Confined states in multiple quantum well structures of Si$_n$Ge$_n$ nanowire superlattices

N. Akman,1 E. Durgun,2,3 S. Cahangirov,3 and S. Ciraci2,3

1Department of Physics, Mersin University, Mersin 33343, Turkey
2Department of Physics, Bilkent University, Ankara 06800, Turkey
3UNAM–Institute for Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey

(Dated: December 16, 2010)

Mechanical properties, atomic and energy band structures of bare and hydrogen passivated Si$_n$Ge$_n$ nanowire superlattices have been investigated by using first-principles pseudopotential plane wave method. Undoped, tetrahedral Si and Ge nanowire segments join pseudomorphically and can form superlattice with atomically sharp interface. We found that Si$_n$ nanowires are stiffer than Ge$_n$ nanowires. Hydrogen passivation makes these nanowires and Si$_n$Ge$_n$ nanowire superlattice even more stiff. Upon heterostructure formation, superlattice electronic states form subbands in momentum space. Band lineups of Si and Ge zones result in multiple quantum wells, where specific states at the band edges and in band continua are confined. The electronic structure of the nanowire superlattice depends on the length and cross section geometry of constituent Si and Ge segments. Since bare Si and Ge nanowires are metallic and the band gaps of hydrogenated ones varies with the diameter, Si$_n$Ge$_n$ superlattices offer numerous alternatives for multiple quantum well devices with their leads made from the constituent metallic nanowires.

PACS numbers: 68.65.Cd, 73.20.At, 61.46.-w, 73.21.Fg

I. INTRODUCTION

Planar superlattices have been fabricated either through periodic junction of alternating semiconductor layers with different band gaps or through repeating compositional modulation. Electrons in parallel layers show two-dimensional (2D) free electron-like behavior and have quantization different from those 3D bulk semiconductors. Minibands in the momentum space in the direction perpendicular to the layers and periodically varying band gap in the direct space have attributed unusual electronic functions for novel devices. These devices are field effect transistors, photodetectors, light emitting diodes (LEDs) and quantum cascade lasers etc.

Recently, new growth techniques have enabled also the synthesis of one-dimensional (1D) nanowire superlattices (NWSLs). NWSLs from group III-V and group IV elements have been synthesized successfully. InAs/InP superlattices with atomically perfect interfaces and with periods of several nanometers could be realized using techniques, such as molecular beam epitaxy and nanocluster catalyst. Furthermore, compositionally modulated superlattices of GaAs/GaP have been synthesized by laser-assisted catalytic growth technique again with atomically perfect interfaces and with the component layers ranging from 2 to 21. It is proposed that these NWSL’s can offer potential applications in nanoelectronics such as optical nanobar codes, 1D waveguides and polarized nanoscale LEDs. Longitudinal Si/Si-Ge NWSL with nanowire diameter ranging from 50 to 300 nm have been also synthesized using laser ablation growth technique. Structural parameters such as nanowire diameter, Ge concentration and the modulation period in the Si/Si-Ge superlattices can be controlled easily by adjusting the reaction conditions. Technological applications such as LEDs and thermoelectric devices have been suggested. In addition to the longitudinal (axial) nanowire superlattices, coaxial core-shell and core-multishell nanowire heterostructures have attracted interest recently. Crystalline Si/Ge and Ge/Si core-shell structures have been experimentally synthesized by Lauhon et al. Most of works involved in 1D superlattices especially concern the experimental synthesis and characterization of coaxial nanowire heterostructures.

