Effect of Halide Ions on Electrodeposition Behavior and Morphology of Electrolytic Copper Powder

Kentaro Ochi1,2, Makoto Sekiguchi2, Satoshi Oue3 and Hiroaki Nakano3

1 Department of Materials Process Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395
2 Mitsui Mining & Smelting Co., Ltd., Hiroshima 725-0025
3 Department of Materials Science & Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395

To investigate the effect of halide ions on the electrodeposition behavior and morphology of copper powder, the polarization curves were measured and constant current electrolysis of 300 A·m−2 and 500 A·m−2 was conducted in an electrolytic solution of 0.079 mol·dm−3 of Cu2+ and 0.5 mol·dm−3 of free H2SO4 at 293 K and 303 K without stirring. In the deposition of copper powder, Cl− had a promoting effect on the deposition of copper powder, while Br− and I− had a suppressing effect. The current efficiency for Cu deposition increased with the addition of Cl− and decreased with Br−. The addition of Cl− reduced the average particle size of the copper powder and grown dendrite-shaped branches and trunks, resulting in a lower tap density. On the other hand, when Br− was added, the average particle size and crystallite size of the copper powder became smaller, and the tap density also became smaller. With increasing Cl− concentration in solution, the current efficiency for Cu deposition increased, that is, copper deposition was promoted even in the diffusion rate-determining region of Cu2+ ions, showing that the deposition of copper powder was affected by the charge transfer process for Cu deposition. The change in morphology of Cu powder with halide ions is attributed to change of the charge transfer process. The deposition of Cu powder seems to proceed under a mixed rate-determining process of the diffusion of Cu2+ ions and charge transfer. [doi:10.2320/jinstmet.J2021008]

Keywords: electrolytic copper powder, halide ions, electrodeposition, polarization curve, current efficiency, morphology, charge transfer, diffusion, rate-determining

I. 緒 言

銅粉は、その優れた電気伝導性と熱伝導性により、粉末冶金およびエレクトロニクス用途で広く使用されている。銅粉の商業的な製造法は、化学還元法、熱処理、液中浸没法、電解法の4つに分けられる24。他の合成プロセスと比較した電解法の長所は、製造コストが低い、低エネルギー消費、および高密度であることである。

電解法で製造される電解銅粉は一般的に“デンドライト”と呼ばれる木の枝のような形状をしている。この形状のため、電解銅粉は“枝”の節所における析出が互いに干渉し、結晶にくらべ密度が小さい。エレクトロニクス用途ではこの密度の小さい点が重要視される。例えば、樹脂と銅粉を混合し、導電性ペーストを製造する際、電解銅粉は球形の銅粉と比べて密度が小さいため、少ない添加剤で樹脂に導電性を付与でき、かつ樹脂の柔軟性や屈曲性などの特性を強く残すことができる。現在、電子機器の小型化に伴い、銅粉が使用される電子材料の小型化、薄型化が進行している。そのため、エレクトロニクス用途の電解銅粉にも“微粒化”が求められている。電解銅粉の形状を制御する方法については、これまで多くの研究が報告されてきた4～8。

著者らは電解銅粉の粒径と結晶サイズに相関があることに着目し、粒径とは電解銅粉の平均的な粒子の大きさのことであり、結晶サイズとは電解銅粉を構成する複数の結晶粒子の中で最も大きな结晶片とみなせる単純化された結晶片の大きさを示す。結晶サイズの測定には電気的メソッドがとくに重要である。結晶の選択反応が起こり、過電圧が大きくなると、核発生の速度が核成長速度に対して相対的に速くなり、結晶サイズは小さくなる。銅の電解精製においては、電解液中にハロゲン化物イオンが存在すると、銅の選択反応が抑制される。電解精製の結晶粒径は小さくなることが報告されている9。電解銅粉においても電解液中にハロゲン化物イオンが存在すると、結晶サイズは小さくなり、銅粉が微粒化する可能性がある。しかし、イオンを電解液に選択的に析出する電解精製と、銅を微粉に選択的に析出する電解精製では、析出のメカニズムが大きく異なる。一般的に、銅の電解精製は電解表面での電子授受過程が律連となる電荷移動律連条件下で電解が行われるが、電解銅

