Shed proteoglycans in tumor stroma

Zoi Piperigkou1,2 · Benedikt Mohr1 · Nikos Karamanos2 · Martin Götte1

Abstract Cancer cell behavior is not only governed by tumor cell-autonomous properties but also by the surrounding tumor stroma. Cancer-associated fibroblasts, blood vessels, immune cells and the extracellular matrix of the tumor microenvironment have a profound influence on tumor progression. Proteoglycans control various normal and pathological processes, modulating cell proliferation and motility, cell-matrix interactions, immune cell recruitment and angiogenesis. They are major mediators of cancer cell behavior though a dynamic interplay with extracellular matrix components. During cancer progression, their altered expression can promote the activation of several signaling cascades regulating crucial functional properties of cancer cells. Notably, the function of cell surface proteoglycans can be altered by ectodomain shedding, which converts membrane-bound coreceptors into soluble paracrine effector molecules. In this review, we highlight the importance of proteoglycans and their soluble counterparts in cancer progression and the consequences of their interactions with the adjacent stroma. The dynamic interplay among shed proteoglycans and proteolytic enzymes has a significant impact both on tumor cells and their surrounding stroma, with important implications for the diagnosis of this disease and for novel therapeutic approaches.

Keywords Proteoglycans · Syndecans · Shedding · Tumor microenvironment · Stroma

The tumor stroma—a permissive environment for cancer progression

Tumorigenesis and tumor progression are complex events that occur when physiological control mechanisms within a given cell are inactivated as a result of a series of gene mutations (Vogelstein and Kinzler 1993). Indeed, in their highly influential conceptual review “Hallmarks of cancer”, Hanahan and Weinberg (2000) included the properties of evasion of apoptosis, self-sufficiency in growth signals, insensitivity to anti-growth signals and unlimited proliferative potential as self-autonomous properties that enable and promote the malignant growth of tumor cells. However, even this initial concept makes clear that cancer progression not only depends on the tumor cell itself but also on its microenvironment. For example, tumor cells interact with their environment to stimulate the process of angiogenesis, the outgrowth of blood vessels from the existing vasculature, in order to be supplied with nutrients and oxygen and they need to interact with and overcome their extracellular matrix (ECM) environment in order to move to distant sites in the process of metastasis (Hanahan and Weinberg 2000). In an update of their concept, the authors stress the importance of tumor cell interactions with stroma cells and with immune cells of the tumor microenvironment, as the tumor has to evade destruction by the immune system and may even influence immune cells in a way that promotes tumor growth (Hanahan and Weinberg 2011). Whereas these publications nicely delineate key cell biological events
governing tumorigenesis and cancer progression, the idea of a permissive environment that promotes tumor growth actually has historic roots. As early as the 1850s, the German pathologist Virchow described a possible influence of inflammatory cells and of aberrant ECM biosynthesis on tumor growth, whereas the English surgeon Paget coined the “seed and soil” hypothesis, according to which tumor cells “can only live and grow if they fall on congenial soil”, aptly describing an important role of the tumor stroma in the pathogenetic process (Paget 1889). Nearly a century later, several of these elements were placed into the context of a pathophysiological process when Harold Dvorak described tumors and their surrounding stroma as “wounds that do not heal” (Dvorak 1986). In fact, the granulation tissue that is formed during the physiological process of wound healing includes the key elements of the reactive stroma or “desmoplastic stroma” surrounding solid tumors. These include: cancer-associated fibroblasts (CAFs), inflammatory cells, cells constituting blood vessels (endothelial cells, pericytes) and the ECM, which is synthesized and remodeled by both the tumor cells and their cellular microenvironment. Moreover, the ECM can also be derived from plasma proteins escaping from leaky tumor blood vessels (Dvorak 2015). The mutual interactions and crosstalk between tumor cells and the stroma promote tumor progression in various ways. Under the influence of growth factors secreted by tumor cells, including transforming growth factor (TGF) beta, epidermal growth factor (EGF), basic fibroblast growth factor (FGF-2), or vascular endothelial growth factor (VEGF), cancer cells change the properties of their microenvironment (Mueller and Fusenig 2004). Fibroblasts are converted to large spindle-shaped CAFs characterized by the expression of alpha-smooth-muscle actin, an increased proliferative index and a high rate of collagen biosynthesis, all of which result in altered ECM deposition and composition (Lazard et al. 1993). This altered ECM has a profound influence on the properties of the tumor cells, as exemplified by the increased synthesis of tenasin C by CAFs, which promotes tumor cell motility and metastasis by providing a low-adhesive substrate (De Wever et al. 2010; Lange et al. 2007). Recent results indicate that altered ECM biosynthesis within the tumor microenvironment also modulates the properties of tumor-initiating cells, or cancer stem cells, a particularly therapy-resistant subpopulation of cancer cells that share similarities with both tumor cells and stem cells (Greve et al. 2012). The aberrant expression of tenasin C, of proteoglycans, including decorin, biglycan, versican and syndecan-1 and of the glycosaminoglycan hyaluronan (the ligand for CD44) have been discussed as having important signaling functions in the cancer stem cell (Bourguignon et al. 2016; Fanchaksaai et al. 2016; Farace et al. 2015; Ibrahim et al. 2013; Jachetti et al. 2015). Moreover, CAFs secrete proteases that degrade the ECM and free cytokines from their ECM storage, thus facilitating tumor angiogenesis and metastasis (Olumi et al. 1999; Sieuwerts et al. 1998). Further, CAFs secrete cytokines such as insulin-like growth factor (IGF) and hepatocyte growth factor (HGF, “scatter factor”), which increase tumor cell survival and promote cell motility in a vicious feed-forward cycle (Mueller and Fusenig 2004). With respect to the interaction with inflammatory cells, tumor cells secrete cytokines and chemokines that attract various groups of leukocytes, including tumor-associated macrophages (TAMs; Coussens and Werb 2002). This process may at first appear counter-intuitive, as leukocytes can attack and destroy tumor cells. However, the recruitment of immune cells also facilitates tumor growth and metastasis via secretion of matrix-degrading enzymes such as matrix metalloproteinases (MMPs), urokinase-type plasminogen activator (uPA) and heparanase (Coussens and Werb 2002; Gotte and Yip 2006). In addition, TAMs, monocytes, mast cells and neutrophils secrete a vast array of cytokines that exert a proangiogenic effect on endothelial cells and pericytes by inducing signaling events via the cell surface receptor tyrosine kinases and serine/threonine kinases expressed by these cell types. Furthermore, the cancer cells themselves promote tumor angiogenesis by secreting these cytokines, as a prerequisite for the enhanced supply of the tumor with nutrients and for providing access to the vasculature, thus facilitating metastatic spread (Carmeliet and Jain 2000; Rapraeger 2013). In summary, these data clearly indicate that interactions between tumor cells and the surrounding stroma make a considerable contribution to tumor cell survival, tumor growth and metastatic spread. Remarkably, all of the functions of the tumor stroma mentioned above are modulated by glycoproteins of the proteoglycan family, as will be outlined in detail below.

