CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors

Allah Nawaz1, Aminuddin Aminuddin1,2, Tomonobu Kado1, Akiko Takikawa1, Seiji Yamamoto3, Koichi Tsuneyama4,5, Yoshiko Igarashi6, Masashi Ikutani7, Yasuhiro Nishida1, Yoshinori Nagai8,9, Kiyoshi Takatsu8,10, Johji Imura4, Masakiyo Sasahara3, Yukiko Okazaki11, Kohjiro Ueki11,12, Tadashi Okamura13,14, Kumpei Tokuyama15, Akira Ando15, Michihiro Matsumoto16, Hisashi Mori17, Takashi Nakagawa18, Norihiko Kobayashi19, Kumiko Saeki19, Isao Usui1, Shiho Fujisaka1 & Kazuyuki Tobe1

Adipose tissue resident macrophages have important roles in the maintenance of tissue homeostasis and regulate insulin sensitivity for example by secreting pro-inflammatory or anti-inflammatory cytokines. Here, we show that M2-like macrophages in adipose tissue regulate systemic glucose homeostasis by inhibiting adipocyte progenitor proliferation via the CD206/TGF\textbeta2 signaling pathway. We show that adipose tissue CD206+ cells are primarily M2-like macrophages, and ablation of CD206+ M2-like macrophages improves systemic insulin sensitivity, which was associated with an increased number of smaller adipocytes. Mice genetically engineered to have reduced numbers of CD206+ M2-like macrophages show a down-regulation of TGF\textbeta2 signaling in adipose tissue, together with up-regulated proliferation and differentiation of adipocyte progenitors. Our findings indicate that CD206+ M2-like macrophages in adipose tissues create a microenvironment that inhibits growth and differentiation of adipocyte progenitors and, thereby, control adiposity and systemic insulin sensitivity.
White adipose tissue (WAT) markedly adapts to nutrient excess through adipocyte hypertrophy and hyperplasia1–3. The WAT expansion greatly affects the pathogenesis of obesity through different cellular mechanisms4. Adipocyte size is inversely related to insulin resistance5, whereas the number of adipocytes is related to the pool size of adipocyte progenitors (APs). However, the cellular and molecular mechanisms regulating adipocyte size and number in vivo are largely unknown. Several groups, including our laboratory, have reported that M1-like inflammatory macrophages regulate the expression of angiogenic genes in preadipocytes4, 6, suggesting interactions between macrophages and APs. It is still unknown how the proliferation and differentiation of APs are regulated by M2-like macrophages within WAT, thus controlling the insulin sensitivity.

Obesity is associated with a phenotypic transformation of macrophages, from anti-inflammatory M2 to pro-inflammatory M1 macrophages, thereby causing insulin resistance1–3, 8. M2 macrophages are required for maintenance of homeostasis, tissue remodeling, and metabolic adaptation under nutrient surplus conditions9, 10, but it is largely unknown how macrophages participate in progenitor activation and adipogenesis.

Tissue dynamics during metabolism-associated remodeling/repairing, we looked for a specific marker for M2-like ATMs. We have previously shown that the vast majority of ATMs are CD206+ M2-like macrophages, but the ratio of CD206+ M2-like macrophages in F4/80-positive macrophage and F4/80-negative non-macrophage populations was not evaluated. To address these issues, we collected stromal vascular fractions (SVF) populations from epididymal WAT (eWAT) and subjected them to FACS analysis. Flow cytometry analysis showed that the almost all CD206- macrophages were F4/80-positive (Fig.1a and Supplementary Fig. 4a). In addition, we found that the expression of fibrosis related marker genes such as Collal and Acta2, were downregulated in CD206+ M2-like macrophages-reduced mice (Supplementary Fig. 4b). However, immunohistochemical analysis revealed that CD206+ M2-like macrophages depletion did not alter adipose tissue fibrosis (Supplementary Fig. 4c). The expression of CD2 and other M2-like macrophage markers were also downregulated in iWAT of DT-treated CD206DTR mice (Supplementary Fig. 4d). Decline of CD206+ M2-like macrophages were also observed in bone marrow (BM), the liver and skeletal muscle of CD206+ M2-like macrophages-reduced mice (Supplementary Fig. 4e–g).

Flow cytometric analysis of the peritoneal cavity macrophages revealed that CD206+ M2-like macrophages were also depleted (Supplementary Fig. 5a). In addition, gene expression and flow cytometric analysis of BM shows that the number of eosiophils, natural killers cells, and granulocytes was unaffected (Supplementary Fig. 5b–d). Thus, the current protocol provides an effective approach for systemic reduction of CD206+ M2-like macrophages without affecting the numbers of other lineage cells, body weight, adiposity, or food intake (Fig. 1d–h).

We evaluated the physiology of the adipose tissues by examining the size and number of adipocytes. In CD206+ M2-like macrophages-reduced mice, the size of adipocytes was significantly reduced (Fig. 2a), while the numbers of adipocytes (Fig. 2b) and SVF populations (Fig. 2c) were increased in eWAT. Flow cytometric analysis revealed that BrdU-uptake was increased in the CD45−SVF cells of CD206+ M2-like macrophages-reduced mice (Fig. 2d and Supplementary Fig. 5d), suggesting that the depletion of CD206+ M2-like macrophages resulted in the proliferation of CD45− cells. In agreement with this, expression of cell cycle indicators, such as cyclins and Ki-67, was also increased in the eWAT of CD206+ M2-like macrophages-reduced mice (Fig. 2e). We also found an increased number of Ki-67- and BrdU-positive cells in CD206+ M2-like...
macrophages-reduced mice (Fig. 2f). Taken together, these data suggested CD206+ M2-like macrophages depletion triggered the proliferation of CD45− SVF.