J-STAGE Advance Publication date: March 26, 2021
2. 実験方法

電気化学測定では電解セルとして四つロフラスコ(0.3 dm³)を使用した。電解液は、三井金属鉱業製硫酸銅、および市販の特製試薬を用い、Cu²⁺ 0.079 mol·dm⁻³、遊離 H₂SO₄ 0.5 mol·dm⁻³ となるようにこれらの所定量を純水に溶解して作製した。ハログン化物イオンとして、Cl⁻、Br⁻、I⁻をそれぞれ塩水素水、臭水素水、ヨウ化水素の形で 10-1000 mg·dm⁻³ となるように添加した。動電位分極曲線の測定、および定電流電解は三電極法で行い、作用極に片面を黒塗料でマスキングした鋼板(0.2 cm²)、対極に白金線、参照極として Ag/AgCl(飽和 KC1, 0.199 V vs. NH2、298 K)を用いた。浴温は293 K、無撓撲の条件下で電解を行った。動電位分極曲線の測定は、浸漬電位から-1.0 Vの電位範囲において、電位の走査速度 60 mV·min⁻¹ にて行った。定電流電解では動電位分極曲線の測定結果を参考に、銅の電析反応がCu⁺²の拡散律速となる 300 A·m⁻² で 5 min の通電を行った。

鋼板電解試験では、容量 80 dm³ の電解槽、および 100 dm³ のバッファラントンを使用した。電解液は、三井金属鉱業製硫酸銅、工業用硫酸を用い、Cu²⁺ 0.079 mol·dm⁻³、遊離 H₂SO₄ 0.5 mol·dm⁻³ なるようにこれらの所定量を純水に溶解して作製した。ハログン化物イオンとして、Cl⁻、Br⁻、I⁻をそれぞれ塩水素水、臭水素水、ヨウ化水素の形で 10-200 mg·dm⁻³ とならないように添加した。I⁻は電解中に強い特異性のある有毒ガスを発生するため、鋼粉電解試験への使用を見送った。浴温は 303 K とした。電解槽、バッファラントン間の液の循環量は 3 dm³·min⁻¹ とした。陽極にチタン基材に酸化イリウムを被覆した酸素発生電極、陰極にチタン板(5×7 cm²) を用いた。

電流密度 500 A·m⁻²、通電時間を 120 min とした。電析した鋼粉は洗浄、乾燥後、次の粉体特性を測定した。平均粒径はレーザー回折散乱法粒度分布測定装置を用いて体積基準比率法にて測定した。结晶相のサイズは X 線回折図形の 200ピークの半価幅から、シェラーの式を用いて算出した。タップ密度については、タップティング装置を使用し、JIS Z 2512:2006にて測定した。粒子形状については走査型電子顕微鏡(SEM)にて観察した。

3. 実験結果

3.1 鋼粉の電析挙動

Fig. 1に Cl⁻を添加した電解液からの Cu 電析のカソード分極曲線を示す。Cl⁻の添加にかかわらず、0 V 近傍から銅析出が開始し、-0.15 V 付近で電流密度が一定となり、更に電位が-0.6 V より卑になると、電流密度の再び立ち上がりがみられた。0.6 V における銅電析の電荷移動律速領域では、Cl⁻の添加量が増えるに従って、電流密度の増大がみられた。-0.2 〜 -0.6 V の領域では、電流密度が一定となり、Cu²⁺の拡散律速電流密度を示したが、その値に及ぼすCl⁻添加の影響はみられなかった。-0.6 V より卑な領域における電流密度の増大は、水素発生によるものである。水素発生領域において、Cl⁻の添加量が 1000 mg·dm⁻³ において電流密度の立ち上がりが著しく、また電流密度が大きくなっているのは、鋼粉の電析により有効反応面積が増えている可能性を考えられる。

