Lung cancer metastasis to oral soft tissues: Systematic review of 122 cases

Sonia Gupta 1, Manveen-Kaur Jawanda 2, Neal-Bharat Kedia 3, Aayush-Ranjan Deb 4, Aruna Ganganna 5, Kumar Saurabh 4, Sumit-Kumar Yadav 7, Achla-Bharti Yadav 8

1 MDS, Reader, Dept. of Oral Pathology and Microbiology & Forensic odontology, Rayat and Bahra Dental college and hospital, Mohali, Punjab, India
2 MDS, Professor & Head, Dept. of Oral Pathology and Microbiology & Forensic odontology, Laxmi bai institute of dental sciences and hospital, Patiala, Punjab, India
3 MDS, Professor & PG Guide, Dept. of Orthodontics & Dentofacial Orthopedics, Buddha Institute of Dental Sciences & Hospital, Patna, Bihar, India
4 BDS, Intern, Sri Ramachandra Faculty of Dental Sciences, Porur, Chennai, Tamilnadu, India
5 MDS, Assistant Professor, Department of Periodontology, JSS Dental College and Hospital, Mysore, Karnataka, India
6 MDS, Medical Officer (Dental Surgeon), PHC, Bind, Bihar, India
7 MDS, Professor, Department of Orthodontics & Dentofacial Orthopedics, D J College of Dental Sciences & Research, Modinagar, UP, India
8 MDS, Professor, Department of Oral Pathology & Microbiology, D J College of Dental Sciences and Research, Modinagar, UP, India

Correspondence:
#95/3, Adarsh Nagar
Dera Bassi, Dist. Mohali
Punjab-140507, India
Sonia.4840@gmail.com

Received: 03/06/2022
Accepted: 09/09/2022

Abstract

Background: Lung cancer metastasis to oral region is very rare. Studies have been published analysing the cases of metastatic tumours to the oral cavity by many researchers. But very few research work has been conducted till date to analyse the lung cancer metastasis as the soul primary source particularly to the oral soft tissues. The goal of this study was to examine the published cases of oral soft tissue metastasis from lung cancer as the only primary source from 1st August 1977 to 31st December 2021.

Materials and methods: An electronic search of the published English literature was performed in PubMed/ Medline, Scopus, Google Scholar, and Research gate databases, using keywords like ‘Lung cancer’, OR/AND ‘Lung carcinoma’ OR/AND ‘Oral cavity’, OR/AND ‘Metastasis’, OR/AND ‘Primary’, OR/AND ‘Source’, OR/AND ‘Initial’, OR/AND ‘Tongue’, OR/AND ‘Palate’, OR/AND ‘Tonsil’, OR/AND ‘Lip’, OR/AND ‘Buccal mucosa’, OR/AND ‘Floor of mouth’, OR/AND ‘Salivary glands’, OR/AND ‘Parotid’, OR/AND ‘Submandibular’, OR/AND ‘Sublingual’ OR/AND ‘Mandible’, OR/AND ‘Maxilla’. We also searched all related journals manually. Reference list of all articles was also checked.

Results: Our research revealed total 122 patients. The most prevalent diagnosed metastatic lung cancer was adenocarcinoma. Gingiva, tongue and tonsils were the most common site of metastasis. 54% patients died of metastasis with a survival time of 1 week to 2.5 years.

Conclusions: Oral soft tissue metastasis from lung cancer has a bad prognosis. More cases need to be published in order to raise awareness of these lesions and gain a better understanding of their characteristics.

Key words: Lung cancer, metastasis, oral, primary, soft tissues.
Introduction
GLOBOCAN databases has documented lung cancer (LC) as the 2nd most common diagnosed cancer leading to high mortality after breast cancer worldwide (1). The unique feature of LC is its long term asymptomatic clinical presentation and when the disease reaches in its advanced stages, it is associated with a high risk of developing distant metastasis. It has been found that most of the time, the symptoms are disregarded by the patients even once they arise, resulting in a delay in diagnosis and treatment (2). The most common regions of distant metastasis via LC in the body are liver, kidney, adrenals, brain, bones, scalp, and other organs (3). Oral cavity is the uncommon site of LC metastasis, and mostly affects soft tissues rather than jaw bones (JB) (4). The prognosis for such cases is poor, indicating the critical importance of their early identification and management. Due to their strong resemblance to some benign growths, late appearance, or lack of interpretation, diagnosis of these metastatic lesions remains difficult for clinicians and pathologists (5). Studies have been published analysing the cases of metastatic tumours to the oral cavity by many researchers. But very few research work has been conducted till date to analyse the lung cancer metastasis as the sole primary source particularly to the oral soft tissues (OST). The goal of this research was to examine published cases of oral soft tissue metastasis (OSTM) from LC as the sole primary source in the literature from 1st August 1977 to 31st December 2021, and to learn about their characteristics.

Material and Methods
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards were used to conduct this research. There was no need to seek any ethical approval because of the nature of the current review.
- Focused PECO question
For conducting this review, we framed a focused PECO question ‘How many cases of OSTM from LC as the sole primary source have been documented in the literature and what is the prognosis of these metastatic lesions’?
Population: Patients with OSTM from LC
Exposure: Distant metastasis of LC
Comparator: Not applicable for current research
Outcome: Prognosis of OSTM from LC
- Search strategy for identification of studies (Fig. 1)
An electronic search of the published English literature was performed in PubMed/ Medline, Scopus, Google Scholar, and Research gate databases, using keywords like ‘Lung cancer’, OR/AND ‘Lung carcinoma’ OR/AND ‘Oral cavity’, OR/AND ‘Metastasis’, OR/AND ‘Primary’, OR/AND ‘Source’, OR/AND ‘Initial’, OR/AND ‘Tongue’, OR/AND ‘Palate’, OR/AND ‘Tonsil’, OR/AND ‘Lip’, OR/AND ‘Buccal mucosa’, OR/AND ‘Floor of mouth’, OR/AND ‘Salivary glands’, OR/AND, Mandible’, OR/AND ‘Maxilla’. We also searched all related journals manually. Reference list of all articles was also checked.
- Screening of studies
The current review involved three steps screening of
the studies. In the first step, titles were reviewed by two authors (SG, MKJ) independently and duplicates were removed. Then four authors (NBK, ARD, AG, KS) reviewed the selected abstracts of all the reports independently. In the final stage, the text of selected studies was screened by authors separately (SKY, ABY). Full report was collected, discussed, and resolved for cases among all authors that appeared to fit the inclusion criteria or for which evidence was insufficient to make a clear determination.

- Inclusion criteria
 - Confirmed cases of OSTM from LC as the sole primary source. Papers included were from 1st August 1977 to 31st December 2021.
 - Type of studies: Case reports, letter to editor, Short communication, Retrospective analysis and correspondence.
 - Cases were selected beyond the restriction of limitations on parameters such as age, gender, ethnicity or socioeconomic status, etc.
 - Articles published only in English language were included.
- Exclusion criteria
 - Cases with no definite diagnosis of OSTM from LC as the sole primary source.
 - Publications reporting the OSTM from any other site than lung.
 - Cases of Jaw bone metastasis from LC as the primary source.
 - Other epidemiological studies, cross-sectional studies and cohort studies were excluded as they did not provide individual patient’s data.
 - Review articles, editorials, conference abstracts, hypothesis papers, web news, media reports, animal studies.
- Outcome measures
 1. Primary outcome measures: To evaluate the number of cases of OSTM from LC as the sole primary source reported in the literature and to determine their prognosis.
 2. Secondary outcome measures: To evaluate factors such as: World-wide distribution of cases of OSTM from LC, Patient’s demographic details, Associated risk factors, Predominant site of OSTM from LC, Clinical features of these metastatic lesions, Most prevalent type of metastatic LC and Type of therapies used to treat such metastatic lesions.
 - Risk of bias assessment
 Most of the studies included in this review were case reports. Risk of bias in the included studies were appraised following CARE checklist guidelines. In many of the studies, there was missing information regarding many parameters used for data extraction in our research. We tried reaching the authors of those cases to clarify this bias; however we were unable to recover the missing information.
- Data extraction & analysis
 After study selection, screening and a thorough examination, the data were extracted. The information gathered was cross-checked and tabulated into three tables (Table 1-3 cont.-2). In case of missing data, 6 weeks’ time was given to gather the information. If the information was still missing, we then indicated the missing data as “Not available (NA)” in the text and in the tables.

