Identification of MMV Malaria Box Inhibitors of *Perkinsus marinus* Using an ATP-Based Bioluminescence Assay

Yesmalie Aleman Resto, Jose A. Fernández Robledo

1 Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America, 2 Research Experiences for Undergraduates (REU) NSF Program - 2013 - Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America

Abstract

“Dermo” disease caused by the protozoan parasite *Perkinsus marinus* (Perkinsozoa) is one of the main obstacles to the restoration of oyster populations in the USA. *Perkinsus* spp. are also a concern worldwide because there are limited approaches to intervention against the disease. Based on the phylogenetic affinity between the Perkinsozoa and Apicomplexa, we exposed *Perkinsus* trophozoites to the Medicines for Malaria Venture Malaria Box, an open access compound library comprised of 200 drug-like and 200 probe-like compounds that are highly active against the erythrocyte stage of *Plasmodium falciparum*. Using a final concentration of 20 μM, we found that 4 days after exposure 46% of the compounds were active against *P. marinus* trophozoites. Six compounds with IC50 in the μM range were used to compare the degree of susceptibility in vitro of eight *P. marinus* strains from the USA and five *Perkinsus* species from around the world. The three compounds, MMV666021, MMV658507 and MMV666102, displayed a uniform effect across *Perkinsus* strains and species. Both *Perkinsus marinus* isolates and *Perkinsus* spp. presented different patterns of response to the panel of compounds tested, supporting the concept of strain/species variability. Here, we expanded the range of compounds available for inhibiting *Perkinsus* proliferation *in vitro* and characterized *Perkinsus* phenotypes based on their resistance to six compounds. We also discuss the implications of these findings in the context of oyster management. The *Perkinsus* system offers the potential for investigating the mechanism of action of the compounds of interest.

Citation: Aleman Resto Y, Fernandez Robledo JA (2014) Identification of MMV Malaria Box Inhibitors of *Perkinsus marinus* Using an ATP-Based Bioluminescence Assay. PLoS ONE 9(10): e111051. doi:10.1371/journal.pone.0111051

Introduction

Perkinsus marinus and *Perkinsus chesapeaki* cause Dermo disease in oysters and clams in the USA. Described in the early 1950s, Dermo disease is associated with mass mortalities of eastern oysters (*Crassostrea virginica*) in the Gulf Coast [1]; now it is under surveillance by the World Organization for Animal Health (OIE; http://www.oie.int/); Aquatic Animal Health Code, Section 11: Diseases of Molluscs). The Chesapeake Bay (Maryland, Virginia, USA) is a clear example of where *P. marinus* has contributed to the decimation of the oyster industry (today’s production in Maryland is 4.2% of the production in the mid-1960s). The expansion of the *P. marinus* distribution range in the USA has been associated with global warming and the shellfish trade [2,3]. Dermo remains an important obstacle to the restoration of oyster populations in numerous eastern states [3,4]. Interestingly, *P. marinus* has also been reported with high prevalence in oysters from eastern states with no noticeable mollusk mortality [5], and recent records of *P. marinus* in oysters from the West Coast of North America were not associated with mortalities [6]. The presence of *P. marinus* phenotypes and genotypes might account for differences in virulence [7–9]. In the USA, *P. chesapeaki* displays a high preference for infecting clams and it appears to be better adapted to lower salinities and temperatures than *P. marinus* [5] and recently it has been detected in cockles (*Cerastoderma edule*) in Europe [10]. Worldwide, seven *Perkinsus* spp. have been described, most of them in the last decade with five of them available in *in vitro* culture (reviewed in [11]).

Compared to parasites of human and veterinary relevance, the pharmacopoeia for marine protozoan parasites is still very limited, and some of these compounds are toxic to the marine environment [12,13]. *Perkinsus* and other non-photosynthetic relatives of both dinoflagellates and apicomplexans lineages have lost the ability to perform photosynthesis; still, they have retained a cryptic plastid and its pathways (Chromalveolata hypothesis), which are recognized as promising drug targets [14,15]. Government agencies, drug companies, and non-profit organizations have screened multiple compound libraries against *Plasmodium falciparum* resulting in the Medicines for Malaria Venture (MMV) Malaria Box (http://www.mmv.org/malariabox). [16]. This compound library is being used to find inhibitors of defined parasite life stages [17,18], to describe mechanisms of action [19], and to find active compounds against other protozoan parasites [20,21]. Here, we followed similar approach and tested the MMV Malaria Box for...
the discovery of novel hits against *Perkinsus* using an adenosine tri-phosphate (ATP) content-based assay to test *P. marinus* proliferation growth [13].

