co-Semi-analytic functors

Marek Zawadowski

May 15, 2013

Abstract

We characterize the category of co-semi-analytic functors and describe an action of semi-analytic functors on co-semi-analytic functors.

1 Introduction

Let I be the (skeleton of the) category of finite sets and monomorphisms. The functor $Set^{op} \to Cat(Set^{op}, Set)$ of the left K extension along $I^{op} \to Set^{op}$ is conservative. The essential image of this functor is a category of functors that are in a sense a dual presentation to the semi-analytic functors [SZ]. This is why we call this category the category of co-semi-analytic functors. In this note, we give an abstract characterization of this category. Moreover, we show that the category of semi-analytic functors acts on this category and we show some examples of the actions along this action.

Contravariant functors on finite sets were considered in [P], [D].

Notation

Let $[n] = \{0, \ldots, n\}$, $(n) = \{1, \ldots, n\}$, ω - denote the set of natural numbers. The set X^n, n-th power of X, is interpreted as $X^{(n)}$, a set of functions, when convenient. The skeletal category equivalent to the category of finite sets Set_{fin} will be denoted by F. We will be assuming that the objects of F are sets (n), for $n \in \omega$. The subcategories of F with the same objects as F but having as objects bijection, surjections and injections will be denoted by B, S, I, respectively. S_n is the group of permutations of (n). When S_n acts on a set A on the right and on the set B on the left, then the set $A \otimes_n B$ is the usual tensor product of S_n-sets. Let $Epi(X, (n))$ denote the set of epimorphisms from the set X to (n). S_n acts on $Epi(X, (n))$ on the left by compositions. If $A : I^{op} \to Set$ is a functor, $f : (n) \to (m)$, $a \in A_m (= A(m))$, then we often write $a \cdot_A f$ instead of $A(f)(a)$. S_n acts of the right on A_n and, according with the previous notation, we write $a \cdot_A \sigma$ instead of $A(\sigma)(a)$. Thus we can form a set

$$A_n \otimes_n Epi(X, (n))$$
whose elements are equivalence classes of pairs $\langle a, \overrightarrow{x} \rangle$ such that $a \in A_n$ and $\overrightarrow{x} : X \to (n)$ epi. We identify pairs

$$\langle a, \sigma \circ \overrightarrow{x} \rangle \sim \langle a \cdot \sigma, \overrightarrow{x} \rangle$$

for $\sigma \in S_n$.

2 The category of co-semi-analytic functors

A natural transformation $\tau : F \to G : C \to D$ is semi-cartesian iff the naturality squares for monomorphisms in C are pullbacks in D. Let \mathbf{cEnd} denote the category $\text{Nat}(\text{Set}^{op}, \text{Set})$, i.e. the category of contravariant functors on Set and natural transformations.

We define a functor

$$\tilde{\cdot} : \text{Set}^{op} \to \mathbf{cEnd}$$

Let $A : I^{op} \to \text{Set}$. We put

$$\tilde{A}(X) = \sum_{n \in \omega} A_n \otimes_n \text{Epi}(X, (n))$$

For a function $f : Y \to X$ and $[a, \overrightarrow{x}] \sim A_n \otimes_n \text{Epi}(X, (n))$ we put

$$\tilde{A}(f)([a, \overrightarrow{x}] \sim) = [a \cdot A f', \overrightarrow{x}']$$

where the square

$$\begin{array}{ccc}
X & \xrightarrow{\overrightarrow{x}} & (n) \\
\downarrow f & & \downarrow f' \\
Y & \xrightarrow{\overrightarrow{x}'} & (m)
\end{array}$$

commutes and \overrightarrow{x}', f' is the epi-mono factorization of $\overrightarrow{x} \circ f$.

Let $\tau : A \to B$ be a natural transformation in Set^{op}. For $[a, \overrightarrow{x}] \sim A_n \otimes_n \text{Epi}(X, (n)) \subseteq \tilde{A}(X)$ we put

$$\tilde{\tau}_X ([a, \overrightarrow{x}] \sim) = [\tau_n(a), \overrightarrow{x}] \sim$$

We have

Proposition 2.1. The functor $\tilde{\cdot} : \text{Set}^{op} \to \mathbf{cEnd}$ is well defined, and it is isomorphic to the left Kan extension along the inclusion functor $I^{op} \to \text{Set}^{op}$.

