Combined results of searches for the standard model Higgs boson in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

Combined results are reported from searches for the standard model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ TeV in five Higgs boson decay modes: $\gamma \gamma$, bb, $\tau \tau$, WW, and ZZ. The explored Higgs boson mass range is 110–600 GeV. The analysed data correspond to an integrated luminosity of 4.6–4.8 fb$^{-1}$. The expected excluded mass range in the absence of the standard model Higgs boson is 118–543 GeV at 95% CL. The observed results exclude the standard model Higgs boson in the mass range 127–600 GeV at 95% CL, and in the mass range 129–525 GeV at 99% CL. An excess of events above the expected standard model background is observed at the low end of the explored mass range making the observed limits weaker than expected in the absence of a signal. The largest excess, with a local significance of 3.1σ, is observed for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing an excess with a local significance $\geq 3.1\sigma$ anywhere in the search range 110–600 (110–145) GeV is estimated to be 1.5σ (2.1σ). More data are required to ascertain the origin of this excess.

Submitted to Physics Letters B

*See Appendix A for the list of collaboration members
1 Introduction

The discovery of the mechanism for electroweak symmetry breaking is one of the goals of the physics programme at the Large Hadron Collider (LHC). In the standard model (SM) \([1–3]\), this symmetry breaking is achieved by introducing a complex scalar doublet, leading to the prediction of the Higgs boson (H) \([4–9]\). To date, experimental searches for this particle have yielded null results. Limits at 95% confidence level (CL) on its mass have been placed by experiments at LEP, \(m_H > 114.4\) GeV \([10]\), the Tevatron, \(m_H \not\in (162–166)\) GeV \([11]\), and ATLAS, \(m_H \not\in (145–206), (214–224), (340–450)\) GeV \([12–14]\). Precision electroweak measurements, not taking into account the results from direct searches, indirectly constrain the SM Higgs boson mass to be less than 158 GeV \([15]\).

In this Letter, we report on the combination of Higgs boson searches carried out in proton-proton collisions at \(\sqrt{s} = 7\) TeV using the Compact Muon Solenoid (CMS) detector \([16]\) at the LHC. The analysed data recorded in 2010-2011 correspond to an integrated luminosity of 4.6–4.8 fb\(^{-1}\), depending on the search channel. The search is performed for Higgs boson masses in the range 110–600 GeV.

The CMS apparatus consists of a barrel assembly and two endcaps, comprising, in successive layers outwards from the collision region, the silicon pixel and strip tracker, the lead tungstate crystal electromagnetic calorimeter, the brass/scintillator hadron calorimeter, the superconducting solenoid, and gas-ionization chambers embedded in the steel return yoke for the detection of muons.

The cross sections for the Higgs boson production mechanisms and decay branching fractions, together with their uncertainties, are taken from Ref. \([17]\) and are derived from Refs. \([18–59]\). There are four main mechanisms for Higgs boson production in pp collisions at \(\sqrt{s} = 7\) TeV. The gluon-gluon fusion mechanism has the largest cross section, followed in turn by vector boson fusion (VBF), associated WH and ZH production, and production in association with top quarks, t\(\bar{t}\)H. The total cross section varies from 20 to 0.3 pb as a function of the Higgs boson mass, over the explored range.

The relevant decay modes of the SM Higgs boson depend strongly on its mass \(m_H\). The results presented here are based on the following five decay modes: \(H \rightarrow \gamma\gamma\), \(H \rightarrow \tau\tau\), \(H \rightarrow b\bar{b}\), \(H \rightarrow WW\), followed by \(WW \rightarrow (\ell\nu)(\ell\nu)\) decays, and \(H \rightarrow ZZ\), followed by \(ZZ\) decays to 4\(\ell\), 2/2\(\ell\), 2/2q, and 2/2\(\tau\). Here and throughout, \(\ell\) stands for electrons or muons and, for simplicity, \(H \rightarrow \tau^+\tau^-\) is denoted as \(H \rightarrow \tau\tau\), \(H \rightarrow b\bar{b}\) as \(H \rightarrow bb\), etc. The WW and ZZ decay modes are used over the entire explored mass range. The \(\gamma\gamma\), \(\tau\tau\), and \(b\bar{b}\) decay modes are used only for \(m_H < 150\) GeV since their expected sensitivities to Higgs boson production are not significant compared to WW and ZZ for higher Higgs boson masses.

For a given Higgs boson mass hypothesis, the search sensitivity depends on the Higgs boson production cross section and decay branching fraction into the chosen final state, the signal selection efficiency, the Higgs boson mass resolution, and the level of standard model backgrounds with the same or a similar final state. In the low-mass range, the \(bb\) and \(\tau\tau\) decay modes suffer from large backgrounds, which reduces the search sensitivity in these channels. For a Higgs boson with a mass below 120 GeV, the best sensitivity is achieved in the \(\gamma\gamma\) decay mode, which has a very small branching fraction, but more manageable background. In the mass range 120-200 GeV, the best sensitivity is achieved in the \(H \rightarrow WW\) channel. At higher masses, the \(H \rightarrow ZZ\) branching fraction is large and the searches for \(H \rightarrow ZZ \rightarrow 2\ell 2\nu\) provide the best sensitivity. Among all decay modes, the \(H \rightarrow \gamma\gamma\) and \(H \rightarrow ZZ \rightarrow 4\ell\) channels play a special role as they provide a very good mass resolution for the...
reconstructed diphoton and four-lepton final states, respectively.

2 Search channels

The results presented in this Letter are obtained by combining the eight individual Higgs boson searches listed in Table 1. The table summarizes the main characteristics of these searches, namely: the mass range of the search, the integrated luminosity used, the number of exclusive sub-channels, and the approximate instrumental mass resolution. As an illustration of the search sensitivity of the eight channels, Fig. 1 shows the median expected 95% CL upper limit on the ratio of the signal cross section, σ, and the predicted SM Higgs boson cross section, σ_{SM}, as a function of the SM Higgs boson mass hypothesis. A channel showing values below unity (dotted red line) would be expected to be able to exclude a Higgs boson of that mass at 95% CL. The method used for deriving limits is described in Section 3.

