Positivity of the exterior power of the tangent bundles

Kiwamu Watanabe

Abstract. Let X be a complex smooth projective variety such that the exterior power of the tangent bundle $\bigwedge^r T_X$ is nef for some $1 \leq r < \dim X$. We prove that, up to an étale cover, X is a Fano fiber space over an Abelian variety. This gives generalizations of the structure theorem of varieties with nef tangent bundle by Demailly, Peternell and Schneider [5] and that of varieties with nef $\bigwedge^2 T_X$ by the author [19]. Our result also gives an answer to a question raised by Li, Ou and Yang [14] for varieties with strictly nef $\bigwedge^r T_X$ when $r < \dim X$.

1. Introduction

Positivity for vector bundles such as ampleness and nefness has left its mark on the study of algebraic geometry. Let X be a complex smooth projective variety of dimension n; we focus on the positivity of the tangent bundle T_X, which reflects the global geometry of X. As a generalization of the Hartshorne-Frankel conjecture solved by Mori [16] (see also [17] by Siu and Yau), Campana and Peternell [1] studied the structure of smooth projective varieties with nef tangent bundle, paying special attention to 3-folds. In higher dimensional case, Demailly, Peternell and Schneider obtained the following structure theorem:

Theorem 1.1 ([5 Main Theorem]). If T_X is nef, then there exists a finite étale cover $X' \to X$ such that X' is a locally trivial fibration $\varphi : X' \to \text{Alb}(X')$ whose fibers are a Fano variety.

Some years ago, Cao and Höring extended Theorem 1.1 to a more general setting:

Theorem 1.2 ([3 Theorem 1.3]). If the anticanonical divisor $-K_X$ is nef, then there exists a finite étale cover $X' \to X$ such that $X' \cong Y \times Z$ where K_Y is trivial and Z is a locally trivial fibration $\varphi : Z \to \text{Alb}(Z)$ with a rationally connected fiber.

In general a fiber of φ in Theorem 1.2 is not a Fano variety, because there exists a lot of rationally connected projective varieties with nef anticanonical divisor which is not Fano (for instance, consider weak Fano varieties). The main result of this paper is a generalization of Theorem 1.2.

2010 Mathematics Subject Classification. 14J40, 14J45, 14M22.

The author is partially supported by JSPS KAKENHI Grant Number 21K03170 and the Sumitomo Foundation Grant Number 190170.
Theorem 1.3. Let X be a smooth projective variety of dimension n. Assume that $\Lambda^r T_X$ is nef for some $1 \leq r < n$. Then if we take a suitable finite étale cover $\tilde{X} \to X$, there exists a locally trivial fibration $\varphi : \tilde{X} \to A$ such that the fiber F is a Fano variety and A is an Abelian variety. Moreover, if $\dim A \geq r - 1$, then T_X is nef; otherwise $\Lambda^{r-\dim A} T_{\tilde{X}/A}$ is nef.

This theorem reduces the study of smooth projective varieties with nef $\Lambda^r T_X$ ($r < \dim X$) to that of Fano varieties. For $r = 1$, Theorem 1.3 is nothing but Theorem 1.1; for $r = 2$ this was obtained in [19, Theorem 1.5]. The proof of [19, Theorem 1.5] involves the deformation theory of rational curves and some complicated arguments. On the other hand, in this short paper, we give a really simple proof of Theorem 1.3. Our proof relies on two key ingredients; one is Theorem 1.1; the other is a recent result of Gachet [4]. In [4, Theorem 1.2], she proved that for a smooth projective variety X of dimension n if $\Lambda^{n-1} T_X$ is strictly nef, then X is a Fano variety. Her proof works if we replace the assumption that $\Lambda^{n-1} T_X$ is strictly nef by the assumption that X is rationally connected and $\Lambda^{n-1} T_X$ is nef. Moreover by using a result by Laytimi and Nahm [11], we see that if $\Lambda^r T_X$ is nef for some $r < n$, then so is $\Lambda^{n-1} T_X$. Thus we have the following:

Proposition 1.4. Let X be a smooth projective variety of dimension n. Assume that X is rationally connected and $\Lambda^r T_X$ is nef for some $1 \leq r < n$. Then X is a Fano variety.

Remark that, combining with [14, Theorem 1.2], Proposition 1.4 gives an affirmative answer to the following question by Li, Ou and Yang when $r < \dim X$:

Question 1.5 ([14, Remark 5.3], [15, Conjecture 4.9], [4, Question in Section 1]). Assume that $\Lambda^r T_X$ is strictly nef for some $1 \leq r \leq n$. Then is X a Fano variety?