Proof. The fact that $\tilde{\cdot}$ is well defined is easy. It is well known that the left Kan extension can be calculated with coends. It is also easy to check that, for $A \in \text{Set}^{op}$ and a set X, we have the second isomorphism

$$\tilde{A}(X) = \int^{[n] \in I^{op}} A_n \times \text{Set}(X, (n)) \cong \sum_{n \in \omega} A_n \otimes_n \text{Epi}(X, (n))$$

\[\text{To emphasize the domain of an epi } X \to (n), \text{ we name it } \overrightarrow{x} \text{ as it is in a sense a dual to } (n) \to X. \text{ And it is natural to name the later map } \overrightarrow{x} \text{.}\]
\[
[a, f] \sim \mapsto [a \cdot f', q]
\]
where \(f = f' \circ q \) is the epi-mono factorization of \(f \). The details are left for the reader. \(\square \)

The canonical finitary cone \(\gamma \) under a set \(X \) in \(\text{Set} \) is the cone from the vertex \(X \) to the functor
\[
X \downarrow F \xrightarrow{\pi_X} F \longrightarrow \text{Set}
\]
\(X \rightarrow (n) \rightarrow (n) \)
such that \(\gamma_f = f \), for the \(f : X \rightarrow (n) \) in \(X \downarrow F \). The canonical finitary cocone \(\kappa \) over a set \(X \) in \(\text{Set}^{\text{op}} \) is the dual of the canonical finitary cone under \(X \) i.e. the cocone from the functor
\[
(X \downarrow F)^{\text{op}} \xrightarrow{(\pi_X)^{\text{op}}} F^{\text{op}} \longrightarrow \text{Set}^{\text{op}}
\]
to the vertex \(X \), such that \(\kappa_f = f \) for \(f : X \rightarrow (n) \) in \((X \downarrow F)^{\text{op}}\).

Theorem 2.2. The functors \(\check{\cdot} : \text{Set}^{\text{op}} \longrightarrow \text{cEnd} \) is conservative and its essential image consists of functors sending

1. pullbacks along monos to pullbacks;
2. canonical finitary cocone under \(X \) in \(\text{Set}^{\text{op}} \) to a colimiting cocone in \(\text{Set} \), for any set \(X \);

and semi-analytic natural transformations.

Because of the above theorem, by definition, the essential image of the functor \(\check{\cdot} \) is called the category of co-semi-analytic functors, and is denoted \(\text{cSan} \).

We shall prove the above theorem through a series of Lemmas.

Lemma 2.3. Let \(\tau : A \rightarrow B \) be a morphism in \(\text{Set}^{\text{op}} \). Then

1. the functor \(\check{A} : \text{Set}^{\text{op}} \rightarrow \text{Set} \) sends
 (a) pullbacks along monos to pullbacks;
 (b) canonical finitary cocone over \(X \) in \(\text{Set}^{\text{op}} \) to a colimiting cocone in \(\text{Set} \), for any set \(X \);
2. the natural transformation \(\check{\tau} : \check{A} \rightarrow \check{B} \) is semi-analytic.

Proof. Let the square

\[
\begin{array}{ccc}
X & \xrightarrow{g} & Z \\
\downarrow f & & \downarrow f' \\
Y & \xrightarrow{g'} & T
\end{array}
\]

3
be a pushout in \mathbf{Set} with f (and hence also f') epi. We need to show that the square

$$
\begin{array}{ccc}
A(X) & \xrightarrow{\tilde{A}(g)} & A(Z) \\
\downarrow{\tilde{A}(f)} & & \downarrow{\tilde{A}(f')} \\
A(Y) & \xleftarrow{\tilde{A}(g')} & A(T)
\end{array}
$$

is a pullback in \mathbf{Set}. Let $[a, \overline{\nu} : Y \to (n)]_\sim \in \tilde{A}(Y)$ and $[b, \overline{\xi} : Z \to (m)]_\sim \in \tilde{A}(Z)$ such that

$$
\tilde{A}(f)([a, \overline{\nu} : Y \to (n)]_\sim) = \tilde{A}(g)([b, \overline{\xi} : Z \to (m)]_\sim)
$$

