A Clathrin-binding Site in the Hinge of the β2 Chain of Mammalian AP-2 Complexes

(Received for publication, August 3, 1995, and in revised form, October 10, 1995)

William Shiht, Andreas Gallusser‡, and Tomas Kirchhausen§
From the Department of Cell Biology, Harvard Medical School and The Center for Blood Research, Boston, Massachusetts 02115

The assembly of cytosolic clathrin into the cytoplasmic face of coated pits and coated vesicles appears to be driven by the clathrin-associated protein (AP) complexes. We have previously shown that one of the large chains of the AP complexes, the β chain, is sufficient to drive coat assembly in vitro. This chain consists of two domains, the amino-terminal trunk and the carboxy-terminal ear, linked by a “hinge.” We report here that presence of the hinge in recombinant β trunk or in recombinant β ear fragments is essential for driving in vitro assembly of clathrin into coats. We have also used a binding assay to map the clathrin-binding site by nested deletion of hinge sequences to a 50-residue region in the center of the hinge. This sequence is conserved in all known β sequences from multicellular organisms. The interaction of a single β hinge with a clathrin triskelion is weak, and we propose that recruitment of cytosolic clathrin to a forming coated pit involves simultaneous contacts between the legs of single clathrin trimers and the β hinges of two or three membrane-bound AP complexes. Uncoating is likely to require interruption of these contacts.

Clathrin-coated pits and coated vesicles carry the endocytic and regulated exocytic vesicular traffic in eukaryotic cells. The assembly of the clathrin lattice on the cytosolic side of the membrane initiates the formation of a coated pit, and a section of the membrane is captured, becoming a coated vesicle (1). The membrane that forms the coated vesicle selectively retains specific membrane protein receptors, which are then targeted to the appropriate organelle (for recent reviews see Refs. 2–4).

Specific protein complexes isolated from coated vesicles are known to drive clathrin coat formation at physiological ionic strength (5–8) and are likely to direct the assembly of clathrin in vivo. The best studied of these are the AP-1 and AP-2 complexes, related heterotetrameric structures (9, 10) that preferentially localize at the trans-Golgi network and at the plasma membrane, respectively (11, 12). Coated pits at the Golgi and the plasma membrane selectively retain different subsets of membrane receptors, and the APs are believed to mediate receptor selection. This view is supported by a number of observations, including the direct association of receptor tails with APs in vitro (13–18) and in vivo (19–22). For this reason, these complexes have come to be called adaptors.

AP-1 and AP-2 complexes each contain two large subunits (γ and β1 or α and β2, respectively), one medium subunit (μ1 or μ2), and one small subunit (σ1 or σ2) (9, 10). The large subunits have a proline/glycine/alanine-rich region of about 100 amino acids that is sensitive to proteases (9, 23–25). This portion, referred to variously as the “hinge” or “linker,” contains the majority of the differences between β1 and β2 or between α and σ. When AP-2 complexes are examined by electron microscopy, they appear as a brick-like core with two smaller lobes attached (26). After proteolysis, the brick remains, but the two small lobes (referred to as “ears,” “heads,” or “appendages” and now known to be the carboxy-terminal domain of the α/γ and β/β2 subunits) are lost (9, 25, 26). It is therefore believed that the hinge connects the amino-terminal domain or “trunk” of a large chain (~600 amino acids) to the corresponding ear (~250 amino acids).

We have recently shown that the β1 and β2 subunits are the clathrin assembly components of the AP complexes (8). Recombinant β subunits can by themselves drive clathrin coat formation, and β chains compete with whole APs for the same binding site. Which parts of the β chain are crucial for coat formation? We show here using recombinant proteins that a β2 fragment containing the trunk joined to its hinge or a β2 fragment containing the hinge and the ear can drive clathrin assembly. Presence of the hinge is essential because comparable β2 fragments lacking it fail to drive coat formation. The hinge between the trunk and the ear is usually dismissed as a potential clathrin-binding element, because this section is the most divergent between β1 and β2, and it is generally assumed that the clathrin-binding site (or sites) is likely to have a conserved sequence. There are, however, two regions of similarity between the β1 and β2 in the center of the hinge, and we show that these conserved segments are indeed essential for inducing clathrin lattices. Our observations lead to the proposal that the β hinge contains the primary clathrin-binding site and that stimulation of lattice assembly occurs when this site is linked to an oligomerizing or membrane-anchored structure.

MATERIALS AND METHODS

Construction of Bacterial Expression Vectors—The α hingear and the β2 hinge/ear fragments listed in Fig. 1A were created from PCR products derived from previously cloned rat brain αc and β2 CDNA (26, 27) by ligation into the blunt NdeI site of the bacterial expression vector pRSETc. Six histidine residues were added to the amino terminus to facilitate purification by affinity chromatography on Ni-NTA-agarose® beads (Qiagen). The constructs were checked by DNA sequencing. The β2 trunk/hinge fragment was created by ligation of the
appropriate polyanamine chain reaction product from the rat brain β2 cDNA into the NdeI and PvuI I sites of the expression vector pREP5c. The expression vectors for intact β2 and for β2 trunk have been previously described (8).

