Safety and Procedural Success of Transcatheter Closure of Patent Ductus Arteriosus in Adults at Shahid Gangalal National Heart Centre, Kathmandu, Nepal.

Chandra Mani Adhikari¹, Amrit Bogati¹, Kiran Prasad Acharya¹, Manish Shrestha², Urmila Shakya², Rabi Malla¹

¹Department of Cardiology, Shahid Gangalal National Heart Center, Nepal.
²Department of Paediatric Cardiology, Shahid Gangalal National Heart Center, Nepal.

Corresponding Author:
Chandra Mani Adhikari
Department of Cardiology Shahid Gangalal National Heart Centre, Kathmandu, Nepal.
Email ID: cmadhikari@sgnhc.org
ORCID ID: https://orcid.org/0000-0001-5811-9977

Cite this article as: Adhikari CM, Bogati A, Acharya KP, et al. Safety and Procedural Success of Transcatheter Closure of Patent Ductus Arteriosus in Adults at Shahid Gangalal National Heart Centre, Kathmandu, Nepal. Nepalese Heart Journal 2020; Vol 17 (2), 43-46

Submitted Date: 15th September 2020
Accepted Date: 20th October 2020

Abstract

Background and Aims: Transcatheter closure of patent ductus arteriosus (PDA) using either coils or device is a well-established procedure. PDA is one of the common congenital heart diseases and it is not uncommon for it to be diagnosed in adulthood. However, only few studies are conducted in our part of the world regarding the safety and procedural success of device closure of PDA in adults. We aim to assess safety and procedural success of transcatheter closure of PDA in adults at Shahid Gangalal National Heart Centre, Kathmandu, Nepal.

Methods: It was a single center, retrospective study. Cardiac catheterization laboratory records of all consecutive adult patients (age ≥ 18 years) who underwent PDA device closure between March 2007 to March 2020 were reviewed. Patients age, gender, device size and device type along with procedural success of the procedure were reviewed. Any complication recorded was reviewed.

Results: During the study period 118 adult patients were attempted for transcatheter closure of PDA. In three cases transcatheter closure was not attempted. In one patients attempt was made to close the duct with cook coil which embolized to pulmonary artery. PDA was successfully closed in 114 patients. Among the 114 patients, 87 were females and 27 were male. Age ranged from 18 to 69 years with mean age was 29.5 years. PDA size ranged from 3mm to 18mm with the mean of 6.9mm.

Conclusion: Transcatheter closure of PDA in adults can safely be done with high success rate.

Introduction

Patent ductus arteriosus (PDA) is the persistent communication between the proximal left Pulmonary Artery (PA) and the descending aorta just distal to the left subclavian artery. PDA account for approximately 9-12% of all congenital heart diseases.¹ It is estimated that PDA occurs about 1 in 2500–5000 live births.² It can be associated with a variety of congenital heart disease lesions. However, in the adult it is usually an isolated finding.³ It is not infrequent for PDA to be diagnosed in adulthood on physical examination or as an incidental finding on transthoracic echocardiography (TTE).⁴ Additional problems associated with PDA include pulmonary hypertension, left ventricular volume overload,
Methods

It was a retrospective, single centre study, performed at Shahid Gangalal National Heart Centre, Kathmandu, Nepal. Cardiac catheterization laboratory records and Medical records of all consecutive adult patients (age ≥ 18 years) who underwent PDA device closure from March 2007 to March 2020 were retrospectively reviewed.

Demographics of the patients were collected. PDA size, Device type and size used for transcatheter closure of PDA was recorded. Numbers of successful and unsuccessful cases were recorded. Complications of the procedure were recorded. The study protocol was approved by institutional review board (IRB) of Shahid Gangalal National Heart Centre, Kathmandu, Nepal.

All the variables were entered into the Statistical Package for Social Sciences software, version 20 (SPSS Inc., Chicago, IL, USA) for data analysis.

Results

During the study period 118 adult patients were attempted for transcatheter closure of PDA. Two patients were thought to have unfavorable morphology so transcatheter occlusion was not attempted. In one case PDA closure was abandoned due to unavailability of appropriate device size. In one patient attempt was made to close the duct with cook coil which embolized to pulmonary artery. PDA was successfully closed in 114 patients. Among the 114 patients, 87 were females and 27 were male. Age ranged from 18 to 69 years with mean age was 29.5 years. PDA size ranged from 3mm to 18mm with the mean of 6.9 mm. In two patients residual PDA after surgical closure was closed. In one patient PDA device closure was done after the treatment of Infective endocarditis. Amplatzer Duct Occluder I (ADO I) was the most commonly used device 89 (78.0%) patients for transcatheter closure of PDA followed by Memopart PDA device in 11(9.6%) patients as shown in Table 1.

