Running head: Environmental Factor-Induced Stomatal Closure

Corresponding author: Hannes Kollist, Nooruse 1, 50411 Tartu, Estonia, +372 56470471, hannes.kollist@ut.ee

Research category: Signalling and Response (Associate Editor, Teun Munnik; monitoring editor, Carl Bernacchi)
PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness- and CO₂-Induced Stomatal Regulation

Ebe Merilo, Kristiina Laanemets, Honghong Hu, Shaowu Xue, Liina Jakobson, Ingmar Tulva, Miguel Gonzalez-Guzman, Pedro L. Rodriguez, Julian I. Schroeder¹, Mikael Broschè¹ & Hannes Kollist

Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia (E.M., K.L., L.J., M.B., H.K.); Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla CA 92093-0116, USA (S.X, H.H., J.I.S); Institute of Molecular Science, Shanxi University, Taiyuan, China (SX); Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain (M.G.-G., P.L.R); Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland (M.B.); Institute of Ecology and Earth Sciences, University of Tartu, Estonia (I.T.)

¹Joint senior authors

One-sentence summary: Signaling through abscisic acid PYR/RCAR receptors plays a fundamental role in controlling whole-plant stomatal conductance and affects plant stomatal closure in response to low air humidity, darkness, O₃ pulse and elevated CO₂.
Footnotes

Financial sources: This work was supported by Estonian Ministry of Science and Education (IUT2-21), European Regional (Center of Excellence in Environmental Adaptation) and Social (Mobilitas Top Researchers grant MTT9) Fund, by the National Science Foundation (MCB0918220) and the National Institutes of Health (R01GM060396) to JIS, the grants 2012011006-4 and 2011-012 to SX and the grant BIO2011-23446 to PLR.

Present address (HH): College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070

Corresponding author: Hannes Kollist, hannes.kollist@ut.ee
ABSTRACT

Rapid stomatal closure induced by changes in the environment, such as elevation of CO₂, reduction of air humidity, darkness and pulses of air pollutant ozone (O₃), involves the SLAC1 anion channel. SLAC1 is activated by OST1 and Ca²⁺-dependent protein kinases. OST1 activation is controlled through abscisic acid (ABA)-induced inhibition of PP2C protein phosphatases by PYR/RCAR receptor proteins. To address the role of signaling through PYR/RCARs for whole-plant steady-state stomatal conductance (gₛ) and stomatal closure induced by environmental factors, we used a set of *Arabidopsis thaliana* mutants defective in ABA metabolism/signaling. The gₛ values varied several fold among the studied mutants indicating that basal ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling whole-plant water loss through stomata. PYR/RCAR-dependent inhibition of PP2Cs was clearly required for rapid stomatal regulation in response to darkness, reduced air humidity and O₃. Furthermore, PYR/RCAR proteins seem to function in a dose-dependent manner and there is a functional diversity among them. Although rapid stomatal response to elevated CO₂ was evident in all but slac1 and ost1 mutants, the bicarbonate-induced activation of S-type anion channels was also reduced in dominant active PP2C mutants, abi1-1 and abi2-1. Further experiments with wider range of CO₂ concentrations and analyses of stomatal response kinetics suggested that ABA signalosome affects the CO₂–induced stomatal response. Thus, we show that PYR/RCAR receptors play an important role for the whole-plant stomatal adjustments and responses to low humidity, darkness and O₃ and are involved in responses to elevated CO₂.
INTRODUCTION

Stomata, small pores in the leaf epidermis, are formed by a pair of guard cells that have developed mechanisms to sense and respond to various endogenous and environmental stimuli. Stomata close in response to reduction in air humidity, darkness and CO₂ enrichment. Ozone (O₃), a major secondary air pollutant with adverse impacts on global vegetation (Ashmore 2005) and climate change (Sitch et al., 2007), has also been shown to cause rapid stomatal closure (Hill & Littlefield 1969; Vahisalu et al., 2010). The key endogenous factor triggering stomatal closure in response to drought is the plant hormone abscisic acid (ABA). In 1997, Webb and Hetherington suggested that the pathways of ABA- and CO₂- induced closure converge i.e. there is an economy in signaling pathways leading to the promotion of stomatal closure (Webb and Hetherington, 1997). However, the location of this convergence point is still under debate. Opening and closure of stomatal pores is achieved by the uptake and release of osmotically active ions leading to expanding and shrinking of guard cells. Thus, activation and inactivation of guard cell ion channels and transporters are the primary targets of signaling networks controlling stomatal movements (for recent reviews see Kim et al., 2010; Kollist et al., 2011; Roelfsema et al., 2012).

In 2009, independent groups simultaneously discovered the functional and structural mechanisms of ABA sensing by cytosolic PYRABACTIN RESISTANCE1 (PYR1)/PYR1-like (PYL)/ REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) receptor proteins (Ma et al., 2009; Park et al., 2009). Identification of the guard cell slow anion channel gene, SLAC1, is another substantial finding in stomatal research (Negi et al., 2008; Vahisalu, et al., 2008). ABA-induced stomatal closure involves the activation of SLAC1 which is controlled by PYR/RCAR-dependent sequestration of type 2 protein phosphatases (PP2Cs), e.g. ABI1, ABI2, HAB1 and PP2CA and concomitant activation of Snf1-related subfamily 2 protein kinase SnRK2.6/OST1 (Park et al., 2009; Ma et al., 2009; Umezawa et al., 2009; Vlad et al., 2009; Nishimura et al., 2010; Weiner et al., 2010; Dupeux et al. 2011a; Soon et al., 2012). Phosphorylation by OST1 activates several proteins, including SLAC1 (Geiger et al., 2009; Lee et al., 2009; Vahisalu et al., 2010). SLAC1 can also be activated by different calcium-dependent protein kinases (CPKs) (Geiger et al., 2010, Brandt et al., 2012; Scherzer et al. 2012). Thus, several molecular details are known for the general activation mechanism of SLAC1 and subsequent stomatal closure. The importance of SLAC1 and OST1 in rapid stomatal responses to environmental factors such as darkness, CO₂, humidity and O₃ is also established (Negi et al., 2008; Vahisalu et al., 2008;
Ache et al., 2010; Xue et al., 2011). However, whether the ABA- and PYR/RCAR-dependent inhibition of PP2Cs that ultimately results in the activation of OST1 and anion channels like SLAC1 (herein defined as the ABA signalosome) is also required for rapid stomatal responses to important environmental factors is not fully resolved. One approach to address this question is to perform side by side comparison of whole-plant stomatal responses of plants where various proteins of the ABA signalosome are mutated (Fig. 1; Table 1).

Stomatal responses of several of these mutants to environmental factors have been studied earlier, however, often with different results. For example, initial in vitro studies indicated that OST1 was not involved in CO2-induced stomatal signaling as the stomata of ost1-1 and ost1-2 behaved as wild-type (WT) in response to low CO2 (Mustilli et al., 2002). Similarly, mutations in OST1 did not affect stomatal regulation by light, leading to the suggestion that OST1 is specifically involved in ABA signaling (Mustilli et al., 2002). However, recently it was shown that OST1 is a major regulator of CO2-induced stomatal closing and activation of the S-type anion channels in guard cells (Xue et al., 2011). Furthermore, dominant hypermorphic abi1-1 and abi2-1 mutations, which generate mutant PP2Cs that are refractory to inhibition by PYR/RCAR receptors (Ma et al., 2009; Park et al., 2009; Umezawa et al., 2009), have been used to address whether ABA, CO2- and light-induced stomatal signaling pathways converge. Stomatal opening induced by light and CO2 removal was 50% reduced in abi1-1 and abi2-1 plants, however, it was concluded that this might have been caused by constitutively more open stomata of these mutants (Leymarie et al., 1998a; 1998b). Other studies showed that light-induced stomatal opening was not disrupted in abi1-1 and abi2-1 mutants (Roelfsema and Prins, 1995; Eckert and Kaldenhoff 2000). In contrast, Webb and Hetherington (1997) found that abi1-1 and abi2-1 did not respond clearly to elevated CO2, whereas the stomatal closure was indistinguishable from WT in ABA-deficient plants.

The involvement of the ABA signalosome in the regulation of stomatal response to reduced air humidity is also disputed. During a genetic screen for mutants involved in stomatal response to reduced air humidity, new alleles for OST1 and ABA2, an enzyme involved in ABA biosynthesis, were identified, suggesting that OST1 activity and ABA biosynthesis are essential for low humidity induced stomatal closure (Xie et al., 2006). Furthermore, activation of OST1 is induced by low-humidity stress (Yoshida et al., 2006). Contrarily, aba1, abi1-1 and abi2-1 mutants had WT stomatal responses to reduced humidity (Assmann et al., 2000). Since partial response to low humidity is observed in all studied mutants of ABA signalosome, an existence of a separate
ABA-independent pathway mediating low humidity-induced stomatal closure has been proposed (Xie et al., 2006).

