Identification of miRNA–mRNA–TFs regulatory network and crucial pathways involved in asthma through advanced systems biology approaches

Noor Ahmad Shaik¹,², Khalidah Nasser²,³, Arif Mohammed⁴, Abdulrahman Mujalli⁵, Ahmad A. Obaid⁶, Ashraf A. El-Harouni¹, Ramu Elango¹,², Babajan Banaganapalli¹,²*¹

¹ Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia, ² Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia, ³ Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, ⁴ Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia, ⁵ Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia

* bbabajan@kau.edu.sa

Abstract

Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.
Introduction

Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and coronavirus have become a global concern due to the increased morbidity and mortality rates associated with them [1–3]. Asthma is a major non-communicable, life threatening, chronic inflammatory lung disease, that is characterized by repeated obstruction of the airways and airway hyper-responsiveness (AHR). In asthma, bronchial tubes secrete extra mucus, making breathing very difficult [4]. In 2019, around 262 million people were affected, and an estimated 461,000 deaths occurred due to asthma [5]. People of varied age groups are affected by asthma, which is often believed to start during childhood [6]. Asthma can be mild to severe based on the degree of clinical symptoms like mild cough, shortness of breath, tightening of the chest, and wheezing. Dust, cold air and exposure to pollen can trigger asthma attacks in affected patients [2, 7]. Both adaptive and innate immune systems are known to play an important role in asthma pathogenesis [8]. The therapeutic treatment of asthma involves the use of corticosteroid inhalers, bronchodilators, leukotriene modifiers and anti-E, anti–IL5, anti–IL4/IL13 antibodies, coupled with lifestyle modifications to reduce the exposure to environmental allergens [9].

The molecular pathogenesis of asthma is complex due to the involvement of multiple genetic, physiological, and environmental factors [10]. The large scale genome-wide association studies (GWAS) conducted on asthma patients, have highlighted the contribution of many single nucleotide polymorphisms (SNPs) in genes that are known to be expressed predominantly in the bronchial epithelial and immune cells (TSLP, IL33, GSDMB, IL1RL1 and ADAM33) [10]. Gene expression plays a pivotal role in controlling various cellular functions, including cellular growth, differentiation, inflammation, cell death, and immune function. Gene expression studies of asthmatic people have provided evidence that transcriptomic changes are crucial to initiating or promoting the cascade of immune reactions [11].

MicroRNAs (miRNA) are a small and conserved class of 18–25 nucleotide long noncoding RNA molecules that regulate post transcriptional gene expression by controlling mRNA degradation or translational repression. Over the last decades, miRNAs have emerged as potential diagnostic and therapeutic biomarkers for different complex diseases like cancers, cystic fibrosis, -thalassemia, and Duchenne muscular dystrophy [12].

Altered mRNA and miRNA expressions have been widely observed in asthma conditions [10, 13]. For example, gene expression studies have identified differential expression of chemokine (C-X-C motif) receptor 2 (CXCR2); alkaline phosphatase isozyme (ALPL); Charcot-Leyden crystal protein (CLC); carboxypeptidase A3 (CPA3); deoxyribonuclease I-like3 (DNASEIL3) and IL-1β (IL1B) in asthma pathogenesis [14, 15]. Similarly, several miRNAs, such as miR-27b-3p, miR-513a-5p, miR-22-3p, miR-19a, miR-133a, miR-221, miR-3162-3p, that regulate both adaptive and innate immune systems via expression of key genes that play a pivotal role in the pathogenesis of asthma have been reported. Additionally, miR-148a, miR-148b, and miR-152 targeting HLA-G, an asthma susceptibility gene, are also widely reported [16] as the contributors. However, the molecular cross talk between the mRNA-miRNA expression changes is not well characterised.

A better understanding of the factors contributing to changes in gene expression is vital in deciphering the detailed molecular pathology of asthma or other complex diseases. Various differential gene expression studies have been conducted in asthma, but a clear understanding of the molecular function has not yet been achieved. Given the close functional association of miRNAs and mRNAs in regulating various cellular functions and biological processes, we believe that understanding the interactions between these two classes of RNAs may provide further insights into the pathophysiology of asthma. last two decades have witnessed the power
of computational biology methods in studying global expression changes from diverse range of human tissues and diseases. Lack of extensive information from the literature has led us to examine the shared differentially expressed miRNAs (DEMiRs) and their target genes (DEGs) between normal and asthmatic tissues of adults to identify potential asthma biomarkers by employing robust bioinformatic gene network analysis and advanced statistical tools.

Materials and methods

Data curation

The gene expression omnibus (GEO) database was data source for collecting the public domain transcriptomic datasets. We downloaded two mRNA datasets, of which, GSE43696 expression series consisted of transcriptomics data of bronchial epithelial cells collected from 38 severe refractory asthma patients and 20 healthy control samples [17] generated on Agilent Human GE 4×44K V2 Gene Expression microarrays. The second series, GSE64913, consisted of transcriptomics data of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23) [18], which was generated on Affymetrix HG U133 plus 2.0 GeneChips. The GSE25230 dataset consists of the miRNA expression profiles of human bronchial epithelial cells from seven healthy donors and seven asthma patients [19] generated on the Affymetrix microarray platform. The details of clinical characteristics of the subjects, sample collection, processing, total RNA isolation, and microarray steps can be found in the corresponding research articles cited above [17–19].

Identification of DEGs and DEMiRs

Differentially expressed genes (DEGs) between asthma and healthy control samples were analysed with the Bioconductor package in the R program. The raw expression datasets were processed with R. The raw intensity signals of the expression data were uploaded into the Bioconductor-Affy package to standardize and reduce the data noise. The median values of raw signal intensities were standardized to baseline using the Robust Multichip Average (RMA) algorithm [20]. The student t-test was used to calculate statistically significant DEGs between normal and asthmatic samples. Benjamini and Hochberg’s false discovery rate (FDR) was set at p < 0.05 to select key genes and to eliminate false positive data [21].

Functional annotation of DEGs

The DEGs (log2 fold change > 1; FDR 0.05) were functionally analysed using ClueGO 2.2.6 version [22] and CluePedia 1.2.6 [23] version. ClueGO investigates the distribution of target genes across Gene Ontology (GO) terms and pathways to create the annotation network. CluePedia is a Cytoscape plugin that provides pathway insights by combining experimental and in-silico data [23]. CluePedia, a ClueGO plugin, performs linear and non-linear statistical calculations from experimental data to find new biomarkers from the pathway data [22]. The P value was calculated in the ClueGO tool using right-sided hypergeometric tests with Benjamini-Hochberg adjustment for multiple test correction [22]. A statistically significant deviation from the expected distribution was indicated by an adjusted P value of 0.001, and the corresponding GO terms and pathways were enriched for the target genes. ClueGO [22] was used to calculate the strength of the association between the terms, using a corrected kappa statistic score threshold of 0.4. Similarly, relationship between the selected terms was defined based on their shared genes. The GO terms were represented as nodes in the network, and the size of the nodes reflected their enrichment significance. The network was generated automatically using the organic layout algorithm supported by the Cytoscape [24]. The visualized network
functional groups were represented by their most significant terms and provides an insightful view of their interrelationships [25]. The DEGs were then enriched with different GO terms of biological process (BP), molecular function (MF), and cellular component (CC), as well as KEGG pathways.

Identification of MiRNA target genes

The R package multiMiR was employed to retrieve the DEmiR target genes. It contains a wide collection of validated and predicted miRNA–target interactions and their associations with drugs and diseases. It is composed of murine and human datasets from 14 external databases, which include three validated, eight predicted, and three drug- or disease-related miRNA–target databases [26]. Of these, we only considered three databases (miRecords, miRTarBase, and TarBase) for analysis of the predicted target genes [27].

