Effects of nonmagnetic impurities and subgap states on the kinetic inductance, complex conductivity, quality factor and depairing current density

Takayuki Kubota

High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan and
The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan

We investigate how a combination of a nonmagnetic-impurity scattering rate γ and finite subgap states parametrized by Dynes Γ affects various physical quantities relevant to superconducting devices: kinetic inductance L_k, complex conductivity σ, surface resistance R_s, quality factor Q, and depairing current density J_d. All the calculations are based on the Eilenberger formalism of the BCS theory. We assume the device materials are extreme type-II s-wave superconductors. It is well known that the optimum impurity concentration ($\gamma/\Delta_0 \sim 1$) minimizes R_s. Here, Δ_0 is the pair potential for the idealized ($\Gamma \to 0$) superconductor for the temperature $T \to 0$. We find the optimum Γ can also reduce R_s by one order of magnitude for a clean superconductor ($\gamma/\Delta_0 < 1$) and a few tens % for a dirty superconductor ($\gamma/\Delta_0 > 1$). Also, we find a nearly-ideal ($\Gamma/\Delta_0 < 1$) clean-limit superconductor exhibits a frequency-independent R_s for a broad range of frequency ω, which can significantly improve Q of a very compact cavity with a few tens of GHz frequency. As Γ or γ increases, the plateau disappears, and R_s obeys the ω^2 dependence. The subgap-state-induced residual surface resistance R_{res} is also studied, which can be detected by an SRF-grade high-Q 3D resonator. We calculate $L_k(\gamma, \Gamma, T)$ and $J_d(\gamma, \Gamma, T)$, which are monotonic increasing and decreasing functions of (γ, Γ, T), respectively. Measurements of (γ, Γ) of device materials can give helpful information on engineering (γ, Γ) via materials processing, by which it would be possible to improve Q, engineer L_k, and ameliorate J_d.

I. INTRODUCTION

The microscopic theory of superconductivity is the linchpin of research and development of various superconducting devices, such as superconducting radio-frequency (SRF) cavities for particle accelerators [1–3], superconducting magnets and cables [4], kinetic inductance detectors (KID) [5], hot-electron bolometer [6], other superconducting instruments for astrophysics and cosmology [7], superconducting single-photon detectors (SSPD) [8, 9], and superconducting qubit for quantum information processing (QIP) [10, 11]. Models of superconducting devices based on the idealized BCS superconductor are sensitive to the detail of the quasiparticle density of states (DOS), which is affected by various pair breakers in device materials (e.g., magnetic impurities, metallic suboxides, hydride, and non-stoichiometric regions) and to assess the effects of such non-ideal features on device performances [21, 22].

One of the non-ideal features observed in various superconducting materials is the broadening and subgap states in DOS [23–25], in contrast to the sharp spectrum gap in the idealized BCS superconductor. Various mechanisms can contribute to the subgap states, e.g., inelastic scattering of quasiparticles on phonons [30], Coulomb correlations [31], anisotropy of the Fermi surface [32], local inhomogeneities of the BCS pairing constant [33], magnetic impurities [34], and effects of spatial correlations in impurity scattering [35]. Such a broadened DOS is often described by using the phenomenological Dynes formula [36–38], $N(\epsilon)/N_0 = \text{Re}[(\epsilon + i\Gamma)/\sqrt{(\epsilon + i\Gamma)^2 - \Delta^2}]$ (see Fig. 1). Here Δ is the pair potential, N_0 is the normal-state DOS at the Fermi level, and Γ is the Dynes broadening parameter. We can reproduce the ideal BCS-DOS by taking $\Gamma \to 0$. Irrespective of microscopic models of the Dynes formula, we can incorporate Γ into the quasiclassical formalism of the BCS theory (see e.g., Refs. [21, 22, 38, 41]). Also, microscopic derivations of the Dynes formula have been investigated [42, 43].

The first way to calculate physical quantities based on realistic spectrum is to incorporate all the broadening...
mechanisms in materials into a device model. However, such a model should contain a bunch of free parameters and practically useless unless those parameters are determined from a number of experiments. Another way is to introduce the phenomenological Dynes Γ into a device model. Here, a value of Γ can be determined from experiments such as tunneling spectroscopy and measurements of complex conductivity. Even if we do not know what kind of pair breakers contribute to subgap states, such an experimentally determined Γ makes it possible to calculate physical quantities based on the realistic quasiparticle spectrum. In the present paper, we pursue the second approach, which would give reliable results rather than those based on the idealized BCS-DOS.

According to the previous studies for the diffusive limit, influences of a finite Γ is far-reaching: it affects, e.g., the pair potential Δ, the critical temperature T_c, the penetration depth λ, the kinetic inductivity L_k, the complex conductivity σ, the coherence peak of dissipative-conductivity σ_1, the surface impedance, Q factor, and the depairing current density J_d. One of the nontrivial consequences is the fact that there exists the optimum Γ, which maximizes Q at some temperature range. This Γ-induced Q-rise comes from the same mechanism as the Q rise due to current-induced DOS broadening. On the other hand, finite subgap states in the vicinity of the Fermi level induce a residual dissipative conductivity $\sigma_1 \sim \Gamma$. The effects of a finite Γ in a moderately clean superconductor have been studied less extensively except for some calculations of σ. In the present study, we investigate the effects of a combination of Dynes Γ and nonmagnetic-impurity scattering rate γ on the kinetic inductivity L_k, the surface resistance R_s, and the depairing current density J_d, which are the physical quantities relevant to modern superconducting devices. The kinetic inductance is known to limit the reset time after a detection event of SSPD and also plays an essential role in the operating mechanism of KID, which detects a shift of resonant frequency due to the arrival of pair-breaking photons. The surface resistance R_s is proportional to the dissipation at the inner surface of a 3D resonant cavity for SRF and QIP. Reduction of R_s (or improvement of Q) has been the primary interest of researchers of resonant cavities over the last decades. Vortex-free Nb cavities exhibit huge quality factor $Q \sim 10^{10}{-}10^{12}$ at $T < 2K$ even under the strong rf current $\sim 10^{12}$ close to the depairing current density. The depairing current density J_d is related to the bias current of SSPD and is the maximum current that SRF cavities and superconducting cables can support. The screening current density on the inner surface of the cutting-edge Nb cavity reaches a current density close to J_d, and SRF researchers study next-generation cavities using alternative materials with higher J_d theoretically and experimentally.

Our calculations are based on the well-established Eilenberger formalism of the BCS theory, which can include an arbitrary impurity concentration. We assume that the penetration depth λ is much larger than the coherence length ξ, then a superconductor obeys the local electrodynamics. Large-λ/ξ superconductors include dirty Nb and also NbN, NbTiN, and Nb$_3$Sn for any impurity concentration from the clean limit to the dirty limit.

The paper is organized as follows. In Section II, we briefly review the Eilenberger formalism of the BCS theory and basic consequences of a finite Γ in the zero-current state. In Sec. III, we evaluate the penetration depth $\lambda(\gamma, \Gamma, T)$ and the kinetic inductivity $L_k(\gamma, \Gamma, T)$. Convenient formulas for λ and L_k are also summarized. In Sec. IV, we summarize the complex conductivity formulas, evaluate the T dependence and the coherence peak, and consider the low T limit and moderately-low T regime ($h\omega \ll k_B T \ll \Delta_0$). Then, combining the results of Sec. III and Sec. IV A - IV D, we study the effects of (γ, Γ) on the surface resistance and Q factor in the low T limit and the moderately-low T regime. In Sec. V, we solve the Eilenberger equation in the current-carrying state and evaluate the effects of (γ, Γ) on the depairing current density J_d. In Sec. VI, we discuss the implications of our results.

II. THEORY

A. Eilenberger equation

The normal (g_m) and anomalous (f_m) quasiparticles obey the Eilenberger equation. Since we consider the case $\lambda \gg \xi$, the current distribution varies slowly over the coherence length, and then the spatial-differentiation terms are negligible. The Eilenberger equation for the current-carrying state reads
Here, \(g_m^2 + f_m^2 = 1 \), \(\hbar \omega_m = 2\pi k_B T(m + 1/2) \) is the Matsubara frequency, \(\Gamma \) is the Dynes parameter, \(\gamma = \hbar/2\tau_{\text{imp}} \) is the nonmagnetic-impurity scattering rate, \(\tau_{\text{imp}} \) is the electron scattering time on nonmagnetic impurities, \(s = \hbar v_f / \pi = (q/q_0)\Delta_0 \), \(v_f \) is the superfluid momentum, \(v_f \) is the Fermi velocity, \(q_0 = 1/\xi_0 = \pi \Delta_0 / \hbar v_f \) is the inverse of the BCS coherence length, \(\Delta \) is the pair potential, \(\Delta_0 \) is the pair potential of the idealized \((\Gamma \to 0) \) BCS superconductor in the zero-current state \((q = 0) \) at \(T \to 0 \), \(\theta \) is the angle between the Fermi velocity and the current, and the bracket \(\langle X \rangle \) is the angular averaging of a quantity \(X \) over the Fermi surface. We assume a spherical Fermi surface: \(\langle X \rangle = (1/2) \int_0^{\pi} X \sin \theta d\theta \). Note here that considering the average distance the electron travels between electron-nonmagnetic impurity collisions is given by \(\ell_{\text{imp}} = v_f \tau_{\text{imp}} \), we obtain the relation \(\ell_{\text{imp}}/\xi_0 = \pi \Delta_0 / 2 \gamma \).

In the zero-current state \((q = 0) \), the \(\theta \) dependences of \(f_m \) and \(g_m \) drop off: \(\langle f_m \rangle = f_m \) and \(\langle g_m \rangle = g_m \). Then, Eq. (1) reduces to

\[
\langle \hbar \omega_m + \Gamma \rangle f_m - \Delta g_m = 0,
\]
which no longer includes the nonmagnetic-impurity scattering rate \(\gamma \). Hence, in the zero-current state, \(\Delta \) does not depend on a concentration of nonmagnetic impurities. This robustness of \(s \)-wave superconductor to nonmagnetic impurity is known as Anderson’s theorem [10].

