The Gâteaux Derivative of Map over Division Ring

Aleks Kleyn

Abstract. I consider differential of mapping f of continuous division ring as linear mapping the most close to mapping f. Different expressions which correspond to known definition of derivative are supplementary. I explore the Gâteaux derivative of higher order and Taylor series. The Taylor series allow solving of simple differential equations. As an example of solution of differential equation I considered a model of exponent.

I considered application of obtained theorems to complex field and quaternion algebra. In contrast to complex field in quaternion algebra conjugation is linear function of original number

$$\overline{a} = a + ia + ja + ka$$

In quaternion algebra this difference leads to the absence of analogue of the Cauchy Riemann equations that are well known in the theory of complex function.

Contents

1. Conventions ... 2
2. Additive Map of Ring ... 2
3. Additive Map of Division Ring 4
4. Polylinear Map of Division Ring 9
5. Topological Division Ring .. 13
6. Differentiable Map of Division Ring 16
7. Table of Derivatives of Map of Division Ring 21
8. Derivative of Second Order of Map of Division Ring 23
9. Taylor Series ... 24
10. Integral .. 29
11. Exponent ... 30
12. Linear Function of Complex Field 33
13. Linear Function of Division Ring of Quaternions 35
14. Differentiable Map of Division Ring of Quaternions 39
15. References .. 42
16. Index .. 43
17. Special Symbols and Notations 44

This paper is written on basis of eprints [3, 4]. I submitted brief version of this paper to be published in transactions of the XXI International Summer School-

Aleks_Kleyn@MailAPS.org, http://www.geocities.com/aleks_kleyn.
In this paper I consider linear maps over division ring. In particular, differential of map f of division ring is linear map. However for this version I decided to add sections dedicated to the Gâteaux derivative of second order, Taylor series expansion, and solving of differential equation. The paper may be interesting for physicists using division ring of quaternions.

1. CONVENTIONS

(1) Function and map are synonyms. However according to tradition, correspondence between either rings or vector spaces is called map and map of either real field or quaternion algebra is called function. I also follow this tradition.

(2) We can consider division ring D as D-vector space of dimension 1. According to this statement, we can explore not only homomorphisms of division ring D_1 into division ring D_2, but also linear maps of division rings. This means that map is multiplicative over maximum possible field. In particular, linear map of division ring D is multiplicative over center $Z(D)$. This statement does not contradict with definition of linear map of field because for field F is true $Z(F) = F$. When field F is different from maximum possible, I explicit tell about this in text.

(3) In spite of noncommutativity of product a lot of statements remain to be true if we substitute, for instance, right representation by left representation or right vector space by left vector space. To keep this symmetry in statements of theorems I use symmetric notation. For instance, I consider D^\star-vector space and $^\star D$-vector space. We can read notation D^\star-vector space as either D-star-vector space or left vector space. We can read notation D^\star-linear dependent vectors as either D-star-linear dependent vectors or vectors that are linearly dependent from left.

2. ADDITIVE MAP OF RING

Definition 2.1. Homomorphism

$$f : R_1 \rightarrow R_2$$

of additive group of ring R_1 into additive group of ring R_2 is called **additive map of ring** R_1 **into ring** R_2. □

According to definition of homomorphism of additive group, additive map f of ring R_1 into ring R_2 holds

$$f(a + b) = f(a) + f(b)$$

(2.1)

Theorem 2.2. Let us consider ring R_1 and ring R_2. Let maps

$$f : R_1 \rightarrow R_2$$

$$g : R_1 \rightarrow R_2$$

be additive maps. Then map $f + g$ is additive.
Proof. Statement of theorem follows from chain of equations

\[(f + g)(x + y) = f(x + y) + g(x + y) = f(x) + f(y) + g(x) + g(y)\]

\[= (f + g)(x) + (f + g)(y)\]

\(\square\)

Theorem 2.3. Let us consider ring \(R_1\) and ring \(R_2\). Let map

\[f : R_1 \rightarrow R_2\]

be additive map. Then maps \(af, fb, a, b \in R_2\) are additive.

Proof. Statement of theorem follows from chain of equations

\[(af)(x + y) = a(f(x + y)) = a(f(x) + f(y)) = af(x) + af(y)\]

\[= (af)(x) + (af)(y)\]

\[(fb)(x + y) = (f(x + y))b = (f(x) + f(y))b = f(x)b + f(y)b\]

\[= (fb)(x) + (fb)(y)\]

\(\square\)

Theorem 2.4. We may represent additive map of ring \(R_1\) into associative ring \(R_2\) as

\[(2.2) \quad f(x) = \sum_{(s) \in G(s)} f_G(s)(x)\]

where \(G(s)\) is set of additive maps of ring \(R_1\) into ring \(R_2\). \(^1\)

Proof. The statement of theorem follows from theorems 2.2 and 2.3. \(\square\)

Definition 2.5. Let commutative ring \(P\) be subring of center \(Z(R)\) of ring \(R\). Map

\[f : R \rightarrow R\]

of ring \(R\) is called **multiplicative over commutative ring** \(P\), if

\[f(px) = pf(x)\]

for any \(p \in P\). \(\square\)

Definition 2.6. Let commutative ring \(F\) be subring of center \(Z(D)\) of ring \(R\). Additive, multiplicative over commutative ring \(F\), map

\[f : R \rightarrow R\]

is called **linear map over commutative ring** \(F\). \(\square\)

Definition 2.7. Let commutative ring \(P\) be subring of center \(Z(R)\) of ring \(R\). Map

\[f : R \rightarrow R\]

of ring \(R\) is called **projective over commutative ring** \(P\), if

\[f(px) = f(x)\]

for any \(p \in P\). Set

\[P_x = \{px : p \in P, x \in R\}\]

\(^1\)Here and in the following text we assume sum over index that is written in brackets and used in product few times. Equation (2.2) is recursive definition and there is hope that it is possible to simplify it.
is called direction \(x \) over commutative ring \(P \).

Example 2.8. If map \(f \) of ring \(R \) is multiplicative over commutative ring \(P \), then map
\[
g(x) = x^{-1} f(x)
\]
is projective over commutative ring \(P \).

Definition 2.9. Denote \(\mathcal{A}(R_1; R_2) \) set of additive maps
\[
f : R_1 \rightarrow R_2
\]
of ring \(R_1 \) into ring \(R_2 \).

Theorem 2.10. Let map
\[
f : D \rightarrow D
\]
is additive map of ring \(R \). Then
\[
f(nx) = nf(x)
\]
for any integer \(n \).

Proof. We prove the theorem by induction on \(n \). Statement is obvious for \(n = 1 \) because
\[
f(1x) = f(x) = 1f(x)
\]
Let statement is true for \(n = k \). Then
\[
f((k + 1)x) = f(kx + x) = f(kx) + f(x) = kf(x) + f(x) = (k + 1)f(x)
\]

3. ADDITIVE MAP OF DIVISION RING

Theorem 3.1. Let map
\[
f : D_1 \rightarrow D_2
\]
is additive map of division ring \(D_1 \) into division ring \(D_2 \). Then
\[
f(ax) = af(x)
\]
for any rational \(a \).

Proof. Let \(a = \frac{p}{q} \). Assume \(y = \frac{1}{q}x \). Then
\[
(3.1) \quad f(x) = f(qy) = qf(y) = qf \left(\frac{1}{q}x \right)
\]
From equation \(3.1 \) it follows
\[
(3.2) \quad \frac{1}{q}f(x) = f \left(\frac{1}{q}x \right)
\]
From equation \(3.2 \) it follows
\[
f \left(\frac{p}{q}x \right) = pf \left(\frac{1}{q}x \right) = pf(x)
\]

\[\text{Direction over commutative ring } P \text{ is subset of ring } R. \text{ However we denote direction } P \cdot x \text{ by element } x \in R \text{ when this does not lead to ambiguity. We tell about direction over commutative ring } Z(R) \text{ when we do not show commutative ring } P \text{ explicitly.}\]
Theorem 3.2. Additive map

\[f : D_1 \to D_2 \]

of division ring \(D_1 \) into division ring \(D_2 \) is multiplicative over field of rational numbers.

Proof. Corollary of theorem 3.1. \(\square \)

We cannot extend the statement of theorem 3.2 for arbitrary subfield of center \(Z(D) \) of division ring \(D \).

Theorem 3.3. Let complex field \(C \) be subfield of the center of division ring \(D \). There exists additive map

\[f : D_1 \to D_2 \]

of division ring \(D_1 \) into division ring \(D_2 \) which is not multiplicative over field of complex numbers.

Proof. To prove the theorem it is enough to consider the complex field \(C \) because \(C = Z(C) \). The map

\[z \to \overline{z} \]

is additive. However the equation

\[\overline{ax} = a\overline{x} \]

is not true. \(\square \)

The theory of complex vector spaces so well understood that the proof of theorem 3.3 easily leads to the following design. Let for some division ring \(D \) fields \(F_1, F_2 \) be such that \(F_1 \neq F_2, F_1 \subset F_2 \subset Z(D) \). In this case there exists map \(I \) of division ring \(D \) that is linear over field \(F_1 \), but not linear over field \(F_2 \).\(^3\) It is easy to see that this map is additive.

Let \(D_1, D_2 \) be division rings of characteristic 0. According to theorem 2.4 additive map

\[(3.3) \quad f : D_1 \to D_2 \]

has form \((2.2)\). Let us choose map \(G_1(x) = G(x) \). Additive map

\[(3.4) \quad f(x) = (s)_{a\overline{f}} G(x) (s)_{1f} \]

is called additive map generated by map \(G \). Map \(G \) is called generator of additive map.

Theorem 3.4. Let \(F, F \subset Z(D_1), F \subset Z(D_2) \), be field. Additive map \((3.4)\) generated by \(F \)-linear map \(G \) is multiplicative over field \(F \).

Proof. Immediate corollary of representation \((3.4)\) of additive map. For any \(a \in F \)

\[f(ax) = (s)_{a\overline{f}} G(ax) (s)_{1f} = (s)_{a\overline{f}} aG(x) (s)_{1f} = a (s)_{0f} G(x) (s)_{1f} = a f(x) \]

\(\square \)

\(^3\)For instance, in case of complex numbers map \(I \) is map of complex conjugation. The set of maps \(I \) depends on the division ring. We consider these operators when we explore map of division ring when structure of operation changes. For instance, the map of complex numbers \(z \to \overline{z} \).
Theorem 3.5. Let D_1, D_2 be division rings of characteristic 0. Let $F, F \subset Z(D_1), F \subset Z(D_2)$, be field. Let G be F-linear map. Let \overline{q} be basis of division ring D_2 over field F. Standard representation of additive map (3.4) over field F has form\footnote{Representation of additive map using components of additive map is ambiguous. We can increase or decrease number of summands using algebraic operations. Since dimension of division ring D over field F is finite, standard representation of additive map guarantees finiteness of set of items in the representation of map.}

\begin{equation}
(3.5) \quad f(x) = f_{ij}^{ij} \overline{q} G(x) j \overline{q}
\end{equation}

Expression f_{ij}^{ij} in equation (3.5) is called standard component of additive map f over field F.

Proof. Components of additive map f have expansion

\begin{equation}
(3.6) \quad (s) p f = (s) p f_{i}^{i} q \overline{q}
\end{equation}

relative to basis \overline{q}. If we substitute (3.6) into (3.4), we get

\begin{equation}
(3.7) \quad f(x) = (s) a f_{i}^{i} \overline{q} G(x) (s) 1 f_{j}^{j} j \overline{q}
\end{equation}

If we substitute expression $f_{ij}^{ij} = (s) a f_{i}^{i} (s) 1 f_{j}^{j}$ into equation (3.7) we get equation (3.5). □

Theorem 3.6. Let D_1, D_2 be division rings of characteristic 0. Let $F, F \subset Z(D_1), F \subset Z(D_2)$, be field. Let G be F-linear map. Let p be basis of division ring D_1 over field F. Let q be basis of division ring D_2 over field F. Let $k f_{ij}^{ij} B^p p r B^j$ be structural constants of division ring D_2. Then it is possible to represent additive map (3.4) generated by F-linear map G as

\begin{equation}
(3.8) \quad f(a) = a f_{i}^{i} f_{j}^{j} j \overline{q} \quad k f_{ij}^{ij} \in F
\end{equation}

$\quad a = a f_{i}^{i} \overline{q} \quad a f_{i}^{i} \in F \quad a \in D_1$

\begin{equation}
(3.9) \quad i f_{j}^{j} = i G^j \overline{q} P f_{k}^{kr} k l B^p p r B^j
\end{equation}

Proof. According to theorem 3.4 additive map of division ring D is linear over field F. Let us consider map

\begin{equation}
(3.10) \quad G : D_1 \rightarrow D_2 \quad a = a f_{i}^{i} \overline{q} \rightarrow G(a) = a f_{i}^{i} G^j j \overline{q}
\end{equation}

$x f_{i}^{i} \in F \quad G^j j \in F$

According to theorem [3]-4.4.3 additive map $f(a)$ relative to basis \overline{q} has form (3.8). From equations (3.5) and (3.10) it follows

\begin{equation}
(3.11) \quad f(a) = a f_{i}^{i} G^j \overline{q} f_{k}^{jk} k l B^p p r B^j
\end{equation}

From equations (3.8) and (3.11) it follows

\begin{equation}
(3.12) \quad a f_{i}^{i} f_{j}^{j} j \overline{q} = a f_{i}^{i} G^j \overline{q} f_{k}^{kr} k l B^p p r B^j j \overline{q} = a f_{i}^{i} G^j \overline{q} f_{k}^{kr} k l B^p p r B^j j \overline{q}
\end{equation}

Since vectors \overline{q} are linear independent over field F and values $a f_{i}^{i}$ are arbitrary, then equation (3.9) follows from equation (3.12). □

Theorem 3.7. Let field F be subring of center $Z(D)$ of division ring D of characteristic 0. F-linear map generating additive map is nonsingular map.
Proof. According to isomorphism theorem we can represent additive map (3.13) as composition
\[f(x) = f_1(x + H) \]
of canonical map \(x \rightarrow x + H \) and isomorphism \(f_1 \). \(H \) is ideal of additive group of division ring \(D \). Let ideal \(H \) be non-trivial. Then there exist \(x_1 \neq x_2, \ f(x_1) = f(x_2) \). Therefore, image under map \(f \) contains cyclic subgroup. It conflict with statement that characteristic of division ring \(D \) equal 0. Therefore, either \(H = \{0\} \) and canonical map is nonsingular \(F \)-linear map or \(H = D \) and canonical map is singular map. \(\square \)

Definition 3.8. Additive map that is linear over center of division ring is called linear map of division ring. \(\square \)

Theorem 3.9. Let \(D \) be division ring of characteristic 0. Linear map
(3.13) \[f : D \rightarrow D \]
has form
(3.14) \[f(x) = (\sigma)_p f \ x \ (\sigma)_1 f \]
Expression \((\sigma)_p f, \ p = 0, 1, \) in equation (3.14) is called component of linear map \(f \).

Theorem 3.10. Let \(D \) be division ring of characteristic 0. Let \(e \) be the basis of division ring \(D \) over center \(Z(D) \). Standard representation of linear map (3.14) of division ring has form
(3.15) \[f(x) = f^{ij} \ x_j \]
Expression \(f^{ij} \) in equation (3.15) is called standard component of linear map \(f \).

Theorem 3.11. Let \(D \) be division ring of characteristic 0. Let \(e \) be basis of division ring \(D \) over field \(Z(D) \). Then it is possible to represent linear map (3.13) as
(3.16) \[f(x) = a^i \ f^j \ x_j = k f^j \in Z(D) \]
\[a = a^i \ i \ x^i \]
\[a^i \in Z(D) \quad a \in D \]
(3.17) \[f^j = f^{kr} \ k_i B^p \ x_p B^j \]
Proof. Equation (3.14) is special case of equation (3.4) when \(G(x) = x \). Theorem 3.10 is special case of theorem 3.5 when \(G(x) = x \). Theorem 3.11 is special case of theorem 3.6 when \(G(x) = x \). Our goal is to show that we can assume \(G(x) = x \).

Equation (3.17) binds coordinates of linear transformation \(f \) relative given basis \(e \) of division ring \(D \) over center \(Z(D) \) and standard components of this transformation when we consider this transformation as linear map of division ring. For given coordinates of linear transformation we consider equation (3.17) as the system of linear equations in standard components. From theorem 3.11 it follows that if determinant of the system of linear equations (3.17) is different from 0, then for any

5 Representation of linear map of of division ring using components of linear map is ambiguous. We can increase or decrease number of summands using algebraic operations. Since dimension of division ring \(D \) over field \(Z(D) \) is finite, standard representation of linear map guarantees finiteness of set of items in the representation of map.
linear transformation of division ring D over field $Z(D)$ there exists corresponding linear transformation of division ring.

If determinant of system of linear equations (3.17) equal 0, then there exist maps different from map $G(x) = x$. If dimension of division ring is finite then these maps form finite dimensional algebra. I will consider the structure of this algebra in separate paper. Without loss of generality, we will assume $G(x) = x$ also in this case.

Theorem 3.12. Let field F be subring of center $Z(D)$ of division ring D of characteristic 0. Linear map of division ring is multiplicative over field F.

Proof. Immediate corollary of definition 3.8. □

Theorem 3.13. Expression

$$f^{kr} = f^i j k B^p j B^r$$

is tensor over field F

(3.18) \[i f^i j = k A^p j k f^i j A^{-1} j \]

Proof. D-linear map has form (3.16) relative to basis \overline{e}. Let \overline{f} be another basis. Let

(3.19) \[i \overline{e} = k A^j i \overline{e} \]

be transformation mapping basis \overline{e} to basis \overline{f}. Since additive map f is the same, then

(3.20) \[f(x) = x^i A^{-1} k f^i j A^{-1} j \overline{e} \]

Let us substitute [3]-8.8.8, (3.19) into equation (3.20)

(3.21) \[f(x) = x^i A^{-1} k f^i j A^{-1} j \overline{e} \]

Because vectors $j \overline{e}$ are linear independent and components of vector x^i are arbitrary, the equation (3.18) follows from equation (3.21). Therefore, expression $k f^r$ is tensor over field F. □

Theorem 3.14. Let D be division ring of characteristic 0. Let \overline{e} be basis of division ring D over center $Z(D)$ of division ring D. Let

(3.22) \[f : D \to D \quad f(x) = (s)_0 f x (s)_1 f \]

(3.23) \[= f^i j i \overline{e} x j \overline{e} \]

(3.24) \[g : D \to D \quad g(x) = (t)_0 g x (t)_1 g \]

(3.25) \[= g^i j i \overline{e} x j \overline{e} \]

be linear maps of division ring D. Map

(3.26) \[h(x) = g f(x) = g(f(x)) \]

is linear map

(3.27) \[h(x) = (t s)_0 h x (t s)_1 h \]

(3.28) \[= h^p r p \overline{e} x r \overline{e} \]
where
\[(\iota \circ \iota)v = (\iota)0g(\iota)0f\]
\[(\iota \circ \iota)w = (\iota)1f(\iota)1g\]
\[h^{pr} = g^{ij}f^{kl}B^p_{ij}B^r\]

Proof. Map (3.26) is additive because
\[h(x + y) = g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = h(x) + h(y)\]
Map (3.26) is multiplicative over \(Z(D)\) because
\[h(ax) = g(af(x)) = ag(f(x)) = ah(x)\]
If we substitute (3.22) and (3.24) into (3.26), we get
\[(3.32)\]
Comparing (3.32) and (3.27), we get (3.29), (3.30).
If we substitute (3.23) and (3.25) into (3.26), we get
\[\begin{align*}
\hat{h}(x) &= g^{ij}f^{kl}x^i_{ji}f^p_{j} \times f^r_{j} \\
&= g^{ij}f^{kl}ikB^p_{ij}B^r \times f^p_{j} \times x^i_{ji}f^r_{j} \\
&= g^{ij}f^{kl}ikB^p_{ij}B^r x^i_{ji}f^r_{j}
\end{align*}\]
Comparing (3.33) and (3.28), we get (3.31).
\[\square\]

4. POLYLINEAR MAP OF DIVISION RING

Definition 4.1. Let \(R_1, \ldots, R_n\) be rings and \(S\) be module. We call map
\[(4.1) f : R_1 \times \ldots \times R_n \to S\]
polyadditive map of rings \(R_1, \ldots, R_n\) into module \(S\), if
\[f(p_1, \ldots, p_i + q_1, \ldots, p_n) = f(p_1, \ldots, p_i, \ldots, p_n) + f(p_1, \ldots, q_i, \ldots, p_n)\]
for any \(1 \leq i \leq n\) and for any \(p_i, q_i \in R_i\). Let us denote \(A(R_1, \ldots, R_n; S)\) set of polyadditive maps of rings \(R_1, \ldots, R_n\) into module \(S\).

Theorem 4.2. Let \(R_1, \ldots, R_n, P\) be rings of characteristic 0. Let \(S\) be module over ring \(P\). Let
\[f : R_1 \times \ldots \times R_n \to S\]
be polyadditive map. There exists commutative ring \(F\) which is for any \(i\) is subring of center of ring \(R_i\) and such that for any \(i\) and \(b \in F\)
\[f(a_1, \ldots, ba_i, \ldots, a_n) = bf(a_1, \ldots, a_i, \ldots, a_n)\]

Proof. For given \(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n\) map \(f(a_1, \ldots, a_n)\) is additive by \(a_i\). According to theorem 2.10, we can select ring of integers as ring \(F\).

Definition 4.3. Let \(R_1, \ldots, R_n, P\) be rings of characteristic 0. Let \(S\) be module over ring \(P\). Let \(F\) be commutative ring which is for any \(i\) is subring of center of ring \(R_i\). Map
\[f : R_1 \times \ldots \times R_n \to S\]
is called **polylinear over commutative ring** \(F\), if map \(f\) is polyadditive, and for any \(i\), \(1 \leq i \leq n\), for given \(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n\) map \(f(a_1, \ldots, a_n)\) is multiplicative by \(a_i\). If ring \(F\) is maximum ring such that for any \(i\), \(1 \leq i \leq n\), for given \(a_1, \ldots, a_n\),
\(a_{i-1}, a_{i+1}, \ldots, a_n\) map \(f(a_1, \ldots, a_n)\) is linear by \(a_i\) over ring \(F\), then map \(f\) is called \textbf{polylinear map of rings} \(R_1, \ldots, R_n\) into module \(S\). Let us denote \(\mathcal{L}(R_1, \ldots, R_n; S)\) set of polylinear maps of rings \(R_1, \ldots, R_n\) into module \(S\). □

Theorem 4.4. Let \(D\) be division ring of characteristic 0. Polylinear map

\[(4.2) \quad f : D^n \rightarrow D, d = f(d_1, \ldots, d_n)\]

has form

\[(4.3) \quad d = (s)_0 f^n \sigma_s(d_1) (s)_1 f^n \ldots \sigma_s(d_n) (s)_n f^n\]

\(\sigma_s\) is a transposition of set of variables \(\{d_1, \ldots, d_n\}\)

\[\sigma_s = \begin{pmatrix} d_1 & \ldots & d_n \\ \sigma_s(d_1) & \ldots & \sigma_s(d_n) \end{pmatrix}\]

Proof. We prove statement by induction on \(n\).

When \(n = 1\) the statement of theorem is corollary of theorem 3.9. In such case we may identify \((s)_p = 0, 1\)

\[(s)_p f^1 = (s)_p f\]

Let statement of theorem be true for \(n = k - 1\). Then it is possible to represent map (4.2) as

\[
\begin{align*}
D^k & \xrightarrow{f} D \\
\downarrow & \quad \downarrow h \\
D^{k-1} & \\
\end{align*}
\]

\[d = f(d_1, \ldots, d_k) = g(d_k)(d_1, \ldots, d_{k-1})\]

According to statement of induction polyadditive map \(h\) has form

\[d = (t)_0 h^{k-1} \sigma_t(d_1) (t)_1 h^{k-1} \ldots \sigma_t(d_{k-1}) (t)_{k-1} h^{k-1}\]

According to construction \(h = g(d_k)\). Therefore, expressions \((t)_p h\) are functions of \(d_k\). Since \(g(d_k)\) is additive map of \(d_k\), then only one expression \((t)_0 h\) is additive map of \(d_k\), and rest expressions \((t)_p h\) do not depend on \(d_k\).

Without loss of generality, assume \(p = 0\). According to equation (3.14) for given \(t\)

\[(t)_0 h^{k-1} = (tr)_0 g d_k (tr)_{1} g\]

Assume \(s = tr\). Let us define transposition \(\sigma_s\) according to rule

\[\sigma_s = \sigma_{tr} = \begin{pmatrix} d_k & d_1 & \ldots & d_{k-1} \\ d_k & \sigma_t(d_1) & \ldots & \sigma_t(d_{k-1}) \end{pmatrix}\]

Suppose

\[(tr)_{q+1} f^k = (t)_{q} h^{k-1}\]

\(^6\)In representation (4.3) we will use following rules.

- If range of any index is set consisting of one element, then we will omit corresponding index.
- If \(n = 1\), then \(\sigma_s\) is identical transformation. We will not show such transformation in the expression.
The Gâteaux Derivative of Map over Division Ring

11

for \(q = 1, \ldots, k - 1 \).

\[
(tr)_q f^k = (tr)_q g
\]

for \(q = 0, 1 \). We proved step of induction. \(\Box \)

Definition 4.5. Expression \((s)_p f^n\) in equation (4.3) is called component of poly-
linear map \(f \). \(\Box \)

Theorem 4.6. Let \(D \) be division ring of characteristic 0. Let \(\overline{e} \) be basis in divi-
sion ring \(D \) over field \(Z(D) \). Standard representation of polylinear map of division ring has form

\[
f(d_1, \ldots, d_n) = (t) f^n_{i_1 \ldots i_n} \overline{e} \sigma_{i_1} \overline{e} \ldots \sigma_{i_n} \overline{e}
\]

Index \(t \) enumerates every possible transpositions \(\sigma_t \) of the set of variables \(\{d_1, \ldots, d_n\} \). Expression \((t) f^n_{i_1 \ldots i_n}\) in equation (4.4) is called standard component of poly-
linear map \(f \).

Proof. Components of polylinear map \(f \) have expansion

\[
(s)_p f^n = (s)_p f^n_{i_1 \ldots i_n} \overline{e}
\]

relative to basis \(\overline{e} \). If we substitute (4.5) into (4.3), we get

\[
d = (s)_0 f^n_{j_1 \ldots j_n} \overline{e} \sigma_{j_1} \overline{e} \ldots \sigma_{j_n} \overline{e}
\]

Let us consider expression

\[
(t) f^n_{j_0 \ldots j_n} = (s)_0 f^n_{j_1 \ldots j_n} \overline{e}
\]

The right-hand side is supposed to be the sum of the terms with the index \(s \), for
which the transposition \(\sigma_s \) is the same. Each such sum has a unique index \(t \). If we
substitute expression (4.7) into equation (4.6) we get equation (4.4). \(\Box \)

Theorem 4.7. Let \(\overline{e} \) be basis of division ring \(D \) over field \(Z(D) \). Polyadditive map
(4.2) can be represented as \(D \)-valued form of degree \(n \) over field \(Z(D) \)\(^7\)

\[
f(a_1, \ldots, a_n) = a^i_1 \ldots a^i_n \overline{e} f
\]

where

\[
a^i_j = A^i_j \overline{e}
\]

\(i_1 \ldots i_n f = f(i_1 \overline{e}, \ldots, i_n \overline{e}) \)

and values \(i_1 \ldots i_n f \) are coordinates of \(D \)-valued covariant tensor over field \(F \).

Proof. According to theorem 4.2, the equation (4.8) follows from the chain of equations

\[
f(a_1, \ldots, a_n) = f(a^i_1 i_1 \overline{e}, \ldots, a^i_n i_n \overline{e}) = a^i_1 \ldots a^i_n f(i_1 \overline{e}, \ldots, i_n \overline{e})
\]

Let \(\overline{e}' \) be another basis. Let

\[
i \overline{e}' = i A^j_j \overline{e}
\]

\(\Box \)

\(^7\)We proved the theorem by analogy with theorem in [2], p. 107, 108
be transformation, mapping basis \(\overline{\mathbf{e}} \) into basis \(\overline{\mathbf{e}}' \). From equations (4.10) and (4.9) it follows
\[
i_{1}...i_{n}f' = f(i_{1} \overline{\mathbf{e}}', ..., i_{n} \overline{\mathbf{e}}')
\]
(4.11)
\[
= f(i_{1} A^{j_{1}}_{k_{1}} ... i_{n} A^{j_{n}}_{k_{n}} \overline{\mathbf{e}}, ..., j_{n} \overline{\mathbf{e}}) \\
= f(i_{1} A^{j_{1}}_{k_{1}} ... i_{n} A^{j_{n}}_{k_{n}} f(j_{1} \overline{\mathbf{e}}, ..., j_{n} \overline{\mathbf{e}}))
\]
From equation (4.11) the tensor law of transformation of coordinates of polylinear map follows. From equation (4.11) and theorem [3]-8.2.1 it follows that value of the map \(f(\overline{\mathbf{e}}_{1}, ..., \overline{\mathbf{e}}_{n}) \) does not depend from choice of basis.

Polylinear map (4.2) is **symmetric**, if
\[
f(d_{1}, ..., d_{n}) = f(\sigma(d_{1}), ..., \sigma(d_{n}))
\]
for any transposition \(\sigma \) of set \(\{d_{1}, ..., d_{n}\} \).

