Recent advances in soybean transformation and their application to molecular breeding and genomic analysis

Tetsuya Yamada¹, Kyoko Takagi² and Masao Ishimoto*²

1) Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita, Sapporo, Hokkaido 060-8589, Japan
2) Soybean Applied Genomics Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan

Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node–Agrobacterium-mediated transformation and somatic embryo–particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan.

Key Words: Soybean [Glycine max (L.) Merrill], transformation, Agrobacterium tumefaciens, particle bombardment.

Introduction

Soybean [Glycine max (L.) Merrill] is an important crop, with food, nutritional, industrial, and pharmaceutical uses. Soybean seeds contain about 40% protein and about 20% oil. They are also abundant in physiologically active metabolites such as isoflavones, lecithins, tocopherols and saponins, in addition to functional proteins and are used as an affordable source of foods that promote and maintain health (Sugano 2005). Soybean production has increased the most among major crops in response to recent increases in demand for vegetable protein, oil and other constituents (Hartman et al. 2011). Therefore, soybean improvement is crucial to meeting demand.

The genomic era is now under way for soybean, as for other many crops. Recently, a soybean genomics database has been developed from the whole genome sequence (Schmutz et al. 2010), and a large number of genomic, transcriptional, and functional annotated sequences can be retrieved from Phytozome (http://www.phytozome.net/search.php). In addition to efforts to sequence the whole genome, several resources have been developed, including an expressed sequence tag (EST) database, full-length cDNAs and cDNA microarrays (Stacey et al. 2004, Umezawa et al. 2008). These resources provide a range of opportunities for soybean improvement by marker-assisted breeding and transgenic approaches, and for understanding gene function by map-based cloning and reverse genetic approaches. An efficient and stable transformation system is essential to these goals.

Roundup Ready soybean cultivars are an example of transgenic soybean (Padgette et al. 1995), and have been planted on the majority of soybean fields in the world since 2004 (ISAAA, http://www.isaaa.org/). However, soybean remains recalcitrant to routine genetic transformation. The first fertile transgenic soybeans were produced nearly simultaneously by Agrobacterium tumefaciens infection with cotyledonary node plant regeneration (Hinchee et al. 1988), and by particle bombardment of meristems of immature soybean seeds (McCabe et al. 1988). The system was successfully adapted to embryogenic suspension cultures for the regeneration of fertile transgenic soybeans (Finer and McMullen 1991). Since then, these two methods have continued to be improved and have produced most transgenic soybeans to date.

In this review, we describe recent advances in and problems of soybean transformation, with a focus on the methods...
that generate fertile transgenic plants (Table 1). We discuss the convenience and prospects of transgenic approaches for the identification of gene function and the improvement of agronomic characteristics (Table 2), and survey the recent transgenic research in Japan.

Two common platforms for soybean transformation

1. Cotyledonary node–Agrobacterium-mediated transformation

A biological vector, Agrobacterium tumefaciens, is used to transfer desirable genes placed in the T-DNA region into a host plant genome (Beijersbergen et al. 1992, Horsch et al. 1985). The advantages of Agrobacterium-mediated transformation include its straightforward methodology, familiarity to researchers, minimal equipment cost and reliable insertion of a single transgene, or a low copy number (Hansen and Wright 1999). Agrobacterium-mediated transformation of soybean in co-cultivation has been followed by organogenesis from cotyledonal nodes (Hinchee et al. 1988), immature cotyledons (Parrott et al. 1989a, 1994), and embryogenic suspension cultures (Trick and Finer 1998). Originally the method relied on a soybean genotype that conferred susceptibility to A. tumefaciens infection and on the availability of plant regeneration (Delzer et al. 1990, Hinchee et al. 1988, Owens and Cress 1985). However, recent advances, as described below, overcome some of these shortcomings (Dinkins and Collins 2008, Olhoft and Somers 2007, Somers et al. 2003).

The successful and repeatable production of transgenic soybean has been achieved by using cotyledonal node explants from young seedlings and imibed mature seeds (Donaldson and Simmonds 2000, Hinchee et al. 1988, Olhoft et al. 2003, Paz et al. 2006, Zhang et al. 1999) for Agrobacterium-mediated transformation. Cotyledonal node regions contain axillary meristems at the junction between cotyledon and hypocotyl. The axillary meristems proliferate and regenerate through the formation of multiple adventitious shoots on culture medium containing the cytokinin benzylaminopurine. The degree of shoot formation depends on the genotype of an explant, most types of which can form adventitious shoots at the cotyledonal nodes. In general, cotyledonal nodes are pre-wounded mechanically with a scalpel (Olhoft et al. 2001) or a small needle (Xue et al. 2006), but it requires practiced skill to prepare enough target tissue for bacterial infection (Zhang et al. 1999). In contrast, scratching with a stainless steel microbrush enables any technician to wound the tissues easily and uniformly, regardless of skill (Yamada et al. 2010).

The addition of reducing agents such as L-cysteine and thiol compounds in the solidified co-cultivation medium significantly increases the efficiency of transformation of cotyledonary node cells (Olhoft et al. 2001, Olhoft and Somers 2001) and the production of fertile transgenic plants (Olhoft et al. 2003). The reducing agents seem to inhibit wound- and pathogen-induced responses, thereby increasing the capacity for Agrobacterium-mediated transformation (Olhoft et al. 2001). The combination of the reducing agents, a super-binary vector, and acetylsyringone has increased transformation efficiencies and the competency of soybean genotypes for transformation (Dang and Wei 2007, Liu et al. 2008, Sato et al. 2007). The first transgenic soybeans were produced using the nptII gene, which detoxifies kanamycin as a selectable marker (Hinchee et al. 1988). Now transgenic cells are selected exclusively by the combination of the bar gene and the herbicide phosphinothricin (glufosinate) (Zeng et al. 2004, Zhang et al. 1999). The concentration of the selection agent greatly affects the transformation frequency (Zeng et al. 2004), so the appropriate selection schemes are varied among soybean genotypes.

These improved protocols have been widely applied to several Japanese soybean cultivars, including Kariyutaka, Kinusayaka, Tamahomare, and Suzuyutaka (Sato et al. 2007, Sayama et al. unpublished data). Kariyutaka, with an early maturity genotype, produces a small number of T1 seeds about 5 months after co-cultivation with A. tumefaciens (Sato et al. 2007). Its short life span might be useful in the rapid development of transgenic soybean lines. Transformation frequencies range from 0.2% to around 10% (Olhoft et al. 2003, Paz et al. 2004, 2006, Zeng et al. 2004), indicating that the transformation efficiency still relies on the skill of the practitioner and on the soybean genotype. The frequency of transformation is still low in comparison with somatic embryo–particle-bombardment-mediated transformation.

In the USA, public facilities, including the Plant Transformation Facility at Iowa State University and the Plant Transformation Core Facility at the University of Missouri, provide transgenic plants for public research, mainly by cotyledonal node–Agrobacterium-mediated transformation. A similar facility needs to be launched in Japan.

2. Somatic embryo–particle-bombardment-mediated transformation

Particle bombardment, otherwise known as gene gun or biolistic technology, directs small tungsten or gold particles coated with the desired genes toward the target plant cells (Christou et al. 1988). Since an electrical-discharge gene gun was first used in soybean (McCabe et al. 1988), transformation by particle bombardment has been achieved in immature seed meristem (McCabe et al. 1988), somatic embryogenic tissue (Finer and McMullen 1991), and apical meristem (Aragão et al. 2000).

