The Effect of Structural Complexity, Prey Density, and "Predator-Free Space" on Prey Survivorship at Created Oyster Reef Mesocosms

Austin T. Humphries1,2, Megan K. La Peyre3, Gary A. Decossas1

1 School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana, United States of America, 2 Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa, 3 United States Geological Survey, Louisiana Fish and Wildlife Cooperative Research Unit, School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, Louisiana, United States of America

Abstract

Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and "predator-free space" to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of "predator-free space" was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require "predator-free space" measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of "predator-free space" are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.

Introduction

Structural complexity is the physical arrangement of objects in space [1], and is a fundamental property of all ecological systems. By varying the availability and type of microhabitats available, structural complexity may influence predator-prey interactions and have significant impacts on the local faunal community (e.g., [2,3,4,5,6]). For example, habitats that are more complex often contain a greater diversity of refuges from predators [5,7] and greater diversity (or amount) of food resources [8] thereby reducing the intensity of interaction strengths. Increased structural complexity may alter encounter rates between predators and their prey, often decreasing predation risk by interfering with predator maneuverability and/or the ability to visually detect prey [7,9,10]. Furthermore, by decreasing the visibility of predators or obstructing prey movement, structural complexity may negatively impact prey survivorship [11,12,13]. Understanding the potential effects of habitat structure and its complexity on prey survivorship is becoming increasingly important as anthropogenic and climate-induced stressors are significantly changing the physical and ecological structure of many ecosystems.

Across multiple habitat types, studies have demonstrated that increased prey survivorship occurs with increasing structural complexity, but often with diminishing returns as complexity continues to increase [14,15,16,17,18,19,20,21]. In contrast to most previous experiments, two recent studies scaled predator and prey densities to the density, or amount of available habitat (submerged aquatic vegetation) using the rationale that naturally occurring complex habitats often have higher densities of animals when compared to simple habitats [22,23]. Neither of these studies found increased structural complexity to consistently lead to greater prey survivorship [22,23]. Field studies also differ in their conclusions with some finding greater survivorship in more complex habitats [24,25,26], while others have demonstrated that the effects of structural complexity may vary by the type of fish, or the type of habitat being examined [13]. Clearly, the interaction of predator-prey dynamics and structural complexity is multifaceted, and patterns may differ depending on the species of interest, habitat type examined, range of structural complexity tested, and even the definition (or method of measurement) of complexity used.

Creating standard methods for objectively describing structural complexity within and across systems has proved to be difficult.
Prey Survivorship at Oyster Reef Mesocosms

Materials and Methods

Ethics Statement

All necessary permits were obtained for the described study. We operated under a scientific collection permit from the Louisiana Department of Wildlife and Fisheries to Dr. Megan La Peyre (S-03-2009, S-105-OYS-2010). No endangered or protected species were collected during this project. Furthermore, nekton were collected under the Institutional Animal Care and Use Committee permit 08-005 to Dr. Megan La Peyre through the Louisiana State University Institutional Animal Care and Use Committee.

Predator and Prey Species

The red drum is a common, estuarine-dependent species that reaches its greatest abundance in the northern Gulf of Mexico (GOM) [37] and may use oyster reefs as feeding habitat [38]. It is an opportunistic feeder throughout all life stages [39] and uses mechanoreception as its primary foraging technique, with vision used secondarily [40]. The size and composition of prey consumed by red drum remain relatively constant with increasing body size [41]. When available, shrimp species (e.g., Litopenaeus setiferus, Palaemonetes pugio, Penaeus aztecus) often constitute the bulk of red drum diet [39].

Shrimp belonging to the genus Palaemonetes are among the most abundant and ecologically dominant species in coastal estuaries of the southeastern United States [42]. As potential prey items and detritivores, grass shrimp represent a vital link in the energy transfer of tidal marsh ecosystems [43]. In the presence of predators, grass shrimp select oyster-shell pyramids over seagrass and shallow water habitats as refuge [44].

