Effect of Bacillus cereus IP 5832 and coumarin in the diet on the general state of the broilers

O V Kvan¹, Sh G Rahmatullin, A M Makaeva, E V Sheida and G K Duskaev
Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 29, 9 January St., Orenburg, 460000, Russia

¹E–mail: kwan111@yandex.ru

Abstract. Currently, there is an interest in complex biological preparations based on probiotic strains and plant extracts. Probiotic preparations, together with plant extracts, are natural growth stimulants and can become a promising replacement for antibiotic growth stimulants in poultry farming, the latter stimulate the production of endogenous enzymes, improving the digestibility and absorption of nutrients in feed. Technological prospects for the probiotics and plant extracts practical joint use in poultry farming touch upon a wide range of problems related to the correction of intestinal biocenosis, hormonal and enzymatic systems, stimulation of immunity, prevention and treatment of dysbacteriosis. The purpose of this study is to assess the effect of the complex introduction of the probiotic strain Bacillus cereus and a coumarin derivative in the diet of broiler chickens on hematological parameters. In the studied broiler chickens, changes in hematological and biochemical parameters are noted in connection with the processes of their growth and development. All parameters in the blood are accompanied by changes, which indicates an intense metabolic rate, an additional load in the metabolism that requires the participation of protective blood elements.

1. Introduction
Feed antibiotics have a direct effect on the microbiocenosis of the gastrointestinal tract of poultry, as a result - an increase in pathogenic microorganisms and inhibition of intestinal microflora, and for that reason, antibiotic resistance develops. In this case, probiotics are considered as an integral component of the pharmacological support of industrial livestock and poultry [1-3].

One of the priority tasks in poultry farming today is healthy young growth, its safety from diseases and death. Recently, plant extracts have been used in practice to reduce mortality and reduce the consumption of biological products used. As is well known, the latter have a positive effect on the immune status of poultry [4], productivity [5], growth and development [6], have antibacterial properties [7-8].

At present, there is interest in complex biological preparations based on probiotic strains and plant extracts [9]. Unlike probiotics, the general effect of complex preparations on the farm animals and poultry organism is associated not only with antimicrobial effect, but also with their positive effect on digestion processes. Probiotic preparations, together with plant extracts, belong to natural growth stimulants and can become a promising replacement for antibiotic growth stimulants in poultry [10], the latter stimulate the production of endogenous enzymes, improving the digestibility and absorption of nutrients in feed. Many of them serve as natural flavoring agents that stimulate feed intake, which has
a positive effect on the productivity of animals [11]. As a rule, complex preparations have a more pronounced effect than each component separately.

The combined use of probiotic strains and plant substances improves the morphological and biochemical parameters of the blood in laying hens [12], increases the egg production [13]. Phytobiotic preparations have a special effect on the microbiological composition of the intestine, maintaining the microflora in an optimal state [14-15]. Technological perspectives of practical probiotics and plant extracts joint use in poultry farming touch upon a wide range of problems associated with the correction of intestinal biocenosis, hormonal and enzymatic systems, stimulation of immunity, prevention and treatment of dysbacteriosis [16-18]. The purpose of this study is to assess the effect of the complex introduction of the probiotic strain Bacillus cereus and a coumarin derivative in the diet of broiler chickens on hematological parameters.

2. Materials and methods

Substances
- 7-Hydroxycoumarin 99% AC12111-0250 (Acros);
- Bacillus cereus strain IP 5832 (ATCC 14893), which is part of probiotic preparations.

The primary isolation of microorganisms was carried out on LB agar (Sigma-Aldrich, United States); further cultivation was carried out in LB broth at 37 ± 1 ° C with dynamic growth monitoring at 545 nm (OD545). After 72 hours, the bacterial biomass was separated by centrifugation for 10 minutes at 12000 g (MiniSpin, Eppendorf, Germany), and the resulting supernatants were sterilized through a sterile syringe filter attachment, CA (cellulose acetate) (Membrane Solutions, USA) with a pore diameter of 0.22 μm.

