Effect of buds manually removal and their damage by large pine weevil (Hylobius abietis L.) on Scots pine seedlings in Siversky Donets river valley

V. L. Meshkova¹, I. M. Sokolova², S. O. Yeroshenko³, L. M. Koval⁴

Large pine weevil (Hylobius abietis L.) damages different organs of Scots pine (Pinus sylvestris L.) seedlings in unclosed plantations, including foliage, buds, stem bark and roots. Simulated damage of respective organs, particularly debudding is one of the ways to evaluate qualitative and quantitative influence of such damage on tree condition.

The aim of research was to evaluate the dependence of Scots pine seedlings mortality and height increment on artificial and large pine weevil caused bud damage.

The growth of apical shoots of Scots pine seedlings was registered since the beginning of May to the end of June. Development of new shoots in seedlings with manually bud removal or large pine weevil damage started in beginning of May and continued in July.

Mortality of Scots pine seedlings with 20% of lateral buds damaged did not differ from that in undamaged plants. The seedlings with apical and lateral buds manually removed as well as with apical and over 70% lateral buds damaged by large pine weevil have died in the year of treatment or damage. The seedlings with apical buds damaged as well as with apical and over 50% lateral buds damaged died in the 4th year after damage.

Removal or damage up to 50% lateral buds did not affect the growth of Scots pine seedlings. Height increment of seedlings with apical buds manually removed or damaged by large pine weevil did not differ significantly in May and June of the year of treatment or damage. In July the height increment was statistically greater in the variant with manually removal of apical bud.

Previously suggested scale of Scots pine seedlings bud damage satisfactory reflects the score of large pine weevil injuriousness.

¹ Valentyna L. Meshkova – full Member of Forestry Academy of Sciences of Ukraine, Doctor habil. (agricultural sciences), professor, Ukrainian Research Institute of Forestry & Forest Melioration named after G. M. Vysotsky. Pushkinska str., 86, Kharkiv, 61024, Ukraine. Tel.: +38(097)371-94-58. E-mail: Valentynameshkova@gmail.com

² Iryna M. Sokolova – PhD, senior researcher, Ukrainian Research Institute of Forestry & Forest Melioration named after G. M. Vysotsky. Pushkinska str., 86, Kharkiv, 61024, Ukraine. Tel.: +38(095)-358-99-91. E-mail: sok ef ir@gmail.com

³ Serhii O. Yeroshenko – specialist of the State Procurement Service of Luhansk region. Pyvovarova str., 2, Severodonetsk, Luhansk region, 93408, Ukraine. Tel.: +38(098)-232-78-00. E-mail: s4804@yandex.ua

⁴ Lesya M. Koval – post-graduate student of Kharkov National Agrarian University named after V.V. Dokuchaev. 62483, Ukraine, post department «Dokuchaivske-1», Kharkov district, Kharkov region. Tel.: +38(097)-299-79-87. E-mail: lesichka81@mail.ru
We can suggest that height increment in the next years after bud damage does not depend on damage way and intensity but mainly on ecological conditions.

Key words: Scots pine (Pinus sylvestris L.); unclosed plantations; apical bud; lateral buds; manually bud removal; large pine weevil (Hylobius abietis L.); seedling mortality; height increment.

Introduction. Large pine weevil (Hylobius abietis Linnaeus 1758) is one of the most spread and dangerous pests of conifer plantations, especially in the first years after planting. Its larvae develop under the bark of stumps or roots of weakened trees, and adults damage different parts of trees during maturation feeding (Wainhouse et al., 2004, Nordlander et al., 2017). Such damage is the most dangerous for the Scots pine (Pinus sylvestris L.) transplants of the first three years old, because they have small stem surface, and small number of buds and needles. In the Siversky Donets river valley the large pine weevil depending on weather conditions develops in one or two years. Its swarming, mating, oviposition and maturation feeding occur throughout the summer with two waves. The first wave includes the beetles of hibernating generations of different age (1-3 years old) and is the highest by population number and damage. It starts with beginning of vegetation period (about middle of April), has maximum at the second half of May and the first half of June. The second wave is lower, includes the beetles of the new generation, and begins in July with maximum at the second half of August and the first half of September (Meshkova & Sokolova, 2017).

