Effects of Nucleopolyhedrovirus Infection on the Development of Helicoverpa armigera (Lepidoptera: Noctuidae) and Expression of Its 20-Hydroxyecdysone—and Juvenile Hormone—Related Genes

Authors: Zhang, Songdou, Wu, Fengming, Li, Zhen, Lu, Zhenqiang, Zhang, Xinfeng, et al.

Source: Florida Entomologist, 98(2) : 682-689

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.098.0243
Effects of nucleopolyhedrovirus infection on the development of *Helicoverpa armigera* (Lepidoptera: Noctuidae) and expression of its 20-hydroxyecdysone– and juvenile hormone–related genes

Songdou Zhang, Fengming Wu, Zhen Li, Zhenqiang Lu, Xinfeng Zhang, Qingwen Zhang, and Xiaoxia Liu*

Abstract

In recent years, the interactions between baculoviruses and their insect hosts have become a research focus because baculoviruses can suppress the development and manipulate the behavior of insects. Many studies reported that nucleopolyhedrovirus (NPV) infection might disrupt the hormone balance in insects, but the effect of NPV infection on the development and expression of hormone-related genes in larvae of *Helicoverpa armigera* Boddie (Lepidoptera: Noctuidae) remains unclear. In this study, the mortality, development time, and pupal weight of *H. armigera* were recorded after 4th and 5th instars had been treated per os with different concentrations of *Helicoverpa armigera* single NPV (HaSNPV). Results showed that mortality increased and development time was prolonged to different degrees along with increasing concentrations of HaSNPV. The pupal weight did not differ between the HaSNPV-infected and control insects when 4th instars were infected but was significantly reduced when 5th instars were infected with HaSNPV at concentrations of 10^9 and 10^8 polyhedral inclusion bodies (PIB) per milliliter. Compared with the healthy control group, larval body weight was significantly reduced from the 3rd day after infection when 4th instars had been treated with HaSNPV at concentrations of 10^9 and 10^8 PIB/mL. Results from quantitative reverse-transcriptase polymerase chain reaction assays revealed that 20-hydroxyecdysone–related genes (*ECR, USP, E75*, and *NTF2*) were down-regulated and juvenile hormone–related genes (*MET, JHi*, and *HSP90*) were up-regulated after HaSNPV infection. This study improves our understanding of the interactions between baculoviruses and host insects.

Key Words: NPV infection; insect hormone; transcript level; qRT-PCR; development

Resumen

En los últimos años, las interacciones entre los baculovirus y sus hospederos de insectos han convertido en un enfoque de investigación porque los baculovirus pueden suprimir el desarrollo y manipular el comportamiento de los insectos. Muchos estudios informan que la infección nucleopoliedrovirus (NPV) podría alterar el equilibrio hormonal en insectos, pero el efecto de la infección por el NPC en el desarrollo y la expresión de genes relacionados con las hormonas en las larvas de *Helicoverpa armigera* Boddie (Lepidoptera: Noctuidae) sigue siendo no clara. En este estudio, se registraron la mortalidad, el tiempo de desarrollo, y el peso de pupa de *H. armigera* después de cuarto y quinto estadios habían sido tratados por vía oral con diferentes concentraciones de *Helicoverpa armigera* NPV singular (HaSNPV). Los resultados mostraron que la mortalidad incrementó y el tiempo de desarrollo se prolongó a diferentes grados a lo largo con concentraciones crecientes de HaSNPV. El peso de pupa no fue diferente entre los insectos infectados por HaSNPV y de control cuando se infectaron el cuarto estadío, pero se redujo significativamente cuando las larvas del quinto estadío fueron infectados con HaSNPV en concentraciones de 10^9 y 10^8 cuerpos de inclusión políédricos (CIB) por mililitro. En comparación con el grupo de control sano, el peso corporal de las larvas se redujo significativamente desde la tercera día después de la infección cuando las larvas del cuarto estadío habían sido tratados con HaSNPV a concentraciones de 108 y 109 CIB/mL. Los resultados de los ensayos de reacción en cadena de la polimerasa cuantitativa la transcriptasa inversa revelaron que los genes relacionados con el 20-hidroxicorticoidona (*ECR, USP, E75* y *NTF2*) fueron regulados hacia abajo y los genes relacionados con las hormonas juveniles (*MET, JHi* y *HSP90*) fueron regulados después de la infección HaSNPV. Este estudio mejora nuestra comprensión de las interacciones entre los baculovirus e insectos huésped.

