On Standard Concepts Using ii-Open Sets

Beyda S. Abdullah, Amir A. Mohammed

Department of Mathematics, College of Education for pure Sciences, University of Mosul, Mosul, Iraq
Email: baedaa419@gmail.com

Abstract
Following Caldas in [1] we introduce and study topological properties of ii-derived, ii-border, ii-frontier, and ii-exterior of a set using the concept of ii-open sets. Moreover, we prove some further properties of the well-known notions of ii-closure and ii-interior. We also study a new decomposition of ii-continuous functions. Finally, we introduce and study some of the separation axioms specifically T_{0ii}, T_{1ii}.

Subject Areas
Mathematical Analysis

Keywords
a-Open Set, ii-Open Set, Separation Axioms

1. Introduction
The notion of a-open set was introduced by Njastad in [2]. Caldas in [1] introduced and studied topological properties of a-derived, a-border, a-frontier, a-exterior of a set by using the concept of a-open sets. In this paper, we introduce and study the same above concepts by using ii-open sets. A subset A of X is called ii-open set [3] if there exists an open set G in the topology τ of X, such that: $G \neq \emptyset, A \subseteq CL(A \cap G) \text{ and } Int(A) = G$, the complement of an ii-open set is an ii-closed set. We denote the family of ii-open sets in (X, τ) by τ''. It is shown in [4] that each of $\tau \subseteq \tau''$ and τ'' is a topology on X. This property allows us to prove similar properties of a-open set. Also, we define ii-continuous functions and we study the relation between this type of function and continuous, semi-continuous, a-continuous and i-continuous functions. Finally, we introduce a new type of separation axioms namely T_{0ii}, T_{1ii}. We prove similar properties and characterizations of T_o and T_i.

How to cite this paper: Abdullah, B.S. and Mohammed, A.A. (2019) On Standard Concepts Using ii-Open Sets. Open Access Library Journal, 6: e5604. https://doi.org/10.4236/oalib.1105604

Received: July 15, 2019
Accepted: September 14, 2019
Published: September 17, 2019

Copyright © 2019 by author(s) and Open Access Library Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/
2. Preliminaries

Throughout this paper, \((X, \tau)\) and \((Y, \sigma)\) (simply \(X\) and \(Y\)) always mean topological spaces. For a subset \(A\) of a space \(X\), \(\text{CL}(A)\) and \(\text{Int}(A)\) denote the closure of \(A\) and the interior of \(A\) respectively. We recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset \(A\) of a space \(X\) is called
1) Semi-open set \([5]\) if \(A \subseteq \text{CL}(\text{Int}(A))\).
2) \(\alpha\)-open set \([2]\) if \(A \subseteq \text{Int}(\text{CL}(\text{Int}(A)))\).
3) \(i\)-open set \([3]\) if there exist an open set \(G\) in the topology \(\tau\) of \(X\), such that
 i) \(G \neq \emptyset, X\)
 ii) \(A \subseteq \text{CL}(A \cap G)\)
 The complement of an \(i\)-open set is an \(i\)-closed set.
4) \(ii\)-open set \([4]\) if there exist an open set \(G\) in the topology \(\tau\) of \(X\), such that
 i) \(G \neq \emptyset, X\)
 ii) \(A \subseteq \text{CL}(A \cap G)\)
 iii) \(\text{Int}(A) = G\)
 The complement of an \(ii\)-open set is an \(ii\)-closed set.
5) \(\text{int}\)-open set \([4]\) if there exist an open set \(G\) in the topology \(\tau\) of \(X\) and \(G \neq \emptyset, X\) such that \(\text{Int}(A) = G\). The complement of \(\text{int}\)-open set is \(\text{int}\)-closed set.
6) \(\alpha o\) \((X)\), \(\text{So} \)(\(X)\), \(\text{io} \)(\(X)\), \(\text{ii}o \)(\(X)\), \(\text{into} \)(\(X)\) are family of \(\alpha\)-open, semi-open, \(i\)-open, \(ii\)-open, \(\text{int}\)-open sets respectively.
7) \(\tau', \tau^\alpha\) denote the family of all \(i\)-open sets and \(ii\)-open sets respectively.

Definition 2.2. \([3]\) A topological space \(X\) is called
1) \(0\)-\(iT\) if \(a, b\) are two distinct points in \(X\), there exist an \(i\)-open set \(U\) such that either \(a \in U\) and \(b \notin U\), or \(b \in U\) and \(a \notin U\).
2) \(1\)-\(iT\) if \(a, b \in X\) and \(a \neq b\), there exist \(i\)-open sets \(U, V\) containing \(a, b\) respectively, such that \(b \notin U\) and \(a \notin V\).

Definition 2.3. A function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called
1) Continuous \([6]\), if \(f^{-1}(G)\) is open in \((X, \tau)\) for every open set \(G\) of \((Y, \sigma)\).
2) \(\alpha\)-continuous \([6]\), if \(f^{-1}(G)\) is \(\alpha\)-open in \((X, \tau)\) for every open set \(G\) of \((Y, \sigma)\).
3) Semi-Continuous \([5]\), if \(f^{-1}(G)\) is semi-open in \((X, \tau)\) for every open set \(G\) of \((Y, \sigma)\).
4) \(i\)-Continuous \([3]\), if \(f^{-1}(G)\) is \(i\)-open in \((X, \tau)\) for every open set \(G\) of \((Y, \sigma)\).

