ON WEYL MULTIPLIERS OF NON-OVERLAPPING FRANKLIN POLYNOMIAL SYSTEMS

GRIGORI A. KARAGULYAN

Abstract. We prove that $\log n$ is an almost everywhere convergence Weyl multiplier for any orthonormal system of non-overlapping Franklin polynomials. It will also be remarked that $\log n$ is the optimal sequence in this context.

1. Introduction

Recall some definitions well-known in the theory of orthogonal series (see [11]).

Definition 1.1. Let $\Phi = \{\phi_n : n = 1, 2, \ldots\} \subset L^2(0, 1)$ be an orthonormal system. A sequence of positive numbers $\omega(n) \not\to \infty$ is said to be an a.e. convergence Weyl multiplier (C-multiplier) if every series

$$\sum_{n=1}^{\infty} a_n \phi_n(x),$$

with coefficients satisfying the condition $\sum_{n=1}^{\infty} a_n^2 \omega(n) < \infty$ is a.e. convergent. If such series converges a.e. after any rearrangement of the terms, then we say $\omega(n)$ is an a.e. unconditional convergence Weyl multiplier (UC-multiplier) for Φ.

The Menshov-Rademacher classical theorem ([12], [16], see also [11]) states that the sequence $\log^2 n$ is a C-multiplier for any orthonormal system. The sharpness of $\log^2 n$ in this theorem was proved by Menshov in the same paper [12]. That is any sequence $\omega(n) = o(\log^2 n)$ fails to be C-multiplier for some orthonormal system. The following inequality is the key ingredient in the proof of the Menshov-Rademacher theorem.

Theorem A (Menshov-Rademacher, [12], [16]). If $\{\phi_k : k = 1, 2, \ldots, n\} \subset L^2(0, 1)$ is an orthogonal system, then

$$\left\| \max_{1 \leq m \leq n} \sum_{k=1}^{m} \phi_k \right\|_2 \leq c \cdot \log n \left\| \sum_{k=1}^{n} \phi_k \right\|_2,$$

where $c > 0$ is an absolute constant.

2010 Mathematics Subject Classification. 42C05, 42C10, 42C20.

Key words and phrases. Haar system, martingale difference, non-overlapping polynomials, Weyl multiplier, Menshov-Rademacher theorem.

Research was supported by the Science Committee of Armenia, grant 18T-1A081.
Similarly, the counterexample of Menshov is based on the following results. It implies that \(\log n \) on the right of (1.1) is optimal.

Theorem B (Menshov, [12]). For any natural number \(n \in \mathbb{N} \) there exists an orthonormal system \(\{ \phi_n : n = 1, 2, \ldots, n \} \subset L^2(0, 1) \), such that

\[
\left\{ x \in (0, 1) : \max_{1 \leq m \leq n} \left| \frac{1}{\sqrt{n}} \sum_{k=1}^{m} \phi_k(x) \right| \geq c \log n \right\} \gtrsim 1,
\]

for an absolute constant \(c > 0 \).

In the sequel the relation \(a \lesssim b (a \gtrsim b) \) stands for the inequality \(a \leq c \cdot b (a \geq c \cdot b) \), where \(c > 0 \) is an absolute constant. Given two sequences of positive numbers \(a_n, b_n > 0 \), we write \(a_n \sim b_n \) if we have \(c_1 \cdot a_n \leq b_n \leq c_2 \cdot a_n, n = 1, 2, \ldots \) for some constants \(c_1, c_2 > 0 \). Throughout the paper, the base of \(\log \) is equal 2.

Let \(\Phi = \{ \phi_k(x), k = 1, 2, \ldots \} \subset L^2(0, 1) \) be an infinite orthonormal system. Given \(g \in L^2(0, 1) \), consider the Fourier coefficients

\[a_n = \langle g, \phi_n \rangle = \int_0^1 g \phi_n. \]

We say a function \(f \in L^2(0, 1) \) satisfies the relation \(f \prec g \) (with respect to system \(\Phi \)), if \(f = \sum_{n=1}^{\infty} \lambda_n a_n \phi_n \), where \(|\lambda_n| \leq 1 \). Given integer \(n \geq 1 \), We consider the following operator

\[A_{n,\Phi}(g)(x) = \max_{g_k \prec g, k = 1, \ldots, n} |g_k(x)|, \]
(1.2)

where the maximum is taken over all the sequences of functions \(g_k, k = 1, 2, \ldots, n \), satisfying \(g_k \prec g \). One can consider in (1.2) only the monotonic sequences of polynomials

\[g_k = \sum_{j \in G_k} a_j \phi_j \prec g, \quad k = 1, 2, \ldots, n, \]

where \(G_1 \subset G_2 \subset \ldots \subset G_n \subset \mathbb{N} \) and \(a_k \) are the Fourier coefficients of \(g \). Then we will get another operator \(A_{n,\Phi,\text{mon}} \). If we additionally suppose that each \(G_{k+1} \setminus G_k \) consists of a single integer, then we will have the operator \(A_{n,\Phi,\text{sng}} \). For the \(L^2 \)-norms of these operator we clearly have

\[\|A_{n,\Phi,\text{sng}}\|_{2 \to 2} \leq \|A_{n,\Phi,\text{mon}}\|_{2 \to 2} \leq \|A_{n,\Phi}\|_{2 \to 2}. \]
(1.3)

Observe that Theorem A implies \(\|A_{n,\Phi,\text{mon}}\|_{2 \to 2} \lesssim \log n \) for every orthonormal system \(\Phi \). On the other hand, applying Theorem B, one can also construct an infinite orthonormal system with the lower bound \(\|A_{n,\Phi,\text{sng}}\|_{2 \to 2} \gtrsim \log n, n = 1, 2, \ldots \). Thus we conclude that for the general orthonormal systems the logarithmic upper bound of \(\|A_{n,\Phi,\text{mon}}\|_{2 \to 2} \) is optimal. As it was remarked in [8] from some results of Nikishin-Ulyanov [13] and Olevskii [14] it follows that \(\|A_{n,\Phi,\text{mon}}\|_{2 \to 2} \gtrsim \sqrt{\log n} \) for any complete orthonormal system \(\Phi \).