Materials and Methods

Materials

The MMV Malaria Box constitutes 200 drug-like and 200 probe-like compounds with activity against the blood-stage of *Plasmodium falciparum* 3D7 (http://www.mmv.org/research-development/malaria-box-supporting-information). Stock solutions (20 mM) (Batch April2013; Table S1) in dimethyl sulfoxide (DMSO) were diluted in water and tested in the primary screening at a final concentration of 20 μM. The compounds were not repurchased nor re-synthetized; consequently, the results should be considered as primary unconfirmed hits until the identification of these compounds is followed up by a proper confirmation.

Parasite strains and in vitro culture

Experiments were carried out with eight *P. marinus* strains and five *Perkinsus* species (Table 1). Cultures were maintained in Dulbecco modified Eagle’s Ham’s F12 (1:2) supplemented with 5% fetal bovine serum in 25 cm2 (5 ml) vented flasks in a 26–28°C microbiology incubator fitted with orbital shaking (70–80 rpm). Cells were exposed once to the MMV Malaria Box (20 μM; final concentration of DMSO point dose-response curve (10 μM to 0.156 μM) using Prim6 (sigmoidal) (Graphpad Software, Inc.). Eight *P. marinus* strains and five *Perkinsus* spp. (Table 1) were tested to compare their relative sensitivity using 2 μM day 2 post-exposure. *In vitro* cultures *Perkinsus olseni*, *P. chesapeaki*, and *P. mediterraneus* are characterized by either sporulating, making the culture medium acid or remaining in clumps, or having very large trophozoites [24–27]. Consequently, to standardize the assay, aliquots from the cultures in the exponential phase were used for ATP measurement and then the experimental-well plates seeded with cells- ATP activity equivalent to *P. marinus* PRA240 2.0–5.0×106 cells/2000–4000 relative fluorescence units, RFU) [13]. The effect of the compounds on *P. marinus* strains and *Perkinsus* spp. proliferation was evaluated as above.

Results and Discussion

MMV Malaria Box screen

In this study, we screened the MMV Malaria Box for compounds that might inhibit *P. marinus* proliferation *in vitro*, an approach that has been successfully used to identify compounds against other protozoan parasites [19–21]. In our previous study, the effect of the drugs on *P. marinus* proliferation was evaluated at days 2, 4, and 8 post-exposure; however, it was at day 4 post-exposure when the inhibitory effect(s) of most drugs tested became apparent [13]. Consequently, for the MMV Malaria Box

Table 1. Perkinsus spp. and Perkinsus marinus strains used in the study.

Perkinsus sp.*	Strain	ATCC #	Location/year of isolation	Host	Reference
P. marinus	C13-11	50896	Cotuit, MA (USA)/1998	Crassostrea virginica	
	LICT-1	50508	Long Island Sound, CT (USA)/1998	Crassostrea virginica	
	DBNJ-1	50509	Delaware Bay, NJ (USA)/1993	Crassostrea virginica	
	CBSD4	PRA240	Bennett Point, MD (USA)/2008	Crassostrea virginica	[23]
	CBSD4	PRA393	GFP mutant derived from PRA240	Crassostrea virginica	[13,23]
	H Cedar2	50757	Cedar Keys, FL (USA)/1998	Crassostrea virginica	
	HTIP14	50763	Fort Pierce, FL (USA)	Crassostrea virginica	
	TXsc	50983	Galveston Bay, TX (USA)/1993	Crassostrea virginica	[28]
P. chesapeaki (= andrewsi)	A8-4a	50807	Fox Point, MD (USA)/2001	Macoma balthica	[25]
P. olseni (= atlanticus)	ALG1	50984	Ria Formosa, Algarve (Portugal)/2002	Tapes decussatus	[24]
P. mediterraneus	G2	PRA238	Menorca (Spain)/2003	Ostrea edulis	[47]
P. honshuensis	Mie-3G/H8	PRA177	Gokasho Bay, Mie Pref. (Japan)/2002	Venerupis philippinarum	[56]

Perkinsus marinus PRA240 was used for the primary screen. A total of eight *P. marinus* strains isolated from oysters from the East and Gulf Coast of the USA and five *Perkinsus* spp. from around the world were used for the secondary screen. In all the cases cultures were maintained in Dulbecco modified Eagle’s Ham’s F12 (1:2) supplemented with 5% fetal bovine serum.

