Anti-apoptosis mechanism of triptolide based on network pharmacology in focal segmental glomerulosclerosis rats

Running title: Triptolide inhibited apoptosis in FSGS rats

Yayu Li¹*, Xue Jiang¹, Litao Song², Mengdie Yang³, Jing Pan³

¹Department of Nephrology, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, No. 453, Tiyuchang Road, Hangzhou City, Zhejiang Province, 310007, P. R. China.

²Department of Nephrology, Hangzhou Dingqiao Hospital, Dingqiao branch of Hangzhou Hospital of Traditional Chinese medicine, No. 453, Tiyuchang Road, Hangzhou City, Zhejiang Province, 310007, P. R. China.

³Department of Nephrology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, No. 548, Binwen Road, Hangzhou City, Zhejiang Province, 310000, P. R. China.

*Correspondence should be addressed to Yayu Li, Department of Nephrology, Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, No. 453, Tiyuchang Road, Hangzhou City, Zhejiang Province, 310007, P. R. China.

Tel. and Fax number: 0571-85827888

Email: Liyayu8819@163.com

Abstract

Triptolide (TPL), the active component of Tripterygium wilfordii, exhibits anti-cancer and antioxidant functions. We aimed to explore the anti-apoptosis mechanism of TPL based on network pharmacology and in vivo and in vitro research validation using a rat model of focal segmental glomerulosclerosis (FSGS). The chemical structures and pharmacological activities of the compounds reported in T. wilfordii were determined and used to perform the network pharmacology analysis. The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was then used to identify the network targets for 16 compounds from Tripterygium wilfordii. Our
results showed that 47 overlapping genes obtained from the GeneCards and OMIM databases were involved in the occurrence and development of FSGS and used to construct the protein-protein interaction (PPI) network using the STRING database. Hub genes were identified via the MCODE plug-in of the Cytoscape software. *IL4* was the target gene of TPL in FSGS and was mainly enriched in the cell apoptosis term and p53 signaling pathway, according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. TPL inhibited FSGS-induced cell apoptosis in rats and regulated IL4, nephrin, podocin, and p53 protein levels via using CCK8, TUNEL, and western blot assays. The effects of IL4 overexpression, including inhibition of cell viability and promotion of apoptosis, were reversed by TPL. TPL treatment increased the expression of nephrin and podocin and decreased p53 expression in rat podocytes. In conclusion, TPL inhibited podocyte apoptosis by targeting IL4 to alleviate kidney injury in FSGS rats.

Keywords: triptolide; network pharmacology; IL4; apoptosis; FSGS.

Introduction

Focal segmental glomerulosclerosis (FSGS) is a clinical pathological syndrome, and its typical pathological feature is sclerosing lesions in the focal glomeruli and in the glomerular segment. The clinical manifestations of FSGS patients are massive proteinuria, hematuria, hypertension, and progressive decrease in renal function. The condition of 3.6% of patients with end-stage renal disease developed from FSGS [1, 2]. Currently, the main clinical therapies for FSGS are immunologic drugs, glucocorticoids, and blockers of the renin angiotensin system; however, their therapeutic effects are not satisfactory. [3]. TPL is the most active and effective diterpene lactone epoxide compound isolated from Tripterygium. [4]. TPL has anti-inflammatory, anti-tumor, and immunologic effects on many diseases [4]. TPL inhibits the secretion of many cytokines, adhesion molecules, and chemokines and affects the functions of various cells, including dendritic cells and renal tubular epithelial cells [5, 6]. TPL has been reported to alleviate the progression of glomerulosclerosis and the excretion rate of urinary albumin to inhibit the progression of diabetic neuropathy [6]. However, the effects and mechanism of TPL in FSGS are still unclear. We explored the mechanism of FSGS-mediated podocyte pathogenesis.
based on the FSGS rat model. This study has great significance for the diagnosis, prevention, and treatment of FSGS.

In the past, research on Chinese herbal extracts focused on a particular aspect and on finding the biological characteristics explaining the pharmacological effect with respect to this aspect [7]; however, this approach is usually one-sided. It is important to explore the relation between the acquired proof and the research results. With the development of bioinformatics and network pharmacology, proposal of a theory and proving this theory through experiments has become the main method to explore the mechanism of Chinese herb compounds [8].

Network pharmacology is based on high-throughput omics data analysis, virtual computer computing and network database retrieval, and it combines systems biology with multidirectional pharmacology [9]. The mechanism of drug action was researched via the construction and analysis of biological networks. The systematic and holistic nature of network pharmacology is consistent with the characteristics of Chinese herbs, which exhibit multi-components, multi-targets, and systematic regulation. It has been widely used to explore the pharmacological basis of Chinese medicine and the drug mechanism and to interpret drug compatibility [10, 11]. Network pharmacology has been recognized by many Chinese medicine researchers [12]. The multi-component and multi-target network research mode breaks the traditional research mode of a single ingredient and a single target, providing a new method for comprehensive analysis of the mechanism of the compounds [13]. In the early stage, a total of 47 target genes and the corresponding 16 active constituents of Tripterygium were used to construct the ingredient-target network. This study mainly explores the mechanism of TPL in FSGS through bioinformatics and functional experiments.

Materials and Methods

Construction of the Potential Compound Database for Tripterygium

Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (http://lsp.nwu.edu.cn/tcmsp.php, TCMSP), each candidate's drug ability was analyzed according to its oral bioavailability (OB) and drug-likeness (DL) indices recommended by the TCMSP. OB refers to the degree and rate of drug
absorption into the circulatory system, which is an important indicator for objectively
evaluating the intrinsic quality of drugs. The higher the OB of the compound, the
more likely it is to be developed for clinical application. DL is the sum of the
pharmacokinetic properties and safety, which arises from the interactions among the
physicochemical properties and structural factors, including solubility, permeability,
and stability. It can be used to optimize compounds, analyze the results of drug
activity, predict in vivo pharmacokinetics, direct structure modifications, etc. As the
TCMSP recommends, molecules with OB≥30% and DL≥0.18 were considered to
exhibit relatively better pharmacological properties and were screened out as
candidate compounds for further analysis.

Construction of the Disease-Target-Compound Network

To comprehensively understand the molecular mechanisms, disease-compound-target
networks were constructed using the Cytoscape visualization software 3.7.1. All
target genes related to FSGC were obtained from the GeneCards database
(https://www.genecards.org/). All the candidate compounds of Tripterygium were
retrieved from the TCMSP to obtain the associated targets. Next, disease, compounds,
and targets were inputted into the software, and a disease-compound-target interaction
network was constructed. In the process of constructing the network, the layout
algorithm (attribute circle layout) was applied. We can set the geometric position of
every node and visually display the network topology using color, graphics, and
symbols, making reasonable arrangements for every node and creating a clear visual
effect. Degree and betweenness centrality are two important parameters of the
topology structure, which were used to evaluate the essentiality of each target and
compound.

PPI network construction and module analysis

Search Tool for the Retrieval of Interacting Genes (STRING, https://string-db.org) is
an online tool and used to construct the PPI network with confidence network edges
and a medium confidence of 0.400 as the product criteria. Cytoscape 7.1.0 was used
to perform the visualization of PPI network. The Molecular Complex Detection
(MCODE) plug-in was used to screen the significant modules in the PPI network with
a degree cut-off = 2, node score cut-off = 0.2, k-core = 2, and maximum depth = 100.
The corresponding proteins in the central nodes and highly degree were potential core
proteins encoded by key candidate genes that have important physiological regulatory functions.

GO terms and KEGG pathway enrichment analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) database was used to perform GO enrichment analysis and KEGG pathway enrichment analysis. The GO terms were classified into three categories: Biological process (BP); cellular component (CC); and molecular function (MF). P<0.01 was considered to indicate a statistically significant difference.

Animals

A total of 40 Sprague Dawley (SD) rats (male, weighing 160-180 g) were provided by Yison Bio co.LTD (Shanghai, China). Animals were housed individually in polycarbonate cages with wood chip bedding and were maintained in an air-conditioned animal room (temperature: 24 ℃, relative humidity: 55±5%) on a 12 h light/dark cycle. Each animal experiment was carried out following the local Care for Laboratory Animals guidelines formulated by the Animal Experimental Center. The Ethics Committee had approved the studies using laboratory animals at the Guangxing Affiliated Hospital of Zhejiang Chinese Medical University.

FSGS model Establishment

All rats were randomly divided into a sham operation group (Sham), model group (FSGS), a group administered 80 mg/(kg·d) of Tripterygium by gavage (TPL(80)+FSGS), and a group administered 160 mg/(kg·d) of Tripterygium by gavage (TPL(160)+FSGS) (n=10 rats/group). One day before the operation, the TPL (80 or 160)+FSGS groups were administered TPL (Purifa Technology Development Co. Ltd., Chengdu, Sichuan, China) 80 or 160 mg/(kg d) by gavage; the Sham and FSGS groups were given isovolumic normal saline till the end of the experiment. The animals were intraperitoneally anesthetized with pentobarbital sodium (60 mg/kg body weight) and then placed on a homeothermic pad to maintain a core body temperature of 37 ℃ to establish the FSGS model. The rats were first subjected to unilateral nephrectomy (left side) on day 1 and then injected in the caudal vein with adriamycin 5 mg/kg (on day 7) and adriamycin 3 mg/kg (on day 28) dissolved in 0.9% saline at a dilution of 2 mg/ml. Meanwhile, the kidneys of the control rats were exposed without dissecting the kidney tissue, followed by layer-by-layer suturing.
These rats were then injected with saline on days 7 and 28 through the tail vein after the sham operation. Eight weeks post-surgery, blood samples were obtained from the tail veins, and the animals were euthanized. Following adequate anesthesia with pentobarbital sodium (180 mg/kg body weight), the organs were removed, frozen, or fixed in 4% paraformaldehyde. The serum and whole kidneys were harvested for biochemical, histological, and molecular analyses. The urinary protein levels of the rats were quantified before the end of the experiment. Animals with >100 mg/24 h urinary protein indicated successful establishment of the model, and they were included in subsequent experiments.

Histological analyses

The kidney tissues were fixed with 4% paraformaldehyde and embedded in paraffin. For histological analysis of lesions, 3 μm thick tissue sections were deparaffinized and stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS). To calculate the degree of focal glomerular sclerosis, 40 to 60 glomeruli from each stained specimen were examined. The degree of sclerosis in each glomerulus was subjectively graded on a scale of 0 to 4 as follows: Grade 0, no change; Grade 1, sclerotic area less than or equal to 25% of the glomerulus or the presence of distinct adhesion between the capillary tuft and Bowman’s capsule; Grade 2, sclerosis of 25 to 50% of the total glomerular area; Grade 3, sclerosis of 50 to 75% of the total glomerular area; and Grade 4, sclerosis of more than 75% of the glomerulus. The glomerular sclerosis index (GSI) was calculated using the following formula:

\[
GSI = \frac{(1 \times N1) + (2 \times N2) + (3 \times N3) + (4 \times N4)}{(N0+N1+N2+N3+N4)},
\]

where N is the number of glomeruli for each grade of sclerosis.

Terminal dUTP nick-end labeling (TUNEL) staining

An apoptosis detection kit (Promega, Madison, WI) was used to detect apoptosis according to a previously described method [14]. In brief, renal sections were subjected to TUNEL staining in accordance with the manufacturer’s instructions. Later, IF microscopy was used to analyze the samples using a Zeiss Axiovert 200 M fluorescent microscope equipped with an AxioCamMR3 camera. Six fields (magnification 400×) were randomly selected from every section from 10 different rats, and cells with positive TUNEL staining were analyzed.
Glucose treatment and cell culture

Rat glomerular podocytes were provided by Yubo Bio-Technique Co. Ltd (Shanghai, China), which were then cultivated according to a previously described method. Rat podocytes were cultivated in RPMI 1640 (Sigma-Aldrich, U.S.A.) containing streptomycin (100 μg/ml), penicillin (100 U/ml) (Solarbio, Beijing, China), and 10% fetal bovine serum (FBS, Gibco, NY, Grand Island). Subsequently, the cells were cultivated in a 5% CO₂ incubator (Heraeus, Japan) at 33 °C with interferon-γ (IFN-γ, 40 units/ml, Sigma, St Louis, MO, U.S.A.). Later, to induce differentiation, the podocytes were maintained at 37 °C for 2 weeks in the absence of interferon.