CD206+ M2-like ATMs regulate adipocyte progenitor’s proliferation. We examined which type of CD45− cells in the eWAT were proliferating after CD206+ M2-like macrophages depletion. As macrophages are reportedly involved in the regulation of progenitor activity or stem cell niche activity3, 6, 18–20, we investigated the possible involvement of CD206+ M2-like macrophages in the control of APs proliferation. As shown in Fig. 3a, expression of a series of AP markers including PDGFRα, CD24, Sca-1, and Pref-121–24, and mesenchymal stem cell (MSC) markers including CD105 and CD90, were up-regulated in eWAT of the CD206+ M2-like macrophages-reduced mice. These data indicated that proliferating cells might be APs. To directly assess the proliferation state of APs, the CD45−CD31− Sca-1+ cells were examined after CD206+ M2-like macrophages depletion. As shown in Fig. 3b, the percentage of Sca-1+ cells in CD45− cells increased significantly after the depletion of CD206+ M2-like macrophages. These data suggested that CD206+ M2-like macrophages depletion triggered the proliferation of CD45− SVF.

Fig. 1 Characterization of CD206+ ATMs. a Representative flow cytometry analysis of F4/80 and CD206 expression in the SVF of eWAT from WT mice (n = 4–5). Full gating strategy is given in Supplementary Fig. 1. b Relative mRNA expression of SVF and FACS-sorted F4/80+CD206+ from eWAT of WT mice. Sorted cell populations based on the expression of CD206 and F4/80 on the SVF CD45+ cells from eWAT of NC mice (n = 4–5 mice per group). The data are shown as the means ± SEM. *P < 0.05 compared by ANOVA. c Schematic representation of CD206 and Tg/CD206DTR inserted transgene in BAC DNA (Tg, transgenic). Exons and the coding region of CD206 are indicated by open box and black boxes, respectively. Met is the initiation site of translation in CD206 and DTR. The inserted intron, DTR and polyA signals (pA) are indicated (left panel). A schematic diagram of the DT injection method for metabolic analysis of CD206DTR mice (right panel). d Body weights before and after DT injections, and e weight of adipose tissue and f food intake after DT injection period (n = 4–6 mice per group). g Representative flow cytometry analysis of CD11c and CD206 expression in F4/80+ SVF cells of eWAT from WT and CD206DTR mice (left panel). Percentages of M1 and M2 macrophages were calculated (right panel) (n = 5–6 mice per group). Full gating strategy is given in Supplementary Fig. 3. h The relative mRNA expression of M1/M2 macrophage markers in the eWAT after DT treatment (n = 5–6 mice per group). The data are shown as the means ± SEM. *P < 0.05, **P < 0.01 compared with littermates by Student’s t-test.
non-endothelial fraction was purified using magnetic activated cell sorting (MACS) (Supplementary Fig. 6a). Sca-1^+ fractions showed even larger increments in the expression of cell cycling indicator genes under CD206^+ M2-like macrophages reduction than did Sca-1^- fractions (Fig. 3b), indicating that the proliferation state of APs was indeed activated in CD206^+ M2-like macrophages-reduced mice. In agreement with this, flow cytometry analysis revealed that the number of Sca-1/PDGFRα double positive populations 23, 27 was increased (Fig. 3c and Supplementary Fig. 6b) and cyclin gene expression levels in APs were traced over time. After 2 h of EdU injection, EdU+ cells fate of proliferating cells was studied by injecting the mice with some EdU+ nuclei were not separated from the lipid droplets by a plasma membrane (Fig. 3g), a characteristic of terminally matured adipocytes with high lipid-storing capacities28. Thus, CD206^+ M2-like macrophages-reduced mice were indeed differentiated into mature perilipin-positive adipocytes. When stained by CellMask™ Green Plasma Membrane Stain, we found that some EdU^+ nuclei were not separated from the lipid droplets by a plasma membrane (Fig. 3g), a characteristic of terminally matured adipocytes with high lipid-storing capacities28. Thus, CD206^+ M2-like macrophages reduction promotes the proliferation of APs, which are subsequently differentiated into mature adipocytes.

Fig. 2 Depletion of CD206^+ ATMs induces generation of smaller adipocytes. a Representative sections of eWAT from WT and CD206DTR were stained with hematoxylin and eosin (HE) (left panel) and adipocyte size (right panel); Scale bar, 100 μm. b Cell count measurements in the eWAT. c Cell count of SVF obtained from eWAT of DT-treated WT and CD206DTR mice (n = 4-5 mice per group). d Representative flow cytometry analysis of BrdU^+ cells in CD45^+ SVF from WT and CD206DTR mice (left panel). Percentages of CD45^+ /BrdU^+ and CD45^+ /BrdU^- fractions in SVF from WT and CD206DTR mice were calculated (right panel) (n = 4-5 mice per group). e Full gating strategy is given in Supplementary Fig. 5e. f Representative paraffin eWAT sections of Ki-67 immunostaining counterstained with eosin (bluish upper panel), and BrdU uptake (lower panel). Scale bar, 100 μm. Quantification (right panel; n = 3-6 per group). The data are shown as the means ± SEM. *P < 0.05, **P < 0.01, ns = non-significant compared with littermates by Student’s t-test.

