Cycles in Repeated Exponentiation Modulo p^n.

LEV GLEBSKY
Instituto de Investigación en Comunicación Óptica
Universidad Autónoma de San Luis Potosí
Av. Karakorum 1470, Lomas 4a 78210
San Luis Potosi, Mexico
glebsky@cactus.iico.uaslp.mx
June 15, 2010

Abstract
Given a number r, we consider the dynamical system generated by repeated exponentiations modulo r, that is, by the map $u \mapsto f_q(u)$, where $f_q(u) \equiv q^u \mod r$ and $0 \leq f_q(u) \leq r - 1$. The number of cycles of the defined above dynamical system is considered for $r = p^n$.

1 Introduction and formulation of results
Given a number r, we consider the dynamical system generated by repeated exponentiations modulo r, that is, by the map $u \mapsto f_q(u)$, where $f_q(u) \equiv q^u \mod r$ and $0 \leq f_q(u) \leq r - 1$. In [1] the author with Igor Shparlinski considered the case where r is a prime. We gave some estimates on number of 1--, 2-, 3-periodic points of f. We believe that our estimates are very far from being strict (but it seems that the better estimates are not known). Maybe one of the difficulties of the problem is that f is not an algebraic factor of q^x: if, for example, $\gcd(r, \phi(r)) = 1$ then one can choose representative $y \equiv x \mod r$ such that q^y has any possible value $\mod r$. The situation where $\gcd(r, \phi(r))$ is large may be more easy to deal with. In that case, instead of considering the function f, one may consider the graph with edges from $x \in \mathbb{Z}_r$ to all $q^y \mod r$, $y \equiv x \mod r$. I will show that it works very well at list for $r = p^n$ with a prime p. In what follows we will suppose that $\gcd(q, p) = 1$.

Let $\Gamma_{p,n,q}$ be a directed graph defined as follows: the set of vertexes is $V(\Gamma) = \mathbb{Z}_{p^n}$ and the set of edges is $E = \{(x, q^y \mod p^n) \mid x \in \mathbb{Z}_{p^n}, y \equiv x \mod p^n\}$. Suppose for a moment that q is primitive $\mod p^n$. Then $p - 1$ is the out degree of any edge of the graph Γ. Let $C_{p,n,q}(k)$ be the number of k-cycles (with initial vertex marked) in $\Gamma_{p,n,q}$.
Theorem 1. \(C_{p,n,q} \leq (p-1)^k \). If \(q \) is primitive \(\mod p \) then \(C_{p,n,q} = (p-1)^k \).

Corollary 2. The number of \(k \)-periodic points for \(f(x) \equiv q^x \mod p^n \), \(0 \leq f(x) < p^n \) is less than \((p-1)^k \).

The same technique may be used to estimate the number of \(k \)-cyclic points in “additive perturbations” of graph \(\Gamma \). Precisely, let us define \(\Gamma_{p,n,q}^+ \) as follows: the set of vertexes is \(V(\Gamma) = \mathbb{Z}_{p^n} \) and the set of edges is \(E = \{ (x, q^n + c \mod p^n) \mid x \in \mathbb{Z}_{p^n}, y \equiv x \mod p^n, c = -r, -r + 1, \ldots, r \} \). Let \(C_{p,n,q}^+(k) \) be the number of \(k \)-cycles (with the initial vertex marked) in \(\Gamma_{p,n,q}^+ \).

Theorem 3. \(C_{p,n,q}^+(k) \leq p + rp[2p(2r + 1)]^k(n - 1) \)

So, \(C \) grows no more than linearly in \(n \) (but the number of all vertexes grows exponentially).

2 Proof of Theorem 1

Lemma 4. Let \(A_1, A_2, \ldots, A_r \) be elements of an associative (not necessarily commutative) algebra \(A \). Let \(M \in \text{Mat}_{n \times n}(A) \),

\[
M = \begin{pmatrix}
A_1 & A_2 & \cdots & A_n \\
A_1 & A_2 & \cdots & A_n \\
\vdots & \vdots & \ddots & \vdots \\
A_1 & A_2 & \cdots & A_n
\end{pmatrix}
\]

Then \(\text{trace}(M^k) = (A_1 + A_2 + \cdots + A_r)^k \).

