Cancellation-free circuits: An approach for proving superlinear lower bounds for linear Boolean operators

Joan Boyar and Magnus Gausdal Find
{j Joan, magnusgf}@imada.sdu.dk

Department of Mathematics and Computer Science
University of Southern Denmark

Abstract. We continue to study the notion of cancellation-free linear circuits. We show that every matrix can be computed by a cancellation-free circuit, and almost all of these are at most a constant factor larger than the optimum linear circuit that computes the matrix. It appears to be easier to prove statements about the structure of cancellation-free linear circuits than for linear circuits in general. We prove two nontrivial superlinear lower bounds. We show that a cancellation-free linear circuit computing the $n \times n$ Sierpinski gasket matrix must use at least $\frac{1}{2}n \log n$ gates, and that this is tight. This supports a conjecture by Aaronson. Furthermore we show that a proof strategy for proving lower bounds on monotone circuits can be almost directly converted to prove lower bounds on cancellation-free linear circuits. We use this together with a result from extremal graph theory due to Andreev to prove a lower bound of $\Omega\left(n^2 - \epsilon\right)$ for infinitely many $n \times n$ matrices for every $\epsilon > 0$ for. These lower bounds for concrete matrices are almost optimal since all matrices can be computed with $O\left(n^2 \log n\right)$ gates.

1 Introduction and Known Results

Let \mathbb{F}_2 be the Galois field of order 2, and let \mathbb{F}_2^n be the n-dimensional vector space over \mathbb{F}_2. A Boolean function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^m$ is said to be linear if there exists a Boolean $m \times n$ matrix A such that $f(x) = Ax$ for every $x \in \mathbb{F}_2^n$. This is equivalent of saying that f can be computed using only XOR gates.

An **XOR-AND circuit** C is a directed acyclic graph. There are $n + 1$ nodes with in-degree 0, called the **inputs** one of these is the constant value 1. All other nodes have in-degree 2 and are called **gates**. Every gate is labeled either \oplus (XOR) or \land (AND). There are m gates which are called the **outputs**; these are labeled y_1, \ldots, y_m. The value of a gate labeled \land is the product of its inputs (children), and the value of a gate labeled \oplus is the sum of its two children (addition in \mathbb{F}_2, denoted \oplus). The circuit C, with inputs $x = (x_1, \ldots, x_n)$, **computes** the $m \times n$ matrix A if the output vector computed by C, $y = (y_1, \ldots, y_m)$, satisfies $y = Ax$.

* Partially supported by the Danish Council for Independent Research, Natural Sciences.
In other words, output y_i is defined by the ith row of the matrix. The size of a circuit C, denoted $|C|$, is the number of gates in C. For simplicity, we will let $m = n$ unless otherwise is explicitly stated. A circuit is linear if every gate is labeled \oplus.

For relatively dense matrices, computing all the rows independently gives $\Theta(n)$ gates for each output, that is a circuit of size $\Theta(n^2)$. It follows from a theorem by Lupanov [12,14] that this upper bound can be improved.

Theorem 1 (Lupanov). Every $n \times n$ matrix can be computed using a circuit of size

$$(1 + o(1)) \frac{n^2}{\log n}.$$

A counting argument shows, that this is asymptotically tight. In fact, the vast majority of matrices require this number of gates up to a constant factor. Despite this fact, there is no known concrete family of matrices requiring superlinear size [12].

Another, but related circuit model is the one where we allow unbounded fan-in and arbitrary gates (that is gates computing any predicate are allowed), but require bounded depth. The circuit complexity of such a circuit is the number of wires. Here the lower bound situation is a little better; Alon, Karchmer and Wigderson [2] showed in 1990 that a particular family of matrices requires $\Omega(n \log n)$ wires for linear circuits in this model. This has recently been improved by Gál et al. [11] who have proven that a concrete infinite family of matrices require $\Omega \left(n \left(\frac{\log n}{\log \log n} \right)^2 \right)$ wires when computed in depth 2. Recently Drucker [10] gave a survey of the strategies used for proving lower bounds on wire complexity for general (not necessarily linear) Boolean operators in bounded depth, and the limitations of these.

