A single-centre, double-blind, randomised, parallel-group, superiority study to evaluate the effectiveness of general anaesthesia and ultrasound-guided transversus thoracis muscle plane block combination in adult cardiac surgery for reducing the surgical stress response: clinical trial protocol

A A Gde Putra Semara Jaya, Aida Rosita Tantri, Aldy Heriwardito, Arif Mansjoer

ABSTRACT

Introduction Adult open-heart surgery is a major surgery that causes surgical stress response and activation of the immune system, contributing further to postoperative complications. Transversus thoracis muscle plane block (TTPB) may potentially benefit in reducing the surgical stress response. This study aims to know the effectiveness of preoperative TTPB in adult open-heart surgery for reducing the surgical stress response.

Methods and analysis This study is a prospective, double-blind, randomised control trial comparing the combination of general anaesthesia and TTPB versus general anaesthesia only in adult open-heart surgery. Forty-two eligible subjects will be randomly assigned to the TTPB group or control group. The primary outcomes are the difference between the two groups in the means of postoperative cortisol and interleukin-6 plasma levels at 24 hours and 48 hours after cardiac intensive care unit admission. The secondary outcomes are the difference between the two groups in the means of total 24-hour postoperative morphine consumption and time of first postoperative patient-controlled analgesia (PCA) dose.

Ethics and dissemination The study protocol and informed consent forms have been reviewed and approved by the Ethics Committee of the Faculty of Medicine Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital. The result will be released to the medical community through presentation and publication in peer-reviewed journals.

Trial registration number NCT04544254.

INTRODUCTION

Background and rationale

Adult open-heart surgery is associated with stress response due to surgical trauma, cardiopulmonary bypass (CPB), blood transfusion, and hypothermia. These conditions trigger immune system activation. Exaggerated immune system activation is correlated with severe postoperative complications. Regional anaesthesia has been known can minimise the surgical injury-related stress response. The surgical injury-related stress response involves hormonal and metabolic changes, with systemic neuroendocrine and haematological systems involved. The neuroendocrine and haematological systems interact bidirectionally. Initially, major surgical trauma causes significant local inflammation, then induces the systemic inflammation reaction, followed by increasing acute-phase protein synthesis, activation of proinflammation mediators, and leading to activation of hypothalamus–pituitary–adrenal
axis and sympathetic nervous system through the neural and humoral pathway. Immune systems also activate the anti-inflammation response, which would modulate the proinflammatory phase, restoring homeostasis.3–11

In the majority of cases, the first 36 hours after trauma is dominated by activation of proinflammatory, followed with moderate immune suppression for the next few days.9,12 Interleukin (IL)-6 is the essential proinflammatory cytokine associated with surgical trauma and the main cytokine responsible for inducing the acute phase response.13–15 IL-6 peak circulating levels are found at about 12–24 hours after surgery and remain elevated for 48–72 hours postoperatively.6,14 Several studies and metaanalysis suggest that surgical trauma, rather than CPB, initiates the secretion of IL-6.10,16–17 Cortisol is prominent markers of hormonal response to surgery. Cortisol is a stress hormone with immunosuppression activity.8,12 Immediately after the surgery, cortisol decreases and followed by an increase at about 24 hours postoperatively.6,10

The addition of regional anaesthesia has the potential benefit in reducing the risk of stress response after open-heart surgery. The mechanism of local anaesthetics in minimising stress response through inhibition of nociceptive transmission from injured tissues to central nervous system, decrease neurogenic inflammation and systemic anti-inflammatory effect of local anaesthetics.5–7,11–13 Thoracic epidural has been shown to have benefits,6,19 however, most anaesthesiologists are worried about performing it due to the risk of neurological complications.

Inflammation and pain are related to one another and associated with tissue damage. Postoperative pain is most intense during the first 24 hours and sternotomy is frequently reported as the most painful area after cardiac surgery.20–23 Transversus thoracis muscle plane block (TTPB) is an ultrasound (US)-guided anterior chest wall fascial plane block. It blocks multiple anterior branches of intercostal nerves (Th2-6) which innervate the sternum area.24 US guidance increases the safety profile of TTPB by real-time visualisation of needle tip, evaluation of adjacent vital structure and distribution of local anaesthetics.25 A pilot study of TTPB for cardiac surgery,26 a study of TTPB on postoperative opioid consumption,27 and a study of the superficial parasternal interfascial plane block on postoperative inflammatory response28 had been reported. However, to our knowledge, no study evaluates the effectiveness of preoperative TTPB in adult cardiac surgery for reducing the surgical stress response.

Objectives
This study’s primary objective is to determine whether the combination of general anaesthesia and US-guided TTPB is superior to general anaesthesia only in reducing the postoperative open-heart surgery stress response (measured by comparison of the means of postoperative cortisol and IL-6 plasma levels at 24 hours and 48 hours). The secondary objective is to determine whether the combination of general anaesthesia and US-guided TTPB is superior to general anaesthesia only in reducing total 24-hour morphine consumption and time of first postoperative patient-controlled analgesia (PCA) dose.

