Drug repurposing prediction for COVID-19 using probabilistic networks and crowdsourced curation

David J. Skelton¹, Aoesha Alsobhe¹, Elisa Anastasi¹, Christian Atallah¹, Jasmine E. Bird², Bradley Brown¹, Dwayne Didon¹, Phoenix Gater¹, Katherine James³, David D. Lennon Jr¹, James McLaughlin¹, Pollyanna E. J. Moreland¹, Matthew Pocock¹, Caroline J. Whitaker⁴, Anil Wipat¹,*

¹School of Computing, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
²School of Natural and Environmental Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
³Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
⁴Turing Ate My Hamster Ltd, Newcastle upon Tyne, United Kingdom

*Corresponding author

E-mail: anil.wipat@newcastle.ac.uk (AW)
Abstract
Severe acute respiratory syndrome coronavirus two (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, represents an unprecedented global health challenge. Consequently, a large amount of research into the disease pathogenesis and potential treatments has been carried out in a short time frame. However, developing novel drugs is a costly and lengthy process, and is unlikely to deliver a timely treatment for the pandemic. Drug repurposing, by contrast, provides an attractive alternative, as existing drugs have already undergone many of the regulatory requirements. In this work we demonstrate an approach to drug repurposing using a combination of probabilistic and semantically rich networks. This combination, together with clustering algorithms, facilitates both the use of network algorithms and distributed human curation, to search integrated knowledge graphs, identifying drug repurposing opportunities for COVID-19. We demonstrate the value of this approach, reporting on eight potential repurposing opportunities identified, and discuss how this approach could be incorporated into future studies.

Introduction
Severe acute respiratory syndrome coronavirus two (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, was discovered in Wuhan, China, in December 2019 [1]. SARS-CoV-2 is a member of the betacoronaviruses, a genus of enveloped positive-sense single-stranded RNA viruses. The symptom profile of COVID-19 infections vary, with a dry cough and fever most often reported [2] and resulting in a mild illness in most cases. However, severe illness has been reported as occurring in as many as 20% of laboratory-confirmed infections [3], depending on population demographics and country-specific testing protocols, with symptoms including acute myocardial injury [4] and
acute kidney injury [5]. Two other highly pathogenic coronaviruses are known [6]: SARS-CoV-1, responsible for the SARS outbreak in 2002-2004, and the Middle East respiratory syndrome (MERS) coronavirus, responsible for the MERS outbreak in 2012. Unlike SARS-CoV-1 and MERS-CoV, however, SARS-CoV-2 is widely reported to cause asymptomatic carriage [7] in some individuals, which has contributed to the rapid, global spread [8], and subsequent radical, world-wide restrictions on daily life to control transmission. The disease now represents an unprecedented global health challenge.

Mechanism of infection

Understanding of the mechanism of pathogenesis is a piecemeal process. One process that is particularly well understood is the entry of SARS-CoV-2 into human cells, which occurs via two major methods: TMPRSS2-dependent entry and TMPRSS2-independent entry [9]. The first method relies on two human transmembrane proteins, ACE2 and TMPRSS2. The spike proteins of SARS-CoV-2, which mediate coronavirus entry to human cells, have been shown to have strong affinity for the human protein ACE2, which is highly expressed on the surface of different cell types, including lung epithelial cells and type II alveolar cells [10]. Once the viral spike proteins have bound to ACE2, localised TMPRSS2 can activate the viral spike proteins and cleave the cytoplasm-facing domain of ACE2. This mechanism causes the virus’ membrane to fuse with the human cell’s membrane, allowing the viral genomic RNA to enter the cell, where it can replicate and facilitate the production of new virions.

In the absence of localised TMPRSS2, SARS-CoV-2 can enter human cells expressing ACE2 via another mechanism. In this process, the viral spike proteins bind to ACE2 and the ACE2 receptor protein recruits clathrin, which initiates endocytosis of the virus. Usually, following endocytosis, proton pumps transport H⁺ ions into endosomes, lowering the internal pH, allowing the endosome to begin the process of becoming an endolysosome and breaking down anything within. However, the pH-dependent enzyme cathepsin L present in
endosomes are used by SARS-CoV-2 to activate the viral spike proteins, which allow the virus to fuse with the endosomal membrane and release its genomic RNA into the host cell in preparation for replication and production of more virions.

Repurposing drugs for the treatment of COVID-19

Due to the rapid increase in COVID-19 cases, a large amount of research into the disease pathogenesis and potential treatment has been carried out in a short space of time. Given the rapid onset of the pandemic, there is an urgent need to identify new drugs that are able to treat the disease and improve patient outcomes [11,12]. Developing novel drugs and taking them to market typically takes many years, so the traditional pathways are unlikely to provide a timely treatment for the current pandemic. The time pressures for new treatments make drug repurposing particularly attractive. Drugs approved for one indication (disease) may also happen to be efficacious for another. If likely candidates for repurposing can be identified, the time to approval for a drug can be reduced to just a few months by drawing from the pool of the many thousands of drugs that have already been through the regulatory approval process, and are therefore well-characterised. Identifying high quality drug repurposing candidates is challenging. Many discoveries are serendipitous, for example from observations in clinics and trials [13]. However, with the advent of network approaches to studying biology at a systems level, new computational approaches have emerged that allow a more systematic approach to drug repurposing [14–16]. Networks are a convenient method to represent drugs, genes, proteins, diseases, etc., and the relationships between them. They support human investigation through visual exploration, while at the same time being amenable to computational analysis, enabling automated and systematic analysis.

