Mapping instruments for assessing and stratifying frailty among community-dwelling older people: a scoping review

Luiz Eduardo Lima Andrade, Beatriz Souza de Albuquerque Cacique New York, Rafaela Silva dos Santos Aguiar Gonçalves, Sabrina Gabrielle Gomes Fernandes, Álvaro Campos Cavalcanti Maciel

ABSTRACT

Objective To map in the current literature instruments for the assessment and stratification of frailty in community-dwelling older people, as well as to analyse them from the perspective of the Brazilian context.

Design Scoping review.

Study selection The selection of studies took place between March and April 2020. Includes electronic databases: Medline, Latin American and Caribbean Literature in Health Sciences, Scopus, Web of Science and Cumulative Index of Nursing and Literature Health Alliance, in addition to searching grey literature.

Data extraction A data extraction spreadsheet was created to collect the main information from the studies involved, from the title to the type of assessment and stratification of frailty.

Results In summary, 17 frailty assessment and stratification instruments applicable to community-dwelling older people were identified. Among these, the frailty phenotype of Fried et al was the instrument most present in the studies (45.5%). The physical domain was present in all the instruments analysed, while the social, psychological and environmental domains were present in only 10 instruments.

Conclusions This review serves as a guideline for primary healthcare professionals, showing 17 instruments applicable to the context of the community-dwelling older people, pointing out advantages and disadvantages that influence the decision of the instrument to be used. Furthermore, this scoping review was a guide for further studies carried out by the same authors, which aim to compare instruments.

INTRODUCTION

Assessing and managing the health of the older people have been presented as a strong goal of health professionals in the field of geriatrics and gerontology. The Ministry of Health of Brazil recommends the systematic evaluation of this public, including in PHC, since with the demographic transition that has been occurring all over the world, older people are becoming increasingly long lived and this is a factor that is also associated with the emergence of health problems, such as frailty.

Frailty is a clinical condition in which there is a decrease in biological reserve and resistance to stressors, resulting from changes in various physiological systems, leading to the individual’s vulnerability and other adverse health outcomes, such as risk of falls, disability, hospitalisation and mortality. To date, there is still no consensus on a single definition of frailty for clinical use since such impairment can be either physical, psychological or a combination of both. As a result, several concepts and ways of measuring the syndrome are available in the literature, which often makes it difficult to make comparisons and choose the one that best fits the epidemiological reality of each region.

The prevalence of frailty varies greatly according to the context of analysis and the assessment instrument that is used. Studies carried out in Brazil found that the prevalence of frailty in the older people varied between 8.7% and 47.2%. There is still no...
Some instruments for the assessment of the older adults are known to the scientific community, however, many of them, due to their complexity, were not developed to be applied in the context of PHC, that is, in community-dwelling older adults. Therefore, the mapping of this research aims only at instruments of low technological complexity that can be applied to the population inserted in this context.

Identifying relevant studies
This stage was based on meetings with the research team, which defined the planned approach: the eligibility criteria of the studies, the selected databases, as well as the research strategy with the respective descriptors.

Eligibility criteria: full articles published without restriction of language or date of publication were included, in which the primary or secondary objective was the assessment of frailty in community-dwelling older people using instruments. In this study, the older people will be considered to be an individual aged 60 or over.

Editorials, experience reports, clinical trials, reflection studies and reviews were excluded; papers that do not present abstract and full text online. Studies addressing evaluations through laboratorial or higher technological clinical exams were excluded.

The identification of relevant studies was conducted by searching electronic databases of scientific literature such as: Medline, Latin American and Caribbean Literature in Health Sciences (LILACS), Scopus, Web of Science and Cumulative Index of Nursing and Literature Health Alliance (CiNHAHL). The choice of these databases was due to the wide coverage of studies both internationally and nationally, with public access or available through a library, in addition to the large collection of manuscripts related to the theme of ageing. The search strategy used in these databases was defined by the research team and collaborators and it is detailed in Table 1.

An analysis of all reference lists of the included studies was also carried out, in order to identify additional relevant studies. In addition, information was captured,

Table 1	Database search strategy
Search	Query
#1	Comparator
#2	Comparator
#3	Comparator
#4	Comparator
#5	Comparator
Limit	There was no restriction on language and date of publication, only the study design that was delimited by the choice of the comparator #4

METHODS
The scoping review methodological design was chosen as a research design, as it has methodological rigour and serves to map and analyse the scientific literature, with the additional advantage of including methodologically heterogeneous evidence, in addition to consulting stakeholders to validate this evidence.