Channel	m_H range (GeV)	Luminosity (fb$^{-1}$)	Sub-channels	m_H resolution	Reference
$H \rightarrow \gamma\gamma$	110–150	4.8	5	1–3%	[60]
$H \rightarrow \tau\tau$	110–145	4.6	9	20%	[61]
$H \rightarrow bb$	110–135	4.7	5	10%	[62]
$H \rightarrow WW^{*} \rightarrow 2\ell 2\nu$	110–600	4.6	5	20%	[63]
$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$	110–600	4.7	3	1–2%	[64]
$H \rightarrow ZZ \rightarrow 2\ell 2\nu$	250–600	4.6	2	7%	[65]
$H \rightarrow ZZ^{(*)} \rightarrow 2\ell 2q$	130–164	4.6	6	3%	[66]
$H \rightarrow ZZ \rightarrow 2\ell 2\tau$	190–600	4.7	8	10–15%	[67]

The $H \rightarrow \gamma\gamma$ analysis [60] is focused on a search for a narrow peak in the diphoton mass distribution. All events are split into two mutually exclusive sets: (i) diphoton events with one forward and one backward jet, consistent with the VBF topology, and (ii) all remaining events. This division is motivated by the consideration that there is a much better signal-to-background-ratio in the first set compared to the second. The second set, containing over 99% of data, is further subdivided into four classes based on whether or not both photons are in the central part of the CMS detector and whether or not both photons produced compact electromagnetic showers. This subdivision is motivated by the fact that the photon energy resolution depends on whether or not a photon converts in the detector volume in front of the electromagnetic calorimeter, and whether it is measured in the barrel or in the endcap section of the calorimeter. The background in the signal region is estimated from a fit to the observed diphoton mass distribution in data.

The $H \rightarrow \tau\tau$ search [61] is performed using the final-state signatures $e\mu$, $e\tau$, $\mu\tau$, where electrons and muons arise from leptonic τ-decays $\tau \rightarrow \ell\nu\nu$ and τ denotes hadronic τ-decays $\tau \rightarrow $ hadrons $+\nu$ or τ. Each of these three categories is further divided into three exclusive sub-categories according to the nature of the associated jets: (i) events with the VBF signature, (ii) events with just one jet with large transverse energy E_T, and (iii) events with either no jets or with one with a small E_T. In each of these nine categories we search for a broad excess in the reconstructed $\tau\tau$ mass distribution. The main irreducible background is from $Z \rightarrow \tau\tau$ production, whose $\tau\tau$ mass distribution is derived from data by using $Z \rightarrow \mu\mu$ events, in which the reconstructed muons are replaced with reconstructed particles from the decay of simulated...
τ leptons of the same momenta. The reducible backgrounds (W + jets, multijet production, \(Z \rightarrow ee\)) are also evaluated from control samples in data.

The \(H \rightarrow bb\) search [62] concentrates on Higgs boson production in association with W or Z bosons, in which the focus is on the following decay modes: \(W \rightarrow \ell
\nu/\mu
\nu\) and \(Z \rightarrow ee/\mu
\mu/\nu
\nu\). The \(Z \rightarrow \nu
\nu\) decay is identified by requiring a large missing transverse energy \(E_T^{miss}\), defined as the negative of the vector sum of the transverse momenta of all reconstructed objects in the volume of the detector (leptons, photons, and charged/neutral hadrons). The dijet system, with both jets tagged as b-quark jets, is also required to have a large transverse momentum, which helps to reduce backgrounds and improves the dijet mass resolution. We use a multivariate analysis (MVA) technique, in which a classifier is trained on simulated signal and background events for a number of Higgs boson masses, and the events above an MVA output threshold are counted as signal-like. The rates of the main backgrounds, consisting of \(W/Z +\) jets and top-quark events, are derived from control samples in data. The WZ and ZZ backgrounds with a Z boson decaying to a pair of b-quarks, as well as the single-top background, are estimated from simulation.

The \(H \rightarrow WW^{(+)} \rightarrow 2\ell 2\nu\) analysis [63] searches for an excess of events with two leptons of opposite charge, large \(E_T^{miss}\), and up to two jets. Events are divided into five categories, with different background compositions and signal-to-background ratios. For events with no jets, the main background stems from non-resonant WW production; for events with one jet, the dominant backgrounds are from WW and top-quark production. The events with no jets and one jet are split into same-flavour and opposite-flavour dilepton sub-channels, since the background from Drell–Yan production is much larger for the same-flavour dilepton events. The two-jet category is optimized to take advantage of the VBF production signature. The main background in this channel is from top-quark production. To improve the separation of signal from backgrounds, MVA classifiers are trained for a number of Higgs boson masses, and a search is made for an excess of events in the output distributions of the classifiers. All back-
ground rates, except for very small contributions from WZ, ZZ, and Wγ, are evaluated from data.

In the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ channel [64], we search for a four-lepton mass peak over a small continuum background. The $4e, 4\mu, 2e2\mu$ sub-channels are analyzed separately since there are differences in the four-lepton mass resolutions and the background rates arising from jets misidentified as leptons. The dominant irreducible background in this channel is from non-resonant ZZ production (with both Z bosons decaying to either $2e$, or 2μ, or 2τ with the taus decaying leptonically) and is estimated from simulation. The smaller reducible backgrounds with jets misidentified as leptons, e.g. $Z + j$, are estimated from data.

In the $H \rightarrow ZZ \rightarrow 2\ell2\nu$ search [65], we select events with a dilepton pair (ee or $\mu\mu$), with invariant mass consistent with that of an on-shell Z boson, and a large E_T^{miss}. We then define a transverse invariant mass m_T from the dilepton momenta and E_T^{miss}, assuming that E_T^{miss} arises from a $Z \rightarrow \nu\nu$ decay. We search for a broad excess of events in the m_T distribution. The non-resonant ZZ and WZ backgrounds are taken from simulation, while all other backgrounds are evaluated from control samples in data.

In the $H \rightarrow ZZ^{(*)} \rightarrow 2\ell2q$ search [66], we select events with two leptons (ee or $\mu\mu$) and two jets with zero, one, or two b-tags, thus defining a total of six exclusive final states. Requiring b-tagging improves the signal-to-background ratio. The two jets are required to form an invariant mass consistent with that of an on-shell Z boson. The aim is to search for a peak in the invariant mass distribution of the dilepton-dijet system, with the background rate and shape estimated using control regions in data.

In the $H \rightarrow ZZ \rightarrow 2\ell2\tau$ search [67], one Z boson is required to be on-shell and to decay to a dilepton pair (ee or $\mu\mu$). The other Z boson is required to decay through a $\tau\tau$ pair to one of the four final-state signatures $e\mu, e\tau, \mu\tau, \tau\tau$. Thus, eight exclusive final sub-channels are defined. We search for a broad excess in the distribution of the dilepton-ditau mass, constructed from the visible products of the tau decays, neglecting the effect of the accompanying neutrinos. The dominant background is non-resonant ZZ production whose rate is estimated from simulation. The main sub-leading backgrounds with jets misidentified as τ leptons stem from $Z + j$ (including ZW) and top-quark events. These backgrounds are estimated from data.

