Influence of Complex Fluid Flow on Temperature Distribution in the Rotor Region of Large Hydrogenerator under the Rotor Rotation

Han Jichao¹, ², ³, ⁴, Sun Yutian¹, ², ³, Zheng Ping⁵, Zheng Chunli¹, ², ³, Qi Haiming⁴, Dong Jiechen⁵, Liu Yufei⁶, Ge Baojun⁴, Li Weili⁶

¹ State Key Laboratory of Hydro-power Equipment, Harbin 150040, China
² Harbin Electric Machinery Company Limited, Harbin 150040, China
³ Harbin Institute of Large Electrical Machinery, Harbin 150040, China
⁴ Harbin University of Science and Technology, Harbin 150080, China
⁵ Harbin Institute of Technology, Harbin 15001, China
⁶ Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Han Jichao (e-mail: hanjichao163@163.com).

This work was supported in part by the National Natural Science Foundation of China under Grant 51807043 and the China Postdoctoral Science Foundation under Grant 2018T110269

ABSTRACT Ventilation cooling design is one of the key technologies during the design of large hydrogenerator. With the increase of hydrogenerator capacity, the overheating problem of rotor region become more and more serious. In this paper, a 250 MW hydrogenerator is analyzed. The transient electromagnetic field of the hydrogenerator is calculated. The losses (heat sources) of rotor components in the rotor region of the hydrogenerator are determined. Three-dimensional fluid and thermal coupled mathematic model of the hydrogenerator rotor region is established. The rotor rotation of the hydrogenerator is considered. The distribution of complex fluid velocity in the rotor region is calculated using the finite volume method. The influence of fluid velocity in the different directions on the temperature of the rotor excitation winding is studied under the different flow rates in the rotor region. The surface heat-transfer coefficient distribution of the rotor components is determined. The temperature distribution of the rotor excitation winding, rotor pole body, rotor press plate, rotor damping bar, and rotor end ring is obtained. The calculated temperature results match well with test values. These provide an important reference for the rotor structural design and optimization of larger hydrogenerator.

INDEX TERMS Hydrogenerator; electromagnetic field; rotor rotation; fluid velocity; different directions; temperature distribution.

I. INTRODUCTION

Hydroelectric power generation is one of the cleanest methods of power generation. Hydrogenerator is the core equipment in the entire hydropower system, which plays a vital role. With the rapid development of hydroelectric power generation technology, the capacity of hydrogenerator continues to increase. The efficiency of hydrogenerator and the utilization of materials improve obviously. However, as the capacity of hydrogenerator increases, the overheating problem of hydrogenerator rotor region becomes more and more serious. It has seriously threatened the stability, safe operation, and service life of hydrogenerator. Furthermore, the heat of the rotor components is taken away by the complex fluid flow in the rotor region. Therefore, a study of influence of complex fluid flow on temperature distribution in the rotor region of large hydrogenerator is of great significance when the rotor rotation is considered.

In recent years, numerous studies researched on the physical field in the large generator. For example, C. Carounagarane et al studied the temperature distribution of the hydrogenerator under 10% and 20% continuous overloads through the coupling thermal and fluid-dynamical analysis [1]. H. C. Dirani et al studied the impact of rotor interturn short circuit on radial flux density, radial force density, unbalanced magnetic pull, and electromagnetic torque of a 74-MVA industrial large hydrogenerator with 76 poles [2]. G. Traxler-Samek et al describes an analytical algorithm for the calculation of currents and corresponding losses in the damper winding [3]. M. Ranløf et al proposed a permeance model that can be employed to estimate the no-load damper current loss.
and voltage waveform harmonics in large hydrogenerators [4]. A. Z. Ghégbé et al studied a large hydrogenerator modeling method that provides an excellent compromise between accuracy and speed [5]. S. E. Dallas et al presents an investigation of the behavior of a 200-MVA-synchronous hydrogenerator during interturn stator fault. It focuses on the affection to the electromagnetic magnitudes, such as the currents and the electromagnetic torque [6]. J. C. Akior et al studied rotational flux distribution in the stator of the hydrogenerator under different operating conditions [7]. T. Øyvang et al proposed and verified an air-cooled hydrogenerators heating network for real-time monitoring and optimal control [8]. S. Li et al studied the flux and loss distributions in the end region of large generators by transient 3-dimensional finite-element method. The in-plate loss contribution from the flux in the Z direction on the out most several packets of the stator laminations is considered. Parametric study is carried out to evaluate the effectiveness of various candidate designs in reducing the losses in the end region of large generators [9]-[13]. Some other experts extensively studied hydrogenerator [14], [15], but very few focused on the influence of complex fluid flow on temperature distribution in the rotor region of large hydrogenerator under the rotor rotation.

