Global and Local Impacts of Delayed Mercury Mitigation Efforts

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Angot, Hélène et al. "Global and Local Impacts of Delayed Mercury Mitigation Efforts." Environmental Science & Technology 52, 22 (October 2018): 12968–12977 © 2018 American Chemical Society
As Published	http://dx.doi.org/10.1021/acs.est.8b04542
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/126150
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Global and local impacts of delayed mercury mitigation efforts

Hélène Angot, Nicholas Hoffman, Amanda Giang, Colin P. Thackray, Ashley N. Hendricks, Noel R. Urban, Noelle E. Selin

1 Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
3 Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC Canada V6T 1Z4.
4 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
5 Civil and Environmental Engineering Department, Michigan Technological University, Houghton, MI 49931, USA.

*angot@mit.edu
Abstract

Mercury (Hg) is emitted to air by natural and anthropogenic sources, transports and deposits globally, and bioaccumulates to toxic levels in food webs. It is addressed under the global 2017 Minamata Convention, for which periodic effectiveness evaluation is required. Previous analyses have estimated the impact of different regulatory strategies for future mercury deposition. However, analyses using atmospheric models traditionally hold legacy emissions (recycling of previously deposited Hg) constant, and do not account for their possible future growth. Here, using an integrated modeling approach, we investigate how delays in implementing emissions reductions and the associated growing legacy reservoir affect deposition fluxes to ecosystems in different global regions. Assuming nearly constant yearly emissions relative to 2010, each 5-year delay in peak emissions defers by additional extra ca. 4 years the return to year 2010 global deposition. On a global average, each 5-year delay leads to a 14% decrease in policy impacts on local-scale Hg deposition. We also investigate the response of fish contamination in remote lakes to delayed action. We quantify the consequences of delay for limiting the Hg burden of future generations and show that traditional analyses of policy impacts provide best-case estimates.
New Policy: Global emissions reduction effort

14% decline in New Policy impacts (global average)

Growing Hg legacy reservoir (re-emissions)

Consequences of each 5-year delay?

Hg

Hg
1. INTRODUCTION

Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Because of its long lifetime in the atmosphere (0.3-1 year), Hg travels regionally and globally in its gaseous elemental form (Hg(0)). It deposits to ecosystems by wet and dry processes as Hg(0) and gaseous/particulate divalent Hg (Hg(II)), and converts to highly toxic methylmercury (MeHg) which bioaccumulates in aquatic systems. Fish consumption is thus a main source of exposure to Hg for the general population.

Regulatory actions to reduce human exposure to Hg aim to reduce anthropogenic inputs to the environment. In that context, the Minamata Convention on Mercury entered into force in August 2017 and has 98 parties as of October 2018. Under Article 8, parties “shall take measures to control, and where feasible, reduce emissions of Hg to the atmosphere”, and anthropogenic Hg emissions to the atmosphere are projected to begin to decrease based on current and enhanced policy efforts. However, emitted Hg circulates for decades to centuries, and anthropogenic emissions have a long-lasting impact on the global Hg cycle. Legacy emissions (i.e., recycling of previously deposited Hg) from soil and oceanic reservoirs account for about three-fifths of Hg annually emitted to the atmosphere. Even if anthropogenic emissions stay constant, Hg deposition will continue to increase due to legacy emissions.

Parameterizing legacy emissions in atmospheric models is challenging due to a paucity of models which can capture both three-dimensional atmospheric transport and oceanic/terrestrial cycling simultaneously. The majority of policy analyses conducted using atmospheric models therefore only reflect changes in direct anthropogenic emissions, and do not consider the effect of changing legacy emissions. For example, Pacyna et al. estimated that year 2035 global anthropogenic emissions would be reduced by 940 tons compared to 2010 and Hg deposition to
ecosystems by 20-30% (except in India) if policy commitments and plans are fully implemented.

However, in their analysis, while anthropogenic and natural sources keep emitting Hg during the period 2010-2035 and the Hg legacy reservoir grows, legacy emissions were simulated at 2010 level\(^9\). Another recent analysis\(^{15}\) of future policy, investigating projected Hg deposition in Asia by 2050, also did not account for legacy Hg. However, using a biogeochemical cycle model, the authors estimated that legacy Hg changes could alter the magnitude of calculated policy impacts by 30%, but they did not resolve this effect spatially.

Here, using an integrated approach that combines biogeochemical cycle modeling with global-scale chemical transport modeling, we investigate the impacts of delayed global action on global- and local-scale Hg deposition and evaluate associated changes in policy impacts, including their spatial resolution. We test the hypothesis that a longer delay in near-term peak emissions will lead to a larger Hg legacy pool and thus a measurable influence on expected policy impacts. We further examine consequences of delayed global mitigation efforts in different regions of the world to illustrate implications relevant to environmental justice concerns. For one of these regions, a Native American community in the U.S., we examine the impact on fish contamination in remote lakes where the main source of contamination is atmospheric deposition from the global Hg pool.

2. METHODS

2.1 Conceptual framework

The conceptual framework of this study is presented in Fig.1. Present-day (2010) and future simulations were performed using the chemical transport model (CTM) GEOS-Chem (see Section 2.3). As in traditional future projections with other atmospheric models\(^9\), legacy emissions were initially assumed constant to 2010 level to calculate the effects of changes in direct anthropogenic
emissions (see Section 2.2). A global biogeochemical cycle (GBC) model was used to calculate a
global legacy penalty as a function of the amount of emission since 2010 (see Section 2.4). This
global legacy penalty was then spatially-distributed and added to future deposition fluxes from the
CTM (see Section 2.4). Using this approach, adjusted Hg deposition from the CTM and the
effective policy impacts differ as a function of the total amount of mercury emitted, which is
greater for longer policy delay. Adjusted Hg deposition fluxes were then used as inputs to a lake
Hg model (see Section 2.5) to investigate the influence of delayed global action on lacustrine fish
contamination.

Throughout this paper, we compare policy impacts assuming an immediate (i.e., traditional method
– no delay/legacy penalty) or delayed global action to reduce emissions. For each grid box of the
CTM, policy impacts (PI, in Δµg/m²/yr) are calculated as the difference in total deposition between
future and present-day simulations. The percent change (PC) in policy impacts due to a global
action delayed to year YYYY (YYYY = 2020, 2025, 2030, 2035, or 2050) is calculated according
to Equation (1):

\[
PC_{YYYY} = \frac{PI_{\text{action delayed to } YYYY} - PI_{\text{traditional method}}}{PI_{\text{traditional method}}} \times 100.
\]

The mean percent change in policy impacts, given by Equation (2), is the average percent change
due to a near-term (2020-2035) 5-year delay:

\[
\bar{PC} = \frac{(PC_{2035} - PC_{2030}) + (PC_{2030} - PC_{2025}) + (PC_{2025} - PC_{2020})}{3}.
\]
Figure 1: Conceptual framework. Due to a challenging parameterization, chemical transport models (CTMs, GEOS-Chem in this study) traditionally hold legacy emissions constant at present-day (2010) levels when making future projections. The latter thus only reflect changes in direct anthropogenic emissions. Using a fully-coupled seven-reservoir global biogeochemical cycle model, we account for future legacy emissions as a result of both past and future emissions by adjusting GEOS-Chem outputs. The effective policy impacts in terms of local Hg deposition are then dependent on policy delay. The adjusted deposition flux is then used as input to a lake Hg model to evaluate the response of fish contamination to delayed action. Current Policy (CP), New Policy (NP) and Maximum Feasible Reduction (MFR) refer to future global emissions scenarios developed by Pacyna et al.

2.2 Present-day and future emissions scenarios

Simulations performed with the CTM and the GBC model are listed in Table 1. The GEOS-Chem present-day (2010) BASE simulation was performed using the AMAP/UNEP inventory, applying emission controls to U.S., Canadian, European and Chinese emissions from coal fired power plants. The CTM PRE-2010 LEGACY simulation was performed to quantify deposition from current (2010) legacy emissions and evaluate its spatial pattern. FUTURE simulations were performed using gridded emissions inventories developed by Pacyna et al. Briefly, the Current Policy (CP) scenario projects that annual Hg emissions will slightly increase in 2035 (ca. +75 Mg...
compared to 2010, \textit{i.e.}, +3.02 Mg yr\(^{-1}\)). Increasing energy demand contributing to increased emissions globally will be offset by the implementation of additional control measures. The more stringent New Policy (NP) scenario indicates that annual emissions will significantly decrease by 2035 (ca. -820 Mg compared to 2010, \textit{i.e.}, -32.7 Mg yr\(^{-1}\)). This scenario assumes that policy commitments and plans announced by countries worldwide to reduce greenhouse gas emissions and phase out fossil fuel subsidies are fully implemented. Additionally, this scenario assumes that the use of Hg in products will be reduced by 70\% by implementing Article 4 of the Minamata Convention on Hg-added products. Finally, the Maximum Feasible Reduction (MFR) scenario leads to a dramatic decrease of annual Hg anthropogenic emissions (ca. -1500 Mg compared to 2010, \textit{i.e.}, -59.9 Mg yr\(^{-1}\)). In this scenario, all countries reach the highest feasible reduction efficiency in each emission sector.

The GBC model was driven by 2000 BCE to 2008 CE primary anthropogenic emissions from Streets et al.19, Hg discharges from rivers (held constant at present-day levels)16, and global geogenic emissions (90 Mg yr\(^{-1}\))20,21. For consistency with the emissions inventories used in the CTM, we did not include additional 1850-2008 atmospheric Hg emissions from commercial products (105 Gg) proposed by Horowitz et al.22. For 2009-onward primary anthropogenic emissions, we used future emissions scenarios developed by Pacyna et al.9 as described above.

\textbf{Table 1:} Simulations performed with the chemical transport model (CTM) GEOS-Chem and the seven-reservoir global biogeochemical cycle (GBC) model11,16. \textit{Current Policy (CP), New Policy (NP), and Maximum Feasible Reduction (MFR) refer to future global emissions scenarios developed by Pacyna et al.9. A number of simulations listed here were performed to check the robustness of the method (see S.I. Section 1.1).}

Simulation	CTM Meteorological year simulated: 2010*	Global biogeochemical cycle (GBC) model Years simulated: 2000 BCE-2100 CE
BASE	2010 AMAP/UNEP inventory17 and emissions controls18 **.	Street et al.19 from 2000 BCE to 2008 CE. CP from 2009 onward.
PRE-2010 LEGACY	Primary anthropogenic emissions zeroed out.	Primary anthropogenic emissions completely eliminated as of 2010.
FUTURE | Future (CP, NP or MFR) emissions inventories\(^9\). | NP or MFR implemented in YYYY = 2010, 2020, 2025, 2030, 2035 or 2050.
PRE-YYYY | Same as PRE-2010 LEGACY since 2010-YYYY emissions are not taken into account | Primary anthropogenic emissions completely eliminated as of: YYYY = 2020, 2025, 2030, 2035 or 2050.
LEGACY

*The model was run for meteorological years 2007-2010, with the first three years used as the initialization period.