Drug repurposing algorithms derive new relationships between drugs, targets, diseases, genes etc., based on existing knowledge of these relationships [15]. These new relationships
can lead to hypotheses about novel repurposing opportunities and the evidence for them can be reviewed and then hypotheses tested in the laboratory and clinic. Computational drug repurposing prediction and human curation both require the availability of a variety of data sources that describe the molecular processes in a cell and their interaction with drugs. These data are typically distributed in a range of different data sources and databases and may be integrated after they have been represented as networks to form an integrated network or knowledge graph [17–19]. Repurposing algorithms that operate over the data can vary from simple pattern matching or network module analysis, through to the application of artificial intelligence [20–24]. The output of these algorithms are systematic computational predictions and therefore need human curation, with a range of expertise, to assess their value. Therefore, the computational prediction of repurposable drugs is usually applied in an iterative fashion, coupled with the input of a human expert who is able to verify and generate hypotheses about new repurposing opportunities.

The need for new drugs to treat COVID-19 has resulted in a large number of recent studies [25–41]. Antiviral drugs have been the most obvious target since some of these have been shown to be active against SARS. For example, drugs such as Elbasvir are under scrutiny to this effect [42]. Other antiviral drugs, such as Remdesivir, originally employed for the treatment of Ebola, have recently been approved for the treatment of COVID-19 [43]. However, there is still a pressing need for more candidate drugs, especially those addressing the abnormal immune response seen in some patients [43,44]. The wider search for repurposable drugs remains a field under active development. Most of these studies are computational in nature and have resulted in many potential new drug candidates. These studies have employed a variety of strategies including network based analyses. Some of these candidates are now undergoing clinical trials to test their effectiveness [34].
In this work we used a combination of network algorithms and human curation to search integrated knowledge graphs for drug repurposing opportunities for COVID-19. We aimed to highlight potential repurposing opportunities that are possibly novel in comparison to those published so far. We also introduce some newer features to our analytical process in an effort to improve accuracy by incorporating measures, which take data quality into account, and to speed up data verification by facilitating multiple curation.

Many studies, for example that of Kumar 2020 [36], have employed protein interaction networks to study the relationships between COVID-19 proteins, the proteins they interact with, and the molecular interaction networks in the cell. However, data quality is an important factor in the assignment of protein interactions, and has received little attention in studies to-date. Instead of using a standard protein interaction graph, we developed a probabilistic functional interaction network for human proteins that uses highly curated interactions from BioGrid as a gold standard to produce a weighted protein interaction network, where the weight indicates the confidence of a functional interaction. We then mapped onto this human probabilistic function integrated network (PFIN) the interactions with COVID-19 proteins, discovered experimentally in Gordon et al., 2020 [27].

The process of curating computational predictions, or manually analysing networks for new opportunities is a large-scale, time consuming task. The division of labour through network partitioning and crowdsourcing are promising approaches to more rapid verification of results [45,46]. However, one of the challenges facing this approach is the assignment of appropriate sections of a complex network to each curator. Since we were working with PFINs that included weighted edges, we were able to employ a clustering algorithm to partition the probabilistic network into functionally related subgraphs. Those subgraphs containing COVID-19 protein interactors were then enriched with information from previously
integrated networks to add relationships to drugs, diseases, genes, pathways and so on. Each subgraph then represents a unit of the network that was systematically assigned to a curator for analysis. In this fashion, a large scale task is broken down and becomes faster with more curators participating in the exercise. Here we present details of our approach to the development and partitioning of the knowledge network and the resulting predictions for potentially repurposable drugs.

Methods

This work extends approaches developed by Mullen et al. [47]. In brief, a semantic knowledge graph was constructed in Neo4j, comprising data about existing, approved drugs. The data sources contributing to the knowledge graph are shown in Table 1.

Data source	Date obtained	Nodes contributed	Edges contributed
UniProt [48]	2020-02-11	Proteins	Gene -[encodes]- Protein
DrugBank [49]	2020-02-11	Drugs	Drug -[has target]- Protein
Monarch Disease	2020-02-11	Disorders	Disorder -[is subset of]- Disorder
Disease Ontology (MONDO)			Drug -[has target]- Protein
[50]			Drug -[has indication]- Disorder
Drug Central [51]	2018-08-26		Gene -[associated with]-
OMIM [52]	2020-02-07		
Using the Neo4j knowledge graph, two approaches were taken to identifying drug repurposing candidates. In the first approach, a search of literature on COVID-19 and SARS-CoV-2 was carried out to identify current knowledge on mechanisms of disorder pathogenesis, including genes and proteins in *Homo sapiens* and SARS-CoV-2 that are involved in this process. Based on the results of the literature search, semantic queries were devised to explore the local neighbourhood around identified concepts of interest in the knowledge graph.

In the second approach, a PFIN was created from BioGrid [55] v181. A PFIN is a network in which the nodes (in this case, genes) are linked via weighted edges, with the weight representing the confidence that the two genes functionally interact. The PFIN was constructed using a method devised by Lee *et al.* [56]. In brief, BioGrid v181 was partitioned into high-throughput (HTP) datasets and low-throughput (LTP) datasets, with low-throughput datasets being defined as datasets containing fewer than 100 interactions. By considering the LTP datasets as a gold-standard, log likelihood scores (LLS) for the high-throughput datasets were calculated using an approach as described by Lee *et al.* [56],

$$LLS = \ln \left(\frac{P(L|E) / \sim P(L|E)}{P(L) / \sim P(L)} \right)$$
where, \(P(L|E) \) and \(\sim P(L|E) \) represent the frequencies of linkages (L) observed in dataset (E) between genes in the gold-standard, and absent from the gold-standard, respectively, and, \(P(L) \) and \(\sim P(L) \) represent the prior expectation of linkages between genes in the gold-standard, and absent from the gold-standard, respectively.

