Unexpected enhancement of FVIII immunogenicity by endothelial expression in lentivirus-transduced and transgenic mice

Qizhen Shi,1-4,Christopher V. Carman,5,*, Yingyu Chen,1,2 Peter T. Sage,6 Feng Xue,1,2 Xin M. Liang,7 and Gary E. Gilbert7

1Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI; 2Blood Research Institute, Versiti Wisconsin, Milwaukee, WI; 3Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI; 4Midwest Athletes Against Childhood Cancer Fund Research Center, Milwaukee, WI; 5Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA; 6Renal Division, Transplant Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; and 7Department of Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA

Key Points

• EC-targeted FVIII expression is more immunogenic than platelet-target expression.
• ECs can present antigen FVIII to Tfh cells, promoting cell proliferation.

Factor VIII (FVIII) replacement therapy for hemophilia A is complicated by development of inhibitory antibodies (inhibitors) in ~30% of patients. Because endothelial cells (ECs) are the primary physiologic expression site, we probed the therapeutic potential of genetically restoring FVIII expression selectively in ECs in hemophilia A mice (FVIIInull). Expression of FVIII was driven by the Tie2 promoter in the context of lentivirus (LV)-mediated in situ transduction (T2F8LV) or embryonic stem cell–mediated transgenesis (T2F8Tg). Both endothelial expression approaches were associated with a strikingly robust immune response. Following in situ T2F8LV-mediated EC transduction, all FVIIInull mice developed inhibitors but had no detectable plasma FVIII. In the transgenic approach, the T2F8Tg mice had normalized plasma FVIII levels, but showed strong sensitivity to developing an FVIII immune response upon FVIII immunization. A single injection of FVIII with incomplete Freund adjuvant led to high titers of inhibitors and reduction of plasma FVIII to undetectable levels. Because ECs are putative major histocompatibility complex II (MHCII)-expressing nonhematopoietic, “semiprofessional” antigen-presenting cells (APCs), we asked whether they might directly influence the FVIII immune responses. Imaging and flow cytometric studies confirmed that both murine and human ECs express MHCII and efficiently bind and take up FVIII protein in vitro. Moreover, microvascular ECs preconditioned ex vivo with inflammatory cytokines could functionally present exogenously taken-up FVIII to previously primed CD4+CXCR5+ T follicular helper (Tfh) cells to drive FVIII-specific proliferation. Our results show an unanticipated immunogenicity of EC-expressed FVIII and suggest a context-dependent role for ECs in the regulation of inhibitors as auxiliary APCs for Tfh cells.

Introduction

Hemophilia A (HA) is a genetic bleeding disorder, resulting from a deficiency of factor VIII (FVIII). Although FVIII protein-replacement therapy is effective, 30% of severe HA patients will develop anti-FVIII inhibitory antibodies (inhibitors), rendering routine FVIII protein-replacement therapy useless. In such patients, immune-tolerance induction, infusing high quantities of FVIII, is the standard care. However, this approach costs over $1 million per patient-year and remains incompletely effective for 30% of inhibitor patients.1-5
Gene therapy is an attractive alternative for the treatment of HA. However, the potential to develop inhibitors to the neoprotein remains.6-15 Though not a natural site for FVIII expression, hepatocyte-targeted FVIII gene therapy has shown promising efficacy.16-18 Because platelets naturally expressed the FVIII carrier protein von Willebrand Factor (VWF), we previously engineered a lentiviral platelet-specific gene-therapy approach for on-demand delivery of FVIII at the site of injury.19 This partially restored hemostasis in HA mice and was associated with a degree of immunologic tolerance to infused FVIII protein.20-24 Recent studies confirm that the major physiologic site for FVIII synthesis is endothelial cells (ECs).25-30 Thus, we explored the potential for use of ECs as a target for gene therapy of HA.

Here, we investigated the efficacy of a lentivirus-based vector controlled by the EC-specific Tie2 promoter (T2F8) to restore FVIII expression in HA mice. We compared results of EC-targeted vs platelet-targeted FVIII expression using transgenic models. In both systems, we found endothelial-expressed FVIII to be surprisingly immunogenic. Our in vivo and ex vivo studies suggest that ECs can serve as auxiliary major histocompatibility complex class II (MHCII)–expressing antigen (Ag)–presenting cells (APCs) that mediate FVIII-specific stimulation of CD4+/CXCR5+ follicular T helper (Tfh) cells. These somewhat counterintuitive findings, together with previous studies, provide cautionary insight about endothelial-targeted gene therapy and support a putative site- and context-specific role for ECs as modulators of FVIII immunogenicity.

Materials and methods

Additional details on the reagents, methods, and statistics used in this study are provided in supplemental Material and methods.

Mice

Animal studies were approved by the institutional animal care and use committee of Medical College of Wisconsin or Harvard. Mouse models, as summarized in Table 1, included: (1) an FVIII-deficient (FVIII−/−) model; (2) a platelet-specific FVIII expression model, 2bF8 transgenic (2bF8+/-) mice, in which human B-domain–deleted FVIII (hBDDFVIII) was expressed via the platelet-specific cllb promoter;31 (3) an EC-specific expression model, T2F8 transgenic (T2F8+/-) mice, in which hBDDFVIII was driven by the EC-specific Tie2 promoter;31 (4) a CIITA−/− (MHCII−/−) model; and (5) wild-type (WT) C57BL/6J mice.

In situ transduction of ECs in FVIIInull mice

We engineered a T2F8 lentiviral (LV) expression vector–harboring hBDDFVIII expression cassette under control of the Tie2 promoter (T2F8LV). T2F8LV was administered into FVIIInull mouse via tail-vein injection. Blood was collected for assessment of plasma FVIII levels and inhibitor titers.

Mouse immunization to human FVIII

FVIII immunization protocols were implemented as described.31-33 Briefly, for the T2F8+/- and 2bF8+/- groups, mice were immunized with recombinant hBDDFVIII (rhF8) at a dose of 600 U/kg plus incomplete Freund adjuvant (IFA) by intraperitoneal injection. WT mice were immunized with recombinant human full-length FVIII (rhF8) at a dose of 600 U/kg with IFA via intraperitoneal injection. For FVIIInull mouse immunization, rhF8 was administered at a dose of 200 U/kg without IFA via IV injection.

