Discrepant Fibrinolytic Response in Plasma and Whole Blood during Experimental Endotoxemia in Healthy Volunteers

Sisse R. Ostrowski1,4, Ronan M. G. Berg2, Nis A. Windeløv3, Martin A. S. Meyer1, Ronni R. Plovsing4, Kirsten Møller2,5, Pär I. Johansson1,6

1 Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Copenhagen, Denmark, 2 Centre of Inflammation and Metabolism, Dept. of Infectious Diseases, Section M7641, Rigshospitalet, Copenhagen, Denmark, 3 Department of Anesthesia, Centre of Head and Orthopedics, Rigshospitalet, Copenhagen, Denmark, 4 Intensive Care Unit, Section 4131, Department of Anesthesia, Rigshospitalet, Copenhagen, Denmark, 5 Neurointensive Care Unit, Department of Neuroanaesthesiology, Rigshospitalet, Copenhagen, Denmark, 6 Department of Surgery, Center for Translational Injury Research (CeTIR), University of Texas Medical School at Houston, Houston, Texas, United States of America

Abstract

Background: Sepsis induces early activation of coagulation and fibrinolysis followed by late fibrinolytic shutdown and progressive endothelial damage. The aim of the present study was to investigate and compare the functional hemostatic response in whole blood and plasma during experimental human endotoxemia by the platelet function analyzer, Multiplate and by standard and modified thrombelastography (TEG).

Methods: Prospective physiologic study of nine healthy male volunteers undergoing endotoxemia by means of a 4-hour infusion of E. coli lipopolysaccharide (LPS, 0.5 ng/kg/hour), with blood sampled at baseline and at 4 h and 6 h. Physiological and standard biochemical data and coagulation tests, TEG (whole blood: TEG, heparinase-TEG, Functional Fibrinogen; plasma: TEG:: tissue-type plasminogen activator (tPA)) and Multiplate (TRAPtest, ADPtest, ASPItest, COLtest) were recorded. Mixed models with Tukey post hoc tests and correlations were applied.

Results: Endotoxemia induced acute SIRS with increased HR, temperature, WBC, CRP and procalcitonin and decreased blood pressure. It also induced a hemostatic response with platelet consumption and reduced APTT while INR increased (all p<0.05). Platelet aggregation decreased (all tests, p<0.05), whereas TEG whole blood clot firmness increased (G, p = 0.05). Furthermore, during endotoxemia (4 h), whole blood fibrinolysis increased (clot lysis time (CLT), p<0.001) and Functional Fibrinogen clot strength decreased (p = 0.049). After endotoxemia (6 h), whole blood fibrinolysis was reduced (CLT, p<0.05). In contrast to findings in whole blood, the plasma fibrin clot became progressively more resistant towards tPA-induced fibrinolysis at both 4 h and 6 h (p<0.001).

Conclusions: Endotoxemia induced a hemostatic response with reduced primary but enhanced secondary hemostasis, enhanced early fibrinolysis and fibrinogen consumption followed by downregulation of fibrinolysis, with a discrepant fibrinolytic response in plasma and whole blood. The finding that blood cells are critically involved in the vasculo-fibrinolytic response to acute inflammation is important given that disturbances in the vascular system contribute significantly to morbidity and mortality in critically ill patients.

Introduction

Experimental human endotoxemia induced by intravenous administration of purified standard reference lipopolysaccharide (LPS) to healthy volunteers induces an acute systemic inflammatory response, which mimics the inflammatory response of early sepsis as well as other acute inflammatory conditions [1–3]. Sepsis is associated with initial activation of coagulation and fibrinolysis followed by late fibrinolytic shutdown and exhaustion of the natural anticoagulant systems [4], the latter mainly due to progressive endothelial disruption and damage [5,6]. Conventional coagulation tests like activated partial thromboplastin time
by these tests. Several studies have characterized the coagulopathy in sepsis \[9–22\] and experimental human \[23,24\] and animal \[25–29\] endotoxemia by these tests.

In addition to fibrinolytic changes and platelet dysfunction, degradation of the endothelial glycocalyx may, through release of large amounts of heparin-like substances \[30,31\], induce endogenous heparinization that contributes to hypocoagulability in septic patients \[32–37\], and we recently reported similar findings in severely injured trauma patients \[38\].

