Environmental Research Letters

LETTER

Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

Felipe A M de Faria¹, Paulina Jaramillo², Henrique O Sawakuchi³, Jeffrey E Richey⁴ and Nathan Barros⁴

¹ Department of Engineering & Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
² Environmental Analysis and Geoprocessing Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenario 303, Piracicaba, SP, 13400-970, Brazil
³ School of Oceanography, University of Washington, Seattle, WA 98195-7940, USA
⁴ Federal University of Juiz de Fora, Campus Universitário, Juiz de Fora, MG, 36036-330, Brazil

E-mail: ffaria@andrew.cmu.edu

Keywords: hydropower, greenhouse gas emissions, emission factor, Amazon

Supplementary material for this article is available online

Abstract

Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time/stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models' uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.

1. Introduction

The Brazilian energy plan states that, by 2022, 85% of new hydropower generation capacity (40 gigawatts) will come from hydroelectric power plants, set to be located in the Amazon region (MME EPE 2013). Supporters of this expansion claim that, among other benefits, hydropower is a low carbon source of electricity (MME EPE 2014). However, this idea has come under scrutiny, particularly for tropical forests reservoirs (St. Louis et al 2000, Barros et al 2011, Demarty and Bastien 2011, Wehrli 2011, Fearnside and Pueyo 2012). Specific hydropower reservoirs in the Amazon were reported to emit greenhouse gases (GHG) of the same order of magnitude as thermal power plants (Abril et al 2005, Santos et al 2006, Kemenes et al 2011).

One of the major issues that contribute to the controversy about GHG emissions from hydropower is the lack of established method to estimate future emissions. While there are estimates of carbon (C) emissions from specific hydropower reservoirs in tropical forests and their effect on the regional and global C budget (Abril et al 2005, Kemenes et al 2007, 2011, Barros et al 2011), previous work did not present methods to evaluate future emissions. Moreover, although the literature about the C balance in reservoirs has advanced considerably in the last decades, predicting the C budget for future reservoirs is still challenging because of the difficulty in representing the spatial and temporal variability of the C fluxes (Galy-Lacaux et al 1999, Roland et al 2010). Given the high number of dams planned in the Amazon region and in other countries like China, it is imperative to
develop models to estimate the C balance of large hydropower projects in order to support decision-making before the dam construction (Hu and Cheng 2013).

The GHG flux rates into the atmosphere from a tropical reservoir depend on a complex combination of physicochemical, meteorological, and reservoir features (St. Louis et al 2000, Abril et al 2005, Guérin et al 2006, Kemenes et al 2007, 2011, Barros et al 2011, Demarty and Bastien 2011, Fearnside and Pueyo 2012, Goldenfum 2012). Part of the difficulty of quantifying the C balance spatial and temporal variability of future reservoirs resides in an incomplete understanding of the physical, chemical, and biological processes involved in the production, consumption, and C outgas from reservoirs (Hu and Cheng 2013). For example, GHG production rate and C fate from flooded trunks is still undetermined (Guérin et al 2008).

Under this context of high uncertainty related to the C balance modeling, this paper presents a set of models, based on a Monte Carlo simulation structure, to explore the GHG emissions in tropical forested reservoirs. We investigate the GHG emission from new Amazon reservoirs using two approaches: top-down (TD) and bottom-up (BU). The TD approach is based on carbon dioxide (CO₂) and methane (CH₄) flux data measured in reservoirs and rivers located in the Amazon region. The BU approach relies on a degradation model based on the available carbon stock within the reservoir area. We then compare our results to the GHG emissions that would occur with other electricity generation sources.

2. Data and methods

2.1. GHG emissions from reservoirs and modeling overview

CO₂ and CH₄ emissions from hydropower result from the oxic/anoxic decomposition of the flooded organic matter (OM) from different sources within the reservoir (e.g. vegetation and soils, macrophytes, and algae produced in the reservoirs) and from outside the reservoir (e.g. sedimentary OM input from the upstream river basin) (Rosa et al 2004, Abril et al 2005, Guérin et al 2008). CO₂ is formed by bacterial respiration of OM in the soils, sediments, and water column but is also imported from upstream and lateral sources, such as drawdown zones (Guérin et al 2008). Further, CO₂ in freshwaters is produced by respiration and decomposition and assimilated by aquatic primary production (Cole et al 2007). CH₄ is produced in the reservoir’s anaerobic zones by methanogenic bacteria, and can then be oxidized into CO₂ by methanotrophic bacteria in both the soils’ aerobic zones (Guérin et al 2008, Bastviken 2009) and the water column (Lima 2005, Guérin and Abril 2007).

After production, CO₂ and CH₄ are released into the atmosphere through four major pathways:

1. **Diffusion in the reservoir area**, which is the flux that occurs in the air–water interface of the reservoir due to the difference in gas concentrations at this layer (Cole and Caraco 1998).
2. **Ebulition in the reservoir area** that results from the quick release of GHG from sediment pore waters supersaturated with CH₄ (DelSontro et al 2011).
3. **Outlet degassing** that results from pressure and temperature changes that occur on discharge flows just after low-level outlets, such as turbines and spillways (Abril et al 2005, Kemenes et al 2007, 2011).
4. **Diffusion and ebulition downstream of the dam**, which occur in the river area below the dam and are associated with the high concentrations of GHG from the reservoir hypolimnion (Abril et al 2005, Kemenes et al 2007).

The net GHG emissions in a river basin resulting from the creation of a reservoir should account for the balance between emissions and sinks in all parts of the watershed affected by the reservoir before and after the impoundment (Demarty and Bastien 2011, Kemenes et al 2011, Goldenfum 2012, Teodoru et al 2012). To estimate net GHG emissions we employed two approaches.