Theorem 4.8. If polyadditive map \(f \) is symmetric, then
(4.12)
\[
i_{1},...,i_{n}f = \sigma(i_{1}),...\sigma(i_{n})f
\]
Proof. Equation (4.12) follows from equation
\[
a_{1}^{i_{1}}...a_{n}^{i_{n}}i_{1}...i_{n}f = f(a_{1}, ..., a_{n}) \\
= f(\sigma(a_{1}), ..., \sigma(a_{n})) \\
= a_{1}^{i_{1}}...a_{n}^{i_{n}}\sigma(i_{1})...\sigma(i_{n})f
\]
\(\square \)

Polylinear map (4.2) is **skew symmetric**, if
\[
f(d_{1}, ..., d_{n}) = |\sigma|f(\sigma(d_{1}), ..., \sigma(d_{n}))
\]
for any transposition \(\sigma \) of set \(\{d_{1}, ..., d_{n}\} \). Here
\[
|\sigma| = \begin{cases}
1 & \text{transposition } \sigma \text{ even} \\
-1 & \text{transposition } \sigma \text{ odd}
\end{cases}
\]

Theorem 4.9. If polylinear map \(f \) is skew symmetric, then
(4.13)
\[
i_{1},...,i_{n}f = |\sigma|\sigma(i_{1}),...\sigma(i_{n})f
\]
Proof. Equation (4.13) follows from equation
\[
a_{1}^{i_{1}}...a_{n}^{i_{n}}i_{1}...i_{n}f = f(a_{1}, ..., a_{n}) \\
= |\sigma|f(\sigma(a_{1}), ..., \sigma(a_{n})) \\
= a_{1}^{i_{1}}...a_{n}^{i_{n}}|\sigma|\sigma(i_{1})...\sigma(i_{n})f
\]
\(\square \)

Theorem 4.10. The polylinear over field \(F \) map (4.2) is polylinear iff
(4.14)
\[
j_{1}...j_{n}f = (i)f^{i_{10}...i_{0}}_{i_{0}\sigma(j_{1})}B_{k_{1}}^{l_{1}}B_{k_{1}l_{1}}^{l_{1}}...l_{n-1}\sigma(j_{n})B_{k_{n}}^{l_{n}}B_{k_{n}l_{n}}^{l_{n}}B_{1}^{i_{1}}...i_{n}B_{1}^{i_{n}}\overline{\mathbf{e}}
\]
(4.15)
\[
j_{1}...j_{n}f^{p} = (i)f^{i_{10}...i_{0}\sigma(j_{1})}B_{k_{1}}^{l_{1}}B_{k_{1}l_{1}}^{l_{1}}...l_{n-1}\sigma(j_{n})B_{k_{n}}^{l_{n}}B_{k_{n}l_{n}}^{l_{n}}B_{1}^{i_{1}}...i_{n}B_{1}^{i_{n}}\overline{\mathbf{e}}^{p}
\]
Proof. In equation (4.4), we assume
\[d_i = d_i^{j_i} \]
Then equation (4.4) gets form
\[
(f(d_1, ..., d_n) = (t) f^{i_0...i_n} t_{i_0} \sigma_t(d_1^{j_1} i_{j_1} \bar{t}) ... \sigma_t(d_n^{j_n} i_{j_n} \bar{t}) i_{j_n} \bar{t})
\]
(4.16)
\[
= d_1^{j_1} ... d_n^{j_n} (t) f^{i_0...i_n} t_{i_0} \sigma_t(j_{i_1}) B_{k_1}^{i_1} \bar{B}_{i_1} \kappa_1 \bar{k}_1 ...
\]
\[
= d_1^{j_1} ... d_n^{j_n} (t) f^{i_0...i_n} t_{i_0} \sigma_t(j_{i_1}) B_{k_n}^{i_n} \bar{B}_{i_n} \kappa_n \bar{k}_n \bar{t}
\]
From equation (4.8) it follows that
(4.17)
\[
f(a_1, ..., a_n) = a_1^{i_1} ... a_n^{i_n} f^{p \bar{p}} p \bar{p}
\]
Equation (4.14) follows from comparison of equations (4.16) and (4.8). Equation (4.15) follows from comparison of equations (4.16) and (4.17).

5. Topological Division Ring

Definition 5.1. Division ring \(D \) is called topological division ring\(^8\) if \(D \) is a topological space and the algebraic operations defined in \(D \) are continuous in the topological space \(D \).

According to definition, for arbitrary elements \(a, b \in D \) and for arbitrary neighborhoods \(W_{a-b} \) of the element \(a-b \), \(W_{ab} \) of the element \(ab \) there exists neighborhoods \(W_a \) of the element \(a \) and \(W_b \) of the element \(b \) such that \(W_a - W_b \subset W_{a-b} \), \(W_a W_b \subset W_{ab} \). For any \(a \neq 0 \) and for arbitrary neighborhood \(W_{a^{-1}} \) there exists neighborhood \(W_a \) of the element \(a \), satisfying the condition \(W_{a^{-1}} \subset W_{a^{-1}} \).

Definition 5.2. Absolute value on division ring \(D \)\(^9\) is a map \(d \in D \rightarrow |d| \in R \) which satisfies the following axioms
- \(|a| \geq 0\)
- \(|a| = 0\) if, and only if, \(a = 0\)
- \(|ab| = |a| |b|\)
- \(|a + b| \leq |a| + |b|\)

Division ring \(D \), endowed with the structure defined by a given absolute value on \(D \), is called valued division ring.

Invariant distance on additive group of division ring \(D \) defines topology of metric space, compatible with division ring structure of \(D \).

Definition 5.3. Let \(D \) be valued division ring. Element \(a \in D \) is called limit of a sequence \(\{a_n\} \)
\[
a = \lim_{n \to \infty} a_n
\]
if for every \(\epsilon \in R, \epsilon > 0 \) there exists positive integer \(n_0 \) depending on \(\epsilon \) and such, that \(|a_n - a| < \epsilon \) for every \(n > n_0 \).

\(^8\)I made definition according to definition from [6], chapter 4
\(^9\)I made definition according to definition from [5], IX, §3.2
Definition 5.4. Let D be valued division ring. The sequence $\{a_n\}, a_n \in D$ is called fundamental or Cauchy sequence, if for every $\epsilon \in R, \epsilon > 0$ there exists positive integer n_0 depending on ϵ and such, that $|a_p - a_q| < \epsilon$ for every $p, q > n_0$. □

Definition 5.5. Valued division ring D is called complete if any fundamental sequence of elements of division ring D converges, i.e. has limit in division ring D. □

Later on, speaking about valued division ring of characteristic 0, we will assume that homeomorphism of field of rational numbers Q into division ring D is defined.

Theorem 5.6. Complete division ring D of characteristic 0 contains as subfield an isomorphic image of the field R of real numbers. It is customary to identify it with R.

Proof. Let us consider fundamental sequence of rational numbers $\{p_n\}$. Let p' be limit of this sequence in division ring D. Let p be limit of this sequence in field R. Since immersion of field Q into division ring D is homeomorphism, then we may identify $p' \in D$ and $p \in R$. □

Theorem 5.7. Let D be complete division ring of characteristic 0 and let $d \in D$. Then any real number $p \in R$ commute with d.

Proof. Let us represent real number $p \in R$ as fundamental sequence of rational numbers $\{p_n\}$. Statement of theorem follows from chain of equations

$$pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp$$

based on statement of theorem [4]-6.1.4. □

Theorem 5.8. Let D be complete division ring of characteristic 0. Then field of real numbers R is subfield of center $Z(D)$ of division ring D.

Proof. Corollary of theorem 5.7. □

Definition 5.9. Let D be complete division ring of characteristic 0. Set of elements $d \in D, |d| = 1$ is called unit sphere in division ring D. □

Definition 5.10. Let D_1 be complete division ring of characteristic 0 with absolute value $|x|_1$. Let D_2 be complete division ring of characteristic 0 with absolute value $|x|_2$. Function

$$f : D_1 \to D_2$$

is called continuous, if for every as small as we please $\epsilon > 0$ there exist such $\delta > 0$, that

$$|x' - x|_1 < \delta$$

implies

$$|f(x') - f(x)|_2 < \epsilon$$

□

Theorem 5.11. Let D be complete division ring of characteristic 0. Since index s in expansion (3.14) of additive map

$$f : D \to D$$

belongs to finite range, then additive map f is continuous.
Proof. Suppose \(x' = x + a \). Then
\[
f(x') - f(x) = f(x + a) - f(x) = f(a) = (s)0f a (s)1f
\]
Let us denote \(F = (|s|0f | (s)1f) \). Then
\[
|f(x') - f(x)| < F|a|
\]
Suppose \(\epsilon > 0 \) and let us assume \(a = \frac{\epsilon}{F} \). Then \(\delta = |a| = \frac{\epsilon}{F} \). According to definition 5.10 additive map \(f \) is continuous.

Definition 5.12. Let
\[
f : D_1 \to D_2
\]
map of complete division ring \(D_1 \) of characteristic 0 with absolute value \(|x|_1 \) into complete division ring \(D_2 \) of characteristic 0 with absolute value \(|y|_2 \). Value
\[
\|f\| = \sup_{|x|_1 = 1} \frac{|f(x)|_2}{|x|_1}
\]
is called **norm of map** \(f \).

Theorem 5.13. Let \(D_1 \) be complete division ring of characteristic 0 with absolute value \(|x|_1 \). Let \(D_2 \) be complete division ring of characteristic 0 with absolute value \(|y|_2 \). Let
\[
f : D_1 \to D_2
\]
be map which is multiplicative over field \(R \). Then
\[
\|f\| = \sup\{|f(x)|_2 : |x|_1 = 1\}
\]
Proof. According to definition 2.5
\[
\frac{|f(x)|_2}{|x|_1} = \frac{|f(rx)|_2}{|rx|_1}
\]
Assuming \(r = \frac{1}{|x|_1} \), we get
\[
\frac{|f(x)|_2}{|x|_1} = \left| \frac{f \left(\frac{x}{|x|_1} \right)}{\frac{|x|_1}{|x|_1}} \right|
\]
Equation (5.2) follows from equations (5.3) and (5.1).

Theorem 5.14. Let
\[
f : D_1 \to D_2
\]
additive map of complete division ring \(D_1 \) into complete division ring \(D_2 \). Since \(\|f\| < \infty \), then map \(f \) is continuous.
Proof. Because map \(f \) is additive, then according to definition 5.12
\[
|f(x) - f(y)|_2 = |f(x - y)|_2 \leq \|f\| |x - y|_1
\]
Let us assume arbitrary \(\epsilon > 0 \). Assume \(\delta = \frac{\epsilon}{\|f\|} \). Then
\[
|f(x) - f(y)|_2 \leq \|f\| \delta = \epsilon
\]
follows from inequation
\[
|x - y|_1 < \delta
\]
According to definition 5.10 map \(f \) is continuous.
Theorem 5.15. Let D be complete division ring of characteristic 0. Either continuous map f of division ring which is projective over field P, does not depend on direction over field P, or value $f(0)$ is not defined.

Proof. According to definition [3]-9.1.7, map f is constant on direction Pa. Since $0 \in Pa$, then we may assume $f(0) = f(a)$ based on continuity. However this leads to uncertainty of value of map f in direction 0, when map f has different values for different directions a. □

If projective over field R map f is continuous, then we say that function f is **continuous in direction over field R**. Since for any $a \in D$, $a \neq 0$ we may choose $a_1 = |a|^{-1}a$, $f(a_1) = f(a)$, then it is possible to make definition more accurate.

Definition 5.16. Let D be complete division ring of characteristic 0. Projective over field R function f is continuous in direction over field R, if for every as small as we please $\epsilon > 0$ there exists such $\delta > 0$, that $|x' - x|_1 < \delta$ $|x'|_1 = |x|_1 = 1$ implies $|f(x') - f(x)|_2 < \epsilon$ □

Theorem 5.17. Let D be complete division ring of characteristic 0. Projective over field R function f is continuous in direction over field R if this function is continuous on unit sphere of division ring D.

Proof. Corollary of definitions 5.10, [3]-9.1.7, 5.16. □

6. **Differentiable Map of Division Ring**

Example 6.1. Let us consider increment of map $f(x) = x^2$.

$$f(x + h) - f(x) = (x + h)^2 - x^2 = xh + hx + h^2 = xh + hx + o(h)$$

As can be easily seen, the component of the increment of the function $f(x) = x^2$ that is linearly dependent on the increment of the argument, is of the form $xh + hx$

Since product is non commutative, we cannot represent increment of map $f(x + h) - f(x)$ as Ah or hA where A does not depend on h. It results in the unpredictable behavior of the increment of the function $f(x) = x^2$ when the increment of the argument converges to 0. However, since infinitesimal h is infinitesimal like $h = ta$, $a \in D$, $t \in R$, $t \to 0$, the answer becomes more definite

$$(xa + ax)t$$

□
Definition 6.2. Let D be complete division ring of characteristic 0. The function $f : D \rightarrow D$ is called differentiable in the Gâteaux sense on the set $U \subset D$, if at every point $x \in U$ the increment of the function f can be represented as

\[
\begin{align*}
 f(x + a) - f(x) &= \partial f(x)(a) + o(a) = \frac{\partial f(x)}{\partial x}(a) + o(a)
\end{align*}
\]

where the Gâteaux derivative $\partial f(x)$ of map f is linear map of increment a and $o : D \rightarrow D$ is such continuous map that

\[
\lim_{a \rightarrow 0} \frac{|o(a)|}{|a|} = 0
\]

\[\square\]

Remark 6.3. According to definition 6.2 for given x, the Gâteaux derivative $\partial f(x)$ is linear map of increment a and $o : D \rightarrow D$ is such continuous map that

\[
\lim_{a \rightarrow 0} \frac{|o(a)|}{|a|} = 0
\]

Theorem 6.4. It is possible to represent the Gâteaux differential $\partial f(x)(a)$ of map f as

\[
\partial f(x)(a) = \left((s)_0 \partial f(x) \right) a + \left((s)_1 \partial f(x) \right)
\]

Proof. Corollary of definitions 6.2 and theorem 3.9. \[\square\]

Definition 6.5. Expression $\left((s)_p \partial f(x) \right) / \partial x$, $p = 0, 1$, is called component of the Gâteaux derivative of map $f(x)$. \[\square\]

Theorem 6.6. Let D be division ring of characteristic 0. The Gâteaux derivative of function $f : D \rightarrow D$ is multiplicative over field R.

Proof. Corollary of theorems 5.8, 3.4, and definition 6.2. \[\square\]

From theorem 6.6 it follows

\[
\partial f(x)(ra) = r \partial f(x)(a)
\]

for any $r \in R, r \neq 0$ and $a \in D, a \neq 0$. Combining equation (6.3) and definition 6.2, we get known definition of the Gâteaux differential

\[
\partial f(x)(a) = \lim_{t \rightarrow 0, t \in R} (t^{-1}(f(x + ta) - f(x)))
\]

Definitions of the Gâteaux derivative (6.1) and (6.4) are equivalent. Using this equivalence we tell that map f is called differentiable in the Gâteaux sense on

\[\text{I made definition according to definition [1]-3.1.2, page 177.}\]
the set $U \subset D$, if at every point $x \in U$ the increment of the function f can be represented as

$$f(x + ta) - f(x) = t\partial f(x)(a) + o(t)$$

where $o : R \rightarrow D$ is such continuous map that

$$\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0$$

Since infinitesimal ta is differential dx, then equation (6.2) gets form

$$\partial f(x)(dx) = \frac{(s_0)^{ij} \partial f(x)}{\partial x} \partial x^i \partial x^j$$

Theorem 6.7. Let D be division ring of characteristic 0. Let \overline{e} be basis of division ring D over center $Z(D)$ of division ring D. **Standard representation of the Gâteaux differential** (6.2) **of map**

$$f : D \rightarrow D$$

has form

$$\partial f(x)(a) = \frac{\partial f(x)}{\partial x^i} \overline{e}_a^i \overline{e}$$

Expression $\frac{\partial f(x)}{\partial x^i}$ in equation (6.7) is called **standard component of the Gâteaux differential** of map f.

Proof. Statement of theorem is corollary of theorem 3.10. \hfill \Box

Theorem 6.8. Let D be division ring of characteristic 0. Let \overline{e} be basis of division ring D over center $Z(D)$ of division ring D. Then it is possible to represent the Gâteaux differential of map

$$f : D \rightarrow D$$

as

$$\partial f(x)(a) = a^i \frac{\partial f(x)}{\partial x^i} \overline{e}_a^i \overline{e}$$

where $a \in D$ has expansion

$$a = a^i \overline{e}_a^i \quad a^i \in F$$

relative to basis \overline{e} and Jacobian of map f has form

$$\frac{\partial f^3}{\partial x^3} = \frac{\partial^{kj} f(x)}{\partial x^3} \overline{e}_a^i \overline{e}_b^j$$

Proof. Statement of theorem is corollary of theorem 3.11. \hfill \Box

Definition 6.9. Let D be complete division ring of characteristic 0 and $a \in D$. We define the **Gâteaux D-derivative**

$$\frac{\partial f(x)(a)}{\partial x}$$

of map $f : D \rightarrow D$ using equation

$$\partial f(x)(a) = a \frac{\partial f(x)(a)}{\partial x}$$
We define the Gâteaux ∗D-derivative $\frac{\partial f(x)(a)}{\partial x}a$ of map $f : D \rightarrow D$ using equation

\[
\partial f(x)(a) = \frac{\partial f(x)(a)}{\partial x}a
\]

Let us consider the basis $1e = 1$, $2e = i$, $3e = j$, $4e = k$ of division ring of quaternions over real field. From straightforward calculation, it follows that standard $D*$-representation of the Gâteaux differential of map x^2 has form

$\partial x^2(a) = (x + x_1)a + x_2ai + x_3aj + x_4ak$

Theorem 6.10. Let D be complete division ring of characteristic 0. The Gâteaux $D*$-derivative is projective over field of real numbers R.

Proof. Corollary of theorems 6.6 and example 2.8. □

From theorem 6.10 it follows

\[
\frac{\partial f(x)(ra)}{\partial x} = \frac{\partial f(x)(a)}{\partial x}a
\]

for every $r \in R$, $r \neq 0$ and $a \in D$, $a \neq 0$. Therefore the Gâteaux $D*$-derivative is well defined in direction a over field R, $a \in D$, $a \neq 0$, and does not depend on the choice of value in this direction.

Theorem 6.11. Let D be complete division ring of characteristic 0 and $a \neq 0$. The Gâteaux $D*$-derivative and the Gâteaux ∗D-derivative of map f of division ring D are bounded by relationship

\[
\frac{\partial f(x)(a)}{\partial x}a = a \frac{\partial f(x)(a)}{\partial x}a^{-1}
\]

Proof. From equations (6.10) and (6.11) it follows

\[
\frac{\partial f(x)(a)}{\partial x} = \partial f(x)(a)a^{-1} = a \frac{\partial f(x)(a)}{\partial x}a^{-1}
\]

Theorem 6.12. Let D be complete division ring of characteristic 0. The Gâteaux differential satisfies to relationship

\[
\partial(f(x)g(x))(a) = \partial f(x)(a)g(x) + f(x)\partial g(x)(a)
\]

Proof. Equation (6.14) follows from chain of equations

\[
\partial(f(x)g(x))(a) = \lim_{t \to 0} (t^{-1}(f(x + ta)g(x + ta) - f(x)g(x)))
\]

\[
= \lim_{t \to 0} (t^{-1}(f(x + ta)g(x + ta) - f(x)g(x + ta)))
\]

\[
+ \lim_{t \to 0} (t^{-1}(f(x)g(x + ta) - f(x)g(x)))
\]

\[
= \lim_{t \to 0} (t^{-1}(f(x + ta) - f(x)))g(x)
\]

\[
+ f(x)\lim_{t \to 0} (t^{-1}(g(x + ta) - g(x)))
\]

based on definition (6.4). □
Theorem 6.13. Let D be complete division ring of characteristic 0. Suppose the Gâteaux derivative of map $f : D \to D$ has expansion

\[
\frac{\partial f(x)(a)}{\partial x} = \frac{(\omega_0 f)(x)}{\partial x} a (\omega_1 f)(x)
\]

Suppose the Gâteaux differential of map $g : D \to D$ has expansion

\[
\frac{\partial g(x)(a)}{\partial x} = \frac{(\omega_0 g)(x)}{\partial x} a (\omega_1 g)(x)
\]

Components of the Gâteaux differential of map $f(x)g(x)$ have form

\[
\begin{align*}
\frac{\partial f(x)g(x)}{\partial x} &= \frac{(\omega_0 f)(x)}{\partial x} g(x) + f(x) \frac{\partial g(x)}{\partial x} \\
\frac{\partial f(x)g(x)}{\partial x} &= \frac{(\omega_0 f)(x)}{\partial x} g(x) + f(x) \frac{\partial g(x)}{\partial x}
\end{align*}
\]

Proof. Let us substitute (6.15) and (6.16) into equation (6.14)

\[
\frac{\partial (f(x)g(x))(a)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} g(x) + f(x) \frac{\partial g(x)(a)}{\partial x}
\]

Based (6.19), we define equations (6.17), (6.18). □

Theorem 6.14. Let D be complete division ring of characteristic 0. The Gâteaux D^\dagger-derivative satisfy to relationship

\[
\frac{\partial f(x)g(x)}{\partial x}(a) = \frac{\partial f(x)(a)}{\partial x} g(x) + a^{-1} f(x) a \frac{\partial g(x)(a)}{\partial x}
\]

Proof. Equation (6.20) follows from chain of equations

\[
\frac{\partial f(x)g(x)}{\partial x}(a) = a^{-1} \frac{\partial f(x)(a)}{\partial x} g(x)
\]

\[
= a^{-1} (\partial f(x)(a) g(x) + f(x) \partial g(x)(a))
\]

\[
= a^{-1} \partial f(x)(a) g(x) + a^{-1} f(x) a \partial g(x)(a)
\]

\[
= \frac{\partial f(x)(a)}{\partial x} g(x) + a^{-1} f(x) a \frac{\partial g(x)(a)}{\partial x}
\]

\[
\sqoc
\]

Theorem 6.15. Let D be complete division ring of characteristic 0. Either the Gâteaux D^\dagger-derivative does not depend on direction, or the Gâteaux D^\dagger-derivative in direction 0 is not defined.

Proof. Statement of theorem is corollary of theorem 6.10 and theorem 5.15. □

Theorem 6.16. Let D be complete division ring of characteristic 0. Let unit sphere of division ring D be compact. If the Gâteaux D^\dagger-derivative $\frac{\partial f(x)(a)}{\partial x}$ exists in point x and is continuous in direction over field R, then there exist norm $||\partial f(x)||$ of the Gâteaux D^\dagger-differential.
Proof. From definition 6.9 it follows
\[(6.21) \quad |\partial f(x)(a)| = |a| \left| \frac{\partial f(x)(a)}{\partial x} \right| \]
From theorems [4]-6.1.18, 6.10 it follows, that the Gâteaux D^*-derivative is continuous on unit sphere. Since unit sphere is compact, then range the Gâteaux D^*-derivative of function f at point x is bounded
\[|\frac{\partial f(x)(a)}{\partial x}| < F = \sup|\frac{\partial f(x)(a)}{\partial x}|\]
According to definition 5.12
\[\|\partial f(x)\| = F\]
\[\square\]

Theorem 6.17. Let D be complete division ring of characteristic 0. Let unit sphere of division ring D be compact. If the Gâteaux D^*-derivative $\frac{\partial f(x)(a)}{\partial x}$ exists in point x and is continuous in direction over field R, then function f is continuous at point x.

Proof. From theorem 6.16 it follows
\[(6.22) \quad |\partial f(x)(a)| \leq \|\partial f(x)\||a|\]
From (6.1), (6.22) it follows
\[(6.23) \quad |f(x + a) - f(x)| < |a| \|\partial f(x)\|\]
Let us assume arbitrary $\epsilon > 0$. Assume
\[\delta = \frac{\epsilon}{\|\partial f(x)\|}\]
Then from inequation
\[|a| < \delta \]
it follows
\[|f(x + a) - f(x)| \leq \|\partial f(x)\| \delta = \epsilon\]
According to definition 5.10 map f is continuous at point x. \[\square\]

7. Table of Derivatives of Map of Division Ring

Theorem 7.1. Let D be complete division ring of characteristic 0. Then for any $b \in D$
\[(7.1) \quad \partial(b)(a) = 0\]
Proof. Immediate corollary of definition 6.2. \[\square\]
Theorem 7.2. Let D be complete division ring of characteristic 0. Then for any $b, c \in D$

\[
\partial(bf(x)c)(a) = b\partial f(x)(a)c
\]

\[
\frac{(s)_0 \partial bf(x)c}{\partial x} = b\frac{(s)_0 \partial f(x)}{\partial x}
\]

\[
\frac{(s)_1 \partial bf(x)c}{\partial x} = c
\]

\[
\frac{\partial bf(x)c}{\partial x}(a) = a^{-1}b\frac{\partial f(x)(a)}{\partial x}c
\]

Proof. Immediate corollary of equations (6.14), (6.17), (6.18), (6.20) because $\partial b = \partial c = 0$. □

Theorem 7.3. Let D be complete division ring of characteristic 0. Then for any $b, c \in D$

\[
\partial(bxc)(h) = bhc
\]

\[
\frac{(1)_0 \partial bxc}{\partial x} = b
\]

\[
\frac{(1)_1 \partial bxc}{\partial x} = c
\]

\[
\frac{\partial bxc}{\partial x}(h) = h^{-1}bhc
\]

Proof. Corollary of theorem 7.2, when $f(x) = x$. □

Theorem 7.4. Let D be complete division ring of characteristic 0. Then for any $b \in D$

\[
\partial(xb - bx)(h) = hb - bh
\]

\[
\frac{(1)_0 \partial (xb - bx)}{\partial x} = 1\quad \frac{(1)_1 \partial (xb - bx)}{\partial x} = b
\]

\[
\frac{(2)_0 \partial (xb - bx)}{\partial x} = -b\quad \frac{(2)_1 \partial (xb - bx)}{\partial x} = 1
\]

\[
\frac{\partial (xb - bx)}{\partial x}(h) = h^{-1}bhc
\]

Proof. Corollary of theorem 7.2, when $f(x) = x$. □

Theorem 7.5. Let D be complete division ring of characteristic 0. Then

\[
\partial(x^2)(a) = xa + ax
\]

\[
\frac{(1)_0 \partial x^2}{\partial x}(a) = a^{-1}xa + x
\]

\[
\frac{(1)_1 \partial x^2}{\partial x} = e
\]

\[
\frac{(2)_0 \partial x^2}{\partial x} = e\quad \frac{(2)_1 \partial x^2}{\partial x} = x
\]

Proof. (7.11) follows from example 6.1 and definition 6.9. (7.12) follows from example 6.1 and equation (6.6). □
The Gâteaux Derivative of Map over Division Ring

Theorem 7.6. Let D be complete division ring of characteristic 0. Then

\[\partial(x^{-1})(h) = -x^{-1}hx^{-1} \]

\[\frac{\partial x^{-1}}{\partial x}(h) = -h^{-1}x^{-1}hx^{-1} \]

(7.13)

\[\frac{(1)\partial x^{-1}}{\partial x} = -x^{-1} \quad (1)\frac{\partial x^{-1}}{\partial x} = x^{-1} \]

Proof. Let us substitute $f(x) = x^{-1}$ in definition (6.4).

\[\partial f(x)(h) = \lim_{t \to 0, t \in R} (t^{-1}((x + th)^{-1} - x^{-1})) \]

\[= \lim_{t \to 0, t \in R} (t^{-1}((x + th)^{-1} - x^{-1}(x + th)(x + th)^{-1})) \]

(7.14)

\[= \lim_{t \to 0, t \in R} (t^{-1}(1 - x^{-1}(x + th))(x + th)^{-1}) \]

\[= \lim_{t \to 0, t \in R} (t^{-1}(1 - 1 - x^{-1}th)(x + th)^{-1}) \]

\[= \lim_{t \to 0, t \in R} (-x^{-1}h(x + th)^{-1}) \]

Equation (7.13) follows from chain of equations (7.14). □

Theorem 7.7. Let D be complete division ring of characteristic 0. Then

\[\partial(xax^{-1})(h) = hax^{-1} - xax^{-1}hx^{-1} \]

\[\frac{\partial xax^{-1}}{\partial x}(h) = ax^{-1} - h^{-1}xax^{-1}hx^{-1} \]

(7.15)

\[\frac{(1)\partial x^{-1}}{\partial x} = 1 \quad (1)\frac{\partial x^{-1}}{\partial x} = ax^{-1} \]

\[\frac{(2)\partial x^{-1}}{\partial x} = -xax^{-1} \quad (2)\frac{\partial x^{-1}}{\partial x} = x^{-1} \]

Proof. Equation (7.15) is corollary of equations (6.14), (7.6), (7.15). □

8. Derivative of Second Order of Map of Division Ring

Let D be valued division ring of characteristic 0. Let

\[f : D \to D \]

function differentiable in the Gâteaux sense. According to remark 6.3 the Gâteaux derivative is map

\[\partial f : D \to \mathcal{L}(D; D) \]

According to theorems 2.2, 2.3 and definition 5.12 set $\mathcal{L}(D; D)$ is normed D-vector space. Therefore, we may consider the question, if map ∂f is differentiable in the Gâteaux sense.