The Eilenberger equation is compensated by the self-consistency equation

\[
\ln \frac{T_0}{T} = 2\pi k_B T \sum_{\omega_m > 0} \left(\frac{1}{\hbar \omega_m} - \frac{\langle f_m \rangle}{\Delta} \right).
\]

Here, \(k_B T_0 = \Delta_0 \exp(\gamma_E/\pi) \simeq \Delta_0/1.76 \) is the critical temperature of the idealized \((\Gamma \to 0) \) BCS superconductor, and \(\gamma_E = 0.577 \) is the Euler’s constant. Solving Eqs. (1) and (3) for the current-carrying state or Eqs. (2) and (3) for the zero-current state, we can calculate various physical quantities.

B. Brief review of the consequences of a finite \(\Gamma \) in the zero-current state

Let us briefly review the effects of finite Dynes subgap states on \(\Delta, T_c \), and DOS in the zero-current state. Solving Eq. (2), we get

\[
g_m = \frac{\hbar \omega_m + \Gamma}{\sqrt{(\hbar \omega_m + \Gamma)^2 + \Delta^2}},
\]
and

\[
f_m = \frac{\Delta}{\sqrt{(\hbar \omega_m + \Gamma)^2 + \Delta^2}}.
\]

Here, \(\Delta = \Delta(\Gamma, T) \) is calculated from Eq. (3). For \(T \to 0 \), it is easy to find

\[
\Delta(\Gamma, T)|_{T \to 0} = \Delta_0 \sqrt{1 - 2\Gamma / \Delta_0}.
\]

Hence, the zero-temperature pair-potential vanishes at the critical value \(\Gamma = \Delta_0/2 \). Eq. (3) reduces to \(\simeq \Delta_0 - \Gamma \) when \(\Gamma / \Delta_0 \ll 1 \). A calculation for an arbitrary temperature is straightforward. Shown in Figure 2(a) is \(\Delta \) as functions of \(\Gamma \) for different temperatures. The larger the temperature is, the smaller the critical value is.

The critical temperature \(T_c = T_c(\Gamma) \) is obtained by substituting \(T \to T_c \) and \(\Delta \to 0 \) into Eq. (3). We find

\[
\ln \frac{T_c}{T_{c0}} = \psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{2} + \frac{\Gamma}{2\pi k_B T_c} \right),
\]

which reduces to \(T_c \simeq T_{c0} - \pi \Gamma / 4k_B \) for \(\Gamma / \Delta_0 \ll 1 \). It should be noted that Eq. (3) has the same form as the well-known formula of critical temperature for a superconductor with pair-breaking perturbations [12–16]. Shown in Figure 2(b) is \(T_c \) as a function of \(\Gamma \), which is a monotonically decreasing function of \(\Gamma \) and vanishes at \(\Gamma = \Delta_0/2 \).

In the real frequency representation \((\hbar \omega_m \to -i\epsilon) \), we get

\[
g(\epsilon) = \frac{\epsilon + i\Gamma}{\sqrt{(\epsilon + i\Gamma)^2 - \Delta^2}},
\]
and

\[
f(\epsilon) = \frac{\Delta}{\sqrt{(\epsilon + i\Gamma)^2 - \Delta^2}}.
\]

The quasiparticle DOS is given by \(N(\epsilon) = \text{Re} \left[g(\epsilon) \right] \), which corresponds with the Dynes formula shown in Figure 2(c) (see also Fig. 1).

The Dynes \(\Gamma \) is a phenomenological representation of some pair breakers in real materials. Introducing \(\Gamma \) not only yields the broadened DOS (see Fig. 1) but also results in various pair-breaking effects (e.g., suppression of \(\Delta \) and \(T_c \) shown in Fig. 2). In the zero-current state, \(\Delta, T_c, \) and DOS are independent of a concentration of nonmagnetic impurities (Anderson theorem).
Hence, the results shown in Sec. III A are coincident with those for the dirty limit discussed in the previous studies 21, 22, 38, 39. In the following sections, we study physical quantities that depend on the Dynes Γ and the nonmagnetic-impurity scattering rate γ.

III. PENETRATION DEPTH AND KINETIC INDUCTANCE

A. Penetration depth

First, consider the penetration depth in the zero-current limit. The penetration depth $\lambda(\gamma, \Gamma, T)$ is calculated from 16

$$\frac{1}{\lambda_0^2(\gamma, \Gamma, T)} = \frac{2\pi k_B T}{\lambda_0^2} \sum_{\omega_m > 0} f_m^2. \quad (10)$$

Here, $\lambda_0^{-2} = \lambda^{-2}(0, 0, 0) = (2/3)\mu_0 e^2 N_0 V_0^2 = \mu_0 e^2 n/m$ is the idealized BCS penetration depth in the clean limit at $T \to 0$, f_m is given by Eq. (3), and $d_m = \sqrt{(\hbar \omega_m + \Gamma)^2 + \Delta^2 + \gamma}$. Analytical expressions of λ can be obtained for some special cases, e.g., a nearly-ideal nonmagnetic impurities. Replacing the summation with integral $(2\pi k_B T / h \sum_{\omega_m > 0} \int_{\omega_m}^{\infty} d\omega)$ when $T \to 0$, and we find

$$\frac{1}{\lambda_0^2(\gamma \ll \Delta_0, \Gamma \ll \Delta_0, 0)} = \frac{1}{\lambda_0^2} \left(1 - \frac{\Gamma}{\Delta_0} - \frac{\pi \gamma}{4 \Delta_0} \right). \quad (11)$$

Another example is the idealized ($\Gamma \to 0$) BCS superconductor at $T \to 0$ including an arbitrary concentration of nonmagnetic impurities. Replacing the summation with integral, Eq. (10) reduces to the well-known formula (see e.g., Ref. 2 [3] 82):

$$\frac{1}{\lambda^2(\gamma, 0, 0)} = \left(\begin{array}{ll} \frac{1}{\lambda_0^2(\gamma, \Delta_0)} \left(\frac{\pi}{2} - \cos^{-1}(\gamma/\Delta_0) \right) & (\gamma/\Delta_0 < 1) \\ \frac{1}{\lambda_0^2} \left(\frac{\pi}{2} - 1 \right) & (\gamma/\Delta_0 = 1) \\ \frac{1}{\lambda_0^2} \left(\frac{\pi}{2} - \cos^{-1}(\gamma/\Delta_0) \langle \gamma/\Delta_0 \rangle \right) & (\gamma/\Delta_0 > 1) \end{array} \right). \quad (12)$$

In the dirty limit ($\gamma/\Delta_0 = \pi \xi_0/2t_{imp} \gg 1$), substituting $d_m \simeq \gamma$ into Eq. (10), we reproduce the formula derived in the previous study 21:

$$\frac{1}{\lambda^2(\gamma \gg \Delta_0, \Gamma, T)} = \frac{4k_B T}{\lambda_{0,\text{dirty}}^2} \sum_{\omega_m > 0} f_m^2$$

$$= \frac{2\Delta(\Gamma, T)}{\lambda_{0,\text{dirty}}^2} \pi \psi \left(1 + \frac{\Gamma}{2\pi k_B T} \right) \frac{\Delta(\Gamma, T)}{2\pi k_B T}. \quad (13)$$

Here, $\lambda_{0,\text{dirty}}^2 = (\pi \Delta_0 / 2\gamma) \lambda_0^{-2} = \pi \mu_0 \Delta_0 \sigma_n / h$ is the well-known BCS penetration depth in the dirty limit at $T \to 0$, and ψ is the digamma function. For the idealized dirty-limit BCS superconductor, Eq. (13) simplifies to 12, 16

$$\frac{1}{\lambda^2(\gamma \gg \Delta_0, 0, T)} = \frac{\Delta(0, T)}{\lambda_{0,\text{dirty}}^2} \tanh \frac{\Delta(0, T)}{2k_B T}. \quad (14)$$

B. Kinetic inductance

The direct application of the results of Sec. III A is calculations of the kinetic inductance in the zero-current state, which is a crucial physical quantity for superconducting devices, such as KID and SSPD. The kinetic inductance of a thin and narrow film is given by $L_{\text{film}} = \text{[length}/(\text{width} \times \text{thickness})] \times L_k$. Here, L_k is the kinetic inductivity. In the zero-current limit, L_k is given by $L_k = \mu_0 \lambda^2$ (see also Refs. 39, 33, 82 for L_k of a dirty-limit superconductor under the current). Since we have already calculated λ in Sec. III A, we have almost finished the calculations of L_k; see Fig. 1.

For readers’ convenience, let us summarize the analyt-
ical formulas of L_k in the zero-current limit ($q \to 0$). For a superconductor including an arbitrary impurity concentration, L_k is given by

$$L_k(\gamma, \Gamma, T) = \frac{\lambda_k^2(\gamma, \Gamma, T)}{\lambda_d^2(\gamma, \Gamma, T)}.$$ \hspace{1cm} (15)

Here, $L_{k0} = L_k(0, 0, 0) = \frac{\mu_0\lambda_k^2}{\Delta_0} = 3/2\xi^2N_0\tau^2$ is the kinetic inductivity for an idealized ($\Gamma \to 0$) clean-limit ($\gamma \propto \ell_	ext{imp}^{-1} \to 0$) BCS superconductor at $T \to 0$. In the dirty limit ($\gamma/\Delta_0 = \pi\xi_0/2\ell_	ext{imp} \gg 1$), taking $d_m \to \gamma$, we get

$$L_k(\gamma \gg \Delta_0, \Gamma, T) = \frac{\lambda_k^2(\gamma \gg \Delta_0, \Gamma, T)}{\lambda_d^2(\gamma \gg \Delta_0, \Gamma, T)}, \hspace{1cm} (16)$$

Here, $L_{k0,\text{dirty}} = \frac{\mu_0\lambda_k^2}{\Delta_0} = h/\pi\Delta_0\sigma_n$ is the inductivity of the idealized ($\Gamma \to 0$) dirty-limit BCS superconductor at $T \to 0$. Substituting Eqs. (11) or (12) into Eq. (15) or substituting Eqs. (13) or (14) into Eq. (16), we can analytically evaluate L_k.

