Transcriptomic resources and marker validation for diploid and polyploid Veronica (Plantaginaceae) from New Zealand and Europe

EIKE MAYLAND-QUELHHORST1,2, HEIDI M. MEUDT2,3, AND DIRK C. ALBACH2

1 Carl-von-Ossietzky Universität Oldenburg, Carl-von-Ossietzky Straße 9–11, Oldenburg 26111, Germany; and 2 Museum of New Zealand Te Papa Tongarewa, Cable Street, P.O. Box 467, Wellington 6140, New Zealand

• Premise of the study: Polyploidy may generate novel variation, leading to adaptation and species diversification. An excellent natural system to study polyploid evolution in a comparative framework is Veronica (Plantaginaceae), which comprises several parallel, recently evolved polyploid series.

• Methods: Over 105 million Illumina paired-end sequence reads were generated from cDNA libraries of leaf tissue from eight individuals representing three European and four New Zealand species. Forty-eight simple sequence repeat (SSR) and 48 low-copy nuclear (LCN) markers were developed and validated with Fluidigm microfluidic PCR and Illumina MiSeq amplicon sequencing on 48 different individuals each.

• Results: Individual Trinity assemblies were similar regarding annotated transcripts (13,009–14,271), mean contig length (635–742 bp), N50 value (916–1133 bp), E90N50 value (1099–1308 bp), contigs with positive BLAST hits (42–63%), and gene ontology terms. Analyses of 29,738 single-nucleotide polymorphisms (8746 phylogenetically informative) mined from these transcriptomes plus two outgroups (Picrorhiza kurrooa and Plantago ovata) showed moderate to high bootstrap support for all branches and reticulation among sampled European Veronica.

• Discussion: The transcriptome sequences themselves, as well as the validated SSR (40/48) and LCN (11/48) markers derived from them, show inter- and intraspecific genetic variation. These resources will be invaluable for future population genetic, phylogenetic, and functional genetic investigations in polyploid Veronica.

Key words: low-copy nuclear (LCN) markers; polyploidy; simple sequence repeat (SSR) markers; single-nucleotide polymorphisms (SNPs); transcriptome; Veronica.

Polyploidy (whole genome duplication) is a very important process that has shaped flowering plant evolutionary history (Solitis et al., 2009). Much progress in the study of polyploid evolution has been made in the past two decades regarding both ancient paleopolyploidization (Doyle et al., 2008; Solitis et al., 2009) as well as very recent neopolyploidization (Buggs et al., 2009; Abbott et al., 2013). An important research gap (Solitis et al., 2009) is understanding polyploids of intermediate age that have diploid ancestors in the same genus, so-called mesopolyploids, which are characterized by diploid-like reproduction but whose parental subgenomes are still discernible (Mandáková et al., 2010).

Several mesoallopolyploid crop systems (e.g., cotton, soybean, tobacco, wheat) are becoming well understood and have excellent genetic resources; however, understanding natural systems is also important. Specifically, studying natural mesopolyploid species radiations may be key to understanding the importance of polyploidy in angiosperm diversification (Solitis et al., 2009). Recent plant species radiations are a significant contributor to generating plant biodiversity, and evidence suggests that polyploidy has played an important role in these radiations (Mayrose et al., 2011). Many fundamental and biologically interesting questions regarding polyploidy and diversification in plants are yet to be investigated in such systems (Doyle et al., 2008; Solitis et al., 2009; Mayrose et al., 2011).

The large, nearly cosmopolitan genus Veronica L. (Plantaginaceae) comprises approximately 450 species of annual and perennial herbs, shrubs, and small trees with centers of diversity in both Eurasia and New Zealand. The genus is an excellent example of a natural mesopolyploid (∼20 million years old) system comprising multiple lineages, including several recent species radiations, in which polyploidy and hybridization have accompanied diversification (Albach et al., 2008; Meudt et al., 2015). Northern Hemisphere Veronica species are diploids or polyploids with chromosome numbers ranging from 2n = 14–80 and base numbers of x = 6–9 and 17 (Albach et al., 2008). By contrast, Southern Hemisphere species—which evolved as a single lineage from Northern Hemisphere ancestors ∼10 million years ago (Wagstaff et al., 2002; Albach and Meudt, 2010; Meudt et al., 2015)—all have high chromosome numbers (2n = 40–124) with base chromosome numbers of x = 20 or 21 (Albach et al., 2008).
Several studies focusing on *Veronica* in both hemispheres have used standard DNA sequencing and amplified fragment length polymorphism (AFLP) fingerprinting techniques to elucidate patterns of relationship from phylogeography (Meudt and Bayly, 2008) to phylogeny of the genus as a whole (Wagstaff et al., 2002; Albach and Meudt, 2010; Meudt et al., 2015) or of particular polyploid complexes (e.g., Albach, 2007), and used these to infer the evolution of chromosome number, genome size, breeding systems, and habit (Albach and Greilhuber, 2004; Albach et al., 2008; Meudt et al., 2015). Nevertheless, a lack of variable genetic markers using standard DNA sequencing and genotyping techniques, and a lack of appropriate phylogenetic analysis methodologies that can incorporate reticulate evolution and allopolyploids, have hampered further progress in studies of *Veronica* and polyploid evolution at the population, species, and generic levels.

It has been known for some time that low-copy nuclear (LCN) markers can be extremely useful for phylogenetic reconstruction at the genus (interspecific) level, including for elucidating the evolutionary history of polyploids, for which standard uniparental DNA sequencing markers from chloroplast DNA or the internal transcribed spacer (ITS) region are not informative (e.g., Sang, 2002). Apart from LCN markers, microsatellites or simple sequence repeat (SSR) markers are useful for closely related species when traditionally genotyped and analyzed for studies at the infrageneric level, but SSRs and their flanking regions may also be useful as phylogenetic markers when high-throughput sequenced (Chatrou et al., 2009; Germain-Aubrey et al., 2016). This, however, requires new bioinformatic tools such as the workflows MarkerMiner (Chamala et al., 2015) and QDD (Meglécz et al., 2014) for the development of LCN and SSR markers, respectively, using genomic and transcriptomic resources.

High-throughput de novo transcriptome sequencing, or RNA-Seq, has proven to be an excellent source of genetic data for gene characterization and marker development in studies of natural systems with little or no additional genetic resources available (Strickler et al., 2012; Alvarez et al., 2015), as is the case for *Veronica*. The benefits of RNA-Seq are simultaneous characterization of genes and gene expression, reduced representation for large, complex genomes, and the generation of large amounts of sequence data without a reference genome. RNA-Seq also presents its challenges, particularly assembly without a reference genome, and assembly of polyploid genomes. Polyploid transcriptome assembly is an active area of research. A major issue is the differentiation of homoeologs from orthologs. Some studies have tested different pipelines, such as combining multiple k-mer assemblies in polyploid wheat (Krasileva et al., 2013), or combining assemblies from different assemblers and then using a second step to cluster redundant contigs in polyploid tobacco (Nakasugi et al., 2014). However, there are few examples to date of comparisons in natural, noncrop systems with few prior genomic resources. To date, there are no clear answers regarding which assembler, combination of assemblers, or assembly pipeline is best for polyploids and their diploid progenitors or close relatives.

The aim of our study was, therefore, twofold. First, we aimed to generate transcriptomic data for *Veronica*; second, we aimed to use these transcriptomic resources to develop and validate phylogenetically informative sequencing markers. Specifically, in this paper, we generate the first transcriptome resources for the genus *Veronica*, using short-read Illumina HiSeq 2000 (Illumina, San Diego, California, USA) sequencing of eight individuals representing seven species and five different ploidy levels. We then assemble, identify, and broadly characterize and compare a large number of expressed sequences. Single-nucleotide polymorphisms (SNPs) are mined from transcriptomes of these eight individuals plus those of two additional Plantaginaceae outgroups (*Plantago ovata* Forssk. and *Picrorhiza kurrooa* Royle ex Benth., available from public databases) and compared using phylogenetic and network analyses. Secondly, we used the transcriptomic data to discover, design, and develop two types of genetic markers (i.e., LCN and SSR markers). To test the success of our approach, we then used microfluidic PCR and Illumina MiSeq to validate 48 loci in 48 individuals for both LCN and SSR markers. We provide examples of sequence alignments and downstream phylogenetic analyses for representative loci showing their potential phylogenetic utility in *Veronica* when resequenced with high-throughput sequencing. The resource and marker development of the current study provide new, variable markers for future evolutionary studies of the genus. Furthermore, a parallel study currently underway will further examine assembly methods and analyze the transcriptomes themselves to quantify and compare underlying interspecific gene divergence and investigate the timing and mode of polyploidy in the sampled *Veronica* polyploids and their close relatives (Meudt et al., unpublished data). The current study is thus a critical first step toward ultimately understanding the role of polyploidy in generating novel genetic and morphological variation that leads to adaptation and species diversification (Doyle et al., 2008; Soltis and Soltis, 2009).

MATERIALS AND METHODS

RNA extraction, cDNA library prep, and Illumina sequencing—We sampled leaf tissue from seven greenhouse-grown individuals and from one field-collected individual representing seven species of two polyploid complexes in *Veronica* from New Zealand and Eurasia with three ploidy levels each (Appendix 1). The field-collected material was stored at −80°C on RNA Later (Life Technologies, Carlsbad, California, USA). Because we wanted to take a broad approach to analyze polyploidy in *Veronica* and develop markers for the entire genus, we sampled multiple species in two divergent lineages, rather than multiple individuals per species. Cultivated plants were grown in the same greenhouse in Oldenburg, Germany. Leaf material was harvested and placed directly into tubes with liquid nitrogen, stored at −80°C until extraction, and ground to a powder with a prechilled mortar and pestle while adding liquid nitrogen. RNA was extracted using the RNAeasy kit (QiAGEN GmbH, Hilden, Germany) following manufacturer’s instructions using 500 μL RLC buffer with 4% PVP and 1% β-mercaptoethanol. A DNase I digest and RNase inhibitor reaction was performed using 0.5 μL (20 units) RNase inhibitor, 6.0 μL 10x DNase I buffer, and 1.0 μL DNase I to the resulting 60 μL RNA extract and incubated at 37°C for 15 min. Then, 2.6 μL EDTA (0.2 M, pH = 8; final conc. 8 mM) was added. incubated for 10 min at 75°C, and the RNA was reprecipitated by adding 1:10 3 M sodium acetate, 2.5 volume 100% ethanol, centrifuging at 10,000 g for 20 min. centrifuging at full speed for 5 min, washing with 100 μL 75% ethanol, centrifuging at full speed, air-drying the resultant pellet for 10–15 min, redissolving in 25 μL RNA-free water, and storing at −80°C. Small aliquots of raw RNA extract and the reprecipitated RNA extract were run on the Teco Infiniti Pro F200 (Teco, Crawley, Germany) and Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) to measure RNA quality and quantity. RNA from eight individuals with RNA Integrity Number (RIN) of 6.8 or greater, 260:280 ratio between 1.9–2.1, and at least 50 ng/μL (Appendix 1) were sent to BGI (BGI-Hong Kong Co. Ltd, Hong Kong, China) for Illumina TruSeq cDNA library preparation on normalized RNA and high-throughput Illumina HiSeq 2000 100- bp paired-end de novo transcriptome sequencing. The transcriptomic data generated here are publicly available in the National Center for Biotechnology Information (NCBI) Sequence Read Archive for submission SRP074674 and the Trinity assemblies in the NCBI Transcriptome Shotgun Assembly Sequence Archive (Table 1; http://www.ncbi.nlm.nih.gov/sra/SRP074674).

