Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning

Claire E Stelly1,2, Matthew B Pomrenze2,3, Jason B Cook1,2, Hitoshi Morikawa1,2*

1Department of Neuroscience, University of Texas, Austin, United States; 2Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States; 3Division of Pharmacology and Toxicology, University of Texas, Austin, United States

Abstract Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca2+ signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences.

Introduction Humans with a history of stressful or traumatic experiences are more prone to develop substance use disorders (Sinha, 2008). Adverse experience recruits the hypothalamic-pituitary-adrenal (HPA) axis stress response, culminating in release of glucocorticoids that enables the body to cope with insults to homeostasis (Munck et al., 1984). In rodent models, repeated activation of the stress response typically disrupts learning and cognition [e.g., spatial learning (Conrad et al., 1996), working memory (Mizoguchi et al., 2000), and cognitive flexibility (Liston et al., 2006)]. In contrast to these deficits, prior stress enhances the learning of Pavlovian cue-outcome associations driven by rewarding stimuli, assessed with conditioned place preference (CPP) (Kreibich et al., 2009; Burke et al., 2011; Chuan et al., 2011), or aversive/stressful stimuli, assessed with fear conditioning (Conrad et al., 1999; Sandi et al., 2001; Suvrathan et al., 2014). These effects of stress may have arisen from evolutionary pressure to rapidly acquire information predicting food, shelter, and predator threat during periods of duress. Augmented Pavlovian reward learning mechanisms in stressed individuals may also heighten susceptibility to addiction, as acquisition of cue-drug associations is a crucial early step in drug use, and powerful, enduring memories of drug-associated cues trigger craving and relapse as recreational uses progresses to addiction (Hyman et al., 2006). However, it is not clear how repeated stressful experience promotes the learning of cue-drug/reward associations, as repeated stress is generally detrimental to synaptic plasticity underlying learning and memory.
The mesolimbic dopamine system originating in the ventral tegmental area (VTA) is critical for reward processing. VTA dopamine neurons tonically fire action potentials (APs) at 1–5 Hz, while responding to unexpected rewards with phasic burst firing (2–10 APs at 10–50 Hz). These dopamine neuron responses are hypothesized to drive the learning of Pavlovian cue-reward associations (Tsai et al., 2009; Darvas et al., 2014). Intriguingly, over the course of repeated cue-reward pairing, dopamine neurons acquire a conditioned burst response to reward-predictive cues, which is thought to encode the positive motivational valence of those cues and to invigorate reward-seeking behavior (Schultz, 1998; Berridge et al., 2009; Bromberg-Martin et al., 2010).

Glutamatergic inputs activating NMDA receptors (NMDARs) drive the transition from tonic firing to bursting in dopamine neurons (Overton and Clark, 1997; Zweifel et al., 2009; Wang et al., 2011); therefore, potentiation of cue-driven NMDAR inputs may contribute to the acquisition of conditioned bursting. Indeed, NMDAR-mediated transmission undergoes long-term potentiation (LTP) when cue-like glutamatergic input stimulation is repeatedly paired with reward-like bursting in dopamine neurons (Harnett et al., 2009). LTP induction requires amplification of burst-evoked Ca\(^{2+}\) signals by preceding activation of group I metabotropic glutamate receptors (mGluRs; more specifically mGluR1) coupled to the generation of inositol 1,4,5-triphosphate (IP\(_3\)). Here, IP\(_3\) receptors (IP\(_3\)Rs) detect the coincidence of IP\(_3\) generated by glutamatergic input activating mGluRs and burst-driven Ca\(^{2+}\) entry. IP\(_3\) enhances Ca\(^{2+}\)-induced activation of IP\(_3\)Rs by promoting access to the stimulatory Ca\(^{2+}\) sites, thereby promoting Ca\(^{2+}\)-induced Ca\(^{2+}\) release from intracellular stores (Taylor and Laude, 2002). In this study, we demonstrate that repeated social defeat stress (1) enhances NMDAR LTP in the VTA via an increase in IP\(_3\) sensitivity of IP\(_3\)Rs and (2) promotes acquisition of cocaine CPP in behaving rats, and both of these effects require glucocorticoid action during defeat stress.
Figure 1. mGluR-dependent facilitation of burst-evoked Ca$^{2+}$ signals is enhanced after repeated social defeat. (A) Example traces (left) and summary time graph (right) illustrating the facilitating effect of DHPG (1 μM) on burst $I_{K(Ca)}$ in neurons from unhandled rats (traces not shown), rats handled for 5 days, and rats handled for 10 days. **Figure 1 continued on next page**
Repetitive social stress increases mGluR-dependent facilitation of burst-evoked Ca2+ signals

NMDAR LTP induction requires mGluR/IP\textsubscript{3}-induced facilitation of burst-evoked Ca2+ signals (Harnett et al., 2009). Therefore, we first examined the effect of the group I mGluR agonist DHPG (1 μM; 5-min perfusion) on burst-evoked Ca2+ signals, assessed by the size of Ca2+-activated SK currents (termed burst I\textsubscript{K(Ca)}) in control and stressed animals. Rats were unhandled, handled, or socially defeated (at the end of the dark cycle) for 1, 5, or 10 consecutive days, and VTA slices were prepared 1–2 days after the final handling/defeat session. The magnitude of DHPG effect on I\textsubscript{K(Ca)} was significantly larger in animals that underwent 5 or 10 days of defeat stress compared to unhandled and handled controls, whereas a single defeat session failed to alter the DHPG effect (Figures 1A and B). There was no significant difference between unhandled and handled controls. The effect of stress plateaued by 5 days, as comparable enhancement of DHPG effect was observed after 10-day defeat. Basal burst I\textsubscript{K(Ca)} was consistent across groups (Figure 1C), suggesting no alterations in AP-evoked Ca2+ influx. DHPG-induced inward currents, which are independent of Ca2+ signaling (Guatteo et al., 1999), were not affected (Figure 1D); thus the stress-induced increase in I\textsubscript{K(Ca)} facilitates resulted from changes in IP\textsubscript{3} signaling downstream of mGluRs.

