Gene expression

A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets

Ashok Sharma1, Robert Podolsky1,2, Jieping Zhao1 and Richard A. McIndoe1,3,*

1Center for Biotechnology and Genomic Medicine, 2Department of Medicine and 3Department of Pathology, Medical College of Georgia, Augusta, GA, USA

Received on October 7, 2008; revised on January 27, 2009; accepted on February 28, 2009
Advance Access publication March 4, 2009
Associate Editor: David Rocke

ABSTRACT

Motivation: As the number of publically available microarray experiments increases, the ability to analyze extremely large datasets across multiple experiments becomes critical. There is a need to develop algorithms which are fast and can cluster extremely large datasets without affecting the cluster quality. Clustering is an unsupervised exploratory technique applied to microarray data to find similar data structures or expression patterns. Because of the high input/output costs involved and large distance matrices calculated, most of the agglomerative clustering algorithms fail on large datasets (30 000 genes/200 arrays). In this article, we propose a new two-stage algorithm which partitions the high-dimensional space associated with microarray data using hyperplanes. The first stage is based on the Balanced Iterative Reducing and Clustering using Hierarchies algorithm with the second stage being a conventional k-means clustering technique. This algorithm has been implemented in a software tool (HPCluster) designed to cluster gene expression data. We compared the clustering results using the two-stage hyperplane algorithm with the conventional k-means algorithm from other available programs. Because, the first stage traverses the data in a single scan, the performance and speed increases substantially. The data reduction accomplished in the first stage of the algorithm reduces the memory requirements allowing us to cluster 44 460 genes without failure and significantly decreases the time to complete when compared with popular k-means programs. The software was written in C# (NET 1.1).

Availability: The program is freely available and can be downloaded from http://www.amdcc.org/bioinformatics/bioinformatics.aspx.

Contact: rmcindoe@mail.mcg.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Clustering gene expression data can be done using either supervised or unsupervised algorithms that group genes with similar expression pattern. For unsupervised methods, the similarity between gene expression vectors is calculated using a distance metric. Common distance metrics used for this purpose are Euclidean, Manhattan and Pearson. The goal of clustering is to minimize the intrachuster distances and to maximize the intercluster distances. There are many data clustering algorithms available in the literature with the three most popular clustering algorithms used for clustering gene expression data being: Hierarchical Clustering; k-means; and self organizing maps (SOM). These methods are popular because of their conceptual simplicity and their availability in standard software packages rather than their algorithmic qualities (Handl et al., 2005).

Hierarchical Clustering is widely used in the scientific community because it is easy to read and interpret due to better visualization of clusters using a dendrogram (assuming the dataset size is small). In this method, a pairwise distance matrix is calculated for all the genes prior to the construction of the dendrogram. Initially, all genes are considered as individual clusters followed by sequential merging of the two closest clusters in each subsequent step based on their distance. The final step has only one cluster left with all the genes in it. The dendrogram represents the hierarchy of clusters in the dataset based on their distance from one another. When merging two clusters, one must calculate the new distance for the merged cluster. Three different methods can be used to calculate the new cluster distance; single linkage, average linkage and complete linkage. Single linkage takes the smaller of the two distance values, complete linkage takes the greater of the two distance values and average linkage takes the average of the two distance values.

The k-means and SOM are partition based algorithms and therefore clusters are not represented as hierarchies but rather as groups of similar data points. One advantage of these methods is that they do not require the total number of clusters to be specified in advance, but fail on large datasets (e.g. tens of thousands of genes by hundreds of arrays). Because of the memory requirements and computation time increases dramatically as the dataset size increases with the complexity being proportional to the square of the dataset size. To address this issue we have developed a two-stage algorithm designed to cluster large datasets.
The first stage of the algorithm reduces the data complexity using the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm (Zhang et al., 1996). This data reduction step is done in a single scan of the data and reduces the memory requirements. The second stage uses the resulting partitions from the first stage and performs a conventional k-means algorithm on the reduced dataset. This algorithm has been implemented in a software application designed to analyze microarray data.

To test this algorithm, we used both simulated and real datasets. The simulated datasets have defined clusters with known results and are used to assess the accuracy of the algorithm. Our results indicate the modified hyperplane algorithm is significantly faster than existing algorithms, using substantially reduced memory requirements and provides comparable accuracy and quality when evaluated relative to existing algorithms.