According to definition [4]-8.2.1

(8.1) \[\partial f(x + a_2)(a_1) - \partial f(x)(a_1) = \partial(\partial f(x)(a_1))(a_2) + \varphi_2(a_2) \]

where $\varphi_2 : D \to \mathcal{L}(D; D)$ is such continuous map, that

\[\lim_{a_2 \to 0} \frac{||\varphi_2(a_2)||}{|a_2|} = 0 \]
According to definition [4]-8.2.1 map \(\partial(\partial f(x)(a_1))(a_2) \) is linear map of variable \(a_2 \). From equation (8.1) it follows that map \(\partial(\partial f(x)(a_1))(a_2) \) is linear map of variable \(a_1 \).

Definition 8.1. Polylinear map

\[
\partial^2 f(x)(a_1; a_2) = \frac{\partial^2 f(x)}{\partial x^2}(a_1; a_2) = \partial(\partial f(x)(a_1))(a_2)
\]

is called the Gâteaux derivative of second order of map \(f \).

Remark 8.2. According to definition 8.1 for given \(x \) the Gâteaux differential of second order \(\partial^2 f(x) \in L(D; D; D) \). Therefore, the Gâteaux differential of second order of map \(f \) is map \(\partial^2 f : D \rightarrow L(D; D; D) \).

Theorem 8.3. It is possible to represent the Gâteaux differential of second order of map \(f \) as

\[
\partial^2 f(x)(a_1; a_2) = (s)_{p}\partial^2 f(x) \frac{\sigma_s(a_1)}{\partial x^2} (s)_1 \frac{\partial^2 f(x)}{\partial x^2}(a_2) \frac{\sigma_s(a_2)}{\partial x^2}
\]

Proof. Corollary of definition 8.1 and theorem [3]-11.2.3.

Definition 8.4. Expression\(^{11}\) \((s)_p \partial^2 f(x) \frac{\sigma_s(a_1)}{\partial x^2} \) \(p = 0, 1 \), is called component of the Gâteaux derivative of map \(f(x) \).

By induction, assuming that the Gâteaux derivative is defined \(\partial^{n-1} f(x) \) up to order \(n - 1 \), we define

\[
\partial^n f(x)(a_1; ...; a_n) = \frac{\partial^n f(x)}{\partial x^n}(a_1; ...; a_n) = \partial(\partial^{n-1} f(x)(a_1; ...; a_n-1))(a_n)
\]

the Gâteaux derivative of order \(n \) of map \(f \). We also assume \(\partial^0 f(x) = f(x) \).

9. **Taylor Series**

Let us consider polynomial in one variable over division ring \(D \) of power \(n > 0 \). We want to explore the structure of monomial \(p_k(x) \) of polynomial of power \(k \).

It is evident that monomial of power 0 has form \(a_0, a_0 \in D \). Let \(k > 0 \). Let us prove that

\[
p_k(x) = p_{k-1}(x)xa_k
\]

where \(a_k \in D \). Actually, last factor of monomial \(p_k(x) \) is either \(a_k \in D \), or has form \(x^l, l \geq 1 \). In the latter case we assume \(a_k = 1 \). Factor preceding \(a_k \) has form \(x^l \), \(l \geq 1 \). We can represent this factor as \(x^{l-1}x \). Therefore, we proved the statement.

In particular, monomial of power 1 has form \(p_1(x) = a_0xa_1 \).

Without loss of generality, we assume \(k = n \).

\(^{11}\)We suppose

\[
(\sigma_p)\frac{\partial^2 f(x)}{\partial x^2} = (\sigma_p)\frac{\partial^2 f(x)}{\partial x \partial x}
\]
Theorem 9.1. For any $m > 0$ the following equation is true
\[
\partial^m (f(x))(h_1; \ldots; h_m) = \partial^m f(x)(h_1; \ldots; h_m)x + \partial^{m-1} f(x)(h_1; \ldots; h_{m-1})h_m \\
+ \partial^{m-1} f(x)(h_1; \ldots; h_{m-1}; h_{m-1})h_1 + \ldots \\
+ \partial^{m-1} f(x)(h_1; \ldots; h_{m-1}; h_{m-1})h_{m-1}
\]
where symbol \hat{h}^i means absence of variable h^i in the list.

Proof. For $m = 1$, this is corollary of equation (6.14)
\[
\partial(f(x)) = \partial(f(x))h_1 = \partial f(x)h_1 + f(x)h_1
\]
Assume, (9.1) is true for $m - 1$. Then
\[
\partial^{m-1} f(x)(h_1; \ldots; h_{m-1}) \\
= \partial^{m-1} f(x)(h_1; \ldots; h_{m-1})x + \partial^{m-2} f(x)(h_1; \ldots; h_{m-2})h_{m-1} \\
+ \partial^{m-2} f(x)(h_1; \ldots; h_{m-2}; h_{m-1})h_1 + \ldots \\
+ \partial^{m-2} f(x)(h_1; \ldots; h_{m-2}; h_{m-1})h_{m-2}
\]
Using equations (6.14) and (7.2) we get
\[
\partial^m (f(x))(h_1; \ldots; h_{m-1}; h_m) \\
= \partial^m f(x)(h_1; \ldots; h_{m-1}; h_m)x + \partial^{m-1} f(x)(h_1; \ldots; h_{m-2}; h_{m-1})h_m \\
+ \partial^{m-1} f(x)(h_1; \ldots; h_{m-2}; h_{m-1}; h_{m-1})h_{m-1} \\
+ \partial^{m-2} f(x)(h_1; \ldots; h_{m-2}; h_{m-1}; h_{m-1})h_1 + \ldots \\
+ \partial^{m-2} f(x)(h_1; \ldots; h_{m-2}; h_{m-1}; h_{m-1})h_{m-2}
\]
The difference between equations (9.1) and (9.3) is only in form of presentation. We proved the theorem. \qed

Theorem 9.2. The Gâteaux derivative $\partial^m p_n(x)(h_1, \ldots, h_m)$ is symmetric polynomial with respect to variables h_1, \ldots, h_m.

Proof. To prove the theorem we consider algebraic properties of the Gâteaux derivative and give equivalent definition. We start from construction of monomial. For any monomial $p_n(x)$ we build symmetric polynomial $r_n(x)$ according to following rules

- If $p_1(x) = a_0x_1a_1$, then $r_1(x_1) = a_0x_1a_1$
- If $p_n(x) = p_{n-1}(x)a_n$, then
 \[
 r_n(x_1, \ldots, x_n) = r_{n-1}(x_1, \ldots, x_{n-1})x_n|a_n
 \]
 where square brackets express symmetrization of expression with respect to variables x_1, \ldots, x_n.

It is evident that
\[
p_n(x) = r_n(x_1, \ldots, x_n) \quad x_1 = \ldots = x_n = x
\]
We define the Gâteaux derivative of power k according to rule
\[
\partial^k p_n(x)(h_1, \ldots, h_k) = r_n(h_1, \ldots, h_k, x_{k+1}, \ldots, x_n) \quad x_{k+1} = x_n = x
\]
According to construction, polynomial \(r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \) is symmetric with respect to variables \(h_1, ..., h_k, x_{k+1}, ..., x_n \). Therefore, polynomial (9.4) is symmetric with respect to variables \(h_1, ..., h_k \).

For \(k = 1 \), we will prove that definition (9.4) of the Gâteaux derivative coincides with definition (6.10).

For \(n = 1 \), \(r_1(h_1) = a_0 h_1 a_1 \). This expression coincides with expression of the Gâteaux derivative in theorem 7.3.

Let the statement be true for \(n - 1 \). The following equation is true

\[
(9.5) \quad r_n(h_1, x_2, ..., x_n) = r_{n-1}(h_1, x_2, ..., x_{n-1})x_n a_n + r_{n-1}(x_2, ..., x_n)h_1 a_n
\]

Assume \(x_2 = ... = x_n = x \). According to suggestion of induction, from equations (9.4), (9.5) it follows that

\[
r_n(h_1, x_2, ..., x_n) = \partial p_{n-1}(x)(h_1) x a_n + p_{n-1}(x) h_1 a_n
\]

According to theorem 9.1

\[
r_n(h_1, x_2, ..., x_n) = \partial p_n(x)(h_1)
\]

This proves the equation (9.4) for \(k = 1 \).

Let us prove now that definition (9.4) of the Gâteaux derivative coincides with definition (8.4) for \(k > 1 \).

Let equation (9.4) be true for \(k - 1 \). Let us consider arbitrary monomial of polynomial \(r_n(h_1, ..., h_{k-1}, x_k, ..., x_n) \). Identifying variables \(h_1, ..., h_{k-1} \) with elements of division ring \(D \), we consider polynomial

\[
(9.6) \quad R_{n-k}(x_k, ..., x_n) = r_n(h_1, ..., h_{k-1}, x_k, ..., x_n)
\]

Assume \(P_{n-k}(x) = R_{n-k}(x_k, ..., x_n) \), \(x_k = ... = x_n = x \). Therefore

\[
P_{n-k}(x) = \partial^{k-1} p_n(x)(h_1; ...; h_{k-1})
\]

According to definition of the Gâteaux derivative (8.4)

\[
\partial P_{n-k}(x)(h_k) = \partial(\partial^{k-1} p_n(x)(h_1; ...; h_{k-1}))(h_k)
\]

\[
= \partial^k p_n(x)(h_1; ...; h_{k-1}; h_k)
\]

According to definition (9.4) of the Gâteaux derivative

\[
(9.7) \quad \partial P_{n-k}(x)(h_k) = R_{n-k}(h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x
\]

According to definition (9.6), from equation (9.8) it follows that

\[
(9.8) \quad \partial P_{n-k}(x)(h_k) = R_{n-k}(h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x
\]

From comparison of equations (9.7) and (9.8) it follows that

\[
\partial^k p_n(x)(h_1; ...; h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x
\]

Therefore equation (9.4) is true for any \(k \) and \(n \).

We proved the statement of theorem. \(\square\)

Theorem 9.3. For any \(n \geq 0 \) following equation is true

\[
(9.10) \quad \partial^{n+1} p_n(x)(h_1; ...; h_{n+1}) = 0
\]
Proof. Since \(p_0(x) = a_0, \ a_0 \in D \), then for \(n = 0 \) theorem is corollary of theorem 7.1. Let statement of theorem is true for \(n - 1 \). According to theorem 9.1 when \(f(x) = p_{n-1}(x) \) we get
\[
\partial^{n+1} p_n(x)(h_1; \ldots; h_{n+1}) = \partial^{n+1} p_{n-1}(x)(h_1; \ldots; h_{n+1})
\]
\[
= \partial^{n+1} p_{n-1}(x)(h_1; \ldots; h_m)x a_n
\]
\[
+ \partial^n p_{n-1}(x)(h_1; \ldots; h_m-1)h_m a_n
\]
\[
+ \partial^m p_{n-1}(x)(\tilde{h}_1; \ldots; h_{m-1}; h_m)h_1 a_n + \ldots
\]
\[
+ \partial^1 p_{n-1}(x)(\tilde{h}_1; \ldots; \tilde{h}_{m-1}; h_m)h_1 a_n
\]
According to suggestion of induction all monomials are equal 0.

\[\tag{9.11} \]
\[\partial^m p_n(0)(h) = 0 \]

Proof. For \(n = 1 \) following equation is true
\[
\partial^1 p_1(0) = a_0 x a_1 = 0
\]
Assume that statement is true for \(n - 1 \). Then according to theorem 9.1
\[
\partial^n (p_{n-1}(x) x a_n)(h_1; \ldots; h_m)
\]
\[
= \partial^n p_{n-1}(x)(h_1; \ldots; h_m)x a_n + \partial^{n-1} p_{n-1}(x)(h_1; \ldots; h_m-1)h_m a_n
\]
\[
+ \partial^{m-1} p_{n-1}(x)(\tilde{h}_1; \ldots; h_m)h_1 a_n + \ldots
\]
\[
+ \partial^1 p_{n-1}(x)(\tilde{h}_1; \ldots; \tilde{h}_{m-1}; h_m)h_1 a_n
\]
First term equal 0 because \(x = 0 \). Because \(m - 1 < n - 1 \), then rest terms equal 0 according to suggestion of induction. We proved the statement of theorem.

When \(h_1 = \ldots = h_n = h \), we assume
\[
\partial^1 f(x)(h) = \partial^n f(x)(h_1; \ldots; h_n)
\]
This notation does not create ambiguity, because we can determine function according to number of arguments.

\[\tag{9.12} \]
\[\partial^n p_n(x)(h) = n! p_n(h) \]

Proof. For \(n = 1 \) following equation is true
\[
\partial p_1(x)(h) = \partial (a_0 x a_1)(h) = a_0 h a_1 = 1! p_1(h)
\]
Assume the statement is true for \(n - 1 \). Then according to theorem 9.1
\[
\partial^n p_n(x)(h) = \partial^n p_{n-1}(x)(h) x a_n + \partial^{n-1} p_{n-1}(x)(h) h a_n
\]
\[
+ \ldots + \partial^1 p_{n-1}(x)(h) h a_n
\]
First term equal 0 according to theorem 9.3. The rest \(n \) terms equal, and according to suggestion of induction from equation (9.13) it follows
\[
\partial^n p_n(x)(h) = n! p_{n-1}(x)(h) h a_n = (n - 1)! p_{n-1}(h) h a_n = n! p_n(h)
\]
Therefore, statement of theorem is true for any \(n \).
Let $p(x)$ be polynomial of power n.\(^{12}\)

\[p(x) = p_0 + p_{1i_1}(x) + \ldots + p_{ni_n}(x) \]

We assume sum by index i_k which enumerates terms of power k. According to theorem 9.3, 9.4, 9.5

\[\partial^k p(x)(h_1; \ldots; h_k) = k! p_{k_i_k}(x) \]

Therefore, we can write

\[p(x) = p_0 + (1!)^{-1} \partial p(0)(x) + (2!)^{-1} \partial^2 p(0)(x) + \ldots + (n!)^{-1} \partial^n p(0)(x) \]

This representation of polynomial is called Taylor polynomial. If we consider substitution of variable $x = y - y_0$, then considered above construction remain true for polynomial

\[p(y) = p_0 + p_{1i_1}(y - y_0) + \ldots + p_{ni_n}(y - y_0) \]

Therefore

\[p(y) = p_0 + (1!)^{-1} \partial p(y_0)(y - y_0) + (2!)^{-1} \partial^2 p(y_0)(y - y_0) + \ldots + (n!)^{-1} \partial^n p(y_0)(y - y_0) \]

Assume that function $f(x)$ is differentiable in the Gâteaux sense at point x_0 up to any order.\(^{13}\)

Theorem 9.6. If function $f(x)$ holds

\[f(x_0) = \partial f(x_0)(h) = \ldots = \partial^n f(x_0)(h) = 0 \]

then for $t \to 0$ expression $f(x + th)$ is infinitesimal of order higher then n with respect to t

\[f(x_0 + th) = o(t^n) \]

Proof. When $n = 1$ this statement follows from equation (6.5).

Let statement be true for $n - 1$. Map

\[f_1(x) = \partial f(x)(h) \]

satisfies to condition

\[f_1(x_0) = \partial f_1(x_0)(h) = \ldots = \partial^{n-1} f_1(x_0)(h) = 0 \]

According to suggestion of induction

\[f_1(x_0 + th) = o(t^{n-1}) \]

Then equation (6.4) gets form

\[o(t^{n-1}) = \lim_{t \to 0, t \in \mathbb{R}} (t^{-1} f(x + th)) \]

Therefore,

\[f(x + th) = o(t^n) \]

\[\square \]

\(^{12}\)I consider Taylor polynomial for polynomials by analogy with construction of Taylor polynomial in [7], p. 246.

\(^{13}\)I explore construction of Taylor series by analogy with construction of Taylor series in [7], p. 248, 249.
Let us form polynomial
\[p(x) = f(x_0) + (1!)^{-1} \partial f(x_0)(x - x_0) + \ldots + (n!)^{-1} \partial^n f(x_0)(x - x_0) \]
According to theorem 9.6
\[f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n) \]
Therefore, polynomial \(p(x) \) is good approximation of map \(f(x) \).

If map \(f(x) \) has the Gâteaux derivative of any order, the passing to the limit \(n \to \infty \), we get expansion into series
\[f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \partial^n f(x_0)(x - x_0) \]
which is called Taylor series.

10. Integral

Concept of integral has different aspect. In this section we consider integration as operation inverse to differentiation. As a matter of fact, we consider procedure of solution of ordinary differential equation
\[\partial f(x)(h) = F(x; h) \]

Example 10.1. I start from example of differential equation over real field.
\[y' = 3x^2 \]
\[x_0 = 0 \quad y_0 = 0 \]
Differentiating one after another equation (10.1), we get the chain of equations
\[y'' = 6x \]
\[y''' = 6 \]
\[y^{(n)} = 0 \quad n > 3 \]
From equations (10.1), (10.2), (10.3), (10.4), (10.5) it follows expansion into Taylor series
\[y = x^3 \]

Example 10.2. Let us consider similar equation over division ring
\[\partial(y)(h) = hx^2 + xhx + x^2h \]
\[x_0 = 0 \quad y_0 = 0 \]
Differentiating one after another equation (10.6), we get the chain of equations
\[\partial^2(y)(h_1; h_2) = h_1h_2x + h_1hx_2 + h_2h_1x + xh_1h_2 + h_2hx_1 + xh_2h_1 \]
\[\partial^3(y)(h_1; h_2; h_3) = h_1h_2h_3 + h_1h_3h_2 + h_2h_1h_3 + h_3h_1h_2 + h_2h_3h_1 + h_3h_2h_1 \]
\[\partial^n(y)(h_1; \ldots; h_n) = 0 \quad n > 3 \]
From equations (10.6), (10.7), (10.8), (10.9), (10.10) expansion into Taylor series follows

\[y = x^3 \]

\[\square \]

Remark 10.3. Differential equation

\[\partial(y)(h) = 3hx^2 \tag{10.11} \]

\[x_0 = 0 \quad y_0 = 0 \tag{10.12} \]

also leads to answer \(y = x^3 \). It is evident that this map does not satisfies differential equation. However, contrary to theorem 9.2 second derivative is not symmetric polynomial. This means that equation (10.11) does not possess a solution. \[\square \]

Example 10.4. It is evident that, if function satisfies to differential equation

\[\partial(y)(h) = (s)_0 f \ h \ (s)_1 f \tag{10.13} \]

then The Gâteaux derivative of second order

\[\partial^2 f(x)(h_1; h_2) = 0 \]

Than, if initial condition is \(y(0) = 0 \), then differential equation (10.13) has solution

\[y = (s)_0 f \ x \ (s)_1 f \]

\[\square \]

11. Exponent

In this section we consider one of possible models of exponent.

In a field we can define exponent as solution of differential equation

\[y' = y \tag{11.1} \]

It is evident that we cannot write such equation for division ring. However we can use equation

\[\partial(y)(h) = y/h \tag{11.2} \]

From equations (11.1), (11.2) it follows

\[\partial(y)(h) = yh \tag{11.3} \]

This equation is closer to our goal, however there is the question: in which order we should multiply \(y \) and \(h \)? To answer this question we change equation

\[\partial(y)(h) = \frac{1}{2}(yh + hy) \tag{11.4} \]

Hence, our goal is to solve differential equation (11.4) with initial condition \(y(0) = 1 \).

For the statement and proof of the theorem 11.1 I introduce following notation. Let

\[\sigma = \begin{pmatrix} y & h_1 & \ldots & h_n \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \end{pmatrix} \]

be transposition of the tuple of variables

\[(y \ h_1 \ \ldots \ h_n) \]

Let \(p_\sigma(h_i) \) be position that variable \(h_i \) gets in the tuple

\[(\sigma(y) \ \sigma(h_1) \ \ldots \ \sigma(h_n)) \]
For instance, if transposition \(\sigma \) has form
\[
\begin{pmatrix}
y & h_1 & h_2 & h_3 \\
h_2 & y & h_3 & h_1
\end{pmatrix}
\]
then following tuples equal
\[
(\sigma(y) \sigma(h_1) \sigma(h_2) \sigma(h_3)) = (h_2 \ y \ h_3 \ h_1)
= (p_{\sigma}(h_2) \ p_{\sigma}(y) \ p_{\sigma}(h_3) \ p_{\sigma}(h_1))
\]

Theorem 11.1. If function \(y \) is solution of differential equation (11.4) then the Gâteaux derivative of order \(n \) of function \(y \) has form
\[
\partial^n(y)(h_1, ..., h_n) = \frac{1}{2^n} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_n)
\]
where sum is over transpositions
\[
\sigma = \begin{pmatrix}
y & h_1 & \ldots & h_n \\
\sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n)
\end{pmatrix}
\]
of the set of variables \(y, h_1, ..., h_n \). Transposition \(\sigma \) has following properties

1. If there exist \(i, j \), \(i \neq j \), such that \(p_{\sigma}(h_i) \) is situated in product (11.5) on the left side of \(p_{\sigma}(h_j) \) and \(p_{\sigma}(h_j) \) is situated on the left side of \(p_{\sigma}(y) \), then \(i < j \).
2. If there exist \(i, j \), \(i \neq j \), such that \(p_{\sigma}(h_i) \) is situated in product (11.5) on the right side of \(p_{\sigma}(h_j) \) and \(p_{\sigma}(h_j) \) is situated on the right side of \(p_{\sigma}(y) \), then \(i > j \).

Proof. We prove this statement by induction. For \(n = 1 \) the statement is true because this is differential equation (11.4). Let the statement be true for \(n = k - 1 \). Hence
\[
\partial^{k-1}(y)(h_1, ..., h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})
\]
where the sum is over transposition
\[
\sigma = \begin{pmatrix}
y & h_1 & \ldots & h_{k-1} \\
\sigma(y) & \sigma(h_1) & \ldots & \sigma(h_{k-1})
\end{pmatrix}
\]
of the set of variables \(y, h_1, ..., h_{k-1} \). Transposition \(\sigma \) satisfies to conditions (1), (2) in theorem. According to definition (8.4) the Gâteaux derivative of order \(k \) has form
\[
\partial^k(y)(h_1, ..., h_k) = \partial(\partial^{k-1}(y)(h_1, ..., h_{k-1}))(h_k)
\]
\[
= \frac{1}{2^{k-1}} \partial \left(\sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)(h_k)
\]
From equations (11.4), (11.7) it follows that
\[
\partial^k(y)(h_1, ..., h_k)
\]
\[
= \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma} \sigma(yh_k)\sigma(h_1)\ldots\sigma(h_{k-1}) + \sum_{\sigma} \sigma(h_ky)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)
\]
It is easy to see that arbitrary transposition \(\sigma \) from sum (11.8) forms two transpositions

\[
\begin{align*}
\tau_1 &= \begin{pmatrix} y & h_1 & \ldots & h_{k-1} & h_k \\
\tau_1(y) & \tau_1(h_1) & \ldots & \tau_1(h_{k-1}) & \tau_1(h_k) \\
h_k y & h_1 & \ldots & h_{k-1} & h_k
\end{pmatrix} \\
\tau_2 &= \begin{pmatrix} y & h_1 & \ldots & h_{k-1} & h_k \\
\tau_2(y) & \tau_2(h_1) & \ldots & \tau_2(h_{k-1}) & \tau_2(h_k) \\
yh_k & h_1 & \ldots & h_{k-1} & h_k
\end{pmatrix}
\end{align*}
\]

(11.9)

From (11.8) and (11.9) it follows that

\[
\partial^k(y)(h_1, \ldots, h_k)
= \frac{1}{2^k} \left(\sum_{\tau_1} \tau_1(y)\tau_1(h_1)\ldots\tau_1(h_{k-1})\tau_1(h_k) \\
+ \sum_{\tau_2} \tau_2(y)\tau_2(h_1)\ldots\tau_2(h_{k-1})\tau_2(h_k) \right)
\]

(11.10)

In expression (11.10) \(p_{\tau_1}(h_k) \) is written immediately before \(p_{\tau_1}(y) \). Since \(k \) is smallest value of index then transposition \(\tau_1 \) satisfies to conditions (1), (2) in the theorem. In expression (11.10) \(p_{\tau_2}(h_k) \) is written immediately after \(p_{\tau_2}(y) \). Since \(k \) is largest value of index then transposition \(\tau_2 \) satisfies to conditions (1), (2) in the theorem.

It remains to show that in the expression (11.10) we get all transpositions \(\tau \) that satisfy to conditions (1), (2) in the theorem. Since \(k \) is largest index then according to conditions (1), (2) in the theorem \(\tau(h_k) \) is written either immediately before or immediately after \(\tau(y) \). Therefore, any transposition \(\tau \) has either form \(\tau_1 \) or form \(\tau_2 \). Using equation (11.9), we can find corresponding transposition \(\sigma \) for given transposition \(\tau \). Therefore, the statement of theorem is true for \(n = k \). We proved the theorem.

\(\square \)

Theorem 11.2. The solution of differential equation (11.4) with initial condition \(y(0) = 1 \) is exponent \(y = e^x \) that has following Taylor series expansion

\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
\]

(11.11)

Proof. The Gâteaux derivative of order \(n \) has \(2^n \) items. In fact, the Gâteaux derivative of order 1 has 2 items, and each differentiation increase number of items twice. From initial condition \(y(0) = 1 \) and theorem 11.1 it follows that the Gâteaux derivative of order \(n \) of required solution has form

\[
\partial^n(0)(h, \ldots, h) = 1
\]

(11.12)

Taylor series expansion (11.11) follows from equation (11.12).

\(\square \)

Theorem 11.3. The equation

\[
e^{a+b} = e^a e^b
\]

(11.13)

is true iff

\[
ab = ba
\]

(11.14)
Proof. To prove the theorem it is enough to consider Taylor series
\begin{align}
e^a &= \sum_{n=0}^{\infty} \frac{1}{n!}a^n \\
e^b &= \sum_{n=0}^{\infty} \frac{1}{n!}b^n \\
e^{a+b} &= \sum_{n=0}^{\infty} \frac{1}{n!}(a+b)^n
\end{align}

Let us multiply expressions (11.15) and (11.16). The sum of monomials of order 3 has form
\begin{equation}
\frac{1}{6} a^3 + \frac{1}{2} a^2 b + \frac{1}{2} ab^2 + \frac{1}{6} b^3
\end{equation}
and in general does not equal expression
\begin{equation}
\frac{1}{6}(a+b)^3 = \frac{1}{6} a^3 + \frac{1}{6} a^2 b + \frac{1}{6} aba + \frac{1}{6} ba^2 + \frac{1}{6} b^2 a + \frac{1}{6} b^3
\end{equation}
The proof of statement that (11.13) follows from (11.14) is trivial.

The meaning of the theorem 11.3 becomes more clear if we recall that there exist two models of design of exponent. First model is the solution of differential equation (11.4). Second model is exploring of one parameter group of transformations. For field both models lead to the same function. I cannot state this now for general case. This is the subject of separate research. However if we recall that quaternion is analogue of transformation of three dimensional space then the statement of the theorem becomes evident.

12. Linear Function of Complex Field

Theorem 12.1 (the Cauchy Riemann equations). Let us consider complex field \(C \) as two-dimensional algebra over real field. Let \(\alpha = 1, \beta = i \) be the basis of algebra \(C \). Then in this basis structural constants have form
\begin{align}
00B^0 &= 1 \\
01B^1 &= 1 \\
10B^1 &= 1 \\
11B^0 &= -1
\end{align}
Matrix of linear function
\[
y^i = x^j \cdot f^i
\]
of complex field over real field satisfies relationship
\begin{align}
0f^0 &= 1f^1 \\
0f^1 &= -1f^0
\end{align}

Proof. Value of structural constants follows from equation \(i^2 = -1 \). Using equation (3.17) we get relationships
\begin{align}
0f^0 &= f^{kr} \cdot 0_0B^0_{pr}B^0 = f^{0r} 0_0B^0_{0r}B^0 + f^{1r} 10B^1_{1r}B^0 = f^{00} - f^{11} \\
0f^1 &= f^{kr} \cdot 0_0B^0_{pr}B^1 = f^{0r} 0_0B^0_{0r}B^1 + f^{1r} 10B^1_{1r}B^1 = f^{01} + f^{10} \\
1f^0 &= f^{kr} \cdot 1_0B^0_{pr}B^0 = f^{0r} 0_1B^1_{1r}B^0 + f^{1r} 11B^0_{0r}B^0 = -f^{01} - f^{10} \\
1f^1 &= f^{kr} \cdot 1_0B^0_{pr}B^1 = f^{0r} 0_1B^1_{1r}B^1 + f^{1r} 11B^0_{0r}B^1 = f^{00} - f^{11}
\end{align}
(12.1) follows from equations (12.3) and (12.6). (12.2) follows from equations (12.4) and (12.5).

Remark 12.2. In order to show how it is hard to find generators of additive function, let us consider equation (3.9) for complex field.

