Syntax Escore e Eventos Cardíacos Adversos Maiores em Pacientes com Suspeita de Doença Arterial Coronariana: Resultados de um Estudo de Coorte em Hospital Universitário no Sul do Brasil

Syntax Score and Major Adverse Cardiac Events in Patients with Suspected Coronary Artery Disease: Results from a Cohort Study in a University-Affiliated Hospital in Southern Brazil

Felipe C. Fuchs, Jorge P. Ribeiro (in memorian), Flávio D. Fuchs, Marco V. Wainstein, Luis C. Bergoli, Rodrigo V. Wainstein, Vanessa Zen, Alessandra C. Kerkhoff, Leila B. Moreira, Sandra C. Fuchs

Hospital de Clínicas de Porto Alegre - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS – Brasil

Resumo

Fundamento: A importância da anatomia coronariana na predição de eventos cardiovasculares é bem conhecida. O uso de escores anatômicos tradicionais na cineangiografia de rotina, entretanto, não foi incorporado à prática clínica. O SYNTAX escore (SXescore) é um sistema de escore que estima a extensão anatômica da doença arterial coronariana (DAC). Sua capacidade para predizer desfechos com base na cineangiografia diagnóstica de base ainda não foi testada.

Objetivo: Avaliar o desempenho do SXescore para predizer eventos cardíacos adversos maiores (MACE) em pacientes encaminhados para cineangiografia coronariana diagnóstica.

Métodos: Coorte prospectiva de 895 pacientes com suspeita de DAC encaminhados para cineangiografia diagnóstica eletiva de 2008 a 2011, em hospital universitário no Brasil. Os pacientes tiveram seus SXescores calculados e foram estratificados em três categorias: ‘sem DAC significativa’ (n = 495); SXescore < 23 (n = 346); e SXescore ≥ 23 (n = 54). O desfecho primário foi composto de morte cardíaca, infarto do miocárdio e revascularização tardia. Os desfechos secundários foram MACE e morte por todas as causas.

Resultados: Em média, os pacientes foram acompanhados por 1,8 ± 1,4 anos. Desfecho primário ocorreu em 2,2%, 15,3% e 20,4% nos grupos ‘sem DAC significativa’, SXescore < 23 e SXescore ≥ 23, respectivamente (p < 0,001). Morte por todas as causas foi significativamente mais frequente no grupo de SXescore comparado ao grupo ‘sem DAC significativa’, 16,7% e 3,8% (p < 0,001), respectivamente. Após ajuste para fatores de confusão, todos os desfechos permaneceram associados com o SXescore.

Conclusão: O SXescore prediz independentemente MACE em pacientes submetidos a cineangiografia coronariana diagnóstica. Seu uso rotineiro nesse contexto poderia identificar pacientes de pior prognóstico. (Arq Bras Cardiol. 2016; 107(3):207-215)

Palavras-chave: Doença da Artéria Coronariana / epidemiologia; Probabilidade; Cineangiografia; Syntax Score; Estudos de Coortes.

Abstract

Background: The importance of coronary anatomy in predicting cardiovascular events is well known. The use of traditional anatomical scores in routine angiography, however, has not been incorporated to clinical practice. SYNTAX score (SXscore) is a scoring system that estimates the anatomical extent of coronary artery disease (CAD). Its ability to predict outcomes based on a baseline diagnostic angiography has not been tested to date.

Objective: To evaluate the performance of the SXscore in predicting major adverse cardiac events (MACE) in patients referred for diagnostic angiography.

Methods: Prospective cohort of 895 patients with suspected CAD referred for elective diagnostic coronary angiography from 2008 to 2011, at a university-affiliated hospital in Brazil. They had their SXscores calculated and were stratified in three categories: no significant CAD (n = 495), SXscore < 23 (n = 346), and SXscore ≥ 23 (n = 54). Primary outcome was a composite of cardiac death, myocardial infarction, and late revascularization. Secondary endpoints were the components of MACE and death from any cause.

Results: On average, patients were followed up for 1.8 ± 1.4 years. The primary outcome occurred in 2.2%, 15.3%, and 20.4% in groups with no significant CAD, SXscore < 23, and SXscore ≥ 23, respectively (p < 0.001). All-cause death was significantly higher in the SXscore ≥ 23 group compared with the ‘no significant CAD’ group, 16.7% and 3.8% (p < 0.001), respectively. After adjustment for confounding factors, all outcomes remained associated with the SXscore.

Conclusions: SXscore independently predicts MACE in patients submitted to diagnostic coronary angiography. Its routine use in this setting could identify patients with worse prognosis. (Arq Bras Cardiol. 2016; 107(3):207-215)

Keywords: Coronary Artery Disease / epidemiology; Probability; Cineangiography; Syntax Score; Cohort Studies.

Correspondência: Felipe Costa Fuchs

Serviço de Cardiologia, Hospital de Clínicas de Porto Alegre. Rua Ramiro Barcelos, 2350, Santa Cecília. CEP 90035-903, Porto Alegre, RS – Brasil
E-mail: fcfuchs@terra.com.br
Artigo recebido em 05/07/15; revisado em 21/03/16; aceito em 01/04/16.