Variable	Frequency	%
Male	27	23.7
Female	87	76.3
Device type		
Amplatzer duct Occluder (ADO) I	89	78.0
Hyperion PDA Occluder	3	2.6
Memopart PDA Occluder	11	9.6
Lifetech PDA Occluder	7	6.1
Amplatzer Muscular VSD occluder	4	3.5

Table 1: Demographic profile and type of device:

Device Size	Frequency	%
4x6	4	3.5
6x8	17	14.9
8x10	32	28.0
10x12	29	25.4
12x14	10	8.7
14x16	10	8.7
18x20	4	3.5
20x22	4	3.5

Table 2: Device Size

ADO I type device with the size of 8x10 32 (28.0%) was the most commonly used size followed by 10x12 in 29 (25.4%) cases as shown in Table 2.

Among our subjects, we did not find any complication related to vascular access or hemolysis. There was no evidence of obstruction to the left pulmonary artery or the descending aorta, as confirmed by 2D-Doppler in the following day follow-up. No death occurred in this study.
Conflict of interest: None

Conclusion

Our study concluded that transcatheter closure is a safe and effective mode of treatment of PDA in adults. Hence, it should be considered as a treatment of choice in adult PDAs.

Source of funding: None

Conflict of interest: None

References

1. Al-Motarreb A, Al-Hammadi M, Shamsan M, et al. Percutaneous transcatheter closure of patent duc tus arteriosus using amplatz duct occluder: First Yemeni experience. Heart Views 2006;7:101-4

2. Djer MM, Saputro DD, Putra ST, et al. Transcatheter Closure of Patent Ductus Arteriosus: 11 Years of Clinical Experience in Cipto Mangunkusumo Hospital, Jakarta, Indonesia. Pediatr Cardiol 2015;36:1070-1074. https://doi.org/10.1007/s00246-015-1128-2. PMid:25749918. PMCid:PMC4432078

3. The Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC), Endorsed by the Association for European Paediatric Cardiology (AEPC). ESC Guidelines for the management of grown-up congenital heart disease (new version 2010). European Heart Journal 2010; 31:2915-2957

4. Behjati-Ardakani M, Rafiei M, Behjati-Ardakani MA, et al. Long-term results of transcatheter closure of patent ductus arteriosus in adolescents and adults with amplatz duct occluder. North Am J Med Sci 2015;7:208-11. https://doi.org/10.4103/1947-2714.157447. PMid:26110132. PMCid:PMC4462816

5. Inglessi I, Landzberg MJ, et al. Interventional catheterization in adult congenital heart disease. Circulation 2007;115:1622-33. https://doi.org/10.1161/CIRCULATIONAHA.105.592428 PMid:17389281

6. Campbell M. Natural history of persistent ductus arteriosus. Br Heart J 1968;30:4-13. https://doi.org/10.1136/hrt.30.1.4

7. A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease. Journal of The American College of Cardiology 2019;73(12): e1-92

8. Toda R, Moriyama Y, Yamashita M, et al. Operation for adult patent ductus arteriosus using cardiopulmonary bypass. Ann Thorac Surg.1999;66:277-8. https://doi.org/10.1016/S0022-5223(99)00375-4

9. Omari BO, Shapiro S, Ginzton L, et al. Closure of short, wide patent ductus arteriosus with cardiopulmonary bypass and balloon occlusion. Ann Thorac Surg.1998;66:277-8. https://doi.org/10.1016/S0022-5223(98)00075-1

10. Fisher RG, Moodie DS, Steber R, et al. Patent ductus arteriosus in adults-long-term follow-up: nonsurgical versus surgical treatment. J Am Coll Cardiol 1986;8:280-284. https://doi.org/10.1016/S0735-1097(86)80040-7

11. Harrison DA, Benson LN, Lazzam C, et al. Percutaneous catheter closure of the persistently patent ductus arteriosus in the adult. Am J Cardiol 1996;77:1094-1097. https://doi.org/10.1016/S0002-9149(96)00139-7

