Incidence of 14 grapevine viruses in Korean vineyards

Si-Hong KIM1,2, Seong-Ho JEONG1, Jae-Yun HEO1*

1 Gangneung–Wonju National University, Department of Plant Science, Gangneung 25457, Korea; sihongjang@gmail.com; gwnu.shjeong@gmail.com; jyheo@gwnu.ac.kr (*corresponding author)
2 Kangwon National University, Interdisciplinary Program in Smart Agriculture, Chuncheon 243413, Korea

Abstract

The incidence of grapevine virus infections in Korean vineyards was investigated from July to October, 2020. A total of 177 petiole samples were collected from two or three different cultivars in each of four different regions; these were examined by reverse transcription-polymerase chain reaction assay for the presence of 14 major viruses. The overall occurrence of grapevine viruses was 91.0%, and the level of incidence was high irrespective of region or cultivar. The predominant viruses were grapevine leafroll-associated virus 3 (80.2%), grapevine fleck virus (70.6%), and grapevine rupestris stem pitting-associated virus (49.2%). Most grapevines were infected with multiple viruses, suggesting that Korean vineyards are likely to suffer economic losses resulting from viral diseases. This is the first extensive survey performed in Korea to observe the outbreak status of diverse grapevine viruses; surveys of this type can provide important information for the management of grapevine viruses in Korea.

Keywords: clean stock; rugose wood complex; RT-PCR; Vitis; virus outbreak

Introduction

Because they inhibit photosynthesis and anthocyanin biosynthesis, viral diseases are a major factor negatively affecting fruit yield and quality in grapevines (Martínez-Lüscher et al., 2019; Tobar et al., 2020; Lee et al., 2021). In addition, virus infection can decrease freezing tolerance, leading to increased susceptibility to winter vine damage, or even to death (Xiao et al., 2018). The impacts of viral diseases suggest the importance of establishing a system of virus-free grapevine cultivation to maintain the competitiveness of the grapevine industry.

Grapes are cultivated in Korea for the fresh fruit market, and for the production of wine and other drinks (Heo et al., 2016; Lee et al., 2019). They are the fifth most important fruit crop in terms of growing area, with a total area of 12,676 ha in 2019. Despite the crop’s commercial importance, limited research regarding viral diseases of grapevines has been performed in Korea. Globally, 86 different viruses have to date been identified in grapevines (Fuchs, 2020). Some of the viruses causing significant economic loss are the grapevine fleck virus (GFkV), grapevine asterid mosaic-associated virus (GAMaV), grapevine rupestris vein feathering virus (GRVFV), grapevine fanleaf virus (GFLV), grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, -13), grapevine virus A (GVA), grapevine virus B (GVB) and grapevine rupestris stem pitting-associated virus (GRSPaV). Although some of these viruses have been found in Korean vineyards (Jo et al., 2018; Cho et al.,
Kim S-H et al. (2021). Not Bot Horti Agrobo 49(4):12490

2018), detailed information on their occurrence and distribution is not available. For this reason, we investigated the presence and distribution of the 14 most important grapevine viruses in major grape cultivars in Korea.

Materials and Methods

Biological material

A total of 177 samples were collected from four major grape-growing regions in Korea from July to October 2020. In Korea, the most widely planted grape cultivars are: ‘Campbell Early’, ‘Kyoho’, and ‘Shine Muscat’, accounting for 38.6%, 21.4%, and 28.9% of the total grape cultivation area, respectively. These cultivars account for approximately 90% of the Korean grapevine market. The cultivation area of ‘Shine Muscat’, which was recently introduced to Korea, has sharply increased; it is expected to be the number one cultivar in the near future. Accordingly, most of the samples in the present study were collected from the ‘Shine Muscat’ cultivar.