First, the TD approach relies on GHG flux data measured in tropical Amazonian reservoirs (Balbina, Petit Saut, Tucuruí, Samuel, and Santo Antônio) and rivers, which were used to model the various emission components: diffusion and bubbling from the reservoir, outlet degassing, diffusion and ebulition from downstream, and the natural river. Therefore, this model directly accounts for the major emission pathways into the atmosphere, and the difference between emissions before and after the reservoir flooding defines the net reservoir emissions.

Second, the BU approach is based on the potential emissions derived from the degradation of the flooded OM in the reservoir area, accounting for GHG production rates and CH₄ oxidation in the water column. Brazilian environmental rules require vegetation clearing of the flooded area before filling the reservoir (Kubistcheck 1960). However, biomass regrowth and inefficient clearing may increase the flooded C stock. In the BU approach, the net reservoir emissions are defined as the difference between (1) the CO₂ and CH₄ production from the degradation of the flooded C stocks (soils and remaining foliage), and (2) the CH₄ consumption and CO₂ production in the freshwater system by CH₄ oxidation. The BU model also accounts for the emissions from the vegetation that is cleared, which decays within the time horizon of this analysis.

In our framework, we assigned probability distributions for each of the uncertain variables in the models. Based on independent sampling from these distributions, each simulation corresponds to the
computation of a model outcome. We applied the models to new Amazon hydropower reservoirs, repeating each simulation 10,000 times.

2.2. Residence time (RT), stratification, and GHG emissions
Reservoir stratification occurs as a result of thermal differentials in the water column that prevent vertical water mixing. The reservoir stratification with an anoxic bottom layer creates the conditions for CH₄ accumulation in the hypolimnion (St. Louis et al. 2000, Abril et al. 2005). Old Amazonian reservoirs (Balbina, Samuel, Petit Saut and Tucuruí), where the GHG flux data that are the basis for the TD model were measured, stratify for long periods with intervals of complete mixing. The biogeochemical cycles in these reservoirs are strongly related to the decomposition of vegetation and anoxic conditions in the hypolimnion (Tundisi et al. 1993).

Previous work has described the stratification process and its relation to RT. Typical lake stratification occurs in reservoirs with high RT (>100 days) (Straškraba 1973; Straškraba et al. 1993). This trend is consistent with the conditions at the Petit Saut reservoir, where there is a high positive correlation between RT, CH₄ concentrations, and emissions (Delmas et al. 2001, Abril et al. 2005). Further, the high levels of CH₄ concentrations in the hypolimnions are highly correlated with outlet degassing and downstream emissions (Guérin et al. 2006). The main channel of reservoirs with low RT (<10 days), on the other hand, have characteristics that resemble a river zone: a completely mixed water column, with homogenous flow rate and temperature distribution (Straškraba 1973, Straškraba et al. 1993). This trend is consistent with the conditions in Santo Antônio reservoir (Fearnside 2015b). However, tributary and bay zones in low RT reservoirs may present different conditions and stratify because of lower water flows in these areas (Fearnside 2015b). Moreover, CH₄ oxidation efficiency also depends on the characteristics of the water column, such as light penetration (Dumestre and Guérin 1999), turbulence (Guérin and Abril 2007), and reservoir depth (Lima 2005). Therefore, GHG fluxes in new Amazonian reservoirs will depend on their stratification level.

2.3. New Amazonian hydroelectric reservoirs
We assessed CO₂ and CH₄ emissions of 18 reservoirs recently built, under construction, or planned in eight rivers in the Amazon basin, corresponding to a total of 5900 km² of reservoir area and a total installed capacity of 40 GW (table 1). The design characteristics of the hydropower plants come from engineering reports provided by the Brazilian Electric Agency (Agência Nacional de Energia Elétrica—ANEEL). For each reservoir, we then cross-referenced the spatial location data of the reservoir shape with high-resolution maps of land surface, permanent water bodies, and forest biomass density in order to estimate the reservoir and river areas, and the biomass C stock in the reservoir area (Saatchi et al. 2008, Hansen et al. 2013). The supporting information (SI) provides a detailed explanation of the method used to estimate the reservoir and river areas.

2.4. Model details
Two stages characterize the C emissions from hydroelectric reservoirs. During the first stage, decomposition of easily degradable biomass in the flooded area (like soil micro fauna and green parts of the vegetation) drives a sharp increase in emissions during the first few years. During the second phase, emissions tend to be slower as the system reaches a steady state (Galylacaux et al. 1999, St. Louis et al. 2000, Rosa et al. 2004, Demarty and Bastien 2011). Our model accounts for both stages as described further in this section.

To account for the influence of water column conditions on reservoirs emissions, we developed separate TD models for stratified reservoirs (high RT) and well-mixed reservoirs (low RT) in our database. To assess the stratification level of each reservoir, we performed an analysis of the Densimetric Froude number, which is a more accurate criterion for the development of stratification compared to the RT alone (Straškraba et al. 1993). We classified the characteristics of each reservoir according to their operating characteristics, RT, and propensity to stratify. Based on this analysis, which we described in more detail in the SI, we suggest that of the cleared biomass C stock in the reservoir area. Table 2 provides a summary of the models’ variables and major assumptions.

2.4.1. BU approach
We present a mass balance to estimate net reservoir emission using CO₂ and CH₄ production rates derived from incubation of soils and foliage from the Petit Saut reservoir (Guérin et al. 2008). The initial flooded C stock is defined by the multiplication of the flooded area (discounting the natural river area) and the soil/foliage OM C density. Additionally, we account for the fate of the cleared biomass C stock for each reservoir based on above the ground biomass distribution map (Saatchi et al. 2008). We assumed that C of the cleared...
Table 1. Characteristics of hydroelectric reservoirs included in this study. Table S8 in the SI present the detailed data source from ANEEL for each project.