Trial design
This is a single-centre, double-blind, randomised, controlled, superiority study with two parallel groups to evaluate cortisol and IL-6 plasma levels during perioperative period. Randomisation will be performed using permuted block randomisation, participants will be randomly assigned to either TTPB or control group with a 1:1 allocation.

METHODS AND ANALYSIS
We used the Standard Protocol Items: Recommendations for Interventional Trials checklist when writing our report.29

Participants, interventions and outcomes
Study setting
This is a single-centre study at Dr. Cipto Mangunkusumo Hospital, the Joint Commission International-accredited tertiary academic hospital in Indonesia. Located in Jakarta, the capital city of Indonesia, Dr. Cipto Mangunkusumo Hospital is the national central public hospital of the Ministry of Health Republic of Indonesia.

Inclusion criteria
1. Adult patients aged 19–75 years old.
2. Will undergo elective open-heart surgery with median sternotomy approach.

Exclusion criteria
1. Participants who refuse to participate in this study.
2. Body weight <45 kg or >75 kg.
3. Patients with chronic obstructive pulmonary disease.
4. Patients with chronic kidney disease who needs regular haemodialysis.
5. Patients with local infection in the injection area for TTPB.
6. Patients with local infection in the injection area for TTPB.
7. Patients with local infection in the injection area for TTPB.
8. Patients who are contraindicated for local anaesthetics.
9. Patients with communication disability.
10. Patients with cognitive disorders.
11. Patients with severe psychiatric disorders, such as schizophrenia and bipolar disorder.

Drop-out criteria
1. Participants died during the data collection period.
2. Aortic cross-clamp time >120 min.
3. Participants who have delayed sternal closure.
4. Participants who underwent resurgery during the treatment period.
5. Participant decided to leave the study.
Interventions

All participants will receive general anaesthesia. Induction of anaesthesia will be obtained using midazolam 0.05–0.1 mg/kg intravenous, fentanyl 2–4 μg/kg intravenous and sevoflurane 2 vol% with 100% oxygen. Rocuronium 0.6–1.2 mg/kg intravenous will be used to facilitate tracheal intubation. General anaesthesia will be maintained using sevoflurane and oxygen mixed with compressed air, morphine 5 μg/kg/hour intravenous and rocuronium 0.1–0.2 intravenous mg/kg every 30–45 min. Fentanyl 1 μg/kg intravenous will be administered 2–3 min before skin incision. Intermittent fentanyl intravenous will be given as intraoperative rescue analgesia by the discretion of the cardiovascular anaesthesiologist consultant.

Participants in the TTPB group will receive TTPB after induction of general anaesthesia by a single investigator (AAGPSJ) who has experience in performing TTPB. A high-frequency linear US transducer (HFL 38 × 13-6 MHz, Sonosite M-Turbo, Fujifilm) will be placed sagitally, lateral to sternal edge, at fourth intercostal space. A lateral-medial scanning will then be performed to visualise the structures: transversus thoracis muscle (TTM), internal intercostal muscle (IIM) and pectoralis major muscle. Colour Doppler will be used to confirm the internal thoracic artery. A 22G, 50 mm, 30° bevel needle (Stimuplex Ultra 360, B. Braun Medical Inc.) will be inserted in-plane to US probe from caudal to cranial. Real-time needle tip movement will be observed using US to avoid arterial and pleural puncture. When the plane between TTM and IIM has been reached, hydro dissection using 1–2 mL saline will be obtained to confirm the correct needle tip placement and followed by incremental injection of 20 mL, 0.25%–0.375% bupivacaine. The same procedure will then be repeated on the contralateral side. AAGPSJ will prepare local anaesthetics before the intervention. A total of 2 mg/kg of bupivacaine hydrochloride 0.5% will be diluted with saline to achieve a 40 mL solution for bilateral TTPB. Participants in the control group will receive bilateral superficial needle puncture at a location like TTPB without any solution injected.

Patients who will undergo open harvesting of great saphenous vein for coronary artery bypass grafting will also receive adductor canal block. A total of 5 mL, 0.25% bupivacaine will be placed anterolateral to femoral artery, deep to sartorius muscle, under US guidance. The same needle for TTPB will be used using either an in-plane or out-of-plane approach. A contralateral adductor canal block will be performed if a bilateral great saphenous vein graft is planned.

In the postoperative period, all participants will receive patient-controlled intravenous analgesia (PCIA) (Perfusor PCA Syringe Pump, B. Braun Medical) morphine, in combination with paracetamol intravenous 1 g every 8 hours. The PCIA will be set as follow: 1 mg/mL of morphine, background infusion 5 μg/kg/hour, PCA dose 1 mg, lockout interval 10 min, maximum dose 10 mg/4 hours. In the early postoperative period, when the patient is not yet awake and able to report pain, an anaesthesiology resident on duty will give PCA demand dose if pain score ≥ 2 using the Critical Care Pain Observation Tool (CPOT). CPOT consists of four domains: facial expression, body movements, muscle tension and compliance with ventilation. Every behavioural domain has three scores: 0, 1 and 2, then the total score ranges between 0 and 8.

Primary outcome

Difference between the two groups in the means of postoperative cortisol and IL-6 plasma levels at 24 hours and 48 hours after cardiac intensive care unit (CICU) admission.