A large amount of data for stomatal signaling is collected by using isolated leaf epidermes or guard cell protoplasts whereas the significance of these results is not always tested in intact plants. Thus, gas exchange analysis of whole plant and leaf stomatal responses is important in verifying the stomatal responsiveness to environmental stimuli. In the present study, we used a custom-made gas exchange device with parallel recording of stomatal responses of up to eight Arabidopsis plants to various environmental factors (Kollist et al., 2007; Vahisalu et al., 2008; Vahisalu et al., 2010). We chose mutants where different components of the ABA signalosome are affected (Fig. 1) to address the role of ABA signaling through PYR/RCAR proteins in stomatal responses to reduced air humidity, darkness and elevated CO₂ and O₃ concentrations. We found that the ABA signaling through PYR/RCARs is clearly required for rapid stomatal closure in response to darkness, O₃ and reduced air humidity, while it is also involved in stomatal responses to elevated CO₂. Since functional OST1 and SLAC1 were important in response to all stimuli, we discuss the possibility that other signaling elements besides ABA and its signalosome are able to activate OST1 in response to changes in CO₂.

RESULTS

To study the role of the ABA signalosome in the regulation of stomatal responses to darkness, CO₂, reduced humidity and O₃, we used mutants where different proteins of the ABA signalosome were affected (Fig. 1). If possible, at least two mutants for each protein were analyzed and in many cases mutants from different genetic backgrounds, Col-0 and Ler, were used in parallel (Table 1). Representative photos of plants used for gas-exchange measurements (Supplementary Fig. S1) show that even mutants with high gs were healthy and non-wilted in our growth conditions.

ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling plant steady-state stomatal conductance

Whole-rosette stomatal conductance (gs) varied several fold among the studied mutants, ranging from 74 mmol m⁻²s⁻¹ in a triple loss-of-function mutant of ABI1, HAB1 and PP2CA, abi1-2hab1-1pp2ca-1, to 683 mmol m⁻²s⁻¹ in sextuple PYR/RCAR loss-of-function mutant,
pyr1pyl1pyl2pyl4pyl5pyl8, abbreviated as 112458 (Fig. 2A). The difference in g_st between two WTs, Ler and Col-0, was 1.4-fold. The g_st values of 112458, PYR/RCAR pentuple pyr1pyl1pyl2pyl4pyl5pyl8 (12458) and dominant active PP2C mutants (abi1-1L, abi2-1L in Ler background and abi1-1C, hab1G246D in Col-0 background) were the highest, followed by ABA-deficient aba1-1 and aba3-1 (Fig. 2A). The hab1G246D mutation is analogous to abi1-1 and abi2-1 mutations and causes resistance to ABA-dependent inhibition by PYR/RCAR receptors, leading to strong ABA insensitivity (Robert et al., 2006; Dupeux et al., 2011a). It should be noted that ABA biosynthesis mutants have reduced, but not abolished ABA synthesis; with aba1-1 and aba3-1 still having 3% and 10% of the WT ABA in stressed leaves, respectively (Rock and Zeevart 1991; Leon-Klooosterziel et al., 1996). Plants carrying loss-of-function mutations in SLAC1 and OST1 (slac1-3, ost1-2 and ost1-3) as well as in four PYR/RCAR receptors, pyr1pyl1pyl2pyl4pyl5pyl8 (1458) and pyr1pyl1pyl2pyl4 (note that we present data for this mutant in Col-0 and in Ler background, abbreviated as 1124C and 1124L, respectively) also exhibited significantly higher g_st than the corresponding WTs. Gradual removal of PYR/RCAR receptor proteins had an increasing effect on g_st. In two mutants with elevated ABA concentrations due to defective ABA catabolism (cyp707a1 and cyp707a3, Okamoto et al., 2009), only cyp707a1 had significantly reduced g_st. OST1-dependent phosphorylation of serine 120 in SLAC1 is critical for channel activation in oocytes (Geiger et al., 2009) and in O3-induced plant stomatal response (Vahisalu et al., 2010). However, the g_st of slac1-7, with a S120F point-mutation, was similar to that of Col-0. CPK21 and CPK23 are other kinases shown to activate SLAC1 in oocytes (Geiger et al., 2010), however g_st of cpk21 and cpk23 did not differ from that of WT plants (Fig. 2A). Together these results unequivocally demonstrate that mutations in ABA signalosome have a major effect on the whole-plant stomatal conductivity and loss of water.

To address whether the differences in stomatal conductance persisted after application of 1hr darkness, elevated CO2 and reduced humidity, we combined g_st values of all mutants into one Principal Component Analysis (PCA) axis. This PCA axis describes stomatal conductance in stimuli-affected conditions. The ranking of genotypes by g_st in stimuli-affected conditions (Fig. 2B) did not reveal any major differences from g_st values in normal pre-stimuli conditions (Fig. 2A): although there were some relocations, e.g. ost1-3 and 1124C, the groups of statistical significance remained unchanged. The result that plants with more open stomata remain more open even after receiving a signal to close may indicate either that stomatal closure is impaired due to the given mutation or that the absolute extent of stomatal closure induced by these stimuli is generally limited.
Data analysis

Since the number of studied mutants was high, we determined two characteristics describing stomatal closure and enabling quantitative comparisons of different genotypes. First, we calculated changes of stomatal conductance as \((g_{st2}-g_{st1})/(t_2-t_1)\), as shown in Fig. 3A-C. Since \(t_2-t_1\) is similar time interval for all mutants (Fig. 3A-C), this number describes initial stomatal response to the applied factor i.e. the magnitude of change in \(g_{st}\). This characteristic can be effectively applied to all mutants. Stomatal closure in response to darkness, elevated CO\(_2\) and reduced air humidity of WT plants followed an exponential function (Fig. 3D). Thus to provide a value describing the stomatal response kinetics of different genotypes, an exponential function was fitted to their stomatal closure responses and the maximum stomatal closure rate calculated (Fig. 3D). However, several mutants either did not have clear stomatal response to applied stimuli or their stomatal responses did not reach stable phase within the timeframe experiments were carried out; i.e. slac1-3 and ost1-3 in Fig. 4A and C as an examples, respectively. In such cases fitting stomatal response to exponential function was not possible and we interpreted this as an indication that the stomatal closure was affected due to the respective mutation. Results summarizing the results of exponential fitting are shown in Table 2 and Supplemental Fig. S3.

For clarity and to indicate at which step CO\(_2\)-, darkness-, reduced humidity- and O\(_3\)-induced stomatal closures diverge, we present the mutants of ABA signaling and SLAC1 activation bottom-up, starting from SLAC1 anion channel regulation and moving stepwise to mutants defective in PP2C phosphatases, PYR/PYL proteins and finally ABA biosynthesis and catabolism.

SLAC1 and OST1 are required for rapid stomatal closure in response to all studied stimuli

Loss-of-function mutations in the SLAC1 anion channel and its main regulator the protein kinase OST1 led to significantly impaired stomatal responses to darkness, high CO\(_2\), reduced air humidity and O\(_3\), and the corresponding initial changes of stomatal conductance were significantly lower than in WT (Fig. 4; Supplemental Fig. S2). In all genotypes, an initial sudden increase in stomatal conductance was detected after transition from humid to dry air. This is caused by a rapid increase in water evaporation from the epidermal cells and concomitant decrease of their pressure on guard cells (Ivanoff 1928). Due to this effect and extremely slow closing response, the \(g_{st}\) of OST1 loss-of-function mutants remained higher after one hour in dry air compared to humid air (Fig. 4B; Supplemental Fig. S2B). Humidity- and darkness-induced
stomatal closures were the only responses where significant differences between SLAC1 and
OST1 loss-of-function plants were detected (Fig. 4F and G).

The stomata of slac1-7 closed significantly less than those of Col-0 in response to all stimuli,
confirming that the phosphorylation of S120 was important for SLAC1 activation (Fig. 4) (Geiger
et al., 2009; Vahisalu et al., 2010). However, both the WT-like absolute stomatal conductance
(Fig. 2A) and clearly weaker phenotype in CO₂- and O₃-induced stomatal responses of slac1-7
compared to those observed in slac1-3 (Fig. 4, E and H) suggest that phosphorylation of S120
does not fully explain the activation mechanism of SLAC1. The maximum stomatal closure rate
of slac1-7, derived by fitting the kinetics of CO₂-induced stomatal closure with exponential
function, yielded values lower than in WT (Supplemental Fig. S3B). These results confirm that in
addition to O₃-induced stomatal closure (Vahisalu et al., 2010), SLAC1 serine 120 is the target
for OST1 in CO₂-, reduced humidity- and darkness-induced responses as well, but also suggest
that for a full SLAC1 activation, phosphorylation of multiple serines either by OST1 or in
combination with other protein kinases shown to activate SLAC1 in Xenopus oocytes (Geiger et
al. 2010; Brandt et al. 2012; Hua et al., 2012; Scherzer et al., 2012) is needed.

To address the role of CPK21 and CPK23, Ca²⁺-related protein kinases shown to activate
SLAC1 in oocytes (Geiger et al., 2010), cpk21 and cpk23 plants were used. The stomata of
cpk21 responded to the studied stimuli like WT, whereas the initial changes of stomatal
conductance of cpk23 were significantly reduced (Fig. 4, E-H) although much less than those of
slac1-3 and ost1-3. Fitting the kinetics of stomatal closure with exponential function further
confirmed that darkness- and humidity-induced stomatal closure is impaired in cpk23 (Table 2
and Supplemental Fig. S3A).