Hydroelectric power plant	River	Power (MW)	Capacity factor	Reservoir area (km²)	Reservoir operation	Volume ($\times 10^6$ m³)	Mean flow (m³/s)	Mean depth (m)	Power density (MW km²)	Water type¹
Belo Monte	Xingu	11 233	0.41	516	run-of-river	4570	7800	9	21.8	Clear
Bem Querer	Branco	708	0.55	559	run-of-river	2530	3000	5	1.3	Clear
Cachoeira do Cai	Jamanxim	802	0.51	420	storage	3420	1940	8	1.9	Clear
Cachoeira do Caldeirão	Araguari	219	0.56	48	run-of-river	231	930	5	4.6	Clear
Cachoeira dos Patos	Jamanxim	528	0.32	117	storage	696	1330	6	4.5	Clear
Colider	Teles Pires	300	0.56	172	run-of-river	1520	943	9	1.7	Clear
Ferreira Gomes	Araguari	252	0.60	18	run-of-river	137	963	8	14.2	Clear
Jamanxim	Jamanxim	881	0.53	74	storage	1000	1370	13	11.8	Clear
Jatobá	Tapajós	2338	0.55	646	run-of-river	4010	10 400	6	3.6	Clear
Jirau	Madeira	3750	0.58	303	run-of-river	2750	17 900	9	12.4	White
Marábá	Tocantins	1850	0.63	1024	run-of-river	5350	10 300	5	1.8	Clear
Salto Augusto de Baixo	Juruena	1461	0.54	125	run-of-river	362	4120	3	11.7	Clear
Santo Antônio	Madeira	3150	0.65	271	run-of-river	2080	18 200	8	11.6	White
São Luís do Tapajos	Tapajos	6133	0.52	722	storage	7550	11 900	10	8.5	Clear
São Manoel	Teles Pires	746	0.49	64	run-of-river	577	2260	9	11.7	Clear
Sao Simão Alto	Juruena	3509	0.35	284	run-of-river	3820	4190	13	12.4	Clear
Sinop	Teles Pires	461	0.43	330	storage	3070	894	8	1.4	Clear
Teles Pires	Teles Pires	1820	0.54	152	run-of-river	905	2410	6	12.0	Clear

¹ The water type classification is based on the map elaborated by Junk et al.(2011).
biomass decays in a period of 30 years and is released to the atmosphere as CO\textsubscript{2} (see SI for a more detailed discussion about the fate of cleared biomass, pages 24 to 25).

We calculated GHG production using monthly times steps and production rates sampled from distributions based on the mean and standard deviation of GHG potential production rates obtained from soil/foliation incubation from Petit Saut reservoir (Guérin et al 2008). We assumed that CH\textsubscript{4} production rates are the same for both low and high RT models because most of the organic C in the saturated soil/water layers is expected to be in similar anoxic environments. CH\textsubscript{4} oxidation is treated as a fraction of the CH\textsubscript{4} produced from soils/foliation (see table 2). CH\textsubscript{4} oxidation results in CO\textsubscript{2} production and we assume that bacterial growth efficiency has a triangular distribution that ranges from 10% to 80% with the most probable value at 50%.

2.4.2. TD approach
In the TD approach, we divided the GHG emissions in two systems: the river system (before flooding) and the reservoir system (after flooding). Using reservoir shape data, we identified the beginning of the reservoir at the upstream side (upstream limit) and extended the model boundary to cover C fluxes that occur up to a 40 km river distance downstream the dam (downstream limit).

The river system represents the environment before the construction of the reservoir; in other words, the model accounts for the natural fluxes in Amazonian rivers. Rivers and wetlands in the Amazon are natural C sources as they transport, respire, and outgas C originating from OM from upland and flooded forests. For this paper, we performed a meta-analysis of published CO\textsubscript{2} and CH\textsubscript{4} fluxes in Amazon rivers (Rasera et al 2008, Alin et al 2011, Ellis et al 2012, Salimon et al 2012, Rasera et al 2013, Sawakuchi et al 2014) and classified the measurements by spatial location, water-chemistry type, and river size. Based on this database, we fitted statistical distributions to represent the variability of GHG fluxes in large Amazon Rivers (width greater than 100 m) according to water type: black water is associated with a high content of humic compounds; white water is associated with a high content of suspended sediment; and clear water is characterized by the lack of turbidity caused by sediments and a dark color caused by humic compounds (Furch 1984, Junk et al 2011).

The reservoir system characterizes the environment after the construction of the dam and consists of

Uncertain variables	Major assumptions
Bottom-up	
Flooded carbon stock in the soils and foliage	We assumed a uniform distribution that varies from 8 to 16 Gg C km-2 for 0–20 cm layer to define the carbon stock in the soils (Cerri et al 2007). We also assumed that an inefficient biomass clearing contributes to an additional flooded carbon stock from foliage that varies from 0.6 to 6.4 C km-2 (Malhi et al 1999).
Carbon stock from cleared biomass	
CO\textsubscript{2}/CH\textsubscript{4} production	
CH\textsubscript{4} oxidation	
CO\textsubscript{2} production from CH\textsubscript{4} oxidation	
(bacteria efficiency growth)	
Top-down	
Reservoir diffusion and ebullition	Based on emissions fluxes from classical ‘old’ reservoirs of Tucurui, Petit Saut, Samuel, and Babina, which have high RT and present long periods of stratification throughout the year (Fearnside 2002, Abril et al 2005, Guérin et al 2006, Santos et al 2006, Kemenes et al 2007).
Outlet degassing	
Downstream diffusion and bubbling	
Natural emissions	
Low RT	We divided the reservoir area in two regions:
Reservoir diffusion and bubbling	The main channel zone has well-mixed water columns and limnological characteristics similar to river zones. Therefore, the probability distributions adopted for the reservoir fluxes in this model rely on the fluxes data from large natural rivers in the Amazon. The bays and tributaries zones have stratified conditions and probability distributions used are based on the emissions fluxes from classical ‘old’ reservoirs.
Natural emissions	
Degassing/downstream (parametrically)	

