Experimental and Theoretical Study of \( \text{N}_2 \) Adsorption on Hydrogenated \( \text{Y}_2\text{C}_4\text{H}^- \) and Dehydrogenated \( \text{Y}_2\text{C}_4^- \) Cluster Anions at Room Temperature

Min Gao, Yong-Qi Ding and Jia-Bi Ma *

Abstract: The adsorption of atmospheric dinitrogen (\( \text{N}_2 \)) on transition metal sites is an important topic in chemistry, which is regarded as the prerequisite for the activation of robust \( \text{N} \equiv \text{N} \) bonds in biological and industrial fields. Metal hydride bonds play an important part in the adsorption of \( \text{N}_2 \), while the role of hydrogen has not been comprehensively studied. Herein, we report the \( \text{N}_2 \) adsorption on the well-defined \( \text{Y}_2\text{C}_4\text{H}_{0.1}^- \) cluster anions under mild conditions by using mass spectrometry and density functional theory calculations. The mass spectrometry results reveal that the reactivity of \( \text{N}_2 \) adsorption on \( \text{Y}_2\text{C}_4\text{H}^- \) is 50 times higher than that on \( \text{Y}_2\text{C}_4^- \) clusters. Further analysis reveals the important role of the \( \text{H} \) atom: (1) the presence of the \( \text{H} \) atom modifies the charge distribution of the \( \text{Y}_2\text{C}_4\text{H}^- \) anion; (2) the approach of \( \text{N}_2 \) to \( \text{Y}_2\text{C}_4\text{H}^- \) is more favorable kinetically compared to that to \( \text{Y}_2\text{C}_4^- \); and (3) a natural charge analysis shows that two \( \text{Y} \) atoms and one \( \text{Y} \) atom are the major electron donors in the \( \text{Y}_2\text{C}_4^- \) and \( \text{Y}_2\text{C}_4\text{H}^- \) anion clusters, respectively. This work provides new clues to the rational design of TM-based catalysts by efficiently doping hydrogen atoms to modulate the reactivity towards \( \text{N}_2 \).

Keywords: \( \text{N}_2 \) adsorption; mass spectrometry; density functional theory calculations

1. Introduction

More than 99% of the global nitrogen exists in the shape of gaseous dinitrogen (\( \text{N}_2 \)) in the atmosphere, yet most organisms can only metabolize nitrogen-containing substances such as \( \text{NH}_3 \) rather than \( \text{N}_2 \) directly. Although \( \text{N}_2 \) is the main nitrogen source for most natural and artificial nitrogen-containing compounds, the high bond dissociation energy (9.75 eV) and the large HOMO–LUMO gap (10.8 eV) render its adsorption and activation an enormous challenge in chemistry [1–4]. Scientists regularly rely on transition metal (TM) centers to catalyze the nitrogen conversion processes [5–7]. The initial and critical step in the complicated reduction of dinitrogen is the adsorption of \( \text{N}_2 \) molecules at the TM center [8,9]. The fixation of nitrogen in industry is carried out at metal-based (\( \text{Fe}^- \) or \( \text{Ru}^- \)) catalysts under extremely high temperatures (300–500 °C) and high pressures (100–300 atm), involving the disadvantages of large energy consumption and greenhouse gas emission [10–12]. Thus, it is vital to develop mild, energy-saving, and environment-friendly catalytic systems for \( \text{N}_2 \) fixation at ambient conditions. The activation of nitrogen by transition metal compounds with the involvement of hydrogen atoms is of particular interest, while the most common feature of \( \text{N}_2 \) hydrogenative cleavage is the participation of metal hydride bonds [13–15]. A literature survey [13] shows that metal hydride bonds have several important roles: (1) as a hydrogen source; (2) as an electron source for \( \text{N}_2 \) reduction; (3) as a powerful reducing agent for the removal of activated nitrogen atoms; and so on.
As an ideal model of condensed-phase systems, gas-phase clusters can study chemical reactions and reveal related mechanisms at the strictly molecular level by simulating active sites. [16–19]. Several theoretical and experimental studies have reported the reactivity of metal species with nitrogen, however, only a few metal species such as, Sc2 [20], Ta2+ [21], V3C4− [22], Ta2C4− [23], NbH2− [24], Ta3N3H01− [25], Sc3NH2+ [26], FeTaC2− [27], and AuNbBO− [28] have been characterized to cleave the N≡N triple bond completely. It can be seen that for the studies on N2 adsorption in the gas phase, there are few metal species, and they mainly focus on the early transition metals. In the previous work, we found that a suitable number of hydrogen atoms has an influence on the reactivity of transition metal-containing clusters with N2 [24–26,29,30]. Sc3NH2+ [26] can effectively realize the activation of N2 by H2, which is based on the regulation of N2 reduction by two H atoms. Ta3N3H01− is an example that highlights the importance of the assisted reactivity of a single hydrogen atom, and the reactivity of Ta3N3H− is higher by a factor of five compared with that of Ta3N3− due to the hydrogen atom changing the charge distribution and geometry [25]. How can hydrogen atoms be efficiently doped to modulate the reactivity of TM-containing systems towards N2 under the molecular scale? Considering the previous exploration of the Sc systems and the fact that Sc and Y belong to the same group, Y2C4− and Y2C4H− cluster anions were synthesized, and the reactivity towards N2 was investigated by mass spectrometry and DFT calculations, to answer this question. This work clearly revealed that Y2C4H01− anions can adsorb N2, and the hydrogen atom greatly enhances the reactivity of Y2C4H− towards N2.