Returning to the circuit model with bounded fan-in, the situation is even worse for general Boolean predicates. Here we know by a seminal result by Shannon [20,22], that almost every function requires $\Omega(2^n/n)$ gates, but again no superlinear bound is known for a concrete family of functions. A popular, and essentially the only known, technique for proving non-trivial linear lower bounds is the technique of gate-elimination. The key idea when using gate elimination is to set some of the inputs to constant values, arguing that a certain number of gates get “eliminated” and that this results in a function inductively assumed to have a certain size. Gate elimination was first used by Schnorr [19] to prove a $2n$ lower bound, and later improved by Paul [16] and again by Blum [4] who in 1984 presented a $3n$ lower bound for a family of functions when using the full binary basis. This is still the best concrete lower bound known [12]. For a description of the gate-elimination method see the survey of Boppana and Sipser [6] or the essay by Blum [5]. In both of these it is mentioned that it is unlikely that the gate elimination method will ever yield superlinear lower bounds.

In the case of general Boolean functions there are a number of functions conjectured to have superlinear size, examples include any NP-complete language. For linear operators there are, as far as the authors know, only few families of
matrices conjectured to have superlinear size. One of these include the Sierpinski gasket matrix, (Aaronson, personal communication and [1]) described later in this paper.

One proof strategy for proving lower bounds is to prove lower bounds for a restricted circuit model, and to prove that sizes of circuits computing a function in the restricted circuit model are not too much larger than in the original model. This was essentially the motivation for looking at monotone circuits. In [18], Razborov gave a superpolynomial lower bound for the Clique function for monotone circuits. The hope was at that time, that the monotone circuit complexity was polynomially related to general Boolean circuit complexity. This was disproven by Razborov in [17], showing that the gap was superpolynomial. For more details, see e.g. [6].

2 Cancellation-free Linear Circuits

For linear circuits, the value computed by every gate is the parity function of some subset of the n variables. That is, the output of every gate u can be considered as a vector $\kappa(u)$ in the vector space \mathbb{F}_2^n, where $\kappa(u)_i = 1$ if and only if x_i is a term in the parity function computed by the gate u. We call $\kappa(u)$ the value vector of u, and for input variables define $\kappa(x_i) = e_i$, that is the unit vector having the ith coordinate 1 and all other 0. It is clear by definition that if a gate u has the two children w, t, then $\kappa(u) = \kappa(w) \oplus \kappa(t)$, where \oplus denotes coordinate wise addition in \mathbb{F}_2. We say that a linear circuit is cancellation-free if for every pair of gates u, w where u is an ancestor of w then $\kappa(u) \geq \kappa(w)$, where \geq denotes the usual coordinatewise partial order. That is, if x_i is a term in a gate w it is a term in all subsequent gates. The intuition behind this is that if this condition is satisfied, the circuit never exploits the fact that in \mathbb{F}_2, $a \oplus a = 0$. That is, things do not “cancel out” in the circuit. By definition, it is clear that any linear operator can be computed by a cancellation-free circuit.

The proposition comes directly from the definition of cancellation-free.

Proposition 1. The following are equivalent:

- C is cancellation-free
- For every pair of vertices v_1, v_2 in C, there do not exist two disjoints paths in C from v_1 to v_2
- For every v where $\kappa(v)_i = 0$ there is no path from x_i to v
- C does not contain the triangle K_3 as an undirected minor

The notion cancellation-free was introduced by Boyar and Peralta in [7,8]. The paper concerns straight line program for computing linear forms, which is equivalent to the model studied in this paper. They proved that the problem of finding shortest linear circuits for linear operators is NP hard, even when restricted to cancellation-free circuits. They also noticed that most heuristics for constructing small linear circuits never exploit the cancellation property. Then, they constructed a gate minimizing heuristic that uses cancellation.
3 Relationship Between Cancellation-free Linear Circuits and General Linear Circuits

Boyar and Peralta proved in [7] that there exists an infinite family of matrices where the sizes of cancellation-free circuits computing them are at least \(\frac{3}{2} - o(1) \) times larger than the optimum. We call this ratio the cancellation ratio, \(\rho(n) \).

We can strengthen the lower bound to 2 using a surprisingly simple matrix. This construction is originally due to Svensson [21].

Theorem 2. There exists an infinite family of matrices such that any cancellation-free circuit computing them must have size \(2 - o(1) \) times larger than the optimum. Thus \(\rho(n) \geq 2 - o(1) \)

Proof. Consider the \(n \times n \) matrix:

\[
\begin{pmatrix}
0 & 1 & 1 & 1 & \ldots & 1 & 1 \\
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 & 0 \\
\vdots \\
1 & 1 & 1 & 1 & \ldots & 0 & 0 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1
\end{pmatrix}
\]

If one allows cancellation this matrix can be computed by a circuit of size \(n \), by first computing \(x_1 \oplus x_2 \) to obtain \(y_2 \). For \(3 \leq j \leq n \), adding \(x_j \) to \(y_{j-1} \) gives \(y_j \). Thus, we use \(n - 1 \) gates to compute \(y_2, \ldots, y_n \). After that we can obtain \(y_1 \) with one gate since \(y_1 = y_n \oplus x_1 \).

