Self-Adjoint Extension of Symmetric Maps

H. N. Friedel

October 11, 2018

Abstract

A densely-defined symmetric linear map from/to a real Hilbert space extends to a self-adjoint map. Extension is expressed via Riesz representation. For a case including Friedrichs extension of a strongly monotone map, self-adjoint extension is unique, and equals closure of the given map.

Let \(\{ A : X \supseteq \mathcal{D}(A) \to X \} \) be a densely-defined symmetric linear map. Recall that if Hilbert-space \(X \) is complex, then \(A \) may lack self-adjoint extension (see e.g. [R]). In contrast, self-adjoint extension must exist if our Hilbert-space is real, as will be shown here.

To prepare, we express well-known material in a form convenient for the present purpose. For \(x \in X \), let \((x \mid A) \) denote the linear function \(\{ \mathcal{D}(A) \ni y \mapsto (x \mid Ay) \} \); we use the convention that scalar-product is linear in the second entry, conjugate-linear in the first. Observe the adjoint domain \(\mathcal{D}(A^*) \) equals \(\{ x \in X : (x \mid A) \text{ continuous} \} \). Recall: \(\mathcal{D}(A) \subseteq \mathcal{D}(A^*) \); \(A \) is self-adjoint iff \(\mathcal{D}(A) = \mathcal{D}(A^*) \). Let \(J \) denote the duality-map on \(X \), which maps \(x \) to function \((x \mid \cdot) \) in dual-space \(X^* \); write \(J^{-1} = R \), Riesz-representation. Extend Riesz-map \(R \) so as to act on densely-defined (continuous linear) functions, such as \((x \mid A) \) if \(x \in \mathcal{D}(A^*) \).

Note. Let \(A \) have symmetric extension \(B \). Then

(i) \(\mathcal{D}(A) \subseteq \mathcal{D}(B) \subseteq \mathcal{D}(B^*) \subseteq \mathcal{D}(A^*) \).

(ii) \(B(x \mid B) = R(x \mid A) \), if \(x \in \mathcal{D}(B^*) \subseteq \mathcal{D}(A^*) \).

(iii) \(Bx = R(x \mid A) \) if \(x \in \mathcal{D}(B) \).

Proof. (i) is known. For \(y \in \mathcal{D}(A) \), see \((R(x \mid B) \mid y) = (x \mid By) = (x \mid Ay) = (R(x \mid A) \mid y) \); density of \(\mathcal{D}(A) \) gives (ii). For \(x \in \mathcal{D}(B) \) and \(y \in \mathcal{D}(A) \), see \((x \mid A) \) is continuous, and \((Bx \mid y) = (x \mid By) = (x \mid Ay) = (R(x \mid A) \mid y) \); density of \(\mathcal{D}(A) \) gives (iii). Done.

Denote by \(\Lambda \) the linear map \(\{ \mathcal{D}(A^*) \ni x \mapsto R(x \mid A) \} \). Note (iii) (above) says \(A \) has at-most-one
symmetric extension to a given subspace \(Y \), with \(\mathcal{D}(A) \subseteq Y \subseteq \mathcal{D}(A^*) \); if such extension exists, then it equals the restriction \(\Lambda|_Y \).

Theorem. Every symmetric map from/to a real Hilbert space has self-adjoint extension.

Proof. Let \(E \) denote the order-set of linear subspaces \(Y \), with \(\mathcal{D}(A) \subseteq Y \subseteq \mathcal{D}(A^*) \), for which restriction \(\Lambda|_Y \) is symmetric; order by inclusion. (\(E \ni \mathcal{D}(A) \).) A chain \(C \in E \) is bound above by the union of subspaces in \(C \); so Zorn’s lemma ensures \(E \) has a maximal member, \(Z \). \(\Lambda|_Z \) is a maximal symmetric extension of \(A \).

Write \(\Lambda|_Z = M \). We claim \(\mathcal{D}(M) = \mathcal{D}(M^*) \); if true, then \(M \) would be self-adjoint, concluding the proof. It is enough to show \(\mathcal{D}(M^*) \subseteq \mathcal{D}(M) \); suppose not, seek a contradiction. Fix \(p \in \mathcal{D}(M^*) \setminus \mathcal{D}(M) \). On the subspace \(\mathcal{D}(M) \oplus \mathbb{R}p \), define a map \(T \):

\[
T(x + ap) = Mx + aR(p|M) \quad \text{if} \quad x \in \mathcal{D}(M), \ a \in \mathbb{R}.
\]

