Cactus protein degradation mediates

Drosophila dorsal–ventral signaling

Marcia P. Belvin, Yishi Jin, and Kathryn V. Anderson

Division of Genetics, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720 USA

Dorsal–ventral patterning in the *Drosophila* embryo relies on a signal transduction pathway that is similar to a signaling pathway leading to the activation of the mammalian transcription factor NF-κB. Stimulation of this *Drosophila* pathway on the ventral side of the embryo causes the nuclear translocation of Dorsal, the *Drosophila* NF-κB homolog. Cactus, like its mammalian homolog IκB, inhibits nuclear translocation by binding Dorsal and retaining it in the cytoplasm. We show that Cactus, like IκB, is rapidly degraded in response to signaling. More importantly, signal-dependent degradation of Cactus does not require the presence of Dorsal, indicating that Cactus degradation is a direct response to signaling, and that disruption of the Dorsal/Cactus complex is a secondary result of Cactus degradation. Mutant alleles of *cactus* that encode more stable forms of the protein block signaling, showing that efficient degradation is necessary for signaling. We find that Cactus protein stability is regulated by two independent processes that rely on different regions within the protein: signal-dependent degradation requires sequences in the amino terminus or ankyrin repeats, whereas signal-independent degradation of free Cactus requires the carboxy-terminal region of the protein that includes a PEST sequence.

[Key Words]: Cactus, IκB, NF-κB, protein degradation, dorsal–ventral patterning

Received January 17, 1995; revised version accepted February 27, 1995.

Signal transduction pathways that mediate the responses of eukaryotic cells to extracellular signaling molecules generally involve covalent modifications of cytoplasmic proteins. Protein phosphorylation, mediated either by receptor tyrosine kinases or by cytoplasmic kinases that associate with activated receptors, is the best understood of these signal-induced modifications. Recent data have suggested that a different kind of covalent change, protein degradation, may play an important role in at least one kind of signal transduction pathway, the pathway that leads to the activation of the transcription factor NF-κB.

NF-κB, a mammalian transcription factor originally identified in B cells, but subsequently found in several nonimmune cell types, is activated rapidly by a posttranslational mechanism in response to a variety of extracellular stimuli [Blank et al. 1992; Grilli et al. 1993]. Inactive NF-κB is retained in the cytoplasm by its inhibitor, IκB, and migrates into the nucleus when the NF-κB/IκB complex dissociates in response to several cytokines, including interleukin-1 [IL-1] and tumor necrosis factor [TNFα] [Sen and Baltimore 1986; Baeuerle and Baltimore 1988; Beg et al. 1993]. IκB family members share a block of ankyrin repeats that mediate binding to NF-κB and mask the NF-κB nuclear localization signal [Ganchi et al. 1992; Henkel et al. 1992; Beg and Baldwin 1993], providing an explanation for why NF-κB/IκB complexes remain cytoplasmic while free NF-κB is nuclear.

Recent work using mammalian tissue culture cells has shown that IκB is rapidly degraded in response to signaling, and that this degradation correlates with NF-κB activation [Beg et al. 1993; Henkel et al. 1993; Miyamoto et al. 1994; Palombella et al. 1994; Traenckner et al. 1994]. Several calpain and proteasome inhibitors stabilize IκB and block NF-κB activation, indicating that IκB degradation is necessary for activation of NF-κB [Miyamoto et al. 1994; Traenckner et al. 1994; Lin et al. 1995]. In some of these experiments, the stabilized form of IκB is a more highly phosphorylated form, suggesting that phosphorylation of IκB in the complex in response to signaling precedes its degradation.

The *Drosophila* dorsal–ventral signal transduction pathway is comprised of 12 known maternal effect genes. The end result of the activity of this pathway is the nuclear localization of the transcription factor Dorsal on the ventral side of the embryo. Three components of this pathway, Toll, Cactus, and Dorsal, are homologous to members of the IL-1/NF-κB pathway. The cytoplasmic domain of Toll, a transmembrane receptor protein, is homologous to the cytoplasmic domain of the mammalian IL-1 receptor [Hashimoto et al. 1988; Schneider et al. 1991]. Dorsal and Cactus are homolo-

1Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA.

2Corresponding author.
gous to NF-κB (Steward 1987) and IκB (Geisler et al. 1992; Kidd 1992), respectively. Localized ventral activation of the Toll receptor causes disruption of the Dorsal/Cactus complex and the subsequent nuclear localization of Dorsal, just as activation of the IL-1 receptor leads to the disruption of the NF-κB/IκB complex and the nuclear localization of NF-κB. Neither signal-induced phosphorylation nor signal-dependent degradation of the Drosophila IκB homolog Cactus has been observed previously (Whalen and Steward 1993). However, given the homology that exists between the Drosophila and mammalian pathways, it seems likely that degradation of Cactus could also be linked to the activation of Dorsal.