Consider any cancellation-free linear circuit \(C \) computing the matrix. Let the set \(S \) contain the gate computing \(y_1 \) and all its (noninput) predecessors. Clearly \(|S| \geq n - 2 \) since it is the sum of \(n - 1 \) terms.

Notice that because \(C \) is cancellation-free, none of the gates in \(S \) can compute any of the output values \(y_2, \ldots, y_n \). Therefore for every \(j > 1 \) we need at least one gate to compute \(y_j \). Thus one needs \(n - 1 \) extra gates for this part. This adds up to \(2n - 3 \). And the ratio is therefore \(\frac{2n-3}{n} \) proving the theorem. \(\square \)

It turns out that for almost every matrix, the cancellation ratio is constant.

Lemma 1. If cancellation is allowed almost every \(n \times n \) matrix needs \(\frac{n^2}{4 \log n} - o(\frac{n^2}{\log n}) \) gates to be computed.

Proof. The number of \(n \times n \) matrices is \(2^{n^2} \). Since there are two inputs to each of the \(M \) gates, and each of the \(n \) outputs are either the output from a gate or an input (or zero), the number of circuits with \(n \) inputs, \(n \) outputs and \(M \) gates is at most

\[(n + M)^{2M} (n + M + 1)^n / M! \]

Taking the logarithm one gets

\[2M \log(n + M) + n \log(n + M + 1) - \log(M!) \]
Recalling that $\log(M!) = M \log M - O(M)$, for sufficiently large n, $n < M$:

$$2M \log(2M) + M \log(2M) - M \log M + O(M) = 2M \log M + O(M)$$

so the number of distinct circuits is at most $2^{2M \log M + O(M)}$. For $0 < \epsilon < 1$ the number of matrices that can be computed with $M = (1 - \epsilon)\frac{1}{4}n^2/\log n$ gates is at most

$$2^{2M \log M + O(M)} \leq 2^{(1-\epsilon)n^2 + o(n^2)}.$$

That is, the fraction of matrices not computable, is at least

$$1 - \frac{2^{(1-\epsilon)n^2 + o(n^2)}}{2^{n^2}}.$$

Since this limit tends to 1 almost every matrix has circuit size at least

$$\frac{n^2}{4 \log n} - o\left(\frac{n^2}{4 \log n}\right).$$

We will now show that the construction in the proof of Theorem 1 produces a circuit that is cancellation-free. Before stating the lemma and its proof we will need a definition of rectangular decompositions: Given a Boolean $n \times n$ matrix A, the Boolean matrices B_1, \ldots, B_k constitute a rectangular decomposition if $A = B_1 + B_2 + \ldots + B_k$ where addition is over the reals and every B_i has rank 1. We say that the weight of B_i is the number of nonzero columns plus the number of nonzero rows. The weight of a rectangular decomposition is the sum of the weights of the B_i’s. Lupanov showed in [14] (see also [12]) that every $n \times n$ matrix admits a rectangular decomposition of weight $(1 + o(1))\frac{n^2}{\log n}$.

Lemma 2. Every $n \times n$ matrix can be computed by a cancellation-free linear circuit of size $(1 + o(1))\frac{n^2}{\log n}$.

Proof. Let the Boolean $n \times n$ matrix A be arbitrary. Consider the rectangular decomposition B_1, \ldots, B_k assumed to exist by Lupanov’s theorem. For each i let $c_i (r_i)$ denote the number of nonzero columns (rows) in B_i. Add for each B_i the inputs corresponding to the nonzero columns, using $c_i - 1$ gates. Call the result s_i. Now each output is a sum of s_i’s. For each y_j, add these s_i’s. In total, this takes at most $\sum_i r_i$ gates. The total number of gates is at most

$$\sum_i (c_i - 1) + \sum_j r_j \leq (1 + o(1))\frac{n^2}{\log n}$$

Since the addition $B_1 + \ldots + B_k$ in the the rectangular decomposition is over the reals, the circuits is cancellation-free. \qed

Combining the two lemmas we get the following:

Theorem 3. For almost every matrix, the cancellation ratio, $\rho(n)$, is constant.
4 Lower Bound on the Size of Cancellation-free Circuits Computing the Sierpinski Gasket Matrix.

