Three Dimensional Morphometric Differences of Resected Distal Femur and Proximal Tibia in Osteoarthritis and Normal Knees

Xiang-hui Dong
Shannxi Provincial People's Hospital/third affiliated hospital of Xi'an jiaotong University

Xiang-hui Huang
Shannxi Provincial People's Hospital/third affiliated hospital of Xi'an jiaotong University

Ming Chen
Shannxi Provincial People's Hospital/third affiliated hospital of Xi'an jiaotong University

Yan-hai Chang
Shannxi Provincial People's Hospital/third affiliated hospital of Xi'an jiaotong University

Ming Ling
Shannxi Provincial People's Hospital/third affiliated hospital of Xi'an jiaotong University

Bo Yang (yangbo1981911@126.com)
Shannxi Provincial People's Hospital/third affiliated hospital of Xi'an jiaotong University

Research Article

Keywords: Computed tomography, Osteoarthritis, Normal knee, Total knee arthroplasty, Morphometry

Posted Date: March 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-294320/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Three dimensional morphometric differences of resected distal femur and proximal tibia in osteoarthritis and normal knees

Xiang-hui Dong¹,², Xiang-hui Huang¹, Ming Chen¹, Yan-hai Chang¹, Ming Ling¹, Bo Yang*¹

¹ Department of Orthopaedics ² Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital/third affiliated hospital of Xi’an jiaotong University, No. 256, Youyi West Road, Xi’an, China

*Correspondence to: Bo Yang
Department of Orthopaedics
Shannxi Provincial People’s Hospital
No. 256, Youyi West Road
Xi’an China
Email: yangbo1981911@126.com
Phone: 86-29-85253261
Abstract

Background: There is a paucity of data concerning the morphological differences of resected distal femur and proximal tibias in osteoarthritis (OA) and normal knees. The objective of this study was to determine if morphometric differences exist in resected distal femur and proximal tibia surface between OA and normal knees in Chinese population.

Methods: Ninety-eight OA knee and ninety-six normal ones, taken from Chinese population, were measured by computed tomography for femoral mediolateral (fML), medial anteroposterior (fMAP), lateral anteroposterior (fLAP), medial condylar width (fMCW), lateral condylar width (fLCW) and tibial mediolateral (tML), middle anteroposterior (tAP), medial anteroposterior (tMAP), lateral anteroposterior (tLAP) dimensions to determine the morphologic differences between OA and normal knees.

Results: The average tMAP and fMCW dimensions were 50.2 ± 3.3 mm, 28.7±2.3 mm for OA, and 48.8 ± 3.8 mm, 27.1±2.2 mm for normal knees, respectively. There were significant differences between OA and normal knees with regard to tMAP and fMCW dimensions ($p<0.05$).

Conclusions: The study revealed the morphological differences of tMAP and fMCW between the OA and normal groups, which may provide guidelines for designing better knee implants that are more size-matching for OA knees.

Keywords: Computed tomography, Osteoarthritis, Normal knee, Total knee arthroplasty, Morphometry
Background

Appropriate prosthesis size matching the resected bony surfaces is considered a crucial factor for success in total knee arthroplasty (TKA) [1, 2]. If the prosthesis overhang or underhang the resected surface of the bone, it will increase the risk of component. Underhang may cause early subsidence and loosening of the prosthesis, whereas overhang may cause residual pain, poorer knee flexion, and decreased functional results [3, 4]. Thus, it becomes important to maximize coverage of the knee component on the resected bony surface to ensure a good clinical result and long-term survivorship of the prosthesis [5, 6]. To design proper knee component, many researchers have measured resected surface of normal knees from imaging [7, 8], others analyzed anthropometric features of diseased knees during TKA [9, 10]. It is unclear whether there are morphometric differences in resected bony surface between diseased and normal knees.

Generally, most knees that undergo TKA are deformed and shaped differently from healthy knees. It suggests that the design of the prosthesis should be based on the data from diseased knees [11]. However, most of the current available TKA prostheses are designed based on the anthropomorphic features of normal knees [12]. Such prostheses may not necessarily provide the best fit for TKA candidates. Osteoarthritis accounted for more than 90% of the patients who underwent primary TKA.

To the best of our knowledge, none have compared morphometric differences in resected distal femur and proximal tibia surface between the OA and normal knees. The aim of this study, therefore, was to measure the morphometric features of resected distal femur and proximal tibia surface to determine whether there are morphometric differences between OA and normal knees.