The early Drosophila embryo provides a unique opportunity to dissect the in vivo response of Cactus and Dorsal to signaling. By activating the pathway at a precise time by microinjection of the activating extracellular ligand, Spätzle, we show that Cactus, like IκB, is rapidly degraded in vivo in response to signaling. Taking advantage of Drosophila mutants, we show that signal-induced Cactus degradation can occur in the absence of Dorsal, indicating that degradation of the Cactus protein is a direct result of signaling, rather than a secondary consequence of separation of the Dorsal/Cactus complex. We find that mutant alleles of Cactus that increase its stability block signaling, confirming that destruction of Cactus is necessary for signaling. These mutant alleles also reveal that Cactus protein turnover is regulated by two independent processes: signal-independent degradation of free Cactus, which requires the carboxy-terminal PEST region of the protein, and signal-dependent degradation, which is mediated by more amino-terminal regions of the protein.

Results

Signaling causes rapid degradation of wild-type Cactus

To test whether Cactus, like IκB, is degraded in response to signaling, we activated the dorsal–ventral signaling pathway at a controlled time by injecting embryos with processed Spätzle, the putative Toll ligand (Morisato and Anderson 1994; Schneider et al. 1994; Fig. 1C). An activated, processed form of the Spätzle protein can activate Toll when it is injected into the extracellular (perivitelline) space of early embryos (Schneider et al. 1994). Therefore, to stimulate the pathway, we injected activated Spätzle protein into the perivitelline space of syncytial blastoderm embryos. In the 1- to 1.5-hr embryos used, all of the components required for signaling are present, and localized endogenous signaling is just beginning. After a short incubation, the embryonic cytoplasm was harvested and the Cactus protein was analyzed by Western blot. We observed rapid degradation of Cactus in response to injection of activated Spätzle (Fig. 1A); >75% of the Cactus protein was degraded in the first 15 min after injection. In control injections with water, Cactus was not detectably degraded in the 30 min following injection (data not shown).

To test whether the Cactus degradation that we observed was specific to the dorsal–ventral pathway, we repeated these injections into embryos from Toll- (T1-) females. Because activated Spätzle is postulated to bind and activate the Toll receptor, it should not stimulate signaling in an embryo lacking Toll. Figure 1B shows that injection of activated Spätzle into T1- embryos did not cause degradation of Cactus. Therefore, the signal-dependent degradation of Cactus that we observe in
The sequence of tube does not suggest a biochemical function (Letsou et al. 1991); pelle appears to encode a cytoplasmic serine/threonine kinase (Shelton and Wasserman 1993). We found that in embryos from tube− (tub−) and pelle− (pll−) females, Cactus does not degrade in response to signaling [Fig. 1B]. Therefore, signal-dependent degradation of Cactus is mediated by all of the genetically defined components of the pathway that act between Spätzle and dorsal/cactus in the pathway.

Cactus is rapidly degraded in response to signal even in the absence of Dorsal

When the rapid degradation of IκB in response to TNFα is blocked by calpain inhibitors, IκB becomes phosphorylated but does not dissociate from NF-κB [Miyamoto et al. 1994]. One interpretation of this result is that the degradation of IκB in response to signal takes place when it is in the complex. However, in the absence of inhibitors, it has not been shown whether degradation of IκB is a direct response to in vivo signaling or occurs as a secondary consequence of IκB becoming separated from NF-κB. To differentiate between these two possibilities for Cactus and Dorsal, we wanted to assay the response of Cactus to injection of activated Spätzle into embryos lacking Dorsal protein. If Cactus is a direct target for signaling, then activation of the signaling pathway should cause rapid degradation of Cactus even in the absence of Dorsal. If Cactus is degraded only as a consequence of being separated from Dorsal, then the level of Cactus protein in the absence of Dorsal should be unresponsive to signaling.

A complication of this experiment is that that there is no detectable maternal Cactus protein in embryos or oocytes lacking Dorsal [Fig. 2, lane 1; Whalen and Stewart 1993; Kidd 1992], suggesting that Cactus is unstable when not bound to Dorsal even prior to signaling. We found, however, that it is possible to produce Cactus protein in embryos lacking Dorsal protein, that is, embryos laid by dorsal− (dl−) females, by injecting in vitro-synthesized cactus RNA into the cytoplasm of these embryos and allowing translation in vivo [Fig. 2, lanes 2,4]. To test the effect of signaling, activated Spätzle was injected into the perivitelline space of the embryos after translation of Cactus had begun [Fig. 2, lanes 3,5]. We observed that Cactus was degraded in response to signaling at roughly the same rate in the embryos from dl− females as in embryos from wild-type females [cf. Fig. 2, lanes 2−5 with Fig. 1A], whereas it continued to accumulate in the absence of signaling [Fig. 2, lanes 2,4]. We conclude that free Cactus is as effective a substrate for signal-dependent degradation as Cactus in the Dorsal–Cactus complex, indicating that Cactus degradation is a direct consequence of signaling.

This experiment also revealed that two kinds of degradation control the level of Cactus protein in the embryo: signal-dependent and signal-independent degradation. Signal-independent degradation eliminates free Cactus, so that essentially all of the Cactus in the embryo is complexed with Dorsal. Signal-dependent degradation destroys Cactus, whether or not it is complexed with Dorsal. Signal-dependent degradation of Cactus must be more rapid than signal-independent degradation, because we observed that the amount of Cactus in embryos lacking Dorsal was decreased dramatically by exposure to signal, even though both injected and control embryos were subject to signal-independent degradation [e.g., cf. Fig. 2, lanes 4 and 5].

