Docosahexaenoic acid reduces the incidence of early afterdepolarizations caused by oxidative stress in rabbit ventricular myocytes

Zhenghang Zhao1,2,*, Haihuo Wen2, Nadezhda Fefelova2, Charelle Allen2, Nancy Guillaume2, Dandan Xiao1, Chen Huang1, Weijin Zang1, Judith K. Gwathmey3,4 and Lai-Hua Xie2,*

1 Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
2 Department of Cell Biology and Molecular Medicine, UMDNJ-New Jersey Medical School, Newark, NJ, USA
3 Gwathmey Inc., Cambridge, MA, USA
4 School of Optometry, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA, USA

*Correspondence: Zhenghang Zhao, Department of Pharmacology, School of Medicine, Xi‘an Jiaotong University, Xi’an 710061, China. e-mail: zhzh@mail.xjtu.edu.cn.
La-Hua Xie, Department of Cell Biology and Molecular Medicine, UMDNJ-New Jersey Medical School, Newark NJ 07101, USA. e-mail: xiela@umdnj.edu.

INTRODUCTION

Extensive studies on the potential effects of fish oil omega-3 polyunsaturated fatty acids (ω-3 PUFA) on cardiac rhythm have provided controversial results (von Schacky, 2008). While some interventional studies reported neither an effect or even promotion of arrhythmias in some subgroups of patients with heart disease (Raitt et al., 2005; Coronel et al., 2007; Den Ruijter et al., 2007; Cheng and Santoni, 2008), other studies have reported beneficial effects of ω-3 PUFAs on cardiac rhythm resulting in a reduction in the incidence of sudden cardiac death or mortality (London et al., 2007; Cheng and Santoni, 2008; Nodari et al., 2009). It seems that fish oil fatty acids may exert either pro- or anti-arrhythmic effects, probably depending on different underlying mechanisms for the arrhythmias. Recent studies have also shown ω-3 PUFAs suppress afterdepolarizations and triggered activities induced by K channel blockers or by β-adrenergic stimulation in failing hearts (Den Ruijter et al., 2006, 2008; Berecki et al., 2007; Smith et al., 2009). However, it is unclear whether ω-3 PUFAs have protective effects on arrhythmias induced by oxidative stress. Reactive oxygen species (ROS) have recently been implicated in the pathogenesis of cardiac arrhythmia during ischemic-reperfusion, aging, and heart failure. Oxidative stress caused by exogenous H2O2 induces early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs) that may in turn trigger lethal arrhythmias. These afterdepolarizations are a result of a net increase in inward current, which is induced by activation of late sodium current (I_{NaL}) and the L-type calcium current (I_{CaL}) via oxidized Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII; Ward and Giles, 1997; Xie et al., 2009; Zhao et al., 2011). Our most recent study suggested that the transient outward potassium current (I_{to}) may also facilitate EAD generation by H2O2 (Zhao et al., 2012b).

In the present study, we recorded action potentials using the patch-clamp technique in ventricular myocytes isolated from rabbit hearts. The treatment of myocytes with H2O2 (200 μM) prolonged AP durations and induced EADs, which were significantly suppressed by docosahexaenoic acid (DHA, 10 or 25 μM; n = 8). To reveal the ionic mechanisms, we examined the effects of DHA on L-type calcium currents (I_{CaL}), late sodium (I_{NaL}), and transient outward potassium currents (I_{to}) in ventricular myocytes pretreated with H2O2. H2O2 (200 μM) increased I_{CaL} by 46.4% from control (−8.4 ± 1.4 pA/pF) to a peak level (−12.3 ± 1.8 pA/pF; n = 6, p < 0.01) after 6 min of H2O2 perfusion. H2O2-enhanced I_{CaL} was significantly reduced by DHA (25 μM; −7.1 ± 0.9 pA/pF; n = 6, p < 0.01). Similarly, H2O2-increased the late I_{NaL} (−3.2 ± 0.3 pC) from control level (−0.7 ± 0.1 pC). DHA (25 μM) completely reversed the H2O2-induced increase in late I_{NaL} (to −0.8 ± 0.2 pC, n = 5). H2O2 also increased the peak amplitude of and the steady state I_{to} from 8.9 ± 1.0 and 2.16 ± 0.25 pA/pF to 12.8 ± 1.21 and 3.13 ± 0.47 pA/pF respectively (n = 6, p < 0.01). However, treatment with DHA (25 μM) did not produce significant effects on current amplitudes and dynamics of I_{to} altered by H2O2. In addition, DHA (25 μM) did not affect the increase of intracellular reactive oxygen species (ROS) levels induced by H2O2 in rabbit ventricular myocytes. These findings demonstrate that DHA suppresses exogenous H2O2-induced EADs mainly by modulating membrane ion channel functions, while its direct effect on ROS may play a less prominent role.