Results (Table 4, 4 cont.-1)
Results were expressed in descriptive statistics. There were 111 Case reports, 3 Letter to editor, 3 Short communications, 2 Correspondences, and 1 Retrospective analysis. There were 122 patients in total, with 100 males (82%) and 22 females (18%). The maximum number of cases were from Japan (n=31), India (n=14), and USA (n=13). The patients’ average age was 60.8 years (range 25-87). Mean age was 61.4 years in males and 58.3 years in Females. 35 of the 122 patients (28.7%) had a previous history of LC, while the other 78 had none (63.9%). 54.1% had associated risk factors or underlying comorbidities. Most OSTM metastasis was found in Gingiva (41.8%)>tongue = tonsils (17.2%)>parotid glands (11.5%)>submandibular glands (4.1%)>palate (2.5%)>lip (1.6%)>retromolar trigone = buccal mucosa (0.8%). Patients presented with variable clinical features. OSTM were the initial site of metastasis in 60.6% individuals. OSTM were the only site of metastasis in 51.6% of cases, whereas 44.2% cases involved other parts of the body also. The most common type of LC diagnosed was Adenocarcinoma (n=46). The most common treatment aids included combined Radiotherapy and chemotherapy (25.4%), followed by chemotherapy alone (22.1%). 66 individuals (54.1%) died with a mean survival rate of 1 week to 2.5 years.

Discussion
Metastasis to the oral cavity is a rare occurrence, with the real incidence unclear (1-2% of all oral cancers). Because of their rarity, they are sometimes overlooked for a long time before being discovered and are diagnosed during investigations. According to epidemiological investigations, LC is the most common primary source of OSTM, while Breast cancer is the most common source of JBM (5). In this study, we found 122 documented cases of OSTM from LC as the sole primary source. Studies reveal that OSTM affects both genders equally with peak incidence of 5th-6th decade with a male majority (5). In the current study also, there was a male predominance, with M: F = 4.5:1 with age from 2nd-8th decade. According to studies, Smoking and tobacco consumption habits are strongly linked to the development of LC. Nicotine and its derivatives, which are found in tobacco and smoke, help to promote the expression of oncogenic proteins which leads to the spread of cancer...
Table 1: Demographic data of patients with oral soft tissue metastasis from lung cancer as the sole primary source (1st August 1977 to 31st December 2021).

S.NO.	Authors/ Year	Country	Age of patient (years)	Gender	Previous history of lung cancer	Associated risk factors/ Medical history/ comorbidities
1.	Ellis et al. 1977	USA	58	M	N	N
2.	Kim et al. 1979	Japan	74	M	N	S
3.	Brodasky et al. 1984	USA	45	M	N	NA
4.	Monforte et al. 1987	Spain	25	M	N	N
5.	Shalowitz et al. 1988	USA	54	M	N	S
6.	Seddon et al. 1989	UK	83	F	N	S
7.	Sehah et al. 1994	UK	70	M	Y	S
8.	Alandez et al. 1995	Spain	47	M	Y	S
9.	Hisa et al. 1998	Japan	61	M	N	N
10.	Takatsugi et al. 1998	Japan	48	F	N	N
11.	Kadokura et al. 1999	Japan	54	M	N	N
12.	Piattetti et al. 1999	Italy	52	M	N	N
13.	Murakawa et al. 2001	Japan	52	F	Y	NA
14.	Viera et al. 2001	Brazil	57	M	NA	S
15.	Garcia-Raja et al. 2002	Spain	63	M	Y	S, IHD
16.	Seigo et al. 2002	Japan	51	F	N	N
17.	Tanaka et al. 2002	Japan	64	M	NA	NA
18.	Tanaka et al. 2002	Japan	64	M	NA	NA
19.	Tanaka et al. 2002	Japan	68	M	NA	NA
20.	Yoschii et al. 2002	Japan	61	M	NA	N
21.	Aoe et al. 2002	Japan	84	M	N	S
22.	Cassarino et al. 2003	USA	64	M	Y	S
23.	Zanconatti et al. 2003	Italy	71	M	Y	N
24.	Borg et al. 2004	Australia	54	M	N	N
25.	Soyuer et al. 2004	Japan	50	F	N	FHOLC
26.	Terashima et al. 2004	Japan	63	M	N	S
27.	Boeger et al. 2005	Germany	54	M	N	N
28.	Huang et al. 2005	Taiwan	49	M	N	S
29.	Ischibashi et al. 2005	Japan	71	M	NA	N
30.	Tho et al. 2005	UK	70	M	NA	N
31.	Tsubochi et al. 2005	Japan	39	M	Y	S
32.	Glazar et al. 2006	USA	69	M	Y	S, A, As.
33.	Jagur et al. 2006	Brazil	52	M	N	NA
34.	Kurt et al. 2006	Turkey	57	M	N	S
35.	Park et al. 2006	South Korea	55	M	N	NA
36.	Curein et al. 2007	France	64	M	Y	NA
37.	Hantiti et al. 2007	Tunisia	47	M	N	NA
38.	Higginson et al. 2007	USA	68	M	Y	NA
39.	Mastronikolos et al. 2007	Greece	71	M	Y	S, A, HT, CD, CC, PH.
40.	Callifano et al. 2008	Italy	60	M	N	N
41.	Hatoum et al. 2008	Beirut	63	F	N	S
42.	Pozzi et al. 2008	Switzerland	57	F	NA	N
43.	Watanabe et al. 2008	Japan	66	F	N	NA
44.	Hashitani et al. 2009	Japan	59	F	N	As.
Table 1 cont.: Demographic data of patients with oral soft tissue metastasis from lung cancer as the sole primary source (1st August 1977 to 31st December 2021).

No.	Authors et al. Year	Country	Age	Gender	Status	Additional Conditions
45.	Sugiura et al. 2009	Japan	66	F	N	HT
46.	Yaren et al. 2009	Turkey	63	M	Y	S
47.	Wu et al. 2009	China	36	F	Y	N
48.	Gupta et al. 2010	India	68	M	N	S, DM, HT
49.	Guven et al. 2010	Turkey	60	M	Y	MI, S
50.	Kirke et al. 2010	Australia	71	M	Y	S, As
51.	Mavilli et al. 2010	Turkey	58	F	N	N
52.	Moharil et al. 2010	India	40	M	N	S, A
53.	Ulubas et al. 2010	Israel	59	M	N	N
54.	Beena et al. 2011	India	49	M	N	N
55.	Dhawad et al. 2011	India	46	M	NA	A, Ascites, Hernia
56.	Lopez-Jornet et al.2011	Spain	76	M	N	S
57.	Moset et al. 2011	Switzerland	75	M	Y	As
58.	Murey et al. 2011	UK	46	F	N	S, As
59.	Orlandi et al. 2011	Italy	74	F	N	N
60.	Hong et al. 2012	China	39	M	N	S
61.	Ravi Parkash et al.2012	India	57	M	N	S, TB
62.	Shubair et al. 2012	Turkey	51	M	N	S, A
63.	You et al. 2012	Korea	45	M	Y	N
64.	Akheel et al. 2013	India	49	M	N	S, A
65.	Arroyo et al. 2013	Brazil	64	M	N	S
66.	Hiraoka et al. 2013	Japan	80	M	N	N
67.	Paktas et al. 2013	Turkey	50	F	Y	N
68.	Ambroggi et al. 2014	Italy	54	M	Y	NA
69.	Amro et al. 2014	Morocco	66	M	N	S
70.	Bille et al. 2014	Italy	68	M	Y	N
71.	Ganesh et al. 2014	India	60	M	Y	N
72.	Ohnischi et al. 2014	Japan	62	M	Y	NA
73.	Oslen et al. 2014	Victoria	42	M	N	MSP
74.	Shi et al. 2014	China	61	M	N	S
75.	Debnath et al. 2015	Bangladesh	50	M	N	NA
76.	Kalastido et al. 2015	Greece	69	M	N	NA
77.	Kim et al. 2015	South Korea	77	M	N	TB
78.	Rajnikanth et al. 2015	India	62	M	N	N
79.	Sawaki et al. 2015	Japan	75	M	N	S, As, HT
80.	Shaikh et al. 2015	USA	58	F	N	S
81.	Tajima et al. 2015	Japan	62	M	Y	N
82.	Tachibana et al. 2015	Japan	66	M	Y	N
83.	Arnsal et al. 2016	Turkey	59	M	Y	NA
84.	D-anito et al. 2016	Italy	76	M	Y	S, PE, BH
85.	Fukukoka et al. 2016	Japan	64	M	N	S
86.	Jebra et al. 2016	India	45	M	N	S, DM
87.	Lenouvel et al. 2016	UK	59	M	N	N
88.	Nakamura et al. 2016	Japan	79	M	N	N
89.	Nuyen et al. 2016	USA	59	M	N	N
90.	Sawheny et al. 2016	USA	52	M	N	S, HT
91.	Souren et al. 2016	France	70	M	Y	S
Table 1 cont.-1: Demographic data of patients with oral soft tissue metastasis from lung cancer as the sole primary source (1st August 1977 to 31st December 2021).