Theoretically, only a few works investigated core-shell and longitudinal NWSL’s. Kagimura et al. reported an ab initio study of the electronic properties of Si and Ge nanowires, Si/Ge heterostructures with one surface dangling bond state per unit cell. They concluded that surface dangling bond level observed in the band gap of nanowires and nanowire heterostructures can be used as reference level to estimate band lineups in these systems. Using one-band effective mass theory, a criterion has been developed for the occurrence of longitudinal barrier height. It has been argued that radial confinement reduces the actual barrier height in modulated nanowire superlattices. Zypman et al. used the Hubbard model to get the energy spectrum of one-dimensional systems and applied their results to various model systems like nanowire tunnelling diodes and Si/Ge superlattice nanowires to interpret the scanning tunnelling spectroscopy measurements. Earlier formation of multiple quantum well structure and resulting confined states on hydrogenated or radially deformed carbon nanotubes have been also reported.

In this paper, we have investigated mechanical properties, atomic and electronic structures of bare and hydrogenated Si$_n$Ge$_n$ nanowire superlattices using first-principles plane wave method. NWSL’s are constructed from alternating Si and Ge nanowire segments (zones), both have same orientation and similar atomic structure. These segments are joined pseudomorphically and formed...
a sharp interface. We found that even a small diameter hydrogenated Si$_n$Ge$_m$ NWSL’s form multiple quantum well structures where conduction and valence band electrons are confined. Our study indicates that the band lineup and resulting electronic structure depend on the length and cross section geometry of the constituent Si$_n$ and Ge$_m$ nanowires.

II. METHOD

We have performed first-principles plane wave calculations10,11 within DFT12 using ultra-soft pseudopotentials.11,12 The exchange correlation potential has been approximated by generalized gradient approximation GGA using PW91 functional. For partial occupancies we use the Methfessel-Paxton smearing method.13 The adopted smearing width is 0.1 eV for the atomic relaxation and 0.02 for the accurate band structure analysis and density of state calculations. All structures have been treated within a supercell geometry using the periodic boundary conditions. The lattice parameters of the tetragonal supercell are a_{sc}, b_{sc} and c_{sc}. We took $a_{sc} = b_{sc} = 27$ Å for NWSL having the largest diameter (~ 1.8 nm), but $a_{sc} = b_{sc} = 22$ Å for one having the smallest diameter (~ 1.2 nm) considered in this paper. These values allowed minimum distance ranging from ~ 11 Å to 14 Å between two atoms in different adjacent cells, so that their coupling is hindered significantly. We took c_{sc} equal to the lattice constant c of the nanowires and NWSLs under consideration. In the self-consistent potential and total energy calculations the Brillouin zone (BZ) is sampled in the k-space within Monkhorst-Pack scheme14 by $(1x1x9)$ mesh points for single unit cell and for example $(1x1x5)$ mesh points for double cells. A plane-wave basis set with kinetic energy up to 250 eV has been used. All atomic positions and lattice constant $c_{sc} = c$ are optimized by using the conjugate gradient method where total energy and atomic forces are minimized. The criterion of convergence for energy is chosen as 10^{-5} eV between two ionic steps, and the maximum force allowed on each atom is 0.05 eV/Å.

III. BARE AND HYDROGENATED NANOWIRES AND NANOWIRE SUPERLATTICES

In this study we considered bare and hydrogen passivated longitudinal Si$_n$Ge$_m$ nanowire superlattices and also bare and hydrogen passivated Si and Ge nanowires as constituent structures. Bare Si and Ge nanowires are oriented along [001] direction of the parent diamond crystal and have normally N atoms in their primitive unit cell with lattice constant c along the nanowire (or z-) axis. We took $N=25$ and $N=57$ as two special prototypes. We designate them as SiNW(n) [GeNW(n)] or shortly Si$_n$ (Ge$_m$) with $n=sN$, s being an integer number. Si$_n$ and Si$_N$ (Ge$_n$ and Ge$_N$) indicates the same nanowire, except that the unit cell of the former one includes s primitive cell in direct space with $1/s$ times reduced BZ in the momentum space. In our simulations bare Si$_n$ (Ge$_n$) nanowires are first cut from the bulk crystal with ideal structural parameters. Subsequently ideal bare nanowires are relaxed to optimize their structure and lattice constant. Si (Ge) atoms near the core of relaxed nanowire has tetrahedral coordination. To obtain H-passivated Si$_n$ or Ge$_m$ nanowires (designated as H-SiNW(n) or H-GeNW(n), shortly as H-Si$_n$ or H-Ge$_m$) the dangling bonds at the surface are saturated by H atoms and whole structure is re-optimized. Our study indicates that the atomic and electronic structure of H-Si$_n$ and H-Ge$_m$ may depend on whether hydrogen passivation and subsequent optimization are achieved on ideal or optimized bare Si$_n$ and Ge$_m$ nanowires. The present sequence of structure optimization mimics the actual growth of hydrogen passivated nanowires.

