A systematic review and meta-analysis of the association between fluoride exposure and neurological disorders

Giza Hellen Nonato Miranda, Maria Olimpia Paz Alvarenga, Maria Karolina Martins Ferreira, Bruna Puty, Leonardo Oliveira Bittencourt, Nathalia Carolina Fernandes Fagundes, Juliano Pelim Pessan, Marília Afonso Rabelo Buzalaf & Rafael Rodrigues Lima

Different studies have suggested that fluoride is related to neurological disorders in children and adolescents, but clinical evidences of which neurological parameters associated to fluoride exposure are, in fact, still controversial. In this way, this systematic review and meta-analysis aimed to show if there is an association between fluoride exposure from different sources, doses and neurological disorders. Terms related to "Humans"; "Central nervous system"; "Fluorides"; and "Neurologic manifestations" were searched in a systematic way on PubMed, Scopus, Web of Science, Lilacs, Cochrane and Google Scholar. All studies performed on humans exposed to fluoride were included on the final assessment. A meta-analysis was then performed and the quality level of evidence was performed using the GRADE approach. Our search retrieved 4,024 studies, among which 27 fulfilled the eligibility criteria. The main source of fluoride was naturally fluoridated water. Twenty-six studies showed alterations related to Intelligence Quotient (IQ) while only one has evaluated headache, insomnia, lethargy, polydipsia and polyuria. Ten studies were included on the meta-analysis, which showed IQ impairment only for individuals under high fluoride exposure considering the World Health Organization criteria, without evidences of association between low levels and any neurological disorder. However, the high heterogeneity observed compromise the final conclusions obtained by the quantitative analyses regarding such high levels. Furthermore, this association was classified as very low-level evidence. At this time, the current evidence does not allow us to state that fluoride is associated with neurological damage, indicating the need for new epidemiological studies that could provide further evidences regarding this possible association.

Abbreviations

F Fluoride
WHO World Health Organization
IQ Intelligence Quotient
PRISMA Preferred reporting items for systematic reviews and meta-analyses
NA Not Applicable
CI Confidence Interval
GRADE Grading of Recommendations Assessment, Development and Evaluation
WPPSI Wechsler Preschool Guidelines and Primary Intelligence Scale

1Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Rua Augusto Corrêa nº 1, Belém, PA 66075-110, Brazil. 2School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada. 3Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil. 4Department of Biological Sciences, Bauru Dental School, University of São Paulo (USP), Bauru, SP, Brazil. *email: rafalima@ufpa.br
Fluoride (F) has been used as a preventive and therapeutic agent in dentistry for over eight decades. It is widely known that its main side-effect (i.e., dental fluorosis) was reported decades prior to the accidental discovery of its caries-preventive effects, further leading to investigations on the mechanisms of action involved, acute and chronic toxicity, as well as its safety and modes of administration. In brief, F can be delivered by community-based strategies (e.g., water, salt and milk fluoridation schemes), as well as by professionally- or self-application methods (e.g., toothpastes, mouthrinses, gels and varnishes), alone or in association, and its use is regarded as safe and cost-effective when administered within the recommended levels.

As for community-based methods, water fluoridation is by far the most widely used worldwide, covering ~400 million people in 25 countries. It is regarded as a cost-effective method, consisting of the controlled addition of F to the public water supply at concentrations typically ranging from 0.7 to 1.2 mg/L, depending on the mean annual temperature. Water fluoridation was considered as one of the ten greatest public health measures of the twentieth century achievements according to the US Center of Disease Control and Prevention, which is endorsed by several scientific societies, including the World Health Organization (WHO).

Despite the body of evidence attesting the efficacy and safety of water fluoridation, this method has been the subject of heated debate in several parts of the world, questioning legal aspects of the compulsory nature and potential harmful effects. Within this context, a recent systematic review with meta-analysis attempted to demonstrate the relationship between F exposure from the drinking water and intelligence quotient (IQ) impairment, concluding that exposure to water containing high F levels interferes with the child's intelligence development. It is noteworthy, however, that no clear-cut threshold was established to determine which F levels would correspond to each study group, resulting in a wide variability within the control (0.25 to 1.03 mg F/L) and exposed (0.8–11.0 mg F/L) groups, with some overlaps between them. Others reviews were designed to reunite the evidences regarding F developmental neurotoxicity and have highlighted the detrimental effects of high fluoride doses in children exposed by fluoridated water. It is important to highlight that the present study gathered evidences not only from children, but adults exposed to all fluoride sources according to the search strategy. Moreover, we seek to investigate the available evidences about neurological damages in general, not only mnemonic aspects. Also, some of the concentrations included in the control group are not effective for caries control according to the WHO criteria, so that the issue of risks and benefits resulting from exposure to fluoridated water could not be analyzed. Furthermore, the review focused on IQ impairment without considering other neurological disorders that could also potentially be associated with F exposure.

Considering the above, the present systematic review and meta-analysis aimed to investigate the impact of environmental exposure to F from different sources on neurological disorders in humans. For studies that assessed F exposure from water, this review adopted the WHO guidelines to dichotomize between low (0.5 to 1.0 mg F/L) and high (above 2 mg F/L) exposure, allowing the discussion of doses safety of water fluoridation.

Methods

Protocol and registration. This systematic review was registered in PROSPERO database, under CRD number 42017067234. A review was performed according to Moher, Liberati, followed as recommendations by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement.

Eligibility criteria and search strategy. This review was designed using the PECO strategy and based on it, observational studies in humans (P) exposed to high concentrations of F (E) and low concentrations (C) in which the associations between F and neurological damage (O) were investigated. Case reports, descriptive studies, review articles, opinion articles, technical articles, guidelines, as well as animal and in vitro studies were disregarded.

The study was based on the question: “Can chronic F exposure be associated with neurological damage?” The searches were performed in January 2021, with no restrictions on the date of publication and the language of the studies. The electronic databases used were: PubMed, Scopus, Web of Science, Lilacs, Cochrane and Google Scholar. The MeSH terms used were: “Humans”; “Central nervous system”; “Nervous system”; “Fluorine”; “Fluorides”; “Fluorine Compounds”; “Fluoride Poisoning”; “Neurobehavioral manifestations”; “Nervous System Disease”; “Neurologic manifestations”; “Intelligence”. All MeSH keywords and search strategy were adapted according to the specifics of each database, as represented in Table A1.

After the search stage, an alert was registered in each database for weekly notification of new studies that fit the vested strategy. All citations were entered into a bibliographic reference manager and duplicate studies were excluded, either automatically or manually (EndNote®, v. X7, Thomson Reuters, Philadelphia, USA). The search, study selection, risk of bias and data extraction stages were performed independently by two evaluators (G.H.N.M; M.O.P.A.) and checked by a third evaluator in case of disagreement (R.R.L.).

Then, the study selection was made based on the title and abstract of articles and then by full-text analysis according to the recommended eligibility requirements. Reference lists of included studies were also evaluated for study selection.