Keywords: docosahexaenoic acid, H2O2, early afterdepolarizations, reactive oxygen species, L-type calcium channel, sodium channel
ω-3-PUFAs) on exogenous H$_2$O$_2$-induced EADs, and to further reveal potential underlying ionic mechanisms.

MATERIALS AND METHODS

This investigation conforms to the Guide for the Care and Use of Laboratory Animals, published by the National Institutes of Health (NIH Publication No. 85–23, Revised 1996). All animal experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee at the University of Medicine and Dentistry of New Jersey-New Jersey Medical School and by the Ethical Committee of Xi’an Jiaotong University. All experiments were performed at 35–37°C.

CELL ISOLATION

Ventricular myocytes were enzymatically isolated from the hearts of New Zealand white rabbits (male, 1.8–2.5 kg) as described previously (Xie et al., 2009). Briefly, after rabbits were anesthetized with intravenous pentobarbital hearts were removed and perfused previously (Xie et al., 2009). Briefly, after rabbits were anesthetized with intravenous pentobarbital hearts were removed and perfused.

To record action potentials (APs), patch pipettes (resistance 2–4 MΩ) were filled with an internal solution containing (in mM): 110 Cs-Aspartate, 1 MgCl$_2$, 10 glucose, and 10 HEPES, pH was adjusted to 7.4 with NaOH. APs were elicited with 2 ms, 2 to 4 nA square pulses at a pacing cycle length (PCL) of 6 s.

To record the $I_{Ca,L}$, patch pipettes (2–4 MΩ) were filled with an internal solution containing (in mM): 110 Cs-Aspartate, 30 CsCl, 5 NaCl, 10 HEPES, 0.1 EGTA, 5 MgATP, 5 Na$_2$-phosphocreatine, 0.05 cAMP, pH 7.2 with KOH. The cells were superfused with Tyrode’s solution containing (in mM): 136 NaCl, 4.0 KCl, 0.33 Na$_2$PO$_4$, 1.8 CaCl$_2$, 1 MgCl$_2$, 10 glucose, and 10 HEPES, pH was adjusted to 7.4 with NaOH. APs were elicited with 2 ms, 2 to 4 nA square pulses at a pacing cycle length (PCL) of 6 s.

To record the $I_{Ca,L}$, patch pipettes (2–4 MΩ) were filled with an internal solution containing (in mM): 110 Cs-Aspartate, 30 CsCl, 5 NaCl, 10 HEPES, 0.1 EGTA, 5 MgATP, 5 Na$_2$-phosphocreatine, 0.05 cAMP, pH 7.2 with CsOH, and the cells were superfused with a modified Tyrode’s solution, in which KCl was replaced with CsCl. Nifedipine (30 μM) was added to the bath solution to block calcium channels. Late I_{Na} was elicited by 300 ms voltage-clamp pulses from -90 to -30 mV at a PCL of 6 s from a holding potential of -80 mV.

To record $I_{Ca,L}$, the pipette and superfusion solutions were the same as those for AP recording. Tetrodotoxin (TTX, 10 μM) and CdCl$_2$ (0.5 mM) were added into the Tyrode’s solution to inhibit I_{Na} and $I_{Ca,L}$. $I_{Ca,L}$ was evoked by 400 ms depolarizing pulses to test potentials between -40 and $+50$ mV (0.1 Hz). The holding potential was set at -80 mV and a 100 ms prepulse was applied to -60 mV to inactivate the I_{Na}. $I_{Ca,L}$ recovery from inactivation was investigated using a conventional two-pulse protocol: an inactivating pulse depolarizing to $+50$ mV for 400 ms (P1) followed by a variable recovery interval and subsequent $+50$ mV test pulse (P2). The inactivation of $I_{Ca,L}$ and recovery from inactivation were best fit with a double exponential equation. All electrophysiological data were normalized as current densities by dividing measured current amplitude by whole-cell capacitance.

