The complete plastid genome sequence of *Vaccinium japonicum* (Ericales: Ericaceae), a deciduous broad-leaved shrub endemic to East Asia

Won-Bum Cho, Eun-Kyeong Han, In-Su Choi, Dong Chan Son, Gyu Young Chung and Jung-Hyun Lee

Department of Plant Variety Protection, Korea Forest Seed and Variety Center, Chungju, Republic of Korea; Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Republic of Korea; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, Republic of Korea; Division of Horticulture and Medicinal Plant, Andong National University, Andong, Republic of Korea; Department of Biology Education, Chonnam National University, Gwangju, Republic of Korea

ABSTRACT

We here sequenced the complete plastid genome (plastome) of *Vaccinium japonicum* (Ericaceae), a deciduous broad-leaved shrub endemic to East Asia. This species has considerable practical economic value. The plastome of *V. japonicum* is assembled as a single contig (187,213 bp). A large single copy (104,637 bp) and a small single copy (3,000 bp) of the genome are separated by a pair of inverted repeats (39,788 bp). The genome consists of 135 genes, which include 88 protein coding, eight ribosomal RNA, and 39 transfer RNA genes. The plastome of *V. japonicum* is similar to that of *Vaccinium macrocarpon* in gene content and order. Our phylogenetic analysis revealed the phylogenetic position of *V. japonicum* in a highly supported clade of the genus *Vaccinium* together with other four congener, *V. bracteatum*, *V. vitis-idaea*, *V. uliginosum* and *V. macrocarpon*.

ARTICLE HISTORY

Received 30 March 2021
Accepted 23 May 2021

KEYWORDS

complete plastid genome; Ericaceae; *Vaccinium japonicum*; phylogenetic analysis; ndhF

CONTACT

Jung-Hyun Lee (jung-hyun.lee@korea.ac.kr) Department of Biology Education, Chonnam National University, Gwangju, Republic of Korea

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2010). The maximum likelihood (ML) analysis was performed with RAxML v.8.0 (Stamatakis, 2014) using default parameters and 1000 bootstrap replicates. For the RAxML tree, the general time-reversible (GTR) model of nucleotide substitution was used with the Gamma model of rate heterogeneity.

The *V. japonicum* plastome is 187,213 bp long, with two inverted repeat (IR) regions (39,788 bp each) that separate a large single copy (LSC) region (104,637 bp) and a small single copy (SSC) region (3000 bp). The genome has a pair of enlarged IR regions and an extremely shortened SSC region, which contains only a single gene—*ndhF*. In total, 135 genes, which include 88 protein-coding, eight ribosomal RNA, and 39 transfer RNA genes, were annotated. The GC content in overall, LSC, SSC, IR regions are 36.7%, 35.7%, 29.3%, and 38.4%, respectively. The most similar plastome, compared to *V. japonicum* (187,213 bp) in gene content and order, is *V. macrocarpon* (176,045 bp), despite the length difference.

The ML tree shows that all five *Vaccinium* species, *V. bracteatum*, *V. vitis-idaea*, *V. uliginosum*, *V. macrocarpon* and *V. japonicum*, are a monophyletic group with a 100% bootstrap value (Figure 1). This suggests that the complete plastome sequenced in this study is a valuable input to the genomic resources of Ericaceae and can be utilized in future evolutionary studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the research project of the Korea National Arboretum [KNA-1-1-18, 15-3].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession no. MW006668. The associated Sequence Read Archive (SRA) number is PRJNA681995.

References

Boufford DE, Ohashi H, Huang TC, Hsieh CF, Tsai JL, Yang KC, Ipeng C, Kuoh CS, Hsiao A. 2003. A checklist of the vascular plants of Taiwan. Flora Taiwan. 6:15–139.

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Fajardo D, Senalik D, Ames M, Zhu H, Steffen SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K, et al. 2013. Complete plastid genome sequence of *Vaccinium macrocarpon*: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Genomes. 9(2):489–498.

Katoh K, Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics. 26:1899–1900.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28: 1647–1649.
Kim SC, Baek SH, Lee JW, Hyun HJ. 2019. Complete chloroplast genome of Vaccinium oldhamii and phylogenetic analysis. Mitochondrial DNA B. 4(1):902–903.

Kim Y, Shin J, Oh DR, Kim DW, Lee HS, Choi C. 2020. Complete chloroplast genome sequences of Vaccinium bracteatum Thunb., V. vitis-idaea L., and V. uliginosum L. (Ericaceae). Mitochondrial DNA Part B. 5(2):1843–1844.

Kong WS, Kim KO, Lee SG, Park HN, Cho SH. 2014. Distribution of high mountain plants and species vulnerability against climate change. J Environ Impact Assess. 23(2):119–136.

Lee TB. 2003. Illustrated flora of Korea. Seoul: Hyangmunsa; p. 25.

Ruizheng F, Stevens PF. 2005. Vaccinium Linnaeus. Flora of China, Vol. 14. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press; p. 476–504.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313.

Tamada T. 2004. Blueberry production in Japan-today and in the future. VIII International Symposium on Vaccinium Culture 715, 267–272.

Vander Kloet SP, Bohm BA. 1991. Taxonomy of Vaccinium section Oxyccoccoides (Ericaceae). Rhodora. 93:226–237.

Vander Kloet SP, Dickinson TA. 2009. A subgeneric classification of the genus Vaccinium and the metamorphosis of V. section Bracteata Nakai: more terrestrial and less epiphytic in habit, more continental and less insular in distribution. J Plant Res. 122(3):253–268.

Yamazaki T. 1993. Ericaceae. In: Iwatsuki K, Yamazaki T, David EB, Ohba H, editors. Flora of Japan, Vol. Illa. Tokyo: Kodansha; p. 6–63.