New cross section data and review of production routes of medically used 110mIn

F. Tárkányia, S. Takácsa, F. Ditróa*, A. Hermanneb, M. Babac, B.M.A. Mohsenad, A.V. Ignatyuke

aInstitute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary bCyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium cCyclotron Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan dNuclear Research Center Egyptian Atomic Energy Authority, Cairo, Egypt eInstitute of Physics and Power Engineering (IPPE), Obninsk, Russia

Abstract

Evaluation of nuclear data for production routes of 110mIn is in progress in the frame of an IAEA Coordinated Research Project (CRP). New experimental cross section data for the indirect natIn(p,x)110mSn \rightarrow 110mIn and for the direct 107Ag(α,n)110mIn and 109Ag(3He,2n)110mIn production routes and for the satellite impurity reactions 107Ag(α,xn)110,109In and 109Ag(3He,xn)110,111In have been measured by using the activation method, stacked foil irradiation technique and gamma-ray spectrometry. Additional data are reported for production of the 111In diagnostic gamma-emitter via the 109Ag(α,2n)111In reaction. The earlier experimental data were critically reviewed in order to prepare recommended data and optimal production parameters for the different routes.

Keywords: Indium-110m, medical radioisotopes, charged particle reactions

1. Introduction

Various radiopharmaceuticals, labeled with 111In ($T_{1/2} = 2.81$ d, 100 % EC decay) are used in the diagnosis of cancer and other diseases through SPECT. However, in particular for receptor-type studies, the quantification of the uptake of the radiopharmaceutical via PET measurements might be important. For 111In the corresponding isotope of choice is 110mIn. This metastable state with $I^e = 2^+$ has a half-life of 69.1 min and decays in 61.25 % via positron emission with $E_{\text{max}} = 2.3$ MeV. Evaluation of nuclear data for production routes of 110mIn is performed in the frame of an IAEA Coordinated Research Project [1]. The task was assigned to the ATOMKI-VUB group, which previously already published results for some related reactions [2,9]. As the compilation of all earlier experimental studies showed a lack of data and in some cases large disagreements, we decided to re-investigate the most promising reactions. Two basic routes exist for production of 110mIn: a direct and an indirect process. The principal reactions of direct production, with limited contaminants, are 110Cd(p,n), 110Cd(d,2n), 107Ag(α,n) and 109Ag(3He,2n). The direct production of 110mIn always leads to the co-formation of the ground state 110In ($I^e = 7^+$, $T_{1/2} = 4.9$ h). This co-formation increases with increasing projectile energy because of the higher spin of the ground state, but it cannot be observed in all cases of our investigations. In all cases, in order to minimize the impurity level, highly enriched targets should be used and the covered energy range should be optimized, which requires information on the production of the disturbing, simultaneously produced, longer-lived 109In, 110In and 111In radioisotopes. Isotopically pure 110mIn could only be prepared via the generator system 110Sn ($T_{1/2} = 4.11$ h, EC 100 %) \rightarrow 110mIn. The mother isotope of the generator (110Sn) could be obtained at low and medium energies with light charged particles via the 113In(p,4n), 113In(d,5n), 110Cd(3He,3n), 108Cd(α,2n) and 110Cd(α,4n) reactions. Disturbing co-produced radioisotopes, requiring optimization of the energy range and use of enriched targets, are the long-lived 113Sn, decaying to 113mIn and finally to stable 113In (hence decreasing specific activity), and the rather short-lived 111Sn ($T_{1/2} = 35.3$ min) decaying to 111In ($T_{1/2} = 2.81$ d).

2. Experimental

The general characteristics and procedures for irradiation, activity assessment and data evaluation (including estimation of uncertainties) were similar to many of our
3. Experimental results

We are reporting cross sections for production of 110mIn, 109In, 110gIn and 111In in Ag targets irradiated with 3He and alpha particles. The last three radioisotopes are important from the point of view of radionuclide purity in the case of direct production of 110mIn. For the experiments on In targets, proton induced cross section data for production of the mother isotope 110Sn are reported and data for the shorter-lived, co-produced 109Sn and 111Sn (causing radionuclide impurity through decay to 109In and 111In) are discussed. The numerical data of the measured cross sections are collected in Table 2-5. They are shown in graphical form in the corresponding sections discussing the different production routes.

4. Production routes

4.1. Indirect

The medically useful 110mIn is produced through the 100 % EC decay of 110Sn. The production routes for 110Sn include proton induced reactions at low and medium energy on stable isotopes of indium or alpha-particle and 4He induced reactions on stable isotopes of cadmium.