Fig. 2に Br⁻を添加した電解液からの Cu 電析のカソード分極曲線を示す。Br⁻を添加すると、0 〜 -0.2 V における銅電析の電荷移動律速領域では、電流密度が減少した。その電流密度の減少は Br⁻の添加量が 100 mg·dm⁻³ で最も大きくなった。

Cu²⁺の拡散律速電流値および -0.8 V より卑な領域における電流密度に及ぼす Br⁻添加の影響は特にみられなかった。

Fig. 3に I⁻を添加した電解液からの Cu 電析のカソード分極曲線を示す。I⁻を添加すると、0 〜 -0.2 V における銅電析の電荷移動律速領域では、電流密度が減少した。その電流密度の減少は Br⁻の添加量が 100 mg·dm⁻³ で最も大きくなった。

Cu²⁺の拡散律速電流値および -0.8 V より卑な領域における電流密度に及ぼす Br⁻添加の影響は特にみられなかった。
極曲線を示す。I⁻を添加すると、0〜-0.3 Vの電荷移動律速領域および-0.7 Vより貴な水素発生領域の両方で電流値が減少した。どちらも、I⁻の添加量が10 mg·dm⁻³で電流値の減少が大きくなった。I⁻の添加量1000 mg·dm⁻³で電解液に添加した。溶解度の非常に小さいCuIが生成した可能性がある。

動電位分極曲線の結果より、ハロゲン化物イオンは鋼の電析反応において、電荷移動過程には影響を及ぼすが、Cu²⁺の拡散限界電流密度が変化していないことからCu²⁺イオンの拡散過程には影響を及ぼさない可能性が高いことが判明した。

Fig. 4にCl⁻を添加した電解液において300 A·m⁻²で定電流電解を行った際の陰極電位の経時変化を示す。Fig. 1に示す分極曲線より、300 A·m⁻²の電解ではCu²⁺イオンの拡散律速となっていることがわかる。Fig. 4に示すように電解開始後一時鋼電解律速となるため、貴な電位となるが、その後大きさ分極し、電解時間の経過に伴い徐々に復極した。電解時間の経過に従って、経かに電位が貴側にシフトするのは鋼粉の電析に伴い有効反応面積が増えるためである。電位は、Cl⁻濃度が高くなるほど貴側にシフトしており、鋼電析に対するCl⁻の復極作用が認められた。

Fig. 5にBr⁻を添加した電解液において300 A·m⁻²の定電流電解を行った際の陰極電位の経時変化を示す。陰極電位は、Cl⁻を添加した場合と同様に、電解時間の経過に伴い徐々に復極した。電位は、Br⁻濃度が高くなるほど貴側にシフトしており、鋼電析に対するBr⁻の分極作用がみられた。

3.2 電解鈍粉の特性

Table 1にCl⁻を添加した電解液から電析した鋼粉の電流効率および粉体特性を示す。鋼電析の電流効率は、Cl⁻の添加量が増えるに従い、高くなった。鋼粉の平均粒子径および
タップ密度は、Cl⁻の添加量が増えるに従い、小さくなった。タップ密度が小さくなるということは、デンドライトの枝が発達した可能性が考えられる。Cl⁻を添加しても結晶粒子のサイズに変化はみられなかった。Fig. 1, Fig. 4に示す電気化学測定試験においても、Cl⁻添加による鋼電析の分極効果は確認できなかったため、結晶粒子に及ぼすCl⁻添加の影響は特にないものと考えられる。

Fig. 7にCl⁻を添加した電解液から電析した鋼粉の表面SEM像を示す。SEM像より、Cl⁻の添加量が増えると、鋼粉の粒径が小さくなり、またデンドライトの枝が細かく成長することが確認された。これまでも、銅粉が微細化するためには、結晶の微細化が必要だと考えられてきたが、Cl⁻を添加すると、結晶粒子のサイズに大きな変化がなくても微粒化することが判明した。

Table 1 Properties of copper powders electrodeposited in the electrolyte containing various amounts of Cl⁻ ions.

