Shuffling Yeast Gene Expression Data

Sven Bilke

Complex Systems Division, Department of Theoretical Physics
University of Lund, Sölvegatan 14A, S-22362 Lund, Sweden
http://www.thep.lu.se/complex/

Abstract
A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

*eMail: sven@thep.lu.se
1 Introduction

The DNA microarray technology [1] has greatly facilitated the study of gene expressions. With a single microarray, the expression of thousands of genes can be measured simultaneously. Based on the central dogma it is reasonable to understand these expression vectors as a description of the functional state of the cell. The dynamics of the state-trajectory observed in expression time series reveals much information about the regulatory network underlying gene expression. A detailed knowledge of this network would allow for the analysis of possible states and trajectories, including, say, transitions from disease to a healthy state.

Therefore, it is very tempting to try to infer the regulatory network from the data. One should, however, be aware of the limitations in the data available so far. It is very possible that large parts of the network were inactive for the states observed. These “unexcited” parts of the network can not be deduced from the data. Furthermore important parts of the regulatory network, like e.g. inter- and intra-cell signalling, are observed only indirectly by back reaction on the gene expression pattern.

Cluster algorithms have been used successfully in the analysis of gene expression data. Using for example hierarchical clustering it has been demonstrated [2] that many genes, which on biological grounds are known to be related, are located near by in the similarity tree. It is however difficult to identify genes which belong to a larger functional context, like for example cell cycle regulated genes. If two of the corresponding patterns are expressed with a phase difference close to $\pi/4$, they are uncorrelated and therefore placed on remote sites in the similarity tree.

The prior knowledge of the cell cycle frequency ν_{cc} was used to identify the cell cycle regulated genes by inspection [3]. In [4] a spectral filter was used for this purpose. Expression patterns, for which the spectral energy at frequency $\nu \approx \nu_{cc}$ is larger than some threshold, were selected as cell cycle regulated.

In this work we use a new method, the re-shuffling algorithm [5], to identify functional groups in the expression data. The algorithm sorts the data based on a global similarity score, which makes it very robust with respect to noise. The method does not distribute the data into clusters. The structure found in the data is rather reflected in a re-ordered sequence of expression patterns. Using this algorithm we are able to identify the cell cycle regulated genes in the budding yeast $S.\ cerevisiae$ without referring to prior knowledge. Furthermore we find a second, independent clock in the cell. The reordered sequence of expression patterns can reflect the propagation of a signal in the data. Patterns, which respond to the same, deformed signal are grouped together, even if they are mutually uncorrelated.
2 Algorithm

In this section we briefly describe the algorithm used to analyze the data. A more detailed description can be found elsewhere [5].

The starting point is a matrix C_{ij} encoding the similarity between expression patterns i and j. This similarity can, for example, be the mutual information or correlation for the two patterns. The purpose of the algorithm is to find a relabeling $i \rightarrow \sigma(i)$ such that similar patterns i, j, i.e. $|C_{ij}| \approx 1$, get similar labels: $|\sigma(i) - \sigma(j)| \approx 1$. This is, however, not achieved by performing local, mutual, comparisons, but rather by letting expression patterns move freely in a “force-field” generated by all other particles. This field is is described by the energy

$$S_{\alpha}(\alpha, \gamma, \lambda) = -\sum_{i,j} \text{sgn}(C_{\sigma(i)\sigma(j)}) \gamma |C_{\sigma(i)\sigma(j)}|^\alpha \exp -\frac{d(i,j)^2}{N\lambda}.$$ \hfill (1)

The optimal sorting in the sense described above is the one minimizing this energy. The parameter α controls the importance of the similarity in the sorting procedure, we use $\alpha = 2$. The variable λ is a localization parameter. For small λ, mainly similarities close in index space contribute to the energy. This leads to a local optimization. For large λ a more global optimization is achieved. The parameter γ is used to switch between maintaining ($\gamma = 1$) or ignoring ($\gamma = 0$) the sign of C_{ij}.

