MACHINE LEARNING APPROACHES FOR COVID-19 DETECTION FROM CHEST X-RAY IMAGING: A SYSTEMATIC REVIEW

A PREPRINT

Harold Brayan Arteaga-Arteaga1, Melissa delaPava1, Alejandro Mora-Rubio1, Mario Alejandro Bravo-Ortíz1, Jesus Alejandro Alzate-Grisales1, Daniel Arias-Garzón1, Luis Humberto López-Murillo2, Felipe Buitrago-Carmona3, Juan Pablo Villa-Pulgarín1, Esteban Mercado-Ruiz1, Simon Orozco-Arias3,4, M. Hassaballah5, María de la Iglesia-Vaya6, Oscar Cardona-Morales1, and Reinel Tabares-Soto1,*

1Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
2Department of Chemical Engineering, Universidad Nacional de Colombia, Manizales, Colombia
3Department of Computer Science, Universidad Autónoma de Manizales, Manizales, Colombia
4Department of Systems and informatics, Universidad de Caldas, Manizales, Colombia
5Faculty of Computers and Information, South Valley University, Qena, Egypt
6Unidad Mixta de Imagen Biomédica FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad Valenciana, Valencia, Spain

June 14, 2022

ABSTRACT

There is a necessity to develop affordable, and reliable diagnostic tools, which allow containing the COVID-19 spreading. Machine Learning (ML) algorithms have been proposed to design support decision-making systems to assess chest X-ray images, which have proven to be useful to detect and evaluate disease progression. Many research articles are published around this subject, which makes it difficult to identify the best approaches for future work. This paper presents a systematic review of ML applied to COVID-19 detection using chest X-ray images, aiming to offer a baseline for researchers in terms of methods, architectures, databases, and current limitations.

Keywords COVID-19 · X-ray images · automatic detection · artificial intelligence · machine learning

1 Introduction

The first confirmed cases of COVID-19 disease appeared in Wuhan, Hubei province, China back in December 2019 [Wang et al., 2020]. The disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [Yuen et al., 2020], which is transmitted primarily through droplets of saliva or discharge from the nose [World Health Organization, 2020a]. It has spread all over the world, and it was declared as a pandemic by the World Health Organization (WHO) in March 2020 [World Health Organization, 2020b]. Based on data from Johns Hopkins University, as of October 13th, 2021, there have been 239,038,163 confirmed cases of COVID-19 around the world including 4,871,163 deaths [World Health Organization, 2021]. According to the WHO, most infected people develop a moderate illness with symptoms such as fever, dry cough, and fatigue. In severe cases where patients need hospitalization, the symptoms include breathing difficulties, chest pain, and loss of speech or movement [World Health Organization, 2020a].

COVID-19 can be diagnosed using tools based on the detection of viral gene, human antibody, or viral antigen, which requires qualified personnel and a specialized laboratory. As a complementary diagnostic tool, doctors employ medical imaging techniques such as chest X-ray or chest Computerized Tomography (CT). The produced images offer information about the lungs and can help radiologists to detect diseases like pneumonia, tuberculosis, interstitial lung

*Corresponding author: Reinel Tabares-Soto. Email address: rtabares@autonoma.edu.co
disease, pneumothorax, early lung cancer, among others [Anis et al., 2020]. These images also have proven to be effective for COVID-19 detection, as well as giving information about disease progression through the evaluation of radiological findings [Ng et al., 2020].

- **Real-Time Reverse Transcription Polymerase Chain Reaction**: the viral gene detection by Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR) is very sensitive because it can detect a copy of a specific genomic sequence, which has lead to the development of many commercial technologies that use nasal or nasopharyngeal swabs along with RT-PCR for COVID-19 detection [Yuce et al., 2021]. However, the detection of COVID-19 using RT-PCR is complex, the materials are sometimes slow to deliver, and the complete process can only be performed by qualified clinical laboratory personnel, which take over 24 hours to bring the results. It is also expensive due to one kit can cost over 100 USD and setting a lab costs more than 15,000 USD. Additionally, many factors like storage, collection, processing, and genomic mutations, can lead to incorrect results [Afza] 2020. Other drawbacks include low availability in some countries [Aziz et al., 2020], and high false-negative rates [Fan et al., 2020].

- **Computed Tomography scan**: this is an advanced technique that allows to generate detailed 3D images of organs and soft tissues [Ohata et al., 2021]. Unlike RT-PCR, a CT scan is fast to obtain and it is relatively easy to perform. It has been recently reported that this technique shows typical features of COVID-19 like ground-glass opacities and multifocal patchy consolidation, even in patients with negative PCR but clinical symptoms [Ai et al., 2020]. However, decontaminate CT equipment after scanning COVID-19 patients may loosen the risk of cross-infection, it is suggested to use portable devices like chest radiography, which is already a triage tool in many hospitals [Wong et al., 2020].

- **Chest X-ray**: X-ray refers to a medical imaging technique that uses radiation to generate an image of internal structures of the human body. The main elements that are assessed using X-ray are bones, which appear white on the image; soft tissues, which appear as light gray; fat, which appears gray; and gas, which appears black [Anis et al., 2020]. In particular, a chest X-ray image allows a doctor to evaluate multiple organs, structures and conditions Breiding[2009]. It is one of the most used methods to diagnose pneumonia worldwide [Jaiswal et al., 2019].

 Chest X-ray devices can be portable, are affordable, fast, and gives the patient a lower radiation dose than CT. It has been reported that common CT findings can also be detected on chest X-ray images, even in patients with initial negative RT-PCR for COVID-19. However, the diagnosis of COVID-19 using chest X-ray images is more difficult than using CT or other imaging modalities and can only be performed by specialist physicians, which scarce [Narin et al., 2021] [Wong et al., 2020].

There is a trade-off between quality and accessibility when choosing the imaging technique to use. CT produces a higher quality image but requires a much more complex device, not always available in many institutions. On the contrary, X-ray devices are much more affordable, can be portable, and are less harmful, given that a single CT scan can deliver a median effective radiation dose as high as 442 chest X-ray series [Breiding 2009].

Concerning the radiological findings on chest X-ray and CT associated with COVID-19 pneumonia, the most common are ground glass opacities. These marks are usually bilateral, meaning they affect both lungs and are more likely to be located in the periphery and lower areas of the lungs [Kaufman et al., 2020] [Yasin and Gouda, 2020]. They can be seen in chest X-ray images, or CT images as regions of increased whiteness due to the augmented density [Cleverley et al., 2020], which do not cover blood vessels and airway walls completely [Rousan et al., 2020]. As the disease progresses, this finding becomes denser and covers blood vessels and airway walls on the image, becoming consolidations. Fig. [1] presents a comparison of the chest X-ray images for a COVID-19 negative subject and a COVID-19 positive subject; additionally, for the COVID-19 case, the image on the right shows the masks over the regions of ground glass opacities (yellow) and consolidations (purple).

The WHO solidarity consortium from February 2021 presents a study to find a drug against COVID-19, however, it was found that the mortality, initiation of ventilation, and hospitalization duration were not definitively reduced by any trial drug. Until now, no specific drug has been found against COVID-19 WHO Solidarity Trial Consortium [2021]. Currently, there are 153 vaccine candidates, 476 vaccine trials ongoing, 23 vaccines approved by at least one country, and 7 vaccines approved for use by the WHO against COVID-19. The AstraZeneca vaccine is the one approved in the largest number of countries, followed by Pfizer/BioNTech, Moderna, and Janssen [WHO] 2021.

Artificial Intelligence (AI) techniques, including Machine Learning (ML), can be used for COVID-19 diagnosis from chest X-ray images and set foundations for automatic decision-making support systems [Arteaga-Arteaga et al., 2022]. AI refers to the process of providing computer features from human intelligence. ML is a subset of AI that holds the mathematical models used to achieve this task, whereas Deep Learning (DL) is a subset of ML itself and relates the models and algorithms based on neural networks [Goodfellow et al., 2016]. In general, ML and DL techniques are
Figure 1: Examples of chest X-ray images for a COVID-19 negative subject, a COVID-19 positive subject. The last one shows the masks over the regions of ground glass opacities (yellow) and consolidations (purple) on the region of interest.

designed to extract features and find relationships between data samples. Thereby, these approaches are well-suited for tasks relying on the human experience [Orozco-Arias et al., 2019] [Tabares-Soto et al., 2019] [Bravo Ortiz et al., 2021] [Kemel et al., 2021] [Arteaga-Arteaga et al., 2021] such as classifying a chest X-ray image as positive or negative for COVID-19. Besides decision-making support systems in the medicine and healthcare field, AI has been used to perform tasks from managing medical data and analyzing health plans to drug development and health monitoring [Amisha et al., 2019]. AI applications in medicine aim to improve diagnostic performance and offer a better quality of service [Ahuja, 2019].

