Retinal Nerve Fiber Layer Analysis in Children with Migraine with and without Aura using Optical Coherence Tomography: A Case-Control Study

Daniela Rego-Lorca (✉ dpregolorca@gmail.com)
Hospital Clinico Universitario San Carlos
https://orcid.org/0000-0002-8076-0522

Barbara Burgos-Blasco
Hospital Clinico Universitario San Carlos

Cristina Gines-Gallego
Hospital Clinico Universitario San Carlos

Mario Carrasco-Lopez-Brea
Hospital Clinico Universitario San Carlos

Maria Teresa de Santos- Moreno
Hospital Clinico Universitario San Carlos

Enrique Santos-Bueso
Hospital Clinico Universitario San Carlos

Research Article

Keywords: Migraine, aura, retinal nerve fiber layer, optical coherence tomography, children

DOI: https://doi.org/10.21203/rs.3.rs-458550/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose

To evaluate retinal nerve fiber layer (RNFL) thickness in children with migraine, with and without aura, compared to healthy controls using optical coherence tomography (OCT).

Methods

Cross-sectional case-control study. Peripapillary RNFL thickness was measured using optical coherence tomography (OCT) in a group of children diagnosed with migraine with aura (MwA) (n=9) and migraine without aura (MwoA) (n=11), and in a group of healthy controls (n=20). Age, sex, duration of migraine in months, number of episodes per month, duration of episodes in hours, and use of prophylactic treatment with magnesium were recorded. Groups were matched by age, sex and refractive error. All participants underwent complete neurological and pediatric examination.

Results

No significant differences were found when comparing all migraine patients with healthy controls. However, children with MwA showed statistically significant reductions in RNFL thickness in the temporal (mean difference 7.83; CI95% 0.52-15.14, P=0.027) and inferior-temporal (mean difference 16.06; CI95% 1.95-30.16, P=0.027) sectors compared to patients with MwoA. None of the other sectors showed statistically significant differences between groups (all P>0.05).

Conclusion

Aura in migraine may be associated with a RNFL thickness decrease in children.

Introduction

Migraine is a common chronic disorder characterized by recurrent episodes of primary headache, having a high impact among children. Its prevalence in this population group is up to 10%, migraine being the most frequent cause of persistent headache in childhood.[1]

According to the International Classification of Headache Disorders, migraine can be classified into two main groups: migraine with aura (MwA) and migraine without aura (MwoA).[2] The term aura refers to the transient focal neurological symptoms that may anticipate or accompany the headache. It appears in around 25% of patients, frequently manifesting as transient ophthalmological symptoms such as blind spots, light flashes, or photophobia.[3]

Although the pathophysiology of migraine is still not completely understood, evidence to date suggests a neurovascular dysfunction leading to vasospasm of cerebral and retrobulbar vessels. This repeated reduction in blood flow, although transient, is believed to cause structural damage to the brain.[4]
Fluctuations in perfusion concerning optic nerve head (ONH) microcirculation could thus contribute to ganglion cell death and retinal nerve fiber layer (RNFL) changes in patients with migraine. In fact, migraine has been recognized as a risk factor for some ophthalmic disorders, such as ischemic optic neuropathy or normal-tension glaucoma.[5]

Optical coherence tomography (OCT) is a rapid non-invasive imaging technique that provides reliable measurements of RNFL thickness. It has been used to evaluate neurodegeneration in neurological diseases.[6–10] In Parkinson's disease, several studies refer peripapillary RNFL thinning[10] and Chorostecki et al.[9] also noticed diminished thickness of macular inner retinal layers.

Even though several studies, many of them OCT-based, concerning ophthalmological changes in patients with migraine have been published, the vast majority of them have been performed in adult population.[3] Articles evaluating OCT changes in children with migraine are scarce, and, in those studies, contradictory results have been reported.[11, 12] Also, among the latter, none of them assess differences between MwA and Mwo children.

Hence, the aim of the present study was to evaluate RNFL thickness changes in children with migraine comparing to healthy controls, and analyse RNFL changes in the former group depending on their type of migraine.

Materials And Methods

This observational cross-sectional case-control study was conducted at the Ophthalmology Department of Hospital Clínico San Carlos, Madrid, Spain. Migraine patients were consecutively recruited at the Pediatric Neurology Department of Hospital Clínico San Carlos. Patients with a diagnosis of migraine, with or without aura, according to criteria of the International Classification of Headache Disorders, 3rd Edition (ICDH-3)[2], were considered. Healthy controls were recruited at the Pediatric Ophthalmology Department, where they came for a routine follow-up visit. Controls were matched by age, sex and refractive error.