3 Combination methodology

The combination of the SM Higgs boson searches requires simultaneous analysis of the data from all individual search channels, accounting for all statistical and systematic uncertainties and their correlations. The results presented here are based on a combination of Higgs boson searches in a total of 43 exclusive sub-channels described in Section 2. Depending on the sub-channel, the input to the combination may be a total number of selected events or an event distribution for the final discriminating variable. Either binned or unbinned distributions are used, depending upon the particular search sub-channel.

The number of sources of systematic uncertainties considered in the combination ranges from 156 to 222, depending on the Higgs boson mass. A large fraction of these uncertainties are correlated across different channels and between signal and backgrounds within a given channel. Uncertainties considered include: theoretical uncertainties on the expected cross sections and acceptances for signal and background processes, experimental uncertainties arising from modelling of the detector response (event reconstruction and selection efficiencies, energy scale and resolution), and statistical uncertainties associated with either ancillary measurements of
3.1 General framework

The overall statistical methodology used in this combination was developed by the CMS and ATLAS collaborations in the context of the LHC Higgs Combination Group. The detailed description of the methodology can be found in Ref. [68]. Below we outline the basic steps in the combination procedure.

Firstly, a signal strength modifier \(\mu \) is introduced that multiplies the expected SM Higgs boson cross section such that \(\sigma = \mu \cdot \sigma_{\text{SM}} \).

Secondly, each independent source of systematic uncertainty is assigned a nuisance parameter \(\theta_i \). The expected Higgs boson and background yields are functions of these nuisance parameters, and are written as \(\mu \cdot s(\theta) \) and \(b(\theta) \), respectively. Most nuisance parameters are constrained by other measurements. They are encoded in the probability density functions \(p_i(\tilde{\theta}_i | \theta_i) \) describing the probability to measure a value \(\tilde{\theta}_i \) of the \(i \)-th nuisance parameter, given its true value \(\theta_i \).

Next, we define the likelihood \(\mathcal{L} \), given the data and the measurements \(\hat{\theta} \):

\[
\mathcal{L}(\text{data} | \mu \cdot s(\hat{\theta}) + b(\hat{\theta})) = \mathcal{P}(\text{data} | \mu \cdot s(\hat{\theta}) + b(\hat{\theta})) \cdot p(\tilde{\theta} | \theta),
\]

where \(\mathcal{P}(\text{data} | \mu \cdot s(\hat{\theta}) + b(\hat{\theta})) \) is a product of probabilities over all bins of discriminant variable distributions in all channels (or over all events for sub-channels with unbinned distributions), and \(p(\tilde{\theta} | \theta) \) is the probability density function for all nuisance parameter measurements.

In order to test a Higgs boson production hypothesis for a given mass, we construct an appropriate test statistic. The test statistic is a single number encompassing information on the observed data, expected signal, expected background, and all uncertainties associated with these expectations. It allows one to rank all possible experimental observations according to whether they are more consistent with the background-only or with the signal+background hypotheses.

Finally, in order to infer the presence or absence of a signal in the data, we compare the observed value of the test statistic with its distribution expected under the background-only and under the signal+background hypotheses. The expected distributions are obtained by generating pseudo-datasets from the probability density functions \(\mathcal{P}(\text{data} | \mu \cdot s(\hat{\theta}) + b(\hat{\theta})) \) and \(p(\tilde{\theta} | \theta) \). The values of the nuisance parameters \(\theta \) used for generating pseudo-datasets are obtained by maximizing the likelihood \(\mathcal{L} \) under the background-only or under the signal+background hypotheses.

3.2 Quantifying an excess

In order to quantify the statistical significance of an excess over the background-only expectation, we define a test statistic \(q_0 \) as:

\[
q_0 = -2 \ln \frac{\mathcal{L}(\text{data} | b(\hat{\theta}_0))}{\mathcal{L}(\text{data} | \hat{\mu} \cdot s(\hat{\theta}) + b(\hat{\theta}))}, \quad \hat{\mu} \geq 0,
\]
where $\hat{\theta}_0$, $\hat{\theta}$, and $\hat{\mu}$ are the values of the parameters θ and μ that maximise the likelihoods in the numerator and denominator, and the subscript in $\hat{\theta}_0$ indicates that the maximization in the numerator is done under the background-only hypothesis ($\mu = 0$). With this definition, a signal-like excess, i.e. $\hat{\mu} > 0$, corresponds to a positive value of q_0. In the absence of an excess, $\hat{\mu} = 0$, the likelihood ratio is equal to one, and q_0 is zero.

An excess can be quantified in terms of the p-value p_0, which is the probability to obtain a value of q_0 at least as large as the one observed in data, q_0^{obs}, under the background-only (b) hypothesis:

$$p_0 = P \left(q_0 \geq q_0^{\text{obs}} \mid b \right).$$

We choose to relate the significance Z of an excess to the p-value via the Gaussian one-sided tail integral:

$$p_0 = \int_{Z}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \, dx.$$ (4)

The test statistic q_0 has one degree of freedom (μ) and, in the limit of a large number of events, its distribution under the background-only hypothesis converges to a half of the χ^2 distribution for one degree of freedom plus $0.5 \cdot \delta(q_0)$ [69]. The term with the delta function $\delta(q_0)$ corresponds to the 50% probability not to observe an excess under the background-only hypothesis. This asymptotic property allows the significance to be evaluated directly from the observed test statistic q_0^{obs} as $Z = \sqrt{q_0^{\text{obs}}}$ [69].

The local p-value p_0 characterises the probability of a background fluctuation resembling a signal-like excess for a given value of the Higgs boson mass. The probability for a background fluctuation to be at least as large as the observed maximum excess anywhere in a specified mass range is given by the global probability or global p-value. This probability can be evaluated by generating pseudo-datasets incorporating all correlations between analyses optimized for different Higgs boson masses. It can also be estimated from the data by counting the number of transitions from deficit to excess in a specified Higgs boson mass range [68, 70]. The global significance is computed from the global p-value using Eq. (4).

3.3 Quantifying the absence of a signal

In order to set exclusion limits on a Higgs boson hypothesis, we define a test statistic q_μ, which depends on the hypothesised signal rate μ. The definition of q_μ makes use of a likelihood ratio similar to the one for q_0, but uses instead the signal+background model in the numerator:

$$q_\mu = -2 \ln \frac{\mathcal{L}(\text{data} \mid \mu \cdot s(\hat{\theta}_\mu) + b(\hat{\theta}))}{\mathcal{L}(\text{data} \mid \hat{\mu} \cdot s(\hat{\theta}) + b(\hat{\theta}))}, \quad 0 \leq \hat{\mu} < \mu,$$ (5)

where the subscript μ in $\hat{\theta}_\mu$ indicates that, in this case, the maximisation of the likelihood in the numerator is done under the hypothesis of a signal of strength μ. In order to force one-sided limits on the Higgs boson production rate, we constrain $\hat{\mu} < \mu$.