Data extraction and assessment of methodological quality and risk of bias. From the included articles, data regarding the year of publication, study design, participant characteristics (origin and sample size), mean age, F concentration measurement parameters, diagnostic criteria for assessment of cognitive performance, results and statistical analysis were extracted and tabulated. In case of doubts about the methodology, lack of data in the studies and inability to find full articles, the authors were contacted via email with a weekly message for three consecutive weeks.
To assess the methodological quality and risk of bias, the checklist of Fowkes and Fulton\cite{12} was applied. This checklist has domains that relate to study and sample design; control group characteristics; quality of measures and results; and distorted integrity and influences.

After evaluating each criterion, a (+) sign was assigned for major study problems or (+) for minor problems to assess whether the methods are adequate to produce consistent and valid information, as well as whether the results offered the expected effects. In items where the question was not applicable to the type of study, it was assigned the acronym NA (not applicable). "No problem" has been assigned the sign (0). The evaluation for each domain was standardized by the examiners and is described in Table A.2.

After detailed evaluation of the methods and results, the studies were analyzed to verify the possibility of "skewed results", "confusions" and "random occurrence". To determine the value of the study, three summary questions were answered: "Were the results biased?"; "Are factors of confusion or distortion present?" and "Is there a possibility that the results came about by chance?" "YES" and "NO" answers were given. If the answer is NO in the three questions, the article is considered reliable, with low risk of bias.

Quantitative synthesis (meta-analysis). The studies data were analyzed using Review Manager software (Review Manager v. 5.3, The Cochrane Collaboration; Copenhagen, Denmark) to evaluate if Chronic exposure to F is associated with neurological deficit. In all analyses, only studies with low risk of bias were included.

A meta-analysis was performed to compare the percentage of low IQ with high and low chronic exposure to F. Previously, each study classified the F levels as low or high with heterogeneous concentrations. Then, for the meta-analysis we decided to classify the studies according to the WHO guidelines that consider optimal levels between 0.5–1.0 mg/L (low levels) and > 2 mg/L, as higher levels for water fluoridation\cite{13,14}. The number of people with low IQ and the total number of participants in each case group (high fluoride) and control group (low fluoride) were included to calculate the odds ratio with a 95% confidence interval (CI).

The heterogeneity among studies was tested using I² index (p-value <0.05 was considered statistically significant). A fixed and random effects models were used in the analyses of the studies. The final choice regarding effects model was performed based on I² index\cite{16}. The forest plots were generated for each analysis and an alpha of 0.05 was adopted as the cut-off point for significance.

The publication bias was assessed through a comprehensive analysis of Egger's test, and Funnel Plot Visual interpretation\cite{17}. A p-value < 0.05 indicated a likely publication bias across the studies. The Jamovi statistical software (version 1.6, Sydney, Australia) was used to generate figures and to run the test.

A sensitivity analyses was used to explore the influence of each study in the pooled meta-analysis or publication bias results. This analysis was adopted in case of substantial or considerable (50 to 100%) heterogeneity, or significant publication bias (p <0.05). This evaluation was performed by manually omitting one study at time, one by one, and verifying its impact in the final results\cite{15}.

Level of evidence assessment–GRADE. The level of evidence was determined using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. This tool provides a structured process for developing and presenting evidence summaries that measure the quality of evidence to confirm or reject hypotheses in systematic reviews\cite{18}.

GRADE has four levels of evidence –decreasing from low to very low, moderate, and high; depending on whether issues such as risk of bias, inconsistency, inaccuracy and publication bias are severe, very serious or not serious. Although, observational studies begin as poor-quality evidence, the level can increase from low to high if the magnitude of the effect is large or very large\cite{15}.

Consent for publication. All the authors are in accordance with the publication.

Results

Search results. Based on the database searches, 4,024 studies were found. Three studies were included after manually searching in the reference lists\cite{20-22}. After the removal of duplicate studies (714), 3,310 articles remained and were analyzed by title and abstract according to the eligibility criteria. A total of 3,260 were excluded, and 50 studies remained for full text reading. Fifteen studies were excluded because, when assessing IQ, they did not compare between high and low F concentrations, four contained co-exposure of F and other concomitant elements, and four used the same sample from studies included in this systematic review (Table A.3). Thus, 27 studies were elected, which underwent quality assessment of the risk of bias. The summary of the selection process is shown in Fig. 1.

Characteristics of the studies. The 27 included studies were characterized as observational, cross-sectional type, among which 26 were analytical studies, and one was descriptive\cite{23}. The age group investigated included individuals from 6 to 18 years of age. Most of the articles evaluated F exposure due to ingestion of naturally fluoridated water. Only one study analyzed populations exposed to F by burning coal\cite{24}.

The F concentrations in drinking water categorized as low exposure in the selected studies ranged from 0.19 ppm35 to 2.01 ppm36, while high doses ranged from 1.5 ppm33,27 to 8.3 ppm38. Some studies considered a third intermediate category23,29-31, which ranged from 0.5 ppm30 to 3.1 ppm39. One study classified exposed groups according to concentration levels, ranging from <0.7 ppm to >4.0 ppm31. One study did not provide high and low dose reference concentrations30 and the study developed with F exposure from coal burning24 reported only the content of F related to high exposure (0.0298 mg/m3).

Regarding the source of sample used for the estimation of F exposure, most of the studies evaluated the drinking water alone25,21,24,25,29-31,34-36, followed by measurement in both drinking water and urine of
participants²⁰,²²,²⁶–²⁸,³⁷–⁴¹, and in the air²⁴. Some studies did not quantify the F levels, however determined the concentration from data available from national databases or electronic addresses³²,⁴²,⁴³. Three studies did not report the process used, nor the source consulted to establish F exposure²³,⁴⁴,⁴⁵, and mentioned the use of conventional chemical tests only without specifying the method for F⁴⁶.

In relation to the parameters of cognitive assessment, in 26 studies the IQ was used to estimate a comparative intellectual and stabilizing capacity between the high and low groups, whereas one study²³ evaluated neurological manifestations such as headache, insomnia, lethargy, polydipsia and polyuria. The tests applied for IQ evaluation varied among the studies, being the "Raven's Standard Progressive Matrices test"²⁰,²¹,²⁷,²⁹–³¹,³⁴,³⁸ and the "Standardized Chinese Test"²²,²⁸,³⁷,⁴⁰,⁴¹,⁴⁴,⁴⁶ the most used, followed by "Raven's Color Progressive Matrices"²⁵,²²,³⁳,⁴⁳, "Stanford-Binet Intelligence Scale"²⁶,³⁹, "Chinese Binet IQ Test"²³, "Prueba Raymond B Cattell"⁴⁵, "Wechsler Preschool Guidelines and Primary Intelligence Scale (WPPSI)"³⁶, "Rui Wen Prueba Handbook"⁴⁵ and "Form Board Test"⁴². The descriptive study²³ used as a tool for data collection, interviews with questionnaires prepared by qualified professionals.