TGFβ signaling in CD206^+ M2-like ATMs-based APs proliferation. M2 macrophages express fairly large amounts of TGFβ29-31 and TGFβ is reportedly involved in inhibiting proliferation/differentiation of various cell types including preadipocytes, melanocyte- and hematopoietic-stem cells11, 12, 32. Enhanced TGFβ signaling is also reportedly associated with obesity13-16, 33. We therefore examined the possible involvement of TGFβ signaling in the up-regulated APs proliferation in
CD206+ M2-like macrophages-reduced mice. Among the genes involved in TGFβ signaling, TGFβ1 was abundantly expressed in CD206+ M2-like macrophages (Fig. 4a). Confocal imaging studies demonstrated co-localization of CD206+ M2-like ATMs with TGFβ immunostaining in eWAT (Fig. 4b). Furthermore, we also found that the number of cells that co-express CD206 and TGFβ1 was reduced in CD206+ M2-like macrophages-depleted mice (Fig. 4c). CD206+ M2-like macrophages were located in close proximity to PDGFRα+ APs, as shown in Pdgfrα-CreERT2-eGFP (PRa) mice and WT mice (Supplementary Fig. 6c, d), consistent with a previous report3. Co-localization of APs with p27Kip1, a downstream factor of TGFβ signaling for cell growth inhibition,
Fig. 4 TGFβ signaling is reduced after CD206+ M2-like macrophages depletion. **a** Relative mRNA expression of CD206, TGFβ1, TGFβRI, and TGFβRII, in the SVF, macrophages (CD206+), and APs purified from eWAT of WT mice by using FACS (n = 4–5 per group). **b** High resolution confocal imaging of frozen eWAT sections from WT mice. Scale bar, 25 μm. **c** Representative images of eWAT paraffin sections stained for CD206 and TGFβ1 (Scale bar, 200 μm) in DT-treated CD206DTR and WT littermate. **d** High resolution confocal imaging of frozen eWAT sections from WT mice stained for GFP vs. p27. The images were taken with a Leica TCS-SP5 (Oil 63×). Scale bar, 25 μm. **e** Relative expression of TGFβ signaling genes in eWAT. **f** Representative immunohistochemical staining of the eWAT paraffin section for TGFβ1, phospho-smad2/3 (P-Smad2/3), and p27. Scale bar 100 μm. Quantification (right panel) (n = 3–4 per group). **g** Representative flow cytometry analysis of Sca-1/PDGFRα double positive population in the SVF of eWAT from CD206-CreERT2/TGFβ1fllox/fllox and TGFβ1fllox/fllox control mice. Percentage of Sca-1/PDGFRα double positive fraction was calculated (right panel; n = 4–5 per group). Full gating strategy is given in Supplementary Fig. 7d. **h** The relative mRNA expression of cell cycle and TGFβ signaling genes from eWAT samples collected after direct injection of a single dose of TGFβ neutralizing antibody (1D11) into the eWAT (n = 3). The data are shown as the means ± SEM. *P < 0.05, **P < 0.01 compared with littermates by Student’s t-test.
was also confirmed in PRa mice (Fig. 4d). Expression of other TGFβ signaling downstream factors including p21, p15, p16, p27, and p57 were down-regulated in eWAT in CD206 + M2-like macrophages-reduced animals (Fig. 4e). In addition, phospho-smad2/3 (P-Smad2/3) and p27 Kip1 protein expression was reduced by CD206+ M2-like macrophages reduction in eWAT (Fig. 4f), suggesting that CD206+ M2-like macrophages suppress APs proliferation via the TGFβ signaling pathway. To validate this hypothesis, we generated a genetically engineered mouse in which TGFβ1 expression was specifically depleted in CD206+ M2-like macrophages (CD206− CreERT2/TGFβ fl/fl mice) (Supplementary Fig. 7a). Administration of tamoxifen significantly reduced TGFβ1 expression by 20–30% in CD206+ M2-like macrophages in the CD206− CreERT2/TGFβ fl/fl mice (Supplementary Fig. 7b); the expression of cell cycle-associated genes and APs marker genes (Supplementary Fig. 7c) and the number of Sca-1/PDGFα double positive populations in eWAT were all up-regulated in these mice (Fig. 4g and Supplementary Fig. 7d). Immunostaining analysis shows that fibrosis of eWAT was decreased in tamoxifen treated CD206− CreERT2/TGFβ fl/fl mice compared with tamoxifen treated TGFβ1 fl/fl control mice (Supplementary Fig. 8). Moreover, the eWAT of WT mice injected with an anti-TGFβ1,2,3 neutralizing monoclonal antibody showed increments in the expression of cell cycle-related genes, with reciprocal decrements in TGFβ downstream gene expression (Fig. 4h). To further confirm the impact of TGFβ signaling, we performed inhibitor analysis in vitro. Adipose tissue-derived stem cells (ASCs) collected from the iWAT of WT mice were co-cultured with CD206 +TGFβ1+ M2-like macrophages, which were produced from bone marrow-derived macrophages (BMDM) by treating with IL-4 and PGE2. We also found that BMDM supplemented with IL-4 and PGE2 could be differentiated into M2-like macrophage, which highly expresses CD206 and TGFβ1 (Supplementary Fig. 9a–c). The presence of LY2109761 (a TGFβRI/II inhibitor) abrogated the inhibitory effect of BMDM on adipogenesis of ASCs (Fig. 5a, b) although LY2109761 per se, or anti-TGFβ1,2,3 enhanced PDGFRα+ cell proliferation (Fig. 6a, b). Thus, CD206/TGFβ signaling regulates APs proliferation and subsequent adipogenesis.