Palabras Clave: infección VAN; hormona de insectos; nivel de transcripción; qRT-PCR; desarrollo

Baculoviruses are a class of large, double-stranded DNA viruses that infect only invertebrate hosts and have been developed as environmentally safe biological control agents (Park et al. 1993). In recent years, with the improving of people’s living standards and the growing environmental consciousness, use and development of high-efficiency, low-toxicity, and pollution-free pesticides have become more...
popular in the public. Nuclear polyhedrosis virus (NPV) is one of the 2
taxonomic groups of baculoviruses and has many advantages including
host specificity, excellent control effects, no non-target effects, and low
levels of resistance response (Nguyen et al. 2013a). However, there are
still many challenges to using NPVs to control pests in agriculture and
forestry compared with the commonly applied chemical pesticides,
such as lack of entomological expertise and robust automated systems,
high production costs, or low potency. To improve the killing speed of
NPVs, many studies have been conducted to elucidate the interaction
between NPVs and host insects.

For example, when the ecodysteroid UDP-glucosyltransferase (EGT)
gene was deleted from Lymantria dispar multicalasis NPV (LdMNPV),
the killing speed of the recombinant viral strain was significantly faster
than that of the wild type virus in 5th instars of Lymantria dispar L.
(Lepidoptera: Noctuidae) (Slavicek et al. 1999). Transcriptome analyses
and microarray methods were widely used to compare different aspects of
the virus–host interactions, including infections at different time-points
(Salem et al. 2013; Nguyen et al. 2013b), infection of fat
body versus hemocytes (Bao et al. 2010), and characteristics of un-
infected versus infected cells (Gatehouse et al. 2009; Sagisaka et al.
2010; Breitenbach et al. 2011; Nguyen et al. 2012). Many genome-
scale analyses of differential mRNA expression between virus-infected
and non-infected hosts were conducted, such as Helicoverpa zea Bod-
die (Lepidoptera: Noctuidae) insect cells infected with Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) (Nguyen et al. 2013b),
Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae infected by active Autographa californica multiple nuclear polyhedrosis virus
(AcMNPV) (Choi et al. 2012), or the hemocytes of Heliothis virescens
(F.) (Lepidoptera: Noctuidae) larvae infected by baculovirus (Breitenbach
et al. 2011). Results from these studies showed that the transcript
levels of many host genes (responsible for detoxification, anti-virus
peptide production, energy generation, hormone activity, etc.) were
changed after virus infection. To evade antiviral responses by host in-
sects, viruses target the apoptotic genes, steroid hormones, and the
host immune system.

The holometabolous cotton bollworm Helicoverpa armigera Hüb-
nerv (Lepidoptera: Noctuidae) is an omnivorous and widespread pest
that causes enormous economic loss in the cotton, corn, vegetable, and
other crop industries throughout Asia (Wu et al. 2008; Lu et al. 2012).
The steroid 20-hydroxyecdysone (20E) and the sesquiterpenoid juvenile
hormone (JH) are 2 major hormones that regulate the metamorphosis
and development of H. armigera (Riddiford et al. 2003). In the signal
transduction pathway of 20E, 20E initially binds to its receptor, a het-
erodimeric transcription complex including ecdysteroid receptor (ECR)
and ultraspiracle protein (USP) (Lan et al. 1999), and then initiates the
20E primary response genes HR3 (Koelle et al. 1992), “early” ecdysone-
induced transcription factor (E75) (Segraves & Hogness 1990), and
Broad-Complex (BR) (Karim et al. 1993), and these transcription factors
then express other of late genes, such as nuclear transport factor 2 (NTF2) (He et al. 2010). In the JH signal transduction pathway, JH
initially binds to an intracellular receptor candidate methoprene-
tolerant (MET) and then regulates the expression of the signalization
factors BR and Kr-h1 (Jindra et al. 2013; Liu et al. 2013). The JH inducible
(JHI) gene is also used as an indicator for the JH signaling pathway (Du-
brovsky et al. 2004). The heat shock protein HS90 also was reported to
be induced by JH in H. armigera (Liu et al. 2013). Juvenile hormone
epoxide hydrolase (JHEH) is a vital metabolism enzyme that catalyzes JH
to metabolize (Gilbert et al. 2000). These genes involved in 20E and JH
signal transduction play vital roles in the growth and development of H.
armigera (Riddiford et al. 2003; Liu et al. 2013). However, it is seldom
reported how the expression of these genes varies after virus infection
to disrupt the hormone balance in H. armigera larvae.