All chemicals were purchased from Sigma-Aldrich unless indicated. Because DHA is very sensitive to oxidation, DHA (Sigma-Aldrich) was dissolved in 100% ethanol under N$_2$ and kept at $-20°C$ in the dark. Immediately before use, the DHA stock solution was diluted in the bath solution to reach the final concentrations needed. The maximum final concentration (0.1%) of ethanol had no effect on membrane currents.

ELECTROPHYSIOLOGICAL RECORDING

Myocytes were current- or voltage-clamped using the perforated whole-cell patch-clamp technique (240 μg/ml amphotericin B; Rae et al., 1991) for recordings of action potential, or $I_{Ca,L}$, and late I_{Na}. Voltage or current signals were measured with a Multiclamp 700A patch-clamp amplifier controlled by a personal computer using a Digidata 1322 acquisition board driven by pCLAMP 10 software (Molecular Devices, Sunnyvale, CA, USA).

To record action potentials (APs), patch pipettes (resistance 2–4 MΩ) were filled with an internal solution containing (in mM): 110 K-aspartate, 30 KCl, 10 HEPES, 0.1 EGTA, 5 MgATP, 5 Na$_2$-phosphocreatine, 0.05 cAMP, pH was adjusted to 7.2 with KOH. The cells were superfused with Tyrode’s solution containing (in mM): 136 NaCl, 4.0 KCl, 0.33 Na$_2$PO$_4$, 1.8 CaCl$_2$, 1 MgCl$_2$, 10 glucose, and 10 HEPES, pH was adjusted to 7.4 with NaOH. APs were elicited with 2 ms, 2 to 4 nA square pulses at a pacing cycle length (PCL) of 6 s.

To record the $I_{Ca,L}$, patch pipettes (2–4 MΩ) were filled with an internal solution containing (in mM): 110 Cs-Aspartate, 30 CsCl, 10 HEPES, 0.5 EGTA, 0.2 Na$_3$-GTP, 5 Na$_2$-phosphocreatine-, 5 MgATP, pH 7.2 was adjusted with CsOH. Myocytes were bathed with a modified Tyrode’s solution in which KCl was replaced with CsCl. Nifedipine (30 μM) was added to the bath solution to block calcium channels. Late I_{Na} was elicited by 300 ms voltage-clamp pulses from -90 to -30 mV at a PCL of 6 s from a holding potential of -80 mV.

To record $I_{Ca,L}$, the pipette and superfusion solutions were the same as those for AP recording. Tetrodotoxin (TTX, 10 μM) and CdCl$_2$ (0.5 mM) were added into the Tyrode’s solution to inhibit I_{Na} and $I_{Ca,L}$. $I_{Ca,L}$ was evoked by 400 ms depolarizing pulses to test potentials between -40 and $+50$ mV (0.1 Hz). The holding potential was set at -80 mV and a 100 ms prepulse was applied to -60 mV to inactivate the I_{Na}. $I_{Ca,L}$ recovery from inactivation was investigated using a conventional two-pulse protocol: an inactivating pulse depolarizing to $+50$ mV for 400 ms (P1) followed by a variable recovery interval and subsequent $+50$ mV test pulse (P2). The inactivation of $I_{Ca,L}$ and recovery from inactivation were best fit with a double exponential equation. All electrophysiological data were normalized as current densities by dividing measured current amplitude by whole-cell capacitance.

All chemicals were purchased from Sigma-Aldrich unless indicated. Because DHA is very sensitive to oxidation, DHA (Sigma-Aldrich) was dissolved in 100% ethanol under N$_2$ and kept at $-20°C$ in the dark. Immediately before use, the DHA stock solution was diluted in the bath solution to reach the final concentrations needed. The maximum final concentration (0.1%) of ethanol had no effect on membrane currents.

MEASUREMENT OF INTRACELLULAR ROS

The myocytes were incubated with 5 μM C-DCDHF-DAAM (Invitrogen) for 30 min. C-DCDHF-DA is oxidized by ROS to dichlorofluorescein (DCF). ROS fluorescence (emission: \sim530 nm) was measured by a 200 ms-exposure (excitation: \sim480 nm) every 30 s using the Andor Ixon charge-coupled device camera. Recordings were started after a stable baseline was achieved.

