Tunneling spectroscopy and Josephson current of superconductor-ferromagnet hybrids on the surface of a 3D TI

Bo Lu1,3, Pablo Burset2, Keiji Yada1 and Yukio Tanaka1,3

1 Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
2 Institute for Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow 141700, Russia

E-mail: dr.lv.bo@gmail.com

Received 1 May 2015, revised 4 June 2015
Accepted for publication 5 June 2015
Published 24 August 2015

Abstract

We investigate the charge transport property of superconductor (S)/normal metal (N)/ferromagnet insulator (FI)/N	extprime and S/N/FI/N	extprime/S Josephson junctions on a three-dimensional topological insulator surface. We find the asymmetric local density of states (LDOSs) in a S/N/FI/N	extprime junction and show that the N interlayer gives rise to subgap resonant spikes in the differential conductance and LDOSs. In a S/N/FI/N	extprime/S junction, the Josephson current shows a non-sinusoidal current-phase relation and the N (or N	extprime) interlayer decreases the magnitude of the critical current monotonically.

Keywords: topological insulator, tunneling spectroscopy, DC Josephson effect

(Some figures may appear in colour only in the online journal)

1. Introduction

A three-dimensional (3D) topological insulator (TI) is a phase of matter with topologically protected Dirac-type surface states on their time reversal invariant point \([1–12]\). With coupling to a ferromagnet (F), Dirac fermions show many exotic properties such as magnetoelectric effect \([13–18]\). By the proximity effect to a superconductor (S), the 3D TI surface states may become a topological superconductor \([19]\). When F and S coexist on 3D TI surfaces, it is found that chiral Majorana edge states can be generated at the boundary between them \([19–21]\), which leads to the formation of a zero-biased conductance peak (ZBCP) \([22]\) as experimental signatures \([23, 28–31]\). Intrinsic topological superconductivity has also been found in doped 3D TIs, e.g., Cu\textsubscript{0.9}Bi\textsubscript{2}Se\textsubscript{3} \([32–36]\).

On the other hand, a variety of interesting phenomena about the Josephson effect in TI materials have been discovered \([41–47]\). Recently, a non-sinusoidal current-phase relation has been reported in the 3D TI HgTe junction \([47]\). In 3D TI heterojunctions like Nb/Bi\textsubscript{1.5}Sb\textsubscript{0.5}Te\textsubscript{1.7}Se\textsubscript{1.3}/Nb, the temperature dependence of the critical current is almost linear in most of the range \([46]\). Also, the novel Josephson effect involving Majorana fermions has been predicted theoretically \([23–27]\), however, there has been no experimental report yet. The rapid development in experiments requires a theoretical approach that can deal with realistic structures for Josephson junctions on a 3D TI surface.

In this article, we address how to compose Green’s function by wave functions on superconducting 3D TI surface. Using the resulting formalism, one can analyze the spatial dependence of physical quantities, such as local density of states (LDOSs) and pair potentials. Also, this approach provides an efficient way to calculate the Josephson current for realistic junctions on 3D TI surfaces. In this work, we consider the S/normal metal (N)/ferromagnetic insulator (FI)/N	extprime junction and S/N/FI/N	extprime/S Josephson junction as examples. Since making direct contact between F and S regions is not easily accessible in actual experiments, the presence of a N interlayer between S and F is a more realistic setup to study Majorana fermions. In the S/N/FI/N	extprime junction, we find that the conductance spectra and LDOSs have spikes as a function of bias voltage and quasiparticle energy \(E\), respectively. The resulting LDOSs shows an asymmetric
Figure 1. Schematics of the system: (a) S/N/FI/N’ and (b) S/N/FI/N’/S formed on the surface of a 3D TI. The LDOs can be detected by the STM tip. The differential conductance and the supercurrent can be obtained from the leads on the two sides.

energy dependence around $E = 0$. For the S/N/FI/N'/S junction, we find that the distance of the N interlayer (or N' interlayer) decreases the critical current monotonically. The junctions with or without FI show a non-sinusoidal current-voltage dependence around $E = 0$. The retarded Green's function with respect to equation (1) has the form

$$G^\text{R}(x, x') = \alpha \psi_i(x)\psi_i^\dagger(x') + \alpha_2 \psi_i(x)\psi_i^\dagger(x') + \alpha_3 \psi_i(x)\psi_i^\dagger(x') + \alpha_4 \psi_i(x)\psi_i^\dagger(x').$$