In conclusion, our results indicate that OST1-induced phosphorylation of SLAC1 is needed for
rapid stomatal closure in response to all studied stimuli. Additionally, CPK23 is required,
although to a minor extent.

**Type 2C Protein phosphatases (PP2Cs) are important for rapid O₂- and humidity-induced
stomatal closure, but less so for darkness- and CO₂-induced closure**

Type 2C protein phosphatases function as negative regulators in ABA-induced stomatal closure
by inhibiting the OST1- and CPKs-induced activation of SLAC1 (Geiger et al., 2009, Geiger et
al., 2010, Brandt et al., 2012). In the presence of ABA, their activity is suppressed by
PYR/RCAR receptors. We used plants carrying dominant active abi1-1, abi2-1 and hab1G246D
mutations that prevent ABA-dependent inhibition of PP2Cs by PYR/RCAR receptors. Humidity- and O₃-induced stomatal responses and initial changes of stomatal conductance were reduced in abi1-1C, (Fig. 5B,F,D,H), abi1-1L and abi2-1L (Supplemental Fig. S4B,F,D,H) as compared to their WTs, whereas in hab1G246D, only the O₃-response was reduced (Fig. 5, D and H). Thus, for O₃- and humidity-induced stomatal closure, the inhibition of PP2C activity is important.

The role of PP2Cs in CO₂- and darkness-induced stomatal closure was less clear. The initial changes in stomatal conductance of dominant abi1-1C, hab1G246D mutants in Col-0 background (Fig. 5A,E,C,G) and similarly those of abi1-1L and abi2-1L in Ler background (Fig. S4A,E,C,G) were generally WT-like. Similar results were obtained for plants with abi1-1 and abi2-1 mutations in Col-0 and in Ler background when analyzing elevated CO₂-induced stomatal closure with a leaf gas-exchange analyzer (Supplemental Fig. S5). However, obtained patterns of stomatal closure could not be described with an exponential function in several cases such as darkness responses of abi1-1L and abi2-1L and CO₂-responses of abi1-1C and abi2-1L (Table 2), suggesting that the closure responses of these mutants were altered/different from their WTs.

To further address the role of ABI1 and ABI2 phosphatases for CO₂-induced stomatal regulation, two additional experiments were performed. First, in a separate gas-exchange experiment, abi1-1L, abi2-1L and Ler stomatal responses were tested within a wider range of CO₂ concentrations. Plants were first acclimatized under 50 μL L⁻¹ of CO₂ until stable gₛ values were reached (75-100 min). Thereafter CO₂ concentration was increased stepwise to 100, 200, 400 and 800 μL L⁻¹ by 30 min intervals. Such treatment induced clear stomatal closure in all three genotypes (Fig. 6A), however, when the stomatal closures caused by each additional step in CO₂ concentration were determined, differences between the genotypes emerged (Fig. 6B). There was no reduction in stomatal conductance within CO₂ range from 50 to 100 μL L⁻¹. Furthermore, from 50 to 200 μL L⁻¹, a decrease in stomatal conductance was observed only in Ler. Change from 50 to 400 μL L⁻¹ of CO₂ caused a closure response in all genotypes, however, the decrease in gₛ was significantly smaller in abi2-1L than in abi1-1L and this difference between abi1-1L and abi2-1L remained at 800 μL L⁻¹, where CO₂-induced decrease in stomatal conductance was similar in Ler and in abi1-1L, but significantly lower in abi2-1L. Secondly, recent research showed that β-carbonic acid anhydrases function early in CO₂-induced stomatal closure (Hu et al. 2010) and that bicarbonate (HCO₃⁻) is an important intracellular signal that triggers the activation of S-type anion channels in Arabidopsis guard cells (Xue et al., 2011). To further address the role of ABI1 and ABI2 in CO₂–induced stomatal signaling, HCO₃⁻-induced activation of S-type anion currents

11
was measured in *abi1-1L* and *abi2-1L*. Guard cell protoplasts from *abi1-1L* and *abi2-1L* displayed clearly reduced but still functional HCO$_3^-$-induced activation of anion currents (Fig. 6C-K).

In conclusion, PP2Cs are important for stomatal closure in response to reduced humidity and O$_3$ and they also participate in darkness- and CO$_2$-induced responses.

Removal of six PYR/RCAR receptor proteins impairs plant stomatal responsiveness to O$_3$, reduced humidity, elevated CO$_2$ and darkness

Gradual removal of PYR/RCAR receptor proteins increasingly impaired the whole-plant stomatal responsiveness to environmental factors; sextuple *112458* PYR/RCAR mutant showed the strongest effect and displayed significantly impaired stomatal responses (Fig. 7, A-D) and reduced initial changes of stomatal conductance due to all stimuli, except for elevated CO$_2$ (Fig. 7, E-H). Additionally, patterns of *112458* stomatal closure did not follow an exponential function in darkness-, CO$_2$- and humidity experiments (Table 2) suggesting that the lack of these proteins modified fast kinetics of stomatal closure in response to these stimuli. A separate gas-exchange experiment with stepwise increases in CO$_2$ concentration also revealed that CO$_2$-induced stomatal closure is reduced in *112458* compared to WT particularly at lower CO$_2$ concentrations (Fig. 7I-J). Thus, the lack of six PYR/PYL proteins significantly impaired stomatal closure due to all studied factors. Quadruple PYR/RCAR mutants displayed impaired stomatal responsiveness as well; however, here the differences from WT depended on the applied stimuli and the combination of PYR/RCAR mutations. For example, O$_3$- and humidity-induced initial changes of stomatal conductance in quadruple, *1124C* (Fig. 7, F and H) and *1124L* mutants (Supplemental Fig. S6, F and H), were significantly reduced, whereas *1458* quadruple and even *12458* pentuple mutants showed similar or even higher than WT closures in response to reduced humidity and O$_3$ (Fig. 7, F and H). These data indicate a functional diversity among PYR/RCAR proteins and suggest the importance of PYL1 for stomatal functioning. Recently, it was demonstrated that PYL1 played an important role in ABA-induced transcriptional response as well (Gonzalez-Guzman et al., 2012). Various combinations of triple loss-of-function PYR/PYL mutants, including *pyr1pyl1pyl4*, previously found to have higher steady-state g$_{st}$ values than WT (Gonzales-Guzman et al. 2012), generally showed initial changes of stomatal conductance that were WT-like or even larger than in WT (Supplemental Fig. S7). This suggests that a certain threshold of PYR/RCAR receptors is required in guard cells to trigger stomatal closure in response to environmental factors. Furthermore, the compensatory changes in the
concentration/activity of other PYR/RCARs in triple loss-of-function PYR/RCAR mutants can explain why their initial rates of stomatal closure were sometimes higher than in WT.

Elevated CO₂, reduced air humidity, darkness and O₃-induced stomatal closure of ABA biosynthesis and catabolism mutants

Plants with mutations in ABA biosynthesis had weaker impairments of stomatal responses (Fig. 8) than those observed for plants impaired in ABA signaling (Figs 4-7). The initial changes of stomatal conductance in *aba1-1* and *aba3-1* did not differ from *Ler* and Col-0 WTs (Fig. 8 E, G, H). The only exception was significantly lower darkness-induced stomatal closure of *aba1-1* than its *Ler* WT (Fig. 8G). Furthermore, stomatal kinetics of *aba1-1* did not follow an exponential function in darkness and CO₂ experiments. ABA is most likely essential for proper plant development, and hence no null mutants for ABA biosynthesis have been isolated. Accordingly, residual amounts of ABA in *aba1-1* and *aba3-1* (Rock & Zeevaart 1991; Léon-Kloosterziel et al., 1996; Xie et al., 2006) could be sufficient to activate the ABA signaling since physiologically active IC₅₀ values of ABA for PP2C inhibition are in the nanomolar range (Szostkiewicz et al., 2010).

Surprisingly, the initial reductions in stomatal conductance due to reduced humidity of ABA biosynthesis mutants were significantly larger than those of respective WTs (Fig. 8F). This result is confirmed by significantly larger maximum stomatal closure rates derived from exponential curve fitting of *aba1-1* and *aba3-1* (Supplemental Fig. S3C). This was an unexpected, but not unique result: Assmann et al. (2000) found that *aba1-1* plants showed greater-than-wild-type stomatal response to an increase in leaf-air vapour pressure difference from 0.4 to 0.7 kPa. As compared with ABA-deficient mutants, mutants defective in ABA catabolism contain higher concentration of ABA and could be predicted to respond more strongly to environmental stimuli. However, the initial changes in stomatal conductance (Fig. 8) and maximum stomatal closure rates (Supplemental Fig. S3A-C) of *cyp707a1* and *cyp707a3* were WT-like.