DOI: 10.5935/abc.20160111
Introdução

A importância da anatomia coronariana na predição de eventos cardiovasculares é conhecida há décadas, quando da publicação de estudos como o Registro CASS (Coronary Artery Study). Esse grande estudo de coorte mostrou a capacidade de escores anatômicos para doença arterial coronariana (DAC) para predizer eventos, mas seu uso rotineiro não foi incorporado à prática clínica. Atualmente, indica-se avaliação funcional e não invasiva de isquemia, como ecocardiografia de estresse, cintilografia miocárdica e ressonância magnética, para avaliar pacientes com DAC conhecida ou com suspeita dessa doença. No entanto, um significativo número de pacientes acaba sendo submetido a cineangiocoronariografia para confirmação diagnóstica. Consequentemente, a reavaliação do desempenho de escores anatômicos para predição de desfechos, em um contexto de novas terapias clínicas e intervencionistas, pode ter seu valor. Atualmente, o SYNTAX (Synergy between percutaneous coronary intervention with Taxus and Cardiac Surgery) Escore (SXescore), um método mais elaborado para quantificar lesões anatômicas, é uma ferramenta disponível online que estima a extensão anatômica da DAC.

O SXescore é um abrangente sistema de escore angiográfico baseado na anatomia coronariana e nas características da lesão. Foi inicialmente desenvolvido para determinar a extensão da DAC e a complexidade da lesão, que refletem as dificuldades na realização da revascularização miocárdica, em particular da intervenção coronariana percutânea (ICP). No ensaio SYNTAX, valores altos de SXescore (acima de 33) identificaram pacientes nos quais a cirurgia de revascularização miocárdica resultou em melhores desfechos do que o de pacientes submetidos a revascularização percutânea. O seguimento de cinco anos desse ensaio identificou a cirurgia de revascularização miocárdica como sendo mais adequada para pacientes com escores acima de 22.

O SXescore foi desenvolvido como uma ferramenta do processo de tomada de decisão, tendo sua utilização sido estendida mais tarde como escore de predição de eventos cardíacos adversos maiores (MACE) em pacientes submetidos a ICP. Tais estudos incluíram procedimentos de revascularização eletivos e de urgência. Entretanto, a maioria das cineangiocoronariografias é realizada com propósito diagnóstico. O desempenho prognóstico do SXescore nesse contexto ainda não foi relatado, constituindo o objetivo desta investigação.

Objetivo

Avaliar o desempenho do SXescore para predição de MACE em pacientes encaminhados para cineangiocoronariografia diagnóstica.

Métodos

Desenho e população do estudo

Este estudo de coorte arrolou pacientes com suspeita de DAC encaminhados para cineangiocoronariografia diagnóstica eletiva de 2008 a 2011, em um hospital universitário terciário de referência (Hospital de Clínicas de Porto Alegre), no sul do Brasil. Os pacientes foram encaminhados por cardiologistas do sistema público de saúde e da prática privada, tendo sido submetidos a cateterização cardíaca devido a suspeita de DAC com ou sem exame não invasivo prévio para isquemia. Pacientes encaminhados para cineangiocoronariografia devido a suspeita de DAC e doença cardíaca valvular associada também foram incluídos. Homens e mulheres com idade mínima de 40 anos eram elegíveis para este estudo, excluindo aqueles com revascularização coronariana prévia (cirúrgica ou percutânea), insuficiência cardíaca classes III ou IV, doença renal crônica (diagnóstico médico prévio ou creatinina sérica superior a 1,5 mg/dL), história de câncer, ou enfermidade psiquiátrica grave. Os pacientes hospitalizados por síndrome coronariana aguda não foram incluídos.

Arrolamento e procedimentos do estudo

O protocolo do estudo foi aprovado pelo Comitê de Ética em Pesquisa com Seres Humanos do hospital, tendo-se obtido termo de consentimento livre e informado. Entrevistas com informação demográfica, características de estilo de vida e história médica foram realizadas usando-se um questionário padronizado. Após as cineangiocoronariografias, coube aos médicos assistentes avaliar a necessidade de revascularização e todo o tratamento médico. O seguimento foi realizado de 2008 a 2012.

SYNTAX escore e análise angiográfica

Os SXescores foram calculados prospectivamente com todas as lesões coronarianas que produzissem uma estenose de diâmetro ≥ 50% nos vasos ≥ 1,5 mm, usando o algoritmo disponível no website do SYNTAX escore. Subsequentemente, foram categorizados como se segue: SXescore BAIXO (≤ 23); SXescore BAIXO-INTERMEDIÁRIO (23 < ≤ 33); SXescore INTERMEDIÁRIO (33 < ≤ 42); SXescore INTERMEDIÁRIO-ALTO (42 < ≤ 50); SXescore ALTO (> 50); e ‘sem DAC significativa’ (categoria de referência). Dois cardiologistos intervencionistas (FCF, LCCB) realizaram independentemente a análise angiográfica visual para avaliação do escore. Foram treinados para calcular o SXescore usando o tutorial do website. Em seguida, eles atribuíram escore a outros 80 casos, que foram exatamente discutidos com cardiologistas intervencionistas seniores. Avaliou-se a concordância inter- e intraobservador para determinação do SXescore em outro grupo de 90 cineangiocoronariografias.