http://www.bioone.org/loi/apps
Table 1: Information about Illumina sequencing reads and Trinity assemblies for the eight individuals of Veronica sampled

Species (Phylogeny)	Geography	SRA accession	TSA accession	No. (clean reads)	No. of contigs (Trinity)	NCBI value (median contig length)	Mean contig length	N50 value (median contig length)	E90N50 value (computed with the collapseDuplicateCount.sh)	MapMan hierarchical categories (Ath_AGI_LOCUS_TAIR10_Aug2012)	MapMan store	Number of LCN markers detected in MarkerMiner	BLAT with positive BLAST hits	
Veronica catarractae (6x)	New Zealand	SAMN00966311/GEVY00000000	GEYS00096631/GEVY00000000	23,711,074	66,671	69,950	73,820	61,752	1118-741,642	916-633,493	1131-1708,759	992 (671,041)	24,385,504	73,889
V. planopetiolata (12x)	New Zealand	SAMN00966311/GEVY00000000	GEYS00096631/GEVY00000000	24,385,098	64,950	70,255	73,820	61,752	1118-741,642	916-633,493	1131-1708,759	992 (671,041)	24,385,504	73,889
V. ochracea (18x)	Europe	SAMN00966311/GEVY00000000	GEYS00096631/GEVY00000000	25,055,264	73,820	75,255	73,820	61,752	1118-741,642	916-633,493	1131-1708,759	992 (671,041)	24,385,504	73,889
V. panormitana (2x)	Europe	SAMN00966311/GEVY00000000	GEYS00096631/GEVY00000000	29,050,110	61,451	68,598	68,598	46,573	1118-741,642	916-633,493	1131-1708,759	992 (671,041)	24,385,504	73,889
V. trichadena (18x)	Europe	SAMN00966311/GEVY00000000	GEYS00096631/GEVY00000000	24,209,390	64,451	68,598	68,598	46,573	1118-741,642	916-633,493	1131-1708,759	992 (671,041)	24,385,504	73,889
V. cymbalaria (6x)	Europe	SAMN00966311/GEVY00000000	GEYS00096631/GEVY00000000	24,490,360	73,820	75,255	73,820	61,752	1118-741,642	916-633,493	1131-1708,759	992 (671,041)	24,385,504	73,889

Note: GO = gene ontology; LCN = low-copy nuclear; SRA = Sequence Read Archive; TSA = Transcriptome Shotgun Assembly.

*a Sequence Read Archive (SRA) accession numbers for SRA submission SPR074674 (http://www.ncbi.nlm.nih.gov/sra/SRP074674).

*b BLAT search with MapMan categories.

*c Number of LCN markers detected in MarkerMiner (Chamala et al., 2015), contigs longer than 600 bp.

** MarkerMiner 1.0 [Chamala et al., 2015].

Quality control, preprocessing of reads, assembly, and Blast2GO analyses

The following analyses were carried out on each of the eight individuals sequentially. Demultiplexed Illumina sequencing results were retrieved in FASTQ format via FTP from BGI. Between 12.5 and 13.5 million paired-end reads were generated per individual in both the forward and reverse directions (Table 1), from which single reads, adapters, and reads with a quality score (QC) cutoff of less than 20 had already been removed. After testing the effect of different QC cutoffs on the resulting sequence reads and assemblies of *V. trichadala* and *F. Fourr.,* we used QC = 40 in the bash script TrimClip.sh (De Wit et al., 2012) to remap reads with QC < 40. Reads were screened for contaminating sequences from *H. sapiens, E. coli,* mtDNA, and cpDNA using mirabait (MIRALIB version 4.0; Chevreux et al., 1999) with default settings, the respective databases downloaded from NCBI, and then removed. We used QualityStats (De Wit et al., 2012) and the Galaxy web interface (Afgan et al., 2016) to summarize quality scores, nucleotide distribution data for the forward and reverse reads, CollapseDuplicateCount.sh (De Wit et al., 2012) to calculate the fraction of duplicate reads and singletons, PECCombibiner.sh (De Wit et al., 2012) to remove orphan reads and put remaining reads in the same order in forward and reverse files, and the Velvet helper script shuffleSequences_fastQ.pl to put those two files together in one interleaved file (necessary for Velvet/Oases assembly). The resulting clean sequence reads were assembled de novo using several different assemblers including Trinity, trans-ABySS, SOAPdenovo-Trans, and Velvet/Oases. Relative to the other assemblers, Trinity produced more hits with >80% similarity to contigs >600 bp against Arabidopsis thaliana (L.) Heynh. (data not shown; comparisons done using MarkerMiner 1.0 (Chamala et al., 2015)). Therefore, we chose the de novo assemblies produced using Trinity version r20140717 (Grabherr et al., 2011, compiled for 64-bit Ubuntu) using default settings on the resulting clean sequence reads. For the purposes of marker development, a highly accurate discrimination of homoeologs in polyploids is not necessary at the transcriptome assembly stage, as the discrimination is done in the second resequencing step. Additional comparisons of different assemblers and assembly pipelines, particularly regarding polyploid transcriptomes, were outside the scope of the current study and will be addressed in a subsequent study (Meudt et al., unpublished data). Trinity assemblies of all four New Zealand, all four European, and all eight Veronica individuals were also made. Table 1 shows information about the sequence reads and statistics from the eight different individual Trinity assemblies. Functional annotation of contigs from the different assemblies was conducted using BLAT (Kent, 2002) with default settings against the TAIR database (version 10 represented gene model from 2011-01-03; Lamesch et al., 2012) and MapMan hierarchical categories (Ath_AGI_LOCUS_TAIR10_Aug2012: http://mapman.gabipd.org/web/guest/mapmanstore). Mean contig length ranged from 635–742 bp, N50 value (median contig length) from 73,720 to 73,820, E90N50 value from 1099–1307 bp (which is computed with the refN50_statistic.pl script of the Trinity package and represents the N50 of 90% of the expressed transcripts), and number (and percentage) of contigs with positive BLAST hits from 24,583–39,915 (42–63%). To demonstrate the quality and utility of the transcriptomic resources developed here, we compared the transcriptome sequences of our eight sampled individuals relative to each other and to two outgroup species, *Picrorhiza kurrooa* (http://scbb.ihbt.res.in/Picro_information/; SRR392742; Gahlan et al., 2012) and *Plantago ovata* (SRR629688; Kotwal et al., 2016). To do this, we mined the data from these 10 individuals for SNPs using Site Identification from Short Read Sequences (SISRS) version 1.0 (Schwart et al., 2015; https://github.com/rachels/SISRS/releases). SISRS identifies SNPs for phylogenetic studies directly from raw high-throughput sequence data without a reference genome and without a priori knowledge of potentially informative loci. Briefly, SISRS first assembles raw sequence reads into a “composite genome” using Velvet, maps the raw reads and individual contigs against this composite genome with Bowtie 2, and then calls SNPs with a Python script (Schwart et al., 2015). SNP discovery was performed using SISRS on four different data sets: (1) all eight Veronica individuals combined plus *P. kurrooa* and *P. ovata* as outgroups, (2) all eight Veronica individuals only, (3) the four New Zealand individuals only, and (4) the four European individuals only. The SNP data were converted to Nexus format and analyzed using NeighborNet networks (SplitsTree version 4.14.2; Huson and Bryant, 2006). In addition, GARLI version 2.01.067 (Zwickl, 2006) was used for phylogenetic tree reconstruction under maximum likelihood. We first performed a GARLI run with 10 replicates to estimate the parameter values for the model of evolution with the ModelTest version 2.1.5 (012010F; Drrrha et al., 2012) [setting ratematrix = a b c a b a a statefrequencies = estimate]; six of the 10 replicates had the same best lnL score. These estimated model parameters were then fixed for a bootstrap analysis, which was performed with 1000 replicates [parametervaluestring = M1 r 1.000000 7.301633 1.614222 1.000000 7.301633 1.000000 0.272331 0.22561 0.22541

http://www.biocon.org/loi/apps

3 of 24
Marker development—Two different types of markers were developed from the *Veronica* transcriptome resources generated here, LCN and SSR markers.

Low-copy nuclear markers—MarkerMiner was used with default settings to identify LCN markers from a curated set of conserved ortholog set (COS) loci (De Smet et al., 2017). MarkerMiner was developed and tested using transcriptome assemblies from 77 Lamiales species (including six from Plantaginaceae; Chamala et al., 2015), and uses a reciprocal BLAST of all transcriptomes with one another and to the reference *A. thaliana* genome. *Arabidopsis thaliana* (Brassicales) is the phylogenetically closest reference available in MarkerMiner to *Veronica* (Lamiales). Of the 1228 loci returned, 73 were classified as being “strictly” and 1155 as “mostly” single copy. MAFFT alignments of the 330 loci found in six or more individuals, of which 15 were “strictly” and 314 “mostly” single copy, were used to develop primers in Geneious (version 8.7) with Primer3 (Untergasser et al., 2012), aiming for a melting temperature of 60°C. Loci were checked manually for large introns in *Geneious* by comparing the MarkerMiner alignment to *A. thaliana*. We chose 13 “strictly” single-copy loci with a successful primer search and 35 additional “mostly” single-copy loci with successful primer searches such that all five *A. thaliana* chromosomes were equally represented in this marker set. These 48 loci were validated using Fluidigm microfluidic PCR and Illumina MiSeq amplicon sequencing of 48 individuals representing 20 Australasian species and one interspecific hybrid (Appendix 2). The combination of this technique with Illumina MiSeq amplicon sequencing of 300-bp paired-end reads has proven useful and highly efficient in recent studies for development of novel and effective nuclear sequencing markers and improving understanding of phylogenetic relationships in nonmodel genera (Gostel et al., 2015; Uribe-Convers et al., 2016).

Simple sequence repeats—Numerous SSRs were identified from Trinity assemblies of the New Zealand individuals only using QDD version 3.1 (Meglécz et al., 2014; Table 1). Settings for the search were a length of 250–350 bp of the locus and primer melting temperatures of 59–61°C. After filtering for quality (taking QDD categories A and B), repeats (removing dinucleotides for example), and length of predicted PCR product, 48 loci were chosen from the 1124 potential SSRs with primer sites found by QDD. These were validated using Fluidigm microfluidic PCR and Illumina MiSeq amplicon sequencing (see above) of 48 individuals representing 20 Australasian species and one interspecific hybrid (Appendix 3). For each SSR marker, which included the SSR repeat area and flanking regions, resulting sequences were analyzed in the same way as the LCN data (see above) and examined in Geneious and GARLI regarding SSR motif, sequence length, number of individuals successfully sequenced, number of alleles sequenced, and pairwise genetic distance. In addition, for one randomly chosen example SSR locus, the alignment was exported to GARLI and a phylogeny was reconstructed using the same settings as described above for SNPs.

