Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection

Andrew E Becker, Yasmin G Hernandez, Harold Frucht, Aimee L Lucas

Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with over 38000 diagnoses and 38000 deaths in 2013. The opportunity to detect pancreatic cancer while it is still curable is dependent on our ability to identify and screen high-risk populations before their symptoms arise. Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. Genetic conditions include hereditary breast and ovarian cancer syndrome, Lynch Syndrome, familial adenomatous polyposis, Peutz-Jeghers Syndrome, familial atypical multiple mole melanoma syndrome, hereditary pancreatic cancer, cystic fibrosis, and ataxia-telangiectasia; having a genetic predisposition can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Several large-volume centers have initiated screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Pancreatic neoplasms; Pancreas cancer screening; Genetic predisposition to disease; Hereditary breast and ovarian cancer syndrome; Lynch syndrome; Peutz-Jeghers; BRCA; PALB2; p16; Pancreatitis

Core tip: Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. These factors can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Several large-volume centers have initiated screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields.

INTRODUCTION

Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with an estimated over 45000 diagnoses and 38000 deaths in 2013[1]. Pancreatic ductal adenocarcinomas (PDAC) arise from the exocrine pancreas and account for 95% of pancreatic cancers. The lifetime risk of developing pancreatic cancer...
is 1.49%, or 1 in 67, with incidence increasing with age. Epidemiologically, the incidence rates of PDAC are higher in males, African Americans, and lower socioeconomic status groups.

Both genetic and modifiable risk factors contribute to the development of PDAC. A hereditary component has been identified in approximately 10% of cases, with a specific germline mutation being implicated in 20% of those cases. These genetic conditions, including the hereditary breast and ovarian cancer syndrome (HBOC), Lynch syndrome (HNPPC), familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome (PJS), familial atypical multiple mole melanoma syndrome (FAMMM), hereditary pancreatitis (HP), cystic fibrosis (CF), and ataxia-telangiectasia (AT), have been shown to raise the risk of PDAC anywhere from 2 to 132-fold (Table 1). Modified risk factors, which include tobacco exposure, alcohol use, chronic pancreatitis, diet, obesity, diabetes mellitus, as well as certain abdominal surgeries and infections have also been identified as increasing the risk of PDAC (Table 2).

PDAC is nearly universally lethal: less than 20% of patients are surgical candidates at the time of presenta-

tion, and the median survival for non-resected patients is 3.5 mo. Even among those patients who are candidates to undergo pancreatectomy, the median survival is 12.6 mo. However, by identifying and screening patients at an increased risk of developing PDAC, detection of precursor and early-stage lesions may allow diagnosis at a still surgically-resectable stage. Several large-volume centers have initiated screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and non-genetic risk factors implicated in PDAC, as well as screening strategies and their diagnostic yields.

PDAC RISK FACTORS

PDAC risk factors: Genetic

It has been reported that up to 10% of PDAC have a hereditary component. A 2009 meta-analysis demonstrated that having just one affected relative resulted in an increased risk of developing PDAC. Specific mutations in multiple genes have been implicated in causing roughly 10% of PDAC, with varying penetrance and degree of increased cancer risk for each mutation (Table 1).

Identification and stratification of individuals at increased risk of having genetic mutations may allow for a group of patients that will benefit from early detection of these pancreatic neoplasms, as well as targeted, gene-specific therapy.

Hereditary breast and ovarian cancer syndrome and other fanconi anemia genes:

Table 1: Selected pancreatic ductal adenocarcinoma genetic risk factors

Risk factor	Gene	Increased PDAC risk	Other associated cancers
Hereditary breast and ovarian cancer syndrome	BRCA1, BRCA2, PALB2	2-3.5	Breast, ovarian, prostate
Lynch syndrome (hereditary non-polyposis colorectal cancer)	MLH1, MSH2, MSH6	8.6	Colon, endometrium, ovary, stomach, small intestine, urinary tract, brain, cutaneous sebaceous glands
Familial adenomatous polyposis	APC	4.5-6	Colon, desmoid, duodenum, thyroid, brain, ampullary, hepatoblastoma
Peutz-Jeghers syndrome	STK11/LKB1	132	Esophagus, stomach, small intestine, colon, lung, breast, uterus, ovary
Familial atypical multiple mole melanoma pancreatic carcinoma syndrome	PI16INK4A/CDKN2A	47	Melanoma
Hereditary pancreatitis	PRSS1, SPINK1	69	
Cystic fibrosis	CFTR	3.5	
Ataxia-telangiectasia	ATM	Increased	Leukemia, lymphoma
Non-O blood group		1.3	
Familial pancreatic cancer	Unknown	9 (1 FDR)	
		32 (3 FDRs)	

Table 2: Selected pancreatic ductal adenocarcinoma modifiable risk factors

Risk factor	Increased PDAC risk
Current cigarette use	1.7-2.2
Current pipe or cigar use	1.5
> 3 alcoholic drinks per day	1.2-1.4
Chronic pancreatitis	13.3
BMI > 40 kg/m², male	1.5
BMI > 40 kg/m², female	2.8
Diabetes mellitus, type 1	2.0
Diabetes mellitus, type 2	1.8
Cholecystectomy	1.2
Gastrectomy	1.5
Helicobacter pylori infection	1.4

PDAC: Pancreatic ductal adenocarcinomas; FDR: First-degree relative.
mechanisms, including the BRCA1/2 pathway[13,14]. The incidence of the disease is 1 in 10000 live births, and the carrier rate of Fanconi anemia mutations is estimated at 1 in 300[13,15].

HBOC is characterized by early-onset breast and ovarian cancers resulting from monoallelic germline mutations in the BRCA1 or BRCA2 (also known as FANCD1) genes. These tumor suppressor genes code for proteins that repair double-stranded DNA breaks. While BRCA2 codes for a Fanconi anemia protein, the BRCA1 protein directly interacts with the FANCA protein[16]. BRCA1/2 mutations have been shown to have a population frequency of 1.0%, with a higher concentration within the Ashkenazi Jewish population (2.3%)[17,18]. These genes have high penetrance with respect to female breast cancer (cumulative risk by age 70 of 57% for BRCA1 and 49% for BRCA2) and ovarian cancer (cumulative risk by age 70 of 40% for BRCA1 and 18% for BRCA2), and lower rates for male breast cancer (cumulative risk by age 70 of 1.2% for BRCA1 and 6.8% for BRCA2) as well as PDAC[19]. While a few large studies have indicated that BRCA1 mutations are associated with a roughly 2-fold increased risk of PDAC, the mutation is rarely seen in PDAC families without a strong history of breast cancer[16,17,20]. Additionally, not all studies have found an increased risk of PDAC among the BRCA1 cohort[21].

On the other hand, the evidence for an association between BRCA2 germline mutations and PDAC is more clearly defined. With a relative risk of at least 3.5, BRCA2 mutations have been identified as the most common known inherited cause of PDAC: studies have found deleterious mutations in the BRCA2 gene in 17%-19% of familial pancreatic cancer families and 7.3% of apparently sporadic pancreatic cancers[22-25]. Our group has demonstrated an increased prevalence of BRCA1 mutations (8.3%) and BRCA2 mutations (10.8%) in a cohort of unselected Ashkenazi Jewish patients who underwent surgical resection for PDAC and IPMN; half of those BRCA1/2-associated tumors demonstrated loss of heterozygosity[26]. In a registry study of BRCA1 and BRCA2 families, there was a significantly earlier age of onset (age 63 for each) for PDAC, compared to that found in the SEER database (age 70)[27].

PALB2, or partner and localizer of BRCA2 (also known as FANCN), is a gene that codes for a protein which stabilizes the BRCA2 protein as it repairs DNA. PALB2 is known to be a breast cancer susceptibility gene and has been found to be mutated in up to 3% of familial PDAC[28,29]. While some large registry cohort studies have not found PALB2 mutations to increase the relative risk of PDAC, other groups have identified PALB2 mutations in multiple familial pancreatic cancer families[28,29]. Additionally, it has been demonstrated that relatives of PALB2 mutation carriers have a 6-fold increased risk of PDAC compared to relatives of those with the wild-type gene[30]. The PALB2 protein directly interacts with the FANCA protein as it repairs DNA.

Mutations in two other Fanconi anemia proteins, specifically FANCC and FANCN, have shown loss of heterozygosity in young-onset (< 55 years of age) PDAC[31,32]. No studies to date have found an increased risk of PDAC associated with mutations in these genes.

Targeted therapy is a promising area of research for genes in this pathway. Cells deficient in BRCA1, BRCA2/FANCN, PALB2/FANCN, RAD51, MSH2, and FANCM are known to be hypersensitive to alkylating agents such as mitomycin C, cisplatin, chlorambucil, and melphalan, whereas normal cells were unaffected[33,34]. Additionally, poly (ADP-ribose) polymerase (PARP) inhibitors have been shown to have anti-tumor activity in multiple other human cancers[35]. There have been case reports of complete pathological response of BRCA2-associated PDAC to PARP inhibitors, and clinical trials are currently underway[40].

Lynch syndrome (or HNPPC): MLH1, MSH2, MSH6, PMS2, and EPCAM: Lynch syndrome, the most common inherited colorectal cancer syndrome, is characterized by early-onset colorectal cancer as well as a predisposition to cancer of the endometrium, ovary, stomach, small intestine, urinary tract, brain, pancreas and cutaneous sebaceous glands[42]. The incidence of this syndrome has been postulated to be between about 1:660 to 1:2000[43]. The MSH2, MSH6, MLH1, PMS2, and EPCAM genes, which are mutated in this syndrome, normally code for proteins involved in the DNA mismatch repair pathway which bind to mismatched double-stranded DNA and microsatellites to target and prepare them for repair[44]. Patients with Lynch syndrome have an 8.6-fold increased risk of developing PDAC compared to the general population[44]. These pancreatic tumors often have a characteristically medullary appearance, with prominent lymphocytic infiltration and microsatellite instability[44,45].

