Alcoholic chlorhexidine skin preparation or triclosan-coated sutures to reduce surgical site infection: a systematic review and meta-analysis of high-quality randomised controlled trials

National Institute of Health Research Unit on Global Surgery

Summary

Background WHO and the UK’s National Institute for Health and Care Excellence recommend alcoholic chlorhexidine skin preparation and triclosan-coated sutures to prevent surgical site infections (SSIs). Existing meta-analyses that include studies at high risk of bias, combined with the recent publication of large, randomised trials, justify an updated meta-analysis of high-quality randomised controlled trials (RCTs). We aimed to test the rates of SSI according to skin preparation solutions (ie, alcoholic chlorhexidine vs aqueous povidone-iodine) and types of sutures (ie, coated vs uncoated).

Methods In this systematic review and meta-analysis, we searched MEDLINE, Embase, Pubmed, and Cochrane Library databases, with no language restrictions, to identify high-quality RCTs testing either alcoholic chlorhexidine skin preparation (vs aqueous povidone-iodine) or triclosan-coated sutures (vs uncoated sutures), or both, published from database inception to Sept 1, 2021. Patients who received clean-contaminated, contaminated, or dirty surgery were included. We predefined the characteristics of a high-quality trial through an expert consensus process to develop an enhanced Cochrane risk of bias-2 tool specifically for RCTs with a primary outcome of SSI. Data were extracted from published reports. Meta-analysis was performed using a random-effects model and heterogeneity was assessed using the I² statistic. This systematic review and meta-analysis was prospectively registered in PROSPERO, CRD42021267220.

Findings Of 942 studies identified, 933 were excluded. Four high-quality RCTs (n=7467 patients) were included that tested alcoholic chlorhexidine. No significant difference in SSI rates was noted between alcoholic chlorhexidine and aqueous povidone-iodine (17·9% [667 of 3723 patients] vs 19·8% [740 of 3744 patients]; odds ratio 0·84 [95% CI 0·65–1·06]; p=0·21, I²=53·1%). Five high-quality RCTs were included that tested triclosan-coated sutures (n=8619 patients), with no significant difference noted between triclosan-coated and uncoated sutures (16·8% [733 of 4259 patients]; OR 0·90 [95% CI 0·74–1·09]; p=0·29, I²=36·4%).

Interpretation Contrary to previous meta-analyses, this study did not show a benefit from either alcoholic chlorhexidine skin preparation or triclosan-coated sutures, both of which are more expensive than other readily available alternatives. Global and national guidance should be reconsidered to remove recommendations for their routine use.

Funding National Institute for Health Research (NIHR) Global Health Research Unit.

Introduction Surgical site infection (SSI) is the most common complication after surgery worldwide, affecting up to one in five patients across all surgical specialties. Patients in lower-income countries are disproportionately affected by infections and antimicrobial resistance. Treatment frequently requires prolonged courses of antibiotics, contributing to antimicrobial resistance. Antibiotics and dressings are costly to patients and providers. In low-income and middle-income countries (LMICs), SSIs are a contributor to catastrophic expenditure.

In 2016, WHO recommended 29 interventions to prevent SSIs, although most of the included trials within the evidence review were at best of moderate quality, with little data from LMICs and paediatric populations. The FALCON randomised trial was designed to further investigate recommended interventions by WHO and included 5788 adults and children from seven LMICs. The trial addressed two interventions—alcoholic chlorhexidine skin preparation and triclosan-coated sutures to close the abdominal fascia—for which frontline collaborators felt that the highest levels of clinical equipoise existed. Although these interventions are both recommended by WHO in their 2018 guidelines and the UK’s National Institute for Health and Care Excellence (NICE) in their 2019 guidelines on the basis of data from a meta-analysis, the majority of supporting trials were at high risk of bias through methodological weaknesses...
that are inherent to trials of SSI. Generic assessments of risk of bias in previous meta-analyses might have overlooked some of the most salient threats to the validity of randomised trials of interventions to reduce SSI, including definitions of outcomes (SSI diagnosis is subjective and a structured, concealed assessment method is needed), timing of assessment (SSIs can be diagnosed after discharge from hospital, so a 30-day assessment is optimum), and differential dropouts (patients without SSIs are less likely to attend follow-up, so high loss to follow-up rates introduce bias). Furthermore, there is little evidence in LMIC settings for the clinical effectiveness of alcoholic chlorhexidine skin preparation and triclosan-coated sutures in patients with heavily contaminated wounds.

