The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species

Xinhao Li¹, Hai-Xia Wu¹, Jinchen Li¹, Hang Chen¹, Wei Wang¹

¹ International Fungal Research and Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China

Corresponding author: Hai-Xia Wu (aileen2008haixia@gmail.com, haixiawu@caf.ac.cn)

Abstract

During the field studies, a Translucidithyrium-like taxon was collected in Xishuangbanna of Yunnan Province, during an investigation into the diversity of microfungi in the southwest of China. Morphological observations and phylogenetic analysis of combined LSU and ITS sequences revealed that the new taxon is a member of the genus Translucidithyrium and it is distinct from other species. Therefore, Translucidithyrium chinense sp. nov. is introduced here. The Maximum Clade Credibility (MCC) tree from LSU rDNA of Translucidithyrium and related species indicated the divergence time of existing and new species of Translucidithyrium was crown age at 16 (4–33) Mya. Combining the estimated divergence time, paleoecology and plate tectonic movements with the corresponding geological time scale, we proposed a hypothesis that the speciation (estimated divergence time) of T. chinense was earlier than T. thailandicum. Our findings provided new insights into the species of Translucidithyrium about ecological adaptation and speciation in two separate areas.

Keywords

Divergence time, morphological characteristics, new species, Phaeothecoidiellaceae, phylogeny, speciation, taxonomy

Introduction

The sooty blotch and flyspeck fungi are widespread species and commonly occur on the surface of leaves, stems and fruits in tropical and subtropical zones (Yang et al. 2010; Gleason et al. 2011; Hongsanan et al. 2017; Zeng et al. 2018). Although these
fungi do not directly harm host plants, they may affect the economic value of fruit sales ability and reduce photosynthesis in plants (Gleason et al. 2011). Sooty blotch fungi can form dark mycelial mats, whereas flyspeck fungi lack mycelial mats, form shiny and small, black spots (Batzer et al. 2005; Yang et al. 2010; Gleason et al. 2011; Zhang et al. 2015; Singtripop et al. 2016; Hongsanan et al. 2017). However, these fungi are poorly known, because of the difficulty in obtaining the strain which grows slowly (Yang et al. 2010; Hongsanan et al. 2017; Zeng et al. 2018).

Phaeothecoidiellaceae K.D. Hyde & Hongsanan was introduced by Hongsanan et al. (2017) and accommodated three genera Chaetothyrina, Houjia and Phaeothecoidiella in the order Capnodiales. Currently, it includes eight genera: Chaetothyrina, Exopassalora, Houjia, Nowamyes, Phaeothecoidiella, Rivilata, Sporidesmajora and Translucidithyrium (Hongsanan et al. 2020). Members of Phaeothecoidiellaceae are related to sooty blotch and flyspeck fungi and characterised by thyriothecia with setae, bitunicate asci and 1-septate ascospores (Singtripop et al. 2016; Hongsanan et al. 2017; Zeng et al. 2019; Hongsanan et al. 2020). Chaetothyrina is morphologically similar to the family Micropeltidaceae (Reynolds and Gilbert 2005), but is distinguishable by its brown upper wall of ascomata (Wu et al. 2019; Zeng et al. 2019). The genus Rivilata is placed in this family on the basis of morphological characters by Doilom et al. (2018). The Nowamyes was introduced as a new genus in the new family Nowamycetaceae by Crous et al. (2019) and Hongsanan et al. (2020) placed this genus into Phaeothecoidiellaceae by phylogenetic analysis. Hongsanan et al. (2020) listed Houjia, Exopassalora, Sporidesmajora and Phaeothecoidiella as asexual genera in Phaeothecoidiellaceae.

Translucidithyrium X.Y. Zeng & K.D. Hyde (2018) was introduced as a monotypic genus in Phaeothecoidiellaceae, which is represented by T. thailandicum X.Y. Zeng & K.D. Hyde (2018). It was characterised by epiphytes on the reverse of living leaves, semi-transparent ascomata, globose to subglobose asci and fusiform ascospores with verrucose and appendages. Ascospores germinated on MEA (Malt Extract Agar Medium) within 24 h. The colonies slowly grow on media, white to grey, circular and villiform (Zeng et al. 2018).

Liu et al. (2017) used the molecular clock approach to estimate the divergence time of the order Capnodiales crown age at 151–283 Mya (million years ago). Zeng et al. (2019) estimated the divergence time of the family Phaeothecoidiellaceae crown age at 40–60 Mya. The molecular clock approach for estimating divergence time might be used to predict speciation, historical climate change or other environmental events (Hélène and Arne 2014; Louca and Pennell 2020).