No.	Authors et al.	Country	Age	Gender	Cancer	Familial Cancer	Other Conditions	Other Conditions	Oral Site	C/C	Presenting Clinical Presentation	Was it Initial site of metastasis?	Was it only site of metastasis?	Type of LC	Side of LC
92.	Unsal et al. 2016	Turkey	75	M	N	S			G (Max, BL)	Swelling in upper gums since few days	Y	Y	AD	NA	
93.	Wang et al. 2016	China	56	F	N	HT			T (L, Ant 2/3rd)	Painful swelling in tongue	Y	Y	AD	NA	
94.	Cheng et al. 2017	China	56	M	N	S			SMG	Mass in submandibular region	Y	Y	SCLC	NA	
95.	Ito et al. 2017	Japan	85	M	Y	N			To (R)	Fever, dyspnoea, right tonsillar mass	Y	N (Hilar LN)	AD	R	
96.	Lawande et al. 2017	India	52	M	N	S, A			SMG	Mass in submandibular region	Y	Y	SCLC	NA	
97.	Lee et al. 2017	Korea	63	M	N	S, A			To (R)	Fever, dyspnoea, right tonsillar mass	Y	N (Hilar LN)	AD	R	
98.	Thottian et al. 2017	India	37	F	N	A			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
99.	Valle et al. 2017	USA	61	M	Y	MM			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
100.	Wang et al. 2017	USA	73	M	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
101.	Gargouri et al. 2018	Tunisia	82	M	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
102.	Ishida et al. 2018	Japan	61	M	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
103.	Jihan et al. 2018	Morocco	57	M	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
104.	Abe et al. 2019	Japan	76	M	N	S, As, AAE, CAF			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
105.	Chen et al. 2019	Taiwan	75	M	N	S, HT, GERD			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
106.	Cui et al. 2019	China	64	M	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
107.	Ketadai et al. 2019	Japan	64	M	N	HT, DM			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
108.	Quin et al. 2019	China	63	M	N	T			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
109.	Tian et al. 2019	China	51	F	NA	N			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
110.	Tirkey et al. 2019	India	50	M	Y	TB, RS, CVD			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
111.	Tsai et al. 2019	USA	71	M	Y	S, A, AF, COPD			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
112.	Wang et al. 2019	China	70	M	Y	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
113.	Zaubitzer et al. 2019	Germany	66	F	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
114.	Devasse et al. 2020	India	61	M	N	S, FNP			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
115.	Lee et al. 2020	Korea	87	F	N	N			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
116.	Murakami et al. 2020	Japan	80	M	N	N			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
117.	Rocha et al. 2020	Brazil	55	M	Y	S, A			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
118.	Singh et al. 2020	India	60	M	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
119.	Yucell et al. 2020	Turkey	50	M	Y	N			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
120.	Guo et al. 2021	USA	70	F	Y	AF, DVT, OA			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
121.	Kuge et al. 2021	Japan	61	M	N	N			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	
122.	Xu et al. 2021	China	70	M	N	S			To (R)	Fever, dyspnoea, right tonsillar mass	Y	Y	AD	R	

A: Alcohol, AAE: Abdominal aortic aneurysm, AF: Atrial fibrillation, As: Asbestos, BH: Bilateral hypoacusis, CAF: Chronic atrial fibrilation, CC: Cholecystectomy, CD: Crohon’s disease, COPD: Chronic obstructive pulmonary disease, CRF: Chronic renal failure, CVA: Cardiovascular accident, DVT: Deep vein thrombosis, F: Female, FHOLC: Family history of lung cancer, FNP: Facial nerve palsy, GERD: Gastroesophageal reflux disease, IHD: Ischaemic heart disease, L: Left, M: Male, MI: Myocardial infarction, MM: Multiple myeloma, MSP: Musculoskeletal pain, N: No, NA: Not available, OA: Osteoarthritis, PE: Pleural effusion, RS: Rhinosporidiosis, S: Smoking, TB: Tuberculosis, Y: Yes

Table 2: Clinical details of patients with oral soft tissue metastasis from lung cancer (1st Aug 1977 to 31st December 2021).

P. No.	Oral Site	C/C	Clinical presentation	Was it Initial site of metastasis?	Was it only site of metastasis?	Type of LC	Side of LC
1.	G (Max, BL)	Swelling in upper gums since few days	Soft swelling	Y	Y	AD	NA
2.	T (L, Ant 2/3rd)	Painful swelling in tongue	Painful swelling	Y	Y	AD	NA
3.	SMG	Mass in submandibular region	Painful swelling	Y	Y	SCLC	NA
4.	To (R)	Fever, dyspnoea, right tonsillar mass	Nonulcerated swelling	Y	N (Hilar LN)	AD	R
Table 2 cont.: Clinical details of patients with oral soft tissue metastasis from lung cancer (1st Aug 1977 to 31st December 2021).

No.	P (L)	Dry cough, left facial weakness	FNP, Tender nodule at angle of L Mand	Y	N (Li, Ad)	SCLC	L	
5.								
6.	To (L)	Cough, weight loss, short breath for 1 month	Large lobulated swelling, SMG Lymphadenopathy,	Y	N	SCLC	R	
7.	T (R, Post 1/3rd)	Swelling on tongue	Tongue swelling with ulceration	N (TNG)	N	SCC	R	
8.	G (Max, Post, L)	Routine exam	Soft growing swelling, ulcerated, BOP	N (2 Mon AD-OLC)	Y	AD	NA	
9.	P (BL)	Painless swelling of left face	Swelling in parotid region both sides	Y	Y	SCLC	R	
10.	P (L)	Painless swelling	Soft, tender, swelling	Y	N (Pituitary, SC)	SCLC	R	
11.	G (Mand, Post, R)	Haemoptysis	Pedunculated swelling	N (16 days ADOLC)	N	(Adr, Inguinal)	AD	R
12.	T (Lat border)	Swelling	Painful swelling	Y	Y	MT	NA	
13.	To (R)	Dry cough and spiking fever	Tonsillar mass on right side	N (1 Wk ADOLC)	N	(Right cervical LN)	LCLC	L
14.	G (Max, Ant, BL)	Swelling in upper gums	Swelling, Generalized gingival inflammation	Y	Y	AD	NA	
15.	G (Mand, Post, L)	Swelling in lower jaw region	Hemorrhagic, soft, non-tender, well-demarcated swelling	Y	Y	MT	NA	
16.	G (Mand, L)	Swelling in lower gums	Soft, non-tender swelling	Y	Y	AC	NA	
17.	G (Max, R)	Swelling in upper gums	Soft, non-tender swelling	NA	NA	LCC	NA	
18.	G (Max, L)	Swelling in upper gums	Soft, non-tender swelling	NA	NA	LCC	NA	
19.	G (Mand, BL)	Swelling in lower jaw region	Soft, non-tender swelling	NA	NA	LCC	NA	
20.	G (Mand, R)	Bloody sputum and chest pain while coughing	Firm painful swelling, BOP.	Y	N (SNG)	LCC	L	
21.	G (Mand, L)	Gingival swelling	Soft, painful swelling, BOP	Y	Y	SCC	NA	
22.	UL	Pain in upper lip	Ulcerated nodule	N (TNG)	N (Skin)	MT	NA	
23.	T (DL)	Chronic bleeding from a nodular consolidation of tongue	Nodular, ulcerated, erythematous swelling	N (14 mon AD-OLC)	Y	MT	NA	
24.	P (L)	Painless swelling	Soft painless swelling	Y	Y	SCLC	NA	
25.	BM (R)	Painless swelling	Soft painless swelling	Y	N (Cervical)	MT	NA	
26.	T (L base and midline)	Painful lump on tongue for 2 months.	Painful non-ulcerated nodule, dysarthria, dysphagia	Y	N (B, Bone, Muscles)	SCC	R	
27.	P (R)	Pain in right facial region	Firm, painful swelling	Y	Y	SCLC (L)	NA	
Table 2 cont.-1: Clinical details of patients with oral soft tissue metastasis from lung cancer (1st Aug 1977 to 31st December 2021).

