Semi-Myopic Sensing Plans for Value Optimization

David Tolpin
Computer Science Dept.
Ben-Gurion University
84105 Beer-Sheva, Israel

Solomon Eyal Shimony
Computer Science Dept.
Ben-Gurion University
84105 Beer-Sheva, Israel

Abstract

We consider the following sequential decision problem. Given a set of items of unknown utility, we need to select one of as high a utility as possible (“the selection problem”). Measurements (possibly noisy) of item values prior to selection are allowed, at a known cost. The goal is to optimize the overall sequential decision process of measurements and selection.

Value of information (VOI) is a well-known scheme for selecting measurements, but the intractability of the problem typically leads to using myopic VOI estimates. In the selection problem, myopic VOI frequently badly underestimates the value of information, leading to inferior sensing plans. We relax the strict myopic assumption into a scheme we term semi-myopic, providing a spectrum of methods that can improve the performance of sensing plans. In particular, we propose the efficiently computable method of “blinkered” VOI, and examine theoretical bounds for special cases. Empirical evaluation of “blinkered” VOI in the selection problem with normally distributed item values shows that is performs much better than pure myopic VOI.

1 INTRODUCTION

Decision-making under uncertainty is a domain with numerous important applications. Since these problems are intractable in general, special cases are of interest. In this paper, we examine the selection problem: given a set of items of unknown utility (but a distribution of which is known), we need to select an item with as high a utility as possible. Measurements (possibly noisy) of item values prior to selection are allowed, at a known cost. The problem is to optimize the overall decision process of measurement and selection. Even with the severe restrictions imposed by the above setting, this decision problem is intractable [8]; and yet it is important to be able to solve, at least approximately, as it has several potential applications, such as sensor network planning, and oil exploration.

Other settings where this problem is applicable are in considering which time-consuming deliberation steps to perform (meta-reasoning [9]) before selecting an action, locating a point of high temperature using a limited number of measurements (with dependencies between locations as in [5]), and the problem of finding a good set of parameters for setting up an industrial imaging system. The latter is actually the original motivation for this research, and is briefly discussed in section 4.2.

A widely adopted scheme for selecting measurements, also called sensing actions in some contexts (or deliberation steps, in the context of meta-reasoning) is based on value of information (VOI) [9]. Computing value of information is intractable in general, thus both researchers and practitioners often use various forms of myopic VOI estimates [9] coupled with greedy search. Even when not based on solid theoretical guarantees, such estimates lead to practically efficient solutions in many cases.

However, in a selection problem involving real-valued items, the main focus of this paper, coupled with the capability of the system to perform more than one measurement for each item, the myopic VOI estimate can be shown to badly underestimate the value of information. This can lead to inferior measurement sequences, due to the fact that in many cases no measurement is seen to have a VOI estimate greater than its cost, due to the myopic approximation. Our goal is to find a scheme that, while still efficiently computable, can overcome this limitation of myopic VOI. We propose the framework of semi-myopic VOI, which includes the myopic VOI as the simplest special case,
but also much more general schemes such as measurement batching, and exhaustive subset selection at the other extreme. Within this framework we propose the “blinkered” VOI estimate, a variant of measurement batching, as one that is efficiently computable and yet performs much better than myopic VOI for the selection problem.

The rest of the paper is organized as follows. We begin with a formal definition of our version of the selection problem and other preliminaries. We then examine a pathological case of myopic VOI, and present our framework of semi-myopic VOI. The “blinkered” VOI is then defined as scheme within the framework, followed by theoretical bounds for some simple special cases. Empirical results, comparing different VOI schemes to blinkered VOI, further support using this scheme in the selection problem. We conclude with a discussion of closely related work.

2 BACKGROUND

We begin by formally defining the selection problem, followed by a description of the standard myopic VOI approach for solving it.

