Species diversity and ethnobotanical inventory of wild flora used by the folk community of Shinghar Balochistan, Pakistan

ANWAR UL HAQ, SHAZIA SAEED*, ALIA AHMED
Department of Botany, University of Balochistan. Sarfarab Road, Quetta, Balochistan, Pakistan. *email: shazia_botany@yahoo.com

Manuscript received: 30 July 2021. Revision accepted: 16 August 2021.

Abstract. Haq AU, Saeed S, Ahmed A. 2021. Species diversity and ethnobotanical inventory of wild flora used by the folk community of Shinghar Balochistan, Pakistan. Nusantara Bioscience 13: 148-157. Upper Suleiman Mountain of Shinghar Balochistan, Pakistan is little known, the structural and floristic composition are poorly understood. The dominant socio-linguistic groups of the area are Pashtoon tribes, having a long history of medicinal plants utilization as a part of their indigenous primary health care system. The present study was carried out to describe the plant species diversity of Shinghar, and to the inventory of some important wild medicinal, edible and endemic plants of the region. A total of 102 species belonging to 42 families and 88 genera were recorded. Herbs were dominant comprising 62% of documented plants, followed by shrubs (26%), and trees (14%). Medicinal plants of the area are being used in treatments of many ailments like joint pains, stomach problems, skin allergies and inflammation. Edible plants were 14% of total recorded plants. The documented plants were also used for other use-categories than medicinal and edible purposes including fodder, fencing, and ornamental. In addition, some of the medicinal plants were considered poisonous but used for medicine. Elevation of the area ranged from 1700 to 3400 meters above sea level. The dominating tree was Pinus gerardiana, and the area is also known as the Chilghoza Forest. Asteraceae was the dominating family in the area with 14 species, followed by Lamiaceae (7 species), Poaceae (6 species), Solanaceae, Leguminosae, Fabaceae, and Apocynaceae with 5 species each. The results revealed the importance of endemic and endangered plants of area which are need to be conserve. Moreover, the present study highlighted species diversity not earlier described from high altitudes.

Keywords: Floristic composition, folk uses, pinus forest, Shinghar, species diversity

INTRODUCTION

Plants play a key role in our daily life in different ways. Thousands of people around the world were using plant resources since ancient times that may be as food, medicine, daily households, live stocks, or many other different ways (Cunningham 2001). Indigenous knowledge and traditional primary health care systems are predominantly common in communities throughout Asia. Plants utilization by communities as medicines, religious and cultural rituals play a significant socio-economic role (Niroula and Singh 2015; Zhu et al. 2016). Other than the rural areas, nowadays, plant-based drugs are used in urban cities as well. The uses of plant-based drugs increase due to their afflictive role, being less expensive, and having fewer side effects. Many researchers reported the different plant uses as essential oils, antioxidants, anti-inflammatory, and antidiabetic (Ahmed et al. 2020; Mustafa and Verpoorte 2007; Nite-Kang et al. 2016).

Plants primary and secondary metabolites are the major sources mostly used as phytomedicines and therapeutic that can be extracted from different plant parts like roots, stems, bark, leaves, flowers, seeds, and fruits, etc. (Nantongo et al. 2018; Pudziuvelyte et al. 2020; Trong Le et al. 2020). Plants are a natural source used for different remedies including cough, stomach disorder, headache, joint pains, cardiovascular diseases, diuretic, inflammation, and even are successfully used against cancer and diabetes. Plants are diverse in nature, effective against more than one disease at a time (Khan et al. 2018; Moattar et al. 2015).

Plant use is in the practice of human beings since earlier times. Approximately 80% population of the world, mostly the rural regions of developing countries, continue using traditional resources in healthcare (Poonam and Singh 2009). The plants are being used as food, shelter, culture, and many others. In recent years, various biophysical and socioeconomic factors have led to a depletion of natural resources across, loss of ecosystem services, particularly in terms of soil nutrients, water, biomass, and biodiversity. Earth is facing the threat of loss of biodiversity under excess use of plants by local communities, government and semi-government organizations, like forest department, agriculture department, IUCN, and WWF need to work for the biodiversity conservation as well as local communities work hand in hand with these organizations for saving biodiversity looses (Berkes and Turner 2006). On the other hand, folk/traditional knowledge of the local communities was decreasing day by day, it may be due to the use of advanced medical techniques, allopathic medicines, and stagnation of elder knowledge in the young generation (Pyke et al. 2001). Although ethnobotanical studies have been carried out in different parts of Pakistan, a little work is documented from Northern Balochistan, Pakistan. The present study describes the floristic composition of Shinghar Northern Balochistan, Pakistan. It will elaborate on the species diversity as well as the inventory of these.
plants in relation to their ethnobotanical uses. It will also indicate the medicinal systems of the various indigenous people (Pushtoon tribes) of Shinghar.

MATERIALS AND METHODS

Study area
Shinghar valley is a part of Suleiman Mountain range of Northern Balochistan Pakistan. The hill is well wooded with edible pine forest. The elevation ranges from 1500 to 3000 meters above sea level. The annual rainfall is recorded at about 8 to 10 inches. The summer is recorded hot and dry. Although the dominant language is PUSHTO verbal by more than 90% of the inhabitants, District Sherani has not yet developed, people spend their life beneath the shadow of ancient cultures. A large number of the populations rely on healing plants rather than using modern medicines.

Data collection
The study was conducted in communities of four villages, i.e. (i) Shinghar, (ii) Hassanzi, (iii) Omza, and (iv) Khankhai between 2017 and 2018. Major tribes in the study area were Khankhai, Omza, Hassanzi, Harifal, Shana, and Abrahim Khail. Data were collected from 100 informants (male and female) by semi-structured interviews with the households and healers who served as key informants. In addition, we carried out community walks and plant collections. The informants were asked about age, education, occupation, and the medicinal plants, including the name of the plant, which part of the plant is used, which remedy is chosen, which disease is treated, how the plant is collected, and in which season/time, collected personally or purchased, how they store/preserve the collected plant part. Ethnobotanical uses are denoted by a numerical code as follows: (i) food, (ii) fodder, (iii) forage, (iv) medicinal, (v) ornamental, (vi) chemical, (vii) timber and other usages of wood, and (viii) fibers.