It should be noted that, Eqs. (13) and (16) yield the widely-used formula, $L_k = \left[\lambda_{k,n}/\pi\Delta(0, T)/\tanh[\Delta(0, T)/2kB_T]\right]$ but it can apply only to the idealized ($\Gamma \to 0$) dirty-limit ($\gamma/\Delta_0 = \pi\xi_0/2\ell_	ext{imp} \gg 1$) BCS superconductor. The other formulas introduced in this section are more general and would be available for various situations.

IV. COMPLEX CONDUCTIVITY, SURFACE IMPEDANCE, AND Q FACTOR

A. Complex-conductivity formulas

The general formula for the complex conductivity σ of a large-λ/ξ superconductor, which can include an arbitrary concentration of nonmagnetic impurities, is given by $\left[82\right]$ $\left[83\right]$ $\left[84\right]$

$$\sigma(\gamma, \Gamma, T, \omega) = \sigma_1 + i\sigma_2$$

$$= \frac{-i\sigma_n}{4\omega_T} \int_{-\infty}^{\infty} d\epsilon \left[I_1 \tanh \frac{\epsilon + \omega_T}{2kT} - I_2 \tanh \frac{\epsilon + \omega_T}{2kT} \right],$$ \hspace{1cm} (17)

$$I_1 = \frac{g_+g_- + f_+f_- - 1}{d_+ - d_-}, \hspace{1cm} \sigma_1$$

$$I_2 = \frac{g_+g_- + f_+f_- - 1}{d_+ - d_-}, \hspace{1cm} (18)$$

$$d_+ = d(\epsilon_+), \hspace{1cm} d_- = d(\epsilon_-).$$ \hspace{1cm} (19)

Here, σ is a function of the impurity scattering rate $\gamma/\Delta_0 = \pi\xi_0/2\ell_	ext{imp}$, the Dynes parameter Γ, temperature T, and the photon frequency ω. $\sigma_n = (2/3)\xi^2N_0\tau^2$ is the dc conductivity in the normal state, τ is the electron relaxation-time, $\epsilon_+ = \epsilon - \omega_T/2$, $g_+ = g(\epsilon_+)$, $f_+ = f(\epsilon_+)$, $d_+ = d(\epsilon_+)$, and $d_- = d(\epsilon_-)$.

In the normal state ($\Delta \to 0$), we have $g_+ = 1$, $f_+ = 0$, and $d_+ - d_- = \omega_T + 2i(\Gamma + \gamma)$. Then, Eq. (17) reduces to the Drude model of the ac electrical conductivity of normal metal: $\sigma_{1,2} = \sigma_n/\left[1 + (\omega_T)^2\right]$ and $\sigma_{n,2} = \sigma_n\omega_T/\left[1 + (\omega_T)^2\right]$ with the electron relaxation-time τ,

$$\frac{1}{\tau} = \frac{1}{\tau_{\text{imp}}} + \frac{1}{\tau_T}. \hspace{1cm} (20)$$

Here $\tau_{\text{imp}} = h/2\gamma$ and $\tau_T = h/2\Gamma$. It is also possible to derive Eqs. (20) considering a microscopic origin of Γ such as the electron-phonon scattering $\left[85\right]$ and electromagnetic impurities scatterings $\left[43\right]$.

In the low-frequency regime ($\hbar\omega \ll \gamma, \Gamma, k_B T, \Delta_0$), we can expand the integrand with respect to a tiny ω_T. Then, Eq. (17) reduces to

$$\sigma_1(\gamma, \Gamma, T, \omega) = \frac{\sigma_n h}{8k_B T} \int_{-\infty}^{\infty} \frac{d\epsilon}{\cosh^2(\epsilon/2k_B T)} \left[\left(\frac{\text{Re} f}{\text{Im} f} \right) \left(\frac{2}{d} \right) \right]$$

$$+ \left(\frac{\text{Re} f \text{Im} f - \text{Im} f \text{Re} f}{\text{Im} f} \right) \left(\frac{2}{d} \right),$$ \hspace{1cm} (21)

and

$$\sigma_2 = \frac{2\xi^2N_0\tau^2}{3\mu_0\omega} \frac{2\pi k_B T}{\sum_{\omega_m > 0}} \frac{f_+^2}{d_m} = \frac{1}{\mu_0\omega\lambda^2},$$ \hspace{1cm} (22)

which are used in Ref. $\left[44\right]$ to study the effects of Γ in the low-frequency regime.

In the dirty limit ($\gamma/\Delta_0 = \pi\xi_0/2\ell_	ext{imp} \gg 1$), we can take $d_+ \simeq d_- \simeq d$. Then, Eq. (17) reduces to the well-known formulas $\left[85\right]$

$$\sigma_1(\gamma \gg \Delta_0, \Gamma, T, \omega) = \frac{\sigma_n h}{\omega_T} \int_{-\infty}^{\infty} d\epsilon \left[f_{\text{FD}}(\epsilon) - f_{\text{FD}}(\epsilon_+) \right] M(\epsilon, \omega),$$ \hspace{1cm} (23)

$$M(\epsilon, \omega) = \text{Re} g(\epsilon+\omega) + \text{Im} g(\epsilon+\omega),$$ \hspace{1cm} (24)

and

$$\sigma_2(\gamma \gg \Delta_0, \Gamma, T, \omega) = \frac{\sigma_n}{\omega_T} \int_{-\infty}^{\infty} d\epsilon \frac{\text{tanh} \frac{\epsilon}{2k_B T}}{2k_B T} \left(\frac{\text{Re} f}{\text{Im} f} \right) \left(\frac{2}{d} \right)$$

$$L(\epsilon, \omega) = \text{Re} g(\epsilon+\omega) + \text{Im} g(\epsilon+\omega).$$ \hspace{1cm} (25)

Here, $\epsilon_+ = \epsilon + \omega_T$, and $f_{\text{FD}} = [1 - \text{tanh}(\epsilon/2k_B T)]/2$ is the Fermi-Dirac distribution. Eq. (25) is used in Refs. $\left[21\right]$ $\left[22\right]$ $\left[33\right]$ to study the impact of imperfect surfaces on Q factor. It should be noted that, for the idealized ($\Gamma \to 0$) dirty-limit ($\gamma/\Delta_0 \gg 1$) BCS superconductor, Eqs. (26) and (27) reproduce the textbook formulas $\left[7\right]$ $\left[12\right]$.

$$\sigma_1(\gamma \gg \Delta_0, \Gamma \to 0, T, \omega)$$

$$= 2\sigma_n \frac{h}{\omega_T} \int_{-\infty}^{\infty} d\epsilon \left[\text{Re} g(\epsilon + \omega_T) + \Delta^2 \right] \left[f_{\text{FD}}(\epsilon) - f_{\text{FD}}(\epsilon_+) \right]$$ \hspace{1cm} (27)

and

$$\sigma_2(\gamma \gg \Delta_0, \Gamma \to 0, T, \omega)$$

$$= \frac{\sigma_n}{\omega_T} \int_{-\infty}^{\infty} d\epsilon \frac{\text{tanh} \frac{\epsilon + \omega_T}{2k_B T}}{2k_B T} \left[\text{Re} g(\epsilon + \omega_T) + \Delta^2 \right]$$ \hspace{1cm} (28)
for \(h\omega < \Delta \). Here, \(\epsilon_- = \epsilon - h\omega \).

Now, it would be evident that the famous handy-formulas, Eqs. (22) and (28), can apply only to the special case and are usually not enough for quantitative understanding of dissipation in real devices, which generally include some pair breakers. The previous studies used Eqs. (23), (25) and their non-equilibrium version and investigated the effects of Dynes subgap states, strong rf-current, magnetic impurities, and proximity-coupled normal layer at the surface [21, 22, 38, 46]. In the following, we use Eq. (17), which can be applied to a superconductor with an arbitrary impurity concentration, to investigate how a combination of subgap states (\(\Gamma \)) and nonmagnetic impurities (\(\gamma \)) affects \(\sigma \) and \(Q \).

B. Temperature dependence of \(\sigma_1 \) and coherence peak

First, consider the effect of the Dynes \(\Gamma \) and the nonmagnetic-impurity scattering rate \(\gamma \propto \xi_{0}/\ell_{\text{imp}} \) on the temperature dependence of \(\sigma_1 \) and the coherence peak. See also the recent study [44], in which they studied \(\sigma_1(T) \) for \(\omega \to 0 \).

To examine \(\sigma_1(T) \), we need \(\Gamma(T) \) too. Here we assume \(\Gamma \) is independent of \(T \) for simplicity. Actually, the temperature dependence of \(\Gamma \) depends on its microscopic origin (e.g., \(T^3 \) dependence [42] and constant \(\Gamma \) [43]) and then can depend on materials and surface processing. However, according to experiments so far [48, 89], \(\Gamma \) is nearly constant in some materials. Hence, the \(T \)-independent \(\Gamma \) is a somewhat reasonable assumption and would be a good starting point for investigating the temperature dependence of \(\sigma_1 \).

Shown in Fig. 5 are the temperature dependences of \(\sigma_1(\gamma, \Gamma, T, \omega) \) normalized by the real part of Drude’s ac conductivity \(\sigma_{11} = \sigma_n/[1 + (\omega\tau)^2] \). Fig. 5(a) is calculated for \(\Gamma/\Delta_0 = 0.05 \), the photon frequencies \(h\omega/\Delta_0 = 0.004 \), and several different impurity concentrations. As the material gets clean (as \(\gamma/\Delta_0 = \pi\xi_0/2\ell_{\text{imp}} \) decreases), the height of the coherence peak decreases. This result may be counter-intuitive, but it is consistent with the previous theory [44, 87] and supported by experiments [90]. Fig. 5(b) is calculated for the same \(\Gamma \) as (a) but a higher frequency (\(h\omega/\Delta_0 = 0.1 \)) and shows that \(\omega \) reduces the height of the coherence peak. Fig. 5(c) is calculated for the same frequency as (a) but for a smaller \(\Gamma \), which shows \(\Gamma \) increases the height of the coherence peak.

Shown in Fig. 5(d) is the comparison between (a) and (c). Interestingly, as first pointed out in Ref. [44], the temperature dependence \(\sigma_1 \) for a clean-limit superconductor does not depend on \(\Gamma \) and \(\gamma \) separately but on the ratio \(\Gamma/\gamma \) (see the curves for \(\Gamma/\gamma = 5 \) and 0.5). Note that this is not the case for a dirty superconductor (see the curve for \(\Gamma/\gamma = 0.05 \)).