2. Results and Discussion

The time-of-flight (TOF) mass spectra of laser ablation-generated, further mass-elected Y2C4− and Y2C4H− cluster anions reacting with N2 under thermal collision conditions in a linear ion trap (LIT) reactor are shown in Figure 1. The mass spectra for the generation of Y2C4H01− clusters has been given (Supplementary Figure S1). Upon the interactions of Y2C4− and Y2C4H− with N2, two adsorbed complexes that are assigned as Y2C4N2− and Y2C4HN2− are observed (Figure 1b,d), suggesting the following channels in Equations (1) and (2):

\[ Y_2C_4^- + N_2 \rightarrow Y_2C_4N_2^- \]  
\[ Y_2C_4H^- + N_2 \rightarrow Y_2C_4HN_2^- \]

Compared with Y2C4−, Y2C4H− shows a higher reactivity towards N2 under the same reaction conditions in Figure 1f. Besides the major products, two weak peaks in Figure 1 are assigned to Y2C4OH− and Y2C4O2H−, generated from the reaction of Y2C4H01− anions with water impurities in the LIT. The pseudo-first-order rate constants (k) for the reactions one and two are estimated to be (3.7 ±0.8) × 10−12 cm3 molecule−1 s−1 and (6.2 ± 1.3) × 10−14 cm3 molecule−1 s−1, which are based on a least-square fitting procedure, corresponding to reaction efficiencies (Φ) [31,32] of 0.6% and 0.01%, respectively. Additionally, the signal dependence of product Y2C4H01− ions on N2 pressures was obtained, which are derived and fitted with the mass spectrometry experimental data (Supplementary Figure S2).

BPW91 calculations are performed to investigate the structures of reactant Y2C4H01− anion clusters (Supplementary Figure S3), as well as the reaction mechanisms between Y2C4H01− and N2. The lowest-energy isomer of Y2C4− (doublet, 2IA1, Supplementary Figure S3), which is 0.08 eV lower than its quartet isomer, is a C6− symmetric six-membered ring, with the Y-Y bond as the symmetry axis and two C2 ligands bonded to the two Y atoms. Moreover, the most stable isomer of Y2C4H− (1IA2) has a hydrogen atom binding to the Y1 atom in the six-membered ring, similar to the Y2C4− (2IA1), and it is 0.07 eV lower than the triplet state in energy (Supplementary Figure S3). Since the energies of the isomers are very close, their reaction paths are calculated. The results show that, in the reaction coordinates, the energies of the doublet and singlet stationary points and the products in the Y2C4−/N2 and Y2C4H−/N2 systems are lower than those of the corresponding quartet
As an ideal model of condensed-phase systems, gas-phase photon dissociation may be applied to reveal such types of anions. We have added the result in the formation of bridging adsorption products not bonded with the hydrogen atom can be eventually trapped in 1