Assays for measuring plasma CXCL13 in mice

WT C57BL/6 mice were immunized as in the previous section. Blood from immunized and unimmunized controls was collected 7 days after the last immunization and plasma CXCL13 was measured by enzyme-linked immunoabsorbant assay (ELISA).

Analysis of constitutive MHCII expression on ECs in vivo

Organs were harvested from untreated WT and CIITA−/− mice, minced, and collagenase digested. Cells were stained for CD31, CD105, CD11b, CD45, and MHCII and analyzed by flow cytometry as described.34,35 ECs were identified by gating on the CD31+/CD105+/CD11b+/CD45− cell population. Comparison of MHCII signal on CIITA−/− strain vs WT C57BL/6 was used to determine the specific MHCII signal.

In vitro study of CXCL13 expression and Tfh cell binding to ECs

Human dermal microvascular ECs (MVECs; DMVECs; hDMVECs) were cultured in the absence or presence of tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ), interleukin 1β (IL1β), lipopolysaccharide (LPS), or recombinant human CXCL13 (rhCXCL13) and then washed and stained with anti-CXCL13 antibody. To study T-cell adhesion, LPS-p pretreated hDMVECs were incubated with equal numbers of flow-sorted, human peripheral blood CD4+/CXCR5+ or CD4+/CXCR5− T cells for 1 hour in the absence and presence of function-blocking anti-CXCL13 antibody, followed by staining for CD4.

In vitro EC Ag-uptake and -processing studies

hDMVECs and murine DMVECs (mDMVECs) were treated with IFN-γ and TNF-α as described.36 To assess FVIII uptake, ECs incubated with rhF8–Alexa 488 (10 U/mL) with human VWF (1 U/mL) and fibrinogen (FIB; 150 μg/mL) for 12 hours and with LysotrackerRed for 1 hour. To assess Ag processing by ECs, cells were incubated with the model Ag/APC-processing reporter DQ-OVA (full-length ovalbumin that exhibits proteolysis-dependent 488 nm37 and Lysotracker Red. Cells were washed and imaged live. As a more sensitive FVIII detection, rhF8 was coated onto GMA-8021 (anti-FVIII monoclonal antibody [MAb])–conjugated carboxylate-modified fluorescent nanoparticles. Such “rhF8 fluorospheres” were incubated with 150 μg/mL FIB (± 1 U/mL VWF) and ECs for 1.5 hours followed by washing and imaging.

In vivo EC Ag-uptake and -processing studies

To investigate the ability of ECs to proteolytically process whole proteins in vivo, we immunized C57BL/6 mice subcutaneously in both flanks with 10 μg of DQ-OVA with complete Freund adjuvant. Four days later, ECs isolated from the skins around the site of injection were cultured with CellTrace Violet–labeled CD4+ T cells isolated from rhF8–primed FVIIInull mouse spleens in media containing rhCXCL13 and rhF8 for 7 days. Cells were stained with anti-CD4,
systemic transduction of ECs in FVIIInull mice (Figure 1A). To our introduced FVIII expression into ECs in vivo/in situ through FVIII expression in ECs in vitro (supplemental Figure 1). Next, we promotor (T2F8LV). We confirmed that T2F8LV could introduce with targeted expression in ECs via the panendothelial Tie2 approach, we performed lentivirus-mediated FVIII gene transfer substantial and increased over 8 weeks (Figure 1D). These anti-FVIII immunoglobulin G (IgG) detected by ELISA was T2F8LV with FVIII triggers strong anti-FVIII immune responses results suggest that in situ panendothelial transduction by anti-FVIII inhibitors (Figure 1C), indicating that FVIII was transduced animals (Figure 1B). However, all animals developed disappointment, no plasma FVIII was detected in T2F8LV- mediated transduction of platelets, 22-24 hepatocytes, 16-18 and that sharply contrast the tolerance produced by lentivirus- T2F8LV via the Tie-2 promotor B6/129S levels of platelet FVIII in transduced recipients are low (5% to 10%) compared with healthy plasma.23 As an alternate approach, we performed lentivirus-mediated FVIII gene transfer with targeted expression in ECs via the panendothelial Tie2 promoter (T2F8LV). We confirmed that T2F8LV could introduce FVIII expression in ECs in vitro (supplemental Figure 1). Next, we introduced FVIII expression into ECs in vivo/in situ through systemic transduction of ECs in FVIIInull mice (Figure 1A). To our disappointment, no plasma FVIII was detected in T2F8LV- transduced animals (Figure 1B). However, all animals developed anti-FVIII inhibitors (Figure 1C), indicating that FVIII was expressed, but undetectable because of these antibodies. Total anti-FVIII immunoglobulin G (IgG) detected by ELISA was substantial and increased over 8 weeks (Figure 1D). These results suggest that in situ panendothelial transduction by T2F8LV with FVIII triggers strong anti-FVIII immune responses that sharply contrast the tolerance produced by lentivirus-mediated transduction of platelets, 22-24 hepatocytes, 16-18 and specific EC subsets.38,39

Immune responses are influenced by endothelial transgenic FVIII expression

To further evaluate the influence of EC-FVIII expression in immune responses, we prepared transgenic mice. Three groups of T2F8Tg mice from 2 lines generated by embryonic stem (ES) cell–mediated transgenesis32 were used for the FVIII immune response study (Table 1). One was the T2F8Tg+/+ (ES#5) group, in which animals were homozygous T2F8Tg from line #5, with 100% normal levels of plasma FVIII (1.35 ± 0.12 U/mL). The second group of T2F8Tg mice was composed of heterozygous animals from line #5 (T2F8Tg+/+; ES#5) with plasma FVIII coagulant activity (FVIII:C) of 0.58 ± 0.06 U/mL. In the third group of T2F8Tg mice were homozygous animals from another line (#65) (T2F8Tg+/+; ES#65), with a FVIII:C level of 0.34 ± 0.14 U/mL.

We used an active immunization protocol31,32 to evaluate whether FVIII immunogenicity is diminished by endothelial expression. Surprisingly, we found that FVIII:C in the plasma dropped to undetectable levels in all 3 groups of T2F8Tg mice after a single immunization dose of rhF8 and IFA (Figure 2A-B). The plasma FVIII remained undetectable 4 weeks after this single immunization (not shown). In contrast, control WT C57BL/6 mice retained 69% of plasma FVIII after 1 immunization and still had detectable plasma FVIII even after a second immunization at week 4 (Figure 2A-B). These data suggest that targeted endothelial FVIII expression promotes strong immunogenicity, even if the expression is via germ line genetic modification.