For complex field our task becomes easier because we know that matrix of operator G has form either

$$G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

or

$$G = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

For generator (12.8) we get equation for coordinates of transformation

$$0f^0 = -1f^1 \quad 0f^1 = 1f^0$$
13. LINEAR FUNCTION OF DIVISION RING OF QUATERNIONS

Definition 13.1. Let F be field. Extension field $F(i, j, k)$ is called the quaternion algebra $E(F)$ over the field F if multiplication in algebra E is defined according to rule

\[
\begin{array}{ccc}
i & j & k \\
i & -1 & k & -j \\
j & -k & -1 & i \\
k & j & -i & -1 \\
\end{array}
\]

Elements of the algebra $E(F)$ have form

\[x = x^0 + x^1 i + x^2 j + x^3 k\]

where $x^i \in F$, $i = 0, 1, 2, 3$. Quaternion

\[\overline{x} = x^0 - x^1 i - x^2 j - x^3 k\]

is called conjugate to the quaternion x. We define the norm of the quaternion x using equation

\[
|x|^2 = x\overline{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2
\]

From equation (13.2), it follows that $E(F)$ is algebra with division. In this case inverse element has form

\[x^{-1} = |x|^{-2}\overline{x}\]

Theorem 13.2. Let us consider division ring of quaternions $E(F)$ as four-dimensional algebra over field F. Let $0\overline{e} = 1$, $1\overline{e} = i$, $2\overline{e} = j$, $3\overline{e} = k$ be basis of algebra $E(F)$. Then in this basis structural constants have form

\[
\begin{array}{ccc}
0_0 B^0 = 1 & 0_1 B^1 = 1 & 0_2 B^2 = 1 & 0_3 B^3 = 1 \\
1_0 B^0 = 1 & 1_1 B^1 = -1 & 1_2 B^2 = 1 & 1_3 B^3 = -1 \\
2_0 B^0 = 1 & 2_1 B^1 = -1 & 2_2 B^2 = -1 & 2_3 B^3 = 1 \\
3_0 B^0 = 1 & 3_1 B^1 = 1 & 3_2 B^2 = -1 & 3_3 B^3 = -1 \\
\end{array}
\]

Standard components of additive function over field F and coordinates of corresponding linear map over field F satisfy relationship

14 Follow definition from [8].

15 In [8], Gelfand gives more general definition considering quaternion algebra $E(F, a, b)$ with product

\[
\begin{array}{ccc}
i & j & k \\
i & a & k & aj \\
j & -k & b & -bi \\
k & -aj & bi & -ab \\
\end{array}
\]

where $a, b \in F$, $ab \neq 0$. However this algebra becomes division ring only when $a < 0, b < 0$. It follows from equation

\[x\overline{x} = (x^0)^2 - a(x^1)^2 - b(x^2)^2 + ab(x^3)^2\]

In this case we can renorm basis such that $a = -1, b = -1$.
Proof. Value of structural constants follows from multiplication table (13.1). Using equation (3.17) we get relationships

\[f^0 = f^{kr} k_0 B^p p_r B^0 \]

\[= f^{00} 0_0 B^3 0_0 B^0 + f^{11} 1_1 B^1 1_1 B^0 + f^{22} 2_2 B^2 2_2 B^0 + f^{33} 3_3 B^3 3_3 B^0 \]

\[= f^{00} - f^{11} - f^{22} - f^{33} \]

\[f^1 = f^{kr} k_0 B^p p_r B^1 \]

\[= f^{01} 0_0 B^3 0_1 B^1 + f^{10} 1_0 B^1 1_0 B^0 + f^{23} 2_3 B^2 2_3 B^1 + f^{32} 3_2 B^3 3_2 B^1 \]

\[= f^{01} + f^{10} + f^{23} - f^{32} \]

\[f^2 = f^{kr} k_0 B^p p_r B^2 \]

\[= f^{02} 0_0 B^3 0_2 B^2 + f^{13} 1_3 B^1 1_3 B^2 + f^{20} 2_0 B^2 2_0 B^2 + f^{31} 3_1 B^3 3_1 B^2 \]

\[= f^{02} - f^{13} + f^{20} + f^{31} \]

\[f^3 = f^{kr} k_0 B^p p_r B^3 \]

\[= f^{03} 0_0 B^3 0_3 B^3 + f^{12} 1_2 B^1 1_2 B^3 + f^{21} 2_1 B^2 2_1 B^3 + f^{30} 3_0 B^3 3_0 B^3 \]

\[= f^{03} + f^{12} - f^{21} + f^{30} \]

\[f^0 = f^{kr} k_1 B^p p_r B^0 \]

\[= f^{01} 0_1 B^1 + f^{10} 1_0 B^0 + f^{23} 2_3 B^3 + f^{32} 3_2 B^2 \]

\[= -f^{01} - f^{10} + f^{23} - f^{32} \]
\[f^1 = f^{kr}_{k_1 B_{p_1}} B^1 \]
\[= f^{0_0}_{0_1 B^3} 1_0 B^1 + f^{1_1}_{1_1 B^0} 0_1 B^1 + f^{2_2}_{2_1 B^3} 3_2 B^1 + f^{3_3}_{3_1 B^2} 2_3 B^1 \]
\[= f^{0_0} - f^{1_1} + f^{2_2} + f^{3_3} \]

\[f^2 = f^{kr}_{k_1 B_{p_1}} B^2 \]
\[= f^{0_3}_{0_1 B^3} 1_3 B^2 + f^{1_2}_{1_1 B^0} 0_2 B^2 + f^{2_1}_{2_1 B^3} 3_1 B^2 + f^{3_0}_{3_1 B^2} 2_0 B^2 \]
\[= -f^{0_3} - f^{1_2} - f^{2_1} + f^{3_0} \]

\[f^3 = f^{kr}_{k_1 B_{p_1}} B^3 \]
\[= f^{0_2}_{0_1 B^3} 1_2 B^3 + f^{1_3}_{1_1 B^0} 0_3 B^3 + f^{2_0}_{2_1 B^3} 3_0 B^3 + f^{3_1}_{3_1 B^2} 2_1 B^3 \]
\[= f^{0_2} - f^{1_3} + f^{2_0} - f^{3_1} \]

\[f^0 = f^{kr}_{k_2 B_{p_1}} B^0 \]
\[= f^{0_2}_{0_2 B^3} 2_2 B^0 + f^{1_3}_{1_2 B^3} 3_3 B^0 + f^{2_0}_{2_2 B^3} 0_0 B^0 + f^{3_1}_{3_2 B^1} 1_1 B^0 \]
\[= -f^{0_2} - f^{1_3} - f^{2_0} + f^{3_1} \]

\[f^1 = f^{kr}_{k_2 B_{p_1}} B^1 \]
\[= f^{0_3}_{0_2 B^3} 2_3 B^1 + f^{1_2}_{1_2 B^3} 3_2 B^1 + f^{2_1}_{2_2 B^3} 0_1 B^1 + f^{3_0}_{3_2 B^1} 1_0 B^1 \]
\[= f^{0_3} - f^{1_2} - f^{2_1} + f^{3_0} \]

\[f^2 = f^{kr}_{k_2 B_{p_1}} B^2 \]
\[= f^{0_0}_{0_2 B^3} 2_0 B^2 + f^{1_1}_{1_2 B^3} 3_1 B^2 + f^{2_2}_{2_2 B^3} 0_2 B^2 + f^{3_3}_{3_2 B^1} 1_2 B^2 \]
\[= f^{0_0} + f^{1_1} - f^{2_2} + f^{3_3} \]

\[f^3 = f^{kr}_{k_2 B_{p_1}} B^3 \]
\[= f^{0_1}_{0_2 B^3} 2_1 B^3 + f^{1_0}_{1_2 B^3} 3_0 B^3 + f^{2_3}_{2_2 B^3} 0_3 B^3 + f^{3_2}_{3_2 B^1} 1_2 B^3 \]
\[= -f^{0_1} - f^{1_0} + f^{2_3} - f^{3_2} \]

\[f^0 = f^{kr}_{k_3 B_{p_1}} B^0 \]
\[= f^{0_3}_{0_3 B^3} 3_3 B^0 + f^{1_2}_{1_3 B^2} 2_2 B^0 + f^{2_1}_{2_3 B^1} 1_1 B^0 + f^{3_0}_{3_3 B^0} 0_0 B^0 \]
\[= -f^{0_3} + f^{1_2} + f^{2_1} + f^{3_0} \]

\[f^1 = f^{kr}_{k_3 B_{p_1}} B^1 \]
\[= f^{0_2}_{0_3 B^3} 3_2 B^1 + f^{1_3}_{1_3 B^2} 2_3 B^1 + f^{2_0}_{2_3 B^1} 1_0 B^1 + f^{3_1}_{3_2 B^1} 0_1 B^1 \]
\[= -f^{0_2} - f^{1_3} + f^{2_0} + f^{3_1} \]

\[f^2 = f^{kr}_{k_3 B_{p_1}} B^2 \]
\[= f^{0_1}_{0_3 B^3} 3_1 B^2 + f^{1_0}_{1_3 B^2} 2_0 B^2 + f^{2_3}_{2_3 B^1} 1_3 B^2 + f^{3_2}_{3_3 B^0} 0_2 B^2 \]
\[= f^{0_1} - f^{1_0} + f^{2_3} - f^{3_2} \]
\[3f^3 = f^{kr} + B^p + B^q \]
\[= f^{00} + f^{11} + f^{22} - f^{33} \]

We group these relationships into systems of linear equations (13.4), (13.6), (13.8), (13.10).

(13.5) is solution of system of linear equations (13.4).
(13.7) is solution of system of linear equations (13.6).
(13.9) is solution of system of linear equations (13.8).
(13.11) is solution of system of linear equations (13.10).

Theorem 13.3. Let us consider division ring of quaternions \(E(F) \) as four-dimensional algebra over field \(F \). Let \(0 = 1, i = j, k = k \) be basis of algebra \(E(F) \). Standard components of additive function over field \(F \) and coordinates of this function over field \(F \) satisfy relationship

\[
\begin{pmatrix}
 f^{00} & f^{01} & f^{02} & f^{03} \\
 f^{10} & f^{11} & f^{12} & f^{13} \\
 f^{20} & f^{21} & f^{22} & f^{23} \\
 f^{30} & f^{31} & f^{32} & f^{33}
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 1 & -1 & -1 & -1 \\
 1 & -1 & 1 & 1 \\
 1 & 1 & -1 & 1 \\
 1 & 1 & 1 & -1
\end{pmatrix}
= \begin{pmatrix}
 f^{00} - f^{32} - f^{13} - f^{21} \\
 f^{11} - f^{23} - f^{02} - f^{30} \\
 f^{22} - f^{10} - f^{31} - f^{03} \\
 f^{33} - f^{01} - f^{20} - f^{12}
\end{pmatrix}
\]

(13.12)

Proof. Let us write equation (13.4) as product of matrices

\[
\begin{pmatrix}
 f^{00} & f^{01} & f^{02} & f^{03} \\
 f^{10} & f^{11} & f^{12} & f^{13} \\
 f^{20} & f^{21} & f^{22} & f^{23} \\
 f^{30} & f^{31} & f^{32} & f^{33}
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 1 & -1 & -1 & -1 \\
 1 & -1 & 1 & 1 \\
 1 & 1 & -1 & 1 \\
 1 & 1 & 1 & -1
\end{pmatrix}
= \begin{pmatrix}
 f^{00} \\
 f^{11} \\
 f^{22} \\
 f^{33}
\end{pmatrix}
\]

(13.13)

Let us write equation (13.6) as product of matrices

\[
\begin{pmatrix}
 f^{01} & f^{02} & f^{03} \\
 f^{10} & f^{12} & f^{13} \\
 f^{20} & f^{21} & f^{23} \\
 f^{30} & f^{31} & f^{32}
\end{pmatrix}
\begin{pmatrix}
 0 & 0 & 0 \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 1 & 1 & 1 & -1 \\
 -1 & -1 & 1 & -1 \\
 -1 & 1 & -1 & -1 \\
 1 & -1 & -1 & 1
\end{pmatrix}
= \begin{pmatrix}
 f^{01} \\
 f^{10} \\
 f^{23} \\
 f^{32}
\end{pmatrix}
\]

(13.14)
Let us write equation (13.8) as product of matrices
\[
\begin{pmatrix}
0 f^2_3 \\
1 f^3_0 \\
2 f^0_3 \\
3 f^1_3
\end{pmatrix} =
\begin{pmatrix}
1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 \\
-1 & -1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{02} \\
f^{13} \\
f^{20} \\
f^{31}
\end{pmatrix}
=
\begin{pmatrix}
-1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{02} \\
f^{13} \\
f^{20} \\
f^{31}
\end{pmatrix}
\tag{13.15}
\]

Let us write equation (13.10) as product of matrices
\[
\begin{pmatrix}
0 f^3_3 \\
1 f^2_3 \\
2 f^1_3 \\
3 f^0_3
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & -1 & 1 \\
-1 & -1 & -1 & 1 \\
-1 & 1 & -1 & -1 \\
-1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
f^{03} \\
f^{12} \\
f^{21} \\
f^{30}
\end{pmatrix}
=
\begin{pmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
f^{03} \\
f^{12} \\
f^{21} \\
f^{30}
\end{pmatrix}
\tag{13.16}
\]

We join equations (13.13), (13.14), (13.15), (13.16) into equation (13.12).

\section*{14. Differentiable Map of Division Ring of Quaternions}

Theorem 14.1. Since matrix \(\left(\frac{\partial y^i}{\partial x^j} \right) \) is Jacobian of map \(x \rightarrow y \) of division ring of quaternions over real field, then

\[
\begin{align*}
\frac{\partial y^0}{\partial x^0} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^1}{\partial x} - \frac{\partial y^2}{\partial x} - \frac{\partial y^3}{\partial x} \\
\frac{\partial y^1}{\partial x^0} &= \frac{\partial y^0}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^2}{\partial x} + \frac{\partial y^3}{\partial x} \\
\frac{\partial y^2}{\partial x^1} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^1}{\partial x} - \frac{\partial y^2}{\partial x} - \frac{\partial y^3}{\partial x} \\
\frac{\partial y^3}{\partial x^2} &= \frac{\partial y^0}{\partial x} + \frac{\partial y^1}{\partial x} + \frac{\partial y^2}{\partial x} + \frac{\partial y^3}{\partial x} \\
\frac{\partial y^0}{\partial x^3} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^1}{\partial x} - \frac{\partial y^2}{\partial x} - \frac{\partial y^3}{\partial x} \\
\end{align*}
\tag{14.1}
\]
\[
\left\{ \begin{array}{l}
\frac{\partial y^1}{\partial x^0} = \frac{\partial^1 y}{\partial x^0} + \frac{\partial^0 y}{\partial x^1} + \frac{\partial^{23} y}{\partial x^2} + \frac{\partial^{32} y}{\partial x^3} \\
\frac{\partial y^0}{\partial x^0} = -\frac{\partial^0 y}{\partial x^0} - \frac{\partial^1 y}{\partial x^1} + \frac{\partial^{22} y}{\partial x^2} + \frac{\partial^{31} y}{\partial x^3} \\
\frac{\partial x^1}{\partial x^0} = -\frac{\partial^0 x}{\partial x^0} - \frac{\partial^1 x}{\partial x^1} + \frac{\partial^{20} x}{\partial x^2} + \frac{\partial^{30} x}{\partial x^3} \\
\frac{\partial^1 y}{\partial x^3} = -\frac{\partial^1 y}{\partial x^0} - \frac{\partial^1 y}{\partial x^1} + \frac{\partial^{21} y}{\partial x^2} + \frac{\partial^{31} y}{\partial x^3}
\end{array} \right.
\]

(14.2)

\[
\left\{ \begin{array}{l}
\frac{\partial y^2}{\partial x^0} = \frac{\partial^2 y}{\partial x^0} - \frac{\partial^3 y}{\partial x^1} + \frac{\partial^{20} y}{\partial x^2} - \frac{\partial^{31} y}{\partial x^3} \\
\frac{\partial y^1}{\partial x^0} = -\frac{\partial^1 y}{\partial x^0} - \frac{\partial^1 y}{\partial x^1} + \frac{\partial^{21} y}{\partial x^2} - \frac{\partial^{31} y}{\partial x^3} \\
\frac{\partial x^1}{\partial x^0} = -\frac{\partial^0 x}{\partial x^0} - \frac{\partial^1 x}{\partial x^1} + \frac{\partial^{20} x}{\partial x^2} - \frac{\partial^{30} x}{\partial x^3} \\
\frac{\partial^1 y}{\partial x^3} = -\frac{\partial^1 y}{\partial x^0} - \frac{\partial^1 y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} - \frac{\partial^{31} y}{\partial x^3}
\end{array} \right.
\]

(14.3)

\[
\left\{ \begin{array}{l}
\frac{\partial y^3}{\partial x^0} = \frac{\partial^3 y}{\partial x^0} + \frac{\partial^2 y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} - \frac{\partial^{30} y}{\partial x^3} \\
\frac{\partial y^2}{\partial x^0} = \frac{\partial^2 y}{\partial x^0} - \frac{\partial^3 y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} + \frac{\partial^{30} y}{\partial x^3} \\
\frac{\partial x^1}{\partial x^0} = -\frac{\partial^0 x}{\partial x^0} - \frac{\partial^1 x}{\partial x^1} - \frac{\partial^{20} x}{\partial x^2} + \frac{\partial^{30} x}{\partial x^3} \\
\frac{\partial^1 y}{\partial x^3} = -\frac{\partial^1 y}{\partial x^0} - \frac{\partial^1 y}{\partial x^1} - \frac{\partial^{21} y}{\partial x^2} + \frac{\partial^{31} y}{\partial x^3}
\end{array} \right.
\]

(14.4)

\[
\left\{ \begin{array}{l}
4 \frac{\partial^0 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} + \frac{\partial y^2}{\partial x^0} + \frac{\partial y^3}{\partial x^0} \\
4 \frac{\partial^1 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} - \frac{\partial y^2}{\partial x^0} - \frac{\partial y^3}{\partial x^0} \\
4 \frac{\partial^2 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} + \frac{\partial y^2}{\partial x^0} - \frac{\partial y^3}{\partial x^0} \\
4 \frac{\partial^3 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} - \frac{\partial y^2}{\partial x^0} - \frac{\partial y^3}{\partial x^0}
\end{array} \right.
\]

(14.5)

\[
\left\{ \begin{array}{l}
4 \frac{\partial^0 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} + \frac{\partial y^2}{\partial x^0} + \frac{\partial y^3}{\partial x^0} \\
4 \frac{\partial^1 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} - \frac{\partial y^2}{\partial x^0} - \frac{\partial y^3}{\partial x^0} \\
4 \frac{\partial^2 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} + \frac{\partial y^2}{\partial x^0} - \frac{\partial y^3}{\partial x^0} \\
4 \frac{\partial^3 y}{\partial x} = \frac{\partial y^0}{\partial x^0} + \frac{\partial y^1}{\partial x^0} - \frac{\partial y^2}{\partial x^0} - \frac{\partial y^3}{\partial x^0}
\end{array} \right.
\]

(14.6)
The Gâteaux Derivative of Map over Division Ring

\[\frac{\partial y}{\partial x} = \frac{\partial y^0}{\partial x^1} + \frac{\partial y^1}{\partial x^2} + \frac{\partial y^2}{\partial x^3} + \frac{\partial y^3}{\partial x^4} \]

(14.7)

\[\frac{\partial^2 y}{\partial x^2} = \frac{\partial y^0}{\partial x^2} + \frac{\partial y^1}{\partial x^1} + \frac{\partial y^2}{\partial x^3} + \frac{\partial y^3}{\partial x^4} \]

(14.8)

Proof. The statement of theorem is corollary of theorem 13.2.

Theorem 14.2. Quaternionic map

\[f(x) = \mathbf{r} \]

has the Gâteaux derivative

\[\partial (\mathbf{r}) (h) = -\frac{1}{2} (h + ihi + jhj + kkh) \]

(14.9)

Proof. Jacobian of the map \(f \) has form

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
\end{pmatrix}
\]

From equations (14.5) it follows that

\[\frac{\partial y^0}{\partial x^1} = \frac{\partial y^1}{\partial x^2} = \frac{\partial y^2}{\partial x^3} = \frac{\partial y^3}{\partial x^4} = -\frac{1}{2} \]

(14.10)

From equations (14.6), (14.7), (14.8) it follows that

\[\frac{\partial^2 y}{\partial x^2} = 0 \quad i \neq j \]

(14.11)

Equation (14.9) follows from equations (6.7), (14.10), (14.11).

Theorem 14.3. Quaternion conjugation satisfies equation

\[\mathbf{r} = -\frac{1}{2} (x + ix + jxj + kxk) \]

Proof. The statement of theorem follows from theorem 14.2 and example 10.4.
Theorem 14.4. Since matrix \(\frac{\partial y}{\partial x} \) is Jacobian of map \(x \rightarrow y \) of division ring of quaternions over real field, then

\[
\begin{bmatrix}
\frac{\partial y_0}{\partial x_0} & \frac{\partial y_1}{\partial x_0} & \frac{\partial y_2}{\partial x_0} & \frac{\partial y_3}{\partial x_0} \\
\frac{\partial y_0}{\partial x_1} & \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \frac{\partial y_3}{\partial x_1} \\
\frac{\partial y_0}{\partial x_2} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_3}{\partial x_2} \\
\frac{\partial y_0}{\partial x_3} & \frac{\partial y_1}{\partial x_3} & \frac{\partial y_2}{\partial x_3} & \frac{\partial y_3}{\partial x_3}
\end{bmatrix}
= \begin{bmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
\frac{\partial y_0}{\partial x} & -\frac{\partial y_1}{\partial x} & -\frac{\partial y_2}{\partial x} & -\frac{\partial y_3}{\partial x} \\
\frac{\partial y_0}{\partial x} & \frac{\partial y_1}{\partial x} & -\frac{\partial y_2}{\partial x} & -\frac{\partial y_3}{\partial x} \\
\frac{\partial y_0}{\partial x} & -\frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & -\frac{\partial y_3}{\partial x} \\
\frac{\partial y_0}{\partial x} & \frac{\partial y_1}{\partial x} & -\frac{\partial y_2}{\partial x} & \frac{\partial y_3}{\partial x}
\end{bmatrix}
\]

Proof. The statement of theorem is corollary of theorem 13.3. \(\square \)

References

[1] L. P. Lebedev, I. I. Vorovich, Functional Analysis in Mechanics, Springer, 2002
[2] P. K. Rashevsky, Riemann Geometry and Tensor Calculus, Moscow, Nauka, 1967
[3] Aleks Kleyn, Lectures on Linear Algebra over Division Ring, eprint arXiv:math.GM/0701238 (2007)
[4] Aleks Kleyn, Introduction into Calculus over Division Ring, eprint arXiv:0812.4763 (2008)
[5] N. Bourbaki, General Topology, Chapters 5 - 10, Springer, 1989
[6] L. S. Pontryagin, Selected Works, Volume Two, Topological Groups, Gordon and Breach Science Publishers, 1986
[7] Fihtengolts G. M., Differential and Integral Calculus Course, volume 1, Moscow, Nauka, 1969
[8] I. M. Gelfand, M. L. Graev, Representation of Quaternion Groups over Locally Compact and Functional Fields, Funct. Anal. Appl. 2 (1968) 19 - 33;
Izrail Moiseevich Gelfand, Semen Grigorevich Gindikin, Izrail M. Gelfand: Collected Papers, volume II, 435 - 449, Springer, 1989
16. Index

- absolute value on division ring 13
- additive map of division ring generated by map G 5
- Cauchy sequence in valued division ring 14
- complete division ring 14
- component of the Gâteaux derivative of map $f(x)$ 17
- component of linear map f of division ring 7
- continuous function of division ring 14
- function is projective over field R and continuous in direction over field R 16
- function of division ring differentiable in the Gâteaux sense 17
- fundamental sequence in valued division ring 14
- the Gâteaux derivative of map f 17
- the Gâteaux derivative of second order of map of division ring 24
- the Gâteaux differential of map f 17
- the Gâteaux D^*-derivative of map f of division ring D 18
- the Gâteaux D^*-derivative of map f of division ring D 19
- generator of additive map 5
- limit of sequence in valued division ring 13
- linear map of division ring 7
- norm of mapping of division ring 15
- polyadditive map of rings 9
- polylinear map of rings 10
- polylinear skew symmetric map 12
- polylinear symmetric map 12
- standard component of the Gâteaux differential of map f 18
- standard component of linear map of division ring 7
- standard component of polylinear map f of division ring 11
- standard representation of the Gâteaux differential of map of division ring over field F 18
- standard representation of linear map of division ring 7
- topological division ring 13
- unit sphere in division ring 14
- valued division ring 13
17. SPECIAL SYMBOLS AND NOTATIONS

\[A(R_1; R_2) \] set of additive maps of ring \(R_1 \)
into ring \(R_2 \) 4
\[A(R_1, ..., R_n; S) \] set of polyadditive maps
of rings \(R_1, ..., R_n \) into module \(S \) 9
\[L(R_1, ..., R_n; S) \] set of polylinear maps of
rings \(R_1, ..., R_n \) into module \(S \) 10

\(\frac{\partial f(x)}{\partial x} \) component of the Gâteaux
differential of map \(f(x) \) 17
\(\frac{\partial^2 f(x)}{\partial x^2} \) component of the Gâteaux
derivative of second order of map \(f(x) \)
of division ring 24
\(\lim_{n \to \infty} a_n \) limit of sequence in valued
division ring 13

\[\frac{(s)p\partial f(x)}{\partial x} \] component of the Gâteaux
differential of map \(f(x) \) 17
\[\frac{(s)p\partial^2 f(x)}{\partial x^2} \] component of the Gâteaux
derivative of second order of map \(f(x) \)
of division ring 24

\(\partial f(x) \) the Gâteaux derivative of map \(f \) 17
\(\frac{\partial f(x)}{\partial x} \) the Gâteaux derivative of map \(f \) 17
\(\partial^2 f(x) \) the Gâteaux derivative of second
order of map \(f \) of division ring 24

\[\partial f(x)(a) \] the Gâteaux differential of map \(f \)
17
\[\partial^2 f(x)(a_1; a_2) \] the Gâteaux differential of
second order of mapping \(f \) of division
ring 24
\[\frac{\partial f(x)(a)}{\partial x} \] the Gâteaux \(\DLeft \)-derivative of
map \(f \) of division ring \(D \) 18
\[\frac{\partial f(x)(a)}{\partial x} \] the Gâteaux \(\Star \)-derivative of
map \(f \) of division ring \(D \) 19

\[\frac{\partial^i_j f(x)}{\partial x} \] standard component of the
Gâteaux differential of map \(f \) 18

\((s)p f \) component of linear map \(f \)
of division ring 7
\((s)p f^n \) component of polynomial map of
division ring 11
\[\| f \| \] norm of map \(f \) of division ring 15

\[f^i_j \] standard component of additive map \(f \)
over field \(F \) 6
\[f^i_j \] standard component of linear map \(f \)
of division ring 7
\[(t)f^i_{0, ..., i_n} \] standard component of
polylinear map \(f \) of division ring 11
Производная Гато отображения над телом

Александр Клейн

Аннотация. Я изучаю дифференциал отображения f непрерывных тел как линейное отображение, наиболее близкое к отображению f. Построение производной в этом случае приводит к различным конструкциям, которые не совпадают, но дополняют друг друга. Рассмотрение производных Гато высшего порядка и ряда Тейлора позволяет решать простые дифференциальные уравнения. В качестве примера решения дифференциального уравнения рассмотрено модель экспоненты.

Рассмотрено приложение полученных теорем к полю комплексных чисел и алгебре кватернганов. В отличие от поля комплексных чисел в алгебре кватернганов операція сопряжения линейно выражается через исходное число

$\bar{z} = a + iai + jaj + kakk$

В алгебре кватернганов это различие приводит к отсутствию аналога уравнений Коши - Римана, известных в теории функций комплексного переменного и производной функции кватернговского переменного.

СОДЕРЖАНИЕ

1. Соглашения .. 2
2. Аддитивное отображение колыша 2
3. Аддитивное отображение тела 4
4. Полнолинейное отображение тела 10
5. Топологическое тело .. 14
6. Дифференцируемое отображение тела 17
7. Таблица производных Гато отображения тела 22
8. Производная второго порядка отображения тела 24
9. Ряд Тейлора .. 25
10. Интеграл .. 30
11. Экспонента .. 31
12. Линейная функция комплексного поля 35
13. Линейная функция тела кватернганов 36
14. Дифференцируемое отображение тела кватернганов 41
15. Список литературы ... 44
16. Предметный указатель .. 45
17. Специальные символы и обозначения 46

Эта статья написана на основе статей [3, 4]. Сокращённый вариант этой статьи я отправил в сборник XXI международной летней школы-семинар по

Aleks_Kleyn@Mail.RU
http://www.geocities.com/aleks_kleyn.
современным проблемам теоретической и математической физики "Волга - 21"2009"(ХХІ ПЕТРОВСКИЕ ЧТЕНИЯ). В этой статье я рассматриваю линейные отображения тел в телом. В частности, дифференциал отображения \(f \) непрерывных тел является линейным отображением. Однако в данном издании я решил добавить разделы, посвященные производным Гато второго порядка, разложению в ряд Тейлора и решению дифференциальных уравнений. Статья может представить интерес для физиков, работающих с телом кватернинов.

1. Соглашения

(1) Функция и отображение - синонимы. Однако существует традиция соответствия между ними, векторными пространствами называть отображением, а отображение поля действительных чисел или алгебры кватернинов называть функцией. Я тоже следую этой традиции.

(2) Тело \(D \) можно рассматривать как \(D \)-векторное пространство размерности \(1 \). Соответственно этому, мы можем изучать не только гомоморфизм тела \(D_1 \) в тело \(D_2 \), но и линейное отображение тел. При этом подразумевается, что отображение мультипликативно над максимум возможным полем. В частности, линейное отображение тела \(D \)-многих отображений поля \(Z(D) \). Это не противоречит определению линейного отображения поля, так как для поля \(F \) справедливо \(Z(F) = F \). Если поле \(F \) отличны от максимально возможного, то \(Z(D) \) явно указывали в тексте.

