Osteochondroma Arising From the Inferior Articular Process of the Lumbar Spine in a Geriatric Patient: A Case Report and Literature Review

Guang-Xun Lin, MD, PhD1, Hua-Jian Wu, MD1, Chien-Min Chen, MD, PhD2,3,4,* Gang Rui, MD, PhD1,* and Bao-Shan Hu, MD, PhD1,*

Abstract

Objective: Spinal osteochondromas are rare, and approximately less than 5% occur as spinal lesions. We report the case of a solitary osteochondroma of the spine and review and update the literature on spinal osteochondroma, including surgical treatment and subsequent results. Case Description: A 73-year-old female patient complained of a 10-year history of back pain and a 4-year history of right-side lower extremity radiating pain with paresthesia. Computed tomography and magnetic resonance imaging (MRI) revealed a bony mass arising from the inferior articular process (IAP) of L3, presenting with features of compressive spinal stenosis at the L3–L4 level. The treatment strategy included the complete marginal excision of the lesion through the posterior approach, as well as complete decompression of the spinal canal and nerve roots. The patient’s symptoms resolved after surgery, and histopathological examination identified the lesion as an osteochondroma. Review Results: This review study included 168 solitary osteochondroma cases. The most commonly involved spinal level was cervical (51.8%), and the most frequent spinal anatomic column involved was the posterior column (70.8%). Radiculopathy accounted for 30.3% of all cases, myelopathy accounted for 31.0%, and 7.7% exhibited both symptoms simultaneously. The recurrence rate was 6.0%. Conclusion: Computed tomography and MRI can effectively diagnose spinal osteochondroma, and surgical treatment can effectively improve clinical outcomes. In almost all symptomatic cases, the best treatment is marginal excision of the tumor. Complete resection of the cartilaginous cap of the tumor is especially important to prevent recurrence.

1Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
2Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
3College of Nursing and Health Sciences, Dayeh University, Changhua, Taiwan
4School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
*These authors have contributed equally to this work.

Corresponding Authors:
Bao-Shan Hu MD, PhD, Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55 Zhenhai Road, Xiamen 361003, China.
E-mail: xmhbs@21cn.com
Chien-Min Chen MD, PhD, Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.
E-mail: 96015@ccch.org.tw
Gang Rui MD, PhD, Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
E-mail: reigang@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Among benign bone tumors, osteochondromas are a relatively common one. Osteochondroma is also known as osteochondrogenic exostosis or exostosis, which can be solitary or multiple. Osteochondromas usually occur in the long bones in the appendicular skeleton, which involve the metaphyseal or diametaphyseal region. Spinal osteochondromas are rare, and approximately less than 5% occur as spinal lesions. They are usually asymptomatic; however, symptomatic myelopathy, progressive radiating pain, or both, if not diagnosed and treated early, may lead to serious neurological sequelae because it poses a threat to the spinal cord and surrounding vital structures.

Here, we report a case of a solitary lumbar osteochondroma with neurological symptoms and conduct a review of the literature on the subject from 2004.

Case Report

A 73-year-old female presented with a 10-year history of back pain and a 4-year history of right-side lower extremity radiating pain with paresthesia. Neurological intermittent claudication was 100 m, but no abnormalities in urination and defecation were observed. The patient had no prior history of bone masses or other tumors. Computed tomography and magnetic resonance imaging (MRI) showed an abnormal bony mass arising from the right-side inferior articular process (IAP) of L3 that projected into the spinal canal, resulting in marked spinal canal stenosis (Figures 1 and 2).

A posterior median incision centered on L3 was made, the skin and subcutaneous tissue were incised, and the sacral spinal muscles on both sides were bluntly stripped to expose the L3 and L4 spinous processes and both sides of the lamina. The pedicle screws were inserted at the L3 and L4 pedicles. Then, the right portion of the lamina and IAP were removed to visualize the IAP and the 1.5 cm × 1.5 cm bony protrusion in front of the lamina (Figure 3). The protrusion was covered with white cartilage, and the ligamentum flavum, which was hypertrophic, was removed. A check for active bleeding was subsequently performed. The incision was closed layer by layer, and a drainage tube was placed. Finally, the wound was covered with a sterile dressing.

Histopathological examination of the resected tissue revealed a bony lesion with a three-layer structure with clear boundaries: a thickened fibrous capsule on the surface, a hyperplastic cartilage tissue in the middle layer, chondrified bone tissue and cancellous bone in the inner layer, and calcification in some areas; the above descriptions typical of an osteochondroma (Figure 4).

No adverse events were encountered peri- and post-operatively. The patient demonstrated immediate relief from back pain and right leg radiating pain. On postoperative day 3, an MRI scan showed no residual tumor and no compression of the spinal canal (Figure 2E and F).

Discussion

To search for relevant articles on solitary osteochondromas and spinal lesions, we conducted a comprehensive literature review.
search on the database, including PubMed, Embase, and Cochrane Library for papers published from 2004 to August 2020. English language filters were applied, and standard searches were performed with the keywords: “osteochondroma” AND “spinal.” Titles and abstracts from all the reports identified were examined independently by 2 reviewers (G.X.L. and H.J.W.), and the full texts of suitable studies were retrieved. In addition, the reference lists of the selected articles and previous similar meta-analyses on solitary spinal osteochondromas were manually researched. In cases where disagreements could not be resolved, in-depth discussions were conducted, and ultimately decided upon by the senior author. The exclusion criteria were literature reviews, cases of other osteochondromas, and reports without details of the cases.

