Study of serum ferritin, serum uric acid and plasma malondialdehyde (MDA) levels in non-alcoholic fatty liver disease

Meena Varma1*, Haresingh Makwane1, Pawan Kumar Kare2, Rajesh Kumar Jha3 and Amita Parmar1

1Department of Biochemistry, Sri Aurobindo Institute of Medical Sciences, Indore, M.P. 453555, India
2Department of Biochemistry, University College of Medical Sciences, Delhi- 110095, India
3Department of Medicine, Sri Aurobindo Institute of Medical Sciences, Indore, M.P. 453555, India

*Correspondence Info:
Dr. Meena Varma
Professor, Department of Biochemistry,
Sri Aurobindo Institute of Medical sciences
Indore, M.P-453555, India
E-mail: harshmakwane86@gmail.com

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most important cause of fatty liver that may lead to end-stage liver disease. Various studies have reported that serum ferritin, serum uric acid and plasma malondialdehyde (MDA) levels are related to the development of NAFLD. Diabetes and obesity are the major risk factors which are associated with NAFLD. The aim of this study was estimation of serum ferritin, serum uric acid and plasma MDA levels in NAFLD patients with diabetes and with obesity.

Materials and Methods: In the present study, total (n = 230) subjects were recruited for the study and divided in three groups. Group I: (n = 79) diagnosed cases of non-alcoholic fatty liver disease with diabetes, group II: (n = 71) diagnosed cases of non-alcoholic fatty liver disease with obesity patients and group III included (n = 80) healthy control subjects. Serum ferritin was measured by ELISA method. Estimation of serum uric acid was done by uricase peroxidase colorimetric method. Plasma MDA was estimated by spectrophotometric method.

Results: The present study showed that serum ferritin, serum uric acid and plasma MDA levels were significantly increased (p<0.001) in NAFLD with diabetes mellitus patients (333.42±82.93, 14.29±1.87, 7.75±3.35, respectively) as compared with healthy controls (126.30±72.12, 5.19±1.72, 2.79±0.52, respectively), and also significantly increased (p < 0.001) in NAFLD with obesity patients (300.87±85.80, 12.08±2.81, 7.43±3.05, respectively) when they compared with healthy controls (126.30±72.12, 5.19±1.72, 2.79±0.52, respectively).

Conclusion: Serum ferritin, serum uric acid and plasma MDA are associated with the increased risk for non-alcoholic fatty liver disease.

Keywords: Malondialdehyde (MDA), Non-alcoholic fatty liver disease (NAFLD), Reactive oxygen species (ROS)

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized the major cause of chronic liver diseases that may lead to end-stage liver disease [1]. NAFLD enhance the progression of fibrosis, liver cirrhosis, and liver failure [2]. Fat accumulation in the liver cell is characteristic feature of development of NAFLD [3]. The pathogenesis of NAFLD has not been fully understood, but it is observed that obesity, diabetes and hyperlipidemia are the major risk factors which are associated with development of non-alcoholic fatty liver disease [4, 5, 6]. NAFLD is most prevalent disease in developed [7] as well as in developing countries. In India the prevalence rate of NAFLD is 9.32% in among population [8]. In addition to its high prevalence rate, the most important challenge is early diagnosis and risk stratification of NAFLD.

Serum ferritin is an acute-phase protein and its concentration fluctuated in inflammation of liver, hepatic necrosis and alcoholism [9]. Increased levels of serum ferritin have been reported in patients with type 2 diabetes mellitus [10, 11] and different metabolic abnormalities [12] includes high fasting plasma glucose and high serum total cholesterol. Increased ferritin may be intermediated by undiagnosed non-alcoholic fatty liver disease [13] However, the relationship of serum ferritin with NAFLD is not clear.