Excessive sympathoadrenal activation is a hallmark of acute critical illness and the accompanying increase in circulating catecholamines induces widespread dose-dependent effects on metabolism and the vascular system \[39–41\]. Apparently, catecholamines induce opposite directed effects on the endothelium (progressive activation and damage) \[42–44\] and circulating blood (initial hypercoagulability followed by progressive hypocoagulability, hyperfibrinolysis and endogenous heparinization) \[38,42,45–49\] and we infer that this reflects an evolutionary adapted response aiming at maintaining blood flow through a damaged and procoagulant microvasculature in the (shocked) critically ill patient \[42\]. Similarly to the opposite directed effects of catecholamines on the vascular endothelium and circulating blood \[38,42–49\], the cells and fluid that constitutes the fluid phase of the vascular system i.e., the circulating blood, may also respond in opposite directions in acute inflammatory conditions in order to maintain homeostasis in the vascular system. In vitro studies of platelet function in sepsis and experimental endotoxemia have revealed that addition of septic plasma to control platelets can induce a pathologic response \[29,50\], and that removal of septic plasma from patient platelets can restore platelet function \[20\]. Also, fibrinolytic activity may both be enhanced and inhibited by circulating blood cells and cell-derived microparticles \[51–55\]. Thus, platelets protect the clot against tissue-type plasminogen activator (tPA)-induced fibrinolysis \[51\] and enhance the antifibrinolytic effect of exogenous FXIII in vitro \[32\] and red blood cells confer lytic resistance to fibrin resulting from modified fibrin structure and impaired plasminogen activation \[56\]. In contrast, other blood and endothelial cells, and their derived microparticles, promote fibrinolysis through the action of cell-associated urokinase-type plasminogen activator (uPA) and tPA \[53–55\] and leukocytes promote fibrinolysis through various alternative pathways \[57\]. Together, this emphasizes that platelets and other blood cells are critically involved in balancing the vascular-fibrinolytic response, which may contribute to discrepant findings when evaluating fibrinolysis in plasma and whole blood. Given that sepsis and other acute inflammatory conditions are characterized by excessive changes in hemostasis and the vascular system that may be differently driven by and detected in whole blood and plasma, improved understanding and characterization of this response is of critical importance for optimizing and potentially goal-directing therapy.

The primary aim of the present study was to investigate and compare the functional hemostatic response in whole blood and plasma during experimental human endotoxemia as evaluated by Multiplate and by standard and modified TEG analyses, respectively. We expected that endotoxemia would induce a hemostatic response comparable to that previously described \[23,24\] and given the role of blood cells for fibrinolysis \[51–55\], we hypothesized that fibrinolytic activity during endotoxemia would differ in plasma and whole blood.

Here we report that experimental endotoxemia by means of a 4-hour 0.5 ng/kg/hour LPS-infusion in healthy volunteers induced a hemostatic response with reduced primary but enhanced secondary hemostasis, enhanced early fibrinolysis and fibrinogen consumption followed by downregulation of fibrinolysis, with a discrepant fibrinolytic response in plasma and whole blood. Our findings indicate a critical role of platelets and/or other blood cells in the vascular-fibrinolytic response to acute inflammation. The finding here that platelets and other blood cells, not present in plasma, may enhance fibrinolysis in acute inflammatory conditions is important given that especially thrombocytopenia is a strong predictor of poor outcome including excessive non-bleeding mortality in critically ill patients \[58–63\]. Since thrombocytopenia in septic patients often coexists with bleeding and excessive thrombus formation, or even overt disseminated intravascular coagulation (DIC) \[59\], it is tempting to speculate that thrombocytopenia may directly contribute to tip the hemostatic balance in the circulating blood towards a reduction in fibrinolysis and thereby paradoxically contribute to enhanced thrombus formation in the microvasculature.

Materials and Methods

Experimental human endotoxemia

The study was approved by the Scientific Ethical Committee of Copenhagen and Frederiksberg Municipalities, Denmark (file number H-A-2009-020 with amendments) and The Danish Data Protection Agency and was performed in accordance with the Declaration of Helsinki.

Nine healthy male volunteers (mean±SD age 23±2 years) were enrolled after giving oral and written informed consent. All had an unremarkable medical history without signs of infection within 4 weeks ahead of the trial day and none took any regular medication. Before inclusion, volunteers underwent a thorough physical examination, a 12-lead electrocardiogram (ECG) was obtained and standard laboratory tests were performed. All tests were normal.

Endotoxemia: Following 12-hour overnight fast volunteers reported to the intensive care unit (ICU) at 7:30 am and were placed in bed. They were catheterized with an intravenous antecubital catheter (for LPS-infusion) and following local anesthesia (lidocaine, 20 mg/ml) an arterial line was inserted in the left radial artery. Heart rate (via a three-lead ECG), invasive blood pressure (mean arterial pressure, MAP) and peripheral oxygen saturation (SpO₂, by pulse oximetry) were continuously monitored and medically qualified personnel were present at all times. Experimental endotoxemia was induced by means of a 4-hour continuous intravenous infusion of purified Escherichia coli LPS (infusion rate 0.5 mg/kg/hour; Batch G2 B274, US Pharmacy Corporation, Rockville, Maryland, US). In this model, plasma tumor necrosis factor (TNF-α) reaches its peak value at approximately 1 hour after cessation of the infusion \[3,64\]. As part of another sub-study, which investigated cerebral auto regulation (data reported elsewhere), noradrenaline was infused immediately after blood samples had been collected at baseline and 4 h as
Blood samples and routine biochemistry

Blood was sampled from the radial artery catheter, to mimic the conditions under which blood is often sampled in the critically ill patient. Routine biochemistry were analyzed in a DS/EN ISO 15189 standardized laboratory as follows: Blood cell counts (XE-2100, Sysmex, Japan), C-reactive protein (CRP) (Modular P-modul, Roche, Switzerland), procalcitonin (IMFA, Kryptor, Immulite), D-dimer, fibrinogen, enzymatic active antithrombin (AT), activated partial thromboplastin time (APTT), international normalized ratio (INR) and coagulation factor II-VII-X (ACL TOP, Beckman Coulter, Inc., CA, US), ABG and lactate (Radiometer ABL 725/735, Copenhagen, Denmark).