Voucher specimens
All the documented plants were collected through community walks with local communities and were examined to determine the botanical family and species name. The plants were preserved and identified with the help of a taxonomist. The plant specimens were submitted in Botanical Garden Herbarium, University of Balochistan Quetta for future recodes.

Data analysis
Data were tabulated to analyze the total number of medicinal plants. Each plant is listed according to their families. Plants were also arranged according to their uses reported by the informants. The collected data were analyzed into two objectives, i.e. (i) The inventory listed the records of plants of the area and there relevant data. The use-value (UV) is also calculated to estimate valuate the relative importance (RI) based on the number plant use reported and the number of informants, (ii) Floristic compositions were calculated by (Whittaker 1972). Species diversity was calculated by (Nei and Li 1979) by using the formula Simpson index $D = \sum p_i^2$ and Shannon index $H = -\sum p_i \ln p_i$.

RESULTS AND DISCUSSION
The floristic composition and diversity of plants represented the variation along the altitudinal gradient. A total of 102 plant species belonging to 42 families were recorded at 1700 to 3400 meters above sea level (Table 1). The highest record was the Asteraceae family with 14 species, followed by Lamiaceae (7 species), Poaceae (6 species), and Solanaceae, Leguminosae, Fabaceae, and Apocynaceae with 5 species each. The recorded numbers of Rosaceae were 4 species including an economically important tree, *Prunus dulcis*. The record showed Chenopodiaceae, Convolvulaceae, Rhamnaceae, and Zygophyllaceae with 3 species each. The recorded numbers of Anacardiaceae, Boraginaceae, Caryophyllaceae, Ephedraceae, Euphorbiaceae, Malvaceae, Oleaceae, Pinaceae, and Salicaceae were 2 species each. The economically important tree species included *Pinus gerardiana* (Chilghoza tree; Pinaceae), and *Olea ferruginea* (Zaitoon; Oleaceae).

All other families with 1 species included Amaryllidaceae, Apiaceae, Asparagaceae, Berberidaceae, Brassicaceae, Buxaceae, Campanulaceae, Gentianaceae, Menispermaceae, Moraceae, Morinaceae, Myrtaceae, Nitrariaceae, Papaveraceae, Plantaginaceae, Plumbaginaceae, Polygonaceae, Rubiaceae, Sapindaceae, Tamaricaceae, and Thymelaeaceae.

Table 2. Species richness on the basis of Simpson's Index of Diversity along the altitudinal gradient

Elevation	No. of individuals	F	RF	D
Low	34	306	0.24	0.12
Mid	47	423	0.33	0.22
High	62	558	0.43	0.38
Total	143	1287	1	0.72

Note: F: Frequency, RF: Relative Frequency, D: Simpson’s Index of Diversity

![Figure 1. Distribution of life-form](image-url)
Table 1. List of plants reported from the study area

