Dynamics and Nonmonotonic Drag for Individually Driven Skyrmions

C. Reichhardt and C. J. O. Reichhardt
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Dated: November 25, 2021)

We examine the motion of an individual skyrmion driven through an assembly of other skyrmions by a constant or increasing force in the absence of quenched disorder. The skyrmion behavior is determined by the ratio of the damping and Magnus terms, as expressed in terms of the intrinsic skyrmion Hall angle. For a fixed driving force in the damping dominated regime, the effective viscosity decreases monotonically with increasing skyrmion density, similar to what is observed in overdamped systems where it becomes difficult for the driven particle to traverse the surrounding medium at high densities. In contrast, in the Magnus dominated regime the velocity dependence on the density is nonmonotonic, and there is a regime in which the skyrmion moves faster with increasing density, as well as a pronounced speed-up effect in which a skyrmion traveling through a dense medium moves more rapidly than it would at low densities or in the single particle limit. At higher densities, the effective damping increases and the velocity decreases. The velocity-force curves in the Magnus-dominated regime show marked differences from those in the damping-dominated regimes. Under an increasing drive we find that there is a threshold force for skyrmion motion which increases with density. Additionally, the skyrmion Hall angle is drive dependent, starting near zero at the threshold for motion and increasing with increasing drive before reaching a saturation value, similar to the behavior found for skyrmions driven over quenched disorder. We map dynamic phase diagrams showing the threshold for motion, nonlinear flow, speed-up, and saturation regimes. We also find that in some cases, increasing the density can reduce the skyrmion Hall angle while producing a velocity boost, which could be valuable for applications.

I. INTRODUCTION

Skyrmions are particle-like magnetic textures that have been identified in a growing number of materials, including numerous systems in which they are stable at room temperature. Skyrmions can be set into motion with applied currents, magnetic field gradients, and thermal gradients. Due to their size scale, room temperature stability, and mobility, skyrmions are promising candidates for various applications including memory, skyrmion-skyrmion interactions, magnonic spintronics, and novel computing architectures. In terms of basic science, skyrmions represent a new class of systems that exhibit collective dynamics under an applied drive, similar to vortices in superconductors, colloids, Wigner crystals, frictional systems, and other soft matter systems. A unique feature which distinguishes skyrmions from these other systems is the strong gyroscopic or Magnus force component of their dynamics, which generates velocities perpendicular to the net force experienced by the skyrmion. One consequence of this is that a skyrmion moves at an angle, known as the skyrmion Hall angle, with respect to an applied driving force. The Magnus term also produces many other effects, including accelerations or speed-ups of skyrmions interacting with barriers or walls, ratchet effects, and spiraling motion in a confined potential or after a quench. Such effects can be strongly modified by pinning or skyrmion-skyrmion interactions. Although and theoretical studies have been performed in systems such as colloids, granular matter, active matter, superconducting vortices, various soft matter systems, and metallic glasses, examining the dynamics of individually driven particles moving through an assembly of other particles under either a constant force or an increasing force. Measurements of the velocity-force relations or the drag on the driven particle provide information about how the effective viscosity of the system changes across density-induced transitions such as solid to liquid, liquid to glass, or unjammed to jammed. For example, the viscosity can increase strongly at the onset of a glass or solid phase produced by an increase in the density. When the probe particle is driven with an increasing force, there can be a force threshold below which the particle is unable to move, as well as distinct features in the velocity-force curves which change as the density increases.

In soft matter systems, driving a single probe particle through a background of other particles is known as active rheology. Similar probes have been applied in type-II superconductors using individually dragged vortices. Existing work on active rheology has involved overdamped systems, where the viscosity generally increases with increasing density. It is not clear how the addition of a Magnus term would impact active rheology. For example, it could change the threshold force for motion, increase or decrease the drag, modify the Hall angle, or alter the way in which the probe particle moves with respect to the background particles. Beyond skyrmions, there are many other chiral systems in which Magnus or gyroscopic effects can be
important for active rheology, including chiral soft matter fluids and solids, active chiral systems, charged particles in a magnetic field, magnetic colloids in oscillating field, spinning particles in fluids, fluid vortices, and fracton systems.

In this work we study active rheology for skyrmion systems in the absence of quenched disorder using a particle-based model. We apply an external driving force to one skyrmion and measure the velocity components and drag both parallel and perpendicular to the driving direction. For a constant drive, the velocity decreases monotonically with increasing skyrmion density in the damping-dominated regime. This is similar to what has been found for the active rheology of overdamped systems, where it becomes more difficult for the particle to pass through a denser medium due to the increased interactions with other particles. When the Magnus force is dominant, the driven skyrmion velocity has a strongly non-monotonic density dependence and increases with increased density. In this regime, the velocity can be boosted or accelerated beyond the expected velocity for an isolated driven skyrmion in the absence of surrounding skyrmions. As the density increases, the skyrmion Hall angle decreases and the velocity reaches a peak value before decreasing at higher densities. The velocity boost effect arises due to the creation of a locally asymmetric density profile around the driven skyrmion oriented perpendicular to the driving direction. This creates an additional repulsive force on the driven skyrmion which does not cancel out due to the lack of symmetry and is converted by the Magnus term into a velocity component aligned with the driving direction. The behavior is similar to the acceleration effect found for skyrmions interacting with walls and barriers.

For the case of a driving force that is increased from zero, the driven skyrmion exhibits a critical threshold for the onset of motion. The skyrmion Hall angle is zero at the threshold and increases with increasing velocity until it saturates to a constant value at high drives, similar to the behavior found for skyrmions driven over quenched disorder. In the Magnus dominated regime, the boost effect is nonmonotonic, with reduced boost at low and high drives and maximum boost at intermediate drives. This drive dependence originates from the reaction of the surrounding skyrmions to the motion of the driven skyrmion. Local density fluctuations of the background skyrmions have time to relax when the driven skyrmion velocity is low, but do not have time to form when the velocity is high. In each case the boost effect is reduced. In contrast, for intermediate driven skyrmion velocities, density fluctuations in the surrounding skyrmions form and relax on the same time scale as the motion of the driven skyrmion.

In the strongly damped regime, the velocity-force curves are similar to those observed for the active rheology of overdamped systems, while in the Magnus-dominated regime, negative differential conductivity can appear when part of the velocity in the driving direction gets transferred into the direction perpendicular to the drive. We also find that under constant driving, there are regimes in which an increase in density produces a velocity boost with a reduction of the skyrmion Hall angle. This indicates that harnessing skyrmion-skyrmion interactions may be a viable method for reducing the skyrmion Hall angle without reducing the skyrmion speed, which could be important for applications. We map dynamic phase diagrams as a function of skyrmion density, driving force, and the ratio of the damping term to the Magnus force. We discuss possible experimental realizations and the application of our results to the broader class of systems with gyroscopic forces.

II. SIMULATION

We consider an assembly of N skyrmions in a two-dimensional system with periodic boundary conditions in the x and y-directions. A single skyrmion is coupled to an external drive and is driven through the other skyrmions in the absence of quenched disorder. The skyrmion dynamics are obtained using a particle-based model from the modified Thiele equation. The equation of motion for skyrmion i is given by

$$\alpha_d \dot{v}_i + \alpha_m \ddot{z} \times v_i = \mathbf{F}^{ss}_i + \mathbf{F}^D_i$$ \hspace{1cm} (1)

where $v_i = \frac{d\mathbf{r}_i}{dt}$ is the skyrmion velocity, α_d is the damping coefficient, and α_m is the coefficient for the Magnus force. The damping term aligns the velocities in the direction of the net external forces, while the Magnus term creates a perpendicular velocity component. The skyrmion-skyrmion interaction force is $\mathbf{F}^{ss} = \sum_{j=1}^N K_i \hat{r}_{ij}$, where $\hat{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$ is the distance between skyrmions i and j and K_i is the modified Bessel function. The driving force $\mathbf{F}^D = F^D \hat{x}$ is applied only to the driven skyrmion and is zero for all other skyrmions.