The recent papers of author [8–10] highlight the relation of sequences (1.3) in the study of almost everywhere convergence of special orthogonal series. It was proved in [8] that
Theorem C. If Φ is a martingale difference, then $\|A_{n,\Phi,\text{mon}}\|_2 \lesssim \sqrt{\log n}$.

Theorem D. For any generalized Haar system H we have the relation

$$\|A_{n,H,\text{sng}}\|_2 \sim \|A_{n,H,\text{mon}}\|_2 \sim \sqrt{\log n}. \quad (1.4)$$

The paper \cite{8} also provide corollaries of these results like those considered below. In the case of trigonometric system in \cite{9,10} we prove the following.

Theorem E. If T is the trigonometric system, then we have

$$\|A_{n,T,\text{sng}}\|_2 \sim \|A_{n,T,\text{mon}}\|_2 \sim \sqrt{\log n}. \quad (1.5)$$

Note that the upper bound $\|A_{n,T,\text{mon}}\|_2 \lesssim \log n$ in (1.5) follows from the Menshov-Rademacher theorem. So the novelty here is the estimate $\|A_{n,T,\text{sng}}\|_2 \gtrsim \log n$, which shows that the trigonometric system has no better estimate of the norms of operators A_n that the general orthonormal systems have.

In this paper we prove the analogous of relations (1.4) and corresponding corollaries for the Franklin system $F = \{f_n\}$ of piece-wise linear functions. Moreover, we have involved also a sharp estimation for $A_{n,F}$.

Theorem 1.1. The Franklin system F satisfies the relation

$$\|A_{n,F,\text{sng}}\|_2 \sim \|A_{n,F,\text{mon}}\|_2 \sim \|A_{n,F}\|_2 \sim \sqrt{\log n}. \quad (1.6)$$

Corollary 1.1. The sequence $\log n$ is a C-multiplier for any system of L^2-normalized non-overlapping Franklin polynomials

$$p_n(x) = \sum_{j \in G_n} c_j f_j(x), \quad n = 1, 2, \ldots,$$

where $G_n \subset \mathbb{N}$ are finite and pairwise disjoint.

The following particular case of Corollary 1.1 is also new and interesting.

Corollary 1.2. The sequence $\log n$ is a C-multiplier for any rearrangement of the Franklin system.

Corollary 1.3. Let $\{p_n\}$ be a sequence of L^2-normalized non-overlapping Franklin polynomials. If $w(n)/\log n$ is increasing and

$$\sum_{n=1}^{\infty} \frac{1}{nw(n)} < \infty, \quad (1.6)$$

then $w(n)$ is an UC-multiplier for $\{p_n\}$.

The only prior result in this context is due to Gevorkyan \cite{5}, who proved that condition (1.6) is a necessary and sufficient for $w(n)$ to be an UC-multiplier for the Franklin system. The optimality of $\log n$ in Corollary 1.2 as well as condition (1.6) in Corollary 1.3 both follows just from the direct combination of this result of Gevorkyan with a result of Ul’yanov-Poleshchuk \cite{15,18}.
The following corollary is an interesting phenomenon of the Franklin series. It is based on the bound $\|A_n, F\|_{2\to 2} \lesssim \sqrt{\log n}$ involved in Theorem 1.1.

Corollary 1.4. Let the sequence $a = \{a_k\}$ satisfy $\sum_{k=1}^{\infty} a_k^2 < \infty$. Then for arbitrary sets of indexes $G_k \subset \mathbb{N}$, $k = 1, 2, \ldots, n$ we have

$$\max_{1 \leq m \leq n} \left| \sum_{j \in G_m} a_j f_j \right|_2 \lesssim \sqrt{\log n} \cdot \left(\sum_{k=1}^{\infty} a_k^2 \right)^{1/2}. \quad (1.7)$$

Remark 1.1. We do not know if the estimate like (1.5) holds for the Walsh system. Note that the proof of (1.5) is based on a specific argument that is common only for the trigonometric system and it is not applicable in the case of Walsh system. Namely, the proof of (1.5) uses a logarithmic lower bound for the directional Hilbert transform on the plane due to Demeter [4].

Remark 1.2. We prove Theorem 1.1 using a good-λ inequality due to Chang-Wilson-Wolff [1], which is an extension of classical Azuma-Hoeffding and Bernstein inequalities for martingales. See also [6], where the same method has been first applied in the study of maximal functions of Mikhlin-Hörmander multipliers.

Remark 1.3. We will see in the last section that the results of Theorem 1.1 and Corollaries 1.1-1.4 hold also for the Franklin system of periodic type. It will be also proved that for the classical Haar system H as an addition to (1.5) it holds the relation $\|A_n, H\|_{2\to 2} \sim \sqrt{\log n}$ and so an estimate like (1.7).