Proteoglycans—multifunctional modulators of cell physiology

Proteoglycans are important functional components of stroma- and cancer-derived ECMs and cell surfaces (Sofeu Feugaing et al. 2013; Theocharis et al. 2010). They are composed of a core protein substituted with one or more covalently linked carbohydrate chains of the glycosaminoglycan (GAG) type. GAGs form long chains of linear repetitive disaccharide units of an amino sugar and one uronic acid (Yip et al. 2006; Fig. 1). GAGs of particular relevance for this review are the heparin-related heparan sulfate (HS; N-acetylgalactosamine-alpha-L-iduronic acid/beta-D-glucuronic acid), chondroitin sulfate (CS; N-acetyl-D-galactosamine-D-glucuronic acid) and dermatan sulfate (DS), which is derived from CS by C5-epimerization of the beta-D-glucuronic acid residue. As the names indicate, the basic disaccharide pattern of these GAG chains is subject to post-translational modifications with sulfate residues. Such modification occurs as a non-template-driven enzymatic
process during biosynthesis in the Golgi apparatus, thus providing the GAG chain not only with a high negative charge but also with a high degree of structural diversity and functional heterogeneity (Theocharis et al. 2010). This is exemplified by the HS 3-O-sulfotransferase HS3ST2, which is epigenetically silenced in numerous tumor entities and its activity has been shown to modulate signaling via the mitogen-activated protein kinase (MAPK) and Wnt-pathways in human breast cancer cells (Vijaya Kumar et al. 2014). The various modifications that occur in proteoglycan structure are cell- and tissue-specific but they also depend on the cell stimuli and differentiation stage (Theocharis et al. 2015b). According to their localization, proteoglycans are classified into four major families, including intracellular, cell surface, pericellular and extracellular members. Each family can be further divided into subgroups according to the following criteria: gene and protein homology, modular composition, protein core properties and molecular size (Iozzo 1998; Iozzo and Schaefer 2015; Schaefer and Schaefer 2010). In addition to their contribution to the necessary mechanical structure for the cellular components embedded in the stroma, proteoglycans can functionally interact with various ECM components and matrix-associated proteins, including growth factors, growth factor receptors and cytokines (Iozzo and Sanderson 2011). Because proteoglycans bind numerous secreted proteins and cell surface co-receptors, they can serve several morphogens and signaling molecules enabling them to interact with other matrix components and thus modulating their activities and affecting cell-matrix dynamics (Theocharis et al. 2010, 2014, 2015a). As a result of their structural complexity, proteoglycans contribute to several processes that are crucial for homeostasis, differentiation and tissue morphogenesis, participating in various normal and pathological processes, such as wound repair, inflammation and tumor development (Elenius et al. 2004; Frantz et al. 2010; Lu et al. 2011). In cancer, the altered expression of proteoglycans in the stroma affects cancer cell signaling leading to the disruption of critical processes during tumor progression (proliferation, adhesion, migration, invasion, angiogenesis and metastasis; Bouris et al. 2015; Gialeli et al. 2013; Piperigkou et al. 2016; Tsonis et al. 2013). Only one intracellular proteoglycan, serglycin, is involved in the formation of secretory granules and in the synthesis of various ECM components. Serglycin is expressed in hematopoietic and non-hematopoietic tumors and is reported to promote the migration and invasion of low-aggressive breast cancer cells (Korpetinou et al. 2013, 2014, 2015). Proteoglycans, such as versican, located in the ECM of cancer cells, can increase their proliferation and motility through modulating the adhesion of cancer cells to ECM (Iozzo and Sanderson 2011; Skandalis et al. 2011; Wight et al. 2014). Moreover, as a member of the small leucine-rich matrix proteoglycans, decorin is a key player in tumor growth and progression; it inhibits angiogenesis and induces tumor cell arrest (Sofeu Feugaing et al. 2013). Of note, soluble decorin is considered to be anti-oncogenic and anti-metastatic (Csordas et al. 2000; Neill et al. 2012, 2016). With regard to cell surface proteoglycans, syndecans are well established as being the major
representatives of the transmembrane HS proteoglycans. They have important roles in several biological processes, such as wound healing, development, stem cell differentiation, inflammation and tumorigenesis (Gotte 2003; Ibrahim et al. 2014b). In cancer, syndecans are considered to be cell surface mediators, as they modulate cell-cell and cell-matrix interactions (Lim et al. 2015; Manon-Jensen et al. 2010). Although they are expressed in several cancer types, each syndecan member has a diverse role based on the type and the stage of cancer, acting as promoters or inhibitors of tumor progression (Barbouri et al. 2014; Nikolova et al. 2009). During the last few years, research interest has focused on the field of epigenetics, as the expression of syndecans in cancer is reported to be regulated by specific microRNAs (Asuthkar et al. 2014; Ibrahim et al. 2012, 2014a, 2014b; R. Li et al. 2014). Another transmembrane proteoglycan is the melanoma-associated chondroitin sulfate proteoglycan (nerve/glial antigen 2; NG2), which promotes vascularization, cell survival, migration and adhesion and modulates the signal transduction of fibroblast growth factor receptor (Cattaruzza et al. 2013a, 2013b; Garusi et al. 2012; You et al. 2014). Betaglycan also belongs to the superfamily of transmembrane proteoglycans and is a modulator of epithelial-to-mesenchymal transition, acting as a co-receptor for TGFβ members (Diestel et al. 2013). Moreover, this proteoglycan is necessary for reproduction and fetal growth, although it is generally considered as a tumor suppressor (Bernabeu et al. 2009; Bilandzic and Stenvers 2011). Taking into consideration the above data, we can plausibly suggest that, because of their well-established involvement in cancer progression, proteoglycans are of relevance as potential targets for cancer therapy. In many cases, these proteoglycans are expressed by the tumor cells themselves; however, as will be discussed below, an aberrant and functionally relevant expression of selected proteoglycan members has also been observed in the tumor stroma (Ahmed Haji Omar et al. 2013; Farnedi et al. 2015; X. Li et al. 2014; Szarvas et al. 2014; Takahashi et al. 2012). Intriguingly, in the case of several cell-surface-bound proteoglycans, the proteolytic (or, in some cases, lipolytic) mechanism of ectodomain shedding is capable of converting the membrane-bound form of the proteoglycan into a soluble paracrine effector molecule (Nam and Park 2012). As one can imagine, shedding can have a profound effect on the tumor microenvironment, as formerly membrane-bound proteoglycans at the tumor or stroma cell surface might no longer be able to act as co-receptors for a wide range of ligands in this cell type, although they might either enhance or competitively inhibit processes such as proteolysis, angiogenesis and cytokine signaling within the paracrine diffusion range of the ectodomain. Before we discuss selected examples of shed proteoglycans in the tumor stroma and their functional implications, the basic mechanisms of proteoglycan ectodomain shedding are briefly presented and discussed below.

