1. М.О. Грищук, О.О. Рубаненко, О.Є. Рубаненко
ПЛАНУВАННЯ ТЕХНІЧНОГО ОБСЛУГОВУВАННЯ СИЛОВИХ ТРАНСФОРМАТОРІВ ЗА РЕЗУЛЬТАТАМИ КОНТРОЛЮ ЇХ ЧАСТОТНИХ ХАРАКТЕРИСТИК 92

2. П.Д. Лежнюк, С.В. Кравчук, І.В. Котилюк
ВІДНОВЛЮВАЛЬНІ ДЖЕРЕЛА ЕЛЕКТРОЕНЕРГІЇ В ЕЛЕКТРИЧНИХ МЕРЕЖАХ ЯК ЕЛЕМЕНТ ЕНЕРГОЕФЕКТИВНОГО ЕЛЕКТРОСПОЖИВАННЯ 99

3. С.Ю. Шевченко, Д.О. Данильченко, І.І. Борзенков
ВИЗНАЧЕННЯ ВТРАТ ЕЛЕКТРОЕНЕРГІЇ ПРИ ІЗОЛЯЦІЇ РОЗПОДІЛЬНИХ МЕРЕЖ ... 107

4. А.Г. Сосков, Я.Б. Форкун, О.Б. Єгоров, Ю.П. Колонтаєвський
ПРИНЦИПИ ТА МЕТОДИ РОЗРАХУНКУ ГІБРИДНИХ КОНТАКТОРІВ ПОСТІЙНОГО СТРУМУ, ЩО КЕРУЮТЬСЯ СТРУМОМ ЕЛЕКТРОПРИВОДУ .. 112

5. В.М. Охріменко, М.В. Збітнєва, Ю.П. Колонтаєвський
КОНСТРУКТИВНІ ОСОБЛИВОСТІ ЦИЛІНДРИЧНИХ ЛІНІЙНИХ АСИНХРОННИХ ДВИГУНІВ 120

6. І.Є. Щербак
МАТЕМАТИЧНА МОДЕЛЬ КЕРУВАННЯ СПОЖИВАЧАМИ-РЕГУЛЯТОРАМИ ДЛЯ ВИРІВНЮВАННЯ ГРАФІКІВ НАВАНТАЖЕННЯ ТП 10/0,4 КВ 125

1. M. Hryshchuk, O. Rubanenko, O. Rubanenko
PLANNING OF MAINTENANCE OF POWER TRANSFORMERS ON THE RESULTS OF CONTROL OF THEIR FREQUENCY CHARACTERISTICS 92

2. P. Lezhniuk, S. Kravchuk, I. Kotilko
RENEWABLE ELECTRICITY SOURCES IN ELECTRICAL NETWORKS AS AN ELEMENT OF ENERGY EFFICIENT POWER SUPPLY 99

3. S. Shevchenko, D. Danylchenko, I. Borzenkov
DETERMINATION OF POWER LOSSES IN THE ISOLATION OF DISTRIBUTION NETWORKS .. 107

4. A. Soskov, Ya. Forkun, O. Iegorov, Yu. Kolontaevsky
PRINCIPLES AND METHODS OF CALCULATING HYBRID CONTACTORS OF DIRECT CURRENT, CONTROLLED BY AN ELECTRIC DRIVE CURRENT 112

5. V. Okhrimenko, M. Zbitnieva, Yu. Kolontaevsky
CONSTRUCTION FEATURES OF CYLINDRICAL LINEAR ASYNCHRONOUS MOTORS 120

6. I. Shcherbak
MATHEMATICAL MODEL OF CONSUMER REGULATORS MANAGEMENT FOR ALIGNMENT OF ELECTRIC LOAD GRAPHS OF TRANSFORMER SUBSTATION 10/0.4 KV ... 125
Анотація. — На основі аналізу літературних джерел показано, що в електроенергетичній системі силові трансформатори (CT) — це вартісний та відповідальний вид електричного обладнання. Розглянуто метод аналізу амплітудно-частотних характеристик (АЧХ), який шляхом використання результатів вимірювань амплітудних значень напруги сигналу відгуку на тестовий сигнал та напруги тестового сигналу, визначення коефіцієнта передачі тестового сигналу на різних частотах дозволяє виявити відхилення цього коефіцієнта від нормованих його значень на частотах, на яких проявляються найбільш часті пошкодження CT дозволяє обґрунтувати технічний стан трансформатора та вузлів. Використано метод найменших квадратів, теорему Гаусса-Маркова та матрицю коваріацій для статистичного оцінювання параметрів регресійної моделі, отриманої за результатами вимірювань. Визначене регресійне рівняння забезпечує найменше значення суми квадратів відхилень результатів вимірювань від обчислених за рівнянням регресії. На прикладі однієї амплітудно-частотної характеристики досліджуваного за місцем розташування силового трансформатора, запропоновано алгоритм визначення рекоменсованого терміну та дати проведення наступних вимірювань АЧХ, з метою зменшення ризику виникнення аварійного режиму та зменшення витрат на експлуатацію силового трансформатора шляхом збільшення кількості високоінформативних випробувань та вимірювань діагностичних параметрів.

Також визначено межу 5-ти відсоткового відхилень на інформативному проміжку частоти, для подальшого визначення ймовірного перетину графіків в визначених точках, такої межі, з метою прогнозування ймовірного пошкодження обмоток.

Ключові слова — технічний стан, трансформатор, амплітудно-частотна характеристика.

І. Вступ

Відомо що в електроенергетичній системі, силові трансформатори (CT) - це вартісні та відповідальні елементи обладнання [1-3]. Кожне несподіване відключення CT пов’язане з фінансовими втратами для електроенергетичного підприємства, а також споживачів електричної енергії, які отримують постачання електроенергії через цей трансформатор [4]. Крім того виведення з експлуатації такого обладнання призведе до зміни режиму роботи електроенергетичної системи, що призведе до значних втрат електричної енергії. Декі пошкодження можуть призвести до спалаху вогню трансформаторного резервуара, чи навіть до вибуху, чи витік мінерального масла (всі ще домінуюче середовище для ізоляції та охолодження в силових трансформаторах), що спричинить забруднення грунту та води. Надійність трансформатора впливає на надійність електромережі. Тому підтримання трансформатора в справному стані важливе завдання для підвищення надійності системи [3, 4].

Один зі важливих факторів, підтримання CT в належному технічному стані, є алгоритм проведення діагностування та визначення періоду проведення вимірювань. Правильний вибір діагностичної процедури та правильна інтерпретація результатів, отриманих при різних видах вимірювань результатів [4], забезпечить електроенергетичному підприємству надійну роботу його мережі.

Аналіз частотної характеристики (FRA) - це метод, який зазвичай використовується для оцінки стану обмоток та магнітногопроводу трансформатора[3].

Аналіз літературних джерел [6-8], свідчить про те, що з допомогою вимірювань частотних характеристик (наприклад приладом FRAnalyzer), з’являється можливість виявлення таких дефектів навіть на ранній стадії їх розвитку.

В [9-11] йдеться про те, що якщо, нормативна база частотних характеристик, введені в експлуатацію CT, накопичена, то у разі необхідності діагностування обладнання, планового чи у разі невідомої аварії, можна виконати дослідження CT, та визначити його технічний стан. Однак з [2], відомо що, обґрунтування висновків за результатами використання такого діагностичного обладнання в Україні обмежено відсутністю нормативної технічної документації. Що обмежує можливість повноцінно використовувати таке обладнання.

Автори [12-14], описують можливість виявлення несправності CT, на основі порівняння попередньо отриманої АЧХ та виміряної характеристики під час дослідження. Оскільки ідея FRA аналізу щодо стану обмоток CT ґрунтується на тому, що відхилення або геометричні деформації обмотки стосуються зміни внутрішніх відстаней між витками та обмотками, які визначають його змісту і індуктивності. А в [9-10]
МІЖНАРОДНИЙ ЖУРНАЛ «СВІТЛОТЕХНІКА ТА ЕЛЕКТРОЕНЕРГЕТИКА»

М.О. Грищук, О.О. Рубаненко, О.Є. Рубаненко, Вип. 56, №03

звертається увагу на вплив параметрів СТ на напругу сигналу відгуку та тестовий сигнал загалом. Разом з тим, у [2,4], автори підтверджують, що визначення технічного стану СТ, з допомогою визначення відхилення АЧХ на 5% і більше, дасть змогу, говорити про несправний технічний стан СТ.

В такому разі авторами, даного дослідження, пропонується провести додаткові дослідження стану, наприклад такі як контроль тангенса кута діелектричних втрат тgδ, визначення опору постійному струму, визначення відхилення АЧХ на 5% і більше, тепловізорне обстеження об’єкту, тощо. Та виконати питання, як діяти у разі виявлення деформації обмоток та магнітопроводу мають важливе значення для безпечної експлуатації СТ. Такі пошкодження, важливо виявити на ранній стадії їх розвитку, для цього потрібно використовувати та перевірять, всі сигнали, які можуть вказувати на потенційний дефект трансформатора. Тоді на основі належної діагностичної процедури може бути прийнято ефективне та раціональне рішення щодо подальшої експлуатації даного СТ.

Метою досліджень, результати яких приведені у статті, є підвищення якості планування технічного обслуговування СТ за результатами контролю частотних характеристик.

Для якісного проведення дослідження розв’язувались задачі:

– аналіз бази АЧХ СТ;

– визначення технічного стану, виявлення тенденцій відхилення значень діагностичних параметрів від початковий в водночас норм побудова лінії тренду досліджуваного СТ за результатами аналізу отриманих АЧХ;

– визначення рекомендованого терміну проведення наступних вимірювань АЧХ.

II. ОСНОВНА ЧАСИНА

A. Аналіз та упорядкування АЧХ СТ

Для вирішення поставлених задач, отримано АЧХ, які є результатами випробувань, частотним аналізом силового трансформатора типу ТМГ 1000/10 У1. Характеристики, представлено на fig 2, виміряні на діючому СТ, впродовж терміну його експлуатації. Вимірювання проводились у двох случаях норм побудова лінії тренду АЧХ відносно абсолютних значень АЧХ.

Метод частотного аналізу АЧХ передбачає аналіз амплітудних значень сигналу відгуку на тестовий сигнал і, в наш час, застосовується для діагностування СТ [13÷15]. Цей метод полягає у тому, що спочатку вимірюються амплітудні значення напруги відгуку на тестовий сигнал (Uамп.відг) та напруги тестового сигналу (Uамп.тест). Далі визначається коефіцієнт передатної функції для тестового сигналу на різних частотах (у відповідності з сигналом відгуку на тестовий сигнал), як результат ділення амплітудного значення напруги Uамп.відг (сиgnалу відгуку на тестовий сигнал) на амплітудне значення напруги тестового сигналу Uамп.тест. Цей результат часто записується у децибелах. Тоді він визначається за наступною формую, яка є передатною функцією [16] тестового сигналу (1) (F):

\[k(u) = 20 \cdot \log_{10} \frac{U_{\text{амп.відг}}}{U_{\text{амп.тест}}} \]

(1)
Під час порівняння поточної кривої з попередньою, відхилень не спостерігається, але спостерігаються відхилення в межах 5% (фіг. 3). Це свідчить про справний стан СТ. Проте, враховуючи процеси під час експлуатації такого агрегату (електродинамічні сили, короткі замикання, тощо), до наступного планового технічного діагностування, є ймовірність пошкодження обмоток СТ, що може призвести до виводу його із експлуатації.

Пропонується дослідити тенденцію відхилень АЧХ, та спрогнозувати ймовірність виходу з ладу СТ, для прийняття правильного рішення щодо рекомендованої наступної дати проведення діагностування.

Для цього побудуємо графіки зміни виміряної величини у конкретних точках, в яких під час дослідження виявлено зміну значень передатної функції \(k(u) \), частина результатів представлена на фіг. 4.

![Fig. 2. Результати отриманих АЧХ під час експлуатації СТ: а) квітень 2014р.; б) жовтень 2014р.; в) квітень 2015р.; д) жовтень 2018р. е) квітень 2019р.; ф) жовтень 2019р.](image)

![Fig. 3. Графік порівняння отриманих АЧХ.](image)

![Fig. 4. Результати порівняння у досліджуваних точках, де спостерігались відхилення:](image)
За [2,4] визначимо між 5-ти відсоткового відхилення на даному проміжку частоти, для подальшого визначення ймовірного перетину графіків у визначених точках, такої межі, з метою прогнозування ймовірного поширення обмоток СТ.

Отже для кожної із досліджуваних точок, визначено 5% межу. Результати представлені в таблиці:

Частота вимірювань, Гц	239640	245490	...	301330	304980
Досліджувана точка, дБ	9,2616	9,5472	...	6,9666	6,6504
5% межа, дБ	9,7246	10,024	...	7,3149	6,9829

Побудуємо графіки зміни досліджуваних точок, з урахуванням 5% відсотків, тобто побудуємо лінію тенденції, для прогнозування тенденції зміни відхилення АЧХ. Лінію тенденції, пропонується побудувати у вигляді поліноміального рівняння, оскільки для апроксимації поставленої задачі, метод передбачає найбільш точні рівняння прогнозування. Метод поліноміальної апроксимації, вирішується з допомогою методу найменших квадратів у відповідності до рівняння (2):

\[y = b + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3 + \ldots + c_n \cdot x^n \] (2)

de \(b \) та \(c_1, \ldots, c_n \) – константи.

Метод найменших квадратів (МНК) є одним із методів регресійного аналізу, який використовується для статистичного оцінювання параметрів регресійної моделі за емпіричними даними. Що дозволяє адекватно оцінити, виміряну АЧХ СТ. За цим методом параметри дослідженої моделі повинні відповідати такому рівнянню регресії, що забезпечує найменше значення суми квадратів відхилень емпіричних даних від тих, що обчислені за рівнянням регресії. Так, з двох різних наближень тієї ж самої емпіричної функції, що задана у вигляді таблиці, кращим вважається те, для якого сума квадратів відхилень має найменше значення.

Графік функції проходить таким чином, що різниця між значеннями функції типу (3) та орієнтаціями емпіричних точок була б якомога менше.

\[f(x) = \hat{y} = \begin{cases} y_i = b_0 + b_1 \cdot X_{i1} + b_2 \cdot X_{i2} + \ldots + b_m \cdot X_{im} + \varepsilon_i & \text{для } i = 1, n \\ \varepsilon_i = y_i - \text{відхилення } y_i \text{ від } \hat{y} \\ \varepsilon_i = \text{побудова } \hat{y} \end{cases} \]

де \(\varepsilon_i \) – матриця коваріацій (попарних варіацій) похибок, \(\varepsilon_i = \text{побудова } \hat{y} \).

Теорема Гаусса – Маркова відповідає узагальненню умов застосування методу найменших квадратів. Якщо прийняти припущення моделі, то рівняння (2) набуває вигляду (4):

\[y_i = b_0 + b_1 \cdot X_{i1} + b_2 \cdot X_{i2} + \ldots + b_m \cdot X_{im} + \varepsilon_i \]

де \(i = 1, n \) – обсяг вибірки (кількість емпіричних точок); \(X_i \) – детермінована величина (у загальному випадку це матриця результатів в спостережень тимінісної випадкової величини \(X \), що відповідає сукупності зовнішніх факторів);

\[M(\varepsilon_i) = 0, M(\varepsilon_i^2) = V(\varepsilon_i) = \sigma^2, \]

де \(V(\varepsilon_i) \) – матриця коваріацій (попарних варіацій) похибок, \(\varepsilon_i = \text{побудова } \hat{y} \).

де \(t \) і \(s \) – номери вимірювань, то оцінки параметрів \(\hat{b}_0, \hat{b}_1, \ldots, \hat{b}_m \), які отримані за МНК, мають найменшу дисперсію серед усіх лінійних незв'язаних оцінок, тобто ці оцінки є ефективними.

Моделі, які побудовані з використанням методу найменших квадратів при виконанні умов теореми Гаусса – Маркова, називаються класичними економетричними моделями, а сам метод їх побудови називається 1МНК, тобто однокроковий метод найменших квадратів.