STATISTICAL ANALYSIS

Data are presented as mean ± SEM. Differences were tested for statistical significance by using paired or unpaired Student’s t tests, with $p < 0.05$ considered significant.

RESULTS

DHA SUPPRESSES THE EADs INDUCED BY H$_2$O$_2$

Action potentials were recorded from single ventricular myocytes isolated from rabbit hearts using the perforated whole-cell patch-clamp technique under current-clamp mode. In order to reliably induce EADs, the cells were paced at a PCL of 6 s based on our previous studies (Sato et al., 2009; Xie et al., 2009; Zhao et al., 2012a). The average APD$_{90}$ of rabbit ventricular myocytes is 266 ± 23 ms ($n = 8$) at base line. After APD and morphology reached steady state, the cells were perfused with 200 μM H$_2$O$_2$ until EADs consistently appeared. Consecutively, DHA at either 10 or 25 μM was added in the presence of H$_2$O$_2$. The sudden and dramatic increase in APD$_{90}$ in Figure 1A indicates the incidence of EADs. As shown in Figures 1A, B, EADs were consistently induced by H$_2$O$_2$ at 5 min after perfusion. DHA (25 μM) shortened the APD.
prolongation from 894 ± 78 ms to 278 ± 52 ms, and significantly suppressed the frequency of EADs induced by H2O2. The incidence of EADs was assessed by counting the number of EADs within 10 APs (from eight cells) in control, after H2O2 (200 μM) and H2O2 (200 μM) + DHA (at 10 or 25 μM). The incidence of EAD was suppressed in all tested cells (n = 8), five of which showed complete abolishment of EADs after 3–5 min of treatment with 25 μM DHA. As summarized in Figure 1C, the incidence of H2O2-induced EADs were significantly reduced by direct perfusion of DHA at both 10 and 25 μM, in a dose-dependent manner (p < 0.05 and p < 0.01, respectively, Fisher’s exact test).

INHIBITORY EFFECT OF DHA ON I_{Ca,L} ENHANCED BY H2O2

Our previous studies have shown that reactivation of I_{Ca,L} plays a key role in H2O2-induced EAD in rabbit ventricular myocytes (Xie et al., 2009; Song et al., 2010). Therefore, we first assessed the potential involvement of I_{Ca,L} in the inhibitory effect of DHA on H2O2-induced EADs. I_{Ca,L} was recorded in rabbit ventricular myocytes using the perforated whole-cell patch-clamp technique under voltage-clamp mode. As shown in Figure 2A, H2O2 (200 μM) gradually increased the amplitude of I_{Ca,L} at both peak and late phases (at ~ 250 ms), which reached the steady state after 3–5 min, consistent with the time course for EAD induction as shown in Figure 1. The I-V relations for the peak current (Figure 2B) showed that the I_{Ca,L} amplitude was pronouncedly increased at testing potentials −10 to +40 mV. For example a 46.4% enhancement was caused at 0 mV, i.e., from −8.4 ± 1.4 to −12.3 ± 1.8 pA/pF (n = 6, p < 0.01). DHA (25 μM) significantly suppressed/reversed the elevation of the I_{Ca,L} amplitude (e.g., to −7.1 ± 0.9 pA/pF at 0 mV; n = 6, p < 0.01 compared to H2O2-induced effect). In order to test the DHA effect on I_{Ca,L} under normal membrane potential conditions, we also performed AP-clamp experiments. As shown in Figures 2C,D, DHA markedly decreased both the peak and the late phase of I_{Ca,L} which were enhanced by H2O2, under AP-clamp conditions.

INHIBITORY EFFECT OF DHA ON LATE SODIUM CURRENT INCREASED BY H2O2

Since the activation of late I_{Na} also contributes to EAD generation induced by H2O2 (Ward and Giles, 1997; Xie et al., 2009), we next evaluated the effect of DHA on H2O2-enhanced late I_{Na}. Late I_{Na} was elicited by 300 ms voltage-clamp pulses from −90 to −30 mV at a PCL of 6 s. The magnitude of late I_{Na} was evaluated by integration of the area (nA × ms = pC) of the current over the last 50 ms of the −30 mV depolarizing pulse, using the integration (area) feature of the pCLAMP program. As shown in Figure 3, the late current component was significantly enhanced by H2O2 (200 μM) from −0.7 ± 0.1 pC to −3.2 ± 0.3 pC (n = 5, p < 0.01) at 4–6 min after perfusion, when it reaches steady state level. This elevation was completely suppressed by Tetrodotoxin (TTX, 10 μM), a selective I_{Na} inhibitor, confirming this late sustained inward current is due to late I_{Na}, although we cannot exclude minor contaminations on the baseline current from other currents such as Na-Ca exchange current (I_{NCX}), I_{Ca,L} or leaky sodium current.

