Nuclear spin squeezing by continuous quantum non-demolition measurement: a theoretical study

Alan Serafin, Yvan Castin, Matteo Fadel, Philipp Treutlein, Alice Sinatra

Abstract

We propose to take advantage of the very weak coupling of ground-helium 3 nuclear spin to its environment to produce very long-lived macroscopic quantum states, here nuclear spin squeezed states, in a vapor cell at room temperature. To perform a quantum non-destructive measurement of a transverse component of the previously polarized collective nuclear spin, an oscillating discharge is temporarily switched on in the gas, which populates helium 3 metastable state. The collective spin corresponding to the $F = 1/2$ metastable level then hybridizes slightly with the one in the ground state by metastability exchange collisions. To access the nuclear spin fluctuations, one continuously measures the light field leaking out of an optical cavity, where it has interacted dispersively with the metastable state collective spin. In a model of three coupled collective spins (nuclear, metastable and Stokes for light) in the Primako approximation, and for two measurement schemes, we calculate the moments of the collective nuclear spin squeezed component I_z conditioned to the optical signal averaged over the observation time t. In the photon counting scheme, we find that the squeezed observable is I_z^2 rather than I_z. In the homodyne detection scheme, we analytically solve the stochastic equation on the state of the system conditioned to the measurement; the conditional expectation value of I_z depends linearly on the signal and the conditional variance of I_z does not depend on it. The conditional variance decreases as $(\Gamma_{\text{gen}}^{\text{sq}} t)^{-1}$, where the squeezing rate $\Gamma_{\text{gen}}^{\text{sq}}$, which we calculate explicitly, depends linearly on the light intensity in the cavity at weak atom-field coupling and saturates at strong coupling to the ground state metastability exchange effective rate, proportional to the metastable atom density. Finally, we take into account the de-excitation of metastables atoms on the walls, which induces nuclear spin decoherence with an effective rate γ_{α}. It imposes a limit $\propto (\gamma_{\alpha}/\Gamma_{\text{gen}}^{\text{sq}})^{1/2}$ on the conditional variance reached in a time $\propto (\gamma_{\alpha}/\Gamma_{\text{gen}}^{\text{sq}})^{1/2}$.

Keywords: spin squeezing ; helium 3 ; nuclear spin ; quantum metrology

1. Introduction

Helium 3 in its ground state enjoys the remarkable property of having a purely nuclear spin $I = 1/2$, perfectly isolated from the outside world even in an environment as hostile to quantum coherences as a vapor of helium in a centimetric cell at room temperature and a pressure of the order of a millibar. By well-mastered nuclear polarization techniques, reaching a polarization of 90 %, we can then routinely prepare (for example for lung imaging by nuclear magnetic resonance [1]) a giant collective nuclear spin with an extremely long lifetime. Recently, a coherence time T_2 larger than 60 hours was measured in ultra-precise magnetometry devices [2], that seems limited only by the longitudinal decay time T_1 due to collisions with the cell walls. These numbers make the macroscopic nuclear spin in a room temperature vapor an ideal system for the production, the study and the use of entangled states, and therefore a competitor of cold atomic gases and Bose-Einstein condensates in metrology and quantum information processing [4]. Already in 2005, we suggested that the nuclear spins of helium 3 could give rise to quantum memories [5] or to non-local quantum states [6] with very long lifetimes. Since then, experimental breakthroughs have been made in the field of spin squeezing, notably by means of non-destructive quantum measurements (QND) in atomic alkali gases.

1. Times T_1 of several hundred hours can even be obtained [3].
Transposing to the nuclear spin of helium 3 the technique of squeezing by QND measurement used for the hyperfine spins of alkalis, represents a real challenge, however, due to the specificity of the nuclear spin: its weak coupling to the environment. The singlet ground state of helium 3, separated in energy by about 20 eV from all excited states, is not directly accessible by laser. However, by means of an oscillating discharge, a small fraction of the vapor atoms, on the order of 10^{-6}, can be brought into the metastable triplet state, an excellent starting point for near infrared optical transitions. The orientation of the nuclear spins is then obtained through an indirect process, optical pumping by metastability exchange [3]. Initially, the angular momentum is transferred by laser-matter interaction from photons to metastable atoms, a priori to their electron spin (the only one to be strongly coupled to the field) but a posteriori also to their nuclear spin thanks to hyperfine coupling. Secondly, we take advantage of the metastability exchange collisions between metastable and ground state atoms to orient the nuclear spins in the ground state, with a time scale of the order of a second, limited by the low density of the atoms in the metastable state. Even though the metastability exchange collision can transfer quantum correlations (see references [5, 6] and our section 3.2), we cannot expect that a single measurement on a small fraction of the atoms (10^{-6}) projects the whole system into a squeezed state. The solution we propose is to perform a continuous QND measurement amplified by a resonant optical cavity. Indeed, although the metastable atoms individually have a relatively short lifetime (they lose their quantum correlations and fall back into the ground state in each collision on the cell walls), a continuous destructive measurement of the light leaking out of the cavity after interaction with the metastable atoms amounts to performing a continuous QND measurement on the collective nuclear spin in the ground state, which projects it into the desired squeezed state without affecting its lifetime.

This work gives a detailed theoretical description of the squeezing mechanism and its limits; a more detailed feasibility study taking into account the experimentally accessible values of the parameters is carried out in reference [10]. Very recently, similar ideas have been put forward in a different physical system, the alkali-rare gas mixture [11, 12]. We are confident that quantum manipulation of long-lived nuclear spins is promised rapid development, opening up new perspectives for basic research and applications.

2. Overview and semi-classical description

The considered physical system is represented in figure 1. A cell filled with a partially polarized vapor of a few mbar of pure helium 3 atoms is placed inside an optical cavity. While the majority of atoms remain in the singlet ground state 1^1S of helium, a weak discharge brings a tiny fraction of the atoms, usually $\approx 10^{-6}$, in the metastable triplet state 2^3S. On the one hand, the cavity is injected by a laser beam propagating along the cavity axis z and linearly...
Figure 2 – Relevant energy levels of the \(^3\text{He}\) atoms (the Zeeman sub-levels correspond to the choice of \(z\) as the quantization axis, the atoms being polarized along \(x\)). The cavity mode polarized along \(x\) excites the transition \(C_8\) between the level \(F = 1/2\) of the metastable state \(2^3S_1\) and the highest energy level \(F = 1/2\) of the excited state \(2^3P\), with a negative frequency detuning much larger in absolute value than the Doppler half-width of the excited state (of the order of 1 GHz), so that the resonant velocity class with the laser is almost empty, but much weaker than the 6.74 GHz hyperfine splitting in the metastable state (and a fortiori than the fine splitting \(2^3P_1 - 2^3P_0\) of 29.6 GHz in the excited state), so that the metastable level \(F = 3/2\) is very weakly affected by the laser. (Note: The frequency separation does not make it possible to largely satisfy these two constraints, and we cannot exclude that the coupling of \(F = 3/2\) to the field has a small effect on the squeezing dynamics; we neglect it here but we could take it into account with a more complete than our minimal model Hamiltonian (2), like that of reference [15]).

The six sublevels of the \(2^3S_1\) metastable state are coupled to the two (purely nuclear) sub-levels of the \(1^1S_0\) ground state by metastability exchange collisions.

We call \(\vec{I}\) the collective nuclear spin in the ground state, \(\vec{J}\) and \(\vec{K}\) the collective spins associated with the hyperfine multiplicities \(F = 3/2\) and \(F = 1/2\) in the metastable state. For light propagating along \(z\), we introduce the Stokes spin \(\vec{S}\) of electronic and nuclear hyperfine spin) are coupled to atoms in the ground state (of purely nuclear spin) by metastability exchange collisions [13, 14]. As the Faraday interaction with the metastable atoms causes the polarization of the light initially directed along \(x\) to rotate slightly around the \(z\) axis, in proportion to the component of the collective metastable spins along \(z\) as we will see, a continuous destructive measurement of the polarization component along \(y\) of the field leaking out of the cavity (i) by counting photons as indicated in figure 1b or (ii) by homodyne detection as in figure 1c, ultimately performs a non-destructive continuous quantum measurement of the collective nuclear spin along \(z\) of helium-3 atoms in the ground state.

In the rest of this section, by a semi-classical treatment of the spin fluctuations around the stationary state, we reduce our complex physical system to the simpler one of three coupled collective spins, of which section 3 will give a quantum description.

The relevant atomic structure of the \(^3\text{He}\) atom and the transitions excited by the cavity field are shown in figure 2. We call \(\vec{I}\) the collective nuclear spin in the ground state, \(\vec{J}\) and \(\vec{K}\) the collective spins associated with the hyperfine multiplicities \(F = 3/2\) and \(F = 1/2\) in the metastable state. For light propagating along \(z\), we introduce the Stokes spin [15] built from the creation and annihilation operators of a photon in the linearly polarized modes along \(x\) and \(y\):

\[
S_x = \frac{1}{2} (c_x^+ c_x - c_x^+ c_x) \quad ; \quad S_y = \frac{1}{2} (c_y^+ c_y + c_y^+ c_y) \quad ; \quad S_z = \frac{1}{2i} (c_x^+ c_y - c_y^+ c_x). \tag{1}
\]

We assume for simplicity that the cell is uniformly illuminated by the cavity mode. Within the limit of large detuning and a weak saturation of the atomic transition by the field, the excited state \(2^3P\) can be eliminated adiabatically and the interaction Hamiltonian between the metastable state \(\vec{K}\) and the Stokes spin \(\vec{S}\) takes Faraday form [15]:

\[
H = \hbar \chi K S_z \tag{2}
\]

\[\text{Equivalently, we can build the Stokes spin } \vec{S} \text{ using annihilation operators in circularly polarized modes, } c_1 = \frac{1}{\sqrt{2}} (c_x - ic_y), c_2 = \frac{1}{\sqrt{2}} (c_x + ic_y) \text{[16], in which case } S_z = \frac{1}{2} (c_1^+ c_1 - c_2^+ c_2).\]
which is none other than the lightshift operator of Zeeman sublevels in the metastable state, as we can clearly see
on the form of S_z in footnote 2. The coupled nonlinear equations describing the evolution of the mean spins are
given in Appendix A, see equations (A.1)-(A.3). Besides the evolution due to the Faraday Hamiltonian (2) and to the
metastability exchange collisions, they include the contribution of the usual Liouvillian terms in the quantum master
equation describing the injection of a polarized coherent field along x in the cavity and the losses due to the output
mirror, whose combined effect leads to $\langle S_x \rangle = n_{ph}/2$ in the stationary state in the absence of atoms, n_{ph} being the
average number of photons in the polarized mode along x. These equations are then linearized around a partially
polarized stationary solution (A.8)-(A.9), and the fluctuations of the spin \vec{J} and the collective alignment tensor in $F = 3/2$
are eliminated adiabatically 3 to obtain coupled equations on the fluctuations of the three collective spins \vec{I}, \vec{K} and \vec{S}, whose stationary mean values are given by:

$$
\langle \vec{I} \rangle_x = \frac{N}{2} \vec{u}_x ; \quad \langle \vec{K} \rangle_x = \frac{n}{2} \vec{u}_x ; \quad \langle \vec{S} \rangle_x = \frac{n_{ph}}{2} \vec{u}_x
$$

(3)

Here \vec{u}_x is the unit vector along x, N and n are the effective numbers of ground-state and metastable atoms participating
in the dynamics of collective spins. As we show in Appendix A, these effective numbers are renormalized with respect
to the total true numbers N_{cell} and n_{cell} in the cell, by polarization dependent factors:

$$
N = \eta N_{cell} ; \quad n = \left(\frac{1 - \eta^2}{3 + \eta^2} \right) \eta n_{cell}
$$

(4)

where $\eta \in [0, 1]$ is the nuclear polarization, 4 and the semi-classical equations on the fluctuations of the three collective
spins are:

$$
\begin{align*}
\frac{d}{dt} \delta S_z &= -\frac{\kappa}{2} \delta S_z \\
\frac{d}{dt} \delta S_y &= -\frac{\kappa}{2} \delta S_y + \chi \langle S_x \rangle \delta K_z \\
\frac{d}{dt} \delta I_z &= -\gamma_f \delta I_z + \gamma_m \delta K_z \\
\frac{d}{dt} \delta I_y &= -\gamma_f \delta I_y + \gamma_m \delta K_y \\
\frac{d}{dt} \delta K_z &= -\gamma_m \delta K_z + \gamma_f \delta I_z + \chi \langle K_x \rangle \delta S_z
\end{align*}
$$

(5)

Here, κ is the cavity loss rate, γ_m and γ_f are the effective metastability exchange rates in the metastable state and in
the ground state. The latter depend on the nuclear polarization as below and in figure 3a, and are in the same ratio as
the effective atom numbers N and n (4) forming the collective spins:

$$
\gamma_f = \frac{4 + \eta^2}{8 - \eta^2} \frac{1 - \eta^2}{3 + \eta^2} ; \quad \gamma_m = \frac{4 + \eta^2}{8 - \eta^2} \frac{1}{\tau} ; \quad \gamma_f = \frac{N}{n} \gg 1
$$

(6)

the individual metastability exchange collisions rates $1/T$ and $1/\tau$ experienced by an atom in the ground state and in
the excited state being proportional to n_{cell} and N_{cell}. In figure 3b, we also show the nuclear polarization dependence
of the effective Faraday coupling λ_{2x} (25) between light and the nuclear spin hybridized by the metastable, which controls the spin squeezing rate in (31).

3. Quantum description

In section 2, we have seen that we can model our complex physical system as three coupled collective spins (3):
the nuclear spin \vec{I} in the ground state, the spin \vec{K} in the hyperfine level $F = 1/2$ of the metastable state and the Stokes
spin \vec{S} of the cavity field. In this section, we present the full quantum treatment of this model. After having introduced
the Prmakoff approximation, we move on to the quantum description of the metastability exchange which couples
the nuclear and metastable spins.

3. We think that this non-mathematically controlled approximation is reasonable for the proposed experiment, because the spin \vec{J} is not directly
coupled to light so is not directly affected by continuous field measurement. On the other hand, by eliminating in the same way the fluctuations of
the spin \vec{K}, directly coupled to the field, one would commit a non-negligible error on the spin squeezing dynamics in the case of the detection by
photon counting (amounting to omitting the double jump C_J in the quantum master equation (36) and the rate Γ_J in the average number of photons
 counted (44)) therefore strongly underestimating the number of photodetections required to achieve a given squeezing level), but a negligible error
in the case of homodyne detection, as we have verified on the one-mode model in section 3.4.

4. Note that $n = 0$ in the fully polarized case $\eta = 1$. Indeed, the entire population of the metastable state is then in the extreme Zeeman sublevel
$\mu_m = 3/2$ of the hyperfine state $F = 3/2$ and the multiplicity $F = 1/2$ is empty.
Figure 3 – (a) Effective metastability exchange rates γ_f and γ_m (8) as functions of nuclear polarization η, normalized by the metastability exchange collision rates $1/T$ and $1/\tau$ experienced by ground-state and metastable atoms in the vapor. (b) Nuclear polarization dependence of the Faraday frequency Ω with the metastability exchange collision rates $1/T$ and $1/\tau$.

When the polarization varies between 0.3 and 0.5 (vertical dashed lines), $f(\eta)$ deviates by 4% from its maximum ≈ 0.17 reached in $\eta = 0.42$.

3.1. Primakoff approximation

Initially, the collective nuclear spin \vec{I}, the collective metastable spin \vec{K} and the Stokes spin \vec{S} of light are polarized along x, and will remain so throughout the experimental procedure. In the Holstein-Primakoff approximation, which assimilates the macroscopic spin components along x to classical variables, the remaining y and z components, orthogonal to the mean spins, behave like the quadrature operators (Hermitian and antihermitian parts of annihilation operators therefore, experience exchange collision rates $1/T$ and $1/\tau$). In the Holstein-Primakoff approximation, which assimilates the macroscopic spin components along x to classical variables, the remaining y and z components, orthogonal to the mean spins, behave like the quadrature operators (Hermitian and antihermitian parts of annihilation operators therefore, experience exchange collision rates $1/T$ and $1/\tau$).

Let us make the link with the exact bosonic representation (1) of the spins, writing:

$$\begin{align*}
\frac{I_y}{\sqrt{N}} & \overset{\text{Primakoff}}{= \frac{a + a^\dagger}{2}} ; & \frac{K_y}{\sqrt{N}} & \overset{\text{Primakoff}}{= \frac{b + b^\dagger}{2}} ; & \frac{S_y}{\sqrt{\hbar N}} & \overset{\text{Primakoff}}{= \frac{c + c^\dagger}{2}} \\
\frac{I_z}{\sqrt{N}} & \overset{\text{Primakoff}}{= \frac{a - a^\dagger}{2\iota}} ; & \frac{K_z}{\sqrt{N}} & \overset{\text{Primakoff}}{= \frac{b - b^\dagger}{2\iota}} ; & \frac{S_z}{\sqrt{\hbar N}} & \overset{\text{Primakoff}}{= \frac{c - c^\dagger}{2\iota}}
\end{align*}$$

(9)

This shows that the creation operator c^\dagger in (9)-(10), identified with c_k^\dagger in Primakoff’s approximation, transfers a photon from the highly populated coherent state cavity mode polarized along x into the initially empty cavity mode polarized along y. In Primakoff’s approximation, the atom-field Faraday coupling Hamiltonian (2) is written:

$$H = \hbar \Omega P_x P_c \quad \text{with} \quad \Omega = \chi \sqrt{\hbar N} \hbar N.$$

(12)

As χ does not depend on the field strength in the cavity, Ω is proportional to its intensity.

3.2. Quantum master equation for metastability exchange

Let us consider in this subsection the evolution of the system due to metastability exchange only ($\chi = 0$). In a quantum treatment, the classical equations (6)-(7) become stochastic equations including quantum fluctuations. In Primakoff’s approximation, this gives for the quadratures X in the metastable and fundamental state:

$$\begin{align*}
dX_a &= -\gamma_f X_a dt + \sqrt{\gamma_m \gamma_f} X_b dt + dX_{a}^{\text{stoch}} ; \\
dX_b &= -\gamma_m X_b dt + \sqrt{\gamma_m \gamma_f} X_a dt + dX_{b}^{\text{stoch}}
\end{align*}$$

(13)

5. If we consider a large spin S fully polarized along x, we can approximate the spin component in this direction by a classical variable, by setting $S_x = \langle S_x \rangle$ so that $\{S_x / \sqrt{\langle S_x^2 \rangle}, S_y / \sqrt{\langle S_y^2 \rangle}, S_z / \sqrt{\langle S_z^2 \rangle}\} = i/2$.

5
where we used the third equality of equation (8). Langevin noises \(dX_{i}^{\text{stoch}} \), with \(i \in \{a, b\} \), have zero mean, are independent random variables at different times, and have variances and equal-time covariances calculated in reference [5]:

\[
\langle dX_{i}^{\text{stoch}} dX_{j}^{\text{stoch}} \rangle = D_{ij}dt \quad \text{with} \quad D_{ij} = \frac{1}{2} \left(\frac{\gamma_{f}}{\sqrt{\gamma_{m} \gamma_{f}}} - \frac{1}{\gamma_{m}} \right)
\]

(14)

We have equations of the same form as (13) for the quadratures \(P_{i} \), with other Langevin noises \(dP_{i}^{\text{stoch}} \), with the same covariance matrix as equation (14) between them but with a covariance matrix with the noises \(dX_{i}^{\text{stoch}} \) given by

\[
\langle dX_{i}^{\text{stoch}} dP_{j}^{\text{stoch}} \rangle = D_{ij}dt \quad \text{with} \quad D_{ij} = iD_{ij}
\]

(15)

For calculating the mean values and variances of atomic observables, this stochastic formulation is equivalent to a quantum master equation on the atomic density operator \(\rho_{\text{at}} \) of the two bosonic modes \(a \) and \(b \):

\[
\frac{d\rho}{dt} = C_{\text{pa}} C_{a}^{\dagger} - \frac{1}{2} \left[C_{a}^{\dagger} C_{a}, \rho_{\text{at}} \right] \quad \text{with} \quad C = \sqrt{2\gamma_{f} a} - \sqrt{2\gamma_{m} b}
\]

(16)

Indeed, the Langevin stochastic representation of the quantum master equation (16) for any operator \(A \) is written

\[
dA = \frac{d\rho}{2} \left[C_{a}^{\dagger} [A, C] - [A, C] C_{a} \right] + dA^{\text{stoch}} \quad \text{where} \quad dA^{\text{stoch}} = [C_{a}^{\dagger}, A] dB + dB^{\dagger} [A, C]
\]

(17)

and \(dB \) is a Markovian stochastic operator with zero mean, with an equal-time covariance matrix

\[
\langle dB dB^{\dagger} \rangle = dt \quad ; \quad \langle dB dB^{\dagger} \rangle = \langle dB^{\dagger} dB \rangle = 0
\]

(18)

To be complete, let us sketch another reasoning, which avoids quantum Langevin noises. It suffices to admit that the equations of evolution on the means \(\langle X_{i} \rangle \) and \(\langle P_{i} \rangle \) taken from (6)-(7) derive from a quantum master equation of the Lindblad form (50). Since these equations are linear, the jump operators \(C_{m} \) surrounding \(\rho_{\text{at}} \) in the quantum master equation are linear combinations of \(a \) and \(b \), and we recover (16).

3.3. Three-mode quantum master equation

The complete evolution, including the Hermitian Hamiltonian interaction (12), metastability exchange and cavity losses, is described by the quantum master equation

\[
\frac{d\rho}{dt} = \frac{1}{i\hbar} [H, \rho] + \kappa \left(c_{\text{p}} C_{\text{p}}^{\dagger} - \frac{1}{2} [c_{\text{p}} C_{\text{p}}, \rho] \right) + C_{a} C_{a}^{\dagger} + \frac{1}{2} [C_{a}^{\dagger} C_{a}, \rho]
\]

(19)

where \(C \) is the jump operator for metastability exchange (16), \(\kappa \) is the cavity loss rate, \(\gamma_{m} \) and \(\gamma_{f} \) are the metastability exchange rate for a metastable atom and in the ground state.

Initially, the three modes are in vacuum state corresponding to a polarized state for the three spins. For this initial state, the first moments of the quadratures remain zero, and one can obtain a closed system of equations on the second moments. We find that the quadratures \(P \) maintain constant variances and zero covariances in the three modes,

\[
\langle P_{a}^{2} \rangle(t) = \langle P_{b}^{2} \rangle(t) = \langle P_{c}^{2} \rangle(t) = \frac{1}{4} \quad ; \quad \langle P_{a} P_{b} \rangle(t) = \langle P_{a} P_{c} \rangle(t) = \langle P_{b} P_{c} \rangle(t) = 0
\]

(20)

that the variance \(\langle X_{i}^{2} \rangle \) remains bounded and the covariances \(\langle X_{a} X_{c} \rangle \) and \(\langle X_{b} X_{c} \rangle \) remain zero, while the variances and covariance of the quadratures \(X_{a} \) and \(X_{b} \), and therefore the number of excitations in the atomic modes,\(^6\) diverge

\(^6\) We neglect here the internal evolution of the atomic modes (spin precession) by supposing that the Zeeman sublevels are degenerate in the ground state and in the metastable state \(F = 1/2 \), that is either the external magnetic field is zero, \(\vec{B} = 0 \), or we place ourselves in the rotating frame after compensation for the difference between the metastable and fundamental Larmor frequencies, for example by means of a fictitious magnetic field created by a lightshift.

\(^7\) For the initial state considered, we have at all times \(\langle X_{a} \rangle = 0 \) and \(\langle X_{c}^{2} \rangle = \frac{1}{4} = \langle a^\dagger a \rangle \), where \(\langle a^\dagger a \rangle \) is the average number of excitations in the nuclear spin mode, so that \(\text{Var} X_{a} = \langle a^\dagger a \rangle + \frac{1}{4} \). The same relations hold for the other two modes.
linearly in time, at least as long as the Primakoff approximation is applicable. We give here explicitly only long-time behaviors:

\[\langle X_α^2 \rangle(t) = \frac{\gamma_αγ_f}{2\kappa} + O(1) \quad \langle X_β^2 \rangle(t) = \frac{γ_f^2}{2\kappa} + O(1) \quad \langle X_αX_β \rangle(t) = \frac{1}{4} \left(\frac{\Omega^2}{2\kappa} \right)^2 \left(1 - \frac{2γ_αγ_f}{\kappa + 2(γ_m + γ_f)} \right) \]

\[(21) \]

3.4. One-mode model

In this subsection, we establish a one-mode quantum master equation describing the slow evolution of the nuclear spin within the limit

\[Γ_{sq} ≪ γ_f < γ_m \quad \text{and} \quad Γ_{sq} ≪ κ \]

\[(22) \]

where the squeezing rate \(Γ_{sq} \) is defined later (it suffices to know here that \(Γ_{sq} \propto Ω^2 \) so that (22) is a weak Faraday coupling limit \(Ω → 0 \)). To this end, it is convenient to introduce the bosonic annihilation operators into a cleverly rotated basis, by means of the following linear combinations of the operators \(a \) and \(b \):

\[α = \sqrt{γ_m - γ_f}a + \sqrt{γ_m + γ_f}b \quad ; \quad β = \sqrt{γ_m - γ_f}b - \sqrt{γ_m + γ_f}a \quad (23) \]

\[α \] and \(β \) indeed correspond to the eigenmodes of the metastability exchange part of the three-mode quantum master equation (19) —in practice, we have \(γ_m \gg γ_f \), see equation (8), so that the mode \(β \) corresponds to the metastable spin slightly hybridized with the spin of the ground state, and \(α \) to the nuclear spin slightly hybridized with the metastable spin). While the \(α \) mode undergoes a time divergence of its average number of excitations, the \(β \) mode is strongly damped and tends towards a stationary value (see the results (20) and (21), which show that \(\langle X_β^2 \rangle = O(1) \) where \(X_β = (β + β^*)/2 \), which will allow to eliminate it adiabatically, just like the cavity field. In this new basis, the three-mode master equation (19) takes the form

\[\frac{dρ}{dt} = \frac{-i}{\hbar} [H, ρ] + κ \left(e^c_0 c_0^† - \frac{1}{2} [c_0^† c_0, ρ] + γ β_β^* - \frac{1}{2} (β^* β, ρ) \right) \quad (24) \]

where \(γ_β \equiv 2(γ_m + γ_f) \) and, noting \(P_α = (α - α^*)/2i \) and \(P_β = (β - β^*)/2i \) the \(P \) quadratures of the new modes,

\[H = Ω_a P_a + Ω_β P_β P_c \quad \text{with} \quad Ω_a = Ω \sqrt{γ_f / γ_m + γ_f} \quad \text{and} \quad Ω_β = Ω \sqrt{γ_m / γ_m + γ_f} \quad (25) \]

Let’s carry out, as in reference [17], the adiabatic elimination in the weak Faraday coupling limit \(Ω → 0 \) in the Monte Carlo wave function formalism [18, 19], where the density operator solution of the quantum master equation (24) is obtained by averaging pure states over independent stochastic realizations, each realization corresponding to the deterministic evolution of a unnormalized state vector \(|ψ(t)⟩ \) under the action of the effective non-Hermitian Hamiltonian

\[H_{eff} = H - \frac{i\hbar}{2} (kc^† c + γ β_β^*) \quad (26) \]

interrupted randomly by quantum jumps (discontinuous evolutions \(|ψ(t)⟩ → C|ψ⟩ \)) of jump operators

\[C_c = \sqrt{κ} c \quad \text{and} \quad C_β = \sqrt{γ} β. \quad (27) \]

In the absence of the coherent coupling \(Ω \) in (25) the hybridized metastable mode and the cavity mode remain in the initial empty state. To first order in \(Ω \), this state is coupled to states with an excitation in the cavity (by the action of \(P_c \)) and with zero or one excitation in the mode of the hybridized metastable (by the action of \(P_α \) or \(P_β \)). We can then truncate the Monte Carlo state vector \(|ψ⟩ \) in the base of Fock \(\{|n_α⟩_{\text{background}}|n_β⟩_{\text{meta}}|n_c⟩_{\text{cav}}\} \) as follows

\[|ψ⟩ = |ψ_00⟩_0|0⟩ + |ψ_01⟩_0|1⟩ + |ψ_11⟩_0|1⟩ \quad (28) \]
committing an error of norm $O(\Omega^2)$. Under the effect of the effective Hamiltonian \((26)\), the fast components $|\psi_{01}\rangle$ and $|\psi_{01}\rangle$ exponentially join an adiabatic following regime of the slow component $|\psi_{00}\rangle$ with rates $\kappa/2$ or $(\kappa + \gamma_\beta)/2$. Hence their adiabatic elimination within the limit \((22)\)

$$\frac{i\Omega}{2(\kappa + \gamma_\beta)} |\psi_{00}\rangle \quad \text{and} \quad \frac{\Omega}{\kappa} P_\alpha |\psi_{00}\rangle$$

(29)

We put the expressions of $|\psi_{00}\rangle$ and $|\psi_{01}\rangle$ in the Hamiltonian evolution equation of $|\psi_{00}\rangle$ to obtain

$$i\hbar \frac{d}{dt} |\psi_{00}\rangle = -\frac{i\hbar}{2} \left(\Gamma_{\alpha\beta} P_\alpha + \Gamma_0 \right) |\psi_{00}\rangle \equiv H_{\text{eff}}^0 |\psi_{00}\rangle$$

(30)

where we have introduced the rates

$$\Gamma_{\alpha\beta} = \frac{\Omega^2}{\kappa} \quad \text{and} \quad \Gamma_0 = \frac{\Omega^2}{4(\kappa + \gamma_\beta)}$$

(31)

As we will see, $\Gamma_{\alpha\beta}$ is the typical squeezing rate of the nuclear spin in the regime \((22)\). By studying the effect of the cavity jump operator C_α and the metastable exchange jump operator C_β on the state vector \((28)\), we can interpret the effective Hamiltonian of equation \((30)\). (i) Let us first consider the effect of a cavity jump, which occurs at time t with a rate $\kappa((\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)$. Just after the jump, the state vector, initially in adiabatic following regime, becomes

$$|\psi(t')\rangle = C_\alpha |\psi(t')\rangle \approx |\psi_{00}(t')\rangle|0\rangle|0\rangle + |\psi_{01}(t')\rangle|1\rangle|0\rangle$$

(32)

It is the superposition of an unstable component $|1\rangle|0\rangle$ and of a stable component $|0\rangle|0\rangle$. With a probability $(\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)$, the cavity jump is then followed by a metastability exchange jump before the system has time to reach its adiabatic value. In this case, we have a “double jump”, which ultimately does not affect the component $|\psi_{00}(t')\rangle$ since

$$C_\beta C_\alpha |\psi(t')\rangle \approx |\psi_{00}(t')\rangle|0\rangle|0\rangle$$

(33)

This process contributes to the scalar term (proportional to the identity) in the effective Hamiltonian of equation \((30)\). With the complementary probability $(\Omega_{00}^0 |\psi_{00}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle + (\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)$, the system returns to its adiabatic value before other jumps occur, and is slaved to $P_\alpha |\psi_{00}(t')\rangle$, that is, the slow component $|\psi_{00}(t')\rangle$ has effectively undergone a single quantum jump with a jump operator proportional to P_α. This process corresponds to the first term, proportional to P_α^2, in the effective Hamiltonian of equation \((30)\). (ii) Suppose next that the jump at time t' is a metastability exchange jump, which occurs with a rate $\gamma_\alpha(\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)$. We verify in this case that the state vector after the jump, $C_\beta C_\alpha |\psi(t')\rangle$, is entirely unstable and almost immediately undergoes a second jump, a cavity jump. The total effect corresponds here again to a double jump and to the action of a scalar operator on the slow component. We derive from this discussion the following single jump and double jump rates:

$$\Gamma_{\alpha\beta} = \frac{\kappa((\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)}{(\Omega_{00}^0 |\psi_{00}\rangle + (\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)} \equiv \Gamma_{\alpha\beta}(P_\alpha^2)$$

(34)

$$\Gamma_d = \frac{\kappa((\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)}{(\Omega_{00}^0 |\psi_{00}\rangle + (\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle)} + \gamma_\alpha(\Omega_{11}^1 |\psi_{01}\rangle + \langle \psi_{01}\rangle |\psi_{11}\rangle)/(\Omega_{00}^0 |\psi_{00}\rangle) = \Gamma_0$$

(35)

8 In adiabatic monitoring, the occupation probabilities of the excited components are $(\Omega_{11}^1 |\psi_{01}\rangle)/(\psi_{01}) = (\Omega_{00}^0 |\psi_{00}\rangle)/(\psi_{00})$ and $(\Omega_{11}^1 |\psi_{01}\rangle)/(\psi_{01}) = (\Gamma_{\alpha\beta}/(\kappa)(\Omega_{00}^0 |\psi_{00}\rangle)/(\psi_{00}))$ where we used \((31)\). With the limit \((22)\), we can easily verify that they are $\ll 1$, so that almost all the population is in the component $|\psi_{00}\rangle$ as it should be, which will allow us to replace (ψ_{00}) by (ψ_{00}). We also verify that another condition for the validity of adiabatic elimination, namely the slowness of the evolution of the hybridized nuclear spin α with respect to the fast variables, which reads here $\Gamma_{\alpha\beta}, \Gamma_0 \ll \kappa, \kappa + \gamma_\beta$, is satisfied. However, these considerations do not allow us to show that the condition $\Gamma_{\alpha\beta} \gg \gamma_\alpha$ is necessary (unless $\kappa \ll \gamma_\alpha$). To see it in general terms, we push to the order Ω^4 the computation of the effective Hamiltonian $H_{\text{eff}}^4 = P\hbar \Delta P + PHQ(\Delta Q - \hbar QH\Delta P)/2$ in the subspace $sg = n = 0$ onto which P projects (here $Q = \zeta - \pi$ and $\zeta = \Omega(\alpha^2)$). Quantitatively, at this order, by action of H_α, then of H_β on $|\psi_{00}\rangle$ (with the obvious notation $H = H_\alpha + H_\beta$), we virtually create an excitation β alone, relaxing at the rate $\gamma_\alpha/2$, hence the additional adiabaticity condition $\Gamma_0 \ll \gamma_\alpha$; joined to $\Gamma_0 \ll \kappa$ and $\gamma_\alpha \ll \gamma_\beta$, it implies $\Gamma_{\alpha\beta} \gg \gamma_\alpha$ since $\Gamma_{\alpha\beta}/\gamma_\alpha = (\Gamma_0/\kappa + \Gamma_{\alpha\beta}/\gamma_\alpha)(\kappa/\gamma_\alpha)/(\kappa + \Gamma_{\alpha\beta}/\gamma_\alpha) < 16(\Gamma_0/\kappa + \Gamma_{\alpha\beta}/\gamma_\alpha)$. Quantitatively, we find a correction to the coefficient of P_α^2 in H_{eff}^4 of type $H_\alpha H_\beta H_\alpha H_\beta$ (Go is the resolvent of H_α for $\Omega = 0$) of the form $H_\alpha^2 P_\alpha^2/\gamma_\alpha$, which must be negligible, which imposes $\Gamma_{\alpha\beta}/\gamma_\alpha \ll 1$, i.e., $\Gamma_{\alpha\beta} \ll \gamma_\alpha$ taking into account $\gamma_\alpha < \gamma_\beta$. The corrections to the scalar term are negligible as soon as $\Gamma_0 \ll \gamma_\alpha, \kappa$, and the new term in P_α^2 which appears is negligible compared to $H_{\text{eff}}^4 P_\alpha^2$ for $P_\alpha = O(1)$ if $\Gamma_{\alpha\beta} \ll \kappa$.

