The child gradually became weaker and weaker, and died on 1st March.

A *post-mortem* examination was very kindly made by Dr. Ferguson, assistant pathologist to the Western Infirmary. The following is a synopsis of his report:—Umbilicus has a dark gangrenous appearance, the colour fading off into the healthy skin of the abdomen. A small probe passes readily into hypogastric arteries, from which pus can be expressed. On splitting up these arteries, small septic thrombi are found. Cover-glass preparations of pus show pure cultures of staphylococci. Cultures made from deeper parts of thrombi show bacterium coli, no staphylococci. Both lungs show small areas of consolidation, but especially the left. On microscopic examination these areas have a bronchial distribution. Cultures from scrapings from the lung show bacterium coli, but no other organisms.

REVIEWS.

Essays and Addresses. By **Sir John Russell Reynolds**, Bart., F.R.S., M.D. Lond., LL.D. Aberd., LL.D. Edin., late President of the Royal College of Physicians of London, and of the British Medical Association; Physician to Her Majesty's Household; and Consulting Physician to University College Hospital. London: Macmillan & Co., Ltd. 1896.

Sir Russell Reynolds has been well known for many years past as being amongst those who take their places in the front rank of the medical profession. As a student he had a brilliant career, and as hospital physician and as consultant his success was correspondingly great. This distinction has been recognised, not only in professional circles, but also in a much wider society, as may be judged by the honours bestowed—F.R.S., LL.D. Edin., LL.D. Aberd., President of the Royal College of Physicians, London; Physician to the Queen's Household.

Now that his life's work is done, and now that he has been given his place in the temple of fame, it is of the greatest interest to have collected together these essays and addresses, so that in them we may study his attitude of mind, not only to things professional, but also to the philosophy of life in general.
From this point of view, the essays and addresses may be divided into two groups. The first would include the more serious or technical, those dealing with medicine as a science; those in the second group have reference to medicine more as a career, or they consider it in regard to its human aspects.

In the first group we must mention the lecture delivered in 1859 on "The Facts and Laws of Life." It is a wonderfully clear and logical statement of the author's attitude to the "methods" of science. In a sense it might be called a vindication of the commonsense philosophy as opposed to positivism. He says (p. 73), "In thus surveying the aim which, as students of the medical profession, is placed before you, I have shown that the subject-matter of your study, life, is two-fold—mind and body; material and immaterial; temporal, tangible and seen; unseen, intangible and eternal; and, further, that the gulf between these two is such that no science has yet bridged it over. . . . I have urged upon you, that although you may not know—may never know—the essence of life, yet that you may learn facts about it; . . . by using these facts . . . as your alphabet, you advance to the study of law; and that in it you find the suggestion of something beyond the mere facts themselves—the conception and revelation of a higher power, and of a plan which gives harmony and meaning to the diverse phenomena you witness. . . . Thus, your aim is to learn the truths and facts of a two-fold life, and to find in its deepest laws the revelation of that which is greater than itself."

The same ideas, though differently dealt with, are found in part in the oration "On the Relation of Practical Medicine to Philosophical Method and Popular Opinion."

Turning to "The Definition and Nomenclature of Disease," we get medicine considered from quite another aspect. This is the introduction to Reynolds' *System of Medicine*. It was written thirty years ago, and although reading it now for the first time, it may seem commonplace—and this is the more marked on contrasting it with Dr. Allbutt's introduction to the new *System of Medicine*—we must remember that thought has changed much during these years. In its day it was a masterpiece of its kind.

Among the addresses of the second group we find "The Types of Students" and "Specialism in Medicine." These, somewhere else, have been characterised as humorous, but if that is so, the humour is of a very caustic character. We feel Sir Russell Reynolds was not at his best when he wrote "The Types of Students." He seems to lack appreciation and
sympathy for all but the brothers Goodman, who, by the way, he has made so good as to be almost uninteresting. All specialists, too, are surely not charlatans. The author gets back again to his higher level in "Some Past Teachers of University College," and in the address delivered on distributing prizes at the College in 1890. The ideal in these is lofty, and much of them, one feels, comes from the heart, for it goes to the heart.

The address delivered before the Student's Christian Association gives us yet another view of this character. From it we judge Sir Russell Reynolds' sympathies to be with the dissenting type of mind. He is eager for compromise to save the old beliefs. He believes in the authority of the majority—rather an alarming doctrine when we consider the numerical strength of such religions as Mohammedanism!

The book, as a whole, then, gives us its author. It shows a mind of great power, with a keen insight into the very centre of things. The outlook is possibly not that of a poet, but it is that of a thoughtful, earnest, and high-minded physician.

