Case Report

First Schistosomal Cholecystitis Complicated by Cholangitis and Liver Abscess: Case Report and Review of Literature

Ali Toffaha, Samir Al Hyassat, Walid Elmoghazy, Hatem Khalaf, and Ahmed Elaffandi

1Department of Surgery, Hamad General Hospital, Doha, Qatar
2Department of Laboratory Medicine and Pathology, Hamad General Hospital, Doha, Qatar
3Department of Surgery, Sohag University, Cairo, Egypt
4Department of Surgery, College of Medicine, Qatar University, Qatar
5Department of Surgical Oncology, National Cancer Institute, Cairo, Egypt

Correspondence should be addressed to Ali Toffaha; atoffaha2@gmail.com

Received 10 April 2021; Accepted 29 June 2021; Published 13 July 2021

Academic Editor: Eric Bergeron

Copyright © 2021 Ali Toffaha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Schistosomiasis is one of the most prevalent parasitic infections in the developing world. When it affects the gastrointestinal system specifically the liver, it causes periportal fibrosis followed by cirrhosis. Cholecystitis however is a rare presentation, and associated liver abscess has certainly never been reported to date. We report a case of acute cholecystitis complicated by cholangitis and liver abscess in a 46-year-old man. After complex course of treatment, he had laparoscopic cholecystectomy, and the histology report confirmed schistosomiasis. Gallbladder schistosomiasis is an uncommon disease that is associated with dense fibrotic changes that strongly mimics xanthogranulomatous cholecystitis. Liver abscess may occur during the disease evolution especially in patient originating from endemic backgrounds. We present the case and a comprehensive literature review.

1. Introduction

Parasitic infections remain a problem in the developing countries [1]. Schistosomiasis is responsible for more than 200 thousands deaths yearly [1]. Schistosomiasis may present acutely as febrile illness [2] or more commonly in chronic form due to eggs that are trapped in the tissues during the peri-vesical or peri-intestinal migration or after embolization in the liver, spleen, lungs, or cerebrospinal system [3]. Chronic lesions in these tissues are usually characterized by chronic inflammation and fibrosis which gives rise to the clinical manifestation of the disease (i.e., cirrhosis for hepatic involvement, chronic cystitis, and fibrosis for urinary involvement) [1].

In spite the fact of the high frequency of hepatic involvement particularly by Schistosoma mansoni, schistosomiasis of the gallbladder (GB) is remarkably uncommon [4]. About twelve cases have been retrieved from the literature. However, none of them was associated with liver abscess or cholangitis. A literature review in a comprehensive approach was carried out (Table 1). We report this case in line with the updated consensus-based surgical case report (SCARE) guidelines [5].

2. Case Presentation

A 46-year-old Egyptian man presented to the emergency department with one-day history of epigastric and right upper abdominal pain, associated with nausea and vomiting. He denied any other associated gastrointestinal or urologic symptoms. Apart from being type 1 diabetic, he declared no other significant past medical history.

The patient presented in good shape, and there was no hemodynamic instability. He showed epigastric tenderness without any signs of peritonism with the rest of the abdomen unremarkable. White blood cell count (WBC) was 17.4 K/uL (4-10 K/uL). Liver function tests (LFTs) were abnormal: total bilirubin 47 umol/L (0-21 umol/L), direct bilirubin 35 umol/L (0-3 umol/L), ALT 156 U/L (0-40 U/L), and
Table 1: Summary of characteristics of current case and other reported cases of gallbladder schistosomiasis identified from the review of the literature.