Experimental procedures

For virus detection, two leaf petioles from each of three vines per vineyard were collected and processed within one day of collection. A reverse transcription (RT)-PCR assay was used to evaluate the presence of each of 14 viruses, with each sample being tested individually. Total RNA was extracted from 50 mg of petioles using the TaKaRa MiniBEST Plant RNA Extraction Kit (Takara Bio, Tokyo, Japan) according to the manufacturer’s instructions. Final elution was performed using 30 μL of RNase-free H2O. RNA purity and yield were assessed using a Nabi NanoDrop spectrophotometer (MicroDigital, Seongnam, Korea). The first strand of cDNA was synthesized using the PrimeScript RT reagent Kit with gDNA Eraser (Takara Bio, Tokyo, Japan). PCR amplification were performed using AccuPower HotStart PCR PreMix (Bioneer, Daejeon, Korea) with two μL of cDNA and 10 pmol of each virus-specific primer, as designed by Xiao et al. (2018), in a 20 μL final volume. Amplifications were carried out in a TP 350 thermal cycler (Takara Bio, Tokyo, Japan) under the following protocol: initial denaturation at 95 °C for 1 min, followed by 33 cycles of 30 s denaturation at 95 °C, 30 s at the annealing temperature specified for each primer, 1 min elongation at 72 °C, with a final extension at 72 °C for 5 min. PCR amplicons were checked by gel electrophoresis on 1.5% agarose gels and visualized with a GD-1000 gel documentation system (Axygen, California, USA).

Results and Discussion

Viruses detected by RT-PCR, and details of their occurrence, are presented in Tables 1, 2, and 3. From 177 samples, the viruses detected were GLRaV-3 (80.2%), GFkV (70.6%), GRSPaV (49.2%), GVA (18.1%), GVB (13.6%), GPGV (7.3%), GLRaV-1 (6.8%), GLRaV-2 (6.2%), GRVFV (4.5%), GSyV-1 (4.5%), and GAMaV (4.0%). The overall virus incidences in Cheonan, Gimcheon, Hwaseong, and Yeongwol were 87.5%, 91.1%, 96.3%, and 86.7%, respectively, and there were no significant differences among the regions. Similarly, overall rates of virus infection were very high, regardless of cultivar: 84.1% in ‘Campbell Early’, 77.8% in ‘Kyoho’, and 100% in ‘Shine Muscat’. Differences were observed, however, in single and mixed viral infection rates among different cultivars.
Table 1. Incidence of grapevine viruses in 4 regions

Region	No. of tested vines	No. of vines infected with virus	Percentage of vines infected with virus (%)
Cheonan	48	42	87.5
Gimcheon	45	41	91.1
Hwaseong	54	52	96.3
Yeongwol	30	26	86.7
Total	177	161	91.0

Table 2. Number and infection rates of analyzed vines in three different cultivars

