Hyperfine interaction dominated dynamics of nuclear spins in self-assembled QDs

Christian Latta, Ajit Srivastava, and Atac Imamoğlu
Institute of Quantum Electronics, ETH-Zürich, CH-8093 Zürich, Switzerland.
(Dated: January 19, 2013)

We measure the dynamics of nuclear spins in a self-assembled quantum dot at a magnetic field of 5 Tesla and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay which lasts \(\sim 100 \) seconds to intra-dot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. In addition, we observe a gate-voltage and temperature dependent decay stemming from co-tunneling mediated nuclear spin flip processes. By adjusting the gate-voltage and lowering the electron temperature to \(\sim 200 \) milliKelvin, we prolong the corresponding decay time to \(\sim 30 \) hours. Our measurements indicate possibilities for exploring quantum dynamics of the central spin model using a single self-assembled quantum dot.

Hyperfine interaction between a single quantum dot (QD) electron and the nuclear spin ensemble defined by the nano-scale confinement provides a realization of the central spin problem \([1-6]\). This model has attracted considerable attention recently since the correlations between the confined electron and the nuclear spin ensemble induced by hyperfine coupling constitute the principal decoherence mechanism for the electron spin \([7]\). It has been recognized in this context that an enhancement of electron coherence time could be achieved by preparing nuclear spins in eigenstates of the Overhauser (OH) field operator \([8, 9]\): for this approach to be effective, it is essential to understand and characterize the dynamics of prepared (polarized) nuclear spin states.

In this Letter, we present measurements of nuclear spin dynamics in a single electron charged self-assembled QD. In contrast to prior work in self-assembled and gate-confined QDs \([10-13]\), we probe nuclear spin dynamics when both the exchange coupling to a Fermionic reservoir (FR) and the dipolar interaction between nuclear spins are vanishingly small. Our observations reveal a spatially limited, temperature-independent, nuclear spin diffusion originating from electron mediated nuclear spin interactions in addition to co-tunneling mediated, temperature dependent, decay of the OH field approaching \(10^5 \) s. Remarkably, the diffusion induced reduction in the OH field taking place on \(\sim 100 \) s timescale can be strongly suppressed by repeating the preparation cycle consisting of polarization (pump) and free-evolution (wait).

The QDs in this sample are separated by a 35 nm GaAs tunnel barrier from a doped n++-GaAs layer. A bias voltage applied between a top semi-transparent Ti/Au Schottky gate and back contacts allows to control the charging state of the QD and the relative alignment of its electronic levels with the Fermi energy of the FR \([14]\). High-resolution resonance-scattering spectroscopy \([15]\) was performed on a single QD in a fiber-based confocal microscope incorporated in a dilution refrigerator \([16]\). The electron temperature was varied between \(200 \) mK and 4 K while the applied magnetic field in the Faraday geometry was kept constant at 5 Tesla. We adopted a modulation-free measurement to keep the energy of the electron fixed during its interaction with the nuclear spins.

We used a “pump-probe” technique to investigate the OH field dynamics. In the first step, the QD nuclear spins were polarized by slowly scanning a single-mode laser across the blue detuned Zeeman resonance of the neutral exciton \((X^0)\): as was shown in Ref. \([10]\), the magnitude of the OH field obtained in such a “dragging” experiment is given precisely by the detuning of the applied laser field from the bare resonance. A typical dragging process is shown in FIG. 1. After generating an OH field of \(\sim 20 \) \(\mu \)eV with \(\sim 40 \) seconds of dragging, the gate voltage is abruptly changed (in \(< 1 \) msec) to a value \(V_{\text{wait}} \) that results in the injection of an electron into the QD from the FR (FIG. 1b). Due to the large trion \((X^-)\) energy-shift of \(\sim 5 \) meV, the laser field is far off-resonance during the waiting time \(\tau_{\text{wait}} \) in which the coupled electron-nuclear system evolves freely. As a last step, the magnitude of the remaining OH field is measured after removing the electron from the QD and rapidly scanning the laser across the transition in \(\sim 50 \) ms. This probing is fast enough not to cause any appreciable dynamic nuclear spin polarization and simply reveals the resonance energy at the time of the measurement. We also confirmed that no appreciable change in OH field takes place during the time needed to switch the gate voltage between \(V_{\text{pump}} \) and \(V_{\text{wait}} \). The “pump-wait-probe” sequence is then repeated for different \(\tau_{\text{wait}} \). A typical OH decay curve obtained using this procedure is shown in FIG. 2.

