A Comparative Evaluation of Antibacterial Efficacy of ‘Calcium Hydroxide Plus Points’, ‘Activ Points’ and ‘Combi Points’ Against Enterococcus Faecalis in Endodontic Therapy: An In Vitro Analysis

Abstract

The success of endodontic therapy relies on complete eradication of microorganisms from the root canal system. However, there are some resistant strains such as Enterococcus faecalis which persist in the root canals, leading to endodontic failures. Various antimicrobial agents have been tested time to time for their efficiency against this pathogen. The purpose of this study was to compare the antimicrobial efficacy of calcium hydroxide releasing ‘Calcium hydroxide plus points’; chlorhexidine releasing ‘Activ points’, chlorhexidine and calcium hydroxide releasing ‘Combi points’ against Enterococcus faecalis. By measuring the zone of inhibition, it was concluded that Calcium hydroxide plus points were not effective, while both Activ points and Combi points showed results significantly better than Calcium hydroxide plus points. The results indicate the calcium hydroxide alone may not be effective when expecting Enterococcus faecalis in particular endodontic cases and must be replaced or adjuncted by the use of chlorhexidine.

Keywords: Activ points; Calcium hydroxide; Chlorhexidine; Combi points; Enterococcus faecalis

Introduction

Bacteria and their products play a primary etiological role in the initiation and perpetuation of pulpo-periapical pathosis. The biological objective of root canal treatment is eradication of bacterial load from the root canal system. Despite the fact that all measures are being taken to achieve this goal, failures are still being reported [1]. The ability of certain microbes to form biofilms is one of the key factors in their pathogenesis of endodontic infection. These biofilms not only adhere strongly to the dentin but also penetrate deep into the dentinal tubules [2]. Also, there are certain bacteria which are, in general, resistant to many chemical reagents used in endodontic therapy.

Amongst these resistant bacteria, Enterococcus faecalis has been found to be a major isolate [3]. Its prevalence in failure root canal cases ranges from 24–77% [4] probably owing to its ability to establish monoinfection. It can also get converted into the non-cultivable state and can survive low pH, high salinity and high temperatures. It has also been observed that it encases a number of anti-microbial irrigants and medicaments have been tried in endodontics since years, expecting to completely eliminate this bacteria from the root canal system such as calcium hydroxide, formocresol, camphorated paramonochlorophenol, chlorhexidine, etc [5-8]. Calcium hydroxide has bactericidal properties since it inhibits bacterial enzymes by means of hydroxyl ions of the bacteria’s cytoplasmic membrane, generating the antibacterial effect [9]. Its high pH (around 12.5) has a damaging effect on cell membranes and protein structure [10].

Chlorhexidine (CHX) is a broad-spectrum antimicrobial agent that has been used as an effective intracanal medicament. It is a synthetic cationic bis-guanide, which consists of two symmetric 4-chlorophenyl rings and two biguanide groups, connected by a central hexamethylene chain [11,12]. Its effectiveness is because of altering the microbial cells osmotic equilibrium due to the interaction of the positive charge of the molecule and the negatively charged phosphate groups on microbial cell walls. CHX molecule penetrates into the bacteria due to increase in permeability of the cell wall [12]. It is a well-established fact that chlorhexidine alone or a combination of chlorhexidine and calcium hydroxide has very high efficiency against E. faecalis [13]. The evaluation of chlorhexidine as intracanal medicaments in the form of sustained releasing points (Activ points) alone or in combination with calcium hydroxide (Combi Points) has already been done [13,14]. The present in vitro study was undertaken to evaluate the antimicrobial efficacy of calcium hydroxide releasing ‘Calcium hydroxide plus points’ as compared ‘Activ Points’ and ‘Combi points’ against E. faecalis so as to analyse, if at all the sustained release of calcium hydroxide from the points has any better advantage.