After a single rhF8/IFA immunization, there were no statistically significant differences in inhibitor titers between the different groups of T2F8 mice in the FVIII null background (supplemental Figure 2A). This indicates that FVIII-inhibitor formation in mice with endothelial expression is not substantially influenced by the level of FVIII expression over this range. We asked whether VWF might influence inhibitor development (supplemental Figure 2B). The inhibitor titer in the T2F8Tg+/+VWF-/− group (252 ± 7074 BU/mL) was significantly lower than the T2F8Tg+/+; VWF+/− group (60 ± 508 BU/mL; supplemental Figure 2B), although plasma FVIII:C in the T2F8Tg+/+VWF-/− group was not detectable (not shown). After the second FVIII immunization, the inhibitor titers in the T2F8Tg+/+ group (8560 ± 7074 BU/mL) were significantly higher

Table 1. Expression models/strains used in this study
Model/strain name

WT
FVIIInull
2bF8LV
T2F8LV
2bF8Tg+/−
T2F8Tg+/− (line: ES#5)
T2F8Tg+/− (line: ES #65)
T2F8Tg+/−VWF−/−
CIITA−/−

anti–T-cell receptor β (TCRb), and anti-CXCR5 antibodies, and analyzed by flow cytometry.

Results

FVIIInull mice developed inhibitory antibodies after in situ lentivirus-mediated EC-specific transduction

Our previous studies showed that lentivirus-mediated platelet-specific gene delivery of FVIII (via αIbβ2 promotor; 2bF8) can introduce sustained therapeutic levels of platelet FVIII expression and induce FVII-specific immune tolerance in FVIIInull mice.20-22 However, levels of platelet FVIII in transduced recipients are low (~5% to 10%) compared with healthy plasma.23-24 As an alternate approach, we performed lentivirus-mediated FVIII gene transfer with targeted expression in ECs via the panendothelial Tie2 promoter (T2F8LV). We confirmed that T2F8LV could introduce FVIII expression in ECs in vitro (supplemental Figure 1). Next, we introduced FVIIII expression into ECs in vivo/in situ through systemic transduction of ECs in FVIIInull mice (Figure 1A). To our disappointment, no plasma FVIII was detected in T2F8LV-transduced animals (Figure 1B). However, all animals developed anti-FVIII inhibitors (Figure 1C), indicating that FVIII was expressed, but undetectable because of these antibodies. Total anti-FVIII immunoglobulin G (IgG) detected by ELISA was substantial and increased over 8 weeks (Figure 1D).
than in the WT control group (2576 ± 4224 BU/mL) (supplementary Figure 2C).

We then compared FVIII immune responses in the endothelial-expressed, T2F8Tg, and platelet-expressed 2bF8Tg models (Figure 2C). The 2bF8Tg mice used in this study were also generated by ES cell–mediated transgenesis.31 In 2bF8Tg mice, FVIII expression is targeted to platelet α-granules with a level of ≈0.75 mU/108 platelets, which corresponds to 1.2% of FVIII in WT mouse whole blood (though no plasma FVIII:C was detectable31). When the same immunization protocol was applied to our platelet-specific FVIII (2bF8Tg) transgenic mice, 15 of 18 2bF8Tg+/− mice developed inhibitors with a titer of 54 ± 49 BU/mL. All 2bF8Tg mice developed inhibitors with the average titer of 1811 ± 1953 BU/mL, which was significantly higher than obtained in 2bF8Tg mice (Figure 2C). Thus, expression in ECs greatly enhances immunogenicity of FVIII, whereas expression in megakaryocytes/platelets induces a degree of immune tolerance.

ECs exhibit functional properties of APCs

B-cell and antibody responses are tightly regulated by the CD4+/CXCR5+ lymph node Tfh cell subset, which in turn is regulated by MHCIII-expressing APCs.40–46 Because ECs have emerged as auxiliary MHCIII-expressing APCs,47,48 we hypothesized that they might directly influence FVIII immunogenicity by presenting MHCIII/Ag to Tfh cells. Human ECs are well established to constitutively express MHCIII in a response to tonic levels of IFN-γ.49 In mice the situation remains less studied and less clear.50,51 Therefore, we first examined whether murine ECs express MHCIII at steady state. We conducted flow cytometric analysis of ECs freshly isolated from a range of tissues in healthy C57BL/6 WT or CIITA+/- (MHCInull) mice.
CXCL13 supports interaction of ECs with circulating Tfh cells

A defining feature of Tfh is expression of the CXCL13-selective chemokine receptor CXCR5, which orchestrates its functions within lymphoid organs. Circulating CD4+\(\times\)/CXCR5+ Tfh cells with memory-like properties (cTfh cells), as well as CXCL13, are also found in the blood with elevated levels seen during humoral and inflammatory responses. We hypothesized that cTfh cells might interact with vascular ECs in a CXCL13-promoted manner. We first examined blood plasma levels of CXCL13 in mice following rhF8/IFA immunization during inhibitor formation, and found a substantial, approximately fivefold, increase in the immunized vs control mice. (Figure 3A). Because ECs can bind chemokines via cell-surface heparan sulfates, we tested whether exogenous CXCL13 could be “captured” by ECs. Brief incubation of resting ECs with rhCXCL13 followed by staining and imaging revealed robust adhesion, we incubated LPS-pretreated hDMVECs with sorted CD4+ CD45+ cells with memory-like properties (cTfh cells). In parallel studies, we also captured CXCL13 (Figure 3B-C). ECs also have potential to express CXCL13 under inflammatory conditions, and LPS is known to promote CXCL13 expression by professional APCs. Thus, we treated hDMVECs with LPS or several inflammatory cytokines (ie, TNF-\(\alpha\), IFN-\(\gamma\), IL1\(\beta\)). We found that the former induced substantial expression and surface presentation of endogenous CXCL13 (Figure 3B-C). In parallel studies, we also confirmed previous studies indicating that LPS, TNF-\(\alpha\), and IL1\(\beta\) (but not IFN-\(\gamma\)) upregulated ICAM-1, a representative proinflammatory immune-adhesion molecule (supplemental Figure 4A-D).