Uric acid is the end product of purine nucleotides metabolism and excreted through the urine [14]. Previous studies have been shown that increased serum uric acid has also been implicated in the development of metabolic syndrome, hypertension, kidney disease, and cardiovascular disease [15]. The mechanism includes oxidative stress, systemic inflammation, and endothelial dysfunction which
are induced by increased serum uric acid [16, 17]. However, the NAFLD was considered a hepatic manifestation of the metabolic syndrome [18]. Evidence suggests that increased serum uric acid levels associated with increased serum liver enzymes, liver cirrhosis and the development or progression of NAFLD [19, 20, 21]. Therefore, there might be a relationship between uric acid levels and NAFLD.

Malondialdehyde (MDA) is a product of lipid peroxidation and marker for oxidative stress [22]. Oxidative stress is an important player in the pathogenesis of fatty liver to non-alcoholic fatty liver disease [23]. The increased production of reactive oxygen species (ROS) is most common cause of lipid peroxidation, followed by an inflammatory response, and activation of hepatic cells leading to liver fibrosis and liver damage [24, 25, 26].

There are several laboratory investigations have been used for diagnosis of NAFLD. However, a very little information available that the serum ferritin, uric acid and MDA are related to the NAFLD. Therefore, the present study was undertaken to estimate the levels of serum ferritin, serum uric acid and plasma MDA in non-alcoholic fatty liver disease patients.

2. Material and Methods

The present study was carried out in the Department of Biochemistry, Sri Aurobindo Institute of Medical sciences (SAIMS), Indore, M.P., India between July 2014 to September 2015. Patients were enrolled from Department of Medicine, Gastroenterology clinic, SAIMS College and Hospital, Indore. Total (n = 230) subjects were selected for the study and divided in three groups. Group I; included (n = 79) diagnosed cases of non-alcoholic fatty liver disease with diabetes, group II; included (n = 71) diagnosed cases of non-alcoholic fatty liver disease with obesity. The age range was between 25 to 75 years for both males and females. Group III included (n = 80) healthy control subjects with age and sex matched for cases. Cardiovascular associated liver disease, malignancy, kidney disease, asthma, gout and other infectious diseases were excluded from the study. The study was approved by the Institutional Ethical Committee and patients were recruited for the study after taking their written informed consent. A detailed physical examination was done which included measuring of height, weight and blood pressure.

2.1. Sample collection and analysis of biochemical parameters

The blood samples from patients necessary for biochemical parameters were obtained after 12 hours fasting. Blood samples transferred in EDTA tubes were centrifuged at 3000 rpm for 15 min and their plasma fractions were used to measure MDA levels and plasma glucose, and blood samples collected in plain tubes were used for the analysis of serum ferritin, serum uric acid, serum liver function tests and serum lipid profile. Determination of serum ferritin was done by commercial ELISA kit [27]. Estimation of serum uric acid was carried out by uricase peroxidase colorimeter method at 505 nm [28]. Plasma MDA was measured by spectrophotometric method at 531nm [29].

2.2 Statistical analysis

The statistical analysis was carried out by the SPSS statistics version 20.0. Values are presented as means ± standard deviation (means ±SD). p < 0.05 was considered as significant level.

3. Results

3.1. Age distribution in study subjects

The age distribution in non-alcoholic fatty liver disease and healthy control subjects are listed in [Table 1]. Out of total (n = 150) subjects, seventy nine NAFLD patients were having diabetes mellitus and seventy one were having obesity. According to age distribution, 41 to 60 years age group subjects were in higher numbers as compare to other age groups.

3.2 Gender distribution in study subjects

Gender distributions in non-alcoholic fatty liver disease are shown in [Table 2]. Out of the 79 NAFLD with diabetes cases, 41 patients were males and 38 were females. Of the 71 NAFLD with obesity, 28 patients were males and 43 were females. In healthy controls, 53 were males and 27 were females. In age group 41-60 years, the prevalence of diabetes and obesity with NAFLD is more in females as compare to males.

3.3 Demographic and biochemical characteristic profile of NAFLD with diabetes patients

The basal metabolic rate (BMI), plasma glucose, serum SGPT, SGOT, triglyceride, and total cholesterol levels in NAFLD with diabetes mellitus patients and healthy control are shown in [Table 3]. The plasma glucose, serum SGPT, SGOT, triglyceride, and total cholesterol levels were found significantly increased as compared to healthy controls. However, no significant change was found in BMI when NAFLD with diabetes patients compared to healthy controls.

