(BI-)COHEN-MACAULAY SIMPLICIAL COMPLEXES AND THEIR ASSOCIATED COHERENT SHEAVES

GUNNAR FLOYSTAD AND JON EIVIND VATNE

Abstract. Via the BGG correspondence a simplicial complex Δ on $[n]$ is transformed into a complex of coherent sheaves on \mathbb{P}^{n-1}. We show that this complex reduces to a coherent sheaf \mathcal{F} exactly when the Alexander dual Δ^* is Cohen-Macaulay.

We then determine when both Δ and Δ^* are Cohen-Macaulay. This corresponds to \mathcal{F} being a locally Cohen-Macaulay sheaf.

Lastly we conjecture for which range of invariants of such Δ's it must be a cone, and show the existence of such Δ's which are not cones outside of this range.

Introduction

To a simplicial complex Δ on the set $[n] = \{1, \ldots, n\}$ is associated a monomial ideal I_Δ in the exterior algebra E on a vector space of dimension n. Lately there has been a renewed interest in the Bernstein-Gelfand-Gelfand (BGG) correspondence which associates to a graded module M over the exterior algebra E a complex of coherent sheaves on the projective space \mathbb{P}^{n-1} (see [7], [1]). In this paper we study simplicial complexes in light of this correspondence. Thus to each simplicial complex Δ we get associated a complex of coherent sheaves on \mathbb{P}^{n-1}. Our basic result is that this complex reduces to a single coherent sheaf \mathcal{F} if and only if the Alexander dual Δ^* is a Cohen-Macaulay simplicial complex. So we in yet a new way establish the naturality of the concept of a simplicial complex being Cohen-Macaulay in addition to the well established interpretations via the topological realization, and via commutative algebra and Stanley-Reisner rings.

It also opens up the possibility to study simplicial complexes from the point of view of algebraic geometry. A simple fact is that Δ is a cone if and only if the support of \mathcal{F} is contained in a hyperplane. Now the nicest coherent sheaves on projective space may be said to be vector bundles, or more generally those sheaves which when projected down as far as possible, to a projective space of dimension equal to the dimension of the support of the sheaf, become vector bundles. This is the class of locally Cohen-Macaulay sheaves (of pure dimension). We show that the coherent sheaf \mathcal{F} is a locally Cohen-Macaulay sheaf iff both Δ and Δ^* are Cohen-Macaulay simplicial complexes. We call such Δ bi-Cohen-Macaulay and try to describe this class as well as possible.
In Section 1 we recall basic facts about the BGG-correspondence. In Section 2 we apply this to simplicial complexes and show the basic theorem, that we get a coherent sheaf F via the BGG-correspondence iff Δ^* is Cohen-Macaulay. We are also able to give a kind of geometric interpretation of the h-vector of Δ^* in terms of the sheaf F.

In Section 3 we consider bi-Cohen-Macaulay simplicial complexes Δ. Then the associated sheaf F on \mathbf{P}^{n-1} when projected down to \mathbf{P}^{s-1}, where $s - 1$ is the dimension of the support of F, becomes one of the sheaves of differentials $\Omega^c_{\mathbf{P}^{s-1}}$. This gives quite restrictive conditions on the face vector of such Δ. It is parametrized by three parameters, namely n, c and s.

When $c = 0$, Δ is just the empty simplex. When $c = 1$ a result of Fröberg [11] enables a combinatorial description of such Δ. If Δ has dimension $d - 1$ equal to 1 it is a tree and in general Δ is what is called a $(d - 1)$-tree. When $c \geq 2$ a combinatorial description seems less tractable. There is a classical example of Reisner [13] of a triangulation Δ of the real projective plane which is bi-Cohen-Macaulay if char $k \neq 2$; but neither Δ nor Δ^* are Cohen-Macaulay if char $k = 2$. In particular Δ is not shellable.

Now suppose F projects down to $\Omega^c_{\mathbf{P}^{s-1}}$. A natural question to ask is whether F is degenerate or not (the support contained in a hyperplane or not). This corresponds to Δ being a cone or not. In the last section, Section 5, we conjecture that there exists a bi-Cohen-Macaulay Δ which is not a cone if and only if $s \leq n \leq (c + 1)(s - c)$. We prove this conjecture when $c = 1$ and give examples to show the plausibility of this conjecture for any c. Also in the full range we prove the existence of bi-Cohen-Macaulay Δ which are not cones.

As further motivation for the significance of bi-Cohen-Macaulay simplicial complexes, we refer to the paper [9]. There a natural algebraically defined family of simplicial complexes is defined which depends on the parameters n, d, c, and an integer $a \geq 0$. It contains Alexander duals of Steiner systems, when $a = n - d - 1$, cyclic polytopes, when $a = 1$ and $d = 2c$, and bi-Cohen-Macaulay simplicial complexes, when $a = 0$.

This paper started out partly from an observation that the Tate resolution (see Section 1) of the famous Horrocks-Mumford bundle on \mathbf{P}^4 contains a 2×5 matrix of exterior (quadratic) monomials. This paper may be considered as studying (complexes of) coherent sheaves on \mathbf{P}^{n-1} whose Tate resolution involves a $1 \times N$ matrix of exterior monomials (or equivalently a resolution of a monomial ideal in the exterior algebra). In our investigations we have repeatedly had the benefit of computing resolutions over the exterior algebra using Macaulay2 [12], and we express our appreciation of this program.