A primer on proteoglycan ectodomain shedding

Cell membrane proteoglycans have crucial roles in many steps of tumor progression, as their interactions with the surrounding stroma have been correlated with differential proteoglycan effects in cancer cells. Several membrane proteoglycans are known to undergo controlled enzymatic cleavage of their ectodomain by certain proteases, the so-called sheddases. Shedding is a mechanism by which the intact extracellular domain of a membrane protein is converted into a soluble molecule. Notably, shedding does not result in the complete degradation of the ectodomain but rather leaves it intact, allowing for functional ligand interactions of this domain as a paracrine effector molecule (Manon-Jensen et al. 2010; Nam and Park 2012). The shedding of membrane-bound proteoglycans constitutes an important and clearly controlled post-translational procedure that regulates several normal and pathological conditions. It can be a critical mechanism for the onset of infectious and non-infectious diseases; therefore, the development of reliable tools to measure the presence of shedding proteoglycans in such conditions is crucial. With the exception of the glycosylphosphatidyl-inositol (GPI)-anchored glypicans, which can be shed by a phospholipase (Traister et al. 2008), all proteoglycans of the tumor stroma are shed by proteases. Shedding usually occurs at a juxtamembrane site and is mediated by members of the MMP family (matrilysin, collagenases, gelatinases), by membrane-type metalloproteinases (MT1-MMP, MT3-MMP) and members of the ADAM (a disintegrin and metalloproteinase) and ADAM-TS (ADAM with thrombospondin motif) families (ADAM-10, ADAM-17 [TACE], ADAMTS-1, ADAMTS-4). In addition, serine proteases such as plasmin and thrombin have been shown to induce shedding of proteoglycans (Manon-Jensen et al. 2010; Nam and Park 2012). An overview of relevant sheddases can be found in Table 1. Shedding of proteoglycans can be regulated at several levels. Regulatory mechanisms include the induction or repression of sheddases and protease inhibitors, such as tissue inhibitors of metalloproteinases (TIMPs) and the modulation of enzyme activity via the binding of sheddases and protease inhibitors to glycosaminoglycan chains either stabilizing these proteins in an active or inactive conformation or protecting them from degradation (Bernfield et al. 1999; Elenius et al. 2004). Whereas shedding can occur constitutively, it can be substantially enhanced by exogenous stimuli, including growth factors, chemokines, bacterial virulence factors, cell stress, phorbol esters, trypsin, insulin and the HS-degrading enzyme, heparanase (Bernfield et al. 1999; Manon-Jensen et al. 2010;
We will discuss selected examples in the following section, which addresses various members of shed proteoglycans in the tumor stroma.

Shed proteoglycans in the tumor stroma

Recent studies have categorized cell surface proteoglycans into various families. Membrane-bound proteoglycans include syndecans-1 to -4, the GPI-anchored glypicans-1 to -6, the TGF beta Type III receptor betaglycan, melanoma-associated chondroitin sulfate proteoglycan (MCSP/NG2) and phosphacan / protein tyrosine phosphatase gamma (PTPgamma). Syndecans and glypicans are HS proteoglycans, NG2 and phosphacan are CS proteoglycans, whereas the GAG chains of betaglycan are composed of CS and HS chains (Iozzo and Schaefer 2015). Notably, members of all of these proteoglycan families are known to be substrates for sheddases. In this section, we will present the process of ectodomain shedding by using selected examples and discuss their pathophysiological relevance within the tumor stroma.

Syndecans

Syndecans are prototypical transmembrane HS proteoglycans that have several functions relevant to tumor progression (Fig. 1). For example, they are involved in the regulation of cell proliferation by acting as a co-receptor for several growth factor receptors; they act as cell adhesion molecules and modulate proteolysis, chemokine action, angiogenesis and cancer stem cell function (Ibrahim et al. 2013; Manon-Jensen et al. 2010; Yip et al. 2006). Notably, all syndecans are shed in vitro and in vivo (Bernfield et al. 1999). Proteolytic cleavage of syndecans is mediated by plasmin, thrombin, MMPs and ADAMTs (Kim et al. 1994; Table 1) and can be modulated by interfering with several signaling cascades including the protein kinase C (PKC), the protein tyrosine kinase (PTK) and the MAP kinase pathways (Bernfield et al. 1999).

Substitution of the glycine residue at position 245 of syndecan-1 with a leucine has previously been demonstrated to reduce the extent of MT1-MMP mediated shedding by ∼50 % in human fibrosarcoma cells (Endo et al. 2003). On the other hand, the ectodomain shedding of murine syndecan-1 and -4 is inhibited by TIMP-1 and TIMP-2, revealing that the responsible sheddase belongs to the ADAM family of metalloproteinases (Fitzgerald et al. 2000). Syndecan shedding has bimodal effects under several pathological conditions in vivo (Fig. 2). Soluble syndecan-1 has been shown to be required for the formation of chemotactic gradients in a lung inflammation model in mice and may be involved in the regulation of leukocyte-endothelial interactions and angiogenesis (Gotte 2003; Gotte and Echermeyer 2003). Moreover, shedding of the syndecan-3 ectodomain appears to modulate feeding behavior and body weight in mice (Reizes et al. 2003). On the other hand...
other hand, the overexpression of soluble syndecan-1 delays wound repair and induces abnormal blood vessel morphology, because of the increased amount of soluble syndecan-1 observed in skin wound fluids (Elenius et al. 2004). These large amounts have been shown to increase elastolytic activity, which may also be of relevance in the tumor stroma. Shed ectodomains are deposited in the extracellular matrix where they can influence the function and interactions of large structural matrix glycoproteins, growth factors and cytokines.

Fig. 2 Overview of various cell surface proteoglycans known to be shed, including transmembrane (syndecans, betaglycan, nerve/glial antigen 2 (NG2) and phosphacan) and glycosylphosphatidyl-inositol (GPI)-anchored (glypicans). The glycosaminoglycan (GAG) chain and the major cleavage sites for selected sheddases are depicted, as exemplified for the syndecan-1 core protein. The GPI-anchored glypicans are shed by phospholipases, whereas the other depicted transmembrane proteoglycans are cleaved by a wide range of proteases (see Table 1). Moreover, autocrine and paracrine effects induced by each proteoglycan are shown as they affect important stromal functions in angiogenesis, tumor cell proliferation and survival, cell adhesion, migration and metastatic behavior. Shed ectodomains are deposited in the extracellular matrix enabling the function and interactions of large structural matrix glycoproteins, growth factors and cytokines.