RESULTS

Transcriptomes—Functional annotation of individual assemblies was similar for each of the eight individuals, with gene ontology (GO) terms assigned to 13,009–14,271 contigs (19–33%; Table 1). There was large overlap of annotated contigs of the different assemblies whether looking at assemblies of individuals of New Zealand species only (26,524 or 89.4% shared annotated contigs; Fig. 1A), European species only (25,456 or 87.8%; Fig. 1B), or all New Zealand vs. all European species (29,839 or 94.3%; Fig. 1C). On the other hand, individual species had 114–453 (0.4–1.6%) unique annotated contigs relative to other species from the same geographical area, and

![Fig. 1](http://www.bioone.org/loi/apps) Venn diagrams showing the number of annotated contigs from the *Veronica* Trinity assemblies. (A) Four New Zealand individuals. (B) Four European individuals. (C) All New Zealand vs. all European individuals.
the numbers for New Zealand and European species were comparatively very similar (compare Fig. 1A and 1B). Within the New Zealand species, V. hectorii Hook. f. and V. ochracea (Ashwin) Garn.-Jones shared the most unique annotated contigs (234 or 0.8%) relative to the other five species pairs, whereas V. catarractae G. Först. and V. ochracea shared the fewest (110 or 0.4%; Fig. 1A). Within the European species, the species pair with the most unique shared annotated contigs was V. panormitana Tineo ex Guiss. (2x) and V. cymbalaria Bodard (6x) (238 or 1.1%), whereas the two diploids V. panormitana and V. trichadena shared the fewest (53 or 0.2%) (Fig. 1B).

GO term results were also very similar; of 35 GO categories, the number of unique transcripts were largely overlapping for all species pairs, as is shown for the most divergent species pair of the eight transcriptomes sequenced (i.e., New Zealand V. hectorii vs. European V. panormitana; Fig. 2). The GO categories with the largest numbers of unique transcripts (ca. 500–3000) for these Veronica leaf transcriptomes were (from highest to lowest) “not assigned,” “proteins,” “RNA,” “signaling,” “transcription,” “mRNA,” “cell,” and “DNA” (Fig. 2A).

SNP discovery using SISRS resulted in the following number of SNPs and potential PICs: 10-individual data set (29,738 SNPs, 8746 PICs), eight Veronica individuals only (45,751 SNPs, 4021 PICs), four New Zealand individuals only (41,167 SNPs, 2302 PICs), and four European individuals only (65,278 SNPs, 1735 PICs). When the 10-individual data set was analyzed using SplitsTree (Fig. 3A–C), the NeighborNet network clearly showed a main split between all New Zealand species, V. hectorii (New Zealand hexaploid, ○) based on the larger similarity with that species compared with V. trichadena (Fig. 1; 328 vs. 132 unique annotated contigs).

Marker development

Low-copy nuclear markers—A range of 3–44 (average: 23.4, median: 22) of 48 individuals were successfully sequenced for each of the 48 loci, with 22 of 48 (46%) loci successfully amplifying in at least 24 (>50%) individuals (Appendix 4). For each individual, 4–40 loci were successfully amplified (average: 23.4, median: 21.5), and again less than half of the individuals (22/48, 46%) had successful amplification of at least 25 (>50%) loci (data not shown). Only one-quarter (11/48) of the loci aligned well with the corresponding transcript; these loci had mean lengths of 327–480 bp, contained large numbers of SNPs and PICs, and BLASTed to known A. thaliana genes (Appendix 4).

Figure 4 shows an alignment and GARLI tree of sequences from 22 of the 42 individuals successfully sequenced for one randomly chosen example locus, LCN-04 (two outgroups plus 10 European and 10 New Zealand Veronica individuals/species). Nearly twice as many different sequences were generated for the 10 New Zealand individuals shown here (27 sequences; 6x or 18x, “V. townsonii E6 18" to “V. melanocaulon D5 11” in the tree) relative to the 10 European individuals (14 sequences; 2x or 4x, “V. missurica E2 13” to “V. chamaedrys C3 10”). Of the 10 New Zealand individuals, five have only one sequence and are all in the same clade (V. albitflora (Pennell) Albach, V. cupressoides Hook. f., V. densifolia F. Muell., V. lavaudiana Raoul, and V. senex (Garn.-Jones) Garn.-Jones), whereas the other five have 2–8 sequences that fall into the first clade or one
of two other clades (Fig. 4). As another example highlighting the low-copy nature of the loci that were sequenced, locus LCN-38 has two orthologous copies, which is expected due to the categorization of the *A. thaliana* gene AT3G59380 as “mostly” single copy (data not shown; comparisons done using MarkerMiner 1.0 [Chamala et al., 2015]). Additional phylogenetic analyses of the other LCN loci are outside the scope of this study and will be performed elsewhere (Meudt et al., unpublished data).

Simple sequence repeats—Overall, 3–47 (mean: 37.7, median: 44.5) of 48 individuals were successfully sequenced for each of the 48 SSR loci, including 40 of 48 loci that were successfully sequenced for at least 26 (>50%) individuals (Appendix 3). For each individual, 0–43 loci were successfully sequenced (average: 37.7, median: 40), with all but two individuals with at least 29 (>60%) loci successfully sequenced (individuals *V. catarractae* B1 and *V. colostylis* H3 failed for all 48 and 40 loci, respectively). In general, sequences ranged from 98–851 bp in length (average: 324) and contained one or more length- and/or sequence-variable SSR motifs as well as flanking SNPs and indels within and among individuals (e.g., Fig. 5). Number of sequenced alleles (which are supported by at least 10 raw sequencing reads) per individual ranged from 1–39 (mean: 4.32, median: 3.0, n = 47), with the lower polyploids having fewer alleles than the higher polyploids (6x, mean: 3.96, n = 37; 12x, mean: 5.25, n = 5; 18x, mean: 6.09, n = 5).

As the focus of SSRs is often population genetics, we analyzed two subsets of the larger SSR data set in more detail, i.e., eight individuals of *V. chionohebe* Garn.-Jones (4), *V. trifida* Petrie (2), and their interspecific hybrid (2) (all 2n = 42) (Appendix 5), and six individuals of *V. thomsonii* Cheeseman (2n = 42), respectively (Appendix 6). For all loci in the two subsets, sequences were on average of 317–327 bp, with 1–26 alleles (mean: 4.0–4.3), 54–80 SNPs, and 41.7–52.5 PICs (see “Totals” rows in Appendix 5 and 6). Figure 5 shows an alignment of 54 different SSR sequences from one locus (SSR-08) of the eight-individual *V. chionohebe/V. trifida* subset. In loci SSR-08, the sequences ranged from 311–387 bp (average: 357 bp). The sampled individuals had on average 6.8 alleles, and individuals of *V. chionohebe* had half as many unique alleles (3–6 each) as individuals of *V. trifida* and the interspecific hybrid (8–10). The sequences of locus SSR-08 were highly variable (note the many colored bars in the alignment in Fig. 5), with 126 SNPs and 109 PICs, and 0–0.14 pairwise genetic distances (mean and median: 0.08) (Appendix 5). In the phylogenetic tree, there is support for some taxonomic clustering of sequences of *V. chionohebe* and *V. trifida*, respectively, with hybrid sequences in highly supported clades with *V. chionohebe* or *V. trifida* in three vs. four cases, respectively (see tree in Fig. 5). Additional analyses of the other SSR loci are outside the scope of this study and will be performed elsewhere (Meudt et al., unpublished data).

DISCUSSION

The development of transcriptomic and genomic resources and variable genetic markers in so-called natural “mesopolyploid” species radiations is key to addressing fundamental questions about polyploidy and diversification. For polyploids, functional genomic resources in particular are important to facilitate the study of gene evolution. *Veronica* is an example of a natural mesopolyploid species radiation that to date has lacked such genomic and genetic resources, and this has hindered progress in studying polyploid evolution at the population, species, and generic levels. The transcriptomic and genetic resources developed here will make further detailed studies regarding the role of polyploidy in adaptation and species diversification in *Veronica* possible.

In the current study, we sequenced and assembled leaf transcriptomes from eight individuals representing seven species of *Veronica* from polyploid species radiations in Europe and New Zealand. There was high overlap of annotated contigs (Fig. 1) and GO terms (Fig. 2) among the eight individuals, as well as good phylogenetic resolution in the network and phylogenetic analyses of SNPs generated using SISRS (Fig. 3). An outstanding challenge with de novo transcriptome assemblies of polyploids...
is differentiating homoeologs from orthologs; however, this was not an issue for developing markers in polyploid Veronica from our transcriptome assemblies, as phylogenetic relationships (Fig. 3) are consistent with hypothesized relationships and previous phylogenetic results. Such results demonstrate the utility of these transcriptomic resources for phylogenetic studies, functional analyses across the genus using reverse transcription PCR, or for further comparative transcriptomic analyses of the sampled natural allopolyploids and their diploid parental species in the two main centers of diversity for Veronica (i.e., Europe and New Zealand). The large number of transcripts unique to hexaploid V. cymbalaria (453) relative to other individuals representing species from which it likely derived (V. trichadena: 114 and V. panormitana: 256) is surprising and opens the door to studies of differential expression and functional differentiation of genes in polyploids. Common garden experiments are also planned, which will allow comparison of other individuals with the eight sequenced here.

Furthermore, the SSR and LCN genetic markers developed here from the transcriptomes, and validated using microfluidic PCR and high-throughput sequencing, are highly variable and will be extremely useful in future phylogenetic studies of Veronica, as a whole, as well as studies at the interface of intra- and interspecific levels regarding questions of population genetics, species limits, and relationships of closely related species in New Zealand Veronica. Additionally, challenges presented by genotyping SSRs in polyploids, such as determining allele dosage and unambiguously identifying alleles (Pfeiffer et al., 2011), are overcome by sequencing the SSRs and their flanking regions, which we would recommend for future sequencing markers (as opposed to being genotyped) at the interface of intra- and interspecific levels regarding questions of population genetics, species limits, and relationships of closely related species in New Zealand Veronica. In addition, of the 1124 SSRs identified in the four New Zealand Veronica individuals, we validated 48 in 48 Southern Hemisphere Veronica individuals, 40 of which were successfully sequenced for >50% of individuals. Sequenced SSRs and their flanking regions were on average 324 bp long, contained numerous SNPs and PICs, and had mean pairwise genetic distances of 0.01–0.18. The variation seen, particularly in the flanking regions of the sequenced SSRs, is equal to or much greater than that from previous studies using standard DNA sequencing techniques of the sequenced SSRs, is equal to or much greater than that from previous studies using standard DNA sequencing and genotyping markers (e.g., Wagstaff et al., 2002; Meudt and Bayly, 2008). These 40 SSRs have great potential as highly variable sequencing markers (as opposed to being genotyped) at the interface of intra- and interspecific levels regarding questions of population genetics, species limits, and relationships of closely related species in New Zealand Veronica. In addition to the potential advances for Veronica, our methodological approach may also be useful for other natural polyploid groups that lack genomic or genetic resources. Natural species that are not associated with economically important crop or other "model" species often lack genomic resources and are very limited regarding the availability of variable genetic markers. Furthermore, developing and establishing such markers using

http://www.bioone.org/loi/apps
and MiSeq amplicon sequencing of LCN and SSR markers, which were designed in MarkerMiner and QDD from transcriptomic data, is a relatively straightforward high-throughput marker validation method as well as an analysis pipeline that can be used on other natural (and polyploid) systems.