C. Residual \(\sigma_1 \) at \(T \to 0 \)

At \(T \to 0 \), it is well-known that \(\sigma_1 \) of the idealized BCS superconductor (\(\Gamma \to 0 \)) approaches zero. On the other hand, a realistic quasiparticle spectrum expressed with a finite \(\Gamma \) results in a residual \(\sigma_1 \) due to a finite subgap states at the Fermi level [2, 3, 21, 38, 44, 48]. Suppose \(h\omega/\Delta_0 \ll 1 \). Then, replacing \(\tanh(\epsilon/2k_B T) \) with the

FIG. 5. Temperature dependence of \(\sigma_1(\gamma, \Gamma, T, \omega) \). (a) \(\Gamma/\Delta_0 = 0.05 \) and \(h\omega/\Delta_0 = 0.004 \). (b) A higher frequency: \(h\omega/\Delta_0 = 0.1 \). (c) A smaller Dynes \(\Gamma \): \(\Gamma/\Delta_0 = 0.05 \). The impurity concentration is varied from \(\gamma/\Delta_0 = 0.001 \) (clean limit) to \(\gamma/\Delta_0 = 10 \) (dirty limit). (d) Comparison between (a) and (c). The solid-pink and dashed-black curves correspond to (a) and (c), respectively. The solid and dashed curves for \(\Gamma/\gamma = 5 \) and 0.5 almost overlap. See also the previous study [44] for the results of \(\omega \to 0 \).

FIG. 6. (a) Residual \(\sigma_1 \) at \(T \to 0 \) as functions of the nonmagnetic-impurity scattering rate calculated for \(\Gamma/\Delta_0 = 0.01 \). The dashed-black curve is the numerical result for \(T/T_{c0} = 0.001 \) and \(h\omega/\Delta_0 = 0.1 \). The solid-green curve, which overlays the dashed-black curve, is calculated from Eq. (29). (b) Residual \(\sigma_1 \) at \(T \to 0 \) as functions of the nonmagnetic-impurity scattering rate for different \(\Gamma \).
Heaviside step function and using \(g_{\pm} = \Gamma/\sqrt{T^2 + \Delta^2}, \)
\(f_{\pm} = \Delta/\nu\sqrt{T^2 + \Delta^2}, \) and \(d_{\pm} = i\nu\sqrt{T^2 + \Delta^2} + i\gamma, \) Eq. (17) reduces to
\[
\sigma_1(\gamma, \Gamma, T, \omega)|_{T \to 0} = \sigma_n \frac{\gamma + \Gamma}{\gamma + \sqrt{T^2 + \Delta^2} \Gamma^2 + \Delta^2} \tag{29}
\]
Here, \(\Delta = \Delta(T) \) depends on the type of device, but around a few hundred GHz. Operating frequencies of devices are typically have the gap frequencies \(\Delta_0 \) range \(\sim 0.1 \) to \(\sim 1-10 \text{GHz} \) and satisfy \(\Delta \ll \Delta_0 \). Hence, we may consider that a typical operating condition of the low-frequency and low-temperature regime: the category of the low-frequency and low-temperature superconductor calculated for different nonmagnetic-impurity scattering rate \(\gamma/\Delta_0 = \pi\xi_0/2\ell_{\text{imp}} \gg 1 \). Note that \(\sigma_n \) depends on electron relaxation time: \(\sigma_n \propto \tau \).

FIG. 7. The dissipative conductivity \(\sigma_1 \) as functions of the photon frequency \(\omega \). (a) \(\sigma_1 \) of a nearly-ideal (\(\Gamma/\Delta_0 = 0.001 \)) superconductor calculated for different nonmagnetic-impurity scattering rate \(\gamma/\Delta_0 = \pi\xi_0/2\ell_{\text{imp}} \) from the clean limit to the dirty limit. (b) \(\sigma_1 \) of a superconductor with strongly-smeared gap-peaks (\(\Gamma/\Delta_0 = 0.1 \)) calculated for different \(\gamma \). (c) \(\sigma_1 \) of a clean-limit (\(\gamma/\Delta_0 = 0.005 \)) superconductor calculated for different Dynes \(\gamma \). (d) \(\sigma_1 \) of a dirty-limit (\(\gamma/\Delta_0 = 5 \)) superconductor calculated for different Dynes \(\Gamma \).

D. Moderately low-temperature regime

\((\hbar \omega \ll k_B T \ll \Delta_0) \)

Type-II superconductors used for superconducting devices typically have the gap frequencies \(\Delta_0/2\pi\hbar \gtrsim 1 \) to \(10 \text{GHz} \). Operating frequencies of devices are around \(\sim 1-10 \text{GHz} \) and satisfy \(\hbar \omega \ll \Delta_0 \). The operating temperature depends on the type of device, but almost all devices satisfy \(k_B T < 0.2k_B T_c \approx 0.1 \Delta_0 \ll \Delta_0 \). Hence, we may consider that a typical operating condition of superconducting microwave devices falls into the category of the low-frequency and low-temperature regime: \(\hbar \omega < \Delta_0 \) and \(k_B T < \Delta_0 \). In particular, when \(\hbar \omega < k_B T < \Delta_0 \), \(\sigma_1 \) is mainly determined by thermally activated quasiparticles and is sensitive to the quasiparticle spectrum as shown below.

First, consider the idealized (\(\Gamma \to 0 \)) BCS superconductor in the dirty limit (\(\gamma/\Delta_0 = \pi\xi_0/2\ell_{\text{imp}} \gg 1 \)). When \(\hbar \omega \ll \Delta_0 \) and \(k_B T < \Delta_0 \), the main contribution to the integral in Eq. (27) comes from a narrow strip of energy range \(0 < \epsilon \ll k_B T (\ll \Delta) \). Here, we defined \(\epsilon = \omega - \Delta \). Then, the factor \(\epsilon^2 - \Delta^2 \) reduces to \(\approx 2k_B T \), the distribution function reduces to \(f_{FD}(\epsilon) - f_{FD}(\epsilon + \hbar \omega) \approx e^{-\Delta/k_B T}e^{-\epsilon/k_B T}(1 - e^{-\hbar \omega/k_B T}) \), and then Eq. (27) results in the famous handy-formula [3, 5]:
\[
\sigma_{1\text{dirty}}/\sigma_n = (4\Delta/\hbar \omega)e^{-\Delta/k_B T} \sinh(\hbar \omega/2k_B T)K_0(\hbar \omega/2k_B T),
\]
where \(K_0(\hbar \omega/2k_B T) \) reduces to \(\approx \ln(4k_B T/\epsilon \nu \hbar \omega) \) when \(\hbar \omega \ll k_B T \). Hence, we find \(\sigma_{1\text{dirty}} \propto \ln(1/\omega) \). However, as materials get clean, \(\sigma_1 \) exhibits a much different behavior from the dirty limit. Applying the similar calculation as above to Eq. (17), we find \(\sigma_1^{\text{clean}} \propto \omega^{-2} \) when \(\hbar \omega \ll k_B T < \Delta_0 \). Fig. 7 (a) shows \(\sigma_1 \) of a nearly-ideal (\(\Gamma/\Delta_0 = 0.001 \)) superconductor as functions of \(\omega \) for different impurity concentrations from the clean limit (black) to the dirty limit (red). A dirty-limit superconductor (red) exhibits \(\ln(1/\omega) \) dependence (see the red curve), while a clean-limit superconductor (black) exhibits \(\omega^{-2} \) dependence at \(\hbar \omega \ll \epsilon \ll \Delta \), where the clean-limit assumption is no longer appropriate.

Finite subgap states can drastically change the \(\omega \) dependence of \(\sigma_1 \). Fig. 7 (b) is an example calculated for significantly smeared DOS peaks (\(\Gamma/\Delta_0 = 0.1 \)), in which \(\sigma_1 \) is almost independent of \(\omega \). Rather than such a large \(\Gamma \) (\(> k_B T \)), a relatively small \(\Gamma \) (\(\ll k_B T < \Delta_0 \)) induces nontrivial effects. Fig. 7 (c) and (d) are \(\sigma_1 \) for a clean and a dirty superconductor, respectively, calculated for different \(\Gamma \). In both cases, \(\sigma_1 \) for low-frequency regions (\(\hbar \omega \ll k_B T \)) decreases as \(\Gamma \) in-
creases, takes the minimum when \(\Gamma/\Delta_0 \sim 0.01-0.1 \), and then increases with \(\Gamma \).

Figs. 8(a) and (b) show \(\sigma_1 \) as functions of Dynes \(\Gamma \). In both the clean- and dirty-limit cases, the optimum value (\(\Gamma_0 \)) minimizes \(\sigma_1 \). In the clean (dirty) limit, \(\sigma_1(\Gamma) \) is \(\approx 90\% \) (40\%) smaller than that of the idealized (\(\Gamma \to 0 \)) BCS superconductor. These results can be qualitatively explained as follows. At moderately low temperatures, \(\hbar \omega < k_B T < \Delta_0 \), \(\sigma_1 \) is mainly determined by thermally activated quasiparticles and sensitive to the broadening of the DOS. For the dirty limit, the integral of the broadened quasiparticle spectrum with width \(\sim \Gamma > \hbar \omega \) yields \(\sigma \propto \log(1/\Gamma) \) [3, 21, 38, 46]. As \(\Gamma \) increases, \(\sigma_1 \) logarithmically decreases [see the slope at \(\Gamma \lesssim 0.01 \) in Fig. 8(b)]. In the clean limit, in addition to the broadened quasiparticle-spectrum, the \(d \) factor contributes to the integral, resulting in a sharper drop of \(\sigma_1 \propto \Gamma^{-1/2} \log(1/\Gamma) \) [see the slope at \(\Gamma \lesssim 0.05 \) in Fig. 8(a)].

According to Eq. (22), we have

$$
\sigma_2(\gamma, \Gamma, T, \omega) = \frac{1}{\omega \mu_0 \lambda^2(\gamma, \Gamma, T)},
$$

for \(\hbar \omega \ll \Delta_0 \). Hence the results are already shown in Figs. 3 and 4. Here we do not repeat the calculations of \(\sigma_2 \). See also Refs. 44, 48.