4.1.1. In+p

The mother isotope 110In can be obtained on the two stable isotopes of indium (113In: 4.3 % and 115In: 95.7 %), through the 113In(p,4n) and 115In(p,6n) reactions. As the high mass target isotope has an abundance of more than 95 %, the (p,6n) reaction, needing incident energies of around 60 MeV, should be favorable for efficient production. From the point of view of radio-purity in any case, shorter-lived 111Sn (decays to contaminating 111In) and 113Sn (decays to contaminating 113mIn) will be produced that will also have an influence on the specific activity of the final product. Presence of 111Sn can be minimized by choosing the used energy range, irradiation time, or/and a proper cooling time before loading of the generator to let shorter-lived 111Sn (and lower mass short-lived Sn radioisotopes) decay. Some contamination with 113mSn \rightarrow^{113}Sn can never be avoided but as high energy protons are needed for the (p,4n) (threshold 28.8 MeV) and (p,6n) (threshold 44.8 MeV) reactions, limited target thickness will insure that the cross section for 113In(p,n) in the target is low, as (p,n) reactions usually have maximum at much lower energies, so the protons leave the thin target before decelerating down into the energy range favorable for (p,n) reaction. Moreover, even if produced, the long half-life of 113Sn results in low activity of its decay product 113mIn and limited influence on the radio-purity. Radionuclides of Sn with mass lower than 110, and decaying to In radio-products, have even shorter half-life. Their presence could only be eliminated by keeping the incident proton energy below the threshold of the 111In(p,5n) (threshold 40.2 MeV) reaction at the cost of large production losses. No experimental cross section data were found for activation cross sections on monoisotopic targets, only data on natIn were published. All available experimental activation cross section data for production of 109Sn (T$_{1/2} = 18$ min), 110Sn (T$_{1/2} = 4.167$ h) and 111Sn (T$_{1/2} = 35.3$ min) are shown in Fig. 1. In our experiments we could deduce cross section data only for production of 110Sn due to the long cooling time after EOB (end of bombardment). Two earlier data sets exist, measured by Lundquist et al. [24] and Nortier et al. [25] [26]. Our data for 110Sn are in acceptable agreement with those. According to Fig. 1, no production of 109Sn is observable up to 55 MeV, but the amount of 111Sn is significant, resulting in high yield of the 111In decay product. At energies above 60 MeV (the threshold of the 115In(p,6n)110Sn reaction is 44.8 MeV) the 113Sn/110Sn ratio is becoming better, therefore this energy range is preferred, resulting in high yields of 110In using targets with natural composition. The radionuclide purity can be improved significantly by using irradiation times up to 3 half-lives of 110Sn and a longer cooling time to let the simultaneously produced shorter-lived 109Sn and 111Sn decay.

4.1.2. Cd+α

Another suggested route for the production of 110mIn through the 110Sn(108Cd,2n)110Sn nuclear reaction [27] and at higher energies the 110Cd(α,4n)110Sn reaction. We found only one relevant experimental data set, the production cross section of 110Sn on natCd, published by us [9]. No data for 109Sn and 111Sn were given. The comparison of these experimental values and the theoretical data from TENDL-2014 is shown in Fig. 2. The TENDL-2014 prediction underestimates the magnitude but the shape is well reproduced. As natCd contains 8 stable isotopes (106Cd - 1.25 %, 108Cd - 0.89 %, 110Cd - 12.49 %, 111Cd - 12.80 %, 112Cd - 24.13 %, 113Cd - 12.22 %, 114Cd -
28.73%, 116Cd -7.49%) many reactions of the (α,xn) type can contribute. When using 106Cd the contribution through the 106Cd(α,γ) reaction is very small. The lowest number of contaminating radioisotopes is obtained by relying on the 108Cd(α,2n)110Sn reaction as only shorter-lived 111Sn will unavoidably be produced through the (α,n) reaction. Choosing an appropriate cooling time, allowing the decay of 111Sn before preparing the generator, will result in practically nca (no carrier added) 110Sn. In principle we can also use 109Cd targets, because the additionally produced Sn isotopes are either stable or long-lived (111Sn) and decay of this last results in negligible influence on the specific activity as discussed in the previous section. The highest yield and lowest contamination will be obtained by using highly enriched 108Cd. No experimental data were presented on 108Cd, but cross sections up to the threshold of 109Cd(α,4n)111Sn reaction (35.6 MeV) can be deduced from cross sections measured on 107Cd. The theoretical cross sections for production of 109,110,111Sn by alpha irradiation of 107Cd are shown in Fig. 2. It can be seen on Fig. 3 and from Table 2 that using highly enriched 109Cd targets, up to 30 MeV no contamination with 109Sn exists. By using the 24-30 MeV energy range and the above mentioned long irradiation and longer cooling time also the amount of 111Sn can be minimized.

4.1.3. Cd+3He

The situation is nearly the same as for the Cd + α route. The radionuclide of interest, 110Sn, can also be
produced through natCd(3He,xn) or, with higher yield, using enriched targets through the 110Cd(3He,3n) reaction. No experimental data exist for monoisotopic targets. Two earlier studies were published for production of 110Sn and 111Sn on natCd [2, 5] (reported by our group). The experimental data are shown in Fig. 4 in comparison with the TENDL-2014 calculation. A good agreement is seen between the two experimental datasets but the predictions of TENDL-2014 differ drastically, both in shape and in magnitude. The theoretical excitation functions of the 110Cd(3He,xn)109,110,111Sn reactions are shown in Fig. 5, but they are probably unrealistic as discussed above (according to the systematics on the neighboring elements the maximum cross sections of the 110Cd(3He,3n) reaction should be around 500-600 mb). When comparing the α and 3He routes in the low energy region (up to 30 MeV) for the 108Cd(α,2n) and the 110Cd(3He,3n) reactions, it can be seen that the cross sections on 108Cd and 110Cd are similar for the corresponding particles, therefore due to the lower stopping, the yield of the 3He route should be higher. It is, however, well known that high intensity 3He beams are rare and very expensive, even when a gas recovery system is available at the accelerator.