A more stable mutant form of Cactus inhibits signaling

These experiments showed that Cactus protein stability is controlled by both signal-dependent and signal-independent degradation but did not test whether degradation of Cactus is necessary for signaling. We isolated an unusual allele of cactus, cactus, on the basis of its ability to block signaling. This mutant allowed us to investigate the importance of Cactus stability in proper signaling.

In a large-scale genetic screen for suppressors of a dominant, ventralizing allele of easter, easter, one suppressor mutation was isolated. Easter acts genetically upstream of Spätzle and is homologous to serine proteases (Chasan and Anderson 1989; Morisato and Anderson 1994). All of the embryos [100%] laid by easter females are moderately ventralized [Jin and Anderson 1990], whereas Su+/+, easter females produced 50% wild-type, hatching lar-
Belvin et al.

vae and 50% unhatched embryos with an apparently wild-type cuticular phenotype (Fig. 3A). The Su mutation also suppresses ventralizing mutations of several other dorsal group genes, including Toll [Fig. 3B], spätzle, and cactus (data not shown), demonstrating that the suppressor is not specific to easter but, instead, inhibits the activity of the pathway.

The Su mutation mapped by recombination to the second chromosome between b and pr, a region including the dorsal and cactus genes. However, the Su mutation complemented both dorsal and cactus, as well as all available deficiencies in this interval, suggesting that it could be a gain-of-function allele. To obtain loss-of-function alleles at this locus we carried out a genetic screen to revert the suppressing effect of the mutation (Materials and methods). We obtained four revertants that were no longer able to suppress ea831 and mapped to the same site as Su. Three of these revertants failed to complement loss-of-function cactus alleles. We therefore concluded that the Su mutation was a gain-of-function allele of cactus and renamed it cactSu.

Despite the ability of cactSu to act as a strong dominant suppressor, it had no phenotype on its own: cactSu/cactSu flies are fully viable, and females produce wild-type embryos. The lack of an obvious effect on dorsal-ventral patterning by cactSu was perplexing, given its strong suppression of ventralization. To look for more subtle effects of the mutation, we examined the Dorsal gradient in embryos from cactSu/cactSu females by examining sections stained with an anti-Dorsal antibody. Figure 4 shows that there is a reduction in the extent of the dorsal gradient in cactSu/cactSu embryos compared with wild type. In wild-type embryos, 27% of the nuclei in the embryo circumference had high levels of nuclear Dorsal, whereas in cactSu/cactSu embryos this was reduced to 20%. The absence of a later embryonic phenotype indicates that there is enough regulative capacity in the patterning process to compensate for this reduction in the number of Dorsal-containing nuclei.

CactSu encodes a slightly truncated protein that appears to be more stable than wild-type Cactus

To determine the molecular basis of the cactSu activity, we used reverse transcription–PCR to amplify the cactus mRNA from ovarian RNA of cactSu females. The sequence revealed that the cactSu allele has a single base pair change in the 5' splice donor of intron six, which should render this splice site defective. The predicted protein lacks the seventh exon of the maternal cactus mRNA, which encodes 23 amino acids, and in its place has 5 amino acids encoded by intron 6 (Fig. 5A). This mutant protein is almost identical to the zygotic form of Cactus, a naturally occurring splicing variant expressed later in development (Fig. 5A; Kidd 1992).

To characterize the CactSu protein, we performed Western blots of 0- to 2-hr embryo extracts from embryos laid by wild-type, cactSu/+ , and cactSu/cactSu females. As predicted from the mRNA sequence, the CactSu protein is smaller than the wild-type maternal protein (Fig. 5B). Unexpectedly, we found that in embryos from cactSu/+ heterozygous females, there was 10 times as much CactSu protein as wild-type protein (Fig. 5B, lane 2), even though the amounts of wild-type and cactSu RNAs in these embryos were equal (data not shown).
Figure 4. cact^{Su} narrows the Dorsal gradient. Embryos (2.5–3.5 hr) laid by wild-type or cact^{Su}/cact^{Su} females were stained with Dorsal antibody and then sectioned. The extent of the Dorsal gradient [marked by arrows] was calculated as the percentage of nuclei around the embryonic circumference that stained strongly for nuclear Dorsal. In the wild-type embryos, 27±2% of the nuclei (24 of 91 in this section) contained Dorsal, whereas in embryos from cact^{Su}/cact^{Su} females only 20±2% of the nuclei (17 of 94 in this section) contained Dorsal. Four to six sections of each embryo were counted. Eight wild-type embryos and five cact^{Su}/cact^{Su} embryos were scored, and the results of all sections were averaged for each genotype.