1. The BGG correspondence

We start by recalling some facts about the BGG correspondence originating from [4]. Our main reference is [7].
Tate resolutions. Let V be a finite dimensional vector space of dimension n over a field k. Let $E(V) = \bigoplus \wedge^i V$ be the exterior algebra and for short denote it by E. Given a graded (left) E-module $M = \bigoplus M_i$ we can take a minimal projective resolution of M

$$P : \cdots \to P^{-2} \to P^{-1} \to M$$

where

$$P^{-p} = \bigoplus_{a \in \mathbb{Z}} E(a) \otimes_k \tilde{V}_{-a}^p.$$

Now the canonical module ω_E, which is $\text{Hom}_k(E, k)$, is the injective envelope of k. Hence we can take a minimal injective resolution

$$I : M \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots$$

where

$$I^p = \bigoplus_{a \in \mathbb{Z}} \omega_E(a) \otimes_k V_{-a}^p.$$

(For $-p < 0$ we put $V_{-a}^p = \tilde{V}_{-a-n}^p$.) By fixing an isomorphism $k \rightarrow \wedge^n V^*$ where V^* is the dual space of V, we get an isomorphism of E and $\omega_E(-n)$ as left E-modules, where we have given V degree 1 and V^* degree -1.

We can then join together P and I into an unbounded acyclic complex $T(M)$, called the Tate resolution of M

$$\cdots \to \bigoplus_a \omega_E(a) \otimes_k \tilde{V}_{-a}^p \xrightarrow{d_p} \bigoplus_a \omega_E(a) \otimes_k \tilde{V}_{-a}^{p+1} \to \cdots$$

such that M is $\text{ker} d^0$ and also $\text{im} d^{-1}$. (One should use ω_E instead of E in this complex since ω_E is the natural thing to use in the framework of Koszul duality and hence in the BGG correspondence, see [2].)

BGG correspondence. The terms T^i have natural algebraic geometric interpretations via the BGG correspondence. Let V have a basis $\{e_a\}$ and let $W = V^*$ be the dual space of V with dual basis $\{x_a\}$. Let $S = S(W)$ be the symmetric algebra on W. To M we then associate a complex of free S-modules

$$L(M) : \cdots \to S(i) \otimes_k M_i \xrightarrow{\delta^i} S(i + 1) \otimes_k M_{i+1} \to \cdots$$

where

$$\delta^i(s \otimes m) = \sum_a sx_a \otimes e_a m.$$

If we sheafify $L(M)$ we get a complex of coherent sheaves on the projective space $P(W)$

$$\tilde{L}(M) : \cdots \to \mathcal{O}_{P(W)}(i) \otimes_k M_i \rightarrow \mathcal{O}_{P(W)}(i + 1) \otimes_k M_{i+1} \rightarrow \cdots.$$

This, in short, is the BGG correspondence between finitely generated graded (left) E-modules and complexes of coherent sheaves on $P(W)$.

Suppose $\tilde{L}(M)$ has only one non-vanishing cohomology group; a coherent sheaf \mathcal{F}. Then the terms of the Tate resolution $T(M)$ give the cohomology
groups $H^i(\mathbb{P}(W), \mathcal{F}(a))$ of \mathcal{F} (for short $H^i \mathcal{F}(a)$). More precisely, if \mathcal{F} is $H^0 \tilde{L}(M)$ then

$$T^p(M) = \bigoplus_i \omega_E(p - i) \otimes_k H^i \mathcal{F}(p - i).$$

(1)

Since for a coherent sheaf \mathcal{F} the cohomology $H^i \mathcal{F}(a)$ vanishes for $a \gg 0$ when $i > 0$, we see that for large p

$$T^p(M) = \omega_E(p) \otimes_k H^0 \mathcal{F}(p).$$

(2)

Conversely, if M is such that $T^p(M)$ is equal to $\omega_E(p) \otimes_k V^p_p$ for large p, then the only non-zero cohomology of $\tilde{L}(M)$ is in degree 0 and so $\tilde{L}(M)$ gives us a coherent sheaf \mathcal{F}.

In general all the $\tilde{L}(\ker d^p)[-p]$ for p in \mathbb{Z} have the same cohomology, where $[-p]$ denotes the complex shifted p steps to the left. Hence \mathcal{F} is equal to $H^{-p}(\tilde{L}(\ker d^p))$ for all p. Therefore if we find that the only non-vanishing cohomology group of $\tilde{L}(M)$ is \mathcal{F} in degree $-p$, we shall think of M as $\ker d^p$ in T. Then (1) and (2) still hold.

Remark 1.1. The BGG correspondence induces an equivalence of triangulated categories between the stable module category of finitely generated graded modules over E and the bounded derived category of coherent sheaves on $\mathbb{P}(W)$

$$E - \text{mod} \tilde{L} \simeq D^b(\text{coh/} \mathbb{P}(W)).$$

Due to this remark we may also start with a coherent sheaf \mathcal{F}, and there will be a module M over E such that $\tilde{L}(M)$ only has non-zero cohomology in degree 0, equal to \mathcal{F}. Forming the Tate resolution $T(M)$ we also denote it by $T(\mathcal{F})$ and say it is the Tate resolution of \mathcal{F}.

Duals. Consider $\bigwedge^n W$ as a module situated in degree $-n$ and let M^\vee be $\text{Hom}_k(M, \bigwedge^n W)$. Since $\tilde{L}(\bigwedge^n W)$ naturally identifies with the canonical sheaf $\omega_{\mathbb{P}(W)}$ on $\mathbb{P}(W)$ shifted n places to the left, we see that

$$\tilde{L}(M^\vee) = \text{Hom}_k(\tilde{L}(M), \omega_{\mathbb{P}(W)})[n].$$

Hence if $\tilde{L}(M)$ has only one nonvanishing cohomology group \mathcal{F} in cohomological degree p, then

$$\mathcal{E}xt^i(\mathcal{F}, \omega_{\mathbb{P}(W)}) = H^{i-p-n} \tilde{L}(M^\vee).$$

(3)

Since ω_E naturally identifies with $\text{Hom}_k(\omega_E, \bigwedge^n W)$ we also get that the Tate resolution of M^\vee is the dual $\text{Hom}_k(T(M), \bigwedge^n W)$ of the Tate resolution of M.
Projections. Given a subspace \(U \subseteq W \) we get a projection \(\pi : \mathbf{P}(W) \rightarrow \mathbf{P}(U) \). If the support of the coherent sheaf \(\mathcal{F} \) does not intersect the center of projection \(\mathbf{P}(W/U) \subseteq \mathbf{P}(W) \) we get a coherent sheaf \(\pi_* \mathcal{F} \) on \(\mathbf{P}(U) \). How is the Tate resolution of \(\pi_* \mathcal{F} \) related to that of \(\mathcal{F} \)? Via the epimorphism \(E \rightarrow E(U^*) \) the latter becomes an \(E \)-module. It then turns out that the Tate resolution \(T(\pi_* \mathcal{F}) = \text{Hom}_E(E(U^*), T(\mathcal{F})) \).

