Review Article

Safely targeting cancer stem cells via selective catenin coactivator antagonism

Heinz-Josef Lenz and Michael Kahn

USC Norris Comprehensive Cancer Center, USC Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, California, USA

Key words
Asymmetric, CREB-binding protein, p300, symmetric, Wnt/β-catenin

Correspondence
Michael Kahn, University of Southern California, 1450 Biggy Street, NRT 4501, Los Angeles, California 90033, USA.
Tel: 323-442-2063; Fax: +323-865-0061; E-mail: kahnm@usc.edu

Funding information
Support from the USC Norris Comprehensive Cancer Center (Support Grant P30 CA014089) and the US National Institutes of Health (NIH) grants 1R01CA166161-01A1, 1R21NS074392-01, 1R21AI105057-01 and NIH 1R01 HL112638-01 are gratefully acknowledged.

Received June 2, 2014; Accepted June 24, 2014

Cancer Sci 105 (2014) 1087–1092
doi: 10.1111/cas.12471

Metastasis, multi-drug resistance and disease relapse constitute the central challenge for the successful treatment of advanced malignancies. Tumor initiation, metastasis and disease relapse have all recently been attributed to subpopulations of self-renewing, highly tumorigenic, drug-resistant tumor cells termed cancer stem cells (CSC) or, alternatively, tumor initiating cells (TIC). CSC have many of the same attributes that their normal somatic stem cell (SSC) counterparts are endowed with, in that they have the ability to both self-renew and go on to more differentiated cell types. SSC, alternatively termed tissue stem cells, reside in specialized niches within tissues or organs (e.g. hematopoietic stem cells, neuronal stem cells and intestinal stem cells) and are critical during development as well as in the adult for both normal tissue homeostasis and regeneration after injury. Therefore, a recent major focus in cancer research has been to develop therapeutic strategies to safely eliminate the CSC population without damaging the endogenous SSC population. A major hurdle to this goal lies in the identification of the key mechanisms that distinguish CSC from the normal endogenous tissue stem cells. This review will discuss the discovery of the specific CBP/β-catenin antagonist ICG-001 and the ongoing clinical development of the second generation CBP/β-catenin antagonist PRI-724. Importantly, specific CBP/β-catenin antagonists appear to have the ability to safely eliminate CSC by taking advantage of an intrinsic differential preference in the way SSC and CSC divide.

Throughout our life, long-lived somatic stem cells (SSC) regenerate adult tissues both during homeostatic processes and repair after injury. The role of aberrant regulation of SSC has also recently gained prominence in the field of cancer research. Following malignant transformation, so termed cancer stem cells (CSC), endowed with the same properties as SSC (i.e. the ability to both self-renew and generate differentiated progenitors), play a major part in tumor initiation, therapy resistance and ultimately relapse. The same signaling pathways involved in regulating SSC maintenance are involved in the regulation of CSC. CSC exist in a wide array of tumor types, including leukemias, and brain, breast, prostate and colon tumors. Consequently, one of the key goals in cancer research over the past decade has been to develop therapeutic strategies to safely eliminate the CSC population without damaging the endogenous SSC population. A major hurdle...
where CSC play the critical role. The CSC concept postulates that a small population of CSC provide for the long-term maintenance of the tumor, whereas the bulk of the tumor consists of rapidly proliferating and differentiated (albeit aberrantly or only partially differentiated) cells. CSC are able to self-renew, actively express telomerase and express multidrug resistance pathways. CSC are generally quiescent, but can give rise to rapidly dividing transient amplifying cells, which form the bulk of tumor cells (Fig. 1). Despite some still existing controversy regarding the CSC hypothesis, it is clear that distinct cancer cell populations have enhanced tumorigenic capacity compared to bulk tumor cells. John Dick and colleagues first isolated CSC (known as leukemic stem cells [LSC]) from bulk acute myeloid leukemia cells in 1997. LSC maintained or reacquired the ability to proliferate indefinitely without proper differentiation. Over the past decade, a large number of studies have also identified CSC in solid tumors, including brain, melanoma, breast, liver, pancreatic and colon cancer.