Somatic embryos were initially used as a target for Agrobacterium-mediated transformation (Parrott et al. 1989a), and later found to be amenable to transformation by particle bombardment (Finer and McMullen 1991, Maughan et al. 1999, Sato et al. 1993). Somatic embryogenesis in soybean was first reported by Christianson et al. (1983). Somatic embryos are induced from immature cotyledons cultured on medium containing moderately high concentrations of an auxin such as 2,4-dichlorophenoxyacetic acid (2,4-D), and are used to generate proliferative embryogenic cultures and
Table 1. Summary of representative soybean transformation systems

Transformation method	Explant	Soybean genotype	Strain of *A. tumefaciens*	Selection Marker	Selection Agent	References		
Agrobacterium	Cotyledonary explant	Peking, Maple Prest	A208 EHA105	npt II	kanamycin	Hinchee et al. (1988)		
	A2327		AGL1 LBA4404, EHA105	npt II	kanamycin	Donaldson and Simmonds (2000)		
	AC Colibri		EHA105	bar	glufosinate	Zhang et al. (1999)		
	Bert		EHA101	bar	phosphinothricin	Ohlhorst and Somers (2001)		
	Williams 82		EHA101	bar	glufosinate	Olhoft et al. (2003)		
	Williams, Williams 79, Peking, Thorne		EHA101	bar	glufosinate or bialaphos	Zhang et al. (2004)		
	Thorne, Williams, Williams 79, Williams 82		EHA101	bar	glufosinate	Donaldson and Simmonds (2000)		
	Jungery		EHA105	bar	phosphinothricin	Divakaran et al. (2002)		
	Kariyutaka		LBA4404	npt II	kanamycin	Zhang et al. (1999)		
	Hefeng 25, Dongnong 42, Heinong 37, Jilin 39, Jiyu 58		EHA105	lpt	hygromycin	Liu et al. (2006)		
Somatic embryo	Peking, PI 283332		LBA4404, EHA101	npt II	G418	Parrott et al. (1989a)		
	Chapman		EHA105	lpt	hygromycin	Trick and Finer (1998)		
Embryonic tip	Hefeng 25, Hefeng 35, Hefeng 39, Heinong 37, Dongnong 42, Lefeng 39		KYRT1	lpt	hygromycin	Dang and Wei (2007)		
Particle bombardment	Embryonic axis	Williams 82, Mandarin Ottawa, BR-16, Doko RC, BR-91, Conquista	–	npt II	Underfined	McCabe et al. (1988)		
	Fayette		–	atras	imazapyr	Aragao et al. (2000)		
	Jack and its derivative line		–	lpt	hygromycin	Finer and McMullen (1991)		
	Fayette		–	npt II	G418	Sato et al. (1993)		
				lpt	hygromycin	Parrott et al. (1994), Stewart et al. (1996), Maughan et al. (1999), Reddy et al. (2003), El-Shemy et al. (2004), Furutani and Hidaka (2004), Khalafalla et al. (2005), Kita et al. (2007)		
Seed protein	Target gene	Target tissue	Transformation method²	Soybean genotype	References			
--------------	-------------	---------------	-----------------------------------	-----------------	------------			
β-casein gene	bovine	seed	soybean lectin	Accumulation of β-casein protein	PB	Jack	Maughan et al. (1999)	
15-kDa zein gene	maize	seed	common bean β-phaseolin	Accumulation of zein protein	PB & AG	Jack, F173	Denkens et al. (2001), Reddy et al. (2003)	
Gly m Bd 30K gene	soybean	seed	soybean α-subunit of β-conglycinin	Reduction of allergen (Gly m Bd 30K protein)	PB	Jack	Herman et al. (2003)	
Gly m Bd 30K gene	soybean	seed	soybean α’-subunit of β-conglycinin	Accumulation of zein protein	AG	Williams 82	Kim and Krishnan (2004)	
11-kDa δ-zein gene	maize	seed	soybean α’-subunit of β-conglycinin	Accumulation of zein protein	PB	Jack	Li et al. (2005)	
K9 fimbrial subunit gene (famC)	Escherichia coli	seed	cauliflower mosaic virus (CaMV) 35S bFGF gene human seed	Accumulation of bFGF AG	Sichuan	Ding et al. (2006)		
Basic fibroblast growth factor (bFGF) gene	human	seed	CaMV 35S or soybean glycinin (gy2)	Accumulation of bioactive peptides	AG	Thorne	Pilker et al. (2003)	
Modified β-conglycinin α’-subunit gene containing bioactive peptide (Novokinin, LPP, PR, Rubiscoin)	modified materials from soybean	seed	soybean α’-subunit of β-conglycinin	Accumulation of bioactive peptides	Whisker	Jack	Yamada et al. (2008)	
Human growth hormone gene (hgh)	soybean	seed	soybean α’-subunit of β-conglycinin	Accumulation of mature form of hGH PB	BR-16	Cunha et al. (2011)		
Δ12 fatty acid desaturase gene (FAD2-1), Palmoyl-thioesterase gene (ForB)	soybean	seed	common bean β-phaseolin or soybean β-conglycinin	Increase of oelic acid and decrease of saturated fatty acid	AG	A3237, Thorne	Bulte et al. (2002)	
Δ6 desaturase gene	Arabidopsis thaliana	seed	soybean β-conglycinin	Production of γ-linolenic acid (GLA) and stearidonic acid (STA)	AG	A3237, Thorne, NE3001	Sato et al. (2004)	
Δ5 desaturase gene, Δ6 desaturase gene, GLELO elongase gene, Δ15 desaturase gene	Montiel de a lipina 1S-4 (Δ5 and 6 desaturase,GLELO), soybean (Δ15 desaturase)	seed	soybean α’-subunit of β-conglycinin	Production of arachidonic acid	PB	Jack	Chen et al. (2006)	
Δ6 desaturase gene, Δ15 desaturase gene (fad3)	B. officinalis (Δ6 desaturase gene), A. thaliana (fad3)	seed	soybean β-conglycinin	High accumulation of stearidonic acid (STA)	AG	Thorne, NE3001, 420-5	Eckert et al. (2006)	
Δ6 desaturase gene (MpdESA), Δ6 elongase gene (MpeEO1), Δ5 desaturase gene (MpDES)	Marchantia polymorpha	seed	soybean α’-subunit of β-conglycinin	Production of CLA-Δ9,12 (long-chain polyunsaturated fatty acids)	PB	Jack	Kajiwara et al. (2008)	
Δ12 fatty acid desaturase gene (GmFAD2-1), Sphingolipid compensation gene (SCL1)	Umbilopsis rambamiana	seed	soybean α’-subunit of β-conglycinin	Production of oil content AG	Undefined	Lardizabal et al. (2008)		
Fatty acid Δ6 desaturase gene (FAD2), Acyl-CoA carrier protein in oleic acid 2 genes (FAAT-4 and 5), Diacylglycerol acyltransferase gene (DGAT1), Dihydricapillic acid synthase gene (DACS), High-solome protein gene (BHLAH), truncated cysteine synthase gene (CGS)	soybean	seed	common bean phaselodin	Increase of oelic acid	AG	Heining44	Wang and Xu (2008)	
Δ12 fatty acid desaturase gene (GmFAD2-1)	Saccharomyces cerevisiae	seed	common bean phaselodin	Increase of oelic acid	PB	Jack	Rao and Hildebrand (2009)	
Δ6 fatty acid Δ6 desaturase gene (FAD2), Palmitoyl-thioesterase gene (FatB)	Vigna unguiculata	seed	soybean	Accumulation of bioactive peptides	AG	Undefined	Lardizabal et al. (2008)	
Δ12 fatty acid desaturase gene (GmFAD2-1), Sphingolipid compensation gene (SCL1)	Umbilopsis rambamiana	seed	soybean α’-subunit of β-conglycinin	Production of oil content AG	Undefined	Lardizabal et al. (2008)		
Δ6 fatty acid Δ6 desaturase gene (FAD2), Palmitoyl-thioesterase gene (FatB)	Vigna unguiculata	seed	soybean	Increase of oelic acid	AG	Heining44	Wang and Xu (2008)	
Δ6 fatty acid Δ6 desaturase gene (FAD2), Palmitoyl-thioesterase gene (FatB)	Vigna unguiculata	seed	soybean	Increase of oil content	PB	Jack	Rao and Hildebrand (2009)	
Δ12 fatty acid desaturase gene (GmFAD2-1), Sphingolipid compensation gene (SCL1)	Umbilopsis rambamiana	seed	soybean α’-subunit of β-conglycinin	Production of oil content AG	Undefined	Lardizabal et al. (2008)		
Δ6 fatty acid Δ6 desaturase gene (FAD2), Palmitoyl-thioesterase gene (FatB)	Vigna unguiculata	seed	soybean	Increase of oelic acid	AG	Heining44	Wang and Xu (2008)	
Δ6 fatty acid Δ6 desaturase gene (FAD2), Palmitoyl-thioesterase gene (FatB)	Vigna unguiculata	seed	soybean	Increase of oil content	PB	Jack	Rao and Hildebrand (2009)	
Δ12 fatty acid desaturase gene (GmFAD2-1), Sphingolipid compensation gene (SCL1)	Umbilopsis rambamiana	seed	soybean α’-subunit of β-conglycinin	Production of oil content AG	Undefined	Lardizabal et al. (2008)		
Target traits	Target gene	Origin of target gene	Target tissue	Promoter	Effect	Transformation method¹⁰	Soybean genotype	References
---------------	-------------	-----------------------	---------------	----------	--------	-------------------------------	-----------------	------------
Amino acid	Mutated aspartokinase gene (lys-M44), Dihydrodipicolinic acid synthase gene (dapA)	*E. coli* (lys-M44), *Corynebacterium* (dapA)	seed	common bean β-phaseolin	Increase of free lysine	PB	A2396, A2242, A5403	Farko et al. (1995)
	Mutated anthranilate synthase gene (OASA1D)	rice	seed	CaMV 35S or soybean gyc2	Increase of free tryptophan	PB	Jack	Ishitomo et al. (2010)
	Mutated anthranilate synthase gene (OASA1D)	rice	seed	soybean gyc2	Increase of free tryptophan	PB	JQ1, JQ7, Jack	Kita et al. (2010)
	Mutated aspartate kinase genes (Xa4K_E257K and Xa4K_F359)	*Xenorhabdus bovienii*	seed	soybean 7Sα or *Vicia faba* US999	Increase of threonine	AG	A3525	Qi et al. (2011)
Secondary compound	2-methyl-6-phytylbenzoquinol methyltransferase gene	*A. thaliana*	seed	soybean α′ subunit of β-conglycinin	Changes in tocophenol composition	AG	Undefined	Van Eenennaam et al. (2003)
	Transcription factor gene CRC (C/R chimeric gene), Flavonone 3-hydroxylase gene (F3H)	maize (CRC), soybean (F3H)	seed	common bean β-phaseolin	Increase of isoﬂavones	PB	Jack	Yu et al. (2003)
	Phytase gene	soybean	seed	soybean α′ subunit of β-conglycinin	Reduction of phytate content	PB	Jack	Chien et al. (2004)
	γ-tocopherol methyl transferase gene	*A. thaliana*	seed	CaMV 35S	Increase of α-tocopherol content	AG	Pungannamul-keong, Alchankong	Kim et al. (2005)
	γ-tocopherol methyl transferase gene (GmMP51)	soybean	seed	CaMV 35S	Reduction of phytate content	PB	Conquista	Nanes et al. (2006)
	Multidrug resistance-associated protein (MRP) gene	rice	germinating seed	rice globulin or CaMV 35S	Accumulation of tocotrienol	AG	Iksarnammukong	Kim et al. (2011)
	Multidrug resistance-associated protein (MRP) gene	*Perilla frutescens*	seed	pea vicilin	Increase of α-tocopherol content	PB	Jack	Tanva et al. (2007)
	Multidrug resistance-associated protein (MRP) gene	soybean (CBS5, IF5S), bean (PAL5)	seed	soybean lectin	Reduction of isoﬂavone	PB	Jack	Zerna et al. (2009)
	Homogentisate geranylgeranyl transferase gene (GmHGGT)	*A. thaliana*	seed	CaMV 35S	Reduction of phytate content	PB	Jack	Shi et al. (2007)
	β-aminor synthase gene (GamBAS1)	soybean	seed	soybean KTI3	Reduction of phytate content	PB	Jack	Shi et al. (2007)
	Bacillus thuringiensis	*B. thuringienis*	whole plant	CaMV 35S	Resistance to *B. thuringienis*	PB	F376 (pregony of Peking × Masahokudamono 502)	Parrott et al. (1994)
Insect resistance	*B. thuringienis*	*B. thuringienis*	whole plant	CaMV 35S	Resistance to velvetbean caterpillar	PB	Jack	Stewart et al. (1996)
	Nicotiana tabacum	*N. tabacum*	whole plant	CaMV 35S	Resistance to velvetbean caterpillar	PB	Jack	Dufourmantel et al. (2005)
	Pinellia ternata	*P. ternata* (pta), *P. ternata* (cryIAc), *B. thuringienis* (cryIAc)	whole plant	CaMV 35S	Resistance to cotton bollworm	AG	Multiple strains of *P. ternata*	Yang and Wei (2007)
	Beta procombs	*Beta procombs*	root	(ocs-UAS)(mosaic-UAS-mos-P)	Resistance to soybean cyst nematode	PB	Westag	McLean et al. (2007)
Nematode resistance	*Beta procombs*	*Beta procombs*	root	(ocs-UAS)(mosaic-UAS-mos-P)	Resistance to soybean cyst nematode	PB	Westag	McLean et al. (2007)
Virus resistance	Bean pod mottle virus (BMV): *Fusarium oxysporum*	*B. thuringienis*	whole plant	CaMV 35S	Resistance to BMV	AG	Fayette	Di et al. (1996)
	Soybean mosaic virus (SMV): *Beta vulgaris*	*B. thuringienis*	whole plant	CaMV 35S	Resistance to BMV	AG	Fayette	Reddy et al. (2001)
	Soybean mosaic virus (SMV): *Beta vulgaris*	*B. thuringienis*	whole plant	CaMV 35S	Resistance to SMV	PB	9341	Wang et al. (2001)
	Soybean mosaic virus (SMV): *Beta vulgaris*	*B. thuringienis*	whole plant	CaMV 35S	Resistance to SMV	PB	Jack	Furusani et al. (2006)
	Soybean dwarf virus (SdDV): *Beta vulgaris*	*B. thuringienis*	whole plant	CaMV 35S	Resistance to SdDV	PB	Jack	Tougu et al. (2006, 2007)
Table 2. (continued)