\[ \text{Y}_2\text{C}_4^− + \text{N}_2 \rightarrow \text{Y}_2\text{C}_4\text{N}_2^− \] (1)

\[ \text{Y}_2\text{C}_4\text{H}^− + \text{N}_2 \rightarrow \text{Y}_2\text{C}_4\text{HN}_2^− \] (2)

In the step of 2, the energy barrier (\( \Delta E_{\text{a}} \)) of 123 pm is generated in 2 by two Y atoms via interactions of Y containing systems towards N

\[ [25]. \] How can hydrogen atoms be efficiently doped to modulate the reactivity of TM-con

Figure 1. TOF mass spectra for the reactions of (a) mass-selected Y\(_2\)C\(_4^−\) with He and (b) N\(_2\) for 6 ms, (c) mass-selected Y\(_2\)C\(_4\)H\(^+\) with He and (d) N\(_2\) for 14 ms, and (e) the coexisting Y\(_2\)C\(_4^−\) and Y\(_2\)C\(_4\)H\(^+\) clusters with (f) N\(_2\) for 10 ms, respectively. The effective reactant gas pressures are shown. The asterisked peaks (*) are Y\(_2\)C\(_4\)OH\(^−\) and Y\(_2\)C\(_4\)O\(_2\)H\(^−\), due to the reactions with residual water in the LIT. Black bold, blue bold and black font represent reactants, products and impurities, respectively.

The potential energy surfaces (PESs) of the most favorable reaction pathways are given in Figure 2. The N\(_2\) molecule is initially captured by the Y1 atom in both Y\(_2\)C\(_4^−\) and Y\(_2\)C\(_4\)H\(^+\) to form the end-on-coordinated complexes \(^2\)I\(_1\) and \(^1\)I\(_4\). Notably, \(^2\)I\(_1\) (−0.71 eV) in Figure 2a is as stable as \(^1\)I\(_4\) (−0.70 eV) in Figure 2b, suggesting that the N\(_2\)−adsorbed intermediates \(^2\)I\(_1\) and \(^1\)I\(_4\) are not the final products in the Y\(_2\)C\(_4^−\)/N\(_2\) and Y\(_2\)C\(_4\)H\(^+\)/N\(_2\) systems. As for the Y\(_2\)C\(_4^−\)/N\(_2\) system, the coordination mode of N\(_2\) is further changed from \( \eta^1 \) in \(^2\)I\(_1\) to \( \eta^2 \) in \(^2\)I\(_2\) via \(^2\)TS\(_1\). During this process, the N-N bond length is elongated from 110 pm in free N\(_2\) to 119 pm in \(^2\)I\(_2\). Subsequently, the adsorbed N\(_2\) unit is anchored by two Y atoms via \(^2\)TS\(_2\), forming a Y-N-N-Y bridge; at the same time, a longer N-N bond of 123 pm is generated in \(^2\)P\(_1\). Note that the rupture of the N-N bonds encounters a high energy barrier (\(^2\)TS\(_3\), +2.46 eV with respect to the separated reactants), so that further activation of N\(_2\) is hampered in this system.