In this study, we collected an extraordinary new species of Translucidithyrium in Xishuangbanna, Yunnan Province, China. We described the morphological characteristics and built a phylogenetic tree to determine the classification of the new taxon. We compared and analysed the estimated divergence time of Translucidithyrium with the environmental changes around the corresponding time range to propose the evolutionary history hypothesis of Translucidithyrium distributed in two different regions (China and Thailand).
Methods

Morphological

Fresh living leaves with olivaceous dots were collected at Xishuangbanna, China (21°55′51″N, 101°15′08″E, 540 m alt.) and delivered to the laboratory for observation. According to Wu et al. (2014), the collected samples were processed and examined by microscopes: the photos of ascomata were taken by using a compound stereomicroscope (KEYENCE CORPORATION V.1.10 with camera VH-Z20R). Hand sections were made under a stereomicroscope (OLYMPUS SZ61) and mounted in water and blue cotton and photomicrographs of fungal structures were taken with a compound microscope (Nikon ECLIPSE 80i). The single spore isolation was implemented by the methods of Choi et al. (1999) and Chomnunti et al. (2014). Germinated spores were individually transferred to PDA (Potato Dextrose Agar Medium) and incubated at 26 °C for 48 h. Colony characteristics were observed and measured after 4 weeks at 26 °C. Images used for figures were processed with Adobe Photoshop CC v. 2015.5.0 software (Adobe Systems, USA). The holotype was deposited at the herbarium of IFRD (International Fungal Research & Development Centre; Research Institute of Resource Insects, Kunming), reference number IFRD 9208. The ex-type strain was deposited at IFRDCC, reference number IFRDCC 3000.

DNA isolation, amplification and sequencing

According to the manufacturer’s instructions, genomic DNA was extracted from mycelium growing on PDA at room temperature by using the Forensic DNA Kit (OMEGA, USA). The primer pair LR0R and LR5 was used to amplify the large subunit (LSU) rDNA (Vilgalys and Hester 1990). The primer pair ITS5 and ITS4 was used to amplify the internal transcribed spacer (ITS) rDNA (White et al. 1990). The primer pair NS1 and NS4 was used to amplify the partial small subunit (SSU) rDNA (White et al. 1990). The PCR reactions were in accordance with instructions from Golden Mix, Beijing TsingKe Biotech Co. Ltd, Beijing, China: initial denaturation at 98 °C for 2 min, then 30 cycles of 98 °C denaturation for 10 s, 56 °C annealing for 10 s and 72 °C extension for 10 s (ITS and SSU) or 20 s (LSU) and a final extension at 72 °C for 1 min. All PCR products were sequenced by Biomed (Beijing, China).

Sequences alignments and phylogenetic analysis

BioEdit version 7.0.5.3 (Hall 1999) was used to re-assemble sequences generated from forward and reverse primers for obtaining the integrated sequences. Sequences were downloaded from GenBank using data from the publications of Zeng et al.
(2018), Crous et al. (2019), Hongsanan et al. (2020) and Renard et al. (2020) and aligned using BioEdit version 7.0.5.3 (Hall 1999); in addition, sequences were adjusted manually.

Maximum Likelihood (ML) analysis was conducted by using RAxMLGUI v.1.0 (Silvestro and Michalak 2012). Aligned sequences were input into the software and Dothidea sambuci was selected as the outgroup taxon. One thousand non-parametric bootstrap iterations were employed with the “ML + rapid bootstrap” tools and “GTR-GAMMA” arithmetic.

For Bayesian analysis, MrModeltest 2.3 (Nylander 2004) was used to estimate the best-fitting model for the combined LSU and ITS genes. Posterior probabilities (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) were determined by Markov Chain Monte Carlo (MCMC) sampling in MrBayes v.3.2 (Ronquist and Huelsenbeck 2003). Six simultaneous Markov chains were run for 2,000,000 generations; trees were printed every 1,000 generations; trees were sampled every 100 generations. The first 5,000 trees submitted to the burn-in phase and were discarded; the remaining trees were used for calculating posterior probabilities in the majority rule consensus tree (Cai et al. 2006, 2008; Liu et al. 2012).

Fossil calibrations and divergence time estimations

The fossil Protographum luttrelli (Renard et al. 2020) was used to calibrate the divergence time of Asterotexiales and Aulographaceae (normal distribution, mean = 119.0, SD = 3.7). The secondary calibration from the family Phaeothecoidiellaceae with a crown age of 58 Mya (normal distribution, mean = 50.0, SD = 6.1) was used (Zeng et al. 2019). The additional secondary calibration of Capnodiales was used, based on the result from Liu et al. (2017) (normal distribution, mean = 217.0, SD = 40.0).

Divergence time analysis was carried out using BEAST v1.8.4 (Drummond et al. 2012). Aligned LSU sequence data were loaded into the BEAUti v1.10.4 for generating an XML file. An uncorrelated relaxed clock model (Drummond et al. 2006) with a lognormal distribution of rates was used for the analysis. We used a Yule Process tree prior (Yule 1925; Gernhard 2008), which assumes a constant speciation rate per lineage and a randomly-generated starting tree. The length of chain was set as 50 million generations and sampling parameters were set at every 5,000 generations in MCMC. Subsequent divergence time analysis was carried out using BEAST v.1.10.4 (Drummond et al. 2012). Tracer v.1.7.1 was used to check the effective sample sizes (ESS) and acceptable values were higher than 200. The .log files and .tree files generated by BEAST were combined in LogCombiner v1.10.4 after removing a proportion of states as burn-in. The Maximum Clade Credibility (MCC) tree was given by obtained data and was estimated in TreeAnnotator v.1.10.4 (Liu et al. 2017; Zeng et al. 2019, 2020; Renard et al. 2020).

