Abstract

Objective: This study aimed to analyze the early mortality rates and patterns of relapse after stereotactic body radiotherapy (SBRT) as an initial metastasis-directed therapy.

Methods: Patients with pulmonary oligometastases initially treated with SBRT were included in this retrospective multicenter study. SBRT was performed between 2004 and 2015, and the primary lesion was controlled at the time of SBRT. Multivariate logistic regression was used for early mortality analyses.

Results: A total of 720 patients with 793 oligometastatic tumors for whom the median follow-up period was 24.6 months were enrolled. The median overall survival period was 53.2 months. The 90-, 180-, and 360-day mortality rates were 1.1% (8 deaths), 2.4% (17 deaths), and 10.8% (71 deaths), respectively. During follow up, 422 patients relapsed. Over 329 patients had single-site relapse, the most frequent site was the lung in 176; 49 had local failure; and 42 had lymph node metastases. The maximum tumor diameter was significantly related to 90-day mortality. Maximum tumor diameter, biological effective dose, and performance status were significantly related to 180-day mortality, whereas maximum tumor diameter, performance status, and pathology were significantly related to 360-day mortality.

Conclusion: Our results showed good survival outcomes and low rates of early mortality after SBRT. The patterns of relapse and factors affecting early mortality were revealed.

KEYWORDS
early mortality, initial metastasis-directed therapy, patterns of relapse, pulmonary oligometastases, stereotactic body radiotherapy
A small number of metastases are often regarded as oligometastases, for which there is potential curability with aggressive local therapy in metastatic sites. Although metastasis-directed therapy for oligometastases is sometimes performed, it is not a standard treatment, except in a few types of cancers, such as colorectal cancer. In colorectal cancer, as in other types of cancers, surgical resection of metastases is a standard strategy of metastasis-directed therapy. Stereotactic body radiotherapy (SBRT) is not recommended as an upfront metastasis-directed therapy, and is only considered in patients who are ineligible for surgery or who refuse surgery. However, the fact that SBRT is considered for patients who are ineligible for surgery indicates that most clinicians regard SBRT as a safe procedure. Indeed, SBRT for non-small cell lung cancer (NSCLC) has shown a lower rate of early mortality than surgery in some propensity score matching analyses, even in studies in which surgery was preferred. There have been doubts about the effectiveness of SBRT, but recent studies using a sophisticated SBRT technique have reported excellent outcomes. Furthermore, a prospective trial of SBRT as the first local therapy for pulmonary oligometastases from colorectal cancers showed good outcomes, with a median survival time of 46 months. Another study that compared the outcomes of SBRT and surgery for NSCLC showed that patients who received SBRT for NSCLC had significantly better survival than that in patients who underwent surgery for NSCLC, although the analysis carried out was a pooled analysis of the results of prospective trials. Some prospective trials of SBRT for oligometastases at various sites have good survival outcomes, owing to the easy accessibility to various lesions. Despite these findings, in clinical practice, clinicians tend to prefer surgery based on the results of a large number of retrospective studies evaluating the outcomes of surgery. SBRT is mainly performed in patients who are not candidates for surgery for reasons such as repeated metastasectomy and comorbidities. Recently, the results of a Japanese nationwide study on SBRT for pulmonary oligometastases in such patients were published. The current study represents a subset analysis of the nationwide study that aimed to evaluate the survival outcomes, rate of early mortality, and patterns of relapse of patients who never received metastasis-directed therapy. Although operability was not investigated in the survey, it was expected that most patients would be inoperable. Therefore, the investigation of early mortality and factors related to early mortality after SBRT is meaningful due to concerns about the factors that affect early mortality in such fragile patients, despite the reduced invasiveness of SBRT. The current study aimed to investigate the outcomes of SBRT as an initial metastasis-directed therapy for pulmonary oligometastases, and to determine the early mortality rates, patterns of relapse, and predictive factors of early mortality.

2 | METHODS

2.1 | Data acquisition and inclusion criteria

This study was a retrospective, multicenter study conducted in Japan. The primary end-point of the study has already been reported, and the current study was performed as a subset analysis. The study was approved by the ethics committee of a representative facility (Ethics Committee of Toho University Omori Medical Center, reference number: 27–148). The requirement for informed consent was waived due to the retrospective nature of the study. All participating institutions had health insurance and catered to all citizens in Japan. The institutions were given the chance to opt out of this study, and were informed about the aim and significance of the study through the Internet or posters; opt-out consent was obtained from all patients.