No.	Patient Details	Lesion Description	Clinical Details	Histology	AD	R	
28.	G (Max, Post, R& Ant L)	Right lung mass	Rapidly growing painful protruding masses, BOP	N (6 mon AD-OLC)	N (SNG)	AD	R
29.	G (Max, Post, R)	Gingival swelling	Pedunculated, exophytic mass	N (Few days ADOLC)	Y	AD	NA
30.	T (Lat border)	Swelling on tongue	Soft oedematous swelling	NA	NA	MT	NA
31.	To (Ling)	Swelling in tonsillar region	Soft swelling	N (6 mon AD-OLC)	Y	AD	R
32.	T (Ant 2/3rd)	Tongue swelling	Soft, mobile, submucosal mass	N (NA)	Y	MT	NA
33.	G (Max, Ant, R)	Pain in column	Exophytic, nodular mass with ulcerated surface	N (2 mon AD-OLC)	N (Adr)	NSCLC	R
34.	T (Ant)	Painful swelling on tongue	Painful, non-ulcerated nodule	N (TNG)	N (NA)	SCC	R
35.	G (Mand, Ant, L)	Rapidly growing pedunculated exophytic mass on the gingiva at the left side of the lower jaw	Pedunculated, exophytic growth	Y	Y	Sa	L
36.	G (SNA)	Gingival swelling	Soft swelling resembling, BOP PG	N (Few days ADOLC)	N (NA)	AD	NA
37.	G (SNA)	Swelling	Firm, well demarcated swelling	Y	Y	NSCLC	NA
38.	T (Ant)	Tongue swelling	Firm, well demarcated swelling	N (6 mon AD-OLC)	Y	MT	NA
39.	To (L Palatine)	Foreign body mass	Reddish, fleshy, exophytic mass with area of necrosis and hemorrhage	N (2 Wk AD-OLC)	N (Li, Sp, Ri)	AD	L
40.	G (Mand, R)	Painless swelling in lower gums	Red-greyish fungiform, centrally ulcerated mass	Y	Y	NSCLC	R
41.	T (SNA)	Painful swelling on tongue	Painful mass without ulceration, dysarthria, dysphagia	Y	Y	AD	NA
42.	G (Mand, L)	Rapidly growing, painless, exophytic mass in left post mand region	Rapidly growing, painless, exophytic mass	Y	N (SNG)	AD	L
43.	G (Mand, Ant, R)	Dizziness	Red, smooth and easily bruised mass	Y	N (B)	AD	L
44.	T (L dorsal)	Painful swelling on tongue	Nodular swelling	N (3 Yr. AD-OLC)	N (Skin)	MT	L
45.	To (R Palatine)	Sore throat	Painless, soft, swelling	N (Appx 2 Yr ADOLC)	N (Li, Ab, Adr, B)	NEC	R
No.	To (R)	Clinical details	Diagnosis	AD	R		
-----	--------	-----------------	------------	----	---		
46.	T (R Palatine)	Dysphagia and swallowing pain, with a foreign-like body sensation	White hard object within the right tonsillar crypt resembling tonsilolith/peri-tonsillar abscess.	N (6 mo AD-OLC)	Y	SCLC	R
47.	T (base)	Painful swelling on tongue	Swelling with deviation to left	Y	N (B, Skeleton)	AD	NA
48.	LL	Dyspnoea since one week.	Ulcerated lesion with indurated margins	Y	Y	NSCLC	R
49.	T (SNA)	Dysphagia, painful mass in right tongue	Non-ulcerative, hard, submucosal lump on the right posterior-lateral aspect of the tongue	Y	N	AD	NA
50.	FOM, T, Ant tonsillar pillar	Rapidly growing right floor of mouth lesion for 3 weeks	Hard submucosal mass in the right FOM that extended 1 cm across the midline.	N (1 Yr. ADOLC)	N (Neck, Li, ri, SM)	MT	L
51.	T (R Ant)	Swelling and pain of the tongue, and difficulty in breathing	Diffusely indurated swelling, overlying mucosa normal, mimicked abscess.	Y	Y	AD	R
52.	G (Mand, Post, L)	Painful intraoral swelling on lower left posterior side of jaw since 20 days.	Reddish-pink, firm, pedunculated growth, associated with pus discharge, BOP, and sloughing. Mimicking PG, PGCG	Y	N (B)	AD	R
53.	P (R)	Painless mass in front of the mandible	Ulcerated painless mass	Y	N (B, V, Li)	SCLC	R
54.	Multiple sites (G, AP, MS)	Painless sessile growth of size 2 × 3 cm on the lingual attached gingiva in relation to mandibular incisors of one month duration	Soft to firm swelling, no BOP, mobile anterior teeth, blanched non-ulcerated overlying mucosa	Y	N (Adr)	AD	L
55.	G (Mand, Post, L)	Gingival mass in the left side of lower jaw for 15 days	Pedunculated exophytic rapidly growing mass, BOP mimicking PG	Y	Y	AS	R
56.	G (Max, Post, L)	Painless gingival mass	Swelling	Y	NA	SCLC	NA
57.	G (Mand, Post, R)	Painless growth of the lower posterior attached gingiva for weeks.	Exophytic, firm, ulcerated mass	N (2 Yr. ADOLC)	Y	MT	R
58.	T (L Post dorsum)	Routine check up	Firm, nodular polypoid, pink swelling with normal mucosa mimicking BFEP.	Y	Y	MT	L
---	---	---	---	---	---	---	
59.	G (Mand, Ant, R)	Swelling on lower gingiva	Swelling of vestibular gingival mucosa at the level of the lower right incisors	Y	Y	AD	R
60.	To (R Palatine)	Dry cough for 7 moths.	Soft tissue swelling	N (3 mon AD-OLC)	Y	NSC	L
61.	G (Max & Mand Ant, R Mand Post)	Multiple painless gingival swellings in the maxillary and mandibular gingiva since three months.	Soft, pedunculated, exophytic, erythematosus and haemorrhagic tumefaction, Mimicking PG	Y	Y	AD	R
62.	G (Mand Post, L)	Gingival mass	Ulcerated growth mimicking PG	N (8 mon AD-OLC)	N (Clavicle)	AD	L
63.	G (Mand Post, L)	Gingival mass	Reddish-pink, soft to firm exophytic mass	N (8 mon AD-OLC)	Y	AD	L
64.	Pa (L; June HP & SP)	Slow growing, painless, non-tender, firm swelling in the left side at the junction between hard and soft palate from past 2 months	Painless, non-tender, firm swelling	Y	Y	SCC	L
65.	To (L Palatine)	Sore throat	Ulcerated lesion covered with fibrin	Y	Y	SCLC	L
66.	G (Max, R)	Swelling	soft elastic mass	Y	N (Brain, stom-ach)	LCLC	L
67.	G (Mand, Post, L)	Firm, hemorrhagic, tender swelling on the left mandibular bicuspid gingiva	Firm, hemorrhagic, tender swelling	N (6 mon AD-OLC)	Y	SCLC	L
68.	SMG (R)	Routine chest check-up	Hypertrophy.	N (7 yr. ADOLC)	N (SNG)	MT	R
69.	G (Max, Post, R)	Chest pain, weight loss, effort dyspnoea and fever.	soft tender swelling mimicking PG	Y	Y	AD	R
70.	G (Mand Ant)	Painless growth of the lower attached gingiva for 4 weeks	Painless swelling	N (1.5 yr. AD-OLC)	N (Ad)	MT	L
71.	T (L Lat bor-der)	Swelling on tongue	Firm swelling	N (2 mon AD-OLC)	Y	Sa	L
72.	G (Max, Post, L)	Two-month history of progressive shortness of breath on exertion	Semi-hard, haemorrhagic lesion	N (1 mon AD-OLC)	Y	MT	L
73.	G (Mand Ant, L)	Right shoulder pain	Firm, pedunculated lesion	N (TNG)	N (Li, B)	NSCLC	R
74.	P (R)	Progressive painful swelling in the right parotid gland for one month	Non-tender swelling	Y	Y	AD	R
75.	P (L)	Left facial swelling	Painless mass	Y	Y	AD	L
76.	G (Mand Ant)	Swelling in lower front gum region	Soft exophytic lesion with pinkish white colour and irregular surface	N (TNG)	N (Ab)	NEC	NA
Table 2 cont.-4: Clinical details of patients with oral soft tissue metastasis from lung cancer (1st Aug 1977 to 31st December 2021).