(2)

for $x > x'$ and

$$G^\text{R}(x, x') = \beta_1 \psi_i(x)\psi_i^\dagger(x') + \beta_2 \psi_i(x)\psi_i^\dagger(x') + \beta_3 \psi_i(x)\psi_i^\dagger(x') + \beta_4 \psi_i(x)\psi_i^\dagger(x'),$$

(3)

for $x < x'$. $\psi_{i=1-4}(x)$ are wave functions of equation (1) with wave vector k_i. $\psi_{i(2)}(x)$ is the wave function for an incident electron-like (hole-like) particle from the left side. $\psi_{i(4)}(x)$ is the wave function for the incident electron-like (hole-like) particles from the right side. $\psi_{i=1-4}(x')$ are the wave functions corresponding to the conjugate processes under the Hamiltonian

$$\hat{H} = \begin{bmatrix} \hat{h}(k_x, k_y) + M^* & i\sigma_\Delta \Delta^* M & -i\sigma_\Delta \Delta^* & i\sigma_\Delta \Delta^* \end{bmatrix}$$

(4)

with wave vector $-k_y$ and $\hat{h}(k_x, k_y)$ is given by $\hat{h}(k_x, k_y) = v_f(-k_x - k_x, -k_y - k_y) - \mu(\Theta(-x + d_{n1}) + \Theta(-x + d_{s1} - d_f))$. For example, in the left S side, the wave functions are

$$\psi_1(x) = \hat{A}_1 e^{i k_{x1} x} + a_1 \hat{A}_4 e^{i k_{x1} x} + b_1 \hat{A}_3 e^{-i k_{x1} x},$$

(5a)

$$\psi_2(x) = \hat{A}_2 e^{-i k_{x1} x} + a_2 \hat{A}_3 e^{-i k_{x1} x} + b_2 \hat{A}_4 e^{i k_{x1} x},$$

(5b)

$$\psi_3(x) = c_3 \hat{A}_3 e^{-i k_{x1} x} + d_3 \hat{A}_4 e^{i k_{x1} x},$$

(5c)

$$\psi_4(x) = c_4 \hat{A}_4 e^{-i k_{x1} x} + d_4 \hat{A}_3 e^{i k_{x1} x},$$

(5d)

and

$$\psi_1(x') = \hat{B}_1 e^{i k_{x1} x'} + a_1 \hat{B}_4 e^{i k_{x1} x'} + b_1 \hat{B}_3 e^{-i k_{x1} x'},$$

(6a)

$$\psi_2(x') = \hat{B}_2 e^{-i k_{x1} x'} + a_2 \hat{B}_3 e^{-i k_{x1} x'} + b_2 \hat{B}_4 e^{i k_{x1} x'},$$

(6b)

$$\psi_3(x') = c_3 \hat{B}_3 e^{-i k_{x1} x'} + d_3 \hat{B}_4 e^{i k_{x1} x'},$$

(6c)

$$\psi_4(x') = c_4 \hat{B}_4 e^{-i k_{x1} x'} + d_4 \hat{B}_3 e^{i k_{x1} x'}. $$

(6d)

The corresponding wave vectors are represented by $k_x = (\mu \pm \sqrt{E^2 - A_0^2})/\sqrt{V_f},$ and $q_{(e, h)} = (\mu \pm \sqrt{E^2 - A_0^2})/\sqrt{V_f}$. The spinors are given as

$$\hat{A}_1(\hat{B}_1) = \begin{bmatrix} iu, \pm e^{\pm\theta_1} u, \pm e^{\pm\theta_1} v, i v \end{bmatrix}^T, $$

(7a)

$$\hat{A}_2(\hat{B}_2) = \begin{bmatrix} i e^{\pm\theta_2} v, \mp v, \mp u, i e^{\pm\theta_2} u \end{bmatrix}^T,$$

(7b)

$$\hat{A}_3(\hat{B}_3) = \begin{bmatrix} i e^{\pm\theta_3} u, \mp u, \mp v, i e^{\pm\theta_3} v \end{bmatrix}^T,$$

(7c)

$$\hat{A}_4(\hat{B}_4) = \begin{bmatrix} i e^{\pm\theta_4} v, \mp v, \mp u, i e^{\pm\theta_4} u \end{bmatrix}^T.$$