In the absence of other skyrmions, the driven skyrmion would move in the direction of the intrinsic Hall angle, $\theta_{sk}^{int} = -\arctan(\alpha_m/\alpha_d)$. In the overdamped limit where $\alpha_m = 0$, $\theta_{sk}^{int} = 0^\circ$. When skyrmion-skyrmion interactions occur, the skyrmion Hall angle is reduced below its intrinsic value and is defined as $\theta_{sk} = \arctan(\langle V_{\perp} \rangle / \langle V_{\parallel} \rangle)$, where $\langle V_{\parallel} \rangle$ and $\langle V_{\perp} \rangle$ are the average velocities of the driven skyrmion parallel and perpendicular to the direction of the drive, respectively. In this way, each individual simulation is performed at a constant value of F^D and lasts 3×10^5 to 1×10^6 simulation time steps to avoid transient effects. For drives very near the critical threshold for motion, much larger time intervals are needed to reach a steady state. The density of the system is given by $\rho = N/L^2$, where the system size $L = 36$.

\[\text{II. SIMULATION} \]

We consider an assembly of N skyrmions in a two-dimensional system with periodic boundary conditions in the x and y-directions. A single skyrmion is coupled to an external drive and is driven through the other skyrmions in the absence of quenched disorder. The skyrmion dynamics are obtained using a particle-based model from the modified Thiele equation. The equation of motion for skyrmion i is given by

$$\alpha_d \dot{v}_i + \alpha_m \ddot{z} \times v_i = \mathbf{F}^{ss}_i + \mathbf{F}^D_i \hspace{1cm} (1)$$

where $v_i = \frac{d\mathbf{r}_i}{dt}$ is the skyrmion velocity, α_d is the damping coefficient, and α_m is the coefficient for the Magnus force. The damping term aligns the velocities in the direction of the net external forces, while the Magnus term creates a perpendicular velocity component. The skyrmion-skyrmion interaction force is $\mathbf{F}^{ss} = \sum_{j=1}^N K_i \hat{r}_{ij}$, where $\hat{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$ is the distance between skyrmions i and j and K_i is the modified Bessel function. The driving force $\mathbf{F}^D = F^D \hat{x}$ is applied only to the driven skyrmion and is zero for all other skyrmions.

In the absence of other skyrmions, the driven skyrmion would move in the direction of the intrinsic Hall angle, $\theta_{sk}^{int} = -\arctan(\alpha_m/\alpha_d)$. In the overdamped limit where $\alpha_m = 0$, $\theta_{sk}^{int} = 0^\circ$. When skyrmion-skyrmion interactions occur, the skyrmion Hall angle is reduced below its intrinsic value and is defined as $\theta_{sk} = \arctan(\langle V_{\perp} \rangle / \langle V_{\parallel} \rangle)$, where $\langle V_{\parallel} \rangle$ and $\langle V_{\perp} \rangle$ are the average velocities of the driven skyrmion parallel and perpendicular to the direction of the drive, respectively. In this work, each individual simulation is performed at a constant value of F^D and lasts 3×10^5 to 1×10^6 simulation time steps to avoid transient effects. For drives very near the critical threshold for motion, much larger time intervals are needed to reach a steady state. The density of the system is given by $\rho = N/L^2$, where the system size $L = 36$.

In the strongly damped regime, the velocity-force curves are similar to those observed for the active rheology of overdamped systems, while in the Magnus-dominated regime, negative differential conductivity can appear when part of the velocity in the driving direction gets transferred into the direction perpendicular to the drive. We also find that under constant driving, there are regimes in which an increase in density produces a velocity boost with a reduction of the skyrmion Hall angle. This indicates that harnessing skyrmion-skyrmion interactions may be a viable method for reducing the skyrmion Hall angle without reducing the skyrmion speed, which could be important for applications. We map dynamic phase diagrams as a function of skyrmion density, driving force, and the ratio of the damping term to the Magnus force. We discuss possible experimental realizations and the application of our results to the broader class of systems with gyroscopic forces.
| 3 |

III. RESULTS

In Fig. 1(a) we show an example of our system for a collection of skyrmions at a density of $\rho = 0.1$. The red particle is being driven at a constant force $F_D = 0.5$, while the blue particles are the non-driven or bath skyrmions. For this system, $\theta_{sk}^{\text{int}} = -44.4^\circ$, so the ratio between the damping and Magnus forces is close to one. The driven skyrmion moves on average at an angle of $\theta_{sk} = -29^\circ$. This is smaller in magnitude than the intrinsic skyrmion Hall angle, indicating that collisions with the bath skyrmions are reducing θ_{sk}. The magnitude of θ_{sk} increases for higher values of F_D but decreases with increasing ρ. Figure 1(b) shows the same system at a higher density of $\rho = 0.5$, where the driven skyrmion moves at an even smaller θ_{sk}. The skyrmion Hall angle and net velocity depend strongly on the skyrmion density, the driving force, and the ratio of the Magnus force to the damping term.

If the driven skyrmion did not collide with any other skyrmions, it would move at the intrinsic skyrmion Hall angle of $\theta_{sk}^{\text{int}} = -\arctan(\alpha_m/\alpha_d)$ with an average absolute velocity of $|V| = F_D/\sqrt{\alpha_d^2 + \alpha_m^2}$. We first consider systems in which we constrain $\alpha_d^2 + \alpha_m^2 = 1.0$. Under this condition, we can define a velocity $V_0 = |V|_{N=1} = F_D$ to be the velocity in the single particle limit. Once skyrmion-skyrmion interactions are introduced, in overdamped systems under fixed driving we expect to find $|V| < V_0$. The velocity decreases with increasing ρ and there is a critical density ρ_c at which $|V| = 0$.

In Fig. 2(a) we plot $\langle V_\parallel \rangle$ and $\langle V_\perp \rangle$ versus ρ for a system in the damping dominated regime with $\alpha_m/\alpha_d = 0.1$, $\theta_{sk}^{\text{int}} = -5.739^\circ$, and $F_D = 0.5$. As ρ increases, $\langle V_\perp \rangle$ and θ_{sk} both decrease in magnitude and approach zero for $\rho > 0.5$. In Fig. 3 we plot $|V| = \sqrt{\langle V_\parallel \rangle^2 + \langle V_\perp \rangle^2}$ for the same system, where the dashed line indicates that $|V| \leq V_0$ for all values of ρ. Here $|V|$ monotonically decreases with increasing ρ, similar to the behavior found in fully overdamped systems. When $\alpha_m = 0$, $\langle V_\perp \rangle = 0$, $\theta_{sk} = 0$, and $\langle V_\parallel \rangle$ has the same shape shown in Fig. 2 but its magnitude is slightly reduced.

In Fig. 4 we plot $\langle V_\parallel \rangle$, $\langle V_\perp \rangle$, and θ_{sk} versus ρ for the same system from Fig. 2 in the Magnus dominated regime with $\alpha_m/\alpha_d = 9.95$ and $\theta_{sk}^{\text{int}} = -84.26^\circ$. Here the velocities are highly nonmonotonic. $\langle V_\parallel \rangle$ initially increases with increasing ρ, reaches a maximum of $\langle V_\parallel \rangle = 0.78$ near $\rho = 1.25$, and then decreases again, while $\langle V_\perp \rangle$ has a small initial increase in magnitude followed by a decrease in magnitude to a value of zero near $\rho = 1.6$. The Hall angle has the value $\theta_{sk} = -84.26^\circ$ at low ρ, decreases linearly in magnitude with increasing ρ, and reaches zero for $\rho > 1.25$. The maximum value of $\langle V_\parallel \rangle = 0.78$ is higher than $V_0 = 0.5$, indicating that the velocity in the driving direction is being boosted as the skyrmion density increases. There is also a small boost in $\langle |V_\perp| \rangle$ near $\rho = 0.3$, where $\langle |V_\perp| \rangle \approx V_0$. In Fig. 3 the plot of $|V|$ versus ρ for the system in Fig. 4 shows a maximum value close to 0.9. The dashed line represents $V_0 = 0.5$, so that a velocity boost is occurring whenever $|V| > V_0$. We observe velocity boosting up to $\rho = 2.0$, while for $\rho > 2.0$, the net velocity decreases, indicating an increase in the effective damping.

In Fig. 5(a) we plot $|V|$ versus ρ for the systems in Figs. 2 and 4 at $\alpha_m/\alpha_d = 0.1$, 0.57, 0.98, 2.065, 4.924, 9.95, and 19.97. The images in Fig. 1 are taken from the sample with $\alpha_m/\alpha_d = 0.98$. For $\alpha_m/\alpha_d \leq 1.0$, there is
and is higher than boost.

$\rho > 1$ velocity boost in the driving direction. (b) The corresponding $\langle V \rangle = V_0 = F_D = 0.5$. In the Magnus dominated regime, there is a range of density over which $\langle V \rangle$ increases with increasing ρ and is higher than V_0, indicating the existence of a velocity boost.

$\rho \rangle V = 0$, there is an overshoot regime with $\langle V \rangle > V_0$. For $\alpha_m/\alpha_d > 1.0$, there is an overshoot regime with $\langle V \rangle > V_0$. (b) The corresponding values of θ_{sk} versus ρ, from top to bottom. In each case, θ_{sk} saturates to zero for large enough values of ρ.

no overshoot in $\langle V \rangle$ and we always find $\langle V \rangle < V_0$. When $\alpha_m/\alpha_d > 1.0$, an overshoot emerges with a peak velocity which increases and shifts to larger ρ with increasing Magnus force. Figure 5(b) shows the corresponding θ_{sk} versus ρ. In every case, θ_{sk} starts at its intrinsic value for small ρ, decreases in magnitude with increasing ρ, and reaches a saturation at high ρ.

