Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
proteins. This project seeks to determine which amino acids are necessary or present in the transmembrane segment as well as the juxtamembrane segments. It also seeks to characterize the physical orientation of the fibroblast growth factor receptor transmembrane segment in the membrane and how the amino acids are oriented within the helix. An exclusive database of transmembrane proteins and juxtamembrane domains was created to search for trends, homology, and potential phosphorylation sites. Even though only a very limited amount of homology was found, the transmembrane segment from the fibroblast growth factor receptor will be used as a model and synthesized and characterized through a variety of biophysical techniques such as multidimensional NMR spectroscopy, circular dichroism, and fluorescence spectroscopy.

2392-Pos Board B162
An Empirical Scoring Function for the Transmembrane Helical Protein Assembly
Jose C. Flores, Igor Kurnikov, Maria Kurnikova.
Carnegie Mellon University, Pittsburgh, PA, USA.
We present a coarse-grained scoring energy able to identify near-native transmembrane (TM) helices pairs of an ensemble generated by two different strategies: Rigid Body Monte Carlo simulations and a collision detection algorithm (Seetharaman et al., work in progress). We test the scoring energy on a set of four known native transmembrane helix pairs. Near native structures are identified with Cα root mean squared deviation (RMSD) lower than 3 Å. This empirical energy function is based on a knowledge based potential obtained from a representative set of globular protein structures. We compensate packing differences of globular and helical membrane protein structures by adding a residue solvent accessible area energy term based on a membrane partition scale. The empirical energy function is based on a knowledge based potential obtained from the yet small set of known membrane protein structures. This provides near-native structures of TM dimers without structural knowledge extracted from the yeast set of known membrane protein structures. This proposed method circumvents intensive membrane protein molecular dynamics simulations opening the possibility of further refinement of near-native TM structures through atomistic MD simulations.

2393-Pos Board B163
Structure-Functional Insight into Transmembrane Helix Dimerization by Protein Engineering, Molecular Modeling and Heteronuclear NMR Spectroscopy
Eduard Bocharov, Pavel Volynsky, Konstantin Mineev, Dmitry Lesovoy, Kirill Nadezhdin, Olga Bocharova, Marina Goncharuk, Sergey Goncharuk, Roman Efremov, Alexander Arseniev.
Shemyakin-Ovchinnikov Institute of Biorganic Chemistry RAS, Moscow, Russian Federation.
The interaction between transmembrane helices is of great interest because it directly determines biological activity of membrane proteins. Either de-stroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One of the most common forms of membrane proteins is a dimer containing two membrane-spanning helices associating laterally to form a tight complex. Development of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. Recent development of protein engineering, optical spectroscopy, molecular modeling and heteronuclear NMR techniques made it possible studies of the nature and mechanisms of important helix-helix interactions inside the membrane mimicking supramolecular complexes. Using a robust strategy we investigated recombinant transmembrane fragments from different families of bitopic membrane proteins including receptor tyrosine kinases, amyloid precursor and pro-apoptotic proteins, which play important roles in normal and pathological conditions of human organism by providing cell signaling, maintaining cellular homeostasis and controlling cell fate. We characterized thermodynamics of transmembrane helix association, diverse helix-helix packing interfaces and obtained detailed atomistic picture of the intra- and intermolecular (protein-protein, protein-lipid and protein-water) interactions, that along with the available biochemical data provided useful insights into the membrane protein functioning in norma and pathological conditions.

This work was supported by RFBR, the Program of RAS “MCB”, the Federal Target Programs “Scientific and Pedagogical Specialists of Innovation Russia (2009-2013)” and “Research and development in priority fields of Russian scientific and technological complex in 2007-2012”.

