Open Source HamNoSys Parser for Multilingual Sign Language Encoding

Sylwia Majchrowska1,2, Marta Plantykow3, Milena Olech3
1Wroclaw University of Science and Technology, Wroclaw, Poland
2AI Sweden, Gothenburg, Sweden,
3Intel Technology Poland, Gdańsk, Poland,
sylwia.majchrowska@ai.se, m.plantykow@gmail.com, milena.w.olech@gmail.com

Abstract
This paper presents our recent developments in the field of automatic processing of sign language corpora using the Hamburg Sign Language Annotation System (HamNoSys). We designed an automated tool to convert HamNoSys annotations into numerical labels for defined initial features of body and hand positions. Our proposed numerical multilabels greatly simplify the structure of HamNoSys annotation without significant loss of gloss meaning. These numerical multilabels can potentially be used to feed the machine learning models, which would accelerate the development of vision-based sign language recognition. In addition, this tool can assist experts in the annotation process to help identify semantic errors. The code and sample annotations are publicly available at https://github.com/hearai/parse-hamnosys.

Keywords: HamNoSys, Multilingualism, Sign Language Processing

1. Introduction
People communicate to exchange information, feelings, and ideas. Verbal communication is the primary method of human interaction. Those who can speak and listen must use the same type of code (language) to communicate effectively. The inability to use spoken language makes Deaf people the most excluded group in society. Communication outside the Deaf community is a huge challenge, as sign languages (SLs) are unrelated to spoken languages. Moreover, different nationalities use different versions of SL and there is no universal one. SLs are natural human languages with their own grammatical rules and lexicons. Therefore, developing an efficient system capable of translating spoken languages into sign languages and vice versa would greatly improve two-way communication. However, designing and implementing such a machine learning (ML) based system requires a large dataset with appropriate annotations. Traditionally, SL corpora intended for ML training have been annotated at the gloss level. In the simplest terms, a gloss is a label. Nevertheless, the same word in different SL can be represented by different gestures. Therefore, ML methods need large datasets for each SL separately to achieve good results. Although there is no common notation system for SL, the Hamburg Sign Language Notation System (HamNoSys) defines a unified set of written symbols that can be used by the creators of different SL datasets. This system consists of transcriptions of non-manual and manual features that describe the shape, orientation, position, and hand movement of a given sign. Although HamNoSys is language-agnostic, there are not many ML solutions using this notation system. First of all, the grammar of HamNoSys is difficult to understand without specialized linguistic knowledge. Moreover, using HamNoSys in its raw form in ML-based applications would be extremely difficult. A large training database is needed to perform this task, since the use of HamNoSys labels would change the classification technique from single-class to multi-class as compared to gloss labels. Furthermore, the inconsistent order of symbols in HamNoSys annotations amongst different datasets makes it almost impossible to process the labels properly.

To address the problem described above, we created a solution for automatic processing of SL corpora that transforms HamNoSys labels into numerical labels for carefully defined classes describing the initial body and hand positions. The numerical labels thus created would support trainings of language-agnostic ML models, since such multilabel annotations are easier to interpret by users unfamiliar with HamNoSys annotations. Moreover, the proposed solution allows for further simplification of the annotation structure, which may make it easier to develop a suitable model. The presented solution is unique of its kind and a publicly available tool that allows arbitrary selection of appropriate classes to describe a specific part of a given gesture.

2. Related Works
In recent years, work around HamNoSys has focused on creating large multilingual lexicons and simplifying the labeling procedure. Since the grammar of the notation system is complex and known only to sign language experts, the main effort has been in annotation processing (Jakub and Zdenĕk, 2008; Power et al., 2019; Skobov and Lepage, 2020). Although not all available SL corpora are annotated using HamNoSys, the unified annotation system has attracted the attention of many researchers (Koller et al., 2016; Dhanjal and Singh, 2022) because it can greatly simplify multilingual research.
2.1. HamNoSys-annotated SL Corpora
Deep learning (DL) based approaches are a promising method for the process of sign language translation. However, they need a large amount of adequately labeled training data to perform well. As HamNoSys annotations are not language-dependent, they can facilitate cross-language research. Moreover, merging several multilingual corpora will increase the available data resources. A comprehensive overview of the existing corpora supplied with HamNoSys labels is provided below.

