A high absorptance wide-band metamaterial absorber with metasurface and low-permittivity dielectric slabs

Zheyipei Ma, Chao Jiang*, Jiale Li and Xiaozhong Huang

Powder Metallurgy Research Institute of Central South University, Changsha 410083, People’s Republic of China

E-mail: jiangchao@csu.edu.cn

Received 9 August 2022, revised 5 September 2022
Accepted for publication 28 September 2022
Published 7 October 2022

Abstract
In this paper, a new wide-band and high-absorption metamaterial absorber (WHMA), consisting of a metasurface (MS), three low-permittivity dielectric slabs, and a metal backplane, is proposed and fabricated. The unit cell of MS is concentric rings loaded with chip resistors. This structure exhibits excellent absorption property and improved stability of oblique incidence, which are difficult to be achieved in previous radar absorbing materials. The functions of MS and different dielectric slabs are analysed. At normal incidence, the simulated results indicate that -10 dB absorption and -20 dB absorption bands cover a bandwidth of $4.8–14.3$ GHz and $5.70–13.57$ GHz, respectively. The measured results show that -10 dB and -20 dB absorption are achieved with the bandwidth of $4.6–16.3$ GHz and $5.5–14.4$ GHz respectively at normal incidence; below 50° angle of oblique incidence, WHMA can still have wide-band -10 dB absorption. The agreement between simulation and measurement validates the proposed design. Finally, since the structure is made of foam and thin dielectric layers, the area density is relatively low.

Keywords: metamaterial absorber, metasurface, low-permittivity dielectric slabs, wide-band absorption, stability of oblique incidence, high absorption

(Some figures may appear in colour only in the online journal)

1. Introduction
Radar absorbing materials (RAMs) can reduce reflection energy of the object [1–3]. It is used in versatile applications such as satellite navigation systems, electromagnetic energy harvesting, stealth fields and so on. However, traditional RAMs usually have narrow absorption bandwidth which cannot meet specific requirements. To solve this problem, two types of new RAMs are created and developed including all-dielectric metamaterial absorbers (ADMAs) and metasurface [4–6] absorbers [7] (MSAs).

Our research group studied ADMAs in the past several years. Zhang et al [8] proposed a binary-structured metamaterial absorber (BMA) based on a 3D cross-shaped dielectric periodic array and a metal backplane. The thickness of the structure is 30.0 mm, where the raw material is FR4 with $\varepsilon_r = 4.8$ and $\tan\sigma$ of 0.025. It generates six absorption peaks at 10.004 GHz, 12.192 GHz, 14.304 GHz, 15.456 GHz, 15.7060 GHz and 17.600 GHz, which corresponding reflection coefficients are -28.58 dB, -12.8 dB, -10.21 dB, -24.64 dB, -18.6 dB, and -11.23 dB, respectively. Wang et al [9] proposed a two layers BMA based on FR4 with $\varepsilon_r = 4.3$ and $\tan\sigma$ of 0.025. The thickness of this BMA
is 30.0 mm. It has two absorption peaks at 14.65 GHz and 16.61 GHz, resulting from the magnetic and electrical responses of ADMAs, respectively. The studies prove that pure dielectric materials can be used as RAMs through controlling the interaction between microwave and material, which give us a good inspiration for this article. The biggest challenges of ADMAs are too thick and too heavy, which limit their application seriously.

Another type of new RAMs is MSAs, which have attracted a lot of attention because of their advantages of thin thickness, light weight and strong absorption. The MSAs, such as circuit-analog absorbers, usually consist of a layer of periodic elements arrays, a dielectric layer and a metal plane, whose electromagnetic characteristics can be controlled by simply changing period, size of unit cell and impedance [10–12]. To meet the requirements of broadband absorption, complicated unit cells or multi-metasurfaces (MS) structures are adopted, which lead to complex design and preparation processes [13–17]. Besides, our research group designed a ultrawide band and high absorption absorbing material with simple loop unit cell in [18]; however, the proposed UHAS uses too many chip resistors, which is expensive for large-scale applications.