Multiplate

Platelet aggregation in heparinized whole blood was analyzed by impedance aggregometry using a Multiple Platelet function Analyzer (Multiplate® analyzer, Dynabte GmbH), applying commercially available platelet agonists, according to the manufacturers recommendations [normal range reported by Dynabte GmbH]: TRAPtest (thrombin-receptor activating peptide (TRAP)-6 32 μM [92–151 U]), ADPtest (ADP 6.5 μM [55–117 U]), ASPItest (arachidonic acid 0.5 mM [79–141 U]) and COLtest (collagen 3.2 μg/ml [61–108 U]). Results of each test were recorded as aggregation units (U) or as U per platelet (U/10^9 platelets, U divided by platelet count).

Thrombelastography (TEG)

TEG whole blood clot formation was evaluated simultaneously in 3.2% citrated blood samples by kaolin-activated (TEG), kaolin-heparinase-activated (heparinase-TEG) and tissue-factor (TF)-activated platelet-blocked (TEG Functional Fibrinogen®, FF) analyses by a TEG® 5000 Hemostasis Analyzer System (Haemocentics Corp., MA, US), according to the manufacturers recommendations. All analyses were conducted at 37°C. The simultaneous TEG and heparinase-TEG analysis allowed investigation of endogenous heparinization as previously described [38] and the FF analysis allowed investigation of fibrinogen contribution to TEG clot strength. The variables recorded were [normal TEG range reported by Haemocentics Corp.]: Reaction time (R [3–8 min], rate of initial fibrin formation), angle (α [55–78 degrees], clot growth kinetics), clot strength (maximum amplitude (MA) [51–69 mm], maximum clot strength; shear elastic modulus strength G [4,600–10,900 dyn/cm²], global clot strength; FF MA [14–24 mm], fibrinogen clot strength) and fibrinolysis (clot lysis time (CLT) [min], velocity of clot degradation reflecting fibrinolysis; Ly30/60 [%], percent lysis 30/60 min after MA [7]). To estimate platelet contribution to clot strength (MA) we calculated platelet MA (mm) by subtracting FF MA from TEG MA, with results reported as crude platelet MA and platelet MA per platelet (mm/10^9 platelets, platelet MA divided by platelet count).

The day-to-day coefficient of variation of whole blood TEG MA is <7% in our laboratory [67].

In addition, the clotting potential of citrated plasma i.e., the capacity for formation of a pure fibrin clot was investigated by TEG®. Briefly, citrated plasma samples were thawed from −80°C just before analysis and 340 μl plasma was recalculated [20 μl 0.2 M CaCl₂, final concentration 11.1 mM] and activated with TF (lipidated recombinant human TF, Innovin, Dade Behring, Marburg, Germany; final dilution 1:42,500) and analyzed immediately at 37°C. To assess the clot resistance to fibrinolysis, citrated plasma samples were analyzed with or without addition of 1.8 nM tissue-type plasminogen activator (tPA, single-chain, American Diagnostica, Greenwich, US) as previously described [67]. The TEG variables described above were recorded.

Statistics

Statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, US). Data from volunteers were investigated by repeated-measures (RM) analyses (PROC MIXED, autoregressive covariance structure, SAS) and Tukey post hoc tests. Goodness of fit of the mixed model was assessed by investigating the residuals. Correlations between variables were investigated by Pearson correlations, and reported by R and p-values. Data are presented as means ± SD. P-values <0.05 were considered significant.

Results

Physiology, inflammation and routine coagulation tests

Endotoxemia induced a systemic inflammatory response syndrome (SIRS) as indicated by increased HR, temperature and white blood cell count and decreased MAP (Table 1). Furthermore, lymphocyte and monocyte counts decreased while CRP and procalcitonin increased. With regard to routine coagulation tests, platelet count, APTT and factor II, VII and X decreased and INR increased whereas plasma fibrinogen, D-dimer and antithrombin did not change (Table 1).

Hemostatic response in whole blood

Endotoxemia induced a decline in primary hemostasis (platelet adhesion and aggregation) as evaluated by Multiplate® TRAPtest, ADPtest, ASPItest and COLtest and it significantly reduced the per platelet response in the TRAPtest (Table 2).

Secondary hemostasis (fibrin-platelet clot formation in whole blood) also changed during and after endotoxemia as evaluated by standard and modified TEG® analysis [representative profiles displayed in Figure 1]: TEG R-time decreased, G increased and CLT decreased during endotoxemia, indicating combined increases in coagulation factor activity, clot strength and clot lysis, respectively. In contrast, Functional Fibrinogen (whole blood, blocked platelet GP Ib/IIa receptors) MA decreased after endotoxemia indicating reduced fibrinogen level and fibrin clot strength.

