Bulk Tissue Cell Type Deconvolution with Multi-Subject Single-Cell Expression Reference

Wang et al.
Supplementary Information

Supplementary Notes

Supplementary Note 1: Construction of artificial bulk tissue RNA-seq data

We construct artificial bulk tissue RNA-seq data by summing up read counts across all cells from the same subject in the single-cell RNA-seq data. By way of construction, the cell type proportions of the artificial bulk data are equal to the observed cell type proportions in the single-cell data, and this allows us to compare estimated cell type proportions from various methods with the true proportions. Supplementary Figure 1b shows that the artificial bulk tissue RNA-seq data have similar gene expression as the real bulk RNA-seq data generated from the same subjects.

Supplementary Note 2: Impact of varying cell type proportions of artificial bulk data in deconvolution

Figure 2b in the main text shows the deconvolution results from MuSiC, NNLS, BSEQ-sc and CIBERSORT, and these results indicate that the alpha cell proportion is over-estimated by all methods except for MuSiC. To evaluate the impact of different cell type proportions in the bulk data on deconvolution estimates, we generated additional artificial bulk data to show that MuSiC can still reliably estimate cell type proportions even when the true cell type proportions in the bulk data are very different from the cell type proportions in the single-cell reference. In this newly constructed benchmark data, the single-cell reference stays the same while we construct the artificial bulk data from Xin et al. by combining cells from 2 subjects with 75% alpha cells dropped. In this way, beta cells become the dominant cell type in the artificial bulk data, as expected for real bulk tissue. Supplementary Figure 2c shows that only MuSiC recovers the true cell type composition, revealing that beta cells are the major cell type in the artificial bulk data, whereas the other methods overestimate the alpha cell proportion, indicating that these methods are more likely to be influenced by the cell type proportions in the single-cell reference. This analysis also gives the likely explanation for why, in the Fadista et al. data, all methods that rely on CIBERSORT marker genes grossly overestimate alpha cell proportion.

Supplementary Note 3: Impact of missing cell types in single-cell reference on deconvolution

One of the limitations of single-cell RNA-seq is cell loss during cell dissociation. This not only biases cell type proportions, but also leads to failure of detecting certain cell types, especially those rare cell types. In practice, the single-cell reference dataset might be incomplete, and not every cell type present in the bulk data is included in the single-cell reference. Since the deconvolution methods rely on observed cell types in the single-cell reference, it is important to evaluate whether cell type proportions can be reliably estimated when some cell types are missing in the single-cell reference.

We evaluate MuSiC, NNLS, BSEQ-sc and CIBERSORT with missing cell types (Supplementary Figure 3, Supplementary Table 3). The artificial bulk data consist of 6 cell types while the single-cell reference only consists of 5 cell types. The evaluation shows that when major cell types are missed, none of the methods can give accurate estimates. However,
the cell type proportions are estimated accurately by MuSiC when the missing cell type is not the dominant cell type in the bulk tissue.

Supplementary Note 4: Tolerance of bias in single-cell relative abundance on deconvolution

The protocol discrepancies between bulk and single-cell datasets may lead to estimation bias. To evaluate the degree of bias tolerance relative to the biological signal, we manually introduce noise to cross-subject average of the single-cell obtained relative abundance θ_g^k. Because of the constraint that $\sum_{g=1}^G \theta_g^k = 1$, we generate biased relative abundance by Dirichlet distribution, denoted by θ_g^k'. Consider one cell type only. For simplicity, we drop the superscript k for cell type. We assume the relative abundances of G genes follow a Dirichlet distribution,

$$\left(\theta_1', \ldots, \theta_G' \right) \sim \text{Dirichlet}(t \times (\theta_1, \ldots, \theta_G)),$$

where t is a scaling factor. The mean and variance of θ_g' are θ_g and $\frac{\theta_g(1-\theta_g)}{t+1}$, respectively. By setting $t = 999, 1332, 1999$ and 3999, corresponding to $E[\theta_g'] \approx \left(\theta_g(1 + t) \right)^{-1} \geq 2, 1.5, 1$ and 0.5, we simulated 100 times the cross-subject average of relative abundance of 6 major cell types from Segerstolpe et al. We deconvolved the artificial bulk data constructed by Xin et al. (Supplementary Figure 8c) and MuSiC provides accurate cell type proportions even with biased relative abundance as input.

Supplementary Note 5: Robustness to single-cell dropout noise on deconvolution

Single-cell RNA-seq data are prone to gene dropout and the dropout rates can differ across datasets. To evaluate the robustness of MuSiC, NNLS, BSEQ-sc and CIBERSORT to dropout in single-cell data, we constructed artificial bulk data from the original scRNA-seq data and deconvolved it by single-cell data with additional dropout noise. Following Jia et al., the dropout rate π_{jgc} is generated by

$$\pi_{jgc} = \frac{1}{1 + k \exp(k \ln X_{jgc})},$$

where X_{jgc} is the observed read counts, k is the dropout rate parameters. The simulated read count X_{jgc}' follows distribution such that

$$P(X_{jgc}' = X_{jgc}) = \pi_{jgc}, \quad P(X_{jgc}' = 0) = 1 - \pi_{jgc}.$$

We evaluated four different dropout rates with $k = 1, 0.5, 0.2$ and 0.1 (Supplementary Figure 8a-b). In general, adding more dropout noise leads to lower MuSiC estimation accuracy. Compared with other methods, MuSiC consistently performs better in the presence of dropout noise.