2394-Pos Board B164
Transmembrane Helix-Helix Interactions in the Human Single-Span Membrane Proteins
Christian L. Riedl, Jan Kirrbach, Sebastian Kube, Dieter Langosch.
1Technische Universität München, Freising, Germany,
2Ludwig-Maximilians-Universität München, München, Germany.
Most integral membrane proteins form non-covalent functional complexes that are frequently supported by sequence-specific interaction of transmembrane helices [1]. It has been suggested that non-covalent membrane protein multimerization may substitute for the frequently observed multi-domain organization of soluble proteins [2,3]. Here, we aligned human single-span membrane proteins with orthologs from other eukaryotes and examined the sidedness of transmembrane helices. We find that almost half of the human single-span membrane proteins possess a transmembrane helix with unilateral conservation. We propose unilateral conservation in most cases to indicate the presence of a helix-helix interface as well as the strength of interaction since it correlates well with experimentally determined self-affinities. This suggests that unilateral conservation is a good predictor of homotypic TMD interaction and underlines that transmembrane helix-helix interactions significantly contribute to protein assembly in the human single-span membrane proteome.

[1] Langosch D, Arkin IT (2009) Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 18:1343-1358.
[2] Grezinger B, Minin DP, DeLisi C, Metzger H (1986) Interaction between proteins localized in membranes. Proc Natl Acad Sci USA 83:6258-6262.
[3] Liu Y, Gerstein M, Engelmann DM (2004) Transmembrane protein domains rarely use covalent domain recombination as an evolutionary mechanism. Proc Natl Acad Sci USA 101:3495-3497.

2395-Pos Board B165
Self-Association of Transmembrane Domains of ErbB2 Receptors in Cholesterol-Containing Membranes
Manolis Doxastakis, Anupam Prakash, Lorant Janosi.
University of Houston, Houston, TX, USA.
The transmembrane domain of ErbB2 receptors presents two separate GxxxG motifs that are proposed to be connected to stability and activity of the dimer. Recently developed parallel Monte Carlo methods are employed to study the association of ErbB2 TM domains in cholesterol-containing membranes with coarse-grained models that retain a level of amino-acid specificity. Extensive sampling along separation between the two helices shows that GxxxG motifs play a critical role during the recognition stage. In pure phospholipid bilayers association occurs by contacts formed at the C-terminus promoted by the presence of phenylalanine residues. Helices subsequently rotate to eventually form a stable dimer favored by lipid entropic contributions. In contrast, at intermediate cholesterol concentrations a different pathway is followed that involves dimers with a weaker interface towards the N-terminus. However, at high cholesterol content, a switch towards the C-terminus is observed with an overall non-monotonic change of the dimerization affinity. This conformational switch modulated by cholesterol has important implications on the thermodynamic, structural and kinetic characteristics of helix-helix association in lipid membranes.

[1] Janosi L. and Doxastakis M., “Accelerating flat-histogram methods for potential of mean force calculations”, J. Chem. Phys., 131, 054105 (2009)
[2] Janosi L., Prakash A. and Doxastakis M., “Lipid-Modulated sequence-specific association of Glycophorin A in membranes”, Biophys. J., 99, 284-292 (2010)
[3] Prakash A., Janosi L. and Doxastakis M., “Self-association of models of transmembrane domains of ErbB receptors in a lipid bilayer”, Biophys. J., 99, 3657-3665 (2010)
[4] Prakash A., Janosi L. and Doxastakis M., “GxxxG motifs, phenylalanine and cholesterol guide the self-association of transmembrane domains of ErbB2 receptors”, Biophys. J., in press

2396-Pos Board B166
Assembling the Transmembrane Domain of Vpu from HIV-1
Wolfgang B. Fischer, Li-Hua Li, Hao-Jen Hsu.
National Yang-Ming University, Taipei, Taiwan.
Vpu from HIV-1s is an 81 amino acid monotopic viral membrane protein involved in the amplification of viral replication. Vpu is identified to down regulate membrane proteins of the host e.g. CD4, CD74, CD317 and BST-2/ Tetherin. Based on the findings that Vpu exhibits channel activity especially when reconstituted into lipid membranes the protein is also proposed to act as a viral channel forming protein (VCP) in vivo. How Vpu is supposed to form the channel is unknown.
An unbiased computational structural modelling approach is presented to address two potential routes building up bundles of Vpu, a sequential and simultaneous route. In a fine grained docking approach in combination with molecular dynamics simulations [1, 2] the transmembrane domain of Vpu is assembled. A ridge-of-alingenes motif [3] is likely to set the dimeric structure of the assembly. Independent of the assembly route lowest energy bundle structures adopt configurations with tryptophans (Trp-23) pointing inside the bundle. Applying short MD simulations structural stability of a series of bundles is assessed.

