

ABSTRACT

This study was carried out to determine the factors influencing households’ preference for some selected cowpea varieties in Oyo State, Nigeria. Primary data were collected from a total of 250 households from five Local Government Areas (LGAs) using the multistage sampling technique. Data were analysed using descriptive statistics and multinomial logit regression model. The study revealed that households mostly preferred the Oloyin variety of cowpea and that households mostly used Oloyin for their different cooking. The age of household head, the primary occupation of household head, years of formal education, income, prices of cowpea varieties, aroma during cooking, ability to tolerate weevil infestation and absence of foreign particles influenced households’ preference for cowpea varieties. The study recommends that it is necessary for stakeholders and breeding institutions to give attention to the Oloyin variety if the Agricultural Promotion Policy’s aim will be achieved.

Keywords: Preference, Households, Cowpea, Varieties, Multinomial logit.

REZIME

Ova studija sprovedena je kako bi se utvrdili faktori koji utiču na to da domaćinstva preferiraju neke odabrane sorte zrna graška u državi Oyo u Nigeriji. Primarni podaci prikupljeni su od ukupno 250 domaćinstava iz pet područja lokalne samouprave (LGA) korišćenje tehniku višefaznog uzorkovanja. Podaci su analizirani korišćenjem deskriptivne statistike i multinomnog logit regresionog modela. Studija je otkrila da su domaćinstva uglavnom preferirala sortu graška Oloyin i da domaćinstva uglavnom koriste Oloyin za različito kuvanje. Starost nosioca domaćinstva, primarno zanimanje nosioca domaćinstva, godine formalnog obrazovanja, prihod, cene sorti zrna graška, aroma tokom kuvanja, sposobnost tolerisanja najezde žižaka i odsustvo stranih čestica uticali su na sklonost domaćinstava prema sortama zrna graška. Studija preporučuje da je potrebno da zainteresirane strane i uzgojne institucije obrate pažnju na sortu Oloyin, ako se želi postići cilj politike podrške poljoprivrede.

Ključne riječi: Preferencija, domaćinstva, kravlji grašak, sorte, multinomna logit regresija.

INTRODUCTION

Cowpea (Vigna unguiculata L. Walp), generally referred to as beans in Nigeria (Akpan et al., 2014), is consumed by a majority of households in different forms either through direct cooking, processing into bean cake (Akara), bean pudding (Moin-moin), bean soup (Gbegiri) or as components of other meals. The versatility of cowpea in this regard thus differentiates it from other legumes (Ayinde, 2005; Michael, 2016; Oopola, 2016). Also, Kormawa et al. (2002) reported that though more urban households demand and consume cowpea than any other grain legume, different members of a household, however, consume cowpea in different forms.

Cowpeas vary according to the size of the grain, skin colour, texture, eye colour, and insect damage tolerance (Murdoch et al., 2003). Dominant improved varieties of cowpea grown in Nigeria include IT97K-499-35, IT98KD-288, IT90K-277-2, IT98KD-391, and IT98K-205-8 (ICRISAT, 2011). Although these varieties become difficult to identify by their code varietal names when they reach markets, they have however been categorized in line with their popular local names such as Oloyin, Milk, Drum, Sokoto, Gombe, Oloka amongst others (Afolami, 2002; Oyewale, 2016; Kasali et al., 2018). The different varieties are thus understood by households for different purposes based on the forms in which they are utilized (Mundua, 2010; Oyewale, 2016).

Furthermore, households’ preference for cowpea is yet to be fully understood by researchers as the following questions are frequently being asked: what quantity of the cowpea will be bought? At what price? And most importantly, what variety of cowpea would consumers want if incomes fall and prices increase? (Coulibaly and Lowenberg-DeBoer, 2000). In addition, in the event of high prices of the preferred variety and a decrease in income or lack of enough income, what will be the response of the consumers? (Akanni, 2014). This salient information concerning cowpea consumption in Nigeria as a whole and Oyo State, in particular, is scanty. Hence, this study assessed the preference for cowpea by households, determined the forms of usage and eating forms of cowpea among households, and determined the factors influencing households’ preference for cowpea varieties.

