Immunotherapy in People With HIV and Cancer

Camille E. Puronen 1, Emily S. Ford 2,3 and Thomas S. Uldrick 1,3,4 *

1 Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, United States, 2 Division of Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States, 3 Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States, 4 Division of Global Oncology, Department of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, United States

HIV infection alters the natural history of several cancers, in large part due to its effect on the immune system. Immune function in people living with HIV may vary from normal to highly dysfunctional and is largely dependent on the timing of initiation (and continuation) of effective antiretroviral therapy (ART). An individual’s level of immune function in turn affects their cancer risk, management, and outcomes. HIV-associated lymphocytopenia and immune dysregulation permit immune evasion of oncogenic viruses and premalignant lesions and are associated with inferior outcomes in people with established cancers. Various types of immunotherapy, including monoclonal antibodies, interferon, cytokines, immunomodulatory drugs, allogeneic hematopoietic stem cell transplant, and most importantly ART have shown efficacy in HIV-related cancer. Emerging data suggest that checkpoint inhibitors targeting the PD-1/PD-L1 pathway can be safe and effective in people with HIV and cancer. Furthermore, some cancer immunotherapies may also affect HIV persistence by influencing HIV latency and HIV-specific immunity. Studying immunotherapy in people with HIV and cancer will advance clinical care of all people living with HIV and presents a unique opportunity to gain insight into mechanisms for HIV eradication.

Keywords: HIV, immunotherapy, HIV reservoir, cancer, PD-1, Kaposi sarcoma, lymphoma

INTRODUCTION

People living with HIV (PLWH) have an elevated risk of developing cancer compared to the general population. This increased risk is partially attributable to comorbid conditions and social factors such as smoking or poorer access to preventative services. However, there is strong evidence that immunologic factors such as decreased immunologic surveillance and increased susceptibility to oncogenic viral infection play a significant role (1–5). Historically, cancers developing in the setting of HIV have been classified as AIDS-defining malignancies (ADM; cancers that, when present, confer a diagnosis of AIDS) and non-AIDS defining malignancies (NADM; cancers whose presence does not necessarily indicate AIDS) (6). Many HIV-related cancers have a viral etiology (7). These include Kaposi sarcoma (KS) [Kaposi sarcoma herpes virus (KSHV)]; cervical, anal, penile and vulvar squamous cell cancer and oropharyngeal cancers [human papilloma virus (HPV)]; B cell non-Hodgkin lymphomas (NHL) including diffuse large B-cell lymphoma, Burkitt lymphoma, plasmablastic lymphoma, primary central nervous system lymphoma, primary effusion lymphoma, classic Hodgkin lymphoma, and lymphoproliferative disorders [in some cases, Epstein-Barr virus (EBV) and/or KSHV]; hepatocellular carcinoma [hepatitis B and C viruses (HBV/HCV)], and Merkel cell carcinoma [Merkel cell polyoma virus (MPV)]. In epidemiological studies of
non-Hodgkin lymphoma, Kaposi sarcoma, and anal cancer, uncontrolled HIV viremia is an independent risk factor (4, 5, 8).

The introduction of antiretroviral therapy (ART) after 1996 resulted in a reduction in the incidence of many ADMs by 75–80% (9), largely due to reduced prevalence of profound immunodeficiency. NADMs including lung cancer, Hodgkin lymphoma, anal cancer, and oropharyngeal cancer now comprise an increasing proportion of total cancers in PLWH in North America (10, 11). A similar trend has been documented in Europe, Australia (12) and the Asia-Pacific region (11, 13).

This epidemiological switch in prevalence away from ADMs and virally-associated malignancies corresponds with increasing life expectancy of PLWH, increased availability of ART and promotion of viral suppression (14–16).

HIV LEADS TO PARTIALLY REVERSIBLE PERTURBATION IN T-CELL FUNCTION

HIV has multiple effects on T-cell immunity that may contribute to cancer risk. Absent effective ART, uncontrolled HIV infection leads to massive depletion of HIV-infected CD4 cells and uninfected bystander CD4s in both blood and tissue (17). In the same setting, CD8 counts often rise, leading to inverted CD4/CD8 ratios that are an independent measure of immune dysfunction. Moreover, HIV and other chronic viral infections lead to increased expression of immune checkpoint proteins (such as PD-1), exhaustion markers, and impaired CD8 T cell function (18–20), causing systemic immune dysfunction and dysregulation (21). Untreated HIV perturbs not only the quantity but also the breadth of T-cell immunity. HIV leads to decreased numbers of naïve T cells, less diversity of the T-cell repertoire in the blood (22, 23), and skewing of the T-cell receptor (TCR) repertoire secondary to CD4 depletion and expansion of oligoclonal CD8 populations (24). HIV viremia is rapidly suppressed with modern ART. Immune reconstitution after initiation of ART leads to CD4 recovery and CD8 decline over time (25). The likelihood of full immune recovery improves with earlier diagnosis and a younger age at ART initiation (26), although immune recovery is often incomplete (27). The heightened pro-inflammatory state associated with both untreated and treated HIV contributes to long-term adverse outcomes (28, 29).

