Tophi gout around the knee joint: An unusual presentation with a soft tissue mass

Feyza Unlu Ozkan, Kerem Bilsel, Ismail Turkmen, Mehmet Erdil, Salih Soylemez, Korhan Ozkan

ABSTRACT

Introduction: Gout is the most common inflammatory arthropathy. It has been reported to affect 2.13% of population in the United States [1]. In this report, we presented an uncommon case of tophaceous gout of the knee presenting as a soft tissue mass.

Case report: A 57-year-old male patient with knee pain and localized progressive swelling increasing in time on the medial side of the proximal tibia was seen in our clinic. He did not have any rheumatologic disease known previously except gout arthritis. Excisional biopsy was performed by preserving medial collateral ligament and histopathologic investigations were done next. A tophaceous gouty deposit was identified by low-power photomicrograph. A bluish amorphous material was seen surrounded by bundles of dense collagenized tissue and chronic inflammatory cells. Surrounding the amorphous crystalline deposit is a thin layer of mononuclear and giant cells. Photomicrograph of another section has been stained by de Galantha’s method for demonstration of monosodium urate crystals. Conclusion: Especially in patients with extra-articular or subcutaneous mass, tophaceous gout must be considered as differential diagnosis.

Keywords: Tophi gout, de Galantha’s method, Tophaceous gout, Gout arthritis

INTRODUCTION

Gout is the most common inflammatory arthropathy reported to affect 2.13% of population in the United States [1]. In this report, we presented an uncommon case of tophaceous gout of the knee presenting as a soft tissue mass.

CASE REPORT

A 57-year-old male presented with knee pain and localized progressive swelling increasing in time on the medial side of the proximal tibia. Initially, he was examined by a physiotherapist and treated conservatively. After that he had come to our polyclinic with increased complaints. Physical examination of the knee revealed well circumscribed, solid, measuring approximately 5x5 cm, non-mobile soft tissue mass. The patient has no limitation of the joint motion. The mass was on the proximal tibial metaphyseal region, it was located subcutaneously and vicinity of bone. It was hard and fixed with smooth border by palpation. The blood uric acid levels were in normal range. His past history revealed that the patient had been using colchicine for 15 years. A year before, he had traffic accident and had injured his right knee with no fracture. In radiological assessment (X-ray
and magnetic resonance imaging (MRI)) a fusiform shaped mass was determined on pes anserinus bursa which had stretched patellar retinacula (Figure 1A–C). Calcific myonecrosis, pigmented villonodular synovitis, calcinosis, gout tophus and especially synovial sarcoma were considered as differential diagnosis.

An excisional biopsy was planned. A longitudinal incision was made along the length of anteromedial side of proximal tibia. Tumor mass was completely excised with insertion of medial collateral ligament. There was an eroded area underlying the mass on proximal medial tibia but without a lytic area. The tumor and the eroded area of the bone extirpated via a curved osteotome. The remaining (proximal) part of medial collateral ligament was reattached to the tibia by suturing using fiber wire through previously prepared drill holes.

Histopathologic investigations were done next. A tophaceous gouty deposit was identified by low-power photomicrograph. A bluish amorphous material is seen surrounded by bundles of dense collagenized tissue and chronic inflammatory cells. The field examined by polarized light. The birefringence of the crystalline material was evident. Surrounding the amorphous crystalline deposit was a thin layer of mononuclear and giant cells. Photomicrograph of another section had been stained by de Galantha’s method for demonstration of monosodium urate crystals (Figure 2).

DISCUSSION

Gout is an inborn error of purine metabolism characterized by hyperuricemia and recurrent attacks of acute arthritis. If hyperuricemia persists for a long time, tophaceous deposits may be found in the subcutaneous tissues and the various joints, particularly the first metatarsophalangeal joint, the hand, wrist, or elbow [2–5]. Tophaceous deposition has been reported in various locations such as finger pads, Sacroiliac joint, carpal tunnel, ankle, shoulder, dorsum of the feet, multiple subcutaneous nodules, knee, acromioclavicular joint and axial skeleton [3–14]. A recent study suggested that the frequency of axial involvement may be as high as 14% in patients with clinical or crystal-proven gout [15]. The rate of appearance of gross tophaceous deposits is a consequence of the gout disease and the degree of hyperuricemia [6].