In this section we will prove that the \(n \times n \) Sierpinski gasket matrix needs \(\frac{1}{2}n \log n \) gates when computed by a linear cancellation-free circuit, and that this suffices.

Suppose some subset of the input variables are restricted to the value 0. Now look at the resulting circuit. Some of the gates will now compute the value \(z = 0 \oplus w \). In this case, we say that the gate is eliminated since it no longer does any computation. The situation can be even more extreme, some gate might “compute” \(z = 0 \oplus 0 \). In both cases, we can remove the gate from the circuit, and forward the input if necessary (if \(z \) is an output gate, \(w \) now outputs the result). In the second case, the parent of \(z \) will get eliminated, so the effect might cascade. For any subset of the variables, there is a unique set of gates that become eliminated when setting these variables to 0.

The Sierpinski gasket matrix is defined recursively as:

\[
S_0 = (1)
\]

\[
S_{k+1} = \begin{pmatrix} S_k & 0 \\ S_k & S_k \end{pmatrix}
\]

In all of the following let \(n = 2^k \), and let \(S_k \) be the \(n \times n \) Sierpinski gasket matrix. First we need a fact about \(S_k \):

Proposition 2. For every \(k \) the determinant of the Sierpinski gasket matrix is 1. In particular the \(2^k \) rows in \(S_k \) are linearly independent.

Proof. The determinant of an augmented matrix is given by the formula:

\[
\det(S_{k+1}) = \det \left(\begin{pmatrix} S_k & 0 \\ S_k & S_k \end{pmatrix} \right) = \det(S_k)\det(S_k) = 1
\]

\(\square \)

Theorem 4. For every \(k \geq 2 \), any cancellation-free circuit that computes the \(n \times n \) Sierpinski gasket matrix has size at least \(\frac{1}{2}n \log_2 n \).

Proof. The proof is by induction on \(k \). For the base case, look at the \(2 \times 2 \) matrix \(S_1 \). This clearly needs at least \(\frac{1}{2}2 \log_2 2 = 1 \) gate.

Suppose the statement is true for some \(k \), now look at the \(2n \times 2n \) matrix \(S_{k+1} \). Denote the output gates \(y_1, \ldots, y_{2n} \) and the inputs \(x_1, \ldots, x_{2n} \). Partition the gates of \(C \) into three disjoint sets, \(C_1, C_2 \) and \(C_3 \) defined as follows:

- \(C_1 \): The gates having only inputs from \(x_1, \ldots, x_n \) and \(C_1 \). Equivalently the gates not reachable from inputs \(x_{n+1}, \ldots, x_{2n} \).
- \(C_2 \): The gates in \(C - C_1 \) that are not eliminated when inputs \(x_1, \ldots, x_n \) are set to 0.
- \(C_3 \): \(C - (C_1 \cup C_2) \). That is, the gates in \(C - C_1 \) that do become eliminated when inputs \(x_1, \ldots, x_n \) is set to 0.

Obviously \(|C| = |C_1| + |C_2| + |C_3| \). We will now give lower bounds on the sizes of \(C_1, C_2, \) and \(C_3 \).
Since the circuit is cancellation-free, the outputs \(y_1, \ldots, y_n \) and all their predecessors are in \(C_1 \). By the induction hypothesis, \(|C_1| \geq \frac{1}{2} n \log_2 n \).

C_2: Since the gates in \(C_2 \) are not eliminated when \(x_1 = x_2 = \ldots = x_n \), they compute \(S_k \) on the inputs \(x_{n+1}, \ldots, x_{2n} \). By the induction hypothesis \(|C_2| \geq \frac{1}{2} n \log_2 n \).

C_3: The goal is to prove that this set has size at least \(n \). Let \(\delta(C_1) \) be the set of arcs from \(C_1 \cup \{x_1, \ldots, x_n\} \) to \(B = C_2 \cup C_3 \). We first prove that

\[
|C_3| \geq |\delta(C_1)| \quad (1)
\]

By definition, all gates in \(C_1 \) attain the value 0 when \(x_1, \ldots, x_n \) are set to 0. Let \((v, w) \in \delta(C_1) \) be arbitrary. Since \(v \in C_1 \cup \{x_1, \ldots, x_n\} \), \(w \) becomes eliminated, so \(w \in C_3 \). Every \(u \in C_3 \) can only have one child in \(C_1 \), since no gate in \(C_3 \) can have two children in \(C_1 \). So \(|C_3| \geq |\delta(C_1)| \).