Materials and Methods

The standard protocol of maintaining E. faecalis (ATCC 47077) on agar plates was use [13]. Thirty Mcenkey agar plates were inoculated with the bacteria. These agar plates were divided into three groups, depending on the test specimen used. ‘Calcium Hydroxide plus points’ (Roeko, Germany) were designated as Group I, chlorhexidine releasing ‘Activ points’ (Roeko,
Germany) designated as Group II; and both calcium hydroxide and chlorhexidine releasing ‘Combi points’ (Roeko, Germany) were designated as Group III. The two test agents of same group were placed in each plate at a distance (Figure 1). Then the McConkey agar plates were incubated for 24 hours at 37°C aerobically. Zones of inhibition indicating efficacy of the drug were measured after 48 hours using digital vernier caliper (Figure 2).

Observations and Results

Table 1 represents the zones of inhibition measured after 48 hours. While, no zone of inhibition was seen in samples for Group I (Figure 3). Zone of inhibition was seen in all the samples of Group II (Figure 4) and III (Figure 5). The mean zone of inhibition of each group was calculated and subjected to statistical analysis (paired T-test) for the mean zones of inhibition between the different groups. The significance value was set at p < 0.05 = significant. When compared, a statistically significant difference was found between Group I and II, with latter performing better than former (p < 0.05 = significant). Also, when Group III was compared to Group I, it performed and this was found to be statistically significant (p < 0.05 = significant). When group III was compared to group II, it was found that no significant difference was observed between the two groups.

Table 1: Zone of inhibition (in mm) measured for all the three groups after 48 hours.

S. No	Group I	Group II	Group III
1	0	6.17	6.10
2	0	6.96	6.58
3	0	5.87	4.75
4	0	5.71	4.90
5	0	6.67	6.55
6	0	6.86	6.11
7	0	6.29	5.90
8	0	6.70	6.50
9	0	5.19	4.74
10	0	5.30	6.00
11	0	6.25	5.90
12	0	6.40	6.26
13	0	6.28	5.56
14	0	6.60	6.00
15	0	6.88	6.50
16	0	6.12	6.00
17	0	6.50	6.25
18	0	7.18	7.19
19	0	7.90	7.72
20	0	7.26	7.10

Figure 1: Test specimens placed in McConkey agar plate.

Figure 2: Zone of inhibition measured by digital vernier caliper.

Figure 3: No zone of inhibition seen in Group I sample.
extracellular superoxide production; capsular polysaccharides and antibiotic resistance determinant [16,17]. One significant feature contributing to pathogenic potential of *E. faecalis* is its ability to adhere and infiltrate into dentine.

The analysis of the fact that which antimicrobial agents are effective against *E. faecalis* is of utmost importance. The use of calcium hydroxide in elimination of *E. faecalis* has been tested previously and results have not been very favorable. It has been postulated that *E. faecalis* is resistant to calcium hydroxide [18,19]. The results obtained in our study match with these previous tests. Siren et al. [20] in their study confirmed the effectiveness of chlorhexidine as an intracanal medicament in cases where *E. faecalis* was suspected. Similar conclusion has also been reported by Lui et al. [21] and Singh et al. [22]. Also, there have been studies earlier which suggest that combined use of chlorhexidine and calcium hydroxide is also effective against *E. faecalis* [13,23].

References

1. Soares JA, Leonardo MR, da Silva LA, Tanomaru Filho M, Ito JY (2006) Elimination of intracanal infection in dog’s teeth with induced periapical lesions after rotary instrumentation: Influence of different calcium hydroxide pastes. J Appl Oral Sci 14(3): 172-177.

2. Delgado RJR, Gasparoto TH, Sipert CR, Pinheiro CR, Moraes IG, et al. (2010) Antimicrobial effects of Calcium Hydroxide and Chlorhexidine on *Enterococcus faecalis*. J Endod 36(8): 1389-1393.

3. Molander A, Rein C, Dahlen G, Kvist T (1998) Microbiological status of root-filled teeth with apical periodontitis. Int Endod J 38(1): 1-7.

4. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) *Enterococcus faecalis*: its role in root treatment failure and current concepts in retreatment. J Endod 32(2): 93-98.

5. Almyroudi A, Mackenzie D, McHugh S, Saunders WP (2002) The effectiveness of various disinfectants used as endodontic intracanal medicaments: an *in vitro* study. J Endod 28(3): 163-167.

6. Law A, Messer H (2004) An evidence based analysis of the antibacterial effectiveness of intracanal medicaments. J Endod 30(10): 689-694.