8
We finally obtain the one-mode quantum master equation describing the slow evolution of the density operator ρ_α of the bosonic mode α (hybridized but almost purely nuclear spin):

$$\frac{d\rho_\alpha}{dt} = C_d \rho_\alpha C_d^\dagger - \frac{1}{2} [C_d^\dagger C_d, \rho_\alpha] + C_d \rho_\alpha C_d^\dagger - \frac{1}{2} [C_d^\dagger C_d, \rho_\alpha]$$

(36)

in terms of two quantum jumps, the single jump (cavity only) C_s and the double jump (of cavity and metastability exchange in that order or in the other) C_d:

$$C_s = \sqrt{\Gamma_{\alpha q}} P_\alpha \quad ; \quad C_d = \sqrt{\Gamma_0}$$

(37)

By solving equation (36) for the empty initial state of α, we get:

$$\langle X_\alpha^2 \rangle = \frac{1}{4} (1 + \Gamma_{\alpha q}) \quad ; \quad \langle P_\alpha^2 \rangle = \frac{1}{4}$$

(38)

Going back to the initial atomic basis (unrotated) and by limiting the state vector (28) to its first term, we recover equation (20) and the first three results of equation (21) of the three-mode model. Finally, the average number of photons polarized along y leaking out of the cavity per unit of time, given in the one-mode model by $\Gamma_0 + \Gamma_{\alpha q}/4$ as shown by equation (44), agrees with the exact value $\kappa \langle c^\dagger c \rangle_{\text{adiab}}$, where the mean stationary number of y-polarized photons in the cavity $\langle c^\dagger c \rangle_y = \langle X_\alpha^2 \rangle_y - 1/4$ is the last result of (21). ⁹

4. Non-destructive quantum measurement of continuous nuclear spin

The quantum averages calculated in section 3 correspond to the ensemble averages over an infinite number of experimental realizations. In this section we study the evolution of the system, in one or more realizations of the experiment, conditioned on the results of a continuous measurement on the y-polarized light leaking out of the cavity. For this, we return to the formulation in terms of Monte Carlo wave functions, as in section 3, where stochastic trajectories $|\psi(t)\rangle$ corresponding to a particular sequence of quantum jumps reconstruct the density operator of the system conditioned to measurement results [19]. The precise form of the Monte Carlo jump operators, which is not unique in the stochastic reformulation of a quantum master equation, is then determined by the particular measurements made.

4.1. Squeezing by photon counting

Suppose that we continuously and directly count (by photodetection) the number of y-polarized photons leaking out of the cavity (see figure 1b), as proposed in reference [20]. The jump operator associated with this measurement is $\sqrt{\kappa}e$, so the three-mode quantum master equation (19) is already in the right form to analyze the evolution of the state vector $|\psi(t)\rangle$ conditioned to the measurement.

The same is true within the limit of a weak Faraday coupling, $\Omega \to 0$, which leads to the one-mode model. As the jump operators C_d and C_s of the quantum master equation (36) both correspond to the cavity loss of a y-polarized photon (remember, C_d results from a cavity jump immediately followed or preceded by a metastability exchange jump, and C_s from a simple cavity jump), the measurement cannot distinguish between the two, and the density operator conditioned to a given number n of detected photons is obtained by averaging over realizations having this same total number n of jumps. An unnormalized Monte Carlo state vector having undergone such n jumps during t is written

$$|\psi(t)\rangle = e^{-i H_{\text{eff}}^0 t} C_{e_1} e^{-i H_{\text{eff}}^0 (t-t_k)} C_{e_{k-1}} \ldots C_{e_{k+1}} \ldots C_{e_1} e^{-i H_{\text{eff}}^0 t_k} |\psi(0)\rangle$$

(39)

where $e_k \in [s, d]$ and t_k are the type and time of the k th jump. H_{eff}^0 is the effective Hamiltonian (30). The quantum average of an observable O is obtained by averaging over all possible trajectories, therefore by summing over the number and type of jumps and by integrating over their times:

$$\langle O \rangle(t) = \sum_n \int_{0=t_1<t_2< \ldots <t_n} dt_1 \, dt_2 \ldots \, dt_n \sum_{(e_k)_1 \ldots (e_k)_n e_1 \ldots e_n} \langle \psi(t) | O | \psi(t) \rangle$$

(40)

⁹. On the other hand, the value of $\kappa \langle c^\dagger c \rangle_{\text{adiab}}$ in the adiabatic form (29) of the state vector does not represent this number. The solution of the paradox is due to the existence of the de-excitation path (ii), that of the annihilation in the first jump of the excitation $n_g = 1$ in the metastable mode immediately followed by the loss of a cavity photon. The true output rate of y-polarized photons is therefore $\kappa \langle c^\dagger c \rangle_{\text{adiab}} + \gamma_e \langle \beta^\dagger \beta \rangle_{\text{adiab}}$.

9
where the squared norm of each unnormalized state vector \(|\psi(t)\rangle\) automatically gives its probability density \([21]\). By taking \(O = 1\), we deduce the probability that \(n\) jumps occurred in the time interval \([0, t]\)

\[
\Pi_n(t) = \int_{t_1 < t_2 < \ldots < t_n < t} \sum_{(t_{k+1})_{k=0}^{n}} \langle \psi(t) | \psi(t) \rangle
\]

(41)

To evaluate (41), we take advantage of the fact that all the jump operators in (39) and their Hermitian conjugates commute with each other and with \(H_{\text{eff}}^{(0)}\). By using the identities

\[
\sum_{e_i = a, d} \ldots \sum_{e_i = a, d} \left(C_{e_i} \cdots C_{e_i} \right) = \left(\sum_{e_i = a, d} C_{e_i} \right)^n = \left(\Gamma_{sq}^2 + \Gamma_0^2 \right)^n
\]

(42)

and by injecting a closure relation in the eigenbasis of \(P_\alpha\) such as \(P_\alpha|p_\alpha\rangle = p_\alpha|p_\alpha\rangle\), after having integrated over the times \(t_k\) as allowed by the telescopic product of the evolution operators, we obtain

\[
\Pi_n(t) = \frac{r^n}{n!} \int_{-\infty}^{+\infty} dp_\alpha \left(\Gamma_{sq}^2 + \Gamma_0^2 \right)^n e^{-\frac{\Gamma_{sq}^2}{2} t} \Pi(p_\alpha, 0) = \left(\frac{2n}{n} \right) (n+2)^n (\Gamma_{sq}^2/2)^{n+1/2} \Phi \left(-n, 1 - n; \frac{\Gamma_{sq}^2}{2} \right)
\]

(43)

where \(\Pi(p_\alpha, 0)\) is the initial probability distribution of \(p_\alpha\) (a Gaussian with zero mean and variance 1/4) and \(\Phi\) is Kummer’s hypergeometric confluent function \(1F_1\). We notice that (43) is in fact a Gaussian average on \(p_\alpha\) of a Poisson distribution with parameter \(\lambda = (\Gamma_{sq}^2 + \Gamma_0^2)/t\). We deduce the mean and the variance of the number of photodetections during \(t\):

\[
\langle n \rangle = \left(\frac{\Gamma_0}{4} + \frac{\Gamma_{sq}^2}{4} \right) t \quad ; \quad \text{Var} n = \langle n \rangle + \frac{(\Gamma_{sq}^2)^2}{8}
\]

(44)

Still using equation (43), we access the probability distribution of \(p_\alpha\) knowing that \(n\) photons were detected in the time interval \([0, t]\), an even function of \(p_\alpha\):

\[
\Pi_n(p_\alpha | n) = \frac{1}{\Pi_n(t)} \frac{r^n}{n!} \left(\Gamma_{sq}^2 + \Gamma_0^2 \right)^n e^{-\frac{\Gamma_{sq}^2}{2} t} \Pi(p_\alpha, 0)
\]

(45)

From this result, we deduce the conditional mean and variance of \(P_{\alpha}^2\) knowing that \(n\) photons were detected during \(t\):

\[
\langle P_{\alpha}^2 \rangle_n = \frac{(n+1) \Pi_{n+1}(t)}{\Pi_n(t)} - \Gamma_0^2
\]

(46)

For \(\Gamma_{sq}^2 t \to +\infty\), the probability distribution of \(p_\alpha^2\) conditioned to number \(n\) of photodetections is peaked around the value \(p_\alpha^2(n)\) given by

\[
\left[p_\alpha^2 - \frac{1}{4} \right] \approx \frac{n}{\Gamma_{sq}^2} \quad \text{hence} \quad \langle P_{\alpha}^2 \rangle_n \approx \frac{n}{\Gamma_{sq}^2}
\]

(47)

with a conditional variance tending towards zero

\[
\text{Var}_n(P_{\alpha}^2) \approx \frac{n}{\left(\Gamma_{sq}^2 \right)^2} \to 0
\]

(48)

Correspondingly, the conditional probability distribution of \(p_\alpha\) has two peaks at \(\pm p_0\) as visible on the Wigner function in figure 5b, obtained by numerical simulation of the conditional evolution of the system over long times in the one-mode model (36). To summarize, in a single realization of the experiment, the continuous measurement of the number

10. According to equation (44), the second member of (47) is asymptotically of the order of unity for a typical photodetection sequence. Equation (47) in fact only makes sense for \(p_\alpha^2(n)\) positive therefore \(n \geq \Gamma_{sq}^2 t\); then, the equivalents (47) and (48) apply when the gap between the two peaks in \(\Pi_n(p_\alpha | n)\) is much larger than their width, which imposes \(2p_0^2 \gg n^{1/2}/\Gamma_{sq}^2 = (\Gamma_0 + \Gamma_{sq}^2)^{1/2}/\Gamma_{sq}^2)^{1/2}\).
of y-polarized photons leaking out of the cavity makes more and more certain the value of P_α^2, and therefore of I^2, the square of the component along z of the collective nuclear spin. To be complete, we relate, within the limit $\Omega \to 0$, the conditional moments of P_α^2, that is of I^2 to those of P_α^2:

$$
\langle P_\alpha^2 \rangle_n = \frac{\gamma_m}{\gamma_f + \gamma_m} \langle P_\alpha^2 \rangle_n + \frac{\gamma_f/4}{\gamma_f + \gamma_m}; \quad \text{Var}_a(P_\alpha^2) = \frac{\gamma_m^2}{(\gamma_f + \gamma_m)^2} \text{Var}_a(P_\alpha^2) + \frac{\gamma_f \gamma_m}{(\gamma_f + \gamma_m)^2} \langle P_\alpha^2 \rangle_n + \frac{\gamma_f^2/8}{(\gamma_f + \gamma_m)^2} (49)
$$

Finally, we carry out a numerical verification of these analytical predictions in the three-mode model. In figure 4, we represent the conditional mean of the square P_α^2 of the nuclear spin quadrature knowing that n photodetections occurred in the time interval $[0,t]$, with $\Gamma_{sq} t = 15$ (black dots), depending on this number n. The ensemble of realizations is divided into 5 classes corresponding to a number of photodetections falling within a given interval, and the black dots are obtained by averaging over the realizations in the same class. The numerical results are close to the analytical predictions taken from (46) and (49) and represented in green, except in the extreme classes which include a too low number of realizations. On the other hand, the asymptotic analytical predictions (47) and (48), not shown, would be in disagreement with the simulations of the two models because the time $\Gamma_{sq} t = 15$ is not long enough. In figure 5, we are precisely exploring long times in the one-mode model, with $\Gamma_{sq} t = 1000$. Figure 5a, which is the equivalent of figure 4a, shows that $\langle P_\alpha^2 \rangle_n$ is then related to the number of photodetections n as in the analytical prediction (47), i.e. according to the internal bisector in the units of the figure, with a conditional standard deviation (48) roughly constant $\Gamma_0/\Gamma_{sq} t$ because Γ_0 is here $\gg \Gamma_{sq}$.

4.2. Squeezing by homodyne detection

We now assume that the y-polarized photons leaking out of the cavity are continuously measured by homodyne detection [22], as in figure 1c. We must first find the stochastic equations giving the evolution of the state system vector conditioned on homodyne detection, since the jump operators appearing naturally in (24) or (36) of the three-mode or one-mode quantum master equation are unsuitable. We then present some analytical results obtained in the one-mode model and then in the three-mode model, before briefly discussing the effect of the finite coherence time of metastable atoms.
4.2.1. Suitable stochastic formulation of the quantum master equation

A general quantum master equation of the Lindblad form

$$\frac{d\rho}{dt} = \frac{1}{i\hbar}[H, \rho] + \sum_{m} C_{m}\rho C_{m}^{\dagger} - \frac{1}{2}\{C_{m}^{\dagger}C_{m},\rho\}$$

(50)

with H the Hermitian part of the Hamiltonian and C_{m} the jump operators, can be rewritten in an equivalent way by adding an arbitrary constant to the jump operators and/or by mixing them by any linear unitary combination. In order to take into account a homodyne detection on the outgoing field, we form, from a jump operator C_{m} corresponding to a photodetection, the two “homodyne” jump operators $D_{m, \pm}$:

$$D_{m, \pm} = \mu_{m} C_{m} \sqrt{\frac{2}{\kappa}}$$

(51)

where μ^{2} has the dimensions of a frequency. The measurement of the difference in the jump rates $D_{m, +}^{\dagger}D_{m, -} - D_{m, -}^{\dagger}D_{m, +}$ then gives access to a quadrature of C_{m}. Thus, for μ real and C_{m} corresponding to the cavity jump operator C_{c}, see equation (27), the difference between the numbers of photons N_{\pm} detected during the short time interval Δt in the two output channels of figure 1c, which by definition constitutes the homodyne signal,

$$N_{\pm} = (D_{c, \pm}^{\dagger}D_{c, \pm}) \Delta t$$

(52)

gives access to X_{c}; it is indeed this quadrature of the field, conjugated to P_{c}, that is translated by a quantity proportional to P_{β} and to the time under the action of the Hamiltonian H (12), which provides information on P_{a} through metastability exchange collisions. In the case of the quantum master equation with 3 modes (24), one has to apply the doubling procedure (51) a priori only to the jump operator of cavity. In practice, we will apply this procedure also to the jump operator C_{β}, that is we will double by homodyning all the jump operators C_{m}, in order to avoid the discomfort of a hybrid representation mixing quantum jumps and continuous stochastic evolution, see equation (53) to come. In the case of the one-mode quantum master equation (36), we need to “homodyne” the two jump operators C_{s} and C_{d} anyway, since each of them comes with the loss of a photon in a cavity, as explained in section 3.4.
Within the limit of a large amplitude of the local oscillator μ, we can act as if Δt were infinitesimal and represent the evolution of the Monte Carlo wave function by a continuous nonlinear stochastic equation without quantum jumps in Ito point of view:

$$
\frac{d\phi(t)}{dt} = -\frac{i}{\hbar}H\phi(t)dt - \frac{1}{2}\sum_mC_m\phi(t)C_m + \frac{1}{4}(\phi(t)C_m + C_m^\dagger\phi(t))^2\phi(t)dt + \frac{1}{2}\sum_mC_m^\dagger\phi(t)C_m\phi(t)dt
$$

(53)

where, to each jump operator C_m in the initial quantum master equation, we associate a continuous-time stochastic process $d\zeta_m(t)$, with real values, Gaussian, of zero mean, of variance dt, statistically independent of other processes and without memory. At the same level of approximation, the homodyne signal operator (52) is replaced by the sum of its average and a classical noise representing its fluctuations, which is none other than the corresponding $d\zeta_m$ [19]:

$$
\frac{N_\alpha - N_\beta}{2\mu} = \frac{\sqrt{\kappa}\langle c + c^\dagger|\phi\rangle}{2}dt + \frac{1}{2}d\zeta_c
$$

(54)

In practice, more than the homodyning history, that is the detailed time dependence of the homodyne detection signal, it is its time average over an interval of time $[0,t]$ which is easily accessible in an experiment. We thus introduce the integrated signal having the dimension of the root of a frequency,

$$
\sigma(t) \equiv \frac{N_\text{tot} - N_\text{tot}}{2\mu} = \frac{\kappa}{2}
$$

(55)

and we will calculate in the following the mean and the variance of the quadrature P_α of the nuclear spin conditioned on σ.

4.2.2. Analytical results in the one-mode model

Let us explicitly write the stochastic equation (53) for the one-mode model (36):

$$
\frac{d\phi(t)}{dt} = -\frac{dt}{2}\Gamma_{sq}[P_\alpha - \bar{P}_\alpha(t)]^2\phi(t) + \sqrt{\Gamma_{sq}}d\zeta_c(t)[P_\alpha - \bar{P}_\alpha(t)]\phi(t)
$$

(56)

with $\bar{P}_\alpha(t) \equiv \langle \phi(t)|P_\alpha|\phi(t)\rangle$. The highlight is that the jump operator C_d proportional to the identity, which added noise in the photon counting detection scheme of section 4.1, gives no contribution and completely disappears in the homodyne case. Indeed, the photons emitted during these jumps come from the component $|1\rangle$ of the state vector (28) containing one excitation β, which makes them optically incoherent with the light field injected into the cavity, i.e. with the component $|0\rangle|0\rangle$ of (28), in the sense that $|1\rangle|1\rangle$ contributes to $\langle c^\dagger c\rangle$ but not to $\langle c + c^\dagger\rangle$. So only the stochastic process $d\zeta_c$ associated with the jump operator C_d remains. This process coincides with that $d\zeta_c$ appearing in the homodyne detection signal (54), $\zeta_c \equiv d\zeta_c$, a fact admitted here but which will be established in section 4.2.3.

The stochastic equation (56) exhibits a linear noise term and a quadratic deterministic term in the operator P_α, real in Fourier space. For the initial state considered here, it is thus solved exactly by a Gaussian ansatz on the wave function in momentum representation, real and correctly normalized for the commutation relation $[X_\alpha, P_\alpha] = i/2$:

$$
\langle \phi(t)|p_\alpha\rangle = \left[2\pi u(t)^3/8\exp[-u(t)(p_\alpha - \bar{P}_\alpha(t))^2]
ight]
$$

(57)

On the other hand, the Gaussianity is lost in the squeezing by photodetection protocol of section 4.1. Using the Ito calculation, we find that u follows a deterministic evolution equation, to be integrated with the initial condition $u(0) = 1$:

$$
\frac{du(t)}{dt} = \Gamma_{sq}dt \quad \text{donc} \quad u(t) = 1 + \Gamma_{sq}t \quad \text{and} \quad \text{Var}_uP_\alpha(t) \equiv \frac{1}{4u(t)} = \frac{1}{4(1 + \Gamma_{sq}t)}
$$

(58)

11. This approximation is valid for a time resolution, or a time step Δt, such that $\mu^{-2} \ll \Delta t \ll \kappa^{-1}$, where κ is in practice the fastest evolution rate in the system in the experiment.

12. We only keep the linear terms in dt or in noise, and we systematically replace the quadratic terms $d\zeta_c^2$ by their mean dt.

13.
where we have also given the variance of \(P_\alpha \) in the state \(|\phi\rangle\). On the contrary, the equation for the mean value of \(P_\alpha \) in \(|\phi\rangle\) is purely stochastic, with a diffusion coefficient \(D(t) \) depending on time and the initial condition \(P_\alpha(0) = 0 \):

\[
d\bar{P}_\alpha(t) = [2D(t)]^{1/2}d\zeta(t) \quad \text{with} \quad D(t) = \frac{\Gamma_{sq}(1)+1}{8(1+\Gamma_{sq})t^2}.
\] (59)

As \(D(t) \) is of finite integral, \(\bar{P}_\alpha(t) \) stabilizes asymptotically (at long times) at a fixed value on a single realization, as seen in figure 6, with a variance in the quantum state \(\text{Var}_\alpha P_\alpha \) tending to 0. This phenomenon of “stochastic convergence” towards an eigenstate of the measured observable (in this case \(P_\alpha \)) is expected in the description of a quantum measurement by a diffusion equation of the state vector \([23, 24, 25]\). To show it here, we introduce a renormalized time \(\theta \) in terms of which \(\bar{P}_\alpha \) performs an ordinary Brownian motion with a unity diffusion coefficient, and we notice that this time is bounded:

\[
\theta = \int_0^\tau dt' D(t') = \frac{\Gamma_{sq}t}{8(1+\Gamma_{sq})t} \rightarrow \theta_\infty = \frac{1}{8}
\] (60)

At the renormalized instant \(\theta_\infty \), \(\bar{P}_\alpha \) follows a Gaussian law with zero mean and variance 1/4: \(\bar{P}_\alpha \) has therefore the same asymptotic probability distribution (\(t \to +\infty \)) as that of the observable \(P_\alpha \) in the initial quantum state of the nuclear spin.

We now come to the mean and the variance of \(P_\alpha \) conditioned on the value \(S \) of the time-integrated homodyning signal \(\sigma \) (55). Remarkably, we find that the conditional mean is always proportional to the signal, with a time-dependent proportionality coefficient, and that the conditional variance depends on time but not on the signal:

\[
\langle P_\alpha \rangle_{\tau=S} = m(\Gamma_{sq}) \frac{S}{\sqrt{\Gamma_{sq}}} \quad \text{where} \quad m(\tau) = \frac{\tau}{1+\tau} ; \quad \text{Var}_{\tau=S}(P_\alpha) = \nu(\Gamma_{sq}) \quad \text{where} \quad \nu(\tau) = \frac{1}{4(1+\tau)}
\] (61)

These expressions denote \(\Gamma_{sq} \) as the nuclear spin squeezing rate in the one-mode model. In figure 7a, we represent \(\langle P_\alpha \rangle_{\tau=S} \) for three realizations of the experiment; it is a stretched Brownian motion whose variance in the quantum state \(\text{Var}_\alpha P_\alpha \) tends asymptotically towards a fixed but unpredictable value. (b) Idem as a function of the compact renormalized time \(\theta_\infty \); this time it is an ordinary Brownian motion but limited to \(\theta \leq 1/8 \).

\[
\sigma(t) = \int_0^\tau dt' \frac{1}{2} D(t') \left[\sqrt{\Gamma_{sq}} P_\alpha(t') + \frac{1}{2} d\zeta(t') \right]
\] (62)
As $P_\alpha(t)$ stabilizes asymptotically on a single realization, and the time average of the noise $d\zeta_s$ tends to zero like $1/t^{1/2}$, $\sigma(\infty)$ directly gives the value of P_α up to a constant factor $\sqrt{\Gamma_{\text{sq}}}$.

To establish the results (61), we first relate the conditional variance of the operator P_α to that of its quantum average in a realization \bar{P}_α as follows:

$$\begin{align*}
\text{Var}_{r=S}(P_\alpha) & \equiv \langle (\phi|P_\alpha^2|\phi) \rangle_{r=S} - \langle (\phi|P_\alpha|\phi) \rangle_{r=S}^2 = \langle (\phi|P_\alpha^2|\phi) - \langle (\phi|P_\alpha|\phi)^2 \rangle_{r=S} + \langle P_\alpha^2 \rangle_{r=S} - \langle P_\alpha \rangle_{r=S}^2 \rangle_{r=S} \\
& = \langle \text{Var}_{r=S}(P_\alpha) \rangle_{r=S} + \text{Var}_{r=S}(\bar{P}_\alpha) = \frac{1}{4} + \tau + \text{Var}_{r=S}(\bar{P}_\alpha)
\end{align*}$$

(63)

where we have used expression (58) for the quantum variance of P_α in the state $|\phi\rangle$. It therefore remains to determine the conditional probability distribution of P_α knowing that $\sigma = S$,\n
$$P(\bar{P}_\alpha = p_\alpha | r = S) \equiv \frac{P(\bar{P}_\alpha = p_\alpha, \sigma = S)}{P(\sigma = S)}$$

(64)

The random variable $\bar{P}_\alpha(t)$, resulting from Brownian motion (59), has a Gaussian probability distribution; the same applies to the temporal integral of \bar{P}_α and to the noise $d\zeta_s$, therefore to the signal σ (62) which is their sum. As the variables \bar{P}_α and σ have zero means, their joint probability distribution is characterized by their covariance matrix, or more directly by its inverse matrix, so that

$$P(\bar{P}_\alpha = p_\alpha | r = S) = \frac{1}{\sqrt{2\pi \sigma^2(\bar{P}_\alpha)^2}} \exp\left(-\frac{(p_\alpha - \langle\bar{P}_\alpha\rangle)^2}{2\sigma^2(\bar{P}_\alpha)^2}\right)$$

(65)

where $\langle\cdot\rangle_{\text{stoch}}$ at time t is the average taken over all the realizations of the stochastic process $d\zeta_s(t')$ in the time interval $[0, t]$. We deduce that, in equations (61),

$$m(\tau) = \sqrt{\Gamma_{\text{sq}} \langle\sigma(t)|\bar{P}_\alpha(t)\rangle_{\text{stoch}}} \quad \text{and} \quad V(\tau) = \frac{1}{4(1 + \tau)} + \langle(\bar{P}_\alpha(\tau)_{\text{stoch}} - \langle\bar{P}_\alpha(\tau)\rangle_{\text{stoch}})^2\rangle_{\text{stoch}}$$

(66)

In order to determine their variances and covariance, we write $\sigma(t)$ and $\bar{P}_\alpha(t)$ as linear functionals of the stochastic process $d\zeta_s$ and we use the fact that the Langevin forces $d\zeta_s(t)/dt$ and $d\zeta_s(t')/dt'$ have a Dirac correlation function $\delta(t - t')$. Let us give the example of the first contribution to $\sigma(t)$:

$$\int_0^t dt'' P_\alpha(t'') = \int_0^t \int_0^{t''} dt'' [2D(t'')]^{1/2} \frac{d\zeta_s(t'')}{dt''} = \int_0^t \int_0^{t'} dt' [2D(t')]^{1/2} \frac{d\zeta_s(t')}{dt'} = \int_0^t (t' - t') [2D(t')]^{1/2} \frac{d\zeta_s(t')}{dt'}$$

(67)

where we changed the order of integration on t' and t'' then explicitly integrated on t''. We end up with the expressions we are looking for (61), the simplicity of which follows from the fact that, in one realization of the experiment, we always have

$$\sigma(t) = \sqrt{\Gamma_{\text{sq}} \frac{1 + \tau}{\tau} \bar{P}_\alpha(t)}$$

(68)

Finally, let us return to the quadrature P_α of the unhybridized nuclear spin, which is truly usable in the experiment once the discharge is switched-off in the cell. By inversion of transformation (23) and by limiting equation (28) to its first term (to the dominant order in Ω), it comes

$$\langle P_\alpha \rangle_{r=S} = \left(\frac{\gamma_m}{\gamma_f + \gamma_m}\right)^{1/2} \langle P_\alpha \rangle_{r=S} \quad \text{and} \quad \text{Var}_{r=S}(P_\alpha) = \frac{\gamma_f}{4(\gamma_f + \gamma_m)} + \frac{\gamma_m}{\gamma_f + \gamma_m} \text{Var}_{r=S}(P_\alpha)$$

(69)

The conditional variance of P_α at long times tends towards a non-zero value, although low in practice: this is the intrinsic limit of this nuclear spin squeezing scheme, which uses the metastable state of 3He as an intermediate state.
4.2.3. Solution of the three-mode model

