Length-dependent RNA foci formation and Repeat Associated non-AUG dependent translation in a *C. elegans* G₄C₂ model

Todd Lamitina
Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
To whom correspondence should be addressed: stl52@pitt.edu

Abstract

GC-rich repeat expansion mutations are implicated in several neurodegenerative diseases and can lead to repeat associated non-AUG-dependent (RAN) translation and concentrations of nuclear RNA foci. To model C9orf72 ALS/FTD, we engineered *C. elegans* to express pure GGGGCC (G₄C₂) repeats of varying lengths and observed RAN translation and nuclear RNA foci. RNA foci were observed in animals expressing ≥20 G₄C₂ repeats while RAN translation occurred in animals expressing ≥33 G₄C₂ repeats. These findings show that in *C. elegans*, RAN translation can occur even in the absence of C9orf72 intronic sequence normally surrounding the repeat. Given that the currently accepted repeat threshold for C9 disease is >30 repeats, our data are consistent with a model in which RAN peptides are key drivers of C9orf72 disease pathology.
Figure 1. Characterization of a *C. elegans* G₄C₂ repeat model. A) Description of G₄C₂ expression clones and their expression products. Characteristics of these expression clones are listed above the G₄C₂ repeat domain. B) *In situ* hybridization to detect G₄C₂-containing mRNA in muscle cell nuclei. Arrowheads point to examples of RNA foci, which were only observed in muscle cell nuclei (dashed circle). Scale bar = 1 micron. C) Quantification of the percentage of animals with observable RNA foci. The number above each bar represents the number of animals examined. **** - p<0.0001, Fisher’s exact test with Bonferroni correction. D) Canonical translation or RAN translation was detected using GFP expression. Note in the ‘+ATG’ lines how GFP expression transitions from soluble to puncta as the number of repeats increase. This is consistent with the production of a (Gly-Ala)x-GFP fusion protein with increasing number of repeats, which is known to form aggregates in *C. elegans* (Rudich et al. 2017). Without a start ATG, GFP expression is not observed until repeats ≥33, which fits the definition of RAN translation (Zu et al. 2011). All images were taken using identical exposure times. Scale bar = 100 microns.
E) Quantification of RAN translated GFP. Data were normalized to the mean of the 5 repeat measurements. Graph shows the mean ± S.D. with individual data points shown. **p<0.01, ***p<0.001, ****p<0.0001, One-way ANOVA with Welch test.

Description

A six nucleotide repeat (GGGGCC; G₄C₂) in the first intron of the C9orf72 gene is the most common genetic cause of Amyotrophic Sclerosis (ALS) and Frontotemporal Dementia (FTD) (DeJesus-Hernandez et al. 2011; Murray et al. 2011; Renton et al. 2011). The formation of nuclear localized repeat-containing RNA foci is a hallmark of C9orf72 pathogenesis (Mizielinska et al. 2013). Moreover, unconventional repeat associated non-AUG dependent (RAN) translation of sense G₄C₂ and antisense G₂C₄ repeat containing mRNA gives rise to six distinct dipeptide proteins (DPRs) (Mori et al. 2013), some of which are highly neurotoxic in multiple model systems, including C. elegans (Rudich et al. 2017; Snoznik et al. 2021). While prior studies have shown G₄C₂ repeats can give rise to RNA foci and RAN translation in C. elegans (Kramer et al. 2016; Sonobe et al. 2021), the contextual requirements for these processes are not defined. For example, how many G₄C₂ repeats are required for RNA foci formation and RAN translation? Is the sequence surrounding the G₄C₂ repeat in intron 1 of the C9orf72 sequence required for RAN translation?

To address these questions, we developed transgenic C. elegans expressing defined numbers of pure G₄C₂ repeats lacking any of the surrounding C9orf72 intron sequence (Figure 1A). To clone these 100% GC repeats, we commercially synthesized a (G₄C₂)₅ clone flanked by unique restriction sites (HindIII/BamHI) and expanded the repeat length using a recursive directional ligation strategy (McDaniel et al. 2010) into the standard C. elegans pPD95.79 GFP expression vector. To achieve repeat sizes ≥33, we discovered that we had to modify the pPD95.79 vector by reversing the origin of replication (Ori), likely due to alterations in the stability of G-rich leading versus lagging strands during replication (Thys and Wang 2015). With the Ori flipped, we were able to clone up to 120 G₄C₂ repeats, which we verified by restriction digest and DNA sequencing. We cloned a muscle-specific myo-3 promoter (with or without a start ATG) upstream of the repeat. GFP coding sequence was downstream of the repeat and was located in the ‘Glycine-Alanine’ (GA) DPR reading frame. We used these plasmids to generate transgene arrays using standard microinjection approaches. Repeats in vivo appeared stable, since in the ‘+ATG’ clones, we observed robust GFP expression that showed increased aggregate formation with increasing repeat number, consistent with our previous observations of GA-GFP (Rudich et al. 2017). We did not observe notable changes in viability, fecundity, or behavior for any of the lines. We also failed to observe any notable phenotypes when the 120 repeat clone was injected at higher concentrations (100ng/µl). Note that unlike previous C. elegans G₄C₂ models (Kramer et al. 2016; Sonobe et al. 2021), our models lack any neighboring C9orf72 sequence context.

