Abstract

We propose the exact $S$-matrix for the planar limit of the $\mathcal{N} = 6$ super Chern-Simons theory recently proposed by Aharony, Bergman, Jafferis, and Maldacena for the AdS$_4$/CFT$_3$ correspondence. Assuming $SU(2|2)$ symmetry, factorizability and certain crossing-unitarity relations, we find the $S$-matrix including the dressing phase. We use this $S$-matrix to formulate the asymptotic Bethe ansatz. Our result for the Bethe-Yang equations and corresponding Bethe ansatz equations confirms the all-loop Bethe ansatz equations recently conjectured by Gromov and Vieira.
1 Introduction

The AdS/CFT correspondence [1, 2, 3], which has led to many exciting developments in the duality between type IIB string theory on $AdS_5 \times S^5$ and $\mathcal{N} = 4$ super Yang-Mills (YM) theory, is now being extended into $AdS_4/CFT_3$ [4]. A most promising candidate is $\mathcal{N} = 6$ super Chern-Simons (CS) theory with $SU(N) \times SU(N)$ gauge symmetry and level $k$. This model, which was first proposed by Aharony, Bergman, Jafferis, and Maldacena [5], is believed to be dual to M-theory on $AdS_4 \times S^7/Z_k$. Furthermore, in the planar limit of $N,k \to \infty$ with a fixed value of ’t Hooft coupling $\lambda = N/k$, the $\mathcal{N} = 6$ CS is believed to be dual to type IIA superstring theory on $AdS_4 \times CP^3$. This model contains two sets of scalar fields transforming in bifundamental representations of $SU(N) \times SU(N)$ along with respective superpartner fermions and non-dynamic CS gauge fields. (For some subsequent developments, see [6, 7].)

The integrability of the planar $\mathcal{N} = 6$ CS was first discovered by Minahan and Zarembo [8] in the leading two-loop-order perturbative computation of the anomalous dimensions of gauge-invariant composite operators. They found that the dilatation operator for the scalar operators is an integrable Hamiltonian of an $SU(4)$ spin chain with sites alternating between the fundamental and anti-fundamental representations. They obtained corresponding two-loop Bethe ansatz equations (BAEs) using algebraic Bethe ansatz results for an inhomogeneous spin chain with different representations developed in [9]. They then conjectured two-loop BAEs for all operators (including the fermions) corresponding to the full $OSp(2,2|6)$ superconformal group.

More recently, all-loop BAEs for the $\mathcal{N} = 6$ CS were conjectured by Gromov and Vieira [12] based on the perturbative result [8] and the classical integrability in the large-coupling limit discovered in [13, 14, 15].

The purpose of this note is to propose an exact $S$-matrix for the $\mathcal{N} = 6$ CS, and to derive the all-loop BAEs [12] from this $S$-matrix. A factorizable $S$-matrix has played an important role in the developments of $AdS_5/CFT_4$. Indeed, an $S$-matrix describing the scattering of excitations of the dynamic spin chain corresponding to planar $\mathcal{N} = 4$ YM has been proposed by Beisert [16], and a related $S$-matrix describing the scattering of world-sheet excitations of the $AdS_5 \times S^5$ superstring sigma model has been proposed by Arutyunov, Frolov and Zamaklar (AFZ) [17]. These $S$-matrices have been derived from the assumption that the excitations are described by a Zamolodchikov-Faddeev (ZF) algebra [18, 19], and that they have a centrally extended $su(2|2) \oplus su(2|2)$ symmetry [16]. The AFZ “string” $S$-matrix obeys the standard Yang-Baxter equation, while Beisert’s $S$-matrix obeys a twisted (dynamical) Yang-Baxter equation. The $S$-matrices are a very useful tool to overcome shortcomings from
the Bethe ansatz approach such as the wrapping problem \cite{20} and for full quantization of the string theory.

As discussed in more detail below, $\mathcal{N} = 6$ CS has two sets of excitations, namely $A$-particles and $B$-particles, each of which form a four-dimensional representation of $SU(2|2)$. We propose an $S$-matrix with the following structure:

\begin{align*}
S^{AA}(p_1, p_2) &= S^{BB}(p_1, p_2) = S_0(p_1, p_2)\hat{S}(p_1, p_2), \\
S^{AB}(p_1, p_2) &= S^{BA}(p_1, p_2) = \tilde{S}_0(p_1, p_2)\hat{S}(p_1, p_2),
\end{align*}

where $\hat{S}$ is the matrix part determined by the $SU(2|2)$ symmetry, and is essentially the same as that found for $\mathcal{N} = 4$ YM in \cite{17}. An important difference arises in the dressing phases $S_0, \tilde{S}_0$ due to the fact that the $A$- and $B$-particles are related by complex conjugation. Crossing symmetry \cite{22} relates the two phases and gives different dressing phases for the $S$-matrices. These dressing phases play a crucial role in the process of deriving the Bethe-Yang equations.