2.1 The Optimization Problem

The selection problem is defined as follows. Given

- A set \(S = \{s_1, s_2, ..., s_n\} \) of \(n \) items;
- initial beliefs (probability distribution) about item values \(Bel(S) = p(s_1 = x_1, ..., s_n = x_n) \);
- utility function \(u : \mathbb{R} \rightarrow \mathbb{R} \);
- a cost function \(c : \mathcal{N} \rightarrow \mathbb{R} \) defining the cost of a single measurement of item \(i \);
- a budget or maximum allowed number of measurements \(m \);
- a measurement model, i.e. a probability distribution of observation outcome given the true value of each item \(p_m(y|x) \);

find a policy that maximizes expected net utility \(U^{net} \) of the selection — utility of the selected item less the cost of the measurements. Although in practice we allow different types of measurements (i.e. with different cost and measurement error model) we assume initially for simplicity that all measurements of an item are i.i.d. given the item value. Thus, if item \(s_i \) is chosen after measurement sequence \((M_1, ..., M_{m'}) \), and the true value of \(s_i \) is \(x_i \), the net result \(U^{net} \) is:

\[
U^{net} = u(x_i) - \sum_{j=1}^{m'} c(M_j)
\]

(1)

We assume that the posterior beliefs \(p^+(s_1 = x_1, s_2 = x_2, ..., s_n = x_n|y) \) and the marginal posterior beliefs \(p^+(s_i = x|y) \) about an item value can be computed efficiently. More specifically, we usually represent the distribution using a structured probability model, such as a Bayes network or Markov network. The assumption is that either the structure or distribution of the network is such that belief updating is easy, that the network is sufficiently small, or that the network is such that an approximate and efficient belief-updating algorithm (such as loopy belief updating) provides a good approximation. Observe that this assumption does not make the selection problem tractable, as even in a chain-structured network the selection problem is NP-hard [8]. In fact, even when assuming that the beliefs about items are independent (as we will do for much of the sequel), the problem is still hard.

2.2 Limited Rationality Approach

In its most general setting, the selection problem can be modeled as a (continuous state) indefinite-horizon POMDP [1], which is badly intractable. Following [9], we thus use a greedy scheme that:

- Chooses at each step a measurement with the greatest expected utility of information (VOI), performing belief updating after getting the respective observation,
- stops when no measurement with a positive VOI exists, and
- selects item \(s_\alpha \) with the greatest expected utility:

\[
E(U_\alpha) = \int_{-\infty}^{\infty} p_\alpha(x)u(x)dx
\]

(2)

VOI of a measurement \(M_j \) is defined as follows: denote by \(E(U_{\alpha+i}^+) \) the expected net utility of item \(s_i \) after measurement \(j \) and a subsequent optimal measurement plan. Let \(s_\alpha^- \) be the item that currently has the greatest expected net utility \(E(U_{\alpha^-}) \). Likewise, let \(s_{\alpha+i} \) be the item with the greatest expected utility \(E(U_{\alpha+i}^-) \) after a measurement plan beginning with observation \(j \). Then:

\[
VOI(M_j) = E\left(U_{\alpha+i}^+\right) - E\left(U_{\alpha^-}^+\right)
\]

(3)
2.3 Myopic Value of Information Estimate

Computing value of information of a measurement is intractable, and is thus usually estimated instead under the assumptions of meta-greediness and single-step. Under these assumptions, the myopic scheme considers only one measurement step, and ignores value of later measurements. A measurement step can consist of a single measurement or of a fixed number thereof with no deliberation between the measurements.

A measurement is beneficial only if it changes which item appears to have the greatest estimated expected utility. For items that are mutually independent (essentially the subtree independence assumption of [9]), a measurement only affects beliefs about the measured item. If the measured item does not seem to be the best now, but can become better than the current best item \(\alpha \) when the belief is updated, the benefit in this case is:

\[
B_i(y) = \max \left(\int_{-\infty}^{\infty} u(x)p^+_i(x|y)dx - E(U_\alpha), 0 \right)
\]

If the measured item \(\alpha \) can become worse than the next-to-best item \(\beta \), the benefit is:

\[
B_i(y) = \max \left(E(U_\beta) - \int_{-\infty}^{\infty} u(x)p^+_i(x|y)dx, 0 \right)
\]

where \(y \) is the observed outcome, and \(p^+_i(x|y) \) is the posterior belief.

For these two cases, the myopic VOI estimate \(MVI_i \) of observing the \(i \)th item at step \(j \) of the algorithm is:

\[
MVI_i = \int_{-\infty}^{\infty} p^-_i(x) \int_{-\infty}^{\infty} B_i(y)p_o(y|x)dydx - c(j)
\]

2.4 Myopic Scheme: Shortcomings

The decisions the myopic scheme makes at each step are: which measurement is the most valuable, and whether the most valuable measurement has a positive value. The simplifying assumptions are justified when they lead to decisions sufficiently close to optimal in terms of the performance measure, the net utility.