CD206+ M2-Like ATMs depletion improve glucose metabolism in lean mice. We have previously showed that the majority of macrophages were M2-type in non-obese states, whereas the
majority of macrophages were M1 type in obese states34. As M2 ATMs are considered to be metabolically ‘favorable’ ATMs35, 36 compared with M1 pro-inflammatory macrophages, it was expected that decline of CD206/TGFβ may impair glucose metabolism despite enhanced APs proliferation. Surprisingly, glucose tolerance and insulin sensitivity were improved in CD206+ M2-like macrophages-reduced mice (Fig. 7a–c). This unexpected finding was indeed a specific outcome of CD206+ M2-like macrophages reduction, as a glucose tolerance test without DT administration did not reveal any difference between WT and CD206DTR mice (Supplementary Fig. 10a). In CD206+ M2-like macrophages-reduced mice, the levels of Akt phosphorylation were up-regulated in eWAT, liver and skeletal muscle after insulin injection (Fig. 7d–f and Supplementary Fig. 10b). Moreover, expression levels of the genes associated with metabolically favorable states were also up-regulated in eWAT and skeletal muscle, while gluconeogenesis-related gene expressions were down-regulated in the liver (Fig. 7g–i). In addition, gene expression analysis revealed that expressions of markers for smaller adipocytes were consistently up-regulated in the eWAT, reflecting the increment in smaller adipocytes. Expression levels of adipogenesis-related transcription factors including C/EBP-δ and C/EBP-α were also markedly up-regulated in the eWAT (Fig. 7g). Thus, decline in CD206/TGFβ signaling promoted adipogenesis to provide an increment in smaller adipocytes in the WAT, thereby improving insulin sensitivity. In genetically engineered CD206-CreERT2/TGFβflx/flx mice, the number of smaller adipocytes was also increased after tamoxifen treatment (Supplementary Fig. 10c), supporting our hypothesis about the involvement of CD206/TGFβ signaling in glucose metabolism. Thus, decline of CD206/TGFβ signaling improves glucose metabolism in lean mice.

CD206+ M2-like ATMs depletion improve glucose metabolism in obese mice. Next, we examined the impact of CD206+ M2-like macrophages reduction on glucose metabolism under HFD-fed conditions. WT and CD206DTR mice were subjected to HFD challenge for 16 weeks, with subsequent DT administration. Both WT and CD206DTR mice showed no difference in food intake (Supplementary Fig. 11a) or body weight gain (Supplementary Fig. 11b) during the 16 weeks of HFD-fed periods, but decreased weight gain was observed in CD206+ M2-like macrophages-reduced mice compared with WT after DT administration (Supplementary Fig. 11c). Notably, CD206+ M2-like macrophages-reduced mice showed improved glucose tolerance and insulin sensitivity even during HFD-fed periods (Fig. 8a and b). Consistent with this, they showed an increased number of smaller adipocytes with a reduced number of crown-like structures (CLS) compared with the WT control group (Fig. 8c–e). To determine the tissues responsible for amelioration of insulin resistance, we performed hyperinsulinemic-euglycemic clamp studies in DT-treated CD206DTR and WT mice (Fig. 8f). We determined that these mice showed significant increments in glucose infusion rate (GIR) and rate of whole-body glucose disappearance (Rd) than WT control mice without any significant suppressions in hepatic glucose production (HGP) (Fig. 8f), indicating that skeletal muscle/adipose tissues are responsible for metabolic improvement. Flow cytometric analysis further confirmed the reduced macrophage infiltration in response to HFD challenge (Fig. 9a and Supplementary Fig. 12a). The eWAT of CD206+ M2-like macrophages-reduced mice showed up-regulated expressions of adipsogenesis-related transcription factor genes (e.g., C/EBP-α, C/EBP-δ, PPARγ), genes that are associated with metabolically favorable states (e.g., PGC-1α, PGC-1β, Glut4), APs and MSC marker genes (e.g., Scar-1, PDGFRA, CD105) and cell cycle-related genes (e.g., Ki-67, Cyclin A2, Cyclin B1), along with down-regulation of pro-inflammatory M1 macrophage markers (e.g., CD11c, MCP1, NOS2, IL-6, and TNFα (Fig. 9b–d)). Thus, CD206+ M2-like macrophages play crucial roles in regulating glucose metabolism in HFD-fed obese mice, as well as NC-fed lean mice.
Depletion of CD206\(^+\) M2-like ATMs promote browning of white adipocytes. Finally, we addressed whether depletion of CD206\(^+\) M2-like macrophages affect beige progenitors. DT-treated CD206DTR and WT mice after cold exposure for 7 days resulted in markedly increased expressions of UCP1, as well as other browning marker genes in the iWAT\(^{37-39}\) (Fig. 10a). Immunofluorescence analysis also revealed increased UCP1 in CD206DTR mice upon cold exposure (Fig. 10b). Consistent with this, the beige progenitor marker genes were also upregulated (Fig. 10a). Interestingly, flow cytometry analysis revealed an increase in the PDGFR\(\alpha\)/Sca-1 double positive cells after cold exposure in the iWAT of the CD206DTR mice compared with WT control (Fig. 10c and Supplementary Fig. 12b). These data suggested that CD206\(^+\) M2-like macrophages might be involved in regulating the browning of iWAT under cold stimulation. Further studies are required to investigate the role M2-like ATMs ablation in regulating the biological properties of beige progenitors and how they interact with each other to form niche will significantly enrich our knowledge.

