Bag of Instances Aggregation Boosts Self-supervised Learning

Haohang Xu1,2,* Jiemin Fang3,4,* Xiaopeng Zhang2 Lingxi Xie2 Xinggang Wang4 Wenrui Dai1 Hongkai Xiong1 Qi Tian2
1Shanghai Jiao Tong University 2Huawei Inc.
3Institute of Artificial Intelligence, Huazhong University of Science & Technology
4School of EIC, Huazhong University of Science & Technology
\{xuhaohang, daiwenrui, xionghongkai\}@sjtu.edu.cn
\{jaminfong, xgwang\}@hust.edu.cn
\{zxphistory, 198808xc\}@gmail.com tian.qi1@huawei.com

Abstract

Recent advances in self-supervised learning have experienced remarkable progress, especially for contrastive learning based methods, which regard each image as well as its augmentations as an individual class and try to distinguish them from all other images. However, due to the large quantity of exemplars, this kind of pretext task intrinsically suffers from slow convergence and is hard for optimization. This is especially true for small scale models, which we find the performance drops dramatically comparing with its supervised counterpart. In this paper, we propose a simple but effective distillation strategy for unsupervised learning. The highlight is that the relationship among similar samples counts and can be seamlessly transferred to the student to boost the performance. Our method, termed as BINGO, which is short for Bag of InstaNces aGgregatiOn, targets at transferring the relationship learned by the teacher to the student. Here bag of instances indicates a set of similar samples constructed by the teacher and are grouped within a bag, and the goal of distillation is to aggregate compact representations over the student with respect to instances in a bag. Notably, BINGO achieves new state-of-the-art performance on small scale models, \textit{i.e.}, 65.5\% and 68.9\% top-1 accuracies with linear evaluation on ImageNet, using ResNet-18 and ResNet-34 as backbone, respectively, surpassing baselines (52.5\% and 57.4\% top-1 accuracies) by a significant margin. The code will be available at https://github.com/haohang96/bingo

1 Introduction

Convolutional Neural Networks (CNNs) have achieved great success in the field of computer vision, including image classification \cite{13}, object detection \cite{20} and semantic segmentation \cite{2}. However, most of the time, CNNs cannot succeed without enormous human-annotated data. Recently, self-supervised learning, typified by contrastive learning \cite{11,3}, has been fighting with the annotation-eager challenge and achieves great success. Most current self-supervised methods yet focus on networks with large size, \textit{e.g.}, ResNet-50 \cite{13} with more than 20M parameters, but real-life implementation usually involves computation-limited scenarios, \textit{e.g.}, mobile/edge devices.

Due to annotation lacking in unsupervised tasks, learning from unlabeled data becomes challenging. Recent contrastive learning methods \cite{11,3} tackle this problem by narrowing gaps between embeddings of different augmentations from the same image. Techniques like momentum encoder for stable training have been employed to bridge the gap between embedding of each sample and the average of its augmentations. However, these methods are not well suited for small scale models, which are usually not well trained by contrastive learning due to the large number of exemplars.

*Equal contributions.
We propose a new self-supervised distillation method, which transfers knowledge by aggregating bags of related instances. To this end, we propose a proposed distillation loss, the bag-based knowledge from the teacher can be well transferred to the student, which shows significant advantages over previous relation-agnostic ones.

In our empirical studies, transferring knowledge based on highly related samples helps boost performance more effectively compared with previous relation-agnostic methods. Specifically, we select an unsupervised pretrained large model as the teacher. First, we map the conventional instance-wise dataset into a bag-wise one. Each original instance is set as an anchor of the bag. By matching similarities of all the other instances’ embeddings produced by the teacher model, we feed instances which show high similarity with the anchor instance into the bag. Then we apply the bagged dataset to the small model distillation process. To this end, we propose a bag-aggregation distillation loss, which consists of two components: inter-sample distillation and intra-sample distillation. For inter-sample distillation, embeddings of the student and teacher from two augmentations of the same instance are pushed together; for intra-sample distillation, embeddings of all instances in one bag are pushed to be more similar with the anchor one. Equipped with the two proposed distillation loss, the bag-based knowledge from the teacher can be well transferred to the student, which shows significant advantages over previous relation-agnostic ones.

Our contributions can be summarized as follows.

