Data Article

Data for life cycle assessment of legume biorefining for alcohol

Theophile Lienhardt a, b, Kirsty Black c, d, e, f, Sophie Saget g, Marcela Porto Costa a, David Chadwick a, Robert Rees h, Michael Williams g, Charles Spillane b, Pietro Iannetta d, Graeme Walker d, David Styles a, b, *

a School of Environment, Natural Resources and Geography, Bangor University, Bangor LL57 2UW, UK, Wales
b Plant and AgriBiosciences Centre, Ryan Institute, National University Ireland Galway, Galway, Ireland
c Arbikie Distilling Ltd, Inverkeilor, Arbroath DD11 4UZ, Scotland, UK
d Division of Food & Drink, Abertay University, Dundee DD1 1HG, UK
e Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
f Yeast Research Group, Abertay University, Dundee, DD1 1HG, Scotland, UK
g Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
h Scotland’s Rural College, West Mains Road, Edinburgh EH9 3JG, Scotland, UK

Article info

Article history:
Received 28 May 2019
Received in revised form 26 June 2019
Accepted 2 July 2019
Available online 8 August 2019

Keywords:
Pea
Legumes
Life cycle assessment
LCA
Animal feed
DDGS
Distillation
Ethanol

Abstract

Benchmarking the environmental sustainability of alcohol produced from legume starch against alcohol produced from cereal grains requires considering of crop production, nutrient cycling and use of protein-rich co-products via life cycle assessment. This article describes the mass balance flows behind the life cycle inventories for gin produced from wheat and peas (Pisum sativum L.) in an associated article summarising the environmental footprints of wheat- and pea-gin [1], and also presents detailed supplementary results. Activity data were collected from interviews with actors along the entire gin value chain including a distillery manager and ingredient and packaging suppliers. Important fertiliser and animal-feed substitution effects of co-product use were derived using detailed information and models on nutrient flows and animal feed composition, along with linear optimisation modelling. Secondary data on environmental burdens of specific materials and processes were obtained from the Ecoinvent v3.4 life cycle assessment database. This article provides a basis for further
quantitative evaluation of the environmental sustainability of legume-alcohol value chains. © 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Primary and secondary data used to build the life cycle inventories for wheat- and pea-gin are described in the next section, with key information summarised in Tables 1–8.

Key data outputs are summarised in Tables within the associated MS Excel file, including: (i) life cycle inventory data (Table SI 9 for wheat gin and Tables SI 10 and SI 11 for wheat gin produced at

Specifications Table

Subject	Environmental Science (General)
Specific subject area	Life cycle assessment of agri-food chains
Type of data	Text & Tables
How data were acquired	Mass flow and life cycle inventory data were collated from primary and secondary sources, including: (i) interviews with value chain stakeholders to identify quantities, origins and transport of inputs used in gin production; (ii) statistics on agronomic inputs and yields of wheat and pea crops; (iii) commercial LCA databases, primarily Ecoinvent v3.5.
Data format	Data presented are collated raw and processed data that have been converted into mass balance flows for wheat and pea-gin value chains, and analysed results.
Parameters for data collection	Mass flows of materials and constituent nutrients in value chains of wheat- and pea-gin production.
Description of data collection	Primary data were collated via face-to-face, telephone and email communication with stakeholders. Secondary data were collated via searches of the academic literature (Google Scholar) and through access to the commercial Ecoinvent v.3.5 database using Open LCA v1.7.
Data source location	Data collection related to gin production in the Arbikie Distillery, Inverkeilor, Arbroath, Scotland Latitude: 56.64662 Longitude: −2.55632
Data accessibility	With the article
Related research article	Theophile Lienhardt, Kirsty Black, Sophie Saget, Marcela Porto Costa, David Chadwick, Robert Rees, Mike Williams, Charles Spillane, Pietro Iannetta, Graeme Walker, David Styles

Value of the Data

- These data provide detailed life cycle inventories and full life cycle assessment results for gin made from wheat and peas, including potential substitution of fertilisers and animal feed.
- Data are useful for any academics studying gin value chains, e.g. to calculate environmental footprints or economic profiles, and for any stakeholders interested in the environmental sustainability of gin and other alcohol value chains.
- Data may be used to parameterise basic grain- and legume-life cycle inventories as a basis for new (legume)-alcohol LCAs.
- These high resolution data provide insight into important processes underpinning the life cycle inventories summarised in Lienhardt et al. [1], and indicate the full range of life cycle assessment results derived from sensitivity analyses.
Table 1
Main inputs to the distillation process for one batch of gin.