Next, to examine the persistence of repeated stress effect, the interval between the last social defeat session and recording was prolonged to 10 and 30 days. Although stress-induced enhancement displayed gradual recovery, DHPG effect was still elevated after 30 days compared to age-matched controls (Figure 1E). Subsequent electrophysiology experiments were performed in 5-day defeated rats (with 1–2 day interval) and controls (unhandled and handled controls combined).

Protein kinase A mediates IP\textsubscript{3}R sensitization in socially defeated animals

To directly examine alterations in IP\textsubscript{3} signaling, we applied different concentrations of IP\textsubscript{3} (expressed in μM: μL; see Methods and materials) into the cytosol using flash photolysis of caged IP\textsubscript{3}, and IP\textsubscript{3}-mediated Ca2+ release was assessed by flash-evoked SK currents(I\textsubscript{SP3}) (Figure 2A). The average IP\textsubscript{3} concentration-response curve displayed a leftward shift in defeated rats compared to controls (Figure 2B). Accordingly, the average EC\textsubscript{50} value was significantly smaller in the defeated group (Figure 2C). Maximal I\textsubscript{SP3} amplitude did not differ between groups (Figure 2D), indicating a change in the potency, but not the efficacy, of IP\textsubscript{3} in eliciting Ca2+ release.

Protein kinase A (PKA)-dependent phosphorylation of IP\textsubscript{3}Rs increases their IP\textsubscript{3} sensitivity (Wagner et al., 2008). To determine the involvement of PKA in stress-induced IP\textsubscript{3} sensitization, the effect of a selective peptide inhibitor of PKA, PKI-(6–22)-amide (PKI; 200 μM, loaded into the cytosol via the whole-cell pipette for >15–20 min after break-in), was tested. PKI reversed the leftward shift in IP\textsubscript{3} concentration-response curve, and thus the decrease in EC\textsubscript{50} value, in stressed animals, while having no significant effect on maximal I\textsubscript{SP3} amplitude (Figures 2B–D). PKI had no effect in the control group, suggesting low basal PKA activity in non-stressed animals. It should be noted that PKI eliminated the difference in IP\textsubscript{3} potency between the two groups. These data indicate that repeated social stress sensitizes IP\textsubscript{3}Rs via a PKA-dependent mechanism.
Repeated social stress enhances NMDAR LTP

We next examined whether repeated social defeat affects NMDAR LTP induction, which requires mGluR/IP$_3$-dependent facilitation of burst-evoked Ca$^{2+}$ signals and is gated by PKA (Harnett et al., 2009). Application of a low concentration of IP$_3$ preceding APs can effectively facilitate I$_{IP3}$ (Cui et al., 2007; Ahn et al., 2010; Bernier et al., 2011). Thus, the LTP induction protocol consisted of applying a low concentration of IP$_3$ (250 μM•μJ) 50 ms prior to simultaneous pairing of a burst with a brief train of synaptic stimuli (Figure 3A), the latter being necessary to activate NMDARs at stimulated synapses at the time of burst for LTP induction (Harnett et al., 2009; Whitaker et al., 2013). This induction protocol produced little LTP in control animals, while large LTP was induced in defeated animals (Figure 3B and C). IP$_3$ application, which caused little I$_{IP3}$ by itself, caused facilitation of burst I$_{KCa}$ (assessed immediately before LTP induction), which was significantly larger in cells from defeated animals (Figure 3D). Furthermore, the magnitude of LTP was positively correlated with that of IP$_3$-induced facilitation of I$_{KCa}$ across neurons from both groups (Figure 3E). Robust
Figure 3. NMDAR-mediated transmission is more susceptible to LTP induction after social defeat. (A) Example experiments to induce NMDAR LTP in neurons from control and defeated rats. Time graphs of NMDAR EPSCs are Figure 3 continued on next page
LTP was induced in control rats when a higher IP$_3$ concentration (500 μM) was used during induction (Figure 3—figure supplement 1). These results suggest that the enhanced LTP in defeated rats is a consequence of increased IP$_3$R sensitivity enabling greater facilitation of burst-evoked Ca$^{2+}$ signals.

It has been reported that repeated stress alters NMDAR expression in certain brain areas (Fitzgerald et al., 1996; Yuen et al., 2012; Costa-Nunes et al., 2014; Chattarji et al., 2015). We found that bath application of NMDA (10 μM) produced comparable inward currents in control and defeated rats (Figure 4); thus repeated defeat stress caused no significant changes in global NMDAR-mediated excitation.

Repeated stress appears to differentially modulate tonic firing of VTA dopamine neurons recorded in vivo, as both an increase and decrease have been reported with different stress paradigms (Cao et al., 2010; Valenti et al., 2012; Tye et al., 2013). However, repeated social defeat failed to alter tonic firing measured in ex vivo slices (Figure 5A). Furthermore, the amplitude of hyperpolarization-activated cationic currents (I_h), which contribute to intrinsic dopamine neuron pacemaker activity (Neuhoff et al., 2002), was not affected (Figure 5B).
Glucocorticoid receptor activation is necessary but not sufficient for stress-induced IP$_3$R sensitization

A major consequence of stress-induced HPA axis activation is the secretion of glucocorticoids (corticosterone in rodents) into the blood (Munck et al., 1984). Thus, we sought to determine whether corticosterone, which readily crosses the blood-brain barrier, is involved in the increase in IP$_3$R sensitivity with repeated stress. Corticosterone activates both glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs); however, MRs are typically saturated by circadian fluctuations in corticosterone, while lower-affinity GRs are activated by levels attained with stress (Joels and de Kloet, 1994). Therefore, the role of GRs was examined by treating rats with the antagonist mifepristone (40 mg/kg, i.p.) or vehicle 30 min prior to each defeat session. The DHPG effect on burst I$_{\text{K(Ca)}}$ was significantly enhanced by repeated defeat in the vehicle-treated group, while there was no effect of stress in the mifepristone-treated group (Figure 6A). Thus, blockade of GRs during defeat sessions prevented IP$_3$R sensitization. Next, rats were treated with corticosterone (2.5, 5, or 15 mg/kg, i.p.; at the end of the dark cycle) for 5 days (no social defeat). The lowest dose (2.5 mg/kg) produces elevation in blood corticosterone concentration comparable to that evoked by a moderate stressor (Graf et al., 2013), while higher doses (≥10 mg/kg) have been used to simulate severe