Obviously the average distance \bar{d} of indices from all other indices is not evenly distributed. It reaches its maximum on the border $i = 1, N$. This non-flat distribution is not desired, therefore we use a cyclic distance measure in index space. With

$$d(i,j) = \begin{cases}
|i - j| & \text{if } |i - j| < N/2 \\
|i - j - N| & \text{if } |i - j| \geq N/2
\end{cases},$$ \hfill (2)

the first and the last pattern in the list are direct neighbors, the system has no boundary and therefore the \bar{d} distribution is flat.

Unless C_{ij} has a very simple form, the minimization of equation (1) is a non-trivial task. We use simulated annealing [6] for this purpose. In the annealing procedure a fictious ensemble temperature T is lowered. At the beginning, at high temperature, the global aspects of the structure contained in the data should be built into the order of expression patterns, while towards the end of the annealing procedure, at low temperature, the more local optimization takes place. Therefore the localization parameter λ is lowered together with the temperature from typically $\lambda = 1$ to $\lambda = 0.05$ in this procedure.
For this work we used the expression data for *S. cerevisae*, which is available on the internet † and described in [4]. Here we want to demonstrate the feasibility of our algorithm on a subset of this data set.

The original data consists of 82 experiments, which were done at different time points and/or boundary conditions. Each experiment provides measurements of 6177 expression ratios. The subset used here was extracted in the following way:

1. Experiments with more than 400 missing expression ratios were removed.
2. Expression patterns (in gene direction) with more than 8 missing ratios were removed.
3. From the remaining genes measured in $\tau = 69$ experiments we kept those $N = 803$ patterns with variance $\sigma > 0.5$.

In the following the Pearson correlation

$$C_{ij} = \frac{\sum_t (D_{it} - \overline{D_i})(D_{jt} - \overline{D_j})}{\tau \sqrt{\text{Var}(D_i)\text{Var}(D_j)}}$$

(3)

is used as the similarity score in equation (1). First the absolute value $|C_{ij}|$ is used ($\gamma = 0$), because we are interested in analyzing functional groups of genes, which show up by (anti)-correlated expression patterns. The result of the sorting procedure is visualized in figure 1, a graphical representation of the correlation matrix. In this diagram the intensity of the pixel at coordinate (i, j) is proportional to the absolute value $|C_{ij}|$. Red color represents correlation, green color anti-correlation.

At coordinates adjacent to the main diagonal of the matrix one clearly observes a grouping of gene expression patterns. With the help of the annotations for the genes involved one can verify that the grouping reflects a classification with respect to gene function. The annotation displayed in figure 1 refers to the most frequent phrase found in the annotation database for the genes in these groups. These typical phrases do not exclusively show up there, their distribution over the whole dataset is, however, strongly peaked in the marked groups.

The diagram does not only contain information about the dominant correlation, which clusters the genes into groups. Sub-dominant co-regulations can be seen in the more off-diagonal

†http://cellcycle-www.standford.edu
Figure 1: Correlation Matrix for the 800 most variant gene expression patterns. The annotation refers to the most frequent annotation found in the database for the genes in this group.

As expected, the non-local interaction (1) sorts the groups on the main diagonal such that clusters with sub-dominant co-regulation group together. Therefore the distance of groups on the main diagonal reflects the relative strength of co-regulation. In the off-diagonal correlation coefficients an interesting fine structure can be observed: for example in the region marked with an arrow one sees that two groups, which are internally correlated, can be correlated and anti-correlated at the same time. From this observation one can infer a fine-structure into the groups on the diagonal.

The checker board patterns observed in the upper left and lower right in figure 1 are very interesting. Obviously they are generated by oscillatory processes: adjacent red and green blocks indicate co-regulated, but mutually exclusive expressed genes. These genes are active in different parts of a cycle. By inspection of gene annotations, the lower right functional group is identified as cell-cycle regulated genes. In [4] these genes were identified using a different method. Expression patterns, for which the Fourier component for frequencies close to the expected cell-cycle frequency were larger than some threshold were identified as cell-cycle regulated. For our method, the introduction of a threshold and knowledge of the oscillator frequency is not necessary.