Ectodomain shedding reduces the available binding sites for such ligands at the cell surface, resulting in altered cytokine responses. Oval left. In the case of syndecan-1 (Sdc-1), shedding is facilitated by degradation of the HS chains by heparanase. Shed syndecan-1 and betaglycan can be transported in exosomes, a means of transferring proteins and microRNAs from tumor cells to stroma cells. Finally, syndecan-1 ectodomains can reach the nucleus and modulate gene transcription (for details, see Theocharis et al. 2015b). Whereas phosphacan is a shed proteoglycan, very little is known so far about its function in the tumor stroma (MCSP melanoma-associated chondroitin sulfate proteoglycan, EMT epithelial to mesenchymal transition, TGF transforming growth factor, HS heparan sulfate, CS chondroitin sulfate, FGF fibroblast growth factor, NK natural killer, ADAMT a disintegrin and metalloproteinase with thrombospondin motif, GF growth factors).
indications have also been obtained for important roles of syndecans in the tumor stroma and for soluble syndecan ectodomains in the stroma, which can be either generated by cleavage from the tumor cell surface or obtained from other cell types such as CAFs, endothelial cells, or leukocytes. Indeed, syndecan-1 is expressed and dysregulated in the stroma of several types of cancers, including breast carcinoma, colon cancer, gastric cancer, bladder cancer and squamous cell carcinoma (Ahmed Haji Omar et al. 2013; Hashimoto et al. 2008; Mukunyadzi et al. 2003; Szarvas et al. 2014; Yang et al. 2002). An aberrant stromal expression has also been noted for syndecan-2 in various tumor entities (Ahmed Haji Omar et al. 2013; Farnedi et al. 2015; Hrabar et al. 2010). Tumor promotion is counted among its main functions. This may be correlated with the existence of its soluble form in some cancers (Miles and Sikes 2014; Nikolova et al. 2009). Of note, the expression levels of syndecan-1 distributed from epithelium to stroma are higher by far in breast cancer tissue compared with normal tissue (Lofgren et al. 2007). Although the contribution of soluble syndecan ectodomains is difficult to assess in these histopathological studies, functional studies do indeed point at a mechanistic role for soluble syndecans in tumor progression. For example, soluble syndecan-1 promotes the growth of myeloma tumors in vivo and tumors producing soluble syndecan-1 ectodomain have been shown to grow significantly faster than tumors expressing syndecan-1 on the cell surface (Yang et al. 2002). Moreover, breast cancer cells overexpressing soluble syndecan-1 show higher cell proliferation rates and higher matrigel invasiveness compared with cells overexpressing a non-cleavable, constitutively membrane-bound form of this proteoglycan (Nikolova et al. 2009). This change in cell behavior can be attributed to a downregulation of the anti-metastatic homotypic cell adhesion molecule E-cadherin and a downregulation of the MMP inhibitor TIMP-1 in cells overexpressing soluble syndecan-1. Moreover, MT1-MMP produced by stromal fibroblasts has recently been revealed to release syndecan-1 ectodomain as a paracrine mediator by the direct cleavage of syndecan-1 at the surface of these cells (Table 1). CAFs stimulate breast cancer cell growth through MT1-MMP enzymatic activity. Together, these data pinpoint the novel role of fibroblast-derived MMPs and their proteoglycan targets in stromal-epithelial signaling in carcinomas. A mechanistically highly relevant study employing a tumor cell/stromal fibroblast coculture system has demonstrated that stromal syndecan-1 mediates breast cancer cell proliferation in vitro and in vivo and that this regulation requires the HS chains and the presence of the stromal cell-derived factor 1 (SDF1) and fibroblast growth factor 2 (FGF-2; Su et al. 2008). Strikingly, the syndecan-1 expressed by stromal fibroblasts has apparently a profound effect on matrix organization within the tumor stroma and can thus be expected to modulate tumor cell motility and signaling via integrins (Yang et al. 2002). However, the potential roles of syndecans are not restricted to cancer-associated fibroblasts. Data from a syndecan-1 transgenic mouse skin wound model suggest an influence of the HS chains of syndecan-1 on the proteolytic milieu, as soluble syndecan-1 increases elastolytic activity in the wound fluid, leading to delayed repair and abnormal angiogenesis (Elenius et al. 2004). Indeed, several studies have demonstrated that syndecans are capable of binding proteases, including various members of the MMP family (Manon-Jensen et al. 2010). Whereas these data are in accordance with Dvorak’s paradigm of tumors as wounds that do not heal (Dvorak 1986), additional indications have been found for a role of syndecan-1 in tumor angiogenesis: syndecan-1 is a modulator of integrins relevant for this process (Rapraeger 2013) and heparanase-accelerated shedding of syndecan-1 ectodomains has been shown to modulate angiogenesis in myeloma via the binding of the proteoglycan to VEGF (Purushothaman et al. 2010). Apart from these processes, data in animal models suggest a role for syndecan-1 in leukocyte recruitment, thus including potential roles in endothelial and inflammatory cells. For example, the lack of syndecan-1 on leukocytes enhances integrin-ICAM-1 interactions and leads to increased leukocyte recruitment during inflammation, whereas lack of heparan sulfate on endothelial cells interferes with leukocyte recruitment (Kumar et al. 2015). Similar findings can be expected regarding leukocyte recruitment in the tumor stroma; however, no functional studies have been performed so far. Mechanistically, a striking finding has been the observation that shed syndecan-1 can be transported to the nucleus in which it can influence transcription via the inhibition of histone acetylation, thus broadening the functional impact of the molecule (Stewart et al. 2015) (Fig. 2). In summary, these data indicate that the soluble ectodomains of syndecans have a profound influence on the tumor microenvironment and, thus, these domains emerge as potential therapeutic targets.