DISCUSSION

Rapid stomatal closure is one of the fastest responses in plant adaptation to sudden changes in environmental conditions. The finding that ABA perception by PYR/RCAR receptors leads to the inhibition of PP2C phosphatases has been a major breakthrough in plant science to understand ABA signaling and the regulation of stomatal aperture by ABA (Ma et al., 2009; Park et al., 2009). With these recent advances the key question arises whether rapid changes in stomatal
conductance caused by physiological stimuli are affected by defined steps within the ABA signalosome in intact whole plants. Here, we have addressed the relevance of the ABA signalosome (Fig. 1) for the whole-plant steady-state stomatal conductance (g_{st}) and stomatal responses to darkness, reduced air humidity, elevated CO$_2$ and O$_3$, i.e. environmental factors. As this study used a large number of mutants and four different factors, we have summarized the descriptions of mutants into one table (Table 1) and their stomatal responses to studied environmental factors into a simplified figure (Fig. 9B) to help readers to follow the main results of the study.

Fundamental role of ABA signalosome in controlling whole-plant steady-state stomatal conductance

The g_{st} values of the studied mutants varied several fold. The whole-plant stomatal conductances were altered in accordance with the proposed functioning of the ABA signalosome: reduced ABA concentration, gradually reduced levels of functional PYR/RCAR proteins, the presence of dominant active PP2Cs and the lack of functional OST1 and SLAC1 resulted in higher g_{st}. Contrarily, reduced levels of functional PP2Cs in *abi1-2hab1-1pp2ca-1* and higher ABA concentrations in *cyp707a3* resulted in lower g_{st} (Fig. 2). Previous gas-exchange experiments have also found that the mutants of ABA signaling module have high stomatal conductance (*abi1-1* and *abi1-2*, Leymarie et al. 1998a, 1998b; *aba1*, *abi1-1* and *abi2-1*, Assmann et al. 2000; *abi1-1*, *abi1-2* and *ost1-3*, Xue et al. 2011), whereas reduced stomatal conductance of triple loss-of-function PP2C mutants (*hab1-1abi1-2pp2ca-1*, *hab1-1abi1-2abi2-2*) and ABA catabolism mutants (*cyp707a1*, *cyp707a3*) was previously detected by Rubio et al. (2009) and Okamoto et al. (2009), respectively. However, when the stomatal apertures from extracted epidermal fragments have been measured, larger aperture of open stomatal mutants is often not clearly evident (*ost1-1* and *ost1-2*, Mustilli et al. 2002; *hab1G246D*, Robert et al. 2006; *ost1-2* and *abi1-1*, Siegel et al. 2009; *pyr1pyl1pyl2pyl4*, Nishimura et al. 2010; *ost1-3*, Xue et al. 2011). Earlier and more recent studies indicated that at least part of the stomatal responses to CO$_2$ and light depend on signals generated by the mesophyll (Lee & Bowling, 1992; Mott et al., 2008). Thus, it is rather expected that mesophyll or signals from the mesophyll may also play a role in determining the plant steady-state stomatal conductance.

Nevertheless, it is obvious that plant steady-state stomatal conductance is not determined only by the signal flow from ABA to OST1 and the SLAC1 anion channel. For example, the g_{st} values of dominant active PP2C mutants were almost two times higher than those of OST1 and SLAC1.
loss-of-function mutants. Guard cell plasma membrane H\(^{+}\)-ATPases, activated by phosphorylation, provides the driving force for stomatal opening (for review see Shimazaki et al., 2007). The basal and blue light-induced phosphorylation of the guard cell H\(^{+}\)-ATPase was higher in \textit{abi1-1} and \textit{abi2-1} than in WT (Hayashi et al., 2011), indicating that higher \(g_{st}\) of dominant active PP2C mutants could be caused by their higher H\(^{+}\)-ATPase activity. It remains to be established whether high H\(^{+}\)-ATPase activity also explains the highest \(g_{st}\) of plants lacking six PYR/RCAR receptors and what is the mechanistic connection between ABA signalosome and phosphorylation of guard cell H\(^{+}\)-ATPase.

PYR/RCARs and PP2Cs are important for O\(_3\)-, humidity- and darkness-induced rapid stomatal regulation and are involved in CO\(_2\)-induced rapid stomatal regulation

The \textit{112458} sextuple mutant of PYR/RCAR proteins is one of the most ABA-insensitive mutants described so far; being able to germinate and grow in the presence of 100 \(\mu\)M of ABA (Gonzalez-Guzman et al., 2012). Strongly reduced darkness-, reduced air humidity- and O\(_3\)-induced stomatal closure of \textit{112458} together with its altered CO\(_2\) response kinetics indicate that PYR/RCAR receptors influence the rapid initiation of stomatal closure by these stimuli. Furthermore, downstream components of the ABA signalosome (ABI2, OST1 and SLAC1) were required since stomatal responses of these mutants were reduced (Fig. 9B). Only ABA biosynthesis mutants did not fit in, generally showing WT-like stomatal closures, but this can be explained by their residual ABA concentrations. Thus, rapid stomatal closure induced by reduced air humidity, darkness, elevated CO\(_2\) and O\(_3\) involves PYR/RCAR-dependent inhibition of PP2C phosphatases leading to the activation of OST1 and SLAC1.

For O\(_3\) and reduced humidity, the impairment of responses is clear in all key mutants (\textit{slac1-3, ost1-3, ost1-2, abi1-1C, abi1-1L, abi2-1L, 112458, 1124C, 1124L}). One possible mechanism contributing to the ozone response in these mutants is the direct inhibition of ABI1 (Meinhard & Grill, 2001) and ABI2 (Meinhard et al., 2002) by hydrogen peroxide. However, in darkness and particularly CO\(_2\), stomatal closure was often evident in key mutants (except \textit{slac1-3, ost1-2} and \textit{ost1-3}) and only further experiments and analysis of fast kinetics revealed that the closure response was impaired. The partial response of PYR/RCAR mutants can be explained by redundancy among 14 PYR/RCAR proteins, whereas regulation of remaining PP2Cs by ABA and PYR/RCARs in \textit{abi1-1C, abi2-1C, hab1\(^{G246D}\), abi1-1L} and \textit{abi2-1L} (Szostkiewicz et al., 2010) can explain partial CO\(_2\)- and darkness-induced stomatal responses of dominant active PP2C
mutants. An alternative explanation is that in response to CO₂ and darkness there might be an ABA-PYR/RCAR-PP2C-independent pathway for OST1 activation. In addition to ABA-dependent activation, ABA-independent activation of OST1 might be induced by osmotic and low humidity stress (Xie et al., 2006; Yoshida et al., 2006; Boudsocq et al., 2007). Furthermore, many OST1-inducible genes are not responsive to ABA (Zheng et al., 2010).

Partial inhibition of bicarbonate induced activation of S-type anion currents in abi1-1L and abi2-1L guard cells together with the result that obtained CO₂-induced stomatal closure patterns of abi1-1C and abi2-1L could not be described with an exponential function indicates that these dominant active phosphatases are involved in the stomatal response to CO₂ (Fig. 6, Table 2). It is of particular interest that the delay in CO₂-induced stomatal closure was clearly stronger in abi2-1L than in abi1-1L (Fig. 6B). Very recently, a new regulator GHR1 involved in ABA and H₂O₂-induced activation of SLAC1 was identified (Hua et al. 2012). GHR1, a receptor like kinase preferentially localized in guard cell plasma membranes, was shown to activate SLAC1 anion currents in oocytes (Hua et al. 2012). Interestingly, GHR1 is regulated by ABI2 but not by ABI1 (Hua et al. 2012). Thus, the differential responses of abi1-1L and abi2-1L could be a result of their different roles in the regulation of GHR1.

OST1 and SLAC1 are important for stomatal closure by all four stimuli, but there are additional components whose exact roles in plant stomatal regulation remain to be clarified

CO₂- and O₃-induced stomatal closures were small, whereas darkness and humidity-induced closures were delayed but still functional in SLAC1 loss-of-function plants (present study, Negi et al., 2008; Vahisalu et al., 2008; Ache et al., 2010; Xue et al., 2011). There are other anion channels that participate in stomatal closure together with SLAC1, including the membrane voltage-dependent rapid-type anion channel QUAC1 (Meyer et al., 2010) and SLAH3; another slow-type anion channel that is activated in oocytes via phosphorylation by CPK21 (Geiger et al., 2011). It remains to be determined why, then, SLAC1 has a vital role in regulating CO₂- and O₃-induced stomatal closure (Fig. 4 A,D), whereas in humidity and darkness responses QUAC1 or possibly SLAH3 could replace SLAC1 function (Fig. 4 B,C). Perhaps since darkness and drought with accompanying decrease in air humidity are important environmental factors that have affected plants in the evolutionary timescale, plants have developed parallel signaling pathways and ion channels mediating rapid stomatal closure in response to these factors. Furthermore, darkness-induced stomatal closure is accomplished through two different signaling
pathways; first, it is mediated via phototropins and H⁺-ATPase (Shimazaki et al. 2007), since
blue light which activates phototropins is part of visible light spectrum. Secondly, CO₂ is an
intermediate signal in darkness response; photosynthesis immediately stops in darkness,
resulting in increased intercellular CO₂ concentration and activation of anion channels
(Roelfsema et al., 2002). Thus, partial darkness response of SLAC1 and OST1 loss-of-function
mutants could be caused by the signaling via phototropins and H⁺-ATPase, while the CO₂-
mediated signaling remains inactive.

