BINOMIAL IDEALS ATTACHED TO FINITE COLLECTIONS OF CELLS

JÜRGEN HERZOG, TAKAYUKI HIBI, AND SOMAYEH MORADI

ABSTRACT. We consider the ideal of inner 2-minors I_P of a finite set of cells P, which we call the cell ideal of P. A nice interpretation for the height of an unmixed ideal I_P, in terms of the number of cells of P is given. Moreover, the coordinate rings of cell ideals with isolated singularities are determined.

INTRODUCTION

Combinatorial descriptions of height of polyomino ideals have been studied in several works. Qureshi [4] proved that for a convex polyominoe P the height of the polyomino ideal I_P is the number of cells of P. Herzog and Madani [14] extended this result to simple polyominoes, which by definition are the polyominoes with no holes, see [3] and [5]. Such polyomino ideals are in particular prime. However, not all polyomino ideals are prime ideals and it is still an open problem to identify the polyominoes P for which I_P is a prime ideal. In [1] the same description for height in terms of the number of cells of P was proved for closed path polyominoes. In this paper we consider more generally cell ideals, i.e., ideals of inner 2-minors which are attached to finite collections of cells. When any two cells of P are connected in P, this ideal is just the polyomino ideal. In Theorem 1.1 it is shown that height $I_P \leq c \leq \text{bigheight} I_P$, where c is the number of cells of P. In particular, if I_P is an unmixed ideal, then height $I_P = c$. To this aim we use Lemma 1.2 which determines the height of an unmixed binomial ideal $I \subset S$ in terms of the dimension of the \mathbb{Q}-vector space spanned by the set of integer vectors \{ $v - w \in \mathbb{Q}^n : x^v - x^w \in I$ \}.

In the next section of this paper it is shown that when K is a perfect field, and P is a finite set of cells such that $I_P \subset S$ is a prime ideal, then the ring S/I_P has an isolated singularity if and only if P is an inner interval.

1. ON THE HEIGHT OF CELL IDEALS

Consider (\mathbb{Z}^2, \leq) as a partially ordered set with $(i, j) \leq (i', j')$ if $i \leq i'$ and $j \leq j'$. Let $a, b \in \mathbb{Z}^2$. Then the set $[a, b] = \{ c \in \mathbb{Z}^2 : a \leq c \leq b \}$ is called an interval. The interval with $a = (i, j)$ and $b = (i', j')$ is called proper, if $i < i'$ and $j < j'$. A cell is an interval of the form $[a, b]$, where $b = a + (1, 1)$. The cell $C = [a, a + (1, 1)]$ consists of the elements $a, a + (0, 1), a + (1, 0)$ and $a + (1, 1)$, which are called the vertices

\textbf{2010 Mathematics Subject Classification.} 13F20, 05E40.

\textbf{Key words and phrases.} cell ideal, height, isolated singularity.

The second author was partially supported by JSPS KAKENHI 19H00637. The third author is supported by the Alexander von Humboldt Foundation.
Lemma 1.2. Let $I \subset S$ be a binomial ideal, and let V_I be the \mathbb{Q}-vector space spanned by the set of integer vectors $\{v - w \in \mathbb{Q}^n : x^v - x^w \in I\}$. Then

$$\text{height } I \leq \dim_{\mathbb{Q}} V_I \leq \text{bighight } I.$$

In particular, height $I = \dim_{\mathbb{Q}} V_I$, if I is unmixed.

Proof. Let $x = x_1 \cdots x_n$. Then $S_x = K[x_1^\pm, \ldots, x_n^\pm]$ is the Laurent polynomial ring, and we have height $I \leq \text{height } IS_x$. Hence, for the first inequality it suffices to show that $\text{height } IS_x \leq \dim_{\mathbb{Q}} V_I$.

Note that

$$IS_x = (1 - x^v : v \in V_I).$$

We observe that

$$(1 - x^v) - (1 - x^w) = (x^v - x^w) = x^w (1 - x^{v-w}).$$

This shows that with $1 - x^v$ and $1 - x^w$, also $(1 - x^{v-w}) \in S_x$, since x^w is a unit in S_x. Similarly, one sees that $(1 - x^{v_1+v_2}) \in S_x$. Hence the integer vectors v, which span V_I, form an abelian subgroup G of \mathbb{Z}^n. Any abelian subgroup of \mathbb{Z}^n is free. Let v_1, \ldots, v_r be a basis of G. Then this basis is also a \mathbb{Q}-basis of V_I, and

$$IS_x = (1 - x^{v_1}, \ldots, 1 - x^{v_r}).$$
Now, we apply Krull's generalized principle ideal theorem, to deduce that height $IS_x \leq r = \dim \mathbb{Q} V_I$, as desired.