Supplementary Note 6: Convergence of MuSiC with different starting points

MuSiC estimates cell type proportions by weighted non-negative least square (W-NNLS), which might be sensitive to the choice of starting values. To examine the convergence property of
MuSiC, we re-analyzed the data in Figure 2b to show convergence with different starting points. The artificial bulk data is constructed by Xin et al.1 while the single-cell reference consists of 6 healthy subjects from Segerstolpe et al.3 The cell type proportions of four cell types: alpha, beta, delta and gamma are estimated using MuSiC with different starting points are shown in Supplementary Table 8. W-NNLS converges to the same value regardless of the starting points (Supplementary Figure 9).

Supplementary Note 7: Complex models

More complex error models, such as the gamma may give better fit to data, but could be computationally more challenging to fit. Here our empirical results show that the Gaussian model already gives accurate estimates.

Supplementary Tables

Supplementary Table 1: Linear regression to examine the relationship between estimated cell type proportions (Segerstolpe et al.3 as reference) and HbA1c levels. The fitted linear model is estimated cell type proportion \sim HbA1c + Age + BMI + Gender. Significant results (p value < 0.05) are highlighted.

Cell type	MuSiC	BSEQ-sc					
	Estimate	Std.Error	P value	Estimate	Std.Error	P value	
alpha	(Intercept)	0.380382	0.207754	0.07125	1.351464	0.240052	3.26E-07
	HbA1c	-0.00203	0.027737	0.941834	-0.07377	0.032049	0.024249
	Age	-0.00097	0.001935	0.617836	0.002753	0.002236	0.222198
	BMI	-0.00167	0.007945	0.834127	-0.01711	0.00918	0.066449
	Gender	0.033135	0.094777	0.00638	-0.00638	0.049548	0.897869
beta	(Intercept)	0.877022	0.190276	1.71E-05	0.065847	0.046433	0.16047
	HbA1c	-0.0614	0.025403	0.01819	-0.00925	0.006199	0.635957
	Age	0.002639	0.001772	0.140873	0.000576	0.000433	0.365258
	BMI	-0.01362	0.007276	0.065293	-0.05316	0.001776	0.066449
	Gender	-0.07987	0.039274	0.00541	-0.00541	0.009584	0.574159
gamma	(Intercept)	0.008556	0.010504	0.417988	0.102201	0.024366	7.69E-05
	HbA1c	0.001047	0.001402	0.00278	0.003253	0.001776	0.066449
	Age	9.21E-05	9.78E-05	0.34931	9.99E-05	9.99E-05	0.570225
	BMI	-0.00057	0.000402	0.160731	-0.00207	0.000932	0.029738
	Gender	-0.00165	0.002168	0.409122	-0.00092	0.005029	0.855252
delta	(Intercept)	0.057678	0.010592	6.81E-07	0.015539	0.018715	4.09122
	HbA1c	-0.00106	0.001414	0.455785	0.002017	0.002499	0.422131
	Age	-0.00016	9.87E-05	0.12039	9.99E-05	9.99E-05	0.568316
	BMI	0.000405	0.000402	0.160731	0.00013	0.000227	0.570225
	Gender	0.000424	0.002186	0.409122	0.000254	0.003863	0.512616
acinar	(Intercept)	-0.10619	0.131102	4.20638	-0.14553	0.052092	0.006672
	HbA1c	0.034967	0.017503	0.049519	0.019075	0.006955	0.007684
	Age	-0.00247	0.001221	0.455785	0.000547	0.000485	0.178153
	BMI	0.00662	0.005013	0.19083	0.002008	0.001992	0.316847
	Gender	0.05332	0.02706	0.52632	-0.02338	0.010752	0.032985
Supplementary Table 2: Linear regression to examine the relationship between estimated cell type proportions (Baron et al.5 as reference) and HbA1c levels. The fitted linear model is estimated cell type proportion ~ HbA1c + Age + BMI + Gender. Significant results (p value < 0.05) are highlighted.