The Nigerian government in its current Agricultural Promotion Policy (APP) has earmarked cowpea as one of the most important crops of focus with a dual aim of prioritizing its production and repositioning the sector for better production and marketing. This will help the Nigerian government in achieving the triple goal of quality nutrition, food safety and food security as well as economic improvement, however, these goals can only be achieved if the cowpea variety that households mostly prefer and the factors that drive their preference are fully known, as this will help in choosing what variety to focus on.
MATERIAL AND METHOD

Study area

This study was carried out in Oyo State, Nigeria. Oyo State, with a total of thirty-three (33) Local Government Areas (LGAs), has an estimated population of 6,617,720. The State is located in the South-Western part of Nigeria. The State is located between latitudes 7° 30′ and 9° 12′ north of the equator and longitudes 2° 47′ and 4° 23′ east of the Meridian. It covers a total land area of about 28,454 square kilometres, with a ratio of almost 1:1 distribution of male to female population (Segun-Olasanmi and Bamire, 2010). Though a substantial amount of cowpea is produced in Oyo State, the State also has several major markets for the assembly of cowpea (transported from the major producing States in the Northern parts of the country) where buyers from within and without the State come to purchase either for consumption or sale (Adejobi and Ayinde, 2005; Aluko et al., 2016; Ayinde, 2005). As a result of this, some of the major varieties of cowpea (that is, Oloyin, Drum, Milk and Sokoto) available and sold in the markets were used in this study as samples which were shown to households for ease of identification.

Data collection

A multi-stage sampling technique was adopted for the study. In the first stage, five (5) LGAs were purposively selected out of the 33 LGAs in the State based on their commercial activities. The five LGAs selected were Ibadan South-East, Ibadan North-East, Iseyin, Saki West and Ogbomoso South. In the second stage, one (1) major town was purposively selected from each of the LGAs; the towns include Mapo, Ring Road, Iseyin, Saki and Arowomole. In the third stage; fifty (50) households were systematically selected to arrive at a sample size of two hundred and fifty (250) respondents. The names of the different cowpea varieties used for this study were the local names in the study area. Discussions with some experts have shown that there are no specific trait names for the different varieties. This is due to the fact that varieties of particular crops only have trait names when they are still in the experimental phase. Once the varieties have passed from the experimental phase and have been released into the market, they take on different local names suitable to their features.

Method of Data analysis

Descriptive statistics such as frequency and percentages were used to describe the socio-economic characteristics of households, identify the preference, forms of use and the number and types of dishes prepared from cowpeas by households. Multinomial logit regression technique was used to identify the factors that influenced the preference of households for cowpea varieties.

Multinomial logit

To determine the factors that influenced the preference for cowpea varieties, a multinomial logistic regression model was used. Since the discrete choices have more than two categories in the dependent variable, the multinomial logit model is more applicable and appropriate than other logit or probit models. Preference for cowpea varieties was considered as an outcome variable that has four categories whereas the socio-economic characteristics of household heads and attributes of cowpea varieties were utilized as predictors in this study. To identify the factors influencing preference for cowpea varieties, it is assumed that in a given period, households prefer among the mutually exclusive cowpea varieties those that offer the maximum utility. Following Greene (2003), suppose for the ith household faced with j choices, assume the utility choice j as:

\[U_{ij} = X_{ij}\beta + \epsilon_{ij} \]

(1)

If the household prefers cowpea j in particular, then it is assumed that \(U_{ij} \) is the maximum among the j utilities, \(X_{ij} \) is a vector of characteristics influencing cowpea j for an ith household and \(\epsilon_{ij} \) is the error term. So, the statistical model is derived by the probability that choice j is made, which is:

\[\text{Prob} (U_{ij} > U_{ik}) \text{ for all other } k \neq j \]

(2)

For this study, Oloyin is the reference preferred variety. The estimated coefficients measure the change in the logit for a one-unit change in the predictor variable while other explanatory variables are held constant. A positive estimated coefficient implies an increase in the likelihood that a household will prefer the alternative cowpea variety while a negative estimated coefficient indicates that there is less likelihood that a household will prefer an alternative cowpea variety.

