EQUIVARIANT Γ-SPACES

DOMINIK OSTERMAYR

Abstract. The aim of this note is to provide a comprehensive treatment of the homotopy theory of Γ-G-spaces for G a finite group. We introduce two level and stable model structures on Γ-G-spaces and exhibit Quillen adjunctions to G-symmetric spectra with respect to a flat level and a stable flat model structure respectively. Then we give a proof that Γ-G-spaces model connective equivariant stable homotopy theory along the lines of the proof in the non-equivariant setting given by Bousfield and Friedlander [2]. Furthermore, we study the smash product of Γ-G-spaces and show that the functor from Γ-G-spaces to G-symmetric spectra commutes with the derived smash product. Finally, we show that there is a good notion of geometric fixed points for Γ-G-spaces.

Contents
1. Introduction 2
2. Recollections on equivariant homotopy theory 4
3. Recollections on G-symmetric spectra 7
4. Γ-G-spaces and two level model structures 10
5. Unstable comparison of Γ-G-spaces and G-symmetric spectra 13
6. Stable comparison 18
7. The smash product of Γ-G-spaces 20
8. Geometric fixed points of Γ-G-spaces 25
9. Appendix 26
References 33
1. Introduction

In the classical paper [13] Segal introduced Γ-spaces as a tool to produce infinite loop spaces. In fact, Segal showed that Γ-spaces model connective stable homotopy theory and later Bousfield and Friedlander proved this in the language of model categories [2].

For G a finite group, Segal developed the machinery of Γ-G-spaces in [14] and it is known that very special Γ-G-spaces give rise to equivariant infinite loop spaces (cf. [14], [16], [15]). Santhanam also proved that Γ-G-spaces with a suitable model structure are equivalent to equivariant E_∞-spaces (cf. [15]).

Using the results of Shimakawa [16], we give a proof along the lines of [2] that Γ-G-spaces model connective equivariant stable homotopy theory. Moreover, Γ-G-spaces possess a symmetric monoidal smash product as was shown by Lydakis [6], motivating the question if this equivalence can be realized by a Quillen functor to a symmetric monoidal category of G-spectra which commutes with the derived smash product. This turns out to be true, if one uses the flat model structures on G-symmetric spectra as constructed by Hausmann [4]. Even non-equivariantly, this might be of interest on its own right. In addition, we define a geometric fixed point functor for Γ-G-spaces which has all desirable properties.

The structure of the paper is as follows. Sections 2 and 3 contain a brief review of basic facts about G-equivariant homotopy theory and G-symmetric spectra. In particular, we will introduce the flat model structure. In Section 4, we briefly discuss basic definitions and constructions concerning Γ-G-spaces and introduce two level model structures. The projective model structure was employed by Santhanam in [15], too, but we also show how to generalize the strict model structure of [2] to the equivariant setting. In Section 5, we exhibit Quillen pairs between the level model structures on Γ-G-spaces and the flat level model structure on G-symmetric spectra. This requires a characterization of flat cofibrations of G-symmetric spectra which we carry out in the appendix. We also show that spectra obtained from Γ-G-spaces are equivariantly connective and, using the results of [10], we show that very special Γ-G-spaces give rise to $G\Omega$-symmetric spectra up to a level fibrant replacement. After these preparations, we show that the homotopy categories with respect to the level model structures of very special Γ-G-spaces and those connective spectra which are level equivalent to $G\Omega$-spectra are equivalent. In Section 6, we introduce stable equivalences of Γ-G-spaces and the stable model structures on Γ-G-spaces corresponding to the two level model structures. This leads to the equivalence of the homotopy categories of Γ-G-spaces and connective G-symmetric spectra with respect to the stable model structures. Section 7 contains a discussion of the smash product of Γ-G-spaces. Following the non-equivariant results from [6], we show that it is well-behaved with respect to the model structures and the functor from Γ-G-spaces to G-symmetric spectra commutes with the derived smash product. Finally, in Section 8, we define geometric fixed points for Γ-G-spaces with respect to a subgroup $H \leq G$. This is a lax symmetric monoidal functor which sends suspension spectra to suspension spectra and commutes with the derived smash product up to stable equivalence. We characterize stable equivalences of Γ-G-spaces as those maps which induce stable equivalences on all geometric fixed points.

Acknowledgements. This paper grew out of the author’s Master’s thesis written at the University of Bonn. I want to thank my supervisor Stefan Schwede for
drawing my interest towards the homotopy theory of Γ-G-spaces and sharing his insights. In particular, the construction of geometric fixed points is due to him. Furthermore, I would like to thank Steffen Sagave for pointing out the characterization of flat J-spaces in [10]. This led to the results in Section 9.2. I also would like to thank Markus Hausmann for sharing his Master’s thesis and answering several questions. Finally, I want to thank the GRK 1150 “Homotopy and Cohomology” for financial support during the preparation of this paper.
2. RECOLLECTIONS ON EQUIVARIANT HOMOTOOPY THEORY

This section is intended to fix basic terminology about model categories and recollect facts about G-equivariant homotopy theory. If not stated otherwise, the source of material is [8, II. 1., III. 1.] though we work with simplicial sets as opposed to topological spaces. Throughout this paper, the word “space” will mean simplicial set.

2.1. Model categorical notions. We will freely use the concepts of model category theory. A reference is [3] and we use the numbering therein when referring to the axioms MC1 up to MC5. Other concepts from model category theory which we will make use of several times include the small object argument and related notions like I-injectives, I-cofibrations and regular I-cofibrations denoted I-inj, I-cof and I-cof$_{reg}$ respectively. For a brief discussion of those we refer to [11, Appendix A]. A model category is proper if weak equivalences are preserved under pullbacks along fibrations and under pushouts along cofibrations. A couple of times we will make use of Reedy’s patching lemma (cf. [2, 3.8]). We will assume basic knowledge about the homotopy theory of the category of spaces.

2.2. Model structures on G-spaces. The category of based spaces will be denoted S^*_\ast. It is closed symmetric monoidal under the smash product with unit S^0. If G is a finite group, we also have the category of based spaces with left G-action together with (not necessarily equivariant) maps $S^*_\ast G$. It is enriched over $G S^*_\ast$, the corresponding category enriched over S^*_\ast with same objects but equivariant maps.

Several model structures on G-spaces will play a role in this paper. The following model structure on $G S^*_\ast$ is the most important one. A morphism $f: X \rightarrow Y$ in $G S^*_\ast$ is a G-fibration (resp. G-equivalence) if $f^H: X^H \rightarrow Y^H$ is a fibration (resp. weak equivalence) in S^*_\ast for all $H \leq G$. A map is a G-cofibration if it satisfies the left lifting property with respect to all acyclic G-fibrations. With these notions of weak equivalences, fibrations and cofibrations, $G S^*_\ast$ is a cofibrantly generated proper model category. In fact,

$$I = \{ i: (G/H \times \partial \Delta^n)_+ \rightarrow (G/H \times \Delta^n)_+ | n \geq 0, H \leq G \}$$

and

$$J = \{ j: (G/H \times \Delta^n)_+ \rightarrow (G/H \times \Delta^n \times \Delta^1)_+ | n \geq 0, H \leq G \}$$

are sets of generating cofibrations and acyclic cofibrations.

More generally, if \mathcal{F} is a family of subgroups, by which we mean a collection of subgroups closed under conjugation and taking subgroups, there is a model structure relative to \mathcal{F}. A map $f: X \rightarrow Y$ in $G S^*_\ast$ is an \mathcal{F}-fibration (resp. \mathcal{F}-equivalence) if $f^H: X^H \rightarrow Y^H$ is a fibration (resp. weak equivalence) in $G S^*_\ast$ for all $H \in \mathcal{F}$. This yields a cofibrantly generated proper model structure (cf. [8, IV. Theorem 6.5]). As set of generating cofibrations (resp. acyclic cofibrations) we only take those maps in I (resp. J), where source and target have isotropy in \mathcal{F}. Note that if $\mathcal{F} = \mathcal{ALL}$, this reproduces the model structure introduced first and for arbitrary \mathcal{F} the identity functor is a left Quillen functor from the \mathcal{F}-model structure to the \mathcal{ALL}-model structure, since every G-equivalence (resp. G-fibration) is an \mathcal{F}-equivalence (resp. \mathcal{F}-fibration). We want to point out that a map $A \rightarrow B$ is a cofibration in the \mathcal{F}-model structure if and only if it is a cofibration in the \mathcal{ALL}-model structure and all simplices not in the image have isotropy in \mathcal{F}.
Lemma 2.4. The following are equivalent.

Example 2.1. If the group in question is $G \times \Sigma_n$ for G an arbitrary finite group and Σ_n the symmetric group on n letters, there is a particularly important family denoted by \mathbb{S}_n. It consists of all subgroups $J \leq G \times \Sigma_n$ such that $J \cap \{1\} \times \Sigma_n = \{(1,1)\}$. Equivalently, those are the subgroups of the form $\{(h, \rho(h)) | h \in H\}$ where H is a subgroup of G and $\rho: H \to \Sigma_n$ is a homomorphism.

2.3. Equivariant enrichments of model categories. We will now introduce the equivariant analog of simplicial model categories. The difference is that in the equivariant setting there are usually function G-spaces, as opposed to simply function spaces. Let \mathcal{C}_G be the category of G-objects in some category enriched over \mathbb{S}_*. Then \mathcal{C}_G is enriched over $G\mathbb{S}_*$, where we equip the mapping space $\text{Map}_G(A, B)$ with the conjugation action. It follows formally that passing to G-fixed points on mapping spaces yields a category $G\mathbb{C}$ enriched over \mathbb{S}_* with objects the G-objects and spaces of equivariant maps.

Assume now in addition that $G\mathbb{C}$ has a model structure and \mathcal{C}_G is tensored and cotensored over \mathbb{S}_*. The latter means that there are functors

$$\begin{align*}
\mathbb{S}_* \times \mathcal{C}_G &\to \mathcal{C}_G, (X, C) \mapsto X \otimes C, \\
\mathbb{S}_* \times \mathcal{C}_G &\to \mathcal{C}_G, (X, D) \mapsto \text{map}_G(X, D)
\end{align*}$$

$$\begin{align*}
\mathbb{S}_* \times \mathcal{C}_G &\to \mathcal{C}_G, (X, C) \mapsto X \otimes C, \\
\mathbb{S}_* \times \mathcal{C}_G &\to \mathcal{C}_G, (X, D) \mapsto \text{map}_G(X, D)
\end{align*}$$

together with natural associativity isomorphisms and natural G-isomorphisms

$$\text{Map}_G(X \otimes C, D) \cong \text{Map}_G(X, \text{Map}_G(C, D)) \cong \text{Map}_G(C, \text{map}_G(X, D)).$$

Passing to G-fixed points shows that $G\mathbb{C}$ is automatically tensored and cotensored over \mathbb{S}_*, though in general not over $G\mathbb{S}_*$.

Given two maps $i: A \to X$ and $p: E \to B$ in $G\mathbb{C}$, there is a G-map

$$\text{Map}_G(i^*, p_*): \text{Map}_G(X, E) \to \text{Map}_G(A, E) \times \text{map}_G(A, B) \text{Map}_G(X, B)$$

and we have

Definition 2.2. In the situation above, $G\mathbb{C}$ is called G-simplicial if for all cofibrations i and all fibrations p the map $\text{Map}_G(i^*, p_*)$ is a G-fibration, which is in addition a G-equivalence if i or p is.

Example 2.3. The most elementary example is, of course, $G\mathbb{S}_*$ itself.

Lemma 2.4. The following are equivalent.

(a) $G\mathbb{C}$ is G-simplicial.

(b) For all cofibrations $f: A \to X$ in $G\mathbb{C}$ and all G-cofibrations $i: K \to L$ in $G\mathbb{S}_*$ the pushout product map

$$i \Box f: K \otimes X \cup_{K \otimes A} L \otimes A \to L \otimes X$$

is a cofibration, which is in addition acyclic if f or i is.

(c) For all fibrations $p: E \to B$ in $G\mathbb{C}$ and all G-cofibrations $i: K \to L$ in $G\mathbb{S}_*$ the map

$$\text{map}_G(i^*, p_*): \text{map}_G(L, E) \to \text{map}_G(K, E) \times \text{map}_G(K, B) \text{map}_G(L, B)$$

is a fibration, which is in addition acyclic if i or p is.

Proof. The proof is formal and thus skipped. □

We also have

Lemma 2.5. Suppose $G\mathcal{E}$ is G-simplicial. A map $f: A \to B$ between cofibrant objects is a weak equivalence if and only if for all fibrant objects X the induced map

$$\text{Map}_e(f^*, X): \text{Map}_e(B, X) \to \text{Map}_e(A, X)$$

is a G-equivalence.