Collection and Maintenance of Experimental Species

Red drum (32.6±2.3 cm) were captured at Rockefeller State Wildlife Refuge in Grand Chenier, Louisiana, or near Cocodrie, Louisiana, using hook and line. Grass shrimp (30.9±5.9 mm) were collected along marsh edges at Caillou (Sister) Lake in Terrebonne Parish, Louisiana, Cypremort Point State Park in St. Mary Parish, Louisiana, and near Cocodrie, Louisiana, using a seine (5 x 2 m). Fish and shrimp were collected in February, 2009, for Expt 1, and in April, 2010, for Expt 2 and 3. Organisms were transported to the laboratory and held in cylindrical, recirculating fiberglass tanks (350 L) equipped with bio-filters (AST Bead Filter, Aquaculture Systems Technologies, LLC, New Orleans, Louisiana) for 2 weeks before trials were initiated. In these tanks, salinity was maintained between 13 and 17 (14.9±0.2°C), temperature between 22 and 28°C (26.4±0.4°C), ammonia less than 0.15 ppm, and oxygen concentrations between 6.1 and 9.0 mg L⁻¹ (6.6±0.2) using multiple air stones. Fluorescent lights (40W) were placed above the holding tanks and a 12:12 h light-dark regime was maintained throughout the experiments. Individual red drum was kept in isolation in separate tanks while grass shrimp were grouped together in two holding tanks. Red drum were fed frozen penaeid shrimp, and grass shrimp were fed wet cat food.

Experimental Mesocosms

All trials were conducted in 2 recirculating, rectangular fiberglass tanks (length x width x height: 180 x 90 x 40 cm) located side by side in a room adjacent to the holding tanks (Table 1). The bottom of each experimental tank was left bare, and water depth was maintained at 35 cm. Water quality characteristics (salinity, temperature, dissolved oxygen, ammonia concentration) were measured before and after each trial, and fluorescent lights (40 W) were placed above the experimental tanks and operated on a...
12:12 h light-dark regime. A clear plexiglass cover was placed on top of each experimental tank to prevent escape by either species. All three experiments had a control treatment which consisted of a clean tank with no shell. For Expt 1 and 2, three other treatments were created by piling clean, unaggregated oyster shells in a pyramid shape (Table 1), with an average gap size in the structure of 26.3 ± 2.7 mm. This method of reef creation was intended to mimic oyster reefs commonly found in the northern GOM where reefs have very few vertically oriented oysters due to the extensive oyster harvest activities coast-wide. For Expt 3, two other treatments were created by cementing shells together to create a structure with increased interstitial space between shells (Table 1), with an average resulting gap size of 48.4 ± 9.4 mm. This method was used to mimic conditions of healthy reefs in the northern GOM where oysters primarily grow in a vertical orientation. A ‘high’ treatment was not created in Expt 3 because any difference in structure from the ‘intermediate’ treatment would have created the surface and protruded out of the tank given the dimensions of the reef footprint (45 × 60 cm). Structural complexity was measured by determining shell volume via water displacement as well as calculating the Sp/Pr index [18]. For the Sp/Pr index, three horizontal and three vertical axes were randomly determined on the reef. The total number of gaps along each axis was counted, and the width or height (depending whether it was on a horizontal or vertical axis), was also measured (to the nearest mm). The gaps were then averaged across both horizontal and vertical axes and divided by the average predator size (operculum to operculum width, to the nearest mm). An Sp/Pr value under 1.0 means the fish predator cannot access the average gap size to reach potential prey within the shell matrix. Each experimental reef covered about 20% of the tank bottom, with the remainder of the tank bare. No structure was used for the control treatments in each experiment (only the predator and prey were in the tank). Pilot runs involving both predator and prey indicated there were no so-called corner effects [15] where prey may be able to hide from predators by aggregating in the corners of the tank.

Experimental Trials

The densities of *P. pugio* used represent a realistic range of densities found in estuarine environments in the northern GOM [36,45]. Predator density was kept constant (1 individual per tank) for two reasons. One, while the abundance of resident species living within the shell matrix of oyster reefs has been found to increase with reef area or habitat complexity [46,47], the abundance of transient, predatory species does not always increase [38,48]. Two, the size of our experimental tanks and reefs would make two red drum difficult to manage, and controlling predator density allowed us to more easily interpret complexity and prey density variations.