[1] J. Kräger, W.B. Fischer, Assembly of viral membrane proteins., J. Chem. Theory Comput., 5 (2009) 2503-2513.
[2] H.-J. Hsu, W.B. Fischer, In silico investigations of possible routes of assembly of ORF 3a from SARS-CoV., J. Mol. Mod., accepted (2011).
[3] W.B. Fischer, Vpu from HIV-1 on an atomic scale: experiments and computer simulations., FEBS Lett., 552 (2003) 39-46.

2397-Pos Board B167
Bioinformatic Analysis of Aquaporin Protein Lipid Requirements
Julie Bomhol1, Jesper S. Hansen1, Per Greisen2, Claus Helix-Nielsen1,2.
1Aquaporin A/S, Copenhagen, Denmark, 2Technical University of Denmark, Lyngby, Denmark.

A striking feature of cell membranes is the lipid compositional diversity with more than two hundred different lipid species. Thus otherwise structurally and functionally similar proteins must cater for the differences in their surrounding environment. It seems however, that membrane proteins do not only adapt to a given environment, in fact proteins often exhibit requirements for the presence of specific lipids, serving as cofactors for the correct function, folding and stability of the given protein. In order to study these requirements we compared the trans-membrane protein-family of aquaporins, a membrane channel-protein that facilitates the transport of water molecules across the membrane and which are found in a wide range of organisms. We based our analysis on HotPatch a neural network method developed by Pettit et al. (Pettit, F. K. et al. J. Mol. Biol. 2007 369, 863-879). This allowed us to compare protein sites involved in specific lipid interactions and the character of the residues involved. Understanding the functionality important features of the lipid requirements of membrane proteins may assist in the understanding of the optimal design of either protein and/or biomimetic membranes for applications such as biosensors, where reconstitution of functionality intact membrane proteins in an artificial membrane is a necessity.

2398-Pos Board B168
Thermodynamic Measurements of Bilayer Insertion of a Single Transmembrane Helix
Alexander Kyrychenko1, Mykola V. Rodzinn1, Yevgen O. Posokhov1, Andreas Holst1, Bernard Pucci2, Antoinette Killian2, Alexey S. Ladokhin3.
1KUMC, Kansas City, KS, USA, 2University of Utrecht, Utrecht, Netherlands, 3Technical University of Denmark, Lyngby, Denmark.

Accurate determination of the free energy of transfer of a helical segment from aqueous into a transmembrane conformation is essential for understanding and predicting of the folding and stability of membrane proteins. Until recently direct thermodynamic sound measurements of free energy of insertion of hydrophobic transmembrane peptides were impossible due to peptides' aggregation outside the lipid bilayer. Here we overcome this problem by using fluorinated surfactants that are capable of preventing aggregation, but, unlike detergents, do not themselves interact with the bilayer. We have applied previously introduced FCS (Fluorescence Correlation Spectroscopy) methodology [Posokhov et al., Biophysical J. 2008, 95:54-56] to study surfactant-chaperoned insertion into preformed POPC vesicles of the two well-studied dye-labeled transmembrane peptides of different lengths: WALP23 and WALP27. Interpolation of the apparent free energy values yielded free energy values of -9.0 and -10.0 kcal/mole for insertion of WALP23 and WALP27, respectively. Circular dichroism measurements confirmed a predominantly helical structure of peptides in lipid bilayer, in the presence of surfactants and in aqueous mixtures of organic solvents. From a combination of thermodynamic and conformational measurements we conclude that the partitioning of a 4-residue LALA segment in the context of a continuous helical conformation from aqueous environment into the hydrocarbon core of the membrane has a favorable free energy of 1 kcal per mole. Our measurements combined with the predictions of the Wimley-White hydrophobicity scale indicates that the per residue cost of the helical backbone partitioning is unfavorable and equals +0.13 kcal/mole. Supported by NIH GM069783.