In perfect agreement with earlier measurements \([10, 17]\), we found no measurable decay of the OH field for an empty QD up to 1000 s. This result re-confirms that the OH field in self-assembled QDs is stationary in the absence of a confined electron (FIG. 2b black triangles). A possible explanation for this observation is the presence of large and inhomogeneous quadrupolar shifts within the QD that renders dipolar-interaction mediated nuclear spin diffusion largely ineffective. Conversely, the non-trivial OH field dynamics in the presence of an electron that we discuss below demonstrates that the QD electron-nuclei system is a near-perfect realization of the central spin problem where the (nuclear) spins only in-
A nuclear spin polarization is built up at a voltage “pump-probe” technique to measure the OH field decay: (1) A nuclear spin polarization is built up at a voltage V_{pump} by slowly scanning the laser energy (full circle to open circle and back). (2) Gate voltage is set to V_{wait} for a time τ_{wait} keeping the laser energy fixed. (3) Gate voltage is set to V_{pump} again, followed by a fast (50 ms) laser scan to measure the OH field.

A typical measurement of the OH field decay at 200 mK in the presence of a resident electron in the strong co-tunneling regime. The solid black line is calculated using the model (see text).

When we choose V_{wait} such that the single-electron charged QD is in the co-tunneling regime[21] and the exchange coupling to the FR is strongest, we find that the OH field exhibits a fast decay[10,11] on the order of a few seconds. The observed decay is clearly temperature dependent (see FIG. 2).

In contrast, the OH field dynamics for V_{wait} that corresponds to negligible electron co-tunneling shows decay on two distinct timescales (FIG. 2). The initial decay now takes place on a timescale of ~100 s and is temperature independent. Within this time, only a fraction of the OH field decays; for a single polarization cycle the decaying fraction is approximately 50% (FIG. 2 inset). This initial decay is followed by a temperature-dependent slower decay which varies from 3500 s at 4 K (FIG. 2 red dots) to 10^9 s at 200 mK[22] (FIG. 2 blue squares).

The presence of two different OH field decay time scales with different temperature dependence points to two independent electron mediated mechanisms. To get further insight, we measured the gate voltage dependence of the temperature dependent decay rate across the single-electron charging plateau: in FIG. 3, squares (circles) denote the experimentally measured values of the temperature dependent decay time at $T = 200$ mK ($T = 4$ K). The values are extracted by fitting an exponential to this decay; the full (open) squares or circles indicate that the measured rate is the faster (slower) component of the OH field decay. The solid blue (red) curves show the gate voltage dependence of the co-tunneling time at $T = 200$ mK ($T = 4$ K) scaled by a (common) constant factor. The measured temperature dependent decay rates follow the gate voltage and temperature dependence of the co-tunneling rate across the charging plateau. In fact, we use the expected linear temperature dependence of the depicted co-tunneling rate and the good agreement with the experimentally measured decay times to determine our electron temperature to be $T \simeq 200$ mK[16,23].

To investigate the temperature-independent initial decay of the OH field, we polarized the QD nuclear spins successively in four steps with a waiting time of 200 s in the presence of an electron between each step. The magnitude of the OH field at the end of each polarization cycle was kept the same. As shown in FIG. 4, with successive polarization we find that the initial decay of the OH field is practically eliminated. This observation strongly suggests that the temperature independent component of decay arises due to “spatially limited diffusion” of nuclear spin polarization. Indeed, with such a polarization scheme, the nuclear spin polarization could diffuse within the QD in each dwell time leading to an overall increase in the polarization. As a result, to reach the same magnitude of the OH field in later steps, progressively smaller nuclear polarization is required during dragging. As the diffusion process just redistributes the excess polarization created during each step, one expects to see smaller decay of the OH field with each step, eventually leading to a complete suppression of the diffusion induced decay of the OH field.