All treatments in each experiment were replicated 5 times. Treatments were assigned randomly to experimental tanks and days. Each trial was run for 24 h (beginning at 8 am) and consisted of first partitioning the tank (separating the treatment area) with a barrier. For each trial, randomly selected shrimp were added to the treatment side of the tank and one red drum (starved for 48 h) was added to the empty side. Red drum were randomly selected and used more than once, but never in consecutive trials. We observed no ‘learned’ behaviors in the fish and no individuals were used more than twice. Initial observations indicated that red drum needed time to acclimate to their new surroundings (>1 h), therefore, organisms were allowed 2 h to acclimate before removing the barrier, and the trial allowed interactions for 22 h. After each trial was complete, the red drum was removed followed by the oyster shell. Remaining shrimp were then quantified and removed, and water quality (salinity, temperature, dissolved oxygen, ammonia) measured. Pilot runs with no predator indicated a > 98% recapture rate of shrimp.

Statistical Analysis

All data were tested for normality and homogeneity of variance; no transformations were necessary. To examine the effects of structure and structural complexity on prey survivorship within
each experiment, pair-wise comparisons of least squared means, using a two-way ANOVA, followed by Tukey HSD, were run for each experiment with treatment and day as the factors, and prey survivorship (the proportion of the number of prey initially stocked minus the number of prey recovered) as the response variable. Day was included as a randomized block factor and the model was independent of order. To examine the effects of prey density on prey survivorship, individual contrasts were run between each respective treatment in Expt 1 and 2 (e.g., control Expt 1 vs. control Expt 2; low Expt 1 vs. low Expt 2). To examine the effects of increased interstitial space (or decreased predator-free space) on prey survivorship, individual contrasts were run between Expt 2 and Expt 3 (e.g., low Expt 2 vs. low Expt 3). Data are reported as mean ± 1 SE unless indicated differently.

Results

In Expt 1, a fixed number of prey (i.e., 40) was added to each treatment and prey survivorship ranged from 4.5 to 89.5% ($F_{1,16} = 153.3$, $p < 0.001$; Table 2). Prey survivorship was significantly lower in the control (4.5%) treatment than the low treatment (71.5%; $p < 0.001$), and survivorship in both control and low were significantly lower than the intermediate treatment (84.5%; $p = 0.01$) (Fig. 1). However, prey survivorship did not differ significantly between the intermediate and high treatments (89.5%; $p = 0.28$). The other factor in the model, day, was not significant.

In Expt 2, the number of prey used was scaled to the same structural treatments as Expt 1 (e.g., increasing structural complexity meant increasing the number of prey individuals used) and prey survivorship ranged from 11.5 to 86.1% ($F_{1,12} = 58.4$, $p < 0.001$; Table 2) with significant differences between control and low treatments (34.5%; $p < 0.001$), as well as low and intermediate (76.3%; $p < 0.01$) (Fig. 1). The other factor in the model, day, was not significant.

In Expt 3, the number of prey used was scaled as in Expt 2, but low and intermediate structural treatments were changed to increase predator-free space. Prey survivorship ranged from 11.5 to 76.3% ($F_{1,12} = 58.4$, $p < 0.001$; Table 2) with significant differences between control and low treatments (34.5%; $p < 0.001$), as well as low and intermediate (76.3%; $p < 0.01$) (Fig. 1). The other factor in the model, day, was not significant.

Individual contrasts between treatments in Expt 1 and Expt 2, examining the effects of prey density on survivorship, showed no significant differences at any level of structural complexity (Table 3). Similarly, contrasts between Expt 2 and Expt 3, examining effects of predator-free space showed no significant differences either (Table 3). While not significant ($p = 0.055$), the contrast between low treatments in Expt 2 and 3 showed a trend of lower survivorship in Expt 3 as compared to Expt 2.

Discussion

Clearly, structure provided by the mesocosm oyster reefs facilitated enhanced prey survivorship. Prey survivorship increased with increasing oyster reef (structural) complexity, but only to a certain point at which point increasing structural complexity failed to further increase survivorship. Neither scaling prey density to structural complexity (shell volume), nor increasing the ‘predator-free space’ (Sp/Pr) significantly changed these findings. This suggests that survivorship of grass shrimp from red drum was dependent on the presence of structure and its complexity (oyster shell volume) more so than effects of predator-free space or density-dependent prey effects. The latter conclusion is based on the assumption that in our experimental mesocosms, increasing the number of prey would increase predator-prey encounter rates when refuge space became limited.