Perkinsus qugwadi and *Perkinsus behaiensis* have never been available in culture [57,58].

doi:10.1371/journal.pone.0111051.t001
screening we measured cell viability at day 4 post-exposure. We found that 46% of the compounds active against the *P. falciparum* erythrocyte trophozoites (Table S2). A total of 58 compounds (31.8%) resulted in at least 50% inhibition; from these compounds, 13 (7.1%) resulted in at least 90% inhibition (Figure 1). The repertory of available compounds against *Perkinsus* drugs has gradually increased over the past two decades thanks to the establishment of the culture methodologies for *Perkinsus* spp. [28–30] (Figure 2A). Still, prior to this study, the number of available compounds against *Perkinsus* spp. was very limited (Figure 2B) compared to compounds against protozoan parasites of medical and veterinary relevance [31–34]. Previous screenings for compounds inhibiting *Perkinsus* proliferation have been based on the strong line of evidence for the presence in *Perkinsus*, like those in apicomplexan parasites, of pathways linked to a relic plastid [12,13,35,36]. Here we have shown that the MMV Malaria Box offers a promising alternative way of finding compounds effective against *Perkinsus* spp.

Table 2. List of compounds active against *Plasmodium falciparum* selected for the MMV Malaria Box (http://www.mmv.org/malarialbox) for secondary *Perkinsus marinus* growth-inhibition screen (IC50) and *Perkinsus marinus* strain and *Perkinsus* species sensitivity.

HEOS Compound ID	Target	Smiles	EC50 (μM)**	Set	MW (KDa)	EC50 (μM)**
MMV665941	Unknown	CCNC(1ccc(1)c(2)N(3)c(2)C(4)cc(1)c5cccc(OC)c5)	0.255	Probe-like	389.53	5.35
MMV666021	Yes, 29	Cc1ccc(1)c2c3c(3)c1Nc2ccc(2)c(C)F(F)c2F & 0.094	Probe-like	272.30	1.05	
MMV665807	TM protease serine 4	Oc1ccc(1)c(2)c(3)Nc2ccc(2)c(C)F(F)F	ND	Drug-like	315.67	2.00
MMV666102	Functional 17	CN(c1ccc(1)c2c3c(3)c1Nc2ccc(2)c(C)F(F)F & 1.150	ND	Drug-like	252.31	1.77
MMV396719	Functional 11	n1c2ccc(2)c3c4c(4)c4c5Nc2ccc(2)c(C)F(F)F & 1.50	ND	Drug-like	341.40	2.08
MMV006522	Functional 19, Cytotoxic	CCO1ccc2cnc(1)c(2)cNc3ccc(Br)c3c2c1 & 0.480	ND	Drug-like	357.24	35.61

Plasmodium falciparum 3D7; **Perkinsus marinus** PRA240 primary screen. doi:10.1371/journal.pone.0111051.t002

Secondary *Perkinsus marinus* growth-inhibition screen (IC50)

Three drug-like and three probe-like of the 13 compounds with the highest inhibitory effect on *P. marinus* (Table 2) were randomly selected for calculating the IC50 in an 8-point dose-response curve (10 μM to 0.156 μM). We found that the IC50 varied between 1.05 μM for MV66602 and 5.35 μM for MMV665941; for MV006522 the IC50 was 35.6 μM a high concentration or leaving the compound longer time would have resulted in a fitted sigmoidal curve. In this study the IC50 for the selected compounds (Figure 3) was in the lower μM range and much lower than for the compounds tested in our previous study [13], still it is higher than the corresponding *P. falciparum* IC50 values (Table 2); consequently, without knowing the mechanism of action of the compounds, we cannot rule out off-target effects due to non-specific cytotoxic agents, including detergent effects, multitargeting and oxidative effects. The nature of the assays (*Plasmodium falciparum* relies on infected erythrocytes and the *P. marinus* screen is performed in the absence of the host cells) and culture medium can also account for the differences in the IC50 values. With a direct life cycle, *P. marinus* trophozoites are phagocytized by the oyster hemocytes [37,38] where they resist oxidative killing [39]. Interestingly, MMV666021 has been involved in the inhibition of glutathione-S-transferase (GST) activity of prostaglandin D2 synthase (PGDS) [40]. GST are involved in parasite survival by protecting them against oxidative stress from the host or from products derived from their own metabolism [41], and in *P. falciparum* it has been associated with chloroquine-resistance [42]. We grow *Perkinsus* in a host cell-free culture medium; hence, if the MMV666021 is indeed affecting the oxidative stress from the host or from products derived from their own metabolism. *Perkinsus marinus* trophozoites have an expanded transporter repertoire, which is useful not only for transporting nutrients but also for secreting extracellular products (ECP) intended to inactivate the host defense and to break down host tissues [43,44]. Protease activity variations significantly decrease the migration of hemocytes [44] and have been associated with differences in the average cell size and growth rate [45]. MMV665807 is believed to target transmembrane serine protease activities in the spent medium of cultured *P. marinus* and *P. mediterraneus* [46,47] and mutations in the promoter region of serine protease inhibitors (SPIs) in *C. virginica*
which confer resistance to Dermo disease [48,49]. The parasite proteases could be the target of MMV665807; however, to prove this hypothesis would require further experiments outside the scope of this study.

