High serum levels of CML are associated with poor coronary collateralization in type 2 diabetic patients with chronic total occlusion of coronary artery

Le Ying Li
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Ying Shen
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Shuai Chen
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Fei Fei Li
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Zhi Ming Wu
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Feng Hua Ding
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Xiao Qun Wang
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Wei Feng Shen
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Qiu Jing Chen
Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine

Yang Dai
Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Lin Lu (✉ rjlulin1965@163.com)
Abstract

Background: The formation of advanced glycation end-products (AGEs) is a crucial risk factor for the pathogenesis of cardiovascular diseases. We investigated whether N-e-carboxy-methyl-lysine (CML), a major form of AGEs in vivo, was associated with poor coronary collateral vessel (CCV) formation in patients with type 2 diabetes mellitus (T2DM) and chronic total occlusion (CTO) of coronary artery.

Methods: This study consisted of 242 T2DM patients with angiographically documented CTO. Blood samples were obtained and demographic/clinical characteristics were documented. The collateralization of these patients was defined according to Rentrop score. Receiver operating characteristic (ROC) curve and multivariable regression analysis were performed.

Results: 242 patients were categorized into poor CCV group (Rentrop score 0 and 1)(n = 107) and good CCV group (Rentrop score 2 and 3)(n = 135). Serum CML levels were significantly higher in poor CCV group (110.0 ± 83.35 ng/ml) than in good CCV group (62.95 ± 58.83 ng/ml, P<0.001). Moreover, these CML levels were also significantly different across the Rentrop score 0, 1, 2 and 3 groups (P <0.001). In ROC curve for ascertaining poor CCV, AUCs were 0.70 (95% CI 0.64-0.77) for CML. In multivariable logistic regression, CML levels (P<0.001) remained independent determinants of poor CCV after adjustment of traditional risk factors.

Conclusions: This study suggests that higher CML levels are associated to poor CCV in T2DM patients with CTO. Inhibition of AGEs including CML is a strategy in antagonizing poor CCV in diabetic patients.

Background

Diabetes causes impairment of coronary collateral vessel (CCV) formation in response to occlusion of a patent artery in patients with coronary artery disease [1]. Previous studies have evidenced that dysregulation of pro-angiogenic and anti-angiogenic elements contributes to poor CCV in ischemic tissues in diabetes [2-4]. Pathophysiologically, this pathologic feature is caused by increased formation and accumulation of advanced glycation end products (AGEs) and augmentation of oxidative stress and inflammatory reactions [2-4].

In diabetic milieu, AGEs play a central role in the pathophysiology of vascular complications including angiogenesis and arteriogenesis impairment [5,6]. Engagement of the receptor for AGEs (RAGE) with AGEs activates pathways in endothelial cells or macrophages, leading to augmented oxidative stress and inflammation in ischemic myocardial tissues, ending up with poor collateralization [5,6].

N-e-carboxy-methyl-lysine (CML) is the most abundant AGEs in vivo [7]. In diabetic condition, CML-modified proteins may exhibit structural alterations, there by resulting in impairment of protein functions. Moreover, CML-modified protein also activates RAGE pathway, jointly accelerating the development of various vasculopathies (i.e., macrovascular and microvascular diseases) in diabetes [5,8-12]. However, relation of CML to poor collateralization in diabetic patients with CTO remains unclear.
In the present study, we performed coronary angiography and used Rentrop score system to assess the condition of CCV formation in T2DM patients with CTO. The serum levels of CML were evaluated via ELISA in the participants. Our study was designed to explore the relationship between CML levels and coronary collateralization in T2DM patients with CTO.

Methods

Study population and grouping

The study protocol was approved by the Ruijin Hospital and Shanghai Jiao Tong University School of Medicine Ethics Committee, and written informed consent was obtained from all participants.