Table 2. Results from each experiment showing the number of prey added (ind), mean number of prey removed (ind ± 1 standard error), mean prey survivalship, and two-way ANOVA results (F-value).

Treatment	Prey added	Prey removed	Prey survivorship	ANOVA result
Expt 1				
Control	40	1.8 (1.6)	0.045	153.3***
Low	40	28.6 (1.2)	0.715	
Intermediate	40	33.8 (1.0)	0.845	
High	40	35.8 (1.3)	0.895	
Expt 2				
Control	40	4.6 (2.0)	0.115	103.0***
Low	40	25.6 (1.5)	0.640	
Intermediate	60	48.0 (0.6)	0.800	
High	120	103.4 (2.2)	0.861	
Expt 3				
Control	40	4.6 (2.0)	0.115	58.4***
Low	40	21.8 (2.1)	0.545	
Intermediate	60	45.8 (2.5)	0.763	

| Prey added represents the number of initially stocked individuals per trial. Prey removed represents the number of individuals remaining in the tank after each trial, and the prey survivorship is the number of prey recovered divided by the number of prey added. Expt 1 used a fixed number of predator and prey individuals across treatments of variable levels of structural complexity. Expt 2 used the same structural treatments as the first experiment, but scaled the density of prey across treatments. Expt 3 used the same prey density treatments as the second experiment, but altered the amount of ‘predator-free space’ (by increasing interstitial space) in each structural treatment. Control treatments had no structure. * $p < 0.01$, ** $p < 0.001$, *** $p < 0.0001$. doi:10.1371/journal.pone.0028339.t002
Prey survivorship may be dictated by top-down effects if the ability to detect and escape from predators, or the availability of refuges is a function of habitat structure and its complexity. In estuarine and marine systems, structural complexity associated with vegetation is generally regarded as a feature that increases prey survivorship, presumably through the provision of spatial refuges and by moderating competitive interactions of predators [49,50]. However, complex habitats may not always benefit prey, especially if a prey’s ability to escape is impeded by the structure [13] or density-dependent effects related to encounter rates are present [22]. Similar patterns exist in terrestrial systems where certain prey might choose accessibility to escape routes over potential concealment; for example, woody vegetation has been shown to have both positive and negative effects on predation risk [51,52]. The physical structure provided by the oyster reefs in this study differs markedly from other structural features which may be flexible (i.e. seagrass) and represent only a visual barrier to predator detection. The solid nature of the oyster shell reefs may impede not only predator vision, but also movement and access. It may therefore be the functional characteristics of physical structure (e.g., flexible, malleable, or solid substrate) which are most important in dictating prey survivorship and therefore make comparisons across studies difficult.

The influence of habitat structure on prey survivorship within a community is complex. Our results generally agree with theory that habitat structure and its complexity increase prey survivorship to a point [20]. However, because of the scale and artificial nature of laboratory experiments, generalization of these findings should be done with caution. In a natural environment, while the presence of oyster reefs may be able to support a greater biomass of associated nekton species compared to unstructured habitat, it may not always mean that increasing complexity provides superior habitat [53]. For instance, multiple-predator effects can often have important and very different consequences for their prey through interference interactions as well as intra- and interspecific competition, and may in fact override structural differences within habitats [54,55]. A series of studies examining multiple predator effects in simple and complex created oyster reefs found that the effects of complexity may vary depending on predator identity when more than one predator is considered [6,55,56]. In this study, we conducted a mesocosm experiment with a simplified food web (using only one predator and one prey species). Our findings may differ given a different predator-prey combination, or by adding other predators.

Scaling predator and/or prey abundance with habitat complexity may better mimic conditions found in nature [22]. Recent studies showed that vegetated treatments which simultaneously increased complexity and predator and prey densities, did not consistently result in differences in prey survivorship [23]. One possible explanation for this is that complexity might have decreased foraging efficiency, but whatever increase in survivor-

Figure 1. Prey survivorship (no. prey removed/no. prey initially stocked) by experiment. Vertical bars represent prey survivorship (mean ± 1 standard error), or the proportion of prey that survived in each treatment. Different letters represent significant (p<0.05) differences among treatments. Expt 1 used a fixed number of predator and prey individuals across treatments of variable levels of structural complexity. Expt 2 used the same structural treatments as the first experiment, but scaled the density of prey across treatments. Expt 3 used the same prey density treatments as the second experiment, but altered the amount of ‘predator-free space’ (by increasing interstitial space) in each structural treatment. Control treatments had no structure.