Figure 5. Tonic firing is unaltered by social defeat. (A) Example traces (left) and summary (right) of tonic firing frequency in VTA neurons from control and defeated rats (control: 15 cells from 3 rats, 5 defeats: 9 cells from 3 rats; t$_{22}$ = 0.066, p=0.95, unpaired t-test). In these experiments, loose-patch recordings (<20 MΩ seal) were made using pipettes filled with 150 mM NaCl to monitor tonic pacemaker firing. (B) Example traces (left; voltage step depicted at bottom) and summary (right) of I$_h$ currents recorded in cells from animals that underwent control procedures or 1, 5, or 10 days of defeat (data were obtained from the same cells shown in Figures 1A–D; F$_{4,94}$ = 2.01, p=0.10, one-way ANOVA).

DOI: 10.7554/eLife.15448.008
stress levels (Akirav et al., 2004). None of the tested doses significantly altered the DHPG effect on burst I_{KCa} (Figure 6B). Together, these results show that GR signaling is necessary, but not sufficient, for IP$_3$R sensitization.

It has been shown that repeated psychostimulant treatment sensitizes IP$_3$Rs and enhances NMDAR LTP (Ahn et al., 2010). As addictive drugs, including psychostimulants, stimulate corticosterone secretion (Armario, 2010), we next examined the role of GR signaling in psychostimulant-induced IP$_3$R sensitization. Rats were treated with mifepristone (40 mg/kg, i.p.) 30 min prior to injection of cocaine (10 mg/kg, i.p.) or saline for 5 days. The effect of DHPG on burst I_{KCa} was significantly larger in cocaine-treated animals, which was not affected by mifepristone pretreatment (Figure 6C). Thus, GR signaling is not involved in psychostimulant-induced IP$_3$R sensitization.

Figure 6. Stress-induced, but not cocaine-induced, IP$_3$R sensitization is prevented by GR blockade. (A) Example traces (left) and summary (right) of DHPG-induced burst I_{KCa} facilitation in neurons from animals that were injected with vehicle or mifepristone before undergoing control handling or social defeat sessions (vehicle + control: 8 cells from 5 rats, vehicle + defeat: 10 cells from 4 rats, mifepristone + control: 10 cells from 5 rats, mifepristone + defeat: 11 cells from 4 rats; defeat × mifepristone: F$_{1,35}$ = 4.56, p<0.05, two-way ANOVA). *p<0.05 (Bonferroni post hoc test). (B) Summary bar graph showing that repeated corticosterone treatment (once daily for 5 days) failed to affect DHPG-induced burst I_{KCa} facilitation (vehicle: 8 cells from 5 rats, 2.5 mg/kg: 11 cells from 5 rats, 5 mg/kg: 10 cells from 4 rats, 15 mg/kg: 12 cells from 7 rats). (C) Summary bar graph demonstrating that mifepristone pretreatment failed to block the increase in DHPG effect resulting from repeated cocaine treatment (10 mg/kg, i.p., once daily for 5 days) (saline: 17 cells from 7 rats, cocaine: 16 cells from 7 rats, mifepristone + saline: 21 cells from 8 rats, mifepristone + cocaine: 16 cells from 6 rats; cocaine: F$_{1,66}$ = 11.4, p<0.01, two-way ANOVA). *p<0.05 (Bonferroni post hoc test).

DOI: 10.7554/eLife.15448.009
Repeated social stress promotes learning of cocaine-associated cues in a GR-dependent manner

Next, the effect of social defeat stress was tested on acquisition of cocaine CPP, in which animals learn to associate a particular context with drug reward. Acquisition of psychostimulant CPP is
inhibited by mGluR1 or NMDAR antagonist in the VTA, while CPP expression is attenuated by NMDAR antagonist, but not by mGluR1 antagonist, in the VTA (Whitaker et al., 2013), supporting the potential role of NMDAR LTP in driving CPP. Rats underwent stress or control procedures for 5 days, then underwent 1-day CPP conditioning with cocaine (5 mg/kg, i.p.). It should be noted that a single psychostimulant treatment does not cause IP_{3}R sensitization (Ahn et al, 2010; Whitaker et al., 2013). Stressed rats displayed robust preference for the cocaine-paired side after 1-day conditioning, while unhandled and handled controls showed small preference (Figure 7A). The 1-day CPP score was significantly larger in stressed rats compared to unhandled and handled controls (Figure 7B). Control rats developed significant cocaine CPP comparable to that observed in stressed rats after 3-day conditioning with the same dose of cocaine (Figure 7—figure supplement 1). These data suggest that repeated defeat experience promotes the rate of learning of cocaine-associated cues.

Finally, we asked whether GR signaling, which is necessary for IP_{3}R sensitization, also plays a role in promoting cocaine CPP. As in the electrophysiology experiments, rats were treated with mifepristone (40 mg/kg, i.p.) or vehicle 30 min before each social defeat session. An additional group received mifepristone followed by control handling procedure. We found that mifepristone suppressed cocaine CPP in stressed rats to a level comparable to that observed in mifepristone-treated controls (Figure 7C and D). Therefore, GR activation during stress is required for CPP enhancement.

Discussion

Repeated stressful experience leads to metaplasticity, i.e., experience-dependent changes in the capacity of synapses to undergo activity-dependent plasticity (Abraham, 2008), in different brain areas (Kim and Diamond, 2002; Joels et al., 2006; Schwabe et al., 2012; Chattarji et al., 2015). The present study demonstrates that repeated social defeat facilitates the induction of LTP of NMDAR-mediated transmission in VTA dopamine neurons while causing no alterations in global NMDAR-mediated excitation or intrinsic firing activity. Importantly, socially defeated animals display enhanced acquisition of cocaine CPP, a form of Pavlovian conditioning that requires NMDAR-dependent bursting in the VTA (Zweifel et al., 2009; Wang et al., 2011; Whitaker et al., 2013).