Vita Medica: Chapters of Medical Life and Work. By Sir Benjamin Ward Richardson, M.D., LL.D., F.R.S. London, New York, and Bombay: Longmans, Green & Co. 1897.

This work was finished by its gifted author two hours before the onset of his last illness. Two and a half days later—Saturday, 21st November, 1896—his busy useful life and brilliant career were at an end.

The book is autobiographical throughout, and as it deals largely with the writer's scientific and public work, it necessarily savours of egotism. Nowhere, however, is this such as to offend us, and, taking it all in all, we are greatly pleased that this book has been written, and written, too, by Richardson himself. We get here the facts as to the author's work, and are delivered from the undue laudations of a biographer and the speculations as to motive in which an outsider would indulge. The interest in the narrative is sustained almost from beginning to end. As a piece of literary art, of course, it cannot be put in the front rank. The irresistible charm of Hugh Miller in his autobiography—now, we fear, too little read—is quite lacking here. But no one who is attracted by the very numerous problems with which Richardson was engaged need find many pages of this volume dull.
Richardson's professional life began while the apprenticeship system was in full swing, and he appears to have been particularly fortunate in his chiefs. He has nothing but good to say of this method of introduction to medicine—says it was the best that could be, and ought to have remained untouched. He was an experimenter from very early life, and if the patience necessary for his investigations was matched by anything, it was by the variety of subjects he took up. It is astonishing to read of the number of societies he founded or helped to found, the societies and meetings he presided over, the journals he started or edited or supported, the papers he wrote, the lectures he delivered. He introduced the ether spray apparatus for local anaesthesia; he introduced fourteen general anaesthetics, including bichloride of methylene and methylic ether; he gave the name "septine" to a crystalline substance which he separated from septic fluid drawn from the abdominal cavity; he discovered the property possessed by peroxide of hydrogen of giving to epidermal appendages a golden hue; he discovered and named ozonic ether; he introduced colloids as therapeutic agents (styptic colloid being the first); he introduced the ethylates or caustic alcohols for remedial purposes; he invented and named the lethal chamber; and, finally, to mention only one other instance, he effected such great improvements in the art of embalming dead bodies that at last he could carry out the process to perfection by needle injection alone. He did splendid work in connection with sanitation, and in connection with the abattoirs and bakehouses of the Metropolis. He was not, strictly speaking, a vegetarian, but he hoped and confidently expected that we shall be able ultimately to prepare from vegetable sources foods which are animal in taste and quality, so that the slaughtering of animals for food will become unnecessary.

Richardson's position with regard to alcohol is well known, and was adopted at first from physiological considerations. He had been brought up, like his contemporaries, to look upon alcohol as a good friend of mankind; and while moral arguments in favour of abstinence appeared to him on examination to be sound, it was experimental results, confirmed time after time, and surprising to himself, that first stirred him to declare that alcohol is not only unnecessary for life, but is actually inimical to life. Richardson suffered severely for his new creed in the early days of the battle with alcohol, and the complete revolution that has taken place in public sentiment on the subject is well described in this work. Another revolution witnessed by our author was in the
matter of treatment by blood-letting. He had the curious fortune to be the means of stopping two trials for malpractice, the ground of offence being in the one case that the doctor had refused to draw blood, and in the other that blood had been improperly abstracted.

Richardson was all along an enthusiastic supporter of the bicycle. Cycling, he says, has advanced the sanitation of this country a hundred years. He claims for the machine an English origin, though he admits the very great improvement which the French made by inventing the pedal movement. In the first year of the present reign, Richardson saw at Leicester a velocipede which was constructed entirely of wood by two brothers, who rode it together and worked it on the principle of the lathe. The old hobby-horse was propelled by the foot. The modern small wheels were introduced by Mr. John Browning.

The little inaccuracies of style which occasionally obtrude themselves in this volume might possibly have disappeared if the author had been spared to complete the revision of his proofs, but one or two errors of a different kind should be noticed. The name of the famous Scottish anatomist was not John Knox, but Robert Knox; his biography by Henry Lonsdale lies beside us as we write. The name Risdon Bennett is wrongly spelt on pp. 418 and 419. We are told that the sphygmograph was devised by Professor Meyer (p. 420); the instrument was invented by Marey. It is stated (p. 452) that “the ophthalmoscope was the invention of a considerable number of observers, and it is difficult to name any particular originator;” we always thought that Helmholtz had an undisputed claim to priority. Czermak is a more familiar spelling than Schermak of a well-known name (p. 453).

This interesting and beautifully printed volume is appropriately dedicated to the student of the future who may wish to take a glance at the Victorian era.

Schedules for Plant Description. By JOHN WISHART.
Edinburgh: E. & S. Livingstone. 1897.