(7d)
where \(u \) and \(v \) are given by \(u(v) = \sqrt{(E \pm \sqrt{E^2 - \Delta_0^2})/2E} \). Other wave functions can be found in the appendix. The coefficients \(a_0, b_0, a_i, \) and \(b_i \) can be solved from the boundary condition for relativistic systems. For example, in the S/N/FI/N junction, the boundary conditions are:

\[
\psi_f(x = 0, x) = \psi_i(x = 0, x), \quad \psi_f(x = d_n, x) = \psi_i(x = d_n, x), \quad \psi_f(x = d_n + d_f, x) = \psi_i(x = d_n + d_f, x), \quad \text{and similar to other processes.} \]

\(\alpha_{n=1-4} \) and \(\beta_{n=1-4} \) can be determined by the boundary conditions of Green’s function

\[
G^k(x + 0, x) - G^k(x - 0, x) = \nu_f^{-1}(i\xi, \hat{\sigma}_y),
\]

where \(\xi_{x, y, z} \) are the Pauli matrices in the electron-hole space. In real materials, the magnitude of the superconducting gap is much smaller than the chemical potential \(\Delta_0 \approx 10^{-3} \mu \), so we can use the quasiclassical approximation as \(\eta_e \approx \eta_h \) and \(\Theta_e \approx \Theta_h \equiv \Theta \). Then one can easily obtain the values of \(\alpha_{n=1-4} \) and \(\beta_{n=1-4} \).

\[
\begin{align*}
\alpha_{1(4)} &= \left[2i\nu f \cos \theta \left(\mu^2 - v^2 \right) \left(d_3d_4 - c_3c_4 \right) \right]^{-1} c_{4(3)}, \\ \alpha_{2(3)} &= \left[2i\nu f \cos \theta \left(\mu^2 - v^2 \right) \left(c_3d_4 - d_3c_4 \right) \right]^{-1} d_{3(4)}, \\
\beta_{1(4)} &= \left[2i\nu f \cos \theta \left(\mu^2 - v^2 \right) \left(d_3c_4 - c_3d_4 \right) \right]^{-1} c_{4(3)}, \\ \beta_{2(3)} &= \left[2i\nu f \cos \theta \left(\mu^2 - v^2 \right) \left(c_3d_4 - d_3c_4 \right) \right]^{-1} d_{3(4)}.
\end{align*}
\]

From the Green’s function, we can obtain the LDOSs for electrons: \(\rho_e(x, E) \) and that for holes: \(\rho_h(x, E) \).

\[
\rho_{e(0)}(x, E) = \rho_{e(h),1}(x, E) + \rho_{e(h),1}(x, E),
\]

where the spin-resolved LDOSs are given by

\[
\begin{align*}
\rho_{e(11)}(x, E) &= -\frac{1}{\pi} \sum_{k_y} \text{Im} \left[G_{11}^{(22)}(x, x, E) \right], \\ \rho_{h(11)}(x, E) &= -\frac{1}{\pi} \sum_{k_y} \text{Im} \left[G_{33}^{(44)}(x, x, E) \right].
\end{align*}
\]

The dc Josephson current is determined by electric charge conservation rule

\[
\partial_t P + \partial_x J_x + S = 0,
\]

where \(P = \Psi_1^\dagger \Psi_1 + \Psi_2^\dagger \Psi_2 \), \(J_x = i\nu f (\Psi_1^\dagger \Psi_2 - \Psi_2^\dagger \Psi_1) \), and \(S = 2 \text{Im}[\Delta^* \Psi_2^\dagger \Psi_1 - \Delta^* \Psi_1^\dagger \Psi_2] \) are electric charge density, electric current, and source term, respectively. After straightforward calculations following [49, 51], we find that the total Josephson current is

\[
J_x = e\kappa_0 T \sum_{k_x, \omega_n} \frac{\text{sgn}(\omega_n)}{\omega_n^2 + \Delta^2} \left[a_1(i\omega_n) - a_2(i\omega_n) \right],
\]

where \(\omega_n \) is the Matsubara frequency \(\omega_n = \pi k_B T(2n + 1), \) \(n = 0, \pm 1, \pm 2, \ldots \). Equation (14) shows that Furusaki–Tsukada’s formula [49] can also be applicable to the ballistic Dirac-like electron systems on 3D TI surfaces [57, 58]. It enables us to directly calculate the dc Josephson current in even more complicated or long.

