Detection and Phylogenetic Analysis of B2L Gene of ORF Virus from Clinical Cases of Sheep in Serbia

Milovan Milovanović1, Vesna Milićević2, Miroslav Valčić1, Nataša Stević1, Jakov Nišavić1 and Sonja Radojičić1

1Department of Infectious Disease of Animals and Disease of Bees, University of Belgrade, Faculty of Veterinary Medicine, Bld. Oslobodjenja 18, 11000 Belgrade, Serbia; 2Virology Department, Institute of Veterinary Medicine of Serbia, Vojvoda Toze 14, 11000 Belgrade, Serbia; 3Department of Microbiology, University of Belgrade, Faculty of Veterinary Medicine, Bld. Oslobodjenja 18, 11000 Belgrade, Serbia

*Corresponding author: mmsetter12@gmail.com

ARTICLE HISTORY (18-387)
Received: October 10, 2018
Revised: December 11, 2018
Accepted: December 24, 2018
Published online: March 07, 2019

Key words:
Isolation
ORFV
PCR
Phylogenetic analysis
Sheep

ABSTRACT
Infection of sheep by the ORF virus (ORFV) is very common in Serbia. ORFV is an economically important viral disease, distributed worldwide. Phylogenetic analysis based on the B2L gene of Serbian ORFV strains from two outbreaks that occurred in Serbia in 2016 is presented in this paper. Crust formation around the lips, nostrils, and udder was noted in all animals from the first outbreak, whilst in the second outbreak, all animals showed swollen and cyanotic lips and muzzle, with no visible crusts. Virus isolation was conducted using Vero cells. Cytopathic effects were evident on the third passage. However, all examined samples were positive using PCR. Phylogenetic analysis of the partial gene sequences (terminal gene regions were not included) encoding B2L gene of Serbian ORFV isolates showed 97.3-100.0% nucleotide and 92.86-100.0% amino acid similarity between each other. However, the viruses were divided into two clusters within the previously recognized Group 2, together with viruses from Croatia, Greece, Finland, China, South Korea and North America. This study is the first report of phylogenetic analysis of ORFV from Serbia and contributes to the data available in the GenBank database. The results of our investigation showed genetic diversity between ORFV strains in Serbia.

INTRODUCTION
Contagious ecthyma (ORF) represents one of the most common viral infections of sheep caused by orf virus (ORFV). ORFV belongs to the genus Parapoxvirus (PPV), family Poxviridae together with bovine papular stomatitis virus (BPSV), pseudocowpox virus (PCPV), parapoxvirus of red deer in New Zealand (PVNZ), Squirrel parapoxvirus (SPPV), ORFV and sealpox virus (Robinson and Mercer, 1995; Haig and Mercer, 1998; Mercer and Haig, 1999; Becher et al., 2002). Characteristics which distinguish PPV from other members of family Poxviridae is relatively small size, ovoid shape and crisscross surface pattern, together with high percentage of G+C content in the genome (Delhon et al., 2004; Mercer et al., 2006). As a member of family Poxviridae, ORFV possesses 138 kbp long linear double strand deoxyribonucleic acid (DNA) which encodes 132 putative genes (Mercer et al., 2006). Using the novel molecular techniques B2L gene (1137 bp) shows to be most suitable for detection, characterization and phylogenetic analysis of ORFV due to high conservation among ORFV isolates (Sullivan et al., 1994; Zhang et al., 2014a).

Sheep and goats are most susceptible for ORFV infection, but the other ruminants such as musk ox, camels and reindeer can be infected (Mombeni et al., 2013; Tryland et al., 2018). ORFV has also zoonotic potential affecting people who work with animals (Zhang et al., 2014b; Bergqvist et al., 2017). In Serbia, ORFV infection in humans and ruminants other than sheep and goats has never been reported. Proliferative crust lesions as pathognomonic clinical signs of ORFV infection could be found in the area of lips, nostrils, mouth, udder, and foot (Maganga et al., 2016; Peralta et al., 2018). There are many other diseases causing similar proliferative lesions, including Foot and mouth disease (FMD) (FitzGerald et al., 2015), Bluetongue (Backx et al., 2007), Peste des petits ruminants (OIE, 2013) and Sheep pox (OIE, 2017).
However, those diseases cause greater economic losses than contagious ecthyma due to international trade restrictions. Serbia is a country free from FMD, Peste des petits ruminants and Sheep pox while Bluetongue occurred in 2016 with 416 reported outbreaks and 767 affected animals (http://www.vet.minpolj.gov.rs/images/godisnji_izvestaji/2016god.pdf). As a highly contagious disease, ORFV can be transmitted through direct or indirect contact (Tedla et al., 2018). Based on crust location, infected animals are usually disabled to graze and walk, which leads to weight and production loss. Also, secondary bacterial infections additionally worsen the lesions (Gelaye et al., 2016). The mortality rate in general is very high comparing to mortality rate which is generally low. However, in young animals mortality rate can be high (Kumar et al., 2015).