No.	Ref.	Symptoms	Lesion Details	Swelling	Tumor	Site	
77.	To (R Palatine)	dysphagia, painful mass in right tongue	Large oval mass	Y	N (Brain)	SCLC	BL
78.	G (Max, Post, R)	Swelling in the right lower teeth region of the jaw for a month.	Polypoid, exophytic, asymptomatic lesion with an ulcerated growth, mimicking PG	Y	Y	AD	L
79.	G (Max, Post, R)	Swelling in back tooth region	Swelling	Y	N (Intestine, Li, V, Ab, Pe)	MT	R
80.	SMG (BL)	Cough	Bilateral swelling	Y	N (B)	SCLC	R
81.	To (R Palatine)	Sore throat	Swelling	N (10 Yr ADOLC)	Y	SCC	R
82.	G (Mand Post, L)	Swelling in lower left back region of jaw	Swelling, BOP	Y	Y	AD	L
83.	RMT (R)	Rapidly growing painless growth at retromolar trigone area for 2 months	Soft, haemorrhagic, ulcerated lesion	N (2 yr. ADOLC)	N (V)	MT	L
84.	To (R Palatine)	Dyspnoea, associated to steep throat and difficulty swallowing,	Swelling	Y	Y	SLCC	L
85.	To (R Palatine)	Progressive shortness of breath, persistent cough with blood-streaked mucus, and hoarseness that had begun two months previously	Large ulcerated mass	Y	N (B)	SCLC	R
86.	T (L Ant 2/3rd)	Dyspepsia, melena, symptoms due to anaemia and swelling in the tongue.	Swelling without ulceration, dysarthria, dysphagia, hoarseness.	Y	N (Duodenum)	AD	L
87.	P (SNA)	Painful swelling on face	Preauricular mass	Y	Y	AD	BL
88.	T (Tip)	Tongue swelling	Indurated swelling	Y	Y	NEC	L
89.	G (Max, Ant, L)	Painful swelling	Swelling	Y	N (Li, Pe, Neck, V)	AD	R
90.	G (Max, Ant)	Dyspnoea, left sided chest wall tenderness, intermittent productive cough, and weight loss.	Erythematous swelling	Y	Y	AD	L
91.	G (Max Post, L)	Gingival hyperplastic lesion around tooth 27	Swelling	N (18 mon AD-OLC)	Y	NEC	L
92.	To (L palatine)	Shortness of breath around a month	Swollen and oedematous tonsils.	Y	Y	SCLC	L
93.	P (R)	Progressive painful swelling in the right parotid	Swelling with moderate texture and a normal local skin temperature.	Y	N (Cerebellum)	AD	L
94.	T (Base)	Cough, fever, bloody sputum for 1 month	Non-ulcerated swelling	N (1Wk ADOLC)	Y	SCC	L
95.	G (Max, Post, L)	Rapidly growing mass in buccal region for 1 week	Swelling.	N (1yr ADOLC)	N (B, Pan, Ad, Ki)	AD	L
No.	Region	Clinical Presentation	Pathology	Associated Signs	Staging	Tumour Type	
-----	--------	-----------------------	-----------	-----------------	---------	-------------	
96.	P (R)	Right-sided gradually increasing facial swelling over the mandible over 11/2 months	Hard swelling with fixed skin overlying skin and no discharge	Y	N (Ab, Ki)	SCLC	R
97.	T (Tip)	2-week history of a mass on the tip of the tongue.	Demarcated, fungating and rubbery swelling	Y	Y	SCC	R
98.	G (Max Post, L), HP	Dyspnoea and chest pain for two months.	Ulcero – proliferative lesions	N (2 mon AD-OLC)	N (Li)	SCC	L
99.	To (L palate)	Left-sided chest pain	Swelling	N (3.5 Yr ADOLC)	N (Li, CS, Ab)	HA	L
100.	P (R)	2-month history of progressive painful mass on the right upper face	Hard, fixed mass in the preauricular area	Y	Y	ACLC	R
101.	G (Max, Post, R)	Gingival swelling for 2 months	Indurated and ulcerated polyoid mass	N (1 mon AD-OLC)	Y	AD	R
102.	G (Max, R)	Painless gingival swelling for few days	Pedunculated mass resembling epulis	Y	N	AD	R
103.	SMG (L)	4-month history of a tumefaction in the left submandibular region that was slowly increasing in size, without any other associated signs.	Hard swelling	Y	N (Adr)	AD	R
104.	Pa	Dry cough, left chest pain	Smooth small round mass	Y	Y	AD	L
105.	To (L palate)	Hemoptysis and mild productive cough for 2 weeks.	Exophytic growth with necrosis and haemorrhage	N (2 mon AD-OLC)	Y	AD	R
106.	P (R)	Painless mass below the right ear and facial paralysis for a month.	Swelling, with poor mobility, FNP	Y	N (Neck)	SCLC	R
107.	G (Max, Ant)	fever, cough	An indolent mass	Y	Y	NSCLC	L
108.	G (Max, R)	Bloodstained sputum for a month.	Gradually increasing swelling, BOP	Y	Y	Sa	R
109.	To (L palate)	Discomfort and pain in throat for 20 days,	Mass with ulcers and necrosis	Y	N (Col, Li, Sp, Th)	AD	L
110.	G (Max, Ant)	Swelling in upper front teeth	Pedunculated, erythematous, non-tender swelling without any pus discharge	Y	Y	NSCLC	NA
111.	Pa (R)	Inability to wear his upper denture	Erosive, tender, lesion at the Junction of HP and SP	Y	Y	AD	R
112.	G (Mand, R)	Gingival swelling	Soft tissue swelling with destruction of the mandible, and enlarged right submandibular lymph nodes	N (1.5 mon AD-OLC)	Y	Hepatoid A	R
Table 2 cont.-6: Clinical details of patients with oral soft tissue metastasis from lung cancer (1st Aug 1977 to 31st December 2021).

No.	Treatment given	Reason of death
1.	C, R	NA
2.	R	Died during Tt
3.	S	NA
4.	C	D (25 days ADOM)
5.	C, R	D (TNG)
Table 3 cont.: Data describing treatment and prognosis of patients with oral soft tissue metastasis from lung cancer (1st August 1977 to 31st December 2021).