Study*	Sex	Age	pH	LEA	Presentation	D	PE	Labs	US	CT	Others	Surgery	Intra-op	Histo	F Up		
Current study Qatar 2020	M	46 y	DM	Yes	RUQ pain	1 d	Epigastric tenderness	WBC: 17.4, Hb: 14.4, bili: 47, direct bili: 35, ALT: 156 U/L, AST: 182 U/L, lipase: 106 U/L, CA 19-9: 303 U/ml, IgE: 432 K units/L, postop positive S serology	1st US: GS, Di IHBD, CBD: 7 mm	Newly developed liver abscess	MRCP: acute Chol, Cholang.	Lap Chole	Omental adhesions to the GB which was densely adherent to the liver	Chronic Chol, Gr Inf secondary to S	Prazi 40 mg/kg divided into 3 doses		
Hedfi 2019 Tunisia [4]	F	51 y	DysL	No	Hepatic colic	2 m	N	N	Thin-walled GB, GS 10 mm	NR	NR	Lap Chole			Slightly thick-walled GB, fine cystic duct	Calcified S ova in the wall of GB stained positively for periodic acid-Schiff	CT urography: N
Majrashi 2018 Saudi [20]	M	50 y	DM	Yes	Elective surgery for biliary colic	9 y	RUQ tenderness	Positive S serology postop others: N	Wall thickness (4 mm), GS 8 mm	UR	NR	Lap Chole			Thick wall GB, with necrotic spots, firmly attached to the liver bed	Gr Inf around calcified S. haematobium eggs	Referred to ID team
Azoulay 2016 France [15]	M	53 y	NR	Yes	Elective after 2 episodes of Chol, recent 4 kg weight loss	5 m	N	N	Hyperechogenic thick GB wall, no GS	Thicl GB wall 12 mm, contained calcifications and lesion protruding into GB and the liver, increased density of peri-vesicular fat, enlarged 2 hilar LN’s (7 mm)	Lap to open radical Chole (en bloc omental adhesions and LN resection)		Tense retraction of the right colon, duodenum, and omentum to the inferior aspect of the liver hampered Lap GB exploration	Acute and chronic Chol with dense fibrosis, S eggs in GB wall	Single dose of 2.4 mg of Prazi 15 d after surgery		
Study*	Sex	Age	pH	LEA	Presentation	D	PE	Labs	US	CT	Others	Surgery	Intra-op	Histo	F Up		
--------	-----	-----	----	-----	--------------	---	----	------	----	----	--------	---------	----------	-------	------		
Manes 2014 Greece [19]	M	77 y	NR	Yes	Elective 3 months after Chol	3 m	RUQ tenderness	N	Thick-walled GB (6.8 mm) GS 1.7 cm impacted at GB neck	NR	NR	Lap converted to open Chole	GB inflamed and thick with necrotic spots and wood-like consistency	Gr Inf around calcified S. mansoni eggs	Praziquantel 20 mg/kg every 4 h for 3 doses		
Sharara 2001 Lebanon [8]	F	47 y	Smoker	No	RUQ discomfort	3 d	RUQ tenderness	AEC: 660/mm³ UA: Mic hem	Thick GB wall, 1 cm echogenic structure without acoustic shadow at GB fundus	Markedly thick GB wall, 2 hypodense liver lesions	NR	Lap Chole	Thick nondistended gallbladder firmly adherent to the liver surface and an enlarged cystic LN, no GS	Gr Inf around multiple S. mansoni eggs, with the lateral spine, likely S. mansoni	Praziquantel 20 mg/kg every 4 h for 3 doses		
Bakhotma 1996 Saudi Arabia [21]	M	30 y	NR	RUQ pain, HU	NR	NR	UA: S. haematobium	GS	NR	NR	Lap Chole	Thickened wall	Gr Inf around S. mansoni with S. mansoni infection	Praziquantel, received before surgery			
Al-Saleem 1989 Iraq [7]	M	27 y	NR	Yes	Biliary colic, hematemesis	2 m	Enlarged spleen down to the pelvis	NR	Huge spleen, thick GB wall, no GS	NR	NR	Lap Chole	Chronic Chol with S. mansoni infection	Huge spleen, cirrhotic liver, GB grey, irregular in thickness, infiltrating into the liver bed. Thick cystic duct	Extensive S fibrosis	NR	
Al-Saleem 1989 Iraq [7]	M	25 y	NR	Yes	Epigastric pain	2 m	NR	Thick GB wall, large GS	NR	NR	Chole	Thick walled grey GB, the fibrosis so deep into the bed, thickened fibrotic, and calcified cystic duct	Extensive fibrocalcific GB S, due to S. mansoni	Extensive fibrocalcific GB S, due to S. mansoni	NR		
Al-Saleem 1989 Iraq [7]	M	62 y	Childhood	Yes	RUQ pain	NR	NR	NR	Thick-walled grey GB, attached tightly to the liver and infiltrating it	Extensive fibrocalcific GB S, due to S. mansoni	Extensive fibrocalcific GB S, due to S. mansoni	NR					
Table 1: Continued.

