Prevalence of diabetes in Japanese patients with cancer

Eiko Saito1*, Atsushi Goto2, Rieko Kanehara2, Ken Ohashi3, Mitsuhiko Noda4, Tomohiro Matsuda5, Kota Katanoda1

INTRODUCTION
In recent years, associations between diabetes mellitus and cancer have been reported in multiple meta-analyses, including reports from Japan1–3. As the prevalence of diabetes continues to rise as a result of population aging and sedentary lifestyle, the burden of cancer associated with diabetes is also expected to grow in the coming decades4. For instance, cancer accounted for approximately 38% of overall causes of death in diabetes patients in Japan between 2001 and 20105. Cancer patients with diabetes are known to experience a poorer prognosis than those without diabetes6–8, which will considerably impact treatment practices and cancer survivorship.

To date, however, no convincing evidence on the current magnitude of the prevalence of diabetes among cancer patients has yet appeared. Here, we aim to estimate the latest incidence and prevalence of cancer in patients with diabetes in Japan.

METHODS
Data on the incidence of cancer for 2015–2019 were obtained from the long-term projection of cancer incidence from 2015 to 2039, available from the Cancer Information Services website of the National Cancer Center, Japan9. The projection used the national estimates of cancer incidence between 1985 and 2014 derived from seven to 32 prefectures in the cancer registry as part of the Monitoring of Cancer Incidence in Japan Project10.

Cancer cases were classified by sex, 5-year age group and cancer sites that are known to be associated with diabetes in Japanese individuals2 according to the International Statistical Classification of Diseases and Related Health Problems, 10th Revision. Observed survival for cases diagnosed between 2006 and 2008 were obtained from the Monitoring of Cancer Incidence in Japan Project11,12. We obtained population projections for Japanese individuals with the medium-fertility and medium-mortality assumption from the National Institute of Population and Social Security Research13. Estimates of the prevalence of diabetes in Japanese individuals as of 2015 were obtained from a report by Charvat et al.14, in which diabetes is defined by either a glycated hemoglobin of ≥6.5% (48 mmol/mol) or fasting plasma glucose level of ≥126 mg/dL and/or 2-h plasma glucose of ≥200 mg/dL in a 75-g oral glucose tolerance test. Summary estimates of the association between pre-existing diabetes and the risk of cancer were obtained from a meta-analysis of eight large-scale cohort studies carried out in Japan, which used self-reported diabetes status as exposure2. Of note, a validation study carried out in one of the participating studies showed that 94% of cases of self-reported diabetes were consistent with diabetes reported in medical records15. Both the prevalence estimates of diabetes and relative risks of cancer in patients with pre-existing diabetes pertain to diabetes of all types, albeit that type 2 diabetes accounts for the substantial

Keywords
Cancer, Diabetes, Multimorbidity

Correspondence
Eiko Saito
Tel: +81-3-3542-2511
Fax: +81-3-3545-3567
E-mail address: eisaito@ncc.go.jp

J Diabetes Investig 2020; 11: 1159–1162
doi:10.1111/jdi.13231

ABSTRACT
Cancer patients with diabetes experience a poorer prognosis, yet the population burden of this multimorbidity remains unknown. This study aimed to estimate the latest incidence and prevalence of cancer with diabetes mellitus in Japan. We used projection of cancer incidence and latest survival data from population-based cancer registries. The incidence of cancer associated with diabetes was estimated separately for patients with pre-existing diabetes and those without diabetes, and used to estimate the 5-year cancer prevalence for those with and without diabetes. The prevalence of pre-existing diabetes in cancer patients at any cancer site was estimated to be 20.7% (647,160 men and women). Among cancer sites, diabetes prevalence was high in patients with liver and pancreatic cancers in both sexes. In conclusion, our study shows a large burden of diabetes in cancer patients in Japan, which warrants further attention by health practitioners and policy-makers.
The majority of diabetes cases in both studies2,14. Hence, the definition of diabetes in the current report follows the definition used in these studies. The study was approved by the institutional review board of the National Cancer Center in Tokyo (approval number 2004-061).

In the analyses, we decomposed the crude incidence rates for different cancer sites separately for patients with pre-existing diabetes before diagnosis of cancer and for patients without diabetes16. Furthermore, we estimated the prevalence of cancer defined as the number or proportion of patients with a diagnosis of cancer within the past 5 years of a given time point17,18, for all patients including both those with and without diabetes. Full details of the analyses are provided in Appendix S1. All analyses were carried out using Stata SE 15 (StataCorp, College Station, TX, USA).

RESULTS

Table 1 shows the incidence of all cancer sites and cancers associated with diabetes in 2019. Among patients with pre-existing diabetes, the incidence for all cancers in 2019 was 125,910 (crude incidence rate: 2277.7 per 100,000) in men and 84,610 (1293.2 per 100,000) in women, whereas the incidence for all cancers among non-diabetic patients was 438,620 (978.1 per 100,000) in men and 327,690 (684.9 per 100,000) in women.