Construction of miRNA-mRNA network

We have used the miRNet online tool [28] to predict and construct the miRNA-mRNA cluster network. The miRNet constructs networks miRNA-protein coding genes, miRNA-lncRNA, miRNA-circRNA, and miRNA-snRNA, and supporting the statistical and functional interpretation of the data [29]. Furthermore, we used the starBase tool to identify the competitive endogenous RNAs [30]. The miRNA-mRNA co-expression interactions network was constructed using CoMeTa [31] and miRSig [32].

Identifying the miRNA-target gene and TFs

Post-transcriptional regulation of gene expression is executed by miRNAs [33], while transcription factors (TFs) play a pivotal role in activation or repression of the transcription rate at the pre-transcriptional stage [34]. Hence, we employed the Cytoscape 3.7.1 tool to visualize the interactions between miRNAs and their potential target genes to understand the miRNA–target regulatory network.

Regulatory network analyses of miRNAs-TFs-target genes

TFs were identified using the iRegulon computation tool in the gene sets of DEGs and the target DEGs. iRegulon is a database of approximately 10,000 TF motifs, and is used to detect the enriched TF motifs in the regulatory regions around each gene. Each candidate TF is linked to enriched TF motifs and is used to identify the appropriate subset of the direct target genes. In Cytoscape, iRegulon (ver. 1.3, http://apps.cytoscape.org/apps/iRegulon) [35] plugin was used to analyse and predict TF-target gene interaction pairs in the PPI network. The TF-target interaction networks with a Normalized Enrichment Score (NES) of > 4 were selected for downstream analysis. Then, we used the over representation enrichment analysis (ORA) method to predict the miRNAs-target genes. Threshold settings of count number ≥ 2 and p value of < 0.05 were applied. Finally, the Cytoscape was used to construct the miRNAs-TFs-target regulatory network [36].

Binding interaction of miRNA-target genes

The RNA hybrid tool (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/) was used to find the binding affinity between the miRNA and its target gene using the minimum free energy hybridization method. This is executed in domain mode, where short RNA sequences are hybridized to the best fitting pose of the longer RNA sequences. This webserver is primarily built to predict miRNA target genes. Initially, sequences of miRNA and its target genes (3
\`-UTR, 5\`-UTR, and coding sequences) were retrieved from the Ensembl genome browser (https://asia.ensembl.org/index.html). The default parameters used in the analysis were as follows: helix constraint of 2–8, no G: U in seed sequence, and \(-18\) kcal/mol of minimum free energy threshold. Seed complementarity and high base-pairing stability were considered for reducing the false positive predictions.

Results

Identification of DEGs

The differentially expressed genes were identified across all the three expression datasets. Two of which are comprised of mRNA (GSE64913, GSE43696) and one is miRNA (GSE25230) data (see methods for details). The mRNA expression profile revealed the upregulation of 673 genes (258 genes in GSE64913 and 412 genes in GSE43696) and the downregulation of 1030 genes (259 genes in GSE64913 and 771 genes in GSE43696). The volcano plots and heatmap of DEGs are illustrated in Fig 1A–1C. A total of 163 overlapping genes (both up- or down- regulated) were identified across these two datasets, as shown in the Venny plot (Fig 1D). In the third dataset (GSE25230), a total of 71 differentially expressed miRNAs (DEMs), including 41 up and 30 down-regulated miRNAs, were identified.

The functional enrichment analysis of DEGs

To provide further insights into the mechanism and the functional significance of these DEGs, we used the ClueGO plugin, as detailed in the methods section. The enrichment of DEGs under different GO categories like molecular function (MF), cellular component (CC), and biological process (BP) in addition to the KEGG pathways was analyzed using Circos plot representation, keeping the p-value \(< 0.05\) as the threshold significance value (Fig 2). In the BP-associated category, the most significantly enriched GO terms were exocrine system development (GO: 0035272) with a p-value = 0.0118, response to mineralocorticoid (GO: 0051385) with a p-value = 0.0007, cell adhesion mediated by integrin (GO: 0033627) with a p-value of 0.000145, and in the cellular component category, most of the DEGs were localized in the Golgi lumen, platelet alpha granule (GO: 0005796, GO:0031091) with a p-value of \(<0.005\). Under the molecular functions category, most DEGs were enriched in phosphatidylinositol 3-kinase binding, protein phosphatase 1 binding, and chemokine activity (GO: 0043548, GO: 0008157, GO: 0042379) with a p-value of \(<0.00014\). The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659), with a p-value of \(<0.00025\) (Fig 2).

Computational evaluation of miRNA enriched target genes

We used miRTarBase to obtain the set of validated miRNA-target gene lists that include 380,639 miRNA target gene interactions (MTIs). We combined MTIs of 2,599 miRNAs and 15,064 target genes. Furthermore, we obtained the 41 (out of 71 miRNA) DEMs targeting 7017 genes in the above validated MTIs (Table 1). To identify the target-enriched miRNAs and their regulatory roles, we subsequently applied two complementary statistical approaches as described in the methods section. The hypergeometric statistical test revealed that 37 DEMs (15 up- and 12 down-regulated) were inversely correlated (FDR \(<0.10\)) with the DEGs, implying miRNA-DEGs functional co-relationship (Fig 3).
miRNA-target gene interaction network

To better understand the role and functions of miRNAs and their target genes, we investigated the miRNA-DEGs protein subnetworks associated with the 37 miRNAs and their inversely correlated target DEGs. A total of 82 nodes and 322 interaction pairs in the PPI-miRNA
Fig 2. The Circos plot representation of GO-Annotation terms of differentially expressed genes. a) biological process b) cellular components c) molecular function d) KEGG pathways (Cricos plot generated from http://mkweb.bcgsc.ca/tableviewer/).

https://doi.org/10.1371/journal.pone.0271262.g002
network were identified (Fig 4). In each module, hub miRNAs (module and miRNA p-value > 0.85) were used as input nodes to measure the node localization degree. The miRNA-PI network analysis resulted in four miRNAs (hsa-mir-335-5p, hsa-mir-193b-3p, hsa-mir-181a-5p, and hsa-mir-203a-3p) with a centrality of >315. The hsa-miR-335-5p showed the highest degree of centrality score >2627 with target genes: ATE1, KLF9, CA12, FHL1, NTRK2, SCD, ST8SIA4, CDON, PPP1R9A, LRRC8A and PPP1R3B. In contrast, hsa-mir-193b-3p, hsa-mir-181a-5p, hsa-mir-203a-3p showed approximate centrality scores of 853, 562, and 315, respectively, and they were found to interact with LRRC8A, CA12, ST8SIA4, DOCK10, NTRK2, ABL1, ACVR2B, AKT2, and DLX5 genes (Table 2).

Binding affinity between miRNA-mRNA duplex

RNA hybrid webserver was utilized to display significant hybridization between potential viral precursor miRNAs and complementary templates of the potential human miRNAs. Their corresponding minimal free energy of hybridization is given in Table 3. The minimal free energy of hybridization was ranged between -15.9 kcal/mol to −33.7 kcal/mol. Based on the sequence similarity, hybridization, and calculated minimum free energy (MFE), five potential miRNAs (hsa-miR-193b-3p, hsa-miR-203a-3p, hsa-miR-335-5p, hsa-miR-155-5p, and hsa-miR-181a-2-3p) were predicted as biomarkers for further analysis of transcriptional factors.

miRNAs-TFs-target regulatory network analyses

To further identify transcriptional factors and regulatory elements of miRNA, we constructed the miRNAs-TFs-target regulatory network using the Cytoscape. The network was constructed using four miRNA (hsa-miR-193b-3p, has-miR-203a-3p, hsa-miR-335-5p, hsa-mir-155-5p and hsa-miR-181a-2-3p) and their target DEGs. Our results showed that hsa-miR-181a-2-3p; hsa-miR-203a-3p; hsa-miR-335-5p have indirect interactions with 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9 and HLF) and direct interactions with 32 co-regulators (DEGs) (Fig 5; Table 4).

