Pseudo-involutions in the Riordan group. (English) [Zbl 1490.05009]
J. Integer Seq. 25, No. 3, Article 22.3.6, 54 p. (2022).

Summary: We consider pseudo-involutions in the Riordan group where the generating function \(g \) for the first column of a Riordan array satisfies a palindromic or near-palindromic functional equation. For those types of equations, we find, for very little work, the pseudo-involutionary companion of \(g \) and have a pseudo-involution in a \(k \)-Bell subgroup. There are only slight differences in the ordinary and exponential cases. In many cases, we also develop a general method for finding \(B \)-functions of Riordan pseudo-involutions in \(k \)-Bell subgroups, and show that these \(B \)-functions involve Chebyshev polynomials. We apply our method for many families of Riordan arrays, both new and already known.

We also have some duality and reciprocity results. Since many of the examples we discuss have combinatorial significance, we conclude with a few remarks on the general framework for a combinatorial interpretation of some of the generating function results we obtain.

MSC:

05A15 Exact enumeration problems, generating functions
20H99 Other groups of matrices
11B83 Special sequences and polynomials

Keywords:

Riordan group; Riordan array; pseudo-involution

Software:

OEIS

Full Text: arXiv Link

References:

[1] K. Archer and C. Graves, Pattern-restricted permutations composed of 3-cycles, preprint, April 26 2021. Available athttps://arxiv.org/abs/2104.12664.
[2] A. Ayyer and D. Zeilberger. The number of [old-time] basketball games with final score \(n:n \) where the home team was never losing but also never ahead by more than \(w \) points, Electron. J. Combin. 14(1) (2007), Research Paper 19. · Zbl 1110.05006
[3] C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method. In G. Andrews, C. Krattenthaler, and A. Krinik, eds., Lattice Path Combinatorics and Applications. Developments in Mathematics, Vol. 58, Springer, 2019. Preprint available electronically athttps://arxiv.org/abs/1609.06473. · Zbl 1422.05007
[4] P. Barry, The Riordan Group, a Primer, Logic Press, 2016.
[5] P. Barry, Chebyshev moments and Riordan involutions, preprint, December 26 2019. Available athttps://arxiv.org/abs/1912.11845.
[6] P. Barry, Riordan pseudo-involutions, continued fractions, and Somos-4 sequences, J. Integer Sequences 22(2019), Article 19.6.1. · Zbl 1459.11033
[7] P. Barry, On a family of generalized Pascal triangles defined by exponential Riordan arrays, J. Integer Sequences 10(2007), Article 07.3.5. · Zbl 1158.05004
[8] F. Bergeron, P. Flajolet, and B. Salvy, Varieties of increasing trees, in Proceedings of CAAP '92 (Rennes, 1992) Lecture Notes in Comput. Sci., Vol. 581, Springer, 1992, pp. 24-48.
[9] J. Bettinelli, E. Fusy, C. Mailler, L. Randazzo, A bijective study of basketball walks, S’ém. Lothar. Combin. 77(2016), Article B77a, 1-24. · Zbl 1361.05005
[10] N. T. Cameron and A. Nkwanta, On some pseudo-involutions in the Riordan group, J. Integer Sequences 8(2005), Article 05.3.7. · Zbl 1101.05005
[11] L. Carlitz, R. Scoville, and T. Vaughan, Enumeration of pairs of sequences by rises, falls and levels, Manuscripta Math. 19(1976), 211-243. · Zbl 0348.05006
[12] G.-S. Cheon, S.-T. Jin, H. Kim, and L. W. Shapiro, Riordan group involutions and the \(\Delta \)-sequence, Disc. Appl. Math. 157(2009), 1696-1701. · Zbl 1193.05004
[13] G.-S. Cheon and H. Kim, Simple proofs of open problems about the structure of involutions in the Riordan group, Lin. Alg. Appl. 428(2008), 930-940. · Zbl 1131.05006

[14] G.-S. Cheon, H. Kim and L. W. Shapiro, Riordan group involutions, Lin. Alg. Appl. 428(2007), 941-952.

[15] E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (2010), 2191-2203. · Zbl 1232.05010

[16] E. Deutsch and L. Shapiro, Exponential Riordan arrays, Lecture Notes, Nankai University, 2004. http://www.combinatorics.net/ppt2004/Louis%20W.%20Shapiro.htm.

[17] B. Drake, An Inversion Theorem for Labeled Trees and Some Limits of Areas under Lattice Paths, Ph.D. thesis, Brandeis University, 2008. http://people.brandeis.edu/~gessel/homepage/students/dralethesis.pdf.

[18] H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart. 37(1999), 135-140. · Zbl 0944.05007

[19] T.-X. He, A-sequences, Z-sequence, and B-sequences of Riordan matrices, Discrete Math. 343(2020), 111718.

[20] T.-X. He and L. Shapiro, Palindromes and pseudo-involution multiplication, Lin. Alg. Appl. 593(2020), 1-17. · Zbl 07186316

[21] T.-X. He and R. Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309(2009), 3962-3974. · Zbl 1228.05014

[22] S. Janson, M. Kuba, and A. Panholzer, Generalized Stirling permutations of increasing trees and urn models, J. Combin. Theory Ser. A118(2011), 94-114. · Zbl 1230.05010

[23] D. Merlini, D. G. Rogers, R. Sprugnoli, and C. Verri, On some alternative characterizations of Riordan arrays, Can. J. Math. 49(1997), 301-320. · Zbl 0886.05013

[24] OEIS, The Online Encyclopedia of Integer Sequences, 2022. Available at https://oeis.org.

[25] S. F. Parker, The Combinatorics of Functional Composition and Inversion, Ph. D. thesis, Brandeis University, 1993. Available at http://people.brandeis.edu/~gessel/homepage/students/parkerthesis.pdf.

[26] D. Phulara and L. Shapiro, Constructing pseudo-involutions in the Riordan group, J. Integer Sequences 20(2017), Article 17.4.7. · Zbl 1357.05009

[27] D. G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math. 22 (1978), 301-310. · Zbl 0398.05007

[28] L. W. Shapiro, S. Getu, W. J. Woan, and L. Woodson, The Riordan group, Disc. Appl. Math. 34(1991), 229-239. · Zbl 0754.05010

[29] M. Zeleke, Riordan Arrays and their applications in Combinatorics, parts 1 and 2, YouTube, http://youtu.be/hdR24ApU_EE and http://youtu.be/c...