Inhibition of *Cronobacter sakazakii* Virulence Factors by Citral

Chao Shi¹, Yi Sun¹, Zhiyuan Liu¹, Du Guo¹, Huixi Sun¹, Zheng Sun¹, Shan Chen¹, Wenting Zhang¹, Qiwu Wen², Xiaoli Peng¹ & Xiaodong Xia¹,²

Cronobacter sakazakii is a foodborne pathogen associated with fatal forms of necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The aim of this study was to determine whether citral, a major component of lemongrass oil, could suppress putative virulence factors of *C. sakazakii* that contribute to infection. Sub-inhibitory concentrations of citral significantly decreased motility, quorum sensing, biofilm formation and endotoxin production. Citral substantially reduced the adhesion and invasion of *C. sakazakii* to Caco-2 cells and decreased bacterial survival and replication within the RAW 264.7 macrophage cells. Citral also repressed the expression of eighteen genes involved in the virulence. These findings suggest that citral has potential to be developed as an alternative or supplemental agent to mitigate the infections caused by *C. sakazakii*.

Cronobacter (formerly *Enterobacter sakazakii*) is a Gram-negative, motile, peritrichous, non-spore forming and rod-shaped opportunistic bacterial pathogen¹ and consists of seven species². Among these species, *C. sakazakii* is primarily associated with such neonatal infections as bacteremia, necrotizing enterocolitis (NEC) and infant meningitis. Fatality rates of 50–80% are reported for infected neonates and infants, and 20% of survivors develop serious neurological disorders³. Among older children and adults, NEC is characterized by the colonization of the gastrointestinal lumen with reported fatality rates of 10–55%⁴.

Consumption of powdered infant formula (PIF) is considered to be the primary route for *C. sakazakii* in neonatal infections⁵. As an orally ingested pathogen that causes systemic infections, *C. sakazakii* must adhere to the host cell, cross the intestinal epithelial cells, enter into the blood stream and transcytose across the blood–brain barrier⁶. Therefore, the ability of *C. sakazakii* to adhere to and invade the intestinal epithelium is the first step for its pathogenesis. Previous studies demonstrated that *C. sakazakii* efficiently adhered to and invaded human epithelial cells, specifically Caco-2 in vitro⁷. Moreover, *C. sakazakii* was demonstrated to survive and replicate within macrophages⁸. *C. sakazakii* could tolerate the intracellular environment of macrophages and use macrophages as a vehicle to invade the other body organs.

Bacterial biofilms provide a physical barrier and protect cells against a variety of environmental stresses such as UV light, desiccation and treatment with antimicrobial and sanitizing agents⁹,¹⁰. Previous studies confirmed that *C. sakazakii* form biofilms on silicon, latex, stainless steel surfaces, preparation areas and clinical settings as well as neonatal nasogastric feeding tubes used in infant-feeding equipment¹¹,¹². Washing with water or sanitizers do not always eliminate *C. sakazakii* on abiotic surfaces, presumably because of its existence in biofilms¹³.

Quorum sensing (QS), used by bacterial pathogens to coordinate the expression of virulence factors at high cell densities, is a key regulator governing various physiological processes such as biofilm formation, bioluminescence, motility, and other virulence factor production¹⁴. Endotoxin (LPS) is an important component of the outer membrane of Gram-negative bacteria¹⁵. Upon ingestion, LPS may increase the permeability of the neonatal intestinal epithelium and induce potent pathophysiological effects in the host¹⁶.

With alarming increase of antibiotic resistance in various microbial pathogens, it is important to identify alternative strategies and novel agents to counter bacterial infections¹⁶. Currently, increasing attention have been focused on natural plant phytochemicals, which are thought less prone to induce bacterial resistance and are generally safe for human consumption¹⁷. Citral is a major active component of citrus oils, which are already commonly used in foods and beverages (e.g., soft drinks and deserts)¹⁸. Citral is approved for use in foods by the Food and Drug Administration (FDA, GRAS, 21 CFR 182-60). In addition, citral has been proven to exhibit antibacterial activity on *Escherichia coli*, *Salmonella* and *Listeria monocytogenes*¹⁹–²¹.

¹College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. ²Sino-US Joint Research Center for Food Safety, Northwest A&F University, Yangling, Shaanxi 712100, China. Correspondence and requests for materials should be addressed to X.X. (email: foodscixiaodong@yahoo.com)
Although most of previous studies focused on the antimicrobial properties of citral, a limited number of studies examined its anti-virulence potential, even less information is available regarding its effect on reducing pathogenic potential of C. sakazakii. The purpose of this study is to investigate the effect of citral at sub-inhibitory concentrations (SICs) on the reduction of the virulence properties of C. sakazakii. Changes in motility, specific biofilm formations, QS, endotoxin production, adhesion and invasion of Caco-2 cells and survival and replication in macrophage cells were analyzed. In addition, expression of different virulence genes were determined by reverse-transcriptase (RT) PCR.