The first decision controls search “direction”. When it is wrong, a non-optimal item is measured, and thus more measurements are done before arriving at a final decision. The net utility decreases due to the higher costs. The second decision determines when the algorithm terminates, and can be erroneously made too late or too early. Made too late, it leads to the same deficiency as above: the measurement cost is too high. Made too early, it causes early and potentially incorrect item selection, due to wrong beliefs. The net utility decreases because the item’s utility is low.

In terms of value of information, the assumptions lead to correct decisions when the value of information is negative for every sequence of steps, or if there exists a measurement that according to the meta-greedy approach has the greatest (positive) VOI estimate, and is the head of an optional measurement plan. These criteria are related to the notion of non-increasing returns; the assumptions are based on an implicit hypothesis that the intrinsic value grows more slowly than the cost. When the hypothesis is correct, the assumptions should work well; otherwise, the myopic scheme either gets stuck or goes the wrong way.

It is commonly believed that many processes exhibit diminishing returns; the law of diminishing returns is considered a universal law in economics [4]. However, this only holds asymptotically: while it is often true that starting with some point in time the returns never grow, until that point they can alternate between increases and decreases. Sigmoid-shaped returns were discovered in marketing [3]. As experimental results show [13], they are not uncommon in sensing and planning. In such cases, an approach that can deal with increasing returns must be used.

2.5 Pathological Example

Let us examine a simple example where the myopic estimate behaves poorly:

- \(S \) is a set of two items, \(s_1 \) and \(s_2 \), where the value of \(s_1 \) is known exactly, \(x_1 = 1 \);
- the prior belief about the value of \(s_2 \) is a normal distribution \(p_2(x) = N(x; 0, 1) \);
- the observation variance is \(\sigma_o = 5 \);
- the observation cost is constant, and chosen so that the net value estimate of a two-observation step is zero: \(c(j) = \frac{MVI_j^2}{2} \approx 0.00144 \);
- the utility is a step function:

\[
u(x) = \begin{cases} 0 & \text{if } x < 1 \\ 0.5 & \text{if } x = 1 \\ 1 & \text{if } x > 1 \end{cases}
\]
The plot in Figure 1 is computed according to belief update formulas for normally distributed beliefs and presents dependency of the intrinsic value estimate on the number of observations in a single step. The straight line corresponds to the measurement costs.

![Intrinsic value and measurement cost](image)

Figure 1: Intrinsic value and measurement cost

Under these conditions, the algorithm with one measurement per step will terminate without gathering evidence because the value estimate of the first step is negative, and will return item s_1 as best. However, observing s_2 several times in a row has a positive value, and the updated expected utility of s_2 can eventually become greater than $u(s_1)$. Figure 1 also shows the intrinsic value growth rate as a function of the number of measurements: it increases up to a maximum at 3 measurements, and then goes down. Apparently, the myopic scheme does not “see” as far as the initial increase.

3 SEMI-MYOPIC VOI ESTIMATES

The above pathological example was inspired by a phenomenon we encountered in a real-world problem, optimizing parameter in setups of imaging machines. On data with varying prior beliefs, the myopic scheme almost never measured an item with high prior variance even when it was likely to become the best item after a sufficient number of measurements.

Keeping the complexity manageable (the number of possible sensing plans over continuous variables is uncountably infinite, in addition to being multi-dimensional) while overcoming the premature termination is the basis for the semi-myopic value of information estimate. Consider the set of all possible measurement actions \mathcal{M}. Let C be a constraint over sets of measurements from \mathcal{M}. In the semi-myopic framework, we consider all possible subsets B of measurements from \mathcal{M} that obey the constraint C, and for each such subset B compute a “batch” VOI that assumes that all measurements in B are made, followed by a decision (selection of an item in our case). Then, the batch B^* with best estimated VOI is chosen. Once the best batch B^* is chosen, there are still several options:

1. Actually do all the measurements in B^*.
2. Attempt to optimize B^* into some form of conditional plan of measurements and the resulting observations.
3. Perform the best measurement in B^*.

