Growth of L-asparagine monohydrate and its structural, optical, mechanical, thermal and electrical studies for nonlinear optical applications

Apurva Gupta, Raseel Rahman M K, R O M U Jauhar, V Sivasubramani, N Vijayan, G Vinitha and Lekha Nair

1 Department of Physics, Jamia Millia Islamia, New Delhi-110025, India
2 Division of Physics, School of Advanced Sciences, Vellore Institute of Technology, Chennai–600127, India
3 Research Centre, SSN College of Engineering, Kalavakkam, Chennai 603110, India
4 CSIR- National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi-110012, India

E-mail: lnair@jmi.ac

Keywords: NLO single crystal, L-asparagine, XRD, shock damage threshold, photoacoustic measurement

Abstract
In the recent past, single crystals of organic materials exhibiting nonlinear optical behaviour have garnered much attention in the field of optical data storage and laser technology. In the present article, amino acid crystals of L-asparagine monohydrate (LAM) have been grown successfully by conventional slow evaporation solution growth technique from aqueous solution at room temperature (RT), with double distilled water used as a solvent. Single crystal x-ray diffraction was used to confirm the orthorhombic crystal structure (with P2₁2₁2₁ space group) and lattice parameters of the grown crystal were determined. The crystallinity, purity, and phase of L-asparagine monohydrate were also determined from the powder x-ray diffraction data. The optical behaviour of LAM crystals was investigated by UV-Visible-NIR spectroscopy, and no absorption was found in the entire visible region. From the Tauc plot, the optical energy band gap was evaluated to be 5.09 eV. Valence band (EᵥB) and conduction band (EᶜB) positions of LAM were calculated from the knowledge of electron affinity (EᵥA), ionisation energy (Eᵢ) of the elements and optical energy gap. Thermal parameters of the crystal were measured by photoacoustic spectroscopy. In addition, the mechanical stability of L-asparagine monohydrate single crystal was evaluated via shock damage threshold measurement. The dielectric studies as a function of frequency and temperature were carried out to understand the electrical behavior of the grown crystal. From the Z-scan analysis, nonlinear refractive index (n₂) and nonlinear absorption coefficient (β) of the LAM crystal were also determined.

1. Introduction
In the past few decades, the development of standardized methods of single crystal growth has tremendous impact in various fields like photonics, optoelectronics, semiconductor technology etc [1, 2]. Inorganic single crystals such as KDP (abbreviation of potassium dihydrogen orthophosphate, KH₂PO₄) and LiNbO₃ (lithium niobate) have been the foundation on which optical communications have been developed, but recently, organic crystals with highly anisotropic optical response have become increasingly important [3]. The degree of charge separation (polarization) which is induced by energy and intensity of the incident light is responsible for the optical properties of these NLO materials. The NLO activity is enhanced in organic material as compared to inorganic material due to the presence of the conjugated π-electron system, containing donor and acceptor groups [4]. NLO activity in inorganic materials such as LiNbO₃, LiTaO₃ and KDP originates from their ionic bonding. In organic materials, the molecules are connected with weak van der Waals and hydrogen bonds, resulting in greater structural diversity and ease of design and fabrication [5–7]. Among these, the amino acids crystals exhibit fascinating NLO properties. Usually, amino acid-based compounds crystallize in a non-
centrosymmetric (NCS) crystal system, which is a key requirement for demonstrating second harmonic generation (SHG).

L-asparagine, with 20 amino acids, is one such promising organic NLO material, with space group P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1} [8, 9] and possessing 4 molecules in the unit cell. Some other names of this compound are 2-Amino-3-carbamoyl propanoic acid, (S)-(++)-2-Amino succinic acid, monohydrated (S)-2-Aminosuccinic acid 4-amide, and L-Aspartic acid 4-amide. Its second harmonic generation (SHG) response has been found to be 0.32 times that of KDP [10]. Amino acids contain two groups: carboxyl group (–COOH) and amino group (–NH\textsubscript{2}) and in the solid state, the carboxylic group behaves as a proton donor and amino group acts as a proton acceptor, and forms (COO−) and (NH\textsubscript{3}+), within the molecule to establish the dipole nature of the compound [11–13]. Because of this dipole nature of amino acids, we come across some fascinating physical and chemical properties with their NLO behaviour making them appropriate candidates for applications. Hence, it is the need of the hour to produce good quality defect free single crystals to fulfill this aim. There are few reports of detailed determination of the optical behaviour, shock damage threshold (SDT), photoacoustic measurements (PAM) etc for LAM, which are essential parameters for fabricating devices.

In the present study, we achieve the growth of L-asparagine monohydrate (LAM) single crystal by using a conventional slow evaporation solution growth technique (SEST) from aqueous solution at room temperature (RT). The LAM crystals are analysed by using single crystal x-ray diffraction (SCXRD), powder x-ray diffraction (PXRD), UV-Visible-NIR spectroscopy, shock damage threshold, photoacoustic measurement, photoconductivity, dielectric studies (DS) and Z-scan studies.

