Abstract

We prove that if two closed disks X_1 and X_2 of the Riemann sphere are spectral sets for a bounded linear operator A on a Hilbert space, then $X_1 \cap X_2$ is a complete $(2 + 2/\sqrt{3})$-spectral set for A. When the intersection $X_1 \cap X_2$ is an annulus, this result gives a positive answer to a question of A.L. Shields (1974).

1 Introduction and the statement of the main results.

Let X be a closed set in the complex plane and let $R(X)$ denote the algebra of bounded rational functions on X, viewed as a subalgebra of $C(\partial X)$ with the supremum norm

$$\|f\|_X = \sup\{|f(x)| : x \in X\} = \sup\{|f(x)| : x \in \partial X\}.$$

Here ∂X denotes the boundary of the set X.

1.1 Spectral and complete spectral sets.

Let $A \in \mathcal{L}(H)$ be a bounded linear operator acting on a complex Hilbert space H. For a fixed constant $K > 0$, the set X is said to be a K-spectral set for A if the spectrum $\sigma(A)$ of A is included in X and the inequality $\|f(A)\| \leq K\|f\|_X$ holds for every $f \in R(X)$. Notice that, for a rational function $f = p/q \in R(X)$, the poles of f are outside of X, and the operator $f(A)$ is naturally defined as $f(A) = p(A)q(A)^{-1}$ or, equivalently, by the Riesz holomorphic functional calculus. The set X is a spectral set for A if it is a K-spectral set with $K = 1$. Thus X is spectral for A if and only if $\|\rho\| \leq 1$, where $\rho : R(X) \to \mathcal{L}(H)$ is the homomorphism given by $\rho(f) = f(A)$.

We let $M_n(R(X))$ denote the algebra of n by n matrices with entries from $R(X)$. If we let the n by n matrices have the operator norm that they inherit as linear transformations on the n-dimensional Hilbert space \mathbb{C}^n, then we can endow $M_n(R(X))$ with the norm

$$\| (f_{ij}) \|_X = \sup\{\| (f_{ij}(x)) \| : x \in X\} = \sup\{\| (f_{ij}(x)) \| : x \in \partial X\}.$$

In a similar fashion we endow $M_n(\mathcal{L}(H))$ with the norm it inherits by regarding an element (A_{ij}) in $M_n(\mathcal{L}(H))$ as an operator acting on the direct sum of n copies of H. For a fixed constant $K > 0$, the set X is said to be a complete K-spectral set for A if $\sigma(A) \subset X$ and the inequality $\|(f_{ij}(A))\| \leq K\|(f_{ij})\|_X$ holds for every matrix $(f_{ij}) \in M_n(R(X))$ and every n. In terms of the complete bounded norm \cite{14} of the homomorphism ρ, this means that $\|\rho\|_{cb} \leq K$. A complete spectral set is a complete K-spectral set with $K = 1$.

Spectral sets were introduced and studied by J. von Neumann \cite{12} in 1951. In the same paper von Neumann proved that a closed disk $\{z \in \mathbb{C} : |z - \alpha| \leq r\}$ is a spectral set for A if and only if $\|A - \alpha I\| \leq r$. Also \cite{12}, the closed set $\{z \in \mathbb{C} : |z - \alpha| \geq r\}$ is spectral for $A \in \mathcal{L}(H)$ if and only if $\|(A - \alpha I)^{-1}\| \leq r^{-1}$. We refer to two books \cite{3, 14} for a survey of known properties of spectral and complete spectral sets.
1.2 The annulus as a K-spectral set

Let r and R be two positive constants with $r < R$. Let $A \in \mathcal{L}(H)$ be an invertible operator such that $\|A\| \leq R$ and $\|A^{-1}\| \leq 1/r$. Then $X_1 = \{ z \in \mathbb{C} : |z| \leq R \}$ and $X_2 = \{ z \in \mathbb{C} : |z| \geq r \}$ are spectral sets for A. The annulus

$$X(r, R) = \{ z \in \mathbb{C} : r \leq |z| \leq R \} = X_1 \cap X_2$$

is not necessarily spectral for a given invertible operator A. Examples can be found in [21, 11, 13]. Given an invertible operator A with $\|A\| \leq R$ and $\|A^{-1}\| \leq 1/r$, Shields proved in [17] that $X(r, R)$ is a K-spectral set for A with $K = 2 + ((R + r) / (R - r))^{1/2}$. The following questions were asked by Shields (see [17, Question 7]):

Question 1.1. Find the best constant $K(r, R)$, i.e., the smallest constant C such that $X(r, R)$ is a C-spectral set for all invertible $A \in \mathcal{L}(H)$ with $\|A\| \leq R$ and $\|A^{-1}\| \leq r^{-1}$.