Experimental studies were carried out on 120 heads of 7-day-old broiler chickens (4 groups, n = 30). Control group - BD; Experimental I - BD + probiotic strain Bacillus cereus (4 ml / kg FM / day); Experimental II - BD + coumarin (9 μg / kg / day); Experimental III - BD + Bacillus cereus strain + coumarin. Feeding and watering of poultry was carried out by a group method.

Blood samples were collected for biochemical studies in vacuum tubes with a coagulation activator (thrombin). Blood biochemical analysis was carried out on a CS-T240 automated biochemical analyzer (DIRUI Industrial Co., Ltd, China) using commercial biochemical kits for veterinary medicine DiaVetTest (Russia).

Statistical processing was carried out using the Statistica 10.0 application (Stat Soft Inc., USA). Analysis of poultry live weight included the determination of the arithmetic mean (M), standard error of the mean (m). Differences were considered significant at P≤0.05. For bioinformatic processing of sequencing results, the PEAR program (Pair-End AssembleR, PEAR v0.9.8) was used.

3. Results and discussion

In the study of blood serum in broiler chickens in the control and experimental groups, with the introduction of a probiotic strain and a coumarin derivative into the diet, changes in amino acid metabolism enzymes in the age aspect were established (table 1).

| Table 1. Indicators of blood serum of broilers when used in Bacillus cereus IP 5832 and a coumarin derivative diets. |
|-------------------|-----------------|-----------------|-----------------|
| Index | Control | I | II |
| | Age 16 days | | |
| ALT, U / l | 5.33±1.49 | 5.33±0.98 | 7.95±1.55* |
| AST, U / l | 230.3±18.3 | 246.8±8.23 | 136.5±29.5* |
| Direct bilirubin, μmol / l | 0.41±0.05 | 0.34±0.07 | 0.36±0.04 |
| g-GT, U / l | 15.7±2.19 | 17.0±5.00 | 16.0±6.00 |
| Alkaline phosphatase, U / l | 28.7±4.33 | 53.0±12.2* | 36.0±13.0 |

* Differences were considered significant at P≤0.05.
At the age of 16 days, the number of leukocytes in broiler chickens is at the level of 38.8*10^9 cells/l, and a significant increase was noted in group I - 1.4 times (p≤0.05) and a decrease in group II - in 1.7 times (p≤0.05), compared with the control group. During the growth period, when the highest average daily weight gain is noted, the number of leukocytes increases by 10.0-54.9%. The maximum saturation of blood with leukocytes was recorded in chickens at the age of 43 days, when their number increased compared with the previous age by 10.0 - 32.0% (table 2).
Table 2. Morphological parameters of broiler blood when used in diets of Bacillus *cereus* IP 5832 and a coumarin derivative, 10^9 cells / I.

Index	Control	I	II	III
	Age 16 days			
Leukocytes	28.4±4.35	38.8±0.25*	16.9±1.15*	32.1±2.65
Lymphocytes	58.9±1.45	61.0±1.00	61.9±1.15	60.3±0.40
Monocytes	6.45±0.65	5.35±0.05	7.00±0.20	5.35±0.25
Granulocytes	34.7±0.80	34.9±0.15	33.8±1.25	34.4±0.65
Platelets	67.0±1.00	78.0±2.00	56.3±1.30	62.5±8.50
	Age 29 days			
Leukocytes	42.1±4.60	43.1±14.4	37.5±2.40	50.5±12.1
Lymphocytes	57.9±1.61	64.2±3.35	60.3±0.49	65.0±4.75
Monocytes	6.43±0.66	5.35±0.75	5.17±0.33	5.40±0.10
Granulocytes	35.7±1.15	30.5±2.60	34.5±0.20	29.6±4.80
Platelets	105.7±6.36	102.5±4.50	114.7±7.31	98.3±12.0
	Age 43 days			
Leukocytes	59.2±12.1	47.9±0.67	55.3±2.38	59.7±5.87
Lymphocytes	56.6±4.43	51.7±1.33	52.2±1.27	54.4±5.72
Monocytes	8.30±0.10	8.50±0.45	7.80±0.40	7.30±1.05
Granulocytes	35.1±4.33	45.4±6.54*	45.9±6.50*	38.6±4.41
Platelets	101.7±11.9	102.3±6.17	116.0±4.62	109.3±6.96

Note: * – p≤0.05; ** – p≤0.01; *** – p≤0.001 when comparing the control groups with the experimental groups.