Perkinsus marinus strains and Perkinsus species sensitivity

Our results comparing the effect of a single compound concentration (2 μM) against seven *P. marinus* strains indicate that for MMV666021, MMV665807 and MMV666102, the inhibition of the different strains was within an equivalent range (Table 3). Interestingly, for MMV665941, MMV396719 and MMV006522, there was a high degree of variability among the *P. marinus* strains. The presence of *Perkinsus* in low salinity estuaries and the sudden spread of the parasite between oyster beds is often seen as indicating the presence of strains adapted to low salinity and strains of variable virulence; parasites isolated from the Atlantic coast are more virulent than Gulf isolates [50,51]. Indeed, *P. marinus* "races" and genetic strains have been documented along the Atlantic and Gulf coasts of the USA [7–9]. *Perkinsus marinus* strains from Maryland and Virginia appeared to be more susceptible to treatment with the antimalarial drug Quinine (130 μM) [52]. We also found strain variability to the compounds tested; *P. marinus* HCedar 2 from Florida appears to be much more sensitive to MMV006522 than the other *P. marinus* strains. On the other hand, MMV665941 appears to be less effective against *P. marinus* LICT-1 [CT-1] and DBNJ-1 [NJ-1], isolated from oysters from Connecticut and Delaware respectively. *Perkinsus marinus* LICT-1 [CT-1] also appears to be the strain less sensitive to MMV396719. There is a genetic base beneath *P. marinus* strains [8,9] and recent microsatellite analyses suggest that *P. marinus* utilizes both sexual and asexual reproduction and, over the short-term, selection acts upon independent parasite lineages rather than upon individual loci in a cohesive, interbreeding population [53]. Drawing a parallel to other protozoan parasites with markedly clonal population structure and variable degree of virulence [54], it is possible that the observed variability respond to a clonal population structure (strains derived from one original single clone) with variable virulence. Indeed, Reece et al. [8] grouped 76 *P. marinus* isolates in 12 different composite genotypes with >88% of isolates possessing one of three predominant genotypes.
We also compared all five Perkinsus spp. in culture using the panel of six drug-like and probe-like compounds at a concentration within the range of the determined IC$_{50}$ (2 μM). We found that MMV666021, MMV665807 and MMV666102 were active against all five Perkinsus spp. Interestingly, some compounds were not equally effective against all the Perkinsus spp. P. chesapeaki was not sensitive to MMV665941, MMV396719 and MMV006522 at the concentration tested. Perkinsus chesapeaki affects both oysters and clams along the East Coast of the USA [5] and recently it was detected in cockles from Europe [10]. Compared to other Perkinsus spp., P. chesapeaki A8-4a is characterized by making the culture medium acidic [25,26], which could affect the potency or the uptake of the compounds tested. Both P. mediterraneus G2 and P. honshuensis Mie-3G/H8 were not sensitive to MMV665941 at the concentration tested; interestingly, they were also less sensitive to MMV666102, a compound that showed a high degree of inhibition in most P. marinus strains and in P. chesapeaki. This study highlights an unexpected degree of variability between Perkinsus spp. A plausible explanation could be variations in the propagation rates and strategies in the in vitro culture affecting the uptake of the compounds. For example, some Perkinsus spp. in culture appear to be “locked” at the trophozoite stage while other Perkinsus spp. continuously zoosporulate [26,55]. P. mediterraneus cell density only increases two- to sixfold over a 6-week period compared to ten- to thirtyfold in P. marinus [47]. With the culture medium indicated above, both P. mediterraneus G2 and P. honshuensis Mie-3G/H8 are characterized by forming large in clumps in culture; whether this phenotype conditions the uptake of the compounds remains to be demonstrated. To answer these
Table 3. Activity of antimalarial drug-like and probe-like (2 μM) compounds on *P. marinus* strains and *Perkinsus* spp. determined at day 2 post-exposure.