GLEX: The Fachgebärdens Lexicon – Gesundheit and Pflege (Hanke et al., 2018) was developed at the German Sign Language Institute of the University of Hamburg between 2004 and 2007 and contains a total of 2330 signs. This dataset is dedicated to technical terms related to health and nursing care.

GLEX: The Fachgebärdens Lexicon – Gärtnerei und Landschaftsbau (Hanke et al., 2018) was also created at the Hamburg Institute of German Sign Language between 2006 and 2009. This dataset consists of 710 signs related to technical terms for landscaping and gardening.

BL: The Basic Lexicon is part of the multilingual three-years research project DICTA-SIGN (Matthes et al., 2012), carried out since 2009 by a Consortium of European Universities. About 1k signs are provided for each SL. The shared list of glosses covers the topic of traveling.

CDPSL: The Corpus-based Dictionary of Polish Sign Language (PJM) (Joanna Łacheta, 2016) was created in 2016 at the Sign Linguistics Laboratory of the University of Warsaw. The dictionary was developed based on the PJM corpus, which collected the video data of 150 deaf signers who use PJM. CDPSL allows documenting and describing authentic everyday use of PJM.

GSLL: The Greek Sign Language Lemmas (A. Kratimenos, G. Pavlakos and P. Maragos, 2021; S. Theodorakis, V. Pitsikalis, and P. Maragos, 2014; E. Efthimiou, S.-E. Fotinea, C. Vogler, T. Hanke, J. Glauert, R. Bowerden, A. Braffort, C. Collet, P. Maragos, and J. Segouat, 2009) is developed by the National Technical University of Athens and supported by the EU research project DICTA-SIGN. The dataset is dedicated to isolated SL recognition and contains 347 glosses signed by two participants, where each sign is repeated between 5 and 17 times.

2.2. HamNoSys Processing Tools
In the first decade of the 21st century, Kanis et al. (Jakub and Zdenèk, 2008) proposed a HamNoSys editor called an automatic signed speech synthesizer. This tool is able to generate a sign animation based on the input HamNoSys label. The created application can accept the input label in two modes: one designed for direct insertion of HamNoSys symbols and the other with more intuitive graphical interfaces. The main goal of this solution was to allow an inexperienced annotator to correctly annotate signs. Unfortunately, it has several limitations, as it contains no more than 300 signs in Czech Sign Language and is based on a domain-specific lexicon.

Power et al. (Power et al., 2019) conducted a historical sign language analysis based on 284 multilingual signs annotated with HamNoSys symbols. They developed an open-source Python library to facilitate statistical analysis for manipulating HamNoSys annotations. As a result, they created the first publicly available tool capable of parsing HamNoSys annotations. However, the proposed parser can only work with sign language data if the HamNoSys labels satisfy strict assumptions. The symbols must appear in the gloss notation in a specific order and be separated by spaces. Consequently, the tool cannot be used on already existing SL corpora without initial preprocessing.

In 2020, an automatic annotation system from video-to-HamNoSys based on the HamNoSys grammar structure was presented (Skobov and Lepage, 2020). The proposed solution is based on virtual avatar animations created using the JASigning platform. This approach was able to generate a HamNoSys label based on a given sign animation. However, the Skobov et al. claimed that the proposed methodology with some modifications can also be used to obtain better results on real data.

2.3. ML-based approaches using HamNoSys
There is a visibly growing interest in sign language recognition from video recordings using ML methods. Some of them use HamNoSys labels in a reduced form, as the access to large databases is limited. The most popular approaches use classification networks.

In 2016, Koller et al. (Koller et al., 2016) used part of HamNoSys annotations describing the hand orientation modality. They trained classifier on isolated signs in Swiss-German and Danish Sign Language. They applied it to the continuous sign language recognition task on the RWTH-PHOENIX-Weather corpus (Forster et al., 2012) containing German Sign Language. This multilingual approach significantly reduced word errors.