| Cell type | MuSiC | | | | | | BSEQ-sc | | | |
|-----------|---|---|---|---|---|---|---|---|---|
| | Estimate | Std. Error | P value | Estimate | Std. Error | P value |
| ductal (Intercept) | -0.21745 | 0.141008 | 0.127428 | -0.38952 | 0.232841 | 0.098686 |
| HbA1c | 0.028474 | 0.018826 | 0.134781 | 0.058397 | 0.031086 | 0.064353 |
| Age | 0.000863 | 0.001313 | 0.513005 | -0.00396 | 0.002169 | 0.072066 |
| BMI | 0.010341 | 0.005392 | 0.059097 | 0.019814 | 0.008904 | 0.029191 |
| Gender | -0.00536 | 0.029105 | 0.854406 | 0.038631 | 0.048059 | 0.424144 |
| alpha (Intercept) | 1.000504 | 0.275906 | 0.000533 | 1.220529 | 0.187349 | 8.56E-09 |
| HbA1c | -0.0259 | 0.036385 | 0.48424 | -0.06398 | 0.025012 | 0.012632 |
| Age | 0.000234 | 0.00257 | 0.927855 | 0.001921 | 0.001745 | 0.274661 |
| BMI | -0.01137 | 0.010551 | 0.28475 | -0.00681 | 0.007164 | 0.345275 |
| Gender | 0.038364 | 0.056948 | 0.502676 | -0.02104 | 0.038669 | 0.588048 |
| beta (Intercept) | 0.315176 | 0.09427 | 0.001316 | 0.011001 | 0.016796 | 0.51455 |
| HbA1c | -0.02843 | 0.012586 | 0.026936 | -3.70E-05 | 0.002242 | 0.986889 |
| Age | -0.00081 | 0.000878 | 0.361952 | 0.000142 | 0.000156 | 0.366396 |
| BMI | -0.00158 | 0.003605 | 0.661813 | -0.00044 | 0.000642 | 0.498345 |
| Gender | -0.00927 | 0.019458 | 0.635249 | -0.00079 | 0.003467 | 0.819685 |
| gamma (Intercept) | -0.0172 | 0.055935 | 0.759333 | 0.040372 | 0.011566 | 0.000287 |
| HbA1c | 0.001227 | 0.007468 | 0.869925 | 7.31E-05 | 0.001544 | 0.962362 |
| Age | 0.00085 | 0.000521 | 0.107295 | -8.47E-05 | 0.000108 | 0.434521 |
| BMI | -0.00042 | 0.002139 | 0.843112 | -0.0011 | 0.000442 | 0.015394 |
| Gender | -0.00098 | 0.011545 | 0.390355 | -0.00048 | 0.002387 | 0.842519 |
| delta (Intercept) | 0.043785 | 0.009622 | 2.12E-05 | 0.012347 | 0.016882 | 0.466922 |
| HbA1c | -0.00121 | 0.001285 | 0.349663 | 0.002763 | 0.002254 | 0.224153 |
| Age | -8.79E-05 | 8.96E-05 | 0.330262 | 5.00E-05 | 0.000157 | 0.751577 |
| BMI | -0.00093 | 0.000368 | 0.013618 | -0.00101 | 0.000646 | 0.1226 |
| Gender | -0.00063 | 0.001986 | 0.753674 | -0.00098 | 0.003484 | 0.780352 |
| acinar (Intercept) | 0.002232 | 0.042169 | 0.957925 | -0.23299 | 0.083467 | 0.006714 |
| HbA1c | 0.013032 | 0.00563 | 0.023475 | 0.034902 | 0.011143 | 0.00251 |
| Age | -0.00062 | 0.000393 | 0.119068 | -0.00015 | 0.000777 | 0.848086 |
| BMI | -0.0008 | 0.001613 | 0.621478 | 0.006564 | 0.003192 | 0.043362 |
| Gender | 0.013342 | 0.008704 | 0.129687 | -0.01866 | 0.017228 | 0.282488 |
| ductal (Intercept) | -0.3445 | 0.218745 | 0.119669 | -0.05126 | 0.14 | 0.71354 |
| HbA1c | 0.041276 | 0.029204 | 0.161852 | 0.026281 | 0.018691 | 0.164004 |
| Age | 0.00043 | 0.002038 | 0.833485 | -0.00188 | 0.001304 | 0.153951 |
| BMI | 0.015109 | 0.008365 | 0.075051 | 0.002786 | 0.005354 | 0.604398 |
| Gender | -0.03183 | 0.04515 | 0.483036 | 0.04194 | 0.028896 | 0.151016 |
Supplementary Table 3: Evaluation of deconvolution methods when there are missing cell types in the single-cell reference. The missing cell type is shown in bold and the proportions in the bulk tissue data are shown in parentheses.

Method	Alpha (0.447)	RMSD	mAD	R	Beta (0.137)	RMSD	mAD	R
MuSiC	0.13	0.09	0.72		MuSiC	0.04	0.03	0.98
NNLS	0.27	0.18	0.42		NNLS	0.12	0.08	0.86
BSEQ-sc	0.17	0.12	0.58		BSEQ-sc	0.12	0.08	0.87
CIBERSORT	0.12	0.09	0.77		CIBERSORT	0.09	0.06	0.91

Supplementary Table 4: Summary of cell types of Park et al.6 single-cell dataset. Park et al. sequenced 57,979 cells from healthy mouse kidneys and identified 16 cell types. As suggested in Park et al., we limited our consideration to the 13 confidently characterized cell types and eliminated CD-Trans and 2 novel cell types in our deconvolution analyses.