A Si$_n$Ge$_m$ has $n=sN$ Si atoms at one side and $n=sN$ Ge atoms at the other side of NWSL unit cell. These atoms have tetrahedral coordination as if they are part of a SiGe heterostructure and hence at the interface Si atoms are bonded to Ge atoms pseudomorphically and make atomically flat interface. We note that pseudomorphic growth can sustain for small diameters; but misfit dislocations may be generated at the interface of large diameter (or large N) Si$_n$Ge$_m$ superlattice. Atomic positions and lattice constant are relaxed to obtain optimized structure.
H-Si$_n$Ge$_n$ follow the same sequence of construction as H-Si$_n$ or H-Ge$_n$. Optimized lattice constants of bare Si$_n$Ge$_n$ nanowire superlattice for n=25, 50 and 75 are found to have c=10.9 Å, 21.8 Å and 32.7 Å, respectively. Upon hydrogenation these lattice constants change to c=11.2 Å, 22.3 Å and 33.5 Å, respectively. Lattice constants of bare and hydrogenated Si$_n$Ge$_n$, n=57 and 114 are almost identical and are c=11.1 Å and 22.2 Å, respectively. Fig. 1 shows the atomic structure of bare and hydrogen passivated Si$_n$Ge$_n$ for n=75 and 114. These NWSLs are reminiscent of Si$_n$Ge$_n$ (001) planar superlattice which were fabricated by molecular beam epitaxy by growing first n Si (001) plane and then n Ge (001) plane, and eventually by repeating this Si$_n$Ge$_n$ (001) unit periodically. While the Si$_n$Ge$_n$ (001) superlattice has 2D periodicity in (001) layers, NWSLs under study here have finite cross section and hence 2D periodicity is absent. Electrons are bound to NWSL in radial (lateral) direction, but propagate as 1D Bloch states along the superlattice axis (in longitudinal direction).

Interatomic distance distribution of Si$_{75}$Ge$_{75}$ and H-Si$_{75}$Ge$_{75}$ NWSLs are compared with parent Si and Ge nanowires in Fig. 1. In the same figure we also show the interatomic distance distribution of bare and hydrogenated Si$_{114}$Ge$_{114}$ NWSL. At the surface, optimized atomic structures of Si$_n$ and Ge$_n$ deviate considerably from the ideal structure of Si$_n$ and Ge$_n$. For example, one can deduce quadrangles of atoms at the surface. Normally, NWSLs consist of hexagonal and pentagonal rings, where one can distinguish bond lengths in different categories. The interatomic distance distribution of Si$_n$Ge$_n$ is reminiscent of the sum of those of Si$_{2n}$ and Ge$_{2n}$, except some changes originated from the interface between Si and Ge segments of supercell. While bulk optimized Si-Si and Ge-Ge bond lengths are d=2.36 Å, and 2.50 Å, respectively, the Si-Ge bond at the interface ranges between 2.35 Å and 2.52 Å for bare Si$_{225}$Ge$_{225}$ (between 2.37 Å and 2.49 Å for H-Si$_{225}$Ge$_{225}$). Nevertheless, the distribution exhibit several peaks corresponding to the deviations from the bulk geometry at the surface. As the cross section or N increases the effect of the surface decreases and the distribution of interatomic distances becomes more bulk-like.