Within the past 5 years publication of large, randomised trials, including the FALCON trial, and the moderate quality of evidence justify the need for an updated meta-analysis. The unique requirements needed for the conduct of SSI trials mean that a bespoke quality assessment process is needed that identifies only the most rigorous, high-quality randomised controlled trials (RCTs). A specific analysis focused on patients receiving clean-contaminated, contaminated, or dirty surgery, which together represent operation types with the highest burden of infection, has also not been done. The aim of this study was to provide a rapid, efficient systematic review and meta-analysis of both interventions that included a bespoke quality assessment specific to SSI RCTs.

Methods
Development of a bespoke study quality assessment tool
SSI trials have certain challenges regarding design and conduct; as such, they warrant a specialised modification of the Cochrane risk of bias-2 tool to optimise assessment in this context. We developed an expert-led definition of a high-quality randomised SSI trial. A four-staged process was used to define the criteria of a high-quality randomised SSI trial with a group of surgeons and methodologists with expertise in international SSI trials who adapted the risk of bias tool using a nominal group consensus method. A detailed description of the
four-staged process and expert group is in the appendix (p 19). This final list of qualifying domains constituted the enhanced Cochrane risk of bias-2 tool. The protocol is listed in the appendix (pp 20–22).

Search strategy and selection criteria
This systematic review and meta-analysis was conducted in accordance with the recommendations of the Cochrane Library and Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.11,12 We searched MEDLINE, Embase, Pubmed, and Cochrane Library databases for studies published from database inception to Sept 1, 2021, with no language restrictions. A summary of the search terms used is presented in the appendix (p 3). Data were extracted from published reports. Any relevant citations from search results were explored and authors were contacted when queries or discrepancies were encountered.

Studies were included according to the following criteria: (1) high quality (table 1 shows criteria for assessment of study quality from the expert consensus process); (2) randomised; (3) assessing different forms of skin preparation (ie, alcoholic chlorhexidine vs aqueous povidone-iodine) or types of sutures (ie coated vs uncoated); and (4) data regarding the contamination level of surgery is extractable, relating specifically to patients who received clean-contaminated, contaminated, or dirty surgery. Studies were excluded if they were RCTs evaluating clean surgery only or if data on contamination strata for clean-contaminated, contaminated, or dirty surgery were not available, or they were of low quality.

Four authors (SK, EL, JS, and ET) extracted the data, and any discrepancies were discussed with all authors together and any conflict was resolved by discussion with the senior author (AB). Type of data extracted were number of centres, number of patients, interventions used, SSI rates by each intervention, and degree of contamination. Duplicates were excluded.

Outcome
The primary outcome of this review was to examine the rates of SSI between skin preparation (ie, alcoholic chlorhexidine vs aqueous povidone-iodine) or types of sutures (ie, coated vs uncoated). Sensitivity analysis was also performed on studies that contained an explicit statement of conflict of interest.