Table 2. Summary of the modeling assumptions.
reservoir surface, degassing, and downstream fluxes. The differences in the fluxes into the atmosphere between the reservoir system and the river system define the reservoirs’ net GHG emissions. We estimated CO$_2$ and CH$_4$ emissions for both systems. Using available data (described in table 3), we fit several distribution functions to represent the flux rates’ uncertainty and variability for each of the modeled pathways. The SI provides detailed information about these distributions.

The flux data we used in this paper was collected years after the reservoirs started operations, so we assumed that our sample represents the behavior of the reservoir system in a steady state. We also assumed that natural rivers are in a steady state of emissions. We then chose the best distribution for each flux rate through the calculation of the Bayesian Information Criterion and Akaiake Information Criterion (Kuha 2004). We multiplied the specific flux and the associated surface area to define the total annual fluxes of CO$_2$ and CH$_4$ for each emissions pathway. Based on the emissions profile of Petit Saut in the first ten years, we then modeled the first pulse of emissions by applying a multiplier factor to the steady state emissions for the reservoir system (three times for the first three years, and two times for the fourth and fifth years). Finally, we converted CH$_4$ emissions to the equivalent CO$_2$ emissions using the 20 and 100 year CH$_4$ global warming potential of 86 and 34, respectively (IPCC et al. 2013). The SI includes the detailed mathematical formulation of the models.

3. Results and discussion

Figure 1 presents the summary of the mean and 95% confidence interval (CI) of net GHG emissions over 100 years that result from 10 000 simulations for each modeling approach for each assessed reservoir. The simulations reveal a high variability of fluxes across the dams as a consequence of the site-specific characteristics of each project (reservoir area, river areas, and water type), as well as modeling assumptions. Mean net GHG emissions for all reservoirs over 100 years vary from 90 Tg of C (CI: 80–100) in the BU approach to 340 Tg of C (CI: 210–520) in the TD approach.

The emission results from the BU model shown in figure 1 are based on the initial soils and biomass C stock in the reservoir area. They represent lower bound estimates because C inputs from upstream and primary production in the reservoir are not included. Compared to the emissions from soils only, flooded foliage contributes to an average increase in CH$_4$ and CO$_2$ emissions of 33% and 28%, respectively. This result demonstrates the importance of the enforcement and improvement of vegetation clearing as a GHG emissions mitigation measure, as discussed in more detail in the SI.

3.1. Low RT reservoirs

In the case of the low RT reservoirs, figure 1 shows that mean net GHG emissions over 100 years from the BU model range from 0.1 (CI: 0–0.2) Tg of C in Ferreira Gomes to 14 (CI: 10–17) Tg of C in Marabá. Mean TD estimates vary from 1 (CI: 0–3) Tg of C in Ferreira Gomes to 49 (CI: 5–160) Tg of C in Marabá. The BU method is based on a decreasing degradation function for the OM in the soils, residual foliage, and cleared vegetation (fixed initial C stock), while the TD model accounts for fluxes derived from freshwater systems. The TD fluxes were measured in the air–water interface and, thus, also account for other C inputs (e.g. upstream and lateral C inputs, and OM from primary production) (Richey et al. 2002, Abril et al. 2005, Guérin et al. 2008). As a result, the mean results in the TD approach are on average four times higher than the mean results in the BU approach. Both approaches, however, result in estimates within the same order of magnitude. Average CH$_4$ emissions have the same order of magnitude for both approaches, but the uncertainty from the TD method is higher due to the characteristics of the statistical distributions adjusted in this model, which are right-skewed and have a long tail.

Emission source	mg CH$_4$ m$^{-2}$ d$^{-1}$	mg CO$_2$ m$^{-2}$ d$^{-1}$					
Rivers	Mean	Range	n	Mean	Range	n	References
White	10	0–160	214	20 000	680–54 000	26	(A)
Clear	70	2–650	165	5900	760–24 000	42	(A)
Black	10	0–53	73	22 000	5700–48 000	27	(A)
Reservoirs							
Reservoir	50	0–210	20	8000	1500–43 000	15	(B)
Degassing	220	50–900	9	70	50–90	6	(C)
Downstream	1100	190–1800	7	35 000	18 000–66 000	7	(C)

Note: (A) (Basera et al. 2008, Alin et al. 2011, Ellis et al. 2012, Salimon et al. 2012, Rasera et al. 2013, Sawakuchi et al. 2014), (B) (Delmas et al. 2001, Fearnside 2002, Abril et al. 2005, Lima 2005, Guérin et al. 2006, Santos et al. 2006, Kemenes et al. 2007, 2011), (C) (Guérin et al. 2006, Kemeneset al. 2007, 2011).
Figure S12 in the SI highlights the contribution of each pathway to the total C budget from the TD model.