The outline of this paper is as follows. In Section 2, we use the bulk ZF algebra and crossing relations to construct the $S$-matrix. In Section 3, all-loop asymptotic BAEs are derived from diagonalizing the Bethe-Yang matrix. We conclude in Section 4 with a brief discussion of our results.

2 Excitations and $S$-matrix

We recall \cite{5} that the $\mathcal{N} = 6$ CS theory has a pair of scalar fields $A_i$ ($i = 1, 2$) in the bifundamental representation $(\mathbf{N}, \bar{\mathbf{N}})$ of the $SU(N) \times SU(N)$ gauge group, and another pair of scalar fields $B_i$ ($i = 1, 2$) in the conjugate representation $(\bar{\mathbf{N}}, \mathbf{N})$. The vacuum is given by the infinite chain \cite{7,10}

$$\text{tr} \left( A_1 B_1 A_1 B_1 \cdots \right).$$

The vacuum preserves an $SU(2|2)$ subgroup of $OSp(2,2|6)$. There are two types of elementary excitations: “$A$-particles”, which correspond to replacing $A_1$ by $A_2, B_2^\dagger, (\psi_{B_2}^\dagger)_\alpha$; and “$B$-particles”, which correspond to replacing $B_1$ by $A_2^\dagger, B_2, (\psi_{A_2}^\dagger)_\alpha$. We therefore identify the $B$-particles as charge conjugates of the $A$-particles.

It is convenient to represent these $A$-particles and $B$-particles by Zamolodchikov-Faddeev operators $A_i^\dagger(p)$ and $B_i^\dagger(p)$ ($i = 1, \ldots, 4$), respectively. When acting on the vacuum state $|0\rangle$,

\footnote{This structure is similar to that of the $S$-matrix proposed in \cite{21} for the $O(3)$ sigma model with $\theta = \pi$, where the two types of particles are the left-movers and right-movers.}
these operators create corresponding asymptotic particle states of momentum $p$ and energy $E$ given by \[ E = \sqrt{\frac{1}{4} + 4g^2\sin^2 \frac{p}{2}}, \tag{2.2} \]
where $g$ is a function of the 't Hooft coupling
\[ g = h(\lambda), \tag{2.3} \]
with $h(\lambda) \sim \lambda$ for small $\lambda$, and $h(\lambda) \sim \sqrt{\lambda/2}$ for large $\lambda$.

We define the $A$-$A$ $S$-matrix by
\[ A_i^\dagger(p_1) A_j^\dagger(p_2) = S_{AA}^{ij'}(p_1, p_2) A_j^\dagger(p_2) A_i^\dagger(p_1). \tag{2.4} \]
The $SU(2|2)$ symmetry implies that, up to a scalar factor, this $S$-matrix is the same as the one for $N = 4$ YM theory. Hence,
\[ S_{AA}(p_1, p_2) = S_0(p_1, p_2) \tilde{S}(p_1, p_2), \tag{2.5} \]
where $\tilde{S}(p_1, p_2)$ is the $SU(2|2)$ $S$-matrix \[17\] with $g$ given by (2.3). It satisfies the Yang-Baxter equation, as well as unitarity
\[ \tilde{S}_{12}(p_1, p_2) \tilde{S}_{21}(p_2, p_1) = I \tag{2.6} \]
and the crossing relation \[22\]
\[ \tilde{S}_{12}^{ij}(p_1, p_2) C_2 \tilde{S}_{12}(p_1, \bar{p}_2) C_2^{-1} = \tilde{S}_{12}^{ij}(p_1, p_2) C_1 \tilde{S}_{12}(\bar{p}_1, p_2) C_1^{-1} = f(p_1, p_2) I, \tag{2.7} \]
where $C$ is the charge conjugation matrix, and
\[ f(p_1, p_2) = \frac{\left(\frac{1}{x_1} - x_2\right) \left(x_1^+ - x_2^+\right)}{\left(\frac{1}{x_1} - x_2\right) \left(x_1^- - x_2^+\right)}. \tag{2.8} \]
As usual,
\[ x^+ + \frac{1}{x^+} - x^- - \frac{1}{x^-} = \frac{i}{g}; \quad \frac{x^+}{x^-} = e^{ip}, \tag{2.9} \]
and $x^+(\bar{p}) = 1/x^+(p)$. Moreover, $S_0(p_1, p_2)$ in (2.5) is a scalar factor which is yet to be determined.