Thus we have a mono $\tilde{f} : (n) \to (m)$ such that

$$
\tilde{f} \circ \overline{\nu} \circ f = \overline{\xi} \circ g \quad \text{and} \quad b \cdot_A \tilde{f} = a
$$

Hence there is a unique morphisms $\overline{T} : T \to (m)$ such that

$$
\overline{T} \circ g' = \tilde{f} \circ \overline{\nu} \quad \text{and} \quad \overline{T} \circ f' = \overline{\xi}
$$

As $\overline{\xi}$ is epi, \overline{T} is epi, as well. Then $[b, \overline{T}]_\sim \in \tilde{A}(T)$ and we have

$$
\tilde{A}(f')(\overline{b, T})_\sim = \tilde{A}(g')(\overline{b, g})_\sim = [b, \overline{\xi}]_\sim
$$

Thus the morphisms $\tilde{A}(\overline{\varphi}) : \tilde{A}(n) \to \tilde{A}(X)$ with $\overline{\varphi} : X \to (n)$ epi, jointly cover $\tilde{A}(X)$.

If we have another element $[b, q : (m) \to (k)]_\sim \in \tilde{A}(m)$ and $f : X \to (m)$ a function such that

$$
\tilde{A}(f)([b, q])_\sim = [a, \overline{\varphi}]_\sim
$$

then with q', f' being the epi-mono factorization (see diagram below) of $q \circ f$ we have

$$
\tilde{A}(f)([b, q'])_\sim = [b \cdot_A f', q']_\sim = [a, \overline{\varphi}]_\sim
$$

Hence we have a $\sigma \in S_n$ making the left triangle
commute and

\[a = (b \cdot_A f') \cdot_A \sigma \]

Thus we have a commuting square

\[
\begin{array}{ccc}
\tilde{A}(X) & \xrightarrow{\tilde{A}(f)} & \tilde{A}(m) \\
\uparrow \tilde{\varphi} & & \uparrow \tilde{q}' \\
\tilde{A}(n) & \xrightarrow{\tilde{A}(f' \circ \sigma)} & \tilde{A}(k) \\
\end{array}
\]

and \([b, 1_k], \sim \in \tilde{A}(k)\) such that

\[\tilde{A}(q)([b, 1_k], \sim) = [b, q], \sim \]

and

\[\tilde{A}(f' \circ \sigma)([b, 1_k], \sim) = [a, 1_n], \sim \]

i.e. if two elements go to the same element in \(\tilde{A}(X)\), they are related in the cocone. Thus \(\tilde{A} : \text{Set}^{\text{op}} \to \text{Set}\) sends canonical finitary cocone under \(X\) in \(\text{Set}^{\text{op}}\) to a colimiting cocone in \(\text{Set}\), for any set \(X\).

It remains to show that the natural transformation \(\tilde{\tau} : \tilde{A} \to \tilde{B}\) is semi-cartesian. Let \(g : X \to Y\) be an epi in \(\text{Set}\). We shall show that the square

\[
\begin{array}{ccc}
\tilde{A}(X) & \xrightarrow{\tilde{\tau}_X} & \tilde{B}(X) \\
\uparrow \tilde{A}(g) & & \uparrow \tilde{B}(g) \\
\tilde{A}(Y) & \xrightarrow{\tilde{\tau}_Y} & \tilde{B}(Y) \\
\end{array}
\]

is a pullback. Fix \([a, \tilde{\varphi} : X \to (n)], \sim \in \tilde{A}(X)\) and \([b, \tilde{\psi} : Y \to (n)], \sim \in \tilde{B}(Y)\) such that

\[[\tau_n(a), \tilde{\varphi}], \sim = \tilde{\tau}([a, \tilde{\varphi}], \sim) = \tilde{B}(g)([b, \tilde{\psi}], \sim) = [b, \tilde{\psi} \circ g], \sim \]

Thus we have a permutation \(\sigma : (n) \to (n)\) such that

\[\tau_n(a) \cdot_B \sigma = b \quad \text{and} \quad \tilde{\varphi} = \sigma \circ \tilde{\psi} \circ g \]