Secondary outcomes

1. Difference between the two groups in means of total 24-hour postoperative morphine consumption.
2. Difference between the two groups in means of time of first postoperative PCA dose.

Participant timeline

The schedule of participants’ enrolment, interventions and assessments are presented in table 1.

Sample size

In agreement with previous studies by Loick et al and Xu et al, the expected SD of cortisol and IL-6 plasma levels were 11 μg/dL and 7 pg/mL, respectively. The sample size was calculated using the formula for comparing two independent means to achieve a power of 80% and a level of significance of 5% (two sided). Based on cortisol plasma level, with the determined difference in the two means 10 μg/dL, the study would require a sample size of 18 for each group. Based on IL-6 plasma level, with the determined difference in the two means 8 pg/mL, the study would require a sample size of 12 for each group. We will include 18 participants in each group. A total of 42 participants will be enrolled in this study, with equal allocation to two arms and given a drop-out of 10%.

Recruitment

Adult patients who will undergo elective open-heart surgery will be recruited in the ward 1–2 days before the procedure by AAGPSJ. The surgical schedule will be obtained every day from the hospital information system. Patient will be introduced to this study by slide with pictures and important trial points using a tablet computer. We estimate that the recruitment will take at least 8 months. Participants will not receive any financial or non-financial incentives.

Assignment of interventions

Participants will be randomly assigned to either TTPB or control group with a 1:1 allocation using permuted block randomisation. We will determine the block size and use the random number table for sequence generation. Random allocation sequence will be generated by an assistant who is not involved in this study. He/she will
conceal the allocation sequence using opaque envelopes with instructions on preparing the drug for injections. Allocation concealment is also ensured by not open the envelopes until all baseline measurements have been recorded, and we will not disclose the block sizes.

AAGPSJ will be responsible for subjects’ enrollment and assign patients to intervention. Study participants, care providers and outcome assessors will be blinded to treatment allocation. AAGPSJ will prepare the drugs and perform the intervention, but not get involved in anaesthesia management and outcome assessment. Medical staff who manage anaesthesia and measure the outcomes will come out of the operating room. Subjects in the control group will receive superficial needle puncture without administration of saline to maintain the blinding. The duration of intervention in the control group is also equalised as in the TTPB group.

Data collection, management and analysis

Primary outcome

Cortisol and IL-6 plasma levels will be measured using the ELISA method at Integrated Laboratory of Faculty of Medicine Universitas Indonesia. An amount of 3 mL of vein blood sample will be withdrawn from central venous catheter. It will be collected to EDTA tube passively. The evaluation will be performed three times: before intervention, at 24 hours and 48 hours after CICU admission. Unit for cortisol and IL-6 are μg/dL and pg/mL, respectively.

Secondary outcomes

1. Total 24-hour postoperative morphine consumption will be collected from PCA machine recording by anaesthesiology resident on duty. Starting from CICU admission time, include 24-hour background infusion dose and administered PCA dose. Unit: milligrams (mg).

2. Time of first postoperative PCA dose will be collected from CICU chart by anaesthesiology resident on duty. Calculated from the end of intervention time. Unit: minutes (min).

Data management and analysis

Data will be manually recorded in case report forms. Electronic version or soft copy of data will be made after data collection is completed. Original case report forms will be stored in locked file cabinets in our department with limited access. Those files will be in storage for a period of 3 years after completion of the study.

We will use Stata Statistical Software: Release V.15 (StataCorp) for all statistical analyses. Participants’ baseline characteristics will be analysed descriptively. Numerical variables will be presented as mean±SD or median (IQR), while categorical variables will be presented as frequency distribution. Before further analyses, we will perform testing for normality and homogeneity. Data will be considered normally distributed and homogeneity of variance if p>0.05 by Shapiro-Wilk test and Levene’s test, respectively. Difference between the two groups in the means of postoperative cortisol and IL-6 plasma levels at 24 hours and 48 hours after CICU admission will be analysed using general linear model—repeated measures. Difference between the two groups in the means of total 24-hour postoperative morphine consumption and time of first postoperative PCA dose will be analysed using independent t-test or Mann-Whitney test. We use two-sided p values with significance level of 5% for all tests.
All analyses will be conducted by AM who is blinded to trial groups.

Monitoring

Adverse events will be collected and recorded only after the participants receive appropriate treatment and intervention until CICU discharge. The Good Clinical Practice Guidelines of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH-GCP) defined adverse events as any untoward medical occurrence in a study participant and that does not necessarily have a causal relationship with the treatment/intervention.

Serious adverse events (SAE) between enrollment and CICU discharge will be reported within 24 hours to the ethics committee and the quality, safety and performance committee. Any adverse event which poses a threat to the patient’s life or functioning or meet at least one of SAE criteria: death or life-threatening (immediate risk of death), or requires hospitalisation or prolongs an existing hospitalisation, or causes persistent or significant disability, or
requires medical intervention to prevent one of the above outcomes.

The local anaesthetic systemic toxicity (LAST), pneumothorax, haematoma and local site infection will be monitored intraoperatively and postoperatively after the intervention. Physical examination, US, and/or X-ray will be used to assess the adverse events. The LAST will be prevented by using US-guided technique, aspiration before local anaesthetics injection, and incremental administration of local anaesthetics. Pneumothorax and haematoma will be prevented by using US-guided technique. We will use aseptic technique practice when performing the procedure to prevent pathogens contamination.