Discussion

In the current work, we employed numerous bioinformatic tools to systemically analyze the gene expression data and to identify the regulatory and co-expression networks between the miRNAs and their target gene pairs in asthma. Our functional enrichment analysis showed...
that most of the DEGs were significantly enriched in 'response to mineralocorticoid' under GO- biological processes category [37–41]. It is supported by the fact that, cortisol resistance in asthma conditions has been proposed and the involvement of the 11beta-HSD-2 enzyme has been suggested. Another GO term enriched is integrin, is supported by several studies [42]. A recent report has shown that integrinα7 protein is significantly increased in severe asthma [42]. Similarly, various integrins are shown to have a role in asthma pathophysiology [43]. Interestingly, targeting the integrin α7β1 signaling pathway has been proposed recently as an anti-asthma therapy [42]. In the molecular function category, the term 'phosphatidylinositol 3-kinase (PI3K)' was highly enriched which is supported by various studies. Since, PI3K has a central role in inflammation and hyperresponsiveness of asthma pathophysiology, and hence, it is an attractive molecular target for asthma [44]. The molecular function term, ‘protein phosphatase 1 (PP1)’ was significantly enriched. The PP1 muscle-specific glycogen-targeting subunit (PPP1R3A) is thought to play a role in muscle...
glycogen regulation and is implicated in asthmatic airway obstruction and hyperresponsiveness. PP1 is a regulatory protein in bronchial smooth muscle that regulates airway hyperresponsiveness (AHR), and it is regulated by protein CPI-17 [45]. Furthermore, fluctuations in CPI-17 signals have been reported to occur in asthma [46]. Interestingly, the role of miR-133a in bronchial smooth muscles (BSM) in the context of PP1 and protein CPI-17 has been reported in asthma pathogenesis [47]. Chemokine activity is another enriched GO term in our analysis and its role is supported by several reports [48]. Various chemokines have been implicated in asthmatic responses. In particular, targeting chemokines and their receptors has been proposed as a new drug target against the asthma [48].

Fig 4. Interaction network between top differentially expressed miRNAs (yellow square) and its target genes (pink circles).

https://doi.org/10.1371/journal.pone.0271262.g004

Table 2. The miRNA network centrality scores and its target gene pairs.

Label	Degree	Betweenness	Target	Accession	miRNA Seq (5’-3’)	UTR length
hsa-mir-335-5p	2627	7179475.778	ATE1	MIMAT0000765	UCAAGAGCAAUAACGAAAAAUGU	3259
hsa-mir-193b-3p	853	2801907.098	CCND1	MIMAT0002819	AACUGGCCUCAAAGUCCGCU	3207
hsa-mir-181a-5p	562	1748817.585	MTF2	MIMAT000256	AAACUUCACGCUCCGUGAGU	2070
hsa-mir-203a-3p	315	947355.247	DLX5	MIMAT000264	GUGAAUGUUAGGAAGCACCAGU	346
hsa-mir-181a-5p	29	73578.09654	SCD	MIMAT000256	AAACUUCACGCUCCGUGAGU	3903
hsa-mir-155-5p	18	6132.725	PCDH7	MIMAT0000646	UUAUGCUAAUGCUGAUGGGUU	3952

https://doi.org/10.1371/journal.pone.0271262.t002
The KEGG pathway annotations of DEGs have revealed the importance of the IL-17 signaling, T helper 1 (Th1) and T helper 2 (Th2) cell differentiation, and Th17 cell differentiation in asthma. The deregulation of important signaling pathways is known to play an important role in a variety of inflammatory diseases. Various studies in human and murine models have suggested the role of IL-17 in airway hyperresponsiveness, while in humans, an increase in IL-17 levels has been observed in asthma [49]. Moreover, it should be noted that the IL17 mediated signaling pathway also regulates mRNA stability. Based on this, we propose future study to understand its role in miRNA-mRNA functional network stability during asthma progression [50].

Another identified pathway is involved in the Th1 and Th2 cell differentiation, whose imbalance causes dysregulation of cytokine profiles [51]. Interestingly, drugs like mangiferin can exert an anti-asthmatic effect by modulating Th1/Th2 cytokine imbalance. Moreover, several let-7 family miRNAs namely, miR-1, mir-19, miR-126, miR-155, and miR-221, that regulate Th2 inflammatory responses by downregulating IL-13 and VEGF, are known for their association with asthma pathogenesis [52]. Our analysis is consistent with the recent reports that Th17 cells play an important role in asthma pathogenesis [53]. A recent study has revealed that hsa-miR-223-3p is a neutrophil-derived microRNA with a prominent regulatory effect on Th17 signaling and endoplasmic reticulum (ER) stress in severe asthma [52]. All these observations conclude that asthma is a chronic airway inflammatory disease characterized by T-helper cell immune responses and other immunological inflammatory responses [52].

The discovery of miRNAs has had a profound effect on the understanding of gene expression and is now considered to be part of the epigenetic machinery. It has led to the addition of a new level of gene regulation, adding a layer of complexity to the central dogma. Due to their gene regulatory functions, miRNAs affect various cellular functions, including cell growth, metabolism, cell death, and animal development. As per miRBase [54], human genome has around 1917 hairpin precursors and 2654 mature miRNAs, several of which have already been implicated in human disease [55]. The miRNAs regulate various signaling pathways in humans and, thus, deregulation of miRNAs can lead to various diseases, including cardiovascular disease, cancers, rheumatoid arthritis and asthma. The multi-target action of miRNAs enables them to regulate the entire signaling network consisting of various signaling molecules, genes, and TFs, thus regulating disease pathology. Mechanistically, miRNA mainly binds to the 3' untranslated region (3'-UTR) of the target mRNA through imperfect base pairing, which downregulates gene expression or inhibits translation [56]. Similarly, the binding of miRNAs

Table 3. The miRNA and target gene binding locations and their binding scores.

miRNA	Target Gene	Target Seq	miRNA Seq	MFEs*
hsa-miR-335-5p	ATE1	5’UGCAUGCGAUUUGUG	3’UGUAAAGCAUUUGGACCACUUCG3’	-20.5 kcal/mol
hsa-mir-193b-3p	CCND1	5’AGCAAGCAUUGAGAAGUG	3’UGCCUGGAAACUCCCCGCCGUCAAC5’	-33.7 kcal/mol
hsa-miR-181a-2-3p	SCD	5’UGUGUCUGGUGUGGU	3’UGACUGCGUCGCAUUACUAC5’	-26.6 kcal/mol
hsa-miR-181a-2-3p	MTF2	5’UGUGUGCGUAAUUGAUGA	3’GAUCAUUCGCACUGCUUAAG5’	-21.2 kcal/mol
hsa-mir-203a-3p	DLX5	5’UGUGUGCCAUUUUGAU	3’GAUUCGCUAUGGUAAAG5’	-15.9 kcal/mol
hsa-mir-155-5p	PCDH7	5’AAUUCXAUUCAUGGUAAAGGCAU	3’UGCUAAUCGUAAUUS5’	-22.2 kcal/mol

* minimum free energy

https://doi.org/10.1371/journal.pone.0271262.t003
to the 5' UTR and coding regions of mRNA has silencing effects on gene expression. Interestingly, some studies have also shown miRNAs up-regulate gene expression [57]. Moreover, it is widely known that a single miRNA can target several genes and single gene may be the target of multiple miRNAs, which shows a complex relationship between miRNAs and gene expression [58].