Question 1.2. Fixing (for instance) R, is this best constant bounded (as a function of r)?

In analogy with Question 1.1, we will denote by $K_{cb}(r, R)$ the smallest constant C such that $X(r, R)$ is a complete C-spectral set. The same proof of Shields (see also [7, 14]) shows that in fact $K_{cb}(r, R) \leq 2 + ((R + r) / (R - r))^{1/2}$.

1.3 Statement of the main results.

The aim of the present note is to study the intersection of two closed disks of the Riemann sphere which are spectral sets for a Hilbert space bounded linear operator. In the case of the annulus we give an estimate for $K(r, R)$ (a partial answer to Question 1.1) which allows to give a positive answer to Question 1.2.

We describe now the main results of this paper. By possibly multiplying the operator by a scalar, we see that $K(r, R) = K(\sqrt{r/R}, \sqrt{R/r})$. This allows to assume, without any loss of generality, that $r = R^{-1}$. We have the following result.

Theorem 1.3. Let $R > 1$, $X = X(R^{-1}, R) = \{ z \in \mathbb{C} : R^{-1} \leq |z| \leq R \}$, and denote by $K(R) = K(R^{-1}, R)$ (and $K_{cb}(R) = K_{cb}(R^{-1}, R)$, respectively), the smallest constant C such that X is a C-spectral set (and a complete C-spectral set, respectively) for any invertible $A \in \mathcal{L}(H)$ verifying $\|A\| \leq R$ and $\|A^{-1}\| \leq R$. Then

$$\frac{2}{1 + R^{-2}} < K(R) \leq K_{cb}(R) \leq 2 + \min\left(\sqrt{\frac{R^2 + 2R + 1}{R^2 + R + 1}}, \sqrt{\frac{R^2 + 1}{R^2 - 1}}\right) \leq 2 + \frac{2}{\sqrt{3}} < 3.2.$$

In particular $K(R)$ and $K_{cb}(R)$ are bounded functions of R. We obtain the following consequence about normal dilations.

Corollary 1.4. Let $R > 1$. Let $A \in \mathcal{L}(H)$ be an invertible operator verifying $\|A\| \leq R$ and $\|A^{-1}\| \leq R$. Let $X = \{ z \in \mathbb{C} : R^{-1} \leq |z| \leq R \}$. Then there exist an invertible operator $L \in \mathcal{L}(H)$ with $\|L\| \cdot \|L^{-1}\| \leq 2 + 2/\sqrt{3}$, a larger Hilbert space $\mathcal{H} \supset H$ and an invertible normal operator $N \in \mathcal{L}(\mathcal{H})$ with $\sigma(N) \subset \partial X$ such that

$$L^{-1}f(A)L = P_Hf(N) \big|_H \quad (f \in R(X)).$$

Here P_H is the orthogonal projection of \mathcal{H} onto H.

Besides the annulus, (complete) K-spectral sets which are intersections of spectral disks of the complex plane have been considered in [11, 20, 10, 5, 3]; we refer to [3] for a discussion of the best possible constant K. In the second part of our paper we consider the more general case of intersection of two closed disks X_1 and X_2 of the Riemann sphere. We prove the following result.
Theorem 1.5. Let X_1 and X_2 be two closed disks of the Riemann sphere. If X_1 and X_2 are spectral sets for a bounded operator A in a Hilbert space, then $X_1 \cap X_2$ is a complete $(2 + 2/\sqrt{3})$-spectral set for A.

This theorem extends previously known results concerning the intersection of two disks in \mathbb{C} to not necessarily convex or simply connected $X_1 \cap X_2$. Note that the case of finitely connected compact sets has been studied in [7, 14], however, without a uniform control on the constant K.