In the analysis of results, 23 studies showed a statistical difference between exposure to high and low doses of F. In three studies a comparison of intellectual skill among the groups exposed to high and low F concentrations was not statistically significant³⁰,³⁴,⁴⁶. The descriptive study²³ reported the presence of alterations related to neurological manifestations in some group in high dose exposure (1.5–6.4 ppm). Table 1 shows details of all the characteristics of the included studies.

Risk of bias analysis. The quality of the studies was assessed based on risk of bias, confounding factors, and random occurrence. Eight studies were considered of low methodological quality and were classified as high risk of bias²⁰,²²,²³,²⁹,³⁴,³⁶,³⁹,⁴⁵. The other 19 articles were classified as low risk of bias and, despite having some problems,
Author, (year)	Study design	Participants	Case evaluation	Statistical analysis	Results	Risk of bias	
Aravind et al., (2016)	Cross-sectional	Mastihalli, Banavara and Virajpet, Hassan, India	60: High (> 3 ppm) 60: Medium (1.2–2 ppm) 60: Low (<1.2 ppm)	Raven’s Standard Progressive Matrices test	Evaluation by ion selective electrode method in water samples	The mean IQ level was more in the region with medium fluoride concentration in drinking water (56.68 ± 14.51) compared to areas with low fluoride concentration (41.03 ± 16.36) and high fluoride concentration (31.59 ± 16.81); p < 0.0001	Low
Chen et al., (1991)	Cross-sectional	Biji village and Joaobei village, Linyi County, Shandong Province, China	320: High (4.55 ppm) 320: Low (0.89 ppm)	Chinese Standardized Raven Test	t-test	The average IQ of children in lower fluoride area (104.03 ± 14.96) was significantly higher than that of the higher fluoride (100.24 ± 14.52); p < 0.01	Low
Eswar et al., (2011)	Cross-sectional	Davangere district, Karnataka, India	68: High (2.45 ppm) 65: Low (0.29 ppm)	Raven’s Standard Progressive Matrices test	Evaluation by ion selective electrode method in water samples	There were no significant differences in IQ score of children living in high drinking water fluoride region (86.3 ± 12.8) and children living in low drinking water fluoride region (88.8 ± 15.3); p = 0.30	High
Guo et al. (1991)	Cross-sectional	Xinshao County, Hunan Province, China	60: High (0.0298 mg/m³) 61: Low (N/I)	Chinese Binet IQ Test	N/I Correlation analysis	In the high fluoride area, the correlation co-efficient r = –0.25 (p<0.05), and for the control area r = –0.07 (p>0.05), for the two combined r = –0.205 (p<0.05). These results indicate that there is a negative correlation between serum fluoride and IQ, and that the correlation is greater within the high fluoride group. The average IQ of the endemic area children was 76.7, and the control group children had average IQs of 81.4; when compared, the difference is statistically significant; p < 0.05	Low
Hong et al. (2001)	Cross-sectional	Wukang, Boxiang, Zouping, Shandong Province, China	85: High (2.90 ppm) 32: Low (0.75 ppm)	Chinese Standardized Raven Test	t-test and Chi-squared testing	There is no significant difference between the high fluoride (80.58 ± 2.28) and control areas (82.79 ± 8.98); p > 0.05	Low
Karimzade et al., (2014)	Cross-sectional	West Azerbaijan, Iran	19: High (3.94 ppm) 20: Low (0.25 ppm)	Raymond B Cattell test	Evaluation by SPADNS colorimetric method in water samples	The mean IQ of children living in high drinking water fluoride region (84.21 ± 16.17) was lower than that of children living in low drinking water fluoride region (104.25 ± 20.73); p=0.0004	Low

Continued
Author, (year)	Study design	Source of sample	Sample size and levels of fluoride exposure	Age (years)	Neurological assessment	Fluoride levels measurement	Statistical analysis	Results	Risk of bias
Khan et al., (2015)	Cross-sectional	Asoha block in district Unnao and Tiwarijan, block in district Lucknow of Uttar Pradesh, India	214: High (2.41 ppm) 215: Low (0.19 ppm) (n = 429)	6–12	Raven’s Coloured Progressive Matrices (RCPM)	Evaluation by ion selective electrode method in water samples	Chi-squared test, ANOVA, Post-Hoc and Spearman’s rank correlation	Difference in IQ grade of children from different locations was found to be statistically significant (p < 0.001).	Low
Kundu et al., (2015)	Cross-sectional	Najafgarh and Defence Colony, Delhi, India	100: High (N/I) 100: Low (N/I) (n = 200)	8–12	Ravens Standardized Progressive Matrices Test	Evaluation by ion selective electrode method in water samples	Independent t-test	Comparison of mean IQ of children in high (76.20 ± 19.10) and low (85.40 ± 18.85) areas showed a significant difference; p = 0.013	High
Lu et al., (2000)	Cross-sectional	Tianjin Xiqing District, China	60: High (3.15 ± 0.61 ppm) 58: Low (0.37 ± 0.04 ppm) (n = 118)	10–12	Chinese Combined Raven’s Test, Copyright 2 (CTR-C2)	Evaluation by ion selective electrode method in water and urine samples	Fisher’s exact test, Welch’s alternate t-test, the rank sum test, and multiple regression analysis	The IQ of high fluoride area was significantly lower (92.27 ± 20.45) than that of the children in the low fluoride area (103.05 ± 13.86); p = 0.005	Low
Nagarajappa et al., (2013)	Cross-sectional	Mundra and Bhuj, Kutch District, Gujarat, India	50: High (2.4–3.5 ppm) 50: Low (0.5 ppm) (n = 100)	8–10	Seguin Form Board Test	Based on Water and Sanitation Management Organization, Gujarat	Independent student t-test	Mean IQ scores were found to be significantly higher among children living in low fluoride region (30.4 ± 4.97) than those living in high fluoride region (23.20 ± 6.21); p = 0.05	Low
Poureslami et al., (2011)	Cross-sectional	Kohshaban and Bari, Ker-man Province, Iran	60: High (2.38 ppm) 60: Low (0.41 ppm) (n = 120)	7–9	Raven’s Progressive Matrices Intelligence Test	Evaluation by ion selective electrode method in water and urine samples	t test and Mann–Whitney test	The mean IQ of children living in high fluoride region (91.37 ± 16.63) was significantly lower than the average IQ of children living in low fluoride region (97.80 ± 15.95); p = 0.028	Low
Qin et al., (2008)	Cross-sectional	Jing County, Hubei Province, China	141: High (2.1–4.0 ppm) 159: Medium (0.5–1.0 ppm) 147: Low (0.1–0.2 ppm) (n = 447)	9–10	Raven’s Standard Progressive Matrices test	Evaluation by ion selective electrode method in water samples	N/I	The difference between the high and low groups exposed was not statistically significant; p > 0.05	High
Razdan et al., (2017)	Cross-sectional	Raya,Farah and Charora; Mathura district, Uttar Pradesh, India	69: High (2.99 ppm) 75: Medium (1.70 ppm) 75: Low (0.60 ppm) (n = 219)	12–14	Raven’s Progressive Matrices Test	Evaluation by ion selective electrode method in water samples	Independent t-test, One way analysis of variance, and post hoc analysis and Chi-square test	Comparison between all the groups showed the mean IQ scores in low (38.60 ± 6.33), medium (18.94 ± 4.38), and high (13.94 ± 5.13) fluoride regions was statistically significant difference; p < 0.001	Low
Saxena et al., (2012)	Cross-sectional	Karera Block, Shivpuri district and Parwaliya village, Bhopal district, Madhya Pradesh state, India	120: High (≥ 1.5 ppm) 50: Low (<1.5 ppm) (n = 170)	12	Raven’s Standard Progressive Matrices	Evaluation by ion selective electrode method in water and urine samples	ANOVA One Way	Comparison of mean IQ of children in high (4.17) and low (3.16) fluoride area showed a significant difference; p = 0.000	Low