Patient and public involvement
Patients or members of the public were not involved in the design, and will not be involved in the conduct, or reporting, or dissemination plans of our research.

ETHICS AND DISSEMINATION
Ethical approval and amendment
The study protocol and informed consent forms have been reviewed and approved by Ethics Committee of Faculty of Medicine Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital with regards to the protection of human rights and welfare in medical research, under the ICH-GCP standard procedures (protocol number 19-11-1282, ethical approval number KET-539/UN2.F1/ETIK/PPM.00.02/2020 on 3 June 2020). This research has also been approved by the Innovation and Intellectual Property Management Installation of Dr. Cipto Mangunkusumo Hospital (approval number LB.02/2.6.1/0082/2020 on 14 September 2020).

Any modification in the protocol, informed consent forms, participant education and other requested documents also will be reviewed and approved by the Ethics Committee. This study’s protocol amendment has been submitted before participant recruitment regarding inclusion and drop-out criteria, blinding technique and local anaesthetic dose. The Ethics Committee of Faculty of Medicine Universitas Indonesia/ Dr. Cipto Mangunkusumo Hospital reviewed and approved the amendment on 27 July 2020.

The ethical approval is valid for 1 year, beginning from the date of approval. We will make progress and safety reports to the Ethics Committee at least annually. Review and ethical approval renewal submission will be done if required. A final report will be submitted following the completion of the study. This study has already begun. The subjects’ recruitment starts on 28 September 2020, and reaches 16 subjects when the manuscript was written.

Consent
AAGPSJ will perform the introduction to the study, education, and consent for all participants. Images and information sheets in the Indonesian language will be used to introduce the research to patients. The patients can ask questions. Written informed consent will be obtained after discussion and confirmation that the patients understand the study. The model patient consent form is available as an additional file (online supplemental file 1).

Confidentiality
All data will be stored securely at Department of Anesthesiology and Intensive Care Dr. Cipto Mangunkusumo Hospital – Faculty of Medicine Universitas Indonesia. Documents that contain participants’ personal information will be held in locked file cabinets in our research and development division with limited access. We will use coded identification numbers for case report forms, laboratory specimens and other research forms to maintain participant confidentiality. Participant information will also be stored in the hospital information system, a local database secured with a personalised password. The participants’ information will only be released outside the trial with participants’ written consent, except for monitoring purposes by Ethics Committee, Innovation and Intellectual Property Management Installation, and other regulatory authorities.

Dissemination policy
The result of this trial will be released to the anaesthesiologist, cardiothoracic surgeon, cardiac intensivist and the medical community through presentation and publication in peer-reviewed journals.

WHO TRIAL REGISTRATION DATA SET
The summary of this trial registration data set is presented in table 2.

Author affiliations
1Department of Anesthesiology and Intensive Care, Dr. Cipto Mangunkusumo Hospital – Faculty of Medicine Universitas Indonesia, Jakarta Pusat, Indonesia
2Division of Cardiology, Department of Internal Medicine, Dr. Cipto Mangunkusumo Hospital – Faculty of Medicine Universitas Indonesia, Jakarta Pusat, Indonesia

Twitter A A Gde Putra Semara Jaya @gungthey84

Contributors AAGPSJ conceived of the study. All authors initiated the study design and contributed to the refinement of the study protocol. AM and ART provided statistical expertise in clinical trial design. ART and AAGPSJ are grant holders. AAGPSJ and AH implement the study. AM will conduct the statistical analysis. All authors contributed to the drafting and revision of the manuscript and approved the final version.

Funding This work was supported by Universitas Indonesia grant number NKI15127/UN2.RST/HKP.05.00/2020.

Disclaimer PT B Braun Medical Indonesia provides PCA machines for postoperative pain management and will not have other involvement in the study.

Map disclaimer The design and conduct of the project, data collection and management, data analysis and result interpretation, and the preparation, review, or approval of the report are entirely independent of the funder.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been
REFERENCES