Repeated social defeat results in increased sensitivity of IP_{3}Rs, which serve as a coincidence detector of presynaptic activity (causing mGluR-dependent IP_{3} generation) and postsynaptic bursting (driving Ca^{2+} influx) during NMDAR LTP induction (Harnett et al., 2009). Inhibition of PKA completely reversed the increase in the potency of IP_{3}, indicating the role of PKA-dependent phosphorylation in stress-induced IP_{3}R sensitization, as has been suggested in previous studies demonstrating similar changes following repeated drug exposure (Ahn et al., 2010; Bernier et al., 2011). It is of note that dopamine neurons in the substantia nigra pars compacta, in contrast to VTA neurons recorded in the present study, display significant PKA-dependent regulation of IP_{3}-induced Ca^{2+} signaling and NMDAR LTP induction in control rats, which cannot be further enhanced by repeated drug exposure (Harnett et al., 2009; Ahn et al., 2010).

It has been reported that repeated social defeat (10 days) in mice leads to long-lasting (>4 weeks) alterations in gene expression and behavior (e.g., reduced social contact), with little recovery unless treated with antidepressants (Berton et al., 2006; Tsankova et al., 2006). In the present study, mGluR/IP_{3} action on burst-evoked Ca^{2+} signals remained elevated for 10–30 days following the 5-day defeat paradigm in rats, although displaying gradual decline during the 30-day stress-free period. It remains to be determined how this recovery is affected by different stress paradigms (e.g., duration or type/severity) and treatments following stress experience.

Mouse studies have also shown that individual animals display different susceptibility to repeated social defeat when assessed by the degree of social avoidance, which correlates with biochemical and physiological changes in the mesolimbic system (Krishnan et al., 2007; Cao et al., 2010). In particular, these studies observed hyperactivity of VTA dopamine neurons, assessed in vivo or ex vivo, associated with an increase in I_{h}, after 10-day defeat in susceptible mice. However, these parameters were not affected by 5-day social defeat in the current study conducted in rats.

How could repeated stress lead to increased PKA activity regulating IP_{3}Rs in the VTA? Stress, including social defeat, promotes bursting in a subpopulation of VTA dopamine neurons, causing increased dopamine transients in the nucleus accumbens (Anstrom et al., 2009; Brischoux et al., 2009). Bursting also releases dopamine locally from the soma and dendrites, activating
somatodendritic D2 autoreceptors (Beckstead et al., 2004). Chronic stimulation of G_{i}-coupled receptors, such as D2 receptors, is known to upregulate the cAMP-PKA pathway (Hyman et al., 2006), which may contribute to stress-induced IP_{3}R sensitization. Interestingly, intra-VTA blockade of NMDARs during each social defeat episode, which would suppress dopamine neuron bursting, has been shown to prevent repeated stress-induced increases in cocaine self-administration (Covington et al., 2008).

GR signaling during defeat sessions is necessary for the enhancement of IP_{3}R sensitivity. Stress-induced activation of the mesolimbic dopamine system is regulated by glucocorticoids (Marinelli and Piazza, 2002). Recent evidence implicates GRs expressed in projection areas, not in the VTA, in long-term glucocorticoid regulation of dopamine neuron activity (Ambroggi et al., 2009; Butts et al., 2011; Barik et al., 2013). Furthermore, glucocorticoids can also enhance synthesis of corticotropin-releasing factor (CRF), a major stress-related neuropeptide, and activation of CRF neurons in brain areas providing major CRF inputs to the VTA (Makino et al., 1994; Rodaros et al., 2007; Kolber et al., 2008). GR blockade may therefore attenuate CRF-induced excitation of dopamine neurons during stress (Kalivas et al., 1987; Ungless et al., 2003; Wanat et al., 2008; Holly et al., 2015). We found that GR activation alone is not sufficient for IP_{3}R sensitization. Thus, the potential GR mechanisms described above may act to amplify glutamatergic input-driven bursting activity during stress episodes, likely further enhanced by stress-induced activation of noradrenergic inputs stimulating dopamine neurons via \(\alpha_1\) adrenergic receptors (Grenhoff et al., 1995; Paladinini et al., 2001; Morilak et al., 2005), thereby enabling large local dopamine release in the VTA. In this regard, it is interesting that repeated cocaine treatment was capable of causing similar enhancement of mGluR/IP_{3} action in a GR-independent manner. Dopamine levels in the VTA caused by cocaine alone are likely sufficient to induce D2-mediated upregulation of the cAMP-PKA pathway.

Increased IP_{3}R sensitivity drives the enhancement of NMDAR LTP induction in socially defeated animals. Our recent study demonstrated the involvement of L-type Ca^{2+} channels (LTCCs) in NMDAR LTP (Degoulet et al., 2015). Although glucocorticoid-induced upregulation of LTCCs has been reported in the hippocampus and amygdala (Kast et al., 2002; Chameau et al., 2007), pharmacological activation of these channels does not enhance NMDAR LTP in dopamine neurons (Degoulet et al., 2015); these changes in LTCCs are unlikely to play a role in LTP enhancement.

CPP experiments showed that repeated social defeat promoted acquisition of the preference for contextual cues paired with cocaine experience, in accordance with previous studies demonstrating enhanced drug CPP following a period of repeated stress (Kreibich et al., 2009; Burke et al., 2011). Blockade of the critical components regulating NMDAR LTP induction (i.e., NMDARs, group I mGluRs, PKA, or LTCCs) in the VTA during conditioning has been shown to suppress CPP acquisition (Harnett et al., 2009; Ahn et al., 2010; Whitaker et al., 2013; Degoulet et al., 2015). In the present study, systemic GR blockade during defeat episodes prevented both the enhancement of the LTP induction mechanism and that of cocaine CPP acquisition, consistent with the potential role of NMDAR plasticity in this form of Pavlovian learning. However, enhanced CPP acquisition observed in defeated rats may well be caused by an increase in the primary rewarding action of cocaine itself. The relative contribution of these two possibilities, i.e., enhanced learning mechanism vs. enhanced cocaine reward, remains to be determined.