Fig 5. Regulatory networks of the TFs, miRNAs, and target genes. (A) Network of 2 transcription factors and hsa-181a; (B) network of 1 transcription factor and hsa-miR-203a; (C) network of 2 transcription factors and hsa-miR-335. Green color oval represent TFs. Pink ovals represents target genes regulated by miRNAs and TFs, target genes regulated by the miRNAs are represented by blue oval.

https://doi.org/10.1371/journal.pone.0271262.g005

Table 4. The miRNAs, transcription factors and target gene network enrichment score.

miRNA	#	Rank	Motif id	AUC	NES	Cluster Code	Transcription factor	Target genes
hsa-miR-193b-3p	6	transfac_pro-M01099	0.20706	4.4455	M3	RORC, RORB, RORA, GATA6, GATA2, GATA4, GATA3, GATA1, GATA5, YY1	PLAG1, ERBB4, FLI1, MAPK10, KCN2, FHDC1	
hsa-miR-203a-3p	4	hdpi-ZRSR2	0.228635	4.51536	M3	ZRSR2	-	
	6	hdpi-ZRSR2	0.223045	4.37454	M5	GFI1	-	
hsa-miR-335-3p	1	hdpi-TSNA	0.233799	5.66976	M1	TSNA	ATRNL1, PCDH7, PLCB4, LRP2, TEAD1	
	2	transfac_pro-M02271	0.208748	4.01429	M3	HOXA5	-	
	3	transfac_pro-M00426	0.228436	5.3645	M3	HIST2H2AB	ATRNL1, TSHD7A, PLCB4, ZMYM4, SCN3B, TEAD1, GUCY1A2, PCDH7, CACNB4	
has-miR-181a-2-3p	1	yetfasco-1622	0.157069	4.76021	M1	FOXO1, FOXO3, FOXC2, FOXA2, FOXO4	ZBT20, FLI1, ACVR2B, HEG1, EEF1A1, SOX6, NETO2	
	3	tfdimers-MD00527	0.14824	4.2985	M7	IRF7, IRF6, ZEB1, IRF4, IRF2, IRF5, IRF8, IRF3, IRF1, POUSF1, IRF9, MYB, E2F1, STAT2, STAT1, SPI1	PCDH7, LRP2, ACANB4, SCN3B, ATRNL1, PLCB4	
	5	tfdimers-MD0013	0.142554	4.18753	M4	MYB, YY1, TCF4, TAL1, TCF3, TBX5, NR3C1, ZFP42, PGR, MAFA, NR2F2, NR2F1	TFP2D, PEL2, SOX6, DGKG, ACVR2B, SULF1, ORS81	
	6	tfdimers-MD00013	0.137283	3.97957	M5	STAT6, CEBPB, DBP, STAT1, TCF3, ELF2, TCF4, ELK1, ELK4, ETV7, GABPB1, FLI1, ETF6, ELF4, SPIB	ZBT20, HEG1, FLI1, SOX6, SULF1, MMP, SOR81, KLHL3, PELI2	
	9	hdpi-THAP5	0.133624	3.83523	M8	THAP5	MMD, PRDM6, ZBT20, TFP2D, SLC9A5, HEG1	
	10	hdpi-LASIL	0.131028	3.7328	M3	LASIL, TFAM	TFP2D, FLI1, NETO2, ZBT20, MMD, KLHL3, SOX6, PRDM6, SULF1, SOR81, RAB9B, HTR2C	

https://doi.org/10.1371/journal.pone.0271262.t004
Numerous miRNAs are found to be involved in asthma, which includes downregulated let-7 family, miR-375, miR-193b, as well as upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b, and miR-155. Interestingly, most of these miRNAs affect Th2 and Th1 cytokine secretion in the bronchial smooth muscle cells, affecting other inflammatory responses [59]. In severe asthma, miR-221 regulates smooth muscle proliferation and miR-28-5p, and miR-146a/b which activate circulating CD8+ T cells [60]. MicroRNA expression has also been shown to be influenced by inhaled steroids [61]. Taken together, these studies indicate that miRNAs are important regulators of asthma pathogenesis.

Identification of miRNA target genes (mRNA) is a daunting task and has largely been overcame using advanced computational programs [62]. *In silico* prediction is a powerful tool to further validate the results in the absence of appropriate functional data. Indeed, our RNAhybrid webserver-based prediction suggested a stable complex between the miRNA and the corresponding target mRNA (Table 3). The minimal free energy of hybridization ranged from -15.9 kcal/mol to -33.7 kcal/mol which suggests that a stable RNA duplex complex formation is necessary for the miRNA function. The formation of miRNA-mRNA duplexes has a big impact on gene expression and diseases progression. Binding of miRNA may inhibit mRNA translation, leading to gene downregulation. Competition among different miRNA for the target mRNA binding site can also have functional consequences. Similarly, improper RNA folding is also known to alter potential miRNA binding sites, thus affecting normal cellular function that could lead to disease [63, 64]. Furthermore, we also believe that the SNPs affecting the miRNA seed pairing region between the miRNA and the target gene should also be studied as any change in these seed regions can affect the miRNA biogenesis and function as these regions are important for the RNA secondary structure and stability of miRNA-target mRNA pairing. Interestingly, in one study, a SNP in the seed region of miR-499a-3p which was important for the miRNA-mediated silencing mechanism plays contributes to the susceptibility of asthma in children and adolescents with bronchial asthma [65].

Our miRNAs-TFs-target regulatory network analysis has detected the potential miRNAs namely, hsa-miR-193b-3p, hsa-miR-203a-3p, hsa-miR-335-3p, hsa-miR-181a-2-3p and hsa-mir-155-5p (Table 4; Fig 5). Their functional significance in the context of the proposed targets is described. To illustrate, hsa-miR-193b-3p has been reported to be involved in several diseases like leukemia, Amyotrophic Lateral Sclerosis (ALS), and chronic diseases like localized cutaneous leishmaniasis (LCL). It is also differentially expressed in cigarette smokers. However, based on our analysis, its target gene, cyclin D1 (CCND1) is upregulated in asthma serum-sensitized human airway smooth muscle. Moreover, an association of the CCND1 genotype with the asthma susceptibility has been observed [66]. These results suggest that hsa-miR-193b-3p may regulate asthma by regulating the cell cycle [67] (Table 4).

The miR-203a-3p has been reported to be involved in several cancers, which include colorectal cancer [68], hepatocellular carcinoma [69] and bladder cancer [70]. In asthma, miR-203a-3p has been shown to regulate TGF-β1-induced epithelial–mesenchymal transition (EMT) by regulating the SMAD3 signaling pathway [71]. Moreover, downregulation of miR-203a-3p is reported in bronchial epithelial cells and has been suggested to be a potential target for the treatment of asthma [72]. Based on our analysis (Table 4), miR-203a-3p interacts with an IL-4 induced transcription factor (TF) and the DLX5 gene [73]. Notably, IL-4 is a T Helper 2 (Th2)-derived interleukin and that Th2 linked inflammatory response is linked to asthma pathogenesis [74], which is consistent with our KEGG pathway findings (Fig 2).

Another miRNA, hsa-miR-335-5p, has been implicated in several cancers, including colorectal cancer [75], gastric cancer [76], and uterine sarcoma [77]. The hsa-miR-335-5p is reported as a biomarker for inflammation related to knee osteoarthritis [78]. ATE1 is a target of hsa-miR-335-5p (Table 4), which is an arginyl-transferase and has been linked to higher
metabolic rate and fat [79], while in asthma, obesity and the high body mass index (BMI) are considered as risk factors [80]. These data suggest that hsa-miR-335-5p may regulate ATE1 in obese asthmatic people. Interestingly, obese asthmatics have severe symptoms and poorer response to many asthma medications [81].

