The band structure of MgB$_2$ with different lattice constants

Xiangang Wan, Jinming Dong, Hongming Weng and D. Y. Xing

Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P.R.China

Abstract

We report a detailed study of the electronic structure of the MgB$_2$ with different lattice constants by using the full-potential linearized augmented plane wave (FPLAPW) method. It is found that the lattice parameters have great effect on the σ band of Boron. Our results indicate that increasing the lattice constant along the c axis will increase the density of states (DOS) at the Fermi level, shift the σ band upward, and increase the hole number in the σ band. So, the superconducting transition temperature T_c will be raised correspondingly. Changing the lattice constant along a axis has the opposite effect to that of the c axis. Our result is in agreement with experiment. A possible way of searching for higher T_c superconductor has been indicated, i.e., making MgB$_2$ to have longer c axis and shorter a, b axis by doping.

PACS Number : 74.25.Jb, 74.70.Ad
The discovery of superconductivity in magnesium diboride (MgB$_2$) [1,2] has stimulated worldwide excitement. The superconducting transition temperature for MgB$_2$ ($T_c \approx 39$ K) exceeds by almost two times the record values of T_C for conventional B_1- and A_{15}-type intermetallic superconductors (SC) [3], which is by far the highest if we exclude copper oxides and C_{60} based materials. As distinct from the high-temperature superconductor, MgB$_2$ has an exclusively simple composition and crystal structure [4]. The B isotope shift of T_c reported by Bud’ko [5] and most other early experimental data[6] suggests conventional BCS strong-coupling s-wave electron-phonon (EP) pairing.

Band structure calculations show that the compound is not only quite ionic with a reasonable DOS, but also has strong covalent B-B bonding (the bonding-antibonding splitting due to in-plane B-B hopping is about 6 eV) and thus exhibits strong electron-phonon interactions[7, 8, 9]. Mg s-states are pushed up by the B p_z orbitals and fully donate their electrons to the boron-derived conduction bands. Hirsch used a hole-superconductivity model to explain the high temperature superconductivity in MgB$_2$ as driven by undressing of hole carriers in the planar boron $p_{x,y}$ orbitals in the negatively charged B$^-$ planes [10]. The model by Hirsch predicts a positive pressure effect on T_c. However, high pressure studies show negative pressure coefficient of T_c[11, 12]. Based on an estimate of phonon frequencies and band structure calculations, Kortus et al[8] explain the superconductivity in MgB$_2$ as a result of strong electron-phonon coupling and An and Pickett[7] attributed it to the behavior of $p_{x,y}$-band holes in negatively charged boron planes. Many authors[7-9] emphasize the significant role of metallic B states in the appearance of superconductivity. According to the McMillan formula for T_C[13], the high transition temperature is probably due to a high density of states at the Fermi level, $N(E_F)$, high averaged electron-ion matrix elements, as well as high phonon frequencies, which increase for light elements and depend on $B-B$ and $M-B$ bonding.

Past experience said that T_c should be strongly affected by doping or changing the lattice constants. Some experiments concerning substitutions on the Mg site have been done[14, 15]. Substitution of Al leads, apart from doping with electrons, to a compression of the structure
due to the difference in ionic radius between Al and Mg. The compression is anisotropic
and an Al content of x=0.1 leads to a structural instability. The rate of compression along
the c axis is about twice as much as along the a axis[14]. Both hole doping by substitution
of Li$^+$[15], and electron doping by substitution of Al$^{3+}$[14] for Mg$^{2+}$ led to a decrease of
T_c. In fact, Al doping will destroy bulk superconductivity when the Al content x is larger
than 0.3[14]. There are also many experiments concerning Boron sublattice doping[16].
The lattice parameter a decreases almost linearly with increasing carbon content x, while
the c parameter remains unchanged, indicating that carbon is exclusively substituted in
the Boron honeycomb layer without affecting the interlayer interactions. T_c also decreases
about linearly as a function of the carbon concentration. A recent experiment had also
found BiB$_2$ not to be a superconductor[17]. BiB$_2$ and MgB$_2$ are isostructural, and their
valence electron number is the same. So, the basic change is due to structural factors, i.e.
lattice parameter, a, and interatomic distance, c/a. Recently, high pressure studies show
that T_c will decrease with increasing pressure[11, 12]. Compression will decrease both lattice
constant a and c, but it is not yet know which one of them is responsible for decreasing T_c.
So, it is very interesting to investigate the Boron band structure, especially the π and σ
band, as a function of lattice constants a and c.

We have used the highly accurate all-electron full-potential linear augmented plane
wave method[18, 19]. The standard local density approximation to the electron exchange-
correlation potential was used together with the generalized gradient corrections of
Perdew[20]. The muffin-tin sphere radii (R) of 2.00 a.u. and 1.50 a.u. were chosen for
the Mg and B atoms, respectively, with a cutoff $R_{K_{\text{max}}}=8.0$.