ONCOGENESIS IN THE SETTING OF HIV-INDUCED IMMUNE DYSFUNCTION

Immunodeficiency is an established risk factor for the development of cancer, and the underlying causes are likely many, including uncontrolled proliferation of oncogenic viruses and inadequate immune surveillance. Many oncogenic viruses have been shown to cause cancer in other immunosuppressed states, including inherited immunodeficiencies and solid-organ transplantation (30). CD4 deficiency is strongly linked to malignancy (31), independent of HIV infection (32–35). The presence, number, and functionality of CD4 T cells are important in multiple steps of the oncogenic pathway, including recognition of tumor antigens, development of effective neutralizing antibody, and cellular responses to viral pathogens, and clearance of premalignant lesions. The risk of many HIV-associated malignancies decreases with improved CD4 count on ART (9, 12, 36–39) and cancer-specific mortality correlates inversely with CD4 count (12, 40). The link between reduced CD4 count and elevated cancer risk is profound in KS and NHL (41–43), but also present in other malignancies (37). An individual’s risk of cancer (and long-term immune dysfunction) is likely influenced by the CD4 nadir, perhaps indicative of a synergistic relationship between chronic inflammation and impaired immune surveillance (10, 44–49).

CD4 lymphocytopenia, ineffective CD8 response, and associated immune dysregulation lead to a reduction in immunosurveillance, a key mechanism in HIV-associated oncogenesis (21, 50). This is illustrated in the link between HIV, immune status, and cervical cancer (37). PLWH are more likely to acquire high risk HPV (51, 52), less likely to clear HPV, and more likely to progress to higher-grade forms of dysplasia (53). PLWH with lower CD4 counts are also more likely to progress from dysplasia to invasive cancer (54). In an HPV vaccine trial in adolescents with HIV, the induced antibody titer correlated positively with CD4 count (55), supporting the importance of CD4 T cells in the production of high-affinity antibodies (51), the primary correlate of protection of the HPV vaccine (56). Tissue-localizing HPV-specific CD4 and CD8 T cells are also potentially important to tumor regression (57, 58).

Immune exhaustion and T-cell senescence are prominent features of both chronic viral infections and malignancies (59). In PLWH, T-cell dysfunction is most strongly implicated in the development of EBV-related lymphomas and KS (60). In HIV-associated B cell NHL, reduced T-cell polyfunctionality and TCR diversity is associated with poorer prognosis (61). These observations, among others (62), have led to interest in remedying immune dysfunction to treat malignancy in PLWH (63).

ANTIRETROVIRAL THERAPY AND OTHER FORMS OF IMMUNOTHERAPY IN HIV-RELATED CANCER

ART is itself an effective form of immunotherapy for ADM. Improvements in ART in 1996 resulted in a decline in the incidence and severity of KS, as well as changes in its natural history (9, 64–66): the risk of death due to KS decreased at similar HIV RNA levels and CD4 count (66), suggesting that ART resulted not only in improved immune control of KSHV but also decreased immune dysregulation. ART-induced immune reconstitution results in regression of KS lesions in ~80% of PLWH with early KS (67). However, ART alone is often insufficient in advanced KS.

Several immunotherapies have shown efficacy in KS and other HIV-related cancers (Table 1). Interferon alpha (IFN-α), the first true immunotherapy used in HIV-associated KS, generated a 20–40% response rate (98–100). IL-12, which enhances Th-1 type immune responses (91), has been shown to have anti-KS
to traditional cytotoxic chemotherapy for KS. The investigators noted an overall response rate of 60% among HIV-infected participants, which is comparable with the safety and tolerability in HIV-infected KS patients.

Pomalidomide
Modulates substrate specificity of cereblon E3 Ubiquitin ligase, altering protein expression. Induces cell cycle arrest and apoptosis in plasma cell malignancies. Enhances T cell- and natural killer (NK) cell-mediated cytotoxicity, inhibits angiogenesis, modulates cytokines, and cell microenvironment

Under evaluation for KS

Thromboembolic events, teratogenicity, fatigue and asthenia, cytopenias, GI toxicity, dyspnea, back pain, pyrexia

Immune stimulation, increased killing of reservoir cells

(73–75)

Brentuximab vedotin
Monoclonal antibody drug conjugate with anti-CD30 antibody (expressed on Hodgkin Reed-Sternberg Cells) and MME (microtubule disruptor) payload

Classical Hodgkin lymphoma

Cytopenias, peripheral sensory neuropathy, fatigue, GI toxicity, pyrexia, rash, cough

Transient loss of detectable CD4 T-cell HIV RNA and reduction in plasma HIV viremia

Ex vivo elimination of latently-infected CD4 T cells. Evidence of decreased frequency of HIV-infected CD4 T cells in vivo.