Attempts are known to evaluate insect injuriousness in different regions with the main aim to substantiate the measures on forest protection (Kulman, 1971, Lyerusalimov, 2004). It was evaluated by crown condition, phytomass of individual organs, radial increment, mortality etc. (Langstrom et al., 1998, Lyytikainen, 1994). To a lesser extent, the changes in stem shape and the associated timber defects were taken into account (Yermakova & Bessonova, 2010).

Simulated defoliation and debudding is one of the ways to evaluate qualitative and quantitative influence of animal damage on tree condition (Hjällén, 2004, Lehtila & Boalt, 2004, Quentin et al., 2010). Such studies on different tree species (Langstrom et al., 1990, 1998, Rozhkov et al., 1991, Chen et al., 2002, Varnagiryte-Kabašinskiene et al., 2015), especially Scots pine (Pinus sylvestris L.) (Lyytikainen-Saarenmaa, 1994, 1999, 2002, Wallgren et al., 2014, Nilsson et al., 2016) are very important for Ukraine, where this forest species grows in the 33% of territory.

It was proved (Lyytikainen-Saarenmaa, 1999) that tree reaction on artificial and natural defoliation does not differ, if the needles are removed gradually and in the dates of actual insect feeding. Simulation of buds, branches or roots damage was studied less (Langstrom et al., 1990, Honkanen et al., 1994). Methodological approaches to simulate pine tree damage by insects and to study its effect on tree growth and health condition have been developed and tested in Forest Steppe and Steppe zones in Ukraine (Meshkova et al., 2015). A score for different types of foliage, buds, shoots, branches, stem and root damage was suggested as well as the principles of damage assessment (Meshkova, 2016).

The aim of this research was to evaluate the dependence of Scots pine seedlings mortality and height increment on artificial and large pine weevil caused bud damage.

Objects and methods. Research was carried out in 2013–2017 in two-six-year old Scots pine plantations in the State Enterprise «Zmiyivske Forest Economy».

Over 1000 seedlings were individually marked with soft plate labels in April 2013, considering possible plant damage by unexpected causes, including mechanical damage during weeding or foliage diseases.

For 100 second-year old seedlings were randomly selected for each of two variants with manually removing of buds. In one of them apical buds were manually removed and in other variant apical and lateral buds were manually removed. The dates of such treatment coincided with beginning of large pine weevil maturation feeding and pine shoot growth (Meshkova & Sokolova, 2017).

Such dates were recognized also by needles color change from a yellowish and dull green on a bright green (Meshkova et al., 2015).

The rest labeled seedlings were inspected once a month (end of May, end of June and end of July) in 2013 and once a year (the end of July) in 2014, 2015, 2016 and 2017. Height increment was measured and mortality was registered during such inspection.

Such dates of inspection were chosen considering Scots pine shoot growth timing in the region. It was the most intensive in May and continued up to the end of June. The buds of new generation were formed in July (Meshkova et al., 2015).

At the end of experiment, revision of all records gave the possibility to reject all pines with unplanned damage or disease as well as the plants with buds damage later than in 2013. In result eight groups of 50 pines each with recorded damage history for five years, were selected.

1. Undamaged (control) plants.
2. Apical bud manually removed.
3. Apical and all lateral buds manually removed.
4. Up to 20 % of lateral buds damaged by large pine weevil (low damage).
5. 20–50 % of lateral buds damaged by large pine weevil (moderate damage).
6. Apical bud damaged by large pine weevil (moderate damage).
7. Apical and over 50 to 70 % of lateral buds damaged by large pine weevil (high damage).
8. Apical and over 70 % lateral buds damaged by large pine weevil (high damage).
Plants for variants 4–8 were selected according to the scale (Table 1) (Meshkova, 2016), but groups 7 and 8 were considered as high damage.

Analysis of Scots pine seedlings mortality and height increment in different dates included descriptive statistics. Height increment of Scots pine seedlings in different variants was compared by analysis of variance (ANOVA). Seedlings mortality (percentages) was converted to radians, and the actual value of the Fisher test F was evaluated by formula (1):

$$ F = \left(\phi_1 - \phi_2 \right)^2 \times \frac{n_1 \times n_2}{n_1 + n_2}, $$

where ϕ_1 and ϕ_2 were the radian values of seedling mortality in compared samples, and n_1 and n_2 were respective sample sizes. The actual value of the Fisher test was compared with the tabulated value for $\text{df}_1 = 1$; $\text{df}_2 = n_1 + n_2 - 2$ (Atramentova & Utevskaya, 2008). All statistical analyses were performed using Microsoft Excel applications.