2 METHODS

2.1 Algorithm

The modified hyperplane clustering algorithm (HPCluster) works in two stages: (i) reduction of the dataset using cluster features (CFs) and (ii) conventional k-means clustering on the CFs obtained in stage 1. The first stage of the algorithm is derived from the BIRCH algorithm proposed by Zhang et al. (1996). BIRCH summarizes a dataset into a set of CFs (subclusters) to reduce the scale of the clustering problem. Dense data points that are extremely close to each other are treated collectively as a single CF and not individually.

2.1.1 CF

A CF is a group of closely related data points and is defined based on three variables (N, LS, SS) that summarize information related to the data points in the CF.

\[
\text{CF} = (N, \text{LS}, \text{SS})
\]

(1)

\[N = \text{Number of data points in the CF.}
\]

\[\text{LS} = \sum_{i = 1}^{N} X_i
\]

(2)

Where \(X_i\) is the \(d\)-dimensional data point vector.

\[\text{SS} = \sum_{i = 1}^{N} X_i^2
\]

(3)

The centroid, radius and diameter of a CF can be calculated using these variables and are defined as:

\[
\text{Centroid}(\overrightarrow{X}) = \frac{1}{N} \sum_{i = 1}^{N} X_i
\]

(4)

\[
\text{Radius (R)} = \left(\frac{1}{N} \sum_{i = 1}^{N} (X_i - \overrightarrow{X})^2 \right)^{1/2}
\]

(5)

\[
\text{Diameter (D)} = \left(\frac{1}{N(N-1)} \sum_{i = 1}^{N} \sum_{j = 1, j \neq i}^{N} (X_i - X_j)^2 \right)^{1/2}
\]

(6)

The first stage of the algorithm is as follows.

1. Calculate the maximum allowable diameter \(D_{\text{max}}\) for the CFs. \(D_{\text{max}}\) is an important parameter which is calculated based on a random sampling of 10% of the genes from the dataset. The details of this step are explained in the next section.

2. The first gene from the dataset becomes the first CF with \(N = 1\).

3. The next gene is added to this first CF.

4. After addition of this gene, the diameter of the CF is calculated. If the diameter is greater than \(D_{\text{max}},\) this gene is taken out and a new CF is made with this gene.

5. The next gene is then compared with each of the CFs and is added to the closest CF.

6. Steps 4 and 5 are repeated till the end of the gene list.

At the end of the first stage, the whole dataset is partitioned into CFs with summary information available for these dense collections of data points. The centroid, radius and diameter of these CFs can be calculated using Equations (4–6). The second stage of the algorithm uses a conventional k-means clustering algorithm. CFs obtained in the first stage are now considered as individual data points and we use the Euclidian distance between two CFs as a measure of the distance between these CFs. The Euclidian distance between two CFs is the distance between their centroids.

\[
\text{Euclidean distance (ED)} = \left(\frac{1}{\|A - B\|^2} \right)^{1/2}
\]

(7)

The second stage of the algorithm is as follows.

1. Cluster centroids are initialized; the different initialization schemes used are explained in the next section.

2. CFs are assigned to the closest centroids.

3. Cluster centroids are recalculated.

4. Steps 2 and 3 are repeated until there is no change in the centroids.

2.2 Estimation of the maximum diameter of a CF

The degree of data reduction depends upon the maximum allowable size of the CFs, which is a function of the maximum diameter \(D_{\text{max}}\). A large \(D_{\text{max}}\) will result in a smaller number of CFs and hence a greater degree of data reduction whereas a small \(D_{\text{max}}\) will result in a larger number of CFs and a lesser degree of data reduction. By setting the \(D_{\text{max}}\), we can control the maximum size (in space) of the CFs. If we over estimate \(D_{\text{max}}\), we will get very few final CFs. If the diameter is too small, than we will get a large number of final CFs. For example, \(D_{\text{max}}\) can be set so large that you could result in a single CF containing all the genes in the dataset or so small that the number of CFs is equal to the number of genes. This means we can get 1–N number partitions of the data depending upon the diameter. Estimating the initial \(D_{\text{max}}\) to use in the first stage of the algorithm is an important step.

In order to estimate \(D_{\text{max}}\) for the CFs, we use the 90-10 rule suggested by Das et al. (2003) to assess the similarity of the data between nodes of a cluster. This empirically derived rule is based on the observation that ~90% of the agglomerations in a hierarchical cluster of non-uniform data will initially have very small distances as compared with the maximum closest pair distances (the last 10% of agglomerations). In order to calculate an appropriate \(D_{\text{max}},\) we perform hierarchical clustering on a random 10% of the genes and create a distance plot of the distance values from the first merge to last merge (iteration number versus closest pair distance). The inflection point of the distance plot indicates a sharp increase from the smallest distance pairs to the largest distance pairs (the last 10% of agglomerations). Below this inflection point the closest pair distances are small (Fig. 1). This inflection point is an appropriate initial value of the maximum diameter because the objective of the first phase is to merge the data points which are extremely close to each other and consider them collectively.

