Conditional limit theorems for
intermediately subcritical branching processes
in random environment*

V.I. Afanasyev† Ch. Böinghoff‡
G. Kersting‡ V.A. Vatutin†

April 28, 2013

Abstract

For a branching process in random environment it is assumed that the
offspring distribution of the individuals varies in a random fashion, inde-
pendently from one generation to the other. For the subcritical regime a
kind of phase transition appears. In this paper we study the intermediately
subcritical case, which constitutes the borderline within this phase
transition. We study the asymptotic behavior of the survival probability.
Next the size of the population and the shape of the random environ-
ment conditioned on non-extinction is examined. Finally we show that
conditioned on non-extinction periods of small and large population sizes
alternate. This kind of ‘bottleneck’ behavior appears under the annealed
approach only in the intermediately subcritical case.

MSC 2000 subject classifications. Primary 60J80, Secondary 60K37, 60G50, 60F17
Key words and phrases. Branching process, random environment, random walk,
change of measure, survival probability, functional limit theorem, tree

*This paper is a part of the research project ‘Branching processes and random walks in
random environment’ supported by the German Research Foundation (DFG) and the Russian
Foundation of Basic Research (RFBF, Grant DFG-RFBR 08-01-91954)
†Department of Discrete Mathematics, Steklov Mathematical Institute, 8 Gubkin Street,
119991 Moscow, Russia, viafan@mail.ru, vatutin@mi.ras.ru
‡Fachbereich Mathematik, Universität Frankfurt, Fach 187, D-60054 Frankfurt am Main,
Germany, boeinghoff@math.uni-frankfurt.de, kersting@math.uni-frankfurt.de
1 Introduction and main results

For a branching process in random environment (BPRE), as introduced in [7, 21], it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. Conditioned on the environment individuals reproduce independently of each other. Let Q_n be the random offspring distribution of an individual at generation $n-1$ and let Z_n denote the number of individuals at generation n. Then Z_n is the sum of Z_{n-1} independent random variables, each of which has distribution Q_n. To give a formal definition let Δ be the space of probability measures on $\mathbb{N}_0 = \{0, 1, \ldots\}$, which equipped with the metric of total variation is a Polish space. Let Q be a random variable taking values in Δ. Then an infinite sequence $\Pi = (Q_1, Q_2, \ldots)$ of i.i.d. copies of Q is said to form a random environment. A sequence of \mathbb{N}_0-valued random variables Z_0, Z_1, \ldots is called a branching process in the random environment Π, if Z_0 is independent of Π and given Π the process $Z = (Z_0, Z_1, \ldots)$ is a Markov chain with

$$L(Z_n \mid Z_{n-1} = z, \Pi = (q_1, q_2, \ldots)) = q_n^z$$

(1.1)

for every $n \in \mathbb{N} = \{1, 2, \ldots\}$, $z \in \mathbb{N}_0$ and $q_1, q_2, \ldots \in \Delta$, where q^z is the z-fold convolution of the measure q. The corresponding probability measure on the underlying probability space will be denoted by \mathbb{P}. In the following we assume that the process starts with a single founding ancestor, $Z_0 = 1$ a.s., and (without loss of generality) that $\mathbb{P}(Q(0) = 1) = 0$. (We shorten $Q(\{y\}), q(\{y\})$ to $Q(y), q(y)$.) Note that in general Z is not the superposition of Z_0 independent copies of the process started at $Z_0 = 1$.

It turns out that the asymptotic behavior of the generation size process Z is determined in the main by the associated random walk $S = (S_n)_{n \geq 0}$. This random walk has initial state $S_0 = 0$ and increments $X_n = S_n - S_{n-1}, n \geq 1$ defined as

$$X_n = \log m(Q_n),$$

where

$$m(q) = \sum_{y=0}^{\infty} y q(y)$$

is the mean of the offspring distribution $q \in \Delta$. In view of (1.1) and the assumption $Z_0 = 1$ a.s., the conditional expectation of Z_n given the environment Π can
be expressed by means of S as

$$\mathbb{E}[Z_n \mid \Pi] = \prod_{k=1}^{n} m(Q_k) = \exp(S_n) \quad \mathbb{P}\text{-a.s.}$$

Averaging over the environment gives

$$\mathbb{E}[Z_n] = \mathbb{E}[m(Q)]^n. \quad (1.2)$$

If the random walk S drifts to $-\infty$, then the branching process is said to be subcritical. In case $X = \log m(Q)$ has finite mean, subcriticality corresponds to $\mathbb{E}[X] < 0$. For such processes the conditional non-extinction probability at n decays at an exponential rate for almost every environment. This fact is an immediate consequence of the strong law of large numbers and the first moment estimate

$$\mathbb{P}(Z_n > 0 \mid \Pi) = \min_{0 \leq k \leq n} \mathbb{P}(Z_k > 0 \mid \Pi) \leq \min_{0 \leq k \leq n} \mathbb{E}[Z_k \mid \Pi] = \exp \left(\min_{0 \leq k \leq n} S_k \right) \quad \mathbb{P}\text{-a.s.} \quad (1.3)$$

As was observed by Afanasyev [1] and later independently by Dekking [14] there are three possibilities for the asymptotic behavior of subcritical branching processes. They are called the weakly subcritical, the intermediately subcritical and the strongly subcritical case. The present article is a part of several publications having started with [3, 4, 5], in which we try to develop characteristic properties of the different cases. For a comparative discussion we refer the reader to [11].

Here we study the intermediate case. It is located at the borderline between the weakly and strongly subcritical cases. The passage corresponds to a phase transition in the model, thus a particular rich behavior can be expected for the intermediate case. This is reflected in our results below. In particular we shall observe a kind of bottleneck phenomenon, which does not occur elsewhere under the annealed approach. Similar behavior has been noticed under the quenched approach in the critical regime (see [24], [25] and [26]).

Assumption A1. The process Z is intermediately subcritical, i.e.

$$\mathbb{E}[Xe^X] = 0.$$
The assumption suggests to change from \mathbb{P} to a measure \mathbb{P}: For every $n \in \mathbb{N}$ and every bounded, measurable function $\varphi : \Delta^n \times \mathbb{N}_0^{n+1} \to \mathbb{R}$, \mathbb{P} is given by its expectation

$$E[\varphi(Q_1, \ldots, Q_n, Z_0, \ldots, Z_n)] = \gamma^{-n}E[\varphi(Q_1, \ldots, Q_n, Z_0, \ldots, Z_n)e^{(S_n - S_0)}]$$

with

$$\gamma = E[e^X].$$

(We include S_0 in the above expression, because later on we shall also consider cases where $S_0 \neq 0$.) From (1.2) we obtain

$$E[Z_n] = \gamma^n.$$

The assumption $E[Xe^X] = 0$ translates into

$$E[X] = 0.$$

Thus S becomes a recurrent random walk under \mathbb{P}.

As to the regularity of the distribution of X we make the following assumptions.

Assumption A2. The distribution of X has finite variance with respect to \mathbb{P} or (more generally) belongs to the domain of attraction of some stable law with index $\alpha \in (1, 2]$. It is non-lattice.

Since $E[X] = 0$ this means that there is an increasing sequence of positive numbers

$$a_n = n^{1/\alpha} \ell_n$$

with a slowly varying sequence ℓ_1, ℓ_2, \ldots such that for $n \to \infty$

$$P\left(\frac{1}{a_n}S_n \in dx\right) \to s(x) \, dx$$

weakly, where $s(x)$ denotes the density of the limiting stable law. Note that due to the change of measure X^- always has finite variance and an infinite variance may only arise from X^+. In case of $\alpha < 2$ this is the so-called spectrally positive case ([10], Section 8.2.9).

Our last assumption on the environment concerns the standardized truncated second moment of Q,

$$\zeta(a) = \frac{1}{m(Q)^2} \sum_{y=a}^{\infty} y^2 Q(y), \quad a \in \mathbb{N}.$$
Assumption A3. For some $\varepsilon > 0$ and some $a \in \mathbb{N}$

$$E[(\log^+ \zeta(a))^{\alpha + \varepsilon}] < \infty,$$

where $\log^+ x = \log(x \vee 1)$.

See [4] for examples where this assumption is fulfilled. In particular our results hold for binary branching processes in random environment (where individuals have either two children or none) and for cases where Q is a.s. a Poisson distribution or a.s. a geometric distribution.

The following theorem has been obtained under quite stronger assumptions in [1,17,23]. Let

$$\tau_n = \min\{k \leq n \mid S_k \leq S_0, S_1, \ldots, S_n\}$$

be the moment, when S_k takes its minimum within S_0 to S_n for the first time.

Theorem 1.1. Under Assumptions A1 to A3, there is a constant $0 < \theta < \infty$ such that as $n \to \infty$

$$P(Z_n > 0) \sim \theta \gamma^n P(\tau_n = n).$$

In this form the result holds in the strongly subcritical case too [18], however it differs from the corresponding result in the weakly subcritical case [3]. Along the way of proving the subsequent results we also obtain a proof of the above theorem. Since $P(\tau_n = n) \sim 1/b_n$ with

$$b_n = n^{1-\alpha^{-1}} \ell'_n$$

for some slowly varying sequence (ℓ'_n) (see Lemma 2.2 below), it follows

$$P(Z_n > 0) \sim \theta \gamma^n b_n.$$

The next theorem deals with the branching process conditioned on survival at time n.

Theorem 1.2. Under Assumptions A1 to A3 the distribution of Z_n conditioned on the event $Z_n > 0$ converges weakly to a probability distribution on \mathbb{N}. Also for every $\beta < 1$ the sequence $E[Z_n^\beta \mid Z_n > 0]$ is bounded.
For $\beta = 1$ this statement is no longer true, since $E[Z_n] = \gamma^n$ from \textit{[1,4]} and consequently $E[Z_n \mid Z_n > 0] \to \infty$ for $n \to \infty$.

The next theorem captures the typical appearance of the random environment, when conditioned on survival. Let S^n be the stochastic process with paths in the Skorohod space $D[0,1]$ of càdlàg functions on $[0,1]$ given by

$$S^n_t = S_{nt}, \quad 0 \leq t \leq 1.$$

We agree on the convention $S_{nt} = S_{\lfloor nt \rfloor}$, which we use correspondingly for Z_{nt}, τ_{nt}. Also let L^* denote a Lévy-process on $[0,1]$ conditioned to attain its minimum at time $t = 1$. The precise definition will be given in Section 2.

Theorem 1.3. Assume Assumptions A1 to A3. Then, as $n \to \infty$, the distribution of $n - \tau_n$ conditioned on the event $Z_n > 0$ converges to a probability distribution p on \mathbb{N}_0 and

$$\left(\frac{1}{\alpha_n} S^n \mid Z_n > 0 \right) \overset{d}{\to} L^*$$

in the Skorohod space $D[0,1]$. Also both quantities are asymptotically independent, namely for every bounded continuous $\varphi : D[0,1] \to \mathbb{R}$ and every $B \subset \mathbb{N}_0$

$$E[\varphi(\frac{1}{\alpha_n} S^n); n - \tau_n \in B \mid Z_n > 0] \to E[\varphi(L^*)|p(B)].$$

The first statement also holds for strongly subcritical, but not for critical or weakly subcritical BPRE. The limit L^* only appears in the intermediate case.

The last theorem characterizes the typical behavior of Z, conditioned on survival. For a partial result see Theorem 1 in \textit{[2]}. Recall that τ_{nt} is the moment, when S_0, \ldots, S_{nt} takes its minimum.

Theorem 1.4. Let $0 < t_1 < \cdots < t_r < 1$. For $i = 1, \ldots, r$ let

$$\mu(i) = \min \{ j \leq i : \inf_{t \leq t_j} L^* = \inf_{t \leq t_i} L^* \}.$$

Then under Assumptions A1 to A3 there are i.i.d. random variables V_1, \ldots, V_r with values in \mathbb{N} and independent of L^* such that

$$\left((Z_{\tau_{nt_1}}, \ldots, Z_{\tau_{nt_r}}) \mid Z_n > 0 \right) \overset{d}{\to} (V_{\mu(1)}, \ldots, V_{\mu(r)})$$

as $n \to \infty$. Also there are i.i.d. strictly positive random variables W_1, \ldots, W_r independent of L^* such that

$$\left((\frac{Z_{nt_1}}{e^{S_{nt_1} - S^{nt_1}}}, \ldots, \frac{Z_{nt_r}}{e^{S_{nt_r} - S^{nt_r}}}) \mid Z_n > 0 \right) \overset{d}{\to} (W_{\mu(1)}, \ldots, W_{\mu(r)})$$

as $n \to \infty$.