This is a note-book in which a student may record in tabular form some of his observations on plants. Only one kind of schedule is given, and it is not adapted for plants other than phanerogams, a fact that ought to have been indicated in the title.

As the paper is sufficiently good and the printing neat, the
book may be introduced by those teachers who do not prefer to print forms of their own and who see no objections to the scheme here given; but fault may well be found with an arrangement which, for example, introduces cross division by devoting co-ordinate sections to perianth, calyx, and corolla.

As a model, one of the schedules has been filled in with a description of the wallflower, but there are numerous errors of omission and commission. The drawing of the vertical section of the flower is bad and misleading. In a fashion that has become too prevalent, the *replum* is—twice—confused with the septum. The floral formula that is given itself affords a crop of mistakes:—

\[S_2 + 2, \ P_4, \ A(2 + 2) + (2), \ Gr^© \]

No mention is made of the nectaries! Messrs. Livingstone would do well to cut out the model schedule and replace it, in the next edition, by one in which a higher standard of accuracy is set up for the student.

Transactions of the Obstetrical Society of London.

Vol. XXXVIII. Part IV.

Several important contributions appear in this part of the *Transactions* of the London Obstetrical Society. We mention some of these.

Dr. Lewers gives a very full report of "A Case of Double Uterus with Double Haematometra and Complete Absence of the Vagina." With considerable difficulty a vagina was found by careful dissection, and both distended uterine cavities evacuated. Dr. Stevens in an exhaustive manner describes "A Case of Completely Cleft Spine associated with an Unusual Visceral Malformation in an Anencephalic Foetus."

Dr. Eden, in his paper, "The Structure of the Ripe Placenta, and the Changes which occur in Placentae retained *in utero* after the Death of the Foetus," refers chiefly to the alterations that occur in the intervillus spaces and later in the villi themselves when portions of placenta are retained for some time *in utero."

Dr. H. R. Spencer reports "Three Cases of Porro's Operation, with Intraperitoneal Treatment of the Stump." In each case delivery *per vias naturales* was impossible. In Case I it was prevented by large fibroid tumours of the uterus, in Case II by a large enchondroma growing from the sacrum, and in Case III by atresia of the cervix occurring some time after removal.
of the portio vaginalis. The paper is an interesting one, but by some curious mistake the "stumps" are described as having been "intraperitoneally" treated, instead of "extraperitoneally," as was the case.

The reports of many other interesting cases and discussions are contained in the volume.

ABSTRACTS FROM CURRENT MEDICAL LITERATURE.

SURGERY.

By GRANT ANDREW, M.B., C.M.

The Immediate Reduction of the Deformity in Pott's Disease.—In the Gaz. Medicale de Paris, 12th June, 1897, there is abstracted from the Presse Médicale an address by M. Ch. Monod reviewing three communications by Calot, Chipault, and Ménard respectively on this subject.

In France, and more particularly in Paris, there is at present quite a furor of excitement owing to the circulation of a report that hunchbacks need not now despair, and should go at once and be made straight.

What is Calot's method, and how is it regarded in France? Monod in his paper answers these questions. First, in regard to the method. To quote as nearly as possible Calot's own words—"Four strong assistants harnessed two by two to the two extremities of the patient pull in opposite directions, while the surgeon, his hands on the gibbosité, exercises on this point an extremely vigorous pressure (pressing as hard as he is able) until the displaced vertebrae have reached, or even got below, the level of the neighbouring vertebrae."

Calot usually removes the "knotty projecting apophyses," and also the segment of skin covering them, before straightening the column. If the deformity be old, a cuneiform resection is advised; but this has only been practised "twice or thrice."

After the straightening the patient is enclosed in a plaster jacket, changed two or three times during the first four months, at the end of which time he is authorised to walk with a "corset." The correction of the deformity lasts for five or six months. Up till December last Calot had practised thirty-seven times the reduction of deformity due to Pott's disease, "with no accident." The cord in particular never seemed to suffer; in fact, in one case an existing paralysis seemed to lessen after the operation. In two cases only distant abscesses (in iliac fossa and in buttock) showed themselves four to six months afterwards. These abscesses were treated and "cured in the ordinary way." In three cases where an abscess existed at time of operation the collection got absorbed and disappeared spontaneously. As Monod remarks, these results are almost too good, and little in keeping with what is known of bony tuberculosis in general and Pott's disease in particular. Calot does not deny this, and says "that without doubt he has fallen on a happy series."

Six only of the thirty-seven cases were exhibited, and of these two were wearing a support; the remaining four were shown straightened, and free of all apparatus.

Chipault, after straightening the deformity, fixes the "knotty apophyses" by silver wire (figure of 8), and reports five cases with good result. The patient is fixed for a time on a "board" instead of being up in plaster immediately subsequent to operation.