Patients with five or fewer detectable metastases, controlled primary lesion, and controlled extrathoracic metastatic lesion at the time of SBRT; who underwent SBRT from January 2004 to June 2015; and who received a biological effective dose (BED10) of ≥75 Gy were included in the study. The following formula was used to calculate the BED10: \(\text{BED}_{10} = n \times d / (\alpha/\beta) \), where \(n \) is the number of fractions, \(d \) is dose per fraction, and the \(\alpha/\beta \) ratio is applied for 10 Gy for the tumors. A total of 1378 patients were enrolled in the study, of whom those with no history of metastasis-directed therapy were included in the final analysis.

2.2 | Patients

A total of 720 patients with 793 oligometastatic tumors were identified from the entire cohort. The characteristics of patients, oligometastatic tumors, SBRT, and chemotherapy at the time of SBRT are summarized in Table 1. The performance status (PS) and tumor diameter were also evaluated at the time of SBRT. The disease-free interval (DFI) was defined as the interval between the date that the primary site was controlled and the date that metastasis was confirmed. The DFI was measured from the day of surgery or on the last day of radiotherapy. Adjuvant chemotherapy and hormonal therapy were not considered as treatments for primary lesions. The DFI was regarded as zero in patients with simultaneous metastases at the time of initial treatment. Oligo-recurrences, sync-oligometastases, and unclassified oligometastases had DFI values of ≥6 months, 0 months, and <6 months, respectively. The majority of patients had single pulmonary oligometastases and experienced oligo-recurrence (Table 1). The BED10 ranged from 75.0 to 233.0 Gy, the dose per fraction ranged from 4 to 20 Gy, and the number of fractions ranged from 2 to 15.

2.3 | Events definitions and analyses

The time-to-event outcomes and follow-up periods were calculated from the first day of SBRT to the occurrence of the event. The 90-day, 180-day, and 360-day mortalities were defined as all-cause deaths within 90 days, 180 days, and 360 days after SBRT, respectively. The cumulative local control rate, relapse-free survival rate, and overall survival (OS) rate were calculated using the Kaplan–Meier estimator. For the univariate comparison of 90-day, 180-day, and 360-day mortalities, Fisher’s exact test was used for categorical variables, and Wilcoxon’s rank-sum test was used for continuous variables. In the multivariate analyses, stepwise selection was applied to minimize the Akaike information criterion value, and binary logistic regressions were used to
TABLE 1 Characteristics of patients, tumors, and treatment at the time of stereotactic body radiotherapy

Characteristics	n (%)
Age (years) Median (range)	72 (16–91)
DFI (months) Median (range)	17.9 (0–423.9)
Tumor diameter (cm) Median (range)	1.5 (0.4–5.0)
Biological effective dose (Gy) Median (range)	105.6 (75.0–233.0)
ECOG Performance Status	
0	383 (53.1)
1	245 (34.0)
2	42 (5.8)
3	10 (1.3)
Missing	40 (5.5)
No. metastases	
1	547 (75.9)
2	134 (18.6)
3	25 (3.4)
4–5	7 (0.9)
Missing	2 (0.2)
Institution	
Academic	389 (54.0)
Non-academic	331 (45.9)
Sex	
Male	468 (65.0)
Female	252 (35.0)
Primary cancer sites	
Lung	266 (36.9)
Colorectum	129 (17.9)
Esophagus	69 (9.5)
Others	256 (35.5)
Pathology	
Adenocarcinoma	363 (50.4)
Squamous cell carcinoma	230 (31.9)
Others	87 (12.0)
Not confirmed or missing	40 (5.5)
Methods for control of primary site	
Surgery	566 (78.6)
Other methods	152 (21.1)
Missing	2 (0.2)
Oligometastatic state	
Oligo-recurrence	583 (80.9)
Sync-oligometastases	51 (7.0)
Unclassified oligometastases	75 (10.4)
Missing	11 (1.5)
Irradiated tumor-located lobe	
Upper or middle lobe	385 (53.4)
Lower lobe	317 (44.0)
Missing	18 (2.5)
Chemotherapy before SBRT	
Yes	231 (32.0)
No	484 (67.2)
Missing	5 (0.6)
Chemotherapy concurrent with SBRT	
Yes	16 (2.2)
No	704 (97.7)
SBRT treatment period	
2005–2009	257 (35.6)
2010–2015	463 (64.3)