It is well known that repeated stress impairs LTP of AMPAR-mediated transmission in the hippocampus (Foy et al., 1987; Shors et al., 1989), an effect that requires GR activation during stress (Xu et al., 1998). LTP is similarly impaired in the prefrontal cortex (Goldwater et al., 2009). By contrast, repeated stress leads to enhancement of AMPAR LTP in the lateral amygdala, which underlies Pavlovian fear conditioning driven by stressful/aversive stimuli (Rodriguez Manzanares et al., 2005; Suvrathan et al., 2014). Alterations in the function/expression of NMDARs are implicated in these forms of metaplasitcity, as NMDARs play a key role in AMPAR LTP induction (Kim and Diamond, 2002; Chattarji et al., 2015). Here, we described a distinct form of stress-induced metaplasticity in the VTA, i.e., enhancement of mGluR/IP_{3}-dependent NMDAR LTP, which may, at least in part, contribute to the enhanced drug reward-based Pavlovian learning. This may illuminate a key mechanism by which stressful experience increases vulnerability to addiction, a chronic relapsing disorder perpetuated by memories of drug-associated stimuli.
Materials and methods

Animals
Sprague-Dawley rats (Harlan Laboratories, Houston, Texas) were housed in groups of 2–3 on a 12 hr light/dark cycle with food and water available ad libitum. All procedures were approved by the University of Texas Institutional Animal Care and Use Committee.

Resident-intruder social defeat paradigm
Twelve week-old male resident rats were vasectomized and pair-housed with 6 week-old females. Residents (used for ~8–10 months) were screened for aggression (biting or pinning within 1 min) by introducing a male intruder to the home cage. Intruders and controls were young males (4–5 weeks old at the beginning) housed in groups of 2–3. For defeat sessions, residents and intruders were taken to a darkened procedure room at the end of the dark cycle. Intruders were introduced to residents’ home cages after removing females. Following 5 min of direct contact, a perforated Plexiglass barrier was inserted for 25 min to allow sensory contact. For repeated defeat, intruders underwent one session daily with a novel resident. Handled controls were taken to a darkened procedure room and placed in novel cages for 30 min. Unhandled controls remained undisturbed in the colony. Intruders and controls were housed separately.

In vivo drug treatments
All drug and vehicle solutions were administered via i.p. injections (1 ml/kg). Mifepristone and corticosterone (both from Tocris Bioscience, Ellisville, Missouri) were dissolved in 30% propylene glycol plus 1% Tween-20 in 0.9% saline. Cocaine-HCl (Sigma-Aldrich, St. Louis, Missouri) was dissolved in 0.9% saline.

Electrophysiology
Midbrain slices were prepared and recordings were made in the lateral VTA located 50–150 μm from the medial border of the medial terminal nucleus of the accessory optic tract, as in our previous studies (Ahn et al., 2010; Whitaker et al., 2013; Degoulet et al., 2015). Tyrosine hydroxylase-positive neurons in this area (i.e., lateral part of the parabrachial pigmented nucleus) largely project to the ventrolateral striatum (Ikemoto, 2007) and show little VGluT2 coexpression (Trudeau et al., 2014). Putative dopamine neurons in the lateral VTA were identified by spontaneous firing of broad APs (>1.2 ms) at 1–5 Hz in cell-attached configuration and large Ih currents (>200 pA; evoked by a 1.5 s hyperpolarizing step of 50 mV) in whole-cell configuration (Ford et al., 2006; Lammel et al., 2008; Margolis et al., 2008). Cells were voltage-clamped at –62 mV (corrected for –7 mV liquid junction potential).

A 2 ms depolarizing pulse of 55 mV was used to elicit an unclamped AP. For bursts, 5 APs were evoked at 20 Hz. The time integral of the outward tail current, termed I_{K(Ca)} (calculated after removing the 20 ms window following each depolarizing pulse; expressed in pC), was used as a readout of AP-evoked Ca^{2+} transients, as it is eliminated by TTX and also by apamin, a blocker of Ca^{2+}-activated SK channels (Cui et al., 2007).

Flash photolysis
Cells were loaded with caged IP_3 (50–400 μM; generous gift from Dr. Kamran Khodakhah) through the recording pipette. A UV flash (~1 ms) was applied with a xenon arc lamp driven by a photolysis system (Cairn Research, Faversham, UK). The UV flash was focused through a 60× objective onto a ~350 μm area surrounding the recorded neuron. Photolysis of caged compounds is proportional to the UV flash intensity; therefore, the concentration of IP_3 was defined as the product of caged IP_3 concentration in the pipette (μM) and flash intensity (μJ) measured at the focal plane of the objective (expressed in μM μJ).

NMDAR LTP experiments
Synaptic stimuli were delivered with a bipolar tungsten electrode placed ~50–100 μm rostral to the recorded neuron. To isolate NMDAR EPSCs, recordings were performed in DNQX (10 μM), picrotoxin (100 μM), CGP54626 (50 nM), and sulpiride (100 nM) to block AMPA/kainate, GABA_A, GABA_B.
and D₂ dopamine receptors, and in glycine (20 μM) and low Mg²⁺ (0.1 mM) to enhance NMDAR activation. NMDAR EPSCs were monitored every 20 s. The LTP induction protocol consisted of photolytic application of IP₃ (250 μM μl) 50 ms prior to the simultaneous delivery of synaptic stimulation (20 stimuli at 50 Hz) and a burst (5 APs at 20 Hz), repeated 10 times every 20 s. LTP magnitude was determined by comparing the average EPSC amplitude 30 min post-induction with the average EPSC amplitude pre-induction (each from a 5 min window).

