INTRODUCTION

Triple-negative breast cancer (TNBC) is a special subtype of breast cancer that lacks the expression of ER, PR, and HER2. Universal treatment strategies have been introduced for TNBC in the last decades, but the clinical outcomes of TNBC remain poor due to its malignant biological behavior and lack of targeted therapeutic methods. Thus, comprehensive studies are warranted to understand the biological profile and mechanism of TNBC for developing novel effective therapeutic strategies.

Cell senescence is a universal biological feature of organisms, which occurs in response to exogenous and endogenous stresses. Generally, senescent cells have the following characteristics: cell cycle arrest in G1 and resistance to apoptosis; retain some basic metabolic activities...
and senescence-associated secretory phenotype (SASP).8,9 Cell cycle arrest of senescent cells is regulated by the p53/p21CIP1 and p16INK4a/Rb tumor suppressor pathway.10,11 Unlike quiescent cells, senescent cells could not respond to mitosis or growth factor stimulation, they are unable to re-enter the cell cycle even under favorable growth conditions. SASP, which includes the secretion of numerous proinflammatory cytokines, chemokines, extracellular matrix proteases, and growth factors, plays a crucial role in aging-related disease.9,12

Currently, great attention has been paid to the association between aging and cancer. At the first glance, they seem to be opposite processes: cancer is the result of an abnormal increase in cellular adaptation, while aging is characterized by a loss of cellular adaptation. Further exploring showed that tumor and aging have the common feature: the biological basis of cancer cells, namely abnormal mitochondrial function, is consistent with the decline of mitochondrial function in the aging process.13,14 Furthermore, senescent cells promote tumor progression by influencing tumor microenvironment and inducing chromosomal instability.15,16 Thus, cancer and aging can be thought of two different manifestations of the same underlying process.

Previous studies have confirmed that aging is closely related to the occurrence and development of tumors. Senescent cells can trigger inflammatory response and involvement in the underlying mechanism of tumor progression.13,14,17–19 On the one hand, senescent cells interact with immune cells by secreting a variety of cytokines and chemokines, thus further removing senescent tumor cells and inhibiting tumor development.20,21 On the other hand, some inflammatory factors in SASP may escape immune surveillance and promote tumor malignancy by paracrine pathway.22,23 Furthermore, senescence-related inflammation response (SIR), a low-grade atypical inflammatory response in senescent epithelial cells, can promote the tumorigenesis and development of tumors by secreting a variety of pro-cancer inflammatory factors.24,25

Conventional wisdom holds that TNBC is more likely to occur in younger patients. The relationship between aging and tumor initiation and progression in this cancer type has not been well clarified. An increasing number of researches hold that aging may involve the induction and malignancy of TNBC by complex underlying mechanisms. First, the cumulative mutation events caused by aging partially explain the relationship between aging and this heterogeneous cancer type.26 For instance, the frequency of diver mutations in genes such as BRCA1/2 or TP53 is higher in TNBC than other breast cancer subtypes, which also involve in the regulation of cell senescence.27,28 Besides, DNA damage gene therapy (mainly radiotherapy and chemotherapy), the main treatment for TNBC patients in clinical practice, can induce senescent tumor cells to secrete SASP, then promote tumor migration and metastasis. Previous research found that chemotherapy-resistant TNBC cells occurred cell senescence, then maintain a dormant status, which would become the root of disease recurrence and metastases.29,30 Thus, elaborating the aging status in TNBC may contribute to understand the biological profile and mechanism of TNBC.

The human aging genome resource (HAGR) is a database designed to help researchers explore the characteristics of human aging genes.31 To evaluate the underlying biological functions of aging-related genes (ARGs) in TNBC, we initially downloaded ARGs from HAGR dataset. Then, the gene expression profiles of TNBC patients from METABRIC, TCGA and GSE58812 datasets were obtained to establish and substantiate an aging-related gene signature for predicting survival, immune response, and therapeutic response in TNBC by performing a comprehensive bioinformatics analysis.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

The mRNA expression profiles of TNBC patients with clinical and survival information were acquired from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, \(N = 221\)) (http://www.cbioportal.org/), the cancer genome atlas (TCGA, \(N = 142\)) (https://portal.gdc.cancer.gov/), and GSE58812 (\(N = 107\)) (http://www.ncbi.nlm.nih.gov/geo/). A total of 307 ARGs were collected from the human aging genome resource (HAGR) dataset (http://genomics.senesence.info/genes/). The inclusion criteria were listed as follows: female, diagnosed TNBC, the survival time more than 30 days. The METABRIC dataset served as a training set to construct a risk model based on the selected ARGs, the TCGA and GSE58812 datasets acted as testing sets to validate the established model.