The reaction of Y\(_2\)C\(_4\)H\(^+\)/N\(_2\) (Figure 2b) follows the similar mechanism. The complex is coordinated laterally to form a Y-N-N-Y bridge like \(^2\)P\(_1\) by overcoming a negligible barrier \(^1\)TS\(_4\), and the activation energy (\( \Delta E_{\text{a}} \), i.e., the energy difference between the encounter complex and the transition state) is lower than that of \(^2\)I\(_2\) \( \rightarrow \) \(^2\)TS\(_2\) (\( \Delta E_{\text{a}} = 0.23 \) eV) in Y\(_2\)C\(_4^−\). In the step of \(^1\)I\(_4\) \( \rightarrow \) \(^1\)P\(_2\), an elongation of the N-N bond from 115 to 121 pm occurs. Further cleavage of N-N is also hindered due to the positive energy barrier of 4.89 eV (\(^1\)TS\(_5\)). In addition, another adsorption of N\(_2\) on the Y2 atom (Supplementary Figure S6) that is not bonded with the hydrogen atom can be eventually trapped in \(^1\)P\(_2\) by generating the \( \eta^2 \)-mode intermediate \(^1\)I\(_7\). In conclusion, the reactions of Y\(_2\)C\(_4\)H\(^−\) and Y\(_2\)C\(_4^−\) with N\(_2\) result in the formation of bridging adsorption products \(^2\)P\(_1\) and \(^1\)P\(_2\), and the adsorbed N\(_2\).
molecules are in the η^1:η^2 mode. As shown in Figure 3, the potential energy curves reveal that the adsorption process of Y₂C₄⁻⁺/N₂ is more favorable kinetically compared to that of Y₂C₄⁻⁻/N₂, since it is barrier-free for Y₂C₄⁻⁺/N₂. A small barrier exists in the shallow entrance channels when N₂ approaches Y₂C₄⁻, which further explains the experimental observed low reaction rate constant for the dehydrogenated Y₂C₄⁻⁻/N₂.

Figure 2. BPW91-D3-calculated potential energy surfaces for the reactions of Y₂C₄⁻⁻ (a) and Y₂C₄H⁻⁻ (b) with N₂. The zero-point vibration-corrected energies (ΔH₀, in eV) of the reaction intermediates (II–I₄), transition states (TS₁–TS₄), and products (P₁, P₂), with respect to the separated reactants, are given. The bond lengths are given in pm. The green, blue, grey and white atoms represent Y, N, C and H atoms, respectively. Spin multiplicity is located in superscript.

Figure 3. The BPW91-calculated relaxed potential energy curves of N₂ approaching Y₂C₄⁻⁻ and Y₂C₄H⁻⁻ anions.