Desfechos do estudo

O desfecho primário foi MACE, definido como o tempo até o primeiro evento (morte cardíaca, infarto do miocárdio [IM] ou revascularização tardia). Infarto do miocárdio e revascularização seguidos de morte na mesma hospitalização foram adjudicados como morte cardíaca, assim como morte súbita. O IM foi diagnosticado por aumento de biomarcadores, na presença de sintomas e anormalidades eletrocardiográficas sugestivas de isquemia. Alguns pacientes foram tratados para IM agudo em outros hospitais, sendo o diagnóstico definido com base no diagnóstico de alta. A revascularização tardia foi ICP ou cirurgia de revascularização miocárdica.
Revascularizações percutâneas e cirúrgicas, tendo por base achados de cineangiocoronariografia diagnóstica, realizadas até três meses após a cineangiocoronariografia, foram definidas como procedimentos-índice e não considerados desfechos. As intervenções realizadas durante o seguimento, não diretamente relacionadas à cineangiocoronariografia diagnóstica, foram definidas como revascularizações tardias e incluídas no desfecho primário. Os desfechos secundários foram morte cardíaca, morte cardiovascular (fim fatal ou acidente vascular encefálico), IM, revascularização coronariana e mortalidade global.

Todas as mortes foram confirmadas por necropsia verbal,18 declaração de óbito (fornecida pelo Ministério da Saúde, que detém todos os registros dos dois estados) ou registro hospitalar. O IM foi estabelecido por hospitalização, com diagnóstico informado por médico. Um Comitê de Eventos Clínicos independente adjudicou todos os desfechos. A coleta de dados referentes aos desfechos foi submetida a controle de qualidade para verificar confiabilidade, sendo o número de investigadores checado 5% das necropsias verbais.

Cálculo do tamanho amostral e análise estatística

Os questionários foram codificados e passados para um banco de dados usando o programa EpiInfo 2004 (versão 3.3.2, Centro para Controle e Prevenção de Doença, Atlanta, EUA), com controle de qualidade da entrada de dados para verificar amplitud e consistência. Um tamanho amostral de 588 participantes seria necessário para identificar uma razão significativa de 0,2. Os coeficientes de correlação intraclasse segundo o observador 1 e 20% segundo o observador 2, com concordância substancial (IC ≥ 0,94), foram usados para calcular o tamanho amostral. Houve 495 pacientes (80% e nível de significância de 5% (bicaudal), considerando que 5% de não expostos e 12% de expostos ao mais alto escore, uma taxa de 1:1,5, respectivamente, apresentariam um desfecho primário. Considerando a ausência de relato prévio sobre o desempenho do SXEscore para predizer eventos nesse contexto, aumentou-se o tamanho amostral para 906 participantes para incluir um número suficiente de pacientes com escores altos (> 23) para fornecer poder estatístico adequado. Epi Info 2004, Statical calc module, foi usado para calcular o tamanho amostral.

A confiabilidade inter- e intraobservador foi avaliada através de checagem cruzada de 90 angiogramas analisados por dois cardiologistas intervencionistas e revisados por um terceiro. O coeficiente kappa foi utilizado para avaliar concordância, com interpretação segundo Fleiss et al.19 Concordância substancial foi definida como coeficiente kappa de 0,7, considerando-se a proporção de pacientes com SXEscore > 23, sendo 30% segundo o observador 1 e 20% segundo o observador 2, com acurácia de 0,2. Os coeficientes de correlação intraclasse também foram calculados.

As recomendações STARD20 foram usadas para planejar e relatar o estudo. Os dados foram apresentados como média ± desvio padrão (DP), porcentagens e HR com intervalo de confiança (IC) de 95%. Usou-se curva ROC (Receiver Operating Characteristic) para calcular a estatística C e a área sub a curva. A curva de sobrevida de Kaplan-Meier para MACE foi calculada para pacientes de acordo com os SXescores. Realizou-se análise multivariada do poder de predição do SXEscore usando regressão de Cox, que permitiu a estimativa de HR e IC 95%. As variáveis associadas com o desfecho na análise bivariada (p ≤ 0,2) foram elegíveis como fatores de confusão. Considerando que muitas variáveis são intermediárias na causa de MACE, elas foram avaliadas individualmente quanto à sua inclusão na análise. Usou-se o mesmo modelo para o número de vasos comprometidos (nenhum, um e múltiplos) como variável de exposição. As análises foram realizadas com o programa Statistical Package for Social Sciences (SPSS®, versão 17, Chicago, IL, EUA), adotando-se o valor de p < 0,05 como estaticasticamente significativo.