The phylogenetic tree and MCC tree were visualized in FigTree v.1.4.3 (Rambaut 2012) and Adobe Illustrator CS6 v. 16.0.0 (Adobe Systems, USA).
Table 1. Selected taxa in this study with their corresponding GenBank accession numbers. The newly-generated sequences are shown in bold.

No.	Species	Voucher /strain no.	LSU	ITS
1	Acidomyces acidophilus	MH1085	JQ172741	JQ172741
2	Asterina phenacis	TH 589	GU586217	–
3	Asterotexiaceae sp.	VUL.535	MG844162	–
4	Aulographum sp.	VUL.457	MG844158	–
5	Batcheloromyces proteae	CBS 110696	JF746163	JF746163
6	Bauolnius comptiacensis	CBS 123031	GQ852580	–
7	Brunonosphearrla protearum	CPC 16338	GU214397	GU214626
8	Buellia minimula	Lendemer 42237(NY)	XX449061	–
9	Camarosporula persooniae	CBS 116258	JF770461	JF770449
10	Capnobotryella renispora	CBS 214.90	GU214400	DQ491515
11	Capnodium coffeae	CPC 15368	GU214402	GU214628
12	Chaetothyrina guttulata	CBS 121621	KJ564331	EF679363
13	Chaetothyrina guttulata	CBS 125988	KJ564334	HM148097
14	Chaetothyrina musarum	MFLUCC 15–0383	KU710171	–
15	Cladosporium herbarum	CBS 121011	KJ564331	EF679363
16	Cladosporium hillianum	CBS 170.54	DQ678057	AY213640
17	Cladosporium ramotenellum	CBS 100496	GU301817	AY128703
18	Conidiocarpus (Phragmocapnias) betle	MFLUCC 10–0050	–	–
19	Deveria stauraphora	ATCC 200934	KF901963	AF393723
20	Discomonium aciculare	CBS 204.89	GU214419	AY725520
21	Duthidea sambuci	AFTOL-ID 274	AY544681	DQ491505
22	Duthisterina pini	CBS 121011	JX901821	JX901734
23	Elasticomyces elasticus	CCFEE 5547	KF309991	–
24	Exopassalora zambiae	YHJN13	GQ433631	GQ433628
25	Extremus adstrictus	TRN96	KF100022	–
26	Friedmanniomycyes edoliticipus	MFLUCC 5199	KF310007	JN885547
27	Hispidoconidioma alpinum	L2–1/2	FJ997286	FJ997285
28	Hortaea borneriic	CBS 100496	GU301817	AY128703
29	Houjia yanglingensis	YHJN13	GQ433631	GQ433628
30	Lecanosticta pini	CBS 871.95	GQ852598	–
31	Lembosia albersii	MFLUCC 13–0377	KM386982	–
32	Lembosia sp.	VUL.644	MG844165	–
33	Leptoxyphium cacuminum	MFLUCC 10–0049	JN832602	–
34	Melanodothia carici	CBS 860.72	GU214431	GU214638
35	Microcyclosporella mai	CPC 16171	GU570545	GU570528
36	Microxyphium citri	CBS 451.66	KF902094	–
37	Morenoisa calamicola	MFLUCC 14–1162	NG059779	NR154210
38	Neopseudocercosporella capsellae	CPC 127.29	KF251830	KF251326
39	Novamyces globulus	CBS 144598	MN162196	MN161935
40	Parapenidiella taramiensis	CPC 23534	KJ869211	KJ869154
41	Neodrevia corneliae	CPC 15382	GU214414	GU214633
42	Neodrevia hilliana	CBS 128219	HQ599606	HQ599605
43	Neodrevia saxithorae	CBS 127.29	KF251630	KF251326
44	Neodrevia saxithorae	CBS 127.29	KF251830	KF251326
45	Nowamyces globulus	CBS 144598	MN162196	MN161935
46	Nowamyces piperitae	CBS 143490	MN162200	MN161944
47	Peniophellia tasmaniensis	CBS 124991	KF901844	KF901522