Overexpression of Recombinant Proteins in Escherichia coli—E. coli BL21(DE3) were transformed with the expression vectors and grown overnight in LB (18 h). Clathrin hinge/ear fragments or MSA (all chains) medium containing 100 μg/ml ampicillin. One-liter cultures were incubated with 10 ml of overnight culture and grown at 37 °C until the cell density reached A600 of ~0.5. Cultures expressing the hinge/ear fragments were cooled to room temperature in an ice water bath, and expression was induced with a final concentration of 0.1 mM isopropyl-1-thio-β-D-galactopyranoside. Cultures were grown for an additional 4 h at room temperature. Cultures expressing the intact β2, β2 trunk/hinge, or β2 trunk were kept at 37 °C until the cell density reached A600 = ~0.7, and expression was induced for 2–4 h with 1 mM isopropyl-1-thio-β-D-galactopyranoside (8). The cells were then harvested by centrifugation at 7,000 rpm (J-10, Beckman) for 5 min at 4 °C.

Purification of Recombinant Proteins—Pellets from 1–4-liter cultures expressing αc or β2 hinge/ear fragments were resuspended in 30–60 ml of sonication buffer (50 mM Tris, pH 8.0, 300 mM NaCl, 0.2% Triton X-100, and 10 mM β-mercaptoethanol) and sonicated 5 × 30 s with alternate 30-s cooling intervals by incubation in an ice water bath. The lysates were spun at 17,000 rpm (J-17 rotor, Beckman) for 30 min at 4 °C, and the supernatants mixed with 0.5 ml of Ni-NTA-agarose beads (QIAGEN) for 2–3 h. The resin was collected by gravity flow over a 3-cm bed height column and washed with 100 ml of washing buffer (20 mM HEPES, pH 7.0, 300 mM NaCl, and 1 mM EDTA) and eluted at a flow rate of 0.5–1.0 ml/min. For the construct β2-Δ38 hinge/ear, a Superose 12 (Pharmacia) column was used instead. The recombinant proteins eluted mostly (>70%) as a single peak with an estimated overall purity of at least 90% determined by SDS-PAGE and Coomassie Blue staining and mostly (>90%) determined by SDS-PAGE and Coomassie Blue staining and mostly (>90%) determined by SDS-PAGE and Coomassie Blue staining.

Purification of Bovine Brain Cytosol and AP Complexes—Bovine brain cytosol was separated from AP complexes by size-exclusion chromatography (8, 9, 28), and AP complexes were purified by MonoQ (Pharmacia) ion exchange chromatography (8, 12).

Purification of Clathrin Cytosol Preparation—Clathrin cytosol from rats starved overnight or prefreeze (Pel-freeze) were minced into 3 volumes of 25 mM HEPES-KOH, pH 7.4, 250 mM sucrose, 2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 0.1 trypsin inhibitor units/ml aprotinin, and 5 μg/ml leupeptin and homogenized with 10 passes on a Van-Potter homogenizer coupled to a drill rotating at ~120 rpm. The sample was spun at 5,500 rpm (J-17, Beckman) for 10 min at 4 °C, and the supernatant was cleared sequentially at 10,000 rpm (J-17, Beckman) for 20 min and at 38,000 rpm (Ti60, Beckman) for 60 min at 4 °C. The top lipid layer was discarded, and the supernatant (40 ml) was stored in frozen aliquots at −70 °C. Aliquots were dialyzed overnight against binding buffer (20 mM HEPES, pH 7.0, 100 mM NaCl) at 4 °C and at top speed on a Sorvall (C2 rotor, Beckman) for 4 h before use.

Binding Assay—Recombinant αc and β2 hinge/ear constructs were dialyzed overnight at 4 °C against binding buffer. The hinge/ear and rat liver cytosol preparations were cleared at 85,000 rpm (TLA100.4, Beckman) for 30 min at 4 °C before mixing. A typical experiment consisted of 100 μg of recombinant protein and 3 mg of rat liver cytosol in a total volume of 100 μl. After incubation for 30 min in ice, 30 μl of Ni-NTA-agarose beads preequilibrated in binding buffer were added and incubated in an Eppendorf tube for 1 h at 4 °C with constant mixing by rotation. The beads were washed four times with 200 μl of binding buffer plus 0.2% Triton X-100. Bound proteins were eluted by incubation for 2 min at room temperature with 30 μl of 8 M urea and 0.1 M HEPES, pH 8, and analyzed by SDS-PAGE. Because the release of histidine-tagged recombinant proteins is minimal under this condition, it was possible to verify that in all experiments the amount of recombinant protein bound to the beads was always the same. This analysis was done using SDS-PAGE and Coomassie Blue staining of the eluted beads after boiling with 1× Laemmli sample buffer containing 10 μg/ml imidazole.