Inclusion criteria for migraine patients comprised being under 18-years-old, diagnosis of migraine, with or without aura, according to criteria of the ICHD-3, and voluntary acceptance to participate in the study. Exclusion criteria included any neurologic disorder other than migraine, retinal and optic disc pathology, history of intraocular surgery, ocular hypertension, and refractive errors with spherical equivalent higher than ±3 dioptres.

Among demographic and clinical variables, sex, age, duration of migraine (months), frequency of attacks (episodes per month), episode duration (hours), and use of prophylactic treatment with magnesium were recorded.

All subjects underwent complete neurological and pediatric examination. Ophthalmological exam included best corrected visual acuity, slit lamp biomicroscopy, fundus examination and intraocular
pressure measurement. Optic nerve OCT images were obtained using Heidelberg Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) in SD-OCT mode. Mean global RNFL thickness and the average thickness for each sector of the ONH (temporal, superior-temporal, inferior-temporal, nasal, superior-nasal, and inferior-nasal) were noted, all of which were automatically produced by the software.

All subjects were evaluated by the same ophthalmologist and only one eye per patient was included, randomly selected when both eyes met the inclusion criteria.

The Clinical Research Ethics Committee at Hospital Clínico San Carlos, Madrid, Spain, approved the study protocol, which adhered to the Declaration of Helsinki. Informed consent was obtained from all patients and their parents.

Statistical analysis was performed using SPSS software for Mac (SPSS, Inc. Chicago, USA, version 22). Values are expressed as mean ± standard deviation (SD) and absolute frequency (n) and relative frequency (%) where appropriate. Student’s t-test was used to examine differences among groups. Spearman test was used to investigate correlations Statistical significance was set at P < 0.05.

Results

The initial study population comprised of 20 children with migraine, 11 of them diagnosed with migraine without aura (MwoA) and 9 with migraine with aura (MwA), and 20 healthy controls. Among the migraine patients, 3 were finally excluded (2 patients with MwoA and 1 with MwA). The 2 MwoA patients were excluded because of associated ophthalmic pathology: juvenile idiopathic arthritis associated uveitis and optic nerve drusen, respectively. The MwA patient was excluded due to lack of collaboration.

Table 1 portrays the demographic and clinical variables of the case group (n=17). Mean age was 13.8 ± 2.9 years in patients with migraine and 13.4 ± 2.5 years in healthy individual. Male to female ratio was 7:10 in migraine patients and 8:12 in healthy controls. No differences in sex and age were detected between groups (p<0.05)

Among the RNFL sectors, no significant differences were found when comparing all migraine patients with healthy controls (table 2). However, patients with MwA showed statistically significant decreases in temporal (mean difference 7.83; CI95% 0.52-15.14, P=0.037) and inferior-temporal (mean difference 16.06; CI95% 1.95-30.16, P=0.027) RNFL thickness compared to patients with MwoA (figure 1). None of the other sectors showed statistically significant differences between groups (all P>0.05).

No correlations between RNFL sectors and clinical variables (episodes per month and episode duration) were found in the migraine group when Bonferroni corrections were applied (all P>0.05).

Conclusions
Migraine, which is the most common cause of recurring headache in children, has a high risk of becoming a chronic condition persisting in adulthood.[13] Despite its high prevalence and socioeconomic impact, the exact mechanism causing migraine attacks is still not understood. Studying migraine patients with OCT, to evaluate changes in the optic nerve and different retinal layers, could promote a better understanding of the pathophysiology of migraine. Our results reveal that, despite noting no differences when comparing migraine patients with healthy controls, children with MwA have thinner RNFL thickness in some specific OCT sectors compared with children with MwoA.

Regarding adult population, published data on OCT changes in migraine patients have yielded variable results. In a meta-analysis of published case-control studies, Feng et al.[14] described decreased peripapillary RNFL thickness (average and all individual quadrants) measured with OCT in migraine patients compared to healthy controls. However, other authors have only found differences in RNFL thickness when comparing specific sectors. For instance, Colak et al.[15] found thinner RNFL in the superior and inferior quadrants of migraine patients compared to healthy controls. Similarly, Kirbas et al.[16] found significant differences regarding the superior quadrant, while Sorkhabi et al.[17] and Demircan et al.[18] just reported differences in the nasal quadrant. Martinez et al.[19] results show differences only in the temporal sector. On the other hand, Tan et al.[20] reported similar RNFL thickness in migraine patients and healthy controls, with no statistical difference between groups.