48	Pseudolata cucullifera	CBS 111318	KF901938	KF901613
49	Peniophellia columnum	CBS 486.80	EU019274	KF901630
50	Pirociliella selutina	CBS 101950	EU019274	EU017483
51	Petrophila incerta	TRN 77	–	–
52	Phaeophleospora eugeniase	CPC 15159	KF902095	KF901742
No.	Species	Voucher /strain no.	LSU	ITS
-----	----------------------------------	---------------------	-------------	-------------
53	Phaeothecoidea eucalypti	CBS 120831	KF901848	KF901526
54	Phaeotheciodella illinoensis	CBS 125223	GU117901	GU117897
55	Phaeotheciodella missouriensis	CBS 125222	AY598917	AY598878
56	Phleoaspera maculans	CBS 115123	GU214670	GU214670
57	Piednia hortae	CBS 480.64	GU214466	GU214467
58	Piednia quintansilvae	CBS 327.63	GU214468	–
59	Pseudocercospora vitis	CPC 11595	GU214483	GU269829
60	Pseudoramichloridium henryi	CBS 124775	KF442561	KF442521
61	Pseudotaeniolina globosa	CCFEE 5734	KF310010	KF309976
62	Pseudoveronaea obelavata	CBS 132086	JQ622102	–
63	Racodium rugestre	L346	EU048583	GU067666
64	Racodium rugestre	L424	EU048582	GU067669
65	Ramichloridium apiculatum	CBS 113265	AY90776	AY90763
66	Ramularia endophylla	CBS 124973	KP894141	KP894248
67	Ramularia pusilla	CBS 125078	GQ852653	–
68	Ramulipora sorghi	CBS 110578	GU214696	GU214696
69	Readerellia mirabilis	CBS 125000	KF251836	KF251332
70	Recurvorhizys mirabilis	CBS 119434	GU250372	FJ415477
71	Repetophragma zygopetalii	VIC42946	KT732418	
72	Schizothyrium poni	CBS 486.50	EF134948	EF134948
73	Scoclemistigina mangiferae	CBS 125467	GU253877	GU269870
74	Scoletia spongiosa	CBS 325.33	GU214696	GU214696
75	Septoria citida	USO 378994	JF700954	JF700932
76	Septoria lycmaciae	CBS 123794	KF251972	KF251468
77	Sonderenia eucalyptorum	CBS 120220	KP901822	KP901505
78	Sphaerulina myriadea	CBS 124646	JF770468	JF770455
79	Sporidemogina peniulianensis	CBS 125229	MH874965	MF951287
80	Sterella araguata	CBS 105.75	EU019250	EU019250
81	Teratocladus variculatus	CBS 113093	GU214669	GU214669
82	Teratosphaeria glob Illinois	CBS 1217.07	GU323213	KP091728
83	Toxocladusporium iriaceae	CBS 185.58	EU040243	EU040243
84	Toxocladusporium rubrigenum	CBS 124158	FJ790305	FJ790287
85	Translucidithyrium chinense	IFRDCC 3000	MT659404	MT659671
86	Translucidithyrium thailandicum	MFLUCC 16–0362	MG930048	MG930045
87	Trichospermum myri	CBS 437.68	GU323216	–
88	Trochophora simplex	CBS 124744	GU253880	GU269872
89	Uveobrunia communis	CBS 114238	EU019267	AY725541
90	Verrucariospora fori	CCFEE 5459	GU250390	KF309981
91	Xenocladusporium catenatum	GMW 22113	JN712570	JN712502
92	Zasmidium ciliate	CBS 146.36	EU041878	EU041821
93	Zygophiala cryptogena	OH4_1Aa	FJ417517	FJ425208
94	Zygophiala tardicrescens	MWA1a	EF164901	AV598856
95	Zygophiala wisconsinensis	OH4_9A1c	FJ417518	FJ425209