Species	Strain	HEOS Compound ID	MMV65941 Mean	SDV	MMV66021 Mean	SDV	MMV665807 Mean	SDV	MMV666102 Mean	SDV	MMV396719 Mean	SDV	MMV006522 Mean	SDV
P. marinus	C13-11 [MA-2-11] Massachusetts	MMV665941	34.9	1.9	97.1	0.8	74.5	1.6	39.7	7.7	-10.3	0.2		
	LICT-1 [CT-1] Connecticut	MMV666021	-20.7	10.2	79.6	1.6	95.6	0.2	64.6	1.9	36.7	10.2	-46.7	7.7
	DBNJ-1 [NJ-1] Delaware	MMV665807	-6.8	11.0	71.6	3.2	92.4	1.1	72.6	1.7	-1.3	8.6	-47.4	3.3
	CBSD4 Maryland	MMV666102	34.3	2.3	848.4	2.4	96.4	0.7	64.4	1.7	44.4	3.6	4.5	2.9
	CBSD4-GFP Maryland	MMV396719	41.8	3.0	858.1	1.7	95.2	1.6	64.7	3.7	48.1	2.8	-14.3	6.9
	HCDar2 Florida	MMV006522	39.7	5.6	865.1	1.8	97.5	0.1	75.0	0.3	54.4	7.6	20.9	3.0
	HTP14 [FL-6] Florida	MMV011051	44.0	3.1	823.1	5.1	95.0	0.9	59.1	4.1	53.9	2.2	-1.7	5.0
	TXsc Texas	MMV011051	10.7	6.8	725.3	3.8	91.5	0.6	68.1	2.3	7.9	10.5	-22.4	8.3
P. chesapeki	A8-4a Maryland	MMV011051	-47.8	15.6	55.7	6.8	84.1	2.0	88.0	3.3	-12.0	8.2	-96.0	9.0
P. olseni	ALG1 Portugal	MMV011051	14.3	14.7	80.4	1.4	94.9	0.7	51.1	1.3	22.5	1.4	10.5	3.2
P. mediterraneus	G2 Spain	MMV011051	-41.9	27.4	78.2	1.3	92.6	0.4	57.0	7.5	36.5	10.9	1.2	21.7
P. honshuensis	Mie-3G/H8 Japan	MMV011051	-38.5	15.4	86.2	3.3	95.4	1.5	8.8	14.1	64.6	4.5	38.0	5.9

Data expressed as inhibition mean (%).

doi:10.1371/journal.pone.0111051.t003
questions would require fine-tuning cultures and dedicated experiments outside the scope of this preliminary large screening.

Conclusions

By taking full advantage of both the open access Malaria Box and having *Perkinsus marinus* in culture, we have identified numerous compounds that affect the *in vitro* proliferation of the parasite. These primary “hits”, if confirmed, would expand the number of available compounds against *P. marinus* fivefold. To determine whether the drugs tested in this study will be effective in treating or preventing *P. marinus* infections in bivalves, we first must find a delivery method that administers an effective dose to the oyster tissue and toxicity to the bivalve hosts and other organisms in the environment [13]. In this study, we have taken an indirect approach for identifying and characterizing geographic phenotypes on the basis of resistance to selected compounds from the Malaria Box. At this point, we do not have an explanation for this variability. Most of the compounds tested have a very low Malaria Box. At this point, we do not have an explanation for this types on the basis of resistance to selected compounds from the

Moreover, these findings should also make the scientific community aware that the conclusions may be limited or can change depending on the particular strain used in the study. What the