6
For $r = 1$ and $t_1 = t$ the theorem says the following: At time t_1 the population consists only of few individuals, whereas at time nt it is large, namely of order $e^{S_{nt} - S_t}$-many individuals, which for every $\varepsilon > 0$ is bigger than $e^{\delta a_n}$ with probability $1-\varepsilon$, if $\delta > 0$ is small enough. Thus the minimum of the random walk at time t_1 acts as a bottleneck for the population, whereas afterwards the increasing random walk generates an environment, which is favorable for growth.

Moreover: In case of $r = 2$ either $t_1 < t_2$ or $t_1 = t_2$, which for the limiting process L^* means $\mu(2) = 2$ or $\mu(2) = 1$. The theorem says that in the first situation of two bottlenecks the population sizes Z_{t_1} and Z_{t_2} are asymptotically independent, as well as the sizes Z_{nt_1} and Z_{nt_2}. In the second situation of one common bottleneck certainly Z_{nt_1} and Z_{nt_2} are equal. Interestingly this is asymptotically true as well for $Z_{nt_1}/e^{S_{nt_1} - S_{t_1}}$ and $Z_{nt_2}/e^{S_{nt_2} - S_{t_2}}$.

As a corollary of Theorem 1.3 and 1.4 we observe that $(1/a_n \log Z_{nt})_{0 \leq t \leq 1}$ converges to a Lévy-process, conditioned to take its minimum at the end and reflected at zero. For the finite dimensional distributions this follows from the theorems together with path properties of Lévy-processes.

The proofs rest largely on the fact that the event $Z_n > 0$ asymptotically entails that τ_n takes a value close to n, as stated in Theorem 1.3. Thus it is our strategy to replace the conditioning event $Z_n > 0$ by events $\tau_n = n - m$, which are easier to handle. Here we can build on some random walk theory. For the proof of the last theorem we also make use of constructions of trees with stem going back to Lyons, Perez and Pemantle [19] and Geiger [16] for Galton-Watson processes. They establish a connection between branching processes conditioned to survive and branching processes with immigration.

The paper is organized as follows: In Section 2 we compile and prove several results on random walks. In Section 3 the proofs of the first three theorems are given. Section 4 deals with trees with stem and Section 5 contains the proof of our last theorem.

2 Results on random walks

In this section we assemble several auxiliary results on the random walk S. We allow for an arbitrary initial value $S_0 = x$. Then we write $P_x(\cdot)$ and $E_x[\cdot]$ for
the corresponding probabilities and expectations. Thus $P = P_0$.

2.1 Some asymptotic results
Let us introduce for $n ≥ 1$

$$L_n = \min(S_1, \ldots, S_n), \quad M_n = \max(S_1, \ldots, S_n)$$

and as above for $n ≥ 0$

$$\tau_n = \min\{k \leq n : S_k = \min(0, L_n)\}.$$

There is a connection between M_n and τ_n, set up by the dual random walk

$$\hat{S}_k = S_n - S_{n-k}, \quad 0 \leq k \leq n.$$

Namely $\{\tau_n = n\} = \{\hat{M}_n < 0\}$ with $\hat{M}_n = \max(\hat{S}_1, \ldots, \hat{S}_n)$ and consequently

$$P(\tau_n = n) = P(M_n < 0).$$

In particular $P(\tau_n = n)$ is decreasing.

Next define the renewal functions $u : \mathbb{R} \to \mathbb{R}$ and $v : \mathbb{R} \to \mathbb{R}$ by

$$u(x) = 1 + \sum_{k=1}^{\infty} P(-S_k \leq x, M_k < 0), \quad x ≥ 0,$$

$$v(x) = 1 + \sum_{k=1}^{\infty} P(-S_k > x, L_k > 0), \quad x < 0,$$

$$v(0) = E[v(X); X < 0]$$

and 0 elsewhere. In particular $u(0) = 1$. It is well-known that $0 < v(0) ≤ 1$, for details we refer to [12], Appendix B and [25]. (Our function $v(x)$ coincides with the function $v(x)$ in [3] up to a constant.) Also $u(x)$ and $v(-x)$ are of order $O(x)$ for $x → ∞$.

Lemma 2.1. Under Assumption A2 there is for every $r > 0$ a $\kappa > 0$ such that

$$E[e^{-rS_n}; L_n ≥ 0] ∼ \kappa n^{-1} a_n^{-1}$$

as $n → ∞$.

For the proof we refer to Proposition 2.1 in [3].
Lemma 2.2. Under Assumption A2 there are real numbers

\[b_n = n^{1-\alpha^{-1}} \ell'_n , \quad n \geq 1 \]

with a sequence \((\ell'_n)\) slowly varying at infinity such that for every \(x \geq 0\)

\[P(M_n < x) \sim v(-x)b_n^{-1} \]

as \(n \to \infty\). Also there is a constant \(c > 0\) such that for all \(x \geq 0\)

\[P(M_n < x) = P_x(M_n < 0) \leq cv(-x)b_n^{-1} . \]

Proof. The corresponding statements for \(P(M_n \leq x)\) are well-known. Indeed
the first one is contained in Theorem 8.9.12 in [10], where \(\rho\) now is equal to
\(1-\alpha^{-1}\), since we are in the spectrally positive case (note that the proof therein
works for all \(x \geq 0\) and not only, as stated, for the continuity points of \(v\)).

For \(x > 0\) this proof completely translates to \(P(M_n < x)\). Therefrom the
case \(x = 0\) can be treated as follows:

\[P(M_n < 0) = E[P_{X_1}(M_{n-1} < 0); X_1 < 0] = b_n b_n^{-1} E[P_{X_1}(M_{n-1} < 0); X_1 < 0] . \]

From dominated convergence and from \(b_n \sim b_n^{-1}\) we get

\[P(M_n < 0) \sim b_n E[v(X_1); X_1 < 0] . \]

Now from equation (2.5) below the right-hand side is equal to \(v(0)\), as defined
above, which gives the claim.

The second statement is obtained just as in Lemma 2.1 in [4]. \qed

2.2 The probability measures \(P^+\) and \(P^-\) The fundamental properties of
\(u, v\) are the identities

\[E[u(x + X); X + x \geq 0] = u(x) , \quad x \geq 0 , \]

\[E[v(x + X); X + x < 0] = v(x) , \quad x \leq 0 , \quad (2.5) \]

which hold for every oscillating random walk (see e.g. [25]). It follows that \(u\) and \(v\) give rise to further probability measures \(P^+\) and \(P^-\). The construction
procedure is standard and explained for P^+ in detail in [9, 4]. We shortly summarize the procedure.

Consider the filtration $\mathcal{F} = (\mathcal{F}_n)_{n \geq 0}$, where $\mathcal{F}_n = \sigma(Q_1, \ldots, Q_n, Z_0, \ldots, Z_n)$. Thus S is adapted to \mathcal{F} and X_{n+1} (as well as Q_{n+1}) is independent of \mathcal{F}_n for all $n \geq 0$. Then for every bounded, \mathcal{F}_n-measurable random variable R_n

$$E^+_x[R_n] = \frac{1}{u(x)} E_x[R_n u(S_n); L_n \geq 0], \quad x \geq 0,$$

$$E^-_x[R_n] = \frac{1}{v(x)} E_x[R_n v(S_n); M_n < 0], \quad x \leq 0.$$

These are Doob’s transforms from the theory of Markov chains. Shortly speaking P^+_x and P^-_x correspond to conditioning the random walk S not to enter $(-\infty, 0)$ and $[0, \infty)$ respectively.

The following lemma is taken from [9, 4].

Lemma 2.3. Assume A2 and let U_1, U_2, \ldots be a sequence of uniformly bounded random variables, adapted to the filtration \mathcal{F}. If $U_n \to U_{\infty}$ P^+-a.s. for some limiting random variable U_{∞}, then as $n \to \infty$

$$E[U_n | L_n \geq 0] \to E^+[U_{\infty}].$$

Similarly, if $U_n \to U_{\infty}$ P^--a.s., then as $n \to \infty$

$$E[U_n | M_n < 0] \to E^-[U_{\infty}].$$

The first part coincides with Lemma 2.5 from [4]. The proof of the second part follows exactly the same lines using Lemma 2.2.

2.3 Two functional limit results Because of Assumption A2 there exists a Lévy-process $L = (L_t)_{t \geq 0}$ such that the processes $S^n = (\frac{1}{a_n} S_{nt})_{0 \leq t \leq 1}$ converge in distribution to L in the Skorohod space $D[0,1]$. Let $L^- = (L^-_t)_{0 \leq t \leq 1}$ denote the corresponding non-positive Lévy-meander. This is the process $(L_t)_{0 \leq t \leq 1}$, conditioned on the event $\sup_{t \leq 1} L_t \leq 0$ (see [13] and [8]).

Lemma 2.4. Under Assumptions A1 and A2 for every $x \geq 0$

$$(\frac{1}{a_n} S^n | M_n < -x) \xrightarrow{d} L^-$$

in the Skorohod space $D[0,1]$.

10
The proof follows exactly the same arguments as the proof of Lemma 2.3 in [4], i.e. using the suitably adapted decomposition (2.10) therein and [15].

From \(L^- \) we obtain the process \(L^* \) as follows. Let \(\Lambda : D[0,1] \to D[0,1] \) be the mapping \(g \mapsto \hat{g} \) given by
\[
\hat{g}(t) = g(1) - g(s^-), \quad 0 \leq t \leq 1, \quad \text{with } s = 1 - t
\]
and \(g(0-) = 0 \). \(\Lambda \) is a continuous mapping and \(\Lambda^{-1} = \Lambda \). Note that \(\Lambda \) maps the subset \(D^- = \{ g \in D[0,1] : \sup_{t \geq \varepsilon} g(t) < 0 \text{ for all } \varepsilon > 0 \} \) onto the set \(D^* = \{ g \in D[0,1] : \inf_{s \leq 1 - \varepsilon} g(s) > g(1) \text{ for all } \varepsilon > 0 \} \).

Now let \(L^* = \Lambda(L^-) \).

Since \(L^- \in D^- \) a.s. it follows that \(L^* \in D^* \) a.s. This means that \(L^* \) takes its infimum at the end a.s. \(L^* \) may be viewed as the process \((L_t)_{0 \leq t \leq 1}\), conditioned to attain its infimum at \(t = 1 \). This becomes clear from the following result.

Lemma 2.5. Under Assumptions A1 and A2
\[
\left(\frac{1}{\alpha_n} S^n \mid \tau_n = n \right) \overset{d}{\to} L^*
\]
in \(D[0,1] \).

Proof. We may replace \(S^n \) by the process \(T^n \) given by \(T^n_t = S^n_{t+1/n} \) for \(t \leq 1 - \frac{1}{n} \) and \(T^n_t = S^n_1 \) for \(1 - \frac{1}{n} < t \leq 1 \). From Lemma 2.4
\[
\left(\frac{1}{\alpha_n} \Lambda(T^n) \mid M_n < 0 \right) \overset{d}{\to} L^*.
\]

Now \(\Lambda(T^n) \) is obtained from \(S^n \), if we just interchange the jumps in \(S^n \) from \(X_1, \ldots, X_n \) to \(X_n, \ldots, X_1 \). This corresponds to proceeding to the dual random walk, and it follows
\[
\left(\frac{1}{\alpha_n} S^n \mid \tau_n = n \right) \overset{d}{\to} L^*.
\]
This is the claim.

We end this section by some remarks on the distribution of \(L^* \). First \(L_1 \) has a stable distribution, thus it has a density with respect to Lebesgue measure and is unbounded from below. Since we are in the spectrally positive case, \(L \) has no negative jumps a.s. Therefore we may use fluctuation theory for the process \(L^\downarrow \), which is the Lévy-process, conditioned to take values in \((-\infty, 0]\), see [8], Section VII.3. From Corollary 16 therein it follows that \(L^\downarrow \) has a density
and is unbounded from below, too. From [13] (see also [12]) it follows that the distributions of \(L_1^+ \) and \(L_1^* \) are mutually absolutely continuous, therefore also the distribution \(\nu \) of \(L_1^* \) has a density and is not concentrated on some compact interval.

