On a generalisation of finite T-groups

Chi Zhang
Department of Mathematics, China University of Mining and Technology,
Xuzhou, 221116, P. R. China
E-mail: zclqq32@cumt.edu.cn

Wenbin Guo
Department of Mathematics, University of Science and Technology of China,
Hefei, 230026, P.R. China
E-mail: wbguo@ustc.edu.cn

Abstract
Let $\sigma = \{\sigma_i | i \in I\}$ is some partition of all primes \mathbb{P} and G a finite group. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain $H = H_0 \leq H_1 \leq \cdots \leq H_n = G$ such that either H_{i-1} is normal in H_i or $H_i/(H_{i-1})_{H_i}$ is a finite σ_j-group for some $j \in I$ for $i = 1, \ldots, n$. We call a finite group G a T_{σ}-group if every σ-subnormal subgroup is normal in G.

In this paper, we analyse the structure of the T_{σ}-groups and give some characterisations of the T_{σ}-groups.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. \mathbb{P} denotes the set of all primes and π denotes a set of primes. If n is an integer, then the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

*Research was supported by the Fundamental Research Funds for the Central Universities (No. 2020QN20) and NNSF of China (No. 11771409.)
Keywords: finite groups, σ-groups, generalised T-groups, σ-subnormal, the condition \mathfrak{R}_σ.
Mathematics Subject Classification (2010): 20D10, 20D15, 20D20, 20D35
1.1 \textit{T}-groups

A group G is said to be a \textit{T}-group if every subnormal subgroup of G is normal in G. The T-groups are clearly the groups in which normality is a transitive relation. The classical works by Gaschütz [5] and Robinson [17] reveal a very detailed picture of such groups.

Recall that G is said to be a \textit{Dedekind group} if every subgroup of G is normal in G; it is clear that a nilpotent group G is a T-group if and only if every subgroup of G is normal in G; that is, G is a Dedekind group. More generally, Gaschütz proved the following result:

\textbf{Theorem 1.1.} (See Gaschütz [5])

Let G be a group with G^{nr} the nilpotent residual of G, that is the intersection of all normal subgroups N of G with nilpotent quotient G/N. Then G is a soluble T-group if and only if the following conditions hold:

(i) G^{nr} is a normal abelian Hall subgroup of G with odd order;
(ii) G/G^{nr} is a Dedekind group;
(iii) Every subgroup of G^{nr} is normal in G.

Recall that a group G satisfies the condition \mathcal{R}_p [17] (where p is a prime) if every subgroup of a Sylow p-subgroup P of G is normal in the normalizer of P. Robinson studied the structure of finite T-groups using the condition \mathcal{R}_p and get the following theorem.

\textbf{Theorem 1.2.} (See Robinson [17])

A finite group G which satisfies \mathcal{R}_p for all p if and only if G is a soluble T-group.

Some other characterisations of the soluble T-groups have been researched. (See [2, 14, 15]).

1.2 The theory of σ-groups

In recent years, a new theory of σ-groups has been established by A. N. Skiba and W. Guo (See [7, 10, 19, 20]).

In fact, following L. A. Shemetkov [18], $\sigma = \{\sigma_i | i \in I\}$ is some partition of all primes \mathbb{P}, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. Π is always supposed to be a non-empty subset of σ and $\Pi' = \sigma \setminus \Pi$. We write $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$.

Following [19–21], G is said to be: σ-primary if $|\sigma(G)| \leq 1$; σ-soluble if every chief factor of G is σ-primary. G is called σ-nilpotent if $G = G_1 \times \cdots \times G_n$ for some σ-primary groups G_1, \cdots, G_n. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain $H = H_0 \leq H_1 \leq \cdots \leq H_n = G$ such that either H_{i-1} is normal in H_i or $H_i/(H_{i-1})_{H_i}$ is σ-primary for all $i = 1, \cdots, n$; An integer n is said to be a Π-number if $\pi(n) \subseteq \bigcup_{\sigma_i \in \Pi} \sigma_i$; a subgroup H of G is called a Π-subgroup of G if $|H|$ is a Π-number; a subgroup H of G is called a Hall Π-subgroup of G if H is a Π-subgroup of G and $|G : H|$ is a Π'-number; a subgroup H of G is called a Hall
σ-subgroup of G if H is a Hall Π-subgroup of G for some $\Pi \subseteq \sigma$. We use \mathcal{N}_σ to denote the class of σ-nilpotent groups.