Cell Type	Abbr.	# Cell	% Cell	Cell Type	Abbr.	# Cell	% Cell
Endothelial	Endo	1,001	2.29	Fibroblast	Fib	549	1.26
Podocyte	Podo	78	0.18	Macrophage	Macro	228	0.52
Proximal tubule	PT	26,482	60.54	Neutrophil	Neutro	74	0.17
Loop of Henle	LOH	1,581	3.61	B lymphocyte	B lymph	235	0.54
Distal convoluted tubule	DCT	8,544	19.53	T lymphocyte	T lymph	1,308	2.99
Collecting duct principal cell	CD-PC	870	1.99	Natural killer cell	NK	313	0.72
Collecting duct intercalated cell	CD-IC	1,729	3.95	Novel cell type 1	Novel 1	601	1.37
Collecting duct transitional cell	CD-Trans	110	0.25	Novel cell type 2	Novel 2	42	0.10
Supplementary Table 5: List of top 100 high weighted genes from the pancreatic islet analysis.

Rank	Segerstolpe	Xin	GSE50244	Rank	Segerstolpe	Xin	GSE50244
1	GCG	GCG	MALAT1	51	ITM2B	E1F4A2	RPS3A
2	TTR	MALAT1	EEF1A1	52	ENPP2	CTSD	RPL9
3	MALAT1	INS	TTR	53	ATP1A1	RBP4	SOD2
4	SERPINA1	TTR	FTH1	54	ANXA4	HNRP61	E1F4B
5	SPP1	FTL	GCG	55	HNRP61	BSG	HSPA8
6	B2M	PPP1CB	CPE	56	ALDOB	EEF2	PKM
7	FTH1	PCSK1N	GNAS	57	CD164	RPS3	SCG2
8	CHGA	CHGB	RPL4	58	HLA-A	PDK4	RPS24
9	PIGR	PSAP	APP	59	RIN2	SSR1	CD74
10	IAPP	CHGA	CTSD	60	ASA1H	SCD	SQSTM1
11	SST	EGR1	HSP90A1	61	TMSB10	DNAJC3	TMBM6
12	SCG5	RIN2	CANX	62	BSG	SAR1A	TXNDR1
13	ALDH1A1	GNAS	PAM	63	CLDN4	GPX4	LCN2
14	TM4SF4	SCG5	RPS6	64	TMEM59	PLD3	RPL14
15	REG3A	CSNK1A	SERPINA3	65	PYY	ATP6AP1	PDIA3
16	GPDH	PTEN	EIF4G2	66	C10orf10	AN3PE2	HDBP
17	REG3A	CEP	EIF4G2	67	HSPA8	TBL18X1	HNRPK
18	ACTB	C6orf62	HSPA5	68	CH3G1B	GNB2L1	SCARB2
19	TMBM6	RPL3	ITGB1	69	P4HB	SLC2A17	RPL3A
20	RBP4	DPYSL2	IAPP	70	LCN2	PAFAH1B2	LINC00657
21	COX8A	SCG2	RPL5	71	ATP6V0B	TEM4	SPINT2
22	ALDOA	ALDH1A1	SLC7A2	72	PSAP	CST3	REG1B
23	PDK4	PFKFB2	HNRNPA1	73	S100A11	TOB1	RPL15
24	RPL8	CPE	ANXA2	74	MAP1B	CLU	RPS11
25	H3F3B	C10orf10	RPL7	75	CD59	TTC3	GANAB
26	IGFBP7	TMBM6	RPS18	76	SLC30A8	RPS11	CDH1
27	S100A46	CRYBA2	PCSK1	77	CPE	G6PC2	PEG10
28	EEF2	FTX	ATP1A1	78	CLPS	GRN	CLDN4
29	TIMP1	HSPA8	IDS	79	CTSD	SERPINA1	GSTP1
30	CCF1	HSP90A1	GDF15	80	S100A15	SSR1	TUBA1A
31	GRN	H3F3B	RPS3	81	AT1P1B1	SRP6	RPS27A
32	SPINT2	SLC30A8	RPSA	82	CTSD	SERPINA1	GTP1
33	SQSTM1	TLK1	CSDE1	83	S100A11	TOB1	RPL15
34	KRT12	ENTK1	CLTC	84	MAP1B	CLU	RPS11
35	CD63	B2M	RPL10	85	CD59	TTC3	GANAB
36	SLC40A1	DDX5	YWHAZ	86	S100A15	SSR1	TUBA1A
37	G6PC2	SOS	RPL3	87	CTSD	SERPINA1	GTP1
38	CRYBA2	MAFB	SLC30A8	88	CTSD	SERPINA1	GTP1
39	DD5X	CD59	RPL6	89	G6PC2	PEG10	PEG10
40	PCBP1	TM4SF4	TMSB10	90	TAAR5	DSP	MSN
41	C6orf62	TME33	CD44	91	SLC2A17	COX8A	HNRPNA2B1
42	CRYBA2	CAPZA1	NPM1	92	RPL3	TIMP1	CTNNB1