Then \([a, \sigma \circ \tilde{\psi}], \sim \in \tilde{A}(Y)\) and we have

\[
\tilde{A}(g)([a, \sigma \circ \tilde{\psi}], \sim) = [a, \sigma \circ \tilde{\psi} \circ g], \sim = [a, \tilde{\varphi}], \sim
\]
\[\tau_Y([a, \sigma \circ \varphi]_\sim) = [\tau_n(a), \sigma \circ \varphi]_\sim = [\tau_n(a) \cdot B\sigma, \varphi]_\sim = [b, \varphi]_\sim \]

As \(\hat{A}(g) \) is mono, the above square is a pullback. Thus \(\hat{\tau} \) is a semi-cartesian natural transformation. \(\Box \)

Lemma 2.4. Let \(A : \text{Set}^{op} \to \text{Set} \) be a functor that sends pullbacks along monos to pullbacks and canonical finitary cocone over \(X \) in \(\text{Set}^{op} \) to a colimiting cocone in \(\text{Set} \), for any set \(X \). Then there is a functor \(\hat{A} : \Gamma^{op} \to \text{Set} \) such that \(\hat{A} \) is isomorphic to \(A \).

Proof. Let \(A : \text{Set}^{op} \to \text{Set} \) be a functor with the properties described in Lemma. We define the functor \(A : \Gamma^{op} \to \text{Set} \) as follows

\[A_n = A(n) - \bigcup_h \text{im}(A(h)) \]

where the sum is over \(0 \leq m < n \) and (proper) epis \(h : (n) \to (m) \). The set \(\text{im}(A(h)) \) is the image \(A(h) \) in \(A(n) \). Then, for a mono \(f : (n) \to (m) \) in \(\Gamma \) we put

\[A(f) = A(f)_{\mid A_m} \]

i.e. \(A(f) \) is a restriction of \(A(f) \) to a function \(A_m \to A_n \).

First we need to verify that \(A \) is a well defined functor, i.e. that the restriction is the function with the appropriate domain and codomain. Let \(f : (n') \to (n) \) be a mono \(x \in A(n) \) but \(A(f)(x) \notin A_{n'} \). Thus there is a proper epi \(h' : (n) \to (m') \) and \(y \in A(m') \) such that \(A(h')(y) = A(f)(x) \). The square

\[
\begin{array}{ccc}
A(n) & \xrightarrow{A(h)} & A(m) \\
| & \downarrow A(f) & | \\
A(n') & \xrightarrow{A(h')} & A(m')
\end{array}
\]

is a pullback, where the square below

\[
\begin{array}{ccc}
(n) & \xrightarrow{h} & (m) \\
f & \downarrow & f' \\
(n') & \xrightarrow{h'} & (m')
\end{array}
\]

is a pullback in \(\text{Set}^{op} \), i.e. pushout of a proper epi \(h' \) along \(f \). Hence \(h \) is also proper epi. Thus, there is \(z \in A(m) \) such that

\[A(h)(z) = x \quad \text{and} \quad A(f')(z) = y \]

But this means that \(x \notin A_n \). This shows that \(A(f) \) is well defined.
Now we define a natural isomorphism
\[\varphi^A : \tilde{A} \rightarrow A \]
so that
\[\varphi^A_X([a, \bar{x}]_{\sim}) = \mathcal{A}(\bar{x})(a) \]
for any \(X, n \in \omega, a \in A_n \), and epi \(\bar{x} : X \rightarrow (n] \).

The fact that \(\phi^A \) is a natural transformation is left for the reader. \(\phi^A \) is onto as \(\mathcal{A} \) sends canonical finitary cocones under any set \(X \) in \(\text{Set}^{op} \) to colimiting cocones in \(\text{Set} \).

We shall show that \(\phi^A \) is mono. Fix a set \(X \) and let \([a, \bar{x}] : X \rightarrow (n] \), \([a', \bar{x}'] : X \rightarrow (n'] \) \(\in \tilde{A}(X) \) such that
\[\varphi^A_X([a, \bar{x}]_{\sim}) = \varphi^A_X([a', \bar{x}']_{\sim}) \]