3. Applications of \(ii\)-Open Sets

Definition 3.1. Let \(A\) be a subset of a topological space \((X, \tau)\). A derived set of \(A\) denoted by \(D(A)\) is defined as follows:
\[
D(A) = \{x \in X : (G \setminus A) \setminus \{x\} \neq \emptyset, \forall x \in G\}
\]
A point \(x \in X\) is said to be \(ii\)-limit
point of \(A \) if it satisfies the following assertion:
\[
(\forall g \in \mathcal{G})(x \in G \Rightarrow (G \cap A) \setminus \{x\} \neq \emptyset).
\]
The set of all \(ii \)-limit points of \(A \) is called the \(ii \)-derived set of \(A \) and is denoted by \(D_{ii}(A) \). Note that \(x \in X \) is not \(ii \)-limit point of \(A \) if and only if there exist an \(ii \)-open set \(G \) in \(X \) such that
\[
(x \in G \text{ and } (G \cap A) \setminus \{x\} = \emptyset).
\]

Theorem 3.2. For subsets \(A, B \) of a space \(X \), the following statements hold:
1) \(D_{ii}(A) \subseteq D(A) \)
2) If \(A \subseteq B \), then \(D_{ii}(A) \subseteq D_{ii}(B) \)
3) \(D_{ii}(A) \cup D_{ii}(B) \subseteq D_{ii}(A \cup B) \) and \(D_{ii}(A \cap B) \subseteq D_{ii}(A) \cap D_{ii}(B) \)
4) \(D_{ii}(D_{ii}(A)) \subseteq A \subseteq D_{ii}(A) \)
5) \(D_{ii}(A \cup D_{ii}(A)) \subseteq A \cup D_{ii}(A) \)

Proof. 1) Since every open set is \(ii \)-open \([4]\), it follows that \(D_{ii}(A) \subseteq D(A) \).
2) Let \(x \in D_{ii}(A) \). Then \(G \) is \(ii \)-open set containing \(x \) such that
\[
(x \in G \text{ and } (G \cap A) \setminus \{x\} \neq \emptyset).
\]
Hence, \(x \in D(A) \).
3) Since \(A \subseteq A \) and \(B \subseteq B \), from (2) we get \(D_{ii}(A) \subseteq D_{ii}(A \cup B) \) and \(D_{ii}(A \cap B) \subseteq D_{ii}(A) \). Therefore \(D_{ii}(A) \) and \(D_{ii}(B) \).
This implies to \(D_{ii}(A) \) and \(D_{ii}(B) \).
4) If \(x \in D_{ii}(A) \setminus A \) and \(G \) is an \(ii \)-open set containing \(x \), then
\[
G \cap (D_{ii}(A) \setminus \{x\}) \neq \emptyset.
\]
Let \(y \in G \cap (D_{ii}(A) \setminus \{x\}) \). Then, since \(y \in D_{ii}(A) \) and \(y \in G \), \(G \cap (A \setminus \{y\}) \neq \emptyset \). Let \(z \in G \cap (A \setminus \{y\}) \). Then, \(z \neq x \) for \(z \in A \) and \(x \notin A \). Hence, \(G \cap (A \setminus \{x\}) \neq \emptyset \). Therefore, \(x \in D_{ii}(A) \).
5) Let \(x \in D_{ii}(A \cup D_{ii}(A)) \). If \(x \in A \), the result is obvious. So, let, \(x \in D_{ii}(A \cup D_{ii}(A)) \setminus A \) then for \(ii \)-open set \(G \) containing \(x \),
\[
(G \cap (A \cup D_{ii}(A)) \setminus \{x\}) \neq \emptyset.
\]
Thus, \(G \cap (A \setminus \{x\}) \neq \emptyset \). Hence, \(x \in D_{ii}(A) \).
In general, the converse of (1) may not true and the equality does not hold in (3) of theorem 3.2.

Example 3.3. Let \(X = \{a, b, c\} \) and \(r = \{\phi, X, \{b\}\} \). Thus, \(ii o \{x\} = \{\phi, X, \{b\}\} \). Take the following:
1) \(A = \{c\} \). Then, \(D(A) = \{a, b\} \) and \(D_{ii}(A) \neq \emptyset \). Hence, \(D(A) \neq D_{ii}(A) \);
2) \(C = \{a, b\} \) and \(E = \{c\} \). Then \(D_{ii}(C) = \{a, c\} \) and \(D_{ii}(E) = \emptyset \). Hence \(D_{ii}(C \cup E) = D_{ii}(C \bigcup D_{ii}(E)) \).

Theorem 3.4. For any subset \(A \) of a space \(X \), \(CL_{ii}(A) = A \cup D_{ii}(A) \).

Proof. Since \(D_{ii}(A) \subseteq CL_{ii}(A) \) and \(A \subseteq CL_{ii}(A) \). On the other hand, let \(x \in CL_{ii}(A) \). If \(x \in A \), then the proof is complete. If \(x \notin A \), each \(ii \)-open set
G containing x intersects A at a point distinct from x; so \(x \in D_i(A) \). Thus, \(CL_i(A) \subseteq A \cup D_i(A) \), which completes the proof.

Definition 3.5. A point \(x \in X \) is said to be \(ii \)-interior point of A if there exist an \(ii \)-open set G containing x such that \(G \subseteq A \). The set of all \(ii \)-interior points of A is said to be \(ii \)-interior of A and denoted by \(Int_i(A) \).