LITERATURE CITED

Abbott, R. J., D. C. Albach, S. W. Ansell, J. W. Arentzen, S. J. E. Baird, N. Bierne, J. Bougman, et al. 2013. Hybridization and speciation. Journal of Evolutionary Biology 26: 229–246.

AfGan, E., D. Baker, M. van den Beek, D. Blankenberg, D. Bouvier, M. Čech, J. Chilton, et al. 2016. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research 44: W3–W10.

Albach, D. C. 2007. Amplified fragment length polymorphisms and sequence data in the phylogenetic analysis of polyploids: Multiple origins of Veronica cymbalaria (Plantaginaceae). New Phytologist 176: 481–498.

Albach, D. C., and J. Greilhuber. 2004. Genome size variation and evolution in Veronica. Annals of Botany 94: 897–911.

Albach, D. C., M. M. Martínez-Ortega, L. Delgado, H. Weiss-Schneeweiss, F. Özgökcé, and M. A. Fischer. 2008. Chromosome numbers in Veronicaceae (Plantaginaceae): Review and several new counts. Annals of the Missouri Botanical Garden 95: 543–566.

Fig. 5. MAFFT alignment and GARLI phylogenetic tree (visualized in Geneious) of 54 sequences for a subset of eight New Zealand Veronica individuals of V. chionohebe, V. trifida, and their interspecific hybrid from two South Island locations from sequences of SSR locus SSR-08 mined using QDD from Trinity assemblies of leaf transcriptome data. Consensus and identity sequences are shown at the top. Base pairs that are identical to the consensus are shown in gray, whereas SNPs are shown as colors (red = A, blue = C, green = T, yellow = G, black = N). Each of the eight individuals has a unique color: three individuals of V. chionohebe (orange, red, and brown), two of V. trifida (blue, pink), and two of their hybrid (light and dark green). For each sequence in the alignment, species names are followed by location (Garvie Mountains or Pisa Range), sequencing plate location (A5, B5, C4, D4, E4, F4, G4, or H4), and number of sequence reads supporting that allele (range: 12–187). Green branches in the GARLI tree to the left of the individual names have >80% bootstrap support (see Fig. 3 for GARLI settings). Voucher information is shown in Appendix 3.

Table 1. MAFFT alignment and GARLI phylogenetic tree (visualized in Geneious) of 54 sequences for a subset of eight New Zealand Veronica individuals of V. chionohebe, V. trifida, and their interspecific hybrid from two South Island locations from sequences of SSR locus SSR-08 mined using QDD from Trinity assemblies of leaf transcriptome data. Consensus and identity sequences are shown at the top. Base pairs that are identical to the consensus are shown in gray, whereas SNPs are shown as colors (red = A, blue = C, green = T, yellow = G, black = N). Each of the eight individuals has a unique color: three individuals of V. chionohebe (orange, red, and brown), two of V. trifida (blue, pink), and two of their hybrid (light and dark green). For each sequence in the alignment, species names are followed by location (Garvie Mountains or Pisa Range), sequencing plate location (A5, B5, C4, D4, E4, F4, G4, or H4), and number of sequence reads supporting that allele (range: 12–187). Green branches in the GARLI tree to the left of the individual names have >80% bootstrap support (see Fig. 3 for GARLI settings). Voucher information is shown in Appendix 3.

Sequence	Identity	Voucher Information
V. chionohebe		
V. trifida		
V. chionohebe x V. trifida		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		
V. trifida x V. chionohebe		

Fig. 6. MAFFT alignment and GARLI phylogenetic tree (visualized in Geneious) of 54 sequences for a subset of eight New Zealand Veronica individuals of V. chionohebe, V. trifida, and their interspecific hybrid from two South Island locations from sequences of SSR locus SSR-08 mined using QDD from Trinity assemblies of leaf transcriptome data. Consensus and identity sequences are shown at the top. Base pairs that are identical to the consensus are shown in gray, whereas SNPs are shown as colors (red = A, blue = C, green = T, yellow = G, black = N). Each of the eight individuals has a unique color: three individuals of V. chionohebe (orange, red, and brown), two of V. trifida (blue, pink), and two of their hybrid (light and dark green). For each sequence in the alignment, species names are followed by location (Garvie Mountains or Pisa Range), sequencing plate location (A5, B5, C4, D4, E4, F4, G4, or H4), and number of sequence reads supporting that allele (range: 12–187). Green branches in the GARLI tree to the left of the individual names have >80% bootstrap support (see Fig. 3 for GARLI settings). Voucher information is shown in Appendix 3.

Table 2. MAFFT alignment and GARLI phylogenetic tree (visualized in Geneious) of 54 sequences for a subset of eight New Zealand Veronica individuals of V. chionohebe, V. trifida, and their interspecific hybrid from two South Island locations from sequences of SSR locus SSR-08 mined using QDD from Trinity assemblies of leaf transcriptome data. Consensus and identity sequences are shown at the top. Base pairs that are identical to the consensus are shown in gray, whereas SNPs are shown as colors (red = A, blue = C, green = T, yellow = G, black = N). Each of the eight individuals has a unique color: three individuals of V. chionohebe (orange, red, and brown), two of V. trifida (blue, pink), and two of their hybrid (light and dark green). For each sequence in the alignment, species names are followed by location (Garvie Mountains or Pisa Range), sequencing plate location (A5, B5, C4, D4, E4, F4, G4, or H4), and number of sequence reads supporting that allele (range: 12–187). Green branches in the GARLI tree to the left of the individual names have >80% bootstrap support (see Fig. 3 for GARLI settings). Voucher information is shown in Appendix 3.
Applications in Plant Sciences 2016 4(10): 1600091 Mayland-Quellhorst et al.—Veronica transcriptomic resources
doi:10.3732/apps.1600091

MAYLAND-QUELLHORST et al.—Veronica transcriptomic resources...
Thiers, B. 2016 [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Website http://sweetgum.nybg.org/science/ih [accessed 14 September 2016].

Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3–New capabilities and interfaces. *Nucleic Acids Research* 40: e115.

Uribe-Convers, S., M. L. Settles, and D. C. Tank. 2016. A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of *Bartsia* L. (Orobanchaceae). *PLoS ONE* 11: e0148203.

Wagstaff, S. J., and P. Wardle. 1999. Whipcord hebes—Systematics, distribution, ecology and evolution. *New Zealand Journal of Botany* 37: 17–39.

Wagstaff, S. J., M. J. Bayly, P. J. Garnock-Jones, and D. C. Albach. 2002. Classification, origin and diversification of the New Zealand hebes (Scrophulariaceae). *Annals of the Missouri Botanical Garden* 89: 38–63.

Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, Austin, Texas, USA.
APPENDIX 1. Information about the eight individuals of Veronica sampled for RNA-Seq.

Speciesa	GPS coordinates	Chromosome number (Ploidy)b	1C-value (pg)c	Collection locality and collection no. (Voucher)d	RNA 260/280 ratioe	RNA conc. (ng/µL)f	RNA RINf
Veronica catarractae G. Forst.	NA (cultivated plant)	2n = 42 (6x)	1.06	Cult. Botanischer Garten Oldenburg (Germany), ex New Zealand, Meudt s.n. (OLD00026)	2.11	1017.00	7.90
V. hectorii Hook. f. subsp. coarctata (Cheeseman) Gam.-Jones	NA (cultivated plant)	2n = 40 (6x)	1.07	Cult. Botanischer Garten Bonn 1342 (Germany), ex New Zealand, Meudt s.n. (OLD00029)	1.94	121.00	7.10
V. planopetiolata G. Simpson & J. S. Thomson	44.52247°S, 168.6736916667°E	2n = 84 (12x)	2.45	New Zealand; South Island, Otago, Meudt HMM339a (WELT SP091593)	1.93	147.00	7.00
V. ochracea (Ashwin) Gam.-Jones	NA (cultivated plant)	2n = 124 (18x)	2.97	Cult. Botanischer Garten Bonn 9509 (Germany), ex New Zealand, Meudt s.n. (OLD00071)	2.12	1327.00	6.80
V. panormitana Tineo ex Guss.	36.6672°N, 31.8989°E	2n = 18 (2x)	0.36	Turkey: north of Paravallar, Albach 1114 & 5272 (OLD00214)	2.00	53.00	8.00
V. trichadena Jord. & Fourn.	39.678536°N, 2.80062°E	2n = 18 (2x)	0.39	Spain: Mallorca, Meudt HMM346L (OLD00086)	1.98	302.00	7.50
V. cymbalaria Bodard	36.5325°N, 31.99°E	2n = 36 (4x)	0.76	Turkey: Alanya Castle, Albach 1235 (OLD01171)	2.04	245.00	6.90
V. cymbalaria	37.22778°N, 31.12972°E	2n = 54 (6x)	1.38	Turkey: Analaya, Selgedos, Albach 1087 & 5300 (OLD00481)	2.11	1265.00	7.60

Note: NA = not applicable.

a RNA was extracted from leaf material from greenhouse-grown material of all individuals except V. planopetiolata, which was from field-collected leaf material stored in RNAlater (Life Technologies, Carlsbad, California, USA).
b Chromosome numbers are from the literature (Albach et al., 2008).
c 1C-values (Meudt et al., 2015) were assessed for the same individual from which RNA was extracted for this study except for V. panormitana, whose 1C-value is based on the average of five other individuals from three different Turkish populations (range 0.35–0.37 pg; Meudt et al., 2015).
d Voucher specimens are lodged at herbaria at the Museum of New Zealand Te Papa Tongarewa (WELT) or Carl-von-Ossietzky Universität Oldenburg (OLD).
e RNA 260:280 ratio was calculated using the Tecan Infinite Pro F200 (Tecan, Crailsheim, Germany).
f RNA concentration and RNA Integrity Number (RIN) were calculated using the Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany); please note that the cDNA construction was made with normalized RNA.
Appendix 2. Information about the 48 individuals of *Veronica* sampled for the LCN marker validation.