By assumption, the pushout of epi \(\bar{x} \) along epi \(\bar{x}' \) in \(\text{Set} \)
\[(n) \xrightarrow{\bar{x}} X \]
\[f \]
\[(m) \xrightarrow{\bar{x}'} [n'] \]

is sent to the pullback in \(\text{Set} \) by \(\mathcal{A} \). Hence there is \(a'' \in \mathcal{A}(m) \) such that
\[\mathcal{A}(f)(a'') = a \quad \text{and} \quad \mathcal{A}(f')(a'') = a' \]
Thus, by definition of \(A_n \) and \(A_{n'} \), both \(f \) and \(f' \) are bijections (as they are epi but cannot be proper epi). Hence
\[\mathcal{A}(f^{-1} \circ f')(a) = a' \]
that is \([a, \bar{x}] : X \rightarrow (n] \) \(= [a', \bar{x}'] : X \rightarrow (n'] \) and \(\phi^A_X \) is mono, for any set \(X \).

\[\square \]

Lemma 2.5. Let \(A, B : \Gamma^{op} \rightarrow \text{Set} \) be functors and \(\psi : \tilde{A} \rightarrow \tilde{B} \) a semi-analytic natural transformation. Then there is a natural transformation \(\tau : A \rightarrow B \) in \(\text{Set}^{\Gamma^{op}} \) such that \(\tilde{\tau} = \psi \).

Proof. Let \(\psi : \tilde{A} \rightarrow \tilde{B} \) be a semi-analytic natural transformation. We define a natural transformation \(\tau : A \rightarrow B \in \text{Set}^{\Gamma^{op}} \), as follows. Fix \(m \in \omega \) and \(a \in A_m \). Let \(\psi(m)([a, 1]_{\sim}) = [b, p : (m) \rightarrow (k)]_{\sim} \in \tilde{B}(m) \). As \(p \) is an epi and \(\psi \) is semi-analytic, the naturality square for \(p \)
\[\begin{array}{ccc} \tilde{A}(m) & \xrightarrow{\psi(m)} & \tilde{B}(m) \\ \downarrow \mathcal{A}(p) & & \downarrow \mathcal{B}(p) \\ \tilde{A}(k) & \xrightarrow{\psi(k)} & \tilde{B}(k) \end{array} \]
is a pullback, and $\tilde{B}(p)([b, 1_k]_\sim) = [b, p]_\sim$. Hence there is $[c, q]_\sim \in \tilde{A}(k)$ such that

$$\tilde{A}(p)([c, q]_\sim) = [a, 1_{(m)}]_\sim \text{ and } \psi_{(k)}([c, q : (k) \to (l)]_\sim) = [b, 1_{(k)}]_\sim$$

In particular $q \circ p$ is a bijection, as $1_{(m)}$ is. Hence $k = m$ and p is a bijection. We put

$$\tau_m(a) = b \cdot B p$$

Thus

$$\psi_{(m)}([a, 1_{(m)}]_\sim) = [\tau_m(a), 1_{(m)}]_\sim$$

for $m \in \omega$ and $a \in A_m$. From the naturality of ψ on a mono $f : (m') \to (m) \in I$, for any $a \in A_m$, we have

$$[\tau_{m'}((a \cdot_A f), 1_{(m')} \sim) = \psi_{(m')}([a \cdot_A f], 1_{(m')} \sim) =$$

$$= \psi_{(m')} \circ \tilde{A}(f)([a, 1_{(m)}]_\sim) = \tilde{B}(f) \circ \psi_{(m)}([a, 1_{(m)}]_\sim) =$$

$$= \tilde{B}(f)([\tau_m(a), 1_{(m)}]_\sim) = [\tau_m(a) \cdot_B f, 1_{(m)}]_\sim$$

Thus

$$\tau_{m'}(A(f)(a)) = B(f)(\tau_m(a))$$

and hence $\tau : A \to B$ is natural.

