meningiomas (Khaddar et al., South Asian J Cancer 9:261, 2020). Besides its efficacy as a single agent, gemcitabine reportedly has a radiosensitizing effect in pancreatic cancer. However, it remains unknown whether or how gemcitabine interacts with ionizing radiation (IR) in malignant meningioma cells. METHODS: We examined radiosensitization effects of gemcitabine using malignant meningioma cell lines and xenografts (s.c. and i.c.) and explored the underlying mechanisms. RESULTS: Gemcitabine sensitized malignant meningioma cells remarkably to IR through the mechanism of G2/M cell cycle arrest and seneceence both in vitro and in vivo. Gemcitabine augmented the intracellular production of reactive oxygen species (ROS) by IR, which, together with cell growth suppression/seneceence induced by this combination, was inhibited by N-acetylcycteine, suggesting a pivotal role for ROS in these combinatorial effects. Navitoclax, a senolytic drug, further enhanced the effects of the combination of gemcitabine and IR in vitro and in vivo by strongly inducing apoptotic cell death in senescent cells. CONCLUSION: These results suggest that gemcitabine is not only a promising radiosensitizer for meningiomas but also create in combination with IR a thera- peutic vulnerability of senescent meningioma cells to senolytics. (submitted for publication)

Key words: meningioma | gemcitabine | seneceence

ET-7

ROLES OF HENT1 AND DCK IN GEMCITABINE SENSITIVITY AND MALIGNANCY OF MENINGIOMA

-Asahiko Yamamoto1, Hiro Yoshikuri1, Ushida1, Hajime Yonezawa1, Nayuta Higa2, Yuko Yamada3, Yukihiko Sonoda4, Hirofumi Hirano4, Koji Yoshimoto5, Chifumi Kitakata1,1Department of Molecular Cancer Science, Yamagata University, Yamagata, Japan 2Department of Neurosurgery, Kagoshima University, Kagoshima, Japan 3Department of Neurosurgery, Yamagata University, Yamagata, Japan

Background: High-grade meningiomas are aggressive tumors with high morbidity and mortality rates that frequently recur even after surgery and adjuvant radiotherapy. However, limited information is currently available on the biology of these tumors, and no alternative adjuvant treatment options exist. Although we previously demonstrated that high-grade meningioma cells were highly sensitive to gemcitabine in vitro and in vivo, the underlying molecular mechanisms remain unknown.

Methods: We examined the roles of hENT1 (human equilibrative nucleo- side transporter 1) and dCK (deoxycytidine kinase) in the gemcitabine sensitivity and growth of meningioma cells in vitro. Tissue samples from meningiomas (26 WHO grade I and 21 WHO grade II/III meningiomas) were immunohistochemically analyzed for hENT1 and dCK as well as for Ki-67 as a marker of proliferative activity. Results: hENT1 and dCK, which play critical roles in the intracellular transport and activation of gemcitabine, respectively, were responsible for the high gemcitabine sen- sitivity of high-grade meningioma cells and were strongly expressed in high-grade meningiomas. hENT1 expression was required for the prolif- eration and survival of high-grade meningioma cells and dCK expression. Furthermore, high hENT1 and dCK expression levels correlated with stronger tumor cell proliferative activity and shorter survival in men- ingioma patients. Conclusions: The present results suggest that hENT1 is a key molecular factor influencing the growth capacity and gemcitabine sensitivity of meningioma cells and also that hENT1, together with dCK, may be a viable prognostic marker for meningioma patients as well as a predictive marker of their responses to gemcitabine.

Key words: meningioma | gemcitabine | hENT1

ET-8

INTEGRATED DIAGNOSTIC APPROACH TO PREDICT PROGNOSIS FOR MALIGNANT GLIOMAS

Masaatka Isozaki1, Kenzae Tatew1, Jo Sazame1, Takahiro Hayashi1, Youhei Miyake1, Akito Oshima1, Hirokuni Honna1, Tetsuya Yamamoto1, 1Department of Neurosurgery, Yokohama City University, Kanagawa, Japan

Previous studies indicated that MGMT promoter methylation status with IDH and TERT promoter mutation are major prognostic factors in glioma. In addition to these molecular features, we have been assessing drug sensitivity against several chemotherapeutic agents, including temozolomide (TMZ). Here, we examined if this combined information could strongly predict drug sensitivity and the prognosis in glioma pa- tients. One hundred and twenty-five IDH wild-type gliomas (WHO grade III and grade IV) were included in this study and retrospectively analyzed. Among them, we focused on 37 patients with partial surgical resection and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul- tured tumor cells were exposed with several compounds for 72 hours, and biopsy to assess radiological difference on MRI. The primary cul-