1. Asimakopoulos G. Systemic inflammation and cardiac surgery: an update. Perfusion 2001;16:353–60.
2. Laffey JG, Boylan JF, Cheng DCH. The systemic inflammatory response to cardiac surgery: implications for the anaesthesiologist. Anesthesiology 2002;97:215–52.
3. Sugita J, Fujik K. Systemic inflammatory stress response during cardiac surgery. Int Heart J 2018;59:457–9.
4. Shankar Hari M, Summers C. Major surgery and the immune system: from pathophysiology to treatment. Curr Opin Crit Care 2018;24:588–93.
5. Hollmann MW, Durieux ME. Local anaesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology 2000;93:858–75.
6. Loick HM, Schmidt C, Van Aken H, et al. High thoracic epidural anesthesia, but not clonidine, attenuates the perioperative stress response via sympatholysis and reduces the release of troponin T in patients undergoing coronary artery bypass grafting. Anesth Analg 1999;88:701–9.
7. Desborough JP. The stress response to trauma and surgery. Br J Anaesth 2000;85:109–17.
8. Gutierrez T, Horngold R, Pearce A. The systemic response to surgery. Surgery 2011;29:93–6.
9. Ivanovs I, Mihelsons M, Boka V. Stress response to surgery and possible ways of its correction. Proc Latv Acad Sci B: Nat Exact Appl Sci 2012;36:225–33.
10. Saracevic A, Medved I, Hrabric Vlah S, et al. The association of systemic inflammatory markers with indicators of stress and cardiac necrosis in patients undergoing aortic valve replacement and revascularization surgeries. Physiol Res 2020;69:261–74.
11. Moor D, Agganwal G, Quinney N. Systemic response to surgery. Surgery 2017;35:220–3.
12. Marek PE, Flemler M. The immune response to surgery and trauma: implications for treatment. J Trauma Acute Care Surg 2012;73:801–8.
13. Burton D, Nicholson G, Hall G. Endocrine and metabolic response to surgery. BJU International 2004;94:44–7.
14. Golubovska I, Vanags I. Anaesthesia and stress response to surgery. Proc Latv Acad Sci B: Nat Exact Appl Sci 2008;62:141–7.
15. Xuanenoudakis PV, Diopoulo B, et al. Surgical stress response. Injury 2006;37 Suppl 5:S2–9.
16. Guileimov M, Menschikowski M, Dill H, et al. Interleukin-1, interleukin-6 and myocardial enzyme response after coronary artery bypass grafting - a prospective randomized comparison of the conventional, regional and three minimally invasive surgical techniques. Eur J Cardiothorac Surg 2000;18:594–601.
17. Meng F, Ma J, Wang W, et al. Meta-analysis of interleukin 6, 8, and 10 between off-pump and on-pump coronary artery bypass groups. Bosn J Basic Med Sci 2017;17:85–94.
18. Halinancik K, Herroeder S, Hollmann MW. Regional anaesthesia, local anaesthetics and the surgical stress response. Best Pract Res Clin Anaesthesiol 2004;18:509–27.
19. Dijiani G, Fedorko L, Beattie WS. Regional anaesthesia in cardiac surgery: a friend or a foe? Semin Cardiothorac Vasc Anesth 2006;9:87–104.
20. Roca J, Valero R, Gomar C. Pain locations in the postoperative period after cardiac surgery: chronology of pain and response to treatment. Rev Esp Anestesiol Reanim 2017;64:391–400.
21. Mello LCde, Rosatti SFC, Hortense P. Assessment of pain during rest and during activities in the postoperative period of cardiac surgery. Rev Lat Am Enfermagem 2014;22:136–43.
22. Li X, Feng Y, Yang B-X. Postoperative pain after cardiac surgery. J Cardiothorac Vasc Anesth 2010;24:1025–6.
23. Zabrzycki M, Liebke V, Skrala C, et al. Assessment and pathophysiology of pain in cardiac surgery. J Pain Res 2018;11:1599–611.
24. Ueshima H, Kitamura A. Blocking of multiple anterior branches of intercostal nerves (Th2-6) using a transversus thoracic muscle plane block. Anesth Analg 1999;88:701–9.
25. Dellish WS, Ohtade M. Enhanced recovery after surgery for cardiac surgery: will we have the techniques needed to reduce opioid use and still provide appropriate analgesia? J Cardiothorac Vasc Anesth 2019;33:547–8.
26. Fuji S, Roche M, Jones PM, et al. Transversus thoracis muscle plane block in cardiac surgery: a pilot feasibility study. Reg Anesth Pain Med 2019;44:556–60.
27. Aydin ME, Ahsiskaloglu A, Ates I, et al. Efficacy of ultrasound-guided transversus thoracic muscle plane block on postoperative opioid consumption after cardiac surgery: a prospective, randomized, double-blind study. J Cardiothorac Vasc Anesth 2020;34:2996–3003.
28. Bloc S, Perot BP, Gilbert H, et al. Efficacy of parasternal block to decrease intraoperative opioid use in coronary artery bypass surgery via sternotomy: a randomized controlled trial. Reg Anesth Pain Med 2021;46:671–8.
29. Chan A-W, Tetzlaff JM, Gotzsche PC, et al. SIRIRI 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ 2013;346:e7586.
30. Xu YJ, Chen WK, Zhu Y, et al. Effect of thoracic epidural anaesthesia on serum vascular endothelial growth factor C and cytokines in patients undergoing anaesthesia and surgery for colon cancer. Br J Anaesth 2014;113 Suppl 1:49–55.
LEMBAR PENJELASAN KEPADA CALON SUBJEK

Kami tim peneliti dari Departemen Anestesiologi dan Terapi Intensif Fakultas Kedokteran Universitas Indonesia/ RSUPN Dr. Cipto Mangunkusumo (FK UI/ RSCM) yang diketuai oleh Dr. dr. Aida Rosita Tantri, Sp.An, KAR, akan melakukan penelitian dengan judul Efektivitas blok tepi tulang dada dalam mengurangi nyeri dan respons radang pascabedah jantung terbuka: kajian terhadap pemakaian dan waktu pertama pemberian obat nyeri pascabedah, waktu pelepasan pipa napas, dan kadar penanda respons peradangan.