Study*	Sex	Age	pH	LEA	Presentation	D	PE	Labs	US	CT	Others	Surgery	Intra-op	Histo	F Up		
Al-Saleem 1989 Iraq [7]	M	33 y	Childhood	HU	Yes	Dull epigastric pain	3 m	NR	NR	Large GS	NR	NR	L, Chole	Thick-walled grey GB, with extensive fibrosis	Fibrocalciﬁc GB S, due to S. haemotobium	NR	
Al-Saleem 1989 Iraq [7]	F	40 y	Obese	Yes	Dull RUQ pain	13 m	No tenderness	NR	Thick GB wall, large GS	NR	NR	Chole	Thick-walled grey GB, GS	Fibrocalciﬁc GB S, due to S haemotobium	NR		
Al-Saleem 1989 Iraq [7]	M	55 y	NR	Yes	RUQ discomfort radiated to Rt shoulder, N&V	14 m	RUQ tenderness	NR	Thick GB wall, large GS	NR	NR	NR	Pancreatic tumour with multiple hepatic secondaries, thick-walled GB with stones	Biopsy showed extensive fibrosis, ova of S. haemotobium	NR		
Rappaport 1975 US [6]	M	51	NR	NR	RUQ pain, N&V, diarrhea	Few d	RUQ tenderness	N	NR	NR	IVP: N	Chole	Fibrotic liver, focally mildly thickened GB	Gr Inf, S. mansoni	NR		

*For space considerations, only the first author is cited. AEC: absolute eosinophil count; Bili: bilirubin umol/L; CBD: common bile duct; Chol: cholecystitis; Cholang: cholangitis; Chole: cholecystectomy; D: duration of symptoms; d: days; DM: diabetes mellitus; Dys.: dyslipidaemia; F: female; F Up: follow-up treatment; GB: gallbladder; Gr: granulomatous; GS: gall stone/s; Hb: hemoglobin g/dl; HU: hematuria; ID: infectious diseases; IHBD: intrahepatic bile ducts; Inf: inﬂammation; Intra-op: intraoperative findings; IVP: intravenous pyelogram; L: laparotomy; Lap: laparoscopic; LEA: lived in an endemic area; LN’s lymph nodes; M: male; m: month/s; Mic: microscopic; N: normal; NR: not reported; N&V: nausea and vomiting; OGD: oesophagogastroduodenoscopy; PE: physical examination; post-op: postoperative; Praz: praziquantel; Rt: right; RUQ: right upper quadrant; S: schistosoma/l; UA: urine analysis; UR: unremarkable; WBC: white blood cells K/ul; y: year/s.
Despite the di
the GB. The GB was also densely adherent to the liver. Patient
lapyaroscopically. Patient’s postoperative course was unremarkable, and he was discharged next day after surgery. Histopathology of the gallbladder showed chronic cholecys-
titis, with granulomatous inflammation secondary to schis-
tosomiasis (Figure 2).

Cultures grew Klebsiella oxytoca and Escherichia coli. The
towards continuity between the liver abscess and the GB.

He later developed signs of sepsis (tachycardia and fever)
for which blood cultures were taken. He was started on intra-
venous ceftriaxone and metronidazole. Endoscopic retro-
passage cholangiopancreatography (ERCP) showed purulent
 bile immediately following cannulation and failed to show
any filling defects. Sphincterotomy and CBD stenting were
done. ERCP procedure was not extraordinary in difficulty
to suspect ampullary fibrosis or deformation. Magnetic
Resonance Cholangiopancreatography (MRCP) later showed
distended GB containing sludge and tiny stones, hyperen-
hancement of both GB and CBD walls, and mildly thickened
GB wall in addition to pericholecystic edema and fat strand-
ning, consistent with acute cholecystitis and cholangitis. There
were no CBD stones nor thickening of the CBD wall. After
stenting, the patient was kept on piperacillin/tazobactam.
He improved clinically, and both his LFTs and inflammatory
markers were trending down till the 4th day post-ERCP
when he started to spike fever again. Septic work up was
repeated, and endoscopic ultrasound (EUS) was done. This
exam showed the stent in place. Both US and computed
tomography (CT) showed a new lesion 5 × 4 × 5 cm in the
segment IVb of the liver in continuation with the GB fundus
(Figure 1). The lesion was compatible with a newly developed
liver abscess. A percutaneous aspiration was carried out
under US guidance, during which 100 ml of pus was aspir-
ated and sent for microbiology/culture. During the aspira-
tion, the GB was noticed to be de
ating which pointed
towards continuity between the liver abscess and the GB.
Cultures grew Klebsiella oxytoca and Escherichia coli. The
patient responded well after aspiration and antibiotic
therapy and showed improved inflammatory markers. He was
 discharged the next day on oral antibiotics with close clinic
follow-up to arrange for interval cholecystectomy after ERCP
and stent removal.