Botanical name	Family	Local name	Parts used	Fodder	Medicines	Vegetables/ fruits	Livestock	Fuel	Others	Earlier reports
Allium griffithianum Boiss.	Amaryllidaceae	Pyaz	WP	*	*	*	Yes			
Pistacia atlantica Desf.	Anacardiaceae	Shiney	F, L	*	*	*	Yes			
Pistacia chinij Stock	Anacardiaceae	Shinay	F, L	*	*	*	Yes			
Foeniculum vulgare Mill.	Apiaceae	Kaga	WP	*	*	*	Yes			
Calotropis procera (Aiton) Dryand	Apocynaceae	Spelmi	WP	*	*	*	Yes			
Caralluma tuberculata N.E.Br.	Apocynaceae	Unknown	F	*	*	*	Yes			
Periploca aphylla Decne.	Apocynaceae	Bara	WP	*	*	*	Yes			
Nerium oleander L.	Apocynaceae	Gandeeri	WP	*	*	*	Yes			
Pistacia atlantica	Anacardiaceae	Shiney	WP	*	*	*	Yes			
Caralluma tuberculata N.E.Br.	Apocynaceae	Unknown	F	*	*	*	Yes			
Periploca aphylla Decne.	Apocynaceae	Bara	WP	*	*	*	Yes			
Tragopogon gracilis D.Don	Asteraceae	Unknown	NUR	*	*	*	Yes			
Lactuca serriola L.	Asteraceae	Unknown	NUR	*	*	*	Yes			
Phagnalon niveum Edgew.	Asteraceae	Unknown	NUR	*	*	*	Yes			
Pulicaria undulata (L.) C.A.Mey	Asteraceae	Unknown	NUR	*	*	*	Yes			
Tugetes minuta L.	Asteraceae	Unknown	NUR	*	*	*	Yes			
Xanthium strumarium L.	Asteraceae	Unknown	NUR	*	*	*	Yes			
Verbesina encelioides (Cav.) Benth. & Hook.f. ex A.Gray	Asteraceae	Unknown	NUR	*	*	*	Yes			
Berberis calliobotrys Bien. ex Koehne	Berberidaceae	Unknown	F	*	*	*	Yes			
Lappula barbata (M.Bieb.) Gürke	Boraginaceae	Unknown	NUR	*	*	*	Yes			
Onosma limitaneum L.M. Johnst.	Boraginaceae	Unknown	NUR	*	*	*	Yes			
Sisymbrium ired L.	Brassicaceae	Jangli sarso	S	*	*	*	Yes			
Buxus papillosa C.K.Schneid.	Buxaceae	Unknown	NUR	*	*	*	Yes			
Campanula salamanicae Nasir.	Campanulaceae	Unknown	NUR	*	*	*	Yes			
Dianthus crinitus L.	Caryophyllaceae	Unknown	NUR	*	*	*	Yes			
Saponaria subrosularis Rech. f.	Caryophyllaceae	Unknown	NUR	*	*	*	Yes			
Chenopodium album L.	Chenopodiaceae	Sarma	L	*	*	*	Yes			
Haloxylon griffithii (Moq.) Boiss	Chenopodiaceae	Showri	WP	*	*	*	Yes			
Salsoila kali subsp. tragus (L.) Čelak.	Chenopodiaceae	Unknown	Calbi	WP	*	*	Yes			
Convolvulus arvensis L.	Convolvulaceae	Unknown	WP	*	*	*	Yes			
Convolvulus spinosus Burm. f.	Convolvulaceae	Unknown	WP	*	*	*	Yes			
Evolvulus alsinoides (L.) L.	Convolvulaceae	Shanka Pushpi	WP	*	*	*	Yes			
Ephedra intermedia Schrenk & C.A.Mey.	Ephedraceae	Oman	WP	*	*	*	Yes			
Species Name	Family	Use	Habitat/Altitude	Status						
------------------------------------	------------------------	-----------	------------------	--------						
Ephedra major subsp. procera (C.A.Mey.) Bornm.	Ephedraceae	Oman	WP	* Yes						
Chrozophora tinctoria (L.) A.Juss.	Euphorbiaceae	Gujri	WP	* Yes						
Ricinus communis L.	Euphorbiaceae	Sharwan	L	* Yes						
Alhagi maunorum Medik	Fabaceae	Zoz	WP	* Yes						
Caragana ambigua Stocks	Fabaceae	Makhi	WP	* Yes						
Lotus corniculatus L.	Fabaceae	Spasti	WP	* Yes						
Sophora mollis subsp. griffithii (Stocks) Ali	Fabaceae	Ghozera	WP	* Yes						
Vigna adiate (L.) R.Wilczek	Fabaceae	Shin mong	S	No						
Gentiana kuroo Royle	Gentianaceae	Unknown	NUR	No						
Marrubium vulgare L.	Lamiaceae	Sperboti	L	Yes						
Moluccella otostegioideae	Lamiaceae	Unknown	NUR	No						
Phlomidoschema parviflorum (Benth.) Vved.	Lamiaceae	Spranda	L	No						
Salvia moorcroftiana Wall. ex Benth.	Lamiaceae	Spera boti	WP	Yes						
Salvia nubicola Wall. ex Sweet	Lamiaceae	Khar kwage	R	Yes						
Scutellaria petiolata Hemsl. ex Lace & Prain	Lamiaceae	Unknown	NUR	No						
Vitis negundo L.	Lamiaceae	Marmandi	L	Yes						
Astragalus corrugatus Bertol.	Leguminosae	Unknown	WP	No						
Astragalus stocksii Bunge	Leguminosae	Unknown	WP	No						
Astragalus subumbellatus Klotzsch.	Leguminosae	Unknown	NUR	No						
Prosopis juliflora (Sw.) DC.	Leguminosae	Kekar / afghani	WP	Yes						
Taverniera canefolia (Roth) Ali	Leguminosae	Spera barara	WP	No						
Abutilon bidentatum Hochst. ex A.Rich.	Malvaceae	Unknown	NUR	Yes						
Malva neglecta Wallr	Malvaceae	Unknown	R	Yes						
Cocculus pendulus (J.R.Forst. & G.Forst.) Diels	Menispermaceae	Unknown	NUR	No						
Ficus carica L.	Moraceae	Anzar	L	* Yes						
Morina persica L.	Morinaceae	Unknown	WP	* *						
Eucalyptus camaldulensis Dehnh	Myrataceae	Lachi	WP	Yes						
Peganum harmala L.	Nitrariaceae	Spana	L S	Yes						
Fraxinus santhoxyloides (G.Don) Wall. ex A.DC.	Obleaceae	Unknown	WP	* Yes						
Olea ferruginea Wall. ex Aitch.	Oleaceae	Kao	S	* Yes						
Papaver decaisnei Hochst. & Steud. ex Elkan	Papaveraceae	Unknown	WP	* Yes						
Pinus gerardiana Wall. ex D.Don	Pinaceae	Chalguza	S	* Yes						
Pinus wallichiana A.B.Jacks	Pinaceae	Unknown	WP	* Yes						
Plantago major L.	Plantaginaceae	Parpanra	L	Yes						
Limonium cabalicum (Boiss.) Kuntze	Plantaginaceae	Parpanra	L	Yes						
Aristida adsensionis L.	Poaceae	Masali	WP	Yes						
Melica persica Kunth.	Poaceae	Unknown	WP	* Yes						
Paspalum dilatatum Poir	Poaceae	Shokholi	WP	Yes						
Pennisetum orientale Rich.	Poaceae	Unknown	WP	Yes						
Polygogon monspeliensis (L.) Desf.	Poaceae	Spherha	WP	Yes						
Saccharum spontaneum L.	Poaceae	Sarghsa	WP	* Yes						
Pieropyrum oligieri Jaub. & Spach	Polygonaceae	Unknown	L	Yes						
Sageretia thea (Osbeck) M.C. Johnst.	Rhmnaecae	Manrey	F	* Yes						
Ziziphus jujuba Mill.	Rhmnaecae	Unknown	WP	* Yes						
Ziziphus oxyphilla Edgew.	Rhmnaecae	Unknown	WP	* Yes						
Scientific Name	Family	Common Name	Type	Use	NUR					
-------------------------------------	---------------	---------------------	------	-----	-----					
Prunus brahuica (Boiss.) Aitch. & Hemsl.	Rosaceae	Zargha/Kundzari	F	*	*	Yes				
Prunus dulcis (Mill.) D.A.Webb	Rosaceae	Badam	F	*	*	Yes				
Prunus rechingeri (Browicz) R.R.Stewart	Rosaceae	Unknown	F	*	*	No				
Cotoneaster persicus Pojark.	Rosaceae	Sharave	L			No				
Plocama macrantha (Blatt. & Hallb.) M.Backlund & Thulin.	Rubiaceae	Kharbat	WP	*		Yes				
Dodonaea viscosa (L.) Jacq	Sapindaceae	Unknown	L			Yes				
Populus euphratica Oliv.	Salicaceae	Shana	ST	*		Yes				
Salix acmophylla Boiss.	Salicaceae	Wana	WP	*		Yes				
Datura innoxia Mill.	Solanaceae	Badboya Boti	L			Yes				
Hysocyamus insanus Stocks	Solanaceae	Unknown	WP	*		Yes				
Solanum rostratum Dunal.	Solanaceae	Marhaghanay	WP	*		Yes				
Solanum surattense Burm.f	Solanaceae	Marhaghanai	WP	*		Yes				
Withania coagulans (Stocks) Dunal	Solanaceae	Khamazura	S			Yes				
Tamarix aphylla (L.) H.Karst	Tamaricaceae	Ghaz	WP	*	*	Yes				
Daphne macronata Royle.	Thymelaeaceae	Laghoni	WP	*		Yes				
Fagonia bruguieri DC	Zygophyllaceae	Azghi	WP	*		Yes				
Tribulus pentandrus Forssk	Zygophyllaceae	Kroundki/wazi	S	*		Yes				
Tribulus terrestris L.	Zygophyllaceae	Kroundki/wazi	S	*		Yes				

Note: S: Seeds, WP: Whole Plant, F: Flowers, ST: Stem, L: Leaf, R: Root, NUR: No use report
The species reported were classified on the basis of their life-form (Figure 1). The herbs were dominated in the area represented by 62 species (61%), followed by shrubs (26 species; 25%), and tree species (14 species; 14%).