Josephson junctions on a 3D TI surface without starting from the energy levels of Andreev bound states [23, 59].

3. Numerical results

3.1. S/N/FI/N’ junction

First, we show the conductance \(\sigma_x \) (see appendix) of the S/N/FI/N’ junction in figure 2. We normalized \(\sigma_x \) by \(\sigma_x \), which is the conductance when S is in normal state. We only consider the exchange field along the z- and x-axis since the magnetization along y-axis does not change the conductance [23]4.

The length of the N layer between S and FI is denoted by \(L_n \). The direct contact between S and FI means \(L_n = 0 \). For sufficiently large \(m_s(\mu_z) \), the normalized conductance has a ZBCP similar to that in chiral p-wave superconductor [23] when the magnetic field is along the z-axis, as shown in figure 2(a). Also we can see from figure 2(b), ZBCP appears when the magnetization is along the x-axis. As \(L_n \) increases, the subgap resonant peaks show up (figures 2(c)–(f)). The number of such peaks grows with \(L_n \).

This oscillatory phenomenon can also be seen in the LDOSs \(\rho_{e(h)}(x, E) \). We normalize \(\rho_{e(h)}(x, E) \) to that of the electron density of states of the bulk normal metal at Fermi energy. Here, we choose the position in the middle of FI

4 In this paper, the momentum spin locking term in Hamiltonian is chosen to be \(h(k_x, k_y) = \nu f(k_x \sigma_x + k_y \sigma_y) \). Thus, the tunneling conductance is not influenced when the magnetization is along x-axis.
Figure 3. LDOSs in the middle of FI in the S/N/FI/N' junctions as a function of energy \((E/\Delta_0)\): (a), (b): \(L_n = 0\), (c), (d): \(L_n = \xi\), and (e), (f): \(L_n = 3\xi\). Solid line for electron density of states and dashed line for hole density of states. Other parameters are chosen as the same as in figure 2.

\(x_0 = L_f/2 + L_n\) and show the density of states in figure 3. When \(L_n \neq 0\), we obtain the subgap peaks again as shown in figures 3(c)–(f). The formation of such peaks can be explained as follows. We know that the wave vector for the electron (hole) is \(k_n^+ = \sqrt{(\mu \pm E)^2/v_f^2 - k_z^2}\). The condition of forming the Andreev bound states in the N layer can be estimated from the Bohr–Sommerfeld quantization condition as

\[
e^{i(\pi_+ - \pi_-)L_n} = 1, \tag{15}\]

which shows that the number of peaks is proportional to \(L_n\). Similar formation of Andreev bound states was also revealed in junctions with 1D helical edge states [60].

We also find the asymmetric \(E\) dependence of LDOSs near the S/FI interface, e.g., \(\rho_e(x_0, E) / \rho_h(x_0, E)\) in figure 3. The asymmetry becomes prominent when magnetization is along the \(z\)-axis (figures 3(a), (c), and (e)). We know that \(\rho_e(x, E)\) and \(\rho_h(x, E)\) are symmetric functions of \(E\) for chiral \(p\)-wave superconductor when \(\Delta_0\) is much smaller than \(\mu\) [61]. In that case, the time-reversal symmetry is already broken in the bulk states of a \(p\)-wave superconductor. On the other hand, the superconductor on TI is time-reversal invariant and cannot support a chiral edge mode without attaching a ferromagnet. Therefore, we can imagine that the chiral edge mode studied here has a nature similar to Shiba-type bound states [38–40] by magnetic impurity scattering.

In the usual case, where the spin degree of freedom is degenerate, the emerging Shiba states still follow the relation \(\rho_{e(h)}(x, E) = \rho_{e(h)}(x, -E)\), although the decomposed LDOS in each spin sector \(\rho_{e(h),\sigma}(x, E)\) does not satisfy \(\rho_{e,\sigma}(x, E) = \rho_{e,\sigma}(x, -E)\). Since \(\rho_{e(h),\sigma}(x, E) = \rho_{e(h),-\sigma}(x, -E)\) is satisfied, after summing up each spin component, \(\rho_{e(h)}(x, E) = \rho_{e(h),1}(x, E) + \rho_{e(h),-1}(x, E) = \rho_{e(h),1}(x, -E) + \rho_{e(h),-1}(x, -E) = \rho_{e(h)}(x, -E)\) is satisfied. Then, the resulting LDOS is symmetric around \(E = 0\). On the other hand, if the spin degeneracy is lifted in the superconductor, it is possible that the LDOS becomes asymmetric. In the present case, there is a strong spin–momentum locking in the superconducting region by spin–orbit coupling. Then the asymmetric energy dependence of \(\rho_{e(h)}(x, E)\) appears near the S/FI interface.

