A fisheries observer’s model as a tool for sustainable management of the marine trawl fishing in Cameroon

Dr. Meke Soung Pierre Nolasque

DOI: https://doi.org/10.22271/fish.2022.v10.i5a.2727

Abstract
Since, the mid fifties with the opening of the industrial trawl fishery in Cameroon, data collection system is based on landings and vessel captains’ statements and logbooks, difficult to use for stock assessment purpose and thus proper management. Various stocks assessments surveys conducted, show an overexploitation of the coastal resource and the decrease of the resource base (Meke, 2015). Besides, the country is threatened by a self-ban of shrimp’s exports to EU countries since 2006 and yellow card due to INN fishing issues in 2021. This paper examines and suggest a fisheries monitoring model of the trawl fishing industry. Findings of the study indicate that boarding observers on vessels at sea will close the data gap necessary for effective fisheries management. The study recommends that Cameroon management authorities adopt the model.

Keywords: Fisheries observers, fisheries management, trawl fishery, data gap

1. Introduction
Cameroon with almost 26 million inhabitants in 2019, presents a costal length of 402 Km where occur intense fishing activities (industrial and artisanal). The fishery is endowed with a diversity of species, where operate various engine and actors; - in the industrial sector operate both shrimpers and fish trawlers; while for the semi-industrial fishing, purse seine with more than hundred (100) wooden or plank canoes are encountered; in the maritime artisanal sector with twenty four thousand six hundred thirty five (24 635) fishermen using seven thousand three hundred thirty five (7335) canoes fish with gill nets, surface, and bottom and cast nets., (Meke, 2020). In 2012, the fisheries contribution to real GDP dropped sharply from 1.2% to 0.37 (74.2 billions) in 2021, due mainly to self-suspension of shrimp products to EU countries (Meke, 2020), though these exports are oriented today in other markets such as Malaysia.

Eight species of the Cameroon continental shelf contribute to 80% of the main demersal landings dominated by the sciaenid community of Longhurst. The fish species belong to the following families: Ariidae, Cynoglossidae, Polynemidae, and Sciaenidae. Almost 81% of catches are made at shallow waters less than 20 meters with 98.2% of species either from swampy/muddy or sandy bottoms (Meke S.P.N., 2011). Landings catches statistics has been decreasing sharply as shown by Njock, (1990) from 10 000 tons to less than 3200 t for almost the same fishing effort. (Meke S.P.N., 2005) found similar figures of the catch composition analyzed from landings data with the following percentages: croakers (45%); Arios sp (15%) Pentaneanuus quinquarius (16%) Sphyraena sp (17%) Trichurus sp (2%). In 2004, the working group of the Fishery committee for the Eastern central Atlantic held in Togo (third session of the scientific sub-committee), conducted a stock assessment. A variety of methods were used including the analysis of long-term trends in fishery data (landings, effort, catch per unit of effort (CPUE); fishery-independent surveys. The group came up with the following results: there was overexploitation of Penaeus notialis, the main export product, thus, the need to reduce the current fishing effort; for some main fishes in Cameroon, such as Pseudotolithus spp; Galeoides decadactylus. Cynoglossus spp., there was uncertainty in the assessment and the main recommendation was to avoid any increase in the fishing effort until a new stock assessment is performed (FAO, 2005). The other stocks assessments surveys carried out, using the oceanographic vessel Fridtjoff Nansen, since 1982 and from 2004 to 2007, show an overexploitation of the costal resource.
However, the exploitation of the abundant deep sea demersal resources such as Sparids (*Dentex* sp.), Ariommatidae (*Ariomma. sp.*) not included on actual landings statistics [9], constitute a great opportunity for Cameroon to increase fisheries production by the industry. Since the mid-fifties when started the industrial fishing, mesh size regulation and licensing are the sole management technique. The data collection system is based on vessels captains’ statements, logbooks and landings data of nominal catches in common fishing names, from commercial vessels at Douala port, and very recently at Kribi or Tiko. These data are usually registered as such by the fisheries agents for the annual report (table 1) when actually many other missing data would have been collected by qualified observers. These include by catches and discards; length frequencies of main commercial species; fishing zones and related depths useful for monitoring fishing operations, stock assessment and management purpose.