Datasets with a LLS of 0 or lower were discarded, and the remaining datasets were sorted in order of LLS, and integrated using the following formula:

\[
WS = \sum_{i=1}^{n} \frac{L_i}{1.1^{i-1}}
\]

where, \(L_1 \) is the highest LLS score and \(L_n \) that with the lowest of a set of \(n \) datasets. The denominator selected to give more weight to datasets with higher confidence was 1.1, as used in previous work by James et al. [57]. For visualisation purposes, functional interaction relationships were omitted if the confidence score was lower than 4.336.

The PFIN was clustered using a weighted MCL algorithm with the default parameters and viewed in Cytoscape [58,59]. Next, for the set of Homo sapiens proteins identified as interacting with SARS-CoV-2 proteins by Gordon et al. [60], clusters from the PFIN containing genes that encode at least one of these proteins were extracted, decorated with edges and nodes from the knowledge base (Fig 1), and returned.

Fig 1. Cypher query used to decorate genes in PFIN clusters that have at least one gene encoding a protein that interacts with a SARS-CoV-2 protein. Information obtained from the knowledge base includes (1) proteins encoded by the
genes, (2) drugs that target any proteins in (1), (3) drugs with similarity drugs in (2), (4) disorders associated with the genes in the PFIN cluster.

Due to limitations of the integrated database we constructed, such as a lack of side-effect data and missing annotations for drug actions on their targets, clusters required manual curation to identify promising targets. Thus, this analysis was crowdsourced amongst various contributors. A Trello system was used to coordinate the distribution of clusters, collate information, provide background material and to gather the results of the analysis by curators.

Results
Results from the cluster analysis from multiple curators were assimilated and integrated and are presented on a per-drug (or per-drug class, where appropriate) basis. Each section below describes (1) the drug / class, (2) the method(s) used to identify the drug / class as a candidate, and (3) an explanation of any relevant literature to support or refute the drug candidacy.

Theophylline
Theophylline (IUPAC name: 1,3-dimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione) is a methylxanthine drug with activities including smooth muscle relaxation and bronchial dilation. Indicated for conditions such as chronic obstructive pulmonary disorder (COPD) and asthma, theophylline exerts its activity through competitive inhibition of type III and IV phosphodiesterase [61]. Clustering of the PFIN revealed a cluster of genes, one of which, DNAJC11, encodes the DNA J homolog subfamily C member 11 protein (Q9NVH1), which Gordon et al. [27] reported as interacting with the SARS-CoV-2 E protein. SARS-Cov2 E encodes the envelope protein, E, which plays a role in the structure and maturation of the
virus [62]. DNAJC11 is a mitochondrial protein which is required for mitochondrial inner membrane organization which associates with the mitochondrial contact site and cristae organizing system (MICOS) complex [62,63]. The PFIN suggests that DNAJC11 has a high likelihood of being functionally related to RIC3, which encodes the protein RIC3 (Q7Z5B4) -- a protein target of theophylline (Fig 2) [64]. RIC3 promotes functional expression of homomeric alpha-7 and alpha-8 nicotinic acetylcholine receptors at the cell surface and is found in endoplasmic reticulum and the golgi apparatus [65]. The relevance of the functional relationship between DNAJC11 and RIC3 is unclear, however the interaction was identified by Affinity Capture-Mass Spectroscopy, which implies a physical binding. It is possible, therefore, that RIC3 complexes with DNAJC11 (although current evidence has them expressed in different organelles) and theophylline could block the binding of DNAJC11 by SARS-CoV-2 E. Interestingly, DNAJC11 has well-conserved orthologues in other species, such as mouse, rat, and dog [66].

Fig 2: Network showing a connected component containing a gene encoding a protein targeted by theophylline. This is part of a larger PFIN cluster, but shown as disconnected due to the edge thresholding for visualisation. The red node is Q9NVH1, the pink nodes are genes, and the blue node is theophylline. Q9NVH1 is a high-confidence interactor of the SARS-CoV-2 nsp4 protein.

Calmodulin inhibitors

Calmodulin is a ubiquitous calcium binding protein which binds to transmembrane proteins such as ACE [67]. As described in the introduction, ACE transmembrane proteins have a distinct role in Covid-19 infection [9]. Calmodulin plays a crucial role in regulating ACE2 presence on the cell surface by binding to the cytoplasmic tail of ACE2 [68]. A potential target for decreasing infection and viral loading could, therefore, be the use of calmodulin inhibitors, acting to decrease the association of the two proteins. Without the binding of
calmodulin to ACE2, the cells start to shed the ectodomain of ACE2, leading to decreased expression and catalytic activity [67]. Querying our knowledge graph for approved drugs that inhibit CALM1 (P0DP23), we identified 10 existing, approved drugs that are labelled as inhibitors of calmodulin, indicated for a range of conditions including hypertension, seasonal allergies, and antidepressants (full list in Table S1).