ORFV infection of sheep is very common in Serbia. However, there are no available reports of molecular characterization and phylogenetic analysis of Serbian ORFV strains. For this reason, the aim of our investigation was to provide information on the sequences and phylogenetic analysis of B2L gene of ORFV strains from two outbreaks in Serbia which occurred during 2016.

MATERIALS AND METHODS

Sampling of ORFV from sheep: In total, 31 samples (17 samples from an outbreak in Tutin and 14 samples from an outbreak in Gornji Milanovac) of scabs from lips, nostrils, udder and vagina were taken from 14 sheep and 17 lambs during two ORF outbreaks in 2016. The outbreaks occurred during May in the municipality of Tutin and during August in the municipality of Gornji Milanovac. In both outbreaks, autochthonous breed Šjenicka sheep and mixed breed sheep were affected. Sampling was performed using sterile forceps individually for each animal. The samples were immediately immersed into minimum essential medium (DMEM; Gibco, USA) supplemented with 1% antibiotics (Penicillin 1000 IU – Streptomycin 10 mg; Sigma, Germany) and 1% antimycotic (Amphotericin B; Sigma, Germany). The samples were chilled on ice during the transport to the laboratory and were stored at -80°C until examination.

Virus isolation: All samples were subjected to virus isolation in Vero cells (ATCC CCL-81, IZSBS, Brescia, Italy). Before inoculation, samples were frozen and thawed three times and centrifuged at 600 g for 15 min. Subsequently, the supernatants were filtered using sterile 0.22 µm syringe filters (Merck, USA). Volumes (300 µL) of filtered supernatants were inoculated into 24 h old, 90% confluent monolayers of Vero cells grown in 12-well cell culture plates. The plates were incubated for 1 h at 37°C in an environment with 5% CO₂. After that, 1 ml of DMEM supplemented with 2% fetal calf serum (FBS-12A, Capricorn Scientific, Germany) was added. The plates were incubated and observed daily for the appearance of cytopathic effects (CPEs). If CPEs were not visible after 7 days, the plates with inoculated virus in the cell cultures were frozen and thawed three times and then passaged twice more. If no CPEs were visible after the third passage, the sample was considered as negative for the presence of virus. One well with Vero cells in each plate remained uninoculated as a tissue culture control (Fig. 2A).

Polymerase chain reaction (PCR): DNA from 31 filtered scab samples was isolated using QIAAmp MiniElute Virus Spin Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The viral genome was detected by polymerase chain reaction (PCR) based on B2L gene amplification (1206 bp) using previously published primers (Hosamani et al., 2006). The PCR reaction was carried out in a total volume of 50 µL using HotStarTaq Master Mix Kit (Qiagen, Hilden, Germany) and 0.4 µM concentration of primers. The thermal profile for the PCR included the initial denaturation at 94°C for 3 min followed by 29 cycles of denaturation at 94°C for 1 min, primer annealing at 52°C for 1 min and elongation at 72°C for 1 min. A final extension step was performed at 72°C for 7 min. The PCR products were analysed by electrophoresis through 1.5% agarose gel stained with 0.5 mg/ml ethidium bromide and visualised under UV light.

Sequencing and phylogenetic analysis: In order to perform phylogenetic analysis of ORFV strains, the PCR products were purified using QIA quick PCR Purification Kit (QIAGEN, Germany) according to the manufacturer’s instructions. The amplicons were sequenced at the Macrogen Europe Laboratory, Amsterdam, Netherlands. The sequences were analysed using Geneious 10.1.3 programme. The sequences were aligned and compared with the sequences available from the GenBank database using BLAST software (http://www.ncbi.nlm.nih.gov/BLAST/). All sequences used for phylogenetic analysis are listed in Table 1. Evolutionary analyses were conducted using MEGA 7 software. A phylogenetic tree was constructed using the Neighbor-Joining method with 1000 bootstrap replicates, and group formation according to Kumar et al. (2014).