- We propose a new self-supervised distillation method, which bags related instances by matching similarities of instance embeddings produced by the teacher. The bagged dataset can effectively boost small model distillation by aggregating instance embeddings in bags. The proposed relation-guided method shows stronger performance than previous relation-agnostic ones.

- BINGO promotes the performance of both ResNet-18 and -34 to new state-of-the-art (SOTA) ones in unsupervised scenarios. It is worth noting that the distilled models also present far better performance compared with previous SOTA methods on other tasks, i.e., KNN classification and semi-supervised learning.

![Figure 1: Overall performance comparisons between BINGO and other unsupervised distillation methods.](image_url)
• BINGO provides new inspiration for unsupervised distillation that knowledge between instances with high relation could be more effective than relation-agnostic ones. This may be heuristic for further explorations on knowledge transfer in unsupervised scenarios.

2 Related Work

Self-supervised Learning As a generic framework to learn representations with unlabeled data, self-supervised learning has experienced remarkable progress over the past few years. By constructing a series of pretext tasks, self-supervised learning aims at extracting discriminative representations from input data. Previous methods obtain self-supervised representations mainly via a corrupting and recovering manner, from perspectives of spatial ordering [17], rotation changes [9], in-painting [19], or colorization [25], et al. Recently, contrastive learning based methods [11, 3] emerge and significantly promote the performance of self-supervised learning, which aim at maximizing the mutual information between two augmented views of a image. A series of subsequent works [10, 23] further improve the performance to a very high level. However, rare of them pays attention to self-supervised learning on small-scale models, which are of critical importance to implement self-supervised models on lightweight devices. We propose an effective method to boost the self-supervised learning of small models, which takes advantage of relation-based knowledge between data and shows superior performance than previous ones.

Knowledge Distillation Knowledge distillation aims to transfer knowledge from a model (teacher) to another one (student), usually from a large to small one, which is commonly used for improving the performance of the lightweight model. [14] first proposes knowledge distillation via minimizing the KL-divergence between the student and teacher’s logits, which uses the predicted class probabilities from the teacher as soft labels to guide the student model. Instead of mimicking teacher’s logits, [21] transfers the knowledge by minimizing the \(\ell_2 \) distance between intermediate outputs of the teacher and student model. To solve the dimension mismatch, [21] uses a randomly initialized projection layer to enlarge the dimension of a narrower student model. Based on [21], [24] utilizes knowledge stored in the attention map generated by the teacher model, and pushes the student model to pay attention to the area where the teacher focuses on. [26] improves weighted soft labels to adaptively improve the bias-variance tradeoff of each sample. Besides perspectives of soft labels and intermediate features, relation between samples is also an important knowledge. [18] and [16] train student model by aligning the pair-wise similarity graph with the teacher. Recently, some works extend the above distillation method into self-supervised learning scenarios. [22] uses the contrastive loss to learn cross-modality consistency. [7] and [15] compute the pair-wise similarities between student’s outputs and features stored in memory bank. However, the above relation-based self-supervised distillation methods only compute the similarity between anchor sample and randomly sampled instances from a maintained queue, which ignores the relation between sampled and anchor instances. [8] strengthens the student model by adding a regularization loss on the original contrastive loss, which aims at minimizing the \(\ell_2 \) distance between the student’s and teacher’s embedding. We propose to transfer the relation knowledge between models via a new type of dataset, which bags related instances. By aggregating the bagged instances, the relation knowledge can be effectively transferred.

3 Approach

In this section, we introduce the proposed BINGO in details. First, we discuss how to bag samples in the instance-wise dataset. After the samples are bagged, the bag-aggregation based knowledge distillation is introduced. We also discuss how to compute bag-aggregation loss and how they improve the performance of the lightweight model. The overall framework is illustrated in Fig. 2.