Frontier orbital analysis shows that the immobilization of the N₂ ligand, as well as the formation of ^2P₁ and ^1P₂, involve d-electrons transfer from the single-occupied molecular orbital-1 (SOMO-1) of Y₂C₄⁻⁻ and the HOMO orbital of Y₂C₄H⁻⁻ to the antibonding π*-orbitals of N₂ (Supplementary Figure S7). The presence of hydrogen atoms enhances the reactivity of the cluster cations toward N₂ since it changes the charge distribution. As shown in Figure 4a, the Y1 linked to the hydrogen atom on the Y₂C₄H⁻⁻ cluster has more negative charges compared to Y₂C₄⁻⁻, and it promotes π-back-donation. Note that the energy differences between the transition states and the separated reactants, which is the apparent barrier (ΔE^‡), matters in gas-phase studies. The apparent barrier for Y₂C₄H⁻⁻/N₂ (ΔE^‡ = −0.70 eV) is lower than that of Y₂C₄⁻⁻/N₂ (ΔE^‡ = −0.48 eV), and the energy of ^1P₂ is lower than that of ^2P₁ (−1.61 eV vs. −1.35 eV). According to the Rice-Ramsperger-Kassel-Marcus (RRKM) theory [33], the internal conversion rate of I₄ → TS₄ (8.49 × 10¹¹ s⁻¹) is 32 times larger than that of I₂ → TS₂ (2.65 × 10¹⁰ s⁻¹). These theoretical results are consistent with the experiments.
To further improve the understanding of $Y_2C_4H_{0,1}^-$/$N_2$ systems, NBO analysis along reaction coordinates was performed (Figure 4b,c). The charge details were added (Supplementary Table S2). In the adsorption processes $IA1 \rightarrow I1$ and $IA2 \rightarrow I4$ of $Y_2C_4H_{0,1}^-$/$N_2$, the yttrium atoms transfer 0.37 $e$ and 0.29 $e$ to the N1 atom, respectively, leading to the formation of the Y-N1 bonds, while two N2 atoms in $Y_2C_4^-$ and $Y_2C_4H^-$ only increase by 0.11 $e$. In the subsequent steps $I2 \rightarrow P1$ and $I4 \rightarrow P2$ for the formation of the N2-Y2 bonds, more electrons are stored in the two nitrogen atoms, resulting in the gradual elongation of the N-N bonds. Overall, the electrons required for the $N_2$ adsorption on the $Y_2C_4^-$ and $Y_2C_4H^-$ clusters are mainly provided by Y atoms with total transferred amounts of 0.88 $e$ and 0.78 $e$, respectively. Differently, two and one Y atoms are the electron donors in $Y_2C_4^-$ and $Y_2C_4H^-$, respectively. The active Y1 atom in $Y_2C_4^-$ ($IA1$) has more 5s electron occupancies ($5s^{10.10}$, $4d^{1.05}$), which causes an unfavorable approach and a high σ-repulsion on the $N_2$ molecule. When one hydrogen atom on the $Y_2C_4^-$ ($^2IA1$) cluster bonds to form $Y_2C_4H^-$ ($^1IA2$), the natural charge on the Y1 increases from 0.79 $e$ to 1.48 $e$; at the same time, more $4d$ and less 5s electron occupancies are located ($5s^{0.38}$, $4d^{1.12}$), which can make N2 more accessible to the $Y_2C_4H^-$ cluster anions. The values of bond orders of Y-Y bond in $Y_2C_4H_{0,1}^-$ anions are an important indicator for the ability of storing electrons, which increases from 0.55 in $Y_2C_4^-$ ($^2IA1$) to 0.66 in $Y_2C_4H^-$ ($^1IA2$). Therefore, although hydrogen appears to be a bystander in $N_2$ adsorption, its presence indeed stores more electrons in the Y-Y bond and facilitates $N_2$ adsorption. It can be concluded that the hydrogen atom in the $Y_2C_4H^-$ cluster significantly affects the charge distribution and electronic structure, and a suitable number of hydrogen atoms can enhance the reactivity towards $N_2$.

3. Methods

3.1. Experimental Methods

The metal carbide clusters were generated by laser ablation metal target (made of pure yttrium powder) (Jiangxi Ketai New Materials Co. Ltd, Jiangxi, China) seeded at 2% CH$_4$ (Beijing Huatong Jingke Gas Chemical Co. Ltd, Beijing, China) in a helium carrier gas (backing pressure 4 atm). The pulsed laser is a 532 nm laser with 5–8 mJ/energy pulses and 10 Hz repetition rate (140 Baytech Drive, San Jose, CA, USA). $Y_2C_4^-$ and $Y_2C_4H^-$ anion clusters were mass-selected by a quadrupole mass filter (QMF) (China Academy of Engineering Physics, Mianyang, Sichuan, China) [34] and subsequently entered into a linear ion trap (LIT) reactor (homemade) [35]. After being confined and thermalized by the pulsed gas He for about 2 ms, they interacted with $N_2$ for about 6 ms and 14 ms, at room temperature, respectively. The anion clusters were ejected from the LIT and then detected by a reflection time-of-flight mass spectrometer (TOF-MS) [36]. The rate constants

![Figure 4. (a) Electrostatic potentials of the $Y_2C_4H_{0,1}^-$ Charges on atoms of stationary points along reaction coordinates of $N_2$ absorption on (b) $Y_2C_4^-$ and (c) $Y_2C_4H^-$ clusters.](image-url)
of the reactions between $Y_2C_4H_{0,1}^-$ cluster anions and $N_2$ were described [37]. A schematic diagram of the experimental apparatus is shown in ref [34].

