Research Paper

Studying Students' Knowledge of the Benefits, Challenges, and Applications of Big Data Analytics in Healthcare

Elham Nazaria, Maryam Edalati Khodabandea, Ali Dadashib, Tahmineh Aldaghib, Marjan Rasouliana, Hamed Tabeshc

a Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
b Department of Industrial Engineering, Tarbiat Modares University, Tehran, Iran

\textbf{ARTICLE INFO}

\begin{tabular}{l}
Received: 03 January 2022 \\
Reviewed: 21 January 2022 \\
Revised: 07 February 2022 \\
Accepted: 20 February 2022 \\
Keywords: Big Data, Benefits, Challenges, Analysis, Healthcare, Knowledge
\end{tabular}

\textbf{ABSTRACT}

The purpose of this study was to evaluate the students' familiarity from different universities of Mashhad with the benefits, applications and challenges of Big Data analysis. This is a cross-sectional study that was conducted on students of different fields, including Medical Engineering, Medical Informatics, Medical Records and Health Information Management in Mashhad-Iran. A questionnaire was designed. The designed questionnaire evaluated the opinion of students regarding benefits, challenges and applications of Big Data analytics. 200 students participated and participants' opinions were evaluated descriptively and analytically. Most students were between 20 and 30 years old. 43.5% had no work experience. Current and previous field of study of most of the students were HIT, HIM, and Medical Records. Most of the participants in this study were undergraduates. 61.5% were economically active, 54.5% were exposed to Big Data. The mean scores of participants in benefits, applications, and challenges section were 3.71, 3.68, and 3.71, respectively, and process management was significant in different age groups \((p=0.046)\), information, modelling, research, and health informatics across different fields of studies were significant \((p=0.015, 0.033, 0.001, 0.024)\). Information and research were significantly different between groups \((p=0.043\) and 0.019\), research in groups with / without economic activity was significant \((p=0.017)\) and information in exposed / non-exposed to Big Data groups was significant \((p=0.02)\). Despite the importance and benefits of Big Data analytics, students' lack of familiarity with the necessity and importance is significant. The field of study and level of study does not appear to have an effect on the degree of knowledge of individuals regarding Big Data analysis. The design of technical training courses in this field may increase the level of knowledge of individuals regarding Big Data analysis.

1 Corresponding Author
Nazarie4001@mums.ac.ir

40
1. Introduction

Today, with the advent of various technologies, a huge amount of data that is known as Big Data in being generated especially in healthcare. Big data analytics has become a hot topic and has been the focus of many academic communities and the subject of many students’ research (Achariya & Ahmed, 2016, Alharthi et al., 2017). This type of data has features such as high volume and diversity and due to these features, they cannot be managed and analysed using conventional hardware and software. Analytics for analysing Big Data are known as Big Data Analytics and have many benefits including useful data pattern discovery and important features extraction (Nahr et al., 2021, Nazari et al., 2021). This analysis has many applications in various medical and insurance industries (Archenaa & Anita, 2015). In addition to the many benefits of these analytics, there are challenges that if ignored, the results will change, such as a lack of expert staff, lack of familiarity with the tools and methods required, data type, security issues, budget and etc (Gharachorloo et al., 2021, Manogaran et al., 2017). Understanding the benefits, challenges, and applications of this area can be helpful in conducting useful and efficient research (Belle et al., 2015, Nozari et al., 2021). Due to the importance of Big Data analysis in various industries and the fact that students and their research are related to industry and applied research, this field in Iran is in the early stages of research and unfamiliar with the concepts is severely felt. The purpose of this study is to investigate students' familiarity with the different Benefits, applications, and challenges of Big Data.

2. Method

This cross-sectional study was designed for 200 students of Ferdowsi University and Mashhad University of Medical Sciences. Mashhad is the largest city in eastern Iran with a population of about three million, located on the border with Afghanistan and Turkmenistan on the Silk Road. Mashhad has two major universities, Ferdowsi and Medical Sciences, which students in engineering and basic sciences study at Ferdowsi University and students in medical sciences such as medical Records, Health Information Management and Medical Informatics study at Mashhad University of Medical Sciences.

