Reviewer's comments:

Reviewer #1 (Remarks to the Author):

In this manuscript, Calvo et al. describes applications of an established smFISH approach (smiFISH or single molecule inexpensive FISH) in several extant and emerging arthropod model organisms. They also developed image analysis pipelines for single-cell transcript expression analysis in embryos or tissues. In general, the data is of high quality, the text is clear, the method is detailed enough, and the analysis methods can be broadly interesting. Although there are no novel biological findings, that does not seem to be the focus of this manuscript. I recommend its publication if the following points can be addressed.

Major point:

The current neighbor-finding algorithm relying only on cell-cell distance is almost too simple and can only work for tissues with mostly near hexagon cells. In the case of cell shape changes during epithelial folding, for instance, some cells will be elongated, and the algorithm will clearly fail to faithfully identify neighbors.

For this type of analysis to be more broadly applicable, I'd recommend implement a more sophisticated algorithm. For example, one could start by a clearly large search radius, and determine how many edges the connecting line between the queried cell center and a potential neighbor cell center crosses; a true neighbor should cross only once, as long as the cell topology is not too complicated. A more robust algorithm will be identifying the vertices and edges of each cell to literally using shared edges as the criterion.

It is up for the editor and the authors to decide whether this is too much additional work, but I believe it is reasonable giving the coding capability gauged from the figures.

Minor points:

1. When describing eve expression in Figure 1, do authors suggest “low” eve mRNA expressing cells have post-transcriptional regulation that further sharpen protein-level expression boundaries, or just to highlight the superb smFISH resolution comparing to immunofluorescence and traditional in situ?

2. When segmenting cells using Spectrin signal, how far was the sharp mid-section Spectrin signal was extrapolated? Any supporting evidence or argument to support the choice of the cell height?

3. In Figure 1, posterior mRNA accumulation of the nos mRNA is marginal. Is this common?

4. The abbreviation MYA (million years ago) needs to be explained when first mentioned.

5. In Figure 2, the Hox gene multiplexing. Are bright foci representing active transcription bursts? Is it still possible to count mRNA dots in these foci? When plotting the distribution of mRNA expressions of these genes with direct evidence of active transcription, does the histogram have a long tail? Discussion of this point can be combined with Figure 3 discussion.
Reviewer #2 (Remarks to the Author):

Calvo et al. have adapted an existing single molecule FISH method, previously developed for cultured cells, to whole mount preparations. They demonstrate that the method works for embryos and tissues from a handful of arthropods. Using deconvolution and spectral unmixing, they show that up to eight genes can be assessed in whole mounts. They present a membrane labeling protocol compatible with their FISH method. They also present two straightforward measurements of cell-to-cell variability.

The mRNA labeling method will certainly be regarded by the community as a valuable cost-saving measure. The compatibility with membrane labeling will also be very useful for cell segmentation. Demonstrating the application of spectral unmixing is also useful. These are valuable additions to the toolbox of single mRNA molecule detection. However, the quantification is not rigorous and detracts from the manuscript. The manuscript otherwise contains no novel conclusions. The work might be more appropriate for a methods-centric publication once the authors address concerns about the quantification and measurement error outlined below.

To advance the use of single molecule FISH in whole mount tissues, it is essential to present the evidence that the procedure and subsequent analysis correctly measure mRNA density. But the mRNA counts per cell presented here are not consistent with previous studies. Further, to ascertain the extent of biological variability requires accounting for measurement error, but this has not been done. Sources of measurement error that the authors should account for include:

- Detection failure. The authors should estimate the extent of under-counting using two sets of probes labeled with different colors and directed against the same mRNA. Moreover, at a glance the failure rate appears quite high in the case of nos mRNA, single mRNAs of which are densely distributed through the entire oocyte (PMID: 9895314, 25848747).

- mRNA crowding. mRNAs will be undercounted at a rate that increases with increasing density. This is not accounted for in the manuscript, but has a major impact on any conclusions about variability. The authors do appear to be undercounting the gap gene mRNAs. For example, Kr has a maximum density of around 1000 mRNA per cell, where the basal extent of the cell is taken at 12 microns below the cortex (PMID: 23953111).

- Tissue deformation upon processing and mounting. The fixing and mounting procedure can alter the apparent density of mRNAs and nuclei and can be a dominant source of measurement error (PMID: 23953111, Fig. S2). In the current manuscript, such deformation might well contribute to measurement error, given the clear spatial correlations in the variability shown in Fig. 5G. For example, Kr variability approaches the Poisson limit in the most rapidly expressing regions of the embryo, i.e. Fano factor = 1 (PMID: 23953111, Fig. S6); however, in the current manuscript, the Fano factor clearly exceeds 1 in this region, and the Fano factor exhibits spatial correlations around 4-5 nuclear diameters. This is consistent with local tissue deformations impacting the counts per cell.

As a final point, the usefulness of the two new measurements of variability is not immediately clear. As a means of assessing variability between cells, it might be more informative to assign each cell a value based on how many standard deviations away from the "neighborhood mean count" that cell is found, and a p value to say whether that distance is significantly larger than expected. None of the
measurements presented (including the Fano factor) help the reader understand whether the mRNA content of a given cell is significantly larger (or smaller) than expected.
Reviewer's comments:

Reviewer #1:

In this manuscript, Calvo et al. describe applications of an established smFISH approach (smiFISH or single molecule inexpensive FISH) in several extant and emerging arthropod model organisms. They also developed image analysis pipelines for single-cell transcript expression analysis in embryos or tissues. In general, the data is of high quality, the text is clear, the method is detailed enough, and the analysis methods can be broadly interesting. Although there are no novel biological findings, that does not seem to be the focus of this manuscript. I recommend its publication if the following points can be addressed.

Major point:

The current neighbor-finding algorithm relying only on cell-cell distance is almost too simple and can only work for tissues with mostly near hexagon cells. In the case of cell shape changes during epithelial folding, for instance, some cells will be elongated, and the algorithm will clearly fail to faithfully identify neighbors.

For this type of analysis to be more broadly applicable, I'd recommend implementing a more sophisticated algorithm. For example, one could start by a clearly large search radius, and determine how many edges the connecting line between the queried cell center and a potential neighbor cell center crosses; a true neighbor should cross only once, as long as the cell topology is not too complicated. A more robust algorithm will be identifying the vertices and edges of each cell to literally using shared edges as the criterion.

It is up to the editor and the authors to decide whether this is too much additional work, but I believe it is reasonable giving the coding capability gauged from the figures.

Thanks to Reviewer 1 for this good point. We fully agree, and have developed an improved strategy (Figure 4) for automated neighbour detection, that does not rely on cells being regular in shape/size. This new method works by slightly expanding the border of each cell in 3D by just ~10% of a cell diameter, such that new cell borders slightly overlap only with directly touching neighbour cells. The program then identifies all border intersections, producing a list of only directly touching neighbours. We verify that this new method achieves near perfect agreement with a manual neighbour count. All code for the new automated neighbour detection method is provided.

We also appreciate that for some analyses, comparing cell expression among a larger group of cells within a given area may be more meaningful than limiting only to touching neighbours. Accordingly, we have also provided supplementary code for calculating and filtering the Euclidian distance between cell centre coordinates, to identify all nearby cells within a user-specified search radius.

For changes, please see updated Figure 4, and lines 241-262. All code is made available via https://github.com/LliliansCalvo/smiFISH_Arthropods.

Minor points:

1. When describing eve expression in Figure 1, do authors suggest “low” eve mRNA expressing cells have post-transcriptional regulation that further sharpen protein-level expression boundaries, or just to highlight the superb smFISH resolution comparing to immunofluorescence and traditional in situ?

It is just to highlight the resolution obtained with smiFISH. A great advantage of the technique is that a single mRNA spot is the same intensity and equally detectable irrespective of overall gene expression level.
This allows visualization of very low expressing cells, even just a few RNA per cell, such as those ‘low’ eve expressing cells between stripes. With traditional in-situ or immunofluorescence relying on measurement of overall fluorescence level, such cells would likely be classed as non-expressing, as their overall fluorescence level would not differ significantly from background.

2. When segmenting cells using Spectrin signal, how far was the sharp mid-section Spectrin signal was extrapolated? Any supporting evidence or argument to support the choice of the cell height? For analysing cell to cell variability, it is essential that the RNA assignment to individual cells is accurate. Therefore, image stacks were taken to the basal limit of membrane ingression but not further; as it is not possible to assign any mRNAs located lower than this membrane limit to specific cells with certainty. In the image analysed in Figure 3, the first 20 slices of Spectrin staining was maintained, and slice 20 extrapolated for a further 28 slices to bottom of the stack defined as the basal limit of membrane ingression. This has now been made clearer in the text.

The choice of cell height will depend upon the specific question. If accuracy of cell to cell variability is critical, then Spectrin staining should not be extrapolated beyond the basal membrane ingression limit. However, if total mRNA number is more critical, with less focus on cell-to-cell variability, deeper stacks can be taken to encompass every mRNA including any below the basal membrane limit, and the sharp mid-section membrane extrapolated accordingly beyond the basal limit through the whole stack. In a new Supplementary Figure 2, we have included quantifications of this kind from an additional 12 blastoderm embryos, to assess biological variability of total Kr mRNA number using deeper stack depths beyond the membrane limit. Supplementary Figure 2g shows differing degrees of membrane ingestion which was measured to sort embryos by age order. The degree of membrane extrapolation depends therefore on embryo age (degree of membrane ingression), and whether stack depth is intended to encompass just mRNAs within membranes, or also to include those below the membrane limit. These considerations have now been included in the main text.

For changes, please see lines 167-172, 221-231, 487-490.

3. In Figure 1, posterior mRNA accumulation of the nos mRNA is marginal. Is this common? Yes, the staining is consistent with previous studies; the important point lies in the timing of posterior nos accumulation during oogenesis. The egg chamber shown in Figure 1 is at stage 10, and previous studies show that the majority of posterior localization of nos mRNAs occurs during stages 13/14 of oogenesis, following nurse cell ‘dumping’ of mRNA (PMID: 12867026, PMID: 9895314, PMID: 7515724). We chose to show a stage 10 oocyte, because this demonstrates the sensitivity of smiFISH by capturing the earliest onset of posterior accumulation of nos mRNA, earlier than previously observed by classic in-situ (PMID: 7515724 and PMID: 9895314), and live imaging (stage 11 PMID: 12867026) but similar to previous FISH staining, (stage 10 PMID 25848747). The text referring to this figure has now been adjusted to highlight this point.

For changes, please see lines 114-123.