2.2 | Identify prognostic ARGs and establish a risk model based on selected ARGs

Using the R package “survival”, prognosis-associated ARGs were selected according to the standard of \(p < 0.05\) by univariate Cox analysis. Then, using the R package “glmnet”,32 the most robust prognostic ARGs were selected in the LASSO Cox regression. Finally, a risk model based on 10 selected ARGs was established.

The calculated formula of risk score as follows:

\[
\text{Risk score} = \sum i \times \text{Coefficient (ARG)} \times \text{Expression (ARG)}
\]
Where coefficient (ARG) and expression (ARG) present the corresponding coefficient and the expression level of each selected prognostic ARG, respectively. Then, patients were divided into low- and high-risk groups according to the median risk score.

2.3 | Evaluation of the immune landscape

The compositional fraction of 22 immunocytes of each sample was calculated applying the CIBERSORT algorithm. Immune-related efficiency of each sample was estimated through the “MCPcounter” package. Immune and stromal scores of TNBC patients were evaluated using the “estimate” package. Besides, the expression of key immune profiles and proinflammatory factors between the low- and high-risk groups were compared using the Wilcoxon test.

2.4 | Overall genes mutation and tumor mutation burden analysis

The TNBC mutational data were obtained from the TCGA dataset. The diversity of TMB scores between the low- and high-risk groups was calculated. Then, the overall genes mutation were estimated in different risk groups using the R package maftools.

2.5 | Exploration of potential compounds targeting the selected ARGs

To explore potential compounds targeting the ARGs-based risk model for the treatment of TNBC, we calculated the therapeutic response based on the IC50 value of various molecular obtained from the CellMiner database for each sample.

2.6 | Functional analysis

Using the Clusterprofile package, GSEA was performed to explore the potential differences of GO and KEGG pathway between the low- and high-risk groups. The FDR < 0.25 and p < 0.05 were considered significantly enriched.

2.7 | Establishment and Validation of a prognostic nomogram

Using the R package “rms”, a nomogram was constructed based on the independent prognostic factors (age, tumor stage, node stage, and the risk model) in METABRIC cohort. The predictive accuracy of the nomogram was estimated by calibration plots and time-ROC analysis in both the training and validation sets.

2.8 | Validation of the bioinformatics results using RT-qPCR assay

64 paired TNBC tissues (T) and adjacent normal tissues (N) were collected from the First Affiliated Hospital of Shenzhen University from May 2016 to June 2020. The median age of these TNBC patients was 56.8, 36.0% (23/64), 54.7% (35/64), and 9.3% (6/64) of patients had tumor size as ≤2 cm, 2-5 cm, and >5 cm, respectively. Furthermore, 23.4% (15/64) of patients had positive node involvement and 14.0% (9/64) had distant metastasis. Total RNA was extracted using TRIzol reagent (Invitrogen, USA) according to the manufacturer's protocol. Reverse transcription was conducted using PrimeScript RT MasterMix (Takara, China) to synthesize cDNA. RT-qPCR was performed using SYBR Green PCR MasterMix (Takara, China) according to the manufacturer's protocol. The RT-qPCR primers were designed by Primer Bank (https://pga.mgh.harvard.edu/primerbank/) and were listed in (Table S1). Data were analyzed using 2-ΔΔCt method and the experiment was repeated three times in total. Target genes mRNA expression were normalized to those of GAPDH.