2.4 Further limit results

Let \(Q_j = Q_1 \) for \(j \leq 0 \).

Lemma 2.6. Under Assumptions A1 and A2 for \(m \geq 0, k \geq 1 \) the distribution of

\[
\left((Q_{\tau+1}, \ldots, Q_{\tau+k}), (Q_{\tau}, \ldots, Q_{\tau-k+1}), \frac{(S_{\tau}, S_{n-m})}{a_n} \right)
\]

converges weakly to a probability measure \(\mu_k \otimes \mu_k' \otimes \mu \), where \(\mu_k', \mu_k'' \) are the distributions of \((Q_1, \ldots, Q_k)\) under the probability measures \(P^+, P^- \) and \(\mu \) is a nondegenerate probability measure on \(\mathbb{R}^2 \).

Proof. Let for \(r \geq 0 \)

\[
Q^+(r) = (Q_{r+1}, \ldots, Q_{r+k}) \quad Q^-(r) = (Q_r, \ldots, Q_{r-k+1})
\]

Let \(\phi_1, \phi_2 : \Delta^k \to \mathbb{R} \) be bounded functions and \(\phi_3, \phi_4 : \mathbb{R} \to \mathbb{R} \) be bounded continuous functions. A decomposition with respect to \(\tau_n \) yields

\[
\mathbb{E}[\phi_1(Q^-)\phi_2(Q^+)(\tau_n)]\phi_3\left(\frac{S_{n-m} - S_n}{a_n}\right)\phi_4\left(\frac{S_{n-m} - S_n}{a_n}\right)
= \sum_{r=0}^{n+m} \mathbb{E}[\phi_1(Q^-)\phi_2(Q^+)(\tau_n)]\phi_3\left(\frac{S_{n-m} - S_n}{a_n}\right)\phi_4\left(\frac{S_{n-m} - S_n}{a_n}\right); \tau_n = r
\]

(2.6)

Letting \(L_{r,n} = \min(S_{r+1}, \ldots, S_n) - S_r \) and using duality we get for \(r > k \)

\[
\mathbb{E}[\phi_1(Q^-)\phi_2(Q^+)(\tau_n)]\phi_3\left(\frac{S_n}{a_n}\right)\phi_4\left(\frac{S_{n-m} - S_n}{a_n}\right); \tau_n = r
= \mathbb{E}[\phi_1(Q^-)\phi_3\left(\frac{S_n}{a_n}\right)\phi_2(Q^+)(\tau_n)]\phi_4\left(\frac{S_{n-m} - S_n}{a_n}\right); \tau_r = r, L_{r,n} \geq 0
= \mathbb{E}[\phi_1(Q^-)\phi_3\left(\frac{S_n}{a_n}\right); \tau_r = r] \mathbb{E}[\phi_2(Q^+)(\tau_n)]\phi_4\left(\frac{S_{n-m} - S_n}{a_n}\right); L_{n-r} \geq 0
= \mathbb{E}[\phi_1(Q^-)\phi_3\left(\frac{S_n}{a_n}\right); M_r < 0] \mathbb{E}[\phi_2(Q^+)(\tau_n)]\phi_4\left(\frac{S_{n-m} - S_n}{a_n}\right); L_{n-r} \geq 0.
\]

Moreover for \(r > k \)

\[
\mathbb{P}(M_r < 0)
= \mathbb{E}[\phi_1(Q^+(\tau_n)]\phi_3\left(\frac{S_n}{a_n}\right); M_r < 0] \mathbb{E}_L\left[\phi_3\left(\frac{S_{r-k}}{a_k}\right) | M_{r-k} < 0\right] \mathbb{P}(M_{r-k} < 0; M_k < 0).
\]
Therefore by Lemmas 2.4, 2.2 and dominated convergence, if \(r_n \sim tn \) for some \(0 < t < 1 \), then \(a_{r_n}/a_n \sim t^{\frac{1}{\alpha}} \) and

\[
\begin{align*}
\mathbb{E}[\phi_1(Q^+(0))\phi_3(S_{a_n})]; M_{r_n} < 0 \\
\mathbb{P}(M_{r_n} < 0)
\end{align*}
\]

\[
\rightarrow \mathbb{E}[\phi_1(Q^+(0))\nu(S_k)]; M_k < 0 \mathbb{E}[\phi_3(t^{\frac{1}{\alpha}}L_1^-)]
\]

\[
= \mathbb{E}^-[\phi_1(Q^+(0))] \mathbb{E}[\phi_3(t^{\frac{1}{\alpha}}L_1^-)].
\]

In much the same way, letting \(L^+ \) be the positive Lévy meander and using Lemma 2.3 from [4], it follows that

\[
\begin{align*}
\mathbb{E}[\phi_2(Q^+(0))\phi_4(S_{a_n})]; L_{n-r_n} \geq 0 \\
\mathbb{P}(L_{n-r_n} \geq 0)
\end{align*}
\]

\[
\rightarrow \mathbb{E}^+[\phi_2(Q^+(0))] \mathbb{E}[\phi_4((1-t)^{\frac{1}{\alpha}}L_1^+)].
\]

Since \(\mathbb{P}(M_{r_n} < 0)\mathbb{P}(L_{n-r_n} \geq 0) = \mathbb{P}(\tau_n = r_n) \), we obtain for \(r_n \sim tn \) and \(0 < t < 1 \)

\[
\begin{align*}
\mathbb{E}[\phi_1(Q^-(r_n))\phi_2(Q^+(r_n))\phi_3(S_{a_n})\phi_4(S_{a_n}-S_{r_n}) | \tau_n = r_n] \\
\rightarrow \mathbb{E}^-[\phi_1(Q_1,...,Q_k)] \mathbb{E}^+[\phi_2(Q_1,...,Q_k)] \mathbb{E}[\phi_3(t^{\frac{1}{\alpha}}L_1^-)] \mathbb{E}[\phi_4((1-t)^{\frac{1}{\alpha}}L_1^+)] g(t) dt.
\end{align*}
\]

Now in view of Assumption A2, the generalized arcsine law (see [10]) is valid for \(\tau_n \), i.e. \(\tau_n/n \) is convergent in distribution to a Beta-distribution with a density, which we denote by \(g(t) dt \). Therefore it follows from (2.6) that

\[
\begin{align*}
\mathbb{E}[\phi_1(Q^-(\tau_n))\phi_2(Q^+(\tau_n))\phi_3(S_{a_n})\phi_4(S_{a_n}-S_{r_n})] \\
\rightarrow \mathbb{E}^-[\phi_1(Q_1,...,Q_k)] \mathbb{E}^+[\phi_2(Q_1,...,Q_k)] \\
\times \int_0^1 \mathbb{E}[\phi_3(t^{\frac{1}{\alpha}}L_1^-)]\mathbb{E}[\phi_4((1-t)^{\frac{1}{\alpha}}L_1^+)] g(t) dt.
\end{align*}
\]

This gives the claim. \(\square \)

Next let \(0 = t_0 < t_1 < \cdots < t_r < t_{r+1} = 1 \) and for \(1 \leq i \leq r \)

\[
\sigma_{i,n} = \min\{k : nt_{i-1} \leq k \leq nt_i, S_k \leq S_j \text{ for all } nt_{i-1} \leq j \leq nt_i\} \quad (2.7)
\]

be the first moment, when \(S_k \) takes its minimum between \(nt_{i-1} \) and \(nt_i \).
Lemma 2.7. Let \(m \geq 0 \) and \(k, r \geq 1 \). Then under Assumptions A1, A2, given the event \(\tau_{n-m} = n - m \), the random elements in \(\Delta^{2k} \)

\[
Q^{(i)} = (Q_{\sigma_{i,n+1}, \ldots, Q_{\sigma_{i,n}+k}}, (Q_{\sigma_{i,n}, \ldots, Q_{\sigma_{i,n}-k+1}})) \, , \quad i = 1, \ldots, r ,
\]

are asymptotically independent with asymptotic distribution \(\mu_k' \otimes \mu_k'' \). Also, given \(\tau_{n-m} = n - m \), they are asymptotically independent from the random vector

\[
\frac{1}{\alpha_n}(S_{\sigma_{1,n}}, S_{nt_1}, \ldots, S_{\sigma_{r,n}}, S_{nt_r}) .
\]

Proof. Recall from above that, given \(\tau_n = n \), the distribution of \(\frac{1}{\alpha_n}S_n \) is weakly convergent to a probability measure \(\nu \) on \(\mathbb{R}^\mathbb{R} \), the distribution of \(L_1^* \), which possesses a density and is not concentrated on a compact interval.

Let

\[
\sigma_{r+1,n} = \min\{k : nt_r \leq k \leq n - m, S_k \leq S_j \text{ for all } nt_r \leq j \leq n - m\}
\]

and for \(i \leq r \)

\[
U_i = \frac{1}{\alpha_n}(S_{\sigma_{r,n}} - S_{nt_{i-1}}) \, , \quad V_i = \frac{1}{\alpha_n}(S_{nt_{i}} - S_{nt_{i-1}}) \, , \quad V_{r+1} = \frac{1}{\alpha_n}(S_{n-m} - S_{nt_r})
\]

and \(W_i = (U_i, V_i) \). Since \((a_n) \) is regularly varying, from the last lemma and from our assumptions on independence it follows that the random variables \(Q^{(1)}, \ldots, Q^{(r)}, W_1, \ldots, W_r, V_{r+1} \) are asymptotically independent. Conditioning on the event \(\sigma_{r+1,n} = n - m \) does only effect \(V_{r+1} \). Thus from Lemma 2.6

\[
(Q^{(1)}, \ldots, Q^{(r)}, W_1, \ldots, W_r, V_{r+1} \mid \sigma_{r+1,n} = n-m) \xrightarrow{d} \left(\mu_k' \otimes \mu_k'' \right)^{\otimes r} \mu_1 \otimes \cdots \otimes \mu_r \otimes \nu ,
\]

where the probability measures \(\mu_i \) also depend on \(t_i - t_{i-1} \). If a Borel set \(A \subset \mathbb{R}^{2r+1} \) satisfies \(\mu_1 \otimes \cdots \otimes \mu_r \otimes \nu(A) > 0 \) and \(\mu_1 \otimes \cdots \otimes \mu_r \otimes \nu(\partial A) = 0 \), it follows

\[
(Q^{(1)}, \ldots, Q^{(r)} \mid (W_1, \ldots, W_r, V_{r+1}) \in A, \sigma_{r+1,n} = n - m) \xrightarrow{d} \left(\mu_k' \otimes \mu_k'' \right)^{\otimes r} .
\]

We apply this result to \(A \) of the form \(A = B \cap C \), where the Borel set \(B \) satisfies the same conditions as \(A \), and

\[
C = \left\{(u_1, v_1, \ldots, u_r, v_r, v_{r+1}) : u_j > \sum_{i=j}^{r+1} v_i \text{ for } j \leq r \right\} .
\]
Since ν is not concentrated on a compact set, $\mu_1 \otimes \cdots \otimes \mu_r \otimes \nu(C) > 0$, and because ν has a density, $\mu_1 \otimes \cdots \otimes \mu_r \otimes \nu(\partial C) = 0$. As
\[
\{\tau_{n-m} = n-m\} = \{S_{\sigma_{j,n}} > S_{n-m} \text{ for } j \leq r, \sigma_{r+1,n} = n-m\} \\
= \{(W_1, \ldots, W_r, V_{r+1}) \in C, \sigma_{r+1,n} = n-m\}
\]
we obtain
\[
(Q(1), \ldots, Q(r) \mid (W_1, \ldots, W_r, V_{r+1}) \in B, \tau_{n-m} = n-m) \overset{d}{\to} (\mu_k' \otimes \mu_k'')^\otimes r.
\]
The choice $B = \mathbb{R}^{2r+1}$ gives the asymptotic distribution of $(Q(1), \ldots, Q(r))$. Since $(S_{\sigma_{1,n}, S_{nt_1}, \ldots, S_{\sigma_r,n}, S_{nt_r}})$ is obtained from $(W_1, \ldots, W_r, V_{r+1})$ by linear combinations, also the asymptotic independence follows.