Regarding the detection of COVID-19 in chest X-ray images using AI techniques, most research papers propose a transfer learning approach using Convolutional Neural Networks (CNNs) such as VGG19, Inception, and MobileNet [Pham, 2021]. A different approach creates novel CNNs to classify chest X-ray images as positive or negative for COVID-19 [Hussain et al., 2021]. Different traditional ML approaches have been proposed involving a manual feature extraction stage employing texture or morphological descriptors of the images [Hussain et al., 2020] [Pereira et al., 2020]. The availability of data is probably the biggest limitation when designing AI systems to detect COVID-19, although nowadays there are several public image databases, the quality of images and information is highly variable, which makes it difficult for researchers to evaluate their systems on appropriate conditions. Furthermore, there is not a standard benchmark to evaluate and compare the different proposals, which in combination with data variability, makes the reported results difficult to compare with each other.

The paper is organized as follows: Section Survey Methodology explains the criteria used to perform the literature review; Section Development Of The Subject presents the results and the state of the art; and Section Conclusions and Future Work.

2 Survey Methodology

A systematic review of scientific papers was conducted, which explains the design and implementation of CNN, ML algorithms, or segmentation methods, for COVID-19 classification from chest X-ray images.

2.1 Identification of the need for a review

Given the need to develop more efficient and effective diagnostics tools for the COVID-19 disease, many research papers have been written since the beginning of the pandemic. One estimate suggests that more than 200,000 research papers have been published in journals and preprints repositories only in 2020 [Else, 2020]. Therefore there is a need for a new state-of-the-art review.

State-of-the-art works up to March 21, 2021, are summarized in Table I, where is shown if they specify the corresponding preprocessing techniques and datasets used in the selected works, the date of search, whether or not it is systematic, the number of search databases used, the data modalities included in the work, the number of X-ray related articles analyzed and the number of X-ray related databases described. Table I shows that some of the available state-of-the-art works do not follow a systematic approach, and only include works up to July 2020 or before, unlike our work that covers from January 1, 2020, to March 21, 2021. Additionally, our work uses the largest number of search databases and some of the available state-of-the-art include a limited amount of papers that identify COVID-19 using X-ray images.
The description of the available datasets presented in this work also fills a gap in the literature, since the available works barely describe some of them. We also present the preprocessing techniques and the specific datasets used on each work selected for this literature review, what is not included in any of the available works, along with the models, tasks and results described help researchers to build a complete panorama of the actual strategies used for the detection of COVID-19 using X-ray images. Our work is a complement to many of the available works since they invest more effort in discussing the risk of bias, recommendations, and deficiencies than in the specific methodologies details as we do. Therefore, our bibliographic review contributes relevant and up-to-date information about the development of AI-based systems to detect COVID-19 from chest X-ray images. It will also offer a baseline for researchers regarding methods, architectures, databases, and current limitations.

2.2 Research questions

In order to describe the state-of-the-art approaches for COVID-19 detection, this paper aims to answer the following questions:

- Which are the different architectures and novel components of CNNs used to detect COVID-19 on chest X-ray images?
- What are the detection performances of COVID-19 on chest X-ray images using CNNs?
- Which digital image databases are the most used for COVID-19 detection on chest X-ray images?
- Which segmentation methods are applied on chest X-ray images for the automatic detection of COVID-19?

2.3 Bibliographic search

The key words chosen for this search are:

- COVID-19.
- Deep Learning.
- Machine Learning.
- Classification.
- Segmentation.
- Chest X-ray.

After defining the search terms, the search string was built with logical operators. Due to COVID-19 being a disease that emerged in late 2019, the search is limited between 2020 - Present, only in the English language. The general search string is: Covid-19 AND (Machine Learning OR Deep Learning) AND (Classification OR Segmentation) AND X-ray. Table 2 shows the databases and search strings used for the review. The gray literature search included papers with novel COVID-19 classification methods from chest X-ray images.
Table 1: Related works

Article	Database specification	Preprocessing specification	Date of search	Date of publication	Systematic	Search databases	Articles analyzed	Databases described
Rahman et al. [2021]	✓		-	March 02, 2021	✓	-	23	12
Nayak et al. [2021a]			-	March 20, 2021	✓	4	41	1
Wynants et al. [2020]			July 01, 2020	April 07, 2021	✓	5	22	-
Wu et al. [2021]			March 31, 2020	April 16, 2020	✓	-	4	-
Swapnareekha et al. [2020]			May 03, 2020	May 26, 2020	✓	-	12	-
Waleed Saleh et al. [2020]			-	June 23, 2020	✓	-	5	-
Albahri et al. [2020]			May 15, 2020	June 25, 2020	✓	4	11	-
Bansal et al. [2020]			-	August 01, 2020	✓	-	-	-
Syeda et al. [2021]			June 27, 2020	January 11, 2021	✓	3	22	23
Roberts et al. [2021]			-	March 15, 2021	✓	-	22	-
Our work	✓	✓	March 21, 2021	-	✓	6	23	18
Table 2: Databases and search strings for literature review

Name of the search database	Search string
Scopus	TITLE-ABS-KEY (Covid-19 AND (Machine Learning OR Deep Learning) AND (Classification OR Segmentation) AND X-ray)
Web of Science	(SUBJECT OR TITLE: Covid-19 AND (Machine Learning OR Deep Learning) AND (Classification OR Segmentation) AND X-ray)
SpringerLink	Covid-19 AND (Machine Learning OR Deep Learning) AND (Classification OR Segmentation) AND X-ray.
PubMed	Covid-19 AND (Machine Learning OR Deep Learning) AND (Classification OR Segmentation) AND X-ray.
IEEE Xplore	Covid-19 AND (Machine Learning OR Deep Learning) AND (Classification OR Segmentation) AND X-ray.
Google Scholar	Covid-19 AND (Machine Learning OR Deep Learning) AND (Classification OR Segmentation) AND X-ray.

2.4 Inclusion and exclusion criteria

The inclusion criteria taken into account are:

- Papers published in Journals.
- Papers written in English.
- Papers found in the databases in Table 2.
- Papers that use DL o ML to detect COVID-19 from chest X-ray images.
- Papers using novel methods for COVID-19 detection.

The exclusion criteria taken into account are:

- COVID-19 classification or segmentation papers without application of DL or ML methods.
- COVID-19 classification papers that do not use chest X-ray.
- Papers with methods that include X-ray and CT simultaneously in the methods training.

2.5 Data extraction and synthesis

We conduct a systematic literature review by applying the preferred reporting items for systematic reviews and meta-analyses guidelines (the PRIMA statement), the Fig. 2 presents the number of articles obtained on each step of the guidelines [Moher, 2009].

Based on the search string provided in Table 2, approximately 720 papers are found and 120 papers per database are analyzed, from which 20 relevant papers per database are pre-selected. The pre-selection is done using the number of citations and the novelty of the COVID-19 detection method proposed. It is relevant to clarify that we found 14 repeated papers that are rejected; therefore, the pre-selection of the papers leads to 106 documents. The remaining 106 articles are filtered according to:

- **Title**: After reading the title, 40 are accepted and 66 papers are rejected.
- **Abstract**: After reading the abstract, 28 are accepted and 12 papers are rejected.
- **Full text**: After reading the entire text, 23 papers are accepted and 5 papers are rejected.

Figure 3 presents the percentage distribution of the selected papers in the databases.

3 Development of the subject

As mentioned in the previous section, a total of 23 research papers are selected for the systematic review. This paper aims to cover novel approaches and offer a general overview of how AI has been applied to COVID-19 diagnosis.
A Systematic Review

Figure 2: PRISMA flow diagram. PRISMA flow chart for search and article screening process. From: [Moher, 2009](#).

Figure 3: Percentage of papers selected for bibliographic review in different databases.

1. Records identified through database searching (n = 720)
2. Additional records identified through other sources (n = 0)
3. Records screened (n = 720)
4. Records excluded (n = 600)
5. Records after duplicates removed (n = 106)
6. Full-text articles assessed for eligibility (n = 106)
7. Full-text articles excluded, with reasons (n = 83)
8. Studies included in review (n = 23)
3.1 X-ray images databases

Table 3 presents the most relevant databases used in the selected articles, they are described along with the total number of images, and the classes. This table includes not only databases with COVID-19 samples but also other chest diseases, due to some of the works published regarding the detection of COVID-19, which intend to classify multiple chest conditions. The most often classified illnesses along with COVID-19 are pneumonia viral, pneumonia bacterial, and tuberculosis. The COVID-19 Image Data Collection published by Paul Cohen et al. [2020] is the most used database, it was one of the first ones to be released and more images are included over time. It also provides prospective metadata like survival, ICU stay, intubation events, blood tests, location, and freeform clinical notes. The most regularly used databases in this regard with X-ray samples of other chest diseases are ChestX-ray8 (CRX8), CheXpert, Chest X-ray Images (Pneumonia), and Tuberculosis chest X-ray.