On reviewing the literature, a total of 207 articles were published from 2004 to August 2020, of which 92 articles4-95 (168 cases) met the inclusion criteria (Figure 5). The demographic data are shown in Table 1. The review included 100 male patients and 68 female patients. The mean age was 35.3 years (range from 2 to 83 years). The most frequent spinal level involved was cervical in 86 (51.8%) of the cases, followed by lumbar with 42 (25.0%), thoracic with 34 (20.2%), sacral with 14 (8.3%), and coccyx with 2 (1.2%). Among the 168 cases, 11 cases involved the vertebral junction, 5 involved the cervicothoracic junction, 2 the thoracolumbar, and 4 the lumboSacral. The most common spinal anatomic column involved was the posterior column with 119 cases (70.8%), followed by the anterior column with 22 (13.1%). In 16.1% of cases, the spinal anatomic column was not reported. Radiculopathy accounted for 30.3% of cases and myelopathy for 31.0%. In 7.7% of cases, both symptoms occurred simultaneously. Only 10 (6.0%)
cases had recurrence after surgery. All 168 cases of solitary spinal osteochondromas are listed in Table 2. Among them, a total of 145 patients underwent surgery, and the clinical symptoms of 123 patients were improved. Two cases presented with worsening symptoms after surgery.

Many studies have been published since the first case of solitary osteochondroma was reported by Reid in 1843, with an increase seen in recent years. Two literature reviews on spinal osteochondroma have been published: included 96 cases (1843–1992) and 54 cases (1992–2003). In present study, 168 new cases were updated from 2004 to 2020.

Figure 4. Histopathological examination.

Figure 5. A flow chart of the review study.
Table 1. Demographic Data of Spinal Solitary Osteochondroma of the 168 Cases.

Symptom	n = 168 (%)
Sex; male: female	100:68
Age (years)	35.3 (range of 2–83 years)
Tumor in spinal level	
Cervical	87 (51.8)
Thoracic	34 (20.2)
Lumbar	42 (25.0)
Sacral	14 (8.3)
Coccyx	2 (1.2)
Involved spinal column	
Anterior	22 (13.1)
Posterior	119 (70.8)
Not reported	27 (16.1)
Symptoms	
Radiculopathy	51 (30.3)
Myelopathy	52 (31.0)
Both	13 (7.7)
Not reported	52 (31.0)
Recurrence	
Yes	10 (6.0)
No	111 (66.1)
Not reported	47 (27.9)

Osteochondromas are derived from the anterior cartilage and connective tissue. Most researchers believe that osteochondromas are hamartomas that occur in the metaphysis of long bones. Osteochondromas are divided into single and multiple forms. The latter is often referred to as osteochondromatosis or multiple exophytic chondroma, among other terms, and most of which are inherited in an autosomal dominant manner. Spinal osteochondromas are relatively rare, with an incidence rate of 1%–4%.9,12,16 Among these, those with neurological symptoms account for .5%–1%.19,20 Of spinal osteochondromas, nearly half of the patients occur in the cervical spine (C2>C3>C6).8,13,19 The second most common occurrence of spinal osteochondromas is thoracic lesions.14,17 Osteochondromas can occur during development due to abnormal development of the epiphyseal plate or frequent minor trauma. The high incidence of cervical osteochondroma is related to its high mobility and greater susceptibility to microtrauma of the epiphyseal plate of the vertebral body. In addition, secondary ossification centers with rapid growth and development have a greater chance of cartilage malformation, and thus of osteochondroma. The secondary ossification centers of the cervical spine ossify in adolescence, faster than the thoracic spine, and the lumbar spine ossifies the latest. Although the mobility of the lumbar spine is greater than that of the thoracic spine, but the ossification is later, so the incidence is lower. Spinal osteochondromas tend to occur in the appendages of the vertebral body, especially in the parts directly attached to the nerves or spinal cord. This tendency may be related to the appearance of secondary ossification centers of the spine during adolescence.

The etiology of osteochondromas is still unclear, and it may be related to the loss of the autosomal dominant tumor suppressor gene EXT-1 or EXT-2, excessive growth of cartilage tissue in the secondary ossification center, minor trauma, or X-ray irradiation.51,58 Several papers reported that bone hyperplasia is also related to the pathogenesis of osteochondromas.61,65 Furthermore, bone transformation may trigger out-of-control cell differentiation, leading to the occurrence of osteomalacia.69,76

In most patients, the cartilage cap and subcapsular fluid on the surface of the tumor are caused by excessive activity, trauma, strain, and other factors, and the tissues surrounding the tumor are edematous, causing compression symptoms.81,84 Spinal osteochondromas can have a variety of clinical manifestations depending on the tumor location, growth rate, and degree of compression. The most common symptoms of spinal osteochondromas are radiating pain, dyskinesias, sensory disturbances, and urinary incontinence. Patients’ subjective symptoms generally gradually worsen but rarely cause acute attacks.