Continued
Author, (year)	Study design	Participants	Case evaluation
Sebastian et al., (2015)	Cross-sectional	Nerale, Belavadi, Naganahalli, Mysore district; Carnatic, India	Sample size and levels of fluoride exposure: (n = 405) 135: High (2.02 ppm) 135: Medium (1.20 ppm) 135: Low (0.40 ppm) Neurological assessment: 10–12 Raven's Coloured Progressive Matrices (RCPM) Fluoride levels measurement: Based on Rajiv Gandhi National Rural Drinking Water Program (RGNRDWP) Statistical analysis: Analysis of variance (ANOVA), post-hoc test and binary logistic regression Results: The mean IQ scores for children with normal (88.6 ± 14.01) and low (86.37 ± 13.58) fluoride content were significantly higher than high fluoride level (80.49 ± 12.67); p < 0.01 Risk of bias: Low
Seraj et al., (2012)	Cross-sectional	Babur, Panjarlu, Dizai, Small Donalau and Large Donalau; Makoo, Iran	Sample size and levels of fluoride exposure: (n = 293) 91: High (5.2 ± 1.1 ppm) 106: Medium (3.1 ± 0.9 ppm) 96: Low (0.8 ± 0.3 ppm) Neurological assessment: 6–11 Raven's Coloured Progressive Matrices (RCPM) Fluoride levels measurement: Evaluation by SPADNS colorimetric method in water samples Statistical analysis: ANOV A, Post Hoc test and Kruskal-Wallis test Results: IQ scores for children with low fluoride (97.77 ± 18.91) were significantly higher than the medium (89.03 ± 12.99) and high (88.58 ± 16.01) fluoride level; p = 0.001 Risk of bias: Low
Sharma et al., (2009)	Cross-sectional	Sanganer Tehsil, India	Sample size and levels of fluoride exposure: (n = 1145) 418: High (1.5–6.4 ppm) 355: Medium (1.0–1.5 ppm) 372: Low (< 1.0 ppm) Neurological assessment: 12–18 Interviewed (questionnaire) for neurological manifestations (Headache Insomnia Lethargy Polyuria Polydipsia) Fluoride levels measurement: N/I Statistical analysis: Descriptive analysis Results: There were no neurological manifestations in children in the low and medium F villages, whereas, in the high F villages, 9.48% of the children had headache, 2.11% had insomnia, and 3.23% exhibited lethargy. There were no cases of polyuria or polydipsia among the children in any of the villages Risk of bias: High
Shivaprakash et al., (2011)	Cross-sectional	Bagalkot taluk and Hungund taluk, India	Sample size and levels of fluoride exposure: (n = 160) 80: High (2.5–3.5 ppm) 80: Low (<0.5 ppm) Neurological assessment: 7–11 Raven's Coloured Progressive Matrices Fluoride levels measurement: Evaluation based on indiawaterportal.org Statistical analysis: t-test Results: The average IQ of children in lower fluoride area (76.3625 ± 20.8431) was significantly higher than that of in the higher fluoride (66.6250 ± 18.0908); p = 0.0019 Risk of bias: Low
Sudhir et al., (2009)	Cross-sectional	Nalgonda District, Andhra Pradesh, India	Sample size and levels of fluoride exposure: (n = 1000) 247: Level 1 (<0.7 ppm) 243: Level 2 (0.7–1.2 ppm) 267: Level 3 (1.3–4.0 ppm) 243: Level 4 (>4.0 ppm) Neurological assessment: 13–15 Raven's standard progressive matrices Fluoride levels measurement: Evaluation by ion selective electrode method in water samples Statistical analysis: Chi-square test and Spearman's rank correlation Results: Chi-square test was used to test the association among the different fluoride levels with IQ scores, and the Spearman's rank correlation was used to measure the relationship between the two variables. The results showed a statistically significant inverse association between both variables (p < 0.001). Risk of bias: Low
Trivedi et al., (2007)	Cross-sectional	Chandlioda, Ahmedabad and Sachana, Sanand district of Gujarat, India	Sample size and levels of fluoride exposure: (n = 190) 89:High (5.55 ± 0.41 ppm) 101:Low (2.01 ± 0.09 ppm) Neurological assessment: Questionnaire standardized with 97% reliability rate in relation to the Stanford-Binet Intelligence Scale Fluoride levels measurement: Evaluation by ion selective electrode method in water and urine samples Statistical analysis: Student’s t test Results: The mean IQ score of the high F area was significantly lower (91.72 ± 1.13) than that of the lower F area (104.44 ± 1.23); p < 0.001 Risk of bias: Low

Continued
Table 1. Data extraction from included studies. IQ, Intelligence Quotient; F, fluoride; N/I, no information; SPADNS (sulfo phenylazo dihydroxy naphthalene disulfonic acid).