Table 1

| Intensity of buds damage in unclosed pine plantations (after Meshkova, 2016) |
|---|---|---|---|
| Low (1 point) | Moderate (2 points) | Considerable (3 points) | High (4 points) |
| Only lateral buds damaged, up to 20% of the total | – only apical bud damaged; 20-50% of lateral buds damaged | Apical bud and up to 70% lateral buds damaged | Apical bud and over 70% lateral buds damaged |

Results and discussion. Development of new buds in Scots pine seedlings started at the end of April. In the variants with manually bud removal or large pine weevil damage, new shoots developed since the beginning of May depending on kind of damage. Removal or damage up to 50% lateral buds did not affect the growth. In the case of removal of apical bud in the central shoot, it was replaced with one of the lateral shoots (Fig. 1). Many accessory buds and bundles of shoots developed in the case of considerable part of buds removing or damaging (Fig. 2).

Over 20 new buds were formed in some pines with removal of apical and lateral buds. However, the next year the most of these buds have dried.

Both manually buds removal and large pine weevil damage of Scots pine seedlings in the 3rd decade of April caused their mortality during shoot growth period (in May–July), which considerably exceeded natural mortality of undamaged plants (Fig. 3).

![Fig. 1. Scots pine seedlings in the 3rd decade of May after apical buds removal in the 3rd decade of April](image1)

![Fig. 2. Development of new buds on the stem of Scots pine seedling after removal buds in the 3rd decade of April](image2)
Plant mortality in variants with damage of apical buds and 50 or 70 % of lateral buds was not significantly different.

Mortality of the plants with up to 50 % of lateral buds damaged in 2013 was 76 % in the first year and increased up to 80 % in 2016.

Mortality of the plants with 20 % of lateral buds damaged in 2013 did not differ from that in undamaged plants (see Fig. 4).

In the first year of experiment the growth of apical shoots of Scots pine continued mainly since beginning of May to the end of June. However, it continued also in July in variants, where apical buds were removed at the end of April (Fig. 5).

Height increment of undamaged Scots pine plants was 14.2; 20.1 and 20.6 cm at the end of May, June and July 2013 and did not differ significantly from that in the variants with 20 % or 50 % of lateral buds damaged (in May $F_{fact.} = 0.2; F_{0.05} = 3.1$; in June $F_{fact.} = 0.7; F_{0.05} = 3.1$; in July $F_{fact.} = 0.4; F_{0.05} = 3.1$).

Height increment of plants with apical buds removed or damaged was significantly lower (see Fig. 5).

In the frame of moderate level of damage significant difference was absent by plant mortality at the end of May ($F_{fact.} = 1.0; F_{0.05} = 4.1$) and at the end of June ($F_{fact.} = 0.3; F_{0.05} = 4.1$) between variants of up to 50 % of lateral buds damaged and apical buds damage. However such difference became significant in July ($F_{fact.} = 5.4; F_{0.05} = 4.1$).

In the frame of high level of damage significant difference was absent during shoot growth period in the first year of experiment between variants of damage of apical and over 50 % lateral buds and damage of apical apical and over 70 % lateral buds.

Analysis shows, that Scots plant seedlings mortality slowly increased during the next four years, and differences between variants stayed almost the same as in the first season (Fig. 4).

Fig. 3. Mortality of two-year-old Scots pine seedlings during shoot growth period in the first year of experiment (2013) on buds manually removal or their damage by large pine weevil

Fig. 4. Mortality in 2013–2017 of two-six-year old Scots pine seedlings in different variants of buds manually removal or their damage by large pine weevil

Fig. 5. Height increment of two-year-old Scots pine seedlings during shoot growth period in the first year of experiment (2013) on buds manually removal or their damage by large pine weevil

The plants with apical and lateral buds removed as well as with apical and over 70 % lateral buds damaged have died in the first season (see Fig. 3). The plants with apical buds damaged by large pine weevil have died on the 5th year (in 2017). The plants with apical buds damaged as well as the plants with apical and over 50 % lateral buds damaged have died on the 4th year (in 2016).
and in June it was 3.1; 2.4 and 0.9 cm in respective variants ($F_{0.05} = 20.8; F_{0.05} = 3.2$).

In July four living plants were found in the variant with apical and over 50% lateral buds removed.