Diagnosis is mainly based on the selection of appropriate imaging examinations based on the patient’s symptoms. Due to the complex anatomical structure of the location of the spinal osteochondroma and the overlap, the diagnosis rate of routine X-ray is low and is thus only used as a screening reference. CT and MRI examinations, on the other hand, are pivotal in determining the nature of the disease, the location and extent of tumoral invasion of the spinal canal, and compression of the spinal cord and nerve roots. Typical osteochondroma lesions are shown on CT as cortical and cancellous bones connected to normal bone at the base. On CT, osteochondromas appear as expansive cauliflower-like bony masses with clear and irregular borders, visible cartilage caps, formation of internal calcification foci, and uneven bone crests and separation shadows. MRI may show different signal characteristics because the size of the lesion and the degree of cartilage calcification are related to signal intensity.49,86 The cartilage cap exhibits different signals depending on the degree of calcification. If the cartilage cap is highly calcified, it will show a low signal on T1- and T2-weighted imaging. Conversely, if the cartilage cap is less calcified, it will show a high signal on T2WI or STIR image and a low to medium signal on T1WI. Thus, MRI is suitable for assessing the impact of tumors on surrounding tissues, such as the spinal cord and nerves. After enhancement, the fibrovascular tissues around, and between the cartilage will be strengthened. MRI can be considered the most accurate method for measuring cartilage cap thickness.
Author	Year	Age	Gender	Level	Location	Presentation	Treatment	Clinical outcomes
Shigekiyo et al⁴	2020	61	Male	L4-L5	L4 lamina	Symptomatic	Complete excision	Complete resolution
Acharya et al⁵	2020	52	Male	T10	Posterior arch of T10	Symptomatic	Complete excision	Complete resolution
Yudistira et al⁶	2020	76	Female	C1-C2	Posterior arch of C1 and lamina of C2	Symptomatic	Complete excision	Complete resolution
Fowler et al	2020	32	Male	C4	Inner margin of the C4 lamina	Symptomatic	Complete excision	Complete resolution
Rajakulasingam et al¹²	2020	83	Male	C7	2 (18.2%)-vertebral body, 9 (81.8%) posterior elements	Symptomatic	N/A	Nonsurgical
Acharya et al⁵	2020	52	Male	T10	Posterior arch of T10	Symptomatic	Complete excision	Complete resolution
Yudistira et al⁶	2020	76	Female	C1-C2	Posterior arch of C1 and lamina of C2	Symptomatic	Complete excision	Complete resolution
Fowler et al	2020	32	Male	C4	Inner margin of the C4 lamina	Symptomatic	Complete excision	Complete resolution
Rajakulasingam et al¹²	2020	83	Male	C7	2 (18.2%)-vertebral body, 9 (81.8%) posterior elements	Symptomatic	N/A	Nonsurgical
Acharya et al⁵	2020	52	Male	T10	Posterior arch of T10	Symptomatic	Complete excision	Complete resolution
Yudistira et al⁶	2020	76	Female	C1-C2	Posterior arch of C1 and lamina of C2	Symptomatic	Complete excision	Complete resolution
Fowler et al	2020	32	Male	C4	Inner margin of the C4 lamina	Symptomatic	Complete excision	Complete resolution
Rajakulasingam et al¹²	2020	83	Male	C7	2 (18.2%)-vertebral body, 9 (81.8%) posterior elements	Symptomatic	N/A	Nonsurgical
Acharya et al⁵	2020	52	Male	T10	Posterior arch of T10	Symptomatic	Complete excision	Complete resolution
Yudistira et al⁶	2020	76	Female	C1-C2	Posterior arch of C1 and lamina of C2	Symptomatic	Complete excision	Complete resolution
Fowler et al	2020	32	Male	C4	Inner margin of the C4 lamina	Symptomatic	Complete excision	Complete resolution
Rajakulasingam et al¹²	2020	83	Male	C7	2 (18.2%)-vertebral body, 9 (81.8%) posterior elements	Symptomatic	N/A	Nonsurgical
Acharya et al⁵	2020	52	Male	T10	Posterior arch of T10	Symptomatic	Complete excision	Complete resolution
Yudistira et al⁶	2020	76	Female	C1-C2	Posterior arch of C1 and lamina of C2	Symptomatic	Complete excision	Complete resolution
Fowler et al	2020	32	Male	C4	Inner margin of the C4 lamina	Symptomatic	Complete excision	Complete resolution
Rajakulasingam et al¹²	2020	83	Male	C7	2 (18.2%)-vertebral body, 9 (81.8%) posterior elements	Symptomatic	N/A	Nonsurgical