3 | RESULTS

3.1 | Selection of prognostic ARGs and construction of a risk model

A total of 307 human ARGs obtained from the HAGR and 288 cross-cohort ARGs were extracted in the three datasets (Figure 1A). Based on the available 288 ARGs, 13 ARGs were significantly correlated with OS in the univariate Cox regression analysis, and 10 prognostic ARGs were identified by performing LASSO regression model (Figure 1B,C) in METABRIC dataset. The chordal graph of genome function of these 10 ARGs was depicted in Figure 1D. Then, individual risk score was calculated based on the selected ARGs in all cohorts. Furthermore, a risk model was constructed and patients were clustered into low- and high-risk groups based on their risk scores. Additionally, the correlation between ARGs and risk score were analyzed using Pearson’s correlation test, which showed in Figure 1E. The distribution of risk score, survival analysis and the expression level of the 10 ARGs in all cohorts are shown in Figure 2A–C.
3.2 | Functional enrichment analysis

GSEA revealed that Notch signaling pathway was significantly enriched in the high-risk group (Figure 3A–C); In terms of cancer hallmark, apoptosis, IL2-STA5 signaling, and IL6-JAK-STAT3 signaling were the most relevant cancer hallmark in the low-risk group, while hedgehog signaling pathway was dramatically enriched in the high-risk group (Figure 3D–F). Pertaining to gene annotation (GO) analysis, regulation of immune response was the most relevant biological process (BP), secretory granule membrane was the most relevant cellular component (CC), and chemokine binding was the most relevant molecular function (MF) in the low-risk group (Figure S1).

3.3 | Estimation of the tumor immune microenvironment

CIBERSORT algorithm revealed that patients in the low-risk group were characterized by more antitumor immune cells (plasma cells, activated memory CD4+ T cells, and activated mast cells), while regulatory T cells and M0 macrophages were significantly enriched in patients with high-risk scores (Figure 4A and Figure S2A, S3A). ESTIMATE algorithm confirmed that crucial negative association of the risk score with the immune score and the stromal score (Figure 4B,C and Figure S2B,C, S3B,C). MCP-counter indicated that the low-risk subtype was correlated with a higher level of activated immune cells (B cells, CD8+ T cells,
NK cells, and cytotoxic lymphocytes) (Figure 4D and Figure S2D, S3D).

3.4 Association of the expression of proinflammatory factors and immune profiles with the risk model

Increasing evidence showed that chronic inflammation plays a vital role in the aging process of immune cells. We then explored the expression level of proinflammatory factors in different risk groups. As shown in Figure 4E and Figure S2E, S3E, IL-1A, IL-1B, IL-8, and IL-18 were significantly higher expressed in the low-risk groups than those in the high-risk groups. Besides, immune-related signatures were prominent differentially expressed between the low- and high-risk groups (Figure 4E and Figure S2E, S3E). Activating immune profiles, like the phenotypic and functional marker of T cells (CD3E, CD4, CD8B, GZMB, and PRF1), IFNγ signature (CXCL9, CXCL10, IDO1, and...
3.5 Identification of novel candidate compounds targeting the selected ARGs

To explore potential compounds targeting the selected ARGs for the treatment of TNBC, we calculated therapeutic response based on the inhibitory centration (IC50) value of multidrug available in the CellMiner database. The result showed that the IC50 of Dasatinib appeared to be negatively correlated with EGFR, while the IC50 of tamoxifen, pipamperone, raloxifene, and arsenic trioxide were positively associated with EGFR. Similarly, a negative correlation was observed between the IC50 of Selumetinib and NMS-E628 with DBN1, while a significant positive correlation was observed between the IC50 of methotrexate and cladribine with TRAP1 (all p < 0.001) (Figure 5). The above finding suggested that the risk model we constructed might serve as a chemosensitivity predictor for TNBC patients.

3.6 Overall gene mutation and tumor mutation burden analysis

Then, we estimated the TMB based on tumor-specific mutated genes in TCGA dataset. The result showed that...
although a distinct immune response was observed in different risk groups, the TMB had no significant diversity between the high- and the low-risk group (Figure 6A). Using the R package maftools, we next investigated the overall gene mutation in different risk groups. As shown in Figure 6B,C, TP53 and TTN were the driver genes with the highest alteration frequency both in the high- and low-risk group, and dramatical gene mutation diversity were observed between the high- and low-risk groups.

The result indicated the risk model might exert an effect on the genomic heterogeneity of TNBC.

3.7 Construction and evaluation of the ARGs-based nomogram

Subsequently, we established a nomogram comprising the independent prognostic factors (age, tumor stage,
node stage, and the risk model) in METABRIC cohort (Figure 7A). The AUC value showed moderate predictive accuracy in predicting 1-, 3-, and 5-year OS in the training (METABRIC) and testing (TCGA) sets (Figure 7B,C). Furthermore, the calibration plots showed that reliable consistency between the actual and nomogram predicted probability of 1-, 3-, and 5-year OS in the training (METABRIC) (Figure 7D–F) and testing (TCGA) sets (Figure 7G–I).