This paper is the continuation of the reference [16]. In reference [16], it focused on the influence of different rotor structures on the temperature distribution in the rotor region of hydrogenerator. However, this paper focuses on the influence of fluid velocity in the different directions on the temperature distribution of the rotor components under the different flow rates in the rotor region of hydrogenerator. In this paper, a 250 MW hydrogenerator is analyzed. The transient electromagnetic field of the hydrogenerator is established. The losses (heat sources) of rotor components in the rotor region of the hydrogenerator are determined. Three-dimensional fluid and thermal coupled mathematic model of the hydrogenerator rotor region is established. The rotor rotation of the hydrogenerator is considered. The distribution of complex fluid velocity in the rotor region is calculated using the finite volume method. The influence of fluid velocity in the different directions on the temperature of the rotor excitation winding is studied in detail under the different flow rates in the rotor region. The surface heat-transfer coefficient distribution of the rotor components is determined. The temperature distribution of the rotor excitation winding, rotor pole body, rotor press plate, rotor damping bar, and rotor end ring is obtained. It provides an important reference for the rotor structural design of larger hydrogenerator.

II. ESTABLISHMENT OF TWO-DIMENSIONAL TRANSIENT ELECTROMAGNETIC FIELD MODEL OF HYDROGENERATOR

Fig. 1 gives this 250MW hydrogenerator unit. Fig. 1(a) shows the hydrogenerator unit. Fig. 1(b) shows the hydrogenerator rotor. According to the actual structure of the 250MW hydrogenerator, the mathematical model of two-dimensional transient electromagnetic field is established in the 250MW hydrogenerator [17]. Fig. 2 gives the solved region of the two-dimensional transient electromagnetic field of the hydrogenerator. Fig. 3 shows the meshing map. Table 1 shows the basic parameters of this hydrogenerator.

TABLE 1. Basic parameters of this hydrogenerator.
Rated power (MW)
Number of poles
Rated speed (r/min)
Frequency (Hz)
Inner diameter of stator (mm)
Outer diameter of rotor (mm)

![Image](https://example.com/hydrogenerator.png)

FIGURE 1. 250MW hydrogenerator unit. a) Hydrogenerator unit. b) Hydrogenerator rotor.

FIGURE 2. Solved region of the two-dimensional transient electromagnetic field of the hydrogenerator.

FIGURE 3. Meshing map.

FIGURE 4. Flux distribution of this hydrogenerator.

Fig. 4 shows flux distribution at the axial middle position of the hydrogenerator. The loss of the rotor magnetic pole surface is caused by the tooth harmonic magnetic field. It includes: (1) Rotor surface loss P_{k_v} caused by the stator windings MMF harmonic. (2) Additional loss P_{FSP} of the rotor magnetic pole surface under no-load rated voltage. (3) Additional loss P_{2n_d} caused by harmonic MMF of stator teeth on the surfaces of the rotor magnetic pole and rotor damper bar. The loss of the rotor exciting winding is
558.1 kW. Table 2 shows the additional loss of the rotor magnetic pole surface.