(continued)
Author	Year	Age	Gender	Level	Location	Presentation	Treatment	Clinical outcomes
Sciubba et al	2015	35	Female	C7	N/A	N/A	En bloc resection	N/A
	2015	48	Male	S1	N/A	N/A	En bloc resection	N/A
	2015	46	Male	C7	N/A	N/A	Intralesional excision	N/A
	2015	46	Female	T9-T10	N/A	N/A	Intralesional excision	N/A
	2015	61	Male	L2	N/A	N/A	Intralesional excision	N/A
	2015	65	Male	C3-T2	N/A	N/A	En bloc resection	N/A
	2015	48	Male	S1	N/A	N/A	En bloc resection	N/A
	2015	43	Female	C6-C7	N/A	N/A	En bloc resection	N/A
	2015	76	Female	T11-T12	N/A	N/A	Intralesional excision	N/A
	2015	21	Male	S1	N/A	N/A	En bloc resection	N/A
	2015	49	Female	C5-C7	N/A	N/A	Intralesional excision	N/A
	2015	17	Male	S1	N/A	N/A	En bloc resection	N/A
	2015	32	Male	L1-L1	N/A	N/A	Intralesional excision	N/A
	2015	60	Male	T12	N/A	N/A	Intralesional excision	N/A
	2015	65	Male	C1-T3	N/A	N/A	Complete excision	N/A
	2015	43	Female	L1-L1	N/A	N/A	Complete excision	N/A
	2015	46	Female	T1-T2	N/A	N/A	Intralesional excision	N/A
	2015	11	Male	L5-L5	N/A	N/A	Intralesional excision	N/A
	2015	18	Male	T10	N/A	N/A	Intralesional excision	N/A
	2015	21	Male	L2	N/A	N/A	Intralesional excision	N/A
	2015	26	Male	L3-T3	N/A	N/A	Intralesional excision	N/A
	2015	26	Male	C4-C5	N/A	N/A	Intralesional excision	N/A
	2015	33	Male	L1-T1	N/A	N/A	Intralesional excision	N/A
	2015	31	Male	C1-C3	N/A	N/A	Intralesional excision	N/A
	2015	2	Female	T8-T11	N/A	N/A	Intralesional excision	N/A
	2015	37	Female	C2	N/A	Symptomatic	Complete excision	N/A
	2015	24	Female	L4	N/A	Symptomatic	N/A	N/A
	2015	40	Male	L5	Right anteriosuperior endplate of L5	Symptomatic	Complete excision	Complete resolution
	2014	59	Male	C4	Posterior C4 arch	Symptomatic	Complete excision	Near complete resolution
	2014	28	Male	T2-T3	Posterior arch	Symptomatic	Laminectomy	Complete resolution
	2014	48	Male	C6	Posterior arch	Symptomatic	Complete excision	Complete resolution
	2014	24	Female	C3	Lamina	Symptomatic	N/A	N/A
	2014	57	Male	L4	Inferior articular process	Symptomatic	Laminectomy	Complete resolution
	2014	63	Female	S1	Superior articular process	Symptomatic	Hemilaminectomy	Complete resolution
	2014	48	Female	L4	Inferior articular process	Symptomatic	Hemilaminectomy near	Complete resolution
	2014	32	Male	L4	Inferior articular process	Symptomatic	Hemilaminectomy	Complete resolution
	2014	62	Male	L4	Inferior articular process	Symptomatic	Hemilaminectomy	Complete resolution
	2014	68	Male	C4-C5	Anterior arch	Symptomatic	Complete excision	Complete resolution
	2014	20	Male	C7-T1	Posterior arch	Asymptomatic	Complete excision	N/A
	2014	68	Female	T9-L3	Posterior arch	Symptomatic	Complete excision	Complete resolution
	2014	11	Male	L2-L4	Inferior articular process	Symptomatic	En bloc resection	Complete resolution
	2014	14	Female	C5-C6	Transverse process	Asymptomatic	Total excision	Complete resolution
	2014	52	Male	C2-C6	Transverse process	Symptomatic	Laminectomy	Complete resolution
Author	Year	Age	Gender	Level	Location	Presentation	Treatment	Clinical outcomes
----------------	------	-----	--------	-----------	---------------------------	--------------	----------------------------------	--
Zinna et al	2013	9	Male	C1-C2	Inner surface of C2 arch	Symptomatic	C2 hemilaminectomy, resection of posterior C1 arch	Complete resolution
Natale et al	2013	56	Female	L2	Lamina	Symptomatic	En bloc resection	Complete resolution
Gulyi et al	2013	22	Male	C3-C4	Vertebral bodies and pedicles	N/A	N/A	N/A
Lin et al	2013	43	Male	L4	Spinal process	Symptomatic	Complete excision	Complete resolution
	2013	26	Male	C1-C2	Lateral mass	Symptomatic	Complete excision	Complete resolution
	2013	11	Male	T1	Laminar	Symptomatic	Laminectomy, complete excision	Complete resolution
	2013	60	Female	C1	Laminar	Symptomatic	Complete excision	Worsening of symptoms
	2013	34	Female	C1-C2	Laminar	Symptomatic	Laminectomy, complete excision	Complete resolution
	2013	17	Female	C1	Transverse process	Symptomatic	Complete excision	Complete resolution
	2013	63	Female	C5-C7	Lamina	Symptomatic	Complete excision	Complete resolution
	2013	17	Female	T6	Pedicle	Symptomatic	Laminectomy, complete excision	Complete resolution
	2013	49	Female	C2-C3	Vertebral body	Symptomatic	Laminectomy, complete excision	Worsening of symptoms
	2013	68	Female	L2	Lamina	Symptomatic	Laminectomy, complete excision	Complete resolution
	2013	56	Female	T5	Vertebral body	Symptomatic	Laminectomy, complete excision	Partial functional resolution
	2013	57	Female	C5	N/A	Symptomatic	Laminectomy, complete excision	Complete resolution
Mardi et al	2013	9	Male	T1	Vertebral body and posterior arch	Symptomatic	Partial resection near	Complete resolution
Wong et al	2013	65	Male	C2	Vertebral body	Symptomatic	Complete excision	Complete resolution
Mehrian et al	2013	19	Male	T9	Posterior arch	Symptomatic	Laminectomy	Complete resolution
Kahveci et al	2012	62	Female	L2	Inferior articular process	Symptomatic	Complete excision	Complete resolution
Strovski et al	2012	39	Male	L4	N/A	Symptomatic	N/A	N/A
Rahman et al	2012	16	Male	C1	Posterior arch	Symptomatic	Laminectomy near	Complete resolution
Kahveci et al	2012	48	Male	L3	Inferior articular process	Symptomatic	Hemilaminectomy, complete excision near	Complete resolution
Bonic et al	2012	21	Female	C5	Spinous process	Symptomatic	Laminectomy w/ en bloc resection	Complete resolution
Mudumba et al	2012	14	Male	C3	Lamina	Symptomatic	Laminectomy w/ en bloc resection	Complete resolution
Lee et al	2012	32	Male	C4-C5	Lamina and facet joint	Symptomatic	Hemilaminectomy near	Complete resolution
Er et al	2012	42	Female	C1	Lamina	Symptomatic	Laminectomy	Complete resolution
Okamoto et al	2011	69	Male	C7-T1	N/A	Symptomatic	Laminectomy	Complete resolution
Eap et al	2011	23	Male	C4	Posterior arch	Symptomatic	Laminectomy	Complete resolution
Volokhina et al	2011	26	Male	C2	Lamina	Symptomatic	Complete excision	Complete resolution