Identification of the research question
This topic was developed through research in the literature about ‘frailty in the older adults in primary health care’, along with discussions by the research team on the subject in question. In the pursuit for the research question, the Population, Concept and Context strategy was used, a methodology proposed by the Joanna Briggs institute, thus defined as: Population (older adults individuals aged 60 or over); Concept (frailty assessment instruments); Context (community/PHC) the following research question was defined: What are the instruments available in the literature for assessing and stratifying frailty in community-dwelling older people?
researches were made on a variety of sources of grey literature, such as thesis and dissertation banks, annals of national and international congresses on geriatrics and gerontology and in the reference list of selected articles, to identify studies, reports and conference abstracts relevant to this review. For the analysis of grey literature, an extra researcher was invited (BSACNY). This researcher was informed about the research objectives and descriptors used, in order to do an independent search in the grey literature. Restrictions were not applied in relation to the period of publication of the studies in the analysed bases nor in relation to the language of the research.

Selection of studies
The selection of studies took place in two stages: first, there was a review of the title and abstract, after the elimination of duplicate articles, for this stage, the articles were added on the Rayyan platform (https://rayyan.qcri.org). The second stage consisted of reviewing the full text of the studies that were selected in the first stage. For both stages, the process took place in pairs, where two researchers (RSSAG and SGGF) duly trained and oriented about the eligibility criteria of the studies performed the screening in a blind and independent way and, in case of doubts or divergences in the selection, there was a third evaluator (LELA) who judged and resolved any selection problems encountered. The study selection period was from February to April 2020.

In the first stage, the two researchers (RSSAG and SGGF) independently selected the tracked studies based on the title and abstract. The eligibility criteria was tested on a sample of abstracts before the start of the abstract review to ensure that they were robust enough to capture any articles that may be related to instruments for assessing of frailty in community-dwelling older adults. Any articles that were considered relevant by one or both reviewers were included in the review of the full text.

In the second stage, the two researchers (RSSAG and SGGF) read the studies selected in the first stage in full to determine whether they met the inclusion and exclusion criteria. In order to determine the agreement between evaluators, as well as to support the rigour of the research.

Data collection
Data were collected using a semistructured form developed by the research team, which aims to collect relevant information from the studies included in this research. This form was previously tested by all reviewers before its final application, to ensure that the information captured was accurate.

Data collection was carried out in pairs, where two reviewers (RSSAG and SGGF) independently extracted data from all included studies. At the end, individual collections were compared in order to visualise possible discrepancies and, if there were any, they were reviewed and analysed by the research group, thus ensuring consistency among reviewers.

The questionnaire had items such as: year of publication, type of publication (eg, original research), country, study objective, population and sample, characteristics of the type of evaluation instrument used, number of items in the instrument, number of domains of the instrument, form of instrument assessment (interview, self-report, questionnaire), form of screening and/or stratification of frailty: descriptive, score (with appropriate cut-off points), percentiles.

The assessment instruments included were divided according to table 2 into objectives, subjective and mixed. This was a didactic way to facilitate the understanding of instruments that use a questionnaire or interview (subjective evaluation), tools that use performance measures (objective evaluation) or both forms of evaluation (mixed). A quality assessment was not included in the mandate of this scope review. As this is a research with data secondary to published articles, there was no involvement of the patient and the public for data collection.

Patient and public involvement
No patient involved.

RESULTS
The search in the databases and grey literature resulted in a total of 2668 studies. After excluding duplicates, 1357 studies were evaluated by peers for eligibility in the title and abstract. After applying the inclusion and exclusion criteria, 72 articles were read in full and, of these, only 55 were selected for final analysis in this research (figure 1). The characteristics of the included studies are shown in table 2.

A total of 141,115 older people comprised the sum of the samples of the included studies, the smallest study being composed of 26 participants, while the study with the largest sample recruited more than 72,000 participants. Regarding the gender of the participants, most studies used samples that involved both sexes (91%), with the exception of five studies that were composed of only women (table 2).

In general, 17 instruments for assessing and stratifying frailty applicable to community-dwelling older people were analysed, with Fried’s frailty criteria being the most used instrument, being present in 25 studies (45.5%) (table 2). Of the 55 articles included, 39 were published after 2015 (71%), most were from American continents: South America (32.8%) or North America (21.9%), and the most used study design cross-sectional (47.3%) (table 2).

Although they have a similar purpose, which is the assessment of frailty, the instruments had very heterogeneous structures, such as the number of items, where the instrument with the lowest quantity had three items (Study of Osteoporotic Fractures-Frailty Index (SOF-FI)) and the highest quantity had 36 items (FI), in addition to an instrument that did not specify the number of items as it was a broad and robust assessment (Comprehensive...
Table 2 Details of the studies included according to the author, study design, sample size, instrument for assessing frailty and the prevalence of frailty in the older people.