The values provided under maximum tumor diameter, biological effective dose, and irradiated tumor-located lobe correspond to the number of tumors. The values indicated in other characteristics correspond to the number of patients. DFI, disease-free interval; ECOG, Eastern Cooperative Oncology Group; SBRT, stereotactic body radiotherapy.
analyze each of the mortality periods. The Holm correction for multiple testing was applied to calculate the cut-off value. The smallest \(P \)-value was \(<0.016\), the second smallest \(P \)-value was \(<0.025\), and the third smallest or highest \(P \)-value was \(<0.050\), which were all regarded as significant. EZR version 1.37 (Saitama Medical Center, Jichi Medical University, Saitama, Japan), a modified version of R commander (R Foundation for Statistical Computing, Vienna, Austria), was used for all analyses. Relapse was defined as local failure, primary lesion recurrence, or any disease progression after SBRT. The initial patterns of relapse were categorized into local failure, defined as enlargement of the irradiated tumor; primary lesion recurrence; and disease progression. Disease progression was divided into new metastases in the lung, liver, lymph node, or other distant organs. Local control was defined as the absence of local failure, whereas relapse-free survival was defined as the absence of relapse and death. Marginal field failure and involved lobe failure were not defined, and were regarded as new metastases, as considerable lung metastases were expected to emerge after SBRT.

Adverse reactions to SBRT were assessed in 689 patients. Radiation pneumonitis or hemoptysis grade \(\geq 2 \) occurred in 76 patients, grade \(\geq 3 \) occurred in 20 patients, grade \(\geq 4 \) occurred in 10 patients, and grade 5 occurred in nine patients.

3 | RESULTS

3.1 | Treatment outcomes

A total of 720 patients with 793 pulmonary oligometastatic tumors were enrolled. The median follow-up period for all patients was 24.6 months (range 0.1–134.4 months), whereas that for survivors was 28.2 months (range 0.1–134.4 months). Chemotherapy after SBRT was administered to 114 of 717 patients (3 patients had missing data). Over 287 patients died: 207 from primary disease, 76 from non-primary disease, and 4 from unknown causes. A total of eight deaths (1.1%, \(n = 705 \), censored = 15), including five deaths from primary disease and three deaths from non-primary disease, occurred within 90 days of SBRT; 17 deaths (2.4%, \(n = 695 \), censored = 25), including nine deaths from primary disease and eight deaths from non-primary disease, occurred within 180 days of SBRT; and 71 deaths (10.8%, \(n = 654 \), censored = 66), including 49 deaths from primary disease, 21 deaths from non-primary disease, and one death from unknown causes, occurred within 360 days of SBRT. The 1-, 2-, and 3-year OS rates were 89.6% (95% confidence interval [95% CI] 87.1–91.7%), 73.2% (95% CI 69.5–76.5%), and 60.0% (95% CI 55.6–64.0%), respectively, and the median survival period was 53.2 months (95% CI 47.0–68.6 months; Figure 1). The 3-year local control rate and relapse-free survival rate were 84.1% (95% CI 80.6–87.0%) and 33.1% (95% CI 29.3–37.0%), respectively (Figure 1). Of 720 patients, adverse reactions to SBRT were assessed in 689 patients. Radiation pneumonitis or hemoptysis grade \(\geq 2 \) occurred in 76 patients, grade \(\geq 3 \) occurred in 20 patients, grade \(\geq 4 \) occurred in 10 patients, and grade 5 occurred in nine patients.

3.2 | Patterns of relapse

Over 422 events were reported, including local failure, primary lesion recurrence, and disease progression. Of the 422 events, 329 occurred
in a single organ or system. 45 occurred in multiple organs or systems, and 47 were of unknown metastases. The patterns of the first relapse in 329 patients who had a relapse in a single organ or system were as follows: local failures 14.8% (49/329), primary lesion recurrences 2.4% (8/329), lymph node metastases 12.7% (42/329), lung metastases 54.4% (176/329), liver metastases 6.3% (21/329), and other single organ or system metastases 10.0% (33/329). Furthermore, 10 patients had primary lesion recurrence (8 experienced relapse for the first time); three patients had gynecological cancers, including two who developed vaginal stump recurrence after surgery, and two had esophageal cancer recurrence after chemoradiotherapy.