Proof. See [2, Lemma 4.5] for instance. □
3. Recollections on G-symmetric spectra

From now on, G denotes a fixed finite group. Based on [4], we will briefly recall the basic definitions concerning G-symmetric spectra and the two model structures we will work with later on.

3.1. G-symmetric spectra. If M is a finite set, the M-fold smash product $S^M = \wedge_M S^1$ of the (based) simplicial circle $S^1 = \Delta^1/\partial\Delta^1$ is the quotient of the M-fold product of S^1 by the M-fold wedge product based at $\vee_M S^1 / \vee_M S^1$. The set \{1, \ldots, n\} will be denoted by n.

Definition 3.1. A symmetric spectrum X consists of

(a) for all $n \geq 0$, a based Σ_n-space X_n and
(b) for all $n \geq 0$, a based structure map $\sigma_n : X_n \wedge S^1 \to X_{n+1}$.

This is subject to the condition that for all $n, m \in \mathbb{N}$, the iterated structure map

$\sigma_n^m : X_n \wedge S^m \cong (X_n \wedge S^1) \wedge S^{m-1} \xrightarrow{\sigma_n} X_{n+1} \wedge S^{m-1} \xrightarrow{\sigma_n} \ldots \xrightarrow{\sigma_n} X_{n+m}$

is $\Sigma_n \times \Sigma_m$-equivariant. A morphism of symmetric spectra $f : X \to Y$ is a sequence of based Σ_n-maps $f_n : X_n \to Y_n$ such that, for all $n \in \mathbb{N}$, the square

$$
\begin{array}{ccc}
X_n \wedge S^1 & \xrightarrow{f_n \wedge S^1} & Y_n \wedge S^1 \\
\sigma_n^X & \downarrow & \sigma_n^Y \\
X_{n+1} & \xrightarrow{f_{n+1}} & Y_{n+1}
\end{array}
$$

commutes. The category of symmetric spectra will be denoted by Sp^Σ.

Definition 3.2. A G-symmetric spectrum is a G-object in Sp^Σ. A morphism between G-symmetric spectra is a morphism of symmetric spectra commuting with the G-action. The category of G-symmetric spectra will be denoted by GSp^Σ.

Let M be a finite G-set of order m. We endow the space S^M with the G-action

$g \cdot (\wedge_{i \in M} x_i) := \wedge_{i \in M} x_{g^{-1}i}$.

The set of bijections $\text{Bij}(m, M)$ carries a left G-action by postcomposition and a right Σ_m-action by precomposition. The value of a G-symmetric spectrum X at M is defined to be the G-space

$X(M) := X_m \wedge_{\Sigma_m} \text{Bij}(m, M)$,

where one identifies $x \wedge f \sigma$ with $\sigma_*(x) \wedge f$ whenever $\sigma \in \Sigma_m$ and G acts diagonally.

The $G \times \Sigma_m$-space $X(n)$ is naturally isomorphic to X_n, by sending $[x \wedge \phi]$ to $\phi_*(x)$.

In Section 2.2 below, it turns out to be more convenient to work with the values at n, so we adopt this point of view from now on.

Given two finite G-sets M and N, there is a generalized structure map

$\sigma^N_M : X(M) \wedge S^N \to X(M \sqcup N)$.

Chosen any isomorphism $\psi : n \to N$ (σ^N_M does not depend on this choice), it is given by

$([x \wedge f] \wedge s) \mapsto [\sigma^n_M(x \wedge \psi^{-1}(s) \wedge (f \sqcup \psi))]$.

The morphism spaces of symmetric spectra equipped with the conjugation action gives rise to the enrichment of GSp^Σ over GS^* as explained in Section 2.3.
3.2. The flat level model structure. Now, we introduce the flat level model structure on \(GSp^G\). For the definition of the latching objects we refer the reader to Section 3.2. Recall the definitions of the families \(G_n\) given in Example 2.1 and the various model structures on \(G \times \Sigma_n\)-spaces introduced in Section 2.2.

A morphism \(f : X \to Y\) of \(G\)-symmetric spectra is a \(G\)-level equivalence (resp. \(G\)-level fibration) if, for all \(n \in \mathbb{N}\), the \(G \times \Sigma_n\)-map \(f(n) : X(n) \to Y(n)\) is a \(G_n\)-equivalence (resp. mixed \(G \times \Sigma_n\)-fibration). The morphism \(f\) is a \(G\)-flat cofibration if, for all \(n \in \mathbb{N}\), the pushout product map

\[
\nu_n(f) : X(n) \cup_{L_n(X)} L_n(Y) \to Y(n)
\]

is a \(G \times \Sigma_n\)-cofibration.

Proposition 3.3 (Flat level model structure). The classes of \(G\)-flat cofibrations, \(G\)-level fibrations and \(G\)-level equivalences define a proper \(G\)-simplicial model structure on the category of \(G\)-symmetric spectra.

Proof. This is [4, Corollary 2.8.9, Proposition 2.8.11]. \(\square\)

3.3. The stable flat model structure and \(\pi_*\)-isomorphisms. We will also need the stable flat model structure on \(G\)-symmetric spectra.

Definition 3.4. A \(G\)-symmetric spectrum \(X\) is \(G\)-levelwise Kan if, for all subgroups \(H \leq G\) and all finite \(H\)-sets \(M\), the space \(X(M)^H\) is Kan.

Definition 3.5. A \(G\)-symmetric spectrum \(X\) is called \(G\Omega\)-spectrum if it is \(G\)-levelwise Kan and, for all subgroups \(H \leq G\) and all finite \(H\)-sets \(M\) and \(N\), the adjoint of the generalized structure map

\[
X(M) \to \operatorname{Map}_H(S^N, X(M \cup N))
\]

is an \(H\)-equivalence.

Definition 3.6. A map \(X \to Y\) of \(G\)-symmetric spectra is a \(G\)-stable equivalence if for all \(G\)-level fibrant \(G\Omega\)-spectra \(Z\) and for some \(G\)-flat replacement \(X^c \to Y^c\) the induced map

\[
[Y^c, Z]^G \to [X^c, Z]^G
\]

on based \(G\)-homotopy classes of \(G\)-maps is a bijection.

A \(G\)-stable fibration is a map that satisfies the right lifting property with respect to all \(G\)-flat cofibrations that are \(G\)-stable equivalences.

Theorem 3.7 (Stable flat model structure). The classes of \(G\)-flat cofibrations, \(G\)-stable equivalences and \(G\)-stable fibrations define a proper \(G\)-simplicial model category structure on the category of \(G\)-symmetric spectra. The fibrant objects are precisely the \(G\)-level fibrant \(G\Omega\)-spectra.

Proof. [4, Theorem 2.12.5, Proposition 2.12.6]. \(\square\)

An important fact is that \(\pi_*\)-isomorphisms as defined below are \(G\)-stable equivalences (cf. [4, Theorem 2.10.19]). To this end, let \(U\) be a complete \(G\)-set universe, that is a countably infinite \(G\)-set with the property that any finite \(G\)-set embeds infinitely often disjointly in it. We denote by \(s(U)\) the set of all finite \(G\)-subsets of...
\(\mathcal{U}\), partially ordered by inclusion. For all \(n \geq 0\), a \(G\)-symmetric spectrum \(X\) gives rise to a functor
\[
s(\mathcal{U}) \longrightarrow \text{Sets}, \quad M \mapsto [\mathcal{U}(X(M)]^G,
\]
where \(|-|\) denotes geometric realization. Here, an inclusion \(M \subset N\) sends a map \(f: |S^M| \to |X(M)|\) to the composition
\[
|S^M| \cong |S^M| \lor |S^{N-M}| \longrightarrow |X(M)| \lor |S^{N-M}| \cong |X(M) \lor S^{N-M}| \longrightarrow |X(N)|,
\]
where the last map is the geometric realization of the generalized structure map \(\gamma^{N-M}_M\). For \(n \geq 0\), we define
\[
\pi_{n,\mathcal{U}}^G(X) := \text{colim}_{M \in s(\mathcal{U})} [\mathcal{U}(X(M)]^G.
\]
In order to define the negative homotopy groups, for a \(G\)-symmetric spectrum \(X\) and a finite \(G\)-set \(M\), we define the shift \(sh^M X\) by
\[
(sh^M X)(n) := X(M \sqcup n),
\]
where the structure maps are induced by the structure maps of \(X\) (cf. \cite[Definition 2.3.2]). Then, for \(n < 0\), we set
\[
\pi_{n,\mathcal{U}}^G(X) := \pi_{0,\mathcal{U}}^G(sh^{-n}X).
\]

Definition 3.8. A map \(f: X \to Y\) of \(G\)-symmetric spectra is a \(\pi_*\)-isomorphism if for all subgroups \(H \leq G\) and all \(n \in \mathbb{Z}\) and some (hence any) complete \(G\)-set universe \(\mathcal{U}\) the map
\[
\pi_{n,\mathcal{U}}^H f: \pi_{n,\mathcal{U}}^H(X) \longrightarrow \pi_{n,\mathcal{U}}^H(Y)
\]
is an isomorphism, where \(X\) and \(Y\) are considered as \(H\)-symmetric spectra via restriction and \(\mathcal{U}\) is considered as a complete \(H\)-set universe via restriction.

The relevance of the flat model structure is that it is compatible with the smash product. Here we endow the smash product \(X \lor Y\) of two \(G\)-symmetric spectra with the diagonal \(G\)-action.

Proposition 3.9. If a \(G\)-symmetric spectrum \(X\) is \(G\)-flat then \(X \lor -\) preserves (acyclic) \(G\)-flat cofibrations, \(G\)-level equivalences and \(\pi_*\)-isomorphisms.

Proof. For the first three statements one uses the skeleton filtration of a \(G\)-flat spectrum \(X\) and induction. The fact the \(X \lor -\) preserves \(\pi_*\)-isomorphisms can be proven as in \cite[Proposition 2.3.29]{f}. □
4. Γ-G-spaces and two level model structures

In this section we introduce Γ-G-spaces and the projective and strict level model structures.

4.1. Generalities on Γ-G-spaces.

Definition 4.1. We define Γ to be the category with objects the based finite sets \(n^+ = \{1, \ldots, n\} \cup \{+\} \) based at \{+\} together with basepoint preserving maps.

Definition 4.2. A Γ-G-space is a functor \(A: \Gamma \to G\mathcal{S}_+ \), such that \(A(0^+) = * \). A map of Γ-G-spaces is a natural transformation of functors. The category of Γ-G-spaces will be denoted by \(\Gamma(G\mathcal{S}_+) \).

Given a Γ-G-space \(A \), the value \(A(X) \) at a based \(G \)-space \(X \) is defined by

\[
A(X) = \bigsqcup_{n^+ \in \Gamma} \text{Map}_{\mathcal{S}_+}(n^+, X) \times (n^+) / \sim,
\]

where we divide out the equivalence relation generated by \((\phi^* f, a) \sim (f, A(\phi)(a))\) for \(f: n^+ \to X, \phi: k^+ \to n^+ \) and \(a \in A(k^+) \). This space is based at the equivalence class of \((*, *)\).

Remark 4.3. It seems natural to define equivariant Γ-spaces as equivariant functors from the category \(\Gamma_G \) of finite based \(G \)-sets with based maps to the category \(\mathcal{S}_+G \), where \(G \) acts on the morphisms of the categories by conjugation. But Shimakawa observed in [17, Theorem 1] that this gives a category equivalent to \(\Gamma(G\mathcal{S}_+) \). The reason is precisely that the values of an equivariant functor \(A: \Gamma_G \to \mathcal{S}_+G \) on a based finite \(G \)-set \(S^+ \) can be recovered by evaluating the underlying Γ-space on \(S^+ \).

If \(A \) is a based \(G \)-space and \(X \) is an object of \(\Gamma(G\mathcal{S}_+) \), then, in level \(n^+ \), \(A \land X \) and \(\text{map}_{\Gamma(G\mathcal{S}_+)}(A, X) \) are given by \(A \land X(n^+) \) with diagonal action and \(\text{Map}_{\mathcal{S}_+}(A, X(n^+)) \) with conjugation action respectively. The enrichment of Γ-G-spaces in \(G \)-spaces is constructed as follows. Suppose \(A \) and \(B \) are Γ-G-spaces. \(\text{Map}_{\Gamma(G\mathcal{S}_+)}(A, B) \) is the space with \(n \)-simplices consisting of the (not necessarily equivariant) natural transformations \((\Delta^n)^+ \land A \to B \) endowed with the conjugation action. Passing to fixed points yields a space \(\text{Map}_{\Gamma(G\mathcal{S}_+)}(A, B)^G \) with 0-simplices \(\Gamma(G\mathcal{S}_+)(A, B) \).