We used consistent 2007-2010 meteorology for present and future runs to isolate the effect of emissions.

**In order to evaluate present-day model outputs against observations and account for inter-annual variability, this simulation was also performed for meteorological years 2009-2015 following a three-year spin-up.

1. **Chemical transport modeling**

The global CTM GEOS-Chem (www.geos-chem.org) was used to project present-day and future total (wet+dry) gross Hg deposition fluxes to ecosystems. The model is driven by assimilated meteorological data from the NASA GMAO Goddard Earth Observing System\(^{23}\). MERRA-2 data were used for the simulations (https://gmao.gsfc.nasa.gov/products/). GEOS-Chem is a global-scale model that couples a 3D atmosphere\(^{2,24,25}\), a 2D surface-slab ocean\(^{26}\), and a 2D terrestrial reservoir\(^{27}\) at a 2°x2.5° horizontal resolution. A two-step oxidation mechanism of Hg(0) initiated by Br was used. The second-stage HgBr oxidation is mainly by the NO\(_2\) and HO\(_2\) radicals using the new mechanism for atmospheric redox chemistry developed by Horowitz et al.\(^2\). Oxidant fields from Schmidt et al.\(^{28}\) have 4°x5° horizontal resolution. Photoreduction of aqueous-phase Hg(II)-organic complexes is dependent on the local concentration of organic aerosols, the NO\(_2\) photolysis frequency, and an adjusted coefficient (K\(_{\text{RED JNO2}}\)) set to 9.828×10\(^{-2}\) m\(^3\) µg\(^{-1}\) here for simulations with MERRA-2 meteorological fields and use of the slab ocean\(^{29}\). For further details, a comprehensive description of the model is available elsewhere\(^{30}\).

2. **Legacy penalty**

We used a previously-published fully coupled seven-reservoir GBC model\(^{11,16}\) (available at https://github.com/SunderlandLab/gbc-boxmodel) to scale legacy emissions. The model allows full coupling of the atmosphere, ocean (surface, subsurface, and deep ocean), and terrestrial ecosystems (fast terrestrial, slow and armored soils). Hg cycles between reservoirs and is
ultimately removed by burial in deep marine sediments. In order to evaluate the impact of delayed action on global Hg deposition, incremental 5-year delays in implementing a NP or MFR scenario were tested (see Table 1, FUTURE simulations). We assumed a CP scenario (i.e., a 3.02 Mg yr\(^{-1}\) increase) until implementation of a NP or MFR scenario. A total of six simulations were performed with the GBC model (PRE-2010 and PRE-YYYY LEGACY in Table 1) in order to quantify the contribution to global Hg deposition of emissions during the policy delay \(\Delta t\). The \(\Delta t\)-dependent global legacy penalty was defined as the difference in global deposition between PRE-YYYY and PRE-2010 LEGACY simulations (where YYYY = 2020, 2025, 2030, 2035, or 2050). The global legacy penalty was then spatially-distributed (see below) and added to future deposition fluxes from the CTM in each grid-box (see Fig.1). Rather than assuming a globally homogeneous distribution of legacy emissions (i.e., global legacy penalty evenly divided among all 2\(^\circ\)x2.5\(^\circ\) grid boxes of the CTM), we used the spatial distribution of the legacy emissions contribution to Hg deposition (PRE-2010 LEGACY simulation with the CTM, see Table 1). Spatial differences in legacy impact relate to atmospheric transport, geographic factors (e.g., land vs. ocean) and reemissions. In GEOS-Chem, reemission of Hg previously deposited to land follows the deposition patterns of current sources\(^{31}\).

Local consequences of delayed global action for Hg deposition fluxes to ecosystems are discussed (see Section 3.2) at four selected sites located at varying distance from anthropogenic sources: A) tribal areas of Eastern Maine, USA, representative of remote regions and used to illustrate implications relevant to environmental justice concerns (see Section 3.3); B) Ahmedabad, the largest city of the Indian state of Gujarat and the location of two coal-fired power plants of more than 1000 MW electricity generation\(^{32}\); C) Shanghai, China’s biggest city and one of the main industrial centers, where elevated atmospheric Hg concentrations have been reported\(^{33–35}\); and D)
an area of the Southern Pacific known for albacore tuna fisheries. Sunderland et al. recently estimated that seafood harvested from the Equatorial and South Pacific Ocean accounts for 25% of the U.S. population-wide MeHg intake.

2.5 Fish contamination

To investigate the influence of delayed global action on fish contamination, we used a recently-developed implementation of the mechanistic model SERAFM (Spreadsheet-based Ecological Risk Assessment for the Fate of Mercury) of Hg in aquatic environments developed by the U.S. Environmental Protection Agency (EPA). This model has been widely used and evaluated since its development. The implementation of SERAFM used here was developed by Hendricks in the programming language R and modified for non-steady state conditions to enable prediction of lake responses to changes in loadings. A description of this mass balance model is provided by Perlinger et al. Briefly, the model is a three-reservoir box model (epilimnion, hypolimnion, and sediments). It enables prediction of aqueous Hg concentrations based on the characteristics of the lake of interest (e.g., depth, retention time), its watershed (e.g., surface area), and the local Hg atmospheric deposition flux. The model does not include fish population dynamics and solves for an annually averaged MeHg concentration in the water column that is multiplied by bioaccumulation factors (BAFs) for mixed feeders or piscivorous fish to give a distribution of MeHg concentrations in fish. We therefore neglect the time required (3-7 years) for fish populations to reach steady state following a change in Hg loadings. Additionally, Hg runoff from catchments is set to be proportional to atmospheric deposition (see S.I. Section 1.2.a). This approach assumes that only recently deposited Hg is susceptible to leaching leading to a fast response to changes in Hg deposition. More information regarding the parameterization used here and the model performance can be found in S.I. Section 1.2 and Fig.S1.
Although some lake Hg contamination can be attributed to direct inputs from local sources51,52, we focus here on remote lakes where the main source of contamination is atmospheric deposition from the global Hg pool (see Section 3.2). More specifically, we concentrate on remote tribal regions of Eastern Maine, USA (see Fig. S2) since Native Americans are particularly vulnerable to Hg contamination due to traditional subsistence fishing53. In order to investigate the response to changes in atmospheric deposition, the model was first run for 10 years (2000-2010) to reach steady-state, and then transiently using the adjusted deposition values from the CTM described in Section 2.1. Here, we evaluated the response of fish contamination to delayed global action assuming everything else (e.g., food web structure, nutrient loading) constant. While Hg biogeochemical cycling will be affected by climate and land-use change14,54–56, this is not taken into account here for consistency and ease of comparison with other traditional policy impact studies.

3. RESULTS AND DISCUSSION

3.1 Impact of delayed action on global Hg deposition
Figure 2: (a) Global primary anthropogenic emissions of Hg to the atmosphere (in Mg). A New Policy (NP) is implemented in 2010 (black), 2020 (blue), 2025 (red), 2030 (green), 2035 (yellow) or 2050 (purple). The NP annual emissions target is reached at a rate of -32.7 Mg yr⁻¹ even in case of delayed global action. (b) Global atmospheric Hg deposition to ecosystems (in Mg). Each 5-year delay in implementing NP delays by additional extra ca. 4 years the return of Hg deposition to its year 2010 level (chosen for illustrative purposes) due to legacy emissions.

The impact of delayed action on global Hg deposition was quantified using the fully coupled seven-reservoir GBC model¹¹,¹⁶ (FUTURE simulations, see Table 1). Fig.2a shows global anthropogenic emissions to the atmosphere from 1950 onward. Emissions rise steadily after 1950 due to increased coal use and artisanal gold mining¹⁹. Over recent years, decreasing emissions in Europe and North America due to domestic regulation have been offset by an increase in East Asia, leading to an overall increase⁹,¹⁹. Global Hg deposition is depicted in Fig.2b. The atmosphere responds relatively quickly (though not proportionally) to decreasing emissions. If a NP scenario is implemented in 2020, deposition begins to decrease by 2021. In this scenario, global primary emissions decrease by ca. 980 Mg from 2020 to 2050 while deposition decreases by ca. 635 Mg. These results reflect the balance and cycling of Hg between the various reservoirs. Return to year 2010 deposition (arbitrary threshold) is achieved in 2038, i.e., 18 years after NP implementation. On the other hand, return to year 2010 deposition is achieved in 2027 if a more stringent MFR scenario is implemented in 2020 (see Fig.S3).

To evaluate the impact of delayed global action, a NP scenario was implemented for various years between 2020 and 2050. Return to year 2010 deposition level is reached in 2038, 2047, 2056, or 2064 if a NP scenario is implemented in 2020, 2025, 2030, or 2035, respectively. On average, each near-term 5-year delay in implementing a NP scenario in turns delays by additional extra ca. 4 years a return to its year 2010 level (this level is not the goal of policy action but used here for
illustrative purposes). Each near-term 5-year delay leads to a ca. 2.2% increase of the atmospheric reservoir mass, mainly due to the feedback from legacy emissions.

Based on these results, we also compare the emissions reduction rate needed in order to reach the same given deposition target at the same time but assuming delayed global action. According to Fig.2b, return to year 2010 deposition level is reached in 2038 if emissions reduction is initiated in 2020 at a -32.7 Mg yr\(^{-1}\) reduction rate (NP). To reach the same deposition target (year 2010 level) at the same time (2038), reduction rates of -48.0, -83.0 and -230.0 Mg yr\(^{-1}\) are needed if emissions reduction is initiated in 2025, 2030, or 2035, respectively. In other words, emissions reduction must be ca. 1.5, 2.5 or 7.0 times more stringent if initiated in 2025, 2030 or 2035, respectively, instead of 2020 due to legacy emissions and increasingly shortened recovery periods.

3.2 Local consequences and percent change in policy impacts

Using the integrated modeling approach described in Section 2.1, we calculated the local consequences of delayed global action for Hg deposition fluxes to ecosystems at the four selected sites (see Section 2.4). Following a traditional atmospheric modeling method (i.e., no delay/legacy penalty – see Fig.1), the NP scenario leads to a 15.3%, 55.1%, and 12.9% decrease in Hg deposition (vs. present-day levels) in Maine, Shanghai, and the South Pacific, respectively (see Table 2). In contrast, a 25.9% increase is observed in Ahmedabad, India due to projected growth of regional anthropogenic emissions\(^9\). The MFR scenario leads to consistent global-scale Hg deposition reduction, with a 25.8%, 38.4%, 68.3%, and 22.1% decrease in Maine, Ahmedabad, Shanghai, and the South Pacific, respectively. These results are consistent with those reported by Pacyna et al.\(^9\) despite the use of the a different CTM with a formulation, spatial resolution, and physical and chemical process parameterizations considerably different from GLEMOS and ECHMERIT\(^{30}\).
Table 2: Policy impact on local Hg deposition ($\Delta \mu g/m^2/yr$, percent in parentheses) assuming an immediate implementation and no legacy penalty (traditional method). Policy impact is calculated as the difference in deposition between FUTURE and BASE simulations. The following columns give the percent change in policy impact depending on year of implementation, i.e., length of the delay. The percent change in policy impact is calculated according to Equation (1). The mean percent change in policy impact is the average percent change due to a near-term (2020-2035) 5-year delay, calculated according to Equation (2). New Policy (NP) and Maximum Feasible Reduction (MFR) refer to future global emissions scenarios developed by Pacyna et al.9.