The study of spin squeezing in the one-mode model is limited to the regime (22) where the squeezing rate Γ_{sq} is the longest timescale in the system. However, it is crucial for applications to see how far we can speed up the squeezing process by increasing Γ_{sq}, for example, the Faraday coupling Ω of metastable atoms to the cavity field. To this end, we obtain the analytical solution of the three-mode model by using the Gaussian character of the state vector which results, as for the one-mode model, from the initial state considered (the vacuum), from the linearity of the jump operators C_m and the quadraticity of the Hamiltonian H in the quadratures of the modes. The stochastic equation (53) therefore admits as an exact solution the Gaussian ansatz generalizing that of equation (57),

$$\langle p_\alpha, p_\beta, x_t | \phi(t) \rangle = \phi(q, t) = [8\pi \det u(t)]^{1/4} \exp \left\{ -\frac{1}{2} \sum \{ |q - q(t)| \cdot u(t) |q - q(t)| \} \right\} \equiv e^{-S}$$ (70)

where u is a real symmetric 3×3 matrix, q is a real three-component vector, the coordinates $q_\alpha = p_\alpha$ and $q_\beta = p_\beta$ are in Fourier space (eigenbasis of the quadrature P) and the coordinate $q_\epsilon = x$, is in the position space (eigenbasis of the quadrature X). The only trick here was to choose as the metastability exchange jump operator $C_\beta = \sqrt{\gamma_\beta} \hat{q}_\beta$: this choice of phase, which of course does not change the quantum master equation (24), remains legitimate for the evolution conditioned on the homodyne detection of the field because the metastability jumps are not measured. In the mixed representation of the wave function (70), the Hamiltonian H is then pure imaginary and the jump operators are real, hence the real ansatz (70). \footnote{For example, $\hat{q}_\beta = i(X_\beta + iP_\beta)$ is represented in pulse by the real operator $-\partial_{q_\beta}/2 - p_\beta$, and $\hat{q}_\beta \hat{q}_\epsilon$ by $-\partial_{q_\beta}^2/4 + p_\beta^2 - 1/2$.}

To get the equations of motion on u and \tilde{q}, we calculate in two different ways the relative variation $d\phi(q, t)/\phi(q, t)$ of the wave function, on the one hand by connecting it to the variation dS of the quantity S in (70), separated into a deterministic part dS_d and a noisy part dS_n, on the other hand by inserting ansatz (70) in the stochastic equation (53).
By identifying the deterministic parts and the noisy parts of the two resulting forms, we obtain

\[-dS_b = \frac{1}{2} \frac{\partial_q S - q^2}{q} \left(\partial_q S - q \right) \partial_c \zeta \left(\partial_q S - q \right) \partial_c \zeta \cdot (71)\]

\[-dS_d + \frac{1}{2} (dS_b)^2 = (\Omega_\omega q_\omega + \Omega_\beta q_\beta) \frac{d\zeta}{\zeta^2} \left\{ \partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \left(\partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \right) + \partial_q \left(\partial_q S - 2q_\beta \right) + q_\beta \right\} \cdot (72)\]

It remains to insert in (72) the expression of \(dS_b\) taken from (71), by applying Ito’s rule of replacing the squares of the noises by their mean, then identifying the terms of degree 2 in \(q - \bar{q}\) to obtain the purely deterministic equation linear on \(\bar{q}\).

\[\begin{align*}
\text{du}_{\alpha} &= -\Omega_\alpha \frac{d\zeta}{\zeta^2} \text{du}_{\alpha}, \\
\text{du}_{\beta} &= -\frac{d\zeta}{\zeta^2} \left\{ \partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \left(\partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \right) + \partial_q \left(\partial_q S - 2q_\beta \right) + q_\beta \right\} \text{du}_{\alpha} - \Omega_\beta \frac{d\zeta}{\zeta^2} \text{du}_{\beta}, \\
\text{du}_{\gamma} &= -\frac{d\zeta}{\zeta^2} \left\{ \partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \left(\partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \right) + \partial_q \left(\partial_q S - 2q_\beta \right) + q_\beta \right\} \text{du}_{\beta} - \frac{d\zeta}{\zeta^2} \left\{ \partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \left(\partial_q S - \frac{1}{2} \frac{\partial_q^2 q}{q} \right) + \partial_q \left(\partial_q S - 2q_\beta \right) + q_\beta \right\} \text{du}_{\gamma},
\end{align*}\]

and the terms of degree 1 in \(q - \bar{q}\) to obtain the stochastic linear equation on \(\bar{q}\):

\[\begin{align*}
d\bar{q} &= \frac{1}{2} \left(\frac{\Omega_\alpha}{\zeta^2} 0 0 0 \right) \text{du}_{\alpha} - \frac{1}{2} \left(\frac{\Omega_\beta}{\zeta^2} 0 0 0 \right) \text{du}_{\beta} - \frac{1}{2} \left(\frac{\Omega_\gamma}{\zeta^2} 0 0 0 \right) \text{du}_{\gamma} + \frac{1}{2} \left(0 0 0 0 \right) \text{du}_{\beta} + \frac{1}{2} \left(0 0 0 0 \right) \text{du}_{\gamma},
\end{align*}\]

\[\text{d}(\phi(t)q_j|\phi(t)) = \bar{q}_j(t) \text{ and } \langle \phi(t)|q_j\phi(t) \rangle = \bar{q}_j(t) \bar{q}_j(t) + \frac{1}{4} \gamma_{jj}, \quad \forall i, j \in \{\alpha, \beta, c\} \text{ with } \frac{1}{2} \text{d}(q)(t) = [\Omega(t)]^{-1} \quad (75)\]

The differential system (73) is easily integrated for the initial condition \(\beta(0) = \text{Id}\):

\[\begin{align*}
\text{u}_{\alpha}(t) &= 1 + \frac{\Omega_\alpha^2 t}{\kappa} - \frac{2\Omega_\alpha^2}{\kappa^2} \left(1 - e^{-\kappa t/2} \right), \\
\text{u}_{\beta}(t) &= \frac{\Omega_\beta \Omega_\alpha}{\gamma_\beta} \left(\frac{1}{\gamma_\beta + \kappa} + \frac{1}{\kappa} \right) \left(1 - e^{-\gamma_\beta t/2} \right) + \frac{\Omega_\alpha \Omega_\beta}{\kappa(\kappa - \gamma_\beta)} \left(e^{-\gamma_\beta t/2} - e^{-\gamma_\beta t/2} \right) + \frac{\Omega_\alpha \Omega_\beta}{\kappa(\gamma_\beta + \kappa)} \left(e^{-\gamma_\beta t/2} - e^{-\gamma_\beta t/2} \right), \\
\text{u}_{\gamma}(t) &= \frac{\Omega_\gamma}{\kappa} \left(1 - e^{-\kappa t/2} \right), \\
\text{u}_{\beta}(t) &= 1 + \frac{\Omega_\beta^2}{\gamma_\beta(\gamma_\beta + \kappa)} \left(1 - e^{-\gamma_\beta t/2} \right) - \frac{\Omega_\beta}{2\gamma_\beta} \left(e^{-\gamma_\beta t} - e^{-\gamma_\beta t} \right), \\
\text{u}_{\gamma}(t) &= -\frac{\Omega_\gamma}{\gamma_\beta + \kappa} \left(1 - e^{-\gamma_\beta t} \right), \\
\text{u}_{\gamma}(t) &= 1, \\
\end{align*}\]

Since \(\bar{q}\) describes a Brownian motion (partially damped because the friction matrix in (74) has eigenvalues 0, \(\gamma_\beta/2\) and \(\kappa/2\)), and since the homodyne signal averaged over the time interval \([0, t] \sigma\) is deduced by integration, these random

14. We notice that the quadratic terms in \(u\) in the right-hand side of (72) cancel with those of \((dS_b)^2/2\) in the left-hand side.

15. We can therefore recover equation (74) from the stochastic equation deduced from (53) on the mean of an observable \(O\), \(d(O) = (\partial_i|H_i(O, H)| + (\partial/2) \sum_m(O_{\alpha m} O_{\alpha m} + h.c.) + \sum_m|O_{\beta m} O_{\beta m} + h.c.) - (O_m + C_{\alpha m} + C_{\beta m}) dC_{\alpha m}\) by specializing it to the cases \(O = P_\alpha\), \(O = P_\beta\) and \(O = X_c\).
variables have a Gaussian statistic and we can reproduce the reasoning of section 4.2.2. We find for the conditional mean and variance of the quadrature \(P_a \) of the nuclear spin knowing that \(\sigma = S \):

\[
\langle P_a \rangle_{\sigma=S} = \frac{\langle \sigma(t) \bar{P}_a(t) \rangle_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}} S
\]

\[
\text{Var}_{\sigma=S}(P_a) = \frac{1}{4} \left[\frac{\Omega_2^2}{\Omega} c_{\alpha a}(t) + \frac{\Omega_2^2}{\Omega} c_{\beta b}(t) - 2 \frac{\Omega_2 \Omega_b}{\Omega} c_{\alpha b}(t) \right] + \langle \bar{P}^2_a(t) \rangle_{\text{stoch}} - \frac{\langle \sigma(t) \bar{P}_a(t) \rangle^2_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}} = \frac{1}{4} - \frac{\langle \sigma(t) \bar{P}_a(t) \rangle^2_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}}
\]

The expression in brackets in equation (83) is the matrix element of \(\sigma(t) \) in the coordinate vector \((\Omega_2/\Omega, -\Omega_2/\Omega, 0) \) of direction \(a \) in the rotated basis. The first term in the middle-hand side is therefore the quantum variance of \(P_a \) in the stochastic state \(\sigma(t) \), depending on time but, let us recall, independent of the particular realization of \(\phi(t) \). The simplified expression in the right-hand side follows from the property (20) on the unconditional mean \(\langle P^2_a \rangle(t) = 1/4 \) and from the chain of equalities

\[
\langle P^2_a(t) \rangle = \frac{\langle \sigma(t) \bar{P}_a(t) \rangle_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}} \frac{\langle \sigma(t) \bar{P}_a(t) \rangle_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}} = \frac{\langle \sigma(t) \bar{P}_a(t) \rangle_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}} \frac{\langle \sigma(t) \bar{P}_a(t) \rangle_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}}
\]

To determine the variance of the random variables \(\bar{P}_a(t) \) and \(\sigma(t) \), it remains to calculate their amplitudes on the stochastic processes \(d\varphi(t') \) and \(d\xi(t') \), formally integrating equation (74) by the method of variation of constants for \(\bar{P}_a(t) \) and \(X_a \), and proceeding as in equation (67) for \(\sigma \):

\[
\rho(t, t') = -\frac{1}{2} \gamma_{t'}^{1/2} \left[\frac{\Omega_2}{\Omega} c_{\alpha b}(t') + \frac{\Omega_2}{\Omega} c_{\beta b}(t') \right] + \frac{1}{2} \gamma_{t'}^{1/2} \left[\frac{\Omega_2}{\Omega} c_{\alpha b}(t') - \frac{\Omega_2}{\Omega} c_{\beta b}(t') \right]
\]

\[
\sigma(t, t') = \frac{(\gamma_{t'}^{1/2})}{2t} \left[c_{\alpha b}(t') - c_{\beta b}(t') \right] - \frac{1}{2t} \left[c_{\alpha b}(t') - c_{\beta b}(t') \right]
\]

where \(f_s(t) \equiv \left[1 - \exp(-it/2) \right]/(\lambda/2) \). We obtain:

\[
\langle \sigma(t) \bar{P}_a(t) \rangle_{\text{stoch}} = \int_0^t dt' \left[\rho(t, t') \sigma(t, t') + p(t, t') \sigma_c(t, t') \right] ; \quad \langle \sigma^2(t) \rangle_{\text{stoch}} = \int_0^t dt' \left[\sigma_o^2(t, t') + \sigma_c^2(t, t') \right]
\]

We deduce from these results the long time limits

\[
\langle P_a \rangle_{\sigma=S} \to_{t \to +\infty} \left(\frac{\gamma_m}{\gamma_f + \gamma_m} \right) \frac{S}{1 + \gamma_f} ; \quad \text{Var}_{\sigma=S}(P_a) \to_{t \to +\infty} \frac{1}{4} \frac{\gamma_f}{\gamma_f + \gamma_m}
\]

with which the predictions (69) of the one-mode model, however obtained within the weak coupling limit (22), are in perfect agreement.

16. Let us give some results and intermediate considerations. (i) While \(c_{\beta b}(t'), c_{\beta b}(t') \) and \(c_{\beta b}(t') \) have a finite limit when \(t' \to +\infty \) [we will need \(c_{\beta b}(+\infty) = (1 + p)^{-1} \), \(c_{\beta b}(+\infty) = \Omega_2/((\gamma_2 + \kappa)(1 + p)) \) with \(p = \Omega_2/(\gamma_2 + \kappa) \)], \(c_{\alpha b}(t') \) and \(c_{\alpha b}(t') \) tend to zero as \(1/t' \). (ii) In an integral over \(t' \) containing the exponential factor \(\exp[-(\gamma_b(t'-t')/2)] \) or its square, we can replace the function which multiplies it by its limit in \(t' \to +\infty \). (iii) For any uniformly bounded function \(w(t, t') \), we can show for \(r \in [b, c] \) that

\[
\int_0^t dt' \left[(t - t') w(t, t') \right] \to \int_0^t dt' w(t, t')
\]

(iv) We then obtain the asymptotic limits \(\langle P^2_a(t) \rangle_{\text{stoch}} \to \Omega_2^2/(2\Omega^2) I \) and \(\langle \sigma^2(t) \rangle_{\text{stoch}} \to 2\langle \sigma_o^2 \rangle /4\kappa I \) where \(I \equiv \int_0^{+\infty} dt' c_{\alpha b}(t') \). We thus deduce (90) from (82) and from the first equality in (83), without needing to know the value of \(I \). We derive from the second equality in (83) the result \(I = 1 \), which we can also deduce from the equation of motion \(dc_{\alpha b}/dt = -\gamma p c_{\beta b}^2 - c_{\alpha b}' \) integrated between \(t = 0 \) and \(t = +\infty \).
As an application of our analytical solution of the three-mode model, let the rate Γ_{sq} tend to zero at fixed reduced time $\tau = \Gamma_{sq}t$ while maintaining (unlike the one-mode model) the ratio Γ_{sq}/γ_f to a non-infinitesimal constant value. The physical motivation is clear: in the planned experiments [10], γ_f and Γ_{sq} are of the same order of magnitude but are really much smaller than γ_m and κ (by factors $\approx 10^{-6}$ and 10^{-9}). We find in this limit:\footnote{In practice, it suffices to make Ω_a tend to zero at $\tau = \Gamma_{sq}t > 0$, Ω_b, γ_f and κ fixed. In particular, this makes all exponential transients disappear. To simplify the calculations, it is useful to introduce the quantity $\rho = \Omega^2/\kappa$ so that $\rho = (\Gamma_{sq}/2\gamma_f)/(1 + 2\gamma_m/\kappa)^2$ in the limit $\gamma_f \to 0$.}

\[
\langle P_a \rangle_{\gamma_f} \sim \frac{\Gamma_{sq}^*}{1 + \Gamma_{sq}} \frac{S(\bar{P}_{\alpha})}{\Gamma_{sq}^*} \quad \text{and} \quad \text{Var}_{\gamma_f}(P_a) \sim \frac{1}{4} \frac{\Gamma_{sq}^*}{1 + \Gamma_{sq}^*}
\]

(91)

where we have introduced the true or generalized squeezing rate

\[
\Gamma_{sq}^* \equiv \frac{1}{\Gamma_{sq}} + \frac{2}{\gamma_f} \frac{1}{1 + \Gamma_{sq}}
\]

(92)

We find the natural scaling of the signal by $\Gamma_{sq}^{1/2}$ already observed in the one-mode model and the same functional forms in time, but we lose all attribution of proportionality of type (68), the conditional variance of P_a, now being $\not= 0$.\footnote{We have indeed: $\text{Var}_{\gamma_f}(P_a) - \Gamma_{sq}t/[4(1 + \Gamma_{sq}t)] - \Gamma_{sq}^*t/[4(1 + \Gamma_{sq}^*t)]$.}

We represent in figure 7c the variation with adimensional time $\gamma_f t$ of the conditional mean and variance (91) for different values of the ratio $r = 2\Gamma_{sq}/\gamma_f$. We notice that the squeezing process is all the faster as r is larger, and that it saturates to a limiting behavior. This was predictable, because Γ_{sq}^* is an increasing function of r with finite limit; at a fixed time, the conditional mean (in units of $S(\Gamma_{sq}^{1/2})$) is therefore an increasing function and the conditional variance a decreasing function of r, as seen in figure 7c. More precisely, in the weak coupling limit $\Omega \to 0$, where $r \to 0$, the generalized squeezing rate is equivalent to the rate Γ_{sq}, in agreement with the one-mode model, and within the limit $r \to +\infty$, it saturates to the value $\gamma_f/2$. We cannot therefore squeeze faster than at the rate γ_f, which is not surprising: we cannot hope to reduce the fluctuations in nuclear spin before each atom in the ground state has undergone on average at least one metastability exchange collision.

4.2.4. Effect of decoherence

To be complete, we take into account, in the homodyne squeezing scheme, the finite lifetime $(2\gamma_0)^{-1}$ of the metastable atoms, which de-excite when they reach the cell walls after diffusive motion in the vapor. To this end, we add a jump operator $\sqrt{2\gamma_0}b$ to the three-mode quantum master equation (19). As the part other than Hermitian Hamiltonian remains quadratic in the quadratures of the modes, it can be put in reduced form by an appropriate rotation of the atomic modes, as we had already done in section 3.4; one simply has to expand (a, b) in the orthonormal eigenbasis of the rate matrix

\[
\Gamma = \begin{pmatrix} 2\gamma_f & -2\sqrt{\gamma_f\gamma_m} \\ -2\sqrt{\gamma_f\gamma_m} & 2(\gamma_0 + \gamma_m) \end{pmatrix}
\]

(93)

with operator-valued coefficients α and β. The direction β remains that of the maximum eigenvalue γ_β of Γ, and α that of the minimum eigenvalue γ_α, now nonzero. This leads to the quantum master equation

\[
\frac{d\rho}{dt} = \frac{i}{\hbar} [h(\Omega_a P_a + \Omega_b P_b) P_c, \rho] + \kappa (\epsilon \rho c + \frac{1}{2} (c^\dagger c, \rho)) + \gamma_\alpha \left(\alpha^\dagger \alpha - \frac{1}{2} (\alpha^\dagger \alpha, \rho) \right) + \gamma_\beta \left(\beta^\dagger \beta - \frac{1}{2} (\beta^\dagger \beta, \rho) \right)
\]

(94)

The new expression for Faraday frequencies Ω_a, Ω_b and rates $\gamma_\alpha, \gamma_\beta$ can be found in Appendix B, which also gives the analytical expression of the mean and of the variance of the quadrature P_a of the nuclear spin conditioned on the integrated homodyne signal, in all generality. We restrict ourselves here to the physically useful limit $\gamma_0 \ll \gamma_m$ (we still have $\gamma_f < \gamma_m$). To lowest order in γ_0, the coefficients Ω_a, Ω_b and γ_β remain unchanged, and we have

\[
\gamma_\alpha = \frac{2\gamma_0 \gamma_f}{\gamma_m + \gamma_f}
\]

(95)
which is the reduced rate of decoherence in the hybridized nuclear spin. Moreover, we place ourselves in the limit (22), with $\gamma_\alpha = O(\Gamma_{sq})$, which allows to evaluate the effect of decoherence using the one-mode model, which is obtained in the same way as in section 3.4. The stochastic equation (56) is completed as follows,

$$d\phi(t) = -\frac{\Gamma_{sq}}{2}(P_a - P_\alpha)^2\phi(t) + \sqrt{\Gamma_{sq}d\xi_\alpha(t)(P_a - P_\alpha)\phi(t)} - \frac{\gamma_\alpha}{2}(\alpha^2 + 2i\alpha\bar{P}_a + \bar{P}_a^2)\phi(t) + \sqrt{\gamma_\alpha d\xi_\alpha(t)(i\alpha + \bar{P}_a)}\phi(t)$$

(96)

We have taken care to choose $\gamma_\alpha^{1/2}\alpha$ as the jump operator of the effective decoherence (the justification is the same as in section 4.2.3, decoherence jumps are not measured), which allows the equation to be solved by the same general Gaussian ansatz (57). This time we find

$$du = (\Gamma_{sq} + \gamma_{\alpha}(1 - u))dt \quad \Rightarrow \quad u(t) = 1 + \frac{1 - \exp(-\tau)}{\epsilon}$$

(97)

$$d\bar{P}_a = -\frac{1}{\gamma_\alpha}\bar{P}_a dt + \sqrt{\Gamma_{sq}d\xi_\alpha + \sqrt{\gamma_\alpha(u - 1)\bar{d}\xi_\alpha}}$$

(98)

where we have set $\tau = \Gamma_{sq}$ and $\epsilon = \gamma_\alpha/\Gamma_{sq}$. The same Gaussianity arguments as in 4.2.2 section lead to the same dependencies in the signal S of the conditional mean and variance, 19

$$\langle P_a \rangle_{\gamma_{\alpha}S} = m(\tau) \frac{S}{\Gamma_{sq}} \quad \text{with} \quad m(\tau) = \frac{\sqrt{\Gamma_{sq} - (\sigma(\tau)\bar{P}_a(t))_{\text{stoch}}}}{(\langle \sigma^2(\tau) \rangle_{\text{stoch}})}$$

(99)

$$\text{Var}_{\gamma_{\alpha}S}(P_a) = \mathcal{V}(\tau) \quad \text{with} \quad \mathcal{V}(\tau) = 1 - \frac{(\sigma(\tau)\bar{P}_a(t))_{\text{stoch}}^2}{\langle \sigma^2(\tau) \rangle_{\text{stoch}}}$$

(100)

and the variance and covariance taken over the stochastic processes $d\xi_\alpha$ and $d\bar{d}\xi_\alpha$,

$$\frac{(\sigma^2)_{\text{stoch}}}{\Gamma_{sq}} = \int_0^\tau \frac{d\tau'}{\tau^2} \left\{ \frac{1}{2} + \frac{1 - e^{(r - r')/2}}{e\tau'} \right\} + \frac{1}{\tau^2} \left[\frac{1 - e^{(r - r')/2}}{e} \right] = \frac{\epsilon r - 2(1 - e^{-\epsilon r/2})}{4\epsilon^2 \tau^2} + \frac{1}{4\tau}$$

(101)

$$\frac{(\sigma\bar{P}_a)_{\text{stoch}}}{\Gamma_{sq}} = \int_0^\tau \frac{d\tau'}{\tau^2} \frac{e^{(r - r')/2}}{2u(\tau') \left\{ \frac{1}{2} + \frac{1 - e^{(r - r')/2}}{e\tau'} \right\} + \frac{u(\tau') - 1}{u(\tau')} \left[\frac{1 - e^{(r - r')/2}}{e} \right]} = \frac{1 - e^{-\epsilon r/2}}{2\epsilon}$$

(102)

These expressions allow to easily evaluate the effect of decoherence on spin squeezing, see the dashed lines in figure 7a. For the practical case of a weak decoherence $\epsilon \ll 1$ and a time short compared to $1/\gamma_{\alpha}$, they can be expanded to first order in ϵ:

$$m(\tau) = \frac{\tau}{1 + \tau} - \epsilon \frac{(r + 3)r^2}{12(r + 1)^2} + O(\epsilon^2 r^2)$$

$$\mathcal{V}(\tau) = \frac{1}{4(\tau + 1)} + \epsilon \frac{(r + 3/2)r^2}{12(r + 1)^2} + O(\epsilon^2 r^2)$$

(103)

We then deduce that the optimal squeezing on P_a is obtained at a time $t_{opt} \sim (3/\Gamma_{sq}\gamma_f)^{1/2}$ and corresponds to a conditional variance $\mathcal{V}_{opt} \sim (\gamma_f/12\Gamma_{sq})^{1/2}$. Note that in studies of spin squeezing of cavity alkaline gases, we often introduce the cooperativity C of the coupled atom-field system, defined as the square of the coupling frequency divided by the decay rates of the coupled states [26]. In this sense, the cooperativity of the hybridized nuclear spin-field system is equal to

$$C \equiv \frac{\Omega^2}{\gamma_f} = \frac{\Gamma_{sq}}{\gamma_\alpha} \approx \frac{\Omega^2}{2\gamma_0\kappa}$$

(104)

so that we recover the scaling law of power $-1/2$, usual in alkalis, relating the optimal spin variance to C [26]. More generally, the decoherence has a weak effect on the nuclear spin squeezing as long as we stay at short times in front of t_{opt}. The reader will find at the end of Appendix B an extension of these scaling laws beyond the one-mode model, i.e. for an arbitrary, not infinitesimal ratio Γ_{sq}/γ_f; this was retained in the summary of the article. The link between \mathcal{V}_{opt} and cooperativity (104) is then broken.

19. We have simplified expression (100) using the identity $\{4u(\tau)^{-1} + (P_a^2)_{\text{stoch}} = 1/4$, which results as in equation (84) from the fact that the unconditional mean $(P_a^2) = 1/4$, even in the presence of decoherence.
Appendix A. Semi-classical treatment and reduction to three coupled spins

Here we give the nonlinear equations that describe the dynamics of the system in semi-classical theory, and we linearize them for small fluctuations around a partially polarized stationary solution.

Nonlinear semi-classical equations. Starting from the considerations and notations of section 2, we take the average of the Heisenberg equations of motion in the quantum state of the system and perform the decorrelation approximation (called semi-classical in quantum optics) ⟨AB⟩ ≈ ⟨A⟩⟨B⟩ where A and B are two operators, to obtain the following nonlinear evolution equations on the expectation values of S the Stokes spin of the cavity field, J the collective nuclear spin in the ground state, K the collective spins associated with the multiplicities F = 3/2 and F = 1/2 in the metastable state, and Q the collective alignment tensor in F = 3/2, of Cartesian components Q_{αβ}:

\[
\frac{d\langle S_x\rangle}{dt} = \frac{\kappa}{2} \left(\langle S_x\rangle - \frac{n_{ph}}{2}\right) + \chi\langle K_z \rangle\langle S_x \rangle
\]
\[
\frac{d\langle K_z \rangle}{dt} = \frac{1}{9 \tau} \langle J \rangle + \frac{1}{9 \tau} \langle S_x \rangle - \frac{1}{9 \tau N_{cell}} \langle I \rangle - \frac{4}{3 \tau N_{cell}} \langle Q \rangle \cdot \langle \vec{J} \rangle
\]
\[
\frac{d\langle J \rangle}{dt} = \frac{1}{3} \langle Q \rangle + \frac{1}{3 T N_{cell}} \left(3 \langle I_x \rangle \langle \Sigma_y \rangle + \langle I_y \rangle \langle \Sigma_x \rangle - 2 \delta_{αβ} \langle J \rangle \cdot \langle \vec{K} \rangle \right)
\]
\[
\frac{d\langle I \rangle}{dt} = \frac{1}{T} \langle J \rangle + \frac{1}{3 T N_{cell}} \langle \vec{J} \rangle \cdot \langle \vec{K} \rangle
\]

The terms proportional to the loss rate κ of the cavity mirrors make ⟨S_x⟩ relax towards its stationary value ⟨S_x⟩ = n_{ph}/2 driven by the laser field polarized along x injected into the cavity, and the transverse means ⟨S_x⟩ and ⟨S_z⟩ towards zero. The terms proportional to the Faraday coupling χ between the cavity mode and the spin K derive from the Hamiltonian (2). The contribution of metastability exchange collisions (ME) between ground-state and metastable atoms is deduced directly from the quantum master equation on the one-atom density operator of references [13, 14] by simple multiplication or division by the total number of ground-state atoms N_{cell} or metastable atoms n_{cell} in the cell.\(^{20}\)

\[
\frac{d\langle J \rangle}{dt}_{ME} = -\frac{1}{9 \tau} \langle S_x \rangle - \frac{1}{9 \tau N_{cell}} \langle I \rangle - \frac{4}{3 \tau N_{cell}} \langle Q \rangle \cdot \langle \vec{J} \rangle
\]
\[
\frac{d\langle J \rangle}{dt}_{ME} = -\frac{4}{9 \tau} \langle S_x \rangle + \frac{10}{9 \tau} \langle K \rangle + \frac{10}{9 \tau N_{cell}} \langle I \rangle + \frac{4}{3 \tau N_{cell}} \langle Q \rangle \cdot \langle \vec{J} \rangle
\]
\[
\frac{d\langle Q \rangle}{dt}_{ME} = -\frac{4}{T} \langle J \rangle + \frac{1}{3 T N_{cell}} \langle \vec{J} \rangle \cdot \langle \vec{K} \rangle
\]

where ⟨Σ⟩ = \(\frac{1}{2}\) [\(\langle J \rangle + 2\langle K \rangle\)] is the expectation value of the electron spin in the metastable state. See equations (1.37b), (1.37a), (1.39) and (1.25) of reference [14] (taking into account a difference of a factor 6 on the definition of the alignment tensor), or to equations (VIII.30), (VIII.29), (VIII.32) and (VIII.15) (by adding a Kronecker factor δ_{αβ} omitted in (VIII.32)). Here 1/τ and 1/T, the individual metastability exchange collision rates for an atom in the metastable state and in the ground state, are in the ratio T/τ = N_{cell}/n_{cell} since, in one unit of time, an equal number of ground-state and metastable atoms have undergone an exchange collision [13, 14].