(continued)
Author	Year	Age	Gender	Level	Location	Presentation	Treatment	Clinical outcomes
Reckelhoff et al	2010	24	Male	C4	Vertebral body	Symptomatic	Nonsurgical manipulation	Complete resolution
Gunay et al	2010	26	Male	L1	Spinous process	Symptomatic	Complete excision	Complete resolution
					Spinous process, posterior arch	Symptomatic	En bloc excision	Complete resolution
					Lamina	Symptomatic	Laminctomy	Complete resolution
					Vertebral body	Symptomatic	Hemilaminectomy	Complete resolution
					Symptomatic	Symptomatic	Hemilaminectomy, resection	Complete resolution
					Symptomatic	Symptomatic	Partial resection, corpectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
					Symptomatic	Symptomatic	Partial laminectomy, facetectomy	Complete resolution
Table 2. (continued)

Author	Year	Age	Gender	Level	Location	Presentation	Treatment	Clinical outcomes
Ozturk et al	2007	46	Male	C1	Lamina	Symptomatic	Hemilaminectomy	Complete resolution
Song et al	2006	11	Male	T4	Superior articular process	Symptomatic	Laminectomy (T2-T3)	Complete resolution
Maheshwari et al	2006	20	Male	C7	Pedicle	Symptomatic	Laminectomy	Complete resolution
Moon et al	2006	16	Male	CS-C7	Spinal process	Symptomatic	Hemilaminectomy, complete excision of tumor	Complete resolution
Samartzis et al	2006	11	Male	S2	Lamina	Symptomatic	Laminectomy (S1-S4)	Complete resolution
McCall et al	2006	13	Female	C3	Lamina	Asymptomatic	Complete excision	N/A
Yoshida et al	2006	61	Female	C1	C1 anterior arch	Symptomatic	Complete excision	Complete resolution
Grivas et al	2005	46	Female	C7	Pedicle	Symptomatic	Complete excision	Complete resolution
Brastianos et al	2005	26	Female	T12	Vertebral body	Symptomatic	Complete excision, T12 corpectomy	Complete resolution
Agrawal et al	2005	14	Male	LS-S1	Iliac crest	Symptomatic	Laminectomy	Complete resolution
Faik et al	2005	19	Male	T4-T5	Costovertebral angle, T4-T5 foramina	Symptomatic	Laminectomy, complete excision	Complete resolution
Miyamoto et al	2005	23	Male	C2	Pedicle	Symptomatic	Hemilaminectomy, partial excision	Partial functional recovery
Gille et al	2005	18	Female	C4	Transverse process	Symptomatic	Cervicotomy	Complete resolution
	2005	15	Male	C5	Vertebral body	Symptomatic	Laminectomy and cervicotomy	Complete resolution
	2005	73	Male	C2	Posterior arch	Symptomatic	Laminectomy	Complete resolution
	2005	18	Male	T11	Pedicle	Asymptomatic	Laminectomy	Complete resolution
	2005	28	Female	L4	Posterior arch	Symptomatic	Laminectomy	Complete resolution
	2005	45	Female	S1	Vertebral body	Symptomatic	Lumbotomy	Complete resolution
Kouwenhoven et al	2004	42	Male	C1-C2	Neural arch	Symptomatic	Laminectomy, en bloc resection	Complete resolution
Gurkanlar et al	2004	35	Male	L4	Lamina	Symptomatic	Complete excision	Complete resolution
Schrot et al	2004	15	Male	C7-T1	Posterior elements	Symptomatic	Hemilaminectomy and pediculectomy; complete excision	Complete resolution
Kulkarni et al	2004	15	Male	T10-T11	Facet	Symptomatic	Laminectomy	Complete resolution
Although osteochondromas of the spine are benign tumors, they have a specific site of growth. The authors concluded that small, single osteochondromas growing outside the spinal canal are unnecessary to remove in the absence of clinical symptoms. However, larger osteochondromas or any osteochondroma that affects the spinal canal should be treated surgically to avoid causing or worsening spinal cord and nerve damage, especially when complete resection is complicated and difficult due to tumor enlargement. The tumor should be removed as much as possible during surgery because incomplete removal of the tumor body or cartilage cap can lead to tumor recurrence. The recurrence rate after resection is low, and the histological manifestations of recurring tumors are benign cartilage lesions and low-grade chondrosarcomas.10,34 However, considering that not all studies clearly report this parameter, many recurrences may not be reported.

The most serious complication of osteochondromas is malignant transformation. The typical malignant transformation usually occurs after bone maturation and rarely occurs before the age of 20. The prognosis of spinal osteochondromas is generally good and is related to the degree and location of preoperative nerve damage. A better understanding of tumor biology and the development of advanced imaging and surgical techniques have made the treatment in recent years more convenient and effective.

Conclusion

Surgical treatment of a rare, lumbar osteochondroma has achieved good clinical results through posterior decompression and fusion surgery to alleviate radiating pain with paresthesia. Our literature review found that spinal osteochondromas mostly occurred on the cervical spine and often involved the posterior spine column. Solitary spinal lesions have caused neurologic symptoms, such as radiculopathy and myelopathy. The ideal treatment in almost all symptomatic cases is marginal resection. The tumor should be removed as much as possible during surgery because incomplete removal of the tumor body or cartilage cap can lead to tumor recurrence. The recurrence rate after resection is low, and the histological manifestations of recurring tumors are benign cartilage lesions and low-grade chondrosarcomas.10,34 However, considering that not all studies clearly report this parameter, many recurrences may not be reported.

The most serious complication of osteochondromas is malignant transformation. The typical malignant transformation usually occurs after bone maturation and rarely occurs before the age of 20. The prognosis of spinal osteochondromas is generally good and is related to the degree and location of preoperative nerve damage. A better understanding of tumor biology and the development of advanced imaging and surgical techniques have made the treatment in recent years more convenient and effective.