Place conditioning
A CPP box (Med Associates, St. Albans, Vermont) consisting of two distinct compartments separated by a small middle chamber was used for conditioning. One compartment had a mesh floor with white walls, while the other had a grid floor with black walls. A discrete cue (painted ceramic weight) was placed in the rear corner of each compartment (black one in the white wall side, white one in the black wall side; Figure 7—figure supplement 3) for further differentiation. One day after undergoing repeated stress or control procedures, rats were pretested for initial side preference by exploring the entire CPP box for 15 min. The percentage of time spent in each compartment was determined after excluding the time spent in the middle chamber. Rats with initial side preference >60% were excluded. Starting the next day, rats were subjected to 1-day or 3-day conditioning, in which they were given a saline injection in the morning and confined to one compartment, then in the afternoon given cocaine (5 mg/kg) and confined to the other compartment (10 min each). Compartment assignment was counterbalanced such that animals had, on average, ~50% initial preference for the cocaine-paired side. A 15 min posttest was performed 1 day after the last conditioning session. The CPP score was determined by subtracting the preference for the cocaine-paired side during pretest from that during posttest. The experimenter performing CPP experiments was blind to animal treatments.

Data analysis
Data are expressed as mean ± SEM. Statistical significance was determined by Student’s t-test or ANOVA followed by Bonferroni post hoc test. Normality of data distribution was confirmed by Kolmogorov-Smirnov test. The difference was considered significant at p<0.05.

Acknowledgements
This work was supported by NIH grants DA015687 and AA015521. JBC was supported by NIH training grant AA007471. We thank Dr. Kamran Khodakhah for the generous gift of caged IP₃ made in his lab at Albert Einstein College of Medicine. We also thank Dr. Michela Marinelli for comments on this manuscript and Dr. Kevin Lominac and Nhi Le for assistance with CPP experiment.

Additional information

Funding	Grant reference number	Author
National Institutes of Health	AA007471	Jason B Cook
National Institutes of Health	DA015687	Hitoshi Morikawa
National Institutes of Health	AA015521	Hitoshi Morikawa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
CES, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; MBP, JBC, Acquisition of data, Analysis and interpretation of data; HM, Conception and design, Analysis and interpretation of data, Drafting or revising the article

Author ORCID
Hitoshi Morikawa, http://orcid.org/0000-0002-2948-493X
Ethics

Animal experimentation: All animal procedures were approved by the University of Texas Institutional Animal Care and Use Committee (Protocol ID: AUP-2013-00177).

References

Abraham WC. 2008. Metaplasticity: tuning synapses and networks for plasticity. Nature Reviews Neuroscience 9:387. doi: 10.1038/nrn2356

Ahn KC, Bernier BE, Harnett MT, Morikawa H. 2010. IP3 receptor sensitization during in vivo amphetamine experience enhances NMDA receptor plasticity in dopamine neurons of the ventral tegmental area. Journal of Neuroscience 30:6689–6699. doi: 10.1523/JNEUROSCI.4453-09.2010

Akirav I, Kozenicky M, Tal D, Sandi C, Venero C, Richter-Levin G. 2004. A facilitative role for corticosterone in the acquisition of a spatial task under moderate stress. Learning & Memory 11:188–195. doi: 10.1101/lm.61704

Ambroggi F, Turault M, Milet A, Deroche-Gamonet V, Parnaudeau S, Balado E, Barik J, van der Veen R, Maroteaux G, Lemberger T, Schütz G, Lazar M, Marinelli M, Piazza PV, Tronche F. 2009. Stress and addiction: glucocorticoid receptor in dopaminceptive neurons facilitates cocaine seeking. Nature Neuroscience 12:247–249. doi: 10.1038/nn.2282

Anstrom KK, Miczek KA, Budygin EA. 2009. Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12. doi: 10.1016/j.neuroscience.2009.03.023

Armanio A. 2010. Activation of the hypothalamic-pituitary-adrenal axis by addictive drugs: different pathways, common outcome. Trends in Pharmacological Sciences 31:310–325. doi: 10.1016/j.tips.2010.04.005

Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G, Tassin JP, Mombereau C, Faure P, Tronche F. 2013. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminceptive neurons. Science 339:332–335. doi: 10.1126/science.1226767

Beckstead MJ, Grandy DK, Wickman K, Williams JT. 2004. Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron 42:939–946. doi: 10.1016/j.neuron.2004.05.019

Bernier BE, Whitaker LR, Morikawa H. 2011. Previous ethanol experience enhances synaptic plasticity of NMDA receptors in the ventral tegmental area. Journal of Neuroscience 31:5205–5212. doi: 10.1523/JNEUROSCI.5282-10.2011

Berridge KC, Robinson TE, Aldridge JW. 2009. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology 9:65–73. doi: 10.1016/j.coph.2008.12.014

Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868. doi: 10.1126/science.1120972

Brischoux F, Chakraborty S, Brierley DI, Ungless MA. 2009. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proceedings of the National Academy of Sciences of the United States of America 106:4894–4899. doi: 10.1073/pnas.0811507106

Bromberg-Martin ES, Matsumoto M, Hikosaka O. 2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834. doi: 10.1016/j.neuron.2010.11.022

Burke AR, Watt MJ, Forster GL. 2011. Adolescent social defeat increases adult amphetamine conditioned place preference and alters D2 dopamine receptor expression. Neuroscience 197:269–279. doi: 10.1016/j.neuroscience.2011.09.008

Butts KA, Weinberg J, Young AH, Phillips AG. 2011. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proceedings of the National Academy of Sciences of the United States of America 108:18459–18464. doi: 10.1073/pnas.1111746108

Cao JL, Covington HE, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, Nestler EJ, Han MH. 2010. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. Journal of Neuroscience 30:16453–16458. doi: 10.1523/JNEUROSCI.3177-10.2010

Chameau P, Qin Y, Spijker S, Smit AB, Smit G, Joëls M. 2007. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. Journal of Neurophysiology 97:5–14. doi: 10.1152/jn.00821.2006

Chattarji S, Tomar A, Suvarathan A, Ghosh S, Rahman MM. 2015. Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nature Neuroscience 18:1364–1375. doi: 10.1038/nn.4115

Chuang JC, Perello M, Sakata I, Osborne-Lawrence S, Savitt JM, Lutter M, Zigman JM. 2011. Ghrelin mediates stress-induced food-reward behavior in mice. The Journal of Clinical Investigation 121:2684–2692. doi: 10.1172/JCI57660

