The integrality of the Genocchi numbers obtained through a new identity and other results

Bakir Farhi

Laboratoire de Mathématiques appliquées
Faculté des Sciences Exactes, Université de Bejaia
06000 Bejaia, Algeria
e-mail: bakir.farhi@gmail.com

Received: 21 May 2022
Accepted: 12 November 2022
Online First: 14 November 2022

Abstract: In this note, we investigate some properties of the integer sequence of general term
\[a_n := \sum_{k=0}^{n-1} k!(n - k - 1)! \quad (\forall n \geq 1) \]
and derive a new identity of the Genocchi numbers \(G_n \) \((n \in \mathbb{N}) \), which immediately shows that \(G_n \in \mathbb{Z} \) for any \(n \in \mathbb{N} \). In another direction, we obtain nontrivial lower bounds for the 2-adic valuations of the rational numbers \(\sum_{k=1}^{n} \frac{2^k}{k} \).

Keywords: Genocchi numbers, Stirling numbers, Binomial coefficients, \(p \)-adic valuations.

2020 Mathematics Subject Classification: 11B65, 11B68, 11B73.

1 Introduction and Notation

Throughout this note, we let \(\mathbb{N} \) denote the set of positive integers and \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \) denote the set of non-negative integers. For \(x \in \mathbb{R} \), we let \(\lfloor x \rfloor \) denote the integer part of \(x \). Let \(s(n, k) \) and \(S(n, k) \) (with \(n, k \in \mathbb{N}_0, n \geq k \)) respectively denote the Stirling numbers of the first and second kinds, which can be defined as the integer coefficients appearing in the polynomial identities:

\[X(X - 1) \cdots (X - n + 1) = \sum_{k=0}^{n} s(n, k)X^k, \quad \text{(for every } n \in \mathbb{N}_0). \]

\[X^n = \sum_{k=0}^{n} S(n, k)X(X - 1) \cdots (X - k + 1) \]
This immediately implies the orthogonality relations (see, e.g., [1, 8]):

\[
\sum_{k \leq i \leq n} s(n, i) S(i, k) = \sum_{k \leq i \leq n} S(n, i) s(i, k) = \delta_{nk} \quad \text{(for every } n, k \in \mathbb{N}_0, n \geq k),
\]

where \(\delta_{nk} \) is the Kronecker delta. Among the many formulas related to the Stirling numbers, we mention the following result (see, e.g., [1, 6, 8]):

\[
\log^k(1 + x) = \sum_{n=0}^{\infty} s(n, k) \frac{x^n}{n!} \quad \text{(for every } k \in \mathbb{N}_0),
\]

which is needed later on. We let in addition \(B_n \) and \(G_n \) respectively denote the Bernoulli and the Genocchi numbers, which can be defined by their respective exponential generating functions (see, e.g., [1, 8]):

\[
x \log (1 + x) = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!} \quad \text{and} \quad 2 x \log (1 + x) = \sum_{n=0}^{\infty} G_n \frac{x^n}{n!}.
\]

The famous Genocchi theorem [7] states that the \(G_n \)'s are all integers. There are at least two beautiful proofs of the Genocchi theorem: the first one uses the formula \(G_n = 2(1 - 2^n)B_n \) (see, e.g., [1]) together with the Fermat little theorem and the von Staudt-Clausen theorem, while the second one uses the remarkable Seidel formula [13]:

\[
\sum_{k=0}^{n} \binom{n}{k} G_{n+k} = 0 \quad \text{(for every } n \in \mathbb{N}_0).
\]

In this note, we give a new proof of the integrality of the \(G_n \)'s by expressing them in terms of the Stirling numbers of the second kind. The starting point of this research is the study of the integer sequence \((a_n)_{n \in \mathbb{N}_0} \), defined by:

\[
a_0 = 0 \quad \text{and} \quad a_n := \sum_{k=0}^{n-1} k! (n - k - 1)! \quad \text{(for every } n \in \mathbb{N}).
\]

This sequence is closely related to the sum of the inverses of binomial coefficients, which is studied by several authors (see [10, 12, 16–18, 20, 21]). It must be noted that both Stirling numbers, Genocchi numbers, and the numbers \(a_n \) \((n \in \mathbb{N}_0) \) have combinatorial interpretations (see, e.g., [1, 15] for the Stirling numbers, [4, 19] for the Genocchi numbers, and the sequence A003149 of [14] for the \(a_n \)'s).