![Figure 1](https://www.frontiersin.org)

Figure 1 The inhibitory effects of DHA on Early afterdepolarizations (EADs) induced by H2O2. (A) Values of consecutive APD50 are plotted over time. The ventricular myocyte was treated with H2O2 and DHA as indicated by the horizontal bars above the plot. Three representative AP recordings under different conditions are shown in the inset. (B) Five consecutive AP recordings from a cell exposed to control perfusate (a), 200 μM H2O2 (b) and 200 μM H2O2 + 25 μM DHA (c). (C) Summarized bar graph showing dose-dependent inhibitory effects of DHA on the incidence of EADs induced by H2O2 (n = 8 cells). *p < 0.05, **p < 0.01; Fisher’s Exact Test vs. H2O2.
current. \(\text{H}_2\text{O}_2 \)-increased late \(I_{\text{Ca,L}} \) was effectively attenuated by 25 \(\mu \text{M} \) DHA (to \(-0.8 \pm 0.2 \text{ pC} \) at 2–4 min after DHA application, \(n = 5, p < 0.01 \)).

EFFECT OF DHA ON \(I_{\text{to}} \) INCREASED BY \(\text{H}_2\text{O}_2 \)

Consistent with our recent finding (Zhao et al., 2012b), \(\text{H}_2\text{O}_2 \) (200 \(\mu \text{M} \)) increased the amplitudes of both peak (from \(8.94 \pm 1.07 \) to \(12.8 \pm 1.21 \text{ pA/pF} \) at testing potential of 50 mV, \(n = 6, p < 0.01 \)) and steady state (late phase at the end of 400 ms pulse; from \(2.16 \pm 0.25 \) to \(3.13 \pm 0.47 \text{ pA/pF} \), \(n = 6, p < 0.01 \)) component of \(I_{\text{to}} \). Additionally, \(\text{H}_2\text{O}_2 \) also slowed inactivation (\(\tau_{\text{in}} \) from 96.6 ± 4.3 to 158.1 ± 5.7 ms; \(\tau_{\text{f,in}} \) from 17.4 ± 1.7 to 24.7 ± 14.0 ms, \(n = 7, p < 0.01 \)). However, DHA at 25 \(\mu \text{M} \), the concentration which dramatically suppressed \(\text{H}_2\text{O}_2 \)-induced EADs, did not show any significant effects on current amplitudes (peak \(I_{\text{to}} = 12.51 \pm 1.47 \text{ pA/pF} \); \(I_{\text{to,ns}} = 3.34 \pm 0.31 \text{ pA/pF} \), \(n = 6, p > 0.05 \) compared to \(\text{H}_2\text{O}_2 \), respectively) or inactivation process of \(I_{\text{to}} \) (\(\tau_{\text{in}} \): 154.6 ± 6.6 ms and \(\tau_{\text{f,in}} \): 23.9 ± 1.1 ms, \(n = 7, p > 0.05 \) compared to \(\text{H}_2\text{O}_2 \); **Figures 4A–C**). Furthermore, we found that \(\text{H}_2\text{O}_2 \) accelerated the recovery from inactivation of \(I_{\text{to}} \) mainly by decreasing the fast component (\(\tau_{\text{f,rec}} \): from 817.2 ± 79.2 ms to 341.9 ± 26.1 ms, \(n = 7, p < 0.05 \)), but not by changing the slow component (\(\tau_{\text{f,rec}} \): from control 5335.4 ± 504.8 ms to \(\text{H}_2\text{O}_2 \) 4963.2 ± 459.9 ms, \(p > 0.05 \)). Similarly DHA (25 \(\mu \text{M} \)) did not cause any significant alteration in \(I_{\text{to}} \) recovery kinetics after \(\text{H}_2\text{O}_2 \) treatment (**Figure 4D**).