A total of 615 T2DM patients with stable angina and at least one lesion with coronary angiographic total occlusion were enrolled between January 2012 and December 2019. This inclusion criterion was based on long-standing knowledge that a severe coronary artery obstruction was a prerequisite for spontaneous collateral recruitment [13]. Stable angina was diagnosed according to the criteria recommended by the American College of Cardiology/American Heart Association [14]. For the purpose of this research, we excluded patients with chronic heart failure (n=69), pulmonary heart disease (n=25), malignant tumors or immune system disorders (n=71), renal failure requiring hemodialysis (n=34) as well as patients who had a history of coronary artery bypass grafting (n=79) or received percutaneous coronary intervention within the prior 3 months (n=95). The remaining 242 diabetic patients with stable angina and CTO (>3 months) were eligible and categorized in this study (Figure 1). The diagnosis of T2DM and hyperlipidemia were made according to the 2016 guideline of ESC [15] and 2017 update of ESC/EAS on PCSK9 inhibition [16]. Type 1 diabetes was excluded by measurement of C-peptide levels. Detailed information regarding demographics, clinical manifestation and medications used was obtained.

Coronary angiography

Coronary angiography was performed through the femoral or radial approach. All angiograms were reviewed by two experienced interventional cardiologists, according to lesion classification scheme of the American College of Cardiology/American Heart Association [17]. Both of them were blinded to the study protocol and clinical data. Any differences in interpretation were resolved by a third reviewer.

The condition of CCV was determined using Rentrop score as in previous studies [18-20], as follows: grade 0=no collaterals, grade 1=side branch filling of the recipient artery without visualization of the epicardial artery, grade 2=partial filling of the main epicardial coronary artery, grade 3=complete filling of the main epicardial coronary artery [21]. Patient with Rentrop 0 or 1 were categorized as poor CCV group and those with Rentrop 2 or 3 were belong to good CCV group.

Thus, the present study contained 242 patients altogether: Rentrop 0 (n=46), Rentrop 1 (n=61), Rentrop 2 (n=66), Rentrop 3 (n=69). Poor CCV (Rentrop 0 or 1) group had 107 patients and good CCV (Rentrop 2 or 3) group had 135 patients.
Sample acquisition and biochemical measurement

Blood samples were obtained from patients undergoing angiography after 12h fasting. Samples were collected by centrifugation at the speed of 3000 rpm for 10 min. All serum samples were stored at −80 °C until analysis. Serum glucose, glycosylated hemoglobin A1c (HbA1c), blood urea nitrogen, creatinine, uric acid, and lipid profiles were measured with standard laboratory techniques on a Hitachi 912 Analyzer (Roche Diagnostics, Germany). Modified estimated glomerular filtration rate (eGFR) was calculated.

CML Quantification

Serum CML levels were measured with Cell BioLabs CML Competitive ELISA kit (STA-816) according to the manufacturer’s instructions. The CML ELISA kit used a colorimetric immunoassay method and CML levels of samples were determined by comparing samples OD values with a standard curve of gradient dilution of CML-modified BSA, in which higher CML modification correlates with lower OD signal. The final CML levels were shown with ng/ml unit by calculation of CML-modified BSA/CML. The inter-assay variation was controlled in acceptable range.

Statistical analysis

Continuous variables are presented as mean ± standard deviation (SD), and categorical data are summarized as frequency (percentage). For categorical clinical variables, differences between groups were evaluated by the chi-square test followed by Bonferroni’s correction. For continuous variables, normal distribution was evaluated with the Kolmogorov–Smirnov test. Differences among groups were analyzed by one-way analysis of variance (ANOVA) followed by post-hoc analysis (Bonferroni’s correction). Receiver operating characteristic (ROC) curves were plotted to assess the power of CML for detecting poor collateralization and to compare its power with HbA1c and with combined risk factors. Area under the curve (AUC) was compared using the DeLong method. Risk factors for CAD including gender, age, body mass index (BMI), hypertension, smoke, HbA1c, eGFR and high-sensitivity C reactive protein (hsCRP) were recruited into multivariable logistic regression analyses with or without CML measurements to assess determinants for poor CCV. All analyses used 2-sided tests with alpha value set at 0.05. All statistical analyses were performed with IBM SPSS Version 26 for Mac (IBM SPSS Inc, Chicago, IL, USA) and Prism 9 for macOS (1994 - 2021 GraphPad Software, LLC).