Plant parts used and modes of preparation

Different plant parts were used for medicinal purposes were listed in Table 1. The most dominant plant part was whole plants (51), followed by leaves (15), flowers (10), and seeds (8), whereas few use of roots and stems were also reported. The most common method of preparing the medicinal plants were the decoction, followed by crushing the plant material for making a poultice (23.1%), broth (4.1%), and soaking in alcohol (2.5%). Some species were mixed with other natural materials, such as the preparation of tonics made of medicinal plants combined with brown sugar, grains, chicken, pork, and other materials.

Plant uses

The documented plants included medicinal as well as some other plants. The medical plants were recorded 36% of the reported plants, followed by fodder (26%), edible/food is (14%), and fuel (13%). Livestock was recorded 4%, and the remaining uses (9%) included construction, fencing, cloth Dye, ornamental, and yokes. The results showed that the community used medicinal plants in different ways. Some uses were unique to the region not reported earlier from any region of Balochistan, while other uses were common to other communities of neighboring villages of other parts of Balochistan, Pakistan.

Plants used as a food

Some fruits were edible and used by the community of Shinghar listed in Table 1. They included *Pinus gerardiana* which is very important in the area. Fruit is very popular and taken as dry fruit. Fruits/berries of *Pistacia atlantica*, *P. khinjuk*, and *Berberis calliobotrys* were very important medicinal plants and used as dry fruits by local communities. *Foeniculum vulgare* (Apiaceae) seeds are flavoring agents, used in baking of different things as well as cooking meat and fish to improve flavor. *Allium griffithianum* was used as a vegetable in cooking different types of food. *Caralluma tuberculata* also known as Pamanky in Pashto was cooked and eaten as a vegetable. *Artemisia stenocephala* was used to give a taste to milk. The leaves of *Chenopodium album* were boiled in water, and eaten as a vegetable. The fruit of *Ficus carica* is used as dry fruit and also consumed as fresh fruit. The fruit of *Olea ferruginea* was a very healthy and valuable source of food in the area. The leaves of *Morina persica* were used to make tea.

Plants used as traditional medicines

A total of 36% reported plants were used in traditional medicines (Table 1). *Allium griffithianum* was used as food as well as medicinal importance, used to treat jaundice, and flatulent dyspepsia. The fruits of *Pistacia atlantica* and *P. khinjuk* were edible sources for the community of Shinghar, medicinally important fruit was used to treat stomach diseases, renal disorders, wounds, and coughs. *Foeniculum vulgare* (Apiaceae) commonly known as fennel was a well-known and important medicinal and aromatic plant widely used as carminative, digestive, galactagogue, diuretic, and treating respiratory and gastrointestinal disorders. *Caralluma tuberculata* was also used as a folk medicine for the treatment of diabetes and rheumatism. *Periploca aphylla* used to treat tumors and swellings latex of plant is applied on infected area as well as joints having inflammation. The plant is also known as “Bata” or “Barara”. The plant is also used to treat cough, and flu. *Rhaya stricta* is also known as a Blood purifier plant and was used to treat diabetes. The powder of *Cirsium arvense* (Syn. *Carduus arvensis*) was used for toothache. *Launaea acanthodes* is a very important plant, many studies are found on its essential oil extraction. *L. acutilis* was used as a diuretic, stomachic. *Berberis calliobotrys* is a very important medicinal plant, the roots of *Berberis* were also used by the local communities of Shinghar. The seed powder of *Sisymbrium irio* was used for treating asthma, produced a cooling effect to treat stomach disorder, constipation, and abdominal pain. The whole plant of *Evolvulus alsinoides* was used for the treatment of fever, and neuro disorders. *Ephedra intermedia* was used for the treatment of asthma, and *E. major* subsp. *procera* juice was used for treating asthma. The powder of *Ricinus communis* was used for stomach pain. The decoction of leaves of *Marrubium vulgare* was used for gastric gas. The ground leaves powder of *Phlomidoschena parviflorum* were used for wound recovery. The decoctions of roots of *Salvia radicata* were used for cough and cold. The leaves of *Vitex negundo* were used for gastric gas and pain. *Ficus carica* was used for blood purification. The leaves of *Peganum harmala* were mixed with oil and boiled for few minutes then filtered juice was used for muscles, and joints pain, while seeds were used for gastric problems. The leaves of *Plantago major* were used for tonic and antiseptics. The juice of ground leaves of *Limonium caeruleum* was used for stomach problems. The seeds of *Withania coagulans* were put into the water for a night and early in the morning drink it which was useful against malaria. The power of *Fagonia bruquieri* was used for asthma diseases. *Trilobus terristrus* was used for a kidney disorders.

Plants used for fuel

Plant diversity was disturbed due to the excessive use of plants as fuel (Table 1). It mostly included *Populus euphratica*, *Pistacia atlantica*, *P. khinjuk*, *Berberis calliobotrys*, *Buxus papillosa*, *Caragana ambigua*, *Sophora mollis* subsp. *griffithii*, *Prospis juliflora*, *Tavenniera cuneifolia*, *Eucalyptus camaldulensis*, *Fraxinus xanthoxyloides*, *Olea ferruginea*, *Pinus gerardiana*, *Pinus wallichiana*, *Ziziphus jujube*, *Ziziphus oxyphylia*, *Prunus brahuica*, *Prunus dulcis*, *Prunus rechingeri*, *Populus euphratica*, *Salix acmophylla*, *Tamarix aphylla*, *Ephedra intermedia*, and *E. major* subsp. *procera*.
Plants used as fodder

One of the key roles of the plants was their use as fodder (Table 1). Reported fodder plants were Allagi maurorum, Buxus papillosa, Cousinia prollfera, Caragana ambiguus, Lotus corniculatus, Vigna adiate, Salvia moerocryptiana, Prosopis juliflora, Aristida adsensionis, Paspalum dilatatum, Polypogon monspeliensis, Saccharum spontaneum, Prunus dulcis, Solanum rostratum, S. surattense, Tragopogon gracilis, Tribulus pentandrus. Whole plants were used as fodder.