Monocytes have phagocytic and bactericidal activity, the level of monocytes at the age of 29 days in the experimental groups was lower than in the control group, but all changes were unreliable, at the end of the experiment a similar picture was observed.

Lymphocytes perform the function of immune surveillance, carry out response to the penetration of pathogenic microorganisms, are responsible for the formation of specific immunity. At the age of 16 and 29 days, an increase in the level of lymphocytes in the experimental groups was revealed, but the changes were insignificant. At the age of 43 days, on the contrary, the decrease was noticed, however, the indicators fit into the framework of the accepted reference values. Against the background of an increase in lymphocytes, there is a decrease in granulocytes at the age of 16 and 29 days and the opposite picture at the end of the experiment, so in I and II experimental groups a significant increase in the latter by 1.3 times (p≤0.05), relative to the control was revealed.

4. Conclusion
The additional inclusion of a coumarin derivative in the diet of broiler chickens helps to reduce aspartate aminotransferase, as in our case, as well as the level of alanine aminotransferase, but on the 29th day of the experiment [19], a similar picture was observed in [20].

Coumarin, which is a part of citrus waste [21], can have a positive effect on the biochemical profile of laying hens, in particular the level of gamma-glutamyltransferase, thereby indicating the activity of enzymes such as ALT and AST.

In [22], it is presented that the introduction of only one plant extract of thyme has a positive effect on the biochemical parameters of the blood of broiler chickens, in comparison with the group of combined use of the probiotic strain *Bacillus subtilis* PB6 and plant extract.
The combined use of the probiotic strain *Bacillus adolescentis* and the oak burk extract will increase the antioxidant activity of the body and antimicrobial components of blood plasma compared to broiler chickens with similar growth rates, but without adding this combination [23], similar results were obtained in [24], in our case, the introduction of *Bacillus cereus* and a coumarin derivative gives a similar result.

Thus, in the studied broiler chickens, changes in hematological and biochemical parameters are noted in connection with the processes of their growth and development. All parameters in the blood are accompanied by changes, which indicates an intensive metabolic rate, an additional load in the metabolism that requires the participation of protective blood elements.

Acknowledgments

The study was supported by the Russian Science Foundation (project No. 16-16-10048 P).

References

[1] Wegener H C 2003 Antibiotics in animal feed and their role in resistance development *Curr. Opin. Microbiol.* 6(5) 439-45

[2] Gheisar M M and Kim I H 2018 Phytobiotics in poultry and swine nutrition - a review *Ital. J. Anim. Sci.* 17(1) 92-99

[3] Hao H, Cheng G, Iqbal Z, Ai X, Hussain HI, Huang L, Dai M, Wang Y, Liu Z and Yuan Z 2014 Benefits and risks of antimicrobial use in food-producing animals *Front. Microbiol.* 5(288)

[4] Alipour F, Hassanabadi A, Golian A, et al 2015 Effect of plant extracts derived from thyme on male broiler performance *Poult. Sci.* 94(11) 2630-4

[5] Morovat M, Chamani M, Zarei A 2016 Dietary but not in ovo feeding of Silybum marianum extract resulted in an improvement in performance, immunity and carcass characteristics and decreased the adverse effects of high temperatures in broilers. *Br. Poult. Sci.* 57(1) 105-13

[6] Pirgozliev V, Mansbridge S C, Rose S P, Liliehoj H S and Bravo D 2019 Immune modulation, growth performance, and nutrient retention in broiler chickens fed a blend of phytogenic feed additives *Poult. Sci.* 98(9) 3443-9