Cultivar	Region	No. of tested vines	GAMa	GRFV	GFLV	GLRa V-1	GLRa V-3	GLRa V-4	GLRa V-7	GPGR	GRSP aV	GRVF V	GSW	GVA	GVR
'Campbell Early'	Cheonan	18	0 (0.0)	3 (16.7)	0 (0.0)	2 (11.1)	0 (0.0)	13 (72.2)	0 (0.0)	0 (0.0)	0 (0.0)	1 (5.6)	0 (0.0)	0 (0.0)	0 (0.0)
	Hwaseong	24	0 (0.0)	8 (33.3)	0 (0.0)	3 (12.5)	1 (4.2)	20 (83.3)	0 (0.0)	0 (0.0)	0 (0.0)	7 (29.2)	1 (4.2)	0 (0.0)	0 (0.0)
	Yeongwol	21	0 (0.0)	9 (42.9)	0 (0.0)	0 (0.0)	0 (0.0)	14 (66.7)	0 (0.0)	1 (4.8)	0 (0.0)	2 (9.5)	1 (4.8)	0 (0.0)	0 (0.0)
Total		63	0 (0.0)	20 (31.8)	0 (0.0)	5 (7.9)	1 (1.6)	47 (74.6)	0 (0.0)	1 (1.6)	7 (11.1)	2 (3.2)	3 (4.8)	0 (0.0)	1 (1.6)
'Kyoho'	Cheonan	9	3 (33.3)	7 (77.8)	0 (0.0)	1 (11.1)	5 (55.6)	0 (0.0)	0 (0.0)	5 (55.6)	0 (0.0)	2 (22.2)	0 (0.0)	0 (0.0)	0 (0.0)
	Gimcheon	18	0 (0.0)	11 (61.1)	0 (0.0)	1 (5.6)	2 (11.1)	9 (50.0)	0 (0.0)	1 (5.6)	2 (11.1)	0 (0.0)	3 (16.7)	0 (0.0)	0 (0.0)
Total		27	3 (11.1)	18 (66.7)	0 (0.0)	2 (7.4)	3 (11.1)	14 (51.9)	0 (0.0)	1 (3.7)	7 (25.9)	0 (0.0)	5 (18.5)	0 (0.0)	0 (0.0)
'Shine Muscat'	Cheonan	21	0 (0.0)	21 (100)	0 (0.0)	1 (4.8)	4 (19.1)	19 (90.5)	0 (0.0)	2 (9.5)	21 (100)	2 (9.5)	0 (0.0)	10 (47.6)	5 (23.8)
	Hwaseong	30	0 (0.0)	30 (100)	0 (0.0)	2 (6.7)	1 (3.3)	29 (96.7)	0 (0.0)	4 (13.3)	21 (70.0)	1 (3.3)	0 (0.0)	8 (26.7)	6 (20.0)
	Gimcheon	27	1 (3.7)	27 (100)	0 (0.0)	2 (7.4)	2 (7.4)	24 (88.9)	0 (0.0)	5 (18.5)	24 (88.9)	2 (7.4)	0 (0.0)	10 (37.0)	10 (37.0)
Total		87	4 (4.6)	87 (100)	0 (0.0)	5 (5.8)	7 (8.1)	81 (93.2)	0 (0.0)	11 (12.6)	73 (83.9)	6 (6.9)	0 (0.0)	32 (36.8)	23 (26.4)
Total		177	7 (4.0)	125 (70.6)	0 (0.0)	12 (6.8)	11 (6.2)	142 (80.2)	0 (0.0)	13 (7.3)	87 (49.2)	8 (4.5)	8 (4.5)	32 (18.1)	24 (13.6)

Table 3. Cultivar infection rates with multiple-virus combinations

Cultivar	Region	No. of tested vines	No. of vines infected with virus	No. of viruses in mixed infections / number of vines with multiple virus (%)					
'Campbell Early'	Cheonan	18	4(22.2)	9(50.0)	5(27.8)	0(0.0)	0(0.0)	0(0.0)	0(0.0)
	Hwaseong	24	2(8.3)	8(33.3)	9(37.5)	5(20.8)	0(0.0)	0(0.0)	0(0.0)
	Yeongwol	21	4(19.1)	9(42.9)	6(28.6)	2(9.5)	0(0.0)	0(0.0)	0(0.0)
Total		63	10(15.9)	26(41.3)	20(31.8)	7(11.1)	0(0.0)	0(0.0)	0(0.0)
'Kyoho'	Cheonan	9	2(22.2)	0(0.0)	2(22.2)	1(11.1)	3(33.3)	1(11.1)	0(0.0)
	Gimcheon	18	4(22.2)	6(33.3)	3(16.7)	3(16.7)	2(11.1)	0(0.0)	0(0.0)
Total		27	6(22.2)	6(22.2)	5(18.5)	4(14.8)	5(18.5)	1(3.7)	0(0.0)
'Shine Muscat'	Cheonan	21	0(0.0)	0(0.0)	1(48.0)	5(23.8)	8(38.1)	6(28.6)	1(48)
	Hwaseong	30	0(0.0)	0(0.0)	2(6.7)	17(56.7)	6(20.8)	4(13.3)	1(3.3)
	Gimcheon	27	0(0.0)	0(0.0)	2(7.4)	6(22.2)	12(44.4)	5(18.5)	2(7.4)
	Yeongwol	9	0(0.0)	0(0.0)	1(11.1)	4(44.4)	2(22.2)	2(22.2)	0(0.0)
Total		87	0(0.0)	0(0.0)	6(6.9)	32(36.8)	28(32.2)	17(19.5)	4(4.6)
In the ‘Shine Muscat’ cultivar, all samples were infected with at least one virus, and 11 different viruses were detected across the regions. In the single infection pattern, GFkV, GLRaV-3, and GRSPaV infected 100.0%, 93.1%, and 83.9%, respectively, of the vines tested. Relatively high incidences of GVA (36.8%) and GVB (26.4%) were also observed. Although GFLV, GLRaV-4, GLRaV-7, and GSyV-1 were not detected in this study, infections of GAMaV, GLRaV-2, GPGV, and GRVFV were also observed, and multiple viral infections were common. There were 26 different combinations of mixed virus infections, with 6.9%, 36.8%, 32.2%, 19.5%, and 4.6% of the samples being infected with two, three, four, five, and six viruses, respectively. Triple infections with GLRaV-3 + GFkV + GRSPaV were recorded most often (28.7%), followed by quadruple infections with GLRaV-3 + GFkV + GRSPaV + GVA (10.3%), and quintuple infections with GLRaV-3 + GFkV + GRSPaV + GVA + GVB (10.3%).