3 Proof of Theorem 1.1 to Theorem 1.3

Define
\[
\eta_k = \sum_{y=0}^{\infty} y(y-1)Q_k(y) \left/ \left(\sum_{y=0}^{\infty} yQ_k(y) \right)^2 \right., \quad k \geq 1.
\]

Lemma 3.1. Assume Assumptions A1 to A3. Then for all $x \geq 0$
\[
\sum_{k=0}^{\infty} \eta_{k+1} e^{-S_k} < \infty \quad P_x^+ \text{-a.s.}
\]
and for all $x \leq 0$
\[
\sum_{k=1}^{\infty} \eta_k e^{S_k} < \infty \quad P_x^- \text{-a.s.}
\]

The proof of the first statement can be found in [4] (see Lemma 2.7 therein under condition B1 and B2), the second one is proven in just the same way.

Lemma 3.2. Under Assumptions A1 to A3 there is a non-vanishing finite measure p' on \mathbb{N}_0 with $p'(0) = 0$ such that the following holds: Let Y_n be uniformly bounded random variables of the form $Y_n = \varphi_n(Q_1, \ldots, Q_{n-r_n})$ with natural numbers $r_n \to \infty$ and let ℓ be a real number such that for all $m \in \mathbb{N}_0$
\[
E[Y_n \mid \tau_{n-m} = n-m] \to \ell
\]
as $n \to \infty$. Also let $\psi : \mathbb{N}_0 \to \mathbb{R}$ be a bounded function with $\psi(0) = 0$. Then
\[
E[Y_n \psi(Z_n)e^{-S_n} \mid \tau_n = n] \to \ell \int \psi \, dp'.
\]
Proof. Let \(f_n(s) = \sum_{k \geq 0} s^k Q_n(k), 0 \leq s \leq 1, \) be the (random) generating function of \(Q_n, n \geq 1, \) and denote
\[
\tilde{f}_{j,k} = \begin{cases}
 f_{j+1} \circ f_{j+2} \circ \cdots \circ f_k & \text{for } 0 \leq j < k, \\
 \text{id} & \text{for } j = k, \\
 f_j \circ f_{j-1} \circ \cdots \circ f_{k+1} & \text{for } 0 \leq k < j.
\end{cases}
\]

For \(0 \leq k < n \) set
\[
L_{k,n} = \min(S_k + 1, \ldots, S_n) - S_k \quad \text{and} \quad L_{n,n} = 0.
\]

First we look at the case \(\psi(z) = 1 - s^z \) with \(0 \leq s < 1 \) (with \(0^0 = 1 \)). We decompose the expectation according to the value of \(\tau_n - m \) for some fixed \(m \in \mathbb{N}_0. \) For convenience we assume \(0 \leq Y_n \leq 1. \) Then for \(l > m \) because of
\[
\mathbb{E}[Z_n | \Pi] = e^{S_n} \text{ a.s. and } 1 - s^z \leq z.
\]
\[
\mathbb{E}[Y_n (1 - s^Z_n) e^{-S_n}; \tau_{n-m} < n - l, \tau_n = n]
\leq \mathbb{E}[Z_n e^{-S_n}; \tau_{n-m} < n - l, \tau_n = n]
= \mathbb{P}(\tau_{n-m} < n - l, \tau_n = n).
\]

From duality
\[
\mathbb{P}(\tau_{n-m} < n - l, \tau_n = n) \leq \mathbb{P}(S_k \geq S_m \text{ for some } l < k \leq n, M_n < 0)
\]
and in view of Lemma 2.3
\[
\mathbb{P}(S_k \geq S_m \text{ for some } l < k \leq n, M_n < 0)
\sim \mathbb{P}^-(S_k \geq S_m \text{ for some } k > l) \mathbb{P}(M_n < 0).
\]

Since \(S_k \to -\infty \) \(\mathbb{P}^- \)-a.s. (see Lemma 2.6 in [4]), we obtain that for given \(\varepsilon > 0 \) and \(m \in \mathbb{N} \) the estimate \(\mathbb{P}^-(S_k \geq S_m \text{ for some } k > l) < \varepsilon \) is valid, if only \(l \) is chosen large enough. Altogether this implies that for \(l \) sufficiently large
\[
\mathbb{E}[Y_n (1 - s^Z_n) e^{-S_n}; \tau_n = n]
\leq \mathbb{E}[Y_n (1 - s^Z_n) e^{-S_n}; \tau_{n-m} \geq n - l, \tau_n = n] + \chi_1
\]
where \(|\chi_1| \leq \varepsilon \mathbb{P}(\tau_n = n). \)

Next from the branching property
\[
\mathbb{E}[Y_n (1 - s^Z_n) e^{-S_n}; \tau_{n-m} \geq n - l, \tau_n = n]
= \mathbb{E}[Y_n (1 - f_{0,n}(s)) e^{-S_n}; \tau_{n-m} \geq n - l, \tau_n = n].
\]
By means of duality

\[
|E[Y_n(1 - f_{0,n}(s)) e^{-S_n}; \tau_n - m \geq n - l, \tau_n = n] - E[Y_n(1 - f_{n-m,n}(s)) e^{-(S_n - S_{n-m})}; \tau_n - m \geq n - l, \tau_n = n]| \\
\leq E\left[|(1 - f_{0,n}(s)) e^{-S_n} - (1 - f_{n-m,n}(s)) e^{-(S_n - S_{n-m})}|; \tau_n = n\right] \\
= E\left[|(1 - f_{n,0}(s)) e^{-S_n} - (1 - f_{m,0}(s)) e^{-S_m}|; M_n < 0\right].
\]

Now \(U_n(s) = (1 - f_{n,0}(s)) e^{-S_n}\) is decreasing in \(n\) (see Lemma 2.3 in [17]) with limit \(U_\infty(s)\), and for given \(\varepsilon > 0\) we obtain from Lemma 2.3 for \(n\) large enough

\[
|E[Y_n(1 - f_{0,n}(s)) e^{-S_n}; \tau_n - m \geq n - l, \tau_n = n] - E[Y_n(1 - f_{n-m,n}(s)) e^{-(S_n - S_{n-m})}; \tau_n - m \geq n - l, \tau_n = n]| \\
\leq 2E^{-[U_m(s) - U_\infty(s)]}P(\tau_n = n) \leq \varepsilon P(\tau_n = n),
\]

if only \(m\) is chosen large enough. Now \(\{\tau_n - m \geq n - l, \tau_n = n\}\) may be decomposed as \(\bigcup_{j=m}^{\infty} (\{\tau_{n-j} = n - j, L_{n-j,n-m} \geq 0, \tau_n = n\}\) and for large \(n\) by \(Y_n = \varphi_n(Q_1, \ldots, Q_{n-r_n})\)

\[
E[Y_n(1 - f_{n-m,n}(s)) e^{-(S_n - S_{n-m})}; \tau_{n-j} = n - j, L_{n-j,n-m} \geq 0, \tau_n = n] \\
= E[Y_n; \tau_{n-j} = n - j] E[(1 - f_{j-m,j}(s)) e^{-(S_j - S_{j-m})}; L_{j-m} \geq 0, \tau_j = j].
\]

By assumption \(E[Y_n; \tau_{n-j} = n - j] \sim \ell P(\tau_n = n)\). Putting pieces together we obtain

\[
E[Y_n(1 - s^{Z_n}) e^{-S_n}; \tau_n = n] \\
= E[Y_n(1 - s^{Z_n}) e^{-S_n}; \tau_{n-m} \geq n - l, \tau_n = n] + \chi_1 \\
= \ell P(\tau_n = n) \sum_{j=m}^{l} E[(1 - f_{j-m,j}(s)) e^{-(S_j - S_{j-m})}; L_{j-m} \geq 0, \tau_j = j] + \chi_2
\]

where \(|\chi_2| \leq 3\varepsilon P(\tau_n = n)\). In particular we may apply this formula for \(Y_n = 1\), to obtain for large \(n\)

\[
|E[Y_n(1 - s^{Z_n}) e^{-S_n}; \tau_n = n] - \ell E[(1 - s^{Z_n}) e^{-S_n}; \tau_n = n]| \leq 6\varepsilon P(\tau_n = n)
\]

and our computations boil down to the formula

\[
E[Y_n(1 - s^{Z_n}) e^{-S_n}; \tau_n = n] \sim \ell E[(1 - s^{Z_n}) e^{-S_n}; \tau_n = n].
\]
The right-hand side may be written as \(\ell \mathbb{E}[(1 - f_n(s))e^{-S_n}; M_n < 0] \) and another application of Lemma 2.3 gives altogether

\[
\mathbb{E}[Y_n(1 - sZ_n)e^{-S_n}; \tau_n = n] \sim \ell \mathbb{E}^{-}[U_\infty(s)]\mathbb{P}(\tau_n = n).
\]

In view of \(s^21_{z>0} = (1 - 0^2) - (1 - s^2) \) this implies

\[
\mathbb{E}[Y_n^\circ Z_n e^{-S_n}; Z_n > 0, \tau_n = n] \sim \ell \mathbb{E}^{-}[U_\infty(s)]\mathbb{P}(\tau_n = n) \quad (3.8)
\]

with \(h(s) = \mathbb{E}^{-}[U_\infty(s)] - U_\infty(s) \).

Now we show that \(h(1) = \mathbb{E}^{-}[U_\infty(0)] > 0 \). This follows from an estimate due to Agresti (see [6] and the proof of Proposition 3.1 in [4]), which in our case reads

\[
(1 - f_k,0(s))e^{-S_k} \geq \left(\frac{1}{1 - s} + \sum_{i=1}^{k} \eta_i e^{S_i} \right)^{-1}.
\]

Letting \(k \to \infty \) Lemma 3.1 implies \(U_\infty(s) > 0 \) \(\mathbb{E}^{-}\)-a.s. and thus \(h(s) > 0 \) for all \(s < 1 \). For \(s = 0 \) it follows that \(h(1) = \mathbb{E}^{-}[U_\infty(0)] > 0 \).

Also from \(\mathbb{E}[Z_n e^{-S_n}; \tau_n = n] = \mathbb{E} [\mathbb{E}[Z_n | \Pi] e^{-S_n}; \tau_n = n] = \mathbb{P}(\tau_n = n) \) and from \(1 - s^2 \leq 1 (1 - s) \) we get

\[
\mathbb{E}[U_n(s); M_n < 0] = \mathbb{E}[(1 - sZ_n)e^{-S_n}; \tau_n = n] \\
\leq (1 - s)\mathbb{E}[Z_n e^{-S_n}; \tau_n = n] = (1 - s)\mathbb{P}(\tau_n = n)
\]

which for \(n \to \infty \) implies \(h(1) - h(s) = \mathbb{E}^{-}[U_\infty(s)] \leq 1 - s \). Therefore \(h \) is continuous at \(s = 1 \). Our claim follows now from (3.8) and the continuity theorem for generating functions.