Next, the least common multiple of given positive integers \(u_1, u_2, \ldots, u_n \) \((n \in \mathbb{N}) \) is denoted by \(\text{lcm}(u_1, u_2, \ldots, u_n) \) or by \(\text{lcm}\{u_1, u_2, \ldots, u_n\} \) if this is more convenient. For a given prime number \(p \) and a given positive integer \(n \), we let \(\varphi_p(n) \) and \(s_p(n) \) respectively denote the usual \(p \)-adic valuation of \(n \) (that is the greatest \(e \in \mathbb{N}_0 \) satisfying \(p^e \mid n \)) and the sum of base-\(p \) digits of \(n \). The function \(\varphi_p \) (\(p \) a prime) is naturally extended to \(\mathbb{Q}^* \) by defining \(\varphi_p(\pm \frac{a}{b}) = \varphi_p(a) - \varphi_p(b) \), for any positive integers \(a \) and \(b \). With this extension, the function \(\varphi_p \) (\(p \) a prime) satisfies several elementary properties; among them, we cite:
\[\vartheta_p(rs) = \vartheta_p(r) + \vartheta_p(s) \quad \text{for every } r, s \in \mathbb{Q}^*, \]

\[\vartheta_p \left(\frac{r}{s} \right) = \vartheta_p(r) - \vartheta_p(s) \quad \text{for every } r, s \in \mathbb{Q}^*, \]

\[\vartheta_p(\text{lcm}(1, 2, \ldots, n)) = \left\lfloor \frac{\log n}{\log p} \right\rfloor \]

\[\vartheta_p(r) \geq 0 \quad \text{for every } r \in \mathbb{Z}^*. \]

Furthermore, a well-known formula of Legendre (see, e.g., [9, Theorem 2.6.4, page 77]) states that for any prime number \(p \) and any positive integer \(n \), we have

\[\vartheta_p(n!) = \frac{n - s_p(n)}{p - 1}. \]

In another direction, by leaning on Legendre’s formula (1.6), an identity due to Rockett [12], and another identity due to the author [5], we obtain nontrivial lower bounds for the 2-adic valuations of the rational numbers \(\sum_{k=1}^{n} \frac{2^k}{k} \) (\(n \in \mathbb{N} \)).

2 The results and the proofs

Our main result is the following:

Theorem 2.1. For all positive integer \(n \), we have

\[G_n = \sum_{1 \leq \ell \leq k \leq n} (-1)^{k-1}(\ell - 1)!(k - \ell)!S(n, k). \]

In particular, \(G_n \) is an integer for any \(n \in \mathbb{N} \).

To prove this theorem, we need some intermediary results. The first one (Proposition 2.2 below) can be immediately derived from the following identity of Rockett [12]:

\[\sum_{k=0}^{n} \frac{1}{\binom{n}{k}} = \frac{n + 1}{2^{n+1}} \sum_{k=1}^{n+1} \frac{2^k}{k} \quad \text{for every } n \in \mathbb{N}_0. \]

But for convenience, we prefer reproduce its proof here.