Catenin Dependent Transcription and “Stemness”

The entry of catenin (classically β-catenin, although other catenins, e.g. γ-catenin/plakoglobin) may also play a critical role) into the nucleus and the subsequent transcriptional processes affected by β-catenin are classically controlled by the so termed “canonical Wnt” signaling cascade. However, there are a number of alternative signaling pathways that can induce the nuclear translocation of β-catenin and its subsequent participation in transcription. For example, the process of epithelial to mesenchymal transition (EMT) involves down-regulation of E-cadherin, which normally binds cytoplasmic β-catenin in a complex with α-catenin that stabilizes epithelial architecture, leading to the subsequent nuclear translocation of β-catenin. EMT is a hallmark of metastasis and has also been implicated in the generation of CSC. A variety of receptor tyrosine kinases and non-receptor tyrosine kinases including Src and Abl can also disrupt the E-Cadherin/β-catenin interaction, thereby enhancing β-catenin mediated transcription. In addition, hypoxia and high glucose levels can also activate β-catenin mediated signaling. It is clear that a wide range of signaling molecules and cascades also influence β-catenin dynamics and β-catenin transcription. In collaboration with signals from a number of other key pathways (e.g. Notch, Hedgehog, JAK/Stat, BMP, Hippo and FGF/MAPK), Wnt glycoproteins and, in particular, nuclear β-catenin, play essential roles in balancing self-renewal versus differentiation of adult stem cells (Fig. 2). However, there has been enormous controversy regarding whether Wnt signaling is important for proliferation and maintenance of potency (pluripotency or multipotency) or differentiation of stem progenitor cells. Wnt/β-catenin signaling has been shown to maintain pluripotency in ES cells and expand neural stem/progenitors, thereby increasing brain size. However, Wnt/β-catenin signaling is also required for the differentiation of ES cells as well as fate determination in neural crest stem cells. Clearly, Wnt/β-catenin signaling plays dichotomous roles in stem cell biology.

Wnt/Catenin, Cancer and Cancer Stem Cells

Wnt signaling is an enormously complex and ancient pathway that dates back to the first anaerobic metazoans. The Wnt/catenin pathway is critical in both normal embryonic development and throughout the life of the organism in virtually every tissue and organ system. The pathway has emerged as a pivotal player in the specification and maintenance of stem cell lineages in multiple stem cell compartments in a wide array of tissues and organs, including intestines, the heart, and hematopoietic, neuronal and mammary glands. Therefore, not surprisingly, a recurrent theme in cancer biology involves the aberrant regulation of Wnt signaling. The discovery in 1991 that mutations in the tumor suppressor adenomatous polyposis coli (APC) were associated with >80% of sporadic colorectal cancers via aberrant activation of Wnt signaling provided significant rationale to therapeutically target this pathway. APC is the most frequently mutated gene in human cancers. However, mutations affecting the Wnt pathway are not restricted to colon cancer. Loss-of-function mutations in Axin have been found in hepatocellular carcinomas, and oncogenic β-catenin mutations, first described in colon cancer and melanoma, have also been found in a wide variety of solid tumors including hepatocellular carcinomas, thyroid tumors and ovarian endometrioid adenocarcinomas.

Safely Targeting Cancer Stem Cells

The significant role of aberrant Wnt signaling in cancer and CSC has engendered substantial efforts into the development of therapeutic approaches to target this pathway. However, a number of factors have thwarted progress in this field. First, the Wnt signaling cascade is bewilderingly complex, in that in mammals there are 19 Wnt ligands and more than 15 receptors and co-receptors distributed over seven protein families, and this represents only the tip of the iceberg in regards to the difficulty in attempting to develop safe and effective specific Wnt pathway therapeutics. Further adding to the complexity of targeting transcriptionally competent β-catenin is the fact that β-catenin can bind to a broad spectrum of transcription factors other than TCF/LEF. Transcriptionally active β-catenin therefore modulates a plethora of downstream biological processes, including pluripotency, EMT, oxidative stress and lineage commitment.

Successful therapeutic manipulation of endogenous “stemness” (normal or cancerous) will require significant precision to affect the desired transformations without deleterious effects.

Fig. 1. Cancer stem cells both self-renew and undergo differentiative divisions to maintain or expand the cancer stem cell population or generate transient amplifying cells that go on to rapidly divide to form the bulk of the tumor.
(depletion, in particular) to the normal stem cell populations.\(^4\)
Thus, the ability to target aberrant catenin transcriptional signaling offers enormous promise. However, just like the Sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in stem cell maintenance and tissue homeostasis are ever present.