To assess the function of EC-presented CXCL13 on cTfh cell adhesion, we incubated LPS-pretreated hDMVECs with sorted human peripheral blood mononuclear cell (PBMC)-derived CD4+\(\times\)/CXCR5+ (conventional) and CD4+\(\times\)/CXCR5+ (cTfh) T cells in the absence and presence of a CXCL13 function-blocking antibody (Figure 4A). Under these conditions, the level of CD4+\(\times\)/CXCR5+ cTfh binding to ECs was approximately threefold greater than that of the conventional CD4+\(\times\)/CXCR5+ T cells (Figure 4B). Anti-CXCL13 antibody largely blocked binding of CXCR5+\(\times\)/CD4+ T cells, but not the CD4+\(\times\)/CXCR5+ T cells. These data indicate that binding of CD4+\(\times\)/CXCR5+ cTfh cells to ECs can be promoted by CXCL13.

![Figure 2. FVIII activity levels and anti-FVIII inhibitor titers in plasma of FVIII transgenic following FVIII immunization in the presence of IFA.](image-url)
ECs take up and process protein Ag, including FVIII, in vitro and in vivo

ECs might process endogenously expressed FVIII that is diverted from the secretory pathway as well as exogenous FVIII that is actively taken up by endocytosis.\(^7^0-7^7\) To evaluate the latter, we incubated rhF8–Alexa 488 with conditioned human DMVECs in the presence of VWF and FIB. rhF8–Alexa 488 was readily taken up into perinuclear clusters that colocalized with late endosomes and lysosomes, features consistent with class II processing (Figure 5A). Similar observations were made with conditioned mDMVECs (not shown). Complementary experiments were performed using rhF8-labeled with 40-nm fluorospheres that provide an enhanced signal-to-noise ratio. Upon incubation with conditioned mDMVECs in the presence or absence of VWF, these “rhF8 fluorospheres” bound to membrane surface patches and...
accumulated in putative intracellular perinuclear puncta (presumptive endosomes/lysosomes; Figure 5B left panel). VWF did not alter the pattern of binding or uptake (not shown). Little binding or uptake was visible on ECs incubated with control, non–rhfF8-coupled fluorospheres (Figure 5B right panel). Both methods indicated that FVIII is taken up by a majority of ECs into a perinuclear compartment.

Several studies support the ability of ECs to mediate functional class II Ag processing. To extend this idea, we implement DQ-OVA, a common Ag-processing reporter. We incubated hDMVECs (supplemental Figure 5A) and mouse heart MVECs (not shown) with DQ-OVA together with a LysoTracker Red. DQ-OVA was readily taken up into ECs and converted to fluorescent peptides that partially colocalized with late endosomes/lysosomes (supplemental Figure 5A). We extended these studies into the in vivo setting by subcutaneous immunization of DQ-OVA in C57BL/6. Injection-site skin was later harvested and analyzed by flow cytometry. This showed substantial levels of processed DQ-OVA signal in ECs (supplemental Figure 5B). Together, these studies show that whole protein Ag is readily taken up and proteolytically processed by human and murine ECs both in vitro and in vivo.

ECs can mediate functional FVIII-dependent stimulation of Tfh

To determine whether murine ECs can promote Ag-specific immune responses in CD4\(^+\)/CXCR5\(^+\) Tfh cells, we performed a T-cell proliferation assay (Figure 6B). CD4\(^+\) T cells isolated from FVIII-primed mice were cocultured ex vivo with ECs and CXCL13, with or without rhF8. Proliferating T-cell clusters/clones were seen only in cocultures that contained rhF8 Ag (not shown). Flow cytometry showed that ~7% of the FVIII-primed CD4\(^+\) T cells were proliferating (daughter) when restimulated with ECs with either 0.2 \(\mu\)g/mL or 2 \(\mu\)g/mL rhF8 (Figure 6B). In contrast, only 1% of T cells proliferated when cocultured in the absence of rhF8 or cocultured with an unrelated Ag rhF9 (2 \(\mu\)g/mL; Figure 6B). When the CD4\(^+\)/CD5\(^+\) Tfh cells were selectively analyzed, there were 18% and 12.7% Tfh proliferating daughter cells in cocultures containing 0.2 and 2 \(\mu\)g/mL rhF8, respectively. In contrast, there were only 5% Tfh daughter cells when cocultured without rhF8 or

Figure 5. Binding and uptake of FVIII by conditioned DMVECs. (A) Confluent hDMVECs were pretreated with 100 nM IFN-\(\gamma\) (48 hours) and 100 nM TNF-\(\alpha\) (24 hours) prior to incubation for 12 hours rhfF8–Alexa 488 (10 U/mL; in the presence of 1 U/mL VWF and 150 \(\mu\)g/mL FIB) together with Lysotracker Red (late endosome/lysosome marker; 50 nM). Cells were then rinsed and imaged live. Fluorescence microscopy showed significant rhfF8–Alexa 488 (green) accumulated into perinuclear punctae, which partially colocalized with late endosomes/lysosomes (red) as seen by the yellow signal in the merged image. This was validated by computational image analysis, which also identified substantial areas of rhfF8-488 and Lysotracker Red coincidence, as depicted by white pixels in the Costes mask (right panel) and reflected in an average Pearson correlation coefficient of 0.680 ± 0.033 (\(r^2\) > 0.98; Costes \(P = 100\%\)). Scale bar, 25 \(\mu\)m. (B) As a complementary and more sensitive approach to detect FVIII binding and uptake, rhF8 was coated onto GMA-8021 (anti-FVIII MAb)-conjugated carboxylate-modified red fluorescent nanoparticles (rhfF8 fluorospheres). The same fluorescent particles were subjected to blocking of the carboxylate modification with 2% BSA to demonstrate the level of nonspecific binding and cellular uptake (Control fluorospheres). Fluorospheres were then incubated together with 150 \(\mu\)g/mL fibrinogen in the presence (not shown) or absence of 1 U/mL VWF for 1.5 hours on IFN-\(\gamma\)- and TNF-\(\alpha\)-conditioned mDMVECs. Differential interference contrast (DIC) and confocal fluorescence images were superimposed. Arrowheads indicate patches of putative membrane-bound rhF8. Arrows indicate putatively internalized perinuclear clusters of rhF8 that presumably represent endosomes and lysosomes (left panel). The same pattern was observed in the presence of VWF. In the absence of rhF8 coating, control fluorospheres showed very little EC binding or uptake (right panel, arrows). Scale bar, 20 \(\mu\)m.
that ECs can present FVIII to Tfh cells, promoting Ag-specific cell proliferation. These data demonstrate 7-AAD staining. CD4 T-cell divisions were quantified as the dilution of CellTrace Violet signal in daughter cells away from the initially labeled peak. Results for both CD4 Tfh primed CD4 ECs can take up FVIII and functionally present FVIII Ag to FVIII-cell populations (supplemental Figure 6). These data confirm that we cultured isolated CD4 ECs are known as the major physiologic site of FVIII expression and anti-FVIII antibodies are rare in healthy subjects. As such, our observation of strong anti-FVIII immunological responses to EC-targeted therapeutic expression of FVIII seems rather counterintuitive. We view this as an apparent, rather than an actual, conflict. Our data bear directly on engineered FVIII expression, whereby synthesis was driven in all ECs via the panendothelial Tie2 promotor. Native FVIII production was recently shown to be restricted to a smaller subset of ECs that primarily include liver sinusoidal (LSEC), lymphatic (LEC), and possibly splenic sinusoidal (SSEC) ECs. It follows that the ectopic expression of FVIII within nonnative ECs (ie, ECs other than LSEC, LEC, and SSEC) is responsible for the observed immunogenicity, and this seems to be specific for ECs, as ectopic nonnative expression of FVIII in hepatocytes and platelets are both tolerated.

