SCREENING ANTIBACTERIAL EFFECTS OF VIETNAMESE PLANT EXTRACTS AGAINST PATHOGENS CAUSED ACUTE HEPATO Pancreatic NECROSIS DISEASE IN SHRIMPS

HAI THANH NGUYEN1, LUA THI DANG2*, HAHN THI NGUYEN2, HAI HA HOANG2, HA THI NGOC LAP2, HA THI THANH NGUYEN1

1Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam. 2Center for Environment and Disease Monitoring in Aquaculture, Research Institute for Aquaculture No. 1, Tu Son, Bac Ninh, Vietnam. 3Department of Biochemistry and Food Biotechnology, Faculty of Food Sciences and Technology, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam. 4Department of Veterinary Pharmacology and Internal Medicine, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam. Email: danglua@ria1.org

Received: 11 November 2017, Revised and Accepted: 16 January 2018

ABSTRACT

Objectives: The objectives are aimed to investigate the antibacterial properties of five Vietnamese medicinal plants against acute hepatoPancreatic necrosis disease (AHPND)-caused bacterial pathogens, to verify their potentials to apply as a new treatment therapy.

Methods: Extracts from plants, such as Psidium guajava leaf, Piper betel L. leaf, Phyllanthus amarus leaf, Rhodomyrtus tomentosa seed, and Allium sativum bulb, were tested against three AHPND-caused bacteria. Agar diffusion and broth dilution methods were employed to evaluate extract in vitro antibacterial effects, while experiments with cultured whiteleg shrimps were applied to access their safety when applied in vivo. High-performance liquid chromatography (HPLC) analysis was applied to identify components in the extracts.

Results: P. amanus and R. tomentosa extracts exerted the strongest inhibition on tested bacteria. Other extracts, including P. betel and P. guajava, were less effective, while A. sativum showed no effects against bacteria. In safety assessment experiments, we observed that only crude extracts of R. tomentosa and A. sativum were safe, while others significantly reduced their survival rates. HPLC showed that extracts of high antibacterial properties had rich phenol constituents. In addition, the phenolic profile of R. tomentosa showed the presence of piceatannol.

Conclusion: Considering both of antibacterial effects and safety properties altogether, we concluded that among the five examined plant materials of this study, R. tomentosa had the highest potential to apply in AHPND treatment, as only this plant showed the high effects on pathogenic bacteria while were still safe for host aquatic shrimps.

Keywords: Medicinal plant, Rhodomyrtus tomentosa, Antibacterial effect, Acute hepatoPancreatic necrosis disease, Acute hepatoPancreatic necrosis disease, Shrimp.

INTRODUCTION

A new lethal disease, termed early mortality syndrome or acute hepatoPancreatic necrosis disease (AHPND), has been emerged in Vietnam and caused a severe damage to the country shrimp aquaculture [1,2]. After the outbreak of China in 2009, this disease spreads sequentially to Vietnam (2010), Malaysia (2011), Thailand (2012), and Mexico (2013) [3]. AHPND causes mortality of as high as 100% [4] and has destroyed up to about 80% of the shrimp products in some affected areas [5]. In 2013, the causative agent of AHPND was identified as unique isolates of Vibrio parahaemolyticus [1]. In addition, researchers have recently found that virulence genes on plasmid might be transferred not only among V. parahaemolyticus strains but also to different bacterial species. These bacteria were identified as Vibrio harveyi, isolated from affected shrimps in Vietnam and labeled as Vibrio harveyi KC13.17.5 (V. harveyi KC13.17.5) [4]. Therefore, pathogenic bacteria of AHPND outbreaks in Vietnam have been so far identified as not only V. parahaemolyticus but also V. harveyi KC13.17.5. Based on this background, our study decided to test plant effects on AHPND pathogenic bacteria by examining their effects with V. parahaemolyticus KC13.020, V. parahaemolyticus KC13.14.2, and V. harveyi KC13.17.5, which had beenisolated from AHPND-affected shrimps in Vietnam [4,6,7].

As microbial disease in aquaculture industries makes serious financial loss, and the antibiotic application in treatment shows many side effects; the search for an alternative method, such as medicinal plants, has been proposed to improve the quality and sustainability of aquaculture production [7-9]. Researchers have observed that medicinal plants not only exert high antimicrobial properties on aquatic bacteria but also have positive effects on the growth and survival rates of aquatic animals, and therefore, proposed their use as a high potential therapy to replace chemothapeutic molecule use for aquaculture [7,10]. In case of the new emerging AHPND of shrimps, several remedies to control the disease have been proposed, but a definite solution remains unclear [11]. In addition, antibiotic resistance has been detected on AHPND pathogenic bacterial strains, including those were isolated from the affected shrimps in Vietnam [11], suggesting that investigation on other treatment methods, such as the use of medicinal plants, would be useful in the search for an effective solution.