43	CD74	CALM2	B2M	93	HERPUD1	ATP1B1	MORF4L1
44	HLA-E	GPX3	PABPC1	94	CD24	WFS1	SERINC1
45	alpha	beta	delta	gamma	acinar	ductal	
Rank	Beckerman	Cruciun	Arvaniti	Rank	Beckerman	Cruciun	Arvaniti
------	-----------	---------	----------	------	-----------	---------	----------
1	Kap	Malat1	Malat1	51	Cycs	Dbi	Rps14
2	mt-Atp6	Kap	Kap	52	Rplp1	Rps18	Cox4i1
3	Gpx3	mt-Atp6	Gpx3	53	Rpl23	Rps14	Rpl26
4	mt-Co1	Gpx3	S100g	54	Gmat	Cycs	Cox5a
5	mt-Cytb	mt-Co1	Flt1	55	Rpl32	Cox4i1	Rps19
6	S100g	mt-Cytb	Flt1	56	Cyb5a	Uqcrb	Rpl10
7	mt-Co3	S100g	Rps29	57	Acsm2	Ndr1	Ttc36
8	mt-Co2	mt-Co3	Xist	58	Guca2b	Rpl26	Gm8730
9	mt-Nd4	mt-Co2	Rpl37a	59	Uqcrb	Rpl26	Gm8730
10	mt-Nd1	mt-Nd4	Rpl41	60	Rps14	Rps19	Dnase1
11	Flt1	mt-Nd1	Fxyd2	61	Co4i1	Acm2	Itm2b
12	Fthl	Flt1	Rpl38	62	Rpl26	Rpl35	Rpl35a
13	Rps29	Fthl	Rpl37	63	Cox5a	Cyb5a	Rps24
14	mt-Nd2	Rps29	Miox	64	Rps19	Miox	Gm10260
15	mt-Nd3	mt-Nd2	Eef1a1	65	Ttc36	Itm2b	Ap5l
16	Rpl37a	mt-Nd4l	Rpl39	66	Rpl10	Rpl35a	Slc34a1
17	Rpl41	mt-Nd3	Cox6c	67	Dnase1	Ap5l	Aldo
18	Fxyd2	Rpl37a	Rps28	68	Rpl35	Gm8730	Cela1
19	Rpl38	Rpl41	Rps27	69	Rpl35a	Ak1e21	Ass1
20	Rpl37	Xist	Cndp2	70	Rpl5i	Rpl28	Prdx1
21	Miox	Fxyd2	Cyp4b1	71	Rps24	Slc34a1	Rpl28
22	Eef1a1	Rpl37	Ndufa4	72	Slc34a1	Prdx1	Rpl23a
23	Rpl39	Rpl38	Ak1r21	73	Gm8730	Aldo	Rpl6
24	Co4x6	Eef1a1	Atp1a1	74	Itm2b	Rps27a	Pck1
25	Rpl39	Atp1a1	Atp1a1	75	Rps28	Gm10709	Rps4x
26	Spink1	Atp1a1	Atp1a1	76	Rps28	Gm10709	Rps4x
27	Ndufa4	mt-Nd5	Atp5e	80	Rpl6	Slc25a5	Rps27a
28	Rps27	Rps28	Cox7c	77	Rpl23a	Ppia	Ldhb
29	Cndp2	Co4x6	Kklk	78	Rps4x	Ndufa3	Cox7a2
30	Cyp4b1	Rps27	Ubb	79	Rpl23a	Ppia	Ldhb
31	Ndufa4	mt-Nd5	Atp5e	80	Rpl6	Slc25a5	Rps27a
32	Ak1r21	mt-Atp8	Rps2	81	Rpl23a	Ppia	Ldhb
33	Atp1a1	Atp1a1	Ndr1	82	Pck1	Co4x5a	Co4x6b1
34	Acy3	Co4x7c	Rps23	83	2010107E04Rik	Rpl13	Rpl18a
35	Atp5k	Ubb	Gm10076	84	Co4x6a1	Co4x6b1	Calb1
36	Co4x7c	Atp5e	Prdx5	85	Gm10709	Cox7a2	Rpl13
37	Kklk	Atp5k	Rps18	86	Slc25a5	Gmat	Atp5b
38	Atp5e	Ndufa4	Tpt1	87	Rps27a	Ass1	Rpl13a
39	Ubb	Rps2	Chchd10	88	Rps4x	Ndufa3	Co4x7a2
40	Rps2	Rps23	Rplp0	89	Ldhb	Rpl18a	Ndufa3
41	Rps23	Kklk	Rpl29	91	Calb1	Atp5j	Actb
42	Gm10076	Rps21	Rps21	92	Atp5b	Co4x8a	Ppia
43	Prdx5	Rpl29	Rplp1	93	Co4x7a2	Acy3	Rpl36a
44	Chchd10	Prdx5	Cycs	94	Rpl18a	Rpl36a	Atp5j
45	Tpl1	Prdx5	Cycs	94	Slc27a2	Ndufa3	Rps15a
46	Dbi	Tpl1	Rpl32	96	Slc27a2	Ndufa3	Rps15a
47	Rps21	Rpl32	Gmatm	97	Rpl13	Rpl13a	Hrsps12
48	Rplp0	Rpl10	Acm2	98	Rpl36a	Ttc36	Ndufa13
49	Rplp0	Chchd10	Guca2b	99	Ppia	2010107E04Rik	Cox8a
50	Rpl29	Rplp0	Uqcrb	100	Atp5j	Gm10260	Ugt23b8