Note also that, if we consider two distinct bounded, convex and closed subsets X_1 and X_2 of the complex plane, and if we assume that X_1 and X_2 are spectral sets for A, then $X_1 \cap X_2$ is a complete 11.08-spectral set for A. Indeed, the fact that X_j is a spectral set for A implies that the numerical range $W(A) = \{\langle Ax, x \rangle : \|x\| = 1\}$ is included in X_j, $j = 1, 2$, and according to [6] the closure of the numerical range $W(A)$ is a complete 11.08-spectral set for A. However, the result from [6] does not imply a solution of Shields’ Question 1.2. We refer also to [15, 2, 6] for some normal dilation results for the numerical range, in the spirit of Corollary 1.4.

The remainder of the paper is organized as follows: we first show in §2 that Theorem 1.3 together with some results from [5, 3] implies Theorem 1.5. Our proof of Theorem 1.3 is based on a representation formula for $f(A)$ established in §3. Finally, the proofs of Theorem 1.3 and Corollary 1.4 are provided in §4.

2 Proof of Theorem 1.5 using Theorem 1.3

Let X_1 and X_2 be two closed disks of the Riemann sphere, which are spectral sets for a bounded linear operator A in a Hilbert space. Here six different situations have to be considered, see Figure 1.

Case 1: $X_1 \cap X_2 = \{\lambda\}$ is a singleton. Then we have $A = \lambda I$ and $X_1 \cap X_2$ clearly is a complete spectral set for A.

Case 2: $X_1 \cap X_2$ is a circle or a straight line. Then A is a normal operator with spectrum $\sigma(A)$ contained in $X_1 \cap X_2$. This yields that $X_1 \cap X_2$ is a complete spectral set for A.

Case 3: $X_1 \cap X_2$ is a convex sector or a strip of the complex plane. In this case, both X_1 and X_2 are half-planes, and a closed half-plane Π is a spectral set for A if and only if the numerical range $W(A)$ is a subset of Π. Thus $W(A) \subset X_1 \cap X_2$. It follows from [5] that $X_1 \cap X_2$ is a complete K-spectral set, with $K \leq 2 + 2/\sqrt{3}$.

Case 4: $\partial X_1 \cap \partial X_2 = \{\lambda_1, \lambda_2\}$ is a set consisting of two distinct points of \mathbb{C}. Here $X_1 \cap X_2$ is lens-shaped. If it is in addition convex, then from [3] we know that $X_1 \cap X_2$ is a complete K-spectral set, with $K \leq 2 + 2/\sqrt{3}$. The proof for not convex lenses is the same, we repeat here the main idea for the sake of completeness. Let us first assume that $\lambda_1 \notin \sigma(A)$ and set $B = \varphi(A)$ with $\varphi(z) = (\lambda_1 - z)^{-1}$ and $Y_j = \varphi(X_j)$, $j = 1, 2$. Then both Y_j are closed half-planes. The von Neumann inequality for disks shows that Y_j are spectral sets for B, see also [16, §154, Lemma 2]. It follows from the previous case that $Y_1 \cap Y_2$ is a complete K-spectral set for B and thus $X_1 \cap X_2$ is a complete K-spectral set for A, with the same constant K. Finally, if $\lambda_1 \in \sigma(A)$, we can replace the disk X_1 of the Riemann sphere, of radius R_1, by a concentric disk $X_1' \supset X_1$, of radius $R_1 \pm \varepsilon$. Then, for $\varepsilon > 0$ small enough, $\partial X_1' \cap \partial X_2 = \{\lambda'_1, \lambda'_2\}$ is still a set with two distinct points of \mathbb{C}, the set X_1' is a spectral set for A and $\lambda'_1 \notin \sigma(A)$. We conclude that $X_1 \cap X_2$ is a complete K-spectral set for A by letting $\varepsilon \to 0$.