In order to better elucidate the interactions between baculoviruses and
insects, we examined the effects of HaSNPV infection on the de-
velopment and transcriptional profile of 20E- and JH-related genes in
H. armigera larvae. The results may help to further develop efficient
biopesticides and explain the mechanisms of host behavior alteration
manipulated by baculoviruses.

Materials and Methods

INSECTS AND VIRUS

The H. armigera colony was obtained from the Integrated Pest
Management (IPM) laboratory of the Entomology department at Chi-
inese Agricultural University (Beijing, China) and reared on artificial
diet (Wu & Gong 1997) at 26 ± 1 °C, 75 ± 10% RH, and a 16:8 h L:D
photoperiod. Larvae were individually reared in separate glass tubes
(5.5 cm in length × 2.0 cm in diameter) after the 3rd instar to prevent
cannibalism.

The raw powder of HaSNPV (5 × 10⁸ PIB/g) was bought from Henan
Jiyuan Baiyun Industry Co., Ltd (Jiyuan, China) and stored at 4 °C for
later use.

INFECTION EXPERIMENT

HaSNPV powder was diluted with sterile water to 6 concentrations
(10, 10⁷, 10⁸, 10⁹, 10¹⁰ PIB/mL). Then, 10 μL HaSNPV suspension at different concentrations were dispensed onto artificial diet
pieces (0.8 cm L × 0.8 cm W × 0.5 cm H). The artificial diet for control
treatments received an equal amount of sterile water. One piece of
the treated diet and one newly molted 4th or 5th instar were placed into
a glass tube, and normal diet was replenished once the diet with NPV
had been consumed (Zhang et al. 2015).

In the experiment examining physiological indicators, 4th instars received HaSNPV at 10, 10⁷, 10⁸, 10⁹ PIB/mL, and 5th instars
received HaSNPV at 10⁶, 10⁷, 10⁸, 10⁹ PIB/mL based on the
above method. In the gene expression experiment, all virus-treated
larvae received HaSNPV at 10⁸ PIB/mL. Each treatment in each experi-
ment included 60 larvae tested in 3 replications (i.e., 20 larvae per rep-
licate treatment).

DATA COLLECTION

The 4th and 5th instars treated with HaSNPV at different concentra-
tions or with sterile water were checked daily for mortality, molt-
ing, and pupation, upon which the pupae were weighed. The cumula-
tive mortality before pupation, the development time, and the pupal
weight were recorded (Tables 1 and 2). Furthermore, the body weight
of the 4th instars treated with HaSNPV or water was recorded daily
until pupation.

PRIMER DESIGN

The expression levels of ecdysterone-related genes (ECR, USP, E75, BR,
HR3, and NTF2) and JH-related genes (MET, JHEH, HS90, and JH [Liu et
al. 2011]) were determined by quantitative reverse transcriptase polymerase
chain reaction (qRT-PCR). The ribosomal protein L32 (RPL32) gene in H.
armigera was used as an internal control for qRT-PCR normalization.
The selected gene sequences were obtained from GenBank of the National
Center for Biotechnology Information (NCBI). The primers used in qRT-PCR
were designed with DNAClub software (http://www.softpedia.com/get/
Science-CAD/DNA-Club.shtml) according to gene sequences. All primer
pairs were synthesized by Sangon Biotechnology Co., Ltd. (Shanghai, Chi-
nah) (Table 3).
Table 1. Effect of different HaSNPV concentrations on the mortality, development time, and pupal weight of Helicoverpa armigera larvae treated in the 4th instar.

Concentration (PIB/mL)	Mortality (%)	Development time (d)	Pupal weight (g)
0	3.33	2.58 ± 0.07 a	0.2173 ± 0.0038 a
10^4	18.33	2.73 ± 0.08 a	0.2184 ± 0.0047 a
10^5	45.00	3.15 ± 0.08 b	0.2203 ± 0.0057 a
10^6	78.33	3.33 ± 0.10 b	0.2118 ± 0.0061 a
10^7	100	3.55 ± 0.13 bc	n/a
10^8	100	3.78 ± 0.15 c	n/a

Summary statistics

df	F	P
n/a	20.77	< 0.0001
n/a	9.34	< 0.0001

In total, 60 larvae were treated per concentration in 3 replicate experiments.

The data in the table are means (± SE). Means within the same column followed by a different letter are significantly different at P ≤ 0.05, Turkey’s HSD test.