RESULTS

Case presentation of ORFV infection in sheep: All infected animals manifested inappetence, fever, hypersalivation and mucopurulent nasal discharge. The tissue of lips, muzzle, and nostrils of affected sheep was swollen and cyanotic, with characteristic ORFV papules, pustules and crusts, which were noticeable on gums, hard palate and tongue (Fig. 1A). Crust formation around the lips, nasal cavity and udder (only nursing animals) was noted in all sampled animals from the first outbreak (Fig. 1C,1D). Mild bleeding appeared after crust removal. In the second outbreak, all animals showed swollen and cyanotic tissue of lips and muzzle with papule and pustule formation on lips, gums and tongue, without the appearance of crusts (Fig. 1B). High morbidity rates, from 40 to 80%, were observed in both outbreaks. However, all infected animals recovered within 5-6 weeks after the appearance of the symptoms.

Molecular detection of ORFV from swab samples in sheep: ORF virus was successfully isolated from 15 out of 31 samples. The CPEs, characterized by the cell rounding, ballooning and degeneration (Fig. 2B, 2C), appeared on day 5 of the third passage. Due to fungal contamination, virus isolation from the other 16 samples was unable to be completed. All ORF isolates were confirmed by PCR.
DISCUSSION

ORFV infection of sheep is very common in Serbia, causing significant economic losses, and mainly occurring in spring and autumn, during the lambing seasons. During 2016, 6 ORFV outbreaks were reported in Serbia with 184 infected animals from which 20 cases reported as lethal. The diagnosis is often based on clinical signs and characteristic tissue alterations in affected animals. The clinical features found in infected animals vary from multiple lesions around the lips, muzzle, nostrils, teats and oral mucosa, with occasional spread to the buccal cavity, oesophagus, stomach, intestine or the respiratory tract (Nandi et al., 2011; Maganga et al., 2016; Tryland et al., 2018). Despite very developed characteristic clinical symptoms, and in order to exclude other contagious diseases, two suspect ORF infections that were reported in 2016 were confirmed in the laboratory by the virus isolation, PCR, and genome sequencing. According to the veterinarian in charge of Gornji Milanovac municipality no contagious ecthyma had been recorded in the previous few years, but the veterinarian in Tutin municipality said that contagious ecthyma is recorded each year. All sheep in this study were housed in extensive farming conditions, and consequently, had direct contact with other animals from different flocks, increasing the possibility of the spread of ORFV. This type of epizootological scenario could lead to countrywide spread of ORFV. Since those two municipalities are separated by more than 200 km, there is no other possibility of the virus spreading between them in the field expect by means of stock movement via traded animals. This conclusion could be concurred with recent study which showed that the virus can be introduced into a herd with new asymptomatic infected animals (Peralta et al., 2018). For isolation of ORFV, primary lamb testes cell culture is most commonly used because of its high sensitivity (Kottaridi et al., 2006).
Fig. 2: Cytopathic effects (CPEs) of ORFV in Vero cell line. (A) uninfected Vero cells – negative control; (B) CPE 5 days post infection at 10x magnification; (C) CPE 5 days post infection at 100x magnification.

Fig. 3: Neighbor-Joining tree for B2L genes of Serbian and foreign ORFV strains. The phylogenetic relationship was calculated using MEGA 7.

Table 2: Percentage of nucleotide sequence similarity between ORFV sequences examined

|          | Tutin 1  | Tutin 2 and 3 | Gornji Milanovac | Greece | Croatia | Group 1  | Group 2 | Group 3  |
|----------|----------|----------------|-------------------|--------|---------|----------|---------|----------|
| Tutin 1  | 99.56    | 98.22-99.11    | 97.78-100.00      | 96.89-99.11 | 96.44-98.67 | 98.22-99.11 | 94.22-95.11 |
| Tutin 2 and 3 | 98.22-99.11 | 99.56-100.00 | 97.33-99.11 | 97.89-98.22 | 97.78-99.11 | 96.44-98.67 | 97.78-100.00 | 94.22-95.11 |
| Gornji Milanovac | 97.78-100.00 | 97.33-99.11 | 98.22-100.00 | 96.00-99.11 | 96.89-99.11 | 95.56-98.67 | 97.33-99.11 | 93.33-95.11 |