Results

Minimum Inhibitory Concentrations and Sub-Inhibitory Concentrations. Citral exhibited inhibitory effects against three tested C. sakazakii strains. Complete growth inhibition was achieved after 24 hours by citral at 3600 μM as measured by OD_{600} (Fig. 1). Thus the minimum inhibitory concentration (MIC) of citral against C. sakazakii strains was considered to be 3600 μM. Moreover, concentrations below 225 μM (1/16 MIC) exhibited no inhibition against C. sakazakii ATCC 29544 (Fig. 1) and those concentrations were further chosen as SICs to study the effects of citral on C. sakazakii virulence. After determining that citral was equally effective against three C. sakazakii isolates (ATCC 29544, ATCC 29004 and 7–17), we selected strain ATCC 29544 for further experiments.

Motility. The effect of citral on C. sakazakii motility is shown in Fig. 2. Citral reduced both swimming and swarming ability of C. sakazakii ATCC 29544 (Fig. 2A,B). The original swimming area of C. sakazakii ATCC 29544 was 60.84 ± 2.41 cm². Addition of citral at 225 μM and 112.5 μM caused swimming area reductions to 50.31 ± 3.77 cm² (P ≤ 0.01) and 54.13 ± 2.61 cm² (P ≤ 0.05) respectively. Swarming motility was also greatly impacted by citral. The original swimming area of C. sakazakii ATCC 29544 was 3.63 ± 0.03 cm². Citral at 225 μM and 112.5 μM caused swimming area reductions to 1.77 ± 0.05 cm² (P ≤ 0.01) and 2.19 ± 0.05 cm² (P ≤ 0.01) respectively.

To examine the possible explanation for the effect of citral on motility of C. sakazakii ATCC 29544, we determined by electron transmission microscopy (TEM) whether there are changes in flagella after treatment with citral. The TEM images revealed that structurally intact flagellar filaments were observed on C. sakazakii cells obtained from the edge of swimming halos (Fig. 2C).

Biofilm Formation. The anti-biofilm efficacy of citral was investigated on C. sakazakii ATCC 29544. Bacteria were grown at 12 °C and 25 °C for 24, 48 and 72 hours on microtiter plates. Compared with the control, cells treated with citral showed a significant and dose-dependent inhibition of biofilm formation of C. sakazakii. The biofilm formation was inhibited by 67.1%, 69.5% and 70.1% with 225 μM citral after treatment at 25 °C for 24, 48 and 72 hours, respectively (Table 1).

Quorum Sensing. The effects of citral on C. sakazakii QS were indirectly assessed using C. violaceum 12472. This bacterium produces the pigment violacein in response to QS signal homologous to those produced by C. sakazakii. Citral showed no apparent antimicrobial activity against C. violaceum at concentrations used in this study (56.25 μM, 112.5 μM and 225 μM) with a broth micro-dilution method (data not shown). As seen in Fig. 3, anti-QS activity was shown when citral was used at 56.25 μM, 112.5 μM and 225 μM, as evidenced by a decreased production of violacein (about 94.4%, 83.3% and 69.4% of the control level, respectively).

Adhesion and Invasion of Caco-2 cells. The effect of citral on the adhesion and invasion of C. sakazakii ATCC 29544 in Caco-2 cells is depicted in Fig. 4. Citral at 56.25 μM, 112.5 μM and 225 μM inhibited adhesion (P ≤ 0.01) of C. sakazakii to 82%, 72% and 50% of the control, respectively (Fig. 4A). Citral was also effective in inhibiting (P ≤ 0.01) the ability of C. sakazakii to invade Caco-2 cells (Fig. 4B). The invasiveness of C. sakazakii ATCC 29544 was reduced by 27%, 43% and 70% with 56.25 μM, 112.5 μM and 225 μM of citral, respectively.
Survival and Replication in RAW 264.7 cells. Macrophages were able to kill C. sakazakii as demonstrated by the decrease cell population in citral-untreated samples (Fig. 5). The results showed all three concentrations (56.25 μM, 112.5 μM and 225 μM) of citral were able to significantly ($P \leq 0.01$) decrease survival and replication of C. sakazakii in the macrophages in a dose-dependent manner during 48 hours (Fig. 5) when compared to the control medium.