Assembly of Clathrin Coats and Electron Microscopy—Assembly of soluble bovine brain clathrin into coats and electron microscopy were done exactly as described previously for mixtures containing clathrin and recombinant β chains (8).

Western Blot Analysis—Samples fractionated by SDS-PAGE were electrophoretically transferred to nitrocellulose (Boehringer Mannheim) and probed with a mouse monoclonal IgM antibody directed against clathrin heavy chain (CHC5.9, IBL Research) or with rabbit serum containing polyclonal antibodies raised against the rat recombinant αc or against the β2 hinge/ear fragments (20). The membranes were developed by enhanced chemiluminescence with a secondary goat anti-mouse antibody coupled to horseradish peroxidase (Amersham Corp.) and exposed to X-OMAT x-ray film (Kodak) for different times to insure linearity of the response.

Amino-terminal Sequencing—Approximately 10 μg of recombinant αc or β2 hinge/ear were digested with elastase followed by SDS-12.5% PAGE. The cleaved products were electrophoretically transferred to a polyvinylidene difluoride membrane, and the ~28 kDa fragments were subjected to six cycles of automated Edman degradation (9, 25, 29).

RESULTS

αc and β2 Have Extended Hinges and Globular Ears—We expressed the complete hinge ear portion of the rat brain β2 as well as a series of rat brain β2 fragments containing parts of the hinge plus the complete carboxy-terminal ear (Figs. 1A and 2). We compared the elution profile of native αc and β2 hinge/ear domains prepared by tryptic digestion of bovine brain AP-2 complexes with the elution profile of the recombinant αc and β2 hinge/ears. The various hinge/ear fragments all have Stokes radii that are larger than predicted from their molecular weights, assuming a compact, globular conformation (Table 1).

Moreover, the native and recombinant fragments have similar Stokes radii and therefore similar shapes, excluding the possibility that the histidine tags on the recombinant fragments might account for their anomalous elution profiles.

Electron microscopy shows that the AP-2 complexes consist of a brick-like core linked to two smaller globular structures (26). The distinction between hinge and ear was made largely on the basis of sequence data, because the proline/glycine-rich region now called the hinge seemed unlikely to fold into a compact domain (25, 30). If this model of a globular domain plus extended “stalk” is correct, it can account for the observed Stokes radii of the 34- and 40-kDa αc and β2 hinge/ear fragments. Fastastic treatment of our recombinant αc and β2 hinge/ear fragments also yields 28-kDa fragments with amino termini at Ser-688 (αc) and Ser-701 (β2). These 28-kDa fragments have Stokes radii appropriate for compact proteins (Table 1). Thus it appears that the hinges of the αc and β2 chains are relatively extended structures joining the respective amino-terminal trunks with the globular ears. Given the extensive sequence identity between the related αc and αc chains (31) and between β2 and β2 chains (25, 32), it is likely that the members of each type of large chain have very similar structures.

β2 Hinge/Ear Contains a Binding Site For Clathrin—Expression of recombinant β2 hinge/ear has made it possible to test directly for proteins that bind to this portion of the AP-2 complex and for its ability to promote assembly of clathrin lattices. When β2 hinge/ear was mixed with rat liver cytosol extracts and recovered on a Ni-NTA-agarose column, significant amounts of clathrin were found to be associated with it (Fig. 3A). Comparing the Coomassie Blue staining pattern of Fig. 3A, lane 1 (absence of β2 hinge/ear) with that of lane 3 (presence of β2 hinge/ear), one can see that the main difference is a band with the same electrophoretic mobility of the clathrin
Indeed, clathrin is specifically bound to the \(b_2 \) hinge/ear fragment (Fig. 3B, lane 6), and over 50% of the clathrin in the cytosol preparation is extracted by this procedure even in the presence of high amounts of Tris (Fig. 4C; see below). This binding is specific, because clathrin is recruited from an unpurified cell extract (Fig. 3A, lane 3) and because there is no recruitment by the Ni-NTA-agarose beads alone (Fig. 3A, lane 2) nor by a hinge/ear fragment (Fig. 3A, lane 7). Similar results were obtained using 0.5M Tris-HCl, pH 7.4, a condition that depolymerizes clathrin coats (Fig. 4B, lane 3), and by using a number of sources of clathrin, including bovine brain cytosol and 1% Triton X-100 total extracts of A431 cells (data not shown). To define the site of clathrin binding more accurately, we tested the ability of truncated versions of \(b_2 \) hinge/ear to extract clathrin from cytosol preparations. Removing 24 residues from the amino terminus of the hinge/ear (\(b_2-\Delta 24 \) hinge/ear) had no effect on clathrin binding (Fig. 3A, lane 4), whereas fragments lacking either the amino-terminal 83 residues of the hinge (\(b_2-\Delta 83 \) hinge/ear; Fig. 3A, lane 5, and Fig. 4B, lane 4) or the entire hinge (\(b_2 \) ear; Fig. 3A, lane 6) completely failed to bind clathrin. Thus, the residues required for this interaction lie between 616 and 674. As indicated in Fig. 1B, the hinge segment between residues 592 and 700 is responsible for most of the sequence divergence between the mammalian \(\beta_1 \) and \(\beta_2 \) chains, but the central segment including Val-620 to Val-640 and Val-653 to Leu-663 is well conserved among mammalian species and in the single \(\beta \) chain of Drosophila (34).