Partially polarized stationary solution. In a polarized stationary state of nuclear polarization η ∈ [0, 1],

\[
\langle I_x \rangle_x = \frac{N_{cell}}{2}; \quad \langle I_y \rangle_x = \langle I_z \rangle_x = 0; \quad \langle S_x \rangle_x = \frac{n_{ph}}{2}; \quad \langle S_y \rangle_x = \langle S_z \rangle_x = 0
\]

\(^{20}\)The collective expectation values are in fact related as follows to the one-atom expectation values ⟨⟩_α:\(\langle J \rangle = N_{cell}\langle I \rangle_α, \langle J \rangle = n_{cell}\langle I \rangle_α, \langle K \rangle = n_{cell}\langle K \rangle_α, \langle Q \rangle = n_{cell}\langle Q \rangle_α, \langle Σ \rangle = n_{cell}\langle Σ \rangle_α.\)
rotational invariance around \(x \) axis constrains the mean spins to be aligned along \(x \), and the mean alignment tensor to be diagonal in the Cartesian basis, with equal eigenvalues in \(y \) and \(z \) directions. The system (A.1)-(A.3) thus admits a stationary solution where the only non-zero expectation values in the metastable state are:

\[
\langle K_i \rangle_s = \frac{\eta - \eta^2}{2 + \eta^2} \rho_{\text{cell}} ; \quad \langle J_i \rangle_s = \frac{5 + \eta^2}{3 + \eta^2} \rho_{\text{cell}} ; \quad \langle \Sigma_i \rangle_s = \frac{4\eta}{3 + \eta^2} \rho_{\text{cell}} ; \quad \langle Q_{yy} \rangle_s = \langle Q_{zz} \rangle_s = -\frac{1}{2} \langle Q_{xx} \rangle_s = -\frac{\eta}{12} \langle \Sigma_i \rangle_s
\]

(A.9)

Linearized semi-classical equations. We now linearize equations (A.1)-(A.3) for classical fluctuations around the stationary solution (A.8)-(A.9) by performing the substitution \(\langle A \rangle \rightarrow \langle A \rangle_s + \delta A \) and treating \(\delta A \) to first order. By limiting ourselves to the subspace of transverse fluctuations, that is to say the directions \(\alpha = y, z \) orthogonal to the mean spins, we obtain a closed system:

\[
\frac{d}{dt} \delta S_\alpha = -\frac{\kappa}{2} \delta S_\alpha + \chi \delta I_\alpha \langle S_\alpha \rangle_s \delta K_z \\
\frac{d}{dt} \delta K_\alpha = -\frac{7}{9\tau} \delta K_\alpha + \frac{1}{9\tau} \delta J_\alpha - \frac{2\eta}{3\tau} \delta Q_{\alpha x} - \frac{1}{9\tau} \left(1 + \frac{12}{n_{\text{cell}}} \langle Q_{\alpha o} \rangle_s \right) \delta I_\alpha + \chi \delta I_\alpha \langle K_\alpha \rangle_s \delta S_z \\
\frac{d}{dt} \delta I_\alpha = -\frac{4}{9\tau} \delta J_\alpha - \frac{10}{9\tau} \delta K_\alpha + \frac{2\eta}{3\tau} \delta Q_{\alpha x} + \frac{10}{9\tau} \left(1 + \frac{6}{5n_{\text{cell}}} \langle Q_{\alpha o} \rangle_s \right) \delta I_\alpha \\
\frac{d}{dt} \delta Q_{\alpha x} = -\frac{2}{3\tau^2} \delta Q_{\alpha x} + \frac{\eta}{12\tau} \delta \Sigma_\alpha + \frac{1}{6Tn_{\text{cell}}} \langle \Sigma_i \rangle_s \delta I_\alpha \\
\frac{d}{dt} \delta I_\alpha = -\frac{1}{T} \delta I_\alpha + \frac{1}{3\tau} (\delta J_\alpha - \delta K_\alpha) \\
\]

(A.10) - (A.14)

Reduction to three coupled collective spins. By setting \(\frac{d}{dt} \delta J_\alpha = 0 \) in equation (A.12) and \(\frac{d}{dt} \delta Q_{\alpha x} = 0 \) in equation (A.13), we adiabatically eliminate the fluctuations of the collective spin \(\vec{J} \) and of the collective alignment tensor whose evolutions are governed by the metastability exchange only:

\[
\delta I_\alpha^{\text{adiab}} = \frac{10 + \eta^2}{8 - \eta^2} \delta K_\alpha + \frac{12\tau}{T} \left(\frac{5 + 2\eta^2}{3 + \eta^2}(8 - \eta^2) \right) \delta I_\alpha ; \quad \delta Q_{\alpha x}^{\text{adiab}} = \frac{3\eta}{8 - \eta^2} \delta K_\alpha + \frac{\tau}{T} \left(\frac{\eta(13 + \eta^2)}{3 + \eta^2}(8 - \eta^2) \right) \delta I_\alpha
\]

(A.15)

The transfer of adiabatic expressions (A.15) in equations (A.11) and (A.14) on \(\delta K_\alpha \) and \(\delta I_\alpha \) leads in the body of the article to the reduced system (5)-(7) coupling the fluctuations of the three spins (3), where \(\gamma_f \) and \(\gamma_m \), the effective metastability exchange rates between the nuclear spin and the spin \(F = 1/2 \) of the metastable, are given by equation (8).

Appendix B. Solution of the three-mode model with decoherence for homodyne detection

Here we give the analytical solution of the three-mode model in the presence of decoherence, see the quantum master equation (94), for an evolution of the system conditioned on a continuous homodyne measurement of the field leaking out of the cavity. The value of the coefficients \(\gamma_\alpha, \gamma_f, \Omega_\alpha \) and \(\Omega_f \), as well as the annihilation operators \(\alpha \) and \(\beta \), are deduced from a diagonalization of the rate matrix (93). The rates \(\gamma_\alpha \) and \(\gamma_f \) are the eigenvalues in ascending order:

\[
\gamma_\alpha \beta = \gamma_m + \gamma_f + \gamma_0 \mp \left[\gamma_m + \gamma_f + \gamma_0 \mp 4\gamma_f\gamma_0 \right]^{1/2} \quad \gamma_f \beta = \left(\Omega_f b + \Omega_\alpha a \right)/\Omega
\]

(B.1)

In terms of the Faraday frequencies \(\Omega_\alpha \) and \(\Omega_f \), the corresponding normalized eigenvectors are written as \((\Omega_f/\Omega, \Omega_\alpha/\Omega) \) and \((-\Omega_\alpha/\Omega, \Omega_f/\Omega) \), so that \(\alpha = (\Omega_\alpha b + \Omega_f a)/\Omega \) and \(\beta = (\Omega_f b - \Omega_\alpha a)/\Omega \) with

\[
\Omega_\alpha = \frac{\Omega(\gamma_f - \gamma_\alpha/2)}{[\gamma_m\gamma_f + (\gamma_f - \gamma_\alpha/2)^2]^{1/2}} ; \quad \Omega_f = \frac{\Omega \sqrt{\gamma_m\gamma_f}}{[\gamma_m\gamma_f + (\gamma_f - \gamma_\alpha/2)^2]^{1/2}}
\]

(B.2)

with a choice of sign ensuring that \(\alpha \rightarrow a \) and \(\beta \rightarrow b \) when \(\gamma_f \rightarrow 0 \) and reproducing (25) when \(\gamma_0 \rightarrow 0 \). Since the jump operator \(C_\beta \propto \alpha \) describes unmeasured processes, we can, as we did for \(C_\beta \), take it of the form \(\sqrt{\tau}\sigma_\alpha \) and
reuse the real Gaussian ansatz (70) in order to solve the stochastic equation (53) on the state vector. In the evolution equation for matrix \(\gamma \), the indices \(\alpha \) and \(\beta \) now play symmetrical roles and we obtain

\[
du_{\alpha\varpi} = -\Omega_{\alpha\varpi} dt u_{\alpha\varpi} + \gamma_{\alpha\varpi} dt (1 - u_{\alpha\varpi})
\]
\[
du_{\alpha\beta} = -\frac{dr}{2} [(\gamma_{\alpha\beta} + \kappa) u_{\alpha\beta} + \Omega_{\alpha\beta} u_{\alpha\varpi} + \Omega_{\alpha\varpi} u_{\beta\varpi}]
\]
\[
du_{\alpha\varpi} = -\frac{dr}{2} [(\gamma_{\alpha\varpi} + \kappa) u_{\alpha\varpi} + \Omega_{\alpha\varpi} u_{\alpha\beta}]
\]
\[
du_{\varpi\varpi} = -\Omega_{\varpi\varpi} dt u_{\varpi\varpi} + \gamma_{\varpi\varpi} dt (1 - u_{\varpi\varpi})
\]
\[
du_{\varpi\beta} = -\frac{dr}{2} [(\gamma_{\varpi\beta} + \kappa) u_{\varpi\beta} + \Omega_{\varpi\beta} u_{\varpi\varpi}]
\]
\[
du_{\varpi\varpi} = s dt (1 - u_{\varpi\varpi})
\]

(B.3)

whose solution for the initial condition \(u(0) = I d \) is written

\[
u_{\alpha\alpha}(t) = 1 + \frac{\Omega_{\alpha\alpha}^2}{\gamma_{\alpha}(\gamma_{\alpha} + \gamma_{\alpha})} \left(1 - e^{-\gamma_{\alpha}t} \right) - \frac{2 \Omega_{\alpha\alpha}^2}{\kappa^2 - \gamma_{\alpha}^2} \left(e^{-\gamma_{\alpha}t} - e^{-\gamma_{\alpha}\gamma_{\alpha}/2} \right)
\]

(B.4)

\[
u_{\alpha\beta}(t) = \frac{\Omega_{\alpha\beta} \Omega_{\alpha\alpha}}{\gamma_{\alpha} + \gamma_{\beta}} \left(\frac{1}{\kappa + \gamma_{\alpha}} + \frac{1}{\kappa + \gamma_{\beta}} \right) \left(1 - e^{-\gamma_{\alpha}\gamma_{\beta}/2} \right) + \frac{\Omega_{\alpha\alpha} \Omega_{\beta\beta}}{\kappa - \gamma_{\alpha}(\kappa + \gamma_{\beta})} \left(e^{-\gamma_{\alpha}\gamma_{\beta}/2} - e^{-\gamma_{\alpha}\gamma_{\beta}/2} \right)
\]

(B.5)

\[
u_{\alpha\varpi}(t) = -\frac{\Omega_{\alpha\varpi}}{\kappa + \gamma_{\alpha}} \left(1 - e^{-\gamma_{\alpha}\gamma_{\varpi}/2} \right)
\]

(B.6)

\[
u_{\varpi\varpi}(t) = 1 + \frac{\Omega_{\varpi\varpi}^2}{\gamma_{\varpi}(\gamma_{\beta} + \gamma_{\varpi})} \left(1 - e^{-\gamma_{\varpi}t} \right) - \frac{2 \Omega_{\varpi\varpi}^2}{\kappa^2 - \gamma_{\varpi}^2} \left(e^{-\gamma_{\varpi}t} - e^{-\gamma_{\varpi}\gamma_{\varpi}/2} \right)
\]

(B.7)

\[
u_{\varpi\beta}(t) = -\frac{\Omega_{\varpi\beta}}{\kappa + \gamma_{\beta}} \left(1 - e^{-\gamma_{\varpi}\gamma_{\beta}/2} \right)
\]

(B.8)

\[
u_{\varpi\varpi}(t) = 1
\]

(B.9)

The vector of coordinate averages \(\bar{q} \) obeys the stochastic equation

\[
d\bar{q} = \frac{1}{2} \begin{pmatrix} -\gamma_{\alpha} & 0 & 0 \\ 0 & -\gamma_{\beta} & 0 \\ \Omega_{\alpha\beta} & \Omega_{\beta\alpha} & -\kappa \end{pmatrix} dt \bar{q} + \frac{1}{2} \begin{pmatrix} \gamma_{\alpha}/2 & d\nu_{\alpha}(t) \\ \gamma_{\beta}/2 & d\nu_{\beta}(t) \\ -\kappa/2 & d\nu_{\varpi}(t) \end{pmatrix}
\]

(B.10)

The unconditional expectation value \(\langle P_a \rangle \) always being equal to 1/4, the mean and the variance of \(P_a \) conditioned to the integrated homodyne signal are still given by equations (82) and (83), by generalizing the expressions (89) of the variances and covariance of the random variables \(P_a(t) \) and \(\sigma(t) \) in the case of three independent stochastic processes \(d\nu_{\alpha}(t) \), \(d\nu_{\beta}(t) \) and \(d\nu_{\varpi}(t) \) as follows:

\[
\langle \sigma(t) P_a(t) \rangle_{\text{stoch}} = \int_0^\infty dr' \sum_{\nu(\alpha, \beta, \varpi)} p_a(t', t') \sigma_\nu(t, t') : \langle \sigma^2(t) \rangle_{\text{stoch}} = \int_0^\infty dr' \sum_{\nu(\alpha, \beta, \varpi)} \sigma_\nu^2(t, t')
\]

(B.11)

with the compact expressions of the corresponding amplitudes

\[
p_a(t, t') = (-1)^{\kappa_\nu} \frac{\sqrt{\pi}}{2\lambda} \left[\Omega_{\nu\nu} e^{-\gamma_{\nu}(t-t')/2} \left[\delta_{\nu\nu} - c_{\nu\nu}(t') \right] - \Omega_{\nu\nu} e^{-\gamma_{\nu}(t-t')/2} \left[\delta_{\nu\nu} - c_{\nu\nu}(t') \right] \right]
\]

(B.12)

\[
\sigma_\nu(t, t') = \frac{\delta_{\nu\nu}}{2\lambda_t} + (-1)^{\kappa_\nu} \frac{\sqrt{\pi}}{2\lambda} \left[\delta_{\nu\nu} - c_{\nu\nu}(t') \right] f_\nu(t - t') + \sum_{\mu(\alpha, \beta, \varpi)} \frac{\Omega_{\nu\mu}}{\kappa - \gamma_{\nu}} \left[\delta_{\nu\mu} - c_{\nu\mu}(t') \right] f_{\gamma_{\mu}}(t - t') - f_{\kappa}(t - t')
\]

(B.13)

The index \(\nu \) runs on the three values \(\alpha, \beta, \varpi \) and we set \(\gamma_{\varpi} = \kappa \). The \(\delta \) function is that of Kronecker, and the \(f_\lambda \) function is the same as in equations (85)-(88).

23
The general solution that we have just presented includes the five rates $\gamma_\alpha, \Gamma_{sq} = \Omega^2 \alpha / \kappa, \gamma_f$ on the one hand, γ_β, κ on the other hand. The experimentally relevant regime is one where the last two are “infinitely” larger than the first three and only contribute through unobservable transient regimes. Mathematically, we reach this limit by making γ_f tend to zero with $\kappa, \gamma_m, \gamma_0$ and Ω fixed and with $\tau = \Gamma_{sq} t > 0$ fixed. Then the first three rates jointly tend towards zero, that is with finite-limit ratios $\Gamma_{sq} / \gamma_f \to \Omega^2 \gamma_m / \kappa [\kappa \gamma_0 + \gamma_m^2]$ and $\gamma_0 / \gamma_f \to 2 \gamma_0 / \gamma_0 + \gamma_m$, the rate γ_f reduces to $\gamma = 2(\gamma_0 + \gamma_m)$ and the Faraday coupling Ω_p to Ω. All exponential transients disappear in the matrix elements (B.4)-(B.8) of u except those relaxing at the rate γ_α. The amplitudes (B.12) and (B.13) on stochastic processes reduce to

$$\frac{p_0(t, t')}{\sqrt{\Gamma_{sq}}} = \frac{1}{2} u(t') \sqrt{\epsilon} e^{-\epsilon(t-t')/2} \frac{\sigma_0(t, t')}{\Gamma_{sq}} = \frac{u(t') - 1}{\tau u(t')} \sqrt{\epsilon} 1 - e^{-\epsilon(t-t')/2}$$

(B.14)

$$\frac{p_0(t, t')}{\sqrt{\Gamma_{sq}}} = \frac{\sqrt{\rho}}{(1 + \rho)u(t')} e^{-\epsilon(t-t')/2} \frac{\sigma_0(t, t')}{\Gamma_{sq}} = \frac{1}{(1 + \rho) \tau} \left[\frac{2}{\epsilon} 1 - e^{-\epsilon(t-t')/2} + \frac{1 + \rho}{\epsilon} \left(\frac{1}{\kappa} - 1 \right) \right]$$

(B.15)

$$\frac{p_0(t, t')}{\sqrt{\Gamma_{sq}}} = \frac{(1 - \rho)c(t')}{2(1 + \rho)u(t')} e^{-\epsilon(t-t')/2} \frac{\sigma_0(t, t')}{\Gamma_{sq}} = \frac{1}{\tau} \left[\frac{2}{\epsilon} 1 - e^{-\epsilon(t-t')/2} + \frac{1 + \rho}{\epsilon} \left(\frac{1}{\kappa} - 1 \right) \right]$$

(B.16)

where $\epsilon = \gamma_\alpha / \Gamma_{sq}$ as in section 4.2.4, the function $u(t)$ is given by equation (97) and the notation $\rho = \Omega^2 \kappa [\kappa (\kappa + \gamma)^2]$ generalizes the one of footnote 17. Relations (82) and (83) remain valid, with the new expressions for the variance and covariance

$$\frac{\langle \sigma^2 \rangle_{\text{stoch}}}{\Gamma_{sq}} = \frac{\epsilon^2 + 2(1 - \epsilon^2 e^{t(t-t')/2}) + \Gamma_{sq}}{4 \tau \Gamma_{sq}^2}$$

(B.17)

and the true or generalized squeezing rate

$$\Gamma_{sq}^\text{gen} = \left[1 + \frac{\gamma_0 + \gamma_m}{\gamma_f \gamma_m} \right]^{-1}$$

(B.18)

which reproduce the variance and covariance (101) and (102) of the one-mode model with decoherence when $\Gamma_{sq} / \gamma_f \to 0$ and the generalized squeezing rate (92) of the three-mode model without decoherence when $\gamma_0 \to 0$. The new results can be simplified within the useful limit of weak effective decoherence $\gamma_\alpha / \Gamma_{sq} \to 0$ by a order-one expansion in ϵ, which allows to generalize (103) as follows on the conditional mean and variance at a non-infinitesimal value of Γ_{sq} / γ_f:

$$m(t) = \frac{\Gamma_{sq}^\text{gen} t}{1 + \Gamma_{sq}^\text{gen} t} - \frac{\gamma_\alpha (3 + \Gamma_{sq}^\text{gen} t)(\Gamma_{sq}^\text{gen} t)^2}{12(1 + \Gamma_{sq}^\text{gen} t)^2} + O[(\gamma_\alpha t)^2]$$

(B.19)

$$\langle \mathcal{V} \rangle(t) = \frac{1}{4(1 + \Gamma_{sq}^\text{gen} t)^2} \frac{\gamma_\alpha (\Gamma_{sq}^\text{gen} t + 3/2)(\Gamma_{sq}^\text{gen} t)^2}{12(1 + \Gamma_{sq}^\text{gen} t)^2} + O[(\gamma_\alpha t)^2]$$

(B.20)

This generalization simply amounts to replace τ by $\Gamma_{sq}^\text{gen} t$ and ϵ by $\gamma_\alpha / \Gamma_{sq}^\text{gen}$ in the right-hand sides of (103). The optimal squeezing on P_a is then obtained at a time $t_{opt} \sim (3 / \Gamma_{sq} \gamma_\alpha)^{1/2}$ and corresponds to a conditional variance $\text{Var}_{\sigma^2}^{\text{opt}}(P_a) \sim (\gamma_\alpha / 12 \Gamma_{sq}^\text{gen})^{1/2}$.

References

[1] J. MacFall, H. Charles, R. Black, H. Middleton, J. Swartz, B. Saam, B. Drieuhs, C. Erickson, W. Happer, G. Cates, G. Johnson, C. Ravin, “Human lung air spaces: potential for MR imaging with hyperpolarized He-3”, Radiology 200 (1996), p. 553.

21. It is in fact valid for all orders in ϵ since the proposed replacement does not change $\epsilon \tau$ (always equal to $\gamma_\alpha \tau$) and transforms equations (101) and (102) into equation (B.17).
C. Gemmel, W. Heil, S. Karpuk, K. Lenz, C. Ludwig, Y. Sobolev, K. Tullney, M. Burhoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trähms, S. Baësler, “Ultra-sensitive magnetometry based on free precession of nuclear spins”, Eur. Phys. J. D 57 (2010), p. 303.

T. R. Gentile, P. J. Nacher, B. Saam, T. G. Walker, “Optically polarized 3 He”, Rev. Mod. Phys. 89 (2017), 045004.

L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, P. Treutlein, “Quantum metrology with nonclassical states of atomic ensembles”, Rev. Mod. Phys. 90 (2018), 035005.

A. Dantan, G. Reinaudi, A. Sinatra, M. Pinard, “Long-Lived Quantum Memory with Nuclear Atomic Spins”, Phys. Rev. Lett. 95 (2005), 123002.

G. Reinaudi, A. Sinatra, A. Dantan, M. Pinard, “Squeezing and entangling nuclear spins in helium 3”, Journal of Modern Optics 54 (2007), p. 675.

G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B. Chen, E. Polzik, “Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement”, Nature Phys 11 (2015), p. 389.

O. Hosten, N. J. Engelsen, R. Krishnakumar, M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms”, Nature 529 (2016), p. 505.

J. Dupont-Roc, “Contribution à l’étude du pompage optique par échange de métastabilité dans 3He. - Première Partie”, Journal de Physique 34 (1973), p. 961.

J. Cviklinski, A. Dantan, J. Ortalo, M. Pinard, “Conditional squeezing of an atomic alignment”, Phys. Rev. A 76 (2007), 033830.

A. Kuzmich, L. Mandel, J. Janis, Y. E. Young, R. Ejsmzna, N. P. Bigelow, “Quantum nondemolition measurements of collective atomic spin”, Phys. Rev. A 60 (1999), p. 2346.

Y. Castin, K. Mölmer, “Monte Carlo Wave-Function Analysis of 3D Optical Molasses”, Phys. Rev. Lett. 74 (1995), p. 3772.

K. Molmer, Y. Castin, J. Dalibard, “Monte Carlo wave-function method in quantum optics”, J. Opt. Soc. Am. B 10 (1993), p. 524.

Y. Castin, J. Dalibard, K. Mölmer, “A Wave Function approach to dissipative processes”, AIP Conference Proceedings, Thirteenth International Conference on Atomic Physics (edited by H. Walther, T.W. Hänsch, B. Nezit), 275 (1992).

H. M. Wiseman, G. J. Milburn, “Quantum theory of field-quadrature measurements”, Phys. Rev. A 47 (1993), p. 642.

Yun Li, Y. Castin, A. Sinatra, “Optimum Spin Squeezing in Bose-Einstein Condensates with Particle Losses”, Phys. Rev. Lett. 100 (2008), 210401.

L. K. Thomsen, S. Mancini, H. M. Wiseman, “Continuous quantum nondemolition feedback and unconditional atomic spin squeezing”, J. Phys. B 35 (2002), p. 4937.

N. Gisin, “Stochastic quantum dynamics and relativity”, Helv. Phys. Acta 62 (1989), p. 363.

N. Gisin, I. Percival, “The quantum state diffusion model applied to open systems”, J. Phys. A 25 (1992), p. 5677.

N. Gisin, “Quantum Measurements and Stochastic Processes”, Phys. Rev. Lett. 52 (1984), p. 1657.
Étude théorique de la compression de spin nucléaire par mesure quantique non destructive en continu

Alan Serafina, Yvan Castina, Matteo Fadelb, Philipp Treutleinb, Alice Sinatraa

aLaboratoire Kastler Brossel, ENS-Université PSL, CNRS, Université de la Sorbonne et Collège de France, 24 rue Lhomond, 75231 Paris, France
bDépartement de physique, Université de Bâle, Klingelbergstrasse 82, 4056 Bâle, Suisse

Résumé
Nous proposons de tirer parti du très faible couplage du spin nucléaire de l’hélium 3 fondamental à son environnement pour produire des états quantiques macroscopiques à très longue durée de vie, ici des états comprimés du spin nucléaire, dans une vapeur en cellule à température ordinaire. Pour effectuer une mesure quantique non destructive sur une composante transverse du spin nucléaire collectif préalablement polarisé, on allume temporairement une décharge oscillante dans le gaz, ce qui peuple l’état métastable de l’hélium 3. Le spin collectif correspondant au niveau $F = 1/2$ des métastables s’hybride alors légèrement avec celui des fondamentaux par collision d’échange de métastabilité. Il reste à mesurer en continu le champ lumineux sortant d’une cavité optique, où il a interagi de manière dispersive avec le spin collectif du métastable, pour accéder aux fluctuations du spin nucléaire. Dans un modèle de trois spins collectifs couplés (nucléaire, du métastable et de Stokes de la lumière) dans l’approximation de Primakoff, et pour deux schémas de mesure, nous calculons les moments de la composante comprimée I_z du spin nucléaire collectif conditionnés au signal optique moyenné sur le temps d’observation t. Dans le schéma de comptage de photons, nous retrouvons que l’observable comprimée est I_2^z plutôt que I_z. Dans le schéma de détection homodyne, nous résolvons analytiquement l’équation stochastique sur l’état du système conditionné à la mesure ; la moyenne conditionnelle de I_z dépend linéairement du signal et la variance conditionnelle de I_z n’en dépend pas. La variance conditionnelle décroît comme $(\Gamma_{sq}^{gen} t)^{-1}$, où le taux de compression Γ_{sq}^{gen}, que nous calculons explicitement, est linéaire en l’intensité lumineuse dans la cavité à faible couplage atome-champ et saturé à fort couplage au taux effectif d’échange de métastabilité dans l’état fondamental, proportionnel à la densité d’atomes métastables. Enfin, nous tenons compte de la désexcitation des métastables sur les parois, qui induit une décroissance du spin nucléaire avec un taux ramené γ_a. Elle impose une limite $\propto (\gamma_a / \Gamma_{sq}^{gen})^{1/2}$ sur la variance conditionnelle atteinte en un temps $\propto (\gamma_a \Gamma_{sq}^{gen})^{-1/2}$.

Mots-clés : compression de spin ; hélium 3 ; spin nucléaire ; métrologie quantique

1. Introduction

L’hélium 3 dans son état fondamental jouit de la propriété remarquable d’avoir un spin $I = 1/2$ purement nucléaire donc parfaitement isolé du monde extérieur, même dans un environnement aussi hostile aux cohérences quantiques que celui d’une vapeur d’hélium dans une cellule centimétrique à température ordinaire et à une pression de l’ordre du millibar. Par des techniques de polarisation nucléaire bien maîtrisées, atteignant un taux de 90 %, on peut préparer alors de manière routinière (par exemple à des fins d’imagerie pulmonaire par résonance magnétique nucléaire [1]) un spin nucléaire collectif géant avec une durée de vie extrêmement longue. Ainsi, un temps de cohérence T_2 supérieur à 60 heures a été mesuré dans des dispositifs de magnétométrie ultra-précise [2], et semble limité seulement par le temps de décroissance longitudinal T_1 dû aux collisions avec les parois.1 Ces valeurs font du spin nucléaire macroscopique dans une vapeur à l’ambiance un système idéal pour la production, l’étude et l’utilisation d’états intriqués, et donc un compétiteur des gaz d’atomes froids et des condensats de Bose-Einstein en métrologie et traitement quantique de l’information [4]. Déjà en 2005, nous avions pressenti que les spins nucléaires de l’hélium 3 pourraient donner naissance à des mémoires quantiques [5] ou à des états quantiques non locaux [6] de très longue durée de vie. Depuis,
des percées expérimentales ont été accomplies dans le domaine de la compression de spin, notamment au moyen de mesures quantiques non destructives (QND) dans des gaz atomiques d’alcalins interagissant avec un mode du champ électromagnétique [4, 8], qui ont permis d’obtenir récemment un état comprimé de spin d’une durée de vie d’une seconde dans l’état hyperfin fondamental du rubidium dans des conditions métrologiques [9].

Transposer la technique de compression par mesure QND des spins hyperfins des alcalins au spin nucléaire de l’hélium 3 représente cependant un réel défi, en raison même de la particularité dudit spin, son faible couplage à l’environnement. L’état fondamental singulet de l’hélium 3, séparé en énergie d’environ 20 eV de tous les états excités, n’est pas directement accessible par laser. Cependant, au moyen d’une décharge oscillante, une petite fraction des atomes de la vapeur, de l’ordre de 10⁻⁶, peut être portée dans l’état triplet métastable, un excellent point de départ pour des transitions optiques dans le proche infrarouge. L’orientation des spins nucléaires s’obtient alors au travers d’un processus indirect, le pompage optique par échange de métastabilité [3]. Dans un premier temps, le moment cinétique est transféré par interaction laser-matière des photons aux atomes métastables, a priori à leur spin électronique (le seul à être fortement couplé au champ) mais a posteriori aussi à leur spin nucléaire grâce au couplage hyperfin. Dans un deuxième temps, on tire parti des collisions d’échange de métastabilité entre atomes métastables et atomes dans l’état fondamental pour orienter les spins nucléaires dans l’état fondamental, avec une échelle de temps limitée par la faible densité des atomes dans l’état métastable et de l’ordre de la seconde. Même si la collision d’échange de métastabilité peut transférer des corrélations quantiques (voir les références [5, 6] et notre section 3.2), on ne peut s’attendre à ce qu’une seule mesure sur une petite fraction des atomes (10⁻⁶) projette l’ensemble du système dans un état comprimé. La solution que nous proposons est d’effectuer une mesure QND en continu démultipliée par une cavité optique résonnante. En effet, bien que les atomes métastables aient individuellement une durée de vie relativement courte (ils perdent leurs corrélations quantiques et retombent dans l’état fondamental à chaque collision sur les parois de la cellule), faire une mesure destructive en continu de la lumière qui sort de la cavité après interaction avec les atomes métastables revient à effectuer une mesure QND en continu sur le spin nucléaire collectif dans l’état fondamental, ce qui le projette sur l’état comprimé souhaité sans affecter sa durée de vie.

Ce travail donne une présentation théorique détaillée du mécanisme de compression et de ses limites; une étude de faisabilité plus pointue prenant en compte les valeurs expérimentalement accessibles des paramètres est effectuée dans la référence [10]. Très récemment, des idées similaires ont été mises en avant dans un système physique différent, le mélange alcalin-gaz rare [11, 12]. Nous sommes confiants que la manipulation quantique des spins nucléaires à longue durée de vie est promise à un développement rapide, ouvrant de nouvelles perspectives pour la recherche fondamentale et les applications.

2. Vue d’ensemble et description semi-classique

Le système physique considéré est représenté sur la figure 1. Une cellule remplie d’une vapeur partiellement polarisée de quelques mbars d’atomes d’hélium 3 pur est placée à l’intérieur d’une cavité optique. Alors que la majorité des atomes restent dans l’état singulet fondamental 1S1/2 de l’hélium, une faible décharge porte une infime fraction des atomes, en général ≃ 10⁻⁶, dans l’état triplet métastable 3S1/2. D’une part, la cavité est injectée par un faisceau laser se propageant selon l’axe de la cavité Oz et polarisé linéairement selon la direction Ox, qui est également la direction de polarisation de l’échantillon atomique, pour exciter la transition 3S1/2 → 2S1/2 avec un grand désaccord en fréquence; d’autre part, les atomes dans l’état métastable 2S1/2 (de spin hyperfin électronique et nucléaire) sont couplés aux atomes dans l’état fondamental (de spin purement nucléaire) par des collisions d’échange de métastabilité [13, 14]. Comme l’interaction de Faraday avec les atomes métastables fait légèrement tourner autour de l’axe Ox la polarisation de la lumière initialement dirigée selon Ox, proportionnellement à la composante du spin collectif des métastables selon Oz comme nous le verrons, une mesure destructive en continu de la composante de polarisation selon Ox du champ sortant de la cavité (i) par comptage de photons comme indiqué sur la figure 1b ou (ii) par détection homodyne comme sur la figure 1c, réalise in fine une mesure quantique non destructive en continu du spin nucléaire collectif selon Oz des atomes d’hélium 3 dans l’état fondamental.

Dans le reste de cette section, par un traitement semi-classique des fluctuations des spins autour de l’état stationnaire, nous réduisons notre système physique complexe à celui plus simple de trois spins collectifs couplés, dont la section 3 donnera une description quantique.