Table 2 shows the estimated 5-year prevalence of cancer by diabetes status in Japanese adults in 2019. The prevalence of pre-existing diabetes in cancer patients at any cancer site was estimated to be 21.8% (377,190 persons with diabetes among 1,728,710 with cancer) in men and 19.4% (269,970 with diabetes among 1,394,820 with cancer) in women. When we compared across cancer sites, diabetes prevalence was higher in patients with liver cancer among men (32.9%), and higher in patients with pancreatic cancer among women (37.0%).

Table 3 shows the age-specific prevalence of cancer among patients according to diabetes status in 2019. For both men and women, diabetes prevalence in cancer patients showed a rapid increase after age 45 years, with cancer patients aged ≥65 years having a diabetes prevalence of >20%.

Table 1 | Estimated incidence of cancer by cancer site and diabetes status in Japan, 2019

Cancer site	ICD-10	Incidence (overall)	Crude incidence rate
	No. cases		
Men, aged ≥20 years			
All sites	C00–C96	564,530	1065.6
Colon	C18	49,690	93.8
Liver	C22	28,080	53.0
Pancreas	C25	19,790	37.4
Colon	C18	49,690	93.8
Liver	C22	28,080	53.0
Pancreas	C25	19,790	37.4
Women, aged ≥20 years			
All sites	C00–C96	412,300	724.9
Colon	C18	14,840	26.1
Liver	C22	19,450	34.2
Pancreas	C25	976,830	889.2
Colon	C18	14,840	26.1
Liver	C22	19,450	34.2
Pancreas	C25	976,830	889.2
Both sexes, aged ≥20 years			
All sites	C00–C96	976,830	889.2
Colon	C18	179,380	489.4
Liver	C22	67,760	22.3
Pancreas	C25	19,470	52.4

†Crude incidence rates are expressed per 100,000. ICD-10, International Statistical Classification of Diseases and Related Health Problems, 10th Revision.

Table 2 | Estimated prevalence of cancer by cancer site and diabetes status in Japan, 2019

Cancer site	ICD-10	Prevalent cancer cases (overall)	Prevalent cancer cases with pre-existing diabetes	Prevalence of pre-existing diabetes in cancer patients
	No.	Crude incidence rate		
Men, aged ≥20 years				
All sites	C00–C96	1,728,710	377,190	21.8%
Colon	C18	179,380	489.4	27.3%
Liver	C22	67,760	22.3	32.9%
Pancreas	C25	19,470	52.4	26.9%
Women, aged ≥20 years				
All sites	C00–C96	1,394,820	269,970	19.4%
Colon	C18	33,290	10,080	30.3%
Liver	C22	17,490	6,470	37.0%
Pancreas	C25	3,123,530	647,160	20.7%
Both sexes, aged ≥20 years				
All sites	C00–C96	3,123,530	647,160	20.7%
Colon	C18	33,290	10,080	30.3%
Liver	C22	17,490	6,470	37.0%
Pancreas	C25	3,123,530	647,160	20.7%

†Estimated prevalence is expressed in absolute numbers. ICD-10, International Statistical Classification of Diseases and Related Health Problems, 10th Revision.
TABLE 3 | Estimated prevalence of cancer* in patients with pre-existing diabetes by age group in Japan, 2019

Cancer site	ICD-10 Cancer prevalence by age group	20–44 years	45–54 years	55–64 years	65–74 years	75 years							
	Overall prevalence of cancer	Patients with pre-existing diabetes	Percentage	Overall prevalence of cancer	Patients with pre-existing diabetes	Percentage	Overall prevalence of cancer	Patients with pre-existing diabetes	Percentage	Overall prevalence of cancer	Patients with pre-existing diabetes	Percentage	
Men, aged ≥20 years	All sites	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Colon C18	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Liver C22	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Pancreas C25	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
Women, aged ≥20 years	All sites	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Colon C18	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Liver C22	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Pancreas C25	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
Both sexes, aged ≥20 years	All sites	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Colon C18	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Liver C22	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%
	Pancreas C25	31,300	1,860	3.6%	87,400	4,600	5.3%	233,000	12,400	5.3%	647,160	34,700	5.3%

*Estimated prevalence is expressed in absolute numbers. ICD-10, International Statistical Classification of Diseases and Related Health Problems, 10th Revision.

DISCUSSION

The present study provides the first evidence of its kind on the incidence and prevalence of cancer in patients with pre-existing diabetes. Our results showed that approximately 647,160 Japanese adults are living with cancer and diabetes, which means that nearly 20% of cancer patients in fact have diabetes. Globally, the American Diabetes Association and American Cancer Society published a consensus report on the biological link between diabetes and cancer risk to date, however, no previous study has estimated the co-prevalence of the two morbidities. The present findings suggest that healthcare professionals should consider multimorbidity in patients with cancer in the aged population. As cancer patients with coexisting diabetes might have a comparatively poorer life prognosis than their non-diabetic counterparts, the increased recognition of multimorbidity might lead to better medical management and possibly improve the prognosis of such patients.