It is also important to consider that in all studied ABA signalosome mutants compensatory
changes, either directly or indirectly related to the signalosome itself, could have been taken
place and affect the whole-plant stomatal response. For example, the regulation of PP2C activity
can become less or more sensitive to ABA, depending on PP2C:PYR/RCAR ratio (Szostkiewicz
et al., 2010), representing compensation within ABA signalosome. Besides guard cell anion
channels, the ABA signalosome also regulates the activity of guard cell potassium channels
(Armstrong et al. 1995; Sato et al. 2009). Recently it was shown that plants with impaired SLAC1
have slowed stomatal opening in response to various stimuli and that this is caused by strongly
reduced K⁺ in channel activity of slac1 mutants (Laanemets et al., 2013). These unexpected
phenotypes of slac1 turned out to be caused by higher cytosolic pH and Ca²⁺ concentration
(Wang et al., 2012) and increased Ca²⁺-sensitivity of K⁺ in channels in slac1 guard cells
(Laanemets et al. 2013). These changes represent adaptive changes not directly related to the
ABA signalosome and counteract the adverse effects of slac1 mutation and allow the plant to
maintain control over stomatal openness. Thus, while interpreting the results of this study, it is
important to consider that some compensatory changes that also affect stomatal regulation have
probably occurred in the studied mutants.

The calcium-dependent protein kinases CPK21 and CPK23 phosphorylate and activate SLAC1
similarly to OST1 (Geiger et al. 2010). The stomata of CPK23 loss-of-function plants showed
slightly reduced responses to all environmental factors. Interestingly, Ma & Wu (2007) found that
CPK23 acts as a positive regulator for stomatal opening: the stomatal apertures of epidermal
peels were significantly decreased in the CPK23 loss-of-function mutant, resulting in enhanced
drought and salt tolerance. In the present study, whole-plant stomatal conductance in the cpk23
mutant was similar to that in WT (Fig. 2A). Phosphorylation by CPK21 was found to activate both
SLAC1 (Geiger et al. 2010) and SLAH3 (Geiger et al. 2011). However, no changes in stomatal
responses to the studied stimuli were found in the *cpk21* mutant. This may not be not surprising, considering that the family of Ca\(^{2+}\)-dependent protein kinases is large with possible redundancy in their function (Cheng et al. 2002). As an example, CPK3 and CPK6 were found to participate in ABA- and Ca\(^{2+}\)-dependent regulation of guard cell S-type anion channels and stomatal closure (Mori et al. 2006). Recently CPK6 was shown to strongly activate SLAC1-mediated anion currents in oocytes and to allow functional reconstitution of ABA activation of SLAC1 (Brandt et al., 2012). Interestingly, serine 59 in the SLAC1 N-terminus that was phosphorylated by CPK6 and this phosphorylation is essential for SLAC1 activation (Brandt et al., 2012). S59 was earlier shown to be phosphorylated also by OST1 (Vahisalu et al., 2010). The strong stomatal phenotypes of OST1 loss-of-function plants in the presence of many alternative kinases (CPK3, CPK6, CPK21, CPK23) activating SLAC1, suggests that interaction of the Ca\(^{2+}\)-dependent and Ca\(^{2+}\)-independent pathways requires further investigation.

In conclusion, the signaling pathways of different stomatal closure-inducing factors converge at OST1 and SLAC1. In darkness-, O\(_3\)- and reduced air humidity-induced stomatal closure, signaling through PYR/RCAR receptors plays an important role. In response to elevated CO\(_2\), the ABA signalosome was partially involved and the presence of parallel, yet to be identified, signaling pathway that activates OST1 is possible.

Material and Methods

Plant material and growth conditions

Arabidopsis thaliana seeds were planted in soil containing 4:3 (v:v) peat:vermiculite and grown through a hole in a glass plate covering pot as described (Kollist et al., 2007). Soil moisture was kept at 60-80% of maximum water capacity. Plants were grown in growth chambers (AR-66LX and AR-22L, Percival Scientific, IA, USA) at 12/12 photoperiod, 23/18°C temperature, 150 µmol m\(^{-2}\) s\(^{-1}\) light and 70-80% relative humidity. For gas-exchange experiments, we used plants with total rosette area between 5 and 15 cm\(^2\). This corresponds to 21-25-d-old plants for most mutant lines. However, some mutants (*aba1-1, aba3-1, abi1-1C, hab1\(^{G246D}\)*) had slower growth rate and, thus, older plants (26-32-d-old) were analyzed. Full list of used mutants is given in Table 1. Mutants were obtained from the European Arabidopsis Stock Centre (www.arabidopsis.info) and from Sean Cutler (114, 1124C and 1124L). The *cpk21* (GABI_322A03), *cpk23* (SALK_007958;
Geiger et al., 2010), cyp707a1 (SALK_069127, Okamoto et al., 2009) and cyp707a3 (SALK_078173, Okamoto et al., 2009) were confirmed to be homozygous using PCR with the primers listed in Supplemental Table S3. The cpk21 knockout was verified to lack full length transcripts for CPK21 using RT-PCR (Supplemental Fig. S8).

Whole-rosette stomatal conductance measurements

The *Arabidopsis* whole-rosette rapid-response gas exchange measurement device is described previously (Kollist et al., 2007, Vahisalu et al., 2008). Plants were inserted into the device and the treatments started about 2 h later, when g_{st} had stabilized. Photographs of plants were taken before the experiment and rosette leaf area was calculated using ImageJ 1.37v (National Institutes of Health, USA). Stomatal conductance (g_{st}) for water vapour was calculated with a custom written program as described in Kollist *et al.*, (2007).

In light-dark transition experiments, the g_{st} values were first measured in light and then darkness was applied for 60 min by covering the measuring cuvettes. In CO$_2$ enrichment experiments, plants were kept in ambient CO$_2$ concentration (400 μL L$^{-1}$) until stomatal conductance was stable and then CO$_2$ concentration was increased to 800 μL L$^{-1}$ for 60 min. In darkness- and elevated CO$_2$-experiments, we also followed reopening of stomata when light and ambient CO$_2$ were restored. In O$_3$ experiments, plants were exposed to 350-450 nL L$^{-1}$ of ozone for 3 min and kept in measuring cuvettes for 60 min after exposure. In reduced humidity experiment, plants were kept in humid air (RH=60-80%), then air humidity was abruptly reduced about two times (RH=30-40%) and g_{st} followed for next 56 min.

We present the time-resolved stomatal responses to stimuli in absolute units. Although the course of stomatal reopening in light and ambient CO$_2$ is not discussed, it is present in Figures of darkness and CO$_2$-experiments. In order to provide a quantitative value for the initial stomatal responsiveness to applied stimuli, we calculated changes of stomatal conductance as described in Fig. 3A-B. Furthermore, we fitted the patterns of stomatal conductances in response to darkness, elevated CO$_2$ and reduced air humidity with exponential functions ($g_{st} = \alpha \times \exp (\beta \times \text{Time}) + \gamma$). Fit was accepted as significant when both α and β were significantly different from 0 at the level of significance of $P < 0.1$; in this case, we calculated maximum stomatal closure rate as $\alpha \times \beta$ (see also Fig. 3D).

Electrophysiology
Arabidopsis guard cell protoplasts were isolated as according to Siegel et al., 2009. Whole-cell patch-clamp recordings were performed as described previously (Pei et al., 1997). For S-type anion current recordings (Schroeder & Keller, 1992), the pipette solution contained 150 mM CsCl, 2 mM MgCl₂, 6.7 mM EGTA, 5.86 mM CaCl₂ (2 μM [Ca²⁺]), 5 mM Mg-ATP, 1 mM HEPES/Tris, pH 7.1. The bath solution contained 30 mM CsCl, 2 mM MgCl₂, 1 mM CaCl₂ and 10 mM Mes/Tris, pH 5.6. Osmolalities of all solutions were adjusted to 485 mmol kg⁻¹ for bath solution and 500 mmol kg⁻¹ for pipette solution by addition of D-sorbitol. The membrane voltage was stepped from +35 mV to -145 mV with -30 mV decrements and the holding potential was +30 mV. Liquid junction potential was determined using Clampex 10.0. No leak subtraction was applied for all current–voltage curves. Steady-state currents were the average currents during the last 500 ms of voltage pulses. For bicarbonate activation of S-type anion currents, 13.5 mM total bicarbonate (equivalent 11.5 free [HCO₃⁻] and 2 mM free [CO₂]) were added freshly in the pipette solution. The details were described previously (Xue et al, 2011).

Statistical analysis

Statistical analyses were performed with Statistica, version 7.0 (StatSoft Inc., Tulsa, OK, USA). Analysis of variance (GLM procedure) was used to assess the effect of genotype on gₛ, initial changes in stomatal conductance and maximum stomatal closure rates, comparisons between individual means were done using Fisher LSD test. Data were ln-transformed when necessary. All effects were considered significant at P < 0.05. Exponential fitting of stomatal closure responses due to darkness, elevated CO₂ and reduced air humidity was done with nonlinear least squares model estimation of Statistica (Gauss-Newton estimation method). Principal Component Analysis (PCA) was used to combine the values of gₛ after 1 hr in darkness, elevated CO₂ and reduced humidity into one PCA axis describing whole plant stomatal conductance after application of given stimuli.