Supplementary Table 6: List of top 100 high weighted genes from the mouse kidney, step 1 of tree-based recursive deconvolution.
Supplementary Table 7: List of top 100 high weighted genes from the mouse kidney, step 2 of tree-based recursive deconvolution.

Immune	Rank	Beckerman	Craciun	Arvaniti	Rank	Beckerman	Craciun	Arvaniti
1		Cd74	Apoe	Cd74	26	C1qb	Npc2	C1qb
2	2	Lyz2	S100a6	Lyz2	27	Nkg7	Gzma	Nkg7
3	3	Ccl5	S100a4	Ccl5	28	Cdl4	Capza2	Vim
4	4	H2-Aa	Psap	H2-Aa	29	Vim	Ly6e	Ccl4
5	5	H2-Ab1	Nkg7	H2-Ab1	30	Ly6c2	Ly6c2	Ly6c2
6	6	Tmsb10	Crip1	Tmsb10	31	Ms4a4b	Serinc3	Ms4a4b
7		Gzma	Cd3g	Gzma	32	Sat1	Fos	Sat1
8		H2-Eb1	Ccl3	H2-Eb1	33	C1qc	Pouf2	C1qc
9		Plac8	Ccnd2	Plac8	34	S100a10	Ctsz	S100a10
10	10	Cst3	Slpi	Cst3	35	H3f3a	Ctd4	H3f3a
11	11	Ifl2712a	Gm2a	Ifl2712a	36	Cts	If7r	Cts
12		Slpi	Ssr4	Slpi	37	Gntg2	H2afy	Gntg2
13		Ifltm3	Lck	Ifltm3	38	S100a6	Ctsb	S100a6
14		Apoe	Spi1	Apoe	39	S100a4	Lfng1	S100a4
15	15	Tyrobp	Fxyd5	Tyrobp	40	Lst1	Iglb1	Lst1
16		Actg1	Ccl4	Actg1	41	Kit2	Sub1	Kit2
17		Crip1	Gzmb	Crip1	42	Mabrb1	Socs2	Mabrb1
18		Fcer1g	Cnn2	Fcer1g	43	H2afz	Ifltm3	H2afz
19		Cebbp	Id2	Cebbp	44	Wdr17	Itgb7	Wdr17
20		C1qa	Cybb	C1qa	45	Arpc1b	Cdt9a	Arpc1b
21		AW112010	Sep1	AW112010	46	Ifitm2	Ltb	Ifitm2
22		Ly6e	Hsp90b1	Ly6e	47	S100a11	Tspan32	S100a11
23		Id2	Ifgb2	Id2	48	S100a4	Lgals3	S100a4
24	24	Psap	Ccl6	Psap	49	Mzb1	Xbp1	Mzb1
25	25	Lgals1	Lsp1	Lgals1	50	Mzb1	Xbp1	Lgals3

Epithelial	Rank	Beckerman	Craciun	Arvaniti	Rank	Beckerman	Craciun	Arvaniti
1		Hbb-bs	Hbb-bs	Hbb-bs	26	Gm542	S1c12a	S1c22a28
2	2	Hba-a1	Hba-a1	Hba-a1	27	S1c12a3	S1c22a28	S1c22a9
3	3	Umod	S1c0a1a	S1c0a1a	28	Nrp1	S1c22a29	Emcn
4	4	S1c0a1	S1c22a6	S1c22a6	29	Iglf5	Ly6c1	Car12
5	5	S1c22a6	Pvalb	Nat8	30	Ehd3	Car12	Asphpd
6		Pvalb	Nat8	Pvalb	31	S1c22a28	Asphpd	Ak1c14
7		Umod	Mep1a	Umod	32	S1c12a1	Iglf5	Ly6c1
8		Mep1a	S1c12a	S1c12a	33	S1c22a29	Ak1c14	Hexb
9		Efg	S1c0a6	S1c0a6	34	Car12	Atp6v1g3	BC035947
10		S1c0a6	Ces1f	S1c0a6	35	Asphpd	Ehd3	Iglf5
11	11	Ces1f	Hbb-bt	Ces1f	36	Ak1c14	Hexb	Atp6v1g3
12		Hbb-bt	Efg	Snhg11	37	Kdr	S1c12a1	Nrp1
13	13	Snhg11	Tmgd1	Snhg11	38	Atp6v1g3	BC035947	S1c13a1
14		Tmgd1	Efg	Tmgd1	39	Hsd11b2	S1c13a1	S1c12a1
15	15	Acsms3	Acsms3	Acsms3	40	Hexb	Col6a6	Col6a6
16		S1c22a30	S1c22a30	S1c22a30	41	Eng	Gm4450	Gm4450
17		Gm11128	Cyp2a4	Gm11128	42	BC035947	Kdr	Adama15
18		Aqp2	Hba-a2	Aqp2	43	Pri16	Adama15	Ehd3
19		Cyp2a4	Aqp2	Hba-a2	44	S1c13a1	Hsd11b2	Aspa
20		Fxyd4	Aqp1	Gm5424	45	Col6a6	Aspa	Mogat1
21	21	Emcn	Gm5424	S1c17a1	46	Gm4450	Apela	D360029K05Rik
22	22	Aqp1	S1c17a1	Aqp1	47	Egfl7	Mogat1	Gm15638
23		Hba-a2	Pipp1	Aqp2	48	Adama15	D630029K05Rik	Hsd11b2
24	24	Ly6c1	Fxyd4	S1c12a3	49	Meis2	Eng	Ak1c18
25		S1c17a1	Emcn	Fxyd4	50	Aspa	Gm15638	Smr1