In Fig. 6 we map the regions where a velocity boost is present and absent as a function of ρ versus θ_{sk} for the system in Fig. 4. As θ_{sk} increases, the upper edge of the velocity boost window shifts to higher values of ρ. The red squares indicate the values of ρ at which the boost of $\langle V \rangle$ takes its maximum value for each choice of θ_{sk}. The boost disappears for all ρ when $\theta_{sk} \leq 44^\circ$.

IV. DRIVE DEPENDENCE

The size of the velocity overshoot and the value of the skyrmion Hall angle at a given skyrmion density is also a function of the magnitude of the driving force, F_D. In Fig. 7(a) we plot $\langle V \rangle$ versus F_D for the system in Fig. 2 with $\alpha_m/\alpha_d = 0.1$ in the damping dominated limit at $\rho = 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, \text{and} 2.0$. The dashed lines indicate the expected behavior in the single parti-

FIG. 3. $\langle V \rangle = \sqrt{(V_\|)^2 + (V_\perp)^2}$ versus ρ for the system in Fig. 2 (blue) in the damping dominated regime with $\alpha_m/\alpha_d = 0.1, \alpha_m^2 + \alpha_d^2 = 1.0, \theta_{sk}^\text{int} = -5.739^\circ$, and $F_D = 0.5$, and for the system in Fig. 3 (orange) in the Magnus dominated regime with $\alpha_m/\alpha_d = 9.95$ and $\theta_{sk}^\text{int} = -84.26^\circ$. The dashed line indicates the expected response for an isolated particle with $\langle V \rangle = V_0 = F_D = 0.5$. In the Magnus dominated regime, there is a range of density over which $\langle V \rangle$ increases with increasing ρ and is higher than V_0, indicating the existence of a velocity boost.

FIG. 4. (a) $\langle V_\| \rangle$ (blue) and $\langle V_\perp \rangle$ (red) versus ρ for the same system in Fig. 2 but in a Magnus dominated regime, where $\alpha_m/\alpha_d = 9.95, \alpha_m^2 + \alpha_d^2 = 1.0, \theta_{sk}^\text{int} = -84.26^\circ$, and $F_D = 0.5$. There is a range of ρ over which $\langle V_\| \rangle > V_0 = 0.5$, indicating a velocity boost in the driving direction. (b) The corresponding $\theta_{sk} = \arctan(\langle V_\perp \rangle/\langle V_\| \rangle)$, showing a linear decrease in magnitude with increasing ρ followed by a saturation regime for $\rho > 1.25$.

FIG. 5. (a) $\langle V \rangle$ versus ρ for the systems in Figs. 2 and 3 with $\alpha_m^2 + \alpha_d^2 = 1.0$ and $F_D = 0.5$ at $\alpha_m/\alpha_d = 0.1$ (red circles), 0.57 (light blue squares), 0.98 (dark green diamonds), 2.065 (dark blue up triangles), 4.924 (purple down triangles), 9.95 (orange left triangles), and 19.97 (light green right triangles), from bottom to top. The dashed line corresponds to $V_0 = 0.5$. For $\alpha_m/\alpha_d > 1.0$, there is an overshoot regime with $\langle V \rangle > V_0$.
is maximized.

The red squares indicate the points at which the boost of \(|V| \) is maximized.

\[\alpha \]

FIG. 6. Dynamic phase diagram as a function of \(\rho \) versus intrinsic skyrmion Hall angle \(\theta_{sk}^{\text{int}} \) for the system in Fig. 5 with \(\alpha_d/\alpha_m = 0.1, \alpha_d^2 + \alpha_m^2 = 1.0, \) and \(\theta_{sk}^{\text{int}} = 5.739^\circ \) at \(\rho = 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, \) and 2.0, from top to bottom. The dashed line is the expected curve for the single particle limit. Here \(\Delta V \) starts from zero in the single particle limit and increases with increasing \(\rho \). The damping effect is strongest at low drives, and the overall damping increases with increasing \(\rho \). There is also a threshold \(F_c \) below which the driven skyrmion does not move, as shown in Fig. 8(a). When \(F_D < F_c \), \(|V| = 0.0 \). \(F_c \) starts from zero in the single particle limit and increases with increasing \(\rho \). The plot of \(\Delta V \) versus \(F_D \) in Fig. 8(b) indicates that \(\Delta V \) is zero below \(F_c \) and rises to a saturation value which approaches the single particle limit as \(\rho \) decreases. In general, \(\Delta V \) increases towards \(\Delta V = 1.0 \) with increasing \(F_D \) since the surrounding skyrmions have less time to respond to a rapidly moving driven skyrmion. For overdamped systems with quenched disorder, the velocity of the probe particle has the power law form \(V = (F_D - F_c)^\alpha \), so the particle moves the most slowly just above the threshold depinning force \(5,20,21 \). At higher drives the velocity generally approaches the pin-free limit \(20,21 \).
When the Magnus force is larger, the motion of the skyrmions requires a longer time to relax and often decreases with increasing Magnus force since the disorder, it has been shown that the depinning threshold for motion as a function of the ratio of the Magnus term to the damping. In systems with quenched deformable quenched disorder. At high velocities, where the drive is continuously increased from zero to a finite value, the sweeping rate above which transient effects become important should depend on both the damping and Magnus force. Such rate effects will be the subject of a future work.

In Fig. 9(b), we find that \(\Delta V \) decreases with increasing drive for \(F_D > F_{\text{max}} \) and approaches \(\Delta V = 1.0 \) at high drives. The decrease follows the form \(\Delta V = [A/(F_D - F_{\text{max}})] + 1.0 \). In Fig. 10 we plot \(\Delta V \) versus \(F_D \) for the specific case of \(\rho = 2.0 \) from the system in Fig. 9(b) along with a fit using \(A = 0.65 \) and \(F_{\text{max}} = 0.85 \). A similar fit can be performed for the other \(\Delta V \) versus \(F_D \) curves. This type of \(1/F_D \) dependence on fluctuations or dynamic disorder is also often observed in driven systems with quenched disorder.

The speed up effect as a function of \(\rho \) and \(F_D \) arises due to the Magnus force. In systems where a single driven skyrmion interacts with a wall or barrier which is parallel to the \(x \) direction, an applied drive parallel to the \(x \) direction generates a skyrmion Hall component which deflects the driven particle in the \(y \) direction. This increases the skyrmion-wall interaction force in the \(y \) direction, which results in a perpendicular skyrmion velocity component along the \(x \) direction. The wall-induced velocity contribution adds to the \(x \) direction velocity from the driving, generating a velocity boost ef-

![Figure 9](image1.png)

![Figure 10](image2.png)
flect. The magnitude of the boost velocity depends on the nature of the pairwise interaction between the wall and the skyrmion. If the interaction is of the power law form $V(r) \approx 1/r^\alpha$, then as the skyrmion approaches the wall more closely, r decreases and the resulting velocity in the x direction increases. The boost effect can also occur for skyrmions moving over a two-dimensional periodic substrate or over random pinning, since the effect arises whenever the component of the substrate force which is perpendicular to the direction of drive is not balanced by a compensating substrate force in the other direction. This is due to the skyrmion Hall angle which pushes the skyrmion to one side of the pinning sites.

For our single driven skyrmion, there is no pinning or barrier wall; however, a velocity boost effect can still occur due to the creation of a local density gradient in the surrounding medium. The mechanism of this effect is outlined in the schematic of Fig. 11(a), where a driven skyrmion (red) is driven in the positive x-direction through a background assembly of skyrmions (blue) and moves at a negative angle with respect to the x direction due to the skyrmion Hall effect. The red line is the driven skyrmion trajectory. The motion creates a local density gradient $\Delta \rho$ which generates a repulsive force on the driven skyrmion in the positive y-direction (black arrow). The Magnus term converts this force into a velocity in the positive x direction due to the skyrmion Hall effect. The same at higher F_D where the surrounding skyrmions do not have time to respond to the driven skyrmion. Here $\Delta \rho$ and hence the boost velocity are reduced.

Another effect of the emergence of a density inhomogeneity $\Delta \rho$ is a reduction in the skyrmion Hall angle at lower drives, since the skyrmions that accumulate below the driven particle partially block the motion in the $-y$ direction. In Fig. 12 we plot θ_{sk} versus F_D for the system in Fig. 9 with $\alpha_m/\alpha_d = 9.95$ for $\rho = 0.05, 0.1, 0.25, 0.5, 1.0, 1.5$, and 2.0, from bottom to top. The dashed line indicates the single particle limit.
drives. As the driven skyrmion approaches the saturation regime, it is moving fast enough that that surrounding skyrmions cannot respond to its presence, giving a small $\Delta \rho$ and a reduced boost effect, as shown in Fig. 11(b).