Angiotensin II

Angiotensinogen is a small peptide hormone which, as part of the renin-angiotensin-aldosterone system (RAAS), is involved in the regulation of blood pressure [69]. Via the action of renin, angiotensinogen is converted into angiotensin I. In turn, angiotensin I, via the action of angiotensin converting enzyme (ACE), is converted into angiotensin II. Critically, ACE2 converts angiotensin II into angiotensin (1-7), an effector of nitric oxide-dependent vasodilation which has been implicated in attenuating acute lung injury [70]. The role of drugs which inhibit the RAAS, such as commonly prescribed antihypertensive agents (e.g., ACE inhibitors and angiotensin receptor blockers) is controversial, with arguments proposed for both harmful and protective effects [71–73]. Given that angiotensin II is, itself, an approved drug, it may have a therapeutic use in COVID-19 via the actions of angiotensin (1-7). Angiotensin II has already been suggested as a possible therapeutic agent, and is currently being investigated (NCT04332666).

Cathepsin L and TMPRSS2 synergistic targets

Whilst inhibition of the ACE2 receptor may seem an ideal target for treating COVID-19, as it is required for both major mechanisms of viral entry into host cells, it has been shown that ACE2 is essential for repairing damage to lung tissues. Instead, it may be possible to inhibit TMPRSS2, which could lead to most virus particles entering the host cell via endosomes. If cathepsin L is also inhibited, the endosome-enclosed viruses will be unable to escape,
allowing the endosomes to progress fully to endolysosomes and destroy the virus particles. In this way, it may be possible to not only prevent entry into the host cell and subsequent replication, but also reduce overall viral load by enabling the body to destroy SARS-CoV-2.

Table 2. Cathepsin L inhibitors identified in our database.

Drug name	Description	Drug groups (according to DrugBank)
Telaprevir	Antiviral medication used as part of combination therapy in hepatitis C infection	Approved, withdrawn
Boceprevir	Antiviral medication used as part of combination therapy in hepatitis C infection	Approved, withdrawn
Sodium aurothiomalate	Used for immunosuppressive anti-rheumatic effects	Approved, investigational
Felbinac		Experimental
Fostamatinib	Indicated for treatment of rheumatoid arthritis and immune thrombocytopenic purpura	Approved, investigational
Cysteinesulfonic acid		Experimental

A search of https://clinicaltrials.gov and https://covid-trials.org found no trials related to COVID-19 for the drugs listed in this table.

Previous studies have suggested that an already approved drug, camostat mesylate, could be used as a TMPRSS2 inhibitor [74]. In this study, through rational querying of the
knowledge graph, drug candidates for putative cathepsin L inhibitors have been identified (Table 2). These candidates are all approved drugs. Two of these drugs, telaprevir and boceprevir, have been used previously to help treat chronic hepatitis C infections; however, both have since been discontinued due to common side effects such as severe rashes, anemia, decreased neutrophils, and fatigue. Sodium aurothiomalate is a gold-containing compound approved for use treating rheumatoid arthritis. This drug is not currently commonly sold due to a difficulty in sourcing sodium aurothiomalate. The final potential cathepsin L inhibitor identified in this study is fostamatinib, which is approved for use against chronic immune thrombocytopenia. Other drug repurposing studies for COVID-19 have also identified this drug as a potential candidate, but as an ACE2 inhibitor [75]. These same studies, however, did not evaluate it as a cathepsin L inhibitor. Based on this and previous studies, it is therefore possible that a combined therapy of camostat mesylate and fostamatinib may aid in treating COVID-19.

Interestingly, fostamatinib was separately identified as a drug candidate via the PFIN clustering approach (Fig 3). Fostamatinib has serine/threonine-protein kinase TBK1 (Q9UHD2) as a drug target, which was also identified by Gordon et al. [27] as being a protein that interacts with a SARS-CoV-2 protein. However, the relevance of this interaction, if any, is unclear to us.

Fig 3. Network view of a PFIN cluster containing fostamatinib. Fostamatinib (highlighted in yellow) is identified as targeting a *Homo sapiens* protein, Q9UHD2 (red). Q9UHD2 is a high-confidence interactor of the SARS-CoV2 nsp13 protein.

Potential antiviral modulators of inflammation

Severe COVID-19 disease often includes an exaggerated inflammatory response. Stebbing *et al.* suggested that combining antiviral and anti-inflammatory treatments is a possible means of reducing disease severity [76]. In their study, they examined the affinity between antiviral drugs (in particular, through inhibition of numb-associated kinases (NAKs)) and drug
targets that may be useful in attenuating inflammation (e.g. through inhibition of Janus Kinases (JAKs)). As a result of the study, Stebbing et al. identified and discussed a range of drugs, including baricitinib, tofacitinib, and ruxolitinib.

To determine whether there were any additional drug candidates not discussed by Stebbing et al. [76], we queried our dataset for drugs targeting the NAKs and JAKs identified in the paper. These proteins were as follows: AAK1 (Q2M2I8), BIKE (Q9NSY1), GAK (O14976), JAK1 (P23458), JAK2 (O60674), JAK3 (P52333), and TYK2 (P29597). In addition to baricitinib, tofacitinib, and ruxolitinib, we also identified fostamatinib as a potential drug candidate. In fact, in our knowledge graph, fostamatinib was the only drug recorded as having all the aforementioned proteins as drug targets.

Epidermal growth factor receptor (EGFR) inhibitors

EGFR (P00533) is a protein implicated in tissue fibrosis, due to its role in TGF-β1 dependent fibroblast-myofibroblast differentiation. Venkataraman and Frieman, 2017 [77], suggested that inhibiting EGFR signalling prevents excessive fibrotic responses and, thus, lung damage, during SARS infections.