To obtain a simple designed RAM with properties of easily preparation, protected absorbing parts, thin thickness, light weight, wide bandwidth absorption, and stable performance under oblique incidence, a new wide-band and high-absorption metamaterial absorber (WHMA) is proposed and fabricated in this work, which combines the advantages of ADMAs and MSAs. As shown in figure 1, the WHMA can be regarded as combination of ADMA and MSA, which consists of an MS, three low-permittivity dielectric slabs, and a metal plane. The unit cell of MS is concentric rings loaded with chip resistors. Simulation results reveal that WHMA has wider −20 dB absorption band and better oblique incidence performance than most of reported MAs. Finally, a sample is fabricated and measured to validate proposed design.

2. Design and simulation

As shown in figure 2(a), WHMA has five layers, which are top FR4 layer, PMI foam, MS, PMI foam and metal backplane. Figure 2 shows unit cell of the proposed MS, that metal rings are printed on the PI film. The period, P = 20.20 mm, the radius of large ring, Rad = 8.00 mm, the radius of small ring Rad = 5.00 mm, the width of two rings, w = 0.60 mm, the resistance of resistors loaded on large ring, $R_{\text{out}} = 300 \Omega$, the resistance of resistors loaded on small ring, $R_{\text{in}} = 240 \Omega$, the height of top FR4 layer, $h_1 = 0.30$ mm, the height of top PMI foam, $h_2 = 2.80$ mm, the thickness of PI film, $h_3 = 0.13$ mm, the height of bottom PMI foam, $h_4 = 6.80$ mm. The absorptivity of WHMA can be calculated by:

$$A(\omega) = 1 - R(\omega) - T(\omega) = 1 - |S_{11}(\omega)|^2 - |S_{21}(\omega)|^2$$

where $R(\omega)$ is reflectivity; $T(\omega)$ is transmissivity; S_{11} is reflection coefficient; S_{21} is transmission coefficient. If the bottom layer is metal backplane, the transmission is zero. Under different incidence, the reflection coefficients for the perpendicular and parallel polarizations are given by [19]

$$\Gamma_\perp(\omega) = \frac{Z(\omega)\cos\theta - Z_0\cos\theta_i}{Z(\omega)\cos\theta + Z_0\cos\theta_i}$$

$$\Gamma_\parallel(\omega) = \frac{Z(\omega)\cos\theta - Z_0\cos\theta_i}{Z(\omega)\cos\theta + Z_0\cos\theta_i}$$

$$Z(\omega) = \sqrt{\frac{(1 + S_{11}(\omega))^2 - S_{21}(\omega)^2}{(1 - S_{11}(\omega))^2 - S_{21}(\omega)^2}}$$

where $Z(\omega)$ and Z_0 are the impedances of the MA and free space, respectively [20]. $Z_0 = \sqrt{\mu_0/\varepsilon_0} = 377 \Omega$. θ_i and θ_i are the incident and transmission angles, respectively.

Unit cell of the proposed MS is designed based on LC resonance, and its resonant frequency is calculated by

$$f = \frac{1}{2\pi \sqrt{L_{\text{eff}}C_{\text{eff}}}}$$

The effective inductance (L_{eff}) is mainly generated by the perimeter and width of the concentric rings. The effective capacitance (C_{eff}) is mainly determined by the gap between the rings.

The electromagnetic (EM) performance of WHMA is investigated by simulation software CST Microwave Studio. Periodic boundary conditions are applied in the basal x and y directions, with open boundaries in the z-direction.

Figure 3(a) shows reflectivity and absorptivity results of the WHMA. In the range of 4.8–14.3 GHz, the absorptivity is
higher than 90%. In the range of 5.7–13.8 GHz, the absorptivity is higher than 99%. As indicated in figure 3(b), in the range of 4.3–14.1 GHz, Real (Z) of WHMA is close to 1; in the range of 5.5–13.9 GHz, Imag (Z) of WHMA is close to 0. All of these indicate that the impedance of the WHMA matches with the free space in the above frequency range. Thus, almost all the incident EM wave can enter the WHMA, that the energy of the incident EM wave can be consumed by the MS and dielectric layers further.