From the features in (V_{\perp}), $(V_{||})$, $|V|$, and θ_{sk}, we can construct a dynamic phase diagram as a function of F_D versus ρ for the strongly damped and Magnus dominated limits. In Fig. 13 we show the phase diagram for the damping dominated system with $\alpha_m/\alpha_d = 0.1$ and $\alpha_m^2 + \alpha_d^2 = 1.0$. Red indicates the pinned regime, where the driven skyrmion moves at $\theta_{sk} = 0.0^\circ$. Blue: the skyrmion Hall angle is increasing in magnitude with drive. Orange: the saturation regime.

In Fig. 13 we show the dynamic phase diagram as a function of F_D versus ρ for a damping dominated system with $\alpha_m/\alpha_d = 0.1$ and $\alpha_m^2 + \alpha_d^2 = 1.0$. Red: pinned. Green: the driven skyrmion moves at $\theta_{sk} = 0.0^\circ$. Blue: the skyrmion Hall angle is increasing in magnitude with drive. Orange: the saturation regime.

In the green region, the driven skyrmion is moving but its velocity is strictly along the driving direction so that $\theta_{sk} = 0.0^\circ$. In the blue region, there is a finite but growing θ_{sk}, while in the orange region, the skyrmion Hall angle has saturated. The thresholds for motion parallel and perpendicular to the driving direction both increase with increasing ρ. Previous work in systems with quenched disorder also showed that there can be separate thresholds for the onset of motion parallel and perpendicular to the drive, with a region above the first depinning threshold where the skyrmions can flow at $\theta_{sk} = 0^\circ$ for small intrinsic skyrmion Hall angles.31,305,101 As the ratio of the Magnus force to the damping term increases, the threshold for transverse motion shifts to smaller F_D. In the saturation regime, the response resembles the single particle limit and θ_{sk} approaches the intrinsic skyrmion Hall value of $\theta_{sk}^{int} = 5.7^\circ$.

In Fig. 14 we show the dynamic phase diagram as a function of F_D versus ρ for the Magnus dominated system with $\alpha_m/\alpha_d = 9.95$. There is still a pinned regime, but the region in which there is finite motion with $\theta_{sk} = 0.0^\circ$ is absent or too small to detect. In the blue region, the skyrmions are only weakly perturbed by the pinning.$^{29,32,90-95}$

In Fig. 14 we show the dynamic phase diagram as a function of F_D versus ρ for the Magnus dominated system with $\alpha_m/\alpha_d = 9.95$ and $\alpha_m^2 + \alpha_d^2 = 1.0$. Red: pinned. Blue: the skyrmion Hall angle is increasing in magnitude with drive and a velocity boost occurs. Orange: the saturation regime.

V. VARIED MAGNUS TO DAMPING RATIO AND VELOCITY-FORCE CURVES

We next fix the density ρ and vary the ratio of the Magnus and damping terms while maintaining the normalization relation $\alpha_d^2 + \alpha_m^2 = 1.0$. In Fig. 15(a) we plot $(V_{||})$ versus F_D for systems with $\rho = 0.5$ at $\alpha_m/\alpha_d = 9.95$ and 0.1. Figures 15(b) and (c) show the corresponding values of (V_{\perp}) and θ_{sk} versus F_D, respectively. For the Magnus dominated case of $\alpha_m/\alpha_d = 9.95$, $(V_{||})$ and (V_{\perp}) become finite at almost the same value of F_D, which also corresponds to the appearance of a nonzero θ_{sk}. For the damping dominated sample with $\alpha_m/\alpha_d = 0.1$, (V_{\perp}) and θ_{sk} remain zero up to $F_D \approx 1.0$.

The ratio of the Magnus to the damping term determines the shape of the velocity-force curves. For $\alpha_m/\alpha_d = 0.1$, both $(V_{||})$ and (V_{\perp}) increase monotonically with F_D according to the linear behavior $V \propto (F_D - F_c)$, where F_c is the threshold for motion in either the parallel or the perpendicular direction. When $\alpha_m/\alpha_d = 9.95$, (V_{\perp}) still increases linearly with increasing F_D above the depinning threshold; however, $(V_{||})$ exhibits a nonmonotonic behavior in which it initially rises rapidly with increasing F_D but then decreases again. In this regime,
FIG. 15. (a) $\langle V_{||}\rangle$ versus F_D for systems with $\rho = 0.5$ and $\alpha_m^2 + \alpha_d^2 = 1.0$ at $\alpha_m/\alpha_d = 9.95$ (green) and 0.1 (red). The corresponding $\langle V_{\perp}\rangle$ versus F_D. (b) The corresponding θ_{sk} versus F_D. (c) The corresponding $d\theta_{sk}/dF_D$ versus F_D.

FIG. 16. (a) $\langle V_{||}\rangle$ versus F_D for the system in Fig. 15 with $\rho = 0.5$ and $\alpha_m^2 + \alpha_d^2 = 1.0$ at $\alpha_m/\alpha_d = 9.95$ (green) and 0.1 (red). The dashed lines are the expected velocity-force curves in the single particle limit for these two cases. (b) The corresponding $d\langle V_{||}\rangle/dF_D$ versus F_D. (c) $\langle V_{\perp}\rangle$ versus F_D for the system in Fig. 15 with $\rho = 0.5$ and $\alpha_m^2 + \alpha_d^2 = 1.0$ at $\alpha_m/\alpha_d = 9.95$ (green) and 0.1 (red). The dashed lines are the expected velocity-force curves in the single particle limit for these two cases. (b) The corresponding $d\langle V_{\perp}\rangle/dF_D$ versus F_D.

FIG. 17. (a) $\langle V_{\perp}\rangle$ versus F_D for the system in Fig. 15 with $\rho = 0.5$ and $\alpha_m^2 + \alpha_d^2 = 1.0$ at $\alpha_m/\alpha_d = 9.95$ (green) and 0.1 (red). The dashed lines are the expected velocity-force curves in the single particle limit for these two cases. (b) The corresponding $d\langle V_{\perp}\rangle/dF_D$ versus F_D.

The velocity decreases even though the drive is increasing, giving $d\langle V_{\perp}\rangle/dF_D < 0$, which is known as negative differential conductivity. In Fig. 16(a) we plot $\langle V_{||}\rangle$ versus F_D for the samples from Fig. 15. The green dashed line shows the expected value for $\langle V_{||}\rangle$ in the single particle limit at $\alpha_m/\alpha_d = 9.95$, which increases linearly according to $\langle V_{||}\rangle = 0.995F_D$. For the $\alpha_m/\alpha_d = 0.1$ sample, the red dashed line is the single particle limit $\langle V_{||}\rangle = 0.1F_D$. In the damping dominated system with $\alpha_m/\alpha_d = 0.1$, $\langle V_{||}\rangle$ is below the single particle limit, while in the Magnus dominated system with $\alpha_m/\alpha_d = 9.95$, $\langle V_{||}\rangle$ is higher than the single particle limit due to the boosting effect. In Fig. 16(b) we show the corresponding values of $d\langle V_{||}\rangle/dF_D$, with the single particle limits marked by dashed lines. For the $\alpha_m/\alpha_d = 9.95$ system, the initial peak in $d\langle V_{||}\rangle/dF_D$ corresponding to the depinning transition is followed by a region of negative differential conductivity where $d\langle V_{||}\rangle/dF_D < 0.0$. At higher drives, $d\langle V_{||}\rangle/dF_D$ saturates to the value expected in the single particle limit. For the damping dominated system with $\alpha_m/\alpha_d = 0.1$, $d\langle V_{||}\rangle/dF_D$ is initially below the single particle value due to the increased damping from the surrounding skyrmions, while at higher drives it approaches the single particle limit. The negative differential conductivity in the Magnus-dominated system is affected by the density, and for low ρ the shape of the velocity-force curve approaches that found in the single particle limit.

In Fig. 17(a) we plot $\langle V_{\perp}\rangle$ versus F_D for the system in Fig. 15 at $\rho = 0.5$ with $\alpha_m/\alpha_d = 9.95$ and 0.1. The dashed lines are the expected values for the single particle limit, which obey $\langle V_{\perp}\rangle = -0.1F_D$ for the $\alpha_m/\alpha_d = 0.1$
system and \(\langle V_\perp \rangle = -0.995 F_D \) for the \(\alpha_m/\alpha_d = 9.95 \) system. In the Magnus dominated regime, \(\langle V_\perp \rangle \) is slightly larger than it would be in the single particle limit, while in the damping dominated regime it is slightly lower. Most of the velocity boost in the Magnus dominated regime is parallel to the driving direction since the induced density gradient is perpendicular to the drive. In Fig. 17(b) we show the corresponding \(d\langle V_\perp \rangle/dF_D \) versus \(F_D \) curves where, unlike the parallel velocity plotted in Fig. 16, there is no regime of negative differential mobility. There is still a peak in \(d\langle V_\perp \rangle/dF_D \) near the depinning threshold, while at high drives the curves approach the single particle limit.