Lemma 3.3. Let \(Y_n \) fulfil the same conditions as in Lemma 3.2. Then under Assumptions A1 to A3 there is a non-vanishing finite measure \(\nu'' \) on \(\mathbb{N} \times \mathbb{N}_0 \) such that for every bounded \(\psi : \mathbb{N} \times \mathbb{N}_0 \to \mathbb{R} \)

\[
\frac{\mathbb{E}[Y_n \psi(Z_n, n - \tau_n); Z_n > 0]}{\gamma^n \mathbb{P}(\tau_n = n)} \to \ell \int \psi \, d\nu''.
\]

Proof. We have for fixed \(j \in \mathbb{N}_0 \)

\[
\gamma^{-n} \mathbb{E}[Y_n \psi(Z_n, n - \tau_n); Z_n > 0, \tau_n = n - j] = \mathbb{E}[Y_n \psi_j(Z_{n-j}) e^{-S_{n-j}}; \tau_{n-j} = n - j]
\]

18
with \(\psi_j(z) = \mathbb{E}[\psi(Z_j, j)e^{-S_n}; Z_j > 0, L_j \geq 0 | Z_0 = z] \) for \(z > 0 \) and \(\psi_j(0) = 0 \). Also there is a finite measure \(p_j' \) such that \(\int \psi_j \, dp' = \int \psi(\cdot, j) \, dp'_j \). From the preceding lemma

\[
\mathbb{E}[Y_n \psi(Z_n, n - \tau_n); Z_n > 0, \tau_n = n - j] = \ell \int \psi(\cdot, j) \, dp'_j .
\]

In particular \(p'_0 \) is non-vanishing. Thus it remains to show that for given \(\varepsilon > 0 \) there is a natural number \(k \) such that

\[
\gamma^{-n} \mathbb{E}[Y_n \psi(Z_n, n - \tau_n); Z_n > 0, \tau_n \leq n - k] \leq \varepsilon \mathbb{P}(\tau_n = n)
\]

for large \(n \). Without loss \(0 \leq Y_n \leq 1 \) and \(0 \leq \psi \leq 1 \). Then

\[
\gamma^{-n} \mathbb{E}[Y_n \psi(Z_n, n - \tau_n); Z_n > 0, \tau_n \leq n - k] \leq \mathbb{E}[e^{-S_n}; Z_n > 0, \tau_n \leq n - k]
\]

\[
\leq \sum_{i=0}^{n-k} \mathbb{E}[e^{-S_i}; Z_i > 0, \tau_i = i, L_{i,n} \geq 0]
\]

\[
\leq \sum_{i=0}^{n-k} \mathbb{E}[e^{-S_i}; \tau_i = i, L_{i,n} \geq 0] = \sum_{i=0}^{n-k} \mathbb{P}(\tau_i = i) \mathbb{E}[e^{-S_{n-i}}; L_{n-i} \geq 0]
\]

From Lemmas 2.1, 2.2 both \(\mathbb{P}(\tau_n = n) \) and \(\mathbb{E}[e^{-S_n}; L_n \geq 0] \) are regularly varying with negative indices. Therefore for large \(n \)

\[
\gamma^{-n} \mathbb{E}[Y_n \psi(Z_n, n - \tau_n); Z_n > 0, \tau_n \leq n - k]
\]

\[
\leq \mathbb{E}[e^{-S_{n/3}}; L_{n/3} \geq 0] \sum_{i \leq n/2} \mathbb{P}(\tau_i = i)
\]

\[
+ \mathbb{P}(\tau_{n/3} = n/3) \sum_{k \leq j \leq n/2} \mathbb{E}[e^{-S_j}; L_j \geq 0].
\]

Also \(\mathbb{E}[e^{-S_n}; L_n \geq 0] = o(\frac{1}{n^2}) \) and \(\sum_{i \leq n} \mathbb{P}(\tau_i = i) = O(n \mathbb{P}(\tau_n = n)) \) and \(\sum_{j \geq 1} \mathbb{E}[e^{-S_j}; L_j \geq 0] < \infty \). Therefore for every \(\varepsilon > 0 \) the right-hand side of the inequality above is bounded by \(\varepsilon \mathbb{P}(\tau_n = n) \), if \(k \) is large enough. This gives the claim. \(\square \)

Choosing \(Y_n = 1 \) and \(\psi = 1_{\mathbb{N} \times \mathbb{N}_0} \), we obtain Theorem 1.1

Proof of Theorem 1.2 In view of Theorem 1.1 the first part is a special case of Lemma 3.3 with \(Y_n = 1 \) and \(\psi(Z_n, n - \tau_n) = 1 - s^{Z_n} \). For the second part we use Hölder’s inequality (with \(1/p = \beta, 1/q = 1 - \beta \)) and (1.3)

\[
\gamma^{-n} \mathbb{E}[Z_n^\beta] = \mathbb{E}[\mathbb{E}[Z_n^\beta 1_{Z_n > 0} \mid \Pi] e^{-S_n}]
\]

\[
\leq \mathbb{E}[\mathbb{E}[Z_n \mid \Pi]^{\beta} \mathbb{P}(Z_n > 0 \mid \Pi)^{1-\beta} e^{-S_n}] \leq \mathbb{E}[e^{(1-\beta)(L_n-S_n)}].
\]
Again we decompose with τ_n and obtain
\[
\gamma^{-n}E[Z_n^\beta] \leq \sum_{i=0}^{n} E[e^{(1-\beta)(L_n-S_n)}; \tau_i = i, L_{i,n} \geq 0] \\
= \sum_{i=0}^{n} P(\tau_i = i)E[e^{-(1-\beta)S_{n-i}}; L_{n-i} \geq 0].
\]
As above we show by means of Lemma 2.1 with $r = 1 - \beta$ that this quantity is of order $P(\tau_n = n)$, and the claim follows.

Proof of Theorem 1.3. Again the first part is a special case of Lemma 3.3. Next let $\phi: D[0,1] \to \mathbb{R}$ be bounded and continuous. We apply Lemma 3.3 to $Y_n = \phi(\frac{1}{a_n}\bar{S}^n)$, where $\bar{S}^n_t = S_{nt \wedge r_n}$ with natural numbers $r_n \to \infty$. If $n - r_n = o(n)$, then it follows from Lemma 2.5 and standard arguments that $E[Y_n \mid \tau_{n-m} = n-m] \to E[\phi(L^*)]$. Lemma 3.3 yields
\[
E[\phi(\frac{1}{a_n}\bar{S}^n) \mid Z_n > 0] \to E[\phi(L^*)].
\]
Thus $(\frac{1}{a_n}\bar{S}^n \mid Z_n > 0) \overset{d}{\to} L^*$. Also conditional asymptotic independence follows from Lemma 3.3. Finally for fixed r
\[
P(|X_{n-r+1}| + \cdots + |X_n| \geq \sqrt{a_n}; Z_n > 0) \\
\leq P(Z_{n-r} > 0)P(|X_1| + \cdots + |X_r| \geq \sqrt{a_n}) = o(P(Z_n > 0)).
\]
This holds true also, if $r = r_n \to \infty$ sufficiently slow. It follows
\[
\gamma^{-n}P(\frac{1}{a_n}\sup |S^n - \bar{S}^n| \geq \varepsilon \mid Z_n > 0) \to 0
\]
for all $\varepsilon > 0$. Therefore $(\frac{1}{a_n}(S^n - \bar{S}^n) \mid Z_n > 0) \overset{d}{\to} 0$ in $D[0,1]$ and consequently $(\frac{1}{a_n}S^n \mid Z_n > 0) \overset{d}{\to} L^*$. This finishes the proof.

4 Trees with stem

For every $n = 0, 1, \ldots, \infty$ let \mathcal{T}_n be the set of all ordered rooted trees of height exactly n. For a precise definition we refer to the coding of ordered trees and their nodes given by Neveu [20]. Then $\mathcal{T}_{\geq n} = \mathcal{T}_n \cup \mathcal{T}_{n+1} \cup \cdots \cup \mathcal{T}_\infty$ is the set of ordered rooted trees of at least height n. With $[\]_n : \mathcal{T}_{\geq n} \to \mathcal{T}_n$ we denote the operation of pruning a tree $t \in \mathcal{T}_{\geq n}$ to a tree $[t]_n \in \mathcal{T}_n$ of height exactly n by eliminating all nodes of larger height.
For \(n = 0, 1, \ldots, \infty \) a tree with a stem of height \(n \), shortly a *trest* of height \(n \), is a pair

\[
t = (t, k_0 k_1 \ldots k_n) ,
\]

where \(t \in T_{\geq n} \) and \(k_0, \ldots, k_n \) are nodes in \(t \) such that \(k_0 \) is the root (founding ancestor) and \(k_i \) is an offspring of \(k_{i-1} \). Thus \(k_i \) belongs to generation \(i \). We call \(k_0 \ldots k_n \) the stem within \(t \), it is determined by \(k_n \). \(T'_n \) denotes the set of all trests of height \(n \).

A trest \(t = (t, k_0 k_1 \ldots k_n) \) of height \(n \) can also be pruned at height \(m \leq n \) to obtain the trest of height \(m \)

\[
[t]_m = ([t]_m, k_0 \ldots k_m) .
\]

To every tree \(t \in T_{\geq n} \) there belongs a unique trest

\[
\langle t \rangle_n = ([t]_n, k_0(t) \ldots k_n(t))
\]

of height \(n \), where \(k_0(t) \ldots k_n(t) \) is the *leftmost* stem, which can be fitted into \([t]_n\). Notice that this stem is uniquely determined, since \(t \) is ordered and of at least height \(n \).

Now let \(\pi = (q_1, q_2, \ldots) \) be a fixed environment. Define the distribution \(\tilde{q}_i \) by its weights

\[
\tilde{q}_i(y) = \frac{1}{m(q_i)} y q_i(y) , \quad y = 0, 1, \ldots
\]

Then a corresponding *LPP-trest* (Lyons-Pemantle-Peres trest) is the random trest \(\tilde{T} = (\tilde{T}, \tilde{K}_0 \tilde{K}_1 \ldots) \) with values in \(T'_\infty \) satisfying the following properties: Given \(\Pi = (q_1, q_2, \ldots) \) a.s.

- the offspring numbers of all individuals are independent random variables,
- the offspring number of \(\tilde{K}_{i-1} \) has distribution \(\tilde{q}_i \) and the offspring number of any other individual in generation \(i - 1 \) has distribution \(q_i \), and
- the node \(\tilde{K}_i \) is uniformly distributed among all children of \(\tilde{K}_{i-1} \), given the offspring number of \(\tilde{K}_{i-1} \) and given all other random quantities.

Shortly speaking: From the infinite stem individuals grow according to a size biased distribution, and from the other individuals ordinary branching trees arise to the right and left of the stem. Such type of trests have been considered by Lyons, Peres and Pemantle [19] in the Galton-Watson case.

Let \(\tilde{Z}_n \) be the population size of the LPP-trest in generation \(n \).
Lemma 4.1. Under Assumptions A1 to A3

\[e^{-S_n} \bar{Z}_n \rightarrow W^+ \quad P^+\text{-a.s.} \]

with some random variable \(W^+ \) fulfilling \(W^+ > 0 \) \(P^+\text{-a.s.} \).

Proof. We use the representation

\[\bar{Z}_n = 1 + \sum_{i=0}^{n-1} \bar{Z}_i^n \]

where \(\bar{Z}_i^n \) is the number of individuals in generation \(n \) other than \(\bar{K}_n \), which descend from \(\bar{K}_i \) but not from \(\bar{K}_{i+1} \). Thus

\[E[\bar{Z}_i^n | \Pi] = e^{S_n - S_{i+1}} E[\bar{Z}_i^{i+1} | \Pi] = \eta_{i+1} e^{S_n - S_i}. \tag{4.9} \]

Now given the environment \(e^{-S_n} \sum_{i=k}^{n-1} \bar{Z}_i^n \) is for \(n > k \) a non-negative submartingale. Therefore Doob’s inequality implies that for every \(\varepsilon \in (0,1) \)

\[P(\max_{k < m \leq n} e^{-S_n} \sum_{i=k}^{m-1} \bar{Z}_i^m \geq \varepsilon | \Pi) \leq \frac{1}{\varepsilon} \sum_{i=k}^{n-1} e^{-S_n} E[\bar{Z}_i^n | \Pi] \leq \frac{1}{\varepsilon} \sum_{i=k}^{n-1} \eta_{i+1} e^{-S_i} \]

and

\[P^+ \left(\sup_{m > k} e^{-S_n} \sum_{i=k}^{m-1} \bar{Z}_i^m \geq \varepsilon \right) \leq \frac{1}{\varepsilon} E^+ \left[1 \wedge \sum_{i=k}^{n-1} \eta_{i+1} e^{-S_i} \right]. \]

From Lemmas 2.3 and 3.1 it follows that

\[P^+ \left(\sup_{m > k} e^{-S_n} \sum_{i=k}^{m-1} \bar{Z}_i^m \geq \varepsilon \right) \leq \varepsilon , \]

if \(k \) is chosen large enough. Also \(e^{-S_n} \bar{Z}_n^i \) is for \(n \geq i+1 \) and a fixed environment a non-negative martingale, such that for \(n \rightarrow \infty \)

\[e^{-S_n} \bar{Z}_n^i \rightarrow W^i \quad P^+\text{-a.s.} \]