Target traits	Target gene	Origin of target gene	Target tissue	Promoter	Effect	Transformation method	Soybean genotype	References
Fungus resistance	Oxalate oxidase gene (gf-2.8)	Wheat	Whole plant	CaMV 35S	Resistance to white mould	AG	AC Colibri	Donaldson et al. (2005)
	Oxalate decarboxylase gene (oxdc)	Flammulina sp.	whole plant	CaMV 35S	Resistance to white mould	PB	BR-16	Cunha et al. (2010)
Abiotic tolerance								
Drought stress								
Iron deficiency stress								
Herbicide resistance								
Mutated 5-enolpyruvylshikimic acid 3-phosphate (EPSP) synthase gene	petunia	whole plant	CaMV 35S	Glyphosate tolerance	AG	Poking, Maple Prest	Hindhee et al. (1988)	
5-enolpyruvoylshikimic acid 3-phosphate synthase gene (CP4-EPSP)	Agrobacterium sp. Strain CP4	whole plant	CaMV 35S	Glyphosate tolerance	PB	A5403	Pedgate et al. (1995)	
Acetohydroxyacid synthase gene (ahs)	A. thaliana	whole plant	CaMV 35S	Glyphosate tolerance	PB	BR-16, Doko RC, BR-9, Conquista	Aragao et al. (2000)	
4-hydroxyphenylpyruvate dioxygenase gene (hpd)	Pseudomonas fluorescens	whole plant	N. tabacum	Isoxaflutole tolerance	PB	Jack	Dufourmantel et al. (2007)	
Phosphinothricin (PPT) N-acetyltransferase genes (mat and hpat)	bialaphos-resistant soil bacteria Streptomyces sp. Strain AB3534 (hpat), Nocardia sp. strain AB2533 (mat)	whole plant	CaMV 35S	PPT tolerance	PB	Jack	Kita et al. (2009)	
Others	Vegetative storage protein gene (VspA)	soybean	whole plant	CaMV 35S	Reduction of VSPa and VSPj	AG	Augrow 3237	Starwark et al. (2001)
Feedback-insensitive anthranilate synthase (AS) to-subunit gene (ASL1)	tabacoo	whole plant	CaMV 35S	Increase of free tryptophan	PB	Jack	Imbha et al. (2007)	
A transposase gene	maize	whole plant	CaMV 35S	Induction of transposition of Ds element	AG	Bert, Thome	Mathieu et al. (2009)	
GmTFL1b (TERMINAL FLOWER1b) for Dt1	soybean	whole plant	CaMV 35S	Complemention of the stem growth habit	AG	KA	Liu et al. (2010)	
Dicer-like genes (DCL4a and DCL4b)	soybean	whole plant	CaMV 35S	Targeted mutagenesis	A. thaliana	Bert, Thome	Curtin et al. (2011)	

1) AG: Agrobacterium, PB: Particle bombardment.
to recover whole plants (Finer and Nagasawa 1988, Lazzeri et al. 1985, 1987, Parrott et al. 1988, Ranch et al. 1985). As the formation of proliferative embryogenic tissue depends on genotype, the use of transformation has been limited to a few soybean cultivars. On the basis of its capacity for induction of primary somatic embryos, proliferative embryogenic cultures, and recovery of whole plants, cultivar Jack has been recognized as a competent genotype for transformation and has been exclusively used to generate transgenic soybeans (Meurer et al. 2001, Stewart et al. 1996, Tomlin et al. 2002), because modification of tissue culture protocols have only partially overcome the effects of genotype (Bailey et al. 1993a, 1993b). The limitation has often precluded the functional analysis of transgenes in combination with a specific genotype, and the direct improvement of leading cultivars by transformation. Somatic embryogenesis is a heritable trait and can be improved by hybridization breeding (Parrott et al. 1989b); the competence for somatic embryogenesis was successfully transferred and combined in other genotypes (Kita et al. 2007, 2010).