In Fig. 18(a) we plot \(\langle V_\parallel \rangle \) versus \(F_D \) for the system in Fig. 18 with \(\rho = 0.5 \) and \(\alpha_m^2 + \alpha_d^2 = 1.0 \) at \(\alpha_m = 0.0, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 0.97, 0.995, \) and 0.998. Figures 18(b) and (c) show the corresponding \(\langle V_\perp \rangle \) and \(\theta_{sk} \), respectively, versus \(F_D \). We find negative differential conductivity for \(\alpha_m > 0.9 \) or \(\alpha_m/\alpha_d > 5.0 \), indicating that this effect appears only when the Magnus force is sufficiently large. There is no negative differential conductivity in the \(\langle V_\perp \rangle \) versus \(F_D \) curves, while the plots of \(\theta_{sk} \) versus \(F_D \) indicate that as \(\alpha_m \) decreases, the threshold drive above which the skyrmion Hall angle becomes finite increases.

From the features in Fig. 18 we can construct a dynamic phase diagram as a function of \(F_D \) versus \(\alpha_m \), as shown in Fig. 19. Here we outline the pinned phase, the flowing regime with \(\theta_{sk} = 0.0^\circ \), the region in which \(\theta_{sk} \) increases with increasing \(F_D \), and the saturation regime where there is little change in \(\theta_{sk} \). For drives above the dashed line, the velocities are boosted compared to the single particle limit. The boost is strongly reduced in the saturation regime. Figure 19 indicates that the depinning threshold is approximately constant as a function of increasing \(\alpha_m \), while the regime in which the velocity is locked in the driving direction grows in extent with decreasing \(\alpha_m \). At \(\alpha_m = 0 \), the onset of saturation coincides with the point where the velocity-force curves start to grow linearly with \(F_D \). The transition demarcating the onset of a velocity boost shifts to lower \(\alpha_m \) as \(\rho \) increases.

We next relax the constraint of \(\alpha_m^2 + \alpha_d^2 = 1.0 \) and instead hold either the Magnus or damping term constant while varying the other quantity. For a fixed drive, this means that in the single particle limit, \(|V| \) obeys \(|V| \propto F_D/\sqrt{\alpha_m^2 + \alpha_d^2} \). In Fig. 20(a) we plot \(\langle V_\parallel \rangle \) and \(\langle V_\perp \rangle \) versus \(\alpha_d \) for a system with \(\rho = 0.05, F_D = 0.5, \) and \(\alpha_m = 1.0 \). Here \(\langle V_\parallel \rangle \) is zero for \(\alpha_d = 0.0 \), increases to a maximum value near \(\alpha_d = 1.0 \), and then decreases with increasing \(\alpha_d \), while \(\langle V_\perp \rangle \) gradually approaches zero as \(\alpha_d \) increases. In the single particle limit, \(\langle V_\parallel \rangle = F_D \alpha_d/(\alpha_m^2 + \alpha_d^2) \) and \(\langle V_\perp \rangle = -F_D \alpha_m/(\alpha_m^2 + \alpha_d^2) \), so for a fixed \(\alpha_m = 1.0, \langle V_\parallel \rangle = F_D \alpha_d/(1 + \alpha_d^2) \), plotted as a dashed line. In this case, \(\langle V_\parallel \rangle = 0.0 \) when \(\alpha_d = 0.0 \), and the parallel velocity also approaches zero at large \(\alpha_d \). Similarly, in the single particle limit, \(\langle V_\perp \rangle = -F_D/(1 + \alpha_m^2) \), so that when \(\alpha_d = 0.0, \langle V_\perp \rangle = -F_D = -0.5 \). For \(\rho = 0.05 \), the density is low enough that the behavior is close to the single particle limit. In Fig. 20(b) we plot \(|V| \) versus \(\alpha_d \) for the system in Fig. 20(a), where the dashed line is the single particle limit of \(|V| = F_D/(1 + \alpha_d^2)^{1/2} \). There is a small boost in \(|V| \) for \(\alpha_d < 1.0 \), while \(|V| \)
exhibits a speed up effect. The corresponding \(\rho \) (black) for the system in Fig. 20(a) with particle behavior of the single particle limit, indicating that there is only a small boost in the velocity. Although there are some collisions with the background skyrmions, there is only a small boost in the velocity.

In Fig. 20(b) we show \(\langle V \rangle \) and \(\langle V \rangle \) versus \(\alpha_d \) for the same system in Fig. 20(a) but at a higher density of \(\rho = 0.5 \). The dashed lines are the expected behavior in the single particle limit. Here there is a boost in \(\langle V \rangle \) for \(\alpha_d < 0.75 \), while \(\langle V \rangle \) drops below the single particle limit at higher \(\alpha_d \). There is also a small boost in \(\langle V \rangle \) for \(\alpha_d < 0.3 \). We note that unlike the low density case, \(\langle V \rangle \) is finite at \(\alpha_d = 0.0 \) due to collisions with the background skyrmions. Figure 20(c) shows the corresponding \(\theta_{sk} \) versus \(\alpha_d \) and the expected single particle limit, indicating that there is a net velocity boost for \(\alpha_d < 0.5 \) followed by increased damping for \(\alpha_d > 0.5 \). In Fig. 20(d) we plot the corresponding \(\theta_{sk} \) versus \(\alpha_d \) and the single particle limit. The skyrmion Hall angle rapidly decreases in magnitude with increasing \(\alpha_d \), reaching a saturation for \(\alpha_d > 0.5 \). Figure 21(b) shows the positions and trajectories of the driven and bath skyrmions for the system in Fig. 20(d) at \(\rho = 0.5 \) and \(\alpha_d = 0.3 \), where the skyrmion Hall angle is much smaller than that found in the \(\rho = 0.05 \) system illustrated in Fig. 21(a); however, the velocity of the driven skyrmion is much larger for the system in Fig. 20(a) at \(\rho = 0.05 \) and \(\alpha_d = 0.3 \). The driven skyrmion is moving at a skyrmion Hall angle close to \(\theta_{sk} = -65^\circ \). Although there are some collisions with the background skyrmions, there is only a small boost in the velocity.

In Fig. 22(a) we plot \(\langle V \rangle \) and \(\langle V \rangle \) versus \(\alpha_m \) for a system with \(\rho = 0.05 \), \(F_D = 0.5 \), and \(\alpha_d = 1.0 \). The blue dashed line is the expected single particle behavior \(\langle V \rangle = F_D/(1 + \alpha_m^2) \) and the red dashed line is the single particle behavior \(\langle V \rangle = -F_D \alpha_m/(1 + \alpha_m^2) \). (b) \(|V| \) versus \(\alpha_d \) for the system in panel (a), where the dashed line is the single particle limit of \(|V| = F_D / (1 + \alpha_m^2)^{1/2} \). The corresponding skyrmion Hall angle \(\theta_{sk} \) versus \(\alpha_m \), where the dashed line is the single particle limit of \(\theta_{sk} = -\arctan(\alpha_m) \). (d) \(\langle V \rangle \) (blue) and \(\langle V \rangle \) versus \(\alpha_d \) for the same system but with \(\rho = 0.5 \). (e) The corresponding \(|V| \) versus \(\alpha_m \) and (f) the corresponding \(\theta_{sk} \) versus \(\alpha_m \).

![Figure 20](image1.png)

Figure 20. (a) \(\langle V \rangle \) (blue) and \(\langle V \rangle \) (red) versus \(\alpha_d \) for a system with \(\rho = 0.05 \), \(F_D = 0.5 \) and \(\alpha_m = 1.0 \). The blue dashed line is the expected single particle behavior which goes as \(\langle V \rangle = F_D \alpha_d/(1 + \alpha_m^2) \) and the red dashed line is the single particle behavior of \(\langle V \rangle = -F_D/(1 + \alpha_m^2) \). (b) The corresponding \(|V| \) versus \(\alpha_d \), where the dashed line is the single particle limit of \(|V| = F_D / (1 + \alpha_m^2)^{1/2} \). (c) The corresponding skyrmion Hall angle \(\theta_{sk} \) versus \(\alpha_d \). The dashed line is the single particle limit of \(\theta_{sk} = -\arctan(1/\alpha_d) \). (d) \(\langle V \rangle \) (blue) and \(\langle V \rangle \) (red) versus \(\alpha_d \) for the same system but with \(\rho = 0.5 \). (e) \(|V| \) versus \(\alpha_d \) for the system in panel (d). (f) \(\theta_{sk} \) versus \(\alpha_d \) for the system in panel (d). The denser system exhibits a speed up effect.