4. The abbreviation MYA (million years ago) needs to be explained when first mentioned. This has been fixed. For changes, please see Supplementary Figure 1, and line 103.

5. In Figure 2, the Hox gene multiplexing. Are bright foci representing active transcription bursts? Is it still possible to count mRNA dots in these foci? When plotting the distribution of mRNA expressions of these genes with direct evidence of active transcription, does the histogram have a long tail? Discussion of this point can be combined with Figure 3 discussion. Hox genes are generally long, ranging from ~10kb (Dfd) to ~103kb (Antp), therefore tend to show large bright transcriptional sites, representing a localized accumulation of multiple nascent RNAs in the process of transcription along the gene length. Therefore these bright foci are not so much individual bursts as they are more persistent marks of ongoing active transcription through the gene length. Intensity of transcription sites
can in principle be quantified, compared to single mRNA spot intensity, and the nascent RNA number inferred (PMID: 25728770). This approach may be relevant for long genes where much RNA is held at the transcription site, and for questions concerning transcription dynamics. A note about transcription site quantification has now been included in the Figure 2 discussion.

For changes, please see lines 134-139.

Reviewer #2:

Calvo et al. have adapted an existing single molecule FISH method, previously developed for cultured cells, to whole mount preparations. They demonstrate that the method works for embryos and tissues from a handful of arthropods. Using deconvolution and spectral unmixing, they show that up to eight genes can be assessed in whole mounts. They present a membrane labeling protocol compatible with their FISH method. They also present two straightforward measurements of cell-to-cell variability.

The mRNA labeling method will certainly be regarded by the community as a valuable cost-saving measure. The compatibility with membrane labeling will also be very useful for cell segmentation. Demonstrating the application of spectral unmixing is also useful. These are valuable additions to the toolbox of single mRNA molecule detection. However, the quantification is not rigorous and detracts from the manuscript. The manuscript otherwise contains no novel conclusions. The work might be more appropriate for a methods-centric publication once the authors address concerns about the quantification and measurement error outlined below.

This work is indeed intended as a methods paper, and aims to present a methodology pipeline for multi-gene mRNA quantification and cell-to-cell variability analysis in whole embryos. We do not aim to draw any particular biological conclusions from the specific genes imaged and quantified.

1) To advance the use of single molecule FISH in whole mount tissues, it is essential to present the evidence that the procedure and subsequent analysis correctly measure mRNA density. But the mRNA counts per cell presented here are not consistent with previous studies. Further, to ascertain the extent of biological variability requires accounting for measurement error, but this has not been done. Sources of measurement error that the authors should account for include:

We agree that it is important to demonstrate accuracy of the quantitation method. The original smiFISH publication (PMID: 27599845) thoroughly assesses the accuracy of smiFISH detection in cell culture, so we did not originally consider it necessary to repeat validations of the smiFISH technique. However, since we are applying smiFISH to whole embryos, and using a different image analysis software (Imaris), we recognize that separate validations of quantification accuracy are important and will strengthen the work. We have therefore performed additional experimental work to assess the accuracy of our quantitation in different ways, and these validations are provided in a new Supplementary Figure 2.

While our numbers are lower than those reported in PMID: 23953111, our range of maxima are consistent with several other studies that quantify mRNAs of early patterning genes. Boettiger and Levine 2013 quantify snail mRNA/cell and report maxima ranging from ~150 to 300 per cell across multiple embryos at nc14 (PMID 23352665). Hoppe et al. 2020 quantify u-shaped (ush) and hindsight (hnt) mRNA/cell and report maxima ranging from ~80-280 (ush) and ~120-240 (hnt) per cell across multiple nc14 embryos (PMID 32758422). Bothma et al. 2014 report a maximum of ~250 eve mRNA/nucleus in eve stripe 2 at nc14 (PMID 24994903).

1 i) Detection failure. The authors should estimate the extent of under-counting using two sets of probes labeled with different colors and directed against the same mRNA. Moreover, at a glance the failure rate appears quite high in the case of nos mRNA, single mRNAs of which are densely distributed through the entire oocyte (PMID: 9895314, 25848747).

In Supplementary Figure 2 a & b, we present this suggested two colour test for Kr, and confirm strong agreement in mRNA/cell detected between the two probe sets, indicating minimal under-counting due to detection failure. This two colour test is a useful addition to the methodology pipeline we present, allowing
detection failure to be measured and factored into quantifications where absolute mRNA numbers are critical.

For changes, please see Supplementary Figure 2 and lines 205-208.

We do not agree that our failure rate for nos detection is high; instead we believe that it is an issue of developmental timing. We detect abundant nos mRNAs in the nurse cells, significant accumulation at the anterior oocyte edge, and marginal accumulation at the posterior pole, which is expected for a stage 10 egg chamber, and is consistent with previous studies. For example, one of the studies indicated (PMID: 9895314, Figure 7) and another (PMID: 7515724 Figure 2) use less sensitive classic in-situ, and failed to detect any posterior nos mRNA at stage 10, with first detection observed at stage 12, and the majority of accumulation at stages 13 and 14 (PMID: 7515724). Similarly, a live imaging study first detected marginal posterior nos mRNA accumulation at stage 11, again with the majority of accumulation occurring later at stages 12 and 13 (PMID: 12867026). The publication indicated (PMID: 9895314) states the following: “...endogenous nos RNA are highly abundant in the nurse cells at stage 10 (asterisk). This RNA cannot be detected in the oocyte until after stage 10 when the nurse cells empty their contents into the oocyte (not shown).” This publication does not show that nos mRNA is densely distributed throughout the oocyte; it shows that it is distributed throughout embryos. The other paper indicated (PMID 25848747) reports distribution of nos mRNAs throughout embryos (with accumulation at the posterior pole), but does not show dense distribution throughout the stage 10 oocyte; it shows increasing accumulation of nos RNAs at the posterior end of the oocyte, from stage 10 to stage 13. The paper states: ‘Synthesized by the ovarian nurse cells, nos enters the oocyte en masse when the nurse cells “dump” their contents at the end of stage 10 and becomes distributed throughout the oocyte by diffusion and the concurrent streaming of the oocyte cytoplasm (ooplasm)’. It also states ‘...we observed continuous accumulation of nos in granules at the posterior of the oocyte beginning at stage 10 of oogenesis, nos-containing granules increase in both number and mRNA content up until the oocyte reaches maturity at stage 14’. We therefore consider that our early stage 10 egg chamber staining is consistent with previous publications, and captures the earliest beginnings of posterior nos accumulation.

1 ii) mRNA crowding. mRNAs will be undercounted at a rate that increases with increasing density. This is not accounted for in the manuscript, but has a major impact on any conclusions about variability. The authors do appear to be undercounting the gap gene mRNAs. For example, Kr has a maximum density of around 1000 mRNA per cell, where the basal extent of the cell is taken at 12 microns below the cortex (PMID: 23953111).

We have directly addressed mRNA crowding experimentally in Supplementary Figure 2 c & d, by imaging Kr mRNAs with 40X objective then with 100X objective, through identical z depths in the same embryo, to determine whether at lower magnification spots are overcrowded and consequently undercounted. Visual inspection of Imaris spot detection shows successful separation of crowded touching spots at both magnifications. We found a slight increase in detection efficiency at 100X compared with 40X, (Supplementary Figure 2d, 40X mean=54, max=136, 100X mean=66, max=142, non-zero cells only). This difference is modest and cannot account for the difference between our numbers and the maximum 1000 mRNA per cell stated.

We further considered whether differences in either embryo age, the depth of imaging, or embryo to embryo biological variability, may account for the difference between our Kr mRNA numbers and the maximum ~1000/cell figure. Using identical settings, we quantified Kr mRNAs in an additional 12 blastoderm embryos, imaged beyond the basal limit of membrane ingression to z-depths of up to 24um, starting just above the most apical mRNAs and ending just below the most basal ones. This captured every mRNA through the cytoplasmic depth, in a variety of different aged embryos, as measured by the degree of membrane ingression. Across the 12 embryos, maximum mRNA/cell ranged from 123 to 337. Since deep imaging was used to ensure inclusion of every mRNA, it is clear that z-stack depth is not responsible for the difference between our Kr counts and the previously reported 1000 mRNA/cell maximum. The substantial biological variability we find between embryos imaged and quantified identically, is consistent with the wild-type embryo to embryo variability found for snail mRNAs in Boettiger and Levine 2013 (PMID 23352665). This biological variability may account for some of the difference up to ~200 mRNA/cell, but
still cannot reconcile the full difference with the 1000 mRNA/cell maximum figure.

For changes, please see Supplementary Figure 2, and lines 208-231, 487-490.

1 iii) Tissue deformation upon processing and mounting. The fixing and mounting procedure can alter the apparent density of mRNAs and nuclei and can be a dominant source of measurement error (PMID: 23953111, Fig. S2). In the current manuscript, such deformation might well contribute to measurement error, given the clear spatial correlations in the variability shown in Fig. 5G. For example, Kr variability approaches the Poisson limit in the most rapidly expressing regions of the embryo, i.e. Fano factor = 1 (PMID: 23953111, Fig. S6); however, in the current manuscript, the Fano factor clearly exceeds 1 in this region, and the Fano factor exhibits spatial correlations around 4-5 nuclear diameters. This is consistent with local tissue deformations impacting the counts per cell.

We consider that the spatial correlations in variability arise from shared positional identity of the cell in the context of the expression pattern. Cells in similar regions have similar levels and combinations of upstream transcription factors present, and consequently would be expected to show similar behaviour in terms of expression variability. This seems evident from the fact that spatial patterns in variability closely match the gene expression patterns themselves. For this spatial correlation in variability to be explained by tissue deformation, the physical deformations would inexplicably need to occur in patterns matching the gene expression domains.

2) As a final point, the usefulness of the two new measurements of variability is not immediately clear. As a means of assessing variability between cells, it might be more informative to assign each cell a value based on how many standard deviations away from the "neighborhood mean count" that cell is found, and a p value to say whether that distance is significantly larger than expected. None of the measurements presented (including the Fano factor) help the reader understand whether the mRNA content of a given cell is significantly larger (or smaller) than expected.