Розглянемо алгоритм вирішення поставленої задачі. Для лінійної моделі маємо умовне рівняння:

\[f(x, \hat{b}_0, \hat{b}_1). \]
Для досліджуваної модель: маємо рівняння (5):

\[k(u, \hat{F}_0, \hat{F}_1, \hat{F}_2) = \hat{F}_0 + \hat{F}_1 \cdot x_i + \hat{F}_2 \cdot x_i^2. \]

(5)

de \(u \) — напруга тестового сигналу, \(\hat{F}_i \) — частота тестового сигналу що подається в досліджуваній точці. За методом НМК складемо функцію суми квадратів невідхилень (6):

\[S = \sum_{i=1}^{n} \left(\hat{F}_0 + \hat{F}_1 \cdot x_i + \hat{F}_2 \cdot x_i^2 - k_i \right)^2 \rightarrow \text{min}. \]

(6)

de \(\hat{F}_i \) — частота тестового сигналу, \(k_i \) — вільний член. З метою апроксимації отриманих емпіричних даних та у відповідності до рівняння (5–6), визначимо рівняння лінії тренду, для кожної із досліджуваних точок (показані на fig.6 та table II):

TABLE II. РЕЗУЛЬТАТИ ОТРИМАННЯ ЛІНІЇ ТРЕНДУ

Досліджувана точка, dB	Частота, Hz	Поліноміальне рівняння, лінії тренду	Коефіцієнт R²
-9,2616	239640	k(u)=-0,000x^2+0,000x-0,84x+12 002,27	0,89
-9,5472	245490	k(u)=-0,000x^2+0,000x-1,18x+16 817,70	0,81
-9,5064	251480	k(u)=-0,000x^2+0,000x-0,75x+10 757,31	0,92
-9,3942	254350	k(u)=-0,000x^2+0,000x-1,14x+16 239,65	0,78
-9,1086	260470	k(u)=-0,000x^2+0,000x-0,34x+4 831,71	0,96
-8,8942	267110	k(u)=-0,000x^2+0,000x+0,98x+14 072,21	0,83
-8,8026	270350	k(u)=-0,000x^2+0,000x+1,01x+14 444,53	0,83
-8,6394	276940	k(u)=-0,000x^2+0,000x+1,00x+14 277,22	0,78
-8,3436	283700	k(u)=-0,000x^2+0,000x+0,88x+12 566,39	0,78
-7,5888	294150	k(u)=-0,000x^2+0,000x-0,91x+13 075,31	0,78
-6,9666	301330	k(u)=-0,000x^2+0,000x-0,77x+11 066,89	0,89
-6,6504	304980	k(u)=-0,000x^2+0,000x-0,79x+11 296,54	0,81

Відповідно до отриманих рівнянь побудуємо лінії тренду для досліджуваних точок (fig.6):

III. ВИЗНАЧЕННЯ РЕКОМЕНДОВАНОГО ТЕРМИНУ ПРОВЕДЕННЯ НАСТУПНИХ ВИМІРЮВАНЬ АЧХ

З вище наведеного рисунку видно, що у досліджуваній точці значення передатної функції <-9,2616 dB при частоті тестового сигналу «239640 Hz» лінія тренду перетинає 5% значення в точці «February-20», рис.а. Це значення показує, що із врахуваннями тенденції зміни відхилень, є ймовірність перетину (у даній досліджуваній точці), поточної АЧХ, з попередньо виміряною АЧХ. Що в свою чергу може призвести до такого пошкодження як наприклад зсув витків обмоток. Та враховуючи те що досліджуваних точок є декілька пропонується визначити середньо рекомендовану дату проведення діагностування ТС, шляхом аналізу його АЧХ. Таким чином з fig.5 маємо результати отриманих рекомендованих термінів, проведення вимірювань:

DOl: 10.33042/2079-424X-2019-3-56-92-98
Planning of maintenance of power transformers on the results of control of their frequency characteristics

M. Hryschchuk, O. Rubanenko

Vinnitsa National Technical University, Ukraine

DOI: 10.33042/2079-424X-2019-3-56-92-98

97
On the basis of the analysis of literature sources it is shown that in the power system the power transformers (PT) – is a costly and responsible type of electrical equipment. The method of the analysis of the frequency-amplitude characteristics (AFC) is considered. The AFC method is using the results of measurements of the amplitude values of the test signal response voltage and the test signal voltage. It determines the test signal transmission coefficient at different frequencies allows us to detect the deviation of this coefficient from its normalized values at the special value of frequencies. This value of frequency permit to identify damage that allows us to substantiate the technical condition of the transformer and elements. The least-squares method, the Gauss-Markov theorem and the covariance matrix were used to statistically estimate the parameters of the regression model obtained from the measurement results. The determined regression equation provides the smallest value of the sum of squares of the deviations of the measurement results from the calculated by the regression equation. On the example of one amplitude-frequency characteristic of the investigated PT by the location, an algorithm for determining the recommended time and date for the subsequent measurements of AFC is proposed, in order to reduce the risk of emergency mode and reduce the cost of operation of the PT by increasing the number of highly informative measurements.

A limit of 5 percent deviation is also determined at the frequency information interval, to further determine the probable intersection of the graphs at certain points, such a limit, in order to predict the probable damage of the windings.

Keywords - diagnosis, technical state, power transformer, frequency-amplitude characteristics, deviation, FRA, windings, magnetic circuit, planning the day of diagnosis, forecasting.
Відновлювальні джерела електроенергії в електричних мережах як елемент енергоефективного електропостачання

П.Д. Лежнюк	С.В. Кравчук	І.В. Котило
Винницький національний технічний університет, Україна	КНЕСС ЕНЕРДЖІ, Україна	Вінницький національний технічний університет, Україна

Анотація – Показано, що нестабільність характер роботи відновлювальних джерел енергії впливає на режими роботи електричних мереж. Нестабільність генерування фотоелектричних та вітрових електростанцій (ФЕС, ВЕС) компенсується потужністю, яка надходить в розподільні електричні мережі (РЕМ) з енергосистеми. Через це умови балансування режиму РЕМ впливають і на режими ЕЕС. В умовах сьогодення забезпечення балансу покладено суто на централізовану систему електропостачання. Однак поступово відбуваються зміни в механізмах функціонування енергосистеми України, що спонукають ВДЕ працювати за заданим графіком, зокрема введенням штрафів за недотримання заявленого добового графіка генерування. Для забезпечення балансованої надійності РЕМ визначається потужність резерву з енергосистеми або визначається схема накопичувача електроенергії. Подальша розбудова відновлювальних джерел енергії неможлива без використання засобів балансування режиму РЕМ впливають і на енергосистеми в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадигми керування енергетичних об'єктів; зниження загальної електричної енергії в усьому світі; зростання вимог зацікавлених сторін до результатів діяльності енергетичних компаній; вимоги екологічної й промислової безпеки функціонування електричних мереж у рамках енергетики необхідна зміна парадigm
Цим виникають нові задачі: узгодження графіків навантаження, генерування ВДЕ з врахуванням їх нестабільності, оптимальне керування потоками потужності з метою зменшення втрат електроенергії і покращення її якості, забезпечення балансової надійності електроенергії в ЛЕС, що формується централізованним і місцевим генеруванням, тощо. Природно, що вирішення цих задач доцільно здійснювати з використанням сучасних Smart Grid технологій.

Концепція Smart Grid передбачає побудову цілком інтегрованої, саморегульованої та само відновлюваної системи, що містить всі джерела генерування електроенергії, магістральні та розподільні мережі, а також всі види споживачів електроенергії, які керуються єдиною мережею автоматизованих пристроїв в реальному часі [3, 4]. Впровадження Smart Grid технологій відбувається в рамках сценарію розвитку електроенергетики, коли за рахунок розосередженого генерування ВДЕ зменшується централізоване генерування, в результаті чого зменшується навантаження на магістральні електричні мережі, а розподільні мережі повинні адаптуватися до нових умов експлуатації. Оскільки розподільні електричні мережі з вісім інфраструктурою проектувалися під централізоване живлення, то на сьогодні вони вимагають суттєвої модернізації.

Порядом з існуючими електричними мережами в мережах на базі концепції Smart Grid приймаються або розвиваються інші функціональні властивості. До них відносяться першу чергу: двосторонні комунікації між всіма елементами мережі, включаючи і електроенергетичні; зміна топології від радіальної до замкненої і ліній електропередачі; централізоване керування електричніми мережами з метою їх самооптимізації; дистанційний моніторинг та діагностика технічного стану електричних мереж з метою їх оптимального керування; розподілене генерування з резервуванням між всіма елементами мережі.

Для реалізації нових функціональних властивостей розподільних електричних мереж і створення на їх основі ЛЕС необхідно розвивати інформаційне забезпечення на новому якісному рівні, яке має стати підставою для автоматизації процесів вироблення, транспортування і розподілу електроенергії в ЛЕС.

Незважаючи на те що розподілене джерело можуть вибрати істотну частку електроенергії в енергосистемі, за відсутності ефективного керування електричними мережами розподілені джерела не зможуть замінити існуючі теплові, атомні і гідроелектростанції. Останні повинні будуть продовжувати в повному обсязі надавати системні послуги (регулювання частоти й напруги, забезпечення резервів потужності та ін.), необхідні для підтримки надійності електропостачання.

III. РЕЖИМНА І БАЛАНСУВАЛЬНА НАДІЙНОСТЬ

На рис. 1 показано як формується баланс потужності в ЛЕС з комбінованим електропостачанням. Поступлення електроенергії здійснюється від внутрішніх джерел ВЕС і ФЕС, малих гідроелектростанцій (ГЕС), когенераційних (КГУ) і біогазових (БГУ) установок та джерел централізованого живлення. Навантаження трансформаторних підстанцій складається з навантаження споживачів і генерування джерел електроенергії, які знаходяться у них на балансі.

Для ЛЕС з комбінованим електропостачанням можуть виникати три різних задачі оптимізації: забезпечення максимального прибутку від реалізації їх електроенергії за умов багатоступеневого тарифу енергориноку та технічних обмежень з боку окремих ВДЕ; зменшення залежності локальної електричної системи від сумарних навантажень $P_{in}(t)$ від централізованого енергопостачання, тобто мінімізації навантаження локальної електричної системи на основний центр живлення; мінімізації на інтервалі часу $t_i - t_k$ відхилення від заявленого наступного доби прогнозованого графіка генерування в ЛЕС з врахуванням метеорологічних умов та характеристик ВДЕ.

З метою забезпечення оптимального живлення ВДЕ в електричних мережах актуальною стає задача, яка формулюється наступним чином:

$$\int_0^T \left[P_{ВДЕ}(t) - \sum_{i=1}^{n} P_i(t) \right]^2 dt \rightarrow \text{min} \label{eq:1}$$

де $P_{ВДЕ}(t)$ – заявлений (заданий) графік сумарного генерування ВДЕ в ЛЕС, $\sum_{i=1}^{n} P_i(t)$ – поточне сумарне генерування ВДЕ, n – кількість керованих ВДЕ в ЛЕС.

В ЛЕС для надійного та якісного електропостачання споживачів має підтримуватися баланс потужності:

$$\sum_{i=1}^{n} P_i(t) + \sum_{j=1}^{m} P_{ТП}(t) - \sum_{j=1}^{m} P_{ТП}(t) - \Delta P(t) = 0 \label{eq:2}$$

де $P_{ТП}(t)$ – потужність, яка передається в ЛЕС від централізованих джерел електроенергії, $P_{ТП}(t)$ – навантаження трансформаторних підстанцій (ТП), m – кількість ТП, $\Delta P(t)$ – технологічні втрати електроенергії (ТВЕ) в електричних мережах ЛЕС.

З (2) визначається потужність централізованого живлення ЛЕС:

$$P_{цм}(t) = \sum_{j=1}^{m} P_{ТП}(t) + \Delta P(t) - \sum_{i=1}^{n} P_i(t) = 0 \label{eq:3}$$

Потужність $P_{цм}(t)$ в залежності від внутрішнього балансу потужності в ЛЕС може бути зі знаками плюс.
або мінус. В першому випадку централізоване живлення є резервом генерування в ЛЕС, а в другому – ЛЕС віддає надлишок електроенергії в ЕЕС. Відмітимо, що необхідною умовою визначення $P_{gq}(t)$ є підтримування з заданою точністю генерування ВДЕ в ЛЕС (ідеально мало б бути $P_{БВК}(t) - \sum P_i(t) = 0$). При цьому має враховуватися прогнозна інформація щодо метеопараметрів, яка налаштована відповідно підсистемою автоматизованою системою керування (АСК) і дозволяє достатньо адекватно відтворювати стан керованих ВДЕ на наступну добу. За рахунок цього умовно-керовані та нестабільні джерела енергії типу ВЕС та ФЕС в цільових функціях та обмеженнях задач оптимального керування можна представити математичним сподіванням часових залежностей генерування $M_{ВЕС}(P(t))$, $M_{ФЕС}(P(t))$, $t \in [t_0, t_k]$.

Щодо навантаження трансформаторних підстанцій, то воно визначається за методикою, викладеною в [5]. Втрати ВДЕ в електричних мережах ЛЕС $\Delta P(t)$ визначаються за допомогою програмного комплексу [6], в якому використовуються типові графіки і метод визначення навантаження трансформаторних підстанцій.

В балансі потужності ЛЕС суттєво значення має заявленій графік генерування ВДЕ $P_{ВДЕ}(t)$, точність дотримання якого залежить від точності прогнозу метеопараметрів. Кращі системи прогнозування "на день наперед" дають похили в межах до ±20%. Така похила не може задовольнити вимоги щодо точності погодинного графіка генерування ВЕС і ФЕС 10%.

Підвищити точність погодинного генерування ВЕС і ФЕС на добу вперше можливо, зменшивши похилу прогнозу метеопараметрів, що має об'єктивні обмеження, або використовуючи інші методи.

Як показує практичний досвід, кращий метод прогнозування генерування ВЕС і ФЕС – це об'єднання усереднення прогнозів, отриманих від різних постачальників. Як варіант – встановлення певних довірчих коефіцієнтів для параметрів різних метеослужб. Інший шлях – організація балансуватального в реальному часі пункту групою ВЕС і ФЕС, генерування якої з них моделюється і прогнозується окремо. Інтегруючи прогнози від локальних виробників дають більше точне значення сумарного генерування. Разом з тим, такий підхід сприяє і здешевлює підтримування балансу з застосуванням накопичувачів електроенергії або з використанням системного резерву як платної послуги. В цьому випадку простше узгоджувати графіки генерування ВЕС і ФЕС та навантаження споживачів електроенергії.

Найбільше відхилення від заявленого погодинного графіка генерування ВЕС і ФЕС можна компенсувати двома способами. Перший – контролювати не погодинний графік потужності генерування, а сумарне генерування електроенергії за добу. Як правило, тут похила вкладається у встановлені 10%. Другий спосіб виконання заявленого добового графіка потужності – це допустити одну-два його поточні корекції за результатами реальних вимірювань. Враховуючи розсередженість ВЕС і ФЕС в ЛЕС, така корекція практично не вплине на баланс в ній.

Забезпечення балансу режимів ЛЕС в процесі генерування, розподілу та споживання електроенергії з урахуванням особливостей ВЕС і ФЕС у реальному часі відсотків потужних комунікаційних можливостей розереженої системи керування вимагає залучення відповідних підходів щодо формування керуючих впливів та законів керування окремими джерелами електроенергії з урахуванням специфіки їх керованості та спостережності. Як приклад, таких систем можна навести систему керування ЛЕС з ВДЕ, яка запропонована в [7]. Особливістю цієї системи керування є те, що вона відкрита для доповнення новими функціями і розширення можливостей. На сьогодні вона доповнена блоком, в якому використовуються типові графіки навантаження і розподіл електроенергії.

Слід відмітити, що ФЕС розміщені нерівномірно по території України і, в свою чергу, досить важко оцінити їх вплив на надійність електропостачання електричних мереж. На рис. 2, приведена зміна SAIDI для 2011, 2015–2018 років, середнє значення по ОЕС для міських та сільських електричних мереж [1].

![Fig. 2. Запланований показник SAIDI (1) та фактичний (2) для міських електричних мереж та 3 і 4 – відповідно для сільських мереж ОЕС України](attachment:1)

Виходячи зі статистичних даних, збільшення потужності генерування відновлювальних джерел енергії, активне впровадження яких в електричні мережі почало зростати в 2015 році, може бути причиною підвищення дії перерв в електропостачанні (SAIDI) електричних мереж. Проаналізовано темпи збільшення генерування ВДЕ в розрізі кожної енергопостачальної компанії, серед інших виділено ПАТ «Вінницяоблелектротранс» (рис. 3), оскільки тут, починаючи з 2015 року, приріст потужності генерування ФЕС був найбільшій. Аналізується лише генерування ФЕС, тому що вітро-вий потенціал для цього регіону є незначним. Отже, потужність генерування на початку 2015 року становила 41,3 MW і збільшилися майже в чотири рази за наступні три роки – в кінці 2018 року потужність ФЕС становила 180 MW. Проте вплив ФЕС на надійність мереж тут суттєво відрізняється від впливу на мережі ОЕС в цілому (див. рис. 3).