(3) Несмотря на некоммутативность произведения многие утверждения сохраняются, если заменить например правое представление на левое представление или правое векторное пространство на левое векторное пространство. Чтобы сохранить эту симметрию в формулировках теорем я пользовался симметричными обозначениями. Например, я рассматриваю \(D \)-векторное пространство и \(\ast D \)-векторное пространство. Запись \(D \)-векторное пространство можно прочесть как \(D \)-векторное пространство либо как \(D \)-векторное пространство. Запись \(D \)-линейно зависимые векторы можно прочесть как \(D \)-линейно зависимые векторы либо как векторы, линейно зависимые слева.

2. Аддитивное отображение кольца

Определение 2.1. Гомоморфизм

\[f : R_1 \to R_2 \]

аддитивной группы кольца \(R_1 \) в аддитивную группу кольца \(R_2 \) называется аддитивным отображением кольца \(R_1 \) в кольцо \(R_2 \). \(\Box \)

Согласно определению гомоморфизма аддитивной группы, аддитивное отображение \(f \) кольца \(R_1 \) в кольцо \(R_2 \) удовлетворяет свойству

\[f(a + b) = f(a) + f(b) \]

(2.1)

Теорема 2.2. Рассмотрим кольца \(R_1 \) и кольца \(R_2 \). Пусть отображения

\[f : R_1 \to R_2 \]
\[g : R_1 \to R_2 \]
являются аддитивными отображениями. Тогда отображение \(f + g \) также является аддитивным.

Доказательство. Утверждение теоремы следует из цепочки равенств
\[
(f + g)(x + y) = f(x + y) + g(x + y) = f(x) + f(y) + g(x) + g(y) = (f + g)(x) + (f + g)(y)
\]

\[\square\]

Teorema 2.3. Рассмотрим кольцо \(R_1 \) и кольцо \(R_2 \). Пусть отображение
\[
f : R_1 \to R_2
\]
является аддитивным отображением. Тогда отображения \(af, fb, a, b \in R_2 \), также являются аддитивными.

Доказательство. Утверждение теоремы следует из цепочки равенств
\[
(af)(x + y) = a(f(x + y)) = a(f(x) + f(y)) = af(x) + af(y)
\]
\[
(fb)(x + y) = (f(x + y))b = (f(x) + f(y))b = f(x)b + f(y)b
\]
\[
=(fb)(x) + (fb)(y)
\]

\[\square\]

Teorema 2.4. Мы можем представить аддитивное отображение кольца \(R_1 \) в ассоциативное кольцо \(R_2 \) в виде
\[
f(x) = \sum f_i(x)\begin{array}{l}
\end{array}_i f
\]
где \(G_i(x) \) - множество аддитивных отображений кольца \(R_1 \) в кольцо \(R_2 \).

Доказательство. Утверждение теоремы следует из теорем 2.2 и 2.3.

Определение 2.5. Пусть коммутативное кольцо \(P \) является подкольцом центра \(Z(R) \) кольца \(R \). Отображение
\[
f : R \to R
\]
кольца \(R \) называется **мультипликативным над коммутативным кольцом \(P \)**, если
\[
f(px) = pf(x)
\]
для любого \(p \in P \).

Определение 2.6. Пусть коммутативное кольцо \(F \) является подкольцом центра \(Z(D) \) кольца \(R \). Аддитивное, мультипликативное над коммутативным кольцом \(F \) отображение
\[
f : R \to R
\]
называется **линейным отображением над коммутативным кольцом \(F \)**.

1 Здесь и в дальнейшем мы будем предполагать сумму по индексу, который заменён в скобках и встречается в произведении несколько раз. Равенство (2.2) является рекурсивным определением есть надежда, что мы можем его упростить.
Определение 2.7. Пусть коммутативное кольцо P является подкольцом центра $Z(R)$ кольца R. Отображение

$$f : R \to R$$

кольца R называется **проективным над коммутативным кольцом P**, если

$$f(px) = f(x)$$

для любого $p \in P$. Множество

$$Px = \{px : p \in P, x \in R\}$$

называется **направлением x над коммутативным кольцом P**.\(^2\)

Пример 2.8. Если отображение f кольца R мультипликативно над коммутативным кольцом P, то отображение

$$g(x) = x^{-1}f(x)$$

проективно над коммутативным кольцом P.\(^2\)

Определение 2.9. Обозначим $A(R_1; R_2)$ множество аддитивных отображений

$$f : R_1 \to R_2$$

кольца R_1 в кольцо R_2.\(^2\)

Теорема 2.10. Пусть отображение

$$f : D \to D$$

является аддитивным отображением кольца R. Тогда

$$f(nx) = nf(x)$$

dля любого целого n.\(^2\)

Доказательство. Мы докажем теорему индукцией по n. При $n = 1$ утверждение очевидно, так как

$$f(1x) = f(x) = 1f(x)$$

Допустим утверждение справедливо при $n = k$. Тогда

$$f((k + 1)x) = f(kx + x) = f(kx) + f(x) = kf(x) + f(x) = (k + 1)f(x)$$

3. **Аддитивное отображение тела**

Теорема 3.1. Пусть отображение

$$f : D_1 \to D_2$$

является аддитивным отображением тела D_1 в тело D_2. Тогда

$$f(ax) = af(x)$$

dля любого рационального a.\(^2\)

2Направление над коммутативным кольцом P является подкольцом кольца R. Однако мы будем обозначать направление Px элементом $x \in R$, когда это не приводит к неоднозначности. Мы будем говорить о направлении над коммутативным кольцом $Z(R)$, если мы явно не указываем коммутативное кольцо P.
Доказательство. Запишем а в виде $a = \frac{x}{q}$. Положим $y = \frac{1}{q}x$. Тогда

$$f(x) = f(qy) = qf(y) = qf\left(\frac{1}{q}x\right)$$

(3.1)

Из равенства (3.1) следует

$$\frac{1}{q}f(x) = f\left(\frac{1}{q}x\right)$$

(3.2)

Из равенства (3.2) следует

$$f\left(\frac{p}{q}x\right) = pf\left(\frac{1}{q}x\right) = \frac{p}{q}f(x)$$

Теорема 3.2. Аддитивное отображение

$$f : D_1 \rightarrow D_2$$

tела D_1 в тело D_2 мультипликативно над полем рациональных чисел.

Доказательство. Следствие теоремы 3.1. □

Мы не можем распространить утверждение теоремы 3.2 на произвольное подполе центра $Z(D)$ тела D.

Теорема 3.3. Пусть поле комплексных чисел C является подполем центра тела D. Существует аддитивное отображение

$$f : D_1 \rightarrow D_2$$

tела D_1 в тело D_2, которое не мультипликативно над полем комплексных чисел.

Доказательство. Для доказательства теоремы достаточно рассмотреть поле комплексных чисел C так как $C = Z(C)$. Отображение

$$z \rightarrow \overline{z}$$

аддитивно. Однако равенство

$$\overline{a\overline{z}} = a\overline{\overline{z}}$$

неверно. □

Теория комплексных векторных пространств настолько хорошо изучена, что из доказательства теоремы 3.3 легко вытекает следующая конструкция. Пусть для некоторого тела D существуют поля F_1, F_2 такие, что $F_1 \neq F_2, F_1 \subseteq F_2 \subseteq Z(D)$. В этом случае существует отображение I тела D, линейное над полем F_1, но не линейное над полем F_2. Нетрудно видеть, что это отображение аддитивно.

Пусть D_1, D_2 - тела характеристики 0. Согласно теореме 2.4 аддитивное отображение

$$f : D_1 \rightarrow D_2$$

(3.3)

3 Например, в случае комплексных чисел оператор I является оператором комплексного сопряжения. Множество операторов I зависит от рассматриваемого тела. Эти операторы представляют для нас интерес, когда мы рассматриваем отображения тела, при которых меняется структура операции. Например, отображение комплексных чисел $z \rightarrow \overline{z}$. □
имеет вид (2.2). Выберем отображение \(G(x) = f(x) \). Аддитивное отображение

\[f(x) = (s)_0 f G(x) (s)_1 f \]

называется аддитивным отображением, порождённым отображением \(G \). Отображение \(G \) мы будем называть образующей аддитивного отображения.

Теорема 3.4. Пусть \(F, F \subseteq Z(D_1), F \subseteq Z(D_2) \), - поле. Аддитивное отображение (3.4), порождённое \(F \)-линейной подгруппой \(G \), многоотражательно над полем \(F \).

Доказательство. Непосредственное следствие представления (3.4) аддитивного отображения. Для любого \(a \in F \)

\[f(ax) = (s)_0 a G(ax) (s)_1 f = a (s)_0 f G(x) (s)_1 f = a f(x) \]

\[\square \]

Teorema 3.5. Пусть \(D_1, D_2 \) - тела характеристики 0. Пусть \(F, F \subseteq Z(D_1), F \subseteq Z(D_2) \), - поле. Пусть \(G \) - \(F \)-линейное отображение. Пусть \(\mathcal{G} \) - базис \(D_2 \) над полем \(F \). Стандартное представление аддитивного отображения (3.4) над полем \(F \) имеет вид 1

\[f(x) = f_G^{ij} \mathcal{G} G(x) \mathcal{G} \]

Выражение \(f_G^{ij} \) в равенстве (3.5) называется стандартной компонентой аддитивного отображения \(f \) над полем \(F \).

Доказательство. Компоненты аддитивного отображения \(f \) имеют разложение

(3.6) \((s)_p f = (s)_p f^{ij} \mathcal{G} \)

относительно базиса \(\mathcal{G} \). Если мы подставим (3.6) в (3.4), мы получим

(3.7) \[f(x) = (s)_0 f^{ij} \mathcal{G} G(x) (s)_1 f^{ij} \mathcal{G} \]

Подставив в равенство (3.7) выражение

\[f_G^{ij} = (s)_0 f^{ij} (s)_1 f^{ij} \]

мы получим равенство (3.5). \(\square \)

Teorema 3.6. Пусть \(D_1, D_2 \) - тела характеристики 0. Пусть \(F, F \subseteq Z(D_1), F \subseteq Z(D_2) \), - поле. Пусть \(G \) - \(F \)-линейное отображение. Пусть \(\mathcal{P} \) - базис \(D_1 \) над полем \(F \). Пусть \(\mathcal{P} \) - базис \(D_2 \) над полем \(F \). Пусть \(klB^p \)

Представление аддитивного отображения с помощью компонент аддитивного отображения неоднозначно. Часто алгебраическим методами мы можем увеличивать или уменьшать число слагаемых. Если размерность тела \(D \) над полем \(F \) конечно, то стандартное представление аддитивного отображения гарантирует конечность множества слагаемых в представлении отображения.
- структурные константы тела D_2. Тогда аддитивное отображение (3.4), порожденное F-линейным отображением G, можно записать в виде

$$f(a) = a^i f^j_j \bar{q}$$

$$a = a^i \bar{q}$$

(3.8)

$$i f^j_j = i G^l_k B^k_{\nu} B^j$$

(3.9)

Доказательство. Согласно теореме 3.4 аддитивное отображение тела D линейно над полем F. Выберем отображение

$$G : D_1 \to D_2 \quad a = a^i \bar{q} \to G(a) = a^i G^j_j \bar{q}$$

(3.10)

Согласно теореме [3]-4.3 аддитивное отображение $f(a)$ в базисе \bar{q} принимает вид (3.8). Из равенств (3.5) и (3.10) следует

$$f(a) = a^i G^j_j \bar{q}$$

(3.11)

Из равенств (3.8) и (3.11) следует

$$a^i i f^j_j \bar{q} = a^i G^l_k B^k_{\nu} \bar{q}$$

(3.12)

Так как векторы \bar{q} линейно независимы над полем F и величины a^i, производные, то из равенства (3.12) следует равенство (3.9).

Теорема 3.7. Пусть поле F является подкольцом центра $Z(D)$ тела D характеристики 0. F-линейное отображение, порожденное аддитивным отображением, является невырожденным отображением.

Доказательство. Согласно теореме 6.4 изоморфизм аддитивное отображение (3.13) можно представить в виде композиции

$$f(x) = f_1(x + H)$$

каконоческого отображения $x \to x + H$ и изоморфизма f_1. H - идеал аддитивной группы тела D. Допустим идеал H нетривиален. Тогда существуют $x_1 \neq x_2$, $f(x_1) = f(x_2)$. Следовательно, образ при отображении f содержит циклическую подгруппу. Это противоречит утверждению, что характеристика тела D равна 0. Следовательно, $H = \{0\}$ и каноническое отображение является невырожденным F-линейным отображением либо $H = D$ и каноническое отображение является вырожденным отображением.

Определение 3.8. Аддитивное отображение, линейное над центром тела, называется линейным отображением тела.

Определение 3.9. Пусть D является телом характеристики 0. Линейное отображение

$$f : D \to D$$

имеет вид

$$f(x) = (x_0 f x) (x_1 f)$$

(3.14)

Выражение $(x_0 f x) (x_1 f)$, $p = 0, 1$, в равенстве (3.14) называется компонентой линейного отображения f.

Продолжение Гало отображения над телом 7
Теорема 3.10. Пусть D - тело характеристики 0. Пусть \mathfrak{F} - базис тела D над центром $Z(D)$. Стандартное представление линейного отображения (3.14) тела имеет вид

$$f(x) = f^{ij} i \mathfrak{F} x j \mathfrak{F}$$

Выражение f^{ij} в равенстве (3.15) называется стандартной компонентой линейного отображения f.

Теорема 3.11. Пусть D является телом характеристики 0. Пусть \mathfrak{F} - базис тела D над полем $Z(D)$. Тогда линейное отображение (3.13) можно записать в виде

$$f(a) = a^i f^i_j j \mathfrak{F} \quad k f^j_i \in Z(D)$$

$$a = a^i i \mathfrak{F} \quad a^i \in Z(D) \quad a \in D$$

(3.17)

$$f^{ij} = k f^{kr} k_i B^r p_j B^j$$

Доказательство. Равенство (3.14) является частным случаем равенства (3.4) при условии $G(x) = x$. Теорема 3.10 является частным случаѐм теоремы 3.5 при условии $G(x) = x$. Теорема 3.11 является частным случаем теоремы 3.6 при условии $G(x) = x$. Наша задача - показать, что мы можем положить $G(x) = x$.

Равенство (3.17) свидетельствует координаты линейного преобразования f относительно заданного базиса \mathfrak{F} тела D над центром $Z(D)$ со стандартными компонентами этого преобразования, рассматриваемого как линейное преобразование тела. Для заданных координат линейного преобразования мы можем рассматривать равенство (3.17) как систему линейных уравнений относительно стандартных компонент. Из теоремы 3.11 следует, что если определитель системы линейных уравнений (3.17) отличен от 0, то для любого линейного преобразования тела D над полем $Z(D)$ существует соответствующее линейное преобразование тела.

Если определитель системы линейных уравнений (3.17) равен 0, то существуют отображения, отличные от отображения $G(x) = x$. Если размерность тела конечна, то эти отображения порождают конечно мерную алгебру. Структура этой алгебры будет рассмотрена в отдельной статье. Не нарушая общности, мы будем полагать и в этом случае $G(x) = x$. □

Теорема 3.12. Пусть поле F является подкольцом центра $Z(D)$ тела D характеристики 0. Линейное отображение тела мультипликативно над полем F.

Доказательство. Непосредственное следствие определения 3.8. □

Теорема 3.13. Выражение

$$k f^r = f^{ij} i k B^r j B^r$$

является тензором над полем F

(3.18)

$$f^{ij} = i A^k k f^l i A^{-1} j$$

(3.18)
Доказательство. D-линейное отображение относительно базиса \overline{v} имеет вид \eqref{eq:3.16}. Пусть \overline{v} - другой базис. Пусть
\begin{equation}
\overline{v} = A^i_j \overline{v}
\end{equation}
применяя, отображающее базис \overline{v} в базис \overline{v}. Так как аддитивное отображение f не меняется, то
\begin{equation}
f(x) = x^k f^d_i \overline{v}
\end{equation}
Подставим \eqref{eq:3.16}, \eqref{eq:3.19} в равенство \eqref{eq:3.20}
\begin{equation}
f(x) = x^i A^{-1} f^d_i \overline{v}
\end{equation}
Так как векторы \overline{v} линейно независимы и компоненты вектора x^i произвольны, то равенство \eqref{eq:3.18} следует из равенства \eqref{eq:3.21}. Следовательно, выражение $k f^r$ является тензором над полем. F. \hfill \square

Теорема 3.14. Пусть D - тело характеристики 0. Пусть \overline{v} - базис тела D над центром $Z(D)$ тела D. Пусть
\begin{align}
f &: D \to D \\
 f(x) &= (x)_0 f(x) (x)_1 f \nonumber \\
 &= f^i j \overline{v} f j \overline{v}
\end{align}
\begin{align}
g &: D \to D \\
 g(x) &= (x)_0 g(x) (x)_1 g \nonumber \\
 &= g^i j \overline{v} f j \overline{v}
\end{align}
линейные отображения тела D. Отображение
\begin{equation}
h(x) = g f(x) = g(f(x))
\end{equation}
является линейным отображением
\begin{align}
h(x) &= (x)_0 h(x) (x)_1 h \nonumber \\
 &= h^p r x \overline{v} x \overline{v}
\end{align}
где
\begin{align}
(x)_0 h &= (x)_0 h (x)_0 f \nonumber \\
(x)_1 h &= (x)_1 f (x)_1 g \nonumber \\
h^p r &= g^i j f^k l_k B^p l_j B^r
\end{align}
Доказательство. Отображение \eqref{eq:3.31} аддитивно так как
\begin{align}
h(x + y) &= g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = h(x) + h(y)
\end{align}
Отображение \eqref{eq:3.26} мультипликативно над $Z(D)$ так как
\begin{align}
h(ax) &= g(f(ax)) = g(af(x)) = ah(x)
\end{align}
Если мы подставим \eqref{eq:3.22} и \eqref{eq:3.24} в \eqref{eq:3.26}, то мы получим
\begin{align}
h(x) = (x)_0 g f(x) (x)_1 g = (x)_0 g (x)_0 f (x)_1 f (x)_1 g
\end{align}
Сравнивая \eqref{eq:3.32} и \eqref{eq:3.27}, мы получим \eqref{eq:3.29}, \eqref{eq:3.30}.
Если мы подставим \eqref{eq:3.23} и \eqref{eq:3.25} в \eqref{eq:3.26}, то мы получим
\begin{align}
h(x) &= g^i j f(x) \overline{v} f j \overline{v} \\
&= g^i j f^k l_k B^p l_j B^r p e x \overline{v} x \overline{v}
\end{align}
4. Полилинейное отображение тела

Определение 4.1. Пусть $R_1, ..., R_n$ - кольца и S - модуль. Мы будем называть отображение

(4.1) \[f : R_1 \times \ldots \times R_n \to S \]

полиаддитивным отображением колец $R_1, ..., R_n$ в модуль S, если

\[f(p_{i_1}, ..., p_{i_k}, ..., p_{i_n}) = f(p_{i_1}, ..., q_{i_k}, ..., p_{i_n}) + f(p_{i_1}, ..., q_{i_k}, ..., p_{i_n}) \]

для любого $1 \leq i \leq n$ и для любых $p_{i_k}, q_{i_k} \in R_i$. Обозначим $A(R_1, ..., R_n; S)$ множество полиаддитивных отображений колец $R_1, ..., R_n$ в модуль S.

Теорема 4.2. Пусть $R_1, ..., R_n, P$ - кольца характеристики 0. Пусть S - модуль над кольцом P. Пусть

\[f : R_1 \times \ldots \times R_n \to S \]

полиаддитивное отображение. Существует коммутативное кольцо F, которое для любого i является подкольцом центра кольца R_i, и такое, что для любого i и $b \in F$

\[f(a_1, ..., ba_i, ..., a_n) = bf(a_1, ..., a_i, ..., a_n) \]

Доказательство. Для заданных $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$ отображение $f(a_1, ..., a_n)$ аддитивно по a_i. Согласно теореме 2.10, мы можем выбрать кольцо целых чисел в качестве кольца F.

Определение 4.3. Пусть $R_1, ..., R_n, P$ - кольца характеристики 0. Пусть S - модуль над кольцом P. Пусть F - коммутативное кольцо, которое для любого i является подкольцом центра кольца R_i. Отображение

\[f : R_1 \times \ldots \times R_n \to S \]

называется полиаддитивным над коммутативным кольцом F, если отображение f полиаддитивно, и для любого i, $1 \leq i \leq n$, для заданных $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$ отображение $f(a_1, ..., a_n)$ мультипликативно по a_i. Если кольцо F - максимальное кольцо такое, что для любого i, $1 \leq i \leq n$, для заданных $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$ отображение $f(a_1, ..., a_n)$ линейно по a_i над кольцом F, то отображение f называется полиаддитивным отображением колец $R_1, ..., R_n$ в модуль S. Обозначим $L(R_1, ..., R_n; S)$ множество полиаддитивных отображений колец $R_1, ..., R_n$ в модуль S.

Теорема 4.4. Пусть D - тело характеристики 0. Полиаддитивное отображение

(4.2) \[f : D^n \to D, d = f(d_1, ..., d_n) \]

имеет вид

(4.3) \[d = (s_0)f^n_1 \sigma_s(d_1) \ldots \sigma_s(d_n) f^n_n \]

σ_s - перестановка множества переменных $\{d_1, ..., d_n\}$

\[\sigma_s = \left(\begin{array}{ccc} d_1 & \ldots & d_n \\ \sigma_s(d_1) & \ldots & \sigma_s(d_n) \end{array} \right) \]
Доказательство. Мы докажем утверждение индукцией по n.
При $n = 1$ доказываемое утверждение является следствием теоремы 3.9.
При этом мы можем отождествить $^{6}(p = 0, 1)$

$$(s)p^f_1 = (s)p^f$$

Допустим, что утверждение теоремы справедливо при $n = k - 1$. Тогда отображение (4.2) можно представить в виде

$$\begin{array}{ccc}
D^k & f & D \\
& g(d_k) & \\
D^{k-1} & h & \\
\end{array}$$

$$d = f(d_1, ..., d_k) = g(d_k)(d_1, ..., d_{k-1})$$

Согласно предположению индукции полилинейное отображение h имеет вид

$$d = (\tau)0h^{k-1} \sigma_t(d_1) (\tau)1h^{k-1} ... \sigma_t(d_{k-1}) (\tau)k-1h^{k-1}$$

Согласно построению $h = g(d_k)$. Следовательно, выражения $(\tau)p^h$ являются функциями d_k. Поскольку $g(d_k)$ - аддитивная функция d_k, то только одно выражение $(\tau)p^h$ является аддитивной функцией переменной d_k, и остальные выражения $(\tau)q^h$ не зависят от d_k.

Не нарушая общности, положим $p = 0$. Согласно равенству (3.14) для заданного t

$$(\tau)0h^{k-1} = (\tau)r0g d_k (\tau)r1g$$

Положим $s = tr$ и определим перестановку σ_s согласно правилу

$$\sigma_s = \sigma_{tr} = \begin{pmatrix} d_k & d_1 & ... & d_{k-1} \\
\vdots & \sigma_t(d_1) & ... & \sigma_t(d_{k-1}) \\
\end{pmatrix}$$

Положим

$$(\tau)r_q+1f^k = (\tau)r_qh^{k-1}$$

для $q = 1, ..., k - 1$.

$$(\tau)r_qf^k = (\tau)r_qg$$

для $q = 0, 1$. Мы доказали шаг индукции.

Определение 4.5. Выражение $(s)p^f_1$ в равенстве (4.3) называется компонентой полилинейного отображения f.

Theorem 4.6. Пусть D - тело характеристики 0. Допустим \bar{F} - базис тела D над полем $Z(D)$. Стандартное представление полилинейного отображения \bar{f} имеет вид

$$(4.4) \quad f(d_1, ..., d_n) = (\tau)f i_1 ... i_n \bar{\sigma} \sigma_1(d_1) i_1 \bar{\sigma} ... \sigma_t(d_n) i_n \bar{\sigma}$$

В представлении (4.3) мы будем полагаться следующими правилами.

- Если область значений какого-либо индекса - это множество, состоящее из одного элемента, мы будем опускать соответствующий индекс.
- Если $n = 1$, то σ_n - тождественное преобразование. Это преобразование можно не указывать в выражении.
Индекс \(t \) числяет все возможные перестановки \(\sigma_t \) множества переменных \(\{d_1, \ldots, d_n\} \). Выражение (4.1) относительно базиса \(\overrightarrow{\mathbf{v}} \) называется статической компонентой полилинейного отображения \(f \).

Доказательство. Компоненты полилинейного отображения \(f \) имеют разложение

\[
(s)_pf^n = (s)_pf^{n_1}i^n
\]

относительно базиса \(\overrightarrow{\mathbf{v}} \). Если мы подставим (4.5) в (4.3), мы получим

\[
d = (s)_0f^{n_1}j_1\overrightarrow{\sigma}_s(d_1) (s)_1f^{n_2}j_2\overrightarrow{\sigma}_s(d_2) \ldots (s)_nf^{n_n}j_n\overrightarrow{\sigma}_s(d_n)
\]

Представим выражение

\[
(t)_{j_0 \ldots j_n} = (s)_0f^{n_1}j_1 \ldots (s)_nf^{n_n}j_n
\]

в правой части подразумевается сумма тех слагаемых с индексом \(s \), для которых \(\sigma_s \) совпадает. Каждая такая сумма будет иметь уникальный индекс \(t \). Подстановка в равенство (4.6) выражение (4.7) мы получим равенство (4.4).

Теорема 4.7. Пусть \(\overrightarrow{\mathbf{v}} \) - базис тела \(D \) над полем \(\mathbb{Z}(D) \). Полилинейное отображение (4.2) можно представить в виде \(D \)-значной формы степени \(n \) над полем \(\mathbb{Z}(D) \).

Рассмотрим выражение

\[
(t)_{j_0 \ldots j_n} = (s)_0f^{n_1}j_1 \ldots (s)_nf^{n_n}j_n
\]

и величины \(i_1 \ldots i_n f \) являются координатами \(D \)-значного ковариантного тензора над полем \(F \).

Доказательство. Согласно теореме 4.2 равенство (4.8) следует из цепочки равенств

\[
f(a_1, \ldots, a_n) = a_1^{i_1} \ldots a_n^{i_n} f_{i_1, \ldots, i_n}
\]

Пусть \(\overrightarrow{\mathbf{v}} \) - другой базис. Пусть

\[
(t)_{j_0 \ldots j_n} = (s)_0f^{n_1}j_1 \ldots (s)_nf^{n_n}j_n
\]

пространство, отображающее базис \(\overrightarrow{\mathbf{v}} \) в базис \(\overrightarrow{\mathbf{v}} \). Из равенств (4.10) и (4.9) следует

\[
i_1 \ldots i_n f' = f(i_1 \overrightarrow{v}, \ldots, i_n \overrightarrow{v})
\]

и

\[
i_1 \ldots i_n f' = f(i_1 A^{i_1} j_1, \ldots, i_n A^{i_n} j_n)
\]

\[
i_1 \ldots i_n f' = f(i_1 A^{i_1} j_1, \ldots, i_n A^{i_n} j_n f_{i_1, \ldots, i_n})
\]

Теорема доказана по аналогии с теоремой в [2], с. 107, 108

\[\text{\textcopyright 2022}\]
Полиномиальное отображение (4.2) **симметрично**, если

\[f(d_1, ..., d_n) = f(\sigma(d_1), ..., \sigma(d_n)) \]

dля любой перестановки \(\sigma \) множества \(\{d_1, ..., d_n\} \).