2. **Notations and the definition of Franklin system**

Recall the definition of the Franklin orthonormal system on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z} = [0, 1)$. Given integer $n \geq 2$, write it in the form

$$n = 2^k + j, \quad \text{where} \quad 1 \leq j \leq 2^k, \quad k = 0, 1, \ldots. \quad (2.1)$$

Let Π_n be the set of nodes

$$t_{n,i} = \begin{cases} \frac{i}{2^{k+1}}, & \text{if} \quad 1 \leq i \leq 2j, \\ \frac{i-j}{2^k}, & \text{if} \quad 2j < i < n, \end{cases}$$

and suppose also $\Pi_1 = \{t_{1,0} = 0\}$. One can check that $0 = t_{n,0} < t_{n,1} < \ldots < t_{n,n-1} < 1$ and the collection Π_n ($n \geq 2$) is obtained from Π_{n-1} by adding a single point $t_{n,2j-1}$. Denote by L_n the space of piece-wise linear functions on \mathbb{T} with nodes from Π_n, which may have a discontinuity point only at $t_{n,0} = 0$. For the dimension of this space we have $\dim L_n = n$. The Franklin functions $f_n(x)$, $n = 0, 1, 2, \ldots$, are defined as follows. We take $f_0(x) = 1$, $f_1(x) = \sqrt{3}(2x - 1)$, and if $n \geq 2$, then we let f_n to be an L^2-normalized function from L_n, which is orthogonal to L_{n-1}. Note that f_n is determined uniquely up to the sign.
Our method of proof can not be directly applied to the Franklin functions, since those are not full continuous on the torus \mathbb{T}. To handle this we will use the following reconstruction of the Franklin functions f_n defined

$$u_n(x) = \begin{cases}
 f_n(2x) & \text{if } x \in [0,1/2), \\
 f_n(-2x) & \text{if } x \in (-1/2,0), \\
 f_n(0-) & \text{if } x = -1/2,
\end{cases}$$

for $n = 0, 1, 2, \ldots$. Let \tilde{L}_n be the subspace of L_n consisting of the continuous functions f, that is $f(0) = f(0-)$. We have $\dim \tilde{L}_n = n - 1$. Clearly, under the condition (2.1) we have

$$u_n \in \tilde{L}_{2k+2}, \quad \langle f, u_n \rangle = 0, \quad f \in L_{2k+1} \supset \tilde{L}_{2k+1}. \quad (2.2)$$

For $f \in L^2(0,1)$, we consider the Fourier partial sum

$$U_n(f)(x) = \sum_{j=1}^{2^n} \langle f, u_j \rangle u_j(x), \quad n = 0, 1, 2, \ldots,$$

where $\langle f, g \rangle$ denotes the standard scalar product of two functions $f, g \in L^2(\mathbb{T})$. For a given function sequence $G_n, n = 0, 1, 2, \ldots$, we denote $\Delta G_0 = G_0, \Delta G_n = G_n - G_{n-1}, n \geq 1$. Letting $\Lambda_n = \tilde{L}_{2^n}$, from (2.2) we get

$$\Delta U_n(f) = \sum_{j=2^{n-1}+1}^{2^n} \langle f, u_j \rangle u_j, \quad n \geq 1,$$

$$\Delta U_n(f) \in \Lambda_{n+1}, \quad f \in L^2(\mathbb{T}), \quad n = 0, 1, 2, \ldots,$$

$$\Delta U_n(f) \equiv 0 \text{ whenever } f \in \Lambda_n(\mathbb{T}), \quad n = 0, 1, 2, \ldots. \quad (2.3)$$

Now recall the definition of the Haar system. Denote by \mathcal{S}_n the class of right-continuous step functions on \mathbb{T} with discontinuity points in Π_n. Define $h_1(x) = 1$ and for $n \geq 2$ let h_n be an L^2-normalized function from \mathcal{S}_n that is orthogonal to \mathcal{S}_{n-1}. We will consider the ξ-shifted Haar system $h_{n,\xi}(x) = h_n(x + \xi)$, where $\xi \in \mathbb{T}$. For a function $f \in L^2(\mathbb{T})$ denote

$$H_{n,\xi}(f)(x) = \sum_{j=1}^{2^n} \langle f, h_j,\xi \rangle h_j,\xi(x) \quad (2.4)$$

to be the 2^n-partial sum of the Fourier series in ξ-shifted Haar system. We will also need the ξ-shifted Haar square function operator

$$S_{\xi}(f)(x) = \left(\sum_{n=1}^{\infty} |\Delta H_{n,\xi}(f)(x)|^2 \right)^{1/2}. \quad (2.5)$$
3. Exponential estimates and related properties

Recall the well-known exponential estimates of the Franklin functions

\[|f_n(x)| \lesssim \sqrt{nq^n|x-t_n|}, \quad x \in [0, 1), \quad (3.1) \]

\[|K_n(x, t)| \lesssim nq^n|x-t|, \quad x, t \in [0, 1). \quad (3.2) \]

where

\[t_n = t_{n, 2j-1} = \frac{2j-1}{2^{k+1}}, \quad K_n(x, t) = \sum_{k=0}^{2^n} f_k(x)f_k(t). \]

(see [2, 3], or [11] chap. 6). For the next two lemmas we will need the well-known discrete convolution inequality

\[\left(\sum_{n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}} |a_kb_{n-k}| \right)^2 \right)^{1/2} \leq \left(\sum_{n \in \mathbb{Z}} a_n^2 \right)^{1/2} \cdot \left(\sum_{n \in \mathbb{Z}} |b_n| \right). \quad (3.3) \]

Lemma 3.1. For any coefficients \(a_n \) we have

\[\left\| \sum_{n=2^{k+1}}^{2^{k+1}} a_n u_n \right\|_2 \lesssim \left(\sum_{n=2^{k+1}}^{2^{k+1}} a_n^2 \right)^{1/2}. \quad (3.4) \]

Proof. Clearly it is enough to prove (3.4) for the Franklin functions \(f_n \). Chose an arbitrary \(x \in [0, 1) \) and suppose that

\[x \in \left[\frac{m-1}{2^k}, \frac{m}{2^k} \right), \quad 1 \leq m \leq 2^k. \]