SAMPLE COLLECTION AND TOTAL RNA EXTRACTION

To analyze the temporal expression profile of 20E- and JH-related genes in H. armigera larvae upon HaSNPV infection, larvae were treated with 10 μL HaSNPV suspension (10^10 PIB/mL) according to the above method. Then, at least 10 larvae were collected at each of 6 time points (0, 24, 48, 72, 96, and 120 h), quickly frozen in liquid nitrogen, and immediately placed at −80 °C for later use. The larvae fed with artificial diet pretreated with an equal amount of sterile water were simultaneously collected as controls.

To avoid contamination with RNase, thawed larvae were placed into RNase-free micro tissue grinders that contained 1 mL Trizol reagent (Invitrogen, Gaithersburg, Maryland, USA) and ground for 5 min until the samples were completely homogenized. Then the total RNA was extracted by transferring 400 μL larval homogenate into a 2 mL RNase-free centrifuge tube that contained 600 μL Trizol reagent and following the manufacturer’s instructions (Zhang et al. 2015). The purity and concentration of RNA samples were determined twice with an ultraviolet spectrophotometer (Thermo Scientific NanoDrop 2000, Rockford, Illinois, USA). The 1st-strand complementary DNA (cDNA) was synthesized in triplicate from 1 μg total RNA of each sample according to PrimeScript RT reagent kit (TaKaRa, Kyoto, Japan), and the resulting products were immediately stored at −80 °C for later use (Bustin et al. 2009; Zhang et al. 2015).

Table 2. Effect of different HaSNPV concentrations on the mortality, development time, and pupal weight of Helicoverpa armigera larvae treated in the 5th instar.

Concentration (PIB/mL)	Mortality (%)	Development time (d)	Pupal weight (g)
0	0	5.23 ± 0.08 a	0.2167 ± 0.0032 a
10^4	25.00	5.38 ± 0.12 a	0.2136 ± 0.0045 a
10^5	41.67	5.94 ± 0.19 ab	0.2111 ± 0.0041 ab
10^6	56.67	6.35 ± 0.26 bc	0.2092 ± 0.0045 ab
10^7	68.33	6.84 ± 0.21 bc	0.1926 ± 0.0050 bc
10^8	75.00	7.20 ± 0.22 c	0.1762 ± 0.0085 c

Summary statistics

df	F	P
n/a	20.67	< 0.0001
n/a	7.59	< 0.0001

In total, 60 larvae were treated per concentration in 3 replicate experiments.

The data in the table are means (± SE). Means within the same column followed by a different letter are significantly different at P ≤ 0.05, Turkey’s HSD test.

QUANTITATIVE REAL-TIME PCR ANALYSIS

Real-time PCR amplification and analysis were performed using SYBR green supermix (TaKaRa) following the manufacturer’s instructions on a Bio-Rad CFX Connect™ Real-Time PCR System (Bio-Rad, Hercules, California, USA), and the final reaction volume obtained was 20 μL. The real-time PCR was ran in triplicate for each cDNA sample (Zhang et al. 2015). The amplification conditions were as follows: 95 °C for 30 s, followed by 40 cycles of 95 °C for 10 s and 60 °C for 30 s. The specificity of amplified products was further confirmed by melting curve analysis from 65 to 95 °C and 2% agarose gel electrophoresis. The mRNA expression of target genes was quantified using the comparative Cross Threshold (CT, the PCR cycle number that crosses the signal threshold) method (Livak & Schmittgen 2001). The CT value of the reference gene was subtracted from the CT value of the target gene to obtain ΔCT. The normalized fold changes of the target gene mRNA expression were expressed as 2^−ΔΔCT, where ΔΔCT is equal to ΔCT_untreated sample − ΔCT_control sample.

STATISTICAL ANALYSES

All experiments were performed in triplicate, and the results were expressed as the means ± standard error (SE). The results of development time and pupal weight were analyzed by ANOVA followed by Turkey’s HSD multiple comparison test in SPSS 17.0 software for statis-
Results

MORTALITY, DEVELOPMENT TIME, AND PUPAL WEIGHT AFTER VIRUS INFECTION

When 4th instars were treated with HaSNPV at different concentrations, the mortality of control larvae (fed artificial diet with sterile water) was 3.3% and that of virus-treated larvae increased with increasing HaSNPV concentrations; all larvae treated with 10⁷ and 10⁸ PIB/mL died before pupation (Table 1). The development time of larvae treated with HaSNPV increased significantly compared with control larvae. When the larvae were infected with HaSNPV at 10⁷ and 10⁸ PIB/mL, the development time of 4th instars increased by 37.6 and 46.5%, respectively. At 10³ PIB/mL, the development time of 4th and 5th instars to pupation increased by 2.1 and 1.8 d, respectively, compared with control larvae (Table 1), whereas the pupal weight was similar between HaSNPV-infected and control insects.