Species	Subgenus	Ploidya	Chromosome no.	Location on sequencing plate	No. of LCN markers successfully sequenced (of 48 total)
Lagotis integrifolia (Willd.) Schisch. ex Vikulova	(outgroup)	4	44	Kazakhstan	20
Paederota lutea L. f. (outgroup)		4	36	Austria	24
Veronicastrum stenostachyum (Hemsl.) T. Yamaz.	(outgroup)	4	34	China	25
Wulfenia carinthiaca Jacq. (outgroup)		2	18	Austria	25
Veronica anagallis-aquatica L. Beccabunga		2	18	Czech Republic	18
V. catenata Pennell Beccabunga		2	18	Czech Republic	18
V. gentianoides Vahl Beccabunga		2	18	Georgia	18
V. arvensis L. Chamaedrys		2	16	Germany	16
V. chamaedrys L. Chamaedrys		4	32	Norway	32
V. crista-galli Steven Cochlidiosperma		2	18	Georgia	18
#*V. cymbalaria* Bodard Cochlidiosperma		4	36	Turkey	36
#*V. cymbalaria* Cochlidiosperma		6	54	Turkey	54
V. javanica Blume Cochlidiosperma		2	16	Murata et al.	16
#*V. panormitana* Tineo ex Guss. Cochlidiosperma		2	18	Turkey	18
#*V. trichadena* Jord. & Fourr. Cochlidiosperma		2	18	Spain	18
V. triloba (Opiz) Opiz		2	18	Turkey	18
V. brownii Roem. & Schult. Labiatoides		12	72	Australia	72
#*V. triphyllos* L. Pellidosperma		2	14	Russia	14
V. cuneifolia D. Don		2	16	Turkey	16
#*V. fuhsii* Freyn & Sint. Pentasepalae		?	32	Turkey	32
#*V. prostrata* L. Pentasepalae		2	16	Austria	16
V. filiformis Sm. Pocilla		2	14	Germany	14
#*V. longifolia* L. Pseudolysimachium		4	34	Turkey	34
#*V. longifolia* Pseudolysimachium		4	34	Russia	34
V. schmidtiana Regel Pseudolysimachium		4	34	Japan	34
#*V. spicata* L.		8	68	Japan	68
#*V. trichophylla* L. Primula		4	24	Spain	24
#*V. trilobiata* L. Primula		4	24	Spain	24
#*V. triloba* (Opiz) Opiz		2	18	Turkey	18
#*V. brownii* Roem. & Schult. Labiatoides		12	72	Australia	72
#*V. triphyllos* L. Pellidosperma		2	14	Germany	14
#*V. cuneifolia* D. Don		2	16	Turkey	16
#*V. fuhsii* Freyn & Sint. Pentasepalae		?	32	Turkey	32
#*V. prostrata* L. Pentasepalae		2	16	Austria	16
V. filiformis Sm. Pocilla		2	14	Germany	14
#*V. longifolia* L. Pseudolysimachium		4	34	Turkey	34
#*V. longifolia* Pseudolysimachium		4	34	Russia	34
V. schmidtiana Regel Pseudolysimachium		4	34	Japan	34
#*V. spicata* L.		8	68	Japan	68
#*V. trichophylla* L. Primula		4	24	Spain	24
#*V. trilobiata* L. Primula		4	24	Spain	24
#*V. triloba* (Opiz) Opiz		2	18	Turkey	18
#*V. brownii* Roem. & Schult. Labiatoides		12	72	Australia	72
#*V. triphyllos* L. Pellidosperma		2	14	Germany	14
#*V. cuneifolia* D. Don		2	16	Turkey	16
#*V. fuhsii* Freyn & Sint. Pentasepalae		?	32	Turkey	32
#*V. prostrata* L. Pentasepalae		2	16	Austria	16
V. filiformis Sm. Pocilla		2	14	Germany	14
#*V. longifolia* L. Pseudolysimachium		4	34	Turkey	34
#*V. longifolia* Pseudolysimachium		4	34	Russia	34
V. schmidtiana Regel Pseudolysimachium		4	34	Japan	34
#*V. spicata* L.		8	68	Japan	68
#*V. trichophylla* L. Primula		4	24	Spain	24
#*V. trilobiata* L. Primula		4	24	Spain	24
#*V. triloba* (Opiz) Opiz		2	18	Turkey	18

http://www.bioone.org/loi/apps
Appendix 2. Continued.

Species	Subgenus	Ploidy	Chromosome no.	Country	Voucher (Herbarium and/or Herbarium accession no.)	Location on sequencing plate	No. of LCN markers successfully sequenced (of 48 total)
#V. planopetiolata G. Simpson & J. S. Thomson	Pseudoveronica	12	84	New Zealand	Meudt HMM39a (WELT SP01595)	C5	22
V. senex (Garn.-Jones) Garn.-Jones	Pseudoveronica	6	42	New Zealand	Garnock-Jones PGJ 2879 (OLD)	E5	28
V. spectosa R. Cunn. ex A. Cunn.	Pseudoveronica	6	40	New Zealand	Garnock-Jones PGJ 2878 (OLD)	F6	33
V. tairawhiti (B. D. Clarkson & Garn.-Jones) Garn.-Jones	Pseudoveronica	12	80	New Zealand	Garnock-Jones PGJ 2888 (OLD)	G6	9
V. townsonii Cheeseman	Pseudoveronica	6	40	New Zealand	Garnock-Jones PGJ 2901 (WELT SP103482)	E6	26

Note: LCN = low-copy nuclear.

*Ploidy and chromosome numbers are from the literature (Albach et al., 2008).

b Herbaria acronyms follow Thiers (2016).

#RNA-Seq sample.
Appendix

3. Validation of 48 SSR markers on 48 individuals of 20 species of Southern Hemisphere Veronica subg. Pseudoveronica

Species name	Section and informal group	Ploidy	Chromosome n^a	Country	GenBank accession no.	Voucher and collection locality	Location on sequencing plate	No. SSR loci successfully sequenced (of 48 total)
Veronica calycina R. Br. sect. Labiatoides	6	36	Australia	D3	MB 1833, Pin Ranges (WELT)	RGC 19644, near Lithgow, NSW	C3	38
Veronica derwentiana Andrews subsp. subglauca (B. G. Briggs & Ehrend.) sect. Hebe, snow hebe	6	42	Australia	E4	SP084029	RGC 19649, near Lithgow, NSW	F4	38
Veronica chionohebe Garn.-Jones sect. Hebe, snow hebe	6	42	New Zealand	C4	SP084043	MJB 1823, Pisa Range (WELT)	A4	40
Veronica chionohebe × Veronica trifida Petrie sect. Hebe, snow hebe	6	42	New Zealand	C5	SP084046	MJB 1844, Garvie Mountains (WELT)	B4	39
Veronica ciliolata (Hook. f.) Garn.-Jones subsp. ciliolata	6	42	New Zealand	D5	SP084050	MJB 1845, Garvie Mountains (WELT)	E4	40
Veronica ciliolata subsp. fiordensis (Ashwin) Meudt sect. Hebe, snow hebe	6	42	New Zealand	E5	SP084051	MJB 1848, Garvie Mountains (WELT)	G4	38
Veronica densifolia F. Muell. sect. Hebe, snow hebe	6	42	New Zealand	F5	SP084052	MJB 1849, Garvie Mountains (WELT)	H4	40
Veronica pulvinaris (Hook. f.) Cheseman sect. Hebe, snow hebe	6	42	New Zealand	G5	SP084053	MJB 1850, Hauer Hills (WELT)	A6	40
Veronica thomsonii Cheeseman sect. Hebe, snow hebe	6	42	New Zealand	H5	SP084054	MJB 1851, Garvie Mountains (WELT)	C6	38
Veronica thomsonii sect. Hebe, snow hebe	6	42	New Zealand	I5	SP084055	MJB 1852, Garvie Mountains (WELT)	D6	40
Veronica trigida P. McNeill sect. Hebe, snow hebe	6	42	New Zealand	H6	SP084056	MJB 1853, Garvie Mountains (WELT)	E6	38
Veronica brachysiphon (Summerh.) Bean as Veronica vernicosa sect. Hebe, snow hebe	18	120	New Zealand	I6	SP083931	HMM s.n., cult. Kew Gardens	F6	40
Veronica catarractae G. Forst. sect. Hebe, snow hebe	6	42	New Zealand	J6	SP083932	HMM 259, Mt. St. Bathans (WELT)	G6	40

<http://www.bioone.org/loi/apps>
Appendix 3. Continued.

Species name	Section and informal group	Ploidy	Chromosome no.	Country	Voucher and collection locality (Herbarium and/or Herbarium accession no.)	Location on sequencing plate	No. SSR loci successfully sequenced (of 48 total)
#V. catarractae (purchased as Parahebe 'Snow')	sect. Hebe, speedwell hebe	6	42	New Zealand	HMM s.n., cult. Botanischer Garten Oldenburg (OLD00026)	A1	41
V. colostylis Garn.-Jones	sect. Hebe, speedwell hebe	6	42	New Zealand	HMM338a, Arrowtown (WELT SP091592)	H3	8
V. colostylis	sect. Hebe, speedwell hebe	6	42	New Zealand	HMM341c, Moke Creek (WELT SP091595)	G3	30
V. hectorii Hook. f.	sect. Hebe, hebe	6	40	New Zealand	PGJ 2910, cult. Otari (WELT SP103460)	D1	38
#V. hectorii subsp. coarctata (Cheeseman) Garn.-Jones	sect. Hebe, hebe	6	40	New Zealand	HMM s.n., Bonn 13428 (OLD00029)	C1	41
V. hulkeana F. Muell. ex Hook. f. subsp. evesita (Garn.-Jones) Garn.-Jones 'Lena'	sect. Hebe, sun hebe	6	42	New Zealand	PGJ 2874, cult. Wellington (OLD)	A4	32
V. lavanduliana Raoul	sect. Hebe, sun hebe	6	42	New Zealand	PGJ 2881, cult. Wellington (OLD)	B4	41
V. macrantha Hook. f.	sect. Hebe, unresolved, early branching	6	42	New Zealand	HMM s.n., cult. Kew Gardens 1969-35034 (OLD)	D2	36
V. macrantha	sect. Hebe, unresolved, early branching	6	42	New Zealand	PGJ 2924, cult. Otari (WELT SP103475)	C2	41
#V. ochracea (Ashwin) Garn.-Jones	sect. Hebe, hebe	18	124	New Zealand	HMM s.n., Bonn 9509 (OLD00071)	E1	42
V. ochracea	sect. Hebe, hebe	18	124	New Zealand	PGJ 2911, cult. Otari (WELT SP103461)	F1	36
V. ochracea 'James Stirling'	sect. Hebe, hebe	18	124	New Zealand	HMM s.n., cult. Kew Gardens 1992-1403 (OLD)	G1	39
V. odora Hook. f. (as Hebe vernicosa in Botanischer Garten Bonn)	sect. Hebe, hebe	12	84	New Zealand	HMM s.n., cult. Bonn 17475 (OLD)	A3	29
V. odora 'New Zealand Gold'	sect. Hebe, hebe	12	84	New Zealand	HMM s.n., cult. Kew Gardens 1989-2000 (OLD)	B3	40
#V. planopetiolata G. Simpson & J. S. Thomson	sect. Hebe, speedwell hebe	12	84	New Zealand	HMM339a, Shotover Saddle (WELT SP091593)	H1	42
V. planopetiolata	sect. Hebe, speedwell hebe	12	84	New Zealand	HMM339b, Shotover Saddle (WELT SP091593)	A2	36
V. planopetiolata	sect. Hebe, speedwell hebe	12	84	New Zealand	HMM339c, Shotover Saddle (WELT SP091593)	A1	43
V. salicornoides Hook. f.	sect. Hebe, hebe	6	42	New Zealand	HMM s.n., cult. Kew Gardens 1989-2004 (OLD)	F2	38
V. salicornoides	sect. Hebe, hebe	6	42	New Zealand	PGJ 2923, cult. Otari (WELT SP103474)	E2	42
V. vernicosa Hook. f.	sect. Hebe, hebe	6	42	New Zealand	PGJ 2925, cult. Otari (WELT SP103476)	E3	41
V. vernicosa	sect. Hebe, hebe	6	42	New Zealand	PGJ 2926, cult. Otari (WELT SP103477)	F3	39

*Ploidy and chromosome numbers are from the literature (Albach et al., 2008).

bHerbaria acronyms follow Thiers (2016). Voucher specimens are lodged at herbaria at the Museum of New Zealand Te Papa Tongarewa (WELT), Carl-von-Ossietzky Universität Oldenburg (OLD), or National Herbarium of New South Wales (NSW). Collection initials: MJB = Michael J. Bayly, HMM = Heidi M. Meudt, PGJ = Phil Garnock-Jones, RGC = R. G. Coveny.