These facts together with \(S_n \rightarrow \infty \) \(P^+\text{-a.s.} \) imply that

\[e^{-S_n} \bar{Z}_n \rightarrow W^+ \quad P^+\text{-a.s.} \]

for some random variable \(W^+ \). Also \(W^+ \geq \sum_{i \geq 0} W^i \) \(P^+\text{-a.s.} \).
Thus it remains to show that $\sum_{i \geq 0} W^i > 0$ P^+-a.s. Given Π, the random variables W^i are independent, since they arise from independent branching processes in the LPP-trest. In view of the second Borel-Cantelli Lemma it is thus sufficient to prove

$$\sum_{i \geq 0} P^+(W^i > 0 \mid \Pi) = \infty \quad P^+$-a.s.$$

Now we use the formula

$$P^+(W^i > 0 \mid \Pi) \geq \left(\sum_{j=i}^{\infty} \eta_{j+1} e^{-(S_j - S_i)} \right)^{-1},$$

which is taken from the proof of Proposition 3.1 in [4] (a few lines after (3.7) therein). Because of Lemma 3.1 above the right-hand side is strictly positive P^+-a.s. Moreover there are random times $0 = \nu(0) < \nu(1) < \cdots$ such that

$$\left(\sum_{j=\nu(k)}^{\infty} \eta_{j+1} e^{-(S_j - S_{\nu(k)})} \right)^{-1}, \quad k = 0, 1, \ldots$$

is a stationary sequence of random variables, which is a consequence of Tanaka’s decomposition, see [22] and Lemma 2.6 in [4]. From Birkhoff’s ergodic theorem it follows that

$$\frac{1}{n} \sum_{k=1}^{n} \left(\sum_{j=\nu(k)}^{\infty} \eta_{j+1} e^{-(S_j - S_{\nu(k)})} \right)^{-1}$$

has a strictly positive limit P^+-a.s. This implies our claim. □

We use the LPP-tree to approximate conditioned BPRE. Let us denote by T a branching tree in random environment Π. This is nothing else than the ordered rooted tree belonging to a BPRE in environment Π. Again let Z_n denote its number of individuals in generation n.

Theorem 4.2. Assume A1 to A3. Let $0 \leq r_n < n$ be a sequence of natural numbers with $r_n \to \infty$. Let Y_n be uniformly bounded random variables of the form $Y_n = \varphi(Q_1, \ldots, Q_{n-r_n})$ and let $B_n \subset T_{n-r_n}$, $n \geq 1$. If for some $\ell \geq 0$

$$E[Y_n; (\bar{T})_{n-r_n} \in B_n \mid \tau_{n-m} = n - m] \to \ell$$

for all $m \geq 0$, then

$$E[Y_n; (\langle T \rangle)_{n-r_n} \in B_n \mid Z_n > 0] \to \ell.$$

B_n may be random, depending only on the environment Π.

23
For the proof we use the following theorem due to J. Geiger (see [16]). Let \(\pi = (q_1,q_2,\ldots) \) be a fixed environment, let \(P_{\pi}(\cdot) \) be the corresponding probabilities and let

\[
\mathbf{T}_{n,\pi} = (T_n,K_0\ldots K_n)
\]
denote a random trest of height \(n \) and let for \(i = 1,\ldots,n \)

\[
\begin{align*}
T'_i &= \text{subtree within } T_n \text{ right to the stem with root } K_{i-1}, \\
T''_i &= \text{subtree within } T_n \text{ left to the stem with root } K_{i-1}, \\
R_i &= \text{size of the first generation of } T'_i, \\
L_i &= \text{size of the first generation of } T''_i.
\end{align*}
\]

For \(T_{n,\pi} \) the following properties are required:

- \(P_{\pi}(R_i = r, L_i = l) = q_i(r + l + 1) \frac{P_{\pi}(Z_n > 0 | Z_i = 1) P_{\pi}(Z_n = 0 | Z_i = 1)^l}{P_{\pi}(Z_n > 0 | Z_{i-1} = 1)} \).
- \(T'_i \), if decomposed at its first generation, consists of \(R_i \) subtrees \(\tau'_{ij} \), \(j = 1,\ldots,R_i \), which are branching trees within the fixed environment \((q_{i+1},q_{i+2},\ldots) \).
- Similarly \(T''_i \) consists of \(L_i \) subtrees \(\tau''_{ij} \), which are branching trees within the fixed environment \((q_{i+1},q_{i+2},\ldots) \) conditioned to be extinct before generation \(n - i \).
- All pairs \((R_i, L_i) \) and all subtrees \(\tau'_{ij}, \tau''_{ij} \) are independent.

These properties determine the distribution of \(T_{n,\pi} \) up to possible offspring of \(K_n \) and thus the distribution of \(\langle T_{n,\pi} \rangle_n \).

Theorem 4.3. For almost all \(\pi \) the conditional distribution of \(\langle T \rangle_n \) given \(\Pi = \pi, Z_n > 0 \) is equal to the distribution of \(\langle T_{n,\pi} \rangle_n \).

Geiger proved this result for a fixed environment \(q_1 = q_2 = \cdots \) i.e. in the Galton-Watson case, see Proposition 2.1 in [16]. His proof carries over straightforward to a varying environment.

Proof of Theorem 4.3

For the trest \(\tilde{T} \) we introduce the notations \(\tilde{T}'_i, \tilde{T}''_i, \tilde{R}_i, \tilde{L}_i, \tilde{\tau}'_{ij}, \tilde{\tau}''_{ij} \). They have the same meaning as above \(T'_i, T''_i, R_i, L_i, \tau'_{ij}, \tau''_{ij} \) for the trest \(T_{n,\pi} \). From the construction of \(\tilde{T} \)

\[
P_{\pi}(\tilde{R}_i = r, \tilde{L}_i = l) = q_i(r + l + 1)e^{-X_i}.
\]
\(\tilde{\tau}_{ij} \) and \(\tau_{ij}' \) are equal in distribution, whereas \(\tilde{\tau}_{ij}'' \) is no longer conditioned to be extinct in generation \(n - i \), as this is the case for \(\tau_{ij}'' \).

In order to compare both tests we will couple them. We first consider the branching process in a fixed environment \(\pi = (q_1, q_2, \ldots) \) and again write the corresponding probabilities as \(\mathbf{P}_\pi(\cdot) \). To begin with we estimate the total variation distance between the distributions of \((R_i, L_i) \) and \((\tilde{R}_i, \tilde{L}_i) \). Note that

\[
\mathbf{P}_\pi(Z_n > 0 \mid Z_{i-1} = 1) = \sum_{j \geq 1} \mathbf{P}_\pi(Z_n > 0 \mid Z_i = j) \mathbf{P}_\pi(Z_i = j \mid Z_{i-1} = 1)
\]

\[
\leq \sum_{j \geq 1} j \mathbf{P}_\pi(Z_n > 0 \mid Z_i = 1) \mathbf{P}_\pi(Z_i = j \mid Z_{i-1} = 1)
\]

\[
= e^{X_i} \mathbf{P}_\pi(Z_n > 0 \mid Z_i = 1)
\]

such that for \(r, l, m \geq 0 \) and \(i \leq n - m \)

\[
\mathbf{P}_\pi(\tilde{R}_i = r, \tilde{L}_i = l) - \mathbf{P}_\pi(R_i = r, L_i = l)
\]

\[
\leq q_i(r + l + 1)e^{-X_i}(1 - \mathbf{P}_\pi(Z_n = 0 \mid Z_i = 1))
\]

\[
\leq q_i(r + l + 1)e^{-X_i} l(1 - \mathbf{P}_\pi(Z_n = 0 \mid Z_i = 1))
\]

\[
\leq lq_i(r + l + 1)e^{-X_i} \mathbf{P}_\pi(Z_{n-m} > 0 \mid Z_i = 1)
\]

\[
\leq lq_i(r + l + 1)e^{-X_i} e^{S_{n-m} - S_i}.
\]

Since the right-hand side is always non-negative, we may estimate the total variation distance as

\[
\frac{1}{2} \sum_{r,l \geq 0} |\mathbf{P}_\pi(\tilde{R}_i = r, \tilde{L}_i = l) - \mathbf{P}_\pi(R_i = r, L_i = l)|
\]

\[
= \sum_{r,l \geq 0} (\mathbf{P}_\pi(\tilde{R}_i = r, \tilde{L}_i = l) - \mathbf{P}_\pi(R_i = r, L_i = l))
\]

\[
\leq e^{-X_i} e^{S_{n-m} - S_i} \sum_{r,l \geq 0} lq_i(r + l + 1)
\]

\[
= e^{-X_i} e^{S_{n-m} - S_i} \frac{1}{2} \sum_{y=1}^{\infty} y(y - 1) q_i (y) = \frac{1}{2} \eta_i e^{S_{n-m} - S_i - 1}.
\]

Similarly we estimate the total variation distance between the distributions of \(\tau_{ij}'' \) and \(\tilde{\tau}_{ij}'' \). The second distribution is equal to the first distribution conditioned to be extinct in generation \(n - i \). This event can be expressed as
\{\tau_{ij}'' \in B_i\} with the set \(B_i\) of trees of height less than \(n - i\), thus for some tree \(t\)

\[
\mathbf{P}_\pi(\tau_{ij}'' = t) - \mathbf{P}_\pi(\tilde{\tau}_{ij}'' = t) = \mathbf{P}_\pi(\tau_{ij}'' = t) - \mathbf{P}_\pi(\tau_{ij}'' = t \mid \tau_{ij}'' \in B_i) \\
\leq \mathbf{P}_\pi(\tau_{ij}'' = t)1_{B_i}(t) .
\]

Again, since the right-hand side is non-negative for \(i \leq n - m\)

\[
\frac{1}{2} \sum_t |\mathbf{P}_\pi(\tau_{ij}'' = t) - \mathbf{P}_\pi(\tilde{\tau}_{ij}'' = t)| \leq \mathbf{P}_\pi(\tau_{ij}'' \in B_i^c) \\
= \mathbf{P}_\pi(Z_n > 0 \mid Z_i = 1) \leq \mathbf{P}_\pi(Z_{n-m} > 0 \mid Z_i = 1) \leq e^{S_{n-m} - S_i} .
\]

Now we consider the following construction: Take couplings of the pairs \((R_i, L_i), (\tilde{R}_i, \tilde{L}_i)\) and of \(\tau_{ij}'\) and \(\tilde{\tau}_{ij}'\). Also let \(\tau_{ij}' = \tilde{\tau}_{ij}'\). Put these components together to obtain \((T_i', T_i'')\) and \((\tilde{T}_i', \tilde{T}_i'')\). If the couplings are all independent of each other, then the resulting trees have the required distributional properties.