Differential Coactivator Modulation

To generate a transcriptionally active complex, \(\beta\)-catenin must recruit one of the two Kat3 transcriptional coactivators, cAMP response element binding protein (CREB)-binding protein (CBP) or its closely related homolog p300 (E1A-binding protein, 300 KDa), as well as other components of the basal transcriptional apparatus.\(^{57-59}\) Recent studies have documented that CBP and p300 interact with hundreds of proteins in their roles as master orchestrators of transcription. Due to their high degree of homology, these two coactivators have long been considered as largely redundant. However, accumulating evidence indicates that CBP and p300 are not redundant but have definitive and unique roles both in vitro and in vivo.\(^{60-62}\)

Using the TopFlash reporter gene system in SW480 colon carcinoma cells, we identified ICG-001 from a library of 5000 secondary structure mimetics. ICG-001 had an IC\(_{50}\) value of 3 \(\mu\)M in this assay. Using an affinity chromatography approach, we identified and subsequently validated that ICG-001 binds specifically and with high affinity (approximately 1 nM) to the coactivator CBP, but, importantly, not to its closely related homolog p300, despite the fact that these two coactivators are up to 93% identical, with even higher homology, at the amino acid level.\(^{63,64}\) We demonstrated that selectively blocking the interaction between CBP and \(\beta\)-catenin with ICG-001 led to the initiation of a differentiation program in a wide variety of stem/progenitor cells.\(^{65,66}\) This led us to develop our model of differential coactivator usage, which highlights the distinct roles of the coactivators CBP and p300 in catenin-mediated transcription.\(^{58}\) The critical decision by \(\beta\)-catenin to utilize either CBP or p300 is the first decision that guides the cell to either proliferate/maintain potency or initiate a differentiation transcriptional program, respectively (Fig. 4).

Subsequently, we have identified several small molecules (IQ-1, ID-8 and, most recently, YH249/250) that selectively block the p300/\(\beta\)-catenin interaction, thereby increasing the CBP/\(\beta\)-catenin interaction, which maintains potency (pluripotency or multipotency) in a variety of stem cell populations, both in mouse and human.\(^{65,67-69}\) The therapeutic potential of the selective CBP/\(\beta\)-catenin antagonist ICG-001 has been examined in a variety of preclinical tumor models, where it has demonstrated the ability to safely eliminate drug-resistant tumor-initiating cells.\(^{70-72}\)
Interestingly, CBP/β-catenin antagonists have also demonstrated efficacy in a variety of injury models, including pulmonary and renal fibrosis (73,74) and myocardial infarction (75). It appears that the differential effects of CBP/β-catenin antagonists on CSC versus normal SSC (i.e. forced differentiation and elimination versus differentiation and enhanced repair without apparent depletion) are apparently cell intrinsic and not due to the selective targeting by CBP/β-catenin antagonists of CSC versus normal SSC. We proposed that CBP/β-catenin antagonists take advantage of the intrinsic propensity of CSC to increase their number of symmetric divisions at the expense of asymmetric divisions due to various mutations (e.g. p53 and PTEN) (76,77). Normal endogenous long-term repopulating stem cells preferentially divide asymmetrically with one daughter cell remaining in the niche and the other going on to a transient amplifying cell required for generating the new tissue involved in repair processes (78). However, if CSC undergo more symmetric differentiative divisions when treated with CBP/β-catenin antagonists, the CSC in the niche will eventually be cleared out, whereas normal SSC that divide asymmetrically will always maintain one of the dividing daughter cells in the stem cell niche (Fig. 5). This fundamental and cell intrinsic difference between SSC and CSC provides a unique opportunity to therapeutically target CSC without damaging the normal endogenous stem cell populations utilizing specific CBP/β-catenin antagonists.