#RNA-Seq sample.
Appendix 4. Validation of 48 LCN markers on 48 individuals of 46 species of Veronica, representing all subgeneric lineages in the genus.

Locus	Primer sequences (5’–3’)	Sequence same as original transcript?	No. of individuals successfully sequenced	No. of different sequences in GARLI alignment	Length (bp, range)	Length (bp, mean)	No. SNPs	No. PICs	A. thaliana gene
LCN-03	F: AGCATCGCTCTAGCTGTGGT R: CCGGATATGCCACTGGT	complete	18	37	158–866	480	607	345	AT3G07080: EamA-like transporter family
LCN-04	F: AGTTTTATACATTGGAAGC R: CCGCTTGACCCCTCTCAAC	complete	42	43	288–331	327	117	77	AT3G07720: Galactose oxidase/keck repeat superfamily protein
LCN-08	F: CCGCTCTGGCTCCCTCCAATAG R: CCCTCCAGGGAGCGTTAAG	complete	27	44	311–791	374	427	131	AT4G17100: UNKNOWN
LCN-10	F: GCAAGACAGGCTCCTACAGAG R: AGGCTCCTCTGTCATCTAC	complete	35	68	234–820	440	523	303	AT4G33460: ABC transporter family protein
LCN-13	F: GGCACCACTGCTGCTCCAGCT R: CCAAGGAATACGGGCCTTAT	partial	18	19	310–912	422	354	112	AT5G65760: Serine carboxypeptidase S28 family protein
LCN-20	F: GCCATACCTGAGACCCTTG R: AGCAGAAATGCACCACACC	partial	44	85	306–681	384	280	176	AT1G57770: FAD/NAD(P)-binding oxidoreductase family protein
LCN-25	F: AGGAGTGATCAGCAATAG R: ACTGTTTCCCCCAATCCACC	partial	43	89	310–726	396	439	287	AT2G05830: NagB/RpiA/CoA transferase-like superfamily protein
LCN-38	F: AAGGCCCTTGGGAGAGTGG R: TAGTGTCTTTGGGCCACTCC	complete	42	104	310–762	361	436	299	AT3G59380: famesyltransferase A
LCN-43	F: TAGATGCTGTGTCGCTGTC R: AGGACAGCTCTATCTGCGCA	complete	30	50	139–750	396	329	185	AT4G35850: Pentatricopeptide repeat (PPR) superfamily protein
LCN-46	F: TGCAGACTCTTTGGGGGT R: ACTCCATCATGGGGGGGCTG	complete	44	85	307–707	373	314	224	AT5G13800: pheophytinase
LCN-48	F: AAGCTTAOGCCGCAGATAT R: TGCCTGCTTATGAGTCTGA	complete	34	42	147–734	379	445	280	AT5G14520: pescadillo-related
LCN-01	F: GCCATGCTTGGAGAGTGG R: ATCCCTCTGTCGCGAAT	no	17						AT1G71810: protein kinase superfamily protein
LCN-02	F: AGGAGTCTGGCTGGAGAGTGG R: CCGCTTGACCCCTCTCAAC	no	22						AT2G25950: protein of unknown function (DUF1000)
LCN-05	F: TGGCTGCTTGCTGCTTATCT R: AGAACTGCAACATCTCTGGGA	partial	12						AT3G20790: NAD(P)+binding Rossmann-fold superfamily protein
LCN-06	F: AGCCCTTGAGATGATG R: AACCTCGGACTCTTTGGA	no	33						AT4G09730: RHE9
LCN-07	F: GCCATGCTTGGAGGGCTTC R: CCACAACTCTGCCCTGCGC	no	0						AT4G09750: NAD(P)+binding Rossmann-fold superfamily protein
LCN-09	F: AAGAGCTGGTGAAGAGTGG R: GCCAGTCCATAGCAATCTGC	no	16						AT4G25450: nonintrinsic ABC protein 8
LCN-11	F: GTGCTGCTTGCTGCTGCTG R: TCCACTCTGACCGTCTCCT	no	3						AT4G37040: methionine aminopeptidase 1D
LCN-12	F: GCCATGCTTGGAGAGTGG R: CTCACCACTCAGCTCTGCC	no	20						AT5G44520: NagB/RpiA/CoA transferase-like superfamily protein
Locus	Primer sequences (5′–3′)	Sequences same as original transcript?	No. of individuals successfully sequenced	No. of different sequences in GARLI alignment	Length (bp, range)	Length (bp, mean)	No. SNPs	No. PICs	A. thaliana gene
-------	--------------------------	--------------------------------------	--	---	-------------------	------------------	------------	---------	----------------
LCN-14	F: CGGA TGCTTCA ATGCTA GCTG R: GCAC CTGACA ACAA CTGTAG	no	13						AT1G04420: NAD(P)-linked oxidoreductase superfamily protein
LCN-15	F: CGGT GGTTGA AACATT TTTG R: TCCA ACAAGA GTGGACC AGC	partial	28						AT1G16180: Serine-domain containing serine and sphingolipid biosynthesis protein
LCN-16	F: ACTC TTTPCC GCATTT CTG R: CCTC ACCATCT GAACT TGG	no	30						AT1G19600: pkB-like carbohydrate kinase family protein
LCN-17	F: AGAC TCTACCACAGCTTCC R: TGGATGAT GGGGGC C	no	11						AT1G31800: cytochrome B50, family 97, subfamily A, polypeptide 3
LCN-18	F: AGTT TGGTGTGGGCA TAGG R: GAA ATA CAGCT CCGGGA AGG	partial	24						AT1G45280: GLU-ADT subunit B
LCN-19	F: CTGTG CGCTTGGCTATAG R: TTTGAC CTCCCA AAGCAC CAC	no	31						AT1G453280: Class I glutamine amidotransferase-like superfamily protein
LCN-21	F: TGGT GTCATGGGCTGTC R: TCCA ATCTTTGCTGATGTC	no	9						AT1G68010: hydroxypyruvate reductase
LCN-22	F: TGGG TAAGGGTCTTTTGGT R: CCAATCTCTCAATCGATGCTG	no	21						AT1G68830: STT7 homolog STN7
LCN-23	F: AACG ATGGAGGAAGAACG R: CAAGCATTCCATGCTGAC	no	24						AT1G71240: Plant protein of unknown function (DUF639)
LCN-24	F: GAAA CTCTTATGCTCAGGGTTG R: TCTT ATTAGGTGTTGCCACACC	no	13						AT1G75210: HAD-superfamily hydrolase, subfamily IG, 5′-nucleotidase
LCN-26	F: GATA ACCTGGAAGCGACGGATT R: GCTA AGACCCAA CCCCCTTTTT	no	32						AT2G21280: NAD(P)-binding Rossmann-fold superfamily protein
LCN-27	F: TGGG ATCGATATCATG GCC R: CAGG TGATGGTTTGACGTG	partial	18						AT2G23390: UNKNOWN
LCN-28	F: TGCGT CCCACAGCTGAGATG R: CCAA TTCCTTCC AAGAAATCA	no	16						AT2G27680: NAD(P)-linked oxidoreductase superfamily protein
LCN-29	F: GCCA AGGCCCA AAAAAAGCAA R: TCCCTCCATATGCAACC CGG	partial	11						AT2G30390: ferrochelatase 2
LCN-30	F: ATGG AAGGAGGTGGATG R: TTTG CGACAGTGACCACTTC	no	22						AT2G44760: Domain of unknown function (DUF3598)
LCN-31	F: TCAATTTGCAGCTTGGAGGC R: CAAC ACCGCCA AATGCTACAAG	partial	19						AT3G06510: Glycosyl hydrolase superfamily protein
LCN-32	F: AAAATG GGTGGCTGCTGTG R: CAAGCC TATACCTGACAT	no	39						AT3G17810: pyrimidine 1
LCN-33	F: TGGCA ATGCAATCGCTCTTGC R: AGAA TGATCGTGAGGCTG	no	28						AT3G17940: Galactose mutarotase-like superfamily protein
LCN-34	F: CACAG AAAAGGCAAACTAGG R: TGAT CCAAATCAGAGGCTG	partial	12						AT3G23620: Ribosomal RNA processing Brix domain protein
Locus	Primer sequences (5′–3′)	Sequence same as original transcript?	No. of individuals successfully sequenced	No. of different sequences in GARLI alignment	Length (bp, range)	Length (bp, mean)	No. SNPs	No. PICs	A. thaliana gene
-------	--------------------------	--------------------------------------	--	---	-------------------	-------------------	----------	---------	-----------------
LCN-35	F: AAATCGCTCACGGGTTTGG								
R: TTGCAGTGGGAAATGCTCAAAA	partial	9							AT3G52190: phosphate transporter traffic facilitator1
LCN-36	F: GATCGGGGTCAATCCACCA								
R: AACGCTAATGCAATGACAC	partial	31							AT3G56460: GroES-like zinc-binding alcohol dehydrogenase family protein
LCN-37	F: CAAGGAGTCTGTTAGGAAGAC								
R: GAGACAGAGAAGCGGACC	no	7							AT3G56940: dicarboxylated iron protein, putative (Crd1)
LCN-39	F: CGCGTGCTTCTCTGCATGT								
R: ATTGGAGGCTCTCAGTCTT	no	36							AT3G62910: Peptide chain release factor 1
LCN-40	F: TGGGAAACTGGAATGGGTG								
R: AATTGGACGCTGGATGTGT	no	43							AT4G02790: GTP-binding family protein
LCN-41	F: AG7GGGCTGAAATGGGATT								
R: CCGATGCTGCTTTGATGTGT	no	13							AT4G09020: isomylase 3
LCN-42	F: AG7GGGCTGCAATGGGATT								
R: CCGATGCTGCTTTGATGTGT	partial	9							AT4G21470: riboflavin kinase/FMN hydrolase
LCN-44	F: ACAAGGATGAGCAGACGGGT								
R: TGCCCAAAGAAGCTGTAACC	partial	14							AT5G06260: TLD-domain containing nucleolar protein
LCN-45	F: GSCACAGTCTGCTGACACCA								
R: CCCAGCCCCATGGTCTAAA	no	36							AT5G08710: Regulator of chromosome condensation (RCC1) family protein
LCN-47	F: TCCTCAGCGAATGGAATAA								
R: AAATCTCTCTCTGCTG | no | 22 | | | | | | | AT5G14250: Proteasome component (PCI) domain protein |

Note: LCN = low-copy nuclear; PIC = parsimony informative character; SNP = single-nucleotide polymorphism.
Appendix 5. Validation of 48 SSRs on a subset of the 48 New Zealand and Australian individuals of *Veronica* sequenced. Shown are eight individuals of the *Veronica chionohebe*/*V. trifida* subset (A5, B5, C4, D4, E4, F4, G4, and H4; see Appendix 3).