In this present study, we tested antibacterial effects of five Vietnamese medicinal plants, such as Psidium guajava leaf, Piper betel L. leaf, Phyllanthus amarus leaf, Rhodomyrtus tomentosa seed, and Allium sativum bulb, against the three pathogenic AHPND bacterial strains isolated in Vietnam, to evaluate their therapeutic potentials. In addition, we also characterized the compounds in plants and performed feeding experiments with shrimps to assess their in vivo safety. In our study, we decided to choose the five plants because Vietnamese ethnic medicine had described them as therapies for diseases associated by bacterial infections [12, 13], and they had shown high effects on other aquatic bacteria in our previous results [14-16].
METHODS
Source of AHPND-caused bacterial pathogens
Virulent bacterial strains such as V. parahaemolyticus KC12.020, V. parahaemolyticus KC13.14.2, and V. harveyi KC13.17.5 were used in this study were isolated from AHPND-affected shrimps during this disease outbreak in Vietnam. Their biochemical, virulent, and molecular analysis had been previously performed [4,17]. After being glycerol stocked, these bacteria were preserved at −80°C and kept in our laboratory, Department of Aquatic Animal Diseases, Research Institute for Aquaculture No. I, Vietnam.

Confirmation of AHPND-caused bacteria by polymerase chain reaction (PCR)
To confirm AHPND-caused bacterial strains at genomic level, DNAs were extracted from the bacterial strains which grown on nutrient broth growth medium and used as DNA templates for the PCR analysis employing AP3 primers [Forward: 5′ Forward: rs NA templates for ow and reverse: 5′; 3′- 5′ TACGAGCATTGTTAGGGGTTA-3′], provided from laboratory of Genome Science, Tokyo University of Marine Science and Technology. PCR conditions were performed for 30 cycles and as follows: An initial denaturation at 94°C for 5 min and each cycle with denaturation at 94°C for 30 s, annealing at 53°C for 30 s and extension at 72°C for 40 s, and final extension at 72°C for 5 min. PCR amplified products were resolved in a 1% agarose gel containing ethidium bromide by electrophoresis and visualized under UV light. The positive results showed a band with a size of 336 bp for AP3 primers [18] and a size of 630 bp for toxin primers.

Plant materials and extraction
Five plants, including P. guajava, P. betle, P. amarus, R. tomentosa, and A. sativum, were collected from Vietnam. Their identities were confirmed by Dr. Tho Thi Bui based on voucher specimens that had been deposited at Vuon Duoc Lieu Thu Y Herbarium, Vietnam National University of Agriculture in Vietnam. After collecting, the plant materials were homogenized, preliminarily shade-dried before further dried at 50°C for 15 h. They were then ground individually into powders with a particle size <0.1 mm, put in airtight plastic bags kept in dried cool material, nine tanks of shrimps were used for extract-coated pellets at the amounts equivalent to 1–2% of shrimp body weights. For each plant material, nine tanks of shrimps were used for extract-coated pellets at three different concentrations, and three tanks were used for control experiments.

Preparation of feed pellets coated with plant extracts
Pellets without or with plant extracts were used to feed shrimps at the amounts equivalent to 1–2% of shrimp body weights. For each plant material, nine tanks of shrimps were used for extract-coated pellets at three different concentrations, and three tanks were used for control experiments.

Evaluation of antibacterial effects by broth dilution method
Antibacterial effects were determined through the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of the plant extracts. In brief, extracts were initially dissolved in DMSO to make the stock solutions and then diluted into the nutrient broth to make the two-fold diluted concentrations that ranged from 19 µg/ml to 5000 µg/ml to test with bacteria. MIC values were determined as the lowest concentration that completely inhibited growth of bacteria after 24 h of incubation at 29°C, and MBC values were determined as the lowest concentrations that inhibited the bacterial growth after they were plated again on nutrient agar and further incubated for 24 h.

High-performance liquid chromatography (HPLC) analysis of plant extracts
The method used for HPLC of extracts was modified from Lai et al. [21]. After being filtered through 0.45 µm pore-size syringe (Phenomenex®-NY, Utrecht, The Netherlands), 20 µl of extract was analyzed using a 150 × 4.6 mm i.d.; Kinetex 5 µm C18 column equipped with a guard column of the same type (Phenomenex, Netherlands). The mobile phases were: (A) H2O with 0.1% formic acid, and (B) acetonitrile with 0.1% formic acid. The gradient conditions were as follows: 0–5 min, 0–15% B; 5–20 min, 15–20% B; 20–30 min, 20–100% B; 30–35 min, 100% B; 35–40 min, 100–0% B; and 40–42 min, 0% B. Other chromatographic conditions were as follows: Flow rate: 0.3 mL/min, column temperature: 30°C, and run time: 42 min. The identification of compounds in extracts was followed by the study of Robards et al. [22].