Table 3: Image databases for COVID-19 research

Item	Dataset name	# Images	Classes
A	HM Hospitals [HM Hospitals, 2020]	5,560	COVID-19
B	BIMCV-COVID19 [Vayá et al., 2021]	3,013	COVID-19
C	Actualmed COVID-19 chest X-rays [Actualmed et al. 2020]	188	COVID-19; Normal
D	ChinaSet - The ShenzhenSet [Jaeger et al., 2014]	662	Pneumonia; Normal
E	Montgomery [Jaeger et al., 2014]	138	Pneumonia; Normal
F	ChestX-ray8 (CRX8) [Wang et al., 2017]	61,790	Pneumonia; Normal
G	CheXpert [Irvin et al., 2019]	4,623	Pneumonia
H	MIMIC-CXR [Johnson et al., 2019]	16,399	Pneumonia
I	COVID-19 Image Data Collection [Paul Cohen et al., 2020]	481	Viral (COVID-19; SARS; MERS; among others); Bacterial; Others
J	Kermany et al. [Kermany et al., 2018]	5,840	Normal (1,575); Pneumonia Bacterial (2,771); non-COVID-19 lung infection (1,494)
K	RSNA, Radiopedia and SIRM [Dadario, 2020]	73	COVID-19
L	RYDLS-20 [Pereira et al., 2020]	1,144	Normal (1,000); Pneumonia (144); (MERS (10); COVID-19 (90); Pneumocystis (11); SARS (11); Streptococcus (12); Varicella (10))
M	COVID-19 Radiography Database (Qatar university) [Rahman et al., 2020]	21,165	COVID-19 (3,616); Normal (10,192); Viral Pneumonia (1,345); Non-COVID-19 lung infection (6,012)
N	NIH Chest X-ray [Wang et al., 2017]	108,948	Atelectasis; Mass; Cardiomegaly; Nodule; Effusion; Normal; Infiltration; Pneumonia
O	Chest X-ray Images (Pneumonia) [Mooney, 2018]	5,863	Pneumonia (bacterial and viral); Normal
P	COVID-19 dataset [Societa Italiana di Radiologia Medica e Interventistica, 2020]	115	COVID-19
Q	CHUAC dataset [De Moura et al., 2020]	1,616	Normal (728); Pathological (648); COVID-19 (240)
R	COVID-19 X rays [Dadario, 2020]	79	COVID-19

3.2 Approaches for the automatic detection of COVID-19 using X-ray images

Table 4 presents relevant information regarding the methodology applied in each selected paper, the best results achieved, the AI models used, the image databases involved, the classes, and the preprocessing operations. The
state-of-the-art networks most used are the VGG and ResNet family and the preprocessing steps more prevalent are resizing, normalization and cropping. Most of the models reported have high performances, however, the experimental setups are not always clear due to most of the authors combine multiple databases and then split the resulting set in the training, validation, and test partitions without doing any further clarification. In many cases, the testing of the model is done using very few images and none of the analyzed works perform clinical validation of the methods.

Table 4: Implementation details and results of the selected papers for the detection of COVID-19 using chest X-ray images

Article	Models	Database	Classes	Preprocessing	Best Results											
Apostolopoulos and Mpesiana, 2020	VGG16; MobileNetV2; Inception; Xception; Inception-ResNet-V2	I, J	COVID-19; Pneumonia; Normal	Resize, 200 x 266	MobileNetV2: Accuracy, 94.7%; Sensitivity, 98.7%; Specificity, 96.5%											
Ucar and Korkmaz, 2020	COVID Diagnosis-Net (based on SqueezeNet)	I, O	COVID-19; Pneumonia; Normal	Resize, 227 x 227; Shuffled; Normalization with the mean subtracting operation; Conversion to RGB with 8-bit depth	Accuracy, 98.3%; Specificity, 99.1%; F1, 98.3%											
Ozturk et al., 2020	Dark CovidNet (based on Darknet-19 model)	F, I	(COVID-19; Normal); (COVID-19; Pneumonia; Normal)	N/A	Binary Accuracy, 98.1%											
Toğaçar et al., 2020	MobileNetV2; SqueezeNet; Social Mimic optimization method; SVM	I, M	COVID-19; Pneumonia; Normal	Conversion to jpg format; Fuzzy Color technique	Overall accuracy, 98.3%; COVID-19 Sensitivity, 99.3%; COVID-19 Specificity, 99.4%											
Pereira et al., 2020	SVM; MLP; DT; RF; Hierarchical Clus-HMC	I, N, L	Normal; COVID-19; MERS; SARS; Varicella; Streptococcus; Pneumocystis	Manual crop	Multiclass: COVID-19 class F1 score, 83.3%; Hierarchical: COVID-19 class F1 score, 88.8%											
Apostolopoulos et al., 2020	MobileNetV2	I, P	COVID-19; Edema; Emphys; Fibrosis; Pneumonia; Normal	Resize, 200 x 200	Accuracy between the seven classes of 87.7%											
Reference	Model	I/O/S	Images	Resize	Data Augmentation	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity	Accuracy	Sensitivity	Specificity	Accuracy	
--------------------------	-----------------	---------	---	--------	-------------------	----------	--------------	-------------	----------	------------	-------------	----------	------------	-------------	----------	----------
[Waheed et al., 2020]	ACGAN, VGG16	I, M, R	COVID-19; Normal	Resize, 112 x 112 x 3	Normalization	85%	69.0%	95.0%							95.0%	
[Khan et al., 2020]	CoroNet	I, O	(COVID-19; Normal; Pneumonia bacterial; Pneumonia viral); (COVID-19; Pneumonia; Normal)	Resize, 224 x 224	Four classes: Accuracy, 93.0%; Three classes: Accuracy, 95.0%											
[Das et al., 2020]	Truncated Inception Net	I, O, S	COVID-19; Pneumonia; Tuberculosis; Normal	Resize, 224 x 224 x 3	COVID-19 positive cases: Accuracy, 99.96%; AUC, 100%											
[Toraman et al., 2020]	CapsNet	I, N	(COVID-19; Normal); (COVID-19; Pneumonia)	Resize, 128 x 128; Data augmentation	Multi-class: Accuracy, 84.2%											
[Blain et al., 2021]	U-Net, DenseNet121	K	N/A	Lung segmentation	Diagnosing alveolar opacities: Accuracy, 78.5%; Diagnosing interstitial opacities: Accuracy, 90.7%											
[Horry et al., 2020]	VGG19	I, N	COVID-19; Normal; Pneumonia	Resize, 224 x 224; Histogram equalization using N-CLAHE	X-ray: Accuracy, 86.0%; Ultrasound: Accuracy, 100%; CT: Accuracy, 84.0%											
Reference	Network(s)	Classification	Preprocessing	Accuracy	Specificity	Sensitivity										
-----------	------------	----------------	---------------	-----------	--------------	--------------										
King et al. 2020	VGG16; ResNet50V2; DenseNet169	I	COVID-19; Normal	Resize	150 x 150	99.9%										
Karar et al. 2020	MobileNet; DenseNet121; ResNet-V2; Bayes; RF; MLP; KNN; SVM	I, R, O, N	COVID-19; Normal; Viral Pneumonia; Bacterial Pneumonia	MobileNet + SVM (Linear)	Accuracy, 98.6%; F1-score, 98.5%											
Ohata et al. 2021	MobileNet; DenseNet161	Q	COVID-19; Pathological; Normal; Combinations	N/A	Accuracy, 90.3% in (Normal & Pathological) vs. COVID-19 ResNet34, 98.3%											
Shorfuzzaman and Hossain 2020	Siamese Network	I, O	COVID-19; Normal; Pneumonia	Normalize; Histogram-equalization	Accuracy, 95.6%; AUC, 98.9%											
De Moura et al. 2020	DenseNet161															
Nayak et al. 2021b	AlexNet; VGG16; GoogleNet; MobileNetV2; SqueezeNet; ResNet34; ResNet50; InceptionV3	F, I	COVID-19; Normal	Normalization												
Karakanis and Leontidis 2021	CNN Designed	I, O	(COVID-19; Normal); (COVID-19; Normal; Bacterial Pneumonia)	Resize, 224 x 224	Binary classification: Accuracy, 98.7%; Sensitivity, 100%; Specificity, 98.3%											
Albahi and Yar 2021	NasNetLarge; Xception; InceptionV3; Inception-ResNetV2; ResNet50	I, N	COVID-19; normal; 14 other chest diseases	Histogram equalization; Lung and heart segmentation	First classifier: Accuracy, 96.3% Second classifier: Accuracy, 87.8%											
Singh et al. 2021	VGG19; VGG16; ResNet50; DenseNet161; DenseNet169; Naive Bayes	Q, R, M, N, G	COVID-19; Pneumonia; Normal	Histogram equalization (CLAHE); Dynamic image filtering (NLMD)	Accuracy, 98.7%											
We summarize the different approaches in the literature for COVID-19 automatic detection using X-ray images. We aim to present the different strategies for preprocessing, classification, and interpretability implemented in literature.