Case 5: $\partial X_1 \cap \partial X_2 = \emptyset$, but $X_1 \cap X_2$ is not a strip. For the special case $X_1 \cap X_2 = \{z \in \mathbb{C}; |z| \leq R\}$, $R > 1$, Theorem 1.3 implies that $X_1 \cap X_2$ is a complete $(2 + 2/\sqrt{3})$-spectral set for A. In the general case, we may find $R > 1$ and a linear fractional transformation φ such that $\varphi(X_1) = \{z \in \mathbb{C}; |z| \leq R\}$ and $\varphi(X_2) = \{z \in \mathbb{C}; |z| \geq R^{-1}\}$. Then, setting $B = \varphi(A)$ and
Figure 1: The six different cases occurring by considering intersections of closed disks on the Riemann sphere.

\[Y_j = \varphi(X_j), \quad j = 1, 2, \] we have that \(Y_j \) is a spectral set for \(B \), see also [16, § 154, Lemma 2]. Thus \(\{ z \in \mathbb{C} ; R^{-1} \leq |z| \leq R \} = \varphi(X_1 \cap X_2) \) is a complete \((2 + 2/\sqrt{3})\)-spectral set for \(B \), which is equivalent to \(X_1 \cap X_2 \) is a complete \((2 + 2/\sqrt{3})\)-spectral set for \(A \).

Case 6: \(\partial X_1 \cap \partial X_2 = \{ \lambda \} \) is reduced to a single point, but \(X_1 \cap X_2 \) is neither a singleton, nor a sector nor a strip. In this case at least one of the sets \(X_j, \quad j = 1, 2, \) is the interior or the exterior of a disk and the boundaries of the sets \(X_j \) are tangent in one point. We can replace the disk, say \(X_1 \), of radius \(R_1 \), by a concentric disk \(X_1' \supset X_1 \), of radius \(R_1 \pm \varepsilon \). Then, for \(\varepsilon > 0 \) small enough, \(\partial X_1' \cap \partial X_2 = \emptyset \), and we obtain from the previous case that \(X_1 \cap X_2 \) is a complete \(K \)-spectral set for \(A \) by letting \(\varepsilon \to 0 \).

3 A decomposition lemma for annuli

In order to give a proof of the upper bound of Theorem [1,3] we need the following representation formula for \(f(A) \).

Lemma 3.1. Let \(A \in \mathcal{L}(H) \) be an operator satisfying \(\| A \| < R \) and \(\| A^{-1} \| < R \). We set \(r = 1/R \) and denote by \(X \) the annulus \(X = X(R^{-1}, R) = \{ z \in \mathbb{C} ; r \leq |z| \leq R \} \). For any bounded rational function \(f \) on \(X \), we have the representation formula

\[
 f(A) = \int_0^{2\pi} f(Re^{i\theta}) \mu(\theta, A) d\theta + \int_0^{2\pi} f(re^{i\theta}) \mu(-\theta, A^{-1}) d\theta + \int_0^{2\pi} f(e^{i\theta}) M(\theta, A^*)^{-1} d\theta,
\]
where
\[
\mu(\theta, A) = \frac{1}{4\pi}((1+e^{-i\theta}rA)(1-e^{-i\theta}rA)^{-1} + (1+e^{i\theta}rA^*)(1-e^{i\theta}rA^*)^{-1}), \quad \text{and}
\]
\[
M(\theta, A^*) = \frac{2\pi}{R^2 - r^2}(R^2 + r^2 - (e^{i\theta}A^*)^{-1} - e^{i\theta}A^*).
\]