La structure atomique pertinente de l’atome 3He et les transitions excitées par le champ en cavité sont représentées sur la figure 2. On appelle I le spin nucléaire collectif dans l’état fondamental, J et K les spins collectifs associés aux
multiplicités hyperfines $F = 3/2$ et $F = 1/2$ dans l'état métastable. Pour la lumière se propageant selon Oz, nous introduisons le spin de Stokes [15] conçu à partir des opérateurs de création et d'annihilation d'un photon dans les modes polarisés linéairement selon Ox et Oy :

$$ S_x = \frac{1}{2} \left(c^\dagger_x c_y - c^\dagger_y c_x \right) ; \quad S_y = \frac{1}{2} \left(c^\dagger_x c_y + c^\dagger_y c_x \right) ; \quad S_z = \frac{1}{2i} \left(c^\dagger_y c_y - c^\dagger_x c_x \right). $$ (1)

Nous supposons pour simplifier que la cellule est éclairée uniformément par le mode de cavité. Dans la limite d’un grand désaccord et d’une faible saturation de la transition atomique par le champ, l’état excité 2^3P peut être éliminé adiabatiquement et l’interaction hamiltonienne entre le spin du métastable \vec{K} et le spin de Stokes \vec{S} prend la forme de Faraday [15] :

$$ H = \hbar \chi \vec{K} \cdot \vec{S} $$ (2)

qui n’est autre que l’opérateur de déplacement lumineux des sous-niveaux Zeeman dans l’état métastable, comme on le voit bien sur la forme de S_z dans la note 2. Les équations non linéaires couplées décrivant l’évolution des spins moyens sont données dans l’Annexe A, voir les équations (A.1)-(A.3). Outre l’évolution due à l’hamiltonien de Faraday (2) et aux collisions d’échange de métastabilité, elles incluent la contribution des termes liouvilliens habituels dans l’équation pilote décrivant l’injection d’un champ cohérent polarisé selon Oz dans la cavité et les pertes dues au miroir de sortie, dont l’effet combiné conduit à $\langle S_z \rangle = n_{ph}/2$ dans l’état stationnaire en l’absence d’atomes, n_{ph} étant le nombre moyen de photons dans le mode polarisé selon Oz. Ces équations sont ensuite linéarisées autour d’une solution stationnaire partiellement polarisée (A.8)-(A.9), et les fluctuations du spin \vec{F} et du tenseur d’alignement collectif dans $F = 3/2$ sont éliminées adiabatiquement 3 pour obtenir des équations couplées sur les fluctuations des trois spins collectifs \vec{F}, \vec{K} et \vec{S} dont les valeurs moyennes stationnaires sont données par :

$$ \langle \vec{F} \rangle_x = \frac{N}{2} \vec{\eta}_x ; \quad \langle \vec{K} \rangle_x = \frac{n}{2} \vec{\eta}_x ; \quad \langle \vec{S} \rangle_x = \frac{n_{ph}}{2} \vec{\eta}_x $$ (3)

2. De manière équivalente, on peut construire le spin de Stokes \vec{S} en utilisant les opérateurs d’annihilation dans les modes polarisés circulaire-

3. Nous pensons que cette approximation non mathématiquement contrôlée est raisonnable pour l’expérience proposée, car le spin \vec{F} n’est pas directement couplé à la lumière donc n’est pas directement affecté par la mesure du champ en continu. En revanche, si l’on éliminait de même les fluctuations du spin \vec{K}, directement couplé au champ, on commettrait une erreur non négligeable sur la dynamique de compression du spin dans le cas de la détection par comptage de photons (revenant à omettre le saut double C_2 dans l’équation pilote (36) et le taux Γ_0 dans le nombre moyen de photons compté (44)) donc à sous-estimer fortement le nombre de photodétecteurs requis pour atteindre un niveau de compression donné, mais une erreur négligeable dans le cas de la détection homodyne, comme nous l’avons vérifié sur le modèle à un mode de la section 3.4.
Figure 2 – Niveaux d’énergie utiles de l’atome ^3He (les sous-niveaux Zeeman correspondent au choix de Oz comme axe de quantification, les atomes étant polarisés selon Ox). Le mode du champ en cavité polarisé selon Ox excite la transition C_8 entre le niveau $F = 1/2$ de l’état métastable 2^3S_1 et le plus haut niveau d’énergie $F = 1/2$ de l’état excité 2^3P_0 avec un désaccord en fréquence négatif beaucoup plus grand en valeur absolue que le mi-largeur Doppler de l’état excité (de l’ordre de 1 GHz), afin que la classe de vitesse résonnante avec le laser soit presque vide, mais beaucoup plus faible que le clivage hyperfin de 6,74 GHz dans l’état métastable (et a fortiori que le clivage fin $2^3P_1 - 2^3P_0$ de 29,6 GHz dans l’état excité), afin que le niveau métastable $F = 3/2$ soit très peu affecté par le laser. (Note : l’espacement en fréquence ne permet pas de satisfaire largement à ces deux contraintes, et l’on ne peut exclure que le couplage de $F = 3/2$ au champ n’ait un petit effet sur la dynamique de compression ; nous le négligeons ici mais on pourrait en tenir compte avec un hamiltonien plus complet que notre modèle minimal (2), comme celui de la référence [15]). Les six sous-niveaux de l’état métastable 2^3S_1 sont couplés aux deux sous-niveaux (purement nucléaires) de l’état fondamental 1^1S_0 par les collisions d’échange de métastabilité.

Ici \vec{u}_s est le vecteur unitaire selon Ox, N et n sont les nombres effectifs d’atomes fondamentaux et métastables participant à la dynamique des spins collectifs. Comme nous le montrons dans l’Annexe A, ces nombres effectifs sont renormalisés par rapport aux nombres totaux vrais N_{cell} et n_{cell} dans la cellule, par des facteurs dépendant de la polarisation :

$$N = \eta N_{\text{cell}}; \quad n = \left(1 - \frac{\eta^2}{3 + \eta^2}\right) \eta n_{\text{cell}}$$ (4)

où $\eta \in [0,1]$ est la polarisation nucléaire, 4 et les équations semi-classiques sur les fluctuations des trois spins collectifs s’écrivent :

$$\frac{d}{dt} \delta S_x = -\frac{\kappa}{2} \delta S_x$$
$$\frac{d}{dt} \delta S_y = -\frac{\kappa}{2} \delta S_y + \gamma'(S_x) \delta K_z$$
$$\frac{d}{dt} \delta I_z = -\gamma_f \delta I_z + \gamma_m \delta K_z + \gamma_m \delta K_y + \gamma_f \delta I_y$$
$$\frac{d}{dt} \delta K_y = -\gamma_m \delta K_y + \gamma_f \delta I_y + \gamma'(K_y) \delta S_z$$

Ici, κ est le taux de perte de la cavité, γ_m et γ_f sont les taux effectifs d’échange de métastabilité dans l’état métastable et dans l’état fondamental. Ces derniers dépendent de la polarisation nucléaire comme ci-dessous et sur la figure 3a, et sont dans le même rapport que les nombres d’atomes effectifs N et n (4) constituant les spins collectifs :

$$\gamma_f = \frac{4 + \eta^2}{8 - \eta^2} \frac{1 - \eta^2}{3 + \eta^2} \frac{1}{T}$$
$$\gamma_m = \frac{4 + \eta^2}{8 - \eta^2} \frac{1}{T}$$
$$\frac{\gamma_m}{\gamma_f} = \frac{N}{n} \gg 1$$ (8)

les taux individuels des collisions d’échange de métastabilité $1/T$ et $1/\tau$ subies par un atome dans l’état fondamental et dans l’état excité étant proportionnels à n_{cell} et N_{cell}. Sur la figure 3b, nous montrons également la dépendance en

4. Notons que $n = 0$ dans le cas entièrement polarisé $\eta = 1$. En effet, toute la population de l’état métastable se trouve alors dans le sous-niveau Zeeman extrême $m = 3/2$ de l’état hyperfin $F = 3/2$ et la multiplicité $F = 1/2$ est vide.
Figure 3 – (a) Taux effectifs d’échange de métastabilité γ_f et γ_m en fonction de la polarisation nucléaire η, normalisés par les taux des collisions d’échange de métastabilité $1/T$ et $1/\tau$ subies par les atomes fondamentaux et métastables dans la vapeur. (b) Dépendance en polarisation nucléaire de la pulsation de Faraday Ω_F et de la compression de spin γ_m/τ dans la limite $\gamma_f \ll \gamma_m$; plus précisément, on représente le facteur $f(\eta) = \sqrt{\frac{1-\eta}{1+\eta}}$ tel que $\Omega_x \approx \Omega(\gamma_f/\gamma_m)^{1/2} \approx \chi \frac{\sqrt{N_{ph} N_{cell}}}{N_{cell} N_{ph}} f(\eta)$. Lorsque la polarisation varie entre 0,3 et 0,5 (lignes tiretées verticales), $f(\eta)$ s’écarte de 4% de son maximum à 0,17 atteint en $\eta = 0,42$.

polarisation nucléaire du couplage de Faraday effectif Ω_x (25) entre la lumière et le spin nucléaire hybridé par le metastable, qui contrôle le taux de compression de spin dans (31).

3. Description quantique

Dans la section 2, nous avons vu que l’on peut modéliser notre système physique complexe sous la forme de trois spins collectifs couplés (3): le spin nucléaire \vec{I} dans l’état fondamental, le spin \vec{K} dans le niveau hyperfin $F = 1/2$ de l’état métastable et le spin de Stokes \vec{S} du champ lumineux en cavité. Dans cette section, nous présentons le traitement quantique complet de ce modèle. Après avoir introduit l’approximation de Primakoﬀ, nous passons à la description quantique de l’échange de métastabilité qui couple les spins nucléaire et métastable.

3.1. Approximation de Primakoﬀ

Initialement, le spin nucléaire collectif \vec{I}, le spin collectif du métastable \vec{K} et le spin de Stokes \vec{S} de la lumière sont polarisés selon O_x, et le resteront pendant toute la procédure expérimentale. Dans l’approximation de Holstein-Primakoﬀ, qui assimile les composantes de spin macroscopiques selon O_x à des variables classiques, les composantes O_y et O_z restantes, orthogonales aux spins moyens, se comportent comme les opérateurs de quadratures (parties hermitienne et antihermétique) d’opérateurs d’annihilation donc canoniquement conjuguées, $[X, P] = i/2$ de trois modes bosoniques a, b, c:

\[
\begin{align*}
\frac{I_y}{\sqrt{N}} & \text{ Primakoﬀ} & X_a = \frac{a + a^\dagger}{2} ; & \quad \frac{K_y}{\sqrt{N}} & \text{ Primakoﬀ} & X_b = \frac{b + b^\dagger}{2} ; & \quad \frac{S_y}{\sqrt{N_{ph}}} & \text{ Primakoﬀ} & X_c = \frac{c + c^\dagger}{2} \\
\frac{I_z}{\sqrt{N}} & \text{ Primakoﬀ} & P_a = \frac{a - a^\dagger}{2i} ; & \quad \frac{K_z}{\sqrt{N}} & \text{ Primakoﬀ} & P_b = \frac{b - b^\dagger}{2i} ; & \quad \frac{S_z}{\sqrt{N_{ph}}} & \text{ Primakoﬀ} & P_c = \frac{c - c^\dagger}{2i}
\end{align*}
\]

Faisons le lien avec la représentation bosonique exacte (1) des spins, en écrivant:

\[
\begin{align*}
\frac{S_y}{\sqrt{N_{ph}}} - i \frac{S_z}{\sqrt{N_{ph}}} & = \frac{1}{\sqrt{N_{ph}}} c_y \text{ Primakoﬀ} \simeq c_y ; & \quad \frac{S_y}{\sqrt{N_{ph}}} + i \frac{S_z}{\sqrt{N_{ph}}} & = \frac{1}{\sqrt{N_{ph}}} c_y^\dagger c_y \text{ Primakoﬀ} \simeq c_y \tag{11}
\end{align*}
\]

5. Si nous considérons un grand spin \vec{S} entièrement polarisé selon O_x, nous pouvons approximer la composante de spin dans cette direction par une variable classique, en posant $S_x = \langle \hat{S}_x \rangle$ si bien que $\{S_y/\sqrt{2S_z}, S_z/\sqrt{2S_z}\} = i/2$.

Ceci montre que l’opérateur de création c^\dagger dans (9)-(10), identifié avec c^\dagger_y dans l’approximation de Primakoff, transfère un photon du mode de cavité fortement peuplé par un état cohérent polarisé selon Ox dans le mode de cavité initialement vide polarisé selon Oy. Dans l’approximation de Primakoff, l’hamiltonien du couplage de Faraday atome-champ (2) s’écrit :

$$H = \hbar \Omega P_0 P_e \quad \text{avec} \quad \Omega = \chi \sqrt{m_{ph}}.$$
(12)

Comme χ ne dépend pas de l’intensité du champ dans la cavité, Ω^2 est proportionnel à cette intensité.

3.2. Équation pilote pour l’échange de métastabilité

Considérons dans cette sous-section l’évolution du système due au seul échange de métastabilité ($\chi = 0$). Dans un traitement quantique, les équations classiques (6)-(7) deviennent des équations stochastiques incluant les fluctuations quantiques. Dans l’approximation de Primakoff, cela donne pour les quadratures X dans l’état métastable et fondamental :

$$dX_a = -\gamma_f X_adt + \sqrt{\gamma_m \gamma_f} X_b dt + dX^\text{stoch}_a \quad ; \quad dX_b = -\gamma_m X_b dt + \sqrt{\gamma_m \gamma_f} X_a dt + dX^\text{stoch}_b,$$
(13)

où l’on a utilisé la troisième égalité de l’équation (8). Les bruits de Langevin dX^stoch_i, avec $i \in \{a, b\}$, ont une moyenne nulle, sont des variables aléatoires indépendantes à des temps différents et ont des variances et des covariances à temps égaux calculées dans la référence [5] :

$$\langle dX^\text{stoch}_i dX^\text{stoch}_j \rangle = D_{ij} dt \quad \text{avec} \quad D = \frac{1}{2} \begin{pmatrix} -\gamma_f & -\sqrt{\gamma_m \gamma_f} \\ \sqrt{\gamma_m \gamma_f} & \gamma_m \end{pmatrix}.$$
(14)

On a des équations de même forme que (13) pour les quadratures P_ℓ, avec d’autres bruits de Langevin dP^stoch_i, de même matrice de covariance que l’équation (14) entre eux mais de matrice de covariance avec les bruits dX^stoch_i donnée par

$$\langle dX^\text{stoch}_i dP^\text{stoch}_j \rangle = D_{ij} dt \quad \text{avec} \quad D = iD$$
(15)

Pour le calcul des valeurs moyennes et des variances des observables atomiques, cette formulation stochastique équivaut à une équation pilote sur l’opérateur densité atomique ρ_ℓ des deux modes bosoniques a et b :

$$\frac{d\rho_\ell}{dt} = C \rho_\ell C^\dagger - \frac{1}{2} [C^\dagger C, \rho_\ell] \quad \text{avec} \quad C = \sqrt{2\gamma_f a} - \sqrt{2\gamma_m b}$$
(16)

En effet, la représentation stochastique de Langevin de l’équation pilote (16) pour un opérateur quelconque A s’écrit

$$dA = \frac{dt}{2} \left[C^\dagger [A, C] - [A, C^\dagger] C \right] + dA^\text{stoch} \quad \text{où} \quad dA^\text{stoch} = [C^\dagger, A] dB + dB^\dagger [A, C]$$
(17)

et dB est un opérateur stochastique markovien de moyenne nulle, de matrice de covariance à temps égaux

$$\langle dB dB^\dagger \rangle = dt \quad ; \quad \langle dB dB \rangle = \langle dB^\dagger dB^\dagger \rangle = 0.$$
(18)

Pour être complets, esquissons un autre raisonnement, qui fait l’économie des bruits de Langevin quantiques. Il suffit d’admettre que les équations d’évolution sur les moyennes $\langle X_\ell \rangle$ et $\langle P_\ell \rangle$ tirées de (6)-(7) dérivent d’une équation pilote de la forme de Lindblad (50). Comme ces équations sont linéaires, les opérateurs de saut $C_{\ell m}$ encadrant ρ_ℓ dans l’équation pilote sont des combinaisons linéaires de a et b. Ceci redonne (16).

3.3. Équation pilote à trois modes

L’évolution complète, comprenant l’interaction hamiltonienne hermitienne (12), l’échange de métastabilité et les pertes de la cavité, est décrite par l’équation pilote $^6 \bar{B} \bar{B} = 0$, soit que nous nous plions dans le référentiel tournant

6. Nous négligeons ici l’évolution interne des modes atomiques (précession de spin) en supposant que les sous-niveaux Zeeman sont dégénérés dans l’état fondamental et dans l’état métastable $F = 1/2$, soit que le champ magnétique extérieur soit nul.
après compensation de l’écart entre les fréquences de Larmor métastable et fondamentale, par exemple au moyen d’un champ magnétique fictif créé par déplacement lumineux.

\[
\frac{d\rho}{dt} = \frac{1}{i\hbar} [H, \rho] + \kappa \left(cpc^\dagger - \frac{1}{2} [c^\dagger c, \rho] \right) + Cpc^\dagger - \frac{1}{2} [C^\dagger C, \rho]
\]

(19)

où \(C\) est l’opérateur de saut pour l’échange de métastabilité (16), \(\kappa\) est le taux de perte de la cavité, \(\gamma_m\) et \(\gamma_f\) sont les taux d’échange de métastabilité pour un atome métastable et dans l’état fondamental.

Initialement, les trois modes sont dans l’état vide correspondant à un état polarisé pour les trois spins. Pour cet état initial, les premiers moments des quadratures restent nuls, et l’on peut obtenir un système fermé d’équations sur les seconds moments. On trouve que les quadratures \(P\) restent de variance constantes et de covariances nulles dans les trois modes,

\[
\langle P_a^2(t) \rangle = \langle P_b^2(t) \rangle = \langle P_c^2(t) \rangle = \frac{1}{4} ; \quad \langle P_aP_b \rangle(t) = \langle P_aP_c \rangle(t) = \langle P_bP_c \rangle(t) = 0
\]

(20)

que la variance \(\langle X_a^2 \rangle\) reste bornée et que les covariances \(\langle X_aX_b \rangle\) et \(\langle X_aX_c \rangle\) restent nulles, tandis que les variances et la covariance des quadratures \(X_a\) et \(X_b\), et donc le nombre d’excitations dans les modes atomiques, divergent linéairement en temps, du moins tant que l’approximation de Primakoff est applicable. Nous donnons ici explicitement seulement les comportements aux temps longs :

\[
\langle X_a^2(t) \rangle \sim \frac{\gamma_m \gamma_f}{(\gamma_m + \gamma_f)^2} \frac{\Omega^2 t}{4\kappa} + O(1) \quad \langle X_b^2(t) \rangle \sim \frac{\gamma_f^2}{(\gamma_m + \gamma_f)^2} \frac{\Omega^2 t}{4\kappa} + O(1)
\]

\[
\langle X_aX_b(t) \rangle \sim \frac{\gamma_m^{1/2} \gamma_f^{1/2}}{(\gamma_m + \gamma_f)^2} \frac{\Omega^2 t}{4\kappa} + O(1) \quad \langle X_c^2(t) \rangle \sim \frac{1}{4} \rightarrow t \rightarrow +\infty \left(\frac{\Omega}{2\kappa} \right)^2 \left(1 - \frac{2\gamma_m}{\kappa + 2(\gamma_m + \gamma_f)} \right)
\]

(21)

3.4. Modèle à un mode

Dans cette sous-section, nous établissons une équation pilote à un mode décrivant l’évolution lente du spin nucléaire dans la limite

\[
\Gamma_{sq} \ll \gamma_f < \gamma_m \quad \text{et} \quad \Gamma_{sq} \ll \kappa
\]

(22)

où le taux de compression \(\Gamma_{sq}\) est défini plus tard (il suffit de savoir ici que \(\Gamma_{sq} \propto \Omega^2\) si bien que \(22\) est une limite de couplage de Faraday faible \(\Omega \rightarrow 0\)). Il convient à cette fin d’introduire les opérateurs bosoniques d’annihilation dans une base astucieusement tournée, au moyen des combinaisons linéaires suivantes des opérateurs \(a\) et \(b\) :

\[
\alpha = \sqrt{\frac{\gamma_m}{\gamma_m + \gamma_f}} a + \sqrt{\frac{\gamma_f}{\gamma_m + \gamma_f}} b ; \quad \beta = \sqrt{\frac{\gamma_m}{\gamma_m + \gamma_f}} b - \sqrt{\frac{\gamma_f}{\gamma_m + \gamma_f}} a
\]

(23)

\(\alpha\) et \(\beta\) correspondent en effet aux modes propres de la partie d’échange de métastabilité de l’équation pilote à trois modes (19) (en pratique, on a \(\gamma_m \gg \gamma_f\), voir l’équation (8), si bien que le mode \(\beta\) correspond au spin du métastable légèrement hybridé avec le spin de l’état fondamental, et \(\alpha\) au spin nucléaire légèrement hybridé avec le spin du métastable). Tandis que le mode \(\alpha\) subit une divergence en temps de son nombre moyen d’excitations, le mode \(\beta\) est fortement amorti et tend vers une valeur stationnaire (voir les résultats (20) et (21), qui montrent que \(\langle X_\beta^2 \rangle = O(1)\) où \(X_\beta = (\beta + \beta^\dagger)/2\), ce qui permettra de l’éliminer adiabatiquement, tout comme le champ en cavité. Dans cette nouvelle base, l’équation pilote à trois modes (19) prend la forme

\[
\frac{d\rho}{dt} = \frac{1}{i\hbar} [H, \rho] + \kappa \left(cpc^\dagger - \frac{1}{2} [c^\dagger c, \rho] \right) + \gamma_\beta \left(\beta \beta^\dagger - \frac{1}{2} [\beta^\dagger \beta, \rho] \right)
\]

(24)

7. Pour l’état initial considéré, on a à tout temps \(\langle X_{\beta}^2 \rangle = 0\) et \(\langle X_\beta^2 \rangle - \frac{1}{2} = \langle a^\dagger a \rangle\), où \(\langle a^\dagger a \rangle\) est le nombre moyen d’excitations dans le mode de spin nucléaire, si bien que \(\text{Var} X_{\alpha} = \langle a^\dagger a \rangle + \frac{1}{2}\). Les mêmes relations valent pour les deux autres modes.
où $\gamma_\beta \equiv 2(\gamma_m + \gamma_f)$ et, en notant $P_\alpha = (\alpha - \alpha^\dagger)/2i$ et $P_\beta = (\beta - \beta^\dagger)/2i$ les quadratures P des nouveaux modes,

$$H = \hbar(\Omega_\alpha P_\alpha + \Omega_\beta P_\beta)$$

avec $\Omega_\alpha \equiv \sqrt{\frac{\gamma_f}{\gamma_m + \gamma_f}}$ et $\Omega_\beta \equiv \sqrt{\frac{\gamma_m}{\gamma_m + \gamma_f}}$

(25)

Effets, comme dans la référence [17], l’élimination adiabatique en couplage de Faraday faible $\Omega \to 0$ dans le formalisme des fonctions d’onde Monte-Carlo [18, 19], où l’opérateur densité solution de l’équation pilote (24) s’obtient par moyenne de cas purs sur des réalisations stochastiques indépendantes, chaque réalisation correspondant à l’évolution déterministe d’un vecteur d’état non normalisé $|\psi(t)\rangle$ sous l’action du hamiltonien effectif non hermitien

$$H_{\text{eff}} = H - \frac{i\hbar}{2}(\kappa c^\dagger c + \gamma_\beta \beta^\dagger \beta)$$

(26)

interrompu aléatoirement par des sauts quantiques (évolutions discontinues $|\psi\rangle \to C|\psi\rangle$) d’opérateurs de saut

$$C_\alpha = \sqrt{\kappa c} \text{ et } C_\beta = \sqrt{\gamma_\beta} \beta.$$

(27)

En l’absence du couplage cohérent Ω dans (25) le mode métastable hybride et le mode de cavité restent dans l’état vide initial. Au premier ordre en Ω, cet état est coupé à des états à une excitation dans la cavité (par l’action de P_{cav}) et à zéro ou une excitation dans le mode du métastable hybride (par l’action de P_{a} ou de P_{b}). Nous pouvons alors tronquer le vecteur d’état Monte-Carlo $|\psi\rangle$ dans la base de Fock $|n_{a}\rangle|n_{b}\rangle|n_{c}\rangle$ comme suit,

$$|\psi\rangle = |\psi_{00}^{(0)}\rangle(0)|0\rangle + |\psi_{11}^{(0)}\rangle(0)|1\rangle + |\psi_{11}^{(1)}\rangle(1)|1\rangle$$

(28)

en commettant une erreur de norme $O(\Omega^2)$. Sous l’effet du hamiltonien effectif (26), les composantes rapides $|\psi_{00}^{(1)}\rangle$ et $|\psi_{11}^{(1)}\rangle$ rejoignent exponentiellement un régime de suivi adiabatique de la composante lente $|\psi_{00}^{(0)}\rangle$ avec des taux $\kappa/2$ ou $(\kappa + \gamma_\beta)/2$. D’où leur élimination adiabatique dans la limite (22) 8

$$|\psi_{00}^{(1)}\rangle_{\text{adiab}} = \frac{i\Omega_{\beta}}{2(\kappa + \gamma_\beta)}|\psi_{00}^{(0)}\rangle \text{ et } |\psi_{00}^{(1)}\rangle_{\text{adiab}} = \frac{\Omega_{\alpha}}{\kappa}P_{\alpha}|\psi_{00}^{(0)}\rangle$$

(29)

On reporte les expressions de $|\psi_{00}^{(1)}\rangle_{\text{adiab}}, |\psi_{00}^{(0)}\rangle_{\text{adiab}}$ dans l’équation d’évolution hamiltonienne de $|\psi_{00}^{(0)}\rangle$ pour obtenir

$$i\hbar \frac{d}{dt} |\psi_{00}^{(0)}\rangle = \frac{i\hbar}{2}(\Gamma_{sq} P_{a}^2 + \Gamma_0)|\psi_{00}^{(0)}\rangle \equiv H_{\text{eff}}^{00} |\psi_{00}^{(0)}\rangle$$

(30)

où l’on a introduit les taux

$$\Gamma_{sq} = \frac{\Omega_{\alpha}^2}{\kappa} \text{ et } \Gamma_0 = \frac{\Omega_{\beta}^2}{4(\kappa + \gamma_\beta)}$$

(31)

Comme nous le verrons, Γ_{sq} est le taux de compression typique du spin nucléaire dans le régime (22). En étudiant l’effet de l’opérateur de saut de cavité C_c et de saut d’échange de métastabilité C_β sur le vecteur d’état (28), nous pouvons

8. Dans le suivi adiabatique, les probabilités d’occupation des composantes excitées sont $<\psi_{11}^{(1)}|\psi_{11}^{(1)}|_{\text{adiab}}=\langle\psi|\psi\rangle=[\Omega_{\beta}^2/(4(\kappa+\gamma_\beta)^2)]\langle\psi_{00}^{(0)}|\psi_{00}^{(0)}\rangle/(\langle\psi|\psi\rangle)$ et $<\psi_{00}^{(0)}|\psi_{00}^{(0)}|_{\text{adiab}}=\langle\psi|\psi\rangle=\langle\Gamma_{sq}(\kappa)|\psi_{00}^{(0)}|\psi_{00}^{(0)}\rangle/(\langle\psi|\psi\rangle)$ où l’on a utilisé (31). Dans la limite (22), on vérifie aisément qu’elles sont $\ll 1$, si bien que presque toute la population est dans la composante $|\psi_{00}^{(0)}\rangle(0)$ comme il se doit, ce qui nous permettra dans la suite de remplacer $|\psi\rangle$ par $|\psi_{00}^{(0)}\rangle$. On vérifie également qu’une autre condition de validité de l’adiabaticité, à savoir la lenteur de l’évolution du spin nucléaire hybride par rapport aux variables rapides, qui s’écrit ici $\Gamma_{sq}/\Gamma_0 \ll \kappa + \gamma_\beta$, est satisfaite. Ces considérations ne permettent cependant pas de montrer que la condition $\Gamma_{sq} \ll \gamma_f$ est nécessaire (sauf si $\kappa \ll \gamma_\beta$). Pour le voir en toute généralité, nous pouvons à l’ordre Ω^3 calculate the hamiltonien effectif $H_{\text{eff}}^{00} = \text{PH}_{\text{eff}} + \text{PH}(Q\text{Q} - \text{QH}_{\text{eff}}\text{Q})^{-1} \text{QHP}$ dans le sous-espace $n_\gamma = n_\kappa = 0$ sur lequel P projette (ici $Q = 1 - P$ et $\gamma = O(\Omega^2)$). Qualitativement, à cet ordre, par action de H_0, puis H_0 sur $|\psi_{00}^{(0)}\rangle(0)$ (avec la notation évidente $H = H_0 + H_{\text{eff}}$), on créa virtuellement une excitation β seule, relaxant aux taux $\gamma_\beta/2$, d’où la condition d’adiabaticité supplémentaire $\Gamma_0 \ll \gamma_\beta$: jointe à $\Gamma_0 \ll \kappa$ et $\gamma_f < \gamma_m$, elle implique $\Gamma_{sq} = \gamma_f$ puisque $\Gamma_{sq}/\gamma_f = (\Gamma_0/\kappa + \Gamma_0/\gamma_\beta)/(4\gamma_f/\gamma_m) < 16(\Gamma_0/\kappa + \Gamma_0/\gamma_\beta)$. Quantitativement, nous trouvons une correction au coefficient de P_α dans H_{eff}^{00} de type $C_{\alpha}G_\alpha G_\beta G_\gamma G_\delta G_\alpha G_\beta G_\gamma G_\delta G_\alpha (G_\delta)$ qui est la résolvante de H_{eff} pour $\Omega = 0$ de la forme $\Gamma_{sq}^2/\gamma_\beta \gamma_\kappa$, qui doit être négligeable, ce qui impose $\Omega_{\beta}^2/\gamma_\beta \gamma_\kappa < 1$. C’est-à-dire $\Gamma_{sq} < \gamma_f$ compte tenu de $\gamma_f < \gamma_m$. Les corrections au terme scalaire sont négligeables dès que $\Gamma_0 < \gamma_\beta, \kappa$, et le nouveau terme en P_{α}^2 qui apparaît est négligeable devant $\Gamma_{sq}P_\alpha^2$ pour $P_\alpha = O(1)$ si $\Gamma_{sq} \ll \kappa$. 8
interpréter l’hamiltonien effectif de l’équation (30). (i) Considérons d’abord l’effet d’un saut de cavité, qui se produit à l’instant \(t \) avec un taux \(\kappa(\langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}} + \langle \sigma^{01}_a | \sigma^{01}_a \rangle_{\text{adiab}}) / |\langle \sigma^{00}_a | \sigma^{00}_a \rangle_{\text{adiab}}| \). Juste après le saut, le vecteur d’état, initialement en régime de suivi adiabatique, devient

\[
|\phi(t^+)\rangle = C_s|\phi(t^-)\rangle_{\text{adiab}} \propto |\sigma^{01}_a(t^-)\rangle_{\text{adiab}}|0\rangle|0\rangle + |\sigma^{11}_a(t^-)\rangle_{\text{adiab}}|1\rangle|0\rangle
\]

(32)

C’est la superposition d’une composante instable \(|1\rangle|0\rangle\) et d’une composante stable \(|0\rangle|0\rangle\). Avec une probabilité \(\langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}} / (\langle \sigma^{01}_a | \sigma^{01}_a \rangle_{\text{adiab}} + \langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}}) \) le saut de cavité est alors suivi d’un saut d’échange de métabilité avant que le système n’ait le temps de rejoindre sa valeur adiabatique. On a dans ce cas un « saut double », qui en définitive n’affecte pas la composante \(|\sigma^{00}_a(t^-)\rangle\) puisque

\[
C_s C_s |\phi(t^-)\rangle_{\text{adiab}} \propto |\sigma^{00}_a(t^-)\rangle|0\rangle|0\rangle
\]

(33)