EFFECT OF DHA ON INTRACELLULAR ROS LEVELS

The level of oxidative stress may either increase or decrease in tissues from humans and animals supplemented with fish oil as reported previously (Garrido et al., 1989; Mas et al., 2010; Tsukui et al., 2011). To determine whether DHA reduces the incidence of EAD via affecting (decreasing) intracellular ROS, the effect of DHA on intracellular ROS levels was measured in isolated ventricular myocytes treated with exogenous \(\text{H}_2\text{O}_2 \) (200 \(\mu \text{M} \)) by monitoring CM-DCF fluorescence intensity. The effect of DHA on intracellular ROS levels in the absence of \(\text{H}_2\text{O}_2 \) was also measured. As shown in **Figure 5**, exogenous \(\text{H}_2\text{O}_2 \) produced a rapid and dramatic increase in DCF fluorescence intensity in the myocytes and the F/F \(_0 \) of DCF fluorescence intensity reached a steady state value of 2.18 ± 0.24 at 6–10 min after \(\text{H}_2\text{O}_2 \) treatment. However, DHA (25 \(\mu \text{M} \), either pretreatment or after treatment) showed no
or animal models may account for these controversies. We and others have previously shown that both exogenous and endogenous ROS-induced EADs can serve as triggers for arrhythmias. In the present study, we provide the first evidence showing that DHA attenuates EADs induced by \(\text{H}_2\text{O}_2 \).

The molecular and ionic mechanisms of ion channel modulation by DHA are still not completely understood. A recent review article comprehensively summarized the potential antiarrhythmic electrophysiological effect of \(\omega-3 \) PUFAs on the heart (Richardson et al., 2011). Inhibitory effects of DHA on EADs may involve multifactorial mechanisms e.g., (1) via ROS modulation. Although \(\omega-3 \) PUFAs may slightly increase levels of oxidative stress due to the susceptibility to oxidation, low to moderate ROS exposure can give rise to up-regulation of antioxidant enzymes and increase antioxidant activity (scavenging ROS) in cardiac tissue (Jahangiri et al., 2006); (2) via direct modulation of ion channels by binding to the channels or affecting cell membrane lipid properties (such as membrane lipid peroxidation). While there is a widespread effect of \(\omega-3 \) PUFAs on ion channels and ion pumps, \(\text{Ca}^{2+} \) and \(\text{Na}^+ \) currents are most sensitive to \(\omega-3 \) PUFAs (Richardson et al., 2011). Nevertheless, our present data suggest that the ionic mechanisms underlying inhibitory effect of DHA on EADs most likely involve the direct inhibition on the \(I_{\text{Ca,L}} \) and \(I_{\text{Na}} \) rather than its putative antioxidant activity. This notion was supported by the observation that there was no effect on CM-DCF fluorescence induced by DHA at the same concentration that led to reduction of EADs. In addition, the fast time course for DHA suppression of \(I_{\text{Ca,L}} \) and \(I_{\text{Na}} \) also supports a mechanism of direct inhibition on ion channels by DHA. Our most recent data showed \(\text{H}_2\text{O}_2 \) also activates \(I_{\text{to}} \) and may facilitate EAD generation (Zhao et al., 2012b). In the present study, however, we showed that DHA did not reverse the \(I_{\text{to}} \) activated by \(\text{H}_2\text{O}_2 \) in rabbit ventricular myocytes, which is inconsistent with previous reports that DHA markedly reduces \(I_{\text{to}} \) in human atrial cells and rat ventricular myocytes even at lower concentrations (5–10 \(\mu \text{M} \); Bogdanov et al., 1998; Verkerk et al., 2006; Li et al., 2009). We do not have a ready explanation for this discrepancy, while the molecular subtypes of \(I_{\text{to}} \) proteins might be different between rabbits and other species (including humans) or between different locations in the heart (e.g., ventricle vs. atria). In addition, the \(\text{H}_2\text{O}_2 \)-activated \(I_{\text{to}} \) seemed to be more resistant to DHA than the \(I_{\text{to}} \) at baseline, since we observed the inhibitory effects of 25 \(\mu \text{M} \) DHA on \(I_{\text{to}} \) (up to \(\sim 50\% \)) in the absence of \(\text{H}_2\text{O}_2 \).