Theorem 3.6. For subset A, B of a space X, the following statements are true:
1. \(Int_i(A) \) is the union of all \(ii \)-open subset of A
2. A is \(ii \)-open if and only if \(A = Int_i(A) \)
3. \(Int_i(\bigcup_{A} G_i) = \bigcup_{A} Int_i(G_i) \)
4. \(Int_i(A) = A \setminus D_i(X \setminus A) \)
5. \(X \setminus Int_i(A) = CL_i(X \setminus A) \)
6. \(X \setminus CL_i(A) = Int_i(X \setminus A) \)
7. If \(A \subseteq B \), then \(Int_i(A) \subseteq Int_i(B) \)
8. \(Int_i(A) \cup Int_i(B) \subseteq Int_i(A \cup B) \)
9. \(Int_i(A) \cap Int_i(B) \supseteq Int_i(A \cap B) \)

Proof.
1) Let \(\{ G_i : i \in \Lambda \} \) be a collection of all \(ii \)-open subsets of A. If \(x \in Int_i(A) \), then there exist \(j \in \Lambda \) such that \(x \in G_j \subseteq A \). Hence \(x \in \bigcup_{G_i} G_i \), and so \(Int_i(A) \subseteq \bigcup_{G_i} G_i \). On the other hand, if \(y \in \bigcup_{G_i} G_i \), then \(y \in G_k \subseteq A \) for some \(k \in \Lambda \). Thus \(y \in Int_i(A) \), and \(\bigcup_{G_i} G_i \subseteq Int_i(A) \).

Accordingly, \(\bigcup_{G_i} G_i \subseteq Int_i(A) \).
2) Straightforward.
3) It follows from (1) and (2).
4) If \(x \in A \setminus D_i(X \setminus A) \), then \(x \not\in D_i(X \setminus A) \) and so there exist an \(ii \)-open set G containing x such that \(G \cap (X \setminus A) = \emptyset \). Thus, \(x \in G \subseteq A \) and hence \(x \in Int_i(A) \). This shows that \(A \setminus D_i(X \setminus A) \subseteq Int_i(A) \). Now let \(x \in Int_i(A) \).

Since \(Int_i(A) \in \tau_i \) and \(Int_i(A) \cap (X \setminus A) = \emptyset \). We have \(x \not\in D_i(X \setminus A) \). Therefore, \(Int_i(A) = A \setminus D_i(X \setminus A) \).
5) Using (4) and Theorem (3.4), we have
\[
X \setminus Int_i(A) = X \setminus (A \setminus D_i(X \setminus A)) = (X \setminus A) \cup D_i(X \setminus A) = CL_i(X \setminus A).
\]
6) Using (4) and Theorem (3.4), we get.
\[
Int_i(X \setminus A) = (X \setminus A) \setminus D_i(A) = X \setminus (A \cup D_i(A)) = X \setminus CL_i(A)
\]
7) Since \(A \subseteq B \) and \(Int_i(A) \subseteq A \), \(Int_i(B) \subseteq B \), we get \(Int_i(A) \subseteq Int_i(B) \).
8) Since \(A \subseteq (A \cup B) \) and \(B \subseteq (A \cup B) \), from (7) we get \(Int_i(A) \subseteq Int_i(A \cup B) \), \(Int_i(B) \subseteq Int_i(A \cup B) \). Therefore \(Int_i(A) \cup Int_i(B) \subseteq Int_i(A \cup B) \).
9) Since \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \), from (7) we get \(Int_i(A \cap B) \subseteq Int_i(A) \), \(Int_i(A \cap B) \subseteq Int_i(B) \). Therefore \(Int_i(A \cap B) \subseteq Int_i(A \cap B) \).

Definition 3.7. \(b_i(A) = A \setminus Int_i(A) \) is said to be the \(ii \)-border of A.

Theorem 3.8. For a subset A of a space X, the following statements hold:
1. \(b_i(A) \subseteq b(A) \) where \(b(A) \) denotes the border of A
2. \(Int_i(A) \cup b_i(A) = A \)
3) $\text{Int}_\phi (A) \cap b_\phi (A) = \phi$
4) $b_\phi (A) = \phi$ if and only if A is ii-open set
5) $b_\phi (\text{Int}_\phi (A)) = \phi$
6) $\text{Int}_\phi (b_\phi (A)) = \phi$
7) $b_\phi (b_\phi (A)) = b_\phi (A)$
8) $b_\phi (A) = A \cap \text{CL}_\phi (X \setminus A)$
9) $b_\phi (A) = A \cap D_\phi (X \setminus A)$

Proof.

1) Since $\text{Int}(A) \subseteq \text{Int}_\phi (A)$, we have
$b_\phi (A) = A \setminus \text{Int}_\phi (A) \subseteq A \setminus \text{Int}(A) = b(A)$.
2) and (3). Straightforward.

4) Since $\text{Int}_\phi (A) \subseteq A$, it follows from Theorem 3.6 (2). That A is ii-open $\iff A = \text{Int}_\phi (A) \iff b_\phi (A) = A \setminus \text{Int}_\phi (A) = \phi$.
5) Since $\text{Int}_\phi (A)$ is ii-open, it follows from (4) that $b_\phi (\text{Int}_\phi (A)) = \phi$.
6) If $x \in \text{Int}_\phi (b_\phi (A))$, then $x \in b_\phi (A)$. On the other hand, since $b_\phi (A) \subseteq A$, $x \in \text{Int}_\phi (b_\phi (A)) \subseteq \text{Int}_\phi (A)$. Hence, $x \in \text{Int}_\phi (A) \cap b_\phi (A)$.
Which contradicts (3). Thus $\text{Int}_\phi (b_\phi (A)) = \phi$.
7) Using (6), we get $b_\phi (b_\phi (A)) = b_\phi (A) \setminus \text{Int}_\phi (b_\phi (A)) = b_\phi (A)$.
8) Using Theorem 3.6 (6), we have
$b_\phi (A) = A \setminus \text{Int}_\phi (A) = A \setminus \text{CL}_\phi (X \setminus A) = A \setminus \text{CL}_\phi (X \setminus A)$
9) Applying (8) and the Theorem (3.4), we have
$b_\phi (A) = A \setminus \text{CL}_\phi (X \setminus A) = A \setminus ((X \setminus A) \cup D_\phi (X \setminus A)) = A \setminus D_\phi (X \setminus A)$.