12. John S, Muralidharan S, Jairaj PS, et al. The adult ductus: review of surgical experience with 131 patients. J Thorac Cardiovasc Surg 1981;82:314-319. https://doi.org/10.1016/S0022-5223(19)39375-4
13. Gamboa R, Rios-Méndez RE, Mollón FP, et al. Percutaneous Closure of Patent Ductus Arteriosus in Adults Using Different Devices Rev Esp Cardiol. 2010;63(6):726-9. https://doi.org/10.1016/S1885-5857(10)70147-X

14. Pas D, Missault L, Hollanders G, et al. Persistent ductus arteriosus in the adult: clinical features and experience with percutaneous closure. Acta Cardiol. 2002;57:275-8. https://doi.org/10.2143/AC.57.4.2005426. PMID:12222696

15. Zabal C. Therapeutic catheterization in adults with congenital cardiopathy. Arch Cardiol Mex. 2002;72 Suppl 1:233-6

16. Editorial. Transcatheter closure of patent ductus arteriosus in adults. Journal of Cardiology Cases 2013;7:e89-e90. https://doi.org/10.1016/j.jccase.2013.01.004. PMid:30533131 PMCid:PMC6275235

17. Jang GY, Son CS, Lee JW, et al. Complications after transcatheter closure of patent ductus arteriosus. J Korean Med Sci 2007;22:484-90. https://doi.org/10.3346/jkms.2007.22.3.484. PMID:17596658. PMCid:PMC2693642

18. Choi DY, Kim NY, Jung MJ, et al. The results of transcatheter occlusion of patent ductus arteriosus: Success rate complication over 12 years in a single center. Korean Circ J 2010;40:230-4

19. Azhar AS, Abul-Azm AA, Habib HS, et al. Transcatheter closure of patent ductus arteriosus: Evaluating the effect of the learning curve on the outcome. Ann Pediatr Cardiol 2009;2:36-40. https://doi.org/10.4103/0974-2009.52804. PMID:20300267. PMCid:PMC2840760

20. Yu ML, Huang XM, Wang JF, et al. Safety and efficacy of transcatheter closure of large patent ductus arteriosus in adults with a self-expandable occluder. Heart Vessels 2009;24:440-5. https://doi.org/10.1007/s00380-009-1150-5. PMID:20108077

21. Paç FA, Polat TB, Oflaz MB, et al. Closure of patent ductus arteriosus with duct occluder device in adult patients: evaluation of the approaches to facilitate the procedure. Anadolu Kardiol Derg 2011;11:64-70

22. Atiq M, Aslan N, Kazmi KA, et al. Transcatheter closure of small-tolarge patent ductus arteriosus with different devices: Queries and challenges. J Invasive Cardiol 2007;19:295-8

23. Schneider DJ, Moore JW. Patent Ductus Arteriosus Circulation. 2006;114:1873-1882. https://doi.org/10.1161/CIRCULATIONAHA.105.592063. PMID:17060397

24. Tharakanatha R, Yarrabolu, P, Syamasundar Rao, et al. Transcatheter Closure of Patent Ductus Arteriosus. Pediat Therapeut S5.005. doi:10.4172/2161-0665.S5-005. https://doi.org/10.4172/2161-0665.S5-005

25. Ewert P. Challenges encountered during closure of patent ductus arteriosus. Pediat Cardiol 2005;26:224-9. https://doi.org/10.1007/s00246-005-1010-8. PMID:16082574

26. Behjati-Ardakani M, Forouzannia SK, Dehghani M, et al. Transcatheter closure of patent ductus arteriosus using the Amplatzer ductal occluder: Early results and midterm follow-up. J Tehran Heart Cent 2008;3:151-6

27. Pass RH, Hijazi Z, Hsu DT, et al. Multicenter USA Amplatzer patent ductus arteriosus occlusion device trial: Initial and one-year results. J Am Coll Cardiol 2004;44:513-9. https://doi.org/10.1016/j.jacc.2004.03.074. PMID:15358013

28. Baruteau AE, Hascoët S, Baruteau J, et al. Transcatheter closure of patent ductus arteriosus: past, present and future. Arch Cardiovasc Dis 2014;107:122-32

29. Khan MA, Almashham YH, Rahman AS, et al. Embolized amplatzer duct occluder to aorta: Retrieval technique. J Saudi Heart Assoc 2016;28:116-118

30. Phadke MS, Karur S, Kerkar PG, et al. Transcatheter closure of hypertensive ductus with amplatzer post infarction muscular VSD occluder after percutaneous retrieval of embolized amplatzer duct occlude. Ann Pediatr Cardiol. 2014 7(2): 126-129. https://doi.org/10.4103/0974-2069.132481. PMID:24987259. PMCid: PMC4070202