Learning to Detect Violent Videos using Convolutional Long Short-Term Memory

Swathikiran Sudhakaran1,2 and Oswald Lanz2

1University of Trento, Trento, Italy
2Fondazione Bruno Kessler, Trento, Italy
\{sudhakaran,lanz\}@fbk.eu

Abstract

Developing a technique for the automatic analysis of surveillance videos in order to identify the presence of violence is of broad interest. In this work, we propose a deep neural network for the purpose of recognizing violent videos. A convolutional neural network is used to extract frame level features from a video. The frame level features are then aggregated using a variant of the long short term memory that uses convolutional gates. The convolutional neural network along with the convolutional long short term memory is capable of capturing localized spatio-temporal features which enables the analysis of local motion taking place in the video. We also propose to use adjacent frame differences as the input to the model thereby forcing it to encode the changes occurring in the video. The performance of the proposed feature extraction pipeline is evaluated on three standard benchmark datasets in terms of recognition accuracy. Comparison of the results obtained with the state of the art techniques revealed the promising capability of the proposed method in recognizing violent videos.

1. Introduction

Nowadays, the amount of public violence has increased dramatically. This can be a terror attack involving one or a number of persons wielding guns to a knife attack by a single person. This has resulted in the ubiquitous usage of surveillance cameras. This has helped authorities in identifying violent attacks and take the necessary steps in order to minimize the disastrous effects. But almost all the systems nowadays require manual human inspection of these videos for identifying such scenarios, which is practically infeasible and inefficient. It is in this context that the proposed study becomes relevant. Having such a practical system that can automatically monitor surveillance videos and identify the violent behavior of humans will be of immense help and assistance to the law and order establishment. In this work, we will be considering aggressive human behavior as violence rather than the presence of blood or fire.

The development of several deep learning techniques, brought about by the availability of large datasets and computational resources, has resulted in a landmark change in the computer vision community. Several techniques with improved performance for addressing problems such as object detection, recognition, tracking, action recognition, caption generation, etc. have been developed as a result. However, despite the recent developments in deep learning, very few deep learning based techniques have been proposed to tackle the problem of violence detection from videos. Almost all the existing techniques rely on hand-crafted features for generating visual representations of videos. The most important advantage of deep learning techniques compared to the traditional hand-crafted feature based techniques is the ability of the former to achieve a high degree of generalization. Thus they are able to handle unseen data in a more effective way compared to hand-crafted features. Moreover, no prior information about the data is required in the case of a deep neural network and they can be inputted with raw pixel values without much complex pre-processing. Also, deep learning techniques are not application specific unlike the hand-crafted feature based methods since a deep neural network model can be easily applied for a different task without any significant changes to the architecture. Owing to these reasons, we choose to develop a deep neural network for performing violent video recognition.

Our contributions can be summarized as follows:

- We develop an end-to-end trainable deep neural network model for performing violent video classification
- We show that a recurrent neural network capable of encoding localized spatio-temporal changes generates a
The goal of the proposed study was to develop an end-to-end trainable deep neural network model for classifying.
videos in to violent and non-violent ones. The block diagram of the proposed model is illustrated in figure 1. The network consists of a series of convolutional layers followed by max pooling operations for extracting discriminant features and convolutional long short memory (convLSTM) for encoding the frame level changes, that characterizes violent scenes, existing in the video.

3.1. ConvLSTM

Videos are sequences of images. For a system to identify if a fight is taking place between the humans present in the video, it should be capable of identifying the locations of the humans and understand how the motion of the said humans are changing with time. Convolutional neural networks (CNN) are capable of generating a good representation of each video frame. For encoding the temporal changes a recurrent neural network (RNN) is required. Since we are interested in changes in both the spatial and temporal dimensions, convLSTM will be a suitable option. Compared to LSTM, the convLSTM will be able to encode the spatial and temporal changes using the convolutional gates present in them. This will result in generating a better representation of the video under analysis. The equations of the convLSTM model are given in equations 1-6.

\[i_t = \sigma(w_x^i * I_t + w_h^i * h_{t-1} + b^i) \]
\[f_t = \sigma(w_x^f * I_t + w_h^f * h_{t-1} + b^f) \]
\[\tilde{c}_t = \tanh(w_x^c * I_t + w_h^c * h_{t-1} + b^c) \]
\[c_t = \tilde{c}_t \odot i_t + c_{t-1} \odot f_t \]
\[o_t = \sigma(w_x^o * I_t + w_h^o * h_{t-1} + b^o) \]
\[h_t = o_t \odot \tanh(c_t) \]

In the above equations, ‘\(*\)’ represents consecutive operations and ‘\(\odot\)’ represents the Hadamard product. The hidden state \(h_t\), the memory cell \(c_t\) and the gate activations \(i_t\), \(f_t\) and \(o_t\) are all 3D tensors in the case of convLSTM.