References

1. Mackin JG, Owen HM, Collier A (1950) Preliminary note on the occurrence of a new protozoon parasite, *Dermocystidium marinus* n. sp., in *Crassostrea virginica* (Gmelin). Science 111: 328–329.
2. Ford SE, Chimnala MM (2006) Northward expansion of a marine parasite: Testing the role of temperature adaptation. J Exp Mar Biol Ecol 339: 226–235.
3. Ford SE, Smolowitz R (2007) Infection dynamics of an oyster parasite in its newly expanded range. Mar Biol 151: 119–133.
4. Smolowitz R (2013) A review of current state of knowledge concerning Perkinsus marinus effects on *Crassostrea virginica* (Gmelini) (the eastern oyster). Vet Pathol 50: 404–411.
5. Pecher WT, Alavi MR, Schott EF, Fernández-Robledo JA, Roth L, et al. (2008) *Perkinsus* genome encodes excess in *Merceana merceana* with the use of PCR-based detection assays. J Parasitol 94: 410–422.
6. Cáceres-Martínez J, Vasquez-Yemans R, Padilla-Lardizabal G, del Rio Portilla MA (2008) *Perkinsus marinus* in pleuare oyster *Crassostrea corteziensis* from Nayarit, Pacific coast of Mexico. J Invertebr Pathol 99: 66–73.
7. Bushek D, Allen SK Jr. (1996) Races of *Perkinsus marinus*. J Shellfish Res 15: 103–107.
8. Reece K, Bushek D, Hudson K, Graves J (2001) Geographical distribution of *Perkinsus marinus* genetic strains along the Atlantic and Gulf coasts of the USA. Mar Biol 139: 1047–1055.
9. Robledo JAF, Wright AC, Marsh AG, Vasta GR (1999) Nucleotide sequence variability in the nontranscribed spacer of the rRNA locus in the oyster parasite *Perkinsus marinus*. J Parasitol 85: 650–656.
10. Czerwinski N, Rojas M, Aceto D, Andree K, Lucasta B, et al. (2014) *Perkinsus cheopei* observed in a new host, the European common edible cockle *Cerastoderma edule*, in the Spanish Mediterranean coast. J Invertebr Pathol 117: 56–60.
11. Fernández Robledo JA, Vasta GR, Record NR (2014) Protozoan parasites of bivalve molluscs: Literature follows culture. PLoS One 9: e1000872.
12. Leite MA, Alfonso R, Cancela ML (2011) Herbicides and Protozoan Parasite Growth Control: Implications for New Drug Development. In: M. Larramendy, Solonessi, S, editor editors. Herbicides, Theory and Applications. Rijeka, Croatia: InTech, pp. 567–580.
13. Shridhar S, Hassan K, Sullivan DJ, Vasta GR, Fernández Robledo JA (2013) Quantitative assessment of the proliferation of the protozoan parasite *Perkinsus marinus* using a bioluminescence assay for ATP content. Int J Parasitol Drug Resist 3: 85–92.
14. Keeling IP (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365: 729–748.
15. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390: 407–409.
16. Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TN, et al. (2013) The open access malaria box: a drug discovery catalst for neglected diseases. PLoS One 8: e62906.
17. Duffy S, Avery VM (2013) Identification of inhibitors of *Plasmodium falciparum* gametocyte development. Malar J 12: 408.
18. Lucantoni L, Duffy S, Adjalley SH, Fidock DA, Avery VM (2013) Identification of MMV malaria box inhibitors of *Plasmodium falciparum* early-stage gametocytes using a luciferase-based high-throughput assay. Antimicrob Agents Chemother 57: 6056–6062.
19. Bowman JD, Merino EF, Brooks CF, Striepen B, Carlier PR, et al. (2014) Antiacioplast and gametoctocidal screening to identify the mechanisms of action of compounds within the Malaria Box. Antimicrob Agents Chemother 58: 811–819.
20. Bassoff K, Spangenberg T, Foderaro JE, Jumans R, Ward GE, et al. (2014) Identification of *Cryptothyrium parasum* active chemical series by Repurposing the open access malaria box. Antimicrob Agents Chemother 58: 2731–2739.
21. Nygma JF, von Koschinsky L, Gerhardt H, Lammerhofer M, Chosucy A, et al. (2014) Target evaluation of deoxyhypusine synthase from *Theileria parva* the neglected animal parasite and its relationship to *Plasmodium*. Bioorg Med Chem pii: S0968-0896(14)00347-2. doi: 10.1016/j.bmc.2014.05.007. [Epub ahead of print].
22. Gautheir JD, Frig B, Vasta GR (1995) Effect of fetal bovine serum glycoproteins on the *in vitro* proliferation of the oyster parasite *Perkinsus marinus*: Development of a fully defined medium. J Eukaryot Microbiol 42: 307–315.
23. Fernández-Robledo JA, Liu Z, Vasta GR (2006) Transfection of the protozoan parasite *Perkinsus marinus*. Mol Biochem Parasitol 157: 44–53.
24. Robledo JA, Nunes PA, Cancela ML, Vasta GR (2002) Development of an *in vitro* clonal culture and characterization of the rDNA locus of *Perkinsus atlanticus*, a protozoan parasite of the clam *Tapes decussatus*. J Eukariot Microbiol 49: 414–422.
25. Cos CA, Robledo JA, Ruiz GM, Vasta GR (2001) Description of *Perkinsus andrewsi* n. sp. isolated from the Baltic clam (*Macoma baltica*) by characterization of the ribosomal RNA locus, and development of a species-specific PCR-based diagnostic assay. J Eukariot Microbiol 48: 52–61.
26. Cos CA, Robledo JA, Vasta GR (2003) Fine structure of clonally propagated *in vitro* life stages of a *Perkinsus* sp. isolated from the Baltic clam *Macoma baltica*. J Eukariot Microbiol 49: 38–51.
27. Cos CA, Robledo JA, Vasta GR (2003) Fine structure of clonally propagated *in vitro* life stages of a *Perkinsus* sp. isolated from the Baltic clam *Macoma baltica*. J Eukariot Microbiol 49: 38–51.
28. Cos CA, Robledo JA, Vasta GR (2003) Fine structure of clonally propagated *in vitro* life stages of a *Perkinsus* sp. isolated from the Baltic clam *Macoma baltica*. J Eukariot Microbiol 49: 38–51.
29. Casas SM, Grau A, Reece KS, Asspapakul K, Avezedo C, et al. (2004) *Perkinsus mediterraneum* n. sp., a protozoon parasite of the European flat oyster *Ostrea edulis* from the Balearic Islands, Mediterranean Sea. Dis Aquat Organ 58: 231–244.
30. Gautheir JD, Vasta GR (1993) Continuous *in vitro* culture of the eastern oyster parasite *Perkinsus marinus*. J Invertebr Pathol 62: 321–323.