Table 1: Trends of catch and effort data in the Cameroon trawl Fisher 2010-2020

Season	FAO English name	Total	Poisson, Kg	Codend	Total, Poisson, Kg	
2010	Barfish (poisson – saumon commun)	25571/6	3103	723	27891/4	
2011	Pelagic (poisson – saumon commun)	24692	31120/0	34	314/0	
2012	Total, Poisson, Kg	24879/6	34	31120/0	34	314/0
2013	Total, Poisson, Kg	3890/4	31120/0	34	314/0	
2014	Total, Poisson, Kg	73170/0	31120/0	34	314/0	
2015	Total, Poisson, Kg	142900/0	31120/0	34	314/0	
2016	Total, Poisson, Kg	28355/0	31120/0	34	314/0	
2017	Total, Poisson, Kg	4479	31120/0	34	314/0	
2018	Total, Poisson, Kg	442900/0	31120/0	34	314/0	
2019	Total, Poisson, Kg	9305/0	31120/0	34	314/0	
2020	Total, Poisson, Kg	32945/4	31120/0	34	314/0	

Source: Compiled by the author from The Littoral Region Delegation of Livestock, Fisheries and Animal Industries annual reports, from 2010 to 2020.
The number of vessels has been an increasing while the biological rest though provided in the regulation has not yet been implemented. Economic objectives and associated regulation such as buy-back programme, tax regulation, restriction on capital or fishing effort in the trawl fishery necessary for the fisheries management have never been considered. This situation is to compromise the long term exploitation and sustainability of fish resources. Using a bioeconomic model of the Cameroon trawl fishery, findings of the study indicated that higher profit may be achieved at Maximum Economic Yield (MEY) with an effort level of forty (40) vessels, (Meke, 2015) [10]. Thus, the overall objective of this study is to contribute to the sustainable management of maritime fish resources in Cameroon. Specifically, the aim of this paper is to: - Assess the gap of relevant data in the official report of authorities in charge of fisheries management; present and suggest an observer model as a management tool for the trawl fishery that can be implemented.

2. Problem statement and objective of the study
Since the mid-fifties when started the industrial fishing, mesh size regulation and licensing are the management measures. The data collection system is based on vessels captains’ statements, logbooks and monitoring of landings data of nominal catches in common fishing names, from commercial vessels at Douala, and very recently at Tiko or Kribi ports. These data are usually registered as such by the fisheries agents in the annual report when actually many other missing data would have been collected by qualified personnel if embarked on vessels. These include by catches and discards; length frequencies of main commercial species; fishing zones and related depths useful for monitoring fishing operations, stock assessment and management purpose. Unfortunately, the 1994 fishery law is obsolete with very weak fine levels for defaulters and yet to take into accounts various international developments in the fisheries sector, such as the FAO, (1995) Code of conduct for responsible fisheries; International plan against UU fishing (2001) as Davies, (2002) [11] puts it. Unfortunately despite, the creation of Monitoring, Control and Surveillance (MCS) of fishing Activities Brigade in 2006, neither a clear monitoring programme nor a fisheries inspectors’ body exist. The MCS Brigade [11] is a sub-department in the Department of Fisheries and Aquaculture in charge of Monitoring, Control and surveillance, following the Decree 2012/152 of 4 may 2012. The fishing effort has been increasing; no closed season has been decided yet. Economic objectives of the fisheries necessary for management have never been considered, which is to compromise the long term exploitation and sustainability of fish resources. Whereas since, with the current coastal length and reduction of fishing grounds due to oil exploitation, the trawl fishery cannot achieve its Maximum Economic Yield (MEY) with more than forty (40) vessels, (Meke, 2015) [10].

3. Materials and Methods
3.1 Material
Fishery observers in charge of monitoring fishing operations at sea on commercial vessels, are eye withnesses of the administration and the country. They are trained biological technicians to collect first-hand data on catch and discards. As data gathered by these observers are of high-quality, it can be used to monitor fisheries, stock assessment, and inform fisheries authorities to decide on management options. Therefore, as professionals, fisheries observers are an essential component for tracking fishing activities and provide critical information necessary for sustainable exploitation fish resources and management, https://www.fisheries.noaa.gov/topic/fishery-observers. Data