The results from the binding experiment just described cannot rule out the possibility that another protein, present in cytosol or in the cell extracts and of a size similar to one of the proteins that binds nonspecifically to the-agarose beads, might in fact serve as a linker in the association of clathrin to \(b_2 \) hinge/ear. We therefore examined whether in the absence of other cellular proteins, \(b_2 \) hinge/ear will still bind clathrin purified from coated vesicles (Fig. 4A). It does even when it is added in Tris-containing buffers (Fig. 4A, lane 6). Thus, at least for this aspect of the interaction between clathrin and the AP complexes, not only is there no apparent requirement for other proteins but also there is no apparent difference between coated vesicle-derived clathrin and the majority of the clathrin trimers found in cytosol. Fig. 4A also shows that the \(b_2 \) ear alone and the \(\alpha \) hinge/ear bind clathrin far more weakly than \(b_2 \) hinge/ear, consistent with the absence of detectable binding of cytosolic clathrin by these fragments. It is important to note, however, that, in the moderate ionic strength of the various buffer conditions used here, the association of \(b_2 \) hinge/ear with clathrin is only detectable when the hinge/ears are immobilized on Ni-NTA-agarose beads. In the absence of the beads, free \(b_2 \) hinge/ears do not co-elute with clathrin trimers from a
that the interaction between clathrin and the Superose 6 column (Fig. 5). Our interpretation of this result is that clathrin alone does not form cages under the conditions used (Fig. 8C) and that clathrin alone does not form cages under the conditions used (Fig. 8C).

Superose 6 column (Fig. 5). Our interpretation of this result is that AV interactions with clathrin

duced

to bind simultaneously to two or three ear/hinges arrayed on the surface of a Ni-NTA-agarose bead, resulting in measurable interaction. We return to this point under "Discussion."

β2 Hinge Ear Drives Assembly of Clathrin Lattices—Immobilized β2 hinge/ear binds clathrin specifically. Can it drive coat formation? Low concentrations of the fragment do not (9, 24), but at concentrations greater than 50 μg/ml the β2 hinge/ear can indeed promote clathrin assembly (Fig. 6). The coats formed by β2 hinge/ear (Fig. 6B) are more heterogeneous in size and more irregular in structure than the characteristic small barrel-type coats formed with intact β2 (Figs. 6A and 8A), β2 trunk/hinge (Fig. 6B), or APs (Ref. 8 and data not shown). Furthermore, most of the clathrin assemblies formed by β2 hinge/ear lack the core of excluded negative stain at the center characteristic of coats containing intact β2 (Figs. 6A and 8A) or β2 trunk/hinge (Fig. 6B). Incorporation of β2 hinge/ear to the newly formed clathrin assemblies was established by SDS-PAGE analysis of the high speed supernatants and the pellets from the assembly experiment (Figs. 7, lanes 7 and 8). Judging by the relative intensity of the Coomassie Blue-stained bands of clathrin heavy and light chains and of β2 hinge/ear in the high speed pellet (lane 8), we estimate an approximate ratio of one clathrin leg to one β2 hinge/ear fragment in the lattice. The high speed pellet in the control with β2 ear had no clathrin (Fig. 7, lane 6), and the pellet in the absence of clathrin had reduced amounts of β2 hinge/ear (Fig. 7, lane 14). In coat assembly buffer III, a portion of β2 hinge/ear tended to self-associate and appear in the low speed pellet. In binding buffer, however, β2 hinge/ear remains soluble and does not interact with clathrin (Fig. 5), and in this buffer, β2 hinge/ear does not promote coat formation (not shown). We therefore believe that fragments of β2 hinge/ear stimulate coat assembly by simultaneously self-associating and binding to clathrin, thereby driving the clathrin trimers together to form a lattice.

β2 trunk/Hinge Drives Clathrin Coat Formation—Can the hinge segment promote coat assembly when attached to structures other than the ear? To answer this question, we mixed β2 trunk/hinge with purified clathrin and looked for the formation of coats. The trunk/hinge induces coats (Fig. 8B) that are indistinguishable from the barrel-shaped coats made using intact β2 subunits (Fig. 8A) or whole AP complexes (Ref. 8 and data not shown). As negative controls for the assembly we have repeated our previous observation (8) that a recombinant protein containing only the trunk of β2 does not induce coats (Fig. 8C) and that clathrin alone does not form cages under the conditions used (Fig. 8D).