Remark 1.3. In the case when $\sigma = \{\{2\}, \{3\}, \cdots\}$ (we use here the notation in [20]),

1. σ-soluble groups and σ-nilpotent groups are soluble groups and nilpotent groups respectively.
2. A Hall σ-subnormal is subnormal.
3. A Hall σ_i-subgroup of G is a Hall π-subgroup for some $\pi \subseteq \mathcal{P}$.
4. A Hall σ_i-subgroup of G is a Sylow subgroup of G.

This new theory of σ-groups is actually the development and popularization of the famous Sylow theorem, the Hall theorem of the soluble groups and the Chunihin theorem of π-soluble groups. A series of studies have been caused (See, for example, [1, 3, 7–11, 13, 19–25]).

1.3 The T_σ-groups and the main results

Combined with the above two contents, we naturally reposed the following problem:

Question 1.4. Based on this new theory of σ-groups, could we establish the theory of generalised T-groups?

In this paper, we will solve this question. We first give the following definition:

Definition 1.5. We called a group G a T_σ-group if every σ-subnormal of G is normal in G.

Bearing in mind the results in [5, 17], it seems to be natural to ask:

Question 1.6. What is the structure of the T_σ-groups?

We will give a complete answer to this question in the case when G is σ-soluble. It is clear that every subnormal subgroup is σ-subnormal in G and so every T_σ-groups is a T-groups. However, the following example shows that the converse is not true.

Example 1.7. Let $A = C_3 \times C_2$ be a non-abelain subgroup of order 6 and let $G = A \times C_5$. Let $\sigma = \{\sigma_1, \sigma_2, \sigma_3\}$, where $\sigma_1 = \{2, 3\}$, $\sigma_2 = \{5\}$ and $\sigma_3 = \{2, 3, 5\}'$. Then G is a T-group but is not a T_σ-group. In fact, obviously, G is a T-group. However G is not a T_σ-group since C_2 is a σ-subnormal subgroup of G but is not normal in G.

In order to better describe the T_σ-groups, I give the following definition:

Definition 1.8. We called a group G satisfies the condition \mathcal{R}_{σ_i} if every subgroup K of every Hall π-subgroup H of G (for $\pi \subseteq \sigma_i$) is normal in the normalizer $NG(H)$ of H.

Remark 1.9. In the case when $\sigma = \{\{2\}, \{3\}, \cdots\}$, the condition \mathcal{R}_{σ_i} is just the condition \mathcal{R}_p.

3
The following theorem gives an answer to Question 1.6.

Theorem 1.10. Let \(G \) be a group, \(D = G^{\sigma_0} \) and \(G \) is \(\sigma \)-soluble. Then the following statements are equivalent.

1. \(G \) is a \(T_\sigma \)-group;
2. \(G \) satisfies the conditions \(\mathcal{R}_{\sigma_i} \) for all \(i \).
3. \(G \) satisfies the following conditions:
 i. \(G = D \rtimes M \), where \(D \) is an abelian Hall subgroup of \(G \) of odd order, \(M \) is a Dedekind group;
 ii. every element of \(G \) induces a power automorphism on \(D \); and
 iii. \(O_{\sigma_i}(D) \) has a normal complement in a Hall \(\sigma_i \)-subgroup of \(G \) for all \(i \).

In this theorem, \(G^{\sigma_0} \) denotes the \(\sigma \)-nilpotent residual of \(G \), that is, the intersection of all normal subgroups \(N \) of \(G \) with \(\sigma \)-nilpotent quotient \(G/N \), and \(O_{\sigma_i}(D) \) denotes the maximal normal \(\sigma_i \)-subgroup.

Remark 1.11. In the case when \(\sigma = \{\{2\}, \{3\}, \cdots\} \), Theorems 1.1 and 1.2 are corollaries of our Theorem 1.10.

2 Preliminaries

Lemma 2.1. [19, Corollary 2.4 and Lemma 2.5] The class \(\mathfrak{N}_\sigma \) of all \(\sigma \)-nilpotent groups is closed under taking products of normal subgroups, homomorphic images and subgroups. Moreover, if \(E \) is a normal subgroup of \(G \) and \(E/E \cap \Phi(G) \) is \(\sigma \)-nilpotent, then \(E \) is \(\sigma \)-nilpotent.