For a Γ-G-space \(A \) and an arbitrary based finite \(G \)-set \(S^+ \) we have a \(G \)-map

\[
P_{S^+}: A(S^+) \xrightarrow{\text{Map}_{\mathcal{S}_+}(S^+, A(1^+))} A(1^+) = \text{Map}_{\mathcal{S}_+}(S^+, A(1^+)),
\]

given by \((P_{S^+}(a))(s) = A(p_s)(a)\), where \(p_s: S^+ \to 1^+ \) maps \(s \) to 1 and everything else to the basepoint.

Definition 4.4. A Γ-G-space \(A \) is called special if \(P_{S^+} \) is a \(G \)-equivalence for all based finite \(G \)-sets \(S^+ \).

Let \(A \) be special and define the fold map \(\nabla: 2^+ \to 1^+ \) to be the map sending 1 and 2 to 1. The zigzag

\[
A(1^+) \times A(1^+) \xrightarrow{P_1 \times P_2} A(2^+) \xrightarrow{\nabla} A(1^+)
\]

induces the structure of a commutative monoid on the set of path components of the \(H \)-fixed points \(\pi_0^H(A(1^+)) \).
Definition 4.5. A special Γ-G-space A is called very special if, in addition, $A(1^+)$ is grouplike. That is, $\pi_0^H(A(1^+))$ with the composition law just defined is a group for all subgroups $H \leq G$.

4.2. Level model structures. Now we introduce two level model structures on the category of Γ-G-spaces.

4.2.1. The projective model structure. There is the projective model structure on $\Gamma(GS,)$, which was also employed in [15]. Recall the sets I and J defined in Section 2.2. A morphism of Γ-G-spaces $f: A \rightarrow B$ is called level equivalence (resp. level fibration) if $f(S^+)$ is a G-equivalence (resp. G-fibration) for all based finite G-sets S^+. A projective cofibration is a map which satisfies the left lifting property with respect to all level fibrations which are in addition level equivalences.

We define ΓI and ΓJ to be the sets consisting of the maps $i \wedge \Gamma G(S^+, -)$ and $j \wedge \Gamma G(S^+, -)$ respectively, where S^+ runs over a set of representatives of isomorphism classes of based finite G-sets and $i \in I$ and $j \in J$ respectively.

The proof of the following result is standard.

Theorem 4.6 (Projective model structure). The classes of level fibrations, level equivalences and projective cofibrations define a cofibrantly generated proper G-simplicial model category structure on the category of Γ-G-spaces. The sets ΓI and ΓJ can be taken as sets of generating cofibrations and generating acyclic cofibrations respectively.

4.2.2. The strict model structure. We will now introduce a model structure which reduces to the model structure due to Bousfield and Friedlander (cf. [2]) if G is the trivial group. In order to introduce this model structure we need

Definition 4.7. The nth skeleton of a Γ-G-space A is the Γ-G-space given by

$$(sk_n A)(m^+) := \colim_{k^+ \rightarrow m^+, \ k \leq n} A(k^+)$$

in level m^+. Dually, the nth coskeleton of A is defined to be the Γ-G-space given by

$$(csk_n A)(m^+) := \lim_{m^+ \rightarrow j^+, \ j \leq n} A(j^+).$$

Remark 4.8. More conceptual definitions of these two functors appear in Section 9.1, where they occur naturally when maps between Γ-G-spaces are constructed inductively.

There are natural maps $(sk_n A) \rightarrow A \rightarrow (csk_n A)$. Hence, a map $f: X \rightarrow Y$ of Γ-G-spaces induces, for all $n \geq 0$, maps

$$i_n(f): (sk_{n-1} A)(n^+) \cup_{(sk_{n-1} X)(n^+)} X(n^+) \rightarrow Y(n^+)$$

and

$$p_n(f): X(n^+) \rightarrow (csk_{n-1} X)(n^+) \times_{(csk_{n-1} Y)(n^+)} Y(n^+).$$

Then f is called strict cofibration (resp. strict fibration) if, for all $n \geq 0$, the map $i_n(f)$ (resp. $p_n(f)$) is a \mathcal{G}_n-cofibration (resp. \mathcal{G}_n-fibration). The map f is called strict equivalence if it is levelwise a \mathcal{G}_n-equivalence.
Remark 4.9. Note, for any map of Γ-G-spaces $f : A \to B$, being a strict equivalence amounts to saying that for any based finite H-set S^+, $f(S^+)$ is an H-equivalence. Yet, it turns out that this is a little bit redundant. Indeed, assume the seemingly weaker condition that $f(S^+)$ is a G-equivalence for all pointed G-sets S^+ and let T^+ be any based finite H-set. But T^+ is an H-retract of a G-set Q^+ and H-equivalences are closed under retracts, hence $f(T^+)$ is an H-equivalence. In particular, the strict equivalences coincide with the level equivalences defined in Section 4.2.1.

Let \mathcal{S}_n^G be the category of $G \times \Sigma_n$-spaces with the \mathcal{S}_n-model structure and let $\mathcal{S}_n^G := (G \times \Sigma_n)^*$ be the category of $G \times \Sigma_n$-spaces with the $\mathcal{A} \mathcal{L} \mathcal{L}$-model structure. The assumptions of Theorem 9.1 are satisfied. Hence we have

Theorem 4.10 (Strict model structure). The classes of strict equivalences, strict fibrations and strict cofibrations define a proper G-simplicial model category structure on the category of Γ-G-spaces.

4.2.3. **Comparison of the projective and the strict model structure.**

Proposition 4.11. The identity functor induces a Quillen equivalence

$$id : \Gamma(GS_*)^{\text{projective}} \rightleftarrows \Gamma(GS_*)^{\text{strict}} : id.$$

Proof. We have already seen that the weak equivalences coincide. Hence, we only have to check that the generating (acyclic) cofibrations are indeed (acyclic) strict cofibrations. In fact, if $i : A \to B$ is a G-cofibration of G-spaces and S^+ is any based finite G-set, then all simplices not in the image of $i_n(i \wedge \Gamma_G(S^+, -))$ have isotropy contained in \mathcal{S}_n, since the set $(\text{sk}_{n-1} \Gamma_G(S^+, -))(n^+)$ consists precisely of the non-surjective maps. □

At last, we want to mention an important lemma about the coend $A(X)$ of $A \in \Gamma(GS_*)$ and $X \in GS_*$.

Lemma 4.12. Suppose $f : A \to B$ in $\Gamma(GS_*)$ is a level equivalence, then, for any based G-space X, $f(X) : A(X) \to B(X)$ is a G-equivalence.

Proof. First of all, we observe that $A(X)$ is just the diagonal of the bisimplicial set $B_{n,m} = A(X_n)_m$. Since taking fixed points commutes with taking the diagonal, it suffices to show that $A(X_n)_m^H \to B(X_n)_m^H$ is an ordinary weak equivalence for all subgroups $H \leq G$ (cf. [2 Theorem B.2]). This holds true by assumption if all X_n are finite. Moreover, if $S^+ \to T^+$ is an injective map of based finite G-sets, then $A(S^+_n) \to A(T^+_n)$ is injective, too, hence is a cofibration upon geometric realization. The assertion now follows, because any based G-set is the filtered colimit of its based finite G-subsets and homotopy groups commute with filtered colimits along cofibrations. □
5. Unstable comparison of Γ-G-spaces and G-symmetric spectra

A Γ-G-space A gives rise to a G-symmetric spectrum $A(\mathbb{S})$. We show in Section 5.1 how this construction yields Quillen pairs between the strict and projective model structures on Γ-G-spaces and the flat level model structure on G-symmetric spectra. In Section 5.2 we show that the spectra obtained from Γ-G-spaces are connective and that very special Γ-G-spaces yield $G\Omega$-spectra upon a level fibrant replacement. Finally, in the last subsection we compare suitable subcategories of the homotopy categories of Γ-G-spaces and G-symmetric spectra with respect to the level model structures.

5.1. Quillen pairs between Γ-G-spaces and G-symmetric spectra. Let A be a Γ-G-space. The G-symmetric spectrum $A(\mathbb{S})$ is given by $A(S^n)$ in level n. Here G acts on A and Σ_n acts by permuting the sphere coordinates. The structure map $\sigma_n: A(S^n) \wedge S^1 \to A(S^{n+1})$ is defined by sending a class $[(v_1, \ldots, v_n), a] \wedge w$ to the class $[(v_1 \wedge w, \ldots, v_n \wedge w), a]$.

Conversely, given a G-symmetric spectrum, we may construct a Γ-G-space denoted $\Phi(\mathbb{S}, X)$ by setting $\Phi(\mathbb{S}, X)(n^+) := \text{Map}_{\text{Sp}^G}(\mathbb{S}^n, X)$. With these definitions, we have

Proposition 5.1. The functors

$$(-)(\mathbb{S}): \Gamma(G\mathbb{S}_\ast) \rightleftharpoons G\text{Sp}^G: \Phi(\mathbb{S}, -)$$

form a Quillen pair between the strict model structure on Γ-G-spaces and the flat level model structure on G-symmetric spectra.

Proof. It well-known that this is an adjunction (cf. [13, Proposition 3.3], [2, Lemma 4.6]). We prove that $\Phi(\mathbb{S}, -)$ sends G-level fibrations (resp. acyclic G-level fibrations) to strict fibrations (resp. acyclic strict fibrations). Note that, for any G-symmetric spectrum X, we have

$$(\text{csk}_{n-1} \Phi(\mathbb{S}, X))(n^+) = \lim_{n^+ \to j^+} \text{Map}_{\text{Sp}^G}(\mathbb{S}^j, X) \cong \text{Map}_{\text{Sp}^G}(\mathbb{S}^n, X),$$

where

$$(\mathbb{S}^n)_m = \{(x_1, \ldots, x_n) \in (S^m)^n | x_i = x_j \text{ for some } i \neq j \text{ or } x_i = * \text{ for some } i\},$$

as a direct computation of colimits proves. So we have to show that the map

$$\text{Map}_{\text{Sp}^G}(\mathbb{S}^n, X) \rightleftharpoons \text{Map}_{\text{Sp}^G}(\mathbb{S}^n_{\leq n-1}, X) \times_{\text{Map}_{\text{Sp}^G}(\mathbb{S}^n_{\leq n-1}, Y)} \text{Map}_{\text{Sp}^G}(\mathbb{S}^n, Y),$$

induced by the inclusion $\mathbb{S}^n_{\leq n-1} \to \mathbb{S}^n$ and a G-level fibration (resp. acyclic G-level fibration) $f: X \to Y$ is a G_\ast-fibration (resp. acyclic G_\ast-fibration).

Equivalently, for all n and all based finite H-sets S^+ of order $n + 1$, the map

$$\text{Map}_{\text{Sp}^G}(\mathbb{S}^S, X) \rightleftharpoons \text{Map}_{\text{Sp}^G}(\mathbb{S}^S_{\leq n-1}, X) \times_{\text{Map}_{\text{Sp}^G}(\mathbb{S}^S_{\leq n-1}, Y)} \text{Map}_{\text{Sp}^G}(\mathbb{S}^S, Y),$$

is an H-fibration. Since H-symmetric spectra are H-simplicial, it is therefore sufficient to show that $\mathbb{S}^S_{\leq n-1} \to \mathbb{S}^S$ is an H-flat cofibration of H-symmetric spectra. This is the content of Proposition 4.3 in the appendix. \qed

Together with Proposition 4.11 this implies
Proposition 5.2. The functors
\[(-)(S) : \Gamma(GS_\ast) \longrightarrow GS\text{Sp}^\Sigma : \Phi(S, -), \]
form a Quillen pair between the projective model structure on \(\Gamma\)-G-spaces and the flat level model structure on G-symmetric spectra.

5.2. Some properties of G-spectra of the form \(A(S) \).

5.2.1. Connectivity. We want to show that all the negative homotopy groups of a spectrum arising from a \(\Gamma\)-G-space vanish. This is accomplished by introducing a two sided bar construction.

Given a \(\Gamma\)-G-space \(A \), we define a functor \(\sigma A \) from \(\Gamma \) to G-spaces by setting
\[\sigma(A)(n^+) = B(n^+, \Gamma_G, A) = \text{diag}(B_\bullet(n^+, \Gamma_G, A)), \]
where for a G-space \(X \), \(B_\bullet(X, \Gamma_G, A) \) denotes the simplicial G-space with \(k \)-simplices
\[B_k(X, \Gamma_G, A) = \bigcup_{s_0^+, \ldots, s_k^+ \in \Gamma_G} A(s_0^+) \times \Gamma_G(s_0^+, s_1^+) \times \cdots \times \Gamma_G(s_{k-1}^+, s_k^+) \times (X)^{s_k}. \]

There is a natural G-isomorphism \(B(X, \Gamma_G, A) \to (\sigma A)(X) \) (cf. [19, Proof of Theorem 1.5]). Then \((\sigma A)/(\sigma A(0^+)) \) is a \(\Gamma\)-G-space and the \(n \)-th level of the G-symmetric spectrum \((\sigma A)(S)/(\sigma A(0^+)) \) is G-isomorphic to \(B(S^n, \Gamma_G, A)/B(\ast, \Gamma_G, A) \).