SSR locus	Primer sequences (5′–3′)	SSR motif, Main (additional)	Sequence length (bp)	No. of individuals successfully sequenced	No. of alleles	Pairwise genetic distance	SNP/PCs/Introns	Notes		
SSR-01	F: TGGAACAGCCATTGCATCAAA									
R: TCGTGACCTCACGGTGTCAG	ACA (ATG)	310–692	353	8	3 2 2 2 3 3 3 2 4	2.9	0.03 0.01 0.01	23 14	two large introns, motif in central exon, sequences partially not covering complete locus	
SSR-02	F: GATTGTTTCAGCCAAGATATCTCA									
R: CTTGTCGGACGCGCGACCAT	GAT	208–476	328	7	0 2 2 2 1 1 1 1	1.5	0.08 0.04 0.02	28 27	incomplete; several genes amplified by primers; same locus as SSR-42	
SSR-03	F: TTGAGACGCAAGATTTCTGCAA									
R: GCCCTACGGCCTCATCAGTT	ACT									
SSR-04	F: TGTCGAAACGTTGCATCAAA									
R: TCGTGACCTCACGGTGTCAG	AGT	127–239	216	8	3 4 5 4 4 5 5 3		0.06 0.02 0.01	23 15		
SSR-05	F: GGTGACGGATTTACTAGCTAAGT									
R: AGTCGGGAAAGAGATTGGGC	GATA	293–329	328	8	4 1 1 4 5 6 1 6		0.08 0.04 0.02	28 27		
SSR-06	F: AATGAACAACGCGACGCCAG	CAGT	3							
R: ACTGTGACCTCATGCTTACG	TGA	3								
SSR-07	F: AGCTGGAACGCTCAGAATCC	GACA	358–424	386	8	7 10 10 9 9 9 10 11		0.33 0.18 0.14	190 174	three orthologues?
SSR-08	F: CCAATGACGGCTCCAGTGCTG	CACA	311–387	357	8	9 10 4 3 6 6 8		0.14 0.08 0.08	126 109	
SSR-09	F: TTGGACTCTTGTGTGTGA									
R: CCTATAATTGTGCTCTCCA	ACT	310–401	325	2	1 3 1 2 0 0 0		1 0	3	at least three introns, sequence not covering complete locus	
SSR-10	F: CTTAAATTGATACGATGC	TGCAT	266–280	272	8	3 4 1 1 4 3 4 1		0.04 0.02 0.02	20 14	
SSR-11	F: AAAGACGCAAACGCTCAGAC									
R: GGCACACAGGGATGCAGTAC	AGCAG (TIG, ATG)	264–293	283	8	2 8 9 4 5 4 4 2		0.08 0.04 0.04	42 31	two orthologues?	
SSR-12	F: TTGGCACTGCGTTTAAGAATG	TATA								
R: ATACCGACGCGCTACAATCC	ACTG									
SSR-13	F: TCTTCTTCAGCTGCAAACCTTCC	TACA	301–620	377	7	3 4 2 3 4 1 0 3		0.51 0.06 0.02	91 43	
SSR-14	F: TGTTGACTCAATCCGTCTCCG	TTTAG	290–306	293	8	2 1 1 1 4 4 2 2 1 4		0.02 0.01 0.01	9 6	one unambiguous locus
SSR-15	F: GCGCAAGAACGCTGCAAG	CATC	310–355	355	2	2 2 0 0 2 0 0 0		1 0		
SSR-16	F: GACACGAACTCTGCGAAGCTC	ATG	301–620	377	7	3 4 2 3 4 1 0 3		0.51 0.06 0.02	91 43	
SSR-17	F: AGATCGCTGTCTTTCAGCTC									
R: GCGATGACTCAAAAACCACAA	TGCAT	203–257	238	8	1 1 7 2 5 6 5 6		0.09 0.04 0.03	39 27	two orthologues?	
SSR-18	F: TCTGTGACTCAACTGCAGAAGAG	TACG	268–303	282	8	6 6 2 1 4 1 4 3		0.09 0.04 0.03	35 33	two orthologues?
SSR-19	F: TTGGCACTGCGTTTAAGAATG	TATA								
R: AGCAGAACGCAAATCGTGTGGG	GACA									
SSR-20	F: CATGCTGTCACTCATTGAAAATGTTGGCC	ACTG	186–253	228	8	2 2 8 3 4 8 8 5 2 8 5		0.1 0.04 0.05	33 31	two orthologues?
SSR locus	Primer sequences (5′–3′)	SSR motif, Main (additional)	Sequence length (bp)	No. of individuals successfully sequenced	No. of alleles	Pairwise genetic distance	No.	Notes		
-----------	--------------------------	-----------------------------	---------------------	--	-------------	--------------------------	-----	-------		
SSR-21	F: AGGAGGTGACGAGAAAGAG	GAT	238–256	8	5	1.0	38	two or three orthologues?		
	R: CCGCCGTCCTCTCCCTGTT									
SSR-22	F: AGGCTGTCTGTTGAAAACCG	GAT	286–348	2	1	0.36	111	two orthologues?		
	R: GACTGACACTGCTGCA									
SSR-23	F: CATCCACAAAAGTGACAGCCT	GAT	268–315	8	3	0.19	88	three orthologues?		
	R: TGGAATGCTGATTAAAGGGA									
SSR-24	F: GATGCTGTGACGAGAAAGAG	GAT	275–315	8	3	0.22	25	two orthologues?		
	R: CCGCCGTCCTCTCCCTGTT									
SSR-25	F: AGGCTGTCTGTTGAAAACCG	GAT	286–348	8	3	0.05	25	two orthologues?		
	R: GACTGACACTGCTGCA									
SSR-26	F: GTGGGCGAACAAATTTGTTT	ATC	288–315	8	3	0.19	88	three orthologues?		
	R: TCACTAAGCGATCTGCTGCT									
SSR-27	F: CCGAGGCTGCTAATGACTAAGT	ACT	259–262	8	2	0.02	8	one unambiguous locus		
	R: GGCAGACGCTTTGAGAGGGA									
SSR-28	F: CCGAAATGCAGATCTGAGCTG	ACT	266–284	8	3	0.05	25	two orthologues?		
	R: GGGAGCAAGAGCTCTGCA									
SSR-29	F: GACACCAACTTCTCTTCACAT	ACT	300–355	8	6	0.14	65	two orthologues?		
	R: AAGAGTGTGTCAGCTTGAGTT									
SSR-30	F: TTCTTGCCCTCTGTGGTGGTCC	GAT	278–290	8	2	0.04	16	three orthologues?		
	R: TTCTTGCCCTCTGTGGTGGTCC									
SSR-31	F: CGATAGAGGTGAGGAGGAG	GAT	2	2				sequence different to transcript		
	R: CATTGGTGACCTGATGCTCT									
SSR-32	F: GTGCTACTGATGACTGAGAGA	GAT	158–248	8	1	0.07	17	two orthologues?		
	R: TCCCTGCACTGCACTGCA									
SSR-33	F: GCTGCTGTGGTGAGGAGGAG	GAT	2	5				three orthologues?		
	R: ACTGCTGATGCTGCTGCTT									
SSR-34	F: ATGGCTCACAGATCATGGCTCTC	ATC (CAA)	317–501	8	5	0.34	141	three orthologues?		
	R: TGACATGTTTGCGAGATTTG									
SSR-35	F: TGGACATGCTGGGAAAACAC	ATC (CAA)	317–501	8	5	0.34	141	three orthologues?		
	R: ACATGTCAGTCTGCTGGTCT									
SSR-36	F: AAGGACATGACTGAGGAGGAGA	ATC (CAA)	317–501	8	5	0.34	141	three orthologues?		
	R: ACATGTCAGTCTGCTGGTCT									
SSR-37	F: ATGGACAGCTGGTGGTGTCC	GAT	112–280	8	13	0.09	45	two or three orthologues?		
	R: CGAGAAGACAGAGATGTCCT									
SSR-38	F: CCGCAAGGTCAGCAGCTAGAC	TCA	310–569	8	7	0.22	174	three orthologues?		
	R: GTGCACTGCTCAACAGCTTC									
SSR-39	F: AGGCTTCAGTCTGATGCTC	TCA	450–480	8	4	0.05	55	two orthologues?		
	R: TGAGTAAAGGAGAAAGAAGAC									
SSR-40	F: GCCCTGGTGAGGACATTTG	GAT	1	1				sequences different to transcript		
	R: ATGCTATGGTAAAGGATGCT									
SSR-41	F: GTAGACGATGACTGAGGCTCT	TCA	375–380	5	1	0.05	23	three orthologues?		
	R: GCAGTCTCTCTGGAGGTCTTT									
SSR-42	F: AGTCTACACTAACTGAAAGGAC	GAT	7	7				three orthologues?		
	R: AGCTTATCCTCCAGTCATTTAGC									
SSR locus	Primer sequences (5′–3′)	SSR motif, Main (additional)	Sequence length (bp)	No. of individuals successfully sequenced	No. of alleles	Pairwise genetic distance	No. SNPs	PICs	Introns	Notes
-----------	--------------------------	-----------------------------	---------------------	--	----------------	--------------------------	---------	------	---------	-------
SSR-43	F: ACCATCA; AAGGGCTCCGTAG	ATG	192–416	8	1	1	A5	B5	C4	1.6
	R: TTGGGATGGGGCCCCCT	382								
SSR-44	F: GTTATACGCACTGCCACCCCTGC	ATC (TGG, CACC)	283–310	8	2	4	0.06	0.03	0.03	31
	R: AGTGAGGCGCATGCTCTCTGG	297								21
SSR-45	F: GTTCGTCTTGAAGATGGACATGA	GG (GGAATT, TGT)	147–632	8	2	4	0.02	0.01	0.02	19
	R: ACAATTGTTCCATAGTTTTGAA	316								15
SSR-46	F: TGCTGTAGCCAGAAGGCCC	GTATGCTCAGAAGAAGAAA	3							
	R: GGTGGGTCAGAAGAGAAA									
SSR-47	F: CAGGAGCCAGATGCTGAAA	TGAGAT (GGAATT, TGT)	264–288	8	1	2	0.04	0.01	0.02	15
	R: ACCACTTTGCTTTAAGAGAAA	(GGAATT, TGT)	272							19
SSR-48	F: CTTCCTCAGATCCGATGAGG		0							
	R: CAAATCTTTGCTTTAATAGC									
Totals			112–692	316.8	6.7	3.7	0.51	0.04	0.04	54.7

Note: PICs = parsimony informative characters; SNPs = single-nucleotide polymorphisms; SSRs = simple sequence repeats.
APPENDIX 6. Validation of 48 SSRs on a subset of the 48 New Zealand and Australian individuals of *Veronica* sequenced. Shown are six individuals of the *V. thomsonii* subset (C5, D5, E5, F5, G5, and H5; see Appendix 3).