5. Direct production

The direct production routes include proton or deuteron induced reactions on cadmium and -particle or 3He induced reactions on silver.
5.1. Cd+p

Production of 110mIn ($T_{1/2} = 69.1$ min), with not too high contamination, via proton and deuteron induced reactions on Cd can only be done on highly enriched targets. When natCd is used, the many stable target isotopes lead to possible parallel production of various In radioisotopes with comparable or longer half-lives than 110mIn: 108mIn ($T_{1/2} = 39.6$ min), 108sIn ($T_{1/2} = 58$ min), 109In ($T_{1/2} = 4.167$ h), 111In ($T_{1/2} = 2.81$ d), 113mIn ($T_{1/2} = 9.948$ min), 114mIn ($T_{1/2} = 49.51$ d), 115mIn ($T_{1/2} = 4.436$ h), 116mIn ($T_{1/2} = 54.29$ min), 117In ($T_{1/2} = 43.2$ min), 117mIn ($T_{1/2} = 1.937$ h). By irradiating highly enriched 110Cd with protons in a limited energy range, only 111In is produced through a (p,n) reaction. As it was mentioned before in a direct production route not only the metastable state 110mIn is produced, but also its longer-lived, higher spin 110sIn ground state ($T_{1/2} = 4.92$ h). The experimental and theoretical excitation functions for the 110Cd(p,xn)110mIn reactions are shown in Figs. 6 and 7. For 109In production we present only the theoretical data in Fig. 7 to see the reaction threshold and the shape of the excitation function. Experimental data for the cross section of 110Cd(p,xn)110mIn reactions (Fig. 6) are available from Blaser et al. 1951 [28], Al Saleh et al. [29], Khandaker et al. [30], Trknyi et al. [31], Otozai et al. [32], Nortier et al. [33] and Kormali et al. [34]. The data measured on natCd were normalized for 110Cd target up to the threshold of the 111Cd(p,2n)110In reaction. In Fig. 7 the excitation function of the 110Cd(p,n)110mIn reaction is presented. Experimental data on natCd and 109Cd are available from Skakun et al. [31], Abramovich et al. [35], Otozai et al. [32], Tarkanyi et al. [3] and Elbinawi et al. [35]. Fig. 7 shows that by properly selecting the incident energy, the contamination with 109In can be minimized. Comparison of the Fig. 6 and Fig. 7 shows that the useful energy ranges for 110mIn and 110In production are the same. The cross sections for 110mIn are a factor of 6 higher and, in spite of the four times longer half-life, the activity ratio at EOB will still be unacceptable from the point of view of radionuclide purity. The 110mIn and 110In decay independently and the activity ratio during the irradiation will change in the target as the meta-state reaches saturation faster. Hence only rather short irradiations could help to reduce somewhat the contamination level.

5.2. Cd+d

As it was mentioned in the previous section on proton induced reactions on natCd, large amounts of different long-lived radioisotopes of indium are produced when using natural cadmium targets, hence the only realistic candidate is the 110Cd(d,2n) reaction. Only a few measurements were published for the 110Cd(d,2n)110m,110In reactions: Usher et al. 1977 [36], Mukhamedov et al. 1983 [37] and Tarkanyi et al. 2007 [4]. The excitation functions are shown in Figs. 8-9. In Fig. 8 the theoretical excitation functions for production of 109In and 111In are also shown to illustrate the shape and the magnitude of these simultaneously produced neighboring indium radioisotopes. According to Figs. 8-9 a very narrow energy window around 15 MeV exists, where the 110mIn yield is high and the co-produced 109In and 111In amounts are the lowest. A significant impurity of
5.3. $\text{Ag}+\alpha$

Other possible target particle combinations for direct production of ^{110}mIn are the $\text{Ag}+\alpha$ and Ag^3He reactions. Silver has two stable isotopes: ^{107}Ag (abundance 51.839 %) and ^{109}Ag (48.161 %). When considering alpha induced reactions, the $^{107}\text{Ag}(\alpha,\text{n})$ is the main candidate as it allows to minimize co-produced contaminants. Cross sections for direct production of $^{110}\text{m,}\text{gIn}$ through alpha induced nuclear reactions on silver have been measured by Misealides et al. [38], Chaubey et al. [39], Fukushima et al. [40], Takacs et al. [7] (our work), Wasilewsky et al. [43] and in the present work. The excitation functions of the $^{107}\text{Ag}(\alpha,\text{xn})^{110}\text{mIn},^{109}\text{In},^{110}\text{gIn}$ reactions are shown in Fig 10-12. According to Fig. 12 the production of ^{109}In is starting only above 16 MeV. The impurity from the ground state ^{110}gIn is high over the whole energy range. From literature it is well known that when nat Cd targets are used, longer-lived reaction products are present practically in the whole energy range. Especially for the medically important ^{111}In, most frequently produced though the $^{112}\text{Cd}(\text{p},2\text{n})$ reaction with 24-25 MeV incident proton energy, the $^{109}\text{Ag}(\alpha,\text{2n})$ could be a real alternative production route, taking into account that the ^{111}In can be produced with high yields and low impurity levels. A large number of measurements were done for the $^{109}\text{Ag}(\alpha,\text{2n})^{111}\text{In}$ reaction: Patel et al. [44], Hasbroek et al. [45], Ismail et al. [46].
5.4. $\text{Ag} + ^{3}\text{He}$

When using ^{3}He beams the useful reaction on Ag is $^{107}\text{Ag}(^{3}\text{He},2\text{n})$. The disturbing products are ^{109}In, $^{110m,110g}\text{In}$ and ^{111}In. The excitation functions for $^{109}\text{Ag}(^{3}\text{He},xn)^{109,110m,110g,111}\text{In}$ are shown in Figs 14-17. The low reliability of predictions of TENDL-2014 for ^{3}He induced processes can be remarked for these four reactions. The experimental cross section data on the $^{109}\text{Ag}(^{3}\text{He},2\text{n})110\text{m,gnIn}$ reactions were measured by Misaelides et al. [38], Marten et al. [55], Nagame et al. [56], Omori et al. [57] and in this work. According to Fig. 14, the cross sections for production of ^{110}In are low. The reaction can effectively be used in the 10-30 MeV range but over the whole energy range a significant yield for ^{109}In is seen (Fig. 17). Small cross sections for ^{111}In production are also present over the whole energy range (Fig. 16) and for ^{110g}In the cross sections are similar to those for ^{110m}In (Fig. 15).