Safety assessment of plant extracts
Preparation of whiteleg shrimp
Whiteleg shrimp (weight of 2–3 g) bought from a shrimp farm in Nghe An Province was stocked in a seawater aquaria to assess their disease-free health status for 7 days. We divided the healthy shrimps into six experimental groups (n=90 per group, except for the control group in which n=30), and each group housed in three subgroups of nine glass tanks (n=10 per tank and 3 tanks for sub-group) containing 50 L of artificial seawater and equipped with an air supply system. Each subgroup was nominated for each tested concentration of plant extract, and three tanks for subgroup indicated the triplication. The shrimps were maintained under the following conditions: 26–28°C, pH = 7.5–8.5, DO ≥4 mg/L, and 25 ppt.

Preparation of feed pellets coated with plant extracts
Five tested plant powders were separately mixed with distilled water, sprayed onto shrimp feed pellets, and mixed before coating with cod liver oil (Merck). Mixing ratio of plant extract powders and pellets was optimized so that concentrations of each plant extracts were 50 mg/g pellet, 75 mg/g pellet, and 100 mg/g pellet. The ratio of cod liver oil to pellets was 2 ml/100 g. Those feed pellets were stocked for maximum 15 d at 4°C until use.

Safety assessment of plant extracts on whiteleg shrimps
Pellets without or with plant extracts were used to feed shrimps at the amounts equivalent to 1–2% of shrimp body weights. For each plant material, nine tanks of shrimps were used for extract-coated pellets at three different concentrations, and three tanks were used for control experiments.
All experiments were performed in triplication, and survival rates were recorded every day, in the period of 14 days.

Statistical analysis

Data were expressed as mean ± standard error (mean ± SEM). One-way ANOVA followed by post hoc Bonferroni test was used to compare the inhibitory zones induced by different extract concentrations and the survival rates of different groups in safety assessment test. Two-factor ANOVA followed by post hoc Bonferroni test was used to compare the inhibitory zones induced by different extracts. In all analysis, significance was established when probability level was equal to or <5% (p<0.05).

RESULTS

PCR analysis of AHPND-caused bacterial strains

Applying AP3 detection method and toxin primer for AHPND using PCR analysis, we confirmed that three strains, including *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, and *V. parahaemolyticus* sp. KCI13.17.5, are the pathogenic bacteria that cause AHPND in shrimps (Fig. 1a and b). PCR results of those bacteria showed bands that were the same as that of the positive control DNA at 336 bp when using AP3 primers (Fig. 1a) and at 630 bp when using toxin primer (Fig. 1b).

Antibacterial effects of plant extracts against AHPND-caused Vibrio bacterial strains

Inhibitory zones (mm of diameter) induced by five plant extracts against three AHPND-caused bacterial strains are shown in Table 1. We observed that while *P. guajava*, *P. betle*, *P. amanus*, and *R. tomentosa* exerted inhibitory effects at various levels, depending on bacterial strains and concentrations, while *A. sativum* showed no effects, as it induced no inhibitory zones at all tested concentrations. In addition, the inhibition of *P. guajava*, *P. betle*, *P. amanus*, and *R. tomentosa* was dose-dependent, because following the increment in applied concentrations, there were also significantly increments in their induced inhibitory zones (Table 1). Among 5 tested plants, the effects of *P. amanus* and *R. tomentosa* were remarkable, because their extracts always induced the inhibitory zones that represented bacterial susceptibility (>16 mm) for all 3 tested strains, while others, such as *P. guajava* and *P. betle*, induced such kind of inhibitory zones for only one or two bacteria, respectively. The results were further evident with Fig. 2, which compares the inhibitory zones induced by the four extracts and shows that regardless of tested concentrations, *P. amanus* and *R. tomentosa* always represented the highest antibacterial effects, as shown by their significantly larger inhibitory zones (Fig. 2). The determination of MIC and MBC by a broth dilution method, as shown in Table 1, also further confirmed the high effects of *P. amanus* and *R. tomentosa*, as regardless of bacterial strains, the two extracts’ MIC and MBC values were always lower than those of others, such as *P. guajava* and *P. betle* (Table 1). The results thus demonstrated their stronger effects in both of inhibitory and bactericidal activities (Table 2).

Chromatographic, spectral characterization and identification of main compounds in potential plant extracts

The summary of peaks in chromat profiles of extracts from five plants is shown in Table 3. According to Table 3, major peaks in profiles of four extracts of high antibacterial effects, including *P. guajava*, *P. amanus*, *P. betle*, and *R. tomentosa* (As shown in Table 1. Inhibitory zone (mm) induced by plant extracts against AHPND-caused bacterial strains) were mainly identified as phenolic compounds. Based on previous results on phenolic constituents of *R. tomentosa* [19,21], peaks of *R. tomentosa* extract profile in our study were further identified as hydrolysable tannins (including Di-HHDP-galloyl-glucose, HHDP-galloyl-glucose, HHDP-digalloyl-glucose, furolin, and HHDP-trigalloyl-glucose) and stilbenes (including astringin, piceatannol, and resveratrol). In chromat profile of *A. sativum*, we observed that there were two minor peaks represented phenol compounds, while all other peaks, including the major ones, showed the retention times that are different from phenols and remained unknown in this study, due to the lack of our laboratory authentic standards (Table 3).