When 5th instars were treated with HaSNPV at different concentrations, mortality increased with increasing HaSNPV concentration, the development time increased after treatment with 10³, 10⁴, and 10⁵ PIB/mL compared with control larvae, and the weight of pupae infected with 10⁴ and 10⁵ PIB/mL was significantly less than that of control pupae (Table 2).

FLUCTUATION OF BODY WEIGHT IN 4TH INSTARS UPON INFECTION

In general, the body weight of 4th instars gradually increased, and fast growth occurred from the 2nd day after treatment in every group (Fig. 1A). The body weight of infected larvae decreased with increasing HaSNPV concentration. Weight (Fig. 1A) and size (Fig. 1B) of larvae treated with 10⁷ and 10⁸ PIB/mL were significantly reduced from the 3rd day onward.

TRANSCRIPTION ANALYSIS OF 20E-RELATED GENES

Effects of HaSNPV infection on 20E-related genes in H. armigera larvae at the transcript level were analyzed by real-time PCR. The results showed that HaSNPV infection significantly inhibited the expression levels of 20E receptor ECR and its copartner USP after virus infection at 48, 72, 96, and 120 h, but had no obvious effect at 24 h (Fig. 2). The transcript levels of E75, a 20E early responsive gene, significantly decreased after virus infection at 24, 72, 96, and 120 h but was not different from controls at 48 h (Fig. 2). HaSNPV infection induced the expression of the two 20E early responsive genes BR and HR3 (Fig. 2), which significantly increased 48, 96, and 120 h after virus infection. The transcript levels of NTF2 increased after virus infection at 24 and 48 h, but decreased at 96 and 120 h (Fig. 2).

TRANSCRIPTION ANALYSIS OF JH-RELATED GENES

As shown by real-time PCR, MET, which is a JH candidate receptor gene, was significantly up-regulated at 24, 72, and 120 h after virus infection, with no noticed expression difference to controls at 48 and 96 h (Fig. 3). The transcript levels of JHi and HSP90 were significantly up-regulated at 24, 48, 72, and 120 h and at 24, 48, 72, and 96 h, respectively, after virus infection (Fig. 3). The JHEH gene was significantly up-regulated by virus infection at 24 and 120 h and down-regulated at 48 and 96 h (Fig. 3).

Discussion

In order to enhance their transmission, baculoviruses cause the host insects to develop slower or to change their behavior (Kamita et al. 2005; Liu et al. 2006; Hoover et al. 2011). Parasites of invertebrates and vertebrates mainly target 4 physiological systems (endocrine, nervous, muscular, and excretory) and can cause their hosts to develop slower or to change their behavior (Kamita et al. 2005; Liu et al. 2006; Hoover et al. 2011). Parasites of invertebrates and vertebrates mainly target 4 physiological systems (endocrine, nervous, muscular, and excretory) and can cause their hosts to develop slower or to change their behavior (Kamita et al. 2005; Liu et al. 2006; Hoover et al. 2011). Parasites of invertebrates and vertebrates mainly target 4 physiological systems (endocrine, nervous, muscular, and excretory) and can cause their hosts to develop slower or to change their behavior (Kamita et al. 2005; Liu et al. 2006; Hoover et al. 2011). Parasites of invertebrates and vertebrates mainly target 4 physiological systems (endocrine, nervous, muscular, and excretory) and can cause their hosts to develop slower or to change their behavior (Kamita et al. 2005; Liu et al. 2006; Hoover et al. 2011).
neural, immunomodulatory, and neuromodulatory) to induce behavioral changes (Beckage 1993; Adamo 2002; Thomas et al. 2005; Helluy 2013). Understanding how these systems connect and communicate is important for theoretical as well as practical reasons.