3.4 Demographic and biochemical characteristic profile of NAFLD with obesity patients

BMI, plasma glucose, serum SGPT, SGOT, triglyceride, and total cholesterol levels in NAFLD with obesity patients and healthy control are shown in [Table 4]. The BMI, plasma glucose, serum SGPT, SGOT, triglyceride, and total cholesterol levels were found significantly increased in NAFLD with obesity patients as compared to healthy controls.

3.5 Serum ferritin, serum uric acid and plasma MDA levels in NAFLD with diabetes mellitus patients

Serum ferritin level, serum uric acid, serum liver function tests and serum lipid profile. Determination of serum ferritin was done by
significantly increased in NAFLD with diabetes mellitus patients as compared to healthy controls.

3.6 Serum ferritin, serum uric acid and plasma MDA levels in NAFLD with obesity patients and healthy controls

Table 1: Age distribution of all non-alcoholic fatty liver disease patients and healthy controls

Age (year)	NAFLD with diabetes n = 79	NAFLD with obesity n = 71	Healthy controls n = 80
25 - 30	9	5	13
31- 40	17	11	21
41- 60	37	43	28
61-75	16	12	18
Total	79	71	80

Table 2: Gender distribution of all non-alcoholic fatty liver disease patients and healthy controls

Age (year)	NAFLD with diabetes n = 79	NAFLD with obesity n = 71	Healthy controls n = 80
Male	41	38	49
Female	38	42	31

Table 3: Demographic and biochemical characteristics of NAFLD with diabetes mellitus patients and healthy controls

Parameters	NAFLD with diabetes (n=79)	Healthy controls (n=80)	p value
BMI (kg/m²)	18.6 ± 3.1	18.8 ± 1.9	NS
Plasma glucose (mg/dL)	176.11 ± 20.17	74.14 ± 8.66	< 0.001
SGPT (IU/L)	53.34 ± 11.61	26.00 ± 9.01	< 0.001
SGOT (IU/L)	48.59 ± 10.95	32.18 ± 8.12	< 0.001
Triglyceride (mg/dL)	203.82 ± 24.99	120.95 ± 13.61	< 0.001
Total cholesterol (mg/dL)	254.2 ± 84.22	165.38 ± 24.9	< 0.001

Data are presented as mean ± SD, p < 0.05 was considered as significant level.

Table 4: Demographic and biochemical characteristics of NAFLD with obesity patients and healthy controls

Parameters	NAFLD with obesity (n=71)	Healthy controls (n=80)	p value
BMI (kg/m²)	32.14 ± 7.23	18.8±1.9	< 0.001
plasma glucose (mg/dL)	157.21 ± 17.26	74.14±8.66	< 0.001
SGPT (IU/L)	56.40 ± 12.32	26.00 ± 9.01	< 0.001
SGOT (IU/L)	49.77 ± 10.69	32.18 ± 8.12	< 0.001
Triglyceride (mg/dL)	199.49 ± 29.60	120.95 ± 13.61	< 0.001
Total cholesterol (mg/dL)	267.11 ± 87.39	165.38 ± 24.9	< 0.001

Data are presented as mean ± SD, p <0.05 was considered as significant level.

Table 5: Serum ferritin, serum uric acid and plasma MDA levels in NAFLD with diabetes mellitus patients and healthy controls

Parameters	NAFLD with diabetes (n=79)	Healthy controls (n=80)	p value
Ferritin (ng/dL)	333.42 ± 82.93	126.30 ± 72.12	< 0.001
Uric acid (mg/dL)	14.29 ± 1.87	5.19 ± 1.72	< 0.001
MDA (µmol/mL)	7.75 ± 3.35	2.79 ± 0.52	< 0.001

Data are presented as mean ± SD, p < 0.05 was considered as significant level.