Input/output	Unit	Wheat gin	Pea gin
Wheat grain	kg	2703	2782
Pea grist	kg		
Water	L	25 454	
Yeast	kg	13.5	
A-amylase	kg	1.2	
Glucoamylase	kg	3.3	
Kerosene	L	870	
Electricity	kWh	946	
Botanicals	kg	22.5	

Table 2
Mass balance of main inputs and outputs for the production of one batch of gin from wheat, based on Arbikie commercial production.

Input/output	Dry matter	Starch	Protein	Volume
Whole grain	2703 kg	1865 kg	341 kg	
Pot-ale (DDGS)	1092 kg	341 kg		10547 L
Alcohol	1159 kg	1159		
Gin	1886 kg	1886		

Table 3
Mass balance of main inputs and outputs for the production of one batch of gin from peas, based on Arbikie pilot trials.

Input/output	Dry matter	Starch	Protein	Volume
Whole grain	4558 kg	2338 kg	1089 kg	10547 L
Hulls	1777 kg	347 kg		1159
Grist	2782 kg	1419 kg	743 kg	1886
Pot-ale (DDGS)	1363 kg	743 kg		1159
Alcohol	1159 kg	1159		
Gin	1886 kg	1886		

Table 4
Mass balance of main inputs and outputs for the production of one batch of gin from peas, based on equivalent starch input to fermentation.

Input/output	Dry matter	Carbohydrates	Starch	Protein	Volume
Whole grain	5905 kg	3319 kg	3030 kg	1412 kg	
Hulls	2301 kg	1373 kg		655 kg	
Grist	3604 kg	1946 kg	1838 kg	757 kg	
Pot-ale	1766 kg	108 kg	757 kg		10547 L
Alcohol	1159 kg			1159 kg	
Gin	1886 kg			1886 kg	
different alcohol yields); (ii) life cycle assessment results broken down into 11 contributory processes and the four life cycle assessment permutations evaluated in Lienhardt et al. [1], in Tables SI 12–SI 15.

2. Experimental design, materials, and methods

2.1. Input and output mass balance

Data from Arbikie on input quantities to the distillation process (Table 1), and from Feedipedia [2] on pea and wheat grain composition, were used to derive mass balances of macro nutrients for the production of one batch of gin (1886 L) from wheat (Table 2) and peas (Table 3). The alcohol production from fermentation (1159 L) is within 2% of the specific alcohol yield per kg of wheat grain.
reported by Ref. [3], and within 7% of the stoichiometric yield of alcohol from the carbohydrate content of pea grist [4].

To reflect some uncertainty in alcohol yields for pea flour at the commercial scale, we also undertook an LCA of pea gin based on an equivalent carbohydrate input from pea flour (1946 kg) as from

Table 8
Life cycle impact assessment methods employed in this study.

Impact category	Indicator	Unit	Recommended default LCIA method	Source of CFs	Robustness	Selected method in OpenLCA
Climate change	Radiative forcing as Global Warming Potential (GWP100)	kg CO2 eq	Baseline model of 100 years of the IPCC (based on IPCC 2013)	EC-JRC, 201721	I	IPCC 2013
Ozone depletion	Ozone Depletion Potential (ODP)	kg CFC-11 eq	Steady-state ODPs as in (WMO 1999)	EC-JRC, 201721	I	ILCD+
Human toxicity, cancer*	Comparative Toxic Unit for humans (CTUh)	CTUh	USEtox model (Rosenbaum et al., 2008)	EC-JRC, 201721	III/interim	ILCD+
Human toxicity, non-cancer*	Comparative Toxic Unit for humans (CTUh)	CTUh	USEtox model (Rosenbaum)	EC-JRC, 201721	III/interim	ILCD+
Ionising radiation, human health	Human exposure efficiency relative to U235	kBq U235 eq	Human health effect model as developed by Dreicer et al., 1995 (Frischknecht et al., 2000)	EC-JRC, 201721	II	ILCD+
Photochemical ozone formation, human health	Tropospheric ozone concentration increase	kg NMVOC eq	LOTOS-EUROS model (Van Zelm et al., 2008) as implemented in ReCiPe 2008	EC-JRC, 201721	II	ILCD+
Acidification	Accumulated Exceedance (AE)	mol H+ eq	Accumulated Exceedance (Seppälä et al., 2006, Posch et al., 2008)	EC-JRC, 201721	II	ILCD+
Eutrophication, terrestrial	Accumulated Exceedance (AE)	mol N eq	Accumulated Exceedance (Seppälä et al., 2006, Posch et al., 2008)	EC-JRC, 201721	II	ILCD+
Eutrophication, freshwater	Fraction of nutrients reaching freshwater end compartment (P)	kg P eq	EUTREND model (Struijs et al., 2009) as implemented in ReCiPe	EC-JRC, 201721	II	ILCD+
Eutrophication, marine	Fraction of nutrients reaching marine end compartment (N)	kg N eq	EUTREND model (Struijs et al., 2009) as implemented in ReCiPe	EC-JRC, 201721	II	ILCD+
Ecotoxicity, freshwater*	Comparative Toxic Unit for ecosystems (CTUe)	CTUe	USEtox model, (Rosenbaum et al., 2008)	EC-JRC, 201721	III/interim	ILCD+
Resource use, minerals and metals	Abiotic resource depletion (ADP ultimate reserves)	kg Sb eq	CML 2002 (Guinée et al., 2002) and van Oers et al., 2002.	EC-JRC, 201721	III	CML IA Baseline
Resource use, fossils	Abiotic resource depletion – fossil fuels (ADP-fossil)	MJ	CML 2002 (Guinée et al., 2002) and van Oers et al., 2002.	EC-JRC, 201721	III	CML IA Baseline
Land occupation	Cropping land occupation (LO)	m².yr			II	NA
wheat grist (Table 4). This represents a 30% higher input of peas compared with data provided by Arbikie, and may be regarded as a worst case estimate of alcohol production efficiency from peas.