3.2.1 Preprocessing strategies

The most common preprocessing methods found are: normalization, cropping and resizing, being the predominant size 224×224 [Sarv Ahrabi et al., 2021]. It has also been applied the selection of only anteroposterior (AP) or posteroanterior (PA) views from the images in the databases [Arias-Londono et al., 2020, Panwar et al., 2020] and the state-of-the-art architectures own preprocessing [Castiglioni et al., 2021]. Other strategies found include the Fuzzy Color technique [Toğacı et al., 2020] and the multiscale offline augmentation, which incorporate shearing the image, adding Gaussian noise, and decreasing the brightness [Ucar and Korkmaz, 2020].

Authors have stated that the CNNs used for the detection of COVID-19 using chest X-ray images, base their classifications in areas in the input image outside the region of interest, which has no relation with COVID-19 signs [Majeed et al., 2020]. Therefore, some works perform a segmentation of the lungs using the U-Net network as a preprocessing step to ensure that the network classification is based on regions inside them [Tartaglione et al., 2020, Arias-Londono et al., 2020, Rajaraman et al., 2020]; another approach is presented by [Aslan et al., 2021] here the lungs are segmented before the classification using a new ANN-based network.

Several authors include data augmentation in the network training to mitigate the dataset imbalance, the most common transformations reported are rotation, horizontal, and vertical flip [Khan et al., 2020, Zebin and Rezvy, 2021]. Other transformations applied are: Gaussian noise [Nayak et al., 2021b]; shearing, elastic distortion [Sarv Ahrabi et al., 2021] and histogram equalization [Tartaglione et al., 2020]. Data imbalance has also been compensated using Generative Adversary Networks (GANs) to generate artificial images and augment the minority COVID-19 class, some examples are the CycleGAN [Karakonis and Leontidis, 2021]; the conditional generative adversarial networks [Zebin and Rezvy, 2021], and the Auxiliary Classifier Generative Adversarial Network (ACGAN) [Waheed et al., 2020], this work shows that their model accuracy can increase by 10% if the synthetic images produced are used during training.
3.2.2 Classification methods

Despite the short time since COVID-19 emerged, the limited availability of data and knowledge in this regard, many methods have been proposed for the automatic detection of this disease using chest X-ray images.

Transfer learning using state-of-the-art CNNs architectures is the most commonly found strategy to perform this task. Among the most frequently used networks are VGG19, VGG16, Inception-ResNetV2, MobileNetV2, ResNet50, and EfficientNetB0 [Apostolopoulos and Mpesiana 2020, Zebin and Rezvy 2021].

Figure 4 shows the VGG19 architecture that has a total of 19 layers, namely 16 2D-Convolutional layers and 3 dense layers. This figure shows the number of filters, the kernel size, the strides size, the padding name, the activation function, and the shape of the output of each layer. Usually, to implement transfer learning, researchers deleted the layers after the Flatten, i.e., the dense layers and Softmax activation function, and replace them with a particular fully connected layer. The final activation function generates predictions from the last dense layer, with a specific number of classes.

Other state-of-the-art CNNs architectures have also been used in literature: DenseNet161 is adapted to classify chest X-ray images acquired by portable equipment [De Moura et al. 2020]. ResNet50 and ResNet101 are used in a two-stage model, where pneumonia and healthy images are initially identified and later COVID-19 examples are classified from the pneumonia cases [Jain et al. 2020]. ResNet50 lead to the best results of two stages model to classify COVID-19 and other 14 chest diseases, being the results competitive with currently used state-of-the-art models [Albahli and Yar 2021]. Inception is truncated at a layer that is chosen experimentally to avoid possible overfitting due to the lack of COVID-19 positive samples [Das et al. 2020]. Similarly, ImageNet pre-trained models are also pruned and their predictions are combined through different ensemble strategies [Rajaraman et al. 2020].

A common approach uses state-of-the-art CNNs as feature extractors and machine learning classifiers to make the final predictions, this integrated approach has been performed using machine learning models like Support Vector Machine (SVM), linear kernel and radial basis function, k-nearest neighbor, Decision Tree, CN 2 rule inducer techniques and deep learning models like MobileNetV2, ResNet50, GoogleNet, DarkNet, and Xception [Ohata et al. 2021, Mohammed et al. 2021]. Additional models are also used, namely; MobileNetV2 and SqueezeNet are used to extract characteristics that are later processed using the Social Mimic optimization method and the final classification task is performed by a SVM [Togacar et al. 2020]. A similar approach is made by [Ismael and Sengur 2021] using VGG16, VGG19, ResNet18, ResNet50, and ResNet101 and SVM. In [Sahlol et al. 2020] Inception is used to extract features, and a Marine Predators Algorithm, a swarm-based feature selection algorithm is used to select the most relevant features; a fuzzy tree transformation is applied to each chest image and then exemplar division, a novel machine learning model is used. Then features are obtained using a multi-kernel local binary pattern, the most important are selected using the iterative neighborhood component and finally, conventional classifiers perform the classification. The best performance is obtained using a cubic SVM [Tuncer et al. 2021].

Implementations of traditional machine learning methods and strategies like late fusion, early fusion, and hierarchical classification are used to classify not only COVID-19 but also up to 14 other lung diseases [Pereira et al. 2020, Yoo et al. 2020].

Other methodologies were also found, some of the most representative are: an ensemble of ten convolutional neural networks based on ResNet50 architecture and ML models [Singh et al. 2021, Castiglioni et al. 2021], a cascaded classification scheme using pre-trained CNN architectures [Karar et al. 2020]; a multi-kernel CNN block combined with pre-trained ResNet34 to overcome imbalance in the dataset [Mursalim and Kurniawan 2021]; an integration of contrastive learning with a fine-tuned pre-trained ConvNet encoder to capture unbiased feature representations and a Siamese network, which makes the final classification [Shorfuzzaman and Hossain 2020]; an unsupervised network called Self-Organizing Feature Maps, which is analyzed using the saliency of features, the authors state that the unsupervised method can extract features that allow to accurately classify the COVID-19 chest X-ray images [King et al. 2020]; a multimodal approach using clinical and radiographic features, both are compared using the unpaired student’s t-test or Mann-Whitney U test and the segmentation and detection of opacities are also carried out [Blain et al. 2021].

Many authors also implement their own networks, some of them are based on state-of-the-art CNNs, such as VGG16 [Panwar et al. 2020], AlexNet [Aslan et al. 2021] and Xception [Narayan Das et al. 2020]. In [Ozturk et al. 2020] a network based on DarkNet is evaluated by a radiologist, who concludes that the model has a good performance detecting COVID-19 cases for the binary class task, but it makes incorrect predictions in poor quality chest X-ray images and patients with acute respiratory distress syndrome. The CoroNet network is proposed based on the Xception architecture pre-trained on the ImageNet dataset. It is trained using X-ray images of COVID-19 and other pneumonia, the obtained network weights are publically available [Khan et al. 2020]. COVIDiagnosis-Net includes fine-tuning of the SqueezeNet using a bayesian optimization method and offline augmentation only to COVID-19 class [Ucar and Korkmaz 2020].
Some authors propose their architectures from scratch, Sarv Ahrabi et al. [2021] propose a network with 12 layers including convolution, max-pooling, batch normalization, dropout, activation, and fully-connected layers; Hussain et al. [2021] present a 22-layer CNN model, that is evaluated by a clinician in multiple classification scenarios, 2 classes, 3 classes, and 4 classes.

Most of the found studies conduct a binary classification, COVID-19 vs Normal cases. However, other works attempt multiclass classification, some of them include: COVID-19, pneumonia and no-findings [Ucar and Korkmaz, 2020, Toraman et al., 2020]; COVID-19, pneumonia viral, pneumonia bacterial and no-findings [Khan et al., 2020, Jain et al., 2020]; COVID-19, tuberculosis and non-findings [Das et al., 2020, Yoo et al., 2020], and COVID-19 severity classification [Blain et al., 2021]. Some authors explore multiple combinations of those scenarios [Hussain et al., 2021, Sheykhivand et al., 2021, Majeed et al., 2020], and others take advantage of the availability of other lung-related decease...
labels in the datasets and perform the classification of COVID-19 examples along with multiple other pulmonary diseases [Apostolopoulos et al., 2020][Albahi and Yar, 2021].