Lemma 2.2. [19, Lemma 2.6(6)] every subgroup of a \(\sigma \)-nilpotent group \(G \) is \(\sigma \)-subnormal in \(G \).

The following lemma directly follows from Lemma 2.1 and [18, Lemma 1.2] (see also [6, Chap. 1, Lemma 1.1]).

Lemma 2.3. If \(N \) is a normal subgroup of \(G \), then \((G/N)^{\sigma_0} = G^{\sigma_0} N/N \).

Lemma 2.4. [19, Lemma 2.6] Let \(A, K \) and \(N \) be subgroups of \(G \). Suppose that \(A \) is \(\sigma \)-subnormal in \(G \) and \(N \) is normal in \(G \). Then:

1. \(A \cap K \) is \(\sigma \)-subnormal in \(K \).
2. \(AN/N \) is \(\sigma \)-subnormal in \(G/N \).
3. If \(K \) is a \(\sigma \)-subnormal subgroup of \(A \), then \(K \) is \(\sigma \)-subnormal in \(G \).
4. If \(A \) is a \(\sigma \)-Hall subgroup of \(G \), then \(A \) is normal in \(G \).
5. If \(H \neq 1 \) is a Hall \(\sigma_i \)-subgroup of \(G \) and \(A \) is not a \(\sigma_i \)-group, then \(A \cap H \neq 1 \) and \(A \cap H \) is a Hall \(\sigma_i \)-subgroup of \(A \).
Lemma 2.5. (P. Hall [12]) Let G be a soluble group and π a set of primes. Then:

1. Hall π-subgroups of G exist,
2. they form a conjugacy class of G, and
3. each π-subgroup of G is contained in a Hall π-subgroup of G.

The following lemma is clear.

Lemma 2.6. (i) Every Dedekind group is nilpotent.

(ii) If $G = A \times B$, where A is a Hall subgroup of G and A and B are Dedekind groups, then G is a Dedekind group.

(iii) Every subgroup and every quotient of a Dedekind group is a Dedekind group.

3 Proof of Theorems 1.10

(1) \implies (2):

Suppose that G is a T_σ-group and K is a subgroup of a π-Hall subgroup H of G, where $\pi \subseteq \sigma_i$ for some i. Since H is a σ_i-group, K is σ-subnormal in H by Lemma 2.2. Note that H is normal in $N_G(H)$. It implies that K is σ-subnormal in $N_G(H)$ by Lemma 2.4(3). Hence K is normal in $N_G(H)$ by the hypothesis. Consequently, G satisfies the condition \mathfrak{A}_{σ_i}.

(2) \implies (3):

Assume that this is false and let G be a counterexample of minimal order. We proceed via the following steps.

1. Every Hall σ_i-subgroup of G is a Dedekind group for all i. Hence $D \neq 1$ and G is soluble.

Let H be a Hall σ_i-subgroup and K be a subgroup of H. Then K is normal in $N_G(H)$ by the hypothesis and so K is normal in H. Hence H is a Dedekind group. This implies that $D \neq 1$. We now show that G is soluble. In fact, since G is σ-soluble, every chief factor S/K of G is σ-primary, that is, S/K is a σ_i-group for some i. But as every every Hall σ_i-subgroup of G is a Dedekind group, every Hall σ_i-subgroup is nilpotent. Hence S/K is a elementary abelian group. It follows that G is soluble.

2. Let R be a non-identity minimal normal subgroup of G. Then the hypothesis holds for G/R. Hence G/R satisfies statement (3) of the Theorem.

Let H/R be a Hall π-Hall subgroup of G/R where $\pi \subseteq \sigma_i$ and K/R is a subgroup of H/R. Note that R is a p-group since G is soluble by Claim (1). Assume that p belongs to π, then H is a Hall π-subgroup of G. Hence K is normal in $N_G(H)$ by hypothesis. Then K/R is normal in $N_G(H)/R = N_{G/R}(H/R)$. If p does not belong to π, then there are a Hall π-subgroup V of K and a Hall π-subgroup W of H such that $V \leq W$ by Lemma 2.5. It is clear that W is also a Hall π-subgroup of G since H/R be a Hall π-Hall subgroup of G/R. Hence V is normal in $N_G(W)$ by hypothesis and so $K/R = VR/R$ is normal in $N_G(W)/R = N_{G/R}(WR/R) = N_{G/R}(H/R)$.
(3) The hypothesis holds for every proper Hall subgroup M of G and $M^{\pi_i} \leq D$.