Recently, Hidden Markov Models were also used to directly translate multilingual speech into Indian Sign Language. (Dhanjal and Singh, 2022). In this approach, HamNoSys annotations provided an interme-
diately step between spoken and sign language. Additional conversion of speech into human-readable text was not needed. Despite the successful creation of an Indian speech recognition system, it was pointed out that building an optimized model requires a sufficient amount of data in a properly transcribed format. This limitation has yet to be overcome.

3. Hamburg Sign Language Notation System

The Hamburg Sign Language Notation System (HamNoSys) is a phonetic transcription system that has been widespread for more than 20 years (Hanke et al., 2018). HamNoSys does not refer to different national finger alphabets and can therefore be used internationally. It can be divided into six basic blocks, as presented in Fig. 1 (upper panel). The first two out of six blocks – symmetry operator and non-manual features – are optional. The remaining four components – handshape, hand position, hand location, and movement – are mandatory (Smith, 2013).

![Figure 1: Detailed HamNoSys structure.](image)

Each HamNoSys part mentioned above has the following meaning (Hanke, 2004):

- **Symmetry operator** (optional): denotes two-handed signs and determines how attributes should be mirrored to the non-dominant hand unless otherwise specified.

- **Non-manual features** (optional): represents non-manual features (e.g., puffed or sucked-in cheeks) that can be used to describe a given sign.

- **Handshape**: refers to the handshape description, which is composed of three subblocks – **Base form**, **Thumb position**, and **Bending**.

- **Hand position/orientation**: describes the orientation of the hand using two subblocks – **Extended finger direction**, which can specify two degrees of freedom seen from signer’s, birds’ or from-the-right view, and **Palm orientation**, as third degree of freedom, defined relative to the extended finger direction.

- **Hand Location**: is split into three components – **Location left/right** specifies x coordinate, **Location top/bottom** for y coordinate, and **Distance** (that is skipped if natural) specifies the z coordinate.

- **Movement/Action**: represents a combination of path movements that can be specified as targeted/absolute (location) or relative (direction and size) movements.

4. Decision Tree-based HamNoSys parser

The main goal of the parser is to translate a label representing a SL gloss, written in HamNoSys format, into a form that can be used for DL-based classification. Since the structure of the HamNoSys grammar can be described as a decision tree (Skobov and Lepage, 2020), we used the method to decompose the notation into numerical multilabels for the defined classes. The parser logic implements the rules underlying data with sequential structure to analyze a series of symbols. It matches each symbol with the class that describes it (while assigning it the appropriate number) or removes it. The fig. 2 shows a diagram of how a parser works.

![Figure 2: A schema of action of implemented parser.](image)

4.1. Methodology

As described in Section 3, HamNoSys labels can be represented by blocks. In our implementation, four blocks (symmetry operator, location left/right, location top/bottom, distance from the body) refer to the overall human posture, while five blocks (handshape base form, handshape thumb position, handshape bending, hand position extended finger direction, and hand position palm orientation) relate to a single hand. Furthermore, two hands (dominant and non-dominant) can be involved in each sign. Up to two HamNoSys symbols describing a single class can be assigned for each hand. To properly store all symbols, the classes related to a single hand are repeated 4 times as the primary and secondary description for the dominant hand and the primary and secondary description non-dominant hand. Moreover, we added one extra class that indicates if the sign description starts from a relaxed hand sign. As a result, together with classes describing overall human posture, the parser considers 25 classes when analyzing HamNoSys labels. The fig. 3 presents the numerical values and assigned to them HamNoSys symbols.

Class **Symmetry operator**, describes how the description of the dominant hands maps to the non-dominant
hand using nine numbers. A value of class \textbf{NonDom first} equal 1 if the sign description starts from a relaxed hand sign, otherwise is set to 0.

The following 20 classes contain primary and secondary descriptions of five features assigned separately for dominant and non-dominant hands. Secondary classes will be assigned if the \textbackslash{} operator is used. For example, if A \textbackslash{} B construct is used, symbol A will be assigned to the primary class, and symbol B will be assigned to the secondary class.

