Adsorption of nitrate and nitrite from aqueous solution by magnetic Mg/Fe hydrotalcite

Jing Chen, Yawei Wei, Haoyu Jia, Pengliang Guo, Dongjin Wan, Bo Li, and Xuzhuo Sun

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China

Corresponding author. E-mail: djwan@haut.edu.cn

ABSTRACT

In this study, magnetic Mg/Fe hydrotalcite calcined material (M-CHT) was synthesized through co-precipitation and calcination method, and was used to effectively remove nitrate and nitrite from water. M-CHT can restore its original layered structure after the adsorption of nitrate or nitrite, and can be easily separated by the applied magnetic field. The first-order and pseudo-second-order kinetic models ($R^2 \geq 0.97$) can better describe the adsorption kinetic process. The equilibrium isotherm showed that the Langmuir model provided a better fit to the experimental data than the Freundlich model for nitrates and nitrites. With temperature increased from 298 to 308 K, the maximum adsorption capacity obtained by the Langmuir model increased from 10.60 to 16.90 mg-N/g for nitrate and 7.89 to 14.28 mg-N/g for nitrite, respectively. The adverse effect of coexisting anions ranked in the order of $\text{ClO}_4^- > \text{Cl}^- > \text{SO}_4^{2-} > \text{F}^- > \text{CO}_3^{2-} > \text{PO}_4^{3-}$. The actual $\text{Fe}^{2+}/\text{Fe}^{3+}$ value of M-CHT (0.56) is nearly consistent with the theoretical value of 0.5, and the saturation magnetic strength value of M-CHT is 9.15 emu/g, greatly contributing to the solid-liquid separation. Overall, M-CHT with features of magnetic properties and satisfactory adsorption capacity exhibits the greatly promising for application in wastewater purification.

Key words: adsorption, hydrotalcite, isotherm, kinetics, nitrate and nitrite

HIGHLIGHTS

- Magnetic Mg/Fe hydrotalcite was synthesized by co-precipitation method.
- Magnetic Mg/Fe hydrotalcite subjected to calcination at 500 °C (M-CHT) recovered its original double layer after the adsorption of nitrate and nitrite.
- The adsorption capacity was 16.90 mg-N/g for nitrate and 14.28 mg-N/g for nitrite at 35 °C.

GRAPHICAL ABSTRACT

INTRODUCTION

Since the 1960s, with the development of industry and agriculture, several countries have experienced different degrees of groundwater pollution from nitrate (Galloway et al. 2008). The nitrate in high concentrations and their
reduction to nitrites result in the adverse effect on the environment, and could potentially cause human health problems such as blue baby syndrome in infants and stomach cancer in adults (Majumdar & Gupta 2000; Kim-Shapiro et al. 2005; Boehm 2019). Excess of nitrate in drinking water can also lead to various types of cancer in humans (Aliaskari & Schfer 2020).

Several methods for removal of nitrate or nitrite from water have been applied, such as the reverse osmosis (Berkani et al. 2019), catalytic reduction (Wcea et al.; Han et al. 2019), biological denitrification (Mulholland et al. 2008; Liu et al. 2021a), ion exchange and electrodialysis (Wiercik et al. 2020; Zeng et al. 2020). However, biological processes are easily affected by temperature, and the effluent needs further treatment, such as disinfection (Chen et al. 2009; Zeng et al. 2020). The reverse osmosis and electrodialysis are relatively expensive, and merely displace nitrate or nitrite into the concentrated waste brine, causing the disposal problems (Samatya et al. 2006). Ion exchange needs high energy or a high or expensive dose of the reagent (Zeng et al. 2020). In recent decades, the adsorption methods have received great attention in removal of nitrate or nitrite from water, due to its simplicity, sludge free operation, easiness in handing and availability of various adsorbents (Song et al. 2016; Nassar et al. 2020). So far, the clay materials such as hydrotalcites with advantages of low cost, abundant source and easy preparation, have gained great concern from researchers. Hydrotalcite comprises up and down parallel layers and a large internal space for exchange of anions from water (Jung et al. 2020). Carbonate ions and crystal water are present in the interlayer (Saifullah & Hussein 2015). Upper and lower surfaces typically include metal oxide and metal hydroxide (Xia et al. 2020). The layer structure exhibits positive charge, and the internal anion exhibits negative charge, eventually rendering the electrical neutrality of hydrotalcite (Li et al. 2020). Hydrotalcite possesses a unique microporous structure, tunable denaturation, memory effect of calcination, interlayer anion-exchange ability, and a high degree of order (Ogata et al. 2018; Cheng et al. 2021). In a study reported previously by our group, the calcined Mg/Al hydrotalcite possessed high adsorption capacity for nitrate (34.36 mg N/g) and nitrite (37.17 mg N/g) (Wan et al. 2012). However, issues related to the effective separation and recovery of hydrotalcite from solution still need to be resolved. The preparation of magnetic hydrotalcite is developed to resolve the above-mentioned problem, and it has been applied to adsorb toxic anions or compounds such as methyl orange (Lin et al. 2016), phosphate (Sun et al. 2013) and arsenic (Toledo et al. 2010). However, for all we know, the researches on adsorption properties of magnetic hydrotalcite for nitrate and nitrite are still limited.