Note that \(\text{Hom}_E(E(U^*), \omega_E) = \omega_{E(U^*)} \).

Hence
\[
T(\pi_* \mathcal{F}) : \cdots \rightarrow \bigoplus_i \omega_{E(U^*)}(p-i) \otimes_k H^i \mathcal{F}(p-i) \rightarrow \cdots .
\]

In particular we see that the cohomology groups \(H^i \pi_* \mathcal{F}(p-i) \) and \(H^i \mathcal{F}(p-i) \) are equal.

Linear subspaces. If \(U \rightarrow W \) is a surjection, we get an inclusion of linear subspaces \(i : \mathbf{P}(W) \hookrightarrow \mathbf{P}(U) \). Then by [14, 1.4 (21)] the Tate resolution of \(i_* \mathcal{F} \) is
\[
\text{Hom}_E(E(U^*), T(\mathcal{F})).
\]

2. Simplicial complexes giving coherent sheaves.

The BGG-correspondence applied to simplicial complexes. Let \(\Delta \) be a simplicial complex on the set \([n] = \{1, \ldots, n\} \). Then we get a monomial ideal \(I_\Delta \) in \(E \) which is generated by the monomials \(e_{i_1} \cdots e_{i_r} \) such that \(\{i_1, \ldots, i_r\} \) is not in \(\Delta \). Dualizing the inclusion \(I_\Delta \subseteq E(V) \) we get an exact sequence
\[
0 \rightarrow C_\Delta \rightarrow E(W) \rightarrow (I_\Delta)^* \rightarrow 0.
\]

Note that \(E(W) \) is a coalgebra and that \(C_\Delta \) is the subcoalgebra generated by all \(x_{i_1} \cdots x_{i_r} \) such that \(\{i_1, \ldots, i_r\} \) is in \(\Delta \).

Now think of \(\omega_E = E(W) \) as a left \(E(V) \)-module; then \(C_\Delta \) is a submodule of \(\omega_E \). Then we can use the BGG correspondence. A natural question to ask is: When does \(L(C_\Delta) \) have only one non-vanishing cohomology group, a coherent sheaf \(\mathcal{F} \)? It turns out that this happens exactly when the Alexander dual simplicial complex \(\Delta^* \) is Cohen-Macaulay. Let us recall this and some other notions.

A simplicial complex \(\Delta \) is \textit{Cohen-Macaulay} if its Stanley-Reisner ring \(k[\Delta] \) is a Cohen-Macaulay ring. For more on this see Stanley’s book [14].

The \textit{Alexander dual} \(\Delta^* \) of \(\Delta \) consists of subsets \(F \) of \([n] \) such that \([n] - F \) is not a face of \(\Delta \). Via the isomorphism \(\omega_E \cong E(n) \), the submodule \(C_{\Delta^*} \) corresponds to the ideal \(I_\Delta \) in \(E \). So we get from [14] an exact sequence
\[
0 \rightarrow C_\Delta \rightarrow \omega_E \rightarrow (C_{\Delta^*})^\vee \rightarrow 0.
\]

Dualizing this we get
\[
0 \rightarrow C_{\Delta^*} \rightarrow \omega_E \rightarrow (C_\Delta)^\vee \rightarrow 0.
\]
Main theorem. A coherent sheaf \mathcal{F} on a projective space is locally Cohen-Macaulay of pure dimension n if for all the localizations \mathcal{F}_P we have depth $\mathcal{F}_P = \dim \mathcal{F}_P = n$. This is equivalent to all intermediate cohomology groups $H^i(\mathcal{F}(p))$ vanishing for $0 < i < n$ when p is large positive or negative. It is also equivalent to \mathcal{F} projecting down to a vector bundle on \mathbb{P}^n.

Let c be the largest integer such that all $(c-1)$-simplexes of $[n]$ are contained in Δ.

Theorem 2.1. a) The complex $\bar{L}(C_\Delta)$ has at most one non-vanishing cohomology group, a coherent sheaf \mathcal{F}, if and only if Δ^* is Cohen-Macaulay. In this case \mathcal{F} is $H^{-c} \bar{L}(C_\Delta)$.
b) \mathcal{F} is locally Cohen-Macaulay of pure dimension if and only if both Δ and Δ^* are Cohen-Macaulay.
c) The support of \mathcal{F} is contained in a hyperplane if and only if Δ (or equivalently Δ^*) is a cone.

Proof. By [6] Δ^* is Cohen-Macaulay if and only if the associated ideal of Δ in the symmetric algebra has a linear resolution. By [1, Cor.2.2.2] this happens exactly when I_Δ has a linear resolution over the exterior algebra. Now note that since I_Δ in E is generated by exterior monomials, in any case a resolution will have terms

$$I_\Delta \leftarrow \oplus_{a \geq c+1} E(-a) \otimes_k \bar{V}_a^1 \leftarrow \oplus_{a \geq c+2} E(-a) \otimes_k \bar{V}_a^2 \leftarrow \cdots$$

with all \bar{V}_{c+i}^a non-zero. But then the injective resolution of the vector space dual $(I_\Delta)^*$ will have "pure" terms $\omega_E(a) \otimes_k \bar{V}_{a-a_0}^{a+a_0}$ for $a \gg 0$, meaning $\bar{L}(C_\Delta)$ is a coherent sheaf, if and only if I_Δ has a linear resolution from the very start and this then happens exactly when Δ^* is Cohen-Macaulay.