Proposition 2.2. For all positive integer \(n \), we have

\[a_n = \frac{n!}{2^n} \sum_{k=1}^{n} \frac{2^k}{k}. \]

Proof. We begin by establishing a recurrent formula for the sequence \((a_n)_n \). For any integer \(n \geq 2 \), we have:
\[a_n := \sum_{k=0}^{n-1} k!(n-k-1)! \]
\[= \sum_{k=0}^{n-2} k!(n-k-1)! + (n-1)! \]
\[= \sum_{k=0}^{n-2} k!(n-k-2)!(n-k-1) + (n-1)! \]
\[= n \sum_{k=0}^{n-2} k!(n-k-2)! - \sum_{k=0}^{n-2} (k+1)!(n-k-2)! + (n-1)! . \]

But since
\[\sum_{k=0}^{n-2} k!(n-k-2)! = a_{n-1} \]
and
\[\sum_{k=0}^{n-2} (k+1)!(n-k-2)! = \sum_{\ell=1}^{n-1} \ell!(n-\ell-1)! \]
(by putting \(\ell = k + 1 \))
\[= \sum_{\ell=0}^{n-1} \ell!(n-\ell-1)! - (n-1)! \]
\[= a_n - (n-1)! , \]
it follows that:
\[a_n = na_{n-1} - a_n + 2 \cdot (n-1)! . \]

Hence
\[a_n = \frac{n}{2} a_{n-1} + (n-1)! . \]

(2.4)

Further, we remark that Formula (2.4) also holds for \(n = 1 \). Now, according to Formula (2.4), we have for any positive integer \(k \):
\[\frac{2^k}{k!} a_k - \frac{2^{k-1}}{(k-1)!} a_{k-1} = \frac{2^k}{k} . \]

Then by summing both sides of the last equality from \(k = 1 \) to \(n \), we obtain (because the sum on the left is telescopic and \(a_0 = 0 \)) that:
\[\frac{2^n}{n!} a_n = \sum_{k=1}^{n} \frac{2^k}{k} , \]

which gives the required formula. The proof is achieved. \(\square \)

Corollary 2.3. The exponential generating function of the sequence \((a_n)_n\) is given by:
\[\sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = \frac{-2 \log(1-x)}{2-x} . \]

(2.5)
Proof. Using Formula (2.3) of Proposition 2.2, we have
\[
\sum_{n=0}^{\infty} \frac{a_n x^n}{n!} = \sum_{n=1}^{\infty} \left(\frac{1}{2^n} \sum_{k=1}^{\infty} \frac{2^k}{k} \right) x^n = \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \frac{1}{2^n} \frac{2^k}{k} x^n = \sum_{k=1}^{\infty} \frac{2^k}{k} \left(\sum_{n=k}^{\infty} \left(\frac{x}{2} \right)^n \right).
\]
But since \(\sum_{n=k}^{\infty} \left(\frac{x}{2} \right)^n = \left(\frac{x}{2} \right)^k \sum_{n=k}^{\infty} \frac{1}{2^n} = \frac{x^k}{2^k} \cdot \left(\frac{x}{2} \right)^{k-1} \cdot \frac{1}{1 - \frac{x}{2}} \), we get
\[
\sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = \frac{2}{2-x} \sum_{k=1}^{\infty} x^k \frac{1}{k} = \frac{2}{2-x} (-\log(1-x)),
\]
as required. This achieves the proof. \(\square\)

Next, from Corollary 2.3 and Formula (1.2), we derive the following corollary:

Corollary 2.4. For any non-negative integer \(n \), we have
\[
a_n = (-1)^n \sum_{k=0}^{n} G_k s(n, k) \tag{2.6}
\]