Saya akan memberikan informasi kepada Bapak/Ibu/Saudara mengenai penelitian ini dan mengundang Bapak/Ibu/Saudara untuk berpartisipasi dalam penelitian ini dengan cara menandatangani formulir ini. Jika setuju untuk berpartisipasi dalam penelitian ini, Bapak/Ibu/Saudara dapat kapan saja secara bebas mundur dari penelitian ini. Bapak/Ibu/Saudara juga berhak untuk menerima informasi terbaru mengenai prosedur yang sedang diuji. Jika Bapak/Ibu/Saudara menolak untuk berpartisipasi atau mundur dari penelitian ini, keputusan tersebut tidak akan mempengaruhi hubungan Bapak/Ibu/Saudara dengan saya dan tidak akan berdampak pada pelayanan di rumah sakit ini. Jika ada pernyataan yang tidak dimengerti, Bapak/Ibu/Saudara dapat menanyakannya kepada saya.

Pendahuluan
Bedah jantung terbuka adalah tindakan bedah mayor yang mengakibatkan nyeri pascabedah dengan berbagai dampak buruk jangka pendek dan jangka panjang bagi pasien. Nyeri pascabedah jantung dapat menyebabkan berbagai komplikasi, memperpanjang masa rawat, meningkatkan biaya perawatan, dan dapat berkembang menjadi nyeri kronis. Untuk mencegah dampak buruk tersebut, telah dikembangkan metode antinyeri multidimensional yang mengkombinasikan penggunaan obat antinyeri dan teknik anestesia regional. Blok tepi tulang dada adalah salah satu blok saraf tepi dalam teknik anestesia regional. Blok tepi tulang dada tersebut adalah salah satu blok saraf tepi dalam teknik anestesia regional. Ini merupakan tindakan untuk membantu mengurangi rasa nyeri pascabedah.

Tujuan
Untuk mengetahui pengaruh teknik blok tepi tulang dada pada bedah jantung terbuka, yang dilihat dari aspek pemakaian dan waktu pertama pemberian obat nyeri pascabedah, waktu pelepasan pipa napas, dan kadar penanda respons peradangan.

Partisipasi dalam Penelitian
Partisipasi Bapak/Ibu/Saudara dalam penelitian ini berupa menjalani prosedur blok tepi tulang dada dan pengambilan sampel darah sekitar satu sendok teh untuk pemeriksaan kadar penanda respons peradangan melalui selang infus besar yang telah terpasang. Pengambilan sampel akan selesai 48 jam pascabedah, namun Bapak/Ibu/Saudara tetap akan kami ikuti selama perawatan di rumah sakit.

Alasan Memilih Bapak/Ibu/Saudara
Bapak/Ibu/Saudara kami pilih untuk berpartisipasi dalam penelitian ini karena memenuhi kriteria sebagai berikut: berusia 19-75 tahun, akan menjalani bedah jantung terbuka yang terencana, akan menjalani bedah jantung terbuka dengan membuka tulang dada dan menggunakan mesin pompa jantung-paru.

Prosedur Penelitian
Informasi prosedur intervensi
1. Bapak/Ibu/Saudara akan menjalani proses persiapan operasi di ruang perawatan sesuai standar yang berlaku. Pada proses persiapan akan dilakukan wawancara terkait identitas, status kesehatan, dan riwayat penyakit; dan dijelaskan cara penggunaan alat pemberi obat antinyeri pascabedah.
2. Bapak/Ibu/Saudara akan menjalani proses pengundian untuk menentukan apakah pasien ke dalam kelompok perlakuan atau kontrol, sehingga setiap pasien mempunyai peluang yang sama. Kelompok perlakuan akan mendapatkan blok tepi tulang dada, sedangkan kelompok kontrol tidak. Peneliti maupun
pasien tidak mengetahui pembagian kelompok tersebut. Selama tindakan blok dilakukan, tenaga kesehatan yang terlibat dalam manajemen anestesia (pembiusan) dan pengambilan data tidak berada di ruang tindakan. Hal ini ditujukan untuk menjaga keakuratan hasil penelitian.

3. Bapak/Ibu/Saudara akan diambil sampel darah sebanyak tiga kali yaitu: satu kali sebelum dan dua kali setelah pembedahan. Sebanyak satu sendok teh darah akan diambil setiap kali mengambil sampel.

4. Bapak/Ibu/Saudara akan menjalani prosedur anestesia (pembiusan) dan pembedahan dilakukan sesuai standar yang berlaku. Blok tepi tulang dada akan kami lakukan di ruang operasi sebelum pembedahan dimulai. Blok tepi tulang dada dilakukan pada dinding dada bagian depan, di samping kiri dan kanan tulang dada, di antara lapisan otot. Blok tepi tulang dada akan dilakukan dengan panduan ultrasonografi (USG) untuk memastikan posisi ujung jarum, menghindari cedera pembuluh darah, dan penempatan obat anestesia lokal.