This definition of the test statistic differs slightly from the one used in searches at LEP and the Tevatron, where the background-only hypothesis was used in the denominator. With the definition of the test statistic given in Eq. (5), in the asymptotic limit of a large number of background events, the expected distributions of q_μ under the signal+background and under the background-only hypotheses are known analytically [69].
For the calculation of the exclusion limit, we adopt the modified frequentist construction CL_s \cite{71,72}. We define two tail probabilities associated with the observed data; namely, the probability to obtain a value for the test statistic q_μ larger than the observed value q_μ^{obs} for the signal+background ($\mu \cdot s + b$) and for the background-only (b) hypotheses:

$$\text{CL}_{s+b} = P \left(q_\mu \geq q_\mu^{\text{obs}} \mid \mu \cdot s + b \right), \quad (6)$$

$$\text{CL}_b = P \left(q_\mu \geq q_\mu^{\text{obs}} \mid b \right), \quad (7)$$

and obtain CL_s from the ratio

$$\text{CL}_s = \frac{\text{CL}_{s+b}}{\text{CL}_b}. \quad (8)$$

If $\text{CL}_s \leq \alpha$ for $\mu = 1$, we determine that the SM Higgs boson is excluded at the $1 - \alpha$ confidence level. To quote the upper limit on μ at the 95% confidence level, we adjust μ until we reach $\text{CL}_s = 0.05$.

4 Results

The CL_s value for the SM Higgs boson hypothesis as a function of its mass is shown in Fig.2. The observed values are shown by the solid line. The dashed black line indicates the expected median of results for the background-only hypothesis, with the green (dark) and yellow (light) bands indicating the ranges in which the CL_s values are expected to reside in 68% and 95% of the experiments under the background-only hypothesis. The observed and median expected values of CL_s as well as the 68% and 95% bands are obtained by generating ensembles of pseudo-datasets.

The thick red horizontal lines indicate CL_s values of 0.10, 0.05, and 0.01. The mass regions where the observed CL_s values are below these lines are excluded with the corresponding $(1 - \text{CL}_s)$ confidence levels of 90%, 95%, and 99%, respectively. We exclude a SM Higgs boson at 95% CL in the mass range 127–600 GeV. At 99% CL, we exclude it in the mass range 129–525 GeV.

In the mass range 122–124 GeV, the observed results lie above the expectation for the SM signal+background hypothesis. In this case, the test statistic $q_\mu^{\text{obs}} = 0$ (Eq. 5) and CL_s (Eq. 8) degenerates to unity.

Figure 3 shows the combined 95% CL upper limits on the signal strength modifier, $\mu = \sigma / \sigma_{\text{SM}}$, obtained by generating ensembles of pseudo-datasets, as a function of m_{H}. The ordinate thus shows the Higgs boson cross section that is excluded at 95% CL, expressed as a multiple of the SM Higgs boson cross section.

The median expected exclusion range of m_{H} at 95% CL in the absence of a signal is 118–543 GeV. The differences between the observed and expected limits are consistent with statistical fluctuations since the observed limits are generally within the green (68%) or yellow (95%) bands of the expected limit values. For the largest values of m_{H}, we observe fewer events than the median expected number for the background-only hypothesis, which makes the observed limits in that range somewhat stronger than expected. However, at small m_{H} we observe an excess of events. This makes the observed limits weaker than expected in the absence of a SM Higgs boson.

Figure 4 shows the separate observed limits for the eight individual decay channels studied, and their combination. For masses beyond 200 GeV, the limits are driven mostly by the $H \rightarrow ZZ$...
Figure 2: The CL$_s$ values for the SM Higgs boson hypothesis as a function of the Higgs boson mass in the range 110–600 GeV (left) and 110–145 GeV (right). The observed values are shown by the solid line. The dashed line indicates the expected median of results for the background-only hypothesis, while the green (dark) and yellow (light) bands indicate the ranges that are expected to contain 68% and 95% of all observed excursions from the median, respectively. The three horizontal lines on the CL$_s$ plot show confidence levels of 90%, 95%, and 99%, defined as $(1 - CL_s)$.

Figure 3: The 95% CL upper limits on the signal strength parameter $\mu = \sigma/\sigma_{SM}$ for the SM Higgs boson hypothesis as a function of the Higgs boson mass in the range 110–600 GeV (left) and 110–145 GeV (right). The observed values as a function of mass are shown by the solid line. The dashed line indicates the expected median of results for the background-only hypothesis, while the green (dark) and yellow (light) bands indicate the ranges that are expected to contain 68% and 95% of all observed excursions from the median, respectively.
decay channels, while in the range 125–200 GeV, the limits are largely defined by the $H \to WW$ decay mode. For the mass range below 120 GeV, the dominant contributor to the sensitivity is the $H \to \gamma \gamma$ channel. The observed limits presented in Fig. 4 can be compared to the expected ones shown in Fig. 1. The results shown in both Figures are calculated using the asymptotic formula for the C_{L_S} method.

Figure 5 shows two separate combinations in the low mass range: one for the $\gamma \gamma$ and $ZZ \to 4\ell$ channels, which have good mass resolution, and another for the three channels with poor mass resolution (bb, $\tau \tau$, WW). The expected sensitivities of these two combinations are very similar. Both indicate an excess of events: the excess in the $bb + \tau \tau + WW$ combination has, as expected, little mass dependence in this range, while the excess in the $\gamma \gamma$ and $ZZ \to 4\ell$ combination is clearly more localized. The results shown in Fig. 5 are calculated using the asymptotic formula.

To quantify the consistency of the observed excesses with the background-only hypothesis, we show in Fig. 6 (left) a scan of the combined local p-value p_0 in the low-mass region. A broad offset of about one standard deviation, caused by excesses in the channels with poor mass resolution (bb, $\tau \tau$, WW), is complemented by localized excesses observed in the $ZZ \to 4\ell$ and $\gamma \gamma$ channels. This causes a decrease in the p-values for $118 < m_H < 126$ GeV, with two narrow features: one at 119.5 GeV, associated with three $ZZ \to 4\ell$ events, and the other at 124 GeV, arising mostly from the observed excess in the $\gamma \gamma$ channel. The p-values shown in Fig. 6 are obtained with the asymptotic formula and were validated by generating ensembles of background-only pseudo-datasets.

The minimum local p-value $p_{\text{min}} = 0.001$ at $m_H \simeq 124$ GeV corresponds to a local significance Z_{max} of 3.1σ. The global significance of the observed excess for the entire search range of 110–600 GeV is estimated directly from the data following the method described in Ref. [63] and corresponds to 1.5σ. For a restricted range of interest, the global p-value is evaluated using pseudo-datasets. For the mass range 110–145 GeV, it yields a significance of 2.1σ.