Results

Phylogenetic study

The dataset of combined LSU and ITS sequences comprised 1350 characters after alignment. Bayesian Inference, in total, generated 20,001 trees and the average standard deviation of split frequencies reached 0.0096. A total of 15,001 trees were finally used to calculate posterior probabilities. Phylogenetic analysis showed that the new collection clusters with *T. thailandicum* with 100% Maximum Likelihood bootstrap support and 1.00 posterior probabilities (Fig. 1).
Taxonomy and evolution history of *Translucidithyrium*

Figure 1. The topology shows family relationships of Capnodiales, based on combined LSU and ITS dataset analysis. Bootstrap values of Maximum Likelihood higher than 60% are shown on the left, while values of Bayesian posterior probabilities above 80% are shown on the right. New species is given in bold. Clades of the key species or family are given in bold. The tree is rooted with *Dothidea sambuci* (Dothideaceae, Dothideales).

Taxonomy

Translucidithyrium chinense H. X. Wu & X. H. Li, sp. nov.

Index Fungorum number: IF 557843

Facesoffungi number: FoF 09429

Figures 2, 3

Etymology. Refer to the location of species, China.

Holotype. IFRD9208

Description. Epiphytic on living leaves, ascomata with papillate. Superficial hyphae absent. Sexual morph: Ascomata solitary or scattered, 480–870 μm diam. (\(\bar{x} = 741\) μm, \(n = 6\)), 65–82 μm high (\(\bar{x} = 72\) μm, \(n = 8\)), olivaceous to brown, slightly semi-transparent under highlighted background, circular to suborbicular, with slightly prominent papilla, membranous, without ostiole (Fig. 2A–C). Peridium 8.3–10 μm thick, (\(\bar{x} = 9\) μm, \(n = 11\)), composed of irregular, meandering, interwoven arranged cells, two layers: from brown to hyaline, outer layer composed of closely-arranged cells, brown; inner layer composed of hyaline, oblong, subdense arranged cells, poorly developed at the base (Fig. 2D–F). Asci evenly distributed and parallel arranged in hamathecium (Fig. 2D–F), 65–90 × 51–81 μm (\(\bar{x} = 77 \times 60\) μm, \(n = 10\)), 8-spored, bitunicate, hyaline, with an ocular chamber, ovoid at immature state, globose to subglobose at mature
Figure 2. *Translucidithryium chinense* (IFRD 9208, holotype) A plant leaves B ascocoma on leaves surface C squash of ascocoma at 20 times amplification D cross section of ascocoma in blue cotton at 20 times amplification E, F cross section of ascocoma in blue cotton at 40 times amplification G asci at 100 times amplification H–K asci in blue cotton at 100 times amplification L ascospore at 100 times amplification M–P ascospore in blue cotton at 100 times amplification. Scale bars: 200 μm (B); 100 μm (C, D); 50 μm (E, F); 20 μm (G–K); 10 μm (L–P). We slightly adjusted the contrast, saturation and hue of images and removed the contaminants around main object in images in PS software without obscuration, erasure or distortion of any information existing in the original document.
state, lacking pedicel, paraphyses absent (Fig. 2G–K). *Ascospores* 41–65 × 10–13 μm (\(\bar{x} = 50 \times 11 \mu m, n = 20\)), irregularly overlapping, hyaline, ovoid at young state, fusiform with both ends tapered at mature state, 1-septate, constricted at the septum, upper cell a little larger than lower, with guttules at both ends, verrucose (Fig. 2L–P).

Asexual morph: Undetermined.
Cultural characteristics. Ascospores germinating on MEA at 36 h after spore-isolation, germinating on PDA at 48 h after spore-isolation. Colonies slow growing on MEA and PDA, irregular, villiform, convex, white on surface, yellow to brown at base. After a long period of growth, the pigments produced by culture discolor the medium, roots generate at the bottom (Fig. 3A–D). Culture hyphae hyaline, branched, constricted at the septum, 3 μm wide (Fig. 3E, F).

Material examined. CHINA, Yunnan Province, Xishuangbanna Dai Autonomous Prefecture, Xishuangbanna Botanical Garden; 21°55’51″N, 101°15’08″E, 540 m alt.; 21 Apr 2019; Haixia Wu and Xinhao Li leg; collected on living leaves of *Alpinia blepharocalyx* (IFRD 9208, holotype), ex-type living culture (IFRDCC 3000).

Notes. This new species is morphologically similar to *Translucidithyrium thailandicum* in having semi-transparent and largish ascomata, globose asci and hyaline ascospores with 1-septate. However, *Translucidithyrium chinense* has a slightly papilla thyriothecium with weaker transmittance and ascospores with guttules at both ends, while *T. thailandicum* has a flattened thyriothecium with higher transmittance and ascospores with appendages at both ends; besides, the size of ascomata and asci of *T. chinense* are slightly larger than those of *T. thailandicum* (795 μm vs. 621 μm; 77 μm vs. 64 μm). The cultural characteristics of both species are different: the culture of *T. chinense* grows more slowly, has roots inserting into medium and turn the bottom brown. Phylogenetically, *T. chinense* clusters with *T. thailandicum* as a distinct clade with high support (100% ML/1.00 PP, Fig. 1).

Divergence times estimates. The Maximum Clade Credibility (MCC) tree was similar to the major lineages in the Bayesian and ML trees. The crown age of

Figure 4. The MCC tree with divergence times estimates of Phaeothecoidiellaceae obtained from a Bayesian approach (BEAST). Numbers at nodes indicate posterior probabilities (pp) for node support; bars correspond to the 95% highest posterior density (HPD) intervals. The key species are given in blue.
Translucidithyrium showed 16 Mya (4–33), which was earlier than the divergence time of most genera in Phaeotheciodiellaceae. The estimated divergence time of Phaeotheciodiellaceae from Zeng et al. (2019) is 58 Mya, which corresponds to our results.

Discussion

Translucidithyrium thailandicum was found in the north of Thailand (Zeng et al. 2018). *Translucidithyrium chinense* was found in the Xishuangbanna Region, southwest of China, which lies on the northern border of a rainforest with rich microfungal resources. The new species is characterised by brown to olivaceous ascomata and slightly semi-transparent, subglobose asci without pedicel and fusiform ascospores with verrucose and guttules (Fig. 2). *T. chinense* is introduced as a new species in *Translucidithyrium* by morphological and phylogenetic studies (Figs 1–3).