Methods
This study was performed in accordance with the Declaration of Helsinki with and approved by institutional review board of Shanxi Provincial People’s Hospital. The study recorded the morphology of 98 OA knees candidating for TKA and 96 normal knees without congenital anomalies or pathological deformities around the knee joint from June 2017 to April 2018. No knee had a varus or valgus deformity of >15°. The median hip-knee-ankle angle of the subjects was 7.4° for OA and 1.0° for normal. The median age of the subjects was 64.9 years for OA and 30.0 years for normal. The median height was 165.6 cm for the OA and 170.2 cm for normal knee.

Computer tomography (CT) imaging was performed using a helical CT scanner imaging machine (120kVp, 200mA, Somatom Sensation, Siemens Healthcare, Germany). The subjects were placed in the supine position on the scanner with knees in full extended position and their patellar facing towards the ceiling. The scanning procedure was performed to acquire 1.0 mm CT slices (image size, 512×512 pixels). All CT images were burn into discs. The images of the knees were segmented using a region-growing method to construct 3D bony models by Mimics17.0 (Belgium, Materialise). The measurements were performed using Geomagic studio14.0 software (USA, Raindrop).

The distal femur was cut 9 mm above the lowest point of the medial condyle with 6° valgus to the anatomical axis (Fig. 1 a). A line connecting the medial sulcus of the medial epicondyle and the lateral epicondylar prominence was defined as the surgical transepicondylar axis (STEA). The femoral mediolateral (fML) dimension was defined as the longest ML length of the distal cut femur surface; this line paralleled the STEA. The femoral lateral anteroposterior (fLAP) and medial anteroposterior (fMAP) dimensions were defined as the longest line drawn perpendicular to the fML between the most posterior condylar and the anterior trochlear point from the lateral and medial condyle of the femur. The medial and lateral condyle width were measured 10 mm
above the lowest point of the medial posterior condyles to simulate the optimal cutting thickness

(Fig. 1 b).

Fig. 1 Distal femur resection and measurement on CT images. a Resection method of distal femur. b Measurements of resected femoral surfaces.

The proximal tibial cut was performed perpendicular to the mechanical axis of the tibia, 8 mm below the lateral tibial plateau with 5° of posterior inclination (Fig. 2 a). The tibial mediolateral (tML) dimension was taken as the longest mediolateral length of the resected tibial surface. This line is parallel to the surgical epicondylar axis of the femur and formed by connecting the medial sulcus of the medial epicondyle and the lateral epicondylar prominence. The tibial middle anteroposterior (tAP) dimension was taken as the length of line drawn perpendicular and passing through the midpoint of the tML line. The tibial lateral anteroposterior (tMAP) and medial anteroposterior (tLAP) dimension was taken as the length of the line drawn perpendicular to tML and passing through the posterior-most point of the lateral and medial tibial condyle (Fig. 2 b).

Fig. 2 Proximal tibia resection and measurement on CT images. a Resection method of proximal tibia.
b Measurements of resected tibial surfaces.

Statistical analysis

The SPSS software 18.0 (SPSS, Chicago, IL) was used for statistical analysis. Mean and standard deviation of measured dimensions were calculated. Independent sample t-test was used to determine the significance of morphological differences between OA and normal knees. The differences were regarded as significant when $P<0.05$.

Results

On the basis of the numbers available, the mean fML, fMAP, fLAP and fLCW dimensions were 74.3±4.8 mm, 62.3±3.9 mm, 64.5±4.9 mm, 27.3±2.4 mm for OA, and 73.1±5.5 mm, 62.0±4.0 mm, 64.2±4.3 mm, 26.6±3.3 mm for normal, respectively. There were no significant difference between OA and normals in relation to fML, fMAP, fLAP and fLCW dimensions (p>0.05). The average fMCW dimensions were 28.7±2.3 mm for OA, and 27.1±2.2 mm for normal, respectively. There were significant differences between the OA and normal with respect to fMCW dimensions (p<0.001). (table 1).