Statistical analysis
We generated a random-effects estimate of the pooled odds of each outcome with use of the hybrid Mantel-Haenszel methods. The rates of SSIs described in the RCTs reported in the articles were used directly in the quantitative meta-analysis. Funnel plots were used to visually assess publication bias of included studies. Heterogeneity between studies was assessed using the I^2 statistic to determine the degree of variation not attributable to chance alone. I^2 values were considered to represent low, moderate, and high degrees of heterogeneity when values were less than 25%, 25–75%, and more than 75%, respectively. Funnel plot asymmetry was assessed using the Egger test. A p value of less than 0·05 was considered statistically significant. Data analysis was done using R Foundation Statistical software, with packages such as meta, finalfit, and tidyverse.13 (R 3.2.1). Subgroup analyses were performed by the degree of contamination (ie, clean-contaminated, contaminated, and dirty) for both skin preparation and suture type. A further sensitivity post-hoc analysis was performed in studies for which conflicts of interest were reported transparently (ie, the conflict of interest statement was present).

This systematic review and meta-analysis was prospectively registered in PROSPERO, CRD42021267220.

Role of the funding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Results
The nominal group consensus process identified ten domains containing ten areas of bias, mapped out from the Cochrane risk of bias-2 tool for randomised trials,14 in which SSI-specific quality criteria were included where possible (figure 1). Of the ten domains, one was new (quality assurance of outcome assessment) and nine were adapted from different aspects of the Cochrane tool through a four-stage process (appendix pp 4–6). From these ten, eight were prioritised as essential and taken forward into the final adapted risk-of-bias tool (table 1). The eight essential key domains are listed in the appendix (pp 22–24).

Two domains were classed as desirable, which were blinding of surgeons and blinding of patients, because they were non-discriminatory towards a high-quality or low-quality assessment. Although desirable for all RCTs, blinding of the surgeon delivering an intraoperative intervention is difficult (ie, because they are performing the index operation);15–17 to lower the risk of bias in SSI trials, ideally, the unblinded surgeon will not perform the outcome assessment. Although blinding of patients to the intervention is useful, it might not be possible in all interventions in reducing SSI and, therefore, not pragmatic for future conduct of SSI trials.

Of the 942 studies identified from the literature search, 40 studies received full-text review and 31 were excluded (figure 2). Reasons for exclusion of studies are presented in the appendix (p 7). Results on the enhanced Cochrane risk of bias-2 tool for each included study are presented in table 2 and the appendix (p 8). Baseline study and patient characteristics of the included studies are presented in table 3 and the appendix (pp 9–11). In the final analysis, four high-quality RCTs4,15–17 (n=7467 patients; patient numbers differed from totals given in table 3.
because clean procedures were excluded from analysis) on skin preparation (ie, alcoholic chlorhexidine and aqueous povidone-iodine) and five high-quality RCTs [18-21] (n=8619 patients; patient numbers differed from totals given in table 3 because clean procedures were excluded from analysis) on suture type (ie, triclosan-coated and uncoated) were included.

Regarding skin preparation solutions, the NICE 2019 guidelines included 28 studies, 14 of which were originally rated as high quality by the authors of the NICE guidelines, and two of which were included in the current review. WHO 2018 guidelines included 17 studies, five of which were originally rated as high quality by the authors of the WHO guidelines according to the Cochrane risk of bias, and one of which was included in the current review. Detailed reasons for exclusions are reported in the appendix (p 15).

In the overall analysis, no significant differences were reported in the rates of SSI between alcoholic chlorhexidine and aqueous povidone-iodine (17.9% [667 of 3723 patients] vs 19.8% [740 of 3744 patients]; odds ratio [OR] 0.84 [95% CI 0.65–1.10]; p=0.21; figure 3, appendix p 12). There was moderate heterogeneity across trials (I²=53% [95% CI 0.0–84.5]).
Stratified analyses by degree of contamination showed no significant difference in patients who received clean-contaminated surgery (OR 0·86 [95% CI 0·64–1·16]; p=0·32; figure 3, appendix p 12), with moderate heterogeneity across trials (I²=57% [95% CI 0·0–85·8]). Only one high-quality trial reported rates of SSI in contaminated or dirty surgery, which showed no significant difference between interventions (OR 0·85 [95% CI 0·71–1·01]); when this analysis was adjusted within the original trial report, there remained no significant difference (adjusted OR 0·97 [95% CI 0·81–1·02]; figure 3, appendix p 12).