Lemma 5.3. The map
\[B_k(X, \Gamma_G, A) \longrightarrow A(X), \quad (\phi_0 f_0, \ldots, f_{k-1}, \phi) \mapsto (\phi_0 f_{k-1}, \ldots, f_0, \phi)(a), \]
induces a natural level equivalence \((\sigma A)/(\sigma A(0^+)) \to A \) of \(\Gamma\)-G-spaces. In particular, it induces a \(G \)-level equivalence of \(G \)-symmetric spectra
\[(\sigma A)(S)/(\sigma A)(0^+) \longrightarrow A(S). \]

Proof. As in [3, Proposition 5.19], one shows that the map induces, for any based finite \(G \)-set \(S^+ \), a \(G \)-equivalence \((\sigma A)(S^+) \to A(S^+) \). The first statement follows now, since \((\sigma A)(0^+) \to (\sigma A)(S^+) \) is a \(G \)-cofibration. The second part follows from Lemma 4.12. \(\square \)

Lemma 5.4. Let \(A \) be a \(\Gamma \)-G-space. If \(X \) is any pointed \(G \)-space such that, for all \(K \leq L \), \(\text{conn}(X^K) \geq \text{conn}(X^L) \geq 1 \) then, for all \(H \leq G \), we have
\[\text{conn}(B(X, \Gamma_G, A)^H / B(x_0, \Gamma_G, A)^H) \geq \text{conn}(X^H). \]

Proof. We check the connectivity of
\[|B_\bullet([X, \Gamma_G, |A|]^H / B_\bullet(x_0, \Gamma_G, |A|)^H|. \]

This space is the geometric realization of the simplicial space with \(k \)-simplices
\[\bigvee_{s_0^+, \ldots, s_k^+ \in \Gamma_G} (|\sigma A(s_0^+)\rangle)^H \wedge (\Gamma_G(s_0^+, s_1^+)\rangle)^H \wedge \cdots \wedge (\Gamma_G(s_{k-1}^+, s_k^+\rangle)^H \wedge (|X|^s)^H. \]

Now, each wedge summand is at least as connected as \(|X|^s \). Writing \(s_k^+ \equiv_H H/L_k \vee \cdots \vee H/L_1 \), we find \((|X|^s)^H \cong X^{L_k} \times \cdots \times X^{L_1} \), which is, by our assumptions, firstly, at least as connected as \(X^H \) and, secondly, simply connected. Hence, all simplicial levels are so. The space in question is a wedge of based \(G \)-CW-complexes of the form \(|A(S^+)^H \wedge ([A]^T) \) and the degeneracy maps are just inclusions of certain wedge summands. One can now argue as in [7, Theorem 11.12]. \(\square \)
Corollary 5.5. The spectrum $A(\mathcal{S})$ is connective for all Γ-G-spaces A, that is all negative homotopy groups vanish.

Proof. Fix $n \geq 1$. The $(-n)$th homotopy group with respect to H is computed as a colimit over finite H-sets M of $|S^n|, |A(S^{M\cup N})|^H$. So we may assume $|M|^H \geq 1$. For such M, we have, for all $K \leq H$,

$$\dim |S^n|^K = |M|^K | \leq |T^K| + n - 1 \leq \text{dim}(A(S^{M\cup N}))^K$$

by Lemma 5.4 and hence $|S^n|, |A(S^{M\cup N})|^H = 0$ by [1] Proposition 2.5. □

5.2.2. Very special Γ-G-spaces and $G\Omega$-spectra. We briefly recall how one obtains $G\Omega$-spectra from very special Γ-G-spaces (cf. [15]). The next lemma and proposition are simplicial analogs of [15] Lemma 7.5, Theorem 7.6.

Lemma 5.6. Suppose a Γ-G-space A is special. Then, for any based G-simplicial set X, the Γ-G-space $A(X)$, defined by $n^+ \mapsto A(n^+ \wedge X)$ is special, too. If A is very special, then $A(X)$ is very special, too.

Proof. We first show that $A(X)$ is special again provided A is special. We need to show that the map $A(S^+ \wedge X) \to \text{Map}_{\mathcal{S}}(S^+, A(X))$ is a G-equivalence for any based finite G-set S^+. This morphism is the diagonal of a morphism of bisimplicial G-sets, hence it suffices to check that, for all $n \geq 0$, $A(S^+ \wedge X_n) \to \text{Map}_{\mathcal{S}}(S^+, A(X_n))$ is a G-equivalence. But both sides are G-equivalent to the weak product $\text{Map}_{\mathcal{S}}(S^+ \wedge X_n, A(1^+))$, since A is special.

Now, assume that A is very special. We have to show that $\pi_0(A(X))$ is a group. Equivalently, we have to show that the map $A(X \vee X) \to A(X) \times A(X)$ induced by retraction onto the first summand and the fold map is a G-equivalence. But again, it suffices to show that, for all $n \geq 0$, the map $A(X_n \vee X_n) \to A(X_n) \times A(X_n)$ is a G-equivalence. This is so because A is very special. □

Proposition 5.7. Suppose A is a very special Γ-G-space. Then the G-symmetric spectrum $S(|A(\mathcal{S})|)$, where $|-|$ and $S(-)$ denote geometric realization and singular complex functor respectively, is a $G\Omega$-spectrum.

Proof. Fix a subgroup $H \leq G$. Suppose M is any finite H-set. In view of Lemma 5.3 and Lemma 5.6 the cofiber sequence

$$S^T \wedge S^0 \longrightarrow S^T \wedge \Delta^1 \longrightarrow S^{T \cup 1}$$

induces an H-fibration sequence upon applying $A(-)$ (cf. [16] Lemma 1.4. P2). This implies that the adjoint of the geometric realization of the structure map σ^T_T is an H-equivalence. By [16] Theorem B, for any two H-sets M and N, the adjoint of the the geometric realization of the structure map $\sigma^T_{S|\cdot|}$ is an H-equivalence, too. It follows that in the diagram

$$\text{Map}_{\mathcal{S}}(|A(S^M)|) \overset{\simeq}{\longrightarrow} \text{Map}_{\mathcal{S}}(|S^1, A(S^{M\cup 1})|)$$

the leftmost map is an H-equivalence, too. Finally, since $S(|A(\mathcal{S})|)$ is G-levelwise Kan, it is a $G\Omega$-spectrum. □
5.3. Comparison of very special Γ-G-spaces and connective $G\Omega$-spectra.

The last thing we need before comparing suitable homotopy categories of very special Γ-G-spaces and $G\Omega$-spectra is a special instance of the Wirthmüller isomorphism.

Lemma 5.8. For any finite G-set S the inclusion

\[
\bigvee_S S \longrightarrow \prod_S S
\]

is a π_\ast-isomorphism, hence a G-stable equivalence, of G-symmetric spectra.

Proof. Both spectra are connective, so it suffices to show that all non-negative homotopy groups of the cofiber vanish. We choose a G-equivariantly we have a decomposition

\[
\prod_S S^{k-M} / \bigvee_S S^{k-M}
\]

Now, L-equivariantly we have a decomposition $S^+ \cong L/L/J_1^+ \vee \ldots \vee L/J_n^+$ and then

\[
\prod_S S^{k-M} / \bigvee_S S^{k-M} \cong \prod_{i=1}^n S^{k-|M|_i} / \bigvee_{i: J_i=L} S^{k-|M|_i}.
\]

There are two cases to distinguish. If $J_i = L$ for all i, the connectivity of this space is at least $2k|M^L|-1$, so that (5.9) holds from some k_0 on. Otherwise, there is at least one i with $J_i \neq L$ and the connectivity is at least $k \cdot \min_i J_i - 1$. But $|M^L| > |M^L|$ for all i such that $J_i \neq L$, hence (5.9) holds for k large enough. □

We can now prove the equivariant analogon of [2 Theorem 5.1].

Theorem 5.10. The derived adjoint functors

\[
\text{Ho}(\GammaGspaces) \cong \text{Ho}(\text{GSp}^\text{flat level})
\]

restrict to mutually inverse equivalences of categories when restricted to the full subcategories given by very special Γ-G-spaces and G-symmetric spectra which are G-level equivalent to connective $G\Omega$-spectra respectively.

Proof. Given a very special Γ-G-space, we have seen that $A(S)$ is G-level equivalent to a $G\Omega$-spectrum. Suppose X is a G-symmetric spectrum X which is G-level equivalent to a connective $G\Omega$-spectrum. Then a fibrant replacement X_f in the flat level model structure is a connective $G\Omega$-spectrum, since it is G-levelwise Kan by [1] p. 17. The Γ-G-sphere associated to X_f is special by Lemma 2.5 because for any finite G-set S the inclusion $\vee_S S \to \prod_S S$ is a G-stable equivalence by the Wirthmüller isomorphism and a G-flat cofibration between G-flat spectra (Proposition 9.15 Proposition 9.18). It is grouplike because $\pi^H_0(\Phi(S, X)(1^+))$ is a group and the monoid structures on $\pi^H_0(\Phi(S, X)(1^+)) \cong \pi^H_0(X_0)$ coincide. So the functors are well-defined.

Suppose A is very special and X is a G-level fibrant $G\Omega$-spectrum. If $A(S) \to X$ is a G-level equivalence, then its adjoint $A \to \Phi(S, X)$ is a level equivalence, since both are very special and

\[
A(1^+) \simeq_G X_0 \cong \Phi(S, X)(1^+).
\]
Conversely, suppose \(A \to \Phi(\mathcal{S}, X) \) is a level equivalence. Firstly, \(A(\mathcal{S}) \to \Phi(\mathcal{S}, X)(\mathcal{S}) \) is a \(G \)-level equivalence by Lemma \(\text{[4.12]} \). Secondly, the map \(\Phi(\mathcal{S}, X)(\mathcal{S}) \to X \) is a \(\pi_* \)-isomorphism because \(\Phi(\mathcal{S}, X)(1^+) \cong X_0 \). And thirdly, a \(\pi_* \)-isomorphism of \(G\Omega \)-spectra is a \(G \)-level equivalence. A proof of this statement in the setting of \(G \)-orthogonal spectra can be found in [8, Section 9]. The arguments given there apply to our situation as well, because \(G\Omega \)-spectra are by assumption \(G \)-levelwise Kan. □
6. Stable comparison

We introduce stable model structures for the projective and the strict model structures. The existence of the localizations follows from general results of localizations (cf. [5]) or can be proven along the lines of [11, Appendix A]. A map \(f: A \to B \) of \(\Gamma \)-G-spaces is a stable equivalence if \(f(S) \) is a \(\pi_* \)-isomorphism of \(G \)-symmetric spectra. A map between \(\Gamma \)-G-spaces is called a stable fibration if it satisfies the right lifting property with respect to all projective cofibrations which are stable equivalences. We define a map to be a stable strict fibration if it satisfies the right lifting property with respect to all strict cofibrations which are in addition stable equivalences.

Remark 6.1. It follows from the discussion in [4, p. 65], that \(f \) is a stable equivalence of \(\Gamma \)-G-spaces if and only if \(f(S) \) is a \(G \)-stable equivalence of \(G \)-symmetric spectra.

Theorem 6.2 (Stable projective model structure). The classes of projective cofibrations, stable fibrations and stable equivalences define a cofibrantly generated left proper \(G \)-simplicial model category structure on the category of \(\Gamma \)-G-spaces. The stably fibrant objects are precisely the very special \(\Gamma \)-spaces \(X \) for which in addition \(X(S^+)^H \) is Kan for all finite based \(G \)-sets \(S^+ \) and all subgroups \(H \leq G \).

Theorem 6.3 (Stable strict model structure). The classes of strict cofibrations, stable strict fibrations and stable equivalences define a cofibrantly generated \(G \)-simplicial model category structure on the category of \(\Gamma \)-G-spaces. An object is stably strictly fibrant if and only if it is strictly fibrant and very special.

Corollary 6.4. The identity functor induces a Quillen equivalence between the stable projective and the stable strict model structures.

Now we are in the position to prove the equivariant analogon of [2, Theorem 5.8].

Theorem 6.5. The derived adjoint functors

\[
\text{Ho}(\text{\Gamma-G-spaces}^{\text{stable strict/stable projective}}) \longrightarrow \text{Ho}(\text{GSp}^X_{\text{flat stable}}).
\]

restrict to mutually inverse equivalences of categories when the right adjoint is restricted to the full subcategory given by connective \(G \)-symmetric spectra.

Proof. Consider a strictly cofibrant \(\Gamma \)-G-space \(A \) and a connective \(G \)-level fibrant \(G\Omega \)-spectrum \(X \). Then \(A \to \Phi(S, X) \) is a stable equivalence if and only if \(A(S) \to X \) is a \(\pi_* \)-isomorphism (see the proof of Theorem 5.10). This implies that unit and counit of this adjunction are isomorphisms. \(\square \)

For later usage we put the following on record.