2. Experimental

2.1. Crystal growth

Commercially available L-asparagine monohydrate salt (LOBA Chemie, 99%) is dissolved in double distilled water. For making a homogeneous solution, the solution was continuously stirred for the period of 26 h at 40 °C by using a magnetic stirrer. Then the prepared homogeneous solution of L-asparagine monohydrate was filtered by using Grade 1 Whatman filter paper (pore size 11 μm and thickness 180 μm), to extract the impurities from the solution. A beaker containing filtered homogeneous solution was covered with a perforated thin plastic sheet for avoiding dust particles, with a few pinholes made for evaporation, and kept at RT. After a period of 45 days, single crystals of LAM were obtained from the solution. To get a flat surface, grown crystals of LAM were well polished with double distilled water (figure 1) and then subjected to characterisations to examine its structural, optical, mechanical, thermal, electrical, and nonlinear optical properties.

2.2. Characterization techniques

Single crystal x-ray diffraction (SCXRD) of the grown crystal was performed using a Bruker AXS Kappa single crystal (D8 QUEST) diffractometer equipped with CMOs detector, with graphite monochromatic MoK\textsubscript{α} radiation source (λ = 0.710 73 Å) at RT. Powder XRD was analysed using the Rigaku smart lab x-ray diffraction (PXRD), UV-Visible-NIR spectroscopy, shock damage threshold, photoacoustic measurement, photoconductivity, dielectric studies (DS) and Z-scan studies.

![Image of polished LAM single crystal.](image1.png)
used for mechanical characteristics. An in-house-developed photoacoustic spectrophotometer was used for measuring the thermal parameters of the grown LAM crystals. A 250 W halogen lamp was employed as a light source. At RT, both photo current and dark current were measured using the Keithley pico-ammeter (MODELM 6487) for applied voltages of 0–50 volts (V) in step of 1 volt. For electrical study, PSM 1735 LCR instrument was used for dielectric measurement at different temperature range as a function of frequency range from 2 kHz to 1 MHz. A continuous wave (CW) neodymium-doped yttrium aluminium garnet (Nd:YAG) laser radiation of wavelength 532 nm with input power 100 mW was used to execute the Z-scan experiment for the grown LAM crystal in the present study. The laser beam was focused using a 10.1 cm focal length (L) lens.

3. Results and discussion

3.1. Single crystal x-ray diffraction (SCXRD) analysis

The lattice parameters are obtained using the Apex III suites software as \(a = 5.5963 \text{ Å}, \ b = 9.8407 \text{ Å}, \ c = 11.8076 \text{ Å}, \ \alpha = 90^\circ, \ \beta = 90^\circ, \ \gamma = 90^\circ \) and \(V = 650.26 \text{ Å}^3\) with the orthorhombic crystal structure system and \(P2_12_12_1\) space group, which is in concurrence with the reported values [14], as given in table 1.

3.2. Powder x-ray diffraction (PXRD) study

PXRD analysis is the most powerful method for determining the crystallinity, phase and purity of the grown compound. For measurement, initially, a grown crystal is crushed with the help of agate mortar and pestle, and made into a fine powder. The obtained diffraction pattern is presented in figure 2. In figure 2, we observe that the peaks are sharp with no broadening, indicating the high crystallinity that is obtained. As per the crystallographic notation, the diffraction peaks corresponding to \((h k l)\) plane such as \((011), (110), (121), (113), (201), (104), (212), (220), (231), (201), (104), (212), (220), (124), (222), (231), (134), (321), \) and \(321)\) are indexed and the maximum intensity peaks are found correspond to \((113)\) plane, which is labeled as the 100% peak.

3.3. UV-Visible-NIR spectroscopy studies

UV-Visible-NIR spectrophotometry is an efficient technique used to investigate the optical properties of materials such as optical transition type, electronic band structure, absorption coefficient etc [15, 16]. For UV-

Sample name	\(a\) (Å)	\(b\) (Å)	\(c\) (Å)
LAM single crystal (Reported value [14])	5.593	9.827	11.808
LAM single crystal (observed value)	5.596	9.840	11.808
Difference	0.003	0.013	0

Table 1. Comparison of the lattice parameter with values from the literature.

Figure 2. PXRD pattern of LAM single crystal.
Visible measurement, well-polished 2 mm thick optically transparent LAM wafer is used to record the transmittance spectrum. The obtained transmittance spectrum of LAM single crystal is displayed in figure 3(a) which indicates that the LAM crystals have a ‘lower cut-off wavelength’ at 240 nm and the crystal indicates ~80% transmittance without any significant absorption in the entire UV-Visible-NIR range [250–1100 nm]. Thus, the crystal has good optical behaviour along with lower cutoff wavelength which is a measure of the potential of this material to be used in optoelectronic and NLO applications [17, 18].