In all cases, after measurements are made, the selection is repeated, until no batch has a positive net VOI, at which point the algorithm terminates and selects an item. Although we have experimented with option 1 for comparative purposes, we did not further pursue it as empirical performance was poor, and opted for option 3 in this paper. Observe that the constraint C is crucial. For an empty constraint (called the exhaustive scheme), all possible measurement sets are considered. Note that this has an exponential computational cost, while still not guaranteeing optimality. At the other extreme, the constraint is that only singleton sets be allowed, resulting in the greedy single-step assumption, which we call the pure myopic scheme.

The myopic estimate can be extended to the case when a single step consists of $k \geq 1$ measurements of a single item s_i. We denote the estimate of such a k-measurements step by MVI^k. Our main contribution is thus the case where the constraint is that all measurements be for the same item, which we call the blinkered scheme. Yet another scheme we examine is where the constraint allows at most one measurement for each item (thus allowing from zero to n measurements in a batch), called the omni-myopic scheme.

3.1 Blinkered Value of Information

As stated above, the blinkered scheme considers sets of measurements that are all for the same item; this constitutes unlimited lookahead, but along a single “direction”, as if we “had our blinkers on”. That is, the VOI is estimated for any number of independent observations of a single item. Although this scheme has a significant computational overhead over pure-myopic, the factor is only linear in the maximum budget.\footnote{Option 2 is intractable in general, and while limited efficient optimization may be possible, this issue is beyond the scope of this paper.}

We define the “blinkered” value of information as:

\footnote{This complexity assumes either normal distributions, or some other distribution that has compact statistics. For general distributions, sets of observations may provide information beyond the mean and variance, and the resources required to compute VOI may even be exponential in the number of measurements.}
\[BV \bar{I} = \max_k M^{VI}_k \]

(7)

Driven by this estimate, the blinkered scheme selects a single measurement of the item where some number of measurements gain the greatest VOI. A single step is expected not to achieve the value, but to be just the first one in the right direction. Thus, the estimate relaxes the single-step assumption, while still underestimating the value of information.

For finite budget \(m \) the time to compute the estimate \(T_{BV1} \) is: \(T_{BV1} = O(T^{MVI}_m m) \). If \(M^{VI} \) is a unimodal function of \(k \), which can be shown for some forms of distributions and utility functions, the time is only logarithmic in \(m \) using bisection search.

3.2 Theoretical Bounds

We establish bounds on the blinkered scheme for two special cases, beginning with the termination condition for the case of only 2 items.

Theorem 1. Let \(S = \{s_1, s_2\} \), where the value of \(s_1 \) is known exactly. Let \(m_b \) be the remaining budget of measurements when the blinkered scheme terminates, and \(C \) be the (positive) cost of each measurement. Then the (expected) value of information that can be achieved by an optimal policy from this point onwards is at most \(m_b C \).

Proof. The intrinsic value of information of the remaining budget when the blinkered scheme terminates is \(V^{int}_b \leq m_b C \), since otherwise it would not have terminated. Since there is only one type of measurement, the intrinsic value of information \(V^{int}_b \) achieved by an optimal policy must be at most equal to making all the measurements, thus \(V^{int}_b \leq m_b C \). Since measurement costs are positive, the net value of information \(V^{net}_b \) achieved by the optimal policy must therefore also be at most \(m_b C \). \(\square \)

This bound is asymptotically tight. This can be shown by having a measurement model with dependencies such that the first measurements do not change the expected utilities of the item, but provide information on whether it is worthwhile to perform additional measurements.

The second bound is related to a common case of a finite budget and free measurements. It provides certain performance guarantees for the case when dependencies between items are sufficiently weak.

Definition. Measurements of two items \(s_1, s_2 \) are mutually submodular if, given sets of measurements of each item \(M_1 \) and \(M_2 \), the intrinsic value of information of the union of the set is not greater than the sum of the intrinsic values of each of the sets, i.e.:

\[V^{int}(M_1 \cup M_2) \leq V^{int}(M_1) + V^{int}(M_2) \]

Theorem 2. For a set of \(n \) items, measurement cost \(C = 0 \), and a finite budget of \(m \) measurements, if measurements of every two items are mutually submodular, the value of information collected by the blinkered scheme is no more than a factor of \(n \) worse than the value of information collected by an optimal measurement plan.