DISCUSSION

There has been a number of studies reported antibacterial effects of medicinal plants on *V. parahaemolyticus* and *V. harveyi* [7,23–29], but our study represents the second attempt to investigate plant effects on AHPND pathogenic bacteria, followed one report in 2014 [30]. In addition, it is the first time that plants were tested against the AHPND pathogenic bacteria that was different from *V. parahaemolyticus* and was closest to *V. harveyi* and the *V. harveyi*KCI13.17.5 strain. We observed that four of five examined plants, including *P. guajava*, *P. amanus*, *P. betel*, and *R. tomentosa*, showed antibacterial activities at different levels. These results were similar to previous studies that reported these plants’ effects on bacteria [31–37] and further give evidence to explain their Vietnamese ethnic applications in bacterial diseases [12,13]. In addition, our results demonstrated that among all tested plants, *P. amanus* and *R. tomentosa* had outstanding effects on AHPND-caused bacteria, as they always represented the strongest activities, regardless of applied investigation methods (agar disc diffusion or broth dilution) and also regardless of tested strains (*V. parahaemolyticus* and *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. harveyi*KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.14.2, and *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parahaemolyticus* KCI13.14.2, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI13.17.5, *V. parahaemolyticus* sp. *V. parahaemolyticus* KCI12.020, *V. parah
Fig. 3: Survival rates of cultured whiteleg shrimps fed without extract (○) and with extract at different concentrations (● 75 mg/g extract, ▲ 75 mg/g pellet, and ■ 100 mg/g pellet). Each point represents the mean ± SEM for three experiments. The values of different groups were compared by one-way ANOVA followed with Bonferroni post hoc analysis (*p<0.05 vs. control, **p<0.01 vs. control, ***p<0.001 vs. control, *p<0.05 vs. 50 mg/g pellet, **p<0.01 vs. 50 mg/g pellet, $p<0.05 vs. 75 mg/g pellet, and $$p<0.01 vs. 75 mg/g pellet) by two-factor ANOVA followed by Bonferroni post hoc analysis.
has a long history of application in ethnic

Table 1: Inhibitory zone (mm) induced by plant extracts against AHPND-caused bacterial strains

Plant extract	Concentration (µg/disc)	Bacterial strains		
		V. parahaemolyticus KC12.020	V. parahaemolyticus KC13.14.2	V. harveyi KC13.17.5
P. guajava	1000	10.3±1.2	9.3±2.2	8.0±1.7
	1500	13.7±0.6	11.3±3.1	10.7±0.6
	2000	1.57±4.0	12.3±2.3	12.3±4.0
	2500	1.67±1.5	14.0±1.7	13.7±12
	3000	17.7±0.6	14.7±2.5	14.7±1.5
P. betel L.	1000	7.7±1.5	9.0±1.0	9.0±1.0
	1500	11.7±0.6	11.3±1.5	11.3±1.5
	2000	14.3±1.2	14.3±1.2	14.3±1.2
	2500	15.7±0.6	15.7±1.2	15.7±1.2
	3000	15.7±0.6	17.0±1.0	17.0±1.0
P. amarus	1000	12.0±1.0	13.3±0.6	13.7±0.6
	1500	14.3±0.6	14.7±1.2	14.7±0.6
	2000	16.0±1.0	17.3±0.6	16.0±1.0
	2500	18.0±2.0	19.0±1.0	17.3±2.1
	3000	18.0±1.0	19.7±0.6	19.0±1.7
R. tomentosa	1000	12.7±1.5	12.3±0.5	12.0±2.0
	1500	13.0±2.0	13.7±1.5	14.3±1.2
	2000	15.7±1.2	14.7±0.6	15.7±2.3
	2500	17.3±0.6	15.7±1.5	17.3±2.1
	3000	18.0±0.3	17.7±0.6	19.3±0.6
A. sativum	1000	0	0	0
	1500	0	0	0
	2000	0	0	0
	2500	0	0	0
	3000	0	0	0
DMSO	0	0	0	0
Am (10 µg)	0	0	0	0
Dox (30 µg)	23±0.2	22.9±1.8	23±2.4	

AMP: Ampicillin, Dox: Doxycycline. Each value represents the mean±SEM for three experiments. Numbers with different superscripts (a-e) are significantly different by one-way ANOVA followed by Bonferroni test (p<0.05). Bold letters indicate the zone diameters that are interpreted as susceptibility (≥16 mm) [14].