From (2.1) it easily follows that \(n|x-t_n| \gtrsim |j-m| = |n-2^k-m| \). Thus, using (3.1), we get

\[\left(\sum_{n=2^{k+1}}^{2^{k+1}} |a_n f_n(x)| \right)^2 \lesssim 2^k \left(\sum_{n=2^{k+1}}^{2^{k+1}} |a_n q_1^{n-2^k-m}| \right)^2, \quad 0 < q_1 < 1. \]

Defining \(a_n = 0 \) if \(n \not\in (2^k, 2^{k+1}] \), and applying (3.3), we obtain

\[\left\| \sum_{n=2^{k+1}}^{2^{k+1}} a_n f_n \right\|_2^2 \lesssim \sum_{m=1}^{2^k} \left(\sum_{n=2^{k+1}}^{2^{k+1}} |a_n q_1^{n-2^k-m}| \right)^2 \]

\[\lesssim \sum_{m \in \mathbb{Z}} \left(\sum_{n \in \mathbb{Z}} |a_n q_1^{n-m}| \right)^2 \lesssim \sum_{n \in \mathbb{Z}} a_n^2 \]

and so (3.4).
Lemma 3.2. For any interval $J \subset \mathbb{T}$ with the center c_J and an integer $n \geq 0$ there exists a function $\lambda_{J,n}(x) \geq 0$ on \mathbb{T} such that

$$\lambda_{J,n}(x) = 1, \quad x \in J,$$

$$\|\lambda_{J,n}\|_1 \leq |J|,$$ \tag{3.5}

$$\lambda_{J,n}(x) \text{ is increasing on } [c_T - 1/2, c_T), \text{ and decreasing on } [c_T, c_T + 1/2).$$ \tag{3.6}

and for any function $g \in L^\infty(\mathbb{T})$ with $\|g\|_\infty \leq 1$, supp $g \subset J$ we have

$$|\Delta U_n(g)(x)| \lesssim \lambda_{J,n}(x) + \lambda_{J,n}(-x).$$ \tag{3.7}

Proof. Since $\Delta U_n = U_n - U_{n-1}$, it is enough to prove a similar estimate for $U_n(g)$. First we suppose that neither 0 nor 1/2 are in (a, b). Then we will have $J \subset [0, 1/2)$ (or $J \subset [-1/2, 0)$). Set

$$\lambda_{J,n}(x) = \begin{cases} 1 & \text{if } x \in 2J, \\ c|J|nq^{nd(x,c_J)} & \text{if } x \notin 2J, \end{cases}$$

where $d(x, y)$ denotes the distance of two points x, y on the torus \mathbb{T}. Clearly this function satisfies conditions (3.5), (3.6) and (3.7) for a small enough absolute constant c. To show (3.8), first we let $x \in [0, 1/2)$. Using (3.2) and the definition of u_n, one can easily check that

$$|U_n(g)(x)| \leq \int f \cdot K_n(2x, 2t)|dt| \leq \int f q^{2n|x-t|}dt \lesssim \lambda_{J,n}(x), \quad x \in [0, 1/2).$$ \tag{3.8}

Since $U_n(g)$ is an even function, for $x \in [-1/2, 0)$ we will have

$$|U_n(g)(x)| = |U_n(g)(-x)| \lesssim \lambda_{J,n}(-x), \quad x \in [-1/2, 0).$$ \tag{3.9}

Combining (3.9) and (3.10), we get (3.8). If 0 \in J, then we consider the intervals $J_1 = J \cap [0, 1/2]$ and $J_2 = J \cap [-1/2, 0]$. Clearly $c_{J_2} \leq c_J \leq c_{J_1}$ and the function

$$\lambda_{J,n}(x) = \begin{cases} \lambda_{J_1,n}(x) & \text{if } x \in [c_J, c_J + 1/2), \\ \lambda_{J_2,n}(x) & \text{if } x \in [c_J - 1/2, c_J), \end{cases}$$

satisfies the conditions of the lemma. The case of $1/2 \in J$ can be considered similarly. \qed

4. The main lemma

We denote by $I_{n,\xi}(x) = [a_{n,\xi}(x), b_{n,\xi}(x))$ the ξ-shifted single dyadic interval of the form

$$\left[\xi + \frac{j - 1}{2^n}, \xi + \frac{j}{2^n}\right]$$

containing a given point $x \in \mathbb{T}$. In the case of $\xi = 0$ we will just write n instead of the index $(n, 0)$. For the Haar partial sums (2.4) we can write

$$H_{n,\xi}(f)(x) = \frac{1}{|I_{n,\xi}(x)|} \int_{I_{n,\xi}(x)} f$$
Lemma 4.1. Let the positive function \(\lambda \in L_\infty(\mathbb{T}) \) be increasing on \([r, a)\) and decreasing on \([a, 1 + r)\). Then for any \(f \in L^1(\mathbb{R}) \) it holds the inequality
\[
\left| \int_{\mathbb{R}} f(t) \lambda(t) dt \right| \leq \|\lambda\|_1 \mathcal{M}(f)(a).
\]

Lemma 4.2. If \(g \in \Lambda_m(\mathbb{T}) \), then for any integers \(n \geq m \geq 1 \) it holds the inequality
\[
|\Delta H_{n,\xi}(g)(x)| \lesssim 2^{n-m} \cdot \mathcal{M}(g)(x), \quad x \in [0, 1).
\]