Considering that Al can damage human body and has negative effect on health, in this study, magnetic Mg/Fe hydrotalcite calcined material (M-CHT) was synthesized through the co-precipitation and calcination method, and then was used to remove nitrate and nitrite from water. The adsorption properties (including kinetics and isotherm) for nitrate and nitrite over M-CHT under batch conditions were investigated. Moreover, the adsorption mechanism was also analyzed based on the characterization (XRD, XPS, FTIR and VSM).

MATERIALS AND METHODS

Materials

FeCl$_2$·6H$_2$O, MgCl$_2$·6H$_2$O, FeCl$_2$·4H$_2$O, NaNO$_2$, NaNO$_3$, NaOH and Na$_2$CO$_3$ were all of analytical grade and purchased from Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). The solution used in all experiments were prepared using ultrapure water of 18.25 MΩ. The 20% ammonia used was in the form of ammonium solution.

Synthesis of M-HT and M-CHT

M-HT was synthesized by the co-precipitation method. First, a magnetic matrix solution was prepared by dissolution of FeCl$_2$·4H$_2$O (0.24 mol/L Fe$^{2+}$) and FeCl$_3$·6H$_2$O (0.48 mol/L Fe$^{3+}$) in 100 mL deionized (DI) water. Under the conditions of the controlled temperature of 45 ± 1 °C and vigorously stirring, 20% ammonia solution was added dropwise into the above solution to adjust the pH at 11 ± 1. The resulting precipitate was aged at 45 ± 1 °C for 30 min. The as-obtained oily black precipitate was centrifuged and washed with the deionized water for several times until the solution pH was neutral. The obtained substance was stored in a 500-mL conical flask containing 100 mL of deionized water for further use.

Next, MgCl$_2$·6H$_2$O (1.2 mol/L) and FeCl$_3$·6H$_2$O (0.4 mol/L) were dissolved in 200 mL of deionized water (solution A). Then, solution B containing a mixture of 25.60 g of NaOH (3.2 mol/L) and 4.24 g of Na$_2$CO$_3$ (0.2 mol/L) was prepared. The two solutions (A and B) were simultaneously added dropwise into 100 mL of the as-prepared magnetic matrix water under vigorously stirring. The temperature and pH were maintained constant at 40 ± 1 °C.
and 10 ± 1, respectively. The resulting slurry was stirred for 2 h and added into a thermostatic water bath at 65 ± 1 °C for ~18 h. The resulting product was centrifuged and washed with the deionized water for several times until the electrical conductivity of the supernatant was less than 300 μs/cm. Then, the product was dried at 70 °C and sieved with 100 mesh to obtain the powder, which was marked as M-HT. M-HT was subjected to calcination at 500 °C for 5 h, and sieved with 100 mesh to obtain the final product, which was marked as M-CHT.

Adsorption kinetics study

The adsorption capacity studies for nitrate or nitrite by M-CHT were conducted in a 500 mL flask in the batch mode. The initial nitrate or nitrite concentration maintained constant at 20 mg N/L. The effect of different temperatures (298, 303 and 308 K) on the adsorption of nitrate or nitrite by M-CHT was investigated. The solution volume and adsorbent dosage were 500 mL and 2 g/L, respectively. The adsorption capacity of M-CHT was calculated by the following equation:

\[
q_t = (C_0 - C_t) \frac{V}{m}
\]

In this equation, \(q_t\) is the adsorbent capacity of the adsorbent at time \(t\), \(C_0\) and \(C_t\) (mg N/L) are the initial concentration of nitrate or nitrite and that at time \(t\), respectively, and \(m\) is the mass of adsorbent (g).