Supporting Information

Table S1 List of Medicines for Malaria Venture Malaria Box compounds developed against *Plasmodium falciparum* 3D7 and used in this study (http://www.mmv.org/research-development/malaria-box-supporting-information). (XLSX)

Table S2 Percentage of inhibition of *Perkinsus marinus* trophozoites growth using drug-like compounds and probe-like compounds (20 μM) at day 4 post-exposure. (XLSX)

Acknowledgments

This study was supported institutional funds from Bigelow Laboratory for Ocean Sciences as well as by grants OCE0755142 (REU Program) awarded to David M. Fields from the National Science Foundation and 1R21AI076797-01A2 from the National Institute of Health to JAFR.

Author Contributions

Conceived and designed the experiments: JAFR. Performed the experiments: YAR JAFR. Analyzed the data: YAR JAFR. Contributed reagents/materials/analysis tools: JAFR. Wrote the paper: JAFR.
29. La Peyre JF, Faisal M, Burreson EM (1993) In vitro propagation of the protozoan Perkinsus marinus, a pathogen of the eastern oyster, Crassostrea virginica. J Eukaryot Microbiol 40: 304–310.
30. Kleinmacher SJ, Swink SL (1993) A simple method for the in vitro culture of Perkinsus marinus. Nautilus 107: 76–78.
31. Chen C, Kukalova L, Sounthall N, Marugan JJ, Galkin A, et al. (2011) High-throughput Guadua lumbia viability assay using bioluminescent ATP content measurements. Antimicrob Agents Chemother 55: 667–675.
32. Goodman CD, Su V, McFadden GI (2007) The effects of antibiotics on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 152: 181–191.
33. Grimber GT, Mehlrot RA (2011) Expanding the antimalarial drug drenal-now, but how? Pharmaceuticals [Basel] 4: 681–712.
34. Mounzari L, Sidiqi A (2011) Drug development to protozoan diseases. Open Med Chem J 5: 1–3.
35. Stelter K, El-Sayed NM, Secher F (2007) The expression of a plant-type ferredoxin reductox system provides molecular evidence for a plastid in the early dinoflagellate Perkinsus marinus. Protist 158: 119–130.
36. Fernández-Robledo JA, Cabezón E, Matassini M, Kerling PJ, Shanmugam D, et al. (2011) The search for the missing link: A relic plastid in Perkins? Int J Parasitol 41: 1217–1229.
37. Tazumi S, Vasta GR (2007) A galectin of unique domain organization from hemocytes of the eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol 179: 3086–3096.
38. Fong C, Ghosh A, Amin MN, Giomarelli B, Shridhar S, et al. (2013) The Galectin Cogall from the Eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface. J Biol Chem 288: 24394–24409.
39. Schott EJ, Pecher WT, Okafor F, Vasta GR (2003) The protistan parasite Perkinsus marinus is resistant to selected reactive oxygen species. Exp Parasitol 105: 232–240.
40. Hoshi M, Spadola L, Lundquist B, Hestin P, Dahmen J, et al. (2008) Novel prostaglandin D synthase inhibitors generated by fragment-based drug design. J Med Chem 51: 2178–2186.
41. Na BK, Kang JM, Kim KS, Sohn WM (2007) Plasmadium falciparum: molecular cloning, expression and characterization of glutathione S-transferase. Exp Parasitol 116: 414–418.
