Supplementary Material

Highly efficient, solvent-free esterification of testosterone promoted by a recyclable polymer-supported tosyllic acid catalyst under microwave irradiation

Pawel Borowiecki* and Maciej Kraszewski

Warsaw University of Technology, Faculty of Chemistry, Department of Drugs Technology and Biotechnology, Koszykowa St. 3, 00-664 Warsaw, Poland

Email: pborowiecki@ch.pw.edu.pl, pawel_borowiecki@onet.eu

Table of Contents

Analytical HPLC conditions of different testosterone esters by Chiralcel OD-H (Daicel) columnS2
Copies of NMR, HRMS, IR and UV/VIS spectra as well as HPLC chromatograms..S3
Table S1. Analytical HPLC conditions of different testosterone esters by Chiralcel OD-H (Daicel) column

Compound	Ratio of n-hexane to 2-propanol^b	Retention time [min]
	85:15	12.482
	90:10	18.810
	95:5	40.468
	85:15	12.792
	90:10	16.736
	95:5	26.785
	85:15	11.618
	85:15	10.752
	85:15	8.715
	85:15	8.372

^a The samples were carried out at 254 nm and 30 °C. The elution velocity was set at 0.8 mL/min.
Testosterone (1):

1H NMR spectrum of 1 (500 MHz, CDCl$_3$)

13C NMR spectrum of 1 (126 MHz, CDCl$_3$)
HRMS spectrum of 1 (ESI-TOF)

IR spectrum of 1 (Mineral oil, Nujol)
HPLC chromatogram of 1

HPLC conditions: \(n\)-hexane-2-ProH (85:15, \(v/v \)); \(f=0.8\) mL/min; \(\lambda=254\) nm; \(p=3.3\) MPa

Peak#	Ret. Time (min)	Area (a.u.)	Height (a.u.)	Area %	Height %
1	12.482	21085669	838158	100.000	100.000
Total		21085669	838158	100.000	100.000

HPLC conditions: \(n\)-hexane-2-ProH (90:10, \(v/v \)); \(f=0.8\) mL/min; \(\lambda=254\) nm; \(p=3.2\) MPa

Peak#	Ret. Time (min)	Area (a.u.)	Height (a.u.)	Area %	Height %
1	18.810	24678063	528516	100.000	100.000
Total		24678063	528516	100.000	100.000
HPLC conditions: \(n\)-hexane-2-ProH (95:5, v/v); \(f=0.8 \text{ mL/min} \); \(\lambda=254 \text{ nm} \); \(p=3.0 \text{ MPa} \)

Peak#	Ret. Time	Area	Height	Area %	Height %
1	40.468	18423378	182495	100.000	100.000
Total		18423378	182495	100.000	100.000
Testosterone acetate (2a):

1H NMR spectrum of 2a (500 MHz, CDCl$_3$)

13C NMR spectrum of 2a (126 MHz, CDCl$_3$)
HRMS spectrum of 2a (ESI-TOF)

IR spectrum of 2a (Mineral oil, Nujol)
UV/VIS spectrum of 2a (EtOH)

Wavelength (nm)	Abs
245.00	4.807
242.00	4.928
240.00	4.850
237.00	4.781
235.00	4.776
HPLC chromatograms of 2a

2a (93% purity) obtained after DMAP-catalyzed reaction (Method A).

Acetyl chloride (1.5 equiv), Et₃N (1.5 equiv), DMAP (cat.).

dry CH₂Cl₂, 24 h at 25 °C (magnetic stirring)

METHOD A

Peak	Ret. Time	Abs.	Height	Area %	Height %
1	13.72	29039718	1224494	92.847	94.317
1	15.54	3000766	17147	7.153	5.683
Total	294.6853	1195488	801.980	100.00	100.00
2a (97% purity) obtained after TsOH-catalyzed reaction (normal mode) (Method B).

Acetyl chloride (1.1 equiv), imm. p-TsOH (0.04 equiv).

CH₂Cl₂, 24 h at 25 °C (magnetic stirring) (METHOD B)
2a (91% purity) obtained after TsOH-catalyzed reaction (5 min MW mode) (Method C).

2a (94% purity) obtained after TsOH-catalyzed reaction (2.5 min MW mode) (Method C).
Testosterone propionate (2b):

1H NMR spectrum of 2b (500 MHz, CDCl$_3$)

13C NMR spectrum of 2b (126 MHz, CDCl$_3$)
HRMS spectrum of 2b (ESI-TOF)

IR spectrum of 2b (Mineral oil, Nujol)
UV/VIS spectrum of 2b (EtOH)

Wavelength (nm)	Abs
251.00	4.840
249.00	5.128
247.00	5.145
244.00	5.288
239.00	5.238
237.00	5.088
235.00	4.961
230.00	5.007
227.00	4.960
225.00	4.886
HPLC chromatograms of 2b

2b (>99% purity) obtained after DMAP-catalyzed reaction (Method A).