Proof. We get from the Cauchy formula
\[
f(A) = \frac{1}{2\pi i} \int_{\partial X} f(\sigma) (\sigma - A)^{-1} d\sigma - (\sigma - A^*)^{-1} d\sigma) + \frac{1}{2\pi i} \int_{\partial X} f(\sigma) (\sigma - A^*)^{-1} d\sigma = F_1 + F_2.
\]
Let us set \(\Gamma_\rho = \{\rho e^{i\theta}; \theta \in [0, 2\pi]\}\). The part \(\Gamma_R\) of \(\partial X\) is counterclockwise oriented and, with \(\sigma = Re^{i\theta}\), we have
\[
\frac{1}{2\pi i}((\sigma - A)^{-1} d\sigma - (\sigma - A^*)^{-1} d\sigma) = \frac{1}{2\pi i}((Re^{i\theta} - A)^{-1} Re^{i\theta} + (Re^{-i\theta} - A^*)^{-1} Re^{-i\theta}) d\theta
\]
\[
= \frac{1}{2\pi i}((1 - e^{-i\theta}rA)^{-1} + (1 - e^{i\theta}rA^*)^{-1}) d\theta
\]
\[
= \frac{1}{2\pi} d\theta + \mu(\theta, A) d\theta.
\]
The other component \(\Gamma_r\) is clockwise oriented and, with \(\sigma = re^{i\theta}\), we have
\[
\frac{1}{2\pi i}((\sigma - A)^{-1} d\sigma - (\sigma - A^*)^{-1} d\sigma) = \frac{1}{2\pi i}((re^{i\theta} - A)^{-1} re^{i\theta} + (re^{-i\theta} - A^*)^{-1} re^{-i\theta}) d\theta
\]
\[
= \frac{1}{2\pi} d\theta - \mu(-\theta, A^{-1}) d\theta.
\]
Noticing that \(\int_0^{2\pi} f(Re^{i\theta}) d\theta = \int_0^{2\pi} f(re^{i\theta}) d\theta\), we obtain that
\[
F_1 = \int_0^{2\pi} f(Re^{i\theta}) \mu(\theta, A) d\theta + \int_0^{2\pi} f(re^{i\theta}) \mu(-\theta, A^{-1}) d\theta.
\]
We consider now the second term \(F_2\). On the component \(\Gamma_R\) we have \(\bar{\sigma} = R^2/\sigma\), and thus
\[
\frac{1}{2\pi i} \int_{\Gamma_R} f(\sigma) (\bar{\sigma} - A^*)^{-1} d\bar{\sigma} = -\frac{1}{2\pi i} \int_{\Gamma_R} f(\sigma) (R^2 - \sigma A^*)^{-1} \frac{R^2}{\sigma} d\sigma
\]
\[
= -\frac{1}{2\pi i} \int_{\Gamma_1} f(\sigma) (R^2 - \sigma A^*)^{-1} \frac{R^2}{\sigma} d\sigma.
\]
Indeed, the last integrand is holomorphic in \(\sigma\). Hence we can replace the integration path \(\Gamma_R\) by \(\Gamma_1\) (counterclockwise oriented). We similarly have for the second component
\[
\frac{1}{2\pi i} \int_{\Gamma_r} f(\sigma) (\bar{\sigma} - A^*)^{-1} d\bar{\sigma} = \frac{1}{2\pi i} \int_{\Gamma_1} f(\sigma) (r^2 - \sigma A^*)^{-1} \frac{r^2}{\sigma} d\sigma
\]
by taking into account the opposite orientation of \(\Gamma_r\). Therefore
\[
F_2 = \frac{1}{2\pi i} \int_{\Gamma_1} f(\sigma) ((r^2 - \sigma A^*)^{-1} \frac{r^2}{\sigma} - (R^2 - \sigma A^*)^{-1} \frac{R^2}{\sigma}) d\sigma
\]
\[
= \int_0^{2\pi} f(e^{i\theta}) M(\theta, A^*)^{-1} d\theta,
\]
which completes the proof of the lemma. \(\square\)
4 The complete bound in an annulus

We keep the notation from the previous section. The following lemma shows that \(\text{Re} M(\theta, A^*) \) is a positive operator.

Lemma 4.1. Assume that \(\|A\| < R \) and \(\|A^{-1}\| < R \). Let \(r = R^{-1} \). Then we have the lower bound

\[
\text{Re} M(\theta, A^*) \geq N(\theta) := \frac{2\pi}{R^2 - r^2} \left((R^2 + r^2 - R - r) + \frac{R + r + 2}{4} \left(2 - e^{i\theta}U^* - e^{-i\theta}U \right) \right),
\]

where \(U \) denotes the unitary operator such that \(A = UG \), with \(G \) self-adjoint positive definite. Also, \(N(\theta) \) is a positive invertible operator.

Proof. We have

\[
\frac{R^2 - r^2}{2\pi} \text{Re} M(\theta, A^*) = \frac{R^2 + r^2 - \text{Re}((e^{-i\theta}A)^{-1} + e^{i\theta}A^*)}{2\pi} = \frac{R^2 + r^2 - \text{Re} \left(e^{i\theta}(G^{-1} + G)U^* \right)}{2\pi} = \frac{R^2 + r^2 - \frac{R+r+2}{2} \text{Re} \left(e^{i\theta}U^* \right) - \text{Re} \left(e^{i\theta}(G^{-1} + G - \frac{R+r+2}{2})U^* \right)}{2\pi}
\]