P. guajava: Psidium guajava, P. betel: Piper betel, P. amarus: Phyllanthus amarus, R. tomentosa: Rhodomyrtus tomentosa, A. sativum: Allium sativum, DMSO: Dimethyl sulfoxide, AHPND: Acute hepatopancreatic necrosis disease, V. parahaemolyticus: Vibrio parahaemolyticus

Table 2: MIC and MBC of plant extracts on AHPND-caused bacterial strains

Plant extract	Bacterial strains		
	V. parahaemolyticus KC12.020	V. parahaemolyticus KC13.14.2	V. harveyi KC13.17.5
MIC	625	625	625
P. guajava	625	625	625
P. betel L.	312	312	312
P. amarus	312	312	312
R. tomentosa	312	312	156
MBC	1250	1250	1250
P. guajava	1250	1250	1250
P. betel L.	625	625	625
P. amarus	625	625	625
R. tomentosa	625	625	312

MIC: Minimum inhibitory concentration, MBC: Minimum bacterial concentration, AHPND: Acute hepatopancreatic necrosis disease, V. parahaemolyticus: Vibrio parahaemolyticus; P. guajava: Psidium guajava; P. betel: Piper betel; P. amarus: Phyllanthus amarus; R. tomentosa: Rhodomyrtus tomentosa; A. sativum: Allium sativum

KC12.020, V. parahaemolyticus KC13.14.2, or V. harveyi KC13.17.5). The in vivo experiments on cultured shrimps showed that only two extracts, including R. tomentosa and A. sativum, were safe when applying in feeding, while others significantly affected the survival rates. By combining these safety assessment results and those of antibacterial effects, we concluded that R. tomentosa had the highest therapeutic potentials for the treatment of shrimp AHPND, as only this plant yielded the high effects on pathogenic bacteria but was still relatively safe for host aquatic animals. HPLC analysis showed the significant constituents of polyphenols in extracts that had antibacterial activities, suggesting that phenols might be responsible, at least in part, for their effects with bacteria. Detailed identification of phenol constituents in R. tomentosa showed the presence of compounds that had been known to have antibacterial properties, such as hydroxylatable tannins [38], resveratrol [39], and piceatannol [40-42]. In addition, because piceatannol is the main phenolic compound of R. tomentosa [21] and its strong effects have been well established on bacteria, including the pathogenic strains of aquaculture [40-42], it is likely to speculate the significant role of this compound in R. tomentosa strong effects with AHPND-caused bacteria observed in the current study. However, we have not yet isolated and examined piceatannol from R. tomentosa on these bacteria, and the roles and mechanisms of piceatannol are still remained to identify in future researches.

Even R. tomentosa has a long history of application in ethnic medicine [12,13,19,43], its biological and pharmacological properties have not yet been well established, and it is listed as one of 240 "Neglected and Underutilised Crop Sciences" of Vietnam, China, Thailand, and Cambodia by the scientific project "Agrofolio" [44]. The current study highlights R. tomentosa antibacterial effects and safety, recommends it as a promise candidate to treat AHPND of shrimps.
and thus suggests that more research attentions would be justified to verify the therapeutic potential of this plant. In addition, further studies investigating the effects of *R. tomentosa* on shrimps in AHPND pathological conditions are still necessary to access the plant in *in vivo* treatment properties, and therefore, they will be performed by the followed up research of our current project (NAFOSTED, number 106-NN.05-2013.48).

CONCLUSION

This study investigated the effects of five medicinal plant extracts on AHPND pathogenic bacterial strains, to evaluate their treatment potentials. The results showed that *P. amanus* and *R. tomentosa* had the strongest antibacterial activities, followed by *P. guajava* and *P. betle*, while *A. sativum* had no effects. On the other hand, safety assessment experiments showed that only *R. tomentosa* and *A. sativum* were safe in the feeding application. By considering the two results altogether, our study highlighted *R. tomentosa* as the medicinal plant of the highest therapeutic potential for AHPND in shrimps, because it had strong effects on pathogenic bacteria while was safe for the host animals, and therefore, this plant will be further verified in the follow-up researches of our project.

ACKNOWLEDGMENTS

The authors express sincere thanks to Dr. Ikuo Hirono, Head of Laboratory of Genome Science, Tokyo University of Marine Science and Technology, for providing us the positive DNA template of AHPND and the primers for amplifying AHPND toxin genes. We also thank to Dr. Tho Thi Bui for the identification of plant materials. This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant number 106-NN.05-2013.48.

COMPETING INTERESTS

All authors declare that they have no competing interests.