Year of implementation	Global average	Maine, USA (A)	Ahmedabad, India (B)	Shanghai, China (C)	South Pacific (D)		
	Policy impact in $\Delta \mu g/m^2/yr$ under traditional method (% change vs. present)	Percent change in policy impact (%)					
	Traditional method	2020	2025	2030	2035	2050	mean
Global average							
NP	-1.4 (-13.6%)	-33.6	-48.5	-62.7	-76.2	-114.1	-14.2
MFR	-2.5 (-23.8%)	-19.1	-27.5	-35.5	-43.2	-64.6	-8.0
Global legacy penalty (Mg)	0.0	272	392	506	615	921	114.5
Maine, USA (A)							
NP	-2.9 (-15.3%)	-29.5	-42.6	-55.0	-66.9	-100.0	-12.5
MFR	-4.9 (-25.8%)	-17.5	-25.3	-32.7	-39.7	-59.5	-7.4
Ahmedabad, India (B)							
NP	+4.2 (+25.9%)	-12.7	-18.4	-23.7	-28.9	-43.2	-5.4
MFR	-6.3 (-38.4%)	-8.6	-12.4	-16.0	-19.5	-29.2	-3.6
Shanghai, China (C)							
NP	-6.3 (-55.1%)	-2.7	-3.9	-5.0	-6.1	-9.1	-1.1
MFR	-7.8 (-68.3%)	-2.2	-3.1	-4.1	-4.9	-7.4	-0.9
South Pacific (D)							
NP	-1.7 (-12.9%)	-38.3	-55.3	-71.4	-86.9	-130.1	-16.2
MFR	-3.0 (-22.1%)	-22.8	-32.8	-42.4	-51.6	-77.2	-9.6

As expected, policy impacts are lower in remote regions, far from emissions sources9,48,57. While North America contributes a significant fraction of global anthropogenic emissions17,58,59, Hg emissions are low in Maine60 (~50 kg yr⁻¹) and in the neighboring New England states (see Fig.S4 and Fig.S5) due to a lack of major emitting sources as well as the adoption in 1998 of a regional Hg action plan with aggressive emission reduction goals61. Based on Fig.1 in Giang and Selin57, little impact is expected from domestic U.S. regulations in eastern Maine in terms of avoided
deposition. As inferred by 2007-2016 hourly air back-trajectories computed with the HYSPLIT model62 (see Fig.S6), Maine tribal areas are mainly influenced by air masses originating from Canada and the Arctic (Hudson Bay), \textit{i.e.}, the Northern Hemisphere atmospheric background, rather than U.S. emissions. Sunderland et al.63 also showed that, in the early 2000s, anthropogenic emissions in the U.S. and Canada resulted in \sim30\% of Hg deposition to the Gulf of Maine, with the rest (\sim 70\%) from global anthropogenic and natural sources. In that context, a decrease of Hg deposition in Maine tribal areas can only be achieved through the reduction of the global background Hg concentration, \textit{i.e.}, through global action. Potential additional effects of global change (climate, biomass burning, land use) on Hg deposition have recently been investigated in Michigan’s Upper Peninsula (USA) and projected to have modest impacts compared to changes in direct anthropogenic emissions48.

Figure 3 depicts the mean percent change in policy impacts due to a near-term (2020-2035) 5-year delayed implementation of a NP scenario. On a global average, each 5-year delay leads to a ca. 14\% decrease in NP impacts. The consequences of delayed global action depend on the stringency of the policy as each 5-year delay leads to a ca. 8\% decrease in MFR impacts (global average, see Table 2). Remote regions are proportionally more impacted by delayed global action than regions close to emission sources and a clear gradient between the Northern and Southern Hemispheres can be observed (see Fig.3). While a 5-year delay leads to a -12.5 and -16.2\% change in NP impacts in Maine and South Pacific, respectively, it induces a -5.4 and -1.1\% change in Ahmedabad and Shanghai, respectively (see Table 2 and Fig.3). This can be explained by the relatively lower policy impact in remote regions (see above) and therefore proportionally higher influence of the legacy penalty. Consequences in terms of human exposure through fish consumption are further discussed in the next section, with a specific focus on remote inland waters of Eastern Maine, USA.
Figure 3: Mean percent change in policy impacts due to a near-term (2020-2035) 5-year delayed implementation of a New Policy (NP) scenario. Results are discussed at selected sites with varying impact from emissions sources, focusing on A) tribal areas of Eastern Maine, USA, B) Ahmedabad, India, C) Shanghai, China, and D) an area of the Southern Pacific known for albacore tuna fisheries. This Figure was made using the R package autoimage.

3.3 Local impacts on fish contamination: a tribal case study

In the U.S., rates of fish consumption and type of fish consumed vary widely. Whereas fish forms a small component of the diet of many Americans, some groups such as Native American tribes eat fish as frequently as daily. Additionally, fishing is an important component of cultural and religious practice for many Native Americans. Therefore, fish contamination poses special risks for tribal members and is an issue relevant to environmental justice. According to a study performed in Maine tribal areas, total Hg concentration in predatory fish exceeds the 0.3 mg kg\(^{-1}\) U.S. EPA threshold in 16 out of 20 lakes (see Fig.S7) despite their remoteness from emissions sources (see Section 3.2). As discussed by Perlinger et al., the susceptibility of lakes to being contaminated depends on the total supply of Hg to lakes but more importantly on factors leading to production and accumulation of MeHg (e.g., prevalence of forests and wetlands in the catchment, low alkalinity, pH or nutrients, and long water residence time). In order to navigate the
gap between safe and desired fish consumption levels for populations with significant exposure to
Hg, it is necessary to model changes in fish contamination over time71 and to investigate the
response to delayed global action.

The median response (over 20 lakes, see S.I. Section 1.2) of lacustrine predatory fish
contamination to changes in atmospheric deposition can be seen in Fig.4. All the lakes within the
study area respond with a rapid decrease in MeHg concentration over a decade, followed by a
slower decline toward steady state. Using the SERAFM model, Knightes et al.39 modeled the
response to a hypothetical 50\% decline in deposition across a range of lake types and also found a
similar response. However, the time response reported here is at the upper range of those reported
in Knightes et al.39. Assuming an immediate implementation of a NP scenario (\textit{i.e.}, no delay/legacy
penalty – traditional method), the median MeHg concentration in predatory fish rapidly declines
by ca. 11\%. This suggests that even in the case of an immediate NP implementation and of a rather
fast response time to changes in deposition, the median MeHg concentration is still above the U.S.
EPA threshold. These results are in line with those recently reported in Michigan’s Upper
Peninsula48. Substantial and rapid response of fish contamination to reduced emissions have been
observed near emissions sources72–74. However, the relatively lower policy impacts in remote areas
(see Section 3.2) are likely to considerably prolong the time required to see substantial decreases
in fish Hg concentrations. Under an immediate implementation of a MFR scenario, the median
MeHg concentration drops to about 0.3 mg kg-1, \textit{i.e.}, the U.S. EPA threshold. A desired subsistence
fish consumption of 300-500 grams per day requires a safe level target of \~0.018 mg kg-148,66,71. The predatory fish Hg concentrations under the MFR scenario therefore indicate that, even under
the strictest global Hg regulations, a traditional-subsistence diet high in predatory fishes (\textit{e.g.},
brook trout, brown trout, burbot, landlocked salmon, smallmouth bass) will lead to unsafe MeHg
exposure in Maine tribal areas. While flawed from the standpoint of environmental justice, a diet that shifts toward mixed feeders (e.g., white sucker, also known as mullet or bay fish) would reduce MeHg exposure (see Fig.S1). This suggestion also holds true for riverine fish in the study area. Although not a true substitute for a pristine environment, another alternative is the increasing consumption of lower-Hg containing fish from aquaculture. The Aroostook Band of Micmacs located in Presque Isle (see Fig.S2) has recently made this choice and created a recirculating aquaculture brook trout fish hatchery.

The impact of delayed global action on MeHg fish concentrations was then evaluated. Return to year 2010 MeHg level (an arbitrarily-defined threshold used here for illustrative purposes) is achieved in 2021, 2027, 2033, or 2043 if a NP scenario is implemented in 2020, 2025, 2030, or 2035, respectively. In other words, the longer the delay, the longer it takes to reach the same MeHg concentration target. While the U.S. EPA threshold is reached in a decade if a MFR scenario is implemented in 2010 (see Fig.4), this target is never reached in case of delayed MFR implementation (see Fig.S8).
3.4 Uncertainties in atmospheric Hg modeling

Uncertainties in atmospheric Hg modeling for policy evaluation, in particular for linking sources to receptors, have recently been thoroughly discussed by Kwon and Selin13. Major uncertainties arise from biogeochemical cycling, atmospheric chemistry, and anthropogenic emissions. There is for example ongoing controversy in the literature and a rapidly evolving understanding of Hg pool sizes and fluxes in the global Hg cycle13,22,77–81. The fully coupled seven-reservoir GBC model11,16 used in this study to scale legacy emissions is based on Streets et al.'s19 all-time emission inventory, which assumes a major atmospheric Hg impact from late 19th century Gold Rush mining in North America. Recent studies, including historical documents on Hg use, ore geochemistry and a large array of ice and lake sediment records, have challenged this account, as documented in a critical review by Outridge et al.77. This synthesis argues for a “low-mining emissions” scenario which translates into smaller legacy pools in the oceans and soils than considered until now. In order to investigate the consequences of a smaller legacy pool on the calculated legacy penalty, we cut historical (1850-1920 CE) mining emissions in the Streets et al.19 inventory by 50\%, as proposed by Engstrom et al.78. This “low-mining emissions” scenario did not lead to any significant change in the influence of delayed action on NP policy impacts. As suggested by Amos et al.79, atmospheric deposition is most sensitive to the profile of anthropogenic emissions in recent decades, and results presented here are robust to the uncertainty in historical emissions. Our results also depend on the emissions scenario used from year 2010 until implementation of the NP scenario. We conducted a perturbation analysis to investigate the effect of this uncertainty on the percent change in policy impact. We calculated a mean legacy penalty for each near-term 5-year
delay of 107 Mg, 115 Mg (see Table 2), or 123 Mg assuming constant emissions (+0 Mg yr\(^{-1}\)), a CP scenario (+3.02 Mg yr\(^{-1}\)), or a 2×CP (+6.04 Mg yr\(^{-1}\)) rate. We find that, on a global average, each 5-year delay leads to a 13%, 14% or 15% decrease in NP policy impacts, respectively. Perturbations to the legacy penalty therefore have little impact on our results.