DOI: 10.33042/2079-424X-2019-3-56-99-106
Одночасне покращення рівня технічного оснащення мереж, як спостерігається у «Вінницяобленерго», разом з розбудовою ФЕС дозволяє розкрити їх потенціал з огляду на можливість забезпечення дотримання показників тривалості під’єднання ВДЕ до мережі, комплексне використання різноманітних ВДЕ, узагальнення графіків генерування ВДЕ та навантаження споживачів [10].

Забезпечення балансу режимів ЛЕС в процесі генерування, розподілу та споживання електроенергії з урахуванням особливостей ВЕС і ФЕС у реальному часі крім потужних комунікаційних можливостей розосередженої системи керування вимагає зауваження відповідних підходів щодо формування керуючих впливів та законів керування окремими джерелами електроенергії з урахуванням специфіки їх керованості та спостережності. Як приклад, такої системи можна навести систему керування ЛЕС з ВДЕ (див. рис. 4). Особливістю цієї системи керування є те, що вона відкрита для доповнення новими функціями і розширення можливостей. На сьогодні вона доповнена блоком, в якому використовуються типові графіки навантаження і реалізована методика визначення максимальної навантаження ТП [5] для прогнозування балансу потужності в ЛЕС і визначення ТВЕ в електричних мережах. Для підтримування балансу потужності в ЛЕС і генерування ВЕС і ФЕС за графіком, узгодженим з оператором по розподілу електроенергії, запропоновано АСК «Energy Storage» наповнювачами електроенергії.

Відповідно до Smart Grid технологій децентралізації частини функцій керування (рис. 4) за рахунок застосування локальних систем керування, переважно автоматичних, потребує створення умов стійкості, адекватності та адаптивності керування енерге- тичними об’єктами, як у штатних ситуаціях – з метою оптимізації функціонування, так і у нештатних – з метою швидкої ліквідації аварій та мінімізації їх наслідків.

IV. КЕРУВАННЯ ПОТОКАМИ ПОТУЖНОСТІ ЕЛЕКТРОЕНЕРГІЇ В ЕЛЕКТРИЧНИХ МЕРЕЖАХ З ВДЕ

В [8, 9] розглянуто основні способи та алгоритми оптимізації потоків потужності в електричних мережах з ВДЕ для зменшення втрат електроенергії. Основою їх є визначення потужності та місця під’єднання ВДЕ до мережі, комплексне використання різноманітних ВДЕ, узагальнення графіків генерування ВДЕ та навантаження споживачів [10].

IV. КЕРУВАННЯ ПОТОКАМИ ПОТУЖНОСТІ ЕЛЕКТРОЕНЕРГІЇ В ЕЛЕКТРИЧНИХ МЕРЕЖАХ З ВДЕ

В [8, 9] розглянуто основні способи та алгоритми оптимізації потоків потужності в електричних мережах з ВДЕ для зменшення втрат електроенергії. Основою їх є визначення потужності та місця під’єднання ВДЕ до мережі, комплексне використання різноманітних ВДЕ, узагальнення графіків генерування ВДЕ та навантаження споживачів [10].
Враховуючи наведене вище для реалізації комплексу задач оптимального керування ВДЕ в розподільних мережах необхідно усунути можливості зменшення централизації керування об'єктом у роботі систем. Однак, ця умова не може бути забезпеченна через зміну власної відносної характеристики об'єкту керування та обмеженість каналів зв'язку між ними та диспетчерським центром. Вихідна багатоступенева система керування з необхідним переліком функцій керування побудована як централизована система операційного керування з централизованою структурою функції реального часу (рис. 4) за рахунок застосування локальних систем автоматичного керування.

Особливістю роботи ЛЕС з ВДЕ є те, що розміщення в них вони розміщені, але проходять паралельно з магістральною мережею, тобто вони розміщені на лінії з двоствороннім живленням. В цих випадках, як правило, мережі розміщені паралельно, виникає задача компенсації впливу мережі вищої напруги на мережу нижчої напруги. Наслідком такого впливу є додаткові втрати електроенергії в мережі нижчої напруги. Зменшити ці втрати можна, коригуючи потоки потужності між ВДЕ і централізованими джерелами електроенергії. Реально це можна зробити або змінюючи потоки потужності ВДЕ, або змінюючи коефіцієнти трансформації трансформаторів зв'язку розподільної і магістральної мереж. В першому випадку відповідним чином коригується графік генерування ВДЕ в межах допустимого відхилення заявленим імпульсом графика.

Освіжі графіки навантаження споживачів електроенергії постійно змінюються, то змінюється і потококорозподіл в ЛЕС. Відслідковувати і оптимізувати потоки потужності в ЛЕС можливо тільки за допомогою АСК, схема якої показана на рис. 4. Для координації початкових потоки потужності в ЛЕС використовуються керовані ВДЕ. Це можуть бути ВЕС, ФЕС і малі ГЕС, що входять в її.

Можливий інший варіант оптимального керування потоками потужності в ЛЕС, коли електричні мережі в ній замкнені. В цьому випадку, оськи мережі вищої напруги (ВН) і нижчої напруги (НН) працюють паралельно, то необхідно зменшувати додаткові втрати електроенергії в ЛЕС за допомогою АСК в темпі процесу. Коригувальних дій ВДЕ, як правило, недостатньо і для оптимізації потоков потужності в ЛЕС необхідно задіяти трансформатори зв’язку її з ЕС. Ними вводиться змінний агрегат електрорушійні сили в замкнені контури, і компенсуються вплив неоднорідності електричних мереж ВН і НН.

Як приклад оптимального керування потоками потужності в ЛЕС на рис. 5 наведена схема, яка живиться через трансформаторні підстанції 110/10 кВ від електроенергетичної системи, а також від сонячних і малих гідроелектростанцій, встановлених безпосередньо в ЛЕС.

Якщо електрична мережа 10 кВ замкнена, то мережі 10 і 110 кВ працюють паралельно. Через їх конструктивну неоднорідність (x/r ≠ idem) в мережі нижчої напруги наводяться струми небалансу, що призводить до необхідної компенсації втрат електроенергії в мережі. Розглядається це роз'єднання в лініях 11–12, 17–18 та 26–27. В результаті такого розміщення електричні мережі в ЛЕС включаються не оптимальні потоки потужності, що супроводжується підвищенням втрат електроенергії в ній.

Fig. 5. Схема електричної мережі 110/10 кВ з ВДЕ
прикладі трьох рівень АСК відновлюваними джерелами енергії, схеми наведено на рис. 5, складається з локальних АСК ФЕС1, ФЕС2, ФЕС3, ГЕС і ГЕС2. Оптимальне керування потоками потужності в ЛЕС розглядаємо на прикладі ГЕС1, змінюючи потужності якої можна коригувати потужності в вітці 23–32 голови філдера, який відходить від шин 10 кВ підстанції 110/10 кВ ЕС. Зміна потужності, генерованої ГЕС, здійснюється впливом САК на регулятор турбіни. Значення цієї потужності визначається наступним чином. В локальній АСК за поточними даними, які надходять від оперативно-інформаційного комплексу (ОІК), визначаються оптимальні потужності у вітках ЛЕС, що забезпечують мінімальні втрати електропередачі в ЛЕС під час її передачі. Необхідний приріст потужності ГЕС1 визначається як

\[\delta P = P_{t_{23-32}}^\text{ном} - P_{t_{23-32}}^\text{ном}, \]

де \(P_{t_{23-32}}^\text{ном} \) і \(P_{t_{23-32}}^\text{ном} \) – потужності у вітці 23–32 точна і оптимальна.

В САК ГЕС1 є реалізований закон керування, яким встановлюється \(\Delta P_{t_{23-32}}^\text{ном} \). В режимі максимальних навантажень ЛЕС, наприклад, за рахунок збільшення генеруючих \(G_{23} \) до 50 кВт втрати в лінії електропередачі, що зв’язує її з вузлом 23, змінилися на 92 кВт або на 27%. Встановлена потужність \(G_{23} \) 350 кВт. Якщо вона працювала на повну потужність, що відповідає задачі максимуму надходжень від реалізації її електроенергії, то це призвело б не до зменшення, а до збільшення втрат електропередачі в лінії електропередачі. Цей варіант оцінюється на рівні II в АСК. Компромісний варіант приймається в залежності від наявного сумарного балансу потужності в ЛЕС і доступної резервної потужності зі сторони ЕЕС.

Аналігічно організуються режими роботи ВДЕ в ЛЕС. Сумарний техніко-економічний ефект в цілому по ЛЕС досягається координацією генерування всіх керованих ВДЕ, в тому числі і ФЕС.

Можливий інший варіант оптимального керування потоками потужності в ЛЕС, коли електричні мережі у вітці замкнені. В цьому випадку, оскільки мережі ВН і НН працюють паралельно, то необхідно зменшувати додаткові втрати електроенергії в ЛЕС за допомогою АСК в темні від перетоків, які зводяться до конових дій ВДЕ, як правило, необхідно і для оптимізації за потоку потужності в ЛЕС необхідно здати трансформатори зв’язку її з ЕЕС. Якщо вводяться звірівовані електропередачі силні (ЕРС) в замкнені контури і компенсується вплив неоднорідності електричних мереж ВН і НН.

В залежності від форми власності між мережами ВН та НН можуть бути досягнені домовленості щодо мінімізації сумарних втрат \(\Delta P_2 \) у них і визначення оптимальних значень коефіцієнтів трансформації трансформаторів і автотрансформаторів зв’язку:

\[\min \{ \Delta P_2 = \Delta P_{\text{ВН}} + \Delta P_{\text{НН}} \} , \]

де \(\Delta P_{\text{ВН}} \), \(\Delta P_{\text{НН}} \) – втрати потужності відповідно в мережах ВН і НН.
Вектори критеріїв подібності в (10) визначаються:

\[\pi_a = \left[E^{(i)}_{\alpha \beta} \right] \left[N \times C_i \right] \left[J^{(j)}_{\rho \sigma} \right] , \]

\[\pi_p = \left[E^{(i)}_{\alpha \beta} \right] \left[N \times C_i \right] \left[J^{(j)}_{\rho \sigma} \right] , \]

де \(N \) – матrice з³дⁿѧ ўтко у контури схеми; \(C_i = r^i \cdot M_j \cdot (M_i r^j \cdot M_j^{-1}) \) – матrice коефіцієнтів струмової моделю розрахункової схеми ЛЕС, в якій опори з³дъѧ що вузлу; \(M_j \) – матриця з³дъѧ що вузлу; \(M_j^{-1} \) – транспоновано матриця \(M_j \). Індексом (б) позначені величини базового режиму.

За відомими з³дъвальными ЕРС розраховуються коефіцієнти трансформацій трансформаторів з³в’як з³дъвкової моделі ЛЕС, яка опори вузлу є подібними до їх активними складовими (за допомогою розрахунку ЛЕС, \(r_\alpha \cdot x_\alpha \) – діагональні матрицi активних і реактивних опор; \(M_i \) – матриця з³дъвкової моделі ЛЕС, \(M_i r^j \cdot M_j^{-1} \) – матриця активних і реактивних опор; \(M_j^{-1} \) – транспоновано матриця \(M_j \). Індексом (б) позначені величини базового режиму.

Тодi з врахування (10) вектор оптимальних коефіцієнтів трансформації запишеться:

\[k = 1 - E . \]

Вирази (11), закладенi в САК трансформаторами з³в’як ЛЕС з ЕЕС, є законами керування.
It is shown that the unstable nature of the operation of renewable energy sources affects the modes of operation of the electricity grids. The instability of generation of photovoltaic and wind power plants (FES, WPP) is offset by the power supplied to the distribution grids (REM) from the grid. Because of this, the conditions of the balancing of the SEM mode also affect the EES modes. In today's conditions, the balance is solely placed on a centralized electricity supply system. However, there is a gradual change in the mechanisms of functioning of the Ukrainian energy market, which encourage RES to work according to a set schedule, in particular the introduction of penalties for failure to comply with the stated daily generation schedule. To ensure the balance reliability of the SEM, the power reserve of the grid is determined or the capacity of the energy storage is determined. Further development of renewable energy sources is impossible without the use of balancing tools and the assessment of their impact on the reliability of the electricity grids to which RES is connected.

A change in SAIDI for recent years, when RES is being actively deployed, is given in urban and rural electricity networks. RES do not always lead to increased reliability of electricity supply and improved quality of electricity. It is established that with the development of RES it is necessary to improve the technical condition of the electrical networks.

Structural diagram of an automated control system for electricity sources with local SACs for controlling power flows in electric networks is developed with RES to reduce electricity losses.

Keywords - diagnosis, technical state, power transformer, frequency-amplitude characteristics, deviation, FRA, windings, magnetic circuit, planning the day of diagnosis, forecasting.
Determination of power losses in the isolation of distribution networks

S. Shevchenko
National technical University “Kharkiv Polytechnic Institute”, Ukraine
E-mail: shevchenko.e@khpi.edu.ua

D. Danylchenko
National technical University “Kharkiv Polytechnic Institute”, Ukraine
E-mail: danylchenko.e@khpi.edu.ua

I. Borzenkov
Sumy State University
Ukraine
E-mail: i.borzenkov@itech.sumdu.edu.ua

Abstract — The article deals with the problem of determining the power losses in high-voltage transmission lines, because their dielectric properties are lost over time. To calculate power losses, the methodology for determining losses in accordance with regulatory documents is presented and its imperfection is shown. Experimental research methods for PF-70A and PSD-70E type insulators have been developed to determine the capacitance of the insulator and the tangent of the dielectric loss angle. On the basis of the developed methodology, experimental studies were conducted to determine the capacitance of the insulator and the tangent of the dielectric loss angle for PF-70A and PSD-70E type insulators. In experimental studies, three conditions were examined under which insulators were investigated: a clean dry insulator, a dirty dry insulator, and a clean wet insulator. The results of the capacitance of the insulator and the tangent of the dielectric loss angle with different contamination of the insulators were obtained. The results of the experimental studies allowed us to calculate the losses of active and reactive power in the isolators of overhead lines. According to the results of the calculations, it was found that the value of the losses of the reactive power component is almost unchanged, regardless of the type of contamination, and the active component increases when contaminated and significantly increases when the insulator is wetted. Analyzing the obtained results, it is concluded that during operation, insulator contamination changes, which leads to changes in leakage currents and, as a consequence, power losses, so power losses are not constant, and they change during operation depending on the environment, weathering, the conditions and timing of this impact. The issue of determining power losses is not fully resolved and needs further, more detailed study.

Keywords — leakage current, insulator, glass insulators, porcelain insulators, tan delta.

I. INTRODUCTION

As it is known for all objects of power systems balances of the electric power are formed. Electricity balance is a quantitative characteristic that takes into account that the amount of electricity that is supplied to an object must always be equal to the amount of electricity that has come out of the object and that has been consumed inside it. However, there is also an unbalance of the system - as a consequence of the error in fixing the balance components with the devices, as well as the presence of losses that are not fixed at all by the devices, for example, technical losses, the value of which is determined by calculation, and commercial losses, which are explained both by the characteristics of the object and the impact on them of external forces.

The value of technical energy losses in the transmission of electrical energy in the insulating structures of overhead power lines according to [1], taking into account the degree of air pollution (DAP) is determined by the following formula:

\[\Delta W_{iso}^{(P)} = \frac{U_{nom}^2}{3R_{isol}\cdot N_{insul}} \cdot T_{hum} \cdot N_{gir} \] \hspace{1cm} (1)

where \(U_{nom} \) is the rated voltage OL, kV; \(N_{insul} \) - the number of insulators in the phase OL; \(N_{gir} \) - the number of insulator strings, which is taken when designing overhead lines; \(T_{hum} \) - duration in the calculated period of wet weather (fog, dew, rain, sleet, frost), h; \(R_{isol} \) is the electrical resistance of one insulator, kΩ, which is determined according to [2] by the formula:

\[R_{isol} = 1345 - 215 \cdot (N_p - 1) \] \hspace{1cm} (2)

where \(N_p \) - the number of the level of the degree of pollution of the atmosphere, which is determined according to [3].