To The Clinic

Although the Wnt signaling pathway was discovered over 30 years ago, only recently have therapeutic agents that specifically target the Wnt pathway been introduced into clinical trials, although a few US Food and Drug Administration (FDA)-approved drugs do affect Wnt signaling, albeit non-specifically (4). Despite intensive investigation of the pathway and the unveiling of a multitude of potential therapeutic points of intervention in the pathway, as well as the identification of reagents that interfere with some of these targets, it is still unclear whether most approaches will provide both clinical efficacy and safety. To date, pre-clinical and clinical experience with both small molecules and biologics that target different

Fig. 3. Chemical structure of the CBP/β-catenin antagonist ICG-001.

Fig. 4. Wnt signaling is a complex pathway, believed to be involved in the regulation of divergent processes, including the maintenance of pluripotency and commitment to differentiation. We developed a model in which β-catenin/CBP-mediated transcription is critical for the maintenance of potency, whereas β-catenin/p300-mediated transcription is the first critical step to initiate differentiation. Hence, the balance between CBP and p300-mediated β-catenin transcription regulates the balance between maintenance of potency, and the initiation of commitment to differentiate in stem and progenitor cells.

Fig. 5. Model depicting symmetric and asymmetric modes of division. The intrinsic difference between normal somatic stem cells (SSC) and cancer stem cells (CSC) is that normal SSC favor asymmetric division whereas CSC favor symmetric division. Treatment of CSC with CBP/β-catenin antagonists causes CSC to undergo symmetric differentiative divisions, thereby eventually clearing CSC from the niche. In sharp contrast, SSC undergo asymmetric divisions when treated with CBP/β-catenin antagonists.

© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
points of intervention (porcupine, tankyrase, Fzd receptors and extracellular Wnt ligands) suggest that a therapeutic window does exist for the use of Wnt inhibitors in cancer patients. However, the full anti-tumor potential of these agents may not be realized due to side effects involving on target inhibition of Wnt/β-catenin signaling including intestinal toxicity and bone breakage.

PRI-724, a specific CBP/catenin clinical compound. In principle, significant concerns about specificity could be raised about the use of small molecule inhibitors that target the coactivator protein CBP, which has perhaps as many as 500 molecular partners, including a wide array of transcription factors. However, to date, these concerns have not been borne out either preclinically or clinically. This is perhaps at first surprising and a full discussion of why a small molecule therapeutic that selectively targets the N-terminus of CBP has many therapeutic advantages is beyond the scope of this review. However, a few salient features are worth mentioning: (i) the extremely high selectivity of ICG-001/PRI-724 for its molecular target; (ii) the disruption of only a small subset of CBP interactions; and (iii) the unique properties of the two Kat3 coactivators, CBP and p300.

PRI-724 is a second generation specific CBP/catenin antagonist (IC50 150 nM) developed by Prism Pharma and partnered with Eisai Pharmaceuticals for oncology. PRI-724 proved to be extremely safe in pre-clinical investigational new drug enabling toxicology studies. The No Adverse Event Level for PRI-724 was 120 mg/kg/day in dogs given 28-day continuous infusion. An open label Phase IIa safety study in subjects with solid tumors, where the expression of the biomarker survivin/β-Catenin antagonists have also demonstrated efficacy in a wide variety of injury models, including pulmonary and renal fibrosis and myocardial infarction. Given the apparent safety of these agents both pre-clinically and clinically, additional clinical trials targeting these indications are anticipated in the future.

Acknowledgments
We would like to thank Dr. Jia-Ling Teo for a critical review of and assistance with the preparation of this manuscript.

Disclosure Statement
The corresponding author is a consultant and equity holder in Prism Pharma Co. Ltd.