3.1 Bagging Instances with Similarity Matching

Given the unlabeled training set \(X = \{x_1, x_2, ..., x_N\} \), we define the corresponding bag-wise training set as \(\Omega = \{\Omega_1, \Omega_2, ..., \Omega_N\} \), where each bag \(\Omega_i \) consists of a set of instances. To transfer the instance-wise dataset to a bag-wise one, we first feed \(X \) into a pretrained teacher model \(f_T \) and get the corresponding features \(V = \{v_1, v_2, ..., v_N\} \) where \(v_i = f_T(x_i) \). For each anchor sample \(x_a \) in the dataset, we find positive samples which share high similarity with the anchor sample. Then the anchor sample as well as the similar samples are combined to form a bag. The samples in one
Instance-wise Dataset X

Features

Bagging via Feature Similarity

Bag-wise Dataset Ω

Anchor Instance X_a

Instance sampling

Positive Instance X_p

Student

Teacher

t~T

t~T

S_{α}

S_{β}

L_{intra}

L_{inter}

Details about how to aggregate a bag

Figure 2: An overview of the proposed method. The samples are first bagged via feature similarity. Then the related instances in a bag is aggregated via intra-sample and inter-sample distillation loss. The figure on top-right is an intuitive explanation of how bag aggregation works.

Bag have a compact representation in the embedding space. Several mapping function can be used to find similar samples:

K-nearest Neighbors For each anchor sample x_a in the instance-wise dataset, we first compute the pairwise similarity with all samples in the dataset $S_a = \{v_i \cdot v_l \mid i = 1, 2, \ldots, N\}$. The bag Ω_a corresponding to x_a is defined as:

$$\Omega_a = \text{top-rank}(S_a, K),$$

where $\text{top-rank}(\cdot, K)$ returns the indices of top K items in a set.

K-means Clustering Given the training feature set $V = \{v_1, v_2, \ldots, v_N\}$, we first assign a pseudo-label q_i to each sample i, where $q_i \in \{q_1, \ldots, q_K\}$. The clustering process is performed by minimizing the following term,

$$\frac{1}{N} \sum_{i=1}^{N} -v_i^T c_{q_i},$$

where c_{q_i} denotes the centering feature of all features belonging to the label q_i, i.e., $c_{q_i} = \sum_{q_j=q_i} v_j$, $\forall j = 1, \ldots, N$.

The bag Ω_a of anchor sample x_a is defined as:

$$\Omega_a = \{i \mid q_i = q_a, \forall i = 1, 2, \ldots, N\}.$$

Ground Truth Label If the ground truth label is available, we can also bag samples with the human-annotated semantic labels. Given the label set $Y = \{y_1, y_2, \ldots, y_N\}$, we can bag related instances of the anchor sample x_a via:

$$\Omega_a = \{i \mid y_i = y_a, \forall i = 1, 2, \ldots, N\}.$$

In this paper, we use K-nearest neighbors as the bagging strategy. More details about performance of using the K-means clustering based bagging strategy can be found in Appendix. Note that bagging instances via the ground truth label is just used to measure the upper bound of the proposed method.
3.2 Knowledge Distillation via Bag Aggregation

Once we get the bag-wise dataset Ω utilizing a pretrained teacher model, it can be used for distillation process. In each feed-forward process, the anchor sample x_a and the positive sample x_p which belong to the same bag Ω_a are sampled together in one batch. We propose the bag-aggregation distillation loss including the intra-sample distillation loss L_{intra} and inter-sample distillation loss L_{inter}.

To aggregate the representations within a bag into more compact embeddings, we minimize the following target function:

$$\min_{\theta_b} \mathcal{L} = \mathbb{E}_{x_i \sim \Omega_a} (L(f_S(x_i), f_T(x_a))),$$

where L is a metric function to measure the distance between two embeddings – there are many metrics can be selected, such as cosine similarity, euclidean distance, etc. Here we use the normalized cosine similarity, i.e., the contrastive loss commonly used in self-supervised learning to measure the distance between x_i and the anchor sample x_a. The target function in Eq. 5 can be divided into two components:

$$\mathcal{L} = L(f_S(x_a), f_T(x_a)) + \mathbb{E}_{x_i \sim \Omega_a \setminus x_a} (L(f_S(x_i), f_T(x_a))),$$

where the first item focuses on pulling different views (augmentations) of the same sample together, and the second item targets at pulling different samples that are within a same bag into more related ones. We term the first item as L_{intra} and the second item as L_{inter}.