1 The brigade is in charge of the followings: -Control and Surveillance of fishing activities; - Control of the respect of fishing regulations; Surveillance of fishing grounds and biological rest periods; -organization and monitoring of the protection of fish resources; control of gears and fishing techniques, commercial size of target species; follow up of landings of fish products from authorized fishing units.
necessary to the model include catch and effort data of the trawl fishery from 2010 to 2021. Information to be collected by fisheries observers are derived from the West African fisheries observers manual, (Dietrich K.S et al., 2011) [12]. Those technicians however have no legislative power for enforcement of fishery regulations a duty performed normally by fisheries inspectors. As Davies, (2002) [11] puts it, many arguments justify fisheries managers to board observers: -the reliability of the information provided by vessel operators, is questionable since there are many reasons for them to give inaccurate information; -catch and effort data including retained or rejected species useful for stock assessment and management are not always properly collected by the crew; -fisheries management objectives are different from business interests.

3.2 Methods
Fisheries observers are an essential component in the Monitoring Control and Surveillance (MCS) system, in terms of regular requirement for the measurement of the trends of the fishing effort characteristics and yield that are useful for fisheries management. The set of data gathered by observers provides a source of information by area, time and species not often covered by research cruise and port sampling. According to FAO, (2009) [13], biological data such as length, age, and catch per unit effort data, collected by observers, are now used regularly in stock assessment studies. Thus, monitoring such data is good sign of management. Several authors including Beverton & Holt (1957), Ricker (1975) and Gulland (1969) demonstrated that data on catch and effort collected from commercial vessels are useful and affordable information to determine abundance index measured as the catch per unit of effort (C.P.U.E). Thus, the number of fishing days is a good proxy of the effort measure [14]. For these reasons, a gap assessment is conducted between the data collected from the official report from fisheries authorities and standard data expected from observers that can contribute to effective fisheries management [12].

Explanation of the model
The model is run for a three years period (full coverage programme, meaning all vessels are monitored by observers) to constitute a data base for the fishery and partial coverage for the remaining fishery life cycle. The standing pillar of the model is the law n° 94/01 of 20th January 1994 to lay down Forest, Fauna and Fisheries regime and its subsequent decrees, orders and by laws. These include Decree 2001/546/PM of July 2001 to modify and complete some provisions of Decree 95/413/PM of 20th June 1995 to lay down some modalities to implement the fisheries regime as well as international laws [2]. A ship-owner applying for a fishing license should sign an honor statement to contribute to sustainable management of fish resources and accept to embark a scientific observers at his charge. Unfortunately such as programme has not been yet implemented per se. In practice, observers embark on board vessel and stay up to the end of the sea trip. They will sojourn only once on the same vessel. The model is using the level of effort that achieve MEY, 38-40 vessels (Meke S.P.N., 2015) [10] with an average gross monthly salary of 75 000 CfaF for the observer based on current payments of sea-men. The profile of observers is a background on natural sciences and biology.

Data collection, processing, analysis and sampling
The approach for data to be collected will be the same as under REBYC/FAO project, which consisted of a list of sheets: - Biological data such as:-fish identification and catch composition of both retained species; discards and by catches; -length frequencies of main commercial species; -coordinates of fishing grounds, depths and species encountered; - duration of trawling and number of trawls per day, number of sea trip; -Economic and financial performance of the vessels (Earnings, Running and Labor cost, financial duties and Investments); -fleet census); - General vessel and trawl characteristics (Length overhaul; Gross Registration Tonnage (GRT); trawl length; Engine Horse power. Data collected will be analyzed using Excel sheet followed by a validation workshop of results with the industry and NGOs or other partners. In case of a partial [1] coverage that can be implemented for the whole span life of the fishery, a gradual reduction from seventy percent (75%) as for the 4th year; fifty percent (50%) the fifth year and twenty five percent (25%) as from the 6th year of the programme, three million six hundred thousand (3600 000 CfaF), the costs will be reduced for the industry. However, all the participants will contribute to bear the running cost while collecting the same data for forty (40) permanent observers boarding randomly. The daily activities include among others: -building a software for data processing; training for the observers (twice a year); shifting observers to vessels; observers equipment; workshop for the presentation of data collected (every 06 months), acquisition of observer working equipments...; Running costs: -Transport fees; -Printing collection sheets and typing; - Insurance costs for the observers; -Medical care; -monitoring disembarking/embarking of observers and communications costs; validation workshop on presentation of observers results to the industry.