Acknowledgements

We thank Dr Heino Moldau for valuable scientific advice and discussions, the *Arabidopsis* Biological Resource Center/Nottingham *Arabidopsis* Stock Centre for distributing the seeds and Sean Cutler for 114, 1124C and 1124L seeds.
LITERATURE CITED

Ache P, Bauer H, Kollist H, Al-Rasheid KA, Lautner S, Hartung W, Hedrich R (2010) Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant J 62: 1072–1082

Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR (1995) Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA 92: 9520–9524

Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment 28: 949–964

Assmann SM, Snyder JA, Lee Y-RJ (2000) ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ. 23: 387-395

Boudsocq M, Droillard M-J, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Molecular Biology 63: 491-503

Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjärvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI 2012. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. PNAS doi: 10.1073/pnas.1116590109

Bucholc M, Ciesielski A, Goch G, Anielska-Mazur A, Kulik A, Krzywinska E, Dobrowolska G (2011) SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor. Journal of Biological Chemistry 286: 3429-3441

Cheng S-H, Willmann MR, Chen H-C, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiology 129: 469-485

Dupeux F, Antoni R, Betz K, Santiago J, Gonzalez-Guzman M, Rodriguez L, Rubio S, Park SY, Cutler SR, Rodriguez PL, et al (2011a) Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiol 156: 106–116

Dupeux F, Santiago J, Betz K, Twycross J, Park SY, Rodriguez L, Gonzalez-Guzman M, Jensen MR, Krasnogor N, Blackledge M, et al (2011b) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30: 4171–4184

Eckert M, Kaldenhoff R (2000) Light-induced stomatal movement of selected Arabidopsis thaliana mutants. Journal of Experimental Botany 51: 1435-1442

Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signaling pathway. Nature 462: 660-666
Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KAS, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. PNAS 106: 21425-21430

Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca²⁺ affinities. PNAS 107: 8023-8028

Geiger D, Maierhofer T, Al-Rasheid KAS, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Science Signaling 4: 1-12

Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernandez MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL (2012) PYR/PYL receptors play a major role for quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24: 2483-2496.

Hao Q, Yin P, Li W, Wang L, Yan C, Lin Z, Wu JZ, Wang J, Yan SF, Yan N (2011) The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell 42: 662–672

Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO₂. Nature Cell Biology 8: 391-397

Hayashi M, Inoue S, Takashi K, Kinoshita T (2011) Immunohistochemical detection of blue-light induced phosphorylation of the plasma membrane H⁺-ATPase in stomatal guard cells. Plant Cell Physiology 52: 1238-1248

Hill AC & Littlefield N (1969) Ozone. Effect on apparent photosynthesis rate of transpiration and stomatal closure in plants. Environmental Science & Technology 3: 52-56

Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Godoski J, Kuhn JM & Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nature Cell Biology 12: 87-93.

Hua DP, Wang C, He JN, Liao H, Duan Y, Zhu ZQ, Guo Y, Chen ZZ & Gong ZZ (2012) A Plasma Membrane Receptor Kinase, GHR1, Mediates Abscisic Acid- and Hydrogen Peroxide-Regulated Stomatal Movement in Arabidopsis. The Plant Cell 24: 2546-2561.

Ivanoff L. (1928) Zur Methodik der Transpirationsbestimmung am Standort. Berichte der Deutschen Botanischen Gesellschaft 46: 306-310.

Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO₂ and Ca²⁺ signaling. Annual Review of Plant Biology 61: 561-591

Lee JS, Bowling DJF (1992) Effect of the mesophyll on stomatal opening in Commelina communis. J Exp Bot 43: 951–957
Lèon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M (1996) Isolation and characterization abscisic acid-deficient Arabidopsis mutants at two new loci. Plant Journal 10: 655-661

Kollist T, Moldau H, Rasulov B, Oja V, Rämma H, Hüve K, Jaspers P, Kangasjärvi J, Kollist H (2007) A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant. Physiologia Plantarum 129: 796-803

Kollist H, Jossier M, Laanemets K, Thomine S (2011) Anion channels in plant cells. FEBS Journal 278: 4277-4292

Laanemets K, Wang YF, Lindgren O, Wu J, Nishimura N, Lee S, Caddell D, Merilo E, Brosche M, Kilk K, Soomets U, et al. (2013) Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels. New Phytol 197: 88-98

Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. PNAS 106: 21419-21424

Leymaire J, Lascève G, Vavasseur A (1998a) Interaction of stomatal responses to ABA and CO2 in Arabidopsis thaliana. Aust. J. Plant Physiol. 25: 785-791

Leymaire J, Vavasseur A, Lascève G (1998b) CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana. Plant Physiol. Biochem. 36: 539-543

Ma S-Y, Wu W-H (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Molecular Biology 65: 511-5118

Ma Y, Szostkiewics I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064-1068

McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343: 186-188.

Meinhard M, Grill E (2001) Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett 508: 443-446

Meinhard M, Rodriguez PL, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214: 775-782

Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoa E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. The Plant Journal 63: 1054-1062
Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y-F, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR. Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca\(^{2+}\)-permeable channels and stomatal closure. PLoS Biology 4: 1749-1762

Mott KA, Sibbernsen ED, Shope JC. (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environment 31: 1299-1306

Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell 14: 3089-3099

Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO\(_2\) regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452: 483-486

Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326: 1373-1379

Nishimura N, Yoshida T, Murayama M, Asami T, Shinozaki K, Hirayama T (2004) Isolation and characterization of novel mutants affecting the abscisic acid sensitivity of Arabidopsis germination and seedling growth. Plant Cell Physiol 45: 1485–1499

Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiology 149: 825-834

Park SY, Fung P, Nishimura N, Jensen DR, Fuji H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provat NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu J-K, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324: 1068-1071

Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential Abscisic Acid Regulation of Guard Cell Slow Anion Channels in Arabidopsis Wild-Type and \(abi1\) and \(abi2\) Mutants. Plant Cell 9: 409-423

Pei Z-M, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734

Robert N, Merlot S, N’Guyen V, Boisson-Dernier A, Schroeder JI (2006) A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis. FEBS Letters 580: 4691-4696

Roelfsema MRG, Hanstein S, Felle H, Hedrich R (2002) CO\(_2\) provides an intermediate link in the red light response of guard cells. Plant J 32: 65–75

Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167: 665–691
Roelfsema MRG, Geiger D, Hedrich R (2012) Anion channels: master switches of stress responses. Trends in Plant Science 17: 221-229

Roelfsema MRG, Prins HBA (1995) Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana. Physiol Plant 95: 373–378

Rock CD, Zeevaart JAD (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl. Acad. Sci. 88: 7496-7499

Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim T-H, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiology 150: 1345-1355

Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462: 665–668

Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hib T, Taniguchi M, Miyake H, Goto DB, et al (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424: 439–448

Scherzer S, Maierhofer T, Al-Rasheid KAS, Geiger D & Rainer Hedrich (2012) Multiple Calcium-Dependent Kinases Modulate ABA-Activated Guard Cell Anion Channels. Mol. Plant doi:10.1093/mp/sss084

Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89: 5025-5029

Siegel RS, Xue S, Murata Y, Yang Y, Nishimura N, Wang A, Schroeder JI (2009) Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K⁺ channels in Arabidopsis guard cells. The Plant Journal 59: 207-220

Sitch S, Cox PM, Collins WJ, Huntingford C. (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448: 791–794

Shimazaki K, Doi M, Assmann SM & Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58: 219-247.

Soon F-F, Ng L-M, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong E-L, Cutler S, Zhu J-K, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK kinases and PP2C phosphatases. Science 335: 85-88

Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal 61: 25-35
Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. PNAS 106: 17588-17593

Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant cell S-type anion channel function in stomatal signalling. Nature 452: 487-493

Vahisalu T, Puzõrjova I, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang YS, Lindgren O, Salojärvi J, Loog M, Kangasjärvi J, Kollist H (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62: 442-453

Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Laurière C, Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. The Plant Cell 21: 3170-3184

Wang Y, Papanatsiou M, Eisenach C, Karnik R, Williams M, Hills A, Lew VL, Blatt MR (2012) Systems Dynamic Modeling of a Guard Cell Cl− Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration. Plant Physiol 160: 1956-1967

Webb AAR, Hetherington AM. (1997) Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiology 114: 1557-1560

Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Current Opinion in Plant Biology 13: 495-502

Xie X, Wang Y, Williamson L, Holroyd GH, Tagliavia C, Murchie E, Theobald J, Knight MR, Davies WJ, Leyser HMO, Hetherington AM (2006) The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Current Biology 16: 882-887

Xue S, Hu H, Ries A, Kollist H, Merilo E, Schroeder JI. (2011) Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cells. EMBO J. 30: 1645-1658

Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. The Journal of Biological Chemistry 281: 5310-5318

Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C, Yau K, Burton S, Zhuang M, McCaskill DG, Gachotte D, Thompson M, Greene TW (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiology 153: 99-113
Figure legends

Figure 1. A schematic overview of ABA-induced signaling by PYR/RCAR receptors leading to sequestration of type 2C protein phosphatases (PP2Cs), activation of protein kinases OST1, CPK21, CPK23 and subsequent phosphorylation/activation of SLAC1 anion channel that is essential for anion efflux and stomatal closure. Mutants selected for the present study are shown. Detailed description of the mutants is provided in Table 1.