Glypicans

The glypican family of cell surface proteoglycans consists in six members in mammals (Bernfield et al. 1999). The core protein of glypicans is attached to the cell surface through a GPI anchor. Several members of the glypican family influence tumor development and their expression is dysregulated in a context-dependent manner in various tumor entities (Ibrahim et al. 2014b; Theocharis et al. 2015b). For example, glypican-3 has been proposed as a prognostic marker for melanoma and human hepatocellular carcinoma (HCC; Haruyama et al. 2015). Notably, stromal expression of glypican-1 is increased in prostate cancer (Suhovskikh et al. 2013) and in ovarian cancer, where it is a poor prognostic indicator for survival (Davies et al. 2004), indicating a possible important role in the tumor microenvironment. At the functional level, glypicans modulate numerous signaling pathways (FGF, Wnt, Hedgehog,
bone morphogenetic protein [BMP]), thus regulating cell proliferation, cell survival, cell migration, cell differentiation and angiogenesis (Filmus and Capurro 2013). Similar to syndecans, glypicans can be shed, however, by necessity the molecular mechanism differs, as the HS proteoglycan is GPI-anchored (Fig. 2). Glypicin shedding includes the cleavage of their GPI anchor by phospholipases (Traister et al. 2008). Moreover, they can be dually processed by partial cleavage via proteases and lipases (Filmus and Capurro 2013). The high levels of shed glypicin may arise either from the large amounts of this proteoglycan or from the increased enzymatic activity of proteases. Therefore, glypican-3 might be an important candidate antigen for immunotherapy of HCC, where it is strongly expressed. Various clinical approaches include the glypican-3 peptide vaccination and the anti-glypican-3 antibody in patients with melanoma and HCC (Ishiguro et al. 2008; Nakatsura et al. 2004). Moreover, the suppression of glypican-1 in pancreatic cancer leads to decreased cytotoxic effects of natural killer cells (Bloushtain et al. 2004; Hershkovitz et al. 2007).

Melanoma-associated chondroitin sulfate proteoglycan-nerve/glial antigen 2

NG2 is a large multidomain cell surface CS proteoglycan, which is of particular relevance for the tumor stroma, as it is expressed by mural cells (and is thus relevant for angiogenesis) and is widely used as a molecular marker for CAFs (Balzarini et al. 2012; Kim et al. 2015; Park et al. 2015). Important functions of NG2 include a role in pericyte recruitment during (tumor) angiogenesis (Gibby et al. 2012) and as a mediator of growth-stimulatory and pro-survival effects, which are attributable to activation of the Akt and betacatenin signaling pathways following the interaction of NG2 with its matrix substrate collagen VI (Iyengar et al. 2005; Cattaruzza et al. 2013a). Moreover, NG2 is capable of modulating FGFR-2 signaling in perivascular cells (Cattaruzza et al. 2013b). Its role as a pericyte marker has recently been exploited in a therapeutic study in which a fusion peptide comprising an NG2-targeting peptide and tissue factor was utilized to induce tumor cell infarction in a xenograft model (Brand et al. 2016). Importantly, a clinicopathological study on head and neck cancer has revealed that NG2 expression in neoplastic cells and in the intralesional stroma is strongly associated with loco-regional relapse, emphasizing the relevance of aberrant NG2 expression in an oncological context (Famedi et al. 2015). Moreover, a predictive value regarding metastasis formation has been assigned to NG2 in soft tissue carcinoma patients (Benassi et al. 2009). The juxtamembrane domain of NG2 contains several protease cleavage sites and the diffusible ectodomain can be detected in the blood stream of melanoma patients (Price et al. 2011). Furthermore, NG2 has been detected in unique glial cells receiving synaptic input from neurons. Interestingly, its enzymatic cleavage by ADAM-10 and γ-secretase yields an active ectodomain associated with the extracellular matrix, thus modulating neuronal networks (Sakry et al. 2014). Soluble NG2 has been detected in vitro and in vivo. Pharmacological inhibition of NG2 shedding in mice results in impaired behavior and sensory data that is correlated with various human diseases such as schizophrenia (Geyer et al. 2001), paving the way for similar therapeutic approaches in an oncological context.

Betaglycan

Betaglycan (the proteoglycan form of TGFbeta receptor type III) has been identified as a suppressor of cancer progression in several epithelial tumors (Dong et al. 2007; Hempel et al. 2007; Sun and Chen 1997), although its function is context-dependent in some tumor entities (Criswell et al. 2008). Mechanistically, betaglycan plays an important role as a receptor for TGFbeta and TGFbeta family members, mediating signaling and leading to a suppression of the transcription factor nuclear factor kappa B of downstream targets such as MMP2, and to a modulation of Rho-GTPase-mediated signaling cascades involved in cytoskeletal remodeling (Bilandzic et al. 2014; Oh et al. 2013; You et al. 2009). In accordance with a potential tumor suppressor role, betaglycan expression is downregulated in CAFs in oral squamous cell carcinoma (Meng et al. 2011). Notably, betaglycan inhibits heterotropic adhesion between myeloma cells and bone marrow stromal cells, indicating an important function in the tumor microenvironment (Lambert et al. 2011). Whereas betaglycan can be transported from tumor cells to fibroblasts via exosomes, thereby inducing their differentiation to a myofibroblast-like-state (Webber et al. 2010), some functions of this proteoglycan depend on the shedding of its ectodomain, which is mediated by MT1-MMP (Velasco-Loyden et al. 2004). By using betaglycan mutants that displayed either reduced or increased shedding rates, Elderbloom et al. (2014) demonstrated that the inhibition of betaglycan shedding increases TGF-β responsiveness and abrogates the ability of the proteoglycan to inhibit breast cancer cell migration and invasion, whereas the expression of a mutant receptor showing increased ectodomain shedding results in the opposite effect. Importantly, soluble betaglycan reduces breast cancer metastasis in an in vivo model. Using a similar experimental approach and pharmacological shedding inhibitors, the same research group demonstrated that the balance of cell surface and soluble type betaglycan regulates BMP signaling in normal and cancerous murine mammary epithelial cells. The impact on BMP/Smad signaling results in a comparable effect on breast cancer cell proliferation and migration and is
attributed to ligand sequestration by the soluble ectodomain (Gatza et al. 2014).