AUTHORS’ CONTRIBUTIONS

The work presented here was carried out in the collaboration between all authors. The two first authors, Lua Thi Dang and Hai Thanh Nguyen, were the main investigators of the study. Other authors, including Hanh Thi Nguyen, Hai Ha Hoang, Ha Thi Ngoc Lai, and Ha Thi Thanh Nguyen participated in the collection, preparation, and extraction of medicinal plants and assisted the first two authors in the HPLC analysis and *in vivo* experiments. Lua Thi Dang revised the final form of this manuscript and is the corresponding author.

REFERENCES

1. Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, et al. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ 2013;105:45-55.

2. Flegel TW. Historic emergence, impact and current status of shrimp pathogens in Asia. Invertebr Pathol 2012;110:166-73.

3. Thitamadee S, Prachunwatt A, Srisala J, Jaroenlak P, Salachan PV, Sritunyalucksana K, et al. Review of current disease threats for cultivated penaeid shrimp in Asia. Aquaculture 2016;452:69-87.

4. Kondo H, Van PT, Dang LT, Hirono I. Draft genome sequence of *Non-vibrio parahaemolyticus* acute hepatopancreatic necrosis disease strain KC13.17.5, isolated from diseased shrimp in Vietnam. Genome Announc 2015;3:e00798-15.

5. Zorriehzahra MJ, Banaederakhshan R. Early mortality syndrome (EMS) as new emerging threat in shrimp industry. Adv Anim Vet Sci 2015;3:64-72.

6. Dang LT, Nguyen KV, Pham VT. *Non-vibrio parahaemolyticus* gay benh hoai tu gan tuy cap (AHPND) tren tom nuoi. Vietnam J Agric Sci 2016;14:690-8.

7. Immanuel G, Vincybai VC, Sivaram V, Palavesam A, Marian MP. Effect of butanolic extracts from terrestrial herbs and seaweeds on the survival, growth and pathogen (*Vibrio parahaemolyticus*) load on shrimp Peneaus indicus juveniles. Aquaculture 2005;236:53-65.

8. Li J, Tan B, Mai K, Ai Q, Zhang W, Xu W, et al. Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of *Peneaus chinensis* post-larvae from pathogenic vibrios. Aquaculture 2006;253:140-7.

9. Ngo VH. The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture 2015;446:88-96.

10. Kirubakaran CJ, Alexander CP, Michael RD. Enhancement of non-specific immune responses and disease resistance on oral administration of *Nyctanthes arbortristis* seed extract in *Oreochromis mossambicus* (Peters). Aquaculture 2010;41:1630-9.

Table 3: The identification of compounds in plant extracts by HPLC analysis

Plant extract	Retention time (min)	Absorbance maxima (nm)	Assigned group/compound
R. tomentosa	8.55	272	DiHHDP-galloyl-glucose
	8.78	270	HHDP-galloyl-glucose
	9.08	275	HHDP-digalloyl-glucose
	9.61	275	Furosin
	9.91	301	Astringin
	11.31	277	HHDP-trigalloyl-glucose
	13.86	324	Piceatannol
	20.18	305	Resveratrol
P. guajava	8.29	274	Phenolic acid, flavanol, or tannin
	8.50	270	Phenolic acid, flavanol, or tannin
	8.76	267	Phenolic acid, flavanol, or tannin
	9.24	273	Phenolic acid, flavanol, or tannin
	12.47	253, 363	Flavonol
	12.97	256, 354	Flavonol
	13.36	263, 354	Flavonol
	14.98	255, 354	Flavonol
	15.78	255, 361	Flavonol
P. betle L	20.53	281	Phenolic acid, flavanol, or tannin
	27.44	279	Phenolic acid, flavanol, or tannin
P. amanus	6.13	255	Unknown
A. sativum	2.25	273	Phenolic acid, flavanol, or tannin
	3.30	247	Unknown
	5.00	266, 279, 286	Unknown
	12.40	244	Unknown
	14.10	277	Unknown

V. parahaemolyticus: *Vibrio parahaemolyticus, P. guajava*: *Psidium guajava, P. betle*: *Piper betel, P. amanus*: *Phyllanthus amarus, R. tomentosa*: *Rhodomyrtus tomentosa, A. sativum*: *Allium sativum, HPLC*: High-performance liquid chromatography

AUTHORS’ CONTRIBUTIONS

The work presented here was carried out in the collaboration between all authors. The two first authors, Lua Thi Dang and Hai Thanh Nguyen, were the main investigators of the study. Other authors, including Hanh Thi Nguyen, Hai Ha Hoang, Ha Thi Ngoc Lai, and Ha Thi Thanh Nguyen participated in the collection, preparation, and extraction of medicinal plants and assisted the first two authors in the HPLC analysis and *in vivo* experiments. Lua Thi Dang revised the final form of this manuscript and is the corresponding author.
11. Han JE, Mohney LL, Tang KF, Pantoja CR, Lightner DV. Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps.
Aquaculture Rep 2015;1:17-21.