3.2. High RT reservoirs

For high RT reservoirs, the BU approach indicates that the mean net GHG emissions over 100 years vary from 1.8 (CI: 1–2) Tg of C in Jamanxim to 11 (CI: 9–13) Tg of C in Cachoeira do Caí (Figure 1). The mean results in the TD model are one order of magnitude higher compared to the BU outcomes and vary from 11 (CI: 4–18) Tg of C in Jamanxim to 30 (CI: 11–54) Tg of C in Sinop. Again, this difference is a result of the distinctive methods employed for each approach. The BU model relies on a decreasing degradation function and provides a lower bound estimate that only accounts for the initial C stock in the reservoir area. In contrast, the TD approach relies on flux data measured in reservoirs where the above the ground biomass was not cleared. Thus, the TD approach accounts for fluxes into the atmosphere that derive from all inputs, including below and above-the-ground C stocks, as well as C imports from upstream and reservoir primary production.

New reservoirs in Brazil can only be filled after vegetation clearing (Kubistcheck 1960,
Fearnside 2015b), which did not occur in Petit Saut, Balbina, Tucuruí and Samuel. As a result, while the BU estimates are downward biased (underestimates), the TD approach is upward biased (overestimates) for high RT reservoirs. At this time, we are unable to assess the size of this bias, because we cannot distinguish between flooded, terrestrial, and aquatic inputs and their specific contribution to GHG emissions. This also justifies the use of two modeling approaches; merging them would leads to the risk of double counting. We propose, however, that the BU and TD results provide a range of plausible emissions from these reservoirs.

Figure 2 breaks down the contribution of each emission pathway to the net emissions (mean) for the TD approach in high RT reservoirs. For these reservoirs, we present the gross fluxes from the reservoir system (figures 2(A), (C) and (E), after flooding) and the natural river system (figures 2(B), (D) and (F), before flooding). In terms of C mass (figures 2(A) and (B)), CO₂ emissions from the reservoir, downstream emissions, and CO₂ fluxes from the natural river are the largest contributors to C fluxes. On the other hand, when including the 20 year and 100 year GWP as a metric for climate impacts, figures 2(C) and (E) show that CH₄ emissions account for most of the total Tera grams of CO₂ equivalents. In the mean scenario, natural emissions before the impoundment account for 5%–30% of the reservoir system emissions (comparing figures 2(A) and (B)), highlighting the importance of accounting for this natural emission pathway in the net C balance of Amazonian reservoirs.

Figure S12 in the SI shows similar results for the low RT reservoirs. While the magnitude of emissions varies significantly across reservoirs, figure S12 highlights the same trends observed for high RT reservoirs in figure 2: CH₄ emissions after the impoundment and natural emissions are critical components of the net C balance of these reservoirs. The main advantage of low RT reservoirs compared to high RT is the lack of stratification in the main channel. As a consequence, low RT reservoirs have lower average emissions from the reservoirs’ surface in the main channel itself, as well as lower degassing/downstream fluxes. However, the major driver for high total GHG emissions is the size of the reservoir area. For example, Marabá is a low RT reservoir but resulted in the highest total GHG emissions over 100 years, because this reservoir has the greatest reservoir area from our database.

3.3. Emission factors: hydropower in the Amazon versus other sources of electricity

To compare our results from hydropower plants in the Amazonian basin with other electricity generation sources, we calculated the emission factor for each reservoir in units of kg CO₂eq MWh⁻¹ (figure 3). As before, the results include the 20 year and 100 year GWP for CH₄. We used a meta-analysis from the Intergovernmental Panel on Climate Change (IPCC) with life cycle assessment studies as a reference to compare our results with other sources of electricity (Moomaw et al 2011). This literature indicates that the median emission factors for natural gas, oil, and coal-based power plants are 470, 840, and 1000 kg CO₂eq MWh⁻¹, respectively (Moomaw et al 2011). In the case of renewables, the median emission factors are 4, 12, and 46 kg CO₂eq MWh⁻¹ for hydropower, solar (photovoltaic) and wind, respectively. This comparison is not meant to be a recommendation about the source of energy Brazil should pursue, as such recommendation requires much more detailed analysis about the entire power system that is beyond the scope of this paper.

Figure 3 shows that six of the reservoirs (Cachoeira do Caí, Cachoeira dos Patos, Sinop, Bem Querer, Goiânia and Marabá) have a significant number of simulations that result in emission factors that are comparable to those of thermal power plants. The simulation results confirm that using life cycle emission estimates from hydropower currently available in the IPCC report to aid decision-making may result in unintended consequences (Fearnside 2015a).

It is noteworthy that figure 3 shows that high RT reservoirs have higher simulated emission factors compared to thermal power plants. Even though we concluded that the TD approach overestimates GHG emissions for new high RT reservoirs, combined with the lower bound estimates from the BU approach, we can gather useful information to understand the potential range of GHG emissions in new reservoirs. For example, the results indicate that Jamanxim reservoir likely has a lower emission factor than thermal power plants, because of the dominance of simulation results below the natural gas power plants reference value. In contrast, most of the simulated emission factors for Cachoeira dos Patos, Cachoeira do Caí, and Sinop are higher than those for thermal power plants.

Moreover, it is worth highlighting that because of the higher GWP for CH₄ over 20 years, the simulation results using this GWP are higher and suggest the hydropower emissions could have serious climate impacts in the short-term. The SI presents the emission factor simulation results by reservoir age. During the first three years of operation, all new hydropower plants in the Amazon have at least some emission factor outcomes above or at the natural gas generation level (see tables S22 and S23 in the SI). While GWP can serve as a proxy for climate impacts, recent studies suggest it can be an imperfect metric for policy analysis (Shine et al 2005, Shine 2009, Peters et al 2011, Kendall 2014). In this paper, for example, using GWP implicitly assumes that the emissions over the entire life of these projects (100 years) occur as a pulse emission in year 0. Thus, the values in this study do not account for the timing of emissions. Hence, this paper should not be the basis for statements about the global climate impacts of large reservoirs, such as the effect on global temperatures. The results in this paper,
however, present an account of C emissions that could later be used to model such climate impacts, and future work will expand on this area of research.