Previous studies are consistent with this dichotomy among EC types. We reported that transgenic panendothelial expression of hFVIII (eg, confirmed in lung and heart ECs) in HA mice had heightened responses to hFVIII immunization compared with mice with platelet expression of FVIII. Similarly, use of the “sleeping beauty transposon” to express FVIII specifically in lung ECs was immunogenic, whereas use of the same FVIII transposon system targeted to LSEC promoted tolerance. Finally, 2 recent reports described transduction strategies that were similar to our T2F8LV, or kidney. In these studies, FVIII was restored to largely to liver ECs (ie, LSEC) and was not found in ECs of the lung or kidney. In contrast,
endothelial expression of FVIII leads to either enhanced immunogenicity or tolerance, depending on the specific endothelial location or subsets that are targeted.

We hypothesized that the mechanism lies in the ability of ECs to function directly as APCs with site- and context-specific properties.47,48 Contrasting with hepatocytes and platelets, all ECs in both humans and mice (eg, shown herein and in Choo et al50 and in Kreisel et al51) constitutively express MHCII and can mediate class II presentation of both endogenous and exogenous Ags.47-49,73 LSEC, LEC, where most FVIII is normally expressed, exhibit unique constitutive protolerogenic properties (eg, expression of programmed death ligand 1 [PD-L1], transforming growth factor [TGF-β]), which would be expected to promote Ag-specific tolerance to FVIII.53-57 Alternatively, the other nonnative ECs tend to stimulate Ag-specific responses, particularly in inflammatory settings.48,72,90-93

Our findings with engineered panendothelial expression of FVIII in both native and nonnative ECs suggest that the immunogenic potential of the latter can exert a dominant stimulatory regulation on FVIII inhibitors (ie, broken immunological tolerance).

Development of FVIII inhibitors requires professional APCs, such as lymphoid dendritic cells, to prime naive CD4+ T cells and initiate formation of Ag-specific memory CD4+\textit{CXCR5}+ Tfh cells.94-104 Our data do not conflict with this model. Rather, they indicate that ECs can act as complementary APCs that modulate response of memory-like cTfh cells after they have been primed by lymphoid dendritic cells entering the blood. Studies in other contexts suggest that cTfh cells receive distinct regulatory cues within the circulation.53,55-57,105-107 cTfh cells ultimately traffic back to lymph nodes and spleen, with robust cytokine response. Inhibitors were detected in T2F8LV-transduced FVIIInull mice to function directly as APCs with site- and context-specific properties.116 Although binding of FVIII to ECs has previously been reported, the mechanism(s) remain poorly characterized. FVIII may bind directly to ECs, presumably binding through exposed phosphatidylserine,116 enabling assembly of the intrinsic FXa complex. FVIII may bind indirectly through WVF and possibly fibrinogen117 via stabilin-2.118 WVF also binds ECs via P-selectin and αvβ3 integrin,119,120 as well as other scavenger receptors aimed at molecular clearance and recycling.118 FVIII has been shown to bind to lipoprotein-related protein and other scavenger receptors shared by ECs and other cell types.121 In addition, there are other candidate FVIII-binding molecules, particularly SREC-1, a scavenger receptor that is partially restricted to ECs.122 Further studies will be needed to identify the receptor and the uptake pathway responsible for FVIII uptake in the MVECs.

In mice, immunogenicity was highest for the T2F8BLV-mediated in situ EC transduction. We speculate that ECs sense proinflammatory danger signals108 and/or endoplasmic reticulum stress generated by the viral vector delivering of T2F8, which upregulates their immunogenic APC functions and promotes FVIII humoral response. Inhibitors were detected in T2F8LV-transduced FVIIInull mice even when plasma FVIII:C was undetectable. Immune responses in the transgenic and WT controls required an active immunization with FVIII together with IFA. Response of WT control mice to rhF8/IFA is likely to be explained by species differences in FVIII epitopes. However, this does not explain the response of T2F818 mice, which are born with normal levels of rhF8 and should be tolerant to rhF8. In vivo Ag presentation by ECs has been tested using a Tie2-driven EC-specific β-gal transgenic mouse model.73 Studies with this model suggest that ECs can present intracellular self-Ag to the immune system without completely deleting Ag-specific T cells.73 Apparently, EC-expressed FVIII results in immunological ignorance rather than tolerance, implying that EC presentation during T-cell development allows escape of FVIII-specific CD4+ T cells in T2F819 mice.

Our data suggest the potential immunogenic roles of FVIII Ag presentation by ECs in the context of engineered gene therapy. It is attractive to speculate that ECs could also modulate FVIII immune responses to exogenous FVIII (eg, HA therapy). LSEC, LEC, and SSEC constitutively express FVIII/VWF-scavenging receptors/ activity. Under inflammatory conditions, many other ECs can upregulate expression of MHCII and costimulatory molecules, as well as scavenging properties such as stabilin-2.79-77,109-113 Moreover, in contrast to dendritic cells, ECs are exposed to circulating WVF and are positioned to distinguish between multimer size and conformation. Because these factors appear to influence immunogenicity of FVIII, it is tempting to speculate that endothelial Ag presentation plays a broader role in FVIII immunogenicity.114,115

Further investigation of the role of EC subsets in modulating FVIII immune responses is warranted.