3.3 Relevant factors for early mortality

The results of univariate analyses for 90-, 180-, and 360-day mortality rates are summarized in Table 2. Maximum irradiated oligometastatic tumor diameter was significantly related to 90-, 180-, and 360-day mortality rates ($P = 0.013$, < 0.001, and < 0.001, respectively). PS was significantly related to 180- and 360-day mortality ($P = 0.008$ and 0.003, respectively). The DFI, primary cancer site, pathology, and method of controlling primary cancer were significantly related to the 360-day mortality ($P = 0.010$, 0.009, < 0.001, and 0.015, respectively). The BED$_{10}$ tended to be higher in the group who died 90 and 180 days after SBRT. Results of the multivariate analyses of mortality rates are shown in Table 3. In the analysis of 90-day mortality, only maximum tumor diameter (per 1 cm increase, odds ratio [OR] 2.45, 95% CI: 1.18–5.08, $P = 0.015$) showed a significant relevance. Maximum tumor diameter (per 1 cm increase, OR 2.81, 95% CI: 1.58–4.99, $P < 0.001$), BED$_{10}$ (per 10-Gy increase, OR 1.24, 95% CI: 1.04–1.48, $P = 0.018$), and PS (PS 2–3 vs. PS 0, OR 7.91, 95% CI: 1.92–32.5, $P = 0.004$) were significantly related to the 180-day mortality. Maximum tumor diameter (per 1 cm increase, OR 2.09, 95% CI: 1.47–2.96, $P < 0.001$), PS (PS 2–3 vs. PS 0, OR 2.87, 95% CI: 1.12–7.31, $P = 0.027$), primary cancer site (esophagus or others vs. lung or colorectum, OR 1.94, 95% CI: 1.05–3.57, $P = 0.033$), and pathology (squamous cell carcinoma vs. adenocarcinoma, OR 3.28, 95% CI: 1.61–6.64, $P = 0.001$; squamous cell carcinoma vs. others, OR 3.84, 95% CI: 1.68–8.78, $P = 0.001$) were significantly related to 360-day mortality.

4 DISCUSSION

The present study is one of the largest-scale analyses of SBRT as an initial metastasis-directed therapy for pulmonary oligometastases under a controlled primary site (oligo-recurrence) and a simultaneous control of the primary site (sync-oligometastases). The results showed extremely low 90- and 180-day mortality rates (1.1% and 2.4%, respectively), as expected from the experience of SBRT for NSCLC. In a pulmonary oligometastases setting, high safety and low mortality soon after SBRT were confirmed, although some patients received chemotherapy during the course of SBRT (Table 1). At 360 days after SBRT, the mortality rate increased to 10.8%, and the number of deaths from primary disease doubled compared with that from non-primary disease (49 vs. 21 deaths). This finding suggested that primary disease progression contributed greatly to the 360-day mortality after SBRT. The number of deaths from primary disease and non-primary disease finally increased to 207 and 76, respectively. Good OS was also observed 360 days after SBRT, and the median survival period of 53.2 months was comparable to that after surgery. Pastorino et al. reported a median survival period of 35 months after complete metastasectomy, and Casiraghi et al. reported a 5-year OS rate of 46% in patients who underwent R0 resection. These results clearly indicate that SBRT is an effective alternative treatment to metastasectomy, and that the choice of method for metastasis-directed therapy should be judged appropriately by considering the very low early mortality rate after SBRT, as well as the different routes of access to the metastatic lesions in SBRT and metastasectomy.

Maximum metastatic tumor diameter was significantly related to 90-, 180-, and 360-day mortality rates. The maximum tumor diameter is a well-known factor related to survival after SBRT for pulmonary metastases or other oligometastases. Tumor diameter also affects the early mortality rate, as there is a tendency in patients with a larger tumor diameter to have a larger SBRT-treated volume; this might result in a greater irradiated lung volume and affect other organs, thus causing radiation pneumonitis and other toxicities. However, the number of pulmonary metastases is not related to early mortality. Therefore, the number of pulmonary metastases might make a lower contribution to early mortality compared with the maximum tumor diameter. The number of metastases might have a lesser effect on a few patients with three or more oligometastases or all patients with metastases limited to the lung.