For a system to identify a video as violent or non-violent, it should be capable of encoding localized spatial features and the manner in which they change with time. Handcrafted features are capable of achieving this with the downside of having increased computational complexity. CNNs are capable of generating discriminant spatial features but existing methods use the features extracted from the fully-connected layers for temporal encoding using LSTM. The output of the fully-connected layers represents a global descriptor of the whole image. Thus the existing methods fail to encode the localized spatial changes. As a result, they resort to methods involving addition of more streams of data such as optical flow images [10] which results in increased computational complexity. It is in this context that the use of convLSTM becomes relevant as it is capable of encoding the convolutional features of the CNN. Also, the convolutional gates present in the convLSTM is trained to encode the temporal changes of local regions. In this way, the whole network is capable of encoding localized spatio-temporal features.

3.2. Network Architecture

Figure 1 illustrates the architecture of the network used for identifying violent videos. The convolutional layers are trained to extract hierarchical features from the video frames and are then aggregated using the convLSTM layer. The network functions as follows: The frames of the video under consideration are applied sequentially to the model. Once all the frames are applied, the hidden state of the convLSTM layer in this final time step contains the representation of the input video frames applied. This video representation, in the hidden state of the convLSTM, is then applied to a series of fully-connected layers for classification.

In the proposed model, we used the AlexNet model [17] pre-trained on the ImageNet database as the CNN model for extracting frame level features. Several studies have found that pre-trained models perform better in terms of computational efficiency and accuracy. The convolutional layers followed by max pooling operations are capable of generating a good representation of each video frame. For encoding the temporal changes, a recurrent neural network (RNN) is required.
Table 1. Classification accuracy obtained with the hockey fight dataset for different models

Input	Classification Accuracy
Video Frames (random initialization)	94.1±2.9%
Video Frames (ImageNet pre-trained)	96±0.35%
Difference of Video Frames (random initialization)	95.5±0.5%
Difference of Video Frames (ImageNet pre-trained)	97.1±0.55%

out that networks trained on the ImageNet database is capable of having better generalization and results in improved performance for tasks such as action recognition [25] [19]. In the convLSTM, we used 256 filters in all the gates with a filter size of 3×3 and stride 1. Thus the hidden state of the convLSTM consists of 256 feature maps. A batch normalization layer is added before the first fully-connected layer. Rectified linear unit (ReLU) non-linear activation is applied after each of the convolutional and fully-connected layers.

In the network, instead of applying the input frames as such, the difference between adjacent frames are given as input. In this way, the network is forced to model the changes taking place in adjacent frames rather than the frames itself. This is inspired by the technique proposed by Simonyan and Zisserman in [25] to use optical flow images as input to a neural network for action recognition. The difference image can be considered as a crude and approximate version of optical flow images. So in the proposed method, the difference between adjacent video frames are applied as input to the network. As a result, the computational complexity involved in the optical flow image generation is avoided. The network is trained to minimize the binary cross entropy loss.

4. Experiments and Results

To evaluate the effectiveness of the proposed approach in classifying violent videos, three benchmark datasets are used and the classification accuracy is reported.

4.1. Experimental Settings

The network is implemented using the Torch library. From each video, N number of frames equally spaced in time are extracted and resized to a dimension of 256×256 for training. This is to avoid the redundant computations involved in processing all the frames, since adjacent frames contain overlapping information. The number of frames selected is based on the average duration of the videos present in each dataset. The network is trained using RMSprop algorithm with a learning rate of 10^{-4} and a batch size of 16. The model weights are initialized using Xavier algorithm. Since the number of videos present in the datasets are limited, data augmentation techniques such as random cropping and horizontal flipping are used during training stage. During each training iteration, a portion of the frame of size 224×224 is cropped, from the four corners or from the center, and is randomly flipped before applying to the network. Note that the same augmentation technique is followed for all the frames present in a video. The network is run for 7500 iterations during the training stage. In the evaluation stage, the video frames are resized to 224×224 and are applied to the network for classifying them as violent or non-violent. All the training video frames in a dataset are normalized to make their mean zero and variance unity.

4.2. Datasets

The performance of the proposed method is evaluated on three standard public datasets namely, Hockey Fight Dataset [21], Movies Dataset [21] and Violent-Flows Crowd Violence Dataset [15]. They contain videos captured using mobile phones, CCTV cameras and high resolution video cameras.

Hockey Fight Dataset: Hockey fight dataset is created by collecting videos of ice hockey matches and contains 500 fighting and non-fighting videos. Almost all the videos in the dataset have a similar background and subjects (humans). 20 frames from each video are used as inputs to the network.