We report binding, uptake, and presentation of FVIII by inflammatory conditioned DMVECs. Although binding of FVIII to ECs has previously been reported, the mechanism(s) remain poorly characterized. FVIII may bind directly to ECs, presumably binding through exposed phosphatidylserine,116 enabling assembly of the intrinsic FXa complex. FVIII may bind indirectly through WVF and possibly fibrinogen117 via stabilin-2.118 WVF also binds ECs via P-selectin and αvβ3 integrin,119,120 as well as other scavenger receptors aimed at molecular clearance and recycling.118 FVIII has been shown to bind to lipoprotein-related protein and other scavenger receptors shared by ECs and other cell types.121 In addition, there are other candidate FVIII-binding molecules, particularly SREC-1, a scavenger receptor that is partially restricted to ECs.122 Further studies will be needed to identify the receptor and the uptake pathway responsible for FVIII uptake in the MVECs.

In summary, our data demonstrate that panendothelial targeting of FVIII is more immunogenic than expression by megakaryocytes (or hepatocytes), implying a novel role of ECs in modulation of the humoral immune response to FVIII. We showed for the first time the FVIII uptake by MVECs and functional FVIII presentation by MVECs to FVIII-primed Tfh cells, leading to cell proliferation. Together, our results indicate that ECs may play an important role in FVIII immune responses.

Acknowledgments

The authors thank the Harvard Center for Biological Imaging for infrastructure and support, Haig H. Kazazian at the University of Pennsylvania School of Medicine for the FVIIInull mice, and Linzheng Shi at the Boston University School of Medicine for help designing some of the schematic diagrams in their studies. The VWF−/− mice were developed by Denise D. Wagner at Harvard Medical School and purchased from The Jackson Laboratory.

This work was supported by National Institutes of Health, National Heart, Lung, and Blood Institute grants R01HL102035 (Q.S.), R01HL104006 (C.V.C.), and R56HL111640 (C.V.C.), a National Hemophilia Foundation Bridge Award (Q.S.), and generous gifts
from the Children’s Hospital of Wisconsin Foundation (Q.S.), the Midwest Athletes Against Childhood Cancer Fund (Q.S.), and by a Merit Award of the Veterans Administration (G.E.G.).

Authorship

Contribution: Q.S., C.V.C., and G.E.G. designed and conducted the research, analyzed data, and wrote the manuscript; and Y.C., P.T.S., F.X., and X.M.L. performed research and analyzed data.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

References

1. Waters B, Lillicrap D. The molecular mechanisms of immunomodulation and tolerance induction to factor VIII. *J Thromb Haemost*. 2009;7(9):1446-1456.
2. Astermark J. Treatment of the bleeding inhibitor patient. *Semin Thromb Hemost*. 2003;29(1):77-86.
3. Wight J, Paisley S, Knight C. Immune tolerance induction in patients with haemophilia A with inhibitors: a systematic review. *Haemophilia*. 2003;9(4):436-463.
4. Knight C, Paisley S, Wight J, Jones ML. Economic modelling of different treatment strategies for haemophilia A with high-responding inhibitors. *Haemophilia*. 2003;9(4):521-540.
5. Bohn RL, Aledort LM, Putnam KG, Ewenstein BM, Mogun H, Avorn J. The economic impact of factor VIII inhibitors in patients with haemophilia. *Haemophilia*. 2004;10(1):63-68.
6. Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. *Mol Ther*. 2001;3(3):329-336.
7. Monahan PE, White GC II. Hemophilia gene therapy: update. *Curr Opin Hematol*. 2002;9(5):430-436.
8. VandenDriessche T, Collen D, Chua H. Gene therapy for the hemophiliacs. *J Thromb Haemost*. 2003;1(7):1550-1558.
9. Kootstra NA, Matsumura R, Verma IM. Efficient production of human FVIII in hemophilic mice using lentiviral vectors. *Mol Ther*. 2003;7(5 pt 1):623-631.
10. Saenko EL, Ananyeva NM, Moayeri M, Ramezani A, Hawley RG. Development of improved factor VIII molecules and new gene transfer approaches for hemophilia A. *Curr Gene Ther*. 2003;3(3):27-41.
11. Brown BD, Shi CX, Rawle FE, et al. Factors influencing therapeutic efficacy and the host immune response to helper-dependent adenoviral gene therapy in hemophilia A mice. *J Thromb Haemost*. 2004;2(1):111-118.
12. Rawle FE, Shi CX, Brown B, et al. Heterogeneity of the immune response to adenovirus-mediated factor VIII gene therapy in different inbred hemophilic mouse strains. *J Gene Med*. 2004;6(12):1358-1368.
13. Xu L, Mei M, Ma X, Ponder KP. High expression reduces an antibody response after neonatal gene therapy with B domain-deleted human factor VIII in mice. *J Thromb Haemost*. 2007;5(9):1805-1812.
14. Ponder KP. Gene therapy for hemophilia. *Curr Opin Hematol*. 2006;13(5):301-307.
15. High KA. Update on progress and hurdles in novel genetic therapies for hemophilia. *Hematology Am Soc Hematol Educ Program*. 2007;2007:466-472.
16. Doshi BS, Arruda VR. Gene therapy for hemophilia: what does the future hold? *Ther Adv Hematol*. 2018;9(9):273-293.
17. Sherman A, Biswas M, Herzog RW. Tolerance induction in hemophilia: innovation and accomplishments. *Curr Opin Hematol*. 2018;25(5):365-372.
18. Peyvandi F, Garagiola I. Clinical advances in gene therapy updates on clinical trials of gene therapy in haemophilia. *Haemophilia*. 2019;25(5):738-746.
19. Shi Q. Platelet-targeted gene therapy for hemophilia. *Mol Ther Methods Clin Dev*. 2018;9:100-108.
20. Shi Q, Wilcox DA, Fahs SA, et al. Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A. *J Thromb Haemost*. 2007;5(2):392-361.
21. Kuether EL, Schroeder JA, Fahs SA, et al. Lentivirus-mediated platelet gene therapy of murine hemophilia A with pre-existing anti-factor VIII immunity. *J Thromb Haemost*. 2012;10(8):1570-1580.
22. Schroeder JA, Chen Y, Fang J, Wilcox DA, Shi Q. In vivo enrichment of genetically manipulated platelets corrects the murine hemophilic phenotype and induces immune tolerance even using a low multiplicity of infection. *J Thromb Haemost*. 2014;12(8):1283-1293.
23. Chen Y, Luo X, Schroeder JA, et al. Immune tolerance induced by platelet-targeted factor VIII gene therapy in hemophilia A mice is CD4 T cell mediated. *J Thromb Haemost*. 2017;15(10):1994-2004.
24. Chen J, Schroeder JA, Luo X, Montgomery RR, Shi Q. The impact of GP Ibα on platelet-targeted FVIII gene therapy in hemophilia A mice with pre-existing anti-FVIII immunity. *J Thromb Haemost*. 2019;17(3):449-459.
25. Hollestelle MJ, Thines N, Crain K, et al. Tissue distribution of factor VIII gene expression in vivo—a closer look. *Thromb Haemost*. 2001;86(3):855-861.
26. Do H, Healey JF, Waller EK, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells. *J Biol Chem*. 1999;274(28):19587-19592.
27. Fahs SA, Hille MT, Shi Q, Weiler H, Montgomery RR. A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. *Blood.* 2014;123(24):3706-3713.