Endotoxin. A good linearity was established between the absorbance intensity at 585 nm and the concentration of endotoxin ($y = 0.377x + 0.021; R^2 = 0.98$). After the addition of citral to the cells, decreased endotoxin concentration was detected (Fig. 6). The original endotoxin concentration of C. sakazakii ATCC 29544 was 0.64 ± 0.03 EU/mL. Addition of citral at 112.5 μM and 225 μM caused a significant fall ($P \leq 0.01$) in C. sakazakii endotoxin concentration to 0.49 ± 0.07 and 0.45 ± 0.01 EU/mL.

Virulence-associated Genes. RT-qPCR results demonstrated that citral significantly decreased the expression of eighteen virulence-related genes in C. sakazakii (Table 2). Citral down-regulated the expression of fliD, flhD, and flgJ genes (critical for flagella regulation) to various degrees. Other down-regulated genes were ompA (outer membrane protein A), ompX (outer membrane protein X), uvrY (adherence and invasion), motA, motB...
(flagellar motor protein), sod (survival in macrophages), bcsA (cellulose synthase catalytic subunit), bcsG (cell biosynthesis and biofilm formation), galE (colanic acid synthesis), kpsT (K-antigen synthesis), lpx, wzx (LPS biosynthesis), and luxR (LuxR family transcriptional regulator). Citral also down-regulated the expression of two putative virulent plasmid associated genes: iuc (iron transport and regulation) and eit (iron uptake and siderophore system). Citral at 225 μM of citral was more effective than 112.5 μM in suppressing the expression of virulence genes (Table 2). Among the various virulence genes assayed, the expression of genes encoding C. sakazakii flagella, colanic acid, K-antigen and LPS were highly down-regulated in the presence of citral.
important types of motility in but significantly reduced invasion of in houses (25 °C). Moreover, citral exerted a stronger anti-biofilm ability at lower temperatures. Upadhyay demonstrated that adhesion and invasion of for biofilm production by members of the Enterobacteriaceae family, which contribute to protect cells from various environmental stressors. Our results revealed that citral significantly down-regulated the expression of the LuxR protein and interfering with bacterial cell-to-cell communication. Olivero-Verbel et al. reported that essential oils from Lippia alba, including geranial and neral, two isomeric acyclic monoterpene aldehydes of citral, had the capacity to significantly inhibit QS as observed by the reduction of violacein production in a C. violaceum bioassay while exhibiting insignificant effects on cell growth. Additionally, Zhang et al. demonstrated that citral could reduce the synthesis of AI-2, an additional QS-signaling molecule that functions in both Gram-positive and Gram-negative bacteria. Altogether, these results suggest that citral could play an important role in reducing virulence in C. sakazakii through QS inhibition.

Adherence to host surfaces, such as to intestinal epithelial layer, and survival in the intestinal wall with subsequent entrance into the bloodstream are both necessary for a microbe to establish infection. Previous studies demonstrated that adhesion and invasion of Salmonella enteritidis to chicken oviduct epithelial cells were significantly reduced by carvacrol, thymol and eugenol. Inamuco et al. reported that carvacrol did not affect adhesion but significantly reduced invasion of Salmonella to intestinal epithelial cells. In this study, we demonstrated that citral significantly suppressed attachment and invasion of Caco-2 cells by C. sakazakii and inhibited the expression of ompA, ompX and uvrY, which largely contributed to bacterial attachment and invasion of host cells. Previously, outer membrane protein A (OmpA) was shown to be necessary for the colonization of C. sakakizki in...
through the blood-brain barrier endothelium. Citral was found to significantly decrease the ability of its ability to avoid the host immune response and cause bacteremia, which could be advantageous to migrate attachment and invasion of Caco-2 cell. Additionally, Kim et al. reported that the presence and absence of citral.

Table 2. Fold change in the expression level of *C. sakazakii* ATCC 29544 virulence-associated genes in the presence and absence of citral. *P* ≤ 0.05, *bP* ≤ 0.01. *F*, forward; *R*, reverse.