Running the query in Fig 4 identified eight approved drugs that were possible EGFR inhibitors -- brigatinib, afatinib, osimertinib, fostamatinib, dacomitinib, neratinib, vandetanib, and panitumumab.

Fig 4. Neo4j query used to identify EGFR inhibitors. This query returns approved drugs that are annotated as targeting EGFR with an inhibitory or suppressive action.
Lobeline, Nicotine and Galantamine

Two COVID proteins - ORF9c and NSP4 - have interactions with mitochondria-related human proteins ZNT6 (Q6NXT4, encoded by the SLC30A6 gene, transmembrane zinc transporter located in the golgi apparatus) and TIM29 (Q9BSF4, encoded by the TIMM29 gene, inner mitochondrial membrane translocase), respectively [27]. The genes encoding these proteins were both identified as having a high-confidence functional interaction with the neuronal acetylcholine receptor subunit alpha-9 (NACHR9) protein (Q9UGM1, gene name CHRNA9) [78,79]. These relationships are shown in Fig 5. NACHR9 is a part of the ligand-gated ionic channel and nicotinic acetylcholine receptor superfamilies, and forms homo- or hetero-oligomeric divalent cation channels in the plasma membrane [80].

According to DrugBank, NACHR9 is targeted by the following small molecules: lobeline; galantamine; nicotine; tetraethylammonium; RPI-78M and, ATG003. Lobeline, in its natural form from plants in the *Lobelia* genus, has been proposed and applied for therapeutic uses including respiratory disorders (such as asthma) as a stimulant to treat wheezing, uncontrolled coughing and chest tightness [81], and has been reported to improve acute lung injury in cell lines [82]. There have been promising studies carried out on mice where lobeline helped to treat acute lung injury [83], but human studies are still required. Nicotine induces ACE2 overexpression in Human Bronchial Epithelial Cells (HBEpC) via alpha7-nicotinic receptor (α7-nAChR)[84], a paralog of NACHR9. Galantamine is a reversible, competitive inhibitor of acetylcholinesterase (AChE), which catalyses the
breakdown of ACE, and is an allosteric modulator of nAChRs. It is currently approved for mild to moderate dementia and Alzheimer’s.

Quercetin

Quercetin is a polyphenol flavonoid found in many plants [85] and has been reported as having anti-inflammatory and anti-viral properties [86,87]. In one of the PFIN clusters, quercetin was identified as targeting the human protein casein kinase II subunit beta (CK2-beta) protein (P67870, localised throughout the cell), which Gordon et al. reported as being a high-confidence interactor of the SARS-CoV-2 N protein [27]. Two CK2-beta molecules, together with a single alpha and alpha’ subunit together form the tetramer casein kinases II (CK2). CK2 acts as a serine/threonine-selective protein kinase, involved in cell cycle regulation, and is implicated in disorders of cell proliferation (e.g. tumours) [88]. Interestingly, CK2 has been found to be stimulated in other viral infections [89], and has various roles in the infection cycles of different viruses [90,91]. Further, Gordon et al. suggested CK2 inhibition as a possible therapeutic approach for COVID-19 [60], as CK2 downregulates stress granule formation [92] which is associated with enhanced viral replication in other coronavirus infections [93]. Thus, depending on the nature of the interaction between quercetin and CK2, it may be of benefit.

Quercetin has already been suggested as a possible therapeutic to mitigate the severity of SARS-CoV-2 infection, as quercetin alters the expression of 30% of the human proteins that are targets of SARS-CoV-2 proteins [94].
Discussion

In summary, this study aimed to build on existing studies that have used knowledge frameworks to generate hypotheses about drug repurposing opportunities for COVID-19. As in other studies, an integrated dataset was developed, extending a drug repurposing framework developed by Mullen et al. [47]. We aimed to enhance the knowledge network approach through the use of PFINs to act as a framework to guide the hypothesis generation process. The use of PFINs allowed us to scale the data curation process in a systematic fashion, exploiting the combined effort of multiple curators. Our approach could act as a template for future studies, with richer knowledge graphs, the incorporation of algorithmic predictions for drug repurposing and a much larger set of curators. The drugs we identified for repurposing are illustrative of the value of our approach. Due to the rapidly developing nature of studies on SARS-CoV-2 and COVID-19, it is difficult to identify which candidates are truly novel, however, even in instances where candidates have already been suggested by other studies, our approach can still provide additional supporting (or refuting) evidence.

The results presented in this study are grouped by drug class. Where possible, we have tried to avoid suggesting specific instances of drugs (and focused on classes instead), in part because we recognise that our database is not complete. Further, ethically, there may be socioeconomic reasons for selecting one member of a drug class over another, such as supply and demand or the dependence of a subpopulation on a given drug. However, there are some noteworthy cases where focusing on specific drugs within a class is necessary. For example, fostamatinib has emerged as a drug candidate in a number of different contexts as an anti-inflammatory agent, as an EGFR inhibitor, and as a cathepsin L inhibitor, establishing it as a promising candidate.
One limitation of in silico drug repurposing studies is that, depending on the algorithms employed, many drug repurposing candidates can be suggested. Refinement of a large set of drug candidates often requires many person-hours of time to curate, particularly when including time taken to understand the mechanisms / pathways involved. By (1) leveraging a PFIN-based clustering approach and (2) focusing on clusters containing high-confidence interactors with SARS-CoV-2 proteins, we were able to reduce the drug candidate search space significantly. Using a crowd-sourcing approach to analyse the clusters allowed individuals to curate sets of drug candidates that were likely to be mechanistically related, providing a logical partitioning of work. Curation allowed us to focus on drugs with additional context (e.g., pharmacological, biological) evidence to support or refute the drugs discussed, thus providing a balanced perspective on the drugs discussed. In future studies, it might be interesting to research systematic and computational approaches to integrating and ranking the findings of curators, perhaps building on larger systems for data sharing and integration such as FAIRDOMHub [95].