Figure 5. Molecular characterization of cact^{Su} and cact^{APEST}. (A) Schematic diagram of the wild-type maternal Cactus, zygotic Cactus, Cact^{Su}, and Cact^{APEST} proteins [drawing is not to scale]. The ANKYRIN domain is a set of five conserved ankyrin repeats. The PEST domain is a region rich in Pro, Glu, Asp, Ser and Thr. The first residue after the PEST sequence in Cact^{Su} is Glu rather than Val in zygotic Cactus because of the EMS-induced base change (T → A at the second nucleotide in intron 6) at the splice junction. Cact^{APEST} lacks the entire PEST sequence, as well as the carboxy-terminal region deleted in Cact^{Su}. (B) Cactus Western blot of early embryo extracts from 0- to 2-hr embryos produced by wild-type, cact^{Su}/+, or cact^{Su}/cact^{Su} females. Arrows point to the wild-type Cactus [lane 1] and Cact^{Su} [lane 3] proteins. [Lane 2] In embryos from cact^{Su}/+ heterozygotes, there was ~10 times more Cact^{Su} protein than wild-type Cactus protein. (C) Cactus Western blot of cytoplasm from wild-type embryos injected with identical concentrations of cact^{+}, cact^{Su}, and cact^{APEST} RNA [Materials and methods], followed by a 20-min incubation to allow translation of the transcripts. The left-hand arrow points to the endogenous wild-type Cactus; the right-hand arrows point to the Cact^{Su} proteins in lane 2 [large arrow] and the Cact^{APEST} proteins in lane 3. After 20 min of translation there is approximately three times more Cact^{APEST} protein than wild-type Cactus present as calculated by densitometry. Note that both Cact^{Su} and Cact^{APEST} accumulate phosphorylated and unphosphorylated forms, indicating that this phosphorylation site[s] is not located in the carboxyl terminus.
type Cactus, yielding a ratio of CactSu/wild-type Cactus similar to what we observed.

Deleting the PEST sequence stabilizes Cactus and strongly inhibits signaling

The amino acids deleted in CactSu lie just carboxy-terminal to the PEST region of the protein (Fig. 5A; Geisler et al. 1992; Kidd 1992). PEST sequences are rich in Pro, Glu, Asp, Ser, and Thr and are thought to be associated with rapid protein turnover (Rogers et al. 1986; Rechsteiner 1990). One possible explanation for the apparently increased stability of CactSu is that the lack of sequences immediately adjacent to the PEST region interferes with the destabilizing function of the PEST sequence. In this view, removing the PEST sequence entirely might result in an even more stable protein.

To test whether the PEST sequence does affect Cactus stability, we constructed a mutant form of cactus, cactAPEST, in which both the seventh exon and the entire PEST sequence were deleted. The ankyrin repeat domain remained intact in this mutant (Fig. 5A). To compare the stability of the different Cactus proteins, we injected in vitro-synthesized transcripts of cact+, cactSu, and cactAPEST into wild-type embryos and allowed them to be translated in vivo. We then collected the cytoplasm from these embryos and analyzed it by Western blot. After 20 min of translation, there was more CactAPEST and CactSu than wild-type Cactus (Fig. 5C), even though equivalent concentrations of RNA were injected (Materials and methods). This suggested that CactAPEST and CactSu are both more stable than wild-type Cactus.

To test whether cactAPEST could block signaling like cactSu, we injected cactAPEST RNA transcripts into wild-type embryos. This resulted in weakly dorsalized embryos (Fig. 6), suggesting that the CactAPEST protein interfered with signaling. A stronger effect was seen when cactAPEST RNA was injected into cactSu/cactSu embryos, where 15% of the embryos were completely dorsalized (Fig. 6). This strong dorsalization was never observed with injection of cact+ or cactSu transcripts (data not shown). Therefore, CactAPEST is more effective at blocking signaling than CactSu and is capable of completely blocking all signaling in embryos.

CactSu and CactAPEST also degrade rapidly in response to signal

The above experiments showed that the more stable forms of Cactus, CactSu and CactAPEST, can block signaling. In principle, the ability to block signaling could reflect resistance to either signal-dependent or signal-independent degradation of Cactus. To determine whether CactSu and CactAPEST were more resistant to signal-dependent degradation than wild-type Cactus, we injected activated Sp\textsuperszel into embryos laid by females carrying these mutants. Activated Sp\textsuperszel elicited the rapid degradation of the CactSu protein at a similar rate as the wild-type protein (cf. Figs. 7A and 1A). There was more CactSu than wild-type Cactus per embryo at all time points, but the rate of degradation was approximately the same. Therefore, the CactSu protein, while encoding a more stable form of Cactus, is not resistant to signal-dependent degradation.

To test the response of CactAPEST to signaling, we made stable transfectants of cactAPEST (Materials and methods). When activated Sp\textsuperszel was injected into embryos from transformant females carrying one copy of the cactAPEST transgene and two wild-type copies of cactus, both CactAPEST and wild-type Cactus were degraded rapidly (Fig. 7B). Therefore, both CactSu and CactAPEST are degraded rapidly in response to signal.