In our study, HaSNPV showed a high virulence and pathogenicity to 4th and 5th instars of H. armigera. The development time of virus-infected larvae was prolonged compared with larvae of the healthy control group. Our results are consistent with former studies showing that the molting and pupation of larvae were blocked by virus infection via controlling host insect ecdysone levels (O’Reilly & Miller 1989; Liu et al. 2006). Although the levels of ecdysone, which regulates the molting and metamorphosis in insects, have been shown to decline after

Fig. 1. Effect of HaSNPV infection on the larval body weight of Helicoverpa armigera. (A) ♦, ■, ▲, ×, —, and ● indicate larvae infected with HaSNPV at the concentrations 0, 10⁵, 10⁶, 10⁷, 10⁸, and 10⁹ PIB/mL, respectively. (B) a, b, c, d, e, and f show H. armigera larvae on the 5th day after infection with HaSNPV at the concentrations 0, 10⁵, 10⁶, 10⁷, 10⁸, and 10⁹ PIB/mL, respectively.
Zhang et al.: Effect of NPV infection on *Helicoverpa armigera*

virus infection, the expression changes of ecdysone-related genes are little investigated. Therefore, we selected 6 ecdysone-related genes, namely ECR, USP, E75, BR, HR3, and NTF2, to study the effect of *HaSNPV* infection on the larval 20E signal in *H. armigera*. Transcript levels of two 20E receptors (ECR and USP) and an early transcription factor (E75) were down-regulated after virus infection, which agrees with former results that *HaECR* transcript levels declined 72 h after *HaSNPV* infection (Jayachandran et al. 2013). Interestingly, the transcript levels of BR and HR3 genes were up-regulated after virus infection, which is consistent with previous research showing that HR3 was up-regulated nearly 8-fold in response to baculovirus infection (Breitenbach et al. 2011). The vital roles of BR have been demonstrated in metamorphic processes and embryogenesis of insects, but whether it is involved in neural, endocrine, and muscular coordination remains unclear (Piulachs et al. 2010). HR3, which is a probable nuclear hormone receptor and metamorphosis-related gene, plays key roles during metamorphosis (Xiong et al. 2013), but whether the up-regulation of HR3 after virus infection implies other functions remains to be investigated. The transcript levels of NTF2 markedly increased after virus infection at 24 and 48 h, but then decreased at 96 and 120 h. The reason for this fluctuation may be that NTF2 and small GTPase Ran are involved not only in the 20E signal transduction pathway but also in the nucleo-cytoplasm transport of macromolecules (He et al. 2010). Hence, our results showed that virus infection altered the transcription of 20E-related genes that may relate to the biological and physiological changes observed in infected larvae.

From the 3rd day of virus infection, the body weight and size of larvae treated with 10\(^{7}\) and 10\(^{9}\) PIB/mL were reduced compared with healthy larvae. The fluctuation of body weight was closely related to molting and development time because the exoskeleton limits the continuous growth of insects (Riddiford et al. 2003). It is possible that virus infection may suppress the growth and development of host insects by disturbing the hormone balance via influence of the viral *Egt* gene. The virus *Egt* gene encodes an enzyme that modifies a hydroxyl group on 20E, thereby inactivating the molting hormone and resulting in a delay or in the absence of molting in infected larvae (O’Reilly et al. 1992; Chen et al. 1997; Slavicek et al. 1999).

It is known that JH is a central hormone that regulates insect development and growth (Dubrovsky 2005), but the specific interactions between JH and virus infection remain unclear. Generally, it is hypothesized that inactivating 20E and maintaining the JH titer at status quo level are beneficial to the reproduction of the virus because the infected insects continue to feed and produce more occlusion bodies (polyhedra) (Chen et al. 1997). In *Adoxophyes honmai* (Lepidoptera: Tortricidae), JH estrogen activity had no peak in the final instar of entomopoxvirus-infected larvae, suggesting that JH titers in virus-infected larvae remained high (Nakai et al. 2004). In *Apis mellifera* L. (Hymenop-
The authors thank Lihua Liang of the IPM laboratory at China Agricultural University for providing the *H. armigera* larvae. This work was supported by a grant from the Major State Basic Research Development Program of China (973 Program) (No. 2012CB114103).

The authors have declared that no conflict of interest exists. Author contributions: SZ and XL conceived and designed the experiments; SZ performed the experiments; SZ, FW, and ZL analyzed the data; FW, ZL, and XZ contributed reagents, materials, and analysis tools; SZ, ZL, QZ, and XL wrote the paper.

References Cited

Adamo SA. 2002. Modulating the modifiers: parasites, neuromodulators and host behavioral change. Brain, Behavior and Evolution 60: 370-377.