Proof. Given \(x \in [0, 1) \), the function \(g \) is linear on each interval \(I_m(x), I_m^+(x) \) and \(I_m^-(x) \), where \(I_m^+(x) \) and \(I_m^-(x) \) are the left and the right neighbor dyadic intervals of \(I_m(x) \). One can check
\[
\text{OSC}_{I_m,\xi}(g) \leq 2^{n-m} \cdot \text{OSC}_{\Lambda_m}(g) \lesssim 2^{n-m} \mathcal{M}(g)(x).
\]
Without loss of generality we can suppose that \(I_{n+1,\xi}(x) \subset I_{n,\xi}(x) \subset I_m(x) \cup I_m^+(x) \) (or \(\subset I_m(x) \cup I_m^-(x) \)). Thus we obtain
\[
|\Delta H_{n,\xi}(g)(x)| = \left| H_{n+1,\xi}(g)(x) - H_{n,\xi}(g)(x) \right|
= \left| \frac{1}{|I_{n,\xi}(x)|} \int_{I_{n,\xi}(x)} g - \frac{1}{|I_{n+1,\xi}(x)|} \int_{I_{n+1,\xi}(x)} g \right|
\leq \text{OSC}_{I_{n,\xi}}(g)
\lesssim 2^{n-m} \mathcal{M}(g)(x).
\]

Lemma 4.3. If \(f \in L^1(\mathbb{T}) \) and \(I = [p, q) \subset \mathbb{T} \), then for any integer \(m \geq 1/(2(p - q)) \) we have
\[
\left| \int_{\mathbb{T}} f(t) \Delta U_m(1_I)(t) dt \right| \lesssim 2^{-m} \mathcal{M}(f)(p) + \mathcal{M}(f)(-p) + \mathcal{M}(f)(q) + \mathcal{M}(f)(-q)). \tag{4.1}
\]

Proof. Let \(I_m(p) = [a_m(p), b_m(p)) \) and \(I_m(q) = [a_m(q), b_m(q)) \) be the dyadic intervals of length \(2^{-m} \) containing the points \(p \) and \(q \) respectively. We approximate the function \(1_I \) by a \(\phi \in \Lambda_m(\mathbb{T}) \) defined
\[
\phi(x) = \begin{cases}
1 \text{ if } & x \in [b_m(p), a_m(q)], \\
0 \text{ if } & x \notin [a_m(p), b_m(q)], \text{ linear on the intervals } [a_m(p), b_m(p)] \text{ and } [a_m(q), b_m(q)].
\end{cases}
\]

([11], chap. 3). Define the maximal function
\[
\mathcal{M}(f)(x) = \sup_{I : I \supseteq x} \frac{1}{|I|} \int_I |f|, \quad f \in L^1(\mathbb{T}),
\]
where \(\sup \) is taken over all the intervals \(I \subset \mathbb{T} \) containing the point \(x \). We will need the following well-known lemma (see [17], chap. 2).
By (2.3) we have $\Delta U_m(\phi)(x) \equiv 0$, as well as

$$|\phi(x) - \mathbf{1}_I(x)| \leq \mathbf{1}_{I_m(p)}(x) + \mathbf{1}_{I_m(p)}(x).$$

Thus, using Lemma 3.2, we can write

$$|\Delta U_m(\mathbf{1}_I)(t)| = |\Delta U_m(\phi - \mathbf{1}_I)(t)|$$

$$\leq \lambda_m I_m(p)(t) + \lambda_m I_m(p)(-t) + \lambda_m I_m(q)(t) + \lambda_m I_m(q)(-t).$$

Then, combining also Lemma 4.1, we obtain (4.1).

\square

Given function $f \in L^2(\mathbb{T})$, we denote

$$\mathcal{M}_n f(x, \xi) = \mathcal{M}(f)(a_n(x, \xi)) + \mathcal{M}(f)(-a_n(x, \xi))$$

$$+ \mathcal{M}(f)(b_n(x, \xi)) + \mathcal{M}(f)(-b_n(x, \xi)).$$

(4.2)

Lemma 4.4. If $f \in L^2(0, 1)$ and $m > n \geq 1$, then

$$|H_{n,\xi}(\Delta U_m(f))(x)| \leq 2^{n-m} \mathcal{M}_n f(x, \xi), \quad x \in [0, 1).$$

(4.3)

Proof. Using Lemma 4.3, we obtain

$$|H_{n,\xi}(\Delta U_m(f))(x)| = \frac{1}{|I_{n,\xi}(x)|} \left| \int_{I_{n,\xi}(x)} \int_0^1 \Delta K_m(u, t) f(t) dt du \right|$$

$$= 2^n \left| \int_0^1 f(t) \int_{I_{n,\xi}(x)} \Delta K_m(u, t) du dt \right|$$

$$= 2^n \left| \int_0^1 f(t) \Delta U_m(\mathbf{1}_{I_{n,\xi}(x)})(t) dt \right|$$

$$\leq 2^{n-m} \left(\mathcal{M}(f)(a_n(x, \xi)) + \mathcal{M}(f)(-a_n(x, \xi)) + \mathcal{M}(f)(b_n(x, \xi)) + \mathcal{M}(f)(-b_n(x, \xi)) \right),$$

and so (4.3).

\square

Lemma 4.5 (main). If $f \in L^2(\mathbb{T})$ has a representation $f = \sum_{k=0}^{\infty} b_k u_k$, then there exists a parameter $\xi \in \mathbb{T}$ such that

$$\left\| \sup_{\|\lambda\| \leq 1} S_{\xi} \left(\sum_{k=0}^{\infty} \lambda_k b_k u_k \right) \right\|_2 \lesssim \|f\|_2.$$ \hspace{1cm} (4.4)

where the sup is taken over all the sequences $\lambda = \{\lambda_k\}$ with $|\lambda_k| \leq 1$.