The hsa-miR-181a-2-3p has been proposed as a biomarker for sepsis and its associated lung injury [82]. It is involved in several inflammatory responses linked to bronchial and lung tissue [83] and is also increased in the mouse model of asthma [84]. MTF2, a target of hsa-miR-181a-2-3p, has been linked to the PI3K pathway in asthma [85] and is consistent with our GO analysis where the term 'PI3K' was highly enriched (Fig 2). Importantly, PI3K role in asthma is well documented [44]. Another target protein, stearoyl-CoA desaturase (SCD) is an important regulator of fat metabolism and is implicated in obesity [86]. Interestingly, reduced levels of SCD and altered fatty acid metabolism have been reported in asthma [87] (Table 4).

The hsa-mir-155-5p is a multifunctional, proinflammatory, oncogenic miRNA that regulates the immune response, chronic inflammation, and autoimmunity [88]. It regulates Th2 cells and hence has a role in asthma; it is altered in severe asthma [89, 90]. The hsa-mir-155-5p targets a well-known asthma gene, PCDH1, which encodes protocadherin-1, which is mainly expressed in the bronchial epithelium and lungs. PCDH1 is essential in the pathogenesis of asthma [91]. Interestingly, two miRNAs identified in our study, hsa-miR-335-5p and hsa-miR-155-5p (Table 4), were associated with long-term lung function change on inhaled corticosteroid (ICS), which is critical in asthma treatment and has prognostic value [89]. Based on our extensive analysis, our data suggests a causal link between the miRNAs’ mediated regulation of target genes in asthma pathogenesis. We sincerely acknowledge the limitations associated with the pooling of analyzed transcripts, low probe specificity, and sample hybridization efficiency factors as we used secondary data from the publicly available databases.

In conclusion, differentially expressed miRNAs and mRNAs that play a potential role in asthma development are identified. The current study presents the functional landscape of human microRNA–mRNA-TF interactions in asthmatics using comprehensive bioinformatic analysis of publicly available microRNA and mRNA expression data sets. This study identified miRNAs (hsa-miR-193b-3p, hsa-miR-203a-3p, hsa-miR-335-5p, hsa-miR-181a-2-3p, hsa-miR-155-5p), which regulate important genes and TFs in asthma pathogenesis. This study is believed to be among the few studies in asthma that use diverse computational analyses to identify miRNA-mRNA and TFs and the functional enrichment of biological pathways involved in asthma. Our results also indicate that genes working at the upstream of a pathway are functionally more important as a minor change in their expression can have a wider effect downstream in any given disease pathology [92]. Better understanding of regulatory networks between disease-causing genes, miRNAs, and TFs, is important for understanding the molecular pathology of asthma. Our study holds the promise of the possible development of novel asthma biomarkers and therapeutic options.

Author Contributions

Conceptualization: Noor Ahmad Shaik, Ashraf A. El-Harouni, Ramu Elango, Babajan Banaganapalli.

Data curation: Noor Ahmad Shaik, Babajan Banaganapalli.

Formal analysis: Noor Ahmad Shaik, Babajan Banaganapalli.

Funding acquisition: Noor Ahmad Shaik.

Investigation: Babajan Banaganapalli.
Methodology: Babajan Banaganapalli.

Project administration: Noor Ahmad Shaik.

Resources: Khalidah Nasser, Abdulrahman Mujalli, Babajan Banaganapalli.

Software: Babajan Banaganapalli.

Supervision: Babajan Banaganapalli.

Validation: Ahmad A. Obaid, Babajan Banaganapalli.

Visualization: Babajan Banaganapalli.

Writing – original draft: Noor Ahmad Shaik, Arif Mohammed, Ramu Elango, Babajan Banaganapalli.

Writing – review & editing: Noor Ahmad Shaik, Khalidah Nasser, Arif Mohammed, Abdulrahman Mujalli, Ahmad A. Obaid, Ashraf A. El-Harouni, Ramu Elango, Babajan Banaganapalli.

References
1. Liu S, Zhi Y, Ying S. COVID-19 and Asthma: Reflection During the Pandemic. Clin Rev Allergy Immunol. 2020; 59(1):78–88. Epub 2020/05/30. https://doi.org/10.1007/s12016-020-08797-3 PMID: 32468411.

2. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018; 391(10122):783–800. Epub 2017/12/24. https://doi.org/10.1016/S0140-6736(17)33311-1 PMID: 29273246.

3. Bousquet J, Jutel M, Akdis CA, Klimek L, Pfaar O, Nadeau KC, et al. ARIA-EAACI statement on asthma and COVID-19 (June 2, 2020). Allergy, 2021; 76(3):689–97. Epub 2020/06/27. https://doi.org/10.1111/all.14471 PMID: 32588922; PubMed Central PMCID: PMC7361514.

4. Agache I, Akdis CA. Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine. Allergology international: official journal of the Japanese Society of Allergology. 2016; 65(3):243–52. Epub 2016/06/11. https://doi.org/10.1016/j.alit.2016.04.011 PMID: 27282212.

5. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396 (10258):1204–22. Epub 2020/10/19. https://doi.org/10.1016/S0140-6736(20)30925-9 PMID: 33069326; PubMed Central PMCID: PMC7567026.

6. Ramratnam SK, Bacharier LB, Guilbert TW. Severe Asthma in Children. The journal of allergy and clinical immunology In practice. 2017; 5(4):889–98. Epub 2017/07/12. https://doi.org/10.1016/j.jaip.2017.04.031 PMID: 28689839.

7. Mims JW. Asthma: definitions and pathophysiology. International forum of allergy & rhinology. 2015; 5 Suppl 1:S2–6. Epub 2015/09/04. https://doi.org/10.1002/alr.21609 PMID: 26335832.

8. Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidi-Hoffmann C, Nadeau K, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy, 2019; 74(12):2293–311. Epub 2019/05/06. https://doi.org/10.1111/all.13851 PMID: 31056763; PubMed Central PMCID: PMC6973012.

9. Papi A, Biasi F, Canonica GW, Morandi L, Richeldi L, Rossi A. Treatment strategies for asthma: reshaping the concept of asthma management. Allergy, asthma, and clinical immunology: official journal of the Canadian Society of Allergy and Clinical Immunology. 2020; 16:75. Epub 2020/09/19. https://doi.org/10.1186/s13223-020-00472-6 PMID: 32944030; PubMed Central PMCID: PMC7491342.

10. Ntontis P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and Epigenetics in Asthma. Int J Mol Sci. 2021; 22(5). Epub 2021/03/07. https://doi.org/10.3390/ijms22052412 PMID: 33673725; PubMed Central PMCID: PMC7957649.

11. Gautam Y, Almador Y, Ghandikota S, Mersha TB. Comprehensive functional annotation of susceptibility variants associated with asthma. Hum Genet. 2020; 139(8):1037–53. Epub 2020/04/03. https://doi.org/10.1007/s00439-020-02151-5 PMID: 32240371; PubMed Central PMCID: PMC7415519.

12. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017; 16(3):203–22. Epub 2017/02/18. https://doi.org/10.1038/nrd.2016.246 PMID: 28209991.
13. Ariel D, Upadhya y D. The role and regulation of microRNAs in asthma. Current opinion in allergy and clinical immunology. 2012; 12(1):49–52. Epub 2011/12/14. https://doi.org/10.1097/ACI.0b013e32834ecb77 PMID: 22157155.