Resultados

O fluxograma do estudo é apresentado na Figura 1. Dos 928 pacientes elegíveis, 895 com SXEscore foram incluídos na coorte e acompanhados em média por 1,8 ± 1,4 anos. Após a cineangiocoronariografia, 314 (35,1%) pacientes foram submetidos a ICP ou cirurgia de revascularização miocárdica, e 82 (9,2%), a substituição de válvula (procedimento-índice). Novas intervenções foram realizadas durante o seguimento (revascularizações tardias) em 54 pacientes (35 percutâneas e 19 cirúrgicas). Infarto do miocárdio ocorreu em 16 pacientes, morte cardíaca em 13, morte cardiovascular em 22, e morte por todas as causas em 40 pacientes. Estabeleceu-se a presença de MACE em 73 pacientes.

O coeficiente de correlação de Spearman entre os SXescores calculados pelos dois cardiologistas intervencionistas foi 0,902 (p < 0,001), sendo a concordância interobserver entre eles de 0,94 (IC 95%: 0,91-0,96). O coeficiente Kappa foi 0,83 para os dois cardiologistas intervencionistas. Houve 495 pacientes com escore de 0 (55,4%) e 400 (44,6%) com escores positivos, variando de 1 a 43, com média de 12,6 (IC 95%: 11,7-13,4). Os pacientes com lesões coronarianas com estenose de diâmetro ≥ 50% em vasos ≥ 1,5 mm foram classificados como SXEscore 4 (n = 345) ou SXescore 5 (n = 54).

As características clínicas e angiográficas basais conforme as categorias dos pacientes são apresentadas na Tabela 1. A idade média dos pacientes com SXescore 5 foi mais elevada do que aquela dos pacientes com SXescore 4. Além disso, a proporção de pacientes do sexo masculino, com diabetes mellitus e hipertensão foi maior entre aqueles com SXescore 5. As indicações clínicas para cineangiocoronariografia diagnóstica não diferiram significativamente conforme o SXescore, ainda que maior número de pacientes com SXescore 5 apresentava outras síntomas típicos de DAC, e maior número de pacientes ‘sem DAC significativa’ apresentasse outros sintomas. Como esperado, a prevalência de doença multiarterial e de todos os marcadores para lesão de alta complexidade, como oclusão total, bifurcações e doença de pequenos vasos, foi significativamente maior na categoria de SXescore 5.

Procedimentos após a cineangiocoronariografia-índice

A proporção de pacientes submetidos a ICP, cirurgia de revascularização miocárdica e substituição valvar com base na cineangiocoronariografia-índice diagnóstica, de acordo com a categoria do paciente, é apresentada na Tabela 2.
Como esperado, maior número de pacientes com escores altos foi submetido a cirurgia de revascularização miocárdica. Ainda que, na avaliação angiográfica de base realizada neste estudo, tenham sido classificados como ‘sem DAC significativa’, 3,4% desses pacientes foram submetidos a ICP.

Desfechos clínicos

A incidência cumulativa de desfechos clínicos nos grupos é apresentada na Tabela 2. Morte por todas as causas foi significativamente mais alta em pacientes com SXescore ALTO quando comparados àqueles do grupo ‘sem DAC significativa’, 16,7% e 3,9% (p < 0,001), respectivamente. Morte cardiovascular, IM não fatal e revascularização tardia foram mais frequentes no grupo com SXescore ALTO. Após ajuste para fatores de confusão, todos os desfechos permaneceram associados com o SXescore (Tabela 3). As HR para MACE, morte cardiaca ou IM não fatal e IM não fatal apenas mostraram-se significativamente associadas a SXescore ALTO. Após ajuste para fatores de confusão, todos os desfechos permaneceram associados com o SXescore ALTO. Os pacientes da categoria SXescore BAIXO-INTERMÉDIO apresentaram uma chance 12,5 vezes maior (IC 95%: 5,1-30,6) de desfecho primário do que aqueles ‘sem DAC significativa’. Tal achado foi semelhante em homens (10,1; IC 95%: 3,9-25,9) e mulheres (11,5; IC 95%: 1,1-117,3). Ajuste posterior para revascularização-índice não alterou as estimativas de maneira significativa. Após ajuste para os fatores de confusão, o desfecho primário também se associou ao SXescore como uma variável contínua (HR 1,06; IC 95%: 1,04-1,08). A área sob a curva ROC foi de 0,73 (IC 95%: 0,68-0,79) (Figura 2).

As curvas de sobrevida sem MACE para os pacientes de acordo com os SXescores são apresentadas na Figura 3. Pode-se ver que as curvas divergiram imediatamente após a cineangiocoronariografia e mais ainda durante o seguimento. As HR para MACE de acordo com o número de vasos comprometidos, em comparação a nenhum vaso, foram 6,9 (IC 95%: 3,4-13,9) para doença uniarterial e 10,2 (5,2-20,1) para doença multiarterial. A despeito da relação intrínseca dessa classificação com o SXescore, 42,0% dos pacientes com doença multiarterial foram classificados na categoria de SXescore BAIXO-INTERMÉDIO.