3.3.1. Optical absorption coefficient

For materials, the absorption coefficient (α) varies with the incident photon energies and for different wavelength α it can be estimated by the transmittance data using the following relation [19, 20]:

$$\alpha = \frac{2.303 \times \log \left(\frac{1}{T} \right)}{t}$$

where t the sample thickness (2 mm) and T is the transmittance. The optical energy bandgap of grown LAM single crystal is calculated using the Tauc’s plot ($(\alpha \nu)^2$ on the y-axis versus photon energy ($\nu\nu$) on the x-axis), as illustrated in figure 3(b). The dependence of the optical absorption strength depends on the difference between the photon energy and band gap as [21–26]:

$$\alpha \nu = A (\nu - E_g)^n$$

where h is Planck’s constant (6.626×10^{-34} joule-seconds), ν is the incident photon frequency, A is constant, E_g is the optical energy bandgap, and n is an index. The value of n signifies the type of allowed electronic transitions, with value $n = 1/2$ for direct allowed transition, $n = 2$ for an indirect allowed transition, $n = 3$ for forbidden indirect transition, and $n = 3/2$ for forbidden direct transition [23]. The tangent line from the linear region in the graph is used to determine the band gap value as its intercept at the x-axis. For the LAM crystal of this study, $(\alpha \nu)^2$ is used (with $n = 1/2$) which shows the direct allowed transition [24]. From the Tauc plot, the value of optical energy bandgap (E_g) for LAM crystal is obtained to be 5.09 eV in figure 3(b), which is comparable with values from the literature of 5.1 eV and 5.08 eV [24]. Theoretically, the optical band gap energy value can be calculated by using the equation:

$$E_g = \frac{h \nu}{\lambda_{max}}$$

where c is the light speed in vacuum and λ_{max} is cutoff wavelength (240 nm for LAM crystal). From the equation (3), the obtained energy band gap value is measured 5.17 eV which is close to our experimental value.

3.3.2. Determination of valence band position and conduction band position

For compound materials in the solid state, the conduction band (E_{CB}) and valence band (E_{VB}) positions can be estimated by using the values of ionization energy (E_i) and electron affinity (E_a), if the order of its elements are known. In the present work, the LAM crystal is made up of such elements like carbon (C), hydrogen (H), nitrogen (N), and oxygen (O), with the orders as 4 for carbon, 10 for hydrogen, 2 for nitrogen, and 4 for oxygen. The indices i, j, k, l denote the orders of C, H, N, and O atoms, respectively. The position of conduction band potential (E_{CB}) is calculated by using the empirical relation such as [27–30]:

![Figure 3](image_url)
where

\[E_{\text{CB}} = E^* - X + \frac{E_g}{2} \]
\[X = [(X_C)^j \times (X_H)^i \times (X_N)^k \times (X_O)^l]^{i+j+k+l} \]
\[X_M = \frac{(E_{aM} + E_{iM})}{2} \]

where, \(M = C, H, N, \) and \(O, \) respectively and \(E_{\text{CB}} \) is the energy of conduction band potential, \(E^* \) is the optical energy bandgap of LAM crystal (5.09 eV), \(E_g \) is the dissociation energy of the hydrogen molecules which is equal to 4.47 eV \([31]\), and \(X \) is the energy parameter. By putting these constant values of electron affinity \((E_a) \) and ground state ionization energy \((E_i) \) in terms of eV of C, H, N, and O, the energy parameter \(X \) can be calculated from the equation (5). The value of electron affinity \((E_a, \text{eV}) \) are 1.595 \((\text{C})\), 0.754 \((\text{H})\), 0.073 \((\text{N})\) and 1.461 \((\text{O})\), respectively. The conduction band \((E_{\text{CB}}) \) and valence band energy \((E_{\text{VB}}) \) positions are observed to be \(-0.087 \text{ eV}\) and 5.003 eV, respectively, which are displayed in figure 4.

3.4. Shock damage threshold measurement

To determine the mechanical characteristics of the crystals for their performance in device applications, shock damage threshold measurement \((\text{SDT}) \) is carried out, which is a unique technique to understand the behavior of the crystals at extreme conditions. Formation of shock waves leads to energy release in the form of sharp increase in temperature and pressure, like an explosion \([32, 33]\). Generally, the nature of the shock wave is destructive \([34]\). A transparent and good quality LAM crystal \((\text{with size } 5 \times 5 \times 2 \text{ mm}^3)\) is located in the sample holder that is fixed at 1 cm away from the open end of the driven section and the shock pulses are loaded on the crystal by varying the Mach number from 1.2 to 2.2. After each shock, the crystal surface is carefully checked using an optical microscope \((\text{WESWOX, BXLTR, 2010})\) to confirm the damage. Figure 5\((a)\) illustrates the surface of the crystal before loading the shock waves. Interestingly, no visible damage is observed after loading of shock pulses with Mach numbers 1.2, 1.5, 1.8 and 2.0. When the Mach number \((\text{Ma}) \) is increased to 2.2 which corresponds to a transient pressure of 2.040 MPa and transient temperature of 864 K, clear changes are detected on the surface of the LAM crystal as illustrated in figure 5\((b)\). It is clear that a number of bubble-like projections appeared on the surface of the crystal. Then, the Mach number 2.2 is fixed and continuous pulses are loaded on the sample. When the number of shock pulses increased one by one, the concentration of the defect points also increased \((\text{figures } 5\((c)-(g))\). After the 15th shock, the crystal has cracked, as illustrated in figures 5\((h)\), \((i)\). Since this crystal could withstand up to 2.0 Mach number, it is determined that this crystal can be used in vibrating and fast-moving devices.