Discussion

Several lines of evidence have suggested that ATMs are involved in maintaining insulin sensitivity in adipocytes through their
anti-inflammatory actions, in collaboration with other leukocyte lineages including Treg cells, eosinophils, and invariant natural killer cells. In the current study, we determined that CD206 is an ideal marker to target M2-like macrophages in adipose tissues. Thus, we are able to specifically deplete M2-polarized macrophages in adipose tissue of DT-treated CD206DTR mice. So far, congenital deficiency of M2-like ATMs reportedly causes lipodystrophy-like pathophysiology accompanied by accelerated lipolysis. As insulin resistance and obesity related disorders progresses with advanced age, and M2-like macrophages are up-regulated in the early phases of obesity, it is important to deplete M2-like macrophages at a specific time point to examine the developmentally time sensitive role of M2-like macrophages. Thus, conditional and partial depletion have advantages over congenital or genetic ablation of M2-like macrophages. There are a number of reports...

Fig. 8 CD206+ M2-like ATMs depletion promote insulin sensitivity in obese mice. a IP-GTT and b IP-ITT in 16-week HFD-fed mice after DT treatment (n = 5 mice per group). c HE staining of eWAT (left panel). The number of CLS/field is given in right panel. (Scale bar, 200 μm). d Representative images of a paraffin section of eWAT of the DT-treated HFD-fed CD206DTR and WT mice stained with anti-CD11c and anti-F4/80 antibody (left panel). The number of F4/80 and CD11c positive cells/field (right panel) (n = 3-4 mice per group) (Scale bar, 200 μm). e A histogram of adipocyte cell size in the eWAT of DT-treated HFD-fed CD206DTR mice compared with WT mice (n = 4-5 mice per group). f Hyperinsulinemic-euglycemic clamp study showed glucose infusion rates (GIR), hepatic glucose production (HGP), and rate of glucose disappearance (Rd) in HFD-fed DT-treated CD206DTR and WT mice (n = 9-10 mice per group). The data are shown as the means ± SEM. *P < 0.05, **P < 0.01 compared with littermates by Student’s t-test.
demonstrating that partial and conditional depletion of specific cell lineages can bring about particular biological events without affecting the functions of other cell lineages. In this study, we have successfully shown that partial but specific depletion of CD206+ M2-like macrophages in adult mice improved glucose metabolism without affecting body weight, food intake, and the numbers and functions of other cell lineages, including M1 macrophages. It has been reported that cold stimulation promotes the differentiation of beige precursors into beige/brite adipocytes within one week of exposure. Recently, Chawla’s group reported that eosiophil or M2 macrophages-derived type 2 cytokines, IL-4/IL-13, mediates cold stimulation-induced biogenesis of beige fat. There are several reports indicating that M2 macrophages polarization regulates thermogenesis and browning of iWAT by increasing the expression of UCP1, PGC-1α, and other browning genes. Previous studies indicated that PDGFRα+ progenitors were recruited in WAT upon ADRB3 stimulation and these APs were also involved in different compensatory mechanism involving cellular restoration and repair in WAT and other tissues. However, it is unknown how decline of CD206+ M2-like macrophages affect WAT upon cold stimulation. Here, we report that decline of CD206+ M2-like macrophages promoted browning of iWAT. Our findings suggest that CD206/TGFβ signaling play a critical role in maintaining APs in a quiescent state in an analogous manner to that of the non-myelinating Schwann cell-based niche, where hematopoietic stem cells (HSCs) are maintained in hibernation via TGFβ-dependent pathways. As we have previously reported, M2-like macrophages expand, albeit mildly compared with M1-like macrophages, during the course of obesity progression.

Fig. 9 Effects of CD206+ M2-like ATMs depletion on adipogenesis in obese mice.

a Representative flow cytometry analysis of CD11c and CD206 expression in F4/80+ SVF cells of eWAT from WT and CD206DTR mice. Cells were also stained with isotype control antibodies for anti-CD11c and anti-CD206 antibodies (left panel). Percentages of M1- and M2-like macrophages in CD45+F4/80+SVF of eWAT from WT and CD206DTR mice were calculated (right panel). Full gating strategy is given in Supplementary Fig. 13a.

b The relative mRNA expression of metabolic genes and adipogenesis, APs/MSC and cell cycle markers genes in eWAT of DT-treated HFD-fed CD206DTR and WT mice. (n = 3–5 per group). The data are shown as the means ± SEM. *P < 0.05, **P < 0.01. (H) The data are shown as the means ± SEM. *P < 0.05, **P < 0.01 compared with littermates by Student’s t-test.
Therefore, it may be possible that the mild expansion of M2-like macrophages during the progression of obesity hampers APs proliferation and subsequent adipogenesis. Thus, the limited adipogenesis due to expanded M2-like ATMs may increase the lipid burden of the existing fat cells, inducing hypertrophy rather than hyperplasia of adipose tissues, thus impairing insulin resistance. A series of these events may create a vicious cycle, accelerating the progression of obesity-associated metabolic disorders.