FAP: APC: FAP is characterized by the early development of hundreds to thousands of colorectal adenomatous polyps; some of these polyps inevitably progress to malignancy, conferring an almost 100% risk of colorectal cancer by age 40[46]. There is also an increased risk of extracolonic cancers including desmoid, duodenum, thyroid, brain, ampullary, pancreas, and hepatoblastoma tumors[47]. The incidence of FAP in the Northern European population is 1 in 13000-18000 live births in the Northern European population[48,49]. FAP is caused by a mutation in the APC gene, a tumor suppressor gene which codes for a scaffolding protein responsible for targeting β-catenin for destruction, as well as acting as a control on progression of the cell cycle and a microtubule stabilizer[47]. Specifically, the relative risk of PDAC in FAP is reported to be 4.5 to 6-fold, although it is uncertain if this represents a true increased risk of PDAC or reflects misclassification.
of ampullary carcinomas\(^{58,59}\). There also exists a subset of the FAP population with an attenuated phenotype, known as attenuated FAP (AFAP) that is also caused by a mutation in the APC gene; this population has fewer colorectal adenomatous polyps (10-100) and a fifteen-year delay in the onset of colorectal cancer compared to those with FAP\(^{52}\). Compared to FAP, AFAP is associated with a lower risk of extracolonic cancers\(^{53}\).

PJS: STK11/LKB1: PJS is characterized by hamartomatous gastrointestinal polyposis and distinctive mucocutaneous pigmentation found most commonly on the lips or perioral region\(^{46,54}\). PJS, with an estimated frequency of 1:8300 to 1:280000, is associated with an inherited mutation in the STK11/LKB1 gene, a tumor suppressor gene which encodes for a serine/threonine kinase\(^{46}\). While the exact mechanism by which the LKB1 gene acts as a tumor suppressor is unknown, PJS tumors have shown less activated AMP-kinase, which results in mammalian target of rapamycin hyperactivation\(^{50}\). Additionally, LKB1 haploinsufficiency has been shown to cooperate with K-ras to cause PDAC in the mouse model, through a decrease in growth arrest\(^{56}\). A 2000 meta-analysis demonstrated that PJS is associated with a relative risk of 15.2 for all cancers, and a 93% overall rate of cancer by age 64\(^{51}\).

The study found a statistically significant increased risk of esophageal, stomach, small intestine, colon, pancreas, lung, breast, uterus, and ovarian cancers, including a relative risk of 132 for PDAC.

FAMMM: \(p16INK4A/CDKN2A\): FAMMM is characterized by malignant melanoma in one or more first-degree relatives (FDRs) or second-degree relatives (SDRs) and multiple, atypical melanocytic nevi\(^{53}\). The prevalence of FAMMM is unknown. While there is variability in the underlying genetics of this syndrome, a germline mutation in the \(p16INK4A\) (also known as \(CDKN2A\) or \(MTSl\)) gene has been found in approximately 38% of the cases of this syndrome\(^{57,58}\). FAMMM with this particular mutation, which confers a 60%-90% risk of melanoma by age 80, is called FAMMM pancreatic carcinoma syndrome (FAMMM-PC) because those with the \(p16INK4A\) mutation have also demonstrated an increased risk of PDAC\(^{39-42}\). This gene, which codes for the \(p16\) protein, is a tumor suppressor gene involved in the regulation of cell cycle progression. A study following 19 FAMMM families over seventy years found a 13 to 22-fold increased risk of developing PDAC in those with this \(p16INK4A\) mutation; conversely, they found no cases of PDAC in those without this mutation\(^{63}\).

More recently, a relative risk of PDAC of 47 was demonstrated among those with this \(p16INK4A\) mutation compared to the general population\(^{64}\). The risk of PDAC was even more apparent when looking at those under 55 years of age: a Swedish study found the relative risk to be 65-fold for \(p16\) mutation carriers\(^{65}\).

HP and CF: PRSS1, SPINK1 and CFTR: HP is characterized by recurrent attacks of acute pancreatitis starting in childhood, which can lead to pancreatic failure\(^{66}\). About 80% of HP is caused by a germline mutation in the \(PRSS1\) gene, which codes for the prodigestive enzyme trypsinogen\(^{66}\). Defective mutations result in either premature activation or reduced deactivation of the enzyme, leading to pancreatic injury. The \(SPINK1\) gene codes for a serine protease inhibitor that inhibits active trypsin; mutations in this gene have also been associated with various forms of pancreatic disease, including pancreatitis\(^{67}\). HP has an 80% penetrance rate\(^{68}\). A 2010 meta-analysis found a relative risk of 69 for PDAC for patients with HP compared to the general population\(^{69}\).

Additionally, homozygous mutations in the autosomal recessive \(CFTR\) gene cause cystic fibrosis, which is associated with both a younger age of onset (median age of 35 years) and 5.3-fold greater risk of the development of PDAC\(^{59}\). However, even when a \(CFTR\) gene mutation is inherited in a heterozygous fashion, it has been demonstrated that this confers a 4-fold greater chance of developing chronic pancreatitis\(^{56,61,74}\).

The presence of chronic inflammation in pancreatitis is thought to be the primary mechanism by which PDAC develops. A few mechanisms have been suggested as methods by which inflammation leads to PDAC\(^{73}\). Inflammatory cytokines such as IL-6 and IL-11 may induce the proliferation and facilitate survival of malignant and premalignant cells through the activation of multiple transcription factors, including STAT3 and NF-κB. Additionally, chronic inflammation may suppress immunosurveillance as well as inhibit oncogene-induced senescence, which would allow the lesion to develop unchecked. It has been suggested that increased activation of pancreatic stellate cells leads to fibrosis via increased cell proliferation and inflammation\(^{49}\).

AT: ATM: AT is an autosomal recessive, progressive neurologic disorder characterized by early ataxia and later telangiectasias of the blood vessels on exposed areas of the skin and eyes, with cerebellar ataxia, varied immune dysfunction, an extreme sensitivity to ionizing radiation, and an increased risk of cancers, particularly leukemias and lymphomas\(^{75-77}\). The estimated incidence of AT is 1 in 40000-300000 live births, and the disease is caused by a homozygous mutation in the \(ATM\) gene, which codes for a serine/threonine kinase involved in DNA repair\(^{77}\). Monoallelic \(ATM\) mutation carrier status, an estimated 1.4% of the United States population, is also associated with an increased risk of cancer, especially that of the female breast\(^{77,79}\). Among the families of those with AT, the rate of PDAC is at least twice that of the general population\(^{80,81}\). A 2012 study of a familial pancreatic cancer cohort found monoallelic \(ATM\) mutations in 2.4% of the PDAC probands, and that number increased to 4.6% of the patients with at least 3 FDRs with PDAC. Loss of heterozygosity of the \(ATM\) gene was found in the only patient with available tumor tissue in the study\(^{77}\).
Non-O blood group: Non-O blood groups have also been associated with a higher risk of PDAC[82-84]. Multiple prospective and case-control studies across different countries as well as a genome-wide association study demonstrated an increased risk of PDAC among those with non-O blood groups; additionally, a 2010 meta-analysis found that having an O blood group was associated with a relative risk of 0.79 for the development of PDAC[83,85]. In fact, it was demonstrated that each additional non-O allele conferred a larger risk of PDAC[86]. Interestingly, it was shown that the association between non-O blood groups and PDAC was largest in individuals colonized by CagA-negative Helicobacter pylori (H. pylori)[86]. While it has been postulated that the increased cancer risk is related to a chronic host inflammatory state, it has been found in one study that non-O blood groups do not increase the risk of chronic pancreatitis[80,87].

FPC: Unknown gene: Familial pancreatic cancer (FPC), defined as having 2 or more FDRs with PDAC with no known genetic cause, is responsible for up to roughly 80% of clustering PDAC[8]. The National Familial Pancreas Tumor Registry at Johns Hopkins demonstrated a nine-fold greater risk of developing PDAC among individuals with an FDR with PDAC in the setting of FPC, compared to a 1.8-fold greater risk for those with an FDR with sporadic PDAC[12]. Additionally, among FPC kindreds, having two or three FDRs with PDAC was associated with a 6.4-fold and 32-fold greater risk of developing PDAC, respectively.

Additionally, studies of the European Registry of Hereditary Pancreatitis and FPC as well as the German National Case Collection for FPC Registries have described anticipation (developing PDAC roughly 10 years earlier than their affected parent) in 59%-80% of over 100 FPC families[89-92]. Finally, segregation analyses have shown evidence for a yet-unidentified autosomal dominant, unknown gene: Familial pancreatic cancer (FPC), with an 80% penetrance in 7/1000 individuals[89]. The palladin gene, a proto-oncogene overexpressed in some sporadic pancreatic tumors has also been found to be mutated in affected members of one PDAC family[90-92]. This gene codes for a cytoskeleton protein that promotes tumor invasion in fibroblasts[89].

PDAC risk factors: Modifiable

Multiple modifiable risk factors are associated with an increased risk of developing PDAC (Table 2). Since PDAC has such a low incidence rate and most of the associated relative risks (with the exception of chronic pancreatitis) are low, greater improvements in PDAC morbidity and mortality may be possible with lifestyle modification.

Tobacco use: Smoking is the largest identifiable and modifiable risk factor for PDAC, contributing to 20%-35% of PDAC cases[85-88]. A 2008 meta-analysis of 82 studies demonstrated an increased risk of PDAC development for both current cigarette (relative risk of 1.74) and pipe or cigar (1.47) users[89]. A 2012 pooled analysis found the risk of current cigarette use to be 2.2-fold[90]. Additionally, both studies found increased smoking intensity and cumulative smoking dose to increase the risk for development of PDAC. Even after 10 years of smoking cessation, a modestly elevated relative risk of 1.48 remains[93]. However, multiple studies have demonstrated a risk of PDAC among former smokers to be similar to non-smokers after up to 15-20 years of cessation[86-100]. Finally, exposure to second-hand tobacco smoke has been found to increase the risk of PDAC by 21%-101.

It is likely that PDAC develops from exposure to tobacco-related carcinogens through circulating blood, especially given a similar rate of tobacco-related neoplasm in the kidney and stomach[94]. These carcinogens, including nitrosamines and polycyclic aromatic hydrocarbons, as well as their metabolites, cause mutations in both protooncogenes (K-ras) and tumor suppressors (p53)[83,102,103]. Tobacco smoke also directly contributes to pancreatic inflammation[104].