Outlook: prognostic and therapeutic considerations

The generation of soluble proteoglycan ectodomains within the tumor stroma has a considerable impact on several relevant non-cancer cell-autonomous processes, including the regulation of the proteolytic milieu, of cytokine signaling, of matrix remodeling as a prerequisite for metastasis and of angiogenesis (Fig. 2). Based on these important functions, the question arises as to whether this knowledge can be utilized in a translational or clinical setting. One possibility is the detection of proteoglycan ectodomain levels in the serum as a diagnostic tool. Elevated levels of soluble proteoglycans in biological fluids, such as blood serum, have been detected in patients with sepsis, ischemia or reperfusion injury, or graft-versus-host disease and in various cancer types (Joensuu et al. 2002; Kliment et al. 2009; Rehm et al. 2007; Seidel et al. 2003; Steppan et al. 2011). For example, the presence of the soluble syndecan-1 in the blood stream is indicative of poor prognosis in several malignancies (Joensuu et al. 2002; Lovelle et al. 2005; Szarvas et al. 2014; Vassilakopoulos et al. 2005). A diagnostic or prognostic value for additional shed proteoglycan ectodomains in hepatocellular carcinoma has also been attributed to glypicanc-3 (Haruyama et al. 2015) and NG2 (Lu et al. 2015). Finally, in vivo studies have correlated the presence of shed syndecan-1 with the inflammatory response (Hayashida et al. 2008; Q. Li et al. 2002), with potential relevance to leukocyte recruitment to the tumor stroma. These data indicate that soluble proteoglycan ectodomains that have been released into the blood stream are indeed promising diagnostic markers that might aid therapeutic decisions in a clinical context. Given the functional importance of shed proteoglycan ectodomains in the tumor stroma, the inhibition of shedding might be a worthwhile therapeutic approach that may have an impact not only on the tumor cells (which may more easily develop therapeutic resistance because of their genomic instability and cancer stem cell properties) but also on its microenvironment. Therefore, a highly promising next step will be the development of specific shedding inhibitors in clinical trials for the focused approach of several pathological situations. Some potential inhibitors that have been recently discussed in the context of syndecan shedding include MT1-MMP inhibitors (GM6001, BB94, TIMP-2), MMP-7 inhibitors (TIMP-1), the FGF-2 antagonist PTX3 and all-trans retinoic acid (Choi et al. 2013). Whereas more translational research in this area is warranted, the inhibition of shedding might contribute to the exciting therapeutic concept of tumor stroma normalization, which aims at transforming the cancer microenvironment into a non-permissive one with the aim of slowing down or even reverting tumor progression (Mueller and Fusenig 2004).

Compliance with ethical standards

Conflict of interest The authors declare that no conflicts of interest exist.

References

Ahmed Haji Omar A, Haglund C, Virolainen S, Hayry V, Atula T, Kontio R, Rihtniemi J, Pihkari A, Salo T, Hagstrom J, Sorsa T (2013) Epithelial and stromal syndecan-1 and -2 are distinctly expressed in oral- and cutaneous squamous cell carcinomas. J Oral Pathol Med 42:389–395

Asutkar S, Velpula KK, Nalla AK, Gogineni VR, Gondi CS, Rao JS (2014) Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells. Oncogene 33:1922–1933

Balzarini P, Benetti A, Invernici G, Cristini S, Zicari S, Caruso A, Gatta LB, Berenzi A, Imberti L, Zanotti C, Portolani N, Giuliani SM, Ferrari M, Ciusan E, Navone SE, Canazza A, Parati EA, Alessandri G (2012) Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Lab Invest 92:1297–1309

Barbouri D, Afratis N, Gialeli C, Vynios DH, Theocharis AD, Karamanos NK (2014) Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol 4:4

Benassi MS, Pazzaglia L, Chiechi A, Alberghini M, Conti A, Cattaruzza S, Wassermann B, Picci P, Perriss R (2009) NG2 expression predicts the metastasis formation in soft-tissue sarcoma patients. J Orthop Res 27:135–140

Bernabeu C, Lopez-Novoa JM, Quintanilla M (2009) The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta 1792:954–973

Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

Bilandzic M, Steners KL (2011) Betaglycan: a multifunctional accessory. Mol Cell Endocrinol 339:180–189

Bilandzic M, Wang Y, Ahmed N, Luwor RB, Zhu HJ, Findlay JK, Steners KL (2014) Betaglycan blocks metastatic behaviors in human granulosa cell tumors by suppressing NFkappaB-mediated induction of MMP2. Cancer Lett 354:107–114

Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E, Korch M, Vlodavsky I, Bovin NV, Porgador A (2004) Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 173: 2392–2401

Bourguignon LY, Wong G, Shina M (2016) Upregulation of histone methyltransferase, DOT1L by matrix hyaluronan promotes microRNA-10 expression leading to tumor cell invasion and chemoresistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 291:10571-10585
Bouris P, Skandalis SS, Piperigkou Z, Afratis N, Karamanou K, Aletras AJ, Moustakas A, Theocharis AD, Karamanos NK (2015) Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 43:42–60

Brand C, Schliemann C, Ring J, Kessler T, Bäumer S, Angenendt L, Bouris P, Skandalis SS, Piperigkou Z, Afratis N, Karamanou K, Aletras (2016) Cell Tissue Res (2016) 365:643

Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases.

Brule S, Charnaux N, Sutton A, Ledoux D, Saffar L, Cattaruzza S, Ozerdem U, Denzel M, Ranscht B, Cavallaro U, Choi S, Kang DH, Oh ES (2013) Targeting syndecans: a promising mechanism for controlling tumor growth in vivo. J Biol Chem 278:40764–40770

Fanckhaksei K, Okada F, Nagai N, Pothacharoen P, Kungtawelert P, Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 145:573–583

Fears CY, Gladson CL, Woods A (2006) Syndecan-2 is expressed in the microvascularature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 281:14533–14536

Filimus J, Capurro M (2013) Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J 280:2471–2476

Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148:811–824

Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

Gattergno L (2006) The shedding of syndecan-4 and syndecan-1 as a pericyte target for anticancer therapy by tumor vessel infarction. Mol Biol Cell 17:193–207

Gleave M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, Kelly P, Elderbroom JL, Huang JJ, Gatza CE, Elderbroom JL, Oh SY, Starr MD, Nixon AB, Blobe GC (2014) The balance of cell surface and soluble type III TGF-beta receptor regulates BMP signaling in normal and cancerous mamma- ry epithelial cells. Neoplasia 16:489–500

Giateli C, Theocharis AD, Kletsas D, Tzanakakis GN, Karamanos NK (2013) Expression of matrix macromolecules and functional properties of EGF-responsive colon cancer cells are inhibited by panitumumab. Invest New Drugs 31:516–524

Gibby K, You WK, Kadoya K, Helgadottir H, Young LJ, Ellies LG, Chang Y, Arundell P, Moeller BJ, Marks JR, Blobe GC (2007) The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 117:206–217

Gott M (2009) Syndecans in inflammation. FASEB J 17:575–591

Gott M, Eichmeyer F (2003) Syndecan-1 as a regulator of chemokine function. ScientificWorldJournal 3:1327–1331

Gott M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66:10233–10237

Greve B, Kelsch R, Spaniol K, Eich HT, Gott M (2012) Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81:284–293

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next genera- tion. Cell 144:646–674

Elenius V, Gotte M, Reizes O, Elenius K, Bernfield M (2004) Inhibition by the soluble syndecan-1 ectodomain delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279:41928–41935

Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M, Sato H (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278:40764–40770
Haruyama Y, Yorita K, Yamaguchi T, Kitajima S, Amano J, Ohtomo T, Ohno A, Kondo K, Kataoka H (2015) High preoperative levels of serum glycipican-3 containing N-terminal subunit are associated with poor prognosis in patients with hepatocellular carcinoma after partial hepatectomy. Int J Cancer 137:1643–1651