Let M_i be a Hall σ_i-subgroup of M and K is a subgroup of M_i for all i. Then M_i is a Hall π-subgroup of G where $\pi \subseteq \sigma_i$ since M is a Hall subgroup. Hence K is normal in $N_G(M_i)$, and so K is normal in $N_M(M_i)$. Therefore M satisfies the condition \mathfrak{R}_{σ_i} for all i. This shows that the hypothesis for M. Moreover, since $G/D \in \mathfrak{R}_{\sigma}$ and \mathfrak{R}_{σ} is subgroup closed by Lemma 2.1,

$$M/M \cap D \cong MD/D \in \mathfrak{R}_{\sigma}.$$

Hence $M^{\pi_i} \leq M \cap D \leq D$.

(4) D is nilpotent.

Assume that this is false and let R be a minimal normal subgroup of G. Then:

(a) $R = C_G(R) = O_p(G) = F(G) \leq D$ for some $p \in \sigma_i$. Hence R is an unique minimal normal subgroup of G and R is not cyclic.

First note that $RD/R = (G/R)^{\pi_i}$ is abelian by Lemma 2.3 and Claim (2). Therefore $R \leq D$, and so R is the unique minimal normal subgroup of G and $R \not\in \Phi(G)$ by Lemma 2.1. Since G is soluble, R is an abelian subgroup. It follows that $R = C_G(R) = O_p(G) = F(G)$ for some $p \in \sigma_i$ by [4, Chap. A, 13.8(b)]. If $|R| = p$, then $G/R = C_G(R)$ is cyclic and so G is supersoluble. But then $D = G^{\pi_i} \leq \sigma' \leq F(G)$ and so D is nilpotent, a contradiction. Thus R is not cyclic.

(b) Every Hall σ_i-subgroup is a Sylow p-subgroup, where $p \in \sigma_i$.

Let H be a Hall σ_i-subgroup and $p \in \sigma_i$. Then H is nilpotent and $R \leq H$ by Claim (1) and Lemma 2.6. Hence H is a Sylow p-subgroup by Claim (a).

(c) $|\pi(G)| = 2$.

Let H_i be a Hall σ_i-subgroup of G, where for $p \in \sigma_i$. By Claim (b), H_i is a Sylow p-subgroup denoted by P. If $|\pi(G)| = 1$, then G is nilpotent, a contradiction. Assume that $|\pi(G)| \geq 3$. Then there exist two different primes belonging to p', denoted by q and t. Since G is soluble by Claim (1), there are a Hall t'-subgroup M_1 of G and a Hall q'-subgroup M_2 of G by Lemma 2.5(1). Let $V_1 = M_1^{\pi_i}$ and $V_2 = M_2^{\pi_i}$. Suppose that $V_1 = 1$ or $V_2 = 1$. Assume without of generality that $V_1 = 1$. Then M_1 is σ-nilpotent. Let Q be a Sylow q-subgroup of M_1. Then $Q \leq C_G(R) = R$ since M_1 is σ-nilpotent. This contradiction shows that $V_1 \neq 1$ and $V_2 \neq 1$. Since M_1 and M_2 are Hall subgroups of G, M_1 and M_2 satisfy the conditions \mathfrak{R}_{σ_i} for all i by Claim (3). The choice of G implies that V_1 and V_2 are abelian Hall subgroups of G. Then $R \leq V_1 \cap V_2$. In fact, if $R \not\leq V_1$, then $R \cap V_1 = 1$. It follows that $V_1 \leq C_{M_i}(R) = R$, and so $R = V_1$, a contradiction. Hence $R \leq V_1$.

Similarly, we have $R \leq V_2$. Note that R is not cyclic by Claim (a). Let $L < R$ and $|L| = p$. By Claim (3) and the choice of G, every element of M_i $(i = 1, 2)$ induces a power automorphism on V_i. Hence L are normal in M_1 and M_2. It follows that L is normal in $\langle M_1, M_2 \rangle = G$, a contradiction. Hence we have Claim (c).

(d) The final contradiction for Claim (4).