MgB$_2$ is isomorphous with AlB$_2$[4]; the lattice constants of the hexagonal unit cell are
$a_0=3.0834$ and $c_0=3.5213$ Å. From the existing experiments we can see that high hydrostatic
pressure has an anisotropic influence along a and c. The compression along the c axis is 64%
stronger than along the a axis, which is in line with the weaker Mg-B bond[21]. Thermal
compression along the c axis is about twice the one along the a axis. So, we fix $a=3.0834\,\text{Å}$,
and vary lattice constant c. The total energy-vs-c relation is shown in Fig.1. It can be seen

3
that $c = c_0 = 3.5213 \, \text{Å}$ with the lowest total energy agrees with the experimental result.

The band structure of MgB$_2$ is shown in Fig. 2. For convenience, we set $E_f = 0$. From it we can see that there are two kinds of bands: the σ and π band. Both of them are contributed by Boron. The σ band along Γ-A is double degenerate. Change of lattice constant will not change the symmetry, and so will not change its character. We found when $c = 1.4c_0$, the σ band has a very small dispersion along Γ-A. But it will increase with decreasing c. Thus increasing c will strengthen the 2D character of the σ band, and if c approaches ∞, MgB$_2$ becomes an ideal 2D B$_2$ layer. Another evident change is that the σ band will shift upward with respect to the E_f when we increase c. For $c = 0.8c_0$, the σ band is below the Fermi energy, and the σ bonding state would be completely filled. For $c = 0.9c_0$, the σ band will cross the Fermi energy at the Γ point. With increasing c, the σ band will shift upward, and so will have more holes. On the other hand, increasing c will decrease the hopping coefficient $t_{p\sigma}$ in Kortus’s TB model [8] for the π band, and will cause the π band dispersion along Γ-A decrease. Comparing with E_f, increasing c will decrease the position of bonding π band at M and Γ point, and will raise the position of bonding π band at A and L point.

We have also studied the effect of lattice constant a on the electronic structure, and found it to be opposite to c. With decreasing a, both bonding and antibonding σ band will move upward with respect to E_f, and the splitting between bonding and antibonding σ band will increase. When $c = 0.8c_0$ and $a = a_0$, the bonding σ band is below the Fermi energy. Fixing c and decreasing the a, the bonding σ band will move upward. From Fig. 2(d), we can see that, when $c = 0.8c_0$ and $a = 0.9a_0$, its σ band lies higher than it in Fig. 2(a), and there are holes in the bonding σ band. The increase of splitting between bonding and antibonding σ band is due to increase of the hopping coefficient with decreasing a. The possible reason why σ band moves upward is electrostatic effect. Being different from σ band, the bonding π band will move downward with respect to the E_f when a decreases. Compression will decrease both the a and c. But σ bond of B-B is much stronger than the Mg-B bond, so, it is natural to expect that compression will mainly cause the decrease of c [21]. Thus, we
can conclude that compression will shift the σ band downward and decrease the number of holes in the σ band.

We have also studied the relationship between the density of states at the Fermi level (N_f) and the lattice constants, which is shown in Fig.3. It is found that N_f will increase with increasing of the lattice constant c, which is in agreement with other theoretical results[22, 23]. Many theories and experiments show that the MgB$_2$ is a BCS-like superconductor. So the electron-phonon coupling constant λ, which enters the BCS equation, is very important[13], and is proportional to N_f. Since N_f will decrease for smaller c, T_c will be decreased, which is in agreement with experiments[11, 12]. The states at the Fermi level, responsible for superconductivity, show two different orbital characters: $p-\sigma$ bonding (column-like FS around $\Gamma-A$) and p_z, which has π-bonding and antibonding characters on the basal and on the top ($k_z = \pi/c$) planes, respectively. Which one of them is the most important for the superconductivity is not yet known. In order to answer this question, we calculate the partial DOS of π and σ band of MgB$_2$ with different lattice constants c. We find that with a larger c, $N_f(\sigma)$ will increase, whereas $N_f(\pi)$ will decrease. Here, the $N_f(\sigma)$ ($N_f(\pi)$) means the density of σ (π) state at Fermi energy. So, we can say that the σ band of Boron plays a more important role for superconductivity than the π band. The p_σ and p_π bands move with respect to each other with increasing c, thus inducing charge transfer between these two bands. It is the reason why the $N_f(\sigma)$ has an opposite trend to $N_f(\pi)$. Our result is in agreement with Goncharov and Bud’ko et al.,’s result[24].

In summary, we calculated the electronic structure of MgB$_2$ for different lattice constants. Our results show that increasing lattice constant c will increase the DOS at the Fermi level, shift the σ band upward, and thus increase the hole number in the σ band. Decreasing c will lower the T_c. The effect of changing a is opposite to c. For constant c, a shorter a will raise T_c. The main influence of compression is to decrease c, and thus will decrease the T_c, which is in agreement with the experiments[11, 12]. A search for a higher T_c superconductor by doping MgB$_2$, would require a longer lattice constant c and shorter a, b. A possible way would be a suitable substrate, which forces MgB$_2$ film to have longer c but shorter a, b. 5
V. Acknowledgments

The authors acknowledge support in this work by a grant for State Key Program of China under Grant No. G 1998061407. The numerical calculations in this work have been done on the SGI Origin - 2000 computer in the Group of Computational Condensed Matter Physics, in the National Laboratory of Solid State Microstructures, Nanjing University.
REFERENCES

[1] R. J. Cava; Nature 410, 23 (2001).