We first examined the properties of RNA foci formation in Day 1 adults using in situ hybridization to detect sense strand RNA foci (Figure 1B,C). We observed that expression of high repeat numbers gave rise to robust nuclear foci only in the muscle cells expressing the G₄C₂ mRNA. We failed to detect RNA foci in muscle using a G₄C₂ antisense probe, suggesting these C. elegans G₄C₂ lines do not undergo antisense transcription as is observed with native G₄C₂ repeats in mammals (Zu et al. 2013). We discovered that the threshold for sense RNA foci formation was less than 20 repeats, as no foci formation was observed in the 5 repeat animals, but foci were observed in 20, 33, 50, 70, and 120 repeat animals. Qualitatively, RNA foci appear to be more discreet and numerous as the number of repeats increase, although we note that this could be a consequence of the number of available binding sites for the nucleic acid probe, which is 4 repeats in length.

Next, we examined whether or not the G₄C₂ transgenes lacking a start ATG supported RAN translation, despite the absence of surrounding C9orf72 intron sequence (Figure 1D,E). All of the G₄C₂ clones produced robust GFP expression in the presence of a start ATG, indicating all of the clones are intact and capable of supporting translation. However, in the absence of a start ATG, we did not observe GFP expression in lines with 5 or 20 G₄C₂ repeats. However, in animals expressing 33, 50, 70, and 120 G₄C₂ repeats, significant GFP expression in muscle cells was observed. The levels of GFP expression in the -ATG lines undergoing RAN translation were qualitatively weaker than those observed in the +ATG lines. Additionally, we found that GFP expression in the -ATG lines rarely formed puncta as observed in the +ATG lines with ≥33 repeats. This could be due to the lower levels of GFP expression in the -ATG lines, since aggregate formation may be concentration dependent (Fung et al. 2003). Alternatively, this could be due to the initiation of translation within the body of the repeat leading to the production of GA repeats below the threshold for aggregation. Nevertheless, our data show that C. elegans exhibit repeat-associated non-ATG dependent translation from a pure G₄C₂ repeat transgene lacking any additional C9orf72-specific sequences.

We find that the pure G₄C₂ sequence is sufficient to support RNA foci formation and RAN translation even in the absence of any flanking C9orf72 sequences in C. elegans. This is significant because all previous C. elegans G₄C₂ models utilized a C9orf72 ‘minigene’ containing a single repeat length with flanking human intronic sequence. These intronic sequences may play an important role since RAN translation is greatly enhanced by the presence of non-repeat alternative start codons within...
the C9orf72 intron (Green et al. 2017; Sonobe et al. 2021). Our findings show that even in the absence of these intronic sequences, the pure repeat sequence is sufficient to support both RNA foci formation and RAN translation.

G\textsubscript{4}C\textsubscript{2} RAN thresholds in C. elegans closely match the hypothesized disease threshold in human ALS patients of >30 repeats (DeJesus-Hernandez et al. 2011). This is consistent with the hypothesis that RAN peptides have a primary pathological role in the development of C9 disease. Indeed, we previously found that arginine-rich dipeptide repeats are toxic in both C. elegans and mammals through similar genetic pathways (Snoznik et al. 2021). Overall, our G\textsubscript{4}C\textsubscript{2} models provide a robust visual phenotype for future genetic screens aimed at defining the molecular mechanisms of G\textsubscript{4}C\textsubscript{2} RAN translation. Such screens may provide new pathological insights and treatments targets for the C9orf72 related neurodegenerative diseases.