Our measurements thus indicate the presence of two qualitatively different mechanisms determining nuclear spin dynamics: temperature dependent decay and temperature independent diffusion of nuclear spin polarization, both mediated by the electron and leading to a de-
obtain new terms describing electron mediated spin flip of two spatially separated nuclear spins:

\[\hat{H}_{\text{ind}} = \sum_{i \neq j} \frac{2A_i A_j}{\Delta - \Delta_N} \hat{I}_i^z \hat{I}_j^z \hat{S}_z . \] (1)

This indirect, coherent long-range interaction leads to a diffusion of nuclear spin polarization within the region where the electron wave-function is non-vanishing (FIG. 3a). Although the total magnitude of QD nuclear spin polarization does not decrease due to this diffusion process, the OH field seen by the electron decays partially due to a redistribution of the nuclear spin polarization within the QD. We attribute the temperature independent decay of the OH field to such an electron mediated diffusion.

The last term in the Hamiltonian describes an effective non-collinear dipolar hyperfine interaction between the electron and the \(i\)-th nucleus with coupling constant \(B_i\):

\[\hat{H}_{\text{dip}} = \sum_i B_i \hat{I}_i^z \hat{S}_z . \] (2)

Such terms could appear due to small but non-zero dipolar hyperfine interaction between the QD electron and nuclei. Alternatively, they could be induced by quadrupolar axes of nuclear spins that are non-parallel to the external field [19]. These terms induce nuclear spin flips that lead to a decay of the nuclear spin polarization. In fact, the temperature-dependent decay of the OH field can be explained by a second order process originating from \(\hat{H}_{\text{dip}}\). The energy conservation in this irreversible nuclear spin flip process is ensured by the coupling of the QD electron to the FR (FIG. 3a); the corresponding OH field decay rate is then \((B_i/\Delta_N)^2 \kappa\). The explains the temperature and gate voltage dependence of the decay shown in FIG. 3. Since \(\Delta_N \ll T\), we expect this rate to be linearly proportional to the electron temperature \(T\). We rule out any contribution of co-tunneling assisted direct hyperfine flip-flop processes, since the corresponding rate can be shown to be four-orders-of-magnitude slower than the rates that we measure in our experiments.

We model the nuclear spin dynamics using semi-classical rate equations, taking into account the diffusion and decay processes arising from \(\hat{H}_{\text{ind}}\) and \(\hat{H}_{\text{dip}}\), respectively. For simplicity, we assume a two-dimensional QD with \(N = 10^4\) spin 1/2 nuclei. The rate equations describing the change in time of the probability \(P_{i\uparrow}^j(t)\) that the \(i\)-th nucleus is in the \([\uparrow\uparrow]\) state become:

\[
\frac{dP_{i\uparrow}^j(t)}{dt} = \left(\frac{B_i}{\Delta_N} \right)^2 \kappa (1 - 2P_{i\uparrow}^j(t))
\]

\[+ \sum_j \left(\frac{2A_i A_j}{\Delta} \right)^2 \rho_{ij} (P_{j\uparrow}^j(t) - P_{i\uparrow}^j(t)). \] (3)

The first term on the RHS of Eq. 3 represents the temperature dependent decay while the second term represents...
FIG. 4: a) Schematic of the electron mediated nuclear spin diffusion: due to the inhomogeneous Knight shifts and quadrupolar fields, only nuclear spins with a small energy difference can interact which is depicted by the dashed circles. Two nuclear spins can flip without flipping the electron spin.
b) Demonstration of the spatially limited nuclear spin diffusion: By sequential polarization of the nuclear spins, the polarization can be saturated, suppressing further nuclear spin diffusion (see text for details).

the decay induced by the spatially limited diffusion. To obtain Eq. [3] we assume that the coherent coupling of two distant nuclear spins with similar energies via H_{ind} is interrupted by a pure dephasing process with rate γ_{deph}. The Lorentzian factor $\rho_{ij} = \gamma_{\text{deph}}/(\delta_{ij}^2 + \gamma_{\text{deph}}^2)$ describes the effective density of states for the flip-flop process between two (distant) nuclear spins with energy difference $\delta_{ij} = \Delta^i_N + A_i - \Delta^j_N + A_j$.