The fact that \mathcal{F} is locally Cohen-Macaulay means that the terms in the Tate resolution are $\omega_E(a) \otimes_k \bar{V}_{a+a_0}^{e_0+a_0}$ for $a \gg 0$ and similarly for $a \ll 0$.

Now by the dual sequences [5] and [6], the dual of the Tate resolution of C_Δ is the Tate resolution of C_{Δ^*}. Thus we get that the condition just stated for the Tate resolution of \mathcal{F} must mean that both Δ and Δ^* are Cohen-Macaulay.

Suppose now the support of \mathcal{F} is contained in the hyperplane $\mathbb{P}(U) \hookrightarrow \mathbb{P}(W)$ corresponding to a surjection $W \to U$, where the kernel is generated by a form w in W defining the hyperplane. Considering \mathcal{F} as a sheaf on $\mathbb{P}(U)$ denote it by \mathcal{F}'. Then the Tate resolutions are related by

$$T(\mathcal{F}) = \text{Hom}_{E(U')} (E, T(\mathcal{F}')).$$

Hence the component of $T(\mathcal{F}')$ in degree c is $\omega_{E(U')}$. Let the image in $T(\mathcal{F}')^c$ of the differential be C'. Then C_Δ is the image of

$$\text{Hom}_{E(U')} (E, C') \hookrightarrow \text{Hom}_{E(U')} (E, \omega_{E(U)}) = E(W)$$

and this is again the sum $C' + wC'$. Since C_Δ is homogeneous for the multigrading, we see that C' must also be, and then also w, so $w = x_i$ for
some i. Then we see that Δ is a cone over the vertex i. Since the argument is clearly reversible, we get c). □

Definition 2.2. If Δ^* is Cohen-Macaulay we denote the corresponding coherent sheaf by $S(\Delta)$.

When Δ and Δ^* are both Cohen-Macaulay we say that Δ is bi-Cohen-Macaulay.

Remark 2.3. The complex $L(C_\Delta)$ is the cellular complex we get from Δ by attaching the monomial x_i to the vertex i. See [3].

Proposition 2.4. When Δ^* is CM the complex $\tilde{L}((C_\Delta^*)^\vee)[-c-1] : \mathcal{O}_{P(W)}(-c-1)^{\tilde{I}}_\Delta \leftarrow \cdots \leftarrow \mathcal{O}_{P(W)}(-n)$ is a resolution of $S(\Delta)$.

Proof. The exact sequence (5) gives an exact sequence of complexes

$$0 \to \tilde{L}(C_\Delta) \to \tilde{L}(\omega_E) \to \tilde{L}((C_\Delta^*)^\vee) \to 0$$

from which this follows by the long exact cohomology sequence. □

Numerical invariants. For a simplicial complex Δ on n vertices, let f_i be the number of i-dimensional simplices. The f-polynomial of Δ is

$$f_\Delta(t) = 1 + f_0 t + f_1 t^2 + \cdots + f_{d-1} t^d$$

where $d - 1$ is the dimension of Δ.

If we form the cone C_Δ of Δ over a new vertex, then the f-polynomial of C_Δ is

$$f_{C_\Delta}(t) = (1 + t) f_\Delta(t).$$

The f-polynomial of the Alexander dual Δ^* is related to f by

$$f_i^* + f_{n-i-2} = \binom{n}{i+1}.$$

Note that the invariants c^* and d^* of Δ^* are related to those of Δ by

$$c^* + d + 1 = n, \quad c + d^* + 1 = n.$$

Proposition 2.5. Suppose Δ^* is Cohen-Macaulay. The Hilbert series of $S(\Delta)$ is given by

$$\sum_k h^0(S(\Delta)(k)) t^k = (-1)^{c+1} + (-1)^c f_\Delta(-t)/(1-t)^n.$$

If f_Δ is $(1 + t)^{n-s} f$ where $f(1)$ is non-zero, then the support of $S(\Delta)$ has dimension $s - 1$.
Proof. The sheaf $S(\Delta)$ is the cohomology of the complex
$$\mathcal{O}_{P(W)}(-d)^{f_d} \rightarrow \cdots \rightarrow \mathcal{O}_{P(W)}(-c)^{f_c} \rightarrow \cdots \mathcal{O}_{P(W)}$$
at the term $\mathcal{O}_{P(W)}(-c)^{f_c}$. Since the Hilbert series of $\mathcal{O}_{P(W)}(-a)$ is $t^a/(1-t)^n$ we get the proposition by breaking the complex into short exact sequences and running sheaf cohomology on twists of these.

The statement about the dimension of $S(\Delta)$ follows by writing f as a polynomial in $(1+t)$. □

There is also another equivalent set of numerical invariants of Δ. They are related to the f_i’s by the following polynomial equation
\begin{equation}
t^d + f_0 t^{d-1} + \cdots + f_{d-1} = (1+t)^d + h_1(1+t)^{d-1} + \cdots + h_d.
\end{equation}
When Δ is Cohen-Macaulay all the $h_i \geq 0$. [14, II.3].

There is no geometric interpretation of the h_i’s in terms of the topological realization of Δ. However the following gives a kind of geometric interpretation of the h_i’s for a CM simplicial complex Δ^* in terms of the sheaf $S(\Delta)$.