Participants	Case evaluation						
Trivedi et al., (2012)	Cross-sectional	Baroi, Chhasar, Gun-dala, Mundra, Pragpur, and Zarpara; Kachchh, Gujarat, India	34:High (2.3 ± 0.87 ppm)	Questionnaire standardized with 97% reliability in relation to the Stanford-Binet Intelligence Scale	Evaluation by ion selective electrode method in water and urine samples	Paired sample T test	The average IQ level of schoolchildren from the low F villages was (97.17 ± 2.54), which is significantly higher (p < 0.001) than (92.53 ± 3.33) of schoolchildren from the high F villages; p<0.001
Wang et al., (2007)	Cross-sectional	Shanxi Province, China	253: High (8.3 ± 1.9 ppm)	Evaluation by ion selective electrode method in water and urine samples	T-test	Comparison of mean IQ of children in high (100.5 ± 15.8) and low F (104.8 ± 14.7) areas showed a significant difference; p<0.05	
Wang et al., (2008)	Cross-sectional	Shehezi, Xinjiang Province, China	147: High (> 1.0 ppm)	Wechsler Preschool and Primary Scale of Intelligence (WPPSI) guidelines	Evaluation by ion selective electrode method in water samples	T-test	There was a significant difference in IQ in the endemic area of fluoride concentration (95.64 ± 14.34) compared to the control area (101.32 ± 15.84); p<0.05
Wang et al., (2006)	Cross-sectional	Yuncheng City, Shanxi, China	202: High (5.54 ± 3.88 ppm)	Combined Raven's Test for Rural China (CRT-RC)	Evaluation by ion selective electrode method in water and urine samples	T-test	The IQ in the control group (111.55 ± 15.19) was higher than those of high fluoride areas (107.46 ± 15.38), and the difference was statistically significant, p<0.01
Xiang et al., (2003)	Cross-sectional	Wamiao, Xinxia, Jiangsu Province, China	222: High (2.47 ± 0.79 ppm)	Combined Raven's Test for Rural China (CRT-RC)	Evaluation by ion selective electrode method in water and urine samples	T-test	The mean IQ score of high F village (92.02 ± 13.00) was found to be lower than the mean IQ score of low F village (100.41 ± 13.21); p<0.01
Yu et al., (2018)	Cross-sectional	Tianjin, China	1250: High (2.00 ± 0.75 ppm)	Combined Raven's Test–The Rural in China (CRT-RC2)	Evaluation by ion selective electrode method in water and urine samples	Student's t-test or Wilcoxon test was used to compare the difference of continuous variables	The average IQ score was 107.4 ± 13.0 in the normal fluoride exposure group, which was statistically higher than the mean level of 106.4 ± 12.3 in the high fluoride exposure group; p>0.036
Zhao et al., (1996)	Cross-sectional	Sima village, Shaxi and Xinghua village, China	160: High (4.12 ppm)	Rui Wen Test Manual	N/I	There was a significant difference in IQ in the endemic area of fluoride concentration (97.32 ± 13.00) compared to the control area (105.21 ± 14.99); p<0.02	
sample was smaller than 50 participants. In the entry criteria/exclusion section, only two studies presented a
minor problem due to co-exposure to arsenic and iodine.

For 'Control group acceptable', the item "Definition of controls" presented two articles with minor problems
(+) because they did not report the F concentration of the control group. Regarding "Matching/Randomization",
ine studies did not mention randomization, but did the matching, being considered as a minor problem (+). However, two articles did not mention randomization or pairing, being considered as a major problem (++).

The domain "Quality of measurements and outcomes", the item with the most serious issues was the "Blind-
ness", as 18 studies did not adopt any kind of blinding, followed by "Quality control", with eight studies that did
not describe the measurement method. Table 2 presents the risk assessment of bias of the 27 eligible articles.

Level of evidence. The assessment of the level of certainty of the evidence was conducted through a nar-
rative synthesis following the GRADE parameters for systematic reviews. The level of evidence of the studies
was very low, both for studies evaluating IQ impairment and for the only study assessing other neurological
manifestations, due to observational nature of the study protocol, as well as due to methodological inaccuracy.
For the studies that evaluated IQ impairment, a serious risk of bias was observed. Regarding the study evaluat-
ing neurological manifestations other than IQ impairment, it also presented a highly suspicious publication
bias, given that the measurement of these manifestations was done by the application of a questionnaire with
unknown information about validation and without precise details for their reproduction.

Although, a narrative synthesis does not provide precise estimates, nor measure of effects, it was concluded
that the level of evidence of the studies taken together is not strong enough to affirm that the high F exposure
may produce a neurological damage in children. Results are represented in Table 3.

Quantitative analysis. Ten studies21,25,28,30,31,34,35,37,38,40 that provided sufficient data for the analysis were
included in the meta-analysis. From the studies selected, it was only possible to run the meta-analysis for IQ,
due to the scarcity of investigations on other neurological aspects. People exposed to high F levels accounted for
1383 individuals, and to low levels, 1556 individuals. The results showed an association between high F exposure
and decreased IQ (OR 3.88; 95% CI 2.41–6.23; p < 0.00001; I² = 77%), demonstrating a deleterious effect of high
levels of F over IQ (Fig. 2). This evidence was qualified as very low (Table 3). It was observed a considerable heter-
ogeneity (I² = 77%, p < 0.00001, Fig. 2) and significant publication bias (p < 0.00001) (Fig. 3).

After performing the sensitivity analysis, three studies were identified as a possible cause of publication bias25,30,33
with the detection of a low risk of publication bias (p = 0.25; Figure A, Supplementary material 5) after the exclusion of these heterogeneity. However, a considerable heterogeneity was still observed after sensitivity analysis. When the three studies previously identified as possible reason for publication bias were removed from the meta-analysis, the I² index decreased from 77 to 62% (Table B, Supplementary material 5). Therefore, the interpretation of the meta-analysis results after sensitivity analysis is still limited due to the considerable heterogeneity across the studies.

Discussion
This systematic review and meta-analysis gathered evidence showing that, following the WHO classification
of low and high levels in the drinking water, exposure to low/adequate water F levels is not associated with any
neurological damage, while exposure to high levels is. The level of evidence for this association, however, was
considered very low. Furthermore, the IQ deficit was reported in the majority of the primary studies identified,
and only one article reported others neurological manifestations.

Systematic reviews aim to gather all the available evidence in the literature to answer a guiding question
according to predefined eligibility criteria. It uses a well-designed, explicit and systematic methodology to mini-
nimize bias, generating reliable results, answers to raised questions and conclusions about certain problems, thus
helping in decision making47,48. According to the Cochrane systematic reviews manual, this type of study has
as main characteristics: clear and well-defined objectives that follow the pre-established eligibility criteria; the
methodology must be easily reproducible, well designed and transparent; the survey must be comprehensive,
meeting all the necessary eligibility criteria; the included studies must have their results evaluated for validity,
assessing the risk of bias; all characteristics of the studies, including their results, must be presented.

Combined with qualitative synthesis, the meta-analysis reunites the quantitative data of the elected studies,
thus being able to estimate the effects of the evidence, whether or not it can confirm the individual results of the
lected studies of the systematic review15. After these qualitative and quantitative analysis, the GRADE tool
helps to compile all the obtained results in the systematic review in order to promote an analysis of evidence
and its recommendations for an evidence-based practice. This assessment has four levels of recommendations:
very low, low, moderate and high.

Despite some variations in the literature on the F concentrations in the drinking water regarded as both effec-
tive and safe, it has been often reported that 1 mg/L is the "optimum level"13,14 and, as previously mentioned, the
concentrations may be adjusted at 0.7–1.2 mg/L, depending on climate, local environment and other sources of
F. In line with the above-mentioned observation, the 2017-updated edition of the WHO guidelines for drinking-
water quality suggested that F levels must be within the 0.5–1.0 mg/L range in order to promote maximum
caries-preventive benefits with minimum risk of dental fluorosis13,14. This justifies the threshold set in the present
study to dichotomize F exposure into "low" and "high" categories. This is also more relevant from a public health
standpoint, given that artificially fluoridated water facilities must comply with the aforementioned levels, whereas
higher concentrations are usually related to focal points in areas in which F is naturally present in the water.