Results

Baseline characteristics

The baseline characteristics and biochemical measurements of all the patients with poor CCV and good CCV group are presented in Table 1. Patients of poor CCV group were older, more smokers, poor glycemic control, had lower ratio of male, hypertension history, higher serum levels of creatinine and hsCRP, and lower eGFR values in comparison with those of good CCV (for all comparison, P<0.05).

Serum CML levels are significantly increased in patients with poor CCV
Serum CML levels were significantly increased in poor CCV group (110.0±83.35 ng/ml) than in good CCV group (62.95±58.83 ng/ml, P<0.001) (Figure 2). CML levels were also significantly different across the groups categorized according to Rentrop score (Rentrop score 0, 120.8±75.12 ng/ml; Rentrop score 1, 101.8±88.78 ng/ml; Rentrop score 2, 67.01±64.78 ng/ml; Rentrop score 3, 59.07±52.70 ng/ml, respectively) (P for trend<0.001) (Figure 3).

Moreover, CML levels were inversely correlated with Rentrop score before (Spearmen's r = -0.319, P<0.001) and after (Spearmen's r = -0.311, P<0.001) adjustment of gender, age, BMI, smoke, hypertension, HbA1c, eGFR and hsCRP serum levels. The percentage of poor CCV increased stepwise from the lowest tertile (<38.76 ng/mL) to the highest tertile of CML (>95.75 ng/mL) (P for trend < 0.001) (Table 2). Odds ratio for poor CCV increased to 6.802 (95% CI 2.980-15.526) in the highest tertile in comparison with those in the lowest tertile (P<0.001), after adjustment of multiple variables including gender, age, BMI, smoke, hypertension, HbA1c, eGFR and hsCRP levels (Table 2).

ROC curve for detecting poor CCV exhibited that AUC was 0.67 for CML (95% CI 0.60-0.74, P<0.001) and the cutoff value was 45.20 ng/ml according to Youden's index with a diagnostic sensitivity of 79.44% and specificity of 52.59%.

Multivariable analysis

Multivariate logistic regression analysis was performed to ascertain independent determinants of poor CCV. In Model 1, we included major parameters in Table 1, including gender, age, BMI, hypertension, smoking, HbA1c, eGFR and hsCRP. The results showed that hypertension, poor glycemic control, low eGFR and high hsCRP levels were independent determinants for poor collateralization. After adjustment for these variables, serum CML levels remained independently associated with poor CCV (OR=1.966, 95% CI 1.510-2.559, P < 0.001) (model 2) (Table 3). The calibrations of both models were good (P=0.731 for Model 1 and P=0.967 for Model 2 in Hosmer-Lemeshow test). The addition of CML in Model 2 significantly improved predictive performance with an increase of Nagelkerke R² by 12.3% (P < 0.001). In addition, ROC curve for both models showed that addition of CML in Model 2 effectively elevated the AUC value (AUC=0.79, 95% CI 0.73-0.85 P<0.001) comparing with Model 1 (AUC=0.84, 95% CI 0.79-0.89 P<0.001) (P=0.011) (Figure 4).

Discussion

Patients with diabetes usually exhibit poor coronary collateralization after ischemia [1]. Our study has demonstrated that serum CML levels are significantly increased in T2DM CTO patients with poor CCV as compared with those with good CCV. Serum CML levels are inversely correlated with Rentrop score in these patients. ROC curve for detecting poor CCV has demonstrated that AUC is 0.67 for CML. In logistic regression analysis, serum CML level is an independent determinant of poor CCV in patients with T2DM and CTO. Our study supported a notion that increased CML levels contributes to poor coronary collateralization in T2DM patients with CTO.
Hyperglycemia-associated formation of AGEs and subsequent engagement of AGEs with RAGE causes augmented oxidative stress and robust inflammation, leading to diabetic cardiovascular complications (macrovascular and microvascular vasculopathies), and robust production of AGEs, which in return results in a vicious cycle [2-6].