We have tested this suggestion of expressing the variability as number of standard deviations the cell mRNA number is from the 'neighbourhood mean count', which is the Z-score. The attached variability measures spreadsheet below shows that the Z-score performs similarly to our numerical variability (NV), returning identical values for regions 1, 3 & 4, which have identical variability in absolute mRNA number, and a lower score for region 2. However, like NV, the Z-score does not differentiate the proportional difference between regions 3 and 4, whereas our proportional variability (PV) measure does reflect this difference. The Z-score does potentially have the advantage of assigning a p value to the score, however, this relies on the assumption that the data is normally distributed. For many cells, the neighbour number is either too low to test for normality, or the neighbour counts are non-normally distributed (for example, giant, normality test error: 36% of neighbour groups, non-normal: 10% of neighbour groups, normal: 53% of neighbour groups). Non-normality may be expected for genes expressed in discrete patterns, where some neighbour groups will lie on expression boundaries. The Z-score may be a useful alternative to NV, in applications where mRNA is being compared among larger groups of cells within a given area of tissue, as opposed to just touching neighbours, since a greater neighbour number would allow the assumption of a normal distribution to be tested. A normally distributed neighbour group may also be more likely for ubiquitously expressed genes, than genes expressed in discrete domains. The measures PV and NV do faithfully reflect absolute numerical variability and proportional variability of a given cell, with respect to its direct neighbours. To interpret the significance of these scores, statistics can subsequently be performed on the raw NV and PV values, depending the biological question. For example, cells with a NV or PV score significantly higher than the population mean score can be identified, to highlight the most ‘abnormally variable’ cells within the embryo. Additional text discussing this has now been included in the discussion section.

For changes, please see lines 348-355.
Variability measures spreadsheet:

Region	Cell Count Data	Region Total	Region Mean	Region Variance	Neighbours	\(\bar{I} \) [X1-Xn]	I [X1-Xn]/n	NV \((I[X1-Xn]/n) /\text{max-P} \)	PV \((I[X1-Xn]/n) /\text{max-N} \)	Neighbour Mean	Neighbour SD	Centre Cell SD From Neighbour Mean			
1	101	101	101	808	89.78	1108.44	12.35	8	799	99.875	0.09	0.9888651386	100.875	0.3535534	282.4891591
2	1	101	101	809	89.80	1111.11	12.36	8	100	12.5	0.01	0.123762376	88.3	0.3535539	0.35355391
3	2	101	101	110	12.22	1108.44	90.69	8	799	99.875	0.09	0.988861386	1.125	0.3535534	282.4891591
4	1099	1100	1100	979	1088.78	1108.44	1.02	8	799	99.875	0.09	0.990795455	1098.875	0.3535534	282.4891591
smiFISH and embryo segmentation for single-cell multi-gene RNA quantification in arthropods

Lilians Calvo†, Matthew Ronshaugen and Tom Pettini†*

Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK

† Equal contribution
* Correspondence: tom.pettini@manchester.ac.uk, pettini.tom@gmail.com

ABSTRACT

Recently, advances in fluorescent in-situ hybridization techniques and in imaging technology have enabled visualization and counting of individual RNA molecules in single cells. This has greatly enhanced the resolution in our understanding of transcriptional processes. Here, we adapt a recently published smiFISH protocol (single-molecule inexpensive fluorescent in-situ hybridization) to whole embryos across a range of arthropod model species, and also to non-embryonic tissues. Using multiple fluorophores with distinct spectra and white light laser confocal imaging, we simultaneously detect and separate single RNAs from up to eight different genes in a whole embryo. We also combine smiFISH with cell membrane immunofluorescence, and present an imaging and analysis pipeline for 3D cell segmentation and single-cell RNA counting in whole blastoderm embryos. Finally, using whole embryo single-cell RNA count data, we propose two alternative single-cell variability measures to the commonly used Fano factor, and compare the capacity of these three measures to address different aspects of single-cell expression variability.
INTRODUCTION

For many years, RNA in-situ hybridization (ISH) and immuno-staining have been the methods of choice for studying gene expression patterns, but have not generally been used to quantify expression levels beyond qualitative differences. This is because signal amplification steps introduce intensity variation and nonlinearity in detection precluding quantitative comparison, and off-target probe or antibody binding can produce substantial false positives. Instead, quantification of gene expression has largely relied on quantitative PCR, microarrays, nanostring technology and bulk RNA-seq. These techniques usually provide only relative expression levels rather than actual RNA numbers, across a pool of cells, so a wealth of information concerning cell to cell variability is lost. More recently, single-cell versions of these techniques have been developed, allowing for the first-time quantitation of cell differences in gene expression, known to be critical in influencing single-cell behaviours, differentiation and disease. However, the spatial context of the cells with respect to both their neighbouring cells, and to the larger tissue or embryo is still lost.

Recently, these limitations have been overcome by the development of single-molecule fluorescent in-situ hybridization (smFISH), which employs multiple short ~20nt gene-specific DNA probes directly labeled with fluorophores. When multiple short probes bind to target RNA, the single RNA molecules can be visualized and counted as discrete fluorescent spots. Accurate quantification is possible because both false positives and negatives are minimized, since a single off target smFISH probe is below detection limits, and a false negative is unlikely as this would require that most of the ~40 probes miss the same target molecule. Furthermore, cells remain fixed within the sample rather than being dissociated, so RNA number can be quantified on a cell by cell basis in the spatial and temporal context of the sample. A variant of smFISH was recently developed, in which the gene specific probes have an additional 28nt flap sequence added to the 5’ end, rather than being directly tagged with fluorophore. This flap sequence is identical for all probes in the set. The complementary sequence to the 28nt flap is synthesized with a fluorophore of choice attached to 5’ and 3’ ends, and then prior to use, the complementary flaps are annealed, creating gene specific probes that are now fluorophore-labeled. This simple change in probe preparation vastly decreases cost, since only a single flap sequence is labeled with fluorophore, rather than each unique gene-specific sequence. Accordingly, this approach is termed single-molecule inexpensive FISH (smiFISH).

The original smiFISH publication tests the technique in cultured mammalian cells. In this study, we modify the protocol, and show it to be effective in early and late embryos from five extant and emerging arthropod model species, and also in non-embryonic tissues, specifically Drosophila imaginal discs and ovaries. We also test the compatibility of a suite of different commercially
available fluorophores, in combination with confocal imaging and a white-light laser, to attain the maximum number of different RNAs that can be visualized simultaneously in the same sample. We combine smiFISH with immunofluorescence for detection of cell membranes, and present a clearly defined analysis pipeline for whole embryo cell segmentation in 3D image stacks, and single-cell RNA quantification for multiple genes. To enable analysis of single-cell variability, we develop an automated method for identifying the immediate neighbours of each cell in the embryo. The Fano factor, (variance/mean) is commonly used to measure cell variability in expression level17, however, due to its limitations, here we offer two alternative measures of variability that better capture individual cell behaviour, and compare the capacity of each method to address different biological questions.

RESULTS

Adaptation of smiFISH to arthropod embryos and tissues

smiFISH was originally tested in cultured mammalian cells16. Here we applied the smiFISH protocol, with modifications, to embryos of five different arthropod model species – Drosophila melanogaster and Drosophila virilis (fruit flies), Nasonia vitripennis (parasitoid wasp), Tribolium castaneum (flour beetle), and Parhyale hawaiensis (amphipod crustacean). The evolutionary divergence times of these species is shown in Supplementary Figure 1. We also tested Drosophila imaginal discs and ovaries.

Our protocol simplifies the original smiFISH buffers, omitting E. coli tRNA, BSA and vanadylribonucleoside complex. 1X PBS is swapped for 1X PBT to avoid embryo or tissue clumping, and we also increase the number and duration of washes, to account both for the fact that embryos and tissues are thicker and more complex than cells, and that complete removal of solutions between washes is less feasible.

An identical protocol was used for all species and tissues, the only minor differences were in the sample fixation method, and the final mounting (detailed in online methods). Across species, we stained for the same two genes, even-skipped (eve) in early embryos, and engrailed (en) in later embryos (Figure 1). Single mRNA resolution was achieved in embryos of all species, with very low non-specific background, evident from the regions outside of stripes that are devoid of signal. In both Drosophila species (diverged ~50 million years ago), eve is expressed in seven stripes. Classically, eve stripes detected with normal ISH or immuno-staining tend to have a discrete appearance19-21, but here magnified panels showing the regions in between stripes at single molecule resolution reveal that eve is expressed throughout the entire region enclosed by the seven stripes. The stripes represent waves of alternating high and low expression. In accordance with previous observations, eve shows
different patterns in *Tribolium*, *Parhyale* and *Nasonia*, which may reflect distinct upstream regulatory inputs, and the differing modes of segmentation in these species compared with *Drosophila*\(^{22-24}\).

Imaginal discs were stained for *en* and *wingless* (*wg*) (Figure 1). Both genes have regions within the wing disc with markedly different expression levels (*en*, magnified panel), and both sharp and diffuse boundaries (*wg*, magnified panels), presumably arising from regional differences in transcriptional regulation. Ovaries were stained for *bicoid* (*bcd*) and *nanos* (*nos*) RNAs (Figure 1). In the stage 10 egg chamber shown, both genes are highly expressed in the nurse cells. As expected, *bcd* RNAs accumulate at high density at the anterior edge of the oocyte, with a gradient of decreasing concentration towards the posterior\(^{25,26}\). *nos* RNAs are also abundant at the anterior edge of the oocyte, but additionally show the beginnings of some accumulation at the posterior pole, visible in the magnified panel\(^{27,28}\). The high sensitivity of smiFISH reveals the earliest onset of posterior *nos* localization at stage 10, earlier than previously observed by classic in-situ\(^{27,29}\) (stage 12), and live imaging\(^{30}\) (stage 11), but similar to previous FISH staining\(^{31}\) (stage 10). The majority of posterior localization of *nos* RNAs occurs during the last stages of oogenesis (stages 13/14)\(^{27,30}\), so accordingly, posterior localization of RNAs in the stage 10 egg chamber shown is minimal.

Simultaneous multi-gene visualization at single molecule resolution

Tsanov *et al.* 2016 show that since smiFISH flaps are first annealed in vitro, probes using the same flap sequence but with different fluorophores can be used together without crossover. Using only the X flap sequence for all smiFISH probe sets, we tested the performance of multiple fluorophores, alone and in combination, with the aim of identifying a maximum set with separable spectra, that would allow simultaneous detection of multiple distinct gene expression patterns at single molecule resolution. We were able to separate nine colours; eight *Drosophila* Hox genes at single molecule resolution together in the same embryo, plus DAPI to stain nuclei (Figure 2). Probe/fluorophore combinations are supplied in Supplementary Table 2. The image is provided as a high resolution supplementary file 1, where both transcriptional sites, and single mRNAs can be observed with zoom. Long genes tend to show large bright transcriptional sites, representing a localized accumulation of multiple nascent RNAs in the process of transcription along the gene length, for example, *Antp* (~103kb) and *Ubx* (~78kb). Depending on the question, it may be informative to determine nascent RNA number. This can be achieved by calculating the ratio of the transcription site intensity to single mRNA spot intensity, to infer polymerase occupancy\(^{32}\).