Cl⁻ ions (mg·dm⁻³)	CE¹ (%)	D50² (μm)	Tap density (g·cm⁻³)	Crystalite size (nm)	Cl in powder³ (mg·dm⁻³)
0	76.0	11.5	1.3	75	< 10
10	78.1	8.6	0.9	84	-
100	85.5	3.4	0.6	72	180
200	91.3	3.0	0.6	-	260

*a¹ Current efficiency, a² Average particle size, a³ Chlorine concentration in copper powder

Table 2にBr⁻を添加した電解液から電析した銅粉の電流効率、および粉体特性を示す。Br⁻の添加量が増えるに従い、銅電析の電流効率が小さくなった。銅粉の平均粒径は、Br⁻の添加量が増えるに従い、小さくなった。銅粉のタップ密度はBr⁻の添加により小さくなった。Br⁻の添加により、銅粉の結晶粒子サイズが小さくなった。Fig. 2, Fig. 5に示す電気化学測定試験において、Br⁻は銅電析に対する分極効果が確認された。分極効果の影響により銅粉の結晶粒子サイズが微細化したと考えられる。銅粉中に取り込まれたCl⁻, Br⁻濃度を測定した結果、Br⁻はCl⁻の10倍近い濃度で粉体に取り込まれていることが判明した。

Fig. 8にBr⁻を添加した電解液から電析した鋼粉の表面SEM像を示す。SEM像より、Br⁻の添加量が増えると、銅粉の粒径が小さくなることがわかった。

Fig. 7 SEM images of copper powders deposited in the electrolyte containing various amounts of Cl⁻ ions.
(a) Cl⁻ 0 mg·dm⁻³, (b) Cl⁻ 10 mg·dm⁻³, (c) Cl⁻ 100 mg·dm⁻³, (d) Cl⁻ 200 mg·dm⁻³
Table 2 Properties of copper powders electrodeposited in the electrolyte containing various amounts of Br⁻ ions.

Br⁻ ions (mg·dm⁻³)	CE (%)	D₅₀ (μm)	Tap density (g·cm⁻³)	Crystallite size (nm)	Br in powder (mg·dm⁻³)
0	76.0	11.5	1.3	75	< 10
10	73.4	5.0	0.7	56	1500
100	75.5	2.7	0.7	52	2300
200	59.6	2.0	0.7	-	-

*¹ Current efficiency, *² Average particle size, *³ Bromin concentration in copper powder

Fig. 8 SEM images of copper powders deposited in the electrolyte containing various amounts of Br⁻ ions. (a) Br⁻ 0 mg·dm⁻³, (b) Br⁻ 10 mg·dm⁻³, (c) Br⁻ 100 mg·dm⁻³, (d) Br⁻ 200 mg·dm⁻³

4. 考 察

Cl⁻とBr⁻の添加では、銅粉の電析挙動に及ぼす影響が異なり、その結果、銅粉の電流効率、および銅粉の結晶粒子サイズもCl⁻とBr⁻の添加では異なる傾向を示した。銅粉の電流効率はCl⁻の添加では添加量に従って増加したが、Br⁻の添加では減少した。また、銅粉の結晶粒子サイズは、Cl⁻の添加では変化が確認できなかったが、Br⁻の添加では微細化した。