Bao YY, Lv ZY, Liu ZB, Xue J, Xu YF, Zhang CK. 2010. Comparative analysis of *Bombyx mori* nucleopolyhedrovirus responsive genes in fat body and haemocyte of *B. mori* resistant and susceptible strains. Insect Molecular Biology 19: 347-358.

Beckage NE. 1993. Endocrine and neuroendocrine host-parasite relationships. Receptor 3: 233-245.

Breitenbach JE, Shelby KS, Popham HJ. 2011. Baculovirus induced transcripts in hemocytes from the larvae of *Heliothis virescens*. Viruses 3: 2047-2064.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Mueller R, Nolte T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55: 611-622.

Chen XW, Hu ZH, Jehle JA, Zhang YQ, Vlak JM. 1997. Analysis of the ecysteroid UDP-glucosyltransferase gene of *Heliothis armigera* single-nucleocapsid baculovirus. Virus Genes 15: 219-225.

Choi JY, Roh JY, Wang Y, Zhen Z, Tao YY, Lee JH, Liu Q, Kim JS, Shin SW, Je YH. 2012. Analysis of genes expression of *Spodoptera exigua* larvae upon AcMNPV infection. PLoS One 7: e42462.

Dubrovsky EB. 2005. Hormonal cross talk in insect development. Trends in Endocrinology and Metabolism 16: 6-11.

Dubrovsky EB, Dubrovskaya VA, Berger EM. 2004. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Developmental Biology 268: 258-270.

Gatehouse HS, Poulton J, Markwick NP, Gatehouse LN, Ward VK, Young VL, Luo Z, Schaffer R, Christelle JT. 2009. Changes in gene expression in the permissive larval host lightbrown apple moth (*Epiphyas postvittana*, Tortricidae) in response to EppONPV (*Baculoviridae*) infection. Insect Molecular Biology 18: 635-648.

Fig. 3. Expression analysis by qRT-PCR of the JH related genes MET, JHEH, HSP90, and JHI in *Helicoverpa armigera* larvae after HaSNPV infection at 0, 24, 48, 72, 96, and 120 h. The blank bars represent the larvae infected with sterile water (CK). The black bars represent the larvae infected with NPV at the concentration of 10¹⁴ PIB/mL (NPV infection). The data represent the mean ± SD of 3 biological replicates. Statistically significant differences from gene expression are denoted by * (0.01 < P ≤ 0.05) and ** (P ≤ 0.01) as determined by the pairwise Student’s t-test analysis in SPSS 17.0 software.
Gilbert LJ, Granger NA, Roe RM. 2000. The juvenile hormones: historical facts and speculations on future research directions. Insect Biochemistry and Molecular Biology 30: 617-644.

Goblirsch M, Huang ZY, Spivak M. 2013. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 8: e58165.

He HJ, Wang Q, Zheng WW, Wang XJ, Song QS, Zhao XF. 2010. Function of nuclear transport factor 2 and Ran in the 20E signal transduction pathway in the cotton bollworm, Helicoverpa armigera. BMC Cell Biology 11: 1.

Helluy S. 2013. Parasite-induced alterations of sensorimotor pathways in gamarids: collateral damage of neuroinflammation? The Journal of Experimental Biology 216: 67-77.

Hoover K, Grove M, Gardner M, Hughes DP, McNeil J, Slavicek J. 2011. A gene for an extended phenotype. Science 333: 1401.

Jayachandran B, Hussain M, Asgari S. 2013. Regulation of Helicoverpa armigera ecdysone receptor by miR-14 and its potential link to baculovirus infection. Journal of Invertebrate Pathology 114: 151-157.

Jindra M, Palli SR, Riddiford LM. 2013. The juvenile hormone signaling pathway in insect development. Annual Review of Entomology 58: 181-204.

Kamita SG, Nagasaki K, Chua JW, Shimada T, Mita K, Kobayashi M, Maeda S, Hammad BD. 2005. A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. Proceedings of the National Academy of Sciences of the United States of America 102: 2584-2589.

Karim FD, Guild GM, Thummel CS. 1993. The Drosophila Broad-Complex plays a key role in controlling ecdyson-regulated gene expression at the onset of metamorphosis. Development 118: 977-988.

Koelle MR, Segraves WA, Hogness DS. 1992. DHR3: a Drosophila steroid receptor homolog. Proceedings of the National Academy of Sciences of the United States of America 89: 6167-6171.

Lan Q, Hiruma K, Hu X, Jindra M, Riddiford LM. 1999. Activation of a delayed-early gene encoding MiHR3 by the ecdysone receptor heterodimer EcR-B1-USP but not by EcR-B1-USP-2. Molecular and Cellular Biology 19: 4987-4996.