CactSu and CactAPEST are resistant to signal-independent degradation

The previous experiments showed that CactSu and CactAPEST undergo normal rates of signal-dependent degradation. To test whether their greater stability might be caused by greater resistance to signal-independent degradation of free Cactus, we compared the level of protein present after injection of cact+, cactSu, and cactAPEST RNAs into embryos from dl- females prior to the normal time of signaling (Fig. 8). Because the mutant proteins were synthesized in the absence of Dorsal, and because no activated Sp\textsuperszel was injected, the proteins were subject to signal-independent but not signal-dependent degradation. Thirty minutes after injection, there
was much more CactSu and CactAPEST protein present than wild-type Cactus [Fig. 8, lanes 3, 6, 9] even though equivalent amounts of RNA were injected [Materials and methods]. Because cactSu contains the entire wild-type 5'- and 3'-untranslated regions, the observed difference in protein levels is most likely the result of the greater stability of the CactSu and CactAPEST proteins rather than differential translation. This result suggests that the CactSu and CactAPEST proteins are relatively insensitive to signal-independent degradation and that it is the resultant increase in free Cactus in the embryo that inhibits signaling.

Discussion

Signal-dependent degradation of Cactus

We have shown that Cactus is rapidly degraded in response to stimulation of the Drosophila dorsal-ventral signaling pathway. The mammalian homolog of Cactus, IKB, is degraded in response to signaling in tissue culture cells [Beg et al. 1993; Henkel et al. 1993; Palombella et al. 1994; Traenckner et al. 1994]. Our experiments in whole embryos demonstrate that rapid signal-dependent degradation of Cactus takes place in the intact organism.

Two plausible models could explain how Cactus is degraded in response to the signal. One model is that signaling causes dissociation of the Dorsal/Cactus complex by modifying either Dorsal or Cactus, and the resulting free Cactus is degraded by signal-independent degradation [see below]. The other model is that Cactus is degraded directly in the complex. Because Cactus is degraded in response to signal even in the absence of Dorsal, we conclude that Cactus degradation is a direct target of signaling. We infer that in the wild-type embryo, Cactus in the complex is degraded and that this degradation releases Dorsal, allowing it to move to the nucleus.

All of the genetically defined components that act upstream of cactus in the pathway, Toll, tube, and pelle, are required for signal-dependent degradation of Cactus, confirming that Cactus degradation is an integral step in this signaling pathway. However, the nature of these components does not clarify how Cactus protein is degraded in response to the signal. Genetic analysis has shown that tube acts downstream of Toll [Hecht and Anderson 1993] and pelle acts downstream of tube [Grosshans et al. 1994]. The pelle gene appears to encode a serine-threonine kinase [Shelton and Wasserman 1993], and because Cactus is a phosphoprotein, it could be a substrate for Pelle.

Rapid phosphorylation of IKB in response to signaling and prior to its degradation has been observed in response to IL-1 and TNF-α [Beg et al. 1993; Miyamoto et al. 1994; Traenckner et al. 1994]. Although we found that Pelle activity is required in vivo for Cactus degradation, we did not observe phosphorylation of Cactus in response to signaling. It is possible that such a phosphorylated form exists but was not detected by our methods because of its short half-life or because it did not cause a detectable mobility shift. Alternatively, Pelle might control Cactus degradation indirectly, phosphorylating an unknown intermediate in the pathway.

Our findings that the CactSu and CactAPEST mutants degrade rapidly in response to signaling demonstrate that the PEST sequence is not required for signal-dependent degradation of Cactus. This implies that there is another region of Cactus, located either in the amino terminus or
in the ankyrin repeats, that is required for rapid degradation in response to signaling.

Two kinds of degradation control Cactus protein levels

We have shown that Cactus protein stability is regulated at two levels (Fig. 9). The first level of regulation is the signal-dependent degradation described above. The second is signal-independent degradation of the Cactus protein that is not complexed with Dorsal. We found that in the absence of Dorsal, the Cact^Su and Cact^APESt proteins accumulate to a much higher level than wild-type Cactus protein after injection of equivalent amounts of RNA. Strong evidence that the greater accumulation of Cact^Su and Cact^APESt reflects increased stability rather than increased translation comes from the comparison of Cactus protein levels in embryos from cact^Su/cact^+ heterozygous females. In these embryos, the level of Cact^Su is greater than the level of Cact^+, and furthermore, the level of Cact^+ is 10-fold lower than in wild-type embryos. It is very unlikely that the decrease in Cact^+ is attributable to increased translation of Cact^Su. If, however, there is an equilibrium between free Cactus and Cactus in the Dorsal/Cactus complex, then because free Cact^Su is more stable than free Cact^+, it will accumulate preferentially over time.

Our experiments indicate that in the absence of Dorsal, wild-type Cactus turns over much more rapidly than Cact^Su and Cact^APESt. Because these mutants lack sequences in and near the PEST region, we infer that the PEST sequence is important for the degradation of free Cactus. The mechanism by which PEST sequences cause protein degradation is unknown; however, our finding that Cact^Su, which retains the entire PEST sequence but lacks the adjacent amino acids, is more stable than wild-type Cactus suggests that the conformation of the PEST region is important for its function.

Increasing the amount of free Cactus blocks signaling

The normal consequence of signal-independent degradation is to remove nearly all Cactus protein that is not complexed with Dorsal from the embryo. The Cact^Su and Cact^APESt proteins, which are resistant to signal-independent degradation, can effectively block signaling, revealing that excess free Cactus interferes with normal signaling. Free Cactus could block signaling in one of two ways. It could act as a buffer, binding to Dorsal after it is freed from the complex, decreasing its probability of translocating to the nucleus. Alternatively, free Cactus could compete with the Cactus in the Dorsal/Cactus complex for a limiting upstream component that targets Cactus for degradation, effectively titrating out the signal from upstream in the pathway.