Proof. Let us consider the following three functions (which are analytic on the neighborhood of zero):
\[
f(x) := \frac{-2 \log(1-x)}{2-x}, \quad g(x) := \frac{2x}{e^x + 1}, \quad \text{and} \quad h(x) := \log(1-x).
\]
We easily check that \(f = -g \circ h \). Since in addition \(h(0) = 0 \) then the power series expansion of \(f \) about the origin can be obtained by substituting \(h \) in the power series expansion of \(g \) about the origin (which is given by (1.3)) and multiplying by \((-1) \). Doing so, we get
\[
f(x) = -\sum_{k=0}^{\infty} G_k \frac{(h(x))^k}{k!} = -\sum_{k=0}^{\infty} G_k \frac{\log(1-x)}{k!} \tag{2.7}
\]
Further, by substituting in (1.2) \(x \) by \(-x \), we have for any \(k \in \mathbb{N}_0 \):
\[
\frac{\log^k(1-x)}{k!} = \sum_{n=k}^{\infty} (-1)^n s(n, k) \frac{x^n}{n!}.
\]
So, by inserting this last expression into (2.7), we get
\[
f(x) = -\sum_{k=0}^{\infty} G_k \sum_{n=k}^{\infty} (-1)^n s(n, k) \frac{x^n}{n!}
\]
\[
= -\sum_{n=0}^{\infty} \sum_{k=0}^{n} (-1)^n G_k s(n, k) \frac{x^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left[(-1)^{n-1} \sum_{k=0}^{n} G_k s(n, k) \right] \frac{x^n}{n!}.
\]
Comparing this last formula with Formula (2.5) of Corollary 2.3, we conclude that:
\[
a_n = (-1)^{n-1} \sum_{k=0}^{n} G_k s(n, k) \quad \text{(for every} \ n \in \mathbb{N}_0),
\]
as required. \(\square\)

We finally derive our main result from Corollary 2.4 above by applying the well-known inversion formula recalled in the following proposition.
Proposition 1. Let \((u_n)_{n \in \mathbb{N}_0}\) and \((v_n)_{n \in \mathbb{N}_0}\) be two real sequences. Then the two following identities
(I) and (II) are equivalent:

\[
\begin{align*}
 u_n &= \sum_{k=0}^{n} v_k s(n, k) \quad \text{(for every } n \in \mathbb{N}_0\), \\
 v_n &= \sum_{k=0}^{n} u_k S(n, k) \quad \text{(for every } n \in \mathbb{N}_0).
\end{align*}
\]

Proof. Use the orthogonality relations (1.1) (see, e.g., [1] or [11] for the details).

Proof of Theorem 2.1. It suffices to apply Proposition 1 for \(u_n = (-1)^{n-1} a_n\) and \(v_n = G_n\), for every \(n \in \mathbb{N}_0\). In view of (2.6), Identity (I) holds; so (II) also, that is

\[G_n = \sum_{k=0}^{n} (-1)^{k-1} a_k S(n, k) \quad \text{(for every } n \in \mathbb{N}_0).\]

Finally, by substituting in this last equality \(a_k\) by its expression given by (1.4), we get for any \(n \in \mathbb{N}\):

\[
G_n = \sum_{k=1}^{n} (-1)^{k-1} \left(\sum_{i=0}^{k-1} i! (k - i - 1)! \right) S(n, k)
= \sum_{k=1}^{n} (-1)^{k-1} \left(\sum_{\ell=1}^{k} (\ell - 1)! (k - \ell)! \right) S(n, k) \quad \text{(by putting } \ell = i + 1)
= \sum_{1 \leq \ell \leq k \leq n} (-1)^{k-1} (\ell - 1)! (k - \ell)! S(n, k),
\]

as required.

Remark 2.5. In the relatively recent literature, there are several ways to explain the integrality of the Genocchi numbers. For example, it is shown (see [3]) that the Genocchi numbers are (up to a sign) the values of the Gandhi polynomials (lying in \(\mathbb{Z}[X]\)) at 1. On the other hand, the combinatorial interpretation of the Genocchi numbers discovered by Dumont (see, e.g., [4, 19]) immediately explains the integrality of the \(G_n\’s\).

Now, we turn to present another type of results providing nontrivial lower bounds for the 2-adic valuations of the rational numbers \(\sum_{k=1}^{n} \frac{2^k}{k}\) \((n \in \mathbb{N})\).