IV. MECHANICAL PROPERTIES

The stability and elasto-mechanical properties of Si$_n$Ge$_n$ and H-Si$_n$Ge$_n$ NWSLs are crucial for their possible use in nanoelectronics. In the present study the maximum diameter of nanowire we treated is \sim 1.8 nm. The diameter of hydrogenated Si$_{25}$Ge$_{25}$ NWSL is even smaller (\sim 1.4 nm). For such small diameter nanowires or NWSL’s, there are ambiguities in determining the area of cross section. Moreover, the surface to volume ratio is rather high and hence makes the cross section nonuniform. In view of these, the calculation of Young’s modulus may not be appropriate. Here we rather considered the force (spring) constants of nanowires and NWSLs under a strain in the harmonic region. To this end we calculated the second derivative of the total energy (per unit cell) with respect to the lattice constant c (i.e., $\kappa=\partial^2E_T/\partial c^2$) or to the strain, $\epsilon=\Delta c/c$ (i.e., $\kappa'=\partial^2E_T/\partial \epsilon^2$). The values calculated for nanowires and NWSLs treated in our paper are given in Table I.

Like bulk crystals, Si$_n$ nanowires are stiffer than Ge$_n$ nanowires. This implies that the lattice mismatch between Si and Ge nanowires in NWSL is accommodated mainly by the Ge zone. For both nanowires and NWSL, κ increases with increasing cross section. For example κ of Si$_{25}$ is almost the half of κ of Si$_{75}$. Note that κ(Si$_{25}$) \simeq κ(Si$_{75}$)/2. As for, κ of Si$_{25}$Ge$_{25}$ NWSL calculated from first principles is 2.18 eV/Å. This value can be estimated in terms of two springs connected in series, namely κ^{-1}(Si$_{25}$Ge$_{25}$) \simeq κ^{-1}(Si$_{25}$)+κ^{-1}(Ge$_{25}$) to be κ(Si$_{25}$Ge$_{25}$) \simeq 2.08 eV/Å. We, therefore, conclude that as long as the geometry and size of the cross section remained to be similar, classical Hook’s law continues to be approximately valid even for nanostructures. Upon hydrogenation both nanowires as well as NWSLs studied here become stiffer. The spring constant of Si$_{25}$Ge$_{25}$ is twice that of Si$_{114}$Ge$_{114}$, because the latter NWSL has twice the length of the former. We also calculated the ratio of the strain of the Ge-zone to that of Si-zone of

![Interatomic Distance Distribution](image)

FIG. 2: (Color online) Interatomic distance distribution of optimized bare and hydrogenated Si$_{2n}$, Ge$_{2n}$ and Si$_n$Ge$_n$ for n=75 up to fourth nearest neighbor. The similar distribution for Si$_{114}$Ge$_{114}$ and H-Si$_{114}$Ge$_{114}$ are also shown. The Si-H (Ge-H) bond lengths being in the range of (\sim 1.5 Å) are not shown.
TABLE I: Equilibrium values of lattice parameter c are given in units of Å. Force constant κ (as defined in the text), in units of eV/Å, is calculated by using both VASP result and Hook’s law. Percentage difference in between force constant values calculated from VASP result and Hook’s law is given within parenthesis in order to check whether classical Hook’s law is still valid in nanoscale. Also force constant κ' (as defined in the text) is presented in units of eV.

