ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is being overcome by widespread inoculation with various COVID-19 vaccines, but concerns about the safety of the vaccines are a major hurdle to widespread vaccination. We report the first case of adult-onset Still’s disease (AOSD) developing in a 36-year-old, previously healthy woman after the first dose of BNT162b2 mRNA COVID-19 vaccine (Pfizer). She visited our hospital due to high spiking fever and sore throat that developed 10 days after vaccination. Based on thorough investigations and changes in symptoms and signs after admission, she was diagnosed with AOSD and treated with high dose steroids and tocilizumab. This report suggests the possibility that AOSD could be triggered by COVID-19 vaccines through activation of the innate immune system.

Keywords: Adult-onset Still’s Disease; COVID 19 Vaccines; Innate Immune Response

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has been the major concern in most of the world since December 2019, which is being overcome by widespread inoculation with various COVID-19 vaccines. However, concerns about the safety of the COVID-19 vaccines are still a major hurdle to widespread vaccination due to insufficient safety data. Here, we report the first case of adult-onset Still’s disease (AOSD) in a patient after receiving the BNT162b2 mRNA COVID-19 vaccine (Pfizer).
edema on both hands and feet. Computed tomography (CT) of the neck, chest, abdomen and pelvis revealed splenomegaly (12.3 cm) and several mildly enlarged lymph nodes in the paraaortic and aortocaval spaces. Laboratory test showed white blood cell count 12,220/mm³, erythrocyte sedimentation rate 56 mm/hr, C-reactive protein 16.28 mg/dL, and ferritin 1,268 ng/mL. Rheumatoid factor (RF) and antinuclear antibody (ANA) were negative. Thorough investigations for infections including blood and urine cultures, malaria antigen test, leptospira antibody test, Hantaan virus antibody test, Orientia tsutsugamushi antibody test, and COVID-19 polymerase chain reaction test revealed no significant results. The daily high spiking fever reaching 39°C continued until hospital day 3, when she developed salmon pink colored, maculopapular rash on the trunk (Fig. 1A) as well as dyspnea that required oxygen supplementation. Follow-up chest radiograph and CT scan revealed newly developed bilateral pleural effusion and pericardial effusion (Fig. 1B and C) and the ferritin level rose from 1,268 ng/mL to 4,712 ng/mL. Based on the classification criteria for AOSD,¹ she was diagnosed with AOSD (fever, arthralgia, leukocytosis, sore throat, lymphadenopathy, splenomegaly, negative RF and ANA). Steroid pulse therapy (methylprednisolone 1,000 mg for 3 days) was tried initially, but only led to a brief resolution of fever. Then, we tried intravenous tocilizumab (8 mg/kg), which dramatically improved all the symptoms and laboratory abnormalities. She was discharged and is currently in good condition and the bilateral pleural effusion and cardiomegaly disappeared (Fig. 1D) 1 month after discharge.

![Fig. 1. Photograph (A), CT scan of the chest (B), and serial chest radiographs (C, D) of this case.](https://jkms.org)
DISCUSSION

To the best of our knowledge, this is the first reported case of AOSD occurring after receiving BNT162b2 mRNA COVID-19 vaccine. A case of flare-up of underlying AOSD after receiving the same vaccine was reported, but it dealt with a patient with an established disease of AOSD. There have also been reports of AOSD occurring after COVID-19 vaccination as well as COVID-19 and ChAdOx1 nCoV-19 vaccine. AOSD is a rare autoinflammatory disorder characterized by high spiking fever, rash, arthralgia or arthritis and multiple organ involvement. Although the exact pathogenic mechanism of AOSD is not fully understood, innate immune system activation, rather than adaptive immunity, is implicated in the pathogenesis of AOSD. Danger signals such as pathogen-associated molecular patterns or damage associated molecular patterns are transmitted to macrophages and neutrophils via Toll-like receptors (TLR) leading to overproduction of interleukin (IL)-1β, which ultimately results in intense innate immune cell activation and overproduction of several proinflammatory cytokines, called ‘cytokine storm’.