3.5. Photoacoustic measurement

Photoacoustic spectroscopy \((\text{PAS}) \) is a nondestructive tool to measure thermophysical properties of material like solid, liquid and gases. During this, the light energy absorbed from the sample is converted to heat energy, causing pressure fluctuation in the surrounding air \([35, 36]\). At modulation frequency, a microphone takes the pressure fluctuation as an acoustic signal. The crystal is positioned in a photoacoustic \((\text{PA}) \) cell and a sensitive
microphone is used as a detector. A chopper is fixed in front of the sample for capturing the modulated signal. The spectrophotometer is calibrated with the standard material like KDP, quartz and BK7 glass with a dimension of up to $(10 \times 10 \times 1 \text{ mm}^3)$. A light beam produced from the lamp is collimated and modulated, and it enters into the sample, generating a PA signal, and these signals are detected by the microphone. With the help of a computer using sound recording software, the resultant PA signal is documented. In our study, a crystal of LAM with dimensions of $4 \times 4.1 \times 1.3 \text{ mm}^3$ is placed for measurement. The PA signal recorded with different chopping frequency from 10 to 120 Hertz (Hz). The graph of normalized amplitude of photoacoustic (PA) signal versus square root of chopping frequency ($f_1/2$) is plotted and is displayed in figure 6. In this graph, we observed that as chopping frequency is increased, the normalized amplitude of photoacoustic (PA) signal is decreased considerably.

The thermal diffusivity (α) of the sample is estimated from the curve fitting method [37–41]. The thermal effusivity (e) and conductivity (k) of the specimen are calculated with the help of thermal diffusivity value (α) using the following relations as:

$$k = \alpha \rho C_p$$ \hspace{1cm} (7)

and

$$e = \rho C_p \alpha^{1/2}$$ \hspace{1cm} (8)

where k denotes thermal conductivity, α denotes thermal diffusivity, ρ denotes the density, e is the thermal effusivity and C_p is the specific heat capacity of the crystal, respectively. The measured thermal parameters i.e. k, α, and e are cited in table 2. The higher values of thermal parameters of the crystal indicate that the crystal may be used for high power laser action [35].

Figure 5. Optical microscopic image of before and after shock of grown LAM single crystal.
3.6. Photoconductivity measurement

For measurement, a good quality polished LAM crystal is chosen and two electrodes are made on the surface of crystal at a finite distance (1 mm) by using the high grade silver paste. After that, the crystal is fixed inside a cryostat which is evacuated to 10^{-6} mbar vacuum. For the measurement of photocurrent (I_p), the sample is exposed to 50 W halogen lamp which acts as a source of radiation and dark current (I_d) is reported when the lamp is in the off condition. From figure 7, we observed that the photocurrent (I_p) is less than the dark current (I_d) for different applied fields. This indicates that the LAM single crystal shows the negative photoconductivity. Usually, the loss of water molecules in the crystal may be responsible for showing the negative photoconductivity [42]. However, under illumination the decrease in the number of charge carriers (CCs) or their lifetime give rise to negative photoconductivity. According to this relation the lifetime, \(\tau = (\nu s N)^{-1} \) (where \(\nu \) denotes the thermal
speed of charge carriers, \(s \) denotes the capture cross-section of the recombination centers, and \(N \) denotes the carrier concentration. Under illumination, the decrease in the lifetime occurs with an increase in applied voltage, due to a rise in carrier velocity and possibility increases the trapping [43].

By the Stockman model, the phenomena of negative photoconductivity could be explained in detail with the two level scheme [44]. According to this scheme, there exist two energy states within the forbidden bandgap, one lies between the Fermi level and conduction band edge (\(E_{\text{CB}} \)), which is denoted as the upper energy level, while the other is in proximity to the valence band edge (\(E_{\text{VB}} \)) or in between Fermi level and valence band edge, and is called lower energy level. The second level has a higher capture cross section for charge carriers (i.e., holes and electrons). Since it captures electrons from the conduction band (\(E_{\text{CB}} \)) and holes left behind by the electrons from the valence band (\(E_{\text{VB}} \)). This prevents the immediate recombination of charge carriers under illumination while it reduces the number of mobile charge carriers which leads to the negative photoconductivity.

The \(I_p \) and \(I_d \) values of grown LAM crystal at 50 V are \(1.2269 \times 10^{-10} \) and \(1.9178 \times 10^{-10} \) A, respectively. The photosensitivity (\(S \)) of grown LAM crystal can be measured from the relation:

\[
S = \frac{(I_p - I_d)}{I_d} = \frac{I_{\text{ph}}}{I_d}
\]

where \(I_{\text{ph}} \) is equal to the difference of \((I_p - I_d)\), \(I_p \) and \(I_d \) is photocurrent and dark current, respectively. From the relation (9), the photosensitivity (\(S \)) of LAM crystal is obtained 0.36 at 50 V. The negative photoc conductivity anomaly observed for some materials like L-Prolinium Trichloroacetate, L-Prolinium Picrate, L-Proline Succinate, L-Alaninium Oxalate etc [12, 45–47]. So, it can be concluded that the material which shows the negative photoc conductivity, can be used in numerous applications purposes like photo sensors and switches etc.