(76, 77)

Alemtuzumab
Monoclonal antibody to CD52 (expressed on lymphocytes, monocytes, macrophages, NK cells, and some granulocytes)

Hematopoietic stem cell transplant conditioning

Infusion reaction, serious infections, cytopenias, secondary autoimmune disorders

(78–81)

IL-7
Modulates T cell development and maturation in the thymus. Modulates T cell homeostasis and proliferation and memory differentiation. Inhibits T cell apoptosis and promotes proliferation.

Under evaluation in combination with CD19 CAR T-cells in relapsed B-cell lymphoma

Infusion reaction, hypersensitivity

Transient increases in HIV viral load without observed clinical sequelae, as well as enhanced anti-HIV CD8 activity

(82–90)

IL-12
Promotes activation and differentiation of T lymphocytes and NK cells

Under evaluation in therapeutic vaccines for HPV associated cancers, phase 1 studies in solid tumors.

Immune activation

Latency reversal ex vivo

(91–93)

IL-15
Stimulates the proliferation of memory T cells and regulates their turnover. Promotes the survival of naïve T cells.

Under evaluation in refractory B-cell lymphomas and solid tumors

Infusion reaction, hypersensitivity

Ex vivo killing of latently-infected CD4 T cells by cytotoxic CD8 T cells

(94–97)

Select immunotherapeutic agents used in cancers that occur at increased frequency in people with HIV and their demonstrated or hypothesized effect on measurements of the HIV reservoir.

TABLE 1

Agent	Mechanism	Indication in cancer that is associated with HIV	Adverse events	Potential effect on HIV reservoir	References
Checkpoint inhibitors (ipilimumab, nivolumab, pembrolizumab, durvalumab, etc.)	Block inhibitory T cell receptors including CTLA4, PD-1, or PD-L1, allowing T cell activation and promoting cytotoxic killing of target cells	Lung cancer, classical Hodgkin lymphoma, head and neck cancer, liver cancer	Fatigue, rash, arthralgia, pruritus, GI toxicity, asthenia, pulmonary toxicity, pyrexia, autoimmune phenomena, headache	Transient increases in unspliced HIV RNA and decreases in HIV DNA in blood, variable effects on plasma HIV RNA	(68–72)
Pomalidomide	Modulates substrate specificity of cereblon E3 Ubiquitin ligase, altering protein expression. Induces cell cycle arrest and apoptosis in plasma cell malignancies. Enhances T cell- and natural killer (NK) cell-mediated cytotoxicity, inhibits angiogenesis, modulates cytokines, and cell microenvironment	Under evaluation for KS	Thromboembolic events, teratogenicity, fatigue and asthenia, cytopenias, GI toxicity, dyspnea, back pain, pyrexia	Immune stimulation, increased killing of reservoir cells	(73–75)
Brentuximab vedotin	Monoclonal antibody drug conjugate with anti-CD30 antibody (expressed on Hodgkin Reed-Sternberg Cells) and MME (microtubule disruptor) payload	Classical Hodgkin lymphoma	Cytopenias, peripheral sensory neuropathy, fatigue, GI toxicity, pyrexia, rash, cough	Transient loss of detectable CD4 T-cell HIV RNA and reduction in plasma HIV viremia	(76, 77)
Alemtuzumab	Monoclonal antibody to CD52 (expressed on lymphocytes, monocytes, macrophages, NK cells, and some granulocytes)	Hematopoietic stem cell transplant conditioning	Infusion reaction, serious infections, cytopenias, secondary autoimmune disorders		
IL-7	Modulates T cell development and maturation in the thymus. Modulates T cell homeostasis and proliferation and memory differentiation. Inhibits T cell apoptosis and promotes proliferation.	Under evaluation in combination with CD19 CAR T-cells in relapsed B-cell lymphoma	Infusion reaction, hypersensitivity	Transient increases in HIV viral load without observed clinical sequelae, as well as enhanced anti-HIV CD8 activity	(82–90)
IL-12	Promotes activation and differentiation of T lymphocytes and NK cells	Under evaluation in therapeutic vaccines for HPV associated cancers, phase 1 studies in solid tumors.	Immune activation	Latency reversal ex vivo	(91–93)
IL-15	Stimulates the proliferation of memory T cells and regulates their turnover. Promotes the survival of naïve T cells.	Under evaluation in refractory B-cell lymphomas and solid tumors	Infusion reaction, hypersensitivity		(94–97)

More recently, immune checkpoint inhibitors (CPIs), monoclonal antibodies to cytotoxic lymphocyte associated protein 4 (CTLA-4) or programmed cell death 1 or its ligand (PD-1 and PD-L1), have gained widespread use due to their demonstrated activity and favorable toxicity profile in many malignancies. CPIs, which function by blocking T-cell inhibitory signaling, have performed well in clinical trials of many malignancies that are common in the setting of HIV, including lymphoma, lung cancer, cervical cancer, liver cancer, and...
Cancer Immunotherapy and HIV Persistence

Although HIV-infected individuals on ART may have undetectable plasma HIV RNA by standard clinical assays, a reservoir of latently HIV-infected cells (120, 121) persists from which the virus will resurface after discontinuation of ART (122). Persistence of the HIV reservoir is partly due to the inherent longevity of resting memory CD4 T cells; growing evidence suggests that its persistence is maintained by clonal expansion (123, 124). In whole genome-based studies, HIV integration favors sites of active gene transcription (125) which benefits HIV replication and establishment of latency (126, 127) and promotes pathways associated with oncogenesis (124). The HIV reservoir has been a major subject of research into a functional cure for HIV. One theory called “kick and kill” (Figure 1) (128, 129) proposes that HIV latency reversal in the setting of ART (meaning activation of HIV replication within a latently infected cell), can lead to increased immunogenicity of HIV infected cells, enhancement of anti-HIV immunity, and increased cell death of HIV reservoir cells.