Теорема 4.8. Если полиномиальное отображение \(f \) симметрично, то

(4.12)

\[i_1, ..., i_n f = \sigma(i_1), ..., \sigma(i_n) f \]

Доказательство. Равенство (4.12) следует из равенства

\[a_1^{i_1} ... a_n^{i_n} i_1, ..., i_n f = f(a_1, ..., a_n) \]

\[= f(\sigma(a_1), ..., \sigma(a_n)) \]

\[= a_1^{\sigma(i_1)} ... a_n^{\sigma(i_n)} \]

\[= \sigma(i_1) ... \sigma(i_n) f \]

Полиномиальное отображение (4.2) косо симметрично, если

\[f(d_1, ..., d_n) = |\sigma| f(\sigma(d_1), ..., \sigma(d_n)) \]

dля любой перестановки \(\sigma \) множества \(\{d_1, ..., d_n\} \). Здесь

\[|\sigma| = \begin{cases}
1 & \text{перестановка \(\sigma \) чётная} \\
-1 & \text{перестановка \(\sigma \) нечётная}
\end{cases} \]

Теорема 4.9. Если полиномиальное отображение \(f \) косо симметрично, то

(4.13)

\[i_1, ..., i_n f = |\sigma| \sigma(i_1), ..., \sigma(i_n) f \]

Доказательство. Равенство (4.13) следует из равенства

\[a_1^{i_1} ... a_n^{i_n} i_1, ..., i_n f = f(a_1, ..., a_n) \]

\[= |\sigma| f(\sigma(a_1), ..., \sigma(a_n)) \]

\[= a_1^{\sigma(i_1)} ... a_n^{\sigma(i_n)} |\sigma| \sigma(i_1) ... \sigma(i_n) f \]

Теорема 4.10. Отображение (4.2) полиномиальное над полем \(F \) полиномиально тогда и только тогда, когда

(4.14)

\[j_1 ... j_n f = (i_1 f_{i_1} ... i_n f_{i_n}) \]

\[= a_1^{j_1} ... a_n^{j_n} f_{i_1} ... f_{i_n} \]

\[= \sigma(j_1), ..., \sigma(j_n) B_{k_1}^{k_1} ... B_n^{k_n} B_{k_n}^{k_n} B_{k_n}^{l_n} \]

(4.15)

\[j_1 ... j_n f^p = (i_1 f_{i_1} ... i_n f_{i_n}) \]

\[= a_1^{j_1} ... a_n^{j_n} f_{i_1} ... f_{i_n} \]

\[= \sigma(j_1), ..., \sigma(j_n) B_{k_1}^{k_1} ... B_n^{k_n} B_{k_n}^{k_n} B_{k_n}^{l_n} \]

Доказательство. В равенстве (4.4) положим

\[d_i = a_i^{j_i} j_i \]

Тогда равенство (4.4) примет вид

(4.16)

\[f(d_1, ..., d_n) = (i_1 f_{i_1} ... i_n f_{i_n}) \]

\[= a_1^{j_1} ... a_n^{j_n} \]

\[= \sigma(j_1), ..., \sigma(j_n) B_{k_1}^{k_1} ... B_n^{k_n} B_{k_n}^{l_n} \]

Из равенства (4.8) следует

(4.17)

\[f(\overline{i}_1, ..., \overline{i}_n) = a_1^{i_1} ... a_n^{i_n} f^p \]

\[= \sigma(\overline{i}_1), ..., \sigma(\overline{i}_n) B_{k_1}^{k_1} ... B_n^{k_n} B_{k_n}^{l_n} \]
Равенство (4.14) следует из сравнения равенств (4.16) и (4.8). Равенство (4.15) следует из сравнения равенств (4.16) и (4.17).

5. ТОПОЛОГИЧЕСКОЕ ТЕЛО

Определение 5.1. Тело D называется топологическим телом\(^8\), если D является топологическим пространством, и алгебраические операции, определённые в D, непрерывны в топологическом пространстве D.

Согласно определению, для произвольных элементов $a, b \in D$ и для произвольных окрестностей W_{a-b} элемента $a - b$, W_{ab} элемента ab существуют такие окрестности W_a элемента a и W_b элемента b, что $W_a - W_b \subset W_{a-b}$, $W_a W_b \subset W_{ab}$. Если $a \neq 0$, то для произвольной окрестности $W_{a^{-1}}$ существует окрестность W_a элемента a, удовлетворяющая условию $W_{a^{-1}} \subset W_a$.

Определение 5.2. Норма на теле D\(^9\) - это отображение

$$d \in D \rightarrow |d| \in R$$

такое, что

- $|a| \geq 0$
- $|a| = 0$ равносильно $a = 0$
- $|ab| = |a| \cdot |b|$
- $|a + b| \leq |a| + |b|$

Тело D, наделённое структурой, определяемой заданием на D нормы, называется нормированным телом.

Инвариантное расстояние на аддитивной группе тела D

$$d(a, b) = |a - b|$$

определяет топологию метрического пространства, согласующуюся со структурой тела в D.

Определение 5.3. Пусть D - нормированное тело. Элемент $a \in D$ называется пределом последовательности $\{a_n\}$

$$a = \lim_{n \to \infty} a_n$$

если для любого $\epsilon \in R$, $\epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_n - a| < \epsilon$ для любого $n > n_0$.

Определение 5.4. Пусть D - нормированное тело. Последовательность $\{a_n\}$,

$$a_n \in D$$

называется фундаментальной или последовательностью Коши, если для любого $\epsilon \in R$, $\epsilon > 0$ существует, зависящее от ϵ, натуральное число n_0 такое, что $|a_p - a_q| < \epsilon$ для любых $p, q > n_0$.

Определение 5.5. Нормированное тело D называется полным, если любая фундаментальная последовательность элементов данного тела сходится, т. е. имеет предел в этом теле.

В дальнейшем, говоря о нормированном теле характеристики 0, мы будем предполагать, что определён гомеоморфизм поля рациональных чисел Q в тело D.

\(^8\)Определение дано согласно определению из [6], глава 4

\(^9\)Определение дано согласно определению из [5], гл. IX, §3, п.2
Теорема 5.6. Полное тело D характеризуется 0 содержит в качестве подпола изоморфный образ поля R действительных чисел. Это поле обычно отождествляют с R.

Доказательство. Рассмотрим фундаментальную последовательность рациональных чисел $\{p_n\}$. Пусть p' - предел этой последовательности в теле D. Пусть p - предел этой последовательности в поле R. Так как вложение поля Q в тело D гомоморфно, то мы можем отождествить $p' \in D$ и $p \in R$.

Теорема 5.7. Пусть D - полное тело характеристики 0 и пусть $d \in D$. Тогда любое действительное число $p \in R$ коммутирует с d.

Доказательство. Мы можем представить действительное число $p \in R$ в виде фундаментальной последовательности рациональных чисел $\{p_n\}$. Утверждение теоремы следует из непрерывности

$$pd = \lim_{n \to \infty} (p_n d) = \lim_{n \to \infty} (dp_n) = dp$$

основанной на утверждении теоремы [4]-6.1.4.

Теорема 5.8. Пусть D - полное тело характеристики 0. Тогда поле действительных чисел R является подполем центра $Z(D)$ тела D.

Доказательство. Следствие теоремы 5.7.

Определение 5.9. Пусть D - полное тело характеристики 0. Множество элементов $d \in D$, $|d| = 1$ называется единичной сферой в теле D.

Определение 5.10. Пусть D_1 - полное тело характеристики 0 с нормой $|x|_1$. Пусть D_2 - полное тело характеристики 0 с нормой $|x|_2$. Функция

$$f : D_1 \to D_2$$

называется непрерывной, если для любого сколь угодно малого $\epsilon > 0$ существует такое $\delta > 0$, чтобы

$$|x' - x|_1 < \delta$$

влечёт

$$|f(x') - f(x)|_2 < \epsilon$$

Теорема 5.11. Пусть D - полное тело характеристики 0. Если в разложении (3.14) аддитивного отображения

$$f : D \to D$$

индекс s принимает конечное множество значений, то аддитивное отображение f непрерывно.

Доказательство. Положим $x' = x + a$. Тогда

$$f(x') - f(x) = f(x + a) - f(x) = f(a) = (s_0)f(a_{s_1})f$$

$$|f(x') - f(x)| = |(s_0)f(a_{s_1})f| < |(s_0)f| |(s_1)f||a|$$

Положим $F = |(s_0)f| |(s_1)f|$. Тогда

$$|f(x') - f(x)| < F|a|$$

Выберем $\epsilon > 0$ и положим $a = \frac{\epsilon}{F}$. Тогда $\delta = |a| = \frac{\epsilon}{F}$. Согласно определению 5.10 аддитивное отображение f непрерывно.

□
Определение 5.12. Пусть
\[f : D_1 \to D_2 \]
отображение полого тела \(D_1 \) характеристики \(0 \) с нормой \(|x|_1 \) в полое тело \(D_2 \) характеристики \(0 \) с нормой \(|y|_2 \). Величина
\[\| f \| = \sup |f(x)|_2 \]
называется **нормой отображения** \(f \).

Теорема 5.13. Пусть \(D_1 \) - полое тело характеристики \(0 \) с нормой \(|x|_1 \). Пусть \(D_2 \) - полое тело характеристики \(0 \) с нормой \(|x|_2 \). Пусть
\[f : D_1 \to D_2 \]
отображение, мультипликативное над полем \(R \). Тогда
\[\| f \| = \sup \{|f(x)|_2 : |x|_1 = 1\} \]

Доказательство. Согласно определению 2.5
\[\frac{|f(x)|_2}{|x|_1} = \frac{|f(rx)|_2}{|rx|_1} \]
Полагая \(r = \frac{1}{|x|_1} \) мы получим
\[\frac{|f(x)|_2}{|x|_1} = \left| f \left(\frac{x}{|x|_1} \right) \right|_2 \]
Равенство (5.2) следует из равенств (5.3) и (5.1).

Теорема 5.14. Пусть
\[f : D_1 \to D_2 \]
аддитивное отображение полого тела \(D_1 \) в полое тело \(D_2 \). Отображение \(f \) непрерывно, если \(\| f \| < \infty \).

Доказательство. Поскольку отображение \(f \) аддитивно, то согласно определению 5.12
\[|f(x) - f(y)|_2 = |f(x - y)|_2 \leq \| f \| |x - y|_1 \]
Возьмём произвольное \(\epsilon > 0 \). Положим \(\delta = \frac{\epsilon}{\| f \|} \). Тогда из неравенства
\[|x - y|_1 < \delta \]
следует
\[|f(x) - f(y)|_2 \leq \| f \| \delta = \epsilon \]
Согласно определению 5.10 отображение \(f \) непрерывно.

Теорема 5.15. Пусть \(D \) - полое тело характеристики \(0 \). Либо непрерывное отображение \(f \) тела, проективное над полем \(P \), не зависит от направления над полем \(P \), либо значение \(f(0) \) не определено.
Доказательство. Согласно определению \(^3\)-9.1.7, отображение \(f\) постоянно на направлении \(Pa\). Так как \(0 \in Pa\), то естественно положить по непрерывности
\[f(0) = f(a) \]
Однако это приводит к неопределённости значения отображения \(f\) в направлении 0, если отображение \(f\) имеет разное значение для разных направлений \(a\).

Если проективная над полем \(R\) функция \(f\) непрерывна, то мы будем говорить, что функция \(f\) **непрерывна по направлению над полем \(R\)**. Поскольку для любого \(a \in D, a \neq 0\) мы можем выбрать \(a_1 = |a|^{-1}a\), \(f(a_1) = f(a)\), то мы можем сделать определение более точным.

Определение 5.16. Пусть \(D\) — полное тело характеристики 0. Проективная над полем \(R\) функция \(f\) непрерывна по направлению над полем \(R\), если для любого сколь угодно малого \(\varepsilon > 0\) существует такое \(\delta > 0\), что
\[|x' - x|_1 < \delta \quad |x'|_1 = |x|_1 = 1 \]

влечёт
\[|f(x') - f(x)|_2 < \varepsilon \]

Теорема 5.17. Пусть \(D\) — полное тело характеристики 0. Проективная над полем \(R\) функция \(f\) непрерывна по направлению над полем \(R\) тогда и только тогда, когда эта функция непрерывна на единичной сфере тела \(D\).

Доказательство. Следствие определений 5.10, 5.16.

6. Дифференцируемое отображение тела

Пример 6.1. Рассмотрим приращение функции \(f(x) = x^2\).
\[
 f(x + h) - f(x) = (x + h)^2 - x^2 \\
 = xh + hx + h^2 \\
 = xh + hx + o(h)
\]
Как мы видим компонента приращения функции \(f(x) = x^2\), линейно зависящая от приращения аргумента, имеет вид
\[xh + hx \]
Так как производное некомутативно, то мы не можем представить приращение функции \(f(x + h) - f(x)\) в виде \(Ah\) или \(hA\), где \(A\) не зависит от \(h\). Следствием этого является непредсказуемость поведения приращения функции \(f(x) = x^2\), когда приращение аргумента стремится к 0. Однако, если бесконечно малая величина \(h\) будет бесконечно малой величиной вида \(h = ta, a \in D, t \in R, t \to 0\), то ответ становится более определённым
\[(xa + ax)t \]
Определение 6.2. Пусть D - полное тело характеристики 0. Функция

$$f : D \to D$$

dифференцируема по Гато на множестве $U \subseteq D$, если в каждой точке $x \in U$ изменение функции f может быть представлено в виде

$$(6.1) \quad f(x + a) - f(x) = \partial f(x)(a) + o(a) = \frac{\partial f(x)}{\partial x}(a) + o(a)$$

где производная Гато $\partial f(x)$ отображения f - линейное отображение приращения a и $o : D \to D$ - такое непрерывное отображение, что

$$\lim_{a \to 0} \frac{|o(a)|}{|a|} = 0$$

Замечание 6.3. Согласно определению 6.2 при заданном x производная Гато $\partial f(x) \in L(D; D)$. Следовательно, производная Гато отображения f является отображением

$$\partial f : D \to L(D; D)$$

Выражения $\partial f(x)$ и $\frac{\partial f(x)}{\partial x}$ являются разными обозначениями одной и той же функции. Мы будем пользоваться обозначением $\frac{\partial f(x)}{\partial x}$, если хотим подчеркнуть, что мы берём производную Гато по переменной x. □

Теорема 6.4. Мы можем представить дифференциал Гато $\partial f(x)(a)$ отображения f в виде

$$(6.2) \quad \partial f(x)(a) = (\partial_0 \partial f(x)) a + (\partial_1 \partial f(x))$$

Доказательство. Следствие определения 6.2 и теоремы 3.9. □

Определение 6.5. Выражение $\frac{(s) \partial f(x)}{\partial x}$, $p = 0, 1$, называется компонентой производной Гато отображения $f(x)$. □

Теорема 6.6. Пусть D - тело характеристики 0. Производная Гато функции

$$f : D \to D$$

мульттипликативна над полем R.

Доказательство. Следствие теорем 5.8, 3.4 и определения 6.2. □

Из теоремы 6.6 следует

$$(6.3) \quad \partial f(x)(ra) = r \partial f(x)(a)$$

для любых $r \in R$, $r \neq 0$ и $a \in D$, $a \neq 0$. Комбинируя равенство (6.3) и определение 6.2, мы получим знакомое определение дифференциала Гато

$$(6.4) \quad \partial f(x)(a) = \lim_{t \to 0, t \in R} (t^{-1}(f(x + ta) - f(x)))$$

Определения производной Гато (6.1) и (6.4) эквивалентны. На основе этой эквивалентности мы будем говорить, что отображение f дифференцируемо по

10 Определение дано согласно определению [1]-3.1.2, стр. 256.
Гато на множестве $U \subset D$, если в каждой точке $x \in U$ изменение функции f может быть представлено в виде

$$f(x + ta) - f(x) = t\partial f(x)(a) + o(t)$$

где $o : R \to D$ - такое непрерывное отображение, что

$$\lim_{t \to 0} \frac{|o(t)|}{|t|} = 0$$

Если бесконечно малая ta является дифференциалом dx, то равенство (6.2) принимает вид

$$\partial f(x)(dx) = \frac{\partial f(x)}{\partial x} dx$$

Теорема 6.7. Пусть D - тело характеристики 0. Пусть \mathcal{E} - базис тела D над центром $Z(D)$ тела D. Стандартное представление дифференциала Гато (6.2) отображения $f : D \to D$

имеет вид

$$\partial f(x)(a) = \frac{\partial^ij f(x)}{\partial x^i} a^i e_j e_i$$

Выражение $\frac{\partial^ij f(x)}{\partial x^i}$ в равенстве (6.7) называется стандартной компонентой дифференциала Гато отображения f.

Доказательство. Утверждение теоремы является следствием теоремы 3.10. □

Теорема 6.8. Пусть D - тело характеристики 0. Пусть \mathcal{E} - базис тела D над центром $Z(D)$ тела D. Тогда дифференциал Гато отображения $f : D \to D$

можно записать в виде

$$\partial f(x)(a) = a^i \frac{\partial f^j}{\partial x^i} j e_i e_j$$

где $a \in D$ имеет разложение

$$a = a^i e_i$$

относительно базиса \mathcal{E} и якобиан отображения f имеет вид

$$\frac{\partial f^j}{\partial x^i} = \frac{\partial f^k r f(x)}{\partial x^k} k l B^p_{l r} B^j$$

Доказательство. Утверждение теоремы является следствием теоремы 3.11. □

Определение 6.9. Пусть D - полное тело характеристики 0 и $a \in D$. Производная Гато $\frac{\partial f(x)(a)}{\partial x}$ отображения $f : D \to D$ определена равенством

$$\partial f(x)(a) = a \frac{\partial f(x)(a)}{\partial x}$$
"D*-производная Гато \(\frac{\partial f(x)(a)}{\partial x} \) отображения \(f : D \rightarrow D \) определена равенством

\[
\partial f(x)(a) = \frac{\partial f(x)(a)}{\partial x} a
\]

(6.11)

Рассмотрим базис \(e_1 = 1, 2e = i, 3e = j, 4e = k \) тела кватернионов над полем действительных чисел. Из непосредственных вычислений следует, что стандартное \(D*-\) представление дифференциала Гато отображения \(x^2 \) имеет вид

\[
\partial x^2(a) = (x + x_1) a + x_2 ai + x_3 aj + x_4 ak
\]

Теорема 6.10. Пусть \(D \) - полное тело характеристики 0. \(D*-\) производная Гато проективна над полем действительных чисел \(R \).

Доказательство. Следствие теоремы 6.6 и примера 2.8.

Из теоремы 6.10 следует

\[
(6.12)
\]

для любых \(r \in R, r \neq 0 \) и \(a \in D, a \neq 0 \). Следовательно, \(D*-\)производная Гато хорошо определена в направлении \(a \) над полем \(R, a \in D, a \neq 0 \), и не зависит от выбора значения в этом направлении.

Теорема 6.11. Пусть \(D \) - полное тело характеристики 0 и \(a \neq 0 \). \(D*-\) производная Гато и \(*D*-\) производная Гато отображения \(f \) тела \(D \) связаны соотношением

\[
(6.13)
\]

Доказательство. Из равенств (6.10) и (6.11) следует

\[
\partial f(x)(a) = \partial f(x)(a)a^{-1} = \partial f(x)(a) a^{-1}
\]

(6.11) \(\frac{\partial f(x)(a)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} a^{-1} = \frac{\partial f(x)(a)}{\partial x} a^{-1}

(6.12) \frac{\partial f(x)(a)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} a^{-1} = \frac{\partial f(x)(a)}{\partial x} a^{-1}

(6.13) \frac{\partial f(x)(a)}{\partial x} = \frac{\partial f(x)(a)}{\partial x} a^{-1} = \frac{\partial f(x)(a)}{\partial x} a^{-1}

(6.14) \partial f(x)(g(x))(a) = \partial f(x)(a) g(x) + f(x) \partial g(x)(a)

Доказательство. Равенство (6.14) следует из цепочки равенств

\[
\partial(f(x)g(x))(a) = \lim_{t \to 0} (t^{-1}(f(x + ta)g(x + ta) - f(x)g(x)))
\]

\[
= \lim_{t \to 0} (t^{-1}(f(x + ta)g(x + ta) - f(x)g(x + ta)))
\]

\[
+ \lim_{t \to 0} (t^{-1}(f(x)g(x + ta) - f(x)g(x)))
\]

\[
= \lim_{t \to 0} (t^{-1}(f(x + ta) - f(x)))g(x)
\]

\[
+ f(x) \lim_{t \to 0} (t^{-1}(g(x + ta) - g(x)))
\]

основанной на определении (6.4).
Теорема 6.13. Пусть D - полное тело характеристики 0. Допустим дифференциал Гато отображения $f : D \to D$ имеет разложение

\[\partial f(x)(a) = (\omega_0 \partial f(x))_{\omega_1} \partial f(x) \]

Допустим дифференциал Гато отображения $g : D \to D$ имеет разложение

\[\partial g(x)(a) = (\omega_0 \partial g(x))_{\omega_1} \frac{\partial g(x)}{\partial x} \]

Компоненты дифференциала Гато отображения $f(x)g(x)$ имеют вид

\[\frac{\partial f(x)g(x)}{\partial x} = (\omega_0 \partial f(x))_{\omega_1} \frac{\partial f(x)}{\partial x} + (\omega_0 \partial f(x))_{\omega_1} \frac{\partial g(x)}{\partial x} + f(x) (\omega_0 \partial g(x))_{\omega_1} \frac{\partial g(x)}{\partial x} \]

Доказательство. Подставим (6.15) и (6.16) в равенство (6.14)

(6.19) \[\partial (f(x)g(x)) = (\omega_0 \partial f(x))_{\omega_1} \frac{\partial f(x)}{\partial x} \frac{\partial g(x)}{\partial x} + f(x) (\omega_0 \partial g(x))_{\omega_1} \frac{\partial g(x)}{\partial x} \]

Опираясь на (6.19), мы определяем равенства (6.17), (6.18).

Теорема 6.14. Пусть D - полное тело характеристики 0. D^\star-производная Гато удовлетворяет соотношению

\[\frac{\partial f(x)g(x)}{\partial x} \frac{\partial x}{\partial x} = f(x) \frac{\partial g(x)}{\partial x} + f(x) \frac{\partial g(x)}{\partial x} \]

Доказательство. Равенство (6.20) следует из цепочки равенств

\[\frac{\partial f(x)g(x)}{\partial x} \frac{\partial x}{\partial x} = f(x) \frac{\partial g(x)}{\partial x} + f(x) \frac{\partial g(x)}{\partial x} \]

Теорема 6.15. Пусть D - полное тело характеристики 0. Либо D^\star-производная Гато не зависят от направления, либо D^\star-производная Гато в направлении 0 не определена.

Доказательство. Утверждение теоремы является следствием теоремы 6.10 и теоремы 5.15.

Теорема 6.16. Пусть D - полное тело характеристики 0. Пусть единичная сфера тела D - компактна. Если D^\star-производная Гато $\frac{\partial f(x)(a)}{\partial x}$ существует в точке x и непрерывна по направлению над полем R, то существует норма $\|\partial f(x)||$ дифференциала Гато.
Доказательство. Из определения 6.9 следует

\[(6.21) \quad |\partial f(x)(a)| = |a| \left| \frac{\partial f(x)(a)}{\partial x} \right|\]

Из теорем [4]-6.11, 6.10 следует, что \(D\)-производная Гато непрерывна на единичной сфере. Так как единичная сфера компактна, то множество значений \(D\)-производной Гато функции \(f\) в точке \(x\) ограничено

\[\left| \frac{\partial f(x)(a)}{\partial x} \right| < F = \sup \left| \frac{\partial f(x)(a)}{\partial x} \right|\]

Согласно определению 5.12

\[\|\partial f(x)\| = F\]

◻

Теорема 6.17. Пусть \(D\) - полное тело характеристики 0. Пусть единичная сфера тела \(D\) - компактна. Если \(D\)-производная Гато \(\frac{\partial f(x)(a)}{\partial x}\) существует в точке \(x\) и непрерывна по направлению над полем \(R\), то отображение \(f\) непрерывно в точке \(x\).

Доказательство. Из теоремы 6.16 следует

\[(6.22) \quad |\partial f(x)(a)| \leq \|\partial f(x)\||a|\]

Из (6.1), (6.22) следует

\[(6.23) \quad |f(x + a) - f(x)| < |a| \|\partial f(x)\|\]

Возьмём произвольное \(\epsilon > 0\). Положим

\[\delta = \frac{\epsilon}{\|\partial f(x)\|}\]

Тогда из неравенства

\[|a| < \delta\]

следует

\[|f(x + a) - f(x)| \leq \|\partial f(x)\| \delta = \epsilon\]

Согласно определению 5.10 отображение \(f\) непрерывно в точке \(x\). ◻

7. Таблица производных Гато отображения тела

Теорема 7.1. Пусть \(D\) - полное тело характеристики 0. Тогда для любого \(b \in D\)

\[(7.1) \quad \partial(b)(a) = 0\]

Доказательство. Непосредственное следствие определения 6.2. ◻
Теорема 7.2. Пусть D - полное тело характеристики 0. Тогда для любых $b, c \in D$

(7.2) \[\partial(bf(x)c)(a) = b\partial f(x)(a)c \]

(7.3) \[(\partial b \partial f(x)c) = b(\partial f(x)) \]

(7.4) \[(\partial c \partial f(x)c) = c(\partial f(x)) \]

(7.5) \[\partial bf(x)c \partial x(a) = a^{-1}b(\partial f(x)(a))c \]

Доказательство. Непосредственное следствие равенств (6.14), (6.17), (6.18), (6.20), так как $\partial b = \partial c = 0$. \qed

Теорема 7.3. Пусть D - полное тело характеристики 0. Тогда для любых $b, c \in D$

(7.6) \[\partial(bxc)(h) = bhc \]

(7.7) \[(\partial b \partial x)c = b \]

(7.8) \[(\partial c \partial x)c = c \]

(7.9) \[\partial b f(x)c \partial x(h) = h^{-1}bhc \]

Доказательство. Следствие теоремы 7.2, когда $f(x) = x$. \qed

Теорема 7.4. Пусть D - полное тело характеристики 0. Тогда для любого $b \in D$

(7.10) \[\partial(xb - bx)(h) = hb - bh \]

(7.11) \[\partial(xb - bx) \partial x = 1 \]

(7.12) \[\partial(xb - bx) \partial x = 0 \]

(7.13) \[\partial(xb - bx) \partial x = -b \]

(7.14) \[\partial(xb - bx) \partial x = 1 \]

Доказательство. Следствие теоремы 7.2, когда $f(x) = x$. \qed

Теорема 7.5. Пусть D - полное тело характеристики 0. Тогда

(7.11) \[\partial(x^2)(a) = xa + ax \]

(7.12) \[\partial(x^2) \partial x(a) = a^{-1}xa + x \]

Доказательство. (7.11) следует из примера 6.1 и определения 6.9. (7.12) следует из примера 6.1 и равенства (6.6). \qed
Теорема 7.6. Пусть D — полное тело характеристики 0. Тогда

$$
\partial(x^{-1})(h) = -x^{-1}hx^{-1}
$$

$$
\frac{\partial x^{-1}}{\partial x}(h) = -h^{-1}x^{-1}hx^{-1}
$$

$$
\frac{(1)0\partial x^{-1}}{\partial x} = -x^{-1} \quad \frac{(1)1\partial x^{-1}}{\partial x} = x^{-1}
$$

Доказательство. Подставим $f(x) = x^{-1}$ в определение (6.4).

$$
\frac{df}{dt}(t) = \lim_{t \to 0, \; t \in R} (t^{-1}((x + th)^{-1} - x^{-1}))
$$

$$
= \lim_{t \to 0, \; t \in R} (t^{-1}((x + th)^{-1} - x^{-1}(x + th)(x + th)^{-1}))
$$

$$
= \lim_{t \to 0, \; t \in R} (t^{-1}(1 - x^{-1}(x + th))(x + th)^{-1})
$$

$$
= \lim_{t \to 0, \; t \in R} (t^{-1}(1 - 1 - x^{-1}th)(x + th)^{-1})
$$

$$
= \lim_{t \to 0, \; t \in R} (-x^{-1}h(x + th)^{-1})
$$

Равенство (7.13) следует из непосредственного равенства (7.14).

Теорема 7.7. Пусть D — полное тело характеристики 0. Тогда

$$
\partial(xax^{-1})(h) = hax^{-1} - xax^{-1}hx^{-1}
$$

$$
\frac{\partial xax^{-1}}{\partial x}(h) = ax^{-1} - h^{-1}xax^{-1}hx^{-1}
$$

$$
\frac{(1)0\partial x^{-1}}{\partial x} = 1 \quad \frac{(1)1\partial x^{-1}}{\partial x} = ax^{-1}
$$

$$
\frac{(2)0\partial x^{-1}}{\partial x} = -xax^{-1} \quad \frac{(2)1\partial x^{-1}}{\partial x} = x^{-1}
$$

Доказательство. Равенство (7.15) является следствием равенства (6.14), (7.6), (7.15).

8. Производная второго порядка отображения тела

Пусть D — нормированное тело характеристики 0. Пусть

$$
f : D \to D
$$

функция, дифференцируемая по Гато. Согласно замечанию 6.3 производная Гато является отображением

$$
\partial f : D \to \mathcal{L}(D; D)
$$

Согласно теоремам 2.2, 2.3 и определению 5.12 множество $\mathcal{L}(D; D)$ является нормированным D-векторным пространством. Следовательно, мы можем рассмотреть вопрос, является ли отображение ∂f дифференцируемым по Гато.

Согласно определению [4] 8.2.1

$$
(8.1) \quad\partial f(x + a_2)(a_1) - \partial f(x)(a_1) = \partial(\partial f(x)(a_1))(a_2) + \overline{\text{v}}_2(a_2)
$$

где $\overline{\text{v}}_2 : D \to \mathcal{L}(D; D)$ — такое непрерывное отображение, что

$$
\lim_{a_2 \to 0} \frac{\|\overline{\text{v}}_2(a_2)\|}{|a_2|} = 0
$$
Согласно определению [4]-8.2.1 отображение \(\partial(\partial f(x)(a_1))(a_2) \) линейно по переменной \(a_2 \). Из равенства (8.1) следует, что отображение \(\partial(\partial f(x)(a_1))(a_2) \) линейно по переменной \(a_1 \).

Определение 8.1. Полилинейное отображение

\[
\partial^2 f(x)(a_1; a_2) = \frac{\partial^2 f(x)}{\partial x^2}(a_1; a_2) = \partial(\partial f(x)(a_1))(a_2)
\]

называется произвольной Гато второго порядка отображения \(f \).

Замечание 8.2. Согласно определению 8.1 при заданном \(x \) дифференциал Гато второго порядка \(\partial^2 f(x) \in L(D, D; D) \). Следовательно, дифференциал Гато второго порядка отображения \(f \) является отображением

\[
\partial^2 f : D \rightarrow L(D, D; D)
\]

Теорема 8.3. Мы можем представить дифференциал Гато второго порядка отображения \(f \) в виде

\[
\partial^2 f(x)(a_1; a_2) = \sum_{s=1}^{n} s! \frac{\partial^2 f(x)}{\partial x^2} \sigma_s(a_1) \frac{\partial^2 f(x)}{\partial x^2} \sigma_s(a_2)
\]

Доказательство. Следствие определения 8.1 и теоремы [3]-11.2.3.