We note that the assumptions \(\|A\| \leq R \) and \(\|A^{-1}\| \leq R \) are equivalent to \(\|G\| \leq R \) and \(\|G^{-1}\| \leq R \). Since \(G \) is self-adjoint, this means that \(r \leq G \leq R \), and hence

\[
\|G^{-1} + G - \frac{R+r+2}{2}\| \leq \sup_{r \leq x \leq R} |x^{-1} + x - \frac{R+r+2}{2}| = \frac{R+r-2}{2}.
\]

It follows that

\[
\frac{R^2 - r^2}{2\pi} \text{Re} M(\theta, A^*) \geq \frac{R^2 + r^2 - \frac{R+r+2}{2} \text{Re} \left(e^{i\theta}U^* \right) - \frac{R+r-2}{2}}{2\pi} = R^2 + r^2 - R - r + \frac{R+r+2}{2} \text{Re} \left(1 - e^{i\theta}U^* \right),
\]

which completes the proof of the lemma.

Proof of the upper bound of Theorem 1.3. We can suppose that \(\|A\| < R \) and \(\|A^{-1}\| < R \). Using the notation of Lemma 3.1, it follows from the condition \(\|A\| < R \) that \(\mu(\theta, A) \geq 0 \) for all \(\theta \in \mathbb{R} \). Therefore we have

\[
\left\| \int_0^{2\pi} f(Re^{i\theta}) \mu(\theta, A) \, d\theta \right\| \leq \left\| \int_0^{2\pi} \mu(\theta, A) \, d\theta \right\| \|f\|_x = \|f\|_x.
\]

Here we have used that \(\int_0^{2\pi} \mu(\theta, A) \, d\theta = 1 \), which follows from the residue formula. Similarly we have \(\mu(-\theta, A^{-1}) \geq 0 \) and we get the estimate

\[
\left\| \int_0^{2\pi} f(re^{i\theta}) \mu(-\theta, A^{-1}) \, d\theta \right\| \leq \|f\|_x.
\]

Using Lemma 3.1 and the positivity of \(\text{Re} M(\theta, A^*) \) for all \(\theta \in \mathbb{R} \) (Lemma 4.1) we obtain the estimate

\[
\|f(A)\| \leq K \|f\|_x, \quad \text{with} \quad K = 2 + \left\| \int_0^{2\pi} (\text{Re} M(\theta, A^*))^{-1} \, d\theta \right\|.
\]

Let \(\rho : \mathcal{R}(X) \mapsto \mathcal{L}(H) \) be the homomorphism given by \(\rho(f) = f(A) \). Therefore the norm of \(\rho \) is bounded by \(K \). Furthermore, since we only have used arguments based on positivity of operators, it is easily seen that the complete bounded norm \(\|\rho\|_{cb} \) is also bounded by \(K \).
Taking into account the bound of Shields [17], for establishing the upper bound of Theorem 1.3 it suffices now to show that
\[
\left\| \int_0^{2\pi} (\text{Re} \, M(\theta, A^*))^{-1} \, d\theta \right\| \leq \sqrt{\frac{R^2 + 2R + 1}{R^2 + R + 1}} \leq \frac{2}{\sqrt{3}} \tag{1}
\]
Consider the function
\[
J(z) := \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \left((R^2 + r^2 - R - r) + \frac{R + r + 2}{4} \left(2 - e^{i\theta}z^{-1} - e^{-i\theta}z \right) \right)^{-1} \, d\theta.
\]
Since \(U\) is a unitary operator, it follows from Lemma 4.1 that
\[
\left\| \int_0^{2\pi} (\text{Re} \, M(\theta, A^*))^{-1} \, d\theta \right\| \leq \left\| \int_0^{2\pi} (N(\theta))^{-1} \, d\theta \right\| = \|J(U)\| = \sup \left\{ |J(e^{i\phi})| : e^{i\phi} \in \sigma(U) \right\}.
\]
On the other hand, we have
\[
J(e^{i\varphi}) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \left((R^2 + r^2 - R - r) + \frac{R + r + 2}{4} \left(2 - 2\cos(\theta - \varphi) \right) \right) \, d\theta
\]
\[
= \frac{R^2 - r^2}{2\pi} \int_{-\infty}^{\infty} \left((R^2 + r^2 - R - r)(1 + s^2) + (R + r + 2)s^2 \right) \, ds
\]
\[
= \frac{R^2 - r^2}{2\pi} \int_{-\infty}^{\infty} \left((R^2 + r^2 - R - r) + (R^2 + r^2 + 2)s^2 \right) \, ds
\]
\[
= \sqrt{\frac{R^2 + 2R + 1}{R^2 + R + 1}} \leq \frac{2}{\sqrt{3}}
\]
which implies (1). This gives a proof of the upper bound of Theorem 1.3 for \(K_{cb}(R)\).