See \(T \) is linear, and \(T \) properly extends \(M \). To show symmetry of \(T \), let \(\{x, y\} \subset \mathcal{D}(M) \) and \(\{a, b\} \subset \mathbb{R} \); note \(\langle x | R(p|M) \rangle = \langle p | Mx \rangle \), \(\langle R(p|M) | y \rangle = \langle p | My \rangle \); compute:

\[
\begin{align*}
(T(x + ap) | y + bp) &= (Mx + aR(p|M) | y + bp) = \\
(Mx | y) + b(Mx | p) + a(R(p|M) | y) + ab(R(p|M) | p) = \\
(x | My) + b(x | R(p|M)) + a(p | My) + ab(p | R(p|M)) = \\
(x + ap | My + bR(p|M)) = (x + ap | T(y + bp)).
\end{align*}
\]

\(M \) has symmetric proper extension \(T \), so \(M \) is not a maximal symmetric extension of \(A \); contra. Done.

So, self-adjoint extension exists; now treat uniqueness. Fortunately, extension is unique for some cases of interest; sometimes we may even express extension simply, as closure of the given map. To prepare to show this, recall \(A \) has symmetric closure \(\tilde{A} \subseteq M \). Here, as before, \(\{A : X \supseteq \mathcal{D}(A) \to X\} \) is symmetric, with self-adjoint extension \(M \), from/to a Hilbert space \(X \), now assumed real. We also need the following two facts.

Note 1. If \(A \) has dense image and continuous inverse, then \(\tilde{A} \) is the unique self-adjoint extension of \(A \); \(M = \tilde{A} \). \(\tilde{A} \) maps onto \(X \), and has continuous self-adjoint inverse.

Proof. \(\tilde{A} \) has dense image (since \(A \) does); recall a symmetric map (\(\tilde{A} \)) with dense image has symmetric inverse; \(\tilde{A}^{-1} \) is also closed, since \(\tilde{A} \) is so. \(\tilde{A}^{-1} \) equals closure of a continuous map (\(A^{-1} \)), hence \(\tilde{A}^{-1} \) is continuous. Since \(\tilde{A}^{-1} \) is closed, continuous, and has dense domain (including \(\text{Im}(A) \)), we have \(\mathcal{D}(\tilde{A}^{-1}) = X \). A continuous symmetric map (\(\tilde{A}^{-1} \)) on the whole Hilbert space is self-adjoint. Recall a self-adjoint map (\(\tilde{A}^{-1} \)) with dense image (including \(\mathcal{D}(A) \)) has self-adjoint inverse (\(\tilde{A} \)). Hence \(\{\tilde{A}, M\} \) are self-adjoint extensions of \(A \), with \(\tilde{A} \subseteq M \); this forces \(\tilde{A} = M \), because a self-adjoint map is maximal-symmetric. Done.

Note 2. A (densely-defined) closed 1:1 symmetric map has dense image.
Proof. It is enough to show $p = 0$, if $p \in \mathcal{Im}^\perp(A)$ (orthogonal complement of image). Since $\mathcal{Do}(A)$ is dense, it has a sequence $\{u_n\}$ converging to p. If $x \in \mathcal{Do}(A)$, then
\[0 = (p|Ax) = \lim(u_n|Ax) = \lim(Au_n|x).\]
Density of $\mathcal{Do}(A)$ forces $\lim Au_n = 0$. A is closed; $(\lim u_n = p)$ and $(\lim Au_n = 0)$; hence $p \in \mathcal{Do}(A)$, $Ap = 0$. Since A is 1:1, we have $p = 0$. Done.

Recall (e.g. [Z]) that if our map A is strongly monotone, then it has Friedrichs extension, which is self-adjoint, 1:1, onto, with continuous self-adjoint inverse.

Theorem. If A is strongly monotone, then closure \bar{A} is the unique self-adjoint extension of A; \bar{A} equals Friedrichs extension.

Proof. Let \hat{A} denote Friedrichs extension; $\hat{A} \supseteq \bar{A}$. Since \hat{A} is 1:1 with continuous inverse, so is its restriction \bar{A}. By Note 2, closed symmetric 1:1 map \bar{A} has dense image; then Note 1 makes \bar{A} the unique self-adjoint extension of itself, and of A. \hat{A} is a self-adjoint extension of A, hence $\hat{A} = \bar{A}$.

Done.

Construction of the Friedrichs extension is complicated; how nice to express it simply (as closure), and to know it is the only self-adjoint extension.

References

[R] Rudin, W. *Functional Analysis*. McGraw-Hill, 1991.

[Z] Zeidler, E. *Applied Functional Analysis: Applications to Mathematical Physics*. Springer, 1995.