Podocytes (3 × 10⁵ cells/ml) were plated into 6-well plates in the presence of complete medium. After 24 h of standing, the podocytes were subjected to 24 and 48 h of TPL treatment at different concentrations (0, 5, 10, 20, 40, and 80 μmol/ml) before they were collected for subsequent analysis.

Transient transfection of plasmid DNA or siRNA

The previously described human IL4 plasmid DNA at full length [15] was utilized to increase IL4 expression in cells via using transient transfection. pcDNA3.1-Myc/His EV plasmid (Life technologies) and On-Target Plus scramble RNA (Dharmacon)
were used as transient transfection controls. Sequences for IL4 overexpression was

```
ACAU UACU GCCUGAAGGGUGAAUUAACGC.
```

Counting Kit-8 (CCK-8) assay

Cells were grown into the 96-well plates at the density of 1×10^5 cells/well, followed by 24 and 48 h of culture. Afterwards, cell viability was detected via using the CCK-8 kit (Dojindo Molecular Technologies, Gaithersburg, MD, U.S.A.). Then, cells in each group were cultivated for additional 24 and 48 h, respectively. Next, the CCK8 solution (10 μl) was added into cell at 37°C for 4 h. The absorbance was determined at 450 nm for obtaining the cell growth curve by the iMark microplate absorbance reader (Bio-Rad Laboratories, Inc., Hercules, CA, U.S.A.). Each experiment was carried out in triplicate.

Apoptosis detected by flow cytometry using Annexin V-FITC/PI staining

Cell apoptosis was examined using the Annexin V-FITC/PI kit. Briefly, the cells were subjected to 0.25% trypsin digestion (Thermo Fisher Scientific, Waltham, MA, U.S.A.), followed by two washes with cold PBS; resuspension with 5 μl of PI, 5 μl of annexin V-FITC, and 500 μl of binding buffer; and incubation under 15 min of ambient temperature in the dark. Typically, Annexin V-FITC can bind to phosphatidylserine located on the outer apoptotic cell membrane, whereas PI can penetrate and stain cells with impaired membranes before binding to and labeling DNA. Data were collected using a flow cytometer (BD FACSCalibur; BD Biosciences, Franklin Lakes, NJ, U.S.A.) and analyzed by FlowJo. Clumped cells were excluded from the FSC-H/FSC-A dot plot for selecting the single cells. Cells in the annexin V-FITC-/PI+, annexin V-FITC+/PI+, and annexin V-FITC+/PI− quadrants were regarded as apoptotic cells.

Western blotting

Cells were subjected to lysis within the RIPA buffer (Beyotime, Shanghai, China) to collect the lysates in tubes, followed by 20 min of centrifugation at 4 °C at 12,000 g. Later, all supernatants were extracted, and protein content was measured by the BCA Protein Quantitative Kit (Beyotime, Shanghai, China). Then, Western blotting had been carried out in accordance with the instruction. Afterwards, 20 μg protein was subjected to 10% SDS-PAGE for separation, followed by transfer onto the PVDF...
membranes (Millipore, Billerica, MA, U.S.A.). Later, the membranes were blocked using 5% skimmed milk for 1 h, followed by overnight incubation with anti-IL-4 (dilution 1:8000, Abcam, Cambridge, MA, U.S.A., ab69811), nephrin (Abcam, ab227806; diluted at 1:1,200), podocin (Abcam, ab50339; diluted at 1:1,000), phospho-(p)-Stat6 (BioVision, U.S.A., 3476-100; diluted at 1:1,000), and GAPDH (Abcam, Cambridge, MA, U.S.A., ab181602; dilution 1:1,000) rabbit anti-human antibodies, at 4 °C, separately. Afterwards, cells were subjected to 1 h incubation with HRP-labeled secondary antibody (goat anti-rabbit antibody, Abcam, Cambridge, MA, U.S.A., ab116282; dilution 1:2,000), prior to ECL detection. The Immobilon Western Chemiluminescent kit (WBKLS0100; Millipore, U.S.A.) was used to reveal the reactive bands using Roche Cobas e601 automated chemiluminescence image analysis system (Roche, U.S.A.).

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay

The GAPDH and IL-4 mRNA expression was detected through RT-qPCR. Total cellular RNA was isolated by TRIzol (Invitrogen, Carlsbad, CA, U.S.A.) in accordance with manufacturer protocols. Afterwards, cDNA was synthesized by reverse transcription of RNA according to the reactions below: RNase-free dH2O, total RNA (500 ng), and 5×PrimeScript RT Master Mix (2 μl) were added until the final volume became 10 μl. The Prism 7500 (ABI, Foster City, CA, U.S.A.) was employed for real-time PCR following the standard protocol of SYBR green assay.

Primers used in this study were shown below: IL-4-F: 5'-GATCACAAAGTACTGGTCCTGG-3'. Notably, GAPDH served as a normal control, with the primers of 5'-CACCTGTTGCTGTAGCCAAA-3' (reverse) and 5'-TGACTTCAACACGACACCCA-3' (forward). Later, qPCR was carried out in triplicate using 7500 Real-Time PCR ABI system (ABI, U.S.A.) at a format of the 96-well plate. The reaction volume of 20 μl was prepared for PCR, which included forward primer (0.8 μl, 10 μM), RNase-free dH2O (7.4 μl), reverse primer (0.8 μl, 10 μM), 2×FastStart Universal SYBR Green Master (10 μl, ROX; Invitrogen, Guangzhou, China), and cDNA (1 μl). Besides, the PCR conditions were as follows, 10 min at 95 °C, followed by 15 sec at 95 °C for 40 cycles, and 1 min at 60 °C. The sequence detection software (1.6.3, Applied Biosystems, ABI, U.S.A.) was used for data analysis. Relative GAPDH or IL-4 mRNA level was measured and standardized according to 2-ΔΔCt method based on GAPDH.
Statistical analyses

SPSS 15.0 (http://spss.en.softonic.com/) was employed for all statistical analyses. Differences between two groups were analyzed through independent sample t-test, whereas those among several groups were examined by one-way analysis of variance (ANOVA). Rate was compared by chi-square test. The statistically significant level was set as $P<0.01$ or $P<0.05$.

Results

Identification of Active Compounds in Tripterygium wilfordii

Using TCMSP databases (http://lsp.nwsuaf.edu.cn/tcmsp.php), 144 compounds of Tripterygium were retrieved. According to the criteria of $DL \geq 0.18$ and $OB \geq 30\%$, a total of 51 chemical ingredients were selected (Table 1). TPL was verified as an active ingredient of $T. wilfordii$.

Construction of the Disease-Target-Compound Network and PPI Network

The TCMSP and GeneCards databases were used to predict the potential targets for each compound in FSGS. As a result, 123 target genes from the GeneCards database were verified to be involved in FSGS (Table 2), and 695 target genes of Tripterygium from the TCMSP database were verified (Table 3). After importing data into Cytoscape, a disease-compound-target network was constructed (Figure 1A). In addition, 47 overlapping target genes from two databases (TCMSP and GeneCards) were used to construct the PPI network. $IL4$ obtained from the most significant module of the PPI network was verified as a key by using the MCODE plug-in of Cytoscape software, and it was found to be involved in FSGS (Figure 1B, 1C, and 1D).

Enrichment Analysis of GO and KEGG

Forty-seven overlapping targets were screened for further investigation using the DAVID (http://david.ncifcrf.gov/) online tool. GO annotation results showed that the top 30 biological processes (BP) included cell apoptosis, proliferation of cells, positive signal transduction regulation, extracellular stimulus response, and cell death (Figure 2A). The results of KEGG enrichment analysis showed that the 47 overlapping targets were markedly enriched within 32 pathways, including the p53
signal transduction pathway, apoptosis, and the JAK-STAT signal transduction pathway (Figure 2B). IL4 was mainly enriched in BP terms, including programmed cell death regulation, endogenous stimulus response, apoptosis regulation, positive cell proliferation regulation, and positive nitrogen compound metabolic process regulation. Based on the KEGG enrichment results, IL4 participated in the T-cell receptor signal transduction pathway, allograft rejection, intestinal IgA production immunologic network, the JAK-STAT signal transduction pathway, autoimmune thyroid disease, the Fc epsilon RI signal transduction pathway, and the interaction between cytokines and cytokine receptors.

TPL alleviated kidney injury by inhibiting cell apoptosis in FSGS rats, and IL4 was upregulated in kidney tissues of FSGS rats

FSGS rat models were established using external jugular vein cannulation; subsequently, the levels of BUN, 24-h urine protein, Scr, ALB, and TC were determined. Our results showed that the BUN, 24-h urine protein, TC, and Scr levels in FSGS animals were evidently decreased, while the ALB levels were significantly increased after the FSGS rats were administered TPL gavage (at 80 or 160 μg/(kg·d)) (Figure 3A-3E). HE staining results showed that TPL significantly decreased the glomerulosclerosis index (GSI) in FSGS rats (Figure 3F and 3G). The apoptosis level was determined by TUNEL assay in the kidney tissues of FSGS rats. We found that FSGS promoted apoptosis in kidney tissues. However, TPL treatment suppressed the apoptosis of cells within the renal tissues of FSGS rats (Figure 4A). Therefore, we further detected the protein levels of IL4, nephrin, and podocin and the phosphorylation level of Stat6 using western blotting. According to our results, TPL treatment decreased IL4 protein levels and stat6 activation, and increased the protein levels of nephrin and podocin in FSGS rats (Figure 4C-4G).

TPL reversed the function of IL4 overexpression, promoting cell apoptosis

According to the results, 0-80 μmol/ml TPL had no influence on cell viability and apoptosis (Figure 5A-5C). Western blotting results showed that 0-80 μmol/ml TPL minimally affected IL4, nephrin, and podocin expression and stat6 activation (Figure 5D). However, IL4 overexpression inhibited the viability and promoted apoptosis of podocytes. TPL inhibited IL4 overexpression-mediated cell apoptosis (Figure 6A-6C).
Furthermore, TPL decreased IL4 protein levels, increased nephrin and podocin protein levels, and inhibited the phosphorylation of Stat6 in podocytes (Figure 6D).

Discussion

The occurrence of FSGS is related to a variety of mechanisms. Podocyte injury is the central link of FSGS [16, 17]. Glomerular sclerosis is the final pathological change in FSGS caused by the excessive accumulation of the glomerular extracellular matrix (ECM). Podocytes are an important part of the glomerulus and are the final barriers that block the filtration of plasma macromolecules. Apoptosis, fusion, and shedding of podocytes induced the occurrence and development of FSGS. TPL has been reported to have a protective effect on kidney damage [18]. Therefore, we constructed the Disease-Target-Compound network in the current study through the TCM network pharmacology to confirm the relationship between TPL and FSGS. It was further confirmed by constructing a PPT network that IL4 was a target gene of TPL and FSGS. According to KEGG and GO enrichment analyses, IL4 was closely related to apoptosis and was enriched in the JAK-STAT signal pathway. Thus, we proposed two hypotheses: 1. TPL can protect against FSGS kidney injury by inhibiting apoptosis; 2. The protective effect of TPL on FSGS-induced kidney damage may be achieved by targeting IL4.

IL-4 is an anti-inflammatory factor that belongs to the interleukin family [19]. It has been reported that IL4 can inhibit apoptosis of liver cancer cells, and blockage of the IL4/IL4R/STAT6 axis can promote apoptosis of Hodgkin lymphoma cells [20]. However, IL4 may also be involved in the disease as a pro-inflammatory factor [21]. The expression level of IL4 is high in kidney tissue with acute kidney injury [22]. Therefore, the effect of IL4 on FSGS should be more extensively investigated. IL4 activates stat6 by acting on the JAK-STAT signal pathway. Our results demonstrated that IL4 expression and the phosphorylation level of stat6 were upregulated in kidney tissues of FSGS rats. This suggests that the IL/STAT6 signaling pathway is aberrantly activated in FSGS. TPL reduced apoptosis in the kidney tissue of FSGS rats while significantly inhibiting the expression of IL4 and the activation of stat6.