In the ‘Campbell Early’ cultivar, nine viruses were detected, the most frequent being GLRaV-3 (74.6%), followed by GFkV (31.8%), then GRSPaV (11.1%). Interestingly, most samples tested were infected by one or two viruses, and only 11.1% of samples were triply infected. The most frequent virus combination was GLRaV-3 + GFkV (14.3%), followed by GLRaV-3 + GRSPaV (7.9%), then GLRaV-1 + GLRaV-3 (3.2%). Eight different viruses were detected in Kyoho. GFkV (66.7%) was the predominant virus, with GLRaV-3 and GRSPaV being also found frequently. A total of 18.5% of samples were doubly infected, 14.8% of samples were triply infected, 18.5% were quadruply infected, and 3.7% were quintuply infected. The dominant mixed virus infection was GLRaV-3 + GFkV (14.8%), followed by GLRaV-3 + GFkV + GRSPaV + GSyV-1 (7.4%). Other multiple infections were less common, with an incidence of less than 4%. The major viruses in ‘Campbell Early’, ‘Kyoho’, and ‘Shine Muscat’ were therefore similar, but fewer mixed infections were found in the ‘Campbell Early’ and ‘Kyoho’ cultivars compared to ‘Shine Muscat’.

Our study indicates that the degree of virus occurrence in Korean vineyards is disturbing. Commonly occurring viruses across three different grape cultivars were GFkV, GLRaV-3, and GRSPaV. GLRaV-3 is a phloem-restricted virus (Hu et al., 2020) that is predominant in vineyards worldwide, including Canada and the United States (Poojari et al., 2020; Schoelz et al., 2021). It hinders photosynthesis and carbon balance during respiration and induces a significant economic loss by reducing the vigor and yield of vines (Endeshaw et al., 2014; Montero et al., 2016). Mixed infection with other viruses also leads to commercially-significant problems in berry ripening and cluster size (Lee and Martin, 2009), and GLRaV-3 is regarded as one of the most detrimental viruses. GLRaV-3 is mainly disseminated by propagation using virus-infected vines, but subsequent spread is mediated by mealybugs or soft scale insects (Golino et al., 2008). The frequent occurrence of GFkV and GRSPaV was remarkable and believed to be explained by the use of infected cuttings in vegetative propagation or by grafting with infected rootstocks because no natural vector is known (Crnogorac et al., 2021). Although a single infection of this kind of virus does not significantly affect vine growth, it is suspected that mixed infections with other viruses could negatively affect vine vigor, fruit yield, and juice quality. Our results show that mixed infections among GFkV, GRSPaV, and other viruses frequently occur in Korean vineyards, and-to avoid economic loss-should be taken into consideration when evaluating potential hazards to productivity and grape quality compared to ‘Shine Muscat’.

Several viruses-such as GLRaV-3, GVA, and GVB-can be transmitted by vectors in Korean vineyards. A strong relationship between the incidence of specific viruses and the magnitude of vector populations is frequently reported (Cooper et al., 2018; Jones and Nita, 2019; Uhls et al., 2021), but there is no information on virus infection routes and management practices in Korean vineyards. These circumstances suggest that a lack of monitoring and prevention systems for viral vectors could contribute to these vineyard viruses. For this reason, it is important that efforts be made to obtain information on virus vectors in Korean vineyards.