3.2.3 Interpretability and CNN benchmarking

Nayak et al. [2021b], analyze the performance of eight state-of-the-art CNNs, they tune the number of trainable layers of the network, nodes, epochs, layers of the classifier placed at the top of the network, the batch size, the learning rate, and the optimizer algorithm, they find that the ResNet family of architectures has the highest classification accuracy; a similar analysis is implemented by [Majeed et al., 2020] using transfer learning and 12 state-of-the-art CNNs architectures, a critical analysis that includes the needed time to train each network is also presented, in the binary scenario the best results were obtained using the networks Xception, Inception-ResnetV2, and SqueezeNet; likewise, Apostolopoulos and Mpesiana [2020] implement transfer learning to compare 5 state-of-the-art CNNs, the best result are obtained using the VGG19.

Pham [2021], compare the performance of state-of-the-art fine-tuned CNNs and recently developed networks like CovidGAN, CoroNet, and DarkCovidNet, using an experimental setup as similar as possible to the original studies. Despite exact comparisons are not possible due to databases updates, it is concluded that similar performances are obtained using relatively small CNNs like AlexNet or SqueeNet and the new and sometimes more complex architectures. Tartaglione et al. [2020], provide insights and also raise warnings regarding the generality of the results of COVID-19 classification using deep learning and chest X-ray images. Alternately Horry et al. [2020] compare the results achieved training the VGG16 network using CT, X-ray, and Ultrasound chest images to classify COVID-19, pneumonia and healthy subjects. The best result is achieved using Ultrasound images.

One of the main drawbacks of deep learning is the lack of interpretability, which has imitated its application in some areas [Singh et al., 2020]. That is why, some authors have included visualization methods that could provide credibility and increase trust in users. Particular focus has been given to heat maps. In [Ozturk et al., 2020] is proposed a network that provides a heatmap along with the classifications, results are evaluated by a radiologist who concludes that ‘The heatmap showed a greater concentration area in the X-rays of patients with COVID-19 than the area in which the disease is not seen’. Besides heat maps, t-SNE is also used to improve explainability [Arias-Londono et al., 2020], as well as class activation maps [Ucar and Korkmaz, 2020].

Finally, a widely used and accepted visualization method is the grand cam, which is used in multiple works [Singh et al., 2021][Liang et al., 2021].

3.3 Metrics used in the evaluation of algorithms

Most of the metrics defined below are expressed for binary classification tasks in terms of the numbers of True Positive (TP) predictions, True Negatives (TN), False Positives (FP), and False Negatives (FN). TP refers to the positive instances correctly classified as positive; TN refers to the negative instances correctly classified as negative; FP refers to the negative instances incorrectly classified as positive; FN refers to the positive instances incorrectly classified as negative.

- **Accuracy**: proportion of correct predictions, usually presented as a percentage or as a number from 0 to 1.

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \tag{1}
\]

- **Specificity**: it measures the ability of the classifier to correctly identify the negative instances of a class.

\[
\text{Specificity} = \frac{TN}{TN + FP} \tag{2}
\]

- **Recall/Sensitivity**: also known as recall, it measures a classifier’s ability to correctly identify the positive instances of a class.

\[
\text{Recall} = \frac{TP}{TP + FN} \tag{3}
\]

- **Precision/Positive Predictive Value**: also known as precision, it represents the proportion of positive cases among the instances classified as positive.

\[
\text{Precision} = \frac{TP}{TP + FP} \tag{4}
\]

- **F1-score**: weighted harmonic mean of specificity and sensitivity normalized between 0 and 1. This metric considers imbalanced classes, and it is useful when a task requires high specificity and sensitivity.

\[
F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \tag{5}
\]
• Kappa statistics (K): standard measure of agreement between the expected and the observed number of correct predictions. The expected number of correct predictions is computed from class probabilities, making it suitable for evaluating multiple classes in imbalanced datasets. The equation represents the expected number of agreements as Pe and the observed as Po.

\[K = \frac{P_o - P_e}{1 - P_e} \]

(6)

4 Conclusions and future work

Given the worldwide impact of the COVID-19 pandemic, it is a priority to develop alternative diagnostic tools available for everyone and offer reliable results. This paper presents a systematic literature review of AI applied to COVID-19 diagnosis using chest X-ray imaging. It includes the different preprocessing techniques, classification methods using ML algorithms, strategies to increase the interpretability of the models, and the articles that perform a critical analysis of the state-of-the-art and the new architecture designed to perform this task.

The main limitation researchers have faced when developing these systems is the quality and availability of data. To overcome this situation, the use of preprocessing techniques, such as histogram equalization, lung segmentation, data augmentation using rotation or cropping operations, and synthetic data generation using GANs, have been implemented to improve the detection performances of the models. The most frequent approach for the classification of COVID-19 from X-ray images is transfer learning using pre-trained CNNs architectures, such as VGG16, DenseNet121, and ResNet50. Other proposals involve state-of-the-art architectures as feature extractors and traditional ML methods as classifiers. There are also multiple novel CNNs explicitly designed for this task which allows more flexibility and potentially smaller networks by narrowing the scope of the classification task. Overall, literature methods have exceptional results with classification accuracies over 95% and even 98%, however, the test set and the quality of the data, are usually unclear.

Regarding the questions set at the start of the paper, we have shown that (1) conventional image classification CNNs with pre-trained weights using ImageNet, or more complex approaches as Capsule or Siamese networks have been used to diagnose COVID-19 from chest X-ray images; (2) current detection percentages are over 98% accuracy in binary classification (COVID-19 and Normal). However, no clinical trials have been performed in none of these models and the experimental setups are usually unclear; (3) this paper compiles an active set of databases for training and evaluating AI models, despite the relatively high number of available databases of chest X-rays, there is a limited amount of labeled COVID-19 cases, which leads researchers to combine various databases; and in (4) most of the papers that use lung segmentation as a preprocessing step, do so using a U-Net architecture.

Based on the present literature review, we identify possible research opportunities as follows:

• Construct or contribute to databases of chest X-ray images aiming to create a representation of the different characteristics of real-world images, allowing proper benchmarking and future model proposals.
• Develop new CNNs for image segmentation, focusing on the segmentation of lungs and radiological findings associated with COVID-19 disease.
• Broaden the classification scope to detect factors such as severity, or disease progression.
• Design new preprocessing operations or pipelines, taking into account, for example, the removal of artifacts or medical devices such as necklaces, tubes, or ECG lead wires.
• Detect COVID-19, and its outcome considering other clinical variables such as the patient’s history.
• Perform transfer learning based on networks that have been trained for other lung diseases.
• Design architectures or computational elements of CNNs for the detection of COVID-19 from validated reference models.

Acknowledements

The authors acknowledge to SES Hospital Universitario de Caldas, Alcaldía de Manizales, the Universidad Autónoma de Manizales (UAM) and Minciencias from Colombia, and the Mixed Unit of Biomedical Imaging FISABIO-CIPF from Spain, for their contributions and funding through the project “Detección de COVID-19 en imágenes de rayos X usando redes neuronales convolucionales” with code 699-106 from UAM and contract 831 from grant 874-2020 of Minciencias.
Disclosure Statement

No potential conflict of interest was reported by the authors.

Appendix

Table 5 shows some acronyms and their meanings.

Acronym	Description
ACGAN	Auxiliary Classifier Generative Adversarial Network
AI	Artificial Intelligence
CNNs	Convolutional Neural Networks
CT	Computer tomography
DL	Deep Learning
FN	False Negatives
FP	False Positives
GANs	Generative Adversarial Network
K	Kappa statistics
ML	Machine Learning
RT-PCR	Real-time reverse transcription polymerase chain reaction
SARS-CoV-2	Severe Acute Respiratory Syndrome coronavirus 2
SVM	Support Vector Machine
TN	True Negatives
TP	True Positive
WHO	World Health Organization

References

Chen Wang, Peter W Horby, Frederick G Hayden, and George F Gao. A novel coronavirus outbreak of global health concern. The Lancet, 395(10223):470–473, 2 2020. ISSN 1474-547X. doi:10.1016/S0140-6736(20)30185-9. URL http://www.ncbi.nlm.nih.gov/pubmed/31986257 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7135038.

Kit San Yuen, Zi Wei Ye, Sin Yee Fung, Chi Ping Chan, and Dong Yan Jin. SARS-CoV-2 and COVID-19: The most important research questions. Cell and Bioscience, 10(40), 2020. ISSN 20453701. doi:10.1186/s13578-020-00404-4. URL https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-020-00404-4.

World Health Organization. Coronavirus. https://www.who.int/en/health-topics/coronavirus#tab=tab_1, 2020a. Accessed on March 2021.

World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020, 3 2020b. Accessed on 11 March 2021.

World Health Organization. Covid-19 weekly epidemiological update as of 21 March 2021. https://www.who.int/docs/default-source/coronaviruse/situation-reports/weekly_epidemiological_update_22.pdf, 2021. Accessed on 15 April 2021.