To view eight genes together, optimal excitation and collection from each fluorophore is essential to avoid bleed-through between channels. This image was acquired using a Leica SP8 confocal with white light laser, tunable to each specific excitation wavelength. Narrow collection windows of
~20nm were set, corresponding to emission peaks of each fluorophore. Line averaging 16x, and high resolution 4096 x 4096 format enabled single RNAs to be resolved. Despite settings that minimized bleed-through, some still persisted between certain channels, so the image was spectrally unmixed following acquisition. To avoid the need for spectral unmixing, a six colour stain using DAPI, AlexaFluor 488, Quasar 570, CalFluor 610, Quasar 670 and Quasar 705 is ideal.

Whole embryo segmentation for single-cell multi-gene RNA quantification

The primary advantage of smFISH is to quantify RNA on a cell-by-cell basis, while preserving positional context. Distinguishing individual cells in culture is straightforward if spacing is sufficiently sparse, but in embryos or tissues is more challenging, and requires a cell membrane marker and segmentation. We tested the compatibility of smiFISH with cell membrane immunofluorescence using a panel of different *Drosophila* antibodies, and found that immunofluorescence is best incorporated after smiFISH, not before. We identified alpha-Spectrin as an ideal marker that clearly defines cell boundaries and is least compromised by the prior smiFISH steps.

To quantify RNAs from multiple genes in single cells, we performed smiFISH in *Drosophila* embryos for four gap genes expressed at blastoderm stage - *hunchback (hb)*, *giant (gt)*, *knirps (kni)* and *Kruppel (Kr)*, the pair rule gene *eve*, and marked cell membranes by Spectrin immunofluorescence (Figure 3a). For probe/fluorophore combinations see Supplementary Table 2. Spectrin staining forms a clear cell border in z-slices where the cells are in cross-section (Figure 3b). In cellular blastoderm *Drosophila* embryos, cell membranes are in the process of ingressing between nuclei, but have not yet sealed off the basal side, causing Spectrin staining to fade out basally. mRNAs can be observed at z-planes beyond this basal membrane limit, but it is not possible to know with certainty which cell these basal mRNAs originated in. Therefore, for the purposes of cell to cell variability comparison, quantitation was limited to z-planes between the apical side and the basal limit of membrane ingestion. For segmentation, a core set of an initial 20 z-slices that do show clear cross-sectional Spectrin staining was identified, and the bottom slice of this core then replicated to extend through an additional 28 slices to the basal limit if membrane ingestion where Spectrin staining disappeared. The cells module in Imaris software was used to segment the embryo in 3D through the full 48 slice z-stack (Figure 3b, middle panel), and the spots function to identify individual RNAs for each gene, which are then automatically assigned to cells (Figure 3b, bottom 2 panels). Details of Imaris analysis steps are provided in online methods.

Heatmaps display the number of mRNAs of each gene, in each cell of the embryo up to the basal cell membrane ingestion limit (Figure 3c). These illustrate that all five genes show expression domains
with graded, rather than sharp borders, consistent with the gap expression patterns being established
in response to maternal morphogen gradients such as bicoid, within a syncytial embryo. Separate
expression domains of the same gap gene show different overall expression levels, suggesting that
transcriptional regulation varies with cell position. Histograms of single-cell data are shown in Figure
3d (cells with zero RNA excluded). For cultured cells, the shape of histogram distributions of this
type has been used to make inferences about promoter behaviour\(^3^3\), based on an assumption that the
promoter in each cell has a common behaviour shared throughout the cell population, leading to a
certain signature evident from the distribution. For example, a promoter with high bursts of
transcription followed by long off periods is expected to produce a distribution with a long tail to high
values\(^3^3\), similar to that found here for eve. However, it is important to note that such inferences
cannot be made for non-ubiquitously expressed genes in whole embryos and tissues, as the
assumption does not hold true. The distributions in Figure 3d represent a mixed population of cells,
where each gene shows a variety of different transcriptional behaviours, depending on spatial position
within the embryo. The resulting variety in histogram shapes is therefore just a reflection of the
different gene expression patterns, not the product of a common promoter behaviour. To illustrate this
point, compare the histograms for Kr and eve. Kr is primarily expressed in a single broad stripe. The
low proportion of cells with 15-65 RNA represents the swift spatial transition between very low
expressing edge cells, and high expressing cells within the stripe, while the bump between 65-130
corresponds to the large number of high expressing cells within the stripe. In contrast, eve is
expressed in seven narrow stripes. Multiple stripes means more edges, so a high proportion of cells
have intermediate RNA numbers, filling out the 6-65 bins, and a lower proportion of high expressing
cells in the centre of stripes, so loss of the bump between 65-130. The histogram shapes of these
genes are therefore explained by their patterns, and are not an emergent property of a consistent
promoter behaviour.

To verify the accuracy of spot detection, two interleaved sets each of 41 smiFISH probes against Kr
mRNA were labelled in two different colours (CalFluor 610 and Quasar 570), imaged simultaneously
and counted (Supplementary Figure 2 a & b). This confirmed high correlation in Kr mRNA/cell
detected in each colour (Spearman \(r = 0.99, P<0.0001 \)). To check the accuracy of spot quantification
at 40X and the degree of undercounting due to mRNA crowding, Kr mRNAs were imaged in the
same embryo first with 40X objective, then with 100X, and spots quantified using the same detection
threshold (Supplementary Figure 2 c & d). At both magnifications, visual inspection of Imaris spots
confirmed detection of both strong and faint spots, and successful separation of closely touching spots
(Supplementary Figure 2c). A comparison of Kr mRNA/cell between the two magnifications showed
a slight significant increase in detection rate at 100X, likely due to improved separation of very close
proximity mRNAs (Supplementary Figure 2d, 40X mean=54, max=136, 100X mean=66, max=142,
non-zero cells only). For biological questions where absolute mRNA number is critical, or for genes with densely expressed mRNAs, imaging at 100X may therefore be advantageous. However, for lower expressed genes, for nascent transcription site analysis, or where whole embryo data is more critical than absolute numbers, then lower magnification 40X imaging is preferable.

The embryo shown in Figure 3 was imaged and quantified only to the basal extent of membrane ingression, to ensure accurate assignment of mRNA spots to individual cells. To determine absolute mRNA numbers (but without assured accuracy of cell assignment), and to assess biological variability, we analysed Kr mRNA expression an additional 12 blastoderm embryos through the full depth of smiFISH signal, beyond the extent of membrane ingression. mRNA spots were detected through a depth of up to 120 z-slices (24μm) (Supplementary Figure 2 e & f). Embryos were sorted into age order by measuring the degree of membrane ingression between nuclei, determined from a cross-sectional plane in the Spectrin channel (Supplementary Figure 2g), and Kr mRNA spots per cell quantified using identical imaging and spot detection settings for all embryos (Supplementary Figure 2h). Kr showed substantial biological variability between embryos, but not correlating with embryo age. Embryos showed maxima that ranged from 123 to 337 Kr mRNA/cell.

Automated cell neighbour detection for cell to cell variability analysis

To assess variability in gene expression, one can analyze the mean and spread of RNA values within the whole population of cells, and compare individual cells to this distribution. However, since a given gene may show complex patterns comprising different domains expressing at different levels, analyzing cells together as a single pool may not be informative. Single-cell variability is better addressed by comparing variability between a cell and its immediate neighbours. We define immediately neighbouring cells as those that directly share a membrane border in the Spectrin channel.

Using a 2D segmentation plane from the embryo shown in Figure 3b, immediate neighbour number of each cell was manually counted in half of the embryo (Figure 4a), giving a range of 2-8, with the frequency distribution shown in Figure 4d. To automate neighbour detection, the spots function in Imaris was employed with a low threshold to detect ~80,000 spots in the Spectrin channel, providing a dense representation of the membrane as spots (Figure 4b). A custom R code was developed that uses both Spectrin spot coordinates and the cell ID to which each spot belongs, to construct 3D polygons that closely matched the original segmentation (Figure 3C). Each polygon was slightly expanded in 3D by 0.6μm (approximately 10% of a cell diameter), causing polygon boundaries to now intersect with just their immediate neighbours. The code then detects all intersections, producing for each polygon a list of directly neighbouring polygons (cells). The neighbour distribution obtained by this automated method closely matches the manual count distribution (Figure 4 d & e). To confirm agreement between manual and automated methods for specific cells, the neighbour number obtained
with each method was compared for the first 200 cell IDs (Figure 4f). 87% of the 200 cells had perfect agreement, and the maximum discrepancy between methods was +/- 1 neighbour.

The strength of this polygon method over a more simplistic neighbour search radius approach is that the polygon expansion factor is a small fraction (~10%) of the average cell diameter, therefore serves to exclusively identify only directly bordering cells, even in tissues with different cell sizes and shapes. For certain studies, comparing cells within a given area of tissue may be more meaningful than limiting to only touching cells. To provide this as an alternative option for the analysis pipeline, we also developed code to calculate the Euclidian distance between the centre point coordinates of every cell, and then filter by a specified radius, to return for each cell a list of all neighbours within that radius. All code is provided via the link under ‘code availability’.

New measures to capture numerical and proportional single-cell variability

The smiFISH panels in Figure 5b show eve-expressing cells from an early germband Parhyale embryo, and highlight how a single cell can have a markedly different expression level from its immediately adjoining neighbours. Such single-cell variability within a population has been shown to have important biological relevance, for example in fate determination¹¹, cell behaviour⁹, and disease¹². Fano factor is a commonly used measure of local mRNA variability, and is calculated as variance/mean (Figure 5a). Variance and mean are population measures, so all cells in the group are assigned the same Fano factor value, the resolution of which is therefore dictated by the size of the neighbour group. However, Fano factor cannot distinguish single variable cells within the neighbour group. This is illustrated by comparing the three hypothetical scenarios depicted in Figure 5 c, d & e. The centre cells in panels c and e are equally different from their neighbours, both proportionately and numerically, whereas the centre cell in panel d is not very variable, being the same as all but one of its neighbours. However, Fano factor fails to distinguish any difference between c and d (both 6.11) and incorrectly finds e much more variable than c (42.37 vs 6.11). To overcome this limitation, we devised two alternative variability measures, the local numerical cell variability (NV), and the local proportional cell variability (PV) (Figure 5a). Both measures express how different an individual cell is from its immediate neighbours. NV is normalized by the maximum mRNA per cell for the whole cell population, therefore a high NV value highlights cells whose mRNA difference from their immediate neighbours is numerically large in terms of the maximum level at which that gene can be expressed. PV is normalized by the maximum just for the neighbour group, and so high PV does not necessarily mean a large difference in actual mRNA number, just that the cell has a high proportional difference from its neighbours. Both measures return values between 0 (no variability) and 1 (maximum variability). In the scenarios shown in Figure 5 c-f, 550 is used as the population maximum. Both NV and PV find the centre cells in scenarios c and e to be equally variable, and d to
be less variable. Importantly, NV is the same between scenarios c, e and f, since the numerical RNA
difference between the centre cell and each neighbour is the same, whereas PV finds scenarios c and e
to be proportionally more variable than f.