Example 3.9. Consider the topological space (X, τ) given in Example (3.3). If $A = \{a, b\}$, then $b_\phi (A) = \phi$ and $b(A) = \{a\}$. Hence, $b(A) \subset b_\phi (A)$, that is, in general, the converse Theorem 3.9 (1) may not be true.

Definition 3.10. $\text{Fr}_\phi (A) = \text{CL}_\phi (A) \setminus \text{Int}_\phi (A)$ is said to be the ii-frontier of A.

Theorem 3.11. For a subset A of a space X, the following statements hold:

1) $\text{Fr}_\phi (A) \subseteq \text{Fr}(A)$ where $\text{Fr}(A)$ denotes the frontier of A
2) $\text{CL}_\phi (A) = \text{Int}_\phi (A) \cup \text{Fr}_\phi (A)$
3) $\text{Int}_\phi (A) \cap \text{Fr}_\phi (A) = \phi$
4) $b_\phi (A) \subseteq \text{Fr}_\phi (A)$
5) $\text{Fr}_\phi (A) = b_\phi (A) \cup D_\phi (A)$
6) $\text{Fr}_\phi (A) = D_\phi (A)$ if and only if A is ii-open set
7) $\text{Fr}_\phi (A) = \text{CL}_\phi (A) \cup \text{CL}_\phi (X \setminus A)$
8) $\text{Fr}_\phi (A) = \text{Fr}(X \setminus A)$
9) $\text{Fr}_\phi (A)$ is ii-closed
10) $\text{Fr}_\phi (\text{Fr}_\phi (A)) \subseteq \text{Fr}_\phi (A)$
11) $\text{Fr}_\phi (\text{Int}_\phi (A)) \subseteq \text{Fr}_\phi (A)$
12) $\text{Fr}_\phi (\text{CL}_\phi (A)) \subseteq \text{Fr}_\phi (A)$
13) $\text{Int}_\phi (A) = A \setminus \text{Fr}_\phi (A)$

Proof.

1) Since $\text{CL}_\phi (A) \subseteq \text{CL}(A)$ and $\text{Int}(A) \subseteq \text{Int}_\phi (A)$, it follows that
$\text{Fr}_\phi (A) = \text{CL}_\phi (A) \setminus \text{Int}_\phi (A) \subseteq \text{CL}(A) \setminus \text{Int}(A) \subseteq \text{CL}(A) \setminus \text{Int}(A) \subseteq \text{Fr}(A)$.
2) $\text{Int}_\phi (A) \cup \text{Fr}_\phi (A) = \text{Int}_\phi (A) \cup (\text{CL}_\phi (A) \setminus \text{Int}_\phi (A)) = \text{CL}_\phi (A)$.

DOI: 10.4236/oalib.1105604
3) \(\text{Int}_u(A) \cap \text{Fr}_u(A) = \text{Int}_u(A) \cap \left(\text{CL}_u(A) \setminus \text{Int}_u(A) \right) = \phi \).

4) Since \(A \subseteq \text{CL}_u(A) \), we have
\[
\text{b}_u(A) = A \setminus \text{Int}_u(A) \subseteq \text{CL}_u(A) \setminus \text{Int}_u(A) = \text{Fr}_u(A).
\]

5) Since \(\text{Int}_u(A) \cup \text{Fr}_u(A) = \text{Int}_u(A) \cup \text{b}_u(A) \cup \text{D}_u(A) \),
\[
\text{Fr}_u(A) = \text{b}_u(A) \cup \text{D}_u(A).
\]

6) Assume that \(A \) is \(ii \)-open. Then
\[
\text{Fr}_u(A) = \text{b}_u(A) \cup \text{D}_u(A) \setminus \text{Int}_u(A) = \phi \cup \left(\text{D}_u(A) \setminus A \right) = D_u(A) \setminus A = b_u(X \setminus A),
\]
by using (5), Theorem 3.6 (2), Theorem 3.8 (4) and Theorem 3.8 (9).

Conversely, suppose that \(\text{Fr}_u(A) = b_u(X \setminus A) \). Then
\[
\phi = \text{Fr}_u(A) \setminus b_u(X \setminus A) = \left(\text{CL}_u(A) \setminus \text{Int}_u(A) \right) \setminus \text{Int}_u(X \setminus A) = \text{Int}_u(X \setminus A),
\]
by using (4) and (5) of Theorem 3.6, and so \(A \subseteq \text{Int}_u(A) \). Since \(\text{Int}_u(A) \subseteq A \) in general, it follows that \(\text{Int}_u(A) = A \) so from Theorem 3.6 (2) that \(A \) is \(ii \)-open.

7) \(\text{Fr}_u(A) = \text{CL}_u(A) \setminus \text{Int}_u(A) = \text{CL}_u(A) \cap \left(\text{CL}_u(X \setminus A) \right) \).

8) It follows from (7).

9) \(\text{CL}_u(\text{Fr}_u(A)) = \text{CL}_u(\text{CL}_u(A)) \cap \left(\text{CL}_u(X \setminus A) \right) \). Hence, \(\text{Fr}_u(A) \) is \(ii \)-closed.

10) \[
\text{Fr}_u(\text{Fr}_u(A)) = \text{CL}_u(\text{Fr}_u(A)) \cap \text{CL}_u(X \setminus \text{Fr}_u(A)) \subseteq \text{CL}_u(\text{Fr}_u(A)) = \text{Fr}_u(A).
\]

11) Using Theorem 3.6 (3), we get
\[
\text{Fr}_u(\text{Int}_u(A)) = \text{CL}_u(\text{Int}_u(A)) \setminus \text{Int}_u(\text{Int}_u(A)) \subseteq \text{CL}_u(\text{Int}_u(A)) \setminus \text{Int}_u(A) = \text{Fr}_u(A).
\]

12) \[
\text{Fr}_u(\text{CL}_u(A)) = \text{CL}_u(\text{CL}_u(A)) \setminus \text{Int}_u(\text{CL}_u(A)) = \text{CL}_u(\text{CL}_u(A) \setminus \text{Int}_u(\text{CL}_u(A)) = \text{Fr}_u(A).
\]

13) \(A \setminus \text{Fr}_u(A) = (A \setminus \text{CL}_u(A)) \setminus \text{Int}_u(A) = \text{Int}_u(A) \).