8.	NA	NA
9.	C	D (3 Mon ADOM) MM
10.	C, R	D (TNG) MM
11.	R	D (3 mon ADOM) MM
12.	NA	NA
13.	C, R	Fav -
14.	NA	NA
15.	S	NA
16.	C, R	D (2.5 mon ADOM) PE
17.	C, R	D (3 mon ADOM) NA
18.	C, R	D (Appx 4 mon ADOM) NA
19.	C, R	D (Appx 4 mon ADOM) NA
20.	C, R	D (Appx 4 mon ADOM) MM
21.	R	D (2 mon ADOM) NA
22.	S	NA
23.	C, R	NA
24.	R	Fav -
25.	C	Fav -
26.	C, R	D (5 mon ADOM) MM
27.	S	NA
28.	S	D (2 mon ADOM) MM
29.	S	D (1 mon ADOM) DC
30.	NA	NA
31.	S	Fav -
32.	C, R	NA
33.	S	D (1 mon ADOM) CRF
34.	C	LFU -
35.	C	Fav -
36.	NG (due to MM)	D (TNG) MM
37.	C, R	NA
38.	R	Fav -
39.	C, R, S	D (1 Wk. ADOM) Lack of full Tt.
40.	C, R	Fav -
41.	C	NA
42.	S	NA
43.	NG	D (4 mon ADOM) ALF
44.	C	NA
45.	C	D (4 mon ADOM) MM
46.	C, R	Fav -
47.	C, R, S	D (9 mon ADOM) MM
48.	C	NA
49.	C, R	D (2 mon ADOM) NA
50.	S	D (2 mon ADOM) MM
51.	RTO	D (2 mon ADOM) NA
52.	NG due to ALF	D (1 wk. ADOM) DC
53.	C, Supp	NA
54.	C	D (9 mon ADOM) MM
Table 3 cont.-1: Data describing treatment and prognosis of patients with oral soft tissue metastasis from lung cancer (1st August 1977 to 31st December 2021).

	NG due to seizures	D (1.5 mon ADOM)	Seizure
55	NG due to seizures	D (1.5 mon ADOM)	Seizure
56	C, R	NA	NA
57	C	NA	NA
58	C, R, S	TGO	-
59	C, R, S	D (1.5 mon ADOM)	RF
60	C	Not regressed	LFU
61	NA	D (1 mon ADOM)	CPF
62	C, R	D (2.5 mon ADOM)	RF
63	NG	D (1 mon ADOM)	DC
64	RTO	D (TNG)	MM
65	NG	D before Tt	NA
66	C, R	D (TNG)	Stroke
67	C	Recurrence LFU	-
68	R	NA	NA
69	C, S	D (TNG)	NA
70	C, R	NA	NA
71	RBP	-	-
72	S	D (4 mon ADOM)	DC
73	RBP	D (TNG)	MM
74	S, C, R	D (4 mon ADOM)	MM
75	NA	NA	NA
76	NG	D (2.5 Yr. ADOM)	MM
77	C	D (3 mon ADOM)	BM
78	C, R	TGO	-
79	R	Fav	-
80	C, R	LFU	-
81	Sy	NA	NA
82	NG	D (3 mon ADOM)	DC
83	NG	D (1.5 mon ADOM)	MM
84	C	D (11 mon ADOM)	DC
85	C	D (1 Yr. ADOM)	MM
86	C	LFU	-
87	S	LFU	-
88	C	NA	NA
89	R	NA	-
90	C, R	D (4 mon ADOM)	DC
91	C, R	D (1 Yr. ADOM)	DC
92	C	D (2 mon ADOM)	DC
93	C	UFU	-
94	C	D (12 mon ADOM)	DC
95	R	D (TNG)	Cachexia
96	C, R	D (TNG)	MM
97	S, C	D (8 mon ADOM)	DC
98	C, R	D (1 mon ADOM)	DC
99	R	D (1 Yr. ADOM)	MM
100	C	TGO	-
101	R	D (2 mon ADOM)	DC
Oral soft tissue metastasis from lung cancer

Table 3 cont.-2: Data describing treatment and prognosis of patients with oral soft tissue metastasis from lung cancer (1st August 1977 to 31st December 2021).

Number	Feature	Treatment	Prognosis
102.	R, C	D (3 mon ADOM)	PH
103.	C, R	Fav	-
104.	C	D (4 mon ADOM)	DC
105.	S, Ta	Fav	-
106.	C, Su	Fav	-
107.	C	D (TNG)	RDS
108.	C, R	D (2 mon ADOM)	MM
109.	C, Ta	D (5 mon ADOM)	DC
110.	RTO	LFU	-
111.	RTO	LFU	-
112.	R	D (9 mon ADOM)	DC
113.	C, R	Fav	-
114.	Palliative, C, R suggested.	D (2 mon ADOM)	MM
115.	NG	D (3 mon ADOM)	LFA
116.	C	D (TNG)	DC
117.	Died before Tt	D (1mon ADOM)	RF
118.	C, R	D (9 mon ADOM)	DC
119.	S	D (10 mon ADOM)	RF
120.	S, C	TGO	-
121.	C, R	TGO	-
122.	C	Fav	-

ADOM: After diagnosis of metastasis, ALF: Acute lung failure, BM: Brain metastasis, C: Chemotherapy, CPF: Cardiopulmonary failure, D: Death, DC: Deteriorated condition, Fav: Favourable, IHD: Ischaemic heart disease, LFA: Liver function abnormality, LFU: Lost to follow up, MM: Multiple metastasis, mon: Months, NA: Not available, NG: Not given, PE: Pleural effusion, PH: Pulmonary haemorrhage, RBP: Refused by patient, RF: Respiratory failure, RDS: Respiratory distress syndrome, RTO: Referred to oncologist, S: Surgery, Su: Supportive, Sy: Symptomatic, Ta: Targetoid, TGO: Treatment going on, Tt: Treatment, UFU: Under follow up; Wk: Weeks; Yr: Years.

Table 4: Summary of results documented from literature research describing the characteristics of oral soft tissue metastasis from lung cancer (1st August 1977-31st December 2021).

Feature	Number
Total number of papers published	120
CR-111	
SC-3	
LTE-3	
Co-2	
RA-1	
Total number of patients	122
World-wide distribution of cases	Japan (31) 25.8%
	India (14) 11.7%
	USA (13) 10.8%
	China (10) 8.3%
	Turkey (9) 7.5%
	Italy (7) 5.8%
	Korea= UK (5) 4.2%
	Brazil (4) 3.3%
	Morocco=Taiwan=France=Greece=Tunisia=Germany=Switzerland= Australia =Spain (2) 1.7%
	Israel=Beirut =Bangladesh=Victoria (1) 0.8%
Gender	M -100 (82%)
	F- 22 (18%)
Average age of patients (Range)	60.8 Years. (25-87 Years)
Average age of male patients (Range)	61.4 Years. (25-87 Years.)
Table 4 cont.: Summary of results documented from literature research describing the characteristics of oral soft tissue metastasis from lung cancer (1st August 1977-31st December 2021).

Average age of female patients (Range)	58.3 Years. (36-87 Years)
Chief complaint	Related to oral health -97 (79.5%)
	Not related to oral health -22 (18%)
	Routine check-up-3 (2.5%)
Previous history of LC	35 (28.7%)
No previous history LC	78 (63.9%)
NA data of previous history of LC	9 (7.4%)
Associated risk factors	66 (54.1%)
	S-53 (80.3%)
	A-9 (13.6%)
	HFT-7 (10.7%)
	As-6 (9.1%)
	TB-3 (4.5%)
	Others 15 (27.2%)
No risk factors	38 (31.1%)
NA data of associated risk factors	18 (14.8%)
Site of metastasis	G -51 (41.8%)
	(Max-24, (47%) Mand-25, (49%) SNA-2 (4%)
	Max- (Ant-6, Post-12, Both-1, SNA-5)
	(R-10, L-5, Both-4, SNA-5)
	Mand- (Ant-6, Post-9, Both-2, SNA-8),
	(R-8, L-12, Both-2, SNA-3)
	T- 21 (Ant-6, Base-4, DL-6, SNA-3, Tip-2) 17.2%
	P – 14 (R-8, L-4, BL-2) 11.5%
	SMG -5 (L-3, R-1, BL-1) 4.1%
	Pa- 3 (2.5%)
	Lip- 2 (U-1, L-1) 1.6%
	BM-1 0.8%
	RMT-1 0.8%
	MS-3 (2.5%)
Oral soft tissues as the initial site of metastasis	Y- 74 (60.6%)
	N-44 (36.1%)
	NA-4 (3.3%)
Oral soft tissues as the only site of metastasis	Y-63 (51.6%)
	N-54 (44.2%)
	NA-5 (4.2%)
Average time of detection of metastasis from diagnosis of LC	Few days to 10 Years.
Most common clinical features	Swelling (100) 81.9%
	Ulcerated (13) 10.6%
	Exophytic (12) 9.8%
	Pedunculated (10) 8.2%
	Nodular (6) (4.9%)
	Odema (5) (4.2%)
	Erosive (2) (1.6%)
	BOP (10) 8.2%
	ST =LP=FNP (1) (0.8%)
Type of LC	AD (46) 37.7%
	SCLC (19) 15.6%
	MT(17) 13.9%
	SCC (10) 8.2%
	NSCLC (8) 6.5%
	LCC (6) 4.9%
	NEC (5) 4.1%
	Sa (3) (2.4%)
	Ha (2) 1.6%
	AC (2) 1.6%
	AS (2) 1.6%
	Pl (2) 1.6%
Table 4 cont.-1. Summary of results documented from literature research describing the characteristics of oral soft tissue metastasis from lung cancer (1st August 1977-31st December 2021).