Proof. Clearly we can suppose that $b_0 = b_1 = 0$. For a given sequence $\lambda = \{\lambda_k : |\lambda_k| \leq 1\}$, we denote

$$f_\lambda = \sum_{k=0}^{\infty} \lambda_k b_k u_k = \sum_{k=2}^{\infty} \lambda_k b_k u_k.$$
Combining Lemma 4.2 and Lemma 4.4, we can write a pointwise estimation
\[
\sum_{n=1}^{\infty} \left| \Delta H_{n, \xi} \left(\sum_{k=0}^{\infty} \lambda_k b_k u_k \right)(x) \right|^2 \leq \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |\Delta H_{n, \xi}(\Delta U_m(f))(x)| \right)^2 \\
\lesssim \sum_{n=1}^{\infty} \left(\sum_{m=n+1}^{\infty} 2^{n-m} \mathcal{M}_n(\Delta U_m(f))(x, \xi) \right)^2 \\
+ \sum_{n=1}^{\infty} \left(\sum_{m=1}^{n} 2^{m-n} \mathcal{M}(\Delta U_m(f))(x) \right)^2 \\
\lesssim \sum_{n=1}^{\infty} \left(\sum_{m=n+1}^{\infty} 2^{n-m} \mathcal{M}_n \left(\sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right)(x, \xi) \right)^2 \\
+ \sum_{n=1}^{\infty} \left(\sum_{m=1}^{n} 2^{m-n} \mathcal{M} \left(\sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right)(x) \right)^2 \\
= A(f)(x, \xi) + B(f)(x). \tag{4.5}
\]

Applying (3.3), (3.4) and the boundedness of the maximal operator on L^2, we get the estimate
\[
\int_{0}^{1} B(f)(x) dx \lesssim \sum_{m=1}^{\infty} \left\| \mathcal{M} \left(\sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right) \right\|^2_2 \\
\lesssim \sum_{m=1}^{\infty} \left\| \sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right\|^2_2 \lesssim \|f\|^2_2. \tag{4.6}
\]

We can not apply (3.3) to estimate the $A(f)(x, \xi)$, since
\[
d_{n,m}(f)(x, \xi) = \mathcal{M}_n \left(\sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right)(x, \xi)
\]
depends both on n and m. We proceed as follows

\[
A(f)(x, \xi) = \sum_{n=1}^{\infty} \left(\sum_{m > n} 2^{n-m} d_{n,m}(f)(x, \xi) \right)^2 \\
= \sum_{n=1}^{\infty} \sum_{m, m' > n} 2^{n-m} 2^{n-m'} d_{n,m}(f)(x, \xi) d_{n,m'}(f)(x, \xi) \\
\leq \frac{1}{2} \sum_{n=1}^{\infty} \sum_{m, m' > n} 2^{n-m} 2^{n-m'} ((d_{n,m}(f)(x, \xi))^2 + (d_{n,m'}(f)(x, \xi))^2) \\
\leq \sum_{n=1}^{\infty} \sum_{m > n} 2^{n-m} (d_{n,m}(f)(x, \xi))^2.
\]

Therefore, denoting by \mathbb{E} the integration with respect to ξ, from (4.2) and (3.4) we obtain

\[
\mathbb{E} \left(\int_0^1 A(f)(x, \xi) \, dx \right) \lesssim \sum_{n=1}^{\infty} \sum_{m > n} 2^{n-m} \mathbb{E} \left(\int_0^1 (d_{n,m}(f)(x, \xi))^2 \, dx \right) \\
\leq \sum_{n=1}^{\infty} \sum_{m > n} 2^{n-m} \int_0^1 \left(\mathcal{M} \left(\sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right) \right)^2 \, dx \\
\leq \sum_{m=2}^{\infty} \left\| \mathcal{M} \left(\sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right) \right\|_2^2 \\
\lesssim \sum_{m=2}^{\infty} \left\| \sum_{k=2^{m-1}+1}^{2^m} |b_k u_k| \right\|_2^2 \lesssim \|f\|_2^2.
\]

Based on estimates (4.5), (4.6) and (4.7) we conclude that (4.4) is satisfied for some ξ. Lemma is proved.

5. PROOF OF THEOREM 1.1

A key argument in the proof of Theorem 1.1 is the following good-λ inequality due to Chang-Wilson-Wolff (see [1], Corollary 3.1):

\[
|\{x \in [0, 1) : \mathcal{M}_\xi^d(f)(x) > \lambda, S_\xi f(x) < \varepsilon \lambda\}| \\
\lesssim \exp \left(-\frac{c}{\varepsilon^2} \right) |\{\mathcal{M}_\xi^d(f)(x) > \lambda/2\}|, \lambda > 0, 0 < \varepsilon < 1,
\]

where \mathcal{M}_ξ^d denotes the ξ-shifted dyadic maximal function

\[
\mathcal{M}_\xi^d(f)(x) = \sup_{n \geq 1} \frac{1}{|I_n, \xi(x)|} \int_{I_n, \xi(x)} |f|.
\]

Clearly it is enough to prove Theorem 1.1 for the reconstructed system $U = \{u_k\}$ instead of the Franklin system $F = \{u_k\}$. So let $f = \sum_{j=0}^{\infty} b_j u_j \in L^2(\mathbb{T})$ and the functions
$p_k \in L^2(\mathbb{T})$, $k = 1, 2, \ldots, n$ satisfy $p_k \prec f$ with respect to the system \mathcal{U}. It is clear that

$$\mathcal{P}_\xi(x) = \sup_{1 \leq k \leq n} S_\xi(p_k)(x) \leq \sup_{|\lambda_k| \leq 1} S_\xi \left(\sum_{k=0}^{\infty} \lambda_k b_k u_k \right)(x).$$

(5.2)

Thus, according to Lemma 4.5 for a suitable ξ we have

$$\|\mathcal{P}_\xi\|_2 \lesssim \|f\|_2.$$

On the other hand, $|g(x)| \leq M_\xi^d g(x)$ a.e. for any function $g \in L^1$, as well as $S_\xi(p_k)(x) \leq \mathcal{P}_\xi(x)$, $k = 1, 2, \ldots, n$. Thus, applying inequality (5.1) with $\varepsilon_n = (c/ \ln n)^{1/2}$, we obtain

$$\{|\{p_k(x)| > \lambda, \mathcal{P}_\xi(x) \leq \varepsilon_n \lambda\}| \lesssim \exp \left(-\frac{c}{\varepsilon_n^2} \right) |\{M_\xi^d p_k(x) > \lambda/2\}|.$$