Nephrin and podocin are podocyte proteins that have been widely used to identify kidney injury [23, 24]. It has been reported that podocin and nephrin levels were downregulated in a kidney injury model to promote podocyte apoptosis, thereby
aggravating kidney damage. Podocin and nephrin expression levels were remarkably
downregulated in the kidney tissue of FSGS rats. Similarly, TPL could upgrade the
podocin and nephrin expression levels. This indicated that TPL attenuated glomerular
sclerosis in FSGS rats by reducing podocyte apoptosis. To further investigate the
mechanism of action of TPL on renal protection in FSGS rats, we carried out a study
at the cellular level.

First, we need to investigate if 0-80 µmol/ml of TPL is toxic to podocyte. The
functional experiment proved that TPL at low concentrations did not affect cell
activity; cell apoptosis; the expression of IL4, nephrin, and podocin; and the
activation of stat6, which excluded the threat of TPL for cells. The results showed that
a high expression of IL4 inhibited cell viability, promoted apoptosis, increased
phosphorylation of stat3, and inhibited the expression of nephrin and podocin. This
suggested that a high expression of IL4 promoted apoptosis and aggravated
glomerular sclerosis. TPL can reverse IL4-mediated podocyte apoptosis and reduce
glomerular sclerosis.

In conclusion, upregulation of IL4 in kidney tissue of FSGS rats activated stat6 and
promoted podocyte apoptosis to aggravate glomerular sclerosis. TPL can alleviate
glomerular sclerosis in FSGS rats by inhibiting the activation of the IL4/stat6
signaling pathway and podocyte apoptosis. This finding can offer a theoretical
foundation for the application of TPL in treating FSGS.

Acknowledgements

Not applicable.

Funding

The research was funded by National Natural Science Foundation of China (No.
81673913).

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the
corresponding author on reasonable request.

Ethics approval and consent to participate
Authors' contributions

Yayu Li and Xue Jiang wrote the main manuscript and analyzed the data. Yayu Li, Xue Jiang and Litao Song performed the experiments. Yayu Li, Mengdie Yang and Jing Pan designed the study. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

1. Zhuo, L., Huang, L., Yang, Z., Li, G. and Wang, L. (2019) A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC medical genetics 20, 111.
 https://doi.org/10.1186/s12881-019-0845-4.

2. Snoek, R., Nguyen, T.Q., van der Zwaag, B., van Zuilen, A.D., Kruis, H.M.E., van Gils-Verrij, L.A. et al. (2019) Importance of Genetic Diagnostics in Adult-Onset Focal Segmental Glomerulosclerosis. Nephron, 1-8.
 https://doi.org/10.1159/000499937.

3. Louis, M., Cottenet, J., Salmon-Rousseau, A., Blot, M., Bonnot, P.H., Rebibou, J.M. et al. (2019) Prevalence and incidence of kidney diseases leading to hospital admission in people living with HIV in France: an observational nationwide study. BMJ open 9, e029211.
 https://doi.org/10.1136/bmjopen-2019-029211.

4. Feng, Y., Zheng, C., Zhang, Y., Xing, C., Cai, W., Li, R. et al. (2019) Triptolide Inhibits Preformed Fibril-Induced Microglial Activation by Targeting the MicroRNA155-5p/SHIP1 Pathway. Oxidative medicine and cellular longevity 2019, 6527638. https://doi.org/10.1155/2019/6527638.

5. Zhang, G., Chen, J., Liu, Y., Yang, R., Guo, H. and Sun, Z. (2013) Triptolide-conditioned dendritic cells induce allospecific T-cell regulation and prolong renal graft survival. Journal of investigative surgery : the official journal of the Academy of Surgical Research 26, 191-199.
 https://doi.org/10.3109/08941939.2012.737408.

6. Xue, M., Cheng, Y., Han, F., Chang, Y., Yang, Y., Li, X. et al. (2018) Triptolide Attenuates Renal Tubular Epithelial-mesenchymal Transition Via the MiR-188-5p-mediated PI3K/AKT Pathway in Diabetic Kidney Disease. International journal of biological sciences 14, 1545-1557.
 https://doi.org/10.7150/ijbs.24032.

7. Deng, B., Deng, C. and Cheng, Z. (2017) Chinese Herbal Extractions for Relieving Radiation Induced Lung Injury: A Systematic Review and Meta-Analysis. Evidence-based complementary and alternative medicine : eCAM 2017, 2141645. https://doi.org/10.1155/2017/2141645.

8. Wang, Y.Y., Bai, H., Zhang, R.Z., Yan, H., Ning, K. and Zhao, X.M. (2017) Predicting new indications of compounds with a network pharmacology
approach: Liuwei Dihuang Wan as a case study. *Oncotarget* **8**, 93957-93968. https://doi.org/10.18632/oncotarget.21398.

Chen, G., Huang, C., Liu, Y., Chen, T., Huang, R., Liang, M. et al. (2018) A Network Pharmacology Approach to Uncover the Potential Mechanism of Yincensini Decoction. *Evidence-based complementary and alternative medicine : eCAM* **2018**, 2178610. https://doi.org/10.1155/2018/2178610.

Yin, S.H., Xu, P., Wang, B., Lu, Y., Wu, Q.Y., Zhou, M.L. et al. (2019) Duration of dual antiplatelet therapy after percutaneous coronary intervention with drug-eluting stent: systematic review and network meta-analysis. *BMJ (Clinical research ed.)* **365**, l2222. https://doi.org/10.1136/bmj.l2222.

Zhang, W.N., Yang, L., He, S.S., Qin, X.M. and Li, A.P. (2019) Metabolomics coupled with integrative pharmacology reveal the protective effect of FangjiHuangqi Decoction against adriamycin-induced rat nephropathy model. *Journal of pharmaceutical and biomedical analysis* **174**, 525-533. https://doi.org/10.1016/j.jpba.2019.05.023.

Li, S. and Zhang, B. (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. *Chinese journal of natural medicines* **11**, 110-120. https://doi.org/10.1016/s1875-5364(13)60037-0.

Yuan, H., Ma, Q., Cui, H., Liu, G., Zhao, X., Li, W. et al. (2017) How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? *Molecules (Basel, Switzerland)* **22**. https://doi.org/10.3390/molecules22071135.

Zhu, J.B., Xu, S., Li, J., Song, J., Luo, B., Song, Y.P. et al. (2018) Farnesoid X receptor agonist obeticholic acid inhibits renal inflammation and oxidative stress during lipopolysaccharide-induced acute kidney injury. *European journal of pharmacology* **838**, 60-68. https://doi.org/10.1016/j.ejphar.2018.09.009.

Cheung, B.B., Bell, J., Raif, A., Bohlken, A., Yan, J., Roediger, B. et al. (2006) The estrogen-responsive B box protein is a novel regulator of the retinoid signal. *The Journal of biological chemistry* **281**, 18246-18256. https://doi.org/10.1074/jbc.M600879200.

da Silva, C.A., Araujo, L.S., Dos Reis Monteiro, M.L.G., de Morais Pereira, L.H., da Silva, M.V., Castellano, L.R.C. et al. (2019) Evaluation of the Diagnostic Potential of uPAR as a Biomarker in Renal Biopsies of Patients with FSGS. *Disease markers* **2019**, 1070495. https://doi.org/10.1155/2019/1070495.

Niculovic, K.M., Blume, L., Wedekind, H., Kats, E., Albers, I., Groos, S. et al. (2019) Podocyte-Specific Sialylation-Deficient Mice Serve as a Model for Human FSGS. *Journal of the American Society of Nephrology : JASN* **30**, 1021-1035. https://doi.org/10.1681/asn.2018090951.

Lan, H., Chen, W., He, G. and Yang, S. (2015) miR-140-5p inhibits ovarian cancer growth partially by repression of PDGFRA. *Biomed Pharmacother* **75**, 117-122. https://doi.org/10.1016/j.biopha.2015.07.035.

Klouche, K., Amigues, L., Morena, M., Brunot, V., Dupuy, A.M., Jaussent, A. et al. (2017) On-line hemodiafiltration did not induce an overproduction of oxidative stress and inflammatory cytokines in intensive care unit-acute kidney injury. *BMC nephrology* **18**, 371. https://doi.org/10.1186/s12882-017-0785-1.
Mainou-Fowler, T., Proctor, S.J. and Taylor, P.R. (2004) Interleukin 4 production by peripheral blood lymphocytes in patients with classical Hodgkin lymphoma. *Leukemia research* **28**, 159-166.

Motedayyen, H., Fathi, F., Fasahi-Ramandi, M. and Ali Taheri, R. (2018) The effect of lipopolysaccharide on anti-inflammatory and pro-inflammatory cytokines production of human amniotic epithelial cells. *Reproductive biology* **18**, 404-409. https://doi.org/10.1016/j.repbio.2018.09.005.

Lu, X.M., Ma, L., Jin, Y.N. and Yu, Y.Q. (2015) Lumican overexpression exacerbates lipopolysaccharide-induced renal injury in mice. *Molecular medicine reports* **12**, 4089-4094. https://doi.org/10.3892/mmr.2015.3940.

Zhan, H., Jin, J., Liang, S., Zhao, L., Gong, J. and He, Q. (2019) Tripterygium glycoside protects diabetic kidney disease mouse serum-induced podocyte injury by upregulating autophagy and downregulating beta-arrestin-1. *Histology and histopathology*, 18097. https://doi.org/10.14670/hh-18-097.

Yu, S.M., Nissaisorakarn, P., Husain, I. and Jim, B. (2018) Proteinuric Kidney Diseases: A Podocyte’s Slit Diaphragm and Cytoskeleton Approach. *Frontiers in medicine* **5**, 221. https://doi.org/10.3389/fmed.2018.00221.

Figure legends

Figure 1. Constructing the Network of Disease-Compound-Target and PPI network. (A) The triptergium-target network of FSGS; (B) 47 overlapped target genes were from two databases (TCMSP and GeneCards); (C) 47 overlapped target genes were used to constructed PPI network and hub genes in PPI network; (D) Module and key gene were analysis and screened by using the MCODE plug-in Cytoscape software.

Figure 2. Analysis of GO and KEGG Enrichment. (A) 47 overlapped genes were analysis by GO annotation, which showed that the top 30 biological processes (BP); (B) 47 overlapped genes was analysis by KEGG, which enriched in 32 pathways.

Figure 3. TPL alleviated kidney injure in FSGS rats. FSGS rat models were established by using external jugular vein cannulation, (A) 24 h urine protein (B) BUN (C)Scr (D) TC and (E) ALB levels were detected; (F) TPL could significantly decrease glomerulosclerosis index (GSI) of FSGS rats; (G) The pathomorphology of kidney in FSGS rats was showed by HE staining. Data are presented as the mean ± standard deviation. *P*<0.05 versus Sham group, *P*<0.05 versus FSGS group, and *P*<0.05 versus TPL(80)+FSGS group.

Figure 4. TPL reduced cell apoptosis in FSGS rats. FSGS rat models were established by using external jugular vein cannulation, (A and B) Apoptosis level was determined by TUNEL assay in kidney tissues of FSGS rats. (C) The protein levels of IL4, nephrin and podocin, and phosphorylation level of Stat6 by western blotting analysis.
(D-G) Histogram showed the statistical value. GAPDH was used as a load control.

Data are presented as the mean ± standard deviation. $P < 0.05$ versus Sham group, $P < 0.05$ versus FSGS group, and $P < 0.05$ versus TPL(80)+FSGS group.

Figure 5. TPL has no influence on the cell viability and apoptosis. (A) 0-80 μmol/ml of TPL little effected the viability of podocytes by CCK8 assay; (B and C) 0-80 μmol/ml of TPL little effected the apoptosis level of podocytes by flow cytometry assay; (D) The protein levels of IL4, nephrin and podocin, and phosphorylation level of Stat6 by western blotting analysis. GAPDH was used as a load control. Data are presented as the mean ± standard deviation. $P < 0.05$ versus Sham group, $P < 0.05$ versus FSGS group, and $P < 0.05$ versus TPL(80)+FSGS group.