Figure 4 shows the simulation results of proposed WHMA. At normal incidence, −10 dB absorption band is from 4.8 to 14.3 GHz (fractional bandwidth (FBW) = 101.1%); and the reflection coefficient below −20 dB is in the range of 5.70–13.8 GHz (FBW = 81.6%). At TE polarization, the proposed WHMA remains wide −10 dB absorption band whose bandwidth is greater than 7.7 GHz (FBW ≥ 84.3%) for 50° of oblique incidence. At TM polarization, the oblique incidence stability of −10 dB absorption is kept from 0° to 20°.

To understand the physical mechanism of its excellent absorption property and improved stability of oblique incidence, the interference model of the WHMA is studied in figure 5. According to the interference theory [21], WHMA has three interfaces, which are top dielectric layer, MS and copper backplane. Multireflection interference will happen among them. As mentioned in [16–20], top dielectric layer can divide incident EM energy E into reflection energy E_r, transmission energy E_t and absorption energy E_{abs}. Then, MS will divide E_t into absorption energy E_1, reflection energy E_{2_r} and transmission energy E_3.

Copper backplane act as a perfect reflection layer. It can be concluded that the reflection energy of WHMA is produced by multiply-reflection among top dielectric layer, MS and copper backplane; then the multiply reflected energy can be multiply-dissipated by top dielectric layer and MS.

To maximize the electrical dissipation in MS and top dielectric layer, the thickness of two PMI foam layers is important. According to the Poynting’s theorem, the thickness of PMI layers h_2 and h_4 will be designed corresponding to a quarter wavelength of different frequencies. The wavelength λ can be calculated by

$$\lambda_m = \frac{\lambda_0}{\sqrt{\varepsilon_r\mu_r}}$$

where c_0 ($2.99 \times 10^8 \text{m s}^{-1}$) is velocity of light; f is frequency point; λ_0 is wavelength corresponding to the f; λ_m is the wavelength in dielectric materials.

The aim of this work is to design a WHSA for X band application, so the reflection coefficient below −20 dB in the range of 6.0–14.0 GHz is necessary to ensure the stability of the performance. The initial parameters of MS are determined by the below rules. The radius of large ring Radr approximately satisfy $2\pi^*\text{Rad}_r \sim \lambda_L$, where λ_L is the wavelength of starting frequency of −20 dB reflection. The radius of small ring Radm approximately satisfy $2\pi^*\text{Rad}_m \sim \lambda_M$, where λ_M is the wavelength of centre frequency of design purpose. The width w should be greater than the width of the chip resistor’s package. The period P needs to satisfy $2^*\text{Rad}_m < P < 2^*\text{Rad}_r + \lambda_U$, where λ_U is the wavelength of ending frequency of −20 dB reflection to avoid onset of free space grating lobes. Literature [18] mentioned the guidance of high absorption MS absorber design that 40% absorption of MS is the key factor. After assigning the initial values, by using the full-wave simulation software, the values of P, Radm, Radr, w, R_m, R_{out} achieve about 40% ohmic consumption of the incident plane wave energy in the designed frequency, are sequentially determined. The final parameters are $P = 20.20 \text{ mm}$, $\text{Rad}_m = 8.00 \text{ mm}$, $\text{Rad}_r = 5.00 \text{ mm}$, $w = 0.60 \text{ mm}$, $R_{out} = 300 \Omega$, $R_m = 240 \Omega$, $h_3 = 0.13 \text{ mm}$.

Different from [18], where the thicknesses of dielectric layers are calculated by the starting and ending frequencies of −20 dB designed absorption band, the thicknesses of dielectric layers in this work are designed based on other principles. As shown in figure 6(a), the starting 40% absorption frequency
Figure 4. Simulation results of the proposed WHMA. (a) Reflection coefficient under TE-polarization; (b) Absorptivity under TE-polarization; (c) Reflection coefficient under TM-polarization; (d) Absorptivity under TM-polarization.