6. Integral yields

Integral yields as a function of energy were calculated by using fitted experimental and/or theoretical cross sections for production of ^{110}Sn via the $^{113}\text{In}(p,4n)$, $^{nat}\text{In}(p,xn)$, $^{108}\text{Cd}(\alpha,2n)$, $^{nat}\text{Cd}(\alpha,xn)$, $^{110}\text{Cd}(^{3}\text{He},3n)$ and $^{nat}\text{Cd}(^{3}\text{He},xn)$ reactions and for direct production

Figure 10: Excitation functions of the $^{107}\text{Ag}(\alpha,n)^{110m}\text{In}$ nuclear reaction

Figure 11: Excitation functions of the $^{107}\text{Ag}(\alpha,n)^{110g}\text{In}$ nuclear reaction

Figure 12: Excitation functions of the $^{107}\text{Ag}(\alpha,2n)^{110}\text{In}$ nuclear reaction
Figure 13: Excitation functions of the $^{109}\text{Ag}(\alpha,2n)^{111}\text{In}$ nuclear reaction

Figure 14: Excitation functions of the $^{109}\text{Ag}(3\text{He},2n)^{110m}\text{In}$ nuclear reaction

Figure 15: Excitation functions of the $^{109}\text{Ag}(3\text{He},2n)^{110}\text{In}$ nuclear reaction

Figure 16: Excitation functions of the $^{109}\text{Ag}(3\text{He},n)^{111}\text{In}$ nuclear reaction
of ^{110m}In via $^{110}\text{Cd}(p,n)$, $^{110}\text{Cd}(d,2n)$, $^{107}\text{Ag}(\alpha,xn)$ and $^{109}\text{Ag}(^3\text{He},2n)$ reactions (Figs. 18-19). There are only a few experimental thick target yields on these target-reaction combinations measured by Dmitriev [58, 59], Nickles et al. [60], Mukhamedov [37] and Abe et al. [61]. Where an energy overlap is existing, our data were compared with those literature values.

7. Summary

In the frame of a systematic study of production routes of the medically useful ^{110m}In, experimental cross section data for the $^{nat}\text{In}(p,xn)^{110}\text{Sn}$ indirect route and for $^{nat}\text{Ag}(\alpha,xn)^{109,110m,110g,111}\text{In}$ and $^{nat}\text{Ag}(^3\text{He},xn)$ direct nuclear reactions were measured. The new data are in good agreement with earlier results and are in acceptable agreement with the theoretical predictions in TENDL-2014 except for the ^3He induced reactions. Thick target yields were derived for different routes relevant for production of the radioisotope of interest ^{110m}In. The $^{110}\text{Sn}(^{110m}\text{In})$ generator could be prepared at low and medium energies with light charged particles via the $^{113}\text{In}(p,4n)$, $^{nat}\text{In}(p,xn)$, $^{110}\text{Cd}(\alpha,2n)$, $^{nat}\text{Cd}(\alpha,xn)$, $^{110}\text{Cd}(^3\text{He},3n)$ and $^{nat}\text{Cd}(^3\text{He},xn)$ reactions. Each of these routes requires high incident energy and a proper selection of an adapted energy range. The main advantage of the indirect method is the high radionuclide purity, which can easily be assured by the proper irradiation and cooling parameters. Another advantage is that, depending on the required specific activity, natural targets can be used. Considering the available commercial accelera-

Figure 17: Excitation functions of the $^{109}\text{Ag}(^3\text{He},3n)^{109}\text{In}$ nuclear reaction

Figure 18: Thick target yields for production of ^{110}Sn

Figure 19: Thick target yields for production of ^{110m}In
tors, use of the $^{110}\text{In}(p,xn)^{109}\text{Sn}$ reaction seems to be the simplest and most productive method, however requiring 70–100 MeV beam energy. It should be mentioned that the generator can be produced also at lower energy machines by using 30 MeV alpha beams and enriched ^{108}Cd targets. For direct production the $^{110}\text{Cd}(p,n)^{109}\text{Cd}(d,2n)$, $^{107}\text{Ag}(\alpha,\text{xn})$ and $^{109}\text{Ag}(\text{He},2\text{n})$ reactions are the most suitable candidate routes. Lower energy accelerators can also be used, but highly enriched targets are required. Although the radionuclide impurity level is lower, significant amount of ^{110}In is always present in the product. If the ^{110}In level is not taken into account, the $^{110}\text{Cd}(p,n)$ reaction seems the most promising production route.

8. Acknowledgements

This work was performed in the frame of the HAS-FWO Vlaanderen (Hungary-Belgium) project. The authors acknowledge the support of the research project and of the respective institutions (CYRIC, VUB, LLN) in providing the beam time and experimental facilities.

References

[1] A. L. Nichols, R. Capote Noy, Summary report, first research coordination meeting on nuclear data for charged-particle monitor reactions and medical isotope production, Tech. rep., IAEA (2013).

[2] F. Szélescényi, Z. Kovács, F. Tárkányi, G. Tóth, Production of ^{110}In for PET investigation via $^{\text{Cd}}(3\text{He},\text{xn})^{110\text{Sn}}$-$^{110}\text{In}$ reaction with low energy cyclotron, Journal of Labelled Compounds and Radiopharmaceuticals 30 (1991) 98–99.

[3] F. Tárkányi, B. Király, F. Ditrói, S. Takács, J. Csikai, A. Hermannne, M. S. Uddin, M. Hagiwara, A. Baba, T. Ído, Y. N. Shubin, S. F. Kovalev, Activation cross-sections on cadmium: Deuteron induced nuclear reactions up to 80 MeV, Nuclear Instruments & Methods in Physics Research Section B 245 (2) (2006) 379–394.