Among various AGEs, CML modifications predominate in vivo in diabetes[7]. Previous studies have evidenced the impact of CML in the pathogenesis of cardiovascular diseases associated with diabetes. Specific AGEs including CML are associated with incident cardiovascular events with T2DM [22,23]. Glycation and CML levels in skin collagen predict future 10-year progression of diabetic retinopathy and nephropathy in controls and in intervention and complication patients of type 1 diabetes [24]. Serum levels of AGEs (mainly CML) are associated with impaired renal function and pathogenic mechanisms of chronic kidney disease [25,26]. Circulating Levels of CML are closely related to central obesity and inflammation [27], carotid diameter [28], and differentiate early to moderate Alzheimer's disease [29]. Moreover, plasma AGEs, in particular CML levels, are found to be related to the severity and prognosis of CHF [30]. Consistent with above-mentioned studies, our study has showed that high CML levels are associated with poor collateralization in type 2 diabetic patients with CTO. Our findings have further added novel information regarding CML, indicating that CML impairs the repairing mechanisms of CCV formation in ischemic tissues.

Sufficient evidence has revealed that reduction of AGEs levels may be effective to alleviate diabetic vasculopathies [31]. Alagebrium, capable of breaking cross-link structure in AGEs, targets the miR-27b/TSP-1 signaling pathway to attenuate CML-induced endothelial dysfunction [32]. Soluble RAGE (sRAGE) is a RAGE isoform generated through alternative splicing or shedding from cell membrane. sRAGE combines with AGEs to prevent the engagement of AGEs with RAGE and subsequent activation of RAGE pathway [33]. Animal studies have shown that administration of sRAGE remarkably stabilizes atherosclerotic plaque, and inhibits inflammatory factors such as cyclooxygenase-2 (COX-2), VCAM-1, and monocyte chemoattractant protein-1 (MCP-1), thereby attenuating atherosclerosis progression [33]. Moreover, antioxidants (e.g., vitamin C, vitamin E), ACEIs, ARBs and statins are capable of inhibiting AGEs formation [31]. These data jointly suggest that inhibition of renin-angiotensin system, modulation of dyslipidemia, AGE inhibition, RAGE pathway inhibition and oxidative stress reduction are therapeutic strategies for preventing cardiovascular complications in diabetes, partially through antagonizing AGEs formation.

Limitations

We recognize limitations in our study. First, this study is a cross-sectional study, and all the enrolled patients were from a single center. Second, the Rentrop scoring system is not a most precise way for evaluation of coronary collateralization. It is more accurate by calculating collateral flow index, which requires measurement of pressure within aorta and the distal culprit segment at the same time. Last, CMLs have been traditionally quantified by gas chromatography/mass spectrometry (GC/MS). Thereby, the correlation between CML and poor collateralization needs further investigated by prospectively study.
Conclusion

In conclusion, our results suggest that higher CML is associated with poor collateralization in T2DM patients with CTO.

Abbreviations

CCV coronary collateral vessel; AGEs advanced glycation end-products; CML N-e-carboxy-methyl-lysine; RAGE receptor for AGEs; T2DM type 2 diabetes mellitus; CTO chronic total occlusion; BMI body mass index; HbA1c glycosylated hemoglobin A1c; eGFR estimated glomerular filtration rate; hsCRP high-sensitivity C reactive protein; sRAGE soluble RAGE; COX-2 cyclooxygenase-2; MCP-1 monocyte chemoattractant protein-1; ROC receiver operating characteristic; AUC area under the curve; SD standard deviation.

Declarations

Ethics approval and consent to participate

The study protocol was approved by the Ruijin Hospital and Shanghai Jiao Tong University School of Medicine Ethics Committee, and written informed consent was obtained from all participants.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

None by any of the authors.

Funding

Not applicable.

Authors’ contributions

LYL, YD, XQW and FHD participated in study design, data analysis and interpretation. LYL, YD and LL drafted the main manuscript and prepared all figures and tables. YS, LYL, FFL, ZMW and QJC performed data collection. YD, LL and WFS revised the manuscript before final approval. All authors read and approved the final manuscript.
None.

References

1. Abaci, A., et al. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 1999;99(17):2239-42.

2. Waltenberger, J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 2001;49(3):554-60.

3. Lassaletta, A.D., L.M. Chu, and F.W. Sellke Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 2011;106(6):897-909.

4. Howangyin, K.Y. and J.S. Silvestre Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction. ArteriosclerThrombVascBiol 2014;34(6):1126-35.

5. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006;114:597-605.

6. Hansen LM, Gupta D, Joseph G, Weiss D, Taylor WR. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Lab Invest. 2017;97:34-42.

7. Yan SF, Ramasamy R, Y, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res 2003;93:1159-1169.

8. SINGH R, BARDEN A, MORI T, et al. Advanced glycation end-products: a review [J]. Diabetologia 2001;44(2):129-46.

9. FISHMAN S L, SONMEZ H, BASMAN C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review [J]. Mol Med 2018;24(1):59.

10. DELUYKER D, EVENS L, BITO V. Advanced glycation end products (AGEs) and cardiovascular dysfunction: focus on high molecular weight AGEs [J]. Amino Acids 2017;49(9):1535-41.

11. FU M X, REQUENA J R, JENKINS A J, et al. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions [J]. J Biol Chem 1996;271(17):9982-6.

12. LUÉVANO-CONTRERAS C, GÓMEZ-OJEDA A, MACÍAS-CERVANTES M H, et al. Dietary Advanced Glycation End Products and Cardiometabolic Risk [J]. Curr Diab Rep 2017;17(8):63.

13. Levin, D.C. Pathways and functional significance of the coronary collateral circulation. Circulation 1974;50(4):831-7.

14. Valgimigli, M., et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary...
artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2018;39(3):213-260.

15. Cosentino, F., et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020;41(2):255-323.

16. Landmesser, U., et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J 2018;39(14):1131-1143.

17. ELLIS S G, VANDORMAEL M G, COWLEY M J, et al. Coronary morphologic and clinical determinants of procedural outcome with angioplasty for multivessel coronary disease. Implications for patient selection. Multivessel Angioplasty Prognosis Study Group [J]. Circulation 1990;82(4):1193-202.

18. WERNER G S, FERRARI M, HEINKE S, et al. Angiographic assessment of collateral connections in comparison with invasively determined collateral function in chronic coronary occlusions [J]. Circulation 2003;107(15):1972-7.

19. ALLAHWALA U K, BRILAKIS E S, BYRNE J, et al. Applicability and Interpretation of Coronary Physiology in the Setting of a Chronic Total Occlusion [J]. Circ Cardiovasc Interv 2019;12(7):e007813.

20. SUN Z, SHEN Y, LU L, et al. Clinical and angiographic features associated with coronary collateralization in stable angina patients with chronic total occlusion [J]. J Zhejiang Univ Sci B 2013;14(8):705-12.

21. RENTROP K P, COHEN M, BLANKE H, et al. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects [J]. J Am Coll Cardiol 1985;5(3):587-92.

22. Hanssen NMJ, Beulens JWJ, Susan van Dieren S, Jean L.J.M. Scheijen JLJM, Daphne L. van der A DL, Spijkerman AMW, van der Schouw YT. Plasma advanced glycation end products are associated with incident cardiovascular events in individuals with type 2 diabetes: a case-cohort study with a median follow-up of 10 years (EPIC-NL). Diabetes 2015;64:257-265.

23. Koska J, Saremi A, Howell S, Bahn G, De Courten B, Ginsberg H, Beisswenger PJ, Reaven PD for the VADT Investigators. Advanced glycation end products oxidation products, and incident cardiovascular events in patients with type 2 diabetes. Diabetes Care 2018;41:570-576.

24. Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, Sivitz W, and Monnier VM for the DCCT Skin Collagen Ancillary Study Group. Glycation and Carboxymethyllysine Levels in Skin Collagen Predict the Risk of Future 10-Year Progression of Diabetic Retinopathy and Nephropathy in the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications Participants With Type 1 Diabetes. Diabetes 2005;54:3103-3111.

25. Lieuw-A-Fa MLM, van Hinsbergh VWM, Teerlink T, Barto R, Twisk J, Stehouwer CDA, Schalkwijk CG. Increased levels of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrol Dial Transplant. 2004;19:631-6.
26. Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int 2018;93:803-813.