Methods

Construction of G\textsubscript{4}C\textsubscript{2} expression plasmids and transgenic worms. A (GGGGCC)\textsubscript{5} sequence flanked by HindIII and BamHI restriction sites was commercially synthesized in the pMA vector (ThermoFisher Scientific). Repetes were expanded using the recursive directional ligation (RDL) strategy to generate pure uninterrupted repeats, as previously described (Mizielińska et al. 2014). Briefly, the origin vector was linearized with BspQI. An insert of (G\textsubscript{4}C\textsubscript{2})\textsubscript{n} was isolated via BspQI/EcoO1091 digestion and inserted into the origin vector. Further rounds of RDL were carried out to generate repeats of the indicated sizes. Repetes were subcloned into the pPD95.79 vector (AddGene) using HindIII/BamHI digestion. This vector was modified to reverse the origin of replication, which we discovered to be necessary to subclone >33 G\textsubscript{4}C\textsubscript{2} repeats. A 2.5Kb myo-3 promoter fragment +/- the start ATG was subcloned into the HindIII site to generate the final expression vector. Final expression clones were verified by Sanger sequencing (Genewiz). Chromatographs were visually inspected to verify the number of GGGGCC repeats. N2 worms were injected with the G\textsubscript{4}C\textsubscript{2} expression plasmid (20 ng/\mu l) and either rol-6 (80 ng/\mu l) or myo-2p::mCherry (2.5 ng/\mu l) as a transformation marker. At least 2 extrachromosomal array lines were analyzed for each repeat construct to verify phenotypic consistency. All strains were grown on NGM plates with OP50 bacteria.

In situ hybridization. RNA foci were detected using in situ hybridization using a Cy5-labeled (G\textsubscript{2}C\textsubscript{4})\textsubscript{4} locked nucleic acid (LNA) probe (IDT). Day 1 adult worms grown at 25 ºC were fixed in 4% paraformaldehyde followed by washes in 70%, 90%, and 100% EtOH. The LNA probe was denatured at 80 ºC for 75 seconds and then added to hybridization buffer (50% formamide, 2X SSC, 50 mM NaPO4, 10% dextran sulfate) at 10 ng/\mu l. Probes were hybridized overnight at 37 ºC. Worms were then washed twice for 30 minutes with 2X SSC at 37 ºC. Next, worms were washed in 4X SSC with 0.1% Triton X100 containing 1 ug/ml Hoechst 33258, followed by two washes with 2X SSC at room temperature for 5 minutes. Worms were then mounted on slides containing antifade solution. Images were acquired using a Leica DMI4000B widefield microscope and deconvolved using identical settings. Each image is from a deconvolved Z-stack where DNA and RNA foci were observed in the same plane. For quantification, individual animals were scored as either foci positive or foci negative by an observer blinded to genotype. Animals was scored as ‘Foci positive’ if they contained ≥5 foci of Cy5 signal that co-localized with the nuclear DNA signal.

GFP imaging. Worms expressing the indicated number of G\textsubscript{4}C\textsubscript{2} repeats were cultured at 25 ºC. 24 hours after worms reached the L4 stage, animals were anesthetized with 10 mM levamisole. For images, worms were arranged on the surface of a clean NGM agar plate and images were captured using M205FA fluorescence dissecting scope and a DFC345FX digital camera using identical exposure times within the ‘+ATG’ or ‘-ATG’ groups. For quantification, worms were anesthetized in 10mM levamisole and placed on a slide and GFP and DAPI images were captured with a 10X lens and GFP filter (Leica L5 ET set) and DAPI filter (Leica A4 ET set) on a DMI4000B with a DFC 340FX camera (N=8 per genotype, identical settings for all genotypes). To account for autofluorescence, the DAPI image was subtracted from the GFP image. For the resulting subtracted image, GFP fluorescence was quantified along each of three 100 micron lines per animal centered on the midline at the animal’s head (immediately posterior to pharynx), midbody (vulva region), and tail (immediately posterior to intestine). Intensity measurements were summed along and between lines to get a total GFP measurement per animal. Image subtraction and intensity measurements were carried out in Leica Advanced Fluorescence Software, v2.1.0.

Reagents

C. elegans Strains:

Strain	Genotype		
OG1247	+/-; drEx503 [myo-3p+ATG::(G\textsubscript{4}C\textsubscript{2})\textsubscript{5}-gfp (20ng/\mu l); rol-6 (80ng/\mu l)]		
Strain	Genotype	Reconstituted Plasmid	Expression Levels
------------	-----------------------	-------------------------------	-------------------
OG1249	+/-; drEx505 [myo-3p+ATG::(G₄C₂)₂₀-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG756	+/-; drEx275 [myo-3p+ATG::(G₄C₂)₃₃-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG794	+/-; drEx301 [myo-3p+ATG::(G₄C₂)₅₀-gfp (20ng/ul); rol-6(80ng/ul)]		
OG779	oxIs322; drEx287 [myo-3p+ATG::(G₄C₂)₇₀-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG791	oxIs322; drEx298 [myo-3p+ATG::(G₄C₂)₁₂₀-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG1148	+/-; drEx480 [myo-3p-NO ATG::(G₄C₂)₅-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG1145	+/-; drEx477 [myo-3p-NO ATG::(G₄C₂)₂₀-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG759	+/-; drEx477 [myo-3p-NO ATG::(G₄C₂)₃₃-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG967	drIs42 [myo-3p-NO ATG::(G₄C₂)₅₀-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG782	oxIs322; drEx290 [myo-3p-NO ATG::(G₄C₂)₇₀-gfp (20ng/ul); rol-6 (80ng/ul)]		
OG977	drIs41 [myo-3p-NO ATG::(G₄C₂)₁₂₀-gfp (20ng/ul); myo-2p::mCherry (2.5ng/ul); pBluescript (77.5ng/ul)]		