2 Article 62 of the United Nations Convention on the Law of the Sea (UNCLOS); the FAO Code of Conduct for Responsible Fisheries (CCRF) - supports the appropriate use of observer programmes to ensure effective monitoring, control and surveillance (MCS); Article 18 of the UN Fish stocks Agreement (UNFSA) and, Annex 1, Article 6, observer programmes are advocated as a suitable means to verify fishery data in sub-regional or regional fishery management organizations; the 2001, international plan of action (IPOA) to prevent, deter and eliminate Illegal, Unreported and Unregulated fishing, Under section 24.4, on Monitoring, Control and Surveillance (MCS), states are encouraged to implement, where appropriate, observer programmes in accordance with relevant national, regional or international standards. Davies, 2002 [11].

3 Lower coverage will bear less cost, both to fishery authorities and the fishing industry in the management of an observer programme, while observers are on board. Davies, S.L.; Reynolds, J.E. (ed.) FAO Fisheries Technical Paper. No. 414. Rome, FAO. 2002. 116p.
Table 2: Costs estimates of a full and partial coverage hypothetical observer programme

Activity/Year	01	02	03	04	05
Number of vessels	40	40	40	40	40
Shrimpers (SH)	06	06	06	06	06
Fish trawlers (FT)	34	34	34	24	14
Number of fishing outings FT (3/month)	1440	1440	1440	1440	1440
Duration of hauls/day and sea trip					
Number of Observers on FT	68	68	68	48	28
Number of observers on ST	12	12	12	12	12
Observers salaries	72 000 000	72 000 000	72 000 000	54 000 000	36 000 000
Insurances and medical care (5%) of the monthly salary	3600 000	3600 000	3600 000	2700 000	1800 000
Running costs of the programme (10%)	7200 000	7200 000	7200 000	5400 000	3600 000

Note: take, 1US dollar= 500 cfaF. As from the fourth year (partial coverage), 75% of vessels are monitored, but including all the shrimpers. Full coverage means observers embarked on the whole fleet for a particular period.

4. Results and Discussion

FAO, (1997) defines effective fisheries management as “The integrated process of information gathering, analysis, planning, consultation, decision-making, allocation of resources and formulation and implementation, with enforcement as necessary, of regulations or rules which govern fisheries activities in order to ensure the continued productivity of the resources and the accomplishment of other fisheries objectives. As depicted in figure 2, information gathering is key to achieve fisheries management. Thus any fishery where such a process is not operating is far from achieving such a goal, especially where observer are lacking. Cameroon fisheries is an exemple, since the 1950s, no observer programme has been put in place, a part from data collected by the vessel captains, and reported as such during landings from their logbooks. Under these conditions, decision makers have no other opportunity to follow or monitor what is going on at sea. Since captain vessels have no reasons to collect other information, apart from retained species quantities for the market, it can be seen that there are critical loopholes on fisheries data that cannot be used either for stock assessment or guidance to management.

In table 1, are presented the trends of catch and effort data of the Cameroon trawl fishery and critical issues that need to be adressed such as fish species identification; fishing effort…In the case of fish identification, many fish species are lacking in the sciandis group, such as Pseudotolithus typus. The groups identified as fritures and divers are a mix of unidentifed species by the industry and registered as such. Species like Pentanemus quinquarius and Pieroscion peli are lacking in the official statistics making them of limited use for stock assessment purpose. With regard to fishing effort usually specified as the number of vessels, it is important to make a difference between shrimpers and fish trawlers due to the mesh size at the codend which has an impact of the level of bycatches and discards. Besides, it is possible to better report the daily time allocated for trawling based on the fishermen logbooks, but unfortunately, these data that allow estimates of effective fishing effort are missing. Thus the need of personal and capacity building on data collection and fish identification. Moreover, in the three main categories of fisheries management services identified as suggested in Wallis and Flaaten (2000) and Arnason, Hannesson and Schrank (2000) cited by Ragnar A, (2007) [15], the: Research component (surveys, data analysis, and stock assessment) is mainly under the Ministry of Scientific research and Innovation (MINRESI), but not preventing fisheries authorities to perform any research; - the management services involved in adjusting management settings within an existing management system; recommending amendments or additions to the existing management system and administering the management system (monitoring fishing licenses and catch returns) are under the fisheries authorities including the enforcement services component, which involve