The checker board in the upper left corner represents a second cell “clock”. From the intensity of the correlation of this group with the cell-cycle, we conclude that this second clock is not strongly coupled to the cell cycle. Therefore this functional group is an independent
oscillator. To elaborate this further we have analyzed the frequency spectrum for the expression patterns of genes in this group and for the cell-cycle regulated genes. Both spectral power distributions show a clear maximum at a frequency ν, which differs significantly for the two groups. For the second clock we find $\nu = 4/7 \nu_{cc}$, where ν_{cc} is the frequency which maximizes the cell cycle power spectrum. The method used in [4] could therefore not identify the genes in this group as cyclic regulated.

A list of genes controlled by this cell-clock is available at http://www.thep.lu.se/~sven. Unfortunately, the maximal time-span, for which experiments were done, contains only one complete cycle of this clock. It is therefore not possible to decide, if this is a continuous oscillator or a one-shot clock. Some annotations which appear frequently for the genes found in this functional group make it plausible, that this clock controls the transcription of genes and the synthesis of proteins.

Next we want to show how the non-local part of the interaction in (1) influences the ordering of gene expression patterns. For each site i in the list of expression patterns one can define an effective prototype expression P_i, which is induced by all expression patterns in the data set via the energy. This prototype is the pattern which minimizes the energy, the solution $D_{i,t}$ of

$$0 = \frac{\partial}{\partial D_{i,t}} S(\alpha, \beta), \quad t = 1 \ldots \tau. \quad (4)$$

In general this optimal pattern will differ from site to site. Hence it can follow a signal which is deformed from a pattern A to a pattern B.

To demonstrate this property we choose the cell-cycle regulated genes, where the signal “activated” travels through the system. Differently from above, where the list of patterns was sorted with with respect to co-regulation, anti-correlated genes should not be grouped together in this case, because presumably they belong to opposite parts of the cell cycle. We therefore choose $\gamma = 1$, when relabeling the expression patterns. In figure 2 the correlation coefficients for the cell cycle regulated genes sorted in this way are displayed. We have used the analysis in [4] to assign the genes to a specific part in the cell-cycle, the result is presented as the annotation in the diagram. Obviously the data is correctly time-ordered ‡. Note that the algorithm does in no way explicitly refer to the time aspect in the data. In fact, the energy (1) is invariant under the exchange of experiments, different time-points. This observation confirms the capability of the algorithm to identify a previously unknown signal-pathway hidden in the data.

‡Remember the list is cyclic, i.e. the last line is logically adjacent to the first line.
Figure 2: Correlation Matrix for the set of patterns annotated “Cell Cycle” in figure (1) after resorting with $\gamma = 1$. Annotations following [4].

4 Discussion

Re-shuffling is efficient in finding functional groups in the expression data. The philosophy of this algorithm is considerably different from cluster algorithm, which compare each pattern p locally with some prototypic pattern for each cluster and finally assign p to the cluster with the most similar prototype. In this way many of these algorithms do not use the information available about inter-cluster similarities. Re-shuffling is based on a global comparison with all patterns in the ensemble. In this way it makes use of the information contained in sub-leading similarities as well. We want to emphasize that this method is not restricted to the analysis of time expression data. It can also be used to detect patterns in static data to identify, for example, genes which are responsible for a certain phenotype or disease.

Self organizing maps use a non-local assignment of patterns to neurons. Therefore they can reflect inter-cluster similarities. They were used in [7,8] to classify yeast gene expression patterns. With this method it is possible to identify the cell cycle oscillation as a dominant motif in the expression data [7]. However, the neurons most active for the corresponding patterns at different parts of the cell cycle were not grouped in an obvious way. It was not possible to identify these patterns as belonging to the same functional cycle.