12. Do, T.L. Nhong cay thuc va vi thuc thong dung tai Vietnam. [Book in Vietnamese]. 13th ed. Hanoi, Vietnam: Vietnam Medical Publishing House; 2005. p. 97-435. (a): Cay oi. Psidium guajava. In: Do, T.L. (Eds.), pp. 431-432. (b): Cho de rang cua. Phyllanthus amarus. In: Do, T.L. (Eds.), Hanoi, Vietnam: Vietnam Medical Publishing House; 2005. p. 97-435. (c): Trau khoong. Piper betle L. In: Do, T.L. (Eds.), Hanoi, Vietnam: Vietnam Medical Publishing House; 2005. p. 181-182.

13. Le, V.T. and Nguyen, G.C. Selected medicinal plants in Vietnam. 1st ed., Vol. I, II. Hanoi, Vietnam: Vietnam National Institute of Materia Medica Publications, Science and Technology Publishing House; 1999. (a): Piper betle L. - Piperaceae. In: Le, V.T. and Nguyen, G.C. (Eds.), 1st ed., Vol. II. Hanoi, Vietnam: Vietnam National Institute of Materia Medica Publications, Science and Technology Publishing House; 1999. p. 179-182. (b): Pluchea indica (L.) Less. Asteraceae. In: Le, V.T. and Nguyen, G.C., (Eds.), 1st ed., Vol. II. Hanoi, Vietnam: Vietnam National Institute of Materia Medica Publications, Science and Technology Publishing House; 1999. p. 189-192. (c): Rhodomyrtus tomentosa (Ait.) Hassk. – Myrtaceae. In: Le, V.T. and Nguyen, G.C. (Eds.), 1st ed., Vol. II. Hanoi, Vietnam: Vietnam National Institute of Materia Medica Publications. Science and Technology Publishing House; 1999. p. 241-243.

14. Bui TT, editor. Tac Dung Khang Khuan Cua Thao Duoc: Phyto-antibacterial effects. [Document in Vietnamese]. Phuong Phap Ngien Cuu cay Thuc-Tai Lieu Tham Khao Cho Nguyen Cuu Sinh va hoc Viet cua hoc lao cua Tai Nguyen cuu ve Cay Thuoc (lau hanh noii bo trong phong thi nghien). Hanoi, Vietnam: Department of Internal Medicine and Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture; 2012. p. 18-9.

15. Dang TL, editor. Ket qua ngien cuu cay tac dung cua mot so cay thuoc vo ki kho trong thach thuc thuy. [Document in Vietnamese]. In: NGuyen NT, editors. Taphop Cac Ket Qua Nguyen Cuu Ve Tac Dung Cua Thuc Vat Voi Vi Khanh Thu y [Document in Vietnamese]. In: Nguyen NT, editors. Taphop Cac Ket Qua Nguyen Cuu Khoa Hoc Ve Cay Thuoc Cua Sinh Vien Dai Dac (Luu Hanh Noi Bo Trong Phong Thi Nghien). Tu Son, Bac Ninh, Vietnam: Center for Environment and Disease Monitoring in Aquaculture, Research Institute for Aquaculture No. 1, 2012. p. 8-21.

16. Bui TT, Nguyen TH. Tap Hop Cac Ket Qua Nguyen Cuu Ve Tac Dung Cua Thuc Vat Voi Vi Khanh Thu y [Document in Vietnamese]. In: Nguyen TH, editors. Tap Hop Cac Ket Qua Nguyen Cuu Khoa Hoc Ve Cay Thuoc Cua Sinh Vien Dai Dac (Luu Hanh Noi Bo Trong Phong Thi Nghien). Tu Son, Bac Ninh, Vietnam: Center for Environment and Disease Monitoring in Aquaculture, Research Institute for Aquaculture No. 1, 2012. p. 8-21.

17. Phan VT, Dang LT, Nguyen KV, Bui TN, Pham VT, Pham YT, et al. Nguyen cuu xac dinh nguyen nhan gai benh hoai tu gan tuy cap tren tom tai phia Bac. Bac cao tong ket de tai cap bo. [Studies on the cause of AHPND in shrimp cultured in Northern Vietnam. Final National project report] (In Vietnamese language). 2014.

18. Sirikharin R, Taengchayaphum S, Sritunyalucksana K, Thitamadee S, Fiegel TW, Mavichak R, et al. New and Improved PCR Method for Detection of AHPND Bacteria. Available from: http://www.enaca.org/modules/news/article.php?article_id=230&title=new-pcr-detection-method-for-ahpnd 2014. [Last cited on 2014 Jun 18].

19. Lai TN, Andre CM, Chirinos R, Nguyen TB, Larondelle Y, Rogez H. Optimisation of extraction of piceatannol from Rhodomyrtus tomentosa seeds using response surface methodology. Sep Purif Technol 2014;134:139-46.