Table 6: Serum ferritin, serum uric acid and plasma MDA levels in NAFLD with obesity patients and healthy control

Parameters	NAFLD with obesity (n=71)	Healthy controls (n=80)	p value
Ferritin (ng/dL)	300.87 ± 85.80	126.30 ± 72.12	< 0.001
Uric acid (mg/dL)	12.08 ± 2.81	5.19 ± 1.72	< 0.001
MDA (µmol/mL)	7.43 ± 3.05	2.79 ± 0.52	< 0.001

Data are presented as mean ± SD, p < 0.05 was considered as significant level.
4. Discussion

In the present study, we observed that obesity and diabetes mellitus were more prevalent in patients between 41-60 years age group. In this study, BMI was found statistically significant in NAFLD with obesity patients as compared with controls. A statistically significant difference was found for plasma glucose levels in NAFLD with diabetes and with obesity patients when compared both the groups with healthy controls. We observed mild statistically significant increase in SGPT and SGOT in NAFLD with diabetes and with obesity patients. We also observed statistically significant increased levels of triglyceride and total cholesterol in NAFLD with diabetes and with obesity in the present study. Hence, the results support that BMI is associated with the degree of fat infiltration in the liver [30]. In the Indian population, obesity is major cause for increased risk of steatosis [31]. According to Ludwig J et al, NAFLD in obese female case is related to the status of fibrosis [32]. The increased prevalence of diabetes and obesity are well thought out to be most important causes for non-alcoholic liver disease.

In the present study, we observed significantly increased serum ferritin levels (< 0.001) in non-alcoholic fatty liver disease with diabetes mellitus and with obesity as compared with control group. In support to our results, anbakan et al, have found serum ferritin levels were higher in patients with NASH than in those with simple steatosis [33]. Puljiz et al, have also reported a statistically significant correlation between serum ferritin and NAFLD stages [34]. Some studies have shown that concentration of ferritin associated with an increased risk of obesity and diabetes and increased levels of serum ferritin is marker of non-alcoholic fatty liver disease patients [35, 36]. In contrast to our results, Angulo et al, have reported that serum ferritin, when controlled for age, obesity, diabetes and the SGOT/SGPT ratio, did not correlate with the severity of NAFLD [37]. The mechanism of increased levels of serum ferritin in patients with NAFLD might be due to systemic inflammation, increased iron stores, or both. Increased serum ferritin in non-alcoholic fatty liver disease with diabetic and with obesity patients is a reflector of body iron stores. Accumulation of iron in the liver cells may cause insulin resistance and repress hepatic glucose production [38, 39]. Increased formation of free radicals also responsible for the oxidative stress which can lead to hyperglycemia via altered glucose metabolism [40].

In the present study, we observed statistically significant increased serum uric acid levels (< 0.001) in non-alcoholic fatty liver disease with obesity and with diabetes mellitus patients. The significant association between uric acid and non-alcoholic fatty liver disease suggest that high uric acid levels may play an important role in the development of NAFLD. Previous studies have shown that the increase serum uric acid levels were independently and positively associated with the risk for incident non-alcoholic fatty liver disease with obesity and with diabetes [41, 42, 43]. The injured liver cells released uric acid and induced inflammation [44, 45] In the normal condition the liver can be exported and transformed of large crystals of uric acid. Non-alcoholic steatohepatitis, is one of the important stage of liver damage which induce cell death results accumulation of uric acid and prevent the release of uric acid in the extracellular environment [46].

The level of plasma MDA, which is the end product of lipid peroxidation, was significantly increased (< 0.001), in NAFLD with diabetes and with obesity patients as compared to control group. Previous studies have shown that the plasma MDA levels significantly increased in non-alcoholic fatty liver disease with obesity and with diabetes mellitus patients than healthy control subjects [47, 48]. It is reported that liver MDA, which is an indicator of lipid peroxidation, explain the presence of an enough antioxidant pool in the early stages of the disease before development of fibrosis [49]. Therefore, estimation of MDA would be an ideal approach in the pathogenesis of non-alcoholic fatty liver disease.