Author (year)	Study design	Sample size	Frailty assessment tool
Maltais et al2019	Prospective cohort	113 older people of both sexes (≥70 years)	Phenotype of frailty
Serra-Prat et al2019	Cross-sectional	324 older people of both sexes (≥75 years)	Phenotype of frailty
Tamaki et al2018	Cross-sectional	800 older people of both sexes (≥65 years)	KC e Phenotype of frailty
Iizaka et al2018	Cross-sectional	128 older people of both sexes (≥65 years)	Phenotype of frailty
Li et al2018	Prospective cohort	2438 older people of both sexes (≥65 years)	Modified Phenotype of frailty
Zylbergait Lisiguerksi et al2018	Prospective cohort	291 older people of both sexes (≥65 years)	5-item FRAIL
Shimada et al2019	Cross-sectional	4072 older people of both sexes (≥65 years)	Phenotype of frailty; NCCG-FAT
Sampaio et al2015	Cross-sectional	211 older people women (≥60 years)	KC
Garre-Olmo et al2013	Prospective cohort	875 older people of both sexes (≥74 years)	Disability-free frailty phenotype
Wang et al2010	Prospective cohort	635 older people women aged between 70−79 years	Phenotype of frailty
Crow et al2019	Cross-sectional	4984 older people of both sexes (≥60 years)	Phenotype of frailty
Hasegawa et al2019	Cross-sectional	308 older people of both sexes (≥65 years)	KC
Satake et al2017	Prospective cohort	5542 older people of both sexes (≥65 years)	KC
Ballew et al2017	Cross-sectional	341 older people of both sexes (≥66 years)	Phenotype of frailty
Zaslavsky et al2017	Prospective cohort	876 older people women (≥65 years)	Phenotype of frailty
Monin et al2016	Prospective cohort	2524 older people of both sexes (≥65 years)	Phenotype of frailty
Espinoza and Hazuda2015	Cross-sectional	394 older people of both sexes (65–80 years)	Phenotype of frailty
Drubbel et al2013	Cross-sectional	1549 older people of both sexes (≥60 years)	GFI e FI
Yao et al2011	Prospective cohort	94 older people of both sexes (≥70 years)	Phenotype of frailty
Kiely et al2009	Prospective cohort	765 older people of both sexes (≥70 years)	Phenotype of frailty; SOF-Frailty Index
Chaves et al2008	Cross-sectional	389 older people women (≥65 years)	Phenotype of frailty
Ožić et al2020	Prospective cohort	410 older people of both sexes (75−95 years)	TFI
Potier et al2018	Prospective cohort	82 older people of both sexes (≥70 years)	Phenotype of frailty
Belisário et al2018	Cross-sectional	705 older people of both sexes (≥60 years)	Phenotype of frailty
Sousa-Santos et al2018	Cross-sectional	1457 older people of both sexes (≥65 years)	pPhenotype of frailty
Hoeksema et al2017	Cross-sectional	1325 older people of both sexes (≥75 years)	GFI
Turusheva et al2016	Prospective cohort	611 older people of both sexes (≥65 years)	Cumulative model (Puts model); Steventik-Slaets model (using the GFI); Phenotype of frailty
Bastone et al2015	Cross-sectional	26 older people of both sexes (≥65 years)	Phenotype of frailty
Ruiz-Arregui et al2013	Prospective cohort	1124 older people of both sexes (≥70 years)	Phenotype of frailty
Giudici et al2019	Prospective cohort	1679 older people of both sexes (≥70 years)	Phenotype of frailty
Lin et al2018	Prospective cohort	72127 older people of both sexes (≥65 years)	KC
Yeap et al2012	Prospective cohort	3447 older people men aged between 70 and 89 years	FRAIL Scale.
Xue et al2008	Prospective cohort	420 older people women aged between 70−79 years	Phenotype of frailty
Min et al2006	Prospective cohort	3207 older people of both sexes (≥65 years)	VES-13
Pegorari et al2013	Cross-sectional	51 older people of both sexes (≥65 years)	Phenotype of frailty
McHugh et al2016	Prospective cohort	624 older people of both sexes (≥65 years)	Modified frailty phenotype
Tian et al2018	Cross-sectional	1917 older people of both sexes (≥60 years)	Phenotype of frailty
Freitas Soares et al2019	Cross-sectional	2972 older people of both sexes (≥65 years)	CFVI-20
Fhon et al2011	Cross-sectional	240 older people of both sexes (≥60 years)	EFS

Continued
Geriatric Assessment (CGA)). Regarding the evaluation time, only two studies reported these times, one being, which reported only the time for evaluating the cognitive part (20 min), and another, reported that the evaluation of one of the addressed instruments varied between 60 and 90 min.

Regarding the domains, six instruments evaluate only physical questions (Phenotype of frailty, Modified Frailty Phenotype, 5-Frail, SOF-FI, Vulnerable Elders Survey (VES-13) and Frail Scale), one evaluates physical and cognitive questions (National Center for Geriatrics and Gerontology-Functional Assessment Tool (NCGG-FAT)), four evaluate physical, psychological and social issues (disability-free frailty phenotype, Groningen Frailty Indicator (GFI), Tilburg Frailty Indicator (TFI) and Sherbrooke Postal Questionnaire (SPQ)), the other instruments have more than three domains for assessing frailty, which in its early days was related strictly to physical issues and systemic issues. A study developed by