5. Pascabedah Bapak/Ibu/Saudara akan dirawat di ruang terapi intensif jantung. Pipa napas akan tetap terpasang hingga Bapak/Ibu/Saudara sadar baik dan mampu menjaga fungsi pernapasan. Untuk mengatasi nyeri pascabedah, akan dipasang alat pemberi obat antinyeri yang pemberinya ditentukan oleh Bapak/Ibu/Saudara dengan memencet tombol. Selama belum sadar dan tidak mampu melaporkan nyeri, tombol tersebut akan dipencet oleh dokter jaga jika Bapak/Ibu/Saudara dinilai mengalami nyeri berdasarkan skor yang telah ditetapkan.

Prosedur alternatif yang tersedia saat ini

Selama ini tatalaksana nyeri pascabedah jantung terbuka dilakukan dengan pemberian obat antinyeri golongan opioid tanpa teknik blok saraf tepi. Untuk itu dibutuhkan dosis obat antinyeri opioid yang tinggi untuk mengontrol nyeri. Dosis obat antinyeri golongan opioid yang tinggi berkaitan dengan risiko depresi napas, mual, muntah, dan sembelit, sehingga dapat menunda pelepasan pipa napas, memperpanjang masa perawatan, infeksi paru, dan komplikasi lainnya.

Ketidaknyamanan bagi Bapak/Ibu/Saudara

Penelitian ini secara umum tidak mempengaruhi kenyamanan Bapak/Ibu/Saudara karena blok tepi tulang dada dilakukan setelah pasien dianestesia (dibius umum) dan pengambilan sampel darah dilakukan tanpa suntikan ke tubuh pasien, melainkan melalui selang infus besar yang telah terpasang.

Risiko, Efek Samping, dan Penanganan

Blok tepi tulang dada telah dilaporkan penggunaannya sejak tahun 2015 di beberapa negara. Laporan kasus dan data penelitian sebelumnya telah menunjukkan keamanan blok tepi tulang dada dengan panduan USG. Penggunaan USG sebagai panduan dalam melakukan blok tepi tulang dada akan meningkatkan keamanan dan keberhasilan blok. Obat anestesia lokal yang digunakan juga merupakan obat yang rutin digunakan pada teknik anestesia regional. Namun demikian, setiap tindakan medis invasif tidak dapat dilepaskan dari risiko. Potensi risiko yang dapat terjadi akibat blok ini berupa infeksi, lebam, dan komplikasi lainnya. Komplikasi lebam akan timbul jika ujung jarum USG mengganggu penggunaan USG, dimana jarum blok dihindari melalui pembuluh darah. Komplikasi cedera selaput paru juga sangat bergantung pada penggunaan USG, sehingga ujung jarum dapat dipaparkan secara kontinu, dan potensi infeksi logaritmik. Komplikasi lainnya dapat terjadi jika terjadi cedera selaput paru tidak menimbulkan komplikasi serius. Potensi efek samping yang dapat terjadi akibat obat anestesia lokal dapat berupa reaksi alergi dan keracunan sistemik. Segala komplikasi dan efek samping yang terjadi akan ditangani sesuai standar yang berlaku.

Manfaat

Bapak/Ibu/Saudara akan mendapatkan pengawasan yang intensif dalam pengelolaan nyeri dan mendapatkan akses pelayanan nyeri yang memadai. Keikutsertaan Bapak/Ibu/Saudara juga bermanfaat bagi orang lain di masa yang akan datang dengan adanya manajemen nyeri yang efektif, sehingga pasien aman dan nyaman, komplikasi akibat pembedahan menurun, masa perawatan lebih pendek, dan biaya perawatan lebih rendah.
Kompensasi
Tidak ada imbalan berupa uang, souvenir, dan bentuk lainnya atas partisipasi Bapak/Ibu/Saudara dalam penelitian ini.

Pembiayaan
Pembiayaan penelitian ini ditanggung sepenuhnya oleh tim peneliti. Bapak/Ibu/ Saudara tidak akan dipungut biaya sehubungan dengan penelitian ini.

Kerahasiaan
Semua data yang dikumpulkan dalam penelitian ini akan dijaga kerahasiaannya. Lembar data penelitian tidak mencantumkan nama Bapak/Ibu/Saudara, namun hanya inisial nama saja. Lembar data penelitian tersebut akan dikumpulkan dalam satu map dan disimpan di lemari khusus data penelitian di Departemen Anesthesiologi dan Terapi Intensif FK UI/ RSCM. Penggunaan kembali data tersebut harus mendapatkan izin dari tim peneliti. Presentasi hasil penelitian dalam pertemuan ilmiah/konferensi dan publikasi dalam jurnal ilmiah tidak akan mencantumkan nama Bapak/Ibu/Saudara. Namun demikian, komite etik penelitian kesehatan FK UI/ RSCM dan institusi terkait akan memiliki akses terhadap data penelitian untuk kepentingan verifikasi data penelitian.

Kewajiban Bapak/Ibu/Saudara
Bapak/Ibu/Saudara berkewajiban mengikuti aturan atau petunjuk penelitian seperti yang tertulis di atas. Bila ada yang belum jelas, Bapak/Ibu/Saudara bisa bertanya lebih lanjut kepada tim peneliti. Selama penelitian, tidak diperbolehkan minum obat lain atau jamu selain yang diberikan oleh peneliti.