Neutro	Rank	Beckerman	Craciun	Arvaniti	Rank	Beckerman	Craciun	Arvaniti
PT		DCT	CD-IC	LOH	26	CD-PC	Endo	Podo
		T lymph	Macro	Fib	27	B lymph	NK	
Supplementary Table 8: Starting points for convergence analysis

Cell type	EQ	SP1	SP2	SP3	SP4	SP5	SP6	SP7	SP8
alpha	0.25	0.4	0.2	0.2	0.2	0.7	0.1	0.1	0.1
beta	0.25	0.2	0.4	0.2	0.2	0.1	0.7	0.1	0.1
delta	0.25	0.2	0.2	0.4	0.2	0.1	0.1	0.7	0.1
gamma	0.25	0.2	0.2	0.2	0.4	0.1	0.1	0.1	0.7
Supplementary Figure 1: Exploratory analysis of single-cell RNA-seq data from Segerstolpe et al.

a. Example of cross-subject and cross-cell variation in cell type specific gene expression. The boxplot contains 4 cell types: alpha, beta, gamma, and delta cells from Segerstolpe et al. single-cell RNA-seq data. The x-axis is the log transformed average relative abundance across cells from the same cell type, and the y-axis is the subject label. The relative abundance of gene \(GC \) is widely spread across the x-axis while the relative abundance of gene \(TTR \) is more concentrated across subjects. We consider gene \(GC \) as non-informative and \(TTR \) as informative.

b. Comparison of log transformed relative abundance levels between real bulk tissue RNA-seq data and artificially constructed bulk RNA-seq data for the same subject. Single-cell and bulk tissue RNA-seq data are both from Segerstolpe et al. Each dot represents a gene and the gray line is \(x=y \).

c. Heatmap of true and estimated cell type proportions. In addition to the four methods described in the main text, we also evaluated the estimates given by MuSiC and NNLS when using only the marker genes used in BSEQ-sc. Source data are provided as a Source Data file.
Supplementary Figure 2: Heatmaps of true and estimated cell type proportions of artificial bulk data constructed using single-cell RNA-seq data from Xin et al.

a. Deconvolution results when the single-cell reference is from the 6 healthy subjects of Segerstolpe et al. with leave-one-out, i.e., for each subject under deconvolution, only single-cell data from the remaining 5 subjects were used as single-cell reference.

b. Deconvolution results when the single-cell reference is from the 12 healthy subjects of Xin et al. with leave-one-out, i.e., for each subject under deconvolution, only single-cell data from the remaining 11 subjects were used as single-cell reference.

c. The cell type proportions for the artificial bulk data are manually adjusted so that beta cells are the dominant cell type, as expected in real bulk tissue. Alpha cells dominate in the scRNA-seq data due to dissociation and capture bias. Thus, this analysis mirrors the real data analysis scenario where cell type proportions differ substantially between scRNA-seq reference and bulk tissue. In more detail, we combined cells from two subjects as one artificial bulk tissue RNA-seq dataset, for example, H1.2 combined cells from subject H1 and H2. Then we dropped 75% of the alpha cells at random. The single-cell reference is from the 6 healthy subjects of Segerstolpe et al. Here, all methods that rely on pre-selected marker genes from CIBERSORT are heavily biased by the cell type proportions in the single cell reference, and miss the true cell type proportions in the bulk tissue data. In comparison, MuSiC is able to adjust to the difference between scRNA-seq reference and bulk data. Source data are provided as a Source Data file.
Estimated Proportion with missing cell type

Supplementary Figure 3: Heatmaps of true and estimated cell type proportions with missing cell types in single-cell reference.