A questionnaire was designed to assess the level of the knowledge of students in Mashhad universities about the benefits, applications and challenges of Big Data analysis. The questionnaire contains close-end questions with a five-point Likert scale. The basic items of the questionnaire were based on literature searches in Google Scholar, Science Direct and EMBASE databases and were designed and validated by the Delphi method with the participation of 10 experts from various fields (Medical Informatics, Biostatistics, HIT and Computer Science). The questionnaire was designed in the form of 3 general items of benefits, applications and challenges. Benefits included information with 5 questions, modelling with 3 questions, data with 5 questions, and process management with 6 questions. Application questions consisted of health service delivery with 17 questions, research with 4 questions, health, information with 16 questions, essential medicine with 15 questions, health financial with one question, leadership and governance with 6 questions and challenge included 9 questions. The questions are listed in Table 1:
Items	Questions	Category	Subcategory
Advantages	In your opinion, which advantages are related with Big Data analysis?	Information	Generating new knowledge
			Sharing information
			Displaying and summarizing information
			Extracting information and delivery for better results
			Using meaningful information
Modeling			Predicting disease epidemics
Data			Increasing confidence
			Discovering and exploring behavioral pattern or activities
			Decreasing ambiguity
			Increasing reliability
			Reducing uncertainty
			Improving data quality
			Managing massive volumes of data
Process management			Improving clinical trial quality
			Improving operational efficiencies
			Interpreting easiness
			Improving entity detection
			Managing communications that are seemingly unrelated
			Improving the ability of intelligent systems
Applications	In your opinion, Which applications are related to Big Data analysis?	1. Health Service Delivery	Disease screening
			public health
			Disease earlier diagnosis
			Patient-centered services
			Therapeutic approaches improvement
			Surgery
			Rehabilitation
			Clinical operations analysis
			Primary care
			Readmissions management
			Health care delivery
			Disease management
			Cause of disease detection
			Decompensation management
			Blood transfusion management
			Triage management
			Health care data management
2. Research			Prediction
			Disease pattern analysis
			Side effects discovery
			Research & development & Innovation
3. Health Information			personalized medicine
			PHR (Personal Health Record) and HER
			EBM (Evidence Base Medicine)
			Patient monitoring
			Web and social media
			IOT (Internet Of Things)
			Semantic standards
			Biometric
			Patient profile analytics
			CPOE (computerized physician order entry)
			Health informatics
			Coding management
			IT infrastructure management
			Quality measurement
			Bioinformatics and genetics
			Comorbidity Discovery, Adverse events Discovery
			Diagnosis
Section	Russian Medicines	English Medicines	
---------	------------------	------------------	
4.(Essential) Medicines	Precision medicine	CDSS(Clinical Decision Support System)	
	Sensor processing	RFID(Radio-Frequency identification)	
	Signal processing	Drug discovery & clinical Research	
	Vision augment	GPS(Global Positioning System)	
	Mobile health	Telemedicine, E-health, Remote healthcare system	
	Information Support	Mobile health	
	Image processing	RFID(Radio-Frequency identification)	
	BCI(Brain Computer Interface) and smart home	Precision medicine	
	Recommender systems	Sensor processing	

Section	Russian Medicines	English Medicines
5.Health Financing	Cost Reduction & Insurance service	Cost Reduction & Insurance service

Section	Russian Medicines	English Medicines
6.Leadership and Governance	R & D in medications	R & D in medications
	Hospital quality monitoring	Hospital quality monitoring
	Resource management	Resource management
	Resource management	Resource management
	Operational management	Operational management
	Business and organizational and Strategic management	Business and organizational and Strategic management

Challenges	English Medicines
In your opinion, what challenges there are in big data analysis	Lack of knowledge about appropriate for the purpose
	Lack of IT infrastructure
	Lack of expertise about appropriate tools and algorithms
	Variable and scalable data
	Lack of data quality
	Data uncertainty and missing data
	Unstructured data
	Security and privacy issue
	High cost

The validity and reliability of the questionnaire were confirmed by the presence of 10 validity experts and the reliability was confirmed by Alpha Cronbach's 92.1%. The questionnaires were then distributed to 200 students. Students of Medical Engineering, Medical Informatics, Medical Records and Health Information Management participated in the study. Data were collected to ensure that participants answered all the questions. 200 questionnaires were completed. Data entry and analysis were performed using EXCEL (v. 2007) and SPSS (v. 21).
3. Results

For this study, 200 students participated and the results are shown in Table 2.