For the second inequality we notice that height $IS_x \leq \text{bigheight } I$. Thus it suffices to show that height $1 - x^{v_1}, \ldots, 1 - x^{v_r}$ of $\mathbb{Q} V$. Observe that S_x can be identified with the group ring $K[Z^n]$, whose K-basis consists of all monomials x^a with $a \in \mathbb{Z}^n$. By the elementary divisor theorem there exists a basis e_1, \ldots, e_n of \mathbb{Z}^n and positive integers a_1, \ldots, a_r such that $v_i = a_i e_i$ for $i = 1, \ldots, r$. In these coordinates

$$IS_x = (1 - x_1^{a_1}, \ldots, 1 - x_r^{a_r})S_x.$$

Now, consider the ideal $J = (1 - x_1^{a_1}, \ldots, 1 - x_r^{a_r})S_r$, where $S_r = K[x_1, \ldots, x_r]$. Let $R = S_r/J$. Since dim $R = 0$, it follows that $R[x_{r+1}, \ldots, x_n]$ is Cohen-Macaulay of dimension $n - r$, and since $R[x_{r+1}, \ldots, x_n] \cong S/JS$, this implies that JS is an unmixed ideal of height r. Because JS is unmixed, we then have

$$r = \text{height } JS = \text{height } JS_x = \text{height } IS_x,$$

as desired. \qed

Proof of Theorem 1.1. Note that V_{I_p} is a subspace of the \mathbb{Q}-vector space $W := \mathbb{Q}^V(\mathcal{P})$. We denote by $v_a \in W$ the vector, whose a's component is 1, while its other components are 0. The set of vectors $\{v_a : a \in V(\mathcal{P})\}$ is the canonical basis of W.

For each inner interval $[a, b]$ of \mathcal{P} with anti-diagonals c and d we define the vector

$$v_{[a, b]} = v_a + v_b - v_c - v_d.$$

It follows from the definition of V_{I_p} that the vectors $v_{[a, b]}$ span V_{I_p}.

If $C = [a, b]$ is a cell of \mathcal{P}, then we write v_C for the vector $v_{[a, b]}$ and claim that the vectors v_C form a \mathbb{Q}-basis of V_{I_p}. Together with Theorem 1.2 this claim implies the desired conclusion.

If $[a, b]$ is an arbitrary inner interval of \mathcal{P}, then it is readily seen that

$$v_{[a, b]} = \sum_C v_C,$$

where the sum is taken over all cells in $[a, b]$. This shows that the vectors v_C generate V_{I_p}.

It remains to be shown that the set of vectors v_C with C a cell of \mathcal{P} is linearly independent. For this purpose we choose any total order on \mathbb{Z}^2, extending the partial order \leq on \mathbb{Z}^2 which is defined by componentwise comparison. We set $v_a \preceq v_b$ when $a \leq b$. Then for any cell $C = [a, b]$, the leading vector in the expression of v_C is v_b. Since the leading vectors of all the vectors v_C are pairwise distinct, it follows that the vectors v_C are linearly independent. \qed

2. THE COORDINATE RING OF CELL IDEALS WITH ISOLATED SINGULARITY

Let $I = (f_1, \ldots, f_m)$ be an ideal in S, and let

$$A = (\partial f_i/\partial x_j)_{i=1, \ldots, m, j=1, \ldots, n}$$

...
be the corresponding Jacobian matrix. Let h be the height of I. The Jacobian ideal of the ring $R = S/I$ is the ideal $J \subset R$ generated by the $h \times h$-minors of A. When K is a perfect field, the ideal J defines the singular locus of R. In other words, R_P is not regular for $P \in \text{Spec}(R)$ if and only if $J \subseteq P$, see [2, Corollary 16.20].

In the following result we investigate when the ring $K[P]$ has an isolated singularity.