We now show that \(|\delta(C_1)| \geq n \). Let the endpoints of \(\delta(C_1) \) in \(C_1 \) be \(e_1, \ldots, e_p \) and let their corresponding value vectors be \(v_1, \ldots, v_p \).

Now look at the value vectors of the output gates \(y_{n+1}, \ldots, y_{2n} \). For each of these, the first vector consisting of the first \(n \) coordinates must be in \(\text{span}(v_1, \ldots, v_p) \), but the dimension of \(S_k \) must be \(n \), so \(p \geq n \).

We have that \(|C_3| \geq |\delta(C_1)| \geq n \), so

\[
|C| = |C_1| + |C_2| + |C_3| \geq \frac{1}{2} n \log_2 n + \frac{1}{2} n \log_2 n + n = \frac{1}{2}(2n) \log_2 (2n).
\]

It turns out that this is tight.

Proposition 3. The Sierpinski matrix can be computed by a cancellation-free circuit using \(\frac{1}{2} n \log_2 n \) gates.

Proof. This is clearly true for \(S_2 \). Assume that \(S_k \) can be computed using \(\frac{1}{2} n \log_2 n \) gates. Consider the matrix \(S_{k+1} \). Construct the circuit in a divide and conquer manner; construct recursively on variables \(x_1, \ldots, x_n \) and \(x_{n+1}, \ldots, x_{2n} \). This gives outputs \(y_1, \ldots, y_n \). After this use \(n \) operations to finish the outputs \(y_{n+1}, \ldots, y_{2n} \). This adds up to exactly \(\frac{1}{2}(2n) \log_2 (2n) \).

5 Stronger Lower Bounds

In [15], Mehlhorn proved lower bounds on monotone circuits for computing “Boolean sums”. The same proof strategy can be used to prove lower bounds on cancellation-free linear circuits. For a matrix \(A \), denote by \(c_f(A) \) the smallest cancellation-free linear circuit that computes \(A \), and \(|A| \) as the number of 1’s in \(A \). Let \(K_{a,b} \) be the complete bipartite graph with \(a \) vertices in one vertex set and \(b \) in the other.
Theorem 5. Let M be an $n \times n$ matrix. Interpret M as a vertex adjacency matrix for a bipartite graph in the natural way. If this graph does not contain $K_{h+1,k+1}$ for constants h,k then $|c_f(M)| \in \Omega(|M|)$.

Proof. Consider the class of cancellation-free linear circuits where all sums of at most k variables are available for free. Let $\tilde{c}_f(M)$ be smallest of such circuits computing M. Obviously $|c_f(M)| \geq |\tilde{c}_f(M)|$. Since all sums of at most k variables are available for free, anything computed at a gate in $\tilde{c}_f(M)$ is a sum of at least $k+1$ variables. Since the circuit is cancellation-free, for a gate u in $\tilde{c}_f(M)$, its value vector will never decrease, hence the value vector of a successor to u will have 1 on the $k+1$ coordinates that u’s value vector has. In particular, since the matrix does not contain $K_{h+1,k+1}$, this means that any gate u in $\tilde{c}_f(M)$ can have a path to at most h outputs.

For a fixed row i, the cost of computing it is at least $|M_i|/k - 1$.

And since a gate has a path to at most h outputs, if we sum over all rows we count each gate at most h times. So the total size of $\tilde{c}_f(M)$ is at least

$$\sum_i (|M_i|/k - 1)/h \in \Omega(|M|)$$

\[\square\]

Now, proving lower bounds for linear cancellation-free circuits is reduced to the problem of finding dense bipartite graphs not containing $K_{h+1,k+1}$. This problem is known as the Zarankiewicz problem.

Corollary 1. For any $\epsilon > 0$, there exists a concrete family of matrices that requires $\Omega(n^{2-\epsilon})$ gates when computed by a cancellation-free linear circuit.