Intra-Sample Distillation The intra-sample distillation loss is a variant of conventional contrastive loss. Contrastive learning aims to learn representations by discriminating the positive key among negative samples. Given two augmented views x and x' of one input image, MoCo [5] uses a online encoder f_q and a momentum encoder f_k to generate embeddings of the positive pairs: $q = f_q(x)$, $k = f_k(x')$. The contrastive loss is defined as

$$\mathcal{L}_{contrast} = -\log \frac{\exp(q \cdot k^+/\tau)}{\sum_{i=0}^{N} \exp(q \cdot k_i/\tau)}.$$ \hspace{1cm} (7)

During distillation, we simply replace f_q and f_k by the student model f_S and teacher model f_T, while weights of the teacher model f_T are pretrained and are not updated during distillation. The intra-sample distillation loss can be formulated as

$$\mathcal{L}_{intra} = -\log \frac{\exp(f_S(x_a) \cdot f_T(x_a')/\tau)}{\sum_{i=0}^{N} \exp(f_S(x_a) \cdot k_i^-/\tau)},$$ \hspace{1cm} (8)

where τ is the temperature parameter and k^- is the negative samples generated by the teacher model f_T.

Inter-Sample Distillation Given the anchor sample x_a and a positive sample x_p in the bag Ω_a, it is natural to map highly related samples to more similar representations. In other words, we want the bag filled with related samples to be more compact. Inspired by Eq. 8, we define the inter-sample distillation loss as

$$\mathcal{L}_{inter} = -\log \frac{\exp(f_S(x_p) \cdot f_T(x_a)/\tau)}{\sum_{i=0}^{N} \exp(f_S(x_p) \cdot k_i^-/\tau)},$$ \hspace{1cm} (9)

The intra- and inter-sample distillation loss serve as different roles. The intra-sample distillation works like conventional distillation [14][21], which aims at minimizing distances between outputs of the teacher and student model given the same input. However, the inter-sample distillation mainly focuses on transferring the data relation knowledge taking the bag-wise dataset as the carrier, which is obtained from the pretrained teacher model.

4 Experiments

In this section, we evaluate the feature representations of the distilled student networks on several widely used benchmarks. We first report the performance on ImageNet under the linear evaluation and semi-supervised protocols. Then we conduct evaluation on several downstream tasks including object detection and instance segmentation, as well as some ablation studies to diagnose how each component and parameter affect the performance.
Table 1: Linear classification accuracy on ImageNet over different student architectures. Note that when using R50×2 as teacher, SEED distills for 800 epochs while DisCo and BINGO distills for 200 epochs. The numbers in brackets indicates the accuracies of the teacher models.

Method	T	S	R-18 T-1	R-18 T-5	R-34 T-1	R-34 T-5
Supervised	69.5	-	72.8	-		
MoCo-V2 (Baseline)	52.5	77.0	57.4	81.6		
SEED	R-50 (67.4)	57.6	81.8	58.5	82.6	
DisCo	R-50 (67.4)	60.6	83.7	62.5	85.4	
BINGO	R-50 (71.1)	64.0	85.7	66.1	87.2	
SEED	R50×2 (77.3)	63.0	84.9	65.7	86.8	
DisCo	R50×2 (77.3)	65.2	86.8	67.6	88.6	
BINGO	R50×2 (77.3)	65.5	87.0	68.9	89.0	

Table 2: KNN classification accuracy on ImageNet. We report the results on the validation set with 10 nearest neighbors.

Method	ResNet-18	ResNet-34
Supervised	57.3	-
Compress	53.5	-
SEED	55.3	58.2
BINGO	61.0	64.9

4.1 Pre-training Details

Pre-training of Teacher Model Two models are used as teachers: ResNet-50 trained with MoCo-v2 [5] for 800 epochs and ResNet-50×2 trained with SwAV for 400 epochs. The officially released weights are used to initialize teacher models during distillation for fair comparisons with other methods.

Self-supervised Distillation of Student Model Two models are used as students: ResNet-18 and ResNet-34. Following the settings of MoCo in [5], we add a 2-layer MLP on top of the last averaged pooling layer to form a 128-d embedding vector. During distillation, the model is trained with the SGD optimizer with momentum 0.9 and weight decay 0.0001 for 200 epochs on ImageNet [6]. The batch size and learning rate are set as 256 and 0.03 for 8 GPUs, which simply follow the hyper-parameter settings as in [5]. The learning rate is decayed to 0 by a cosine scheduler during training process. The temperature τ and the size of memory bank are set as 0.2 and 65,536 respectively. For the bagging strategy, we use K-nearest neighbors strategy unless specified.