3.7. Dielectric and conductivity study

To know the electrical behavior of solids, dielectric measurement is one of the elemental characterisations. Particularly for nonconducting material, the dielectric behaviour is linked with the electro-optic properties of the crystal. For measurement, a well-polished LAM crystal is selected and then coated on both sides by using high-grade silver paste, which acts as a parallel plate capacitor. Figures 8(a) and (b) show the variation of dielectric constant and dielectric loss of LAM single crystal at a various temperature range (308 to 358 K) and range of frequency from (2 kHz to 1 MHz). From figure 8(a), we observed that the value of dielectric constant is high at low frequency region and decreases rapidly with frequency range and remains constant at higher frequency range. The higher value of dielectric constant at low frequencies is due to the presence of four types of polarizations (i.e., space-charge, orientational, ionic, and electronic polarizations) [48–50]. As we increase frequency, the value of dielectric constant gets decreased, as the induced dipoles are not able to chase the variation of the applied electric field. Therefore, space-charge polarization and orientational polarization do not contribute at a higher frequency, and only ionic and electronic polarization contributes to the low value of dielectric constant. In figure 8(a), it is also observed the dielectric constant increased with temperature which happens due to the hopping of the charge carriers in the lattice sites which get thermally activated [51]. From figure 8(b), it can be observed that the dielectric loss value (\(\tan \delta \)) is decreasing with increased frequency range. The large value of dielectric loss at lower frequencies is due to the polarisation of trapped charge carriers. However, at higher frequency region, the dielectric loss decreases due to the reduction of the contribution of various types of polarisation. At low frequencies, dielectric response peak in dielectric loss, is attributed to response time (\(\tau = 1/\omega_{\text{max}} \)) [52]. The low value of dielectric loss suggests that the LAM crystal has fewer defects/impurities, and it reveals that the grown crystal has good optical quality from the transmittance analysis which is an important property for the NLO applications [53, 54].

Due to the presence of the \(\pi \)-electron conjugated system, these organic crystals behave like an insulator in the high purity state and its conductivity is lesser than \(\sigma \times 10^{-14} \) ohm. cm\(^{-1}\) at RT or below. However, defects induced by the addition of impurities in these crystals can make them behave like a semiconductor at a moderate temperature [53]. The AC conductivity (\(\sigma_{\text{ac}} \)) is calculated by dielectric data at different temperature using the equation [55]:

\[
\sigma_{\text{ac}} = \omega\varepsilon_0\varepsilon_i \tan \delta
\]

where \(\omega \) is the angular frequency (is equal to \(2\pi f \), \(f \) is frequency of the applied field), \(\varepsilon_0 \) is the permittivity of free space charge carriers (8.8541 \times 10^{-12} \text{Farad/meter}) and \(\varepsilon_i \) is the relative permittivity and the \(\tan \delta \) is a dielectric loss. As shown in figure 9, the \(\sigma_{\text{ac}} \) is frequency dependent and increases linearly with frequency and temperature. The increase in \(\sigma_{\text{ac}} \) with frequency is correlated with the polaron hopping. As the conduction is possible by the mechanism of the hopping of charge carriers, the mobility determines the hopping rate. The drift mobility of the charge carriers and the carrier density are affected due to the defects. The defects play a significant role in the electrical conduction mechanism of such a system, as thermally ionized charged carriers get released from these defects, resulting in increase of conductivity. The topology of an organic molecule also affects its conductivity. At
Figure 8. The variation of a dielectric constant and dielectric loss of LAM crystal (a), (b) over the frequency range 2 kHz–1 MHz at different temperature 308–358 K.

Figure 9. The variation of AC conductivity (σ_{ac}) versus frequency of LAM crystal at a different temperature range (308 K–358 K).
low temperature, there is low electrical conduction of LAM crystal, caused by the trapping of charge carriers at defect sites which is illustrated in figure 9. With the increase in temperature, more carriers are available due to thermal activation, and there is an increase in conductivity [56].

3.8. Z-Scan study

An effective tool for measuring nonlinear refraction (NLR), nonlinear absorption coefficient (NLA), and third-order nonlinear optical susceptibility ($\chi^{(3)}$) is the Z-scan method. The nonlinear refractive index (n_2) and nonlinear absorptive properties can be revealed through closed and open aperture Z-scan experiments.

Generally, nonlinear optical absorption (NLOA) is classified into two types: (i) saturable absorption (SA), which includes multiphoton absorption in which, with increases in optical intensity, transmittance of the sample increases, and (ii) reverse saturable absorption (RSA), which includes two-photon absorption (2PA) in which, with increase in optical intensity, transmittance decreases.