A sensitivity analysis was performed for RCTs that clearly reported conflicts of interest. Three RCTs were included in this part of the analysis, comprising 6557 patients. No overall significant differences in SSI rates were observed, which remained consistent in stratified analysis by degree of contamination for clean-contaminated settings and for contaminated or dirty surgery (appendix pp 12–15).

A summary of other types of skin preparation solutions is presented in the appendix (pp 10–11). Only three (n=2872 patients) RCTs22–24 were deemed to be of high quality. These RCTs compared alcoholic chlorhexidine with alcoholic povidone-iodine, all of which were in clean-contaminated settings. There was no significant difference between the rates of SSI between these interventions (OR 0·75 [95% CI 0·55–1·03]; p=0·070; appendix p 14).

With regard to suture types, NICE 2019 guidelines included 14 studies, nine of which were deemed high quality by the authors of the NICE guidelines, four of which were included in the current review. WHO 2018 guidelines included 18 studies, 13 of which were originally rated as high quality by the authors of the WHO guidelines according to the Cochrane risk of bias, two of which were included in the current review. Detailed reasons for exclusions are shown in the appendix (p 16).

In the overall analysis, there were no significant differences in rates of SSI between coated (16·8% [733 of 4360 patients]) and uncoated sutures (18·4% [784 of 4259 patients]; OR 0·90 [95% CI 0·74–1·09]; p=0·29; figure 3, appendix p 17). There was moderate heterogeneity across trials (I²=36% [95% CI 0·0–76·2]).

Stratified analyses by degree of contamination showed no significant difference in patients receiving clean-contaminated surgery (OR 0·91 [95% CI 0·75–1·10]; p=0·32; figure 3, appendix p 17). Only one high-quality trial reported rates of SSI in contaminated or dirty surgery, and it found no significant difference between interventions (figure 3, appendix p 17).

A sensitivity analysis was performed for RCTs that clearly reported conflicts of interest. Four RCTs were
Study	Skin preparation	Random sequence generation (selection)	Allocation concealment (selection)	Baseline differences between intervention groups (selection)	Blinding of patients (performance)	Analysis of groups to which they were randomly assigned (attrition)	Missing outcome data (loss to follow-up)	Blinding of outcome assessors (outcome definition)	Quality assurance of outcome assessment (follow-up period pre-defined)	Quality assurance of outcome assessment (post-discharge surveillance plan)	Reporting (selective reporting)	Reporting (protocol publication or registration)
Springel et al (2017)^6	Low risk: computer-generated 1:1 simple randomisation	Low risk: sequentially numbered opaque envelopes, which remained sealed until after consent	Low risk: no significant differences between groups	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: 2%	Low risk: assessed by blinded, trained member of infection control team	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: CDC	Low risk: 30-day pre-defined	Low risk: SSI primary outcome	Low risk: SSI primary outcome	Complete: NCT02220257
Darouiche et al (2010)^6	Low risk: computer-generated randomisation stratified by hospital	Low risk: computer-generated randomisation stratified by hospital, without blocks	Low risk: no significant differences between groups	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: 0%	Low risk: blinded assessor, using pre-set criteria	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: CDC	Low risk: 30-day pre-defined	Low risk: SSI primary outcome	Low risk: SSI primary outcome	Complete: NCT00290230
Dior et al (2020)^7	Low risk: computer-generated 1:1:1 randomisation	Low risk: computer-generated randomisation	Low risk: no significant differences between groups	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: 3%	Low risk: blinded assessor, using pre-set criteria	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: CDC	Low risk: 30-day and 30-day pre-defined	Low risk: SSI primary outcome	Low risk: SSI primary outcome	Complete: ACTRN12617000475347
FALCON (2021)^4	Low risk: centralised computer-generated randomisation	Low risk: computerised stratified randomisation just before operation	Low risk: no significant differences between groups	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: 10%	Low risk: blinded outcome assessor trained on pre-set criteria	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: CDC	Low risk: 30-day pre-defined	Low risk: SSI primary outcome	Low risk: SSI primary outcome	Complete: NCT01602380