![Fig 2 : Diagrammatic representation of the functions and responsibilities of a fisheries management authority in relation to fishing, and the inter-relationships between the functions. Source : Cochrane, K.L. (ed.), (2002)](http://www.fisheriesjournal.com)
surveillance of compliance with fisheries law, both at sea or on land (checking of catch, by-catch, licenses, fishing gears), prosecution of non-compliant with fisheries laws. Unfortunately, the fishery main law [4], is obsolete and doesn’t include recent requirements on fisheries transparency and the current subdepartment in charge both of industrial and artisanal fisheries is yet to address issues related to daily monitoring of fisheries data. In table 3, are listed some of data relevant both for fish stock assessment and management to be collected by fisheries observers at relatively low costs. It can be noted on a set of almost twenty four (24) type of relevant data, that only ten (10) are monitored by fisheries authorities. Recent developments in the fisheries sector, including yellow card by the Europ union against IUU fishing combined with self suspension of fish exports show that, fisheries authorities have only to adopt drastic relevant measures either on standalone or under FAO ongoing projects, FISH4ACP or Ports state measures agreement (PSMA). In terms of benefits or advantages, on a yearly basis, the industry apart from license payment and other taxes will contribute at around seventy two million (72 000 000 CfaF) per annum for three years during a full coverage period and half of this amount at the fifth year under partial coverage that can be easily performed every year.

Table 3: Data gap between official reports and expected from fisheries observers

Data to be collected by observers	Availability in official reports	Observations
1/Biological data		
-Fish identification (specie)	x	
-fish catch composition	x	
-Retained species in (Kg)	NA	
-By catches in (Kg)	NA	
-Discards	NA	
-Length frequencies of main species in cm	NA	
-Mammals (Sea turtles/whales)	NA	
Fishing effort parameters		
-Number of shrimpers	x	
-Number of trawlers	x	
-Duration of trawling per sea trip	NA	
-Coordinates of fishing grounds per haul	NA	Available in captain logbook
-Fishing depths and species	NA	In logbooks
-number of sea trips	x	
2 Economical and financial performances		
-Quantity of fuel and oil per sea trip	NA	
-Value of fuel and oil per sea trip	NA	
-Fish price /Kg in CfaF	x	
-Value of fish landings	x	
-Monthly salaries of the personnel	NA	
-Cost of other inputs (plastic bags; ice)	NA	
-Quantity exported	x	
3-Vessel and trawl characteristics		
-Length overall (LoA)	x	
-Cross Registration Tonnage (GRT)	x	
-Engine power (Hp)/Kwh	x	
-Trawl length/ width	NA	
Source: gap assessment table from the author. NA stands for not available		

As presented in table 2, for the remaining life span of the fishery, a contribution of three million (3600 000 CfaF) can allow to continue a light data collection while contributing to tracking industrial fishing operations on a yearly basis. This model shows that monitoring fisheries activities with such an instrument can satisfy several management needs: data collection of vessel operations; tracking catch, fishing effort and grounds; vessel positions; monitoring of other environmental factors such as climate, mammals, birds… and contribute to stock assessment and management. Such a tool is also interesting in many aspects and according to Davies (2002) [10], observer programmes offer advantages in terms of: -job opportunities especially for young people;-strengthening capacities for both skilled and unskilled people through vocational training (young engineers graduated from Fisheries colleges and those from Foumban vocational veterinary and zootechnial school can be recruited); - providing baseline information for compliance control and scientific monitoring of a fishery; -not relying heavily on high technological hardware or skills; - interest to donor organizations with compatible objectives; -reasonable cost; and relatively short start-up periods compared to scientific cruises on board research vessels. Moreover, these programmes are flexible in relation to their size, since being large or small will certainly allow its expansion once their success is evaluated.

Conclusion and Recommendation

Since the 1950s, the Cameroon fisheries management has been relying on catch and effort data from captain vessels statements registered in their logbooks. Such data unfortunately are likely to be of limited use either for stock assessment or management purpose. Thus, this study was conducted to suggest a simple fisheries observer’s model to implement in the industrial fishing moving from a three years full coverage, to a decreasing partial coverage up to 25% for the remaining life span of the fishery. Findings of the study indicate that there are more advantages in setting up such a model and benefits from valuable data useful both for research and management purpose. These data can be collected from commercial vessels at cheapest costs compared to a research vessel and close the current data from fisheries authorities. The main recommendation is that Cameroon fisheries authorities commit themselves in upgrading the MCS system with such a tool that will contribute to effective fisheries management.