By Claim (c), we may assume that $G = PQ$ where P is a Sylow p-subgroup of G and Q is a
\(q \)-subgroup of \(G \). Since every Dedekind group of odd order is abelian by [16, Theorem 5.3.7], we have that either \(P \) is abelian or \(Q \) is abelian. If \(P \) is abelian, then \(RP = P \) is normal in \(G \) by Claim (a) and Theorem 3.2.28 in [2]. Hence \(D \leq P \) is nilpotent, a contradiction. If \(Q \) is abelian, then \(RQ \) is normal in \(G \) by Claim (a) and Theorem 3.2.28 in [2]. Hence by Frattini argument, \(G = RQN_G(Q) = RN_G(Q) \). Let \(N_p \) be a Sylow \(p \)-subgroup of \(N_G(Q) \). If \(N_p = 1 \), then \(R \) is a normal Sylow \(p \)-subgroup of \(G \). Therefore \(D \leq R \) is nilpotent, a contradiction. Assume that \(N_p \neq 1 \). Since \(RN_p \) is a Dedekind subgroup of \(G \) by Claim (1), \(R \leq RN_p \leq N_G(N_p) \). But since \(R \) is the unique minimal normal subgroup of \(G \) by Claim (a), we have

\[
R \leq N_p^G = N_p^{RN_G(N_p)} = N_p^{N_G(Q)} \leq N_G(Q).
\]

It follows that \(G = N_G(Q) \). Then \(Q \) is normal in \(G \). Therefore \(D \leq Q \) is nilpotent. This contradiction shows that Claim (4) holds.

(5) \(D \) is a Hall subgroup of \(G \).

Assume that this is false. Let \(P \) be a Sylow \(p \)-subgroup of \(D \) such that \(1 < P < G_p \) for some prime \(p \) and some Sylow \(p \)-subgroup \(G_p \) of \(G \). Then \(p \mid [G : D] \). We can assume without loss of generality that \(G_p \leq H_1 \), where \(H_1 \) is a Hall \(\sigma_1 \)-subgroup of \(G \).

(a') \(D = P \) is a minimal normal subgroup of \(G \).

Let \(R \) be a minimal subgroup of \(G \) contained in \(D \). Then by Claim (4), \(R \) is a \(q \)-group for some prime \(q \). Moreover, \(D/R = (G/R)^{\Phi_p} \) is a Hall subgroup of \(G/R \) by Claim (2) and Lemma 2.3. Suppose that \(PR/R \neq 1 \). Then \(PR/R \in Syl_p(G/R) \). If \(q \neq p \), then \(P \in Syl_p(G) \). This contradicts the fact that \(P < G_p \). Hence \(q = p \), so \(R \leq P \) and \(P/R \in Syl_p(G/R) \). We again get that \(P \in Syl_p(G) \). This contradiction shows that \(PR/R = 1 \), which implies that \(R = P \) is the unique minimal normal subgroup of \(G \) contained in \(D \). Since \(D \) is nilpotent by Claim (4), a \(p' \)-complement \(E \) of \(D \) is characteristic in \(D \) and so it is normal in \(G \). Hence \(E = 1 \), which implies that \(R = D = P \).

(b') \(D \not\leq \Phi(G) \). Hence for some maximal subgroup \(M \) of \(G \) we have \(G = D \times M \).

Note that \(G/D = G/G^{\Phi_p} \) is \(\sigma \)-nilpotent. If \(D \leq \Phi(G) \), then by lemma 2.1, \(G \in \mathcal{M}_\sigma \) and so \(D = 1 \), a contradiction.

(c') Let \(R \) be a minimal normal subgroup of \(G \). If \(D \neq R \), then \(G_p = D \times (G_p \cap R) \). Hence \(O_{p'}(G) = 1 \).

By Claims (2) and (a'), we have that \(DR/R \) is a Sylow \(p \)-subgroup of \(G/R \). It follows that \(DR/R = G_pR/R \). Hence \(G_p = D \times (G_p \cap R) \). Thus \(O_{p'}(G) = 1 \) since \(G \) is soluble and \(D < G_p \) by Claim (a').

(d') Let \(V = C_G(D) \cap M \). Then \(V \trianglelefteq G \) and \(C_G(D) = D \times V \leq H_1 \).