The sample is moved along the direction of the propagation of the laser beam from $-Z$ to $+Z$ position with $Z = 0$ is the focal point. At the open aperture (OA) and closed aperture (CA) conditions, the transmitted intensity was measured. The open aperture, closed aperture and ratio of closed to open (C/O) normalized Z-scan curve for LAM crystal are shown in figure 10. The open aperture (OA) Z-scan curve of grown LAM crystal is depicted in figure 10(a), the experimental results illustrate the sample shows the RSA with positive absorption coefficient (β) which affirms the occurrence of the two photon absorption (2PA) process in grown LAM crystal [57]. To obtain required parameters for optical limiting applications (OLA), this is required documentation. Materials which exhibit saturable absorption (SA) have maximum transmittance in focus at valley while RSA exhibiting materials has minimum transmittance (T) in the focus at the valley. The peak followed by a valley transmittance (T) in the closed aperture (CA) Z-scan curve as displayed in figure 10(b) demonstrates the signature of negative nonlinearity cause the self-defocusing effect (SDE) [58]. The cause of self-defocusing effect (SDE) is the local variation of refractive index (n_2) with temperature. The nonlinear optical coefficients are measured using standard equations [39] and cited in table 3.

![Figure 10. The normalized transmittance (T) with open aperture (OA) and closed aperture (CA) conditions as a function of distance Z along the lens axis in the far field of LAM crystal (a) and (b), and (c) the ratio of closed to open (C/O) curve.](image-url)
4. Conclusions

In summary, single crystals of LAM have been successfully grown by a slow evaporation solution growth technique. The confirmation of the crystal structure system is affirmed from the SCXRD analysis that the grown LAM crystal belongs to orthorhombic structure with non-centro symmetry space group P2₁2₁2₁. From PXRD study, good crystallinity is confirmed of the grown LAM crystal. Optical constants are calculated from the UV-Visible-NIR spectral analysis and high optical transparency is observed in the entire visible region and wide band gap (5.09 eV) of LAM crystal. From theoretical calculation, the positions of the valence band and conduction band for LAM crystal have also been investigated. The shock damage threshold of LAM single crystal is evaluated, and bubble-like projection were found to appear after applying the shock waves with a Mach number of 2.2. The thermal parameters are estimated from photoacoustic spectroscopy. The negative photoconductivity is also found for LAM single crystal. The variation in dielectric constant and dielectric loss is considered with varying frequencies and at different temperature ranges. The nonlinear parameters of LAM crystal have been evaluated from the Z-scan study, which affirmed that the nonlinearity is in the form of self-defocusing and two photon absorption (2PA) with reverse saturable absorption.

Acknowledgments

Authors wish to acknowledge x-ray Crystallographic Facility, School of Pure & Applied Physics, Mahatma Gandhi University, Kerala for Single crystal x-ray diffraction analysis. Authors are thankful to Dr S A Martin Britto Dhas, Assistant Professor, Department of Physics, Sacred Heart College, Tirupattur, Vellore for shock damage threshold measurement and for good discussions. The authors are highly grateful to the Department of Physics and Centre for Nanoscience and Nanotechnology (CNN), Jamia Millia Islamia, New Delhi for facilities for the synthesis and PXRD respectively. Apurva Gupta acknowledges the University Grant Commission (UGC), Government of India for the Non-NET fellowship.

Conflicts of interest

There are no conflicts of interest to declare.

ORCID iDs

R O M U Jauhar https://orcid.org/0000-0001-6120-7564
N Vijayan https://orcid.org/0000-0003-1552-7676
G Vinitha https://orcid.org/0000-0002-2745-2053
Lekha Nair https://orcid.org/0000-0003-4266-9143