Lemma 6.6. Fix a complete \(G \)-set universe \(\mathcal{U} \). If \(i: A \to B \) is a map of \(\Gamma \)-G-spaces which is levelwise injective, then, for all subgroups \(H \leq G \), there is a long exact sequence

\[
\cdots \longrightarrow \pi_n^{H,\mathcal{U}}(A(S)) \longrightarrow \pi_n^{H,\mathcal{U}}(B(S)) \longrightarrow \pi_n^{H,\mathcal{U}}(B/A(S)) \longrightarrow \cdots \longrightarrow \pi_0^{H,\mathcal{U}}(B/A(S)) \longrightarrow 0.
\]

Proof. Indeed, being a colimit, taking the cone of a map commutes with the left adjoint \((-)(S)) \). Moreover, the map \(C(i) \to B/A \) is a level equivalence of \(\Gamma \)-G-spaces.
and so the map $C(i)(S) \to B/A(S)$ is a G-level equivalence (cf. Lemma 4.12), in particular it is a π_\ast-isomorphism. The result thus follows from the usual long exact sequence of homotopy groups (cf. [4, Proposition 2.10.11]) and the connectivity of the spectra obtained from Γ-G-spaces. □
7. The smash product of Γ-G-spaces

7.1. The smash product of Γ-G-spaces. In [6], Lydakis defined a smash product for Γ-spaces. To begin with, we choose a smash product functor $\Gamma \times \Gamma \to \Gamma$ (for example by identifying the usual smash product $m^+ \wedge n^+$ with $(mn)^+$ via $(i, j) \mapsto (i - 1)n + j$). Given two Γ-spaces F and F' the nth level of the smash product $F \wedge F'$ is given by

$$(F \wedge F')(n^+) = \text{colim}_{k^+ \wedge l^+ \to n^+} F(k^+) \wedge F(l^+).$$

$F \wedge F'$ is characterized by the property that maps of Γ-spaces $F \wedge F' \to T$ correspond bijectively to maps of $\Gamma \times \Gamma$-spaces $F(-) \wedge F'(-) \to T(- \wedge -)$. Elements in the smash product are represented by triples $[f, x \wedge y]$, where $f: k^+ \wedge l^+ \to n^+$ is a morphism in Γ and $x \wedge y \in F(k^+) \wedge F(l^+)$. We define the internal mapping object to be the Γ-space $\text{Hom}(F, F')(m^+) := \text{Map}_{\text{Gr}}(\mathcal{G}_s)(F, F'(m^+ \wedge -))$. Recall from [6, Theorem 2.18.] that with these definitions, the category of Γ-spaces is closed symmetric monoidal with unit $\Gamma(1^+, -)$.

Consequently, the category of Γ-G-spaces is a closed symmetric monoidal category with unit $\Gamma(1^+, -)$ by defining the smash product of two Γ-G-spaces to be the smash product of the underlying Γ-spaces endowed with the diagonal G-action and equipping the internal mapping object with the conjugation action.

7.2. Smash product and cofibrations. We study the pushout product of two strict cofibrations (resp. projective cofibrations).

Lemma 7.1. If F and F' are strictly cofibrant (resp. projectively cofibrant), then so is $F \wedge F'$.

Proof. A Γ-G-space is strictly cofibrant if and only if its underlying Γ-space is strictly cofibrant in the sense of Bousfield and Friedlander [2]. So in the case of strict cofibrations, this follows from the non-equivariant case [6, Lemma 4.5].

In the case of projective cofibrations, this follows from the fact that $\text{Hom}(F, -)$ preserves level fibrations which are level equivalences if F is projectively cofibrant because the projective model structure is G-simplicial. □

Proposition 7.2. If $F \to F'$, $\tilde{F} \to \tilde{F}'$ are two strict cofibrations (resp. projective cofibrations) of Γ-G-spaces, then the pushout product map

$$F \wedge \tilde{F}' \cup_{F \times \tilde{F}} F' \wedge \tilde{F} \longrightarrow F' \wedge \tilde{F}'$$

is a strict cofibration (resp. projective cofibration).

Proof. The pushout product map is injective by [6, Proposition 4.4] and has cofiber isomorphic to $F'/F \wedge \tilde{F}'/\tilde{F}$ which is strictly cofibrant (resp. projectively cofibrant) by the previous lemma. This implies the claim, since a map is a strict cofibration (resp. projective cofibration) if and only if it is injective and its cofiber is strictly cofibrant (resp. projectively cofibrant) (In the case of projective cofibrations cf. [11, Lemma A3]. The free Γ-G-spaces are those of the form $\bigvee_i G_i^+ \wedge H_i \Gamma_{H_i}(S_i^+, -)$ defined below.). □
7.3. Smash product and level equivalences. We show that smashing with a strictly cofibrant \(\Gamma \)-space preserves level equivalences.

Proposition 7.3. For any \(\Gamma \)-space \(F \) and any positive integer \(m \), there is a pushout square of \(\Gamma \)-spaces

\[
\partial \Gamma(m^+, -) \wedge_{\Sigma m} F(m^+) \longrightarrow \Gamma(m^+, -) \wedge_{\Sigma m} F(m^+)
\]

where

\[
\partial \Gamma(m^+, -) \wedge_{\Sigma m} F(m^+) = \Gamma(m^+, -) \wedge_{\Sigma m} (sk_{m-1} F(m^+)) \cup (sk_{m-1} \Gamma(m^+, -) \wedge_{\Sigma m} (sk_{m-1} F(m^+))).
\]

Proof. This follows from the nonequivariant case [6, Theorem 3.10], because the strictly cofibrant \(\Gamma \)-space preserves level equivalences.

Next we prove an equivariant analog of [6, Proposition 3.11]. Given a subgroup \(H \leq G \) and a based finite \(H \)-set \(S^+ \) we will encounter \(\Gamma \)-spaces of the form \(G^+ \wedge_H \Gamma_H(S^+, -) \). Here in the quotient we identify \(gh \wedge \phi \) and \(g \wedge \phi(h^{-1}) \). The group \(G \) acts on the left smash factor.

Proposition 7.4. For any strictly cofibrant \(\Gamma \)-set \(F \) and any \(n \geq 0 \) there exists a pushout diagram

\[
\bigvee_{i \in I} G^+ \wedge_{H_i} (sk_{n-1} \Gamma_{H_i}(S_i^+, -)) \longrightarrow \bigvee_{i \in I} G^+ \wedge_{H_i} \Gamma_{H_i}(S_i^+, -)
\]

where \(I \) is a set and for \(i \in I \), \(H_i \leq G \) is a subgroup and \(S_i^+ \) is based finite \(H_i \)-set.

Proof. There are elements \(s_i \in F(n^+) \) and subgroups \(\Gamma_i = \{(h, \rho_i(h)) \mid H_i \leq G, \rho_i : H_i \to \Sigma_n \text{ homomorphism}\} \), such that

\[
(F/(sk_{n-1} F))(n^+) \cong \bigvee_{i \in I} (G \times \Sigma_n / \Gamma_i) \cdot s_i.
\]

For each \(i \), we have the following isomorphism of \(\Gamma \)-spaces

\[
\Gamma(n^+, -) \wedge_{\Sigma n} (G \times \Sigma_n / \Gamma_i)^+ \longrightarrow G^+ \wedge_{H_i} \Gamma_{H_i}(S_i^+, -), [f \wedge (g, \sigma) \Gamma_i] \mapsto [g \wedge (f \sigma)],
\]

where on the right \(S_i^+ \) denotes the set \(\{1, \ldots, n\} \) equipped with the \(H_i \)-action coming from \(\rho_i \). So the \(s_i \) give rise to a map

\[
\bigvee_{i \in I} G^+ \wedge_{H_i} \Gamma_{H_i}(S_i^+, -) \longrightarrow \Gamma(n^+, -) \wedge_{\Sigma n} F(n^+).
\]

The image of this map intersects \(\partial \Gamma(n^+, -) \wedge_{\Sigma n} F(n^+) \) precisely in \(\bigvee_{i \in I} G^+ \wedge_{H_i} (sk_{n-1} \Gamma_{H_i}(S_i^+, -)) \) and any element can be lifted either to \(\partial \Gamma(n^+, -) \wedge_{\Sigma n} F(n^+) \)
or to $\bigvee_{i \in I} G^+ \wedge_{H_i} \Gamma_{H_i}(S^+_i, -)$. It follows that we have a pushout square

$$
\begin{array}{ccc}
\bigvee_{i \in I} G^+ \wedge_{H_i} (\text{sk}_{n-1} \Gamma_{H_i}(S^+_i, -)) & \longrightarrow & \bigvee_{i \in I} G^+ \wedge_{H_i} \Gamma_{H_i}(S^+_i, -) \\
\partial(\Gamma(n^+, -, -) \wedge_{S_n} F(n^+)) & \longrightarrow & (\Gamma(n^+, -, -) \wedge_{S_n} F(n^+)).
\end{array}
$$

Together with Proposition 7.3 this proves the result. □

Proposition 7.5. Smashing with a strictly cofibrant Γ-G-space preserves level equivalences.

Proof. Consider a strictly cofibrant Γ-G-space F and a level equivalence $f : A \to B$. The map $F \wedge A \to F \wedge B$ is the diagonal of the map bisimplicial Γ-G-sets $(F_n \wedge A)_m \to (F_n \wedge B)_m$. Here the subscript denotes the simplicial degree. So we may assume that F a strictly cofibrant Γ-G-set. Suppose for a moment that, for any $H \leq G$ and any based H-set S^+, smashing with $G^+ \wedge_H \Gamma_H(S^+, -)$ preserves level equivalences. In view of Proposition 7.4 it follows inductively that $(\text{sk}_n F) \wedge f$ is a level equivalence for all $n \geq 0$. Then $F \wedge f$ is a level equivalence, because homotopy groups commute with filtered colimits along G-cofibrations and the maps $(\text{sk}_n F) \wedge X \to (\text{sk}_{n+1} F) \wedge X$ are strict cofibrations by Proposition 7.2.

We now prove that smashing with $G^+ \wedge_H \Gamma_H(S^+, -)$ preserves level equivalences. Let X be an arbitrary Γ-G-space and let T^+ be an arbitrary based finite G-set. Then we have an isomorphism (natural in T^+)

$$
(G^+ \wedge_H \Gamma_G(S^+, -) \wedge X)(T^+) \longrightarrow G^+ \wedge_H X(\Gamma_H(S^+, T^+))
$$

given by mapping a tuple $[f, [g \wedge \phi] \wedge x]$ consisting of $f : k^+ \wedge l^+ \to T^+$, $\phi : S^+ \to k^+$ and $x \in X(l^+)$ to $[g \wedge X(f \circ (\phi \wedge l^+))(x)]$, where $f \circ (\phi \wedge l^+) : l^+ \to \Gamma_H(S^+, T^+)$ is the adjoint of the composition $S^+ \wedge l^+ \to k^+ \wedge l^+ \to T^+$ indicated. G acts from the left by

$$
g' \cdot [g \wedge x] = [g' g \wedge X(\Gamma_H(S^+, g'))(x)],
$$

where $\Gamma_H(S^+, g')$ denotes postcomposition of maps with the action of G on T^+.

Now let $K \leq G$ be a subgroup. We choose a set of representatives $\{g_i\}$ of $(G/H)^K = \{gH : K^g \leq H\}$. Then

$$
(G^+ \wedge_H X(\Gamma_H(S^+, T^+)))^K = \bigvee_i X(\Gamma_H(S^+, T^+))^{K^{g_i}}.
$$

This implies the claim. □

7.4. The functors $(-)(\mathbb{S})$ and smash products.

Recall that the category of G-symmetric spectra is a symmetric monoidal category under the smash product with unit \mathbb{S}. The main result of this section is Theorem 7.6 below, which states that $(-)(\mathbb{S})$ takes smash products to smash products up to π_*-isomorphism at least when one of the factors is strictly cofibrant.

The functor $(-)(\mathbb{S}) : \Gamma(GS_n) \to GSp^\Sigma$ is lax symmetric monoidal. Indeed, given two Γ-G-spaces F and F', the natural maps

$$
F(n^+) \wedge F'(m^+) \longrightarrow (F \wedge F')(n^+ \wedge m^+)
$$

induce a map

$$
F(X) \wedge F'(Y) \longrightarrow (F \wedge F')(X \wedge Y),
$$

where X and Y are based G-sets.