Cu-Cl·H₂O系溶液の電位-電流図より、溶液中にCl⁻が一定濃度以上共存すると、Cu⁺はCu⁺の中間体であるCuCl(s)またはCuCl₂⁻を経由してCuとまで還元されることになる。実際、Cu⁺ 0.7 mol·dm⁻³の溶液からのCu電析において、浴中にCl⁻が350 mg·dm⁻³存在すると、反応中間体としてCuCl₂⁻が存在することが、回転リング・ディスク電極を用いた実験により報告されている⁶。本研究ではCuCl₂⁻濃度は0.079 mol·dm⁻³と低いため、Cl⁻/Cu⁺比が高くなり、反応中間体としてCuCl₂⁻がより形成されやすいと予想される。そこで、Cl⁻を添加した溶液からの銅粉の電析は、下式の(1)、(2)式により進行すると推察される。

\[
\text{Cu}^{2+} + 2\text{Cl}^- + \text{e}^- \rightarrow \text{CuCl}_2^- \quad (1) \\
\text{CuCl}_2^- + \text{e}^- \rightarrow \text{Cu} + 2\text{Cl}^- \quad (2)
\]

Cl⁻を添加すると銅電析の電流効率が改善されたが(Table 1)、これは銅電析に対するCl⁻の被覆作用が生じている(Fig. 1, Fig. 4)ためと考えられる。銅粉金属の電析において、Cl⁻の存在下では、電析中間体MCl⁺およびMCl₂⁺(M: Fe, Ni, Co)を
経由することにより M の電気反応が促進されることが知られている [11]。鋼の電気において、同様の効果が生じて反応が促進されたと考えられる。一般に電気の過電圧（平衡電位と電気電位の差）が小くなると、電析物の析出速度がその成長速度より相対的に速くなるため電析物の晶化粒径は大きくならない。しかし、本研究において、CT の共存により銅の電析過程が減少しているにもかかわらず、鋼の粒径が低下しており、電気の過電圧理論では説明できない傾向を示した。CT 添加による鋼領の微粒化メカニズムは、上記式（2）の電析反応が反応性の高いアノードビスマスの先端に優先的に起こることを考えられる。CuCl がアノードビスマスの先端に優先的に吸着することで、アノードビスマスが細く長く成長し（Fig. 7）、その結果、鋼の粒径が微粒化したと考えられる。

一方、溶液中に Br が共存すると、Cu²⁺は Cu⁺ の吸着中間体である CuBr⁻を経て Cu⁺まで還元されると思われる。CuCl（s）、CuBr（s）の溶解度積はそれぞれ 1.9 × 10⁻⁷、5.3 × 10⁻³であり、CuBr の方がより安定である。実際、Cu⁺ 0.7 mol.dm⁻³の溶液中の Cu 電析において、浴中に Br⁻が 8-800 mg.dm⁻³存在すると、反応中間体として CuBr⁻が存在するが、反応速度を抑制する実験により報告されている [9]。そこで、Br⁻を添加した溶液からの鋼領の電析は、下記の式（3）、式（4）により進行すると推察される。

\[\text{Cu}^{2+} + \text{Br}^- + e^- \rightarrow \text{CuBr} \quad (3) \]
\[\text{CuBr} + e^- \rightarrow \text{Cu} + \text{Br}^- \quad (4) \]

Br⁻を添加すると銅電析の電流効率が低下したが（Table 2）、これは銅電析に対する Br⁻の分極作用が生じている（Fig. 2, Fig. 5）ためと考えられる。CuBr⁻はその溶解度積が小さく、より安定であることから、上記式（4）に示す CuBr⁻から金属 Cuへの還元反応が遅いことが予想される。これのために、Br⁻を添加すると電析反応が遅くなると考えられる。Br⁻添加によって、CT 添加よりも鋼領の粒径が微粒化した（Table 2, Fig. 8）ため、電析の過電圧が増加したことと考えられる。Br⁻が CT⁻の 10 倍近い濃度で粉体に取り込まれた（Table 1, Table 2）の式（4）に示す CuBr⁻から金属 Cuへの還元反応が遅いとみられる。未還元の CuBr⁻が取り込まれる、もしくは陰極面に特異吸着した Br⁻がそのまま鋼領が取り込まれていることが考えられる。特異吸着能は Br⁻の方が CT⁻より大きいことが報告されている [12]。