42. Raipbiabkit P, Kangsaladaom LP, Ratanavalachai T, Denangboripant P, Chavalitshewinkoon-Petmitr P (2004) Glutathione-S-transferases from chloroquine-resistant and -sensitive strains of Plasmadium falciparum: what are their differences? Southeast Asian J Trop Med Public Health 35: 292–299.
43. Joseph SJ, Fernández-Robledo JA, Gardner MJ, El-Sayed NM, Kuo CH, et al. (2010) The Alvedate Perkinsus marinus: biological insights from EST gene discovery. BMC Genomics 11: 220.
44. Garreks KA, La Peyre JF, Faisal M (1996) The effects of Perkinsus marinus extracellular products and purified proteases on oyster defence parameters in vitro. Fish Shellfish Immunol 6: 501–507.
45. Brown GD, Reece KS (2003) Isolation and characterization of serine protease gene(s) from Perkinsus marinus. Dis Aquat Organ 57: 117–126.
46. Faisal M, Schafhauser DY, Garreks KA, Elsayed E, La Peyre JF (1999) Isolation and characterization of Perkinsus marinus proteases using bacitracin-Sepharose affinity chromatography. GNP Biochem Physiol, B 123B: 417–426.
47. Casas SM, Reece KS, Li Y, Moss JA, Villabella A, et al. (2008) Continuous culture of Perkinsus mediarensis, a parasite of the European flat oyster Ostrea edulis, and characterization of its morphology, propagation, and extracellular proteins in vitro. J Eukaryot Microbiol 55: 34–43.
48. He Y, Wu H, Zou Z, Zhang Q, Guo X (2012) Mutation in promoter region of a serine protease inhibitor confers Perkinsus marinus resistance in the eastern oyster (Crassostrea virginica). Fish Shellfish Immunol 33: 411–417.
49. Yu H, He Y, Wang X, Zhang Q, Bao Z, et al. (2011) Polymorphism in a serine protease inhibitor gene and its association with disease resistance in the eastern oyster (Crassostrea virginica Gmelin). Fish Shellfish Immunol 30: 757–762.
50. Perkins FO, Menzel RW (1966) Morphological and cultural stages in the life cycle of Dermocystidium marinum. Proc Natl Shellfish Assoc 56: 23–30.
51. Bushuk D, Allen SK Jr. (1996) Host-parasite interactions among broadly distributed populations of the eastern oyster Crassostrea virginica and the protozoan Perkinsus marinus. Mar Ecol Prog Ser 139: 127–141.
52. Panulo C, Velepy A, Enosmio V, Barreto J (2006) Evaluation of the antimalarial drug quinine as a potential chemotherapeutic agent for the eastern oyster parasite, Perkinsus marinus. J Shellfish Res 25: 760.
53. Thompson PC, Ressenthal BM, Hare MP (2011) An evolutionary legacy of sex and clonal reproduction in the protistan oyster parasite Perkinsus marinus. Infect Genet Evol 11: 598–609.
54. Sibley JD, Mordue DG, Su C, Robben PM, Howe DK (2002) Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii. Philos Trans R Soc Lond B Biol Sci 357: 81–88.
55. Casas SM, La Peyre JF (2013) Identifying factors inducing trophozoite differentiation into hypnospores in Perkinsus species. Eur J Protistol 49: 201–209.
56. Dungan CF, Reece KS (2006) In vitro propagation of two Perkinsus spp. parasites from Japanese Manila clams Venerrops philippinarum and description of Perkinsus homoschini n. sp. J Eukaryot Microbiol 53: 316–326.
57. Blackbourn J, Bower SM, Meyer GR (1998) Perkinsus homoschini n. sp., a new Perkinsus sp. parasite in oysters of Southern China. J Eukaryot Microbiol 55: 117–130.