Discussão

Este estudo demonstrou que, em pacientes submetidos a cineangiocoronariografia diagnóstica devido à suspeita de DAC, o SXescore pode predizer o desfecho primário de morte cardíaca, IM não fatal e revascularização tardia, independentemente de idade, sexo, presença de diabetes e revascularização-índice. Houve aumento de 6% no risco de MACE para cada ponto adicional no escore. Os pacientes com SXescore ALTO apresentaram um risco significativamente elevado de morte por todas as causas, cardiovascular e cardíaca.
Tabela 1 – Características clínicas basais segundo as categorias de SXescore dos pacientes

Características basais	Sem DAC significativa n = 495	SXescore BAIXO-INTERMEDIÁRIO n = 346	SXescore ALTO n = 54	Valor de p
Idade	59,1 ± 10,4	60,8 ± 9,6	63,6 ± 8,6	0,002
Masculino	234 (47,3)	226 (65,3)	39 (72,2)	< 0,001
Diabetes mellitus	92 (18,6)	85 (24,6)	18 (33,3)	0,01
Tabagismo atual	65 (13,2)	51 (15,0)	3 (5,6)	0,08
Hipertensão	344 (69,8)	260 (76,5)	45 (83,3)	0,02
Ape nas sintomas sugestivos de DAC	128 (25,9)	115 (33,4)	14 (25,9)	0,05
Com teste não invasivo positivo	209 (42,2)	139 (40,2)	28 (51,9)	0,3
Valvopatia com suspeita de DAC	14 (2,8)	3 (0,9)	1 (1,9)	0,14
Outras queixas	46 (9,3)	13 (3,8)	1 (1,9)	0,002

Análise angiográfica*

	Sem DAC significativa n = 495	SXescore BAIXO-INTERMEDIÁRIO n = 346	SXescore ALTO n = 54	Valor de p
Dominância direta	-	309 (89,3)	51 (94,4)	0,3
No. lesões por paciente	-	1,8 ± 1,0	3,9 ± 1,5	< 0,001
Occlusão total	-	88 (25,4)	41 (75,9)	< 0,001
Bifurcações	-	125 (36,1)	44 (61,5)	< 0,001
Pequenos vasos/Doença difusa	-	68 (19,7)	26 (48,1)	< 0,001
Tronco de coronária esquerda	-	13 (13,8)	13 (24,1)	< 0,001
Descendente anterior esquerda	-	216 (63,0)	47 (67,0)	< 0,001
Circunflexa	-	109 (31,5)	36 (66,7)	< 0,001
Coronária direita	-	169 (48,8)	43 (79,6)	< 0,001
Doença uniarterial	-	196 (56,7)	4 (7,4)	< 0,001
Doença multiarterial ou tronco	-	150 (43,3)	50 (92,6)	< 0,001

Valores apresentados como n (%) ou média ± DP. DAC: doença arterial coronariana; SXescore: Syntax Escore. * Avaliação usando as definições do SYNTAX Escore.

Tabela 2 – Tratamento após cineangiocoronariografia-índice e desfechos clínicos cumulativos segundo as categorias de SXescore dos pacientes

Tipo de procedimento	Sem DAC significativa n = 495	SXescore BAIXO-INTERMEDIÁRIO n = 346	SXescore ALTO n = 54	Valor de p
Intervenções				< 0,001
Intervenção coronariana percutânea	17 (3,4)	208 (60,3)	14 (25,9)	
Cirurgia de revascularização miocárdica	0	46 (13,3)	29 (53,7)	
Substituição valvar isolada*	78 (15,8)	4 (1,2)	0	
Sem intervenção invasiva	400 (80,8)	88 (25,4)	11 (20,4)	
Morto por todas as causas	16 (3,9)	11 (3,3)	9 (16,7)	< 0,001
Morte cardíaca e IM	4 (1,0)	13 (3,9)	9 (16,7)	< 0,001
Morte cardiovascular	9 (2,2)	6 (1,8)	7 (13)	< 0,001
MACE	9 (2,2)	53 (15,7)	11 (20,4)	< 0,001

Valores apresentados como n (%). * pacientes excluídos da análise de desfecho. DAC: doença arterial coronariana; IM: infarto do miocárdio; MACE: eventos cardíacos adversos maiores; IM: morte cardíaca e revascularização tardia.

Estudos prévios relataram a capacidade do SXescore para predizer MACE em diferentes cenários. Os estudos LEADERS, SIRTAx e RESOLUTE incluíram pacientes com síndromes coronarianas agudas e ainda aqueles submetidos a ICP eletiva. Os estudos MI-SYNTAXescore, STRATEGY e MULTISTRATEGY foram realizados em pacientes com IM agudo. O ensaio ACUITY incluiu pacientes com síndromes coronarianas agudas. Por fim, Garg et al. resumiram os resultados de cinco estudos, analisando dados de 6.508 pacientes, com os mesmos resultados. Diferentemente da nossa pesquisa, todos aqueles estudos incluíram apenas pacientes submetidos a procedimentos de revascularização percutânea, nenhum deles...
Tabela 3 – Razão de risco (HR)* para desfechos clínicos maiores segundo as categorias de SXescore dos pacientes