Physical procedures for transformation tend to result in the integration of large complexes, fragmentation, and reconstitution of transgenes, which sometimes lead to the silencing of transgenes or homologous endogenous genes (El-Shemy et al. 2004, Kinney et al. 2001, Reddy et al. 2003). The use of a reporter gene such as sGFP(S65T) or DsRed2 in addition to a selectable marker gene could help to reduce the problem of gene silencing associated with physical transformation systems and facilitate the recovery of transgenic plants that stably express the target gene between the two marker genes (El-Shemy et al. 2004, Nishizawa et al. 2006). As shown in rice transformation (Fu et al. 2000), linearized transgene constructs lacking vector backbone sequences might also generate transgenic soybean plants with a low transgene copy number by the simple integration of the constructs.

Soybean somatic embryos have attracted additional attention as a model of zygotic embryos. Proliferative somatic embryos can retain regenerative properties for more than a year, with differentiation and development being readily induced when required (Finer and Nagasawa 1988, Parrott et al. 1988). Mature somatic embryos accumulate seed storage proteins with the same temporal and spatial regulation as developing seeds (Dahmer et al. 1992, Nishizawa and Ishimoto 2009), and their fatty acid composition is similar to that of seeds (Dahmer et al. 1991, Shoemaker and Hammond 1988). Transgenic embryos have usually been obtained within 7 weeks after the introduction of exogenous genes by particle bombardment (Khalaflalla et al. 2005), and homogeneous masses of transgenic embryos can be readily and repeatedly induced to differentiate. Somatic embryos have therefore been used to assess transgenic seed traits before recovery of whole plants, and then selected clones are recovered as whole transgenic plants (Cahoon et al. 2000, 2002, Chen et al. 2006, Herman et al. 2003, Nishizawa et al. 2010).

The improved and refined protocols for somatic embryo–particle-bombardment-mediated transformation are widely reproducible across laboratories, even though there are still some limitations as previously noted (El-Shemy et al. 2004, Furutani and Hidaka 2004, Furutani et al. 2006, 2007, Ishimoto et al. 2010, Khalafalla et al. 2005, Kita et al. 2009, 2010, Nishizawa et al. 2008, Takagi et al. 2011, Tougou et al. 2006, 2007, Yamada et al. 2008). The RIKEN Plant Science Center has supported the Transformation Network Consortium (TRANSNET) to enhance both basic and applied research in plant biology in Japan since 2008. Under a collaborative research agreement, staff at the National Agricultural Research Center for Hokkaido Region will create transgenic soybeans by particle-bombardment-mediated transformation on request from academic researchers in Japan.

Transgenic approaches to improvement of seed components and agronomic traits

1. Modification of seed components

1-1. Protein and amino acid compositions: The abundant proteins and oil in soybean seeds are attractive targets for improvement by transformation. Soybean protein is the nutritional equivalent of meat and eggs except for its deficiency of sulfur amino acids, especially methionine (FAO/WHO 1990, Young 1991). High-methionine proteins such as bovine β-casein and maize zein were induced to accumulate in soybean seed under the regulation of seed-expression promoters (Dinkins et al. 2001, Kim and Krishnan 2004, Li et al. 2005, Maughan et al. 1999), but not enough for nutritional improvement. The accumulation of these methionine-rich proteins may be limited by the absence of the proper maturation process in soybean or by the availability of sulfur-containing amino acids or of sulfur itself. Although there is no information about the increase of free sulfur-containing amino acids in soybean, three other essential amino acids, lysine, tryptophan and threonine, substantially increased in soybean seeds by the expression of genes for feedback-insensitive enzymes involved in their synthesis (Falco et al. 1995, Ishimoto et al. 2010, Kita et al. 2010, Qi et al. 2011). Improvement of the pool of soluble amino acids would seem to be a reliable approach to improving the nutritional quality of soybean.

Soybean is also considered one of the most efficient protein bioreactors for plant molecular farming. Pharmaceutical proteins such as human growth hormone, fibroblast growth factor, and an edible vaccine were accumulated in stable transgenic soybean seeds (Cunha et al. 2011, Ding et al. 2006, Piller et al. 2005). Although bioactive proteins comprised up to 3% of the total seed protein content, the content of pharmaceutical proteins is nowhere near the content of endogenous storage proteins. Instead, another strategy was devised to use the major storage proteins, β-conglycinin and glycycin, as carriers for bioactive peptides (Nishizawa et al. 2008, Yamada et al. 2008). A bioactive hexa-peptide, novo-kinin, was incorporated into the α′ subunit of β-conglycinin.
at four sites by minimum replacement of amino acids constituting analogous sequences, and transgenic soybean seeds accumulated the modified protein with the intended properties (Yamada et al. 2008). So far, however, the levels of modified storage proteins have not come close to the amount of the original protein. Mutant lines lacking all subunits of glycmin and β-conglycinin may prove more amenable to the accumulation of modified storage proteins, and of foreign proteins (Kita et al. 2007, Takahashi et al. 2003), since a decrease in the abundance of the endogenous storage proteins prolamine and globulin in rice was compensated for by the enrichment of foreign proteins, resulting in an almost equivalent total amount of seed storage proteins (Tada et al. 2003).

Although soy proteins are highly nutritious, some are recognized as allergens in some people (Ogawa et al. 2000). Among them, Gly m Bd 30K, also called P34, is regarded as the major or immunodominant allergen in soybean seed. Transgene-induced gene silencing (co-suppression) could be used to remove allergens from soybean seeds without any compositional, developmental, or structural changes (Herman et al. 2003).

1-2. Oil composition: Almost three-fourths of global vegetable oil production comes from oil palm, soybean, rapeseed and sunflower, in that order. Soybean oil is widely used in food and in industry in printing ink, lubricants and biodiesel. Improvement of the oil content and its composition has been a goal in the use of transformation technology. As vegetable oil is stored in seeds in the triacylglycerol form, exotic acyltransferase genes were introduced into soybean to enhance the biosynthesis of triacylglycerol, resulting in a maximum increase of 3.2% (by weight) in seed oil content in mature seeds (Lardizabal et al. 2008, Li Z. et al. 2010, Rao and Hildebrand 2009).

Oil composition determines the performance of an oil. Transgenic approaches could provide many options to tailor soybean oil for specific uses. Typically, soybean oil is composed of palmitic, stearic, oleic, linoleic and linolenic acids (Yadav 1996). The high level of polyunsaturated fatty acids in natural soybean oil renders the oil unstable and thus susceptible to the development of disagreeable odors and flavors. Therefore, soybean oil with decreased polyunsaturated fatty acids would be ideal for use in food. Down-regulation of the desaturation of fatty acids by ribozyme termination of RNA transcripts or RNA interference (RNAi) gene silencing (see Kasai and Kanazawa 2012) decreased the content of polyunsaturated fatty acids or increased that of oleic acid (Buhr et al. 2002, Flores et al. 2008, Li R. et al. 2010, Wang and Xu 2008). On the other hand, ectopic expression of heterogeneous genes involved in fatty acid modification could generate other fatty acids such as γ-linolenic, stearidonic, arachidonic, eicosapentaenoic and vernolic acids, which are undetectable or minor fatty acids in non-transgenic soybean seeds (Chen et al. 2006, Eckert et al. 2006, Kajikawa et al. 2008, Li R. et al. 2010, Sato et al. 2004).

The vitamin E family comprises tocopherols and toco-
(phytate), which releases phosphorus (P) and myoinositol during seed germination. Monogastric animals lack phytase, the digestive enzyme required to remove phosphate from the inositol in phytate, and therefore P in phytate is not available to them. Fertile transgenic soybean plants containing phytase showed a nearly threefold increase in P availability as well as a reduction of phytate (Chiera et al. 2004). Myoinositol-1-phosphate is synthesized from glucose 6-phosphate in a reaction catalyzed by myoinositol-1-phosphate synthase, and then converted into phytate. RNAi gene silencing drastically reduced phytate and inhibited seed development (Nunes et al. 2006). Suppressing a multidrug-resistance-associated protein (MRP) ATP-binding cassette (ABC) transporter gene in maize and soybean generated low-phytic-acid seed (Shi et al. 2007).