2.3 Initial centroid calculation schemes

Because the second phase of the algorithm uses a classic k-means algorithm, the results of the modified hyperplane clustering algorithm are sensitive to
The modified hyperplane clustering algorithm is implemented in a program distribution (was chosen randomly. The mean vector for each gene within a cluster was distribution with mean, 0 and variance, 0.1. The number of genes in a cluster the mean for the time point by a value randomly selected from a Gaussian its sign. The means for the replicates within a time point deviated from adjusting by a value (uniform (0, 1) distribution.

...HPCluster program can be found in the supplemental figures. Easy and uses the built-in Windows Installer (MSI files). Screen shots of the application. The program is suited for large datasets because of the decrease that implements the two-stage algorithm in a graphical user interface (GUI).

2.4 Implementation

The modified hyperplane clustering algorithm is implemented in a program called HPCluster. This program is a high-performance windows application that implements the two-stage algorithm in a graphical user interface (GUI) application. The program is suited for large datasets because of the decrease in memory usage. All the software was written using the .NET Framework v1.1 and C# as the programming language. Installation of the program is easy and uses the built-in Windows Installer (MSI files). Screen shots of the HPCluster program can be found in the supplemental figures.

2.5 Creation of simulated datasets

We simulated clusters using a cluster-specific pattern across the arrays. In doing so, we created five time points with an equal number of replicates per time point. The mean at the initial time point was chosen randomly from a uniform (1, 4) distribution. The mean at the subsequent time points was adjusted by a value (β) randomly chosen from a uniform (0, 1) distribution. We introduced ‘cycles’ into the pattern by sampling a new β and changing its sign. The means for the replicates within a time point deviated from the mean for the time point by a value randomly selected from a Gaussian distribution with mean, 0 and variance, 0.1. The number of genes in a cluster was chosen randomly. The mean vector for each gene within a cluster was set by sampling from a Gaussian distribution with mean equal to the cluster mean and variance equal to 0.1. Random noise drawn from a Chi-squared distribution (χ²) was added to the resulting matrix of ‘means’. We used a combination of conditions for the number of genes (P = 10,000), number of clusters present (4, 10, 20) and number of arrays (n = 100) in the dataset to generate six total datasets. A heatmap of the simulated 20 cluster dataset is given in the Supplementary Materials (Supplementary Fig. S1).

2.5.1 Experimental microarray data

We also analyzed a real experimentally derived microarray dataset. The dataset was downloaded from the NCBI Gene Expression Omnibus (GEO) (GSE5600: Gene expression in PHMCs from children with diabetes)(Kaizer et al., 2007). The array platform is the Affymetrix GeneChip Human Genome HG-U133A and HG-U133B chips. Combined data from both chips were used for 44,760 genes dataset analyzed. The data from only one chip (HG-U133A) was used for the 22,283 genes dataset and 10,000 randomly picked genes from the HG-U133A set was used for the 10,000 gene dataset.

2.6 Testing the performance of the algorithm

The performance of the algorithm was compared with other popular free clustering algorithms, including GUI based packages. It is a popular open source statistics package that is used extensively by the biomedical community and contains a number of clustering algorithms. For our tests, we used the ‘k-means’ and ‘som’ functions to perform both k-means and SOM clustering using R. We also compared our algorithm with both versions of Cluster (versions 2.0 and 3.0) (Eisen et al., 1998). This Windows based software is used by many biomedical researchers due to the ease of analysis and GUI. All the algorithms were run on a Dell Poweredge 2650 machine with Dual 3.06-GHz/512K Cache Xeon Processors and 8.0 GB DDR 266-MHz RAM.

A common technique used to do meaningful comparisons of gene expression patterns across conditions is to rescale the data by centering the data. This allows one to look for clusters of genes with relatively similar expression patterns across the dataset without concern for the differences in the magnitude of the expression. We standardized the data for each gene separately to center the data,

\[s_{ij} = \frac{y_{ij} - \bar{y}_j}{SD_j}, \]

where \(s_{ij} \) is the expression value of the i-th gene across the j-th array, \(y_{ij} \) is the mean expression of the i-th gene and SD is the standard deviation of the i-th gene.