In line with Greene (2003), the following model was used to determine the factors influencing the preference for the selected cowpea varieties:

\[\text{Prob} (Y_i = j) = \frac{e^{\beta_j X_i}}{\sum_{j=1}^{4} e^{\beta_j X_i}}, j = 1,2,3,4 \]

(3)

The explicit model was estimated thus:

\[Y_i = \beta_0 + \sum_{n=1}^{16} \beta_n X_{ni} + e \]

(4)

Where

- \(e \) = exponential function;
- \(Y_i \) = cowpea varieties mostly preferred by households;
- \(\beta_0 \) = the constant;
- \(\beta_n \) = the coefficients’ vector;
- \(X_n \) = vector of household characteristics;
- \(e \) = error term,

where:

- \(X_1 \) = age of household head (years);
- \(X_2 \) = household size (number);
- \(X_3 \) = sex of household head (dummy 1 = male and 0 = female);
- \(X_4 \) = years spent in education (Years);
- \(X_5 \) = main occupation of household head (1 = civil service and 0 if otherwise);
- \(X_6 \) = marital status of household head (dummy 1 = married and 0 = single);
- \(X_7 \) = income of household (₦);
- \(X_8 \) = price of Oloyin (₦);
- \(X_9 \) = price of Drum (₦);
- \(X_{10} \) = price of Milk (₦);
- \(X_{11} \) = price of Sokoto (₦);
- \(X_{12} \) = sweetness (1 if sweet, 0 if otherwise);
- \(X_{13} \) = time taken to cook (1 if less time is taken to cook, 0 if otherwise);
- \(X_{14} \) = weevil-damage tolerance (1 if tolerant to weevil damage, 0 if otherwise);
- \(X_{15} \) = aroma during cooking (1 if it has a unique aroma, 0 if otherwise);
- \(X_{16} \) = absence of foreign particles (1 if absent, 0 if otherwise).
Coefficients of each independent variable in the above model did not represent the impact of the variable on the dependent variable in terms of magnitude or size. Hence, for this study, the marginal effects, which show the magnitude of change in the dependent variable when the independent variable changes, were estimated (Goktolga et al., 2005).

RESULTS AND DISCUSSION

The results in Table 1 revealed that the majority (86.4%) of household heads were males with an average age of approximately 47 years old with a standard deviation of ± 9.76. This shows a true picture of most African societies where males are the head of the home and as such must provide for the daily needs of their family. The result has also shown that household heads are mostly married (80.0%), have an average household size of approximately 5 members and spent an average of 14 years in attaining a formal education. This implies that the higher the number of years of formal education, the higher will the positive influence on the household heads’ ability to know the nutritional composition of foods be (Okojie, 2002). The result has also revealed that most (42.0%) of the household heads were civil servants and that all (100.0%) the households produce a meal from cowpea.

Table 1: Socio-economic characteristics of household heads

Socio-economic characteristics	Frequency	Percentage
Sex		
Male	216	86.4%
Female	34	13.6%
Age		
31 – 40	80	32.0%
41 – 50	84	33.6%
51 – 60	55	22.0%
61 – 70	31	12.4%
Mean (standard deviation)	47.44 (9.76)	
Marital status		
Single	50	20.0%
Married	200	80.0%
Household size		
1 – 5	176	70.4%
6 – 10	74	29.6%
Mean (standard deviation)	4.74 (1.72)	
Level of education		
No formal education	14	5.6%
Primary education	5	2.0%
Secondary education	59	23.6%
Tertiary education	172	68.8%
Years of education		
0	14	5.6%
1 – 10	15	6.0%
11 – 20	221	88.4%
Mean (standard deviation)	13.55 (4.09)	
Primary occupation		
Civil servant	112	44.8%
Private salary earner	22	8.8%
Trader	70	28.0%
Artisan	44	17.6%
Farmer	2	0.8%
Secondary occupation		
None	221	88.4%
Private salary earner	3	1.2%
Trader	13	5.2%
Artisan	8	3.2%
Farmer	5	2.0%
Household head income (%)		
10,000 – 50,000	132	52.8%
51,000 – 100,000	101	40.4%
101,000 – 150,000	17	6.8%
Mean (standard deviation)	61,375.00 (31,605.70)	
Produce meal from cowpea	Yes	100.0%