LC Metastasis	IL-55 (45.1%)
	CL-33 (27%)
	BL-2 (1.6%)
	NA-32 (26.2%)

Treatment aids	RT+CH (31) 25.4%
	CH (27) 22.1%
	RT=SU (12) 9.8%
	CH+RT+SU (8) 6.5%
	CH+SU (2) 1.6%
	SU+ Ta =SU=Sy (1) 0.8%
	NG(11) 9%
	NA(5) 4.1%
	RBP (4) 3.3%
	STO (2) 1.6%

Death	66 (54.1%)

Reasons of death	MM (18) 27.2%
	DC (18) 27.2%
	RF (4) 6.1%
	Others (13) 19.7%
	NA (13) 19.7%

Average time of death from diagnosis of Metastasis	1 Week- 2.5 Years

Partial relief of symptoms	1 (0.8%)
Favourable prognosis	13 (10.6%)
TGO	5 (4.1%)
LFU	6 (4.9%)

A: Alcohol, AC: Acinar cell carcinoma, AD: Adenocarcinoma, AFP: Anterior faucial pillar, Ant: Anterior, AS: Adenosquamous carcinoma, As: Arsenic, BL: Bilateral, BM: Buccal mucosa, BOP: Bleeding on probing, CH: Chemotherapy, CL: Contralateral, Co: Correspondence, CR: Case report, DL: Dorsolateral, F: Female, FOM: Floor of mouth, G: Gingiva, Ha: Hepatoid, HT: Hypertension, IL: Ipsilateral, L: Left, LC: Lung cancer, LCC: Large cell carcinoma, LFU: Lost to follow up, M: Male, MS: Multiple sites, MM: Multiple metastasis, MT: Mesothelioma, N: No, NA: Not available, NEC: Neuroendocrine carcinoma, NG: Not given, NSCLC: Non-small cell lung carcinoma, P: Parotid, Pa: Palate, Pl: Pleomorphic, Post: Posterior, R: Right, RA: Retrospective analysis, RBP: Refused by patient, RF: Respiratory failure, RMT: Retromolar triad, S: Smoking, Sa: Sarcomatous, SC: Short communication, SCC: Squamous cell carcinoma, SCL: Small cell lung carcinoma, SMG: Submandibular gland, SNA: Site not available, ST: Sore throat, STO: Sent to oncologist, SU: Surgery, Sy: Symptomatic, T: Tongue, TB: Tuberculosis, To: Tonsil, TGO: Treatment going on; Y: Yes

(6). In our study, 80% cases had habit of smoking. Asbestos-induced inflammation has been found to promote the neoplastic transformation of mesothelial cells leading to development of LC, particularly mesothelioma (7,8). In the present research appx 9% patients had a history of asbestos exposure.

People with underlying comorbidities are more likely to acquire cancer and have a worse prognosis as a result of distant metastasis induced by a weakened immune system. 27.2% patients in this study had a variety of underlying comorbidities, the most prevalent of which were cardiac, respiratory, and renal.

The incidence of oral metastatic lesions is not so specific in any region of the world. In our study, the maximum number of cases were from Japan (n=31), followed by India (n=14), and USA (n=13), Various other regions were also involved (table 4). Looking at this data, wide region involvement of OSTM from LC can be appreciated.

The most common site of OSTM is the attached gingiva (57%), followed by the tongue (27%), palate (8%), lip (3%), Buccal mucosa (1%), and floor of mouth (<1%) (9). In the present research also, some similar results were observed with maximum cases found on gingiva >tongue = tonsils.

Pathogenic mechanisms of OSTM aren’t completely understood. Metastasis is a multistage process that involves tumour cells being detached from their originating site and being transported to a secondary site via lymphatic or hematogenous channels (10). One of the proposed pathways is the “Batson’s plexus,” a valveless prevertebral venous plexus network that involves retrograde tumour cell movement from the lungs to the face. Another pathway of metastasis in LC involves direct suction, access to the pulmonary vein, and drainage to the left side of the heart (11). Chronically, inflamed mucosa in the oral soft tissues,
particularly attached gingiva, contains a dense capillary network that can trap malignant cells and promote metastases. On the other hand, some reports of metastases to the post-extraction site suggest that local variables in the extraction or wound area may attract circulating tumour cells. Because tooth extraction generates a milieu rich in growth factors, it may promote metastasis. The extraction site of a tooth is thought to be a microenvironment rich in local growth factors that encourage metastatic cell development (9).

Studies conclude that gingival metastasis mostly occurs in mandibular area than maxillary with predominancy of posterior side involvement (5,9,10). In the current research however, there was almost equal involvement of maxillary and mandibular gingiva. Posterior region was predominantly affected than anterior region. OSTM usually occurs unilaterally. In our research, left side predominated as compared to right in the mandibular gingiva, while maxillary gingiva showed right side predominance. 2 cases showed BL involvement each in mandible and 4 in maxilla.

The tongue is also a highly circulatory organ, which creates ideal conditions for the spread of cancer. According to a study, the lung was the second most common primary site metastasized to the tongue (5). The literature rarely mentions LC metastases to the tongue (12-14). In the present research, we could find 21 cases of tongue metastasis from LC. Posteriorlateral and dorsal part are more often involved in metastasis due to rich capillary and lymphatic network and immobility. On contrary, in the present research most of tongue metastasis was observed in anterior and dorsolateral region and base.

Tonsil metastasis has been reported to be extremely infrequent among oral soft tissues. Only 0.8 percent of 1535 cases of malignant palatine tonsillar tumours were metastases from an extra-tonsillar source, according to a study (15). In the current literature, 21 cases of tonsillar metastasis from LC have been observed and 19 of them were palatine tonsils. Only 2 cases occurred in lingual tonsil. Lymphatic spread to tonsils is rare due to lack of affluent lymphatic capillaries except retrograde spread via cervical lymph nodes or direct spread.

Metastatic deposits in the parotid gland from tumours outside the head and neck region are uncommon, but they have been recorded from lung, breast, and kidney cancers. These primaries account for roughly 10%–20% of all parotid secondary tumours (16). The abundant lymphatic flow seen in and around the gland parenchyma is most likely to blame for the dissemination to lymph nodes. Literature has revealed very rare number of cases of LC metastasis to parotid (17-18). In the current research out of 122 cases, only 14 involved parotid gland. Metastasis to other salivary glands such as submandibular gland, and sublingual gland is very rare. Owing to the lack of lymph nodes in these glands, route of metastasis is predominantly completely haematogenous. In our research, only 5 cases of submandibular gland metastasis from LC have been documented, while no case involved the sublingual gland.

The most common malignant neoplasms of the palatal mucosa are known to be minor salivary gland tumors (19), and metastatic tumors from a distant organ in this region is uncommon. In the present research, out of 122 cases of LC metastasis, only 3 were found in the palate region. Lip metastasis from distant resources is rarely documented in the literature. Few cases have been reported from colon and gastric cancers (20-21). In the present review, only 2 cases of lip metastasis from LC were notified. Floor of mouth and buccal mucosa are other rare sites of cancer deposits. Thin and movable mucous membrane in the floor of mouth region allows easy entrapment of tumour cells. In the present research, only one case of buccal mucosa and floor of mouth metastasis from LC was diagnosed.