The mechanisms by which F can interfere with child neurodevelopment are associated with damage to nerv-
ous cells. Evidences suggest that chronic exposure to F in the prenatal and neonatal periods is potentially toxic to
Table 2. Quality assessment of the studies included in the review.

Guideline	Checklist	Aravind et al., 2016	Chen et al., 1991	Eswar et al., 1991	Guo et al., 1991	Karimzade et al., 2011	Kandil et al., 2015	Lu et al., 2000	Nagarajappa et al., 2013	Pourabdol et al., 2011	Qin et al., 2008	Razdan et al., 2017	Sarej et al., 2012	Sharma et al., 2009	Shinkosuke et al., 2011	Sudhir et al., 2009	Trivedi et al., 2007	Trivedi et al., 2012	Wang et al., 2007	Wang et al., 2006	Xiang et al., 2003	Yu et al., 2018	Zhao et al., 1996						
Study design appropriate to objectives?																													
Study sample representative?																													
Control group acceptable?																													
Quality of measurements and outcomes?																													
Completeness																													
Distorting influences?																													
Summary questions																													

*| Study design appropriate to objectives? | Objective common design | Prevalence Cross-sectional | Prognosis Cohort | Treatment Controlled trial | Cause Cohort, case-control, cross-sectional | Sampling method | Source of sample | Study sample representative? | Definition of controls | Source of controls | Matching/randomization | Comparable characteristics | Quality of measurements and outcomes? | Validity | Reproducibility | Bias | Blinding | Quality control | Compliance | Drop-outs | Deaths | Missing data | Distorting influences? | Extraneous treat. means | Contamination | Changes over time | Confounding factors | Distortion reduced by analysis | Are the results consistently biased in certain direction? | Confounding | Are there any acute confounding or other distorting influences? | Chance | Is it likely that the results occurred by chance? |
|---|
| Study sample representative? |
| Control group acceptable? |
| Quality of measurements and outcomes? |
| Completeness |
| Distorting influences? |
| Summary questions |
the metabolism and physiology of neuronal and glial cells, which leads to changes in processes related to memory and learning.49–51 This is due to the ability of F to cross the placental and blood–brain barriers, especially in developing individuals, who are more susceptible to changes caused by F because they have greater permeability of this barrier and defense mechanisms that are still immature.49,52–54 In addition, F can influence membrane ion channels, through interaction with the Ras protein, leading to changes in ion flow and nerve cell volume, which can lead to metabolic disturbances, changes in cell function and modification transmission of nerve impulses.49,55

According to the WHO, neurological disorders are multifactorial clinical conditions that may be characterized by signs and symptoms with different aspects, as physical functioning limitations, behavioral problems, psychosocial limitations, communicative and cognitive impairments.56 Among these features, our study focused on cognitive functions due the approach performed by the elected studies. In this sense, it is important to highlight the alterations in the IQ and neurological manifestations as indicators of cognitive and neurological functioning.

Table 3. GRADE evidence profile table.

Alterations on the Intelligence Quotient (assessed with: Different validated tests to measure IQ)	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Certainty	Importance	
26	Cross-sectional	Not serious	Not serious	Not serious	Seriousa	None	The IQ was assessed in 9930 patients. Three studies did not present significant differences between the group exposed to high fluoride and the control group; 24 studies showed significant changes for the IQ score. (Lower IQ scores for High Fluoride Exposures—1.5 to 8.3 ppm)	VERY LOW	CRITICAL

Neurological Manifestations (assessed with: Questionnaire for neurological manifestations (Headache, Insomnia, Lethargy, Polyuria, Polydipsia))	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Certainty	Importance	
1	Cross-sectional	Not serious	Not serious	Not serious	Seriousa	Publication bias strongly suspectedb	The neurological manifestation was assessment in 1145 patients. There were no neurological manifestations in children living in villages with low fluoride exposure; in villages with high exposure, 9.48% of the children had headache, 1.21% insomnia and 3.23% lethargy	VERY LOW	CRITICAL

Figure 2. Forest plot of meta-analysis for ten studies (I2 = 77%). The association between chronic exposure to fluoride and cognitive deficit. CI, confidence interval; M-H, Mantel–Haenszel method. The figure was created using Review Manager v. 5.3 software (https://training.cochrane.org).
that several techniques, tests and protocols to evaluate the cognitive functions are available, once this central function may be characterized as a complex reunion of processes that aims to classify, recognize and comprise information through reasoning, learning and executing.

In this context, aiming to evaluate cognitive functions of people exposed to F, the researchers from the elected studies used IQ test varieties as previously mentioned and due to that, different abilities of cognitive functions are evaluated, not having standardized and homogeneous parameters among the tests. Matzel and Sauce suggested a hierarchical model of intelligence, in which the general ability, i.e., the intelligence is a result from several domains of ability, as reasoning, processing speed, memory and comprehension, which are evaluated by different methodologies. Stanford-Binet IQ method, e.g., includes tests of different abilities, which estimate the intelligence after and aggregate performance across the tests. While, the Raven's Standard Progressive Matrices is based on a unique ability and in the test, the main feature is that there is an increase on the difficult of perceptual reasoning.

The studies included individuals with ages ranging from 6 to 18 years of age. From epidemiological point of view, this is not interesting, because intelligence tests were applied to participants with very different degrees of neurodevelopment. Data extraction indicates that all eligible studies were concentrated in the Asian continent. These data reflect the remarkable influence of the geographical aspect on the epidemiology of clinical manifestations resulting from F exposure. The availability of naturally occurring high concentration fluoridated compounds in drinking water used by rural communities increases their susceptibility to the adverse effects of F. Considering this aspect, a systematic review proposed to evaluate the neurotoxic effects of F from studies conducted specifically in the Chinese territory, due to the high number of publications on this subject that sometimes has restricted dissemination due to language barrier.

The methodological quality analyses of the studies detected serious problems related to the quality of sample, measurements and outcomes. There were also problems related to the absence of randomization, sample size calculation and blinding, which increase the risk of bias and limit the inference capacity of studies on the neurotoxic effects of F.

Most studies did not assess the individual level of exposure to F, i.e., by urinary F samples. The F concentration in drinking water in regions with high and low F levels was the most reported method. However, there were also studies that used secondary data or did not report the F content in water, which significantly compromises the findings of these investigations. Furthermore, it should be considered that some studies used creatinine-adjusted urinary F concentrations to account for urinary dilution which may cause an additional bias, since renal dysfunction in children may be associated with neurocognitive impairments.

Another point worth mentioning is the increased risk of water contamination by other substances in the areas of naturally occurring F. Although some authors consider it unlikely that the effects attributed to F neurotoxicity can be triggered by other contaminants, it is possible that the absence of control in relation to these parameters generates confounding factors. To ensure the balance of electrical charges, water with higher concentrations of endemically occurring F must contain higher concentrations of positive ions to balance out the F. This may affect the pH of the water or result in greater contamination by electropositive water contaminants, for example aluminum, zinc, arsenic, lead, mercury, and other metals and metalloids.