Focusing on low RT reservoirs, the reservoirs of Bem Querer, Colider and Marabá have a high number of simulations that suggest these reservoirs have emissions factors larger than those of thermal power plants. In the case of the 20 year GWP results, the emission factors from the BU simulations are also high, consistent with the TD results. Further, Ferreira Gomes is the only reservoir with emission factors that are similar to those of solar and wind projects. In summary, figure 3 shows that a robust treatment of the uncertainty, which is possible by the application of the Monte Carlo simulation structure and the clear statement of model assumptions, provides valuable information about each reservoir that can be used to support decision-making in most cases.

Another relevant difference worth noting between some of the old and new hydropower reservoirs in the Amazon is the relationship between flooded area and installed capacity (power density in MW km\(^{-2}\)). There is a strong negative correlation between the hydropower plant emission factors and its power density (Demarty and Bastien 2011). Reported emission factors for the old tropical reservoirs of Balbina, Tucuruí, Petit Saut, and Samuel are higher than those of fossil fuel power plants, with mean emission factors of 2200, 480, 1300, and 2200 kg CO\(_2\)eq per MWh, respectively (Demarty and Bastien 2011). The power densities of
Balbina, Tucuruí, Petit Saut, and Samuel reservoirs are 0.1, 2.9, 0.4 and 0.4 MW km$^{-2}$, respectively. In contrast to these old reservoirs, 13 of the new projects studied in this paper have power densities greater than 3.5 MW km$^{-2}$ (see table 1). Not surprisingly, the reservoirs with the lower energy densities are also the projects with higher emissions factors in our estimates (see figure S13 and S14 in the SI). Additionally, three out of the five storage power plants in our database are in the highest emission factor group because the additional volume for water storage often requires more reservoir area, which leads to lower energy densities and higher emission factors. The SI presents a sensitivity analysis about the effect of the reservoir area in our estimates for storage reservoirs.

4. Implications and uncertainty

Our results suggest that GHG emissions from hydroelectric reservoirs vary significantly across the different projects; these emissions could be higher than currently assumed and, under specific conditions, could even be comparable to those of fossil-based power

![Figure 3. Average emission factors simulation results over 100 years (kg CO$_2$eq MWh$^{-1}$). Results are presented for two methane global warming potential (GWP). GWP20 represent the emission factors assuming GWP equal 86. GWP100 represent the emission factors assuming GWP equal 34. The x-axis plots each of the 10,000 simulation points against a random number generated within a fixed range in the y-axis. Black vertical dashed lines represent median power plant emission factors: hydropower (4), natural gas (470), oil (840) and coal (1000) (Moomaw et al 2011). (#) Indicates high residence time reservoirs.](image)
plants. Most of the reservoir simulations resulted in lower emission factors when compared to those of thermal power plants, but higher when compared to those of solar or wind projects. It is important to note that this comparison is based on the accounting of emissions over the life of the projects and is not meant to be an assessment of the actual climate impacts from these energy projects, which would require either the use of more detailed climate metrics than GWP or a climate model.

Nevertheless, the comparison of emission factors between hydropower plants in the Amazon and other sources of electricity suggests that the climate impacts from large scale development of Amazonian hydropower can be greater than has been suggested in the literature. Over a hundred years, the 18 new reservoirs in the Amazon would lead to average total emissions that vary from 9 Tg of CH4 and 81 Tg of CO2 (BU approach) to 21 Tg of CH4 and 310 Tg of CO2 (TD approach). As a point of comparison, emissions from the US natural gas energy system totaled 10 Tg of CH4 and 35 Tg of CO2 in 2013 (EPA 2015). As the global community moves to mitigate global GHG emissions, the potential emissions from Amazonian reservoirs should be considered in the context of emissions from other alternatives.

The Brazilian government is currently evaluating whether to keep investing in low RT reservoirs due to the advantages of adding storage capacity to the electric system. The results in this paper suggest that the adoption of high energy density reservoirs contributes to reduce overall GHG emissions for hydropower plants. Thus, the proposal to shift towards construction of storage reservoirs with larger areas and higher RT could result in increased emissions from Amazonian projects. Furthermore, our results suggest that the current policy that requires vegetation clearing before reservoir flooding supports a significant reduction in GHG emissions from these projects and should be improved.

Moreover, climate change and deforestation in the Amazon are factors that may affect atmospheric and surface conditions in the future, which would affect GHG emissions from reservoirs. Studies suggest that one of the impacts from land use change and global warming will be changes in Amazon precipitation patterns (Malhi et al 2008). Shifts in the regional climate patterns can influence reservoir emissions by changing the heat balance and surface mixed layer dynamics of hydroelectric reservoirs (Curtarelli et al 2014). Any changes in precipitation and wind patterns can also affect emissions, as they are important factors to define gas exchange flux variability (Abril et al 2005). Because of the uncertainty and the lack of knowledge in modeling the correlation between climate patterns and GHG emissions from reservoirs, we are unable to quantify the magnitude of future climate and land use change in our estimates.