27. Gaens KHJ, Ferreira I, van de Waarenburg MPH, van Greevenbroek MM, van der Kallen CJH, Dekker JM, Nijpels G, Rensen SS, Stehouwer CDA, Schalkwijk CG. Protein-Bound Plasma Nε-(Carboxymethyl)lysine Is Inversely Associated With Central Obesity and Inflammation and Significantly Explain a Part of the Central Obesity-Related Increase in Inflammation: The Hoorn and CODAM Studies. Arterioscler Thromb Vasc Biol 2015;35:2707-13.

28. Baumann M, Richart T, Sollinger D, Pelisek J, Roos M, Kouznetsova T, Eckstein H, Heemann U, Staessen JA. Association between carotid diameter and the advanced glycation end product N-epsilon-carboxymethyllysine (CML). Cardiovasc Diabetol 2009;8:45.

29. Mohamed Haddad, Morgane Perrotte, Sarra Landri, Aurelie Lepage, Tamás Fülöp, Charles Ramassamy. Circulating and Extracellular Vesicles Levels of N-(1-Carboxymethyl)-L-Lysine (CML) Differentiate Early to Moderate Alzheimer's Disease. J AlzheimersDis. 2019;69(3):751-762.

30. Jasper W L Hartog 1, Adriaan A Voors, Casper G Schalkwijk, Jean Scheijen, Tom D J Smilde, Kevin Damman, Stephan J L Bakker, Andries J Smit, Dirk J van Veldhuisen. Clinical and prognostic value of advanced glycation end-products in chronic heart failure. Eur Heart J. 2007 Dec;28(23):2879-85.

31. ROWAN S, BEJARANO E, TAYLOR A. Mechanistic targeting of advanced glycation end-products in age-related diseases [J]. Biochim Biophys Acta Mol Basis Dis 2018;1864(12):3631-43.

32. Yihong Chen 1, Wenhao Niu 1, Yu-Chieh Chao 2, Zhiqing He 1, Ru Ding 1, Feng Wu 1, Chun Liang. Alagebrium targets the miR-27b/TSP-1 signaling pathway to rescue N ε-carboxymethyl-lysine-induced endothelial dysfunction. Am J Transl Res. 2019 Mar 15;11(3):1569-1580.

33. Yang P, Feng J, Peng Q, Liu X, Fan Z. Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. Oxid Med Cell Longev. 2019 Dec 6;2019:9570616.

Tables

Table 1. Baseline characteristics and biochemical measurements in patients with poor and good collateralization
Classification	Poor CCV (n=107)	Good CCV (n=135)	P value
Male, n (%)	74 (69.16)	114 (84.44)	0.005
Age, year	67.31±11.22	64.19±10.10	0.024
BMI, kg/m²	25.25±3.74	24.98±3.34	0.546
Smoke, n (%)	41 (38.32)	34 (25.19)	0.036
Hypertension, n (%)	71 (66.36)	106 (78.52)	0.041
SBP, mmHg	134.93±21.58	136.06±19.96	0.672
DBP, mmHg	73.45±10.55	75.11±11.43	0.246
FBG, mmol/L	8.44±3.41	7.69±2.77	0.060
HbA1c, %	6.95±1.43	6.37±1.58	0.003
Dyslipidemia, n (%)	29 (27.10)	22 (16.30)	0.056
Triglyceride, mmol/L	1.77±0.93	1.70±1.22	0.650
Total cholesterol, mmol/L	3.98±1.29	3.87±1.08	0.496
LDL-C, mmol/L	2.33±1.05	2.25±0.89	0.516
HDL-C, mmol/L	1.01±0.20	1.06±0.28	0.133
ApoA, g/L	1.12±0.22	1.15±0.23	0.312
ApoB, g/L	0.80±0.27	0.77±0.23	0.367
Lp(a), g/L	0.36±0.86	0.30±0.29	0.411
BUN, mmol/L	7.18±4.84	6.93±3.77	0.648
Serum creatinine, μmol/L	101.74±53.74	85.10±66.51	0.037
eGFR, ml/min/1.73 m²	68.51±20.80	85.17±20.49	<0.001
UA, μmol/L	348.69±104.15	338.62±97.02	0.438
hsCRP, mg/L	14.58±33.21	7.14±20.63	0.034

Data are mean ± SD or number (%).