Conrad CD, Galea LA, Kuroda Y, McEwen BS. 1996. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behavioral Neuroscience 110:1321–1334. doi: 10.1037/0735-7044.110.6.1321

Conrad CD, LeDoux JE, Magarinos AM, McEwen BS. 1999. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behavioral Neuroscience 113:902–913. doi: 10.1037/0735-7044.113.5.902

Costa-Nunes J, Zubareva O, Araújo-Correia M, Valença A, Schroeter CA, Pawluski JL, Vignisse J, Steinbusch H, Hermes D, Phillipines M, Steinbusch HM, Strekalova T. 2014. Altered emotionality, hippocampus-dependent...
performance and expression of NMDA receptor subunit mRNAs in chronically stressed mice. Stress 17:108–116. doi: 10.3109/10253890.2013.872619

Covington HE, Tropea TF, Rajadhyaksha AM, Kosofsky BE, Miczek KA. 2008. NMDA receptors in the rat VTA: a critical site for social stress to intensify cocaine taking. Psychopharmacology 197:203–216. doi: 10.1007/s00213-007-0942-4

Cui G, Bernier BE, Harnett MT, Morikawa H. 2007. Differential regulation of action potential- and metabotropic glutamate receptor-induced Ca2+ signals by inositol 1,4,5-trisphosphate in dopaminergic neurons. Journal of Neuroscience 27:4776–4785. doi: 10.1523/JNEUROSCI.0139-07.2007

Darvas M, Wunsch AM, Gibbs JT, Palmiter RD. 2014. Dopamine dependency for acquisition and performance of Pavlovian conditioned response. Proceedings of the National Academy of Sciences of the United States of America 111:2764–2769. doi: 10.1073/pnas.1400332111

Degoulet M, Stelly CE, Ahn KC, Morikawa H. 2016. L-type Ca2+ channel blockade with antihypertensive medication disrupts VTA synaptic plasticity and drug-associated contextual memory. Molecular Psychiatry 21:394–402. doi: 10.1038/mp.2015.84

Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ. 1996. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. Journal of Neuroscience 16:274–282.

Ford CP, Mark GP, Williams JT. 2006. Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. Journal of Neuroscience 26:2788–2797. doi: 10.1523/JNEUROSCI.4331-05.2006

Foy MR, Stanton ME, Levine S, Thompson RF. 1987. Behavioral stress impairs long-term potentiation in rodent hippocampus. Behavioral and Neural Biology 48:138–149. doi: 10.1016/0163-1047(87)90664-9

Goldwater DS, Pridlives C, Hunter RG, Blos B, Morikawa BS, Morrison JH. 2009. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuropharmacology 164:798–808. doi: 10.1016/j.neuropharm.2009.08.053

Graf EN, Wheeler RA, Baker DA, Ebben AL, Hill JE, McReynolds JR, Robblee MA, Vranjkovic O, Wheeler DS, Mantsch JR, Gasser PJ. 2013. Corticosterone acts in the nucleus accumbens to enhance dopamine signaling and potentiate reinstatement of cocaine seeking. Journal of Neuroscience 33:11800–11810. doi: 10.1523/JNEUROSCI.1969-13.2013

Grenhoff J, North RA, Johnson SW. 1995. Alpha 1-adrenergic effects on dopamine neurons recorded intracellularly in the rat midbrain slice. The European Journal of Neuroscience 7:1707–1713. doi: 10.1111/j.1460-9568.1995.tb00692.x

Guatteo E, Mercuri NB, Bernardi G, Knöpfel T. 1999. Group I metabotropic glutamate receptors mediate an inward current in rat substantia nigra dopamine neurons that is independent from calcium mobilization. Journal of Neurophysiology 82:1974–1981.

Harnett MT, Bernier BE, Ahn KC, Morikawa H. 2009. Burst-timing-dependent plasticity of NMDA receptor-mediated transmission in midbrain dopamine neurons. Neuron 62:826–838. doi: 10.1016/j.neuron.2009.05.011

Holly EN, DeBold JF, Miczek KA. 2015. Increased mesocorticobolinic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area. Psychopharmacology 232:4469–4479. doi: 10.1007/s00213-015-4082-z

Hyman SE, Malenka RC, Nestler EJ. 2006. Neural mechanisms of addiction: the role of reward-related learning and memory. Annual Review of Neuroscience 29:565–598. doi: 10.1146/annurev.neuro.29.051605.113009

Ikemoto S. 2007. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research Reviews 56:27–78. doi: 10.1016/j.brainresrev.2007.05.004

Joëls M, de Kloet ER. 1994. Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Progress in Neurobiology 43:1–36. doi: 10.1016/0301-0082(94)90014-0

Joëls M, Pu Z, Wiebert O, Oitzl MS, Krugers HJ. 2006. Learning under stress: how does it work? Trends in Cognitive Sciences 10:152–158. doi: 10.1016/j.tics.2006.02.002

Kalivas PW, Duff P, Latimer LG. 1987. Neurochemical and behavioral effects of corticotropin-releasing factor in the ventral tegmental area of the rat. The Journal of Pharmacology and Experimental Therapeutics 242:757–763.

Karst H, Nair S, Velmiz E, Rumpf van Essen L, Slagter E, Shinnick-Gallagher P, Joëls M. 2002. Glucocorticoids alter calcium conductances and calcium channel subunit expression in basolateral amygdala neurons. The European Journal of Neuroscience 16:1083–1089. doi: 10.1046/j.1460-9568.2002.02172.x

Kim JJ, Diamond DM. 2002. The stressed hippocampus, synaptic plasticity and lost memories. Nature Reviews. Neuroscience 3:453–462. doi: 10.1038/nrn849

Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muguia LJ. 2008. Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proceedings of the National Academy of Sciences of the United States of America 105:12004–12009. doi: 10.1073/pnas.0803216105

Kreibich AS, Briand L, Cleck JN, Ecke L, Rice KC, Blendy JA. 2009. Stress-induced potentiation of cocaine reward: a role for CRF R1 and CREB. Neuropepsychopharmacology 34:2609–2617. doi: 10.1038/spp.2009.91