Proposition 2.6. If Δ^* is CM then in the Grothendieck group of sheaves on $P(W)$
\begin{equation}
[S(\Delta)(c+1)] = h^*_d [\mathcal{O}_{P_{n-1}}] + h^*_d [\mathcal{O}_{P_{n-2}}] + \cdots + h^*_0 [\mathcal{O}_c]
\end{equation}
More concretely, $S_0 = S(\Delta)(c+1)$ has rank h^*_d and S_0 is generated by its sections. Take a general map
$$\mathcal{O}_{P_{n-1}} h^*_d \rightarrow S_0$$
and let S_1 be the projection to P^{n-2} of its cokernel. It has rank h^*_{d-1} and is generated by its sections. In this way we continue.

Proof. By Proposition 2.4 there is a resolution
$$S(\Delta) \leftarrow \mathcal{O}_{P(W)}(-c-1)^{f_d} \leftarrow \cdots \leftarrow \mathcal{O}_{P(W)}(-n)$$
so the Hilbert series of $S_0 = S(\Delta)(c+1)$ is
$$\sum_{i=0}^{d^*} (-t)^i f^*_{d^* - i} / (1-t)^n = \sum_{i=0}^{d^*} h^*_{d^* - i} / (1-t)^{n-i}.$$
This gives the statement about the class in the Grothendieck group and so the rank of S_0 is h^*_d. Also note by the Tate resolution of $S(\Delta)$ that S_0 is 0-regular as a coherent sheaf. Consider now the sequence
$$\mathcal{O}_{P_{n-1}} h^*_d \rightarrow S_0 \rightarrow \mathcal{T}_1$$
where the first is a general map and \mathcal{T}_1 is the cokernel. Since S_0 is 0-regular, \mathcal{T}_1 will also be. Also the Hilbert series of \mathcal{T}_1 is
\begin{equation}
\sum_{i=1}^{d^*} h^*_{d^* - i} / (1-t)^{n-i}.
\end{equation}
Hence letting S_1 be the projection of T_1 by a general projection to \mathbb{P}^{n-2}, then since S_1 and T_1 have the same cohomology, S_1 is 0-regular with Hilbert series (9). In this way we may continue. □

Remark 2.7. We thus see that with larger and larger c we are situated in a smaller and smaller part of the Grothendieck group.

3. Bi-Cohen-Macaulay simplicial complexes

Numerical invariants. The basic types of bi-Cohen-Macaulay simplicial complexes turn out to be the skeletons of simplices of various dimensions. So let

$$f_{s,c}(t) = 1 + st + \binom{s}{2}t^2 + \cdots + \binom{s}{c}t^c$$

be the f-polynomial of the $(c-1)$-dimensional skeleton of the $(s-1)$-simplex.

Proposition 3.1. If Δ is bi-CM then

$$f_\Delta(t) = (1 + t)^{n-s}f_{s,c}(t)$$

for some s. We then say that Δ is of type (n, c, s).

Proof. By (3) we have that $\text{Ext}^i(S(\Delta), \omega_{\mathbb{P}(W)})$ is $H^{i+c-n}\tilde{L}((C_\Delta)^\vee)$ and by the sequence (5) this identifies with $H^{i+c+1-n}\tilde{L}(C_{\Delta^*})$.

Thus when Δ is bi-CM and so $S(\Delta)$ is locally Cohen-Macaulay of dimension $s-1$, then

$$\text{Ext}^{n-s}(S(\Delta), \omega_{\mathbb{P}(W)}) = H^{c+1-s}\tilde{L}(C_{\Delta^*})$$

and the other Ext-sheaves vanish. Thus $c+1-s = -c^*$ and since $c^*+d+1 = n$ we get $d = n - s + c$.

Now if for a polynomial f we let $c \geq 1$ be the largest integer for which

$$f(t) = 1 + a + \binom{a}{2}t^2 + \cdots + \binom{a}{c}t^c + \ldots$$

then it is easily seen that $f(t)$ and $(1 + t)f(t)$ have the same invariant c. Applying this to $f_\Delta(t) = (1 + t)^{n-s}f(t)$ we see that for the polynomial f the degree must be equal to the invariant c and so $f(t) = f_{s,c}(t)$. □

Remark 3.2. This can of course also rather easily be proven in other ways. For instance using the Stanley-Reisner ring $k[\Delta]$. Then Δ is bi-CM iff $k[\Delta]$ is CM and has a linear resolution by [6]. By Ex.4.1.17 of [5] it is a simple matter to check that the f-polynomial has the above form.

It can also be deduced numerically by appealing only to the fact that the h-vectors of Δ and Δ^* are both non-negative.

Remark 3.3. If Δ is Cohen-Macaulay, the terms of the h-vector are all non-negative. If Δ is bi-CM of type (n, c, s), the terms $h_{c+1} = h_{c+2} = \cdots = 0$.
So the bi-CM simplicial complexes are in a way numerically extremal in the class of Cohen-Macaulay complexes.

Algebraic geometric description of bi-CM simplicial complexes.

Let Ω^n_c be the sheaf of c-differentials on \mathbb{P}^{n-1}.

Proposition 3.4. a) Let Δ be the $(c-1)$-skeleton of a simplex on n vertices. Then Δ is bi-CM with $\mathcal{S}(\Delta) = \Omega^n_c$.

b) When Δ is bi-CM of type (n, c, s) then $\pi_* \mathcal{S}(\Delta) = \Omega^s_c$ where π is a projection $\mathbb{P}^{n-1} \to \mathbb{P}^s$ whose center is disjoint from the support of $\mathcal{S}(\Delta)$.

Proof. a) When Δ is the $(c-1)$-skeleton of a simplex on n elements then $\tilde{L}(C^\Delta) = \Omega^n_c$ is the truncated Koszul complex

$$
\mathcal{O}_{\mathbb{P}^{n-1}}(-c) \otimes_k W \to \cdots \to \mathcal{O}_{\mathbb{P}^{n-1}}(-1) \otimes_k W \to \mathcal{O}_{\mathbb{P}^{n-1}}.
$$

The only cohomology is the kernel of the first map which is Ω^c_c. Since this is a vector bundle, Δ is bi-CM.