Theorem 7.6. The functor $(-)(\mathbb{S})$ takes smash products to smash products up to π_*-isomorphism at least when one of the factors is strictly cofibrant.
natural in based G-spaces X and Y. This in turn induces a bimorphism of spectra from the pair $(F(S), F'(S))$ to $(F \wedge F')(S)$ which gives rise to the natural transformation
\[a_{F,F'} : F(S) \wedge F'(S) \longrightarrow (F \wedge F')(S). \]
Moreover, sending $x \in S^M$ to $[x, id_1] \ast$ induces an isomorphism $\lambda : S \rightarrow \Gamma(1^+, -)(S)$. Now several coherence diagrams have to be checked, which we skip (cf. [9, Proposition 3.3 and p. 442]).

Theorem 7.6. The map $a_{X,Y}$ is a π_*-isomorphism, in particular a G-stable equivalence, if X or Y is strictly cofibrant.

Proof. In view of Propositions 3.3 and 7.5 and Lemma 4.12 we may assume that X and Y are projectively cofibrant. If we fix Y, then the class of Γ-G-spaces X for which the assembly map is a π_*-isomorphism is closed under pushouts along generating projective cofibrations, filtered colimits along projective cofibrations and retracts. This reduces to consider $X = \Gamma_G(S^+_1, -)$ for some based finite G-set S^+ and applying the same reasoning again reduces to $Y = \Gamma_G(S^+_2, -)$ for some based finite G-set S^+_2. In this case we have to show that
\[S \times S^1 \wedge S \times S^2 \longrightarrow S \times (S^1 \times S^2) \]
induced by the bimorphism
\[(S^m)^\times S^1 \wedge (S^m)^\times S^2 \longrightarrow (S^m)^\times (S^1 \times S^2), ((x_i), (y_j)) \mapsto (x_i \wedge y_j) \]
is a π_*-isomorphism. Precomposition with the π_*-isomorphism (Proposition 7.5, Proposition 9.18 and Lemma 5.8) $S \times S^1 \wedge S \times S^2 \rightarrow S \times S^1 \wedge S \times S^2 \rightarrow S \times S^1 \wedge S \times S^2$ is a π_*-isomorphism by Lemma 5.8. Hence the map is a is a π_*-isomorphism as well. \qed

Proposition 7.7.
(a) **Smashing with a strictly cofibrant Γ-G-space preserves stable equivalences.**
(b) **(Pushout product axiom)** If $F \rightarrow F'$, $\bar{F} \rightarrow \bar{F}'$ are two strict cofibrations (resp. projective cofibrations) of Γ-G-spaces, then the pushout product map
\[F \wedge \bar{F}' \cup_{F \wedge \bar{F}} F' \wedge \bar{F} \longrightarrow F' \wedge \bar{F}' \]
is a strict cofibration (resp. projective cofibration). If in addition one of the former maps is a stable equivalence, then so is the pushout product.
(c) **(Monoid Axiom)** Let I denote the smallest class of maps of Γ-G-spaces which contains the maps of the form $A \wedge Z \rightarrow B \wedge Z$, where $A \rightarrow B$ is a stable equivalence and a projective cofibration (resp. strict cofibration) and which is closed under cobase change and transfinite composition. Then every map in I is a stable equivalence.

Proof. The first part follows from Theorem 7.6 and Proposition 3.3. The second part follows from Proposition 7.2, Lemma 6.3 and the first part. It remains to prove the third part. This is in analogy with [11, Lemma 1.7]. \qed

Remark 7.8. Define a (commutative) Γ-G-ring to be a (commutative) monoid in the symmetric monoidal category $\Gamma(GS_\ast)$. A left R-module is a Γ-G-space M together with a map $R \wedge M \rightarrow M$ satisfying associativity and unit conditions. Defining weak equivalences (resp. fibrations) to be stable equivalences (resp. stable fibrations or stable strict fibrations) and cofibrations by the adequate lifting
property, it follows essentially from the previous proposition (cf. [11, Theorem 2.2])
that, for any Γ-G-ring R, the category of left R-modules becomes a cofibrantly
generated closed G-simplicial model category.

Suppose k is a commutative Γ-G-ring. The category of left k-modules is a sym-
metric monoidal category with respect to the smash product $A \wedge_k B$ which is the
coequalizer of the two actions $A \wedge_k \wedge B \Rightarrow A \wedge B$ given by multiplication.

A k-algebra is then a monoid in k-modules and the category of k-algebras is a
closed G-simplicial model category when defining a map to be a weak equivalence
(resp. fibration) if the underlying map of k-modules has this property (cf. [11, Theorem 2.5]).
8. Geometric fixed points of Γ-spaces

In this section we construct a geometric fixed points functor

$$\Phi^G : \Gamma(GS_e) \longrightarrow \Gamma(S_e).$$

Given a Γ-space A, $\Phi^G A$ is defined to be the Γ-space given by $(\Phi^G A)(k^+) = A((k^+)\wedge^G)^G$. This is in fact a lax symmetric monoidal functor. The transformation $(\Phi^G X) \wedge (\Phi^G Y) \to \Phi^G(X \wedge Y)$ is induced by the map

$$X((k^+)\wedge^G)^G \wedge Y((I^+)\wedge^G)^G \longrightarrow (X \wedge Y)((kI^+)\wedge^G)^G, \ (x \wedge y) \mapsto [\text{id}, x \wedge y]$$

and the map $\Gamma(1^+, -) \to \Phi^G \Gamma(1^+, -)$ is defined to be the isomorphism

$$\Gamma(1^+, k^+) \cong \Gamma(1^+, ((k^+)\wedge^G)^G) \cong \Gamma(1^+, (k^+)\wedge^G)^G.$$

The functor $\Phi^G(-)$ enjoys several good properties, which we collect in the next two propositions.

Proposition 8.1. A map $f : A \to B$ of Γ-spaces is a stable equivalence if and only if, for all $H \leq G$, the map $\Phi^H(f) : \Phi^HA \to \Phi^HB$ is a stable equivalence.

Proof. Given a Γ-space the G-symmetric spectrum (of spaces) $|A(\mathbb{S})|$ is the underlying G-symmetric spectrum of a G-orthogonal spectrum $|A|(\mathbb{S})$ (by abuse of notation, we denote the topological sphere spectrum by \mathbb{S}, too). Moreover, $|\Phi^H A(\mathbb{S})|$ is naturally isomorphic to the geometric fixed point spectrum $\Phi^H(|A|(\mathbb{S}))$ of the G-orthogonal spectrum $|A|(\mathbb{S})$ [12]. This follows from the fact that $|(S^n)\wedge^H|$ is isomorphic to the one point compactification S^{n+1}_ρ of n copies of the regular representation ρ_H of H. Now, a morphism $f : A \to B$ of Γ-spaces is a G-stable equivalence if and only if $A(\mathbb{S}) \to B(\mathbb{S})$ is a π_*-isomorphism of G-symmetric spectra by definition. This is the case if and only if $|A|(\mathbb{S}) \to |B|(\mathbb{S})$ is a π_*-isomorphism of G-orthogonal spectra [4, p. 65]. Equivalently, $\Phi^H(|A|(\mathbb{S})) \to \Phi^H(|B|(\mathbb{S}))$ is a π_*-isomorphism of orthogonal spectra for all subgroups $H \leq G$ [12 Theorem 7.12]. And this is the case if and only if $\Phi^H A \to \Phi^HB$ is a stable equivalence of Γ-spaces for all $H \leq G$ [4, p. 65]. \square

Proposition 8.2.

(a) For any based finite G-set S^+, the map

$$S^+ \wedge \Gamma(1^+,-) \longrightarrow \Gamma_G(S^+,-), \ s \wedge \phi \mapsto (\phi \circ p_s)$$

induces a stable equivalence $(S^+)G \wedge \Gamma(1^+,-) \cong \Phi^G(\Gamma_G(S^+,-)).$

(b) $(\Phi^G A)_* \wedge (\Phi^G B) \to \Phi^G(A \wedge B)$ is a stable equivalence whenever A or B is strictly cofibrant. Here, X_* denotes a cofibrant replacement in the stable strict model structure.

Proof. Part (a) follows from the Wirthmüller isomorphism Lemma 5.8 and the previous proposition. This implies that (b) holds for $A = \Gamma_G(S^+_1,-)$ and $B = \Gamma_G(S^+_2,-)$. If we fix this B, then the class of Γ-space for which (b) holds is closed under pushouts along generating projective cofibrations ($\Phi^G(-)$ takes pushouts along cofibrations to pushouts), filtered colimits along projective cofibrations (since $\Phi^G(-)$ commutes with such colimits) and retracts. Thus A may be an arbitrary projectively cofibrant Γ-space and the same argument shows that B can be an arbitrary projectively cofibrant Γ-space. This finishes the proof in view of Proposition 7.3. \square
9. Appendix

The following sections contain several proofs deferred from other sections.

9.1. The strict model structure for Γ-G-spaces. The aim of this subsection is to prove Theorem 9.1 below. We start by observing that we have the following adjunction for a based right Σ_n- and left $\Sigma_l \times G$-space A:

$$A \wedge_{\Sigma_n} - : (G \times \Sigma_n)S_n \rightleftharpoons (G \times \Sigma_l)S_l : \text{Map}_{S_n}(A, -)^{\Sigma_n}.$$

Here, $G \times \Sigma_n$ acts on $\text{Map}_{S_n}(A, -)^{\Sigma_n}$ by $((\sigma, g) \cdot f)(a) := gf(g^{-1}a\sigma)$. For pointed sets S^+ and T^+, $\text{Inj}_n(S^+, T^+)$ (resp. $\text{Surj}_n(S^+, T^+)$) denotes the set of based injective (resp. surjective) maps $S^+ \to T^+$. We make the following assumptions.

Assumptions.

(a) There are structures of model categories on $G \times \Sigma_n$-spaces denoted by $G^n_1 S_n$ and $G^n_2 S_n$, respectively, such that the first one is $G \times \Sigma_n$-simplicial.

(b) The class of G^n_2-equivalences is included in the class of G^n_1-equivalences for all $n \geq 0$.

(c) The adjoint pairs

$$\text{Inj}_n(l^+, n^+) \wedge_{\Sigma_l} - : G^n_1 S_n \rightleftharpoons G^n_2 S_n : \text{Map}_{S_n}(\text{Inj}_n(l^+, n^+), -)^{\Sigma_n},$$

$$\text{Surj}_n(n^+, l^+) \wedge_{\Sigma_l} - : G^n_1 S_n \rightleftharpoons G^n_2 S_n : \text{Map}_{S_n}(\text{Surj}_n(n^+, l^+), -)^{\Sigma_l}$$

are Quillen adjunctions.

Let $\Gamma_{\leq n}$ denote the full subcategory of Γ with objects the sets l^+, $l \leq n$. As in [2], the truncation functor $T_n : \Gamma(GS_n) \to \Gamma_{\leq n}(GS_n)$ has both a left and a right adjoint denoted by sk_n and csk_n, respectively. By abuse of notation, we will usually write sk_n (resp. csk_n) for the composition $\text{sk}_n \circ T_n$ (resp. csk_n), too.

Consider a map $f : X \to Y$ between Γ-G-spaces. Then f is a strict cofibration if, for all $n \geq 0$, the map

$$i_n(f) : (\text{sk}_n^{-1}Y)(n^+) \cup_{(\text{sk}_n^{-1}X)(n^+)} X(n^+) \to Y(n^+)$$

is a G^n_1-cofibration. Dually, f is a strict fibration if, for all $n \geq 0$, the map

$$p_n(f) : X(n^+) \to (\text{csk}_n^{-1}X)(n^+) \times_{(\text{csk}_n^{-1}Y)(n^+)} Y(n^+)$$

is a G^n_1-fibration. Finally, f is a strict weak equivalence if it is levelwise a G^n_1-equivalence.

We prove

Theorem 9.1. Under these assumptions, the strict notions of weak equivalences, fibrations and cofibrations make the category $\Gamma(GS_n)$ into a G-simplicial model category.

Example 9.2. Suppose G is the trivial group. We may take $G^n_1 S_n$ to be the model structure on Σ_n-spaces where weak equivalences and fibrations are defined by the forgetful functor to spaces and G^n_2 to be the usual model structure on Σ_n-spaces where weak equivalences and fibrations are detected on all fixed points. This recovers the model structure by Bousfield and Friedlander (cf. [2]).
• More generally, taking $G_n^1 S_n$ (resp. $G_n^2 S_n$) to be the model structure with respect to the family of subgroups of $G \times \Sigma_n$ that intersect $\{1\} \times \Sigma_n$ trivially (resp. the family of all subgroups of $G \times \Sigma_n$) yields the model structure applied throughout this paper.

Before proving the theorem, we need a few preparations.