References
1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–11.
2. Singh SR. Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem 2012; 19: 5965–74.
3. Miki T, Yasuda SY, Kahn M. “Wnt/β-catenin signaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev 2011; 7: 836–46.
4. Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 2010; 16: 3153–62.
5. Merchant AA, Matsui W. Targeting hedgehog signaling as a cancer stem cell pathway. Clin Cancer Res 2010; 16: 3130–40.
6. Liu J, Sato C, Cerletti M, Wagers A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol 2010; 92: 367–409.
7. Cohnheim J. Ueber Entzündung und Eiterung [in German]. Path Anat Physiol Klin Med 1867; 40: 1–79.
8. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–68.
9. O’Brien CA, Kreso A, Jamieson CH. Cancer stem cells and self-renewal. Clin Cancer Res 2010; 16: 3131–20.
10. Armanios M, Greider CW, Telomerase and cancer stem cells. Cold Spring Harb Symp Quant Biol 2005; 70: 205–8.
11. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–9.
12. Visvader JE, Lindeman GJ. Stem cells and cancer – the promise and puzzles. Mol Oncol 2010; 4: 369–72.
13. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 333–37.
14. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–7.
15. Jamieson CH, Weissman IL, Pasqueau E. Chronic versus acute myelogenous leukaemia: a question of self-renewal. Cancer Cell 2004; 6: 531–3.
16. Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.
17. Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65: 9328–37.
18. Dongu G, El-Ashty D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 2004; 15: 193–7.
19. Ma S, Chan KW, Hui L et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132: 2542–56.
20. Li C, Heidt DG, Dalerba P et al. Identification of Pancreatic Cancer Stem Cells. Cancer Res 2007; 67: 1030–7.
21. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–10.
22. Kim YM, Ma H, Oehler V et al. The gamma catenin/catenin complex maintains survivin transcription in β-catenin deficient/deleted cancer cells. Curr Cancer Drug Targets 2011; 11: 213–25.
23. Onder TT, Gupta PB, Mani SA et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645–54.
24. Kim K, Daniels KJ, Ha ED. Tissue-specific expression of beta-catenin in normal mesenchyme and uveal melanomas and its effect on invasiveness. Exp Cell Res 1998; 235: 79–90.
25. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 144: 275–92.
26. Mani SA, Guo W, Liao MJ et al. The epithelial-mesenchymal transition gene signature is a biomarker of poor prognosis in multiple cancers. Cell 2008; 137: 704–15.
27. Wagh PK, Gary JK, Zinner GM et al. β-Catenin is required for Ron receptor-induced mammary tumorigenesis. Oncogene 2011; 30: 3694–704.
28. Coluccia AM, Benati D, Dekhil H et al. SKI-606 decreases growth and motility of colorectal cancer cells by preventing p90(rsk)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signalling. Cancer Res 2006; 66: 2279–86.
29. Resa A, Moelling K. Bcr interferes with beta-catenin-Tcf1 interaction. FEBs Lett 2006; 580: 1227–30.
30. Mazumdar J, Obrien WT, Johnson RS et al. 2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 2010; 12: 1007–13.
31. Kida A, Kahn M. Hypoxia selects for a quiescent, CML stem/leukaemia initiating-like population dependent on CBP/catenin transcription. Curr Mol Pharmacol 2013; 6: 204–10.
32. Chocarro-Calvo A, García-Martínez JM, Ardila-González S, De la Vieja A, García-Jiménez C. Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer. Mol Cell 2013; 49: 474–86.

33. Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 2006; 16: 51–9.

34. van Veeelen W, Le NH, Helvenstein J w et al. β-catenin tyrosine 654 phosphorylation increases Wnt signaling and intestinal tumorigenesis. Gut 2011; 60: 1204–12.

35. Kawabata A. Prostaglandin E2 and pain – an update. Biol Pharm Bull 2011; 34: 1170–3.

36. Ginis , Luo Y, Miura T et al. Differences between human and mouse embryonic stem cells. Dev Biol 2004; 269: 360–80.

37. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of β-catenin acetylation enhances Wnt signaling for a pharmacological GS3-specific inhibitor. Nat Med 2004; 10: 55–63.

38. Murayama Y, Kondoh H, Takada S. Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem Biophys Res Commun 2004; 313: 915–21.

39. Dravid G, Ye Z, Hammond H et al. Defining the role of Wnt/β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 2005; 23: 1489–501.

40. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297: 365–9.

41. Zehner D, Fujita Y, Hulsken J. Identification of FAP locus genes from chromosome 5q21. EMBO J 2002; 21: 253–65.

42. Chen W, Kashiwagi Y, Kishida K et al. β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells Dev 2013; 22: 3269–306.

43. Polakis P. Druggable Wnt signaling in cancer. EMBO J 2012; 31: 2737–46. Erratum in: EMBO J 2012; 31: 3375.

44. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297: 365–9.

45. Zehner D, Fujita Y, Hulsken J et al. β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells Dev 2013; 22: 3269–306.

46. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297: 365–9.

47. Zehner D, Fujita Y, Hulsken J et al. β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells Dev 2013; 22: 3269–306.