Adsorption equilibrium study

Adsorption equilibrium studies were carried out by utilizing a constant mass (0.10 g) of M-CHT with 100 mL of the nitrate or nitrite solution. Nitrate or nitrite concentrations were 5, 10, 15, 20, 30, 45, and 60 mg N/L. M-CHT with the nitrate or nitrite solution was placed in a temperature-controlled orbital shaker with the stirring speed of 150 rpm. The pH of mixture was not adjusted for avoiding the effect of other anions. After shaking the flasks for 24 h, the solution sample was filtered by 0.45-μm membrane. The adsorption capacity of M-CHT toward nitrate or nitrite at equilibrium was denoted as \(q_e\) (mg N/g).

Analysis methods

Nitrate and nitrite concentrations were measured by Hitachi U-3010 spectrophotometer. XRD data were recorded in a 2θ range of 5° to 80° on a D8 Advance diffractometer using Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was measured on a Thermo Scientific Escalab 250SXi. Transmission electron microscopy (TEM) was measured on a Tecnai G2F30 microscope. Fourier transform infrared (FTIR) spectra were measured through a WQF-510 spectrometer.

RESULTS AND DISCUSSION

Kinetics study

As seen in Figure 1, in the first 500 min, M-CHT rapidly adsorbed nitrate and nitrite; then, the adsorption rate became sluggish, and adsorption saturation time was 750 min. A majority of active adsorption sites were available for nitrite or nitrate in the first 500 min, while after that, the active adsorption sites on M-CHT were gradually saturated. With the contact time increasing, the amount of adsorbed nitrate and nitrite increased, and at 308 K, almost 80% of the nitrate and nitrite was removed in 750 min.

With the temperature increasing from 298 to 308 K, the adsorption rates of nitrate and nitrite increased. Three common kinetics models including First-order, pseudo-second-order and intraparticle diffusion kinetics models were used to fit the experimental data, which are expressed by the following equations (Allen et al. 1989; Ho & Mckay 1998; Ogata et al. 2018):

First-order equation: \(\ln(q_e - q_t) = \ln q_e - k_1t\)

Pseudo-second-order equation: \(\frac{t}{q_t} = \frac{1}{k_2q_e^2} + \frac{t}{q_e}\)

Intraparticle diffusion equation: \(q_t = k_3t^{0.5}\)

where \(q_e\) and \(q_t\) are the adsorption amounts of nitrite or nitrate at equilibrium and at time \(t\) (min), respectively, \(k_1\) is the first-order reaction rate constant (min⁻¹), \(t\) (time) is reaction time, and \(k_2\) (g/mg min) and
k_3 (mg/g min$^{-0.5}$) are the rate constants of the pseudo-second-order and intraparticle diffusion kinetics models, respectively.

Table 1 shows the adsorption kinetics results which were fitted by the first-order, pseudo-second-order, and intraparticle diffusion models. According to the values of the correlation coefficient with nitrate and nitrite, higher R2 values (≥0.97) were fitted by the first-order and pseudo-second-order models. Specifically, the first-order model is well fitted, indicating that nitrate and nitrite adsorption rates are controlled by diffusion. In addition, the adsorption data were fitted with the pseudo-second-order model, and adsorption was concluded to be chemical adsorption (Hu et al. 2016). In addition, the initial adsorption rate can be calculated by $v_0 = k_2 \times q_e ^{-2}$ from pseudo-second-order model. The adsorption rate $v_0(\times 10^{-4})$ of nitrate increased from 209.33 to 404.99 mg/(g·min), while that of nitrite increased from 164.56 to 524.27 mg/(g·min). It can be explained that improving the solution temperature could facilitate the initial adsorption rate of nitrate and nitrite. The adsorption capacities of M-CHT fitted by first-order model for nitrate at 298, 303 and 308 K were respectively 8.37, 8.11 and 8.78 mg N/g. The corresponding values for nitrite were 7.92, 8.21, and 8.59 mg N/g, indicating that the increase of solution temperature can promote the adsorption of nitrate or nitrite on M-CHT, which is consistent with the above v_0 result.