2. Enhancement of biotic and abiotic resistance
2-1. Insect and nematode resistance: Insecticidal crystal proteins (cry proteins or δ-endotoxins) are an active component of Bacillus thuringiensis (Bt) toxin, a biological insecticide (Tabashnik 1994). Expression of the Bt cry gene in soybean has proven highly effective for controlling insect pests (Dufourmantel et al. 2005, Miklos et al. 2007, Parrott et al. 1994, Stewart et al. 1996), and the resistance to lepideroptan pests in a transgenic line expressing Bt cryIA was confirmed under field conditions (Walker et al. 2000). However, the discovery that insects can adapt to Bt cry proteins raises concerns about long-term or high-dose use (McGaughey and Whalon 1992). Strategies suggested for managing the development of resistance to Bt cry proteins include the combination of the Bt cry gene and defoliating insect resistance QTLs or other insecticidal proteins (Macrae et al. 2005, Walker et al. 2002, Zhu et al. 2008).

Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a primary pest of soybean production. Effective management of SCN relies on the combination of resistant cultivars and crop rotation. Resistance to SCN is controlled by multiple loci, but diverse nematode populations have broken down the elaborate resistance. Therefore, other strategies for SCN resistance are needed. Hs1pro-1, a gene from wild beet for resistance to the closely related beet cyst nematode, enhanced SCN resistance in soybean (McLean et al. 2007).

2-2. Disease resistance: Soybean mosaic virus (SMV) is endemic in virtually all regions where soybeans are grown in the presence of vector insects. SMV can cause serious yield losses (Ross 1969), so virus resistance is an essential trait for introduction. There have been some efforts to improve virus resistance in soybean by transgenic approaches. Overexpression of a coat protein gene and the 3-UTR region from SMV resulted in high resistance to SMV in transgenic soybean plants (Furutani et al. 2006, Wang et al. 2001). In addition, resistance to bean pod mottle virus and soybean dwarf virus has been introduced into susceptible soybean by transgenic approaches (Di et al. 1996, Reddy et al. 2001, Tougou et al. 2006, 2007).

Sclerotinia stem rot (white mould) is serious fungal disease of soybean. As oxalic acid is an important pathogenicity factor of the fungus (Godoy et al. 1990), the introduction of a gene to degrade oxalic acid would provide an effective defense against the fungus in soybean. Overexpression of heterogeneous genes encoding oxalate oxidase or oxalate decarboxylase reduced disease progression and lesion length after inoculation of leaves and stems with the fungus (Cunha et al. 2010, Donaldson et al. 2001).

2-3. Abiotic stress tolerance: Drought stress is one of the major environmental limitations on crop production. Transgenic soybean expressing P3CR, encoding 1-Δ1-pyrroline-5-carboxylate reductase, which catalyzes the final step in proline biosynthesis, under the control of an inducible heat shock promoter was more tolerant to drought and high temperature than non-transgenic plants (De Ronde et al. 2004a, 2004b). Furthermore, overexpression of an endogenous gene encoding ER-resistant molecular chaperon binding protein from soybean (soyBiPD) delayed leaf senescence during drought (Valente et al. 2009).

Iron is abundant in soil, but its availability is sometimes limited in aerated soil. Ectopic expression of the Arabidopsis ferric chelate reductase gene conferred tolerance to iron deficiency chlorosis, but constitutive expression decreased productivity (Vasconcelos et al. 2006).

2-4. Herbicide resistance: The most successful transgenic trait introduced into soybean is resistance to the non-selective herbicide glyphosate (N-phosphonomethyl-glycine; Roundup) (Padgette et al. 1995). Roundup Ready soybean cultivars were introduced into commercial production in 1996 and have been planted on most soybean fields since 2004 (ISAAA, http://www.isaaa.org/). Glyphosate binds to and blocks the activity of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme of the shikimic acid pathway, which produces aromatic amino acids. A glyphosate-tolerant EPSPS was introduced into soybean to confer a high level of glyphosate tolerance (Hinchee et al. 1988, Padgette et al. 1995). In addition, the introduction of genes for acetohydroxyacid synthase (AHAS) from Arabidopsis, 4-hydroxyphenylpyruvate dioxygenase (HPPD) from Pseudomonas fluorescens, and phosphinothricin N-acetyltransferase (PAT) from bialaphos-resistant soil bacteria conferred tolerance to, respectively, imazapyr, isoxaflutole and phosphinothricin (Aragão et al. 2000, Dufourmantel et al. 2007, Kita et al. 2009). These herbicide resistance genes are also used as markers to allow the selection of transgenic soybeans (Rech et al. 2008).

Transgenic approaches to soybean genomics research

Soybean genes have often been evaluated for their function in heterogeneous plants such as A. thaliana or tobacco because soybean has remained recalcitrant to routine transformation. However, they should also be evaluated in the genetic background of a soybean with a null mutant or recessive allele for the target gene. Therefore, the functional
analysis of target genes requires the transformation of a wide range of soybean genotypes. Agrobacterium-mediated transformation has now been successfully used in a wide range of soybean genotypes and been simplified (Table 1). This transformation system could provide a sophisticated method of gene functional analysis for soybean genomics research. There is one example of the complementation of an isolated gene by the transgenic approach. The habit of stem growth is an important agronomic trait. A recessive allele, $dt1$, decreases plant height and number of nodes. The $Dt1$ gene of soybean was isolated as a TFL1 orthologue of A. thaliana (Liu et al. 2010). The genomic region of the $Dt1$ allele was introduced into the genetic background of the $dt1$ allele by Agrobacterium-mediated transformation to complement the $dt1$ allele (Liu et al. 2010), revealing that the $Dt1$ locus exactly controls stem growth habit in soybean.

Agrobacterium tumefaciens is commonly used for DNA delivery. An alternative system using Agrobacterium rhizogenes is termed hairy root transformation. This system, which inserts the T-DNA region into the genome of host plant root cells (Chilton et al. 1982), has been optimized to study the symbiotic and pathogenic interactions in roots (Kereszt et al. 2007). Hairy root transformation offers the advantage over A. tumefaciens-mediated transformation that as every transgenic root represents an independent transformation event, high numbers of transformatants can be obtained and analyzed in a relatively short period of time. This system has contributed to elucidating the molecular mechanism of nodulation in soybean root (Indrasumunar et al. 2011, Kasai and Kanazawa 2012, Yang et al. 2010).

The process of soybean transformation is sometimes integrated into systems of gene-tagging or mutagenesis. Transformation mediated by A. tumefaciens or A. rhizogenes has been used to develop gene-tagging by transposon elements or site-direct mutagenesis using zinc-finger nucleases (Curtin et al. 2011, Mathieu et al. 2009). These combination systems are appropriate for soybean genomics research.

Concluding remarks

Transformation procedures have been simplified and optimized for various soybean genotypes. The techniques provide soybean breeders and researchers with opportunities to use transgenic plants for the improvement of agronomic traits as well as the analysis of gene function. Indeed, herbicide-resistant transgenic soybeans have been successfully released and planted in many countries. If a transgenic soybean were developed with agronomically important traits such as high yielding ability and multiple stress resistance which could not be achieved by current genetic resources, transgenic approaches might be more widely accepted in soybean breeding. In addition, transformation is an essential approach for genomics research in many crops, not only soybean. Target genes are readily isolated by map-based cloning or database information through well-organized genomic resources, which provide information on a large number of genomic, transcriptional, and functionally annotated sequences in soybean. Transgenic approaches are likely to become routine for the elucidation of gene function by over-expression, suppression, or complementation testing in the appropriate genetic background.

Acknowledgements

We wish to thank all of our past and present colleagues who have worked on the establishment of soybean transformation systems in Japan. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan to T. Yamada; and by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, GMZ-1004) and TRANSENT, organized by the RIKEN Plant Science Center, to M. Ishimoto.

Literature Cited

Aragão, F.J.L., L. Sarokin, G.R. Vianna and E.L. Rech (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merrill] plants at a high frequency. Theor. Appl. Genet. 101: 1–6.

Bailey, M.A., H.R. Boerma and W.A. Parrott (1993a) Genotype-specific optimization of plant regeneration from somatic embryos of soybean. Plant Sci. 93: 117–120.

Bailey, M.A., H.R. Boerma and W.A. Parrott (1993b) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell. Dev. Biol. 29P: 102–108.

Beijersbergen, A., A.D. Dulk-Ras, R.A. Schilperoort and P.J.J. Hooykaas (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256: 1324–1327.