3.2. Computational Methods

All DFT [38] calculations were formed using the Gaussian 09 [39] program package to explore the structures of reactant clusters $Y_2C_4H_{0,1}^-$ and the mechanistic details of $Y_2C_4H_{0,1}^-$ with $N_2$. To give the best interpretation of the experimental data, we calculated the dissociation energies of the Y-Y, Y-C, N-N and C-C (Supplementary Table S3) bonds using 20 methods. The results show that BPW91 functional [40–42] performs very well. For application of basis sets in reaction systems, the def2-TZVP [43] basis set was used for the Y atom, and the 6–311 + G* basis sets [44,45] were selected for the C, H, and N atoms, which were applied in other systems containing these elements [24,27,46]. The zero-point vibration corrected energies ($\Delta H_{0K}$ in eV) in unit of eV are reported. Vibrational frequency calculations must be performed for the geometric optimization of the reaction intermediates (IMs) and transition states (TSs) [47]. Intrinsic reaction coordinate [48] calculations were employed to ensure whether each TS was connected to two appropriate local minima. DFT-D3 correction for the complexes were contained in the system. Natural population analysis was performed using NBO 6.0 [49], and the orbital composition was analyzed by the method of natural atomic orbitals employing the Multiwfn program [50].

4. Conclusions

In summary, the reactions of $Y_2C_4H^-$ and dehydrogenated $Y_2C_4^-$ cluster anions with $N_2$ have been investigated experimentally and theoretically. The experimental results indicate that the reaction rate constant of $Y_2C_4H^-/N_2$ is higher by a factor of 50 compared with that of $Y_2C_4^-/N_2$. DFT calculations indicate that the differences are caused by the different charge distributions and the bonding of the additional hydrogen atom to the yttrium atom in the $Y_2C_4H^-$ cluster, resulting in more 4d electron occupancies and thus more efficient $\pi$-back-donation bonding with $N_2$ molecules. The electron donor atoms of $Y_2C_4^-$ and $Y_2C_4H^-$ anion clusters are different, for $Y_2C_4^-$, two Y atoms donate electrons, while only one Y atom donates electrons in $Y_2C_4H^-$. Storing more electrons in the Y-Y bond is also an important influence of the hydrogen atom on the reactivity of $Y_2C_4H^-$ to $N_2$. This study clearly reveals the significance of hydrogen-assisted reactions in $N_2$ adsorption processes. Attaching an appropriate number of hydrogen atoms on active sites can enhance the $N_2$ adsorption rates, providing a new strategic direction for the rational design of TM-based energy-efficient nitrogen fixation catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijms23136976/s1. References [51–55] are cited in the supplementary materials.

Author Contributions: Data curation, M.G. and Y.-Q.D.; writing—original draft preparation, M.G.; writing—review and editing, M.G. and J.-B.M.; supervision, J.-B.M.; project administration, J.-B.M.; funding acquisition, J.-B.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 91961122) and the Beijing Natural Science Foundation (No. 2222023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Burford, R.J.; Fryzuk, M.D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 2017, 1, 0026. [CrossRef]

2. Chen, J.G.; Crooks, R.M.; Seefeldt, L.C.; Bren, K.L.; Bullock, R.M.; Daresbourg, M.Y.; Holland, P.L.; Hoffman, B.; Janik, M.J.; Jones, A.K.; et al. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, eaar6611. [CrossRef] [PubMed]

3. Légaré, A.; Rang, M.; Belanger-Chabot, G.; Schweizer, J.I.; Krummenacher, I.; Bertermann, R.; Arrowsmith, M.; Holthausen, M.C.; Braunischweig, H. The reductive coupling of dinitrogen. Science 2019, 363, 1329–1332. [CrossRef] [PubMed]

4. Tomaszewski, R. Citations to chemical resources in scholarly articles: CRC handbook of chemistry and physics and the merck index. Scientometrics 2017, 112, 1865–1879. [CrossRef]