We denote the resulting probabilities again by \(\mathbf{P}_\pi\). Thus

\[
\mathbf{P}_\pi((T_i', T_i'') \neq (\tilde{T}_i', \tilde{T}_i'')) \\
\leq \mathbf{P}_\pi((R_i, L_i) \neq (\tilde{R}_i, \tilde{L}_i)) + \sum r,l \sum_{j=1}^l \mathbf{P}_\pi(\tilde{R}_i = r, \tilde{L}_i = l) \mathbf{P}_\pi(\tau_{ij}'' \neq \tilde{\tau}_{ij}'') .
\]

For optimal couplings we may use the above estimates on the total variation distance and obtain for \(i \leq n - m\)

\[
\mathbf{P}_\pi((T_i', T_i'') \neq (\tilde{T}_i', \tilde{T}_i'')) \leq \frac{1}{2} \eta e^{S_{n-m} - S_i} + \sum_{r,l \geq 0} lq_i(r + l + 1)e^{-X_i}e^{S_{n-m} - S_i} \\
= \eta e^{S_{n-m} - S_i} .
\]

Altogether using Theorem \[4.3\] and the assumption that \(B_n\) depends only on \(\Pi\), it follows for \(m < r_n\)

\[
|\mathbf{P}_\pi(|\{T\}_{n-r_n} \in B_n \mid Z_n > 0) - \mathbf{P}_\pi(|\{\tilde{T}\}_{n-r_n} \in B_n)| \leq 1 \land \sum_{i=1}^{n-r_n} \eta e^{S_{n-m} - S_{i-1}} .
\]

Now from duality and from Lemmas \[2.3\] \[3.1\]

\[
\mathbf{E}\left[1 \land \sum_{i=1}^{n-r_n} \eta e^{S_{n-m} - S_{i-1}} \mid \tau_{n-m} = n - m\right] \\
= \mathbf{E}\left[1 \land \sum_{i=r_n-m}^{n-m} \eta e^{S_{i}} \mid M_{n-m} < 0\right] \to 0 .
\]
According to our assumptions \(E[Y_n \mathbf{P}_\Pi(\lfloor \tilde{T} \rfloor_{n-r_n} \in B_n) \mid \tau_{n-m} = n-m] \) converges to \(\ell \). Our estimates thus imply that
\[
E[Y_n \mathbf{P}_\Pi(\lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n \mid Z_n > 0) \mid \tau_{n-m} = n-m)] \to \ell .
\]
Thus we may apply Lemma 3.3 with \(Y_n \mathbf{P}_\Pi(\lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n \mid Z_n > 0) \) instead of \(Y_n, \psi = 1 \) to obtain
\[
E[Y_n \mathbf{P}_\Pi(\lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n \mid Z_n > 0) \mid \tau_{n-m} = n-m)] \to \ell .
\]
Also from Lemma 3.3 with \(Y_n = 1 \) and \(\psi = 1 \)
\[
\mathbb{P}(Z_n > 0) \sim \gamma^n \mathbb{P}(\tau_n = n) p''(N \times N_0) ,
\]
thus
\[
E[Y_n \mathbf{P}(\lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n \mid \Pi, Z_n > 0) \mid Z_n > 0)] \to \ell .
\]
Now
\[
E[Y_n \mathbf{P}(\lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n \mid \Pi, Z_n > 0) \mid Z_n > 0)] = E[Y_n \mathbf{P}(\lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n, Z_n > 0) \mid \Pi)]
\]
\[
= E[E[Y_n; \lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n, Z_n > 0) \mid \Pi)]
\]
\[
= E[Y_n; \lfloor \langle T \rangle_n \rfloor_{n-r_n} \in B_n, Z_n > 0) .
\]
This gives the claim of Theorem 4.2.

5 Proof of Theorem 1.4

Let again \(\tilde{T} \) denote the LPP-trest. Recall that \(\tilde{Z}_i^j \) is for \(i < j \) the number of the individuals in generation \(j \) other than \(\tilde{K}_j \), which descent from \(\tilde{K}_i \) but not from \(\tilde{K}_{i+1} \). For convenience we put \(\tilde{Z}_j^j = 0 \) for \(i \geq j \).

Lemma 5.1. Let \(0 < t < 1 \). Then for every \(\varepsilon > 0 \) there is a natural number \(a \) such that for any natural numbers \(n \) and \(\zeta \) in \([\tau_{nt}, nt] \)
\[
P\left(\sum_{i : \tau_{nt} \leq \tau_n \leq nt} \sqrt{\tilde{Z}_i^j} \geq \varepsilon \mid \tau_{n-m} = n-m \right) \leq \varepsilon ,
\]
if \(n \) is sufficiently large (depending on \(\varepsilon, a \) and \(m \)). \(\zeta \) may be random, depending only on the random environment \(\Pi \).
Proof. For $0 < \varepsilon \leq 1$ from Markov inequality and (4.9)

\[
\varepsilon \mathbb{P}\left(\sum_{|i-\tau_{nt}| \geq a} \frac{\bar{Z}_i}{e^{S_{nt} - S_i}} \geq \varepsilon ; \tau_{n-m} = n - m \right) \\
\leq \mathbb{E}\left[1 \wedge \sum_{i \leq \varsigma, |i-\tau_{nt}| \geq a} \eta_i e^{S_{nt} - S_i} ; \tau_{n-m} = n - m \right].
\]

Next we decompose with the value of τ_{nt} to obtain for $m \leq (1-t)n$

\[
\varepsilon \mathbb{P}\left(\sum_{|i-\tau_{nt}| \geq a} \frac{\bar{Z}_i}{e^{S_{nt} - S_i}} \geq \varepsilon ; \tau_{n-m} = n - m \right) \\
\leq \sum_{j \leq nt} \mathbb{E}\left[1 \wedge \sum_{i \leq \varsigma, |i-j| \geq a} \eta_i e^{S_j - S_i} ; \tau_j = j, L_{j,nt} \geq 0 \right] \\
\times \mathbb{P}(\tau_{(1-t)n-m} = \lfloor (1-t)n \rfloor - m). \]

We split the expectation:

\[
\sum_{j \leq nt} \mathbb{E}\left[1 \wedge \sum_{i \leq \varsigma, |i-j| \geq a} \eta_i e^{S_j - S_i} ; \tau_j = j, L_{j,nt} \geq 0 \right] = \\
= \sum_{j \leq nt} \mathbb{E}\left[1 \wedge \sum_{i=0}^{j-a} \eta_i e^{S_j - S_i} ; \tau_j = j \right] \mathbb{P}(L_{nt-j} \geq 0) \]
\[+ \sum_{j \leq nt} \mathbb{P}(\tau_j = j) \mathbb{E}\left[1 \wedge \sum_{i=j+a}^{\varsigma} \eta_i e^{S_j - S_i} ; L_j,nt \geq 0 \right].\]

Duality yields

\[
\sum_{j \leq nt} \mathbb{E}\left[1 \wedge \sum_{i \leq \varsigma, |i-j| \geq a} \eta_i e^{S_j - S_i} ; \tau_j = j, L_{j,nt} \geq 0 \right] = \\
\leq \sum_{a \leq j \leq nt} \mathbb{E}\left[1 \wedge \sum_{i=a}^{j} \eta_i e^{S_j} ; M_j < 0 \right] \mathbb{P}(L_{nt-j} \geq 0) \]
\[+ \sum_{a \leq k \leq nt} \mathbb{P}(\tau_{nt-k} = |nt| - k) \mathbb{E}\left[1 \wedge \sum_{i=a}^{k} \eta_i e^{-S_i} ; L_k \geq 0 \right].\]

From Lemmas 2.3, 3.1 we may choose a so large that

\[
\mathbb{E}\left[1 \wedge \sum_{i=a}^{j} \eta_i e^{S_i} ; M_j < 0 \right] \leq \delta \mathbb{P}(M_j < 0) \]
\[
\mathbb{E}\left[1 \wedge \sum_{i=a}^{k} \eta_i e^{-S_i} ; L_k \geq 0 \right] \leq \delta \mathbb{P}(L_k \geq 0)\]

28
for all $j, k > a$ and given $\delta > 0$. It follows from duality

$$
\sum_{j \leq nt} E \left[1 \wedge \sum_{i \leq \varsigma, |i-j| \geq a} \eta_{i+1} e^{S'_i - S_i}; \tau_j = j, L_{j, nt} \geq 0 \right] \\
\leq \delta \sum_{a \leq j \leq nt} P(\tau_j = j) P(L_{nt-j} \geq 0) \\
+ \delta \sum_{a \leq k \leq nt} P(\tau_{nt-k} = \lfloor nt \rfloor - k) P(L_k \geq 0) \leq 2\delta
$$

and

$$
P \left(\sum_{|i-\tau_{nt}| \geq a} \tilde{Z}_i^{\overset{j}{\sum}} e^{S'_i - S_{\tau_{nt}}} \geq \varepsilon; \tau_n = n \right) \\
\leq \frac{2\delta}{\varepsilon} P(\tau_{(1-t)n-m} = \lfloor (1-t)n \rfloor - m).
$$

Since $P(\tau_n = n)$ is regularly varying, the right-hand side is bounded by the term $\varepsilon P(\tau_n = n)$, if δ is chosen small enough. This gives the claim. \qed

We now come to the proof of the first part of Theorem 1.4. Let $\sigma_{t, n}$ as in (2.7) and define $\mu_n(i)$ as the smallest natural number j between 1 and i such that $\tau_{nt_i} = \sigma_{j, n}$,

$$
\mu_n(i) = \min\{j \leq i : \tau_{nt_i} = \sigma_{j, n}\}. \quad (5.10)
$$

Again let \tilde{Z}_j be the number of individuals in generation j of the LPP-trest \tilde{T}, thus

$$
\tilde{Z}_j = 1 + \sum_{k=0}^{j-1} \tilde{Z}_j^k.
$$

Therefore, given $\varepsilon > 0$ in view of the preceding lemma with $\varsigma = \tau_{nt}$ there is a natural number a such that given $\tau_{n-m} = n-m$ the probability is at least $1 - \varepsilon$ that the event

$$
\tilde{Z}_{\tau_{nt_i}} = 1 + \sum_{|k-\tau_{nt_i}| \leq a} \tilde{Z}_{\tau_{nt_i}}^k = 1 + \sum_{k=\sigma_{\mu_n(i), n}}^{\sigma_{\mu_n(i), n}} \tilde{Z}_{\sigma_{\mu_n(i), n}}^k
$$

holds for all $i = 1, \ldots, r$. Now note that given the environment Π the distribution of

$$
1 + \sum_{k=\sigma_{j, n}}^{\sigma_{j, n}-a} \tilde{Z}_{\sigma_{j, n}}^k
$$
only depends on \((Q_{\sigma_{j,n}}, \ldots, Q_{\sigma_{j,n}})\). Lemma \ref{lem:conv} says that given \(\tau_{n-m} = n-m\) these random vectors are asymptotically i.i.d. Also this lemma gives asymptotic independence of these random variables from
\[
\frac{1}{a_n}(S_{\sigma_{1,n}}, S_{n_1}, \ldots, S_{\sigma_{r,n}}, S_{n_1}),
\]
which in turn determines \(\mu_n(1), \ldots, \mu_n(r)\). Finally in view of Lemma \ref{lem:asymptotic} \(\mu_n(1), \ldots, \mu_n(r)\) converges in distribution to \(\mu(1), \ldots, \mu(r)\).

These observations hold for every \(\varepsilon > 0\). Therefore we may summarize our discussion as follows: For all \(m \geq 1\)
\[
((\tilde{Z}_{\tau_{n_1}}, \ldots, \tilde{Z}_{\tau_{n_r}}) | \tau_{n-m} = n-m) \overset{d}{\to} (V_{\mu(1)}, \ldots, V_{\mu(r)}),
\]
where the right-hand term has just the properties as given in Theorem \ref{thm:main}.

Now Theorem \ref{thm:main} gives the claim.

The proof of the second part of Theorem \ref{thm:main} is prepared by the following lemma. Let for fixed \(a\)
\[
\hat{Z}_{a,k} = \sum_{i: |i-\tau_{n_1}| \leq a} \tilde{Z}_i
\]
and
\[
\alpha_{a,n} = e^{S_{\tau_{n_1}} - S_{n_1}} \hat{Z}_{a,n_1}, \quad \beta_{a,n} = e^{S_{\tau_{n_1}} - S_{n_1} + a} \hat{Z}_{a,n_1} + a.
\]

Lemma 5.2. Let \(m \geq 1, \varepsilon > 0\) and \(0 < t < 1\). Then, if \(a\) is sufficiently large
\[
\limsup_{n \to \infty} \mathbb{P}(|\alpha_{a,n} - \beta_{a,n}| > \varepsilon | \tau_{n-m} = n-m) \leq \varepsilon .
\]

Proof. Because of Markov inequality and \eqref{eq:markov}
\[
\mathbb{P}(\beta_{a,n} > d | \tau_{n-m} = n-m) \leq \mathbb{P}(e^{S_{\tau_{n_1}} - S_{n_1} + a} \tilde{Z}_{a,n_1} + a | \Pi) \overset{d}{\to} \sqrt{d} | \tau_{n-m} = n-m) + \frac{1}{\sqrt{d}}
\]
\[
\leq \mathbb{P}\left(\sum_{i: |i-\tau_{n_1}| \leq a} \eta_i e^{S_{\tau_{n_1}} - S_i} \overset{d}{\to} \sqrt{d} | \tau_{n-m} = n-m\right) + \frac{1}{\sqrt{d}}.
\]