Figure 5. The interference model and absorption mechanism of proposed WHMA. E represents the total energy of the incident plane wave; E_1 is the energy absorbed by MS; E_2 is reflection energy of MS; E_3 signifies transmission energy of CA sheet; E_3_R means the reflection energy of E_3 by ground; Θ, Φ are positions of electrical dissipation. θ is incidence angle of plane wave. θ_1 and θ_2 are angles of refraction.

of large ring MS is at 5.70 GHz, that is set as the starting frequency of absorption enhancement. However, resistive small ring MS does not have 40% absorption frequency, the first absorption peak at 13.57 GHz is set as the ending frequency of absorption enhancement. The middle frequency of -20 dB reflection of the whole MS is 10.10 GHz, which is used to calculate PMI foam slab h_4. In this work, the dielectric layers h_2 and h_4 are PMI foam slabs with ε_r of 1.05, top dielectric layer h_1 is FR4 with ε_r of 4.4, the substrate of MS h_3 is PI with ε_r of 3.5. As shown in figure 6(b), transmission and reflection coefficient of proposed MS, which is close to the -3.5 dB/-9.5 dB respectively in the range of 6.0–14.0 GHz, are like the resistive sheet with resistance 377 Ω/square and corresponds well with the design principles mentioned in [18]. Figure 6(c)
Figure 6. At normal incidence, (a) Absorptivity of single resistive large loop and single resistive small loop MS; (b) Reflection/Transmission coefficients of MS and 377 Ω sheet; (c) Absorptivity of MS under four kinds of resistors configuration.

shows the absorptivity of MS under four kinds of resistors configuration. It illustrates that different configuration of resistors does not change lumped resistance while the equivalent inductance (L_{out} and L_{in}) and capacitance (C_{out} and C_{in}) is changed a little. So, the absorptivity changes slightly. As a result, configuration_1 is adopted as an available plan for further design.

Top FR4 layer can improve electrical dissipation around $f_{5.70\,\text{GHz}}$ and $f_{13.57\,\text{GHz}}$ at position \oplus, which can be used for calculating thickness whole thickness $H = \lambda_{5.70\,\text{GHz}}/4$ and thickness of top FR4 layer h_1. PMI foam h_4 is designed for electrical dissipation around $f_{10.10\,\text{GHz}}$ at position \Box. If all the dielectric layers of WHMA are PMI foam, $H_{\text{PMI}} \sim \lambda_{5.70\,\text{GHz}}/4 = 12.80 \, \text{mm}$; $h_{4,\text{PMI}} \sim \lambda_{10.10\,\text{GHz}}/4 = 7.22 \, \text{mm}$. Besides, in industrial production, the thickness of PI film is usually 0.13 mm, the common thickness of FR4 is 0.30 mm, which are equal to the thickness values in PMI foam: $h_{3,\text{PMI}} = 0.24 \, \text{mm}$, $h_{2,\text{PMI}} = 0.63 \, \text{mm}$. Then the thickness of h_2 will be estimated by two approaches: (a) $h_{2,5.70\,\text{GHz}} \sim H_{\text{PMI}} - h_{1,\text{PMI}} - h_{3,\text{PMI}} - h_{4,\text{PMI}} = 4.71 \, \text{mm}$, where $h_{2,5.70\,\text{GHz}}$ is the thickness corresponding to a quarter wavelength of 5.70 GHz; (b) $h_{2,13.57\,\text{GHz}} \sim \lambda_{\text{PMI}}(13.57\,\text{GHz})/4 \sim 5.37 \, \text{mm}$, where $h_{2,13.57\,\text{GHz}}$ is the thickness corresponding to a quarter wavelength of 13.57 GHz. It should be noticed that $h_{2,13.57\,\text{GHz}}$ is larger than $h_{2,5.70\,\text{GHz}}$. Therefore, electrical dissipation around $f_{5.70\,\text{GHz}}$ and $f_{13.57\,\text{GHz}}$ cannot be maximized together at position \oplus. Compared the calculated thickness with actual design, the height of top PMI foam, $h_2 = 2.80 \, \text{mm}$, the thickness of PI film, $h_3 = 0.13 \, \text{mm}$, the height of bottom PMI foam, $h_4 = 6.80 \, \text{mm}$, the values agree well with each other.