Patients might have such complaints; warmth, pain, swelling and extreme tenderness in a joint, limited motion in the affected joint which mimics septic arthritis symptoms [4]. Chronic tophaceous gout classically occurs after 10 years or more of recurrent polyarticular gout. However, demonstrating tophi as the initial clinical presentation of gout is very rare [8]. Subcutaneous tophi generally occurs as a late clinical outcome and typically located in the peripheral joints of the hand or foot [10]. But subcutaneous tophaceous deposits of monosodium urate, in the absence of arthritis, may occasionally occur as the initial manifestation of gout. In 1996, Iglesias et al. reported a case presented with a 6-year history of multiple subcutaneous nodules and no history of previous articular complaint [16]. They had reviewed literature and found out 28 similar cases that had subcutaneous nodules without any articular complaint and termed this entity of the disease as the ‘gout nodulosis’. Bloch et al. in a study review presented 466 patients who had gout arthritis retrospectively [6]. In 84 patients (18%), radiographic findings were positive, but rather suspicious clinically. Thus, it seems that tophi deposition may occur early, even in previously unaffected joints. An earlier correct diagnosis of tophaceous gout could be made incidentally during an arthroscopy or with the help of the radiologist [2, 6].

Tophi are rarely observed in patients without a prior history of gouty arthritis. We describe a patient whose
initial manifestation of gout was tophaceous deposition in an unusual location; medial side of the knee. As far as we know although intra-articular gouty deposits in the knee are common, subcutaneous nodules are rare [10]. Our patient did not have a history of acute gouty arthritis tophi elsewhere. Tophaceous gout without arthritis might be more common than previously recognized. For diagnosis of gouty deposits in and around the knee plain radiographs, MRI and computed tomography (CT) [5, 9, 17] scan can be used. The plain radiographs show asymmetrical soft tissue swelling, calcification and bone erosion [17]. These plain radiographic features generally are normal in early and even chronic gout patients with intra-articular deposits and bone erosions [6]. Tophaceous deposits present as masses on MRI scan with low to intermediate signal intensity on both T1- and T2-weighted images and a characteristic enhancement pattern following intravenous Gd administration. These features relate primarily to internal calcifications, which are most evident on CT scans. Magnetic resonance imaging scan (including Gd administration) supplemented, in some cases, with CT scan allows accurate diagnosis of intra-articular tophaceous deposits [9]. Monosodium urate (MSU) deposits within a tophus can be clearly defined with CT scan. Computed tomography scan discloses round and oval opacities in the tophi [17].

Gout is marked by transient attacks of acute arthritis initiated by crystallization of urates within and about the joints [18–21]. Although peri- and intra-articular structures are involved in the knee visible subcutaneous lesions are extremely unusual [22]. The soft tissue lesions of the tophaceous gout can have similar appearances to calcinosis of chronic renal failure, synovial sarcoma, osteosarcoma, calcific myonecrosis, myositis ossificans and tumoral calcinosis, so medical history of the patient is essential to evaluate the origin of these lesions and to detect the possible etiology.

Synovial sarcomas are most commonly seen in large joints. They originate from bursal and tendineous structures [23]. These were, most frequently, incorrectly diagnosed as bursitis, tendinitis, synovitis or hematoma. In tumoral mass there may be mineralization and also this calcification can be also seen on X-ray.

In some cases the underlying bone is affected and erosions can be seen [24]. Due to these features, in our case there was a diagnostic dilemma between synovial sarcoma and gout tophi. Computed tomography scan should be applied preoperatively to detect bone erosions that could help to plan the surgery.

CONCLUSION

In such cases, especially in patients with extra-articular or subcutaneous mass, tophaceous gout must be considered as differential diagnosis because tophi gout can mimic all kind of mass on extremities.