3.5 Implications

Our results show that traditional spatially-resolved analyses of prospective policy impacts from mercury reductions that do not consider future changes in legacy emissions can overestimate changes driven by policy implementation by up to 110% by 2050 and should be considered as best-case estimates. Though legacy impacts have previously been evaluated at global scale using global biogeochemical cycling models, these effects are not widely appreciated by policy-makers. Selin\(^{12}\) recently proposed a global metric to help policy-makers better understand the implications of policy options by taking into account near-term changes in legacy Hg. Using the integrated modeling approach described here, the effect of legacy Hg changes on policy impact can be resolved spatially. Future work could build upon this study by (re)examining the impact of other or upcoming future emission scenarios beyond those developed by Pacyna et al.\(^9\) evaluated here.

Future policy analyses should account for future legacy emissions and associated deposition to better inform policy decision-making; the approach outlined here provides a straightforward methodology to estimate this effect without relying on advanced coupled atmosphere-ocean models. Alternately, an even simpler approach could scale legacy emissions and resulting deposition globally using a global-scale estimate of biogeochemical model output\(^{12}\) if running a global biogeochemical cycle is infeasible.

Our results highlight the benefits of near-term aggressive Hg mitigation efforts. Return to year 2010 global deposition is achieved 2.6 times faster under a MFR vs. NP scenario (see Section 3.1).
Contrary to the NP scenario, the MFR scenario leads to consistent global-scale Hg deposition reduction (see Section 3.2). We also show that each near-term delay in taking global action to reduce emissions has a non-negligible influence on expected policy impacts due to legacy emissions. Global emissions reduction must be ca. 1.5, 2.5 or 7.0 times more stringent if initiated in 2025, 2030 or 2035, respectively, instead of 2020 (see Section 3.1). On a global average, each 5-year delay leads to a ca. 14% decrease in NP impacts (see Section 3.2). Finally, while the median MeHg concentration in predatory fish in Maine lakes is still ca. 25% too high for safe fish consumption in case of an immediate NP implementation, the U.S. EPA threshold is achieved under immediate implementation of a MFR scenario (see Section 3.3). However, this level is never reached if policy is delayed. It should also be emphasized that under a business-as-usual scenario (CP), deposition fluxes to ecosystems will gradually increase. Even if moderately delayed, NP and MFR scenarios lead to reductions in Hg deposition and MeHg concentration, highlighting the positive impact of concerted global action.

SUPPORTING INFORMATION

Results of tests performed to check the robustness of our method and a detailed description of the SERAFM model parameterization are available in Supplementary Information. Additional Tables and Figures are also available: Summary of some characteristics of the modeled lakes (Table S1), Lake geometry values from a lake in Mighigan’s Upper Peninsula (Table S2), Ratios of lake characteristics from a lake in Mighigan’s Upper Peninsula (Table S3), Lake Hg model evaluation (Fig.S1), Location of Maine and Tribal communities (Fig. S2), Global impact of NP vs. MFR implementation (Fig. S3), Hg emissions in Maine (Fig. S4), Year 2011 U.S. state-level Hg emissions (Fig. S5), Origin of air masses influencing Maine tribal areas (Fig. S6), Total Hg
concentration in predatory fish fillets collected in Maine tribal areas (Fig. S7), and Median response of Maine lacustrine predatory fish contamination to delayed implementation of a MFR scenario (Fig. S8).

ACKNOWLEDGMENTS

This work was supported by the MIT Leading Technology & Policy Program, a core center grant P30-ES002109 from the National Institute of Environmental Health Sciences – National Institute of Health, the MIT EAPS Undergraduate Research Opportunities Program, and the National Institute of Environmental Health Sciences Superfund Basic Research Program – National Institute of Health (P42 ES027707). The authors would like to thank J. Pacyna and S. Cinnirella for providing future emissions inventories. HA would like to acknowledge F. Corey, D. Macek, S. Venno, A. Ajmani, B. Longfellow, C. Johnson, N. Dalrymple, and K. M. Vandiver for rewarding discussions during field trips to Maine.
REFERENCES

(1) Selin, N. E. Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources 2009, 34 (1), 43–63.

(2) Horowitz, H. M.; Jacob, D. J.; Zhang, Y.; Dibble, T. S.; Slemr, F.; Amos, H. M.; Schmidt, J. A.; Corbitt, E. S.; Marais, E. A.; Sunderland, E. M. A New Mechanism for Atmospheric Mercury Redox Chemistry: Implications for the Global Mercury Budget. Atmos. Chem. Phys. 2017, 17 (10), 6353–6371.

(3) Gustin, M. S.; Lindberg, S. E.; Weisberg, P. J. An Update on the Natural Sources and Sinks of Atmospheric Mercury. Applied Geochemistry 2008, 23, 482–493.

(4) Mergler, D.; Anderson, H. A.; Chan, L. H. M.; Mahaffey, K. R.; Murray, M.; Sakamoto, M.; Stern, A. H. Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern. AMBIO: A Journal of the Human Environment 2007, 36 (1), 3–11.

(5) Du, B.; Feng, X.; Li, P.; Yin, R.; Yu, B.; Sonke, J. E.; Guinot, B.; Anderson, C. W. N.; Maurice, L. Use of Mercury Isotopes to Quantify Mercury Exposure Sources in Inland Populations, China. Environ. Sci. Technol. 2018, 52 (9), 5407–5416.

(6) Sunderland, E. M. Mercury Exposure from Domestic and Imported Estuarine and Marine Fish in the U.S. Seafood Market. Environ Health Perspect 2007, 115 (2), 235–242.

(7) UNEP. Text of the Minamata Convention on Mercury, Available at: Http://Mercuryconvention.Org/Portals/11/Documents/Booklets/COP1%20version/Minamata-Convention-Booklet-Eng-Full.Pdf, Last Access: 18 April 2018. 2017.

(8) Ancora, M. P.; Zhang, L.; Wang, S.; Schriefels, J. J.; Hao, J. Meeting Minamata: Cost-Effective Compliance Options for Atmospheric Mercury Control in Chinese Coal-Fired Power Plants. Energy Policy 2016, 88 (C), 485–494.

(9) Pacyna, J. M.; Travnikov, O.; De Simone, F.; Hedgecock, I. M.; Sundseth, K.; Pacyna, E. G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K. Current and Future Levels of Mercury Atmospheric Pollution on a Global Scale. Atmos. Chem. Phys. 2016, 16 (19), 12495–12511.

(10) Selin Noelle E. Global Change and Mercury Cycling: Challenges for Implementing a Global Mercury Treaty. Environmental Toxicology and Chemistry 2014, 33 (6), 1202–1210.

(11) Amos, H. M.; Jacob, D. J.; Streets, D. G.; Sunderland, E. M. Legacy Impacts of All-Time Anthropogenic Emissions on the Global Mercury Cycle. Global Biogeochem. Cycles 2013, 27 (2), 410–421.

(12) Selin, N. E. A Proposed Global Metric to Aid Mercury Pollution Policy. Science 2018, 360 (6389), 607–609.

(13) Kwon, S. Y.; Selin, N. E. Uncertainties in Atmospheric Mercury Modeling for Policy Evaluation. Curr Pollution Rep 2016, 2 (2), 103–114.

(14) Obrist, D.; Kirk, J. L.; Zhang, L.; Sunderland, E. M.; Jiskra, M.; Selin, N. E. A Review of Global Environmental Mercury Processes in Response to Human and Natural Perturbations: Changes of Emissions, Climate, and Land Use. Ambio 2018, 47 (2), 116–140.

(15) Giang, A.; Stokes, L. C.; Streets, D. G.; Corbitt, E. S.; Selin, N. E. Impacts of the Minamata Convention on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia. Environ. Sci. Technol. 2015, 49 (9), 5326–5335.
(16) Amos, H. M.; Jacob, D. J.; Kocman, D.; Horowitz, H. M.; Zhang, Y.; Dutkiewicz, S.; Horvat, M.; Corbitt, E. S.; Krabbenhoft, D. P.; Sunderland, E. M. Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial. *Environ. Sci. Technol.* 2014, 48 (16), 9514–9522.

(17) AMAP/UNEP. *Technical Background Report for the Global Mercury Assessment 2013; Arctic Monitoring and Assessment Programme, Oslo, Norway. UNEP Chemicals Branch, Geneva, Switzerland, 2013; p 263.

(18) Zhang, Y.; Jacob, D. J.; Horowitz, H. M.; Chen, L.; Amos, H. M.; Krabbenhoft, D. P.; Slemr, F.; Louis, V. L. S.; Sunderland, E. M. Observed Decrease in Atmospheric Mercury Explained by Global Decline in Anthropogenic Emissions. *PNAS* 2016, 113 (3), 526–531.

(19) Streets, D. G.; Devane, M. K.; Lu, Z.; Bond, T. C.; Sunderland, E. M.; Jacob, D. J. All-Time Releases of Mercury to the Atmosphere from Human Activities. *Environ. Sci. Technol.* 2011, 45 (24), 10485–10491.

(20) Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.; Friedli, H.; Leaner, J.; Mason, R.; Mukherjee, A.; Strachter, G.; Streets, D.; Telmer, K. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. *Atmospheric Chemistry and Physics* 2010, 10, 5951–5964.

(21) Bagnato, E.; Aiuppa, A.; Parello, F.; Allard, P.; Shinohara, H.; Liuzzo, M.; Giudice, G. New Clues on the Contribution of Earth’s Volcanism to the Global Mercury Cycle. *Bull Volcanol.* 2011, 73 (5), 497–510.

(22) Horowitz, H. M.; Jacob, D. J.; Amos, H. M.; Streets, D. G.; Sunderland, E. M. Historical Mercury Releases from Commercial Products: Global Environmental Implications. *Environ. Sci. Technol.* 2014, 48 (17), 10242–10250.

(23) Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B. D.; Fiore, A. M.; li, Q.; Liu, H. Y.; Mickley, L. J.; Schultz, M. G. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation. *Journal of geophysical research* 2001, 106 (D19), 23,073-23,095.

(24) Holmes, C. D.; Jacob, D. J.; Corbitt, E. S.; Mao, J.; Yang, X.; Talbot, R.; Slemr, F. Global Atmospheric Model for Mercury Including Oxidation by Bromine Atoms. *Atmospheric Chemistry and Physics* 2010, 10, 12037–12057.