Plants to treat animal bites and mosquito repellent

The leaves of Calotropis procera were used to treat Scorpion bites (Table 1), while the leaves of Daphne mucronata were used as mosquito repellent. Verbesina encelioides was used as insecticidal.

Plants used to treat skin diseases

The leaves of Daphne mucronata, Periploca aphylla, Buxus papillosa, and Ziziphus jujuba were used to treat skin diseases/infections. The latex of Calotropis procera was used to treat skin diseases known as Sponi in the local language (Table 1).

Other uses

Nerium oleander, Tagetes minuta, Papaver decaisne was used for ornamental purposes (Table 1). Tamarix aphylla and Chrozophora tinctoria were used to dye the clothes. Caragana ambiguus was used for fencer, while Fraxinus xanthoxyloides was used to make yokes.

Species diversity

A total of 102 plants reported from the study area showed the species diversity along the altitudinal gradient. Rich species diversity was obtained at high altitude followed by middle elevation, and the low diversity was obtained at low elevation zone. Species richness of Shinghar mountain range was assessed along the altitudinal gradient shown in Table 2. Simpson's Index of Diversity was higher at high elevation, followed by middle and low elevation (Table 2).

Discussion

Ethnobotanical inventory in the folk community of Shinghar

The 102 documented plant species belong to 42 families, the highest record was the Asteraceae family with 14 species. Medicinal plants of the Asteraceae family have previously been shown to be commonly used by rural communities in Pakistan Balochistan (Durrani and Hussain 2005; Sarangzai et al. 2013; Tareen et al. 2010). Asteraceae is one of the advanced families of seed plants over the world, and is easily available in local communities to be used as a vegetable, fruit, seasonings, and starch (Sui et al. 2011). Ajania fruticulosa was recorded from the informants of Shinghar earlier, but the essential oils of A. fruticulosa were isolated by (Li et al. 2016) and (Abbas et al. 2020). Artemisia stenocephala was used to give taste to milk, the earlier study was reported from Northern Areas of Pakistan (Ashraf et al. 2010). The powder of Cirsium arvense (Syn Cardaus arvensis) was used for toothache, in earlier reports, it was found to improve digestion and used for child worms (Tufail et al. 2020; Yasine et al. 2013). The whole plant of Cousinia prollfera was used as fodder, an earlier study the plant was reported for the treatment of diabetes mellitus II in South-West Pakistan (Zain-ul-Abidin et al. 2018). Launaea acanthodes is a very important plant, many reports were found on its essential oil extraction and medicinal uses around the world (Mood 2008; Taherian et al. 2018), while L. acaulis was used as a diuretic, stomachic, and blood purifier (Jain et al. 2010). Lactuca serriola is a medicinally important plant, earlier reports were from different ecological zones of Pakistan, Wana District of South Waziristan, and Balochistan. In the present study, L. serriola was reported for livestock. Lactuca dissecta was reported from the Himalaya and Hindkush ranges of Pakistan Dir, Timergara KPK, Pakistan (Shuaib et al. 2019). Phagnalon niveum was reported from the Biodiversity of Shinghar area, but no use report was recorded from the communities of Shinghar. In earlier reports from Balochistan, the plant was used as an anti-cancer, also reported from Nowshera KPK, Pakistan (Ali et al. 2019). Pulicaria undulata (Syn. Pulicaria crisp) was earlier reported from Indus plains Pakistan (Khan and Qaiser 2006). No use report was recorded from the communities of Shinghar. Essential oils of P. undulata are used for antimicrobial activity (Mohamed et al. 2020). No use report of Tagetes minuta was recorded from the communities of Shinghar, leaves paste is typically used for wound healing, has anti-inflammatory, bronchodilatory (Abasi et al. 2010), also used as a bio-herbicide for weed control (Sadia et al. 2013). Tragopogon gracilis was reported as fodder from the Shingar. In earlier records, T. gracilis was reported from Dir Upper, Khyber Pakhtunkhwa, Pakistan (Awasti et al. 2003). Xanthium strumarium is the noxious weed, earlier reports were from Takht-e-Suleman range F.R D.I. Khan, Pakistan (Samreen et al. 2016). As a traditional herbal medicine, X. strumarium has been extensively applied to treat many diseases, such as rhinitis, nasal sinusitis, headache, gastric ulcer, urticaria, rheumatism bacterial, fungal infections, and arthritis (Fan et al. 2019). Verbesina encelioides is regarded as a notorious weed and an ornamental garden, the plant has been found to have various uses in folk medicine in different parts of the world. It possesses analgesic, emetic, febrifuge, and insecticidal properties (Jain et al. 2008). The Lamiaceae family comprises aromatic plants, the second dominating family used by Shinghar community. The family includes the taxa used for a stomach disorder. It was also reported from Balochistan Pakistan that the decoction of leaves of Marrubium vulgare and Vitex negundo were used for gastric gas (Bibi et al. 2014). Five species of Ephedra were found in Balochistan (Saeed et al. 2015). Medicinal plants are being in use by local communities of Balochistan, Pakistan from centuries (Adnan et al. 2014; Ahmad and Husain 2008; Ahmed 2020). The E. intermedia was used as a source of fuelwood and ephedrine nasal drops. It is mixed with tobacco for preparation of good quality, and it was also used for the treatment of asthma. The juice of Ephedra major subsp. procera was used for treating asthma (Bibi et al. 2014). Allium griffithianum was
used as food as well as having medicinal importance, used to treat jaundice and also flatulent dyspepsia for people of any age, including children as reported by (Amjad et al. 2020; Arshad et al. 2014; Jan et al. 2016). The fruits of *Pistacia atlantica* and *P. khinjuk* were an edible source for the community of Shinghar, and medicinally used to treat stomach diseases, renal disorders, wounds, and coughs. Our findings were in agreement with earlier reports of *Pistacia* species (Bibi et al. 2014; Mahjoub et al. 2018; Sarangzai et al. 2013). *Foeniculum vulgare* aromatic plant, has medicinal importance and commonly known as fennel. Its commonly used for treating digestive problems. Seeds are also used to improve flavor in cooking meat etc. (Xiong et al. 2020). Phytochemicals of *F. vulgare* includes different Phenols, phenolic glycosides, and volatile aroma trans-anethole, estragole, and fenchone (Andrade-Cetto 2009).