In view of Claims (a') and (b'), we have that \(C_G(D) = D \times V \) and \(V \) is a normal subgroup of \(G \). Moreover, \(V \cong VD/D \) is \(\sigma \)-nilpotent by Lemma 2.1. Let \(W \) be a \(\sigma_1 \)-complement of \(V \). Then \(W \) is characteristic in \(V \) and so it is normal in \(G \). Then \(W = 1 \) by Claim (c'). Hence we have Claim (d').
(e') $H_1 = G_p$ is a Sylow p-subgroup of G.

Since G/D is σ-nilpotent and $D \leq H_1$ by Claim (a'), H_1 is normal in G. A p'-complement E of H_1 is characteristic in H_1 since H_1 is nilpotent by Claim (1). Hence $E = 1$ by Claim (e'). It follows that $H_1 = G_p$ is a Sylow p-subgroup of G.

(f') $|\pi(G)| = 2$.

If $|\pi(G)| = 1$, then G is nilpotent, a contradiction. Assume that $|\pi(G)| \geq 3$. Then there exist one more primes belonging to $p' = \sigma_i$ and let $q \in p'$. Since G is soluble, G has a Hall $\{p, q\}$-subgroup H of G. Let $L = H^{p_0}$ and let $H = G_pQ$ where Q is a q-subgroup of G. Note that $H < G$. If $L = 1$, then $H = P \times Q$ by Claim (e'). Consequently, $Q \leq C_G(D) \leq H_1 = G_p$ by Claim (d'), a contradiction. Hence $L \neq 1$. By Claim (3) and Claim (a'), $L \leq D = P$ and L is a Hall subgroup of H by the choice of G. Note that L is a Hall subgroup of G since H is a Hall subgroup of G. Therefore $L = D$ is a Hall subgroup of G. The contradiction shows that Claim (f') holds.

(g') The final contradiction for Claim (5).

Let $\pi(G) = \{p, q\}$. Then G satisfies the conditions \mathfrak{R}_p and \mathfrak{R}_q by Claim (e') and Claim (3). Hence G is a T-group by Theorem 1.2. By Claims (e') and (f'), it is clear that $G^{\mathfrak{R}} = D$. Hence by Theorem 1.1, D is a Hall subgroup of G. The contradiction completes the proof of Claim (5).

(6) $G = D \times M$ where M is a Dedekind group.

Since D is a normal subgroup of G, by Schur-Zassenhaus Theorem, $G = D \times M$ and M is a Hall subgroup of G. But since $D = G^{\mathfrak{R}}$, M is σ-nilpotent. Then by Claim (1) and Lemma 2.6(ii), we have that M is a Dedekind group.

(7) Let H_i be a Hall σ_i-subgroup of G for each $\sigma_i \in \sigma(D)$. Then $H_i = O_{\sigma_i}(D) \times S$ for some subgroup S of H_i.

By Claim (1), H_i is nilpotent. By Claims (4) and (5), D is a nilpotent Hall subgroup of G. Hence we have Claim (7).

(8) Every subgroup H of D is normal in G. Hence every element of G induces a power automorphism on D.

Since D is nilpotent by Claim (4), it is enough to consider the case when $H \leq O_{\sigma_i}(D) = H_i \cap D$ for some $\sigma_i \in \sigma(D)$. By condition (2), H is normal in $N_G(O_{\sigma_i}(D))$. But clearly $N_G(O_{\sigma_i}(D)) = G$. Therefore H is normal in G.

(9) $|D|$ is odd.

Suppose that 2 divides $|D|$. Then by Claims (4) and (7), G has a chief factor D/K with $|D/K| = 2$. This implies that $D/K \leq Z(G/K)$. Since D is a normal Hall subgroup of G by Claim (5), it has a complement M in G. Hence $G/K = D/K \times MK/K$, where $MK/K \cong M \cong G/D$ is σ-nilpotent. Therefore G/K is σ-nilpotent by Lemma 2.1 and Claim (4). But then $D \leq K < D$, a contradiction. Hence we have (9).

(10) D is abelian.
By Claim (8), D is a Dedekind group. But D is odd order by Claim (9). Hence D is abelian by [16, Theorem 5.3.7].

(11) Final contradiction.

Claims (5), (6), (7), (8), (9) and (10) show that the conclusion (3) holds for G. This final contradiction completes the proof of $(2) \implies (3)$.