TABLE 2. Addition loss of the rotor magnetic pole surface.			
Design values	194.05	42.535	
Calculated results	9.13	190.75	44.78

III. ESTABLISHMENT OF THREE-DIMENSIONAL FLUID AND THERMAL COUPLED MATHEMATICAL MODEL OF HYDROGENERATOR

Fig. 5 shows the ventilation system of this hydrogenerator. It includes the stator core, stator winding, rotor exciting winding, rotor yoke ventilation duct, magnet yoke, rotor support, wind plate, cooler, etc. According to the actual structure of the hydrogenerator rotor region, three-dimensional fluid and thermal coupled model of rotor region is established, as shown in Fig. 6. Fig. 6(a) shows the solving region of hydrogenerator rotor. Fig. 6(b) gives the rotor components. It includes mainly the rotor excitation winding, rotor magnetic yoke, rotor support plate, rotor pole body, rotor damper bar, rotor end ring, rotor press plate, and rotor pole body insulation, etc. In Fig. 6(a), x direction represents the circumferential direction of the hydrogenerator, y direction represents the radial direction of the hydrogenerator, and z direction represents the axial direction of the hydrogenerator. Cold air from cooler enters into the inlet of the rotor region. After cooling the rotor components, the hot air flows out from the outlet of the rotor region. The rotation speed of the hydrogenerator rotor is 68.2 r/min. The fluid temperature of the rotor region inlet is 40°C under the rated load condition.

![Ventilation system of air-cooled hydrogenerator.](image)

FIGURE 5.

In the hydrogenerator rotor region, the equations for the 3-D fluid and thermal coupled analysis model in the hydrogenerator rotor region are given as follows [18]-[21]:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0
\]

\[
\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot (\tau) + \rho \vec{g} + \vec{F}
\]

\[
\frac{\partial (\rho E)}{\partial t} + \nabla \cdot (\rho \vec{v} (\rho E + p)) = \nabla \cdot (k_{eff} \nabla T - \sum_{j} h_{j} j_{j} + (\vec{j} \cdot \vec{v})) + S_{k}
\]

\[
\frac{\partial (\rho k)}{\partial t} + \text{div}(\rho \vec{v} k) = \text{div} \left[\frac{\mu}{\sigma_{k}} \text{grad} k \right] + G_{k} - \rho \varepsilon
\]

\[
\frac{\partial (\rho \varepsilon)}{\partial t} + \text{div}(\rho \varepsilon \vec{v}) = \text{div} \left[\frac{\mu}{\sigma_{k}} \text{grad} \varepsilon \right] + G_{k} \varepsilon - G_{1e} \rho \frac{\varepsilon^{2}}{k}
\]

where \(\vec{v} \) is velocity vector, \(\rho \) is fluid density, \(t \) is time, \(p \) is static pressure, \(\rho \vec{g} \) and \(\vec{F} \) are gravitational body force and external body forces, \(\tau \) is stress tensor, \(I \) is the unit tensor, \(\mu \) is the molecular viscosity, \(\vec{j}_{j} \) is the diffusion flux of species \(j \), \(S_{k} \) includes the heat of chemical reaction and any other volumetric heat sources, \(k \) is kinetic energy of turbulence, \(\mu_{t} \) is the turbulent viscosity coefficient, \(k_{eff} \) is the effective conductivity, \(G_{k} \) is the generation rate of the turbulence, \(\varepsilon \) is diffusion factor, \(\sigma_{k} \) and \(\sigma_{e} \) are Planck constants, \(G_{1e} \) and \(G_{2e} \) are constants.

IV. 3-D FLUID AND THERMAL COUPLED ANALYSIS MODEL IN THE HYDROGENERATOR ROTOR REGION

This paper focuses on the loss of rotor magnetic pole surface, the loss of rotor exciting winding, complex fluid velocity, and temperature distribution of rotor components in the rotor region of large hydrogenerator. When the problems of fluid flow and heat transfer are solved, the finite element method is not as mature as the finite volume method in terms of the discrete processing method of convection term and the original variable solution method.
of incompressible fluid. The complex fluid velocity and the temperature distribution of rotor components are calculated using the finite volume method in this paper. In the 3-D fluid and thermal coupled analysis model in the rotor region of hydrogenerator, the loss values from electromagnetic field calculation are applied to the rotor components as heat sources in the temperature field. The rotor rotation of the hydrogenerator is considered. After solving the fluid and thermal equations of fluid-solid conjugated heat transfer, fluid velocity and temperature distribution are obtained in the rotor region of hydrogenerator [22]-[27]. The influence of fluid velocity in the different directions on the temperature of the rotor excitation winding is studied under the different flow rates in the hydrogenerator rotor region.