Table 1 The distal femur dimensions in OA and normal knee (mm)

Parameter	OA	Normal	p
Femoral mediolateral (fML)	74.3±4.8	73.1±5.5	0.108
Femoral medial anteroposterior (fMAP)	62.3±3.9	62.0±4.0	0.699
Femoral lateral anteroposterior (fLAP)	64.5±4.9	64.2±4.3	0.564
Femoral medial condylar width (fMCW)	28.7±2.3	27.1±2.2	0.000
Femoral lateral condylar width (fLCW)	27.3±2.4	26.6±3.3	0.096

The average tML, tAP and tLAP dimensions were 75.1±5.2 mm, 53.3±3.9 mm and 48.4±4.2 mm for OA, and 74.4±5.5mm, 49.3±4.0 mm and 47.7±4.0 mm for normal, respectively. There was
no significant difference between the OA and normal knee with respect to tML, tAP and tLAP (p>0.05). The average tMAP dimensions were 52.3 ± 3.3mm for OA, and 51.1 ± 3.7 mm for normal, respectively. There were significant differences between the OA and normal knee with respect to tMAP dimensions (p = 0.028). Table 2.

Table 2 The proximal tibia dimensions in OA and normal knee (mm)

Parameter	OA	Normal	p
Tibial mediolateral (tML)	75.1±5.2	74.4±5.5	0.368
Tibial medial anteroposterior (tMAP)	52.3±4.0	51.1±3.7	0.028
Tibial middle anteroposterior (tAP)	50.3±3.9	49.3±4.0	0.069
Tibial lateral anteroposterior (tLAP)	48.4±4.2	47.7±4.0	0.187

Discussion

Optimal coverage of the component to the resected bony surface is essential for long-term good outcomes after TKA. If the implant mismatches the resected bone surface, there will be undersizing or overhang, which could result in worse clinical outcomes [13]. Thus, it is critical to design size-matching component for TKA candidates according to knee morphology. Various morphological studies of the resected bony surfaces from normal [7, 14] or OA knees [9, 15] have been conducted to provide data for proper size-matching. Cheng et al [11] suggested that the design of knee component should be based on the data from diseased knee, rather than the normal knees. To date, no studies have looked into the morphology differences of resected femoral and tibial surface between the diseased and normal knee to determine which morphological data is more suitable for designing proper component.

In this study, we measured morphology of the resected distal femur and proximal tibia surfaces in OA and normal knees. The major findings were that the tMAP and tMCW dimensions in OA subjects were significantly larger than those of normal knee. In a study by Puthumanapully et al, the authors
found that varus knees had larger femur dimension of medial condyle compared with normal knees[16].

The morphological differences of medial condyle between OA and normal knees may be explained by
the pathological change of OA knees. Most OA knees of TKA candidates were varus deformity, and the
medial condyle experienced destroying and remodeling as a response to larger loads during gait[17],
which could eventually result in bony structural change in medial condyle of OA knees.

Many studies have reported on the measurements of resected proximal tibia surface in Asian
knees. Cheng et al[7] reported mean tML, tAP, tMAP, and tLAP values were 73.0 mm, 48.8 mm, 50.7
mm, and 45.3 mm in 172 Chinese normal tibias by CT imaging, which was similar to our data in
normal tibias. Kwak et al[18] studied tibial 200 normal cadaver tibias and determined that tML, tAP,
tMAP, and tLAP values were 71.9 mm, 48.8 mm, 45.9 mm, and 42.2 mm respectively on CT imaging.
Uehara et al[19] studied 100 TKA tibias from the Japanese population on the CT scan and determined
that the tML and tAP dimensions were 74.3 mm and 48.3 mm. The results in our Chinese subjects were
a little larger than these Asians, which might be due to the difference between the heights of study
groups. Charlton et al[20] reported a significant difference in the femoral bicondylar width between
short and tall subjects, with the taller subjects having larger values. The average height (166.9 cm) in
our study was a little higher than the Japanese subjects (151.9 cm) and Korean subjects (161.2 cm).

Several researchers have studied the dimensions of the distal femur in Asian populations. Cheng et
al[7] reported the mean fML, fLAP values on CT to be 71.0 mm and 64.1 mm respectively in Chinese
normal femurs. Lim et al. [14] showed that femoral fML, fMAP and fLAP dimensions were 78.6 mm,
59.6 mm and 58.7 mm in a Korean population using MRI. Urabe et al. [21] studied knees using CT
imaging in a Japanese population and reported values of fML, fMCW and fLCW dimensions was 70.6
mm, 30.1 mm and 24.8 mm in OA subjects. The results of ours showed minor differences between
these Asian populations. These differences may be due to the difference imaging technique and the
difference between the height of study group. In additional, the depth of the resection affects the
sizing of the resected bony surface. The depth of the distal femroal resection in our study at a
thickness of 9 mm below the medial condyle was lower than the 10 mm [14, 21] depth used in
other studies.