structure	c_0	κ	Hook’s Law	κ'
Si$_{25}$	5.32	5.68	161	
Ge$_{25}$	5.57	3.28	102	
Si$_{25}$Ge$_{25}$	10.90	2.18	2.08 (5)	259
Si$_{50}$Ge$_{50}$	21.75	0.92	1.04 (12)	437
Si$_{75}$Ge$_{75}$	32.70	0.62	0.69 (10)	663
Si$_{57}$	5.43	11.22	327	
Ge$_{57}$	5.65	7.49	239	
Si$_{57}$Ge$_{57}$	11.07	4.24	4.49 (6)	522
Si$_{114}$Ge$_{114}$	22.15	2.10	2.25 (7)	1035
H-Si$_{25}$	5.45	8.56	254	
H-Ge$_{25}$	5.73	5.98	196	
H-Si$_{25}$Ge$_{25}$	11.17	3.48	3.52 (1)	436
H-Si$_{50}$Ge$_{50}$	22.30	1.70	1.76 (3)	845
H-Si$_{75}$Ge$_{75}$	33.50	1.14	1.17 (3)	1279
H-Si$_{57}$	5.39	13.57	394	
H-Ge$_{57}$	5.68	11.09	358	
H-Si$_{57}$Ge$_{57}$	11.05	6.13	6.10 (1)	755
H-Si$_{114}$Ge$_{114}$	22.08	3.33	3.05 (8)	1626

Si$_{75}$Ge$_{75}$ under tensile stress, i.e. ϵ (Ge)/ϵ (Si) to be \sim 2.5. This ratio is reduced to \sim 1.25 for Si$_{114}$Ge$_{114}$. In compliance with the κ values in Table I, this result indicates that in a Si$_n$Ge$_n$ NWSL Ge zone elongates more than Si-zone. Using empirical potential, Menon et al. was able to calculate the Young’s modulus and bending stiffness of tetrahedral and cage-like Si nanowire of \sim 4 nm diameter, and found values comparable with bulk values.

V. ELECTRONIC PROPERTIES

The band structures of optimized bare and hydrogenated Si$_{2n}$, Ge$_{2n}$ nanowires and Si$_n$Ge$_n$ nanowire superlattices are given in Fig. 3 and Fig. 4 for n=75 and 114, respectively. In the same figures the band structures of bare and hydrogenated Si$_{2n}$ and Ge$_{2n}$ constituent nanowires are presented for the sake of comparison. Si$_N$ (N=25 and 57) and hence any Si$_{2n}$ ($n=sN$) nanowires are metallic due to the surface dangling bonds. Similarly Ge$_N$ (N=25 and 57) and hence any Ge$_{2n}$ are metallic. Upon passivation of dangling bonds, these metallic nanowires become semiconductor. For example, H-Si$_{150}$ and H-Ge$_{150}$ nanowires have indirect band gaps, E_g=1.1 eV and 0.7 eV, respectively. Normally, the band gap of a H-Si$_n$ is inversely proportional to its diameter, if the corresponding ideal nanowire cut from the bulk crystal were directly passivated with H before the structural optimization. Also the band gap is affected by the cross section geometry for small N. For large N, the variation of E_g with N is more uniform.

Like Si$_{150}$ and Ge$_{150}$, Si$_{75}$Ge$_{75}$ is metallic. The ideal equilibrium ballistic conductance of Si$_{150}$, Ge$_{150}$ nanowires and Si$_{75}$Ge$_{75}$ NWSL is revealed to be $6e^2/h$, $10e^2/h$ and $8e^2/h$, respectively. Since H-Si$_{150}$ and H-Ge$_{150}$ are semiconductors, H-Si$_{75}$Ge$_{75}$ NWSL is also semiconductor: Its band gap is 0.7 eV and close to the band gap of H-Ge$_{150}$. H-Si$_{114}$Ge$_{114}$ has a direct band gap.
FIG. 4: (Color online) Energy band structures of optimized bare and hydrogenated Si$_{2n}$, Ge$_{2n}$, and Si$_{114}$Ge$_{114}$ nanowire superlattices for $n=114$. Zero of energy is taken at the Fermi level. Dashed and dotted lines are obtained by folding of Si$_{57}$ (also H-Si$_{57}$) and Ge$_{57}$ (also H-Ge$_{57}$) bands.

FIG. 5: (Color online) Energy band structure of bare and hydrogenated Si$_n$Ge$_n$ nanowire superlattices for $n=25, 50$ and 57.