7. Meneges MM, Valera MC, Jorge AO, Koga-ito CY, Camargo CH, et al. (2004) *In vitro* evaluation of the effectiveness of irrigants and intracanal medicaments on microorganisms. J Endod J 37(5): 311-319.

8. Shur AL, Sedgley CM, Fenno JC (2003) The antimicrobial efficacy of ‘MGP’ gutta percha in *in vitro*. Int Endod J 36(9): 616-621.

9. Sinha N, Patil S, Dodwad PK, Patil AC, Singh B (2013) Evaluation of antimicrobial efficacy of calcium hydroxide paste, chlorhexidine gel, and a combination of both as intracanal medicament: *An in vivo* comparative study. J Conserv Dent 16(1): 65-70.

10. Gomes BP, Vianna ME, Sena NT, Zaia AA, Ferraz CC, Pascon E, et al. (2006) *In vitro* evaluation of the antimicrobial activity of calcium hydroxide combined with chlorhexidine gel used as intracanal medicament. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(4): 544-550.

11. Basrani R, Tjaderhane L, Santos JM, Pascon E, Grad H, et al. (2003) *Efficacy of chlorhexidine* and calcium hydroxide–containing medicaments against *Enterococcus faecalis* in *in vitro*. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96(5): 618-624.
12. Mohammadi Z, Abbott PV (2009) The properties and applications of chlorhexidine in endodontics. Int Endod J 42(4): 288-302.

13. Singh H, Kapoor P (2014) A Comparative Evaluation of Antibacterial Efficacy of ‘Activ Points’ and ‘Combi Points’ as Intra-Canal Medicaments against Enterococcus faecalis: An Ex Vivo Study. Oral Health Dent Manag 13(3): 610-613.

14. Ebert J, Roggendorf MJ, Frank K, Petschelt A (2008) Antimicrobial activity of various ‘active’ gutta percha points against Enterococcus faecalis in simulated root canals. Int Endod J 41(3): 249-257.

15. Sen BH, Piskin B, Demirci T (1995) Observation of bacteria and fungi in infected root canals and dentinal tubules by SEM. Endod Dent Traumatol 11(1): 6-9.

16. Portenier I, Waltimo TMT, Haapasalo M (2003) Enterococcus faecalis – the root canal survivor and ‘star’ in post treatment disease. Endodontic Topics 6(1): 135-159.

17. Sundqvist G, Figdor D (2003) Life as an endodontic pathogen: Ecological differences between the untreated and root-filled root canals. Endodontic Topics 6(1): 3-28.

18. Delgado RJ, Gasparoto TH, Sipert CR, Pinheiro CR, Moraes IG, et al. (2010) Antimicrobial effects of Calcium Hydroxide and Chlorhexidine on Enterococcus faecalis. J Endod 36(8): 1389-1393.

19. Evans M, Davies JK, Sundqvist G, Figdor D (2002) Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int Endod J 35(3): 221-228.

20. Siren EK, Haapasalo MP, Waltimo TM, Orstavik D (1997) In vitro antibacterial effect of calcium hydroxide combined with chlorhexidine or iodide potassium iodine on Enterococcus faecalis. Eur J Oral Sci 112(4): 326-331.

21. Lui JN, Lim VS, Song KP, Chen NN (2004) In vitro antimicrobial effect of chlorhexidine-impregnated gutta percha points on Enterococcus Faecalis. Int Endod J 37(2): 105-113.

22. Singh H, Gupta NP, Singh G, Kapoor P (2010) A comparison of antibacterial efficacy of “Activ Points” and 2% chlorhexidine solution against Enterococcus faecalis: an in vitro study. Indian J Dent 1(2): 49-54.

23. Evans MD, Baumgartner JC, Khemaleelakul SU, Xia T (2003) Efficacy of calcium hydroxide: chlorhexidine paste as an intracanal medication in bovine dentin. J Endod 29(5): 338-339.

24. Korkmaz FM, Tuzuner T, Baygin O, Buruk CK, Durkan R, et al. (2013) Antibacterial activity, surface roughness, flexural strength, and solubility of conventional luting cements containing chlorhexidine diacetate/cetrimide mixtures. J Prosthet Dent 110(2): 107-115.