Clinically, OSTM tumours grow rapidly causing pain, difficulty in chewing, dysphagia, disfigurement, and bleeding on probing. These metastatic lesions are often difficult to diagnose because their variable features such as polyoid or exophytic, highly vascularized growths or swelling, bear close resemblance to some benign hyperplastic or reactive oral lesions. Biopsy becomes mandatory to identify the exact primary source of metastasis. In present research, swelling was the most predominant clinical feature observed (81.9%). Other lesions appeared as ulcerative, exophytic, pedunculated, nodular, edematous, and erosive.

A history of LC could help in the detection of secondary metastatic cancer. Before the metastatic spread to the oral cavity, the majority of patients are aware of their primary tumours. However, metastasis to oral soft tissue via LC is a late indication. Only 35 of the patients in this research were aware of previous LC, whereas the other 78 had no such history.

Oral metastatic tumours are of high clinical importance because, they may be the only symptom of an undiagnosed underlying malignancy or the first sign of the metastasis. In our study, 74 patients had evidence of metastasis as the initial symptom of the disease, whereas in 44 cases, metastasis was detected after the diagnosis of LC with an average time of few days to 10 years. Histopathological examination is required to provide a conclusive diagnosis of the type of metastatic lesion. However, it might be difficult to make an exact diagnosis because these lesions have a varied histological appearance rather than a distinct picture. When the major focus of the primary metastatic site is known, diagnosing the secondary metastasis can be simple. Other tools, such as special staining, immunohistochemistry, and electron microscopy, may be necessary in some circumstances to determine the initial tumor’s nature.
LC has been divided into subgroups based on histopathology. Many new entities have recently been introduced to the 2015 World Health Organization classification system (22). Adenocarcinoma has been discovered to be the most prevalent kind of LC that metastasizes to the oral soft tissues. And same was the finding in this study as well.

Although LC entails multiorgan distant metastases, oral soft tissues might occasionally be the only site of metastasis. Out of 122 instances in this study, 63 had oral soft tissues as the only location of LC metastasis, whereas 54 had metastasis to other parts of the body as well such as brain, kidney, adrenal, liver, vertebrae, spine, pelvis, skin, and skeletal muscles.

Treatment and prognosis of oral metastatic lesions are determined by the site of genesis and the extent of the disease. Treatment options include biopsy, surgery, chemotherapy, radiotherapy, brachytherapy, and/or combination therapy. The most commonly used therapy aimed in this study were chemotherapy and radiotherapy. Combination therapy was also used in many cases. Unfortunately, OSTM by LC has a bad prognosis with a maximum survival rate of 5 years. In some cases, a patient’s terminal stage of disease results in a loss of follow-up or, death. Even after treatment, 66 people died, according to the current study. The duration between death and oral metastasis diagnosis ranged from 1 week to 2.5 years. Multiple metastasis, deteriorated systemic condition, pleural effusion, and acute lung failure were the most common causes of death. 15 patients had a good prognosis with no signs of recurrence.

Limitations of the current study

One of the limitations of current research was involvement of only individual based studies such as case reports and case series. We could find a very few large-scale studies related to the subject in our search. Studies such as epidemiological, case control, cohort, etc. were excluded, because we also aimed to evaluate individual features of these metastatic lesions. And in those studies, individual data of patients was not available.

Conclusions

During the last 44 years (Aug 1977-Dec 2021), we found only 122 cases of OSTM rom LC as the sole primary source. This signifies a rare occurrence of OSTM from LC. The prognosis was poor involving 66 deaths out of 122 cases with a survival rate of 1 week to 2.5 years. Gingiva, Tongue and tonsils were the most prevalent oral soft tissues to get metastasized. Because of their resemblance to other pathologies, and late clinical signs, these lesions go unnoticed the majority of the time. Diagnosis of oral metastatic lesions is a challenging task for the clinicians, and pathologists. A thorough examination of the metastatic lesions is required, including a review of the patient’s medical history, clinical presentation, and early diagnosis in order to identify the primary site of metastasis and choose the best course of treatment. More cases need to be published in order to raise awareness of these lesions and gain a better understanding of their characteristics.

References

1. World Health Organization, International Agency for Research on Cancer. Globocan 2020: Lung Cancer. International Agency for Research on Cancer. Available at http://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf. Accessed: March 2, 2021.
2. Birring SS, Peake MD. Symptoms and the early diagnosis of lung cancer. Thorax. 2005;60:268-9.
3. Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016;35:75-91.
4. Lim SY, Kim SA, Ahn SG, Kim HK, Kim SG, Hwang HK, Kim BO, Lee SH, Kim JD, Yoon JH. Metastatic tumours to the jaws and oral soft tissues: a retrospective analysis of 41 Korean patients. Int J Oral Maxillofac Surg. 2006;35:412-5.
5. Irani S. Metastasis to the oral soft tissues: A review of 412 cases. J Int Soc Prev Community Dent. 2016;6:393-401.
6. Schaaf C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res. 2014;12:14-23.
7. Ohnishi Y, Fuji T, Sakamoto T, Watanabe M, Motohashi T, Kubo H, Nakajima M. Malignant mesothelioma metastatic to the oral region and latest topics (Review). Mol Clin Oncol. 2020;13:61.
8. Barta JA, Powell CA, Wsnivesky JP. Global Epidemiology of Lung Cancer. Ann Glob Health. 2019 Jan 22;85:8.
9. Hirshberg A, Shnaiderman-Shapiro A, Kaplan I, Berger R. Metastatic tumours to the oral cavity - pathogenesis and analysis of 673 cases. Oral Oncol. 2008;44:743-52.
10. Kumar G, Manjunath B. Metastatic tumours to the jaws and oral cavity. J Oral Maxillofac Pathol. 2013;17:71-5.
11. Sánchez-Torpeiro A, Acebal-Blanco F, Arévalo-Arzávalo RE, Molina-Martínez M. Metastatic tumours in upper maxillary bone of esophageal adenocarcinoma. A case report. Med Oral Patol Oral Cir Bucal. 2005;10:252-7.
12. Yoshitomi I, Kawasaki G, Mizuno A, Nishikido M, Hayashi T, Fujita S, Ikeda T. Lingual metastasis as an initial presentation of renal cell carcinoma. Med Oncol. 2011;28:1389-94.
13. Zegarelli DJ, Tsukada Y, Pickren JW, Greene GW Jr. Metastatic tumor to the tongue. Report of twelve cases. Oral Surg Oral Med Oral Pathol. 1973;35:202-11.
14. Lee YH, Lee JJ. Metastatic carcinoma of the oral region: An analysis of 21 cases. Med Oral Patol Oral Cir Bucal. 2017;22:e359-365.
15. Hyams VJ. Differential diagnosis of neoplasia of the palateon tonsil. Clin Otolaryngol Allied Sci. 1978;3:117-26.
16. Seifert G, Hennings K, Caselitz J. Metastatic tumors to the parotid and submandibular glands—analysis and differential diagnosis of 108 cases. Pathol Res Pract. 1986;181:684-92.
17. Pisani P, Krengli M, Ramponi A, Pia F. Le metastasi parotide: revisione della letteratura e contributo casistico [Parotid metastases: a review of the literature and case reports]. Acta Otorhinolaryngol Ital. 1993;12:1-28.
18. van der Waal RI, Buter J, van der Waal I. Oral metastases: report of 24 cases. Br J Oral Maxillofac Surg. 2003;41:3-6.
19. Wyzyszka-Pawełec G, Gontarz M, Zapała J, Szuta M. Minor salivary gland tumours of upper aerodigestive tract: a clinicopathological study. Gastroenterol Res Pract. 2012;2012:780453.
20. Saladzinskas Z, Tamelis A, Paskauskas S, Pranys D, Pavalkis D. Facial skin metastasis of colorectal cancer: a case report. Cases J. 2010;3:28.
21. Nisi G, Grimaldi L, Brandi C, Silvestri A, Brafa A, Calabrò M, D’Amico C. Cutaneous metastasis of the superior lip from adenocarcinoma of the gastro-oesophageal junction. A case report. Chir Ital. 2007;59:883-6.
22. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. WHO Panel. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015;10:1243-1260.

Ethical approval
Not required.

Funding resources
Nil.

Conflict of interest
Nil.

Abbreviations
JB: Jaw bones, JBM: Jaw bone metastasis, LC: Lung cancer, NA: Not available, OST: Oral soft tissues, OSTM: Oral soft tissue metastasis, PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.