VI. CONFINED STATES

The results discussed in the previous section reveals that Si$_n$ and Ge$_n$ nanowires making a Si/Ge heterojunction in the supercell have band gaps of different width. Upon a pseudomorphic junction the bands and hence band gaps corresponding to Si and Ge zones are aligned. Combination of two features, namely Si and Ge zones having different band gaps and band-lineup result in band discontinuities and hence band-offsets. The conduction and valence band edges of different zones (Si-zone or Ge-zone) in the nanowire superlattice will have different energies. Under these circumstances, the diagram of the conduction band edge along the axis of NWSL will
display a multiple quantum well structure with the periodicity of c_{sc} like a Kronig-Penny model. Electrons in the well region of a zone should decay in the adjacent zones having higher conduction band edge, since their energy will fall into the band gap of this barrier zone. As a result, the states of these confined (or localized) electrons are propagating in the well, but decaying in the barrier. Usually, confined electrons have low group velocity. They may become more localized if the barrier is high and the width of barrier is large. If the confinement (or localization) is complete, the associated band $E_n(k_z)$ becomes flat. Similar arguments are valid for the hole states if the energies of valence band edges of both zones are different.

In the past, the reference energies in determining band offsets of 2D superlattices have been actively studied both experimentally and theoretically. Energy diagram of conduction and valence band edges are then used as effective potential forming a multiple quantum well structure. The states of conduction band electrons and holes of valence band were treated using Effective Mass Theory (EMT). These states are free electron-like 2D bands in the planes and Bloch states forming minibands perpendicular to the planes. The conditions are, however, different in NWSLs. First of all, EMT may not be applicable directly in the present case, in particular for NWSLs with small diameter. Secondly, the reference energy level determined for planar superlattices may not be appropriate. Recently, Kagimura et al. proposed surface dangling bond states as reference level for Si/Ge core-shell superlattices. Under estimation of band gaps by DFT GGA calculation may hinder the accurate determination of band-lineups. Voon and Willatzen draw attention to the lateral confinement of states in NWSL’s. Using one-band EMT and by solving Ben Daniel-Duke equation they found that the effective barrier is lowered due to the coupling between radial and longitudinal confinement. In particular, they predicted, that the effective barrier and hence confinement disappears below a critical radius of ~ 5 nm. In the present study, the maximum radius of NWSL was ~ 0.9 Å which is much lower than the critical radius set for GaAs/AlGaAs NWSLs.

In the present study we examined whether some of states can be longitudinally confined, by performing an extensive analysis of charge densities of superlattice bands calculated by first-principle methods. The formation of periodic quantum well structure is schematically described in Fig. 6. We expect that the values of
band gaps in the H-Si and H-Ge zones in a unit cell of the H-Si$_{75}$Ge$_{75}$ cannot deviate significantly from the values calculated for periodic H-Si$_{25}$ and H-Ge$_{25}$ nanowires (namely, 1.1 eV and 0.7 eV, respectively). When the two zones are connected by an atomically flat interface, H-Ge zone can form a well between adjacent H-Si zones, since the band gap of the former zone is smaller and the energy of conduction band edge is lower relative to that of the latter zone. Upon normal band-lineup, H-Ge$_{75}$ zone acts as a quantum well for both lowest conduction and highest valence band electrons. Band structure of H-Si$_{75}$Ge$_{75}$ with two lowest conduction and two highest valence minibands and their isosurface charge distribution in the superlattice unit cell are shown in Fig 6. The distribution of electronic charge density is confirming the above normal band-lineup. Both conduction band states are confined in the H-Ge$_{75}$ zone, but they have very small weight in the H-Si$_{75}$ zone. Similarly, states corresponding to two highest valence bands are also confined in the H-Ge$_{75}$ zone. It should be noted that owing to the charge transfer between adjacent zone the form of the energy band diagram may change from the simple form given in Fig 1.