Similarly, we define the $B$-$B$ and $A$-$B$ $S$-matrices by
\[ B_i^\dagger(p_1) B_j^\dagger(p_2) = S_{BB}^{ij'}(p_1, p_2) B_j^\dagger(p_2) B_i^\dagger(p_1), \tag{2.10} \]
and
\[ A_i^\dagger(p_1) B_j^\dagger(p_2) = S^{AB}_{ij} A_i^\dagger(p_1) B_j^\dagger(p_2), \quad (2.11) \]
respectively. Symmetry considerations suggest that
\[ S^{BB}(p_1, p_2) = S^{AA}(p_1, p_2) = S_0(p_1, p_2) \tilde{S}(p_1, p_2), \]
\[ S^{AB}(p_1, p_2) = S^{BA}(p_1, p_2) = \tilde{S}_0(p_1, p_2) \tilde{S}(p_1, p_2), \quad (2.12) \]
where \( \tilde{S}(p_1, p_2) \) is the same \( SU(2|2) \) matrix as in (2.5).

We assume that the \( S \)-matrices satisfy the usual unitarity relation,
\[ S_{12}^{AA}(p_1, p_2) S_{21}^{AA}(p_2, p_1) = S_{12}^{AB}(p_1, p_2) S_{21}^{AB}(p_2, p_1) = \mathbb{I}, \quad (2.13) \]
which implies that the scalar factors should obey
\[ S_0(p_1, p_2) S_0(p_2, p_1) = 1, \quad \tilde{S}_0(p_1, p_2) \tilde{S}_0(p_2, p_1) = 1. \quad (2.14) \]

The identification of the \( B \)-particles as charge conjugates of the \( A \)-particles suggests the crossing relations
\[ S_{12}^{AA}(p_1, p_2) C_2 S_{12}^{AB}(p_1, \bar{p}_2) C_2^{-1} = S_{12}^{AA}(p_1, p_2) C_1 S_{12}^{AB}(\bar{p}_1, p_2) C_1^{-1} = \mathbb{I}. \quad (2.15) \]
It follows that the scalar factors should satisfy
\[ S_0(p_1, p_2) \tilde{S}_0(p_1, \bar{p}_2) = S_0(p_1, p_2) \tilde{S}_0(\bar{p}_1, p_2) = \frac{1}{f(p_1, p_2)}. \quad (2.16) \]
Note that the crossing relations (2.15) do not relate \( S^{AA} \) to itself as in the \( \mathcal{N} = 4 \) YM theory.

We find that values of the scalar factors which are consistent with the unitarity and crossing constraints (2.13) and (2.14) are
\[ S_0(p_1, p_2) = \frac{1 - \frac{1}{x_1 x_2}}{1 - \frac{1}{x_1 x_2}} \sigma(p_1, p_2), \]
\[ \tilde{S}_0(p_1, p_2) = \frac{x_1^+ - x_2^+}{x_1^+ - x_2^+} \sigma(p_1, p_2), \quad (2.17) \]
where \( \sigma(p_1, p_2) \) is the BES dressing factor [23], which has the properties
\[ \sigma(p_1, p_2) \sigma(p_2, p_1) = 1, \]
\[ \sigma(\bar{p}_1, p_2) \sigma(p_1, p_2) = \frac{x_2^+}{x_2^+ f(p_1, p_2)}, \quad \sigma(p_1, \bar{p}_2) \sigma(p_1, p_2) = \frac{x_1^+}{x_1^+ f(p_1, p_2)}. \quad (2.18) \]
As we shall see in the following section, the expressions (2.17) for the scalar factors are crucial for obtaining the correct BAEs.
3 Asymptotic Bethe ansatz

We now proceed to formulate the asymptotic Bethe ansatz for the $\mathcal{N} = 6$ CS theory. The analysis is similar to the one for the $\mathcal{N} = 4$ YM theory \[16, 24\], and here we follow closely the latter reference. We consider a set of $N_A$ $A$-particles with momenta $p^A_i$ ($i = 1, \ldots, N_A$) and $N_B$ $B$-particles with momenta $p^B_i$ ($i = 1, \ldots, N_B$) which are widely separated on a ring of length $L'$. Quantization conditions for these momenta follow from imposing periodic boundary conditions on the wavefunction. Taking a particle with momentum $p^A_k$ around the ring leads to the Bethe-Yang equations

$$e^{-ip^A_k L'} = \Lambda(\lambda = p^A_k, \{p^A_i, p^B_i\}), \quad k = 1, \ldots, N_A,$$

where $\Lambda(\lambda, \{p^A_i, p^B_i\})$ are the eigenvalues of the transfer matrix 2, 3

$$t(\lambda, \{p^A_i, p^B_i\}) = \text{str}(\tilde{S}_0^A \cdot \cdots \cdot \tilde{S}_{A-N_A} \cdot \tilde{S}_{A+N_A} \cdot \tilde{S}_{A+N_A+N_B}) = \Lambda(\lambda, \{p^A_i, p^B_i\}; \{\lambda_j, \mu_j\}).$$

The order of the particles on the ring is irrelevant. Indeed, changing the order of the particles changes the transfer matrix by a unitary transformation, since the $S$-matrices satisfy the Yang-Baxter equation.