Figure 2. (A) There is a large variation in whole-plant steady-state stomatal conductance of plants with mutations in ABA signalosome. The average stomatal conductance values of three to five week old mutants and corresponding WTs. Significant differences (P<0.05, n = 6-46) are denoted with different small and capital letters for Col-0- and Ler-based mutants, respectively. (B) Ranking of genotypes by their stomatal conductance after application of 1 hr darkness, elevated CO$_2$ and reduced humidity derived from principal component analysis. Significant differences (P<0.05, n=6-46) are denoted with different small and capital letters for Col-0 and Ler-based mutants, respectively.

Figure 3. Representative time courses of g$_{st}$ in response to darkness and CO$_2$ enrichment (A), decreased air humidity (B) and ozone pulse (C) are given to illustrate the calculation of initial rates of stomatal closure. (D) An example of fitting the kinetics of stomatal closure with exponential function where α describes the overall stomatal response and γ is the value at which g$_{st}$ stabilized in response to stimuli. In case the stomatal closure significantly followed an exponential function, maximum stomatal closure rate was calculated as $\alpha \times \beta$.

Figure 4. Time courses of stomatal conductances in response to elevated CO$_2$ (A), reduced air humidity (B), darkness (C) and O$_3$ pulse (D) together with corresponding changes in stomatal conductances (E, F, G, H) of the plants carrying mutations in SLAC1 anion channel and protein kinases (OST1, CPK21 and CPK23) shown to activate SLAC1. Changes in stomatal conductances (E-H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters.

Figure 5. Time courses of stomatal conductances in response to elevated CO$_2$ (A) reduced air humidity (B), darkness (C) and O$_3$ pulse (D) together with corresponding changes in stomatal conductances (E, F, G, H) in dominant mutants of protein phosphatase ABI1 and HAB1 ($abi1^{-1C}$, $hab1^{G246D}$) and in triple knockout mutant of ABI1, HAB1 and PP2CA phosphatases ($abi1^{-}$-
Changes in stomatal conductances (E-H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters.

Figure 6. Dominant mutations in ABI1 and particularly in ABI2 phosphatase cause partial impairment of CO₂-induced stomatal responses, whereas bicarbonate-induced activation of S-type anion channels is reduced in both abi1-1L and abi2-1L guard cell protoplasts. (A) Time courses of stomatal conductances in response to stepwise change of CO₂ from 50 to 800 μL L⁻¹ in abi1-1L, abi2-1L and Ler plants (n=6). (B) Changes in stomatal conductance induced by each step of [CO₂]. (C, D, E) Typical whole-cell recording without bicarbonate and (F, G, H) with 11.5 mM free bicarbonate added to the pipette solution in the guard cell protoplasts of Ler wild type and abi1-1L and abi2-1L. Average steady-state current-voltage relationships for Ler (open circles, n = 6; filled circles, n = 7), abi1-1L (open circles, n = 6; filled circles, n = 7) and abi2-1L (open circles, n = 5; filled circles, n = 8) guard cell protoplasts are shown in (I), (J) and (K), respectively.

Figure 7. Time courses of stomatal conductances in response to elevated CO₂ (A), reduced air humidity (B), darkness (C) and O₃ pulse (D) together with corresponding change in stomatal conductance (E, F, G, H) in the loss-of-function mutants of PYR/RCAR receptors. Changes in stomatal conductances (E-H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters. (I) Time courses of stomatal conductances in response to stepwise change in CO₂ from 50 to 800 μmol mol⁻¹ in 112458 and Col-0 plants (n=6). (J) Changes in stomatal conductance induced by each step of CO₂.

Figure 8. Time courses of stomatal conductances in response to elevated CO₂ (A), reduced air humidity (B), darkness (C) and O₃ pulse (D) together with corresponding changes in stomatal conductances (E, F, G, H) in the mutants of ABA biosynthesis (aba1-1, aba3-1) and catabolism (cyp707a1, cyp707a3). Changes in stomatal conductances (E-H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters.

Figure 9. Schematic model for environmental factors-induced stomatal closure (A) and summary of stomatal responses of mutants characterized in the present study (B). (A) Emerging model suggests that in case of O₃, all components of ABA signalosome are required to trigger stomatal closure. For reduced air humidity, we show that ABA signalosome plays an important role, however, the presence of a parallel, ABA-independent pathway (marked as 1) was suggested by Assmann et al. 2000 and Xie et al. 2006. Darkness-induced stomatal closure is mediated by
increased intercellular CO₂ concentration that activates anion channels and by inactivation of H⁺-ATPase (Roelfsema et al., 2002; Roelfsema & Hedrich, 2005). CO₂-induced stomatal closure involves activation of carbonic acid anhydrases that convert CO₂ to bicarbonate (HCO₃⁻). Results presented in this study suggest that CO₂-induced stomatal closure and bicarbonate-induced activation of S-type anion channels is partly controlled by ABA-signalosome. Question marks highlight that the nature of signal perception at the plasma membrane and signal transduction in the cytosol leading to the activation of ABA signalosome remain to be addressed. (B) Summary of stomatal responses to closure-inducing stimuli in studied mutants. Mutants are presented in the order of phenotypic severity. O₃, H, D and CO₂ indicate environmental factors ozone, air humidity, darkness and CO₂, respectively. “+” indicates that either initial change in stomatal conductance or curve fitting was different from WT; “++” indicates that initial change in stomatal conductance and curve fitting were both different from WT. Absence of symbol indicates WT-like stomatal closure. Mutants that showed WT-like stomatal responses to all stimuli (148, cpk21, cyp707a1, cyp707a3) are not listed in the table.
Table 1. Description of the mutants used in the study.

Genotype	Mutation	Description	Reference
ABA biosynthesis and catabolism			
aba3-1 (Col-0)	EMS, G-to-A at position 3707	Defective in the conversion of ABA-aldehyde to ABA, ABA-deficient	Leon-Kloosterziel et al., 1996; Nambara & Marion-Poll 2005
aba1-1 (Ler)	EMS, G to A at position 2139	Defective in ABA biosynthetic enzyme zeaxanthin epoxidase, strongly ABA-deficient	Rock & Zeevaart 1991; Nambara & Marion-Poll 2005
cyp707a1 (Col-0)	SALK_069127	Defective in ABA 8'-hydroxylase, responsible for ABA catabolism in guard cells	Okamoto et al., 2006; Okamoto et al., 2009
cyp707a3 (Col-0)	SALK_078173	Defective in ABA 8'-hydroxylase responsible for ABA catabolism in vascular tissues	Okamoto et al., 2006; Okamoto et al., 2009
Core ABA signaling			
abi1-1C (Col-0)	EMS, Gly 180 to Asp	Dominant point mutation in ABI1 resulting in the loss of PYR/RCAR binding and ABA insensitivity	Nishimura et al., 2004; Umezawa et al. 2009
abi1-1L (Ler)	EMS, Gly 180 to Asp	See abi1-1C	Leung et al., 1997; Ma et al., 2009
abi2-1C (Col-0)	EMS, Gly 168 to Asp	Dominant point mutation in ABI2, resulting in the loss of PYR/RCAR binding and ABA insensitivity	Nishimura et al., 2004
abi2-1L (Ler)	EMS, Gly 168 to Asp	See abi2-1C	Leung et al., 1997; Ma et al., 2009
abi1-2 hab1-1 pp2ca-1 (Col-0)	SALK_072009, SALK_002104, SALK_028132	Triple knockout mutant of PP2Cs ABI1, HAB1 and PP2CA	Rubio et al., 2009
hab1G246D (Col-0)	Transgenic line	Overexpression of the HAB1 carrying G246D mutation that prevents binding to PYR/PYL and ABA-insensitivity	Robert et al., 2006; Dupeux et al. 2011a
ost1-2 (Ler)	EMS, G to A at position 97	Point mutation in ABA-activated protein kinase OST1 = srk2e = srk2.6, T-DNA knockout mutation of ABA-activated protein kinase OST1	Yoshida et al., 2002
ost1-3 (Col-0)	SALK_008068		
pyr1pyl4 (114) (Col-0)	EMS + T-DNA	Triple mutant of ABA receptor proteins	Park et al. 2009
pyr1pyl4pyl5 (145) (Col-0)	EMS + T-DNA + Transposon	Triple mutant of ABA receptor proteins	Gonzalez-Guzman et al., 2012
pyr1pyl4pyl8 (148) (Col-0)	EMS + T-DNA	Triple mutant of ABA receptor proteins	Gonzalez-Guzman et al., 2012
pyr4pyl5pyl8 (458) (Col-0)	T-DNA + Transposon	Triple mutant of ABA receptor proteins	Gonzalez-Guzman et al., 2012
pyr1pyl1pyl4 (1124C) (Col-0)	EMS + T-DNA	Quadruple mutant of ABA receptor proteins	Park et al., 2009
pyr1pyl1pyl4 (1124L) (Ler)	EMS + T-DNA	Quadruple mutant of ABA receptor PYR/PYL/RCAR proteins	Park et al., 2009
pyr1pyl4pyl5pyl8 (1458) (Col-0)	EMS + T-DNA + Transposon	Quadruple mutant of ABA receptor proteins	Gonzalez-Guzman et al., 2012
pyr1pyl2pyl4pyl5pyl8 (12458) (Col-0)	EMS + T-DNA + Transposon	Pentuple mutant of ABA receptor proteins	Gonzalez-Guzman et al., 2012
pyr1pyl1pyl2pyl4pyl5pyl8 (112458) (Col-0)	EMS + T-DNA + Transposon	Sextuple mutant of ABA receptor proteins	Gonzalez-Guzman et al., 2012
Other mutants			
cpk21 (Col-0)	GABI_322A03	Defective in calcium dependent protein kinase CPK21	This study (Supplemental Fig. S9)
cpk23 (Col-0)	SALK_007958	Defective in calcium dependent protein kinase CPK23	Geiger et al., 2010
slac1-3 (Col-0)	SALK_099139	T-DNA insertion in SLAC1 protein	Vahisalu et al., 2008
slac1-7 (Col-0)	C to T at position 527	Point mutation of Serine 120 to Phenylalanine in SLAC1 protein	Vahisalu et al., 2010
Table 2. The results of fitting exponential functions to stomatal closure patterns in response to darkness, elevated CO2 and reduced air humidity. The first number shows how many closure responses could be described with an exponential function, whereas the second shows the total number of experiments. Bold values indicate cases where 50% of experiments did not follow an exponential function.