Tipo de evento	Sem DAC significativa † n = 495	SXescore BAIXO-INTERMEDIÁRIO n = 346	SXescore ALTO n = 54	Valor de p
Morte por todas as causas	1,0	0,8 (0,4-1,7)	4,3 (1,8-10,1)	< 0,001
Morte cardiovascular	1,0	0,7 (0,3-2,1)	5,7 (2,0-15,9)	< 0,001
Morte cardíaca	1,0	1,3 (0,3-5,9)	11,8 (2,9-48,5)	< 0,001
MACE †	1,0	7,2 (3,5-14,7)	12,5 (4,5-30,6)	< 0,001
Morte cardíaca ou IM	1,0	3,5 (1,1-10,8)	16,0 (4,9-52,9)	< 0,001
IM	1,0	12,6 (1,6-98,3)	33,9 (3,7-308,0)	0,007
Revascularização tardia	1,0	9,9 (4,2-23,4)	4,0 (0,8-20,0)	< 0,001

* DAC: doença arterial coronariana; IM: infarto do miocárdio; MACE: eventos cardíacos adversos maiores. † Ajustada para idade, sexo e diabetes. ‡ MACE: IM, morte cardíaca e revascularização tardia.

Figura 2 – Curva ROC para o SYNTAX Escore. AUC: área sob a curva.

A comparação do desempenho do SXescore com escores anatômicos tradicionais para DAC não foi explorada na nossa investigação. A presença de SXesores positivos (44,6%) foi similar à frequência de pacientes com DAC significativa (47%) detectada por análise angiográfica quantitativa realizada em uma proporção de pacientes da nossa coorte. Espores angiográficos tradicionais também predisseram a incidência de MACE em estudos prévios, mas esores não consideram as dificuldades da realização de revascularização miocárdica. A despeito de sua capacidade prognóstica, eles não foram incorporados à prática clínica, com um número de vasos comprometidos foi usado para estimar a gravidade anatômica da doença. Nesta coorte,
os pacientes com doença uniarterial e multiarterial apresentaram risco de MACE aproximadamente similar ao dos pacientes com SXescore BAIXO-INTERMEDIÁRIO e SXescore ALTO, respectivamente. No entanto, quase metade dos pacientes com doença multiarterial foi classificada na categoria SXescore BAIXO-INTERMEDIÁRIO. Com base nos resultados do estudo SYNTAX, no qual pacientes com baixos escores SYNTAX apresentaram desfechos similares a despeito do tipo de revascularização, nossos achados têm uma implicação clínica - pacientes que, de outra maneira, seriam encaminhados para cirurgia de revascularização miocárdica também poderiam ser revascularizados por via percutânea. Considerando que a caracterização visual de doença multiarterial leva ao encaminhamento de pacientes para revascularização cirúrgica, o cálculo do SXescore poderia melhor estratificar pacientes que de fato se beneficiariam daquele procedimento (categoria SXescore ALTO).

Neste estudo, os pacientes foram submetidos a procedimento eleito e, como resultado, houve uma grande proporção de pacientes ‘sem DAC significativa’, que também poderiam ter lesões menores do que 50%. Tais pacientes não preenchiam os critérios para um escore positivo e serviram como grupo de comparação. Assim, os pacientes foram classificados em duas categorias: 1 a 22, e igual ou maior do que 23, correspondendo às posteriormente definidas categorias ‘baixo-intermediário’ (0-22) e ‘alto’ (igual ou maior do que 23). O número de pacientes classificados como SXescore BAIXO-INTERMEDIÁRIO e submetidos a revascularização percutânea foi maior do que o de pacientes submetidos a revascularização cirúrgica, refletindo a prática clínica corrente e em conformidade com os achados de acompanhamento de cinco anos do ensaio clínico randomizado SYNTAX. Na época em que o estudo foi conduzido, os stents farmacológicos não eram disponíveis para uso no sistema de saúde público brasileiro. Além disso, atualmente indica-se revascularização cirúrgica para pacientes com SXescore alto. Pacientes com alto risco cirúrgico, considerados inelégíveis para revascularização cirúrgica pelos cirurgiões receberam tratamento percutâneo. Houve um achado inesperado de 3,4% de pacientes ‘sem DAC significativa’ submetidos a ICP. Pacientes com DAC não obstrutiva representam uma grande proporção daqueles submetidos a cineangiocoronariografia. A avaliação subjetiva da anatomia coronariana associada a informação clínica e não invasiva pode ter influenciado o processo de tomada de decisão e poderia explicar tal achado.