Using (2.5), (2.12), we see that the transfer matrix can be reexpressed as

$$t(\lambda, \{p^A_i, p^B_i\}) = \text{str}(\tilde{S}_0^A \cdot \cdots \cdot \tilde{S}_{A-N_A} \cdot \tilde{S}_{A+N_A} \cdot \tilde{S}_{A+N_A+N_B}) = \Lambda(\lambda, \{p^A_i, p^B_i\}; \{\lambda_j, \mu_j\}).$$

It follows that

$$\Lambda(\lambda, \{p^A_i, p^B_i\}) = \text{str}(\tilde{S}_0^A \cdot \cdots \cdot \tilde{S}_{A-N_A} \cdot \tilde{S}_{A+N_A} \cdot \tilde{S}_{A+N_A+N_B}) = \Lambda(\lambda, \{p^A_i, p^B_i\}; \{\lambda_j, \mu_j\}),$$

2 As emphasized by Martins and Melo [24], in order to properly implement periodic boundary conditions, it is necessary to use the graded $S$-matrix (which is related to the non-graded $S$-matrix by the factor $P^{(g)} P$, where $P^{(g)}$ and $P$ are the graded and non-graded permutation matrices, respectively), and take the supertrace (instead of the ordinary trace) of the monodromy matrix.

3 Following [24], we denote the spectral parameter of the transfer matrix by $\lambda$, which should not be confused with the 't Hooft coupling!
where \( \tilde{\Lambda}(\lambda, \{ p^A_i, p^B_i \}; \{ \lambda_j, \mu_j \}) \) are the eigenvalues of \( \hat{t}(\lambda, \{ p^A_i, p^B_i \}) \), which are given by [24]

\[
\tilde{\Lambda}(\lambda, \{ p^A_i, p^B_i \}; \{ \lambda_j, \mu_j \}) = \prod_{i=1}^{N_A} \left[ \frac{x^+(\lambda) - x^-(p^A_i)}{x^-(\lambda) - x^+(p^A_i)} \right] \prod_{i=1}^{N_B} \left[ \frac{x^+(\lambda) - x^-(p^B_i)}{x^-(\lambda) - x^+(p^B_i)} \right] \\
\times \prod_{j=1}^{m_1} \left[ \eta(\lambda) \frac{x^-(\lambda) - x^+(\lambda_j)}{x^+(\lambda) - x^+(\lambda_j)} \right] \\
- \prod_{i=1}^{N_A} \left[ \frac{x^+(\lambda) - x^+(p^A_i)}{x^-(\lambda) - x^+(p^A_i)} \right] \prod_{i=1}^{N_B} \left[ \frac{x^+(\lambda) - x^+(p^B_i)}{x^-(\lambda) - x^+(p^B_i)} \right] \\
\times \prod_{i=1}^{N_A} \left[ \frac{x^+(\lambda) - x^+(p^A_i)}{x^-(\lambda) - x^+(p^A_i)} \frac{1}{\eta(\lambda)} \right] \prod_{i=1}^{N_B} \left[ \frac{x^+(\lambda) - x^+(p^B_i)}{x^-(\lambda) - x^+(p^B_i)} \frac{1}{\eta(\lambda)} \right] \\
\times \prod_{j=1}^{m_1} \left[ \eta(\lambda) \frac{x^-(\lambda) - x^+(\lambda_j)}{x^+(\lambda) - x^+(\lambda_j)} \right] \\
\times \prod_{j=1}^{m_1} \left[ \eta(\lambda) \frac{x^+(\lambda_j) - \frac{1}{x^+(\lambda_j)}}{1} \right], \quad (3.6)
\]

where \( \eta(\lambda) = e^{i\lambda/2} \). The corresponding BAEs are given by

\[
e^{i(P^A + P^B)/2} \prod_{i=1}^{N_A} \left[ x^+(\lambda_j) - x^-(p^A_i) \right] \prod_{i=1}^{N_B} \left[ x^+(\lambda_j) - x^-(p^B_i) \right] = \prod_{i=1}^{N_A} \left[ x^+(\lambda_j) + \frac{1}{x^+(\lambda_j)} - \tilde{\mu}_l - \frac{i g}{2} \right], \quad j = 1, \ldots, m_1, \\
\prod_{j=1}^{m_1} \left[ \tilde{\mu}_l - x^+(\lambda_j) - \frac{1}{x^+(\lambda_j)} + \frac{i g}{2} \right] = \prod_{k=1}^{m_2} \left[ \tilde{\mu}_l - \tilde{\mu}_k + \frac{i g}{2} \right], \quad l = 1, \ldots, m_2, \quad (3.7)
\]

where

\[
\begin{align*}
P^A &= \sum_{i=1}^{N_A} p^A_i, \\
P^B &= \sum_{i=1}^{N_B} p^B_i. \quad (3.8)
\end{align*}
\]