Proof. Since the measurement cost is 0, \(V^{net} = V^{int} \), we omit the superscript in the proof. Expected value of information cannot decrease by making additional measurements, therefore the value of any set of measurements containing the set of measurements in an optimal plan is at least as high as the value \(V_o \) of an optimal plan. Consider an exhaustive plan containing \(m \) measurements of each of the \(n \) items, \(mn \) measurements total with value \(V_e \). The exhaustive plan contains all measurements that can be made by optimal plan within the budget, thus \(V_o \leq V_e \).

Let \(s_i \) be the item with the highest blinkered value for \(m \) measurements, denote its value by \(V_{bimax} = \max_{i} V_{b,i} \). Since measurements of different items are mutually submodular, \(V_e \leq nV_{bimax} \), and thus \(V_{bimax} \geq \frac{V_e}{n} \).

The blinkered scheme selects at every step a measurement from a plan with value of information which is at least as high as the value of measurements of \(s_i \) for the rest of the budget. Thus, its value of information \(V_b \geq V_{bimax} \geq \frac{V_e}{n} \).

The bound is asymptotically tight. Construct a problem instance as follows: \(n \) items, with expected values of information \(v_j(i) \), for \(i \) measurements, respectively, defined below. Value of information of a combination of the measurements is the sum of the values for each item, \(v(i) = \sum_{j=1}^{n} v_j(ij) \), with the following value of information functions:

\[
v_1(i) = \sqrt[\frac{1}{m}]{i}
\]

\[
v_{j>1}(i) = \begin{cases} 0 & \text{if } i < \frac{m}{n} \\ \sqrt[\frac{1}{n}]{i} & \text{otherwise} \end{cases}
\]

Here, the optimal policy is to measure each item \(\frac{m}{n} \) times. The resulting value of information for \(m \) measurements is:

\[
V_o = v_1 \left(\frac{m}{n} \right) + (n-1)v_{j>1} \left(\frac{m}{n} \right) = n \sqrt[\frac{1}{n}]{\frac{1}{m}}
\]
\[
\lim_{k \to \infty} n^k \sqrt{\frac{1}{n}} = n
\]

But the blinkered algorithm will always choose the first item with \(V_b = v_1(m) = 1 \).

4 EMPIRICAL EVALUATION

It is rather difficult to perform informative experiments on a real setting of the selection problem. Therefore, other than one case coming from a parameter selection application, empirical results in this paper are for artificially generated data.

4.1 Simulated Runs

The first set of experiments is for independent normally distributed items. For a given number of items, we randomly generate their exact values and initial prior beliefs. Then, for a range of measurement costs, budgets, and observation precisions, we run the search, randomly generating observation outcomes according to the exact values of the items and the measurement model. The performance measure is the regret - the difference between the utility of the best item and the utility of the selected item, taking into account the measurement costs. We examine the result of using the blinkered scheme vs. other semi-myopic schemes.

The first comparison is the difference in regret between the myopic and blinkered schemes, done for 2 items, one of which has a known value (Table 1). A positive values in the cells indicates an improvement due to the blinkered estimate. Note that the absolute value is bounded by 0.5, the difference in the utility of the exactly known item and the extremal utility.

\(\sigma_o \) \(\backslash \) C	0.0005	0.0010	0.0015	0.0020
3	0.0147	0.0156	0.0199	0.2648
4	0.0619	0.2324	0.2978	0.2137
5	0.2526	0.2322	0.1729	0.1776
6	0.1975	0.1762	0.1466	0.0000

Table 1: 2 items, 5 measurement budget

Averaged over 100 runs of the experiment, the difference is significantly positive for most combinations of the parameters. In the first experiment (Table 1), the average regret of the myopic scheme compared to the blinkered scheme is 0.15 with standard deviation 0.1. In the second experiment (Table 2), the regret is 0.27 with standard deviation 0.19.

