Increasing efficiency of technological steam consumption at oil and gas enterprise

D S Balzamov¹, E Yu Balzamova², V V Bronskaya³, G I Oykina⁵, O S Kharitonova⁶, R S Shaiketdinova⁷ and L E Khairullina⁴

¹Department of Power Supply of Enterprises and Energy Resource Saving Technologies, Kazan State Power Engineering University, 51 Krasnoselskaya Street, Kazan 420066, Russian Federation
²Department of Economics and Organisation Production, Kazan State Power Engineering University, 51 Krasnoselskaya Street, Kazan 420066, Russian Federation
³Department of Chemical Process Engineering, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russian Federation
⁴Department of Information Systems, Kazan Federal University, 35 Kremlyovskaya Street, Kazan 420008, Russian Federation
⁵National Research University “Moscow Power Engineering Institute”, 14 Krasnokazarmennaya Street, Moscow, Russian Federation
⁶Department of Chemical Technology of Petroleum and Gas Processing, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russian Federation
⁷Department of Technology of Engineering Materials, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russian Federation

⁸E-mail: olga.220499@mail.ru

Abstract. One of the most common energy carriers in the petrochemical industry is water vapor, which is mainly used as a heating medium in process plants. The effective functioning of steam supply, condensate collection and return systems is one of the criteria that affect the cost of production. Improper organization of the steam supply system leads to overuse of heating steam, uneven operation of the steam system and emergency situations. This paper analyzes possible problems in steam supply systems in the absence or incorrect operation of steam traps. The specific indicators of the object of study, circuit solutions and the economic efficiency of the use of steam traps are calculated.

1. Introduction

Energy saving has recently taken the leading place in the production process. Reducing the consumption of thermal energy in the form of steam is the main way to reduce the cost of production and therefore to increase competitive ability.

The operation of steam condensate systems involves the following possible problems [1-3]:

- poor quality of steam;
- the lack of automatic control of process parameters;
• the lack of suitable steam traps;

The latter point leads to the occurrence of flying steam, hydroshocks, difficulties in collecting and returning condensate.

Condensate formation leads to a number of problems:

• reducing throughput capability and pressure;
• increasing steam humidity;
• occurring hydroshocks.

These problems cause longitudinal cracks in pipes and damage to other elements of the pipeline. Hydroshocks are also extremely dangerous for heat exchangers, equipments and people's lives.

Steam traps are required to reduce the probability of problems occurring from hydroshocks and unplanned repair costs.

The defective technical condition of the steam traps or their lack in the steam-consuming equipment results in significant losses of thermal energy from the flying vapor, steam overconsumption and increasing the specific consumption of heat energy per unit of production. On the other hand, it leads to deterioration of the operation of condensate lines that are not designed to work with a significant content of flight steam in condensate [4-6]. At the same time, the hydraulic resistance in condensate lines increases and the backpressure occurs that leads to the beginning hydraulic shocks [8-12].

2. Methods

The processing department of the organic synthesis enterprise, the vapor supply of which is carried out according to the scheme given in figure 1, is considered as the object of research.

![Diagram of steam consumption](figure1.png)

Figure 1. Balance scheme of the steam consumption of the processing department.
Medium pressure steam $P = 19 \text{ kgf/cm}^2$ is repeatedly used, passing through consumers of heat of the enterprise (heating jackets and coils of tanks and food pipelines), with pressure $P = 7.5-8.4 \text{ kgf/cm}^2$ and temperature 163-181°C, is transferred for use on the technological needs of the section. The volume of medium pressure steam is 82-84% of the total steam consumption in the section.

Low pressure steam heats the jackets of product pipelines and tanks, as well as the pipelines of feeding the reaction initiators of four process lines. The volume of low-pressure steam is 16 -18% of the total consumption of the section.

The low-pressure steam condensate is collected into the condensate tank, from where, after the steam has been cooling, it is pumped to feed the collecting tank and the intermediate cooling tank of condensate.

The diagram of the condensate collection unit is shown in figure 2.

![Figure 2. The diagram of low-pressure condensate collection unit.](image)

Analysis of the condensate unit of the section showed the following:

- The lack of accounting of condensate consumption for own needs;
- The balance between the receipt and use of condensate is carried out by overflow from the granulation tank into the sewerage system;
- The presence of significant vented steam from the respiratory pipe of the low pressure condensate tank despite the presence of the vented steam condenser on the respiratory pipe;
- Steam traps on low pressure steam consumers are operated for a long time without replacement;
- Welded joint after repair are visible on the bodies and tops of steam traps.