The calculated platelet contribution to TEG MA (platelet MA) increased during endotoxemia (p = 0.006) from 41±5 mm at baseline (0 h) to 47±5 mm at 4 h and 46±2 mm at 6 h (both p<0.05 compared to 0 h), probably explaining the discrepant increase in TEG MA and decline in FF MA (Table 2). Since platelet count decreased during endotoxemia, the platelet MA per platelet also increased (p<0.001) from 0.19±0.04 mm/10^9 platelets at baseline (0 h) to 0.25±0.04 mm/10^9 platelets at 4 h
and 0.27 ± 0.05 mm/10⁹ platelets at 6 h (both p < 0.001 compared to 0 h).

There was no evidence of endogenous heparinization as evaluated by the difference between TEG and heparinase-TEG (TEG minus heparinase-TEG) [38]; delta R at 4 h −0.1 ± 0.2 and 6 h 0.4 ± 1.2; delta angle at 4 h −0.5 ± 3.9 and 6 h 0.3 ± 8.3; delta MA at 4 h −3.0 ± 5.4 and 6 h −4.4 ± 4.0 (all non-significantly different from zero indicating that TEG and heparinase-TEG were comparable).

Hemostatic response in plasma
In contrast to the findings in whole blood, TEG Angle increased and TEG+tiPA MA and G increased in plasma during and after endotoxemia indicating increased clot velocity and strength/firmness, respectively (Table 2). Furthermore, plasma TEG+tiPA Ly30/60 decreased considerably whereas CLT increased during and after endotoxemia, indicating increased resistance towards the tiPA-induced in vitro clot lysis (Figure 1 and Table 2).

Correlations between plasma fibrinogen, platelet count and TEG MA
The main determinants of TEG/ROTEM clot strength are fibrinogen and platelets (in addition to FXIII which we did not measure) [68–71]; we therefore investigated correlations between these variables and TEG MA during endotoxemia. At baseline, fibrinogen correlated significantly positively with TEG MA (r = 0.83, p = 0.006) whereas platelets did not (r = 0.14, p = NS). However, during (4 h) and after (6 h) endotoxemia, the contribution of fibrinogen to TEG MA decreased and became non-significant (r = 0.32 and r = 0.25, both p = NS) whereas the contribution of platelets to TEG MA increased non-significantly at 4 h (r = 0.55, p = 0.128), indicating increased platelet reactivity in the context of declining platelet count. After endotoxemia (6 h), TEG MA and platelet count did not correlate significantly (r = 0.18, p = NS).

Discussion
The main finding of the present study was that experimental endotoxemia, along with induction of SIRS, resulted in a
Table 2. Functional hemostatic assays in whole-blood (impedance aggregometry (Multiplate), Thrombelastography (TEG), Functional fibrinogen) and plasma (TEG with or without addition of tPA to induce fibrinolysis) in nine healthy volunteers before, during and after induction of experimental endotoxemia by means of a 4 h LPS-infusion (0.5 ng/kg/hour).

	Endotoxemia (n = 9)	Units	0 h	4 h	6 h	RM p-value	Tukey
Multiplate							
TRAPtest	U	125±24	85±19	89±21	<0.001	a,b	
	U/platelet	0.59±0.15	0.45±0.08	0.51±0.11	0.008	a	
ADPtest	U	79±15	57±12	55±10	<0.001	a,b	
	U/platelet	0.37±0.10	0.30±0.04	0.32±0.06	0.064		
ASPITest	U	93±16	73±17	82±13	0.028	a	
	U/platelet	0.42±0.10	0.37±0.07	0.45±0.04	0.117		
COLtest	U	84±14	64±14	70±13	<0.001	a,b	
	U/platelet	0.40±0.10	0.34±0.04	0.40±0.06	0.060		
Whole blood TEG							
R	min	8.6±2.4	5.5±1.2	6.7±2.0	0.003		
Angle	degrees	57±6	62±7	58±10	NS		
MA	mm	54±6	59±5	58±3	0.064		
G	dyn/cm²	6,010±1,232	7,229±1,487	6,928±934	0.050		
LY30	%	0.7±0.8	0.7±1.1	0.8±1.1	NS		
LY60	%	3.5±2.6	3.7±2.9	4.3±3.7	NS		
CLT	min	136±38	71±16	151±5	<0.001	a,c	
Whole blood Functional Fibrinogen							
R	min	5.6±1.2	5.2±1.3	5.7±1.5	NS		
Angle	degrees	29±8	32±9	32±11	NS		
MA	mm	14±2	12±2	12±3	0.049		
G	dyn/cm²	787±151	668±157	671±210	0.051		
LY30	%	0±0	0±0	0±0	NS		
LY60	%	0±0	0±0	0±0	NS		
CLT	min	120±62	80±18	237±221	0.067		
Plasma TEG							
R	min	6.3±1.8	5.6±0.9	5.3±0.3	0.137		
Angle	degrees	45±13	52±8	56±7	0.013	a,b	
MA	mm	19±3	19±3	20±3	0.151		
G	dyn/cm²	1,162±221	1,172±217	1,250±245	0.149		
LY30	%	0±0	0±0	0±0	NS		
LY60	%	0±0	0±0	0±0	NS		
CLT	min	124±36	117±40	114±40	NS		
Plasma TEG +tPA							
R_{IPA}	min	6.2±2.1	5.6±0.8	5.1±0.5	0.178	a,b	
Angle_{IPA}	degrees	44±14	53±8	57±6	0.011	a,b	
MA_{IPA}	mm	14±4	16±3	19±3	<0.001	a,b,c	
G_{IPA}	dyn/cm²	798±249	978±200	1,165±216	<0.001	a,b,c	
LY30_{IPA}	%	51.1±26.2	25.2±29.0	0.1±0.4	<0.001	a,b,c	
LY60_{IPA}	%	73.5±16.2	43.6±36.5	3.2±9.2	<0.001	a,b,c	
CLT_{IPA}	min	26±14	68±58	117±40	<0.001	a,b,c	