Proof of the lower bound of Theorem 1.3 For \(t \in \mathbb{C}\), let \(A(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}\) with inverse \(A(t)^{-1} = \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix}\) acting on the Hilbert space \(\mathbb{C}^2\). For \(t_0 = R - R^{-1}\) we have \(\|A(t_0)\| = \|A(t_0)^{-1}\| = R\) (compare with [14] p. 152). We will make use of the following result from geometric function theory about the infinitesimal Carathéodory metric: it is shown by Simha in [18] Example (5.3)] that
\[
\sup \left\{ \frac{|f'(1)|}{\|f\|_X} : f \text{ analytic in } X \text{ and } f(1) = 0 \right\} = \frac{2}{R} \prod_{n=1}^{\infty} \left(\frac{1 - R^{-8n}}{1 - R^{-4n}} \right)^2,
\]
with the supremum being attained for some function \(f_0\) analytic in \(X\), with \(\|f_0\|_X = 1\) and \(f_0(1) = 0\). Therefore
\[
K(R) \geq \frac{1}{\|f_0\|_X} \|f_0(A(t_0))\| = \left\| \begin{pmatrix} f_0(1) & t_0 f'_0(1) \\ 0 & f'_0(1) \end{pmatrix} \right\| = t_0 |f'_0(1)| = \gamma(R)
\]
with
\[
\gamma(R) := 2(1 - R^{-2}) \prod_{n=1}^{\infty} \left(\frac{1 - R^{-8n}}{1 - R^{-4n}} \right)^2 = \frac{2}{1 + R^{-2}} \prod_{n=1}^{\infty} \frac{(R^{4n} - R^{-4n})^2}{(R^{4n} - R^{-4n})^2} = \frac{2}{1 + R^{-2}} \prod_{n=1}^{\infty} \left(1 - \frac{(R^2 - R^{-2})^2}{(R^{4n} - R^{-4n})^2} \right)^{-1}.
\]
Figure 2: The two upper bounds and the lower bound for $K(R)$ from Theorem 1.3 and the lower bound $\gamma(R)$ from the proof of Theorem 1.3.

This yields the estimate

$$K(R) > \frac{2}{1 + R^{-2}},$$

as claimed in Theorem 1.3. It remains to justify why we are allowed to take for a lower bound of $K(R)$ the function f_0 which is not a rational function. Indeed, by using instead of f_0 partial sums of the Laurent expansion of an extremal function for the infinitesimal Carathéodory metric on the annulus $1/R' < |z| < R'$ for some $R' > R$ we obtain the same conclusion after taking the limit $R' \to R$. \[\square\]

Remark 4.2. The final estimate (2) of the preceding proof is not very sharp for R close to one (see Figure 2), and $\gamma(R)$ is a sharper but less readable lower bound for $K(R)$. For instance, for $R \to 1$ the lower bound $2/(1 + R^{-2})$ of Theorem 1.3 tends to 1 but

$$\lim_{R \to 1} \gamma(R) = \lim_{R \to 1} \prod_{n=1}^{\infty} \left(1 - \frac{(R^2 - R^{-2})^2}{(R^{4n} - R^{-4n})^2}\right)^{-1} = \prod_{n=1}^{\infty} \left(1 - \frac{1}{4n^2}\right)^{-1} = \frac{\pi}{2}.$$

In contrast, for our fixed matrix $A(t_0)$, it follows from [9, Theorem 1] and [18] that the function f_0 is extremal within the class of functions analytic in X.