The ascomata of *Translucidithyrium* are different from related genera of Phaeotheciodiellaceae: *Nowamyces* has immersed ascomata, *Chaetothyrina* has ascomata with setae and *Rivilata* has subcuticular ascomata (Singtripop et al. 2016; Doilom et al. 2018; Zeng et al. 2018; Crous et al. 2019; Hongsanan et al. 2020). *Translucidithyrium* is similar to the family Schizothyriaceae in having semi-transparent ascomata, globose to subglobose asci and hyaline ascospores with guttules. Schizothyriaceae includes *Schizothyrium*, *Plochmopeltis*, *Hexagonella*, *Lecideopsis*, *Mycerema*, *Kerniomyces*, *Metathyriella*, *Myriangiella*, *Amazonotheca* and *Vonarxella* (Phookamsak et al. 2016; Wijayawardene et al. 2020). The morphology of *T. chinense* is most similar to *Lecideopsis* by having globose asci and 1-septate ascospores, but *Lecideopsis* has a short pedicel at the bottom of the asci (Phookamsak et al. 2016; Zeng et al. 2018). Phylogenetically, *Translucidithyrium* formed a long clade and clustered within the family Phaeotheciodiellaceae. It indicated the existing certain genetic distance amongst *Translucidithyrium*, Phaeotheciodiellaceae and Schizothyriaceae. Phaeotheciodiellaceae and Schizothyriaceae are poorly studied families (Batzer et al. 2008; Phookamsak et al. 2016; Singtripop et al. 2016; Hongsanan et al. 2017; Zeng et al. 2018). Therefore, more fresh specimens with molecular data are needed to confirm the classification of *Translucidithyrium*, Phaeotheciodiellaceae and Schizothyriaceae.

Zuckerkandl and Pauling (1962) suggested that the number of differences amongst amino acids was proportional to species divergence time. We estimated the divergence time using BEAST analysis. The divergence time of *Translucidithyrium* crown age was estimated at 16 Mya (4–33), which was earlier than the crown ages of *Chaetothyrina* at 2 Mya (0–5), the crown ages of *Repetophragma* at 9 Mya (2–20), the crown ages of *Nowamyces* at 7 Mya (1–20) and the crown ages of *Phaeotheciodiella* at 4 Mya (0–14) within Phaeotheciodiellaceae (Fig. 4). The divergence time of *Translucidithyrium* is earlier than other genera in Phaeotheciodiellaceae. We estimate that the long divergence time should affect the genetic variation (Pauling 1964; Hall and Hallgrímsson 2008). Additionally, the evolutionary molecular clock approach confirmed the long clades of *Translucidithyrium* in the phylogenetic tree (Fig. 1).
Historical events amongst different biological groups could then be compared with the dates of plate tectonic movements and paleoecology, according to the corresponding geological time scale (Lomolino et al. 2006; Berbee and Taylor 2010). Through relevant studies on the Qinghai-Tibet Plateau, it was found that the time of intense tectonic uplift and denudation is concentrated in 60–35 Mya, 25–17 Mya, 12–8 Mya and 5 Mya. Global cooling might have an impact on climate change in East Asia, especially at 15 Mya and 8 Mya (Lu et al. 2010). Rising plateaus and global cooling were drying up Asia (Liu 2000; Garzione et al. 2015). The time of the Qinghai-Tibet Plateau uplift and global cooling corresponded to the interval of the species in *Translucidithyrium* divergence time. We predict that the speciation of *T. chinense* was earlier than the speciation of *T. thailandicum*, as the divergence of *Translucidithyrium* was related to the Qinghai-Tibet Plateau uplift and global cooling. According to the evolution history of *Translucidithyrium*, it could be speculated that the speciation of *T. chinense* was earlier than *T. thailandicum*. With the climate becoming colder and with increased drought, *T. chinense* migrated from China to Thailand gradually to find a suitable area, then *T. thailandicum* formed. Due to the end of global cooling, the distribution pattern of *Translucidithyrium* in two different countries formed. Increasing fresh collections and application of new methodologies may result in modified conclusions.

Acknowledgements

Funds for research were provided by the Grant for Essential Scientific Research of National Nonprofit Institute (no. CAFYBB2019QB005), the Yunnan Province Ten Thousand Plan of Youth Top Talent Project (no. YNWR-QNB)2018-267) and the Yunnan Fundamental Research Projects (grant NO. 202001AT070014). The authors are deeply grateful to Prof. K.D. Hyde (Mae Fah Luang University, Thailand, MFU) for editing the English language of the manuscript, to Dr. Xiang-Yu Zeng and Dr. Nawaz Haider for revising this manuscript and to Dr. Rungtiwa Phookamsak for guiding experiment operation.