Figure 6. TPL reversed the function of IL4 overexpression promoting cell apoptosis. (A) IL4 protein and mRNA levels were detected by western blot and RT-PCR assays; (B) The viability of podocytes by CCK8 assay in cell with IL4; (C) The apoptosis level of podocytes by flow cytometry assay in cell with IL4; (D) The protein levels of nephrin and podocin, and phosphorylation level of Stat6 by western blotting analysis. GAPDH was used as a load control. Data are presented as the mean ± standard deviation. $P < 0.05$ versus vector group, and $P < 0.05$ versus IL4 group.
Table 1 Information for 51 chemical ingredients of tripterygium

Mol ID	Molecule Name	OB (%)	DL
MOL000221	Mairin	55.38	0.78
MOL000296	hederagenin	36.91	0.75
MOL000358	beta-sitosterol	36.91	0.75
MOL000422	kaempferol	41.88	0.24
MOL000449	Stigmasterol	43.83	0.76
MOL002058	40957-99-1	57.2	0.62
MOL003182	(+)-Medioresinol di-O-beta-D-glucopyranoside	60.69	0.62
MOL003184	81827-74-9	44.8	0.53
MOL003185	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	48.84	0.38
MOL003187	triptolide	51.29	0.68
MOL003188	Tripchlorolide	78.72	0.72
MOL003189	WILFORLIDE A	35.66	0.72
MOL003192	Triptonide	67.66	0.7
MOL003196	Tryptophenolide	48.5	0.44
MOL003198	5 alpha-Benzoyl-4 alpha-hydroxy-1 beta,8 alpha-dinicotinoyl-dihydro-agarofuran	35.26	0.72
MOL003199	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	61.85	0.54
MOL003206	Canin	77.41	0.33
MOL003208	Celafurine	72.94	0.44
MOL003209	Celallocimnine	83.47	0.59
MOL003210	Celapanine	30.18	0.82
MOL003211	Celaxanthin	47.37	0.58
MOL003217	Isoxanthohumol	56.81	0.39
MOL003222	Salazinic acid	36.34	0.76
MOL003224	Tripdiotolide	56.4	0.67
MOL003225	Hypodiolide A	76.13	0.49
MOL003229	Triptinin B	34.73	0.32
MOL003231	Triptoditerpenic acid B	40.02	0.36
MOL003232	Triptofordin B1	39.55	0.84
MOL003233	Triptofordin B2	107.71	0.76
MOL003234	Triptofordin C2	30.16	0.76
MOL003235	Triptofordin D1	32	0.75
MOL003236	Triptofordin D2	30.38	0.69
MOL003238	Triptofordin F1	33.91	0.6
MOL003239	Triptofordin F2	33.6	0.67
MOL003241	Triptofordin F4	31.37	0.67
MOL003242	Triptofordinine A2	30.78	0.47
MOL003244	Triptonide	68.45	0.68
MOL003245	Triptonoditerpenic acid	42.56	0.39
MOL003248	Triptonoterpene	48.57	0.28
MOL003266	21-Hydroxy-30-norhopan-22-one	34.11	0.77
MOL003267	Wilformine	46.32	0.2
MOL003278	salaspermic acid	32.19	0.63
MOL003279	99694-86-7	75.23	0.66
MOL003280	TRIPTONOLIDE	49.51	0.49
------------	--------------	-------	------
MOL003283	(2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol	66.51	0.39
MOL004443	Zhebeiresinol	58.72	0.19
MOL005828	nobiletin	61.67	0.52
MOL007415	[(2S)-2-[[((2S)-2-(benzoylamino)-3-phenylpropanoylamino)-3-phenylpropyl] acetate	58.02	0.52
MOL007535	(5S,8S,9S,10R,13R,14S,17R)-17-[(1R,4R)-4-ethyl-1,5-dimethylhexyl]-10,13-dimethyl-2,4,5,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,6-dione	33.12	0.79
MOL009386	3,3’-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran	52.11	0.54
MOL011169	Peroxyergosterol	44.39	0.82
Gene Symbol	Description		
-------------	-------------		
INF2	Inverted Formin, FH2 And WH2 Domain Containing		
TRPC6	Transient Receptor Potential Cation Channel Subfamily C Member 6		
CD2AP	CD2 Associated Protein		
ACTN4	Actinin Alpha 4		
NPHS1	NPHS1, Nephrin		
NPHS2	NPHS2, Podocin		
PAX2	Paired Box 2		
WT1	Wilms Tumor 1		
CRB2	Crumbs 2, Cell Polarity Complex Component		
MYO1E	Myosin IE		
APOL1	Apolipoprotein L1		
ANLN	Anillin Actin Binding Protein		
PLCe1	Phospholipase C Epsilon 1		
PTPRO	Protein Tyrosine Phosphatase, Receptor Type O		
NUP107	Nucleoporin 107		
ARHGA24	Rho GTPase Activating Protein 24		
SMARCAL1	SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A Like 1		
COQ6	Coenzyme Q6, Monooxygenase		
LAMB2	Laminin Subunit Beta 2		
COL4A3	Collagen Type IV Alpha 3 Chain		
NUP93	Nucleoporin 93		
COQ8B	Coenzyme Q8B		
SYNPO	Synaptopodin		
TGFB1	Transforming Growth Factor Beta 1		
CLCN5	Chloride Voltage-Gated Channel 5		
MYH9	Myosin Heavy Chain 9		
LOC10798529	Uncharacterized LOC107985291		
COL4A4	Collagen Type IV Alpha 4 Chain		
SGPL1	Sphingosine-1-Phosphate Lyase 1		
NUP205	Nucleoporin 205		
PLAUR	Plasminogen Activator, Urokinase Receptor		
ACE	Angiotensin I Converting Enzyme		
COL4A5	Collagen Type IV Alpha 5 Chain		
CDKN1C	Cyclin Dependent Kinase Inhibitor 1C		
KIRREL2	Kirre Like Nephrin Family Adhesion Molecule 2		
CDKN1A	Cyclin Dependent Kinase Inhibitor 1A		
EMP2	Epithelial Membrane Protein 2		
CDKN1B	Cyclin Dependent Kinase Inhibitor 1B		
ILK	Integrin Linked Kinase		
CD80	CD80 Molecule		
SLC37A4	Solute Carrier Family 37 Member 4		
CTNNB1	Catenin Beta 1		
ITGA3	Integrin Subunit Alpha 3		
SCARB2	Scavenger Receptor Class B Member 2		
AGRN	Agrin		
ALG1 ALG1, Chitobiosylphosphodolichol Beta-Mannosyltransferase			
PLEKHH2 Pleckstrin Homology, MyTH4 And FERM Domain Containing H2			
MPV17 Mitochondrial Inner Membrane Protein MPV17			
ALB Albumin			
WDR73 WD Repeat Domain 73			
REN Renin			
NARS2 Asparaginyl-TRNA Synthetase 2, Mitochondrial			
SEC61A1 Sec61 Translocon Alpha 1 Subunit			
ZNF592 Zinc Finger Protein 592			
ITGB4 Integrin Subunit Beta 4			
IL1B Interleukin 1 Beta			
OSGEP O-Sialoglycoprotein Endopeptidase			
TP53RK TP53 Regulating Kinase			
TPRKB TP53RK Binding Protein			
LAGE3 L Antigen Family Member 3			
G6PC Glucose-6-Phosphatase Catalytic Subunit			
VPS33A VPS33A, CORVET/HOPS Core Subunit			
LPL Lipoprotein Lipase			
ICAM1 Intercellular Adhesion Molecule 1			
CDH17 Cadherin 17			
MAGI2 Membrane Associated Guanylate Kinase, WW And PDZ Domain Containing 2			
ARHGDIA Rho GDP Dissociation Inhibitor Alpha			
DNA11 Dynemin Axonemal Intermediate Chain 1			
ANKFY1 Ankyrin Repeat And FYVE Domain Containing 1			
BSND Barttin CLCNK Type Accessory Beta Subunit			
MAX MYC Associated Factor X			
FAH Fumarylacetoacetate Hydrolase			
VHL Von Hippel-Lindau Tumor Suppressor			
LYZ Lysozyme			
AFP Alpha Fetoprotein			
RET Ret Proto-Oncogene			
MDH2 Malate Dehydrogenase 2			
SDHB Succinate Dehydrogenase Complex Iron Sulfur Subunit B			
SDHA Succinate Dehydrogenase Complex Flavoprotein Subunit A			
MUC1 Mucin 1, Cell Surface Associated			
FH Fumarate Hydratase			
KIF1B Kinesin Family Member 1B			
SDHC Succinate Dehydrogenase Complex Subunit C			
SDHD Succinate Dehydrogenase Complex Subunit D			
COQ2 Coenzyme Q2, Polyprenyltransferase			
PLEC Plectin			
SDHAF2 Succinate Dehydrogenase Complex Assembly Factor 2			
TMEM127 Transmembrane Protein 127			
ELP1 Elongator Complex Protein 1			
ACHE Acetylcholinesterase (Cartwright Blood Group)			
TJP1 Tight Junction Protein 1			
KIRREL1 Kirre Like Nephrin Family Adhesion Molecule 1			
NEDE Nephropathy, Progressive, With Deafness			
Gene Symbol	Gene Name		
-------------	-----------------------------------		
PDGFA	Platelet Derived Growth Factor Subunit A		
CD40LG	CD40 Ligand		
ENTPD5	Ectonucleoside Triphosphate Diphosphohydrolase 5		
GAPVD1	GTPase Activating Protein And VPS9 Domains 1		
NUMBL	Numb Like, Endocytic Adaptor Protein		
KANK2	KN Motif And Ankyrin Repeat Domains 2		
CD79A	CD79a Molecule		
BRAF	B-Raf Proto-Oncogene, Serine/Threonine Kinase		
NDN	Necdin, MAGE Family Member		
AXDND1	Axonemal Dynein Light Chain Domain Containing 1		
PLCE1-AS1	PLCE1 Antisense RNA 1		
LMX1B	LIM Homeobox Transcription Factor 1 Beta		
WT1-AS	WT1 Antisense RNA		
PODXL	Podocalyxin Like		
INS	Insulin		
VIM	Vimentin		
NAGLU	N-Acetyl-Alpha-Glucosaminidase		
ACTB	Actin Beta		
NR5A1	Nuclear Receptor Subfamily 5 Group A Member 1		
LOC10536940	Uncharacterized LOC105369403		
3			
ITGB1	Integrin Subunit Beta 1		
UTRN	Utrophin		
ALG13	ALG13, UDP-N-Acetylglucosaminyltransferase Subunit		
CLDN1	Claudin 1		
CCN2	Cellular Communication Network Factor 2		
OCRL	OCRL, Inositol Polyphosphate-5-Phosphatase		
CMIP	C-Maf Inducing Protein		
ACTL7B	Actin Like 7B		
NNXF5	Nuclear RNA Export Factor 5		
CUBN	Cubilin		
LCAT	Lecithin-Cholesterol Acylationtransferase		
AGTR1	Angiotensin II Receptor Type 1		
LRP2	LDL Receptor Related Protein 2		
TNF	Tumor Necrosis Factor		
BAX	BCL2 Associated X, Apoptosis Regulator		
TLR4	Toll Like Receptor 4		
ITGB3	Integrin Subunit Beta 3		
DAG1	Dystroglycan 1		
CCL2	C-C Motif Chemokine Ligand 2		
NGF	Nerve Growth Factor		
CYCS	Cytochrome C, Somatic		
VTN	Vitronectin		
SMAD3	SMAD Family Member 3		
NOTCH1	Notch 1		
WNT1	Wnt Family Member 1		
CCNA2	Cyclin A2		
NTRK2	Neurotrophic Receptor Tyrosine Kinase 2		
DBH	Dopamine Beta-Hydroxylase		
Gene	Description		
-------	-------------		
SMARCA4	SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, Member 4		