Определение 8.4. Мы будем называть выражение \(\partial^n f(x) \) компонентой произвольной Гато отображения \(f(x) \).

По индукции, предполагая, что определена произвольная Гато \(\partial^{n-1} f(x) \) порядка \(n - 1 \), мы определим

\[
\partial^n f(x)(a_1; a_n) = \frac{\partial^n f(x)}{\partial x^n}(a_1; \ldots; a_n) = \partial(\partial^{n-1} f(x)(a_1; \ldots; a_{n-1}))(a_n)
\]

производную Гато порядка \(n \) отображения \(f \). Мы будем также полагать \(\partial^0 f(x) = f(x) \).

9. Ряд Тейлора

Рассмотрим многочлен одной переменной над телом \(D \) степени \(n, n > 0 \). Нас интересует структура многочлена \(p_k(x) \) многочлена степени \(k \).

Очевидно, что многочлен степени 0 имеет вид \(a_0, a_0 \in D \). Пусть \(k > 0 \). Докажем, что

\[
p_k(x) = p_{k-1}(x) x a_k
\]

где \(a_k \in D \). Действительно, последний множитель многочлена \(p_k(x) \) является либо \(a_k \in D \), либо имеет вид \(x^l, l \geq 1 \). В последнем случае мы положим \(a_k = 1 \). Множитель, предшествующий \(a_k \), имеет вид \(x^l, l \geq 1 \). Мы можем представить этот множитель в виде \(x^{l-1} x \). Следовательно, утверждение доказано.

В частности, многочлен степени 1 имеет вид \(p_1(x) = a_0 x a_1 \).

Не нарушая общности, мы можем положить \(k = n \).

\[\text{Мы полагаем } \]

\[
\frac{\partial^n f(x)}{\partial x^n} = \frac{(s)! \partial^2 f(x)}{\partial x^2}
\]
Теорема 9.1. Для произвольного \(m > 0 \) справедливо равенство
\[
\partial^m (f(x);x)((h_1;...;h_m)) = \partial^m f(x)(h_1;...;h_m)x + \partial^{m-1} f(x)(h_1;...;h_{m-1})h_m \\
+ \partial^{m-1} f(x)(h_1;...;h_{m-1};h_m)h_1 + ... \\
+ \partial^{m-1} f(x)(h_1;...;\hat{h_{m-1}};h_m)h_{m-1}
\]
(9.1)
где символ \(\hat{h_i} \) означает отсутствие переменной \(h_i \) в списке.
Доказательство. Для \(m = 1 \) это следствие равенства (6.14)
\[
\partial(f(x);x)(h_1) = \partial f(x)(h_1)x + f(x)h_1
\]
Допустим, (9.1) справедливо для \(m - 1 \). Тогда
\[
\partial^{m-1} f(x)(h_1;...;h_{m-1}) = \partial^{m-1} f(x)(h_1;...;h_{m-1})x + \partial^{m-2} f(x)(h_1;...;h_{m-2})h_{m-1} \\
+ \partial^{m-2} f(x)(h_1;...;h_{m-2};h_{m-1})h_1 + ... \\
+ \partial^{m-2} f(x)(h_1;...;\hat{h_{m-2}};h_{m-1};h_m)h_{m-2}
\]
(9.2)
Пользуясь равенствами (6.14) и (7.2) получим
\[
\partial^m f(x)(h_1;...;h_{m-1};h_m) = \partial^m f(x)(h_1;...;h_{m-1})x + \partial^{m-1} f(x)(h_1;...;h_{m-2};h_{m-1})h_m \\
+ \partial^{m-1} f(x)(h_1;...;h_{m-2};h_{m-1};h_m)h_1 + ... \\
+ \partial^{m-1} f(x)(h_1;...;\hat{h_{m-2}};h_{m-1};h_m)h_{m-2}
\]
(9.3)
Равенства (9.1) и (9.3) отличаются только формой записи. Теорема доказана.

\[\Box\]

Теорема 9.2. Производная Гато \(\partial^m p_n(x)(h_1,...,h_m) \) является симметричным многочленом по переменным \(h_1,...,h_m \).
Доказательство. Для доказательства теоремы мы рассмотрим алгебраические свойства производной Гато и дадим эквивалентное определение. Мы начнём с построения одночлена. Для произвольного одночлена \(p_n(x) \) мы построим симметричный многочлен \(r_n(x) \) согласно следующим правилам
- Если \(p_1(x) = a_0x_1a_1, \) то \(r_1(x_1) = a_0x_1a_1 \)
- Если \(p_n(x) = p_{n-1}(x)a_n, \) то
\[
r_n(x_1,...,x_n) = r_{n-1}(x_1,...,x_{n-1})x_n|a_n
\]
где квадратные скобки выражают симметризацию выражения по переменным \(x_1,...,x_n \).
Очевидно, что
\[
p_n(x) = r_n(x_1,...,x_n) \quad x_1 = ... = x_n = x
\]
Мы определим производную Гато порядка \(k \) согласно правилу
(9.4) \[\partial^k p_n(x)(h_1,...,h_k) = r_n(h_1,...,h_k,x_{k+1},...,x_n) \quad x_{k+1} = x_n = x \]
Согласно построению многочлены \(r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \) симметричен по переменным \(h_1, ..., h_k, x_{k+1}, ..., x_n \). Следовательно, многочлен (9.4) симметричен по переменным \(h_1, ..., h_k, x_{k+1}, ..., x_n \).

При \(k = 1 \) мы доказали, что определение (9.4) производной Гато совпадает с определением (6.10).

Для \(n = 1 \), \(r_1(h_1) = a_0 h_1 a_1 \). Это выражение совпадает с выражением производной Гато в теореме 7.3.

Пусть утверждение справедливо для \(n - 1 \). Справедливо равенство

(9.5) \(r_n(h_1, x_2, ..., x_n) = r_{n-1}(h_1, x_2, ..., x_{n-1})x_n a_n + r_{n-1}(x_2, ..., x_n)h_1 a_n \)

Положим \(x_2 = ... = x_n = x \). Согласно предположению индукции, из равенств (9.4), (9.5) следует

\(r_n(h_1, x_2, ..., x_n) = \partial p_{n-1}(x)(h_1)x a_n + p_{n-1}(x)h_1 a_n \)

Согласно теореме 9.1

\(r_n(h_1, x_2, ..., x_n) = \partial p_n(x)(h_1) \)

что доказывает равенство (9.4) для \(k = 1 \).

Докажем теперь, что определение (9.4) производной Гато совпадает с определением (8.4) для \(k > 1 \).

Пусть равенство (9.4) верно для \(k - 1 \). Рассмотрим произвольное слагаемое многочлена \(r_n(h_1, ..., h_{k-1}, x_k, ..., x_n) \). Отождествляя переменные \(h_1, ..., h_{k-1} \) с элементами тела \(D \), мы рассмотрим многочлен

(9.6) \(R_{n-k}(x_k, ..., x_n) = r_n(h_1, ..., h_{k-1}, x_k, ..., x_n) \)

Положим \(P_{n-k}(x) = R_{n-k}(x_k, ..., x_n) \), \(x_k = ... = x_n = x \). Следовательно

\(P_{n-k}(x) = \partial^{k-1} p_n(x)(h_1; ...; h_{k-1}) \)

Согласно определению (8.4) производной Гато

(9.7) \(\partial P_{n-k}(x)(h_k) = \partial (\partial^{k-1} p_n(x)(h_1; ...; h_{k-1}))(h_k) \)

Согласно определению производной Гато (9.4)

(9.8) \(\partial P_{n-k}(x)(h_k) = R_{n-k}(h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \)

Согласно определению (9.6), из равенства (9.8) следует

(9.9) \(\partial P_{n-k}(x)(h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \)

Из равенств (9.7) и (9.9) следует

\(\partial^k p_n(x)(h_1; ...; h_k) = r_n(h_1, ..., h_k, x_{k+1}, ..., x_n) \quad x_{k+1} = x_n = x \)

Следовательно равенство (9.4) верно для любых \(k \) и \(n \).

Утверждение теоремы доказано.

Теорема 9.3. Для произвольного \(n \geq 0 \) справедливо равенство

(9.10) \(\partial^{n+1} p_n(x)(h_1; ...; h_{n+1}) = 0 \)
Доказательство. Так как $p_0(x) = a_0$, $a_0 \in D$, то при $n = 0$ теорема является следствием теоремы 7.1. Пусть утверждение теоремы верно для $n - 1$. Согласно теореме 9.1 при условии $f(x) = p_{n-1}(x)$ мы имеем

$$
\partial^{n+1}p_n(x)(h_1; \ldots; h_{n+1}) = \partial^{n+1}(p_{n-1}(x)xa_n)(h_1; \ldots; h_{n+1})
$$

$$
= \partial^{n+1}p_{n-1}(x)(h_1; \ldots; h_m)xa_n
$$

$$
+ \partial^{m}p_{n-1}(x)(h_1; \ldots; h_{m-1})h_ma_n
$$

$$
+ \partial^{m-1}p_{n-1}(x)(h_1; \ldots; h_{m-1}; h_m)h_1a_n + \ldots
$$

$$
+ \partial^{m-1}p_{n-1}(x)(h_1; \ldots; h_{m-1}; h_m)h_{m-1}a_n
$$

Согласно предположению индукции все одночлены равны 0.

\[\square \]

Теорема 9.4. Если $m < n$, то справедливо равенство

\[\partial^{m}p_n(0)(h) = 0 \]

Доказательство. Для $n = 1$ справедливо равенство

$$
\partial^{0}p_1(0) = a_0xa_1 = 0
$$

Допустим, утверждение справедливо для $n - 1$. Тогда согласно теореме 9.1

$$
\partial^{m}(p_{n-1}(x)xa_n)(h_1; \ldots; h_m)
$$

$$
= \partial^{m}p_{n-1}(x)(h_1; \ldots; h_m)xa_n + \partial^{m-1}p_{n-1}(x)(h_1; \ldots; h_{m-1})h_ma_n
$$

$$
+ \partial^{m-1}p_{n-1}(x)(h_1; \ldots; h_{m-1}; h_m)h_1a_n + \ldots
$$

$$
+ \partial^{m-1}p_{n-1}(x)(h_1; \ldots; h_{m-1}; h_m)h_{m-1}a_n
$$

Первое слагаемое равно 0 так как $x = 0$. Так как $m - 1 < n - 1$, то остальные слагаемые равны 0 согласно предположению индукции. Утверждение теоремы доказано.

\[\square \]

Если $h_1 = \ldots = h_n = h$, то мы положим

$$
\partial^{n}f(x)(h) = \partial^{n}f(x)(h_1; \ldots; h_n)
$$

Эта запись не будет приводить к неоднозначности, так как по числу аргументов ясно, какой функции идет речь.

Теорема 9.5. Для произвольного $n > 0$ справедливо равенство

\[\partial^{n}p_n(x)(h) = n!p_n(h) \]

Доказательство. Для $n = 1$ справедливо равенство

$$
\partial^{1}p_1(x)(h) = \partial(a_0xa_1)(h) = a_0ha_1 = 1!p_1(h)
$$

Допустим, утверждение справедливо для $n - 1$. Тогда согласно теореме 9.1

\[\partial^{n}p_n(x)(h) = \partial^{n}p_{n-1}(x)(h)xa_n + \partial^{n-1}p_{n-1}(x)(h)ha_n
$$

$$
+ \ldots + \partial^{n-1}p_{n-1}(x)(h)ha_n
$$

Первое слагаемое равно 0 согласно теореме 9.3. Остальные n слагаемые равны, и согласно предположению индукции из равенства (9.13) следует

$$
\partial^{n}p_n(x)(h) = n\partial^{n-1}p_{n-1}(x)(h)ha_n = n(n - 1)!p_{n-1}(h)ha_n = n!p_n(h)
$$

Следовательно, утверждение теоремы верно для любого n.

\[\square \]
Пусть $p(x)$ - многочлен степени n.12

$$p(x) = p_0 + p_{11}(x) + \ldots + p_{nn}(x)$$

Мы предполагаем сумму по индексу i_k, который нумерует слагаемые степени k. Согласно теоремам 9.3, 9.4, 9.5

$$\partial^k p(x)(h_1; \ldots; h_k) = k!p_{ki_k}(x)$$

Следовательно, мы можем записать

$$p(x) = p_0 + (1!)^{-1}\partial p(0)(x) + (2!)^{-1}\partial^2 p(0)(x) + \ldots + (n!)^{-1}\partial^n p(0)(x)$$

Это представление многочлена называется формулой Тейлора для многочлена. Если рассмотреть замену переменных $x = y - y_0$, то рассмотренное построение остаётся верным для многочлена

$$p(y) = p_0 + p_{11}(y - y_0) + \ldots + p_{nn}(y - y_0)$$

откуда следует

$$p(y) = p_0 + (1!)^{-1}\partial p(y_0)(y - y_0) + (2!)^{-1}\partial^2 p(y_0)(y - y_0) + \ldots + (n!)^{-1}\partial^n p(y_0)(y - y_0)$$

Предположим, что функция $f(x)$ в точке x_0 дифференцируема в смысле Гато до любого порядка.13

\textbf{Теорема 9.6. Если для функции $f(x)$ выполняется условие (9.14) $f(x_0) = \partial f(x_0)(h) = \ldots = \partial^n f(x_0)(h) = 0$ то при $t \to 0$ выражение $f(x + th)$ является бесконечно малой порядка выше n по сравнению с t $f(x_0 + th) = o(t^n)$ \hfill \textbf{Доказательство. Если $n = 1$ это утверждение следует из равенства (6.5). Пусть утверждение справедливо для $n - 1$. Для отображения $f_1(x) = \partial f(x)(h)$ выполняется условие $f_1(x_0) = \partial f_1(x_0)(h) = \ldots = \partial^{n-1} f_1(x_0)(h) = 0$ Согласно предположению индукции $f_1(x_0 + th) = o(t^{n-1})$ Тогда равенство (6.4) примет вид $o(t^{n-1}) = \lim_{t \to 0, t \in R} (t^{-1}f(x + th))$ Следовательно, $f(x + th) = o(t^n)$ \hfill \Box}

12Я рассматриваю формулу Тейлора для многочлена в аналогии с построением формул Тейлора в [7], с. 216.

13Я рассматриваю построение ряда Тейлора по аналогии с построением ряда Тейлора в [7], с. 248, 249.
Составим многочлен
\[p(x) = f(x_0) + (1!)^{-1} \partial f(x_0)(x - x_0) + \ldots + (n!)^{-1} \partial^n f(x_0)(x - x_0) \]
Согласно теореме 9.6
\[f(x_0 + t(x - x_0)) - p(x_0 + t(x - x_0)) = o(t^n) \]
Следовательно, полином \(p(x) \) является хорошей аппроксимацией отображения \(f(x) \).
Если отображение \(f(x) \) имеет производную Гато любого порядка, то переход к пределу \(n \to \infty \), мы получим разложение в ряд
\[f(x) = \sum_{n=0}^{\infty} (n!)^{-1} \partial^n f(x_0)(x - x_0) \]
который называется рядом Тейлора.

10. ИНТЕГРАЛ

Понятие интеграла имеет разные аспекты. В этом разделе мы рассмотрим интегрирование, как операцию, обратную дифференцированию. По сути дела, мы рассмотрим процедуру решения обыкновенного дифференциального уравнения
\[\partial f(x)(h) = F(x; h) \]

Пример 10.1. Я начну с примера дифференциального уравнения над полем действительных чисел
\[y' = 3x^2 \]
(10.1)
\[x_0 = 0 \quad y_0 = 0 \]
(10.2)
Последовательно дифференцируя равенство (10.1), мы получаем цепочку уравнений
\[y'' = 6x \]
(10.3)
\[y''' = 6 \]
(10.4)
\[y^{(n)} = 0 \quad n > 3 \]
(10.5)
Из уравнений (10.1), (10.2), (10.3), (10.4), (10.5) следует разложение в ряд Тейлора
\[y = x^3 \]

Пример 10.2. Рассмотрим аналогичное уравнение над телом
\[\partial(y)(h) = hx^2 + xhx + x^2h \]
(10.6)
\[x_0 = 0 \quad y_0 = 0 \]
(10.7)
Последовательно дифференцируя равенство (10.6), мы получаемцепочку уравнений

\[(10.8) \quad \partial^2(y)(h_1; h_2) = h_1 h_2 x + h_1 x h_2 + h_2 h_1 x + x h_1 h_2 + x h_2 h_1 \]
\[(10.9) \quad \partial^3(y)(h_1; h_2; h_3) = h_1 h_2 h_3 + h_1 h_3 h_2 + h_2 h_1 h_3 + h_3 h_1 h_2 + h_2 h_3 h_1 + h_3 h_2 h_1 \]
\[(10.10) \quad \partial^n(y)(h_1; \ldots; h_n) = 0 \quad n > 3 \]

Из уравнений (10.6), (10.7), (10.8), (10.9), (10.10) следует разложение в ряд Тейлора

\[y = x^3 \]

Замечание 10.3. Дифференциальное уравнение

\[(10.11) \quad \partial(y)(h) = 3h x^2 \]
\[(10.12) \quad x_0 = 0 \quad y_0 = 0 \]

так же приводит к решению \(y = x^3 \). Очевидно, что это отображение не удовлетворяет дифференциальному уравнению. Однако, вопреки теореме 9.2 вторая производная не является симметричным многочленом. Это говорит о том, что уравнение (10.11) не имеет решений.

Пример 10.4. Очевидно, если функция удовлетворяет дифференциальному уравнению

\[(10.13) \quad \partial(y)(h) = (\sigma_0 f)(h) \quad (\sigma_1 f) \]

то вторая производная Гато

\[\partial^2 f(x)(h_1; h_2) = 0 \]

Следовательно, если задан начальное условие \(y(0) = 0 \), то дифференциальное уравнение (10.13) имеет решение

\[y = (\sigma_0 f)(x) \quad (\sigma_1 f) \]

11. Экспонента

В этом разделе мы рассмотрим одну из возможных моделей построения экспоненты.

В поле мы можем определить экспоненту как решение дифференциального уравнения

\[(11.1) \quad y' = y \]

Очевидно, что мы не можем записать подобное уравнения для тела. Однако мы можем воспользоваться равенством

\[(11.2) \quad (\sigma(y))(h) = y' h \]

Из уравнений (11.1), (11.2) следует

\[(11.3) \quad (\sigma(y))(h) = y h \]
Это уравнение уже ближе к нашей цели, однако остаётся открытым вопрос в каком порядке мы должны перемножать y и h. Чтобы ответить на этот вопрос, мы изменяем запись уравнения

$$(11.4) \quad \partial(y)(h) = \frac{1}{2}(yh + hy)$$

Следовательно, наша задача - решить дифференциальное уравнение (11.4) при начальном условии $y(0) = 1$.

Для формулировки и доказательства теоремы 11.1 я введу следующее обозначение. Пусть

$$\sigma = \left(\begin{array}{cccc}
y & h_1 & \ldots & h_n \\
\sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \\
\end{array} \right)$$

перестановка кортежа переменных

$$(y \ h_1 \ \ldots \ h_n)$$

Обозначим $p_{\sigma}(h_i)$ позицию, которую занимает переменная h_i в кортеже

$$(\sigma(y) \ \sigma(h_1) \ \ldots \ \sigma(h_n))$$

Например, если перестановка σ имеет вид

$$\left(\begin{array}{ccc}
y & h_1 & h_2 & h_3 \\
h_2 & y & h_3 & h_1 \\
\end{array} \right)$$

tо следующие кортежи равны

$$(\sigma(y) \ \sigma(h_1) \ \sigma(h_2) \ \sigma(h_3)) = (h_2 \ y \ h_3 \ h_1)$$

$$(p_{\sigma}(h_2) \ p_{\sigma}(y) \ p_{\sigma}(h_3) \ p_{\sigma}(h_1))$$

Теорема 11.1. Производная Γ порядка в функции y, удовлетворяющей дифференциальному уравнению (11.4) имеет вид

$$(11.5) \quad \partial^n(y)(h_1, \ldots, h_n) = \frac{1}{2^n} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_n)$$

gде сумма выполнена по перестановкам

$$\sigma = \left(\begin{array}{cccc}
y & h_1 & \ldots & h_n \\
\sigma(y) & \sigma(h_1) & \ldots & \sigma(h_n) \\
\end{array} \right)$$

множества переменных y, h_1, ..., h_n. Перестановка σ обладает следующими свойствами

1. Если существуют i, j, $i \neq j$, такие, что $p_{\sigma}(h_i)$ располагается в произведении (11.5) левее $p_{\sigma}(h_j)$ и $p_{\sigma}(h_j)$ располагается левее $p_{\sigma}(y)$, то $i < j$.
2. Если существуют i, j, $i \neq j$, такие, что $p_{\sigma}(h_i)$ располагается в произведении (11.5) правее $p_{\sigma}(h_j)$ и $p_{\sigma}(h_j)$ располагается правее $p_{\sigma}(y)$, то $i > j$.

Доказательство. Мы докажем это утверждение индукцией. Для $n = 1$ утверждение верно, так как это дифференциальное уравнение (11.4). Пусть утверждение верно для $n = k - 1$. Следовательно

$$(11.6) \quad \partial^{k-1}(y)(h_1, \ldots, h_{k-1}) = \frac{1}{2^{k-1}} \sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1})$$
где сумма выполнена по перестановкам

$$\sigma = \left(\begin{array}{cccc} y & h_1 & \ldots & h_{k-1} \\ \sigma(y) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{array} \right)$$

множества переменных \(y, h_1, \ldots, h_{k-1} \). Перестановка \(\sigma \) удовлетворяет условиям (1), (2), сформулированным в теореме. Согласно определению (8.4) производная Гато порядка \(k \) имеет вид

$$\partial^k(y)(h_1, \ldots, h_k) = \partial(\partial^{k-1}(y)(h_1, \ldots, h_{k-1}))(h_k)$$

(11.7)

$$= \frac{1}{2^{k-1}} \partial \left(\sum_{\sigma} \sigma(y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)(h_k)$$

Из равенств (11.4), (11.7) следует

$$\partial^k(y)(h_1, \ldots, h_k)$$

(11.8) $$= \frac{1}{2^{k-1}} \frac{1}{2} \left(\sum_{\sigma} \sigma(\kappa y_k)\sigma(h_1)\ldots\sigma(h_{k-1}) + \sum_{\sigma} \sigma(h_k y)\sigma(h_1)\ldots\sigma(h_{k-1}) \right)$$

Нетрудно видеть, что произвольная перестановка \(\sigma \) из суммы (11.8) порождает две перестановки

$$\tau_1 = \left(\begin{array}{cccc} y & h_1 & \ldots & h_{k-1} & h_k \\ \tau_1(y) & \tau_1(h_1) & \ldots & \tau_1(h_{k-1}) & \tau_1(h_k) \\ h_k y & h_1 & \ldots & h_{k-1} \\ \sigma(h_k y) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{array} \right)$$

$$\tau_2 = \left(\begin{array}{cccc} y & h_1 & \ldots & h_{k-1} & h_k \\ \tau_2(y) & \tau_2(h_1) & \ldots & \tau_2(h_{k-1}) & \tau_2(h_k) \\ y h_k & h_1 & \ldots & h_{k-1} \\ \sigma(h_k y) & \sigma(h_1) & \ldots & \sigma(h_{k-1}) \end{array} \right)$$

(11.9)

Из (11.8) и (11.9) следует

$$\partial^k(y)(h_1, \ldots, h_k)$$

(11.10)

$$= \frac{1}{2^{k}} \left(\sum_{\tau_1} \tau_1(y)\tau_1(h_1)\ldots\tau_1(h_{k-1})\tau_1(h_k) \\ + \sum_{\tau_2} \tau_2(y)\tau_2(h_1)\ldots\tau_2(h_{k-1})\tau_2(h_k) \right)$$

В выражении (11.10) \(p_{\tau_1}(h_k) \) записано непосредственно перед \(p_{\tau_1}(y) \). Так как \(k \) - самое большое значение индекса, то перестановка \(\tau_1 \) удовлетворяет условиям (1), (2), сформулированным в теореме. В выражении (11.10) \(p_{\tau_2}(h_k) \) записано непосредственно после \(p_{\tau_2}(y) \). Так как \(k \) - самое большое значение индекса, то перестановка \(\tau_2 \) удовлетворяет условиям (1), (2), сформулированным в теореме.

Нам осталось показать, что в выражении (11.10) перечислены все перестановки \(\tau \), удовлетворяющие условиям (1), (2), сформулированным в теореме. Так как \(k \) - самый большой индекс, то согласно условиям (1), (2), сформулированным в теореме, \(\tau(h_k) \) записано непосредственно перед или непосредственно после \(\tau(y) \). Следовательно, любая перестановка \(\tau \) имеет либо вид \(\tau_1 \), либо вид \(\tau_2 \). Пользуясь равенством (11.9), мы можем для заданной перестановки \(\tau \) найти
соответствующую перестановку \(\sigma \). Следовательно, утверждение теоремы верно для \(n = k \). Теорема доказана. \(\square \)

Теорема 11.2. Решением дифференциального уравнения (11.4) при начальном условии \(y(0) = 1 \) является экспонента \(y = e^x \) которая имеет следующее разложение в ряд Тейлора

\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n
\]

Доказательство. Производная Гато порядка \(n \) содержит \(2^n \) слагаемых. Действительно, производная Гато порядка 1 содержит 2 слагаемых, и каждое дифференцирование увеличивает число слагаемых вдвое. Из начального условия \(y(0) = 1 \) и теоремы 11.1 следует, что произведённая Гато порядка \(n \) искомого решения имеет вид

\[
\partial^n(0)(h, ..., h) = 1
\]

Из равенства (11.12) следует разложение (11.11) в ряд Тейлора. \(\square \)

Теорема 11.3. Равенство

\[
e^{a+b} = e^a e^b
\]

справедливо тогда и только тогда, когда

\[
ab = ba
\]

Доказательство. Для доказательства теоремы достаточно рассмотреть ряды Тейлора

\[
e^a = \sum_{n=0}^{\infty} \frac{1}{n!} a^n
\]

\[
e^b = \sum_{n=0}^{\infty} \frac{1}{n!} b^n
\]

\[
e^{a+b} = \sum_{n=0}^{\infty} \frac{1}{n!} (a+b)^n
\]

Перемножим выражения (11.15) и (11.16). Сумма одночленов порядка 3 имеет вид

\[
\frac{1}{6} a^3 + \frac{1}{2} a^2 b + \frac{1}{2} ab^2 + \frac{1}{6} b^3
\]

и не совпадает, вообще говоря, с выражением

\[
\frac{1}{6} (a+b)^3 = \frac{1}{6} a^3 + \frac{1}{6} a^2 b + \frac{1}{6} aba + \frac{1}{6} ba^2 + \frac{1}{6} ab^2 + \frac{1}{6} bab + \frac{1}{6} b^2 a + \frac{1}{6} b^3
\]

Доказательство утверждения, что (11.13) следует из (11.14) тривиально. \(\square \)

Смысл теоремы 11.3 становится яснее, если мы вспомним, что существует две модели построения экспоненты. Первая модель - это решение дифференциального уравнения (11.4). Вторая - это изучение однопараметрической группы преобразований. В случае поля обе модели приводят к одной и той же функции. Я не могу этого утверждать сейчас в общем случае. Это вопрос отдельного
исследования. Но если вспомнить, что кватернион является аналогом преобразования трёхмерного пространства, то утверждение теоремы становится очевидным.

12. Линейная функция комплексного поля

Теорема 12.1 (Уравнения Коши - Римана). Рассмотрим поле комплексных чисел C как двумерную алгебру над полем действительных чисел. Положим $\overline{i} = 1, \overline{1} = i$ - базисы алгебры C. Тогда в этом базисе структурные константы имеют вид

$$
\begin{align*}
0_0 B^0 &= 1, & 0_1 B^1 &= 1, \\
1_0 B^1 &= 1, & 1_1 B^0 &= -1.
\end{align*}
$$

Матрица линейной функции

$$
y^i = x^j f_{ij}^i
$$

поля комплексных чисел над полем действительных чисел удовлетворяет соотношению

(12.1) \hspace{1cm} 0f^0 = 1f^1

(12.2) \hspace{1cm} 0f^1 = -1f^0

Доказательство. Значение структурных констант следует из равенства $i^2 = -1$. Пользуясь равенством (3.17) получаем соотношения

(12.3) \hspace{1cm} 0f^0 = f^{kr}_{\text{kr}} k_0 B^0 p_{pr} B^0 = f^{0r}_{\text{0r}} 0_0 B^0 0_1 B^0 + f^{1r}_{\text{1r}} 1_0 B^1 1_1 B^0 = f^{00}_{\text{00}} - f^{11}_{\text{11}}

(12.4) \hspace{1cm} 0f^1 = f^{kr}_{\text{kr}} k_0 B^0 p_{pr} B^1 = f^{0r}_{\text{0r}} 0_0 B^0 0_1 B^1 + f^{1r}_{\text{1r}} 1_0 B^1 1_1 B^0 = f^{01}_{\text{01}} + f^{10}_{\text{10}}

(12.5) \hspace{1cm} 1f^0 = f^{kr}_{\text{kr}} k_1 B^0 p_{pr} B^0 = f^{0r}_{\text{0r}} 0_1 B^1 1_0 B^0 + f^{1r}_{\text{1r}} 1_1 B^0 0_0 B^0 = -f^{01}_{\text{01}} - f^{10}_{\text{10}}

(12.6) \hspace{1cm} 1f^1 = f^{kr}_{\text{kr}} k_1 B^0 p_{pr} B^1 = f^{0r}_{\text{0r}} 0_1 B^1 1_0 B^1 + f^{1r}_{\text{1r}} 1_1 B^0 0_0 B^0 = f^{00}_{\text{00}} - f^{11}_{\text{11}}

Из равенств (12.3) и (12.6) следует (12.1). Из равенств (12.4) и (12.5) следует (12.2).