The major strength of the present study was its use of the best available data on diabetes prevalence, summary estimates of relative risks and cancer incidence, and survival, all of which are representative of the Japanese population. However, several limitations also warrant mention. First, because of a lack of data on diabetes prevalence by type of treatment that the patient had received, we were unable to consider differences by stage of diabetes. It is known that patients on glucose-lowering medications, such as exogenous insulin, show an elevated cancer risk than those on metformin therapy, which might lead to biased estimates. Second, we were unable to differentiate the overall survival of cancer patients with pre-existing diabetes from that of patients with no co-existing morbidity, because of a lack of information on medical history in the cancer registry data. Because it is well known that cancer patients with diabetes experience poorer prognosis than those without diabetes, the differences in overall survival might operate toward overestimation of the prevalence. Similarly, we were unable to consider other comorbidities that are commonly found in cancer patients, although it has been reported that patients with multiple co-existing diseases are likely to experience higher mortality than patients with a single co-existing disease. As such, our use of overall survival of all cancer patients with and without multimorbidity might have overestimated the prevalence.

In conclusion, the present study found that approximately 20.7% of Japanese cancer patients with any cancer are living with diabetes in 2019. With the growing number of patients with diabetes, prevention and management of multimorbidity in cancer patients warrant further attention by health practitioners and policy-makers.

ACKNOWLEDGMENTS

This work was supported by the Practical Research for Innovative Cancer Control (grant number: 19ck0106370h0003) from the Japan Agency for Medical Research and Development (AMED).

DISCLOSURE

The other authors declare no conflict of interest.
REFERENCES
1. Noto H, Tsujimoto T, Noda M. Significantly increased risk of cancer in diabetes mellitus patients: a meta-analysis of epidemiological evidence in Asians and non-Asians. J Diabetes Investig 2012; 3: 24–33.
2. Sasazuki S, Charvat H, Harha A, et al. Diabetes mellitus and cancer risk: pooled analysis of eight cohort studies in Japan. Cancer Sci 2013; 104: 1499–1507.
3. Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin 2010; 60: 207–221.
4. Saito E, Charvat H, Goto A, et al. Burden of cancer associated with type 2 diabetes mellitus in Japan, 2010–2030. Cancer Sci. 2016; 107: 521–527.
5. Nakamura J, Kamiya H, Haneda M, et al. Causes of death in Japanese patients with diabetes based on the results of a survey of 45,708 cases during 2001–2010: report of the Committee on Causes of Death in Diabetes Mellitus. J Diabetes Investig 2017; 8: 397–410.
6. Pares-Badell O, Banque M, Macia F, et al. Impact of comorbidity on survival by tumour location: Breast, colorectal and lung cancer (2000–2014). Cancer Epidemiol 2017; 49: 66–74.
7. Pule ML, Buckley E, Niyonsenga T, et al. The effects of comorbidity on colorectal cancer mortality in an Australian cancer population. Sci Rep 2019; 9: 8580.
8. Morishima T, Matsumoto Y, Koeda N, et al. Impact of comorbidities on survival in gastric. Colorectal Lung Cancer Patients 2019; 29: 110–115.
9. National Cancer Center. Cancer Statistics in Japan; Table download: Center for Cancer Control and Information Services. Available from: http://ganjoho.jp/reg_stat/statistics/stat/ Accessed June 17, 2019.
10. Hori M, Matsuda T, Shibata A, et al. Cancer incidence and incidence rates in Japan in 2009: a study of 32 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCU) project. Jpn J Clin Oncol 2015; 45: 884–891.
11. Matsuda T, Ajiki W, Marugame T, et al. Population-based survival of cancer patients diagnosed between 1993 and 1999 in Japan: a chronological and international comparative study. Jpn J Clin Oncol 2011; 41: 40–51.
12. Center for Cancer Control and Information Services NCC. Monitoring of Cancer Incidence in Japan – Survival 2006-2008 Report, 2016.
13. National Institute of Population and Social Security Research. Population Projections for Japan: 2016 to 2065. Available from: http://www.ipss.go.jp/pp-zenkoku/e/zenkoku_e2017/pp_zenkoku2017e.asp Accessed June 17, 2019.
14. Charvat H, Goto A, Goto M, et al. Impact of population aging on trends in diabetes prevalence: a meta-regression analysis of 160,000 Japanese adults. J Diabetes Investig 2015; 6: 533–542.
15. Waki K, Noda M, Sasaki S, et al. Alcohol consumption and other risk factors for self-reported diabetes among middle-aged Japanese: a population-based prospective study in the JPHC study cohort I. Diabet Med 2005; 22: 323–331.
16. Liu BQ, Peto R, Chen ZM, et al. Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. BMJ 1998; 317: 1411–1422.
17. Adami H-O, Hunter DJ, Trichopoulos D. Textbook of Cancer Epidemiology. Oxford: Oxford University Press, 2008.
18. Pisani P, Bray F, Parkin DM. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer 2002; 97: 72–81.
19. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009; 52: 1766–1777.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1 | Supplemental Methods.