Proposition 9.3. Suppose $B, X \in \Gamma_{\leq n}(G S_n)$ and $u_{n-1} : T_{n-1} B \to T_{n-1} X$ is a map in $\Gamma_{\leq n-1}(G S_n)$. A map $u^n : B(n^+) \to X(n^+)$ in $G S_n$ determines a prolongation of u_{n-1} to $u : B \to X$ in $\Gamma_{\leq n}(G S_n)$ if and only if u^n is $G \times \Sigma_n$-equivariant and fills in the following commutative diagram in $G \times \Sigma_n$:

\[
\begin{array}{ccc}
(s_{kn-1} B)(n^+) & \longrightarrow & B(n^+) \\
\downarrow & & \downarrow \\
(s_{kn-1} X)(n^+) & \longrightarrow & X(n^+) \\
\end{array}
\]

\[
\begin{array}{ccc}
(csk_{kn-1} B)(n^+) & \longrightarrow & (csk_{kn-1} B)(n^+) \\
\downarrow & & \downarrow \\
(csk_{kn-1} X)(n^+) & \longrightarrow & (csk_{kn-1} X)(n^+).
\end{array}
\]

Proof. See Proposition 3.4 from [2].

Proposition 9.4. Consider a diagram

\[
\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow & & \downarrow \\
B & \longrightarrow & Y
\end{array}
\]

in $\Gamma_{\leq n}(G S_n)$ and a map $T_{n-1} B \to T_{n-1} X$ which makes the diagram

\[
\begin{array}{ccc}
T_{n-1} A & \longrightarrow & T_{n-1} X \\
\downarrow & & \downarrow \\
T_{n-1} B & \longrightarrow & T_{n-1} Y
\end{array}
\]

commute. Then, the diagram (9.5) has a lift $B \to X$ if there is a lift in the diagram of $G \times \Sigma_n$-spaces

\[
\begin{array}{ccc}
(s_{kn-1} B)(n^+) \cup (s_{kn-1} A)(n^+) & \longrightarrow & X(n^+) \\
\downarrow & & \downarrow \\
B(n^+) & \longrightarrow & (csk_{kn-1} X)(n^+) \times (csk_{kn-1} Y)(n^+) Y(n^+).
\end{array}
\]

Proof. This is a direct consequence of the preceding proposition.

Proposition 9.6. For any Γ-G-space X and any positive integers $m, n \geq 0$, there is a pushout square of $G \times \Sigma_n$-spaces

\[
\begin{array}{ccc}
\text{Inj}^*_n(l^+, n^+) \wedge_{\Sigma_l} (sk_{l-1} X)(l^+) & \longrightarrow & (sk_{l-1} X)(n^+) \\
\downarrow & & \downarrow \\
\text{Inj}^*_n(l^+, n^+) \wedge_{\Sigma_l} X(l^+) & \longrightarrow & (sk_l X)(n^+)
\end{array}
\]

Here the top and bottom horizontal maps are given by pushing forward along an element of $\text{Inj}^*_n(l^+, n^+)$, where one uses the canonical isomorphism $(sk_l X)(l^+) \to
\(X(I^+)\) for the lower one, and the left and right vertical maps are induced by the canonical maps \((\sk_{l-1} X)(I^+) \to X((l^+)\) and \((\sk_{l-1} X)(n^+) \to (\sk_l X)(n^+)\).

Proof. The diagram is a commutative diagram of \(G \times \Sigma_n\)-spaces and its underlying diagram of spaces is isomorphic to

\[
\begin{array}{ccc}
\bigl(\binom{l}{n}\bigr)^+ \land (\sk_{l-1} X)(l^+) & \longrightarrow & (\sk_{l-1} X)(n^+)
\\
\downarrow & & \\
\bigl(\binom{l}{n}\bigr)^+ \land X(l^+) & \longrightarrow & (\sk_l X)(n^+),
\end{array}
\]

where \(\binom{l}{n}\) denotes the set of order-preserving injections of the set \(\{1, \ldots, l\}\) into the set \(\{1, \ldots, n\}\) both endowed with the natural ordering. Lydakis shows (cf. [6, Proposition 3.8]) that for any \(\Gamma\)-space \(X\) and any positive integers \(m, n \geq 0\) this is a pushout diagram, hence \(\Box\) it is a pushout diagram in \(G \times \Sigma_n\)-spaces.

Lemma 9.8. [2, Lemma 3.7] Let \(n\) be a non-negative integer and fix \(N \leq n\). Consider a map \(f: A \to B\) in \(\Gamma(\text{GS}_n)\). If the maps \(i_m(f)\) are \(G^1_m\)-cofibrations (resp. acyclic \(G^1_m\)-cofibrations) for all \(m \leq N\), then the maps \((\sk_l A)(n^+) \to (\sk_l B)(n^+)\) are \(G^2_l\)-cofibrations (resp. acyclic \(G^2_l\)-cofibration). In view of Proposition 9.7, the inductive step can now be finished by applying Reedy’s patching Lemma to the diagram

\[
\begin{array}{ccc}
\text{Inj}_n(I^+ + n^+) \land \Sigma_l A(I^+) & \longrightarrow & \text{Inj}_n(I^+ + n^+) \land \Sigma_l (\sk_{l-1} A)(I^+) \longrightarrow (\sk_{l-1} A)(n^+)
\\
\downarrow & & \\
\text{Inj}_n(I^+ + n^+) \land \Sigma_l B(I^+) & \longrightarrow & \text{Inj}_n(I^+ + n^+) \land \Sigma_l (\sk_{l-1} B)(I^+) \longrightarrow (\sk_{l-1} B)(n^+).
\end{array}
\]

Lemma 9.9. If \(f: A \to B\) is an acyclic strict cofibration, then the maps

\[i_n(f): A(n^+) \cup_{\sk_{n-1} A(n^+)} (\sk_{n-1} B)(n^+) \longrightarrow B(n^+)\]

are in fact acyclic \(G^1_n\)-cofibrations.

Proof. The case \(n = 0\) is trivial. Assume inductively that \(i_m(f)\) is an acyclic \(G^1_m\)-cofibration for all \(m \leq n-1\). We show that \(i_n(f)\) is a \(G^1_n\)-equivalence. To this end it suffices to show that \((\sk_{n-1} A)(n^+) \to (\sk_{n-1} B)(n^+)\) is an acyclic \(G^2_n\)-cofibration, because this implies that \(A(n^+) \to A(n^+) \cup_{\sk_{n-1} A(n^+)} (\sk_{n-1} B)(n^+)\) is an acyclic \(G^2_n\)-cofibration and, since \(G^2_n\)-equivalences are in particular \(G^1_n\)-equivalences by assumption (b), the assertion follows then from two out of three for weak equivalences.

But the map in question is an acyclic \(G^2_n\)-cofibration by Lemma 9.8 applied to the case \(N = n - 1\).

\(\Box\)

There are dual results for fibrations.
Proposition 9.10. For any Γ-G-space X and any positive integers m, $n \geq 0$, there is a pullback square of $G \times \Sigma_n$-spaces

\[
\begin{array}{c}
(\text{csk}_l X)(n^+) \quad \text{Maps}_{\Sigma_n}(\text{Surj}_n(n^+,l^+),X(l^+))^\Sigma_l \\
\downarrow \\
(\text{csk}_{l-1} X)(n^+) \quad \text{Maps}_{\Sigma_n}(\text{Surj}_n(n^+,l^+)^+, (\text{csk}_{l-1} X)(l^+))^\Sigma_l.
\end{array}
\]

(9.11)

Here the top and bottom horizontal maps are given by pushing forward along an element of $\text{Surj}_n(l^+, n^+)$, where one uses the canonical identification $(\text{csk}_l X)(l^+) \rightarrow X(l^+)$ for the top map, and the left and right vertical maps are induced by the canonical maps $X(l^+) \rightarrow (\text{csk}_{l-1} X)(l^+)$ and $(\text{csk}_l X)(n^+) \rightarrow (\text{csk}_{l-1} X)(n^+)$ respectively.

Proof. The proof is analogous to the proof of \cite{6} Proposition 3.8.

\[\square\]

Lemma 9.12. \cite{2} Lemma 3.7 Consider a map of Γ-G-spaces $f: A \rightarrow B$ such that the maps $p_m(f)$ are \mathbb{G}^1_m-fibrations (resp. acyclic \mathbb{G}^1_m-fibrations) for all $m \leq N$, where $N \leq n$ is fixed. Then the maps $(\text{csk}_l A)(n^+) \rightarrow (\text{csk}_l B)(n^+)$ are \mathbb{G}^1_n-fibrations (resp. acyclic \mathbb{G}^1_n-fibrations) for all $l \leq N$.

Proof. The case $l = 0$ is trivial. Assume inductively that the assertion holds true for $l - 1 \leq N - 1$. By Reedy’s patching lemma it suffices to know that Maps$(\text{Surj}_n(n^+,l^+)^+, p_l)^\Sigma_l$ is an \mathbb{G}^1_n-fibration (resp. acyclic \mathbb{G}^1_n-fibration) which follows by the second part of assumption (c). \[\square\]

Lemma 9.13. If $f: A \rightarrow B$ is an acyclic strict fibration, then the maps $p_n(f): A(n^+) \rightarrow (\text{csk}_{n-1} A)(n^+) \times_{(\text{csk}_{n-1} B)(n^+)} B(n^+)$ are in fact acyclic \mathbb{G}^1_n-fibrations.

Proof. The case $n = 0$ is trivial. Assume inductively that $p_m(f)$ are acyclic \mathbb{G}^1_n-fibrations for $m \leq n - 1$. We show that $p_n(f)$ is an acyclic \mathbb{G}^1_n-fibration. By the previous lemma in the case $N = n - 1$, we have that $(\text{csk}_{n-1} A)(n^+) \rightarrow (\text{csk}_{n-1} B)(n^+)$ is an acyclic \mathbb{G}^1_n-fibration. Hence $(\text{csk}_{n-1} A)(n^+) \times_{(\text{csk}_{n-1} B)(n^+)} B(n^+) \rightarrow B(n^+)$ is an acyclic \mathbb{G}^1_n-fibration as well. \[\square\]

Proof of Theorem \[\square\] MC 1, MC 2 and MC 3 are clear. MC 4 follows immediately from Lemma \[\square\] 9.12, Lemma \[\square\] 9.13 and Proposition \[\square\] 9.14. So we only have to show MC 5, the existence of factorizations. Given a map $f: A \rightarrow B$ in $\Gamma(GS_\ast)$, assume inductively that it has already been factored up to level $n - 1$ as an acyclic strict cofibration followed by a strict fibration (resp. strict cofibration followed by an acyclic strict fibration) $T_{n-1} A \rightarrow C_{\leq n-1} \rightarrow T_{n-1} B$. Then, as in \cite{2}, we obtain a diagram

\[
\begin{array}{c}
(\text{sk}_{n-1} A)(n^+) \quad A(n^+) \quad (\text{csk}_{n-1} A)(n^+) \\
\downarrow \\
(\text{sk}_{n-1} C_{\leq n-1})(n^+) \quad K \quad (\text{csk}_{n-1} C_{\leq n-1})(n^+). \\
\downarrow \\
(\text{sk}_{n-1} B)(n^+) \quad B(n^+) \quad (\text{csk}_{n-1} B)(n^+),
\end{array}
\]

(9.14)
where \(K \) comes from a factorization
\[
(\text{sk}_{n-1} C_{\leq n})^{(n^+)} \cup (\text{sk}_{n-1} A^{(n^+)}) \rightarrow K \rightarrow (\text{sk}_{n-1} C_{\leq n-1})^{(n^+)} \times (\text{sk}_{n-1} B^{(n^+)})
\]
of the canonical map into an acyclic cofibration followed by a fibration (resp. cofibration followed by an acyclic fibration) in \(S_n^1 \Delta_* \). The \(G \times \Sigma_n \)-space \(K \) gives rise to an object \(C_{\leq n} \in \Gamma_{\leq n}(G\Sigma_*) \) with \(C_{\leq n}(k^+) = C_{\leq n-1}(k^+) \) for all \(k \leq n-1 \) and \(C_{\leq n}(n^+) = K \), such that the canonical factorization
\[
(\text{sk}_{n-1} C_{\leq n})^{(n^+)} \rightarrow K \rightarrow (\text{sk}_{n-1} C_{\leq n-1})^{(n^+)}
\]
equals the factorization in (9.14).

In any case, this produces a factorization \(A \rightarrow C \rightarrow B \) as a strict cofibration followed by a strict fibration. Assume that \(K \) was always obtained by a factorization as an acyclic cofibration followed by a fibration. We show that \(A \rightarrow C \) is acyclic. But this follows from Lemma 9.8 for \(l = n \). In the other case, \(K \) was always obtained by a factorization as cofibration followed by an acyclic fibration. Then \(C \rightarrow B \) is acyclic by Lemma 9.12 in the case \(l = n \).