The converses of (1) and (4) of Theorem 3.11 are not true in general, as shown by Example

Example 3.12. Consider the topological space \((X, \tau)\) given in Example 3.3. If \(A = \{ c \} \), then \(\text{Fr}_u(A) = \{ a, c \} \not\subseteq \{ c \} = \text{Fr}_u(A) \), and if \(B = \{ a, b \} \), then \(\text{Fr}_u(B) = \{ c \} \not\subseteq \text{Fr}_u(B) \).

Definition 3.13. \(\text{Ext}_u(A) = \text{Int}_u(X \setminus A) \) is said to be an \(ii \)-exterior of \(A \).

Theorem 3.14. For a subset \(A \) of a space \(X \), the following statements hold:

1) \(\text{Ext}(A) \subseteq \text{Ext}_u(A) \) where \(\text{Ext}(A) \) denotes the exterior of \(A \)
2) \(\text{Ext}_u(A) \) is \(ii \)-open
3) \(\text{Ext}_u(A) = \text{Int}_u(X \setminus A) = X \setminus \text{CL}_u(A) \)
4) \(\text{Ext}_u(\text{Ext}_u(A)) = \text{Int}_u(\text{CL}_u(A)) \)
5) If \(A \subseteq B \), then \(\text{Ext}_u(A) \supseteq \text{Ext}_u(B) \)
6) \(\text{Ext}_u(A \cup B) \subseteq \text{Ext}_u(A) \cup \text{Ext}_u(B) \)
7) \(\text{Ext}_u(A \cap B) \supseteq \text{Ext}_u(A) \cap \text{Ext}_u(B) \)
8) \(\text{Ext}_u(X) = \phi \)
9) \(\text{Ext}_u(\phi) = X \)
10) \(\text{Ext}_u(A) = \text{Ext}_u(X \setminus \text{Ext}_u(A)) \)
11) \(\text{Int}_i(A) \subseteq \text{Ext}_i(\text{Ext}_i(A)) \)

12) \(X = \text{Ext}_i(A) \cup \text{Ext}_i(A) \cup \text{Fr}_i(A) \)

Proof. 1) It follows from Theorem 3.6 (1).

2) It is straightforward by Theorem 3.6 (6).

3) \(\text{Ext}_i(A) = \text{Ext}_i(X \setminus \text{CL}_i(A)) \)

4) Assume that \(A \subset B \). Then \(\text{Ext}_i(B) = \text{Ext}_i(X \setminus B) \subseteq \text{Ext}_i(X \setminus A) = \text{Ext}_i(A) \), by using Theorem 3.6 (7).

5) Applying Theorem 3.6 (8), we get

\[
\text{Ext}_i(A \cup B) = \text{Int}_i(X \setminus (A \cup B)) = \text{Int}_i((X \setminus A) \cup (X \setminus B))
\]

\[
\subseteq \text{Int}_i(X \setminus A) \cup \text{Int}_i(X \setminus B) = \text{Ext}_i(A) \cup \text{Ext}_i(B).
\]

6) Applying Theorem 3.6 (9), we obtain

\[
\text{Ext}_i(A \cap B) = \text{Int}_i(X \setminus (A \cap B)) = \text{Int}_i((X \setminus A) \cap (X \setminus B))
\]

\[
\supset \text{Int}_i(X \setminus A) \cap \text{Int}_i(X \setminus B) = \text{Ext}_i(A) \cap \text{Ext}_i(B).
\]

7) Straightforward.

8) Straightforward.

9) \(\text{Ext}_i(X \setminus \text{Ext}_i(A)) = \text{Ext}_i(X \setminus \text{Int}_i(X \setminus A)) = \text{Int}_i(X \setminus \text{Int}_i(X \setminus A)) \)

\[
= \text{Int}_i(X \setminus A) = \text{Ext}_i(A).
\]

10) \(\text{Int}_i(X \setminus \text{Ext}_i(A)) = \text{Ext}_i(\text{Ext}_i(A)) \).

Example 3.15. Let \(X = \{a, b, c, d\} \) and \(\tau = \{\emptyset, X, \{c, d\}\} \). Thus, \(\text{Int}(X) = \{\emptyset, X, \{c, d\}, \{b, c, d\}, \{a, c, d\}\} \). If \(A = \{a\} \) and \(B = \{b\} \). Then \(\text{Ext}_i(A) \not\subseteq \text{Ext}(A) \). \(\text{Ext}_i(A \cap B) \neq \text{Ext}_i(A) \cap \text{Ext}_i(B) \) and \(\text{Ext}_i(A \cup B) \neq \text{Ext}_i(A) \cup \text{Ext}_i(B) \).

4. A New Decomposition of \(ii \)-Continuity

We begin by the following definition:

Definition 4.1. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called \(ii \)-continuous if \(f^{-1}(G) \) is \(ii \)-open set in \((X, \tau) \) for any open set \(G \) of \((Y, \sigma) \).

Theorem 4.2. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function then:

1) Every continuous function is an \(ii \)-continuous,
2) Every \(ii \)-continuous function is an \(i \)-continuous,
3) Every \(a \)-continuous function is an \(ii \)-continuous.