Abbreviations: CCV coronary collateral vessel, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, FBG fasting blood glucose, HbA1c glycosylated hemoglobin A1c, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, BUN blood urea nitrogen, UA uric acid, eGFR estimated glomerular filtration rate, hsCRP high-sensitivity C reactive protein.
Table 2. odds ratio of poor collateralization according to CML in diabetic patients

Tertiles of CML (n, range ng/ml)	Poor CCV, n (%)	Crude OR (95% CI)	aAdjusted OR (95% CI)
Tertile 1 (n=80, <38.76)	19 (23.75)	1	1
Tertile 2 (n=80, 38.76-95.75)	37 (46.25)	2.763 (1.404-5.437) *	2.556 (1.161-5.624) *
Tertile 3 (n=82, >95.75)	51 (62.20)	5.282 (2.672-10.441) **	6.802 (2.980-15.526) **
Per tertile	/	2.278 (1.626-3.192) **	2.610 (1.729-3.941) **
P value for tertile trend	<0.001	<0.001	<0.001

Abbreviations: CCV coronary collateral vessel; CI confidence interval; OR odds ratio.

*P<0.05; **P<0.001.

aMultiple-adjustment for gender, age, body mass index, hypertension, smoke, HbA1c, estimated glomerular filtration rate, total-to-HDL cholesterol ratio and serum level of high sensitive C reactive protein

Table 3. Logistic regression analyses for poor collateralization in diabetic patients
Variables	OR (95% CI)	P value
Model 1		
Male	0.800 (0.374-1.712)	0.566
Nagelkerke R² = 0.307		
Age per 10 years	1.123 (0.837-1.508)	0.439
Hosmer-Lemeshow test:		
P = 0.731		
Hypertension	0.415 (0.213-0.810)	**0.010**
Smoke	2.278 (1.205-4.307)	**0.011**
HbA1c	1.297 (1.064-1.580)	**0.010**
Total-to-HDL cholesterol ratio	1.176 (0.955-1.449)	0.127
eGFR	0.967 (0.950-0.983)	**<0.001**
Log hsCRP	1.134 (1.004-1.282)	**0.043**
Model 2		
Male	0.736 (0.315-1.721)	0.480
Nagelkerke R² = 0.430		
Age per 10 years	1.143 (0.837-1.560)	0.401
Hosmer-Lemeshow test:		
P = 0.967		
Hypertension	0.325 (0.155-0.682)	**0.003**
Smoke	2.035 (1.040-3.980)	**0.038**
HbA1c	1.275 (1.034-1.572)	**0.023**
Total-to-HDL cholesterol ratio	1.134 (0.908-1.416)	0.267
eGFR	0.964 (0.947-0.982)	**<0.001**
Log hsCRP	1.179 (1.030-1.349)	**0.017**
Log2 CML	1.966 (1.510-2.559)	**<0.001**

BMI body mass index; HbA1c, glycosylated hemoglobin A1c; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate; hsCRP, high sensitive C reactive protein

Model 1, adjusted for conventional cardiovascular factors;
Model 2, adjusted for the factors included in Model 1 with the addition of CML.

Figures
Patients diagnosed with type 2 diabetes mellitus, stable angina and chronic total occlusion (> 3 months) between January 2012 and December 2019 (n=615)

Exclusion
- NYHA class 3 or 4 (n=69)
- Pulmonary heart disease (n=25)
- Malignant tumor or immune system disorders (n=71)
- Renal failure requiring hemodialysis (n=34)
- Previous coronary artery bypass surgery (n=79)
- Received percutaneous coronary intervention within the prior 3 months (n=95)

patients enrolled and analysed (n=242)

- 46 patients with Rentrop score 0
- 61 patients with Rentrop score 1
- 66 patients with Rentrop score 2
- 69 patients with Rentrop score 3

Figure 1

Legend not included with this version
Figure 2

Legend not included with this version
Figure 3

Legend not included with this version
Figure 4

Legend not included with this version

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