Author Contributions

Writing—original draft: Guang-Xun Lin
Investigation and Software: Hua-Jian Wu
Project administration: Chien-Min Chen
Supervision: Gang Rui
Writing—review and editing: Bao-Shan Hu.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: This retrospective study was approved by the institutional Ethics Committee of the First Affiliated Hospital of Xiamen University. Informed consent was waived due to the retrospective and non-interventional nature of this analysis.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by the Natural Science Foundation of Fujian Province, grant number 2021J05282, funded by the “Xiamen Health System Discipline Leaders and their Backup Candidates, Senior Management Talent Training Candidates Training Program.”

ORCID iD

Guang-Xun Lin @ https://orcid.org/0000-0002-9828-2768

References

1. Sinelnikov A, Kale H. Osteochondromas of the spine. Clin Radiol. 2014;69(12):e584-90.
2. O’Brien MF, Bridwell KH, Lenke LG, Schoenecker PL. Intracanalicular osteochondroma producing spinal cord compression in hereditary multiple exostoses. J Spinal Disord. 1994;7:236-241.
3. Albrecht S, Crutchfield JS, SeGall GK. On spinal osteochondromas. J Neurosurg. 1992;77:247-252.
4. Shigekiyo S, Nishisho T, Takata Y, et al. Intracanalicular Osteochondroma in the Lumbar Spine. NMC Case Report Journal. 2020;7:11-15.
5. Acharya A, Grewal SS, John PS, et al. Solitary osteochondroma of dorsal spine causing canal stenosis with myelopathy – A case report with review of literature. Surg Neurol Int. 2020;11:199
6. Yudistira A, Fujiwara Y, Sukmajaya WP, et al. Multiple osteochondromas of the cervical spine, a potential cause of radiculopathy in the elderly: A case report and review of literature. Int J Surg Case Rep. 2020;69:13-19.
7. Fowler J, Takayanagi A, Siddiqi I, et al. Cervical osteochondroma: Surgical planning. Spinal Cord Series Cases. 2020;28:44.
8. Chang DG, Park J. Osteochondroma arising from the transverse process of the lower cervical spine in an elderly patient. World Neurosurg. 2019;130:450-453.
9. Gigi R, Kurian BT, Cole A, et al. Late presentation of spinal cord compression in hereditary multiple exostosis: Case reports and review of the literature. J Child Orthop. 2019;13:463-470.
10. Hari A, Kavar B. Rare case of malignant transformation of a solitary spinal osteochondroma into recurrent metastatic chondrosarcoma. J Clin Neuropathol. 2019;67:280-288.
11. Das S, Alshaya W, O’Hara C, et al. A rare case of osteochondroma of the coccyx. Clin Neuropathol. 2018;37(6):38-40.
12. Rajakulasingam R, Murphy J, Botchu R, et al. Osteochondromas of the cervical spine—case series and review. J Clin Orthop Trauma. 2020;11(5):905-909.
13. Akhaddar A, Zymi N, Rharrassi I. Multiple hereditary exostoses with tetraparesis due to cervical spine osteochondroma. World Neurosurg. 2018;116:247-248.
14. Ganesh S. Solitary facet joint osteochondroma of the upper thoracic spine: An unusual cause of cord compression in the pediatric age group. Neurol India. 2018;66:555-556.

15. Garcia-González O, Mireles-Canó JN, Sánchez-Zavala N, et al. Multiple hereditary osteochondromatosis with spinal cord compression: Case report. Childs Nerv Syst. 2018;34(3):565-569.

16. Tripathy SK, Nanda SN, Sable MK, et al. Solitary Sacral Osteochondroma causing postural difficulty in a young female: A case report and a review of the literature. Cureus. 2019;11(12):e6470.

17. Du K, Lou Z, Zhang C, et al. Transpedicular excision of a thoracic intraspinal osteochondroma in a patient with hereditary multiple exostoses and Brown-Séquard Syndrome. World Neurosurg. 2018;111:94-98.

18. Fukushi R, Emori M, Iesato N, et al. Osteochondroma of the cervical spine: a case report and review of the literature. J Orthop Sci. 2017;46(suppl 3):1125-1130.

19. Garg B, Batra S, Dixit V. Solitary anterior osteochondroma of cervical spine: An unusual cause of dysphagia and review of literature. J Clin Orthop Trauma. 2018;9(suppl 2):S5-S7.

20. Raswan US, Bhat AR, Tanki H, et al. A solitary osteochondroma of the cervical spine: a case report and review of literature. Childs Nerv Syst. 2017;33:1019-1022.

21. Nakaya Y, Ohue M, Baba I, et al. Paraarticular osteochondroma of a lumbar facet joint presenting with radiculopathy. J Orthop Sci. 2018;23(3):592-595.

22. Sade R, Ulusoy OL, Mutlu A, et al. Osteochondroma of the lumbar spine. Joint Bone Spine. 2016;84:225.

23. Veeravagu A, Li A, Shuer LM, et al. Cervical Osteochondroma causing myelopathy in adults: Management considerations and literature review. World Neurosurg. 2017;97:752.e5-752.e13.

24. Sultan M, Khursheed N, Makhdoomi R, Ramzan A. Compressive myelopathy due to osteochondroma of the atlas and review of the literature. Pediatr Neurosurg. 2016;51:99-102.

25. Zhang Y, Ilaslan H, Hussain MS, Bain M, Bauer TW. Symptomatic cervical osteochondroma causing vertebral artery compression and acute cerebellar infarct. Skeletal Radiol. 2015;44:299-302.

26. Hancock GE, Mariathas C, Fernandes JA, Breakwell LM, Cole AA, Michael AL. Osteochondroma arising from a lumbar facet joint in a 16-year-old. J Pediatr Orthop B. 2015;24:251-254.