Acknowledgements: We thank Aaron Haeusler (Thomas Jefferson University) for originally suggesting the idea to switch the plasmid Ori to generate stable high-copy G4C2 repeat expression clones and Robert G. Kalb for comments on the manuscript.

References

DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72: 245-56. PubMed ID: 21944778

Fung SY, Keyes C, Duhamel J, Chen P. 2003. Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys J 85: 537-48. PubMed ID: 12829508

Green KM, Glineburg MR, Kearse MG, Flores BN, Linsalata AE, Fedak SJ, Goldstrohm AC, Barmada SJ, Todd PK. 2017. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun 8: 2005. PubMed ID: 29222490

Kramer NJ, Carlomagno Y, Zhang YJ, Almeida S, Cook CN, Gendron TF, Prudencio M, Van Blitterswijk M, Belzil V, Couthouis J, Paul JW 3rd, Goodman LD, Daughtry L, Chew J, Garrett A, Pregent L, Jansen-West K, Tabassian LJ, Rademakers R, Boylan K, Graff-Radford NR, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Boyce BF, Deng N, Feng Y, Cheng TH, Dickson DW, Cohen SN, Bonini NM, Link CD, Gao FB, Petrucelli L, Gitler AD. 2016. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science 353: 708-12. PubMed ID: 27516603

McDaniel JR, Mackay JA, Quiroz FG, Chilkoti A. 2010. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11: 944-52. PubMed ID: 20184309

Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE, Fratta P, Isaacs AM. 2013. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126: 845-57. PubMed ID: 24170096

Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, Moens T, Norona FE, Woollacott IOC, Pietrzyk J, Cleverley K, Nicoll AJ, Pickering-Brown S, Dols J, Cabecinha M, Hendrich O, Fratta P, Fisher EMC, Partridge L, Isaacs AM.
2014. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345: 1192-1194. PubMed ID: 25103406

Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C, Haass C, Edbauer D. 2013. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTD/ALS. Science 339: 1335-8. PubMed ID: 23393093

Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR, Wszolek ZK, Ferman TJ, Josephs KA, Boylan KB, Rademakers R, Dickson DW. 2011. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122: 673-90. PubMed ID: 22083254

Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Tuszynski MG, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Janssens L, Ison K, Voskuhl RR, Kivipelto M, Ikonen E, Sulikova R, Benatar M, Portrait O, Dumay L, Restagno G, Roos RP, Kratsios P. 2021. A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation. Nat Commun 12: e2104664118 PubMed ID: 34593637

Sonobe Y, Abuars J, Krishnan G, Fleming AC, Ghadge G, Islam P, Warren EC, Gu Y, Kankel MW, Brown AEX, Kiskinis E, Gendron TF, Gao FB, Roos RP, Kratsios P. 2021. A C. elegans model of C9orf72-associated ALS/FTD uncovers a conserved role for eIF2D in RAN translation. Nat Commun 12: e2104664118 PubMed ID: 34593637

Thys RG, Wang YH. 2015. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene. J Biol Chem 290: 28953-62. PubMed ID: 26463209

Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MA, Nan Z, Forster C, Low WC, Schoser B, Scaletsky I, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, Moseley M, Ranum LP. 2011. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108: 260-5. PubMed ID: 21173221

Zu T, Liu Y, Bañez-Coronel M, Reid T, Pletnikova O, Lewis J, Miller TM, Harms MB, Falchook AE, Subramony SH, Ostrow LW, Rothstein JD, Troncoso JC, Ranum LP. 2013. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A 110: E4968-77. PubMed ID: 24248382

Funding: NIH R01NS124802

Author Contributions: Todd Lamitina: conceptualization, formal analysis, funding acquisition, investigation, methodology, project, resources, visualization, writing - original draft, writing - review editing.

Reviewed By: Anonymous

History: Received April 26, 2022 Revision Received July 8, 2022 Accepted July 14, 2022 Published Online July 15, 2022 Indexed July 29, 2022

Copyright: © 2022 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Lamitina, T (2022). Length-dependent RNA foci formation and Repeat Associated non-AUG dependent translation in a C. elegans G4C2 model. microPublication Biology. 10.17912/micropub.biology.000600