14. Baines KJ, Simpson JL, Wood LG, Scott RJ, Fibbens NL, Powell H, et al. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. The Journal of allergy and clinical immunology. 2014; 133(4):997–1007. Epub 2014/03/04. https://doi.org/10.1016/j.jaci.2013.12.1091 PMID: 24582314.

15. van den Berge M, Tasena H. Role of microRNAs and exosomes in asthma. Current opinion in pulmonary medicine. 2019; 25(1):87–93. Epub 2018/11/06. https://doi.org/10.1097/MCP.0000000000000532 PMID: 30394902.

16. Haj-Salem I, Fakhfakh R, Berube JC, Jacques E, Plante S, Simard MJ, et al. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy. 2015; 70(2):212–9. Epub 2014/12/03. https://doi.org/10.1111/all.12551 PMID: 25443138.

17. Voraphani N, Gladwin MT, Contreras AU, Kaminski N, Tedrow JR, Milosevic J, et al. An airway epithelial iNOS-DUOX2-thyroid peroxidase metabolome drives Th1/Th2 nitrative stress in human severe asthma. Mucosal Immunol. 2014; 7(5):1175–85. Epub 2014/02/13. https://doi.org/10.1038/mi.2014.6 PMID: 24518246; PubMed Central PMCID: PMC4130801.

18. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010; 26(19):2363–7. Epub 2010/08/07. https://doi.org/10.1093/bioinformatics/btq431 PMID: 20688976; PubMed Central PMCID: PMC2944196.

19. Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. American journal of respiratory cell and molecular biology. 2012; 47(4):536–42. Epub 2012/06/09. https://doi.org/10.1165/rcmb.2011-0160OC PMID: 22679274.

20. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behavioural brain research. 2001; 125(1–2):279–84. Epub 2001/10/30. https://doi.org/10.1016/s0166-4328(01)00297-2 PMID: 11682119.

21. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007; 2(10):2366–82. Epub 2007/10/20. https://doi.org/10.1038/nprot.2007.324 PMID: 17947979; PubMed Central PMCID: PMC3685583.

22. Bininda E, Milenkovic B, Bintgea K, Miecnik B, Galon J, CluePedria Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013; 29(5):661–3. Epub 2013/01/18. https://doi.org/10.1093/bioinformatics/btt019 PMID: 23325622; PubMed Central PMCID: PMC3582273.

23. Bininda E, Milenkovic B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009; 25(8):1091–3. Epub 2009/02/25. https://doi.org/10.1093/bioinformatics/btp101 PMID: 19237447; PubMed Central PMCID: PMC2666812.

24. Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, et al. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014; 42(17):e133. Epub 2014/07/27. https://doi.org/10.1093/nar/gku631 PMID: 25063298; PubMed Central PMCID: PMC4176155.

25. Luo Y, Zhang C, Tang F, Zhao J, Shen C, Wang C, et al. Bioinformatics identification of potentially involved microRNAs in Tibetan with gastric cancer based on microRNA profiling. Cancer cell international. 2015; 15(1):115. https://doi.org/10.1186/s12935-015-0266-1 PMID: 26692821.

26. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet—dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016; 44(W1):W135–41. Epub 2016/04/24. https://doi.org/10.1093/nar/gkw288 PMID: 27105848; PubMed Central PMCID: PMC4987881.

27. Muñoz-Culla M, Iziraz H, Sáenz-Cuesta M, Castillo-Triviño T, Osorio-Querejeta I, Sepúlveda L, et al. SncRNA (microRNA & snoRNA) opposite expression pattern found in multiple sclerosis relapse and remission is sex dependent. Scientific Reports. 2016; 6(1):20126. https://doi.org/10.1038/srep20126 PMID: 26831009
30. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014; 42(Data-base issue):D92–7. Epub 2013/12/04. https://doi.org/10.1093/nar/gkt1248 PMID: 24297251; PubMed Central PMCID: PMC3964941.

31. Gennarino VA, D’Angelo G, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 2012; 22(6):1163–72. Epub 2012/02/22. https://doi.org/10.1101/gr.130435.111 PMID: 22345618; PubMed Central PMCID: PMC3371699.

32. Nalluri JJ, Barh D, Azevedo V, Ghosh P. miRsig: a consensus-based network inference methodology to identify pan-cancer miRNA-miRNA interaction signatures. Scientific Reports. 2017; 7(1):39684. https://doi.org/10.1038/srep39684 PMID: 28045122.

33. Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A. MicroRNAs, macrocontrol: regulation of miRNA processing. RNA (New York, NY). 2010; 16(6):1087–95. Epub 2010/04/29. https://doi.org/10.1261/rna.1804410 PMID: 20423980; PubMed Central PMCID: PMC2874160.

34. Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011; 25(21):2227–41. Epub 2011/11/08. https://doi.org/10.1101/gad.176826.111 PMID: 22056668; PubMed Central PMCID: PMC3219227.

35. Verfaillie A, Sveticichnyy D, Davie K, Fiers M, Kalender Atak Z, et al. Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic. Genome Res. 2016; 26(7):882–95. Epub 2016/05/20. https://doi.org/10.1101/gr.204149.116 PMID: 27197205; PubMed Central PMCID: PMC4937571.

36. Wang Z, Lu B, Sun L, Yan X, Xu J. Identification of candidate genes or microRNAs associated with the lymph node metastasis of SCLC. Cancer cell international. 2018; 18(1):161. https://doi.org/10.1186/s12935-018-0653-5 PMID: 30364292.

37. Bima AIH, Elsamanoody AZ, Albaqami WF, Khan Z, Parambath SV, Al-Rayes N, et al. Integrative systems biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. Math Biosci Eng. 2022; 19(3):2310–29. Epub 2022/03/05. https://doi.org/10.3934/mbe.2022107 PMID: 35240786.

38. Bima AI, Elsamanoody AZ, Alami AS, Felimban R, Felemban M, Alghamdi KS, et al. Integrative global co-expression analysis identifies Key MicroRNA-target gene networks as key blood biomarkers for obesity. Minerva Med. 2022. Epub 2022/03/11. https://doi.org/10.23736/S0026-4806.21.07478-4 PMID: 35266657.

39. Sahly NN, Banaganapalli B, Sahly AN, Aliagraigri AH, Nasser KK, Shinawi T, et al. Molecular differential analysis of uterine leiomyomas and leiomyosarcomas through weighted gene network and pathway tracing approaches. Syst Biol Reprod Med. 2021; 67(3):209–20. Epub 2021/03/10. https://doi.org/10.1080/19396368.2021.1876179 PMID: 33685300.

40. Banaganapalli B, Al-Rayes N, Awan ZA, Alsaulaimy FA, Alamri AS, Elango R, et al. Multilevel systems biology analysis of lung transcriptomics data identifies key miRNAs and potential miRNA target genes for SARS-CoV-2 infection. Comput Biol Med. 2021; 135:104570. Epub 2021/06/23. https://doi.org/10.1016/j.compbiomed.2021.104570 PMID: 34157472; PubMed Central PMCID: PMC8197616.

41. Mujalli A, Banaganapalli B, Alrayes NM, Shaik NA, El-Aama JY. Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis. Genomics. 2020; 112(6):5072–85. Epub 2020/09/14. https://doi.org/10.1016/j.ygeno.2020.09.004 PMID: 32920122.

42. Teoh CM, Tan SSL, Langenbach SY, Wong AH, Cheong DHJ, Tam JKC, et al. Integrin alpha7 expression is increased in asthmatic patients and its inhibition reduces Kras protein abundance in airway smooth muscle cells. Sci Rep. 2019; 9(1):9892. Epub 2019/07/11. https://doi.org/10.1038/s41598-019-46260-2 PMID: 31289310; PubMed Central PMCID: PMC6616330.