Hashimoto Y, Skacel M, Adams JC (2008) Association of loss of epithelial syndecan-1 with stage and local metastasis of colorectal adenocarcinomas: an immunohistochemical study of clinically annotated tumors. BMC Cancer 8:185

Hayashida K, Chen Y, Bartlett AH, Park PW (2008) Syndecan-1 is an in vivo suppressor of Gram-positive toxic shock. J Biol Chem 283: 19985–19903

Hempel N, How T, Dong M, Murphy SK, Fields TA, Blobe GC (2007) Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer Res 67:5231–5238

Hershkovitz O, Jivov S, Bloushtain N, Zilka A, Landau G, Bar-Ilan A, Ibrahim SA, Yip GW, Stock C, Pan JW, Neubauer C, Poeter M, Pupjalis

Ibrahim SA, Hassan H, Vilardo L, Kumar SK, Kumar AV, Kelsch R, Schneider C, Kiesel L, Eich HT, Zucchi I, Reinbold R, Greve B, Gotte M (2013) Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS One 8:e85737

Ibrahim SA, Hassan H, Gotte M (2014a) MicroRNA-dependent targeting of the extracellular matrix as a mechanism of regulating cell behavior. Biochim Biophys Acta 1840:2609–2620

Ibrahim SA, Hassan H, Gotte M (2014b) MicroRNA regulation of proteoglycan function in cancer. FEBS J 281:5009–5022

Iozzo RV (1997) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 66:609–652

Iozzo RV, Sanderson RD (2011) Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 15:1013–1031

Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

Ishiguro T, Sugimura M, Kinoshita Y, Miyazaki Y, Nakano K, Tsuoda H, Sugio I, Ohizumi I, Aburatani H, Hamakubo T, Kodama T, Tsuchiya M, Yamada-Okabe H (2008) Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res 68:115:1163–1170

Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, Chopra N, Russell RG, Sasaki K, Prior TJ, Collin VS, Petričkova EF 3rd, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE (2005) Adipocyte-derived collagen VI promotes early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115:1163–1176

Jachetti E, Caputo S, Mazzoleni S, Brambillasca CS, Parigi SM, Grioni M, Piras IS, Restuccia U, Calcinoatto A, Fresa M, Bachi A, Galli R, Bellone M (2015) Tenascin-C protects cancer stem-like cells from immune surveillance by arresting T-cell activation. Cancer Res 75: 2095–2108

Joo NE, Miao D, Bermudez M, Stallcup WB, Kapila YL (2014) Shedding of NG2 by MMP-13 attenuates enoikis. DNA Cell Biol 33:854–862

Kim CW, Goldberg OA, Gallo RL, Bernfield M (1994) Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 5:797–805

Kim HM, Jung WH, Koo JS (2015) Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J Transl Med 13:222

Kliment CR, Englert JM, Goochuco BR, Yu G, Kamiński N, Rosas I, Oury TD (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 284:3537–3545

Korpetinou A, Skandalis SS, Mou斯塔kas A, Happonen KE, Tveit H, Prydz K, Labropoulo VT, Giannopoulou E, Kalofonos HP, Blom AM, Karamanos NK, Theorchias AD (2013) Serglycin is implicated in the promotion of aggressive phenotype of breast cancer cells. PLoS One 8:e78157

Korpetinou A, Skandalis SS, Labropoulo VT, Smirluk G, Noulas A, Karamanos NK, Theorchias AD (2014) Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 3:327

Korpetinou A, Papachristou DJ, Lampropoulou A, Bouris P, Labropoulo VT, Noulas A, Karamanos NK, Theorchias AD (2015) Increased expression of Serglycin in specific carcinomas and aggressive cancer cell lines. Biomed Res Int 2015:690721

Kumar AV, Takakami SK, Urbanowicz AK, Gottle M (2015) Heparan sulfate as a regulator of leukocyte recruitment in inflammation. Curr Protein Pept Sci 16:77–86

Kwon MJ, Hong E, Choi Y, Kang DH, Oh ES (2014) Interleukin-1alpha promotes extracellular shedding of syndecan-2 via induction of matrix metalloproteinase-7 expression. Biochem Biophys Res Commun 446:487–492

Lambert KE, Huang H, Myhreney K, Blobe GC (2011) The type III transforming growth factor-beta receptor inhibits proliferation, migration, and adhesion in human myeloma cells. Mol Biol Cell 22: 1463–1472

Lang K, Kammerer M, Hegi ME, Grotegut S, Dittmann A, Huang W, Fluri E, Yip GW, Gotte M, Ruiz C, Orend G (2007) Endothelin receptor type B counteracts tenasin-C-induced endothelin receptor type A-dependent focal adhesion and actin stress fiber disorganization. Cancer Res 67:6163–6173

Lazard D, Sastre X, Fred MG, Gluhkova MA, Thierry JP, Koteliyansky V (1993) Expression of smooth muscle-specific proteins in myoepithelial and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci U S A 90:9009–1003

Li Q, Park PW, Wilson CL, Parks WC (2002) Increased expression of Serglycin in specific carcinomas associated with prolonged survival after surgery. Clin Cancer Res 8:5864–5870

Li R, Zhang L, Jia J, Duan Y, Li Y, Wang J, Bao L, Sha N (2014) MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma. PLoS One 9:e94855

Li X, Truty MA, Kang Y, Chopin-Laly X, Zhang R, Roife D, Chatterjee D, Lin E, Thomas RM, Wang H, Katz MH, Fleming JB (2014) Extracellular lumican inhibits pancreatic cancer cell growth and is associated with prolonged survival after surgery. Clin Cancer Res 20:6529–6540

Lim HC, Multhaupt HA, Couchman JR (2015) Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 14:15

Lofgren L, Sahlin L, Jiang S, Von Schoutz B, Fernstad R, Skoog L, Von Schoultz E (2007) Expression of syndecan-1 in paired samples of normal and malignant breast tissue from postmenopausal women. Anticancer Res 27:3045–3050

Lovell R, Dunn JA, Begum G, Barth NJ, Plant T, Moss PA, Drayson MT, Pratt G, Working Party on Leukaemia in Adults of the National Cancer Research Institute Haematological Oncology Clinical

Cell Tissue Res (2016) 365:643–655

Springer
Studies G (2005) Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. Br J Haematol 130:542–548

Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058

Lu LL, Sun J, Lai JJ, Jiang Y, Bai LH, Zhang LD (2015) Neuron-glial antigen 2 overexpression in hepatocellular carcinoma predicts poor prognosis. World J Gastroenterol 21:6649–6659

Manon-Jensen T, Itoh Y, Couchman JR (2010) Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 277:3876–3889

Meng W, Xia Q, Wu L, Chen S, He X, Zhang L, Gao Q, Zhou H (2011) Downregulation of TGF-β-receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts. BMC Cancer 11:88