28. Everett LA, Cleuren AC, Khoriati RN, Ginsburg D. Murine coagulation factor VIII is synthesized in endothelial cells. *Blood.* 2014;123(24):3697-3705.

29. Shahani T, Covens K, Lavendhomme R, et al. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII. *J Thromb Haemost.* 2014;12(1):36-42.

30. Pan J, Dinh TT, Rajaraman A, et al. Patterns of expression of factor VIII and von Willebrand factor by endothelial cell subsets in vivo. *Blood.* 2016;128(1):104-109.

31. Shi Q, Wilcox DA, Fahs SA, et al. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. *J Clin Invest.* 2006;116(7):1974-1982.

32. Shi Q, Fahs SA, Kuether EL, Cooley BC, Weiler H, Montgomery RR. Targeting FVIII expression to endothelial cells regenerates a releasable pool of FVIII and restores hemostasis in a mouse model of hemophilia A. *Blood.* 2010;116(16):3049-3057.

33. Shi Q, Fahs SA, Wilcox DA, et al. Syngeneic transplantation of hematopoietic stem cells that are genetically modified to express factor VIII in platelets and restores hemostasis to hemophilia A mice with preexisting FVIII immunity. *Blood.* 2008;112(7):2713-2721.

34. Singer BD, Mock JR, D'Alessio FR, et al. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells. *Am J Physiol Lung Cell Mol Physiol.* 2016;310(9):L796-L801.

35. Czupalla CJ, Yousef H, Wyss-Coray T, Butcher EC. Collagenase-based single cell isolation of primary murine brain endothelial cells using flow cytometry. *Bio Protoc.* 2018;8(22):8.

36. Sage PT, Varghese LM, Martinelli R, et al. Antigen recognition is facilitated by invadosome-like protrusions formed by memory/effector T cells. *J Immunol.* 2012;188(8):3686-3699.

37. Daro E, Pulendran B, Brasel K, et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but not CD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. *J Immunol.* 2000;165(1):49-58.

38. Merlin S, Famá R, Borroni E, et al. FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. *Blood Adv.* 2019;3(5):825-838.

39. Merlin S, Cannizzo ES, Borroni E, et al. A novel platform for immune tolerance induction in hemophilia A mice. *Mol Ther.* 2017;25(8):1815-1830.

40. Webb LMC, Linterman MA. Signals that drive T follicular helper cell formation. *J Immunol.* 2017;198(1):104-109.

41. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly - TFH cells in human health and disease. *Nat Rev Immunol.* 2013;13(6):412-426.

42. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular Helper T Cells. *Annu Rev Immunol.* 2016;34:335-368.

43. Mackay CR. Follicular homing T helper (Th) cells and the Th1/Th2 paradigm. *J Exp Med.* 2000;192(11):F31-F34.

44. Schaerli P, Willimann K, Lang AB, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. *J Exp Med.* 2000;192(11):1553-1562.

45. Breitfeld D, Oht L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. *J Exp Med.* 2000;192(11):1545-1552.

46. Jing W, Chen J, Cai Y, et al. Induction of activated T follicular helper cells is critical for anti-FVIII inhibitor development in hemophilia A mice. *Blood Adv.* 2019;3(20):3099-3110.

47. Choi J, Enis DR, Koh KP, Shiao SL, Pober JS. T lymphocyte-endothelial cell interactions. *Annu Rev Immunol.* 2004;22:683-709.

48. Carman CV, Martinelli R. T lymphocyte-endothelial interactions: emerging understanding of trafficking and antigen-specific immunity. *Front Immunol.* 2015;6:603.

49. Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ. The detailed distribution of MHC class II antigens in normal human organs. *Transplantation.* 1984;38(3):293-298.

50. Choo JK, Seebach JD, Nickeleit V, et al. Species differences in the expression of major histocompatibility complex class II antigens on coronary artery endothelium: implications for cell-mediated xenoreactivity. *Transplantation.* 1997;64(9):1315-1322.

51. Kreisel D, Richardson SB, Li W, et al. Cutting edge: MHC class II expression by pulmonary nonhematopoietic cells plays a critical role in controlling local inflammatory responses. *J Immunol.* 2010;185(7):3809-3813.

52. Qi H. T follicular helper cells in space-time. *Nat Rev Immunol.* 2016;16(10):612-625.

53. Sage PT, Alvarez D, Godec J, von Andrian UH, Sharpe AH. Circulating T follicular regulatory and helper cells have memory-like properties. *J Clin Invest.* 2014;124(12):5191-5204.

54. Sage PT, Sharpe AH. T follicular regulatory cells. *Immunol Rev.* 2016;271(1):246-259.

55. Morita R, Schmitt N, Bentebibel SE, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. *Immunity.* 2011;34(1):108-121.

56. Ueno H. Human circulating T follicular helper cell subsets in health and disease. *J Clin Immunol.* 2016;36(suppl 1):34-39.

57. Vella LA, Buggert M, Manne S, et al. T follicular helper cells in human efferent lymph retain lymphoid characteristics. *J Clin Invest.* 2019;129(8):3185-3200.