SMARCA2	SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, Member 2		
IDS	Iduronate 2-Sulfatase		
PYGL	Glycogen Phosphorylase L		
GUSB	Glucuronidase Beta		
GALK1	Galactokinase 1		
APRT	Adenine Phosphoribosyltransferase		
ALAD	Aminolevulinate Dehydratase		
PAX6	Paired Box 6		
SOX9	SRY-Box 9		
CLCN7	Chloride Voltage-Gated Channel 7		
ALDOB	Aldolase, Fructose-Bisphosphate B		
HYAL1	Hyaluronidase 1		
PHKA2	Phosphorylase Kinase Regulatory Subunit Alpha 2		
HEXA	Hexosaminidase Subunit Alpha		
HPD	4-Hydroxyphenylpyruvate Dioxygenase		
ARSB	Arylsulfatase B		
APOC2	Apolipoprotein C2		
GALNS	Galactosamine (N-Acetyl)-6-Sulfatase		
CLCNKB	Chloride Voltage-Gated Channel Kb		
AMH	Anti-Mullerian Hormone		
GNS	Glucosamine (N-Acetyl)-6-Sulfatase		
SGSH	N-Sulfoglucosamine Sulfohydrolase		
FGF9	Fibroblast Growth Factor 9		
CLCN4	Chloride Voltage-Gated Channel 4		
IDUA	Iduronidase, Alpha-L-		
TIA1	TIA1 Cytotoxic Granule Associated RNA Binding Protein		
INPP5B	Inositol Polyphosphate-5-Phosphatase B		
CLCNKA	Chloride Voltage-Gated Channel Ka		
CLDN16	Claudin 16		
G6PC3	Glucose-6-Phosphatase Catalytic Subunit 3		
BAZ1A	Bromodomain Adjacent To Zinc Finger Domain 1A		
GSTZ1	Glutathione S-Transferase Zeta 1		
CIAO1	Cytosolic Iron-Sulfur Assembly Component 1		
ELP3	Elongator Acetyltransferase Complex Subunit 3		
SMARCA1	SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, Member 1		
GABRE	Gamma-Aminobutyric Acid Type A Receptor Epsilon Subunit		
USP19	Ubiquitin Specific Peptidase 19		
ELP2	Elongator Acetyltransferase Complex Subunit 2		
TIMM8B	Translocase Of Inner Mitochondrial Membrane 8 Homolog B		
CPSF7	Cleavage And Polyadenylation Specific Factor 7		
ASTN1	Astrotactin 1		
LHX9	LIM Homeobox 9		
SRY	Sex Determining Region Y		
ZNF274	Zinc Finger Protein 274		
ARSH	Arylsulfatase Family Member H		
Gene	Description		
-----------	--		
MFRP	Membrane Frizzled-Related Protein		
TECPR2	Tectonin Beta-Propeller Repeat Containing 2		
YIPF3	Yip1 Domain Family Member 3		
ZFY	Zinc Finger Protein Y-Linked		
FAM47E	Family With Sequence Similarity 47 Member E		
LOC10050632	Uncharacterized LOC100506321		
LAMB1	Laminin Subunit Beta 1		
PCNA	Proliferating Cell Nuclear Antigen		
MT-ND2	Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 2		
MT-CO1	Mitochondrially Encoded Cytochrome C Oxidase I		
MT-CO2	Mitochondrially Encoded Cytochrome C Oxidase II		
CTS1	Cathepsin L		
SERPINE1	Serpin Family E Member 1		
EZR	Ezrin		
IFI27	Interferon Alpha Inducible Protein 27		
AKT1	AKT Serine/Threonine Kinase 1		
CCND1	Cyclin D1		
BMP6	Bone Morphogenetic Protein 6		
LMNA	Lamin A/C		
CR1	Complement C3b/C4b Receptor 1 (Knops Blood Group)		
SMAD2	SMAD Family Member 2		
AGT	Angiotensinogen		
CLU	Clusterin		
CCNB1	Cyclin B1		
PPARG	Peroxisome Proliferator Activated Receptor Gamma		
TIMP2	TIMP Metallopeptidase Inhibitor 2		
IL6	Interleukin 6		
EDN1	Endothelin 1		
DNM1	Dynamin 1		
CDH2	Cadherin 2		
JAG1	Jagged 1		
MME	Membrane Metalloendopeptidase		
CAMK2B	Calcium/Calmodulin Dependent Protein Kinase II Beta		
FYN	FYN Proto-Oncogene, Src Family Tyrosine Kinase		
LRP5	LDL Receptor Related Protein 5		
PTK2	Protein Tyrosine Kinase 2		
LRP6	LDL Receptor Related Protein 6		
VCL	Vinculin		
ITGAV	Integrin Subunit Alpha V		
KRT8	Keratin 8		
PLCG1	Phospholipase C Gamma 1		
DKK1	Dickkopf WNT Signaling Pathway Inhibitor 1		
CD151	CD151 Molecule (Raph Blood Group)		
NCK1	NCK Adaptor Protein 1		
YWHAQ	Tyrosine 3-Monoxygenase/Tryptophan 5-Monoxygenase Activation Protein Theta		
IRF6	Interferon Regulatory Factor 6		
PARVA	Parvin Alpha		
KIRREL3	Kirre Like Nephrin Family Adhesion Molecule 3		
MKI67 Marker Of Proliferation Ki-67			
LAMA5 Laminin Subunit Alpha 5			
TLN1 Talin 1			
LIMS1 LIM Zinc Finger Domain Containing 1			
FAT1 FAT Atypical Cadherin 1			
MIR4758 MicroRNA 4758			
MIR6852 MicroRNA 6852			
IL2 Interleukin 2			
PON1 Paraoxonase 1			
FN1 Fibronectin 1			
IL2RA Interleukin 2 Receptor Subunit Alpha			
IL10 Interleukin 10			
NOS2 Nitric Oxide Synthase 2			
CABIN1 Calcinurin Binding Protein 1			
FGF2 Fibroblast Growth Factor 2			
LCN2 Lipocalin 2			
LAMC1 Laminin Subunit Gamma 1			
CDK2 Cyclin Dependent Kinase 2			
APOE Apolipoprotein E			
PLA2G7 Phospholipase A2 Group VII			
HIF1A Hypoxia Inducible Factor 1 Subunit Alpha			
PAFAH1B1 Platelet Activating Factor Acetylhydrolase 1b Regulatory Subunit 1			
F2R Coagulation Factor II Thrombin Receptor			
GNA12 G Protein Subunit Alpha 12			
TTR Transthyretin			
MMP14 Matrix Metallopeptidase 14			
ACTN1 Actinin Alpha 1			
ATP7A ATPase Copper Transporting Alpha			
IGFBP3 Insulin Like Growth Factor Binding Protein 3			
ATP6AP2 ATPase H+ Transporting Accessory Protein 2			
GNE Glucosamine (UDP-N-Acetyl)-2-Epimerase/N-Acetylmannosaminosamine Kinase			
S100A4 S100 Calcium Binding Protein A4			
ENPEP Glutamyl Aminopeptidase			
ZMPSTE24 Zinc Metallopeptidase STE24			
AMBP Alpha-1-Microglobulin/Bikunin Precursor			
NPNT Nephronecin			
CDK4 Cyclin Dependent Kinase 4			
PLAU Plasminogen Activator, Urokinase			
RARA Retinoic Acid Receptor Alpha			
MTHFR Methylenetetrahydrofolate Reductase			
VLDLR Very Low Density Lipoprotein Receptor			
CYP11B2 Cytochrome P450 Family 11 Subfamily B Member 2			
EYA1 EYA Transcriptional Coactivator And Phosphatase 1			
GPX3 Glutathione Peroxidase 3			
LTBP1 Latent Transforming Growth Factor Beta Binding Protein 1			
IGFBP1 Insulin Like Growth Factor Binding Protein 1			
PTPRU Protein Tyrosine Phosphatase, Receptor Type U			
MAGI1 Membrane Associated Guanylate Kinase, WW And PDZ Domain Containing 1			
Gene Symbol	Gene Name		
-------------	-----------		
RAP1GAP	RAP1 GTPase Activating Protein		
NPHP4	Nephrocystin 4		
PDGFB	Platelet Derived Growth Factor Subunit B		
SLC12A1	Solute Carrier Family 12 Member 1		
FBXW7	F-Box And WD Repeat Domain Containing 7		
FABP1	Fatty Acid Binding Protein 1		
THBD	Thrombomodulin		
CLCF1	Cardiotrophin Like Cytokine Factor 1		
CHKA	Choline Kinase Alpha		
IFNA2	Interferon Alpha 2		
ECT2	Epithelial Cell Transforming 2		
COG2	Component Of Oligomeric Golgi Complex 2		
PDSS2	Decaprenyl Diphosphate Synthase Subunit 2		
FMN1	Formin 1		
SDK1	Sidekick Cell Adhesion Molecule 1		
MIR186	MicroRNA 186		
MIR193A	MicroRNA 193a		
MTOR	Mechanistic Target Of Rapamycin Kinase		
HMGCRC	3-Hydroxy-3-Methylglutaryl-CoA Reductase		
MMP2	Matrix Metallopeptidase 2		
TGFBR1	Transforming Growth Factor Beta Receptor 1		
A2M	Alpha-2-Macroglubulin		
TFAM	Transcription Factor A, Mitochondrial		
NRF1	Nuclear Respiratory Factor 1		
IGFBP2	Insulin Like Growth Factor Binding Protein 2		
SMAD1	SMAD Family Member 1		
IGF1R	Insulin Like Growth Factor 1 Receptor		
IGF1	Insulin Like Growth Factor 1		
IRS1	Insulin Receptor Substrate 1		
SRC	SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase		
SLC2A1	Solute Carrier Family 2 Member 1		
APOC1	Apolipoprotein C1		
GAPDH	Glyceraldehyde-3-Phosphate Dehydrogenase		
GIPR	Gastric Inhibitory Polypeptide Receptor		
F2RL3	F2R Like Thrombin Or Trypsin Receptor 3		
DGKQ	Diacylglycerol Kinase Theta		
VEGFA	Vascular Endothelial Growth Factor A		
TIMP1	TIMP Metallopeptidase Inhibitor 1		
RHOA	Ras Homolog Family Member A		
MIF	Macrophage Migration Inhibitory Factor		
IL4	Interleukin 4		
MAPK14	Mitogen-Activated Protein Kinase 14		
DDIT3	DNA Damage Inducible Transcript 3		
RBP4	Retinol Binding Protein 4		
SP1	Sp1 Transcription Factor		
FOS	Fos Proto-Oncogene, AP-1 Transcription Factor Subunit		
LDLR	Low Density Lipoprotein Receptor		
TNFSF11	TNF Superfamily Member 11		
Gene	Description		
---------	--		
SOD1	Superoxide Dismutase 1		
TTC21B	Tetratricopeptide Repeat Domain 21B		
RAC1	Rac Family Small GTPase 1		
ANGPTL4	Angiopoietin Like 4		
SMAD7	SMAD Family Member 7		
MAPK1	Mitogen-Activated Protein Kinase 1		
MPO	Myeloperoxidase		
ACE2	Angiotensin I Converting Enzyme 2		
MYC	MYC Proto-Oncogene, BHLH Transcription Factor		
ABCB1	ATP Binding Cassette Subfamily B Member 1		
HGF	Hepatocyte Growth Factor		
B2M	Beta-2-Microglobulin		
MAPK3	Mitogen-Activated Protein Kinase 3		
ENG	Endoglin		
PPARA	Peroxisome Proliferator Activated Receptor Alpha		
BCL2	BCL2, Apoptosis Regulator		
HMOX1	Heme Oxygenase 1		
CCL5	C-C Motif Chemokine Ligand 5		
IL15	Interleukin 15		
HPX	Hemopexin		
ESR1	Estrogen Receptor 1		
EGF	Epidermal Growth Factor		
CASP3	Caspase 3		
NR3C1	Nuclear Receptor Subfamily 3 Group C Member 1		
NRPI	Neuropilin 1		
TNFRSF11A	TNF Receptor Superfamily Member 11a		
CD2	CD2 Molecule		
GREM1	Gremlin 1, DAN Family BMP Antagonist		
MIR30A	MicroRNA 30a		
CXCR4	C-X-C Motif Chemokine Receptor 4		