There are a number of caveats to this research which need to be addressed to ensure results are taken in an appropriate context. Firstly, the data sources contributing to our integrated semantic network are limited in scope and could be expanded. For example, the graph includes connections between drugs and their protein targets, but the nature (e.g. “inhibitory”, “stimulatory”, “suppressor”) is not always recorded. Secondly, computational prediction can only ever generate suggestions or hypotheses based on the analysis of the limited data available. Thus, for any drug repurposing candidates suggested, it is critical that these are manually curated by experts in medicine, pharmacology, and human biology. Due to recent concerns over the potential for harm in COVID-19 preprints, we want to stress that this research should not be used to inform clinical practice, nor should people change their behaviour on the basis of it [96].
Acknowledgements

The authors gratefully acknowledge contributions from the Interdisciplinary Computing and Complex Biosystems research group at the University of Newcastle upon Tyne.

References

1. Li H, Liu S-M, Yu X-H, Tang S-L, Tang C-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020; 105951.

2. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382: 1708–1720.

3. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020. doi:10.1016/S1473-3099(20)30243-7

4. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17: 259–260.

5. Wadman M. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. Science. 2020. doi:10.1126/science.abc3208

6. Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress Chaperones. 2020;4: 66–75.

7. Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020. doi:10.1001/jama.2020.2565

8. Linton O. When will the Covid-19 pandemic peak? 2020. doi:10.1920/wp.cem.2020.1120

9. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 andTMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181: 271–280.e8.

10. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14: 185–192.

11. Dey G, Department of Pharmacology Kempegowda Institute of Medical Sciences Bangalore, India. An Overview of Drug Repurposing: Review Article. Journal of Medical Science And clinical Research. 2019. doi:10.18535/jmscr/v7i2.12

12. Cavalla D, Oertet E, Bender A. Drug Repurposing Review. Comprehensive Medicinal Chemistry III. 2017. pp. 11–47. doi:10.1016/b978-0-12-409547-2.12283-8

13. Tanoli Z, Seemab U, Scherer A, Wennerberg K, Tang J, Vähä-Koskela M. Exploration of
14. Zhao K, So H-C. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing. Methods in Molecular Biology. 2019. pp. 219–237. doi:10.1007/978-1-4939-8955-3_13

15. Vanhaelen Q. Computational Methods for Drug Repurposing. Humana Press; 2019.

16. Roy K. In Silico Drug Design: Repurposing Techniques and Methodologies. Academic Press; 2019.

17. Verma R, Kumar P. Knowledge Graph Representation Learning Based Drug Informatics. 2019 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). 2019. doi:10.1109/conecct47791.2019.9012934

18. Incorporating Multisource Knowledge To Predict Drug Synergy Based on Graph Co-regularization. doi:10.1021/acs.jcim.9b00793.s001

19. Sosa DN, Derry A, Guo M, Wei E, Brinton C, Altman RB. A Literature-Based Knowledge Graph Embedding Method for Identifying Drug Repurposing Opportunities in Rare Diseases. Pac Symp Biocomput. 2020;25: 463–474.

20. Zhou L, Li Z, Yang J, Tian G, Liu F, Wen H, et al. Revealing Drug-Target Interactions with Computational Models and Algorithms. Molecules. 2019;24. doi:10.3390/molecules24091714

21. Álvarez-Machancoses Ó, Fernández-Martínez JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov. 2019;14: 769–777.

22. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev. 2019;119: 10520–10594.

23. Tanaka H. [Artificial Intelligence-based Drug Discovery and Drug Repositioning]. Brain Nerve. 2019;71: 981–989.

24. Koromina M, Pandi M-T, Patrinos GP. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics. OMICS. 2019;23: 539–548.

25. Kim M, Kim YB. In silico synergistic drug repurposing for combating novel coronavirus (COVID-19) outbreaks. doi:10.21203/rs.3.rs-21849/v1

26. Senanayake SL. Drug repurposing strategies for COVID-19. Future Drug Discovery. 2020. doi:10.4155/fdd-2020-0010

27. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020. doi:10.1038/s41586-020-2286-9

28. Pawar AY. Combating Devastating COVID -19 by Drug Repurposing. Int J Antimicrob Agents. 2020; 105984.

29. Chakrabortya HJ, Paria P, Gangopadhyay A, Ganguli S. Drug Repurposing against SARS-CoV-2 RDRP - a computational quest against CoVID- 19.
30. Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease -19 (COVID-19) Through Computational Drug Repurposing Study. J Chem Inf Model. 2020. doi:10.1021/acs.jcim.0c00179

31. Chen YW, Yiu C-PB, Wong K-Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res. 2020;9: 129.

32. Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K. Drug repurposing for coronavirus (COVID-19): screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. J Biomol Struct Dyn. 2020; 1–13.