The p-value characterises the probability of background producing an observed excess of events, but it does not give information about the compatibility of an excess with an expected signal. The latter is provided by the best fit μ value, shown in Fig. 6 (right). In this fit the constraint $\mu \geq 0$ is not applied, so that a negative value of μ indicates an observation below the expect-
Figure 5: The 95% CL upper limits on the signal strength parameter $\mu = \sigma/\sigma_{SM}$ for the SM Higgs boson hypothesis as a function of m_H, separately for the combination of the $ZZ + \gamma\gamma$ (left) and $bb + \tau\tau + WW$ (right) searches. The observed values as a function of mass are shown by the solid line. The dashed line indicates the expected median of results for the background-only hypothesis, while the green (dark) and yellow (light) bands indicate the ranges that are expected to contain 68% and 95% of all observed excursions from the median, respectively.

Figure 6: The observed local p-value p_0 (left) and best-fit $\hat{\mu} = \sigma/\sigma_{SM}$ (right) as a function of the SM Higgs boson mass in the range 110–145 GeV. The global significance of the observed maximum excess (minimum local p-value) in this mass range is about 2.1σ, estimated using pseudo-experiments. The dashed line on the left plot shows the expected local p-values $p_0(m_H)$, should a Higgs boson with a mass m_H exist. The band in the right plot corresponds to the $\pm 1\sigma$ uncertainties on the $\hat{\mu}$ values.
tation from the background-only hypothesis. The band corresponds to the ±1σ uncertainty (statistical+systematic) on the value of \(\hat{\mu} \) obtained from a change in \(q_{\mu} \) by one unit (\(\Delta q_{\mu} = 1 \)), after removing the \(\mu \leq \hat{\mu} \) constraint. The observed \(\hat{\mu} \) values are within 1σ of unity in the mass range from 117–126 GeV.

Figure 7 shows the interplay of contributing channels for the two Higgs boson mass hypotheses \(m_H = 119.5 \) and 124 GeV. The choice of these mass points is motivated by the features seen in Fig. 6 (left). The plots show the level of statistical compatibility between the channels contributing to the combination.

Figure 7: Values of \(\hat{\mu} = \sigma / \sigma_{SM} \) for the combination (solid vertical line) and for contributing channels (points) for two hypothesized Higgs boson masses. The band corresponds to ±1σ uncertainties on the overall \(\hat{\mu} \) value. The horizontal bars indicate ±1σ uncertainties on the \(\hat{\mu} \) values for individual channels.

5 Conclusions

Combined results are reported from searches for the SM Higgs boson in proton-proton collisions at \(\sqrt{s} = 7 \) TeV in five Higgs boson decay modes: \(\gamma \gamma \), bb, \(\tau \tau \), WW, and ZZ. The explored Higgs boson mass range is 110–600 GeV. The analysed data correspond to an integrated luminosity of 4.6–4.8 fb\(^{-1}\). The expected excluded mass range in the absence of the standard model Higgs boson is 118–543 GeV at 95% CL. The observed results exclude the standard model Higgs boson in the mass range 127–600 GeV at 95% CL, and in the mass range 129–525 GeV at 99% CL. An excess of events above the expected standard model background is observed at the low end of the explored mass range making the observed limits weaker than expected in the absence of a signal. The largest excess, with a local significance of 3.1σ, is observed for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing an excess with a local significance ≥3.1σ anywhere in the search range 110–600 (110–145) GeV is estimated to be 1.5σ (2.1σ). More data are required to ascertain the origin of the observed excess.

Acknowledgments

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN
and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[1] S. Glashow, “Partial Symmetries of Weak Interactions”, *Nucl. Phys.* **22** (1961) 579–588.
doib:10.1016/0029-5582(61)90469-2

[2] S. Weinberg, “A Model of Leptons”, *Phys. Rev. Lett.* **19** (1967) 1264–1266.
doib:10.1103/PhysRevLett.19.1264

[3] A. Salam, “Weak and electromagnetic interactions”, in *Elementary particle physics: relativistic groups and analyticity*, N. Svartholm, ed., p. 367. Almqvist & Wiskell, 1968. Proceedings of the eighth Nobel symposium.

[4] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, *Phys. Rev. Lett.* **13** (1964) 321–323.
doib:10.1103/PhysRevLett.13.321

[5] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, *Phys. Lett.* **12** (1964) 132–133.
doib:10.1016/0031-9163(64)91136-9

[6] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, *Phys. Rev. Lett.* **13** (1964) 508–509.
doib:10.1103/PhysRevLett.13.508

[7] G. Guralnik, C. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, *Phys. Rev. Lett.* **13** (1964) 585–587.
doib:10.1103/PhysRevLett.13.585

[8] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, *Phys. Rev.* **145** (1966) 1156–1163.
doib:10.1103/PhysRev.145.1156

[9] T. W. B. Kibble, “Symmetry breaking in non-Abelian gauge theories”, *Phys. Rev.* **155** (1967) 1554–1561.
doib:10.1103/PhysRev.155.1554

[10] ALEPH, DELPHI, L3, OPAL Collaborations, and LEP Working Group for Higgs Boson Searches, “Search for the standard model Higgs boson at LEP”, *Phys. Lett. B* **565** (2003) 61–75.
doib:10.1016/S0370-2693(03)00614-2

[11] CDF and D0 Collaborations, “Combination of Tevatron Searches for the Standard Model Higgs Boson in the WW Decay Mode”, *Phys. Rev. Lett.* **104** (2010) 061802. A more recent, unpublished, limit is given in preprint arXiv:1103.3233.
doib:10.1103/PhysRevLett.104.061802

[12] ATLAS Collaboration, “Search for the Higgs boson in the H→WW(∗)→ℓ⁺ℓ⁻ν⁻̅ν decay channel in pp collisions at √s = 7 TeV with the ATLAS detector”, (2011).
arXiv:1112.2577 Submitted to *Phys. Rev. Lett.*
[13] ATLAS Collaboration, “Search for the Standard Model Higgs boson in the decay channel $H \to ZZ^{(*)} \to 4\ell$ with the ATLAS detector”, Phys. Lett. B 705 (2011) 435–451, arXiv:1109.5945 doi:10.1016/j.physletb.2011.10.034

[14] ATLAS Collaboration, “Search for a Standard Model Higgs boson in the $H \to ZZ \to \ell^+\ell^-\nu\bar{\nu}$ decay channel with the ATLAS detector”, Phys. Rev. Lett. 107 (2011) 221802, arXiv:1109.3357 doi:10.1103/PhysRevLett.107.221802

[15] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavour Groups, “Precision Electroweak Measurements and Constraints on the Standard Model”, CERN PH-EP-2010-095, (2010).

[16] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 03 (2008) S08004. doi:10.1088/1748-0221/3/08/S08004

[17] LHC Higgs Cross Section Working Group Collaboration, “Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables”, CERN CERN-2011-002, (2011).