Association of clathrin with the β2 trunk/hinge was confirmed by SDS-PAGE analysis (Fig. 9) of supernatants and pellets obtained from the coat assembly experiment described above. The similar amounts of intact β2, β2 trunk/hinge, and clathrin found in the high speed pellets containing coats (Fig. 9,

Table I

Sample	Molecular weight (kDa)	Stokes Radius from molecular weight (nm)	Ve Stokes radius from molecular weight (nm)
Albumin	66,000	3.6	11.8
β2 hinge/ear tryptic from AP-2	39,000	2.5	12.2
β2 hinge/ear recombinant	40,000	2.5	12.2
αc hinge/ear tryptic from AP-2	35,000	2.2	12.8
αc hinge/ear recombinant	34,000	2.2	12.8
Carbonic anhydrase	29,000	2.0	13.6
Elastase ear fragment from recombinant αc hinge/ear	28,000	2.0	13.8
β2 ear recombinant	29,000	2.0	13.8
Elastase ear fragment from recombinant β2 hinge/ear	28,000	2.0	13.8

Fig. 3. Immobilized β2 hinge/ear and β2-Δ24 hinge/ear bind clathrin from rat liver cytosol. This binding experiment was performed by incubation of rat liver cytosol (3 μg) with recombinant ear/hinge fragments (100 μg/μl). A, 75% of the samples containing proteins bound to the Ni-NTA-agarose beads were analyzed by SDS-12.5% PAGE and Coomassie Blue staining. Lane 1, 200 ng of purified bovine brain clathrin; lane 2, cytosol and beads only, negative control; lane 3, cytosol with beads and β2 hinge/ear; lane 4, β2-Δ24 hinge/ear; lane 5, β2-Δ23 hinge/ear; lane 6, β2 ear; lane 7, αc hinge/ear. The arrowheads highlight clathrin heavy chain (HC). B, Western blot analysis using chemiluminescence detection with the monoclonal antibody CHC5.9 (against clathrin heavy chain). Lanes 1–4 show the signals from serial 2-fold dilutions of purified bovine clathrin (200–25 ng). Lanes 5 and 6 show the clathrin signal from 3 μl (10%) of the eluted samples described above corresponding either to cytosol and beads (control) or to cytosol, beads, and β2 hinge/ear, respectively.
required for coat formation. Thus, the hinge is eluted with 50 NaCl, and 0.5 mg bovine serum albumin (BSA) probed with CHC5.9 correspond to 2-fold serial dilutions starting with the composition of clathrin recruited by clathrin in the presence of Tris. The composition of the solution was 0.1M Tris-HCl, pH 7.4, 100 mM NaCl, and 0.5 mg bovine serum albumin (BSA) mixed with 50 NaCl. The light chain of bovine serum albumin to the beads. 2-fold serial dilutions of clathrin starting with 1 mg/ml together with 0.2 mg/ml, respectively. In contrast to the clathrin coats obtained with intact β2 (A), those obtained with β2 hinge/ear (B) are more irregular in size and shape, and their centers appear empty. This experiment was performed five times with identical results using independent preparations of clathrin and recombinant proteins. Values indicate the number of free-standing clathrin assemblies counted in three random fields. A, clathrin:β2, 1194, positive control; B, clathrin:β2 hinge/ear, 1145; C, clathrin:β2 ear, 68, negative control; D, clathrin:αc hinge/ear, 59, negative control. Scale bar, 100 nm.

DISCUSSION AND CONCLUSIONS

The β1 and β2 subunits of clathrin-associated AP complexes interact with clathrin (8, 23, 35) and drive coat assembly (8). This activity depends on structures contained within the carboxy-terminal end of the protein, because neither the amino-

terminal β trunk (8) nor the full AP core stimulates coat formation (24). We have therefore studied the properties of the carboxy-terminal part of the β2 chain. Our experiments show that this 39-kDa fragment, previously defined by tryptic digestion of intact APs (25), can be subdivided into two segments, an extended hinge and a compact ear. These correspond respectively to the stalk and appendage seen in electron micrographs.