Equilibrium study

Adsorption isotherm is an important manner that describes maximum adsorption capacity of M-CHT for nitrate or nitrite. To discuss the effect of different temperatures, the adsorption equilibrium of nitrate and nitrite on M-CHT was investigated at 298, 303 and 308 K. As showed in Figure 2, the equilibrium concentration of nitrate or nitrite increased, and the equilibrium adsorption capacity was also increased. With the temperature increasing from 298 to 308 K, adsorption equilibrium was achieved more rapidly. The adsorption capacities of nitrate and nitrite were high at high temperatures.

Figure 1 Adsorption kinetics of (a) nitrate and (b) nitrite by M-CHT at 298, 303, and 308 K. (Solution volume and adsorbent dosage were 500 mL and 2 g/L, respectively).
Anion	K	\(q_{e,cal} \) (mg/g)	\(k_1 \times 10^{-2} \) (min \(^{-1} \))	\(R^2 \)	\(P \)	\(q_{e,cal} \) (mg/g)	\(k_2 \times 10^{-4} \) (g/mg min)	\(R^2 \)	\(P \)	\(k_3 \) (mg/g min \(^{-1} \))	\(R^2 \)	\(P \)	
NO\(_3\)-N	298	8.37	0.20	0.9896	5.05477E-08	209.33	11.00	1.73	0.9825	2.43133E-07	0.2140	0.9477	9.12237E-06
	303	8.11	0.26	0.9917	2.27789E-08	298.12	11.46	2.27	0.9775	4.46344E-07	0.2391	0.8986	3.91332E-05
	308	8.78	0.32	0.9916	1.84834E-08	404.99	12.27	2.69	0.9850	1.04629E-07	0.2656	0.8966	3.29627E-05
NO\(_2\)-N	298	7.92	0.17	0.9843	1.93840E-07	164.56	11.00	1.36	0.9847	1.78946E-07	0.1967	0.9659	1.95582E-06
	303	8.21	0.23	0.9972	9.28335E-10	231.99	10.77	2.04	0.9893	5.28961E-08	0.2153	0.9312	1.34692E-05
	308	8.59	0.41	0.9983	1.14430E-10	476.23	10.12	4.65	0.9906	1.81887E-08	0.2209	0.8604	5.54217E-05

Table 1 | Kinetics parameters and correlation coefficients \((R^2)\) for three kinetics modes
Equilibrium data was fitted by two isotherm models: Langmuir and Freundlich models. These isotherm models were expressed by the following Equations (5) and (6), respectively (Langmuir 1916; Freundlich et al. 1998).

Langmuir model:

\[q_e = \frac{Q_0 K_L C_e}{1 + K_L C_e} \]

(5)

Freundlich model:

\[q_e = K_F C_e^{1/n} \]

(6)

where \(C_e \) is the nitrate or nitrite concentration of the solution at equilibrium (mg/L), \(Q_0 \) is the monolayer capacity of adsorbent (mg/g), \(K_L \) is the Langmuir constant (L/mg), and \(K_F \) (mg/g) (L/mg) and \(n \) are the Freundlich temperature-dependent constants.

Table 2 summarizes the adsorption isotherm parameters for nitrate or nitrite. The Langmuir isotherms model afforded the better fitting results with \(R^2 \) values (≥0.97), which was greater than those obtained by the Freundlich model, indicating that nitrate and nitrite are uniform on the adsorbent surface and adsorption may be the monolayer adsorption (Wan et al. 2012; Rodrigues et al. 2019). Meanwhile, at 298, 303 and 308 K, the maximum adsorption capacities of M-CHT for nitrate were 7.89, 13.96, and 19.89 mg N/g, respectively. The corresponding values for nitrite were 10.60, 12.40 and 16.90 mg N/g. The adsorption capacities of nitrate and nitrite at different temperatures increased, ranking in the order of 298 K < 303 K < 308 K. High temperature was favorable for adsorption; this tendency was in agreement with that reported by Rodrigues (Rodrigues et al. 2019). At 308 K, M-CHT exhibited highest adsorption capacity, and Langmuir parameters for nitrate adsorption were \(Q_0 = 14.28 \) mg N/g, and \(K_L = 1.39 \) L/mg; the corresponding values for nitrite were \(Q_0 = 16.90 \) mg N/g, and \(K_L = 0.59 \) L/mg.