S Anis, K W Lai, J H Chuah, S M Ali, H Mohafez, M Hadizadeh, D Yan, and Z C. Ong. An Overview of Deep Learning Approaches in Chest Radiograph. IEEE Access, 8:182347–182354, 2020. doi:10.1109/ACCESS.2020.3028390.

Ming-Yen Ng, Elaine Y. P. Lee, Jin Yang, Fangfang Yang, Xia Li, Hongxia Wang, Macy Mei-sze Lui, Christine Shing-Yen Lo, Barry Leung, Pek-Lan Khong, Christopher Kim-Ming Hui, Kwok-yung Yuen, and Michael D. Kuo. Imaging Profile of the COVID-19 Infection: Radiologic Findings and Literature Review. Radiology: Cardiothoracic Imaging, 2(1):e200034, 2020. doi:10.1148/ryct.2020200034.

Meral Yüce, Elif Filiztekin, and Korin Gasia Özkaya. COVID-19 diagnosis —A review of current methods. Biosensors and Bioelectronics, 172(112752), 2021. ISSN 18734235. doi:10.1016/j.bios.2020.112752. URL /pmc/articles/PMC7584564/ pmc/articles/PMC7584564/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584564/.
A Systematic Review

Adeel Afzal. Molecular diagnostic technologies for COVID-19: Limitations and challenges. *Journal of Advanced Research*, 26:149–159, 2020. ISSN 20901232. doi:10.1016/j.jare.2020.08.002 URL https://doi.org/10.1016/j.jare.2020.08.002

Asma B. Aziz, Rubhana Raqib, Wasif A. Khan, Mahbubur Rahman, Rashidul Haque, Munir Alam, K. Zaman, and Allen G. Ross. Integrated control of COVID-19 in resource-poor countries. *International Journal of Infectious Diseases*, 101(2020):98–101, 2020. ISSN 18783511. doi:10.1016/j.ijid.2020.09.009

D P. Fan, T Zhou, G P. Ji, Y Zhou, G Chen, H Fu, J Shen, and L Shao. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. *IEEE Transactions on Medical Imaging*, 39(8):2626–2637, 2020. doi:10.1109/TMI.2020.2996645.

Elene Firmeza Ohata, Gabriel Maia Bezerra, Joao Victor Souza Das Chagas, Aloisio Vieira Lira Neto, Adriano Bessa Albuquerque, Victor Hugo C.De Albuquerque, and Pedro Pedrosa Reboucas Filho. Automatic detection of COVID-19 infection using chest X-ray images through transfer learning. *IEEE/CAA Journal of Automatica Sinica*, 8(1):239–248, 2021. ISSN 23299274. doi:10.1109/JAS.2020.1003393.

Tao Ai, Zhenlu Yang, Hongyan Hou, Chenao Zhan, Chong Chen, Wenzhi Lv, Qian Tao, Ziyong Sun, and Liming Xia. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. *Radiology*, 296(2), 2020.

Joanne Cleverley, James Piper, and Melvyn M. Jones. The role of chest radiography in confirming covid-19 pneumonia. *The BMJ*, 370, Jul 2020. ISSN 17561833. doi:10.1136/bmj.m2426. URL http://dx.doi.org/10.1136/bmj.m2426.

WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results, 2021. ISSN 0028-4793.

WHO. 7 Vaccines Approved for Use by WHO. https://covid19.trackvaccines.org/agency/who/, 2021. Accessed on 18 October 2021.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016.

Simon Orozco-Arias, Gustavo Isaza, Romain Guyot, and Reinel Tabares-Soto. A systematic review of the application of machine learning in the detection and classification of transposable elements. *PeerJ*, 7:e8311, 12 2019. doi:10.7717/peerj.8311.

Reinel Tabares-Soto, Ramos Pollán Raúl, and Isaza Gustavo. Deep learning applied to steganalysis of digital images: A systematic review. *IEEE Access*, 7:68970–68990, 2019. ISSN 21693536. doi:10.1109/ACCESS.2019.2918086.

Mario Alejandro Bravo Ortíz, Harold Brayan Arteaga Arteaga, Reinel Tabares Soto, Jorge Iván Padilla Buriác, and Simon Orozco Arias. Cervical cancer classification using convolutional neural networks, transfer learning and data augmentation. *Revista EIA*, 18(35), 2021. ISSN 1794-1237. doi:10.24050/reia.v18i35.1462. URL https://revista.eia.edu.co/index.php/reveia/article/view/1462.

T. S. Reinel, A. A. H. Brayan, B. O. M. Alejandro, M. R. Alejandro, A. G. Daniel, A. G. J. Alejandro, B. J. A. Buenaventura, O. A. Simon, I. Gustavo, and R. P. Raúl. GBRAS-Net: A Convolutional Neural Network Architecture for Spatial Image Steganalysis. *IEEE Access*, 9:14340–14350, 2021. doi:10.1109/ACCESS.2021.3052494.

Harold Brayan Arteaga-Arteaga, Alejandro Mora-Rubio, Frank Florez, Nicolas Murcia-Orjuela, Cristhian Eduardo Díaz-Ortega, Simon Orozco-Arias, Melissa delaPava, Mario Alejandro Bravo-Ortíz, Melvin Robinson, Pablo Guilien-Rondon, and Reinel Tabares-Soto. Machine learning applications to predict two-phase flow patterns. *PeerJ Computer Science*, 7:e798, 2021. ISSN 23765992. doi:10.7717/peerj-cs.798.

Amisha, Paras Malik, Monika Pathania, and VyasKumar Rathaur. Overview of artificial intelligence in medicine. *Journal of Family Medicine and Primary Care*, 8(7):2328–2331, 2019. ISSN 2249-4863. doi:10.4103/jfmpc.jfmpc_440_19. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691444/.

Abhimanyu S. Ahuja. The impact of artificial intelligence in medicine on the future role of the physician. *PeerJ*, 7(e7702), 2019. ISSN 21678359. doi:10.7717/peerj.7702.

Tuan D. Pham. Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning? *Health Information Science and Systems*, 9(1), 12 2021. ISSN 2047-2501. doi:10.1007/s13755-020-00135-3.

Emtiaz Hussain, Mahmudul Hasan, Md Anisur Rahman, Ickjai Lee, Tasmi Tamanna, and Mohammad Zavid Parvez. CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. *Chaos, Solitons and Fractals*, 142(110495), 2021. ISSN 09600779. doi:10.1016/j.chaos.2020.110495. URL https://doi.org/10.1016/j.chaos.2020.110495.

Lal Hussain, Tony Nguyen, Haifang Li, Adeel A. Abbasi, Kashif J. Lone, Zirun Zhao, Mahnoor Zaib, Anne Chen, and Tim Q. Duong. Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection. *Biomedical Engineering Online*, 19(1), 12 2020. ISSN 1475925X. doi:10.1186/s12938-020-00831-x.

Rodolfo M. Pereira, Diego Bertolini, Lucas O. Teixeira, Carlos N. Silla, and Yadre M.G. Costa. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. *Computer Methods and Programs in Biomedicine*, 194, 2020. ISSN 18727565. doi:10.1016/j.cmpb.2020.105532.

Holly Else. How a torrent of COVID science changed research publishing - in seven charts. *Nature*, 588(553), dec 2020. ISSN 14764687. doi:10.1038/d41586-020-03564-y.

Laure Wynants, Ben Van Calster, Gary S Collins, Richard D Riley, Georg Heinze, Ewoud Schuit, Marc J M Bonten, Darren L Dahlby, Johanna A Damen, Thomas P A Debray, Valentinij M T de Jong, Maarten De Vos, Paula Dhiman, Maria C Haller, Michael O Harhay, Liesbet Henckaerts, Pauline Heus, Michael Kammer, Nina Kreuzberger, Anna Lohmann, Kim Luijken, Jie Ma, Glen P Martin, David J McLernon, Constanza L Andaur Navarro, Johannes B Reitsma, Jamie C Sergeant, Chunhu Shi, Nicole Skoetz, Kym J E Snell, Matthew Sperrin, René Spijker, Ewout W Steyerberg, Joanna Tzoulaki, Sander M J van Kuijk, Bas C T van Bussel, Iwan C van der Horst, Florien S van Royen, Jan Y Verbakel, Christine Wallisch, Jack Wilkinson, Robert Wolff, Lotty Hooft, Karel G M Moons, and Maarten G M van Smeden. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. *BMJ*, 369:m1328, 2020. doi:10.1136/bmj.m1328. URL https://www.bmj.com/content/369/bmj.m1328.
Feng Shi, Jun Wang, Jun Shi, Ziyan Wu, Qian Wang, Zhenyu Tang, Kelei He, Yinghuan Shi, and Dinggang Shen. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation, and Diagnosis for COVID-19. *IEEE Reviews in Biomedical Engineering*, 14:4–15, 2021. ISSN 19411189. doi:10.1109/RBME.2020.2987975