Finally, Theorem 1.3 follows from Theorem 1.2, Proposition 1.4 and standard arguments.

2. Preliminaries

2.1. Notation and Conventions. We will use the basic notation and definitions in [8], [9], [12], [13] and [10]. Along this paper, we work over the complex number field.

- A curve means a projective variety of dimension one.
- Let X be a smooth projective variety. A line bundle L on X is said to be strictly nef (resp. nef) if the intersection number $L \cdot C$ is positive (resp. non-negative) for any curve $C \subset X$. In general, we say that a vector bundle E is strictly nef (resp. nef) if the tautological line bundle $\mathcal{O}_{P(E)}(1)$ is strictly nef (resp. nef) on $P(E)$.
- For a non-constant morphism $f : \mathbb{P}^1 \to X$ from a projective line \mathbb{P}^1 to a smooth projective variety X, f is said to be free if $f^* T_X$ is nef.

Throughout this section, we always assume the following:

Assumption 2.1. Assume X is a smooth projective variety of dimension n such that the exterior power $\Lambda^r T_X$ is nef for some $1 \leq r < n$.

Proposition 2.2. The following hold:
(i) The anticanonical divisor $-K_X$ is nef.
(ii) If the Kodaira dimension $\kappa(X) = 0$, then there exists a finite étale cover $f : \tilde{X} \to X$ such that \tilde{X} is an Abelian variety.

Proof. The first part follows from $\det (\bigwedge^r T_X) \cong O_X \left(\binom{n-1}{r-1} (-K_X) \right)$. The second part follows from [21, Theorem 1.1] (see also [2, Proposition 1.2]).

Lemma 2.3 ([2, Lemma 1.3], [20, Lemma 2.9]). Let $f : \mathbb{P}^1 \to X$ be a non-free rational curve, that is, $f^* T_X$ is not nef. Then we have $-K_X \cdot f^*(\mathbb{P}^1) \geq n - r + 1$.

Proof. Assume that the splitting type of $f^* T_X$ is (a_1, a_2, \ldots, a_n), that is, $f^* T_X \cong \bigoplus_{i=1}^n O_{\mathbb{P}^1}(a_i)$ ($a_1 \geq a_2 \geq \ldots \geq a_n$, $a_1 \geq 2$). The r-th exterior power $f^* T_X \cong \bigoplus_{1 \leq i_1 < i_2 < \ldots < i_r \leq n} O_{\mathbb{P}^1}(a_{i_1} + a_{i_2} + \ldots + a_{i_r})$ is nef; this yields $a_{n-r+1} + a_{n-r+2} + \ldots + a_n \geq 0$. Since f is not free, a_n is negative. These imply that $(r-1)a_{n-r+1} \geq a_{n-r+1} + a_{n-r+2} + \ldots + a_n - a_n \geq 1$. Thus a_{n-r+1} is positive. As a consequence, we have the inequality $-K_X \cdot f^*(\mathbb{P}^1) = a_1 + (a_2 + \ldots + a_{n-r}) + (a_{n-r+1} + \ldots + a_n) \geq 2 + (n-r-1) + 0 = n-r+1$.

Proposition 2.4 ([18, Proposition 3.3]). Let $\varphi : X \to A$ be a smooth morphism onto an Abelian variety with irreducible fibers. Then the following hold:

(i) If $\dim A \geq r-1$, then T_X is nef.
(ii) If $\dim A < r-1$, then $\bigwedge^r \varphi^* T_A$ is nef.

Proof. We have an exact sequence

$$(1) \quad 0 \to T_{X/A} \to T_X \to \varphi^* T_A \to 0.$$

By [8, Chapter II, Exercise 5.16 (d)], we have a filtration of $\bigwedge^r T_X$:

$$\bigwedge^r T_X = E^0 \supset E^1 \supset E^2 \supset \cdots \supset E^{r+1} = 0$$

such that $E^p/E^{p+1} \cong \left(\bigwedge^r T_{X/A} \right) \otimes \left(\bigwedge^{r-p} \varphi^* T_A \right)$ for any p. In particular, we have the following exact sequences:

$$\begin{align*}
(2) & \quad 0 \to E^1 \to \bigwedge^r T_X \to \varphi^* T_A \to 0 \\
(3) & \quad 0 \to E^2 \to E^1 \to T_{X/A} \otimes \left(\bigwedge^{r-1} \varphi^* T_A \right) \to 0
\end{align*}$$
To prove (i), assume \(\dim A \geq r - 1 \). Remark that \(T_A \cong \mathcal{O}^{\dim A}_A \). We claim that \(E^1 \) is nef. If \(\dim A \geq r \), then it follows from the sequence (2) and [11 Proposition 1.2 (8)] that \(E^1 \) is nef. If \(\dim A = r - 1 \), then the sequence (2) yields \(E^1 \cong \bigwedge^r T_X \); this implies that \(E^1 \) is nef. By the sequence (3), \(T_{X/A} \otimes \left(\bigwedge^{r-1} \varphi^*T_A \right) \) is nef. Since \(\bigwedge^{r-1} \varphi^*T_A \) is trivial bundle, we conclude that the relative tangent bundle \(T_{X/A} \) is nef. Finally our assertion follows from the sequence (1).

To prove (ii), assume \(\dim A < r - 1 \). Since \(\bigwedge^p \varphi^*T_A = 0 \) for any \(p > \dim A \), we have

\[
\bigwedge^{r} T_X = E^0 = E^1 = \ldots = E^{r - \dim A}.
\]

Thus we have a surjection \(\bigwedge^{r} T_X = E^{r - \dim A} \to \bigwedge^{r - \dim A} T_{X/A} \); this implies that \(\bigwedge^{r - \dim A} T_{X/A} \) is nef.

\[\square\]

3. Proof of the Main Theorem

The following is due to Gachet:

Proposition 3.1 ([4, Theorem 1.2]). Let \(X \) be a smooth projective variety of dimension \(n \). Assume that \(X \) is rationally connected and \(\bigwedge^{n-1} T_X \) is nef. Then \(-K_X \) is ample, that is, \(X \) is a Fano variety.

Proof. This follows from the same argument as in [4 Lemma 3.1, Lemma 3.3]. Actually the proof works if we replace the assumption that \(\bigwedge^{n-1} T_X \) is strictly nef by the assumption that \(X \) is rationally connected and \(\bigwedge^{n-1} T_X \) is nef; this yields that \(-K_X \) is nef and big. Then we may conclude that \(-K_X \) is ample by the same argument as in [4 Lemma 3.3] and Lemma 2.3.

Remark 3.2. Although Proposition 3.1 is not written explicitly in [4], Gachet introduced this statement holds at Algebraic Geometry seminar of the University of Tokyo (see Acknowledgements below).

Theorem 3.3 ([11 Theorem 3.3], [6]). Let \(X \) be a smooth projective variety of dimension \(n \). For a vector bundle \(E \) of rank \(r \), assume that its exterior power \(\bigwedge^m E \) is nef for some positive integer \(m \). Then the vector bundle \(\bigwedge^{m+k} E \) is also nef for any \(0 \leq k \leq n - m \).

Remark 3.4. In general, if a vector bundle \(E \) is strictly nef, it is not necessarily that its exterior power \(\bigwedge^r E \) is strictly nef. For instance, see [7 Section 10 in Chapter I] and [15 Example 2.1]). This means that an analogue of Theorem 3.3 does not hold if we replace nefness of \(\bigwedge^m E \) by strictly nefness.

Proof of Proposition 1.4. Assume that \(X \) is rationally connected and \(\bigwedge^r T_X \) is nef for some \(1 \leq r < n \). Then Theorem 3.3 implies that \(\bigwedge^{n-1} T_X \) is nef. Applying Proposition 2.3 we see that \(X \) is a Fano variety.