A. DISTRIBUTION OF FLUID VELOCITY IN THE DIFFERENT DIRECTIONS BETWEEN ROTOR MAGNETIC POLES

Fig. 7 shows the distribution of fluid velocity in the rotor region of hydrogenerator.

![Distribution of fluid velocity in the rotor region of hydrogenerator.](image)

FIGURE 7. Distribution of fluid velocity in the rotor region of hydrogenerator.

In Fig. 7, the highest fluid velocity is 80 m/s and it appears in the outlet of the rotor region. The highest temperature of the hydrogenerator rotor region appears in the rotor excitation winding. The fluid velocity between the rotor magnetic poles affects directly the temperature distribution of the rotor excitation winding. When the hydrogenerator rotor rotates, the distribution of fluid velocity between the rotor magnetic poles is very complicated. In order to study the influence of fluid velocity in the different directions on the temperature of the rotor excitation winding, three sample lines are selected between the rotor magnetic poles, respectively. Three black sample lines A, B, C locate around the leeward side of the rotor excitation winding. Three red sample lines D, E, F locate around the windward side of the rotor excitation winding, as shown in Fig. 8. The synthetic fluid velocity and the fluid velocity in different directions on these sample lines are obtained when the fluid velocity of rotor region inlet is v1=2.5 m/s, v2=2 m/s, and v3=1.5 m/s, respectively. The influence of fluid velocity in different directions on the temperature of the rotor excitation winding is studied in detail.

![Sample lines around the windward side and the leeward side of the rotor excitation winding.](image)

FIGURE 8. Lactation of sample lines around the windward side and the leeward side of the rotor excitation winding.

Fig. 9 shows the distribution of synthetic fluid velocity around the leeward side of the rotor excitation winding. Fig. 10 shows the distribution of synthetic fluid velocity around the leeward side of the rotor excitation winding.
The temperature of the rotor excitation winding is relatively high in the rotor region of the hydrogenerator. In order to study the contribution of fluid velocity in the radial direction, circumferential direction, and axial direction to the cooling of the rotor excitation winding, Fig. 9 - Fig. 10 give the distribution of fluid velocity in the radial direction, circumferential direction, and axial direction around the windward side and leeward side of the rotor excitation winding. The rotor rotation direction is clockwise and fluid velocity in the circumferential direction is negative. The distribution of the fluid velocity in the circumferential direction is basically the same along the axial direction under the different flow rates. The rotor rotation drives the fluid flow in a circumferential direction. The change of the fluid velocity of rotor region inlet has little effect on fluid velocity in the circumferential direction. There is a certain difference of fluid velocity in the circumferential direction around the windward side and the leeward side of the rotor excitation winding. The fluid velocity in the circumferential direction fluctuates obviously around the windward side of the rotor excitation winding, while the fluid velocity in the circumferential direction is relatively stable around the leeward side of the rotor excitation winding along the axial direction within the range of 0m~0.98m. The fluid velocity in the circumferential direction drops obviously near the rotor end region.

In Fig. 9 and Fig. 10, fluid velocity fluctuates up and down along the axial direction. Since cooling fluid flows out from the rotor yoke ventilation duct, it results in a higher fluid velocity around the outlet of the rotor yoke ventilation duct. The fluid velocity is also relatively high near the rotor end region. As the fluid rate of rotor region inlet increases, the fluid velocity around the leeward side and windward side of the rotor excitation winding increase accordingly at the same position. When the hydrogenerator rotor rotates, the fluid velocity around the windward side of the rotor excitation winding changes obviously along the axial direction.