The challenge of evaluating net GHG emissions due to reservoir creation is complex because of high spatial and temporal variability and the multiple factors that can interfere in the production, consumption, and emissions of GHGs in tropical reservoirs. The scarcity of data, as well as the gaps in the knowledge about the physical, chemical, and biological processes involved, contribute to the difficulty in estimating the C budget of future reservoirs. Nevertheless, given the large number of hydropower dams that are planned in the Brazilian Amazon region, it is essential to use the available scientific information to develop methods to evaluate the potential GHG emissions from hydroelectric projects. While the uncertainties of our models are high, the simulations explore a vast range of GHG emission scenarios for each hydropower reservoir and provide information that is useful to support decision-making.

Acknowledgments

CNPq (fellowship 202484/2011-4) supported this research. The RenewElec project and the Department of Engineering and Public Policy at Carnegie Mellon University, and FAPESP (Grants 2011/06609-1, 2011/14502-2 and 2012/17359-9), also provided partial support. The findings of this paper are the sole responsibility of the authors and do not represent the opinions of the funding sources.

Competing financial interests

The authors declare no competing financial interests.

References

Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, dos Santos M A and Matvienko B 2005 Carbon dioxide and methane emissions and the carbon budget of a 10 year old tropical reservoir (Petit Saut, French Guiana) Glob. Biogeochemical Cycles 19 1–16
Alin S R, Rasera M de F F L, Salimon C I, Richey J E, Holtgrieve G W, Krušček A V and Snidvongs A 2011 Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets J. Geophys. Res. 116 G01009
Angélis M A and Scranton M I 1993 Fate of methane in the Hudson River and estuary Glob. Biogeochemical Cycles 7 509–23
Barros N, Cole J J, Tranvik L J, Prairie Y T, Bastviken D, Huszar V I M, del Giorgio P and Roland F 2011 Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude Nat. Geosci. 4 593–6
Bastviken D 2009 Methane Encyclopedia of Inland Waters ed G E Likens (New York: Academic) pp 783–805
Cerri C E P et al 2007 Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030 Agric. Ecosystems Environ. 122 58–72
Cole J et al 1998 Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 Limnology Oceanogr. 43 647–56
Cole J et al 2007 Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget Ecosystems 10 172–85
Curtarelli M P, Ogashawara I, Araújo C A S, Alcântara E H, Lorenzetti J A and Stech J L 2014 Influence of summertime mesoscale convective systems on the heat balance and surface mixed layer dynamics of a large Amazonian hydroelectric reservoir J. Geophys. Res.: Oceans 119 8472–94

Delmas R, Galy-Lacaux C and Richard S 2001 Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut (French Guiana) compared with emissions from alternative thermal sources Glob. Biogeochem. Cycles 15 993–1003

De Souza T, Kunz M J, Kempter T, Wüst A, Wehrli B and Senn D B 2011 Spatial heterogeneity of methane ebullition in a large tropical reservoir Environ. Sci. Technol. 45 9866–73

Demarty M and Bastien J 2011 GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: review of 20 years of CH4 emission measurements Energy Policy 39 4197–206

Dumestre J F and Guézennec J 1999 Influence of light intensity on methanotrophic bacterial activity in Petit Saut Reservoir, French Guiana Appl. Environ. Microbiol. 65 534–9

Ellis E E, Richey J E, Auðenæmpe A K, Krusche A V, Quay P D, Salonim J and Brandão da Cunha H 2012 Factors controlling water-column stratification in rivers of the central and Southwestern Amazonian Amazonas. 57 527–40

EPA (Environmental Protection Agency) 2015 *Inventory of US Greenhouse Gas Emissions and Sinks*: 1990–2013 (www3.epa.gov/climatechange/Downloads/gghemissions/US-GHG-Inventory-2015-Main-Text.pdf)

Fearnside P M 2002 Greenhouse gas emissions from a hydroelectric reservoir (Brazil Tucurui Dam) and the energy policy implications Water Air Soil Pollut. 133 69–96

Fearnside P M and Pueyo S 2012 Greenhouse-gas emissions from a hydroelectric reservoir in tropical and equatorial regions: review of 20 years of CH4 emission measurements Energy Policy 39 4197–206

Fearnside P M 2015b Tropical hydropower in the clean development mechanism: Brazil

Fearnside P M 2002 Greenhouse gas emissions from a hydroelectric reservoir (Brazil Tucurui Dam) and the energy policy implications Water Air Soil Pollut. 133 69–96

Fearnside P M and Pueyo S 2012 Greenhouse-gas emissions from a hydroelectric reservoir in tropical and equatorial regions: review of 20 years of CH4 emission measurements Energy Policy 39 4197–206

Fearnside P M 2015a Emissions from tropical hydropower and the IPCC Environ. Sci. Policy 50 225–39

Fearnside P M 2015b Tropical hydropower in the clean development mechanism: Brazil’s Santo Antônio dam as an example of the need for change Clim. Change 131 575–89

Furch K 1984 *Water Chemistry of the Amazon Basin: The Distribution of Chemical Elements Among Freshwaters* ed H J Dumont and H Sioli (Dordrecht: Monographs Biologicae et Physicae) pp 167–99

Galy-Lacaux C, Delmas R, Kosoudog G, Richard S and Gosse P 1999 Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions Glob. Biogeochem. Cycles 13 503–17

Goldenfum J A 2012 Challenges and solutions for assessing the impact of freshwater reservoirs on natural GHG emissions *Ecology Hydrology Hydrobiology* 12 115–22

Guérin F, Aebli G, Richard S, Burban B, Reynoard C, Seyler P and Delmas R 2006 Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers Geophys. Res. Lett. 33 L21407

Guérin F and Aebli G 2007 Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir J. Geophys. Res. 112 G03006

Guérin F, Aebli G, de Junet A and Bonnet M P 2008 Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir Appl. Geochemistry 23 2272–83