Theorem 2.6. For any positive integer \(n\), we have

\[\vartheta_2 \left(\sum_{k=1}^{n} \frac{2^k}{k} \right) \geq s_2(n) \quad (2.8)\]

and (more strongly):

\[\vartheta_2 \left(\sum_{k=1}^{n} \frac{2^k}{k} \right) \geq n - \left\lfloor \frac{\log n}{\log 2} \right\rfloor. \quad (2.9)\]
Proof. Let n be a fixed positive integer. Since $a_n \in \mathbb{Z}$ then we have $\vartheta_2(a_n) \geq 0$. But, by using Formula (2.3) of Proposition 2.2 together with the properties of (1.5), this is equivalent to:

$$\vartheta_2(n!) - n + \vartheta_2 \left(\sum_{k=1}^{n} \frac{2^k}{k} \right) \geq 0.$$

Then, using the Legendre formula (1.6) for the prime number $p = 2$, which says that $\vartheta_2(n!) = \frac{n - s_2(n)}{2 - 1} = n - s_2(n)$, we get

$$\vartheta_2 \left(\sum_{k=1}^{n} \frac{2^k}{k} \right) \geq s_2(n),$$

confirming (2.8). To establish the stronger lower bound (2.9), we use the Rockett formula (2.2) together with the identity:

$$\text{lcm} \left\{ \left(m \over 0 \right), \left(m \over 1 \right), \ldots, \left(m \over m \right) \right\} = \frac{\text{lcm}(1, 2, \ldots, m, m + 1)}{m + 1} \quad \text{(for every } m \in \mathbb{N}_0), \quad (2.10)$$

established by the author in [5]. According to (2.2) and (2.10), we have that

$$\sum_{k=1}^{n} \frac{2^k}{k} = \frac{2^n}{n} \sum_{k=0}^{n-1} \left(\frac{n-1}{k} \right) \quad \text{and} \quad 1 = \frac{n}{\text{lcm}(1, 2, \ldots, n)} \cdot \text{lcm} \left\{ \left(n-1 \over 0 \right), \left(n-1 \over 1 \right), \ldots, \left(n-1 \over n-1 \right) \right\}. \quad$$

By multiplying side by side these last equalities, we get

$$\sum_{k=1}^{n} \frac{2^k}{k} = \frac{2^n}{\text{lcm}(1, 2, \ldots, n)} \cdot \text{lcm} \left\{ \left(n-1 \over 0 \right), \left(n-1 \over 1 \right), \ldots, \left(n-1 \over n-1 \right) \right\} \sum_{k=0}^{n-1} \frac{1}{\left(\frac{n-1}{k} \right)}. \quad$$

But since the rational number $\text{lcm}\left\{ \left(n-1 \over 0 \right), \left(n-1 \over 1 \right), \ldots, \left(n-1 \over n-1 \right) \right\} \sum_{k=0}^{n-1} \frac{1}{\left(\frac{n-1}{k} \right)}$ is obviously a positive integer, then it has a nonnegative 2-adic valuation; so it follows (according to the properties of the functions ϑ_p given in (1.5)) that:

$$\vartheta_2 \left(\sum_{k=1}^{n} \frac{2^k}{k} \right) \geq \vartheta_2 \left(\frac{2^n}{\text{lcm}(1, 2, \ldots, n)} \right) = n - \left\lfloor \frac{\log n}{\log 2} \right\rfloor,$$

confirming (2.9) and completes the proof. \hfill \Box

Remark 2.7. Very recently, Dubickas [2] has shown that the lower bound (2.9) of Theorem 2.6 is essentially optimal (it is attained if n has the form $2^k - 1, k \in \mathbb{N}$).