As can be seen from formula (1), it does not take into account such parameters as: resistance to leakage current or the conductivity of the layer of pollution on the surface of the insulator skirt depending on the thickness of the insulator [4 - 9] and the time of exposure to weather conditions. Not taking into account these parameters introduces a significant error in determining the magnitude of the leakage current, and the reduced \(R_{isol} \) resistance formula (2), the value of which varies linearly depending on the DAP, does not provide complete information to determine the technical energy loss (1) in the insulating overhead lines during electrical transmission energy. The paper attempts to take the above parameters into account by indirect methods.

DOI: 10.33042/2079-424X-2019-3-56-107-111
The influence of weather conditions reduces the dielectric strength of insulators [6] and, in some cases, with intensive contamination of the surface of insulators leads to their overlap. Moistening the surface of the insulating structure leads to an increase in the specific conductivity of the contamination layer along the surface of the insulator and, as a consequence, to an increase in leakage currents, which in turn leads to an increase in energy loss.

The determination of the leakage current and the conductivity of the contaminated layer of an insulating structure can be performed by measuring such insulation parameters as: dielectric loss tangent $\tan \delta$ in the insulator design and insulant capacitance C_{insul} depending on DAP and type of weather conditions (fog, dew, rain, wet snow, frost). In the conducted research in laboratory conditions, three states of the insulator plate surface were studied: dry, clean; dry with a layer of dust; clean moistened with water. This approach to experimental research allows simulating at once several variants of the surface conductivity of an insulating part of insulators, which corresponds to different degrees of environmental pollution.

II. DETERMINATION OF THE CAPACITY OF THE INSULATOR AND TANGLES OF THE ANGLE OF DIELECTRIC LOSSES

The active component of the leakage current on the surface of the insulator in different sources [4 - 6] is determined by the expression:

$$I_u = \frac{U}{R_u}$$ \hspace{1cm} (3)

where R_u is the leakage current resistance on the surface of the insulator if the contamination layer has a thickness Δ with a specific volume resistance ρ.

The leakage current resistance can be determined by the following formula:

$$R_u = \frac{\rho L_u}{\pi \Delta D}$$ \hspace{1cm} (4)

where L_u is the creepage distance.

Therefore, from formulas (3) and (4) the leakage current will be determined as:

$$I_u = \frac{U \pi \Delta D}{\rho L_u}$$ \hspace{1cm} (5)

Based on the expression (5), without having the values of such parameters as the thickness of the contamination layer Δ and its specific volume resistance ρ, it is impossible to calculate the leakage current. In addition, formula (5) is given for the calculation of a cylindrical smooth insulator, which makes its application in practice for the calculation of real structures almost impossible.

You should pay attention to the fact that the value of capacity C will vary depending on the absence or presence of a layer of pollution. This is due to the fact that the dielectric constant of the pollution layer will depend on its state and composition. Therefore, the determination of the capacity of the contaminated insulator will allow to take into account the presence on its surface of a certain type of pollution.

![Fig. 1. Diagram of replacing a string of insulators.](image1)

![Fig. 2. Schering Bridge Diagram](image2)

All of the above determines the need to clarify leakage currents. In this paper, we propose to determine the leakage currents by measuring two insulator parameters such as: capacitance C_x and dielectric loss tangent $\tan \delta$ experimentally. On the basis of the obtained experimental results, it becomes possible to determine the active component of the leakage current by calculation.

To experimentally determine the capacitance C_x of the insulator and the dielectric loss tangent $\tan \delta$, we performed 3 series of experiments, 100 experiments in each series, using the Vector 2M measuring device, which works on the basis of the Schering bridge principle (Fig. 2) and for measuring the parameters of insulation, capacitance and tangent of dielectric loss angle in high-voltage insulation at various values of test voltages.

The measurement process consists in balancing the bridge circuit by alternately adjusting the resistance of the resistor and the capacitance of the capacitor stores.
where C_1 is the capacitor under study, R_1 is the series resistance in the equivalent circuit of the capacitor under study, C_2 is the reference capacitor, R_3 is a non-induction resistor, C_4 is a variable capacitor, and R_4 is a variable non-induction resistor connected in parallel with C_4.

Two types of insulators were chosen as objects of study:

- "PF-70A" Fig. 3, suspended porcelain insulator with a long creepage distance $l_{out} = 303$ mm and a minimum breaking load of 70 kN;

- "PSD-70E" Fig. 4, suspended glass double-wing insulator (for areas with a polluted atmosphere), enhanced insulating characteristics and a long creepage distance $l_{out} = 411$ mm with a minimum breaking load of 70 kN.

Fig. 3. Insulator type PF-70A

Fig. 4. Insulator type PSD-70E

Measurements of the studied parameters were carried out for three states of the insulator plate surface (clean, dry, contaminated with a layer of dust, clean wetted water) using the “Normal” measurement circuit, which is shown in Fig. 5.

![Diagram](image)

Fig. 5. "Direct" measurement circuit

In measurements, two bridge switching schemes are used: the so-called “Normal” or “Direct”, in which the measuring element is connected between one of the electrodes of the tested insulation structure and the ground, and “Inverted”, where it is connected between the electrode of the test object and the high voltage output the bridge. The “normal” circuit is used when both electrodes are isolated from the ground, “Inverted” - when one of the electrodes is tightly connected to the ground.

The test voltage U_{HV} supplied to the object “Pestle” of the insulator according to the “Direct” measurement circuit was 10 kV. The obtained average values of the results of measurements of the capacitance of the insulator C_x and the dielectric loss tangent $\tan \delta$ are presented in Table 1.

![Table](image)

TABLE I

Type	Insulator Surface Condition	Dry clean	Dry dirty	Clean wetted with water
	C_x, pF $\tan \delta$, %	C_x, pF $\tan \delta$, %	C_x, pF $\tan \delta$, %	
PF-70A	87.82 9.12	82.86 21	120.3 20.9	
PSD-70E	67.76 2.039	65.72 2.067	77.31 3.49	

As can be seen from Table 1 for different states of contamination of the surface of an insulator plate, the values of capacitance C_x have different values and even exceed the values given in [5]. Therefore, if we take into account the varying parameter $\tan \delta$, the active component of the leakage current I_a over the surface of the insulator will also have different values.

III. **CALCULATION OF THE ACTIVE LEAKAGE CURRENT ON THE SURFACE OF THE INSULATOR**

At alternating voltage, in insulation, a current flows, which is ahead of the applied voltage by phase ϕ (Fig. 6), which is less than 90 degrees at a small angle δ, due to the presence of active resistance.
Knowing the reactive component of the current \(I_p \), as well as the tangent of the dielectric loss angle \(tg\delta \), it is possible by a known formula to calculate the active component of the leakage current \(I_a \):

\[
tg\delta = \frac{I_a}{I_p} \quad (8)
\]

Then, expressing from (5) the active component of the leakage current \(I_a \), we obtain:

\[
I_a = I_p \cdot tg\delta \quad (9)
\]

Substituting the obtained experimental average values into (6) (7) (9), we obtain the desired reactance values of the insulator \(X_c \), the reactive component of the current \(I_p \), and the active component of the current \(I_a \), which are summarized in table 2 for the PF-70A type insulator and in table 3. The required parameter values for the PSD-70E isolator are summarized.

TABLE II. Calculated Values of the Desired Values of the Insulator Type PF-70A

Surface Condition	\(U \), kV	\(f \), Hz	\(X_c \), Ohm	\(I_p \), A	\(I_a \), A	\(P_a \), W
Dry clean	10	50	3.63 \(\times 10^{-3} \)	0.3 \(\times 10^{-3} \)	2.5 \(\times 10^{-3} \)	0.25
Dirty dry	10	50	3.85 \(\times 10^{-3} \)	0.3 \(\times 10^{-3} \)	3.8 \(\times 10^{-3} \)	0.58
Clean wetted with water	10	50	3.85 \(\times 10^{-3} \)	0.4 \(\times 10^{-3} \)	7.9 \(\times 10^{-3} \)	0.79

TABLE III. Calculated Values of the Desired Values of the Insulator Type PSD-70E

Surface Condition	\(U \), kV	\(f \), Hz	\(X_c \), Ohm	\(I_p \), A	\(I_a \), A	\(P_a \), W
Dry clean	10	50	4.7 \(\times 10^{-3} \)	0.2 \(\times 10^{-3} \)	4.3 \(\times 10^{-3} \)	0.043
Dirty dry	10	50	4.8 \(\times 10^{-3} \)	0.2 \(\times 10^{-3} \)	4.3 \(\times 10^{-3} \)	0.043
Clean wetted with water	10	50	4.1 \(\times 10^{-3} \)	0.2 \(\times 10^{-3} \)	8.5 \(\times 10^{-3} \)	0.085

As can be seen from tables 1, 2 and 3, under different states of the surface of an insulator plate, the capacitance \(C \) of the insulator changes, and the dielectric loss angle changes and, as a consequence, the active component \(I_a \) of these losses appears.

IV. Conclusions

During the work we see that during the operation of insulator chains made of porcelain and glass at different levels of atmospheric pollution zones and weather conditions, the leakage currents on the surface of the insulators can change their values. It is also seen that the capacitance and the tangent of the dielectric loss angle of an insulator also change their values depending on the type of contamination of the insulator plate.

It is also necessary to note that the applied voltage to one insulator when conducting research in laboratory conditions was 10 kV, however, in actual operating conditions, the voltage distribution over a string of insulators fig. 1, depending on the voltage class of the overhead power line, has different voltage values.

As we see this question on the specification of leakage currents on the insulating structures of power lines need additional research. Since it is not known, the behavior of leakage current values in actual operating conditions during
References

[1] SOU-N EE 40.1-37471933-82: 2013 Metodychni rekomendatsyi vyznachennya tehnolohichnykh vytrat elektrychnoi enerhiyi v transformatorakh i liniakh elektroperepadavannya.

[2] Zhelezko, Yu.S., Artemyev, A.V., Savenko, O.V. Calculation analysis and rationing of electric power losses in electric networks: A guide for practical calculations. M.: Publishing House NTS ENAS, 2004. - 280 p.

[3] SOU-N MEV 40.1-00013741-92:2014 Izolyatsiya elektroustanovok napruhoyu vid 6 kV do 750 kV. Instruktsiya z vyboru ta ekspliataciyi.

[4] Technique of high voltage: a course of lectures / V. F. Vazhov, V. A. Lavrinovich. - Tomsk: TPU publishing house, 2008. - 150 p.

[5] High voltage technique. A textbook for students of electrical and electricity universities. Under the general ed. D.V. Razevigi. Ed 2nd, Pererab. and add. M., "Energy", 1976.

[6] High voltage technology: Insulation and overvoltage in electrical systems: A textbook for universities / V.V. Bazutkin, V.P. Larionov, Yu.S. Pintal; Under total ed. V.P. Larionov.-3rd ed., Pererab. and additional-M.: Energoatomizdat, 1986 - 464 p.

[7] M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989.

[8] Shevchenko S. Influence of Direct Lightning Strikes and Lightning Strikes Near Power Lines with Protected and Non-Insulated Wires. // Shevchenko S., Danylchenko D., Dryvetskyi S., Minakova K. // 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS) - 17 - 21 pp.

Визначення втрат електроенергії при ізоляції розподільних мереж

С.Ю. Шевченко
Національний технічний університет "Харківський політехнічний інститут",
Україна

Д.О. Данильченко
Національний технічний університет "Харківський політехнічний інститут",
Україна

І.І. Борзенков
Сумський державний університет,
Україна

В статті розглядається питання визначення втрат потужності в ізоляційних конструкціях високовольтних ліній електропередачі, оскільки з часом експлуатації ізоляторів втрачаються їх діелектричні властивості. Для розрахунку втрат потужності наведено методику визначення втрат відповідно до нормативних документів та показано її недосконалість. Розроблено методику проведення експериментальних досліджень для ізоляторів типу ПФ-70А та ПСД-70Е для визначення ємності ізолятора та тангенса кута діелектричних втрат. На основі розробленої методики проведено експериментальні дослідження для визначення ємності ізолятора та тангенса кута діелектричних втрат для ізоляторів типу ПФ-70А та ПСД-70Е.

Під час експериментальних досліджень було розглянуто три умови за якими досліджувалась ізолятори: чистий сухий ізолятор, брудний сухий ізолятор та чистий зволожений ізолятор. Отримані результати ємності ізолятора та тангенса кута діелектричних втрат за умови різного забруднення ізоляторів дозволили розрахувати втрати активної та реактивної потужності в ізоляторах повітряних ліній. За результатами розрахунку було виявлено, що значення втрат реактивної складової потужності майже не змінюється, не зважаючи на тип забруднення, а активна складова збільшується при забрудненні і значно збільшується при намочуванні ізолятора. Проаналізувавши отримані результати зроблено висновок, що під час експлуатації змінюється забруднення ізоляторів, що приводить до зміни струму витоку і, як наслідок, втрати активності у залежності від навколишнього середовища, впливу погодних умов та часу цього впливу. Питання визначення втрат потужності не є остаточно вирішеним і потребує подальшого, більш детального дослідження.

Ключові слова - струм витоку, ізоляція, склоізолятори, порцелянові ізолятори, тангенс дельта.
Principles and methods of calculating hybrid contactors of direct current, controlled by an electric drive current

A. Soskov
O.M. Beketov National University of Urban economy in Kharkiv, Ukraine
E-mail: ansoskov@gmail.com

O. Iegorov
O.M. Beketov National University of Urban economy in Kharkiv, Ukraine
E-mail: diaskk67@gmail.com

Abstract - It has been shown that the principle of controlling the current of an electromagnetic drive of a hybrid contactor of direct current is realized by introducing a special control electric circuit in parallel with a drive coil by means of turning on a power SK (semiconductor key), which contains a condenser, setting the time and controlled low-power transistor key, in an output circuit of which a low-power optron thyristor is included, moreover, an auxiliary transistor key, providing the current discharge with the help of additional secondary electric winding when commutation current flows from the circuit of the main contactors to the circuit of a power semiconductor key, is turned on in parallel to the mentioned condenser.

The peculiarities of the processes of charging and discharging of a condenser, which sets the time, in different operating conditions of a contactor, have been determined. Whereby, it has been found out that for providing reliable circuits commutation it is necessary that a condenser charging time, setting the time up to the level of voltage, providing turn-on of a low-powered optron thyristor when a contactor is turned on, shouldn’t exceed the value of minimum time of its turn-on and the time of the condenser discharge when turned off shouldn’t be lower than the minimum time of a contactor turn-off. It allows to determine the parameters of the elements, providing reliable commutation of a contactor.

As a result of the research it has been shown that the proposed hybrid contactors due to the introduction of electromagnetic drive current control and new connections as compared with the existing ones, possess the properties increasing their competitiveness. They also have increased operation reliability, reduced dimensions and cost, their production and technological indices are improved and the sphere of their application is broadened.

The possibility of creating competitive reliable hybrid contactors of direct current on the currents 100-630 A and voltage up to 1000 V, which function in hard maintenance conditions, is considered to be an applied aspect of putting into practice the research results obtained.
Nowadays, the sphere of using hybrid commutation apparatuses (including contactors) of direct current widened greatly due to the development of direct current nets, in which renewable sources of electric power are used (solar and wind power stations) [3, 4].

In connection with that the works, aimed at the development of new principles of creating hybrid commutation apparatuses and methods of their calculation, providing the increase of their competitiveness at the world market of electro-technical products, are urgent and in demand. The review of scientific works for a period of 10 years is given by the authors in [5] and shows that such research work is carried out worldwide [6-8].

II. THE AIM AND THE TASKS OF THE RESEARCH

The aim of the research is to develop the principles and methods of calculating operating conditions and parameters of hybrid contactors of direct current (with an electromagnetic drive), controlled by the electric drive current.

The following tasks are to be solved:
- To prove that the principle of controlling a hybrid contactor by the current of its electromagnetic drive allows to increase its competitiveness as compared with the existing ones;
- To study nonstationary electromagnetic processes, providing electromagnetic drive current control by a contactor;
- To elaborate the methods of calculating electronic circuit elements, providing electromagnetic drive current control and to give recommendations on the choice of their parameters and operating conditions.

III. TECHNICAL SOLUTIONS ON CREATING HYBRID CONTACTORS OF DIRECT CURRENT AND THEIR ANALYSIS

Technical solutions in the form of an electric circuit of a two-pin hybrid contactor of direct current, controlled by the current of its electromagnetic drive, have been worked out at O.M. Beketov National University of urban economy in Kharkiv (Ukraine, Kharkiv). This principle is realized in such a way that a special electronic circuit of control with a condenser, setting the time, and a controlled transistor key with an optre thyristor connected with its input circuit, is introduced in series with the coil of electromagnetic drive.