References

[1] Rani R, Thukral K, Krishna A, Sharma G, Vijayan N, Rathi B and Bhagavannarayana G 2014 Synthesis and nucleation studies on l-leucine hydrobromide: a promising nonlinear optical material J. Appl. Cryst. 47 1966–74
[2] Krishna A, Vijayan N, Verma S, Singh B, Bidkin I, Jayalakshmy M S, Sridhar B and Das S 2017 Crystalline perfection, thermal, mechanical and optical investigations on solution grown l-arginine monohydrchloride single crystal J. Mater. Sci.: Mater. Electron. 28 4306–12
[3] Yadav H, Sinha N and Kumar B 2014 Growth and characterization of piezoelectric benzil single crystals and its application in microstrip patch antenna Cryst Eng Comm. 16 10700–10
[4] Souza T E, Rosa I M L, Legendre A O, Paschoal D, Maia L J, Santos H F D, Martins F T and Doriguetto A C 2015 Non-centrosymmetric crystals of new N-benzylideneaniline derivatives as potential materials for non-linear optics Acta Cryst. gra. B 71 416–26
[5] Sangeetha K, Babu R R, Kumar P, Bhagavannarayana G and Ramamurthi K 2011 Effect of H+ ion implantation on structural, morphological, optical and dielectric properties of 01-arginine monohydrochloride monohydrate single crystals Appl. Surf. Sci. 257 7573–8
[6] Chemla D S and Zyss J 1987 Nonlinear Optical Properties of Organic Molecules and Crystals Vol.1 and 2 (New York: Academic Press)
[7] Thukral K, Vijayan N, Sonia, Haranath D, Maurya K K, Philip J and Jayaramakrishnan V 2019 Comprehensive study on L-proline lithium chloride monohydrate single crystal: a semimicratic novel for nonlinear optical applications Arabian J. Chem. 12 3193–3201
[8] Thukral K, Vijayan N, Haranath D, Jayaramakrishnan V, Philip J, Sreekanth P and Bhagavannarayana G 2015 Assessment on third order nonlinearity and other optical analyses of L-Asparagine Monohydrate single crystal: an efficient candidate for harmonic conversions Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 151 419–25
[9] Kathiravan P and Balkaran K T 2013 Characterization of pure and cessa–doped L-asparagine monohydrate single crystals Struct Chem Crystallogr Commun 1 1–9
[10] Shakir M, Kushwaha S K, Maurya K K, Kumar S, Wahab M A and Bhagavannarayana G 2010 Enhancement of second harmonic generation, optical and dielectric properties in L-asparagine monohydrate single crystals due to an improvement in crystalline perfection by annealing J. Appl. Cryst. 43 691–7
[11] Kalaiselvi D, Kumar R M and Jayavel R 2008 Crystal growth, thermal and optical studies of semimicratic nonlinear optical material: L-Asparagine hydrochloride dihydrate Mater. Res. Bull. 43 1829–35
[12] Thukral K, Vijayan N, Krishna A, Singh B, Kant R, Jayaramakrishnan V, Jayalakshmy M S and Kaur M 2019 In-depth behavioral study of L-Prolineum Trichloroacetate single crystal: an efficient candidate for NLO applications Arab. J. Chem. 12 4887–96
[13] Natarajan S, Umamaheswaran M, Sundar J K, Suresh J and Dhas S M B 2010 Structural, spectroscopic and nonlinear optical studies on a new efficient organic donor–acceptor crystal for second harmonic generation: l-Threonine pimicrate Spectrochim. Acta, Part A 77 160–3
[14] Kripal R and Singh P 2007 EPR and optical absorption studies of VO2++ ions in L-asparagine monohydrate Solid State Commun. 142 412–6
[15] Yadav H, Sinha N and Kumar B 2015 Growth and characterization of new semimicratic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals Mater. Res. Bull. 64 194–9
[16] Srinivasan R, Anbarasi A, Revathi T and Kumar S R 2016 Growth and characteristics of a new semimicratic nonlinear optical material thiourea potassium hydrogen phthalate for NLO applications Mater. Chem. Phys. 177 25–30
[17] Moovendaran K and Natarajan S 2013 Unidirectional growth and characterization of L-tartaric acid single crystals J. Appl. Cryst. 46 993–8
[18] Jaikumar D, Kalainathan S and Bhagavannarayana G 2010 Structural, spectral, thermal, dielectric, mechanical and optical properties of urea l-alanine acetate single crystals Physica B 405 2394–400
[19] Lujhar R M, Vwijanathan V, Vivek P, Vinitha G, Velmurgurugan D and Murugakoottap P 2016 A new organic NLO material isonicotinamide picrate (ISPA) crystal structure, structural modeling and its physico-chemical properties RSC Adv. 6 57977–85
[20] Thukral K, Vijayan N, Rathi B, Bhagavannarayana G, Verma S, Philip J, Krishna A, Jeyalakshmy M S and Halder S K 2014 Synthesis and single crystal growth of L-proline cadmium chloride monohydrate and its characterization for higher order harmonic generation applications Cryst. Eng. Comm. 16 2802–9
[21] Dalal J and Kumar B 2016 Bulk crystal growth, optical, mechanical and ferroelectric properties of new semimicratic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal Optical Mater. 151 139–47
[22] Viebicke B D, Patel S, Davis B E and Birnie D P III 2015 Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system Phys. Status Solidi B 252 1700–10
[23] Parthey A, Ariz A, Ansari S G, Mier S H, Khosla A and Najia A 2018 Synthesis and characterization of an efficient hole-conductor free halide perovikite CH3NH3PbI3 single crystal anode device based photovoltaic device for IOT J. Electrochem. Soc. B 165 3023–9