Author (year)	Study design	Sample size	Frailty assessment tool
Ribeiro et al. 2018	Retrospective cohort	311 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Ribeiro et al. 2018	Cross-sectional	397 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Marques et al. 2019	Cross-sectional	72 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Fabricio-Wehbe et al. 2016	Prospective cohort	723 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Santiago et al. 2013	Cross-sectional	219 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Faller 2019	Cross-sectional	555 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Neto et al. 2019	Cross-sectional	196 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Baldinot and Uscovitch 2019	Prospective cohort	403 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Maia 2011	Prospective cohort	2143 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Barbosa 2015	Cross-sectional	368 older people of both sexes (≥60 years)	Modified Frailty Phenotype, 5-Frail
Lang et al. 2009	Cross-sectional	4818 older people of both sexes (≥65 years)	Modified Frailty Phenotype, 5-Frail
Daniels et al. 2012	Prospective cohort	430 older people of both sexes (≥70 years)	Modified Frailty Phenotype, 5-Frail
Fukumoto et al. 2015	Prospective cohort	883 older people of both sexes (≥65 years)	Modified Frailty Phenotype, 5-Frail
Yamaguchi et al. 2018	Cross-sectional	8174 older people of both sexes (≥65 years)	Modified Frailty Phenotype, 5-Frail

DISCUSSION

This study used a systematic approach to map and synthesise the main instruments for screening and stratifying frailty in community-dwelling older people, in addition to analysing them from the perspective of the Brazilian context. The assessment of frailty is becoming a routine daily practice in the treatment of older people patients, so a guide with the tools that can trace such screening and stratification in the context of PHC is of paramount importance.

In summary, 55 articles became eligible for the study, with 17 different instruments present. The phenotype of frailty was the most used instrument in the articles, which also demonstrates a strong connection of the physical domain in the assessment of frailty in older people.

In the analysed articles, the physical domain was present in all instruments, while the other domains (social, psychological and environmental) were present in more recent instruments (Edmonton Frailty Scale (EFS), Disability-free frailty phenotype, GFI, CFVI-20, Kihon check list (KC), NCGG-FAT, TF1, Puts model and SPQ). This may be related to the evolution of the concept of frailty, which in its early days was related strictly to physical issues and today, this concept involves multifactorial and systemic issues.

Researches show that frailty is directly associated with factors other than physical functions, such as social, environmental and psychological. A study developed by
Santiago et al. using the TFI, assessed 442 older people men and women and concluded that, if only the physical domain was considered, 0.3% of the sample would have frailty, when the social domain was added, the prevalence would increase to 2.9% and when analysing the three domains (physical, social and psychological), the prevalence would rise to 52%. This reinforces the idea that frailty can arise not only from strictly physical issues, directly affecting the choice of the assessment instrument, since some assess only the physical domain.

Among the instruments analysed, there was a heterogeneous and multifaceted structure, this diversity provided methodological divergences both in the choice of the instrument, in the definition of the cut-off point for exposure to frailty, as well as in its prevalence among the samples, which compromise the comparison of studies. The survey carried out in this review found that there is still no gold standard tool for assessing frailty, the ones found in the papers are instruments that use diversified parameters. Even so, each instrument has advantages and disadvantages, therefore, it is highlighted that, for the proper choice of the instrument in the context of PHC, the focus should be on which type of screening is to be performed.

The assessment instruments were didactically categorised into objective, subjective and mixed. These forms of assessment corroborate the understanding of authors such as Tibess and de Oliveira, who point out that, for logistical reasons, questionnaires/interviews continue to be used frequently in older populations, although efforts have been made to increase the use of performance measures.

Some instruments such as phenotype of frailty and its modified version, for presenting an assessment of physical performance, require specific tools such as the manual dynamometer, while other instruments for presenting only subjective evaluation (through questionnaires or interviews) such as the CFVI-20 or VES-13 do not need more specific equipment. This can also influence the choice of the assessment instrument, since, in the context of PHC in the Brazilian reality, sometimes more specific devices are not available, and the assessment of frailty will be limited by tools that require such instruments.

Some questionnaires use questions about past times such as: ‘In the last year, did you lose more than 5% of your body weight?’, or about activities carried out in the previous week, self-perceived health issues based on past days (phenotype of frailty, Modified Frailty Phenotype, NCGG-FAT, KC, CFVI-20, CGA, EFS, disability-free frailty phenotype, Frail scale, FI, SOF, TFI and GFI), these questions are often influenced, in the older people population,

