2326
[22] Gaponenko S O, Nazarychev S A, Kondratiev A E 2018 Helix 8 (1) pp 2481-2487
[23] Gaponenko S O, Kondratiev A E, Zagretdinov A R Metodika opredeleniya trassirovki skrytyh truboprovodov [Method for determining the trace of hidden pipelines] Nauchnomu progressu – tvorchestvo molodyh [Scientific progress - the creativity of young]. Yoshkar-Ola: VSUT publ., 2016, 2-4, pp 163-165 (in Russian)
[24] Gaponenko S O Sposob opredeleniya raspolozheniya truboprovoda [The method of determining the location of the pipeline]. Patent RF, 2482515 2013

[25] Gaponenko S O, Kondratiev A E Universal'nyaya metodika opredeleniya trassirovki skrytykh truboprovodov [Universal method for determining the trace of hidden pipelines] XII Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya "Tinchurinskie chteniya" [XII International Youth Scientific Conference "Tinchurin Readings"]. Kazan: KSPEU publ., 2017, 2 pp 74-76 (in Russian)

[26] Gaponenko S O, Kondratiev A E Metodika poiska skrytykh poliy ob"ektov v grunte [Technique for finding hidden objects in the ground] Nauchnomu progressu – tvorchesto molodyh [Scientific progress - the creativity of young]. Yoshkar-Ola: VSUT publ., 2017, 2-4, pp 115-118 (in Russian)

[27] Gaponenko S O Primenenie novyh metodov dlya obnaruzheniya zaglublennых poliy ob"ektov [Application of new methods for detecting buried hollow objects] Kazan: Foliant publ., 2016, pp 570-575 (in Russian)

[28] Gaponenko S O, Kondratiev A E Metody kontrolya mestopolozheniya zaglublennых truboprovodov [Methods for controlling the location of buried pipelines] XIII Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya "Tinchurinskie chteniya" [XIII International Youth Scientific Conference "Tinchurin Readings"]. Kazan: KSPEU publ., 2018, pp 157-160 (in Russian)

[29] Gaponenko S O, Kondratiev A E, Ibadov A A, Nigmatullina A F Matematicheskoe modelirovanie kolebanij uprugoj obolochki pri vneshem vozdeystvii na primere truboprovoda [Mathematical modeling of oscillations of an elastic shell under external influence on the example of a pipeline] IX Mezhdunarodnaya molodezhnaya nauchno-tekhnicheskaya konferentsiya «Elektroenergetika glazami molodezhi - 2018» [IX International Youth Scientific and Technical Conference "Electric Power Industry through the Eyes of Youth - 2018"]. Kazan: KSPEU publ., 2018, in three volumes, pp 265-268 (in Russian)

[30] Gaponenko S O, Kondratiev A E, Ibadov A A Opredelenie informativnyh chastotnyh diapazonov dlya kontrolya mestopolozheniya zaglublennых truboprovodov [Determination of informative frequency ranges for monitoring the location of buried pipelines] Nauchnomu progressu – tvorchesto molodyh [Scientific progress - the creativity of young]. Yoshkar-Ola: VSUT publ., 2018, 2, pp 68-71 (in Russian)

[31] Kondratiev A E, Gaponenko S O, Shakurova R Z, Nazarychev S A 2019 IOP Conf. Series: Journal of Physics: Conf. Series 1328 012054

[32] Kondratiev A E, Gaponenko S O, Shakurova R Z, Nazarychev S A 2019 IOP Conf. Series: Journal of Physics: Conf. Series 1328 012055

[33] Kondratiev A E, Gaponenko S O, Shakurova R Z, Dimova R 2019 E3S Web of Conferences 124 01021

[34] Gaponenko S O, Shakurova R Z Razrabotka nadezhnogo i energoeffektivnogo sposoba diagnostiki tekhnicheskogo sostoyaniya energeticheskogo oborudovaniya [Development of a reliable and energy-efficient method for diagnosing the technical condition of power equipment] Nauchnomu progressu – tvorchesto molodyh [Scientific progress - the creativity of young]. Yoshkar-Ola: VSUT publ., 2019 (in Russian)

[35] Gaponenko S O, Shakurova R Z Povysheniye nadezhnosti raboty energeticheskikh sistem putem opredeleniya tekhnicheskogo sostoyaniya truboprovodov [Improving the reliability of energy systems by determining the technical condition of pipelines] XIV Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya "Tinchurinskie chteniya" [XIV International Youth Scientific Conference "Tinchurin Readings"]. Kazan: KSPEU publ., 2019 (in Russian)

[36] SP 66.13330.2011. Proektirovanie i stroitel'nostvo napornykh setey vodosnabzheniya i vodoootvedeniya s primeneniem vysokoprochnih trub iz chuguna s sharovidnym grafitom (slzmeneniyami N 1, 2) [Set of Rules 66.13330.2011. Design and construction of pressure water supply and drainage networks using high-strength nodular cast iron pipes]. Moscow, Standartinform Publ., 2011 pp 116