(Table 2 continues on next page)
Table 2: High-quality randomised controlled trials, assessed using the enhanced Cochrane risk of bias-2 tool

Study	Random sequence generation (selection)	Allocation concealment (selection)	Baseline differences between intervention groups (selection)	Blinding of patients (performance)	Analysis of groups to which they were randomly assigned (attrition)	Missing outcome data (loss to follow-up)	Blinding of outcome assessors (outcome definition)	Quality assurance of sexuturer assessment (post-discharge surveillance plan)	Quality assurance of outcome assessment (follow-up period pre-defined)	Reporting (selective reporting)	Reporting (protocol publication or registration)
Justinger et al	Low risk: randomisation into mixed block sizes	Low risk: mixed block sizes ranged from 50 patients to 100 patients	Low risk: no significant differences between groups	Low risk: per-protocol analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: blinded assessor, using pre-set criteria	Low risk: 0%	Low risk: CDC	Low risk: 30-day pre-defined	Low risk: face-to-face	Low risk: SSI primary outcome	Complete: NCT00989307
Diener et al	Low risk: central web-based permuted block randomisation	Low risk: permuted block randomisation, 1:1 allocation ratio, block size 4	Low risk: no significant differences between groups	Low risk: modified ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: blinded assessor, using pre-set criteria	Low risk: 0%	Low risk: CDC	Low risk: SSI primary outcome	Complete: DRKS00000390		
Mattavelli et al	Low risk: computer-generated 1:1 randomisation	Low risk: sealed, opaque, numbered envelopes	Low risk: no significant differences between groups	Low risk: per-protocol analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: blinded assessor, pre-set criteria	Low risk: 7%	Low risk: CDC	Low risk: SSI primary outcome	Complete: NCT01869257		
Ichida et al	Low risk: permuted block randomisation, 1:1 allocation ratio	Low risk: sealed, opaque, sequential envelopes, with a block size of 2	Low risk: no significant differences between groups	Low risk: modified ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: blinded assessor, pre-set criteria	Low risk: 0%	Low risk: CDC	Low risk: SSI primary outcome	Complete: UMIN000013054		
FALCON	Low risk: centralised computer randomisation	Low risk: computerised stratified randomisation just before surgery	Low risk: no significant differences between groups	Low risk: ITT analysis, complete reporting of protocol deviations and loss to follow-up	Low risk: blinded outcome assessor trained on pre-set criteria	Low risk: 10%	Low risk: CDC	Low risk: SSI primary outcome	Complete: NCT016102380		

Notes:
- CDC = Centre for disease control. ITT = intention-to-treat. SSI = surgical site infection.

(Continued from previous page)
included in this part of the analysis, comprising 7606 patients. No overall significant differences were reported in SSI rates, which remained consistent in stratified analysis by degree of contamination for clean-contaminated, contaminated, or dirty surgery (appendix pp 19, 20).

Discussion

NICE 2019 and WHO 2018 guidelines recommend the use of triclosan-coated sutures and alcoholic chlorhexidine to reduce SSI rates, yet these recommendations are based on a meta-analysis of small RCTs showing positive results that were deemed predominately low or very low quality according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) by the guidelines’ authors. This systematic review and meta-analysis of only high-quality RCTs showed no significant differences between type of sutures (ie, coated vs uncoated sutures) or skin preparation (ie, alcoholic chlorhexidine vs aqueous povidone-iodine) on rates of SSI. We included more recent high-quality trials, contributing larger numbers. To our knowledge, our systematic review and meta-analysis is the first to include high-quality randomised data from LMICs. Based on our findings, global guidance should be reconsidered and potentially changed to remove recommendations for the routine use of alcohol chlorhexidine and coated sutures.