(25) Amos, H. M.; Jacob, D. J.; Holmes, C. D.; Fisher, J. A.; Wang, Q.; Yantosca, R. M.; Corbitt, E. S.; Galarneau, E.; Rutter, A. P.; Gustin, M. S.; Steffen, A.; Schauer, J. J.; Graydon, J. A.; Louis, V. L.; Talbot, R. W.; Edgerton, E. S.; Zhang, Y.; Sunderland, E. M. Gas-Particle Partitioning of Atmospheric Hg(II) and Its Effect on Global Mercury Deposition. *Atmos. Chem. Phys. 2012*, 12 (1), 591–603.

(26) Soerensen, A. L.; Sunderland, E. M.; Holmes, C. D.; Jacob, D. J.; Yantosca, R. M.; Skov, H.; Christensen, J. H.; Strode, S. A.; Mason, R. P. An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic. *Environ. Sci. Technol.* 2010, 44 (22), 8574–8580.

(27) Selin, N. E.; Jacob, D. J.; Yantosca, R. M.; Strode, S.; Jaeglé, L.; Sunderland, E. M. Global 3-D Land-Ocean-Atmosphere Model for Mercury: Present-Day versus Preindustrial Cycles and Anthropogenic Enrichment Factors for Deposition. *Global Biogeochem. Cycles* 2008, 22 (2), GB2011.

(28) Schmidt, J. A.; Jacob, D. J.; Horowitz, H. M.; Hu, L.; Sherwen, T.; Evans, M. J.; Liang, Q.; Suleiman, R. M.; Oram, D. E.; Le Breton, M.; Percival, C. J.; Wang, S.; Dix, B.; Volkamer, R. Modeling the Observed Tropospheric BrO Background: Importance of
Hg and POPs working group. GEOS-Chem mercury simulations http://wiki.seas.harvard.edu/geos-chem/index.php/Mercury#K_RED_JNO2 (accessed May 15, 2018).

Travnikov, O.; Angot, H.; Artaxo, P.; Bencardino, M.; Bieser, J.; D’Amore, F.; Dastoor, A.; De Simone, F.; Diéguez, M. D. C.; Dommergue, A.; Ebinghaus, R.; Feng, X. B.; Gencarelli, C. N.; Hedgecock, I. M.; Magand, O.; Martin, L.; Matthias, V.; Mashyanov, N.; Pirrone, N.; Ramachandran, R.; Read, K. A.; Ryjkov, A.; Selin, N. E.; Sena, F.; Song, S.; Sprovieri, F.; Wip, D.; Wängberg, I.; Yang, X. Multi-Model Study of Mercury Dispersion in the Atmosphere: Atmospheric Processes and Model Evaluation. Atmos. Chem. Phys. 2017, 17 (8), 5271–5295.

Selin, N. E.; Jacob, D. J.; Park, R. J.; Yantosca, R. M.; Strode, S.; Jaeglé, L.; Jaffe, D. A. Chemical Cycling and Deposition of Atmospheric Mercury: Global Constraints from Observations. Journal of geophysical research 2007, 112, D02308.

Guttikunda, S. K.; Jawahar, P. Atmospheric Emissions and Pollution from the Coal-Fired Thermal Power Plants in India. Atmospheric Environment 2014, 92, 449–460.

Duan, L.; Wang, X.; Wang, D.; Duan, Y.; Cheng, N.; Xiu, G. Atmospheric Mercury Speciation in Shanghai, China. Science of The Total Environment 2017, 578, 460–468.

Han, D.; Zhang, J.; Hu, Z.; Ma, Y.; Duan, Y.; Han, Y.; Chen, X.; Zhou, Y.; Cheng, J.; Wang, W. Particulate Mercury in Ambient Air in Shanghai, China: Size-Specific Distribution, Gas–Particle Partitioning, and Association with Carbonaceous Composition. Environmental Pollution 2018, 238, 543–553.

Chen, X.; Balasubramanian, R.; Zhu, Q.; Behera, S. N.; Bo, D.; Huang, X.; Xie, H.; Cheng, J. Characteristics of Atmospheric Particulate Mercury in Size-Fractionated Particles during Haze Days in Shanghai. Atmospheric Environment 2016, 131, 400–408.

Lehodey, P.; Senina, I.; Nicol, S.; Hampton, J. Modelling the Impact of Climate Change on South Pacific Albacore Tuna. Deep Sea Research Part II: Topical Studies in Oceanography 2015, 113, 246–259.

Sunderland, E. M.; Li, M.; Bullard, K. Decadal Changes in the Edible Supply of Seafood and Methylmercury Exposure in the United States. Environ. Health Perspect. 2018, 126 (1), 017006.

Knightes, C. D. Development and Test Application of a Screening-Level Mercury Fate Model and Tool for Evaluating Wildlife Exposure Risk for Surface Waters with Mercury-Contaminated Sediments (SERAFM). Environmental Modelling & Software 2008, 23 (4), 495–510.

Knightes, C. D.; Sunderland, E. M.; Barber, M. C.; Johnston, J. M.; Ambrose, R. B. Application of Ecosystem-Scale Fate and Bioaccumulation Models to Predict Fish Mercury Response Times to Changes in Atmospheric Deposition. Environmental Toxicology and Chemistry 2009, 28 (4), 881–893.

Brown, S.; Saito, L.; Knightes, C.; Gustin, M. Calibration and Evaluation of a Mercury Model for a Western Stream and Constructed Wetland. Water Air Soil Pollut 2007, 182 (1–4), 275–290.

Selin, N. E.; Sunderland, E. M.; Knightes, C. D.; Mason, R. P. Sources of Mercury Exposure for US Seafood Consumers: Implications for Policy. Environmental health perspectives 2010, 118 (1), 137–143.
Hong, Y.-S.; Rifkin, E.; Bouwer, E. J. Modeling Mercury Distribution in the Sarasota Bay Ecosystem Using SERAFM and Stable Isotope Ratios of Nitrogen (Δ15N) in Biota. *Environmental Engineering Science* **2014**, *31* (3), 135–147.

Hope Bruce K; Louch Jeff. Pre-anthropocene Mercury Residues in North American Freshwater Fish. *Integrated Environmental Assessment and Management* **2013**, *10* (2), 299–308.

Hope, B. K. Efficacy of Translators for Establishing Mercury Total Maximum Daily Loads. *Human and Ecological Risk Assessment: An International Journal* **2011**, *17* (6), 1263–1278.

Gidley, P. T.; Kreitinger, J. P.; Zakikhani, M.; Suedel, B. C. Methylmercury Screening Models for Surface Water Habitat Restoration: A Case Study in Duluth-Superior Harbor; ERDC/EL TR-17-19; ERDC-EL Vicksburg United States, ERDC-EL Vicksburg United States, 2017.

Zhu, S.; Zhang, Z.; Žagar, D. Mercury Transport and Fate Models in Aquatic Systems: A Review and Synthesis. *Science of The Total Environment* **2018**, *639*, 538–549.

Hendricks, A.N. A Model to Predict Concentrations and Uncertainty for Mercury Species in Lakes. Open Access Master’s Thesis, Michigan Technological University: http://digitalcommons.mtu.edu/etdr/585, 2018.

Thevenon, F.; Graham, N. D.; Chiaradia, M.; Arpagaus, P.; Wildi, W.; Poté, J. Local to Regional Scale Industrial Heavy Metal Pollution Recorded in Sediments of Large Freshwater Lakes in Central Europe (Lakes Geneva and Lucerne) over the Last Centuries. *Science of the Total Environment* **2011**, Complete (412–413), 239–247.

Glass, G. E.; Sorensen, J. A.; Schmidt, K. W.; Rapp, G. R. New Source Identification of Mercury Contamination in the Great Lakes. *Environ. Sci. Technol.* **1990**, *24* (7), 1059–1069.

Kuhnlein, H. V.; Chan, H. M. Environment and Contaminants in Traditional Food Systems of Northern Indigenous Peoples. *Annual Review of Nutrition* **2000**, *20* (1), 595–626.

Eagles-Smith, C. A.; Silbergeld, E. K.; Basu, N.; Bustamante, P.; Diaz-Barriga, F.; Hopkins, W. A.; Kidd, K. A.; Nyland, J. F. Modulators of Mercury Risk to Wildlife and Humans in the Context of Rapid Global Change. *Ambio* **2018**, *47* (2), 170–197.

Krabbenhof, D. P.; Sunderland, E. M. Global Change and Mercury. *Science* **2013**, *341* (6153), 1457–1458.

Ahonen, S. A.; Hayden, B.; Leppänen, J. J.; Kahilainen, K. K. Climate and Productivity Affect Total Mercury Concentration and Bioaccumulation Rate of Fish along a Spatial Gradient of Subarctic Lakes. *Science of The Total Environment* **2018**, *637–638*, 1586–1596.

Giang, A.; Selin, N. E. Benefits of Mercury Controls for the United States. *PNAS* **2016**, *113* (2), 286–291.
Muntean, M.; Janssens-Maenhout, G.; Song, S.; Selin, N. E.; Olivier, J. G. J.; Guizzardi, D.; Maas, R.; Dentener, F. Trend Analysis from 1970 to 2008 and Model Evaluation of EDGARv4 Global Gridded Anthropogenic Mercury Emissions. Science of The Total Environment 2014, 494–495, 337–350.

Muntean, M.; Janssens-Maenhout, G.; Song, S.; Giang, A.; Selin, N. E.; Zhong, H.; Zhao, Y.; Olivier, J. G. J.; Guizzardi, D.; Crippa, M.; Schaaf, E.; Dentener, F. Evaluating EDGARv4.Tox2 Speciated Mercury Emissions Ex-Post Scenarios and Their Impacts on Modelled Global and Regional Wet Deposition Patterns. Atmospheric Environment 2018, 184, 56–68.

US EPA. 2011 National Emissions Inventory (NEI) Data https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data (accessed May 8, 2018).

Smith, C. M.; Trip, L. J. Mercury Policy and Science in Northeastern North America: The Mercury Action Plan of the New England Governors and Eastern Canadian Premiers. Ecotoxicology 2005, 14 (1–2), 19–35.

Stein, A. F.; Draxler, R. R.; Rolph, G. D.; Stunder, B. J. B.; Cohen, M. D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Amer. Meteor. Soc. 2015, 96 (12), 2059–2077.

Sunderland, E. M.; Cohen, M. D.; Selin, N. E.; Chmura, G. L. Reconciling Models and Measurements to Assess Trends in Atmospheric Mercury Deposition. Environmental Pollution 2008, 156, 526–535.

French, J. P. Autoimage: Multiple Heat Maps for Projected Coordinates. R J 2017, 9 (1), 284–297.

O’Neill, C. Mercury, Risk, and Justice; SSRN Scholarly Paper ID 1004769; Social Science Research Network: Rochester, NY, 2007.

US EPA. Wabanaki Traditional Cultural Lifeways Exposure Scenario https://www.epa.gov/tribal/wabanaki-traditional-cultural-lifeways-exposure-scenario (accessed May 8, 2018).

Xue, J.; Zartarian, V.; Mintz, B.; Weber, M.; Bailey, K.; Geller, A. Modeling Tribal Exposures to Methyl Mercury from Fish Consumption. Science of The Total Environment 2015, 533, 102–109.