Theorem 2.1. Let K be a perfect field, and let P be a finite set of cells such that $I_P \subset S$ is a prime ideal. Then S/I_P has an isolated singularity if and only if P is an inner interval.

Proof. We set $u_a = x_a \mod I_P$ for all $a \in V(P)$. Let $J \subset R$ be the Jacobian ideal of $R = S/I_P$. By [2, Corollary 16.20] the assumption on K guarantees that the K-algebra R has an isolated singularity if and only $\dim R/J = 0$. The latter is the case if and only if suitable powers of the K-algebra generators u_a of R belong to J.

Let $a \in V(P)$. Then $\pm x_a$ appears as an entry of the Jacobian matrix, if and only if there exists $b \in V(P)$ such that a and b are the diagonal or anti-diagonal corners of an inner interval D of P. Let B_a be the set of such elements b. Thus, if u^k_a appears as a monomial generator of the Jacobian ideal J, then there should exists at least h such elements b so that a and b are the diagonal or anti-diagonal corners of an inner interval of P. Hence, $h \leq |B_a|$.

For each $b \in B_a$ there exists a unique cell $C_b \subseteq D$ for which b is a corner of D.

![Figure 1. Inside cell](image)

It follows that $|B_a| \leq h$ (which is the number of cells of P). Thus we have shown that $|B_a| = h$ for all $a \in V(P)$. Assume that P is not an interval. We claim that in this case there exists $a \in P$ such that $|B_a| < h$, which then leads to a contradiction.

Proof of the claim: choose $a \in V(P)$, and take the subset $\{b_1, \ldots, b_r\}$ of the elements in B_a for which the inner interval I_j with corners a and b_j (as displayed in Figure 2) is maximal in the sense that if $b \in B_a$, then the inner interval with corners
\[\textbf{Figure 2.} \]

\(a \) and \(b \) is contained in one of the intervals \(I_j \). Since \(|B_a| = h\) and since the cells \(C_b\) are pairwise distinct, and since they are cells of \(\bigcup_{j=1}^{r} I_j \), it follows that \(\bigcup_{j=1}^{r} I_j \) contains \(h \) cells. By Theorem 1.1, \(P \) has exactly \(h \) cells. Hence we see that \(P \) is equal to the set of the cells of \(\bigcup_{j=1}^{r} I_j \). Let \([c, d]\) be the smallest interval containing \(P \), see Figure 3.

\[\textbf{Figure 3.} \]

Since we assume that \(P \) is not an interval, it follows that not all corners of \([c, d]\) belong to \(V(P) \). We may assume that \(c \notin V(P) \), and in order to simplify our discussion we may further assume that \(c = (0, 0) \). Let \(b \) be the smallest element on the \(x \)-axis and \(b' \) be the smallest element on the \(y \)-axis which belongs to \(V(P) \). In our picture these are the elements \(b = b_1 \) and \(b' = b_5 \). Then \(b' + (1, 1) \notin B_b \), which implies that \(|B_b| < h \). This proves the claim and completes the proof of the theorem. \(\square \)

\textbf{References}

[1] R. Dinu, F. Navarra, Non-simple polyominoes of König type, arXiv:2210.12665, 2022.
[2] D. Eisenbud, Commutative Algebra with a View towards Algebraic Geometry. GTM 150, Springer, 1994.
[3] J. Herzog, S.S. Madani, The coordinate ring of a simple polyomino. Illinois J. Math. 58 (2014), 981–995.
[4] A.A. Qureshi, Ideals generated by 2-minors, collections of cells and stack polyominoes. J. Algebra 357 (2012), 279–303.

[5] A.A. Qureshi, T. Shibuta, A. Shikama, Simple polyominoes are prime. J. Commut. Algebra 9 (2017), 413–422.

JÜRGEN HERZOG, FACHBEREICH MATHEMATIK, UNIVERSITÄT DUISBURG-ESSEN, CAMPUS ESSEN, 45117 ESSEN, GERMANY
Email address: juergen.herzog@uni-essen.de

TAKAYUKI HIBI, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, SUITA, OSAKA 565-0871, JAPAN
Email address: hibi@math.sci.osaka-u.ac.jp

SOMAYEH MORADI, DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, ILAM UNIVERSITY, P.O.BOX 69315-516, ILAM, IRAN
Email address: so.moradi@ilam.ac.ir