Data are presented as means±SD. Data from volunteers were compared by repeated-measures analyses (RM) and Tukey post hoc tests: p<0.05 for 0 h vs. 4 h, 0h vs. 6 h and 4 h vs. 6 h. P-values <0.2 are shown and in bold if p<0.05.

Different platelet agonists were applied in the Multiplate tests: TRAPtest, thrombin-receptor activating peptide; ADPtest, ADP; COLtest, collagen; ASPITest, arachidonic acid; TEG, thrombelastography; R, reaction time; Angle, α angle; MA, maximum amplitude; G, shear elastic modulus strength; CLT, clot lysis time; Ly30/60, percent lysis 30/60 min after MA; tPA, tissue-type plasminogen activator. NS, non-significant.

doi:10.1371/journal.pone.0059368.t002
hemostatic response in whole blood with reduced primary but enhanced secondary hemostasis, enhanced early fibrinolysis and fibrinogen consumption followed by inhibition of fibrinolysis. In plasma, however, endotoxemia resulted in a progressive increase in clot resistance towards tPA-induced fibrinolysis indicating that the early LPS/inflammation-induced increase in fibrinolytic activity may be mediated by cellular elements in the whole blood.

Sepsis is associated with vascular dysfunction and coagulopathy that may progress from an initially normal coagulation profile to hypercoagulability, hyperfibrinolysis and ultimately hypocoagulability with increasing disease severity [11–13,18]. This has been documented by TEG/ROTEM and has been reproduced in studies using experimental human [23] and animal [25–27] models of endotoxemia [23,25–27]. Also, platelet aggregation is profoundly reduced in septic patients [19–22] and decreases with disease severity [20–22], which has also been reproduced in experimental human [23,24] and animal [28,29] models of endotoxemia.

In the present study, experimental endotoxemia, by means of a 4-hour infusion of 0.5 ng/kg/hour LPS, reduced primary hemostasis (platelet aggregation, reduced by Multiplate) and enhanced secondary hemostasis (clot formation) in whole blood (reduced R time (enhanced coagulation initiation) and increased G (enhanced clot strength) at 4 h by TEG) in accordance with previous findings [23–25,27–29]. During endotoxemia, fibrinolysis was enhanced (increased breakdown of the platelet-fibrin clot, CLT reduced at 4 h by TEG), which probably explains the observed reduction in the functional fibrinogen level (reduced strength of the fibrin clot, MA reduced at 4 h by FF). However, after endotoxemia, fibrinolysis was inhibited (increased CLT at 6 h by TEG), in accordance with previous findings in human [23] and animal [25] studies of experimental endotoxemia.

In contrast to the reduction in platelet aggregation, platelet clot formation increased (the pure contribution of platelets to TEG clot strength, platelet MA increased at 4 h and 6 h) both in total and on a per platelet basis (i.e. each platelet became more reactive), in accordance with the notion that the platelet fibrinogen receptor activity (GPIIb/IIIa) is enhanced in early sepsis [50].

Given that thrombosis may represent a critical component of innate immunity [72], the hemostatic changes observed in response to endotoxemia probably reflect part of a coordinated immune response. Thus, there is emerging evidence that platelet function goes far beyond hemostasis and that platelets are critically involved in and modulators of host defense and immune function [73–76]. Hence, Yaguchi and colleagues [21] suggested almost 10 years ago that sepsis induces a redistribution of platelet function from hemostasis toward other functions like e.g. vascular healing.

We recently reported of an association between excessive sympathoadrenal activation and reduced hemostatic function of platelets in trauma patients [77,78] suggesting that catecholamines may promote a switch in platelet function from hemostasis to e.g. immunomodulation [42,76]. We infer that the change in hemostatic platelet function in critical illness may serve to sustain platelet circulation (avoiding consumption), thereby allowing platelets to exert other functions like e.g., vascular healing [21] and immunomodulation [76].

The oppositely directed responses in primary and secondary hemostasis observed in the present study probably reflect that we investigated an early hemostatic response to acute inflammation, in which it is well documented that secondary hemostasis is enhanced rather than reduced [11–13,23,25,27].