The \textbf{Handshape base form} class describes the base form of a handshape in the initial posture. This class value can be in the range from 0 to 11. The appearance of the class symbol is expected right after the symmetry operator. Only three symbols: relaxed hand, \textasciitilde{} or \{} can occur in between. The first one, indicating a relaxed hand, will be assigned a numeric label, and the other two will be omitted. If this symbol is not found in the expected place, an error will occur.

The \textbf{Handshape thumb position} class describes the position of a thumb in the initial posture and has four possibilities. This class symbol can only be used right after the \textit{handshape base form} symbol or \textit{bending} symbol. Otherwise, an error will occur. The \textbf{Handshape bending} class describes the hand bending in the initial posture. This class symbol is in the range 0 to 5 and can be used only right after the \textit{handshape base form} symbol or \textit{handshape thumb position} symbol. Otherwise, an error will occur. Fig. 3 presents the thumb position and bending in combination with the handshape base form icon to increase its readability.

The \textbf{Hand position extended finger direction} class specifies two degrees of freedom. This class value can be in the range from 0 to 17. This class must occur at least once in the HamNoSys label. Otherwise, an error will occur since this class is mandatory. The \textbf{Hand position palm orientation} class is in the range 0 to 7 and specifies the third degree of freedom. Like the previous one, this class is mandatory. The symbol must be found in the HamNoSys label at least once - if not, an error will occur.

Three remaining classes, \textbf{Hand location L/R} (Left/Right), \textbf{Hand location T/B} (Top/Bottom) and \textbf{Hand location distance}, describe the hand location, using x, y and z coordinates respectively. The first of them is in range 0 to 4, the second one uses 37 symbols, and the last class values are in between 0 and 5. For \textbf{Hand location L/R} class, the symbol position is analyzed in relation to the \textbf{Hand location T/B} symbol (see Fig. 3).

As previously described, there are three mandatory symbol classes the parser shall find in the HamNoSys label: \textit{hand position base form}, \textit{hand extended finger direction}, and \textit{hand palm orientation}. If any of those classes are not found, an error will occur.

As suggested in sources (Hanke, 2004), if the location information is missing, the default \textit{neutral} values are assigned automatically, meaning 0 for distance, 0 for left/right, and 14 for top/bottom. All classes not found in the HamNoSys label are marked as \textit{NaN} to distinguish them easily. An error when parsing a particular class will be indicated by a negative number assigned to the class.

4.2. Example usage

The open-source code is implemented in Python programming language, making it more flexible and user-friendly and providing the opportunity to incorporate commonly used Python libraries such as Pandas.

The package consists of two main scripts: parse-hamnosys, which is the main driver, and hamnosys_dicts, which is the dictionary file. The parse-hamnosys script can be used to convert a HamNoSys encoding to numerical labels. It requires arguments indicating the source file containing HamNoSys notation, destination files that will separately contain successfully and not successfully parsed results. Moreover, there are two optional arguments that specify the names of columns in the input and output text files.

Listing 1 gives an example of the command to use the parser with the mentioned above parameters. As a result, two files, source.txt and error.txt, will be generated. The first of them contains correctly parsed glosses with their classes. The other one contains glosses that

\begin{figure}
\centering
\includegraphics[width=\textwidth]{classes.png}
\caption{Parser classes values.}
\end{figure}
were not parsed properly.

Listing 1: Basic example of calling parse-hamnosys script.

```
python3 parse−hamnosys.py −− src file source .txt
−− dst file result .txt
−− err file error .txt
```

Table 1 presents a few examples from two different datasets. The example 1 stands for word \(\varepsilon\Pi\varepsilon\Sigma\kappa\varepsilon\varepsilon\tau\alpha\zeta\omicron\) and comes from GSLL dataset. The second example comes from Basic Lexicon dataset and stands for word know.