3 Two open problems

Open problem 1. Find a generalization of Theorem 2.6 to other prime numbers p other than $p = 2$. Notice that the generalization that might immediately come to mind:

$$\vartheta_p \left(\sum_{k=1}^{n} \frac{p^k}{k} \right) \geq s_p(n)$$

is false for $p > 2$ (take for example $n = 2$).
Open problem 2. Since every term in Formula (2.1) of Theorem 2.1 has an easily understood combinatorial meaning (see [1] for the factorials and the Stirling numbers and [4, 19] for the Genocchi numbers), it is natural to ask whether there exists a combinatorial proof of that formula (permitting us to understand it intuitively). Note that one of the classic references providing an enormous amount of combinatorial proofs is the Stanley book [15].

References

[1] Comtet, L. (1974). *Advanced Combinatorics. The Art of Finite and Infinite Expansions* (Revised and enlarged ed.). D. Reidel Publ. Co., Dordrecht.

[2] Dubickas, A. (in press). On a sequence of integers with unusual divisibility by a power of 2. *Miskolc Mathematical Notes*. Code: MMN-4276.

[3] Dumont, D. (1972). Sur une conjecture de Gandhi concernant les nombres de Genocchi. *Discrete Mathematics*, 1(4), 321–327.

[4] Dumont, D. (1974). Interprétations combinatoires des nombres de Genocchi. *Duke Mathematical Journal*, 41(2), 305–318.

[5] Farhi, B. (2009). An identity involving the least common multiple of binomial coefficients and its application. *The American Mathematical Monthly*, 116(9), 836–839.

[6] Flajolet, P., & Sedgwick, R. (2009). *Analytic Combinatorics*. Cambridge University Press, Cambridge.

[7] Genocchi, A. (1852). Intorno all espressioni generali di numeri Bernoulliani. *Annali di scienze mat. e fisiche, compilati da Barnaba Tortolini*, 3, 395–405.

[8] Graham, R. L., Knuth, D. E., & Patashnik, O. (1990). *Concrete Mathematics: A Foundation for Computer Science*. Addison-Wesley Publishing Company, New York.

[9] Moll, V. H. (2012). *Numbers and Functions*. Student Mathematical Library. American Mathematical Society, Providence.

[10] Pla, J. (1997). The sum of inverses of binomial coefficients revisited. *The Fibonacci Quarterly*, 35(4), 342–345.

[11] Riordan, J. (1968). *Combinatorial Identities*. John Wiley and Sons Inc., New York.

[12] Rockett, A. M. (1981). Sums of the inverses of binomial coefficients. *The Fibonacci Quarterly*, 19(5), 433–445.

[13] Seidel, L. (1877). Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen. *Sitzungsberichte der Mathematisch-Physikalischen Classe der K.B. Akademie der Wissenschaften zu München*, 157–187.
[14] Sloane, N. J. A. *The On-Line Encyclopedia of Integer Sequences*. Available online at: https://oeis.org/.

[15] Stanley, R. P. (1997). *Enumerative Combinatorics, Vol. 1*. Cambridge University Press, Cambridge.

[16] Sury, B. (1993). Sum of the reciprocals of the binomial coefficients. *European Journal of Combinatorics*, 14, 351–353.

[17] Sury, B., Wang, T., & Zhao, F. Z. (2004). Some identities involving reciprocals of binomial coefficients. *Journal of Integer Sequences*, 7, Article 04.2.8.

[18] Trif, T. (2000). Combinatorial sums and series involving inverses of binomial coefficients. *The Fibonacci Quarterly*, 38, 79–84.

[19] Viennot, G. (1981). Interprétations combinatoires des nombres d’Euler et de Genocchi. *Séminaire de Théorie des Nombres de Bordeaux*, exposé n° 11, 1–94.

[20] Yang, J. H., & Zhao, F. Z. (2006). Sums involving the inverses of binomial coefficients. *Journal of Integer Sequences*, 9, Article 06.4.2.

[21] Zhao, F. Z., & Wang, T. (2005). Some results for sums of the inverses of binomial coefficients. *Integers*, 5, Paper A22.