Finally, this model structure is \(G \)-simplicial since, for all \(n \geq 0 \), \(i_n(j \Box i) \) is isomorphic to \(j \Box i_n(f) \) for any strict cofibration \(f \) and any \(G \)-cofibration \(j \) of \(G \)-spaces. \(\square \)

9.2. A characterization of flat cofibrations.

The aim of this section is to prove

Proposition 9.15. For any \(G \)-flat \(G \)-symmetric spectrum \(X \) and any finite \(G \)-set \(S \) of cardinality \(n \), the spectrum \(X^{\times S} \) is \(G \)-flat and the inclusion
\[
X^{\times S}_{\leq n-1} \rightarrow X^{\times S}
\]
is a \(G \)-flat cofibration of \(G \)-symmetric spectra. Here \(X^{\times S}_{\leq n-1} \) is the subspectrum which is levelwise given by those tuples in the product such that either two entries coincide or one of them equals the basepoint. In particular, the \(G \)-symmetric spectrum \(S^{\times S} \) is \(G \)-flat and the inclusion
\[
S^{\times S}_{\leq n-1} \rightarrow S^{\times S}
\]
is a \(G \)-flat cofibration of \(G \)-symmetric spectra.

A \(G \times \Sigma_n \)-map is a \(G \times \Sigma_n \)-cofibration if and only if its underlying map is a cofibration. Therefore a map of \(G \)-symmetric spectra is a \(G \)-flat cofibration if and only if its underlying morphism of symmetric spectra is a flat cofibration and hence it suffices to prove the above proposition for \(G \) the trivial group.

9.2.1. Latching objects of symmetric spectra.

Let \(\mathbf{k} \) denote the set \(\{1, \ldots, k\} \). Those are the objects of the category \(\mathcal{J} \), where morphisms are injective maps of sets. The category \(\mathcal{J} \) has a symmetric monoidal structure \(\sqcup \) given by concatenation \(m \sqcup n = m + n \) with unit the empty set \(\emptyset \). Let \((\sqcup, \sqcap) \) be the category with objects consisting of tuples \((\mathbf{k}, \mathbf{k'}, \alpha : \mathbf{k} \sqcup \mathbf{k'} \rightarrow \mathbf{n}) \) with \(\alpha \) injective. A morphism \((\mathbf{k}, \mathbf{k'}, \alpha : \mathbf{k} \sqcup \mathbf{k'} \rightarrow \mathbf{n}) \rightarrow (\mathbf{l}, \mathbf{l'}, \beta : \mathbf{l} \sqcup \mathbf{l'} \rightarrow \mathbf{n}) \) is a tuple of morphisms \((\gamma : \mathbf{k} \rightarrow \mathbf{l}, \gamma' : \mathbf{k'} \rightarrow \mathbf{l'}) \) in \(\mathcal{J} \) such that \(\beta \circ (\gamma \sqcup \gamma') = \alpha \).

Given two symmetric spectra \(E \) and \(F \), their smash product is given in level \(n \) by
\[
\text{colim}_\alpha : \mathbf{k} \sqcup \mathbf{k'} \rightarrow \mathbf{n} E(\mathbf{k}) \wedge F(\mathbf{k'}) \wedge S^{n-\alpha},
\]
where the colimit is taken over the category \((\sqcup \sqsubset \mathbf{n})\) and we use \(\alpha\) as a shorthand for the image of \(\alpha\). A map \((\gamma, \gamma')\) in this category induces the map
\[
E(k) \land F(k') \land S^{n-\alpha} \cong E(k) \land S^{l-\gamma} \land F(k') \land S^{l'-\gamma'} \land S^{n-\beta} \to E(1) \land F(1') \land S^{n-\beta},
\]
where one uses \(\gamma\) and \(\gamma'\) to identify \(n - \alpha\) with \((n - \beta) \sqcup (1 - \gamma) \sqcup (V - \gamma')\) in the first isomorphism and the second map uses the isomorphisms \(E(k) \cong E(\gamma)\) \(F(k') \cong F(\gamma')\) given by \(\gamma\) and \(\gamma'\) and the generalized structure maps.

Define \(\overline{S}\) to be the truncated sphere spectrum, i.e. \(\overline{S}_0 = \ast\) and \(\overline{S}_n = S^n\) if \(n \geq 1\). The structure maps are the evident maps. The \(n\)th latching object of a symmetric spectrum \(X\) is now defined to be the \(n\)th level of the smash product of \(X\) with \(\overline{S}\),
\[
L_n(X) = (X \land \overline{S})_n.
\]

More generally for a morphism \(f: X \to Y\) of symmetric spectra we set
\[
L_n(f) = X(n) \cup_{L_n(X)} L_n(Y).
\]
The generalized structure maps induce \(\nu_n(X): L_n(X) \to X(n)\) and \(\nu_n(f): L_n(f) \to Y(n)\), which are the maps that appear in the definition of the \((G-)\)flat model structure.

For our purpose, it is convenient to use a slightly different model for the latching morphisms. To this end, we define \(\mathcal{P}(\mathbf{n})\) to be the poset of subsets of \(\mathbf{n}\). Given a symmetric spectrum \(X\) and a morphism \(f: X \to Y\) we get two functors \(L_n(X)\) and \(L_n(f)\) from \(\mathcal{P}(\mathbf{n})\) to \(\mathcal{S}\). On objects, these are given by \(U \mapsto X(U) \land S^{n-U}\) and \(U \mapsto X(\mathbf{n}) \cup (X(U) \land S^{n-U}) Y(U) \land S^{n-U}\) respectively. For an inclusion \(i: U \subset V\) we let \(L_n(i)\) be the composite
\[
X(V) \land S^{n-V} \cong X(V) \land S^{U-V} \land S^{n-U} \quad \xrightarrow{\alpha} \quad X(U) \land S^{n-U}
\]
where the second map is given by the generalized structure map \(\sigma_V^{U-V}\) smashed with the identity on \(S^{n-U}\) and similarly for \(L_n(f)\). There are canonical maps \(\nu_n(X): \colim_{U \subseteq \mathbf{n}} L_n(X) \to X(n)\) and \(\tilde{\nu}_n(f): \colim_{U \subseteq \mathbf{n}} L_n(f) \to Y(n)\) induced by the generalized structure maps and we have

Lemma 9.16. The spaces \(L_n(X)\) and \(\colim_{U \subseteq \mathbf{n}} L_n(X)\) are naturally isomorphic as \(\Sigma_n\)-spaces over \(X(n)\). Similarly, the spaces \(L_n(f)\) and \(\colim_{U \subseteq \mathbf{n}} L_n(f)\) are naturally isomorphic as \(\Sigma_n\)-spaces over \(Y(n)\).

Proof. Indeed, we define a \(\Sigma_n\)-map
\[
L_n(X) \to \colim_{U \subseteq \mathbf{n}} L_n(X)
\]
by mapping \((\alpha: k \sqcup k' \to \mathbf{n}, x \land y \land z \in X(k) \land S^{k'} \land S^{n-\alpha})\) to \((\alpha(k), [x, \alpha|k] \land ((\alpha|k)'_*(y) \land z) \in X(\alpha(k)) \land S^{n-\alpha|k})\). By abuse of notation, we secretly identified \(X(k)\) with \(X_k\) via the isomorphism \([x \land f] \mapsto f_*(x)\). The inverse is then given by \((U, [x, \alpha] \land y) \mapsto (\alpha: k \to U \subset \mathbf{n}, x \land y)\). The second part follows since colimits commute with each other. \(\square\)

9.2.2. A characterization of flat cofibrations

In order to give a characterization of flat cofibrations, we need the following lemma.

Lemma 9.17. Given a functor \(C: \mathcal{P}(\mathbf{n}) \to \mathcal{S}\), the induced map \(\colim_{V \subseteq U} C(V) \to C(U)\) is a cofibration for all \(U \subset \mathbf{n}\) if and only if

(a) for all inclusions \(V \subset U \subset \mathbf{n}\), the map \(C(V) \to C(U)\) is a cofibration and
(b) for all $U, V \subseteq \mathfrak{n}$, the intersection of the images of $C(U)$ and $C(V)$ in $C(U \cup V)$ equals the image of $C(U \cap V)$.

Proof. This appears in the proof of [10, Proposition 3.11].

We can now prove

Proposition 9.18. A map $f : X \to Y$ of symmetric spectra is a flat cofibration if and only if

(a) for all $k, l \geq 0$ the map $X(n) \cup X(n) \wedge S^k \to Y(n)$ is a cofibration and

(b) for all integers $k, l, m \geq 0$, we have that

$$X(n) \cup X(n) \wedge S^k \to Y(n)$$

is a pullback.

In particular, if Y is a flat symmetric spectrum and $X \subseteq Y$ is a subspectrum, then the inclusion $X \to Y$ is a flat cofibration if and only if for all $k, l \geq 0$ the intersection of the images of $X(k \sqcup l)$ and $Y(k) \wedge S^l$ in $Y(k \sqcup l)$ equals the image of $X(k)$.

Proof. In view of Lemma 9.16, a map of symmetric spectra $f : X \to Y$ is flat if and only if for all $n \geq 0$ and all subsets $U \subseteq \mathfrak{n}$ the maps colim$_{V \subseteq U} X(U) \cup X(V) \wedge S^n \to Y(U)$ are cofibrations. By Lemma 9.17 this is equivalent to conditions (a) and (b).

We can now give a proof of the result we are after.

Proof of Proposition 9.15. Suppose X is a flat symmetric spectrum. We prove first that $\times N$ is flat, provided that X is flat. Condition (a) in Proposition 9.18 requires the map $X(n) \times N \wedge S^k \to X(n) \times N$ to be a cofibration. But this map factors as the composition of two cofibrations

$$X(n) \times N \wedge S^k \to (X(n) \wedge S^k) \times N \to X(n \sqcup k) \times N.$$

Condition (b) requires

$$X(n) \times N \wedge S^k \to X(n \sqcup m) \times N \wedge S^k$$

$$X(n \sqcup l) \times N \wedge S^m \to X(n \sqcup m) \times N$$

to be a pullback, which is readily checked. It follows now from the second part of Proposition 9.18 that $X_{\leq N} \to X_{\times N}$ is a flat cofibration.
References

[1] J. F. Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture. Algebraic topology. Proc. Conf., Aarhus 1982, Lect. Notes Math. 1051, 483-532 (1984).
[2] A. K. Bousfield, E. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. Geom. Appl. Homotopy Theory, II, Proc. Conf., Evanston 1977, Lect. Notes Math. 658, 80-130 (1978).
[3] W. G. Dwyer, J. Spalinski, Homotopy theories and model categories. James, I. M. (ed.), Handbook of algebraic topology. Amsterdam: North-Holland. 73-126 (1995).
[4] M. Hausmann, Global Equivariant Homotopy Theory of Symmetric Spectra. Master’s thesis, University of Bonn (2013).
[5] P. Hirschhorn, Model Categories and Their Localizations. Mathematical Surveys and Monographs. 99. Providence, RI: American Mathematical Society (AMS). xv, 457 p. (2003).
[6] M. Lydakis, Smash products and Γ-spaces. Math. Proc. Camb. Phil. Soc. 126, 311-328 (1999).
[7] J. P. May, The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics. 271. Berlin-Heidelberg-New York: Springer-Verlag. IX, 175 p. (1972).
[8] M. A. Mandell, J. P. May, Equivariant orthogonal spectra and S-modules. Mem. Am. Math. Soc. 755, 108 p. (2002).
[9] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram spectra. Proc. London Math. Soc. (3) 82, no. 2, 441-512 (2001).
[10] S. Sagave, C. Schlichtkrull, Diagram spaces and symmetric spectra. Algebr. Geom. Topol. 11, No. 3, 1361-1403 (2011).
[11] S. Schwede, Stable homotopical algebra and Γ-spaces. Math. Proc. Camb. Philos. Soc. 126, No.2, 329-356 (1999).
[12] S. Schwede, Lectures on equivariant stable homotopy theory. Available at http://www.math.uni-bonn.de/people/schwe/ev equivariant.pdf (2013).
[13] G. Segal, Categories and cohomology theories. Topology 13, 293-312 (1974).
[14] G. Segal, Some results in equivariant homotopy theory. Preprint (1978).
[15] R. Santhanam, Units of equivariant ring spectra. Algebr. Geom. Topol. 11, No. 3, 1361-1403 (2011).
[16] K. Shimakawa, Infinite loop G-spaces associated to monoidal G-graded categories. Publ. Res. Inst. Math. Sci. 25, No.2, 239-262 (1989).
[17] K. Shimakawa, A note on Γ-G-spaces. Osaka J. Math. 28, No.2, 223-228 (1991).
[18] M. Stolz, Equivariant Structures on Smash Powers of Commutative Ring Spectra. PhD thesis, University of Bergen, available at http://folk.uib.no/hus001/data/thesesmartinstolz.pdf (2011).
[19] R. Woolfson, Hyper- Gamma-spaces and hyperspectra. Q. J. Math., Oxf. II. Ser. 30, 229-255 (1979).