Genotype	Darkness-response	Humidity-response	CO2-response
Col-0	34/34	21/27	45/46
slac1-3	3/7	2/6	3/7
ost1-3	1/6	0/6	2/6
112458	1/5	2/8	3/7
abi1-1C	3/5	5/7	1/5
slac1-7	0/6	4/7	4/6
1458	3/6	5/5	6/8
12458	2/7	6/6	5/8
148	2/5	3/6	5/5
1124C	6/6	4/8	8/8
cpk23	5/6	3/7	6/7
abi1-2hab1-1pp2c-1	5/5	2/5	7/7
hab1G246D-U	3/5	3/5	9/10
458	5/5	6/6	6/6
114	5/5	5/5	5/5
145	4/5	6/6	6/6
aba3-1	4/6	5/6	6/6
cpk21	6/6	5/5	7/7
cyp707a1	8/8	5/6	7/7
cyp707a3	6/6	5/6	6/6
Ler	12/12	9/10	11/12
ost1-2	0/6	2/6	2/8
abi2-1L	2/6	2/6	2/7
aba1-1	1/7	6/6	3/6
abi1-1L	2/6	2/6	6/8
1124L	3/6	1/6	6/7
Figure 1. A schematic overview of ABA-induced signaling by PYR/RCAR receptors leading to sequestration of type 2C protein phosphatases (PP2Cs), activation of protein kinases OST1, CPK21, CPK23 and subsequent phosphorylation/activation of SLAC1 anion channel that is important for anion efflux and stomatal closure. Mutants selected for the present study are shown. Detailed description of the mutants is provided in Table 1.
Figure 2. (A) There is a large variation in whole-plant steady-state stomatal conductance of plants with mutations in ABA signalosome. The average stomatal conductance values of three to four week old mutants and corresponding WTs. Significant differences (P<0.05, n = 6-46) are denoted with different small and capital letters for Col-0- and Ler-based mutants, respectively. (B) Ranking of genotypes by their stomatal conductance after application of 1 hr darkness, elevated CO₂ and reduced humidity derived from principal component analysis. Significant differences (P<0.05, n=6-46) are denoted with different small and capital letters for Col-0 and Ler-based mutants, respectively.
Figure 3. Representative time courses of g_{st} in response to darkness and CO$_2$ enrichment (A), decreased air humidity (B) and ozone pulse (C) are given to illustrate the calculation of initial rates of stomatal closure. (D) An example of fitting the kinetics of stomatal closure with exponential function where α describes the overall stomatal response and γ is the value at which g_{st} stabilized in response to stimuli. In case the stomatal closure significantly followed an exponential function, maximum stomatal closure rate was calculated as $\alpha \times \beta$.
Figure 4. Time courses of stomatal conductances in response to elevated CO$_2$ (A), reduced air humidity (B), darkness (C) and O$_3$ pulse (D) together with corresponding changes in stomatal conductances (E, F, G, H) of the plants carrying mutations in SLAC1 anion channel and protein kinases (OST1, CPK21 and CPK23) shown to activate SLAC1. Changes in stomatal conductances (E-H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters.
Figure 5. Time courses of stomatal conductances in response to elevated CO₂ (A), reduced air humidity (B), darkness (C) and O₃ pulse (D) together with corresponding changes in stomatal conductances (E, F, G, H) in dominant mutants of protein phosphatase ABI1 and HAB1 (abi1-1C, hab1G246D) and in triple knockout mutant of ABI1, HAB1 and PP2CA phosphatases (abi1-2hab1-1pp2ca-1). Changes in stomatal conductances (E, F, G, H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters.
Figure 6. Dominant mutations in ABI1 and particularly in ABI2 phosphatase cause partial impairment of CO$_2$-induced stomatal responses, whereas bicarbonate-induced activation of S-type anion channels is reduced in both abi1-1L and abi2-1L guard cell protoplasts. (A) Time courses of stomatal conductances in response to stepwise change of CO$_2$ from 50 to 800 μL.L$^{-1}$ in abi1-1L, abi2-1L and Ler plants (n=6). (B) Changes in stomatal conductance induced by each step of [CO$_2$]. (C, D, E) Typical whole-cell recording without bicarbonate and (F, G, H) with 11.5 mM free bicarbonate added to the pipette solution in the guard cell protoplasts of Ler wild type and abi1-1L and abi2-1L. Average steady-state current-voltage relationships for Ler (open circles, n = 6; filled circles, n = 7), abi1-1L (open circles, n = 6; filled circles, n = 7) and abi2-1L (open circles, n = 5; filled circles, n = 8) guard cell protoplasts are shown in (I), (J) and (K), respectively.
Figure 7. Time courses of stomatal conductances in response to elevated CO$_2$ (A), reduced air humidity (B), darkness (C) and O$_3$ pulse (D) together with corresponding change in stomatal conductance (E, F, G, H) in the loss-of-function mutants of PYR/RCAR receptors. Changes in stomatal conductances (E-H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters. (I) Time courses of stomatal conductances in response to stepwise change in CO$_2$ from 50 to 800 μmol mol$^{-1}$ in 112458 and Col-0 plants (n=6). (J) Changes in stomatal conductance induced by each step of CO$_2$.

Downloaded from on August 30, 2017 - Published by www.plantphysiol.org
Copyright © 2013 American Society of Plant Biologists. All rights reserved.
Figure 8. Time courses of stomatal conductances in response to elevated CO$_2$ (A), reduced air humidity (B), darkness (C) and O$_3$ pulse (D) together with corresponding changes in stomatal conductances (E, F, G, H) in the mutants of ABA biosynthesis (aba1-1, aba3-1) and catabolism (cyp707a1, cyp707a3). Changes in stomatal conductances (E-H) were calculated as shown in Fig. 3A-C. Significant differences (P<0.05, n = 5-50) are denoted with different small letters.
Figure 9. Schematic model for environmental factors-induced stomatal closure (A) and summary of stomatal responses of mutants characterized in the present study (B). (A) Emerging model suggests that in case of O₃, all components of ABA signalosome are required to trigger stomatal closure. For reduced air humidity, we show that ABA signalosome plays an important role, however, the presence of a parallel, ABA-independent pathway (marked as 1) was suggested by Assmann et al. 2000 and Xie et al. 2006. Darkness-induced stomatal closure is mediated by increased intercellular CO₂ concentration that activates anion channels and by inactivation of H⁺-ATPase (Roelfsema et al., 2002; Roelfsema & Hedrich, 2005). CO₂-induced stomatal closure involves activation of carbonic acid anhydrases that convert CO₂ to bicarbonate (HCO₃⁻). Results presented in this study suggest that CO₂-induced stomatal closure and bicarbonate-induced activation of S-type anion channels is partly controlled by ABA-signalosome. Question marks highlight that the nature of signal perception at the plasma membrane and signal transduction in the cytosol leading to the activation of ABA signalosome remain to be addressed. (B) Summary of stomatal responses to closure-inducing stimuli in studied mutants. Mutants are presented in the order of phenotypic severity. O₃, H, D and CO₂ indicate environmental factors ozone, air humidity, darkness and CO₂, respectively. “+” indicates that either initial change in stomatal conductance or curve fitting was different from WT; “++” indicates that initial change in stomatal conductance and curve fitting were both different from WT. Absence of symbol indicates WT-like stomatal closure. Mutants that showed WT-like stomatal responses to all stimuli (148, cpk21, cyp707a1, cyp707a3) are not listed in the table.