To date, many studies have confirmed knee anatomic differences of the Caucasian and Asian
population [22, 23]. However, nearly all existing TKA components were designed based on the
anatomy of Caucasian populations and not suitable for Asian patients [7, 24]. In clinical, Iorio et al
followed (9 vs. 6.6 years) American and Japanese patients after primary TKA, and showed the
American patients required significantly larger size implants than the Japanese patients. The authors
also found that Japanese patients had significantly less postoperative range of motion (93.7 vs. 106.6°)
and a higher revision rate (4.1% vs. 2.6%) than American patients [25]. Anatomy studies and clinical
outcomes all demonstrated that ethnic differences should be considered for designing proper TKA
component for Asian population.

We acknowledge that this study included a limited number of subjects and may not reflect the real
features of knees in OA and normal knees. If a larger sample size was studied, other significant
differences may be noticed. We are also aware of that only one bone resection level was measured.
However, resection depth varies according to the stage of disease during TKA. In the future, we will
report data for a larger sample size and measure the depth at different resection levels.

Conclusion

In summary, our study demonstrated that the tMAP and fMCW dimensions of resected knee
surfaces were indeed significantly larger in OA than normal knees. As a result, we believe that the
shape variations of the knee in OA and normal should be a concern when designing components for TKA candidates.

Abbreviations

OA: osteoarthritis; tML: Tibial mediolateral; tAP: Tibial mediolateral middle anteroposterior; tMAP: Tibial medial anteroposterior; tLAP: Tibial lateral anteroposterior; fML: Femoral mediolateral; fMAP: Femoral medial anteroposterior; fLAP: Femoral lateral anteroposterior; fMCW: Femoral medial condylar width; fLCW: Femoral lateral condylar width; TKA: Total knee arthroplasty; CT: Computer tomography; STEA: Surgical transepicondylar axis

Acknowledgements

Not applicable.

Authors’ contributions

XHD designed the study, analyzed the data, wrote the manuscript. BY designed the study, analyzed the data and revised the manuscript. XHH and MC performed measurements and analysis the data. YHC and ML designed the study and reviewed the manuscript. All authors read and approved the final content of the manuscript.

Funding

This research was supported by Shaanxi province science and technology research project (No. 2021SF-206). Shannxi provincial people’s hospital incubation fund (No.2019YXQ-13). International science and technology cooperation and exchanges (No.2019KW-070).

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
This study was approved by the institutional review board of Shannxi Provincial People’s Hospital (No.2017-052), and written informed consent for participation was obtained from all subjects.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

Department of Orthopaedics, Shannxi Provincial People’s Hospital/third affiliated hospital of Xi’an jiaotong University, No. 256, Youyi West Road, Xi’an 710068, China

References

1. Meier M, Zingde S, Steinert A, Kurtz W, Koeck F, Beckmann J. What is the possible impact of high variability of distal femoral geometry on TKA? A CT data analysis of 24042 knees. Clin Orthop Relat Res. 2019; 477(3):561-70.

2. Lu F, Sun X, Wang W, Zhang Q, Guo W. Anthropometry of the medial femoral condyle in the Chinese population: the morphometric analysis to design unicompartmental knee component. BMC Musculoskelet Disord. 2021; 22(1):95.

3. Katchy AU, Agu AU, Esom E, Ikele IT, Okeke MA, Ugwu AU. The morphometric analysis of the male cadaveric native knees of the ethnic Igbo of South East Nigeria and its implication in total knee replacement. Niger J Clin Pract. 2020; 23(7):1013-21.

4. Zhang YJ, Chen YX, Qiang MF, Zhang K, Li HB, Jiang YC, Jia X. Morphometry of the tibial plateau at the surface and resected levels. J Arthroplasty. 2017; 32(8):2563-67.
5. Karimi E, Zandi R, Norouzian M, Birjandinejad A. Correlation of anthropometric measurements of proximal tibia in Iranian knees with size of current tibial implants. Arch Bone Jt Surg. 2019;7(4):339-45.

6. Wemedke GC, Harris IA, Houang MT, Seeto BG, Chen DB, MacDessi SJ. Comparison of tibial bone coverage of 6 knee prostheses: a magnetic resonance imaging study with controlled rotation. J Orthop Surg (Hong Kong). 2012; 20(2): 143-7.

7. Cheng FB, Ji XF, Lai Y, Feng JC, Zheng WX, Sun YF, Fu YW, Li YQ. Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee. 2009; 16:341-7.

8. Du Z, Chen S, Yan M, Yue B, Wang Y. Differences between native and prosthetic knees in terms of cross-sectional morphology of the femoral trochlea: a study based on three-dimensional models and virtual total knee arthroplasty. BMC Musculoskelet Disord. 2017; 18(1): 166.

