REPLACING A GRAPH CLASPER BY TREE CLASPERs

KAZUO HABIRO

Abstract. We prove that two links related by a surgery along a connected, strict graph clasper of degree n are C_n-equivalent, i.e., related by a sequence of surgeries along strict tree claspers of degree n.

1. Introduction

Goussarov [6, 7] and the author [8] independently introduced topological calculus of surgery along claspers. One of the main achievements in these theories is the following characterization of the topological information carried by Goussarov-Vassiliev finite type invariants [10, 3, 2, 9, 1]: Two knots in S^3 have the same values for any Goussarov-Vassiliev invariant of degree $< n$ if and only if they are related by a sequence of C_n-moves [7, 8]. Here a C_n-move is defined as surgery along a certain type of tree clasper, which is a framed unitrivalent tree with each univalent vertex attached to the knot.

In [8, §8.2], the author also introduced the notion of graph claspers for links, which is a generalization of the notion of tree claspers, where the tree part is replaced by a unitrivalent graph. There we explained the idea that graph claspers may be regarded as topological realizations of unirtrivalent graphs (also called Feynman diagrams, Jacobi diagrams, etc.) used by Bar-Natan [1] to describe the structure of the graded quotients of the Goussarov-Vassiliev filtration. Recall that, in the diagram level, any connected, unitrivalent graph diagram on a 1-manifold is equivalent under the STU relations to a linear combination of tree diagrams. The purpose of this short note is to prove a topological version of the above-mentioned fact: surgery along a strict graph clasper G for a link can be replaced by a sequence of surgeries along strict tree claspers of the same degree as G.

2. Definitions

We freely use the definitions, notations and conventions in [8].

In the following, M denotes a compact, connected, oriented 3-manifold.

A tangle γ in M is a “link” in the sense of [8, §1.1], i.e., a proper embedding $f: \alpha \rightarrow M$ of a compact, oriented 1-manifold α into M. As usual, we systematically confuse γ and the image $\gamma(\alpha) \subset M$. A link in the usual sense is a tangle consisting only of circle components.

Two tangles γ and γ' in M are equivalent, denoted by $\gamma \cong \gamma'$, if γ and γ' are ambient isotopic fixing the endpoints.

Date: October 21, 2005.

Key words and phrases. tree claspers, graph claspers, C_n-equivalence, Goussarov-Vassiliev finite type link invariants.

This research was partially supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B), 16740033.
Figure 1.

For the definitions of claspers, tree claspers and graph claspers, see [8, §1, §2, §8.2]. Note that a tree clasper is a special kind of connected graph clasper. A graph clasper G is called strict if G has no leaves. I.e., a strict graph clasper is a clasper consisting only of disk-leaves, nodes, and edges.

An important property of a strict graph clasper G for a tangle γ in M is that G is tame (see [8, §2.3]), and consequently surgery along G does not change the 3-manifold up to canonical homeomorphism. (The proof of this fact is similar to [8, Proposition 3.3].) Thus we may regard the result γ^G from γ of surgery along G as a tangle in M.

A disk-leaf A in a clasper for a tangle γ is simple if A intersects γ by only one point. A strict graph clasper is simple if all the disk-leaves are simple.

For $k \geq 1$, a C_n-move is a local move on a tangle defined as surgery along a strict tree clasper of degree $n \geq 1$, which is not necessarily simple. The C_n-equivalence on tangles is generated by C_n-moves and equivalence.

3. Statement and proof of the result

The purpose of this note is to prove the following.

Theorem 1 (Stated in a different form in [8, §8.2, p.68, l.4]). Let γ be a tangle in a compact, connected, oriented 3-manifold M, and let G be a strict graph clasper for γ in M of degree $n \geq 1$, which is not necessarily simple. Then γ and γ^G are C_n-equivalent. (Consequently, by [8, Theorem 3.17], there are finitely many disjoint simple tree claspers T_1, \ldots, T_p for γ of degree n such that $\gamma^G \cong \gamma^T_{1 \cup \cdots \cup T_p}$.)

Proof. We may safely assume that G is connected.

The proof is by induction on the number $e(G)$ of edges in G. If $e(G) = 1$, then G is already a strict tree clasper, and hence the assertion follows.