During follow-up visits, the patient was asymptomatic.
ERCP was done 5 weeks after discharge and showed no fill-
ing defects in the CBD. The stent was removed. The patient
travelled and was lost to follow-up for 5 months. When he
came back, an MRCP showed complete resolution of the
liver abscess. Multiple gall stones in GB were still demon-
strated. He was booked for elective laparoscopic cholecys-
tomy. Intraoperative findings showed omental adhesions to
the GB. The GB was also densely adherent to the liver.
Despite the difficult dissection, the procedure was managed
laparoscopically. Patient’s postoperative course was unremarkable, and he was discharged next day after surgery. Histopathology of the gallbladder showed chronic cholecys-
titis, with granulomatous inflammation secondary to schis-
tosomiasis (Figure 2).

3. Discussion

The first case of gallbladder schistosomiasis (GBS) was
reported in 1975, and since then, speculations were made
regarding possible pathogenesis [6]. Fourteen cases of GBS
have been reported; however, none of them presented with
associated complications. Few theories evolved on how schis-
tosomiasis can cause cholecystitis. Some speculated that the
fibrosis of the cystic duct, like what is seen in the ureters of
patients with urinary schistosomiasis, causing a stenosis
which can contribute to bile stasis and formation of stones
in the gallbladder [7]. Others suggested that granulomatous
inflammation in the gallbladder’s wall makes it prone for
stone formation [8].

The risk factor for contracting schistosomal infection is
the contact of its larval form with the skin through contami-
nated water in endemic areas [4]. Most of the reported cases
(Table 1) have been living at one stage in their life in an
endemic area. Our reported case used to live in Egypt that
is a well-known endemic area before moving abroad.

Clinical presentation is variable according to the involved
orган. Infestation of urinary tract may lead to hematuria,
fibrosis, and obstructive uropathy that may lead to parenchym-
al renal damage [1]. When it involves the liver, early
inflammatory hepatic schistosomiasis happens in reaction
to schistosomal eggs trapped in the presinusoidal periportal
spaces of the liver. It then lead to typical features of sharp-
edged enlargement of the liver nodular splenomegaly [1].
Intestinal involvement leads to diarrhea mostly due to muco-
asal granulomatous inflammation, pseudopolyposis, and
microulcerations [1]. Reported symptoms of GBS are usually
similar to other gallbladder diseases, including right upper
quadrate pain that is sometimes associated with nausea and
vomiting [7]. Abdominal examination shows right upper
abdominal tenderness especially if the patient is having active
cholecystitis (Table 1). The reported case first presented to
the emergency with right upper quadrant abdominal pain.
His disease progression was completely unique after GBS as
he developed septic features due to cholangitis and associated
liver abscess. This is, to our knowledge, the first reported case
of cholecystitis with a liver abscess in a patient with
biliary stones that usually slip from the gallbladder [9]. In benign and malignant), the most common of which are due to obstruction [9]. Causes of obstruction are variable secondary to a typical gallstone cholecystitis.

The specimen pathology usually reveals a lymphocytic infiltrate; schistosomal eggs can be found in any layer of the gallbladder wall causing fibrocalcific reaction; most of the cases showed granulomatous inflammation surrounding the schistosomal eggs (Table 1).

4. Conclusions

GBS might be considered preoperatively in patients who lived in an endemic area and developed symptoms suggestive of gallbladder disease. This is the first case that report a liver abscess in a patient with cholecystitis with a gallbladder infested by Schistosoma. However, a majority of cholecystitis in patients with schistosomiasis involve the presence of gallstones. This condition carries the same possible complications and should be managed in the same way as usual cholecystitis. Surgeons must however expect a more difficult dissection during operation.

Ethical Approval

The protocol for this research project has been approved by a suitably constituted Ethics Committee of the institution, and it conforms to the provisions of the Declaration of Helsinki. Medical research center committee of Hamad Medical Corporation, approval No. (MRC-04-20-912).

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available on request.

Conflicts of Interest

The authors declare no conflict of interests for this article.
References

[1] B. Gryseels, K. Polman, J. Clerinx, and L. Kestens, "Human schistosomiasis," The Lancet, vol. 368, no. 9541, pp. 1106–1118, 2006.

[2] E. Bottejou, J. Clerinx, M. R. de Vega et al., "Imported Katayama fever: clinical and biological features at presentation and during treatment," The Journal of Infection, vol. 52, no. 5, pp. 339–345, 2006.