Class	Ex. 1	Ex. 2
Symmetry	7	0
NonDom first	0	0

Shape	Base form	Thumb	Bending
Dom. 1	0	0	0
Position	Ext. finger dir.	0	0
Palm	5	4	

Shape	Base form	Thumb	Bending
Dom. 2	2	NaN	NaN
Position	Ext. finger dir.	NaN	7
Palm	NaN		

Shape	Base form	Thumb	Bending
Ndom 1	0	NaN	NaN
Position	Ext. finger dir.	1	NaN
Palm	6	NaN	

Shape	Base form	Thumb	Bending
Ndom 2	2	NaN	NaN
Position	Ext. finger dir.	NaN	NaN
Palm	NaN	NaN	NaN

Location	x	0	4
y	13	3	
z	0	0	

Table 1: Example results for two separate words – \(\varepsilon\Pi\varepsilon\Sigma\kappa\varepsilon\varepsilon\tau\alpha\zeta\omicron\) (Ex.1) and know (Ex.2) – from two databases.

4.3. Error handling

Decision tree-based parser implementation predefines possible HamNoSys label formats. If the parser does not recognize the order of symbols in the HamNoSys label, an error will be announced by filling the given column with a negative value.

To analyse the parser effectiveness \(\eta_p \) we used the open part of each database mentioned in Section 2.1. The gathered collection of datasets consists of around ten hours of videos accompanied by 11831 glosses, where 7095 are unique.

Table 2 presents the number of successfully parsed entries for each dataset. The "# glosses" column contains the number of all glosses passed to the parser as an input. The "# correct" column contains the number of correctly parsed glosses, while the "# errors" column shows the number of HamNoSys labels in which the order of symbols was not properly recognized. The parser effectiveness \(\eta_p \) was calculated as the percentage of entries that were correctly decomposed and parsed by the parser.

Table 2: Number of successfully parsed entries for each dataset.

Dataset name	# glosses	# parsed	# errors	\(\eta_p \) (%)
GALEX	568	561	7	98.77
GLEX	829	778	51	93.85
CDPSL	2835	2828	7	99.75
BL	4123	3907	216	94.76
GSLL	3476	3316	160	95.40

5. Data reduction influence analysis

As a final analysis, we performed backward decoding from the assigned numeric multilabels to the proper glosses. In this study, we evaluated the impact of information reduction caused by the proposed HamNoSys label encoding methodology.

We assumed that the decoding process was successful if the parser assigned one HamNoSys label to reach the tested gloss. If it assigned more than one label, the verification was considered unsuccessful. The results were verified separately for each database due to their diversity and significant differences in the amount of data. The lowest decoding efficiency \(\eta_d \) was observed for Basic Lexicon, which is a set that consists of four SLs. For this database, the number of glosses assigned to a single HamNoSys label (and thus misidentified) reached the highest value of 12.

Table 3 summarizes the influence of data reduction on each dataset. The "# unique glosses" column indicates the total number of distinctive glosses processed by the parser and assigned to HamNoSys labels. The "# singly labelled" and "# repeated" columns show the number of correctly and incorrectly decoded glosses. Finally, the calculated high decoding efficiency \(\eta_d \) proves that the parser is able of correctly recognizing an individual gloss from different SLs. The data reduction has no significant negative impact on this process.

Table 3: A summary of the impact of data reduction on individual datasets.

Dataset name	# unique glosses	# singly labelled	# repeated	\(\eta_d \) (%)
GALEX	514	484	30	94.16
GLEX	723	684	39	94.61
CDPSL	2480	2259	221	91.09
BL	3078	2580	498	83.82
GSLL	300	283	17	94.33
6. Conclusion

Nowadays, several lexical corpus collections include HamNoSys annotations. However, the way signs are annotated is not standardized. We decided to implement the HamNoSys parser as universally as possible to leverage and combine existing annotation efforts from different corpora. The proposed parser reduces the amount of data stored in the original HamNoSys character since it omits some data, such as movement (analyzing only the initial gloss position) or finger-related details. Nevertheless, the essential characteristic of the sign is preserved. We have also proved that backward decoding of the gloss is possible with an efficiency above 80%. We believe that the developed tool will contribute to future research efforts aimed at creating a fully functional sign language-agnostic translator.