Let $e(G) > 1$. If we have the assertion for the case when G is simple, then we have the general case by replacing a single strand by a parallel family of strands. Hence we may assume that G is simple. (This assumption is just for simplifying explanations and figures.) Choose any disk-leaf L of G. Since $e(G) > 1$, L is joined by an edge to a node. Let G' denote the the strict graph clasper obtained from G by move 9 of [8, Proposition 2.7] and isotopy as depicted in Figure 1. We have

$\gamma^G \cong \gamma^{G'}$. There are two cases.

Case 1. G' is connected. Since $e(G') = e(G) - 1$ and $\deg G' = \deg G$, the assertion follows from the induction hypothesis.

Case 2. G' consists of two components G_1 and G_2. We have

\begin{align}
\gamma^{G_1 \cup G_2} &\cong \gamma^G, \\
\deg G_1 + \deg G_2 &\cong \deg G = n.
\end{align}
For $i = 1, 2$, let N_i be a small regular neighborhood of G_i, such that $N_1 \cap N_2$ is empty. Let $\gamma_i = \gamma \cap N_i$, which is a tangle in N_i. Let $c \subset \gamma$ be the component which intersects L. Let L_i denote the new disk-leaf in G_i, which intersects c. By the induction hypothesis and [8, Theorem 3.17], for $i = 1, 2$, there is a clasper F_i consisting of finitely many disjoint, simple strict tree claspers of degree $\deg G_i$ for γ_i in N_i, such that

$$\gamma_i^{F_i} \cong (\gamma_i)^{G_i}.$$

(3.3)

For $i = 1, 2$, $c \cap N_i$ consists of two components c_i, c'_i, where these components for $i = 1, 2$ placed in c in the order c_1, c_2, c'_1, c'_2. For each of these arcs c_1, c_2, c'_1, c'_2, there are finitely many intersecting disk-leaves and finitely many winding edges, as depicted in the left-hand side of Figure 2. Slide the disk-leaves and edges of F_2 around c_2 along c to traverse those of F_1 around c'_1. The result is depicted in the right-hand side of Figure 2. By [8, Propositions 4.4 and 4.6], this sliding does not change the C_n-equivalence class of result of surgery on γ. Let $F'_2 \subset N_2$ denote the clasper obtained from F_2 by the above sliding moves. It follows from the construction of G_1 and G_2 that $\gamma_{F_1 \cup F'_2} \cong \gamma_{G_1' \cup G_2'}$, where G_1' and G_2' are depicted in Figure 3. By an obvious graph-clasper version of [8, Proposition 3.4], we have $\gamma_{G_1' \cup G_2'} \cong \gamma$. Hence we have

$$\gamma_{F_1 \cup F'_2} \cong \gamma_{F_1 \cup F'_2} \cong \gamma_{G_1' \cup G_2'} \cong \gamma.$$

The assertion follows from this, (3.1), and (3.3). □

Remark. More systematic study of graph claspers as announced in [8, §8.2, §8.3] will appear elsewhere.

Acknowledgments. The author thanks Jean-Baptiste Meilhan for reading draft versions of this paper and giving me many helpful comments. He also thank Toshifumi
Tanaka for asking me about the proof of the theorem, which motivated him to write this paper.

References

[1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472.
[2] J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253–287.
[3] J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993), no. 2, 225–270.
[4] M. N. Gusarov, A new form of the Conway-Jones polynomial of oriented links, (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991), Geom. i Topol. 1, 4–9, 161; translation in Topology of manifolds and varieties, 167–172, Adv. Soviet Math., 18, Amer. Math. Soc., Providence, RI, 1994.
[5] M. Gusarov, On n-equivalence of knots and invariants of finite degree, Topology of manifolds and varieties, 173–192, Adv. Soviet Math., 18, Amer. Math. Soc., Providence, RI, 1994.
[6] M. Goussarov (Gusarov), Finite type invariants and n-equivalence of 3-manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 517–522.
[7] M. N. Gusarov, Variations of knotted graphs. The geometric technique of n-equivalence. (Russian), Algebra i Analiz 12 (2000), no. 4, 79–125; translation in St. Petersburg Math. J. 12 (2001), no. 4, 569–604.
[8] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
[9] M. Kontsevich, Vassiliev’s knot invariants, I. M. Gel’fand Seminar, 137–150, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993.
[10] V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, 23–69, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan

E-mail address: habiro@kurims.kyoto-u.ac.jp