[18] S. Dawson, “Radiative corrections to Higgs boson production”, Nucl. Phys. B 359 (1991) 283–300. doi:10.1016/0550-3213(91)90061-2

[19] M. Spira, A. Djouadi, D. Graudenz et al., “Higgs boson production at the LHC”, Nucl. Phys. B 453 (1995) 17–82, arXiv:hep-ph/9504378 doi:10.1016/0550-3213(95)00379-7

[20] R. V. Harlander and W. B. Kilgore, “Next-to-next-to-leading order Higgs production at hadron colliders”, Phys. Rev. Lett. 88 (2002) 201801, arXiv:hep-ph/0201206 doi:10.1103/PhysRevLett.88.201801

[21] C. Anastasiou and K. Melnikov, “Higgs boson production at hadron colliders in NNLO QCD”, Nucl. Phys. B 646 (2002) 220–256, arXiv:hep-ph/0207004 doi:10.1016/S0550-3213(02)00837-4

[22] V. Ravindran, J. Smith, and W. L. van Neerven, “NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions”, Nucl. Phys. B 665 (2003) 325–366, arXiv:hep-ph/0302135 doi:10.1016/S0550-3213(03)00457-7

[23] S. Catani, L. D. Ferroni, M. Grazzini et al., “Soft-gluon resummation for Higgs boson production at hadron colliders”, JHEP 07 (2003) 028. doi:10.1088/1126-6708/2003/07/028

[24] S. Actis, G. Passarino, C. Sturm et al., “NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders”, Phys. Lett. B 670 (2008) 12–17, arXiv:0809.1301 doi:10.1016/j.physletb.2008.10.018

[25] C. Anastasiou, R. Boughezal, and F. Petriello, “Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion”, JHEP 04 (2009) 003, arXiv:0811.3458 doi:10.1088/1126-6708/2009/04/003

[26] D. de Florian and M. Grazzini, “Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC”, Phys. Lett. B 674 (2009) 291–294, arXiv:0901.2427 doi:10.1016/j.physletb.2009.03.033
[27] G. Bozzi, S. Catani, D. de Florian et al., “Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC”, *Nucl. Phys. B* **737** (2006) 73–120, arXiv:hep-ph/0508068, doi:10.1016/j.nuclphysb.2005.12.022.

[28] D. de Florian, G. Ferrera, M. Grazzini et al., “Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC”, *JHEP* **11** (2011) 064, doi:10.1007/JHEP11(2011)064.

[29] G. Passarino, C. Sturm, and S. Uccirati, “Higgs Pseudo-Observables, Second Riemann Sheet and All That”, *Nucl. Phys. B* **834** (2010) 77–115, arXiv:1001.3360, doi:10.1016/j.nuclphysb.2010.03.013.

[30] C. Anastasiou, S. Buehler, F. Herzog et al., “Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions”, (2011). arXiv:1107.0683.

[31] I. W. Stewart and F. J. Tackmann, “Theory Uncertainties for Higgs and Other Searches Using Jet Bins”, (2011). arXiv:1107.2117.

[32] A. Djouadi, J. Kalinowski, and M. Spira, “HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension”, *Comput. Phys. Commun.* **108** (1998) 56–74, arXiv:hep-ph/9704448, doi:10.1016/S0010-4655(97)00123-9.

[33] A. Djouadi, J. Kalinowski, M. Muhlleitner et al., “An update of the program HDECAY”, in *The Les Houches 2009 workshop on TeV colliders: The tools and Monte Carlo working group summary report*. 2010. arXiv:1003.1643.

[34] A. Bredenstein, A. Denner, S. Dittmaier et al., “Precise predictions for the Higgs-boson decay $H \rightarrow WW/ZZ \rightarrow 4$ leptons”, *Phys. Rev. D* **74** (2006) 013004, arXiv:hep-ph/0604011, doi:10.1103/PhysRevD.74.013004.

[35] A. Bredenstein, A. Denner, S. Dittmaier et al., “Radiative corrections to the semileptonic and hadronic Higgs-boson decays $H \rightarrow W W / Z Z \rightarrow 4$ fermions”, *JHEP* **0702** (2007) 080, arXiv:hep-ph/0611234, doi:10.1088/1126-6708/2007/02/080.

[36] S. Actis, G. Passarino, C. Sturm et al., “NNLO Computational Techniques: the Cases $H \rightarrow \gamma\gamma$ and $H \rightarrow gg$”, *Nucl. Phys. B* **811** (2009) 182–273, arXiv:0809.3667, doi:10.1016/j.nuclphysb.2008.11.024.

[37] A. Denner, S. Heinemeyer, I. Puljak et al., “Standard Model Higgs-Boson Branching Ratios with Uncertainties”, *Eur. Phys. J. C* **71** (2011) 1753, arXiv:1107.5909, doi:10.1140/epjc/s10052-011-1753-8.

[38] M. Ciccolini, A. Denner, and S. Dittmaier, “Strong and electroweak corrections to the production of Higgs + 2-jets via weak interactions at the LHC”, *Phys. Rev. Lett.* **99** (2007) 161803, arXiv:0707.0381, doi:10.1103/PhysRevLett.99.161803.

[39] M. Ciccolini, A. Denner, and S. Dittmaier, “Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC”, *Phys. Rev. D* **77** (2008) 013002, arXiv:0710.4749, doi:10.1103/PhysRevD.77.013002.

[40] T. Figy, C. Oleari, and D. Zeppenfeld, “Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion”, *Phys. Rev. D* **68** (2003) 073005, arXiv:hep-ph/0306109, doi:10.1103/PhysRevD.68.073005.
[41] K. Arnold et al., “VBFNLO: A parton level Monte Carlo for processes with electroweak bosons”, Comput. Phys. Commun. 180 (2009) 1661–1670, arXiv:0811.4559, doi:10.1016/j.cpc.2009.03.006

[42] P. Bolzoni, F. Maltoni, S.-O. Moch et al., “Higgs production via vector-boson fusion at NNLO in QC D”, Phys. Rev. Lett. 105 (2010) 011801, arXiv:1003.4451, doi:10.1103/PhysRevLett.105.011801

[43] T. Han and S. Willenbrock, “QCD correction to the pp → WH and ZH total cross-sections”, Phys. Lett. B 273 (1991) 167–172, doi:10.1016/0370-2693(91)90572-8

[44] O. Brein, A. Djouadi, and R. Harlander, “NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders”, Phys. Lett. B 579 (2004) 149–156, arXiv:hep-ph/0307206, doi:10.1016/j.physletb.2003.10.112