Source: Data Analysis, 2020

Preference for cowpea varieties by households

The result of households’ preference for cowpea varieties as shown in Table 2 revealed that 69.6% of the households mostly preferred Oloyin variety of cowpea over other varieties, 7.2% mostly preferred Drum over other varieties, 11.2% mostly preferred Milk variety over others and 11.6% mostly preferred Sokoto over other varieties. The result thus revealed that all (100.0%) the households that mostly preferred Oloyin did so because of its sweetness. The result also showed that the majority (89.5% and 84.2%) mostly preferred Drum because of its sweetness and ability to tolerate weevil infestation respectively. Also, the result revealed that all (100.0%) the households that mostly preferred Milk did so because of its sweetness, takes less time to cook and ability to tolerate weevil infestation. Finally, the result showed that all (100.0%) the households that mostly preferred Sokoto preferred it because of its ability to withstand weevil infestation. These results confirm the findings of Murdock et al. (2003) and Faye et al. (2006) who reported that consumers are generally understood to prefer cowpeas with less insect damage and with high sucrose contents and less cooking time.

Table 2: Preference of households for cowpea varieties

Cowpea varieties	Mostly preferred	Attributes	Frequency (%)
Oloyin	174 (69.6)	Size	114 (65.5)
		Time taken to cook	148 (85.1)
		Sweetness	174 (100.0)
		Aroma during cooking	132 (75.9)
		Weevil-damage tolerance	83 (47.7)
		Absence of foreign particles	81 (46.6)
Drum	19 (7.6)	Size	12 (63.2)
		Time taken to cook	15 (78.9)
		Sweetness	17 (89.5)
		Aroma during cooking	14 (73.7)
		Weevil-damage tolerance	16 (84.2)
		Absence of foreign particles	9 (47.4)
Milk	28 (11.2)	Size	18 (64.3)
		Time taken to cook	28 (100.0)
		Sweetness	28 (100.0)
		Aroma during cooking	26 (92.9)
		Weevil-damage tolerance	28 (100.0)
		Absence of foreign particles	24 (85.7)
Sokoto	29 (11.6)	Size	26 (89.7)
		Time taken to cook	21 (72.4)
		Sweetness	25 (86.2)
		Aroma during cooking	26 (89.7)
		Weevil-damage tolerance	21 (72.4)
		Absence of foreign particles	29 (100.0)

Source: Data Analysis, 2020

Number and types of cowpea dishes consumed by households

The result in Table 3 showed that households prepare approximately 5 dishes from the different varieties of cowpea. This result is in agreement with that of Oyewale (2016) who reported similar findings in his study on cowpea. The implication of this result is that the higher the number of dishes prepared from cowpea, the higher will be the quantity of cowpea that will be demanded by the households. Furthermore, the result in Table 3 revealed that the commonest dish prepared by households was Moin-Moin (94.8%), followed by Akara (84.4%) and porridge (75.6%). This is in line with Lambot.
(2002) who submitted that unlike other legumes, cowpea is multipurpose and as such different meals are prepared from it.

Table 3: Number of dishes and types of dishes consumed

Types of dishes	Frequency	Percentage
Number of dishes consumed		
1 – 4	107	42.8
5 – 7	143	57.2
Mean (standard deviation)	4.70 (1.34)	
Dishes prepared from cowpea		
Moin-Moin	237	94.8
Akara	211	84.4
Porridge	189	75.6
Rice and beans	151	60.4
Beans and corn	142	56.8
Gbegiri	140	56.0
Ekuru	105	42.0

This result thus confirms the versatile nature of cowpea as suggested by Ayinde (2005) that the different varieties of cowpea can be eaten alone, processed into other dishes, or as components of other foods. This versatility of cowpea thus makes it a component of foods consumed in many households in the study area.

Forms of households’ usage for cowpea varieties

The result of the forms of usage of the different cowpea varieties as shown in Table 4 revealed that most (47.2%) of households used the Sokoto cowpea variety to make Moin-Moin, 57.2% used Oloyin to make beans porridge, 32.4% of households also used Sokoto to make Akara, 36.4% used Oloyin to make rice and beans, 33.2% also used Oloyin to make beans and corn, 30.0% used Oloyin to make Gbegiri while 26.4% used Oloyin to make Ekuru. The result thus showed that households mostly used the Oloyin variety of cowpea for their different cooking; this result is not surprising given the households’ preference for Oloyin over other varieties. This result thus reiterates the submissions of Michael (2016), Opoola (2016) and Oyewale (2016) that the different varieties of cowpea are used in making different dishes based on the preference of consumers.