Bramley, P.M., I. Elmadfa, A. Kafatos, F.J. Kelly, Y. Manios, H.E. Roxborough, W. Schuch, P.J.A. Sheehy and K.-H. Wagner (2000) Vitamin E. J. Sci. Food Agric. 80: 913–938.

Buhr, T., S. Sato, F. Ebrahim, A. Xing, Y. Zhou, M. Mathiesen, B. Schweiger, A. Kinney, P. Staswick and T. Clemente (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J. 30: 155–163.

Cahoon, E.B., E.-F. Marillia, K.L. Stecca, S.E. Hall, D.C. Taylor and A.J. Kinney (2000) Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiol. 124: 243–251.

Cahoon, E.B., K.G. Ripp, S.E. Hall and B. McGonigle (2002) Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiol. 128: 615–624.

Chen, R., K. Matsui, M. Ogawa, M. Oe, M. Ochiai, H. Kawashima, E. Sakuradani, S. Shinizu, M. Ishimoto, M. Hayashi et al. (2006) Expression of Δ6, Δ5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci. 170: 399–406.

Chiera, J.M., J.J. Finer and E.A. Grabau (2004) Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol. Biol. 56: 895–904.

Chilton, M.D., D.A. Tepfer, A. Petit, C. David, F. Casse-Delbart and J.Temp (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295: 432–434.
Christianson, M.L., D.A. Warnick and P.S. Carlson (1983) A morphogenetically competent soybean suspension culture. Science 222: 632–634.

Christou, P., D.E. McCabe and W.F. Swain (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol. 87: 671–674.

Cunha, N.B., A.M. Murad, T.M. Cipriano, A.C.G. Aratújo, F.J.L. Aragão, A. Leite, G.R. Vianna, T.R. McPhee, G.H.M.F. Souza, M.J. Waters et al. (2011) Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Res. 20: 811–826.

Cunha, W.G., M.L.P. Tinoco, H.L. Pancoti, R.E. Ribeiro and F.J.L. Aragão (2010) High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathol. 59: 654–660.

Curtin, S.J., F. Zhang, J.D. Sander, W.J. Haun, C. Starker, N.J. Baltes, D. Reyon, E.J. Dahlgren, M.J. Goodwin, A.P. Coffman et al. (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 156: 466–473.

Dahmer, M.L., G.B. Collins and D.F. Hildebrand (1991) Lipid content and composition of soybean somatic embryos. Crop Sci. 31: 741–746.

Dahmer, M.L., D.F. Hildebrand and G.B. Collins (1992) Comparative protein accumulation patterns in soybean somatic and zygotic embryos. In Vitro Cell. Dev. Biol. 28P: 106–114.

Dang, W. and Z. Wei (2007) An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci. 173: 381–389.

De Ronde, J.A., R.N. Laurie, T. Caetano, M.M. Greiling and I. Kerepesi (2004a) Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica 138: 123–132.

De Ronde, J.A., W.A. Cress, G.H.J. Krüger, R.J. Strasser and J. Van Staden (2004b) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 161: 1211–1224.

Delzer, B.W., D.A. Someers and J.H. Orf (1990) Agrobacterium tumefaciens susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to II. Crop Sci. 30: 320–322.

Di, R., V. Purcell, G.B. Collins and S.A. Ghabrial (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep. 15: 746–750.

Ding, S.-H., L.-Y. Huang, Y.-D. Wang, H.-C. Sun and Z.-H. Xiang (2006) High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity. Biotechnol. Lett. 28: 869–875.

Dinkins, R.D., M.S.S. Reddy, C.A. Meurer, B. Yan, H. Trick, F. Thibaud-Nissen, J.J. Finner, W.A. Parrott and G.B. Collins (2001) Increased sulfur amino acids in soybean plants overexpressing the maize 15kDa zein protein. In Vitro Cell. Dev. Biol.-Plant 37: 742–747.

Dinkins, R.D. and G.B. Collins (2008) Agrobacterium-mediated genetic transformation of soybean. In: Kiriti, P.D. (ed.) Handbook of New Technologies for Genetic Improvement of Legumes, CRC Press, Florida, pp. 89–102.

Donaldson, P.A. and D.H. Simmonds (2000) Susceptibility to Agrobacterium tumefaciens and cotyledonary nodule transformation in short-season soybean. Plant Cell Rep. 19: 478–484.

Donaldson, P.A., T. Anderson, B.G. Lane, A.L. Davidson and D.H. Simmonds (2001) Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 59: 297–307.

Dufourmantel, N., G. Tissot, F. Goutorre, F. Garçon, C. Muhl, S. Jansens, B. Pelissier, G.Pelletier and M. Dubald (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protein. Plant Mol. Biol. 58: 659–668.

Dufourmantel, N., M. Dubald, M. Matringe, H. Canard, F. Garçon, C. Job, E. Kay, J.-P. Wisniewski, J.-M. Ferullo, B. Pelissier et al. (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol. J. 5: 118–133.

Ebel, J. (1986) Phytoalexin synthesis: the biochemical analysis of the induction process. Annu. Rev. Phytopathol. 24: 235–264.

Eckert, H., B.L. Vallee, B.J. Schweiger, A.J. Kinney, E.B. Cahoon and T. Clemente (2006) Co-expression of the boraginaceous AΔ desaturase and the Arabidopsis A∆ desaturase results in high accumulation of steroidal acid in the seeds of transgenic soybean. Planta 224: 1050–1057.

El-Shemy, H.A., M. Teraishi, M.M. Khalfalla, T. Katsube-Tanaka, S. Utsumi and M. Ishimoto (2004) Isolation of soybean plants with stable transgene expression by visual selection based on green fluorescent protein. Mol. Breed. 14: 227–238.

Ellington, A.A., M. Berhow and K.W. Singletary (2005) Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis 26: 159–167.

Ellington, A.A., M.A. Berhow and K.W. Singletary (2006) Inhibition of Akt signaling and enhanced ERK1/2 activity and involved in induction of macroautophagy by triterpenoid B-group saponins in colon cancer cells. Carcinogenesis 27: 298–306.

Falco, S.C., T. Guida, M. Locke, J. Mauvais, C. Sanders, R.T. Ward and P. Webber (1995) Transgenic canola and soybean seeds with increased lysine. Nat. Biotechnol. 13: 577–582.

FAO/WHO (1990) Expert consultation on protein quality evaluation. Food and Agriculture Organization of the United Nations, Rome.

Finer, J.J. and A. Nagasawa (1988) Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tissue Organ Cult. 15: 125–136.

Finer, J.J. and M.D. McMullen (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27P: 175–182.

Flores, T., O. Karpova, X. Su, P. Zeng, K. Bilyeu, D.A. Sleper, H.T. Nguyen and Z.J. Zhang (2008) Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18: 3) of jad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res. 17: 839–850.

Fu, X., L.T. Duc, S. Fontana, B.B. Bong, P. Tinjuangjun, D. Sudhakar, R.M. Twyman, P. Christou and A. Kohli (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy number transgenic plants with simple integration patterns. Transgenic Res. 9: 11–19.

Furutani, N. and S. Hidaka (2004) Efficient production of transgenic soybean using a co-transformation method. Breed. Sci. 54: 91–98.

Furutani, N., S. Hidaka, Y. Kosaka, Y. Shizukawa and S. Kanematsu (2006) Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean. Breed. Sci. 56: 119–124.

Furutani, N., Y. Yamagishi, S. Hidaka, Y. Shizukawa, S. Kanematsu and Y. Kosaka (2007) Soybean mosaic virus resistance in transgenic soybean caused by post-transcriptional gene silencing. Breed. Sci. 57: 123–128.

Godoy, G., J.R. Steadman, M.B. Dickman and R. Dam (1990) Use of...
mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol. Mol. Plant Pathol. 37: 179–191.

Graham, T.L. (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95: 594–603.

Hansen, G. and M.S. Wright (1999) Recent advances in the transformation of plants. Trends Plant Sci. 4: 226–231.

Hartman, G.L., E.D. West and T.K. Herman (2011) Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 3: 5–17.

Herbers, K. (2003) Vitamin production in transgenic plants. J. Plant Physiol. 160: 821–829.

Herman, E.M., R.M. Heln, R. Jung and A.J. Kinney (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 132: 36–43.

Hinchee, M.A.W., D.V. Conner-Ward, C.A. Newell, R.E. McDonnell, S.J. Sato, C.S. Gasser, D.A. Fischhoff, D.B. Re, R.T. Fraley and R.B. Horsch (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat. Biotechnol. 6: 915–922.

Hoppe, P.P. and G. Krennrich (2000) Bioavailability and potency of natural-source and all-racemic α-tocopherol in the human: a dispute. Eur. J. Nutr. 39: 183–193.