Smoking is particularly harmful in certain cohorts. For patients with HP, smoking has been demonstrated to more than double the risk of PDAC and lower the age of cancer onset by 20 years[89]. For members of FPC families, one study found cigarette smoking resulted in a 4-fold increased risk over non-smokers, as well as lowering the age of onset of PDAC by 10 years[104]. Another study demonstrated an incidence ratio of 19.2 for members of PDAC families who had ever smoked cigarettes vs 6.25 for those who had never smoked at all[13].

Alcohol use: While alcohol has been found to be associated with PDAC, the current evidence indicates that it is limited to heavy alcohol usage only; pooled data and meta-analyses have found three or more drinks per day to be associated with a 1.22 to 1.36-fold increased risk of developing PDAC, with a dose-response relationship[105,106]. It is known that heavy alcohol usage does contribute to pancreatitis, which may be a method by which it increases the risk of PDAC[107]. Additionally, metabolites of alcohol, including acetaldehyde (a carcinogen) and fatty acid ethyl esters, as well as ethanol itself (a carcinogen) can cause pancreatic inflammation as well as directly contribute to carcinogenesis[108].

Chronic pancreatitis: A 2010 meta-analysis demonstrated a relative risk of 13.3 for developing PDAC in those with chronic pancreatitis, with a ten to twenty year lag between the incidences of pancreatitis and pancreatic malignancy[41]. As with hereditary pancreatitis, chronic inflammation seen in chronic pancreatitis is thought to be the mechanism by which PDAC develops. Far and away, the most common cause of chronic pancreatitis is alcohol abuse, which is responsible for 60%-90% of cases[108]. As with HP, chronic inflammation is thought to be the mechanism by which PDAC develops in chronic pancreatitis. Inflammatory cytokines may induce cellular proliferation, as well as reduce immunosurveillance and inhibit...
Diet and obesity: Meta-analyses have demonstrated an increased risk of PDAC associated with a diet including red meat in men (relative risk of 1.29), and processed meat in both men and women (1.19)\[^{106}\]. Another meta-analysis found that there was a relative risk of 1.12 for developing PDAC for each 5 kg/m^2 increase in body mass index (BMI)\[^{119}\]. A large 2003 study found a BMI of over 40 to be associated with a relative risk of PDAC of 1.49 for men and 2.76 for women\[^{111}\]. Interestingly, a 2009 study found being overweight or obese at a younger age to be associated with a younger age of onset of PDAC; the study also found those who had a BMI over 25 from ages of 30 to 79 had reduced PDAC survival\[^{112}\]. The method by which fat consumption may lead to PDAC includes pancreatic hypertrophy and hyperplasia in response to cholecystokinin-mediated lipase secretion from the presence of fat in the duodenum, which puts the pancreatic exocrine glands at an increased risk of carcinogenesis\[^{105}\]. Additionally, hyperglycemia, abnormal glucose levels, and insulin resistance are all associated with an increased risk of PDAC\[^{112-117}\].

Diabetes mellitus: type 1, type 2, type 3c: Meta-analyses have demonstrated associations between both type 1 and type 2 diabetes mellitus (DM) and pancreatic cancer, with odds ratios of approximately 2.0 and 1.8, respectively \[^{109-111,117}\]. Twenty-five to 50% of patients with PDAC will have developed DM 1-3 years prior to their PDAC diagnosis; however, the relative risk of pancreatic cancer drops as time from type 2 DM diagnosis increases, indicating that DM may in fact be an early manifestation of the cancer\[^{118,120,121}\]. Also, while new-onset DM is not specific for PDAC (less than 1% of adult-onset DM patients will develop PDAC within 3 years), large cohort studies in the United States and Sweden have demonstrated differing relative risks for those with a long history of DM vs those with new-onset DM: having DM for a longer time is associated with a decreased PDAC risk compared to newly-diagnosed DM\[^{21-24}\]. In addition, associated new-onset DM has been shown to resolve after tumor resection\[^{114,125,126}\].

A different diabetes diagnosis, type 3c (pancreaticogenic) DM, or diabetes associated with acute or chronic disease of the pancreas, which is up to 8% of all diabetest, may confer an even higher risk of pancreatic cancer, especially in those patients with chronic pancreatitis\[^{121,125,129}\]. Type 3c DM occurs in up to 30% of patients with PDAC and is associated with deficiencies in islet hormones such as insulin, glucagon, and pancreatic polypeptide\[^{120}\]. Most frequently, the insulin resistance is actually hepatic resistance, with relatively normal peripheral insulin sensitivity; this is thought to be a result of a deficiency of pancreatic polypeptide, which has been shown to affect hepatic insulin receptors\[^{128,134}\]. In patients with pancreatic polypeptide deficiency, this hepatic insulin resistance has been shown to return to normal with the replacement of the hormone\[^{128,131,132}\].

Insulin is growth promoting, and thus chronic insulinemia may result in increased cellular proliferation and decreased apoptosis, a mechanism by which PDAC may eventually develop\[^{110,112,117}\]. This is mediated through both increased levels of insulin, as well as insulin-like growth factor-1, which also results from hyper-insulinemia\[^{102}\]. Additionally, the oxidative stress from hyperglycemia may be the cause of cell damage that could lead to the development of neoplasm.

DM treatment choice has been demonstrated to modulate pancreatic risk. One case-control study found a relative risk of 2.89 for pancreatic cancer in those with DM; this risk decreased to 2.12 with treatment by oral hypoglycemic agents and increased to 6.49 by treatment with insulin\[^{98}\]. This is consistent with evidence that insulin can promote pancreatic cancer cell proliferation\[^{133}\]. In particular, treatment with metformin has been shown to decrease overall cancer risk in diabetic patients\[^{134,135}\]. Multiple studies have demonstrated a decreased risk of pancreatic cancer among diabetics treated with metformin\[^{136-137}\]. Specifically, one study demonstrated that treatment with metformin conferred a relative risk of pancreatic cancer of 0.30, vs 2.78 with treatment with insulin\[^{135}\].

Surgery and infection: A meta-analysis found a relative risk of PDAC of 1.23 for those with a history of a cholecystectomy\[^{138}\]. The mechanisms suggested by which cholecystectomy increases the risk of PDAC include increased cholecystokinin levels, which have been shown to stimulate the growth of human pancreatic cancer cell lines and promote pancreatic carcinogenesis in hamsters, as well as increased degradation of bile salts to secondary bile acids, which have a pancreatic carcinogenic effect in hamsters\[^{138-142}\].

Another meta-analysis has demonstrated a relative risk of 1.54 for developing PDAC post-gastrectomy, with a higher risk found for Billroth II resections than Billroth I resections\[^{143,144}\]. The reasons postulated for higher rates of pancreatic carcinogenesis include a post-gastrectomy environment favorable for bacteria that increase levels of DNA-damaging N-nitrosamine carcinogens, increased rates of H. pylori seropositivity, and increased rates of recurrent acute pancreatitis in Billroth II resections\[^{144}\].

Evidence suggests H. pylori infection is associated with PDAC: a 2011 meta-analysis found an increased odds ratio of 1.38\[^{145}\]. The definitive method by which H. pylori infection contributes to the development of PDAC is unknown, but may be related to the inflammatory mediators and angiogenic factor secretion associated with chronic infection\[^{146}\]. There is some evidence for a link between hepatitis B infection and pancreatic cancer, as well as possibly hepatitis C; however, the method by which these infections contribute to PDAC is unknown\[^{146,147}\].

Hydrocarbon exposure: While studies have shown correlations between pancreatic cancer and various expo-
sures, the most consistent exposures linked to development of pancreatic neoplasm are chlorinated hydrocarbons and polycyclic aromatic hydrocarbons[148]. However, it is important to note that consistently statistically significant results have not been found with either of these two occupational exposures.

PDAC STAGING, RISK STRATIFICATION AND SCREENING

Staging, prognosis, and the case for screening

The five-year PDAC survival rate of 6% is dismal, largely because the majority of patients are diagnosed at an advanced stage[1]. Surgical resection is the only curative treatment for pancreatic cancer. However, only pre-cancerous or early-stage (I - II) PDAC is surgically resectable. Since five-year survival rate for patients diagnosed with Stage I A disease is 19 times that of those diagnosed with Stage IV disease (13.6% vs 0.7%), greater improvements in survival may be seen if we focus on shifting the diagnosis of PDAC from a late stage to an early or pre-cancerous stage[10]. Unfortunately, early-stage PDAC is usually clinically silent, highlighting the need for improved methods of early detection of precursor and early stage lesions. This provides the rationale for screening programs to detect precursor and early stage lesions.

PDAC precursors

World Health Organization guidelines suggest that in order to screen for a cancer, there must be a recognizable latent or early stage of the disease that can be tested for and managed effectively[148]. Several pancreatic lesions meet the criteria for a precursor to PDAC: pancreatic intraepithelial neoplasms (PanINs), mucinous cystic neoplasms (MCNs), and intraductal mucinous cystic neoplasm (IPMNs)[150,155]. PanINs are non-invasive, non-mucin-producing, small epithelial neoplasms[10,151]. There are 3 grades of PanINs, classified by degree of atypia: PanIN-1, PanIN-2, and PanIN-3. A 2003 study found PanIN lesions in 82% of pancreata with invasive cancer compared to just 28% of normal pancreata, as well as an increased number of high-grade PanIN lesions compared to low-grade PanIN lesions[152]. Multiple studies have found PanIN-3 lesions only in pancreata harboring other malignancies[152-154]. For PanIN lesions, there are three broad subsets of germline or somatic mutations that are usually found in concert in a pancreatic malignancy: (1) activation of oncogenes (K-Ras, HER2); (2) inactivation of tumor suppressor genes (TP53, p16/CDKN2A, SMAD4/DPC4, BRCA1, BRCA2); and (3) inactivation of genome maintenance genes (MLH1, MSH2)[153,155,156]. While PanINs are not visible on cross-sectional imaging, a 2006 study suggests that endoscopic ultrasound (EUS) may be able to detect lobular parenchymal atrophy associated with PanINs, particularly multifocal PanIN, and IPMNs[157]. PanINs are usually found in concert in a pancreatic malignancy: (1) activation of oncogenes (K-Ras, HER2); (2) inactivation of tumor suppressor genes (TP53, p16/CDKN2A, SMAD4/DPC4, BRCA1, BRCA2); and (3) inactivation of genome maintenance genes (MLH1, MSH2)[153,155,156]. While PanINs are not visible on cross-sectional imaging, a 2006 study suggests that endoscopic ultrasound (EUS) may be able to detect lobular parenchymal atrophy associated with PanINs, particularly multifocal PanIN, and IPMNs[157].