H. Swapnarekha, Himansu Sekhar Behera, Jamnienjoy Nayak, and Bighnaraj Naik. Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review. *Chaos, Solitons and Fractals*, 138:109947, 2020. ISSN 09600779. doi:10.1016/j.chaos.2020.109947 URL https://doi.org/10.1016/j.chaos.2020.109947

Ahmad Waleed Salehi, Preety Baglat, and Gaurav Gupta. Review on machine and deep learning models for the detection and prediction of coronavirus. *Materials Today: Proceedings*, 33:3896–3901, 2020. ISSN 2214-7853. doi:https://doi.org/10.1016/j.matpr.2020.06.245 URL https://www.sciencedirect.com/science/article/pii/S2214785320347133

O. S. Albahri, A. A. Zaidan, A. S. Albahri, B. B. Zaidan, Karrar Hameed Abdulkaareem, Z. T. Al-qaysi, A. H. Alamoodi, A. M. Aleesa, M. A. Chyad, R. M. Aleea, L. C. Kem, Muhammad Modi Lakulu, A. B. Ibrahim, and Nazre Abdul Rashid. Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. *Journal of Infection and Public Health*, 13(10):1381–1396, 2020. ISSN 1876035X. doi:10.1016/j.jiph.2020.06.028 URL https://doi.org/10.1016/j.jiph.2020.06.028

Agam Bansal, Rana Prathap Padappayil, Chandan Garg, Anjali Singal, Mohak Gupta, and Allan Klein. Utility of Artificial Intelligence Amidst the COVID 19 Pandemic: A Review. *Journal of Medical Systems*, 44(156), 2020.

Hafa Bareen Syeda, Mahanazuddin Syed, Kevin Wayne Sexton, Shorabuddin Syed, Fred Prior, and Feliciano Yu. Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review. *JMIR MEDICAL INFORMATICS*, 9(1), 2021.

Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Ettmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, James H. F. Rudd, Evis Sala, and Carola-Bibiane Schönlieb. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. *Nature Machine Intelligence*, 3(3):199–217, 2021. ISSN 25225839. doi:10.1038/s42256-021-00307-0

David Moher. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *Annals of Internal Medicine*, 151(4):264, 8 2009. ISSN 0003-4819. doi:10.7326/0003-4819-151-4-200908180-00135 URL http://annals.org/article.aspx?doi=10.7326/0003-4819-151-4-200908180-00135

Joseph Paul Cohen, Paul Morrison, and Lan Dao. COVID-19 Image Data Collection. https://ui.adsabs.harvard.edu/abs/2020arXiv200311597C/abstract, 2020. ISSN 23318422. Accessed on 10 April 2021.

HM Hospitals. Dataset “Covid Data Save lives”. https://www.hmhospitales.com/coronavirus/covid-data-save-lives/english-version, 2020. URL https://www.hmhospitales.com/coronavirus/covid-data-save-lives/english-version Accessed on 15 April 2021.

Maria delalglesia Vayá, José Manuel Saborit-Torres, Joaquim Angel Montell Serrano, Elena Oliver-Garciaa, Antonio Pertusa, Aurelia Bustosa, Miguel Cazorlaa, Joaquin Galant, Xavier Barber, Domingo Orozco-Beltrán, Francisco García-García, Marisa Carrapór, Germán González, and Jose Maria Salinas. Bimcv covid-19+: a large annotated dataset of rx and ct images from covid-19 patients, 2021. URL https://dx.doi.org/10.21227/w3aw-rv39

Actualmed, José Antonio Heredia Álvaro, and Pau Agustí Ballester. Figure 1 COVID-19 Chest X-ray Dataset Initiative. https://github.com/agchung/Figure1-COVID-chestxray-dataset, 2020. Accessed on 03 April 2021.

Stefan Jaeger, Sema Candemir, Sameer Antani, Yi-Xiang J Wáng, Pu-Xuan Lu, and George Thoma. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. *Quantitative imaging in medicine and surgery*, 4 (6):475–477, 2014. ISSN 2223-4292. doi:10.3978/j.issn.2223-4292.2014.11.20

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M. Summers. ChestX-ray8: Hospital-scale chest X-ray dataset and benchmarks on weakly-supervised classification and localization of common thorax diseases. In *Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017*, volume 2017-January, pages 3462–3471. Institute of Electrical and Electronics Engineers Inc., 11 2017. ISBN 9781538604571. doi:10.1109/CVPR.2017.369

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silvana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David A. Mong, Saifwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. *33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th
Alistair E.W. Johnson, Tom J. Pollard, Seth J. Berkowitz, Nathaniel R. Greenbaum, Matthew P. Lungren, Chih ying Deng, Roger G. Mark, and Steven Horng. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. *Scientific Data*, 6(317), 2019. ISSN 20524463. doi:10.1038/s41597-019-0322-0.

URL https://doi.org/10.1038/s41597-019-0322-0.

Andrew M. Dadario. X rays and CT snapshots of COVID-19 patients. https://www.kaggle.com/andrewmvd/convid19-x-rays, 2020. Accessed on 12 April 2021.

Tawsifur Rahman, Muhammad Chowdhury, and Amith Khandakar. COVID-19 Radiography Database | Kaggle. https://www.kaggle.com/tawsifurrahman/covid19-radiography-database, 2020. Accessed on 14 April 2021.

Paul Mooney. Chest X-Ray Images (Pneumonia) - Kaggle. https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/activity, 2018. Accessed on 15 April 2021.

Societa Italiana di Radiologia Medica e Interventistica. BASE DE DATOS COVID-19 | SIRM. https://www.sirm.org/category/senza-categoria/covid-19/, 2020. Accessed on 15 April 2021.

Joaquim De Moura, Lucia Ramos Garcia, Placido Francisco Lizancos Vidal, Milena Cruz, Laura Abelairas Lopez, Eva Castro Lopez, Jorge Novo, and Marcos Ortega. Deep Convolutional Approaches for the Analysis of COVID-19 Using Chest X-Ray Images From Portable Devices. *IEEE Access*, 8:195594–195607, 2020. ISSN 2169-3536. doi:10.1109/access.2020.3033762.

Ioannis D. Apostolopoulos and Tzani A. Mpesiana. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. *Physical and Engineering Sciences in Medicine*, 43(2):635–640, 6 2020. ISSN 26624737. doi:10.1007/s13246-020-00865-4.

Ferhat Ucar and Deniz Korkmaz. COVIDDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. *Medical Hypotheses*, 140(109761), 2020. ISSN 15322777. doi:10.1016/j.mehy.2020.109761.

Tulin Ozturk, Muhammed Talo, Eylul Azra Yildirim, Ulas Baran Baloglu, Ozal Yildirim, and U. Rajendra Acharya. Automated detection of COVID-19 cases using deep neural networks with X-ray images. *Computers in Biology and Medicine*, 121(103792), 2020. ISSN 18790534. doi:10.1016/j.compbiomed.2020.103792.

Mesut Toğatoğlu, Burhan Ergen, and Zafer Cömert. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. *Computers in Biology and Medicine*, 121(103805), 2020. ISSN 18790534. doi:10.1016/j.compbiomed.2020.103805.

Ioannis D. Apostolopoulos, Sokratis I. Aznaouridis, and Mpesiana A. Tzani. Extracting Possibly Representative COVID-19 Biomarkers from Deep Learning Approach and Image Data Related to Pulmonary Diseases. *Journal of Medical and Biological Engineering*, 40(3):462–469, 2020. ISSN 21994757. doi:10.1007/s40846-020-00529-4.

A Waheed, M Goyal, D Gupta, A Khanna, F Al-Turjman, and P R Pinheiro. CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection. *IEEE Access*, 8:91916–91923, 2020. doi:10.1109/access.2020.2994762.

Asif Iqbal Khan, Junaid Latief Shah, and Mohammad Mudasir Bhat. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. *Computer Methods and Programs in Biomedicine*, 196, 11 2020. ISSN 18727565. doi:10.1016/j.cmpb.2020.105581.