Figure 1 Selection diagram of studies involving instruments for screening and stratifying frailty in the older people.
Evaluation of frailty instrument	Type of evaluation	Components	Score and stratification	Validated in Brazil	Prevalence of frailty among studies (%)
5-item FRAIL	Subjective	5 sections (fatigue, resistance, ambulation, illnesses and loss of weight)	Score: 0–5; Stratification: 0: robust, 1–2: prefrail, ≥3: frail	No	16.8
Clinical-Functional Vulnerability Index-20	Subjective	20 items, 8 sections (age, health self-perception, functional disabilities, cognition, mood, mobility, communication and presence of multiple comorbidities).	Score: 0–40; Stratification: 0–6: robust, 7–14: at risk of frailty, ≥15: frail	Yes	12.60–21.79
Comprehensive Geriatric Assessment	Mixed	Global functionality, functional systems ‘cognition, mood, mobility, and communication’, major physiological systems, medication use, past history and contextual factors ‘socio-family, environmental and caregiver assessment’	Score: none; Stratification: classifies the subject in one of the 10 clinical-functional strata ≥4: frail	Yes	–
Disability-free frailty phenotype	Subjective	Physical frailty ‘chronic diseases, balance, nutrition, continence, vision, use of medicines, use of vasoactive drugs’, mental frailty ‘cognition, depression, cognitive self-concept, and quality of life’, and social frailty ‘living alone, lack of person to assist in activities of daily living, little contact with family, friends and neighbors, absence of a confidant, lack of support for activities for 3 months’	Score: none; Stratification: >4: physical frailty, >2: mental frailty, >2: social frailty	No	Physical frailty: 17.3 Mental frailty: 22.8 Social frailty: 6.8
Edmonton Frail Scale	Mixed (multidimensional)	11 items, 9 sections (cognition, general health state, functional independence, emotional support, medication use, nutrition, mood, continence, and functional performance).	Score: 0–17; Stratification: 0–4: no frailty, 5–6: apparently vulnerable, 7–8: mild frailty, 9–10: moderate frailty, >11: severe frailty	Yes	Mild frailty: 16.7–18.3 Moderate frailty: 6–11.3 Severe frailty: 1.5–9.6
FRAIL Scale	Subjective	5 items (fatigue, resistance ‘ability to climb up one flight of stairs’, ambulation ‘ability to walk one block’, illness ‘>5 comorbidities’, and loss of weight ‘>5%’)	Score: 0–5; Stratification: 0: robust, 1–2: prefrail, ≥3: frail	No	15.3
Frailty Index	Subjective	36 items (selected from the ICPC-coded, includes symptoms, diseases, functional impairments and social problems).	Score: ratio between deficits present within the total of 36 deficits. (Cut-off 0.08); Stratification: >0.08 Frail, <0.08 robust	Yes	Frailty: 60 Robust: 40
Groningen Fraility Indicator	Subjective	15 items (physical, cognitive, social and psychological functionality)	Score: 0–15; Stratification: 0–3: robust, >4: frail	Yes	22–46
Modified Frailty Phenotype	Objective	Handgrip strength, walking speed, unintentional weight loss and fatigue	Score: 0–4; Stratification: 0: robust, 1: prefrail, ≥2: frail	Yes	8.98–37.10
NCGG-FAT	Subjective	Memory, attention, executive function and processing speed	Score: 0–10; Stratification: >2: frail cognitive (indicated by the age-compatible score (1.5 SD below the reference value)	No	5.2
Phenotype of frailty	Mixed	Handgrip strength, gait speed, unintentional weight loss, fatigue and physical activity level	Score: 0–5; Stratification: 0: robust, 1–2: prefrail, ≥3: frail	Yes	3–35
Sherbrooke Postal Questionnaire	Subjective	6 items (physical, social, and cognitive domains of functioning)	Score: 0–6; Stratification: >2: frail	No	58.1

Continued
by memory bias. For this reason, authors such as Chang et al advise the use of instruments that objectively assess the physical performance of patients, avoiding this type of bias.

Despite being a progressive condition, frailty can be prevented and rehabilitated. In this context, the instruments that allow the identification of prefrailty (frailty phenotype, Modified Frailty Phenotype, 5-frail, SOF FI, puts model, CGA) have positive aspects and stand out, since, when diagnosed early, functional changes resulting from frailty may have a better prognosis. Thus, the reversal of the situation becomes more likely when interventions are applied in the initial phase of frailty.

Among the instruments included in this research, it is analysed that 10 of them present validated measurements for Brazil in the assessment of frailty in community-dwelling older people (table 3). The Ministry of Health included in the new Health Handbook for the Elderly one of these questionnaires, the VES 13, in an attempt to promote a practical form of screening frailty to health-care professionals. PHC, since it has easy and fast application. The VES-13 is an effective instrument to identify the vulnerable community-dwelling older people, with an emphasis on data regarding age, self-perceived health, presence of physical limitations and disabilities. The vulnerable older people was defined as that individual who is at risk of functional decline or death in 2 years.

Most instruments were developed abroad, with the exception of CFVI-20. This tool was developed in the Brazilian context in a joint and interdisciplinary action, and is applicable in the outpatient and community setting. In addition to being a Brazilian tool, it was shown to be positively correlated to CGA, in addition to the results pointing to high values of validity and reliability.