Ce processus contribue au terme scalaire (proportionnel à l’identité) dans l’hamiltonien effectif de l’équation (30). Avec la probabilité complémentaire \(\langle \sigma^{01}_a | \sigma^{01}_a \rangle_{\text{adiab}} / (\langle \sigma^{01}_a | \sigma^{01}_a \rangle_{\text{adiab}} + \langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}}) \) le système rejoint sa valeur adiabatique avant que d’autres sauts ne se produisent, et est asservi à \(P_0 |\sigma^{00}_a(t^-)\rangle \), c’est-à-dire que la composante lente \(|\sigma^{00}_a(t^-)\rangle\) a subi de manière effective un saut quantique simple avec un opérateur de saut proportionnel à \(P_0 \). Ce processus correspond au premier terme, proportionnel à \(P_0 \), dans l’hamiltonien effectif de l’équation (30). (ii) Supposons ensuite que le saut à l’instant \(t \) est un saut d’échange de métabilité, ce qui se produit avec un taux \(\gamma_0 \langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}} / |\langle \sigma^{00}_a | \sigma^{00}_a \rangle_{\text{adiab}}| \). On vérifie dans ce cas que le vecteur d’état après le saut, \(C_s |\phi(t^-)\rangle \), est entièrement instable et subit presque immédiatement un second saut, un saut de cavité. L’effet total correspond là encore à un saut double et à l’action d’un opérateur scalaire sur la composante lente. Nous tisons de cette discussion les taux de saut simple et de saut double suivants :

\[
\begin{align*}
\Gamma_s &= \kappa \langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}} / (\langle \sigma^{01}_a | \sigma^{01}_a \rangle_{\text{adiab}} + \langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}}) = \Gamma_{sq} \langle \sigma^{00}_a | \sigma^{00}_a \rangle_{\text{adiab}} \equiv \Gamma_{sq} \langle P_0^2 \rangle \\
\Gamma_d &= \kappa \langle \sigma^{00}_a | \sigma^{00}_a \rangle_{\text{adiab}} / (\langle \sigma^{01}_a | \sigma^{01}_a \rangle_{\text{adiab}} + \langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}}) + \gamma_0 \langle \sigma^{11}_a | \sigma^{11}_a \rangle_{\text{adiab}} = \Gamma_0
\end{align*}
\]

(34)

(35)

On obtient finalement l’équation pilote à un mode décrivant l’évolution lente de l’opérateur densité \(\rho_a \) du mode bosonique \(a \) (hybride mais presque purement de spin nucléaire) :

\[
\frac{d\rho_a}{dt} = C_s \rho_{a} C^\dagger_s - \frac{1}{2} [C^\dagger_s C_s, \rho_{a}] + C_d \rho_{d} C^\dagger_d - \frac{1}{2} [C^\dagger_d C_d, \rho_{a}]
\]

(36)

en termes de deux sauts quantiques, le saut simple (uniquement de cavité) \(C_s \), et le saut double (de cavité et d’échange de métabilité dans cet ordre ou dans l’autre) \(C_d \) :

\[
C_s = \sqrt{\Gamma_s} P_0 \quad ; \quad C_d = \sqrt{\Gamma_0} I
\]

(37)

De l’équation (36) intégrée pour l’état initial vide de \(\alpha \), on tire :

\[
\langle X_a^2 \rangle = \frac{1}{4} (1 + \Gamma_s t) \quad ; \quad \langle P_a^2 \rangle = \frac{1}{4}
\]

(38)

En revenant à la base atomique initiale (non tournée) et en limitant le vecteur d’état (28) à son premier terme, on retrouve l’équation (20) et les trois premiers résultats de l’équation (21) du modèle à trois modes. Enfin, le nombre moyen de photons polarisés selon \(O_Y \) sortant de la cavité par unité de temps, donné dans le modèle à un mode par \(\Gamma_0 + \Gamma_{sq} / 4 \) comme le montrera l’équation (44), est en accord avec la valeur exacte \(\kappa < c | c \rangle_a \) où le nombre moyen stationnaire de photons polarisés selon \(O_Y \) dans la cavité \(< c | c \rangle_a = \langle X_a^2 \rangle_a - 1/4 \) est le dernier résultat de (21).9

9. En revanche, la valeur de \(< c | c \rangle_{\text{adiab}} \) dans la forme adiabatique (29) du vecteur d’état ne représente pas ce nombre. La solution du paradoxoe tient à l’existence de la voie de désexcitation (ii), celle de l’annihilation en premier saut de l’excitation \(n_p = 1 \) dans le mode du métastable immédiatement suivie par la perte d’un photon en cavité. Le vrai taux de sortie de photons polarisés selon \(O_Y \) est donc \(\kappa < c | c \rangle_{\text{adiab}} + \gamma_0 \langle \sigma^{00}_a | \sigma^{00}_a \rangle_{\text{adiab}} \).
4. Mesure quantique non destructive du spin nucléaire en continu

Les moyennes quantiques calculées dans la section 3 correspondent seulement aux moyennes d’ensemble sur un nombre infini de réalisations expérimentales. Dans cette section, nous étudions ce qui nous intéresse vraiment, l’évolution du système dans une ou plusieurs réalisations données de l’expérience, conditionnée aux résultats d’une mesure en continu sur la lumière polarisée selon Oy sortant de la cavité. Pour cela, nous revenons à la formulation en termes de fonctions d’onde Monte-Carlo, comme dans la section 3, où des trajectoires stochastiques $|\psi(t)\rangle$ correspondant à une succession particulière de sauts quantiques reconstruisent l’opérateur densité du système conditionné à des résultats de mesure [19]. La forme précise des opérateurs de saut Monte-Carlo, qui n’est pas unique dans la reformulation stochastique d’une mesure pilote, est alors déterminée par les mesures particulières effectuées.

4.1. Étude de la compression par comptage de photons : résultats analytiques à un mode et numériques à trois modes

Supposons que l’on compte continûment et directement (par photodétection) le nombre de photons polarisés selon ℓ_α à l’instant t dans la cavité (voir figure 1b), comme l’a proposé la référence [20]. L’opérateur de saut associé à cette mesure est $\sqrt{\kappa}\sigma$, de sorte que l’équation pilote à trois modes (19) est déjà sous la bonne forme pour analyser l’évolution du vecteur d’état $|\psi(t)\rangle$ conditionnée à la mesure en continu sur la lumière polarisée selon ℓ_α.

Il en va de même dans la limite d’un faible couplage de Faraday, $\Omega \to 0$, qui conduit au modèle à un mode. Comme les opérateurs de saut C_d et C_e de son équation pilote (36) correspondent tous deux à la perte en cavité d’un photon polarisé selon Ω (rappelons-le, C_d résulte d’un saut de cavité immédiatement suivi ou précédé d’un saut d’échange de métastabilité, et C_e d’un simple saut de cavité), la mesure ne peut faire la distinction entre les deux, et l’opérateur densité conditionné à un nombre donné n de photons détectés est obtenu en moyennant sur des réalisations ayant ce même nombre $\text{total } n$ de sauts. Un vecteur d’état Monte-Carlo non normalisé ayant subi ces n sauts pendant la durée t s’écrit

$$|\psi(t)\rangle = e^{-i\frac{\hbar}{\Gamma_n}t} C_{e_d} e^{-i\frac{\hbar}{\Gamma_n}(t-t_0)} C_{e_1} \cdots C_{e_1} e^{-i\frac{\hbar}{\Gamma_n}t_1}|\psi(0)\rangle$$ (39)

où $e_\ell \in \{s, d\}$ et t_ℓ sont le type et l’instant du kème saut, H^{eff}_0 est l’Hamiltonien effec (30). La moyenne quantique d’une observable O s’obtient en moyennant sur toutes les trajectoires possibles, donc en sommant sur le nombre et le type des sauts et en intégrant sur leurs instants :

$$\langle O(t)\rangle = \int_0^t \int_{0\leq t_1\leq t_2\leq \cdots \leq t_n} \sum_{(\ell_1, \ell_2, \ldots, \ell_n)\in S_n} \langle \psi(t)\rangle\langle\psi(t)\rangle$$ (40)

où la norme du carré de chaque vecteur d’état non normalisé $|\psi(t)\rangle$ donne automatiquement sa densité de probabilité [21]. En prenant $O = 1$, nous en déduisons la probabilité que n sauts se soient produits dans l’intervalle de temps $[0, t]$

$$\Pi_n(t) = \int_{t_1, t_2, \ldots, t_n} \sum_{(\ell_1, \ell_2, \ldots, \ell_n)\in S_n} \langle \psi(t)\rangle\langle\psi(t)\rangle$$ (41)

Pour évaluer (41), nous tisons parti du fait que tous les opérateurs de saut dans (39) et leurs conjugués hermitiens commutent entre eux et avec H^{eff}_0. En utilisant les identités

$$\sum_{\ell_1, \ldots, \ell_n} \left(C_{\ell_1} C_{\ell_2} \cdots C_{\ell_n} \right) = \sum_{\ell_1, \ldots, \ell_n} C^\dagger_{\ell_1} C_{\ell_2} \cdots C^\dagger_{\ell_n}$$ (42)

et en injectant une relation de fermeture dans la base propre de P_α telle que $P_{\alpha}|p_\alpha\rangle = |p_\alpha\rangle$, après avoir intégré sur les temps t_ℓ comme le permet le produit télescopique des opérateurs d’évolution, nous obtenons

$$\Pi_n(t) = \frac{\Gamma_0}{n!} \int_{-\infty}^{+\infty} \prod_{\ell=1}^n dp_\alpha \left(\Gamma_{sq} p_\alpha^2 + \Gamma_0 \right)^n e^{-\Gamma_0 p_\alpha^2 - \Gamma_0 t_n} \Pi(p_{\alpha}, 0)\right) = \frac{2n}{n!} \left(\Gamma_{sq} t_n / 8 \right)^n e^{-\Gamma_0 t_n / 2} \left(1 + \frac{\Gamma_{sq} t_n / 2}{\Gamma_0} \right)^n \Phi \left(-n - \frac{1}{2}, -n; \Gamma_0, 2 \Gamma_0 / \Gamma_{sq} \right)$$ (43)

où $\Pi(p_{\alpha}, 0)$ est la distribution de probabilité initiale de p_α (une gaussienne de moyenne nulle et de variance $1/4$) et Φ est la fonction hypergéométrique confluenne de Kummer F_1. On remarque que (43) est en fait une moyenne.
gaussienne sur p_α d’une loi de Poisson de paramètre $\lambda = (\Gamma_{sq} p_\alpha^2 + \Gamma_0)t$. On en déduit la moyenne et la variance du nombre de photodétectons pendant la durée t:

$$
\langle n \rangle = \left(\Gamma_0 + \frac{1}{4} \Gamma_{sq} \right) t \quad ; \quad \text{Var} \ n = \langle n \rangle + \frac{(\Gamma_{sq} t)^2}{8}
$$

(44)

Toujours en utilisant l’équation (43), nous accérons à la distribution de probabilité de p_α sachant que n photons ont été détectés dans l’intervalle de temps $[0, t]$, une fonction paire de p_α:

$$
\Pi_t(p_\alpha |n) = \frac{1}{\Pi_t(t) n!} (\Gamma_{sq} p_\alpha^2 + \Gamma_0)^n e^{-\Gamma_{sq} p_\alpha^2 t} e^{-\Gamma_0 t} \Pi(p_\alpha, 0)
$$

(45)

Nous en déduisons la moyenne et la variance conditionnelles de P_α^2 sachant que n photons ont été détectés pendant t:

$$
\langle P_\alpha^2 \rangle_n = \frac{\langle n + 1 \rangle \Pi_{n+1}(t)}{\Gamma_{sq}} - \frac{\Gamma_0}{\Gamma_{sq}} \quad ; \quad \text{Var}_n(P_\alpha^2) = \langle P_\alpha^2 \rangle_n - \langle P_\alpha^2 \rangle_n^2 = \frac{(n + 1) \Pi_{n+1}(t)}{(\Gamma_{sq} t)^2} \left[\frac{(n + 2) \Pi_{n+2}(t)}{(n + 1) \Pi_n(t)} - \frac{\Pi_{n+2}(t)}{\Pi_n(t)} \right]
$$

(46)

Enfin, au moyen de l’équation (45), nous trouvons que pour $\Gamma_{sq} t \to +\infty$, la distribution de probabilité de P_α^2 conditionnée au nombre n de photodétectons est piquée autour de la valeur P_0^2 donnée par

$$
p_0^2 = \frac{1}{4} \frac{n - \langle n \rangle}{\Gamma_{sq}} \quad \text{d'où} \quad \langle P_\alpha^2 \rangle_n \sim P_0^2
$$

(47)

avec une variance conditionnelle tendant vers zéro

$$
\text{Var}_n(P_\alpha^2) \xrightarrow{\Gamma_{sq} \to +\infty} n \langle P_\alpha^2 \rangle_n^2 \to 0
$$

(48)

De même, la distribution de probabilité conditionnelle de p_α présente deux pics à $\pm P_0$ comme on peut le voir sur la fonction de Wigner de la figure 5b, obtenue par simulation numérique de l’évolution conditionnelle du système aux temps longs dans le modèle à un mode (36). Pour résumer, lors d’une réalisation donnée de l’expérience, la mesure par photodétectons se sont produites dans l’intervalle de temps $[0, t]$, avec $\Gamma_{sq} t = 15$ (points noirs), en fonction de ce nombre n. L’ensemble des réalisations est divisé en 5 classes correspondant à un nombre de photodétectons tombant dans un intervalle donné, et les points noirs sont obtenus en moyennant sur les réalisations dans une même classe. Les résultats numériques sont proches des prédications analytiques tirées de (46) et (49) et représentées en vert, sauf dans les classes extrêmes qui comportent un nombre trop faible de réalisations. En revanche, les prédications analytiques asymptotiques (47) et (48), non représentées, seraient en désaccord avec les simulations des deux modèles car le temps $\Gamma_{sq} t = 15$ n’est pas assez long. Sur la figure 5, nous explorons justement les temps longs dans le modèle à un mode, avec $\Gamma_{sq} t = 1000$. La figure 5a, qui est l’équivalente de la figure 4a, montre que $\langle P_\alpha^2 \rangle_n$ est alors relié au nombre de photodétectons n comme dans la prédicat analytique (47), c’est-à-dire selon la première bissectrices dans les unités de la figure, avec un écart-type conditionnel (48) à peu près constant $\sim (\Gamma_0)^{1/2}/\Gamma_{sq} t$ car Γ_0 est ici $\gg \Gamma_{sq}$.

10. D’après l’équation (44), le second membre de (47) est asymptotiquement de l’ordre de l’unité pour une séquence de photodétectons typique. L’équation (47) n’a en fait de sens que pour P_0^2 positif donc $n > \Gamma_{d}t$; alors, les équivalents (47) et (48) s’appliquent lorsque l’écart entre les deux pics dans $\Pi_t(p_\alpha |n)$ est beaucoup plus grand que leur largeur, ce qui impose $2P_0^2 \gg n^{1/2}/\Gamma_{sq} t = (\Gamma_0 + \Gamma_{sq} P_0^2)^{1/2}/\Gamma_{sq} t^{1/2}$.
Figure 4 – Compression de P_2 par comptage de photons aux temps courts, $\Gamma_{\text{mf}} = 15$. (a) Moyenne et écart-type conditionnels de la quadrature du spin nucléaire au carré P_2 sachant que n photodétectations ont eu lieu dans l’intervalle de temps $[0, t]$, en fonction de ce nombre n. L’écart-type est représenté sous la forme d’un intervalle de confiance. La moyenne inconditionnelle $\langle P_2 \rangle = 1/4$ est indépendante du temps, voir l’équation (20). Points noirs et barres d’erreur : simulation numérique du modèle à 3 modes avec 3000 réalisations ; ligne verte et zone colorée : prédictions analytiques tirées des équations (43), (46) et (49) du modèle à un mode. En pratique, les points noirs sont obtenus après moyenne sur des classes de valeurs de n centrées sur ces points (dans une classe donnée, les trajectoires ont des nombres de photodétectations proches mais des histoires indépendantes pour les sauts d’échange de métastabilité auxquelles l’expérimentateur n’a pas accès). Paramètres du modèle à 3 modes : $\Omega / \kappa = 1/3$, $\gamma / \kappa = 1/10$, $\gamma_f / \kappa = 1/1000$ (si bien que $\Gamma_{\text{mf}} / \kappa = 1/909$), $n_{\text{max}} = 64$, $n_{\text{max}}^2 = n_{\text{max}}^4 = 8$. Ceci correspond à $\Gamma_0 / \Gamma_{\text{mf}} = 12 500/601 \approx 20,8$ dans le modèle à un mode. (b) Pour la classe centrée sur $n = \langle n(t) \rangle$, histogramme des valeurs conditionnelles de P_2. Barres bleues : simulation numérique du modèle à trois modes ; barres orange : prédictions analytiques tirées de l’équation (45) du modèle à un mode.

4.2. Étude de la compression par détection homodyne : solution analytique à un mode et à trois modes

Nous supposons maintenant que les photons sortant de la cavité polarisés selon O_y sont mesurés en continu par détection homodyne [22], comme sur la figure 1c. Il nous faut d’abord trouver les bonnes équations stochastiques donnant l’évolution du vecteur d’état du système conditionnée à la détection homodyne, puisque les opérateurs de saut apparaissent naturellement dans l’écriture (24) ou (36) de l’équation pilote à trois modes ou à un mode sont inadaptés. Nous présentons ensuite quelques résultats analytiques obtenus dans le modèle à un mode puis dans le modèle à trois modes, avant de discuter brièvement l’effet du temps de cohérence fini des atomes métastables.

4.2.1. Formulation stochastique adaptée de l’équation pilote

Une équation pilote générale de la forme de Lindblad

$$\frac{d\rho}{dt} = \frac{i}{\hbar} [H, \rho] + \sum_m C_m \rho C_m^\dagger - \frac{1}{2} [C_m^\dagger C_m, \rho]$$

(50)

avec H la partie hermitienne du hamiltonien et C_m les opérateurs de saut, peut être réécrite de manière équivalente en ajoutant une constante arbitraire aux opérateurs de saut et/ou en les mélangeant par combinaison linéaire unitaire quelconque. Afin de tenir compte d’une détection homodyne sur le champ sortant, on forme, à partir d’un opérateur de saut C_m correspondant à une photodétection, les deux opérateurs de saut « homodynes » $D_{m,\pm}$ [19]

$$D_{m,+} = \frac{\mu^+ + C_m}{\sqrt{2}} \quad ; \quad D_{m,-} = \frac{\mu^- - C_m}{\sqrt{2}}$$

(51)

où μ^\pm a les dimensions d’une pulsation. La mesure de la différence des taux de saut $D_+ D_- - D_- D_+$ donne alors accès à une quadrature de C_m. Ainsi, pour μ réel et C_m correspondant à l’opérateur saut de cavité C_c, voir l’équation (27), la différence entre les nombres de photons N_{\pm} détectés pendant le court intervalle de temps Δt dans les deux voies de sortie de la figure 1c, qui constitue par définition le signal homodyne,

$$N_+ = (D_+ D_{+,+}) \Delta t \quad ; \quad N_- = (D_- D_{,-,-}) \Delta t \quad ; \quad \frac{N_+ - N_-}{2 \mu} = \frac{c + c^3}{2} \sqrt{\kappa} \Delta t$$

(52)
Figure 5 – Compression de P_2 par comptage de photons aux temps longs dans le modèle à un mode (36). (a) Moyenne et écart-type conditionnels de P_2 sachant que le nombre de photodétectons n tombe dans une classe de valeurs donnée, de manière similaire à la figure 4a mais pour $\Gamma_{sda} = 1000$ et 2000 réalisations (ce temps long rend plus difficile une simulation dans le modèle à 3 modes). (b) Distribution de Wigner du mode bosonique nucléaire hybridé dans l’espace des quadratures (X_{a}, P_{a}) à $\Gamma_{sda} = 1000$, obtenue par moyennage des dyades $|\psi(t)\rangle\langle\psi(t)|$ sur les trajectoires de la 3ème classe de (a). Elle présente deux lignes de crêtes séparées par des franges d’interférence à valeurs négatives.

donne accès à X_{c} : c’est bien la quadrature du champ conjuguée à P_{c} donc translatée d’une quantité proportionnelle à P_{b} et au temps sous l’action du hamiltonien H (12), ce qui renseigne sur P_{a} au travers des collisions d’échange de métastabilité. Dans le cas de l’équation pilote à 3 modes (24), on est obligé d’appliquer la procédure de dédoublement a priori seulement à l’opérateur de saut de cavité. En pratique, nous appliquerons cette procédure également à l’opérateur de saut C_{b}, c’est-à-dire que nous dédoublurons par homodynage tous les opérateurs de saut C_{m}, afin d’éviter l’inconfort d’une représentation mixte mêlant sauts quantiques et évolution stochastique continue, voir l’équation (53) à venir. Dans le cas de l’équation pilote à un mode (36), il faut de toute façon « homodyner » les deux opérateurs de saut C_{c} et C_{d}, puisque chacun s’accompagne de la perte d’un photon en cavité, comme l’explique la section 3.4.

Dans la limite d’un oscillateur local de grande amplitude μ, on peut faire comme si Δt était infinitésimal et représenter l’évolution de la fonction d’onde Monte-Carlo par une équation stochastique non linéaire continue sans sauts quantiques [19, 23, 24] en point de vue d’Ito :

$$d|\phi(t)\rangle = \frac{i}{\hbar}H|\phi(t)\rangle dt - \frac{1}{2} \sum_{m} \left(C_{m}^{\dagger} C_{m} - \langle \phi(t)\rangle C_{m} + C_{m}^{\dagger} \langle \phi(t)\rangle C_{m} + \frac{1}{4} \langle \phi(t)\rangle C_{m} + C_{m}^{\dagger} \langle \phi(t)\rangle^{2} \right) |\phi(t)\rangle dt$$

$$+ \sum_{m} \left(C_{m} - \frac{1}{2} \langle \phi(t)\rangle C_{m} + C_{m}^{\dagger} \langle \phi(t)\rangle \right) |\phi(t)\rangle d\zeta_{m}(t)$$

où, à chaque opérateur de saut C_{m} dans l’écriture initiale de l’équation pilote, on associe un processus stochastique en temps continu $d\zeta_{m}(t)$, à valeurs réelles, gaussien, de moyenne nulle, de variance dt, statistiquement indépendant des autres processus et sans mémoire. Au même niveau d’approximation, l’opérateur de signal homodyne (52) est remplacé par la somme de sa moyenne et d’un bruit classique représentant ses fluctuations, qui n’est autre que le dC_{c} correspondant [19] :

$$\frac{N_{+} - N_{-}}{2\mu} = \frac{\sqrt{\kappa}}{2} \langle \phi | c + c^{\dagger} | \phi \rangle dt + \frac{1}{2} d\zeta_{c}$$

11. Cette approximation est valable pour une résolution en temps, c’est-à-dire un pas temporel Δt, telle que $\mu^{-2} \ll \Delta t \ll \kappa^{-1}$, où κ est en pratique le taux d’évolution le plus rapide du système dans l’expérience.
En pratique, plus que l’historique d’homodynage, c’est-à-dire la dépendance en temps détaillée du signal de détection homodyne, c’est sa moyenne temporelle sur un intervalle de temps \([0,t]\) qui est facilement accessible dans une expérience. Nous introduisons donc le signal intégré ayant la dimension de la racine d’une pulsation, et nous calculerons dans la suite la moyenne et la variance de la quadrature \(P_\alpha\) du spin nucléaire conditionnée à \(\sigma\).

4.2.2. Résultats analytiques dans le modèle à un mode

Écrivons explicitement l’équation stochastique (53) pour le modèle à un mode (36):

\[
\dot{\phi}(t) = -\frac{1}{2} \Gamma_{sq} [P_\alpha - \bar{P}_\alpha(t)]^2 |\phi(t)| + \sqrt{\Gamma_{sq} \Delta \zeta(t)} [P_\alpha - \bar{P}_\alpha(t)] |\phi(t)|
\]

avec \(\bar{P}_\alpha(t) \equiv \langle \phi(t) | P_\alpha | \phi(t) \rangle\). Le fait marquant est que les sauts associés à l’opérateur \(C_d\) proportionnel à l’identité, qui ajoutaient du bruit dans la détection par comptage de photons de la section 4.1, ne donnent pas de contribution, au sens où \(|1\rangle\langle 1|\) contribue à \((c^+c)\) mais pas à \((c + c^+)\). Il ne reste donc que le processus stochastique \(d\zeta\), associé à l’opérateur de saut \(C_t\). Ce processus se confond avec celui \(d\zeta\) apparaissant dans le signal de détection homodyne (54), \(d\zeta \equiv d\zeta\), fait admis ici mais qui sera établi en revenant au modèle à trois modes dans la section 4.2.3.

L’équation stochastique (56) présente un terme de bruit linéaire et un terme déterministe quadratique en l’opérateur \(P_\alpha\), réel dans l’espace de Fourier. Pour l’état initial considéré ici, elle est donc résolue exactement par un ansatz gaussien sur la fonction d’onde en représentation impulsion, réel et correctement normalisé pour la relation de commutation \([X_\alpha,P_\alpha] = i/2\) :

\[
\langle p_\alpha | \phi(t) \rangle = [2\pi u(t)]^{1/4} \exp[-u(t)(p_\alpha - \bar{P}_\alpha(t))^2]
\]

En revanche, la gaussianité est perdue dans la compression par photodétection de la section 4.1. En utilisant le calcul d’Itô, on trouve que \(u\) suit une équation d’évolution déterministe, à intégrer avec la condition initiale \(u(0) = 1\):

\[
du(t) = \Gamma_{sq} dt \quad \text{donc} \quad u(t) = 1 + \Gamma_{sq} t
\]

et

\[
\text{Var}_u P_\alpha(t) \equiv \frac{1}{4u(t)} = \frac{1}{4} \Gamma_{sq} t
\]

12. On ne garde que les termes linéaires en \(dt\) ou en le bruit, et on remplace systématiquement les termes quadratiques \(d\zeta^2\) par leur moyenne \(dt\).
où nous avons donné aussi la variance de P_α dans l’état $|\phi\rangle$. En revanche, l’équation sur la valeur moyenne de P_α dans $|\phi\rangle$ est purement stochastique, avec un coefficient de diffusion $D(t)$ dépendant du temps et la condition initiale $P_\alpha(0) = 0$:

$$dP_\alpha(t) = [2D(t)]^{1/2}d\zeta(t) \quad \text{avec} \quad D(t) = \frac{\Gamma_{sq}}{8\mu(t)^2} = \frac{\Gamma_{sq}}{8(1 + \Gamma_{sq}t)^2} \quad (59)$$

Comme $D(t)$ est d’intégrale finie, $\bar{P}_\alpha(t)$ se stabilise asymptotiquement (aux temps longs) à une valeur fixe sur une seule réalisation, comme on le voit sur la figure 6, avec une variance dans l’état quantique $\text{Var}_t P_\alpha$ tendant vers 0. Ce phénomène de « convergence stochastique » vers un état propre de l’observable mesurée (en l’occurrence P_α) est attendu dans la description d’une mesure quantique par une équation de diffusion du vecteur d’état $[23, 24, 25]$. Pour le montrer ici, on introduit un temps θ renormalisé en termes duquel P_α effectue un mouvement brownien ordinaire avec un coefficient de diffusion unité, et on remarque que ce temps est borné :

$$\theta = \int_0^t dt' D(t') = \frac{\Gamma_{sq}t}{8(1 + \Gamma_{sq}t)} \rightarrow \theta_\infty = \frac{1}{8} \quad (60)$$

À l’instant renormalisé θ_∞, \bar{P}_α suit une loi gaussienne de moyenne nulle et de variance 1/4 : \bar{P}_α a donc la même distribution de probabilité asymptotique ($t \rightarrow +\infty$) que celle de l’observable P_α dans l’état quantique initial du spin nucléaire.

Venons-en maintenant à la moyenne et à la variance de P_α, conditionnées à la valeur S du signal d’homodynage intégré en temps σ (55). De façon remarquable, nous trouvons que la moyenne conditionnelle est toujours proportionnelle dépendant du temps, et que la variance conditionnelle dépend du temps mais pas du signal :

$$\langle P_\alpha | \sigma = S \rangle = m(\Gamma_{sq}t) \frac{S}{\sqrt{\Gamma_{sq}}} \quad \text{où} \quad m(\tau) = \frac{\tau}{1 + \tau} ; \quad \text{Var}_{\sigma = S}(P_\alpha) = \mathcal{V}(\Gamma_{sq}t) \quad \text{où} \quad \mathcal{V}(\tau) = \frac{1}{4(1 + \tau)} \quad (61)$$

Ces expressions désignent Γ_{sq} comme le taux de compression du spin nucléaire dans le modèle à un mode. Sur la figure 7a, nous représentons $m(\tau)$ et $\mathcal{V}(\tau)$ en fonction du temps réduit $\tau = \Gamma_{sq}t$. De même que la variance quantique sur une réalisation $\text{Var}_\phi P_\alpha$, avec laquelle elle coïncide en fait, la variance conditionnelle tend asymptotiquement vers zéro comme l’inverse du temps. Dans la moyenne conditionnelle, le coefficient $m(\tau)$ tend vers 1 aux temps longs. Pour le comprendre, relions le signal intégré (55) à \bar{P}_α en utilisant les expressions adiabatiques (29) dans le vecteur d’état tronqué (28) :

$$\sigma(t) = \frac{1}{t} \int_0^t dt' \left[\sqrt{\Gamma_{sq}} \bar{P}_\alpha(t') + \frac{1}{2} \frac{d\zeta(t')}{dt'} \right] \quad (62)$$

Comme $\bar{P}_\alpha(t)$ se stabilise asymptotiquement sur une seule réalisation, et que la moyenne temporelle du bruit $d\zeta(t)$ tend vers zéro comme $1/t^{1/2}$ presque sûrement, $\sigma(+\infty)$ donne directement la valeur de \bar{P}_α à un facteur constant $\sqrt{\Gamma_{sq}}$ près.