The thermodynamic parameters of adsorption process include the standard free energy change (\(\Delta G^\circ \), kJ/mol), the standard enthalpy change (\(\Delta H^\circ \), kJ/mol) and the standard entropy change (\(\Delta S^\circ \), kJ/mol), respectively, which...
can be calculated by the following equations (Aksu 2002; Debnath & Ghosh 2008):

\[\Delta G^\circ = -RT \ln K_c' \]

(7)

\[\ln K_c' = \frac{C_{ad,e}}{C_e} \]

(8)

\[\ln K_c' = \frac{\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R} \]

(9)

where \(R \) (8.314 J/mol K) is the ideal gas constant, \(T \) (K) is the temperature, \(C_{ad,e} \) is the concentration of nitrate or nitrite on M-CHT at equilibrium (mg-N/L) and \(K_c' \) is the apparent equilibrium constant. The value of \(K_c' \) in the lowest experimental nitrate or nitrite concentration can be obtained (Chudoba 2020). It is known that adsorption reaction is a spontaneous process when \(\Delta G^\circ \) are negative values (Shahwan 2021). Herein, the thermodynamic parameters for the adsorption of nitrate and nitrite by M-CHT are given in Table 3. Specifically, \(\Delta G^\circ \) are negative values and decreases with temperature increasing, indicating that the adsorption process of nitrate and nitrite by M-CHT is spontaneous (Golban & Cocheci 2019), and the positive values of \(\Delta H^\circ \) suggest the endothermic nature of the adsorption of nitrate or nitrite by M-CHT. The positive values of \(\Delta S^\circ \) illustrate an increase in the randomness of the adsorption process.

Figure 3 and Table 4 present the Arrhenius equations, considering the satisfactory correlation coefficient values of 0.9934 and 0.9298. The adsorption processes have an adsorption activation energy value of 35.92 kJ/mol for nitrate and that of 67.12 kJ/mol for nitrite onto M-CHT. When the \(E_a \) value is lower than 40 kJ/mol, the adsorption type can be considered as a physical adsorption process; When the \(E_a \) value is greater than 40 kJ/mol, it suggests chemical adsorption (Bagheri et al. 2015). Herein, the \(E_a \) value of nitrite adsorption was greater than 40 kJ/mol, indicating the feasibility of the adsorption process being predominantly chemical in nature. The \(E_a \) value of nitrate adsorption was lower than 40 kJ/mol, which might be the physical adsorption.

Effects of initial pH

Hydrotalcite-like material is an alkali compound, and the solution pH profoundly affects its adsorption performance. Figure 4 shows the results of adsorption capacities at equilibrium (\(q_e \)) under different initial pH values.

Table 2	Adsorption isotherm parameters at different temperatures							
Temperature (K)	\(q_e \) (mg/g)	\(K_c \) (L/mg)	\(R^2 \)	\(P \)				
NO\textsubscript{3}-N 298	7.89	0.71	0.9445	8.58917E-07	5.66	5.25	0.9389	1.08977E-06
303	13.00	1.07	0.9785	1.06430E-07	7.25	5.84	0.8620	1.09662E-05
308	14.28	1.39	0.9892	2.32829E-08	8.27	6.09	0.8451	1.79982E-05
NO\textsubscript{2}-N 298	10.60	0.52	0.9887	1.55678E-08	5.21	5.26	0.8205	1.53498E-05
303	12.40	0.75	0.9621	4.28136E-07	6.45	5.39	0.8869	6.51297E-06
308	16.90	0.59	0.9542	1.85506E-06	7.72	7.75	0.9152	8.61090E-06

Table 3	Thermodynamic parameters of adsorption of nitrate and nitrite by M-CHT				
Materials	Temperature (K)	\(\ln K_c' \)	\(\Delta G^\circ \) (kJ/mol)	\(\Delta H^\circ \) (kJ/mol)	\(\Delta S^\circ \) (J/mol·K\(^{-1}\))
Nitrate 298	1.85	-4.58	58.74	212.68	
303	2.51	-5.83	86.25	232.54	
308	2.62	-6.70	98.58	248.79	
Nitrite 298	1.27	-3.14	96.43	334.71	
303	2.13	-5.37	105.67	342.59	
308	2.53	-6.47	115.89	350.89	
Figure 3 | Arrhenius plots of adsorption of nitrate (a) and nitrite (b) onto M-CHT. (Solution volume and adsorbent dosage were 500 mL and 2 g/L, respectively).