JAK3	Janus Kinase 3		
TLR3	Toll Like Receptor 3		
FTH1	Ferritin Heavy Chain 1		
NOTCH2	Notch 2		
SIRT1	Sirtuin 1		
EPAS1	Endothelial PAS Domain Protein 1		
GGT1	Gamma-Glutamyltransferase 1		
ABCA1	ATP Binding Cassette Subfamily A Member 1		
CASP9	Caspase 9		
NFATC1	Nuclear Factor Of Activated T Cells 1		
YAP1	Yes Associated Protein 1		
GFER	Growth Factor, Augmenter Of Liver Regeneration		
CEBPA	CCAAT Enhancer Binding Protein Alpha		
LIPC	Lipase C, Hepatic Type		
HSP90B1	Heat Shock Protein 90 Beta Family Member 1		
SMAD6	SMAD Family Member 6		
ATF3	Activating Transcription Factor 3		
PROM1	Prominin 1		
Gene Symbol	Description		
-------------	--		
AGTR2	Angiotensin II Receptor Type 2		
LGALS1	Galectin 1		
NRP2	Neuropilin 2		
SP3	Sp3 Transcription Factor		
DDN	Dendrin		
CD24	CD24 Molecule		
MIR30D	MicroRNA 30d		
MET	MET Proto-Oncogene, Receptor Tyrosine Kinase		
PRKCD	Protein Kinase C Delta		
CTSD	Cathepsin D		
CASP8	Caspase 8		
FAS	Fas Cell Surface Death Receptor		
TF	Transferrin		
ALOX5	Arachidonate 5-Lipoxygenase		
KRT18	Keratin 18		
RELA	RELA Proto-Oncogene, NF-KB Subunit		
BDNF	Brain Derived Neurotrophic Factor		
CTLA4	Cytotoxic T-Lymphocyte Associated Protein 4		
LTA4H	Leukotriene A4 Hydrolase		
NLRP3	NLR Family Pyrin Domain Containing 3		
HSPA5	Heat Shock Protein Family A (Hsp70) Member 5		
HSPG2	Heparan Sulfate Proteoglycan 2		
CXCL12	C-X-C Motif Chemokine Ligand 12		
SPP1	Secreted Phosphoprotein		
TRPV5	Transient Receptor Potential Cation Channel Subfamily V Member 5		
COL4A6	Collagen Type IV Alpha 6 Chain		
PDGFD	Platelet Derived Growth Factor D		
IL13	Interleukin 13		
IL9	Interleukin 9		
HBEGF	Heparin Binding EGF Like Growth Factor		
LTC4S	Leukotriene C4 Synthase		
TRAF1	TNF Receptor Associated Factor 1		
WWC1	WW And C2 Domain Containing 1		
VASP	Vasodilator Stimulated Phosphoprotein		
EPO	Erythropoietin		
HHIP	Hedgehog Interacting Protein		
GNPTAB	N-Acetylglucosamine-1-Phosphate Transferase Subunits Alpha And Beta		
ADAM19	ADAM Metallopeptidase Domain 19		
CAPZA1	Capping Actin Protein Of Muscle Z-Line Subunit Alpha 1		
ATL1	Atlastin GTPase 1		
PFN2	Profilin 2		
PDLIM1	PDZ And LIM Domain 1		
STK16	Serine/Threonine Kinase 16		
IL7	Interleukin 7		
TRPC1	Transient Receptor Potential Cation Channel Subfamily C Member 1		
SNX9	Sorting Nexin 9		
UBD	Ubiquitin D		
EPB41L5	Erythrocyte Membrane Protein Band 4.1 Like 5		
Gene Symbol	Description		
-------------	-------------		
PDLIM2	PDZ And LIM Domain 2		
ETV7	ETS Variant 7		
ACTL7A	Actin Like 7A		
MIR10A	MicroRNA 10a		
MIR135A1	MicroRNA 135a-1		
MIR135B	MicroRNA 135b		
MIR217	MicroRNA 217		
MIR378A	MicroRNA 378a		
MIR135A2	MicroRNA 135a-2		
MT-TL1	Mitochondrially Encoded TRNA Leucine 1 (UUAG)		
HNP1	Hypertensive Nephropathy		
AGER	Advanced Glycosylation End-Product Specific Receptor		
GLA	Galactosidase Alpha		
CXCL8	C-X-C Motif Chemokine Ligand 8		
AKR1B1	Aldo-Keto Reductase Family 1 Member B		
JUN	Jun Proto-Oncogene, AP-1 Transcription Factor Subunit		
NOS3	Nitric Oxide Synthase 3		
COL4A2	Collagen Type IV Alpha 2 Chain		
KNG1	Kininogen 1		
MMP9	Matrix Metallopeptidase 9		
TGFB2	Transforming Growth Factor Beta Receptor 2		
DES	Desmin		
PRKCB	Protein Kinase C Beta		
DCN	Decorin		
VCAM1	Vascular Cell Adhesion Molecule 1		
HRAS	HRas Proto-Oncogene, GTPase		
CASP1	Caspase 1		
IFNGR1	Interferon Gamma Receptor 1		
NR1H2	Nuclear Receptor Subfamily 1 Group H Member 2		
CFB	Complement Factor B		
ANTXR2	ANTXR Cell Adhesion Molecule 2		
MSR1	Macrophage Scavenger Receptor 1		
CASP4	Caspase 4		
HLA-DRB1	Major Histocompatibility Complex, Class II, DR Beta 1		
IL12A	Interleukin 12A		
COX5A	Cytochrome C Oxidase Subunit 5A		
HP	Haptoglobin		
PRTN3	Proteinase 3		
OLR1	Oxidized Low Density Lipoprotein Receptor 1		
HLA-DQB1	Major Histocompatibility Complex, Class II, DQ Beta 1		
EREG	Epiregulin		
DIAF2	Diaphanous Related Formin 2		
AZGP1	Alpha-2-Glycoprotein 1, Zinc-Binding		
AREG	Amphiregulin		
PTAFR	Platelet Activating Factor Receptor		
TLE4	Transducin Like Enhancer Of Split 4		
IL12B	Interleukin 12B		
BPI	Bactericidal Permeability Increasing Protein		
Gene Symbol	Description		
-------------	-------------		
SCGB1A1	Secretoglobin Family 1A Member 1		
IFNA1	Interferon Alpha 1		
SEMA4C	Semaphorin 4C		
ADCK2	AarF Domain Containing Kinase 2		
MIR196A2	MicroRNA 196a-2		
MIR490	MicroRNA 490		
SMAD4	SMAD Family Member 4		
EDNRA	Endothelin Receptor Type A		
PLAT	Plasminogen Activator, Tissue Type		
E2F1	E2F Transcription Factor 1		
ITHI4	Inter-Alpha-Trypsin Inhibitor Heavy Chain Family Member 4		
MIR21	MicroRNA 21		
MMP1	Matrix Metallopeptidase 1		
CAT	Catalase		
MAPK10	Mitogen-Activated Protein Kinase 10		
PARP1	Poly(ADP-Ribose) Polymerase 1		
RB1	RB Transcriptional Corepressor 1		
ESR2	Estrogen Receptor 2		
CD36	CD36 Molecule		
GDNF	Glial Cell Derived Neurotrophic Factor		
LEP	Leptin		
NPPA	Natriuretic Peptide A		
MBL2	Mannose Binding Lectin 2		
CST3	Cystatin C		
SEMA3A	Semaphorin 3A		
THBS1	Thrombospondin 1		
UMOD	Uromodulin		
SERPINB7	Serpin Family B Member 7		
AKT2	AKT Serine/Threonine Kinase 2		
NFKB1	Nuclear Factor Kappa B Subunit 1		
STAT3	Signal Transducer And Activator Of Transcription 3		
CDC42	Cell Division Cycle 42		
CYP3A4	Cytochrome P450 Family 3 Subfamily A Member 4		
NFKBIA	NFKB Inhibitor Alpha		
MAPK8	Mitogen-Activated Protein Kinase 8		
CD40	CD40 Molecule		
C3	Complement C3		
PLG	Plasminogen		
MMP7	Matrix Metallopeptidase 7		
PTK2B	Protein Tyrosine Kinase 2 Beta		
DDX58	DExd/H-Box Helicase 58		
COL4A1	Collagen Type IV Alpha 1 Chain		
PIK3CG	Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Gamma		
MYH7	Myosin Heavy Chain 7		
IGF2	Insulin Like Growth Factor 2		
ECE1	Endothelin Converting Enzyme 1		
C5	Complement C5		
COL1A2	Collagen Type I Alpha 2 Chain		
Gene Symbol	Gene Name		
------------	--		
PROS1	Protein S		
MYH6	Myosin Heavy Chain 6		
TNC	Tenascin C		
VCAN	Versican		
GFPT1	Glutamine--Fructose-6-Phosphate Transaminase 1		
EDN3	Endothelin 3		
CCR1	C-C Motif Chemokine Receptor 1		
ADIPQ	Adiponectin, C1Q And Collagen Domain Containing		
TRIO	Trio Rho Guanine Nucleotide Exchange Factor		
FABP4	Fatty Acid Binding Protein 4		
CCR2	C-C Motif Chemokine Receptor 2		
CSF1	Colony Stimulating Factor 1		
BMP7	Bone Morphogenetic Protein 7		
S100A8	S100 Calcium Binding Protein A8		
MLXIPL	MLX Interacting Protein Like		
TNFRSF12A	TNF Receptor Superfamily Member 12A		
PLTP	Phospholipid Transfer Protein		
PDPN	Podoplanin		
NID1	Nidogen 1		
FMOD	Fibromodulin		
NES	Nestin		
SLC25A17	Solute Carrier Family 25 Member 17		
TNFSF12	TNF Superfamily Member 12		
USF2	Upstream Transcription Factor 2, C-Fos Interacting		
ZFYVE9	Zinc Finger FYVE-Type Containing 9		
PIRRM1	Pitrilsin Metallopeptidase 1		
SMPDL3B	Sphingomyelin Phosphodiesterase Acid Like 3B		
CCN1	Cellular Communication Network Factor 1		
PDGFRA	Platelet Derived Growth Factor Receptor Alpha		
EGFR	Epidermal Growth Factor Receptor		
PDGFRB	Platelet Derived Growth Factor Receptor Beta		
JAK2	Janus Kinase 2		
KDR	Kinase Insert Domain Receptor		
MAP2K1	Mitogen-Activated Protein Kinase Kinase 1		
MAP2K2	Mitogen-Activated Protein Kinase Kinase 2		
INSR	Insulin Receptor		
AR	Androgen Receptor		
AKT3	AKT Serine/Threonine Kinase 3		
PIK3CA	Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha		
PTEN	Phosphatase And Tensin Homolog		
STAT1	Signal Transducer And Activator Of Transcription 1		
CDK5	Cyclin Dependent Kinase 5		
ADK	Adenosine Kinase		
MMP3	Matrix Metallopeptidase 3		
UCHL1	Ubiquitin C-Terminal Hydrolase L1		
CD4	CD4 Molecule		
CDKIN2A	Cyclin Dependent Kinase Inhibitor 2A		
CTSB	Cathepsin B		
Gene Symbol	Gene Name		
-------------	-------------------------------------		
CASP7	Caspase 7		
ACVRL1	Activin A Receptor Like Type 1		
ADAM17	ADAM Metallopeptidase Domain 17		
PPIB	Peptidylprolyl Isomerase B		
HSPB1	Heat Shock Protein Family B (Small) Member 1		
YWHAE	Tyrosine 3-Monoxygenase/Tryptophan 5-Monoxygenase Activation Protein Epsilon		
GATA3	GATA Binding Protein 3		
JAK1	Janus Kinase 1		
HDAC3	Histone Deacetylase 3		
NTRK1	Neurotrophic Receptor Tyrosine Kinase 1		
NOS1	Nitric Oxide Synthase 1		
CCNE1	Cyclin E1		
ACACA	Acetyl-CoA Carboxylase Alpha		
CAV1	Caveolin 1		
PRKCZ	Protein Kinase C Zeta		
SGK1	Serum/Glucocorticoid Regulated Kinase 1		
NR3C2	Nuclear Receptor Subfamily 3 Group C Member 2		
SLC5A1	Solute Carrier Family 5 Member 1		
TFRC	Transferrin Receptor		
TGFBI	Transforming Growth Factor Beta 2		
VWF	Von Willebrand Factor		
FOXO1	Forkhead Box O1		
CYP3A5	Cytochrome P450 Family 3 Subfamily A Member 5		
FASLG	Fas Ligand		