Nosso estudo tem algumas limitações e pontos fortes que devem ser abordados. Restringimos nossa análise ao critério anatômico, sem considerar função ventricular esquerda, isquemia ou viabilidade miocárdica. No entanto, nossos pacientes não tinham doença instável do ponto de vista clínico e nem insuficiência cardíaca classe III ou IV, tendo os critérios anatômicos frequentemente prevalecido para a tomada de decisão terapêutica. Além disso, uma recente análise post-hoc do ensaio COURAGE demonstrou que os critérios anatômicos e não a carga isquêmica foram capazes de predizer eventos cardiovasculares. Embora a maioria dos procedimentos de seguimento tenha sido realizada em nosso hospital, diferentes tipos de stent foram implantados, o que pode ter afetado a probabilidade de trombose no stent ou de reintervenções. Entretanto, análise incluindo apenas IM e morte cardíaca não alterou as estimativas, e a exclusão de pacientes submetidos a substituição valvar não alterou os resultados. Outra limitação é o número de eventos, responsável pelos amplos intervalos de confiança. Ainda que tivéssemos investigado quase 1.000 pacientes, mais de 50%
Implicações clínicas
Na prática clínica, o número de vasos epicárdicos com estenose superior a 50% é usado para fornecer informação prognóstica, sendo os escores angiográficos raramente usados. Recentemente, o uso de escores mostrou melhorar a padronização da tomada de decisão clínica. Por exemplo, o EUROESCORE 27 e o escore STS 28 são usados de rotina no processo de tomada de decisão para a indicação de cirurgia de revascularização miocárdica. 29 Para a conduita em DAC multiarterial, as atuais diretrizes formalmente recomendam o uso do SXscore, assim como do EUROESCORE. 30 Nossos dados expandem as indicações do SXscore para avaliação prognóstica de pacientes encaminhados para cineangiocoronariografia diagnóstica.

Conclusão
Em pacientes com suspeita de DAC submetidos a cineangiocoronariografia eletiva, o SXscore prediz independentemente MACE. Seu uso rotineiro nesse contexto poderia identificar pacientes com pior prognóstico.

Agradecimentos
Este estudo foi parcialmente financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasil; Fundo de Pesquisa do Hospital de Clínicas de Porto Alegre (FIPE-HCPA), Porto Alegre, Brasil.

Contribuição dos autores
Concepcão e desenho da pesquisa: Fuchs FC, Ribeiro JP, Fuchs FD, Wainstein MV, Moreira LB, Fuchs SC; Obtenção de dados: Fuchs FC, Wainstein MV, Bergoli LC, Wainstein RV, Zen V, Kerkhoff AC; Análise e interpretação dos dados e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Fuchs FC, Ribeiro JP, Fuchs FD, Bergoli LC, Wainstein RV, Zen V, Kerkhoff AC, Moreira LB, Fuchs SC; Análise estatística e Redação do manuscrito: Fuchs FC, Ribeiro JP, Fuchs FD, Fuchs SC; Obtenção de financiamento: Ribeiro JP, Moreira LB, Fuchs SC.

Potencial conflito de interesse
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo foi parcialmente financiado pelo CNPq e Fundação para o incentivo em Pesquisa do Hospital de Clínicas de Porto Alegre.

Vinculação acadêmica
Este artigo é parte de Dissertação de Mestrado de Felipe C. Fuchs pela Faculdade de Medicina da Universidade Federal do Rio Grande do Sul.

Referências
1. Emond M, Mock MB, Davis KB, Fisher LD, Holmes DR Jr, Chaitman BR, et al. Long-term survival of medically treated patients in the Coronary Artery Surgery (CASS) Registry. Circulation. 1994;90(6):2645-57.
2. Ringqvist I, Fisher LD, Mock M, Davis KB, Wedel H, Chaitman BR, et al. Prognostic value of angiographic indices of coronary artery disease from the coronary artery surgery study (CASS). J Clin Invest. 1983;71(6):1854-66.
3. Fihn SD, Blankenship JC, Alexander KP, Byrne JG, Fletcher BJ, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2014;130(19):1749-67.
4. Sianos G, Morel MA, Kappetein AP, Morice MC, Colombo A, Dawkins K. The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1(2):219-27.
5. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al.; SYNTAX Investigators. Percutaneous coronary intervention versus coronary–artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961-72. Erratum in: N Engl J Med. 2013;368(6):584.
6. Mohr FW, Morice MC, Kappetein AP, Feldman TE, Stähle E, Colombo A, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629-38.
7. Palmerini T, Genereux P, Caixeta A, Criosta E, Lansky A, Mehran R, et al. Prognostic value of the SYNTAX score in patients with acute coronary syndromes undergoing percutaneous coronary intervention: analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. J Am Coll Cardiol. 2011;57(24):2389-97.
8. Garg S, Serruys PW, Silber S, Wykrzykowska J, van Geuns RJ, Richardt G, et al. The prognostic utility of the SYNTAX score on 1-year outcomes after revascularization with zotarolimus- and everolimus-eluting stents: a substudy of the RESOLUTE All Comers Trial. JACC Cardiovasc Interv. 2011;4(4):432-41.
9. Wykrzykowska JJ, Garg S, Girasis C, de Vries T, Moorel MA, van Es GA, et al. Value of the SYNTAX score for risk assessment in the all-comers population of the randomized multicenter LEADERS (Limus Eluted From A Durable versus Everolimus-Eluting Stent: a substudy of the RESOLUTE All Comers Trial). JACC Cardiovasc Interv. 2011;4(4):432-41.
10. Wykrzykowska JJ, Garg S, Onuma Y, de Vries T, Moorel MA, van Es GA, et al. Implantation of the biodegradable polymer biolimus–eluting stent in patients with high SYNTAX score is associated with decreased cardiac mortality compared to a permanent polymer sirolimus–eluting stent: two year follow–up results from the “all–comers” LEADERS trial. EuroIntervention. 2011;7(5):605-13.
Arq Bras Cardiol. 2016; 107(3):207-215

11. Girasis C, Garg S, Räber I, Sarno G, Morel MA, García-García HM, et al. SYNTAX score and Clinical SYNTAX score as predictors of very long-term clinical outcomes in patients undergoing percutaneous coronary interventions: a sub-study of SIROLimus–eluting stent compared with pacliTAXel–eluting stent for coronary revascularization (SIRTAX) trial. Eur Heart J. 2011;32(24):3113-27.