In Fig 7 we present similar analysis for H-Si$_{114}$Ge$_{114}$ NWSL. As compared to H-Si$_{75}$Ge$_{75}$, here H-Si and H-Ge zones are $\sim 5 \text{A}$ shorter. However, there are more minibands owing to larger number of Si and Ge atoms. The ways the highest valence band and the lowest conduction band states are confined in different zones suggest a staggered band-lineup. Highest valence band states are confined in the H-Ge$_{75}$ zone; but lowest conduction band states are confined in H-Si$_{75}$ zone. States of 6^{th} and 7^{th} valence band (from the top) are propagating throughout the NWSL in Fig 7. Otherwise, a superlattice of small radius with short unit cell have small number of bands. Then the states in different zones are less likely to match. A state, which cannot find a matching partner is confined to its zone. As a matter of fact, we were able to deduce confined states even in the barrier zone (H-Si) with energies higher than the conduction band edge.

VII. CONCLUSION

Atomic structure of H-Si$_n$ and H-Ge$_n$ nanowires is tetrahedrally coordinated near the center, but at the surface deviates significantly from corresponding bulk crystal. Calculated force constants indicate that Si$_n$ is stiffer than Ge$_n$. Generally nanowires become stiffer after passivation with hydrogen. These two nanowires are 1D semiconductors with their band gap depending on their diameter and also on the geometry of their relaxed cross section. If finite segments of these nanowires are joined pseudomorphically and the resulting heterostructure are repeated periodically along the axis of the wires, one obtains a H-Si$_n$Ge$_n$ superlattice structure. In these longitudinal NWSLs electrons are normally bound to the wire in radial direction, but propagate along their axis. A specific state which propagates in one zone (say H-Si) can decay in the adjacent zone (say H-Ge), when a matching state in the same energy is absent. Such a state is called confined state. Our charge density analysis indicate that Si/Ge NWSL with radius as small as 0.6 nm can have confined states at the band edges and also within the conduction and valence band. Confined states offer interesting device applications. NWSL has an important advantage that the device part and leads have to be revised for small diameter NWSLs. In particular, theories derived from planar superlattices to predict band-lineups and model calculations using EMT have to be revised for small diameter NWSLs.

1. M. T. Bjork, B. H. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, Nano Lett. 2, 87 (2002).
2. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature 415, 617 (2002).
3. Y. Wu, R. Fan, and P. Yang, Nano Lett. 2, 83 (2002).
4. L. J. Lauhon M. S. Gudiksen, D. Wang, and C. M. Lieber, Nature (London) 420, 57 (2002).
5. R. N. Musin, and X-Q. Wang, Phys. Rev. B71, 155318 (2005).
6. R. Kagimura, R. W. Nunes, and H. Chacham, Phys. Rev. Lett. 98, 26801 (2007).
7. L. C. Lew Yan Voon, and M. Willatzen, J. Appl. Phys. 93, 9997 (2003).
8. F. R. Zypman, Phys. Rev. B71, 165313 (2005).
9. O. Gulseren, T. Yildirim and S. Ciraci, Phys. Rev. B68, 115419 (2003); C. Kilic, S. Ciraci, O. Gulseren and T. Yildirim, Phys. Rev. B62, R16345 (2000).
10. M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
11. Numerical computations have been carried out by using VASP software: G. Kresse, J. Hafner, Phys Rev. B 47, R558 (1993); G. Kresse, J. Furthmuller, Phys Rev. B 54,
These calculations have been performed by minimizing the total energy under a preset uniaxial strain in the elastic range. The strain on Ge and Si-zone calculated are determined after full relaxation.

Accordingly, such a state has \(\int_{\text{well}} \Psi^* \Psi \, d\mathbf{r} \gg \int_{\text{barrier}} \Psi^* \Psi \, d\mathbf{r} \). If the confinement is complete, electrons in adjacent levels do not interact. This is known as Mott localization.

We also note that the material parameters of GaAs/AlGaAs relevant for EMT by themselves are different from Si\(_n\)Ge\(_n\) nanowire superlattices studied here.