The Bethe-Yang equations for the \( A \)-particles (3.1) therefore take the form

\[
e^{i\varphi_k \left( -L' + \frac{N_A+N_B}{2} - \frac{m_1}{2} \right)} = e^{i(P^A + P^B)/2} \prod_{i \neq k}^{N_A} \left[ x^+(p^A_k) - x^-(p^A_i) \right] \prod_{i \neq k}^{N_B} \left[ x^+(p^B_k) - x^-(p^B_i) \right] \sigma(p^A_k, p^A_i) \\
\times \prod_{k=1}^{N_B} \sigma(p^A_k, p^B_k) \prod_{j=1}^{m_1} \left[ x^-(p^A_k) - x^+(\lambda_j) \right] = \prod_{i=1}^{N_B} \left[ x^+(p^B_k) + \frac{1}{x^+(p^B_k)} - \tilde{\mu}_l - \frac{i g}{2} \right], \quad k = 1, \ldots, N_A. \quad (3.9)
\]
In obtaining the result (3.9), we have used the expressions (3.5), (3.6) for the eigenvalues of the transfer matrix (note that only the first term in (3.6) survives after setting $\lambda = p_k^A$), as well as our expressions (2.17) for the scalar factors. Note that the scalar factor $\tilde{S}_0$ produces a cancelation, so that $A - B$ scattering in (3.9) is given only by the dressing factor; and the scalar factor $S_0$ produces a contribution which allows the $A - A$ scattering to be expressed in terms of $u_{4,j}$ (see (3.12) below).

Similarly, the Bethe-Yang equations for the $B$-particles become

$$e^{ip_k^B(-L + N_A + N_B - m_1 / 2)} = e^{i(P^A + P^B)/2} \prod_{i=1}^{N_B} \left[ \frac{x^+(p_k^B) - x^-(p_i^B)}{x^-(p_k^B) - x^+(p_i^B)} \right] \left[ \frac{1}{x^+(p_k^B)} - \frac{1}{x^-(p_i^B)} \sigma(p_k^B, p_i^B) \right]$$

$$\times \prod_{i=1}^{N_B} \sigma(p_k^B, p_i^A) \prod_{j=1}^{m_1} \left[ \frac{x^-(p_k^B) - x^+(\lambda_j)}{x^+(p_k^B) - x^+(\lambda_j)} \right] , \quad k = 1, \ldots, N_B , \quad (3.10)$$

since they are formulated in terms of the same transfer matrix $\tilde{t}(\lambda, \{p_i^A, p_i^B\})$ (3.4).

The BAEs (3.7) and Bethe-Yang equations (3.9), (3.10) can be mapped to the all-loop BAEs of Gromov and Vieira [12]. To this end, we make the following identifications:

$$x^\pm(p_k^A) = x_{4,k}^\pm , \quad k = 1, \ldots, K_4 \equiv N_A ,$$

$$x^\pm(p_k^B) = x_{4,k}^\pm , \quad k = 1, \ldots, K_4 \equiv N_B ,$$

$$x^+(\lambda_j) = \frac{1}{x_{1,j}} , \quad j = 1, \ldots, K_1 ,$$

$$x^+(\lambda_{K_1+j}) = x_{3,j} , \quad j = 1, \ldots, K_3 , \quad K_1 + K_3 \equiv m_1 ,$$

$$\tilde{\mu}_j = \frac{u_{2,j}}{g} , \quad j = 1, \ldots, K_2 \equiv m_2 , \quad (3.11)$$

and also define

$$u_{4,j} = x_{4,j}^+ + \frac{1}{x_{4,j}^-} - \frac{i}{2} = x_{4,j}^- + \frac{1}{x_{4,j}^+} + \frac{i}{2} \quad (3.12)$$

(similarly for $u_{1,j}$), and $u_{i,j} = \frac{1}{g} \left( x_{i,j} + \frac{1}{x_{i,j}} \right)$ for $i = 1, 3$. Indeed, imposing the zero-momentum condition [8, 12]

$$P^A + P^B = \sum_{j=1}^{K_4} p_{4,j} + \sum_{j=1}^{K_3} p_{4,j} = 0 , \quad (3.13)$$

---

Footnote: In the $\mathcal{N} = 4$ YM case, a similar set of identifications has been made [24] in order to map the $SU(2\mid 2)$ asymptotic BAEs to the all-loop BAEs of Beisert and Staudacher [25].
the Bethe-Yang equations (3.9) become

\[ e^{ip_{4k}(L' + \frac{K_4 + K_3 + K_1 - K_5}{2})} = \prod_{j=1}^{K_4} \frac{u_{4,k} - u_{4,j} + i}{u_{4,k} - u_{4,j} - i} \sigma(u_{4,k}, u_{4,j}) \prod_{j=1}^{K_4} \sigma(u_{4,k}, u_{4,j}) \]

\[ \times \prod_{j=1}^{K_1} \frac{1 - \frac{1}{x_{4,k}x_{4,j}}}{1 - \frac{1}{x_{4,k}x_{4,j}}} \prod_{j=1}^{K_3} \frac{x_{4,k} - x_{3,j}}{x_{4,k} - x_{3,j}}, \quad k = 1, \ldots, K_4. \quad (3.14) \]