Liu PC, Wang XJ, Song QS, Zhao XF. 2011. The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathways by phosphorylation variation. PLoS One 6: e19776.

Liu W, Zhang FX, Cai MJ, Zhao WL, Li XR, Wang JX, Zhao XF. 2013. The hormone-dependent function of Hsp90 in the crosstalk between 20-hydroxyecdyson and protein interactions. Biochimica et Biophysica Acta 1830: 5184-5192.

Liu X, Zhang Q, Xu B, Li J. 2006. Effects of Cry1Ac toxin of Bacillus thuringiensis and nuclear polyhedrosis virus of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on larval mortality and puation. Pest Management Science 62: 729-737.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402-408.

Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487: 362-365.

Nakai M, Shiototsu T, Kimuni Y. 2004. An entomopoxvirus and a granulovirus use different mechanisms to prevent puation of Adoxophyes honamii. Virus Research 101: 185-191.

Nguyen Q, Palfreyman RW, Chan LC, Reid S, Nielsen LK. 2012. Transcriptome sequencing of and microarray development for a Helicoverpa zea cell line to investigate in vitro insect cell–baculovirus interactions. PLoS One 7: e36324.

Nguyen Q, Nielsen LK, Reid S. 2013a. Genome scale transcriptomics of baculovirus–insect interactions. Viruses 5: 2721-2747.

Nguyen Q, Chan LC, Nielsen LK, Reid S. 2013b. Genome scale analysis of differential miRNA expression of Helicoverpa zea insect cells infected with a H. armigera baculovirus. Virology 444: 158-170.

O’Reilly DR, Miller LK. 1989. A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science 245: 1110-1112.

O’Reilly DR, Brown MR, Miller LK. 1992. Alteration of ecdysteroid metabolism due to baculovirus infection of the fall armyworm Spodoptera frugiperda: Host ecdysteroids are conjugated with galactose. Insect Biochemistry and Molecular Biology 22: 313-320.

Park EJ, Burand JP, Yin CM. 1993. The effect of baculovirus infection on ecdysteroid titers in gypsy moth larvae (Lymantria dispar). Journal of Insect Physiology 39: 791-796.

Piulachs MD, Pagone V, Belles X. 2010. Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochemistry and Molecular Biology 40: 468-475.

Riddiford LM, Hiruma K, Zhou X, Nelson CA. 2003. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology 33: 1327-1338.

Sagisaka A, Fujita K, Nakamura Y, Ishibashi J, Noda H, Imanishi S, Mita K, Yamakawa M, Tanaka H. 2010. Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. Virus Research 147: 166-175.

Salem TZ, Zhang F, Xie Y, Thiem SM. 2011. Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus–infected Spodoptera frugiperda cells. Virology 412: 167-178.

Segraves WA, Hogness DS. 1990. The E75 ecdysone-inducible gene responsible for the 7SB early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes and Development 4: 204-219.

Slavicek JM, Popham HJR, Riegel C. 1999. Deletion of the Lymantria dispar multicapsid nucleopolyhedrovirus ecdysteroid UDP-glucosyl transferase gene enhances viral killing speed in the last instar of the gypsy moth. Biological Control 16: 91-103.

Thomas F, Adiamo S, Moore J. 2005. Parasitic manipulation: Where are we and where should we go? Behavioural Processes 68: 185-199.

Wu KJ, Gong PY. 1997. A new and practical artificial diet for the cotton bollworm. Acta Entomologica Sinica 14: 227-282. (In Chinese)

Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin–containing cotton. Science 321: 1676-1678.

Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D. 2013. Silencing the HaHR3 gene by transgenic plant–mediated RNAi to disrupt Helicoverpa armigera development. International Journal of Biological Sciences 9: 370-381.

Yang HJ, Zhou F, Sahbat A, Firdose AM, Bhaskar R, Li XH, Hu JB, Sun CG, Yan SN, Miao YG. 2011. Expression pattern of enzymes related to juvenile hormone metabolism in the silkworm, Bombyx mori L. Molecular Biology Reporter 38: 4337-4342.

Zhang SD, An SH, Li Z, Wu FM, Yang QP, Liu YC, Cao JJ, Zhang HJ, Zhang QW, Liu XX. 2015. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene 555: 393-402. (Epub 18 Nov 2014: doi: 10.1016/j.gene.2014.11.038)