Clustering was performed 12 times on each of the simulated and real microarray datasets for both centered and uncentered data. Three parameters were compared during the testing: time taken, accuracy and stability. Accuracy reflects the similarity between clustering results and the true underlying partitions in the simulated datasets. Stability reflects the similarity between different runs using the same program.

The similarity measure used to compare clustering results was the adjusted Rand index (ARI), which measures the fraction of agreement between two clustering results and can be between 0 and 1, where 1 is perfect agreement (Hubert and Arabie, 1985; Rand, 1971).

3 RESULTS

3.1 Significantly reduced time to completion

In order to assess the speed of the new algorithm, we clustered both the simulated and real microarray datasets for both centered and uncentered data and recorded the time to completion. Each dataset had 100 arrays, varying numbers of genes (10,000, 22,283 and 44,760), varying numbers of clusters (4, 10 and 20) and run 12 times each. The times and cluster assignments were recorded for each run. Table 1 presents the results of this analysis for both the simulated and real microarray centered datasets. All data are the average time in minutes to complete the cluster analysis. We ran
A modified hyperplane clustering algorithm for gene expression

Table 1. Comparison of time to complete analysis of various clustering algorithms using the centered data

Clusters	Genes	Simulated dataset	Experimental dataset									
	10,000	10,000	22,283	44,760								
	4	10	20	4	10	20						
HPC-DEN	0.39±0.04	0.42±0.03	0.36±0.02	0.67±0.08	0.49±0.07	0.84±0.07	1.48±0.14	1.61±0.17	2.16±0.25	3.37±0.74		
HPC-RIA	0.40±0.05	0.62±0.06	0.92±0.09	0.33±0.02	0.41±0.02	0.71±0.09	0.58±0.10	0.92±0.13	1.59±0.15	1.27±0.14	2.41±0.30	4.22±0.44
R-KM	0.23±0.02	0.56±0.07	1.61±0.09	0.24±0.02	0.86±0.08	2.94±0.10	0.59±0.04	2.00±0.09	9.02±0.49	1.07±0.07	4.72±0.19	22.68±1.39
R-SOM	0.22±0.01	0.48±0.04	0.80±0.01	0.21±0.01	0.43±0.01	0.83±0.03	0.44±0.01	0.93±0.03	1.48±0.03	1.91±0.02	1.94±0.04	3.46±0.02
Cluster v2	0.40±0.04	1.62±0.12	1.95±0.45	1.48±0.08	5.09±0.49	11.80±1.20	4.72±0.61	25.94±1.32	45.24±0.81	9.02±2.09	47.75±1.67	118.33±6.51
Cluster v3	1.12±0.08	3.06±0.18	8.94±0.50	3.70±0.42	9.68±0.54	19.28±1.61	8.73±0.28	26.90±1.88	57.50±4.95	11.70±0.56	51.50±2.89	162.33±10.60

HPC-DEN, density from data; HPC-RIA, random initial assignment; R-KM, R-k-means; R-SOM, R self-organizing maps; Cluster v2, Cluster v3, k-means algorithm.

3.2 Evaluation of cluster quality

In order to evaluate the quality of the cluster assignments produced by the modified hyperplane clustering algorithm, we need to use a statistic that provides a measure of agreement between the cluster results. A common statistic used to evaluate gene clustering methods is the Rand index (Rand, 1971). This statistic indicates the fraction of agreement between two cluster partitions. Agreement can be either pairs of objects that are in the same group in both partitions or in different groups in both partitions. The Rand index can be between 0 and 1 with 1 indicating perfect agreement. The ARI (Hubert and Arabie, 1985; Rand, 1971) adjusts the score so that the expected value in the case of random partitions is 0. The ARI is a popular statistic used to evaluate gene expression clustering algorithms (Kraj et al., 2008; Thalamuthu et al., 2006; Yeung et al., 2003).

We used the ARI to evaluate both the accuracy and stability of the cluster partitions generated by gene clustering methods. Accuracy was evaluated on the simulated datasets using the ARI calculated between the output cluster partitions and the true partitions. Accuracy is difficult to measure with experimentally derived data since the true clusters are not known. However, the true clusters are known for the simulated dataset. Figure 2 presents the average ARI results for the accuracy of the gene assignments for 10,000 genes and 20 true clusters for both the centered and uncentered data after running each program 12 times. The HPC program was run using the two different initialization schemes to determine their effect on cluster accuracy.