Proof. 1) Let \(G \) be open set in \((Y, \sigma) \). Since \(f \) is continuous, it follows that \(f^{-1}(G) \) is open set in \((X, \tau) \). But every open set is \(ii \)-open set [4]. Hence \(f^{-1}(G) \) is \(ii \)-open set in \((X, \tau) \). Thus \(f \) is \(ii \)-continuous.

2) Let \(G \) be open set in \((Y, \sigma) \). Since \(f \) is an \(ii \)-continuous, it follows that \(f^{-1}(G) \) is an \(ii \)-open set in \((X, \tau) \). But every \(ii \)-open set is \(i \)-open set [4]. Hence \(f^{-1}(G) \) is \(i \)-open set in \((X, \tau) \). Thus \(f \) is \(i \)-continuous.

3) Let \(G \) be open set in \((Y, \sigma) \). Since \(f \) is \(a \)-continuous, it follows that
$f^{-1}(G)$ is a-open set in (X, τ). But every a-open set is ii-open set [4]. Hence $f^{-1}(G)$ is ii-open set in (X, τ). Thus f is an ii-continuous.

The converse need not be true by the following example.

Example 4.3. Let
$$X = \{a, b, c, d\}, \quad \tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}\}$$

and
$$Y = \{a, b, c, d\}, \quad \sigma = \{\phi, Y, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b, d\}\}$$

and
$$ii o(x) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\},$$

$$io(x) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\},$$

$$ao(x) = \{\phi, X, \{a\}, \{b\}, \{a, c\}, \{a, b, d\}, \{a, b, c\}, \{a, b, c, d\}\}.$$ Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function then $f^{-1}(\{a\}) = \{a\}$, $f^{-1}(\{b\}) = \{b\}$, $f^{-1}(\{c\}) = \{c\}$, $f^{-1}(\{d\}) = \{d\}$. Then f is ii-continuous, but f is not a-continuous, since for the open set $\{a, d\}$ in (Y, σ), $f^{-1}(\{a, d\}) = \{a, d\}$ is not a-open in (X, τ) and f is not continuous, since for the open set $\{a, d\}$ in (Y, σ), $f^{-1}(\{a, d\}) = \{a, d\}$ is not open in (X, τ).

Now when $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by $f^{-1}(\{a\}) = \{b\}$, $f^{-1}(\{b\}) = \{a\}$, $f^{-1}(\{c\}) = \{d\}$, $f^{-1}(\{d\}) = \{c\}$ we get f is i-continuous, but f is not ii-continuous, since for the open set $\{a, d\}$ in (Y, σ), $f^{-1}(\{a, d\}) = \{b, d\}$ is not ii-open in (X, τ).

Theorem 4.4. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function then every semi-continuous function is an ii-continuous.

Proof. Let G be open set in (Y, σ). Since f is semi-continuous, it follows that $f^{-1}(G)$ is semi-open set in (X, τ). But every semi-open set is ii-open set [4]. Hence $f^{-1}(G)$ is ii-open set in (X, τ). Thus f is an ii-continuous.

Definition 4.5. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called int-continuous if $f^{-1}(G)$ is int-open set in (X, τ) for any open set G in (Y, σ).

Theorem 4.6. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function then:

1) Every continuous function is int-continuous,
2) Every ii-continuous function is int-continuous,
3) Every a-continuous function is int-continuous.

Proof.
1) Let G be open set in (Y, σ). Since f is continuous, it follows that $f^{-1}(G)$ is open set in (X, τ). But every open set is int-open set [4]. Hence $f^{-1}(G)$ is int-open set in (X, τ). Thus f is int-continuous.

2) Let G be open set in (Y, σ). Since f is ii-continuous, it follows that $f^{-1}(G)$ is an ii-open set in (X, τ). But every ii-open set is int-open set [4]. Hence $f^{-1}(G)$ is int-open set in (X, τ). Thus f is int-continuous.

3) Let G be open set in (Y, σ). Since f is a-continuous, it follows that $f^{-1}(G)$ is a-open set in (X, τ). But every a-open set is int-open set [4]. Hence $f^{-1}(G)$ is int-open set in (X, τ). Thus f is int-continuous.

The converse need not be true by the following example.
Example 4.7. Let \(X = \{a, b, c\} \), \(\tau = \{\phi, X, \{a\}, \{b, c\}\} \) and \(Y = \{a, b, c\} \), \(\sigma = \{\phi, Y, \{a\}, \{a, c\}\} \) and \(\text{into}(x) = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}, \{a, c\}\} \), \(\text{ii}(x) = \alpha(x) = \{\phi, X, \{a\}, \{b, c\}\} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the identity function then \(f^{-1}(\{a\}) = \{a\} \), \(f^{-1}(\{b\}) = \{b\} \), \(f^{-1}(\{c\}) = \{c\} \). Then \(f \) is int-continuous, but \(f \) is not ii-continuous, since for the open set \(\{a, c\} \) in \((Y, \sigma) \), \(f^{-1}(\{a, c\}) = \{a, c\} \) is not \(ii \)-open in \((X, \tau) \) and \(f \) is not continuous, since for the open set \(\{a, c\} \) in \((Y, \sigma) \), \(f^{-1}(\{a, c\}) = \{a, c\} \) is not open in \((X, \tau) \) and \(f \) is not \(a \)-continuous, since for the open set \(\{a, c\} \) in \((Y, \sigma) \), \(f^{-1}(\{a, c\}) = \{a, c\} \) is not \(a \)-open.

Definition 4.8. A subset \(A \) of \(X \) is called weakly \(ii \)-open set if \(A \) is \(ii \)-open set and \(\text{Int} A \subseteq \text{CL} \text{Int} A \). A subset \(A \) of a space \(X \) is \(a \)-open set if and only if \(A \) is weakly \(ii \)-open.