Following the parameters of GRADE, the level of evidence was considered as very low even for individuals exposed to high doses of F, due to imprecision problems (Table 3). This result is related to the types of studies included in this systematic review, as the level of evidence in observational studies starts at a very low level, which
can only increase if the study meets the other criteria of this evaluation. Despite the large numbers of participants in the analysis, detected problems of inaccuracy can be elucidated by possible methodological disparities in the studies that might interfere in the intelligence quotient (IQ) analysis and neurological manifestations.

An important limitation to be considered is the predominance of cross-sectional studies in this systematic review. Cross-sectional and ecological studies do not allow the establishment of cause-and-effect relationships. They are useful for investigating the effect of environmental exposures related to acute processes, as the time interval between exposure and measurement of physiological parameters is close. Therefore, cross-sectional studies are not the ideal model to assess the effect of chronic F exposure on a parameter such as human intelligence. Longitudinal studies, on the other hand, are considered the most appropriate to assess chronic conditions, as by allowing the long-term follow-up of individuals, they make it possible to infer causality.

To sum up, despite the elected studies showed an association between F exposure and IQ deficit, this association was only observed for individuals exposed to levels above those regarded as safe, and the evidence certainty for this association is very low. Within the above-mentioned limitations, the results of the present systematic review demonstrated that exposure to fluoridated water at levels recommended by the WHO can be considered as safe, as it is not associated with IQ impairment.

Conclusion

Although the findings of this meta-analysis indicated that IQ damage can be triggered only by exposure to F at levels that exceed those recommended as a public health measure, the high heterogeneity observed compromise the final conclusions obtained by quantitative analyses. Thus, based on the evidence available on the topic, it is not possible to state neither any association or the lack of an association between F exposure and any neurological disorder.

Data availability

All the data is available within the article and on the supplementary materials.

Received: 24 May 2021; Accepted: 21 September 2021
Published online: 22 November 2021