Annual height increment of undamaged pines increased for 2013-2017 from 20.6 to 41.1 cm (Fig. 6). In 2014 the height increment of plants in the variant with 50% lateral buds removed in 2013 (29.4 cm) was significantly greater than in undamaged plants (26.7 cm) ($F_{0.05} = 3.2; F_{0.05} = 3.1$). However, the differences between damage of 20 and 50% of lateral buds were not significant ($F_{0.05} = 0.4; F_{0.05} = 4.0$).

The same feature for height increment in the mentioned variants was revealed for 2015 ($F_{0.05} = 11.4; F_{0.05} = 7.7$) and in 2016 height increment in the variant of 20% of lateral buds removal was significantly less, than in undamaged plants and in plants with 50% of lateral buds removal ($F_{0.05} = 11.9; F_{0.05} = 3.1$).

We can suggest that growth increment in the next years after damage does not depend on damage way and intensity but mainly on ecological conditions.

References

Atramentova, L. A., & Utevskaya, O. M. (2008). Statistical methods in biology. Gorlovka (In Russian).

Chen, Z., Kolb, T. E., & Clancy K.M. (2002). Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings. J. Econ. Entomol., 95, 587-594.

Hjältén, J. (2004). Simulating herbivory: problems and possibilities. In: Weisser, W. W. & Siemann, E. (Eds.). Insects and ecosystem function, Springer-Verlag, Berlin, Germany, 243-256.

Honkanen, T., Haukioja, E., & Suomela, J. (1994). Effects of simulated defoliation and debudding on needle and shoot growth in Scots pine (Pinus sylvestris): implications of plant source/sink relationships for plant-herbivore studies. Functional Ecology, 631-639. DOI: 10.2307/2389926

Iyerusalimov, Ye. N. (2004). Zoogenic defoliation and the forest community. M.: KMK (In Russian).

Kulman, H. M. (1971). Effects of insect defoliation on growth and mortality of trees. Annual Review of Entomology, 16, 289-324.

Långström, B., Piene, H., Fleming, R., & Hellqvist, C. (1998). Shoot and needle losses in Scots pine: experimental design and techniques for estimating needle biomass of undamaged and damaged branches. M. L. McManus & A. M. Liebhold, editors. Proceedings: Population dynamics, impacts, and integrated management of forest defoliating insects. USDA Forest Service General Technical Report NE-247, 230-246.

Langstrom, B., Tenow, O., Ericsson, A., Hellqvist, C., & Larsson, S. (1990). Effects of shoots pruning on stem growth, needle biomass, and dynamics of carbohydrates and nitrogen in Scots pine as related to season and tree age. Can. J. For. Res., 20, 514-523.

Lehtila, K., & Boalt, E. (2004). The use and usefulness of artificial herbivory in plant-herbivore studies. Ecological Studies. /W.W. Weisser & E. Siemann (Eds.), 173, 257-275.
В. Л. Мєшкова, І. М. Соколова, С. О. Єрошенко, Л. М. Коваль. Вплив ручного вилучення бруньок та їхнього пошкодження великих соснових довгоносиком (*Hylobius abietis L.*) на сіянці сосни звичайної у Придніпровських борах

В. Л. Мешкова1, І. М. Соколова2, С. О. Єрошенко3, Л. М. Коваль 4

Великий сосновий довгоносик (*Hylobius abietis L.*) пошкоджує різні органи саджанців сосни звичайної (*Pinus sylvestris L.*) у незімкнених лісових культурах, зокрема хвою, бруньки, кору стовбурів і коренів. Імітація пошкодження відповідних органів, зокрема відривання бруньок, є одним із шляхів оцінювання якісного та кількісного впливу такого пошкодження на стан дерева.

Мета дослідження — оцінити залежність відпавду та приросту за висотою саджанців сосни звичайної від інтенсивності штучного та спричиненого великим сосновим довгоносиком пошкодження бруньок.

Дослідження здійснено впродовж 2013-2017 рр. у 2-6-річних соснових культурах державного підприємства «Зміївське лісове господарство».

Дослід здійснювався впродовж 2013-2017 рр. в 2-6-річних лісах соснових культур державного підприємства «Зміївське лісове господарство».