[4] F. Tárkányi, B. Király, F. Ditrói, S. Takács, J. Csikai, A. Hermannne, M. S. Uddin, M. Hagiwara, M. Baba, T. Ído, Y. N. Shubin, S. F. Kovalev, Activation cross-sections on cadmium: Deuteron induced nuclear reactions up to 40 MeV, Nuclear Instruments & Methods in Physics Research Section B 259 (2) (2007) 817–828.

[5] B. M. Ali, M. Al-Abyad, U. Seddik, S. U. El-Kameesey, F. Ditrói, S. Takács, F. Tárkányi, Experimental investigation and theoretical calculation of he-3-particle induced nuclear reactions on cadmium up to 27 MeV, Nuclear Instruments & Methods in Physics Research Section B 321 (2014) 30–40.

[6] F. Tárkányi, S. Takács, A. Hermannne, P. Van den Winkel, R. Van der Zwart, Y. A. Skakun, Y. N. Shubin, S. F. Kovalev, Investigation of the production of the therapeutic radioisotope ^{114}In through proton and deuteron induced nuclear reactions on cadmium, Radiochimica Acta 93 (9-10) (2005) 561–569.

[7] S. Takács, A. Hermannne, F. Tárkányi, A. Ignatyuk, Cross-sections for alpha particle produced radionuclides on natural silver, Nuclear Instruments & Methods in Physics Research Section B 268 (1) (2010) 2–12.

[8] F. Tárkányi, A. Hermannne, B. Király, S. Takács, F. Ditrói, M. Baba, A. V. Ignatyuk, Investigation of activation cross sections of deuteron induced reactions on indium up to 40 MeV for production of a Sn-^{113}In-^{113}mIn generator, Applied Radiation and Isotopes 69 (1) (2011) 26–36.

[9] A. Hermannne, L. Daraban, R. A. Rebeles, A. Ignatyuk, F. Tárkányi, S. Takács, Alpha induced reactions on nated up to 38.5 MeV: Experimental and theoretical studies of the excitation functions, Nuclear Instruments & Methods in Physics Research Section B 268 (9) (2010) 1376–1391.

[10] S. Takács, F. Tárkányi, A. Hermannne, R. A. Rebeles, Activation cross sections of proton induced nuclear reactions on natural hafnium, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 269 (23) (2011) 2824–2834.

[11] F. Tárkányi, F. Ditrói, S. Takács, B. Király, A. Hermannne, M. Sonck, M. Baba, A. V. Ignatyuk, Investigation of activation cross-sections of deuteron induced nuclear reactions on natMo up to 50 MeV, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 274 (2012) 1–25.

[12] Canberra, http://www.canberra.com/products/radiochemistry/lab/genie-2000-software.asp. (2000).

[13] G. Székely, Fgm - a flexible gamma-spectrum analysis program for a small computer, Computer Physics Communications 34 (3) (1985) 313–324.

[14] F. Tárkányi, F. Szélescényi, S. Takács, Determination of effective bombarding energies and fluxes using improved stacked-foil technique, Acta Radiologica, Supplementum 376 (1991) 72.

[15] R. R. Kinsey, C. L. Dunford, J. K. Tuli, T. W. Burrows, in: Capture Gamma Ray Spectroscopy and Related Topics, Vol. 2. (NUDAT 2.6 http://www.nndc.bnl.gov/ndau2/), Vol. 2, Springer Hungarica Ltd, Budapest, 1997.

[16] B. Pritychenko, A. Sonzogni, Q-value calculator (2003).

[17] H. H. Andersen, J. F. Ziegler, Hydrogen stopping powers and ranges in all elements. The stopping and ranges of ions in matter, Volume 3., The Stopping and ranges of ions in matter, Pergamon Press, New York, 1977.

[18] International-Bureau-of-Weights-and-Measures, Guide to the expression of uncertainty in measurement, 1st Edition, International Organization for Standardization, Genve, Switzerland, 1993.

[19] F. Tárkányi, S. Takács, K. Gul, A. Hermannne, M. G. Mustafa, M. Nortier, P. Oblolszynski, S. M. Quim, B. Scholten, Y. N. Shubin, Z. Youxiang, TECDOC 1211, IAEA, beam monitor reactions (chapter 4). charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions., Tech. rep., IAEA (2001).

[20] M. Bonardi, The contribution to nuclear data for biomedical radioisotope production from the milan cyclotron facility (1987).

[21] A. I. Dityuk, A. Y. Konobeyev, V. P. Lunev, Y. N. Shubin, New version of the advanced computer code ALICE-IPPE, Tech. rep., IAEA (1998).

[22] M. Herman, R. Capote, B. V. Carlson, P. Oblolszynski, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Empire: Nuclear reaction model code system for biomedical radioisotope production: diagnostic radioisotopes and monitor reactions., Tech. rep., IAEA (1998).

[23] A. J. Koning, D. Rochman, Modern nuclear data evaluation with UCAI and Isotopes, Tech. rep., IAEA (2001).

[24] M. Bonardi, The contribution to nuclear data for biomedical radioisotope production from the milan cyclotron facility (1987).

[25] F. M. Nortier, S. J. Mills, G. F. Steyn, Excitation-functions & Methods in Physics Research Section B 269 (23) (2011) 313–324.
proton bombardment of natCd and natIn up to 100 MeV. Applied Radiation and Isotopes 41 (12) (1990) 1201–1208.

[26] F. M. Nortier, S. J. Mills, G. F. Steyn, Excitation-functions for the production of Cd-109, In-109 and Sn-109 in proton bombardment of indium up to 200 MeV, Applied Radiation and Isotopes 42 (11) (1991) 1105–1107.