E. Quality factor and surface resistance

The electromagnetic response of a superconductor is generally nonlocal [17]. However, for an extreme type-II superconductor (\(\lambda \gg \xi \)), a calculation reduces to a local problem, and the surface impedance \(Z_s \) is expressed with the complex conductivity. When \(\sigma_1/\sigma_2 \ll 1 \) and the thickness of the material is larger than \(\lambda \), we have

$$
Z_s = R_s - jX_s = R_s + jX_s,
$$

$$
R_s = \frac{1}{2} \mu_0 \omega^2 \lambda^3 \sigma_1,
$$

$$
X_s = \sqrt{\frac{\mu_0 \omega}{\sigma_2}} = \mu_0 \omega \lambda.
$$

The quality factor \(Q \) can be expressed with these quantities. Remind \(Q \) is defined by \(Q = \omega U/P \). Here, \(P = (1/2) \int R_s |H|^2 dS \) and \(U = (\mu_0/2) \int |H|^2 dV \) are the dissipation and the stored energy in the cavity, and \(dS \) and \(dV \) represent the area element and the volume element, respectively. Then, we have

$$
Q = \frac{G}{R_s},
$$

$$
G = \frac{\mu_0 \omega}{\mu_0 \omega} \int \frac{|H|^2 dV}{\int |H|^2 dS},
$$

when \(R_s \) is uniform on the inner surface of the cavity. We can calculate \(R_s \) using the results of Secs. III–IV and Eq. (33).

Shown in Fig. 9(a) is \(R_s \) as functions of \(T \) for different impurity concentrations. Here, the normalization factor \(R_0 \) is given by

$$
R_0 = \frac{1}{2} \mu_0 \omega \lambda^2 \sigma_0 = \frac{\mu_0 \Delta_0 \lambda_0}{\hbar}.
$$

For instances, \(R_0 \simeq 0.5 \Omega \) and \(\simeq 0.8 \Omega \) for Nb$_3$Sn and NbTiN, respectively. At higher temperatures, a dirty superconductor (red) exhibits smaller \(R_s \). At lower temperatures, however, \(R_s \) of a clean superconductor (blue) becomes smaller than the red curve. Although the residual \(\sigma_1 \) at \(T \to 0 \) decreases as material gets dirtier (see Fig. 6), the contribution from \(\lambda^3 \) significantly pushes up \(R_s \) of a dirty superconductor. Shown in Fig. 9(b) is the subgap-state-induced residual surface resistance \(R_{res} = \lim_{T \to 0} R_s \) as functions of the nonmagnetic-impurity scattering rate \(\gamma/\Delta_0 = \pi \xi_0/2 \ell_{imp} \) (solid curves). \(R_{res} \) is a monotonic decreasing function of \(\gamma \) and \(\Gamma \). For \(\Gamma/\Delta_0 \ll 1 \) and \(\gamma/\Delta_0 \ll 1 \) (clean limit), we find an analytical formula of \(R_{res} \) for a clean supercon-
The dotted curves are calculated from Eq. (39), here, we find
\[
P^\text{dirty}_{\text{res}} = \frac{R_0}{\pi \sqrt{2\pi}} \left(\frac{h \omega}{\Delta_0} \right)^2 \left(\frac{\Gamma}{\Delta_0} \right)^2 \left[1 + \frac{7}{2} + \frac{3}{5} \right] \frac{\Gamma}{\Delta_0}. \tag{39}
\]

The dotted curves are calculated from Eq. (39) and agree with the numerical results (solid curves) at \(\gamma/\Delta_0 \lesssim 1 \). For \(\Gamma/\Delta_0 < 1 \) and \(\gamma/\Delta_0 \gg 1 \) (dirty limit), using Eqs. (30), we find
\[
P^\text{dirty}_{\text{res}} = \frac{R_0}{\pi \sqrt{2\pi}} \left(\frac{h \omega}{\Delta_0} \right)^2 \left(\frac{\Gamma}{\Delta_0} \right)^2 \left[1 + \frac{7}{2} + \frac{3}{5} \right] \frac{\Gamma}{\Delta_0}. \tag{39}
\]

Now we investigate how to minimize \(R_s \) (i.e., maximize \(Q \)). Shown in Fig. 11 (a) is \(R_s \) as functions of nonmagnetic-impurity scattering-rate \(\gamma/\Delta_0 = \pi \xi_0 / 2\ell_{\text{imp}} \). The navy curve is calculated for a nearly ideal BCS superconductor (\(\Gamma / \Delta_0 = 0.001 \)), whose minimum locates at \(\gamma/\Delta_0 \approx 3 \). Its minimum locates at \(\gamma/\Delta_0 \approx 0.01 \) (blue). The black stars are the minimums.

3.7 GHz < \(f < 75 \) GHz and 3.4 GHz < \(f < 68 \) GHz for Nb\textsubscript{3}Sn and NbTiN, respectively. This frequency-independent \(R_s \) comes from the \(\omega^{-2} \) dependence of \(\sigma_1 \) in the clean limit (see Fig. 7 canceling out the \(\omega \) dependence of \(R_s \propto \omega^2 \sigma_1 \)). Shown in Fig. 10 (b) is calculated for different Dynes \(\Gamma \). As \(\Gamma \) increases, the plateau shrinks and disappears at \(\Gamma / \Delta_0 \approx 0.05 \). Only nearly ideal \(\Gamma / \Delta_0 \ll 1 \) clean-limit \(\sigma_1 \) superconductors exhibit the plateau. It should be noted that this result is applicable to extreme type-II superconductors (\(\lambda \gg \xi \)), while pure Al and pure Nb, which are popular resonator-materials, do not fall into this category.

Remind that we have found that \(R_s \) of a clean \(\gamma/\Delta_0 \ll 1 \) and nearly-ideal \(\Gamma / \Delta_0 \ll 1 \) superconductor can be frequency independent for a wide frequency range (see Fig. 11). For instance, the condition \(\gamma/\Delta_0 = \pi \xi_0 / 2\ell_{\text{imp}} = 0.001 \) yields the frequency plateau with \(R_s / R_0 \approx 1 \times 10^{-6} \), which is one order of magnitude larger than the global minimum for \(h \omega / \Delta_0 = 0.005 \) [see the star
V. DEPAIRING CURRENT DENSITY

The depairing current density J_d is the maximum value of the supercurrent density. To obtain J_d, we need to solve Eq. (1) and calculate the current density. The solution for $|q| > 0$ is given by

$$g_m = \frac{a + i \cos \theta}{\sqrt{(a + i \cos \theta)^2 + b^2}}, \quad (41)$$

$$f_m = \frac{b}{\sqrt{(a + i \cos \theta)^2 + b^2}}. \quad (42)$$

Here a, b, (g_m), and (f_m) are given by

$$\hbar \omega_m + \Gamma + \langle g_m \rangle \gamma - \frac{\pi s}{2} a = 0, \quad (43)$$

$$\Delta + \langle f_m \rangle \gamma - \frac{\pi s}{2} b = 0, \quad (44)$$

$$\langle g_m \rangle^4 + (a^2 + b^2 - 1)(\langle g_m \rangle^2 - a^2 = 0, \quad (45)$$

$$\frac{\langle f_m \rangle}{b} = \tan^{-1} \left(\frac{\langle g_m \rangle}{a} \right), \quad (46)$$

and $\Delta = \Delta(s, \gamma, \Gamma, T)$ satisfies Eq. (3). The current density can be calculated from

$$\frac{J}{\Delta_0} = -\frac{\sqrt{6\pi}k_B T e N_0}{\Delta_0} \sum_{\omega_m > 0} \int_0^1 dc \{ c \sin u(c) \sin v(c) \}. \quad (47)$$

Here, $u + iv = \tan^{-1} [b/(a + ic)]$, $c = \cos \theta$, $J_0 = H_{c0}/\lambda_0$, $H_{c0} = \Delta_0 \sqrt{\lambda_0/\mu_0}$ is the thermodynamic critical field of the idealized BCS superconductor ($\Gamma \to 0$) in the zero-current state, and $\lambda_0 = \lambda(0, 0, 0)$ is the zero-temperature ($T \to 0$) penetration depth of the idealized ($\Gamma \to 0$) clean-limit ($\gamma \to 0$) BCS superconductor in the zero-current state (see also Sec. III.A).

Let us briefly review the depairing current density for the idealized ($\Gamma \to 0$) BCS superconductor. Fig. 12 shows the pair potential Δ and the current density J as functions of the superfluid momentum $q/q_0 = s/\Delta_0$ for the idealized BCS superconductor ($\Gamma \to 0$) in the clean limit ($\gamma \to 0$) calculated for different temperatures. When $|q|$ is small, the current pair-breaking effect is limited [Fig. 12 (a)], and J linearly increases with $|q|$ [Fig. 12 (b)]. However, as $|q|$ increases, the reduction of Δ becomes rapid [Fig. 12 (a)], and J ceases to increase [Fig. 13 (b)].

The maximum value of J (see the blob) is the depairing current density $J_d(s, \gamma, \Gamma, T)$. Interestingly, when $T/T_{c0} \ll 1$, a finite $|q|$ little affects Δ up to a large momentum close to the depairing momentum. For $\gamma = \Gamma = T = 0$ (i.e., the black curve), the solution is well-known [13, 13, 20].