![Figure 21](image2.png)

Figure 21. Driven skyrmion and trajectory (red) along with the surrounding skyrmions (blue) and their trajectories (black) for the system in Fig. 20(a) with \(\rho = 0.05 \), \(\alpha_d = 0.3 \), and \(\alpha_m = 1.0 \), where the skyrmion Hall angle is large. (b) The same but at \(\rho = 0.5 \), where the skyrmion Hall angle is smaller and the velocity of the driven skyrmion is higher.

![Figure 22](image3.png)

Figure 22. (a) \(\langle V \rangle \) (blue) and \(\langle V \rangle \) (red) versus \(\alpha_m \) for a system with \(\rho = 0.05 \), \(F_D = 0.5 \), and \(\alpha_d = 1.0 \). The background skyrmions for the system in Fig. 20(a) at \(\rho = 0.05 \) and \(\alpha_d = 0.3 \). The driven skyrmion is moving at a skyrmion Hall angle close to \(\theta_{sk} = -65^\circ \). Although there are some collisions with the background skyrmions, there is only a small boost in the velocity.

In Fig. 22(d) we show \(\langle V \rangle \) and \(\langle V \rangle \) versus \(\alpha_d \) for the same system in Fig. 22(a) at a higher density of \(\rho = 0.5 \). The dashed lines are the expected behavior in the single particle limit. Here there is a boost in \(\langle V \rangle \) for \(\alpha_d < 0.75 \), while \(\langle V \rangle \) drops below the single particle limit at higher \(\alpha_d \). There is also a small boost in \(\langle V \rangle \) for \(\alpha_d < 0.3 \). We note that unlike the low density case, \(\langle V \rangle \) is finite at \(\alpha_d = 0.0 \) due to collisions with the background skyrmions. Figure 22(c) shows the corresponding \(|V| \) versus \(\alpha_d \) and the expected single particle limit, indicating that there is a net velocity boost for \(\alpha_d < 0.5 \) followed by increased damping for \(\alpha_d > 0.5 \). In Fig. 22(f) we plot the corresponding \(\theta_{sk} \) versus \(\alpha_d \) and the single particle limit. The skyrmion Hall angle rapidly decreases in magnitude with increasing \(\alpha_d \), reaching a saturation for \(\alpha_d > 0.5 \). Figure 21(b) shows the positions and trajectories of the driven and bath skyrmions for the system in Fig. 20(d) at \(\rho = 0.5 \) and \(\alpha_d = 0.3 \), where the skyrmion Hall angle is much smaller than that found in the \(\rho = 0.05 \) system illustrated in Fig. 21(a); however, the velocity of the driven skyrmion is much larger for the \(\rho = 0.5 \) system.
and $\langle V_\perp \rangle = -F_D \alpha_m/(1 + \alpha_m^2)$. We find that $\langle V_\parallel \rangle$ monotonically decreases and changes from being slightly higher than the free particle limit for $\alpha_m < 5.0$ to being slightly lower than the free particle limit for $\alpha_m > 5.0$. $\langle V_\perp \rangle$ starts from zero at $\alpha_m = 0.0$, reaches a maximum value near $\alpha_m = 1.0$, and gradually drops back to zero with increasing α_m, closely following the single particle limit. In Fig. 22(b) we show the corresponding $|V|$ versus α_m along with a dashed line indicating the single particle limit of $|V| = F_D/(1 + \alpha_m^2)^{1/2}$, which decreases monotonically with increasing α_m. There is a small boost in the velocity due to the collisions with the background skyrmions. Figure 22(c) shows θ_{sk} versus α_m for the same system as well as the single particle limit of $\theta_{sk} = -\arctan(\alpha_m)$. Here the measured skyrmion Hall angle is slightly smaller in magnitude than the single particle limit due to the collisions with bath skyrmions.

In Fig. 22(d) we plot $\langle V_\parallel \rangle$, $\langle V_\perp \rangle$, and the single particle limits for the same system from Fig. 22(a) but at a higher density of $\rho = 0.5$. Here $\langle V_\parallel \rangle$ is considerably below the single particle limit at $\alpha_m = 0.0$ due to the increased frequency of collisions; however, for $\alpha_m > 2.5$, it is considerably higher than the single particle limit. $\langle V_\perp \rangle$ is close to zero for $\alpha_m < 7.0$ but begins to increase at larger α_m. In Fig. 22(e) we show the corresponding $|V|$ versus α_m. $|V|$ falls below the dashed line representing the single particle limit up to $\alpha_m = 7.0$ and exhibits a boost for higher α_m. Figure 22(f) illustrates the corresponding θ_{sk} versus α_m and the single particle limit. θ_{sk} is close to zero for $\alpha_m < 7.0$, while for higher α_m, the magnitude of θ_{sk} increases and a velocity boost appears. For higher values of F_D, all of the quantities gradually approach the single particle limit.

In Fig. 23(a) we plot $\langle V_\parallel \rangle$ and $\langle V_\perp \rangle$ versus ρ for a system with $\alpha_d = 0.3$, $\alpha_m = 1.0$, and $F_D = 0.5$. The single particle limit for these parameters gives $\langle V_\parallel \rangle = 0.14$ and $\langle V_\perp \rangle = -0.48$. $\langle V_\parallel \rangle$ initially increases with increasing ρ to a peak value of 0.65, a strong boost that is four times larger than the single particle limit. As ρ increases further, $\langle V_\parallel \rangle$ gradually decreases; however, even at the high density of $\rho = 3.0$, $\langle V_\parallel \rangle$ is still almost twice as large as the single particle limit, indicating the continuing effectiveness of the boost effect. $\langle V_\perp \rangle$ decreases monotonically in magnitude with increasing density, approaching a value close to zero for $\rho > 0.7$. In Fig. 23(b) we show the corresponding $|V|$ versus ρ, where the dashed line is the single particle limit of $|V| = F_D/((\alpha_d^2 + \alpha_m^2)^{1/2})$, which for these coefficients is $|V| = 0.4789$. Here there is a boost in the velocity up to $\rho = 0.7$, while at higher densities the velocities are much more strongly damped. This indicates that it is possible for the parallel velocity to be boosted while the overall velocity is not boosted. Figure 23(c) illustrates the corresponding θ_{sk} versus ρ. For low density, the skyrmion Hall angle is near the intrinsic value of $\theta_{sk} = -73.3^\circ$, and as ρ increases, θ_{sk} approaches zero once $\rho > 0.7$.

In Fig. 23(d) we plot $\langle V_\parallel \rangle$ and $\langle V_\perp \rangle$ versus ρ for a system with a larger $\alpha_d = 3.0$ at $\alpha_m = 1.0$ and $F_D = 0.5$. For these parameters, the single particle limit gives $\langle V_\parallel \rangle = 0.15$ and $\langle V_\perp \rangle = -0.05$. We find that both $\langle V_\parallel \rangle$ and $\langle V_\perp \rangle$ monotonically decrease in magnitude with increasing ρ. In Fig. 23(e) we show the corresponding $|V|$ versus ρ, where the dashed line is the single particle limit of $|V| = 0.158$. Here there is no boost and $|V|$ drops off rapidly with increasing ρ, showing a change in slope near $\rho = 0.3$ to a slower decline. Figure 23(f) illustrates the corresponding θ_{sk} versus ρ, which starts off near $\theta_{sk} = -18.4^\circ$ and approaches zero for $\rho > 0.3$. The change in the skyrmion Hall angle and velocity across $\rho = 0.3$ occurs because the density is low enough for $\rho < 0.3$ that the bath skyrmions act like a fluid which is not strongly coupled to the driven skyrmion, while when $\rho > 0.3$, the bath skyrmions act more like a solid, increasing the drag on the driven skyrmion.

VI. DISCUSSION

In our work, the driven skyrmion is free to move in any direction. In certain chiral soft matter systems, a similar probe particle could be implemented using a magnetic or charged particle coupled to a uniform magnetic or electric field which does not couple to the remaining particles, allowing the probe particle to move at any angle. In skyrmion systems, it is possible to have samples containing multiple species of skyrmions, some of which could couple more strongly than others to an externally imposed field. The closest experimental realization of our system for skyrmions would be to drag a single skyrmion using some form of localized trap. Such an arrangement would constrain the driven skyrmion to move only in the direction the trap is being translated, and would not al-
low the driven skyrmion to move at a speed greater than that of the trap. In this case, changes in the effective viscosity could be deduced by measuring the force or the fluctuations exerted by the skyrmion on the trap. The case of a trap moving at a constant velocity will be studied in another work; however, the results of the present study can be used as a guide to understand which different velocity regimes could arise.

In our work we have only considered a particle-based model, which neglects internal degrees of freedom and shape changes of the skyrmion. Such modes could increase or decrease the damping experienced by the driven skyrmion or change the nature of the skyrmion motion. We have also assumed a simple pairwise repulsion between skyrmions, but it is possible for skyrmions to have more complex interactions, such as competing interactions at different length scales. This could produce additional coupling/decoupling or depinning transitions.

In constant velocity experiments, the force the skyrmion experiences could have a periodic signature if the motion occurs through a skyrmion solid, or a broad band noise signature if the skyrmion is moving through a glass or liquid state. Numerical work58,59 and experiments102,103 on collectively moving skyrmions have shown the presence of both broad and narrow band noise, so it would be interesting to study the fluctuations exerted on a single skyrmion as it moves through a bath of other skyrmions. We can also compare our results to active rheology in overdamped chiral granular systems, where a disk with short range repulsive interactions is pushed through an assembly of spinning grains58. The granular system generally does not exhibit any velocity boost due to its overdamped nature. The probe particle in the granular system has no intrinsic Hall angle, but as function of driving force shows a finite Hall angle at intermediate drives, with no Hall angle at low or high drives. The finite Hall angle arises as a result of collisions between the probe particle and the spinning disks, which create a deflection of the probe particle perpendicular to the driving direction. This deflection decreases in magnitude as the velocity of the probe particle increases.

VII. SUMMARY

We have numerically examined the active rheology of a single skyrmion driven through a bath of other skyrmions in the absence of quenched disorder. Active rheology has been used to study the changes in drag on driven probe particles in various soft matter and superconducting vortex systems where the dynamics is overdamped. In those systems, the velocity of the probe particle under a constant driving force rapidly decreases with increasing bath particle density due to an increased dragging effect. For skyrmions, which have a strong Magnus force, we find that the behavior differs strongly from what is observed in the damping dominated limit. The driven skyrmion velocity in the driving direction is highly non-monotonic as a function of density, and can increase rather than decreasing when the density is increased. This effect appears as a boost in the net velocity. At higher densities, the velocity decreases with increasing density. The skyrmion Hall angle also decreases as the bath density increases. The magnitude of the velocity boost depends on the system density, the strength of the Magnus term, and the applied drive. For a fixed density, as we increase the driving force we find a critical threshold force below which the driven skyrmion does not move, a regime in which the magnitude of the skyrmion Hall angle increases with drive, and a regime at higher drive where the skyrmion Hall angle saturates. The drive dependence of the skyrmion Hall angle is similar to that observed for skyrmions driven over quenched disorder. If the Magnus force is dominant, a velocity boost appears which is maximum for an intermediate drive and diminishes at higher drives. When the damping force is strong, the velocities are reduced but approach the single particle limit at higher drives. The velocity-force curves in the damped regime have linear or monotonic behavior, while in the Magnus dominated regime, the velocity in the driving direction can decrease with increasing drive, leading to negative differential conductivity. The maximum velocity boost shifts to higher drives with increased density. The velocity boost originates when the driven skyrmion moves at a finite skyrmion Hall angle and creates a localized density inhomogeneity in the background skyrmions, which generate an unbalanced pairwise repulsive force on the driven skyrmion perpendicular to the driving direction. The Magnus force then converts this force into an additional velocity component in the direction of drive. At low bath densities, the localized density fluctuation relaxes quickly and the velocity boost is small, while at high drives the driven skyrmion moves too quickly past the bath skyrmions for a localized density fluctuation to form, so the velocity boost is again reduced. We find regimes in which the skyrmion Hall angle decreases with a simultaneous increase in the skyrmion velocity, suggesting that skyrmion-skyrmion interactions can be useful for producing effects that are of value for use in devices. We discuss possible experimental realizations of this system where a single skyrmion could be driven with some form of tip or optical trap while deflection forces on the skyrmion are measured. Beyond skyrmions, our results should be relevant to any kind of active rheology in systems with gyroscopic forces, such as active chiral matter, fluid vortices, electrons in a magnetic field, fractons, and other gyroscopic systems.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD program for this work. This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is oper-
S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, 915–919 (2009).

X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature (London) 465, 901–904 (2010).

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nature Nanotechnol. 8, 899–911 (2013).

K. Everschor-Sitte, J. Maselli, R. M. Reeve, and M. Kläui, “Perspective: Magnetic skyrmions - Overview of recent progress in an active research field,” J. Appl. Phys. 124, 240901 (2018).

C. Reichhardt, C. J. O. Reichhardt, and M. V. Milosevic, “Statics and dynamics of skyrmions interacting with pinning: a review,” arXiv e-prints , arXiv:2102.10464 (2021).

S. Woo, K. Litzsui, B. Krüger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemeshe, M.-A. Mawass, P. Fischer, M. Kläui, and G. S. D. Beach, “Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets,” Nature Mater. 15, 501 (2016).

A. Soumyanarayanan, M. Raju, A. L. G. Oyarce, A. K. C. Tan, M.-Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo, M. Tran, C. K. Gan, F. Ernult, and C. Panagopoulos, “Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers,” Nature Mater. 16, 898 (2017).

S. A. Montoya, R. Tolley, I. Gilbert, S.-G. Je, M.-Y. Im, and E. E. Fullerton, “Spin-orbit torque induced dipole skyrmion motion at room temperature,” Phys. Rev. B 98, 104432 (2018).

E. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, “Spin transfer torques in MnSi on ultralow current densities,” Science 330, 1648–1651 (2010).

X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Har, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an ultralow current density,” Nature Commun. 3, 988 (2012).

J. Iwasaki, M. Mohizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nature Commun. 4, 1463 (2013).

S. L. Zhang, W. W. Wang, D. M. Burn, H. Peng, H. Berger, A. Bauer, C. Pfleiderer, G. van der Laan, and T. Hesjedal, “Manipulation of skyrmion motion by magnetic field gradients,” Nature Commun. 9, 2115 (2018).

M. Mohizuki, X. Z. Yu, S. Seki, N. Kanazawa, W. Koshihak, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nature Mater. 13, 241–246 (2014).

A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nature Nanotechnol. 8, 152–156 (2013).

R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, “A strategy for the design of skyrmion racetrack memories,” Sci. Rep. 4, 6784 (2014).

A. Fert, N. Reyren, and V. Cros, “Magnetic skyrmions: advances in physics and potential applications,” Nature Rev. Mater. 2, 17031 (2017).

J. Závorka, F. Jakobs, D. Heinze, N. Keil, S. Kromin, S. Jaiswal, K. Litzsi, G. Jakob, P. Virnau, D. Pinna, K. Everschor-Sitte, L. Rózsa, A. Donges, U. Nowak, and M. Kläui, “Thermal skyrmion diffusion used in a reshullfer device,” Nature Nanotechnol. 14, 658–661 (2019).

H. Zhang, D. Zhu, W. Kang, Y. Zhang, and W. Zhao, “Stochastic computing implemented by skyrmionic logic devices,” Phys. Rev. Applied 13, 054049 (2020).

D. Pinna, G. Bouriaoinoff, and K. Everschor-Sitte, “Reservoir computing with random skyrmion textures,” Phys. Rev. Applied 14, 054020 (2020).

D. S. Fisher, “Collective transport in random media: from superconductors to earthquakes,” Phys. Rev. Lett. 101, 115–150 (1998).

C. Reichhardt and C. J. Olson Reichhardt, “Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review,” Rep. Prog. Phys. 80, 026501 (2017).

S. Bhattacharya and M. J. Higgins, “Dynamics of a disordered flux line lattice,” Phys. Rev. Lett. 70, 2617–2620 (1993).

G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994).

P. Tierno, “Depinning and collective dynamics of magnetically driven colloidal monolayers,” Phys. Rev. Lett. 109, 198304 (2012).

C. Reichhardt, C. J. Olson, N. Grounbech-Jensen, and F. Nori, “Moving Wigner glasses and smectics: Dynamics of disordered Wigner crystals,” Phys. Rev. Lett. 86, 4354–4357 (2001).

A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, and E. Tosatti, “Colloquium: Modeling friction: From nanoscale to mesoscale,” Rev. Mod. Phys. 85, 529–552 (2013).

C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, “Jamming at zero temperature and zero applied stress: The epitome of disorder,” Phys. Rev. E 68, 011306 (2003).

K. Everschor-Sitte and M. Sitte, “Real-space Berry phases: Skyrmion soccer (invited),” J. Appl. Phys. 115, 172602 (2014).

C. Reichhardt, D. Ray, and C. J. Olson Reichhardt, “Quantized transport for a skyrmion moving on a two-dimensional periodic substrate,” Phys. Rev. B 91, 104426 (2015).