From Lemma \ref{lem:conv} (with \(r = 1\), thus \(\sigma_{1,n} = \tau_{n_1}\)) it follows that the sum converges in distribution for \(n \to \infty\) and
\[
\limsup_{n \to \infty} \mathbb{P}(\beta_{a,n} > d | \tau_{n-m} = n-m) \leq \mathbb{P}\left(\sum_{i \geq 1} \eta_i e^{S_i} \geq \sqrt{d}\right) + \mathbb{P}^+\left(\sum_{i \geq 0} \eta_i e^{-S_i} \geq \sqrt{d}\right) + \frac{1}{\sqrt{d}}.
\]

30
Therefore from Lemma 3.1 it results that there is a $d < \infty$ such that for all $a > 0$
\[
\limsup_{n \to \infty} P(\beta_{a,n} > d \mid \tau_{n-m} = n - m) < \varepsilon/2.
\]
Moreover from Lemma 2.5 $\frac{1}{\tau_{nt}}$ converges in distribution to a strictly positive random variable, thus $P(\tau_{nt} + a \geq nt \mid \tau_{n-m} = n - m) \to 0$ for $n \to \infty$.
Therefore
\[
P(|\beta_{a,n} - \alpha_{a,n}| > \varepsilon \mid \tau_{n-m} = n - m) \\
\leq \frac{\varepsilon}{2} + P(|\alpha_{a,n} - \beta_{a,n}| > \varepsilon, \beta_{a,n} \leq d, \tau_{nt} + a \leq nt \mid \tau_{n-m} = n - m).
\]

Now, given Π, $\hat{\Pi}_{a,\tau_{nt}+a}$ and $\tau_{nt} + a \leq nt$, the process $\hat{\Pi}_{a,k}$, $k \geq \tau_{nt} + a$ is a branching process in varying environment. Therefore $E[\alpha_{a,n} \mid \Pi, \hat{\Pi}_{a,\tau_{nt}+a}] = \beta_{a,n}$ a.s. Also the branching property yields
\[
\frac{\text{Var}(Z_{nt} \mid Z_0 = z, \Pi)}{E[Z_{nt} \mid Z_0 = 1, \Pi]^2} = z \left(e^{-S_{nt}} + \sum_{i=0}^{n-1} \eta_{i+1}e^{-S_{i}} - 1\right), \tag{5.11}
\]
therefore on $\tau_{nt} + a \leq nt$
\[
\varepsilon^2 P(|\beta_{a,n} - \alpha_{a,n}| > \varepsilon \mid \Pi, \hat{\Pi}_{a,\tau_{nt}+a}) \leq E[(\beta_{a,n} - \alpha_{a,n})^2 \mid \Pi, \hat{\Pi}_{a,\tau_{nt}+a}]
\leq \hat{\beta}_{a,\tau_{nt}+a} e^{2(S_{\tau_{nt}}-S_{\tau_{nt}+a})} \left(e^{(S_{\tau_{nt}}-S_{\tau_{nt}+a})} + \sum_{i=\tau_{nt}+a}^{\lfloor nt \rfloor} \eta_{i+1} e^{-(S_{i}-S_{\tau_{nt}})}\right)
\leq \hat{\beta}_{a,n} \left(e^{-(S_{\tau_{nt}}-S_{\tau_{nt}+a})} + \sum_{i=\tau_{nt}+a}^{\lfloor nt \rfloor} \eta_{i+1} e^{-(S_{i}-S_{\tau_{nt}})}\right).
\]
Inserting this estimate we obtain
\[
P(|\beta_{a,n} - \alpha_{a,n}| > \varepsilon; \tau_{n-m} = n - m)
\leq \frac{\varepsilon}{2} P(\tau_{n-m} = n - m) + \frac{d}{\varepsilon^2} E\left[1 \land \left(e^{-(S_{\tau_{nt}}-S_{\tau_{nt}+a})} + \sum_{i=\tau_{nt}+a}^{\lfloor nt \rfloor} \eta_{i+1} e^{-(S_{i}-S_{\tau_{nt}})}\right)\mid \tau_{nt} + a \leq nt, \tau_{n-m} = n - m\right]
\leq \frac{\varepsilon}{2} P(\tau_{n-m} = n - m) + \frac{d}{\varepsilon^2} \sum_{j=0}^{\lfloor nt \rfloor} P(\tau_{nt} = j) E\left[1 \land \left(e^{-(S_{\tau_{nt}}-j)} + \sum_{i=\tau_{nt}+a}^{\lfloor nt \rfloor} \eta_{i+1} e^{-(S_{i}-S_{\tau_{nt}})}\right)\mid \tau_{nt} - a \geq 0\right] P(\tau_{n(1-t)-m} = n(1-t) - m).
\]
From Lemmas 2.1, 2.3, 3.1 together with the fact that $P(\tau_{n} = n)$ is regularly varying our claim follows for a sufficiently large. \qed
We are now ready to finish the proof of Theorem 1.4. We first treat the case \(r = 1 \). From \(\tilde{Z}_{nt} = 1 + \hat{Z}_{a,nt} + \sum_{i < \tau_n} \tilde{Z}_{i,nt} \)

\[
P(|e^{S_{\tau_n}} - S_n - \beta_{a,n}| \geq 3\varepsilon | \tau_n - m = n - m)
\leq P(e^{S_{\tau_n}} - S_n \geq \varepsilon | \tau_n - m = n - m)
+ P(|\alpha_{a,n} - \beta_{a,n}| \geq \varepsilon | \tau_n - m = n - m)
+ P(e^{S_{\tau_n}} - S_n \sum_{i \in \{i \in \tau_n \}} \tilde{Z}_{i,nt} \geq \varepsilon | \tau_n - m = n - m) .
\]

From Lemma 2.5 it results that

\[
P(e^{S_{\tau_n}} - S_n \geq \varepsilon | \tau_n - m = n - m) = P(S_{\tau_n} - S_n \geq \log \frac{\varepsilon}{a_n} | \tau_n - m = n - m) \rightarrow 0 .
\]

Together with Lemmas 5.1, 5.2 it follows that for all \(\varepsilon > 0 \) there is a natural number \(a \) such that

\[
P(|e^{S_{\tau_n}} - S_n - \beta_{a,n}| \geq 3\varepsilon | \tau_n - m = n - m) \leq 3\varepsilon
\]

for large \(n \).

Now from Lemma 2.7 we see that \(\beta_{a,n} \), conditioned on \(\tau_n - m = n - m \), converges in distribution for every \(a \). This implies that \(e^{S_{\tau_n}} - S_n \tilde{Z}_{nt} \) conditioned on \(\tau_n - m = n - m \) converges in distribution. Moreover from Lemma 4.1 there is a \(\delta > 0 \) such that

\[
P^+(e^{-S_n} \sum_{1 \leq i \leq a} \tilde{Z}_{i,a} < \delta) < \varepsilon ,
\]

if only \(a \) is sufficiently large. Then from Lemma 2.7

\[
P(\beta_{a,n} < \delta | \tau_n - m = n - m) < \varepsilon ,
\]

if only \(n \) is sufficiently large. Therefore the limiting distribution of \(e^{S_{\tau_n}} - S_n \tilde{Z}_{nt} \) conditioned on \(\tau_n - m = n - m \) has no atom in zero. An application of Theorem 4.2 now gives the claim for \(r = 1 \).

Finally for \(r > 1 \) we let

\[
\beta_{a,n,i} = e^{S_{\sigma_i,n} - S_{\tau_n}} \hat{Z}_{a,\sigma_i,n+a} , \quad i = 1, \ldots, r .
\]

From (5.10) and our considerations above we know that for every \(i \leq r \)

\[
P(|e^{S_{\tau_n}} - S_n \tilde{Z}_{nt_i} - \beta_{a,n,\mu_n(i)}| \geq \varepsilon \text{ for some } i \leq r | \tau_n - m = n - m) \leq \frac{\varepsilon}{r}
\]

and the rest of the theorem follows by means of Lemma 2.7 and Theorem 4.2.
References

[1] Afanasyev, V. I. (1980). Limit theorems for a conditional random walk and some applications. Diss. Cand. Sci., Moscow, MSU.

[2] Afanasyev, V. I. (2001). Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment. Discrete Math. Appl. 11, 105-131.

[3] Afanasyev, V. I., Böinghoff, Ch., Kersting, G., and Vatutin, V. A. (2010). Limit theorems for weakly subcritical branching processes in random environment. DOI: 10.1007/s10959-010-0331-6 J. Theor. Probab.

[4] Afanasyev, V. I., Geiger, J., Kersting, G., and Vatutin, V. A. (2005). Criticality for branching processes in random environment. Ann. Probab. 33, 645–673.

[5] Afanasyev, V. I., Geiger, J., Kersting, G., and Vatutin, V. A. (2005). Functional limit theorems for strongly subcritical branching processes in random environment. Stoch. Proc. Appl. 115, 1658–1676.

[6] Agresti, A. (1975). On the extinction times of varying and random environment branching processes. J. Appl. Probab. 12, 39–46.

[7] Athreya, K.B. and Karlin, S. (1971). On branching processes with random environments: I, II. Ann. Math. Stat. 42, 1499–1520, 1843–1858.

[8] Bertoin, J. (1996). Lévy processes. Cambridge University Press, Cambridge.

[9] Bertoin, J. and Doney, R.A. (1994). On conditioning a random walk to stay non-negative. Ann. Probab. 22, 2152 – 2167.

[10] Bingham, N.H., Goldie, C.M., and Teugels, J.L. (1987). Regular variation. Cambridge University Press, Cambridge.

[11] Birkner, M., Geiger, J., and Kersting, G. (2005). Branching processes in random environment - a view on critical and subcritical cases. Proceedings of the DFG-Schwerpunktprogramm Interacting Stochastic Systems of High Complexity, Springer, Berlin, 265–291.
[12] **Caravenna, F. and Chaumont, L.** (2008). Invariance principles for random walks conditioned to stay positive. *Ann. I.H. Poincaré (B)*. **44**, 170–190.

[13] **Chaumont, L.** (1997). Excursion normalisée, méandre et pont pour les processus de Lévy stables. *Bull. Sci. Math.* **121**, 377–403.

[14] **Dekking, F.M.** (1988). On the survival probability of a branching process in a finite state i.i.d. environment. *Stoch. Proc. Appl.* **27**, 151–157.

[15] **Doney, R.A.** (1985). Conditional limit theorems for asymptotically stable random walks. *Z. Wahrscheinlichkeitstheor. verw. Geb.* **70**, 351–360.

[16] **Geiger, J.** (1999) Elementary new proofs of classical limit theorems for Galton-Watson processes. *J. Appl. Probab.* **36**, 301–309.

[17] **Geiger, J., Kersting, G., and Vatutin, V.A.** (2003). Limit theorems for subcritical branching processes in random environment. *Ann. I.H. Poincaré (B)*. **39**, 593–620.

[18] **Guivarc’h, Y. and Liu, Q.** (2001). Propriétés asymptotiques des processus de branchement en environnement aléatoire. *C. R. Acad. Sci. Paris Sér. I Math.* **332**, 339–344.

[19] **Lyons, R., Pemantle, R., and Peres, Y.** (1995). Conceptual proofs of $L \log L$ criteria for mean behavior of branching processes. *Ann. Probab.* **23**, 1125–1138.

[20] **Neveu, J.** (1986). Erasing a branching tree. *Adv. Appl. Probab. suppl.*, 101–108.

[21] **Smith, W.L. and Wilkinson, W.E.** (1969). On branching processes in random environments. *Ann. Math. Stat.* **40**, 814–827.

[22] **Tanaka, H.** (1989). Time reversal of random walks in one dimension. *Tokyo J. Math.* **12**, 159–174.

[23] **Vatutin, V. A.** (2004). A limit theorem for an intermediate subcritical branching process in a random environment. *Theory Probab. Appl* **48**, 481-492.

34
[24] Vatutin, V.A. and Dyakonova, E.E. (2004). Galton-Watson branching processes in random environment. I: limit theorems. Theory Probab. Appl., 48, 314–336.

[25] Vatutin, V.A. and Dyakonova, E.E. (2005). Galton-Watson branching processes in random environment. II: finite-dimensional distributions. Theory Probab. Appl., 49, 275–308.

[26] Vatutin, V.A. and Dyakonova, E.E. (2007). Branching processes in random environment and the bottlenecks in the evolution of populations. Theory Probab. Appl., 51, 189–210.