The differences observed in effect estimates between our updated meta-analysis and previous meta-analyses are explained by inclusion of only very high-quality studies. Although our inclusion criteria risk the exclusion of well conducted studies that might not have been reported at a high quality, the expert panel decided that this approach was superior to drawing conclusions from a data pool of mixed or unknown quality. We hope that this approach encourages debate around the conduct of SSI trials and on these interventions, especially given the cost differences that must be realised when compared with alternatives. Previous meta-analyses included trials that were of low-to-moderate quality and thus had poor standardisation, conduct, and reporting. For example, only five of 11 meta-analyses on coated sutures included a quality assessment. Through consensus with experts, we developed an enhanced risk-of-bias tool based on the Cochrane risk of bias-2 tool to assess SSI trials for quality; the tool was developed ahead of literature searches and then applied during quality assessment to prevent any selection bias during the inclusion of studies. By doing so and by updating searches, only truly high-quality RCTs were selected and included, and those at high risk of bias were excluded. Full details of excluded studies have been provided, allowing a detailed understanding of this process. Our enhanced risk of bias-2 tool can be used by other researchers in future SSI meta-analyses.

The high SSI rates reported in this meta-analysis show that SSI remains a major global problem that is contributing to antimicrobial consumption and resistance, as well as excessive patient costs. These high rates are consistent with the highest published rates found when SSI is collected as a primary rather than a follow-up metric.
This disparity in SSI rates reinforces that only high-quality trials with low risk of bias in ascertainment of SSIs were included in this process. Although combining data from heterogeneous settings could hide marginal benefits in specific situations, the benefits of combining global data and the subsequent generalisable results are broadly relevant.

This study has some limitations that should be considered when interpreting its results, which are detailed in full in the appendix (pp 25–26). First, the definitions of low risk of bias might have led to the exclusion of some studies that were well conducted but poorly reported. Second, the studies included heterogeneous care that theoretically might have masked certain effects. For instance, routine antibiotic prophylaxis is likely to have varied in agent and timing. Third, the use of triclosan-coated sutures varied from use in full thickness closure of the abdominal wall to use only in the superficial layers. Fourth, an investigation is required into the potential effects of using sutures in different anatomical layers of the wound, although our study results suggest that any potential benefit will be slight. Fifth, the benefits of clean surgery, for which infection rates are low, might be marginal at best, and are beyond the scope of this study. Finally, there were too few studies included in either the comparison of suture types or skin preparation to assess publication bias. We also did not exclude any older studies, as search was performed from database inception.

Our analysis identifies areas in which more research is needed, especially in contaminated and dirty surgery, for which the need is greatest and only data from the FALCON RCT were available. We identify (through a 2×2 factorial design using two different in theatre interventions) that the combination of multiple interventions warrants further attention in prospective trials, which would allow for a multifactorial approach. Further, the relative effects of different skin preparation solutions and different suture formats (coated and uncoated polydioxanone or Vicryl) could be assessed through a network meta-analysis when higher quality trials are available. When planning new SSI RCTs, research teams could use our enhanced risk of bias-2 tool to reinforce trial design. By addressing these issues upfront, the conduct of such trials will be at low risk of bias, leading to high-quality outputs that are specific to the needs of SSI trials.

Contributors

SKK and EL were joint first authors. AB, BK, SKK, EL, and OO completed the statistical analyses. AB and SKK accessed and verified the data. All authors drafted and critically revised the manuscript. All authors had full access to all the data in the study and the writing group was responsible for the decision to submit.