4.2 Experiments on ImageNet

Linear Evaluation In order to evaluate the performance of BINGO, we train a linear classifier upon the frozen representation, following the common evaluation protocol in [5]. For fair comparisons, we use the same hyper-parameters as [7, 8] during linear evaluation stage. The classifier is trained for 100 epochs, using the SGD optimizer with 30 as initial learning rate. As shown in Table 1 using ResNet-50×2 as teacher, BINGO achieve 65.5% and 68.9% accuracies on ResNet-18/34, respectively, which consistently surpass previous state-of-the-art DisCo (65.2%/67.6%) and SEED (63.0%/65.7%) using the same teacher. Note that SEED distills for 800 epochs while DINGO is running for 200 epochs, which demonstrates the effectiveness of the proposed method.

KNN Classification We also evaluate representation of student model using nearest neighbor classifier with cosine similarity. KNN classifier can evaluate the learned feature more directly without any parameter tuning. Following [1, 15, 7], we extract features from center-cropped images after

1The checkpoint of teacher model can be downloaded from https://github.com/facebookresearch/moco and https://github.com/facebookresearch/swav.
Table 3: Transfer learning accuracy (%) on COCO detection.

Method	Mask R-CNN, ResNet-18, Detection											
	1× schedule	2× schedule										
	AP\(_m\)	AP\(_{50}\)	AP\(_{75}\)	AP\(_S\)	AP\(_M\)	AP\(_L\)	AP\(_m\)	AP\(_{50}\)	AP\(_{75}\)	AP\(_S\)	AP\(_M\)	AP\(_L\)
MoCo v2 [5]	31.3	50.0	33.5	16.5	33.1	41.1	34.4	53.9	37.0	18.9	36.8	45.5
BINGO	32.0	51.0	34.7	17.1	34.1	42.0	34.9	54.2	37.7	20.0	37.1	46.0

Table 4: Transfer learning accuracy (%) on COCO instance segmentation.

Method	Mask R-CNN, ResNet-18, Instance Segmentation											
	1× schedule	2× schedule										
	AP\(_m\)	AP\(_{50}\)	AP\(_{75}\)	AP\(_S\)	AP\(_M\)	AP\(_L\)	AP\(_m\)	AP\(_{50}\)	AP\(_{75}\)	AP\(_S\)	AP\(_M\)	AP\(_L\)
MoCo v2 [5]	28.8	47.2	30.6	12.2	29.7	42.7	31.5	51.1	33.6	14.1	32.9	46.9
BINGO	29.6	48.2	31.5	12.8	30.8	43.0	31.9	51.7	33.9	14.9	33.1	47.2

the last averaged pooling layers. For convenient comparisons with other methods, we report the validation accuracy with 10\(\text{NN}\)(we use the student model distilled from ResNet-50×2). As shown in Table 2, BINGO achieves 61.0\% and 64.9\% accuracies on ResNet-18/34 models, respectively, which outperforms previous methods by a large margin.

Semi-supervised Classification Following previous works [3,4], we also evaluate the proposed method by fine-tuning the student model ResNet-18 with 1\% and 10\% labeled data. We follow the training split settings as in [3] for fair comparisons. The network is fine-tuned for 60 epochs with SGD optimizer. The learning rate of the last randomly initialized fc layer is set as 10. As shown in Table 5, BINGO obtains accuracies of 48.2\% and 60.2\% when using 1\% and 10\% labels, respectively, both results beats the previous best performance.

Transfer to Detection and Instance Segmentation We also evaluate the generalization ability of the student model on detection and instance segmentation tasks. The COCO dataset is used for evaluation. Following [11], we use Mask R-CNN [12] for object detection and instance segmentation and fine-tune all the parameters of student model ResNet-18 end-to-end. As shown in Table 5 and Table 4, BINGO consistently outperforms models pretrained without distillation.

4.3 Ablation Study

In this section, we conduct detailed ablation studies to diagnose how each component affect the performance of the distilled model. Unless specified, all results in this section are based on ResNet-18, and distilled for 200 epochs.

Impact of \(k\) in K-nearest Neighbors We inspect the influence of \(k\) in K-nearest neighbors bagging strategy. As shown in Fig. 3, the results are relatively robust for a range of \(k\) (\(k=1,5,10,20\)). In addition, we find that the classification accuracy decrease with \(k = 10, 20\) compared with \(k = 5\), because the noise is introduced when \(k\) becomes large. However, the performance with a relative small \(k = 1\) is no better than \(k = 5\), we think the diversity is sacrificed when we only select the top-1 nearest neighborhood all the time.