Ranco, D. J.; O’Neill, C. A.; Donatuto, J.; Harper, B. L. Environmental Justice, American Indians and the Cultural Dilemma: Developing Environmental Management for Tribal Health and Well-Being. Environmental Justice 2011, 4 (4), 221–230.

US EPA. Region 1 Fish Tissue Contamination QA Plan | Regional Environmental Monitoring and Assessment Program | US EPA https://archive.epa.gov/emap/archive-emap/web/html/reg1_rpt.html (accessed May 8, 2018).

US EPA. Water Quality Criteria: Notice of Availability of Water Quality Criterion for the Protection of Human Health: Methylmercury https://www.federalregister.gov/documents/2001/01/08/01-217/water-quality-criteria-notice-of-availability-of-water-quality-criterion-for-the-protection-of-human (accessed May 8, 2018).

Gagnon, V.; Gorman, H.; Norman, E. Power and Politics in Research Design and Practice: Opening up Space for Social Equity in Interdisciplinary, Multi-Jurisdictional and Community-Based Research. Gateways: International Journal of Community Research and Engagement 2017, 10 (0), 164–184.
(72) Hutcheson, M. S.; Smith, C. M.; Rose, J.; Batdorf, C.; Pancorbo, O.; West, C. R.; Strube, J.; Francis, C. Temporal and Spatial Trends in Freshwater Fish Tissue Mercury Concentrations Associated with Mercury Emissions Reductions. *Environ. Sci. Technol.* 2014, 48 (4), 2193–2202.

(73) Brigham, M. E.; Sandheinrich, M. B.; Gay, D. A.; Maki, R. P.; Krabbenhoft, D. P.; Wiener, J. G. Lacustrine Responses to Decreasing Wet Mercury Deposition Rates—Results from a Case Study in Northern Minnesota. *Environ. Sci. Technol.* 2014, 48 (11), 6115–6123.

(74) Zhou, H.; Zhou, C.; Lynam, M. M.; Dvonch, J. T.; Barres, J. A.; Hopke, P. K.; Cohen, M.; Holsen, T. M. Atmospheric Mercury Temporal Trends in the Northeastern United States from 1992 to 2014: Are Measured Concentrations Responding to Decreasing Regional Emissions? *Environ. Sci. Technol. Lett.* 2017, 4 (3), 91–97.

(75) US Fish and Wildlife service. *Contaminant Assessment of White Suckers from Eight Rivers in the Gulf of Maine Distinct Population Segment for Atlantic Salmon; FY07-MEFO-1-EC; Maine Field Office, 2007; p 44.

(76) US Fish and Wildlife service. First Micmac Fish Harvest https://usfwsnortheast.wordpress.com/2017/06/28/first-micmac-fish-harvest/ (accessed May 8, 2018).

(77) Outridge, P. M.; Mason, R. P.; Wang, F.; Guerrero, S.; Heimbürger-Boavida, L. E. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. *Environ. Sci. Technol.* 2018, 52 (20), 11466–11477.

(78) Engstrom, D. R.; Fitzgerald, W. F.; Cooke, C. A.; Lamborg, C. H.; Drevnick, P. E.; Swain, E. B.; Balogh, S. J.; Balcom, P. H. Atmospheric Hg Emissions from Preindustrial Gold and Silver Extraction in the Americas: A Reevaluation from Lake-Sediment Archives. *Environ. Sci. Technol.* 2014, 48 (12), 6533–6543.

(79) Amos, H. M.; Sonke, J. E.; Obrist, D.; Robins, N.; Hagan, N.; Horowitz, H. M.; Mason, R. P.; Witt, M.; Hedgecock, I. M.; Corbitt, E. S.; Sunderland, E. M. Observational and Modeling Constraints on Global Anthropogenic Enrichment of Mercury. *Environ. Sci. Technol.* 2015, 49 (7), 4036–4047.

(80) Beal, S.; Osterberg, E. C.; Zdanowicz, C.; Fisher, D. An Ice Core Perspective on Mercury Pollution during the Past 600 Years. *Environmental Science and Technology* 2015, 49 (13), 7641–7647.

(81) Zhang, Y.; Jaeglé, L.; Thompson, L.; Streets, D. G. Six Centuries of Changing Oceanic Mercury. *Global Biogeochemical Cycles* 2014, 28 (11), 1251–1261.
Global and local impacts of delayed mercury mitigation efforts

Hélène Angot, Nicholas Hoffman, Amanda Giang, Colin P. Thackray, Ashley N. Hendricks, Noel R. Urban, Noelle E. Selin

1Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC Canada V6T 1Z4.

4Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

5Civil and Environmental Engineering Department, Michigan Technological University, Houghton, MI 49931, USA.

*angot@mit.edu

SUPPORTING INFORMATION
Table of contents

1. Methods

1.1 Local deposition and legacy penalty.................................. page S3
1.2 Fish contamination... page S4
 a. Model parameterization... page S4
 b. Model calibration... page S6
 c. Model evaluation... page S7

2. List of Tables

Table S1.. page S8
Table S2.. page S9
Table S3.. page S10

3. List of Figures

Figure S1.. page S11
Figure S2.. page S12
Figure S3.. page S13
Figure S4.. page S14
Figure S5.. page S15
Figure S6.. page S16
Figure S7.. page S17
Figure S8.. page S18

4. References.. page S19
1. Methods

1.1 Local-scale impacts and Legacy penalty

We performed tests based on simulations listed in Table 1 to check the robustness of our method (described in Section 2.1).

a) We checked the consistency of year 2010 Hg global deposition with the global biogeochemical cycle (GBC) model and the chemical transport model (CTM). Global Hg deposition was 5974.8 Mg with the GBC vs. 5943.7 Mg with the CTM (BASE simulations). Given the use of different emissions inventories (see Section 2.2), this difference of 31.1 Mg (< 1%) was assumed to be negligible.

b) We then assessed whether the contribution to global deposition of year 2010 primary anthropogenic emissions, given by the difference in deposition between BASE and PRE-2010 LEGACY simulations (see Table 1), was similar. With the GBC model, assuming that primary anthropogenic emissions were completely eliminated as of 2010 led to a global Hg deposition of 4344.7 Mg. Year 2010 anthropogenic emissions therefore contributed 27.3% of total Hg deposition. A similar assumption with the CTM led to a global Hg deposition of 4110.7 Mg and a contribution to deposition of year 2010 anthropogenic emissions of 30.8%. These results are in very good agreement with those reported by Amos et al.¹, who showed that primary anthropogenic emissions account for ca. 27% of present-day atmospheric deposition.

c) Finally, we compared FUTURE simulations. With the GBC model, we assumed a Current Policy (CP) scenario² from 2009 onward (i.e., a 3.02 Mg yr⁻¹ increase of primary anthropogenic emissions). Similarly, the CTM was run with the 2035 CP gridded emissions inventory developed by Pacyna et al.². We expect global Hg deposition values to be different since emissions during the 2010-2035 period are not taken into account in the CTM. Additionally, the difference is
expected to be equal to the global legacy penalty, \textit{i.e.}, the contribution to year 2035 deposition of 2010-2035 global emissions. We calculated a global legacy penalty (given by the difference in deposition between PRE-2035 and PRE-2010 LEGACY simulations using the GBC model) of 615 Mg (see Table 2). FUTURE simulations with the GBC model and the CTM respectively gave global Hg deposition of 6652.3 Mg and 6011.9 Mg for year 2035, \textit{i.e.}, a difference of 640.4 Mg. Given the 31.1 Mg difference reported in S.I. Section 1.1.a, the effective difference between future GBC and CTM simulations was 609 Mg, \textit{i.e.}, within 1\% of the global legacy penalty.

1.2 Fish contamination

a) Model parameterization

Hg species represented in the lake model are Hg(0), Hg(II), and MeHg. Modeled physico-chemical processes include redox reactions (Hg(0)\leftrightarrowHg(II)), methylation (Hg(II)\rightarrowMeHg), demethylation (MeHg\rightarrowHg(II)), photo-demethylation (MeHg\rightarrowHg(0)), thermocline dispersion, partitioning, diffusion in sediments, settling, burial, and resuspension3,4. Hg(II) and Hg(p) dry deposition to the lake surface were assumed to be 10\% of deposition to the catchment due to different roughness and friction velocities3-5. Hg(0) dry deposition to lake surface was calculated using equations developed by Hendricks3 and based on principles of mass transfer at the air-water interface. Since GEOS-Chem does not provide deposition fluxes for MeHg, we estimated MeHg dry and wet deposition by multiplying a deposition velocity4 by an atmospheric MeHg concentration of 2.00×10^{-12} mg L$^{-1}$, typical for remote regions4,6. The Hg runoff coefficient was set at 0.203,4,6, and we used resuspension and burial velocities of 1.01×10^{-5} and 2.74×10^{-6} m day$^{-1}$, respectively6. The model is based on the characteristics of the lake(s) of interest (\textit{e.g.}, depth, retention time) and its watershed (\textit{e.g.}, surface area). A summary of some characteristics of the 20 lakes within the
study area (see Fig.S2) is presented in Table S1: all these data are from a study initiated by the Maine Department of Environmental Protection in 1993, except the percentage of wetland.

To calculate the percentage of wetland in the catchment of each lake studied, data from the National Wetlands Inventory (NWI, https://www.fws.gov/wetlands/) were superimposed on data from the Watershed Boundary Dataset (WBD, https://nhd.usgs.gov/wbd.html) and the National Hydrography Dataset (NHD, https://nhd.usgs.gov) in ArcGIS. The NWI is a dataset developed by the U.S. Fish and Wildlife Service that currently exists in its second implementation at a resolution of 1:24000. It is a spatial representation of all the wetlands in the U.S. The WBD is produced by the Subcommittee on Spatial Water Data, an intergovernmental data department, and it offers hierarchically nested delineations of watershed boundaries across the U.S. This study made use of “subwatershed” or HU12 data, the most precisely delineated watershed boundaries currently available. The NHD results from a joint effort of EPA and USGS, and among its products is a spatial catalogue of all lakes and ponds in the U.S. Comparing the WBD and NHD, we located the particular subwatersheds that encompassed every lake of interest. In the one case where a lake crossed the border between two subwatersheds, those two subwatersheds were merged and treated as a single watershed. Inspection of the intersection of each sub-watershed of interest with the land use data from the NWI allowed for the calculation within each sub-watershed of the percentage of wetland by area. To calculate this percentage, we divided the area in each catchment classified as wetland by the total catchment area. Results are presented in Table S1.

To estimate values not directly reported by the Maine Department of Environmental Protection but needed as inputs in the model, we multiplied known values by ratios of values from Hendricks. Table S2 lists the relevant parameters from Hendricks and whether or not they exist in the 1993 study. Table S3 lists all of the ratios used based on the values in Table S2. We multiplied known
values for our 20 lakes by these ratios to estimate unknown values. For example, to estimate the thermocline area of a given lake, we multiplied the ratio of thermocline area over lake surface area from Hendricks3 by the lake surface area reported in the 1993 study7.