National Institute of Health Research Unit on Global Surgery writing group

Nigeria Adesoji O Ademuyiwa (Lagos University Teaching Hospital, Lagos), Adegbele O Adisa (Obafemi Awolowo University Teaching Hospital, Ile-Ife); UK Simon Bach (Clinical Lead D3B Early Phase Trials Unit, University of Birmingham, Birmingham), Aneel Bhangu, James Glasbey, Bryar Kadir, Sivesh K Kamarajah, Elizabeth Li, Rachel Lillywhite, Harvinder Mann, Rachel Moore, Dion Morton,
Articles

Dmitri Nepogodiev, Omar Omar, Joanna Simes, Donna Smith (NIHR Global Surgery Unit, University of Birmingham, Birmingham), Thomas Pinkney, Richard Wilkin (Institute of Applied Health Research, University of Birmingham), Ewen Harrison (University of Edinburgh, Edinburgh), Neil Smart (Royal Devon & Exeter Hospital, Exeter), Elliot Taylor (Oxford University Global Surgery Group, Oxford); India Dhruva Ghosh, Parve D Haque (Christian Medical College, Ludhiana); Rwanda JC Allen Ingabire, Faustin Ntungangwa, (University Teaching Hospital of Kigali, Kigali); Benin Lawani Ismail (University of Abomey-Calavi, Abomey-Calavi); Canada Janet Martin (Western University, London, ON); Mexico Antonio Ramos de la Medina (Hospital Español de Veracruz, Veracruz); Australia Peter Pockney (University of Newcastle School of Medicine and Public Health, Newcastle, NSW); Ghana Stephen Tabiri (University for Development Studies-School of Medicine, Tamale).

Declaration of interests
We declare no competing interests.

Data sharing
Only data collected for the study, including study-level and de-identified patient-level data, will be made available to others on request to the corresponding author. The study protocol and statistical analysis plan will be made available on request to the corresponding author.

Acknowledgments
This research was funded by the National Institute for Health Research (NIHR; NIHR 16.136.79) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the authors and not necessarily those of the NIHR or the UK Government. The academic investigators retained full independence and autonomy for study conduct, including design, data collection, interpretation, and reporting.