Movies Dataset: This dataset consists of fight sequences collected from movies. The non-fight sequences are collected from other publicly available action recognition datasets. The dataset is made up of 100 fight and 100 non-fight videos. As opposed to the hockey fight dataset, the videos of the movies dataset is substantially different in its content. 10 frames from each video are used as inputs to the network.

Violent-Flows Dataset: This is a crowd violence dataset as the number of people taking part in the violent events are very large. Most of the videos present in this dataset are collected from violent events taking place during football matches. There are 246 videos in this dataset. 20 frames from each video are used as inputs to the network.

4.3. Results and Discussions

Performance evaluation is done using 5-folds cross validation scheme, which is the technique followed in existing literature. The model architecture selection was done by evaluating the performance of the different models on the hockey fight dataset. The classification accuracies obtained for the two cases, video frames as input and difference of frames as input, is listed in table 1. From the table, it can also be seen that using a network that is pre-trained on the ImageNet dataset (we used BVLC AlexNet from Caffe model zoo) results in better performance compared to us-
ing a network that is randomly initialized. In this way, we
decided to use frame difference as the input and to use a
pre-trained network in the model. Table 2 gives the classi-
fication accuracy values obtained for the various datasets
considered in this study and is compared against 10 state of
the art techniques. From the table, it can be seen that the
proposed method is able to better the results of the existing
techniques in the case of hockey fights dataset and movies
dataset.

As mentioned earlier, this study considers aggressive be-
behavior as violent. The biggest problem of considering this
definition occurs in the case of sports. For instance, in the
hockey dataset, the fight videos consists of players collid-
ning against each other and hitting one another. So one easy
way to detect violent scenes is to check if one player moves
closer to another. But the non-violent videos also consist
of players hugging each other or doing high fives as part
of a celebration. It is highly likely that these videos could
be mistaken as violent. But the proposed method is able
to avoid this which suggests that it is capable of encoding
motion of localized regions (motion of limbs, reaction of in-
volved persons, etc.). However, in the case of violent-flows
dataset, the proposed method is not able to best the previous
state of the art technique (it came second in terms of accu-
Table 2. Comparison of classification results

Method	Hockey Dataset	Movies Dataset	Violent-Flows Dataset
MoSIFT+HIK[21]	90.9%	89.5%	-
ViF[15]	82.9±0.14%	-	81.3±0.21%
MoSIFT+KDE+Sparse Coding[32]	94.3±1.68%	-	89.05±3.26%
Deniz et al.[8]	90.1±0%	98.0±0.22%	-
Gracia et al.[13]	82.4±0.4%	97.8±0.4%	-
Substantial Derivative[20]	-	96.89±0.21%	85.43±0.21%
Bilinski et al.[2]	93.4	99	96.4
MolWLD[34]	96.8±1.04%	-	93.19±0.12%
ViF+OViF[11]	87.5±1.7%	-	88±2.45%
Three streams + LSTM[10]	93.9	-	-
Proposed	**97.1±0.55%**	**100±0%**	**94.57±2.34%**

Table 3. Comparison between convLSTM and LSTM models in
terms of classification accuracy obtained in the hockey fights
dataset and number of parameters

Model	Accuracy	No. of Parameters
convLSTM	97.1±0.55%	9.6M(9619544)
LSTM	94.6±1.19%	77.5M(77520072)

model consists of the AlexNet architecture followed by an
LSTM RNN layer. The output of the last fully-connected
layer (fc7) of AlexNet is applied as input to an LSTM with
1000 units. The rest of the architecture is similar to the one
that uses convLSTM. The results obtained with this model
and the number of trainable parameters associated with it
are compared against the proposed model in table 3. The ta-
ble clearly shows the advantages of using convLSTM over
LSTM and the capability of convLSTM in generating use-
ful video representation. It is also worth mentioning that
the number of parameters that are required to be optimized,
in the case of convLSTM, is very much less compared to
LSTM (9.6M vs 77.5M). This helps the network to gener-
alize better without overfitting in the case of limited data.
The proposed model is capable of processing 31 frames per
second on an NVIDIA K40 GPU.

5. Conclusions

This work presents a novel end-to-end trainable deep
neural network model for addressing the problem of vio-
lence detection in videos. The proposed model consists of
a convolutional neural network (CNN) for frame level fea-
ture extraction followed by feature aggregation in the tem-
poral domain using convolutional long short term memory
(convLSTM). The proposed method is evaluated on three
different datasets and resulted in improved performance
compared to the state of the art methods. It is also shown
that a network trained to model changes in frames (frame
difference) performs better than a network trained using
frames as inputs. A comparative study between the tradi-
tional fully-connected LSTM and convLSTM is also done and the results show that the convLSTM model is capable of generating a better video representation compared to LSTM with less number of parameters, thereby avoiding overfitting.