Abstracts

ET-9

DEVELOPMENT OF PHOTOSENSITIVE ANTIBODIES FOR NEAR-INFRARED LIGHT IMMUNOTHERAPY TARGETING EGFR AND IL13Rα2 OF MALIGNANT GLIOMAS AND INVESTIGATION OF THEIR PHOTODYNAMIC CYTOSTATIC ACTIVITY IN VITRO

Naosuke Nonoguchi1, Akhiro Kambara1, Seigo Kimita1, Shini Kawai1, Yoichiro Yagi1, Naoko Ikeeda1, Motomasa Furuse1, Masahiko Waniuchi1, 1Department of Neurosurgery, Osaka Medical and Pharmaceutical University

Introduction: Near-Infrared Photimmuneonotherapy (NIR-PIT) is a recently developed hybrid cancer therapy based on photodynamic cyto- toxicity and anti-tumor immunopotomorization, utilizing a photosensitizing antibiotic drug (PSAD). A global Phase III trial of NIR-PIT with an anti- EGFR-PSAD in patients with recurrent head and neck squamous cell carci- nomia (HNSCC) is already underway, and NIR-PIT is expected to have therapeutic applications also in malignant gliomas. Methods: In this study, monoclonal antibodies to EGFR and IL13Rα2 were conjugated to the photosensitive dye IRDye700DX (IR700) to produce PSADs (EGFR-Ab/ IR700 and IL13Rα2-Ab/IR700) and in vitro PDT assays using these PSADs were performed on four human glioma cell lines (U87MG, U251, U138, A172). Five groups were studied: EGFR-Ab/IR700 monotherapy: 5 μg/ml or 10 μg/ml, IL13Rα2-Ab/IR700 monotherapy: 5 μg/ml or 10 μg/ml, and EGFR-Ab/IR700: 5 μg/ml or IL13Rα2-Ab/IR700: 5 μg/ml combination therapy. The cytotoxic activity of each group was compared after irradiation with 690 nm light at 16 J/cm2. Results: Significantly higher cyto- toxic activity was observed in all four glioma cell lines when EGFR-Ab/ IR700 and IL13Rα2-Ab/IR700 were used in combination at 5 μg/ml each, than when each PSAD was treated with a doubled dose (10 μg/ml). Con- clusion: Malignant gliomas showed extensive cellular heterogeneity with dis- verse expression of cell surface antigens. The present results suggest that a therapeutic strategy using several different photosensitizing antibodies simultaneously may lead to the release of tumor antigens from a greater number of tumor cells, resulting in a more efficient host immune response for therapeutic purposes.

Key words: Photomimmuneonotherapy | EGFR | IL13Rα2

TUMOR BIOLOGY/MODELS (TB)

TB-2

PATIENT-DERIVED MENINGIOMA ORGANOID MODEL DEMONSTRATES FOXM1 DEPENDENT TUMOR PROLIFERATION

Shintaro Yamazaki1, Fumiharu Ohka1, Masaki Hirano2, Yukihito Shiraki2, Kazuya Motomura1, Kunikazu Tanahashi1, Takashi Tsuichu1, Ayako Motomura1, Kosuke Aoki1, Keiko Shinjo1, Yoshiteru Murushi1, Yotaro Kitano1, Sachi Maeda1, Akira Kato1, Hirofumi Shimizu1, J Unia Yamaguchi1, Shimizu1, Yoshikazu Wakabayashi1, Ryuta Saito2, Atsushi Enomoto1, Yutaka Kondo1, Atsushi Natsume1, 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan 2Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan 3Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan 4Department of Neurosurgery, Daido hospital, Nagoya, Japan 5Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan

Recent comprehensive studies have revealed several molecular alterations that are frequently found in meningiomas. However, effective treatment reagents targeting specific molecular alterations have not yet been identified because of the limited number of representative research models of meningiomas. We established 18 organoid models comprising of two malignant meningioma cells (HKBMM and 10MM-lee1), 10 benign meningiomas, four malignant meningiomas, and two solitary fibrous tumors (SF). Using immunohistochemistry and flow cytometry, whole exome sequencing, RNA-seq, and DNA methylation analyses, we compared the histological findings and molecular profiling of organoid models with