5. Conclusion

The present study shows that the serum ferritin, serum uric acid and plasma MDA levels are associated with development of non-alcoholic fatty liver disease which may lead to liver cirrhosis. Diabetes mellitus and obesity are risk factors for increasing non-alcoholic fatty liver disease.

Conflict of interest statement

The authors declare that there is no conflict of interest.

Acknowledgment

Authors are thankful to colleague and the patients for their valuable support and cooperation.

References

[1] Angulo P. Non-alcoholic fatty liver disease. *N Engl J Med.* 2002; 346:1221-1231.
[2] Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. *Ann Intern Med.* 1997; 126:137-145.
[3] Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease. *Hepatology.* 2012; 55 (6):2005-2023.
[4] Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. *Hepatology.* 1990; 12:1106–1110.
[5] Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. *Hepatology.* 1990; 11:74-80.
The prevalence of tors for predictions of nonalcoholic fatty liver disease: Mayo Clinic experiences. Serum uric acid levels in patients with chronic alcoholic and non-alcoholic liver diseases. J Intern Med. 1994; 236: s315–322.

Turlin B, Mendler MH, Moirand R, Guyader D, Guillygomarch A, Deugnier Y. Histologic features of the liver in insulin resistance-associated iron overload. A study of 139 patients. Am J Clin Pathol. 2001; 116: 263–270.

Fernandez-Real JM, Ricart-Engel W, Arroyo E, Balança R, Casamitjana-Aabella R, Cabrero D, et al. Serum ferritin as a component of the insulin resistance syndrome. Diabetes Care. 1998; 21: 62–68.

Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R. NAFLD and hyperinsulinemia are major determinants of serum ferritin levels. J Hepatol. 2007; 46: 700–707.

Burns CM, Worrall RM. Disorders of Purine and Pyrimidine metabolism. In Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J (Eds.). Harrison’s Principles of Internal Medicine. 18th ed. USA: The McGraw-Hill Companies, Inc. 2011: 3181-3187.

Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980; 55: 434-438.

Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008; 359: 1811-1821.

Edwards NL. The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol. 2009; 21: 132-137.

Cai W, Song JM, Zhang B, Sun YP, Yao H, Zhang YX. The Prevalence of nonalcoholic fatty liver disease and relationship with serum uric acid level in Uygur population. The Scientific World Journal. 2014; 1-7.

Xu C, Yu C, Xu L, Miao M, Li Y. High serum uric acid increases the risk for nonalcoholic Fatty liver disease: a prospective observational study. PLOS One. 2010; 145(7): e11578.

Ryu S, Chang Y, Kim SG, Cho J, Guallar E. Serum uric acid levels predict incident nonalcoholic fatty liver disease in healthy Korean men. Metabolism. 2011; 60(6): 860-866.

Afzali A, Weiss NS, Boyko EJ, Ioannou GN. Association between serum uric acid level and chronic liver disease in the United States. Hepatology. 2010; 52:578-589.

Moore K, Roberts LJ. Measurement of lipid peroxidation. Free Radic. Res. 1998; 28(6): 659-671.

Xiuli L, Meng W. The recent advances in the pathogenesis of nonalcoholic fatty liver disease, Lishizhen Medicine and Materia. Medica Research. 2010; 21(10): 2647–2648.

Yang S, Zhu H, Li Y, et al. Mitochondria adaptation to obesity-related oxidant stress. Archives of Biochemistry and Bio-physics. 2000; 378: 259-268.

Curzio M, Esterbauer H & Dianzani MU. Chemotactic activity of hydroxylalkenals on rat neutrophils. International Journal of Tissue Reactions. 1985; 7: 137-142.

Lee KS, Buck M, Hougkum L, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995 Nov; 96 (5): 2461-2468.

White D, et. al., Am. J. Clin. Path. (Feb. 1986).

Fossati P, Prencipe L., (1980). Clin. Chem. 26: 22.