Proof of Theorem 1.3. By Proposition 2.2 (i), \(-K_X \) is nef; according to Theorem 1.2 this turns out that there exists a finite étale cover \(X' \to X \) such that \(X' \cong Y \times Z \) where \(K_Y \) is trivial and \(Z \) is a locally trivial fibration \(Z \to \text{Alb}(Z) \) with a rationally connected fiber. Since we have \(X' \to X \) is étale, \(\bigwedge^r T_{X'} \) is also nef; then by Theorem 3.3 \(\bigwedge^{n-1} T_{X'} \) is also nef. Let \(p_1 : X' \to Y \) (resp. \(p_2 : X' \to Z \)
be the first projection (resp. the second projection). We denote by \(\ell \) the dimension of \(Y \). Since we have
\[
\bigwedge^{n-1} T_{X'} \cong \left[p_1^* \left(\bigwedge^\ell T_Y \right) \otimes p_2^* \left(\bigwedge^{n-\ell} T_Z \right) \right] \oplus \left[p_1^* \left(\bigwedge^{\ell-1} T_Y \right) \otimes p_2^* \left(\bigwedge^{n-\ell} T_Z \right) \right],
\]
the direct summand \(p_1^* \left(\bigwedge^{\ell-1} T_Y \right) \otimes p_2^* \left(\bigwedge^{n-\ell} T_Z \right) \) is nef; restricting this bundle to a fiber of the projection \(p_2 \), we see that \(\bigwedge^{\ell-1} T_Y \) is also nef provided that \(\ell > 0 \). If \(\ell = 1 \), then \(Y \) is an elliptic curve. Furthermore if \(\ell > 1 \), then Proposition 2.2 (ii) implies that \(Y \) is a finite étale quotient of an Abelian variety \(\tilde{Y} \). Hence, in any case, there exists a finite étale cover \(\tilde{X} \to X' \) such that \(\tilde{X} \) is a locally trivial fibration \(\varphi : \tilde{X} \to A \) onto an Abelian variety \(A \) with a rationally connected fiber. Then our assertion follows from Proposition 2.4 and Proposition 1.4.

Acknowledgements

On August the 1st 2022, Cécile Gachet gave a talk on the result of [4] in Algebraic Geometry seminar of the University of Tokyo; the author knew her excellent result [4, Theorem 1.2] at the time. The author would like to thank Cécile Gachet for sending him her preprint [4] and answering his questions. The author would like to thank Kento Fujita for sending him his private note [6], which states that for a vector bundle \(E \) of rank \(r \) if \(\bigwedge^\ell E \) is nef, then so is \(\bigwedge^m E \) for any \(\ell \leq m \leq r \). On the other hand, while preparing this paper, the author noticed the result of [6] was contained in [11].

References

[1] Frédéric Campana and Thomas Peternell. Projective manifolds whose tangent bundles are numerically effective. Math. Ann., 289(1):169–187, 1991.
[2] Frédéric Campana and Thomas Peternell. On the second exterior power of tangent bundles of threefolds. Compositio Math., 83(3):329–346, 1992.
[3] Junyan Cao and Andreas Höring. A decomposition theorem for projective manifolds with nef anticanonical bundle. J. Algebraic Geom., 28(3):567–597, 2019.
[4] Gachet Cécile. Positivity of higher exterior powers of the tangent bundle. Preprint arXiv:2207.10854, 2022.
[5] Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom., 3(2):295–345, 1994.
[6] Kento Fujita. Remarks on ampleness of wedge vector bundles. private note.
[7] Robin Hartshorne. Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970. Notes written in collaboration with C. Musili.
[8] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[9] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.
[10] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[11] F. Laytimi and W. Nahm. A vanishing theorem. Nagoya Math. J., 180:35–43, 2005.
[12] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.
[13] Robert Lazarsfeld. *Positivity in algebraic geometry. II*, volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals.

[14] Duo Li, Wenhao Ou, and Xiaokui Yang. On projective varieties with strictly nef tangent bundles. *J. Math. Pures Appl. (9)*, 128:140–151, 2019.

[15] Jie Liu, Wenhao Ou, and Xiaokui Yang. Strictly nef vector bundles and characterizations of \mathbb{P}^n. *Complex Manifolds*, 8(1):148–159, 2021.

[16] Shigefumi Mori. Projective manifolds with ample tangent bundles. *Ann. of Math. (2)*, 110(3):593–606, 1979.

[17] Yum Tong Siu and Shing Tung Yau. Compact Kähler manifolds of positive bisectional curvature. *Invent. Math.*, 59(2):189–204, 1980.

[18] Kiwamu Watanabe. Fano manifolds of coindex three admitting nef tangent bundle. *Geom. Dedicata*, 210:165–178, 2021.

[19] Kiwamu Watanabe. Positivity of the second exterior power of the tangent bundles. *Adv. Math.*, 385:Paper No. 107757, 27, 2021.

[20] Kazunori Yasutake. On the second exterior power of tangent bundles of Fano fourfolds with picard number $\rho_x \geq 2$. Preprint arXiv:1212.0685, 2012.

[21] Kazunori Yasutake. On the second and third exterior power of tangent bundles of Fano manifolds with birational contractions. Preprint arXiv:1403.5304, 2014.