The pair potential $\Delta = \Delta(s, 0, 0, 0)$ is given by

$$\ln \frac{\Delta}{\Delta_0} = \begin{cases} 0 \quad (s/\Delta \leq 2/\pi) \\ -\cosh^{-1} \frac{s}{2\Delta} + \sqrt{1 - (2\Delta/\pi s)^2} \quad (s/\Delta > 2/\pi) \end{cases} \quad (48)$$

and the current density $J = J(s, 0, 0, 0)$ is given by

$$\frac{J}{\Delta_0} = \frac{\pi s}{6\Delta_0} \left[1 - \{1 - (2\Delta/\pi s)^2\}^{3/2} \quad (s/\Delta \leq 2/\pi) \right] \quad (49)$$

which reaches the depairing current density,

$$J_d(0, 0, 0) = 0.826 \frac{H_{c0}}{\lambda_0}, \quad (50)$$

at the depairing momentum $q_d/q_0 = s_d/\Delta_0 = 0.655$. According to Eq. (43), Δ is unaffected by the superfluid flow for $q/q_0 = s/\Delta_0 \leq 0.637$, which is very close
to the depairing momentum. The nonexistence of current pair-breaking for a broad range of \(q \) is the well-known anomalous feature of a clean-limit superconductor at \(T/T_c \ll 1 \). It should be noted that this feature disappears as \(T \) increases (see the red curve); also impure superconductors do not exhibit such an anomalous feature even at \(T \to 0 \) (see the dirty-limit results \cite{38, 39, 84, 49} and Fig. 13). Shown in Fig. 13 are \(J(q) \) and \(\Delta(J) \) of the idealized BCS superconductor (\(\Gamma \to 0 \)) calculated for different impurity concentrations. As \(\gamma \) increases (as materials get dirty), \(J_d \) and \(\Delta(J)|_{J=J_d} \) decrease: nonmagnetic impurities become pair breakers and significantly impact \(\Delta \) in the current-carrying state, in contrast to their pair-conserving nature in the zero-current state (see Sec. II B).

Shown in Fig. 13 are the effects of Dynes \(\Gamma \) on \(J(q) \) and \(\Delta(J) \). As \(\Gamma \) increases, \(J_d \) and \(\Delta \) decrease. In contrast to nonmagnetic impurities, Dynes \(\Gamma \) is always pairbreaking even in the zero-current state as shown in Sec. II B compare Fig. 13 (b) with Fig. 13 (b).

Fig. 15 (a) shows \(J_d \) as functions of the nonmagnetic-impurity scattering rate \(\gamma/\Delta_0 = \pi \xi_0/2 \ell_{\text{imp}} \); \(J_d \) decreases as \(\gamma \) increases (see also Fig. 13). At \(\gamma/\Delta_0 \gtrsim 1 \), we have \(J_d \propto \gamma^{-1/2} \), consistent with the dirty-limit result \cite{39, 84}.

\begin{equation}
J_d(\gamma \gg \Delta_0, \Gamma, T) = C(\Gamma, T) \frac{H_{\text{d0}}}{\lambda_{0, \text{dirty}}} \propto \frac{1}{\sqrt{\gamma}} \tag{51}
\end{equation}

Here, \(\lambda_{0, \text{dirty}} = \sqrt{\hbar \rho_{\text{d0}}/\pi \mu_0 \Delta_0} \propto \sqrt{\gamma} \) is the zero-temperature penetration depth of the idealized (\(\Gamma \to 0 \)) dirty-limit BCS superconductor for the zero-current state (see also Sec. III A), and the coefficient \(C(\Gamma, T) \) can be calculated from the microscopic theory, e.g., \(C(0, 0) = 0.595 \) and \(C(0, T) \) are calculated some decades ago \cite{18, 19}; \(C(\Gamma, T) \) is calculated in Refs. \cite{38, 39}. Fig. 15 (b) shows \(J_d \) as functions of Dynes \(\Gamma \) for different impurity concentrations; \(J_d \) is significantly suppressed at \(\Gamma/\Delta_0 \gtrsim 0.1 \), where the pair-breaking scattering almost destroys the superconductivity.

VI. DISCUSSION

The effects of Dynes \(\Gamma \) and nonmagnetic-impurity scattering-rate \(\gamma \propto \xi_0/\ell_{\text{imp}} \) on various physical quantities relevant to superconducting devices have been investigated. Here, we summarize our results and discuss their implications for superconducting devices.

A. Kinetic inductance

In Sec. III we calculated the penetration depth \(\lambda \) and the kinetic inductance \(L_k \) taking the effects of \(\Gamma \) and \(\gamma \) into account and showed that \(\lambda \) and \(L_k \) are monotonic increasing functions of \(\Gamma \) and \(\gamma \) (see Figs. 3 and 4). Eq. (11) can evaluate \(\lambda \) for a nearly ideal (\(\Gamma/\Delta_0 \ll 1 \)) and clean (\(\gamma/\Delta_0 \ll 1 \)) BCS superconductor. Eqs. (12)-(14) give other convenient formulas for \(\lambda \). Combining these formulas with Eqs. (15) and (16), we get the analytical formulas for \(L_k \). Note that Eq. (13) is widely used for analyses of experimental data of superconducting devices, but it is applicable only to the idealized (\(\Gamma \to 0 \)) dirty-limit (\(\gamma/\Delta_0 = \pi \xi_0/\ell_{\text{imp}} \gg 1 \)) superconductor. To analyze a wide range of materials, Eqs. (11)-(10) or the numerical results (Figs. 3 and 4) would be helpful.

The reset time of SSPD is known to be limited by the kinetic inductance \(L_k \), and therefore nanowires with smaller kinetic inductances have been developed. On the other hand, a high kinetic inductance has also attracted attention in the quantum-circuit community; the so-called superinductor makes fluxonium qubit immune to charge fluctuations (see e.g., Ref. \cite{94}). According to our results, not only \(\gamma \) (impurity concentration) but also \(\Gamma \) increase \(L_k \). The effect of \(\Gamma \) on \(L_k \) would not be negligible. However, \(\Gamma \) in the material of SSPD, KID, and other quantum circuit is usually not measured. Measurements of \(\Gamma \) of circuit material using tunneling spectroscopy or recently proposed method to extract \(\Gamma \) from complex conductivity, which will be discussed in Sec. IV B, would give insight into a method to engineer \(L_k \).
B. T dependence of σ_1 and coherence peak

In Sec. [IVB] we studied the effects of Γ and γ on the T dependence of σ_1 and the coherence peak. The height of the coherence peak decreases as ω or $\ell_{\text{imp}}(\propto \gamma^{-1})$ increases, consistent with the previous theoretical study [44, 57] and experiment [90]. Note that the peak height decreases as the material gets clean. Also, a finite Γ reduces the peak height, consistent with the previous studies for the dirty-limit superconductor [38, 48].

The recent finding of Ref. [44] was also reproduced: the $\sigma_1(T)$ curve for a clean superconductor does not depend on Γ and γ separately but depends on the ratio Γ/γ [see Fig. 5 (d)]. Also, it is possible to extract Γ and γ by fitting experimental data with the theory as proposed in Ref. [44], in which they evaluated Γ and γ using the recent experimental data of SRF resonant cavities [45]. This method would apply to KID and other resonators for quantum technologies. Now, Γ of resonator material is routinely determined by Ref. [44], in which they evaluated Γ and γ for quantum technologies. Now, Γ of resonator material can also be determined by experiments: measuring Γ and γ using the recent theoretical studies for the dirty-limit superconductor [21, 22]. On the other hand, for the clean limit, $\sigma_1(\Gamma_s)$ and $\Gamma_s(\Gamma_s)$ are one order of magnitude smaller than those of the idealized dirty-limit BCS superconductor, consistent with the previous studies [21, 22].

These results can be tested by experiments: measure the temperature dependence of σ_1, extract Γ and γ from $\sigma_1(T)$ using Refs. [44, 45], and cool a resonator down until Q becomes independent of T. However, as shown in Eq. [49], factors other than the subgap-state-induced R_{res} can also contribute to Q. Such contributions should be reduced to a level ignorable as compared with $Q_{\text{TTS}}^{-1} = R_{\text{res}}/G$, which is typically $< 10^{-10}$ (see Sec. [IVB]). It would be difficult for a 2D resonator to detect Q_{TTS}^{-1}, in which Q_{TTS} always overwhelms Q_{TTS}^{-1}. High-Q SRF cavities [54] may be helpful for this purpose.

C. σ_1 and R_s at a very low T

In Sec. [IVC] and [V], we calculated the subgap-state-induced residual-dissipative-conductivity limit $\tau \rightarrow 0 \sigma_1$ and residual surface resistance $R_{\text{res}} = \lim_{\tau \rightarrow 0} R_s$, which originates from a finite density of subgap states in the vicinity of the Fermi level (see Figs. [6] and [9]). Eqs. [29] and [30] are formulas for $\lim_{\tau \rightarrow 0} \sigma_1$. Also, we derived the formulas for R_{res}, Eqs. [38] and [39], which give good approximations of the numerical results of R_{res} [see Fig. 9 (b)].

These results can be tested by experiments: measure the temperature dependence of σ_1, extract Γ and γ from $\sigma_1(T)$ using Refs. [44, 45], and cool a resonator down until Q becomes independent of T. However, as shown in Eq. [49], factors other than the subgap-state-induced R_{res} can also contribute to Q. Such contributions should be reduced to a level ignorable as compared with $Q_{\text{TTS}}^{-1} = R_{\text{res}}/G$, which is typically $< 10^{-10}$ (see Sec. [IVB]). It would be difficult for a 2D resonator to detect Q_{TTS}^{-1}, in which Q_{TTS} always overwhelms Q_{TTS}^{-1}. High-Q SRF cavities [54] may be helpful for this purpose.

D. σ_1 and R_s at a moderately low T

In Sec. [IVB] and [V], we studied σ_1 and R_s at moderately-low-temperatures, $\hbar \omega < k_B T < \Delta_0$.