CCR5	C-C Motif Chemokine Receptor 5 (Gene/Pseudogene)		
CES1	Carboxylesterase 1		
CNR1	Cannabinoid Receptor 1		
PPARD	Peroxisome Proliferator Activated Receptor Delta		
S10P4	Selectin P		
MMP10	Matrix Metallopeptidase 10		
NR1H3	Nuclear Receptor Subfamily 1 Group H Member 3		
MS4A1	Membrane Spanning 4-Domains A1		
SPHK1	Sphingosine Kinase 1		
LRP1	LDL Receptor Related Protein 1		
HDAC9	Histone Deacetylase 9		
TGFA	Transforming Growth Factor Alpha		
TRAF3	TNF Receptor Associated Factor 3		
TRAF6	TNF Receptor Associated Factor 6		
TSHR	Thyroid Stimulating Hormone Receptor		
ADORA2B	Adenosine A2b Receptor		
BID	BH3 Interacting Domain Death Agonist		
CA8	Carbonic Anhydrase 8		
CDK5R1	Cyclin Dependent Kinase 5 Regulatory Subunit 1		
CFH	Complement Factor H		
CDK1	Cyclin Dependent Kinase 1		
ANXA5	Annexin A5		
ANG	Angiogenin		
ITGB6	Integrin Subunit Beta 6		
LNPEP	Leucyl And Cystinyl Aminopeptidase		
---	---		
SERPINH1	Serpin Family H Member 1		
S100B	S100 Calcium Binding Protein B		
TBX3	T-Box 3		
PXN	Paxillin		
TGIF1	TGFβ Induced Factor Homeobox 1		
TNFSF13B	TNF Superfamily Member 13b		
ZYX	Zyxin		
GHI	Growth Hormone 1		
CX3CR1	C-X3-C Motif Chemokine Receptor 1		
LGALS3	Galectin 3		
HIPK2	Homeodomain Interacting Protein Kinase 2		
STMN1	Stathmin 1		
HPSE	Heparanase		
EGR1	Early Growth Response 1		
CD34	CD34 Molecule		
EEF1A1	Eukaryotic Translation Elongation Factor 1 Alpha 1		
CTNS	Cystinosin, Lysosomal Cystine Transporter		
BDKRB2	Bradykinin Receptor B2		
HDAC7	Histone Deacetylase 7		
IQGAP1	IQ Motif Containing GTPase Activating Protein 1		
SALL1	Spalt Like Transcription Factor 1		
MPZ	Myelin Protein Zero		
MEFV	MEFV, Pyrin Innate Immunity Regulator		
TAT	Tyrosine Aminotransferase		
SPI1	Spi-1 Proto-Oncogene		
RAB3A	RAB3A, Member RAS Oncogene Family		
USF1	Upstream Transcription Factor 1		
FOXO3	Forkhead Box O3		
DDAH2	Dimethylarginine Dimethylaminohydrolase 2		
FCGR3B	Fc Fragment Of IgG Receptor IIb		
IL17A	Interleukin 17A		
P2RX4	Purinergic Receptor P2X 4		
PLXNA1	Plexin A1		
TG	Thyroglobulin		
TNFRSF6B	TNF Receptor Superfamily Member 6b		
CSRP3	Cysteine And Glycine Rich Protein 3		
ACTC1	Actin, Alpha, Cardiac Muscle 1		
C4A	Complement C4A (Rodgers Blood Group)		
TAGLN	Transgelin		
ID1	Inhibitor Of DNA Binding 1, HLH Protein		
CCL4	C-C Motif Chemokine Ligand 4		
FCAR	Fc Fragment Of IgA Receptor		
CAMP	Cathelicidin Antimicrobial Peptide		
COL8A2	Collagen Type VIII Alpha 2 Chain		
ST3GAL4	ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 4		
IL1RL1	Interleukin 1 Receptor Like 1		
WASL	Wiskott-Aldrich Syndrome Like		
gene	description		
---	---	---	
CHIA	Chitinase, Acidic		
BPHL	Biphenyl Hydrolase Like		
KLF15	Kruppel Like Factor 15		
PLA2R1	Phospholipase A2 Receptor 1		
RHOD	Ras Homolog Family Member D		
SCAP	SREBF Chaperone		
PDLIM5	PDZ And LIM Domain 5		
RPH3A	Rabphilin 3A		
HIST1H1B	Histone Cluster 1 H1 Family Member B		
CCL3	C-C Motif Chemokine Ligand 3		
COL8A1	Collagen Type VIII Alpha 1 Chain		
PECAM1	Platelet And Endothelial Cell Adhesion Molecule 1		
P3H1	Prolyl 3-Hydroxylase 1		
NUP133	Nucleoporin 133		
SNF8	SNF8, ESCRT-II Complex Subunit		
TSLP	Thymic Stromal Lymphopoietin		
ACTN3	Actinin Alpha 3 (Gene/Pseudogene)		
LECT2	Leukocyte Cell Derived Chemotaxin 2		
WDR19	WD Repeat Domain 19		
CSN1S1	Casein Alpha S1		
GOLIM4	Golgi Integral Membrane Protein 4		
MPV17L	MPV17 Mitochondrial Inner Membrane Protein Like		
WTIP	WT1 Interacting Protein		
HIST2H3C	Histone Cluster 2 H3 Family Member C		
KRBOX4	KRAB Box Domain Containing 4		
MIR216A	MicroRNA 216a		
MBL3P	Mannose-Binding Lectin Family Member 3, Pseudogene		
MolId	GeneName	MolName	
---------	----------	--------------------------	
MOL000296	PGR	hederagenin	
MOL000296	NCOA2	hederagenin	
MOL000296	CHRM3	hederagenin	
MOL000296	CHRM1	hederagenin	
MOL000296	CHRM2	hederagenin	
MOL000296	ADRA1B	hederagenin	
MOL000296	GABRA1	hederagenin	
MOL000296	GRIA2	hederagenin	
MOL000296	ADH1B	hederagenin	
MOL000296	ADH1C	hederagenin	
MOL000296	LYZ	hederagenin	
MOL000296	PTGS1	hederagenin	
MOL000296	SCN5A	hederagenin	
MOL000296	PTGS2	hederagenin	
MOL000296	RXRA	hederagenin	
MOL000296	SLC6A2	hederagenin	
MOL003182	KCNH2	(+)-Medioresinol di-O-beta-D-glucopyranoside_qt	
MOL003182	SCN5A	(+)-Medioresinol di-O-beta-D-glucopyranoside_qt	
MOL003182	PTGS2	(+)-Medioresinol di-O-beta-D-glucopyranoside_qt	
MOL003182	F7	(+)-Medioresinol di-O-beta-D-glucopyranoside_qt	
MOL003184	PTGS1	81827-74-9	
MOL003184	CHRM3	81827-74-9	
MOL003184	KCHN2	81827-74-9	
MOL003184	CHRM1	81827-74-9	
MOL003184	SCN5A	81827-74-9	
MOL003184	CHRM5	81827-74-9	
MOL003184	PTGS2	81827-74-9	
MOL003184	CHRM4	81827-74-9	
MOL003184	OPRD1	81827-74-9	
MOL003184	PGR	81827-74-9	
MOL003184	CHRM2	81827-74-9	
MOL003184	ADRA1B	81827-74-9	
MOL003184	ADRB2	81827-74-9	
MOL003184	OPRM1	81827-74-9	
MOL003184	NCOA2	81827-74-9	
MOL003184	NCOA1	81827-74-9	
MOL003185	CHRM3	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	CHRM1	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	PTGS2	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	OPRD1	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	ADRA1A	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	ADRA1B	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	ADRA1D	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	OPRM1	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	NR3C1	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	NCOA1	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003185	NCOA2	(1R,4aR,10aS)-5-hydroxy-1-(hydroxymethyl)-7-isopropyl-8-methoxy-1,4a-dimethyl-4,9,10,10a-tetrahydro-3H-phenanthren-2-one	
MOL003187	RELA	triptolide	
MOL003187	STAT3	triptolide	
MOL003187	VEGFA	triptolide	
MOL003187	BCL2	triptolide	
MOL003187	FOS	triptolide	
MOL003187	CDKN1A	triptolide	
MOL003187	PLAU	triptolide	
MOL003187	TNFSF15	triptolide	
MOL003187	JUN	triptolide	
MOL003187	CASP3	triptolide	
MOL003187	TP63	triptolide	
MOL003187	MAPK8	triptolide	
MOL003187	PTGS2	triptolide	
MOL003187	STAT1	triptolide	
MOL003187	CXCL8	triptolide	
MOL003187	MCL1	triptolide	
MOL003187	IL2	triptolide	
MOL003187	IFNG	triptolide	
MOL003187	IL4	triptolide	
MOL003187	CD80	triptolide	
MOL003187	CD86	triptolide	
MOL003187	CXCR4	triptolide	
MOL003187	BIRC3	triptolide	
MOL003187	CD274	triptolide	
MOL003187	IL23A	triptolide	
MOL003187	CCR7	triptolide	
MOL003187	CD1A	triptolide	
MOL003187	CD40	triptolide	
MOL003187	CD14	triptolide	
MOL003187	C3	triptolide	
MOL003187	VTCN1	triptolide	
MOL003196	CHRM3	Tryptophenolide	
MOL003196	KCNH2	Tryptophenolide	
----------	-------	-----------------	
MOL003196	CHRM1	Tryptophenolide	
MOL003196	SCN5A	Tryptophenolide	
MOL003196	CHRM5	Tryptophenolide	
MOL003196	PTGS2	Tryptophenolide	
MOL003196	RXRA	Tryptophenolide	
MOL003196	OPRD1	Tryptophenolide	
MOL003196	ADRA1A	Tryptophenolide	
MOL003196	PGR	Tryptophenolide	
MOL003196	CHRM2	Tryptophenolide	
MOL003196	ADRA1B	Tryptophenolide	
MOL003196	ADRB2	Tryptophenolide	
MOL003196	ADRA1D	Tryptophenolide	
MOL003196	OPRM1	Tryptophenolide	
MOL003196	NCOA2	Tryptophenolide	
MOL003196	NCOA1	Tryptophenolide	
MOL003199	NOS2	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	PTGS1	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	KCNH2	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	ESR1	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	AR	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	SCN5A	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	PPARG	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	PTGS2	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	F7	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	KDR	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	PYGM	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003199	PRSS1	5,8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin	
MOL003209	KCNH2	Celallocinnine	
MOL003209	SCN5A	Celallocinnine	
MOL003217	NOS2	Isoxanthohumol	
MOL003217	KCNH2	Isoxanthohumol	
MOL003217	ESR1	Isoxanthohumol	
MOL003217	SCN5A	Isoxanthohumol	
MOL003217	PTGS2	Isoxanthohumol	
MOL003217	KDR	Isoxanthohumol	
MOL003217	ADRA1B	Isoxanthohumol	
MOL003217	ADRB2	Isoxanthohumol	
MOL003217	NCOA2	Isoxanthohumol	
MOL003217	NCOA1	Isoxanthohumol	
MOL003217	PTGS1	Isoxanthohumol	
MOL003217	PPARD	Isoxanthohumol	
MOL003224	NR3C2	Triptinin B	
MOL003225	NR3C2	Hypodiolide A	
MOL003225	NR3C1	Hypodiolide A	
MOL003229	CHRM3	Triptinin B	
MOL003229	KCNH2	Triptinin B	
MOL003229	CHRM1	Triptinin B	
Accession	Gene	Description	
-----------	--------	---------------------------	