Hak untuk Menolak dan Mengundurkan Diri
Bapak/Ibu/Saudara tidak harus berpartisipasi dalam penelitian ini bila tidak menghendakinya. Bapak/Ibu/Saudara harus paham bahwa walaupun Bapak/Ibu/ Saudara menyetujui untuk berpartisipasi, Bapak/Ibu/Saudara berhak untuk mundur dari penelitian ini. Jika Bapak/Ibu/Saudara menolak untuk berpartisipasi atau mundur dari penelitian ini, keputusan tersebut tidak akan mempengaruhi hubungan Bapak/Ibu/Saudara dengan saya dan tidak akan berdampak pada standar pelayanan yang berlaku di rumah sakit ini. Saya akan memberikan kesempatan pada Bapak/Ibu/Saudara pada akhir penjelasan ini untuk dapat mempertimbangkan keputusan yang akan diambil.

Akses Pascapenelitian
Pada akhir penelitian ini, kami akan tetap memberikan manajemen nyeri yang terbaik. Bapak/Ibu/ Saudara tetap akan kami ikuti selama perawatan di rumah sakit.

Informasi Tambahan
Bapak/Ibu/Saudara diberi kesempatan untuk menanyakan semua hal yang belum jelas sehubungan dengan penelitian ini. Bila sewaktu-waktu terjadi efek samping atau membutuhkan penjelasan lebih lanjut, Bapak/Ibu/Saudara dapat menghubungi Dr. dr. Aida Rosita Tantri, Sp.An, KAR pada no. HP 08 161 832487 atau dr. A. A. Gde Putra Semara Jaya, Sp.An, M.Biomed pada no. HP 081 916 241 248 atau 081 339 69 42 39 di Departemen Anesthesiologi dan Terapi Intensif FK UI/ RSCM di Gedung A Lantai 6.
LEMBAR PERSETUJUAN KEIKUTSERTAAN DALAM PENELITIAN

Semua penjelasan tersebut telah disampaikan kepada saya dan semua pertanyaan saya telah dijawab oleh Dr. dr. Aida Rosita Tantri, Sp.An, KAR. Saya mengerti bahwa bila memerlukan penjelasan, saya dapat menanyakan kepada Dr. dr. Aida Rosita Tantri, Sp.An, KAR.

Sertifikat Persetujuan (Consent)	
Saya telah membaca semua penjelasan tentang penelitian ini. Saya telah diberikan kesempatan untuk bertanya dan semua pertanyaan saya telah dijawab dengan jelas. Saya bersedia untuk berpartisipasi pada studi penelitian ini dengan sukarela.	Saya mengkonfirmasi bahwa peserta telah diberikan kesempatan untuk bertanya mengenai penelitian ini, dan semua pertanyaan telah dijawab dengan benar. Saya mengkonfirmasi bahwa persetujuan telah diberikan dengan sukarela.
________________	________________
Nama subjek/wali	Nama peneliti/peminta persetujuan
________________	________________
Tanda tangan peserta studi	Tanda tangan peneliti/peminta persetujuan
________________________	________________________
Tanggal hari/bulan/tahun	Tanggal hari/bulan/tahun

Informasi Peneliti:

Peneliti Utama	: Dr. dr. Aida Rosita Tantri, Sp.An, KAR
: Departemen Anestesiologi dan Terapi Intensif FK UI/ RSCM	
: 08 161 832487, aidatantri@yahoo.com	

Peneliti	: dr. A.A. Gde Putra Semara Jaya, Sp.An, M.Biomed
: Departemen Anestesiologi dan Terapi Intensif FK UI/ RSCM	
: 081 916 241 248/ 081 339 69 42 39, gungthey84@yahoo.com	

| : dr. Aldy Heriwardito, Sp.An, KAKV |
| : Departemen Anestesiologi dan Terapi Intensif FK UI/ RSCM |
| : 081 3862 11017, aldy.heriwardito@gmail.com |

| : dr. Arif Mansjoer, Sp.PD, KKV, KIC, M.Epid |
| : Departemen Ilmu Penyakit Dalam FK UI/ RSCM |
| : 081 291 37 297, arif.mansjoer@gmail.com |

KEPK FKUI-RSCM

Alamat	: Jalan Salemba 6, Jakarta Pusat, 10430
No. Telp.	: 021 3157008
Email	: ec_fkui@yahoo.com
Apabila subjek tuna aksara
Seorang saksi yang tidak tuna aksara harus menandatangannya (apabila memungkinkan, orang ini harus dipilih oleh subjek/partisipan penelitian, bukan orangtuanya, dan tidak boleh memiliki hubungan dengan tim peneliti). Subjek/partisipan penelitian yang tuna aksara juga harus menyetorkan cap sidik jarinya.

Saya telah menyaksikan pembacaan dari lembar persetujuan (consent) kepada subjek/partisipan penelitian dengan akurat, dan telah diberi kesempatan untuk mengajukan pertanyaan. Saya mengkonfirmasi bahwa subjek/partisipan telah memberikan persetujuannya dengan bebas.

Nama saksi__ dan sidik jari subjek penelitian

Tanda tangan saksi ______________________________

Tanggal ______________________________

tanggal/bulan/tahun