Variables	Items	Frequency (percentage) of student (n=200)
Age	<20 year	22 (11%)
	20-30 year	113 (56.5%)
	30-40 year	46 (23%)
	>40 year	19 (9.5%)
Gender	Male	126 (63%)
	Female	73 (36.5%)
	Missing	1 (0.5%)
Field of study	Medical Engineering	70 (35%)
	MI	43 (21.5%)
	HIT	82 (97.5%)
	Missing	5 (2.5%)
Degree	BA	77 (38.5%)
	MA	73 (36.5%)
	Professional doctorate	43 (21.5%)
Prior field	HIT, HIM, Medical Record	55 (27.5%)
	MI	12 (6%)
	C-E-M*	33 (16.5%)
Work experience	0 year	87 (43.5%)
	1-5 year	62 (31%)
	5-10	24 (12%)
	>10	27 (13.5%)
Activity	Yes	123 (61.5%)
	No	70 (35%)
	Missing	7 (3.5%)
Exposure	Yes	81 (40.5%)
	No	109 (54.5%)
	missing	10 (5%)

Most students were between 20 and 30 years old. 63% of them were male and 43.5% had no work experience. Current and previous field of study of most of the students were HIT, HIM, and Medical Records. Most of the participants in this study were undergraduates. 61.5% were economically active. 54.5% were exposed to Big Data. The mean scores of participants in benefits, applications, and challenges section were 3.71, 3.68, and 3.71, respectively (SAS-challenge, SAS-advantage and SAS-application). Examination of SAS-challenge, SAS-advantage, and SAS-application by variables of age, gender, field of study, Prior field, work experience, with / without activity, exposure / non-exposure to Big Data can be seen on Table 3.
Table 3. Comparison of mean of SAS-challenge, SAS-advantage and SAS-application across different age groups

Questions	Age	n	Mean ± SD(n)
Advantages	<20 year	22	.6986±.11620
	20-30 year	113	.7522±.12519
	30-40 year	46	.7574±.12829
	>40 year	19	.7252±.12159
	Total	200	.7449±.12508
Applications	<20 year	22	.6989±.12051
	20-30 year	113	.7413±.13019
	30-40 year	46	.7528±.1257
	>40 year	19	.7147±.12070
	Total	200	.7368±.12462
Challenges	<20 year	22	.6869±.15257
	20-30 year	113	.7392±.16566
	30-40 year	46	.7744±.15188
	>40 year	19	.6982±.18948
	Total	200	.7377±.16466

One-way ANOVA test was used to compare the mean of SAS-challenge, SAS-advantage and SAS-application in different age groups with no significant difference in different age groups in these factors. P-Value was 0.228, 0.317, and 0.139 respectively.

Table 4. Comparison of the mean of SAS-challenge, SAS-advantage and SAS-application in different gender groups

Gender	n	Mean ± SD(n)	
	N		
Advantages	Male	126	.7454±.11719
	Female	73	.7471±.13709
Applications	Male	126	.7329±.13281
	Female	73	.7446±.11009
Challenges	Male	126	.7383±.17504
	Female	73	.7370±.14741

According to Table 4, the Independent t-test was used to compare the mean of SAS-challenge, SAS-advantage and SAS-application in different gender groups with no significant difference in different age groups in these factors.

Table 5. Comparison of the average of SAS-challenge, SAS-advantage, and SAS-application across different fields of study

field	n	Mean ± SD(n)	
	N		
advantages	Medical engineering	70	.7302±.13611
	MI	43	.7760±.12040
	HIT	82	.7488±.11194
	Total	195	.7481±.12348
applications	Medical engineering	70	.7236±.11333
	MI	43	.7778±.13359
	HIT	82	.7337±.12527
	Total	195	.7398±.12416
challenges	Medical engineering	70	.7140±.15265
	MI	43	.8114±.16246
	HIT	82	.7293±.16021
	Total	195	.7419±.16167
In Table 5, the results of the One-way ANOVA test were showed which compare the mean of SAS-challenge, SAS-advantage and SAS-application in different fields, but the mean of SAS-application and SAS-advantage were not significant. The mean of SAS-challenge was significant in different disciplines. The mean of SAS-challenge in medical informatics was higher than other majors (Fig. 1).