It has also been reported that \(\omega-3 \) PUFAs are capable of reducing the activity of CaMKII (Zaloga et al., 2006), which may partially account for the inhibitory effect of DHA on EADs. However, since DHA does not alter the ROS level in the presence of \(\text{H}_2\text{O}_2 \) (Figure 5), the reduction of CaMKII activity, if any, may be mediated by less Ca entry secondarily to \(I_{\text{Ca,L}} \) blockage, rather than by lower oxidation. Further experiments are needed identify the involvement of CaMKII.

Nevertheless, our present study suggests fish oil supplements may be effective in preventing/treating arrhythmias under an increased oxidative stress condition and serve as an alternative or complimentary anti-arrhythmic drug. Conditions with elevated oxidative stress level including ischemia/reperfusion, heart failure and aging might benefit from fish oil supplements.

DISCUSSION

Experimental and clinical studies have obtained controversial results regarding the effects of fish oil or \(\omega-3 \) PUFAs on cardiac rhythm (von Schacky, 2008). Differences in the underlying pathogenic mechanisms for the arrhythmia in differing patient groups
FIGURE 4 | Less effect of DHA on I_{to} enhanced by H$_2$O$_2$. (A) Time course of peak I_{to} in a myocyte treated with H$_2$O$_2$ in the absence and presence of DHA. (B) Representative traces of the I_{to} under control, in the presence of H$_2$O$_2$ (200 µM), and H$_2$O$_2$ + DHA (25 µM), respectively. (C) Current–voltage relations of the peak I_{to} (C-a) and steady state currents $I_{K,ss}$ (C-b) showing less effects of DHA on enhancement of peak I_{to} and $I_{K,ss}$ (n=6, *p < 0.05; **p < 0.01 vs. control). Test potentials ranged from −60 to +50 mV in 10 mV steps. (D) Recovery of I_{to} from inactivation showing no significant effect of DHA (25 µM) on the I_{to} recovery sped-up by H$_2$O$_2$ (200 µM; p > 0.05, n = 7).

FIGURE 5 | No effect of DHA on ROS levels in isolated rabbit ventricular myocytes. ROS levels were measured by monitoring DCF fluorescence intensity in isolated myocytes every 30 s in control, H$_2$O$_2$ (200 µM) and H$_2$O$_2$ + DHA (25 µM) groups. (A) Time courses of DCF fluorescence intensity (F/F$_0$) in three representative myocytes from the three groups, respectively. (B) Histograms summarizing the DCF intensities for each group measured at 6 min after treatment of H$_2$O$_2$. **p < 0.01 compared to control. Numbers in parentheses indicate the number of cells in each group.
ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation of China No. 30930105 (to Weijin Zang) and NIH/NHLBI No. 8110208002 (to Wei-rui Rong) and Major International (Regional) Joint Research Project of National Natural Science Foundation of China No. 8110108002 (to Wei-jin Zang), and NIH/NHLBI R01 HL079597 (to Lai-Hua Xie).

REFERENCES
Berecki, G., Den Ruijter, H. M., Verkerk, A. O., Schumacher, C. A., Baartscheer, A., Bakker, D., Boukens, B. I., Van Ginneken, A. C., Fiolet, J. W., Opthof, T., and Coronel, R. (2007). Dietary fish oil reduces the incidence of triggered arrhythmias in pig ventricular myocytes. Heart Rhythm 4, 1452–1460.

Bogdanov, K. Y., Spurgeon, H. A., Vino-gradova, T. M., and Lakatta, E. G. (1998). Modulation of the transient outward current in adult rat ventricular myocytes by polyunsaturated fatty acids. Am. J. Physiol. 274, H571–H579.

Cheng, J. W., and Santoni, F. (2008). Omega-3 fatty acid: a role in the management of cardiac arrhythmia? J. Altern. Complement. Med. 14, 963–974.

Coronel, R., Wilms-Schopman, F. J., Den Ruijter, H. M., Beltermann, C. N., Schumacher, A. C., Opthof, T., Hovenier, R., Lemmens, A. G., Terstra, A. H., Katan, M. B., and Zock, P. (2007). Dietary n-3 fatty acids promote arrhythmias during acute regional myocardial ischemia in isolated pig hearts. Cardiovasc. Res. 73, 386–394.