Fano factor, NV and PV were calculated for the five genes shown in Figure 3, using neighbours
defined by the automated neighbour detection method (Figure 4). Variability scores are displayed as
heatmaps (Figure 5g). Cells outside of expression domains that have a single mRNA, surrounded only
by non-expressing neighbours, have the maximum PV score of 1. While this is correct, we were more
interested to highlight cells that had high PV within actual expression domains. Therefore when
calculating PV, cells were filtered on the criteria of neighbour group mean ≥1; cells failing this
criterion were assigned a score of 0. The heatmaps show how Fano factor, NV and PV highlight
different aspects of variability. Fano factor picks out the edges of expression domains. It acts like a
moving average variability, and therefore highlights the regions (but not individual cells) where RNA
number is changing the most with position. Within the centre of expression domains, Fano factor is
generally low, suggesting a similar expression level. In contrast, NV can highlight individual cells
within the centre of domains that have a high difference in mRNA number from neighbours; cells that
were overlooked by the Fano factor. For example, contrast NV and Fano factor for kni and Kr. PV
highlights cells that are proportionately most different from neighbours, which tends to be cells at the
extreme edges of domains, at the transition between off and on. However, individual cells with high
PV can still be observed throughout expression domains of each gene.

DISCUSSION

Whole genome DNA and RNA sequencing is becoming increasingly feasible and affordable, and
consequently the number of non-model organisms with whole or partial genome sequence is rapidly
growing. Since only ~1kb of gene sequence is required to design a probe set, smiFISH can be applied
with ease to non-model species, revealing both expression patterns and levels. Here we have tested
smiFISH, with modifications, across a range of arthropod species and sample types, and found that it
enabled single mRNA visualization with consistency and high specificity. We also combined
smiFISH with subsequent membrane immunofluorescence, allowing whole embryo single-cell
segmentation. The anti Drosophila alpha-Spectrin antibody used did not work in the non-Drosophilid
species tested, so appropriate species-specific membrane antibodies are required for use in different
organisms.

smiFISH makes multiplexing simple and flexible, and therefore imaging becomes the limitation on
how many genes can be viewed together. Using an imaging strategy to optimize fluorophore
excitation and capture of emission peaks, we could image nine different channels simultaneously (with spectral unmixing), or six channels without unmixing. The capacity to image more genes simultaneously is advantageous as it allows more potentially interacting genes to be studied within the same cells, thus eliminating error due to sample variability.

A major strength of smFISH is that position of the cell within the sample is preserved, which allows variability to be analysed on a cell by cell basis. We compared a commonly used measure of cell variability, the Fano factor, with two alternative measures termed NV and PV, that were devised to better highlight individual cell variability. Each measure has its own strengths and limitations, and therefore is appropriate for different applications. The Fano factor highlights regions where the RNA number is changing most with cell position, but was not capable of comparing individual cells to their immediate neighbours. In contrast, NV was effective at highlighting individual cells that were markedly different numerically in mRNA from their neighbours. NV is therefore a relevant measure for questions where the absolute RNA number is important, for example when a threshold expression level is required for a particular process to occur \(^{34,35}\), or post-transcriptional buffering mechanisms that maintain constant mRNA levels \(^{36,37}\). PV also effectively highlighted individual cells that differed from their neighbours, but in proportional expression rather than actual. The PV measure is most relevant for questions involving the mechanisms of RNA production, such as promoter dynamics, and the effects of enhancers and transcription factors. Large PV values may indicate fundamentally different transcription dynamics between cells. This is not necessarily true of high NV, which could be attained in a region of high expressing cells all displaying the same fundamental promoter behaviour, but with some stochasticity that causes a proportionally small, but numerically large RNA difference between cells \(^{38,39}\).

Depending on the biological question, statistics can subsequently be performed on the NV and PV values. For example, cells with a NV or PV score significantly higher than the population mean score can be identified. We envisage that this approach may be useful in cancer studies, to highlight within a tissue the most ‘abnormally variable’ cells with respect to their neighbours. Similarly, PV and NV can be compared statistically between different genotypes or experimental conditions, to assess how specific factors affect expression variability. For example, the effect of microRNAs on buffering mRNA fluctuations could be assessed by comparing PV and NV between samples with and without the microRNA present.

In summary, this work provides a straightforward methodology applicable across a variety of different animal systems, enabling in-depth molecular analyses that traditionally were only feasible in established model systems. Our analysis pipeline to obtain single-cell RNA counts in whole embryos
is relevant for studying diverse aspects of expression analysis, and we anticipate that the detailed
multi-colour imaging strategy provided here will prove valuable for analysis of gene networks.
Finally, it is our view that methods to appropriately analyze spatial cell to cell variability will yield a
new level of information critical to understanding how individual cell behaviors lead to biological
outcomes.

METHODS

Solutions

50% bleach: 50% sodium hypochlorite solution in distilled H$_2$O. Embryo wash buffer: 0.1M NaCl,
0.02% triton X-100 in distilled H$_2$O. Fix solution: 0.5ml 10X PBS (Sigma, without CaCl$_2$ and MgCl$_2$),
0.5ml nuclease-free H$_2$O, 4ml ultrapure 10% methanol-free formaldehyde (Polysciences), 5ml
heptane 99% (Sigma). PBT: 1X PBS (Sigma, without CaCl$_2$ and MgCl$_2$), 0.05% tween-20 (Sigma), in
nuclease-free H$_2$O. smiFISH wash buffer: 2X SSC, 10% deionised formamide (Ambion) in nuclease-
free H$_2$O. smiFISH hybridization buffer: 10% w/v dextran sulphate (Sigma, molecular weight 6,500-
10,000), 2X SSC, 10% deionised formamide in nuclease-free H$_2$O. Blocking solution: 1X western
blocking reagent (Sigma) in PBT.

Sample fixation

Drosophila embryos collected on apple juice agar plates at 25°C were dechorionated with 50% bleach,
alternately washed with distilled water and embryo wash buffer, and shaken in fix solution at 240rpm
for 45 minutes. The aqueous solution layer was removed, 10ml 100% methanol added, and shaken for
1 minute to devitellinize embryos. Devitellinized embryos were washed 5x with 100% methanol, then
stored in 100% methanol at -20°C. Fixed Tribolium embryos were kindly provided by Olivia Tidswell
from Michael Akam’s lab. Tribolium were dechorionated and fixed as described for Drosophila, but
for increased devitellinization efficiency, embryos were passed through a 19G needle in ice-cold
100% methanol. Fixed Nasonia embryos were kindly provided by Shannon Taylor from Peter
Dearden’s lab. Parhyale embryos were manually collected from females anaesthetized with 0.01%
clove oil in sea water. Embryos were washed 3x with filtered sea water, transferred to fix solution,
and shaken at 240rpm for 45 minutes. Embryos were then transferred to a glass dish in 1X PBS, for
manual removal of the chorion and vitelline membrane using tungsten needles. Dissected embryos
were transferred to a second fixation solution of 4% formaldehyde in 1X PBS for 1 hour, before
washing 5x in 100% methanol and storage in 100% methanol at -20°C. For imaginal discs, white pre-
pupae were chilled in 1°C 1X PBS, the cuticle opened longitudinally, and pupae fixed in a solution of
4% formaldehyde in 1X PBS for 1 hour (no rocking), before washing 5x in 100% methanol and
storage in 100% methanol at -20°C. For ovaries, adult females were thoroughly anaesthetized with
CO₂, placed in 1°C 1X PBT, and ovaries dissected out and opened to expose ovarioles. Dissected ovaries were washed with 1X PBS, then fixed and stored as described above for pupae.

Probe design and preparation

D.melanogaster and *D.virilis* mRNA sequences were obtained from Flybase (https://flybase.org); *T.castaneum*, *N.vitripennis* and *P.hawaiensis* mRNA sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov/nucleotide/). Complementary 20nt DNA probes against mRNA sequences (up to 48 probes per gene) were designed using the Biosearch Technologies stellaris RNA FISH probe designer tool (free with registration, https://biosearchtech.com). All probe sequences are provided in Supplementary Table 1. The following sequence was added to the 5’ end of each 20nt probe: CCTCCTAAGTTTCGAGCTGGACTCAGTG. This is the reverse complement of the X FLAP sequence used in Tsanov et al. 2016. Oligos were ordered from Integrated DNA Technologies (IDT), in 96 well plates, using 25nmole synthesis scale, standard desalting, and at 100μM in nuclease-free H₂O. A standard volume (we use 50μl) of each probe was added together to generate an equimolar probe mix, at 100μM (mixed probe concentration). A set of 48 probes therefore gave 48 x 50μl = 2.4ml of probe mix, which was split into 100μl aliquots for storage at -20°C. The X FLAP sequence itself CACTGAGTCCAGCTCGAAA CTTAGGAGG was 5’ and 3’ end-labeled with CalFluor 540, Quasar 570, CalFluor 590, CalFluor 610, CalFluor 635, Quasar 670, and Quasar 705, and synthesized by Biosearch Technologies. X FLAP sequence 5’ and 3’ end-labeled with Alexa Fluor 488 was synthesized by IDT. Lyophilized fluorophore-labelled FLAP was resuspended in nuclease-free H₂O to a concentration of 100μM, aliquoted and stored at -20°C.

Probe FLAP annealing

Probes were annealed to fluorophore-labeled FLAP sequences in 50μl reactions, as follows:

Component	Volume per reaction	Amount
Probe set (100μM mixed probe concentration)	2μl	200 pmol (total DNA)
Fluorophore-labelled FLAP (100μM)	2.5μl	250 pmol
10X NEB 3*	5μl	
nuclease-free H₂O	40.5μl	

*NEB 3: New England Biolabs Buffer 3 (1X composition: 100mM NaCl, 50mM Tris-HCl, 10mM MgCl₂, 1 mM DTT, pH 7.9).