A possible source of γ_{deph} is the intrinsic gate voltage fluctuations in our experimental setup; such fluctuations would influence the electron wave-function giving rise to an effective broadening of the Knight field experienced by the nuclei [24]. As the bandwidth of this noise is limited by the bandwidth of the gate in our sample ($\sim 50 \text{ kHz}$), these fluctuations should not affect the decay process which is accompanied by a nuclear spin flip and requires an energy exchange of $\sim \Delta_N \approx 0.1 \text{ µeV}$. Eq. [3] can be solved for a given initial distribution of nuclear polarization which we assume is proportional to $\psi(\vec{r})$; with the knowledge of $P_i^\dagger(t)$ for all nuclear spins, one can easily get the OH field as $\text{OH}(t) = \sum_i A_i (P_i^\dagger(t) - 0.5)$. For the calculations, we used $\Delta = 174 \text{ µeV}$, $\Delta_N = 0.1 \text{µeV}$, $\sum A_i = 174 \text{ µeV}$ (5 T) and $B_i \sim 10^{-2} A_i$. We first fix the parameters for the case of smallest co-tunneling at 4 K ($\kappa = 10^{-7} \text{ µeV}$) and then use calculated $\kappa(V_{\text{wait}}, T)$ to obtain OH(t) for different temperatures and gate voltages. We obtain a value of $\sim 2 \text{ kHz}$ for γ_{deph}, which is well below the bandwidth of the gate. The results of the calculations plotted in FIGS. [4] with solid lines, show good agreement with the experiment.

Our results demonstrate that the nuclear spin dynamics is solely determined by the coupling of each nucleus to the central electron spin. At ultra-low temperatures, the OH field decay for a QD well isolated from an electron reservoir is predominantly due to intra-dot diffusion. By saturating the diffusion process using multiple polarization cycles and reducing the extrinsic (gate voltage) fluctuations that enhance the diffusion rate, it should be possible to prolong the spin-echo T_2 time of the electron spin [21]. In addition, elimination of the dephasing of indirect interaction would open up the possibility for observation of coherent quantum dynamics of the nuclear spins upon an abrupt turn-on of the Fermi-contact hyperfine interaction.

[1] N. V. Prokof’ev and P. C. E. Stamp, Rep. Prog. Phys. 63, 669 (2000)
[2] M. Gaudin, J. Phys. France 37, 1087 (1976)
[3] K. A. Al-Hassanieh et al., Phys. Rev. Lett. 97, 037204 (2006)
[4] V. V. Dobrovitski et al., Phys. Rev. E 67, 056702 (2003)
[5] W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004)
[6] G. Chen et al., Phys. Rev. B 76, 045312 (2007)
[7] A. V. Khaetskii et al., Phys. Rev. Lett. 88, 186802 (2002)
[8] D. J. Reilly et al., Science 321, 817 (2008)
[9] M. Issler et al., Phys. Rev. Lett. 102, 267202 (2010)
[10] C. Latta et al., Nat. Phys. 5, 758 (2009)
[11] P. Maletinsky et al., Phys. Rev. Lett. 99, 056804 (2007)
[12] E. A. Chekhovich et al., Phys. Rev. B 81, 245308 (2010)
[13] D. J. Reilly et al., Phys. Rev. Lett. 104, 236802 (2010)
[14] R. J. Warburton et al., Nature 405, 926 (2000)
[15] A. Høgele et al., Phys. Rev. Lett. 93, 217401 (2004)
[16] C. Latta et al., arXiv:1102.3982 (2011)
[17] P. Maletinsky et al., Nat. Phys. 5, 407 (2009)
[18] D. Klausler et al., Phys. Rev. B 78, 205301 (2008)
[19] C.-W. Huang and X. Hu, Phys. Rev. B 81, 205304 (2010)
[20] J. M. Taylor et al., Phys. Rev. B 76, 035315 (2007)
[21] M. Atatüre et al., Science 312, 551 (2006)
[22] Extrapolated from data taken up to 10^4 s.
[23] The ratio of the fast decay rates at the plateau edges for $T = 4 \text{ K}$ and $T = 200 \text{ mK}$ is 8; this discrepancy could arise due to gate voltage fluctuations that act as an effective finite temperature when V_{wait} is in the co-tunneling region.
[24] Charge fluctuations near the QD can also induce fluctuating electric field gradients and cause a broadening of nuclear spin energies; this process will also contribute to γ_{deph}.