Den Ruijter, H. M., Berecki, G., Opthof, T., Verkerk, A. O., Zock, P. L., and Coronel, R. (2007). Pro- and antiarrhythmic properties of a diet rich in polyunsaturated fatty acids. Cardiovasc. Res. 73, 316–325.

Den Ruijter, H. M., Berecki, G., Verkerk, A. O., Bakker, D., Baartscheer, A., Schumacher, C. A., Beltermann, C. N., De Jonge, N., Fiolet, J. W., Brouwer, I. A., and Coronel, R. (2008). Acute administration of fish oil reduces triggered activity in isolated myocytes from rabbits and patients with heart failure. Circulation 117, 536–544.

Den Ruijter, H. M., Verkerk, A. O., Berecki, G., Bakker, D., Van Ginneken, A. C., and Coronel, R. (2006). Dietary fish oil reduces the occurrence of early afterdepolarizations in pig ventricular myocytes. J. Mol. Cell. Cardiol. 41, 914–917.

Garrido, A., Garrido, F., Guerra, R., and Valenzuela, A. (1989). Inhibition of generation of fish oil increases the susceptibility of cellular membranes to the induction of oxidative stress. Lipids 24, 833–835.

Jahangiri, A., Leifert, W. R., Kind, K. L., and McMurchie, E. J. (2006). Dietary fish oil alters cardiomyocyte Cav2.3 dynamics and antioxidant status. Free Radic. Biol. Med. 40, 1592–1602.

Li, G. R., Sun, H. Y., Zhang, X. H., Cheng, L. C., Chiu, S. W., Tse, H. F., and Lau, C. P. (2009). Omega-3 polyunsaturated fatty acids inhibit transient outward and ultra-rapid delayed rectifier K + currents and Na + current in human atrial myocytes. Cardiovasc. Res. 81, 286–293.

London, B., Albert, C., Anderson, M. E., Giles, W. R., Van Wagoner, D. R., Bahl, E., Billman, G. E., Chung, M., Lands, W., Leaf, A., McNulty, J., Martens, J. R., Costello, R. B., and Lathrop, D. A. (2007). Omega-3 fatty acids and cardiac arrhythmias: prior studies and recommendations for future research: a report from the National Heart, Lung, and Blood Institute and Office Of Dietary Sup- plements Omega-3 Fatty Acids and their Role in Cardiac Arrhythmogenesis Workshop. Circulation 116, e320–e335.

Mas, E., Woodman, R. J., Burke, V., Pudley, I. B., Beilin, L. J., Durand, T., and Mori, T. A. (2010). The omega-3 fatty acids EPA and DHA decrease plasma F(2)-isoprostanes: results from two placebo-controlled interventions. Free Radic. Res. 44, 983–990.

Nodari, S., Metra, M., Milelli, G., Manerba, A., Cesana, B. M., Gheorghiade, M., and Dei Cas, L. (2009). The role of n-3 PUFA in preventing the arrhythmogenic risk in patients with idiopathic dilated cardiomyopathy. Cardiovasc. Drugs Ther. 23, 5–15.

Rae, J., Cooper, K., Gates, P., and Watsky, M. (1991). Low access resistance perforated patch recordings using amphotericin B. J. Neurosci. Methods 37, 15–26.

Raitt, M. H., Connor, W. E., Morris, C., London, B., Albert, C., Anderson, M. E., and Schumacher, C. A., Veldkamp, M. W., Baartscheer, A., Casini, S., Opthof, T., Hovenier, R. J., Zock, P. L., Coronel, R. (2006). Incorporated sauroleemyl fish oil fatty acids shorten pig ventricular action potentials. Cardiovasc. Res. 70, 599–520.

von Schacky, C. (2008). Omega-3 fatty acids: antiarrhythmic, proarrhythmic or both? Curr. Opin. Clin. Nutr. Metab. Care 11, 94–99.

Ward, C. A., and Giles, W. R. (1997). Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J. Physiol. (Lond.) 500(Pt 3), 631–642.

Xie, L. H., Chen, F., Karagueuzian, H. S., and Weiss, J. N. (2009). Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ. Res. 104, 79–86.

Zhao et al.

DHA suppresses ROS-induced EADs

July 2012 | Volume 3 | Article 252 | 7

www.frontiersin.org