Lower and Upper Bound of The Proposed Method As shown in Table 6, using data relation extracted from a random initialized model gives a poor performance of 46.6\%, which can be a lower bound of our method. Then we try to explore the upper bound performance by bagging instances via a supervised-pretrained model, the performance gets an improvement of 0.8\% over using data relation extracted from the unsupervised pretrained teacher model. When we directly use the ground truth labels to bag instances, we get a highest upper bound performance, *i.e.*, 65.8\% Top-1 accuracy.

![Figure 3: Top-1 accuracy with different \(k\) in K-nearest neighbors.](Image)
Table 5: Semi-supervised learning by fine-tuning 1% and 10% labeled images on ImageNet using ResNet-18 as backbone.

Method	1% labels	10% labels
MoCo v2 baseline	30.9	45.8
Compress [15]	41.2	47.6
SEED [7]	44.3	54.8
DisCo [8]	47.1	54.7
BINGO	**48.2**	**60.2**

Table 6: Lower and Upper bound performance exploration via the bagging criterion.

Bagging Criterion	Accuracy (%)
KNN from Random Initialized model (Lower Bound)	46.6
KNN from Supervised-pretrained model	64.8
Using ground-truth as data-relation (Upper Bound)	65.8
KNN from Self-supervised pretrained model (ours)	64.0

Impacts of Data-Relation and Teacher Parameters. In our experiments, both the data relation and model parameters of teacher model are used to distill student model. We diagnose how each component affects the distillation performance. As shown in Table [7], no matter the teacher’s parameters are loaded or not, using the the data relation from pretrained teacher model always gets better results than using data relation from online student model, which verifies the efficiency of transferring teacher’s data relation to student model. Interestingly, we find that BINGO even gets good result only utilizing teacher’s data relation (Row 3 of Table [7]), which is about 10% higher than model training without distillation.

Compare with Other Distillation Methods. We now compare with several other distillation strategies to verify the effectiveness of our method. We compare with two distillation schemes: feature-based distillation method and relation-based distillation, which is termed as KD and RKD, respectively. Feature-based distillation method aims at minimizing l_2-distance of teacher & student’s embeddings. Relation-based distillation method aims at minimizing the difference between inter-sample-similarity graph obtained from teacher and student model. As shown in Table [8], BINGO outperforms all these alternative methods.

5 Analysis and Discussions

We now inspect what the student learns during the distillation. Firstly we compute the average distance between anchor sample x_a and its positive samples x_p in a bag Ω_a over the whole dataset:

$$\text{BagDis} = \mathbb{E}_{x_a \sim X} \mathbb{E}_{x_p \sim \Omega_a} \left| \| f_S(x_a) - f_S(x_p) \|_2^2 \right|$$ (10)

Table 7: Effects of utilizing teacher’s data-relation and teacher’s pretrained weights. The column of Student Relation means that we bag data with features extracted from student model online and the column of Teacher Relation means that we bag data with features extracted from a pretrained teacher model. When teacher parameters are not used, we replace the pretrained teacher model as a momentum update of student model like [11].

Teacher Parameters	Student Relation	Teacher Relation	Accuracy
\times	\times	\times	52.2 (w/o distillation)
\times	\checkmark	\times	57.2
\checkmark	\times	\checkmark	62.2
\checkmark	\times	\checkmark	62.5
\checkmark	\checkmark	\checkmark	64.0
Figure 4: t-sne visualization of student’s representations pretrained with the MoCo-v2 baseline (a), and distilled with (b) and without bag aggregation (c).

Table 8: Top-1 accuracy of linear classification results on ImageNet using different distillation methods on ResNet-18 student model (ResNet-50 is used as teacher model)

Method	Top-1 Accuracy	Top-5 Accuracy
MoCo-V2 baseline	52.2	77.6
MoCo-V2 + KD	55.3	80.3
MoCo-V2 + RKD	61.6	84.4
DisCo + KD	60.6	-
DisCo + RKD	60.6	-
BINGO	64.0	85.7

According to Eq. 10, we compute the averaged distance in the bag using distilled student model. As shown in Table 9, the averaged distance in a bag is smallest when the student model is distilled with bag-aggregation loss. We also compute the intra-class distance among all intra-class pairwise samples. As shown in Table 10, the proposed method also aggregate the bag of labels with the same ground truth labels on the unseen validation set.