Дослід охоплював непошкоджені саджанці сосни (контроль), два варіанти з вилученням бруньок со- сни вручну (вилученням термінальних бруньок і

1 Мєшкова Валентина Львівна — академік Лісівничої академії наук України, доктор сільськогосподарських наук, професор, Український науко-дослідний інститут лісового господарства та агролісомеліорації ім. Г. М. Висоцького, вул. Пушкінська, 86, Харків, 61024, Україна. Тел.: +38(097)371-94-58. Е-mail: Valentinameshkov@gmail.com
2 Соколова Ірина Миколаївна — кандидат сільськогосподарських наук, старший науковий співробітник, Український науково-дослідний інститут лісового господарства та агролісомеліорації ім. Г. М. Висоцького, вул. Пушкінська, 86, Харків, 61024, Україна. Тел.: +38(095)-358-99-91. Е-mail: sok.ef.ir@gmail.com
3 Єрошенко Сергій Олександрович — спеціаліст Держпродспоживслужби Луганської області, вул. Пивоварова, 2, Сєверодонецьк, Луганська обл., 91408, Україна. Тел.: +38(098)-232-78-00. Е-mail: s4804@yandex.ua
4 Коваль Лев Миколайович — аспірант Харківського національно- го аграрного університету ім. В. В. Докучаєва. 62483, Україна, п.в. «Докучаївське-1», Харківський район, Харківська обл. Тел.: +38(097)-299-79-87. Е-mail: lesichka81@mail.ru
вилученням термінальної та всіх латеральних бруньок), а також варіанти різних типів і рівня пошкоджень бруньок велиkim сосновим довгоносиком: до 20% латеральних бруньок; 20-50% латеральних бруньок; термінальні бруньки; термінальні бруньки та 50-70% інших латеральних бруньок; термінальні бруньки та понад 70% латеральних бруньок.

Ріст термінальних пагонів саджанців сосни звичайної на дослідних ділянках регулювали від початку травня до кінця червня. Пошкодження бруньок відбувається з використанням різних організмів: від різних типів і рівня пошкодження. У липні приріст саджанців у варіанті, де бруньки були вилучені вручну або пошкоджувалася великий сосновий довгоносик, достовірно не відрізнявся від приросту непошкоджених рослин. Відповідно, приріст за висотою був достовірно більшим у варіанті, де бруньки були вилучені вручну або пошкоджені велиkim сосновим довгоносиком до 20%. Саджанці, в яких були вилучені термінальні й латеральні бруньки або термінальні та понад 50% латеральних бруньок, загинули на четвертий рік після пошкодження бруньок.

Відпад саджанців сосни звичайної, в яких було пошкоджено 20% латеральних бруньок, достовірно не відрізнявся від відпаду непошкоджених рослин. Саджанці, в яких були вилучені термінальні й латеральні бруньки, а також саджанці, в яких були вилучені термінальні та понад 70% латеральних бруньок були пошкоджені великим сосновим довгоносиком, загинули у рік вилучення або пошкодження бруньок. Саджанці, в яких були пошкоджені термінальні бруньки або термінальні й латеральні бруньки, загинули на четвертий рік після пошкодження. Приріст за висотою був достовірно більшим у варіанті, де бруньки були вилучені вручну або пошкоджені великим сосновим довгоносиком до 20%. Саджанці, в яких були вилучені термінальні й латеральні бруньки, загинули у рік вилучення або пошкодження бруньок. Саджанці, в яких були пошкоджені термінальні й латеральні бруньки, загинули на четвертий рік після пошкодження. Приріст за висотою був достовірно більшим у варіанті, де бруньки були вилучені вручну або пошкоджені великим сосновим довгоносиком до 20% латеральних бруньок; 20-50% латеральних бруньок; термінальні бруньки або термінальні та понад 50% латеральних бруньок, загинули на четвертий рік після пошкодження. Приріст за висотою був достовірно більшим у варіанті, де бруньки були вилучені вручну або пошкоджені великим сосновим довгоносиком до 20% латеральних бруньок; 20-50% латеральних бруньок; термінальні бруньки або термінальні та понад 50% латеральних бруньок, загинули на четвертий рік після пошкодження.

Вилучення вручну або пошкодження великим сосновим довгоносиком до 50% латеральних бруньок не впливало на приріст саджанців сосни звичайної. Приріст за висотою саджанців сосни звичайної залежить не від способу та інтенсивності вилучення, а переважно від екологічних умов. Можливо припустити, що приріст за висотою саджанців сосни звичайної залежить не від способу та інтенсивності вилучення, а переважно від екологічних умов.