As for the pediatric population, available literature in this regard is scarce. Dereli Can et al.[12] performed a case-control study using optical coherence tomography angiography (AOCT) and found no significant difference in peripapillary RNFL thickness, neither average nor for individual quadrants, between children with migraine and healthy controls. Foveal avascular zone (FAZ) and the capillary vessel density (CVD) analysis also yielded no differences between groups. Yener et al.[11] published a case-control study comparing the peripapillary RNFL thickness, the macular ganglion cell layer (GCL) thickness and ONH parameters between children with migraine and healthy controls. While they did not find any significant differences regarding the GCL thickness, their results reveal thinner RNFL in the temporal quadrant of the left eyes of the migraine patients compared to the healthy controls, but thicker RNFL in the nasal quadrant of both eyes of the migraine group. In our study, similarly to Dereli Can et al.[12], we did not find any significant difference in the average RNFL thickness or in any specific OCT sector between the children with migraine group and the healthy controls.

Furthermore, some authors have classified adult migraine patients in subgroups of MwA and MwoA, being statistically significant lessening of RNFL thickness more frequently found in MwA patients.[3] Ekinci et al.[21] compared RNFL, GCL and choroid thickness in patients with MwA, MwoA and controls, and found that, although choroid was thinner in both subgroups of migraine patients, RNFL and GCL were significantly thinner in MwA patients as compared with both the MwoA group and the healthy controls. Along the same lines, Chang et al.[22] found decreased vascular density in the superficial fovea and superior peripapillary region in MwA, but not in MwoA patients. Simsek[23] found thinner RNFL in migraine patients with white matter lesions (WML), those being detected in magnetic resonance imaging (MRI) in relation with chronic ischemia, in comparison with healthy controls and with migraine patients.
without WML. Even though the exact mechanism causing WML remains unclear, their detection in MRI has been associated with aura. However, while significant changes have been observed among adults, no studies are found evaluating differences between MwA and MwoA in pediatric population. Our results, when comparing these two groups, show statistically significant thinner RNFL thickness in the temporal and the inferior-temporal quadrants of the MwA compared to MwoA patients.

Some authors have investigated the correlation between OCT changes and migraine clinical variables, such as frequency of attacks or disease duration. Controversial results have been noted concerning the influence of the frequency of migraine attacks. Whereas Gipponi et al. defended that there is no relationship between frequency of migraine attacks and RNFL thickness, Reggio et al. observed an inverse association between the number of monthly migraine attacks and RNFL thickness. Also, different conclusions have been reached when studying the association of the length of migraine history with RNFL thickness. Gipponi et al., analogous to their findings regarding frequency of migraine, referred no influence of illness duration on RNFL thickness. On the contrary, Feng et al. found that longer migraine history was associated with significantly thinner RNFL. Finally, as for influence of migraine severity, Dereli Can et al. reported a significant inverse correlation between the pediatric migraine disability assessment test (PedMIDAS) grade and the average RNFL thickness and the peripapillary CVD. In our study, duration of migraine did not have significant influence on RNFL thickness changes although larger samples are mandatory to rule out associations.

Although pathophysiology of migraine is not fully understood to date, a neurovascular mechanism is the most widely accepted hypothesis. Migraine attacks involve activation of the trigeminovascular system (TGVS), responsible for vascular tone regulation and pain transmission. The TGVS innervates intra- and extra-meningeal blood vessels, the brain stem and some extracranial tissues, including ocular structures. Activation of the TGVS results in vasoactive neurotransmitters being released, causing vascular and inflammatory changes that result in pain. These neurovascular changes would motivate cerebral and retrobulbar vessels vasospasm, with subsequent focal hypoperfusion. The latter is specially observed in patients with higher frequency of migraine attacks and in MwA patients. Despite being a transitory condition, this blood flow reduction is believed to constitute a risk factor for structural brain damage and even damage to other regions, such as the retina or the optic nerve. Retinal damage due to focal ischemia would result in a diminished RNFL thickness, reflecting a reduced number of axons in these patients. Thus, the fact that hypoperfusion and chronic ischemia, leading to central nervous system and retinal damage, are more frequently observed in MwA patients could explain our results showing significantly diminished RNFL thickness in some OCT sectors in MwA patients compared to the MwoA group.