In the case of CGA, it is a very widespread instrument in Brazil and quite complete, as it evaluates the health of the older people in a global and multidisciplinary way, using various tools to achieve this goal. This completeness also reflects one of its disadvantages, since the instrument is very large, requiring about 60–90 min for application, in addition to requiring several professionals to complete it. This often leads to limitation of its use in the reality of Brazilian PHC. Thus, it is important that health professionals know other, faster ways of screening to improve the identification of the frailty in older people.

The screening instruments for application in PHC must respect the context in which they are inserted, therefore, they must be of short duration, when possible, be administered by other means such as telephone and also by different professionals, allowing the reach a greater number of individuals, still being accurate about adverse results.

According to the Brazilian consensus on frailty in the older people, the conceptual diversity of criteria and instruments reflects in areas such as assistance, teaching and research, making it difficult to choose instruments, compare results and compromise adequate training of professionals in the area. In this sense, this review becomes a guide since it

Table 3 Continued	Evaluation of frailty instrument	Type of evaluation	Components	Score and stratification
Study of Osteoporotic Fractures	Frailty Index	Mixed (physical, psychological, social)	Uni-intentional weight loss, mobility, frailty	Score: 0–25; Stratification: 0–25: robust, 26–29: prefrail, ≥30: frail
Functional Assessment Tool	Frailty Index	Mixed (physical, psychological, social)	Body weight, peak expiratory flow, cognition, depression, functional status	Score: 0–25; Stratification: 0–25: robust, 26–29: prefrail, ≥30: frail
The Kihon Checklist	Frailty Index	Subjective (questionnaire)	25 items (determinants of frailty and diseases and components of frailty in three domains ‘physical, psychologic and social frailty’)	Score: 0–3; Stratification: 0: robust, 1: prefrail, 2–3: frail
Tilburg Frailty Indicator	Frailty Index	Subjective (questionnaire)	12 items (self-perception of health, functional capacity, and physical condition)	Score: 0–10; Stratification: ≤2: robust, 3–6: risk of frailty, ≥7: frail
Vulnerable Elders Survey-13	Frailty Index	Subjective (questionnaire)	13 items (age, self-e	Score: None*; Stratification: 0: robust, 1–2: prefrail, >3: frail

NCGG-FAT, National Center for Geriatrics and Gerontology- Functional Assessment Tool.
Main learning
The data from this research provide the understanding that choosing the appropriate instrument to assess frailty is not simple, given the lack of global consensus regarding the definition of this syndrome. However, there are instruments in the literature that are validated, simple and that provide the screening of frailty in community-dwelling older people. Therefore, the choice of this instrument will depend on the objectives outlined by the evaluators, as well as the domains that they seek to analyse for this screening.

CONCLUSION
The assessment of frailty in PHC can be performed by several instruments. This review served as a guideline for professionals in this area, demonstrating 17 instruments applicable to the context of the community-dwelling older people, pointing out advantages and disadvantages in deciding on the instrument of use.

From all the tools analysed in this study, ten of them are validated in Brazil and one was built in the country itself. As no instrument considered to be the gold standard was verified, the choice of the instrument will depend on which domains the evaluators want to address for the screening and stratification of frailty.

Furthermore, this scoping review was a guide for further studies carried out by the same authors, which aim to compare instruments for assessing frailty in PHC.

Twitter Luiz Eduardo Lima Andrade @luizeduardodfs

Contributors LELA and ACCM: responsible for the overall content as the guarantor, substantial contributions to the conception or design of the work, or the acquisition, analysis or interpretation of data, drafting the work or revising it critically for important intellectual content, final approval of the version published. BSACNY, RSSAG and SGGF: collected, analysis and interpretation of data, drafting the work or revising it critically for important intellectual content, final approval of the version published.

Funding This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not applicable.

Ethics approval This review did not require ethical approval as it consisted of analysing and collecting information from publicly available documents.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data sharing not applicable as no datasets generated and/or analysed for this study.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Luiz Eduardo Lima Andrade http://orcid.org/0000-0003-3835-4253