References

[1] E. Acar, F. Hopfgartner, and S. Albayrak. Breaking down violence detection: Combining divide-et-impera and coarse-to-fine strategies. Neurocomputing, 208:225–237, 2016. 2
[2] P. Bilinski and F. Bremond. Human violence recognition and detection in surveillance videos. In AVSS, 2016. 2, 5
[3] D. Chen, H. Waclaw, M.-y. Chen, C. Gao, A. Bharucha, and A. Hauptmann. Recognition of aggressive human behavior using binary local motion descriptors. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 2008. 2
[4] L.-H. Chen, H.-W. Hsu, L.-Y. Wang, and C.-W. Su. Violence detection in movies. In International Conference on Computer Graphics, Imaging and Visualization (CGIV), 2011. 2
[5] C. Clarin, J. Dionisio, and M. Echavez. Dove: Detection of movie violence using motion intensity analysis on skin and blood. Technical report, University of the Philippines, 01 2005. 2
[6] A. Datta, M. Shah, and N. D. V. Lobo. Person-on-person violence detection in video data. In ICFPR, 2002. 2
[7] F. D. De Souza, G. C. Chavez, E. A. do Valle Jr, and A. d. A. Araújo. Violence detection in video using spatio-temporal features. In Conference on Graphics, Patterns and Images (SIBGRAPI), 2010. 2
[8] O. Deniz, I. Serrano, G. Bueno, and T.-K. Kim. Fast violence detection in video. In International Conference on Computer Vision Theory and Applications (VISAPP), 2014. 2, 5
[9] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR, 2015. 2
[10] Z. Dong, J. Qin, and Y. Wang. Multi-stream deep networks for person to person violence detection in videos. In Chinese Conference on Pattern Recognition, 2016. 2, 3, 5
[11] Y. Gao, H. Liu, X. Sun, C. Wang, and Y. Liu. Violence detection using oriented violent flows. Image and Vision Computing, 48:37–41, 2016. 2, 5
[12] T. Giannakopoulos, A. Pikrakis, and S. Theodoridis. A multi-class audio classification method with respect to violent content in movies using bayesian networks. In IEEE Workshop on Multimedia Signal Processing (MMSP), 2007. 2
[13] I. S. Gracia, O. D. Suarez, G. B. Garcia, and T.-K. Kim. Fast fight detection. Plos one, 10(4):e0120448, 2015. 2, 5
[14] A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition with deep bidirectional lstm. In IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 2013. 2
[15] T. Hassner, Y. Itcher, and O. Kliper-Gross. Violent flows: Real-time detection of violent crowd behavior. In CVPR Workshops, June 2012. 2, 4, 5
[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. 2
[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 3
[18] J. R. Medel and A. Savakis. Anomaly detection in video using predictive convolutional long short-term memory networks. arXiv preprint arXiv:1612.00390, 2016. 2
[19] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: unsupervised learning using temporal order verification. In ECCV, 2016. 4
[20] S. Mohammadi, H. Kiani, A. Perina, and V. Murino. Violence detection in crowded scenes using substantial derivative. In AVSS, 2015. 2, 5
[21] E. B. Nievas, O. D. Suarez, G. B. García, and R. Sukthankar. Violence detection in video using computer vision techniques. In International Conference on Computer Analysis of Images and Patterns. Springer, 2011. 2, 4, 5
[22] V. Pátráucean, A. Handa, and R. Cipolla. Spatio-temporal video autoencoder with differentiable memory. In ICLR Workshop, 2016. 2
[23] S. Pfeiffer, S. Fischer, and W. Effelsberg. Automatic audio content analysis. In ACM International Conference on Multimedia, 1997. 2
[24] P. Rota, N. Conci, N. Sebe, and J. M. Rehg. Real-life violent social interaction detection. In ICIP, 2015. 2
[25] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014. 4
[26] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using lstms. In ICML, 2015. 2
[27] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014. 2
[28] N. Vasconcelos and A. Lippman. Towards semantically meaningful feature spaces for the characterization of video content. In ICIP, 1997. 2
[29] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and K. Saenko. Sequence to sequence-video to text. In ICCV, 2015. 2
[30] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In NIPS, 2015. 2
[31] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015. 2
[32] L. Xu, C. Gong, J. Yang, Q. Wu, and L. Yao. Violent video detection based on mosift feature and sparse coding. In ICASSP, 2014. 2, 5
[33] W. Zajdel, J. D. Krijnders, T. Andringa, and D. M. Gavrila. Cassandra: audio-video sensor fusion for aggression detection. In AVSS, 2007. 2
[34] T. Zhang, W. Jia, X. He, and J. Yang. Discriminative dictionary learning with motion weber local descriptor for violence detection. IEEE Transactions on Circuits and Systems for Video Technology, 27(3):696–709, 2017. 2, 5