Fig. 4. Immobilized β2 hinge/ear binds purified and cytosolic clathrin in the presence of Tris. A, 100 μg of purified clathrin was mixed with 50 μg of β2 hinge/ear, β2 ear, or αc hinge/ear or with Ni-NTA-agarose beads alone, in a final volume of 0.5 ml (lanes 6–9). The composition of the solution was 0.1 M Tris-HCl, pH 7.4, 100 mM NaCl, and 0.5 mg bovine serum albumin (BSA). Bound proteins were eluted with 50 μg of 0.2 M imidazole and 0.5% of the sample was analyzed by SDS-12.5% PAGE and Coomassie Blue staining. The light chain composition of clathrin recruited by β2 hinge/ear and of purified clathrin was the same, indicating that there was no preferential recruitment of a subpopulation of clathrin. Presence of αc hinge/ear prevents binding of bovine serum albumin to the beads. 2-fold serial dilutions of clathrin starting with 1 μg were included to calibrate the gel (lanes 1–5); clathrin with beads and β2 hinge/ear (lane 6); β2-Δ83 hinge/ear (lane 7); αc hinge/ear (lane 8); and clathrin and beads only (lane 9). B, samples of 3.7 mg of rat liver cytosol, dialyzed into 0.5 M Tris-HCl, pH 7.4, were mixed with the recombinant fragments in a total volume of 0.4 ml (lanes 2–5). The final buffer was 0.5 M Tris-HCl, pH 7.4, and the samples were analyzed by SDS-10% PAGE as in Fig. 3A. Lane 1, 200 ng clathrin; lane 2, cytosol with beads only; lane 3, cytosol with beads and β2 hinge/ear; lane 4, β2-Δ83 hinge/ear; lane 5, αc hinge/ear. The band below clathrin heavy chain, indicated with an asterisk, is a cytosolic protein that binds nonspecifically to the beads also detected in Fig. 3 (lanes 3 and 5). The comparison of the signal intensities of lanes 3 and 5 indicates that at least 50% of cytosolic clathrin bound to the β2 hinge/ear fragment.

lanes 4 and 8) indicate that they have essentially the same stoichiometry of association with clathrin. Thus, the hinge is required for coat formation.
attachment of the hinge region to the clathrin lattice. This latter property appears in sequences surrounding it (25, 30, 33, 34). Not only does that is well conserved from residues required for binding lie between 616 and 674, a region of intact APs (26). The entire fragment, when immobilized on Ni-NTA-agarose, can bind clathrin; the ear alone does not. The residues required for binding lie between 616 and 674, a region that is well conserved from Drosophila to man, despite variations in sequences surrounding it (25, 30, 33, 34). Not only does the hinge/ear fragment bind clathrin to beads, it can also stimulate assembly of clathrin lattices. This latter property appears to require some self-association of the fragment, coupled to the direct interaction with clathrin. We have also shown that attachment of the hinge region to the β trunk confers on it a similar capacity to stimulate lattice formation. Again, association of the trunk portions is probably necessary to drive assembly.

A significant aspect of our results is the identification of the clathrin-binding site on β2 chains as part of an extended stalk structure. In three-dimensional image reconstructions of small clathrin coats, elements likely to be the inward facing terminal domains of clathrin legs are seen to contact other structures, identified as APs, at smaller radii (36). It is therefore reasonable to imagine that the hinge segments project outwards toward the clathrin terminal domains and that the AP cores lie against a coated vesicle membrane without making direct contact with the framework of the lattice composed of the proximal and distal segments of the clathrin legs (the edges of the empty hexagonal and pentagonal facets). This view is supported by two additional observations. On the membrane side, AP cores as well as intact APs bind to isolated Golgi membranes in a nucleotide-dependent manner (37–39). On the clathrin side, terminal domain is required for the association of clathrin with AP complexes (40) and with β2 hinge/ear.

Our results are consistent with a number of earlier observations on AP-clathrin interactions. Limited enzymatic proteolysis of APs leads to release of the hinge/ear parts of the large chains (α and γ, β1 and β2), leaving the AP cores otherwise intact (24, 25). These cores are inactive in stimulating coat assembly (24). Proteolysis of APs when they are part of a clathrin-AP coat also leads to the release of hinge ear fragments (9, 23, 25). This result has been interpreted previously to indicate that the hinge/ear domain does not interact with the clathrin lattice. However, our results suggest that there is another explanation. The interaction of a single hinge segment with its target site on clathrin is too weak to immobilize an otherwise free peptide. For example when presented on Ni-NTA-agarose beads, the hinge can capture clathrin triskelia by virtue of two or three parallel contacts, one per leg, whereas isolated hinge ear fragments fail to interact under similar conditions. Likewise, AP complexes associated with each other under in vitro assembly conditions or arrayed together on the surface of a membrane can bind clathrin effectively. Thus, it is reasonable to expect that once rendered monovalent by cleavage from its trunk, the hinge/ear will dissociate from a clathrin lattice as observed. Consistent with this picture is the behavior of cleaved APs obtained by proteolysis of coated vesicles in tartrate-containing buffer (23). Under these conditions, which prevent aggregation of intact APs but do not release them from coats, both AP cores and β chain hinge ear dissociate as soon as the β chain is cleaved. Again, it appears that a monovalent interaction is not sufficient to retain the hinge ear, nor do there appear to be strong clathrin contacts to the cores. Other interactions between clathrin and AP-2 cores have been described (41), perhaps through the α chains (42), but these interactions...
do not alone lead to the assembly of organized structures. The role suggested here for the ψ hinge as the principal clathrin-binding site is also consistent with recent results showing that intact AP-1 complexes bound to Golgi membranes recruit clathrin but proteolyzed AP cores do not (37).