Table 3: Percentage of amino acid sequence similarity between ORFV sequences examined

|          | Tutin 1  | Tutin 2 and 3 | Gornji Milanovac | Greece | Croatia | Group 1  | Group 2 | Group 3  |
|----------|----------|----------------|-------------------|--------|---------|----------|---------|----------|
| Tutin 1  | 98.57    | 95.71-98.57    | 92.86-100.00      | 92.86-97.34 | 95.71-97.34 | 94.29-97.14 | 97.14-98.57 | 88.57-90.00 |
| Tutin 2 and 3 | 95.71-98.57 | 98.57-100.00 | 92.86-98.57 | 94.29-95.71 | 94.29-98.57 | 94.29-98.57 | 94.29-100.00 | 98.57-91.43 |
| Gornji Milanovac | 92.86-100.00 | 92.86-98.57 | 94.29-100.00 | 90.00-97.34 | 91.43-97.14 | 90.00-97.14 | 91.43-98.57 | 85.71-90.00 |

However, Vero cell line has also been successfully used for ORFV isolation, and CPEs of ORFV were observed on days 3 and 5 after the first or second passage (Gelaye et al., 2016). In our study using the Vero cell line for virus isolation, CPEs were observed on the third passage, 5 days after inoculation.

All sequences used for phylogenetic analysis in this study were separated into three groups: Group 1 comprises ORFV sequences from Asia (India, China, and Turkey), Group 2 comprises ORFV sequences from various countries (North America, Finland, South Korea, and China), and Group 3 comprises ORFV sequences...
from camel (India) and PCPV (Finland) (Kumar et al., 2014). On the basis of results from our phylogenetic analyses, all ORFV strains from this study fell into the Group 2 and separated into two clusters together with sequences from Greece and Croatia. One cluster contains sequences from the municipality of Gornji Milanovac and sequences from Potreb village in Tutin municipality, while the second cluster contains only sequences from the other two villages in Tutin municipality. A possible explanation for the clustering together of sequences from Gornji Milanovac with sequences from Potreb village in Tutin could be infection in the field by the mixing with sheep from other herds. Since the sequences from the two other villages in Tutin municipality are separated in their own cluster, this suggests that some close neighbors brought sheep from Gornji Milanovac to Potreb. The clustering observed, together with the high nucleotide and amino acid similarity of ORFV sequences from this study with ORFV sequences from neighboring countries, Greece (96.00-99.11% and 90.00-97.34% respectively) and Croatia (96.89-99.11% and 91.43-98.57% respectively), implies that molecularly closely related ORFV are present in the region. ORFV sequences from this study were grouped into Group 2, together with sequences that are distributed worldwide, showing the highest nucleotide and amino acid identity with these sequences 97.33-100.00% and 91.43-100.00% respectively. This supports the findings of Kumar et al. (2014), who reported that Group 1 comprises only ORFV sequences from Asia.

Conclusions: The results of this study showed that ORFV strains in Serbia are genetically diverse, but closely related to ORFV strains from neighboring countries (Greece and Croatia). This study reports the first phylogenetic analysis of ORFV from Serbia, revealing that two different clusters within the same phylogenetic group circulate in Serbia. Considering that ORF is not a notifiable disease in Serbia, we assume many cases remain unreported, meaning that the actual diversity is likely even higher. Therefore, there is a need for further investigation of the distribution and biological properties of Serbian ORFV strains.

Acknowledgments: This study was completed in collaboration with The Institute of Veterinary Medicine of Serbia, Belgrade, Department of Virology and supported by the Project grant numbers TR31088 and TR 37015 financed by The Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors thank Miodrag Veljović from Tutin Veterinary Service and Veterinary Institute Kraljevo for the assistance in the sample collection.

Authors contribution: MM, VM and SR planned and designed the study. MM collected the samples and together with VM and NS conducted the virological study. MM, NS and VM carried out the molecular genetic studies; JN assisted in molecular genetic studies. MM and VM interpreted results and drafted manuscript. MV, NS, JN and MR assisted in drafting the manuscript and critically revised the manuscript. All authors have read the manuscript and approved submission of the manuscript.

REFERENCES

Backx A, Heutink CG, Van Rooij EMa, et al., 2007. Clinical sings of bluetongue virus serotype 8 infection in sheep and goats. Vet Rec 161:591-3.