Pancreatic cystic neoplasms: MCN and IPMN

Autopspy indicates that the prevalence of patients with a pancreatic lesion at death is about 24%; studies have found that magnetic resonance imaging (MRI) picks up incidental pancreatic cysts in patients with no pancreatic history in up to 13.5% of patients, and computed tomography (CT) in 2.6%[158-160]. The ability to detect precursor lesions before they invade and progress to pancreatic cancer is of the utmost importance. MCNs are cystic, mucin-producing epithelial neoplasms with ovarian-type stroma, detectable on cross-sectional imaging[158]. MCNs are much more common in females than males (95% female), and a significant percentage of the stroma cells stain positive for estrogen or progesterone receptors[161,162]. With a mean age of diagnosis of 45-50, MCNs usually arise in the body or tail of the pancreas (> 90%) and do not communicate with the larger pancreatic ducts[159]. Compared to non-invasive MCNs, malignant MCNs are diagnosed in older patients and are significantly larger, indicating that they most likely grow slowly over time[161,166]. The five-year survival rate for margin-negative, surgically resected non-invasive MCNs is close to 100%, but roughly 50% for invasive MCNs; however, their low frequency of invasion (12%) highlights the need for better characterization of tumor progression[161-163,166]. IPMNs, which include branch duct (BD-IPMN), main duct (MD-IPMN), and mixed types, are mucin-producing epithelial neoplasms that are also detected by cross-sectional imaging[167]. They are more common in the head of the pancreas, affect men more than women and have a mean age of diagnosis of about 65 years of age[166,168]. While BD-IPMNs and MD-IPMNs have the same age of presentation, BD-IPMNs are more common and frequently multifocal (21%-41% of cases) and less likely to progress to malignancy (11%-17% vs 44%-48% vs 45% for mixed IPMNs)[166,167-170]. Patients with resected BD-IPMNs also have a higher five-year survival rate (91%) than both MD-IPMNs (65%) and mixed IPMNs (77%)[166]. Patients with both MCNs and IPMNs have improved survival when lesions are resected before developing an invasive component: a study of 851 consecutive resected patients at Massachusetts General Hospital showed a five-year survival rate of 87% for those with invasive and non-invasive cystic lesions and just 62% in those with malignancy[172].

While it is important to continue to better our ability to identify these PDAC precursor lesions, this must be matched by an improvement in the capacity to accurately predict which of those lesions will progress to malignancies. Characterizing how these precursor lesions develop will help better guide future screening and subsequent treatment.

Screening modalities: Imaging and biomarkers

Imaging: EUS and MRI have demonstrated the most accuracy as screening modalities for PDAC in terms of detecting small, cystic lesions, while magnetic resonance imaging: EUS and MRI have demonstrated the most accuracy as screening modalities for PDAC in terms of detecting small, cystic lesions, while magnetic resonance imaging: EUS and MRI have demonstrated the most accuracy as screening modalities for PDAC in terms of detecting small, cystic lesions, while magnetic resonance imaging: EUS and MRI have demonstrated the most accuracy as screening modalities for PDAC in terms of detecting small, cystic lesions, while...
Table 3 Pancreatic ductal adenocarcinomas screening efforts and diagnostic yields a (%)

Ref.	Number screened	High-risk group	Initial imaging (if abnormal screening)	Diagnostic yield	Definition of diagnostic yield
Brentnall et al.	14	FPC	EUS + ERCP + CT	7 (50)	Dysplasia
Rulyak et al.	35	FPC	If symptomatic: EUS + ERCP	12 (34.3)	Dysplasia
Kimney et al.	46	FPC	EUS (ERCP)	12 (26)	Dysplasia
Canto et al.	38	FPC, PJS	EUS (CT, ERCP, EUS-FNA)	2 (5.3)	PDAC, IPMN
Canto et al.	78	FPC, PJS	EUS (ERCP, EUS-FNA)	8 (10.3)	IPMN, PanIN-2
Foley et al.	44	FPC, BRCA, PJS, FAMMM, p53, HP	EUS (CT, MRI)	10 (23)	PDAC, IPMN on imaging
Langer et al.	76	FPC, BRCA, FAMMM	EUS + MRCP (EUS)	1 (1.3)	IPMN
Verna et al.	51	FPC, PJS, FAMMM, BRCA, HP, HNPPC	EUS and/or MRCP (EUS-FNA, ERCP)	6 (12)	PDAC, IPMN, multifocal PanIN2-3
Ludwig et al.	109	FPC, BRCA	MRCP (EUS)	9 (8.3)	PDAC, IPMN, PanIN2-3, SCA on imaging
Vassen et al.	79	p16	MRI/MRCP, EUS if unable	7 (8.9)	PDAC
Al-Sukhni et al.	262	FPC, FDR of double-primary cancer, BRCA, PJS, HP, p16	MRI (ERCP, EUS, CT)	3 (1.1)	PDAC
Schneider et al.	72	FPC, BRCA, PALB2, p16	EUS + MRCP (EUS)	4 (5.5)	MD-IPMN, multifocal PanIN23
Canto et al.	216	FPC, BRCA, PJS	CT + MRI/MRCP + EUS (ERCP)	92 (42.6)	Pancreatic lesion

*a Only 41 patients had imaging, resulting in yield of 14.6% (6/41); b Only 175 patients had imaging, resulting in yield of 1.7% (3/175). PDAC: Pancreatic ductal adenocarcinomas; HNPPC: Lynch syndrome; FAP: Familial adenomatous polyposis; PJS: Peutz-Jeghers syndrome; FAMMM: Familial atypical multiple mole melanoma syndrome; HP: Hereditary pancreatitis; FPC: Familial pancreatic cancer; endoscopic retrograde MRI: Magnetic resonance imaging; CT: Computed tomography; EUS: Endoscopic ultrasonography; ERCP: Endoscopic retrograde cholangiopancreatography; MCN: Mucinous cystic neoplasms; IPMN: Intraductal mucinous cystic neoplasm; FNA: Fine needle aspirate.

cholangiopancreatography (MRCP) provides the best visualization of possible communication with the main pancreatic duct[176,178]. CT subjects patients to radiation and has a suboptimal detection rate compared to EUS and MRI. Abdominal ultrasound and endoscopic retrograde cholangiopancreatography are not used as screening modalities for PDAC[179].

Biomarkers: Due to high cost, relative inability of non-invasive imaging modalities to detect small and solid tumors, and the modest risks associated with screening techniques like EUS, the use of biomarkers for the early detection of PDAC is an important frontier[177].

Carbohydrate antigen 19-9 (CA 19-9) is the only FDA approved blood biomarker test for PDAC[176]. However, due to the low prevalence of PDAC in the population, CA 19-9 is recognized as a poor screening tool; a screening of over 10000 patients found only 4 cases of PDAC based on CA 19-9 levels; additionally, 3 of those cases were not resectable at diagnosis[178]. The sensitivity (70%), specificity (87%), positive predictive value (59%), and negative predictive value (92%) are still not high enough to be used regularly in healthy patients[175,177]. CA 19-9 levels do appear to be informative as a predictor of disease recurrence post-resection[176].

The literature surrounding pancreatic cancer biomarkers is vast: a 2009 analysis found over 2500 genes overexpressed at the mRNA or protein level[179]. There is ongoing research that suggests a future for gene expression profiling, proteomics, metabolomics, and microRNA as diagnostic PDAC biomarkers.

Current screening guidelines

The low absolute risk of developing PDAC precludes population-wide screening at the current time, both from a cost-benefit and absolute harm perspective. Assuming a lifetime risk of developing PDAC of 1.49%, a hypothetical screening test with 90% sensitivity and specificity would have a positive predictive value (PPV) of just 12%, meaning that almost nine in ten positive screening results would be incorrect, with those patients subject to unnecessary stress and further testing[3]. Even a screening test with 95% sensitivity and specificity would result in a PPV of just 22%. Notwithstanding, the identification of genetic and environmental risk factors may provide opportunities to enrich the screening population with high-risk cohorts, which would drastically increase the PPV of screening results, with the hopes of identifying precursor or early-stage lesions in some high-risk individuals before the lesions progress to inoperable pancreatic cancer.

Brand et al[180] published recommendations for PDAC screening in 2007. They suggested that potential candidates for screening included: (1) BRCA1, BRCA2, p16 mutation carriers with at least one FDR or SDR with PDAC; (2) a PJS family member (preferably confirmed germline mutation carrier); (3) HP patients; (4) a patient with 2 relatives in same lineage with PDAC, at least one of whom is an FDR of the patient; and (5) patients with ≥ 3 FDR, SDR or third-degree relatives with PDAC. They suggested that screening of these individuals...
should occur only under research protocol conditions, and required a threshold of at least 10-fold increased risk of PDAC. However, there was no consensus on the approach to screening, when to begin screening, and frequency of surveillance.

In 2011, the International Cancer of the Pancreas Screening (CAPS) Consortium held a conference with a panel of 49 experts from multiple disciplines, with the goal to develop consortium statements on screening, surveillance and management of high-risk individuals with an inherited predisposition to PC [pancreatic cancer]. There was agreement that detecting and treating invasive resectable PDAC as well as multifocal PanIN-3 lesions; and (3) IPMN with high-grade dysplasia should occur only under research protocol conditions, and required a threshold of at least 10-fold increased risk of PDAC. However, there was no consensus on the approach to screening, when to begin screening, and frequency of surveillance.