In this regard, it is expected that CD206+ M2-like macrophage-targeting drugs may exert effective therapeutic effects by breaking the vicious cycle between M2-like macrophages and APs.

As reduction of CD206+ M2-like macrophages did not affect systemic adiposity, CD206+ M2-like ATMs-targeting drugs would not promote obesity, as is observed in the case of PPARγ activators (e.g. thiazolidinedione).

In HFD-fed mice, both CD11c-CD206+ and CD11c+CD206+ ATMs are markedly increased; DT-treatment depleted not only CD206+CD11c- but also CD206+CD11c+ ATMs. Although it seems that CD206+ M2-like ATMs plays a major role in the insulin-sensitive phenotype associated with reduced inflammation, the possibility that depletion of CD206+CD11c+ ATMs contributes to this phenotype cannot be completely excluded.

In conclusion, the current study demonstrates a new role for CD206+ M2-like macrophages in constituting a microenvironment for APs, in a TGFβ-dependent manner, to retain systemic insulin sensitivity by tuning the quiescence/proliferation balance of APs to adapt to changes in nutritional status. Our findings suggest a new strategy for the development of drug discovery for the treatment of insulin resistance and type 2 diabetes.

Methods

Materials. Diphtheria toxin (Sigma, cat# D0564,) and collagenase (Sigma, cat# C6885) were purchased from Sigma-Aldrich (St. Louis, MO). Anti-human
diphtheria toxin receptor (anti-HB-EGF) was obtained from Cosmo Bio, cat# 71-503 (Tokyo, Japan), purified mouse anti-β-catenin (Cat# 610124) from BD Biosciences. The anti-human PDGFR (Cat# 2722) and anti-rabbit p27 (Cat# 3698) were purchased from Cell Signaling for western blot analysis. The horseradish peroxidase linked anti-mouse, cat# NA931V and anti-rabbit, cat# NA934V secondary antibody was obtained from Amersham Bioscience (Buckinghamshire, UK). The ECL TM western blot detection reagent was obtained from GE Healthcare, cat# RPN2323 (Buckinghamshire, UK). Tamasoxin was purchased from Sigma, cat# T5648 and bromodeoxyuridine (BrdU) was purchased from BD Biosciences, cat# 550891. D-Glucose-6,6-d2 was purchased from the Santa Cruz Biotechnology, cat# sc-257287A.

The CR primers that were used with the TagMan method were purchased from Applied Biosystems (Foster City, CA), and those used with the SYBR Green method were purchased from Invitrogen™ Life Technologies, Japan (Tokyo, Japan). The SYBR Green primer sequence is given in Supplementary Table 1.

For the flow cytometry analysis, hamster CD11c conjugated with PE (Cat# 553002), PE rat anti-mouse SiglecF (Cat# 562068), purified rat anti-mouse CD16/ CD32 (Cat# 553141), 7-amino-actinomycin D (Cat# 7120) (Abcam) (Cat# 559925), PE Arm IgG1 α2 isotype control (Cat# 553954), FITC BrdU flow kit (Cat# 559619), APC rat anti-mouse TER-119/erythroid cell antibody (Cat# 557909) antibodies were obtained from BD Biosciences. PE hamster polyclonal isotype control (Cat# ab22662-100) was purchased from Abcam. The rat anti-mouse CD206 conjugated alexa fluor 647 antibody (Cat# MCA2235A647) and the rat IgG2a alexa fluor 647 isotype antibody (Cat# 1212A647) were obtained from AbD Serotec (Oxford, UK). The APC anti-mouse CD206 (MEM) (Cat# 141707) and the APC rat IgG2a, κ isotype control antibody (Cat# 400511), FITC anti-mouse Ly6G/Ly-6C (Gr-1) (Cat# 108406), FITC conjugate rat IgG2a isotype control, FITC anti-mouse CD3/Gr-1 (Cat# 416-ML-050), and the monoclonal mouse anti-β-oxidation regained recombinant Cre recombinase (CD206) and inserted a 2.3-kbp fragment containing part of the noncoding exon and intron of the rabbit β-globulin gene, DTR cDNA, and the polyadenylation signals from pTRECK6 to yield the BAC vector pTg-CD206-DTR. The purified BAC DNA was microinjected into pronuclei of fertilized one-cell embryos from C57BL/6 mice by UNITECH (Chiba, Japan). The transgenic founders were then again backcrossed to C57BL/6 mice. The male F4 generations and beyond were used for experiments to derive the data. Wild-type littermates were used as controls in all the experiments.