When more than 3 probe sets were to be used on the same sample, probes were annealed at 5x concentration, so they could be used at 1/5 normal volume in the hybridization buffer, to avoid large
volumes of probe affecting salt and formamide concentration in the hybridization. The 5x concentration annealing reactions were set up as follows:

Component	Volume per reaction	Amount
Probe set (100μM mixed probe concentration)	10μl	1 nmol (total DNA)
Fluorophore-labelled FLAP (100μM)	12.5μl	1.25 nmol
10X NEB 3*	5μl	
nuclease-free H2O.	22.5μl	

Annealing reactions were performed in a thermal cycler according to Tsanov et al. 2016: Lid 99°C, 85°C 3 minutes, 65°C 3 minutes, 25°C 5 minutes, 4°C hold. Final annealed probes are at either 4μM (from the normal concentration annealing reaction) or 20μM (from the 5x concentrated annealing reaction). Annealed probes were stored at -20°C. Probe/fluorophore combinations are supplied in Supplementary Table 2.

smiFISH and immunofluorescence

All steps were performed in glass Wheaton v-vials (Sigma). Using glass is important because embryos and tissues stick to plastic in the smiFISH wash buffer and hybridization buffer, and the v-base helps with sample visualization and retention through the multiple solution changes. Fixed samples stored in 100% methanol were transitioned to PBT in stages: 50% PBT, 75% PBT, 100% PBT, 5 minutes per wash. Samples were washed 3x 10 minutes in PBT, then 10 minutes in 50% PBT 50% smiFISH wash buffer, before 2x 30 minute pre-hybridization washes in smiFISH wash buffer at 37°C. Annealed smiFISH probes (4μM or 20μM) were diluted in 500μl smiFISH hybridization buffer to a concentration of 80nM. Probes were hybridized with samples in the dark at 37°C for 14 hours. Samples were washed 4x 15 minutes in smiFISH wash buffer at 37°C, then 3x 10 minutes in PBT at room temperature. For immunofluorescence, samples were blocked for 30 minutes in blocking solution, then incubated with anti *Drosophila* alpha-Spectrin (DSHB 3A9) diluted 1:50 in blocking solution for 18 hours at 4°C. Samples were washed 4x 15 minutes with PBT, blocked for 30 minutes, incubated with goat anti mouse Alexa Fluor 488 (ThermoFisher) diluted 1:500 in blocking solution for 4 hours at room temperature, then washed 4x 15 minutes with PBT. In PBT, *Tribolium* and *Parhyale* embryos were manually dissected away from yolk using tungsten needles, imaginal discs were dissected away from pupal carcasses, and single ovarioles and egg chambers were dissected away from one another. All samples were mounted under #1.5 coverslips using prolong diamond antifade mountant with DAPI (ThermoFisher). Due to their size, coverslip spacers were required for *Parhyale* embryos.
Imaging

Images were acquired on a Leica TCS SP8 AOBS inverted gSTED microscope using a 40x/1.3 or 100x/1.4 HC PL APO (oil) objective. Image stacks for each different species, imaginal discs and ovaries were taken with the following settings: format 2048x2048 or 4096x4096, speed 400Hz unidirectional, sequential line scanning, line averaging 8 or 16, pinhole 1 airy unit. Each channel was gated 1.0-6.0. DAPI excitation 405nm, laser 5%, collection 415-480nm. CalFluor 610 excitation 590nm, laser 20%, collection 600-642nm. Quasar 670 excitation 647nm, laser 20%, collection 657-750nm.

D. melanogaster embryo image stacks showing all 8 Hox genes (Figure 2), 5 segmentation genes (Figure 3), or Kr mRNA for quantification validations (Supplementary Figure 2) were taken with the following settings: format 4096x4096, speed 400Hz unidirectional, sequential line scanning, line averaging 16, pinhole 1 airy unit. Each channel was gated 1.0-6.0. DAPI excitation 405nm, laser 5%, collection 415-480nm. AlexaFluor 488 excitation 490nm, laser 15%, collection 498-530nm. CalFluor 540 excitation 522nm, laser 15%, collection 530-555nm. Quasar 570 excitation 548nm, laser power 15%, collection 558-575nm. CalFluor 590 excitation 569nm, laser 15%, collection 579-595nm. CalFluor 610 excitation 590nm, laser 15%, collection 605-620nm. CalFluor 635 excitation 618nm, laser 15%, collection 628-650nm. Quasar 705 excitation 647nm, laser 10%, collection 660-680nm. Quasar 705 excitation 670nm, laser 10%, collection 695-780nm. Image stacks were acquired with a 200nm z interval. For images intended for mRNA quantification, z-stack limits were set to start just above the most apical smiFISH signal, and to end either at the basal extent of membrane ingression (to capture all RNAs that can accurately be assigned to single cells), or just below the basal extent of smiFISH signal (to capture all mRNAs throughout the full cytoplasmic depth). Spectral unmixing of the 8 Hox gene channels was performed in the Leica LAS X v1.8.0.13370 software, using a 30μm radius selection in each channel to build the unmixing matrix.

Image analysis

Z stacks were stabilized through z to account for any imaging drift, and deconvolved using Huygens Professional v18.04. For single-cell segmentation and mRNA quantification, DAPI, Spectrin, and smiFISH image stacks were combined in Imaris v9.2 software. Spectrin staining forms a clear cell border in z-slices where the cells are in cross-section, but fades out basally at the extent of membrane ingression. The core set of z-slices that do show clear cross-sectional Spectrin staining was identified, and the top and bottom slices of this core replicated to extend through the full depth of the stack, replacing apical and basal slices with unclear cell borders. Cells were then segmented in 3D automatically in the Imaris cells module from the Spectrin channel, using a smallest cell diameter of 5μm, membrane detail level of 0.5μm, and a local contrast filter. Edge cells and any double cells were
omitted by filtering the set of detected cells for outliers based on cell volume, sphericity and z-position. smiFISH spots were detected using the spots function, allowing for different spot sizes, with an estimated xy diameter of 0.3μm, estimated z diameter of 0.6μm, and background subtraction. Spot quality thresholds were set individually for each channel, since brightness and diameter of spots is inherently different between different fluorophores. Thresholds were set to just below the point at which a sharp spike in background false positives outside of the established domain occurs. For quantitation consistency, the same detection thresholds were used for embryo comparisons. To prepare images for figures, maximum projections of smiFISH channels were generated in FIJI v2.0.0-rc-49/1.51d. Projections were then combined into RGB images in Adobe Photoshop CS6.

STATISTICS AND REPRODUCIBILITY
Statistics are not used within the main figures, but all cell n numbers are defined in the figure legends. Details of the statistical analysis performed in Supplementary Figure 2, and all cell n numbers, are provided in the legend. Heatmaps displaying mRNA/cell were generated in Imaris v9.2 software. Cell variability heatmaps were generated in R using the package ggplot2. Statistical analyses and graphs were completed using GraphPad Prism v5.0.

REPORTING SUMMARY
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

DATA AVAILABILITY
All smiFISH probe sequences are available in Supplementary Table 1. All data underlying the graphs and heatmaps presented can be accessed at https://github.com/LiliansCalvo/smiFISH_Arthropods.

CODE AVAILABILITY
All custom code for automated detection of neighbouring cells, together with tutorials, can be accessed at: https://github.com/LiliansCalvo/smiFISH_Arthropods.
REFERENCES

1. Gaspar, I. & Ephrussi, A. Strength in numbers: quantitative single-molecule RNA detection assays. *Wiley Interdiscip Rev Dev Biol* **4**, 135-150, doi:10.1002/wdev.170 (2015).
2. Adams, M. D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. *Science* **252**, 1651-1656, doi:10.1126/science.2047873 (1991).
3. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. *Cell* **133**, 523-536 (2008).
4. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature Methods* **5**, 621-628, doi:10.1038/nmeth.1226 (2008).
5. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. *Science* **270**, 467-470 (1995).
6. Sandler, J. E. & Stathopoulos, A. Quantitative Single-Embryo Profile of Drosophila Genome Activation and the Dorsal-Ventral Patterning Network. *Genetics* **202**, 1575-1584, doi:10.1534/genetics.116.186783 (2016).
7. Karaikos, N. et al. The Drosophila embryo at single-cell transcriptome resolution. *Science* **358**, 194-199, doi:10.1126/science.aan3235 (2017).
8. Wang, N. et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. *Nat Commun* **10**, 95, doi:10.1038/s41467-018-07981-6 (2019).
9. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. *The Journal of cell biology* **161**, 1163-1177 (2003).
10. Ellis, S. J. et al. Distinct modes of cell competition shape mammalian tissue morphogenesis. *Nature* **569**, 497-502, doi:10.1038/s41586-019-1199-y (2019).
11. Rheume, B. A. et al. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. *Nature Communications* **9**, 2759, doi:10.1038/s41467-018-05134-3 (2018).
12. Karaayvaz, M. et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. *Nature Communications* **9**, 3588, doi:10.1038/s41467-018-06052-0 (2018).
13. Ziegenhain, C., Vieth, B., Parekh, S., Hellmann, I. & Enard, W. Quantitative single-cell transcriptomics. *Brief Funct Genomics* **17**, 220-232, doi:10.1093/bfgp/ely009 (2018).
14. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. *Science* **280**, 585-590, doi:10.1126/science.280.5363.585 (1998).
15. Ornalo, A. a. J., Hans E and Ruth, Jerry L. Stellaris™ fluorescence in situ hybridization (FISH) probes: a powerful tool for mRNA detection *Nature Methods* **8**, i--ii, doi:10.1038/nmeth.f.349 (2011).
16. Tsanov, N. et al. smiFISH and FISH-quant - a flexible single RNA detection approach with super-resolution capability. *Nucleic Acids Res* **44**, e165, doi:10.1093/nar/gkw784 (2016).
17. Jones, D. L., Brewster, R. C. & Phillips, R. Promoter architecture dictates cell-to-cell variability in gene expression. *Science* **346**, 1533-1536, doi:10.1126/science.1255301 (2014).
18. Taylor, S. E. et al. The torso-like gene functions to maintain the structure of the vitelline membrane in Nasonia vitripennis, implying its co-option into Drosophila axis formation. *Biol Open* **8**, doi:10.1242/bio.046284 (2019).
19. Frasch, M., Hoey, T., Rushlow, C., Doyle, H. & Levine, M. Characterization and localization of the even-skipped protein of Drosophila. *EMBO J* **6**, 749-759 (1987).
20. Lim, B., Fukaya, T., Heist, T. & Levine, M. Temporal dynamics of pair-rule stripes in living Drosophila embryos. *Proc Natl Acad Sci U S A* **115**, 8376-8381, doi:10.1073/pnas.1810430115 (2018).
21. Fujioka, M., Jaynes, J. B. & Goto, T. Early even-skipped stripes act as morphogenetic gradients at the single cell level to establish engrailed expression. *Development* **121**, 4371-4382 (1995).
22. Patel, N. H., Condron, B. G. & Zinn, K. Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. *Nature* **367**, 429-434, doi:10.1038/367429a0 (1994).
Rosenberg, M. I., Brent, A. E., Payre, F. & Desplan, C. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes. Elife 3, e01440, doi:10.7554/eLife.01440 (2014).