Hansen M C et al 2013 High-resolution global maps of 21st-century forest change Science 342 850–3

Hu Y and Cheng H 2013 The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China Nat. Clim. Change 3 708–12

IPCC 2013 *Climate Change 2013 The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* ed TF Stocker et al (Cambridge: Cambridge University Press)

Junk W J, Piedade M T F, Schöngart J, Cohn-Haft M, Adeney J M and Wittmann F 2011 A classification of major naturally-occurring Amazonian lowland wetlands *Wetlands* 31 623–40

Kemenes A, Forsberg B R and Melack J M 2007 Methane release below a tropical hydroelectric dam Geophys. Res. Lett. 34 L112809

Kemenes A, Forsberg B R and Melack J M 2011 CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil) J. Geophys. Res. 116 G08004

Kendall A 2014 Climate change mitigation: depositing global warming potentials *Nat. Clim. Change* 4 321–5

Kubistheck J 1960 *Lei n° 3.824, de 23 de Novembro de 1960, Brazil* Kuha J 2004 AIC and BIC: comparisons of assumptions and performance *Sociological Methods Res.* 33 188–229

Lima I B T 2005 Biogeochemical distinction of methane releases from two Amazon hydoresevoirs *Chemosphere* 59 1697–702

Malhi Y, Baldocchi D D and Jarvis P G 1999 The carbon balance of tropical, temperate and boreal forests Plant Cell Environ. 22 715–40

Malhi Y, Roberts J T, Betts R A, Killeen T J and Li W 2008 Climate change, deforestation, and the fate of the Amazon Science 319 1–5

MME (Ministério de Minas e Energia) EPE (Empresa de Pesquisa Energética) 2013 *Plano Decenal de Expansao de Energia* 2022 pp 1–18

MME (Ministério de Minas e Energia) EPE (Empresa de Pesquisa Energética) 2014 *Plano Decenal de Expansao de Energia* 2023 pp 1–434

Moowaw V, Burgherr P, Heath G, Lenzen M, Nyboer J and Verbruggen A 2011 IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Cambridge University Press

Peters G P, Arnassa B, T Lund M, Solli C and Fuglestvedt J S 2011 Alternative ‘global warming’ metrics in life cycle assessment: a case study with existing transportation data Environ. Sci. Technol. 45 8663–41

Rasera M de F L, Ballester M V R, Krusche A V, Montebelo L A, Alin S R, Victoria R L and Richey J E 2008 Estimating the surface area of small rivers in the Southwestern Amazon and their role in CO2 outgassing *Earth Interact.* 12 1–16

Rasera M de F L, Krusche A V, Richey J E, Ballester M V R and Victoria R L 2013 Spatial and temporal variability of POC and CO2 efflux in seven Amazonian Rivers *Biogeochemistry* 116 241–59

Richey J E, Melack J M, Auðenæmpe A K and Hess V M B L 2002 Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 *Nature* 416 1–5

Roland F, Vidal I O, Paschoe F S, Barros W, Assis A, Ornetto I P H B, Cimbelis A C P and Cole J I 2010 Variability of carbon dioxide flux from tropical (cerrado) hydroelectric reservoirs *Aquatic Sci.* 72 283–93

Rosa L P, dos Santos dos M A, Matvienko B, Santos E O and Sikar E 2004 Greenhouse gas emissions from hydroelectric reservoirs in tropical regions Clim. Change 66 9–21

Saatchi S S, Houghton R A, Alves D and Nelson B 2008 *LBA-ECO LC-15 Amazon Basin Aboveground Live Biomass Distribution Map*: 1990–2000 Oak Ridge National Laboratory Distributed Active Archive Center (https://daac.ornl.gov/LBA/guides/LC15_AGLB.html)

Salimon C, Santos S E, Alin S R, Krusche A V and Ballester M V 2012 Seasonal variation in dissolved carbon concentrations and fluxes in the upper Purus River, Southwestern Amazon *Biogeosciences* 14 245–58

Santos dos M A, Rosa L P, Sikar B, Sikar E and Santos E O 2006 Gross greenhouse gas fluxes from hydro–power reservoir compared to thermo–power plants *Energy Policy* 34 481–8

Sawakuchi H O, Bastviken D, Sawakuchi A O, Krusche A V, Ballester M V R and Richey J E 2014 Methane emissions from Amazonian rivers and their contribution to the global methane budget * Glob. Change Biol.* 20 2829–40

Shine K P, Fuglestvedt J S, Hail temarium K and Stuber N 2005 Alternatives to the global warming potential for comparing
climate impacts of emissions of greenhouse gases Clim. Change 68 281–302
Shine K P 2009 The global warming potential—the need for an interdisciplinary retrial Clim. Change 96 467–72
St. Louis V I S, Kelly C A, Duchemin É, Rudd J W M and Rosenberg D M 2000 Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate BioScience 50 766–75
Straškraba M 1973 Limnological basis for modeling reservoir ecosystems *Man-Made Lakes* (Geophysical Monograph Series vol 17) (New York: Wiley) pp 517–35
Straškraba M, Tundisi J G and Duncan A 1993 State-of-the-art of reservoir limnology and water quality management *Comparative Reservoir Limnology and Water Quality Management* 77 213–88
Teodoru C R et al 2012 The net carbon footprint of a newly created boreal hydroelectric reservoir Glob. Biogeochemical Cycles 26 GB2016
Tundisi J G, Matsumura-Tundisi T and Calijuri M C 1993 Limnology and management of reservoirs in Brazil *Comparative Reservoir Limnology and Water Quality Management* 77 22–55
Wehrli B 2011 Climate science: renewable but not carbon-free *Nat. Geosci.* 4 585–6