doi:10.1371/journal.pone.0028339.g001
ship resulting from increased complexity was cancelled out by having more predators and prey. As a result, this may have increased prey encounter rates. However, encounter rates can only be inferred as direct observations of behavior are absent. While these experiments may mimic nature better than others by confounding influences, conclusions from these experiments are difficult and some might consider them impossible. When we scaled only prey density with complexity, we found no significant difference in prey survivorship when compared to not increasing prey density. This suggests that prey survivorship in our experiment may not be dependent on prey density, and that the amount of refuge space may be the limiting factor. As stated previously, this is assuming that encounter rates would increase when refuge space became limiting. However, another possibility is that we may have failed to reach any potential threshold for prey density.

For oyster reefs, numerous factors can contribute to the complexity of the habitat; along with shell volume, interstitial space has been cited as a primary factor providing valuable prey refuge habitat [47]. This space in-between structure is hypothesized to provide refuge for prey as long as the size of the gap in the structure is large enough for the prey to fit, but small enough so that the predator cannot [31]. Bartholomew et al. [18] hypothesized a “threshold” response in prey survivorship to decreasing Sp/Pr. At very high Sp/Pr, prey survivorship should be uniformly low. At very low Sp/Pr, prey survivorship should be uniformly high (as long as prey can fit through the spaces in the habitat) with a rapid transition between the two states. In theory, Sp/Pr greater than 1 indicates that the predator can access all space in the structure, while Sp/Pr less than 1 indicates refugia for prey. However, it is not clear at what point predators may actually access space, and it is likely that the actual value at which predators are excluded from space may not be 1. One methodological consideration is that a more accurate indicator of refuge space might require ‘predator-free space’ measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. This would tell us more about the nature of the refuge space available to prey, especially for 3-dimensional, heterogeneous structures like oyster reefs.

While we compared Sp/Pr values greater than 1 (1.53, 1.33) to values less than 1 (0.61, 0.53), we failed to detect significant decreases in prey survivorship, although there was a trend of lower survivorship with Sp/Pr > 1. It is possible that the differences tested failed to compare a large enough gradient in ‘predator-free space’ to detect significant effects; the oyster shell reefs we created had Sp/Pr values just over 1 and we may have not reached the “threshold” in ‘predator-free space’. Again, it appears that the type of habitat used to create structure, and potentially predator and prey identity, may be critical to the outcome. For example, seagrass provides complexity in the habitat but with movable parts, and this obviously has different implications for predator access than habitat composed of solid structure (e.g., oyster shell). Furthermore, it is possible that regardless of the size of the predator, their ability and likelihood of entering tight spaces may be low and vary greatly by species.

The results of this study add to our understanding of the role of habitat structure in mediating prey survivorship. Specifically, the results corroborate theory that prey survivorship can increase as structure is introduced and made more complex, but with diminishing returns [10]. This general pattern of prey survivorship was not significantly affected by changes in prey density or amount of ‘predator-free space’. Future studies should aim to use functionally different substrate types (e.g., substrate with different physical properties) and combinations of predators and prey to more accurately describe patterns across systems and better mimic nature. Also, new designs should aim to create larger gradients in ‘predator-free space’ that incorporate within-structure metrics and be on more ecologically relevant scales to bridge theory with reality.

Acknowledgments

We thank C. Duplechain, G. Melancon, S. Miller, A. Catalenello and S. Casas-Laite for providing field and laboratory help. Thanks to J. La Peyre for use of his wet lab space and equipment. We also thank W. Quan and G. Tolley and two anonymous reviewers for making comments that greatly improved earlier versions of the manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government.

Author Contributions

Conceived and designed the experiments: ATH MKL. Performed the experiments: ATH MKL. Analyzed the data: ATH MKL. Contributed reagents/materials/analysis tools: MKL. Wrote the paper: ATH MKL.