REFERENCES

1. Brook RA, Forsythe A, Smeeding JE, Lawrence Edwards N. Chronic gout: Epidemiology, disease progression, treatment and disease burden. Curr Med Res Opin 2010 Dec;26(12):2813–1.
2. Yu KH. Intraarticular tophi in a joint without previous gouty attack. J Rheumatol 2003 Aug;30(8):1868–70.
3. Shmerling RH, Stern SH, Gravallese EM, Kantrowitz FG. Tophaceous deposition in the finger pads without gouty arthritis. Arch Intern Med 1988 Aug;148(8):1830–2.
4. Yu KH, Luo SF, Liou LB, et al. Concomitant septic and gouty arthritis—an analysis of 30 cases. Rheumatology (Oxford) 2003 Sep;42(9):1062–6.
5. Gerster JC, Landry M, Duvoisin B, Rappoport G. Computed tomography of the knee joint as an indicator of intraarticular tophi in gout. Arthritis Rheum 1996 Aug;39(8):1406–9.
6. Bloch C, Hermann G, Yu TF. A radiological reevaluation of gout: A study of 2,000 patients. AJR Am J Roentgenol 1980 Apr;134(4):781–7.
7. Chen CK, Chung CB, Yeh L, et al. Carpal tunnel syndrome caused by tophaceous gout: CT and MR imaging in 20 patients. AJR Am J Roentgenol 2000 Sep;175(3):655–9.
8. Koley S, Salodkar A, Choudhary S, Bhake A, Singhania K, Choudhury M. Tophi as first manifestation of gout. Indian J Dermatol Venereol Leprol 2010 Jul-Aug;76(4):393–6.
9. Chen CK, Yeh LR, Pan HB, et al. Intra-articular gouty tophi of the knee: CT and MR imaging in 12 patients. Skeletal Radiol 1999 Feb;28(2):75–80.
10. Yu KH, Lien LC, Ho HH. Limited knee joint range of motion due to invisible gouty tophi. Rheumatology (Oxford) 2004 Feb;43(2):101–4.
11. Hsu CY, Shih TT, Huang KM, Chen PQ, Sheu JJ, Li YW. Tophaceous gout of the spine: MR imaging features. Clin Radiol 2002 Oct;57(10):919–25.
12. Varga J, Giampaolo C, Goldenberg DL. Tophaceous gout of the spine in a patient with no peripheral tophi: Case report and review of the literature. Arthritis Rheum 1985 Nov;28(11):1312–5.
13. Nygaard HB, Shenoi S, Shukla S. Lower back pain caused by tophaceous gout of the spine. Neurology 2009 Aug 4;73(5):404.
14. Cabot J, Mosel L, Kong A, Hayward M. Tophaceous gout in the cervical spine. Skeletal Radiol 2005 Dec;34(12):803–6.
15. Konatalapalli RM, Demarco PJ, Jelinek JS, et al. Gout in the axial skeleton. J Rheumatol 2009 Mar;36(3):609–13.
16. Iglesias A, Lonelmo JC, Saabbi DL, Peña M, Lizarazo H, Gonzalez EB. Gout nodulosis: Widespread subcutaneous deposits without gout. Arthritis Care Res 1996 Feb;9(1):74–7.
17. Gerster JC, Landry M, Dufrnes L, Meuwly JY. Imaging of tophaceous gout: Computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann Rheum Dis 2002 Jan;61(1):52–4.
18. Neogi T. Clinical practice. Gout. N Engl J Med 2011 Feb 3;364(5):443–52.
19. Akahoshi T, Murakami Y, Kitasato H. Recent advances in crystal-induced acute inflammation. Curr Opin Rheumatol 2007 Mar;19(2):146–50.
20. Janssens HJ, Fransen J, van de Lisdonk EH, van Riel PL, van Weel C, Janssen M. A diagnostic rule for acute gouty arthritis in primary care without joint fluid analysis. Arch Intern Med 2010 Jul 12;170(13):1120–6.
21. Bieber JD, Trekeltaub RA. Gout: On the brink of novel therapeutic options for an ancient disease. Arthritis Rheum 2004 Aug;50(8):2404–14.
22. Ko KH, Hsu YC, Lee HS, Lee CH, Huang GS. Tophaceous gout of the knee: Revisiting MRI patterns in 30 patients. J Clin Rheumatol 2010 Aug;16(5):209–14.
23. Andrassy RJ, Okcu MF, Despa S, Raney RB. Synovial sarcoma in children: Surgical lessons from a single institution and review of the literature. J Am Coll Surg 2001 Mar;192(3):305–13.
24. Inagaki H, Nagasaka T, Otsuka T, Sugiura E, Nakashima N, Eimoto T. Association of SYT-SSX fusion types with proliferative activity and prognosis in synovial sarcoma. Mod Pathol 2000 May;13(5):482–8.