[27] H. Thisgaard, M. Jensen, H. J. Jensen, The 108Cd(2n)110Sn nuclear reaction a production route to the PET radionuclide 110In (2004).

[28] I. P. Blaser, F. Boehm, P. Marmor, D. C. Peaslee, Fonctions d’exécitation de la réaction (p,p’). i. Helvetica Physica Acta 24 (1951) 3.

[29] F. S. Al-Saleh, Cross sections of proton induced nuclear reactions on natural cadmium leading to the formation of radionuclides of indium, Radiochemistry Acta 96 (8) (2008) 461–465.

[30] M. U. Khandaker, K. Kim, M. W. Lee, K. S. Kim, G. N. Kim, Y. S. Cho, Y. O. Lee, Production cross sections for the residual radionuclides from the (natCd, n) nuclear processes, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 266 (22) (2008) 4877–4887.

[31] E. A. Skakun, A. P. Klyucharev, Y. N. Rakivnenko, I. A. Romanov, Relative cross-sections for formation of indium isomers in (p,n)- and (p,2n)-reaction on cadmium isotopes, Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 39 (1) (1975) 31–36.

[32] K. Otozai, S. Kume, H. Okamura, R. Tsujino, Excitation functions for the reactions induced by protons on cd up to 37 MeV, Nuclear Physics 80 (1966) 335–348.

[33] S. M. Kormali, D. L. Swindle, E. A. Schweikert, Charged-particle activation of medium Z-elements. 2. proton excitation-functions, Journal of Radioanalytical Chemistry 31 (2) (1976) 437–450.

[34] S. N. Abramovich, B. Y. Guzhovskii, A. G. Zvenigorodskii, S. V. Trusillo, Isobar-analog resonances, appearing in elastic proton-scattering and (p,n)-reaction on 110, 112, 114, Cd-116 nuclei, Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 39 (8) (1975) 1688–1694.

[35] A. Elbinawi, M. Al-Abyad, A. Sayrod, M. I. El-Zaiki, U. Seddik, A. Elbinawi, M. Al-Abyad, A. Sayrod, M. I. El-Zaiki, U. Seddik, Proximity of the excitation-functions of (alpha,xn) reactions on silver and holmium, Nuovo Cimento Della Societa Italiana Di Fisica a-Nuclei Particles and Fields 104 (6) (1991) 863–874.

[36] R. Guin, S. K. Saha, S. Prakash, M. Uhl, Isomeric yield ratios and excitation-functions in alpha-induced reactions on Ag-107, Ag-109, Physical Review C 46 (1) (1992) 250–257.

[37] T. V. Chuvilskaya, Y. G. Selezev, A. A. Shirokova, M. Herman, Yields of isomers from the reactions 107,109Ag(4He,xn), 41K(α,x), and 193Ir(α,x), Bull. Russ. Acad. Sci. Phys. (translation) 63 (1999) 825.

[38] P. Xiufeng, L. Mantian, H. Fuqing, L. Xianguan, Excitation functions for the Ag-107(a,n)-110-m,G and Ag-109(a,2n)-111-m,G reactions, Applied Radiation and Isotopes 63 (4) (2006) 599–607.

[39] S. Mukhammedov, A. Vasiliev, E. Pardaev, Use of proton and deuteron activation methods of analysis in the determination of elements with Z ≥ 42, Soviet Atomic Energy 56 (1) (1984) 56–58.

[40] P. Misaelides, H. Munzel, Excitation-functions for He-3-induced and alpha-induced reactions with Ag-107 and Ag-109, Journal of Inorganic & Nuclear Chemistry 42 (7) (1989) 937–948.

[41] A. K. Chauhney, R. P. Gautam, R. K. Y. Singh, M. A. Ansari, I. A. Rizvi, H. Singh, Preequilibrium decay process in the alpha induced reactions of silver isotopes, Applied Radiation and Isotopes 41 (4) (1990) 401–405.

[42] S. Fukushima, S. Hayashi, S. Kume, H. Okamura, K. Otozai, K. Sakamoto, Y. Yoshizawa, Excitation functions for the reactions induced by alpha particles on 107Ag, Nuclear Physics 41 (1963) 275–277.

[43] J. P. Blaser, F. Boehm, P. Marmor, D. C. Peaslee, Fonctions d’exécitation de la réaction (p,p’). i. Helvetica Physica Acta 24 (1951) 3.

[44] F. S. Al-Saleh, Cross sections of proton induced nuclear reactions on natural cadmium leading to the formation of radionuclides of indium, Radiochemistry Acta 96 (8) (2008) 461–465.

[45] M. U. Khandaker, K. Kim, M. W. Lee, K. S. Kim, G. N. Kim, Y. S. Cho, Y. O. Lee, Production cross sections for the residual radionuclides from the (natCd, n) nuclear processes, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 266 (22) (2008) 4877–4887.

[46] E. A. Skakun, A. P. Klyucharev, Y. N. Rakivnenko, I. A. Romanov, Relative cross-sections for formation of indium isomers in (p,n)- and (p,2n)-reaction on cadmium isotopes, Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 39 (1) (1975) 31–36.

[47] K. Otozai, S. Kume, H. Okamura, R. Tsujino, Excitation functions for the reactions induced by protons on cd up to 37 MeV, Nuclear Physics 80 (1966) 335–348.

[48] S. M. Kormali, D. L. Swindle, E. A. Schweikert, Charged-particle activation of medium Z-elements. 2. proton excitation-functions, Journal of Radioanalytical Chemistry 31 (2) (1976) 437–450.