We found differences in virus occurrence among cultivars, which might have resulted from different exposure conditions to virus infection, but equally could be due to different susceptibilities, among cultivars, to specific viruses. Along with the great success of the Shine Muscat cultivar, new grape cultivars are continuously being released in Korea (Heo et al., 2017; Roh et al., 2018; Park et al., 2020) and the
diversification of grape-cultivation cultivars is expected to progress in the future. Based on our surveys, thorough virus screening should be performed before vine material is released for propagation.

Conclusions

Our study has demonstrated the local grapevine industry in Korea is exposed to a serious risk caused by viruses. In this study, GLRaV-3, GFkV and GRSPaV that can influence growth and quality of grapevine negatively are commonly found regardless of cultivars and regions, which emphasize the need to develop strategies for eliminating such viruses and preventing their spread.

Authors’ Contributions

JYH conceived and designed the experiments, supervised, and revised the manuscript. SHK conducted the experiments and wrote the original manuscript. SHJ conducted parts of the experiments. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by a National Research Foundation of Korea grant funded by the Korean government (grant number 2020R1F1A1073922).

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Cho IS, Chung BN, Hammond J, Moon JS, Lim HS (2018). First report of grapevine rupestris vein feathering virus infecting grapevines in Korea. Plant Disease 102:1471-1471. https://doi.org/10.1094/PDIS-12-17-1913-PDN
Cooper ML, Daugherty MP, Jeske DR, Almeida RP, Daane KM (2018). Incidence of grapevine leafroll disease: Effects of grape mealybug (Pseudococcus maritimus) abundance and pathogen supply. Journal of Economic Entomology 111:1542-1550. https://doi.org/10.1093/jee/toy124
Coutts BA, Banovic M, Kehoe MA, Severtson DL, Jones RAC (2014). Epidemiology of wheat streak mosaic virus in wheat in a Mediterranean-type environment. European Journal of Plant Pathology 140:797-813. https://doi.org/10.1007/s10658-014-0510-x
Crnogorac A, Panno S, Mandić A, Gašpar M, Caruso AG, Noris E, Davino S, Matić S (2021). Survey of five major grapevine viruses infecting Blatina and Žilavka cultivars in Bosnia and Herzegovina. Plos One 16:e0245959. https://doi.org/10.1371/journal.pone.0245959
Endeshaw ST, Sabbatini P, Romanazzi G, Schilder AC, Neri D (2014). Effects of grapevine leafroll associated virus 3 infection on growth, leaf gas exchange, yield and basic fruit chemistry of Vitis vinifera L. cv. Cabernet Franc. Scientia Horticulturae 170:228-236. https://doi.org/10.1016/j.scienta.2014.03.021
Fuchs M (2020). Grapevine viruses: A multitude of diverse species with simple but overall, poorly adopted management solutions in the vineyard. Journal of Plant Pathology 102:643-653. https://doi.org/10.1007/s42161-020-00579-2
Golino D, Weber E, Sim S, Rowhani A (2008). Leafroll disease is spreading rapidly in a Napa Valley vineyard. California Agriculture 62:156-160. [Online]. Available: http://10.3733/ca.v062n04p156

Heo JY, Park SM (2017). ‘Sujeong’: A green seedless table grape cultivar. HortScience 52:463-464. [Online]. Available: https://doi.org/10.21273/HORTSCI11550-16

Heo JY, Um NY, Jeong ST, Park YS (2016). Quality characteristics of red wine from Cheongsan (Vitis amurensis) grape cultivar. The Journal of the Korean Society of International Agriculture 28:237-242. [Online]. Available: https://doi.org/10.12719/KSIA.2016.28.2.237

Hu G, Dong Y, Zhang Z, Fan X, Ren F (2020). Efficiency of chemotherapy combined with thermotherapy for eliminating grapevine leafroll-associated virus 3 (GLRaV-3). Scientia Horticulturae 271:109462. [Online]. Available: https://doi.org/10.1016/j.scienta.2020.109462