Earlier its many its *in vitro* and *in vivo* uses are reported as antifungal, antibacterial, antioxidant, antithrombotic, and hepatoprotective (Rather et al. 2016; Samreen et al. 2016). The fruit and latex of *Calotropis procera* have medicinal properties, leaves were used to treat Scorpion bites, while latex was used to cure skin diseases known as Sponi in the local language. The root powder of *C. procera* mixed with milk of goat was used in epilepsy as earlier reported by (Bhatti et al. 1998; Panhwar and Abro 2007; Parihar and Balekar 2016). *Caralluma tuberculata* also known as Pamanky in Pashto was cooked and eaten as a vegetable. It is used to treat diabetes and rheumatism by folk communities (Rauf et al. 2013; Bibi et al. 2014). *Periploca aphylla* is earlier reported for threatening skin diseases, ulcer, and constipation (Iqbal et al. 2012; Samreen et al. 2016). *Nerium oleander* is a potentially lethal plant in many cases and reported poisoning, used for ornamental purposes. The leaves and the flowers have been reported to have medicinal properties (Faroqqui and Tyagi 2018). Earlier reported uses were cardiotonic, diaphoretic, diuretic, anticancer, antibacterial, and anticancer. Flowers, leaves, leaf juice or latex, bark, and roots have been used against corns, warts, cancerous ulcers, carcinoma, ulcerating or hard tumors (Begum et al. 1999).

Rhazya strigata is also known as a blood purifier plant and is used to treat diabetes. Some uses against the allergy were also reported from the current study. Earlier reports from different areas of Balochistan used differently as in the form of decoctions for a variety of unrelated illnesses like diabetes mellitus, fever, sore throat, inflammatory conditions, and helminthiasis (Panhwar and Abro 2007; Bibi et al. 2014; Samreen et al. 2016). *Asparagus capitatus* is described as food and medicine for various ailments. The earlier report from Balochistan was (Attaullah and Muhammad 2016). *Berberis calliobotrys* is a very important medicinal plant. The berries have been reported to have medicinal importance and are consumed as dry fruits. The plant root is also used by the local communities of Shinghar (Saeed et al. 2016). Also, earlier reports were for anti-inflammatory, analgesic, and antipyretic activities (Alameer et al. 2016). No use report of *Lappula barbata* is from the communities of Shingar, but earlier reports elaborated its importance as antiviral and anti-inflammatory activities (Soliman et al. 2016).

Species richness and conservation

Species diversity of edible, medicinal, and other ethnobotanical plants reported from Shinghar showed a different pattern than earlier reports from different zones of Balochistan. Few plants were reported in species diversity, but no use was recorded from the Shinghar communities of four studied villages. Whereas some medicinal plants used were reported by Shinghar communities but not found in our field surveys. The uses of medicinal plants and remedies we have documented indicate the vast knowledge of the old age community which may serve to supplement the whole medicinal system in the area so that they should be protected and maintained.

In conclusion, medicinal plants used by the Pashtoon tribes in Shinghar Balochistan are very diverse. One hundred and twenty-one species belong to 54 families were documented for treating various ailments based on ethnobotanical appraisal in four villages of the study area. Few ethnobotanical records were documented for the first time. Leaves and whole plants used reports were higher according to reported information by local communities. However, this indigenous knowledge of the communities must be conserved on an urgent basis as with time this knowledge is depleting day by day. This is best accomplished by documenting the unique knowledge and practice of ethnic groups in relation to medicinal plants.

ACKNOWLEDGEMENTS

We are grateful to the local people in study areas who have provided valuable information about the medicinal plants and shared their prestigious knowledge for the
betterment of ethnobotanical uses. Also, we would like to thank Nazer Khan for his help in plant identification.

REFERENCES

Abbas Z, Khan SM, Alam J, Abideen Z, Ullah Z. 2020. Plant communities and anthropo-natural threats in the Shigar valley (Central Karakorum) Baltistan-Pakistan. Pak J Bot 52: 987-994. DOI: 10.30848/PJB2020-3(5).

Abassi AM, Khan MA, Ahmad M, Qureshi R, Arshad M, Jahan S, Zafar M, Sultana T. 2010. Ethnobotanical study of wound healing herbs among the tribal communities in Northern Himalaya Ranges District Abbottabad, Pakistan. Pak J Bot 42: 3747-3753.

Adnan M, Ullah I, Tariq A, Murad W, Azizullah A, Khan AL, Ali N. 2014. Ethnomedicine use in the war affected region of northwest Pakistan. J Ethnobiol Ethnomed 10: 16. DOI: 10.1186/1746-4269-10-16.

Ahmad SS, Hasain SZ. 2008. Ethno medicinal survey of plants from salt range (Kallar Kahar) of Pakistan. Pak J Bot 40: 1005-1011.

Ahmed A, Hameed A, Saeed S. 2020a. Biochemical profile and bioactive potential of thirteen wild folk medicinal plants from Balochistan, Pakistan. J Planta Med 86: e0231612. DOI: 10.1371/journal.pone.0231612.

Ahmed A, Hameed A, Saeed S. 2020b. Ecological distribution, morphological and molecular characterization of Zygophyllaceae from diverse ecological zones of Balochistan, Pakistan. Appl Ecol Environ Res 18: 2445-2462. DOI: 10.15666/aeer/1802.2452462.

Alameen NH, Rasool S, Raza SA, Ahmad T, Ahsan H, Mushtaq MN, Asif H, Khan Z, Noor N, Utra A. 2016. Anti-inflammatory, analgesic and antipyretic activities of the aqueous methanolic extract of Berberis calliobotrys in albino mice. Acta Pol Pharm 73: 717-723.