This view differs from a conclusion that we reached earlier. We suggested, on the basis of coat stability when exposed to low concentrations of Tris before and after proteolytic treatment, that core contacts with clathrin were required for coat stability (9). Incomplete digestion of the APs in those experiments could readily account for the results, and we believe that the present work with pure recombinant chains is more definitive. Our interpretation here also differs from a conclusion, drawn by others, in which it was found that gentle treatment with elastase of isolated AP-containing plasma membranes did not affect ability of these membranes to form coats (43). It was concluded that AP cores, which are produced by digestion and remain attached to the membrane, have a direct role in coated pit formation. An alternative explanation is that a fraction of APs on the membrane remained undigested, because only the release of ψ but not of ψ hinge ear fragments was monitored in those experiments.

Coated vesicles contain arrays of binding sites at two levels, the clathrin lattice and the membrane-bound APs, linked by the interaction we report here. Isolated bovine brain coated vesicles contain many more clathrin chains than APs (about 2–3 clathrin trimers/AP), so that only some of the potential sites on the clathrin lattice are occupied. An individual AP-clathrin contact need not be a strong one, because the coat is stabilized by a number of such contacts in parallel. Disassembly of the clathrin lattice will occur if these contacts are weakened under conditions that do not strongly favor clathrin-clathrin interactions (e.g. normal physiological pH and ionic strength). This may be the mechanism of disassembly in vivo. Alternatively, coat disassembly will result from solubilization of the AP complexes, again under conditions that do not stabilize the clathrin lattice, because most clathrin trimers have no more than one AP contact, and we have shown that one contact is insufficient to anchor a triskelion. This is the mechanism of Tris-induced disassembly. Tris buffers have traditionally been used to dissociate clathrin and APs from coated vesicles and to depolymerize assembled coats and cagelike structures. A). APs are first bound to the target membrane by association with a docking protein (circle). B), APs are then transferred to the cytoplasmic tails of membrane proteins (square) to be sorted in clathrin-coated pits and coated vesicles. C). Cytosolic clathrin triskelions attach via their terminal domains to the β2 hinge of two or three APs, thereby becoming membrane-bound. D). Additional cytosolic clathrin can now interact directly with membrane-bound clathrin and start the cooperative process that leads to the formation of the coated pit lattice.

We suggest that induction of coat formation in vitro by APs,

FIG. 10. Model for the association of AP complexes and clathrin. A, APs are first bound to the target membrane by association with a docking protein (circle). B, APs are then transferred to the cytoplasmic tails of membrane proteins (square) to be sorted in clathrin-coated pits and coated vesicles. C, Cytosolic clathrin triskelions attach via their terminal domains to the β2 hinge of two or three APs, thereby becoming membrane-bound. D, Additional cytosolic clathrin can now interact directly with membrane-bound clathrin and start the cooperative process that leads to the formation of the coated pit lattice.

References:

3 W. Shih, A. Gallusser, and T. Kirchhausen, unpublished observation.

4 K. Clairmont, W. Boll, and T. Kirchhausen, manuscript in preparation.
β chains, or hinge-containing β2 chain fragments follows essentially the same mechanism. Like clustering in membranes, self-association of the APs leads to formation of a polyvalent nucleus for clathrin assembly. The small diameter of coats induced in vitro (7–9, 46) is probably related to initiation of assembly around a relatively small core of AP complexes.

The demonstration that the β2 chain hinge forms the essential bond between APs and clathrin predicts that interruption of this contact should be a key step in uncoating. We suggest that the mechanism of uncoating can now be analyzed further, in light of the findings presented here.

Acknowledgments—We thank K. Wang and A. Fisher for valuable help at earlier phases of this study and J. Bade for help with the Western blots.