Acknowledgement

I am indebted to the National Oceanic and Atmospheric Administration (NOAA) that allowed my training as fisheries observer and funding my attendance to the 6th International Fisheries observers and monitoring conference, Portland, Maine USA in 2009 under African Partnership Station (APS). All these improved upon my understanding of fisheries management tools and write this paper. Let me also thank three very committed persons that I met with during this process, Augustin Vogel, Teresa Turk and Kim Dietrich.

References

1. Meke SPN, ET Tabet N. Enhancing SMEs Organization in Small Scale Fishing Communities as a Tool for a Better Contribution to Cameroon’s Economy, Sch J Econ Bus Manag. 2020;7:386-99. ISSN 2348-8875 (Print) | ISSN 2348-5302 : https://asapublishers.com/sjebm/

2. Meke SPN. Country report: a synthesis of Cameroon fisheries issues. Guinea Current large Marine Ecosystem
(GCLME), GEF/ UNDP/UNIDO/UNEP, Accra, Ghana; c2011. p. 39.
3. Njock JC. Coastal demersal resources of Cameroon: Biology and Exploitation of main ichthyologic species. Thesis for the grade of Doctor es Sciences in Oceanology. University of Aix-Marseille; c1990. p. 2.
4. Meke SPN. Validation of the results from GCLME and other Assessment surveys: Cameroon country report, Accra, Ghana; c2005.
5. FAO. Fisheries Report of the third session of the scientific Sub-Committee of the Fishery Committee for the Eastern Central Atlantic. Report No. 750, Regional office for Africa, Accra; c2004.
6. Jens-Otto Krakstad, et al., Survey of the pelagic and demersal resources of the Eastern Gulf of Guinea (Nigeria, Cameroon and Sao Tome and Principe), Institute of Marine Research Bergen; c2004. p.106.
7. Jens-Otto Krakstad, et al., Survey of the pelagic and demersal resources of the Eastern Gulf of Guinea (Nigeria, Cameroon and Sao Tome and Principe, Gabon), Institute of Marine Research Bergen; c2005. p.106.
8. Jens-Otto Krakstad, et al., Survey of the pelagic and demersal resources of the Eastern Gulf of Guinea (Nigeria, Cameroon and Sao Tome and Principe, Gabon, Congo), Institute of Marine Research Bergen; c2006. p.106.
9. Meke SPN, Njifondjou O. Economic and Financial performance of the Cameroon industrial fishing fleet, paper presented during REBYC/FAO workshop, Douala; 2007, 2008 Dec 18-19, 10.
10. Meke SPN. The sustainable exploitation of the marine fish resources in Cameroon: A bioeconomic analysis of the trawl fishery. In Lambert Academics Publishing (LAP). 2015:978-3-330-07932-8.
11. Davies SL, Reynolds JE. (ed.), Guidelines for developing an at-sea fishery observer programme. FAO Fisheries Technical Paper. No. 414. Rome, FAO; c2002. p.116.
12. Dietrich KS, Turk T, Wynne K, Tiwari M. West Africa Regional Scientific Observer Training Manual, version. 2011:1(2):14-32, 362.
13. FAO. Fishing Technology Service, fishing operations. 1. Vessel monitoring systems. FAO Technical Guidelines for Responsible Fisheries. No. 1, Suppl.1. Rome, FAO; c2009. p.58.
14. Gooday P, Galeano D. Fisheries management: a Framework for Assessing Economic Performance, ABARE e report 03.7, Prepared for the Fisheries Resources Research fund, Canberra; c2003 Apr.
15. Cochrane KL. (ed.), A fishery manager’s guidebook. Management measures and their application. FAO Fisheries Technical Paper. No. 424. Rome, FAO; c2002. p.231.
16. Arnason R. Fisheries Management. In: Weintraub A, Romero C, Bjørndal T, Epstein R, Miranda J. (eds) Handbook of Operations Research In Natural Resources. International Series In Operations Research amp; Mana, Springer, Boston, MA; c2007. p.99. https://doi.org/10.1007/978-0-387-71815-6_9.
17. King Michael. Fisheries Biology: Assessment and Management, Fishing News Books. Blackwell science Ltd; 1995.