Jean CD, Maryse T, Marie JF. Plasma malondialdehyde levels during myocardial infarction. Clin Chim Acta. 1983; 129: 319–22.

Baldrige AD, Perez-Atayde AR, Graeme-Cook F, Higgins L, Lavine JE. Idiopathic steatohepatitis in childhood. A multicenter retrospective study. J Pediatr 1995; 127:700-704.

Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, et al. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Am Intern Med. 2000; 132(2): 112-117.

Ludwig J, Viggiano TR, McGill DB, Ott BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980; 55: 434-438.

Canbakan B, Senturk H, Tahan V, Hatemi H, Balci, T. Toptas, et al. Clinical, biochemical and histological correlations in a group of non-drinker subjects with non-alcoholic fatty liver disease. Acta Gastroenterol Belg 2007; 70: 277-284.

Pulijz, Z., Stimac, D., Kovac, D., Pulijz, M., Britanic, A., Kovacic et al. Predictors of nonalcoholic steatohepatitis in patients with elevated alanine aminotransferase activity. Coll Antropol. 2010; 34 Suppl 1: 33-37.

Issa D. Abstract 29. Presented at: ACG Annual Scientific Meeting, Oct 2014; Philadelphia. No. 1 2 197 81983.
Meena Varma et al. / Study of serum ferritin, serum uric acid and plasma MDA levels in non-alcoholic fatty liver disease

[36] Jae Jun Shim. Body iron, serum ferritin, and non-alcoholic fatty liver disease. Korean J Hepatol. 2012; 18(1):105–107.

[37] Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology. 1999; 30:1356-1362.

[38] Fernandez-Real JM, Penarroja G, Castro A, Garcia-Bragado F, Lopez-Bermejo A, Ricart W. Bloodletting in high ferritin type 2diabetes: effects on vascular reactivity. Diabetes Care. 2002; 25(12):2249-2255.

[39] Moczulski DK, Grzeszczak W, Gawlik B. Role of hemochromatosis C282Y and H63D mutations in HFE gene in development of type 2diabetes and diabetic nephropathy. Diabetes Care. 2001; 24(7):1187-1191.

[40] Opara EC. Role of oxidative stress in the etiology of type 2 diabetes and the effect of antioxidant supplementation on glycemic control. J Investing Med. 2004; 52(1):19–23.

[41] Melvin R Hayden and Suresh C Tyagi. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr Metab (Lond). 2004; 1(1):10.

[42] Sertoglu E, Ercin NC, Celebi G, Gurel H, Huseyin Kayadibi, Halil Genc et al. The relationship of serum uric acid with nonalcoholic fatty liver disease. Clin. Biochem. 2014; 47:383–388.

[43] Johnson RJ, Takahiko Nakagawa L, Gabriela Sanchez-Lozada, Mohamed Shafiu, Shikha Sundaram, Myphuong Le, et al. Uric Acid and the Etiology of Diabetes and Obesity. Diabetes. 2013 Oct; 62(10):3307–3315.

[44] Petta S, Camma C, Cabibi D, Di Marco V, Craxi A. Hyperuricemia is associated with histological liver damage in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2011; 34:757–766.

[45] Kono H, Chen CJ, Ontiveros F, Rock KL. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest. 2010; 120:1939–1949.

[46] Hoque R, Vodovotz Y, Mehal W. Therapeutic strategies in inflammation mediated diseases of the liver. J Hepatol. 2013; 58: 1047–1052.

[47] Alam R, Khushtar SK, Salman A. MDA and antioxidants status in Type 2 Diabetes mellitus. NJIRM. 2013; 4 (6):75-78.

[48] Brlton RS. Metal induced hepatotoxicity, Sermin. Liver Disease. 1996; 16:3-2.

[49] Yadav D, Hertan HI, Schweitzer P, Norkus EP, Pitchumoni CS. Serum and liver micronutrient antioxidants and serum oxidative stress in patients with chronic hepatitis C. Am J Gastroenterol. 2002; 97:2634-2639.