We now prove b). The Tate resolution of $\mathcal{S}(\Delta)$ is

$$
\cdots \to \omega_{E(c+1)} \otimes_k H^0(\mathcal{S}(\Delta)(c+1)) \to \omega_{E(c+2)} \otimes_k H^0(\mathcal{S}(\Delta)(c+2)) \to \cdots.
$$

For a general subspace $U \subseteq W$ of dimension s the projection $\pi_* \mathcal{S}(\Delta)$ on $\mathbb{P}^s = \mathbb{P}(U)$ has (minimal) Tate resolution

$$
T(\mathcal{S}(\Delta)) = \text{Hom}_{E(V)}(E(U^*), T(\mathcal{S}(\Delta))).
$$

Now $\pi_* \mathcal{S}(\Delta)$ and $\mathcal{S}(\Delta)$ have the same Hilbert series and by Proposition 2.5 this is the same as the Hilbert series of Ω^s_c. When we twist the latter with $c+1$ its global sections are $\wedge^{c+1} U$.

Now note that if a map

$$
\omega_{E(U^*)} \to \omega_{E(U^*)}(c+1) \otimes_k \wedge^{c+1} U
$$

is surjective in degree $-c-1$, then it is the map whose graded dual is the unique natural map

$$
\wedge^{c+1} U^* \otimes_k E(U^*)(-c-1) \to E(U^*)
$$
given by $\wedge^{c+1} U^* \otimes_k 1 \to \wedge^{c+1} U^*$.

Hence the maps

$$
\omega_{E(U^*)} \to \omega_{E(U^*)}(c+1) \otimes_k H^0(\mathcal{S}(\Delta)(c+1)).
$$

$$
\omega_{E(U^*)} \to \omega_{E(U^*)}(c+1) \otimes_k H^0(\Omega^n_c)(c+1)
$$

may be identified and so we must have $\pi_* \mathcal{S}(\Delta) = \Omega^s_c$. □

Remark 3.5. In the argument above we actually only used the assumption that \mathcal{S} is CM with f_Δ equal to $(1 + t)^{n-1} f_{s,c}(t)$. Only this thus suffices to conclude that Δ is bi-CM.
Topological description of bi-CM simplicial complexes. The bi-CM simplicial complexes Δ correspond by $[6]$ to Stanley-Reisner rings $k[\Delta]$ which are CM and have a linear resolution over the polynomial ring. Since the generators of the ideal of $k[\Delta]$ will have degree $c + 1$, we say the resolution is $(c + 1)$-linear.

In $[11]$ R. Fröberg studies Stanley-Reisner rings $k[\Delta]$ with 2-linear resolution. When Δ is CM (so Δ is bi-CM with $c = 1$) he shows that Δ is what is called a $(d - 1)$-tree. (Strictly speaking he uses this term only for the 1-skeleton of Δ.) They arise as inductively as follows. Start with a $(d - 1)$-simplex, then attach $d - 1$ simplices, one at a time, by identifying one (and only one) $(d - 2)$-face of Δ with one (and only one) $(d - 2)$-face of the simplex to be attached. This thus describes bi-CM Δ with $c = 1$. When $c \geq 2$ things appear to be less tractable as the following example shows.

Example 3.6. The following example was first noted in $[13]$. Consider the simplicial complex of dimension 2 with invariants (n, c, s) equal to $(6, 2, 5)$:

![Diagram of a simplicial complex]

This simplicial complex is a triangulation of the real projective plane. It is isomorphic to its Alexander dual. Over any field of characteristic different from two, it is bi-Cohen-Macaulay. However, it has homology in dimension one over $\mathbb{Z}/2\mathbb{Z}$, so it is not Cohen-Macaulay over that field. In particular, it is not shellable.

4. When are CM-simplicial complexes cones?

The following proposition gives rise to the problems and results addressed in this section. In particular we are interested in determining for which range of invariants (n, c, s) a bi-CM simplicial complex necessarily is a cone.
We give a conjecture for this and prove the existence of bi-CM simplicial complexes which are not cones in the whole range of this conjecture.

Proposition 4.1. Let \(f \) be a polynomial. Then there exists \(e(f) \) such that for \(e > e(f) \) if \(\Delta \) is a CM simplicial complex with \(f_\Delta = (1 + t)^e f \), then \(\Delta \) is a cone.

Proof. The number \(e \) of \(\Delta \) is determined by \(f \) and the \(h^0(S(\Delta)(p)) \) are also determined by \(f \) (Proposition 2.5). Now by the proof of Proposition 2.1, \(h^i(S(\Delta)(c + 1 - i)) \) is zero for \(i > 0 \) so \(S(\Delta) \) is \((c + 1)\)-regular and is generated by its sections when twisted with \(c + 1 \). Letting \(s_1, s_2, \ldots, s_a \) be a basis for these sections, there is a surjection

\[
\bigoplus_{i=1}^a O_{\mathbb{P}^{n-1}} \otimes s_i \rightarrow S(\Delta)(c + 1).
\]

Now let \(b \) be \(h^0(S(\Delta)(c + 2)) \). Then the kernel \(K_i \) of each

\[
H^0(O_{\mathbb{P}^{n-1}}(1) \otimes s_i) \rightarrow H^0(S(\Delta)(c + 2))
\]

is at least \((n - b)\)-dimensional. If \(n > ab \) (which is the case for \(e \) sufficiently large), the intersection of all the \(K_i \) considered as subspaces of \(H^0(O_{\mathbb{P}^{n-1}}(1)) \) is not empty. Thus we get a linear form \(h \) in \(H^0(O_{\mathbb{P}^{n-1}}(1)) \) such that all \(h \otimes s_i \) map to zero. But then \(S(\Delta) \) is contained in the hyperplane \(h = 0 \) in \(\mathbb{P}^{n-1} \) and so \(\Delta \) is a cone by Proposition 2.1. \(\square \)

We now pose the following.