Figure 4. Spatial dependence of zero energy states in (a) the S/FI/N junction and (b) S/N/FI/N' junction. The width of the F layer is \(L_f = 0.001\xi\) and that of the N layer in (b) is \(L_n = \xi\). Other parameters are the same as in figure 2. The scale of the horizontal axis is different in each region.

In a recent experiment of scanning tunneling spectroscopy (STS), similar asymmetric behavior of LDOSs has been observed in a 1D S/F system [37]. We can regard our finding in figure 3 as another example of asymmetric LDOSs in a planar S/F junction that can be detected using STS.

To see the spatial dependence of the Majorana states in such junctions, we show the zero energy density of states \(\rho_{e}(x, E = 0)\) throughout the junction. Because \(\rho_{e}(x, E = 0)\) is 0 in both the isolated S and FI region, significant enhancement of \(\rho_{e}(x, E = 0)\) in the S/FI interface of the S/FI/N junction can be regarded as the experimental signature of chiral Majorana fermion. In the S region, we can estimate that the characteristic length expressing the spatial change of \(\rho_{e}(x, E = 0)\) is the order of macroscopic length scale: \(\xi\). This means a sufficient possibility to detect the presence of
Majorana fermion experimentally by STS, since the manipulation of tip of STS just on the S/N or S/F boundary with high resolution is not easy. Also, as seen in figure 4(b), even if there is a normal layer between S and FI, the enhancement of $x_E(0)$ is not affected. In the N layer between S and FI, $x_E(0)$ is almost constant. In the right N layer, we find oscillations of $x_E(0)$ on the scale of the inverse Fermi momenta. However, this oscillatory behavior may be difficult to detect in an actual experiment.

3.2. Josephson effect

Before discussing the S/N/FI/N’S/S junction, let us first look at the S/N/S junction. Using equation (14), we plot the dc Josephson current in figure 5. It is normalized to eR_{ij}/Δ_0 where R_{ij} is the interface resistance per unit area in the normal state. In panel (a), we can see that the current-phase relation is non-sinusoidal for a short-junction in low temperature. This characteristic remains in the long-junction, as shown in panel (c). We notice that in a recent experiment of Nb/Bi$_{1.3}$Sb$_{0.7}$Te$_1.7$Se$_1.3$/Nb Josephson junction [46]. In figures 5(e) and (f), we plot the length dependence of Josephson current.

We observe that for high temperature, J_c is a concave function of T at small L_n while it becomes a convex function with large L_n. It is also interesting to notice that in the large area of low temperature, J_c is nearly a linear function of T in both short- and long-junction. This result is in good agreement with the recent experiments in long Nb/Bi$_{1.3}$Sb$_{0.7}$Te$_1.7$Se$_1.3$/Nb Josephson junction [46]. In figures 5(e) and (f), we plot the length dependence of Josephson current.

We now consider S/N/FI/N’S/S Josephson junctions. The length of the N layer on the two side of FI is denoted as L_{n1} and L_{n2}. When L_{n1} and L_{n2} are on the superconducting coherence length scale, the junctions become long-junctions. The influence of the N layer between FI and S is shown in figure 6. From figures 6(a) and (b), we can see that the current-phase relation still retains the non-sinusoidal shape for different values of L_{n1} and L_{n2} in low temperature limit. Throughout our study, we have not found the sawtooth behavior of current-phase relation involving magnetization in the long-junction and low temperature limit, as shown in figure 5(c). This is because the magnetization makes the Andreev bound states gapped for most values of k_y [23]. The derivative of energy dispersion that creates Josephson current will be a smoother function of phase than that in S/N/S junction. For the temperature dependence of the critical current, we can see that it behaves qualitatively different in low temperature limit for m_z and m_x as shown in figures 6(c) and (d), respectively. For m_z case, the critical current J_c saturates...
at a constant value, which has been revealed by the previous work [25]. However, for the m_x case, it shows a Kulik-Ome’lyanchuk type of critical current [62], which has linear low-temperature behavior. We interpret it as a result of the enhanced zero-energy LDOSs for m_x magnetization, as illustrated in figures 3(b), (d), and (f). In the high temperature limit, it is shown that for both m_x and m_y cases, I_c is a concave function while it crosses over to a convex function with increasing L_{n1} (or L_{n2}). This behavior is similar to the S/N/S junction. Figures 6(e) and (f) represent the critical current as a function of the length L_{n1} and L_{n2}, for different direction of magnetization. It is worth noting that, although the interlayer N in the S/N/FI/N’ junction could generate resonant spikes in the transport phenomena, e.g., spikes in figures 2 and 3, we find no oscillatory behavior in either current-phase relation or critical current as a function of length N (or N’). The critical current decreases monotonically with the length $L_{n1} + L_{n2}$.