Target gene	Sequence of primers (5′-3′)	Relative gene expression at 112.5 μM	Relative gene expression at 225 μM	Reference
ESA_04030	F, CCAGGGCTACACACGTCGTTA R, TCTGGCAGAGTCGCTTCT	1	1	29
bcsA	F, CACGATGGTGGCGTTGTTCT R, CTTTGCGGCGGCTGAGTTAA	−2.65 ± 0.27^a	−3.04 ± 0.59^b	29
bcsG	F, ACGACTGTCGCAACAGCITTTCAC R, GCGGCGAGGTTGGCTGCA	−1.72 ± 0.16^a	−2.29 ± 0.70^b	29
fluD	F, CGATGTCTCGGCTGGAAT R, AGATCTAGGTCGCCAGTTT	−2.66 ± 0.63^a	−2.74 ± 0.27^a	29
fluD	F, AAAACCGCAGATGGAATTTCA R, CCGGACAACCGGCTATGG	−1.05 ± 0.05	−1.24 ± 0.17^b	29
flgA	F, GACGGCCGCGGCAAAGG R, GCCGCCAGCATCTGTGAC	−1.13 ± 0.19	−7.66 ± 1.65^b	29
motA	F, GGTTGGTGCTGGTAGTTATCG R, GCCTTCAGCGTTGCTT	−1.23 ± 0.20	−1.30 ± 0.11^b	29
motB	F, ACAGCCTGTGGAAGATCG R, CCAGGAAAGGCGCATG	−1.15 ± 0.06^b	−1.47 ± 0.14^b	29
luxR	F, TGCTGCTCTCAGCATCT R, TGTTGCTGACGCTGATTTT	−2.03 ± 0.10^a	−2.28 ± 0.09^b	29
lpxA	F, GCAGCACTCCTCGTAACACTG R, CGCCCTTCTCATCGGCAAT	−4.18 ± 0.28^b	−5.70 ± 0.43^b	17
ompA	F, GGCAGCATGCGCTTAAAA R, GCTTGAAGACCCTCAGTTT	−1.36 ± 0.07^b	−3.53 ± 0.06^b	17
ompX	F, GCTTTCACACTGCGCTTGTTG R, GGCGGCAACACAGCACAA	−1.08 ± 0.25	−1.81 ± 0.07^b	17
sod	F, CGAAATCTGCGGTTGAAAGGA R, CTGTGCGGGCACGAACCT	−1.54 ± 0.06^b	−2.22 ± 0.52^b	17
swrY	F, GCAGGAGACGCACATCAA R, ATCAAATCCAGCACCACATC	−1.27 ± 0.09^b	−3.47 ± 0.72^b	17
wcx	F, TGCTTGGGGGAGTTCAAAAGTG R, CCGTACCCGGCTGACTCA	−2.03 ± 0.07^b	−4.51 ± 0.39^b	17
galE	F, CTTGATATATTACGACAAACAGG R, GAAACCTTGCACATAAGGGAT	−4.42 ± 0.67^b	−10.55 ± 0.86^b	This study
kpsT	F, ATTTGCGGGAGGGAATAAA R, TCCTCCACAGGACTGTA	−1.16 ± 0.08^b	−11.51 ± 1.21^b	This study
lacC	F, CGATGAGACCCCTTGAGTTGTTA R, AGGCGCTTGTGGAAGATAA	−1.37 ± 0.07^b	−6.50 ± 0.46^b	This study
citA	F, CGCTGACAACCTGGTAACACTG R, TTCTGAACGCAACACACAG	−1.64 ± 0.11^b	−1.99 ± 0.18^b	This study

The gastrointestinal tract and subsequent survival in blood to cause meningitis and played an important role in attachment and invasion of Caco-2 cell. Additionally, Kim et al. observed that OmpA and OmpX contributed to the invasion of Caco-2 cells, and both are critical for the movement of *C. sakazakii* into deeper organs such as the liver and spleen. It was proposed that citral impedes the attachment and invasion of *C. sakazakii* via interference with the production of related proteins hampering bacterial invasion and survival in host cells. Virulence studies showed that *C. sakazakii* strains were able to survive in macrophage cells, the major constituent of the innate immune system. This bacterium survives and multiplies within phagocytic cells, enhancing its ability to avoid the host immune response and cause bacteremia, which could be advantageous to migrate through the blood-brain barrier endothelium. Citral was found to significantly decrease the ability of *C. sakazakii* to survive and reproduce intracellularly and decreased the expression of *sod*. This gene was reported to be responsible for superoxide dismutase production, which protects bacteria from the oxidative stress generated by macrophages. In a previous study, *C. sakazakii* pre-treated with trans-cinnamaldehyde was found to have difficulty surviving in human macrophages. According to this study, citral inhibited the survival and replication of *C. sakazakii* within macrophages, diminishing its ability to withstand bactericidal activity and to evade the host immune response. Previous studies showed that powdered infant formula is frequently contaminated with high levels of LPS, which is a major virulence factor and a key contributor to the initial adhesion of bacterial cells to a surface or...
host cell. Our results demonstrated that citral significantly reduced the production of LPS in C. sakazakii and significantly down-regulated lpxB and wzz, which encode lipid A disaccharide synthase and O-antigen flippase, respectively. In accordance with our findings, Amalaradjou et al. reported that 750 μM trans-cinnamaldehyde decreased endotoxin synthesis by 50% in C. sakazakii. Furthermore, Song et al. found that treatment of human umbilical vein endothelial cells with citral significantly inhibited TNF-α and IL-8 expression induced by LPS. The two dominant domains of LPS: lipid A and O-antigen play a major role in virulence mediating inflammatory response-induced endotoxicity and being responsible for surface attachment thus eliciting a strong antibody response from the infected host. Therefore, we hypothesize that citral damages the structure of LPS and reduces its deleterious effects on the intestinal barrier integrity.