Fig. 1. Mean of Benefits, applications and challenges in terms of the different fields of study

Table 6. Comparison of the mean of SAS-challenge, SAS-advantage, and SAS-application between different levels of study

	Degree	n	Mean ± SD(n)
Advantages	BSC	77	.7270±.12249
	MSC	73	.7521±.13956
	PHD	43	.7718±08582
	Total	193	.7465±12313
Applications	BSC	77	.7249±.13235
	MSC	73	.7415±.12568
	PHD	43	.7602±.09684
	Total	193	.7390±.12285
Challenges	BSC	77	.6987±.16116
	MSC	73	.7461±.17661
	PHD	43	.7953±.12388
	Total	193	.7382±.16345
One-way ANOVA test was used to compare the mean of SAS-challenge, SAS-advantage, and SAS-application at different levels of study that the mean of SAS-application, SAS-advantage, and SAS-challenge were not, according to Table 6. Significant P-Value were 0.142, 0.313, and 0.006 respectively.

Table 7. Comparison of the mean of SAS-challenge, SAS-advantage, and SAS-application between previous fields of study

	Prior field	n	Mean ± SD(n)
Advantages	HIT	55	.7678±.11516
	MI	12	.7675±.06710
Engineering, electronics, math	33	.7652±.16349	
Total	100		.7669±.12796
Applications	HIT	55	.7503±.11978
	MI	12	.7893±.08649
Engineering, electronics, math	33	.7548±.12074	
Total	100		.7564±.11628
Challenges	HIT	55	.7693±.16136
	MI	12	.7889±.13283
Engineering, electronics, math	33	.7946±.16150	
Total	100		.7800±.15728

The one-way ANOVA test was used to compare the mean of SAS-challenge, SAS-advantage and SAS-application between the previous fields of study, but according to Table 7, the mean of SAS-application, SAS-advantage and SAS-challenge were not significant.

Table 8. Comparison of the mean of SAS-challenge, SAS-advantage, and SAS-application between different work experiences

	Work experience	n	Mean ± SD(n)
Advantages	0 year	87	.7459±.11910
	1-5 year	62	.7620±.13001
	5-10	24	.7154±.14901
	>10	27	.7290±.10848
Total	200		.7449±.12508
Applications	0 year	87	.7426±.12193
	1-5 year	62	.7441±.13534
	5-10	24	.7185±.10836
	>10	27	.7176±.12415
Total	200		.7368±.12462
Challenges	0 year	87	.7367±.16038
	1-5 year	62	.7559±.15951
	5-10	24	.7167±.16671
	>10	27	.7177±.17332
Total	200		.7377±.16466

On Table 8, One-way ANOVA test was used to compare the mean of SAS-challenge, SAS-advantage and SAS-application between different work experiences that the mean of SAS-application, SAS-advantage and SAS-challenge were not significant. P-Value were 0.404, 0.673, and 0.673 respectively.
Table 9. Comparison of the mean of SAS-challenge, SAS-advantage, and SAS-application in groups with / without economic activity

Activity	N	Mean ± SD(n)	
Advantages	Yes	123	.7521±.12231.
	No	70	.7403±.13160.
Applications	Yes	123	.7454±.12092.
	No	70	.7185±.13357.
Challenges	Yes	123	.7478±.17636
	No	70	.7251±.14521.

On Table 9, the Independent t-test was used to compare the mean of SAS-challenge, SAS-advantage and SAS-application in the groups with / without economic activity in these factors. P-Value were 0.532, 0.155, and 0.361 respectively.

Table 10. Comparison of the mean of SAS-challenge, SAS-advantage, and SAS-application in groups with / without exposure to Big Data

Exposure	n	Mean ± SD(n)	
	N		
Advantages	Yes	81	.7619±.11752
	No	109	.7359±.13009
Applications	Yes	81	.7561±.11112
	No	109	.7239±.13370
Challenges	Yes	81	.7627±.15108
	No	109	.7252±.16977

According to Table 10, the Independent t-test was used to compare the mean of SAS-advantage, SAS-challenge and SAS-application in the groups with / without exposure to Big Data that there is no significant difference between the groups with / without exposure to Big Data in these factors. P-Value were 0.157, 0.08, and 0.116 respectively. In order to examine the SAS-advantage, SAS-challenge and SAS-application sub-domains, the previous analysis of each sub-domain is repeated in terms of variables such as age, gender, field of study, degree, and so on.