Vargas-Vila, M. A., Hannibal, R. L., Parchem, R. J., Liu, P. Z. & Patel, N. H. A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development 137, 3469-3476, doi:10.1242/dev.055160 (2010).

Pokrywka, N. J. & Stephenson, E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development 113, 55-66 (1991).

Cha, B. J., Koppetsch, B. S. & Theurkauf, W. E. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106, 35-46, doi:10.1016/s0092-8674(01)00419-6 (2001).

Wang, C., Dickinson, L. K. & Lehmann, R. Genetics of nanos localization in Drosophila. Dev Dyn 199, 103-115, doi:10.1002/aja.1001990204 (1994).

Dahanukar, A. & Wharton, R. P. The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev 10, 2610-2646, doi:10.1101/gad.10.20.2610 (2001).

Forrest, K. M. & Gavis, E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr Biol 13, 1159-1168, doi:10.1016/s0960-9822(03)00451-2 (2003).

Little, S. C., Sinsimer, K. S., Lee, J. J., Wieschaus, E. F. & Gavis, E. R. Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 17, 558-568, doi:10.1038/ncb3143 (2015).

Bahar Halpern, K. et al. Bursty gene expression in the intact mammalian liver. Mol Cell 58, 147-156, doi:10.1016/j.molcel.2015.01.027 (2015).

Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183-187, doi:10.1126/science.1216379 (2012).

Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell 7, 618-630 (2010).

Zhong, X. et al. Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m(6)A mRNA Methylation. Cell Rep 25, 1816-1828 e1814, doi:10.1016/j.celrep.2018.10.068 (2018).

Levine, E., Zhang, Z., Kuhlman, T. & Hwa, T. Quantitative characteristics of gene regulation by small RNA. PLoS biology 5 (2007).

Phillips, N. E. et al. Stochasticity in the miR-9/Hes1 oscillatory network can account for clonal heterogeneity in the timing of differentiation. Elife 5, doi:10.7554/eLife.16118 (2016).

Jafar-Nejad, H. et al. Senseless acts as a binary switch during sensory organ precursor selection. Genes Dev 17, 2966-2978, doi:10.1101/gad.1122403 (2003).

Papadopoulos, D. K. et al. Control of Hox transcription factor concentration and cell-to-cell variability by an auto-regulatory switch. Development 146, doi:10.1242/dev.168179 (2019).
ACKNOWLEDGEMENTS

Special thanks to Olivia Tidswell from Michael Akam’s lab, and to Shannon Taylor from Peter Dearden’s lab, for kindly providing us with Tribolium and Nasonia embryos respectively, and to Matthew Benton for advice with Tribolium. We also thank Peter March from the Manchester bioimaging facility for all his support, and Hilary Ashe, Sam Griffiths-Jones and Pauline Rogers for their valuable comments and discussions. Attendance to the summer embryology course at Marine Biological Lab, Woods Hole, encouraged the conception of this work, so we are grateful to Rich Schneider and Dave Sherwood for their work in running the course. This work was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/P002153/1) to M.R and T.P, and a Wellcome Trust PhD studentship (203990/Z/16/A) to L.C.

AUTHOR CONTRIBUTIONS

Conceptualization L.C, M.R and T.P, experiments L.C and T.P, imaging and image analysis T.P, analysis formulae L.C and T.P, coding and data analysis L.C, writing – original draft L.C and T.P, writing – review & editing L.C, M.R and T.P, funding acquisition M.R and T.P.

COMPETING INTERESTS

The authors declare no competing interests.
Figure 1. smiFISH in different arthropod species and tissues.
Figure 1. smiFISH in different arthropod species and tissues. smiFISH for the segmentation genes *even-skipped (eve)* and *engrailed (en)* are shown in early and later embryos from five different arthropod species, *Drosophila melanogaster (D.mel)*, *Drosophila virilis (D.vir)*, *Tribolium castaneum (T.cas)*, *Nasonia vitripennis (N.vit)*, and *Parhyale hawaiensis (P.haw)*. Embryos are oriented with anterior to left. smiFISH for *wingless (wg)* and *en* is shown in the *D.mel* imaginal wing disc. Ovaries were stained for the maternally loaded RNAs *bicoid (bcd)* and *nanos (nos)*, which accumulate at the anterior and posterior poles of the developing egg respectively. A single egg chamber is shown, oriented with nurse cells and the anterior of the developing egg to left. DAPI was used to stain cell nuclei. All images were acquired using a white light laser scanning confocal microscope with 40X or 100X objectives. White dashed boxes are magnified to the right. Single mRNAs are visible for all samples tested.
Figure 2. smiFISH and white light laser confocal imaging to visualize all eight Drosophila Hox genes at single molecule resolution.
Figure 2. smiFISH and white light laser confocal imaging to visualize all eight *Drosophila* Hox genes at single molecule resolution. A stage 10 germband extended *D.melanogaster* embryo (lateral view, anterior left) with smiFISH staining for all 8 Hox genes, plus DAPI to show nuclei. The X-flap sequence was used for all probes, with the following fluorophores: *labial* CalFluor 610, *proboscipedia* Quasar 570, *Deformed* AlexaFluor 488, *Sex combs reduced* Quasar 670, *Antennapedia* promoter 1 CalFluor 540, *Ultrabithorax* Quasar 705, *abdominal-A* CalFluor 590, *Abdominal-B* CalFluor 635. The image stack was acquired using a Leica SP8 inverted confocal microscope, with 40X objective, and a white light laser, enabling optimal excitation wavelengths for each fluorophore. Peak emissions were captured by narrow ~20nm tunable collection windows, and the image spectrally unmixed in Leica LAS X software to correct any residual bleed-through. Large bright spots mark accumulations of nascent RNAs at transcriptional sites; smaller fainter spots are single mRNAs. Single mRNAs are most readily visible in the greyscale panels.
Figure 3. smiFISH with membrane immunofluorescence allows whole embryo 3D segmentation and multi-gene single-cell RNA quantification.
Figure 3. smiFISH with membrane immunofluorescence allows whole embryo 3D segmentation and multi-gene single-cell RNA quantification.

a) Stage 5 cellular blastoderm *D. melanogaster* embryo (lateral view, anterior left) with maximum projections of smiFISH for the pair rule gene *even-skipped*, and four gap genes: *hunchback*, *knirps*, *giant* and *Kruppel*. Nuclei are stained with DAPI, and cell membranes stained by immunofluorescence, using mouse anti *Drosophila* alpha Spectrin, and goat anti mouse Alexa Fluor 488. The confocal image stack comprises 48 slices at 200nm z intervals (9.6μm total depth), from the apical limit of mRNA spots, to the basal extent of membrane ingression, to capture all RNAs that could accurately be assigned to single cells. b) The cells module in Imaris 9.2 software was used to automatically segment Spectrin staining in 3D through the confocal stack, creating individual cell volumes (1982 in total). The Imaris spots module was used to automatically identify mRNA spots for each gene; and automatically assign spots to cell volumes based on x,y,z coordinates. c) Heatmaps displaying mRNA number per cell for each of the five genes. d) Histograms of mRNA number per cell for each gene, using bins of five with zero excluded. The shape of histogram distributions is a product of the expression patterns of the genes.
Figure 4. Automated identification of immediately neighbouring cells for single-cell variability analysis.
Figure 4. Automated identification of immediately neighbouring cells for single-cell variability analysis. a) 2D segmentation plane from a cellular blastoderm *D.melanogaster* embryo with anti-Spectrin membrane staining. The number of immediately neighbouring cells (defined as directly sharing a portion of membrane) was manually counted, for each cell in half of the embryo. A range of 2-8 immediate neighbours was found. b) Low threshold Imaris spot detection in the Spectrin channel, to generate dense representation of the membrane with spots, for 3D polygon generation. c) A custom R code was developed to generate 3D polygons from Spectrin spot coordinates and assigned cell IDs, closely reproducing initial segmentation. Each polygon was slightly expanded in 3D by 0.6μm (~10% of a cell diameter), generating intersections between borders of only directly neighbouring cells. The code detects all intersections, producing for each polygon a list of directly neighbouring cells. d) Histogram summarising the manual neighbour count (1028 cells) in a). e) Histogram summarising the automated neighbour count (1982 cells) in c), confirming close agreement with the manual count. f) Histogram summarising a direct cell by cell comparison of neighbour number between the manual count and automated method, for the first 200 cell IDs, calculated as manual minus automated.
Variability measure	Formula	Definition of terms
Fano factor (FF)	$\frac{\text{Var}}{\text{mean}^2}$	Variance$_n$ - Variance of the immediate neighbour group, including centre cell
		mean$_n$ - mean of the immediate neighbour group, including centre cell
Local numerical cell variability (NV)	$\frac{\sum (x_i-x_j
		x_j - mRNA number of each immediately neighbouring cell
		n - number of immediate neighbours, NOT including centre cell
Local proportional cell variability (PV)	$\frac{\sum (x_i-x_j
		\max_n - maximum mRNA number of immediate neighbours, including centre cell

Figure 5. Three alternative measures to express cell to cell mRNA variability.
Figure 5. Three alternative measures to express cell to cell mRNA variability.