The study has several limitations. First, our study included a relatively small sample size. Hence, differences according to migraine characteristics could not be thoroughly analyzed. In addition, longitudinal testing with repeat imaging at fixed intervals could provide valuable information regarding both the short- and long-term effects of migraine on the RNFL. Finally, although we demonstrated statistically significant thickness differences, the clinical relevance of this finding is unclear.
In conclusion, our study reports a statistically significant reduction in RNFL thickness in MwA, being this the first study to investigate differences between MwA and MwoA in the pediatric population. Notwithstanding, further studies are needed to establish the significance of these results and evaluate long-term consequences.

Declarations

Funding

The authors did not receive any specific grant from any funding agency in the public, commercial, or non-profit sectors.

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The Clinical Research Ethics Committee at Hospital Clinico San Carlos, Madrid, Spain, approved the study protocol, which adhered to the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all patients and their parents.

References

1. Tepper DE (2017) Migraine in Children. Headache 57:1021–1022. https://doi.org/10.1111/head.13091
2. Olesen J, Bes A, Kunkel R et al (2013) The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33:629–808. https://doi.org/10.1177/0333102413485658
3. Ascaso FJ, Marco S, Mateo J et al (2017) Optical coherence tomography in patients with chronic migraine: Literature review and update. Front Neurol 8:. https://doi.org/10.3389/fneur.2017.00684
4. Michael NDB, Hussein A, ABD Halim S, Hamid AB SA (2019) Evaluation of Optic Nerve Head Parameters, Retinal Nerve Fiber Layer Thickness, and Ocular Perfusion Pressure in Migraine Patients. Cureus 11:. https://doi.org/10.7759/cureus.4599
5. Flammer J, Pache M, Resink T (2001) Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 20:319–349. https://doi.org/10.1016/S1350-9462(00)00028-8
6. Saidha S, Syc SB, Ibrahim MA et al (2011) Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 134:518–533. https://doi.org/10.1093/brain/awq346
7. Galetta KM, Calabresi PA, Frohman EM, Balcer LJ (2011) Optical Coherence Tomography (OCT): Imaging the Visual Pathway as a Model for Neurodegeneration. Neurotherapeutics 8:117–132. https://doi.org/10.1007/s13311-010-0005-1

8. Petzold A, de Boer JF, Schippling S et al (2010) Optical coherence tomography in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol 9:921–932. https://doi.org/10.1016/S1474-4422(10)70168-X

9. Chorostecki J, Seraji-Bozorgzad N, Shah A et al (2015) Characterization of retinal architecture in Parkinson's disease. J Neurol Sci 355:44–48. https://doi.org/10.1016/j.jns.2015.05.007

10. Yu JG, Feng YF, Xiang Y et al (2014) Retinal nerve fiber layer thickness changes in Parkinson disease: A meta-analysis. PLoS One 9:. https://doi.org/10.1371/journal.pone.0085718

11. Yener A, Yılmaz D (2020) Topographic changes measured by the swept source optical coherence tomography in retinal nerve fiber layer, optic nerve head and macula in children with migraine. Acta Neurol Belg 120:661–668. https://doi.org/10.1007/s13760-019-01123-5

12. Dereli Can G, Can ME, Ekici A (2020) Evaluation of retinal microvasculature and foveal avascular zone by the optical coherence tomography angiography in pediatric migraine patients. Acta Neurol Belg. https://doi.org/10.1007/s13760-020-01325-2

13. Kernick D, Reinhold D, Campbell JL (2009) Impact of headache on young people in a school population. Br J Gen Pract 59:678–681. https://doi.org/10.3399/bjgp09X454142

14. Feng YF, Guo H, Huang JH et al (2016) Retinal Nerve Fiber Layer Thickness Changes in Migraine: A Meta-Analysis of Case–Control Studies. Curr Eye Res 41:814–822. https://doi.org/10.3109/02713683.2015.1056373

15. Colak HN, Kantarci FA, Tatar MG et al (2015) Retinal nerve fiber layer, ganglion cell complex, and choroidal thicknesses in migraine. Arq Bras Oftalmol 79:78–81. https://doi.org/10.5935/0004-2749.20160024

16. Kirbas S, Tufekci A, Turkyilmaz K et al (2013) Evaluation of the retinal changes in patients with chronic migraine. Acta Neurol Belg 113:167–172. https://doi.org/10.1007/s13760-012-0150-x