Table 11. Comparison of the mean of SAS-advantage, SAS-challenge and SAS-application domains by age

Age	n	Mean ± SD(n)	
	N		
Information	<20 year	22	.7491±.14458
	20-30 year	113	.7692±.17013
	30-40 year	46	.7843±.15966
	>40 year	19	.7789±.12534
	Total	200	.7714±.16057
Modeling	<20 year	22	.7364±.15324
	20-30 year	113	.7611±.18425
	30-40 year	46	.7754±.18979
	>40 year	19	.7719±.16226
	Total	200	.7627±.17954
Data	<20 year	22	.6545±.14790
	20-30 year	113	.7054±.15538
	30-40 year	46	.7252±.14910
	>40 year	19	.7137±.17802
	Total	200	.7382±.15637
Process_Management	<20 year	22	.6742±.17516
	20-30 year	113	.7451±.14399
	30-40 year	46	.7529±.14633
	>40 year	19	.6667±.20458
	Total	200	.7317±.15655
One-way ANOVA test was used to compare the mean of SAS-advantage, SAS-challenge and SAS-application domains by age groups that process management, according to Table 11, became significant. P-Value were 0.855, 0.861, 0.145, 0.046, 0.172, 0.072, 0.831, 0.315, 0.784, and 0.680, respectively.

Table 12. Mean comparison of SAS-advantage, SAS-challenge and SAS-application domains by gender

Gender	n	Mean ± SD(n)
Information		
Male	126	.7679±.15380
Female	73	.7739±.17317
Modeling		
Male	126	.7566±.17391
Female	73	.7735±.19076
Data		
Male	126	.7168±.15714
Female	73	.7370±.15605
Process management		
Male	126	.7447±.14168
Female	73	.7183±.16207
Health service delivery		
Male	126	.7252±.13799
Female	73	.7357±.12353
Research		
Male	126	.7794±.21441
Female	73	.7932±.17664
Health information		
Male	126	.7268±.15116
Female	73	.7426±.13836
Essential medicines		
Male	126	.7328±.15952
Female	73	.7394±.15952
Health financing		
Male	126	.7317±.22650
Female	73	.7699±.19908
Leadership governance		
Male	126	.7405±.16874
Female	73	.7516±.15245
According to Table 12, the Independent t-test was used to compare the mean of SAS-advantage, SAS-challenge and SAS-application in gender groups with no significant difference in gender in these factors. P-Value were 0.738, 0.525, 0.383, 0.230, 0.592, 0.642, 0.463, 0.761, and 0.234, respectively.

Table 13. Mean comparison of SAS-advantage, SAS-challenge and SAS-application domains by different fields of study

Field of study	n	Mean ± SD(n)
N		
Information		
Medical engineering	70	.7354±.18137
MI	43	.8242±.14688
HIT	82	.7780±.14113
Total	195	.7729±.16058
Modeling		
Medical engineering	70	.7238±.20968
MI	43	.8124±.15753
HIT	82	.7715±.15539
Total	195	.7634±.17949
Data		
Medical engineering	70	.7211±.15692
MI	43	.7433±.13972
HIT	82	.7224±.16066
Total	195	.7266±.15441
Process Management		
Medical engineering	70	.7367±.15739
MI	43	.7450±.15514
HIT	82	.7350±.13465
Total	195	.7378±.14099
Health Service Delivery		
Medical engineering	70	.7227±.12854
MI	43	.7502±.13100
HIT	82	.7261±.13873
Total	195	.7302±.13320
Research		
Medical engineering	70	.7321±.17796
MI	43	.8002±.16873
HIT	82	.7854±.21907
Total	195	.7872±.20119
Health Information		
Medical engineering	70	.7212±.13062
MI	43	.7887±.14366
HIT	82	.7216±.14812
Total	195	.7363±.14310
Essential Medicines		
Medical engineering	70	.7181±.13169
MI	43	.7758±.14452
HIT	82	.7379±.15266
Total	195	.7391±.14449
Health Financing		
Medical engineering	70	.7457±.19537
MI	43	.7549±.22560
HIT	82	.7512±.22566
Total	195	.7456±.21423
Leadership Governance		
Medical engineering	70	.7367±.14625
MI	43	.7713±.19032
HIT	82	.7394±.16188
Total	195	.7455±.16304