33. Ciliberto G, Cardone L. Boosting the arsenal against COVID-19 through computational drug repurposing. Drug Discovery Today. 2020. doi:10.1016/j.drudis.2020.04.005

34. Ulm J, Nelson S. COVID-19 drug repurposing: Summary statistics on current clinical trials and promising untested candidates. Authorea. doi:10.22541/au.158802251.14632682

35. Phadke M, Saunik S. COVID-19 treatment by repurposing drugs until the vaccine is in sight. Drug Development Research. 2020. doi:10.1002/ddr.21666

36. Kumar S. COVID-19: A Drug Repurposing and Biomarker Identification by Using Comprehensive Gene-Disease Associations through Protein-Protein Interaction Network Analysis. doi:10.20944/preprints202003.0440.v1

37. Cavasotto C, Di Filippo J. In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring. doi:10.26434/chemrxiv.12110199

38. Kumar Y, Singh H. In Silico Identification and Docking-Based Drug Repurposing Against the Main Protease of SARS-CoV-2, Causative Agent of COVID-19. doi:10.26434/chemrxiv.12049590

39. Glebov O. Understanding the cell biology of SARS-CoV-2 endocytosis for COVID-19 drug repurposing: looking beyond chloroquine. doi:10.31219/osf.io/xhz29

40. Rajbhar P, Singh D, Yadav R. Repurposing of SARS Inhibitors Against COVID 19. doi:10.26434/chemrxiv.12155361.v1

41. Kumar S, Zhi K, Mukherji A, Gerth K. Repurposing Antiviral Protease Inhibitors Using Extracellular Vesicles for Potential Therapy of COVID-19. Viruses. 2020;12. doi:10.3390/v12050486

42. Balasubramaniam M, Reis RS. Computational Target-Based Drug Repurposing of Elbasvir, an Antiviral Drug Predicted to Bind Multiple SARS-CoV-2 Proteins. doi:10.26434/chemrxiv.12084822.v2

43. Yin W, Mao C, Luan X, Shen D-D, Shen Q, Su H, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science. 2020. doi:10.1126/science.abc1560

44. Pick of the coronavirus papers: Immune system shows abnormal response to
COVID-19. Nature. 2020. doi:10.1038/d41586-020-00502-w

45. Johnson R. Crowdsourcing drug discovery. Nature Chemistry. 2014. pp. 87–87. doi:10.1038/nchem.1867

46. Tanoli Z, Alam Z, Ianevski A, Wennerberg K, Vähä-Koskela M, Aittokallio T. Interactive visual analysis of drug-target interaction networks using Drug Target Profiler, with applications to precision medicine and drug repurposing. Brief Bioinform. 2018. doi:10.1093/bib/bby119

47. Mullen J, Cockell SJ, Woollard P, Wipat A. An Integrated Data Driven Approach to Drug Repositioning Using Gene-Disease Associations. PLoS One. 2016;11: e0155811.

48. Consortium TU, The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research. 2019. pp. D506–D515. doi:10.1093/nar/gky1049

49. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46: D1074–D1082.

50. Mungall CJ, McMurry JA, Köhler S, Balhoff JP, Borromeo C, Brush M, et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 2017;45: D712–D722.

51. Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, et al. DrugCentral: online drug compendium. Nucleic Acids Res. 2017;45: D932–D939.

52. Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019;47: D1038–D1043.

53. Piñero J, Ramírez-Anguita JM, Saúch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48: D845–D855.

54. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 2005;33: D54–8.

55. Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47: D529–D541.

56. Lee I, Date SV, Adai AT, Marcotte EM. A probabilistic functional network of yeast genes. Science. 2004;306: 1555–1558.

57. James K, Wipat A, Hallinan J. Integration of Full-Coverage Probabilistic Functional Networks with Relevance to Specific Biological Processes. In: Paton NW, Missier P, Hedeler C, editors. Data Integration in the Life Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. pp. 31–46.

58. Cytoscape App Collection. F1000Research Collections. doi:10.12688/f1000research.collections.3

59. Zhang Z, Song J, Tang J, Xu X, Guo F. Detecting complexes from edge-weighted PPI networks via genes expression analysis. BMC Syst Biol. 2018;12: 40.

60. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O’Meara MJ, et al. A
SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv. 2020. p. 2020.03.22.002386. doi:10.1101/2020.03.22.002386

61. Barnes PJ. Theophylline. Pharmaceuticals. 2010;3: 725–747.

62. Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020;14: 407–412.

63. Ioakeimidis F, Ott C, Kozjak-Pavlovic V, Violitzi F, Rinotas V, Makrinou E, et al. A splicing mutation in the novel mitochondrial protein DNAJC11 causes motor neuron pathology associated with cristae disorganization, and lymphoid abnormalities in mice. PLoS One. 2014;9: e104237.

64. Marwick JA, Wallis G, Meja K, Kuster B, Bouwmeester T, Chakravarty P, et al. Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008;377: 797–802.

65. Halevi S, Yassin L, Eshel M, Sala F, Sala S, Criado M, et al. Conservation within the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J Biol Chem. 2003;278: 34411–34417.

66. Söllner JF, Leparc G, Zwick M, Schönberger T, Hildebrandt T, Nieselt K, et al. Exploiting orthology and de novo transcriptome assembly to refine target sequence information. BMC Med Genomics. 2019;12: 69.

67. Lambert DW, Clarke NE, Hooper NM, Turner AJ. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett. 2008;582: 385–390.

68. Clarke NE, Fisher MJ, Porter KE, Lambert DW, Turner AJ. Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling. PLoS One. 2012;7: e34747.

69. Lu H, Cassis LA, Kooi CWV, Daugherty A. Structure and functions of angiotensinogen. Hypertens Res. 2016;39: 492–500.

70. Klein N, Gembarth F, Supê S, Kaestle SM, Nickles H, Erfinanda L, et al. Angiotensin-(1-7) protects from experimental acute lung injury. Crit Care Med. 2013;41: e334–43.