In 2011, the International Cancer of the Pancreas Screening (CAPS) Consortium held a conference with a panel of 49 experts from multiple disciplines, with the goal to develop consortium statements on screening, surveillance and management of high-risk individuals with an inherited predisposition to PC [pancreatic cancer]. There was agreement that detecting and treating invasive resectable PDAC as well as multifocal PanIN-3 lesions; and (3) IPMN with high-grade dysplasia should occur only under research protocol conditions, and required a threshold of at least 10-fold increased risk of PDAC. However, there was no consensus on the approach to screening, when to begin screening, and frequency of surveillance.

The CAPS consortium suggested guidelines for PDAC screening, based on evidence of increased PDAC risk. The statements agreed upon (> 75% consensus) were to screen candidates with: (1) two FDRs with PDAC; (2) two blood relatives with PDAC; (3) PJS; (4) BRCA-2 mutation carriers with at least one FDR with PDAC; (5) PALB2 mutation carriers with at least one FDR with PDAC; (6) p16 mutation carriers (FAMMM) with at least one FDR with PDAC; and (7) Lynch syndrome and one FDR with PDAC. While they agreed that initial screening should include EUS and/or MRI, there was no consensus about when to start or end screening.

Risk stratification

Based on personal and family history and genetic testing, patients can be stratified into risk categories. Verna et al. defined average risk patients as having one family member with PDAC, diagnosed at age 55 or older; these patients do not receive screening with EUS or MRI. Moderate risk patients were defined as those with two or more first, second, or third-degree relatives with PDAC, or an FDR with PDAC diagnosed earlier than age 55; these patients are screened with EUS or MRI. Finally, high risk patients had three or more first, second, or third-degree relatives with PDAC, or an FDR with PDAC diagnosed earlier than age 55; these patients receive both EUS and MRI. For all of the risk groups, any abnormal testing is followed by EUS if not already done. Following this screening, if no malignant or premalignant

Table 4 Selected highlights

Selected recent advances	Genetic risk factors
In 2009, the use of gene sequencing identified PALB2, which had previously been implicated in breast cancer, as a susceptibility gene for PDAC.	Expression of the palladin gene has been shown to be upregulated by cohabitation of normal fibroblasts with epithelial cells expressing the K-Ras oncogene. In 2012, it was shown that the palladin gene, which codes for a cytoskeletal protein, promotes mechanisms for metastasis and outgrowth of tumorigenic cells. Also in 2012, gene sequencing indicated that ATM mutations result in a predisposition to PDAC; LOH was demonstrated in 2 kindreds with PDAC.
Therapy	For patients with diabetes, treatment with metformin is associated with a lower relative risk of pancreatic cancer. A 2011 case report detailing a complete pathological response of a BRCA2-associated pancreatic tumor to gemcitabine plus iniparib showed the potential for PARP inhibitors in the treatment of BRCA2-associated pancreatic cancer. Similar clinical trials are currently underway.
Screening	The goal of PDAC screening is the detection and treatment of (1) resectable PDAC; (2) PanIN-3 lesions; and (3) IPMN with high-grade dysplasia. Low prevalence and high risk cohort enrichment. The low absolute risk of PDAC development precludes population-wide screening from a cost-benefit and absolute harm perspective. The opportunity to screen high-risk cohorts will vastly increase the PPV of a screening test.
Screening goals	Past screening efforts, using patients cohorts at a high risk of developing PDAC, have demonstrated diagnostic yields from 1.1% to 50%, depending on their definition of yield (Table 3). Current screening modalities may be costly and invasive, and therefore associated with some patient risk. Furthermore, the long-term implications for detection of small and clinically insignificant lesions are uncertain. Further studies are needed to determine appropriate surveillance.
Risk stratification	Personal, family, genetic and environmental history will allow risk stratification and development of tailored screening and surveillance programs. Biomarkers Ongoing research that suggests a future for gene expression profiling, proteomics, metabolomics, and microRNA as diagnostic PDAC biomarkers. Targeted therapy As with BRCA2-associated tumors and PARP inhibitors, tumor biology will increasingly dictate the subsequent therapy.

PDAC: Pancreatic ductal adenocarcinomas; IPMN: Intraductal mucinous cystic neoplasm.
disease is found, the patient is surveilled based on their risk factors. If malignant or premalignant disease is suspected or diagnosed, surgery must be considered.

Past PDAC screening efforts
A number of PDAC screening programs directed at various high-risk groups have been published, largely focusing on EUS as a screening modality. While each group screened individuals only at elevated risk of PDAC, inclusion criteria, screening modalities, and definition of diagnostic yield varied across groups, resulting in a wide range of reported yields. Their results, with diagnostic yields ranging from 1.1% to 50%, can be found in Table 3[9].

CONCLUSION
PDAC is the fourth most common cause of cancer-related deaths in the United States and a major health issue[10]. With dismal five-year survival rates, significant advances in the understanding of the etiology and tumor biology, as well as early detection, screening and treatment of PDAC are needed (Table 4). Given that only those diagnosed at an early or precancerous stage have a reasonable expectation of low morbidity and mortality, increased efforts are needed to improve risk stratification and identify early stage disease or premalignant conditions while they are still resectable. PDAC screening efforts in these enriched cohorts may also allow us to identify more effective modalities for early detection and screening, which could be then modified and instituted in the general population.

REFERENCES
1 American Cancer Society. Cancer Facts and Figures 2013. Atlanta: American Cancer Society, 2013
2 Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Aleshkevich S, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Seer EJ, Cronin KA. SEER Cancer Statistics Review, 1975-2010, National Cancer Institute. Available from: URL: http://seer.cancer.gov/csr/1975_2010
3 Bartsch DK, Gress TM, Langer P. Familial pancreatic cancer—current knowledge. Nat Rev Gastroenterol Hepatol 2012; 9: 445-453 [PMID: 22664688 DOI: 10.1038/nrgastro.2012.111]
4 Klein AP, de Andrade M, Hruban RH, Bondy M, Schwartz AG, Gallinger S, Lynch HT, Syngal S, Rabe KG, Goggins MG, Petersen GM. Linkage analysis of chromosome 4 in families with familial pancreatic cancer. Cancer Biol Ther 2007; 6: 320-323 [PMID: 17312386]
5 Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Bookar SV, Cruz-Corrales M, Offerhaus JA. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 2000; 119: 1447-1453 [PMID: 11113065]
6 Brose MS, Rebbeck TR, Calzone KA, Stopfer JE, Nathanson KL, Weber BL. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J Natl Cancer Inst 2002; 94: 1365-1372 [PMID: 12237282]
7 Thompson D, Easton DF. Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002; 94: 1358-1365 [PMID: 12237281]
8 Bilimoria KY, Bentrem DJ, Ko CY, Ritchey J, Stewart AK, Winchester DP, Talampton MS. Validation of the 6th edition AJCC Pancreatic Cancer Staging System: report from the National Cancer Database. Cancer 2007; 110: 738-744 [PMID: 17586363 DOI: 10.1002/cncr.22852]
9 Canto MI, Harinick F, Hruban RH, Offerhaus GJ, Polely JW, Kamel I, Nlo Y, Schulick RS, Bassi C, Kljuij L, Levy MJ, Chak A, Fockens P, Goggins M, Bruno M. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 2013; 62: 339-347 [PMID: 23135763 DOI: 10.1136/gutjnl-2013-303108]
10 Permutt-Wey J, Egan KM. Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Fam Cancer 2009; 8: 109-117 [PMID: 18763055 DOI: 10.1007/s10689-008-9214-8]
11 Hruban RH, Canto MI, Goggins M, Schulick R, Klein AP. Update on familial pancreatic cancer. Adv Surg 2010; 44: 293-311 [PMID: 20919528]
12 Klein AP, Brune KA, Petersen GM, Goggins M, Tersmette AC, Offerhaus GJ, Griffin C, Cameron JL, Yeo CJ, Kern S, Hruban RH. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 2004; 64: 2634-2638 [PMID: 15059921]
13 D’Andrea AD, Grompe M. The Fanconi anemia/BRCA pathway. Nat Rev Cancer 2003; 3: 23-34 [PMID: 12509764 DOI: 10.1038/nrc970]
14 Kottemann MC, Smogorzewska A. Fanconi anemia and the repair of Watson and Crick DNA crosslinks. Nature 2013; 493: 356-363 [PMID: 23325218 DOI: 10.1038/nature11863]
15 Schroeder TM, Tilgen D, Krüger J, Vogel F. Fornical genetics of Fanconi’s anemia. Hum Genet 1976; 32: 257-288 [PMID: 939547]
16 Folas A, Mathovic M, Bruun D, Reid S, Hejna J, Grompe M, D’Andrea A, Moses R. BRCA1 interacts directly with the Fanconi anemia protein FANCA. Hum Mol Genet 2002; 11: 2591-2597 [PMID: 1254784]
17 Struweing JP, Hartig P, Wacholder S, Baker SM, Berlin M, McAdams M, Timmerman MM, Brody LC, Tucker MA. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997; 336: 1401-1408 [PMID: 9145676 DOI: 10.1056/NEJM199705153362001]
18 Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Fan I, Tang J, Li S, Zhang S, Shaw PA, Narod SA. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrance: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 2006; 98: 1694-1706 [PMID: 17148771 DOI: 10.1093/jnci/djl465]
19 Tai YC, Domchek S, Parmigiani G, Chen S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2007; 99: 1811-1814 [PMID: 18042393 DOI: 10.1093/jnci/djm203]
20 Skudra S, Staka A, Pukitsa A, Sinjicka O, Pokrotnieks J, Nikitina M, Traucums J, Tilhomirova L. Association of genetic variants with pancreatic cancer. Cancer Genet Cytogenet 2007; 179: 76-78 [PMID: 17981219 DOI: 10.1016/j.crgencyto.2007.08.002]
21 Moran A, O’Hara C, Khan S, Shack L, Woodward E, Maher ER, Laloo F, Evans DG. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 2012; 11: 235-242 [PMID: 22187320 DOI: 10.1007/s10689-011-9506-2]
22 Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, Yeo CJ, Jackson CE, Lynch HT, Hruban RH, Kern SE. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996; 56: 5360-5364 [PMID: 8968085]
23 Consortium TBLC. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999; 91: 1310-1316 [PMID: 10433620]
24 Hahn SA, Greenhuff B, Ellis I, Sira-Frey M, Rieder H, Korte B, Gerdes B, Kress R, Ziegler A, Raeburn JA, Campdra D, Grüt-
Becker AE et al. Pancreatic ductal adenocarcinoma

zmann R, Rehder H, Rothmund M, Schmiegel W, Neoptolemos JP, Bartsch DK. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 2003; 95: 214-221 [PMID: 12569143] [DOI: 10.1093/jnci/djf908]