A standing controversy in the field is whether the dorsal–ventral signaling pathway acts by modifying Dorsal, Cactus, or both. Our results show that signal-dependent degradation of Cactus does not require Dorsal, indicating that Cactus is a direct target of the pathway and suggesting that all signaling could be mediated via Cactus. However, even the strongest cactus mutants retain some residual dorsal–ventral polarity, with more Dorsal protein translocated into ventral than dorsal embryonic nuclei [Roth et al. 1991]. Because we obtained completely dor-

Figure 9. Model of the two forms of regulation of Cactus protein degradation. (Amino) Amino-terminus of Cactus; [ANK] ankyrin repeat domain; [P] PEST region. Signal-dependent degradation of Cactus, which requires the action of Toll, tube, and pelle, causes degradation of Cactus in the Dorsal/Cactus complex, leading to the liberation of free Dorsal, which then migrates into ventral nuclei. This type of degradation is mediated by more amino-terminal regions, because the Cact^APESt mutant is subject to signal-dependent degradation. [Right] Free Cactus that is not complexed with Dorsal is degraded by signal-independent degradation. The PEST sequence is important for this process, as the Cact^APESt mutant that lacks a PEST sequence is resistant to signal-independent degradation.
salized embryos with the stabilized forms of Cactus protein, this demonstrates that excess Cactus can effectively block all signaling. We therefore conclude that degradation of Cactus is necessary for any nuclear translation of Dorsal. Once Cactus is degraded, the additional modification of free Dorsal that has been observed (Gillespie and Wasserman 1994) may be required for Dorsal to achieve the highest nuclear concentrations.

The observation that Cactus, like IKB, is rapidly degraded in response to signaling strengthens the parallels between the mammalian and Drosophila signaling pathways. Given the similarities that exist between the two systems, our findings on Cactus may also apply to IKB. It should now be possible to test whether the level of IKB protein, like Cactus, is controlled by both signal-dependent and signal-independent processes, whether normal signaling targets IKB directly for degradation, and whether there is a specific kinase required for IKB degradation. We plan to continue to exploit the genetic interactions in Drosophila to elucidate the mechanisms of signal-dependent protein degradation.

Materials and methods

Fly strains and mutagenesis

Oregon-R was used as the wild-type stock. The easter alleles are described in Chasan and Anderson (1989) and Jin and Anderson (1990). For T1, tub-, pill-, and dl- females: TDP4Sr (Anderson et al. 1985), tubB556/Df(3R)X3M, pill4+/Df(3R)Ser+88B9 (Hecht and Anderson 1993), and dl+/Df(2L)119 (Roth et al. 1989) were used. Ethylmethane sulfonate (EMS) mutagenesis was carried out as described [Lewis and Bacher 1968]. To isolate suppressors of ea831, mutagenized ea831, knirps/TM3, tld106 males were crossed to ea1, tld106/TM1, knirps females. Balancers carrying the zygotic lethal mutations had been isolated previously (Ferguson and Anderson 1992). The only viable progeny from this cross were ea1, tld106/ea831, knirps males and females, which were placed in bottles and checked for fertility. The presence of ea1 in these flies ensured that intragenic suppressors would not be recovered, as ea1/ea males are sterile. Of 75,000 F1 females, one was fertile, which proved to be cactsu55. In the screen to generate revertants of cactsu, a transformation line was used that contained a dominant allele of easter, ea831, inserted on the second chromosome [Jin 1991]. cactsu/Cyo females were mutagenized with EMS and crossed to +/CyO females. Four thousand single F1 females of the genotype cactsu/Cyo were crossed to ea831,128/+/CyO females. The embryos laid by cactsu/ea831,128.1 F1 females were scored for ventralization. Four revertants were recovered, all four mapped to cactsu, and three of these were ventralized over cactsp9 (Roth et al. 1991).

Cuticle preparations

Embryos were collected for 24 hr and aged for another 24 hr to allow completion of embryonic development. The embryos were then dechorionated in bleach, dissected out of their vitelline membranes, fixed in 1:4 glycerol/acetic acid, and mounted in Hoyer’s medium diluted 1:1 with lactic acid. Injected embryos were allowed to develop for 36 hr after injection before cuticle preparations were made.