[45] M. L. Ciccolini, S. Dittmaier, and M. Krämer, “Electroweak radiative corrections to associated WH and ZH production at hadron colliders”, Phys. Rev. D 68 (2003) 073003, arXiv:hep-ph/0306234, doi:10.1103/PhysRevD.68.073003

[46] R. Hamberg, W. L. van Neerven, and T. Matsuura, “A complete calculation of the order α_s^2 correction to the Drell-Yan K factor”, Nucl. Phys. B 359 (1991) 343–405, doi:10.1016/0550-3213(91)90064-5

[47] A. Denner, S. Dittmaier, S. Kallweit et al., “EW corrections to Higgs strahlung at the Tevatron and the LHC with HAWK”, (2011). arXiv:1112.5258

[48] G. Ferrera, M. Grazzini, and F. Tramontano, “Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO”, Phys. Rev. Lett. 107 (2011) 152003, arXiv:1107.1164, doi:10.1103/PhysRevLett.107.152003

[49] W. Beenakker et al., “Higgs radiation off top quarks at the Tevatron and the LHC”, Phys. Rev. Lett. 87 (2001) 201805, arXiv:hep-ph/0107081, doi:10.1103/PhysRevLett.87.201805

[50] W. Beenakker et al., “NLO QCD corrections to t ¯t H production in hadron collisions.”, Nucl. Phys. B 653 (2003) 151–203, arXiv:hep-ph/0211352, doi:10.1016/S0550-3213(03)00044-0

[51] L. Reina and S. Dawson, “Next-to-leading order results for t anti-t h production at the Tevatron”, Phys. Rev. Lett. 87 (2001) 201804, arXiv:hep-ph/0107101, doi:10.1103/PhysRevLett.87.201804

[52] L. Reina, S. Dawson, and D. Wackeroth, “QCD corrections to associated t anti-t h production at the Tevatron”, Phys. Rev. D 65 (2002) 053017, arXiv:hep-ph/0109066, doi:10.1103/PhysRevD.65.053017

[53] S. Dawson, L. H. Orr, L. Reina et al., “Associated top quark Higgs boson production at the LHC”, Phys. Rev. D 67 (2003) 071503, arXiv:hep-ph/0211438, doi:10.1103/PhysRevD.67.071503

[54] S. Dawson, C. Jackson, L. H. Orr et al., “Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections”, Phys. Rev. D 68 (2003) 034022, arXiv:hep-ph/0305087, doi:10.1103/PhysRevD.68.034022
5 Conclusions

[55] M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011). arXiv:1101.0538

[56] S. Alekhin et al., “The PDF4LHC Working Group Interim Report”, (2011). arXiv:1101.0536

[57] H.-L. Lai, M. Guzzi, J. Huston et al., “New parton distributions for collider physics”, Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241 doi:10.1103/PhysRevD.82.074024

[58] A. Martin, W. Stirling, R. Thorne et al., “Parton distributions for the LHC”, Eur. Phys. J. C 63 (2009) 189–285, arXiv:0901.0002 doi:10.1140/epjc/s10052-009-1072-5

[59] NNPDF Collaboration, “Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology”, Nucl. Phys. B 849 (2011) arXiv:1101.1300 doi:10.1016/j.nuclphysb.2011.03.021

[60] CMS Collaboration, “Search for the standard model Higgs boson decaying into two photons in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to Phys. Lett.

[61] CMS Collaboration, “Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to Phys. Lett.

[62] CMS Collaboration, “Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to Phys. Lett.

[63] CMS Collaboration, “Search for the standard model Higgs boson decaying to \(W^+W^- \) in the fully leptonic final state in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to Phys. Lett.

[64] CMS Collaboration, “Search for the standard model Higgs boson in the decay channel \(H \to ZZ \to 4 \ell \) in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to Phys. Rev. Lett.

[65] CMS Collaboration, “Search for the standard model Higgs boson in the \(H \to ZZ \to 2\ell2\nu \) channel in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to JHEP.

[66] CMS Collaboration, “Search for a Higgs boson in the decay channel \(H \to ZZ \to q\bar{q}\ell^-\ell^+ \) in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to JHEP.

[67] CMS Collaboration, “Search for the standard model Higgs boson in the \(H \to ZZ \to \ell^+\ell^-\tau^+\tau^- \) decay channel in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \)”, (2012). Submitted to JHEP.

[68] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, ATL-PHYS-PUB/CMS NOTE 2011-11, 2011/005, (2011).

[69] G. Cowan et al., “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1–19, arXiv:1007.1727 doi:10.1140/epjc/s10052-011-1554-0

[70] E. Gross and O. Vitells, “Trial factors for the look elsewhere effect in high energy physics”, Eur. Phys. J. C 70 (2010) 525–530, arXiv:1005.1891 doi:10.1140/epjc/s10052-010-1470-8
[71] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* **434** (1999) 435–443. doi:10.1016/S0168-9002(99)00498-2

[72] A. Read, “Modified frequentist analysis of search results (the C_{LS} method)”, Technical Report CERN-OPEN-2000-005, CERN, (2000).
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer1, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka1, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schönbeck, J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, L. Benucci, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, A. Léonard, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wickens

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. McCartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Bassegmez, G. Bruno, L. Cearl, J. De Favereau De Jeneret, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco2, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium
N. Beliy, T. Caeb ergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, L. Soares Jorge, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos3, C.A. Bernardes3, F.A. Dias4, T.R. Fernandez Perez Tomei, E. M. Gregores3, C. Lagana, F. Marinho, P.G. Mercadante6, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev1, P. Iaydjiev1, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang,
J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, S. Wang,
B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
A. Cabrera, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
Y. Assran, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Czellar, J. Häkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén,
K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen,
J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux,
France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer,
J. Rander, A. Rosowsky, I. Shreyber, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot,
N. Daci, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac, M. Haguenauer,
P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux,
C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard,
E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, P. Juillot, M. Karim,
A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
C. Baty, S. Beauceron, N. Beaugere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene,
H. Brun, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, A. Falkiewicz,
J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito,
S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen,
K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger,
H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, M. Erdmann, A. Güth, T. Hebbeker, C. Heidemann,
K. Hoepfner, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske, J. Lingemann, C. Magass,
M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz,
L. Sonnenschein, J. Steggemann, D. Teyssier, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, V. Cherepanov, M. Davids, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad,
F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth,
J. Rennefeld, P. Sauerland, A. Stahl, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras,
A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, D. Dammann, G. Eckerlin,
D. Eckstein, A. Flossdorf, G. Flucke, A. Geiser, J. Hauk, H. Jung, M. Kasemann, P. Katsas,
C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange,
W. Lohmann, B. Lutz, R. Mankel, I. Marfin, M. Marienhelf, I.-A. Melzer-Pellmann,
A.B. Meyer, J. Mnich, A. Mussigler, S. Naumann-Emme, J. Olzem, A. Petrukhin, D. Pitzl,
A. Raspereza, P.M. Ribeiro Cipriano, M. Rosin, J. Salfeld-Nebgen, R. Schmidt,
T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, J. Tomaszewska, R. Walsh, C. Wissing
University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirchenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, H. Stadie, G. Steinbrück, J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Berger, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Gruschke, M. Guthoff, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, S. Röcker, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, E.B. Ziebarth