2.2. Cultivation and field emissions

Table 5 displays major inputs and outputs expressed per hectare for wheat and pea cultivation, based on a combination of specific activity data from the Arbikie Estate (where wheat is grown for the distillery) and national statistics.

Soil emissions and nutrient leaching factors following the application of synthetic and organic fertilizers were primarily taken from relevant inventory reports [9–11]. Nitrogen losses from pot ale spreading were calculated based on the MANNER-NPK tool [12] which integrates equations derived from decades of empirical observations across the UK on emissions, leaching and fertiliser replacement value for different organic nutrient additions [12]. Ammonia emissions and N leaching are related to factors including total N, NH4 and dry matter contents of organic amendments, application method, soil type and moisture status during application, cropping sequence, and prevailing meteorological conditions during and after application (as specified by users and inferred from background meteorological data related to the post code). The soil hydrological balance is also important for calculating N leaching. We ran the MANNER-NPK tool for pot ale application by trailing hose in spring and autumn, under good spreading conditions (calm weather, moist soils, no rain immediately after application), on a medium textured soil prior to a spring cereal crop.

Credits for avoided fertiliser application comprised avoided manufacture taken from the Ecoinvent database [13] and avoided field emissions post-application based on emission factors of 0.017 NH₃--N [11], 0.1 NO₃--N [14] and 0.01 for P following N- and P-fertiliser application [15]. Unless otherwise stated, nitrogen, phosphorus and potassium fertilisers were assumed to be in the forms of ammonium nitrate, triple superphosphate and potassium chloride fertilisers.

2.3. Avoided animal feed

Pea hulls and pot ale (following conversion to dried distillers grains with solubles, DDGS) may be used as cattle feed, substituting a mix of protein- and energy-feeds. Based on the same approach as Leinonen et al. [16], we assumed that soybean meal and barley were the main feeds substituted. We applied linear optimisation run in MS Excel solver to calculate the amount of soybean meal and barley grain substituted by pea hulls, wheat-based DDGS and pea-based DDGS in order to deliver exactly the same amount of crude protein and metabolizable energy. Crude protein and metabolizable energy content values for the different feed stuffs (Table 6) were taken from Feedipedia [2]. The protein content of pea-derived DDGS was calculated based on the protein mass balance in Table 7. The mass balance of animal feed substitution following optimisation is displayed in Table 7. In the case of pea-based DDGS, substitution of soybean meal leaves a deficit of metabolizable energy, which is satisfied by feeding additional barley grain (a burden that offsets some of the feed substitution credit calculated in the expanded boundary LCA).