Proof of Corollary 1.4. We use the terminology of Paulsen’s book [14]. Let $\rho : R(X) \to \mathcal{L}(H)$ be the homomorphism given by $\rho(f) = f(A)$. Theorem 1.3 implies that the complete bounded norm $\|\rho\|_{cb}$ of ρ is bounded by $2 + 2/\sqrt{3}$. Using a theorem of Paulsen [14, Theorem 9.1], there exists an invertible operator L with $\|L\| \cdot \|L^{-1}\| = \|\rho\|_{cb} \leq 2 + 2/\sqrt{3}$ such that $L^{-1} \rho(\cdot)L$ is a unital completely contractive homomorphism. Thus X is a complete spectral set for $L^{-1}AL$. Therefore, as a consequence of Arveson’s extension theorem (see [14, Corollary 7.8]), $L^{-1}AL$ has a normal dilation with spectrum included in ∂X, as claimed in Corollary 1.4. \[\square\]

Remark 4.3. According to a deep result due to Agler [1], if X is a spectral set for A, then X is a complete spectral set for A, and thus A has a normal dilation with spectrum included in ∂X. The analogue of Agler’s theorem is not true for triply connected domains (see [8]).

8
References

[1] J. Agler, Rational dilation on an annulus, *Ann. of Math.* (2) **121** (1985), 537–563.

[2] C. Badea, M. Crouzeix and B. Delyon, Convex domains and K-spectral sets, *Math. Z.* **252** (2006), 345–365.

[3] B. Beckermann and M. Crouzeix, A lenticular version of a von Neumann inequality, *Arch. Math.(Basel)*, **86** (2006), 352–355.

[4] J.B. Conway, *The theory of subnormal operators*, Mathematical Surveys and Monographs, 36. American Mathematical Society, Providence, RI, 1991.

[5] M. Crouzeix, B. Delyon, Some estimates for analytic functions of strip or sectorial operators, *Arch. Math.(Basel)*, **81** (2003), 553-566.

[6] M. Crouzeix, Numerical range and functional calculus in Hilbert space, *J. Funct. Anal.*, **244** (2007), 668–690.

[7] R.G. Douglas and V.I. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, *Acta Sci. Math.(Szeged)*, **50** (1986), 143–157.

[8] M.A. Dritschel and S. McCullough, The failure of rational dilation on a triply connected domain, *J. Amer. Math. Soc.* **18** (2005), 873–918.

[9] S. Fu and B. Russo, Spectral domains in several complex variables, *Rocky Mountain J. Math.* **27** (1997), 1095–1116.

[10] K. A. Lewis, Intersections of K-spectral sets, *J. Operator Theory* **24** (1990), 129–135.

[11] G. Misra, Curvature inequalities and extremal properties of bundle shifts, *J. Operator Theory* **11** (1984), 305–317.

[12] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, *Math. Nachr.* **4** (1951), 258–281.

[13] V.I. Paulsen, *Toward a theory of K-spectral sets*, in : Surveys of some recent results in operator theory, Vol. I, 221–240, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988.

[14] V.I. Paulsen, *Completely bounded maps and operator algebras*, Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002.

[15] M. Putinar and S. Sandberg, A skew normal dilation on the numerical range of an operator, *Math. Ann.* **331** (2005), no. 2, 345–357.

[16] F. Riesz, B. Sz.-Nagy, *Functional Analysis*, Books on Advanced Mathematics. Dover Publications, New York, 1990.

[17] A.L. Shields, *Weighted shift operators and analytic function theory*, in : Topics in operator theory, pp. 49–128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974.

[18] R.R. Simha, The Carathéodory metric of the annulus, *Proc. Amer. Math. Soc.* **50** (1975), 162-166.

[19] J.G. Stampfli, Surgery on spectral sets, *J. Operator Theory*, **16** (1986), no 2, 235–243.

[20] J.G. Stampfli, Surgery on spectral sets. II. The multiply connected case, *Integral Equations Operator Theory* **13** (1990), 421–432.
[21] J.P. Williams, Minimal spectral sets of compact operators, *Acta Sci. Math.* (Szeged) **28** (1967) 93–106.

Laboratoire Paul Painlevé, UMR CNRS no. 8524, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France

Catalin.Badea@math.univ-lille1.fr

Laboratoire Paul Painlevé, UMR CNRS no. 8524, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France

Bernhard.Beckermann@math.univ-lille1.fr

Institut de Recherche Mathématique de Rennes, UMR 6625 au CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex, France

michel.crouzeix@univ-rennes1.fr