a) Formulae for Fano factor, a commonly used measure of cell variability, and NV and PV, two alternative measures designed to better capture individual cell variability.
b) Cells from the anterior stripe of *eve* expression in *P.hawaiensis* early germ band embryo, highlighting that individual cells can differ greatly in expression from their immediate neighbours. The centre cell (white arrow) in the left panel is similar to all its neighbouring cells except one, whereas the centre cell in the right panel is highly different from all of its neighbours except one.
c-f) Hypothetical scenarios of neighbour group mRNA variability, to highlight the capacity of each formula to capture the variability of the single centre cell.
550 mRNA/cell is used as the population maximum. Fano factor incorrectly returns the same value for c and d, and incorrectly finds e to be more variable than c. NV correctly returns the same value for c, e and f, and a low value for d. PV correctly returns the same value for c and e, and lower values for d and f.
g) Heatmaps show the three different variability measures, calculated for each segmented cell of the embryo (1982 cells in total), for five genes, *even-skipped, hunchback, knirps, giant* and *Kruppel*. Dots representing cells are scaled in both size and colour by the variability value. Both NV and PV measures can range from minimum 0 to maximum 1. For PV heatmaps, cells were filtered on the criteria of neighbour group mean mRNA number ≥1; cells failing this criterion were assigned a score of 0.
Supplementary Figure 1. Evolutionary divergence times of different arthropod model species.
The species used in this study are highlighted in red, and belong to the clade Pancrustacea, which emerged ~530 million years ago (MYA), and comprises all hexapods and crustaceans.
Supplementary Figure 2. Accuracy validations of mRNA quantification.
Supplementary Figure 2. Accuracy validations of mRNA quantification. a & b) Two colour detection efficiency test. a) smiFISH using two interleaved probe sets (each 41 probes) against Kr mRNA, labelled in Quasar 570 and CalFluor 610. Spots were imaged using 100X objective, through 48 slices with z step size of 200nm. b) Spots in each channel were detected in Imaris, and assigned to the 637 segmented cells. Correlation in Kr mRNA/cell detected with each probe set was measured (two tailed Spearman ranked correlation coefficient r = 0.99, P<0.0001). c & d) Two magnification detection efficiency test. c) smiFISH of Kr mRNAs using CalFluor 610. The same stage 5 blastoderm embryo was imaged with 40X objective and then 100X objective, through the same z depth of 48 slices with z step size of 200nm. Spot detection in Imaris using identical settings for both magnifications detected both strong and weak spots, successfully separated closely touching spots, with minimal false positives as indicated by the minimal spot detection towards the edge of the Kr stripe. d) Kr mRNA/cell at each magnification, non-zero cells only, each dot in the plot represents a cell, horizontal lines are the mean, error bars show the 95% confidence interval of the mean. There is a slight increase in detection efficiency at 100X compared with 40X (40X mean=54, max=136, 100X mean=66, max=142), showing a small degree of undercounting at 40X likely due to mRNA overcrowding. e-h) Biological variability in total Kr mRNA number. e) smiFISH of Kr mRNAs using CalFluor 610, imaged with 40X objective, beyond the basal limit of membrane ingression through 120 slices with z step size of 200nm, to capture every Kr mRNA in the cytoplasmic depth. f) Slice by slice profile of sum greyscale intensity across a region of interest (ROI) through 120 z-slices. The trough between slices ~40-60 corresponds to the nucleus. g) Spectrin membrane staining at a cross sectional plane shows differing degrees of membrane ingression between stage 5 blastoderm embryos, used as a measure of embryo age. h) smiFISH of Kr mRNAs using CalFluor 610, in 12 blastoderm embryos imaged with 40X objective, z step size of 200nm, through total z-depths ranging from 20μm to 24μm, set to extend from above the apical extent to below the basal extent of Kr mRNA spots. For cell segmentation, Spectrin membrane staining was extrapolated beyond the basal ingression limit, to the full stack depth. Identical Imaris spot detection settings were used across all embryos. The plot shows Kr mRNA/cell across the 12 blastoderm embryos arranged in ascending age order, as measured by the degree of membrane ingression. Each dot in the plot represents a cell, horizontal lines are the mean, error bars show the 95% confidence interval of the mean. Cell numbers: Embryo 1: 1526, 2: 1686, 3:1827, 4: 1923, 5: 1248, 6: 1797, 7: 1897, 8: 1834, 9: 1717, 10: 1641, 11: 1662, 12: 1830.
Figure	Species	Sample type	Gene	Fluorophore
1	Drosophila melanogaster	embryo	even-skipped (eve)	CalFluor 610
1	Drosophila melanogaster	embryo	engrailed (en)	Quasar 670
1	Drosophila virilis	embryo	even-skipped (eve)	CalFluor 610
1	Drosophila virilis	embryo	engrailed (en)	Quasar 670
1	Tribolium castaneum	embryo	even-skipped (eve)	CalFluor 610
1	Tribolium castaneum	embryo	engrailed (en)	Quasar 670
1	Nasonia vitripennis	embryo	even-skipped (eve)	CalFluor 610
1	Parhyale hawaiensis	embryo	even-skipped (eve)	CalFluor 610
1	Parhyale hawaiensis	embryo	engrailed (en)	CalFluor 610
1	Drosophila melanogaster	imaginal disc	wingless (wg)	CalFluor 610
1	Drosophila melanogaster	imaginal disc	engrailed (en)	Quasar 670
1	Drosophila melanogaster	ovary	bicoid (bcd)	CalFluor 610
1	Drosophila melanogaster	ovary	nanos (nos)	Quasar 670
2	Drosophila melanogaster	embryo	labial (lab)	CalFluor 610
			proboscipedia (pb)	Quasar 570
			Deformed (Dfd)	AlexaFluor 488
			Sex combs reduced (Scr)	Quasar 670
			Antennapedia promoter 1 (Antp P1)	CalFluor 540
			Ultrabithorax (Ubx)	Quasar 705
			abdominal-A (abd-A)	CalFluor 590
			Abdominal-B (Abd-B)	CalFluor 635
3 and 5	Drosophila melanogaster	embryo	even-skipped (eve)	Quasar 705
			hunchback (hb)	CalFluor 610
			knirps (kni)	CalFluor 590
			giant (gt)	Quasar 670
			Kruppel (Kr)	Quasar 570
Supp. 2	Drosophila melanogaster	embryo	Kruppel (Kr) interleaved set 1	CalFluor 610
			Kruppel (Kr) interleaved set 2	Quasar 570

Supplementary Table 2. All probe-fluorophore combinations used in this study.
REVIEWERS’ COMMENTS:

Reviewer #1 (Remarks to the Author):

The revised manuscript has adequately addressed all my previously raised points. In particular, the new neighbor-finding algorithm relying on the R geometry package “sf” is quite elegant and shown by the authors to agree very well with manual detection. I could reproduce the graphs and results using the code and data provided on Github, but the clarity of tutorial can be improved. I recommend its publication while suggesting the following minor points to be fixed:

1. Tutorial of the neighbor-finding R code is not clear. Here are some suggestions:

(a) The R scripts, instead of a text dump of the console output, should be shared.

(b) Required packages should be listed at the top. Currently, several required packages were not made clear in the polygon method of neighbor finding, including magrittr, dplyr, tidyr, and data.table.

(c) More code comments should be added to explain the data structure and operations to guide non-experienced users. For example, the starting data frame of (x,y,z) positions of Spectrin spots were obtained from Imaris by segmenting Spectrin staining, which should be made clear ideally in a comment when reading in the csv file. What is the data structure returned by the convex hull function? Does the st_convext_hull operate in 3D? Or does it only consider the (x,y) so effectively operate on a 2D projection?

(d) I suggest using relative path so that others can reproduce your R commands easily after cloning the git repo. For example, if R scripts are in a “scripts” folder side by side with the “Raw_data” folder, use something like “setwd(dirname(rstudioapi::getActiveDocumentContext()$path))” to set the working directory to the script folder, then use “read.csv(../Raw_data/the_csv_file.csv).”

(e) Other codes to reproduce heatmaps and other plots should also be shared. For example, the codes calculating and plotting cell variability scores.

2. Scale bars are missing in all figures. Please add scale bars and specify the bar length in microns in figure legends.

3. When describing extrapolation of Spectrin segmentation, please use microns instead of number of slices so that readers don’t have to figure out you used 200 nm z-interval.

4. To be picky of wording, white light illumination is not laser, and should not be described as “white light laser.”

Reviewer #2 (Remarks to the Author):

The revised manuscript is appropriate for publication.
Reviewer #1 (Remarks to the Author):

The revised manuscript has adequately addressed all my previously raised points. In particular, the new neighbor-finding algorithm relying on the R geometry package “sf” is quite elegant and shown by the authors to agree very well with manual detection. I could reproduce the graphs and results using the code and data provided on Github, but the clarity of tutorial can be improved. I recommend its publication while suggesting the following minor points to be fixed:

1. Tutorial of the neighbor-finding R code is not clear. Here are some suggestions:

(a) The R scripts, instead of a text dump of the console output, should be shared.
This has been fixed.

(b) Required packages should be listed at the top. Currently, several required packages were note made clear in the polygon method of neighbor finding, including magrittr, dplyr, tidyr, and data.table.
This has been fixed.

(c) More code comments should be added to explain the data structure and operations to guide non-experienced users. For example, the starting data frame of (x,y,z) positions of Spectrin spots were obtained from Imaris by segmenting Spectrin staining, which should be made clear ideally in a comment when reading in the csv file. What is the data structure returned by the convex hull function? Does the st_convext_hull operate in 3D? Or does it only consider the (x,y) so effectively operate on a 2D projection?
This has been fixed. More comments were added to explain each operation of the code, code was added to show the data structure, and we created a small test 3D data set to confirm that the neighbour finding code operates in 3D.

(d) I suggest using relative path so that others can reproduce your R commands easily after cloning the git repo. For example, if R scripts are in a “scripts” folder side by side with the “Raw_data” folder, use something like “setwd(dirname(rstudioapi::getActiveDocumentContext($)Path))” to set the working directory to the script folder, then use “read.csv(’../Raw_data/the_csv_file.csv’).”
Thanks for the great suggestion, this has been implemented.

(e) Other codes to reproduce heatmaps and other plots should also be shared. For example, the codes calculating and plotting cell variability scores.
This has now been done. Code to reproduce heatmaps has been added. Variability scores were calculated in excel, and the excel files containing these calculation formulae have been provided.

2. Scale bars are missing in all figures. Please add scale bars and specify the bar length in microns in figure legends.
Scale bars in microns have now been added to all microscopy images.

3. When describing extrapolation of Spectrin segmentation, please use microns instead of number of slices so that readers don’t have to figure out you used 200 nm z-interval.
Microns have now been included throughout for any specifications of z-depths.

4. To be picky of wording, white light illumination is not laser, and should not be described as “white light laser.”
Leica themselves use the terminology ‘white light laser’ when describing this type of illumination: https://www.leica-microsystems.com/science-lab/white-light-laser/, and it is accurate terminology because it works by a laser initially producing monochromatic light, which is subsequently spread into a broad spectrum. Therefore I did not see it as accurate to change this, so have kept “white light laser” in the text.

Reviewer #2 (Remarks to the Author):
The revised manuscript is appropriate for publication.