This circuit provides reliable contactless turn-on and turn-off of a completely controlled SK, as the main contactor contact is by-passed when the loading is commutated by an apparatus. The main technical solutions, applied in the contactor, are protected by patent [9,10].

An electric circuit of the given contactor is presented in figure 1.

A classical double-pole contactor with an electromagnetic drive is applied as the base contact apparatus.

Such elements of a contactor as the main contacts MC1 and MC2, IGBT-transistor VT3 with a reverse diode VD7, primary coils W1.1, W1.2 of a current transformer TA1 form the main circuit of a contactor on the circuit. At the same time the contacts 1 and 2 MC1 and MC2 are adjusted in such a way that the second contact is broken later than the first one (time latency is 8-9 ms), and instead of IGBT-transistor a dual-operation thyristor can be applied.

A thyristor block R_0 is intended for spilling the power accumulating in a circuit inductance, and an optre thyristor VS3 – for spilling the power accumulated in a loading inductance. The latter element allows to use the proposed contactor in non-reverse circuits. The rest elements form the circuit of controlling the commutation of the main contacts or VT3.

Such elements as the button START and STOP, auxiliary contacts MK1.1 and the coil of electromagnet MK1 provide a drive control and thus the commutation of the main contacts.

Such elements as a diode bridge (VD1 – VD4), a condenser C1, setting the time, a transistor VT2, optre thyristor VS1, resistors R_1 – R_6, a condenser C_3, a voltage regulator VD6 and a bilateral voltage selector VD8 provide turn-on of a transistor VT3 (or a dual-operation thyristor). In their turn, such elements as a transistor VT1, resistors R_7 – R_{13}, a diode VD5, secondary coils W2.1 and W2.2, diodes VD9 and VD10, a commutating condenser C_3, a commutating thyristor VS2, resistors R_{14} and R_{15}, an input circuit of an optre thyristor VS3 provide turn-off VT3 (or a dual-operation thyristor).

While a contactor is powered off all elements of its electronic circuit are de-energized and in on-position just a small amount of elements, included into the circuit of an electromagnetic drive, are under load.

A detailed description of a contactor work is presented in [9, 10].

As can be seen from the analysis presented in [5, 9, 10], the technical solutions proposed by the authors allow to create hybrid contactors, providing reliable arcless commutation both in on-position and when powered off. They don’t need the use of costly large standard driver with a special power unit as well as an additional source of power. Furthermore, as compared with the existing contactors, they possess the following additional positive characteristics:

1) Increased operation reliability, provided by the following factors: excluding of a less-than-perfect contact circuit, created on the basis of a current relay, from the controlling circuit of a power SK, complete excluding of a possibility of an emergency restart of a power SK upon power failure, and economical operating conditions of the elements of a contactor electronic circuit as well as excluding of a voltage influence on the elements of a controlling circuit;

2) Reduced dimensions, mass and cost due to considerable simplification of a controlling circuit (excluding of the time relay and a large non-process current relay, simplification of the connections between the electric contacts);

3) The parameters and operating conditions of the circuit controlling an electrical part don’t depend on the net voltage and are determined only by the turned off current, it allows to use the proposed technical solutions also for creating hybrid contactors for the voltage higher than 1000 V;
4) The absence of the commutation zone with an arc increases its commutation durability as well as allows to apply it in conditions of strict explosion and fire safety requirements.

The properties mentioned above essentially increase the competitiveness of the proposed contactor due to the increase of the maintenance properties and production simplification.

For substantiation of the results obtained and for providing practical realization it is necessary to study the processes which haven’t been considered before, but occurring in a contactor circuits in case of loading commutation. On the basis of the data obtained the necessary calculation techniques are expected to be worked out.

IV. THEORETIC RESEARCHES OF NONSTATIONARY PROCESSES IN THE CIRCUITS OF HYBRID CONTACTORS

The data of the researched processes are presented below. The main processes occur in the circuit of electromagnetic drive of a contactor in case of its commutation. The design circuit for studying these processes is presented in figure 2.

The following symbols are used in the circuit:
- \(R_k \) - active resistance of a drive coil;
- \(L_4 \) - inductive resistance;
- \(C_1 \) - condenser connected with a coil in series;
- \(R_6 \) - regulated resistor, connected with the input circuit of the optron thyristor;
- \(VT_2 \) - transistor key;

![Diagram of a hybrid double-pole electromagnetic contactor controlled by an electric drive current](image-url)
As the resistor resistance R_4 is enormously higher than that of the resistor R_0 (in modern low power transistors the coefficient of the current transmission $\beta > 100$), it is possible to consider with a fractional error that the equivalent value of resistance, connected in parallel to the condenser C_1, will be the following $- R_0 = R_e$.

The process of charging a condenser C_1 in case of a turned on contactor is divided into two stages. The first stage lasts up to the moment of turning on a transistor key VT2, i.e. up to the voltage reaches the voltage value of the breakdown of the regulator $VD1$. In this case a transmission process in the circuit is determined with the following equation:

$$u_k = i_k \cdot R_k + L_k \cdot \frac{di_k}{dt} + u_C \quad (1)$$

After the corresponding transformations we have:

$$\frac{d^2u_C}{dt^2} + \frac{R_k}{L_k} \frac{du_C}{dt} + \frac{1}{L_kC_1} u_C = \frac{u_k}{L_kC_1} \quad (2)$$

According to [11] its solution looks like that:

$$u_C = U_K + \frac{u_k}{p_1-p_2} \cdot \left(p_2 \cdot e^{p_2 t} - p_1 \cdot e^{p_1 t}\right) \quad (3)$$

$$i_k = \frac{u_k}{L_k(p_1-p_2)} \cdot \left(e^{p_1 t} - e^{p_2 t}\right) \quad (4)$$

where

$$p_2 = \frac{R_k}{2L_k} \left(\frac{R_k}{2L_k} - \frac{1}{L_kC_1}\right) > 0$$

In this case it is supposed that a charging process is aperiodic, i.e. $\left[\left(p_2 \cdot e^{p_2 t} - p_1 \cdot e^{p_1 t}\right)\right] > 0$.

The second stage starts from the moment of turning on a transistor key VT2 in case of a regulator breakdown $VD1$. In such case ($R_e = R_0$):

$$U_C(0) = U_{CT}, I_2(0) = \frac{U_{CT}}{R_E} \geq I_{\text{turn-on}VS1} \quad (5)$$

where U_{CT} - the voltage of the regulator breakdown $VD1$.

For determining the time of a transistor key closing (t_1) it is necessary to solve the following transcendental equation:

$$U_{CT} = U_{k0} + \frac{U_k}{p_1-p_2} \cdot \left(p_2 \cdot e^{p_2 t} - p_1 \cdot e^{p_1 t}\right) \quad (6)$$

In case when $p_1 \leq p_2$ it is possible to use the following equation for this circuit:

$$\ln \left(U_{k0} - U_{CT}\right) = \ln \left(-\frac{U_k}{p_1-p_2}\right) \quad (7)$$

For normal operation of an electronic circuit of control it is necessary that

$$t_1 \leq t_{\text{turn-on min}} = 0,755t_{\text{turn-on}}$$

The equation of a transmission process at the second stage looks as follows:

$$u_k = i_k \cdot R_k + L_k \cdot \frac{di_k}{dt} + u_C \quad (8)$$

where $i_k = C_1 \cdot \frac{du_C}{dt} + \frac{u_c}{R_k}$

Or after the corresponding transformations:

$$\frac{d^2u_C}{dt^2} + \left(\frac{R_k}{L_k} + \frac{1}{R_kC_1}\right) \frac{du_C}{dt} + \frac{1}{L_kC_1} \cdot \left(1 + \frac{R_k}{R_e}\right) = \frac{u_k}{L_k(p_1-p_2)} \cdot \left(e^{p_1 t} - e^{p_2 t}\right) \quad (9)$$

Using known calculation techniques of transmission processes of electric circuits [11], we obtain:

$$u_C = U_K \cdot k - A \cdot e^{p_1 t} + \left(A + U_{CT} - U_K \cdot k\right) \cdot e^{p_1 t} \quad (10)$$

where

$$A = \frac{1}{p_1-p_2} \left[p_1 \cdot (U_{CT} - U_K \cdot k) + I_K(0)\right]$$

$$k = \frac{R_k}{R_k + R_E},$$

$$p_1^' = -\alpha + \sqrt{\frac{\alpha^2 - 1}{R_kL_kC_1}},$$

$$\alpha = \frac{1}{2} \cdot \frac{R_k}{R_k + R_E}.$$

So, in a stable condition the voltage on the condenser C_1 is equal to $U_K \cdot k = U_0$.

Practically the time of a condenser charge is determined from the equation (10) assuming that $U_K \cdot k = U_0$. However, if $p_2 >> p_1$, this time can be determined from the equation:

$$t_2 = \frac{\ln A - 0,95 - U_0}{0,95 - U_0 - \ln A} \cdot \frac{p_1}{p_1^'} \quad (11)$$
In this case the full time of a condenser charge will be
\[t_{\text{charge}} = t_1 + t_2. \]

When a contactor is turned off, a condenser \(C_1 \) starts discharging through an open semiconductor key \(VT2 \) and a resistor \(R_n \), and it finishes when the voltage on the condenser occurs and it is equal to the voltage of a regulator breakdown \(VD1 \).

The equation of a transmission process in this case looks like that:
\[R_\text{E} \cdot C_1 \frac{du_c}{dt} + u_c = 0 \]
(12)

When \(t = 0 - U_0 = U_K \cdot k \). Then
\[u_c = U_K \cdot k \cdot e^{-t/t}, \]
(13)

where \(\tau = R_\text{E} \cdot C_1 \).

The time of a condenser discharge \((t_{\text{disch}}) \), until the voltage is \(U_{\text{CT}} \), will be determined from the following equation:
\[t_{\text{disch}} = \tau \cdot \ln \frac{u_K \cdot k}{u_{\text{CT}}} \]
(14)

For the normal operation of a circuit controlled by a contactor it is necessary that the following in-equation to be carried out:
\[t_{\text{disch}} \leq t_{\text{on-off max}} = 1.25 \cdot t_{\text{on-on}} \]
(15)

In this case \(C_1 = \frac{t_{\text{on-off max}}}{R_\text{E} \cdot \ln \frac{U_K \cdot k}{U_{\text{CT}}}} \)
(16)

For reducing over-voltage by the current of an input circuit of optron thyristor \(VS1 \) it is recommended to fulfill a stipulation \(\frac{u_K \cdot k}{U_{\text{CT}}} \leq (2 \div 3) \). In this case the stipulation will be fulfilled at which a condenser discharge \(C_1 \) with the help of a transistor key \(VT1 \) (fig. 1) will occur only in case of full transmission of current to the by-passing \(SK \), i.e. the conditions, at which a reliable arcless commutation of a circuit at a contactor cutoff will be provided.

For reducing the influence of a condenser, turned on in parallel with the coil of an electromagnet, on a contactor operation it has been proposed by the authors to change the parameters of the base coil in such a way that an import power of a circuit of control could remain unchanged:
\[\frac{u_E}{R_{KB}} = \frac{u_E}{R_E + R_E} = P_{KB} \]
(17)

where \(R_{KB} \), \(P_{KB} \) - the resistance of a coil and the power of control of a base contactor respectively;

\(R_K \) - changed resistance of a coil;

\(R_E \) - equivalent resistance of a circuit which by-passes a condenser.

\(R_E \) and \(R_{KB} \) are determined in the following way:
\[R_E = \frac{u_E}{U_K} \cdot R_{KB} = k \cdot R_{KB} \]
(18)

As \(R_{KB} = R_K + R_E \) then
\[R_K = R_{KB} \cdot (1 - k) \]
(19)

The power on the changed coil:
\[P_K = P_{KB} \cdot (1 - k)^2 \]
(20)

In case of using a base contactor without changes the power in the coil would be \((1 - k)^2\) times lower than in the preceding case:
\[P_Y = P_{KB} \cdot (1 - k)^2 \]
(21)

So, the correlations obtained allow to calculate all the processes occurring in the circuit of electromagnetic drive and to choose the parameters of its main elements rationally.

V. THE RESULTS OF CALCULATING THE PARAMETERS OF THE ELEMENTS OF AN ELECTROMAGNETIC DRIVE CIRCUIT

The calculation values of the main parameters of the elements of an electromagnetic drive circuit, participating in the commutation process of a completely controlled power \(SK \), are presented in table 1. The calculations have been carried out according to the formulae (18) – (20), (13) – (16), (4) – (7), (10), (11). The contactors of the series KTI6000 were used as a base contactor. The main parameters of a circuit of their electromagnetic drive are given in table 2 [12].

| TABLE I. Parameters of the electromagnetic circuit |
|---|---|---|---|---|---|---|---|---|---|---|
\(I_{\text{nom.}} \) A	\(U_{\text{nom.}} \) V	\(U_E \) V	\(k \)	\(R_K \) Ohm	\(R_E \) Ohm	\(P_K \) W	\(U_{\text{CT}} \) V	\(C_I \) uF	\(T_{\text{disch}} \) s	\(t_1 \) s	\(t_2 \) s	\(t_{\text{charge}} \) s	
100, 160	before 1000 V	220	0.1	2562	284.47	15.3	22	9	394	0.1	0.053	0.24	0.293
250	1613.3	179.2	24.3	2847	398.27	40	1210	36	1617.75	0.175	0.0985	0.424	0.522
630	615.33	68.17	63.9	3897	0.237	0.111	0.8	0.911					

The analysis of the calculation results shows that calculation parameters of the elements of an electromagnetic drive circuit provide reliable operation of the circuit of controlling the commutation of the completely controlled
SK in the whole range of nominal currents contactors using the contactless method. At each of the proposed nominal currents of a base contactor the charging time of a condenser C_1 up to the voltage U_{CT} in case of its turning on is lower than the minimum time of turning on a contactor and the time of discharge in case of turning off is always higher than the maximum time of cutting off a contactor. However, the dimensions and cost of a condenser C_1 despite its rather high capacity, will be inconsiderable, as we use an electrolytic condenser with low voltage (not higher than 25 V).

Calculation methods as well as calculation parameters of a current transformer and the circuit of controlling the commutation of a completely controlled SK for the range of nominal currents (100 – 130 A) is presented in the work [5].

Calculation methods of overload capacity of a completely controlled SK as well as overloading limiter are presented in [13], where it is shown that power semiconductor devices performing the role of SK in hybrid contactors can be applied without coolers using natural cooling. Providing of allowable level of overloading lower than $2.5 \cdot U_{NOM}$ can be achieved due to the turned on series-parallel low power varistors with the corresponding mass and cost.

VI. EXPERIMENTAL RESEARCH OF ELECTROMAGNETIC DRIVE OF THE PROPOSED CONTACTORS

The aim of the research is to determine such important for the analysis of the work of an electromagnetic drive parameters as the value of a contactor turning on time $t_{\text{turn-on}}$, a condenser charging time $C_1 \cdot t_{\text{charg}}$ at turning on a contactor and the time of its discharging t_{disch} at turning off. The researches have been carried out using a special installation, the electrical circuit of which is shown in figure 3.

The originality of the experiment is that in the course of the research a base contactor КТП6000 with the nominal current 250 V without any changes has been used.

![Fig. 3. Electrical circuit of the acting installation](image)

Furthermore, operating conditions of electromagnetic drive of this contactor were the same as in the research, given in sections 4 and 5 for the same contactor. It has been achieved due to the following conditions:

$$\frac{U_{KB}}{R_{KB}} = \frac{U_{KB}}{R_{KB} + R_E} = P_{KB};$$

$$U_{K} = \gamma \cdot U_{KB};$$

$$R = \frac{R_E}{R_{KB} + R_E} = 0.1;$$

$$P_K = P_{KB} \cdot 0.9; \quad P_{\text{ext}} = \frac{U_{\text{ext}}}{R_E};$$

Where $U_{KB} = 220 \text{ V}; \quad P_{KB} = 27 \text{ W}$

$$P_K = 24.3 \text{ W};$$

$$\gamma = \frac{1}{U_{KB}} \cdot \sqrt{P_{KB} \cdot (R_{KB} + R_E)} = 1.054;$$

$U_{ext} = 231.92 \text{ V}; \quad R_E = 199.2 \text{ Ohm}^2;$

$U_{K_x} = 10 \text{ V}$ - corrected values of controlling voltage, equivalent to the resistance, the voltage of the voltage regulator stabilization $VD5$ respectively.