Similar to AOSD, most of the morbidity and mortality due to COVID-19 results from the ‘cytokine storm’ characterized by overproduction of proinflammatory cytokines due to intense activation of the innate immune system. Once severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host immune cell, the genomic ssRNAs and replicative dsRNA intermediates are recognized by cytosolic receptors including TLR 3, 7, 8 and ultimately activate the downstream inflammatory pathways via transcriptional factors such as nuclear factor kappa B and interferon regulatory factors 3, 7, which leads to overproduction of proinflammatory cytokines and hyperinflammation. Accordingly, AOSD was reported to occur after COVID-19. The occurrence of AOSD after BNT162b2 mRNA COVID-19 vaccination in this report could be a rare coincidence. However, there also are possible explanations and evidence for the relation between the two events. First, there is a close temporal relationship in this case. A substantial increase in humoral response against SARS-CoV-2 spike protein was noted 14 days after the first vaccine dose. There have also been many reports of AOSD occurring after receiving various vaccines including influenza, pneumococcal, hepatitis A and hepatitis B vaccine. Secondly, there is a possibility that the SARS-CoV-2 spike proteins induced by the vaccine might trigger the innate immune hyperactivation. SARS-CoV-2 spike proteins are also known to activate the immune system in COVID-19. Lastly, anti-IL-6 treatment was effective in this patient. IL-6 has been reported to have a pathogenic role both in AOSD and COVID-19 infection. Moreover, anti-IL-6 treatment has been shown to be effective in lowering the mortality of severe COVID-19 infection like in the case of AOSD, though the former needs to be clarified with high quality data in the future.
REFERENCES

1. Yamaguchi M, Ohta A, Tsunematsu T, Kasukawa R, Mizushima Y, Kashiwagi H, et al. Preliminary criteria for classification of adult Still's disease. J Rheumatol 1992;19(3):424-30.

2. Yamamoto S, Nishimura K, Yo K, Waki D, Murabe H, Yokota T. Flare-up of adult-onset Still's disease after receiving a second dose of BNT162b2 COVID-19 mRNA vaccine. Clin Exp Rheumatol 2021;39 Suppl 132(5):139-40.

3. Bamidis AD, Koehler P, di Cristanziano V, Rasche K, Demirel B, Bacher P, et al. First manifestation of adult-onset Still's disease after COVID-19. Lancet Rheumatol 2021;3(5):e319-21.

4. Leone F, Cerasuolo PG, Bosello SL, Verardi L, Fioni E, Coccioiillo F, et al. Adult-onset Still's disease following COVID-19 vaccination. Lancet Rheumatol 2021;3(10):e678-80.

5. Magliulo D, Narayan S, Ue F, Boulougoura A, Badlissi F. Adult-onset Still's disease after mRNA COVID-19 vaccine. Lancet Rheumatol 2021;3(10):e680-2.

6. Feist E, Mitrovic S, Fautrel B. Mechanisms, biomarkers and targets for adult-onset Still's disease. Nat Rev Rheumatol 2018;14(10):603-18.

7. Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther 2021;6(1):235.

8. Lustig Y, Sapir E, Regev-Yochay G, Cohen C, Fluss R, Olmer L, et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir Med 2021;9(9):999-1009.

9. Grasland A, Le Maître F, Pouchot J, Hazera P, Bazin C, Vinceneux P. Adult-onset Still's disease after hepatitis A and B vaccination? Rev Med Interne 1998;19(2):134-6.

10. Yoshioka K, Fujimoto S, Obs H, Minami M, Aoki T. Onset of adult-onset Still's disease following influenza vaccination. Mod Rheumatol 2011;21(4):432-5.

11. Sato T, Takeo N, Matsuda-Hirose H, Abe K, Nishida H, Hatano Y. Adult-onset Still's disease following pneumococcal vaccination. Eur J Dermatol. Forthcoming 2021. DOI: 10.1684/ejd.2021.4102.

12. Berardicurti O, Ruscitti P, Ursini F, D’Andrea S, Ciabò J, Meliconi R, et al. Mortality in tocilizumab-treated patients with COVID-19: a systematic review and meta-analysis. Clin Exp Rheumatol 2020;38(6):1247-54.

13. Ma Y, Wu M, Zhang X, Xia Q, Yang J, Xu S, et al. Efficacy and safety of tocilizumab with inhibition of interleukin-6 in adult-onset Still's disease: a meta-analysis. Mod Rheumatol 2018;28(5):849-57.