Problem 4.2. For each polynomial \(f \) with \(f(-1) \) non-zero, determine the least number, call it \(e(f) \), such that when \(\Delta \) is Cohen-Macaulay with \(f_\Delta = (1 + t)^e f \) and not a cone, then \(e \leq e(f) \).

In the case where \(f \) is \(f_{s,c} \), see [10], we propose the following conjecture for the value of the upper bound of \(e = n - s \) when \(\Delta \) is not a cone.

Conjecture 1. Suppose \(\Delta \) is bi-CM of type \((n, c, s)\) and not a cone. Then

\[
n - s \leq c(s - c - 1) \quad \text{(or equivalently \((c + 1)d \leq cn\)).}
\]

Conjecture 2. Suppose \(\mathcal{F} \) is a non-degenerate coherent sheaf on \(\mathbb{P}^{n-1} \) which projects down to \(\Omega^c_{\mathbb{P}^{s-1}} \) on \(\mathbb{P}^{s-1} \). Then

\[
n - s \leq c(s - c - 1) \quad \text{(or equivalently \((c + 1)d \leq cn\)).}
\]

Clearly Conjecture 2 implies Conjecture 1 by letting \(\mathcal{F} \) be \(S(\Delta) \). The following shows the existence of non-degenerate coherent sheaves \(\mathcal{F} \) attaining the bound in Conjecture 2 and which cannot be lifted further.

Proposition 4.3. The sheaf \(O(-c - 1, 0) \) on the Segre embedding of \(\mathbb{P}^c \times \mathbb{P}^{s-c-1} \) in \(\mathbb{P}^{(c+1)(s-c)-1} \) projects down to \(\Omega^c_{\mathbb{P}^{s-1}} \).

Since the Segre embedding is smooth and projectively normal, this line bundle cannot be lifted further.
Proof. Let us compute the Tate resolution in components c and $c + 1$. For component c we compute

$$h^i(\mathcal{O}(-c - 1, 0)(c - i)) = \begin{cases} 0, & i \neq c \\ 1, & i = c \end{cases}$$

For component $c + 1$ we compute

$$h^i(\mathcal{O}(-c - 1, 0)(c + 1 - i)) = \begin{cases} 0, & i > 0 \\ h^0\mathcal{O}_{\mathbb{P}^n-c-1}(c + 1), & i = 0 \end{cases}$$

Hence components c and $c + 1$ of the Tate resolution are

$$\omega_E \to \omega_{E}(c + 1) \otimes_k H^0\mathcal{O}_{\mathbb{P}^n-c-1}(c + 1).$$

Now note that $h^0\mathcal{O}_{\mathbb{P}^n-c-1}(c + 1)$ is $\binom{n}{c+1}$ which again is $h^0\Omega_{\mathbb{P}^n-1}(c + 1)$. Now the argument proceeds exactly as in the proof of Proposition 3.4 b) and c).

We shall show the existence of bi-CM simplicial complexes which are not cones, in the entire range of Conjecture 1.

Let p and q be positive integers. By thinking of a $p \times q$ matrix we define a vertical path as a non-decreasing function $\alpha : [p] \to [q]$ and a horizontal path as a non-decreasing function $\beta : [q] \to [p]$. By identifying a path with its graph we may consider it as a subset of $[p] \times [q]$. We may note that any horizontal path must intersect any vertical path.

Lemma 4.4. Let F be a subset of $[p] \times [q]$. Then either F contains a horizontal path or the complement \overline{F} contains a vertical path.

Proof. We form a partial horizontal path $\beta : [i] \to [p]$ as follows. Chose $\beta(1)$ minimal such that $(\beta(1), 1)$ is in F. Then chose $\beta(2) \geq \beta(1)$ minimal such that $(\beta(2), 2)$ is in F. Continuing till the process stops gives a path $\beta : [i] \to [p]$. The block $[\beta(i), p] \times [i + 1, q]$ can then contain no element from F. Looking at the block

$$B = [1, \beta(i) - 1] \times [1, i],$$

by construction of the path β, $F \cap B$ does not contain a horizontal path. By induction $\overline{F} \cap B$ contains a vertical path $\alpha : [1, \beta(i) - 1] \to [i]$ which can then be completed to a path all the way down in \overline{F} by picking elements in the block $[\beta(i), p] \times [i + 1, q]$. \qed

Let V be the vector space with basis e_{ij} where $i = 1, \ldots, p$ and $j = 1, \ldots, q$ and fill the matrix with these elements. Let Y be the simplicial complex defined by the monomial ideal in $E(V)$ generated by horizontal path products

$$e_{\beta(1),1}e_{\beta(2),2} \cdots e_{\beta(q),q}$$

and let X be the simplicial complex defined by the monomial ideal generated by the vertical path products.
Proposition 4.5. The facets of X are the complements of the horizontal paths and the facets of Y are the complements of the vertical paths. In particular X and Y are Alexander dual simplicial complexes.

Proof. The statement about Alexander duals follows from the first statement because the facets of the Alexander dual of Y are the subsets of $[p] \times [q]$ which are the complements of the indexing sets of the monomial generators of Y, and so this is X.

Now the faces of X are precisely the subsets F of $[p] \times [q]$ which do not contain a vertical path. By the previous lemma F contains a horizontal path and so F is contained in the complement of a horizontal path.