The model is also driven by Hg deposition fluxes from GEOS-Chem. Results from the present-day (2009-2015) BASE simulation performed with GEOS-Chem (see Table 1) were evaluated against available observations. The mean (± standard deviation) modeled Hg(0) atmospheric concentration in Maine tribal areas is 1.34 ± 0.03 ng m\(^{-3}\). Although slightly lower than the Northern Hemisphere atmospheric background of \(~1.50\) ng m\(^{-3}\) reported by Sprovieri et al.8, this result compares well with the 2009-2015 mean Hg(0) concentration of \(1.32 \pm 0.23\) ng m\(^{-3}\) at Kejimkujik National Park, Nova Scotia (Canada). This rural site is located \(~400\) km further south-east and is part of the US/Canadian Atmospheric Mercury Network9 (AMNet, \texttt{http://nadp.slh.wisc.edu/AMNet/}). The 2009-2015 mean modeled wet deposition flux is \(5.2 \pm 0.23\) µg m\(^{-2}\) yr\(^{-1}\), compared with a mean measured flux of \(6.4 \pm 1.1\) µg m\(^{-2}\) yr\(^{-1}\) reported at Caribou (Maine, USA) as part of the Mercury Deposition Network10 (\texttt{http://nadp.slh.wisc.edu/mdn/}). This site is located \(~20\) km north of Presque Isle (see Fig.S2). Finally, the mean modeled dry deposition is \(13.2 \pm 0.4\) µg m\(^{-2}\) yr\(^{-1}\), while the estimated flux is \(~15\) µg m\(^{-2}\) yr\(^{-1}\) at Presque Isle11.

\textbf{b) Model calibration}

The model as implemented by Perlinger et al.4 was calibrated for a lake in Michigan’s Upper Peninsula. To better calibrate the model for lakes in Maine, we performed a factorial experiment on the methylation and demethylation rates. We sampled five points evenly spaced within a distribution of values found in the literature and ran the model for every possible combination of the five points over the two parameters, which is equivalent to \(5^2\) combinations. Then a least squares regression was performed in order to find the set of parameters which yielded the minimum
distance between the modeled and measured MeHg values across two different (but overlapping) randomly selected sets of ten (out of twenty) lakes. The square of the difference between the measured whole (rather than fillet12) piscivore MeHg concentrations and the modeled median piscivore MeHg concentrations from each combination of parameters used in the factorial experiment were summed over the ten lakes. The smallest sum among these 5^2 sums was chosen as representing the optimal set of parameters (methylation and demethylation rates) and implemented in the model. We used a demethylation rate of 1 day-1 similarly to Perlinger et al.4, and a methylation rate of 0.20 day-1, within the range of values found in the literature3,6.

c) Model evaluation

The model was evaluated against data collected in 1993 by the Maine Department of Environmental Protection7. To our knowledge, there is no comparably comprehensive survey performed more recently in Maine tribal areas. For consistency with measured fish Hg concentrations, we used year 1993 Hg deposition values13 for model evaluation. Fig.S1 shows the total Hg concentration in predatory (PF) and mixed feeders’ fishes (MF) within the study area (20 lakes). While the model tends to underestimate concentrations in MF, the difference between modeled and observed median concentrations in PF (main species of interest here) is < 1 %. Additionally, summertime Hg and MeHg concentrations in the epilimnion and hypolimnion fall within the range of values measured in nearby lakes14,15.

Table S1: Summary of some characteristics of the modeled lakes.

Lake	Surface area (m²)	Mean depth (m)	Drainage area (m²)	Volume (m³)	Runoff factor	Flushing rate	Outflow rate (m³/day)	Retention time (day)	Wetland (%)	Sediment Hg concentration (ppm)	Hg concentration in PW (ppm)*	Hg concentration in OW (ppm)*
Brackett	2.29x10⁶	4.6	1.90x10⁷	9.51x10⁶	0.56	1.1	2.9x10⁶	332	5.3	0.002	0.41 (n = 10)	0.04 (n = 10)
Bradbury	1.60x10⁶	6.1	4.30x10⁷	8.90x10⁵	0.51	24.5	6.0x10⁴	15	9.7	0.21	0.34 (n = 1)	0.24 (n = 5)
Chandler	1.68x10⁶	4.3	1.20x10⁸	5.74x10⁶	0.52	1.1	1.7x10⁴	332	10.9	0.12	0.23 (n = 3)	0.35 (n = 5)
Chase	4.00x10⁴	5.5	1.10x10⁸	2.03x10⁵	0.54	28.6	1.6x10⁴	13	3.7	0.20	0.13 (n = 2)	0.07 (n = 5)
Cross	1.03x10⁷	6.1	4.25x10⁸	6.45x10⁷	0.50	3.3	5.8x10⁴	111	30.3	0.12	0.47 (n = 5)	0.21 (n = 5)
Eagle	2.26x10⁷	13.4	1.97x10⁹	3.08x10⁸	0.50	3.2	2.7x10⁶	114	11.2	0.09	0.27 (n = 5)	0.30 (n = 5)
Grand	5.83x10⁷	11.3	5.85x10⁸	6.86x10⁸	0.56	0.5	9.4x10⁴	730	5.8	0.20	0.47 (n = 2)	0.23 (n = 4)
Keene	3.60x10⁵	4.9	4.00x10⁸	6.50x10⁵	0.61	1.3	2.3x10⁴	281	10.0	0.21	0.38 (n = 2)	0.07 (n = 5)
Lambert	2.18x10⁶	6.1	1.70x10⁷	1.43x10⁷	0.58	0.7	2.7x10⁴	521	16.5	0.31	0.39 (n = 5)	0.28 (n = 5)
Machias	6.20x10⁶	4.0	1.72x10⁸	2.06x10⁷	0.56	4.7	2.6x10⁵	78	17.9	0.12	1.2 (n = 5)	0.75 (n = 5)
Meddybemps	2.72x10⁷	4.3	1.16x10⁸	1.18x10⁸	0.62	0.6	1.9x10⁵	608	19.3	0.18	0.21 (n = 5)	-
Molunkus	4.36x10⁶	4.6	9.10x10⁷	1.85x10⁷	0.52	2.5	1.3x10⁵	146	13.7	0.22	0.70 (n = 5)	0.21 (n = 5)
Monson	3.70x10⁵	2.4	3.80x10⁸	7.30x10⁵	0.51	26.3	5.3x10⁴	14	16.0	0.13	0.34 (n = 1)	0.28 (n = 1)
Orange	9.30x10⁵	3.7	5.00x10⁸	2.63x10⁷	0.66	12.6	9.1x10⁴	29	19.2	0.22	0.52 (n = 5)	0.22 (n = 5)
Pennington	2.10x10⁶	0.9	4.00x10⁸	1.07x10⁵	0.51	17.5	5.1x10⁵	21	18.4	0.09	0.16 (n = 2)	-
Pleasant	1.40x10⁵	5.2	8.00x10⁸	7.35x10⁶	0.62	0.7	1.4x10⁴	521	19.3	0.11	0.42 (n = 5)	0.13 (n = 5)
Portland	1.66x10⁵	5.2	4.30x10⁸	8.60x10⁵	0.51	25.5	6.0x10⁴	14	25.8	0.20	0.45 (n = 5)	0.06 (n = 5)
Sly Brook	7.00x10⁴	2.7	7.00x10⁹	1.38x10⁵	0.50	25.2	9.5x10⁴	14	7.7	0.17	0.94 (n = 5)	0.11 (n = 5)
Togue	1.30x10⁵	13.1	9.00x10⁶	1.56x10⁷	0.56	0.3	1.3x10⁴	1217	4.1	0.19	0.39 (n = 5)	0.17 (n = 5)
Umcolucus	2.90x10⁶	3.0	3.80x10⁸	8.12x10⁶	0.61	2.9	6.5x10⁴	126	20.9	Rocky bottom	0.51 (n = 5)	0.15 (n = 5)

*PW and OW refer to predatory and omnivore (mixed-feeder) whole fish, respectively. In parenthesis, n is the number of fish in the composite sample analyzed³.
Table S2: Lake Geometry values from a lake in Michigan’s Upper Peninsula (UP).

Parameter	Lake in Michigan’s UP	Available value in Maine?	Calculation
Lake surface area	9 730 000 m²	Yes	
Thermocline area	8 360 000 m²	No	\(\text{thermocline area} \div \text{lake surf. area}\) Michigan \(\times\) \([\text{lake surf. area}]\) Maine
Sediment area	8 360 000 m²	No	\(\text{sediment area} \div \text{lake surf. area}\) Michigan \(\times\) \([\text{lake surf. area}]\) Maine
Total volume	142 483 600 m³	Yes	
Epilimnion volume	84 600 000 m³	No	\(\text{epilimnion volume} \div \text{total volume}\) Michigan \(\times\) \([\text{total volume}]\) Maine
Hypolimnion volume	57 800 000 m³	No	\(\text{hypolimnion volume} \div \text{total volume}\) Michigan \(\times\) \([\text{total volume}]\) Maine
Sediment volume	83 600 m³	No	\(\text{sediment volume} \div \text{total volume}\) Michigan \(\times\) \([\text{total volume}]\) Maine
Table S3: Ratios of lake characteristics from a lake in Michigan’s Upper Peninsula (UP).