References
1 Ademmuyia AO, Ghosh D, de la Medina AR, et al. Pragmatic multicentre factorial randomized controlled trial testing measures to reduce surgical site infection in low- and middle-income countries: study protocol of the FALCON trial. Colorectal Dis 2021; 23: 298–306.
2 Bhangu A, Ademmuyia AO, Aguilar ML, et al. Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study. Lancet Infect Dis 2018; 18: 516–25.
3 WHO. Global guidelines for the prevention of surgical site infection, 2nd edn. Geneva: World Health Organization, 2018.
4 NIHR Global Research Health Unit on Global Surgery. Reducing surgical site infections in low-income and middle-income countries (FALCON): a pragmatic, multicentre, stratified, randomised controlled trial. Lancet 2021; 398: 1687–99.
5 National Institute for Health Research Global Health Research Unit on Global Surgery. Prioritizing research for patients requiring surgery in low- and middle-income countries. Br J Surg 2019; 106: e113–20.
6 NICE. Surgical site infections: prevention and treatment. 2019. www.nice.org.uk/guidance/ng225 (accessed Dec 1, 2021).
7 Wu X, Kubilay NZ, Ren J, et al. Antimicrobial-coated sutures to decrease surgical site infections: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 2017; 36: 19–32.
8 Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: 4898.
9 McMillan SS, King M, Tully MP. How to use the nominal group and Delphi techniques. Int J Clin Pharm 2016; 38: 655–62.
10 Centers for Disease Control and Prevention. Gaining consensus among stakeholders through the nominal group technique. 2018. https://www.cdc.gov/healthyyouth/evaluation/pdf/brief7.pdf (accessed Sept 2021).
11 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.
12 Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700.
13 Shim SR, Kim SJ. Intervention meta-analysis: application and practice using R software. Epidemiol Health 2019; 41:e2019008.
14 Moutgaak EL, Clayton GL, Jones HE, et al. Impact of blinding on estimated treatment effects in randomized clinical trials: a meta-epidemiological study. BMJ 2020; 368: l6802.
15 Springel EH, Wang XY, Sarfoh VM, Stetzer BP, Weight SA, Mercer BM. A randomized open-label controlled trial of chlorhexidine-alcohol vs povidone-iodine for cesarean antiseptis: the CAPICIA trial. Am J Obstet Gynecol 2017; 217: 463.e1–e8.
16 Darouiche RO, Wall MJ Jr, Hani KM, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antiseptis. N Engl J Med 2010; 362: 18–26.
17 Dior UP, Kathururusinghe S, Cheng C, et al. Effect of surgical skin antiseptis on surgical site infections in patients undergoing gynecological laparoscopic surgery: a double-blind randomized clinical trial. JAMA Surg 2020; 155: 807–15.
18 Justinger C, Slotta JE, Ninski S, Gräber S, Kollmar O, Schilling MK. Surgical-site infection after abdominal wall closure with triclosan-impregnated polydioxonane sutures: results of a randomized clinical pathway facilitated trial (NCT00998907). Surgery 2013; 154: 589–95.
19 Diener MK, Knebel P, Kieser M, et al. Effectiveness of triclosan-coated PDS Plus versus uncoated PDS II sutures for prevention of surgical site infection after abdominal wall closure: the randomised controlled PROUD trial. Lancet 2016; 384: 142–52.
20 Mattavelli I, Rebora P, Doglietto G, et al. Multi-center randomized controlled trial on the effect of triclosan-coated sutures on surgical site infection after colorectal surgery. Surg Infect (Larchmt) 2015; 16: 226–35.
21 Ichida K, Noda H, Kikugawa R, et al. Effect of triclosan-coated sutures on the incidence of surgical site infection after abdominal wall closure in gastrointestinal surgery: a double-blind, randomized controlled trial in a single center. Surgery 2018; 164: 91–95.
22 Broach RB, Paulson EC, Scott C, Mahmoud NN. Randomized controlled trial of two alcohol-based preparations for surgical site antiseptis in colorectal surgery. Ann Surg 2017; 266: 946–51.
23 Tiulii MG, Liu J, Stout MJ, et al. A randomized trial comparing skin antiseptic agents at cesarean delivery. N Engl J Med 2016; 374: 647–55.
24 Ngai JM, Van Arsdale A, Govindappagari S, et al. Skin preparation for prevention of surgical site infection after cesarean delivery: a randomized controlled trial. Obstet Gynecol 2015; 126: 1251–57.
25 Wang ZX, Jiang CP, Cao Y, Ding YT. Systematic review and meta-analysis of triclosan-coated sutures for the prevention of surgical-site infection. Br J Surg 2013; 100: 465–73.
26 Edmiston CE Jr, Daoud FC, Leaper DJ. Is there an evidence-based argument for embracing an antimicrobial (triclosan)-coated suture technology to reduce the risk for surgical-site infections?: a meta-analysis. Surgery 2013; 154: 89–100.
27 Sajid MS, Cricarinas I, Sains P, Singh KK, Baig MK. Use of antibacterial sutures for skin closure in controlling surgical site infections: a systematic review of published randomized, controlled trials. Gastroenterol Rep (Oxf) 2013; 1: 42–50.
28 Guo J, Pan LH, Li YX, et al. Efficacy of triclosan-coated sutures for reducing risk of surgical site infection in adults: a meta-analysis of randomized clinical trials. J Surg Res 2016; 201: 105–17.
29 de Jonge SW, Atema JJ, Solomin JS, Boermeester MA. Meta-analysis and trial sequential analysis of triclosan-coated sutures for the prevention of surgical-site infection. Br J Surg 2017; 104: e118–33.
30 Matthews JH, Bhandari S, Chapman SJ, Nepogodiev D, Pinkney T, Bhangu A. Underreporting of secondary endpoints in randomized trials: cross-sectional, observational study. Ann Surg 2016; 264: 882–88.
31 Sterner JA, Cavanagh D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 2000; 53: 1119–29.
32 Kicinski M, Springate DA, Kontopanantes E. Publication bias in meta-analyses from the Cochrane Database of Systematic Reviews. Stat Med 2015; 34: 2781–91.