7. Acknowledgements

The five-month non-profit educational project HearAI was organized by Natalia Czerep, Sylwia Majchrowska, Agnieszka Mikołajczyk, Milena Olech, Marta Plantlykow, Żaneta Łucka Tomczyk. The main goals were to work on sign language recognition using HamNoSys, and to increase public awareness of the Deaf community. The authors acknowledge other team members: Natalia Czerep, Maria Ferlin, Wiktork Filipiuk, Grzegorz Goryl, Agnieszka Kamińska, Alicja Krzemińska, Adrian Lachowicz, Agnieszka Mikołajczyk, Patryk Radzki, Krzysztof Bork-Cezłak, Alicja Kwasniewska, Karol Majek, Jakub Nalepa, Marek Sowa who contributed to the project. The authors acknowledge the infrastructure and support of Voicelab.ai in Gdańsk.

8. Bibliographical References

Dhanjal, A. S. and Singh, W. (2022). An optimized machine translation technique for multilingual speech to sign language notation. Multimdia Tools and Applications.

Jakub, K. and Zdeněk, K. (2008). Interactive hamnosys annotation editor for signed speech annotation. In Proceedings of the 3rd Workshop on the Representation and Processing of Signed Languages: Construction and Exploitation of Sign Language Corpora, 6.

Koller, O., Ney, H., and Bowden, R. (2016). Automatic alignment of hamnosys subunits for continuous sign language recognition. In Proceedings of the LREC2016 10th edition of the Language Resources and Evaluation Conference, 05.

Power, J., Quinto-Pozos, D., and Law, D. (2019). Can the comparative method be used for signed language historical analyses?, 09.

Skobov, V. and Lepage, Y. (2020). Video-to-HamNoSys automated annotation system. In Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives, pages 209–216, Marseille, France, May. European Language Resources Association (ELRA).

9. Language Resource References

A. Kratimenos, G. Pavlakos and P. Maragos. (2021). “Independent Sign Language Recognition with 3D Body, Hands, and Face Reconstruction”, in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

E. Efthimiou, S-E. Fotinea, C. Vogler, T. Hanke, J. Glauert, R. Bowden, A. Braffort, C. Collet, P. Maragos, and J. Segouat. (2009). Sign Language Recognition, Generation, and Modelling: A Research Effort with Applications in Deaf Communication”, Proc. 5th Conf. on Universal Access in Human-Computer Interaction (jointly with HCI International 2009), Springer LNCS vol.5614, pp. 21–30.

Forster, Jens and Schmidt, Christoph and Hoyoux, Thomas and Koller, Oscar and Zelle, Uwe and Piater, Justus and Ney, Hermann. (2012). RWTH-PHONIX-Weather: A Large Vocabulary Sign Language Recognition and Translation Corpus. European Language Resources Association (ELRA).

Hanke, Thomas and König, Susanne and Konrad, Reiner and Langer, Gabriele and Barbeito Rey-Geißler, Patricia and Blanck, Dolly and Goldschmidt, Stefan and Hofmann, Ilona and Hong, Sung-Eun and Jeziorski, Olga and Kleyboldt, Thimo and König, Lutz and Matthes, Silke and Nishio, Rie and Rathmann, Christian and Salden, Uta and Wagner, Sven and Worseck, Satu. (2018). MEINE DGS. Öffentliches Korpus der Deutschen Gebärdensprache, 1. Release. Universitat Hamburg.

Thomas Hanke. (2004). HamNoSys – Representing Sign Language Data in Language Resources and Language Processing Contexts.

Joanna Łacheta, Małgorzata Czajkowska-Kisil, Jadwiga Linde-Usiekniewicz, Paweł Rutkowski. (2016). Corpus-based Dictionary of Polish Sign Language, Warsaw: Faculty of Polish Studies, University of Warsaw.

Matthes, Silke and Hanke, Thomas and Regen, Anja and Storz, Jakob and Worseck, Satu and Efthimiou, Eleni and Dimou, Athanasia-Lida and Braffort, Annelies and Glauert, John and Safar, Eva. (2012). Dicta-Sign – Building a Multilingual Sign Language Corpus.

S. Theodorakis, V. Pitsikalis, and P. Maragos. (2014). Dynamic-Static Unsupervised Sequentiality, Statistical Subunits and Lexicon for Sign Language Recognition”, Image and Vision Computing, vol.32, no.8, pp.533–549.

Robert Smith. (2013). HamNoSys 4.0 User Guide.