The re-shuffling method is able to extract this information. Without any prior knowledge it can identify the cell cycle regulated genes. It is very interesting to observe that the algorithm extracts time information from the data without actually referring to the time aspect. This demonstrates that the pathways of signals can be extracted from the data using this method.
This aspect can be very useful when analyzing functional groups which are not so well known as the cell cycle. A further example of the algorithms power is the identification of a second independent clock in yeast.

A general problem when analyzing expression data is noise. When measurements are easily available, the usual way to reduce noise is to increase the number \(M \) of measurements until the noise level \(\sigma \propto 1/\sqrt{M} \) is small enough. Repeated measurements of the same system would also allow for a reliable estimation of the noise level. This knowledge is crucial when interpreting the results of an analysis. However, gene expression measurements are quite costly in time and are usually not repeated. Therefore the methods used to analyze the data have to be relatively insensitive to noise. The re-shuffling algorithm is very robust in this respect because the energy function (1) used in the sorting procedure averages over all patterns in the data set. Many cluster algorithms and self organizing maps only average over a subset of the data when extracting a prototype for a cluster (or a neighborhood of a neuron). They are therefore more sensitive with respect to noise.

The visualization of the correlation matrix gives some insight into the connectivity of the underlying regulatory network. One may ask if it is possible to learn the full network from the data. The complexity of the model that can be inferred from the data is strictly limited by Shannon’s theorem

\[
\frac{I_{\text{xmit}}}{N} = \nu_{\text{max}} \log_2 \left(1 + \frac{S}{P} \right).
\]

The signal \(S – the \) mRNA concentration in the cell-plasma – is “transmitted” over a channel (the measurement process) with noise \(P \). With an estimated 15% noise-level and the bandwidth given by the Nyquist frequency \(\nu_{\text{max}} = 1/2 \), the maximal amount of information extractable from one measurement of \(N \) ORF’s is less than \(I_x = \frac{4N}{2} \) bits. This is the theoretical upper limit on the information content in the data. It can only be reached if an optimal code is used. This is certainly not the case for the gene expression data, as it contains a lot of redundancy. The maximal complexity of a model which can be inferred from the data is therefore considerably smaller than estimated by equation (5). The amount of information required to describe the connectivity of a possibly fully connected network of \(N \) nodes is \(I_f \approx N(N-1)/2 \gg \tau I_{\text{xmit}} \), much larger than available from the \(\tau \) measurements. Even if one restricts the maximal number of connections to \(k \), the information \(I_r \approx Nk \log_2 N \) required to describe the connectivity of this network is larger than available already for small \(k \). It seems therefore necessary to reduce the number \(N \) of nodes in the network. This can be done by introducing collective nodes representing a whole subset of the original genes. The groups resulting from re-shuffling the data might be a
good starting point for this.

In the future the algorithm can be modified to operate in a higher dimensional index space. In this way a more refined representation of structure found in the data is possible. It may also be useful to combine hierarchical clustering with this method, which can be used to freeze the orientation degree of freedom on each branching point in the similarity tree.

5 Acknowledgement

I want to thank Å. Borg, C. Peterson and M. Ringnér for fruitful discussions. This work was supported by the Swedish Foundation for Strategic Research.

References

[1] Schena, M., Shalon, M., Davis, R.W., Brown, P.O. (1995) Science 270, 467-70

[2] Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D. (1998), Proc. Natl. Acad. Sci. USA 95, 14863-68

[3] Cho, R.J., Campbell, M.J., Winzeler, E.J., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W. (1998) Mol. Cell 2, 65-73

[4] Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.N., Brown, P.O., Botstein, D., Futcher, B. (1008) Mol. Biol. Cell. 9, 3273-97

[5] Bilke, S., “Re-shuffling Algorithm”, in preparation.

[6] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., (1983) Science 220, 671-80

[7] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Litoreewan, S. Dmitrosky, E., Lander, E.S., Golub, T.R. (1999) Proc. Natl. Acad. Sci. USA 96, 2907-12

[8] Törönen, P., Kolehmainen, M., Wong, G., Castren, E. (1999) FEBS Letters 451, 142-6