5. Avenier, P.; Taoufik, M.; Lesage, A.; Solans-Monfort, X.; Baudouin, A.; de Mallmann, A.; Veyre, L.; Basset, J.M.; Eisenstein, O.; Emsley, L.; et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science 2007, 317, 1056–1060. [CrossRef]

6. Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride. Science 2019, 363, 1329–1332. [CrossRef] [PubMed]

7. Qiu, P.Y.; Wang, J.W.; Liang, Z.Q.; Xue, Y.J.; Zhou, Y.L.; Zhang, X.L.; Cui, H.Z.; Cheng, Q.G.; Tian, J. The metallic 1T-WS2 as cocatalysts for promoting photocatalytic N2 fixation performance of Bi507Br nanosheets. Chin. Chem. Lett. 2021, 32, 3501–3504. [CrossRef]

8. Deng, G.; Pan, S.; Wang, G.; Zhao, L.; Zhou, M.; Frenking, G. Beryllium atom mediated dinitrogen activation via coupling with carbon monoxide. Angew. Chem. Int. Ed. 2020, 59, 18201–18207. [CrossRef]

9. Wang, Y.Y.; Ding, X.L.; Israel Gurti, J.; Chen, Y.; Li, W.; Wang, X.; Wang, W.J.; Deng, J.J. Non-dissociative activation of chemisorbed dinitrogen on one or two vanadium atoms supported by a Mo4S8 cluster. Chem. Phys. Chem. 2021, 22, 1645–1654. [CrossRef]

10. Qing, G.; Ghazfar, R.; Jackowski, S.T.; Habibzadeh, F.; Ashtiani, M.M.; Chen, C.P.; Smith, M.R., III; Hamann, T.W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516. [CrossRef]

11. Cherkasov, N.; Ibhadon, A.O.; Fitzpatrick, P. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 2015, 90, 24–33. [CrossRef]

12. van der Ham, C.J.M.; Koper, M.T.M.; Hetterscheid, D.G.H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191. [CrossRef] [PubMed]

13. Jia, H.P.; Quadrelli, E.A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564. [CrossRef] [PubMed]

14. Li, J.; Li, S. Energetics and mechanism of dinitrogen cleavage at a mononuclear surface tantalum center: A new way of dinitrogen reduction. Angew. Chem. Int. Ed. 2008, 47, 8040–8043. [CrossRef]

15. Chow, C.; Taoufik, M.; Quadrelli, E.A. Cheminform abstract: Ammonia and dinitrogen activation by surface organometallic chemistry on silica-grafted tantalum hydrides. Eur. J. Inorg. Chem. 2011, 2011, 1349–1359. [CrossRef]

16. Lang, S.M.; Bernhardt, T.M. Gas phase metal cluster model systems for heterogeneous catalysis. Phys. Chem. Chem. Phys. 2012, 14, 9285–9269. [CrossRef]

17. O’Hair, R.A.J.; Khairallah, G.N. Gas phase ion chemistry of transition metal clusters: Production, reactivity, and catalysis. J. Clust. Sci. 2004, 15, 331–363. [CrossRef]

18. Schwarz, H. Menage-a-Trois: Single-atom catalysis, mass spectrometry, and computational chemistry. Catal. Sci. Technol. 2017, 7, 4302–4314. [CrossRef]

19. Schwarz, H. How and why do cluster size, charge state, and ligands affect the course of metal-mediated gas-phase activation of methane? Isr. J. Chem. 2014, 54, 1413–1431. [CrossRef]

20. Geng, C.; Li, J.L.; Weiske, T.; Schwarz, H. Ta2+/-Mediated ammonia synthesis from N2 and H2 at ambient temperature. Proc. Natl. Acad. Sci. USA 2018, 115, 11680–11687. [CrossRef] [PubMed]

21. Li, Z.Y.; Li, Y.; Mou, L.H.; Chen, J.J.; Liu, Q.Y.; He, S.G.; Chen, H. A facile N=B=N bond cleavage by the trinuclear metal center in vanadium carbide cluster anions V3C3−. J. Am. Chem. Soc. 2020, 142, 10747–10754. [CrossRef] [PubMed]