In order to study the influence of top dielectric layer on the absorption performance, reflection coefficient and absorptivity are calculated for WHMA models with different thickness. As shown in figure 7, the parameters are $P = 20.20 \, \text{mm}$, $\text{Rad}_{\text{out}} = 8.00 \, \text{mm}$, $\text{Rad}_{\text{in}} = 5.00 \, \text{mm}$, $w = 0.60 \, \text{mm}$,
Figure 7. At normal incidence, simulation results of the proposed WHMA with different thickness of top dielectric layer. (a) Reflection coefficient under TE-polarization; (b) Absorptivity under TE-polarization. $P = 20.20 \text{ mm}, R_{\text{out}} = 8.00 \text{ mm}, R_{\text{in}} = 5.00 \text{ mm}, w = 0.60 \text{ mm}, R_{\text{out}} = 300 \Omega, R_{\text{in}} = 240 \Omega, h_2 = 2.80 \text{ mm}, h_3 = 0.13 \text{ mm}, h_4 = 6.80 \text{ mm}.

Figure 8. At normal incidence, simulation results of WHMA with different thickness h_2. (a) Reflection coefficient under TE-polarization; (b) Absorptivity under TE-polarization.

Layer can influence electrical dissipation around $f_{(5.70 \text{ GHz})}$, where energy is reflected by MS.

Figure 9 illustrates that the proposed top dielectric layer can improve absorption performance under oblique incidence. The mechanism can be explained by Snell’s Law. As shown in figure 5, the relationship of $\sin \theta, \sin \theta_1$, and $\varepsilon_{r_{\text{FR4}}}$ is

$$\frac{\sin \theta}{\sin \theta_1} = \sqrt{\frac{\varepsilon_{r_{\text{FR4}}}}{\varepsilon_0}}$$ (7)

The top FR4 layer with ε_r of 4.4 decreases the interference angle between refracted wave E_{r_1} and E_{r_2}, which will lead to better electrical dissipation in top dielectric layer h_1. It should be noted that, slab h_1 is mainly designed for electrical dissipation around $f_{(5.70 \text{ GHz})}$, which will improve oblique incidence stability at the same time around 5.70 GHz. In specifics, on the one hand, the -10 dB absorption band of proposed WHMA at 50.0$^\circ$ angle of incidence is similar to that of structure without top dielectric layer at 40.0$^\circ$ angle of incidence.

Next, the effect of thickness h_2 are studied in figure 8. As the thickness of h_2 is varied from 2.5 to 5.0 mm, absorption strength is increased in the range of 5.70–13.57 GHz. Then the thickness of h_1 is increased from 0.4 to 0.5 mm, -20 dB reflection bandwidth is decreased; however, the proposed structure still exhibits wide -10 dB reflection bandwidth.
incidence; on the other hand, the oblique incidence stability of WHMA around 5.70 GHz is much better than that around 13.78 GHz. These are different from single square loop in [18].

3. Experiment and discussion

To validate the properties of proposed WHMA, the MS is printed on PI film initially; then a prototype is fabricated based on the thermoforming and vacuum forming method. Figure 10(a) provides view of fabricated MS; figure 10(b) shows unit cell of MS, and the chip-resistors adopt 0402 package; figure 10(c) exhibits the perspective view of WHMA. The size of the sample is 300.00 × 300.00 × 10.13 mm with 196 units. Figure 10(d) shows measurement setup of prototype.