3.8 The mRNA levels and prognostic value of 10 selected ARGs in our cohort

The RT-qPCR assay showed that the mRNA expression level of 10 selected ARGs (BRCA1, BRCA2, DLL3, DBN1, GSK3B, GPX1, TRAP1, ERCC2, EGFR, and NFE2L2) in adjuvant tumor tissue and TNBC tissues. In detail, EGFR mRNA was downregulated, while BRCA1, BRCA2, GSK3B, TRAP1, and DBN1 were significantly upregulated in TNBC samples compared with that in the paired ANTs (Figure 8A). Furthermore, Kaplan–Meier survival analysis showed that high expression of BRCA1 and TRAP1 were significantly associated with worse DFS (Figure 8B,E). GSK3B high expression (Figure 8C,F) and EGFR down expression (Figure 8D,G) were correlated with worse DFS and OS in TNBC, which was in accord with the bioinformatics results.

4 DISCUSSION

Increasing evidence suggested that cellular senescence plays a vital role in the pathogenesis and development of multiple tumor types. Previous studies found that aging-tumor cells can restore proliferative activity and metabolic activity to promote tumor recurrence and metastasis.29 Furthermore, SASP secreted by senescent cells contains pro-cancer inflammatory factors that evade immune surveillance, thus promoting tumor initiation and development.40 Besides, the adaptive immune system remodeled by the aging process would affect the response to immune checkpoint blockade.41 In this background, some aging-related gene signatures for prognosis and immune
response have been analyzed in different cancer types, like colorectal cancer, glioma, and head and neck squamous cell carcinoma. However, aging-related pathologic processes in the development and malignancy of TNBC are still unclear. Exploring the molecular function and mechanism of ARGs in TNBC is important for identifying the role of age-dependent changes in the formation and malignancy of TNBC.

In this study, we performed a systematic bioinformatics analysis to establish and substantiate an aging-related gene signature to predict prognosis, immune response, TMB, and therapeutic response in TNBC. A risk model based on 10 selected ARGs was then established, which served as an independent risk factor for predicting the prognosis of TNBC both in the training (METABRIC) and validation (TCGA) datasets. Moreover, the nomogram we constructed had a favorable predictive performance for OS in TNBC patients.

Next, we explored the mRNA levels and prognostic value of 10 selected ARGs in our cohort by RT-qPCR assay. In accord with the bioinformatics results, we found most of the selected ARGs were differentially expressed in TNBC samples. Kaplan–Meier curve further indicated that differential expression of these selected ARGs were significantly associated with clinical outcomes in TNBC patients.

GSEA showed that Notch signaling pathway and hedgehog signaling pathway were significantly enriched in the high-risk group; while the low-risk group was markedly enriched in apoptosis, IL2-STAT5, and IL6-JAK-STAT3 signaling pathways. Other biological features, like regulation of immune response, was found enriched in the low-risk group. It is well established that Notch and hedgehog signaling pathways are involved in cancer stem cell proliferation, metastasis, sphere-forming capacity, and chemotherapeutic sensitiveness in TNBC. Xie et al. reported that IL6/JAK/STAT3 signaling pathway was involved in the progression of invasion and migration induced by Ilamycin C in TNBC. Considering that, the risk model based on the 10 ARGs and their relative biological function and signaling pathways may involve in the development and malignancy of TNBC.

For the relationship of the ARGs-based risk model and immune profiles, CIBERSORT algorithm showed that patients with high-risk scores had a remarkably higher percentage of immune-suppressors, like regulatory T cells and M0 macrophages, while immune-effective cells were enriched in the low-risk group. Besides, ESTIMATE algorithm revealed that both immune and stromal score were negatively associated with the risk score. Furthermore, MCP-counter indicated that activated immune cells were sharply decreased in the high-risk group. These results indicated heterogeneous immune status within the different risk groups.