Ratio	Lake in Michigan’s UP³
Thermocline area/lake surface area	0.859
Epilimnion volume/total volume	0.594
Hypolimnion volume/total volume	0.406
Sediment volume/total volume	0.00059
Figure S1: Lake Hg model evaluation. Total Hg concentration (mg kg\(^{-1}\)) in predatory (PF) and mixed feeders’ fishes (MF) within the study area (20 lakes). Measured and modeled values are in green and blue, respectively. The straight red line represents the 0.3 mg kg\(^{-1}\) US EPA threshold\(^{16}\) and the dotted red line a safe level target of 0.018 mg kg\(^{-1}\) for a desired subsistence fish consumption of 300-500 grams per day\(^{4,17,18}\). Boxes, inside lines, and whiskers indicate interquartile range, median, 5\(^{th}\) and 95\(^{th}\) percentiles, respectively.
Figure S2: (a) Location of Maine, the easternmost state in the contiguous United States of America. (b) The Aroostook Band of Micmacs is based in Presque Isle, the Houlton Band of Maliseets in Houlton, and the Passamaquoddy Tribe in both Indian Township and Pleasant Point. Together with the Penobscot Nation established further south-west, they represent approximately 8000 Native people in Maine, known collectively as the Wabanaki (“People of the Dawn”). Blue dots: lakes of interest. This Figure was made using QGIS (version 2.18).
Figure S3: (a) Global primary anthropogenic emissions of Hg to the atmosphere (in Mg). New Policy (NP, solid line) and Maximum Feasible Reduction (MFR, dotted line) scenarios are implemented in 2020. (b) Global atmospheric Hg deposition to ecosystems (in Mg). Return of Hg deposition to its year 2010 level (chosen for illustrative purposes) is achieved in 2038 or 2027 in case of NP (solid line) or MFR (dotted line) implementation, respectively.
Figure S4: Hg emissions (kg yr⁻¹) from known industrial sources in Maine according to the 2011 National Emissions Inventory (NEI) prepared by the United States Environmental Protection Agency (U.S. EPA)¹⁹. Annual emissions in Maine are at the low end of state-level emissions in the United States (see Fig.S4). The red star shows the location of extensive Hg releases to the Penobscot River (1967-2000) by a chlor-alkali production facility, HoltraChem²⁰-²³. Due to the presence of a known industrial contamination, lakes in Penobscot Nation tribal lands were excluded from this study. This Figure was made using QGIS (version 2.18).
Figure S5: Year 2011 U.S. state-level Hg emissions (kg) by known industrial sources according to the 2011 National Emissions Inventory (NEI) prepared by the United States Environmental Protection Agency (U.S. EPA)¹⁹. Emissions in Maine (ME, in red) and neighboring New England states (CT, MA, NH, RI, VT, blue diamonds) are at the low end of state-level emissions in the United States. AK: Alaska, AL: Alabama, AR: Arkansas, AZ: Arizona, CA: California, CO: Colorado, CT: Connecticut, DC: District of Columbia, DE: Delaware, FL: Florida, GA: Georgia, HI: Hawaii, IA: Iowa, ID: Idaho, IL: Illinois, IN: Indiana, KS: Kansas, KY: Kentucky, LA: Louisiana, MA: Massachusetts, MD: Maryland, ME: Maine, MI: Michigan, MN: Minnesota, MO: Missouri, MS: Mississippi, MT: Montana, NC: North Carolina, ND: North Dakota, NE: Nebraska, NH: New Hampshire, NJ: New Jersey, NM: New Mexico, NV: Nevada, NY: New York, OH: Ohio, OK: Oklahoma, OR: Oregon, PA: Pennsylvania, PR: Puerto Rico, RI: Rhode Island, SC: South Carolina, SD: South Dakota, TN: Tennessee, TX: Texas, UT: Utah, VA: Virginia, VT: Vermont, WA: Washington, WI: Wisconsin, WV: West Virginia, WY: Wyoming.
Figure S6: Origin of air masses influencing Maine tribal areas. Gridded back trajectory frequencies using an orthogonal map projection, with hexagonal binning. The tiles represent the number of incidences. 2007-2016 hourly back trajectories were computed using the HYSPLIT model²⁴ and the figure was made using the R package openair²⁵. Maine tribal areas are mainly influenced by air masses originating from Canada and the Arctic (Hudson Bay), i.e., the Northern Hemisphere atmospheric background, rather than U.S. emissions. The black dot shows the location of Presque Isle (ME, USA).
Figure S7: Total Hg concentration (mg kg\(^{-1}\)) in predatory fish fillets collected in lakes within the study area. Data are from a study initiated by the Maine Department of Environmental Protection in 1993\(^7\). 16 out of 20 lakes presented concentrations above the 0.3 mg kg\(^{-1}\) US EPA threshold\(^{16}\). This Figure was made using QGIS (version 2.18).
Figure S8: Median response of Eastern Maine (USA) lacustrine predatory fish contamination to delayed implementation of a Maximum Feasible Reduction (MFR) scenario. Black dashed line: year 2010 MeHg concentration. Red dashed line: U.S. EPA reference dose for MeHg (0.3 mg kg$^{-1}$).
References

(1) Amos, H. M.; Jacob, D. J.; Streets, D. G.; Sunderland, E. M. Legacy Impacts of All-Time Anthropogenic Emissions on the Global Mercury Cycle. *Global Biogeochem. Cycles* **2013**, *27*(2), 410–421.

(2) Pacyna, J. M.; Travnikov, O.; De Simone, F.; Hedgcock, I. M.; Sundseth, K.; Pacyna, E. G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K. Current and Future Levels of Mercury Atmospheric Pollution on a Global Scale. *Atmos. Chem. Phys.* **2016**, *16*(19), 12495–12511.

(3) Hendricks, A.N. A Model to Predict Concentrations and Uncertainty for Mercury Species in Lakes. Open Access Master’s Thesis, Michigan Technological University: http://digitalcommons.mtu.edu/etdr/585, 2018.

(4) Perlinger, J. A.; R. Urban, N.; Giang, A.; E. Selin, N.; N. Hendricks, A.; Zhang, H.; Kumar, A.; Wu, S.; S. Gagnon, V.; S. Gorman, H.; et al. Responses of Deposition and Bioaccumulation in the Great Lakes Region to Policy and Other Large-Scale Drivers of Mercury Emissions. *Environmental Science: Processes & Impacts* **2018**, *20*(1), 195–209.

(5) Kwan, J.; Taylor, P. A. On Gas Fluxes from Small Lakes and Ponds. *Boundary-Layer Meteorol* **1994**, *68*(4), 339–356.

(6) Knightes, C. D. Development and Test Application of a Screening-Level Mercury Fate Model and Tool for Evaluating Wildlife Exposure Risk for Surface Waters with Mercury-Contaminated Sediments (SERAFM). *Environmental Modelling & Software* **2008**, *23*(4), 495–510.

(7) US EPA. Region 1 Fish Tissue Contamination QA Plan | Regional Environmental Monitoring and Assessment Program | US EPA https://archive.epa.gov/emap/archive-emap/web/html/reg1_rpt.html (accessed May 8, 2018).

(8) Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’Amore, F.; Carbone, F.; Cinnirella, S.; Mannarino, V.; Landis, M.; Ebinghaus, R.; Weigelt, A.; et al. Atmospheric Mercury Concentrations Observed at Ground-Based Monitoring Sites Globally Distributed in the Framework of the GMOS Network. *Atmos. Chem. Phys.* **2016**, *16*(18), 11915–11935.

(9) Gay, D. A.; Schmeltz, D.; Prestbo, E.; Olson, M.; Sharac, T.; Tordon, R. The Atmospheric Mercury Network: Measurement and Initial Examination of an Ongoing Atmospheric Mercury Record across North America. *Atmos. Chem. Phys.* **2013**, *13*(22), 11339–11349.

(10) Prestbo, E. M.; Gay, D. A. Wet Deposition of Mercury in the U.S. and Canada, 1996–2005: Results and Analysis of the NADP Mercury Deposition Network (MDN). *Atmospheric Environment* **2009**, *43*(27), 4223–4233.

(11) Zhang, L.; Wu, Z.; Cheng, I.; Wright, L. P.; Olson, M. L.; Gay, D. A.; Risch, M. R.; Brooks, S.; Castro, M. S.; Conley, G. D.; et al. The Estimated Six-Year Mercury Dry Deposition Across North America. *Environ. Sci. Technol.* **2016**, *50*(23), 12864–12873.

(12) Hammerschmidt, C. R.; Fitzgerald, W. F. Bioaccumulation and Trophic Transfer of Methylmercury in Long Island Sound. *Arch Environ Contam Toxicol* **2006**, *51*(3), 416–424.

(13) Muntean, M.; Janssens-Maenhout, G.; Song, S.; Selin, N. E.; Olivier, J. G. J.; Guizzardi, D.; Maas, R.; Dentener, F. Trend Analysis from 1970 to 2008 and Model Evaluation of EDGARv4 Global Gridded Anthropogenic Mercury Emissions. *Science of The Total Environment* **2014**, *494–495*, 337–350.
(14) Dennis, I. F.; Clair, T. A.; Driscoll, C. T.; Kamman, N.; Chalmers, A.; Shanley, J.; Norton, S. A.; Kahl, S. Distribution Patterns of Mercury in Lakes and Rivers of Northeastern North America. *Ecotoxicology* **2005**, *14* (1–2), 113–123.

(15) Driscoll, C. T.; Han, Y.-J.; Chen, C. Y.; Evers, D. C.; Lambert, K. F.; Holsen, T. M.; Kamman, N. C.; Munson, R. K. Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States. *BioScience* **2007**, *57* (1), 17–28.

(16) US EPA. Water Quality Criteria: Notice of Availability of Water Quality Criterion for the Protection of Human Health: Methylmercury

https://www.federalregister.gov/documents/2001/01/08/01-217/water-quality-criteria-notice-of-availability-of-water-quality-criterion-for-the-protection-of-human (accessed May 8, 2018).

(17) Gagnon, V.; Gorman, H.; Norman, E. Power and Politics in Research Design and Practice: Opening up Space for Social Equity in Interdisciplinary, Multi-Jurisdictional and Community-Based Research. *Gateways: International Journal of Community Research and Engagement* **2017**, *10* (0), 164–184.

(18) US EPA. Wabanaki Traditional Cultural Lifeways Exposure Scenario

https://www.epa.gov/tribal/wabanaki-traditional-cultural-lifeways-exposure-scenario (accessed May 8, 2018).

(19) US EPA. 2011 National Emissions Inventory (NEI) Data https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data (accessed May 8, 2018).

(20) Santschi, P. H.; Yeager, K. M.; Schwehr, K. A.; Schindler, K. J. Estimates of Recovery of the Penobscot River and Estuarine System from Mercury Contamination in the 1960’s. *Science of The Total Environment* **2017**, *596–597*, 351–359.

(21) Yeager, K. M.; Schwehr, K. A.; Louchouarn, P.; Feagin, R. A.; Schindler, K. J.; Santschi, P. H. Mercury Inputs and Redistribution in the Penobscot River and Estuary, Maine. *Sci Total Environ* **2017**, *622–623*, 172–183.

(22) Sunderland, E. M.; Amirbahman, A.; Burgess, N. M.; Dalziel, J.; Harding, G.; Jones, S. H.; Kamai, E.; Karagas, M. R.; Shi, X.; Chen, C. Y. Mercury Sources and Fate in the Gulf of Maine. *Environ Res* **2012**, *119*, 27–41.

(23) Evers, D. C.; Han, Y.-J.; Driscoll, C. T.; Kamman, N. C.; Goodale, M. W.; Lambert, K. F.; Holsen, T. M.; Chen, C. Y.; Clair, T. A.; Butler, T. Biological Mercury Hotspots in the Northeastern United States and Southeastern Canada. *BioScience* **2007**, *57* (1), 29–43.

(24) Stein, A. F.; Draxler, R. R.; Rolph, G. D.; Stunder, B. J. B.; Cohen, M. D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. *Bull. Amer. Meteor. Soc.* **2015**, *96* (12), 2059–2077.

(25) Carslaw, D.; Ropkins, K. Openair - An R Package for Air Quality Data Analysis. *Environ Modell Softw* **2012**, *27–28*, 52–61.