These factors indicate the presence of flying steam in the steam condensate mixture for low-pressure steam consumers.

3. Results

It is proposed to determine the volume of flying steam, in other words the potential reduction of vapour consumption with a pressure of 4.5 kgf/cm² during installing steam traps for consumers.

Consequently, the analysis of dependence of vapour consumption of 4.5 kgf/cm² on the section for the semi-annual period production was performed (figure 3).
Nature of low pressure steam consumption (heating steam jackets of cyclone-separators, heating sections of the product steam pipeline, heating pipelines of the reaction initiator on three process lines) allows to conclude that the consumption of low pressure steam depends on the temperature of the product mixture, the working time and does not depend on the amount of supplied product flow. Thus, the change in specific steam consumption is associated with the presence of flying steam.

The possible reduction in steam consumption can be defined as the difference between the average and the minimum specific consumption [13,14]:

$$\Delta q = q_{\text{aver.}} - q_{\text{min}} = 0,1134 - 0,1074 = 0,06 \text{ Gcal/t}.$$

where $q_{\text{aver.}}$ is the average specific consumption of low-pressure steam during the period; q_{min} is the minimum specific steam consumption during the period.

Therefore, the savings of thermal energy on annual output is:

$$Q = \Delta q \cdot G = 0.06 \cdot 75006 = 400 \text{ Gcal/year}. $$

where G is the annual output, t/year.

4. Discussion

The installation of steam traps allows to reduce the amount of heat with the flying steam, reduce the specific annual consumption of heat energy by 400 Gcal, which is amount to 480 000 rubles in
monetary terms. In addition, this installation increases the reliability of the vapor supply system by reducing the probability of hydroshocks.

References
[1] Konakhina I A, Konakhin A M and Shinkevich O P 2011 Thermodynamic analysis of the system for collection and re-use of condensate Bulletin of Ivanovo State Energy University 2 11-4
[2] Balzamov D S and Konakhina I A 2010 System of energy technological combination of a high-temperature section of isoamilenes in izopren dehydration Bulletin of Kazan State Energy University 1 16-25
[3] Einstein, Dan Worrell, Ernst Khrushch, Marta 2001 Steam systems in industry: Energy use and energy efficiency improvement potentials Lawrence Berkeley National Laboratory
[4] Balzamov D S, Sabitov L S, Timershin B F and Balzamova E Yu 2018 Increase of efficiency of heat sources work due to application of condensation economizers on an example of a boiler PTVM-180 Conference Series: Materials Science and Engineering
[5] Sreedevi K P 2015 Analysis of steam traps at process plants International Journal of Engineering Sciences & Research Technology 4 755-7
[6] Balzamov D S, Akhmetova I G, Balzamova E Y, Oykina G I and Bronskaya V V 2019 Options for organizing own sources of energy supply at the facilities of generating companies based on steam screw machines Journal of Physics: Conference Series 1399 055018
[7] Singhal D K 2004 Improving condensate removal and collecting system 16 63-6
[8] Bakhtin A V 2019 Analysis of ways to reduce energy costs for producing steam The symbol of science 10 11-4
[9] Shageyev M F, Akhmetov E A, Livshits S A, Akhmetova R V and Khusnutdinov R F 2009 Research and development of recommendations for the operation mode of the steam supply system at minimum costs of vapor at petrochemical enterprises Exposition Oil Gas 4 42
[10] Negrysheva E A and Plotnikova L V 2019 Enhancing the energy efficiency of the condensate heat disposal system in a chemical plant. In the collection : Advanced innovative developments. Prospects and experience of use, problems of introducing into production a collection of scientific articles based on the results of the third international scientific conference
[11] Tsapav A A, Gumerov F M, Mazanov S V, Kharitonova O S and Bronskaya V V 2019 Journal of Physics: Conference Series 1399 033119
[12] Kharitonova O S, Bronskaya V V, Ignushina T V, Al-Muntaser A A and Khairullina L E 2019 IOP Conference Series: Earth and Environmental Science 315 032025
[13] Sharifullin V N, Fafanov G P, Fayzrakhanov N N, Sharifullin A V, Zaripov V L and Okruzhnov V A 2003 Method for carrying out the process of pyrolysis with recirculation of the waste condensate of the diling vapor Patent for the invention RU 2261893 C2 10.10.2005
[14] Tsvetkov V V 1980 Organization of steam supply for industrial enterprises 206