4. Summary

In summary, we theoretically studied the S/N/FI/N’, S/N/S, and S/N/FI/N’/S junctions on the surface of a 3D TI. We have constructed a formula to obtain Green’s function. The conductance spectra and LDOSs in the S/N/FI/N’ junction show resonant spikes due to the Andreev bound states. The calculated current-phase relation and temperature dependence of critical current in the Josephson junctions are consistent with recent experiments in the S/N/S junction. We have also calculated the current-phase relation and temperature dependence of critical current in the S/N/FI/N’/S junction. The non-sinusoidal current-phase relation can be expected for short-junctions. We hope the obtained results will be confirmed by experiments in the near future.

Acknowledgments

We thank V V Ryazanov, A A Golubov, Y Asano, and M Sato for valuable discussions. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Topological Quantum Phenomena No. 22103005 and No. 25287085), by the German-Japanese research unit FOR1483 on ‘Topotronics,’ and by the Ministry of Education and Science of the Russian Federation Grant No. 14Y.26.31.0007.

Appendix. Wave functions

The wave functions in the N interlayer are

$$\hat{\psi}_{i}(x) = \sum_{j=1}^{4} \hat{N}_{j} e^{ik_{j}x}, \quad (17)$$

where

$$\hat{N}_{1(2)} = \begin{bmatrix} v_{j} (k_{n,1(2)} + k_{s}) , \mu + E, 0, 0 \end{bmatrix}^{T}, \quad (18)$$
$$\hat{N}_{3(4)} = \begin{bmatrix} 0, 0, v_{j} (k_{n,3(4)} - k_{s}), -\mu + E \end{bmatrix}^{T}, \quad (19)$$

with

$$k_{n,1(2)} = \pm \sqrt{\mu + E^{2}} / \sqrt{2} - k_{s} \pm k_{n}^{\pm}, \quad (20)$$
$$k_{n,3(4)} = \pm \sqrt{\mu - E^{2}} / \sqrt{2} - k_{s} \pm k_{n}^{-}. \quad (21)$$

For the FI interlayer, we find that

$$\hat{\psi}_{i}(x) = \sum_{j=1}^{4} \hat{F}_{j} e^{ik_{j}x}, \quad (22)$$
$$\hat{\psi}_{i}(x) = \sum_{j=1}^{4} \hat{F}_{j} e^{ik_{j}x}, \quad (23)$$

where

$$\hat{F}_{1} = \begin{bmatrix} iv_{j} k_{f}^{l} + (v_{j} k_{s} + m_{s}) , E - m_{s} , 0, 0 \end{bmatrix}^{T}, \quad (24a)$$
$$\hat{F}_{2} = \begin{bmatrix} E + m_{s} , -iv_{j} k_{f}^{l} + (v_{j} k_{s} + m_{s}) , 0, 0 \end{bmatrix}^{T}, \quad (24b)$$
$$\hat{F}_{3} = \begin{bmatrix} 0, 0, -iv_{j} k_{f}^{l} + (v_{j} k_{s} - m_{s}) , E + m_{s} \end{bmatrix}^{T}, \quad (24c)$$
$$\hat{F}_{4} = \begin{bmatrix} 0, 0, E - m_{s}, iv_{j} k_{f}^{l} + (v_{j} k_{s} - m_{s}) \end{bmatrix}^{T}, \quad (24d)$$