The results related to BED$_{10}$ were interesting. In SBRT for metastatic targets, a higher BED resulted in a higher local control rate. However, as for early mortality, a higher BED resulted in a significantly higher rate of 180-day mortality, a trend that was also observed in the 90-day mortality. Although the date of SBRT toxicity was not investigated in this survey, reports of previous studies could explain the possible association between 180-day mortality and the timing of emergence of radiation-induced lung toxicity. As an abnormal shadow in the lung caused by SBRT occurred within 6 months in most patients (i.e., radiation pneumonitis), and early radiation pneumonitis was reported to correlate with severe radiation pneumonitis, SBRT toxicity may influence early mortality. Actually, two of 20 patients with grade ≥3 radiation pneumonitis died within 180 days after SBRT, although a grade 5 radiation pneumonitis did not occur within 180 days after SBRT. In SBRT for NSCLC, the percentage of lung volume receiving ≥20 Gy and the mean lung dose were associated with lung toxicity. Furthermore, patients with central lung tumors treated with high doses of SBRT showed a high rate of toxicity. Thus, it is possible that higher doses provide better local control, but do not always contribute to lower early mortality. However, considering the very low 90- and 180-day mortality rates, and the importance of metastasis-directed therapy, this is a risk–benefit problem, and excessive hesitation to deliver ablative radiation doses would be over-cautious.
TABLE 2 Results of univariate analyses for 90-, 180-, and 360-day mortality rates

Factors	90-day (n = 705, censored = 15)	180-day, n = 695, censored = 25	360-day, n = 654, censored = 66						
	Alive (n)	Death (n)	P-value	Alive (n)	Death (n)	P-value	Alive (n)	Death (n)	P-value
Age	692	7		673	16	0.768	579	69	
Median (years)	72	73	0.768	72	73	0.672	72	72	0.952
Missing	5	1		5	1		4	2	
Disease-free interval	688	8	0.705	669	17	0.220	18.5	14.0	0.010
Median (months)	17.8	16.8	0.705	17.9	13.6		18.5	14.0	0.010
Missing	9	0		9	0		6	2	
Maximum tumor diameter	661	8	0.013	644	16		555	67	
Median (cm)	1.5	2.5		1.5	2.5	0.001	1.5	2.1	0.001
Missing	36	0		34	1		28	4	
Biological effective dose	630	7	0.167	613	15	0.043	105.6	105.6	0.681
Median (Gy)	105.6	112.5		105.6	119.6		105.6	105.6	0.681
Missing	67	1		65	2		57	6	
Performance status									
0	371	3		363	6		324	26	
1	239	3		232	6		193	31	
2-3	49	2	0.162	45	5	0.008	38	10	0.003
Missing	38	0		38	0		28	4	
No. metastases									
1	531	6		515	15		442	57	
2	129	2		126	2		110	11	
3-5	36	0	0.776	36	0	0.640	30	3	0.813
Missing	1	0		1	0		1	0	
Institution									
Academic	375	5		364	9		315	41	
Non-academic	322	3	0.732	314	8	1.000	268	30	0.614
Sex									
Male	454	7		438	15		377	53	
Female	243	1	0.274	240	2	0.067	206	18	0.112
Primary cancer sites									
Lung	259	2		252	5		227	20	
Colorectum	124	0		119	4		109	7	
Esophagus	66	2		63	4		51	12	
Others	248	4	0.178	244	4	0.179	196	32	0.009
Pathology									
Adenocarcinoma	354	2		347	5		314	20	
Squamous cell carcinoma	222	3		213	7		171	29	
Others	84	2	0.194	83	2	0.347	67	16	<0.001
Missing	37	1		35	3		31	6	
Control of primary sites									
Surgery	549	4		532	12		462	47	
Other methods	146	4	0.068	144	5	0.383	120	24	0.015
Missing	2	0		2	0		1	0	

(Continues)
YAMAMOTO ET AL.