[2] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu; Nature 410, 63 (2001).

[3] S. V. Vonsovsky, Y. A. Izumov, and E. Z. Kurmaev; Superconductivity of Transition Metals, Alloys and Compounds, Springer, Berlin, (1982).

[4] M. E. Jones and R. E. Marsh; J. Am. Chem. Soc. 76, 1434 (1954).

[5] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, Phys. Rev. Lett. 86, 1877 (2001).

[6] D. K. Finnemore, J. E. Ostenson, S. L. Bud’ko, G. Lapertot, and P. C. Canfield, Phys. Rev. Lett. 86, 2420 (2001); G. Rubio-Bollinger, H. Suderow, and S. Vieira, Phys. Rev. Lett. 86, 5582 (2001); B. Lorenz, R. L. Meng, C. W. Chu, P. C. Canfield, D. K. Finnemore, S. L. Bud’ko, J. E. Ostenson, G. Lapertot, C. E. Cunningham, and C. Petrovic, Phys. Rev. Lett. 86, 2423 (2001); A. Sharoni, I. Felner, and O. Millo Phys. Rev. B 63, 220508R (2001); H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, J. Akimitsu, cond-mat/0102334.

[7] J. M. An and W. E. Pickett; Phys. Rev. Lett. 86, 4366 (2001).

[8] J. Kortus, I. I. Mazin, K. D. Belashenko, V. P. Antropov and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001).

[9] K. D. Belashenko, M. van Schilfgaarde and V. P. Antropov, cond-mat/0102290 (2001); T. Yildirim, O. Gulseren, J. W. Lynn, C. M. Brown, T. J. Udovic, H. Z. Qing, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Slusky, T. He, M.K. Haas, P. Khalifah, K. Inumaru, R.J. Cava, Phys. Rev. Lett. 87, 037001 (2001).

[10] J. E. Hirsch, Phys. Lett. A 282, 392 (2001).
[11] B. Lorenz, R. L. Meng and C. W. Chu; Phys. Rev. B 64, 012507 (2001).

[12] M. Monteverde, M. Nunez-Regueiro, N. Rogado, K. A. Regan, M. A. Hayward, T. He, S. M. Loureiro, and R. J. Cava, Science 292, 75 (2001).

[13] W. L. McMillan, Phys. Rev. 167, 331 (1968).

[14] J. S. Slusky, N. Rogado, K. A. Regan, M. A. Hayward, P. Khalifah, T. He, Nature 410, 343 (2001).

[15] Y. G. Zhao, X. P. Zhang, P. T. Qiao, H. T. Zhang, S. L. Jia, B. S. Cao M. H. Zhu, Z. H. Han, X. L. Wang, B. L. Gu, cond-mat/0103077 (2001).

[16] S. Zhang, J. Zhang, T. Zhao, C. Rong, B. Shen, Z. Cheng, cond-mat/0103203; T. Takenobu, T. Ito, Dan H. Chi, K. Prassides, Y. Iwasa, cond-mat/0103241; J. S. Ahn, and E. J. Choi, cond-mat/0103169 (2001).

[17] I. Felner, cond-mat/0102508 (2001).

[18] D. J. Singh, Planewaves, Pseudopotentials, and the LAPW Method (Kluwer Academic, Boston, 1994).

[19] P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, 1997; P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990).

[20] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais , Phys. Rev. B 46, 6671 (1992); J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[21] J. D. Jorgensen, D. G. Hinks, and S. Short, Phys. Rev. B 63, 224522 (2001).

[22] I. Loa and K. Syassen, Solid State Commun. 118, 279 (2001).

[23] J. B. Neaton and A. Perali, cond-mat/0104098 (2001).
[24] A. F. Goncharov et al., cond-mat/0106258 (2001).
Figure Captions

Figure 1 The total energy of MgB$_2$ as a function of lattice parameter c/c_0. $c_0 = 3.5213\text{Å}$.

Figure 2 The band structure of MgB$_2$ with different lattice constants. The circles represent the Boron σ band. $a_0 = 3.0834\text{Å}$, $c_0 = 3.5213\text{Å}$. (a) $a=a_0$, $c=0.8c_0$; (b) $a=a_0$, $c=c_0$; (c) $a=a_0$, $c=1.4c_0$; (d) $a=0.9a_0$, $c=0.8c_0$.

Figure 3 Density of states near E_f for MgB$_2$ with different lattice constants, $c/c_0 = 0.8$, 1.0 and 1.4. Fermi level is set at the zero.
Fig1
Fig2a

Energy (eV)
Fig 2b
Fig 2c

Energy (eV)

M Γ Δ A L

-8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

E_F
Fig 2d

Energy (eV)