Table 4 | The energy of activation (E_a) from the Arrhenius plots

Temperature (K)	E_a (kJ·mol$^{-1}$)	R^2
Nitrate	35.92	0.9934
Nitrite	67.12	0.9298

Figure 4 | Effect of the initial pH of the M-CHT solution on the adsorption capacity of (a) nitrate and (b) nitrite, and the final pH value of the solution after adsorption. (Solution volume and adsorbent dosage were 100 mL and 1 g/L, respectively).
CHT exhibited a high nitrate adsorption capacity at initial pH range of 3.36–8.45, as well as high nitrite adsorption capacity at initial pH range of 3.57–9.4, indicating that M-CHT has high adsorption capacity toward nitrate or nitrite in a wide range of solution pH. The maximum nitrate and nitrite adsorption capacities were 9.91 mg N/g at pH 6.33 and 14.24 mg N/g at pH 6.38, respectively.

When initial pH is >4.0, the final pH after adsorption exceeded 10.5, suggesting that M-CHT is a strongly alkaline material. After adsorption, pH increased possibly due to the release of OH⁻ from hydrotalcite. At the same time, at initial pH values of 4–10, these trends were not significant, indicating that hydrotalcite exhibits a certain buffering effect on the change of the solution pH; hence, within a certain range of pH, the effect of pH on adsorption capacity of nitrate and nitrite by CHT is not extremely significant, and the adoption range is wide (Ahmed et al. 2020). With the decrease in the solution pH to 2.50, the nitrate and nitrite adsorption capacities decreased to 6.41 mg N/g and 10.12 mg N/g, respectively, with the corresponding decrease in the final solution pH to 10.09 and 10.04. Thus, a strong acidic environment reduces stability of the laminate structure of materials (Ferreira et al. 2006), thus decreasing adsorption capacity for anions. With the increase in the pH, the competitive adsorption of nitrate or nitrite by a high number of OH⁻ in the solution increased, leading to the decreased adsorption of the nitrate or nitrite.

Effects of coexisting anions

Typically, the anions such as F⁻, Cl⁻, ClO₄⁻, SO₄²⁻, CO₃²⁻, and PO₄³⁻ are present in nitrate- and nitrite-contaminated water, which can compete with nitrate or nitrite for adsorption sites on materials (Gierak & Lazarska 2017). As showed in Figure 5, in the control group (no coexisting ions), the removal efficiencies of nitrate and nitrite by M-CHT were 46.34% and 68.56%, respectively. From the general trend observed in the figure, the adsorption capacity of nitrate or nitrite significantly decreased in the presence of coexisting anions. The order of influence is PO₄³⁻ > CO₃²⁻ > F⁻ > SO₄²⁻ > Cl⁻ > ClO₄⁻. The adsorption ability of M-CHT for nitrate or nitrite from the solution was mainly dependent on the electrical affinity of its positive surface. In the presence of PO₄³⁻ in the solution, the adsorption capacity was significantly decreased. After the calcination of M-CHT, the interlayer water or interlayer anions were lost, and the material surface exhibited a positive charge. The higher the coexisting anion valence, the poorer the adsorption of nitrite or nitrate by M-CHT (Li et al. 2016). Thus, PO₄³⁻ is the most competitive anion. In addition, the anion radius affected the adsorption capacity. Compared to Cl⁻, the anion F⁻ with smaller radius has more adverse effect on adsorption of nitrate or nitrite.

Characterization

XRD analysis

XRD was employed to investigate the sample structure. Figure 6 shows the XRD patterns of M-HT, M-CHT, and M-CHT-A. M-CHT-A-NO₃⁻ and M-CHT-A-NO₂⁻ represent the calcined hydrotalcite with adsorbed nitrate and nitrite, respectively. As showed in Figure 6, before calcination, M-HT exhibited a typical HT-CO₃²⁻ structure with the sharp, symmetric (003), (006), (110) and (113) reflections, as well as wide, symmetric (012), (015) and (018) reflections, revealing the characteristics of the hydrotalcite-like compounds (Wang et al. 2018; Kang et al. 2020).
A peak observed at a 2θ of 30.34° was indexed to Fe₃O₄ (JCPDS 26-1136), indicating that magnetic substrate has been successfully loaded on the hydrotalcite (Zhang et al. 2013). After the calcination at 500 °C for 4 h, all of the characteristic reflections (003, 006, 110, 113, 012, 015 and 018) of M-HT disappeared, suggesting the destruction of layer structure of M-CHT. Meanwhile, a mixed oxide of Mg(Fe)O with the peaks at 43° and 62° (M-CHT) was formed (Yang et al. 2012). The peak indexed as Fe₃O₄ can still be clearly observed at 30.34°. Hence, M-CHT should be a mixed metal oxide, and the calcination treatment did not destroy the structure of Fe₃O₄. After adsorption of nitrate or nitrite on M-CHT (M-CHT-A-NO₃/C₀, M-CHT-A-NO₂/C₀), the layered structure was reconstructed, which is indicative of the adsorption of nitrate or nitrite on the positive layer and formation of a negative layer.

