Methods. We employed a mix method approach, first distributing a survey to all full-time prescribers. We then followed up with qualitative interviews (12 of 22 prescribers) which was conducted by a single, trained interviewer using a standardized guide. Interviews were recorded and transcribed verbatim. Each transcription was independently reviewed and coded by two blinded investigators using standardized thematically coded statements that were independently reviewed. These researchers identified new codes and themes. This procedure was iterated until interrater reliability. The researchers developed key themes and statements.

Results. A total of 20 of the 22 prescribers (13 MDs and 9 APPs) completed the survey (91% response rate). Notably, only 25% of prescribers agreed that COVID-19 had changed their antibiotic prescribing practices for patients with respiratory infections despite objective data that all prescribed less. In the qualitative interviews, we identified four major themes impacting the appropriateness of antibiotic prescribing practices as shown in Table 1.

Conclusion. Urgent care prescribers attributed a decrease in antibiotic prescribing during COVID-19 to changes in patient expectations and knowledge base, a switch to telemedicine-based encounters, and changing epidemiology. These shifts could be utilized by outpatient antimicrobial stewardship efforts to sustain low prescribing rates for conditions in which antibiotics are generally not indicated.

Disclosures. Marisa Holubar, MD, MS. Nothing to disclose.

161. Fluocytosine Utilization and Dosing Practices at an Academic Medical Center

Molly M. Miller, PharmD; Emily Krekemeier, MPH, PharmD; BCPS; Erica J. Stobs, MD, MPH; Trevor C. Van Schooneveld, MD, FACP; Trevor C. Van Schooneveld, MD, FACP; Bryan Alexander, PharmD; Scott J. Bergman, PharmD, FCCP, FIDSA, BCPS, BCIDP; Scott J. Bergman, PharmD, FCCP, FIDSA, BCPS, BCIDP; Nebraska Medicine, Bellevue, Nebraska; University of Nebraska Medical Center, Omaha, NE

Session: P-09. Antimicrobial Stewardship: Trends in Antimicrobial Prescribing

Background. The typical dose of fluocytosine is 25 mg/kg/dose every 6 hours for severe infections due to Candida and Cryptococcus. Many hospital protocols use ideal body weight (IBW) for initial dosing to achieve a goal peak serum concentration of 30-80 mcg/mL, but this is supported by very limited data. Our objective was to evaluate fluocytosine dosing strategies, describe safety concerns, and explore financial benefits associated with using IBW.

Methods. All inpatient fluocytosine orders for adults from 1/1/2015 through 10/31/2020 were retrospectively evaluated. Doses, weight used, fluocytosine levels, adverse events, and potential cost savings associated with IBW dosing were characterized.

Results. During this period, 35 patients received fluocytosine. The most common indications were cryptococcal meningitis (73%), pulmonary cryptococcosis (14%), and candidiasis (11%). Most patients were receiving concurrent liposomal amphotericin B (60%), and only 17% were receiving body mass index (BMI) dosing or obesity (60%). Actual body weight was used for initial dosing in most cases (81%). Fluocytosine peak monitoring was performed in 51% of cases. Initial peak levels were supratherapeutic in 10/19 cases (53%). For those 10 patients, 70% were overweight/obese, and 60% would have received a lower initial dose if a BW had been used with dose rounding to the nearest 500mg capsule. For those patients, it would be ideal for the prescribers to go back and adjust the dose, as dosing in this way is not appropriate for all patients. We also found that the fluocytosine peak monitoring during the COVID-19 pandemic. However, the impact of this increased utilization has not been well established. The aim of this study is to describe the trends in minimum inhibitory concentrations for various antibiotics against common gram-negative pathogens observed since the start of the COVID-19 pandemic as compared to previous years.

Methods. This retrospective study was conducted at the Memphs VA. All respiratory, urinary, and blood culture MicroScan run from October 2017-March 2021. Multiple studies have shown that antibiotic utilization increased during the COVID-19 pandemic. However, the impact of this increased utilization has not been well established. The aim of this study is to describe the trends in minimum inhibitory concentrations for various antibiotics against common gram-negative pathogens observed since the start of the COVID-19 pandemic as compared to previous years.

Results. MIC50 and MIC90 were compared using standardized breakpoints. As compared to previous years, Pseudomonas aeruginosa was noted to have the most sustained increase in MIC90 across various antibiotics. In the last 3 quarters of the study time frame, piperacillin-tazobactam mean MIC90 increased from 32 to 64, cefepime from 8 to 16, and meropenem from 4 to 8. Escherichia coli had a sustained increase in susceptibility MIC90 from <1 to 8 in the final quarter of 2020 and beginning of 2021. Klebsiella pneumonia was also found to have a sustained increase in cephalosporin MIC90 from <1 to 16 during the year of 2020, with return to previous MIC90 the following quarters.

Conclusion. Previous studies have clearly demonstrated a widespread increase in antibiotic resistance during the COVID-19 era. Our study demonstrates how even short-term increases in antibiotic use can lead to shifts in MIC, if not outright resistance. This was demonstrated across multiple common gram-negative pathogens and to various broad-spectrum antibiotics which were commonly used more frequently during COVID-19. Further analysis will be needed to determine whether these trends