To generate CD206-CreERT² mice, we created the targeting construct. The plasmid pCAG-CreERT² was obtained from Addgene (# 14979). We replaced the human DTR DNA fragment in the pTg-CD206-DTR receptor BAC transgene17 with a fragment from the pCAG-CreERT² by using a Counter-selection BAC modification kit (Gene Bridges, Dresden, Germany) to yield the pTg-CD206-CreERT² (CD206-CreERT²)17. In one series of experiments, we crossed male CD206 CreERT² mice with female TGFβrfl/fl to obtain CD206 CreERT²/TGFβrfl/fl mice. Male CD206-CreERT² TGFβrfl/fl and control littermate TGFβrfl/fl were administered tamoxifen (0.15 mg/paw) for four consecutive days. Male p21Cre-ERT2Egfp (Pra) mice were obtained from department of pathology, University of Toyama15. Mice were maintained under standard 12 h light and dark cycles. Male mice aged 8–12 weeks were used for all the experiments; the mice were allowed ad libitum access to water and standard chow (Nippon Corporation, Yokohama, Japan). For body weight and food intake measurements, the mice were caged individually. All the animal studies were conducted at the animal facility center of the University of Toyama. Animal care and procedures were approved by the Animal Experiment Committee of the University of Toyama (Authorization No. S2009 Med-41).
Immunohistochemistry. Paraffin-embedded tissues were cut 5-μm thick and mounted on slides. Slide staining with the first and second antibodies was performed according to the manufacturer’s instructions. A specific cell count was performed for at least three randomly chosen 200 x magnification fields. The average adipocyte size was measured by dividing the surface area of a 100 x magnification field by the number of adipocytes. For BrdU staining, the mice were injected with 2 mg of BrdU 2 h later, the mice were sacrificed and the tissues were used for immunohistochemistry.

In vitro immunohistochemistry was performed by growing the cells on a 18-mm round cover glass in 6-well dishes. The cover glasses were thin-coated with a specific coating performed in a 100 x magnification field. For frozen section, eWAT from mice collected in 4% PFA after systemic perfusion. The tissues were kept at room temperature for 2–3 h. After that tissues were incubated in PBS(−) for one overnight and 30% sucrose one overnight in shaker at 4 °C. At the end the tissues were placed in block by adding OCT compound and immediately kept block at −80 °C for at least 24 h to solidify it. Then the frozen tissues were cut into 15–20 μm thickness by using cryostat. EDT injection (20 nmol/mice) was injected 2 and 9 h before sacrifice the mice. After making the frozen block, immunofluorescence staining was performed by using EdU Alexa 647 vs. anti-goat PDDGF, 1:50 dilution (Neuromics) and anti-perilipin 1:50 dilution, anti-rat CD206, 1:50 dilution and anti-rabbit TGFβ, 1:50 dilution followed by relevant secondary antibodies (1:250 dilution). All micrographs were taken with Keyence BZ-8000, Olympus BX6, or TCS SP5 Leica confocal microscopes (OIL 63x), and image processing was performed with the BZ-Analyzer software.

Flow cytometry analysis. Isolation and separation of the SVF and subsequent flow cytometry were performed as previously described23, 24, 54, 55. Cells in the SVF of eWAT, after exclusion of dead cells by gating with 7AAD, live cells were selected for further analysis. M1 or M2-like macrophages were identified as CD45-positive/F4/80-positive/CD11c-negative/CD206-negative or CD45 positive/F4/80-positive/CD11c-negative/CD206-positive cells, respectively (1:50 dilution). The flow cytometry detection of the APs was performed similarly to a previous method23, 24. First, negative selection of CD31 (endothelial) (1:100). FITC-lineage cells (1:100) were selected following by positive selection of PDDGFα* (1:50) and Sca-1* cells (1:50). These experiments were performed with a FACSDiva Version 6.1.2 automated cell analyzer (Rexton Dickinson FACSScanto II) and cell sorting was performed by an automatic cell sorting analyzer (Rexton Dickinson FACSAria SORP). Flow cytometry analysis for detection of BrdU intake was performed after 2 days of co-culture, the cells were collected for immunohistochemistry. A TGFβRI/II inhibitor and anti-TGFβ antibodies were added to the medium at final concentrations of 5 ng/mL, and 0.5 μg/mL, respectively, on the same day the ASCs and BMDMs were seeded.

To assess the inhibitory effect of the BMDMs on adipogenesis, the ASCs and BMDMs were cultured in equal numbers (100,000 cells) in 6-well dishes. ASCs alone and ASCs with the addition of recombinant mouse TGFβ (5 ng/mL, final concentration) were used as controls. Recombinant mouse TGFβ1 and a TGFβRII inhibitor were added on the first day of co-culture in Mesencult complete MSC stimulatory medium. After 2 days of confluence, the medium was changed to Mesencult complete adipogenic stimulatory medium, which was a combination of Mesencult MSC basal medium and Mesencult adipogenic stimulatory supplement with a 1:4 volume ratio. Every 4–5 days, the medium was changed with new complete stimulatory medium with the addition of new reagents (Recombinant Mouse TGFβ1, TGFβRII inhibitor, and M-CSF). After 12 days of adipogenesis induction, the cells were collected for PCR and Oil Red O staining (Thermo Scientific, SC 00011) for adipocyte visualization.

Glucose tolerance test and insulin tolerance test. In the intraperitoneal glucose tolerance test (IP-GTT), 6 h fasted DT-treated CD206DT and littermate were injected with glucose (1 mg/g BW) intraperitoneally. In the intraperitoneal insulin tolerance test (IP-ITT), 2 h fasted mice were injected intraperitoneally with human insulin 0.8 units/kg BW for NC-fed and 1.2 units/kg BW for HFD-fed mice. Blood samples were then collected, 0.3, 15, 30, 45, 60, 90 and 120 min from the tail vein. The glucose blood levels were measured using the STAT STRIP Express 900 (Nova Biomedical, Waltham MA). The serum insulin levels were determined using the Mouse Insulin ELISA KIT (ARKIN-031, Shibayagi, Shibukawa, Japan).