25 Murphy KM, Brune KA, Griffin C, Sollenberger JE, Petersen GM, Bansk R, Hubran RH, Kern SE. Evaluation of candidate genes MAP2K4, MADDH, ACRV1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Res 2002; 62: 3789-3793 [PMID: 12097290] [DOI: 10.1158/0008-5472.CAN-01-2023]

26 Lucas AL, Shaya R, Lipsyc MD, Mitchell EB, Kumar S, Hwang C, Deng L, Deove C, Chabot JA, Szabolcs M, Lud wig T, Chung WK, Frucht H. High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions. Clin Cancer Res 2013; 19: 3396-3403 [PMID: 23658460 DOI: 10.1158/1078-0432.CCR-12-3020]

27 Kim DH, Crawford B, Ziegler J, Beattie MS. Prevalence and characteristics of pancreatic cancer in families with BRCA1 and BRCA2 mutations. Fam Cancer 2009; 8: 153-158 [PMID: 18855126 DOI: 10.1007/s10689-008-9220-x]

28 Jones S, Hubran RH, Kamiyama M, Borges M, Zhang X, Parsons DW, Lin JC, Palimanso E, Brune K, Jaffe EM, Iacobuzio-Donahue CA, Maitra A, Parmigiani G, Kern SE, Velculescu VE, Kinsler KW, Vogelstein B, Eschleman JR, Goggins M, Klein AP. Exonic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009; 324: 217 [PMID: 19264984 DOI: 10.1126/science.1171202]

29 Rahman N, Seal S, Thompson D, Kelly P, Renwick A, El-liott A, Reid S, Spano KA, Barfoot R, Chagati T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Easton DF, Stratton MR. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 2007; 39: 165-167 [PMID: 17200668 DOI: 10.1038/ng1959]

30 Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, Neoptolemos JP, Greenhalf W, Bartsch DK. PALB2 mutations in European familial pancreatic cancer families. Clin Genet 2010; 78: 490-494 [PMID: 20412113 DOI: 10.1111/ j.1399-0004.2010.01425.x]

31 Harinck F, Kluft I, van Mil SE, Waisfisz Q, van os TA, Aalfs CM, Wagner A, Olderode-Berends M, Sijmons RH, Kuiipers EJ, Foley JW, Fockens P, Bruno Mj. Routine testing for PALB2 mutations in familial pancreatic cancer families and breast cancer families with pancreatic cancer is not indicated. Eur J Hum Genet 2012; 20: 577-579 [PMID: 22166947 DOI: 10.1038/ejhg.2011.226]

32 Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C, Taherian N, Srivastava A, Holter S, Rothenmund M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 123-134 [PMID: 19556461 DOI: 10.1056/NEJMoa090212]

33 Vogelman DR, Wolfe RA, Kopetz S, Javle M, Bradley C, Mok I, Cabanillas F, Abbruzzese JL. Evidence for the efficacy of Iniparib, a PARP-1 inhibitor, in BRCA2-associated pancreatic cancer. Anticancer Res 2011; 31: 1417-1420 [PMID: 21508395]

34 Kastrinos F, Stoффel EM. History, genetics, and strategies for cancer prevention in Lynch syndrome. Clin Gastroenterol Hepatol 2014; 12: 715-727; quiz e41-43 [PMID: 23891921 DOI: 10.1016/j.cgh.2013.06.031]

35 de la Chapelle A. The incidence of Lynch syndrome. Fam Cancer 2005; 4: 233-237 [PMID: 16136383 DOI: 10.1007/s10045-004-8511-3]

36 Kastrinos F, Mukherjee B, Tavoul, N, Wang F, Sparr J, Raymond VM, Bandipallam P, Stoффel EM, Gruber SB, Syngal S. Risk of pancreatic cancer in families with Lynch syndrome. JAMA 2009; 302: 1790-1795 [PMID: 19861671 DOI: 10.1001/jama.2009.1529]

37 Grover S, Syngal S. Hereditary pancreatic cancer. Cancer Treat Rev 2010; 36: 1760-1766 [PMID: 20727885 DOI: 10.1016/j.ctrv.2010.08.012]

38 Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol 2003; 98: 214-221 [PMID: 12569143] [DOI: 10.1007/s00017-003-4048-0]

39 Björk J, Akerbant H, Iselius L, Alm T, Hultcrantz R. Epidemiology of familial adenomatous polyposis in Sweden: changes over time and differences in phenotype between males and females. Scand J Gastroenterol 1999; 34: 1200-1205 [PMID: 10636071]

40 Bisgaard ML, Fenger K, Bülow S, Niebuhr E, Mohr J. Familial adenomatous polyposis (FAP): frequency, penetrance, and mutation rate. Hum Mutat 1994; 3: 121-125 [PMID: 8199592 DOI: 10.1002/humu.180030206]

41 Giardiello F, Offerhaus GJ, Lee DH, Krush AJ, Tersmette AC, Booker SV, Kelley NC, Hamilton SR. Increased risk of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut 1993; 34: 1394-1396 [PMID: 8244108]

42 Mair E, Hammel P, Terris B, Olschwang S, O’Toole D, Sauvanet A, Palazzo L, Swartz MJ, Lepartzo L, Leyvi P, Rusinews-ki P. Intraductal papillary and mucinous pancreatic cancer: a new extracolonic tumour in familial adenomatous polyposis. Gut 2002; 51: 446-449 [PMID: 12171972]

43 Knudsen AL, Bisgaard ML, Bülow S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer 2003; 2: 43-55 [PMID: 14574166]

44 Knudsen AL, Bülow S, Tomlinson I, Möslin G, Heinimann K, Christensen I. Attenuated familial adenomatous polyposis: results from an international collaborative study. Colorec-
KN2A founder mutation (p16-Leiden)-positive melanoma families. Clin Cancer Res 2008; 14: 7151-7157 [PMID: 18981015 DOI: 10.1158/1078-0432.CCR-08-0403]

Shi C, Hruban RH, Klein AP. Familial pancreatic cancer. Arch Pathol Lab Med 2010; 134: 365-374 [PMID: 2092742 DOI: 10.1043/1543-2165.133.3.365]

LaRusche J, Whitcomb DC. Genetics of pancreatitis. Curr Opin Gastroenterol 2011; 27: 467-474 [PMID: 21844754 DOI: 10.1097/MOG.0b013e32834e9f28]

Schneider A, Suman A, Rossi L, Bardam MM, Beglinger C, Parvin S, Sattar S, Ali L, Khan AK, Gyr N, Whitcomb DC. SPINK1/PS1TI mutations are associated with tropical pancreatitis and type II diabetes mellitus in Bangladesh. Gastroenterology 2002; 123: 1026-1030 [PMID: 1256464]

Sosenheimer MJ, Aston CE, Preston RA, Gates LK, Ulrich CD, Martin SP, Zhang Y, Gorry MC, Ehrlich GD, Whitcomb DC. Clinical characteristics of hereditary pancreatitis in a large family, based on high-risk haplotype. The Midwest Multicenter Pancreatic Study Group (MMPSG) Am J Gastroenterol 1997; 92: 1113-1116 [PMID: 9219780]

Raimondi S, Lowenfels AB, Morselli-Labate AM, Maisonneuve P, Pezzilli R. Pancreatic cancer in chronic pancreatitis: aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol 2011; 24: 349-358 [PMID: 20516834 DOI: 10.1016/j.bjg.2010.02.007]

Maisonneuve P, Marshall BC, Lowenfels AB. Risk of pancreatic cancer in patients with cystic fibrosis. Gut 2007; 56: 1327-1328 [PMID: 17698876 DOI: 10.1136/gut.2007.125278]

Cohn J, Mitchell RM, Jowell PS. The impact of cystic fibrosis and PST1/SPINK1 gene mutations on susceptibility to chronic pancreatitis. J Clin Lab Med 2005; 25: 79-100 [PMID: 15749235 DOI: 10.1016/j.jcjl.2004.12.007]

Weiss FU, Simon P, Bogdanova N, Mayerle J, Dworniczak B, Horst J, Lerch MM. Complete cystic fibrosis transmembrane conductance regulator gene sequencing in patients with idiopathic chronic pancreatitis and controls. Gut 2005; 54: 1456-1460 [PMID: 15987793 DOI: 10.1136/gut.2005.046808]

Gukovski I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144: 1199-209 [eS]. DOI: 23622129 DOI: 10.1053/j.gastro.2013.02.007]

Masamune A, Watanabe T, Kituka K, Shimosegawa T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 2009; 7: 548-554 [PMID: 19896099 DOI: 10.1016/j.cgh.2009.07.038]

Greenberger S, Berkun Y, Ben-Zeev B, Levi YB, Barzilai A, Nissenkorn A. Dermatologic manifestations of ataxia-telangiectasia syndrome. J Am Acad Dermatol 2013; 68: 932-936 [PMID: 23636805 DOI: 10.1016/j.jaad.2012.12.950]

Swift M, Chase CL, Morrell D. Cancer predisposition of ataxia-telangiectasia heterozygotes. Cancer Genet Cytogenet 1990; 46: 21-27 [PMID: 218493]

Robert N, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML, Gallinger S, Schwartz AG, Syngal S, Cote ML, Axilbund J, Schulick R, Ali SZ, Eshelman JR, Veluceloseu V, Goggins M, Vogelstein B, Papadopoulos N, Hruban RH, Kinzler KW, Klein AP. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012; 2: 41-46 [PMID: 22858167 DOI: 10.1158/2159-8290.CD-11-0194]

Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 1991; 325: 1831-1836 [PMID: 1961222 DOI: 10.1056/NEJM199112263252602]

Swift M, Morrell D, Cramertie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 1986; 39: 573-583 [PMID: 3788973]

Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and...
bacco smoking and heavy alcohol consumption in pancreatic cancer. *Mol Carcinog* 2012; 51: 40-52 [PMID: 22162230 DOI: 10.1002/mc.20786]

104 Ruylak SJ, Lowenfels AB, Maisonneuve P, Brennan TA. Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. *Gastroenterology* 2003; 124: 1292-1299 [PMID: 12730869]

105 Genkinger JM, Spiegelman D, Anderson KE, Bergkvist H, Huxley R, Jomfrup J, Thun MJ, Andersen DK. Pancreatic cancer and risk of colorectal cancer. *Int J Cancer* 2010; 126: 1474-1486 [PMID: 19816941 DOI: 10.1002/ijc.24936]

106 Yeo TP, Lowenfels AB. Demographics and epidemiology of pancreatic cancer. *Cancer* 2012; 118: 477-484 [PMID: 23187833 DOI: 10.1007/s00018-012-1680-z]

108 Pandol SJ, Ratner M. Pathobiology of alcoholic pancreatitis. *Pancreatology* 2007; 7: 105-114 [PMID: 17592222 DOI: 10.1159/000104255]

109 Larsson SC, Wolk A. Red and processed meat consumption and risk of pancreatic cancer: meta-analysis of prospective studies. *Br J Cancer* 2012; 106: 603-607 [PMID: 22267090 DOI: 10.1038/bjc.2011.385]

110 Larsson SC, Orsini N, Wolk A. Body mass index and pancreas cancer risk: A meta-analysis of prospective studies. *Int J Cancer* 2007; 120: 1993-1998 [PMID: 17266034 DOI: 10.1002/ijc.23255]

111 Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. *N Engl J Med* 2003; 348: 1625-1638 [PMID: 12711737 DOI: 10.1056/NEJMoa021423]

112 Stocks T, Rapp K, Bjärge T, Manjer J, Ulmert H, Selmer R, Lukanova A, Johansen D, Concin H, Trellt S, Hallmans G, Jonsson H, Stattin P. Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of six prospective cohorts. *PLoS Med* 2009; 6: e1000201 [PMID: 20027213 DOI: 10.1371/journal.pmed.1000201]

113 Gapstur SM, Gallaher PH, Luepke W, Liu K, Colangelo L, Dyer A. Abnormal glucose metabolism and pancreatic cancer mortality. *JAMA* 2006; 295: 253-2538 [PMID: 18151119]

114 Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. *Gastroenterology* 2008; 134: 981-987 [PMID: 18395079 DOI: 10.1053/j.gastro.2008.01.039]

115 Stattin P, Björk O, Ferrari P, Lukanova A, Leibson CL, Lindahl J, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes mellitus: a nationwide cohort study in Sweden. *J Natl Cancer Inst* 1995; 87: 930-931 [PMID: 7666483]

116 Chari ST, Leibson CL, Rabe KG, Ramlau R, Ramlau R, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes mellitus: a population-based study. *Gastroenterology* 2005; 129: 504-511 [PMID: 16083707 DOI: 10.1016/j.gastro.2005.05.007]

117 Cui Y, Andersen DK. Diabetes and pancreatic cancer. *Endocr Relat Cancer* 2012; 19: 59-62 [PMID: 22843556 DOI: 10.1530/ERC-12-0105]

118 Calle EE, Murphy TK, Rodriguez C, Thun MJ, Heath CW. Diabetes mellitus and pancreatic cancer mortality in a prospective cohort of United States adults. *Cancer Causes Control* 1998; 9: 403-410 [PMID: 9794172]

119 Chow WH, Gridley G, Nyren O, Linet MS, Ekbom A, Fraumeni JF, Adami HO. Risk of pancreatic cancer following diabetes mellitus: a nationwide cohort study in Sweden. *J Natl Cancer Inst* 1995; 87: 930-931 [PMID: 7666483]

120 Chari ST, Leibson CL, Rabe KG, Ramlau R, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes mellitus: a population-based study. *Gastroenterology* 2005; 129: 504-511 [PMID: 16083707 DOI: 10.1016/j.gastro.2005.05.007]

121 Cui Y, Andersen DK. Pancreatogenic diabetes: special considerations for management. *Pancreatology* 2011; 11: 279-294 [PMID: 21759768 DOI: 10.1159/000329188]

122 Magruder JT, Elahi D, Andersen DK. Diabetes and pancreatic cancer: chicken or egg? *Pancreas* 2011; 40: 339-351 [PMID: 21412116 DOI: 10.1097/MPA.0b013e31820b9e5d]

123 Hardt PD, Ramlau R, Kloor HU, Bretzel RG. Is pancreatic cancer (type 3c diabetes) underdiagnosed and misdiagnosed? *Diabetes Care* 2008; 31 Suppl 2: S165-S169 [PMID: 18227480 DOI: 10.2337/dc08-0244]

124 Andersen DK. Mechanisms and emerging treatments of the metabolic complications of chronic pancreatitis. *Pancrase* 2007; 35: 1-15 [PMID: 17575539 DOI: 10.1097/mpa.0b013e31805d01b0]

125 Seymour NE, Bruniard FC, Chaien RL, Lebovitz HE, Chance RE, Gingerich RL, Elahi D, Andersen DK. Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. *Surgery* 1988; 104: 119-129 [PMID: 3041640]

126 Bruniard FC, Chaien RL, Ryan AS, Seymour NE, Hoffmann JA, Lebovitz HE, Chance RE, Gingerich RL, Andersen DK, Elahi D. Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis. *J Clin Endocrinol Metab* 1996; 81: 3566-3572 [PMID: 8558902]

127 Ding ZQ, Fehsenfeld DM, Murphy LO, Permut J, Adrian TE. Physiological concentrations of insulin augment pancreatic cancer cell proliferation and glucose utilization by activating MAP kinase, PI3 kinase and enhancing GLUT-1 expression. *Pancrase* 2000; 21: 310-320 [PMID: 11039477]

128 Evans NM, Donnelly LA, Emslie-Smith AM, Aleski DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. *BMJ* 2005; 330: 1304-1305 [PMID: 15849206 DOI: 10.1136/bmj.38415.708634.F7]
Libby G, Donnelly LA, Donnan PT, Alesi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among type 2 diabetes. *Diabetes Care* 2009; 32: 1620-1625 [PMID: 19564453 DOI: 10.2337/dc09-0107].

Lee MS, Hsu CC, Wahiqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. *BMC Cancer* 2011; 11: 20 [PMID: 21241523 DOI: 10.1186/1471-2407-11-20].

Li D, Yeung SC, Hassan MM, Konopleva M, Abbrazzenuz JL. Antidiabetic therapies affect risk of pancreatic cancer. *Gastroenterology* 2009; 137: 487-498 [PMID: 19575425 DOI: 10.1053/j.gastro.2009.04.013].

Lin G, Zeng Z, Wang X, Wu Z, Wang J, Wang C, Sun Q, Chen Y, Quan H. Cholecystectomy and risk of pancreatic cancer: a meta-analysis of observational studies. *Cancer Causes Control* 2012; 23: 59-67 [PMID: 22008981 DOI: 10.1007/s10552-011-9586-y].

McDonnell CO, Bailey J, Stumpf T, Walsh TN, Johnson CD. The effect of cholecystectomy on plasma cholecystokinin. *Am J Gastroenterol* 2002; 97: 2199-2212 [PMID: 12388231 DOI: 10.1111/j.1572-0241.2002.05971.x].

Matters GL, McGovern C, Harms JF, Markovic K, Anson B, Rehfeld JF, Borch K. Chronic endogenous hypercholecystokininemia promotes pancreatic carcinogenesis in the hamster. *Carcinogenesis* 1997; 18: 315-320 [PMID: 9054625].

Ura H, Makino T, Ito S, Tsutsumi M, Kinugasa T, Kamano T, Ichimiyi H, Konishi Y. Combined effects of cholecystokinin and lithocholic acid on pancreatic carcinogenesis of N-nitrosobis(2-hydroxypropyl)amine in Syrian golden hamsters. *Cancer Res* 1986; 46: 4782-4786 [PMID: 3731125].

Luo J, Nordinvall C, Nyören O, Adami HO, Perment J, Ye W. The risk of pancreatic cancer in patients with gastric or duodenal ulcer disease. *Int J Cancer* 2007; 120: 368-372 [PMID: 17044024 DOI: 10.1002/ijc.22123].

Gong Y, Zhou Q, Zhou Y, Lin Q, Zeng B, Chen R, Li Z. Gastroenteritis and risk of pancreatic cancer: systematic review and meta-analysis of observational studies. *Cancer Causes Control* 2012; 23: 1279-1288 [PMID: 22674223 DOI: 10.1007/s10552-012-0005-x].

Trikudanathan G, Philip A, Dasanu CA, Baker WL. Association between Helicobacter pylori infection and pancreatic cancer. A cumulative meta-analysis. *JOP* 2011; 12: 26-31 [PMID: 2120697].

Hassan MM, Li D, El-Deeb AS, Wolf RA, Bondy ML, Davila M, Abbrazzenuz JL. Association between hepatitis B virus and pancreatic cancer. *J Clin Oncol* 2008; 26: 4557-4562 [PMID: 18824707 DOI: 10.1200/JCO.2008.17.5326].

El-Serag HB, Engels EA, Landgren O, Chiao E, Henderson L, Amatunget H, Giordano TP. Risk of hepatobiliary and pancreatic cancers after hepatitis C virus infection: A population-based study of U.S. veterans. *Gastroenterology* 2009; 49: 116-123 [PMID: 19085911 DOI: 10.1053/j.gastro.2008.10.006].