[49] S. N. Abravimovich, B. Y. Guzhovskii, A. G. Zvenigorodskii, S. V. Trusillo, Isobar-analog resonances, appearing in elastic proton-scattering and (p,n)-reaction on 110, 112, 114, Cd-116 nuclei, Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 39 (8) (1975) 1688–1694.

[50] A. Elbinawi, M. Al-Abyad, A. Sayrod, M. I. El-Zaiki, U. Seddik, K. E. Abd-Elmaged, Integral radionuclide activation yield and evaluated cross section data for proton induced reactions with Cd for practical applications, Arab Journal of Nuclear Science and Applications 47 (3) (2014) 104–116.

[51] O. H. Usher, E. Macerates, M. C. Saravi, S. J. Nassif, Production cross-sections and isomeric ratios for isomeric pair in-110-m,in-110-g formed in Cd (d,xn) reactions, Radiochemistry Acta 24 (2-3) (1977) 55–57.

[52] S. Mukhammedov, A. Vasiiev, E. Pardaev, Use of proton and deuteron activation methods of analysis in the determination of elements with Z ≥ 42, Soviet Atomic Energy 56 (1) (1984) 56–58.

[53] P. Misaelides, H. Munzel, Excitation-functions for He-3-induced and alpha-induced reactions with Ag-107 and Ag-109, Journal of Inorganic & Nuclear Chemistry 42 (7) (1989) 937–948.

[54] A. K. Chauhney, M. Bhardwaj, R. P. Gautam, R. K. Y. Singh, M. A. Ansari, I. A. Rizvi, H. Singh, Preequilibrium decay process in the alpha induced reactions of silver isotopes, Applied Radiation and Isotopes 41 (4) (1990) 401–405.

[55] S. Fukushima, S. Hayashi, S. Kume, H. Okamura, K. Otozai, K. Sakamoto, Y. Yoshizawa, Excitation functions for the reactions induced by alpha particles on 107Ag, Nuclear Physics 41 (1963) 275–277.

[56] J. P. Blaser, F. Boehm, P. Marmor, D. C. Peaslee, Fonctions d’exécitation de la réaction (p,p’). i. Helvetica Physica Acta 24 (1951) 3.

[57] F. S. Al-Saleh, Cross sections of proton induced nuclear reactions on natural cadmium leading to the formation of radionuclides of indium, Radiochemistry Acta 96 (8) (2008) 461–465.

[58] M. U. Khandaker, K. Kim, M. W. Lee, K. S. Kim, G. N. Kim, Y. S. Cho, Y. O. Lee, Production cross sections for the residual radionuclides from the (natCd, n) nuclear processes, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 266 (22) (2008) 4877–4887.
[60] R. J. Nickles, A shotgun approach to the chart of the nuclides. Radiotracer production with an 11 MeV proton cyclotron, Acta Radiologica, Supplementum 376 (1991) 69–71.

[61] K. Abe, A. Iizaka, A. Hasegawa, S. Morozumi, Induced radioactivity of component materials by 16-MeV protons and 30-MeV alpha-particles, Journal of Nuclear Materials 123 (1-3) (1984) 972–976.
Table 2: Decay characteristics of the investigated reaction products and Q-values of reactions for their productions

Nuclide	Decay mode	Level energy	Eγ (keV)	Iγ (%)	Contributing reaction	Q-value(keV)
109In	β−, 6.6% EC: 93.4%	631.2	28	9.7	107Ag(θ,He)	-4941.24
		609.8	50	30	109Ag(θ,2n)	-1154.7
		1099.2	1521.3	11.9	107Ag(θ,4n)	-31092.32
					111Cd(θ,3p)	-2271.9
					111Cd(θ,3p)	-19690.14
					111Cd(θ,3p)	-2084.19
					112Cd(θ,4p)	-36622.95
					113Cd(θ,5n)	-46665.87
					114Cd(θ,6p)	-50706.21
					116Cd(θ,8n)	-2305.71
					110Cd(θ,9n)	-14093.08
					110Cd(θ,10n)	-21914.71
					110Cd(θ,10n)	-3138.76
					110Cd(θ,10n)	-37847.92
					110Cd(θ,10n)	-41730.77
110In	β−, 61.25% EC: 38.75%	69.1 min	607.75	67.74	107Ag(θ,2n)	-3401.5
		614.09	0.07	1.04	109Ag(θ,3n)	-7982.2
		1125.77			107Ag(θ,4n)	-2408.2
					111Cd(θ,3p)	-4603.0
					111Cd(θ,3p)	-11656.0
					112Cd(θ,4p)	-21050.0
					113Cd(θ,5n)	-27698.8
					114Cd(θ,6p)	-36611.7
					116Cd(θ,8n)	-51432.1
					110Cd(θ,9n)	-8888.9
					110Cd(θ,9n)	-13560.6
					110Cd(θ,9n)	-23254.4
					110Cd(θ,9n)	-29793.4
					110Cd(θ,9n)	-3836.5
					110Cd(θ,9n)	-53676.6
111In	β−, 0.006% EC: 99.992%	4.92 h	601.68	49.5	107Ag(θ,2n)	-3401.5
		657.70	95	28.95	109Ag(θ,3n)	-7982.2
		864.67	10.5	1.04	107Ag(θ,4n)	-2408.2
		907.16			111Cd(θ,3p)	-4603.0
					111Cd(θ,3p)	-11656.0
					112Cd(θ,4p)	-21050.0
					113Cd(θ,5n)	-27698.8
					114Cd(θ,6p)	-36611.7
					116Cd(θ,8n)	-51432.1
					110Cd(θ,9n)	-8888.9
					110Cd(θ,9n)	-13560.6
					110Cd(θ,9n)	-23254.4
					110Cd(θ,9n)	-29793.4
					110Cd(θ,9n)	-3836.5
					110Cd(θ,9n)	-53676.6
112In	β−, 100%	2.81 d	111.28	60.7	107Ag(θ,2n)	-3401.5
		265.55	04.4	99.7	109Ag(θ,3n)	-7982.2
					111Cd(θ,3p)	-2408.2
					111Cd(θ,3p)	-4603.0
					112Cd(θ,4p)	-11656.0
					113Cd(θ,5n)	-21050.0
					114Cd(θ,6p)	-27698.8
					116Cd(θ,8n)	-36611.7
					110Cd(θ,9n)	-51432.1
					110Cd(θ,9n)	-8888.9
					110Cd(θ,9n)	-13560.6
					110Cd(θ,9n)	-23254.4
					110Cd(θ,9n)	-29793.4
					110Cd(θ,9n)	-3836.5
					110Cd(θ,9n)	-53676.6
109Sn	β−, 6.6% EC: 83.4%	18.5 min	609.8	28	107Ag(θ,3n)	-3401.5
		1099.2	1521.3	50	109Ag(θ,4n)	-7982.2
					111Cd(θ,3p)	-2408.2
					111Cd(θ,3p)	-4603.0
					112Cd(θ,4p)	-11656.0
					113Cd(θ,5n)	-21050.0
					114Cd(θ,6p)	-27698.8
					116Cd(θ,8n)	-36611.7
					110Cd(θ,9n)	-51432.1
					110Cd(θ,9n)	-8888.9
					110Cd(θ,9n)	-13560.6
					110Cd(θ,9n)	-23254.4
					110Cd(θ,9n)	-29793.4
					110Cd(θ,9n)	-3836.5
					110Cd(θ,9n)	-53676.6
Table 2: continued