Proof. In [3], Andreev gave for every $\epsilon > 0$ an explicit construction for an infinite family of bipartite graphs with $2n$ nodes and $n^{2-\epsilon}$ edges that does not contain the subgraph $K_{h+1,k+1}$ where h and k only depend on ϵ. Using this construction together with Theorem 5 gives the desired result. \[\square\]

It should be noted that Brown [9] gave a simpler construction of a family of graphs with $\Theta(n)$ vertices and $\Theta(n^{5/3})$ edges not containing $K_{3,3}$. Also, Kollár et al. [13] gave a construction similar to Andreev’s, but where the functions h,k grow slower than in Andreev’s construction.

6 Conclusion and Open Problems

What is the value of $\rho(n)$? If for some $\delta > 0$, $\rho(n) \in O(n^{1-\delta})$, Corollary 1 provides an unconditional superlinear lower bound for a concrete family of matrices.

In the proof of Theorem 4 we did not use the cancellation-free property as extensively as we did in the proof of Theorem 5. We only used that there is no
path from x_{n+1}, \ldots, x_{2n} to the outputs y_1, \ldots, y_n. Another strategy to prove an unconditional lower bound on the size of circuits computing the Sierpinski matrix could be to prove that for any optimal circuit no such path exists. Then the theorem would follow, even with cancellations.

References

1. Aaronson, S.: Thread on cstheory.stackexchange.com. http://cstheory.stackexchange.com/questions/1794/circuit-lower-bounds-over-arbitrary-sets-of-gates
2. Alon, N., Karchmer, M., Wigderson, A.: Linear circuits over GF(2). SIAM J. Comput. 19(6), 1064–1067 (1990)
3. Andreev, A.E.: On a family of Boolean matrices. Vestnik Moskovskogo Universiteta 41(2), 97–100 (1986), English translation: Moscow Univ. Math. Bull., 41, 1986 79-82
4. Blum, N.: A Boolean function requiring 3n network size. Theor. Comput. Sci. 28, 337–345 (1984)
5. Blum, N.: On negations in Boolean networks. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. Lecture Notes in Computer Science, vol. 5760, pp. 18–29. Springer (2009)
6. Boppana, R.B., Sipser, M.: The complexity of finite functions. In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pp. 757–804. Laboratory for Computer Science, Massachusetts Institute of Technology (1990)
7. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applications to cryptology. Journal of Cryptology (2012), to appear
8. Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line program for computing linear forms. In: Ochmanisky, E., Tyszkiewicz, J. (eds.) MFCS. Lecture Notes in Computer Science, vol. 5162, pp. 168–179. Springer (2008)
9. Brown, W.: On graphs that do not contain a Thomsen graph. Canad. Math. Bull 9(2), 1–2 (1966)
10. Drucker, A.: Limitations of lower-bound methods for the wire complexity of Boolean operators. Electronic Colloquium on Computational Complexity (ECCC) 18, 125 (2011)
11. Gál, A., Hansen, K.A., Koucký, M., Pudlák, P., Viola, E.: Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates. Electronic Colloquium on Computational Complexity (ECCC) 18, 150 (2011)
12. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer Berlin Heidelberg (2012)
13. Kollár, J., Rónyai, L., Szabó, T.: Norm-graphs and bipartite turán numbers. Combinatorica 16(3), 399–406 (1996)
14. Lupanov, O.: On rectifier and switching-and-rectifier schemes. Dokl. Akad. 30 Nauk SSSR 111, 1171-1174. (1965)
15. Mehlhorn, K.: Some remarks on Boolean sums. Acta Informatica 12, 371–375 (1979)
16. Paul, W.J.: A 2.5 n-lower bound on the combinational complexity of Boolean functions. SIAM J. Comput. 6(3), 427–443 (1977)
17. Razborov, A.: Lower bounds of monotone complexity of the logical permanent function. Matematicheskie Zametki 37(6), 887–900 (1985), English translation in Mathematical Notes of the Academy of Sci. of the USSR, 37:485-493, 1985
18. Razborov, A.: Lower bounds on the monotone complexity of some Boolean functions. Doklady Akademii Nauk SSSR 281(4), 798–801 (1985), English translation translation: Soviet Mathematics Doklady, 31, 354-357.

19. Schnorr, C.P.: Zwei lineare untere schranken für die komplexität Boolescher funktionen. Computing 13(2), 155–171 (1974)

20. Shannon, C.: The synthesis of two-terminal switching circuits. Bell System Technical Journal 28(1), 59–98 (1949)

21. Svensson, J.: Minimizing the Number of XOR Gates in Circuits Computing Linear Forms. Master’s thesis, Department of Mathematics and Computer Science, University of Southern Denmark (2011)

22. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner (1987)