Several immunotherapeutic agents used in the treatment of cancer may have cause HIV latency reversal and/or have a targeted effect on HIV persistence. CPIs have been proposed to have latency reversal activity. Anti-PD-1 therapy is associated with changes in CD4 count and HIV RNA (130–132), perhaps due to direct targeting of the HIV reservoir. PD-1 and CTLA-4 expression are increased in the setting of chronic HIV infection, and HIV DNA and unspliced RNA are enriched in PD-1+ cells in blood and lymph nodes of individuals with HIV on ART (133–136). Multiple case reports and prospective studies have documented transient increases in HIV transcription in CD4 cells in people with HIV-associated malignancies on ART who are treated with anti-PD-(L)1 drugs, although many of these participants later experienced decreases in plasma HIV RNA (117, 128, 129, 132, 137). In one study, 2 of 28 patients who had undetectable HIV RNA prior to CPI therapy developed detectable HIV RNA, whereas 5 of 6 patients who had detectable viremia experienced a decrease in their viral load (117). A prospective study of the effect of ipilimumab in 24 PLWH with detectable viremia and without cancer, of whom 17 were on ART, also demonstrated a range of responses: 2 participants had slight decreases in HIV RNA but 14 had slight increases. None experienced significant change in CD4 or CD8 T cell

FIGURE 1 | Immune-therapy and the HIV reservoir. A variety of immunotherapeutic agents used to treat cancer may perturb the HIV reservoir through induction of latency reversal or increased cell killing. Some of these agents are being evaluated in clinical trials targeting HIV persistence. CPI, immune checkpoint inhibitor; IL, interleukin.
count (138). These observations support the activity of CPIs to produce latency reversal. Additional studies are being performed to evaluate the effects of CPIs on anti-HIV T-cell function.

The effects of anti-CD30 monoclonal antibodies on HIV latency have also been investigated. Early work in HIV demonstrated that cross-linking of CD30 on latently-infected CD4 T cells induced HIV transcription (139). More recently, brentuximab vedotin has been associated with transient loss of detectable CD4 T-cell HIV RNA and reduction in plasma HIV viremia (76). CD30 is therefore speculated to be a marker of latent, but transcriptionally-active, HIV-infected cells and a potential therapeutic target for HIV eradication (140).

Alemtuzumab is a monoclonal antibody targeting CD52, which is expressed by T cells including HIV-infected T cells, regardless of CD4 count or plasma viremia. Latently-infected CD4 T cells have been eliminated in vitro with alemtuzumab (78). In vivo, a case report of alemtuzumab in an individual with HIV and Sezary syndrome described decreased frequency but not elimination of HIV-infected CD4 T cells (79). Alemtuzumab was also part of the conditioning regimen of one of the patients with sustained HIV aviremia after HSCT (141).

T-cell growth factors, many of which are being investigated for cancer indications, have also been shown to affect the HIV reservoir. Interleukin 7 (IL-7) is a homeostatic cytokine that increases T-cell repertoire diversity through expansion of naive T cells (82) and is being investigated in several malignancies. IL-7 levels increase in HIV-associated CD4 lymphocytopenia and decrease with immune reconstitution (142). Exogenous administration of IL-7 is associated with dose-dependent increases in CD4 and CD8 T cells in PLWH on ART (143), including HIV-specific CD8 T cells (83). In patients with suppressed HIV, administration of IL-7 led to transient increases in HIV viral load without observed clinical sequelae (84), as well as enhanced anti-HIV CD8 activity. Another T-cell growth factor, IL-15, induces antigen-specific T-cell proliferation, most pronounced in the CD8 compartment (94, 95, 144, 145). IL-15 is produced during acute HIV infection (95). Stimulation NK cells with IL-15 ex vivo from participants with suppressed HIV on ART led to ex vivo killing of latently-infected CD4 T cells by cytotoxic CD8 T cells (96). Early phase studies of IL-7 and IL-15 in several malignancies are underway.