27. Baruah RK, Das H, Haque R. Solitary sacral osteochondroma without neurological symptoms: a case report and review of the literature. Eur Spine J. 2015;24(suppl 4):S628-S632.

28. Sciubba DM, Macki M, Bydon M, et al. Long-term outcomes in primary spinal osteochondroma: a multicenter study of 27 patients. J Neurosurg Spine. 2015;22:582-588.

29. Kim JH, Kang JW. Oropharyngeal mass causing obstructive sleep apnea. Osteochondroma. JAMA Otolaryngol Head Neck Surg. 2015;141:393-394.

30. Sade R, Yuce I, Karaca L, Ogul H, Kantarci M, Eren S. Lumbar osteochondroma presented with low back pain. Spine J. 2015;15:e35.

31. Rymarczuk GN, Dirks MS, Whittaker DR, Neal CJ. Symptomatic lumbar osteochondroma treated via a multidisciplinary military surgical team: case report and review of the literature. Military Med. 2015;180:e129-e133.

32. Fadili S, Clarencon F, Bonneville F, Savatovsky J, Deltour S, Dormont D. Occlusion of vertebral artery due to transverse canal osteochondroma. Clin Neuroradiol. 2014;24:395-397.

33. Ramdasi RV, Mahore A. Solitary thoracic osteochondroma presenting as Brown-Séquard syndrome. BMJ Case Rep. 2014;2014:bcr2014206656.

34. Akhaddar A, Boucetta M. Solitary osteochondroma of the cervical spine presenting as recurrent torticolis. Pan Afr Med J. 2014;17:271.

35. Ogul H, Tuncer K, Can CE, et al. An unusual cause of spinal compression in a young woman: cervical osteochondroma. Spine J. 2014;14(7):1356.

36. Kuraishi K, Hanakita J, Takahashi T, et al. Symptomatic osteochondroma of lumbosacral spine: report of 5 cases. Neurol Med -Chir. 2014;54(5):408-412.

37. Papa GD, La RG, Barbagallo G, et al. Transient breathing disorders after posterior cervical surgery for degenerative diseases: Pathophysiological interpretation. Eur Rev Med Pharmacol Sci. 2014;18(1 suppl):89-92.

38. Sharma C, Acharya M, Kumawat BL, Parekh J. Giant spinal exostosis. BMJ Case Rep. 2014;2014:bcr2014203819.

39. Ruivo C, Hopper MA. Spinal chondrosarcoma arising from a solitary lumbar osteochondroma. JBR-BTR. 2014;97:21-24.

40. Pourtaheri S, Emami A, Stewart T, et al. Hip flexion contracture caused by an intraspinal osteochondroma of the lumbar spine. Orthopedics. 2014;37:e398-e402.

41. Huda N, Jullifqar M, Pant A, Jameel T. Giant cervical spine osteochondroma in an adolescent female. J Clin Diagn Res. 2014;8:LD01-LD02.

42. Sekharappa V, Amritandan R, Krishnan V, David KS. Symptomatic solitary osteochondroma of the subaxial cervical spine in a 52-year-old patient. Asian Spine J. 2014;8:84-88.

43. Zinna SS, Khan A, Chow G. Solitary cervical osteochondroma in a 9-year-old child. Pediatr Neurol. 2013;49:218-219.

44. Natale M, Rotondo M, D’Avanzo R, Scuotto A. Solitary lumbar osteochondroma presenting with spinal cord compression. BMJ Case Rep. 2013;2013:bcr2013010142.

45. Gulati A, Mittal A, Singal R, Gupta S, Garg V. A unique case of cervical osteochondroma causing dysphagia. Kulak Burun Bogaz Ihtisas Dergisi/J Ear Nose Throat: KBB 2013;23:246-248.

46. Lin ZJ, Yang XH, Wu ZP, et al. Outcome and prognosis of myelopathy and radiculopathy from osteochondroma in the
mobile spine: A report on 14 patients. J Spinal Disord Tech. 2013;26:194-199.

47. Mardi K, Madan S. Pediatric solitary osteochondroma of T1 vertebra causing spinal cord compression: A case report. South Asian J Cancer. 2013;2:144.

48. Wong K, Bhagat S, Clibbon J, Rai AS. “Globus symptoms”: A rare case of giant osteochondroma of the axis treated with high cervical extrapharyngeal approach. Global Spine J. 2013;3:115-118.

49. Mehrian P, Karimi MA, Kahkuee S, Bakhshayeshkaram M, Ghasemikiah R. Solitary osteochondroma of the thoracic spine with compressive myelopathy: A rare presentation. Iran J Radiol. 2013;10:77-80.

50. Kahveci R, Ergungor MF, Gunaydin A, Sanli AM, Temiz A. Solitary lumbar osteochondroma presenting with foot-drop: A case report. Turkish Neurosurg. 2012;22:386-388.

51. Strovski E, Ali R, Graeb DA, Munk PL, Chang SD. Malignant degeneration of a lumbar osteochondroma into a chondrosarcoma which mimicked a large retroperitoneal mass. Skeletal Radiol. 2012;41:1319-1322.

52. Rahman A, Bhandari PB, Hoque SU, Ansari A, Hossain AT. Solitary osteochondroma of the atlas causing spinal cord compression: A case report and literature review. BMJ Case Rep. 2012;2012:bcr201115435.

53. Kahveci R, Ergungor MF, Gunaydin A, Temiz A. Lumbar solitary osteochondroma presenting with cauda equina syndrome: A case report. Acta Orthop Traumatol Turc. 2012;46:468-472.

54. Bonic EE, Kettner NW. A rare presentation of cervical osteochondroma arising in a spinal process. Spine. 2012;37:E69-E72.