The temperature of the rotor excitation winding is relatively high in the rotor region of the hydrogenerator. In order to study the contribution of fluid velocity in the radial direction, circumferential direction, and axial direction to the cooling of the rotor excitation winding, Fig. 9 - Fig. 10 give the distribution of fluid velocity in the radial direction, circumferential direction, and axial direction around the windward side and leeward side of the rotor excitation winding. The rotor rotation direction is clockwise and fluid velocity in the circumferential direction is negative. The distribution of the fluid velocity in the circumferential direction is basically the same along the axial direction under the different flow rates. The rotor rotation drives the fluid flow in a circumferential direction. The change of the fluid velocity of rotor region inlet has little effect on fluid velocity in the circumferential direction. There is a certain difference of fluid velocity in the circumferential direction around the windward side and the leeward side of the rotor excitation winding. The fluid velocity in the circumferential direction fluctuates obviously around the windward side of the rotor excitation winding, while the fluid velocity in the circumferential direction is relatively stable around the leeward side of the rotor excitation winding along the axial direction within the range of 0m~0.98m. The fluid velocity in the circumferential direction drops obviously near the rotor end region.
Fig. 13 and Fig. 14 show the distribution of fluid velocity in the radial direction around the leeward side and windward side of the rotor excitation winding. When the fluid velocity of rotor region inlet changes, the distribution of the fluid velocity in the radial direction is basically the same around the leeward side of the rotor excitation winding along the axial direction within the range of 0m~0.98m. The fluid velocity is low and negative along the axial direction within the range of 0m~0.98m. It shows that the fluid velocity reverses around the leeward side. The maximum fluid velocity in the radial direction is -5m/s. The fluid velocity in the radial direction increases obviously in the rotor end region. The fluid velocity fluctuates obviously around the windward side of the rotor excitation winding. Most fluid velocities in the radial direction are positive. The highest fluid velocity in the radial direction appears at the outlet of the rotor ventilation duct within the range of 0~0.93m along the axial direction. The fluid velocity in the radial direction is still high in the rotor end region. There is an obvious difference in the distribution of fluid velocity in the radial direction around the windward side and the leeward side of the rotor excitation winding. The fluid velocity in the radial direction exists a wide range of negative values, which indicates that there is a backflow phenomenon between the rotor magnetic poles.
Fig. 15 and Fig. 16 show the distribution of fluid velocity in the axial direction around the leeward side and windward side of the rotor excitation winding. The fluid velocity in the axial direction is small. The highest fluid velocity around the windward side is 9 m/s and the highest fluid velocity around the leeward side is 7.6 m/s under the different fluid velocities of rotor region inlet. The fluid velocity in the axial direction is relatively high in the rotor end region.
It can be seen from Fig. 9- Fig. 16 that the change of the fluid velocity between the rotor magnetic poles affects directly the temperature distribution of the rotor excitation winding as the fluid velocity of the rotor region inlet increases. The average values of the synthetic fluid velocity, fluid velocity in the circumferential direction, fluid velocity in the radial direction, and fluid velocity in the axial direction are compared under the different flow rates, as shown in Table 3. It can be seen from Table 3 that the fluid velocity in the circumferential direction accounts for a large proportion of the synthetic fluid velocity around the leeward side and windward side of the rotor excitation winding. The fluid velocity in the circumferential direction remains basically unchanged as the fluid velocity of the rotor region inlet increases. It plays a major role in the cooling of the rotor excitation winding. The fluid velocity in the radial direction is relatively high around the windward side, which cannot be ignored in the cooling of rotor excitation winding. The fluid velocity in the axial direction has little effect on the cooling of rotor excitation winding. The fluid velocity in the radial direction and axial direction accounts for a small proportion of the synthetic fluid velocity around the leeward side and windward side of the rotor excitation winding.

TABLE 3. Average values of the fluid velocity in the different directions under the different flow rates.

Fluid velocity of inlet (m/s)	Synthetic direction (m/s)	Circumferential direction (m/s)	Radial direction (m/s)	Axial direction (m/s)
Windward side				
2.5	59.6	-57	8.9	-0.6
1.5	58.9	-57.1	7.6	-0.5
Leeward side				
2.5	58.5	-57.9	-2	-1
1.5	58.2	-57.8	-1.9	-0.8