References

Batzer JC, Gleason ML, Harrington TC, Tiffany LH (2005) Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia 97(6): 1268–1286. https://doi.org/10.1080/15572536.2006.11832735

Batzer JC, Arias MMD, Harrington TC, Gleason ML, Groenewald JZ, Crous PW (2008) Four species of *Zygophiala* (Schizothyriaceae, Capnodiales) are associated with the sooty blotch and flyspeck complex on apple. Mycologia 100: 246–258. https://doi.org/10.1080/15572536.2008.11832480

Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi – how close are we? Fungal Biology Reviews 24: 1–16. https://doi.org/10.1016/j.fbr.2010.03.001
Taxonomy and evolution history of *Translucidithyrium*

Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycological Research 110: 137–150. https://doi.org/10.1016/j.mycres.2005.09.014

Cai L, Guo XY, Hyde KD (2008) Morphological and molecular characterisation of a new anamorphic genus Cheiroporium, from freshwater in China. Persoonia 20: 53–58. https://doi.org/10.3767/003158508X314732

Choi Y, Hyde KD, Ho W (1999) Single spore isolation of fungi. Fungal Diversity 3: 29–38.

Chomnunthi P, Hongsanan S, Aguirre-Hudson B, Tian Q, Alias AS (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.1007/s13225-014-0278-5

Crous PW, Wingfield MJ, Cheewangkoon R, Carnegie AJ, Burgess TJ, Summerell BA, Edwards J, Taylor PWJ, Groenewald JZ (2019) Foliar pathogens of eucalypts. Studies in Mycology 94, 125–298. https://doi.org/10.1016/j.simyco.2019.08.001

Doilom M, Hyde KD, Phookamsak R, Dai DQ, Tang LZ, Hongsanan S, Chomnunthi P, Boonmee S, Dayarathe MC, Li WJ, Thambugala KM, Perera RH, Daranagama DA, Norphanphoun C, Konta S, Dong W, Ertz D, Phillips AJL, McKenzie EHC, Vinit K, Ariyawansa HA, Jones EBG, Mortimer PE, Xu JC, Promputtha I (2018) Mycosphere Notes 225–274: types and other specimens of some genera of *Ascomycota*. Mycosphere 9(4): 647–754.

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88. https://doi.org/10.1371/journal.pbio.0040088

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29(8): 1969–1973. https://doi.org/10.1093/molbev/mss075

Garzione CN, Quade J, Decelles PG, English NB (2015) Predicting paleo-elevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth & Planetary Ence Letters 183: 215–229. https://doi.org/10.1016/S0012-821X(00)00252-1

Gernhard T (2008) The conditioned reconstructed process. Journal of Theoretical Biology 253: 769–778. https://doi.org/10.1016/j.jtbi.2008.04.005

Gleason ML, Batzer JC, Sun GY, Zhang R, Arias MMD, Sutton TB, Crous PW, Ivanović M, McManus PS, Cooley DR, Mayr U, Weber RWS, Yoder KS, Ponte EMD, Biggs AR, Oertel B (2011) A new view of sooty blotch and flyspeck. Plant Disease 95(4): 368–383. https://doi.org/10.1094/PDIS-08-10-0590

Hall BK, Hallgrimsson B (2008) Strickberger’s evolution. Sudbury, Jones and Bartlett.

Hall TA (1999) BioEdit: A user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hélène M, Arne M (2014) Phylogenetic approaches for studying diversification. Ecology Letters 17: 508–525. https://doi.org/10.1111/ele.12251

Hongsanan S, Hyde KD, Phookamsak R, Wanasighe DN, McKenzie EHC, Sarma VV, Boonmee S, Lücking R, Bhat DJ, Liu NG, Tennakoon DS, Pem D, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe IS, Tibpromma S, Jayasiri SC, Sandamali DS, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Phukhamsakda C, Thambugala KM, Dai DQ, Chethana KWT, Samarakoon MC, Ertz D, Bao DF, Doilom M, Liu JK, PérezOrtega S, Suija A, Senwanna
Hongsanan S, Zhao RL, Hyde KD (2017) A new species of Chaetothyris on branches of mango, and introducing Phaeothecidiellaceae fam. nov. Mycosphere 8: 137–146.

Liu JK, Hyde KD, Jeewon R, Phillips AJL, Maharachchikumbura SSN, Ryber, M, Liu ZY, Zhao Q (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Diversity 84(1): 75–99. https://doi.org/10.1007/s13225-017-0385-1

Liu JK, Phookamsak R, Doirom M, Wikee S, Li YM, Ariyawansha H, Boonmee S, Chomnunti P, Dai DQ, Bhat JD, Romero AI, Zhuang WY, Ko TWK, Zhao YC, Wang Y, Hyde KD (2012) Towards a natural classification of Botryosphaeriales. Fungal Diversity 57: 149–210. https://doi.org/10.1007/s13225-012-0207-4

Liu X (2000) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography Palaeoclimatology Palaeoecology 183: 223–245. https://doi.org/10.1016/S0031-0182(01)00488-6

Lomolino MV, Riddle BR, Whittaker RH, Brown JH (2006) Biogeography. Inc. Publishers, Sunderland.