The interlayer spacing was calculated by using the basal spacing (d₀₀₃) minus the width of the brucite-like layer (Wan et al. 2012). Herein, the internal spaces of CHT and M-CHT were 0.293 nm and 0.299 nm, respectively, indicating that the addition of magnetic matrix does not affect the internal space of M-HT.

XPS analysis
To analyze the surface composition and elemental states of M-CHT, the XPS was adopted. All elements were marked in the full spectrum map (Figure 7(a)). The typical binding energies were observed at 56.92 eV, 301.38 eV, 532.80 eV, and 727.12 eV, corresponding to Mg₂p, C₁s, O₁s, and Fe₂p, respectively, which are consistent with main constituent elements of M-CHT.

As presented in Figure 7(b), the binding energies at 712.3 eV and 725.6 eV were assigned as the characteristic of Fe³⁺, and the binding energies at 710.6 eV and 723.9 eV were assigned as the characteristic of Fe²⁺ (Liu et al. 2020a). In addition, the binding energy at 719.06 eV is the common satellite peak of both Fe³⁺ and Fe²⁺. As calculated by the peak areas from XPS, the peak area ratios of Fe²⁺ and Fe³⁺ were 35.96% and 64.04%, respectively. The actual Fe²⁺/Fe³⁺ value of 0.56 is basically consistent with theoretical value of 0.5, indicating that Fe₃O₄ is doped in hydrotalcite (Yan et al. 2015; Liu et al. 2020a).

FTIR analysis
Figure 8 shows FTIR spectra of M-HT, M-CHT and M-CHT-A. The wide band at 3,460 cm⁻¹ corresponded to the -OH bending vibration from hydroxyl groups and interlayer water (Yan et al. 2015; Shi et al. 2020). A weak band at 1,649 cm⁻¹ was assigned as the bending vibration of the interlayer water (Abdelkader et al. 2011; Liu et al. 2020a). The peak at 1,364 cm⁻¹ is as the vibrational peak of CO₃²⁻ (Saiah et al. 2009). The band between 400 cm⁻¹ and 800 cm⁻¹ is attributed to the stretching bands of magnesium iron skeleton (Liu et al. 2020a). The above results indicated that M-HT exhibits characteristics of hydrotalcite, comprising interlayer water and carbonate, and the introduction of magnetic substrate does not change its properties.

After calcination, the characteristic peaks of hydrotalcite at 3,460 cm⁻¹ and 1,649 cm⁻¹ became weak or disappeared, mainly due to the collapse of the lamellar structure, disappearance of functional groups such as OH⁻, CO₃²⁻, and H₂O at high temperature, and conversion of sample to a mixed oxide (Wan et al. 2012). After the adsorption of nitrate or nitrite, new peaks were observed at 1,384 cm⁻¹ and 1,271 cm⁻¹, corresponding to nitrate and nitrite (Ogata et al. 2018), indicating the successful adsorption of nitrate and nitrite on M-CHT. Moreover, for all samples, the peak at 582 cm⁻¹ corresponded to the Fe-O stretching vibration (Liu et al. 2020b, 2021b), which
was feature of Fe$_3$O$_4$ (Pandi & Viswanathan 2016). It was indicated that Fe$_3$O$_4$ was successfully loaded on the hydrotalcite, and the calcination and adsorption process does not affect the structure of Fe$_3$O$_4$.

VSM analysis

XRD, XPS and FTIR results indicated that Fe$_3$O$_4$ is successfully loaded on the hydrotalcite matrix. Figure 9 shows the magnetic hysteresis curve of M-CHT at room temperature. M-CHT exhibited a magnetization of 9.15 emu/g. The coercive force and remanence were close to zero, indicating that M-CHT is a superparamagnetic material (Xu & Wang 2012; Shen et al. 2019). The inset image in Figure 9 showed that the result of magnetic separation of M-CHT after 5 min, which indicated that M-CHT can be easily separated and recovered.

Figure 7 | X-ray photoelectron spectra of M-CHT: (a) full spectrum and (b) Fe2p peaks with the fitting spectrum.