The measured results of the tested prototype are plotted in figure 11. Under TE-polarization, below 30° angle of oblique incidence, the measured reflection coefficient remains less than −20 dB from 5.6 to 14.7 GHz; for 40° angle of oblique incidence, the measured reflection coefficient remains less than −20 dB from 8.7 to 17.6 GHz; for 50° angle of oblique incidence, the measured reflection coefficient remains less than −10 dB in the range of 5.4–16.3 GHz. Under TM-polarization, the measured reflection coefficient remains less than −10 dB in the range of 5.5–18.0 GHz, when the oblique incidence is below 40°; for 50° angle of oblique incidence, −10 dB absorption is from 6.3 to 18.0 GHz.

In order to interpret its performance, the measured −10 dB/−20 dB reflection bandwidth and oblique angle of WHMA are listed in table 1 and compared with other absorbers in literatures. WHMA exhibits better performance when the angle of oblique incidence is increased, which realizes wider −20 dB absorption caused by the combination of MS and low-permittivity dielectric slabs. In addition, MS is protected well by top dielectric layer h_1 and PMI foam slab h_2. At last, the main material of WHMA is PMI foam, that the whole structure is much lighter than all dielectric materials structures.
Figure 10. Photograph of the fabricated WHMA prototype. (a) Top view of fabricated MS; (b) Unit cell of MS. (c) Perspective view of WHMA. (d) Measurement setup.

Figure 11. Measurement results of the proposed WHMA. (a) Reflection coefficient under TE-polarization; (b) Absorptivity under TE-polarization; (c) Reflection coefficient under TM-polarization; (d) Absorptivity under TM-polarization.
4. Conclusion

This In this work, a new WHMA is proposed. Compared with most of reported designs, the proposed WHMA combines the advantages of MA and low-permittivity dielectric MA and exhibits better synthetic capability. Numerical analysis and simulation results agree with each other very well. Then a prototype is fabricated to validate the proposed design. According to experimental results, −10 dB and −20 dB absorption band of WHMA is in the range of 4.6–16.3 GHz and 5.5–14.4 GHz respectively at normal incidence. Below 50° angle of oblique incidence, WHSA can still have wide-band −10 dB absorption at TE/TM polarization. The absorbers with integration of function and structure have potential applications in the EM absorbing fields.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

The project was partially supported by Science and Technology Plan Project of Hunan Province, Grant No. 2015TP1007; Initial Research Funding for Special Associate Professor by Central South University, Grant No. 202045002; Hunan Science and Technology Innovation Talents Program, No. 2021RC3003.

ORCID iDs

Zheyipei Ma https://orcid.org/0000-0001-8454-6366
Xiaozhong Huang https://orcid.org/0000-0002-3933-8848

Table 1. Performance comparison of broadband absorbers.

Ref.	FBW_1a	FBW_2a	TE	TM	Materials	RT (λL)b
[8]	Six peaks	N/A	N/A	Array based on FR4	1.000	
[9]	Two peaks	N/A	N/A	Arrays based on FR4	1.465	
[22]	77.0%	15%	N/A	Nylon and carbonyl iron powder	0.130	
[23]	52.0%	N/A	30°	MA with resistors	0.080	
[24]	93.2%	N/A	<30°	Magnetic Polymer	0.051	
[25]	74.8%	N/A	30°	Composites	0.049	
Current work	115.1%	79.5%	50°	Combination of MS and low-permittivity dielectric slabs	0.156	

a FBW of −10 dB/−20 dB reflection FBW_1/FBW_2.
b Relative thickness (λL) is the starting frequency of −10 dB reflection.