Interestingly, all the programs tested were sensitive to whether or not the data were centered before clustering. In general, the programs tended to do a better job of clustering the centered data. The exceptions to this are the HPC-RIA and Eisen’s Cluster v2, both of which use the same centroid initialization scheme (RIA). With respect to the uncentered data, HPC-RIA was significantly more accurate (ARI = 0.75 ± 0.01) than the other programs tested (P < 0.01). However, the R-SOM algorithm had the lowest accuracy (ARI = 0.54) when compared with the other algorithms (average 14% lower). Interestingly, using the density based initialization...
As stated previously, using the centered data produced different results from all the programs when compared with the uncentered data (Fig. 2). The HPC algorithm using the DEN initialization scheme did significantly better then all programs with an average ARI = 0.89 ± 0.01. In fact, the HPC-DEN analysis averaged 19.3% better accuracy then all the programs. Unlike the previous analysis with uncentered data, the HPC-RIA had the lowest accuracy (ARI = 0.48 ± 0.02) followed by Eisen’s Cluster v2 (ARI = 0.55 ± 0.03).

Since accuracy of experimental data is difficult to determine, we examined cluster stability for analyses involving the experimental data. These analyses provide information on the extent to which similar results would be obtained when running the software multiple times. Figure 3 presents the stability plots for both the centered and uncentered 22,283 gene experimental dataset used in the previous analysis. The HPC-DEN analysis averaged 19.3% better accuracy then all the programs. Unlike the previous analysis with uncentered data, the HPC-RIA had the lowest accuracy (ARI = 0.48 ± 0.02) followed by Eisen’s Cluster v2 (ARI = 0.55 ± 0.03).

Given the level of agreement observed for both the simulated and experimental data, and the accuracy observed for the simulated data, the DEN initialization scheme produces cluster partitions that are more accurate when the data is centered. On the other hand, the RIA initialization scheme produces cluster partitions that are more accurate when the data is uncentered.

3.3 Effect of incorrect cluster number

The partitioning methods for clustering require that the user provide the number of clusters (k) before executing the algorithm. Determining the appropriate number of clusters to use can be difficult and has an impact on the accuracy and usefulness of the resulting cluster analysis. In order to determine the effect of using an incorrect number of clusters, we ran the modified hyperplane clustering algorithm under varying numbers of clusters. Because we want to assess the accuracy, we used both the centered and uncentered simulated four cluster dataset with 1000 genes and 100 arrays and determined the ARI for the resulting partitions with the centered data. As expected, each of the programs had their peak ARI value at the correct four cluster analysis with R-SOM (ARI = 0.83) and Cluster v2 (ARI = 0.84 having the lowest values. Once k clusters increase above 4 (the correct number of clusters), the calculated ARIs for the R algorithms (k-means and SOM) and Cluster v3 decrease very quickly (lowest ARI = 0.21). However, the HPC algorithm sustains
4 DISCUSSION

A modified hyperplane clustering algorithm for gene expression analysis

The modified hyperplane clustering algorithm, referred to as the HPC algorithm, provides improved results compared to existing methods.

REFERENCES

Butte,A.J. and Kohane,I.S. (2006) Creation and implications of a phenome-genome network. *Nat. Biotechnol.*, 24, 495-500.

Dash,M. et al (2001) Classification of large databases using feature partitioning. *IEEE Trans. Knowl. Data Eng.*, 13, 83-99.

Datta,S. and Datta,S. (2003) Comparisons and validation of statistical clustering techniques for gene expression data. *Bioinformatics*, 19, 459-466.

Eisen,M.B. et al (1998) Cluster analysis and display of genome-wide expression patterns. *Proc. Natl. Acad. Sci. USA*, 95, 14863-14868.

Handl,J. et al (2005) Computational cluster validation in post-genomic data analysis. *Bioinformatics*, 21, 3201-3212.

Thalamuthu,A. et al (2003) Clustering gene-expression data with repeated measurements. *Comput. Stat. Data Anal.*, 45, 271-292.

Zhang,T. et al (2002) Evaluation and comparison of clustering algorithms in anglyzing large complex data. *Stat. Sin.*, 12, 241-262.

Zhang,T. et al (2001) BIRCH: an efficient data clustering method for very large databases. *ACM Trans. Database Syst.*, 27, 26-154.

Yamanishi,Y. et al (2002) Integrative analysis of genome-wide expression datasets by graphical models. *Bioinformatics*, 18, 2246-2254.