Замечание 12.2. Чтобы показать, насколько сложна задача поиска образующих аддитивного отображения, рассмотрим, как выглядит равенство (3.9) в случае поля комплексных чисел.

$$
\begin{align*}
0f^0 &= 0 G^0 f_G^{0k} k_0 B^0 p_{pr} B^0 \\
&= 0 G^0 f_G^{00} 0_0 B^0 0_0 B^0 + 0 G^1 f_G^{01} 1_0 B^1 1_0 B^0 \\
&+ 0 G^1 f_G^{10} 1_1 B^1 1_1 B^0 + 0 G^0 f_G^{11} 0_1 B^0 0_1 B^0 \\
&= 0 G^0 (f_G^{00} + f_G^{11}) - 0 G^1 (f_G^{10} + f_G^{01})
\end{align*}
$$

$$
\begin{align*}
0f^1 &= 0 G^0 f_G^{0k} k_1 B^0 p_{pr} B^1 \\
&= 0 G^0 f_G^{00} 0_0 B^0 0_1 B^1 + 0 G^1 f_G^{01} 1_0 B^1 1_0 B^1 \\
&+ 0 G^1 f_G^{10} 1_1 B^1 1_1 B^0 + 0 G^0 f_G^{11} 0_1 B^0 0_1 B^1 \\
&= 0 G^0 (f_G^{00} + f_G^{11}) + 0 G^1 (f_G^{10} + f_G^{01})
\end{align*}
$$

$$
\begin{align*}
1f^0 &= 1 G^0 f_G^{1k} k_0 B^0 p_{pr} B^0 \\
&= 1 G^0 f_G^{10} 1_0 B^1 1_0 B^0 + 1 G^1 f_G^{11} 0_1 B^0 0_1 B^0 \\
&+ 1 G^0 f_G^{10} 0_1 B^1 1_0 B^0 + 1 G^1 f_G^{11} 1_0 B^1 1_0 B^0 \\
&= 1 G^0 (f_G^{10} + f_G^{11}) - 1 G^1 (f_G^{00} + f_G^{01})
\end{align*}
$$

$$
\begin{align*}
1f^1 &= 1 G^0 f_G^{1k} k_1 B^0 p_{pr} B^1 \\
&= 1 G^0 f_G^{10} 1_1 B^1 1_1 B^0 + 1 G^1 f_G^{11} 0_1 B^0 0_1 B^1 \\
&+ 1 G^0 f_G^{10} 0_1 B^1 1_0 B^1 + 1 G^1 f_G^{11} 1_0 B^1 1_0 B^1 \\
&= 1 G^0 (f_G^{10} + f_G^{11}) + 1 G^1 (f_G^{00} + f_G^{01})
\end{align*}
$$
\[f^0 = f^{00}_{G} f^{10}_{G} B^{0}_{G} B^{1}_{G} \\
= f^{00}_{G} f^{10}_{G} B^{0}_{G} + f^{10}_{G} f^{11}_{G} B^{0}_{G} + f^{10}_{G} f^{11}_{G} B^{1}_{G} \\
= f^{00}_{G} f^{10}_{G} B^{0}_{G} - f^{11}_{G} B^{0}_{G} + f^{11}_{G} B^{1}_{G} \\
= f^{00}_{G} (f^{10}_{G} - f^{11}_{G}) - f^{11}_{G} (f^{10}_{G} + f^{11}_{G}) \]

\[f^1 = f^{10}_{G} f^{00}_{G} B^{0}_{G} B^{1}_{G} \\
= f^{10}_{G} f^{00}_{G} B^{0}_{G} + f^{10}_{G} f^{01}_{G} B^{0}_{G} + f^{10}_{G} f^{01}_{G} B^{1}_{G} + f^{10}_{G} f^{01}_{G} B^{1}_{G} \\
= f^{10}_{G} f^{00}_{G} B^{0}_{G} - f^{11}_{G} B^{0}_{G} + f^{11}_{G} B^{1}_{G} \\
= f^{00}_{G} (f^{10}_{G} - f^{11}_{G}) + f^{11}_{G} (f^{00}_{G} - f^{11}_{G}) \]

В случае комплексных чисел задачу облегчает наше знание, что матрица оператора \(G \) имеет вид либо

\[G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

либо

\[G = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

(12.7)

(12.8)

В случае образующей (12.8) мы получаем соотношения между координатами преобразования

\[f^0 = - f^1, \quad f^1 = f^0 \]

□

13. Линейная функция тела кватернионов

Определение 13.1. Пусть \(F \)-поле. Расширение \(F(i, j, k) \) поля \(F \) называется алгеброй \(E(F) \) кватернионов над полем \(F \), если произведение в алгебре \(E \) определено согласно правилам

\[
\begin{array}{c|ccc}
& i & j & k \\
\hline
i & -1 & k & -j \\
j & -k & -1 & i \\
k & j & -i & -1 \\
\end{array}
\]

□

Элементы алгебры \(E(F) \) имеют вид

\[x = x^{0}_i + x^{1}_i + x^{2}_j + x^{3}_k \]

где \(x^i \in F, \ i = 0, 1, 2, 3. \) Кватернион

\[\bar{x} = x^{0} - x^{1}_i - x^{2}_j - x^{3}_k \]

\[^{14} \text{Я буду следовать определению из [8].} \]
называется сопряжённым квaternionу \(x \). Мы определим **норму квaternionа** \(x \) равенством

\[
|x|^2 = x \overline{x} = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2
\]

Из равенства (13.2) следует, что \(E(F) \) является алгеброй с делением.\(^{15}\) При этом обратный элемент имеет вид

\[
x^{-1} = |x|^{-2} \overline{x}
\]

Teorema 13.2. Рассмотрим тело квaternionов \(E(F) \) как четырёхмерную алгебру над полем \(F \). Положим \(i^2 = 1, \overline{i} = i, \overline{2i} = j, \overline{3i} = k \) - базис алгебры \(E(F) \). Тогда в этом базисе структурные константы имеют вид

\[
\begin{align*}
00B^0 &= 1 & 01B^1 &= 1 & 02B^2 &= 1 & 03B^3 &= 1 \\
10B^0 &= 1 & 11B^0 &= -1 & 12B^3 &= 1 & 13B^2 &= -1 \\
20B^2 &= 1 & 21B^3 &= -1 & 22B^0 &= -1 & 23B^1 &= 1 \\
30B^3 &= 1 & 31B^2 &= 1 & 32B^1 &= -1 & 33B^0 &= -1
\end{align*}
\]

Стандартные компоненты аддитивной функции над полем \(F \) и координаты соответствующего линейного преобразования над полем \(F \) удовлетворяют соотношениям

\[
\left\{
\begin{array}{l}
0f^0 = f^{00} - f^{11} - f^{22} - f^{33} \\
1f^1 = f^{00} - f^{11} + f^{22} + f^{33} \\
2f^2 = f^{00} + f^{11} - f^{22} + f^{33} \\
3f^3 = f^{00} + f^{11} + f^{22} - f^{33}
\end{array}
\right.
\]

\[
\left\{
\begin{array}{l}
4f^{00} = 6f^0 + 1f^1 + 2f^2 + 3f^3 \\
4f^{11} = -6f^0 - 1f^1 + 2f^2 + 3f^3 \\
4f^{22} = -6f^0 - 1f^1 - 2f^2 + 3f^3 \\
4f^{33} = 6f^0 + 1f^1 - 2f^2 - 3f^3
\end{array}
\right.
\]

\[
\left\{
\begin{array}{l}
0f^1 = f^{01} + f^{10} + f^{23} - f^{32} \\
1f^0 = -f^{01} + f^{10} - f^{23} - f^{32} \\
2f^3 = -f^{01} + f^{10} + f^{23} - f^{32} \\
3f^2 = f^{01} - f^{10} - f^{23} + f^{32}
\end{array}
\right.
\]

\[
\left\{
\begin{array}{l}
4f^{10} = -1f^0 + 6f^1 - 3f^2 + 2f^3 \\
4f^{01} = -1f^0 + 6f^1 + 3f^2 - 2f^3 \\
4f^{32} = -1f^0 + 6f^1 - 3f^2 - 2f^3 \\
4f^{23} = 1f^0 + 6f^1 - 3f^2 - 2f^3
\end{array}
\right.
\]

\[
\left\{
\begin{array}{l}
0f^2 = 2f^0 - f^{13} + f^{20} + f^{31} \\
1f^3 = 2f^0 - f^{13} - f^{20} + f^{31} \\
2f^0 = -2f^0 - f^{13} - f^{20} + f^{31} \\
3f^1 = -2f^0 - f^{13} + f^{20} - f^{31}
\end{array}
\right.
\]

\[
\left\{
\begin{array}{l}
4f^{20} = -2f^0 + 3f^1 + f^2 - 3f^3 \\
4f^{31} = 2f^0 - 3f^1 + f^2 - 3f^3 \\
4f^{02} = -2f^0 - 3f^1 + f^2 + 3f^3 \\
4f^{13} = -2f^0 - 3f^1 - f^2 + 3f^3
\end{array}
\right.
\]

\(^{15}\)Гельфанд в [8] даёт более общее определение, рассматривая алгебру квaternionов \(E(F, a, b) \) с законом умножения

\[
\begin{array}{c|ccc}
& i & j & k \\
\hline
i & a & k & aj \\
j & -k & b & bi \\
k & -aj & -bi & ab
\end{array}
\]

где \(a, b \in F \), \(ab \neq 0 \). Однако эта алгебра становится телом только когда \(a < 0, b < 0 \). Это следует из равенства

\[
x \overline{x} = (x^0)^2 - a(x^1)^2 - b(x^2)^2 + ab(x^3)^2
\]

Тогда мы можем нормировать базис так, что \(a = -1, b = -1.\)
Доказательство. Значение структурных констант следует из таблицы умножения (3.1). Пользуясь равенством (3.17) получаем соотношения

\[
\begin{align*}
0f^0 &= f^{kr}_{00}k_0B^0_{pr}B^0 \\
&= f^{00}_{00}B^0_{00} + f^{11}_{10}B^1_{11}B^0 + f^{22}_{20}B^2_{22}B^0 + f^{33}_{30}B^3_{33}B^0 \\
&= f^{00} - f^{11} - f^{22} - f^{33} \\

0f^1 &= f^{kr}_{00}k_0B^0_{pr}B^1 \\
&= f^{01}_{00}B^0_{01}B^1 + f^{10}_{10}B^1_{10}B^1 + f^{23}_{20}B^2_{23}B^1 + f^{32}_{30}B^3_{32}B^1 \\
&= f^{01} + f^{10} + f^{23} - f^{32} \\

0f^2 &= f^{kr}_{00}k_0B^0_{pr}B^2 \\
&= f^{02}_{00}B^0_{02}B^2 + f^{13}_{10}B^1_{13}B^2 + f^{20}_{20}B^2_{20}B^2 + f^{31}_{30}B^3_{31}B^2 \\
&= f^{02} - f^{13} + f^{20} + f^{31} \\

0f^3 &= f^{kr}_{00}k_0B^0_{pr}B^3 \\
&= f^{03}_{00}B^0_{03}B^3 + f^{12}_{10}B^1_{12}B^3 + f^{21}_{20}B^2_{21}B^3 + f^{30}_{30}B^3_{30}B^3 \\
&= f^{03} + f^{12} - f^{21} + f^{30} \\

1f^0 &= f^{kr}_{10}k_1B^0_{pr}B^0 \\
&= f^{01}_{01}B^1_{11}B^0 + f^{10}_{11}B^0_{00}B^0 + f^{23}_{21}B^3_{33}B^0 + f^{32}_{31}B^2_{22}B^0 \\
&= -f^{01} - f^{10} + f^{23} - f^{32} \\

1f^1 &= f^{kr}_{10}k_1B^0_{pr}B^1 \\
&= f^{00}_{00}B^1_{10}B^1 + f^{11}_{11}B^1_{01}B^1 + f^{22}_{21}B^2_{32}B^1 + f^{33}_{31}B^3_{23}B^1 \\
&= f^{00} - f^{11} + f^{22} + f^{33} \\

1f^2 &= f^{kr}_{10}k_1B^0_{pr}B^2 \\
&= f^{03}_{01}B^1_{13}B^2 + f^{12}_{11}B^1_{02}B^2 + f^{21}_{21}B^2_{31}B^2 + f^{30}_{31}B^3_{20}B^2 \\
&= -f^{03} - f^{12} - f^{21} + f^{30} \\

1f^3 &= f^{kr}_{10}k_1B^0_{pr}B^3 \\
&= f^{02}_{01}B^1_{13}B^3 + f^{13}_{11}B^1_{03}B^3 + f^{20}_{21}B^3_{30}B^3 + f^{31}_{31}B^2_{21}B^3 \\
&= f^{02} - f^{13} - f^{20} - f^{31}
\end{align*}
\]
\[2f^0 = f^{kr}_{k_2B^p} + B^0 \]
\[= f^{02}_{02B^2} + f^{12}_{12B^3} + f^{20}_{22B^0} + f^{31}_{32B^1} + 11B^0 \]
\[= -f^{02} - f^{13} - f^{20} + f^{31} \]

\[2f^1 = f^{kr}_{k_2B^p} + B^1 \]
\[= f^{03}_{02B^2} + f^{12}_{12B^3} + f^{21}_{22B^0} + f^{30}_{32B^1} + 10B^1 \]
\[= f^{03} - f^{12} - f^{21} - f^{30} \]

\[2f^2 = f^{kr}_{k_2B^p} + B^2 \]
\[= f^{00}_{02B^2} + f^{11}_{12B^3} + f^{22}_{22B^0} + f^{33}_{32B^1} + 13B^2 \]
\[= f^{00} + f^{11} - f^{22} + f^{33} \]

\[2f^3 = f^{kr}_{k_2B^p} + B^3 \]
\[= f^{01}_{02B^2} + f^{10}_{12B^3} + f^{23}_{22B^0} + f^{32}_{32B^1} + 12B^3 \]
\[= -f^{01} + f^{10} - f^{23} - f^{32} \]

\[3f^0 = f^{kr}_{k_3B^p} + B^0 \]
\[= f^{03}_{03B^3} + f^{12}_{13B^2} + f^{21}_{23B^1} + f^{30}_{33B^0} + 00B^0 \]
\[= -f^{03} + f^{12} - f^{21} - f^{30} \]

\[3f^1 = f^{kr}_{k_3B^p} + B^1 \]
\[= f^{02}_{03B^3} + f^{13}_{13B^2} + f^{20}_{23B^1} + f^{31}_{33B^0} + 01B^1 \]
\[= -f^{02} - f^{13} + f^{20} - f^{31} \]

\[3f^2 = f^{kr}_{k_3B^p} + B^2 \]
\[= f^{01}_{03B^3} + f^{10}_{13B^2} + f^{23}_{23B^1} + f^{32}_{33B^0} + 02B^2 \]
\[= f^{01} - f^{10} - f^{23} - f^{32} \]

\[3f^3 = f^{kr}_{k_3B^p} + B^3 \]
\[= f^{00}_{03B^3} + f^{11}_{13B^2} + f^{22}_{23B^1} + f^{33}_{33B^0} + 03B^3 \]
\[= f^{00} + f^{11} + f^{22} - f^{33} \]

Мы группируем эти соотношения в системы линейных уравнений (13.4), (13.6), (13.8), (13.10).

(13.5) - это решение системы линейных уравнений (13.4).
(13.7) - это решение системы линейных уравнений (13.6).
(13.9) - это решение системы линейных уравнений (13.8).
(13.11) - это решение системы линейных уравнений (13.10).

Теорема 13.3. Рассмотрим тело кватернионов $E(F)$ как четырёхмерную алгебру над полем F. Положим $e^1 = 1$, $i^1 = i$, $j^1 = j$, $k^1 = k$ - базис алгебры $E(F)$. Стандартные компоненты аддитивной функции над полем F и
координаты этой функции над полем F удовлетворяют соотношениям

\[
\begin{pmatrix}
0 f^0 \\
1 f^1 \\
2 f^2 \\
3 f^3
\end{pmatrix}
\begin{pmatrix}
0 f^0 \\
1 f^1 \\
2 f^2 \\
3 f^3
\end{pmatrix} =
\begin{pmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{00} & -f^{32} & -f^{13} & -f^{21} \\
f^{11} & -f^{23} & -f^{02} & -f^{30} \\
f^{22} & -f^{10} & -f^{31} & -f^{03} \\
f^{33} & -f^{01} & -f^{20} & -f^{12}
\end{pmatrix}
\]

(13.12)

Доказательство. Запишем равенство (13.4) в виде произведения матриц

\[
\begin{pmatrix}
0 f^0 \\
1 f^1 \\
2 f^2 \\
3 f^3
\end{pmatrix} =
\begin{pmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{00} \\
f^{11} \\
f^{22} \\
f^{33}
\end{pmatrix}
\]

(13.13)

Запишем равенство (13.6) в виде произведения матриц

\[
\begin{pmatrix}
0 f^1 \\
1 f^0 \\
2 f^3 \\
3 f^2
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & -1 & -1
\end{pmatrix}
\begin{pmatrix}
f^{01} \\
f^{10} \\
f^{23} \\
f^{32}
\end{pmatrix}
\]

(13.14)

Запишем равенство (13.8) в виде произведения матриц

\[
\begin{pmatrix}
0 f^2 \\
1 f^3 \\
2 f^0 \\
3 f^1
\end{pmatrix} =
\begin{pmatrix}
1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1
\end{pmatrix}
\begin{pmatrix}
f^{02} \\
f^{13} \\
f^{20} \\
f^{31}
\end{pmatrix}
\]

(13.15)
Запишем равенство (13.10) в виде произведения матриц

\[
\begin{pmatrix}
0 f_3^0 \\
1 f_2^1 \\
2 f_1^2 \\
3 f_0^3
\end{pmatrix} = \begin{pmatrix}
1 & 1 & -1 & 1 \\
-1 & -1 & -1 & 1 \\
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1
\end{pmatrix} \begin{pmatrix}
 f_0^3 \\
 f_1^2 \\
 f_2^1 \\
 f_3^0
\end{pmatrix}
\]

(13.16)

\[
= \begin{pmatrix}
1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{pmatrix} \begin{pmatrix}
- f_0^3 \\
- f_1^2 \\
- f_2^1 \\
- f_3^0
\end{pmatrix}
\]

Мы объединяем равенства (13.13), (13.14), (13.15), (13.16) в равенстве (13.12).

14. ДИФФЕРЕНЦИРУЕМОЕ ОТОБРАЖЕНИЕ ТЕЛА КВАТЕРИНОВ

Теорема 14.1. Если матрица \(\frac{\partial y}{\partial x} \) является якобианом функции \(x \rightarrow y \) тела квaternionov над полем действительных чисел, то

\[
\begin{align*}
\frac{\partial y^0}{\partial x^0} &= \frac{\partial y^0}{\partial x} - \frac{\partial y^1}{\partial x} \\
\frac{\partial y^1}{\partial x^0} &= \frac{\partial y^1}{\partial x} \\
\frac{\partial y^1}{\partial x^1} &= \frac{\partial y^1}{\partial x} - \frac{\partial y^2}{\partial x} \\
\frac{\partial y^2}{\partial x^1} &= \frac{\partial y^2}{\partial x} \\
\frac{\partial y^2}{\partial x^2} &= \frac{\partial y^2}{\partial x} \\
\frac{\partial y^2}{\partial x^3} &= \frac{\partial y^2}{\partial x} \\
\frac{\partial y^3}{\partial x^0} &= \frac{\partial y^3}{\partial x} - \frac{\partial y^0}{\partial x} \\
\frac{\partial y^3}{\partial x^1} &= \frac{\partial y^3}{\partial x} \\
\frac{\partial y^3}{\partial x^2} &= \frac{\partial y^3}{\partial x} \\
\frac{\partial y^3}{\partial x^3} &= \frac{\partial y^3}{\partial x}
\end{align*}
\]

(14.1)

\[
\begin{align*}
\frac{\partial y^1}{\partial x^0} &= \frac{\partial y^1}{\partial x}, \\
\frac{\partial y^1}{\partial x^1} &= \frac{\partial y^1}{\partial x} \\
\frac{\partial y^1}{\partial x^2} &= \frac{\partial y^1}{\partial x} + \frac{\partial y^2}{\partial x} \\
\frac{\partial y^1}{\partial x^3} &= \frac{\partial y^1}{\partial x} - \frac{\partial y^2}{\partial x} \\
\frac{\partial y^0}{\partial x^1} &= \frac{\partial y^0}{\partial x} + \frac{\partial y^2}{\partial x} \\
\frac{\partial y^0}{\partial x^2} &= \frac{\partial y^0}{\partial x} + \frac{\partial y^2}{\partial x} \\
\frac{\partial y^0}{\partial x^3} &= \frac{\partial y^0}{\partial x}
\end{align*}
\]

(14.2)

\[
\begin{align*}
\frac{\partial y^2}{\partial x^0} &= \frac{\partial y^2}{\partial x}, \\
\frac{\partial y^2}{\partial x^1} &= \frac{\partial y^2}{\partial x}, \\
\frac{\partial y^2}{\partial x^2} &= \frac{\partial y^2}{\partial x}, \\
\frac{\partial y^2}{\partial x^3} &= \frac{\partial y^2}{\partial x} + \frac{\partial y^3}{\partial x}, \\
\frac{\partial y^3}{\partial x^0} &= \frac{\partial y^3}{\partial x} - \frac{\partial y^0}{\partial x} \\
\frac{\partial y^3}{\partial x^1} &= \frac{\partial y^3}{\partial x} + \frac{\partial y^0}{\partial x}, \\
\frac{\partial y^3}{\partial x^2} &= \frac{\partial y^3}{\partial x} + \frac{\partial y^0}{\partial x}, \\
\frac{\partial y^3}{\partial x^3} &= \frac{\partial y^3}{\partial x}
\end{align*}
\]

(14.3)
Доказательство. Следствие теоремы 13.2.
Теорема 14.2. Отображение кватернионов

\[f(x) = 1 \]

имеет производную Гато

\[\partial(f(x))(h) = -\frac{1}{2}(h + 1\mathrm{i}x + j\mathrm{j}y + k\mathrm{k}) \]

Доказательство. Якобиан отображения \(f \) имеет вид

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\]

Из равенств (14.5) следует

\[\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f}{\partial x} & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} \]

Из равенств (14.6), (14.7), (14.8) следует

\[\frac{\partial f}{\partial x} = 0 \quad i \neq j \]

Равенство (14.9) следует из равенств (6.7), (14.10), (14.11). \(\square \)

Теорема 14.3. Сопряжение кватернионов удовлетворяет равенству

\[\overline{f(x)} = -\frac{1}{2}(x + 1\mathrm{i}x + j\mathrm{j}y + k\mathrm{k}) \]

Доказательство. Утверждение теоремы следует из теоремы 14.2 и примера 10.4. \(\square \)

Теорема 14.4. Если матрица \(\begin{pmatrix} \frac{\partial y^i}{\partial x^j} \end{pmatrix} \) является якобианом функции \(x \to y \) тела кватернионов над полем действительных чисел, то

\[
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^1}{\partial x^0} & \frac{\partial y^2}{\partial x^0} & \frac{\partial y^3}{\partial x^0} \\
\frac{\partial y^0}{\partial x^1} & \frac{\partial y^1}{\partial x^1} & \frac{\partial y^2}{\partial x^1} & \frac{\partial y^3}{\partial x^1} \\
\frac{\partial y^0}{\partial x^2} & \frac{\partial y^1}{\partial x^2} & \frac{\partial y^2}{\partial x^2} & \frac{\partial y^3}{\partial x^2} \\
\frac{\partial y^0}{\partial x^3} & \frac{\partial y^1}{\partial x^3} & \frac{\partial y^2}{\partial x^3} & \frac{\partial y^3}{\partial x^3}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 & -1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
\frac{\partial y^0}{\partial x^0} & \frac{\partial y^1}{\partial x^0} & \frac{\partial y^2}{\partial x^0} & \frac{\partial y^3}{\partial x^0} \\
\frac{\partial y^0}{\partial x^1} & \frac{\partial y^1}{\partial x^1} & \frac{\partial y^2}{\partial x^1} & \frac{\partial y^3}{\partial x^1} \\
\frac{\partial y^0}{\partial x^2} & \frac{\partial y^1}{\partial x^2} & \frac{\partial y^2}{\partial x^2} & \frac{\partial y^3}{\partial x^2} \\
\frac{\partial y^0}{\partial x^3} & \frac{\partial y^1}{\partial x^3} & \frac{\partial y^2}{\partial x^3} & \frac{\partial y^3}{\partial x^3}
\end{pmatrix}
\]

Доказательство. Следствие теоремы 13.3. \(\square \)
15. Список литературы

[1] И. И. Воровиц, Л. П. Лебедев, Функциональный анализ и его приложения в механике сплошной среды, М., Вузовская книга, 2000
[2] П. К. Рашевский, Риманова геометрия и тензорный анализ, М., Наука, 1967
[3] Александр Клейн, Лекции по линейной алгебре над телом, eprint arXiv:math.GM/0701238 (2007)
[4] Александр Клейн, Введение в математический анализ над телом, eprint arXiv:0812.4763 (2008)
[5] Н. Бурбаки, Общая топология, Использование вещественных чисел в общей топологии, перевод с французского С. Н. Крежковского под редакцией Д. А. Райкова, М. Наука, 1975
[6] Понтрягин Л. С., Непрерывные группы, М. Эдиториал УРСС, 2004
[7] Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, том 1, М. Наука, 1969
[8] I. M. Gelfand, M. I. Graev, Representation of Quaternion Groups over Locally Compact and Functional Fields, Funct. Anal. Prilozh. 2 (1968) 20 - 35; Izrail Moiseevich Gelfand, Semen Grigorevich Gindikin, Izrail M. Gelfand: Collected Papers, volume II, 435 - 449, Springer, 1989
16. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Дифференциал Гато отображения f тела D 19
D-производная Гато функции f тела D 20

аддитивное отображение тела,
поверхностное отображение G 6

dифференциал Гато отображения f 18
единичная сфера в теле 15

компоненты линейного отображения f
tела 7
комплекс производной Гато отображения $f(x)$ 18

линейное отображение тела 7

непрерывная функция тела 15
норма на теле 14
норма отображения тела 16
нормированное тело 14

объединяющая аддитивное отображение 6

поладдитивное отображение кольца 10
поллинейное относимое симметричное
отображение 15
поллинейное отображение кольца 10
поллинейное симметричное
отображение 15
полное тело 14
последовательность Конни в
нормированное тело 14
предел последовательности в
нормированном теле 14

производная Гато второго порядка
отображения f 25
производная Гато отображения f 18

стандартная композиция дифференциала
Гато отображения f 19
стандартная композиция линейного
отображения тела 8
стандартная композиция поллинейного
отображения f тела 12
стандартное представление
дифференциала Гато отображения
тела над полем F 19

стандартное представление линейного
отображения тела 8
стандартное представление
поллинейного отображения тела 11

топологическое тело 14
фундаментальная последовательность в
нормированное тело 14
функция проекция над полем R и
непрерывная по направлению над
полем R 17
функция тела, дифференцируемая по
Гато 18
17. Специальные символы и обозначения

\(A(R_1; R_2) \) множество аддинных отображений кольца \(R_1 \) в кольце \(R_2 \)

\(A(R_1, ..., R_n; S) \) множество полийддинных отображений кольц \(R_1, ..., R_n \) в модуль \(S \)

\(\mathcal{L}(R_1, ..., R_n; S) \) множество полийлинейных отображений кольц \(R_1, ..., R_n \) в модуль \(S \)

\((s)p\partial f(x) \) компонента производной Гато отображения \(f(x) \)

\((s)p\partial^2 f(x) \) компонента производной Гато второго порядка отображения \(f(x) \) тела

\(\partial f(x) \) производная Гато отображения \(f \)

\(\partial^2 f(x) \) производная Гато второго порядка отображения \(f \) тела

\(\partial^2 f(x) \) производная Гато второго порядка отображения \(f \) тела

\(\partial^2 f(x)(a) \) дифференциал Гато отображения \(f \)

\(\partial^2 f(x)(a_1; a_2) \) дифференциал Гато второго порядка отображения \(f \) тела

\(\frac{\partial f(x)}{\partial x} \) дифференциал Гато функции \(f \) тела \(D \)

\(*D\text{-производная Гато функции} \)

\(\frac{\partial^i f(x)}{\partial x} \) стандартная компонента дифференциала Гато отображения \(f \)

\((s)p \) компонента лайнейного отображения \(f \) тела

\((s)p \) компонента полийлинейного отображения \(f \) тела

\(\| f \| \) норма отображения \(f \) тела

\(f^{ij} \) стандартная компонента аддинного отображения \(f \) над полем \(F \)

\(f^{ij} \) стандартная компонента лайнейного отображения \(f \) тела