71. Bavishi C, Maddox TM, Messerli FH. Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers. JAMA Cardiol. 2020. doi:10.1001/jamacardio.2020.1282

72. Li J, Wang X, Chen J, Zhang H, Deng A. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol. 2020. doi:10.1001/jamacardio.2020.1624

73. South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol.
2020. doi:10.1038/s41581-020-0279-4

74. Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 2012;86: 6537–6545.

75. Rao S, Lau A, So H-C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A Mendelian Randomization analysis highlights tentative relevance of diabetes-related traits. Epidemiology. medRxiv; 2020.

76. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20: 400–402.

77. Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res. 2017;143: 142–150.

78. Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. 2015;162: 425–440.

79. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545: 505–509.

80. Zouridakis M, Giastas P, Zarkadas E, Chroni-Tzartou D, Bregestovski P, Tzartos SJ. Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Nat Struct Mol Biol. 2014;21: 976–980.

81. Felpin F, Lebreton J. History, chemistry and biology of alkaloids from Lobelia inflata. Tetrahedron. 2004;60: 10127–10153.

82. Li K-C, Ho Y-L, Chen C-Y, Hsieh W-T, Chang Y-S, Huang G-J. Lobeline improves acute lung injury via nuclear factor-κB-signaling pathway and oxidative stress. Respir Physiol Neurobiol. 2016;225: 19–30.

83. Li K-C, Ho Y-L, Huang G-J, Chang Y-S. Anti-oxidative and anti-inflammatory effects of Lobelia chinensis in vitro and in vivo. Am J Chin Med. 2015;43: 269–287.

84. Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and Smoking. Is Nicotine the Hidden Link? Eur Respir J. 2020. doi:10.1183/13993003.01116-2020

85. Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI J. 2018;17: 856–863.

86. Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016;10: 84–89.

87. Iuzzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, et al. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci . 2012;17: 2396–2418.
88. Guerra B, Issinger O-G. Protein kinase CK2 in human diseases. Curr Med Chem. 2008;15: 1870–1886.

89. Koffa MD, Kean J, Zachos G, Rice SA, Clements JB. CK2 protein kinase is stimulated and redistributed by functional herpes simplex virus ICP27 protein. J Virol. 2003;77: 4315–4325.

90. Barroso MMS, Lima CS, Silva-Neto MAC, Da Poian AT. Mayaro virus infection cycle relies on casein kinase 2 activity. Biochem Biophys Res Commun. 2002;296: 1334–1339.

91. Alvarez DE, Agaisse H. Casein kinase 2 regulates vaccinia virus actin tail formation. Virology. 2012;423: 143–151.

92. Reineke LC, Tsai W-C, Jain A, Kaelber JT, Jung SY, Lloyd RE. Casein Kinase 2 Is Linked to Stress Granule Dynamics through Phosphorylation of the Stress Granule Nucleating Protein G3BP1. Mol Cell Biol. 2017;37. doi:10.1128/MCB.00596-16

93. Nakagawa K, Narayanan K, Wada M, Makino S. Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication. J Virol. 2018;92. doi:10.1128/JVI.00902-18

94. Glinsky G. Tripartite combination of potential pandemic mitigation agents: Vitamin D, Quercetin, and Estradiol manifest properties of candidate medicinal agents for mitigation of the severity of pandemic COVID-19 defined by genomics-guided tracing of SARS-CoV-2 targets in human cells. 2020.

95. Wolstencroft K, Krebs O, Snoep JL, Stanford NJ, Bacall F, Golebiewski M, et al. FAIRDOMHub: a repository and collaboration environment for sharing systems biology research. Nucleic Acids Res. 2017;45: D404–D407.

96. All that’s fit to preprint. Nat Biotechnol. 2020;38: 507.
Supporting information

S1 Table. Existing approved drugs that inhibit CALM1. These drugs have a range of indications, from psychiatric disorders to cardiovascular disorders.

Drug	Indication (if recorded in database)
Phenoxybenzamine	
Chlorpromazine	Psychotic disorder, acute intermittent porphyria, schizophrenia, manic bipolar affective disorder
Nifedipine	Hypertensive disorder, prinzmetal angina
Pimozide	Tourette syndrome
Promethazine	Atopic conjunctivitis, urticaria, vasomotor rhinitis, seasonal allergic rhinitis
Perphenazine	Mixed anxiety and depressive disorder, schizophrenia
Loperamide	
Trifluoperazine	Schizophrenia
Fluphenazine	Schizophrenia, psychotic disorder
Cinchocaine	
Figures

Figure 1

UNWIND {gene_identifiers} as i
MATCH (gene:Gene {primaryDomainId:i})
OPTIONAL MATCH (gene)<-[peg:ProteinEncodedBy]-(pro:Protein)
OPTIONAL MATCH (pro)<-[dht:DrugHasTarget]-(drug)
OPTIONAL MATCH (drug)-[dsim:MoleculeSimilarityMolecule]-(drug1)
WHERE dsim.morganR2 > 0.5
OPTIONAL MATCH (gene)-[gawd:GeneAssociatedWithDisorder]-(disorder)
RETURN gene, peg, pro, drug, disorder, dht, gawd, dsim, drug1

Figure 2
MATCH (n:Protein {primaryDomainId:"uniprot.P00533"})<-[:dt:DrugHasTarget]-(drug)
WHERE ("approved" in drug.drugGroups) AND ("inhibitor" in drug.dt.actions OR "suppressor" in drug.dt.actions)
RETURN drug, n
Figure 5