with

$$k_{f}^{l} = -c_{3} \sqrt{E^{2} - m_{s}^{2} - (v_{j} k_{s} + m_{s})^{2}}, \quad (25a)$$
$$k_{f}^{l} = c_{3} \sqrt{E^{2} - m_{s}^{2} - (v_{j} k_{s} + m_{s})^{2}}, \quad (25b)$$
$$k_{f}^{l} = c_{2} \sqrt{E^{2} - m_{s}^{2} - (v_{j} k_{s} - m_{s})^{2}}, \quad (25c)$$
$$k_{f}^{l} = -c_{2} \sqrt{E^{2} - m_{s}^{2} - (v_{j} k_{s} - m_{s})^{2}}, \quad (25d)$$

and $s_{1(2)} = \text{sgn}(v_{j} k_{s} \pm m_{s})$. The wave functions in the N’ region of S/N/FI/N’ are

$$\psi_{1}(x) = c_{1} \hat{C}_{1} e^{ik_{1}x} + d_{1} \hat{C}_{2} e^{-ik_{1}x}, \quad (26a)$$
$$\psi_{2}(x) = c_{2} \hat{C}_{2} e^{-ik_{1}x} + d_{2} \hat{C}_{1} e^{ik_{1}x}, \quad (26b)$$
$$\psi_{3}(x) = \hat{C}_{3} e^{-ik_{2}x} + a_{3} \hat{C}_{4} e^{-ik_{2}x} + b_{3} \hat{C}_{4} e^{-ik_{2}x}, \quad (26c)$$
$$\psi_{4}(x) = \hat{C}_{4} e^{ik_{1}x} + a_{4} \hat{C}_{1} e^{ik_{1}x} + b_{4} \hat{C}_{2} e^{ik_{1}x}, \quad (26d)$$

and

$$\psi_{1}(x) = \hat{D}_{1} e^{ik_{1}x} + \tilde{a}_{1} \hat{D}_{2} e^{-ik_{1}x}, \quad (27a)$$
$$\psi_{2}(x) = \hat{D}_{2} e^{-ik_{1}x} + \tilde{a}_{2} \hat{D}_{1} e^{ik_{1}x}, \quad (27b)$$
$$\psi_{3}(x) = \hat{D}_{3} e^{-ik_{1}x} + \tilde{a}_{3} \hat{D}_{4} e^{-ik_{1}x} + \tilde{b}_{3} \hat{D}_{4} e^{ik_{1}x}, \quad (27c)$$
$$\psi_{4}(x) = \hat{D}_{4} e^{ik_{1}x} + \tilde{a}_{4} \hat{D}_{1} e^{ik_{1}x} + \tilde{b}_{4} \hat{D}_{2} e^{-ik_{1}x}. \quad (27d)$$
with
\[k_\parallel^0 \equiv \sqrt{(\mu \pm E)^2 / v_f^2} \cos \theta, \]
\[(28) \]

The spinors are given by
\[\hat{C}_1 (\hat{\sigma}_3) = \left[1, \pm e^{\pm i \theta}, 0, 0 \right]^T, \]
\[\hat{C}_2 (\hat{\sigma}_1) = \left[0, 0, \pm 1, i e^{\pm i \theta} \right]^T, \]
\[\hat{C}_3 (\hat{\sigma}_1) = \left[i e^{\pm i \theta}, \mp 1, 0, 0 \right]^T, \]
\[\hat{C}_4 (\hat{\sigma}_1) = \left[0, 0, \mp e^{\pm i \theta}, i \right]^T. \]
\[(29a) \]

Also, the conductance can be given as
\[\sigma = \sigma_0 \int dk_y \text{Re} \left[1 + \frac{k_\parallel^0}{k_\parallel^0} |s_2|^2 - |s_3|^2 \right] \]
\[(30) \]
where \(\sigma_0 \) is a constant parameter determined by the geometry of junctions.