Proof. Let \(A \) be \(a \)-open set. Since \(\text{Int} \text{CL} \text{Int} (A) \subseteq A \subseteq \text{CL} (A) \). Therefore \(A \subseteq \text{CL} (\text{Int} (A)) \cap \text{CL} (A) \), this implies that \(A \subseteq \text{CL} (\text{Int} (A) \cap A) \). Now, put \(G = \text{Int} (A) \) where \(G \neq \phi, X \), then \(A \) is \(ii \)-open set. Therefore, \(A \) is weakly \(ii \)-open set.

Conversely, Let \(A \) be weakly \(ii \)-open set, then there exist an open set \(G \neq \phi, X \), such that \(G = \text{Int} (A) \) satisfying \(A \subseteq \text{CL} (\text{Int} (A) \cap A) \) and \(A \) is \(ii \)-open set. Since \(A \subseteq \text{CL} (\text{Int} (A) \cap A) \), this implies that \(A \subseteq \text{CL} (\text{Int} (A)) \) and \(\text{Int} (A) \subseteq \text{CL} (\text{Int} (A)) \). Since \(A \) is \(ii \)-open set, using (2) from Theorem (3.6), we get \(A = \text{Int} (A) \). Therefore \(A \subseteq \text{Int} (\text{CL} (\text{Int} (A))) \). Thus \(A \) is \(a \)-open set.

As a summary the following Figure 1 shows the relations among semi-continuous, \(ii \)-continuous, \(i \)-continuous, int-continuous, \(a \)-continuous and continuous.

Figure 1. Relations among semi-continuous, \(ii \)-continuous, \(i \)-continuous, int-continuous, \(a \)-continuous and continuous.
Corollary 4.10. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\alpha \)-continuous if and only if it is weakly \(ii \)-continuous.

Proof. Clear from Theorem 4.9.

5. \(ii \)-Separating Axioms

In this section we define \(T_{0ii} \) and \(T_{1ii} \) spaces for \(ii \)-open sets and we determine them by giving many examples. Specially, we define \(T_{1ii} \) spaces to compare them with \(T_{0ii} \) space.

Definition 5.1. A topological space \(X \) is called

1) \(T_{0ii} \) if \(a, b \) are two distinct points in \(X \), there exist \(ii \)-open set \(U \) such that either \(a \in U \) and \(b \notin U \), and \(b \in U \) and \(a \notin U \).

2) \(T_{1ii} \) if \(a, b \in X \) and \(a \neq b \), there exist \(ii \)-open sets \(U, V \) containing \(a, b \) respectively, such that \(b \notin U \) and \(a \notin V \).

Example 5.2. Let \(X = \{a, b\}, \tau = \tau = \phi, X, \{a\}, \{b\} \) \((X, \tau) \) and \((X, \tau) \) are topological spaces.

1) \(a, b \in X \) \((a \neq b) \) there exists \(\{a\} \in \tau \) such that \(a \in \{a\}, b \notin \{a\} \).

Therefore \((X, \tau) \) is \(T_{0ii} \).

2) \(a, b \in X \) \((a \neq b) \) there exists \(\{a\}, \{b\} \in \tau \) such that \(a \in \{a\}, b \in \{b\} \).

Therefore \((X, \tau) \) is \(T_{1ii} \).

Theorem 5.3.

1) Every \(T_{0} \) -space is \(T_{0ii} \) -space,
2) Every \(T_{1} \) -space is \(T_{0ii} \) -space,
3) Every \(T_{ii} \) -space is \(T_{1ii} \) -space,
4) Every \(T_{1ii} \) -space is \(T_{0ii} \) -space.

Proof. (1), (2), (3) and (4) follow using the fact that every open set is \(ii \)-open [4]. The converse needs not to be true by the following example.

Example 5.4. Let

\[X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\} \] and \(\tau' = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\} \).

\((X, \tau) \) and \((X, \tau') \) are topological spaces.

\((X, \tau) \) is not \(T_{0ii} \) -space because, \(b, c \in X \) \((b \neq c) \) there is no open set \(G \) such that \(b \in G, c \notin G \).

\((X, \tau) \) is \(T_{0ii} \) -space because, \(a, b \in X \) \((a \neq b) \) there exists \(\{a\} \in \tau' \) such that \(a \in \{a\}, b \notin \{a\} \).

\(a, c \in X \) \((a \neq c) \) there exists \(\{a\} \in \tau' \) such that \(a \in \{a\}, c \notin \{a\} \).

\(b, c \in X \) \((b \neq c) \) there exists \(\{a, b\} \in \tau' \) such that \(b \in \{a, b\}, c \notin \{a, b\} \).

\((X, \tau) \) is not \(T_{1ii} \) -space because, \(a, b \in X \) \((a \neq b) \) there exists \(X \in \tau \) such that \(a \in X, b \in X \).

\((X, \tau) \) is not \(T_{1ii} \) -space because, \(b, a \in X \) \((a \neq b) \) there exists \(\{a, b\} \in \tau' \) such that \(a \in \{a, b\}, b \notin \{a, b\} \).

Theorem 5.5. Every \(T_{1ii} \) -space is \(T_{1ii} \) -space.

Proof. Let \(X \) be \(T_{1ii} \) -space. Let \(a, b \) be two distinct points in \(X \). Since \(X \) is \(T_{1ii} \) -space there exist two \(\alpha \)-open sets \(U, V \) in \(X \) such that \(a \in U, b \notin U, a \notin V \),
Since every \(a\)-open set is \(ii\)-open set [4], \(U, V\) is an \(ii\)-open set in \(X\). Hence \(X\) is \(T_{ii}\)-space.

Theorem 5.6. Every \(T_{ii}\)-space is \(T_i\)-space.