Ali S, Shah SZ, Khan MS, Khan WM, Khan Z, Hassain N, Zeb U. 2019. Floristic list, ecological features and biological spectrum of district Nowshera, Khyber Pakhtunkhwa, Pakistan. Acta Ecol Sin 39: 133-141. DOI: 10.1016/j.jes.2018.08.007.

Al-Qudah MA, Zarga MHA. 2010. Chemical constituents of Sisymbrium irio L. from Jordan. Nat Prod Res 24: 448-456. DOI: 10.1080/14786410903388025.

Amjad MS, Zahoor U, Bussmann RW, Altaf M, Gardazi SMH, Abbasi AM. 2020. Ethnobotanical study of the medicinal flora of Harigarh, Azad Jammu & Kashmir, Pakistan. J Ethnobiol Ethnmed 16: 1-28. DOI: 10.1186/s13002-020-00417-w.

Andrade-Cetto A. 2009. Ethnobotanical study of the medicinal plants from Tlaltetel, Hidalgo, México. J Ethnopharmacol 122: 163-171. DOI: 10.1016/j.eph.2008.12.008. DOI: 10.1016/j.eph.2008.12.008.

Arshad M, Ahmad M, Ahmed E, Saboor A, Abbasi A, Sadiq S. 2014. An ethnobotanical study in Kala Chitta hills of Pothwar region, Pakistan: Multinomial logit specification. J Ethnobiol Ethnomed 10: 1-17. DOI: 10.1186/1746-4269-10-13.

Ashraf M, Hayat MQ, Muntaez AS. 2010. A study on elemental contents of medicinally important species of Artemisia L. (Asteraceae) found in Pakistan. J Med Plants Res 4: 2256-2263.

Asif E, Ali SS, Nasir H, Jamal SA, Ata A, Farooq A, Choudhry MI, Sener B, Turkog S. 1992. New steroidal alkaloids from the roots of Buxus papillosa. J Nat Prod 55: 1063-1066. DOI: 10.1021/np50086a005.

Attiaul KH, Muhammad Z. 2016. A check list of angiospermic plants of district Killa Abdullah, Balochistan, Pakistan. Pak J Bot 52: 987-998. DOI: 10.30848/PJB2020-10.22159/jpips.2018v10.102250.

Iqbal J, Zaib S, Farooq U, Khan A, Bibi I, Suleman S. 2012. Antioxidant, antimicrobial, and free radical scavenging potential of aerial parts of Periploca aphylla and Ricus communis. ISRN Pharmacol 2012(2): 563267. DOI: 10.1045/2012/563267.

Jain DL, Baheti AM, Jain SR, Khandelwal KR. 2010. Use of medicinal plants among tribes in Satpuda region of Dхule and Jalgaon districts of Maharashtra—an ethnobotanical survey. Indian J Tradit Knowl 9: 152-157.

Jain S, Jain R, Singh R, Menghani E. 2008. Verbesina encelioides: Perspective and potentials of a noxious weed. Indian J Tradit Knowl 7: 511-513.

Jan PS, Badia B, Yousaf A, Naz A, Rehmat N, Tahiria B, Sajjad N, Hameed S, Bazi ZA. 2016. Ethnobotanical study of flora of Gulistan, district Killa Abdullah, Balochistan, Pakistan. Pure Appl Biol 5: 361. DOI: 10.19045/pabsp.2016.50047.

Khan AL, Hamayun M, Hussain J, Khan H, Gilani SA, Kikuchi A, Watanabe KN, Jung EH, Lee I. 2009. Assessment of allelopathic potential of selected medicinal plants of Pakistan. Afr J Biotechnol 8(6): 1024-1029.

Khan MA, Quaiser M. 2006. Halophytes of Pakistan: Characteristics, Distribution and Potential Economic Usages Sabkha Ecosystems. Springer. DOI: 10.1007/978-1-4020-5072-5_11.

Khan W, Khan SM, Ahmad H. 2018. Ethno-botany, human health and plants of the Thandiani sub forest division. In: Abbottabad KP (eds). Pakistan Plant and Human Health. Volume 1. Springer. DOI: 10.1007/978-3-319-39997-1_13.

Liang YJ, Guo SS, You CX, Zhang WJ, Wang CF, Geng ZF, Deng ZW, Dua SS, Zhang J. 2016. Chemical constituents and insecticidal activities of Ajania fruticulosa essential oil. Chem Biodivers 13: 1035-1057. DOI: 10.1002/cbdv.201500377.

Mahjour F, Rezaeiy K, Yousfeli M, Mohembi M, Salari R. 2018. Pistacia atlantica Desf: A review of its traditional uses, phytochemicals and pharmacology. J Med Life 11: 180. DOI: 10.25122/jml/2017-0055.

Moattar FS, Sariri R, Ghafoori H, Jamalzadeh L. 2015. Antioxidant and anti-proliferative activity of Calamintha officinalis extract on breast cancer cell line MCF-7. J Biol Sci 15: 194-199. DOI: 10.3923/jbs.2015.194.198.

Mohamed EAA, Muddathir AM, Osman MA. 2020. Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Sci Rep 10: 1-8. DOI: 10.1038/s41598-020-74262-y.

Mood SG. 2008. A contribution to some ethno-botanical aspects of Birjand flora (Iran). Pak J Bot 40: 1783-1791.

Mustafa NR, Verpoorte R. 2007. Phenolic compounds in Catharanthus roseus. Phytochem Rev 6: 243-258. DOI: 10.1007/s11101-006-9039-8.

Nantongo JS, Odoi JB, Abigaba G, Gwali S. 2018. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res Notes 11: 1-5. DOI: 10.1186/s13104-018-3238-x.

Nei, M., Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269-5273.
Niroula G, Singh N. 2015. Religion and conservation: A review of use and protection of sacred plants and animals in Nepal. J Inst Sci Technol 20: 61-66. DOI: 10.3126/jist.v20i2.13950.

Nite-Kang F, Njume LE, Malange YI, Günther S, Siplw W, Yong JN. 2016. The chemistry and biological activities of natural products from northern african plant families: From Taccaceae to Zygophyllaceae. Nat Prod Bioprospect 6: 63-96. DOI: 10.1007/s13659-016-0091-9.

Panhwar AQ, Abro H. 2007. Ethnobotanical studies of Mahal Kohistan (Khirthar national park). Pak J Bot 39: 2301-2315.