B. TEMPERATURE DISTRIBUTION OF ROTOR COMPONENTS AND EXPERIMENTAL MEASUREMENT

Fig. 17 shows the temperature distribution of rotor pole body, rotor press plate, rotor damping bar, rotor pole shoe, and rotor end ring in the hydrogenator rotor region. The highest temperature of these components appears in the rotor press plate and it is 120° C. The temperature of the rotor pole body is low around the outlet of the rotor radial ventilation duct. Fig. 18 shows the surface heat-transfer coefficient distribution of the rotor excitation winding when the fluid velocity of rotor region inlet is 2 m/s. The maximum surface heat-transfer coefficient of the rotor excitation winding is 120 W·(m²·°C)⁻¹. The surface heat-transfer coefficient distribution of the rotor excitation winding is uneven along the axial direction. Fig. 19 shows the temperature distribution of the rotor excitation winding when the fluid velocity of rotor region inlet is 2 m/s. The highest temperature of the rotor excitation winding appears on the leeward side and it is 132°C. The average temperature of the rotor excitation winding is 106°C. The measured average...
temperature of the rotor excitation winding is 108.6°C. The measured value and calculated result of the temperature of rotor excitation winding are shown in Table 4. The calculated result is close to the measured value. It shows the calculated result is accuracy and the calculated method is reliable.

![Temperature distribution of rotor pole body, rotor press plate, rotor damping bar, rotor pole shoe, and rotor end ring.](image1)

![Surface heat-transfer coefficient distribution of the rotor excitation winding.](image2)

![Temperature distribution of the rotor excitation winding.](image3)

Rotator excitation winding	Measured value	Calculated result
Temperature (°C)	108.6	106

V. CONCLUSION

In this paper, the influence of fluid velocity in the different directions on the temperature of the rotor excitation winding is studied under the different flow rates in the rotor region. The calculated temperature result agrees well with the measured value. Fluid velocity in the circumferential direction accounts for a large proportion of the synthetic fluid velocity around the leeward side and windward side of the rotor excitation winding. The fluid velocity in the circumferential direction remains basically unchanged as the fluid velocity of the rotor region inlet increases. It plays a major role in the cooling of the rotor excitation winding.

The fluid velocity in the radial direction is relatively high around the windward side, which cannot be ignored in the cooling of rotor excitation winding. The fluid velocity in the axial direction has little effect on the cooling of rotor excitation winding. The fluid velocity in the radial direction and axial direction accounts for a small proportion of the synthetic fluid velocity around the leeward side and windward side of the rotor excitation winding.

The highest temperature of rotor press plate is 120°C. The temperature of the rotor pole body is low around the outlet of the rotor radial ventilation duct. The maximum surface heat-transfer coefficient of the rotor excitation winding is 120 W·(m²·°C)⁻¹. The surface heat-transfer coefficient distribution of the rotor excitation winding is uneven along the axial direction. The highest temperature of the rotor excitation winding appears on the leeward side of the rotor excitation winding and it is 132°C. The average temperature of the rotor excitation winding is 106°C.

REFERENCES

[1] C. Carounagarane, T. R. Chelliah, and D. Khare, “Analysis on thermal behavior of large hydrogenerators operating with continuous overloads,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1295-1305, Mar./Apr. 2020.

[2] H. C. Dirani, A. Merkhouf, B. Kedjar, A.-M. Giroux, and K. Al-Haddad, “Rotor interturn short circuit impact on large hydrogenerator magnetic quantities,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3702-3711, Jul./Aug. 2018.

[3] G. Traxler-Samek, T. Lugand, and A. Schwery, “Additional losses in the damper winding of large hydrogenerators at open-circuit and load conditions,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 154-160, Jan. 2010.

[4] M. Ranlöf, R. Perers, and U. Lundin, “On permeance modeling of large hydrogenerators with application to voltage harmonics prediction,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1179-1186, Dec. 2010.

[5] A. Z. Gbégbé, B. Rouached, J. Cros, M. Bergeron, and P. Viorouge, “Damper currents simulation of large hydro-generator using the combination of FEM and coupled circuits models,” IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1273-1283, Dec. 2017.

[6] S. E. Dallas, A. N. Safacas, and J. C. Kappatou, “Interruption faults analysis of a 200-MVA hydrogenerator during transient operation using FEM,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1151-1160, Dec. 2011.

[7] J. C. Akior, A. Merkhouf, C. Hudon, and P. Pillay, “Consideration of design and operation on rotational flux density distributions in hydrogenerator stators,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1585-1594, Dec. 2015.

[8] T. Øyvang, J. K. Noland, G. J. Hegglid, and B. Lie, “Online model-based thermal prediction for flexible control of an air-cooled
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3132380, IEEE Access

hydrogenerator,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6311-6320, Aug. 2019.