The DFI and oligo-recurrences, which are common prognostic factors after SBRT for oligometastases, were not independent significant factors for early mortality.\(^{27-29}\) It is likely that these factors reflect the state of malignancies, including the aggressiveness of the primary disease and the tendency for the primary disease to spread throughout the body. These factors may be used to determine the effectiveness of metastasis-directed therapy, but they do not have significant relevance to early mortality, given the relatively low ratio of deaths from primary disease in the early period after SBRT. Control of primary lesions and true single organ oligometastases with no history of prior metastasis-directed therapy, which resulted in the first relapse of cancer in the lung (the most common site of relapse), contributed to the prolongation of survival and reduction in the rate of early mortality. Furthermore, successful control of the primary lesion, which led to the recurrences of eight primary lesions at first relapse, also contributed to the excellent survival outcomes and minimized the effect of oligo-recurrence; conversely, the effectiveness of metastasis-directed therapy was maximized. DFI and oligo-recurrences showed prognostic significance, as deaths from primary disease increased; these factors are useful to identify long-term survivors and long-term relapse-free survivors after metastasis-directed therapy.

The present retrospective study had several limitations. The retrospective nature of the study has inherent selection biases. Furthermore, some missing data were reported, various or short follow-up procedures were performed, and various treatment protocols in addition to SBRT were used, all of which may have affected the results. Possible factors, such as comorbidity and operability, were not investigated. Finally, the 90-day and 180-day mortality rates were low.

In conclusion, SBRT for pulmonary oligometastases resulted in good OS with a median survival of 53.2 months, which is comparable to that after surgical resection. Furthermore, the rate of early mortality after SBRT was very low (1.1% at 90 days and 2.4% at 180 days after SBRT), even in patients who were not candidates for surgery. SBRT is a good alternative to metastasectomy considering its effectiveness and reduced invasiveness. Some factors affecting the early mortality rate and patterns of failure were reported; these findings will be helpful in the selection and follow up of patients after SBRT.

ACKNOWLEDGMENTS
We acknowledge the collaborative efforts of many radiation oncologists in Japan. We are grateful to Drs Akira Anbai, Atsushi Nishikawa, Atsuro Terahara, Gencho Kuga, Hajime Ikeda, Hideya Yamazaki,
TABLE 3 Results of multivariate logistic analyses for 90-, 180-, and 360-day mortality using stepwise selection

Factors	OR	95% CI	P
90-day mortality			
Maximum tumor diameter			
Per 1-cm increase	2.45	1.18–5.08	0.015
Control of primary site			
Surgery vs. other methods	0.24	0.24–1.00	0.050
180-day mortality			
Maximum tumor diameter			
Per 1-cm increase	2.81	1.58–4.99	<0.001
Biological effective dose			
Per 10 Gy increase	1.24	1.04–1.48	0.018
Performance status			
1 vs. 0	1.36	0.38–4.78	0.627
2−3 vs. 0	7.91	1.92–32.5	0.004
Pathology			
SqCC vs. adenocarcinoma	3.28	1.61–6.64	0.001
SqCC vs. others	3.84	1.68–8.78	0.001
Disease-free interval			
Per 1-month increase	0.99	0.97–1.00	0.187
Located lobe			
Upper or middle vs. lower	0.606	0.33–1.11	0.104

SqCC, squamous cell carcinoma.

CONFLICT OF INTEREST
YN has received lecturer fees from Janssen Pharmaceutical K.K.
TY, MA, HO, KY, TS, HY, MK, RO, and KJ have no conflicts of interest to declare.