20. Bauer AW, Kirby WM, Sherris JC, Truck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493-496.

21. Lai TN, Herent MF, Quetin-Leclercq J, Nguyen TB, Rogez H, Larondelle Y, et al. Piceatannol, a potent bioactive stilbene, as major phenolic component in Rhodomyrtus tomentosa. Food Chem 2013;138:1421-30.

22. Rohriem Duoc Lyt PD, Tucker G, Swati Seng P, Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem 1999;66:401-36.

23. Asha S, Anita S, Anantharajan R. Antibacterial activity of herbal plant extracts towards the fish pathogens. Internet J Microbiol 2007;4:1-5.

24. Direkbusarakom S. Application of medicinal herbs to aquaculture in Asia. Walailak J Sci Technol 2004;1:7-14.

25. Pirbalouti G, Hamedi B, Malek Poor F, Rahimi E, Nasri Negh Hal. Inhibitory activity of Iranian medicinal plants against Vibrio parahaemolyticus and Vibrio harveyi. J Med Plants Res 2011;5:7049-53.

26. Sankar G, Ramamoorthy K, Sarkeravathi K, Elavarsi A. Antibacterial activity of herbal extract on pathogens isolated from the swollen hind gut of P. Monodon (Fabricus). Pharm Sin 2010;1:17-22.

27. Sivaram V, Babu MM, Immanuel G, Murugadas C, Citrasaru T, Marian MP. Growth and immune response of juvenile grouper species (Epinephelus tauvina) fed with herbal antibacterial active principle supplemented diets against Vibrio harveyi infections. Aquaculture 2004;237:9-20.

28. Velmuragan S, Punitha SM, Babu MM, Selvaraj T, Citrasaru T. Indian herbal medications to replace antibiotics for shrimp Penaeus monodon post larvae. J Appl Aquacult 2010;22:230-9.

29. Velmuragan S, Viji VT, Babu MM, Punitha MJ, Citrasaru T. Antimicrobial effect of Calotropsis proceral active principles against aquatic microbial pathogens isolated from shrimp and fishes. Asian Pac J Trop Biom 2012;2:5812-7.

30. Kua BC, Ahmad IA, Siti-Zahra A, Nik HN, Faizalith Y, Irene J. Effectiveness of Betel Leaf (Piper betle) and Lemongrass (Cymbopogon citratus) Extracts on Challenged Whiteleg shrimp, Litopenaeus vannamei with Vibrio parahaemolyticus that Caused AHPND. Ho Chi Minh City, Vietnam: Poster Presented at 9th Symposium on Diseases in Asian Aquaculture; 2014. p. 91.

31. Dhandapani R, Lakshmhi D, Balakrishnan V, Jayakumar S, Kumar A. Preliminary phytochemical study and antibacterial activity of Phyllanthus amarus Schum & Thor. Anc Sci Life 2007;27:1-5.

32. Limswan S, Kaysier O, Voravuthikunchai SP. Antibacterial activity of Rhodomyrtus tomentosa (Aiton) hassk. Leaf extract against clinical isolates of Streptococcus pyogenes. Evid Based Complement Alternat Med 2012;2012:697183.

33. Valle DL Jr, Cabrera EC, Puzon JJ, Rivera WL. Antimicrobial activities of methanol, ethanol and supercritical CO2 extracts of Philippine Piper betle L. On clinical isolates of gram positive and gram negative bacteria with transferable multiple drug resistance. PLoS One 2016;11:e0146369.

34. Deshpande SN, Kadam DG. GCMS analysis and antibacterial activity of Piper betle (Linn) leaves against Streptococcus mutans. Asian J Pharm Clin Res 2014. p. 91.

35. Hussain RM, Ho FK, Mustakim M, Suhaimi H. Upregulation of TRXB expression by Piper betle Linn ethanolic extract suggests induction of oxidative stress which potentially contributes to killing of Staphylococcus aureus in vitro. Int J Pharm Pharmacol 2015;7:154-9.

36. Jayalakshmi B, Raveshen Nar длинит M, Kuralic M, Amareth K. Phytochemical, antibacterial and antioxidant studies on leaf extracts of Piper betle L. Int J Pharm Pharm Sci 2015;7:23-9.

37. Buzzini P, Arapitas P, Goretii M, Branda E, Turchetti B, Pinelli P, et al. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev Med Chem 2008;8:1179-87.

38. Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F. Antibacterial activity and effects of resveratrol on human pathogenic bacteria. World J Microbiol Biotechnol 2010;26:1533-8.

39. Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: Inhibition of TRXB expression by Piper betle Linn. Available from: http://www.speciesinfo.as/reference/Symposium%20on%20Diseases%20in%20Asia%20%20Pharmacology%20and%20Veterinary%20Medicine%20-%203rd%20%20Symposium%20on%20Diseases%20in%20Asia.pdf. [Last accessed on 2011 Sep 24].