The artificial bulk data and the single-cell reference are both from Segerstolpe et al. We constrained our analysis to the 6 major cell types: alpha, beta, delta, gamma, acinar and ductal cells. The artificial bulk data is constructed by summing read counts from the 6 major cell types while the single-cell reference contains only 5 cell types (the column header shows the cell type that is missing in the single-cell reference). The x-axis labels cell types used in the single-cell reference and the y-axis shows the subject label. The top panel shows the true composition, while panels below it show the results from each method. See Supplementary Table 3 for detailed evaluation results. Source data are provided as a Source Data file.
Supplementary Figure 4: Benchmark evaluation using mouse kidney single-cell RNA-seq data from Park et al.

The artificial bulk RNA-seq data is constructed by summing read counts across cells in all 16 cell types while the single-cell reference only consists of 13 cell types. The other 3 cell types were discarded in the single-cell reference because they are too rare.

a. Heatmap of estimated cell type proportions and evaluation results. **b.** Scatter plot of real cell type proportions versus estimated cell type proportions. Source data are provided as a Source Data file.
Supplementary Figure 5: Estimated cell type proportions of the 13 cell types in three real mouse bulk RNA-seq datasets.
a. Boxplot of estimated cell type proportions of 10 mice (4 APOL1 disease mice and 6 control mice) from Beckerman et al.
b. Line plot of cell type proportion changes after FA induction (Craciun et al.) at 6 time points. There are 3 replicates at each time point and the average proportions are plotted. N: normal.
c. Line plot of cell type proportions of control (Sham operated mice), 2 days and 8 days after UUO (Arvaniti et al.). Source data are provided as a Source Data file.
Supplementary Figure 6: Estimated cell type proportions and correlation of the estimated cell type proportions across samples for bulk RNA-seq data of rat renal tubule segments (Lee et al.). Park et al. mouse single-cell RNA-seq data are used as reference. a. NNLS. b. BSEQ-sc. c. CIBERSORT. Source data are provided as a Source Data file.
Supplementary Figure 7: Estimated cell type proportions of the pancreatic islet bulk RNA-seq data in Fadista et al. with single cell reference from Baron et al. The analysis is similar to Figure 2c-d in the main text except that the single-cell reference are based on the three healthy subjects from Baron et al. and the MuSiC estimation was adjusted for protocol bias as described in the Methods section.

a. Jitter plot of the estimated cell type proportions for Fadista et al. subjects, color-coded by deconvolution methods. 77 out of the 89 subjects from Fadista et al. that have recoded HbA1c levels are plotted. T2D subjects are denoted as triangles.

b. HbA1c levels vs beta cell type proportions estimated by each of the four methods. The reported p-values are from single variable regression β cell proportions ~ HbA1c. Multivairiable regression results adjusting for age, BMI and gender are reported in Supplementary Table 2. Source data are provided as a Source Data file.
Supplementary Figure 8: Benchmark evaluation of robustness of MuSiC.

a. and b. evaluate the impact of different dropout rate in scRNA-seq (Supplementary Note 5). a. and b. show heatmaps of MuSiC estimated cell type proportions. The single-cell reference is based on six healthy subjects from Segerstolpe et al. with different dropout rates. The artificial bulk data of a. is constructed by Segerstolpe et al. while b. is constructed by Xin et al. c. Evaluation of the impact of biased relative abundance 84 in the single-cell reference (Supplementary Note 4). Boxplot shows three evaluation metrics from 100 simulations of MuSiC estimated cell type proportions with biased relative abundance, color-coded by scale parameter of Dirichlet distribution. The horizontal lines show the evaluation metrics of four methods without bias in the single-cell reference. d. Heatmap of MuSiC estimated cell type proportions with RPKM as the input. The artificial bulk data and single-cell reference are both from Segerstolpe et al. The estimation follows leave-out-one rule. We utilized the average library size ratio of the six healthy subjects from Segerstolpe et al. as the ratio of cell size. Source data are provided as a Source Data file.
Supplementary Figure 9: Convergence of MuSiC with different starting points.
The evaluation is performed on artificial bulk data, constructed by single-cell data from Xin et al. while the single-cell reference is from Segerstolpe et al. We evaluate the convergence of MuSiC with nine different starting points of four cell types in Supplementary Table 8. The iteration numbers are normalized between 0 and 1 for comparison. We plotted the normalized iteration against estimated proportions for each subject in Xin et al. colored by cell types. From different starting points, estimated cell types converged to the same proportions.
Reference

1. Xin, Y. et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes. *Cell metabolism* **24**, 608-615 (2016).
2. Fadista, J. et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. *Proceedings of the National Academy of Sciences* **111**, 13924-13929 (2014).
3. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. *Cell metabolism* **24**, 593-607 (2016).
4. Jia, C. et al. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. *Nucleic acids research* **45**, 10978-10988 (2017).
5. Baron, M. et al. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. *Cell Syst* **3**, 346-360 e4 (2016).
6. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. *Science*, eaar2131 (2018).