If F is the complement of a horizontal path, then F does not contain a vertical path because any horizontal and vertical paths intersect. Hence F is a face (in fact a facet) of X. □

Lemma 4.6. X and Y are shellable simplicial complexes

Proof. The elements of X are complements of horizontal paths $\beta(1) \cdots \beta(q)$ and we represent them as such. We order these lexicographically by letting $1 \succ 2 \succ \cdots \succ p$. This gives a shelling of X. Let α and β be horizontal paths with $\alpha \succ \beta$ and the cardinality of $\alpha \cap \beta$ less than or equal to $q-2$. If there are at least two values i such that $\alpha(i) < \beta(i)$, let l be maximal among these and let

$$\gamma = \alpha(1) \cdots \alpha(l-1)\beta(l) \cdots \beta(q).$$

If there is only one value i with $\alpha(i) < \beta(i)$ let $i = l$ and

$$\gamma = \alpha(1) \cdots \alpha(l)\beta(l+1) \cdots \beta(q).$$

Then $\gamma \succ \beta$ and the cardinality of $\alpha \cap \gamma$ is greater than that of $\alpha \cap \beta$. The argument for Y is similar. □

Theorem 4.7. Given $s > c$. For all n in the range $s \leq n \leq (c+1)(s-c)$ there exists bi-CM simplicial complexes with invariants n,c,s which are not cones.

There are thus explicit examples in the full range of Conjecture 1.

Proof. Since X and Y are shellable and Alexander duals, the Stanley-Reisner ring $k[X]$ is Cohen-Macaulay of dimension $pq-1$ and has a linear resolution, [6]. Considering the $p \times q$ matrix with entries x_{ij}, $k[X]$ is a quotient of $k[x_{ij}]$. The kth normal diagonal are the positions (i,j) with $i+j = k-1$. We may make some variables on a normal diagonal equal. Having done so we may form the simplicial complex X' again defined by the ideal of vertical path products. Then $k[X']$ is $k[X]$ divided out by elements $x_{ij} - x_{i'j'}$ each time we make x_{ij} equal to $x_{i'j'}$. Making all the elements on each normal diagonal equal, call the element on the kth normal diagonal x_k where $k = 1, \ldots, p+q-1$, we get a simplicial complex Δ on $[p+q-1]$ whose ideal
is generated by all monomials $x_{i_1} \cdots x_{i_p}$ where $i_1 < \cdots < i_p$. Thus Δ is the complete $p-2$-dimensional skeleton of the $p+q-2$-simplex and so $k[\Delta]$ is Cohen-Macaulay of dimension $p-1$.

Since we have divided out by $pq-p-q+1$ elements to get from $k[X]$ to $k[\Delta]$, each time we have cut dimension, and so each element must have been regular. Therefore $k[X]$ must be Cohen-Macaulay and have a linear resolution and so is bi-CM. If we divided out by m elements to get from $k[X]$ to $k[X']$ where m is between 0 and $(p-1)(q-1)$, X' has invariants

\[n = pq - m, \quad d = pq - q - m, \quad c = p - 1, \quad s = p + q - 1 \]

and so by choosing p and q suitable, we fill up the whole range of the theorem. \hfill \box

Since bi-CM simplicial complexes of type (n, c, s) are Alexander dual to bi-CM simplicial complexes of type $(n, s-c-1, s)$ and Δ and Δ^* are cones at the same time, we see that if Conjecture 1 is true for type (n, c, s) it is true for type $(n, s-c-1, s)$. The following easy argument shows the conjecture for $c = 1$ (and thus also for $c = s-2$).

Proposition 4.8. If Δ is bi-CM of type $(n, 1, s)$ and not a cone, then $n-s \leq s-2$.

Proof. By Section 3, Δ is constructed as follows. Start with a d-simplex F_1. Attach a d-simplex F_2 on a $(d-1)$-face and continue attaching F_3, \ldots, F_n. Now F_1, \ldots, F_n are sets of d elements and for each j there is $i < j$ such that $F_i \cap F_j$ consists of $d-1$ elements. But then $\bigcap^*_1 F_i$ contains at least $d-s+1$ elements and so if $d \geq s$, Δ must be a cone. Since $d = n-s+1$ this gives the proposition. \hfill \box

References

[1] A.Aramova and L.L.Avramov and J.Herzog Resolutions of monomial ideals and cohomology over exterior algebras Trans. AMS 352 (1999) nr.2, pp. 579-594

[2] D. Bayer, H. Charalambous, S. Popescu Extremal Betti numbers and applications to monomial ideals Journal of Algebra 221 (1999) pp.497-512.

[3] D. Bayer, B. Sturmfels Cellular resolutions of monomial modules Journal f"ur die reine und angewandte Mathematik 502 (1998), 123-140.

[4] I.N.Bernstein and I.M.Gel’fand and S.I.Gel’fand Algebraic bundles over \mathbf{P}^n and problems of linear algebra Funct. Anal. and its Appl. 12 (1978) pp.212-214

[5] W.Bruns and J.Herzog Cohen-Macaulay rings Cambridge University Press 1993.

[6] J.A.Eagon and V.Reiner Resolutions of Stanley-Reisner rings and Alexander duality Journal of Pure and Applied Algebra 130 (1998) pp.265-275

[7] D.Eisenbud and G.Fløystad and F.-O. Schreyer Sheaf Cohomology and Free Resolutions over Exterior Algebras Transactions of the AMS, 355 (2003) no.11, pp. 4397-4426.

[8] G. Fløystad Describing coherent sheaves on projective spaces via Koszul duality preprint, math.AG/0012263

[9] G. Fløystad Hierarchies of simplicial complexes via the BGG-correspondence preprint, math.CO/0302313

[10] R. Fröberg Rings with monomial relations having linear resolutions Journal of Pure and Applied Algebra 38 (1985) pp.235-241.
[11] R. Fröberg On Stanley-Reisner rings Banach Center Publications 26, Part 2 (1988), pp. 57-70.
[12] Grayson, Daniel R. and Stillman, Michael E. Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
[13] G.A. Reisner Cohen-Macaulay quotients of polynomial rings Adv. Math. 21 (1975), pp. 30-49.
[14] R. Stanley Combinatorics and Commutative Algebra Second Edition, Birkhäuser 1996.

Matematisk institutt, Johs. Brunsgt. 12, N-5008 Bergen, Norway
E-mail address: gunnar@mi.uib.no and jonev@mi.uib.no