REFERENCES
1. Harrison, S. C., and Kirchhausen, T. (1983) Cell 33, 650–652
2. Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russell, D. W., and Schneider, W. J. (1985) Annu. Rev. Cell Biol. 1, 1–39
3. Kirchhausen, T. (1993) Curr. Opin. Struct. Biol. 3, 182–188
4. Robinson, M. S. (1992) Trends Cell Biol. 2, 293–297
5. Lindner, R., and Ungewickell, E. (1992) J. Biol. Chem. 267, 16567–16573
6. Keen, J. H. (1987) J. Cell Biol. 105, 1989–1998
7. Pearse, B. M., and Robinson, M. S. (1984) EMBO J. 3, 1951–1957
8. Gallusser, A., and Kirchhausen, T. (1993) EMBO J. 12, 5237–5244
9. Matsui, W., and Kirchhausen, T. (1990) Biochemistry 29, 10791–10798
10. Vihus, M. M., and Bennett, V. (1988) J. Cell Biol. 106, 39–50
11. Robinson, M. S. (1987) J. Cell Biol. 104, 887–895
12. Ahle, S., Mano, A., Eichelhauser, U., and Ungewickell, E. (1988) EMBO J. 7, 919–929
13. Pearse, B. M. (1988) EMBO J. 7, 3331–3336
14. Glickman, J. N., Conibeer, E., and Pearse, B. M. (1989) EMBO J. 8, 1041–1047
15. Sosa, M. A., Schmidt, B., von Figura, K., and Hille-Rehfeld, A. (1993) J. Biol. Chem. 268, 12537–12543
16. Beltzer, J. P., and Spiess, M. (1991) EMBO J. 10, 3735–3742
17. Le Borgne, R., Schmidt, A., Mauxion, F., Griffths, G., and Hoflad, B. (1993) J. Biol. Chem. 268, 22552–22556
18. Ohno, H., Stewart, J., Fournier, M. C., Bosshart, H., Rhee, I., Miyatake, S., Salto, T., Gallusser, A., Kirchhausen, T., and Bonifacino, J. S. (1995) Science 269, 1872–1875
19. Sorkin, A., and Carpenter, G. (1993) Science 261, 612–615
20. Sorkin, A., McKinsey, T., Shih, W., Kirchhausen, T., and Carpenter, G. (1995) J. Biol. Chem. 270, 619–625
21. Gilboa, L., Ben-Levy, R., Yarden, Y., and Henis, Y. I. (1995) J. Biol. Chem. 270, 7061–7067
22. Boll, W., Gallusser, A., and Kirchhausen, T. (1995) Curr. Biol. 5, 1168–1178
23. Schroder, S., and Ungewickell, E. (1991) J. Biol. Chem. 266, 7910–7918
24. Zaremba, S., and Keen, J. H. (1985) J. Biol. Chem. 260, 47–58
25. Kirchhausen, T., Nathanson, K. L., Matsu, W., Vaisberg, A., Chow, E. P., Burne, C., Keen, J. H., and Davis, A. E. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 2612–2616
26. Heuser, J. E., and Keen, J. H. (1988) J. Cell Biol. 107, 877–886
27. Tucker, K. L., Nathanson, K., and Kirchhausen, T. (1990) Nucl. Acid Res. 18, 5306
28. Keen, J. H., Willingham, M. C., and Pastan, I. H. (1979) Cell 16, 303–312
29. Matsudaira, P. (1987) J. Biol. Chem. 262, 10035–10038
30. Ponnambalam, S., Robinson, M. S., Jackson, A. P., Ketten, L., and Parham, P. (1990) J. Biol. Chem. 265, 4814–4820
31. Robinson, M. S. (1989) J. Cell Biol. 108, 833–842
32. Ungewickell, E., Plessmann, U., and Weber, K. (1994) Eur. J. Biochem. 222, 33–40
33. Peppard, M., Fransson, I., Xie, Y.-G., Han, F.-Y., Ruttledge, M., Swahn, S., Collins, J. E., Dunham, L., Collins, V. P., and Dunsmark, J. P. (1994) Hum. Md. Genet. 3, 1393–1399
34. Camidge, D. R., and Pearse, B. M. (1994) J. Cell Biol. 107, 709–718
35. Ahle, S., and Ungewickell, E. (1989) J. Biol. Chem. 264, 20089–20093
36. Vigers, G. P., Crowther, R. A., and Pearse, B. M. (1986) EMBO J. 5, 2079–2085
37. Traub, L. M., Kornfeld, S., and Ungewickell, E. (1995) J. Biol. Chem. 270, 4933–4942
38. Staines, M. A., and Rothman, J. E. (1993) Cell 73, 999–1005
39. Traub, L. M., Ostron, J. A., and Kornfeld, S. (1993) J. Cell Biol. 123, 561–573
40. Murphy, J. E., and Keen, J. H. (1992) J. Biol. Chem. 267, 10850–10855
41. Keen, J. H., Beck, K. A., Kirchhausen, T., and Jarrett, T. (1991) J. Biol. Chem. 266, 7950–7956
42. Prasad, K., and Keen, J. H. (1991) Biochemistry 30, 5590–5597
43. Peeler, J. S., Donzel, W. C., and Anderson, R. G. (1993) J. Cell Biol. 120, 47–54
44. Unanue, E. R., Ungewickell, E., and Branton, D. (1981) J. Cell Biol. 104, 439–446
45. Hansen, S. H., Sandvig, K., and van Deurs, B. (1993) J. Cell Biol. 121, 61–72
46. Zaremba, S., and Keen, J. H. (1983) J. Cell Biol. 97, 339–347
47. Potschka, M. (1987) Anal. Biochem. 162, 47–64
48. Andrews, P. (1965) Biochem. J. 96, 595–606