References

1. Bell S, McCoy E, Mushinsky H (1991) Habitat structure: the physical arrangement of objects in space. Chapman & Hall. pp 3–27.
2. Wilcove DS (1985) Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66: 1211–1214.
3. Paine RT (1966) Food web complexity and species diversity. American Naturalist 100: 65–75.
4. Hulflaker C (1958) Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27: 345–383.
5. Brooks JS, Jones GP (1997) Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114: 50–59.
6. Grabowski JH (2004) Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology 85: 995–1004.
12. Underwood R (1982) Vigilance behaviour in grazing African antelopes. Behaviour. pp 81–107.
13. Rilov G, Figueira WF, Lyman SJ, Crowder LB (2007) Complex habitats may not always benefit prey: linking visual field with reef fish behavior and distribution. Marine Ecology Progress Series 329: 223–236.
14. Nelson WG (1979) Experimental studies of selective predation on amphipods - consequences for amphipod distribution and abundance. Journal of Experimental Marine Biology and Ecology 30: 225–245.
15. Coen LD, Heck KL, Able KG (1981) Experiments on competition and predation among shrimps of seagrass meadows. Ecology 62: 1484–1493.
16. Russo AR (1987) Role of habitat complexity in mediating predation by the gray damselfish Ablabiss affinis on epilithic amphipods. Marine Ecology Progress Series 36: 101–105.
17. Graham S, Davia D, Deegan L, Cebrian J, Hughes J, et al. (1998) Effect of eelgrass (Zostera marina) density on the feeding efficiency of mummichog (Fundulus heteroclitus). Biological Bulletin, pp 241–243.
18. Bartholomew A, Diaz RJ, Cicchetti G (2000) New dimensionless indices of structural habitat complexity: predicted and actual effects on a predator’s foraging success. Marine Ecology Progress Series 206: 45–58.
19. Manutung J, Atewed P, Priyadarshana T (2000) The influence of structural complexity on fish-shoal plankton interactions: a study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425–438.
20. Bartholomew A (2002) Faunal colonization of artificial seagrass plots: the importance of surface area versus space size relative to body size. Estuaries and Coasts 25: 1045–1052.
21. Hovel KA, Lipcius RN (2001) Habitat fragmentation in a seagrass landscape: Patch size and complexity control blue crab survival. Ecology 82: 1814–1829.
22. Canion CR, Heck KL (2009) Effect of habitat complexity on predation success: re-evaluating the current paradigm in seagrass beds. Marine Ecology Progress Series 393: 37–46.
23. Mattila J, Heck JR KL, Miller E, Gunalison C, Williams S, et al. (2008) Increased habitat structure does not always provide increased refuge from predation. Marine Ecology Progress Series 361: 15–20.
24. Stunz GW, Minello TJ (2001) Habitat-related predation on juvenile wild-caught and hatchery-reared red drum Sciaenops ocellatus (Linnaeus). Journal of Experimental Marine Biology and Ecology 260: 13–25.
25. Heck KL, Thoman TA (1981) Experiments on predator-prey interactions in vegetated aquatic habitats. Journal of Experimental Marine Biology and Ecology 53: 123–134.
26. Roosa LP, Odum WE (1988) Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge. Oecologia 77: 101–106.
27. McCoy E, Bell S (1991) Habitat structure: The evolution and diversification of a complex topic. Popul Community Biol Ser. pp 3–27.
28. Dibble ED, Killgore KJ, Dick GO (1996) Measurement of plant architecture in seven aquatic plants. Journal Of Freshwater Ecology 11: 311–318.
29. Beck MV (1998) Comparison of the measurement and effects of habitat structure on gastropods in rocky intertidal and mangrove habitats. Marine Ecology Progress Series 169: 163–178.
30. Downes BJ, Lake P, Schreiber E, Glaster A (1998) Habitat structure and regulation of local species diversity in a soft-sediment system, upland stream. Ecological Monographs 68: 237–257.
31. Warfe DM, Barmuta LA, Wooterspoon S (2008) Quantifying habitat structure: surface convexity and living space for species in complex environments. Oikos 117: 1764–1773.
32. Stoney AW, Lewis FG (1985) The influence of quantitative and qualitative aspects of habitat complexity in tropical seagrass meadows. Ecology 66: 249–261.