Embryo injections

Synthetic SP6 RNA transcripts were generated by in vitro transcription carried out in the presence of radioactively labeled ATP as described [Schneider et al. 1991] with the modification that two sequential 5 mM ammonium acetate/isopropanol precipitations were carried out followed by Cerenkov counting. The transcripts were diluted as necessary to ensure equivalent concentrations. For RNA injections, transcripts were injected into 1- to 1.5-hr embryos [Chasan and Anderson 1989]. Embryos were allowed to develop for cuticle preparations, or the cytoplasm was collected for Western analysis. Cytoplasm was collected by aspirating the contents of 15 embryos into the injection needle, avoiding any cytoplasm that had leaked out of the embryo after injection. The cytoplasm was deposited into the injection oil where it was recovered with a pipette and placed immediately in buffer on ice. The buffer was a:1 dilution of 20 mM HEPES [pH 7.5], 20 mM NaCl, 1 mg/ml of aprotonin, 1 mg/ml of leupeptin, 1 mg/ml of antipain, in 2X protein sample buffer [Ausubel et al. 1991] containing 10% 2-mercaptoethanol. A crude activated Spätzle preparation was made [Schneider et al. 1994], and a concentration equivalent to 150 U/ml, as described in Schneider et al. (1994) was used. The activated Spätzle injections were carried out in 2- to 2.5-hr embryos. For the sequential RNA and activated Spätzle injections, RNA was first injected into the cytoplasm as described above. The activated Spätzle was then injected into the perivitelline space on the dorsal side of the embryo as described [Schneider et al. 1994] using the same point of entry as for the RNA. Cytoplasm was collected for Western analysis as described above.

Antibody staining of embryos

Embryos (2.5- to 3.5-hr) were prepared and stained as described [Roth et al. 1989] using a 1:1000 dilution of rat anti-Dorsal antibody received from R. Steward [Rutgers University, Piscataway, NJ]. A goat anti-rat–horseradish peroxidase (HRP) secondary antibody was used; staining was detected with DAB. Embryos were embedded in Durcupan [Fluka] resin and sectioned (10 μm).

Cactus constructs and transformants

To sequence cactsu, ovarian RNA was isolated [Ashburner et al. 1989] from cactsu/cactsu females. An oligonucleotide (GAT CGA ATT CTG CTA CAT CCT TGT ATG TT) directed against the 3’ end of the cactus cDNA was used as a primer for reverse transcriptase, and RT-PCR was carried out [Ausubel et al. 1991] using this primer as the 3’ primer and CAT CGG ATC CAT TCG CTA TCG AAA CGT G as the 5’ primer. The 5’ primer contained a BamHI site, and the 3’ primer contained an EcoRI site for cloning into pSP64Poly[A] (Promega). Sequencing was performed according to Ausubel et al. (1991). Cactsu was constructed by PCR mutagenesis using TTT GCC CTC GCA AAC GAA as the 5’ primer and ACT CTC CGG ATC ATG AGG ACG as the 3’ primer. This inserted two tandem stop codons just prior to the PEST sequence. Agel, a site just downstream of the stop codons, and BspEI, an upstream site, were used to clone the mutant fragment into the wild-type vector. CaSpER and ps25.7wc were used to generate stable transformants [Ashburner 1989b].

Western blots

Samples were boiled for 5 min, spun at 13,000 rpm for 2 min, and run on a 7% polyacrylamide gel. The proteins were transferred onto nitrocellulose (Sigma) and probed with 1:1000 mouse anti-Cactus antibody from S. Kidd as described [Ausubel et al. 1991]. A goat anti-mouse HRP-conjugated antibody [Bio-
Acknowledgments

We are very grateful to Simon Kidd for providing Cactus antibody. We thank Ruth Stewart for providing Dorsal antibody and Robert Geisler for sending the sequence of Cactus prior to its publication. We thank Tanya Wolff, Don Rio, and members of the Anderson laboratory, especially Sima Misra, for helpful comments on the manuscript. This work was supported by an American Cancer Society grant (DB-42D) to K.V.A. and a National Institutes of Health predoctoral training grant to M.P.B.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Anderson, K.V., G. Jürgens, and C. Nüsslein-Volhard. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies in the role of the Toll gene product. Cell 42: 779–789.

Ashburner, M. 1989a. Drosophila: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

———. 1989b. Drosophila: A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl. 1991. Current protocols in molecular biology. John Wiley and Sons/Greene, New York.

Baeuerle, P.A. and D. Baltimore. 1988. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappaB transcription factor. Cell 53: 211–217.

Beg, A.A. and A.S. Baldwin Jr. 1993. The IκB proteins: Multifunctional regulators of Rel/NF-κB transcription factors. Genes & Dev. 7: 2064–2070.

Beg, A.A., T.S. Finco, P.V. Nantermet, and A.S. Baldwin Jr. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: A mechanism for NF-κB Activation. Mol. Cell Biol. 13: 3301–3310.

Blank, V., P. Kourilsky, and A. Israél. 1992. NF-κB and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem. Sci. 17: 135–140.

Chasan, R. and K.V. Anderson. 1989. The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56: 391–400.

Ferguson, E.L. and K.V. Anderson. 1992. Localized enhancement and repression of the activity of the TGF-β family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 114: 583–597.

Ganchi, P.A., S.C. Sun, W.C. Greene, and D.W. Ballard. 1992. IκB/MAD-3 masks the nuclear localization signal of NF-κB p65 and requires the transactivation domain to inhibit NF-κB p65 DNA binding. Mol. Biol. Cell 3: 1339–1352.

Geisler, R., A. Bergmann, Y. Hiromi, and C. Nüsslein-Volhard. 1992. cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IκB gene family of vertebrates. Cell 71: 613–621.

Gillespie, S.K. and S.A. Wasserman. 1994. dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol. Cell. Biol. 14: 3559–3568.

Grilli, M., I.J.-S. Chiu, and M.J. Lenardo. 1993. NF-κB and Rel: Participants in a multiformal transcriptional regulatory system. Int. Rev. Cytol. 143: 1–62.

Grosshans, J., A. Bergmann, P. Haftter, and C. Nüsslein-Volhard. 1994. Activation of the kinase Pelle by Tube in the dorso-ventral signal transduction pathway of Drosophila embryo. Nature 372: 563–566.

Hashimoto, C., K.L. Hudson, and K.V. Anderson. 1988. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52: 269–279.

Hecht, P.M. and K.V. Anderson. 1993. Genetic characterization of tube and pelle, genes required for signaling between Toll and dorsal in the specification of the dorsal-ventral pattern of the Drosophila embryo. Genetics 135: 405–417.

Henkel, T., U. Zabel, K. van Zee, J.M. Müller, E. Fanning, and P.A. Baeuerle. 1992. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68: 1121–1133.

Henkel, T., T. Machleidt, I. Alkalay, M. Krönke, Y. Ben-Neriah, and P.A. Baeuerle. 1993. Rapid proteolysis of IκBα is necessary for activation of transcription factor NF-κB. Nature 365: 182–185.

Jin, Y. 1991. “Generating dorsal-ventral asymmetry in the Drosophila embryo: Studies on the easter gene and the polarizing activity.” Ph.D. thesis, University of California at Berkeley, Berkeley, CA.

Jin, Y. and K.V. Anderson. 1990. Dominant and recessive alleles of the Drosophila easter gene are point mutations at conserved sites in the serine protease catalytic domain. Cell 60: 873–881.

Kidd, S. 1992. Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal Proteins. Cell 71: 623–635.

Kotsou, A., S. Alexander, K. Orth, and S.A. Wasserman. 1991. Genetic and molecular characterization of tube, a dorsoventral polarizing gene. Proc. Natl. Acad. Sci. 88: 810–814.

Lewis, E.B. and F. Bacher. 1968. Methods of feeding ethyl methane-sulfonate [EMS] to Drosophila males. Dros. Inf. Serv. 43: 193.

Lin, Y.-C., K. Brown, and U. Siebenlist. 1995. Activation of NF-κB requires proteolysis of the inhibitor IκB-α: Signal-induced phosphorylation of IκB-α alone does not release active NF-κB. Proc. Natl. Acad. Sci. 92: 552–556.

Miyamoto, S., M. Maki, M.J. Schmitt, M. Hatanaka, and I.M. Verma. 1994. Tumor necrosis factor a-induced phosphorylation of IκBα is a signal for its degradation but not dissociation from NF-κB. Proc. Natl. Acad. Sci. 91: 12740–12744.

Morisato, D. and K.V. Anderson. 1994. The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76: 677–688.

Palombella, V.J., O.J. Rando, A.L. Goldberg, and T. Maniatis. 1994. The ubiquitin- proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78: 773–785.

Rechsteiner, M. 1990. PEST sequences are signals for rapid intracellular proteolysis. Semin. Cell Biol. 1: 433–440.

Rogers, S., R. Wells, and M Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science 234: 364–368.

Roth, S., D. Stein, and C. Nüsslein-Volhard. 1989. A gradient of nuclear localization of the dorsal protein determines dorso-ventral pattern in the Drosophila embryo. Cell 59: 1189–1202.
Roth, S., Y. Hiromi, D. Godt, and C. Nüsslein-Volhard. 1991. *cactus*, a maternal gene required for proper formation of the dorsoventral morphogen gradient in *Drosophila* embryos. *Development* 112: 371–388.

Schneider, D.S., K.L. Hudson, T.Y. Lin, and K.V. Anderson. 1991. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the *Drosophila* embryo. *Genes & Dev.* 5: 797–807.

Schneider, D.S., Y. Jin, D. Morisato, and K.V. Anderson. 1994. A processed form of the Spätzle protein defines dorsal-ventral polarity in the *Drosophila* embryo. *Development* 120: 1243–1250.

Sen, R. and D. Baltimore. 1986. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. *Cell* 47: 921–928.

Shelton, C.A. and S.A. Wasserman. 1993. *pelle* encodes a protein kinase required to establish dorsoventral polarity in the *Drosophila* embryo. *Cell* 72: 515–525.

Steward, R. 1987. Dorsal, an embryonic polarity gene in *Drosophila*, is homologous to the vertebrate proto-oncogene, c-rel. *Science* 238: 692–694.

Traenckner, E.B.-M., S. Wilk, and P.A. Baeuerle. 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκB-α that is still bound to NF-κB. *EMBO J.* 13: 5433–5441.

Whalen, A.M. and R. Steward. 1993. Dissociation of the Dorsal-Cactus complex and phosphorylation of the Dorsal protein correlate with the nuclear localization of Dorsal. *J. Cell Biol.* 123: 523–534.
Cactus protein degradation mediates Drosophila dorsal-ventral signaling.

M P Belvin, Y Jin and K V Anderson

Genes Dev. 1995, 9: 783-793

Access the most recent version at doi:10.1101/gad.9.7.783

References

This article cites 35 articles, 15 of which can be accessed free at:
http://genesdev.cshlp.org/content/9/7/783.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.