Ключові слова: *Pinus sylvestris* L.; незімкнені 2-6-летніх соснових культур, в том чисел хвою, почки, кору стволов *Pinus sylvestris* L.) повреждает разные органы саженцев сосны обыкновенной (*Pinus sylvestris* L.) в несомкнутых культурах, в том числе хвою, почки, кору стволов и корней. Имитация повреждения этих органов, в частности отрыва почек, даёт возможность оценить качественное и количественное влияние повреждения на состояние дерева.

Цель исследования – оценить зависимость отпала и прироста по высоте саженцев сосны обыкновенной от интенсивности искусственного и вызванного большим сосновым довгоносиком повреждения почек.

Исследования проведены в 2013-2017 гг. в 2-6-летних сосновых культурах государственного предприятия «Змиевское лесное хозяйство». Опыт включал неповреждённые саженцы (контроль), два варианта с удалением почек вручную (удаление только терминальной почки, удаление терминальной и всех латеральных почек), а также варианты разных видов повреждения почек большим сосновым довгоносиком: до 20% латеральных почек; 20-50% латеральных почек; только терминальных почек; терминальных и 50-70% латеральных почек; терминальных и свыше 70% латеральных почек.

Рост терминальных побегов саженцев сосны обыкновенной на опытных участках оценивали с начала мая до конца июня. Развитие новых побегов саженцев, почки которых удаляли вручую или повреждали большой сосновый довгоносик, начиналось в начале мая и продолжалось в июле.

1 Мешкова Валентина Львовна – академик Лесной академии наук Украины, доктор сельскохозяйственных наук, профессор, Украинский научно-исследовательский институт лесного хозяйства и агролесомелиорации им. Г. Н. Высоцкого, ул. Пушкинская, 86, Харьков, 61024, Украина. Тел.: +38(097)371-94-58. E-mail: Valentynameshkova@gmail.com
2 Соколова Ирина Николаевна – кандидат сельскохозяйственных наук, старший научный сотрудник, Украинский научно-исследовательский институт лесного хозяйства и агролесомелиорации им. Г. Н. Высоцкого, ул. Пушкинская, 86, Харьков, 61024, Украина. Тел.: +38(095)-358-99-91. E-mail: sok.ef.ir@gmail.com
3 Ерошенко Сергей Александрович – специалист Госпродпотребслужбы Луганской области. ул. Пивоварова, 2, Северодонецк, Луганская обл., 93408, Украина. Тел.: +38(098)-232-78-00. E-mail: s4804@yandex.ua
4 Коваль Леся Николаевна – аспирантка Харьковского национального аграрного университета им. В. В. Докучаева. 62483, Украина, п.о. «Докучаевское-1», Харьковский район, Харьковская обл. Тел.: +38(097)-299-79-87. E-mail: lesichka81@mail.ru
Отпад саженцев сосны обыкновенной, у которых было повреждено 20% латеральных почек, достоверно не отличался от отпада неповрежденных растений. Саженцы, у которых вручную были удалены терминальные и латеральные почки, а также саженцы, у которых терминальные и свыше 70% латеральных почек были повреждены большим сосновым долгоносиком, погибли в год удаления или повреждения почек. Саженцы, у которых были повреждены терминальные почки или терминальные и свыше 50% латеральных почек, погибли на четвертый год после повреждения.

Удаление вручную или повреждение большим сосновым долгоносиком до 50% латеральных почек не влияет на прирост саженцев сосны обыкновенной. Прирост по высоте саженцев, у которых терминальные почки были удалены вручную или повреждены большим сосновым долгоносиком, достоверно не отличался в мае и июне года нанесения такого повреждения. В июле прирост саженцев по высоте был достоверно большим в варианте, где терминальную почку удаляли вручную.

Проведенные исследования подтверждают, что предложенная ранее шкала оценки уровня повреждения почек саженцев сосны обыкновенной удовлетворительно отражает уровни вредоносности большого соснового долгоносика.

Можно предположить, что прирост по высоте саженцев сосны в следующие годы после повреждения почек зависит не от способа и интенсивности повреждения, а преимущественно от экологических условий.

Ключевые слова: сосна обыкновенная (Pinus sylvestris L.); несомкнутые культуры; терминальная почка; латеральные почки; искусственное удаление почек; большой сосновый долгоносик (Hylobius abietis L.); отпад саженцев, прирост по высоте.