It was found that σ_1 of a dirty superconductor exhibits the well-known frequency dependence $\propto \ln(1/\omega)$, while that of a nearly-ideal ($\Gamma/\Delta_0 \ll 1$) clean ($\gamma/\Delta_0 = \pi \xi_0 / 2 \ell_{\text{imp}} \ll 1$) superconductor exhibits ω^{-2} dependence (see Fig. 7), resulting in the frequency-independent surface resistance R_s, shown in Fig. [10]. For instance, R_s of a nearly-ideal ($\Gamma/\Delta_0 = 0.001$) clean-limit ($\gamma/\Delta_0 = 0.001$) superconducting resonator made from a large-λ/ξ material (e.g., Nb$_3$Sn, NbTiN) is frequency-independent between a few GHz and several tens of GHz (e.g., $3.7 \text{ GHz} \lesssim \omega \lesssim 75 \text{ GHz}$ for Nb$_3$Sn). Roughly speaking, the red curve in Fig. [10] (a) corresponds to a dirty Nb$_3$Sn cavity operated at $T \sim 4 \text{ K}$. When the resonant frequency is $f \sim 1 \text{ GHz}$, which corresponds to $\hbar \omega/\Delta_0 = 10^{-3}$, its surface resistance is $R_s \sim \Omega$ from Fig. [10] (a), consistent with experiments. The frequency-independent R_s is realized when the material is nearly ideal and clean (the black curve). R_s of the black curve is one order of magnitude larger than the red curve at $\hbar \omega/\Delta_0 \sim 10^{-2}$ ($\sim 10 \text{ GHz}$), where $R_s \sim \mu \Omega$. The red curve increases in proportion to ω^2, while the black curve remains $R_s \sim \mu \Omega$ even at $\hbar \omega/\Delta_0 \sim 0.1$ ($\sim 100 \text{ GHz}$). Hence, if there is a demand for a compact cavity with the resonant frequency \sim a few tens GHz, it should be made from a nearly-ideal ($\Gamma/\Delta_0 \ll 1$) clean-limit (γ/Δ_0) type-II superconductor to minimize R_s.

Also, it was found that σ_1 and R_s are non-monotonic functions of Γ, and there exists the optimum value Γ_s which minimizes σ_1 and R_s. For the dirty limit, $\sigma_1(\Gamma_s)$ and $R_s(\Gamma_s)$ are a few tens of % smaller than those of the idealized dirty-limit BCS superconductor, consistent with the previous studies [21, 22]. On the other hand, for the clean limit, $\sigma_1(\Gamma_s)$ and $R_s(\Gamma_s)$ are one order of magnitude smaller than those of the idealized clean-limit BCS superconductor (see Figs. [8] and [11]). It has been well-known that the optimum impurity-scattering rate $\gamma/\Delta_0 \sim \xi_0 / \ell_{\text{imp}} \sim 1$ minimizes R_s. Such an R_s minimized by the optimum γ can be further reduced by the optimum Γ (see Fig. [11]). These results suggest that we can significantly reduce R_s by tuning Γ. While the physics and materials mechanisms behind Γ are not well understood, comparison of experimentally determined Γ (e.g., using tunneling spectroscopy [23] or complex conductivity measurement [44, 45]) and various materials treatments can give useful information on how to engineer Γ.

E. Depairing current density

In Sec. [V] we studied the depairing current density J_d. As shown in Fig. [10], J_d is a monotonically decreasing function of Γ and $\gamma \propto \ell_{\text{imp}}^{-1}$. Hence, we need both Γ and γ to know J_d of the materials of devices or cables. As repeatedly mentioned above, tunneling spectroscopy can determine Γ and the T dependence of σ_1 [44, 45] can determine Γ and γ. Combining these measurements of Γ and γ with those of J_d, such as Refs. [92, 93], we can test the theory. Also, combining various materials treatments and the Γ measurement can give beneficial information on ameliorating J_d which is practically important to ex-
amine the quality of superconducting cable and a thin film laminated on the inner surface of a superconducting heterostructure cavity.

[1] H. Padamsee, 50 years of success for SRF accelerators-a review, Supercond. Sci. Technol. 30, 053003 (2017).
[2] A. Gurevich, Superconducting Radio-Frequency Fundamentals for Particle Accelerators, Reviews of Accelerator Science and Technology, 5, 119 (2012).
[3] A. Gurevich, Theory of RF superconductivity for resonant cavities, Supercond. Sci. Technol. 30, 034004 (2017).
[4] S. Eley, A. Glatz and R. Willa, Challenges and transformative opportunities in superconductor vortex physics, J. Appl. Phys. 130, 050901 (2021).
[5] J. Zmuidzinas, Superconducting Microresonators: Physics and Applications, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).
[6] T. M. Klapwijk and A. V. Semenov, Engineering physics of superconducting hot-electron bolometer mixers, IEEE Trans. Terahertz Sci. Technol. 7, 627 (2017).
[7] J. Zmuidzinas and P. L. Richards, Superconducting detectors and mixers for millimeter and submillimeter astrophysics, in Proceedings of the IEEE, 92, 1597 (2004).
[8] C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).
[9] A. Engel, J. J. Renema, K. Il'in, and A. Semenov, Supercond. Sci. Technol. 28, 114003 (2015).
[10] G. Wendin, Rep. Prog. Phys. 80, 106001 (2017).
[11] E. Grumbling and M. Horowitz, Quantum computing: progress and prospects. (The National Academy Press, Washington DC, 2019).
[12] M. Tinkham, Introduction to Superconductivity: Second Edition (Dover Publications, New York, 2004).
[13] P. G. de Gennes, Superconductivity of metals and alloys (Westview Press, Colorado, 1999).
[14] A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier, North-Holland, 1988).
[15] K. Maki, Gapless superconductivity, in Superconductivity, edited by R. D. Parks (Marcel Dekker, Inc., New York, 1969), vol. 2, p. 1035.
[16] N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford University Press, 2001).
[17] D. C. Mattis and J. Bardeen, Theory of the Anomalous Skin Effect in Normal and Superconducting Metals, Phys. Rev. 111, 412 (1958).
[18] K. Maki, On persistent currents in a superconducting alloy I, Prog. Theor. Phys. 29, 10 (1963).
[19] M. Yu Kupriyanov and V. F. Lukichev, Temperature dependence of pair-breaking current in superconductors, Fizika Nizkikh Temperatur 6, 445 (1980).
[20] F. Pei-Jen and A. Gurevich, Effect of impurities on the superheating field of type-II superconductors, Phys. Rev. B 85, 054513 (2012).
[21] A. Gurevich and T. Kubo, Surface impedance and optimum surface resistance of a superconductor with an imperfect surface, Phys. Rev. B 96, 184515 (2017).
[22] T. Kubo and A. Gurevich, Field-dependent nonlinear surface resistance and its optimization by surface nanostructuring in superconductors, Phys. Rev. B 100, 064522 (2019).
[23] J. Zasadzinski, Tunneling spectroscopy of conventional and unconventional superconductors, in The Physics of Superconductors, edited by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2003), Vol. 1, p. 591.
[24] A. Kamplpure, M. Mondal, M. Chand, A. Mishra, J. Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films, Appl. Phys. Lett. 96, 072509 (2010).
[25] Y. Noat, V. Cherkez, C. Brun, C. Carbiblet, F. Debontridder, K. Ilin, M. Siegel, A. Semenov, H. W. Hubers, and D. Roditchev, Unconventional superconductivity in ultrathin superconducting NbN films studied by scanning tunneling spectroscopy, Phys. Rev. B 88, 014503 (2013).
[26] P. Dhakal, G. Ciovati, G. R. Myneni, K. E. Gray, N. Groll, P. Maheshwari, D. M. McRae, R. Pike, T. Proslier, F. Stevie, R. P. Walsh, Q. Yang, and J. Zasadzinski, Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity, Phys. Rev. ST Accel. Beams 16, 042001 (2013).
[27] N. R. Groll, J. A. Klug, C. Cao, S. Altin, H. Claus, N. G. Becker, J. F. Zasadzinski, M. J. Pellin, and T. Proslier, Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition, Appl. Phys. Lett. 104, 092602 (2014).
[28] C. Becker, S. Posen, N. Groll, R. Cook, C. M. Schleputz, D. L. Hall, M. Liepe, M. Pellin, J. Zasadzinski, and T. Proslier, Analysis of Nb3Sn surface layers for superconducting radio-frequency cavity applications, Appl. Phys. Lett. 106, 082602 (2015).
[29] E. M. Lechner, B. D. Oli, J. Makita, G. Ciovati, A. Gurevich, and M. Iavarone, Electron Tunneling and X-Ray Photoelectron Spectroscopy Studies of the Superconducting Properties of Nitrogen-Doped Niobium Resonator Cavities Phys. Rev. Applied 13, 044044 (2020).
[30] T. P. Devereaux and D. Belitz, Quasiparticle inelastic lifetimes in disordered superconducting films, Phys. Rev. B 44, 4587 (1991).
[31] D. A. Browne, K. Levin, and K. A. Muttalib, Coulomb-induced anomalies in highly disordered superconductors: Application to tunneling, Phys. Rev. Lett. 58, 156 (1987).
[32] A. J. Bennett, Theory of the Anisotropic Energy Gap in Superconducting Lead, Phys. Rev. 140, A1902 (1965).
[33] A. I. Larkin and Y. N. Ovchinnikov, Density of states in inhomogeneous superconductors, Sov. Phys. JETP 34, 1144 (1972).
[34] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Impurity-induced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78, 373 (2006).
[35] J. S. Meyer and B. D. Simons, Gap fluctuations in inhomogeneous superconductors, Phys. Rev. B 64, 134516 (2001).
[36] R. C. Dynes, V. Narayananmurti, and J. P. Garno, Direct Measurement of Quasiparticle-Lifetime Broadening
in a Strong-Coupled Superconductor, Phys. Rev. Lett. 41, 1509 (1978).

[37] R. C. Dynes, J. P. Garno, G. B. Hertel, and T. P. Orlando, Tunneling Study of Superconductivity near the Metal-Insulator Transition, Phys. Rev. Lett. 53, 2437 (1984).

[38] T. Kubo, Weak-field dissipative conductivity of a dirty superconductor with Dynes subgap states under a dc bias current up to the depairing current density, Phys. Rev. Res. 2, 013302 (2020).

[39] T. Kubo, Superfluid flow in disordered superconductors with Dynes pair-breaking scattering: Depairing current, kinetic inductance, and superheating field, Phys. Rev. Res. 2, 033203 (2020).

[40] F. Vischi, M. Carrega, E. Strambini, S. D’Ambrosio, F. S. Bergeret, V. Y. Nazarov, and F. Giazotto, Coherent transport properties of a three-terminal hybrid superconducting interferometer, Phys. Rev. B 95, 054504 (2017).

[41] G. Tang, W. Belzig, U. Zulicke, and C. Bruder, Coherent properties of impure superconductors with Dynes pair-breaking processes, Appl. Phys. Lett. 104, 094519 (2021).