43. Wright DB, Meurs H, Dekkers BG. Integrins: therapeutic targets in airway hyperresponsiveness and remodelling? Trends Pharmacol Sci. 2014; 35(11):567–74. Epub 2014/12/03. https://doi.org/10.1016/j.tips.2014.09.006 PMID: 25447775.

44. Yoo EJ, Ojiaku CA, Sunder K, Panettieri RA Jr., Phosphoinositide 3-Kinase in Asthma: Novel Roles and Therapeutic Approaches. American journal of respiratory cell and molecular biology. 2017; 56(6):700–7. Epub 2016/12/16. https://doi.org/10.1165/rcmb.2016-0308TR PMID: 27977296; PubMed Central PMCID: PMC5516292.

45. Eto M, Kitazawa T, Brautigan DL. Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proc Natl Acad Sci U S A. 2004; 101(24):9888–93. Epub 2004/06/09. https://doi.org/10.1073/pnas.0307812101 PMID: 15184667; PubMed Central PMCID: PMC428442.
46. Eto M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem. 2009; 284(51):35273–7. Epub 2009/10/23. https://doi.org/10.1074/jbc.R109.059972 PMID: 19846560; PubMed Central PMCID: PMC2790955.

47. Sakai H, Suto W, Kai Y, Chiba Y. Mechanisms underlying the pathogenesis of hypercontractility of bronchial smooth muscle in allergic asthma. J Smooth Muscle Res. 2017; 53(0):37–47. Epub 2017/05/10. https://doi.org/10.1540/jsmr.53.37 PMID: 28484126; PubMed Central PMCID: PMC5411784.

48. Lukacs NW. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol. 2001; 1(2):108–16. Epub 2002/03/22. https://doi.org/10.1038/35100503 PMID: 11905818.

49. Hynes GM, Hinks TSC. The role of interleukin-17 in asthma: a protective response? ERJ Open Res. 2020; 6(2). Epub 2020/06/05. https://doi.org/10.1183/23120541.00364-2019 PMID: 32494573; PubMed Central PMCID: PMC7248344.

50. Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: The Yin and the Yang. Trends Immunol. 2017; 38(5):310–22. Epub 2017/03/04. https://doi.org/10.1016/j.it.2017.01.006 PMID: 28254169; PubMed Central PMCID: PMC5411326.

51. Guo HW, Yun CX, Hou GH, Du J, Huang X, Lu Y, et al. Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model. PLoS One. 2014; 9(6):e100394. Epub 2014/06/24. https://doi.org/10.1371/journal.pone.0100394 PMID: 24955743; PubMed Central PMCID: PMC4067356.

52. Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, et al. A Network of Sputum MicroRNAs Is Associated with Neutrophilic Airway Inflammation in Asthma. Am J Respir Crit Care Med. 2020; 202(1):51–64. Epub 2020/04/08. https://doi.org/10.1164/rcrm.201912-2360OC PMID: 32255668; PubMed Central PMCID: PMC7328332.

53. Newcomb DC, Peebles RS Jr, Th17-mediated inflammation in asthma. Curr Opin Immunol. 2013; 25(6):755–60. Epub 2013/09/17. https://doi.org/10.1016/j.coi.2013.08.002 PMID: 24035139; PubMed Central PMCID: PMC3855890.

54. Kozomara A, Birgaonanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47(D1):D155–D62. Epub 2018/11/14. https://doi.org/10.1093/nar/gky1141 PMID: 30423142; PubMed Central PMCID: PMC6332917.

55. Piletic K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol. 2016; 90(10):2405–19. Epub 2016/08/26. https://doi.org/10.1007/s00204-016-1815-7 PMID: 27557899.

56. Ambros V. The functions of animal microRNAs. Nature. 2004; 431(7006):350–5. Epub 2004/09/17. https://doi.org/10.1038/nature02871 PMID: 15372042.

57. Truesdell SS, Mortensen RD, Seo M, Schroeder JC, Lee JH, LeTonquete O, et al. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep. 2012; 2:842. Epub 2012/11/15. https://doi.org/10.1038/srep00842 PMID: 23150790; PubMed Central PMCID: PMC3496365.

58. Burke M. Feds: provider capacity critical to Oregon’s success. Hospitals. 1991; 65(21):68–9. Epub 1991/11/05. PMID: 1916732.

59. Specielski K, Niedoszytko M. MicroRNAs: future biomarkers and targets of therapy in asthma? Current opinion in pulmonary medicine. 2020; 26(3):285–92. Epub 2020/02/27. https://doi.org/10.1097/MCP.0000000000001067 PMID: 32101904.

60. Tatsiou E, Williams AE, Moschos SA, Patel K, Rossios C, Jiang X, et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. The Journal of allergy and clinical immunology. 2012; 129(1):95–103. Epub 2011/09/16. https://doi.org/10.1016/j.jaci.2011.08.011 PMID: 21917308.

61. Solberg OD, Ostrin EJ, Love MI, Peng JC, Bhakta NR, Hou L, et al. Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med. 2012; 186(10):965–74. Epub 2012/09/08. https://doi.org/10.1164/rcrm.201201-0027OC PMID: 22955319; PubMed Central PMCID: PMC3530212.

62. Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol. 2010; 17(10):1169–74. Epub 2010/10/07. https://doi.org/10.1038/nsmb.1921 PMID: 20924405.

63. Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. Journal of applied genetics. 2018; 59(3):253–68. Epub 2018/04/24. https://doi.org/10.1007/s13353-018-0444-7 PMID: 29680930; PubMed Central PMCID: PMC6060985.

64. Soemedi R, Cygan KJ, Rhine CL, Gildden DT, Taggart AJ, Lin CL, et al. The effects of structure on pre-miRNA processing and stability. Methods. 2017; 125:36–44. Epub 2017/06/10. https://doi.org/10.1016/j.ymeth.2017.06.001 PMID: 28595883; PubMed Central PMCID: PMC5737760.

65. Torail EA, Hussein MH, Al Ageel E, Riad E, AbdAllah NB, Helal GM, et al. Structure and functional impact of seed region variant in MIR-499 gene family in bronchial asthma. Respir Med. 2017; 18(1):169.
66. Thun GA, Imboden M, Berger W, Rochat T, Probst-Hensch NM. The association of a variant in the cell cycle control gene CCND1 and obesity on the development of asthma in the Swiss SAPALDIA study. J Asthma. 2013; 50(2):147–54. Epub 2013/01/15. https://doi.org/10.3109/02770933.2012.757776 PMID: 23311056.

67. Li CH, Chiu KL, Hsia TC, Shen TC, Chen LH, Yu CC, et al. Significant Association of Cyclin D1 Promoter Genotypes With Asthma Susceptibility in Taiwan. In Vivo. 2021; 35(4):2041–6. Epub 2021/06/29. https://doi.org/10.21873/invivo.12473 PMID: 34182479; PubMed Central PMCID: PMC5591547.

68. Chen L, Gao H, Liang J, Duan J, Shi H, et al. miR-203a-3p promotes colorectal cancer proliferation and migration by targeting PDE4D. Am J Cancer Res. 2018; 8(12):2387–401. Epub 2019/01/22. PMID: 30662799; PubMed Central PMCID: PMC6325478.

69. Huo W, Du M, Pan X, Zhu X, Gao Y, Li Z. miR-203a-3p targets IL-24 to modulate hepatocellular carcinoma cell growth and metastasis. FEBS Open Bio. 2017; 7(8):1085–91. Epub 2017/08/07. https://doi.org/10.1002/2211-5463.12248 PMID: 28781949; PubMed Central PMCID: PMC5536994.