Eating forms of cowpea by households

The result in Table 5 revealed the eating forms of cowpea varieties for different members of a household. The result revealed that 62.8% of fathers mostly preferred to eat their cowpea in the form of Akara, followed by Moin-Moin (60.0%) and Porridge (44.8%). However, 71.6% of mothers mostly preferred to consume their cowpea in the form of Moin-Moin, followed by Akara (68.0%) and Porridge (44.8%) while for the children, 71.6% mostly preferred to consume their cowpea in the form of Moin-Moin, followed by Akara (68.0%) and Porridge (56.4%). The result has shown that whilst household members consume the different cowpea varieties in different forms, they mostly consume their cowpea either as Moin-Moin, Akara, or Porridge. This result is in agreement with that of Kormawa et al. (2002) who submitted that though households consume cowpea more than any other grain legume, different members of a household however consume cowpea in different forms.
Factors influencing households’ preference for cowpea variety

The result in Table 6 revealed that the log-likelihood function was -183.73, the pseudo R² was 0.2208 and that the entire model was significant at the (p<0.01) level. These diagnostic variables and the significance level reveal the fitness of the entire model. The result revealed that out of the socio-economic variables considered, only age of the household head, the primary occupation of the household head, years of formal education and income significantly influenced households’ preference for cowpea varieties. The result has also shown that aroma during cooking, ability to tolerate weevil infestation and absence of foreign particles were the significant attributes that influenced households’ preference for cowpea varieties.

The result of the marginal effect in Table 6 showed that a decrease in the years of formal education by 1 year would increase households’ preference for Oloyin by 1.2%. This implies that those who spent fewer years in attaining formal education would mostly prefer the Oloyin variety of cowpea as their main variety. This result is similar to that of Abdul-Latiff and Ayob (2017) who found a positive relationship between years of education and preference for foreign rice. Also, the result showed that an increase in the price of Oloyin by ₦1 would increase households’ preference for the variety by 281%. The result further showed that an increase in the price of Sokoto variety would decrease households’ preference for Oloyin by 403%. Finally, the result revealed that an increase in the aroma of Oloyin during cooking would increase households’ preference for Oloyin by 9.8%.

The result also showed that the coefficient of the age of the household head was positive and statistically significant at 1% which means that older household heads as compared to younger household heads will more likely prefer Drum as their main cowpea variety. The result of the marginal effect showed that an increase in the age of household heads by 1 year will increase their likelihood of preferring Drum as their main variety by 0.5%. This result is similar to that of Mhlanga (2010) who in his study on rice submitted that young consumers are more likely to choose high-quality rice varieties over other rice varieties. The result showed that the coefficients of prices of Drum and Milk were negatively significant at 10% and 5% respectively which indicates that as the prices of Drum and Milk increase, the likelihood of preferring Drum and Milk decreases respectively.