Figure 8 | FTIR spectra of M-HT, M-CHT and M-CHT-A.
CONCLUSIONS

In this study, M-CHT synthesized by the co-precipitation and calcination method exhibited high adsorption capacity for nitrate or nitrite from contaminated water under a wide range pH (initial pH ranged from 3 to 9). The adsorption kinetics and isotherm of nitrate and nitrite can be described with the first-order, pseudo-second-order model and Langmuir model, respectively. In the presence of coexisting anions, the removal efficiency of nitrate or nitrite over M-CHT decreased in the order of PO₄³⁻ > CO₃²⁻ > F⁻ > SO₄²⁻ > Cl⁻ > ClO₄⁻. XRD and FTIR analysis revealed that M-CHT can recover its original layered structure after the adsorption of nitrate or nitrite. Meanwhile, XRD and XPS analysis confirmed that Fe₃O₄ was successfully loaded on hydrotalcite, and did not affect the hydrotalcite structure. M-CHT was a magnetic material and it can be easily recycled using a magnet. Thus, M-CHT exhibits great prospects for application in wastewater purification.

ACKNOWLEDGEMENTS

This work was financially supported by National Natural Science Foundation of China (51878251), Key Scientific and Technological Research Project in Henan Province (192102210170, 14B430005, 182102210398, 172102310157), State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2019-004).

DECLARATION OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abdelkader, N. B.-H., Bentouami, A., Derriche, Z., Bettahar, N. & de Menorval, L. C. 2011 Synthesis and characterization of Mg-Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution. Chemical Engineering Journal 169, 231–238.
Ahmed, A., Wang, J., Wang, W., Okonkwo, C. J. & Liu, N. 2020 A practical method to remove Perfluorooctanoic acid from aqueous media using layer double hydride system: a prospect for environmental remediation. Environmental Technology 1–30.
Aksu, Z. 2002 Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochemistry 38, 89–99.
Aliaskari, M. & Schfer, A. I. 2020 Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Research 190, 116683.
Allen, S. J., Mckay, G. & Khader, K. Y. H. 1989 Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environmental Pollution 56, 39–50.
Ogata, F., Nagai, N., Kariya, Y., Nagahashi, E., Kobayashi, Y., Nakamura, T. & Kawasaki, N. 2018 Adsorption of nitrite and nitrate ions from an aqueous solution by Fe-Mg-Type hydrotalcites at different molar ratios. Chem. Pharm. Bull. 66, 458–465.

Pandi, K. & Viswanathan, N. 2016 In situ fabrication of magnetic iron oxide over nano-hydroxyapatite gelatin eco-polymeric composite for deodorization studies. J. Chem. Eng. Data 61, 571–578.

Rodrigues, E., Almeida, O., Brasi, H., Moraes, D. & dos Reis, M. A. L. 2019 Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: equilibrium, kinetic and thermodynamic study. Applied Clay Science 172, 57–64.

Saiah, F. B. D., Su, B.-L. & Bettahar, N. 2009 Nickel-iron layered double hydroxide (LDH): textural properties upon hydrothermal treatments and application on dye sorption. Journal of Hazardous Materials 165, 206–217.

Wan, D., Liu, H., Liu, R., Qu, J., Li, S. & Zhang, J. 2012 Adsorption of nitrate and nitrite from aqueous solution onto calcined Mg-Fe-layered double hydroxide. Journal of Water & Environment Technology 11, 111–120.

Wang, M., Guo, P. Y., Zhang, Y., Lv, C. M., Liu, T. Y., Chai, T. Y., Xie, Y. H., Wang, Y. Z. & Zhu, T. 2018 Synthesis of hollow lantern-like Eu(III)-doped g-C3N4 with enhanced visible light photocatalytic performance for organic degradation. Journal Of Hazardous Materials 349, 224–233.

Yang, Y., Gao, N., Chu, W., Zhang, Y. & Ma, Y. 2012 Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al-Fe) hydrotalcite-like compounds. Journal Of Hazardous Materials 209, 318–325.

Zhang, X. F., Wang, J., Li, R. M., Dai, Q. H., Gao, R., Liu, Q. & Zhang, M. L. 2015 Preparation of Fe3O4@C@Layered double hydroxide composite for magnetic separation of uranium. Ind. Eng. Chem. Res. 52, 10152–10159.

Received 28 August 2020; accepted in revised form 28 May 2021. Available online 15 June 2021