REFERENCES
1 Duarte YAO, Nunes DP, Andrade FB. Fragilidade e idosos no município de São Paulo: prevalência e fatores associados. Rev Bras Epidemiol 2018;21.
2 Brasil. Envelhecimento e saúde da pessoa idosa. Brasília: Ministério da Saúde, 2009.
3 Duarte YAO, Lebrão ML. Fragilidade e envelhecimento. In: Freitas EV, Py L, Canção FAX, eds. Tratado de geriatria e gerontologia. 3 edn. Rio de Janeiro: Guanabara Koogan, 2013: 1285–96.
4 Campbell AJ, Buchner DM. Unstable disability and the fluctuations of frailty. Age Ageing 1997;26:315–8.
5 Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56:M146–56.
6 Rodrigues-Marlias L, Feart C, Mann G, et al. Searching for an operational definition of frailty: a Delphi method based consensus statement: the frailty operative definition-consensus conference project. J Gerontol A Biol Sci Med Sci 2013;68:62–7.
7 Morley JE, Vellas B, van Kan GA, et al. Frailty consensus: a call to action. J Am Med Dir Assoc 2013;14:392–7.
8 Bilotta C, Nicolini P, Cassa A, et al. Frailty syndrome diagnosed according to the study of osteoporotic fractures (SOF) criteria and adverse health outcomes among community-dwelling older outpatients in Italy: a one-year prospective cohort study. Arch Gerontol Geriatr 2012;54:e92–8.
9 Aguayo GA, Donneau A-F, Vaillant MT, et al. Agreement between 35 published frailty scores in the general population. Am J Epidemiol 2017;186:420–34.
10 Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. J Am Geriatr Soc 2001;50:94–101.
11 Lourenço RA, Moreira VG, Melo RGB, et al. Consenso brasileiro de fragilidade em idosos: conceitos, epidemiologia e instrumentos de avaliação. Geriatr. Gerontol. Aging 2018;12:121–35.
12 Fabricio-Wehbe CSC, Veiga SF, et al. Adaptação cultural e validade da Edmonton Frail Scale - EFS em uma amostra de idosos brasileiros. Rev Latino-Am Enferm 2009;17.
13 Pham MT, Rajić A, Greig JD, et al. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods 2014;5:371–85.
14 Joana Briggs Institute (JBI). Methodology for JBI Scoping Reviews - Joanna Briggs Institute 2015. Australia: JBI, 2015.
15 Santiago LM, Luz LL, Mattos IE, et al. Cross-cultural adaptation of the Tilburg Frailty Indicator (TFI) for use in the Brazilian population. Cad Saude Publica 2012;28:1795–801.
16 Sampaio PY, Sampaio RAC, Yamada M, et al. Validation and translation of the Khon checklist (frailty index) into Brazilian Portuguese. Geriatr Gerontol Int 2014;14:561–9.

Andrade LEL, et al. BMJ Open 2021;11:e052301. doi:10.1136/bmjopen-2021-052301
Iizaka S. Frailty and body mass index dietary history questionnaire. A cross-sectional study and frailty in community-dwelling elderly in northeast Brazil. Arch Gerontol Geriatr 2018;74:162–8.

Gilar Moraes EN. The frailty syndrome: a review of characteristics and use in public health. J Nutr Health Aging 2018;23:138–44.

Hasegawa Y, Sakuramoto A, Sugita H, et al. Relationship between oral environment and frailty in older adults dwelling in a rural Japanese community: a cross-sectional observational study. BMC Oral Health 2019;19:21–9.

Satake S, Shimokata H, Senda K, et al. Validity of total Kihon checklist score for predicting the incidence of 3-year dependency and frailty in a community-dwelling population. J Am Med Dir Assoc 2017;18:552.e1–552.e6.

Baillew SH, Chen Y, Daya NR, et al. Frailty, Kidney Function, and Polypharmacy: The Atherosclerosis Risk in Communities (ARIC) study. J Am J Kidney Dis 2019;73:229–39.

Zaslavsky O, Rillamas-Sun E, Li W, et al. Association of dynamics in lean and fat mass measures with mortality in frail older women. J Nutr Health Aging 2017;21:112–9.

Monin J, Doyle M, Levy B, et al. Spousal associations between frailty and depressive symptoms: longitudinal findings from the cardiovascular health study. J Gerontol Ser A Biol Sci Med Sci 2016;71:1523–32.

Espinoza SE, Hazuda HP. Frailty prevalence and neighborhood residence in older Mexican Americans: the San Antonio longitudinal study of aging. J Am Geriatr Soc 2015;63:106–11.

Drubbel I, Bleijenberg E, Kranenburg G, et al. Identifying frailty: do the frailty index and Groningen frailty indicator cover different clinical perspectives? A cross-sectional study. BMC Fam Pract 2013;14:64.

Yao X, Hamilton RG, Weng N-qing, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine 2011;29:5015–21.

Kiyel DK, Cupples LA, Lipsitz LA. Validation and comparison of two frailty indexes: the mobilize Boston study. J Am Geriatr Soc 2009;57:1532–9.

Chaves PHM, Varadhan R, Lipsitz LA, et al. Physiological complexity underlying heart rate dynamics and frailty status in community-dwelling older women. J Am Geriatr Soc 2008;56:1698–703.

Ožić S, Vasiljev I, Ivićović V, et al. Interventions aimed at loneliness and fall prevention reduce frailty in elderly urban population. Medicine 2020;99:e19145.

Potier F, Depreyse JM, Bihin B, et al. Health and frailty among older spousal caregivers: an observational cohort study in Belgium. BMC Geriatr 2018;18:291–26.

Belisário MS, Dias FA, Pegorari MS, et al. Cross-Sectional study of the association between fracture and violence against community-dwelling elderly people in Brazil. Sao Paulo Med J 2018;136:10–19.

Hoeksema AR, Spoorenberg SLW, Peters LL, et al. Elderly with remaining teeth report less frailty and better quality of life than edentulous elderly: a cross-sectional study. Oral Dis 2017;23:526–36.