Miles FL, Sikes RA (2014) Insidious changes in stromal matrix fuel cancer progression. Mol Cancer Res 12:297–312

Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

Mukunyadzi P, Liu K, Hanna EY, Suen JY, Fan CY (2003) Induced pluripotent stem cells. Methods Mol Biol 836:291–305

Nam EJ, Park PW (2012) Shedding of cell membrane-bound proteoglycans. Methods Mol Biol 836:291–305

Neill T, Schaefer L, Iozzo RV (2012) Decorin: a guardian from the matrix. Adv Drug Deliv Rev 64:387–395

Nakatsura T, Kageshita T, Ito S, Wakamatsu K, Monji M, Ikuta S, Ono T, Nishimura Y (2004) Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res 10:6612–6621

Nem J, Park PW (2012) Shedding of cell membrane-bound proteoglycans. Methods Mol Biol 836:291–305

Neill T, Schaefer L, Iozzo RV (2012) Decorin: a guardian from the matrix. Adv Drug Deliv Rev 64:387–395

Oh SY, Knelson EH, Blobe GC, Mythreye K (2013) The type III TGFβ1 receptor regulates filopodia formation via a Cdc42-mediated IRSp53-N-WASP interaction in epithelial cells. Biochem J 454:79–89

Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

Park SY, Kim HM, Koo JS (2015) Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat 149:727–741

Pasqualon T, Pruessmeyer J, Jankowski V, Babendrejer A, Groth E, Schumacher J, Koenen A, Weidenfeld S, Schwarz N, Denecke B, Jähr H, Dreyemueller D, Jankowski J, Ludwig A (2015) A cytoplasmic C-terminal fragment of Syndecan-1 is generated by sequential proteolysis and antagonizes Syndecan-1 dependent lung tumor cell migration. Oncotarget 6:31295–31312

Piperigkou Z, Karamanou K, Afratis NA, Bouris P, Gialeli C, Belmiro CL, Pavao MS, Vynios DH, Tsatsakis AM (2016) Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules. Toxicol Lett 240:32–42

Price MA, Colvin Wanshura LE, Yang J, Carlson J, Xiang B, Li G, Ferrone S, Dudek AZ, Turley EA, McCarthy JB (2011) CSPG4, a potential therapeutic target, facilitates malignant progression of melanoma. Pigment Cell Melanoma Res 24:1148–1157

Pruessmeyer J, Martin C, Hess FM, Schwarz N, Schmidt S, Kogel T, Hoettecke N, Schmidt B, Sechi A, Uhlig S, Ludwig A (2010) A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J Biol Chem 285:555–564

Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115:2449–2457

Rapraeger AC (2013) Syndestatin: a selective inhibitor of the syndecan-1-coupled IGFR1-αlphavbeta3 integrin complex in tumorigenesis and angiogenesis. FEBS J 280:2207–2215

Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Chappell D, Stoeckelhuber M, Welsch U, Reichart B, Peter K, Becker BF (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906

Reizes O, Benoît SC, Strader AD, Clegg DJ, Akunuru S, Seeley RJ (2003) Syndecan-3 modulates food intake by interacting with the melanocortin/AgRP pathway. Ann N Y Acad Sci 994:66–73

Rodriguez-Manzaneque JC, Carpizo D, Plazari-Calonge Mdel C, Torres-Collado AX, Thai SN, Simons M, Horowitz A, Israeli-Arispe ML (2009) Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. J Biochem Cell Biol 41:800–810

Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Biname F, Perera S, Endres K, Lutz B, Rudysklin K, Trotter J, Mittmann T (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12:e1001993

Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339:237–246

Schmidt A, Echtnermeyer F, Alozie A, Brands K, Buddecke E (2005) Plasmin- and thrombin-accelerated shedding of syndecan-4 ectodomain generates cleavage sites at Lys(114)-Arg(115) and Lys(129)-Val(130) bonds. J Biol Chem 280:34441–34446

Schultz N, Nielsen HM, Minthon L, Wennstrom M (2014) Involvement of matrix metalloproteinase-9 in amyloid-beta 1-42-induced shedding of the pericyte proteoglycan NG2. J Neuropathol Exp Neurol 73:684–692

Seidel C, Ringden O, Remberger M (2003) Increased levels of syndecan-1 in serum during acute graft-versus-host disease. Transplantation 76:423–426

Siewert EM, Klijn JG, Henzen-Logman SC, Bouwman I, Van Roodendaal KE, Peters HA, Setyono-Han B, Fockens JA (1998) Urokinase-type-plasminogen-activator (uPA) production by human breast (myo) fibroblasts in vitro: influence of transforming growth factor-beta(1) [TGF beta(1)] compared with factor(s) released by co-cultured Urokinase-type-plasminogen-activator (uPA) production by human breast (myo) fibroblasts in vitro: influence of transforming growth factor-beta(1) [TGF beta(1)] compared with factor(s) released by Co-cultured
Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J Biol Chem 290:941–949

Su G, Blaine SA, Qiao D, Friedl A (2008) Membrane type 1 matrix metalloproteinase-mediated sheddable syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res 68:9558–9565

Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272:14713–14720

Suhovskih AV, Mostovich LA, Kunin IS, Boboev MM, Nepomnyashchikh GI, Aidagulova SV, Grigorieva EV (2013) Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol 2013:680136

Sun L, Chen C (1997) Expression of transforming growth factor beta type III receptor suppresses tumorigenicity of human breast cancer MDA-MB-231 cells. J Biol Chem 272:25367–25372

Szarvas T, Reis H, Kramer G, Shariat SF, Tschirdewahn S, Schmid KW, Kovalszky I, Rubben H (2014) Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer. Hum Pathol 45:674–682

Takahashi Y, Kuwabara H, Yoneda M, Isogai Z, Tanigawa N, Shibayama T, You HJ, How T, Blobe GC (2009) The type III transforming growth factor-beta receptor negatively regulates nuclear factor kappa B signaling through its interaction with beta-arrestin2. Carcinogenesis 30:12355–12361

Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:9621–9630

Wight TN, Kang I, Merrelles MJ (2014) Versican and the control of inflammation. Matrix Biol 35:152–161

Yang Y, Yacovcic S, Liu W, Langford JK, Humphrey CY, Theus A, Epstein J, Sanderson RD (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100:610–617

Yip GW, Smolich M, Gotte M (2006) Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther 5:1235–12361

You HJ, How T, Blobel GC (2009) The type III transforming growth factor-beta receptor negatively regulates nuclear factor kappa B signaling through its interaction with beta-arrestin2. Carcinogenesis 30:1281–1287

You WK, Yokumoto F, Sakamura K, Adams RH, Stallcup WB (2014) NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function. Angiogenesis 17:61–76