In contrast to the early increase (4 h) in and later downregulation (6 h) of fibrinolysis observed in whole blood by TEG, the resistance of the fibrin clot towards tPA-induced fibrinolysis increased progressively both during (4 h) and after (6 h) endotoxemia. This discrepancy indicates that blood cells and/or blood cell-derived microparticles and/or molecules enhance fibrinolysis in acute inflammation in accordance with the notion that inflammatory and endothelial cells and their derived microparticles can promote fibrinolysis [53–55]. Though platelets in some studies have been reported to enhance clot resistance towards fibrinolysis [51] it cannot be excluded that platelets under conditions characterized by systemic inflammation accompanied by
by endothelial activation and damage may change their phenotype towards a more pro-fibrinolytic one to avoid clot formation in the microvasculature thereby ensuring adequate organ perfusion. Given that degranulation of platelets is a highly regulated process [79,80], it is also tempting to speculate that thrombocytopenia, depending on the context, may both enhance and reduce fibrinolysis. Besides platelets, other blood cells, leukocytes in particular, may also through mechanisms such as release of neutrophil elasase, enhance fibrinolysis and thereby contribute to a discrepant response in plasma and whole blood [57]. Finally, this discrepancy emphasizes the importance of evaluating hemostasis in whole blood, opposite plasma, while also taking the concurrent state of the vascular endothelium (pro- vs. anticoagulant) into account since the states of the fluid (circulating blood) and solid (endothelium) phases of the vascular system may, from a systems biology perspective, counterbalance each other [42]. Thus, in conditions with systemic inflammation and/or coagulation activation, progressive hypocoagulability and fibrinolysis of the circulating blood may serve to keep a progressively more damaged and procoagulant microvasculature open in order to maintain perfusion of critical organs [42]. This notion is in accordance with the progressive hypocoagulability and fibrinolysis reported in septic patients [11–13,18] and it also agrees with the finding of hyperfibrinolysis in trauma [77,81–90], cardiac arrest [91] and major surgical [92] patients and with the finding of enhanced protein C activation in patients with septic shock [93], during the reperfusion phase after cardio pulmonary bypass [94] and in cardiac arrest [95] or severely injured [77] patients. Despite thrombosis being a critical player in innate immunity [72], it is notable that several of the endothelial derived molecules that promote hypocoagulability exert potent antiinflammatory and cytoprotective functions [96–99] that may ultimately generate at survival advantage in critically ill patients.

We found no evidence to suggest that endotoxia induces endogenous heparinization. This contrasts previous findings in septic [32–37] and trauma [38] patients. This discrepancy is likely explained by the presence of endothelial damage and hence glycolalx degradation in patients with severe sepsis [5,6,100], which cannot be reproduced in human experimental endotoxia since the LPS-doses required to mimic severe sepsis with regard to endothelial damage and/or organ dysfunction are unsafe and ethically unacceptable [1–3].

The present study has several limitations. Firstly, only young male volunteers were investigated in the experimental part and consequently a possible age and/or gender difference in response to endotoxemia was not evaluated. Furthermore, the low number of volunteers investigated increases the risk of introducing both type I and II errors, emphasizing that the findings herein should be confirmed in a larger studies. Finally, though the administered noradrenaline infusion [65] was assumed completely metabolized before blood sampling [66], it cannot be excluded that the infused noradrenaline influenced platelet number and function as catecholamines including noradrenaline influence both platelet adhesion and activation [43].

In conclusion, induction of experimental endotoxia by means of a 4-hour LPS-infusion at 0.5 ng/kg/hour induced a hemostatic response comparable to that observed in early sepsis, with reduced primary but enhanced secondary hemostasis, enhanced early fibrinolysis and fibrinogen consumption followed by downregulation of fibrinolysis. In plasma, however, endotoxia resulted in a progressive increase in clot resistance towards tPA-induced fibrinolysis. We infer that the discrepant fibrinolytic response observed in plasma and whole blood reflects a critical role of platelets and/or other blood cells in the vasculo-fibrinolytic response to acute inflammation in accordance with the finding here of significantly altered platelet function in response to endotoxia.

Acknowledgments

Karen Dyrerøe and Marie Helena Andersson are thanked for the skilled technical assistance.

Author Contributions

Revised the manuscript critically: RMGB NAW RRP MAS M PIJ. Conceived and designed the experiments: SRO RMGB KM PIJ. Performed the experiments: RMGB NAW RRP MAS M PIJ. Analyzed the data: SRO PIJ. Contributed reagents/materials/analysis tools: SRO KM PIJ. Wrote the paper: SRO PIJ.