Previous studies demonstrated that the proinflammatory factors of SASP play a vital role in the development of inflammation and tumor immunosuppression. In this study, we substantiated a crucially positive correlation of the expression of proinflammatory factors with our ARGs-based risk model in TNBCs. Furthermore, amounting evidence indicated that aging is associated with immune microenvironment known as “immunosenescence” that
could impact the efficacy and safety profile of immune checkpoint inhibitors.41,52,53 Here, we found a lower level of immune checkpoint markers in the high-risk group, which meant the therapeutic response to immune checkpoint inhibitors may be affected by the aging status in TNBC.

Furthermore, we estimated the TMB and overall genes mutation in different risk groups. The clinical trial (GeparNuevo) confirmed that TMB could be an independent PCR predictor for neoadjuvant immune checkpoint inhibitors in TNBC.54 Another research conducted by Gao et al. revealed that the characteristics of TMB were associated with prognosis and immunotherapeutic response in TNBC.55 Results in our study showed that the TMB had no significant diversity between different risk groups. While dramatical gene mutation diversity was observed between differential risk groups, which indicated the ARGs-based risk model might exert an effect on the genomic heterogeneity of TNBC.

Next, we calculated the therapeutic response of various molecular based on the selected ARGs, a negative association was observed between the IC 50 of dasatinib with EGFR, and the IC 50 of selumetinib, and NMS-E628 with DBN1; While a positive correlation was observed between the IC 50 of tamoxifen, pipamperone, raloxifene, and arsenic trioxide with EGFR, and the IC 50 of methotrexate and cladribine with TRAP1 (all \(p < 0.001 \)); which indicated our risk model may serve as a potential indicator for chemotherapeutic response in TNBC patients.

Among the ARGs in the risk model, BRCA1 and BRCA2 have been confirmed occurred mutation in TNBC, and were correlated with higher tumor grade and earlier age at menarche.56 Moreover, some researches demonstrated that PARP inhibitors combined with immune checkpoint blockade might be a potential therapeutic strategy for BRCA1-mutated TNBC.57 For EGFR, which is also known as a gene with hot spot mutation in multiple tumor types. Amounting studies confirmed that the expression of EGFR was associated with poor survival in TNBC,58 inhibiting the expression of EGFR effectively blocking cancer stem cell clustering and lung metastasis of TNBC.59 Similarly, Eunkyung et al. found that GPX1 induced the malignant and metastasis of TNBC cells by interacting with FAK kinase.60 Qin et al. observed that NFE2L2, could be a prominent regulator of cellular antioxidant response by sensitizing cancer stem cells in TNBC.61 These studies provided a novel biological function and therapeutic strategy of these ARGs in TNBC.

In this study, we developed and validated a risk model based on 10 ARGs to predict prognosis, immune response, TMB, and therapeutic response in TNBC patients. Results showed that the risk model was an independent factor for survival in TNBC, and it might serve as an effective indicator for immunotherapeutic and chemotherapeutic response in TNBCs. Nevertheless, several limitations in this study should be noted. First, the results were analyzed and verified based on the METABRIC, TCGA, and GSE58812 datasets. External verification are needed based on our own data in the future. Second, further experimental studies are warranted to elucidate the underlying biological function and mechanism of these ARGs in TNBC.

In conclusion, we developed and validated aging-related genes-based risk model, which may serve as a potential biomarker for prognosis and individualized treatment in TNBC patients.

ACKNOWLEDGMENT
The authors sincerely acknowledge the METABRIC, TCGA, GEO datasets, and the HAGR website for providing their platforms and uploading their meaningful data.

CONFLICT OF INTEREST
No conflict of interest needed to be declared.

AUTHOR CONTRIBUTIONS
Conception and design by Xia Yang, analyzing and processing data by Xia Yang, Writing and revising by Xia Yang and Yanhua Sun, Supervising by Xia Liu and Zhinong Jiang. All authors approved the final submitted manuscript.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
The study was approved by Ethics Institutional Review Board of first affiliated hospital of Shenzhen University. Written informed consent was obtained from all patients of the study. The patients' records/information were anonymized and de-identified prior to analysis.