2.4. Impact assessment

Life cycle impact assessment was undertaken across 14 environmental impact categories (Table 8). Thirteen of these are from the suite of impact assessment methods recommended for the European Product Environmental Footprint (PEF) harmonisation initiative [17]. We took all these methods that were available in OpenLCA v.1.7.4. This resulted in the exclusion of the following PEF-recommended impact categories: Particulate Matter, Water Resource Depletion and Land Use & Soil Quality. Owing to the important land use implications of wheat substitution with peas in gin production, we represented Land Occupation with a simple metric of m²·yr of cropland required [18], using inventory data reported in Ecoinvent v3.5 [13] (Table SI8).
3. Results

Tables SI 9—SI 11 summarise life cycle inventory inputs and outputs underpinning the LCA results across 14 impact categories (Table 8) and 11 key contributory process categories. Tables SI 12–SI 15 provide results for four LCA permutations: (i) attributional LCA of gin, with pot-ale treated as a waste product; (ii) attributional LCA of gin, with allocation across gin and pot-ale as an animal feed co-product; (iii) expanded boundary LCA with pot-ale used as a bio-fertiliser substituting synthetic fertiliser; (iv) expanded-boundary LCA, with pot-ale used as an animal feed substituting soybean and barley.

Acknowledgments

This research is supported by the TRUE project, funded by the EU Horizon 2020 Research and Innovation Programme, Grant Agreement number 727973; and the Scottish Government’s Strategic Research Development Programme. We are also grateful Dr Athina Tziboula Clarke (Abertay University) and Profs Geoff Squire and Philip White (James Hutton Institute), for their support and guidance of Kirsty Black, manager of Arbikie Distillery, in this novel arena of pulse-biorefining using distilling, and of co-product processing. We extend sincere thanks to those who facilitated data collection, including Josiah Meldrum (Hodmedod’s), Justin Barret (Askew and Barret), and JHI farm managers.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104242.

References

[1] T. Lienhardt, et al., Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe’s protein deficit and mitigate climate change, Environ. Int. 130 (2019) 104870, https://doi.org/10.1016/j.envint.2019.05.064.
[2] INRA, CIRAD & FAO, Feedipedia: An On-Line Encyclopedia of Animal Feeds | Feedipedia, 2019. Available at: https://www.feedipedia.org/. Accessed: 11th January 2019.
[3] D.R. Kindred, et al., Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat, J. Cereal Sci. 48 (2008) 46–57.
[4] W. Pietrzak, J. Kawa-Rygielska, B. Król, P.R. Lennartsson, M.J. Taherzadeh, Ethanol, feed components and fungal biomass production from field bean (Vicia faba var. equina) seeds in an integrated process, Bioreour. Technol. 216 (2016) 69–76.
[5] Ahdb, Stocktake Report 2015, 2015.
[6] Defra, The British Survey of Fertiliser Practice Fertiliser Use on Farm Crops for Crop Year 2017, DEFRA, 2018.
[7] T. Dalgaard, N. Halberg, J.R. Porter, A model for fossil energy use in Danish agriculture used to compare organic and conventional farming, Agric. Ecosyst. Environ. 87 (2001) 51–65.
[8] PGRO, PGRO Pulse Agronomy Guide 2017, 2017.
[9] P. Duffy, et al., Ireland’s National Inventory Report 2018, 2018.
[10] IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 4, 2006. Chapter 4.
[11] T.H. Misselbrook, S.L. Gilhespy, L.M. Cardenas, J. Williams, U. Dragosits, Inventory of Ammonia Emissions from UK Agriculture 2014 Inventory of Ammonia Emissions from UK Agriculture – 2014, 2015.
[12] F.A. Nicholson, et al., An enhanced software tool to support better use of manure nutrients: MANNER-NPK, Soil Use Manag. 29 (2013) 473–484.
[13] G. Wernet, et al., The ecoinvent database version 3 (part I): overview and methodology, Int. J. Life Cycle Assess. 21 (2016) 1218–1230.
[14] Duffy, P. et al. Ireland National Inventory Report 2014 Greenhouse Gas Emissions 1990 – 2012 Reported to the United Nations Framework Convention on Climate Change.
[15] D. Styles, et al., Consequential life cycle assessment of biogas, biofuel and biomass energy options within an arable crop rotation, GCB Bioenergy 7 (2015) 1305–1320.
[16] I. Leinonen, et al., Effects of alternative uses of distillery by-products on the greenhouse gas emissions of scottish malt whisky production: a system expansion approach, Sustainability 10 (2018) 1473.
[17] JRC, Product Environmental Footprint Category Rules Guidance, 2018.
[18] T.L.T. Nguyen, J.E. Hermansen, L. Mogensen, Environmental consequences of different beef production systems in the EU, J. Clean. Prod. 18 (2010) 756–766.