$(3) \implies (1)$:

Suppose that G satisfies the conditions (i), (ii) and (iii) of (3). Then G is soluble. Now we need to prove that every σ-subnormal subgroup H of G is normal in G. Suppose that this is false, that is, some σ-subnormal subgroup H of G is not normal in G. Let G be a counterexample with $|G| + |H|$ minimal. Then by the condition (i) and Lemma 2.6(i), we see that $D \neq 1$. We now proceed the proof via the following steps.

(I) The hypothesis holds for every quotient G/N of G, where N is a proper normal subgroup of G.

By the condition (i), we have that $G/N = (DN/N) \times (MN/N)$, where $DN/N \cong D/D \cap N$ is an abelian Hall subgroup of G/N of odd order and $MN/N \cong M/M \cap N$ is a Dedekind-group by Lemma 2.6(iii). Hence condition (i) holds for G/N. Suppose that V/N is any subgroup of DN/N, then $V = N(D \cap V)$. Since $D \cap V$ is normal in G by condition (ii), V/N is normal in G/N. Hence the condition (ii) holds for G/N. Since D is nilpotent, clearly $O_{\sigma_i}(D)N/N = O_{\sigma_i}(DN/N)$. Condition (iii) implies that $O_{\sigma_i}(D)$ has a normal complement S in a Hall σ_i-subgroup E of G for every i. Then EN/N is a Hall σ_i-subgroup of G/N and SN/N is normal in EN/N. Hence

$$(SN/N)(O_{\sigma_i}(DN/N)) = (SN/N)(O_{\sigma_i}(D)N/N) = EN/N$$

and

$$(SN/N) \cap O_{\sigma_i}(DN/N) = (SN/N) \cap (O_{\sigma_i}(D)N/N) = N(S \cap O_{\sigma_i}(D)N) / N$$

$$= N(S \cap O_{\sigma_i}(D))(S \cap N) / N = N/N.$$

Hence condition (iii) also holds on G/N.

(II) $H_G = 1$.

Assume $H_G \neq 1$. The hypothesis holds for G/H_G by Claim (I). On the other hand, H/H_G is σ-subnormal in G/H_G by Lemma 2.4(2), so H/H_G is normal in G/H_G by the choice of G. But then H is normal in G, a contradiction. Hence we have Claim (II).

(III) H is a σ_i-group for some i and $H \in \sigma^x$ for all $x \in G$.

Claim (II) and the condition (ii) imply that $H \cap D = 1$. Since $H \cong HD/D \leq G/D$, H is σ-nilpotent by Lemma 2.1. Hence $H = A_1 \times \cdots \times A_n$ for some σ-primary groups A_1, \cdots, A_n. Then $H = A_i$ is a σ_i-group for some i since otherwise H is normal in G by the choice of (G, H). Note that $G = D \times M$ by the condition (i). Let M_i be the Hall σ_i-subgroup of M and E be a Hall σ_i-subgroup of G containing M_i. Lemma 2.4(5) implies that $H \leq E^x$ for all $x \in G$. If $E \cap D = 1$, then M_i
is a Hall σ_i-subgroup of G, and so $H \leq M^x$ for all $x \in G$. Now suppose that $E \cap D \neq 1$. Then $H \leq E^x = O_{\sigma_i}(D) \times M^x_i$ by condition (iii). But since $H \cap D = 1$, we have also that $H \leq M^x_i \leq M^x$ for all $x \in G$.

(IV) The Hall σ_j-subgroups of G are Dedekind-groups for all j.

Let A be a Hall σ_j-subgroup of G. If $A \cap D = 1$, then $A \cong AD/D \leq G/D$, where G/D is a Dedekind group by the condition (i). Hence A is a Dedekind group by Lemma 2.6(iii). Now assume that $A \cap D \neq 1$. Then $A = (A \cap D) \times S$ by condition (iii), where $A \cap D = O_{\sigma_j}(D)$ and S is a normal complement of $A \cap D$ in A. Then A is a Dedekind group by Lemma 2.6(ii) because $A \cap D$ and $S \cong DS/D \leq G/D$ are Dedekind groups.

(V) D is also a σ_i-group.