Proof.

\[
M^k = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ A_1 & A_2 & \cdots & A_r \\ \vdots & \vdots & \ddots & \vdots \\ A_1 & A_2 & \cdots & A_r \end{pmatrix}^{(k-1)}
\]

\[
= (A_1 + A_2 + \cdots + A_r)^{k-1} \begin{pmatrix} A_1 & A_2 & \cdots & A_n \\ A_1 & A_2 & \cdots & A_n \\ \vdots & \vdots & \ddots & \vdots \\ A_1 & A_2 & \cdots & A_n \end{pmatrix}
\]

\[\square\]

Lemma 5. Let \(A_n \) be the adjacency matrix of \(\Gamma_{p,n,q} \). Then

1. \(A_1 = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 1 & \cdots & 1 \end{pmatrix} \), if \(q \) is primitive \(\mod p \). If \(q \) is not primitive then \(A_1 \) has the same form with some 1 changed to 0.
2. for \(n > 1 \) \(A_n = \begin{pmatrix} B_1^n & B_2^n & \ldots & B_p^n \\ B_1^n & B_2^n & \ldots & B_p^n \\ \vdots & \vdots & \ddots & \vdots \\ B_1^n & B_2^n & \ldots & B_p^n \end{pmatrix} \), where \(B_j^n \in \text{Mat}_{p^n-1 \times p^n-1}(\mathbb{Z}) \)

and \(B_1^n + B_2^n + \ldots + B_p^n = A_{n-1} \).

Proof. Item 1 is trivial. Let us prove Item 2. First of all we represent \(\{0,1,2,\ldots,p^n-1\} \) as \(x = y + bp^{n-1} \), where \(y \in \{0,1,\ldots,p^n-1\} \) and \(b \in \{0,1,\ldots,p-1\} \). The block structure of \(A_n \) corresponds to the described above representation, such that \(b \)'s are numbering our blocks and \(y \)'s are numbering the elements inside the blocks. The item 2 follows from the next facts

i) \(O^n(x) = O^n(y) \) if \(x \equiv y \mod p^{n-1} \). Where \(O^n(x) = \{ y \in \mathbb{Z}_{p^n} \mid (x, y) \in E(\Gamma_{n,p,q}) \} \).

ii) Let \(\phi: \mathbb{Z}_{p^n} \rightarrow \mathbb{Z}_{p^n-1} \) be defined as \(\phi(x) \equiv x \mod p^{n-1} \).

Then for any \(y \in \{0,1,2,\ldots,p^n-1\} \) \(\phi \) defines a bijection \(O^n(y) \leftrightarrow O^{n-1}(y) \).

Fact i). To find \(q^x \mod p^n \) it suffices to know \(z \mod (p-1)p^{n-1} \). Let \(P_x = \{ z \in \mathbb{Z}_{(p-1)p^{n-1}} \mid \exists a \in \mathbb{Z} \ a \equiv z \mod (p-1)p^{n-1} \text{ and } a \equiv x \mod p^n \} \). One has that \(O^n(x) = \{ q^x \mod p^n \mid z \in P_x \} \). By Chinese Remainder Theorem \(P_x = P_y \) if and only if \(x \equiv y \mod p^{n-1} \). Observe that \(O^n(x) = \{ q^x q^{bp^n} \mod p^n \mid b \in \{0,1,\ldots,p-2\} \} \).

Fact ii). Recall that \(O^n(x) = \{ q^x q^{bp^n} \mod p^n \mid b \in \{0,1,\ldots,p-2\} \} \) and \(O^{n-1}(x) = \{ q^x q^{bp^{n-1}} \mod p^{n-1} \mid b \in \{0,1,\ldots,p-2\} \} \). Now, \(q^{bp^n} \equiv q^{bp^{n-1}} \mod p^n \). Indeed, \(bp^{n-1} - bp^n \equiv 0 \mod (p-1)p^{n-1} \). It proves fact ii) if \(q \) is primitive \(\mod p^{n-1} \). For non primitive \(q \) it suffices to prove that for \(b_1, b_2 \in \{0,1,\ldots,p-2\} \) the congruence

\[
q^{b_1p^{n-1}} \equiv q^{b_2p^{n-1}} \mod p^{n-1}
\]

imply the congruence

\[
q^{b_1p^{n-1}} \equiv q^{b_2p^{n-1}} \mod p^n
\]