It remains to show that $\tilde{\tau} = \psi$. Fix set X, $m \in \omega$ and $[a, q : X \to (m)]_\sim \in \tilde{A}(X)$. Using naturality of ψ, $\tilde{\tau}$ on q and the above, we have

$$\psi_X([a, q]_\sim) = \psi_X \circ \tilde{A}(q)([a, 1_{(m)}]_\sim) =$$

$$= \tilde{B}(q) \circ \psi_{(m)}([a, 1_{(m)}]_\sim) = \tilde{B}(q)([\tau_m(a), 1_{(m)}]_\sim) =$$

$$= \tilde{B}(q) \circ \tau_{(m)}([a, 1_{(m)}]_\sim) = \tilde{\tau}_X \circ \tilde{A}(q)([a, 1_{(m)}]_\sim) =$$

$$= \tilde{\tau}_X([a, q]_\sim)$$

Thus $\tilde{\tau} = \psi$, as required. \Box

The fact that $\tilde{\sim}$ is immediate from the definition and hence Theorem 2.2 follows from Lemmas 2.3, 2.4, 2.5.
3 The action

The category \textbf{End} of endofunctors on \textit{Set} with composition as a tensor is strict monoidal. The composition

\[\text{End} \times \text{cEnd} \to \text{cEnd} \]

is an action of a monoidal category on a category. By Theorem 2.2 and characterization of semi-analytic functors (Theorem 2.2 of [SZ]) the composition of semi-analytic functor with co-semi-analytic functor is co-semi-analytic. Thus the above action restricts to the action

\[\text{San} \times \text{cSan} \to \text{cSan} \]

where \text{San} is the category of semi-analytic functors defined in [SZ]. This category is equivalent to \textit{Set}8 and has nice abstract characterization, see Section 2 of [SZ].

\textbf{Examples.} The examples of actions of (semi-analytic) monads on \textit{Set} on contravariant functors on \textit{Set} consist of functors that build algebras of a (semi-analytic) monad out of sets in a contravariant way. We list some such examples below.

1. Let \(R \) be any algebra for a monad \(T \) on \textit{Set} and let \(R(X) \) be the algebra of functions on \(X \) with values in \(R \) with operations of the monad defined pointwise. Then \(R \) is a contravariant functor on \textit{Set} on which we have an action of the monad \(T \). The following two examples are, in a sense, special cases of this situation.

2. The contravariant power-set functor \(\mathcal{P} : \text{Set}^{\text{op}} \to \text{Set} \) is co-semi-analytic (see next example). Its value on a set \(X \) is the universe of a Boolean algebras \(\mathcal{P}(X) \) and the inverse image functor preserves the Boolean algebra structure. Thus the monad \(T_{ba} \) on \textit{Set} for Boolean algebras acts on \(\mathcal{P} \). However, the monad \(T_{ba} \) is not semi-analytic.

3. For any \(n \in \omega \) the functor

\[\mathcal{E}^n : \text{Set}^{\text{op}} \to \text{Set} \]

\[X \mapsto (n)^X \]

is co-semi-analytic. The coefficient functor

\[E^n : I^{\text{op}} \to \text{Set} \]

for \(\mathcal{E}^n \) is representable by \((n) \). The action of the monad \(T_{ba} \) on the functor \(\mathcal{P} \) described above is a special case of the following. Let \(T \) be a monad on \textit{Set} and \(((n), \alpha : T(n) \to (n)) \) be a \(T \)-algebra. Then on \(\mathcal{E}^n(X) \) there is a natural structure of a \(T \) algebra defined pointwise or using strength of \(T \).
Recall that if X and Y are sets and $x \in X$, then we have a function $\bar{x}: Y \to X \times Y$ such that $\bar{x}(y) = (x, y)$. This allows to define strength on T:

$$st_{X,Y}: X \times T(Y) \to T(X \times Y)$$

so that $st_{X,Y}(x, t) = \bar{x}(t)$. It is an easy exercise to show that the strength on any semi-analytic monad is semi-cartesian.

The T-algebra structure on $E^n(X)$ is the exponential adjoint of

$$
\begin{array}{ccc}
X \times T((n)^X) & \xrightarrow{st_{X,(n)^X}} & T(X \times (n)^X) & \xrightarrow{T(ev)} & T(n) & \xrightarrow{\alpha} & (n)
\end{array}
$$

where ev is the usual evaluation map.

References

[D] R. Dougherty, *Functors on the Category of Finite Sets,* TAMS, vol. 330, Number 2, April (1992).

[P] R. Paré, *Contravariant Functors on Finite Sets and Stirling Numbers,* Theory and Applications of Categories, Vol. 6, (1999), No. 5, pp. 65-76.

[SZ] S. Szawiel, M. Zawadowski, *Monads of regular theories,* arXiv:1207.0121 [math.CT], (2012).