33. Halley J, Hartley S, Kallimanis A, Kumin W, Lennon J, et al. (2004) Uses and abuses of fractal methodology in ecology. Ecology Letters 7: 254–271.
34. Schmid P (1999) Fractal properties of habitat and patch structure in benthic ecosystems. Advances In Ecological Research 30: 339–401.
35. Coen LD, Brumbaugh RD, Bushke D, Grizzle R, Luckenbach MW, et al. (2007) Ecosystem services related to oyster restoration. Marine Ecology Progress Series 341: 303–307.
36. Stunz G, Minello T, Rozas L (2010) Relative value of oyster reef as habitat for estuarine nekton in Galveston Bay, Texas. Marine Ecology Progress Series 406: 147–159.
37. Pantillo M, Czapla E, Nelson D, Monaco M (1997) Distribution and abundance of fishes and invertebrates in Gulf of Mexico estuaries, Volume II. Species history summaries.
38. Harding JM, Mann R (2001) Oyster reefs as fish habitat: Opportunistic use of restored reefs by transient fishes. Journal of Shellfish Research 20: 951–959.
39. Boothby RN, Avault JW (1971) Food habits, length-weight relationship, and condition factor of red drum (Sciaenops ocellatus) in southeastern Louisiana. Transactions of the American Fisheries Society 100: 290–296.
40. Liao IC, Chang EY (2005) Role of sensory mechanisms in predatory feeding behavior of juvenile red drum Sciaenops ocellatus. Fisheries Science 69: 317–322.
41. Scharf FS, Schlacht KK (2000) Feeding habits of red drum (Sciaenops ocellatus) in Galveston Bay, Texas: Seasonal diet variation and predator-prey size relationships. Estuaries 23: 129–139.
42. Leight AK, Scott GI, Fulton MH, Daugomah JW (2005) Long term monitoring of grass shrimp Palaemonetes spp. population metrics at sites with agricultural runoff influences. Integrative and Comparative Biology 45: 143–150.
43. Zimmerman RJ, Center SF, Galveston L (1989) Oyster Reef as Habitat for Eustace Macroura: US Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Galveston Laboratory.
44. Eggleston DB, Els WE, Herfington LL, Dahlgren CP, Pose MH (1999) Organism responses to habitat fragmentation and diversity: Habitat colonization by estuarine macrofauna. Journal of Experimental Marine Biology and Ecology 236: 107–132.
45. Minello T (1999) Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat. Fish habitat:essential habitat. Marine Ecology Progress Series 393: 37–46.
46. Britberg D (1999) Are 3-dimensional structure and healthy oyster populations the keys to an ecologically interesting and important fish community. (in Oyster reef habitat restoration: a synopsis and synthesis of approaches. William-shurgVA: Virginia Institute of Marine Science Press. pp 230–249.
47. Coen LD, Lackenbach MW (2000) Developing success criteria and goals for evaluating oyster reef restoration: Ecological function or resource exploitation? Ecological Engineering 15: 325–343.
48. Harding JM, Mann R (1999) Fish species richness in relation to restored oyster reefs, Piankatank River, Virginia. Bulletin of Marine Science 65: 289–299.
49. Holbrook SJ, Schmitt RJ (2002) Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83: 2855–2868.
50. Orth RJ, Heck KL, VannoteRF, J (1984) Faunal communities in seagrass beds - a review of the influence of plant structure and prey characteristics on predator prey relationships. Estuaries 7: 339–350.
51. Kotler BP, Brown JS, Hasson O (1991) Factors affecting gilthead seabream and rates of ovel predation. Ecology. pp 2249–2260.
52. Rigonos C, Grace JB (2008) Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects. Ecology 89: 2228–2238.
53. Humphries AT, La Peyre MK, Kimbrel ME, Rozas LP (2010) Testing the effect of habitat structure and complexity on nekton assemblages using experimental oyster reefs. Journal of Experimental Marine Biology and Ecology. http://dx.doi.org/10.1016/j.jembe.2011.01.017 (in press).
54. Soluk DA, Collins NC (1988) Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators. Oikos 52: 94–100.
55. Grabowski JH, Woods PE (2008) Habitat complexity influences cascading effects of multiple predators. Ecology 89: 3415–3422.
56. Grabowski JH, Powers SP (2004) Habitat complexity mitigates trophic transfer on oyster reefs. Marine Ecology Progress Series 277: 291–295.