This agrees with the all-loop BAEs for \( x_{4,k}^\pm \) in [12], provided we identify

\[ L = -L' + \frac{K_4 + K_3 + K_1 - K_5}{2}. \quad (3.15) \]

If we assume that \( L' = -J \) (as in [24]), then (3.15) implies a relation among \( L, J \) and the number of various Bethe roots. Similarly, the Bethe-Yang equations (3.10) give the the all-loop BAEs for \( x_{4,k}^\pm \) in [12].

The first set of BAEs in (3.7) imply the following two sets of equations

\[ \prod_{i=1}^{K_4} \frac{1 - \frac{1}{x_{1,i}x_{4,i}}}{1 - \frac{1}{x_{1,i}x_{4,i}}} = \prod_{i=1}^{K_2} \frac{u_{1,i} - u_{2,l} + \frac{i}{2}}{u_{1,i} - u_{2,l} - \frac{i}{2}}, \quad j = 1, \ldots, K_1, \]

\[ \prod_{i=1}^{K_4} \frac{x_{3,i} - x_{4,i}}{x_{3,i} - x_{4,i}} \prod_{i=1}^{K_1} \frac{1 - \frac{1}{x_{3,i}x_{4,i}}}{1 - \frac{1}{x_{3,i}x_{4,i}}} = \prod_{i=1}^{K_2} \frac{u_{3,i} - u_{2,l} + \frac{i}{2}}{u_{3,i} - u_{2,l} - \frac{i}{2}}, \quad j = 1, \ldots, K_3, \quad (3.16) \]

which agree with the first and third BAEs in [12]. Finally, the second set of BAEs in (3.7) imply

\[ \prod_{j=1}^{K_2} \frac{u_{2,l} - u_{2,j} + i}{u_{2,l} - u_{2,j} - i} = \prod_{j=1}^{K_1} \frac{u_{2,l} - u_{1,j} + \frac{i}{2}}{u_{2,l} - u_{1,j} - \frac{i}{2}} \prod_{j=1}^{K_3} \frac{u_{2,l} - u_{3,j} + \frac{i}{2}}{u_{2,l} - u_{3,j} - \frac{i}{2}}, \quad l = 1, \ldots, K_2, \quad (3.17) \]

which agrees with the second set of BAEs in [12]. In short, the asymptotic BAEs which follow from the proposed S-matrix give the full set of all-loop BAEs in [12].

4 Discussion

We have seen that, as in \( \mathcal{N} = 4 \) YM, \( SU(2|2) \) symmetry again plays an important role in determining the factorizable S-matrix of \( \mathcal{N} = 6 \) CS. The scattering matrices for the two types of particles are the same, up to the dressing phases which are related by a new crossing relation. This relation seems to be weaker than the one in the \( AdS_5/CFT_4 \) case,
which completely determines the phase up to the usual CDD ambiguity. Hence, more analysis is necessary to fix the dressing phases uniquely. The solution proposed here is supported by the all-loop BAEs conjectured in [12].

It should be possible to make further checks of our proposal. Perturbative computations at both small and large values of ‘t Hooft coupling could be done. The classical S-matrix can be computed, as was done for the giant magnon for $AdS_5/CFT_4$ [26]. These results may give some insights into the relation between the parameter $g$ in the S-matrix and the ‘t Hooft coupling $\lambda$ defined in [2,3].

One interesting application of the S-matrix is to compute finite-size effects, or the Lüscher correction. The result can be compared with various semi-classical string calculations [27] as has been done for the $AdS_5/CFT_4$ in [28] and with perturbative CS computations along the line of [20]. The S-matrix can also be used to determine the bound state spectrum, which should be related to the multiplet states studied in [10].

Our result shows that the $SU(2|2)$-invariant S-matrix appears in both $AdS_5/CFT_4$ and $AdS_4/CFT_3$ dualities. It would be interesting to understand this common integrability property at a more fundamental level.

Acknowledgments

This work was performed at the 2008 APCTP Focus Program “Finite-size technology in low-dimensional quantum systems (4)”. We thank the participants, particularly P. Dorey, for discussions. We also thank M. Martins for helpful correspondence. This work was supported in part by KRF-2007-313-C00150 (CA) and by the National Science Foundation under Grants PHY-0244261 and PHY-0554821 (RN).

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:hep-th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B428, 105 (1998) [arXiv:hep-th/9802109].