Proof. Let \(X\) be a \(T_{ii}\)-space. Let \(a, b\) be two distinct points in \(X\). Since \(X\) is \(T_{ii}\)-space there exist two \(ii\)-open sets \(U, V\) in \(X\) such that \(a \in U\), \(b \notin U\), \(a \notin V\), \(b \in V\). Since every \(ii\)-open set is \(i\)-open set [4], \(U, V\) is an \(i\)-open set in \(X\). This is contradiction. Therefore \(X\) is \(T_{ii}\)-space.

Similarly, \(X\) is \(T_{ii}\)-space. Let \(a, b\) be two distinct points in \(X\). Since \(X\) is \(T_{ii}\)-space because, \(a, b \in X\) (\(a \neq b\)) there exists \(\{a\}, \{b\} \in \tau'\) such that \(a \in \{a\}\), \(b \notin \{a\}\) and \(a \notin \{b\}\). \(a, c \in X\) (\(a \neq c\)) there exists \(\{a\}, \{c\} \in \tau'\) such that \(a \in \{a\}\), \(c \notin \{a\}\) and \(c \notin \{c\}\).

\(b, c \in X\) (\(b \neq c\)) there exists \(\{c\}, \{b\} \in \tau'\) such that \(c \in \{c\}\), \(b \notin \{c\}\) and \(b \notin \{b\}\), \(c \in \{b\}\).

\((X, \tau)\) is not \(T_{ii}\)-space because, \(b, c \in X\) (\(c \neq b\)) there exists \(\{b\}, \{c\} \in \tau^a\) such that \(c \in \{b\}, b \notin \{c\}\).

Theorem 5.8. A space \(X\) is \(T_{oi}\)-space if and only if \(CL_0(\{x\}) \neq CL_0(\{y\})\) for every pair of distinct points \(x, y\) of \(X\).

Proof. Let \(X\) be a \(T_{oi}\)-space. Let \(x, y \in X\) such that \(x \neq y\), then there exists an \(ii\)-open set \(U\) containing one of the points but not the other, then \(x \in U\) and \(y \notin U\). Then \(X \setminus U\) is \(ii\)-closed set containing \(y\) but not \(x\). But \(CL_0(\{y\})\) is the smallest \(ii\)-closed set containing \(y\); Therefore \(CL_0(\{y\}) \subset X \setminus U\) and hence \(x \notin CL_0(\{y\})\). Thus \(CL_0(\{x\}) \neq CL_0(\{y\})\).

Conversely, Suppose for any \(x, y \in X\) with \(x \neq y\), \(CL_0(\{x\}) \neq CL_0(\{y\})\). Let \(z \in X\) such that \(z \in CL_0(\{x\})\) but \(z \notin CL_0(\{y\})\). If \(x \in CL_0(\{y\})\) then \(CL_0(\{x\}) \subset CL_0(\{y\})\) and hence \(z \in CL_0(\{y\})\). This is contradiction. Therefore \(X \notin CL_0(\{y\})\). Therefore \(X \setminus CL_0(\{y\})\) is \(ii\)-open set containing \(x\) but not \(y\); Hence \(X\) is an \(T_{oi}\)-space.

Theorem 5.9. A space \((X, \tau)\) is \(T_{ii}\)-space if and only if the singletons are \(ii\)-closed sets.

Proof. Let \(X\) be \(T_{ii}\)-space and let \(x \in X\), to prove that \(\{x\}\) is \(ii\)-closed set. We will prove \(X \setminus \{x\}\) is \(ii\)-open set in \(X\). Let \(y \in X \setminus \{x\}\), implies \(x \neq y\) and since \(X\) is \(T_{ii}\)-space then their exist two \(ii\)-open sets \(U, V\) such that \(x \notin U\), \(y \in V \subset X \setminus \{x\}\). Since \(y \in V \subset X \setminus \{x\}\), then \(X \setminus \{x\}\) is \(ii\)-open set. Hence \(\{x\}\) is \(ii\)-closed set.

Conversely, Let \(x \neq y \in X\) then \(\{x\}, \{y\}\) are \(ii\)-closed sets. That is \(X \setminus \{x\}\) is \(ii\)-open set clearly, \(x \notin X \setminus \{x\}\) and \(y \in X \setminus \{x\}\). Similarly \(X \setminus \{y\}\) is \(ii\)-open set, \(y \notin X \setminus \{y\}\) and \(x \in X \setminus \{y\}\). Hence \(X\) is an \(T_{ii}\)-space.

As a consequence the following Figure 2 shows the relations among \(T_0, T_{oi}\), \(T_i, T_{ii}\) and \(T_{ii}\).
Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Caldas, M. (2003) A Note on Some Applications of α-Open Sets. *International Journal of Mathematics and Mathematical Sciences*, 2, 125-130. https://doi.org/10.1155/S0161171203203161

[2] Njastad, O. (1965) On Some Classes of Nearly Open Sets. *Pacific Journal of Mathematics*, 15, 961-970. https://doi.org/10.2140/pjm.1965.15.961

[3] Askander, S.W. (2016) Oni-Separation Axioms. *International Journal of Scientific and Engineering Research*, 7, 367-373. https://www.ijser.org

[4] Mohammed, A.A. and Abdullah, B.S. (2019) II-Open Sets in Topological Spaces. *International Mathematical Forum*, 14, 41-48. https://doi.org/10.12988/imf.2019.913

[5] Levine, N. (1963) Semi-Open Sets and Semi-Continuity in Topological Spaces. *The American Mathematical Monthly*, 70, 36-41. https://doi.org/10.2307/2312781

[6] Mashhour, A.S., Hasanein, I.A. and Ei-Deeb, S.N. (1983) α-Continuous and α-Open Mappings. *Acta Mathematica Hungarica*, 41, 213-218. https://doi.org/10.1007/BF01961309