ORCID
Takaya Yamamoto https://orcid.org/0000-0003-3562-1037

REFERENCES
1. Pastorino U, Buyse M, Friedel G, et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J Thorac Cardiovasc Surg. 1997;113(1):37-49.
2. NCCN. Clinical practice guidelines in oncology Colon Cancer [2020 ver 4]. Accessed October 23, 2020. Available from:https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
3. Timmerman RD, Hu C, Michalski JM, et al. Long-term results of stereotactic body radiation therapy in medically inoperable stage I non-small cell lung cancer. JAMA Oncol. 2018;4(9):1287-1288.
4. Shrivani SM, Jiang J, Chang JY, et al. Comparative effectiveness of 5 treatment strategies for early-stage non-small-cell lung cancer in the elderly. Int J Radiat Oncol Biol Phys. 2012;84(5):1060-1070.
5. Puri V, Crabtree TD, Bell JM, et al. Treatment outcomes in stage I lung cancer: a comparison of surgery and stereotactic body radiation therapy. J Thorac Oncol. 2015;10(12):1776-1784.
6. Takeda A, Sanuki N, Tsurugai Y, et al. Stereotactic body radiotherapy for patients with oligometastases from colorectal cancer: risk-adapted dose prescription with a maximum dose of 83–100 Gy in five fractions. J Radiat Res. 2016;57(4):400-405.
7. Filippi AR, Badellino S, Ceccarelli M, et al. Stereotactic ablative radiation therapy as first local therapy for lung oligometastases from colorectal cancer: a single-institution cohort study. Int J Radiat Oncol Biol Phys. 2015;91(3):524-529.
8. Chang JY, Senan S, Paul MA, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16(6):630-637.
9. Sutera P, Clump DA, Kalash R, et al. Initial results of a multicenter phase 2 trial of stereotactic ablative radiation therapy for oligometastatic cancer. Int J Radiat Oncol Biol Phys. 2019;103(1):116-122.
10. Milan MT, Katz AW, Muhs AG, et al. A prospective pilot study of curative-intent stereotactic body radiation therapy in patients with 5 or fewer oligometastatic lesions. Cancer. 2008;112(3):650-658.
11. Palma DA, Olson R, Harrow S, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2 open-label trial. Lancet. 2019;393(10185):2051-2058.
12. Gonzalez M, Poncet A, Combescur E, et al. Risk factors for survival after lung metastasectomy in colorectal cancer patients: a systematic review and meta-analysis. Ann Surg Oncol. 2013;20(2):572-579.
13. Zhang Q, Wu YL. Surgery in oligometastatic NSCLC patients in the targeted therapy era. Lung Cancer Manag. 2016;5(3):141-153.
14. Zhao Y, Li J, Li C, et al. Prognostic factors for overall survival after lung metastasectomy in renal cell cancer patients: a systematic review and meta-analysis. Int J Surg. 2017;41:70-77.
15. Niibe Y, Yamamoto T, Onishi H, et al. Pulmonary oligometastases treated by stereotactic body radiation therapy: a nationwide survey of 1,378 patients. Anticancer Res. 2020;40(1):393-399.
18. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6(2):65-70.
19. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452-458.
20. Casiraghi M, De Pas T, Maisonneuve P, et al. A 10-year single-center experience on 708 lung metastasectomies: the evidence of the “international registry of lung metastases”. J Thorac Oncol. 2011;6(8):1373-1378.
21. Fode MM, Høyer M. Survival and prognostic factors in 321 patients treated with stereotactic body radiotherapy for oligo-metastases. Radiother Oncol. 2015;114(2):155-160.
22. Rieber J, Streblow J, Uhlmann L, et al. Stereotactic body radiotherapy (SBRT) for medically inoperable lung metastases: A pooled analysis of the German working group “stereotactic radiotherapy”. Lung Cancer. 2016;97:51-58.
23. Baker R, Han G, Sarangkasiri S, et al. Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung. Int J Radiat Oncol Biol Phys. 2013;85(1):190-195.
24. Zhao J, Yorke ED, Li L, Kavanagh BD, et al. Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies. Int J Radiat Oncol Biol Phys. 2016;95(5):1357-1366.
25. Takeda A, Ohashi T, Kunieda E, et al. Early graphical appearance of radiation pneumonitis correlates with the severity of radiation pneumonitis after stereotactic body radiotherapy (SBRT) in patients with lung tumors. Int J Radiat Oncol Biol Phys. 2010;77(3):685-690.
26. Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24(30):4833-4839.
27. Yamashita H, Niibe Y, Yamamoto T, et al. Lung stereotactic radiotherapy for oligometastases: comparison of oligo-recurrence and sync-oligometastases. Jpn J Clin Oncol. 2016;46(7):687-691.
28. Inoue T, Katoh N, Onimaru R, Shirato H. Clinical outcomes of stereotactic body radiotherapy for patients with lung tumors in the state of oligo-recurrence. Pulm Med. 2012;2012:369820.
29. Mazzola R, Fersino S, Ferrera G, et al. Stereotactic body radiotherapy for lung oligometastases impacts on systemic treatment-free survival: a cohort study. 2018:121.

How to cite this article: Yamamoto T, Niibe Y, Aoki M, et al. Stereotactic body radiotherapy for pulmonary oligometastases as an initial metastasis-directed therapy: patterns of relapse and predictive factors for early mortality. Prec Radiat Oncol. 2021;1-9.