55. Mudumba V, Mamindla RK. Cervical osteochondroma presenting with acute quadriplegia. Asian J Neurosurg. 2012;7:101-102.

56. Lee JY, Im SB, Park KW, Shin DS. Subclinical cervical osteochondroma presenting as Brown-Squard syndrome after trivial neck trauma. J Korean Neurosurg Soc. 2012;47:313-315.

57. Yagi M, Ninomiya K, Kihara M, Horiuchi Y. Symptomatic osteochondroma of the spine in elderly patients. Report of 3 cases. J Neurosurg Spine. 2009;11:64-70.

58. Xu J, Xu CR, Wu H, Pan HL, Tian J. Osteochondroma in the lumbar intraspinal canal causing nerve root compression. Orthopedics. 2009;32:133.

59. Hao H, Jakharia S. Giant cervical exostosis: A case report with review of literature. J Pediatr Orthop B. 2009;18:103-105.

60. Wang V, Chou D. Anterior C1-2 osteochondroma presenting with dysphagia and sleep apnea. J Clin Neurosci. 2009;16:581-582.

61. Ding WY, Li BJ, Shen Y, et al. Osteochondroma arising from the thoracic transverse process. Spine. 2009;34:13-16.

62. Ho SK, Kung LS, Chan PK, et al. Solitary lumbar osteochondroma causing sciatic pain. Joint Bone Spine. 2007;74:400-401.

63. Song K, Liu K. Solitary osteochondroma of the spine causing myelopathy. Eur J Pediatr Surg. 2007;17:210-213.

64. Zhao CQ, Jiang SD, Jiang LS, Dai LY. Horner syndrome due to a solitary osteochondroma of C7: a case report and review of the literature. Spine. 2008;32:E471-E474.

65. Chatzidakis E, Lypridis S, Kazdaglis G, Chatzikonstadinou K, Papaheodorou G. A rare case of solitary osteochondroma of the dens of the C2 vertebra. Acta Neurochir. 2007;149:637-638.

66. Ozturk C, Tezer M, Hamzaoglu A. Solitary osteochondroma of the cervical spine causing spinal cord compression. Acta Orthop Belg. 2007;73:133-136.

67. Maheshwari AV, Jain AK, Dhammi IK. Osteochondroma of C7 vertebra presenting as compressive myelopathy in a patient with nonhereditary (nonfamilial/sporadic)
multiple exostoses. Arch Orthop Trauma Surg. 2006; 126:654-659.

80. Moon KS, Lee JK, Kim YS, et al. Osteochondroma of the cervical spine extending multiple segments with cord compression. Pediatr Neurosurg. 2006;42:304-307.

81. Samartzis D, Marco RA. Osteochondroma of the sacrum: A case report and review of the literature. Spine. 2006;31:E425-E429.

82. McCall TD, Liu JK, Kestle JR. Sporadic osteochondroma of the cervical spine. Case Illustration. J Neurosurg. 2006; 104(4 suppl):S293.

83. Yoshida T, Matsuda H, Horiuchi C, et al. A case of osteochondroma of the atlas causing obstructive sleep apnea syndrome. Acta Otolaryngol. 2006;126:445-448.

84. Grivas TB, Polyzois VD, Xarchas K, Liapi G, Korres D. Seventh cervical vertebral body solitary osteochondroma. Report of a case and review of the literature. Eur Spine J. 2005;14:795-798.

85. Brastianos P, Pradilla G, McCarthy E, Gokaslan ZL. Solitary thoracic osteochondroma: case report and review of the literature. Neurosurgery. 2005;56:E1379.

86. Agrawal A, Dwivedi SP, Joshi R, Gangane N. Osteochondroma of the sacrum with a correlative radiographic and histological evaluation. Pediatr Neurosurg. 2005;41:46-48.

87. Faik A, Mahfoud Filali S, Lazrak N, El Hassani S, Hajjaj-Hassouni N. Spinal cord compression due to vertebral osteochondroma: Report of two cases. Joint Bone Spine. 2005; 72:177-179.

88. Miyamoto K, Sakaguchi Y, Hosoe H, et al. Tetraparesis due to exostotic osteochondroma at upper cervical cord in a patient with multiple exostoses-mental retardation syndrome (Langer-Giedion syndrome). Spinal Cord. 2005;43:190-194.

89. Kouwenhoven JW, Wuisman PI, Ploegmakers JF. Headache due to an osteochondroma of the axis. Eur Spine J. 2004;13: 746-749.

90. Gurkanlar D, Aciduman A, Gunaydin A, Kocak H, Celik N. Solitary intraspinal lumbar vertebral osteochondroma: A case report. J Clin Neurosci. 2004;11:911-913.

91. Schrot RJ, Kim KD, Fedor M. Trevor disease of the spine. Case report. J Neurosurg Spine. 2004;1:342-346.

92. Kulkarni AG, Goel A, Muzumdar D. Solitary osteochondroma arising from the thoracic facet joint—case report. Neurol Med -Chir. 2004;44:255-257.

93. Gille O, Pointillart V, Vital JM. Course of spinal solitary osteochondromas. Spine. 2005;30:E13-E19.

94. Pham MH, Cohen J, Tuchman A, Commins D, Acosta FL. Large solitary osteochondroma of the thoracic spine: Case report and review of the literature. Surg Neurol Int. 2016; 7(suppl 13):S323-S327.

95. Volokhina Y, Dang D. Unique case of solitary osteochondroma of left lamina of C2 presenting with neurologic deficits. Radiol Case Rep. 2015;6(4):551.

96. Reid J. Disease of the spinal cord from exostosis of the second cervical vertebra. Lond Edinb Mon J Med Sci. 1843; 3:194-198.