HEMATOPOIETIC STEM CELL TRANSPLANTATION IN HIV

In 2007, an individual with HIV infection and leukemia underwent hematopoietic stem cell transplant (HSCT) in Berlin, using cells from a donor who was homozygous for CCR5-delta32, a mutation that renders CD4 cells resistant to CCR5-tropic HIV. After transplant, HIV was undetectable in blood and biopsy specimens, despite discontinuation of ART (146, 147). Recently, a second patient who underwent allogeneic HSCT for Hodgkin lymphoma using cells from a homozygous CCR5-delta32 donor and whose HIV remained undetectable 18 months after stopping ART (141) was described. Allogeneic stem cell transplant itself appears to substantially decrease the HIV reservoir. In the European IciStem cohort of PLWH on ART who underwent HSCT for hematologic malignancies from CCR5 wild-type donors with full donor engraftment and who remained on ART, 5 of 6 were found to have no detectable HIV DNA in CD4 cells from blood and tissues and no evidence of HIV in a humanized mouse viral outgrowth assay (148). However, ART interruption is required to demonstrate functional cure, and in cases of allotransplants from CCR5 wild-type donors, HSCT has failed to produce long-lasting viral suppression in the absence of ART. In an ART interruption study of 2 PLWH who underwent HSCT for hematologic malignancies from CCR5 wild-type donors and had undetectable HIV RNA for years post-transplant while on ART, both participants developed detectable viremia after ART interruption: patient A at day 84 and patient B at day 225 (149).

Given the success of allotransplants from homozygous CCR5-delta32 donors, CCR5-mutant cell products have been developed via gene editing and have been shown to be safe when infused into participants with chronic aviremic HIV. When ART was interrupted, the edited CD4 cells declined at a slower rate than endogenous CD4 cells. While these results are promising, additional work is required to develop a scalable approach to address HIV persistence on ART (150–153).

IMPROVING OUR UNDERSTANDING OF HIV-RELATED CANCER

As PLWH are living longer, cancer has become a major cause of morbidity and mortality, well above the burden faced by the general population. Although the incidence of AIDS-defining malignancies has decreased, mortality associated with NADMs is rising. Given the persistent immune abnormalities despite ART and the implications for cancer risk, immunotherapy is uniquely poised to improve outcomes in HIV-associated cancers. In order to advance our understanding, PLWH must be included in immuno-oncology studies. Recent recommendations from ASCO and the FDA provide guidance for appropriate inclusion of PLWH and cancer in clinical trials (109, 154). Furthermore, studying cancer immunotherapy in this population represents an opportunity to gain a better understanding of HIV itself. Investigation of the immunologic and viral responses to cancer immunotherapy in PLWH will lead to novel insights into HIV elimination and, above all, improve the outcomes of people with HIV and cancer.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

CP was supported by the Jacob Green Fund. EF was supported by U19 AI113173.
REFERENCES

1. Coghill AE, Han X, Sunega G, Lin CC, Jemal A, Shiels MS. Advanced stage at diagnosis and elevated mortality among US patients with cancer infected with HIV in the National Cancer Data Base. Cancer. (2019) 125:2686–76. doi: 10.1002/cncr.32158
2. Shepherd L, Ryom L, Law M, Petoumenos K, Hatleberg CL, d’Arminio Monforte A, et al. Cessation of cigarette smoking and the impact on cancer incidence in human immunodeficiency virus-infected persons: the data collection on adverse events of anti-HIV drugs study. Clin Infect Dis. (2019) 68:650–7. doi: 10.1093/cid/ciy508
3. Grover S, Desir F, Jing Y, Bhattacharjee RK, Tripathi DD, Swisher-McClure S, et al. Reduced cancer survival among adults with HIV and AIDS-defining illnesses despite no difference in cancer stage at diagnosis. J Acquir Immune Defic Syndr. (2018) 79:421–9. doi: 10.1097/QAI.000000000001842
4. Hernandez-Ramirez RU, Qin L, Lin H, Leyden W, Neugebauer RS, Althoff KN, et al. Association of immunosuppression and HIV viremia with anal cancer risk in persons living with HIV in the United States and Canada. Clin Infect Dis. (2019) 2019:ciz329. doi: 10.1093/cid/ciz329
5. Hernández-Ramirez RU, Qin L, Lin H, Leyden W, Neugebauer RS, Althoff KN, et al. Association of immunosuppression and HIV viremia with non-Hodgkin lymphoma risk overall and by subtype in people living with HIV in the USA: a multicentre cohort study. Lancet HIV. (2019) 6:e240–9.
6. Patel P, Hanson DL, Sullivan PS, Novak RM, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med. (2008) 148:728–36. doi: 10.7326/0003-4819-148-10-200805200-00038
7. Park LS, Hernández-Ramirez RU, Silverberg MJ, Crothers K, Dubrow R. Prevalence of non-HIV cancer risk factors in persons living with HIV/AIDS: a meta-analysis. AIDS. (2016) 30:273–91. doi: 10.1097/QAD.0000000000001922
8. Achenbach CJ, Buchanan AL, Cole SR, Hou L, Mugavero MJ, Crane HM, et al. HIV viremia and incidence of non-Hodgkin lymphoma in patients successfully treated with antiretroviral therapy. Clin Infect Dis. (2014) 58:1599–606. doi: 10.1093/cid/ciu076
9. Franceschi S, Lise M, Clifford GM, Rickenbach M, Levi F, Maspoli M, et al. Changing patterns of cancer incidence in the early- and late-HAART periods: the Swiss HIV Cohort Study. Br J Cancer. (2010) 103:416–22. doi: 10.1038/sj.bjc.6605756
10. Franzetti M, Ricci E, Bonfanti P. The pattern of non-AIDS-defining cancers in the HIV population: epidemiology, risk factors and prognosis. A review. Curr HIV Res. (2019) 17:1–12. doi: 10.2174/1570162X17666190327153038
11. Nagata N, Nishijima T, Niikura R, Yokoyama T, Matsushita Y, Watanabe K, et al. Increased risk of non-AIDS-defining cancers in Asian HIV-infected patients: a long-term cohort study. BMC Cancer (2018) 18:1066. doi: 10.1186/s12885-018-4963-8
12. Coghill AE, Han X, Sunega G, Engels EA. Elevated cancer-specific mortality among HIV-infected patients in the United States. J Clin Oncol. (2015) 33:2376–83. doi: 10.1200/JCO.2014.59.5967
35. Menetrier-Caux C, Ray-Coquard I, Blay JY, Caux C. Lymphopenia in cancer patients and its effects on response to immunotherapy: an opportunity for combination with cytokines? *J Immunother. (2019)* 7:85. doi: 10.1186/s40425-019-0549-5