Krishnam V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, et al. 2007. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404. doi: 10.1016/j.cell.2007.09.018

Lammel S, Hetszel A, Häckel O, Jones I, Liss B, Roepfer J. 2008. Unique properties of mesoprefrontal neurons within a dual mesocorticobolinic dopamine system. Neuron 57:760–773. doi: 10.1016/j.neuron.2008.01.022
Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS. 2006. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. *The Journal of Neuroscience* 26:7870–7874. doi: 10.1523/JNEUROSCI.1184-06.2006

Makino S, Gold PW, Schulkin J. 1994. Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. *Brain Research* 657:141–149. doi: 10.1016/0006-8993(94)00961-X

Maggies EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL. 2008. Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. *The Journal of Neuroscience* 28:8908–8913. doi: 10.1523/JNEUROSCI.1526-08.2008

Marinelli M, Piazza PV. 2002. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. *The European Journal of Neuroscience* 16:387–394. doi: 10.1046/j.1460-9568.2002.02089.x

Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T. 2000. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. *The Journal of Neuroscience* 20:1568–1574.

Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO, Ma S PCO. 2005. Role of brain norepinephrine in the behavioral expression of stress. *Progress in Neuro-Psychopharmacology & Biological Psychiatry* 29:1214–1224. doi: 10.1016/j.pnpbp.2005.08.007

Munck A, Guynre PM, Holbrook NJ. 1984. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. *Endocrine Reviews* 5:25–44. doi: 10.1201/edrv-5-1-25

Neuhoff H, Neu A, Liss B, Roeger J. 2002. I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. *The Journal of Neuroscience* 22:1290–1302.

Overton PG, Clark D. 1997. Burst firing in midbrain dopaminergic neurons. *Brain Research. Brain Research Reviews* 25:312–334. doi: 10.1016/S0165-0173(97)00039-8

Paladini CA, Fiorillo CD, Morikawa H, Williams JT. 2001. Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. *Nature Neuroscience* 4:275–281. doi: 10.1038/85124

Rodaros D, Caruana DA, Amir S, Stewart J. 2007. Corticotropin-releasing factor projections from limbic forebrain and paraventricular nucleus of the hypothalamus to the region of the ventral tegmental area. *Neuroscience* 150:8–13. doi: 10.1016/j.neuroscience.2007.09.043

Rodríguez Manzanares PA, Isosardi NA, Carrer HF, Molina VA. 2005. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. *The Journal of Neuroscience* 25:8725–8734. doi: 10.1523/JNEUROSCI.2260-05.2005

Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C. 2001. Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. *Neuroscience* 102:329–339. doi: 10.1016/S0306-4522(00)00484-X

Schultz W. 1998. Predictive reward signal of dopamine neurons. *Journal of Neurophysiology* 80:1–27.

Schwabe L, Joëls M, Roozendaal B, Wolf OT, Otzil MS. 2012. Stress effects on memory: an update and integration. *Neuroscience and Biobehavioral Reviews* 36:1740–1749. doi: 10.1016/j.neubiorev.2011.07.002

Shors TJ, Seib TB, Levine S, Thompson RF. 1989. Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. *Science* 244:224–226. doi: 10.1126/science.2704997

Sinha R. 2008. Chronic stress, drug use, and vulnerability to addiction. *Annals of the New York Academy of Sciences* 1141:105–130. doi: 10.1196/annals.1441.030

Suvarthan A, Bennur S, Ghosh S, Tomar A, Anilkumar S, Chattarji S. 2014. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences* 369:20130151. doi: 10.1098/rstb.2013.0151

Taylor CW, Laude AJ. 2002. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. *Cell Calcium* 32:321–334. doi: 10.1016/S0143-4160(02)001859

Trudeau LE, Hnasko TS, Wallén-Mackenzie A, Morales M, Rayport S, Sulzer D. 2014. The multilingual nature of dopamine neurons. *Progress in Brain Research* 211:141–164. doi: 10.1016/B978-0-444-63425-2.00006-4

Tsai HC, Zhang F, Adamantidis A, Stergiou GD, Bonci A, de Leca L, Deisseroth K. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. *Science* 324:1080–1084. doi: 10.1126/science.118978

Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. 2006. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. *Nature Neuroscience* 9:519–525. doi: 10.1038/nn1659

Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K. 2013. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. *Nature* 493:537–541. doi: 10.1038/nature11740

Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A. 2003. Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. *Neuron* 39:401–407. doi: 10.1016/S0896-6273(03)00461-6

Valenti O, Gill KM, Grace AA. 2012. Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. *The European Journal of Neuroscience* 35:1312–1321. doi: 10.1111/j.1460-9586.2012.08038.x

Watson LE, Joseph SK, Yule DI. 2008. Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. *The Journal of Physiology* 586:3577–3596. 2nd. doi: 10.1113/jphysiol.2008.152314
Wanat MJ, Hopf FW, Stuber GD, Phillips PE, Bonci A. 2008. Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. *The Journal of Physiology* **586**:2157–2170. doi: 10.1113/jphysiol.2007.150078

Wang LP, Li F, Wang D, Xie K, Wang D, Shen X, Tsien JZ. 2011. NMDA receptors in dopaminergic neurons are crucial for habit learning. *Neuron* **72**:1055–1066. doi: 10.1016/j.neuron.2011.10.019

Whitaker LR, Degoulet M, Morikawa H. 2013. Social deprivation enhances VTA synaptic plasticity and drug-induced contextual learning. *Neuron* **77**:335–345. doi: 10.1016/j.neuron.2012.11.022

Xu L, Holscher C, Anwyl R, Rowan MJ. 1998. Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. *Proceedings of the National Academy of Sciences of the United States of America* **95**:3204–3208. doi: 10.1073/pnas.95.6.3204

Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z, Li X YZ. 2012. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. *Neuron* **73**:962–977. doi: 10.1016/j.neuron.2011.12.033

Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJ, Paladini CA, Phillips PE, Palmiter RD. 2009. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. *Proceedings of the National Academy of Sciences of the United States of America* **106**:7281–7288. doi: 10.1073/pnas.0813415106