MOL003229	SCN5A	Triptinin B	
MOL003229	CHRM5	Triptinin B	
MOL003229	PTGS2	Triptinin B	
MOL003229	RXRA	Triptinin B	
MOL003229	ADRA1A	Triptinin B	
MOL003229	PGR	Triptinin B	
MOL003229	CHRM2	Triptinin B	
MOL003229	ADRA1B	Triptinin B	
MOL003229	ADRB2	Triptinin B	
MOL003229	ADRA1D	Triptinin B	
MOL003229	OPRM1	Triptinin B	
MOL003229	NR3C1	Triptinin B	
MOL003229	RXRB	Triptinin B	
MOL003229	NCOA2	Triptinin B	
MOL003229	NCOA1	Triptinin B	
MOL003231	PTGS1	Triptoditerpenic acid B	
MOL003231	CHRM3	Triptoditerpenic acid B	
MOL003231	KCNH2	Triptoditerpenic acid B	
MOL003231	CHRM1	Triptoditerpenic acid B	
MOL003231	SCN5A	Triptoditerpenic acid B	
MOL003231	CHRM5	Triptoditerpenic acid B	
MOL003231	PTGS2	Triptoditerpenic acid B	
MOL003231	CHRM4	Triptoditerpenic acid B	
MOL003231	RXRA	Triptoditerpenic acid B	
MOL003231	OPRD1	Triptoditerpenic acid B	
MOL003231	ADRA1A	Triptoditerpenic acid B	
MOL003231	PGR	Triptoditerpenic acid B	
MOL003231	CHRM2	Triptoditerpenic acid B	
MOL003231	ADRA1B	Triptoditerpenic acid B	
MOL003231	ADRB2	Triptoditerpenic acid B	
MOL003231	ADRA1D	Triptoditerpenic acid B	
MOL003231	OPRM1	Triptoditerpenic acid B	
MOL003231	NR3C1	Triptoditerpenic acid B	
MOL003231	RXRB	Triptoditerpenic acid B	
MOL003231	NCOA2	Triptonoditerpenic acid	
MOL003231	NCOA1	Triptonoditerpenic acid	
MOL003245	CHRM3	Triptonoditerpenic acid	
MOL003245	KCNH2	Triptonoditerpenic acid	
MOL003245	CHRM1	Triptonoditerpenic acid	
MOL003245	SCN5A	Triptonoditerpenic acid	
MOL003245	PTGS2	Triptonoditerpenic acid	
MOL003245	OPRD1	Triptonoditerpenic acid	
MOL003245	ADRA1B	Triptonoditerpenic acid	
MOL003245	ADRB2	Triptonoditerpenic acid	
MOL003245	NCOA2	Triptonoditerpenic acid	
MOL003245	NCOA1	Triptonoditerpenic acid	
MOL003248	PTGS1	Triptonoterpene	
MOL003248	CHRM1	Triptonoterpene	
MOL003248	SCN5A	Triptonoterpene	
MOL003248	PTGS2	Triptonoterpene	
MOL003248	RXRA	Triptonoterpene	
MOL003248	ACHE	Triptonoterpene	
MOL003248	ADRA1A	Triptonoterpene	
MOL003248	PGR	Triptonoterpene	
MOL003248	CHRM2	Triptonoterpene	
MOL003248	ADRA1B	Triptonoterpene	
MOL003248	ADRB2	Triptonoterpene	
MOL003248	ADRA1D	Triptonoterpene	
MOL003248	OPRM1	Triptonoterpene	
MOL003248	NR3C1	Triptonoterpene	
MOL003248	NCOA2	Triptonoterpene	
MOL003248	NCOA1	Triptonoterpene	
MOL003266	PGR	21-Hydroxy-30-norhopan-22-one	
MOL003280	CHRM3	TRIPTONOLIDE	
MOL003280	CHRM1	TRIPTONOLIDE	
MOL003280	SCN5A	TRIPTONOLIDE	
MOL003280	CHRM5	TRIPTONOLIDE	
MOL003280	PTGS2	TRIPTONOLIDE	
MOL003280	OPRD1	TRIPTONOLIDE	
MOL003280	ADRA1A	TRIPTONOLIDE	
MOL003280	PGR	TRIPTONOLIDE	
MOL003280	CHRM2	TRIPTONOLIDE	
MOL003280	ADRB2	TRIPTONOLIDE	
MOL003280	OPRM1	TRIPTONOLIDE	
MOL003280	NCOA2	TRIPTONOLIDE	
MOL003280	NCOA1	TRIPTONOLIDE	
MOL000358	PGR	beta-sitosterol	
MOL000358	NCOA2	beta-sitosterol	
MOL000358	PTGS1	beta-sitosterol	
MOL000358	PTGS2	beta-sitosterol	
MOL000358	KCNH2	beta-sitosterol	
MOL000358	CHRM3	beta-sitosterol	
MOL000358	CHRM1	beta-sitosterol	
MOL000358	SCN5A	beta-sitosterol	
MOL000358	CHRM4	beta-sitosterol	
MOL000358	ADRA1A	beta-sitosterol	
MOL000358	CHRM2	beta-sitosterol	
MOL000358	ADRA1B	beta-sitosterol	
MOL000358	ADRB2	beta-sitosterol	
MOL000358	CHRNA2	beta-sitosterol	
MOL000358	SLC6A4	beta-sitosterol	
MOL000358	OPRM1	beta-sitosterol	
MOL000358	GABRA1	beta-sitosterol	
MOL000358	BCL2	beta-sitosterol	
MOL000358	BAX	beta-sitosterol	
MOL000358	CASP9	beta-sitosterol	
MOL000358	JUN	beta-sitosterol	
MOL000358	CASP3	beta-sitosterol	
MOL000358	CASP8	beta-sitosterol	
MOL000358	PRKCA	beta-sitosterol	
MOL000358	PON1	beta-sitosterol	
MOL000358	MAP2	beta-sitosterol	
MOL000211	PGR	Mairin	
MOL000422	NOS2	kaempferol	
MOL000422	PTGS1	kaempferol	
MOL000422	AR	kaempferol	
MOL000422	PPARG	kaempferol	
MOL000422	PTGS2	kaempferol	
MOL000422	NCOA2	kaempferol	
MOL000422	PRSS1	kaempferol	
MOL000422	PGR	kaempferol	
MOL000422	CHRM1	kaempferol	
MOL000422	ACHE	kaempferol	
MOL000422	SLC6A2	kaempferol	
MOL000422	CHRM2	kaempferol	
MOL000422	ADRA1B	kaempferol	
MOL000422	GABRA1	kaempferol	
MOL000422	F7	kaempferol	
MOL000422	RELA	kaempferol	
MOL000422	IKBKB	kaempferol	
MOL000422	AKT1	kaempferol	
MOL000422	BCL2	kaempferol	
MOL000422	BAX	kaempferol	
MOL000422	TNFSF15	kaempferol	
MOL000422	JUN	kaempferol	
MOL000422	AHSA1	kaempferol	
MOL000422	CASP3	kaempferol	
MOL000422	MAPK8	kaempferol	
MOL000422	MMP1	kaempferol	
MOL000422	STAT1	kaempferol	
MOL000422	PPARG	kaempferol	
MOL000422	HMOX1	kaempferol	
MOL000422	CYP3A4	kaempferol	
MOL000422	CYP1A2	kaempferol	
MOL000422	CYP1A1	kaempferol	
MOL000422	ICAM1	kaempferol	
MOL000422	SELE	kaempferol	
MOL000422	VCAM1	kaempferol	
MOL000422	NR1I2	kaempferol	
MOL000422	CYP1B1	kaempferol	
MOL000422	ALOX5	kaempferol	
MOL000422	HAS2	kaempferol	
MOL000422	GSTP1	kaempferol	
MOL000422 AHR kaempferol
MOL000422 PSMD3 kaempferol
MOL000422 SLC2A4 kaempferol
MOL000422 NR1I3 kaempferol
MOL000422 INSR kaempferol
MOL000422 DIO1 kaempferol
MOL000422 PPP3CA kaempferol
MOL000422 GSTM1 kaempferol
MOL000422 GSTM2 kaempferol
MOL000422 AKR1C3 kaempferol
MOL000422 SLPI kaempferol
MOL000449 PGR Stigmasterol
MOL000449 NR3C2 Stigmasterol
MOL000449 NCOA2 Stigmasterol
MOL000449 ADH1C Stigmasterol
MOL000449 RXRA Stigmasterol
MOL000449 NCOA1 Stigmasterol
MOL000449 PTGS1 Stigmasterol
MOL000449 PTGS2 Stigmasterol
MOL000449 ADRA2A Stigmasterol
MOL000449 SLC6A2 Stigmasterol
MOL000449 SLC6A3 Stigmasterol
MOL000449 ADRB2 Stigmasterol
MOL000449 AKR1B1 Stigmasterol
MOL000449 PLAU Stigmasterol
MOL000449 LTA4H Stigmasterol
MOL000449 MAOB Stigmasterol
MOL000449 MAOA Stigmasterol
MOL000449 CTRB1 Stigmasterol
MOL000449 CHRM3 Stigmasterol
MOL000449 CHRM1 Stigmasterol
MOL000449 ADRB1 Stigmasterol
MOL000449 SCN5A Stigmasterol
MOL000449 ADRA1A Stigmasterol
MOL000449 CHRM2 Stigmasterol
MOL000449 ADRA1B Stigmasterol
MOL000449 GABRA1 Stigmasterol
MOL002058 KCNH2 40957-99-1
MOL002058 SCN5A 40957-99-1
MOL002058 PTGS2 40957-99-1
MOL002058 PTGS1 40957-99-1
MOL002058 NCOA2 40957-99-1
MOL002058 F7 40957-99-1
MOL003283 ESR1 (2R,3R,4S)-4-(3-hydroxy-4-hydroxyphenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 AR (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 PPARG (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 PTGS2 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 F7 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 ADRB2 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 ESR2 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 MAPK14 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 GSK3B (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 CHEK1 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 NCOA2 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 SCN5A (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 CCNA2 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL003283 PTGS1 (2R,3R,4S)-4-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dimethylol-tetralin-6-ol
MOL004443 PTGS1 Zhebeiresinol
MOL004443 SCN5A Zhebeiresinol
MOL004443 PTGS2 Zhebeiresinol
MOL004443 RXRA Zhebeiresinol
MOL004443 ADRB2 Zhebeiresinol
MOL004443 GABRA1 Zhebeiresinol
MOL005828 NOS2 noblelin
MOL005828 PTGS1 noblelin
MOL005828 KCNH2 noblelin
MOL005828 ESR1 noblelin
MOL005828 AR noblelin
MOL005828 PPARG noblelin
MOL005828 PTGS2 noblelin
MOL005828 F7 noblelin
MOL005828 ESR2 noblelin
MOL005828 CHEK1 noblelin
MOL005828 PRSS1 noblelin
MOL005828 NCOA2 noblelin
MOL005828 GSK3B noblelin
MOL005828 SCN5A noblelin
MOL005828 BCL2 noblelin
MOL005828 BAX noblelin
MOL005828 CASP9 noblelin
MOL005828 MMP9 noblelin
MOL005828 JUN noblelin
MOL005828 TP63 noblelin
MOL005828 MAPK8 noblelin
MOL005828 TIMP1 noblelin
MOL005828 PPARG nobiletin
MOL005828 CREB1 nobiletin
MOL005828 PLA2G4A nobiletin
MOL005828 CD163 nobiletin
MOL005828 EPHB2 nobiletin
MOL007415 KCNH2 [(2S)-2-[(2S)-2-(benzoylamino)-3-phenylpropanoyl]amino]-3-phenylpropyl] acetate
MOL007415 PTGS2 [(2S)-2-[(2S)-2-(benzoylamino)-3-phenylpropanoyl]amino]-3-phenylpropyl] acetate
MOL007415 PRSS1 [(2S)-2-[(2S)-2-(benzoylamino)-3-phenylpropanoyl]amino]-3-phenylpropyl] acetate
MOL007535 PGR (5S,8S,9S,10R,13R,14S,17R)-17-[(1R,4R)-4-ethyl-1,5-dimethylhexyl]-10,13-dimethyl-2,4,5,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,6-dione
MOL009386 KCNH2 3,3'-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran
MOL009386 ESR1 3,3'-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran
MOL009386 PTGS2 3,3'-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran
MOL009386 ADRB2 3,3'-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran
MOL009386 CCNA2 3,3'-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran