Clinical value of 18FDG PET/CT in screening for distant metastases in head and neck squamous cell carcinoma

S.E. Deurvorst | O.S. Hoekstra | J.A. Castelijns | B.I. Witte | C.R. Leemans | R. de Bree

1Department of Otolaryngology-Head and Neck Surgery, Amsterdam, The Netherlands
2Department of Radiology & Nuclear Medicine, Amsterdam, The Netherlands
3Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
4Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands

Correspondence
R. de Bree, Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands.
Email: r.debree@umcutrecht.nl

Objectives: The detection of distant metastases is of major importance in management of head and neck squamous cell carcinoma patients.

Design: All patients underwent 18FDG PET/CT for the detection of distant metastases.

Setting: Retrospective single-centre study.

Participants: Head and neck squamous cell carcinoma patients with high-risk factors for distant metastases.

Main outcome measures: Accuracy of 18FDG PET/CT for the detection of distant metastases using clinical development of distant metastases and a minimal follow-up of twelve months as reference standard. Comparison of overall survival between patients diagnosed with distant metastases during initial screening and patients diagnosed with distant metastases during follow-up.

Results: In 23 (12%) of the 190 patients, 18FDG PET/CT detected distant metastases at screening. Sensitivity and negative predictive value were 46.2% (95% CI 32.6-59.7) and 82.6% (95% CI 76.8-88.5). No difference in median overall survival from the time of distant metastases detection was found between patients diagnosed with DM during work-up or during follow-up.

Conclusions: In head and neck squamous cell carcinoma patients with high-risk factors, 18FDG PET/CT has a high negative predictive value for the detection of distant metastases and should be used in daily clinical practice, although the sensitivity is limited when long-term follow-up is used as reference standard.

INTRODUCTION

Distant metastases are major determinants in both management and prognosis of head and neck squamous cell carcinoma (HNSCC) patients. Patients diagnosed with distant metastases are generally considered incurable and will undergo palliative treatment. Thus, futile extensive curative treatment can be prevented with careful screening for distant metastases during initial work-up. The time of diagnosis of distant metastasis (during pre-treatment diagnostic work-up or follow-up) may be important for overall survival.

The reported prevalence of distant metastases detected during pre-treatment diagnostic work-up in HNSCC patients varies from 2% to 26%, depending on the selected group of patients (eg stage of disease, locoregional control). Due to the relatively low prevalence of distant metastases, it is important to identify patients who are most at risk of developing distant metastases and screen these patients with the best diagnostic techniques. High-risk factors have been identified (Table 1). The most frequent sites of distant metastases are the lungs, followed by the skeletal system and the liver.
The combination of whole-body 18FDG PET and contrast-enhanced PET is able to detect distant metastases not detected by chest CT.

18FDG PET/CT has taken a major role in screening for distant metastases in head and neck cancer, as it combines functional (metabolic) and integrated PET/CT imaging (MRI) of the head and neck. If considered indicated, ultrasonography and/or magnetic resonance imaging (MRI) of the head and neck. If considered indicated, ultrasound guided) fine needle aspiration of cervical lymph nodes was performed. Post-treatment follow-up was performed by regular visits to the outpatient clinic (every 6-8 weeks in the first year, with increasing intervals in following years). No routine imaging was planned to screen for distant metastases, but additional examination was performed when suspicion arose based on patient history or physical examination (e.g., weight loss, lesions/complaints suspicious of recurrence).

2.2 Combined 18FDG-PET/CT imaging

During our study period, both the Gemini TF-64 and Ingenuity TF-integrated PET/CT systems (Philips Medical Systems, Best, The Netherlands) were used to perform whole-body (from mid-thighs to skull vertex) 18FDG PET/CT scans. The CT scans were low-dose non-contrast made for attenuation correction and anatomical correlation of PET, as well as CE-CT of the chest during the same session. Patients fasted for at least 6 hours prior to scanning, which started...
approximately 60 minutes after intravenous 18FDG administration. The dose administered was 2.5 MBq/kg body weight (\pm10%). Glucose levels were measured prior to 18FDG administration. Image acquisition and reconstruction were performed according to the EANM 1.0 procedure guidelines.22

The 18FDG PET/CT images were interpreted by experienced nuclear medicine physicians and radiologists who had access to all relevant clinical information, according to common clinical practice. We scored what suspicion arose from the 18FDG PET/CT using the written report of each scan. Most lesions suspicious of being malignant on 18FDG PET/CT were confirmed using additional (follow-up) imaging, endoscopic work-up and/or biopsy, using a rational approach. In some cases, findings of 18FDG PET/CT were considered equivocal proof of distant metastases and consensus was reached not to perform additional work-up by the multidisciplinary team (giving the patient the benefit of the doubt). If tissue of both the primary process and the suspicious lesion outside of the head and neck region was obtained, and consisted of identical cell types, preferably a loss of heterozygosity analysis was performed.

2.3 Statistical analysis

The reference (gold) standard used was follow-up of 12 months. Sensitivity, specificity, positive and negative predictive values of the 18FDG PET/CT for detection of distant metastases were calculated. 18FDG PET/CT findings suspicious of being metastases were considered positive. Equivocal findings were scored as negative because patients with equivocal findings cannot be withheld from curative treatment. As in clinical practice, these patients were treated with curative intent. If no suspicious lesion or lesions suspicious of being either benign or second primary tumours were found, the scan was considered negative. The 18FDG PET/CT findings were compared to the findings of further initial work-up and findings during follow-up. We considered negative findings on 18FDG PET/CT in patients who developed distant metastases during follow-up as being false negative, assuming these metastases were (subclinically) present at time of screening. In a separate analysis, these results were corrected for locoregional recurrence, as no distinction can be made between growth of subclinical metastases already present at the time of screening and reseeding of a locoregional recurrence after initial screening.

Overall survival (OS) was estimated using the Kaplan-Meier method and compared between groups using the log-rank test. The OS was measured from the time of initial 18FDG PET/CT screening as well as from the time of detection of distant metastases during follow-up until the date of death. We compared the survival of the following groups: patients without distant metastases vs those with distant metastases and patients diagnosed with distant metastases during initial work-up vs those diagnosed with distant metastases during follow-up.

Patients with second primary tumours outside the head and neck region, which were found during screening, were described separately. Significance was attributed to a P-value less than .05 ($P < .05$). All calculations were performed using spss 22.0 for Windows.

RESULTS

A total of 190 patients who underwent an 18FDG PET/CT between 2009 and 2014 were included. Patient and tumour characteristics are summarised in Table 2. Median follow-up was 21 months (range: 0-62 months), in which every patient not succumbing to distant metastases had a follow-up exceeding 12 months.

3.1 Accuracy of 18FDG PET/CT

Table 3 quantifies the suspicion based on the 18FDG PET/CT scan and the conclusion after initial diagnostic work-up and follow-up. In total, 51 of 190 patients (26.8%) were diagnosed with distant metastases.

During pre-treatment screening, 18FDG PET/CT identified 29 patients (15.3%) with at least one lesion suspicious of distant metastasis. Further work-up confirmed the presence of distant metastases in 23 (12.1%) of these patients. In one patient, a second primary tumour was diagnosed. In the remaining five patients, work-up of the suspicious lesion and follow-up showed no evidence of

TABLE 2 Patient population (n = 190)
Characteristics
Age: years mean±SD
Gender: male/female
Tumour location
Oral cavity
Oropharynx
Hypopharynx
Larynx
Unknown primary
Cervical oesophagus
T-classification
T1
T2
T3
T4a
T4b
Tx

TABLE 3 Accuracy of the 18FDG PET/CT in screening for distant metastases
Metastases

18FDG PET/CT positive
18FDG PET/CT negative
Total

* 18FDG PET/CT could not differentiate between second primary lung cancer and DM, considered true positive.
malignancy. Twenty-eight patients with a negative 18FDG PET/CT screening were diagnosed with distant metastases during follow-up. Based on these numbers, the sensitivity of 18FDG PET/CT in detecting distant metastases in this high-risk patient cohort was 46.2% (95% CI 32.6-59.7%), at a specificity of 96.4% (95% CI 93.3-99.5%), corresponding with positive and negative predictive values of 82.8% (95% CI 69.0-96.5%) and 82.6% (95% CI 76.8-88.5%), respectively (Table 3). In the 123 patients achieving locoregional control, sensitivity, specificity, positive and negative predictive values were 48.4% (95% CI 30.8-66.0%), 94.6% (95% CI 89.9-99.2%), 75.0% (95% CI 56.0-94.0%) and 84.5% (95% CI 77.7-91.5%), respectively.

3.2 | Survival

Median OS in patients with distant metastases was significantly worse compared to patients without distant metastases ($P < .001$) (Figure 1). OS from time of detection of patients in whom distant metastases were found during follow-up (median 6 months, 95% CI 0.5-11.5) when compared to patients diagnosed with distant metastases during screening (median 7 months, 95% CI 5.2-8.8) was not significantly different ($P = .8$). Median delay of diagnosis in the former group was 7 months (range 1-47 months). When comparing the OS from the time of initial screening, the patients diagnosed with distant metastases at initial screening (7 months, 95% CI 5.2-8.8) have a significantly worse expected survival ($P = .001$) compared to the group diagnosed during follow-up (16 months, 95% CI 11.9-20.1).

3.3 | Second primary tumours

In twenty-four patients (12.6%), the initial 18FDG PET/CT was suspicious for second primary tumours outside of the head and neck region. In ten patients, the detected lesions were suspicious of being either distant metastases or second primary tumours. Five of these lesions proved to be distant metastases through further work-up and were classified as true positive in Table 3. Of the remaining 19 patients (all classified as true negative for distant metastases), work-up revealed 11 lesions (57.9%) to be second primary tumours, whereas in the other cases further work-up of the lesion showed no signs of malignancy. Table 4 depicts the number of lesions found in each organ (system).

4 | DISCUSSION

4.1 | Prevalence

In our cohort, 51 of 190 patients (26.8%) developed distant metastases, which is at the high end of the percentages found in previous studies. This can be explained by our definition of the high-risk patient and our follow-up duration. We included also patients with a previous malignancy of the head and neck region and/or recurrent disease, whereas other studies included only patients with previously untreated head and neck cancer. The prevalence of distant metastases found by Haerle et al and Kim et al is lower compared to our findings, 19.7% and 7.4%, respectively. Haerle et al specified the inclusion criteria to high-risk patients with clinically advanced HNSCC (T3/4 and/or N2/3), whereas Kim et al included all patients with head and neck cancer. Recurrent disease is a previously identified important risk factor for development of distant metastases.

4.2 | 18FDG PET/CT

At first glance, the sensitivity of PET/CT to detect distant metastases in our study seems to be considerably lower than in other studies (Table 3). This difference can partly be explained by the duration of follow-up: we considered all distant metastases identified during follow-up and negative on initial 18FDG PET/CT, as false negative. Thus, in the present study, long-term follow-up was used as reference standard. Moreover, in this study, the findings were corrected
for locoregional recurrence in a separate analysis, as no distinction can be made between growth of subclinical metastases already present at the time of screening and reseeding of a locoregional recurrence after initial screening in patients with locoregional recurrence.

We applied this approach to the large studies published by Haerle et al. and Kim et al., which contain information on long-term follow-up and locoregional control. Haerle et al. considered all cases of distant metastases detected only within six months of follow-up (metachronous) as being true negative, but provided further follow-up data on later development of distant metastases. Kim et al. considered all distant metastases found during follow-up using the 18FDG PET/CT true positive. Using the published data of both studies, we calculated the accuracy of the 18FDG PET/CT in which all distant metastases found after negative initial screening were interpreted as false negative. This approach resulted in similar findings when compared to our found accuracy (Table 5). The sensitivity is close to 50%, and the specificity remained high in all three studies. The notable decrease in positive predictive value in Kim et al. is caused by 17 cases originally interpreted as true positive (distant metastases detected during follow-up using the 18FDG PET/CT, but not detected during pre-treatment screening), which in our approach are considered false negative. Cho et al. found several adverse prognostic factors in HNSCC patients with newly diagnosed distant metastases who underwent 18FDG PET/CT in their series in 94 (4.1%) patients, distant metastases were detected during initial diagnostic work-up (including 18FDG PET/CT) and in 118 (5.3%) patients during follow-up, resulting in a sensitivity of 44.8%.

Regarding the limited sensitivity of 18FDG PET/CT to detect distant metastases, there is room for improvement and development of new techniques. New diagnostic tests in detection of distant metastases in head and neck cancer are being investigated. The development of whole-body MR imaging including diffusion-weighted imaging with background-body-signal suppression (DWIBS) has made MRI an interesting modality in screening for distant metastases.

4.4 Limitations

In the present study, we did not analyse the tumour burden of distant metastases. The role of performing aggressive treatment of distant sites of disease was arguably more controversial given its questionable therapeutic benefit. However, the concept of treating oligometastases, successful for some other neoplasms, has recently been reintroduced in HNSCC and may change the treatment paradigm. If locoregional disease (if still present) is controlled, or
resected, and the distant sites are ablated (surgically or with radiation), a prolonged disease-free interval, and possible cure, may be achieved. More research is needed to develop a new protocol for screening for distant metastases after implementation of the concept of treating oligometastases in HNSCC.

Another limitation of this study is potential bias in comparing survival of patients with distant metastases diagnosed at initial screening and follow-up due to different treatment regimens in these groups of patients. However, overall survival of patients with distant metastases detected during follow-up suggests that initial locoregional treatment with curative intent may be worthwhile in these patients with negative screening by PT/CT at initial work-up.

5 CONCLUSION

Head and neck squamous cell carcinoma patients with low jugular lymph node metastases or regional recurrence have the highest risk of distant metastases. Patients diagnosed with distant metastases at initial screening have a significantly worse expected survival (from time of initial screening) compared to the group diagnosed during follow-up. In HNSCC patients with high-risk factors, 18FDG PET/CT (including chest CE-CT) has a high negative predictive value for the detection of distant metastasis and should be part of the initial diagnostic work-up, although the sensitivity is limited when long-term follow-up is used as reference standard.

CONFLICT OF INTEREST

The authors have nothing to disclose.

ORCID

R. de Bree http://orcid.org/0000-0001-7128-5814

REFERENCES

1. Takes RP, Rinaldo A, Silver CE, et al. Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral Oncol. 2012;48:775-779.
2. Brouwer J, Bree R, Hoekstra OS, Langendijk JA, Castelijns JA, Leemans CR. Screening for distant metastases in patients with head and neck cancer: what is the current clinical practice? Clin Otolaryngol. 2005;30:438-443.
3. Liao CT, Wang HM, Chang JT, et al. Analysis of risk factors for distant metastases in squamous cell carcinoma of the oral cavity. Cancer. 2007;110:1501-1508.
4. Leon X, Quer M, Orus C, del Prado V, Lopez M. Distant metastases in head and neck cancer patients who achieved loco-regional control. Head Neck. 2000;22:680-686.
5. Garavello W, Ciardo A, Spreafico R & Gaini RM. Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2006;132:762-766.
6. Leibel SA, Scott CB, Mohiuddin M, et al. The effect of local-regional control on distant metastatic dissemination in carcinoma of the head and neck: results of an analysis from the RTOG head and neck database. Int J Radiat Oncol Biol Phys. 1991;21:549-556.
7. Gourin CG, Watts TL, Williams HT, Patel VS, Bilodeau PA, Coleman TA. Identification of distant metastases with positron-emission tomography-computed tomography in patients with previously untreated head and neck cancer. Laryngoscope. 2008;118:671-675.
8. Haerle SK, Schmid DT, Ahmad N, Hany TF, Stoeckli SJ. The value of (18)F-FDG PET/CT for the detection of distant metastases in high-risk patients with head and neck squamous cell carcinoma. Oral Oncol. 2011;47:653-659.
9. Kim SY, Roh JL, Yeo NK, et al. Combined 18F-fluorodeoxyglucose-positron emission tomography and computed tomography as a primary screening method for detecting second primary cancers and distant metastases in patients with head and neck cancer. Ann Oncol. 2007;18:1698-1703.
10. de Bree R, Deurloo EE, Snow GB, Leemans CR. Screening for distant metastases in patients with head and neck cancer. Laryngoscope. 2000;110:397-401.
11. Ferlito A, Shaha AR, Silver CE, Rinaldo A, Mondin V. Incidence and sites of distant metastases from head and neck cancer. Otolaryngol Head Neck Surg. 2003;128:202-207.
12. Kotwall C, Sako K, Razack MS, Rao U, Bakamjian V, Shedd DP. Metastatic patterns in squamous cell cancer of the head and neck. Am J Surg. 1987;154:439-442.
13. Senft A, de Bree R, Hoekstra OS, et al. Screening for distant metastases in head and neck cancer patients by chest CT or whole body FDG-PET: a prospective multicenter trial. Radiother Oncol. 2008;87:221-229.
14. Xu GZ, Guan DJ, He ZY, (18)FDG-PET/CT for detecting distant metastases and second primary cancers in patients with head and neck cancer. A meta-analysis. Oral Oncol. 2011;47:560-565.
15. Kurien G, Hu J, Harris J, Seikaly H. Cost-effectiveness of positron emission tomography/computed tomography in the management of advanced head and neck cancer. J Otolaryngol Head Neck Surg. 2011;40:468-472.
16. Uyl-de Groot CA, Senft A, de Bree R, Leemans CR, Hoekstra OS. Chest CT and whole-body 18F-FDG PET are cost-effective in screening for distant metastases in head and neck cancer patients. J Nucl Med. 2010;51:176-182.
17. Ljumanovic R, Langendijk JA, Hoekstra OS, Leemans CR, Castelijns JA. Distant metastases in head and neck carcinoma: identification of prognostic groups with MR imaging. Eur J Radiol. 2006;60:58-66.
18. Peters TT, Senft A, Hoekstra OS, et al. Pretreatment screening on distant metastases and head and neck cancer patients: validation of risk factors and influence on survival. Oral Oncol. 2015;51:267-271.
19. Alvi A, Johnson JT. Development of distant metastasis after treatment of advanced-stage head and neck cancer. Head Neck. 1997;19:500-505.
20. Kolthammer JA, Su KH, Grover A, Narayanan M, Jordan DW, Muzic RF. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014;59:3843-3859.
21. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of philips gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2017;48:471-480.
22. Boellaard R, O'Doherty MJ, Weber WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181-200.
23. Cho JK, Hyun SH, Choi JY, et al. Prognostic significance of clinical and 18 F-FDG PET/CT parameters for post-distant metastasis survival in head and neck squamous cell carcinoma patients. J Surg Oncol. 2016;114:888-894.
24. Noij DP, Boerhout EJ, Pieters-van den Bos IC, et al. Whole-body-MR imaging including DWIBS in the work-up of patients with head and neck squamous cell carcinoma: a feasibility study. Eur J Radiol. 2014;83:1144-1151.

25. Brouwer J, de Bree R, Hoekstra OS, et al. Screening for distant metastases in patients with head and neck cancer: is chest computed tomography sufficient? Laryngoscope. 2005;115:1813-1817.

26. Pignon JP, le MA , Maillard E & Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92:4-14.

27. Florescu C, Thariat J. Local ablative treatments of oligometastases from head and neck carcinomas. Crit Rev Oncol Hematol. 2014;91:47-63.