Andreatti G, Silverman DT. Occupational risk factors and pancreatic cancer: a review of recent findings. *Mutat Res* 2012; 76: 98-108 [PMID: 22162334 DOI: 10.1016/j.mcr.2009.09.002].

Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. *Gastroenterol Clin North Am* 2007; 36: 831-94, vi [PMID: 17996793 DOI: 10.1016/j.gtc.2007.08.012].

Scarlett CJ, Salisbury EL, Blankin AV, Kench J. Precursor lesions in pancreatic cancer: morphological and molecular pathology. *Pathology* 2011; 43: 183-200 [PMID: 21436288 DOI: 10.1097/TP.0b013e32834f5e3a].

Andea A, Sarkar F, Adsay VN. Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. *Mod Pathol* 2003; 16: 996-1006 [PMID: 14559982 DOI: 10.1010/j.mp.1000087422.24733.62].

Lütgges J, Reinecke-Lütgge A, Möllmann B, Menke MA, Clemens A, Klöppinger M, Sipos B, Klöppel G. Duct changes and K-ras mutations in the disease-free pancreas: analysis of type, age relation and spatial distribution. *Virchows Arch* 1999; 435: 461-468 [PMID: 10592484].

Cubilla AL, Fitzgerald PJ. Morphological lesions associated with human primary invasive nonendocrine pancreatic cancer. *Cancer Res* 1976; 36: 2690-2698 [PMID: 1277176].

Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. *Clin Cancer Res* 2000; 6: 2969-2972 [PMID: 10955772].

Hruban RH, Tsai YC, Kern SE. Pancreatic Cancer. Vogelstein B, Knize KW. The Genetic Basis of Human Cancer. New York: McGraw-Hill, 1998: 659.

Brune K, Abe T, Canto M, O’Malley L, Klein AP, Maitra A, Volkan Adsay N, Fishman EK, Cameron JL, Yee CJ, Kern SE, Goggins M, Hruban RH. Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. *Am J Surg Pathol* 2006; 30: 1067-1076 [PMID: 16931950].

Laffan TA, Horton KM, Klein AP, Berlanstein B, Siegelman SS, Kawamoto S, Johnson PT, Fishman EK, Hruban RH. Prevalence of unsuspected pancreatic cysts on MDCT. *AJR Am J Roentgenol* 2008; 191: 802-807 [PMID: 18716113 DOI: 10.2214/AJR.07.3340].

Kimura W, Nagai H, Kuroda A, Muto T, Esaki Y. Analysis of small cystic lesions of the pancreas. *Int J Pancreatol* 1995; 18: 197-206 [PMID: 8708390 DOI: 10.1007/BF02784942].

Lee KS, Sekkar A, Rofsky NM, Pedrosa I. Prevalence of incidental pancreatic cysts in the adult population on MR imaging. *Am J Gastroenterol* 2010; 105: 2079-2084 [PMID: 20354507 DOI: 10.1038/ajg.2010.122].

Goh BK, Tan YM, Chung VF, Chow PK, Cheow PC, Wong WK, Ooi LL. A review of mucinous cystic neoplasms of the pancreas defined by ovarian-type stroma: clinicopathological features of 344 patients. *World J Surg* 2006; 30: 2236-2245 [PMID: 17103100 DOI: 10.1007/s00268-006-0126-1].

Zamboni G, Scarpa A, Bogina G, Iacono C, Bassi C, Talamini G, Sessa F, Capella C, Scolia E, Rickaert F, Mariuzzi GM, Klöppel G. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. *Am J Surg Pathol* 1999; 23: 410-422 [PMID: 10199470].

Crippa S, Salvia R, Warshaw AL, Domínguez I, Bassi C, Falconi M, Thayer SP, Zamboni G, Lauwers GY, Mino-Kenudson M, Capelli P, Pederzoli P, Castillo CF. Mucinous cystic neoplasm of the pancreas: a multi-institutional study of the Japan pancreas society. *Pancreas* 2011; 40: 67-71 [PMID: 20924309 DOI: 10.1097/MPA.0b013e3181f749d3].
Inherited pancreatic cancer: management and unanswered questions. *Pancreatology* 2013; 14: 1303-1315 [PMID: 23622140 DOI: 10.1053/j.gastro.2013.01.073]

Schmidt CM, White PB, Waters JA, Yannoutsos CT, Cummings OW, Baker M, Howard TJ, Zyromski NJ, Nakeeb A, DeWitt JM, Akisik FM, Sherman S, Pitt HA, Lillemoe KD. Intraductal papillary mucinous neoplasms: predictors of malignant and invasive pathology. *Ann Surg 2007; 246: 644-51; discussion 651-4* [PMID: 17893501 DOI: 10.1097/SLA.0b013e318155a0e5]

Rodriguez JR, Salvia R, Sippa W, Warshaw AL, Bassi C, Falconi M, Thayer SP, Lauwers GY, Capelli P, Mino-Kenudson M, Razo O, McGrath D, Pederzoli P, Fernández-Del Castillo C. Branch-duct intraductal papillary mucinous neoplasms: observations in 145 patients who underwent resection. *Gas- troenterology 2007; 133: 72-9; quiz 309-10* [PMID: 17631133 DOI: 10.1053/j.gastro.2007.05.010]

Tanaka M, Fernández-del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, Kimura W, Levy P, Pittman MB, Schmidt CM, Shimizu M, Wolfgang CL, Yamaguchi K, Yamao K. International consensus guidelines for 2012 on the management of IPMN and MCN of the pancreas. *Pancreatology 2012; 12: 183-197* [PMID: 22687371 DOI: 10.1016/j.pan.2012.04.004]

Valsangkar NP, Morales-Oyarvide V, Thayer SP, Ferrone CR, Wargo JA, Warshaw AL, Fernández-del Castillo C. 851 resected cystic tumors of the pancreas: a 33-year experience at the Massachusetts General Hospital. *Surgery 2012; 152: S4-12* [PMID: 22770958 DOI: 10.1016/j.surg.2012.05.033]

Furukawa T, Hatori T, Fujita I, Yamamoto M, Kobayashi M, Ohike N, Morohoshi T, Egawa S, Unno M, Takao S, Osako M, Yonezawa S, Mino-Kenudson M, Lauwers GY, Yamaguchi H, Ban S, Shimizu M. Prognostic relevance of morphological types of intraductal papillary mucinous neoplasms of the pancreas. *Gut 2011; 60: 509-516* [PMID: 21193453 DOI: 10.1136/gut.2010.210567]

Canto MI, Hruban RH, Fishman EK, Kamel IR, Schulick R, Zhang Z, Topazian M, Takahashi N, Fletcher J, Petersen G, Klein AP, Axilbund J, Griffin C, Syngal S, Saltzman JR, Mortele KJ, Lee J, Tamm E, Vikram R, Bhosale P, Margolis D, Farrell J, Goggins M. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. *Gastroenterology 2012; 142: 796-804; quiz e14-5* [PMID: 22245846 DOI: 10.1053/j.gastro.2012.01.005]

Brand RE, Nolen BM, Zey HJ, Allen PJ, Eloubeidi MA, Goldberg M, Elton E, Arnoletti JP, Christein JD, Vickers SM, Brand RE. Five years of prospective screening of high-risk individuals from families with familial pancreatic cancer. *Gastrointest Endosc 2002; 56: 582-586* [PMID: 12297755]

Canto MI, Goggins M, Yeo CJ, Griffin C, Axilbund JE, Brune K, Ali SZ, Jagannath S, Petersen GM, Fishman EK, Piantadosi S, Giardiello FM, Hruban RH. Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. *Clin Gastroenterol Hepatol 2004; 2: 606-621* [PMID: 15224285]

Canto MI, Goggins M, Hruban RH, Petersen GM, Giardiello FM, Yeo C, Fishman EK, Brune K, Axilbund J, Griffin C, Ali S, Richman J, Jagannath S, Kantsevoy SV, Kalloo AN. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. *Clin Gastroenterol Hepatol 2006; 4: 766-781; quiz 665* [PMID: 16682259 DOI: 10.1016/j.cgh.2006.02.005]

Poley JW, Kluijt I, Gouma DJ, Harinck F, Wagner A, Aalfs C, van Eijck CH, Cats A, Kuipers EJ, Nio Y, Fockens P, Bruno MJ. The yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer. *Am J Gastroenterol 2009; 104: 2175-2181* [PMID: 19491825 DOI: 10.1111/j.1572-0241.2009.02619.x]

Langer P, Kann PH, Fendrich V, Habbe N, Schneider M, Sina M, Slater EP, Heverhagen JT, Gress TM, Rothmund M, Bartsch DK. Five years of prospective screening of high-risk individuals from families with familial pancreatic cancer. *Ann Surg 2009; 250: 1410-1418* [PMID: 19470496 DOI: 10.1016/j.gws.2008.07.001]

Ludwig E, Olson SH, Bayuga S, Simon J, Schattner MA, Gerdes H, Allen PJ, Jarnagin WR, Kurtz RC. Feasibility and yield of screening in relatives from familial pancreatic cancer families. *Am J Gastroenterol 2011; 106: 946-954* [PMID: 21468009 DOI: 10.1038/ajg.2011.65]

Vasen HF, Wassmer M, van Mil A, Tollenaar RA, Konstanti-
novski M, Gruis NA, Bergman W, Hes FJ, Hommes DW, Offerhaus GJ, Morreau H, Bonsing BA, de Vos tot Nederveen Cappel WH. Magnetic resonance imaging surveillance detects early-stage pancreatic cancer in carriers of a p16-Leiden mutation. *Gastroenterology* 2011; 140: 850-856 [PMID: 21129377 DOI: 10.1053/j.gastro.2010.11.048]

Al-Sukhni W, Borgida A, Rothenmund H, Holter S, Semotiuk K, Grant R, Wilson S, Moore M, Narod S, Jhaveri K, Haider MA, Gallinger S. Screening for pancreatic cancer in a high-risk cohort: an eight-year experience. *J Gastrointest Surg* 2012; 16: 771-783 [PMID: 22127781 DOI: 10.1007/s11605-011-1781-6]

P-Reviewer: Westgaard A S-Editor: Zhai HH
L-Editor: A E-Editor: Wang CH