(5.3)

For $p^*(x) = \max_{1 \leq m \leq n} |p_m(x)|$ we obviously have

$$\{p^*(x) > \lambda\} \subset \{p^*(x) > \lambda, \mathcal{P}_\xi(x) \leq \varepsilon_n \lambda\}$$

$$\cup \{\mathcal{P}_\xi(x) > \varepsilon_n \lambda\} = A(\lambda) \cup B(\lambda),$$

and thus

$$\|p^*\|_2^2 \leq 2 \int_0^\infty \lambda |A(\lambda)| d\lambda + 2 \int_0^\infty \lambda |B(\lambda)| d\lambda.$$

From (5.3) it follows that

$$\int_0^\infty \lambda |A(\lambda)| d\lambda \leq \sum_{m=1}^{n} \int_0^\infty \lambda \{|p_m| > \lambda, \mathcal{P}_\xi \leq \varepsilon_n \lambda\} |d\lambda$$

$$\leq \exp \left(-\frac{c}{\varepsilon_n^2} \right) \sum_{m=1}^{n} \int_0^\infty \lambda \{|M_\xi^d p_m > \lambda/2\} |d\lambda$$

$$\lesssim \frac{1}{n} \sum_{m=1}^{n} \|M_\xi^d p_m\|_2^2$$

$$\lesssim \frac{1}{n} \sum_{m=1}^{n} \|p_m\|_2^2$$

$$\leq \|f\|_2^2.$$

Combining this and

$$2 \int_0^\infty \lambda |B(\lambda)| d\lambda = \varepsilon_n^2 \|\mathcal{P}_\xi\|_2^2 \lesssim \log n \cdot \|f\|_2^2,$$

we get

$$\|p^*\|_2 = \left\| \max_{1 \leq m \leq n} |p_m(x)| \right\|_2 \lesssim \sqrt{\log n} \cdot \|f\|_2$$

that proves the theorem.
6. Proof of corollaries

Lemma 6.1 ([7], Theorem 5.3.2). Let \(\{\phi_n(x)\} \) be an orthonormal system and \(w(n) \to \infty \) be a sequence of positive numbers. If an increasing sequence of indexes \(\{n_k\} \) satisfy the bound \(w(n_k) \geq k \), then the condition \(\sum_{k=1}^{\infty} a_k^2 w(k) < \infty \) implies the a.e. convergence of the sums \(\sum_{j=1}^{n_k} a_j \phi_j(x) \) as \(k \to \infty \).

Proof of Corollary 1.1. Consider the series
\[
\sum_{k=1}^{\infty} a_k p_k(x)
\]
with coefficients satisfying the condition \(\sum_{k=1}^{\infty} a_k^2 \log k < \infty \) and denote \(S_n = \sum_{k=1}^{n} p_k \). Since \(w(n) = \log n \) satisfies the condition \(w(2^k) \geq k \), from Lemma 4.4 we have a.e. convergence of subsequences \(S_{2^k}(x) \). So we just need to show that
\[
\delta_k(x) = \max_{2^k < n \leq 2^{k+1}} |S_n(x) - S_{2^k}(x)| \to 0 \text{ a.e. as } k \to \infty. \tag{6.1}
\]
We have
\[
\|\delta_k\|_2 \leq K_{2^k}(\mathcal{F}, \text{monotonic}) \left(\sum_{j=2^k+1}^{2^{k+1}} a_j^2 \right)^{1/2} \lesssim \sqrt{k} \left(\sum_{j=2^k+1}^{2^{k+1}} a_j^2 \right)^{1/2}.
\]
So we get
\[
\sum_{k=1}^{\infty} \|\delta_k\|_2^2 \leq \sum_{k=1}^{\infty} k \sum_{j=2^k+1}^{2^{k+1}} a_j^2 \leq \sum_{j=1}^{\infty} a_j^2 \log j < \infty,
\]
which implies (6.1). \(\square \)

To prove the next corollary we will need another lemma.

Lemma 6.2 ([18], [15]). Let \(u(n) \) be a C-multiplier for any rearrangement of an orthonormal system \(\Phi = \{\phi_n(x)\} \). If an increasing sequence of positive numbers \(\delta(n) \) satisfies the condition
\[
\sum_{k=1}^{\infty} \frac{1}{\delta(k) k \log k} < \infty, \tag{6.2}
\]
then \(\delta(n) u(n) \) turns to be a UC-multiplier for \(\Phi \).

Proof of Corollary 1.3. According to Corollary 1.1 \(u(n) = \log n \) is a C-multiplier for the systems of non-overlapping Franklin polynomials and their rearrangements. By the hypothesis of Corollary 1.3 the sequence \(\delta(n) = w(n) / \log n \) is increasing and satisfies (6.2). Thus, the combination of Corollary 1.1 and Lemma 6.2 completes the proof. \(\square \)

Proof of Corollary 1.4. The inequality (1.7) immediately follows from the upper bound \(||A_n, F||_{2 \to 2} \lesssim \sqrt{\log n} \) coming from Theorem 1.1. \(\square \)
7. Final remarks