Horsch, R.B., J.E. Fry, N.L. Hoffmann, D. Eichholz, S.G. Rogers and R.T. Fraley (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231.

Indrasumunar, A., I. Searle, M.-H. Lin, A. Kereszt, A. Men, B.J. Carroll and P.M. Greshoff (2011) Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr). Plant J. 65: 39–50.

Ishimoto, M., S.M. Rahman, M.S. Hanafy, M.M. Khalafalla, H.A. El-Shemy, Y. Nakamoto, Y. Kita, K. Takanaishi, F. Matsuda, Y. Murano et al. (2010) Evaluation of amino acid content and nutritional quality of transgenic soybean seeds with high-level tryptophan accumulation. Mol. Breed. 25: 313–326.

Kajikawa, M., K. Matsui, M. Ochiai, Y. Tanaka, Y. Kita, M. Ishimoto, Y. Kohzu, S. Shoji, K.T. Yamato, K. Ohyama et al. (2008) Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid Δ6-desaturase, Δ6-elongase, and Δ5-desaturase genes. Biosci. Biotechnol. Biochem. 72: 435–444.

Kasai, M. and A. Kanazawa (2012) RNA silencing as a tool to uncover gene function and engineer novel traits in soybean. Breed. Sci. 61: 468–479.

Kereszt, A., D. Li, A. Indrasumunar, C.D.T. Nguyen, S. Nontachaiyapoom, M. Kinkema and P.M. Greshoff (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat. Protoc. 2: 948–952.

Khalafalla, M.M., S.M. Rahman, H.A. El-Shemy, Y. Nakamoto, K. Wakasa and M. Ishimoto (2005) Optimization of particle bombardment conditions by monitoring of transient sGFP(S65T) expression in transformed soybean. Breed. Sci. 55: 257–263.

Kim, W.-S. and H.B. Krishnan (2004) Expression of an 11kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotechnol. J. 2: 199–210.

Kim, Y.H., Y.Y. Lee, Y.H. Kim, M.S. Choi, K.H. Jeong, S.K. Lee, M.J. Seo, H.T. Yun, C.K. Lee, W.H. Kim et al. (2011) Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT). J. Agric. Food Chem. 59: 584–591.

Kim, Y.J., H.Y. Seo, T.J. Park, S.H. Baek, W.C. Shin, H.S. Kim, J.G. Kim, Y.E. Choi and S.J. Yun (2005) Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene. J. Plant Biotechnol. 7: 203–209.

Kinney, A.J., R. Jung and E.M. Herman (2001) Cosuppression of the α subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell 13: 1165–1178.

Kita, Y., K. Nishizawa, M. Takahashi, M. Kitayama and M. Ishimoto (2007) Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines. Plant Cell Rep. 26: 439–447.

Kita, Y., M.S. Hanafy, M. Deguchi, H. Hasegawa, T. Terakawa, K. Kitamura and M. Ishimoto (2009) Generation and characterization of herbicide-resistant soybean plants expressing novel phosphothricin N-acetyltransferase genes. Breed. Sci. 59: 245–251.

Kita, Y., Y. Nakamoto, M. Takahashi, K. Kitamura, K. Wakasa and M. Ishimoto (2010) Manipulation of amino acid composition in soybean seeds by the combination of deregulated tryptophan biosynthesis and storage protein deficiency. Plant Cell Rep. 29: 87–95.

Kudou, S., M. Tomomura, C. Tsukamoto, M. Uchida and K. Okubo (1992) Isolation and structural elucidation of the major genuine soybean saponin. Biosci. Biotechn. Biochem. 56: 142–143.

Lardizabal, K., R. Effertz, C. Levering, J. Mai, M.C. Pedroso, T. Jury, E. Aasen, K. Grusy and K. Bennett (2008) Expression of Umbelopsis ramanianiana DGAT2A in seed increases oil in soybean. Plant Physiol. 148: 89–96.

Lazzeri, P.A., D.F. Hildebrand and G.B. Collins (1985) A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep. 3: 160–167.

Lazzeri, P.A., D.F. Hildebrand and G.B. Collins (1987) Soybean somatic embryogenesis: Effects of hormones and culture manipulations. Plant Cell Tissue Organ Cult. 10: 197–208.

Li, R., K. Yu, T. Hatanaka and D.F. Hildebrand (2010) Fornonia DGATs increase accumulation of epoxy fatty acids in oil. Plant Biotechnol. J. 8: 184–195.

Li, Z., S. Meyer, J.S. Essig, Y. Liu, M.A. Schapaugh, S. Muthukrishnan, B.E. Hainline and H.N. Trick (2005) High-level expression of maize γ-zein protein in transgenic soybean (Glycine max). Mol. Breed. 16: 11–20.

Li, Z., B.P. Moon, A. Xing, Z.-B. Liu, R.P. McCardell, H.G. Damude and S.C. Falco (2010) Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges. Plant Physiol. 154: 622–631.

Liu, B., S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura et al. (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 153: 198–210.

Liu, S.-J., Z.-M. Wei and J.-Q. Huang (2008) The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep. 27: 489–498.

Macrea, T.C., M.E. Baur, D.J. Boethel, B.J. Fitzpatrick, A.-G. Gao, J.C. Gamundi, L.A. Harrison, V.T. Kabuye, R.M. McPherson, J.A.
Miklos et al. (2005) Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of lepidoptera. J. Econ. Entomol. 98: 577–587.

Mathieu, M., E.K. Winters, F. Kong, J. Wan, S. Wang, H. Eckert, D. Luth, M. Paz, C. Donovan, Z. Zhang et al. (2009) Establishment of a soybean (Glycine max L.) transposon-based mutagenesis repository. Planta 229: 279–289.

Maughan, P.J., R. Philip, M.-J. Cho, J.M. Widholm and L.O. Vodkin (1999) Biologic transformation, expression, and inheritance of bovine β-casein in soybean (Glycine max). In Vitro Cell. Dev. Biol. Plant 35: 344–349.

McCabe, D.E., W.F. Swain, B.J. Martinell and P. Christou (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Nat. Biotechnol. 6: 923–926.

McGaughy, W.H. and M.E. Whalon (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258: 1451–1455.

McLean, M.D., G.J. Hooyer, B. Bancroft, A. Makhmoudova, S.M. Clark, T. Welacky, D.H. Simmonds and B.J. Shelp (2007) Identification of the full-length Hs1 coding sequence and preliminary evaluation of soybean cyst nematode resistance in soybean transformed with Hs1 cDNA. Can. J. Bot. 85: 437–441.

Meurer, C.A., R.D. Dinkins, C.T. Redmond, K.P. McAllister, D.T. Tucker, D.R. Walker, W.A. Parrott, H.N. Trick, J.S. Essig, H.M. Frantz et al. (2001) Embryogenic response of multiple soybean [Glycine max (L.) Merrill] cultivars across three locations. In Vitro Cell. Dev. Biol. 37: 923–926.

Miklos, J.A., M.F. Albilbi, S.A. Bledig, D.C. Connor-Ward, A.-G. Gao, B.A. Holmes, K.H. Kolacz, V.T. Kabuye, T.C. MacRae, M.S. Paradise et al. (2007) Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests. Crop Sci. 47: 148–157.

Nishizawa, K., Y. Kita, M. Kitayama and M. Ishimoto (2006) A red fluorescent protein, DsRed2, as a visual reporter for transient expression and stable transformation in soybean. Plant Cell Rep. 25: 1355–1361.

Nishizawa, K., A. Kita, C. Doi, Y. Yamada, K. Ohinata, M. Yoshikawa and M. Ishimoto (2008) Accumulation of the bioactive peptides, novokinin, LPYPR and rubiscolin, in seeds of genetically modified soybean. Biosci. Biotechnol. Biochem. 72: 3301–3305.

Nishizawa, K. and M. Ishimoto (2009) Maturation of somatic embryos as a model for soybean seed development. Plant Biotechnol. 26: 543–550.

Nishizawa, K., K. Takagi, M. Teraiishi, A. Kita and M. Ishimoto (2010) Application of somatic embryos to rapid and reliable analysis of soybean seed components by RNA interference-mediated gene silencing. Plant Biotechnol. 27: 409–420.

Nunes, A.C.S., G.R. Vianna, F. Cunato, J. Amaya-Farfan, G. de Capdeville, E.L. Rech and F.J.L. Aragão (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224: 125–132.

Ogawa, T., M. Samoto and K. Takahashi (2000) Soybean allergens and hypoallergenic soybean products. J. Nutr. Sci. Vitaminol. 46: 271–279.