9. Loures FB, de Araújo Góes RF, de Sousa EB, Cavanellas N, Barretto JM, Tamaoki MJS, Pires E Albuquerque RS, Labronici PJ. Intraoperative morphometric study of distal femur in Brazilian patients undergoing total knee arthroplasty. PLoS One. 2020; 15(5): e0233715.

10. Yang B, Song CH, Yu JK, Yang YQ, Gong X, Chen LX, Wang YJ, Wang J. Intraoperative anthropometric measurements of tibial morphology: comparisons with the dimension of current tibial implants. Knee Surg Sports Traumatol Arthosc. 2014; 22(12): 2924-30.

11. Incavo SJ, Ronchetti PJ, Howe JG, Tranowski JP. Tibial plateau coverage in total knee arthroplasty. Clin Orthop Relat Res. 1994; 299: 81-5.

12. Huang CH, Cheng CK, Liau JJ, Lee YM. Morphometrical comparison between the resected surfaces in osteoarthritic knees and Porous-coated Anatomic knee prosthesis. J Musculoskelet Res.
13. Hafez MA, Sheikhedrees SM, Saweeres ES. Anthropometry of Arabian arthritic knees: comparison to other ethnic groups and implant dimensions. J Arthroplasty. 2016; 31(5):1109-16.

14. Lim HC, Bae JH, Yoon JY, Kim SJ, Kim JG, Lee JM. Gender differences of the morphology of the distal femur and proximal tibia in a Korean population. Knee. 2012; 20(1): 26-30.

15. Loures FB, de Araújo Góes RF, da Palma IM, Labronici PJ, Granjeiro JM, Olej B. Anthropometric study of the knee and its correlation with the size of three implants available for arthroplasty. Rev Bras Ortop. 2016; 51(3):282-9.

16. Puthumanapully PK, Harris SJ, Leong A, Cobb JP, Amis AA, Jeffers J. A morphometric study of normal and varus knees. Knee Surg Sports Traumatol Arthrosc. 2014; 22(12):2891-99.

17. Amis AA. Biomechanics of high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2013; 21:197-205.

18. Kwak DS, Surendran S, Pengatteeri YH, Park SE, Choi KN, Gopinathan P, Han SH, Han CW. Morphometry of the proximal tibia to design the tibial component of total knee arthroplasty for the Korean population. Knee. 2007; 14(4):295-300.

19. Uehara K, Kadoya Y, Kobayashi A, Ohashi H, Yamano Y. Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population. J Arthroplasty. 2002; 17(8):1028-31.

20. Charlton WP, St John TA, Ciccotti MG, Harrison N, Schweitzer M. Differences in femoral notch anatomy between men and women. A magnetic resonance imaging study. Am J Sports Med. 2002; 30:329-33.

21. Urabe K, Miura H, Kuwano T, Matsuda S, Nagamine R, Sakai S, Masuda K, Iwamoto Y. Comparison between the shape of resected femoral sections and femoral prostheses used in total
knee arthroplasty in Japanese patients: simulation using three-dimensional computed tomography.

J Knee Surg. 2003;16 (1): 27-33.

22. Bing Y, Kartik MV, Songtao A, Tingting Tang, Harry E. Rubash, Guoan Li. Differences of knee anthropometry between Chinese and White men and women. J Arthroplasty. 2011; 26(1):124-30.

23. Kim TK, Phillips M, Bhandari M, Watson J, Malhotra R. What differences in morphologic features of the knee exist among patients of various races? A systematic review. Clin Orthop Relat Res. 2017; 475(1):170-82.

24. Miyatake N, Sugita T, Aizawa T, Sasaki A, Maeda I, Kamimura M, Fujisawa H, Takahashi A. Comparison of intraoperative anthropometric measurements of the proximal tibia and tibial component in total knee arthroplasty. J Orthop Sci. 2016; 21(5): 635-39.

25. Iorio R, Kobayashi S, Healy WL, Cruz Al Jr, Ayers ME. Primary posterior cruciate-retaining total knee arthroplasty: a comparison of American and Japanese cohorts. J Surg Orthop Adv. 2007; 16(4):164-70.
Figures

Figure 1

Distal femur resection and measurement on CT images. a Resection method of distal femur. b Measurements of resected femoral surfaces

Figure 2

Proximal tibia resection and measurement on CT images. a Resection method of proximal tibia. b Measurements of resected tibial surface