17. Sorkhabi R, Mostafaei S, Ahoor M, Talebi M (2013) Evaluation of retinal nerve fiber layer thickness in migraine. Iran J Neurol 12:51–55

18. Demircan S, Ataş M, Arik Yüksel S et al (2015) The impact of migraine on posterior ocular structures. J Ophthalmol 2015:. https://doi.org/10.1155/2015/868967

19. Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 92:1069–1075. https://doi.org/10.1136/bjo.2008.137471

20. Tan FU, Akarsu C, Güllü R (2005) Retinal nerve fiber layer thickness is unaffected in migraine patients. Acta Neurol Scand 112:19–23. https://doi.org/10.1111/j.1600-0404.2005.00423.x

21. Ekinci M, Ceylan E, Çağatay HH et al (2014) Retinal nerve fibre layer, ganglion cell layer and choroid thinning in migraine with aura. BMC Ophthalmol 14:1–6. https://doi.org/10.1186/1471-2415-14-75
22. Chang MY, Phasukkijwatana N, Garrity S et al (2017) Foveal and peripapillary vascular decrement in migraine with aura demonstrated by optical coherence tomography angiography. Investig Ophthalmol Vis Sci 58:5477–5484. https://doi.org/10.1167/iovs.17-22477

23. Simsek IB (2017) Retinal Nerve Fibre Layer Thickness of Migraine Patients with or without White Matter Lesions. Neuro-Ophthalmology 41:7–11. https://doi.org/10.1080/01658107.2016.1243131

24. Colombo B, Libera DD, Comi G (2011) Brain white matter lesions in migraine: What's the meaning? Neurol Sci 32:37–40. https://doi.org/10.1007/s10072-011-0530-7

25. Gipponi S, Scaroni N, Venturelli E et al (2013) Reduction in retinal nerve fiber layer thickness in migraine patients. Neurol Sci 34:841–845. https://doi.org/10.1007/s10072-012-1103-0

26. Reggio E, Chisari CG, Ferrigno G et al (2017) Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 264:494–502. https://doi.org/10.1007/s00415-016-8364-0

Tables

Characteristics	Migraine patients (n = 17)	Healthy individuals (n = 20)
Age (years)	13.8 ± 2.9	13.4 ± 2.5
Sex		
Male	7 (41%)	8 (40%)
Female	10 (59%)	12 (60%)
Type of migraine		
Without aura	9 (53%)	-
With aura	8 (47%)	-
Duration of migraine (months)	31.6 ± 37.2	-
Frequency of attack (episodes/month)	3.7 ± 7.7	-
Episode duration (hours)	14.2 ± 18.1	-
Treated with magnesium	5 (29%)	-
Table 2
Differences in peripapillary retinal nerve fiber layer (RNFL) thickness measured using optical coherence tomography in migraine patients and healthy controls.

RNFL	Healthy	Migraine	p (healthy vs migraine)	Migraine without aura	Migraine with aura	p (migraine without aura vs with aura)
	101.70 ± 10.29	101.97 ± 9.99	0.909	104.67 ± 10.14	98.94 ± 9.19	0.096
Global						
Temporal	76.05 ± 14.82	73.65 ± 11.02	0.438	77.33 ± 10.19	69.50 ± 10.72	0.037*
Superior-temporal	139.60 ± 24.50	147.21 ± 21.24	0.162	151.83 ± 20.07	142.00 ± 21.95	0.182
Inferior-temporal	141.78 ± 18.22	147.00 ± 21.45	0.261	154.56 ± 13.63	138.50 ± 25.61	0.027*
Nasal	72.98 ± 17.05	70.76 ± 11.16	0.512	69.61 ± 9.94	72.06 ± 12.60	0.531
Superior-nasal	118.50 ± 28.21	120.26 ± 21.41	0.766	119.78 ± 21.41	120.81 ± 23.15	0.891
Inferior-nasal	116.00 ± 25.00	113.68 ± 23.57	0.683	117.17 ± 29.68	109.75 ± 13.90	0.368

Figures

![Optic nerve parameters in patients with migraine](image)

Figure 1
Peripapillary retinal nerve fiber layer (RNFL) thickness measured globally and in different sectors in children with migraine, comparing those with and without aura. OCT: optical coherence tomography. RNFL thickness is measured in μm. * indicates p<0.05.