Table 6: Factors influencing households’ preference for cowpea variety

Variable	Oloyin Marginal effect	Coefficient	Marginal effect						
Constant	216.280 (2.35)		-0.078 (-1.06)		103.652 (1.49)		-65.251 (-0.89)		
Sex	0.021 (0.18)	-1.091 (-0.84)	-0.078 (-1.06)	-0.173 (-0.17)	-0.020 (-0.23)	0.867 (0.85)	0.076 (0.93)		
Age	-0.0002 (-0.07)	0.089*** (2.68)	0.005*** (2.85)	-0.038 (-1.32)	-0.004 (-1.58)	-0.017 (-0.59)	-0.001 (-0.60)		
Marital status	-0.027 (-0.26)	0.617 (0.52)	0.042 (0.60)	0.350 (0.41)	0.036 (0.49)	-0.490 (-0.58)	-0.050 (-0.74)		
Household size	-0.016 (-0.87)	-0.044 (-0.24)	0.006 (-0.55)	0.098 (0.61)	0.008 (0.58)	0.183 (1.07)	0.014 (1.04)		
Years of education	-0.017* (-1.81)	0.181 (1.48)	0.009 (1.25)	0.137 (1.52)	0.010 (1.36)	-1.052* (-1.75)	-0.080* (-1.66)		
Primary occupation	0.074 (1.16)	-0.298 (-0.47)	-0.007 (-0.18)	-0.073 (-0.15)	0.012 (0.29)	-2.377* (-1.68)	-0.190* (-1.66)		
Income	0.219 (1.45)	-0.660 (-0.42)	-0.013 (-0.15)	-0.682 (-0.55)	-0.016 (-0.16)	-5.585 (0.48)	-0.527 (0.66)		
Price of Oloyin	2.810*** (2.31)	-21.359 (-1.55)	-0.049 (-0.07)	-33.995*** (-2.84)	-2.233** (-2.38)	-21.860*** (-2.00)	-1.808*** (-2.05)		
Price of Drum	1.362 (1.05)	-40.366* (-1.94)	-0.079 (-0.27)	-13.090 (-0.79)	0.655 (0.70)	-21.860*** (-2.00)	-1.808*** (-2.05)		
Price of Milk	-0.401 (-0.34)	-30.340** (-1.99)	-0.591 (-0.90)	1.301 (0.11)	1.130 (1.33)	4.103 (0.34)	-0.138 (-0.16)		
Price of Sokoto	-4.031*** (-4.31)	19.344*** (1.38)	0.748 (1.41)	7.491 (0.79)	0.414 (0.57)	42.267*** (4.11)	2.869*** (4.16)		
Time to cook	-0.084 (-1.08)	0.536 (0.71)	0.024 (0.55)	0.218 (0.33)	-0.007 (-0.12)	0.809 (1.11)	0.067 (1.15)		
Sweetness	-0.076 (-0.67)	0.710 (0.61)	0.055 (0.82)	1.071 (0.94)	1.013 (1.06)	-0.678 (-0.92)	-0.083 (-1.43)		
Aroma during	0.098* (1.66)	-1.490** (-2.30)	-0.065** (-1.83)	-0.627 (-1.27)	-0.034 (-0.84)	-0.174 (-0.34)	0.020 (0.04)		
cooking									
Weevil tolerance	-0.116 (-1.60)	-0.360 (-0.50)	-0.037 (-0.91)	1.132* (1.57)	0.092* (1.68)	0.822 (1.30)	0.060 (1.18)		
Presence of foreign	0.055 (0.83)	-0.612 (-0.83)	-0.022 (-0.51)	-1.095** (-1.99)	-0.093** (-2.00)	0.651 (1.16)	0.059 (1.35)		
particles									
Log-likelihood	-183.7349								
Pseudo R-squared	0.2208								
Prob>Chi-squared	0.0001								

Source: Data Analysis, 2020

The figures in parenthesis are the z-values.

*, **, and *** denote the level of significance at 10, 5 and 1 per cent respectively
increases, households will less likely prefer Drum and Milk as their main cowpea variety. The result also showed that the coefficient of the price of Sokoto was positively significant at 5% which implies that as the price of Sokoto increases, households will more likely prefer Drum as their main cowpea variety. Also, the result showed that the coefficient of aroma during cooking was negatively significant at 5%. This implies that households will less likely prefer Drum variety of cowpea because of its aroma during cooking as compared to Oloyin. The result of the marginal effect showed that the coefficient of aroma during cooking was negatively significant at 10%. This implies that an increase in the aroma during cooking of Drum would decrease households’ preference for Drum by 6.5%.

Furthermore, the result showed that the coefficient of the price of Oloyin was negatively significant at 1% which implies that as the price of Oloyin increases, households will less likely prefer Milk cowpea variety as their main variety. The result of the marginal effect showed that an increase in the price of Oloyin by N1 would reduce households’ preference for Milk variety of cowpea by 223%. The result also showed that the coefficient of weevil damage tolerance was positively significant at 10% which means that an increase in the weevil damage tolerance of Milk would increase households’ likelihood of preferring Milk as their main cowpea variety. The result of the marginal effect showed that an increase in the ability of Milk cowpea variety to tolerate weevil infestation would increase households’ preference for the variety by 9.2%. This result is similar to that of Oyewale (2016) who submitted that consumers would go for cowpea varieties with a high level of insect resistance. However, the coefficient of the absence of foreign particles was negatively significant at 5% which indicates that households will less likely prefer the Milk variety of cowpea as their main cowpea variety with an increase in the presence of foreign particles. The result of the marginal effect showed that an increase in the presence of foreign particles would reduce households’ preference for Milk by 9.3%.