Panhwar AQ, Abro H. 2007. Ethnobotanical study of medicinal plants used by the Taungya community in Terai Arc Landscape, India. J Ethnopharmacol 123: 167-176. DOI: 10.1016/j.jep.2009.02.037.

Pudziuvelyte L, Liaudanskas M, Jekabsone A, Sadauskiene I, Bernatoniene J. 2020. Euphorbia ciliata (Thunb.) Hyl. extracts from different plant parts: Phenolic composition, antioxidant, and anti-inflammatory activities. Molecules 25: 1153. DOI: 10.3390/molecules25051153.

Pyke, C. R., Condit, R., Aguilar, S., Lao, S. (2001). Florigonomic collection across a climatic gradient in a neotropical lowland forest. Journal of vegetation science, 12(4), 553-566.

Rather MA, Dar BA, Sofi SN, Bhat BA; Qurishi MA. 2016. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab J Chem 9: S1574-S1583. DOI: 10.1016/j.arabjc.2012.04.011.

Raufl A, Jan M, Rehman W, Muhammad N. 2013. Phytochemical, phytotoxic and antioxidant profile of Curculina tuberculata NE Brown. Wuwei J PharmPharmacol 2: 21-23.

Sadka S, Khalid S, Qureshi R, Bajwa AA. 2013. Tagetes minuta L., a useful underutilized plant of family Asteraceae: A review. Pak J Weed Sci Res 19: 179-189.

Saeed S, Barozai MYK, Ahmed A, Tareen RB, Begum S, Ali GM. 2016. Analysis of genetic diversity as a key to conserve Berberis baluchistanica Ahrendt: An endemic species to Balochistan. Production Challenges and Food Security; Proceedings of Pakistan Society for Horticultural Science 2nd International Conference on Horticultural Sciences. Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 18-20 February 2016. [Pakistan]

Saeed S, Barozai YK, Ahmed A, Tareen RB, Ali GM, Shehzad A, Begum S. 2015. Genetic diversity of Ephedra procura from high altitudes of Quetta valley, Balochistan using RAPD and ISSR. Pak J Weed Sci Res 21(2): 163-172.

Saleem H, Htar TT, Naidu R, Ahmad I, Zengín G, Ahmad M, Ahemad N. 2019. Investigations into the therapeutic effects of aerial and stem parts of Bacopa monnieri (L.) under chemical, biological and toxicological perspectives. J Pharm Biomed Anal 166: 128-138. DOI: 10.1016/j.jpba.2019.01.007.

Samreen U, Ibrar M, Naveed S, Khatak I. 2016. Ethnobotanical study of subtropical hills of Darazinda, Takht-e-Suleman range FR DI Khan, Pakistan. Pure Appl Biol 5: 149. DOI: 10.19043/pabiol.2016.50020.

Sarangzai AM, Ahmed A, Laghari SK. 2013. Traditional uses of some useful medicinal plants of Ziarat District Balochistan, Pakistan. FUUST J Biol 3: 101-107.

Shauib M, Ahmed S, Ali K, Illyas M, Hussain F, Urooj Z, Shah SS, Kumar T, Shah M, Khan I. 2019. Ethnobotanical and ecological assessment of plant resources at District Dir, Tehsil Timergara, Khyber Pakhtunkhwa, Pakistan. Acta Ecot Sin 39: 109-115. DOI: 10.1016/j.jcnaes.2018.04.006.

Soliman G, Yusufoglu H, Tati-Çankaya I, Abdel-Rahman R, Anul SA, Akaydin G. 2016. Hepatoprotective activities of Lappula barbata and Plantago holostea against paracetamol induced liver damage in rats and their in vitro antioxidant effects. Planta Med 82: P256. DOI: 10.1055/s-0036-1596397.

Taherian AA, Fakhrian M, Mohammadi A, Amrollahi H, Nazari H. 2018. Anti-inflammatory effect of Launaea acahnodhes Gum. J Biochem Tech 2: 92-97.

Tareen RB, Bibi T, Khan MA, Ahmad M, Zafar M, Hina S. 2010. Indigenous knowledge of folk medicine by the women of Kalat and Khuzdar regions of Balochistan, Pakistan. Pak J Bot 42: 1465-1485.

Tosan A, Akkol EK, Bahadır Ö, Yeşilada E. 2008. Evaluation of anti-inflammatory and antimicrobial activities of some Onosma L. species growing in Turkey. J Ethnopharmacol 120: 378-381. DOI: 10.1016/j.jep.2008.09.007.

Trong Le N, Viet Ho D, Doan TQ, Tuan Le A, Raal A, Usai D, Sanna G, Carta A, Rappelli P, Diaz N. 2020. Biological activities of essential oils from leaves of Paniagryia trinera (Oliv.) Guillaum and Limnocalcia littoralis (Miq.) Swing. Antibiotics 9: 207. DOI: 10.3390/antibiotics9040207.

Tufail M, Hussain K, Nawaz K, Bhatti KH, Yasin G, Ali SS. 2020. Ethnobotanical survey of important wild medicinal plants of Tehsil Gojra, District Toba Tek Singh, Punjab, Pakistan. Ethnobot Res Appl 20: 1-14. DOI: 10.3285/jera.20.23.1-14.

Whitaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21(2-3), 213-251.

Xiong Y, Sui X, Ahmed S, Wang Z, Long C. 2020. Ethnobotany and diversity of medicinal plants used by the Buyi in eastern Yunnan, China. Plant Divers 42: 401-414. DOI: 10.1016/j.pld.2020.09.004.

Yasine R, Khan M, Ghulam A, Irshad M, Abbas Z, Sarfraz R, Khokhar S, Ahmed S, Ali K, Ilyas M, Hussain F, Urooj Z, Shah SS, Kumar T, Shah M, Khan I. 2019. Ethnobotanical and ecological assessment of plant resources at District Dir, Tehsil Timergara, Khyber Pakhtunkhwa, Pakistan. Acta Ecot Sin 39: 109-115. DOI: 10.1016/j.jcnaes.2018.04.006.

Zhu Z, Wang T, Fu D, Gui Y, Wang J, Cui T. 2016. Innovative development path of ethnomedicines: An overview of ethnomedicines in China. Front Med 10: 166-177. DOI: 10.1007/s11684-016-0448-9.