Becher P, Konigl M, Muller G, et al., 2002. Characterization of sealpox virus, a separate member of the parapoxviruses. Arch Virol 147:1133-40.

Bergquist C, Kurban M and Addas O, 2017. Orf virus infection, Rev Med Virol 27:e1932.

Delhon G, Tulman ER, Afcon CL, et al., 2004. Genomes of the parapoxviruses ORF virus and bovine papular stomatitis virus. J Virol 78:168-77.

FitzGerald GW, Cassidy PJ, Markey KB, et al., 2015. Profiling oral and digital lesions in sheep in Ireland. Irish Vet J 68:30.

Gelaye E, Achenbach JE, Jenberie S, et al., 2016. Molecular characterization of orf virus from sheep and goats in Ethiopia, 2008-2013. Virol J 13:34.

Haig DMP and Mercer AA, 1998. Ovine diseases. Orf Vet Res 29:311-26.

Hosamani M, Bhanuprakash V, Scaglarini A, et al., 2006. Comparative sequence analysis of major envelope protein gene (B2L) of Indian orf viruses isolated from sheep and goats. Vet Microbiol 116:317-24.

Kotzardis C, Nomikou K, Lelli R, et al., 2006. Laboratory diagnosis of contagious ecthyma: Comparison of different PCR protocols with virus isolation in cell culture. J Virol Methods 134:19-24.

Kumar N, Wadhwa A, Chaubey KK, et al., 2014. Isolation and phylogenetic analysis of an orf virus from sheep in Mahdood, India. Virus Genes 48:312-9.

Kumar R, Trivedi RN, Bhatt P, et al., 2015. Contagious pustular dermatitis (Orf disease) – epidemiology, diagnosis, control and public health concerns. Adv Anim Vet Sci 3:649-76.

Maganga GD, Relmy A, Bakkali-Kassimi L, et al., 2016. Molecular characterization of Orf virus in goat in Gabon, Central Africa. Virol J 13:79.

Mercer AA and Haig DM, 1999. Parapoxviruses. In: Granoff A and Webster RG, The encyclopedia of virology. 2nd Ed. Academic Press, New York, USA, pp:1140-6.

Mercer AA, Ueda N, Friedrichs S, et al., 2006. Comparative analysis of genome sequences of three isolates of Orf virus reveals unexpected sequence variation. Virus Res 116:146-58.

Momberi EG, Momberini MG, Varshovi HR, et al., 2013. Outbreak of contagious ecthyma in camels (Camelus dromedaries and Camelus bactrianus) in Southwest Iran. Rev Elev Med Vet Pays Trop 66:113-5.

Nandi S, De UK and Chowdhury, 2011. Current status of contagious ecthyma or orf disease in goat and sheep – A global perspective. Small Rumin Res 96:73-82.

Office International des Epizooties, 2013. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 2.7.10. Past des petits ruminants (infection with pest des petits ruminants virus). OIE, Paris.

Office International des Epizooties, 2017. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 2.7.13. Sheep pox and goat pox. OIE, Paris.

Peralta A, Robles CA, Micheloud JF, et al., 2018. Phylogenetic analysis of ORF viruses from five contagious ecthyma outbreaks in Argentina goats. Front Vet Sci 5:134.

Robinson AJ and Mercer AA, 1995. Parapoxvirus of red deer: evidence for its inclusion as a new member in the genus parapoxvirus. Virology 208:812-5.

Sullivan JT, Mercer AA, Fleming SB, et al., 1994. Identification and characterization of an Orf homologue of the vaccinia virus gene encoding the major envelope antigen p37K. Virology 202:968-73.

Tedla M, Berhan N, Molla W, et al., 2018. Molecular identification and investigations of contagious ecthyma (Orf virus) in small ruminants, North West Ethiopia. BMC Vet Res 14:13.

Tryland M, Beckman KB, Burek-Huntington KA, et al., 2018. Orf virus infection in Alaskan mountain goats, Dall’s sheep, muskoxen, caribou and Sitka black-tailed deer. Act Vet Scand 60:12.

Zhang K, Liu Y, Kong H, et al., 2014a. Comparison and phylogenetic analysis based on the B2L gene of orf virus from goats and sheep in China during 2009-2011. Arch Virol 159:1475-9.

Zhang K, Liu Y, Kong H, et al., 2014b. Human infection with orf virus from goat in China, 2012. Vector Borne Zoonotic Dis 14:365-7.