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu, P. Hidas, D. Horvath, A. Kapusi, K. Krajczar, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, B.C. Choudhary, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, S. Jain, S. Jain, R. Khurana, S. Sarkar

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Ganguly, M. Guchait, A. Gurtu, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal
INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
P. Azzurria,c, G. Bagliesia, T. Boccalia, G. Broccoloa,c, R. Castaldia, R.T. D’Agnoloa,c, R. Dell’Orsoa, F. FIORId,b, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,27, A. Messineoa,b, F. Pallaa, F. Palmonaria, A. Rizzi, A.T. Serbana, P. Spagnoloa, R. Tencinia, G. Tonellia,b,1, A. Venturia,b,1, P.G. Verdinia

INFN Sezione di Roma a, Università di Roma “La Sapienza” b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b,1, M. Diemoza, C. Fanelli, M. Grassia,1, E. Longoa,b, P. Meridiania, F. Micheli, S. Nourbakhsha, G. Organtinia,b, F. Pandolfia,b, R. Paramattia, S. Rahatloua,k, M. Sigamania, L. Soffi

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaa,b, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia,b, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, V. Solaa,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b, D. Montaninoa,b,1, A. Penzoa

Kangwon National University, Chunchon, Korea
S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Konkuk University, Seoul, Korea
H.Y. Jo

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo, K.S. Sim

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magana Villalba, J. Martinez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vázquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shaib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Musella, A. Nayak, J. Pela₁, P.Q. Ribeiro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, I. Golutvin, A. Kamenev, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov₁, A. Krokhotin, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin₁, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva₁, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin₁, V. Kachanov, D. Konstantinov, A. Korabiev,
A The CMS Collaboration

V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. García-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Sarto, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzaier, P. Baillon, A.H. Ball, D. Barney, C. Bernet, W. Bialas, G. Bianchi, P. Bloch, A. Bocci, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, B. Curé, D. D’Enterria, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi, G. Georgiou, H. Gerwig, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, L. Guiducci, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, H.F. Hoffmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, P. Lenzi, C. Lourenço, T. Máki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, G. Mavromanolakis, F. Mejers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Roland, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichtig, D. Spiga, M. Spiropulu, M. Stoye, A. Tsirou, G.I. Veres, P. Vichoudis, H.K. Wöhri, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bertignier, M.A. Buchmann, B. Casal, N. Chanon, Z. Chen, A. Deisher, G. Dissertori, M. Dittmar, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, P. Lecomte, W. Listermann,
Universität Zürich, Zurich, Switzerland
E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, M. Verzetti

National Central University, Chung-Li, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, M. Wang

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, I. Hos, E.E. Kangal, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Saglam, D. Sunar Cerci, B. Tali, H. Topakli, U. Uzun, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliyev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, E. Gulmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne, B. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, N. Rompotis, A. Rose, M.J. Ryan, C. Seez, A. Sparrow, A. Tapper, S. Tourner, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, D. Wardrope, T. Whyntie
Brunel University, Uxbridge, United Kingdom
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
C. Henderson

Boston University, Boston, USA
A. Avetisyan, T. Bose, E. Carrera Jarrin, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazić, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, M. Caulfield, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, R. Nelson, D. Pellett, J. Robles, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra

University of California, Los Angeles, Los Angeles, USA
V. Andreev, K. Arisaka, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein¹, J. Tucker, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, H. Pi, M. Pieri, R. Ranieri, M. Sani, I. Sfiligoi, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech⁴⁷, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi¹, V. Krutelyov, S. Lowette, N. Mcoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, J.R. Vlimant, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgün, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev
The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, A. Peterman, K. Rossato, P. Rumerio, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, Y.-J. Lee, W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, S.C. Kao, K. Klaoeke, Y. Kubota, J. Mans, N. Pastika, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith, Z. Wan

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams
Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, E. Laird, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, G. Petrillo, W. Sakumoto, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, O. Atramentov, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, M. Park, R. Patel, A. Richards, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon53, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, A. Sill, I. Volobouev, R. Wigmans

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, A. Gurrola, M. Issah, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, S. Conetti, B. Cox, B. Francis, S. Goadhouse, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay
Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, D. Belknap, J.N. Bellinger, J. Bernardini, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, J. Efron, E. Friis, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
6: Also at Suez Canal University, Suez, Egypt
7: Also at Cairo University, Cairo, Egypt
8: Also at British University, Cairo, Egypt
9: Also at Fayoum University, El-Fayoum, Egypt
10: Also at Ain Shams University, Cairo, Egypt
11: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
12: Also at Université de Haute-Alsace, Mulhouse, France
13: Also at Moscow State University, Moscow, Russia
14: Also at Brandenburg University of Technology, Cottbus, Germany
15: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
16: Also at Eötvös Loránd University, Budapest, Hungary
17: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
18: Now at King Abdulaziz University, Jeddah, Saudi Arabia
19: Also at University of Visva-Bharati, Santiniketan, India
20: Also at Sharif University of Technology, Tehran, Iran
21: Also at Isfahan University of Technology, Isfahan, Iran
22: Also at Shiraz University, Shiraz, Iran
23: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
24: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
25: Also at Università della Basilicata, Potenza, Italy
26: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
27: Also at Università degli studi di Siena, Siena, Italy
28: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
29: Also at University of Florida, Gainesville, USA
30: Also at University of California, Los Angeles, Los Angeles, USA
31: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
32: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
33: Also at University of Athens, Athens, Greece
34: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
35: Also at The University of Kansas, Lawrence, USA
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Gaziosmanpasa University, Tokat, Turkey
39: Also at Adiyaman University, Adiyaman, Turkey
40: Also at The University of Iowa, Iowa City, USA
41: Also at Mersin University, Mersin, Turkey
42: Also at Kafkas University, Kars, Turkey
43: Also at Suleyman Demirel University, Isparta, Turkey
44: Also at Ege University, Izmir, Turkey
45: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
46: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
47: Also at Utah Valley University, Orem, USA
48: Also at Institute for Nuclear Research, Moscow, Russia
49: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
50: Also at Los Alamos National Laboratory, Los Alamos, USA
51: Also at Argonne National Laboratory, Argonne, USA
52: Also at Erzincan University, Erzincan, Turkey
53: Also at Kyungpook National University, Daegu, Korea