CONSENT FOR PUBLICATION
All authors approved for publication.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Xia Yang https://orcid.org/0000-0002-6503-5744

REFERENCES
1. Dent R, Trudeau M, Pritchard KL, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. *Clin Cancer Res*. 2007;13:4429-4434.
2. Waks AG, Winer EP. Breast cancer treatment: a review. *JAMA*. 2019;321:288-300.
3. Savas P, Loi S. Expanding the role for immunotherapy in triple-negative breast cancer. *Cancer Cell*. 2020;37:623-624.
4. Kwaipiz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. *Cancer Immunol Immunother*. 2021;70:607-617.
5. Tarantino P, Gandini S, Trapani D, Criscitiello C, Curigliano G. Immunotherapy addition to neoadjuvant chemotherapy for early triple negative breast cancer: a systematic review and meta-analysis of randomized clinical trials. *Crit Rev Oncol Hematol*. 2021;159:103223.
6. Martinez-Zamudio RI, Robinson L, Roux PF, Bischof O. SnapShot: cellular senescence in pathophysiology. *Cell*. 2017;170:1044-e1.
7. Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. *Nat Rev Mol Cell Biol*. 2021;22:75-95.
8. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. *Cell*. 2013;153:1194-1217.
9. Herranz N, Gil J. Mechanisms and functions of cellular senescence. *J Clin Invest*. 2018;128:1238-1246.
10. Li JM, Fan LM, George VT, Brooks G. Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53. *Free Radic Biol Med*. 2007;43:976-986.
11. Wu X, Gao H, Ke W, et al. VentX trans-activates p53 and p16ink4a to regulate cellular senescence. *J Biol Chem*. 2011;286:12693-12701.
12. von Kobbe C. Targeting senescent cells: approaches, opportunities, challenges. *Aging (Albany NY)*. 2019;11:12844-12861.
13. Balducci L, Ershler WB. Cancer and ageing: a nexus at several levels. *Nat Rev Cancer*. 2005;5:655-662.
14. Campisi J. Aging, cellular senescence, and cancer. *Annu Rev Physiol*. 2013;75:685-705.
15. Bakhoum SF, Cantley LC. The multifaceted role of chromosomal instability in cancer and its microenvironment. *Cell*. 2018;174:1347-1360.
16. He Q, Au B, Kulkarni M, et al. Chromosomal instability-induced senescence potentiates cell non-autonomous tumorigenic effects. *Oncogenesis*. 2018;7:62.
17. Leonardi GC, Accardi G, Monastero R, Nicoletti F, Libra M. Ageing: from inflammation to cancer. *Immun Ageing*. 2018;15:1.
18. Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. *Nat Rev Cancer*. 2019;19:439-453.
19. Lau L, David G. Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. *Expert Opin Ther Targets*. 2019;23:1041-1051.
20. Sager R. Senescence as a mode of tumor suppression. *Environ Health Perspect*. 1991;93:59-62.
21. Rao SG, Jackson J G.SASP. Tumor suppressor or promoter? Yes! *Trends. Cancer*. 2016;2:676-687.
22. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. *Annu Rev Pathol*. 2010;5:99-118.
23. Ritschka B, Storer M, Mas A, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. *Genes Dev*. 2017;31:172-183.
24. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. *Nat Rev Endocrinol*. 2018;14:576-590.
25. Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? *Front Immunol*. 2017;8:1960.
26. Hughes KA, Alipaz JA, Drnevich JM, Reynolds R. M.a test of evolutionary theories of aging. *Proc Natl Acad Sci U S A*. 2002;99:14286-14291.
27. Ong ALC, Ramsamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. *Ageing Res Rev*. 2018;43:64-80.
28. Sedig M, Skibinski A, Brown N, et al. Haplinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. *Nat Commun*. 2015;6:7505.
29. Tonnesen-Murray CA, Frey WD, Rao SG, et al. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. *J Cell Biol*. 2019;218:3827-3844.
30. Shahbandi A, Rao SG, Anderson AJ, et al. G.BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. *Cell Death Differ*. 2020;27:3097-3116.
31. Tacutu R, Thornton D, Johnson E, et al. Human ageing genomic resources: new and updated databases. *Nucleic Acids Res*. 2018;46:D1083-D1090.
32. Tiibhirani R. The lasso method for variable selection in the cox model. *Stat Med*. 1997;16:385-395.
33. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. *Nat Methods*. 2015;12:453-457.
34. Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. *Genome Biol*. 2016;17:218.
35. Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. *Nat Commun*. 2013;4:2612.
36. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maf tools: efficient and comprehensive analysis of somatic variants in cancer. * Castre Res*. 2018;28:1747-1756.
37. Reinhold WC, Sunshine M, Liu H, et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. *Cancer Res*. 2012;72:3499-3511.
38. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102:15545-15550.
39. Zhang Z, Kattan MW. Drawing nomograms with R: applications to categorical outcome and survival data. *Ann Trans Med*. 2017;5:211.
40. Chambers CR, Ritchie S, Pereira BA, Timpson P. Overcoming the senescence-associated secretory phenotype (SASP): a complex mechanism of resistance in the treatment of cancer. *Mol Oncol*. 2021;15:3242-3255.
41. Kaiser M, Semeraro MD, Herrmann M, Absenger G, Gerger A, Renner W. Immune aging and immunotherapy in cancer. *Int J Mol Sci*. 2021;22:7016.
42. Zeng H, Luo M, Chen L, Ma X, Ma X. Machine learning analysis of DNA methylation in a hypoxia-immune model of oral squamous cell carcinoma. *Int Immunopharmacol*. 2020;89:107098.
43. Liu Y, Wu J, Huang W, et al. Development and validation of a hypoxia-immune-based microenvironment gene signature for risk stratification in gastric cancer. J Transl Med. 2020;18:201.
44. Brooks JM, Menezes AN, Ibrahim M, et al. Development and validation of a combined hypoxia and immune prognostic classifier for head and neck cancer. Clin Cancer Res. 2019;25:5315-5328.
45. Zheng S, Zou Y, Liang JY, et al. Identification and validation of a combined hypoxia and immune index for triple-negative breast cancer. Mol Oncol. 2020;14:2814-2833.
46. Di Mauro C, Rosa R, D’Amato V, et al. Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers. Br J Cancer. 2017;116:1425-1435.
47. Hossain F, Sorrentino C, Ucar DA, et al. Notch signaling regulates mitochondrial metabolism and NF-kappaB activity in triple-negative breast cancer cells via IKKalpha-dependent non-canonical pathways. Front Oncol. 2018;8:575.
48. Liubomirski Y, Lerrer S, Meshel T, et al. Notch-mediated tumor-stroma-inflammation networks promote invasive properties and CXCL8 expression in triple-negative breast cancer. Front Immunol. 2019;10:804.
49. Yang N, Zhou TC, Lei XX, et al. Inhibition of sonic hedgehog signaling pathway by Thiazole antibiotic Thiostrepton attenuates the CD44+/CD24-stem-like population and sphere-forming capacity in triple-negative breast cancer. Cell Physiol Biochem. 2016;38:1157-1170.
50. Xie Q, Yang Z, Huang X, et al. Icamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J Hematol Oncol. 2019;12:60.
51. Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 2009;30:374-381.
52. Elias R, Hartshorn K, Rahma O, Lin N, Snyder-Cappione JE. Aging, immune senescence, and immunotherapy: a comprehensive review. Semin Oncol. 2018;45:187-200.
53. Erbe R, Wang Z, Wu S, et al. Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Rep. 2021;36:109599.
54. Karn T, Denkert C, Weber KE, et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann Oncol. 2020;31:1216-1222.
55. Gao C, Li H, Liu C, et al. Tumor mutation burden and immune invasion characteristics in triple negative breast cancer: genome high-throughput data analysis. Front Immunol. 2021;12:650491.
56. Lee E, McKean-Cowdin R, Ma H, et al. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol. 2011;29:4373-4380.
57. Nolan E, Savas P, Policheni AN, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9:eaa4922.
58. Zhang M, Zhang X, Zhao S, et al. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target Oncol. 2014;9:349-357.
59. Liu X, Adorno-Cruz V, Chang YF, et al. Liu H. EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer. Theranostics. 2021;11:6632-6643.
60. Lee E, Choi A, Jun Y, et al. Glutathione peroxidase-1 regulates adhesion and metastasis of triple-negative breast cancer cells via FAK signaling. Redox Biol. 2020;29:101391.
61. Qin S, He X, Lin H, et al. Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair. Free Radic Biol Med. 2021;169:238-247.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Yang X, Sun Y, Liu X, Jiang Z. A risk model of 10 aging-related genes for predicting survival and immune response in triple-negative breast cancer. Cancer Med. 2022;11:3182–3193. doi: 10.1002/cam4.4674