Hyperinsulinemic-euglycemic clamp study. Clamp studies were performed on 16 weeks HFD-fed DT-treated CD206DTR and WT littermate under conscious and unstressed condition after 6 h fasting as described previously57, 58. A primed-continuous infusion of insulin (Humulin R; Lilly) was given 10.0 milliuunits/kg/min for HFD-fed mice, and the blood glucose concentration, monitored every 5 min, was maintained at ~120 mg/dl by administration of glucose (50% glucose enriched to ~20% with 50% D2-glucose (Sigma) (4:1) ratio for 120 min. Blood sample collected at 0, 90, 105, and 120 min for determination of the rate of glucose disappearance (Rd), and hepatic glucose production (HGP) was calculated as the difference between Rd and exogenous glucose infusion rates (GIR)57.

Statistical analysis. Statistical analyses were performed using unpaired Student’s t-tests or ANOVA tests with the post Tukey–Kramer test and Bonferroni correction. Differences were considered statistically significant at *P < 0.05, **P < 0.01. The results are presented as the means ± SEM.

Data availability. The data supporting the findings of the study are included in the Figures and Supplementary Information or can be obtained from the authors upon reasonable request.

Received: 7 December 2016 Accepted: 8 June 2017 Published online: 18 August 2017

References

1. Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu Rev. Physiol. 6, 275–297 (2011).
2. Qiu, Y. et al. Eosinophil and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).
3. Lee, Y. H., Petkova, A. P. & Granneman, J. G. Identification of an adipogenic niche for adipose tissue remodeling and restoration. J. Cell. 18, 355–367 (2013).
4. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and restoration. J. Clin. Invest. 121, 2094–2101 (2011).
5. Salans, L. B., Knittle, J. L. & Hirsch, J. The role of adipocyte cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J. Clin. Invest. 47, 153–165 (1968).
6. Takikawa, A. et al. HIF-1alpha in myeloid cells promotes adipose tissue remodeling toward insulin resistance. Diabetes 65, 3649–3659 (2016).
7. Lumeng, C. N., DeProposto, J. B., Westcott, D. J. & Saltiel, A. R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57, 3239–3246 (2008).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00231-1
8. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

9. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

10. Pollard, J. W. Tropic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

11. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

12. Nishimura, E. K. et al. Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6, 130–140 (2010).

13. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab 14, 67–79 (2011).

14. Scaglione, R. et al. Central obesity and hypertensive renal disease: association between higher levels of BMI, circulating transforming growth factor beta1 and urinary albumin excretion. Blood Pressure 12, 269–276 (2003).

15. Alesi, M. C. et al. Plasmigen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 49, 1374–1380 (2000).

16. Samad, F., Pandey, M. & Loskutoff, D. J. Tissue factor gene expression in the adipose tissues of obese mice. Proc. Natl Acad. Sci. USA 95, 7591–7596 (1998).

17. Kambara, K. et al. In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in endotoxemic mice. Am. J. Pathol. 185, 162–171 (2015).

18. Souchie, E. L. et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351, aad5510 (2016).

19. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

20. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

21. Hudak, C. S. et al. Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 8, 678–687 (2014).

22. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat thermogenesis and protect against obesity and diabetes through regulation of PPARgamma. Cell Stem Cell 19, 2355 (2005).

23. John, S. et al. The role of mesenhyelic progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152, doi:10.1038/ncb2014 (2010).

24. Liu, L., Saito, M., Hokushima, T. & Kohn, N. A diphtheria toxin receptor deficient in epidermal growth factor-like biological activity. J. Biochem. 143, 831–841 (2006).

25. Matsuda, T. & Cepko, C. L. Controlled expression of transgenes introduced in vivo by electropropagation. Proc. Natl Acad. Sci. USA 104, 1027–1032 (2007).

26. Horikawa, S. et al. PDGFβRalpha plays a crucial role in connective tissue remodeling of white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, 4 (2016).

27. Samad, F., Pandey, M. & Loskutoff, D. J. Tissue factor gene expression in the adipose tissues of obese mice. Proc. Natl Acad. Sci. USA 95, 7591–7596 (1998).

28. Fujisaka, S. et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582 (2009).

29. Odegard, J. I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

30. Fujisaka, S. et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582 (2009).

31. Lech, M. & Anders, H. J. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim. Biophys. Acta 1832, 989–997 (2013).

32. Ignatova, I. A., Nakao, D. K., Amon, K. T. and A.A. analyzed and interpreted the clamp data. H.M., provided help to perform the experiments, animal care and revised the article. A.N. and A.A. performed the experiments, acquired, and analyzed the data, and wrote the manuscript. T.K., T.I., A.T., Y.I., M.I. and S.F. acquired and analyzed the data (2014).
H.M. and T.O. generated CD206-CreERT2 mice. K.U., Y.O., K.T., T.N., M.S., M.M., K.N., and K.S. revised the manuscript. K.T. supervised the project. All authors approved the final version of the paper for publication.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00231-1.

Competing interests: The authors declare that they have no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.