C. Reichhardt, D. Ray, and C. J. Olson Reichhardt, “Collective transport properties of driven skyrmions with random disorder,” Phys. Rev. Lett. 114, 217202 (2015).
A. Barthélémy, and J. E. Villegas, “Nanoscale electrostatic manipulation of magnetic flux quanta in ferroelectric/superconductor BiFeO₃/YBa₂Cu₃O₇−δ heterostructures,” Phys. Rev. Lett. 107, 247002 (2011).

C. J. Olson Reichhardt and C. Reichhardt, “Viscous decoupling transitions for individually dragged particles in systems with quenched disorder,” Phys. Rev. E 78, 011402 (2008).

R. Wulfert, U. Seifert, and T. Speck, “Nonequilibrium depletion interactions in active microrheology,” Soft Matter 13, 9093 (2017).

R. N. Zia, “Active and passive microrheology: Theory and simulation,” Ann. Rev. Fluid Mech. 50, 371 (2018).

H. Wang, T. Mohoric, X. Zhang, J. Dobnikar, and J. Horbach, “Active microrheology in two-dimensional magnetic networks,” Soft Matter 15, 4437 (2019).

J. W. Yu, S. H. E. Rahbari, T. Kawasaki, H. Park, and W. B. Lee, “Active microrheology of a bulk metallic glass,” Sci. Adv. 6 (2020), 10.1126/sciadv.aba8766.

C. Reichhardt and C. J. Olson Reichhardt, “Local melting and drag for a particle driven through a colloidal crystal,” Phys. Rev. Lett. 92, 108301 (2004).

R. P. A. Dullens and C. Bechinger, “Shear thinning and local melting of colloidal crystals,” Phys. Rev. Lett. 107, 138301 (2011).

N. Sembihi, M. Gruber, C. Zhang, M. Fuchs, and F. Scheffold, “Observation of strongly heterogeneous dynamics at the depinning transition in a colloidal glass,” Phys. Rev. Lett. 122, 108002 (2019).

M. Gruber, A. M. Puertas, and M. Fuchs, “Critical force in active microrheology,” Phys. Rev. E 101, 012612 (2020).

O. Benichou, P. Illien, C. Meja-Monasterio, and G. Oshanin, “A biased intruder in a dense quiescent medium: looking beyond the force-velocity relation,” J. Stat. Mech. 2013, P05008 (2013).

P. Illien, O. Benichou, G. Oshanin, A. Sarracino, and R. Voituriez, “Nonequilibrium fluctuations and enhanced diffusion of a driven particle in a dense environment,” Phys. Rev. Lett. 120, 200606 (2018).

G. Kokot, S. Das, R. G. Winkler, G. Gompper, I. S. Aranson, and A. Sznitko, “Active turbulence in a gas of self-assembled spinners,” Proc. Natl. Acad. Sci. (USA) 114, 12870–12875 (2017).

D. Banerjee, A. Souslov, A. G. Abanov, and V. Vitelli, “Odd viscosity in chiral active fluids,” Nature Commun. 8, 1573 (2017).

V. Soni, E. S. Billillgin, S. Magkiriadou, S. Sacanna, D. Bartolo, M. J. Shelley, and W. T. M. Irvine, “The odd free surface flows of a colloidal chiral fluid,” Nature Phys. 15, 1188 (2019).

C. Scholz, A. Ldov, T. Pöschel, M. Engel, and H. Löwen, “Surfactants and rotelles in active chiral fluids,” Sci. Adv. 7, eabf8998 (2021).

C. Reichhardt and C. J. O. Reichhardt, “Dynamics of Magnus-dominated particle clusters, collisions, pinning, and ratchets,” Phys. Rev. E 101, 062602 (2020).

D. A. Schecter, D. H. E. Dubin, K. S. Fine, and C. F. Driscoll, “Vortex crystals from 2D Euler flow: Experiment and simulation,” Phys. Fluids 11, 905 (1999).

W. Schirmacher, B. Fuchs, F. Höfling, and T. Franosch, “Anomalous magnetotransport in disordered structures: Classical edge-state percolation,” Phys. Rev. Lett. 115, 240602 (2015).

P. Tierno, T. H. Johansen, and T. M. Fischer, “Localized and delocalized motion of colloidal particles on a magnetic bubble lattice,” Phys. Rev. Lett. 99, 038303 (2007).

B. A. Grzybowski, X. Jiang, H. A. Stone, and G. M. Whitesides, “Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: Macroscopic, two-dimensional classical artificial atoms and molecules,” Phys. Rev. E 64, 011603 (2001).

S. I. Denisov, T. V. Lyutyv, V. V. Reva, and A. S. Yermolenko, “Temperature effects on drift of suspended single-domain particles induced by the Magnus force,” Phys. Rev. E 97, 032608 (2018).

E. A. Ryzhov and K. V. Koshel, “Dynamics of a vortex pair interacting with a fixed point vortex,” EPL 102, 44004 (2013).

H. Aref, “Point vortex dynamics: A classical mathematics playground,” J. Math. Phys. 48, 065401 (2007).

D. Doshi and A. Gromov, “Vortices as fractons,” Commun. Phys. 4, 44 (2021).

C. Reichhardt and C. J. Olson Reichhardt, “Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems,” New J. Phys. 18, 055005 (2016).

W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, S. Coffin, K. Bouzehouane, V. Cros, and A. Pert, “Room-temperature current-induced generation and motion of sub-100 nm skyrmions,” Nano Lett. 17, 2703–2712 (2017).

S. A. Díaz, C. J. O. Reichhardt, D. P. Aravos, A. Saxena, and C. Reichhardt, “Fluctuations and noise signatures of driven skyrmions,” Phys. Rev. B 96, 085406 (2017).

R. Juge, S.-G. Je, D. de Souza Chaves, L. D. Buda-Prefebeau, J. Peña García, J. Nath, I. M. Miron, K. G. Rana, L. Aballe, M. Foerster, F. Genuzio, T. O. Menteg, A. Locatelli, F. Maccherozzi, S. S. Dhesi, M. Belmeguenai, Y. Roussigné, S. Auffret, S. Pizzini, G. Gaudin, J. Vogel, and O. Boule, “Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film,” Phys. Rev. Applied 12, 044007 (2019).

K. Zeissler, S. Finizio, C. Barton, A. J. Huxtable, J. Massey, J. Raabe, A. V. Sadovnikov, S. A. Nikitov, R. Brearton, T. Hejedal, G. van der Laan, M. C. Rosamond, E. H. Linfield, G. Burnell, and C. H. Marrows, “Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers,” Nature Commun. 11, 428 (2020).

K. Litzius, J. Lelaert, P. Bassirian, D. Rodrigues, S. Kromin, I. Lemesh, J. Zavzorkhina, K.-J. Lee, J. Mullers, N. Kerber, D. Heinze, N. Keil, R. M. Reeve, M. Weigand, B. Van Waeyenberge, G. Schütz, K. Everschor-Sitte, G. S. D. Beach, and M. Kläui, “The role of temperature and drive current in skyrmion dynamics,” Nature Electron. 3, 30–36 (2020).

S.-Z. Lin, C. Reichhardt, C. D. Batista, and A. Saxena, “Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep,” Phys. Rev. B 87, 214419 (2013).

C. Reichhardt and C. J. Olson Reichhardt, “Random organization and plastic depinning,” Phys. Rev. Lett. 103, 168301 (2009).

B. L. Brown, U. C. Täuber, and M. Pleimling, “Skyrmion relaxation dynamics in the presence of quenched disorder,” Phys. Rev. B 100, 024410 (2019).
99 X. Gong, H. Y. Yuan, and X. R. Wang, “Current-driven skyrmion motion in granular films,” Phys. Rev. B 101, 064421 (2020).

100 C. Reichhardt and C. J. O. Reichhardt, “Thermal creep and the skyrmion Hall angle in driven skyrmion crystals,” J. Phys.: Condens. Matter 31, 07LT01 (2019).

101 C. Reichhardt and C. J. O. Reichhardt, “Drive dependence of the Hall angle for a sliding Wigner crystal in a magnetic field,” Phys. Rev. B 103, 125107 (2021).

102 T. Sato, W. Koshibae, A. Kikkawa, T. Yokouchi, H. Oike, Y. Taguchi, N. Nagaosa, Y. Tokura, and F. Kagawa, “Slow steady flow of a skyrmion lattice in a confined geometry probed by narrow-band resistance noise,” Phys. Rev. B 100, 094410 (2019).

103 T. Sato, A. Kikkawa, Y. Taguchi, Y. Tokura, and F. Kagawa, “Mode locking phenomena of the current-induced skyrmion-lattice motion in microfabricated MnSi,” Phys. Rev. B 102, 180411 (2020).