36. Aegar MM, Ray GT, Quesenberry CP, Katz KA, Silverberg MJ. Association of multiple primary skin cancers with human immunodeficiency virus infection, CD4 count, and viral load. *JAMA Dermatol.* (2017) 153:892–6. doi: 10.1001/sjadermatol.2017.1716

37. Hernández-Ramírez RU, Shiels MS, Dubrow R, Engels EA. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. *Lancet HIV.* (2017) 4:e495–504. doi: 10.1016/S2352-3018(17)30125-X

38. Ryom L, Lundgren JD, De Wit S, Kvarai H, Reiss P, Law M, et al. Use of antiretroviral therapy and risk of end-stage liver disease and hepatocellular carcinoma in HIV-positive persons. *AIDS.* (2016) 30:1731–43. doi: 10.1097/QAD.0000000000001018

39. Yarchoan R, Uldrick TS. HIV-associated cancers and related diseases. *Annu. Rev. Med.* (2009) 60:61–76. doi: 10.1146/annurev.med.60.040407.130649

40. Ebogo-Belobo JT, Kagoué Simeni LA, Mbassa Nnouma G, Lawan Lubou M, Konopnicki D, Manigart Y, Gilles C, Barlow P, de Marchin J, Feoli M, et al. Changes in the CD4/CD8 ratio is associated with non-AIDS-defining cancers in patients with HIV, 1994–2003: the EuroSIDA Study. *Cancer.* (2010) 116:5737–42. doi: 10.1002/cncr.25806

41. Dubrow R, Qin L, Lin H, Hernández-Ramírez RU, Neugebauer RS, Leyden J, et al. Differences in virological and immunological risk factors for non-Hodgkin and Hodgkin lymphoma. *J Natl Cancer Inst.* (2018) 110:598–607. doi: 10.1093/jnci/djx249

42. Röhner E, Bütkofer I, Schmidlin K, Sengayi M, Maskew M, Giddy J, et al. Comparison of Kaposi sarcoma risk in human immunodeficiency virus-positive adults across 5 continents: a multinational multicohort study. *Clin Infect Dis.* (2017) 65:1316–26. doi: 10.1093/cid/cix480

43. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N, CD4 and CD8 T lymphocyte interplay in controlling tumor growth. *Cell Mol Life Sci.* (2017) 75:869–73. doi: 10.1007/s00018-017-2668-7

44. Serrano-Villar S, Pérez-Elias MJ, Dronda F, Chmiel J, et al. Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. *PLoS ONE.* (2014) 9:e85798. doi: 10.1371/journal.pone.0085798

45. Serrano-Villar S, Sainz T, Lee SA, Hunt PW, Sinclair E, Epling L, Mitsuyasu R, et al. Differences in virological and immunological risk factors for non-Hodgkin and Hodgkin lymphoma. *J Natl Cancer Inst.* (2018) 110:598–607. doi: 10.1093/jnci/djx249

46. Röhner E, Bütkofer I, Schmidlin K, Sengayi M, Maskew M, Giddy J, et al. Comparison of Kaposi sarcoma risk in human immunodeficiency virus-positive adults across 5 continents: a multinational multicohort study. *Clin Infect Dis.* (2017) 65:1316–26. doi: 10.1093/cid/cix480

47. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N, CD4 and CD8 T lymphocyte interplay in controlling tumor growth. *Cell Mol Life Sci.* (2017) 75:869–73. doi: 10.1007/s00018-017-2668-7

48. Serrano-Villar S, Pérez-Elias MJ, Dronda F, Chmiel J, et al. Increased risk of serious non-AIDS-related events in HIV-infected subjects on antiretroviral therapy associated with a low CD4/CD8 ratio. *PLoS ONE.* (2014) 9:e85798. doi: 10.1371/journal.pone.0085798