In this case the value a condenser capacity remained unchanged and equal to 858 uF.

Time measuring was carried out with the help of dual-pattern digiscope, and the terminals 1 and 2 were used for measuring $t_{\text{turn-on}}$, and the terminals 1 and 4 – for measuring t_{disch} and t_{charg}. Measuring of $t_{\text{turn-on}}$ for the base contactor was carried out when $U_K = 250 \text{ V}$ and closed contacts K1.

The voltage measuring was carried out with the help of a digital voltmeter. The results of comparison of experimental and calculation values of the parameters research are presented in table 3. Furthermore, calculations were carried out according to the same methods as in section 5.

DOI: 10.33042/2079-424X-2019-3-56-112-119

117
The analysis of the results given in table 3 showed a high level of coincidence of experimental and calculation values of the investigated parameters. The maximum error does not exceed 6.1% and it is quite acceptable for the engineering calculation methods. These researches also showed that it is not efficient to increase the value \(k \) higher than 0.1 because of possible failure of a drive operation.

VII. THE DISCUSSION OF THE RESEARCH RESULTS

The application of the hybrid contactors of an electronic circuit control by an electromagnetic drive current, presented in the schemes, allows to create a series of positive characteristics, increasing their competitiveness. It can be achieved by the introduction, in parallel with a drive coil, of a special electronic circuit of turn-on of a completely controlled power SK, containing a condenser, setting the time and a controlled transistor key, in an output circuit of which a low-power optron thyristor is turned on. In parallel with the mentioned condenser an auxiliary transistor key is connected, providing a discharge in case of commutation current flow from the main contactors circuit to SK circuit with the help of an additionally introduced auxiliary transformer coil. This circuit provides a reliable contactless commutation of a power SK in all operating conditions of a contactor. Additional positive characteristics, obtained as a result of using technical solutions, proposed by the authors, are clearly defined in section 3 and were confirmed with the results given above the theoretical and experimental researches.

The weak point of these contactors is the fact that the introduction of a charged condenser in parallel with a drive coil decreases the control power of this coil and consequently, complicates the process of connecting a contactor. As a result, to minimize this influence it is proposed to limit the voltage value on this condenser at the level 0.1-Uc.

With the existing base of elements, the above mentioned complicates the application of this contactor when the voltage level of control is lower than 110 V. But this weak point is compensated with the achieved positive characteristics.

Carried out research of nonstationary processes, occurring in the contactors circuits in case of commutation, allowed to develop the methods of calculating the main elements of an electronic circuit of a contactor, suitable for engineering calculations.

Furthermore, it has been shown that the charging time of a condenser, setting the time up to the level of voltage providing the turn-on of a low-power optron thyristor when a contactor is turned on, shouldn’t be higher than the value of the minimum time of its turn-on, and the discharge time of this condenser when turning off shouldn’t be lower than the maximum time of turning off a contactor.

It has been also shown that the consumption capacity in controlling circuits of the proposed contactor should be equal to the same capacity of a base contactor.

The results of calculations and experimental researches, presented in the article as well as in the works published by the authors before, show real possibility of creating hybrid contactors of direct current with the proposed principle of operation, rated for currents 100 630 A and voltage up to 1000 V.

The results obtained may be applied when developing contactors, which can be efficiently used in hard maintenance conditions with frequent engine starts, for example, in electric transport, in crane equipment, in rolling production of metallurgical plants etc, as well as in electrical systems of alternative electric power industry in conditions of increased explosion and fire safety requirements. Furthermore, their positive characteristics, mentioned above, considerably increase their competitiveness.

VIII. CONCLUSIONS

It has been substantiated that the proposed hybrid contactors as compared with the existing ones have the following advantages:

- Increased reliability of operation provided by excluding of unreliable contact circuit on the basis of current relay from the power SK control circuit and the possibility of emergency restart of a power SK when disconnecting the contactor is completely excluded;
- Economical operating conditions of the elements of a contactor electronic circuit;
- The influence of a net voltage on the elements of a control circuit is excluded;
- The dimensions, mass and cost are reduced due to essential simplification of a control circuit (time relay and a large non-process current relay are excluded, the connections between the elements are simplified);
- The parameters and operating conditions of an electronic control circuit do not depend on a net voltage and are determined only by the current which is turned off and it allows to apply the proposed technical solutions also for creating hybrid contactors for the voltage higher than 1000 V.

The lack of a commutation zone with an arc increases its commutation wear resistance as well as allows to use it in conditions of explosion and fire safety requirements.

It has been stated that for providing reliable commutation of a circuit it is necessary that the time of a condenser charging, setting the time up to the level of voltage and providing turn-on of a low-power optron thyristor in case of turning on a contactor, shouldn’t be above the value of minimum time of its turn-on and the discharge time of this condenser in case of turn-off, shouldn’t be below the maximum time of turning off a contactor.

The developed methods of calculating the main elements of a contactor electronic circuit allows to make calculations with sufficient accuracy for engineering calculations and it is confirmed with the results of experimental researches. The research results show the real possibility of creating competitive hybrid contactors of direct current with the
Принципи та методи розрахунку гібридних контакторів постійного струму, що керуються струмом електроприводу

А.Г. Сосков
Харківський національний університет міського господарства ім. О.М.Бекетова, Україна

О.Б. Єгоров
Харківський національний університет міського господарства ім. О.М.Бекетова, Україна

Я.Б. Форкун
Харківський національний університет міського господарства ім. О.М.Бекетова, Україна

Ю.П. Колontaєвський
Харківський національний університет міського господарства ім. О.М.Бекетова, Україна

Показано, що принцип керування струмом електромагнітного приводу гібридного контактора постійного струму реалізовано шляхом введення послідовно з котушкою приводу специальної електричної схеми керування включення силового НК, що містить конденсатор, що зазнає час, та керований малопотужній транзисторний ключ, в якому кольця якого вивчення малопотужний оптичний транзистор, при чому паралельно вказаному конденсатору вмикається допоміжний транзисторний ключ, який забезпечує за допомогою додатково введеній вторинній обмотки трансформатора струму його розряд при перегіванні комутаційного струму з кольця головних контактів в кольця силового напівпровідникового ключа.

Зазначено особливості процесів заряду та розряду конденсатора, що зазнає час, в різних режимах роботи контактора. При цьому було встановлено, що для забезпечення надійності комутації кольця необхідно, щоб час заряду конденсатора, що зазнає час, до рівня напруги, що забезпечує включення малопотужного оптичного транзистора при вмиканні конденсатора, не повинен перевищувати значення мінімального часу його вмикання, а час розряду цього конденсатора вимикається не повинен бути меншим, ніж максимальний час відмикання контактів. Це дозволяє обґрунтовано підходити до визначення параметрів елементів, що забезпечують надійну комутацію контактора.

В результаті проведених досліджень також було показано, що пропоновані гібридні контактори завдяки введенню керування струмом електромагнітного приводу та введеню нових зв’язків порівняно з існуючими мають властивості, що підвищують їх конкурентоспроможність. Зокрема в них підвищується надійність роботи, зменшуються габарити та вартість, покращено їх виробничо-технологічні показники, розширена область застосування.

Прискоренням використання одержаного наукового результату є можливість створення конкурентоспроможних маловисоконапівпровідникових гібридних контактів постійного струму на струми 100÷630 А та напругу до 1000 В, що працюють у важких умовах експлуатації.

Ключові слова – гібридний контакт, постійний струм, головні контакти, силовий напівпровідниковий ключ, керування струмом, електромагнітний привод.

DOI: 10.33042/2079-424X-2019-3-56-112-119

REFERENCES

[1] A.G. Soskov. Low voltage hybrid contactors with improved technical and economic characteristics [Text] : monograph / A.G. Soskov, N. O. Sabalayeava; O. M. Beketov National Academy of Urban economy in Kharkiv : HNAMG, 2012. – 268 p.

[2] Lu Qi, Guogang Zhang, Jingwen Liu, Zheng Qin, Yingsan Gend, Jianhua Wang. Research on integrated design of vacuum switch based on permanent magnetic actuator for DC contactor // Materials of 4th International Conferences of Electric Power Equipment-switching Technology (ICEPE), China, Xian, 2017, Oct. 22 – Oct. 25.

[3] Yang Gao, Xiaoguang Wei, Zhiyuan He, Longlong Chen, Yunhai Shan. A hybrid circuit breaker for DC-airframe power supply [Text] / William M. Spencer, Joseph S. (USA). – 07/436/021 : field: 14.11.1989 ; date of patent 12.02.1991.

[4] Hassanpoor, A.; Hafner, J.; Jacobson, B. Technical Assessment of Load Commutation Switch in Hybrid HVDCBreaker. Power Electronics, IEEE Transactions on Year: 2015, Volume: 30, Issue: 30: Pages: 5393 – 5400.

[5] A. G. Soskov, N. O. Sabalayeava, Ya. B. Forkun, M. L. Glebova Development Of Principles And Methods Of Calculation Of Direct Current Hybrid Contactor // Eastern-European Journal of Enterprise Technologies. – 2018. – Vol. 29 (92). P. 48-63.

[6] Hybrid DC electromagnetic contactor: patent no. 7079363 В2 USA. №11/638946 field: 12.04.2006 ; date of patent 18.07.2006.

[7] Patent no. 7538990 B2USA, Int. Cl. H02H 3/00, H02H 7/00 High voltage contactor hybrid without a DC arc break[Text] / BelisleF.C., CarterE.A. MetzlerM.W., Wavering J.T. (USA). – 11/638946 ; field: 14.12.2006 ; date of patent 26.05.2009.

[8] Patent no. US4992904A. Int. Cl. H01H19/54, H02H3/087. Hybrid contactor for DC airframe power supply [Text] / William M. Spencer, Joseph S. (USA). – 07/436/021 : field: 14.11.1989 ; date of patent 12.02.1991.

[9] Patent no. 129577 Hybrid bipolar DC electromagnetic contactor (A.G. Soskov, N. O. Sabalayeava, M. L. Glebova, S. Kotelevets) application u 2018 01968, date submission of the application 12.11.2018, date of patent validity 12.11.2018, bulletin №21. (Patent no.127577).

[10] Patent no.127034 Hybrid bipolar DC contactor (A.G. Soskov, N. O. Sabalayeava, Ya. B. Forkun, Ye. S. Savchuk) application u 2018 01995, date submission of the application 26.02.2018, date of patent validity 10.07.2018, bulletin №13.

[11] G. V. Zeveke, P. A. Ionkin, A. V. Netushyl, S. V. Strakhov, Bases of the theory of chains: textbook – 5 edition. Moscow: 1990. -528 p.

[12] G. V. Mohylevski Low voltage hybrid electric appliances. – Moscow : energy atom publishing house, 1986. -232 p.

[13] Soskov A. G. Methods of overvoltage limitation in modern DC semiconductor switching apparatus and their calculation [Text] / A. G. Soskov, N. O. Sabalayeava, Ya. B. Forkun, M. L. Glebova // Eastern-European Journal of Enterprise Technologies. – 2016. – Vol. 3/8 (81). P. 4-9.
Construction features of cylindrical linear asynchronous motors

V. Okhrimenko
O.M. Beketov National University
of Urban economy in Kharkiv
Ukraine
E-mail: monviktor@ukr.net

M. Zbitnieva
Kharkiv Humanitarian-Pedagogical Academy
Ukraine
E-mail: monviktor@ukr.net

Yu. Kolontaevsky
O.M. Beketov National University
of Urban economy in Kharkiv,
Ukraine
E-mail: yuri_kolontaevsky@kname.edu.ua

Abstract - Cylindrical linear induction motors are used in the electric drive of manipulators and industrial robots due to their advantages, the main of which are simplicity of design, high manufacturability, unification of units and parts. They provide direct linear movement of the executive body of the manipulator without the use of circular to linear converters. These motors have a closed design, in which the stator winding is protected from direct environmental influences and can be sealed. They are convenient for installation, dismantling and repair.

The article describes the design features of linear asynchronous cylindrical motors. A constructive variety of engines is noted, which is due to a specific mechanism with linear movement of the executive body.

A review of literature showed that there is no single approach to the name of engines of this type. Different sources use the following names: three-phase cylindrical magnetofugal motor, coaxial linear motor, cylindrical linear asynchronous motor, tubular linear asynchronous motors.

The decomposition of the structure. The main structural elements of the engine include the following: a stator, a runner, a runner centering system and an engine cooling system. In practice, engine design options with a fixed and a movable stator are used.

In production mechanisms, the following options are used for the design of the stator magnetic circuit: longitudinal plates with grooves; continuous cross washers; transverse sets of washers alternating with stator winding coils, in which longitudinal sets of plates are installed.

The three-phase winding of the motor stator is made in the form of coils placed in the stator magnetic circuit and installed in a tubular housing.

Keywords- runner, linear induction motor, cooling system, runner centering system, stator.

I. INTRODUCTION

Use of linear electric motors in drives of manipulators and industrial robots, due to lack of mechanical converters of rotational motion to translational, provides a number of advantages, main of which are economy and weight and size.

Cylindrical linear induction motors (LIM) are characterized by simplicity of construction, high workability and maximum unification of units and parts. Such motors have a closed version, in which stator winding is protected from direct environmental influences and can be sealed. They are convenient for installation, dismantling and repair.

Aim of this work is to analyze constructive features of cylindrical LIM, their influence on functionality of engine and its scope.

II. CONSTRUCTIVE FEATURES OF LIM OF CYLINDRICAL PERFORMANCE

First cylindrical LIM was developed by L. I. Shurman [1] in 1946 and was called a three-phase cylindrical magnetofugal engine. Embodiment of this engine is shown on fig. 1. Stator of motor 1 is assembled from packages of electrical steel with annular recess (grooves) and placed in cylindrical housing 2. Winding is made in form of set of coils 3 placed in grooves of stator. Runner 4 - cylindrical uniform.

Fig. 1. L. I. Shurman design engine

Disadvantages of such engine include incomplete use of working volume of stator (presence of zones where stator magnetic circuit is absent) and high electrical resistance of runner (made of steel).
I. S. Rogachev showed effectiveness of using copper-plated runners (steel runner with a copper-plated surface) for engines of this type later (1948) [2].

New version of embodiment and new name for engines of this type (coaxial linear electric motor) were proposed (1960) by G. S. Kvachev.

Coaxial linear motor of construction of G. S. Kvachev is shown on fig. 2 [3, 4]. Stator housing 1 is made in form of cylinder, inside of which there are coils of stator winding 2. Between coils are placed steel washers 3, which serve as magnetic circuit. In cLIMping nuts 4, bronze plain bearings 5 are installed, which serve to center and set direction of movement of runner. Runner is made in form of steel rod 6, on surface of which a spiral 7 is wound from copper or aluminum wire.

Authors of work [5] improved construction of engine (fig. 3) and gave it name "cylindrical LIM". Inductor of this engine consists of sequentially alternating flat coils 1 and packages of washers 2, assembled from electrical steel and having grooves 3 for lay of magnetic circuit in outer diameter. Washers 2 have a cut 4, which excludes closure of eddy currents and is used for laying of outlets of flat coils. Grooved steel is laid in grooves 3. Inductor is placed in cylindrical housing 5.

Speed of running electromagnetic field \(V_0 \) of LIM is determined by expression

\[
V_0 = 2 \cdot \tau \cdot f
\]

where \(f \) – mains frequency,
\(\tau \) – pole division.

Stator winding module of a low-speed cylindrical LIM is shown on fig. 4 [6]. Runner speed in this engine is significantly reduced by reducing pole division of stator winding. Module is assembled from two series-connected flat coils 1 and 2, wound in spiral on insulating washers 3 and 4.

Fig. 2. G. S. Kvachev design engine

Fig. 3. Cylindrical LIM

Fig. 4. Stator winding module of a low-speed cylindrical LIM

Ferromagnetic element 5 is placed between coils, separated from coils by insulating layers 6 and 7. To limit eddy currents, radial groove is made in ferromagnetic element 8. Conductor 9 with insulation 10 is placed in groove, which connects flat coils 1 and 2. To fix coils, flat coils impregnated with adhesive. Modular coils (fig. 4) can also be made by printed wiring.

Motors of described structures (fig. 2 and fig. 3) operate in short-term mode, in drive of switching devices in particular [3, 4]. Use of these engines to drive manipulators and industrial robots operating in recursive short-time modes has necessitated change in construction of runner's centering system.