Nuclide	EC	4.097 h	204.62	0.7
110 Sn	EC: 100 %	4.167 h	280.462	-
110 Cd(3He,n)	110 Cd(3He,3n)	111 Cd(3He,4n)	114 Cd(3He,6n)	112 Cd(3He,8n)
113 In(p,4n)	115 In(p,6n)	3449.3	-13789.5	-20765.2
108 Cd(α,2n)	110 Cd(α,4n)	111 Cd(α,5n)	112 Cd(α,7n)	113 Cd(α,9n)
114 Cd(α,8n)	113 In(p,4n)	115 In(p,6n)	-36698.0	-45740.9
116 Cd(3He,9n)	108 Cd(α,3n)	110 Cd(α,5n)	-60581.2	-72989.98
112 Cd(α,6n)	113 In(p,4n)	115 In(p,6n)	-34367.1	-44833.3
114 Cd(α,7n)	113 In(p,5n)	115 In(p,6n)	-41342.8	-50736.8
116 Cd(3He,10n)	113 In(p,5n)	115 In(p,6n)	-57275.6	-66318.5
108 Cd(α,4n)	110 Cd(α,6n)	111 Cd(α,8n)	-66318.5	-76201.1
112 Cd(α,8n)	113 In(p,6n)	115 In(p,6n)	-44833.3	-56519.8

Table 3: Activation cross sections of the nat In(p,xn) 110 Sn reaction

E (MeV)	∆E (MeV)	σ (mbarn)	∆σ (mbarn)
59.5	0.5	17.0	1.9
60.3	0.5	23.2	2.6
61.2	0.4	29.2	3.3
62.1	0.4	35.3	3.9
63.0	0.4	41.4	4.5
64.0	0.4	47.5	5.1
65.0	0.4	53.6	5.7
66.0	0.4	59.7	6.3
67.0	0.4	65.8	6.9
68.0	0.4	71.9	7.5
69.0	0.4	78.0	8.1
70.0	0.4	84.1	8.7

Table 4: Activation cross sections of the nat Ag(3He, xn) 109,110,110g In reactions

Energy (MeV)	109 In	110 In	110g In	111 In
10.4	0.0	0.0	0.0	0.0
11.5	0.0	0.0	0.0	0.0
12.2	0.0	0.0	0.0	0.0
13.1	0.0	0.0	0.0	0.0
14.9	0.0	0.0	0.0	0.0
16.6	0.0	0.0	0.0	0.0
18.3	0.0	0.0	0.0	0.0
19.9	0.0	0.0	0.0	0.0
21.4	0.0	0.0	0.0	0.0
22.5	0.0	0.0	0.0	0.0
23.4	0.0	0.0	0.0	0.0

Table 5: Activation cross sections of the nat Ag(3He, xn) 109,110,110g,111 In reactions

Energy (MeV)	109 In	110 In	110g In	111 In
10.4	0.0	0.0	0.0	0.0
11.5	0.0	0.0	0.0	0.0
12.2	0.0	0.0	0.0	0.0
13.1	0.0	0.0	0.0	0.0
14.9	0.0	0.0	0.0	0.0
16.6	0.0	0.0	0.0	0.0
18.3	0.0	0.0	0.0	0.0
19.9	0.0	0.0	0.0	0.0
21.4	0.0	0.0	0.0	0.0
22.5	0.0	0.0	0.0	0.0
23.4	0.0	0.0	0.0	0.0
Table 5: Activation cross sections of the natAg(α,xn)109,110,110g,111In reactions

Energy (MeV)	109In	110In	110gIn	111In
11.9	0.6	0.4	0.3	0.1
12.4	0.6	0.5	0.4	0.2
13.4	0.7	0.6	0.5	0.3
16.7	0.7	0.6	0.5	0.3
18.2	0.4	0.3	0.2	0.1
20.0	0.5	0.4	0.3	0.2
21.1	0.5	0.4	0.3	0.2
24.3	0.5	0.4	0.3	0.2