On Table 13. One-way ANOVA test was used to compare the mean of SAS-advantage, SAS-challenge, and SAS-application domains by field of study, that the mean of SAS-advantage, SAS-challenge, and SAS-challenge in information, modelling, research, and health informatics were significant. P-Value were 0.015, 0.033, 0.726, 0.935, 0.532, 0.001, 0.024, 0.119, 0.922 and 0.500 respectively (Fig. 2 and Fig. 3).
Fig 2. Average of the components of Benefits by field of study

Fig 3. Average of the components of Application by field of study
Table 14. Mean comparison of SAS-advantage, SAS-challenge and SAS-application domains by different levels of study
Degree
Information
BSC
MSC
PHD
Total
Modeling
BSC
MSC
PHD
Total
Data
BSC
MSC
PHD
Total
Process Management
BSC
MSC
PHD
Total
Health Service Delivery
BSC
MSC
PHD
Total
Research
BSC
MSC
PHD
Total
Health Information
BSC
MSC
PHD
Total
Essential Medicines
BSC
MSC
PHD
Total
Health Financing
BSC
MSC
PHD
Total
Leadership Governance
BSC
MSC
PHD
Total

On Table 14, One-way ANOVA test was used to compare the mean of SAS-advantage, SAS-challenge and SAS-application domains by different levels of study that the mean of SAS-advantage, SAS-challenge and SAS-application in information and research were significant that was more significant at PhD level. P-Value were 0.043, 0.064, 0.589, 0.717, 0.427, 0.019, 0.654, 0.269, 0.880, and 0.807, respectively.
According to Table 15, One-way ANOVA test was used to compare the mean of SAS-advantage, SAS-challenge and SAS-application domains by different previous fields of study that the mean of SAS-advantage, SAS-challenge and SAS-application was not significant. P-Value were 0.202, 0.469, 0.772, 0.610, 0.916, 0.122, 0.501, 0.537, 0.420 and 0.749 respectively.
On Table 16, an One-way ANOVA test was used to compare the mean of SAS-advantage, SAS-challenge and SAS-application domains by experience that the mean of SAS-application, SAS-advantage, and SAS-challenge were not significant. P-Value were 0.419, 0.255, 0.327, 0.661, 0.231, 0.592, 0.725, 0.863, 0.167, and 0.270 respectively.
The Independent t-test was used to compare the mean of SAS-advantage, SAS-challenge and SAS-application by economic activity that, according to Table 17, there was a significant difference in different groups in research. P-Value were 0.625, 0.565, 0.205, 0.693, 0.017, 0.167, 0.761, 0.188, 0.649 and 0.133, respectively.

Table 18. Mean comparison of SAS-advantage, SAS-challenge and SAS-application domains by exposure / non-exposure to Big Data

Exposure / non-exposure to Big Data	N	Mean ± SD(n)
Information	81	.7970±.14571
Modeling	109	.7545±.16505
Data	81	.7355±.17177
Process Management	109	.7468±.18851
Health service delivery	81	.7436±.15755
Research	109	.7284±.14613
Health information	81	.7413±.13150
Essential medicines	109	.7182±.13423
Health financing	81	.8142±.19577
Leadership governance	109	.7624±.20940
		.7475±.13899
		.7218±.15380
		.7567±.12935
		.7231±.15477
		.7704±.20028
		.7778±.15330

The Independent t-test was used to compare the mean SAS-advantage, SAS-challenge and SAS-application by exposure / non-exposure to the Big Data that, according to Table 18, there was a significant difference between groups of information. P-Value were 0.071, 0.169, 0.486, 0.085, 0.494, 0.236, 0.114, 0.156, 0.020,
The mean of SAS-information was higher among those exposed to the Big Data than those not exposed to the Big Data.