Let \(q \equiv g^r \mod p^n \) for primitive \(g \). The first congruence is equivalent to \((b_1 - b_2)rp^{n-1} \equiv 0 \mod (p-1)p^{n-2} \). It implies \((p-1)|(b_1-b_2)r \). So, \((b_1-b_2)rp^{n-1} \equiv 0 \mod (p-1)p^{n-1} \) and the second congruence follows.

Now it is easy to finish the proof of Theorem 4. First of all \(C_{p,n,q}(k) = \text{trace}((A_n)^k) \). Using Lemma 4 Lemma 5 and compatibility of the trace and multiplication with the block structure we get

\[
\text{trace}((A_n)^k) = \text{trace}((A_{n-1})^k) = \cdots = \text{trace}((A_1)^k) = (p-1)^k
\]
3 Proof of theorem

For $A, B \in \text{Mat}_{d \times d}((0, 1))$ we will write $A \preceq B$ if $A_{i,j} = 1$ implies $B_{i,j} = 1$.

Lemma 6. Let A_n be the adjacency matrix of $\Gamma^{+, _r}_{p, n, q}$. Then

1. $A_1 \preceq \begin{pmatrix} 1 & 1 & 1 & \ldots & 1 \\ 1 & 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \ldots & 1 \end{pmatrix}$, if q is primitive modulo p. If q is not primitive then A_1 has the same form with some 1 changed to 0.

2. for $n > 1$ $A_n \preceq \begin{pmatrix} B_1^n & B_2^n & \ldots & B_p^n \\ B_1^n & B_2^n & \ldots & B_p^n \\ \vdots & \vdots & \ddots & \vdots \\ B_1^n & B_2^n & \ldots & B_p^n \end{pmatrix} + X$, where $B_j^n \in \text{Mat}_{p^n-1 \times p^n-1}(\mathbb{Z})$,

$B_1^n + B_2^n + \ldots + B_p^n = A_{n-1}$, $X \in \text{Mat}_{p^n \times p^n}((0, 1)$ with less then $2rp$ rows.

Proof. Item 1 is trivial. The prove of Item 2 proceeds the same way as the one of Theorem 1, but now we have to take into account that $y + s(\mod p^n)$ may be different from $y + s(\mod p^{n-1})$. Observe, that $y + s(\mod p^{n-1}) = y + s(\mod p^n)$ for $r \geq y \leq p^{n-1} - 1 - r$. So, for each $b \in \{0, 1, \ldots, p-1\}$ there exists only $2r$ of $y \in \{0, 1, \ldots, p^{n-1} - 1\}$ where the rows of X are non zero.

Now we are ready to prove Theorem 3

$$C^{+, _r}_{n, p, q}(k) = c_n = \text{trace}(A_n^k) \leq \text{trace}(A_{n-1}^k) + \Delta = c_{n-1} + \Delta$$

Δ is the sum of the traces of 2^{k-1} matrices P_s, each of them is a product of k matrices containing X. Observe, that $\text{trace}(P_s) \leq 2rp((2r + 1)p)^k$. Indeed, this is a number of k-periodic paths such that some steps of the path correspond to the matrix X and some to the matrix B. The estimate follows from the number of non-zero rows of X, and that each row of X and B contains no more than $(2r + 1)p$ ones. Noting that $c_1 \leq p$ we get $c_n \leq p + rp(2r + 1)p^k(n-1)$.

Acknowledgments The proof of Lemma 4 was suggested by Edgardo Ugalde. The author thanks Igor Shparlinski for useful suggestions. The work were partially supported by PROMEP grant UASLP-CA21 and by CONACyT grant 50312.

References

[1] Lev Glebsky and Igor E. Shparlinski, Short cycles in repeated exponentiation modulo a prime, *Designs, Codes and Cryptography*, 56, N1, (2010) p.35-42