[Diagram showing reaction and chromatogram]

2b (90% purity) obtained after TsOH-catalyzed reaction (normal mode) (Method B).

[Diagram showing reaction and chromatogram]
2b (97% purity) obtained after TsOH-catalyzed reaction (5 min MW mode) (Method C).

2b (98% purity) obtained after TsOH-catalyzed reaction (2.5 min MW mode) (Method C).
Testosterone butanoate (2c):

1H NMR Spectrum of 2c (500 MHz, CDCl$_3$)

13C NMR Spectrum of 2c (126 MHz, CDCl$_3$)
HRMS spectrum of 2c (ESI-TOF)

IR spectrum of 2c (Mineral oil, Nujol)
UV/VIS spectrum of 2c (EtOH)

Wavelength (nm)	Abs
246.00	10.000
244.00	6.084
238.00	5.754
236.00	5.259
233.00	5.509
231.00	5.227
228.00	5.068
HPLC chromatograms of 2c

2c (97% purity) obtained after DMAP-catalyzed reaction (Method A).

2c (98% purity) obtained after TsOH-catalyzed reaction (normal mode) (Method B).
2c (98% purity) obtained after TsOH-catalyzed reaction (5 min MW mode) (Method C).

\[
\text{Butanoyl chloride (3.0 equiv), imm. p-TsOH (0.025 equiv).} \\
\text{5 min at 100 } ^\circ \text{C} \\
\text{(MW irradiation, 200 W) (METHOD C)}
\]

Table

Peak	Ret. Time	Area	Height	Area %	Height %
1	0.740	18451	32117	1.289	2.096
2	1.013	29650	8862	3.345	0.851
3	1.000	10307	3222	1.201	0.405
4	1.290	5068	3284	1.289	0.185
5	1.071	507080	231264	10.353	5.402
Total	2900461	227221	111.093	53.600	

2c (98% purity) obtained after TsOH-catalyzed reac. (2.5 min MW mode) (Method C).

\[
\text{Butanoyl chloride (3.0 equiv), imm. p-TsOH (0.025 equiv).} \\
\text{5 min at 100 } ^\circ \text{C} \\
\text{(MW irradiation, 200 W) (METHOD C)}
\]

Table

Peak	Ret. Time	Area	Height	Area %	Height %
1	1.046	6137	4246	1.272	0.206
2	1.087	245632	193754	10.365	90.674
3	1.371	122021	4912	0.493	0.452
4	1.358	20941	1078	1.092	0.513
Total	2184414	1302306	100.183	100.000	
Testosterone decanoate (2d):

1H NMR spectrum of 2d (500 MHz, CDCl$_3$)

13C NMR spectrum of 2d (126 MHz, CDCl$_3$)
HRMS spectrum of 2d (ESI-TOF)

IR spectrum of 2d (Mineral oil, Nujol)
UV/VIS spectrum of 2d (EtOH)

Wavelength (nm)	Abs
241.00	4.401
239.00	4.407
HPLC chromatograms of 2d

2d (99% purity) obtained after DMAP-catalyzed reaction (Method A).

Decanoyl chloride (1.5 equiv), Et₃N (1.5 equiv), DMAP (cat.), dry CH₂Cl₂, 24 h at 25 °C (magnetic stirring) (METHOD A)

2d (95% purity) obtained after TsOH-catalyzed reaction (normal mode) (Method B).

Decanoyl chloride (1.1 equiv), imm. p-TsOH (0.04 equiv), CH₂Cl₂, 24 h at 25 °C (magnetic stirring) (METHOD B)
2d (95% purity) obtained after TsOH-catalyzed reaction (5 min MW mode) (Method C).

Decanoyl chloride (3.0 equiv), Imm. p-TsOH (0.025 equiv).

5 min at 100 °C
(MW irradiation, 200 W) (METHOD C)

Decanoyl chloride (3.0 equiv), Imm. p-TsOH (0.025 equiv).

2.5 min at 100 °C
(MW irradiation, 200 W) (METHOD C)

2d (98% purity) obtained after TsOH-catalyzed reaction. (2.5 min MW mode) (Method C).
Testosterone laurate (2e):

1H NMR Spectrum of 2e (500 MHz, CDCl$_3$)

13C NMR Spectrum of 2e (126 MHz, CDCl$_3$)
HRMS spectrum of 2e (ESI-TOF)

IR spectrum of 2e (Mineral oil, Nujol)
UV/VIS spectrum of 2e (EtOH)

Wavelength (nm)	Abs
240.00	4.193
HPLC chromatograms of 2e

2e (>99% purity) obtained after DMAP-catalyzed reaction (Method A).

2e (91% purity) obtained after TsOH-catalyzed reaction (normal mode) (Method B).
2e (97% purity) obtained after TsOH-catalyzed reaction (5 min MW mode) (Method C).

2e (97% purity) obtained after TsOH-catalyzed reac. (2.5 min MW mode) (Method C).