[24] Shikh M, Muhammed S, AlFaify S, Irfan A and Yahia IS 2015 A dual approach to study the electro-optical properties of a nanocentrosymmetric L-asparagine monohydrate Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 137 432–41
[25] Vasudevan P, Raj S G and Sankar S 2013 Synthesis and characterization of nonlinear optical l-arginine semi-oxalate single crystal Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 106 210–5
[26] Jayanthi L, Prabavathi N, Sivasubramani V, Pandian M S, Ramasamy P and Dhas S M B 2017 Bulk growth of organic 4-hydroxy L-proline (HLP) single crystals grown by conventional slow evaporation and Sankaranarayanan–Ramasamy (SR) method J. Mater. Sci.: Mater. Electron. 28 15354–69
[27] Hassainen A S and Akl A A 2016 Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films Super. Micro. 89 153–69
[28] Xie C, Zhang Y, Yan W, Guo L, Xing C, Zhang Y, Yan W and Guo L 2016 Band structure-controlled solid solution of Cd1-xZnxS, a photocatalyst for hydrogen production by water splitting Intern. J. Hydro. Ener. 31 2018–24
[29] Askari M, Soltani N, Saion E, Yunus W M M, Erfani H M and Dorostkar M 2015 Structural and optical properties of PVP-capped nanocrystalline ZnO, partly solid solutions Super. Micro. 81 193–201
[30] Karuppasamy P, Pandian M S, Ramasamy P and Verma S 2018 Crystal growth, structural, optical, thermal, mechanical, laser damage thresholds and electrical properties of triphenylphosphine oxide 4-nitrophenol (TPP) single crystals for nonlinear optical applications Opt. Mater. 79 152–71
[31] Herzberg G and Monnffils A 1961 The dissociation energies of the HP, HD, and DZ molecules J. Mol. Spectroscopy 5 1–6
[32] Sonia, Vijayan N, Vij M, Krishna A, Yadav H, Maurya K K, Dhas S M B and Kumar P 2019 An efficient piezoelectric single-crystal L-argininium phosphate: structural, Hirshfield, electrical and mechanical analyses for NLO applications Appl. Phys. A 125 363
[33] Sonia, Vijayan N, Vij M, Yadav H, Kumar R, Sur D, Singh B, Dhas S M B and Verma S 2019 Evaluation of structural, optical and mechanical behaviour of L-argininium bis (trifluoroacetate) single crystal: an efficient organic material for second harmonic generation applications J. Phys. and Chem. of Solids 129 401–12
[34] Jagadeesh G 2008 Fascinating world of shock waves Resonance 13 752–67
[35] Sonia, Vijayan N, Bhushan M, Thukral K, Raj R, Maurya K K, Haranath D and Dhas S M B 2017 Growth of a bulk-single crystal of sulfamic acid by an in-house developed seed rotation solution growth technique and its characterization J. Appl. Phys. 50 763–8
[36] Dhas S M B, Suresh M, Raj R, Ramachandran K and Natarajan S 2007 Photoacoustic studies on two new organic NLO materials L-threonine and L-prolineum tartrate Cryst. Res. Technol. 42 190–4
[37] Saranraj A, Dhas S S, Jose M and Dhas S M B 2018 Growth of bulk single crystals of urea for photonic applications Electron. Mater. Lett. 14 7–13
[38] Melo W B and Faria R M 1995 Photoacoustic procedure for measuring thermal parameters of transparent solids Appl. Phys. Lett. 67 2892–4
[39] Manivannan M, Dhas S M B and Jose M 2016 Photoacoustic and dielectric spectroscopic studies of 4-dimethylamino-n-methyl-4-stilbazolium tosylate single crystal: an efficient terahertz emitter J. Cryst. Growth 455 161–7
[40] Kim Y 2000 Physical, chemical and optical properties of aqueous L-arginine phosphate (LAP) solution J. Mater. Sci. 35 873–80
[41] Loiacono G M and Kostecy G 1981 Thermal properties of pure and doped TGS, DTGS, TGFb and DTGFb single crystals Mat. Res. Bull. 16 53–8
[42] Ambujum K, Selvakumar S, Prem Anand D, Mohamed G and Sagayaraj P 2006 Crystal growth, optical, mechanical and electrical properties of organic NLO material γ-glycine Cryst. Res. Technol. 41 671–7
[43] Bube R H 1981 Photoconductivity of Solids (New York: John Wiley & Sons)
[44] Joshi V N 1990 Photoconductivity (New York: Marcel Dekker)
[45] Thukral K, Vijayan N, Vij M, Nagaraja C M, Jayaramakrishnan V, Jayalakshmy M S and Kant R 2017 Analyses of significant features of L-prolinium picrate single crystal: an excellent material for nonlinear optical applications Mater. Chem. Phys. 194 90–6
[46] Balamurugaran P, Suresh S, Koteswari P and Mani P 2013 Growth, optical, dielectric and photocconductivity properties of L-proline succinate NLO single crystal J. Mater. Phys. Chem. 1 4–8
[47] Arun K J and Jayalekshmi S 2009 Growth and characterisation of nonlinear optical single crystals of L-alaninium oxalate J. Miner. Mater. Charact. Eng. 8 655–46
[48] Kalidasan M, Asokan K, Baskar K and Dhanasekaran R 2015 Effect of gamma ray irradiation on sodium borate single crystals Radia. Phys. Chem. 117 70–7
[49] Rani N, Vijayan N, Riscoeb B, Jat S K, Krishna A, Das S, Bhagavannarayana G, Rahi B and Wahab M A 2013 Single crystal growth of ninhydrin by unidirectional Sankaranarayanan–Ramasamy (SR) method by using a glass ampoule for nonlinear optical applications Cryst Eng Comm 15 2127–32
[50] Riscoeb B, Kushwaha S K, Shakir M, Nagarajan K, Maurya K K, Haranath D, Roy S D and Bhagavannarayana G 2011 Crystalline perfection, optical and dielectric studies on L-histidine nitrate: a nonlinear optical material Physica B 406 4440–6
[51] Krishnakumar V, Avasthi D K, Singh F, Kuliyya P K and Nagalakshmi R 2007 Study of the damage produced in K

A Gupta et al