Turusheva A, Frolova E, Korystina E, et al. Do commonly used frailty models predict mortality, loss of autonomy and mental decline in older adults in northwestern Russia? A prospective cohort study. BMC Geriatr 2016;16:101–20.

Bastone ADeC, Ferreri E, Teixeira CP, et al. Aerobic fitness and habitual physical activity in frail and Nonfrail community-dwelling elderly. J Phys Act Health 2015;12:1304–11.

Ruiz Arregui L, Avila-Funes JA, Arimia H, et al. The Coyoacán frailty cohort study: design, methodology, and participants’ characteristics of a Mexican Study on nutritional and psychosocial markers of frailty. J Frailty Aging 2013:8:68–76.

Giudici KV, de Souto Barreto P, Soriano G, et al. Defining vitality: associations of three operational definitions of vitality with disability in instrumental activities of daily living and frailty among elderly over a 3-year follow-up (MAPT study). J Nutr Health Aging 2019;23:386–92.
69 Xue QL, Bandeen-Roche K, Varadhan R, et al. Initial manifestations of frailty criteria and the development of frailty phenotype in the women’s health and aging study II. *J Gerontol A Biol Sci Med Sci* 2006;63:984–90.

70 Min LC, Elliott MN, Wenger NS, et al. Higher vulnerable elders survey scores predict death and functional decline in vulnerable older people. *J Am Geriatr Soc* 2006;54:507–11.

71 Pegorari MS, Ruas G, Patrizzi LJ. Relationship between frailty and respiratory function in the community-dwelling elderly. *Braz J Phys Ther* 2013;17:9–16.

72 Tian X, Wang C, Qiao X, et al. Association between pain and frailty among Chinese community-dwelling older adults: depression as a mediator and its interaction with pain. *Pain* 2018;159:306–13.

73 Freitas FFQ, Soares SM. Índice de vulnerabilidade clínico-funcional E as dimensões da funcionalidade em idosos. *Rev Rene* 2019;20:e39746.

74 Fhon JRS. A prevalência de quedas em idosos e a sua relação com a fragilidade e a capacidade funcional [dissertation]. Ribeirão Preto: Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, 2011.

75 Ribeiro EG. Análise psicométrica do índice de vulnerabilidade clínico funcional 20 [dissertation]. Brazil: Belo Horizonte, 2018.

76 Ribeiro EG, Matozinhos FP, Guimarães GdeL, et al. Self-perceived health and clinical-functional vulnerability of the elderly in Belo Horizonte/Minas Gerais. *Rev Bras Enferm* 2018a;71 Suppl 2:860–7.

77 Ribeiro PCC, Neves ACC, Reis JC. Clinical-functional vulnerability in older adults and its impact on primary health care actions. *Ver. Bras. Promoç. Saúde* 2019;32:8366.

78 Marques SGS. Determinação do somatotipo e do nível de atividade física em idosos frágeis [dissertation]. São Paulo: Universidade de São Paulo, Escola de Artes, Ciências e Humanidades, 2019.

79 Fabricio-Wehbe SCC, Rodrigues RAP, Haas VJ, et al. Association of frailty in hospitalized and institutionalized elderly in the community-dwelling. *Rev Bras Enferm* 2016;69:691–6.

80 Santiago LM. Fragilidade em idosos no Brasil: identificação e análise de um instrumento de avaliação para ser utilizado na população do país [thesis]. Brazil. Rio de Janeiro 2013.

81 Neto GCF. Perfil sociodemográfico, condições de saúde e vulnerabilidade da população idosa de um município do Seridó do Rio Grande do Norte [completion of course work]. Brasil. Rio Grande do Norte 2019.

82 Balbinot G, Usccovich KJSCO. Risco de vulnerabilidade DOS idosos de uma unidade de saúde da família no oeste paranaense. *Rev. Saúde Pública. Paraná* 2019;2:13–19.

83 Barbosa KTF. Vulnerabilidade física, social e programática de idosos atendidos na atenção primária de saúde do município de JP [dissertation]. Brazil. Paraíba 2015.

84 Lang IA, Hubbard RE, Andrew MK, et al. Neighborhood deprivation, individual socioeconomic status, and frailty in older adults. *J Am Geriatr Soc* 2009;57:1776–80.

85 Daniels R, van Rossum E, Beurskens A, et al. The predictive validity of three self-report screening instruments for identifying frail older people in the community. *BMC Public Health* 2012;12:69.

86 Fukutomi E, Okumiya K, Wada T, et al. Relationships between each category of 25-item frailty risk assessment (Kihon checklist) and newly certified older adults under long-term care insurance: a 24-month follow-up study in a rural community in Japan. *Geriatr Gerontol Int* 2015;15:864–71.

87 Yamaguchi M, Yamada Y, Nanri H, et al. Association between the frequency of protein-rich food intakes and Kihon-Checklist frailty indices in older Japanese adults: the Kyoto-Kameoka study. *Nutrients* 2018;10:84.