4. Conclusion

Today, with the advent of technologies and the production of huge amounts of data, Big Data analytics have received much attention especially in healthcare. Understanding this field and recognizing its benefits, applications and challenges provide useful background for conducting efficient research. Therefore, the purpose of this study was to evaluate the students' familiarity from different universities of Mashhad with the benefits, applications and challenges of Big Data analysis. Most students were between 20 and 30 years old. Most of them were male and had no work experience. Current and previous field of study of most of the students were HIT, HIM, and Medical Records. Most of the participants in this study were undergraduates. Most of them were economically active and were exposed to Big Data. The mean scores of participants in benefits, applications, and challenges section were 3.71, 3.68, and 3.71, respectively. Considering that the participants in this study are students from the top universities in the country and have done some Big Data research, it is assumed that Mashhad students have a better level of knowledge in the field of Big Data analysis. Yet there should be more opportunities for students, even organizations’ staff to get to know the field more. Training in this field is essential for many disciplines, also conferences could be effective in introducing this field. Students can also provide more familiarity and usage of functional analytics by conducting new researches in this field. In the section of challenges, benefits and application analytics, process management was significantly in different age groups, research, modelling and information and health informatics across different fields of studies were significant. Information and research were significantly different between different levels of studies. Research in groups with / without economic activity was significant and information in exposure / non exposure to Big Data groups was significant. Despite the importance and benefits of Big Data analytics, students' lack of familiarity with the necessity and importance of these analytics in industries and research is significant. The field of study and level of study does not appear to have an effect on the degree of knowledge of individuals regarding Big Data analysis. In future studies, it is suggested that students, practitioners, and other disciplines in different cities and countries evaluate the specific benefits and applications of Big Data analytics and compare the results. Because it will be possible to study in different places and different perspectives. In other businesses, checking their familiarity with Big Data analytics can be helpful in applying management and advertising policies. Big data analytics can play a constructive role in all industries, and today it is widespread in most industries and businesses. Because of the growing trend of data generation, Big Data analytics will become a necessity for all industries and areas in coming years.

Availability of data and materials

These data are available.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Acknowledgments

The present study is the result of research project approved by the vice chancellery for research of Mashhad University of Medical Sciences (grant number 961731).

Ethics approval and consent to participate

Ethics approval is under grant number 961731 Publication is permitted by Mashhad University of Medical Science.
Consent for publication
Publication is permitted by Mashhad University of Medical Science

References

- Acharjya, D. P., & Ahmed, K. (2016). A survey on big data analytics: challenges, open research issues and tools. International Journal of Advanced Computer Science and Applications, 7(2), 511-518.
- Alharthi, A., Krotov, V., & Bowman, M. (2017). Addressing barriers to big data. Business Horizons, 60(3), 285-292.
- Archenaa, J., & Anita, E. M. (2015). A survey of big data analytics in healthcare and government. Procedia Computer Science, 50, 408-413.
- Belle, A., Thiggarajan, R., Soroushmehr, S. M., Navidi, F., Beard, D. A., & Najarian, K. (2015). Big data analytics in healthcare. BioMed research international, 2015.
- Gharachorloo, N., Nahr, J. G., & Nozari, H. (2021). SWOT analysis in the General Organization of Labor, Cooperation and Social Welfare of East Azerbaijan Province with a scientific and technological approach. International Journal of Innovation in Engineering, 1(4), 47-61.
- Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., & Sundarasekar, R. (2017). Big data analytics in healthcare Internet of Things. In Innovative healthcare systems for the 21st century (pp. 263-284). Springer, Cham.
- Nahr, J. G., Nozari, H., & Sadeghi, M. E. (2021). Green supply chain based on artificial intelligence of things (AlIoT). International Journal of Innovation in Management, Economics and Social Sciences, 1(2), 56-63.
- Nazari, E., Norouzi, S., Aldaghi, T., Rasoulian, M., Shahriari, M. H., Kheirdoust, A., & Tabesh, H. (2021). A Survey of Students’ Attitudes to Big Data Analysis in Iranian Universities. International Journal of Innovation in Engineering, 1(4), 62-71.
- Nozari, H., Fallah, M., Kazemipoor, H., & Najafi, S. E. (2021). Big data analysis of IoT-based supply chain management considering FMCG industries. Бизнес-информатика, 15(1 (eng)).
- Srinivasan, U., & Arunasalam, B. (2013). Leveraging big data analytics to reduce healthcare costs. IT professional, 15(6), 21-28.

This work is licensed under a Creative Commons Attribution 4.0 International License.