Dipayan Das, K. C. Santosh, and Umapada Pal. Trimmed inception net: COVID-19 outbreak screening using chest X-rays. *Physical and Engineering Sciences in Medicine*, 43(3):915–925, 2020. ISSN 26624737. doi:10.1007/s13246-020-00888-x.
Maxime Blain, Michael T. Kassin, Xiaosong Wang, Ziyue Xu, Daguang Xu, Gianpaolo Carrafiello, Valentina Vespro, Elvira Stellato, Anna Maria Ierardi, Letizia DiMeglio, Robert D. Suh, Stephanie A. Walker, Sheng Xu, Thomas H. Sanford, Evrim B. Turkbey, Stephanie Harmon, Baris Turkbey, and Bradford J. Wood. Determination of disease severity in COVID-19 patients using deep learning in chest x-ray images. *Diagnostic and Interventional Radiology*, 27(1):20–27, 2021. ISSN 13053612. doi:10.5152/dir.2020.20205

M J Horry, S Chakraborty, M Paul, A Ulhaq, B Pradhan, M Saha, and N Shukla. COVID-19 Detection Through Transfer Learning Using Multimodal Imaging Data. *IEEE Access*, 8:149808–149824, 2020. doi:10.1109/ACCESS.2020.3016780

Bayley King, Siddharth Barve, Andrew Ford, and Rashmi Jha. Unsupervised Clustering of COVID-19 Chest X-Ray Images with a Self-Organizing Feature Map. *Midwest Symposium on Circuits and Systems*, pages 395–398, 2020. ISSN 15483746. doi:10.1109/MWSCAS48704.2020.9184493

Mohamed Esmail Karar, Ezz El-Din Hemdan, and Marwa A. Shouman. Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans. *Complex Intelligent Systems*, 7(1):235–247, 2020. ISSN 2199-4536. doi:10.1007/s40747-020-00199-4 URL https://doi.org/10.1007/s40747-020-00199-4

Mohammad Shorofuzzaman and M. Shamim Hossain. MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients. *Pattern Recognition*, 113(107700), 2020. ISSN 00313203. doi:10.1016/j.patcog.2020.107700 URL https://doi.org/10.1016/j.patcog.2020.107700

Soumya Ranjan Nayak, Deepak Ranjan Nayak, Utkarsh Sinha, Vaibhav Arora, and Ram Bilas Pachori. Application of deep learning techniques for detection of COVID-19 cases using chest x-ray images: A comprehensive study. *Biomedical Signal Processing and Control*, 64(PMID: 33230398; PMCID: PMC7674150.), 2 2021b. ISSN 17468108. doi:10.1016/j.bspc.2020.102365

Sobhan Sheykhivand, Zohreh Mousavi, Sina Mojtahedi, Tohid Yousefi Rezaii, Ali Farzamnia, Saeed Meshgini, and Ismail Saad. Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images. *Alexandria Engineering Journal*, 60(3):2885–2903, 2021. ISSN 09600779. doi:10.1016/j.aej.2021.01.011 URL https://doi.org/10.1016/j.aej.2021.01.011

Rajeev Kumar Singh, Rohan Pandey, and Rishie Nandhan Babu. COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays. *Neural Computing and Applications*, 6, 2021. ISSN 14333058. doi:10.1007/s00521-020-06536-6 URL https://doi.org/10.1007/s00521-020-06536-6

Sima Sarv Ahrabi, Michele Scarpiniti, Enzo Baccarelli, and Alireza Momennzadeh. An accuracy vs. Complexity comparison of deep learning architectures for the detection of covid-19 disease. *Computation*, 9(1), 2021. ISSN 20793197. doi:10.3390/computation9010003

Julian D. Arias-Londono, Jorge A. Gomez-Garcia, Laureano Moro-Velazquez, and Juan I. Godino-Llorente. Artificial Intelligence applied to chest X-Ray images for the automatic detection of COVID-19. A thoughtful evaluation approach. *IEEE Access*, 8:226811–226827, 2020. ISSN 21693536. doi:10.1109/ACCESS.2020.3044858

Harsh Panwar, P. K. Gupta, Mohammad Khubeb Siddiqui, Ruben Morales-Menendez, and Vaishnavi Singh. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. *Chaos, Solitons and Fractals*, 138, 9 2020. ISSN 09600779. doi:10.1016/j.chaos.2020.109944

Isabella Castiglioni, Davide Ippolito, Matteo Interlenghi, Caterina Beatrice Monti, Christian Salvatore, Simone Schiaffino, Annalisa Polidori, Davide Gandola, Cristina Messa, and Francesco Sardanelli. Machine learning applied on chest x-ray can aid in the diagnosis of COVID-19: a first experience from Lombardy, Italy. *European Radiology Experimental*, 5(1), 2021. ISSN 25099280. doi:10.1186/s41747-020-00203-z
Taban Majeed, Rasber Rashid, Dashti Ali, and Aras Asaad. Issues associated with deploying CNN transfer learning to detect COVID-19 from chest X-rays. *Physical and Engineering Sciences in Medicine*, 43(4):1289–1303, 2020. ISSN 26624737. doi:10.1007/s13246-020-00934-8 URL https://doi.org/10.1007/s13246-020-00934-8

Enzo Tartaglione, Carlo Alberto Barbano, Claudio Berzovini, Marco Calandri, and Marco Grangetto. Unveiling COVID-19 from chest x-ray with deep learning: A hurdles race with small data. *International Journal of Environmental Research and Public Health*, 17(18), 2020. ISSN 26624737. doi:10.3390/ijerph17186933

Sivaramakrishnan Rajaraman, Jenifer Siegelman, Philip O. Alderson, Lucas S. Folio, Les R. Folio, and Sameer K. Antani. Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays. *IEEE Access*, 8:115041–115050, 2020. ISSN 21693536. doi:10.1109/ACCESS.2020.3003810

Muhammad Fatih Aslan, Muhammed Fahri Unlersen, Kadir Sabanci, and Akif Durdu. CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection. *Applied Soft Computing*, 98(106912), 2021. ISSN 15684946. doi:10.1016/j.asoc.2020.106912

Tahmina Zebin and Shahadate Rezvy. COVID-19 detection and disease progression visualization: Deep learning on chest X-rays for classification and coarse localization. *Applied Intelligence*, 51(2):1010–1021, 2021. ISSN 15737497. doi:10.1007/s10489-020-01867-1

Govardhan Jain, Deepti Mittal, Daksh Thakur, and Madhup K Mittal. A deep learning approach to detect COVID-19 coronavirus with X-Ray images. *Biocybern. Biomed. Neurosci.*, 40(4):1391–1405, 10 2020. ISSN 0208-5216. doi:10.1016/j.bbeej.2020.08.008 URL http://www.ncbi.nlm.nih.gov/pubmed/32921862 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7476608

Mazin Abed Mohammed, Karrar Hameed Abdulkareem, Begonya Garcia-Zapirain, Salama A. Mostafa, Mashael S. Maashi, Alaa S. Al-Waisy, Mohammed Ahmed Subhi, Ammar Awad Mutlag, and Dac Nhuong Le. A comprehensive investigation of machine learning feature extraction and classification methods for automated diagnosis of COVID-19 based on X-ray images. *Computers, Materials and Continua*, 66(3):3289–3310, 2021. ISSN 15462226. doi:10.32604/cmc.2021.012874

Ahmed T. Sahlol, Dalia Yousri, Ahmed A. Ewees, Mohammed A-A. Al-qaness, Robertas Damasevicius, and Mohamed Abd Elaziz. COVID-19 image classification using deep features and fractional-order marine predators algorithm. *Scientific Reports*, 10(1), 2020. ISSN 20452322. doi:10.1038/s41598-020-71294-2 URL https://doi.org/10.1038/s41598-020-71294-2

Seung Hoon Yoo, Hui Geng, Tin Lok Chiu, Siu Ki Yu, Dae Chul Cho, Jin Heo, Min Sung Choi, Il Hyun Choi, Cong Cung Van, Nguen Viet Nhung, Byung Jun Min, and Ho Lee. Deep Learning-Based Decision-Tree Classifier for COVID-19 Diagnosis From Chest X-ray Imaging. *Frontiers in medicine*, 7:427, 7 2020. ISSN 2296-858X. doi:10.3389/fmed.2020.00427 URL http://www.ncbi.nlm.nih.gov/pubmed/32760732 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7371960

Muhammad Khaerul Naim Mursalim and Ade Kurniawan. Multi-kernel CNN block-based detection for COVID-19 with imbalance dataset. *International Journal of Electrical and Computer Engineering*, 11(3):2467–2476, 2021. ISSN 2088-8708. doi:10.11591/ijece.v11i3.pp2467-2476

N. Narayan Das, N. Kumar, M. Kaur, V. Kumar, and D. Singh. Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays. *Ing Rech Biomed*, PMID: 32837679; PMCID: PMC733623., 2020. ISSN 18760988. doi:10.1016/j.irmb.2020.07.001

Amitojdeep Singh, Sourya Sengupta, and Vasudevan Lakshminarayanan. Explainable Deep Learning Models in Medical Image Analysis. *Journal of Imaging*, 6(6), 2020. ISSN 2313-433X. doi:10.3390/jimaging6060052 URL https://www.mdpi.com/2313-433X/6/6/52

Shuang Liang, Huixiang Liu, Yu Gu, Xiuhua Guo, Hongjun Li, Li Li, Zhiyuan Wu, Mengyang Liu, and Lixin Tao. Fast automated detection of COVID-19 from medical images using convolutional neural networks. *Communications Biology*, 4(1):35, 2021. ISSN 23993642. doi:10.1038/s42003-020-01535-7