Jones T, Nita M (2019). A survey of Virginia vineyards revealed high incidences of grapevine rupestris stem pitting-associated virus, grapevine red blotch virus, and two mealybug species. Plant Health Progress 20:207-214. [Online]. Available: https://doi.org/10.1094/PHP-04-19-0026-S

Jo Y, Song MK, Choi H, Park JS, Lee JW, Cho WK (2018). First report of grapevine virus B in grapevine in Korea. Plant Disease 102:1466. [Online]. Available: https://doi.org/10.1094/PDIS-01-17-0134-PDN

Lee J, Martin RR (2009). Influence of grapevine leafroll associated viruses (GLRaV-2 and-3) on the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir: phenolics. Food Chemistry 112:889-896. [Online]. Available: https://doi.org/10.1016/j.foodchem.2008.06.065

Lee J, Rennaker CD, Thompson BD, Karasev AV (2021). Influence of grapevine red blotch virus (GRBV) on Idaho ‘Syrah’ grape composition. Scientia Horticulturae 282:110055. [Online]. Available: https://doi.org/10.1016/j.scienta.2021.110055

Lee MG, Heo JY, Park SM (2019). Effects of ABA treatment on fruit coloration and characteristics in ‘Paradise’ grape cultivar. Journal of Agricultural, Life and Environmental Sciences 31:50-56. [Online]. Available: https://doi.org/10.22698/JALES.20190006

Martinez-Lüscher J, Plank CM, Brillante L, Cooper ML, Smith RJ, Al-Rwahnih M, … Kurtural SK (2019). Grapevine red blotch virus may reduce carbon translocation leading to impaired grape berry ripening. Journal of Agricultural and Food Chemistry 67:2437-2448. [Online]. Available: https://doi.org/10.1021/acs.jafc.8b05555

Montero R, El aou ouad H, Pacifico D, Marzachi C, Castillo N, García E, … Bota J (2017). Effects of grapevine leafroll-associated virus 3 on the physiology in asymptomatic plants of Vitis vinifera. Annals of Applied Biology 171:155-171. [Online]. Available: https://doi.org/10.1111/aab.12356

Park YS, Lim SH, Heo JY (2020). ‘Hanareum’ grape. HortScience 55:275-276. [Online]. Available: https://doi.org/10.1094/HORTSCI14577-19

Poojari S, Moreau DL, Kahl D, Ritchie M, Ali S, Úrb ez-Torres JR (2020). Disease incidence and genetic variability of economically important grapevine viruses in Nova Scotia. Canadian Journal of Plant Pathology 42:584-594. [Online]. Available: https://doi.org/10.1080/07060661.2020.1730443

Roh JH, Hur YY, Jung SM, Park KS, Yun HK, Nam JC, … Chung KH (2018). ‘Hongju’: A seedless table grape cultivar. HortScience 53:1909-1910. [Online]. Available: https://doi.org/10.21273/HORTSCI13368-18

Schoelz J, Volenberg D, Adhab M, Fang Z, Klassen Y, Spinka C, Al Rwahnih M (2021). A survey of viruses found in grapevine cultivars grown in Missouri. American Journal of Enology and Viticulture 72:73-84. [Online]. Available: https://doi.org/10.5344/ajev.2020.20043

Tobar M, Fiore N, Pérez-Donoso AG, León R, Rosales IM, Gambardella M (2020). Divergent molecular and growth responses of young “Cabernet Sauvignon” (Vitis vinifera) plants to simple and mixed infections with grapevine rupestris stem pitting-associated virus. Horticulture Research 7:1-14. [Online]. Available: https://doi.org/10.1038/s41438-019-0224-5

Uhls A, Petersen C, Howard S, Bao X, Qiu W (2021). Grapevine vein clearing virus is prevalent and genetically variable in grape Aphid (Aphis illinoisensis Shimer) populations. Plant Disease https://doi.org/10.1094/PDIS-10-20-2176-RE (Epub ahead of print. PMID: 33174799)

Xiao H, Shabanian M, Moore C, Li C, Meng B (2018). Survey for major viruses in commercial Vitis vinifera wine grapes in Ontario. Virology Journal 15:1-11. [Online]. Available: https://doi.org/10.1186/s12985-018-1036-1
The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License.

© Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.