49. Merola A, Gualtieri V, Veyrin A, Royela MJ, Berends-van der Meer DM, Vloon AP, et al. Vaccination against HIV-16 oncoproteins for vulvar intraepithelial neoplasia. *PLoS J Natl Cancer Inst.* (2019) 111:1388–93. doi: 10.1097/QAD.0b013e3181744619

50. Abraham SN, Zhao Y. The nature of immune responses to urinary tract infections. *Nat Rev Urol.* (2015) 12:655–63. doi: 10.1038/nru13887

51. Massad LS, Seaberg EC, Wright RL, Darragh T, Lee YC, Colie C, et al. Squamous cervical lesions in women with human immunodeficiency virus. *Obstet Gynecol.* (2008) 111:1388–93. doi: 10.1097/AOG.0b013e3181744619

52. Scherer EM, Smith RA, Simonich CA, Niyonzima N, Carter J, Galloway DA. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity. *PLoS Pathog.* (2014) 10:e1004461. doi: 10.1371/journal.ppat.1004461

53. Lavello A, Guilot A, Veyrin M, Labotte O, Autran B, Cloarec N, et al. PD-1 blockade in HIV-infected patients with lung cancer: a new challenge or already a strategy? *Ann Oncol.* (2018) 29:1065–6. doi: 10.1093/annonc/mdy081

54. Optivio (nivolumab). Princeton, NJ: Bristol-Meyers Squibb Company (2018).
87. Keytruda (pembrolizumab). Whitehouse Station, NJ: Merck & Company (2016).
88. Polizzotto MN, Uldrick TS, Wyvill KM, Aleman K, Peer CJ, Bevans M, et al. Pomalidomide for Symptomatic Kaposi's Sarcoma in People With and Without HIV Infection: a phase II/I study. J Clin Oncol. (2016) 34:4125–31. doi: 10.1200/JCO.2016.69.83112
89. Polizzotto MN, Uldrick T, Wyvill KM, Aleman K, Peer CJ, Bevans M, et al. Pomalidomide induces expansion of activated and central memory CD4+ and CD8+ T cells in patients with and without HIV infection. Blood. (2014) 124:4128–31. doi: 10.1182/blood-2014-06.38121
90. Sportès C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Pomalyst (pomalidomide). (Bothell, WA: Seattle Genetics, Inc (2014).
91. Brunda MJ. Interleukin-12.
92. Little RF, Pluda JM, Wyvill KM, Rodriguez-Chavez JR, Tosato G, Catanzaro AT, et al. Activity of subcutaneous interleukin-12 in AIDS-related Kaposi’s sarcoma. Blood. (2006) 107:4650–7. doi: 10.1182/blood-2005-11-4455
93. Vandergeeten C, Fromentin R, Chometon N. The role of cytokines in the establishment, persistence and eradication of the HIV reservoir. Cytokine Growth Factor Rev (2012) 23:143–9. doi: 10.1016/j.cytogfr.2012.05.001
94. Berard M, Brandt K, Bulfone-Paus S, Tough DF. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol. (2003) 170:5018–26. doi: 10.4049/jimmunol.170.10.5018
95. Mueller YM, Katsikis PD. IL-15 in HIV infection: pathogenic or therapeutic potential? Eur Cytokine Netw. (2010) 21:219–21.
96. Garrido C, Abad-Fernandez M, Tuyumishie M, Pollara JJ, Ferrari G, Soriano-Sarabia N, et al. Interleukin-15-stimulated natural killer cells clear HIV-1-infected cells following latency reversal ex vivo. J Virol. (2018) 92:e00235–18. doi: 10.1128/jvi.00235-18
97. Xu A, Bhanumathy KK, Wu J, Ye Z, Freywald A, Leary SC, et al. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci (2016) 6:30. doi: 10.1186/s13578-016-0098-2
98. Krown SE, Li P, Von Roenn JH, Paredes J, Huang J, Testa MA, et al. Efficacy of low-dose interferon and antiretroviral therapy in Kaposi's sarcoma: a randomized phase II AIDS clinical trials group study. J Interferon Cytokine Res. (2002) 22:295–303. doi: 10.1089/107999002753675712
99. Shepherd FA, Beaulieu R, Gelmon K, Thust CA, Sawa CA, Read S, et al. Prospective randomized trial of two dose levels of interferon alfa with zidovudine for the treatment of Kaposi’s sarcoma associated with human immunodeficiency virus infection: a Canadian HIV Clinical Trials Network study. J Clin Oncol. (1998) 16:1736–42. doi: 10.1200/JCO.1998.16.5.17376
100. Krown SE, Gold JW, Niedzwiecki DB, Bundow D, Flomenberg N, Gansbacher B, et al. Interferon-alpha with zidovudine: safety, tolerance, and clinical and virologic effects in patients with Kaposi sarcoma associated with the acquired immunodeficiency syndrome (AIDS). Ann Intern Med. (1990) 113:812–21. doi: 10.7326/0003-4819-113-11-81121
101. Strauss J, Heery CR, Kim JW, Jochems C, Donahue RN, Montgomery AS, et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin Cancer Res. (2019) 25:99–109. doi: 10.1158/1078-0432.CCR-18-1512
102. Pfleischhaum M, Kuhnt E, Trumper L, Osterborg A, Trneny M, Shepherd L, et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. (2011) 12:1013–22. doi: 10.1016/S1470-2045(11)70233-5
103. Coiffer B, Theiblomont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, et al. Long-term outcome of patients in the LH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. Blood. (2010) 116:2040–5. doi: 10.1182/blood-2010-03-272646
104. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. (2002) 346:235–42. doi: 10.1056/NEJMoa011795
105. Barta SK, Xue X, Wang D, Tamari R, Lee JY, Mounier N, et al. Activity of subcutaneous interleukin-12 in AIDS patients with Kaposi’s sarcoma: a pooled analysis of 1546 patients. J Immunother Cancer. (2017) 5:98. doi: 10.1186/s40425-017-0098-2
106. Shepherd FA, Beaulieu R, Gelmon K, Thust CA, Sawa CA, Read S, et al. Prospective randomized trial of two dose levels of interferon alfa with zidovudine for the treatment of Kaposi’s sarcoma associated with human immunodeficiency virus infection: a Canadian HIV Clinical Trials Network study. J Clin Oncol. (1998) 16:1736–42. doi: 10.1200/JCO.1998.16.5.17376
107. Sundar R, Cho BC, Brahmer JR, Soro OA. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. (2015) 7:85–96. doi: 10.1177/1758824014564770
108. Sheehan JJ, Mehta V, Crucitti T, Blacklow PN, D'Aquila RT, Sabin CA, et al. Strong CYP3A4 inhibitors, in newly diagnosed HIV-associated Hodgkin lymphoma: a pooled analysis of 462 patients. Blood. (2015) 126:3251–62. doi: 10.1182/blood-2013-04-498964
109. Rubinstein PG, Moore PC, Rudek MA, Henry DH, Ramos JC, Ratner L, et al. Brentuximab vedotin with AVD shows safety, in the absence of strong CYP3A4 inhibitors, in newly diagnosed HIV-associated Hodgkin lymphoma. AIDS. (2018) 32:605–11. doi: 10.1097/QAD.00000000000010729
110. Barta SK, Xue X, Wang D, Tamari R, Lee JY, Mounier N, et al. Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: a pooled analysis of 1546 patients. Blood. (2013) 122:3251–62. doi: 10.1182/blood-2013-04-498964
111. Rutberg BS, Koliopoulos K, Smoller B, Dehaye J, Litvak I, Loeb J, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. (2012) 366:2455–65. doi: 10.1056/NEJMoa1200694
112. Ulrickil DS, Ison G, Rudek MA, Noy A, Schwartz K, Bruinooge S, et al. Modernizing clinical trial eligibility criteria: recommendations of the American society of clinical oncology-friends of cancer research HIV working group. J Clin Oncol. (2017) 35:7374–80. doi: 10.1200/JCO.2017.73.7338
113. Sandoval-Sus JD, Mogollon-Duffy F, Patel A, Viewedwar N, Laber DA, Kim R, et al. Nivolumab as salvage treatment in a patient with HIV-related relapsed/refractory Hodgkin lymphoma and liver failure with encephalopathy. J Immunother Cancer. (2017) 5:49. doi: 10.1186/s40425-017-0252-3
147. Hutter G, Ganepola S. Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells. Sci World J. (2011) 11:1068–76. doi: 10.1100/tsw.2011.102