58. Schiffer L, Worthmann K, Haller H, Schiffer M. CXCL13 as a new biomarker of systemic lupus erythematosus and lupus nephritis - from bench to bedside? *Clin Exp Immunol.* 2015;179(1):85-89.
90. Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV. Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J Exp Med. 2003;197(6):643-656.
91. Galea I, Bernardes-Silva M, Forse PA, van Rooijen N, Liblau RS, Perry VH. An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J Exp Med. 2007;204(9):2023-2030.
92. Wheway J, Obeid S, Couraud PO, Combes V, Grau GE. The brain microvascular endothelium supports T cell proliferation and has potential for alloantigen presentation [published correction appears in PLoS One. 2013;8(4)]. PLoS One. 2013;8(1):e52586.
93. Howland SW, Gun SY, Claser C, Poh CM, Réni L. Measuring antigen presentation in mouse brain endothelial cells ex vivo and in vitro. Nat Protoc. 2015;10(12):2016-2026.
94. Qadura M, Othman M, Waters B, et al. Reduction of the immune response to factor VIII mediated through tolerogenic factor VIII presentation by immature dendritic cells. J Thromb Haemost. 2008;6(12):2095-2104.
95. Pfistershammer K, Stöckl J, Siekmann J, Turecek PL, Schwarz HP, Reipert BM. Recombinant factor VIII and factor VIIIvon Willebrand factor complex do not present danger signals for human dendritic cells. Thromb Haemost. 2006;96(3):309-316.
96. Qadura M, Waters B, Burnett E, et al. Recombinant and plasma-derived factor VIII products induce distinct splenic cytokine microenvironments in hemophilia A mice. Blood. 2009;114(4):871-880.
97. Hartholt RB, Wroblewska A, Herczenik E, et al. Enhanced uptake of blood coagulation factor VIII containing immune complexes by antigen presenting cells. J Thromb Haemost. 2017;15(2):329-339.
98. Herczenik E, van Haren SD, Wroblewska A, et al. Uptake of blood coagulation factor VIII by dendritic cells is mediated via its C1 domain. J Allergy Clin Immunol. 2012;129(2):501-509.
99. Gangadharan B, Ing M, Delignat S, et al. The C1 and C2 domains of blood coagulation factor VIII mediate its endocytosis by dendritic cells. Haematologica. 2017;102(2):271-281.
100. Dasgupta S, Navarrete AM, André S, et al. Factor VIII bypasses CD91/LRP for endocytosis by dendritic cells leading to T-cell activation. Haematologica. 2008;93(1):83-89.
101. Sorvillo N, Hartholt RB, Bloem E, et al. Blood coagulation factor VIII via its C2 domain mediates its endocytosis by dendritic cells. Blood. 2013;14(2):152-161.
102. Ragni MV, Wu W, Liang X, Hsieh CC, Cortese-Hassett A, Lu L. Factor VIII-pulsed dendritic cells reduce anti-factor VIII antibody formation in the hemophilia A mouse model. Exp Hematol. 2009;37(6):744-754.
103. Su RJ, Epp A, Feng J, et al. Suppression of the immune response to FVIII in hemophilia A mice by transgene modified tolerogenic dendritic cells. Mol Ther. 2011;19(10):1896-1904.
104. Navarrete A, Dasgupta S, Delignat S, et al. Splenic marginal zone antigen-presenting cells are critical for the primary allo-immune response to therapeutic factor VIII in hemophilia A. J Thromb Haemost. 2009;7(11):1816-1823.
105. Sage PT, Francisco LM, Carman CV, Sharpe AH. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat Immunol. 2013;14(2):152-161.
106. Sardella C, Russo D, Raggi F, et al. Ectopic expression of FSH receptor isoforms in neoplastic but not in endothelial cells from pancreatic neuroendocrine tumors. J Endocrinol Invest. 2013;36(3):174-179.
107. He J, Tsai LM, Leong YA, et al. Circulating precursor CCR7(lo)PD-1(hi)CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity. 2013;39(4):770-781.
108. Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells–conditional innate immune cells. J Hematol Oncol. 2013;6:61.
109. Rubinstein D, Roska AK, Lipsky PE. Liver sinusoidal lining cells express class II major histocompatibility antigens but are poor stimulators of fresh allogeneic T lymphocytes. J Immunol. 1986;137(6):1803-1810.
110. Rohse AW, Knolle PA, Bibo K, et al. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology. 1996;110(4):1175-1181.
111. Uhrig A, Banafshe R, Kremer M, et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J Leukoc Biol. 2005;77(5):626-633.
112. Patten DA, Shetty S. More than just a removal service: scavenger receptors in leukocyte trafficking. Front Immunol. 2018;9:2904.
113. Anderson CL. The liver sinusoidal endothelium reappears after being eclipsed by the Kupffer cell: a 20th century biological delusion corrected. J Leukoc Biol. 2015;98(6):875-876.
114. Peyvandi F, Mannucci PM, Garagllo I, et al. A randomized trial of factor VIII and neutralizing antibodies in hemophilia A. N Engl J Med. 2016;374(21):2054-2064.
115. Goudemand J, Peyvandi F, Lacroix-Desmazes S. Key insights to understand the immunogenicity of FVIII products. Thromb Haemost. 2016;116(suppl 1):S2-S9.
116. Brinkman HJ, Mertens K, van Mourik JA. Phospholipid-binding domain of factor VIII is involved in endothelial cell-mediated activation of factor X by factor IXα. Arterioscler Thromb Vasc Biol. 2002;22(3):511-516.
117. Gilbert GE, Novakovic VA, Shi J, Rasmussen J, Pipe SW. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine. Blood. 2015;126(10):1237-1244.
118. Swystun LL, Lai JD, Notley C, et al. The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. J Clin Invest. 2018;128(9):4057-4073.
119. Chow TW, Hellums JD, Moake JL, Kroll MH. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. *Blood*. 1992;80(1):113-120.

120. Pendu R, Terraube V, Christophe OD, et al. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. *Blood*. 2006;108(12):3746-3752.

121. Schwarz HP, Lenting PJ, Binder B, et al. Involvement of low-density lipoprotein receptor-related protein (LRP) in the clearance of factor VIII in von Willebrand factor-deficient mice. *Blood*. 2000;95(5):1703-1708.

122. Tamura Y, Osuga J, Adachi H, et al. Scavenger receptor expressed by endothelial cells I (SREC-I) mediates the uptake of acetylated low density lipoproteins by macrophages stimulated with lipopolysaccharide. *J Biol Chem*. 2004;279(30):30938-30944.