References

1. Esmon CT (2004) Why do animal models (sometimes) fail to mimic human sepsis? Crit Care Med 32:S219–S222.
2. Rittirsch D, Hoesel LM, Ward PA (2007) The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol 81:137–143.
3. Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, et al. (2008) Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15:1697–1705.
4. Schouten M, Wiersingo WJ, Levi M, van der PT (2008) Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 83:336–345.
5. Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, et al. (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 345:808–816.
6. Ueno H, Hirasawa H, Oda S, Shiga H, Nakanishi K, et al. (2002) Coagulation/fibrinolysis abnormality and vascular endothelial damage in the pathogenesis of thrombocytopenic multiple organ failure. Crit Care Med 30:2242–2248.
7. Johansson PI, Stüssing T, Bochsen L, Ostrowski SR (2009) Thrombelastography and thromboelastometry in assessing coagulopathy in trauma. Scand J Trauma Resusc Emerg Med 17:45.
8. Gerlinger K, Jambor C, Hanke AA, Dirkmann D, Adamzik M, et al. (2007) Perioperative Coagulation Management and Control of Platelet Transfusion by Point-of-Care Platelet Function Analysis. Transfus Med Hemother 34:596–411.
9. Grau GW, Hadley GP (1997) Prediction of neonatal sepsis by thromboelastography. Pediatr Surg Int 12:289–292.
10. Collins PW, Macchiavello LI, Lewis SJ, Macarney NJ, Saayman AG, et al. (2006) Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls. Br J Haematol 135:220–227.
40. Dunser MW, Hasibeder WR (2009) Sympathetic overstimulation during critical
39. Cryer PE (1980) Physiology and pathophysiology of the human sympathoad-
38. Ostrowski SR, Johansson PI (2012) Endothelial glycocalyx degradation induces
37. Steppan J, Hofer S, Funke B, Brenner T, Henrich M, et al. (2011) Sepsis and
34. Zambruni A, Thalheimer U, Coppell J, Riddell A, Mancuso A, et al. (2004)
30. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M (2010) Therapeutic
28. Cicala C, Santacroce C, Itoh H, Douglas GJ, Page CP (1997) A study on rat
23. Spiel AO, Mayr FB, Fibras C, Quehenberger F, Jilma B (2006) Validation of
22. Woth G, Varga A, Gother T, Kiss T, et al. (2011) Platelet aggregation during
21. Yaguchi A, Lobo FL, Vincent JL, Pradier O (2004) Platelet function in sepsis.
19. Cowan DH, Bowman LS, Fratianne RB, Ahmed F (1976) Platelet aggregation as
75. Li Z, Yang F, Dunn S, Gross AK, Smyth SS (2011) Platelets as immune
71. Johansson PI, Jacobsen N, Olsen EH, Rojkjaer R, et al. (2008)
69. Khurana S, Mattson JC, Westley S, O'Neill WW, Timmis GC, et al. (1997)
68. Chakroun T, Gerotziafas GT, Seghatchian J, Samama MM, Hatmi M, et al. (2011)
66. Vendsalu A (1960) Studies on adrenaline and noradrenaline in human plasma.
65. Berg RM, Plovsing RR, Ronit A, Bailey DM, Holstein-Rathlou NH, et al. (2012)
64. Vendsalu A, Karpov AM, Mandel S, Kaitanov A, Litvak V, et al. (2009) Increased
63. Brown LM, Call MS, Margaret KM, Cohen MJ, Holcomb JB, et al. (2011) A
61. Salim A, Haidazacharia P, DuBose J, Kobayashi L, Inaba K, et al. (2009) What
59. Levi M, Lowenberg EC (2008) Thrombocytopenia in critically ill patients.
58. Wohner N, Sotonyi P, Machovich R, Dunlop D, Cobos K, et al. (2011) Lytic
57. Wohner N, Sotonyi P, Machovich R, Szabo L, Kispal F, et al. (2011) Heparin
56. Wohner N, Sotonyi P, Machovich R, Szabo L, Tenekedjiev K, et al. (2011) Lytic
54. Lacroix R, Plawinski L, Robert S, Doeuvre L, Sabatier F, et al. (2012)
53. Dejouvencel T, Doeuvre L, Lacroix R, Plawinski L, Dignat-George F, et al.
52. Dirkmann D, Gorlinger K, Gisbertz C, Dusse F, Peters J (2012) Factor XIII and
51. Weisel JW (2007) Structure of fibrin: impact on clot stability. J Thromb Haemost
50. Gawaz M, Dickfeld T, Bogner C, Pathe-Moghadam S, Neumann FJ (1997)
48. Seffrin P (1987) Catecholamines in the serum of multiple trauma patients-
47. van der PT, Levi M, Deuter M, Jansen PM, Coyle SM, et al. (1997) Epinephrine exerts antioxidative effects during human endotoxemia. J Exp Med
46:143–1184.
45. Gavaz M, Dickfeld T, Bogner C, Fathe-Moghadam S, Neumann FJ (1997) Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med
23:379–385.
44. Wessely JW (2007) Structure of fibrin: impact on clot stability. J Thromb Haemost
5 Suppl 1:116–24. 116–124.
43. Dirkmann D, Goberling K, Gubertz C, Duase F, Peters J (2012) Factor XIII and
42. Lasfargues P, Regnault F, Guichard C, Chevallier E, Merle M, et al. (2009) Differences in postinjury thrombocytopenia. J Trauma Acute Care Surg 66:1349–1354.
41. Lasfargues P, Regnault F, Guichard C, Chevallier E, Merle M, et al. (2009) Differences in postinjury thrombocytopenia. J Trauma Acute Care Surg 66:1349–1354.
40. Dunser MW, Hasibeder WR (2009) Sympathetic overstimulation during critical
39. Cryer PE (1980) Physiology and pathophysiology of the human sympathoad-
38. Ostrowski SR, Johansson PI (2012) Endothelial glycocalyx degradation induces
37. Steppan J, Hofer S, Funke B, Brenner T, Henrich M, et al. (2011) Sepsis and
36. Vendsalu A, Karpov AM, Mandel S, Kaitanov A, Litvak V, et al. (2009) Increased
35. Vendsalu A, Karpov AM, Mandel S, Kaitanov A, Litvak V, et al. (2009) Increased
34. Zambruni A, Thalheimer U, Coppell J, Riddell A, Mancuso A, et al. (2004)
33. Zumburi A, Thalheimer U, Coppell J, Riddell A, Mancuso A, et al. (2004)
32. Zumburi A, Thalheimer U, Coppell J, Riddell A, Mancuso A, et al. (2004)
31. Zumburi A, Thalheimer U, Coppell J, Riddell A, Mancuso A, et al. (2004)
30. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M (2010) Therapeutic
29. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M (2010) Therapeutic
28. Cicala C, Santacroce C, Itoh H, Douglas GJ, Page CP (1997) A study on rat
27. Tee HJ, Tsao CC, Liu MH, Ka SL, Mau JJ, et al. (2012) Application of
26. Tsao CC, Liu MH, Ka SL, Mau JJ, et al. (2012) Application of
25. Velik-Salchner C, Streif W, Innerhofer P, Maier S, Knotzer H, et al. (2009)
24. Spiel AO, Derhaschinig U, Schwaenis M, Barko J, Siller-Matula JM, et al. (2012)
23. Spiel AO, Derhaschinig U, Schwaenis M, Barko J, Siller-Matula JM, et al. (2012)
22. Woth G, Varga A, Gother T, Kiss T, et al. (2011) Platelet aggregation during
21. Yaguchi A, Lobo FL, Vincent JL, Pradier O (2004) Platelet function in sepsis.
20. Woth G, Varga A, Ghoth S, Kruopp M, Kiss T, et al. (2011) Platelet aggregation
19. Cowan DH, Bowman LS, Fratianne RB, Ahmed F (1976) Platelet aggregation as
18. Cowan DH, Bowman LS, Fratianne RB, Ahmed F (1976) Platelet aggregation as
17. Cowan DH, Bowman LS, Fratianne RB, Ahmed F (1976) Platelet aggregation as
76. Ostrowski SR, Johansson PI (2011) Rethinking platelet function: Thrombocytopenia induced immunodeficiency in critical illness. Med Hypotheses 77:798–802.