4.1.1 Other Semi-Myopic Estimates

In this set of experiments, we compare three semi-myopic schemes: blinkered, omni-myopic, and exhaustive. All schemes were run on a set of 5 items with a 10 measurement budget. The results show that while blinkered is significantly better than pure myopic (Table 3), exhaustive is only marginally better than blinkered (Table 4), even though it requires evaluating an exponential number of sets of measurements. Another semi-myopic scheme, omni-myopic, is only marginally better than myopic (Table 5).

\(\sigma_o \) \(\backslash \) C	0.0005	0.0010	0.0015	0.0020
3	-0.1477	0.0946	0.1889	0.2807
4	0.0006	0.0382	0.4045	0.4180
5	0.2300	0.3954	0.2925	0.3222
6	0.0494	0.2374	0.1452	0.2402

Table 3: myopic vs. blinkered

\(\sigma_o \) \(\backslash \) C	0.0005	0.0010	0.0015	0.0020
3	0.0218	0.0307	0.1146	-0.1044
4	-0.0502	0.0703	0.0598	0.0022
5	0.0940	-0.1508	-0.0865	0.1432
6	0.0146	0.1485	-0.0505	0.2068

Table 4: blinkered vs. exhaustive

\(\sigma_o \) \(\backslash \) C	0.0005	0.0010	0.0015	0.0020
3	-0.0781	-0.0167	0.0391	0.0125
4	0.0000	0.0974	0.1848	-0.0982
5	0.0609	-0.0002	0.0000	0.0000
6	0.1272	0.0000	0.0000	0.0000

Table 5: myopic vs. omni-myopic

4.1.2 Dependencies between Items

When the values of the items are linearly dependent, e.g. when: \(x_i = x_{i-1} + w \) with \(w \) being a random variable distributed as \(N(0, \sigma^2_w) \), the VOI of series of observations of several items can be greater than the sum of VOI of each observation. We examine the influence of dependencies on the relative quality of the blinkered and omni-myopic schemes.

When there are no dependencies, i.e. \(\frac{\sigma^2_w}{\sigma^2_o} = 0 \), the blinkered scheme is significantly better. But as \(\sigma_w \)
decreases, the omni-myopic estimate performs better. Figure 2 shows the difference between achieved utility of the blinkered and the myopic schemes with dependencies. The experiment was run on a set of 5 items, with the prior estimate $N(0, 1)$, measurement precision $\sigma_o^2 = 4$, measurement cost $C = 0.002$ and a budget of 10 measurements. The results are averaged over 100 runs of the experiment.

$$\sigma_o^2 \approx 0.1$$ and $\sigma_w^2 \approx 0.2$.

Figure 3 shows a summary of measurements made the blinkered scheme vs. pure myopic, where initial beliefs (for most items - variance was approximately 0.8) due to some previous measurements resulted in prior knowledge (smaller variance in beliefs: approximately 0.05) for focal length indices marked with black boxes. The pure myopic scheme measured only items with small variances, and eventually picked an inferior focus length index. The blinkered scheme performed different measurements, ending up in selecting the optimal index.

These results are for one typical data set. Unfortunately for this problem, in experiments on real data, the result set is of necessity rather sparse, as it is difficult to map the space of possibilities as was done for simulated data. Such an exploration would require us to predict, e.g. what would have happened had the item value been different? What would have been the result had we performed a measurement for (some unmeasured) item? Although the latter question was handled in our system by physically performing numerous measurements for all items, the former question is much more difficult to handle.

5 RELATED WORK

Limited rationality, a model of deliberation based on value of utility revision and deliberation time cost was introduced in [9]. Notions of value of computation and its estimate were defined, as well as the class of meta-greedy algorithms and simplifying assumptions under which the algorithms are applicable. The theory of bounded optimality, on which the approach is based, is further developed in [10]. [12] employs limited rationality techniques to analyze any-time algorithms and proves optimality of myopic algorithm monitoring under assumptions about the class of value and time cost functions.

[6] consider a greedy algorithm for observation selection based on value of observation. They show that when values of measurements for different items are mutually submodular and the measurement cost is fixed, the greedy algorithm is nearly optimal. The
assumptions are inapplicable in our domain, necessitating an extension of the pure greedy approach in our case.