References

[1] Lee S-E, Kang J-H and Kim C-G 2006 Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass epoxy plain-weave composites Compos. Struct. 76 397
[2] Belaabed B, Wojkiewicz J L, Lamouri S, El Kamchi N and Lasri T 2012 Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties J. Alloys Compd. 527 137
[3] Saini P, Choudhary V, Singh B, Mathur R and Dhawan S 2011 Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range Synth. Met. 161 1522
[4] Li J T, Wang G C, Yue Z, Liu J Y and Li J 2022 Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization Opto-Electron. Adv. 5 210062
[5] Zheng C L, Li H, Li J, Li J T, Yue Z, Yang F, Zhang Y T and Yao J Q 2022 All-dielectric metasurface for polarization-selective full-space complex amplitude modulations Opt. Lett. 47 4291–4
[6] Li H, Li J, Zheng C L, Xu H, Yang F, Li J T, Yue Z, Shi W, Zhang Y T and Yao J Q 2022 Dual-band giant spin-selective full-dimensional manipulation of graphene-based chiral meta-mirrors for terahertz waves Opt. Express 30 22292–305
[7] Yao X, Huang Y Q, Li G Y, He Q, Chen H, Weng X, Liang D, Xie J and Deng L 2022 Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures Int. J. RF Microw. Comput.-Aided Eng. 32 e23222
[8] Zhang F et al 2020 A multi-band binary radar absorbing metamaterial based on a 3D low-permittivity all-dielectric structure J. Alloys Compd. 814 152300
[9] Wang Q, Zhang F, Xiong Y J, Wang Y, Tang X Z, Jiang C, Abrahams I and Huang X Z 2018 Dual-band binary metamaterial absorber based on low permittivity all-dielectric resonant surface J. Electron. Mater. 48 787
[10] Munk B 2000 Frequency Selective Surfaces: Theory and Design (New York: Wiley)
[11] Costa F, Monorchio A and Manara G 2010 Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces IEEE Trans. Antennas Propag. 58 1551
[12] Shang Y, Shen Z and Xiao S 2013 On the design of single-layer circuit analog absorber using double-square-loop array IEEE Trans. Antennas Propag. 61 6022
[13] Liu Y H, Fang S L, Gu S and Zhao X P 2013 Multiband and broadband metamaterial absorbers Acta. Phys. Sin. 62 134102
[14] Jiang W X, Qiu C W, Han T C, Zhang S and Cui T J 2013 Creation of ghost illusions using wave dynamics in metamaterials Adv. Funct. Mater. 23 4028
[15] He Y, Feng W, Guo S, Wei J F, Zhang Y L, Huang Z, Li C L, Miao L and Jian J J 2020 Design of a dual-band electromagnetic absorber with frequency selective surfaces IEEE Antennas Wirel. Propag. Lett. 19 841
[16] Lim D and Lim S 2019 Ultrawideband electromagnetic absorber using sandwiched broadband metasurfaces IEEE Antennas Wirel. Propag. Lett. 18 1887–91
[17] Yao Z, Xiao S, Li Y and Wang B Z 2021 On the design of wideband absorber based on multilayer and multiresonant FSS array IEEE Antennas Wirel. Propag. Lett. 20 284
[18] Ma Z, Jiang C, Cao W, Li J and Huang X 2022 An ultrawideband and high-absorption circuit-analog absorber with incident angle-insensitive performance IEEE Trans. Antennas Propag. (https://doi.org/10.1109/TAP.2022.3177490)
[19] Simovski C, Maslovski S, Nefedov I and Tretyakov S 2013 Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications Opt. Express 21 14988
[20] Smith R, Vier D C, Koschny T and Soukoulis C M 2005 Electromagnetic parameter retrieval from inhomogeneous metamaterials Phys. Rev. E 71 036617
[21] Chen H T 2012 Interference theory of metamaterial perfect absorbers Opt. Express 20 7165
[22] Zhou D, Huang X and Du Z 2017 Analysis and design of multilayered broadband radar absorbing metamaterial using the 3D printing technology based method IEEE Antennas wirel. Propag. Lett. 16 133
[23] Nguyen T T and Lim S 2018 Design of metamaterial absorber using eight-resistive-arm cell for simultaneous broadband and wide-incidence-angle absorption Sci. Rep. 8 6633
[24] Zhang L, Zhou P H, Zhang H B, Lu L J, Zhang G R, Chen H Y, Lu H P, Xie J L and Deng L J 2014 A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS IEEE Trans. Magn. 50 1
[25] Yang Z N, Luo F, Zhou W C, Zhu D M and Huang Z B 2016 Design of a broadband electromagnetic absorbers based on TiO$_2$/Al$_2$O$_3$ ceramic coatings with metamaterial surfaces J. Alloys Compd. 687 384