Pour établir les résultats (61), relions d’abord la variance conditionnelle de l’opérateur P_α à celle de sa moyenne quantique sur une réalisation \bar{P}_α comme suit :

$$\text{Var}_{\sigma = S}(P_\alpha) = \left(\langle \phi | \bar{P}_\alpha^2 | \phi \rangle \right)_{\sigma = S} - \left(\langle \phi | P_\alpha | \phi \rangle \right)^2 = \left(\langle \phi | \bar{P}_\alpha^2 | \phi \rangle - \langle \phi | P_\alpha | \phi \rangle^2 \right)_{\sigma = S} + \left(\langle P_\alpha \right)^2_{\sigma = S} - \left(\langle P_\alpha \right)^2_{\sigma = S}$$

$$= \text{Var}_\phi P_\alpha + \text{Var}_{\sigma = S}(\bar{P}_\alpha) = \frac{1}{4(1 + \tau)} + \text{Var}_{\sigma = S}(\bar{P}_\alpha) \quad (63)$$

où nous avons utilisé l’expression (58) de la variance quantique de P_α dans l’état $|\phi\rangle$. Il reste donc à déterminer la distribution de probabilité conditionnelle de \bar{P}_α sachant que $\sigma = S$.

$$P(\bar{P}_\alpha = p_\alpha | \sigma = S) = \frac{P(\bar{P}_\alpha = p_\alpha, \sigma = S)}{P(\sigma = S)} \quad (64)$$

Or, la variable aléatoire $\bar{P}_\alpha(t)$, résultant d’un mouvement brownien (59), a une distribution de probabilité gaussienne ; il en va de même pour l’intégrale temporelle de \bar{P}_α et du bruit $d\zeta(t)$, donc du signal σ (62) qui en est la somme.
Comme les variables \bar{P}_α et σ sont de moyennes nulles, leur distribution de probabilité conjointe est caractérisée par
leur matrice de covarient, ou plus directement par sa matrice inverse, si bien que

$$P(P_\alpha = p_\alpha | \sigma = S) = \frac{1}{\sqrt{2\pi(\sigma^2)_{\text{stoch}}}} \exp \left(-\frac{1}{2} \frac{\left(p_\alpha - \langle p_{\alpha} \rangle_{\text{stoch}} + S(\sigma^2)_{\text{stoch}} \right)^2}{\left(\sigma^2\right)_{\text{stoch}}} \right)$$

ou $\langle \ldots \rangle_{\text{stoch}}$ à l’instant t est la moyenne prise sur toutes les réalisations du processus stochastique $d\zeta_s(t')$ sur l’intervalle de temps $[0,t]$. On en déduit que, dans les équations (61),

$$m(t) = \sqrt{\Gamma_{\text{sq}}} \frac{\langle \sigma(t) \rangle_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}} \quad \text{et} \quad \nu(t) = \frac{1}{4(1 + \tau)} + \frac{\langle P_{\alpha}^2(t) \rangle_{\text{stoch}} - \langle \sigma(t) \rangle_{\text{stoch}}^2}{\langle \sigma^2(t) \rangle_{\text{stoch}}}$$

Afin de déterminer leurs variances et covariances, on écrit $\sigma(t)$ et $P_{\alpha}(t)$ comme des fonctions linéaires du processus stochastique $d\zeta_s$ et on utilise le fait que les forces de Langevin $d\zeta_s(t)/dt$ et $d\zeta_s(t)/dt'$ ont une fonction de corrélation de Dirac $\delta(t - t')$. Donnons l’exemple de la première contribution à $\sigma(t)$:

$$\int_0^\tau d\tau' \langle P_{\alpha}(t') \rangle_{\text{stoch}} = \int_0^\tau d\tau' \int_0^\tau d2D(t')^{1/2} \frac{d\zeta_s(t')}{dt'} = \int_0^\tau d\tau' \int_0^\tau d2D(t')^{1/2} \frac{d\zeta_s(t')}{dt'} = \int_0^\tau d\tau' \int_0^\tau d2D(t')^{1/2} \frac{d\zeta_s(t')}{dt'}$$

où l’on a changé l’ordre d’intégration sur t' et t'' puis intégré explicitement sur t''. On aboutit aux expressions cherchées (61), dont la simplicité découle du fait que, sur une réalisation de l’expérience, on a toujours

$$\sigma(t) = \sqrt{\Gamma_{\text{sq}}} \frac{1 + \tau}{\tau} \bar{P}_\alpha(t)$$

Pour terminer, revenons à la quadrature P_α du spin nucléaire non hybridé, qui est celle véritablement utilisable dans l’expérience une fois la décharge éteinte dans la cellule. En quittant la base tournée par inversion de la transformation (23) et en limitant l’équation (28) à son premier terme (à l’ordre dominant en Ω), il vient

$$\langle P_{\alpha} \rangle_{\sigma = S} = \left(\frac{\gamma_m}{\gamma_f + \gamma_m} \right)^{1/2} \langle P_{\alpha} \rangle_{\sigma = S} \quad \text{et} \quad \text{Var}_{\sigma = S}(P_{\alpha}) = \frac{\gamma_f}{4(\gamma_f + \gamma_m)} + \frac{\gamma_m}{\gamma_f + \gamma_m} \text{Var}_{\sigma = S}(P_{\alpha})$$

La variance conditionnelle de P_α aux temps longs tend vers une valeur non nulle, bien que faible en pratique : c’est la limite intrinsèque de ce schéma de compression de spin nucléaire, qui utilise l’état métastable de 3He comme intermédiaire.

4.2.3. Solution du modèle à trois modes

L’étude de la compression de spin dans le cadre du modèle à un mode est limitée au régime (22) où le taux de compression Γ_{sq} correspond à l’échelle de temps la plus longue du système. Il est cependant crucial pour les applications de voir jusqu’où on peut accélérer le processus de compression en augmentant Γ_{sq}, par exemple, le couplage de Faraday Ω des atomes métastables au champ en cavité. À cette fin, nous obtenons la solution analytique du modèle à trois modes en utilisant le caractère gaussien du vecteur d’état qui résulte, comme pour le modèle à un mode, de l’état initial considéré (le vide), de la linéarité des opérateurs de saut C_m et de la quadraticité du hamiltonien H en les quadratures des modes. L’équation stochastique (53) admet donc comme solution exacte l’ansatz gaussien généralisant celui de l’équation (57),

$$\langle p_{\alpha}, p_{\beta}, x, \phi(t) \rangle = \phi(q, t) = [8\pi \det a(t)]^{1/4} \exp \left\{ -[q - \bar{q}(t)] \cdot a(t) [q - \bar{q}(t)] \right\} \equiv e^{-S}$$

(70)
où y est une matrice 3×3 symétrique réelle, \mathbf{q} est un vecteur à trois composantes réelles, les coordonnées $q_x = p_x$ et $q_y = p_y$ sont dans l’espace de Fourier (base propre de la quadrature P) et la coordonnée $q_z = x_e$ est dans l’espace des positions (base propre de la quadrature X). La seule astuce ici était de choisir comme opérateur de saut d’échange de métastabilité $C_\beta = \sqrt{\gamma f} \mathbf{i}q^\perp$; ce choix de phase, qui ne change bien entendu pas l’équation pilote (24), reste légitime pour l’évolution conditionnée à la détection homodyne du champ car les sauts de métastabilité ne sont pas mesurés. Dans la représentation mixte de la fonction d’onde (70), le hamiltonien H est alors imaginaire pur et les opérateurs de saut sont réels, d’où l’ansatz réel (70).

Pour obtenir les équations du mouvement sur \mathbf{u} et \mathbf{q}, nous calculons de deux manières différentes la variation relative $\delta\phi(\mathbf{q}, t)/\delta\phi(\mathbf{q}, t)$ de la fonction d’onde, d’une part en la reliant à la variation δS de la quantité S dans (70), séparée en une partie déterministe δS_d et une partie de bruit δS_b, d’autre part en reportant l’ansatz (70) dans l’équation stochastique (53). En identifiant les parties déterministes et les parties bruitées des deux formes qui en résultent, nous obtenons

$$-dS_b = \gamma_\beta^{1/2} \left(\frac{1}{2} \partial_{q_y} S_q - q_y + \tilde{q}_y \right) d\zeta_\beta - \kappa^{1/2} \left(\frac{1}{2} \partial_{q_y} S - q_y + \tilde{q}_y \right) d\zeta_c$$

$$-dS_d + \frac{1}{2}(dS_b)^2 = (\Omega_\alpha q_x + \Omega_\beta q_y) \frac{dr}{2} \partial_{q_y} S - \frac{\gamma_\beta dr}{2} \left(q_y^2 - \frac{1}{2} + \frac{1}{4} \left[\partial_{q_y} S - \left(\partial_{q_y} S \right)^2 \right] + \tilde{q}_y \left(\partial_{q_y} S - 2q_y \right) + \tilde{q}_y^2 \right)$$

Il reste à reporter dans (72) l’expression de dS_b tirée de (71), en appliquant la règle d’Ito de remplacement des carrés des bruits par leur moyenne, puis à identifier les termes de degré 2 en $\mathbf{q} - \mathbf{q}$ pour obtenir l’équation linéaire purement

13. Par exemple, $\mathbf{i}q = i(X_\beta + iP_\beta)$ est représenté en impulsion par l’opérateur réel $-\partial_{q_y}/2 - p_y$, et $\beta\mathbf{i}q$ par $-\partial_{q_y}/4 + p_y^2 - 1/2.$
déterministe sur \mathcal{U} : 14

$$
\begin{align*}
\text{d}u_{\alpha\alpha} &= -\Omega_{\alpha}\text{d}t u_{\alpha\alpha} - \frac{\text{d}r}{2}(\gamma_{\beta\alpha} u_{\beta\alpha} + \Omega_{\beta\alpha} u_{\alpha\alpha} + \Omega_{\alpha\beta} u_{\beta\alpha}) \\
\text{d}u_{\alpha\beta} &= -\Omega_{\beta\alpha}\text{d}t u_{\alpha\beta} + \frac{\text{d}r}{2}[\gamma_{\beta\alpha} u_{\beta\alpha} + \Omega_{\beta\alpha} u_{\alpha\alpha} + \Omega_{\alpha\beta} u_{\beta\alpha}] \\
\text{d}u_{\alpha\alpha} &= \frac{\text{d}r}{2}(\kappa u_{\alpha\alpha} + \Omega_{\alpha\alpha} u_{\alpha\alpha}) \\
\text{d}u_{\beta\beta} &= \text{d}t (1 - u_{\beta\beta}) \\
\text{d}Q &= \frac{1}{2} \begin{pmatrix}
0 & 0 & 0 \\
0 & -\gamma_{\beta\beta} & 0 \\
0 & 0 & -\kappa
\end{pmatrix} \text{d}t - \frac{1}{2} \begin{pmatrix}
\gamma_{\beta\beta}^{1/2} \text{d}Q(t) \\
(\kappa + \kappa)^{1/2} \text{d}Q(t)
\end{pmatrix}
\end{align*}
$$

(73)

et les termes de degré 1 en $q - \bar{q}$ pour obtenir l’équation linéaire stochastique sur \bar{q} :

$$
\text{d}\bar{q} = \frac{1}{2} \begin{pmatrix}
0 & 0 & 0 \\
0 & -\gamma_{\beta\beta} & 0 \\
0 & 0 & -\kappa
\end{pmatrix} \text{d}t - \frac{1}{2} \begin{pmatrix}
\frac{1}{2} \text{Id} - \overline{c(t)} \left[\begin{array}{c}
\gamma_{\beta\beta}^{1/2} \text{d}Q(t) \\
(\kappa + \kappa)^{1/2} \text{d}Q(t)
\end{array} \right]
\end{pmatrix}
$$

(74)

Faut-il le préciser, \bar{q} est le vecteur des moyennes quantiques des variables q dans le vecteur d’état (70) ; 15 par ailleurs, on a introduit la notation c pour la matrice inverse de \mathcal{U}, qui n’est autre que la matrice de covariance quantique des q à un facteur numérique près. On a donc :

$$
\langle \phi(t)|q_j|\phi(t)\rangle = \bar{q}_j(t) \quad \text{et} \quad \langle \phi(t)|q_j q_i|\phi(t)\rangle = \bar{q}_j(t) \bar{q}_i(t) + \frac{1}{2} \delta_{ij}(t) \quad \forall i, j \in \{\alpha, \beta, \gamma\} \quad \text{avec} \quad \overline{c(t)} = [\mathcal{U}(t)]^{-1}
$$

(75)

Le système différentiel (73) s’intègre aisément pour la condition initiale $u(0) = \text{Id} :$

$$
\begin{align*}
\text{u}_{\alpha\alpha}(t) &= 1 + \frac{\Omega_{\alpha\beta}^2 t}{\kappa} - \frac{2\Omega_{\alpha\beta}^2}{\kappa^2} \left(1 - e^{-\kappa t/2}\right) \\
\text{u}_{\alpha\beta}(t) &= \frac{\Omega_{\alpha\beta}}{\gamma_{\beta\beta}} \left(1 - e^{-\gamma_{\beta\beta} t/2}\right) + \frac{1}{2} \left(1 - e^{-\gamma_{\beta\beta} t/2}\right) \\
\text{u}_{\alpha\alpha}(t) &= -\frac{\Omega_{\alpha\beta}}{\gamma_{\beta\beta}} \left(1 - e^{-\gamma_{\beta\beta} t/2}\right) \\
\text{u}_{\beta\beta}(t) &= 1 + \frac{\Omega_{\beta\beta}^2}{\gamma_{\beta\beta}^2} \left(1 - e^{-\gamma_{\beta\beta} t/2}\right) \\
\text{u}_{\beta\beta}(t) &= -\frac{\Omega_{\beta\beta}}{\gamma_{\beta\beta}} \left(1 - e^{-\gamma_{\beta\beta} t/2}\right) \\
\text{u}_{\beta\beta}(t) &= 1
\end{align*}
$$

(76)

(77)

(78)

(79)

(80)

(81)

Comme \bar{q} décrit un mouvement brownien (partiellement amorti car la matrice de frottement dans (74) est de valeurs propres $0, \gamma_{\beta\beta}/2$ et $\kappa/2$), et comme le signal homodyne moyené sur l’intervalle de temps $[0, t]$ s’en déduit par intégration, ces variables aléatoires ont une statistique gaussienne et nous pouvons reproduire le raisonnement de la section 4.2.2. Nous trouvons pour la moyenne et la variance conditionnelles de la quadrature P_a du spin nucléaire sachant que $\sigma = S :$

$$
\langle P_a(t) |_{\sigma = S} \rangle = \frac{\langle \sigma(t) P_a(t) \rangle_{\text{stoch}}}{\langle \sigma^2(t) \rangle_{\text{stoch}}}
$$

$$
\text{Var}_{\sigma = S}(P_a) = \frac{1}{4} \left[\frac{\Omega_{\beta\beta}^2 c_{\text{ave}}(0)}{\Omega_{\beta\alpha}^2} \right] + \frac{1}{4} \left[\frac{\Omega_{\beta\beta}^2 c_{\text{ave}}(t)}{\Omega_{\alpha\beta}^2} \right] + \frac{1}{4} \left[\frac{\Omega_{\alpha\beta}^2 c_{\text{ave}}(t)}{\Omega_{\beta\alpha}^2} \right] - \frac{1}{4} \left[\frac{(\sigma(t) P_a(t))_\text{stoch}^2}{\langle \sigma^2(t) \rangle_{\text{stoch}}^2} \right]
$$

(82)

(83)

L’expression entre crochets dans l’équation (83) est l’élément de matrice de $\overline{c(t)}$ dans le vecteur $(\Omega_{\beta\beta}/\Omega_{\alpha\beta} - \Omega_{\alpha\beta}/\Omega_{\gamma\gamma}, 0)$ des coordonnées de la direction a dans la base tournée. Le premier terme au second membre est donc la variance

14. On remarque que les termes quadratiques en u au second membre de (72) se compensent avec ceux de $(dS)^2/2$ au premier membre.
15. On peut donc retrouver l’équation (74) à partir de l’équation stochastique déduite de (53) sur la moyenne d’une observable O, $d\langle O \rangle = (d\langle O \rangle)_{\text{stoch}} + (d\langle O \rangle)_{\text{ch}} + (d\langle O \rangle)_{\text{ch}} + (d\langle O \rangle)_{\text{ch}} + (d\langle O \rangle)_{\text{ch}}$ en spécialisant aux cas $O = P_a, O = P_b$ et $O = X_c$.
quantique de P_a dans l’état stochastique $\phi(t)$, dépendant du temps mais, rappelons-le, indépendante de la réalisation particulière de $\phi(t)$. L’expression simplifiée au troisième membre découle de la propriété (20) sur la moyenne non conditionnelle ($P_a^2(t) = 1/4$) et de la chaîne d’égalités

$$
\langle P_a(t) \rangle = \langle \langle \phi(t) | P_a^2(t) | \phi(t) \rangle \rangle_{\text{stoch}} = \langle \langle \phi(t) | P_a^2(t) | \phi(t) \rangle \rangle_{\text{stoch}}^2 + \langle \langle \phi(t) | P_a^2(t) | \phi(t) \rangle \rangle_{\text{stoch}} = \langle \langle \phi(t) | P_a^2(t) | \phi(t) \rangle \rangle_{\text{stoch}}^2 + \langle \langle \phi(t) | P_a^2(t) | \phi(t) \rangle \rangle_{\text{stoch}}
$$

Il reste, pour déterminer les dérivarice et covariance des variables aléatoires $\tilde{P}_a(t)$ et $\sigma(t)$, à calculer leurs amplitudes sur les processus stochastiques $d\delta\gamma(t')$ et $d\delta\gamma(t')$, en intégrant formellement l’équation (74) par la méthode de variation de la constante pour P_a et \tilde{X}, et en procédant comme dans l’équation (67) pour σ :

$$
\rho(t,t') = \frac{1}{2} \left(\frac{c_{\delta\gamma}(t') + \Omega_{\delta\gamma}}{\Omega_{\delta\gamma}} [1 - c_{\delta\gamma}(t')] e^{-\lambda(t-t')/2} \right)
$$

$$
\sigma(t,t') = \left(\frac{\gamma(t,t')}{2t} \right) \left[-c_{\delta\gamma}(t') [t-t' - f_s(t-t')] \Omega_{\delta\gamma} + [1 - c_{\delta\gamma}(t')] f_{\delta\gamma}(t-t') - f_s(t-t') \right]
$$

où $f_s(t) \equiv [1 - \exp(-\lambda t/2)]/(\lambda/2)$. On obtient :

$$
\langle \sigma(t,\tilde{P}_a(t)) \rangle_{\text{stoch}} = \int_0^\infty dt' \left[p^r(t,t') \sigma(t,t') + p_c(t,t') \sigma_c(t,t') \right]
$$

$$
\langle \tilde{P}_a^2(t) \rangle_{\text{stoch}} = \int_0^\infty dt' \left[p^r(t,t') + p_c(t,t') \right]
$$

On déduit de ces résultats les limites aux temps longs :

$$
\langle P_a \rangle_{\sigma=\tilde{S}} \rightarrow \frac{\gamma_m}{\gamma_f + \gamma_m} \left(\frac{S}{\Gamma_{sq}^2} \right)^{1/2} ; \quad \text{Var}_{\sigma=\tilde{S}}(P_a) \rightarrow \frac{1}{4} \frac{\gamma_f}{\gamma_f + \gamma_m} \text{ avec lesquelles les prédictions (69) du modèle à un mode, pourtant obtenues dans la limite de couplage faible (22), sont en accord parfait.}
$$

En application de notre solution analytique du modèle à trois modes, faisons tendre le taux Γ_{sq} vers zéro à temps réduit $\tau = \Gamma_{sq} t$ fixé en maintenant (contrairement au modèle à un mode) le rapport Γ_{sq}/γ_j à une valeur constante non infinitésimalement. La motivation physique est claire : dans les expériences projetées [10], γ_j et Γ_{sq} sont du même ordre de grandeur mais sont vraiment beaucoup plus petits que γ_m et κ (par des facteurs $\approx 10^{-6}$ et 10^{-8}). Nous trouvons dans cette limite :

$$
\langle P_a \rangle_{\sigma=S} \sim \frac{\Gamma_{gen}}{1 + \Gamma_{gen}^2} \frac{S}{\Gamma_{sq}^2} ; \quad \text{Var}_{\sigma=S}(P_a) \sim \frac{1}{4} \frac{1}{1 + \Gamma_{gen}^2} \text{ avec}
$$

16. Donnons quelques résultats et considérations intermédiaires. (i) Alors que $c_{\delta\gamma}(t')$, $c_{\delta\gamma}(t')$ et $c_{\delta\gamma}(t')$ ont une limite finie lorsque $t' \rightarrow +\infty$ (ou aura besoin de $c_{\delta\gamma}(\infty) = (1 + \mu)^{-1}$, $c_{\delta\gamma}(\infty) = \Omega_{\delta\gamma}/(\gamma_f + \kappa)(1 + \mu)$) avec $\rho = \Gamma_{sq}(\gamma_f + \kappa)^2$, $c_{\delta\gamma}(t')$, $c_{\delta\gamma}(t')$ et $c_{\delta\gamma}(t')$ tendent vers zéro comme $1/t'$. (ii) Dans une intégrale sur t' contenant le facteur exponentiel $\exp(-\lambda(t-t')/2)$ ou son carré, on peut remplacer la fonction qui le multiplie par sa limite en $t' = +\infty$. (iii) Pour toute fonction uniformément bornée $w(t,t')$, on peut montrer pour $\nu \in [\beta, c]$ que $\int_0^\infty dt' [t-t']/c_{\delta\gamma}(t')$ et $w(t,t')$ tendent vers zéro comme $1/t'$. (iv) On obtient alors les limites asymptotiques ($P_a^2(t)_{\text{stoch}} = (\Omega_{\delta\gamma}/2\Omega_{\delta\gamma}^2 t + \Omega_{\delta\gamma}/2\Omega_{\delta\gamma}^2 t + (1 + \mu), \sigma^2(t)_{\text{stoch}} = (\Omega_{\delta\gamma}^2/(4\kappa) t + \sigma^2(t)_{\text{stoch}})$ $\rightarrow (\Omega_{\delta\gamma}^2/(4\kappa) t + \sigma^2(t)_{\text{stoch}})$ $\rightarrow (\Omega_{\delta\gamma}^2/(4\kappa) t + \sigma^2(t)_{\text{stoch}})$). Nous déduisons ainsi (90) de (82) et de la première égalité dans (83), sans avoir besoin de connaître la valeur de \tilde{X}. On tire de la seconde égalité dans (83) le résultat $\tilde{X} = 1$, que l’on peut déduire aussi de l’équation du mouvement $\tilde{c}_{\delta\gamma}/\gamma_f = -\kappa_{\delta\gamma}$, intégrée entre $t = 0$ et $t = +\infty$.

17. En pratique, il suffit de faire tendre Ω_a vers zéro à $\tau = \Gamma_{sq} t > 0$, γ_f, γ_f et κ fixés. En particulier, ceci fait disparaître tous les transfertos expérentiels. Pour simplifier les calculs, il est utile d’introduire la quantité $\rho = \Omega_{\delta\gamma}^2/(2\mu)(\gamma_f + 2\gamma_m^2) t$ si bien que $\rho = (\Gamma_{sq}/2\gamma_f)/(1 + 2\gamma_m/\kappa)$ dans la limite $\gamma_f \rightarrow 0$.

19
où l’on a introduit le taux de compression vrai ou généralisé

\[\Gamma_{sq}^{\text{gen}} \equiv \left(\frac{1}{\Gamma_{sq}} + \frac{2}{\gamma_f} \right)^{-1} \] \hspace{1cm} (92)

On retrouve l’adimensionnement naturel du signal par \(\Gamma_{sq}^{1/2} \) déjà constaté dans le modèle à un mode et les mêmes formes fonctionnelles en temps, mais on perd toute relation de proportionnalité de type (68), la variance conditionnelle de \(\bar{P}_a \) étant désormais \(\neq 0 \). \(^{18}\) Nous représentons sur la figure 7c la dépendance en le temps adimensionné \(\gamma_f t \) de la moyenne et de la variance conditionnelles (91) pour différentes valeurs du rapport \(r = 2\Gamma_{sq}/\gamma_f \). On remarque que le processus de compression est d’autant plus rapide que \(r \) est plus grand, et qu’il sature à un comportement limite. C’était prévisible, car \(\Gamma_{sq}^{\text{gen}} \) est une fonction croissante de \(r \) de limite finie ; à temps fixé, la moyenne conditionnelle (en unités de \(S/\Gamma_{sq}^{1/2} \)) est donc une fonction croissante et la variance conditionnelle une fonction décroissante de \(r \), comme on le voit sur la figure 7c. Plus précisément, dans la limite de couplage faible \(\Omega \to 0 \), où \(r \to 0 \), le taux de compression généralisé est équivalent au taux \(\Gamma_{sq} \) en accord avec le modèle à un mode, et dans la limite \(r \to +\infty \), il sature à la valeur \(\gamma_f/2 \). On ne peut donc prêter plus rapidement qu’au taux \(\gamma_f \), ce qui n’est pas surprenant : on ne peut espérer réduire les fluctuations du spin nucléaire avant que chaque atome dans l’état fondamental n’ait subi en moyenne au moins une collision d’échange de métabastabilité.

4.2.4. Effet de la décohérence

Pour être complets, nous tenons compte, dans le schéma de compression homodyne, de la durée de vie finie \((2\gamma_0)^{-1}\) des atomes métastables, qui se déséctent lorsqu’ils atteignent les parois de la cellule après un mouvement diffusif dans la vapeur. À cette fin, nous ajoutons un opérateur de saut \(\sqrt{2\gamma_0} b \) à l’équation pilote à trois modes (19). Comme la partie autre qui Hamiltonienne hermitienne reste quadratique en les quadratures des modes, elle peut être mise sous forme réduite par une rotation appropriée des modes atomiques, comme nous l’avions fait déjà dans la section 3.4 : il faut décomposer \((a, b)\) dans la base propre orthonormale de la matrice des taux

\[\Gamma = \begin{pmatrix} 2\gamma_f & -2\sqrt{\gamma_f \gamma_m} \\ -2\sqrt{\gamma_f \gamma_m} & 2(\gamma_0 + \gamma_m) \end{pmatrix} \] \hspace{1cm} (93)

avec des coefficients à valeur opérateur \(\alpha \) et \(\beta \). La direction \(\beta \) reste celle de la valeur propre maximale \(\gamma_\beta \) de \(\Gamma \), et \(\alpha \) celle de la valeur propre minimale \(\gamma_\alpha \), désormais non nulle. Ceci conduit à l’équation pilote

\[\frac{d\rho}{dt} = \frac{1}{\hbar} \left[i(\Omega_a P_a + \Omega_\beta P_\beta) P_c, \rho \right] + \kappa \left(\rho_\alpha + \frac{1}{2} \rho_\beta \right) \] \hspace{1cm} (94)

La nouvelle expression des pulsations de Faraday \(\Omega_a, \Omega_\beta \) et des taux \(\gamma_\alpha, \gamma_\beta \) se trouve dans l’Annexe B, qui donne aussi l’expression analytique de la moyenne et de la variance de la quadrature \(P_a \) du spin nucléaire conditionnées au signal homodyne intégré, en toute généralité. Nous nous restreignons ici à la limite physiquement utile \(\gamma_0 \ll \gamma_m \) (on a toujours \(\gamma_f < \gamma_m \)). À l’ordre le plus bas en \(\gamma_0 \), les coefficients \(\Omega_a, \Omega_\beta \) et \(\gamma_\beta \) restent inchangés, et l’on a

\[\gamma_\alpha \approx \frac{2\gamma_0 \gamma_f}{\gamma_m + \gamma_f} \] \hspace{1cm} (95)

ce qui n’est autre que le taux de décohérence ramené dans le spin nucléaire hybridé. De plus, nous nous plaçons dans la limite (22), avec \(\gamma_\alpha = O(\Gamma_{sq}) \), ce qui permet d’évaluer l’effet de la décohérence en utilisant le modèle à un mode, dont l’obtention reste la même que dans la section 3.4. L’équation stochastique (56) est complétée comme suit,

\[d\phi(t) = -\frac{\Gamma_{sq} dr}{2} (P_a - \bar{P}_a)^2 |\phi(t)| \] \hspace{1cm} (96)

18. On a en effet \(\text{Var}_{\alpha \beta}(\bar{P}_a) = \Gamma_{sq}^{\text{gen}} / [4(1 + \Gamma_{sq}^{\text{gen}})] - \Gamma_{sq}^{\text{gen}} / [4(1 + \Gamma_{sq}^{\text{gen}})^2] \).
Nous avons pris soin de choisir $\gamma^{1/2} \alpha$ comme opérateur de saut de la décohérence ramenée (la justification est la même que dans la section 4.2.3. Les sauts de décohérence n’étant pas mesurés), ce qui permet de résoudre l’équation par le même ansatz gaussien réel (57). Nous trouvons cette fois

$$
\frac{du}{\Gamma_{sq}} = [\Gamma_{sq} + \gamma_\alpha (1 - u)] dt \quad \Rightarrow \quad u(t) = 1 + \frac{1 - \exp(-\epsilon \tau)}{\epsilon}
$$

(97)

$$
\frac{d\bar{P}_\alpha}{\gamma_\alpha} = -\frac{1}{2} \gamma_\alpha \bar{P}_\alpha dt + \frac{1}{2} \sqrt{\Gamma_{sq} d\zeta_\alpha + \sqrt{\gamma_\alpha u - 1}) d\zeta_\alpha}{2u}
$$

(98)

où nous avons posé $\tau = \Gamma_{sq} t$ et $\epsilon = \gamma_\alpha / \Gamma_{sq}$. Les mêmes arguments de gaussianité que dans la section 4.2.2 conduisent aux mêmes dépendances en le signal S de la moyenne et de la variance conditionnelles,19

$$
\langle P_\alpha \rangle_{\sigma = S} = m(\tau) \sqrt[4]{\Gamma_{sq}} \quad \text{avec} \quad m(\tau) = \frac{\sqrt{\Gamma_{sq} \langle \sigma(t) \bar{P}_\alpha(t) \rangle_{s\text{toch}}}}{\langle \sigma^2(t) \rangle_{s\text{toch}}}
$$

(99)

$$
\text{Var}_{\sigma = S}(P_\alpha) = V(\tau) \quad \text{avec} \quad V(\tau) = \frac{1}{4} \frac{\langle \sigma^2(t) \rangle_{s\text{toch}}}{\langle \sigma^2(t) \rangle_{s\text{toch}}}
$$

(100)

et les variance et covariance prises sur les processus stochastiques $d\zeta_\alpha$ et $d\zeta_\alpha$,

$$
\langle \sigma^2(t) \rangle_{s\text{toch}} = \frac{\int_0^\tau \int_0\tau \left(\frac{1}{2} \left(1 - e^{(\tau - \tau')/2} \right)^2 + \frac{[u(\tau') - 1]^2}{u(\tau')^2} \left[1 - e^{(\tau - \tau')/2} \right] \right) }{\epsilon \tau - 2(1 - e^{-\epsilon \tau/2}) + \frac{1}{4 \tau}}
$$

(101)

$$
\frac{\langle \sigma \bar{P}_\alpha \rangle_{s\text{toch}}}{\Gamma_{sq} \sqrt{\Gamma_{sq}}} = \frac{\int_0^\tau \int_0\tau \left(\frac{1}{2} \left(1 - e^{(\tau - \tau')/2} \right)^2 + \frac{[u(\tau') - 1]^2}{u(\tau')^2} \left[1 - e^{(\tau - \tau')/2} \right] \right) }{\epsilon \tau - 2(1 - e^{-\epsilon \tau/2}) + \frac{1}{4 \tau}}
$$

(102)

Ces expressions permettent d’évaluer facilement l’effet de la décohérence sur la compression de spin, voir les tirés sur la figure 7a. Pour le cas utile en pratique d’une faible décohérence $\epsilon \ll 1$ et d’un temps court devant $1/\gamma_\alpha$, elles peuvent être développées au premier ordre en ϵ :

$$
m(\tau) = \frac{\tau}{1 + \tau} - \epsilon \frac{(\tau + 3)^2}{12(\tau + 1)^2} + O(\epsilon^2) \quad ; \quad V(\tau) = \frac{1}{4(\tau + 1)} + \frac{\epsilon (\tau + 3/2)^2}{12(\tau + 1)^2} + O(\epsilon^2)
$$

(103)

On en déduit que la compression optimale sur P_α est obtenue à un temps $t_{opt} \sim (3/\Gamma_{sq} \gamma_\alpha)^{1/2}$ et correspond à une variance conditionnelle $V_{opt} \sim (\gamma_\alpha / 12 \Gamma_{sq})^{1/2}$. Remarquons qu’on introduit souvent, dans les études de compression de spin dans les gaz d’atomes alcalins en cavité, la coopérativité C du système couplé atome-champ, définie comme le carré de la pulsation de couplage divisé par les taux de décroissance des états couplés [26]. En ce sens, la coopérativité du système spin nucléaire hybride-champ vaut

$$
C \equiv \frac{\Omega_{sq}^2}{\gamma_\alpha} = \frac{\Gamma_{sq}}{\gamma_\alpha} \geq \frac{\Omega^2}{2\gamma_\alpha k}
$$

(104)

si bien que nous retrouvons la loi d’échelle d’exposant $-1/2$, habituelle dans les alcalins, reliant la variance de spin optimale à C [26]. Plus généralement, la décohérence a un effet faible sur la compression du spin nucléaire tant qu’on reste à des temps courts devant t_{opt}. Le lecteur trouvera en fin d’Annexe B une extension de ces lois d’échelle au-delà du modèle à un mode, c’est-à-dire pour un rapport Γ_{sq} / γ_f quelconque, non infinitésimal ; c’est elle qui a été retenue dans le résumé de l’article. Le lien entre V_{opt} et la coopérativité (104) est alors rompu.