[3] A. W. Cheever, K. F. Hoffmann, and T. A. Wynn, "Immunopathology of schistosomiasis mansoni in mice and men," Immunology Today, vol. 21, no. 9, pp. 465–466, 2000.

[4] M. Hedfi, M. Debaibi, S. Ben Iahouel, and A. Chouchen, "Gallbladder schistosomiasis: rare but possible, a case report and review of the literature," The Pan African Medical Journal, vol. 32, 2019.

[5] R. A. Agha, M. R. Borrelli, R. Farwana et al., "The SCARE 2018 statement: updating consensus Surgical Case REport (SCARE) guidelines," International Journal of Surgery, vol. 60, pp. 132–136, 2018.

[6] I. Rappaport, J. Albukerk, and I. Schneider, "Schistosomal cholecystitis," Archives of Pathology, vol. 99, no. 4, pp. 227-228, 1975.

[7] T. Al-Saleem and T. Al-Janabi, "Schistosomal cholecystitis: report of six cases," Annals of the Royal College of Surgeons of England, vol. 71, pp. 366–369, 1989.

[8] A. I. Sharara, G. Abi-Saad, M. Haddad, A. Mansour, and A. Tawil, "Acute granulomatous schistosomal cholecystitis," European Journal of Gastroenterology & Hepatology, vol. 13, no. 8, pp. 1001–1003, 2001.

[9] D. Lan Cheong Wah, C. Christophi, and V. Muralidharan, "Acute cholangitis: current concepts," ANZ Journal of Surgery, vol. 87, no. 7-8, pp. 554–559, 2017.

[10] C. H. McCrann and J. L. Boyer, "Small-duct sclerosing cholangitis associated with Schistosoma mansoni," Hepatology, vol. 53, no. 2, pp. 712-713, 2011.

[11] L. Z. Goldani, R. P. dos Santos, and A. M. Sugar, "Pyogenic liver abscess in patients with schistosomiasis mansoni," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 99, no. 12, pp. 932–936, 2005.

[12] J. M. Grzych, E. Pearce, A. Cheever et al., "Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni," Journal of Immunology, vol. 146, pp. 1322–1327, 1991.

[13] G. Zerman, M. Bonfiglio, G. Borzellino et al., "Liver abscess due to acute cholecystitis. Report of five cases," Chirurgia Italiana, vol. 55, no. 2, pp. 195–198, 2003.

[14] T. Yamada, K. Murakami, K. Tsuchida et al., "Ascending cholangitis as a cause of pyogenic liver abscesses complicated by a gastric submucosal abscess and fistula," Journal of Clinical Gastroenterology, vol. 30, no. 3, pp. 317–320, 2000.

[15] D. Azoulay, M. Diabbari, and J. Calderaro, "An unusual cause of cholecystitis," Gastroenterology, vol. 150, no. 5, pp. e3–e4, 2016.

[16] F. Miura, K. Okamoto, T. Takada et al., "Tokyo Guidelines 2018: initial management of acute biliary infection and flow-chart for acute cholangitis," Journal of Hepato-Biliary-Pancreatic Sciences, vol. 25, no. 1, pp. 31–40, 2018.

[17] D. Santos Gabriel, V. Eduardo, O. Pertusso Eduardo, C. Author, and P. Eduardo, "Cholecystitis and synchronous liver abscess: percutaneous treatment results," Acta Scientific Gastrointestinal Disorders, vol. 2, no. 9, pp. 16–21, 2019.

[18] R. Costi, A. Le Bihan, F. Cauchy et al., "Synchronous pyogenic liver abscess and acute cholecystitis: how to recognize it and what to do (emergency cholecystostomy followed by delayed laparoscopic cholecystectomy)," Surgical Endoscopy, vol. 26, no. 1, pp. 205–213, 2012.

[19] K. Manes, K. Chatzimargaritis, D. Apessou, V. Papastergiou, and C. Dervenis, "Granulomatous cholecystitis in a patient with schistosoma mansoni infection: a case report," International Journal of Case Reports and Images, vol. 5, no. 6, p. 439, 2014.

[20] S. A. Majrashi and O. M. Al Amoodi, "Schistosomiasis as a cause of acute cholecystitis," Saudi Medical Journal, vol. 39, no. 7, pp. 725–728, 2018.

[21] M. A. Bakhotmah, "Gallbladder bilharziasis," HPB Surgery, vol. 9, no. 3, pp. 175–177, 1996.