また、溶液中に I⁻を添加すると、Br⁻添加の場合より鋼電析に対する分極作用が更に大きくなった（Fig. 3, Fig. 6）。CuI（s）の溶解度積は 1.4 × 10⁻¹²であり、CuBr（s）の溶解度積より更に小さく、I⁻はより安定であることから CuI（s）から金属 Cuへの還元反応が抑制されることが推察される。

Fig. 1, Fig. 2, Fig. 3 に示す動電位分極曲線の測定より、鋼の電析反応において、ハロゲン化物イオンは電荷移動過程には影響を及ぼすが、Cu²⁺イオンの拡散過程には影響を及ぼさないことがわかった。Fig. 1 において、-0.8 V より卑な電位域では CT⁻の濃度が高くなるほど電流密度が高くなっている。通常の電解めっきであれば、Cu²⁺イオンの拡散律速領域であるため、この電流密度の増加は水素発生が増加しているためと考えられ、鋼電析の電流効率は低下すると予想される。しかし、鋼電析試験の結果、Cl⁻の添加量が増えるほど、電流効率が増加しているため（Table 1）。

5. 結 言

鋼電析の電析挙動、形態に及ぼすハロゲン化物イオンの影響について調査した結果、以下のことがわかった。鋼の電析において、CT⁻には塩類効果、Br⁻、I⁻には分極効果があり、電流効率は CT⁻を添加すると高くなり、Br⁻を添加すると低くなった。CT⁻を添加すると、鋼領の平均粒径は小さくなり、またアノードビスマスの枝が細く長く成長し、その結果タップ密度は小さくなった。一方、Br⁻を添加すると、分極効果により鋼領の結晶子サイズ、平均粒径は小さくなり、タップ密度も小さくなった。鋼領の電析において、CT⁻の添加量が増えるほど、電流効率が増加しており、Cu²⁺イオンの拡散律速領域においても鋼電析が促進されていることから、鋼の電析は電荷移動過程の影響を受けていることが示唆された。ハロゲン化物イオンを添加することで鋼領の形態が変化したのも、電荷移動過程に及ぼす影響を受けたものと考えられる。即ち、鋼の電析は、Cu²⁺イオンの拡散過程と電荷移動過程の混合律速下で進行していると推察される。

文献

1) Y. Watanabe: Resources Processing 37 (1990) 130-137.
2) K. Tamura and T. Takei: Jpn. Jpn. Soc. Powder Powder Metallurgy 10 (1963) 153-159.
3) T. Abe and Z. Hara: Jpn. Soc. Powder Powder Metallurgy 16 (1969) 279-283.
4) T. Shirayamani and Y. Nanya: Jpn. Jpn. Soc. Powder Powder Metallurgy 11 (1964) 23-28.
5) G. Orhan and G. Haypp: Powder Technol. 201 (2010) 57-63.
6) N.D. Nikolaic, L. Avramovic, E.R. Ivanovic, V.M. Maksmovic, Z. Baščarevic and N. Ignjatovic: Trans. Nonferrous Met. Soc. China 29 (2019) 1273-1284.
7) N.D. Nikolaic, P.M. Živković, M.G. Pavlović and Z. Baščarevic: J. Serb. Chem. Soc. 84 (2019) 1290-1220.
8) K.I. Popov, M.G. Pavlović, M.D. Maksmovic and S.S. Krstajić: J. Appl. Electrochem. 8 (1978) 503-514.
9) H. Nakano, S. Oue, K. Aoya, H. Kuboyama, H. Fukushima and S. Kobayashi: Journal of MMJ 123 (2007) 165-170.
10) T. Watanabe: Hyomen Gijutsu 40 (1989) 280-286.
11) M. Yasuda, I. Ohno and S. Hanyama: Hyomen Gijutsu 41 (1990) 312-317.
12) H.H. Bauer, translated by R. Tamamushi and G. Satoh: Electronics, (Tokyo Kagaku Dojin, Tokyo, 1982) p. 73.