SSR locus	Primer sequences (5′–3′)	SSR motif, Main (additional)	Sequence length (bp)	No. of individuals successfully sequenced	No. of alleles	Pairwise genetic distance	No. SNPs	No. PCs	Introns	Notes										
SSR-01	F: TGAGACGACATCCATGACAA	ACA (ATG)	310–694	6	4	4	3	2	2	4	two large introns, motif in central exon, sequences partially not covering complete locus									
	R: TGCTGACTAACTACACCTCCAG										incomplete; several genes amplified by primers; same locus as SSR-42									
SSR-02	F: GATTGTTCAGCAAGAATTCTCA	GAT	127–242	6	2	3	9	6	2	9	several genes amplified by primers									
	R: CTGGTCAGCAAGAATTCTCCAG										at least 1									
SSR-03	F: TGAGACGACATCCATGACAA	ACT	127–242	6	6	6	4	2	2	4	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										not transcript sequence amplified									
SSR-04	F: TTGGTCAACCGCTGCGACTG	GAT	243–314	6	6	6	4	2	4	6	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										at least 1									
SSR-05	F: TTGGTCAACCGCTGCGACTG	AGA	310–371	6	6	6	4	2	4	6	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										not transcript sequence amplified									
SSR-06	F: TTGGTCAACCGCTGCGACTG	GAT	300–371	6	6	6	4	2	4	6	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										at least 1									
SSR-07	F: TTGGTCAACCGCTGCGACTG	AGA	310–371	6	6	6	4	2	4	6	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										not transcript sequence amplified									
SSR-08	F: TTGGTCAACCGCTGCGACTG	GAT	342–418	6	8	8	4	4	4	8	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										at least 1									
SSR-09	F: TTGGTCAACCGCTGCGACTG	GAT	342–418	6	8	8	4	4	4	8	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										at least 1									
SSR-10	F: TTGGTCAACCGCTGCGACTG	AGA	342–418	6	8	8	4	4	4	8	several genes amplified by primers									
	R: TCGGACTCTACACCTCCAG										at least 1									
SSR-11	F: AAACGACGACTGACG	ACGA (TTG, AT, AG)	265–294	6	7	7	5	5	5	12	two orthologues?									
	R: GGCTGACTGCTGCTGCTGCTG										two orthologues?									
SSR-12	F: TTGGTCAACCGCTGCGACTG	AATC	199–263	6	5	5	9	6	6	9	two orthologues?									
	R: TCGGACTCTACACCTCCAG										two orthologues?									
SSR-13	F: TTGGTCAACCGCTGCGACTG	GAT	342–418	6	8	8	4	4	4	8	two orthologues?									
	R: TCGGACTCTACACCTCCAG										two orthologues?									
SSR-14	F: TTGGTCAACCGCTGCGACTG	GAT	286–311	6	2	2	2	1	4	1	two orthologues?									
	R: TCGGACTCTACACCTCCAG										two orthologues?									
SSR-15	F: TTGGTCAACCGCTGCGACTG	GAT	300–371	6	6	6	4	4	4	6	two orthologues?									
	R: TCGGACTCTACACCTCCAG										two orthologues?									
SSR-16	F: TTGGTCAACCGCTGCGACTG	GAT	310–371	6	6	6	4	4	4	6	two orthologues?									
	R: TCGGACTCTACACCTCCAG										two orthologues?									
SSR-17	F: TTGGTCAACCGCTGCGACTG	GAT	342–418	6	8	8	4	4	4	8	two orthologues?									
	R: TCGGACTCTACACCTCCAG										two orthologues?									
SSR locus	Primer sequences (5′–3′)	SSR motif, Main (additional)	Sequence length (bp)	No. of individuals successfully sequenced	No. of alleles	Pairwise genetic distance	SNP	PICs	Introns	Notes										
-----------	-------------------------	-----------------------------	---------------------	--	----------------	------------------------	-----	------	--------	-------										
SSR-18	F: TCTGGCTGACACCTGACATCAAGGAG	260–295	4	4	0.08	0.02	0.01	31	24	sequences not covering locus										
SSR-19	F: TGGCAACATGCACACTGTTT	TATC (ATA, TAC)	190–253	232	6	5	10	5.7	0.09	0.04	0.04	26	24	two orthologues?						
SSR-20	F: CATTGTATATCTGTAATAGTGTTG	GTTA (ACA, GTGA)	238–256	245	6	5	4	10	4.8	0.12	0.05	0.02	39	32	two orthologues?					
SSR-21	F: ATGGATAAGGCACGTATGAGG	GAT	285–345	336	6	3	6	1	3	6	3.5	0.41	0.15	0.01	133	126	1			
SSR-22	F: AGGGCGTTATGGAAACCGGG	GAT	238–256	245	6	5	4	6	5	6	10	5.7	0.09	0.04	0.04	26	24	two orthologues?		
SSR-23	F: CACACACAAAACGTAAGACT	TGTGATCTTGATGAAAGGAA	190–253	232	6	5	4	6	5	6	10	5.7	0.09	0.04	0.04	26	24	two orthologues?		
SSR-24	F: GTCACACTCCCTCGTCGCA	GAT	275–287	289	6	1	2	3	5	2	5	2	0.04	0.01	0.01	13	5	0		
SSR-25	F: GGTGTATAAGGCACGTGGA	TGTGATCTTGATGAAAGGAA	190–253	232	6	5	4	6	5	6	10	5.7	0.09	0.04	0.04	26	24	two orthologues?		
SSR-26	F: GTGGCCGAGCCAAGGTTGTTT	ATC	302–306	302	6	3	4	2	2	2	4	2.8	0.2	0.12	0.17	95	81	0		
SSR-27	F: TCACTAATACACTCTACGTCGTC	ACT	259–263	259	6	2	3	1	1	1	3	1.7	0.04	0.01	0.01	14	4	0		
SSR-28	F: GCAGAACGAGCCACATGAGGGG	ACT	257–290	273	6	4	3	6	4	3	6	4	0.05	0.02	0.03	25	18	0		
SSR-29	F: GACACACAAATCTCTCTTGAGTC	ACT	300–351	320	6	7	4	5	7	4	2	2	7	4.8	0.13	0.06	0.06	61	58	1
SSR-30	F: TCTGGCTCTGGTGTTGCTTG	TGA	275–279	289	6	1	2	3	5	2	5	2	0.04	0.01	0.01	13	5	0		
SSR-31	F: GCTGAGGAGTGGAGAGAAGC	no sequences																		
SSR-32	F: GTGCTGATTGCTACATCAAGAGAG	GAT	236–251	241	6	6	3	6	3	3	9	5.3	0.07	0.03	0.03	26	23	0		
SSR-33	F: GCCAGGATGGTTGAGAACCAGCA	no sequences																		
SSR-34	F: ATGGCAAGATTTGCTGGTCTGCT	ACT	455–455	455	5	7	7	6	6	0	1	7	5	0.47	0.16	0.06	192	141	1	
SSR-35	F: GCCACGCTCTGGGTAATAGGGG	ATC (CA) A	463–501	484	5	7	4	7	6	6	0	1	7	5	0.47	0.16	0.06	192	141	1
SSR-36	F: ATTGCCCTGGGGAAACAATTCAAGG	TCA	240–253	245	6	2	4	4	2	4	2	4	3	0.02	0.01	0.01	8	6	0	
SSR-37	F: AGTGCACCTCTCTCTGCTGTTCC	GAT	184–280	275	6	10	26	16	14	10	2	2	26	13	0.08	0.03	0.03	32	29	0
SSR-38	F: CACCAATCTGATGATGACATCAAGC	TCA	310–568	536	6	10	8	6	8	6	8	6	10	7.7	0.23	0.08	0.06	171	98	2
SSR-39	F: ATCTCTGCATCTGATCAGTCAACA	TCA	406–480	456	6	6	4	3	5	4	5	6	4.5	0.06	0.03	0.03	52	36	2	
SSR-40	F: GTGGCTGTTGAGACTGTTG	no sequences																		

Notes:
- SSR-18: sequences not covering locus
- SSR-20: two orthologues?
- SSR-21: sequences not covering locus, two loci?
- SSR-22: no sequences
- SSR-23: sequences not covering locus, two loci?
- SSR-24: sequences not covering locus
- SSR-25: no sequences
- SSR-26: three orthologues?
- SSR-27: one unambiguous locus
- SSR-28: two orthologues?
- SSR-29: three orthologues?
- SSR-30: one unambiguous locus
- SSR-31: no sequences
- SSR-32: two or three orthologues?
- SSR-33: different orthologous locus sequenced?
- SSR-34: sequences different to transcript
- SSR-35: two orthologues?
- SSR-36: one unambiguous locus
- SSR-37: two or three orthologues?
- SSR-38: two or three orthologues?
- SSR-39: two or three orthologues?
- SSR-40: sequences different to transcript, but consistent
APPENDIX 6. Continued.

SSR locus	Primer sequences (5’–3’)	SSR motif, Main (additional)	Sequence length (bp)	No. of individuals successfully sequenced	No. of alleles	Pairwise genetic distance	SNPs	PICs	Introns	Notes										
SSR-41	F: GTAAGCAAAGTAGATTGGTTCACCT R: GGCGTGCCTCTGGTGGTTTT	GAT	376–380 379	5	2	0	1	1	1	1	2	1	0.06	0.02	0.04	24	4	1		
SSR-42	F: AGCTAACTCAAATACGATGCAA R: AGCTCATTCCACGTATTACC	GAT	125–362 313	6	3	2	3	2	1	1	3	2	0.39	0.18	0.15	180	68	0	two orthologues?	
SSR-43	F: ACCCTGAAACCTTGAGCT R: TTTGGGTGGCCCT GCCTCAC	ATG	157–416 366	4	2	0	2	0	0	1	1	2	0.8							
SSR-44	F: GTTTAAAGCATCCACGCGTG R: AGCTAGGACATGCTGCGT	ATC (TCG, CACC)	283–316 296	6	3	4	4	3	5	2	2	5	3.5	0.05	0.03	0.03	21	16	0	two orthologues?
SSR-45	F: GTGGCTTTGAAAGATGCCATGA R: ACAATGTCTCCACGGCCCTG		148–359 303	6	6	1	10	6	1	1	1	10	4.2	0.6	0.43	0.47	405	311	?	three orthologues? second transcript different to transcript
SSR-46	F: TCGCTGATGACGCAAGG R: GGCTGCTGACGAAAGGCA																			
SSR-47	F: CAGAGACACCAGCTGCTGACA R: ACCATGGATCAAGCAAGAC 	TGAGAT (GGAATT, TGT)	264–294 271	6	3	7	4	6	2	2	2	1	0.03	0.01	0.01	17	10	0	two orthologues?	
SSR-48	F: CTTCCACTCCTGAAATCAGTGAG R: CAACTCTCGCCCTTTATCGA																			
Totals			125–1051 327.3	5	4.3	4.6	5.4	4.1	3.9	3.2	1	26	4.3	0.6	0.1	0.1	80.3	52.5	0–2	

Note: PICs = parsimony informative characters; SNPs = single-nucleotide polymorphisms; SSRs = simple sequence repeats.