References

1. Ten Cate, J. M. & Buzalaf, M. A. R. Fluoride mode of action: Once there was an observant dentist. *J. Dent. Res.* **98**(7), 725–730 (2019).
2. Pessan, J. P., Tounba, K. J. & Buzalaf, M. A. R. Topical use of fluorides for caries control. *Monogr. Oral Sci.* **22**, 115–132 (2011).
3. DenBesten, P. & Li, W. Chronic fluoride toxicity: Dental fluorosis. *Monogr. Oral Sci.* **22**, 81–96 (2011).
4. Whitford, G. M. Acute toxicity of ingested fluoride. *Monogr. Oral Sci.* **22**, 66–80 (2011).
5. Iheozor-Ejiofor, Z. et al. Water fluoridation for the prevention of dental caries. *Cochrane Database Syst. Rev.* **2015**(6), CD010856 (2015).
6. Sampaio, F. C. & Levy, S. M. Systemic fluoride. *Monogr. Oral Sci.* **22**, 133–145 (2011).
7. Kohn, W. G., Maas, W. R., Malvitz, D. M., Presson, S. M., & Shaddix, K. K. Recommendations for using fluoride to prevent and control dental caries in the United States (2001).
8. Duan, Q., Jiao, J., Chen, X. & Wang, X. Association between water fluoride and the level of children’s intelligence: A dose-response meta-analysis. *Public Health* **154**, 87–97 (2018).
9. Choi, A. L., Sun, G., Zhang, Y. & Grandjean, P. Developmental fluoride neurotoxicity: A systematic review and meta-analysis. *Environ. Health Perspect.* **120**(10), 1362–1368 (2012).
10. Grandjean, P. Developmental fluoride neurotoxicity: An updated review. *Environ. Health* **18**(1), 110 (2019).
11. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PloS Med.* **6**(7), e1000097 (2009).
12. Fowkes, F. G. & Fulton, P. M. Critical appraisal of published research: introductory guidelines. *BMJ (Clinical Research ed)*, **302**(6785), 1136–1140 (1991).
13. WHO. WHO Guidelines Approved by the Guidelines Review Committee. *Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum* (World Health Organization Copyright © World Health Organization, Geneva, 2017).
14. Fawell, J., Bailey, K., Chilton, J., Dahl, E., Fewtrell, L., Magara, Y. et al. Fluoride in drinking-water/. Fawell ... [et al.]. (World Health Organization, Geneva, 2006).
15. Higgins, J. P. et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. *BMJ (Clinical Research ed)*, **343**, d5928 (2011).
16. Rosenblad, A. Introduction to meta-analysis, by M. Borenstein, LV Hedges, JPT Higgins, HR Rothstein. *Int. Stat. Rev.* **77**, 478–479 (2009).
17. Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical Research ed)*, **315**(7109), 629–634 (1997).
18. Ryan, R., & Hill, S. How to GRADE the quality of the evidence. Cochrane consumers and communication group. *J. Clin. Epidemiol.* **64**(4), 383–394 (2011).
19. Kundu, H. et al. Effect of fluoride in drinking water on children’s intelligence in high and low fluoride areas of Delhi. *J. Indian Assoc. Public Health Dent.* **13**(2), 116 (2015).
20. Sudhir, K., Chandu, G. D., Prashant, G. & Reddy, V. S. Effect of fluoride exposure on Intelligence Quotient (IQ) among 13–15 year old school children of known endemic area of fluorosis, Nalgonda District, Andhra Pradesh. *Public Health* **2009**, 13 (2009).
21. Wang, Z. et al. Investigation of children’s growth and development under long-term fluoride exposure. *Chin. J. Control Endem.* **22**(2), 113–120 (2009).
22. Shah, J. et al. Prevalence of neurological manifestations in a human population exposed to fluoride in drinking water. *Fluoride* **42**(2), 127 (2009).
23. Gao, X. et al. A preliminary investigation of the IQs of 7–13 year-old children from an area with coal burning-related fluoride poisoning. *Fluoride* **41**(2), 125–128 (2008).
24. Khan, S. A. et al. Relationship between dental fluorosis and intelligence quotient of school going children in and around Lucknow District: A cross-sectional study. *J. Clin. Diagn. Res.* **9**(11), ZC10 (2015).
26. Trivedi, M., Verma, R., Chino, N., Patel, R. & Sathawara, N. Effect of high fluoride water on intelligence of school children in India. Fluoride 40(3), 178–183 (2007).
27. Saxena, S., Sahay, A. & Goel, P. Effect of fluoride exposure on the intelligence of school children in Madhya Pradesh, India. J. Neurosci. Rural Pract. 3(2), 144 (2012).
28. Wang, S.-X. et al. Arsenic and fluoride exposure in drinking water: children's IQ and growth in Shanyin county, Shanxi province, China. Environ. Health Perspect. 115(4), 643–647 (2007).
29. Aravind, A. et al. Effect of fluoridated water on intelligence in 10–12-year-old school children. J. Int. Soc. Prev. Commun. Dent. 6(Suppl 1), S237 (2016).
30. Qin, L., Huo, S., Chen, R., Chang, Y. & Zhao, M. Using the Raven's Standard Progressive Matrices to determine the effects of the level of fluoride in drinking water on the intellectual ability of school-age children. Fluoride 41(2), 115–119 (2008).
31. Razdan, P. et al. Effect of fluoride concentration in drinking water on intelligence quotient of 12–14-year-old children in Mathura district: A cross-sectional study. J. Int. Soc. Prev. Commun. Dent. 7(5), 252 (2017).
32. Sebastian, S. T. & Sunitha, S. A cross-sectional study to assess the intelligence quotient (IQ) of school going children aged 10–12 years in Mysore district, India with different fluoride levels. J. Indian Soc. Pedodont. Prev. Dent. 33(4), 307 (2015).
33. Seraj, B. et al. Effect of high water fluoride concentration on the intellectual development of children in Makoo/Iran. J. Dent. (Tehran, Iran) 9(3), 221 (2012).
34. Eswar, P., Nagesh, L. & Devaraj, C. Intelligence quotients of 12–14 year old school children in a high and a low fluoride village in India. Fluoride 44(3), 168 (2011).
35. Karimzade, S., Aghaei, M. & Mahvi, A. Investigation of intelligence quotient in 9–12-year-old children exposed to high-and low-drinking water fluoride in West Azerbaijan Province, Iran. Fluoride 47(1), 9–14 (2014).
36. Wang, G., Yang, D., Jia, F. & Wang, H. A study of the IQ levels of four to seven year old children in high fluoride areas. Fluoride 41(4), 340–343 (2008).
37. Lu, Y. et al. Effect of high-fluoride water on intelligence in children. Fluoride 33(2), 74–78 (2000).
38. Poursalami, H. R., Horri, A. & Garrusi, B. A comparative study of the IQ of children aged 7–9 in a high and a low fluoride water city in Iran. Fluoride 44(3), 163–167 (2011).
39. Trivedi, M., Sanag, N., Patel, R., Payak, M. & Vyas, S. Assessment of groundwater quality with special reference to fluoride and its impact on IQ of schoolchildren in six villages of the Mundra region, Kachchh, Gujarat, India. Fluoride 45(4), 377–383 (2012).
40. Xiang, Q. et al. Effect of fluoride in drinking water on children's intelligence. Fluoride 36(2), 84–94 (2003).
41. Yu, X. et al. Effect of high fluoride exposure on children's health: A potential association between dental fluorosis and loss of excellent intelligence. Environ. Int. 118, 116–124 (2018).
42. Nagariappa, R. et al. Comparative assessment of intelligence quotient among children living in high and low fluoride areas of Kutch, India—A pilot study. Indian J. Public Health 42(8), 813 (2013).
43. Shuvaprasaksh, P., Ohri, K. & Noorani, H. Relation between dental fluorosis and intelligence quotient in school children of Bagalkot district. J. Indian Soc. Pedodont. Prev. Dent. 29(2), 117 (2011).
44. Chen, Y. et al. Research on the intellectual development of children in high fluoride areas. Fluoride 41(2), 120–124 (2008).
45. Zhao, L., Liang, G., Zhang, D. & Wu, X. Effect of a high fluoride water supply on children's intelligence. Fluoride 29(4), 190–192 (1996).
46. Hong, F., Cao, Y., Yang, D. & Wang, H. Research on the effects of fluoride on child intellectual development under different environmental conditions. Chin. Primary Health Care 15(3), 56–57 (2001).
47. Antman, E. M., Lau, J., Kupelnick, B., Mosteller, F. & Chalmers, T. C. A comparison of results of meta-analyses of randomized controlled trials and recommendations of clinical experts: Treatments for myocardial infarction. JAMA 268(2), 240–248 (1992).
48. Ozman, A. D. & Guvatt, G. H. The science of reviewing research a. Ann. N. Y. Acad. Sci. 709(1), 125–134 (1993).
49. Dec, K. et al. The influence of fluoride on the disturbances of homeostasis in the central nervous system. Biol Trace Elem. Res. 177(2), 224–234 (2017).
50. Lee, J. et al. Fluoride induces a volume reduction in CA1 hippocampal slices via MAP kinase pathway through volume regulated anion channels. Exp. Neurobiol. 25(2), 72–78 (2016).
51. Ma, J. et al. Impact of early developmental fluoride exposure on the peripheral pain sensitivity in mice. Int. J. Dev. Neurosci. 47(Pt B), 165–171 (2015).
52. Needham, L. L. et al. Partition of environmental chemicals between maternal and fetal blood and tissues. Environ. Sci. Technol. 45(3), 1121–1126 (2011).
53. Niu, R. et al. Proteome alterations in cortex of mice exposed to fluoride and lead. Biol. Trace Elem. Res. 164(1), 99–105 (2015).
54. Shalini, B. & Sharma, J. D. Beneficial effects of Emblica officinalis on fluoride-induced toxicity on brain biochemical indexes and learning-memory in rats. Toxicol. Int. 22(1), 33–39 (2015).
55. Bogatcheva, N. V., Wang, P., Birukova, A. A., Verin, A. D. & Garcia, J. G. Mechanism of fluoride-induced MAP kinase activation in pulmonary artery endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 290(6), L1139–L1145 (2006).
56. WHO. Neurological disorders: Public health challenges: World Health Organization; 2006.
57. Fernandes, R. M. et al. The effects of moderate physical exercise on adult cognition: A systematic review. Front. Physiol. 9, 667 (2018).
58. Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neuosci. 20(10), 2580–2590 (2004).
59. Matzel, L. D. & Sauce, B. Individual differences: Case studies of rodent and primate intelligence. J. Exp. Psychol. Anim. Learn. Cogn. 43(4), 325 (2017).
60. Raven, J. Raven Progressive Matrices 223–237 (Springer, 2003).
61. Guth, S. et al. Toxicity of fluoride: Critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch. Toxicol. 94(5), 1375–1415 (2020).
62. Chen, K., Didsbury, M. & van Zwieten, A. Neurocognitive and educational outcomes in children and adolescents with CKD: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 13(3), 387–397 (2018).
63. Sutton, M., Kiersey, R., Farragher, L. & Long, J. Health effects of water fluoridation. An evidence review. Health Research Board, Ireland. https://www.hrb.ie/fileadmin/publications_files/Health_Effects_of_WaterFluoridation.pdf. 2015.

Author contributions
R.R.L. and N.C.F.F.: Conceptualization and Supervision; N.C.F.F.: Software and Data curation; G.H.N.M., M.O.P.A., M.K.M.E., B.P. and L.O.B.: Writing—Original draft; J.P.P. and M.A.R.B.: Validation; J.P.P., M.A.R.B. and R.R.L.: Writing—Reviewing and Editing.

Funding
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The funder was not involved in the design of the study, data collection, analysis,
and interpretation of the data and the writing of the manuscript. The APC was funded by Pró-Reitoria de Pesquisa e Pós-graduação da Universidade Federal do Pará (PROPESP-UFPA).

Competing interests
The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-99688-w.

Correspondence and requests for materials should be addressed to R.R.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021