Annexe A. Traitement semi-classique et réduction à trois spins couplés

Nous donnons ici les équations non linéaires qui décrivent la dynamique du système dans la théorie semi-classique, et nous les linéarisons pour de faibles fluctuations autour d’une solution stationnaire partiellement polarisée.

19. Nous avons simplifié l’expression (100) à l’aide de l’identité $[4u(\tau)]^2 + \langle \bar{P}^2 \rangle_{s\text{toch}} = 1/4$, qui résulte comme dans l’équation (84) du fait que la moyenne inconditionnelle $\langle \bar{P}^2 \rangle = 1/4$, même en présence de décohérence.
Équations semi-classiques non linéaires. En partant des considérations et des notations de la section 2, nous prenons la moyenne des équations du mouvement de Heisenberg dans l’état quantique du système et effectuons l’approximation de décorrélation (dite semi-classique en optique quantique) \((AB) = \langle A \rangle \langle B \rangle\) où \(A\) et \(B\) sont deux opérateurs, pour obtenir les équations d’évolution non linéaires suivantes sur les moyennes de \(\vec{S}\) spin de Stokes du champ lumineux en cavité, \(\vec{I}\) spin nucléaire collectif dans l’état fondamental, \(\vec{J}\) et \(\vec{K}\) spins collectifs associés aux multiplicités \(F = 3/2\) et \(F = 1/2\) dans l’état métastable, et \(\vec{Q}\) tenseur d’alignement collectif dans \(F = 3/2\), de composantes cartésiennes \(Q_{\alpha\beta}\) :

\[
\begin{align*}
\frac{d\langle S_+ \rangle}{dt} & = -\frac{\kappa}{2} \left(\langle S_+ \rangle - \frac{\eta_{ph}}{2}\right) - \chi(K_z)\langle S_+ \rangle, \\
\frac{d\langle K_z \rangle}{dt} & = -\frac{\kappa}{2} \langle K_z \rangle + \chi(J_z)\langle K_z \rangle, \\
\frac{d\langle J_z \rangle}{dt} & = -\frac{\kappa}{2} \langle J_z \rangle + \chi(K_z)\langle J_z \rangle, \\
\frac{d\langle Q_{\alpha\beta} \rangle}{dt} & = -\frac{\kappa}{2} \langle Q_{\alpha\beta} \rangle + \chi(K_z)\langle Q_{\alpha\beta} \rangle.
\end{align*}
\]

Les termes proportionnels au taux de perte \(\kappa\) des miroirs de la cavité font relaxer \(\langle S_+ \rangle\) vers sa valeur stationnaire \(\langle S_+ \rangle_s = \eta_{ph}/2\) forcée par le champ laser polarisé selon \(Ox\) injecté dans la cavité, et les moyennes transverses \(\langle S_z \rangle\) et \(\langle J_z \rangle\) vers zéro. Les termes proportionnels au couplage de Faraday \(\chi\) entre le mode de cavité et le spin \(\vec{K}\) dérivent de l’hamiltonien (2). La contribution des collisions d’échange de métastabilité (ECH) entre atomes fondamentaux et métastables se déduit directement de l’équation pilote sur l’opérateur densité à un atome des références \([13, 14]\) par simple multiplication ou division par le nombre total de fondamentaux \(N_{\text{cell}}\) ou métastables \(n_{\text{cell}}\) dans la cellule :

\[
\begin{align*}
\frac{d\langle \vec{K} \rangle}{dt}_{\text{ECH}} & = \frac{7}{9\tau} (\vec{K}) + \frac{10}{9\tau} \langle \vec{J} \rangle - \frac{1}{9\tau} n_{\text{cell}} \langle \vec{I} \rangle - \frac{4}{3\tau n_{\text{cell}}} \frac{1}{2} \langle \vec{Q} \rangle_{\alpha\beta} \langle \vec{I} \rangle \\
\frac{d\langle \vec{J} \rangle}{dt}_{\text{ECH}} & = \frac{4}{3\tau} \langle \vec{Q}_{\alpha\beta} \rangle + \frac{1}{9\tau} n_{\text{cell}} \langle \vec{I} \rangle + \frac{4}{3\tau n_{\text{cell}}} \frac{1}{2} \langle \vec{Q} \rangle_{\alpha\beta} \langle \vec{I} \rangle \\
\frac{d\langle \vec{Q}_{\alpha\beta} \rangle}{dt}_{\text{ECH}} & = -\frac{4}{3\tau} \langle \vec{Q}_{\alpha\beta} \rangle + \frac{1}{9\tau} n_{\text{cell}} \langle \vec{I} \rangle + \frac{4}{3\tau n_{\text{cell}}} \frac{1}{2} \langle \vec{Q} \rangle_{\alpha\beta} \langle \vec{I} \rangle \\
\frac{d\langle \vec{J} \rangle}{dt}_{\text{ECH}} & = \frac{1}{T} \langle \vec{I} \rangle + \frac{1}{3T} n_{\text{cell}} \langle \vec{I} \rangle.
\end{align*}
\]

où \(\langle \vec{S} \rangle = \frac{1}{2} \left[\langle \vec{J} \rangle + 2\langle \vec{K} \rangle \right]\) est la valeur moyenne du spin électronique dans l’état métastable. On se reportera aux équations (1.37b), (1.37a), (1.39) et (1.25) de la référence \([14]\) (en tenant compte d’un écart d’un facteur 6 sur la définition du tenseur d’alignement), ou aux équations (VIII.30), (VIII.29), (VIII.32) et (VIII.15) (en ajoutant un facteur de Koppencker \(\delta_{\alpha\beta}\) omis dans (VIII.32)). Ici \(1/\tau\) et \(1/T\), les taux individuels des collisions d’échange de métastabilité subies par un atome dans l’état métastable et dans l’état fondamental, sont dans le rapport \(T/\tau = N_{\text{cell}}/n_{\text{cell}}\) puisque, dans l’unité de temps, un nombre égal d’atomes fondamentaux et d’atomes métastables ont subi une collision d’échange \([13, 14]\).

Solution stationnaire partiellement polarisée. Dans un état stationnaire polarisé de polarisation nucléaire \(\eta \in [0, 1]\),

\[
\langle I_x \rangle_s = \frac{N_{\text{cell}}}{2} \quad ; \quad \langle I_y \rangle_s = \langle I_z \rangle_s = 0 \quad ; \quad \langle S_+ \rangle_s = \frac{\eta_{ph}}{2} \quad ; \quad \langle S_+ \rangle_s = \langle S_+ \rangle_s = 0 \quad (A.8)
\]

l’invariance par rotation d’axe \(Ox\) contraint les spins moyens à être alignés selon \(Ox\), et le tenseur d’alignement moyen à être diagonal dans la base cartésienne, avec des valeurs propres égales selon les directions \(Oy\) et \(Oz\). Le système \((A.1)-(A.3)\) admet ainsi une solution stationnaire avec comme seules moyennes non nulles dans l’état métastable :

\[
\begin{align*}
\langle K_z \rangle_s = \frac{\eta}{2} \frac{1 - \eta^2}{3 + \eta^2} n_{\text{cell}} \quad ; \quad \langle J_z \rangle_s = \frac{5 + \eta^2}{3 + \eta^2} n_{\text{cell}} \quad ; \quad \langle \Sigma_\alpha \rangle_s = \frac{4\eta}{3 + \eta^2} n_{\text{cell}} \quad ; \quad \langle Q_{\alpha\beta} \rangle_s = \langle Q_{\alpha\beta} \rangle_s = -\frac{1}{2} \langle Q_{\alpha\beta} \rangle_s = -\frac{\eta}{12} \langle \Sigma_\alpha \rangle_s
\end{align*}
\]

\(20\) Les moyennes collectives sont en effet reliées comme suit aux moyennes à un atome \(\langle \cdot \rangle_{\text{at}}\) :

\[
\langle I \rangle_{\text{at}} = N_{\text{cell}} \langle I \rangle_{\text{at}} \quad ; \quad \langle J \rangle_{\text{at}} = n_{\text{cell}} \langle J \rangle_{\text{at}} \quad ; \quad \langle K \rangle_{\text{at}} = n_{\text{cell}} \langle K \rangle_{\text{at}} \quad ; \quad \langle Q \rangle_{\text{at}} = n_{\text{cell}} \langle Q \rangle_{\text{at}}.
\]
Équations semi-classiques linéarisées. On linéarise maintenant les équations (A.1)-(A.3) en les fluctuations classiques autour de la solution stationnaire (A.8)-(A.9) en effectuant la substitution \(A \to \langle A \rangle_0 + \delta A \) et en traitant \(\delta A \) au premier ordre. En nous limitant au sous-espace des fluctuations transverses, c’est-à-dire aux directions \(\alpha = \gamma, \zeta \) orthogonales aux spins moyens, nous obtenons un système fermé :

\[
\begin{align*}
\frac{d}{dt} \delta S_\alpha &= -\frac{\kappa}{2} \delta S_\alpha + \chi \delta \langle S \rangle_0 \delta K_\varepsilon \\
\frac{d}{dt} \delta K_\alpha &= -\frac{7}{9 \tau} \delta K_\alpha + \frac{1}{9 \tau} \delta J_\alpha - \frac{2 \eta}{3 \tau} \delta \langle Q_{\alpha \alpha} \rangle - \frac{1}{9 \tau} \left(1 + \frac{12}{n_{\text{cell}}} \langle Q_{\alpha \alpha} \rangle_0 \right) \delta I_\alpha + \chi \delta \langle K \rangle_0 \delta S_\varepsilon \\
\frac{d}{dt} \delta J_\alpha &= -\frac{4}{9 \tau} \delta J_\alpha + \frac{10}{9 \tau} \delta K_\alpha + \frac{2 \eta}{3 \tau} \delta \langle Q_{\alpha \alpha} \rangle + \frac{10}{9 \tau} \left(1 + \frac{6}{5 n_{\text{cell}}} \langle Q_{\alpha \alpha} \rangle_0 \right) \delta I_\alpha \\
\frac{d}{dt} \delta \langle Q_{\alpha \alpha} \rangle &= -\frac{2}{3 \tau} \delta \langle Q_{\alpha \alpha} \rangle + \frac{\eta}{12 \tau} \delta \langle S \rangle_0 + \frac{1}{6 \tau n_{\text{cell}}} \langle \Sigma \rangle_0 \delta I_\alpha \\
\frac{d}{dt} \delta I_\alpha &= -\frac{1}{\tau} \delta I_\alpha + \frac{1}{3 \tau} (\delta J_\alpha - \delta K_\alpha)
\end{align*}
\]

Rédéction à trois spins collectifs couplés. En posant \(\frac{d}{dt} \delta I_\alpha = 0 \) dans l’équation (A.12) et \(\frac{d}{dt} \delta \langle Q_{\alpha \alpha} \rangle = 0 \) dans l’équation (A.13), nous éliminons adiabatiquement les fluctuations du spin collectif \(\vec{J} \) et du tenseur d’alignement collectif dont les évolutions sont réglées par l’échange de métastabilité uniquement :

\[
\delta J_{\alpha \beta}^{\text{adiab}} = 2 \frac{10 + \eta^2}{8 - \eta^2} \delta K_\alpha + \frac{12 \tau}{F} \left(\frac{5 + 2 \eta^2}{8 - \eta^2} - \frac{1}{12 \tau} \right) \delta I_\alpha ; \quad \delta Q_{\alpha \alpha}^{\text{adiab}} = \frac{3 \eta}{8 - \eta^2} \delta K_\alpha + \frac{\tau}{F} \left(\frac{\eta(13 + \eta^2)}{8 - \eta^2} - \frac{2}{8 - \eta^2} \right) \delta I_\alpha
\]

Le report des expressions adiabatiques (A.15) dans les équations (A.11) et (A.14) sur \(\delta K_\alpha \) et \(\delta I_\alpha \) conduit dans le corps de l’article au système réduit (5)-(7) couplant les fluctuations des trois spins (3), où \(\gamma_f \) et \(\gamma_m \), les taux effectifs d’échange de métabilité entre le spin nucléaire et le spin \(F = 1/2 \) du métabliable, sont donnés par la manipulation (8).

Annexe B. Solution du modèle à trois modes avec décohérence pour la détéction homodyne

Nous donnons ici la solution analytique du modèle à trois modes en présence de décohérence, voir l’équation pilote (94), pour une évolution du système conditionnée à une mesure homodyne en continu du champ sortant de la cavité. La valeur des coefficients \(\gamma_\alpha \), \(\gamma_\beta \), \(\Omega_\alpha \) et \(\Omega_\beta \), ainsi que des opérateurs d’annihilation \(\alpha \) et \(\beta \), se déduit d’une diagonalisation de la matrice des taux (95). Les taux \(\gamma_\alpha \) et \(\gamma_\beta \) en sont les valeurs propres rangées par ordre croissant :

\[
\gamma_{\alpha,\beta} = \gamma_m + \gamma_f + \gamma_0 \pm [(\gamma_m + \gamma_f + \gamma_0)^2 - 4 \gamma_f \gamma_0]^{1/2}
\]

En termes des pulsations de Faraday \(\Omega_\alpha \) et \(\Omega_\beta \), les vecteurs propres normalisés correspondants s’écrivent (\(\Omega_\beta / \Omega_\alpha \), \(\Omega_\alpha / \Omega_\beta \)) et (\(-\Omega_\beta / \Omega_\alpha \), \(\Omega_\beta / \Omega_\alpha \)), si bien que \(\alpha = (\Omega_\alpha a + \Omega_\beta b) / \Omega \) et \(\beta = (\Omega_\beta b - \Omega_\alpha a) / \Omega \) avec :

\[
\Omega_\alpha = \frac{\Omega (\gamma_f - \gamma_m/2)}{\sqrt{\gamma_m \gamma_f + (\gamma_f - \gamma_m/2)^2}} \quad ; \quad \Omega_\beta = \frac{\Omega \sqrt{\gamma_m \gamma_f}}{\sqrt{\gamma_m \gamma_f + (\gamma_f - \gamma_m/2)^2}}
\]

dans un choix de signe assurant que \(\alpha \to a \) et \(\beta \to b \) lorsque \(\gamma_f \to 0 \) et reproduisant (25) lorsque \(\gamma_m \to 0 \). Puisque l’opérateur de saut \(C_\alpha \propto \alpha \) décrit des processus non mesurés, nous pouvons, comme nous l’avons fait pour \(C_\beta \), le prendre de la forme \(\sqrt{\gamma_m} \mathcal{A} \) et réutiliser l’ansatz gaussien réel (70) afin de résoudre l’équation stochastique (53) sur le vecteur d’état. Dans l’équation d’évolution sur la matrice \(\mathcal{A} \), les indices \(\alpha \) et \(\beta \) jouent désormais des rôles symétriques et on obtient :

\[
\begin{align*}
\frac{d}{dt} \mu_{\alpha \alpha} &= -\Omega_\alpha \mu_{\alpha \alpha} + \gamma_\alpha \mu_{\alpha} (1 - \mu_{\alpha}) \\
\frac{d}{dt} \mu_{\alpha \beta} &= -\frac{\gamma_f}{2} \left[\gamma_m + \gamma_f \right] \mu_{\alpha \beta} + \Omega_\beta \mu_{\alpha \beta} + \Omega_\alpha \mu_{\beta \alpha} - \gamma_f \frac{1}{2} \left[\gamma_m - \gamma_f \right] \mu_{\alpha \beta} + \Omega_\beta \mu_{\beta \alpha} \\
\frac{d}{dt} \mu_{\beta \beta} &= -\Omega_\beta \mu_{\beta \beta} + \gamma_\beta \mu_{\beta \beta} (1 - \mu_{\beta}) \\
\mu_{\beta \alpha} &= -\frac{\gamma_f}{2} \left[\gamma_m + \gamma_f \right] \mu_{\beta \alpha} + \Omega_\alpha \mu_{\beta \alpha} + \Omega_\beta \mu_{\alpha \beta}
\end{align*}
\]

(8.3)
dont la solution pour la condition initiale $u(0) = \text{Id}$ s’écrit
\[
u_\alpha(t) = 1 + \frac{2\Omega^2}{\gamma_\alpha(k + \gamma_\alpha)} \left(e^{-\gamma_\alpha t} - e^{-(\gamma_\alpha + \gamma_\beta)t/2} \right)
\] (B.4)
\[
u_\beta(t) = \frac{\Omega_\alpha\Omega_\beta}{\gamma_\alpha + \gamma_\beta} \left(\frac{1}{k + \gamma_\alpha} + \frac{1}{k + \gamma_\beta} \right) \left(e^{-\gamma_\alpha t} - e^{-(\gamma_\alpha + \gamma_\beta)t/2} \right) + \frac{\Omega_\alpha\Omega_\beta}{(k - \gamma_\alpha)(k + \gamma_\beta)} \left(e^{-(\gamma_\alpha + \gamma_\beta)t/2} - e^{-\gamma_\alpha t} \right)
\] (B.5)
\[
u_c(t) = -\frac{\Omega_\alpha}{k + \gamma_\alpha} \left(1 - e^{-(\gamma_\alpha + \gamma_\beta)t/2} \right)
\] (B.6)
\[
u_\beta(t) = 1 + \frac{2\Omega^2}{\gamma_\beta(k + \gamma_\beta)} \left(e^{-\gamma_\beta t} - e^{-\gamma_\beta t} \right) - \frac{2\Omega^2}{\gamma_\alpha - \sqrt{\gamma_\alpha}} \left(e^{-(\gamma_\alpha + \gamma_\beta)t/2} - e^{-\gamma_\alpha t} \right)
\] (B.7)
\[
u_c(t) = -\frac{\Omega_\alpha}{k + \gamma_\beta} \left(1 - e^{-(\gamma_\alpha + \gamma_\beta)t/2} \right)
\] (B.8)
\[
u_c(t) = 1
\] (B.9)

Le vecteur des coordonnées moyennes \bar{q} obéit à l’équation stochastique
\[egin{equation}
\begin{aligned}
\frac{d\bar{q}}{dt} = & \frac{1}{2} \begin{pmatrix}
-\gamma_\alpha & 0 & 0 \\
0 & -\gamma_\beta & 0 \\
\Omega_\alpha & \Omega_\beta & -\kappa
\end{pmatrix} \frac{d\bar{q}}{dt} + \frac{1}{2} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} \Omega_\alpha \\
\Omega_\beta \\
-\kappa
\end{pmatrix} \right) (t) \right)
\end{aligned}
\end{equation}
\] (B.10)

La moyenne non conditionnelle $\langle P^2 \rangle$ valant toujours $1/4$, la moyenne et la variance de P_a conditionnées au signal homodyne intégré restent données par les équations (82) et (83), en généralisant les expressions (89) desvariances et covariances des variables aléatoires $P_a(t)$ et $\sigma(t)$ au cas de trois processus stochastiques indépendants $\Delta\tilde{c}_a(t')$, $\Delta\tilde{c}_b(t')$ et $\Delta\tilde{c}_c(t')$ comme suit :
\[
\langle \sigma(t) \tilde{P}_a(t) \rangle_{\text{stoch}} = \int_0^t dt' \sum_{\nu \in \{a,b,c\}} p_{\nu}(t,t') \sigma_\nu(t,t') ; \quad \langle \sigma^2(t) \rangle_{\text{stoch}} = \int_0^t dt' \sum_{\nu \in \{a,b,c\}} \sigma_\nu^2(t,t')
\] (B.11)

avec les expressions compactes des amplitudes correspondantes
\[
p_{\nu}(t,t') = (-1)^{\delta_{\nu c}} \frac{\sqrt{\gamma_{\nu}}}{2t} \left[\Omega_\nu e^{-\gamma_{\nu}(t-t'/2)} \left[\delta_{\nu c} - c_{\nu}(t') \right] - \Omega_\nu e^{-\gamma_{\nu}(t'-t)/2} \left[\delta_{\nu c} - c_{\nu}(t') \right] \right]
\] (B.12)
\[
\sigma_\nu(t,t') = \frac{\delta_{\nu c}}{2t} + (-1)^{\delta_{\nu c}} \frac{\sqrt{\gamma_{\nu}}}{2t} \left[\delta_{\nu c} - c_{\nu}(t') \right] f_{\nu}(t - t') + \sum_{\mu \in \{a,b\}} \frac{\Omega_\mu}{k - \gamma_\mu} \left[\delta_{\nu c} - c_{\nu}(t') \right] \left[f_{\nu}(t - t') - f_{\nu}(t - t') \right]
\] (B.13)

L’indice ν court sur les trois valeurs α, β, c et l’on a posé $\gamma_c = \kappa$. La fonction δ est celle de Kronecker, et la fonction f_ν est la même que dans les équations (85)-(88).

La solution générale que nous venons d’exposer comporte les cinq taux γ_α, $\Gamma_{q\nu} = \Omega_\nu^2/\kappa$, γ_f d’une part, γ_β, κ d’autre part. Le régime pertinent expérimentalement est celui où les deux derniers sont « infiniment » plus grands que les trois premiers et ne contribuent qu’au travers de régimes transitoires inobservables. Mathématiquement, on accède à cette limite en faisant tendre γ_β vers zéro à k, γ_ν, γ_f et κ fixés et à $\tau = \Gamma_{q\nu} > 0$ fixé. Alors les trois premiers taux tendent conjointement vers zéro, c’est-à-dire dans des rapports de limite finie et non nulle $\Gamma_{q\nu}/\gamma_f \rightarrow \Omega_\nu^2/\kappa(k(\gamma_\nu + \gamma_\nu)^2)$ et $\gamma_\nu/\gamma_f \rightarrow 2\gamma_\nu/(\gamma_\nu + \gamma_\nu)$, le taux γ_f se réduit à $\tau \equiv 2(\gamma_\nu + \gamma_\nu)$ et le couplage de Faraday $\Omega_\nu \rightarrow \kappa$. Tous les transitoires exponentiels disparaissent dans les éléments de matrice (B.4)-(B.8) de c sauf ceux relaxant au taux γ_ν. Les amplitudes
et (B.13) sur les processus stochastiques se réduisent à
\[
\frac{p_\alpha(t,t')}{\sqrt{\Gamma_{sq}}} = u(\tau') - \frac{1}{2} u(\tau') \sqrt{2 \epsilon} e^{-\epsilon\tau'/2}
\]
(B.14)
\[
\frac{\sigma_\alpha(t,t')}{\Gamma_{sq}} = \frac{u(\tau')}{\tau u(\tau')} \sqrt{\frac{1 - e^{-\epsilon\tau'/2}}{\epsilon}}
\]
(B.15)
\[
\frac{p_\beta(t,t')}{\sqrt{\Gamma_{sq}}} = \sqrt{\rho} \frac{1}{1 + \rho} u(\tau') e^{-\epsilon\tau'/2}
\]
(B.16)
où \(\epsilon = \gamma_a / \Gamma_{sq} \) comme dans la section 4.2.4, la fonction \(u(\tau) \) est donnée par l’équation (97) et la notation \(\rho = \Omega^2 / [\gamma(\kappa + \gamma)^2] \) généralise celle de la note 17. Les relations (82) et (83) restent valables, avec les nouvelles expressions du variance et covariance
\[
\frac{\langle \sigma^2 \rangle_{\text{stoch}}}{\Gamma_{sq}} = \frac{\epsilon - 2(1 - e^{-\epsilon\tau'/2})}{\epsilon^2 \tau^2} + \frac{\Gamma_{sq}}{4 \tau \Gamma_{gen}^2} \quad \text{et} \quad \frac{\langle \sigma P_a \rangle_{\text{stoch}}}{\sqrt{\Gamma_{sq}}} = \frac{1 - e^{-\epsilon\tau'/2}}{2\epsilon \tau}
\]
(B.17)
et du taux de compression vrai ou généralisé
\[
\Gamma_{gen}^2 = \left[\frac{1}{\Gamma_{sq}} + \frac{2(\gamma_0 + \gamma_m)}{\gamma_f \gamma_m} \right]^{-1}
\]
(B.18)
qui reproduisent les variance et covariance (101) et (102) du modèle à un mode avec décroissance lorsque \(\Gamma_{sq}/\gamma_f \to 0 \) et le taux de compression généralisé (92) du modèle à trois modes sans décroissance lorsque \(\gamma_0 \to 0 \). Les nouveaux résultats peuvent être simplifiés dans la limite utile de faible décroissance ramenée \(\gamma_a / \Gamma_{sq} \to 0 \) par un développement à l’ordre un en \(\epsilon \), ce qui permet de généraliser comme suit les résultats (103) sur la moyenne et la variance conditionnelles à une valeur de \(\Gamma_{sq}^{gen}/\gamma_f \) non infinitésimaux :
\[
m(t) = \frac{\Gamma_{sq}^{gen} t}{1 + \Gamma_{sq}^{gen} t} - \frac{\gamma_a}{\Gamma_{sq}^{gen}} (3 + \Gamma_{sq}^{gen} t)(\Gamma_{sq}^{gen} t)^2 + O[(\gamma_a t)^3]
\]
(B.19)
\[
\mathcal{V}(t) = \frac{1}{4(1 + \Gamma_{sq}^{gen} t)} + \frac{\gamma_a}{\Gamma_{sq}^{gen} t} (\Gamma_{sq}^{gen} t + 3/2)(\Gamma_{sq}^{gen} t)^2 + O[(\gamma_a t)^3]
\]
(B.20)
Cette généralisation revient simplement à remplacer \(\tau \) par \(\Gamma_{sq}^{gen} t \) et \(\epsilon \) par \(\gamma_a / \Gamma_{sq}^{gen} \) dans les seconds membres de (103). \(^{21}\)
La compression optimale sur \(P_a \) est alors obtenue au bout d’un temps \(t_{opt} \sim (3/\Gamma_{sq}^{gen} \gamma_a)^{1/2} \) et correspond à une variance conditionnelle \(\text{Var}_{\sigma=3}(P_a) \sim (\gamma_a / 12 \Gamma_{sq}^{gen})^{1/2} \).

Références

[1] J. MacFall, H. Charles, R. Black, H. Middleton, J. Swartz, B. Saam, B. Driehuys, C. Erickson, W. Happer, G. Cates, G. Johnson, C. Ravin, « Human lung air spaces: potential for MR imaging with hyperpolarized He-3 », Radiology 200 (1996), p. 553.

[2] C. Gemmel, W. Heil, S. Karupak, K. Lenz, C. Ludvig, Y. Sobolev, K. Tullney, M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms, S. Baessler, « Ultra-sensitive magnetometry based on free precession of nuclear spins », Eur. Phys. J. D 57 (2010), p. 303.

[3] T. R. Gentile, P. J. Nacher, B. Saam, T. G. Walker, « Optically polarized \(^3\)He », Rev. Mod. Phys. 89 (2017), 045004.

[4] A. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, P. Treutlein, « Quantum metrology with nonclassical states of atomic ensembles », Rev. Mod. Phys. 90 (2018), 035005.

[5] A. Dantan, G. Reinaudi, A. Sinatra, F. Laloë, E. Giacobino, M. Pinard, « Long-Lived Quantum Memory with Nuclear Atomic Spins », Phys. Rev. Lett. 95 (2005), 123002.

\(^{21}\) Elle vaut en fait à tous les ordres en \(\epsilon \) puisque le remplacement proposé ne change pas la variance (toujours égal à \(\gamma_a t \)) et fait passer des équations (101) et (102) à l’équation (B.17).
[6] G. Reinaudi, A. Sinatra, A. Dantan, M. Pinard, « Squeezing and entangling nuclear spins in helium 3 », *Journal of Modern Optics* 54 (2007), p. 675.

[7] G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B. Chen, E. Polzik, « Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement », *Nature Phys* 11 (2015), p. 389.

[8] O. Hosten, N. J. Engelsen, R. Krishnakumar, M. A. Kasevich, « Measurement noise 100 times lower than the quantum-projection limit using entangled atoms », *Nature* 529 (2016), p. 505.

[9] M.-Z. Huang, J. A. de la Paz, T. Mazzoni, K. Ott, A. Sinatra, C. L. G. Alzar, J. Reichel, « Self-amplifying spin measurement in a long-lived spin-squeezed state », prépublication, arXiv:2007.01964 (2020).

[10] A. Serafin, M. Fadel, P. Treutlein, A. Sinatra, « Nuclear spin squeezing in Helium-3 by continuous quantum non-demolition measurement », prépublication, hal-03058456 (2020).

[11] O. Katz, R. Shaham, E. S. Polzik, O. Firstenberg, « Long-Lived Entanglement Generation of Nuclear Spins Using Coherent Light », *Phys. Rev. Lett.* 124 (2020), 043602.

[12] O. Katz, R. Shaham, O. Firstenberg, « Quantum interface for noble-gas spins », prépublication, arXiv:1905.12532 (2019).

[13] J. Dupont-Roc, « Étude de quelques effets liés au pompage optique en champ faible », Thèse, Université Paris VI, 1972.

[14] J. Dupont-Roc, M. Leduc, F. Laloe, « Contribution à l’étude du pompage optique par échange de métastabilité dans 3He. - Première Partie », *Journal de Physique* 34 (1973), p. 961.

[15] J. Cvikelinski, A. Dantan, J. Ortalo, M. Pinard, « Conditional squeezing of an atomic alignment », *Phys. Rev. A* 76 (2007), 033830.

[16] A. Kuzmich, L. Mandel, J. Janis, Y. E. Young, R. Ejnisman, N. P. Bigelow, « Quantum nondemolition measurements of collective atomic spin », *Phys. Rev. A* 60 (1999), p. 2346.

[17] Y. Castin, K. Mølmer, « Monte Carlo Wave-Function Analysis of 3D Optical Molasses », *Phys. Rev. Lett.* 74 (1995), p. 3772.

[18] K. Mølmer, Y. Castin, J. Dalibard, « Monte Carlo wave-function method in quantum optics », *J. Opt. Soc. Am. B* 10 (1993), p. 524.

[19] Y. Castin, J. Dalibard, K. Mølmer, « A Wave Function approach to dissipative processes », *AIP Conference Proceedings, Thirteenth International Conference on Atomic Physics* (édité par H. Walther, T.W. Hänsch, B. Neiziert), 275 (1992).

[20] H. M. Wiseman, G. J. Milburn, « Quantum theory of field-quadrature measurements », *Phys. Rev. A* 47 (1993), p. 642.

[21] Yun Li, Y. Castin, A. Sinatra, « Optimum Spin Squeezing in Bose-Einstein Condensates with Particle Losses », *Phys. Rev. Lett.* 100 (2008), 210401.

[22] L. K. Thomsen, S. Mancini, H. M. Wiseman, « Continuous quantum nondemolition feedback and unconditional atomic spin squeezing », *J. Phys. B* 35 (2002), p. 4937.

[23] N. Gisin, « Stochastic quantum dynamics and relativity », *Helv. Phys. Acta* 62 (1989), p. 363.

[24] N. Gisin, I. Percival, « The quantum state diffusion model applied to open systems », *J. Phys. A* 25 (1992), p. 5677.

[25] N. Gisin, « Quantum Measurements and Stochastic Processes », *Phys. Rev. Lett.* 52 (1984), p. 1657.

[26] H. Tanji-Suzuki, I.D. Leroux, M.H. Schleier-Smith, M. Cetina, A.T. Grier, J. Simon, V. Vuletic, « Interaction between Atomic Ensembles and Optical Resonators: Classical Description », *Adv. At. Mol. Opt. Phys.* 60 (2011), p. 201.