Assume that this is false. Note that D is an abelian group. Assume without of generality that $O_{\sigma_j}(D) \neq 1$, where $j \neq i$. Then by Claim (1), $HO_{\sigma_j}(D)/O_{\sigma_j}(D)$ is normal in $G/O_{\sigma_j}(D)$, and so $HO_{\sigma_j}(D)$ is normal in G. But by Lemma 2.4(1), H is σ-subnormal in $HO_{\sigma_j}(D)$. Hence by Lemma 2.4(4), H is normal in $HO_{\sigma_j}(G)$. Then H is characteristic in $HO_{\sigma_j}(G)$. It follows that H is normal in G, a contradiction. Hence we have Claim (V).

(VI) Final contradiction.

Since D is a σ_i-group by Claim (V) and $G = D \rtimes M$ by the condition (i), we have that $G = H_iM$, where H_i is a Hall σ_i-group of G. Since G is soluble and H is a σ_i-group by Claim (III), we can assume without of generality that $H \leq H_i$ by Lemma 2.5(3). Then $H_i \leq N_G(H)$ by Claim (IV). On the other hand, since M is a Dedekind group by the hypothesis, we have $M \leq N_G(H)$ by Claim (III). Hence $G = H_iM \leq N_G(H)$. This shows that H is normal in G. This contradiction completes the proof for $(3) \implies (1)$.

In summary, the Theorem 1.10 is proved.

\[\square\]

References

[1] Kh. A. Al-Sharo, A. N. Skiba, On finite groups with σ-subnormal Schmidt subgroups, Comm. Algebra 45 (2017), 4158–4165.

[2] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin-New York, 2010.

[3] J.C. Beidleman, A. N. Skiba, On τ_σ-quasinormal subgroups of finite groups, J. Group Theory 20(5) (2017), 955-964.

[4] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
[5] W. Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198 (1957), 87-92.

[6] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg-New York-Dordrecht-London, 2015.

[7] W. Guo, A. N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory 18 (2015), 191–200.

[8] W. Guo, A. N. Skiba, Groups with maximal subgroups of Sylow subgroups σ-permutably embedded, J. Group Theory 20(1) (2017), 169–183.

[9] W. Guo, A. N. Skiba, On the lattice of Π_T-subnormal subgroups of a finite group, Bull. Austral. Math. Soc. 96(2) (2017), 233-244.

[10] W. Guo, A. N. Skiba, Finite groups whose n-maximal subgroups are σ-subnormal, Science China Mathematics 62(7) (2019), 1355-1372.

[11] W. Guo, C. Zhang, A. N. Skiba, On σ-supersoluble groups and one generalization of CLT-groups, J. Algebra 512 (2018), 92-108.

[12] P. Hall, Theorem like Sylow’s, Proc. London Math. Soc. 6(3) (1956), 286-304.

[13] J. Huang, B. Hu, A. N. Skiba, A generalisation of finite PT-groups, Bull. Aust. Math. Soc. 97(3) (2018), 396-405.

[14] T. A. Peng, Finite groups with pronormal subgroups, Proc. Amer. Math. Soc. 20 (1969), 232-234.

[15] T. A. Peng, Pronormality in finite groups, J. London Math. Soc. 3(2) (1971), 301-306.

[16] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, Heidelberg-New York-Berlin, 1982.

[17] D. J. S. Robinson, A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc. 19 (1968), 933-937.

[18] L. A. Shemetkov, Formation of Finite Groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.

[19] A. N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra 436 (2015), 1-16.
[20] A. N. Skiba, Some characterizations of finite σ-soluble $P\sigma T$-groups, J. Algebra 495 (2018), 114-129.

[21] A. N. Skiba, A generalization of a Hall theorem, J. Algebra Appl. 15(4) (2015), 21–36.

[22] A. N. Skiba, On some results in the theory of finite partially soluble groups, Comm. Math. Stat. 4 (2016), 281–309.

[23] C. Zhang, A. N. Skiba, On \sum_{t}^{σ}-closed classes of finite groups, Ukrainian Math. J. 70(12) (2018), 1707-1716.

[24] C. Zhang, V. G. Safonov, A. N. Skiba, On n-multiply σ-local formations of finite groups, Comm. Algebra 47(3) (2019), 957-968.

[25] C. Zhang, Z. Wu and W. Guo, On weakly σ-permutable subgroups of finite groups, Publ. Math. Debrecen 91 (2017), 489-502.