All the new results formulated in this paper hold also for the Franklin system of periodic type \(\{ \tilde{f}_n(x), n = 1, 2, \ldots \} \). This system is similarly generated from the spaces \(\tilde{L}_n \). Namely, \(\tilde{f}_1(x) = 1 \), and for \(n \geq 2 \) we let \(\tilde{f}_n \) to be an \(L^2 \)-normalized function from \(\tilde{L}_n \), which is orthogonal to \(\tilde{L}_{n-1} \). The functions of the periodic Franklin system can be considered as continuous functions on \(\mathbb{T} \). So our method of proof of Theorem 1.1 can be directly applied to \(\tilde{g}_n(x) \) without any reconstruction in contrast to the classical Franklin system. Likewise (3.1) and (3.2) we have exponential estimates

\[
|\tilde{f}_n(x)| \lesssim \sqrt{nq^{nd(x,t_n)}}, \quad |\tilde{K}_n(x,t)| \lesssim nq^{nd(x,t_n)},
\]

where \(d(x,y) \) denotes the distance of two points \(x, y \in \mathbb{T} \) and

\[
\tilde{K}_n(x,t) = \sum_{k=1}^{2^n} \tilde{f}_k(x)\tilde{f}_k(t).
\]

One can check that all the lemmas proved in the Sections 3 and 4 hold with an absolutely same statements and proofs. One just need to redefine \(\Lambda_n = \tilde{L}_{2n-1} \) instead of \(\Lambda_n = \tilde{L}_{2^n} \) and remove the second term in the sum on the right hand side of (3.8). Thus one can conclude that Theorem 1.1 and Corollaries 1.1-1.4 hold also for the Franklin system of periodic type.

As an addition to Theorems C and D it also holds the following bound.

Theorem 7.1. For any \(1 < p < \infty \) the classical Haar system \(\mathcal{H} \) satisfies the relation

\[
\|A_{n,H}\|_{p \to p} \lesssim c_p \sqrt{\log n}.
\]

Proof. The proof is the same as that of Theorem 1.1. For \(f = \sum_{j=1}^{\infty} b_j h_j \in L^p \) we consider a sequence of functions \(p_k \prec f, k = 1, 2, \ldots, n \). Instead of (5.2) one needs to consider the function

\[
\mathcal{P}(x) = \sup_{1 \leq k \leq n} S(p_k)(x) \leq S(f)(x),
\]

where \(S \) is the square function (2.5) corresponding to \(\xi = 0 \). We have \(\|\mathcal{P}\|_p \leq c_p \|f\|_p \), according to the boundedness of the Haar square function operator on \(L^p \) (see [11], chap. 3). Then repeating the argument of the proof of Theorem 1.1 in \(L^p \) setting, we get the bound (7.1). \(\square \)

As a new result this bound provides the analogous of Corollary 1.4 for the classical Haar system. Namely,

Corollary 7.1. Let a function \(f \in L^2(\mathbb{T}) \) have Haar representation \(\sum_{k=1}^{\infty} a_k h_k \). Then for arbitrary sets of indexes \(G_k \subset \mathbb{N}, k = 1, 2, \ldots, n \) we have

\[
\left\| \max_{1 \leq m \leq n} \left| \sum_{j \in G_m} a_j h_j \right| \right\|_p \lesssim \sqrt{\log n} \cdot \|f\|_p.
\]
References

[1] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217–246, DOI 10.1007/BF02567411. MR800004

[2] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), 141–157, DOI 10.4064/sm-23-2-141-157. MR157182

[3] ________, Properties of the orthonormal Franklin system. II, Studia Math. 27 (1966), 289–323, DOI 10.4064/sm-27-3-289-323. MR203349

[4] Ciprian Demeter, Singular integrals along N directions in \mathbb{R}^2, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4433–4442, DOI 10.1090/S0002-9939-2010-10442-2. MR2680067

[5] G. G. Gevorkyan, On Weyl factors for the unconditional convergence of series in the Franklin system, Mat. Zametki 41 (1987), no. 6, 789–797, 889 (Russian). MR904246

[6] Loukas Grafakos, Petr Honzík, and Andreas Seeger, On maximal functions for Mikhlin-Hörmander multipliers, Adv. Math. 204 (2006), no. 2, 363–378, DOI 10.1016/j.aim.2005.05.010. MR2249617

[7] S. Kačmaž and G. Šteıngauz, Teoriya ortogonalnykh ryadov, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958 (Russian). MR0094635

[8] Grigori A. Karagulyan, On systems of non-overlapping Haar polynomials, Ark. Math. 58 (2020), no. 1, 121–131.

[9] ________, On Weyl multipliers of the rearranged trigonometric system, to appear in Math. Sb.

[10] ________, Sharp estimate for the norm of the majorant of rearranged trigonometric system, to appear in Russian Math. Surveys.

[11] B. S. Kashin and A. A. Saakyan, Orthogonal series, Translations of Mathematical Monographs, vol. 75, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by Ralph P. Boas; Translation edited by Ben Silver. MR1007141

[12] D. E. Menshov, Sur les series de fonctions orthogonales I, Fund. Math. 4 (1923), 82–105 (Russian).

[13] E. M. Nikišin and P. L. Ul'janov, On absolute and unconditional convergence, Uspehi Mat. Nauk 22 (1967), no. 3 (135), 240–242 (Russian). MR0212488

[14] A. M. Olevskiı, Divergent Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 343–366 (Russian). MR0147834

[15] S. N. Poleˇsˇ cuk, On the unconditional convergence of orthogonal series, Anal. Math. 7 (1981), no. 4, 265–275, DOI 10.1007/BF01908218 (English, with Russian summary). MR648491

[16] Hans Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), no. 1-2, 112–138, DOI 10.1007/BF01458040 (German). MR1512104

[17] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR1232192

[18] P. L. Ul'janov, Weyl multipliers for the unconditional convergence of orthogonal series, Dokl. Akad. Nauk SSSR 235 (1977), no. 5, 1038–1041 (Russian). MR0450886

Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian, 1, 0025, Yerevan, Armenia

E-mail address: g.karagulyan@ysu.am