References

[1] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[2] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
[3] Hsieh D et al 2009 Science 323 919
[4] Xia Y et al 2009 Nat. Phys. 5 398
[5] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[6] Chen Y L et al 2009 Science 325 178
[7] Hsieh D et al 2009 Phys. Rev. Lett. 103 146401
[8] Ren Z, Taskin A A, Sasaki S, Seguwa K and Ando Y 2010 Phys. Rev. B 82 241306
[9] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[10] Moore J E 2010 Nature 464 194
[11] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[12] Ando Y 2013 J. Phys. Soc. Japan 82 102001
[13] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[14] Qi X L, Hughes T and Zhang S C 2008 Nat. Phys. 4 273
[15] Essin A M, Moore J E and Vanderbilt D 2009 Phys. Rev. Lett. 102 146805
[16] Tse W-K and MacDonald A H 2010 Phys. Rev. B 82 161104
[17] Vazifeh M M and Franz M 2010 Phys. Rev. B 82 233103
[18] Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 166802
[19] Liang F and Kane C L 2008 Phys. Rev. Lett. 100 096407
[20] Liang F and Kane C L 2009 Phys. Rev. Lett. 102 216403
[21] Akhmerov A R, Nilsson J andBeenakker C W J 2009 Phys. Rev. Lett. 102 216404
[22] Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451
[23] Tanaka Y, Yokoyama T and Nagaosa N 2009 Phys. Rev. Lett. 103 107002
[24] Linder J, Tanaka Y, Yokoyama T, Sudbo A and Nagaosa N 2010 Phys. Rev. Lett. 104 067001
[25] Linder J, Tanaka Y, Yokoyama T, Sudbo A and Nagaosa N 2010 Phys. Rev. B 81 184525
[26] Yokoyama T 2012 Phys. Rev. B 86 075410
[27] Snelder M, Veldhorst M, Golubov A A and Brinkman A 2013 Phys. Rev. B 87 104507
[28] Beenakker C W J 2013 Annu. Rev. Condens. Matter 4 113
[29] Alicea J 2012 Rep. Prog. Phys. 75 076501
[30] Tanaka Y, Sato M and Nagaosa N 2012 J. Phys. Soc. Japan 81 011013
[31] Snelder M, Golubov A A, Asano Y and Brinkman A 2015 preprint, arXiv:1503.06026
[32] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
[33] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
[34] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001
[35] Kriener M, Segawa K, Ren Z, Sasaki S and Ando Y 2011 Phys. Rev. Lett. 106 127004
[36] Levy N, Zhang T, Ha J, Sharifi F, Talin A A, Ku K and Siroscio J A 2013 Phys. Rev. Lett. 110 117001
[37] Nady-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[38] Yu L 1965 Acta Phys. Sin. 21 75
[39] Shiba H 1968 Prog. Theor. Phys. 40 435
[40] Rusinov A I 1969 Sov. Phys. JETP Lett. 29 1101
[41] Zheng D, Wang J, DaiSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J and Samarth N 2011 Phys. Rev. B 84 165120
[42] Sacepe B, Oostinga J B, Li J, Ubaldini A, Couto N J G, Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Rusinov A I 1969 Sov. Phys. JETP Lett. 29 1101
[43] Shiba H 1968 Prog. Theor. Phys. 40 435
[44] Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis G J, Fisher I R and Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803
[45] Wang M-X et al 2012 Science 336 52
[46] Snelder M et al 2014 Supercond. Sci. Technol. 27 104001
[47] Schönikov I et al 2015 Phys. Rev. Lett. 114 066801
[48] McMillan W L 1968 Phys. Rev. 175 559
[49] Furusaki A and Tsukada M 1991 Solid State Commun. 78 299
[50] Tanaka Y and Kashiwaya S 1997 Phys. Rev. B 56 892
[51] Kashiwaya S and Tanaka Y 2000 Rep. Prog. Phys. 63 1641
[52] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[53] de Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin)
[54] Asano Y, Yoshida T, Tanaka Y and Golubov A A 2008 Phys. Rev. B 78 014514
[55] Herrera W J, Burset P and Yeyati A L 2010 J. Phys.: Condens. Matter 22 275304
[56] Crépin F, Burset P and Trauzettel B 2015 preprint, arXiv:1503.07784
[57] Benjamin C 2014 preprint, arXiv:1408.3574
[58] Bai C X and Yang Y L 2014 Nanoscale Res. Lett. 9 515
[59] Tkachov G and Hankiewicz E M 2013 Phys. Rev. B 88 075401
[60] Crépin F, Trauzettel B and Dolcini F 2014 Phys. Rev. B 89 205115
[61] Matsumoto M and Sigrist M 1999 J. Phys. Soc. Japan 68 994
[62] Kulik I O and Ome‘yanchuk A N 1978 Fiz. Nizk. Temp. 4 296
[63] Kulik I O and Ome‘yanchuk A N 1978 Sov. J. Low Temp. Phys. 4 142