Louca S, Pennell MW (2020) Extant timetrees are consistent with a myriad of diversification histories. Nature 580: 502–505. https://doi.org/10.1038/s41586-020-2176-1

Lu H, Wang X, Li L (2010) Aeolian sediment evidence that global cooling has driven late cenozoic stepwise aridification in central Asia. Geological Society London Special Publications 342: 29–44. https://doi.org/10.1144/SP342.4

Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Pauling L (1964) Molecular disease and evolution. Bulletin of the New York Academy of Medicine 40(5): 334–342. https://doi.org/10.1159/000405851

Phookamsak R, Boonmee S, Norphanphoun C, Wanasinghe D, de Silva N, Dayarathne M, Hongsanan S, Bhat DJ, Hyde KD (2016) Schizothyriaceae. Mycosphere 7: 154–189. https://doi.org/10.5943/mycosphere/7/2/7

Rambaut A (2012) FigTree version 1.4.0. Computer program and documentation distributed by the author. http://tree.bio.ed.ac.uk/software/figtree

Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. https://doi.org/10.1007/BF02338839

Renard LL, Stockey RA, Upchurch G, Berbee ML (2020) A new epiphyllous fly-speck fungus from the Early Cretaceous Potomac group of Virginia (125–112 Ma): Protographum lutrellii, gen. et sp. nov. Mycologia 112: 504–518. https://doi.org/10.1080/00275514.2020.1718441
Reynolds DR, Gilbert GS (2005) Epifoliar fungi from Queensland, Australia. Australian Systematic Botany 18(3): 265–289. https://doi.org/10.1071/SB04030

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12: 335–337. https://doi.org/10.1007/s13127-011-0056-0

Singtripop C, Hongsanun S, Li J, De Silva NI, Phillips AJL, Jones GEB, Bahkali AH, Hyde KD (2016) Chaetothyris mangiferae sp. nov., a new species of Chaetothyris. Phytotaxa 255(1): 21–33. https://doi.org/10.11646/phytotaxa.255.1.2

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990

von Höhnel FXR (1909) Fragmente zur Mykologie: VIII. Mitteilung (Nr. 354 bis 406). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-naturw. Klasse Abt. I. 118: 1157–1246.

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic Press, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfieglger WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawlowska JZ, Humber RA, Kodsub R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Blaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Cañedada-Ruíz RF, Somrithipol S, Lateef AA, Karunaratnha SC, Tübiprommma S, Mortimer PE, Wannasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Ž, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wärtchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago AL, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbreken J, Hongsanun S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nasonova ES, Prieto M, Jayalal RGU, Erdoğan M, Yurkov A, Schnittler M, Shchepein ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungi-like taxa. Mycosphere 11(1): 1060–1456. https://doi.org/10.5943/mycosphere/11/1/8
Wu HX, Chen H, Rong K, Yi CS (2019) Type studies in Micropeltidaceae and suggested transfer of three excluded genera. Nova Hedwigia 108: 517–526. https://doi.org/10.1127/nova_hedwigia/2019/0517

Wu HX, Li Y, Ariyawansa HA, Li W, Yang H, Hyde KD (2014) A new species of *Microthyrium* from Yunnan, China. Phytotaxa 176(1): 213–218. https://doi.org/10.11646/phytotaxa.176.1.21

Yang HL, Sun GY, Batzer JC, Crous PW, Groenewald JZ, Gleason ML (2010) Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA. Persoonia 24: 29–37. https://doi.org/10.3767/003158510X492101

Yule GU (1925) A mathematical theory of evolution, based on the conclusions of Dr. J.C. Wil-lis. Philosophical Transactions of the Royal Society B – Biological Sciences 213: 21–87. https://doi.org/10.1098/rstb.1925.0002

Zeng XY, Hongsanan S, Hyde KD, Putarak C, Wen TC (2018) *Translucidithyrium thailandicum* gen. et sp. nov.: a new genus in Phaeothecidiellaceae. Mycological Progress 17: 1087–1096. https://doi.org/10.1007/s11557-018-1419-0

Zeng XY, Jeewon R, Hongsanan S, Hyde KD, Wen TC (2020) Unravelling evolutionary relationships between epifoliar Meliolaceae and angiosperms. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.12643

Zeng XY, Wu HX, Hongsanan S, Jeewon R, Wen TC, Maharachchikumbura SSN, Chomnunti P, Hyde KD (2019) Taxonomy and the evolutionary history of Micropeltidaceae. Fungal Diversity 97: 393–436. https://doi.org/10.1007/s13225-019-00431-8

Zhang M, Gao L, Shang S, Han X, Zhang R, Latinović J, Latinović N, Batzer JC, Gleason ML, Sun GY (2015) New species and record of *Zygophiala* (Capnodiales, Mycosphaerellaceae) on apple from Montenegro. Phytotaxa 195: 227–235. https://doi.org/10.11646/phytotaxa.195.3.2

Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3: e4. https://doi.org/10.1186/1471-2164-3-4

Zuckerkandl E, Pauling LB (1962) Molecular disease, evolution, and genetic heterogeneity. In: Kasha M, Pullman B (Eds) Horizons in Biochemistry. Academic Press, New York, 189–225.