Runner centering system consists of bronze bushings 5 mounted on ends of stator 1 and acting as sliding bearings when runner 6 is moving for engine (fig. 2). Runner 6 has a copper coating 7, need for which is due to electrical considerations. When engine is operating in recursive short-time mode with large number of cycles per minute, as result of intense friction in slip bearings, phenomenon of wear of copper-plated surface of runner and surface of bronze bushing is appeared.

Cylindrical LIM was described in [7], runner of which is mounted on sliding bearings. It is coated with a layer of high-strength chrome to reduce wear on copper-plated surface of runner when the engine is in recursive short-time mode.

Engine described in [8] is shown on fig. 5. Runner of this motor moves in bearings 1. Stator is similar to motor shown in fig. 1, consists of packages of comb plates 2, in grooves of which cylindrical coils are placed 3. There is fixed magnetic cylindrical core 4 inside runner through which magnetic field lines of traveling field are closed.
Work [9] describes cylindrical LIM with external runner, device of which is shown in fig. 6. Solid stator 1 has grooves in which winding 2 is distributed. Engine has external windingless runner consisting of cylinder 3 made of magnetic material and aluminum cylinder 4 rigidly fastened to it. Longitudinal groove 5 is made for intercoil joints in stator.

Another solution to centering system for LIM operating in recursive short-time mode is shown in fig. 7 [10]. In this variant, brackets 1 are fixed to stator housing, on which rolling bearings 4 are mounted using bolts 2 and eccentrics 3. Bearings are placed in collapsible clips 5, outer surface of which is made along arc of runner’s circle. Use of eccentrics 3 makes it possible to center runner relative to axis of stator. There is no friction of copper-coated surface of runner on surface of bronze sleeve in proposed construction, which eliminates phenomenon of wear.

Work of LIM with intense loads requires solving problem of increasing of intensity of engine cooling. Construction of LIM with forced air cooling system [10] is shown on fig. 8. Winding coils 2, magnetic circuit 3 and runner 4 are placed in cylindrical housing 1 of motor stator. Cylinder 5 forming separate chamber, inside of which piston 6 mounted on runner moves is placed at one end of motor stator. Cylinder 5 is closed by cover 7. Valve system of engine includes a valve 8 passing air from inner air channel of runner 9 to chamber 10, and valves 11 passing air from chamber 10 to chamber 12, and then through gap δ between runner and stator into engine. Thus air is supplied that removes heat from inner surface of stator windings and outer surface of runner when electric motor is operated.

A variant of forced liquid cooling system is also possible (fig. 9), which is fed through fittings 1 into space between stator housing 2 and casing 3 [10].

III. FUNCTIONALITY ANALYSIS OF CONSTRUCTIVE ELEMENTS OF LIM

Above review shows following options for embodiment of main components of LIM of cylindrical execution.

Following options is applied during manufacture of stator:
- from longitudinal packages of comb plates, in grooves of which winding coils are laid;
- continuous transverse washers (clips) between which winding coils are located;
- windings alternating with coils, transverse sets of washers with grooves in which longitudinal sets of plates are installed;

Fig. 5. Linear induction motor

Fig. 6. Cylindrical LIM with external runner

Fig. 7. LIM runner centering system

Fig. 8. LIM with forced air cooling system

Fig. 9. LIM with water cooling system
- longitudinal packs of comb plates and fixed magnetic cylindrical core inside tubular runner;
- modular execution.

It is applied during manufacture of runner:
- homogeneous steel bar;
- hollow or homogeneous steel bar coated with material with higher electrical conductivity (two-layer runner);
- two-layer runner with coating (third layer) of high-strength material to reduce wear of electrically conductive layer.

Mounting and centering system of runner is carried out using sliding bearings (guide bushings) or using rolling bearings.

Bushing of stator of magnetic circuit (motors in fig. 1 and fig. 3) allows to increase magnetic conductivity for main magnetic flux and reduce eddy current losses. However, symmetry of electromagnetic field in engine is broken with such constructive solutions, engine volume is not fully used, since there are air gaps between longitudinal packets. Part of magnetic flux passes through runner, magnetic circuit of which is not laden. As a result, energy performance of engine is getting worse.

In mass production of LIM for manipulators and industrial robots, from point of view of simplicity of construction and manufacturability, preference should be given to construction engine of G. S. Kvachev (fig. 2). These engines are characterized by axial symmetry of electromagnetic field, which reduces influence of pulsating components. Engines are produced by several factories and are used to drive busbar disconnectors in traction substations of urban electric vehicles. Increased eddy current losses in a solid stator and runner magnetic circuit do not significantly affect operation of motor, since it operates in short-term mode with a turn-on time of tenths of second.

However, runner centering system with bronze bushings is effective only in the short-term mode. Pair of copper-bronze has poor antifriction properties. Phenomenon of wear of copper-coated surface of runner and surface of bronze sleeve appears when engine is operating in recursive short-time mode with cycle time of several seconds. Axis of runner and stator are displaced, what violates axial symmetry of electromagnetic field and leads to appearance of additional radial forces that degrade energy performance of engine. In addition, radial forces contribute to wear at point of contact between runner and sleeve. Wear progresses and engine fails.

One of ways to eliminate wear is to chrome runner’s copper-coated surface, i.e. application of three-layer runner: steel, copper and protective film of chromium. However, in this case, problem is partially solved, since wear of surface of sleeve remains.

Using of runner centering system shown in fig. 9, provides reliable operation of engine in recursive short-time mode with cycle time of several seconds. Its use is justified in drives of manipulators and industrial robots. At the same time, one of described cooling systems can be used depending on intensity of engine load.

IV. CONCLUSIONS

1. Cylindrical LIM used in drive of manipulators and industrial robots are considered.

2. Options of embodiment of main engine elements are considered: stator, runner, runner centering system, engine cooling system.

3. Analysis of influence of embodiment of main elements of engine on its functionality in short-term and recursive short-time modes is carried out.

LIST OF REFERENCES

[1] Shturnman, G. I. (1946). *Indukcionnye mashiny s razomknutym magnitoprovodom* [Induction machines with open magnetic circuit]. *Jelektrichessto*, (10), 43 - 50. [in Russian].

[2] Rogachev, I. S. (1948). *Jekspenmental'noe issledovanie magnitofugal'nyh dvigateley* [Experimental study of magnetofugal motors]. *Shornik naucho-technicheskikh statej HjeTI*, (7), 214 - 231. [in Russian].

[3] Kvachev, G. S. (1960). Certificate of authorship 131809 USSR, H02C. *Jelektrprovod dlja kommutacionnych apparatov* [Electric drive for switching devices]. (Bull. № 18), [in Russian].

[4] Kvachev, G. S. & Melnichenko G. I. (1969). Certificate of authorship 233782, USSR, H02C. *Jelektrprovod dlja kommutacionnych apparatov* [Electric drive for switching devices]. (Bull. № 3). [in Russian].

[5] Ouchenin, N. B., Bondarenko, A. P. & Vasiliev, P. V. (1973). *Razrabotka i issledovanie cilindricheskogo linejnogo asinhronnogo dvigatelya* [Development and research of cylindrical linear asynchronous motor]. *Izvestija vuzov. Gornyj zhurnal*, (7), 132–134. [in Russian].

[6] Veselevsky, O. N. & Poletaev, V. I. (1976). Certificate of authorship. 503340 USSR, MKI N02K 41/02, USSR. *Induktor linejnogo cilindricheskogo dvigatelya* [Inductor of linear cylindrical engine] (Bull. № 6). [in Russian].

[7] GB patent 1240473. Improvements in linear induction motors / Holmes N. S., Newman N. H.-K., Taylor Th.T. - mentioned on RJ. 21. Electrical engineering. - 1972. - Abstract 11127P.

[8] US Patent 3602745. Concentric linear induction motor / Davis M. W. - mentioned on RJ. 21. Electrical engineering. - 1972. - Abstract 61110P.

[9] Chepule, Yu.M. *Cylindrical magnetofugal engine with external runner / Yu. M. Chepule // Scientific. works. Universities Lit. SSR. Electrical engineering and mechanics. - 1965. - Issue. 5. - S. 133 - 164.

[10] Blazhko, Yu. M. & Okhrimenko, V.N. (1981) Certificate of authorship 858184, USSR, H02 K 41/02. *Linejnij ashronnij jelektrprovoditel* [Linear asynchronous electric motor]. (Bull. № 31). [in Russian].

DOI: 10.33042/2079-424X-2019-3-56-120-124
Лінійні асинхронні двигуни циліндричного виконання застосовують в електроприводі маніпуляторів і промислових роботів в силу їхніх переваг, основними з яких є простота конструкції, висока технологічність виготовлення, уніфікація вузлів і деталей. Вони забезпечують безпосереднє лінійне переміщення виконавчого органу без застосування перетворювачів кругового руху в прямолінійний. Ці двигуни мають закрите виконання, при якому обмотка статора захищена від прямого впливу навколишнього середовища і може бути виконана герметично. Вони зручні при монтажі, демонтажі та ремонті.

У статті розглянуті конструктивні особливості лінійних асинхронних двигунів циліндричного виконання. Відзначено конструктивне різноманіття двигунів, яке зумовлене конкретним механізмом з лінійним переміщенням виконавчого органу.

Огляд літературних джерел показав, що відсутній єдиний підхід до назви двигунів цього типу. У різних джерелах використовують такі назви: трифазний циліндричний магнітофугальний двигун, коаксіально-лінійний двигун, циліндричний лінійний асинхронний двигун, трубчастий лінійний асинхронний двигун.

До основних конструктивних елементів віднесені такі: статор, бігун, система центрування бігуна і система охолодження двигуна. Існують конструкції двигуна з нерухомим і з рухомим статором.

На практиці використовуються наступні варіанти конструктивного виконання магнітопроводу статора: поздовжні пластини з пазами; суцільні поперечні шайби; поперечні набори шайб що чергуються з котушками обмотки статора, в яких установлени поздовжні набори пластин.

Обмотка статора виконується у вигляді котушок, розміщених в магнітопроводі статора.

Використовуються такі конструкції бігуна двигуна: кругла однорідна сталева штанга; кругла порожня або однорідна сталева штанга з покриттям з матеріалу з високою електропровідністю (двошаровий бігун); двошаровий бігун з покриттям з високоміцного матеріалу.

Двигуни, що працюють у повторно-короткочасному режимі, мають систему центрування бігуна, яка забезпечує роботу двигуна без зносу покритої мідзю поверхні бігуна. На них також застосовується система примусового охолодження.

Ключові слова - бігун, лінійний асинхронний двигун, система охолодження, система центрування бігуна, статор.
Mathematical model of consumer regulators management for alignment of electric load graphs of transformer substation 10/0.4 kV

I. Shcherbak
O.M. Beketov National University of Urban Economy in Kharkiv
Ukraine
e-mail: ie.shcherbak@gmail.com

Abstract - The change of load of the transformer substation TS 10 / 0.4 kV in the mode of maximum and minimum load is measured. It is noted that the process is non-stationary at the daily interval. Hourly intervals of time are highlighted on the daily graph of electrical load, the study of the law of distribution is conducted, and the normal law of distribution is confirmed by Pearson’s criterion. The stationarity test was performed on parametric tests, namely the verification of the Fisher’s Fisher’s constant variance and the mathematical expectation of the Student’s t-test and the correlation function. The values of numerical characteristics were obtained at the stationary areas and a probabilistic mathematical model of the TS 10 / 0.4 kV load was constructed.

The method of equalization of the electric load graph of TS 10 / 0.4 kV is developed by optimal management of the power of consumers-regulators in urban electric networks, taking into account the features of the electric load graph of the main consumers of TS 10 / 0.4 kV. For this purpose, we set a target function, where the criterion of optimization is the total minimum cost to cover the losses of electricity in the network caused by the irregularity of the electric load graph and the electricity consumed, a system of constraints caused by the load capacity of the transformers and the required energy consumption by the technology regulators has been compiled and boundary conditions determined by the installed capacities of the consumers-regulators. In order to take into account the trade-off between the constituents of the objective function, the weighted coefficients of the generalized objective function are chosen by the method of expert estimation. A nonlinear programming method was used to fulfill the optimization process, and the extremum of the function was found using the Newton method. The solution of the problem is implemented in MS Excel.

Keywords - electric load graph, distribution networks, probabilistic mathematical model, nonlinear programming, optimization, consumer controllers

I. FORMULATION OF THE PROBLEM

One of the ways of increasing the efficiency of the electric distribution networks (EDN) is the alignment electrical load graph (ELG). An analysis of the methods and means of regulating the ELG indicates that the coverage of the ELG occurs mainly at the higher levels of the electricity system (ES), while the most effective influence is precisely on the process of electricity consumption in the distribution electrical networks. Formation of uniform modes of power consumption will allow to increase efficiency of production, transmission and consumption of electricity. Improving the configuration of the ELG at lower ES levels will also influence the alignment of electrical load graph at higher ES levels to some extent. The scientific substantiation of methods, criteria and technical means of control of the modes of consumption of consumers-regulators (CRs) in the distribution electric networks for the purpose of alignment of the electrical load graph is an urgent scientific task.

II. ANALYSIS OF RECENT RESEARCH AND PUBLICATIONS

Analysis of recent research and publications indicates the problem of non-uniformity of electrical load graph in distribution electrical networks.

Many scientists, including Zorin V.V., Kirlenko O.V., Yandulsky O.S., Govorov P.P., Mikhailov V.V., Rosen V.P. et al. addressed the issue of increasing the efficiency of electrical networks. The papers considered the optimization of circuits, parameters and modes in distribution networks. The issue of involving a group of consumers-regulators was investigated in order to change the configuration of electric load graphs. The issue of automatic selection of the optimal structure and modes of operation of consumers-regulators, which ensure the formation of an electric load graphs, has not been resolved.

III. THE PURPOSE OF THE ARTICLE

The purpose of the article is to increase the efficiency of distribution of power networks by aligning the TS 10/0.4 kV electrical load graph with the management of consumers-regulators.

IV. BASIC MATERIAL

In order to improve the automatic control systems of power capacity of additionally connected to TS 10 / 0.4 kV CR, it is important to forecast the hourly electrical load of the main consumers of TS 10 / 0.4 kV within one day, i.e. to make an operational forecast [1].

A prerequisite for an objective mathematical prediction is the availability of an adequate mathematical model of the 10 / 0.4 kV TS mode, for which different methods are used [2]. Given the task, it is most appropriate to apply the probabilistic method.

Given that the argument of a random function is time t, the electrical load graph (ELG) is the implementation of a random process of power change.

DOI: 10.33042/2079-424X-2019-3-56-125-129
The process of power consumption of the main consumers of 10 / 0.4 kV TS can be represented by a set of randomly ordered random variables \(P(\tau_1), P(\tau_2), \ldots, P(\tau_n) \), where \(\tau_1 < \tau_{i+1} \). In what follows, we assume that the moments of measurement \(\tau_i \) equidistant from each other by magnitude \(\Delta \tau_i \), that is, for any \(i \), is \(\tau_{i+1} = \tau_i + \Delta \tau_i \).

The researches of random process \(P_i(\tau) \) of the change of load at TS 10 / 0.4 kV were conducted, which is shown in fig. 1.

The change of load of the transformer substation TS 10 / 0.4 kV is stochastic, which is non-stationary at the daily interval. In a non-stationary random process, it is possible to determine the characteristic periods of time of the stationary areas. The stationary random process can be analyzed from any point in time because it is in a state of probable equilibrium, that is, the numerical characteristics of random variables \(P(\tau) \) are independent of time \(\tau \). The separation and study of the stationary process were performed at hourly intervals. An estimate of the distribution law is made for each interval. It is found that the distribution law is normal at all intervals (Pearson-tested \(\chi^2 \)).

The conditions of stationarity of a random process are [3]:

1. the constancy of the process variance \(D_p(\tau) = D_p = \text{const} \); \((1) \)
2. the constancy of the mathematical expectation of the process \(M_p(\tau) = M_p = \text{const} \); \((2) \)
3. dependence of the correlation function on one argument, what is the difference between the arguments \(K_p(\tau_1, \tau_2 + \Delta) = K_p(\tau) \). \((3) \)

The time series are divided into two levels by the number of values of the part, each of which is considered as some independent sample set having a normal distribution law. Let the first part \(P(i) \) contains \(n_1 \) observations \(P(\tau_i) \), \(i = 1, 2, \ldots, n_1 \), and the other part \(P(\tau) \) contains \(n_{ij} \) observations \(P(\tau_i), i = n_1 + 1, \ldots, n_1 + n_{ij} \). For each part of the time series, calculate the sample mean \(M_{pi}, M_{pj} \)

\[
M_{pi} = \frac{1}{n} \sum_{i=1}^{n} p_i
\]

and sample variances \(D_i, D_{ij} \).