[7] Kurekci C, Al Jassim R, Hassan E, Bishop-Hurley SL, Padmanabha J and McSweeney C S 2014 Effects of feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens *Poult. Sci.* 93(9) 2337-46

[8] Deryabin D, Galadzhieva A, Kosyan D and Duskaev G 2019 Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: Modes of action *International Journal of Molecular Sciences* 20(22) 5588

[9] Windisch W and Kroismayr A 2007 The effect of phytobiotics on performance and gut function in monogastrics *Biomin World Nutrition Forum* Retrieved from: https://en.engormix.com/feedmachinery/articles/phytobiotics-on-performance-gut-function-in-monogastrics-t33528.htm.

[10] Delaquis P J, Stanich K, Girard B and Mazza G 2002 Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils *Int. J. Food Microbiol.* 74(1-2) 101-9

[11] Nikolaev S I, Melikhov V V and Frolova M V 2009 *Vestnik of the Russian agricultural sciences* 2(68)

[12] Komarova Z B, Pilipenko D N and Ivanov S M 2011 *Proceedings of Lower Volga agro-university complex: science and higher education* 3 1-5

[13] Okolelova T, Laptev G and Bol'shakov V 2014 The effectiveness of Provitol in chicken feed *Ptitsevodstvo* 1 12-4

[14] Upadhyaya S D, Kim S J and Kim I H 2016 Effects of gel-based phytogenic feed supplement on growth performance, nutrient digestibility, blood characteristics and intestinal morphology in weanling pigs *J. Appl. Anim. Res.* 44(1) 384-9
[15] Yausheva E, Kosyan D, Duskaev G, Kvan O and Rakhmatullin S 2019 Evaluation of the impact of plant extracts in different concentrations on the ecosystem of broilers’ intestine Biointerface Research in Applied Chemistry 9(4) 4168-71
[16] Jeroch H, Kozlowski K, Jeroch J, Lipinski K, Zdunczyk Z and Jankowski J 2009 Efficacy of the phytogenic (Papaveraceae) additive Sangrovit® in growing monogastric animals Züchtungskunde 81(4) 279-93
[17] Bakkali F, Averbeck S, Averbeck D and Idaomar M 2008 Biological effects of essential oils - a review Food Chem. Toxicol. 46(2) 446-75
[18] Singh J, Sethi A P S, Sikka S S, Chatli M K and Kumar Pawan 2014 Effect of cinnamon (Cinnamomum cassia) powder as a phytobiotic growth promoter in commercial broiler chickens Anim. Nutr. Feed Techn. 14(3) 471-9
[19] Waqas M, Wang Y, Li A, et al 2019 Osthole: A Coumarin Derivative Assuage Thiram-Induced Tibial Dyschondroplasia by Regulating BMP-2 and RUNX-2 Expressions in Chickens Antioxidants (Basel) 8(9) 330
[20] Behera D P, Sethi A P S, Singh C, Singh U and Wadhwa M 2019 Effect of citrus waste on blood parameters of broiler birds with and without cocktail of enzymes Iran. J. Appl. Anim. Sci. 3(1) 145–51
[21] Alfaig E, Angelovičova M, Kral M, Bučko O 2014 Effect of probiotics and thyme essential oil on the essential amino acid content of the broiler chicken meat Acta. Sci. Pol. Technol. Aliment. 13(4) 425-32
[22] Duskaev G K, Rakhamatullin S G, Kazachkova N M et al 2018 Effect of the combined action of Quercus cortex extract and probiotic substances on the immunity and productivity of broiler chickens Vet. World 11(10) 1416-22
[23] Ogbuagu N E, Aluwong T, Ayo J O and Sumanu V O 2018 Effect of fisetin and probiotic supplementation on erythrocyte osmotic fragility, malondialdehyde concentration and superoxide dismutase activity in broiler chickens exposed to heat stress J. Vet. Med. Sci. 80(12) 1895-900