Moreover, the result showed that the coefficient of primary occupation was negatively significant at 10% which implies that households headed by a civil servant will less likely prefer the Sokoto variety of cowpea as their main cowpea variety. The result of the marginal effect showed that a change in the main occupation of household heads from civil servant to other occupations would reduce households’ preference for the Sokoto variety by 8.0%. This could be due to the fact that those in wage employment have a higher tendency to acquire nutritionally-related knowledge which in most cases influence their food consumption pattern (Ogundele, 2014). Also, the result showed that the coefficient of income of the household head was negatively significant at 10% which means that households will less likely prefer Sokoto as their main cowpea variety as their income increases. The result of the marginal effect showed that an increase in the income of the household head by N1 would reduce households’ preference for the Sokoto variety by 1.9%. The result also revealed that the coefficient of the price of Drum was negatively significant at 5% which implies that an increase in the price of Drum would reduce the likelihood of households’ preferring Sokoto as their main cowpea variety. The result of the marginal effect showed that an increase in the price of Drum by N1 would reduce households’ preference for Sokoto by 180%. Finally, the result showed that the coefficient of the price of Sokoto was positively significant at 1% which indicates that as the price of Sokoto increases, the likelihood of households preferring Sokoto as their main cowpea variety would increase. The result of the marginal effect indicates that an increase in the price of Sokoto by N1 would increase households’ preference for Sokoto by 287%.

CONCLUSIONS

This study was carried out to determine the cowpea variety(ies) households prefer, the forms of usage and eating forms of cowpea among households, and the factors influencing household’s preference for cowpea varieties in Oyo State, Nigeria. The study revealed that households mostly preferred the Oloyin variety of cowpea because of its sweetness and time taken to cook, that households mostly used Oloyin for their different cooking and that different members of a household consume cowpea in different forms. The study also identified the age of household head, the primary occupation of household head, years of formal education, income, prices of cowpea varieties, aroma during cooking, ability to tolerate weevil infestation and absence of foreign particles as the factors that significantly influenced households’ preference for cowpea varieties. Since this study established that households mostly preferred Oloyin because of some specific attributes, then it is necessary for stakeholders and breeding institutions to give attention to this variety if the APP’s aim to prioritize the production of cowpeas and reposition the cowpea sector for domestic and international market is to be achieved. Also, policymakers should target policies that are pricing-related.

REFERENCES

Abdul-Latiff, Z. A. B and Ayob M. A., 2017. Preference of consumer toward imported rice and local rice in Kelantan. Informing Science: International Journal of Community Development & Management Studies, 1: 73 – 83
Addo A., 2005. Improving the Nutrition of the Nigerian Child through Dietary Modifications Paper presented at a Seminar on Child Nutrition by West Africa Milk Company (Nig.) PLC
Adejobi, A. O. and Ayinde, I. A., 2005. Market Institutions for Cowpea in Maidu guri and Abeokuta. A report submitted as part of the market study on building a food marketing policy evidence base in Nigeria. Pp22
Afolami, C. A., 2002. “An Empirical Analysis of variety premium Attributes, Spatial Temporal pricing patterns for cowpeas in Ogun State.” African Crop Science Journal, 10(3): 263 – 270Akkami, K. A., 2014. Agricultural Price Policy, Consumer Demand and Implications for Household Food Security in Nigeria. International Journal of Food and Agricultural Economics, 2(1):121 – 132
Akpan, S. B.; Udoh, E. J. and Udo U. J., 2014. Monthly Price Analysis of Cowpea (Beans) and Maize in Akwa Ibom State, Southern Nigeria. International Journal of Food and Agricultural Economics, 2(2): 65 – 86
Aluko, O. J., Osikabor, B., Adejumo, A. A. and Sumade S., 2016. Perceived Effect of Boko-Haram Insurgency on Means of Accessing Cowpea from North-East Nigeria to Bodija Market, Ibadan, Oyo State, Nigeria. Open Access Library Journal, 3: 1 – 6
Ayinde I. A., 2005. Market Dynamics for Cowpeas: Weight and Measurement Issues in Kuto Market, Abeokuta, Nigeria. A report submitted as part of the market study on building a food marketing policy evidence base in Nigeria. Pp21
Faye, M., Jooste, M., Lowenberg-Deboer, J. and Fulton J., 2006. Impact of sucrose contents and cooking time on cowpea prices in Senegal. South African Journal of Economic and Management Sciences, 9 (2): 207-212.
Global Agricultural Information Network (GAIN), 2012. Nigeria Grain and Feed Annual Report. GAIN Report Number: NI1204. 2012.