77. Ostrowski SR, Sorensen AM, Larsen CF, Johansson PI (2011) Thrombocytography and biomarker profiles in acute coagulopathy of trauma: A prospective study. Scand J Trauma Resusc Emerg Med 19:64.

78. Johansson PI, Sørensen AM, Perner A, Welling KL, Wanscher M, et al. (2011) High sCD40L levels Early After Trauma are Associated with Enhanced Shock, Sympathoadrenal Activation, Tissue and Endothelial Damage, Coagulopathy and Mortality. J Thromb Haemost 10:207–216.

79. Munnix IC, Cosemans JM, Auger JM, Heemskerk JW (2009) Platelet response heterogeneity in thrombus formation. Thromb Haemost 102:1149–1156.

80. Jonnalagadda D, Izu LT, Whiteheart SW (2012) Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 120:5209–5216.

81. Levrat A, Gros A, Reger I, Inaba K, Floccard B, et al. (2008) Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth 100:792–797.

82. Carroll RC, Craft RM, Langdon RJ, Clanton CR, Snider CC, et al. (2009) Early evaluation of acute traumatic coagulopathy by thrombelastography. Transf Res 154:34–39.

83. Raza I, Davenport R, Rourke C, Platton S, Manson J, et al. (2012) The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost:10.

84. Gando S, Sawamura A, Hayakawa M (2011) Trauma, Shock, and Disseminated Intravascular Coagulation: Lessons from the Classical Literature. Ann Surg 254:10–19.

85. Frith D, Brohi K (2012) The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care 18:631–636.

86. Schoch H, Castaner J, Seiff S, Franz A, Solomon C, et al. (2012) Hyperfibrinolysis is common in out-of-hospital cardiac arrest: Results from a prospective observational thromboelastometry study. Resuscitation:10.

87. Meners RM, Helterbrand J, Utterback BG, Yen B, Chao YB, et al. (2000) Prognostic value of protein C concentrations in neutropenic patients at high risk of severe septic complications. Crit Care Med 20:2209–2216.

88. Raivio P, Fernandez JA, Kuitunen A, Griffin JH, Lasila R, et al. (2007) Activation of protein C and hemodynamic recovery after coronary artery bypass surgery. J Thorac Cardiovasc Surg 133:44–51.

89. Frith D, Brohi K (2012) The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care 18:631–636.