Table 9: Averaged distance between anchor and positive samples in the same bag

Method	Distance
MoCo-V2 baseline	0.38
Distill w/o Bag-Aggregation	0.36
Distill w/ Bag-Aggregation	0.32

Table 10: Averaged intra-class distance on ImageNet validation set

Method	Distance
MoCo-V2 baseline	0.88
Distill w/o Bag-Aggregation	0.72
Distill w/ Bag-Aggregation	0.65

Finally, we visualize the last embedding feature to understanding the aggregating properties of the proposed method. 10 classes are randomly selected from validation set. We provide the t-sne visualization of the student features. As shown in Fig. 4 the same color denotes features with the same label. It can be seen that BINGO gets more compact representations compared with models without distillation or distilling without pulling related samples in a bag.

6 Conclusions

This paper proposes a new self-supervised distillation method, named BINGO, which bags related instances by matching embeddings of the teacher. With the instance-wise dataset mapped into a bag-wise one, the new dataset can be applied to the distillation process for small models. The knowledge which represents the relation of bagged instances can be transferred by aggregating the bag, including inter-sample and intra-sample aggregation. Our BINGO follows a relation-guided principle, which shows stronger effectiveness than previous relation-agnostic methods. The proposed relation-based distillation is a general strategy for improving unsupervised representation, and we hope it would shed light on new directions for unsupervised learning.
References

[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882, 2020.

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[4] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big self-supervised models are strong self-supervised learners. arXiv preprint arXiv:2006.10029, 2020.

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2002.05709, 2020.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. Big self-supervised models are strong self-supervised learners. arXiv preprint arXiv:2006.10029, 2020.

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2002.05709, 2020.

[8] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big self-supervised models are strong self-supervised learners. arXiv preprint arXiv:2006.10029, 2020.

[9] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2002.05709, 2020.

[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733, 2020.

[11] Kaiming He, Haoqi Fan, Ross Girshick. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[15] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed Pirsiavash. Compress: Self-supervised learning by compressing representations. arXiv preprint arXiv:2010.14713, 2020.

[16] Yufan Liu, Jiacheng Cao, Bing Li, Chunfeng Yuan, Weiming Hu, Yangxi Li, and Yunqiang Duan. Knowledge distillation via instance relationship graph. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7096–7104, 2019.

[17] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In European Conference on Computer Vision, pages 69–84. Springer, 2016.

[18] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3967–3976, 2019.

[19] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2536–2544, 2016.

[20] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015.

[21] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[22] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. arXiv preprint arXiv:1910.10699, 2019.

[23] Haohang Xu, Xiaopeng Zhang, Hao Li, Lingxi Xie, Hongkai Xiong, and Qi Tian. Seed the views: Hierarchical semantic alignment for contrastive representation learning. arXiv preprint arXiv:2012.02733, 2020.
[24] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928, 2016.

[25] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European conference on computer vision, pages 649–666. Springer, 2016.

[26] Helong Zhou, Liangchen Song, Jiajie Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian Zhang. Rethinking soft labels for knowledge distillation: A bias-variance tradeoff perspective. In International Conference on Learning Representations, 2021.
A Appendix

A.1 Results of K-means bagging strategy

We also evaluate the performance of using K-means clustering as the bagging strategy. According to Eq. 2 in the main text, given the pseudo-label $q = \{q_1, q_2, ..., q_N\}$ and the anchor instance x_a, the bag associated with x_a as:

$$\Omega_a = \{i \mid q_i = q_a, i = 1, 2, ..., N\}$$ (11)

For implementation, ResNet-18 and ResNet-50 are used as the student and teacher model respectively. We evaluate the linear classification accuracy of the student model on ImageNet-1K. We study various cluster numbers C as shown in Tab. 11. We find that a bigger cluster number can bring better results than a smaller one. Noting that the linear classification accuracy of bagging with K-nearest neighbors (where $k = 5$) is slightly better than bagging via K-means clustering (with $C = 20000$), i.e. 64.0% vs. 63.8%. Moreover, bagging with KNN is more convenient to implement, so we choose the KNN-based bagging strategy in implementation.

Number of Clusters (C)	Accuracy (%)
5000	62.7
10000	63.5
20000	63.8
50000	63.6