Goktolga, Z. G., Bal, S. G. and Karkacier O., 2005. Factors affecting primary choice of consumers in food purchasing: The Turkey case. Food Control, 17(11):884-889.

Greene H., 2003. Econometric Analysis (4th ed.). New Jersey: Prentice-Hall, 827p.

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 2011. Bulletin of Tropical Legumes. Available http: www.icrisat.org/tropicallegumes11/pdfs/BTL12-2011223

Kassali, R., Oyewale, A. Y. and Yesufu O. A., 2018. Analysis of Consumer’s WTP for Cowpea Varieties in Osun State, Nigeria: the Hedonic Pricing Approach. Turkish Journal of Agriculture – Food Science and Technology, 6(9): 1120 – 1128

Kormawa, P. M., Chianu, J. N. and Manyong V. M., 2002. Cowpea Demand and Supply Patterns in West Africa: The case of Nigeria. In challenges and opportunities for enhancing sustainable cowpea production, ed. C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa, and M. Tamo, Ibadan, Nigeria.

Lambot, C., 2000. Industrial potential of cowpea, pp. 367-375. In Fatokun, C. A., S. A. Tarawali, B. B. Singh, P. M. Kormawa, and M. Tamó (editors). (2002). Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4–8 September 2000. IITA, Ibadan, Nigeria. 396pp

Mhlanga S., 2010. Economic analysis of consumer based attributes for rice in Benin. Published M.Sc. Thesis, Department of Agricultural Economics, McGill University, Quebec, Canada.

Michael, O., 2016. Local Ibadan foods you must never miss. http://whatsupibadan.com/?p=21376 (Accessed on 19/12/2018)

Mundia, J., 2011. Estimation of Consumer Preferences for Cowpea Varieties in Kumi and Soroti Districts. An unpublished M.Sc. thesis. Makerere University, Uganda.

Murdock, L. L. and R. E. Seck, G. Ntoukam, L. Kitch and Shade R. E., 2003. “Preservation of Cowpea Grain in Sub-Saharan Africa Bean-Cowpea CRSP contributions.” Field Crops Research, 82: 69 – 178

Ogundele O., 2011. Factors influencing consumers’ preference for local rice in Nigeria. African Journal of Marketing Management, 6(4):49 – 55

Okojie C., 2002. Gender and Education as Determinants of Household Poverty in Nigeria. Wider Discussion Paper No. 37

Opoola J., 2016. Four popular foods eaten by Ibadan people. https://connectnigeria.com/articles/2016/07/four-popular-foods-eaten-ibadan-people/ (Accessed on 19/12/2018)

Oyewale, A. Y., 2016. Analysis of Consumer Preferences for Cowpea Varieties in Osun State using Hedonic Pricing Approach. An unpublished M. Sc. Thesis, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria

Robert, K. M, Daryl K. G., Peter A. M. and Victor W. R., 2000. Nutrition. Harper’s Biochemistry text book, Appleton and Lange, United State of American, 25th Ed, Pp 656-661

Segun-Olasanmi, A. O. and Bamire A. S., 2010. Analysis of Costs and Returns to Maize- Cowpea Intercrop Production in Oyo State, Nigeria. Poster presented at the Joint 3rd African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA) Conference, Cape Town, South Africa, September 19-23, 2010. Pp15

Received: 25. 12. 2020. Accepted: 03. 02. 2021.