148. Salgado M, Kwon M, Gálvez C, Badiola J, Nijhuis M, Bandera A, et al. Mechanisms that contribute to a profound reduction of the HIV-1 reservoir after allogeneic stem cell transplant. Ann Intern Med. (2018) 169:674–83. doi: 10.7326/M18-0759

149. Henrich TJ, Hanhauser E, Marty FM, Sirignano MN, Keating S, Lee TH, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med. (2014) 161:319–27. doi: 10.7326/M14-1027

150. Macpherson JL, Boyd MP, Arndt AJ, Todd AV, Fanning GC, Ely JA, et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J Gene Med. (2005) 7:552–64. doi: 10.1002/jgm.705

151. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. (2009) 15:285–92. doi: 10.1038/nm.1932

152. Burnett JC, Zaia JA, Rossi JJ. Creating genetic resistance to HIV. Curr Opin Immunol. (2012) 24:625–32. doi: 10.1016/j.coi.2012.08.013

153. Durand CM, Blankson JN, Siliciano RF. Developing strategies for HIV-1 eradication. Trends Immunol. (2012) 33:554–62. doi: 10.1016/j.it.2012.07.001

154. Persad GC, Little RF, Grady C. Including persons with HIV infection in cancer clinical trials. J Clin Oncol. (2008) 26:1027–32. doi: 10.1200/JCO.2007.14.5532

Conflict of Interest Statement: TU reports research support for investigator initiated research from Merck, Celgene, and Roche outside the submitted work. In addition TU has a patent 10,001,483 B2 issued.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Puronen, Ford and Uldrick. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.