[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].
[4] J. H. Schwarz, “Superconformal Chern-Simons theories,” JHEP 0411, 078 (2004) [arXiv:hep-th/0411077]; J. Bagger and N. Lambert, “Modeling multiple M2’s,” Phys. Rev. D 75, 045020 (2007) [arXiv:hep-th/0611108]; D. Gaiotto and X. Yin, “Notes on superconformal Chern-Simons-matter theories,” JHEP 0708, 056 (2007) [arXiv:hep-th/0704.3740]; A. Gustavsson, “Algebraic structures on parallel M2-branes,” [arXiv:hep-th/0709.1260]; J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,” Phys. Rev. D 77, 065008 (2008) [arXiv:hep-th/0711.0955]; J. Bagger and N. Lambert, “Comments On Multiple M2-branes,” JHEP 0802, 105 (2008) [arXiv:hep-th/0712.3738]; M. Van Raamsdonk, “Comments on the Bagger-Lambert theory and multiple M2-branes,” JHEP 0805, 105 (2008) [arXiv:0803.3803 [hep-th]]; J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, “M2-branes on M-folds,” JHEP 0805, 038 (2008) [arXiv:hep-th/0804.1256]; P. M. Ho, Y. Imamura and Y. Matsuo, “M2 to D2 revisited,” [arXiv:hep-th/0805.1202]; C. Krishnan and C. Maccaferri, “Membranes on Calibrations,” [arXiv:hep-th/0805.3125]; J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, “The Superconformal Gauge Theory on M2-Branes,” [arXiv:hep-th/0806.0738].

[5] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” [arXiv:hep-th/0806.1218].

[6] M. Benna, I. Klebanov, T. Klose and M. Smedback, “Superconformal Chern-Simons Theories and AdS4/CFT3 Correspondence,” [arXiv:hep-th/0806.1519]; B. Ezhuthachan, S. Mukhi and C. Papageorgakis, “D2 to D2,” [arXiv:hep-th/0806.1639]; S. Cecotti and A. Sen, “Coulomb Branch of the Lorentzian Three Algebra Theory,” [arXiv:hep-th/0806.1990]; A. Mauri and A. C. Petkou, “An N = 1 Superfield Action for M2 branes,” [arXiv:hep-th/0806.2270]; E. A. Bergshoeff, M. de Roo, O. Hohm and D. Roest, “Multiple Membranes from Gauged Supergravity,” [arXiv:hep-th/0806.2584]; P. de Medeiros, J. Figueroa-O’Farrill and E. Mendez-Escobar, “Metric Lie 3-algebras in Bagger-Lambert theory,” [arXiv:hep-th/0806.3242]; J. Bhattacharya and S. Minwalla, “Superconformal Indices for N = 6 Chern Simons Theories,” [arXiv:hep-th/0806.3251]; M. Blau and M. O’Loughlin, “Multiple M2-Branes and Plane Waves,” [arXiv:hep-th/0806.3253]; Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, “Scaling limit of N = 6 superconformal Chern-Simons theories and Lorentzian Bagger-Lambert theories,” [arXiv:hep-th/0806.3498]; Y. Imamura and K. Kimura, “Coulomb branch of generalized ABJM models,” [arXiv:hep-th/0806.3727]; A. Armoni and A. Naqvi, “A Non-Supersymmetric Large-N 3D CFT And Its Gravity Dual,” [arXiv:hep-th/0806.4068];
A. Hanany, N. Mekareeya and A. Zaffaroni, “Partition Functions for Membrane Theories,” [arXiv:hep-th/0806.4212]; A. Agarwal, “Mass Deformations of Super Yang-Mills Theories in $D = 2 + 1$, and Super-Membranes: A Note,” [arXiv:hep-th/0806.4292]; C. Ahn, “Towards Holographic Gravity Dual of $\mathcal{N} = 1$ Superconformal Chern-Simons Gauge Theory,” [arXiv:hep-th/0806.4807]; J. Bedford and D. Berman, “A note on Quantum Aspects of Multiple Membranes,” [arXiv:hep-th/0806.4900]; K. Hosomichi, K. M. Lee, S. Lee, S. Lee and J. Park, “$\mathcal{N} = 5, 6$ Superconformal Chern-Simons Theories and M2-branes on Orbifolds,” [arXiv:hep-th/0806.4977]; P. Fre and P. A. Grassi, “Pure Spinor Formalism for Osp(N—4) backgrounds,” [arXiv:hep-th/0807.0044]; K. Okuyama, “Linear Sigma Models for the $R^8/Z_k$ Orbifold,” [arXiv:hep-th/0807.0047]; J. Bagger and N. Lambert, “Three-Algebras and $\mathcal{N} = 6$ Chern-Simons Gauge Theories,” [arXiv:hep-th/0807.0163]; S. Terashima, “On M5-branes in $\mathcal{N} = 6$ Membrane Action,” [arXiv:hep-th/0807.0197].

[7] T. Nishioka and T. Takayanagi, “On Type IIA Penrose Limit and $\mathcal{N} = 6$ Chern-Simons Theories,” [arXiv:hep-th/0806.3391].