70. Lenherr SM, Tsai S, Silva Neto B, Sullivan TB, Cimino CB, Logvinenko T, et al. MicroRNA Expression Profile Identifies High Grade, Non-Muscle-Invasive Bladder Tumors at Elevated Risk to Progress to an Invasive Phenotype. Genes (Basel). 2017; 8(2). Epub 2017/02/22. https://doi.org/10.3390/genes8020077 PMID: 28218662; PubMed Central PMCID: PMC5333066.

71. Fan Q, Jian Y. MiR-203a-3p regulates TGF-beta1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Biosci Rep. 2020; 40(2). Epub 2020/02/18. https://doi.org/10.1042/BSR20192645 PMID: 32065213; PubMed Central PMCID: PMC7048677.

72. Tsai MJ, Tsai YC, Chang WA, Lin YS, Tsai PH, Sheu CC, et al. Deducting MicroRNA-Mediated Changes Common in Bronchial Epithelial Cells of Asthma and Chronic Obstructive Pulmonary Disease-A Next-Generation Sequencing-Guided Bioinformatic Approach. Int J Mol Sci. 2019; 20(3). Epub 2019/01/31. https://doi.org/10.3390/ijms20030553 PMID: 30696075; PubMed Central PMCID: PMC6386886.

73. Zissler UM, Chaker AM, Effner R, Ulrich M, Guerth F, Piontek G, et al. Interleukin-4 and interferon-gamma orchestrate an epithelial polarization in the airways. Mucosal Immunol. 2016; 9(4):917–26. Epub 2015/11/19. https://doi.org/10.1038/mi.2015.110 PMID: 26577568.

74. Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med. 1994; 180(5):1961–6. Epub 1994/11/01. https://doi.org/10.1084/jem.180.5.1961 PMID: 7525845; PubMed Central PMCID: PMC2191757.

75. Sun X, Lin F, Sun W, Zhu W, Fang D, Luo L, et al. Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1. Molecular therapy Nucleic acids. 2021; 24:164–74. Epub 2021/03/27. https://doi.org/10.1016/j.omtn.2021.02.022 PMID: 33767913; PubMed Central PMCID: PMC7960496.

76. Sandoval-Borquez A, Polakovicoa I, Carrasco-Veliz N, Lobos-Gonzalez L, Riquelme I, Carrasco-Avino G, et al. MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin Epigenetics. 2017; 9:114. Epub 2017/10/28. https://doi.org/10.1186/s13148-017-0413-8 PMID: 29075357; PubMed Central PMCID: PMC5645854.

77. Gonzalez Dos Anjos L, de Almeida BC, Gomes de Almeida T, Mourao Lavorato Rocha A, De Nardo Maffazioli G, Soares FA, et al. Could miRNA Signatures be Useful for Predicting Uterine Sarcoma and Carcinosarcoma Prognosis and Treatment? Cancers (Basel). 2018; 10(9). Epub 2018/09/12. https://doi.org/10.3390/cancers10090931 PMID: 30206365; PubMed Central PMCID: PMC6162723.

78. Wang H, Hu Y, Xie Y, Wang L, Wang J, Lei L, et al. Prediction of MicroRNA and Gene Target in Synovium-Associated Pain of Knee Osteoarthritis Based on Canonical Correlation Analysis. Biomed Res Int. 2019; 2019:4506876. Epub 2019/11/19. https://doi.org/10.1155/2019/4506876 PMID: 31737663; PubMed Central PMCID: PMC6815580.

79. Brower CS, Varshavsky A. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One. 2009; 4(11): e7757. Epub 2009/11/17. https://doi.org/10.1371/journal.pone.0007757 PMID: 19915679; PubMed Central PMCID: PMC2773024.

80. Boulet LP. Asthma and obesity. Clin Exp Allergy. 2013; 43(1):8–21. Epub 2013/01/03. https://doi.org/10.1111/j.1365-2222.2012.04040.x PMID: 23278876.

81. Peters U, Dixon AE, Forno E. Obesity and asthma. The Journal of allergy and clinical immunology. 2018; 141(4):1169–79. Epub 2018/04/09. https://doi.org/10.1016/j.jaci.2018.02.004 PMID: 29627041; PubMed Central PMCID: PMC5973542.
82. Ahmad S, Ahmed MM, Hasan PMZ, Sharma A, Bilgrami AL, Manda K, et al. Identification and Validation of Potential miRNAs, as Biomarkers for Sepsis and Associated Lung Injury: A Network-Based Approach. Genes (Basel). 2020; 11(11). Epub 2020/11/14. https://doi.org/10.3390/genes11111327 PMID: 33182754; PubMed Central PMCID: PMC7696689.

83. Kim J, Kim DY, Heo HR, Choi SS, Hong SH, Kim WJ. Role of miRNA-181a-2-3p in cadmium-induced inflammatory responses of human bronchial epithelial cells. Journal of thoracic disease. 2019; 11(7):3055–69. Epub 2019/08/30. https://doi.org/10.21037/jtd.2019.07.55 PMID: 31463135; PubMed Central PMCID: PMC6687977.

84. Feng MJ, Shi F, Qiu C, Peng WK. MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. Int Immunopharmacol. 2012; 13(3):347–53. Epub 2012/05/15. https://doi.org/10.1016/j.intimp.2012.05.001 PMID: 22580216.

85. Dahlin A, Qiu W, Litonjua AA, Lima JJ, Tamari M, Kubo M, et al. The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a determinant of zileuton response in adults with asthma. Pharmacogenomics J. 2018; 18(5):665–77. Epub 2018/01/05. https://doi.org/10.1038/s41397-017-0006-0 PMID: 29298996; PubMed Central PMCID: PMC6150906.

86. Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, et al. Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun. 2005; 332(3):735–42. Epub 2005/05/24. https://doi.org/10.1016/j.bbrc.2005.05.013 PMID: 15907797.

87. Rodriguez-Perez N, Schiavi E, Frei R, Fersi R, Wawrzyniak P, Smolinska S, et al. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma. Allergy. 2017; 72(11):1744–52. Epub 2017/04/12. https://doi.org/10.1111/all.13180 PMID: 28397284.

88. Allervini S, Gremsese E, McSharry C, Toluesso B, Ferraccioli G, McInnes IB, et al. MicroRNA-155 at the Critical Interface of Innate and Adaptive Immunity in Arthritis. Front Immunol. 2017; 8:1932. Epub 2018/01/23. https://doi.org/10.3389/fimmu.2017.01932 PMID: 29354135; PubMed Central PMCID: PMC5760508.

89. Li J, Panganiban R, Kho AT, McGeachie MJ, Farnam L, Chase RP, et al. Circulating MicroRNAs and Treatment Response in Childhood Asthma. Am J Respir Crit Care Med. 2020; 202(1):65–72. Epub 2020/04/10. https://doi.org/10.1164/rccm.201907-1454OC PMID: 32272022; PubMed Central PMCID: PMC7328325.

90. Canas JA, Rodrigo-Munoz JM, Sastre B, Gil-Martinez M, Redondo N, Del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol. 2020; 11:60866. Epub 2021/01/26. https://doi.org/10.3389/fimmu.2020.60866 PMID: 33488613; PubMed Central PMCID: PMC7819856.

91. Biswas S. Role of PCDH 1 Gene in the Development of Childhood Asthma and Other Related Phenotypes: A Literature Review. Cureus. 2018; 10(9):e3360. Epub 2018/12/05. https://doi.org/10.7759/cureus.3360 PMID: 30510870; PubMed Central PMCID: PMC6257625.

92. Dutta B, PusztaL I, Qi Y, Andre F, Lazar V, Bianchini G, et al. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes. Br J Cancer. 2012; 106(6):1107–16. Epub 2012/02/22. https://doi.org/10.1038/bjc.2011.584 PMID: 22343619; PubMed Central PMCID: PMC3304402.