12. Magro M, Nauta S, Simsek C, Onuma Y, Garg S, van der Heide E, et al. Value of the SYNTAX score in patients treated by primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: the MI SYNTAXscore study. Am Heart J. 2011;161(4):771-81.

13. Garg S, Sarno G, Serruys PW, Rodriguez AE, Bolognese L, Anselmi M, et al; STRATEGY and MULTISTRATEGY Investigators. Prediction of 1–year clinical outcomes using the SYNTAX score in patients with acute ST–segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a substudy of the STRATEGY (Single High–Dose Bolus Tirofibin and Sirolimus–Eluting Stent Versus Abciximab and Bare–Metal Stent in Acute Myocardial Infarction) and MULTISTRATEGY (Multicenter Evaluation of Single High–Dose Bolus Tirofibin Versus Abciximab With Sirolimus–Eluting Stent or Bare–Metal Stent in Acute Myocardial Infarction Study) trials. JACC Cardiovasc Interv. 2011;4: 66-75.

14. Garg S, Sarno G, Girasis C, Vranckx P, de Vries T, Swart M, et al. Patient level pooled analysis assessing the impact of the SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) Score on 3–year clinical outcomes in 6,508 patients enrolled in contemporary coronary stent trials. JACC Cardiovasc Interv. 2011;4(6):645-53.

15. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6-e245. Erratum in: Circulation. 2013;127(23):e841.

16. SYNTAX Working Group. SYNTAX score calculator. [Accessed in 2015 Nov 10]. Available from: http://www.syntaxscore.com

17. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chairman BR, White HD; Writing Group on the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Eur Heart J. 2012;33(20):2551-67.

18. Murray CJ, Lopez AD, Feehan DM, Peter ST, Yang G. Validation of the symptom pattern method for analyzing verbal autopsy data. PLos Med. 2007;4(11):e327.

19. Fleiss JL, Cohen J. The equivalence of weighted Kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement. 1973;33:613-9.

20. Boosuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PM, Irwig LM, et al. Standards for Reporting of Diagnostic Accuracy. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med. 2003;138(1):W1-12.

21. Riedner CE, Rhoden EL, Fuchs SC, Wainstein MV, Gonçalves SC, Wainstein RV, et al. Erectile dysfunction and coronary artery disease: an association of higher risk in younger men. J Sex Med. 2011;8(5):1445-53.

22. Mancini GB, Hartigan PM, Shaw LJ, Berman DS, Hayes SW, Bates ER, et al. Predicting Outcome in the COURAGE Trial: Coronary Anatomy Versus Ischemia. JACC Cardiovasc Interv. 2014;7(2):195-201.

23. Wallace EL, Abdel-Latif A, Chamrigo R, Moliterno DJ, Brodie B, Matnani R, et al. Meta-analysis of long-term outcomes for drug-eluting stents versus bare-metal stents in primary percutaneous coronary interventions for ST-segment elevation myocardial infarction. Am J Cardiol. 2012;109(7):932-40.

24. Garg S, Girasis C, Sarno G, Goodhart D, Morel MA, Garcia-Garcia HM, et al. SYNTAX trial investigators. The SYNTAX score revisited: a reassessment of the SYNTAX score reproducibility. Catheter Cardiovasc Interv. 2010;75(6):946-52.

25. Tanboga IH, Ekinç M, Isik T, Kurt M, Kaya A, Sevimli S. Reproducibility of syntax score: from core lab to real world. J Interv Cardiol. 2011;24(4):302-6.

26. Généreux P, Palmerini T, Caixeta A, Cristea E, Mehran R, Sanchez R, et al. SYNTAX score reproducibility and variability between interventional cardiologists, core laboratory technicians, and quantitative coronary measurements. Circ Cardiovasc Interv. 2011;4(6):553-61.

27. Nashef SA, Roques F, Michel P, Gauducheau E, Lemeshow S, Salamon R. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg. 1999;16(1):9-13.

28. Shroyer AL, Coombs LP, Peterson ED, Eiken MC, DeLong ER, Chen A, et al; Society of Thoracic Surgeons. The Society of Thoracic Surgeons: 30–day operative mortality and morbidity risk models. Ann Thorac Surg. 2003;75(6):1856-65.

29. Metzler B, Winkler B. SYNTAX, STS and EuroSCORE – How good are they for risk estimation in atherosclerotic heart disease? Thromb Haemost. 2012;108(6):1065-71.

30. Windecker S, Kolb P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):2541-619.