22. Li, Z.Y.; Mou, L.H.; Wei, G.P.; Ren, Y.; Zhang, M.Q.; Liu, Q.Y.; He, S.G. C–N coupling in N2 fixation by the ditantalum carbide cluster anions Ta2C4+. Inorg. Chem. 2015, 54, 4701–4705. [CrossRef] [PubMed]

23. Wang, M.; Chu, L.Y.; Li, Z.Y.; Messinis, A.M.; Ding, Y.Q.; Hu, L.R.; Ma, J.B. Dinitrogen and carbon dioxide activation to form C–N bonds at room temperature: A new mechanism revealed by experimental and theoretical studies. J. Phys. Chem. Lett. 2021, 12, 3490–3496. [CrossRef]

24. Zhao, Y.; Cui, J.T.; Wang, M.; Valdivielso, D.Y.; Fielicke, A.; Hu, L.R.; Ma, J.B. Dinitrogen fixation and reduction by Ta3N5H42− cluster anions at room temperature: Hydrogen-assisted enhancement of reactivity. J. Am. Chem. Soc. 2019, 141, 12592–12600. [CrossRef]

25. Wang, M.; Zhao, C.Y.; Zhou, H.Y.; Zhao, Y.; Li, Y.K.; Ma, J.B. The sequential activation of H2 and N2 mediated by the gas-phase Sc3N+ clusters: Formation of amido unit. J. Chem. Phys. 2021, 154, 054307. [CrossRef]

26. Mou, L.H.; Li, Y.; Li, Z.Y.; Liu, Q.Y.; Chen, H.; He, S.G. Dinitrogen activation by heteronuclear metal carbide cluster anions FeTaC2−: A 5d early and 3d late transition metal strategy. J. Am. Chem. Soc. 2021, 143, 19224–19234. [CrossRef]
28. Li, Y.; Ding, Y.Q.; Zhou, S.D.; Ma, J.B. Dinitrogen activation by dihydrogen and quaternary cluster anions AuNbBO−: Nb− and B−Mediated N2 activation and Au-assisted nitrogen transfer. J. Phys. Chem. Lett. 2022, 13, 4058–4063. [CrossRef]

29. Mou, L.H.; Li, Z.Y.; Liu, Q.Y.; He, S.G. Size-dependent association of cobalt deuteride cluster anions Co2Dn− (n = 0–4) with dinitrogen. J. Am. Soc. Mass Spectrom. 2019, 30, 1956. [CrossRef]

30. Cheng, X.; Li, Z.Y.; Mou, L.H. Size-dependent reactivity of rhodium deuteride cluster anions Rh2Dn− (n = 0–3) toward dinitrogen: The prominent role of σ donation. J. Chem. Phys. 2022, 156, 064303. [CrossRef]

31. Gioumousis, G.; Stevenson, D.F. Reactions of gaseous molecule ions with gaseous molecules. J. Chem. Phys. 1958, 29, 294–299. [CrossRef]

32. Kummerlöwe, G.; Beyer, M.K. Rate estimates for collisions of ionic clusters with neutral reactant molecules. Int. J. Mass Spectrom. 2005, 244, 84–90. [CrossRef]

33. Gioumousis, G.; Stevenson, D.P. Reactions of gaseous molecule ions with gaseous molecules. Int. J. Mass Spectrom. 2013, 354–355, 105–112. [CrossRef]

34. Jiang, L.X.; Liu, Q.Y.; Li, X.N.; He, S.G. Design and application of a high-temperature linear ion trap reactor. J. Am. Soc. Mass Spectrom. 2018, 29, 78–84. [CrossRef]

35. Tang, X.N.; Hou, Y.; Ng, C.Y.; Ruscic, B. Pulsed field-ionization photoelectronphotoion coincidence study of the process N2 + hν → N+ + N + e−: Bond dissociation energies of N2 and N2+. J. Chem. Phys. 2011, 123, 074330. [CrossRef]