To confirm that the variances of both parts of the series are the same, we use the Fisher test:

\[
F_S = \frac{\text{max}(D_i, D_{ij})}{\text{min}(D_i, D_{ij})},
\]

where \(D_i, D_{ij} \) – variance estimates calculated from the first one \(n_1 \) and the other \(n_{ij} \) parts of the time series.

The critical area is the interval \((F_{np}, \infty) \). If we observe a value \(F_S \) does not fall into the critical region, then the null hypothesis is accepted \(H_0: D_i = D_{ij} \). As an example of a value on an interval 03:00-04:00 make up \(F_S = 1,138 < F_{np} = 1,476 \).

As a result of the calculations, it is determined that the actual values of the Fisher coefficients do not exceed the critical values at the selected intervals, that is, the hypothesis of the constancy of the variances is accepted.

Then the hypothesis about the constancy of the mean of the time series is tested. We calculate the value of the Student’s test

\[
K_S = \frac{M_{pl} - M_{pil}}{\sqrt{\frac{(n_1 - 1)D_i + (n_{ij} - 1)D_{ij}}{n_1 \cdot n_{ij} (n_1 + n_{ij} - 2)}}},\]

If inequality holds \(K_S < t(1 - \alpha, n_1 + n_{ij} - 2) \), then the hypothesis of the constancy of mathematical expectation is accepted with a level of significance \(\alpha \).

We calculate the value of the Student’s test and the \(t \) critical two-sided. For example, the critical area for maximum load mode is shown in the time interval 03:00-04:00, is a union of two intervals and looks like \((-\infty, -1.976) \cup [1.976, \infty)\). The value of \(t \)-statistics \(K_S = -0.233 \) does not fall into this region, which testifies to the homogeneity (heteroscedasticity) of residuals of the random distribution and the hypothesis is accepted \(H_0: M(P(\tau)) = \text{const} \) about equality of mathematical expectations.

Acceptance of hypotheses about the equality of variances and equality of mathematical expectations allows us to accept the hypothesis about the absence of a trend component in a given time series, that is, a hypothesis about the stationarity (in the broad sense) of the time series.

The degree of statistical association between the sequences \(P(\tau_1), P(\tau_2), \ldots, P(\tau_n) \) and \(P(\tau_{i+1}), P(\tau_{i+2}), \ldots, P(\tau_{i+l}) \), which are displaced relative to each other by lag 1 can be determined by the autocorrelation coefficient:

\[
\rho(l) = \frac{(P(\tau) - M[P(\tau)]) (P(\tau_{i+l}) - M[P(\tau_{i+l})])}{D}
\]

The sequence of autocorrelation coefficients \(\rho(0), \rho(1), \rho(2) \) is an autocorrelation function of the time series, graphs of dependencies of values \(\rho(l) \) from the magnitude of the lag for the interval 03:00-04:00 built in STATISTICA shown in fig. 2.
Correlation functions indicate the ergonomics of the process and are approximated by analytical dependence (Fig. 3)

\[R(\tau) = D \cdot e^{-\alpha \tau} \cdot \cos(\beta \tau), \]
(9)

where \(D \) is the variance of a random function; \(\alpha \) and \(\beta \) - least squares coefficients [4].

Fig. 2. Autocorrelation functions at the daily interval from 03:00 to 04:00 hours: a) sequence of autocorrelation coefficients; b) an approximated function

The analysis of autocorrelation functions makes it possible to conclude that time series are stationary at all intervals, for both maximum and minimum load modes.

For the stationary process, comprehensive statistical information on load modes is the two simplest numerical values, for both maximum and minimum loads:

- the intensity of scatter of random load magnitude, which takes into account the intensity of scatter of random characteristics of the studied processes were obtained at the characteristics formation on load modes is the two simplest numerical values, for both maximum and minimum loads.
- the coefficient of scatter of random load magnitude, \(\Delta P_{\text{cr}}, \) which enters into account the intensity of scatter of random load values near the accepted design value.

Probabilistic mathematical model of loading TS 10/0,4 kV in the mode of maximum (Fig. 3) and minimum (Fig. 4) loads.

Fig. 3. Probabilistic mathematical model of loading TS 10/0,4 kV in the maximum load mode: a) active, b) reactive load

The simulated ELGs allow to take into account the real process of load behavior, which is an important task for performing qualitative modeling of the work of consumers-regulators.

For the management of the ELG, it is necessary to have a legal mechanism of regulation, namely, the existence of the Law of Ukraine "On the Electricity Market" [15] and economic incentives for the regulation of the ELG, which provide a change in the price of electricity (EP) by hours of day and seasonality.

The level of technical loss in electrical networks depends on the losses in lines and step down transformers 10 / 0.4 kV, i.e. on the nature and magnitude of the change of the ELG.

Thus, the solution to the problem of increasing the efficiency of the power supply system [13], i.e. optimization of the mode is reduced to control the process of power consumption of CR.

Considering the mode of operation of TS 10 / 0.4 kV, we will define that under the main load of TS 10 / 0.4 kV we will understand the unregulated load of consumers connected to TS 10 / 0.4 kV, and under the concept of load of consumers-regulators (CR) - attached load of a special group CR that force can be controlled

The CR management process can be considered as a mathematical problem. The mathematical model of the optimization problem includes the objective function, constraints and boundary conditions.

Load optimization criterion TS 10/0,4 kV is the total minimum cost of the additional costs of the energy supply organization to cover the losses of electricity caused by the unevenness of the ELG and for the consumed electricity to carry out the technological process of CR.

The optimized parameters are the power of the CR at the i-th interval (\(P_{\text{CRi}} \)). The coefficients for the CR load optimization problem are tariff coefficients \((\kappa_i) \), that are valid for a given period of time.

It is necessary to minimize the objective function that takes into account the technical component - the loss of electricity and the economic component - the cost for the consumption of Electric Power (EP), taking into account the tariff coefficients

\[
B = T \sum_{n=1}^{N} \sum_{i=1}^{T} \left(\frac{(P_i(t) + P_{\text{CP}})^2 + Q_i^2}{U_i^2} \cdot r_n \cdot t_i \right) \cdot \Delta P_{\text{cr}} \cdot \left((P_i(t) + P_{\text{CP}})^2 + Q_i^2 \right) \\
+ \sum_{j=1}^{J} \sum_{i=1}^{T} \left(\Delta P_{\text{cr}} \cdot \left((P_i(t) + P_{\text{CP}})^2 + Q_i^2 \right) \right) \cdot m \cdot S_{\text{mode}}
\]
under the constraints given in the form of inequality and equation

\[
\begin{align*}
P_{\text{CPI}} & \leq (m \cdot S_{\text{normTI}} - \sqrt{P_i(t)^2 + Q_i(t)^2}) \cdot \cos \phi \\
\sum_{i=1}^{N} P_{\text{CPI}} \cdot t_i & = W_{\text{CP}}
\end{align*}
\]

and boundary conditions that define the range of change in the values of the variables:

\[
0 \leq P_{\text{CPI}} \leq P_{\text{nonCP}}
\]

where \(\cos \phi \) – coefficient of phase shift;

\(\sqrt{P_i(t)^2 + Q_i(t)^2} \) – load of main consumers of TS in the \(i \)-th period of time (determined from the probabilistic model);

\(P_{\text{nonCP}} \) – rated power of CR;

\(W_{\text{CP}} \) – electricity for CR needs.

Considering the disproportionate components of the objective function (a much smaller proportion of the cost of covering electric power compared to the cost of consumed electric power for the needs of the CR), it is important to take into account the scientifically sound proportions between these values, which is an important factor in the effective regulation of the ELG. Increasing the share of losses component allows to change the configuration of the ELG most effectively.

It is possible to make a compromise between taking into account the data of the constituents of the objective function, taking into account the weight coefficients. Multicriteria optimization is carried out according to a generalized objective function, which includes the accepted criteria with their weighting factors. The generalized function is written as follows:

\[
B_{\text{gen}} = \sum_{k=1}^{K} \frac{\alpha_k B_k}{B_{k\text{norm}}} \rightarrow m \text{m}, \tag{14}
\]

where \(B_k \) – \(k \)-th the target function expressing \(k \)-th criterion;

\(B_{k\text{norm}} \) – the normalized value of the \(k \)-th objective function;

\(\alpha_k \) – the weight factor of the \(k \)-th objective function;

\(K \) - number of criteria accepted.

Dividing the \(k \)-th objective function by its normalized value brings all the objective functions to one dimension (relative units).

Consider several variants of the coefficients obtained by the method of expert estimates. From the values of the weighting coefficients \(\alpha_1 = 0.83, \alpha_2 = 0.17 \), the optimization function becomes sensitive to the technical component - the level of loss of electrical energy. From the values of the weighting coefficients \(\alpha_1 = 0.86, \alpha_2 = 0.14 \), the optimization function begins to gradually decrease the sensitivity to the increased tariff coefficients of the objective function. Therefore, according to the method of expert estimations, the values of the weighting coefficients are given \(\alpha_1 = 0.85, \alpha_2 = 0.15 \), as those for which the optimization function is the most sensitive to the two components.

Methods for solving optimization problems refer to operations research methods or mathematical programming methods [16, 17], which allow to determine the extreme value of the objective function (11) under the established constraints (12) in the range of variables determined by the boundary conditions (13).

Given that the optimization problem, that is, the problem of choosing the optimal CR power at the \(i \) time interval, is set as a nonlinear optimization problem, then a method of nonlinear programming can be applied to obtain its solution.

To determine the extremum of a nonlinear function, we use gradient methods, namely, we apply the Newton method. The solution of the optimization problem is implemented in the MS Excel package.

According to the optimization model (11 – 13), the value of the power of the CR was determined and the general ELG of TS 10/0.4 kV after the connection of the CR was constructed (Fig. 5).

Fig. 5. Electric load graph: a) consumers-regulators; b) TS 10/0.4 kV after connection of consumer regulators

Comparison of changes of electric load graphs before and after connection of consumers-regulators is made. Thus, the coefficient of non-uniformity before the connection CR \(k_{n1} = 0.23 \), and after connection of CR \(k_{n2} = 0.42 \); form factor \(k_{f1} = 1.084, k_{f2} = 1.014 \); maximum coefficient \(k_{m1} = 1.79, k_{m2} = 1.36 \); demand factor \(k_{d1} = 0.46, k_{d2} = 0.57 \); coefficient of fulfillment factor \(k_{f1} = 0.56, k_{f2} = 0.74 \) and load factor TS \(k_{l1} = 0.26, k_{l2} = 0.42 \), which indicates the alignment of the 10 / 0.4 kV TS ELG after connection and control of the CR load [18]. By improving the ELG configuration and increasing the efficiency taking into consideration the uniform and optimal load throughout the day, a reduction in power losses of 9.5% per unit of transmitted power has been achieved.

V. CONCLUSIONS

The probabilistic mathematical model of the 10 / 0.4 kV TS load is improved, which takes into account the stationary areas and allows to increase the completeness of informational support of the control process.

The method of alignment of the graph of electric load of TS 10/0.4 kV by optimal control of the power of CR is developed. To this end, a mathematical model has been created that meets the objectives of optimizing CR power management based on the selection and acceptance of the cost criterion. The technical criterion is taken into account as the cost of covering electricity losses in the network caused by the non-uniformity of the ELG, and the econo-
Математична модель керування споживачами-регуляторами для вирівнювання графіків навантаження ТП 10/0,4 кВ

І.Є. Щербак
ХНУМГ ім. О.М. Бекетова, Україна

Проведено вимірювання зміни навантаження трансформаторної підстанції ТП 10/0,4 кВ в режимі максимальних та мінімальних навантажень. Зазначено, що на добовому інтервалі процес стаціонарний. На добовому графіку електричного навантаження виділено годинні інтервали часу, проведено дослідження закону розподілу, за критерієм Пірсона підтверджено нормальний закон розподілу. Виконана перевірка стаціонарності за параметричними тестами, та кореляційною функцією.

На ділянках стаціонарності отримані значення числових характеристик та побудована ймовірнісна математична модель навантаження ТП 10/0,4 кВ.

Розроблено метод вирівнювання енергетичного навантаження ТП 10/0,4 кВ шляхом оптимального керування потужністю споживачів-регуляторів у міських електричних мережах з врахуванням особливостей графіку електричного навантаження основних споживачів ТП 10/0,4 кВ. З цією метою задана цільова функція, де критерієм оптимізації прийнято сумарний мінімум вартості на покриття втрат електричної енергії в мережах викликаних нерівномірністю графіку електричного навантаження та згідно електричну енергію, складена система обмеження вугільних навантажувально-здатністю трансформатора і необхідною кількістю електричної енергії на виконання технологічного процесу споживачами-регуляторами, та граційні умови обмежені встановленими потужностями споживачів-регуляторів. Для реалізації процесу оптимізації використання метод нелінійного програмування, знаходження екстремуму функції здійснено за методом Ньютона. Решення задачі реалізовано у MS Excel.

Ключові слова - графік електричного навантаження, розподільні електричні мережі, ймовірнісна математична модель, нелінійне програмування, оптимізація, споживачі-регулятори

DOI: 10.33042/2079-424X-2019-3-56-125-129

129
Шановні автори!

Наукові публікації є невід'ємною складовою освітнього процесу вищої школи України. Якісні та актуальні наукові праці студентів та науковців - це обличчя наукової діяльності Університету. Від якості наукових публікацій Університету залежить його рейтинг, популярність серед абітурієнтів і студентів та значимість в системі освіти України та світу.

Саме тому Харківський національний університет міського господарства імені О.М.Бекетова прийняв участь у соціальному проекті, що підтримує наукові видання, під керівництвом команди Unicheck. Таким чином, починаючи з 1 вересня 2017 року всі наукові праці, що подаються до друку у Міжнародному науково-технічному журналі "Світлотехніка та електроенергетика", перевіряються на ознаки плагіату за допомогою сервісу Unicheck.

Unicheck - це сервіс з перевірки робіт на ознаки плагіату, який вчасно надає підтримку своїм користувачам та може адаптувати систему відповідно до потреб навчальних закладів.

Створений українськими розробниками у 2014, він може використовуватись онлайн або інтегруватись з навчальними системами ВНЗ (так звани learning management systems). Серед них - Moodle, Canvas, Blackboard, Schoology, Google Classroom та інші. Наразі сервісом користуються більш ніж 50 українських університетів. Навчальні заклади США, Іспанії, Бельгії та інших країн світу також перевіряють роботи з Unicheck.
АЛФАВІТНИЙ ПОКАЖЧИК

Борзенков І.І. 107
Грищук М.О. 92
Данильченко Д.О. 107
Єгоров О.Б. 112
Збітнева М.В. 120
Колонтаєвський Ю.П. 112
Колонтаєвський Ю.П. 120
Котилко І.В. 99
Кравчук С.В. 99
Лежнюк П.Д. 99
Охріменко В.М. 120
Рубаненко О.Є. 92
Рубаненко О.О. 92
Сосков А.Г. 112
Форкун Я.Б. 112
Шевченко С.Ю. 107
Щербак І.Є. 125

НАУКОВЕ ВИДАННЯ
ЖУРНАЛ «СВІТЛОТЕХНІКА ТА ЕЛЕКТРОЕНЕРГЕТИКА» № 3(56)

Технічний редактор В.О. Грініна
Дизайн обкладинки А.О. Богославець

З електронною версією журналу можна ознайомитися на сайті Університету www.kname.edu.ua в цифровому репозиторії: http://eprints.kname.edu.ua та на сайті журналу http://lepe.kname.edu.ua

Підписано до друку 11.12.2019р. Гарнітура «Times New Roman» Формат 60×84/8
Папір офсетний Ум. друк. арк. –3.72 Наклад 150 прим.
Зам. № ____________________ Ціна договірна

Адреса редакції: 61002, Харків, вул. Маршала Бажанова, 17
Харківський національний університет міського господарства імені О.М. Бекетова
Віддруковано з готових оригіналів-макетів у друкарні ФОП «АЗАМАЄВ В.Р.»
Свідоцтво про державну реєстрацію В02 № 229278 від 25.11.1998 р.
Свідоцтво про внесення суб’єкта видавничої справи до державного реєстру видавців,
виготівників і розповсюджувачів видань видавничої продукції. Серія ХК № 135 від 23.02.2005
м. Харків, вул. Познанська, 6, к.84, тел. 8 (057) 362-01-52