In [2], a case of discrete Bayesian networks with a single decision node is analyzed. The authors propose to consider subsequences of observations in the descending order of their myopic value estimates. If any such subsequence has non-negative value estimate, then the computation with the greatest myopic estimate is chosen. However, this approach always chooses a measurement for the myopically best item, and when applied to the selection problem either looks at sequences of measurements on a single item with the greatest myopic value estimate, or, if sequences with one measurement per item are considered, does not provide an improvement over the myopic estimate, for our pathological example. Still, in may cases their scheme shows an improvement in performance. [7] describes and experimentally analyzes an algorithm for influence diagrams based on a non-myopic VOI estimate.

Multi-armed bandits [11] bear similarity to the measurement selection problem, in particular, when the reward distribution is continuous and unknown. Some of the algorithms, e.g. POKER (Price of Knowledge and Estimated Reward) employ the notion of value of information. However, most solutions concentrate on exploitation of particular features of the value function, such as linear dependence of reward from pushing a lever on the time left, and do not facilitate generalization. On the other hand, achievements in limited rationality techniques should be helpful in development of improved solutions in this domain.

6 CONCLUSION

We have introduced a new “semi-myopic” value of information framework. An instance of semi-myopic scheme, called the blinkered scheme, was introduced, and demonstrated to have positive impact on solving the selection problem. Theoretical analysis of special cases provides some insights. Empirical evaluation of the blinkered scheme on simulated data shows that it is promising both for independent and for weakly dependent items. A limited evaluation of an actual application also indicates that the blinkered scheme is useful.

Still, properties of the estimate have been investigated only partially for the dependent case, which is of more practical importance. In particular, when, due to sufficiently strong dependencies, observations in different locations are not mutually submodular, the blinkered estimate alone may not prevent premature termination of the measurement plan, and its combination with the approach proposed in [2] may be worthwhile.

During the algorithm analysis, several assumptions have been made about the shape of utility functions and belief distributions. Certain special cases, such as normally distributed beliefs and convex utility functions, are frequently met in applications and may lead to stronger bounds and discovery of additional features of semi-myopic schemes.

An important application area of the selection problem, parameter optimization, has items arranged as points on a multi-dimensional grid, with grid-structured Markov dependencies. This special case has been partially investigated and requires future work. Extending this case to points on a continuous grid should also have numerous practical applications.

Acknowledgements

Partially supported by the IMG4 consortium under the MAGNET program, funded by the Israel Ministry of Trade and Industry, and by the Lynne and William Frankel center for computer sciences.

References

[1] Eric A. Hansen. Indefinite-horizon pomdps with action-based termination. In AAAI, pages 1237–1242, 2007.
[2] D. Heckerman, E. Horvitz, and B. Middleton. An approximate nonmyopic computation for value of information. IEEE Trans. Pattern Anal. Mach. Intell., 15(3):292–298, 1993.
[3] J. K. Johansson. Advertising and the s-curve: A new approach. Journal of Marketing Research, 16(3):346–354, August 1979.
[4] K. E. Johns and R. C. Fair. Principles of Economics. Prentice-Hall, 5th edition, 1999.
[5] Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical models. In Proceedings of the 21th Annual Conference on Uncertainty in Artificial Intelligence (UAI-05), pages 324–33, Arlington, Virginia, 2005. AUAI Press.
[6] Andreas Krause and Carlos Guestrin. Near-optimal observation selection using submodular functions. In AAAI, pages 1650–1654, 2007.
[7] Wenhui Liao and Qiang Ji. Efficient non-myopic value-of-information computation for influence diagrams. Int. J. Approx. Reasoning, 49(2):436–450, 2008.
[8] Yan Radovilsky and Solomon Eyal Shimony. Observation subset selection as local compilation of
performance profiles. In *UAI*, pages 460–467, 2008.

[9] Stuart Russell and Eric Wefald. *Do the right thing: studies in limited rationality*. MIT Press, Cambridge, MA, USA, 1991.

[10] Stuart J. Russell and Devika Subramanian. Provably bounded-optimal agents. *Journal of Artificial Intelligence Research*, 2:575–609, 1995.

[11] Joannis Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and empirical evaluation. In *ECML*, pages 437–448, 2005.

[12] Shlomo Zilberstein. *Operational Rationality through Compilation of Anytime Algorithms*. PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 1993.

[13] Shlomo Zilberstein. Resource-bounded sensing and planning in autonomous systems. *Autonomous Robots*, pages 31–48, 1996.