[42] A. Grasellino, A. Romanenko, Y. Trenikhina, M. Checchin, M. Martinello, A. Grassellino, D. A. Sergatskov, S. Posen, O. Melnychuk, and J. F. Zasadzinski, Quench-Induced Degradation of the Quality Factor in Superconducting Resonators, Phys. Rev. Applied 5, 044019 (2016).

[43] A. A. Mikhailovsky, S. V. Shulga, A. E. Karakozov, O. M. Herman, and R. Hlubina, Electromagnetic properties of single-cell cavity at cavity fabrication facility and results of performance tests, in Proceedings of IPAC2014, Dresden, Germany (JACoW, CERN, Geneva, 2014), p. 2519. doi:10.18429/JACoW-IPAC2014-WEPR0022

[44] A. Gurevich, Effect of low temperature baking in niobium superconducting radio frequency cavities, Phys. Rev. Accel. Beams 21, 032001 (2018).

[45] D. Longuevigne and A. Miyazaki, Impact of geometry on the magnetic flux trapping of superconducting accelerating cavities, Phys. Rev. Accel. Beams 24, 083101 (2021).

[46] A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolow, M. Awida, S. Belomestnykh, S. Posen, and A. Grassellino, Three-dimensional superconducting resonators at $T < 20 \text{mK}$ with photon lifetimes up to $\tau = 2 \text{s}$, Phys. Rev. Applied 13, 034032 (2020).

[47] S. Posen, A. Romanenko, A. Grassellino, O. S. Melnychuk, and D. A. Sergatskov, Ultralow surface resistance via vacuum heat treatment of superconducting radio-frequency cavities, Phys. Rev. Applied 13, 014024 (2020).

[48] H. Ito, H. Araki, K. Takahashi, and K. Umemori, Influence of furnace baking on Q-E behavior of superconducting accelerating cavities, Prog. Theor. Exp. Phys. 2021, 071G01 (2021).

[49] F. He et al. Medium-temperature furnace baking of 1.3 GHz 9-cell superconducting cavities at IHEP, Supercond. Sci. Technol. 34, 095005 (2021).

[50] R.-L. Geng, G. V. Ereemev, H. Padamsee, and V. D. Shemelin, High gradient studies for ILC with single cell re-entrant shape and elliptical shape cavities made of fine-grain and large-grain niobium, in Proceedings of PAC07, Albuquerque, New Mexico, USA (2007, JACoW), p. 2337.

[51] T. Kubo, Y. Ajima, H. Inoue, K. Umemori, Y. Watanabe, and M. Yamanaka, In-house production of a large-grain single-cell cavity at cavity fabrication facility and results of performance tests, in Proceedings of IPAC2014, Dresden, Germany (JACoW, CERN, Geneva, 2014), p. 2519. doi:10.18429/JACoW-IPAC2014-WEPR0022

[52] A. Grassellino, A. Romanenko, Y. Trenikhina, M. Checchin, M. Martinello, O. S. Melnychuk, S. Chandrasekaran, D. A. Sergatskov, S. Posen, A. C. Crawford, S. Aderhold, and D. Bice, Unprecedented quality factors at accelerating gradients up to 45 MV/m in niobium superconducting resonators via low temperature nitrogen infusion, Supercond. Sci. Technol. 30, 094004 (2017).

[53] P. Dhakal, S. Chetri, S. Balachandran, P. J. Lee, and G. Ciovati, Effect of low temperature baking in nitrogen on the performance of a niobium superconducting radio frequency cavity, Phys. Rev. Accel. Beams 21, 032001 (2018).

[54] A. Gurevich, Enhancement of rf breakdown field of superconductors by multilayer coating, Appl. Phys. Lett. 88, 012511 (2006).

[55] T. Kubo, Y. Iwashita, and T. Saeki, Radio-frequency electromagnetic field and vortex penetration in multilayered superconductors, Appl. Phys. Lett. 104, 032603 (2014).
A. Gurevich, Maximum screening fields of superconducting multilayer structures, AIP Adv. 5, 017112 (2015).

D. B. Liarte, S. Posen, M. K Transtrum, G. Catelani, M. Liepe, and J. P Sethna, Supercond. Sci. Technol. 30, 033002 (2017).

T. Kubo, Multilayer coating for higher accelerating fields in superconducting radio-frequency cavities: a review of theoretical aspects, Supercond. Sci. Technol. 30, 023001 (2017).

T. Kubo, Superheating fields of semi-infinite superconductors and layered superconductors in the diffusive limit: structural optimization based on the microscopic theory, Supercond. Sci. Technol. 34, 045006 (2021).

A-M. Valente-Feliciano, Superconducting RF materials other than bulk niobium: a review, Supercond. Sci. Technol. 29, 113002 (2016).

S. Posen and D. L. Hall, Nb3Sn superconducting radiofrequency cavities: fabrication, results, properties, and prospects, Supercond. Sci. Technol. 30, 033004 (2017).

T. Tan, M. A. Wolak, X. X. Xi, T. Tajima, and L. Civale, Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient, Sci. Rep. 6, 35879 (2016).

T. Junginger, S. H. Abidi, R. D. Maffett, T. Buck, M. H. Dehn, S. Heidet, R. Kiel, P. Kolb, D. Storey, E. Thoeng, W. Wasseraman, and R. E. Laxdal, Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation, Phys. Rev. Accel. and Beams 21, 032002 (2018).

C. Z. Antoine, M. Aburas, A. Four, F. Weiss, Y. Iwashita, H. Hayano, S. Kato, T. Kubo, and T. Saeki, Optimization of tailored multilayer superconductors for RF application and protection against premature vortex penetration, Supercond. Sci. Technol. 32, 085005 (2019).

S. Keckert, T. Junginger, T. Buck, D. Hall, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen, T. Prokscha, Z. Salman, A. Suter, and J. Knobloch, Critical fields of Nb3Sn prepared for superconducting cavities, Supercond. Sci. Technol. 32, 075004 (2019).

E. Thoeng, T. Junginger, P. Kolb, B. Matheson, G. Morris, N. Muller, S. Saminathan, R. Baartman, and R. E. Laxdal, Progress of TRIUMF Beta-SRF Facility for Novel SRF Materials, in Proceedings of SRF2019, Dresden, Germany (JACoW, CERN, Geneva, 2019), p. 966. doi:10.18429/JACoW-SRF2019-THP047

H. Ito, H. Hayano, T. Kubo, and T. Saeki, Vortex penetration field measurement system based on third-harmonic method for superconducting RF materials, Nucl. Instrum. Methods Phys. Res. A 955, 163284 (2020).

Z. Lin, M. Qin, D. Li, P. Shen, L. Zhang, Z. Feng, P. Sha, J. Miao, J. Yuan, X. Dong, C. Dong, Q. Qin, and K. Jin, Enhancement of the lower critical field in FeSe-coated Nb structures for superconducting radio-frequency applications, Supercond. Sci. Technol. 34, 015001 (2021).

S. Leith, M. Vogel, J. Fan, E. Seiler, R. Ries, and X. Jiang, Superconducting NbN thin films for use in superconducting radio frequency cavities, Supercond. Sci. Technol. 34, 025006 (2021).

I. H. Seneviratne, A. Gurevich, J. R. Delayen, A. -M. Valente-Feliciano, Measurements of Magnetic Field Penetration in Superconducting Materials for SRF Cavities, in Proceedings of IPA2021, Campinas, SP, Brazil (JACoW, CERN, Geneva, 2021), p. 1208. doi:10.18429/JACoW-IPA2021-MOPAB396

G. Eilenberger, Transformation of Gorkov’s equation for type II superconductors into transport-like equations, Z. Phys. 214, 195 (1968).

F. Marsiglio and J. P. Carbotte, Electron-phonon superconductivity, in The Physics of Superconductors, edited by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2003), Vol. 1, p. 73.

A. J. Annunziata, D. F. Santavicca, L. Frunzio, G. Catelani, M. J. Rooks, A. Frydman, and D. E. Prober, Nanotechnology 21, 445202 (2010).

J. R. Clem and V. G. Kogan, Phys. Rev. B 86, 174521 (2012).

S. B. Nam, Theory of electromagnetic properties of superconducting and normal systems. I, Phys. Rev. 156, 470 (1967).

W. Zimmermann, E. Brandt, M. Bauer, E. Seider, and L. Genzel, Optical conductivity of BCS superconductors with arbitrary purity, Physica C 183, 99 (1991).

F. Marsiglio, Coherence effects in electromagnetic absorption in superconductors, Phys. Rev. B 44, 5373 (1991).

D. Rainer and J. A. Sauls, Strong coupling theory of superconductivity, in Superconductivity: From Basic Physics to the Latest Developments, edited by P. N. Butcher and Y. Lu (World Scientific, Singapore, 1995), p. 45.

Szabo et al., Fermionic scenario for the destruction of superconductivity in ultrathin MoC films evidenced by STM measurements, Phys. Rev. B 93, 014505 (2016).

K. Steinberg, M. Scheffler, and M. Dresel, Quasiparticle response of superconducting aluminum to electromagnetic radiation, Phys. Rev. B 77, 214517 (2008).

C. Müller, J. H. Cole, and J. Lisenfeld, Towards understanding two-level-systems in amorphous solids: insights from quantum circuits, Rep. Prog. Phys. 82, 124501 (2019).

P. J. de Visser, D. J. Goldie, P. Diener, S. Withington, J. J. A. Baselmans, and T. M. Klapwijk, Evidence of a nonequilibrium distribution of quasiparticles in the microwave response of a superconducting aluminum resonator, Phys. Rev. Lett. 112, 047004 (2014).

J. P. Turneaure, J. Halbritter, and H. A. Schwettman, The Surface impedance of superconductors and normal conductors: the Mattis-Bardeen theory, Journal of Superconductivity, 4, 341 (1991).

D. Niepee, J. Burnett, and J. Bylander, Phys. Rev. Applied 11, 044014 (2019).

J. Romijn et al., Critical pair-breaking current in superconducting aluminum strips far below Tc, Phys. Rev. B 26 3648 (1982).

A. Y. Rusnov, M. B. S. Hesselberth, and J. Aarts, Depairing currents in superconducting films of Nb and amorphous MoGe, Phys. Rev. B 70 024510 (2004).