[8] J. A. Minahan and K. Zarembo, “The Bethe ansatz for superconformal Chern-Simons,” [arXiv:hep-th/0806.3951]

[9] P.P. Kulish and N.Y. Reshetikhin, “Diagonalization of GL(N) invariant transfer matrices and quantum N wave system (Lee model),” J. Phys. A16, L591 (1983).

[10] D. Gaiotto, S. Giombi and X. Yin, “Spin Chains in $\mathcal{N} = 6$ Superconformal Chern-Simons-Matter Theory,” [arXiv:hep-th/0806.4589].

[11] G. Grignani, T. Harmark and M. Orselli, “The SU(2) x SU(2) sector in the string dual of $\mathcal{N} = 6$ superconformal Chern-Simons theory,” [arXiv:0806.4959].

[12] N. Gromov and P. Vieira, “The all loop AdS4/CFT3 Bethe ansatz,” [arXiv:hep-th/0807.0777].

[13] G. Arutyunov and S. Frolov, “Superstrings on $AdS_4 \times CP^3$ as a Coset Sigma-model,” [arXiv:hep-th/0806.4940].

[14] B. J. Stefanski, “Green-Schwarz action for Type IIA strings on $AdS_4 \times CP^3$,” [arXiv:hep-th/0806.4948].

[15] N. Gromov and P. Vieira, “The AdS4/CFT3 algebraic curve,” [arXiv:hep-th/0807.0437].

[16] N. Beisert, “The $su(2|2)$ dynamic $S$-matrix,” [arXiv:hep-th/0511082]; N. Beisert, “The Analytic Bethe Ansatz for a Chain with Centrally Extended $su(2|2)$ Symmetry,” J. Stat. Mech. 0701, P017 (2007) [arXiv:nlin/0610017].
[17] G. Arutyunov, S. Frolov and M. Zamaklar, ‘The Zamolodchikov-Faddeev algebra for \( \text{AdS}_5 \times S^5 \) superstring,” *JHEP* **0704**, 002 (2007) [arXiv:hep-th/0612229].

[18] A.B. Zamolodchikov and Al.B. Zamolodchikov, “Factorized \( S \) matrices in two-dimensions as the exact solutions of certain relativistic quantum field models,” *Ann. Phys.* **120**, 253 (1979).

[19] L.D. Faddeev, “Quantum completely integral models of field theory,” *Sov. Sci. Rev.* **C1**, 107 (1980).

[20] Z. Bajnok and R.A. Janik, “Four-loop perturbative Konishi from strings and finite size effects for multiparticle states,” [arXiv:hep-th/0807.0399].

[21] A.B. Zamolodchikov and Al.B. Zamolodchikov, “Massless factorized scattering and sigma models with topological terms,” *Nucl. Phys.* **B379**, 602 (1992).

[22] R.A. Janik, “The \( \text{AdS}_5 \times S^5 \) superstring worldsheet \( S \)-matrix and crossing symmetry,” *Phys. Rev.* **D73**, 086006 (2006) [arXiv:hep-th/0603038].

[23] N. Beisert, B. Eden and M. Staudacher, “Transcendentality and crossing,” *J. Stat. Mech.* **0701**, P021 (2007) [arXiv:hep-th/0610251].

[24] M.J. Martins and C.S. Melo, “The Bethe ansatz approach for factorizable centrally extended \( S \)-matrices,” *Nucl. Phys.* **B785**, 246 (2007) [arXiv:hep-th/0703086].

[25] N. Beisert and M. Staudacher, “Long-range \( PSU(2, 2|4) \) Bethe ansaetze for gauge theory and strings,” *Nucl. Phys.* **B727**, 1 (2005) [arXiv:hep-th/0504190].

[26] D.M. Hofman and J. Maldacena, “Giant magnons,” J. Phys. **A 39** 13095-13118 (2006), [arXiv:hep-th/0604315v2].

[27] G. Grignani, T. Harmark, M. Orselli, and G. W. Semenoff, “Finite size Giant Magnons in the string dual of \( N=6 \) superconformal Chern-Simons theory,” [arXiv:hep-th/0807.0205 ]; C. Ahn and P. Bozhilov, “Finite-size effects of Membranes on \( \text{AdS}_4 \times S^7 \),” [arXiv:hep-th/0807.0566]; D. Astolfi, V.G.M. Puletti, G. Grignani, T. Harmark, and M. Orselli, “Finite-size corrections in the SU(2) x SU(2) sector of type IIA string theory on \( \text{AdS}_3 \times \mathbb{C}P^3 \),” [arXiv:hep-th/0807.1527].

[28] G. Arutyunov, S. Frolov and M. Zamaklar, “Finite-size effects from giant magnons,” *Nucl. Phys.* **B778**, 1 (2007) [arXiv:hep-th/0606126].