Olhoft, P.M., K. Lin, J. Galbraith, N.C. Nielsen and D.A. Somers (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledony-node cells. Plant Cell Rep. 20: 731–737.

Olhoft, P.M. and D.A. Somers (2001) Δ-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledony-node cells. Plant Cell Rep. 20: 706–711.

Olhoft, P.M., L.E. Flagel, C.M. Donovan and D.A. Somers (2003) Efficient soybean transformation using hygromycin B selection in the cotyledony-node method. Planta 216: 723–735.

Olhoft, P.M. and D.A. Somers (2007) Soybean. In: Pua, E.C. and M.R. Davey (eds.) Biotechnology in Agriculture and Forestry. Vol. 61. Springer, Berlin, pp. 3–27.

Owens, L.D. and D.E. Cress (1985) Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids. Plant Physiol. 77: 87–94.

Padgette, S.R., K.H. Kolacz, X. Delannay, D. Re, B.J. LaVallee, C.N. Tinius, W.K. Rhodes, Y.I. Otero, G.F. Barry, D.A. Eichholtz et al. (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci. 35: 1451–1461.

Parrott, W.A., G. Dryde, S. Vogt, D.F. Hildebrand, G.B. Collins and E.G. Williams (1988) Optimization of somatic embryogenesis and embryo germination in soybean. In Vitro Cell. Dev. Biol. 24: 817–820.

Parrott, W.A., L.M. Hoffman, D.F. Hildebrand, E.G. Williams and G.B. Collins (1989a) Recovery of primary transformants of soybean. Plant Cell Rep. 7: 615–617.

Parrott, W.A., E.G. Williams, D.F. Hildebrand and G.B. Collins (1989b) Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tissue Organ Cult. 16: 15–21.

Parrott, W.A., J.N. All, M.J. Adang, M.A. Bailey, H.R. Boerma and C.N. Stewart (1994) Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell. Dev. Biol. Plant 30: 144–149.

Paz, M.M., H. Shou, Z. Guo, Z. Zhang, A.K. Banerjee and K. Wang (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136: 167–179.

Paz, M.M., J.C. Martinicz, A.B. Kalvig, T.M. Fonger and K. Wang (2006) Improved cotyledony-node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25: 206–213.

Piller, K.J., T.E. Clemente, S.M. Jun, C.C.etty, S. Sato, D.W. Pascual and K.L. Bost (2005) Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean. Planta 222: 6–18.

Qi, Q., J. Huang, J. Crowley, L. Ruschke, B.S. Goldman, L. Wen and W.D. Rapp (2011) Metabolically engineered soybean seed with enhanced threonine levels: biochemical characterization and seed-specific expression of lysine-insensitive variants of aspartate kinases from the enteric bacterium Xenorhabdus bovienii. Plant Biotechnol. J. 9: 193–204.

Ranch, J.P., L. Oglesby and A.C. Zielinski (1985) Plant regeneration from embryo-derived tissue cultures of soybeans. In Vitro Cell. Dev. Biol. 21: 653–658.

Rao, S.S. and D. Hildebrand (2009) Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids 44: 945–951.

Rech, E.L., G.R. Vianna and F.J.L. Aragão (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 3: 410–418.

Reddy, M.S.S., S.A. Ghaiial, C.T. Redmond, R.D. Dinkins and G.B. Collins (2001) Resistance to Bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein. Phytopathology 91: 831–838.

Reddy, M.S.S., R.D Dinkins and G.B. Collins (2003) Gene silencing in transgenic soybean plants transformed via particle bombardment.
Manipulation of saponin biosynthesis by RNA interference-mediated silencing of β-amyrin synthase gene expression in soybean. Plant Cell Rep. 30: 1835–1846.

Takahashi, M., Y. Uematsu, K. Kashiwaba, K. Yagasaki, M. Hajjika, R. Matsunaga, K. Komatsu and M. Ishimoto (2003) Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta 217: 577–586.

Tavva, V.S., Y.H. Kim, I.A. Kagan, R.D. Collins, K.H. Kim and G.B. Collins (2007) Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep. 26: 61–70.

Tomlin, E.S., S.R. Branch, D. Chamberlain, H. Gabe, M.S. Wright and C.N. Stewart (2002) Screening of soybean, Glycine max (L.) Merrill, lines for somatic embryo induction and maturation capability from immature cotyledons. In Vitro Cell. Dev. Biol. Plant 38: 543–548.

Topping, D.L., G.B. Storer, G.D. Calvert, R.J. Illman, D.G. Oakenfull and R.A. Weller (1980) Effect of dietary saponins on fecal bile acids and neutral sterols, plasma lipids, and lipoprotein turnover in the pig. Am. J. Clin. Nutr. 33: 793–796.

Tougou, M., N. Furutani, N. Yamagishi, Y. Shizukawa, Y. Takahata and S. Hidaka (2006) Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus. Plant Cell Rep. 25: 1213–1218.

Tougou, M., Y. Yamagishi, N. Furutani, Y. Shizukawa, Y. Takahata and S. Hidaka (2007) Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene. Plant Cell Rep. 26: 1967–1975.

Trick, H.N. and J.J. Finer (1989) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 17: 482–488.

Umezawa, T., S. Sakurai, Y. Totoki, A. Toyoda, M. Seki, A. Ishiwata, K. Akiyama, A. Kurutani, T. Yoshida, K. Mohida et al. (2008) Sequencing and analysis of approximately 40000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Res. 15: 333–346.

Valente, M.A.S., J.A.Q.A. Faria, J.R.L. Soares-Ramos, P.A.B. Reis, G.L. Pinheiro, N.D. Piovesan, A.T. Morais, C.C. Menezes, M.A.O. Cano and L.G. Fietto et al. (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J. Exp. Bot. 60: 533–546.

Van Eenennaam, A.L., K. Lincoln, T.P. Durrett, H.E. Valentín, C.K. Shewmaker, G.M. Thorne, J. Jiang, S.R. Baszis, C.K. Levering and E.D. Aasen (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15: 3007–3019.

van Rijn, P. and J. Vanderleyden (1995) The Rhizobium-plant symbiosis. Microbiol. Mol. Biol. Rev. 59: 124–142.

Vasconcelos, M., H. Eckert, V. Aramha, G. Graef and T. Clemente (2006) Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Plant Physiol. 142: 1116–1128.

Walker, D., H.R. Boerma, J. All and W. Parrott (2002) Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Mol. Breed. 9: 43–51.

Walker, D.R., J.N. All, R.M. McPherson, H.R. Boerma and W.A. Parrott (2000) Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 93: 613–620.
Wang, G. and Y. Xu (2008) Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep. 27: 1177–1184.

Wang, X.Y., A.L. Eggenberger, F.W. Nutter Jr. and J.H. Hill (2001) Pathogen-derived transgenic resistance to soybean mosaic virus in soybean. Mol. Breed. 8: 119–127.

Xue, R.G., H.F. Xie and B. Zhang (2006) A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol. Lett. 28: 1551–1557.

Yadav, N.S. (1996) Genetic modification of soybean oil quality. In: Verma, D.P.S. and R.C. Shoemaker (eds.) Soybean: Genetics, Molecular Biology and Biotechnology, CAB INTERNATIONAL, USA, pp. 165–188.

Yamada, T., S. Watanabe, M. Arai, K. Harada and K. Kitamura (2010) Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean. Plant Biotechnol. 27: 217–220.

Yang, S.M., F. Tang, M.Q. Gao, H.B. Krishnan and H.Y. Zhu (2010) R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc. Natl. Acad. Sci. USA 107: 18735–18740.

Young, V.R. (1991) Soy protein in relation to human protein and amino acid nutrition. J. Am. Diet. Assoc. 91: 828–835.

Yu, O., J. Shi, A.O. Hession, C.A. Maxwell, B. McGonigle and J.T. Odell (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63: 753–763.

Zeng, P., D.A. Vadnais, Z. Zhang and J.C. Polacco (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep. 22: 478–482.

Zernova, O.V., A.V. Lygin, J.M. Widholm and V.V. Lozovaya (2009) Modification of isoflavones in soybean seeds via expression of multiple phenolic biosynthetic genes. Plant Physiol. Biochem. 47: 769–777.

Zhang, Z., A. Xing, P. Staswick and T.E. Clemente (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult. 56: 37–46.

Zhu, S., D.R. Walker, H.R. Boerma, J. All and W.A. Parrott (2008) Effects of defoliating insect resistance QTLs and a cry1Ac transgene in soybean near-isogenic lines. Theor. Appl. Genet. 116: 455–463.