[9] S. Li, C. Gong, N. A. Gallandat, J. R. Mayor, and R. G. Harley, “Implementation of surface impedance boundary conditions in the quasi three-dimensional finite-difference simulations of generator end regions,” 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 2017, pp. 1-7.

[10] S. Li, C. Gong, N. A. Gallandat, J. R. Mayor, and R. G. Harley, “Analyzing the impact of press plate structure on the flux and loss distributions in the end region of large generators by transient three-dimensional finite-element method with an improved core loss model,” 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 2017, pp. 1-8.

[11] S. Li, C. Gong, L. Du, J. R. Mayor, R. G. Harley, and T. G. Habetler, “Fast calculation of the magnetic field and loss distributions in the stator core end packets and finger plates of large synchronous generators,” 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 822-828.

[12] S. Li, C. Gong, J. R. Mayor, R. G. Harley, and T. G. Habetler, “Efficient calculation of the strand eddy current loss distributions in the end stepped-stator region of large synchronous generators,” 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 1783-1789.

[13] S. Li, C. Gong, L. Du, J. Rhett Mayor, R. G. Harley, and T. G. Habetler, “Parametric study for the design of the end region of large synchronous generators based on three-dimensional transient finite element analysis,” 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 7356-7362.

[14] D. Milić, A. D. Žigić, and M. M. Ponjavić, “Online temperature monitoring, fault detection, and a novel heat run test of a water-cooled rotor of a hydrogenerator,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 698-706, Sept. 2013.

[15] M. Istad, M. Runde, and A. Nysveen, “A review of results from thermal cycling tests of hydrogenerator stator windings,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp. 890-903, Sept. 2011.

[16] J. Han, Y. Liu, J. Dong, Y. Sun, B. Ge, and W. Li, “Thermal modeling and experimental validation in the rotor region of hydrogenerator with different rotor structures,” IEEE Access, vol. 9, pp. 120001-120009, Jul. 2021.

[17] W. Li, X. Zhang, S. Cheng, and J. Cao, “Thermal optimization for a HSPMG used for distributed generation systems,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 474-482, Feb. 2013.

[18] S. Utegenova et al., “An investigation into the coupling of magnetic and thermal analysis for a wound-rotor synchronous machine,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3406-3416, April 2018.

[19] S. Nategh, H. Zhang, O. Wallmark, A. Boglietti, T. Nassen, and M. Bazant, “Transient thermal modeling and analysis of railway traction motors,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 79-89, Jan. 2019.

[20] V. Madonna, P. Gian grande, G. Migliazza, G. Buticchi, and M. Galea, “A time-saving approach for the thermal lifetime evaluation of low-voltage electrical machines,” IEEE Trans. Ind. Electron., vol. 67, no. 11, pp. 9195-9205, Nov. 2020.

[21] T. D. Kefalas and A. G. Kladas, “Thermal investigation of permanent-magnet synchronous motor for aerospace applications,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4404-4411, Aug. 2014.

[22] C. Sciascera, P. Gian grande, L. Papini, C. Gerada, and M. Galea, “Analytical thermal model for fast stator winding temperature prediction,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6116-6126, Aug. 2017.

[23] A. Boglietti, E. Carpaneto, M. Cossale and S. Vasc hetto, “Stator-winding thermal models for short-time thermal transients: definition and validation,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2713-2721, May 2016.

[24] H. Vansompel, A. Yarantsava, P. Sergeant, and G. Cre vecoeur, “An inverse thermal modeling approach for thermal parameter and loss identification in an axial flux permanent magnet machine,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 1727-1735, March 2019.

[25] A. J. Grobler, S. R. Holm, and G. van Schoor, “Empirical parameter identification for a hybrid thermal model of a high-speed permanent magnet synchronous machine,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1616-1625, Feb. 2018.

[26] N. Z. Popov and S. N. Vukosavic, “Estimator of the rotor temperature of induction machine based on terminal voltages and currents,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 155-163, March 2017.

[27] P. S. Nasab, R. Perini, A. Di Gerlando, G. M. Foglia, and M. Moa llem, “Analytical thermal model of natural-convection cooling in axial flux machines,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2711-2721, April 2020.