Recently, anti-virulence strategy is considered to be a promising avenue to combat bacterial infection, which was thought to impose less selective pressure on bacteria to reduce the chance of selecting resistant strains. Anti-adhesion, anti-biofilm and anti-QS have all been considered promising novel therapeutics to deal with multi-resistant bacterial infections. In this study, we demonstrated that SICs of citral decreased crucial virulence factors and reduced the synthesis of flagella and biofilms, and interfered with cell-to-cell signaling, all of which would contribute to diminished virulence of C. sakazakii. It is worth mentioning that researchers recently showed that 10-day consecutive selection with citral at SIC induces genotypic resistant E. coli strains and exposure to citral may enhance bacterial virulence of Listeria spp. in a Caenorhabditis elegans model. Although resistant mutant was not observed in our trial experiments, further research is warranted to test this possibility to determine the appropriate application of the citral, either being developed as an alternative/supplementary strategy to control C. sakazakii infections or as a novel hurdle in food preservation in combination with other preservative technologies.

Materials and Methods

Reagents. Citral (CAS:5392-40-5) was obtained from Chengdu Must Bio-technology Co., Ltd. (Chengdu, Sichuan, China) at a HPLC purity of at least 99.2%. Citral solution were prepared in 0.1% DMSO before use. All other chemicals were of analytical grade and were unaltered.

Bacterial Strains and Growth Conditions. C. sakazakii strains ATCC 29544, ATCC 29004 (ATCC, Manassas, USA) and 7–17 (our laboratory strain collection) were used in the present study. C. sakazakii 7–17 was originally isolated from infant formula in China and confirmed before by species-specific PCR. All of the C. sakazakii isolates were used in MIC and SIC assays, and only ATCC 29544 was used for further experiments because it is commonly used in C. sakazakii virulence studies and it contains phenotypic and genotypic characteristics tested in the following experiments. The QS indicator strain Chromobacterium violaceum ATCC 12472 (ATCC) was used for QS inhibition assays. All C. sakazakii strains were grown and prepared as described before.

Minimum Inhibitory Concentration and Sub-Inhibitory Concentration Determinations. The C. sakazakii strain was grown to an OD600 value of 0.1 in TSB, whereupon the same volume (125 μL) of the culture and citral solution were transferred into 96-well microtiter plates with final citral concentrations of 0 (control), 56.25 μM, 112.5 μM, 225 μM, 450 μM, 900 μM, 1800 μM, 3600 μM and 7200 μM. Bacteria was cultured at 37°C for 24 hours, and cell growth was monitored at 600 nm as described in a previous study. The MIC was defined as the lowest concentration (μM) of citral in the presence of which C. sakazakii failed to grow. In addition, the three highest concentrations of citral that did not inhibit bacterial growth were selected as SICs for the following assays.

Swimming and Swarming Assay. Swimming and swarming were evaluated in LB containing different agar concentrations, as previously described. For analysis of swimming ability, a medium containing 20 mL of LB broth and 0.3% (wt/vol) of agar was used. Citral was added to the warm medium (45°C) to obtain final concentrations of 225 μM and 112.5 μM. Subsequently, the plates were allowed to dry for 1 hour at 25°C before use. Five microliters of each C. sakazakii culture (∼6.0 log CFU) were inoculated at the center of this semisolid medium and the plates were incubated at 37°C for 7 hours. After this, the diameter of the bacterial halo was recorded. The medium without citral was used as a control.

For analysis of bacterial swimming ability, a medium containing 20 mL of LB broth, 0.5% (wt/vol) agar and 0.5% (wt/vol) glucose was used. Five microliters of C. sakazakii culture (∼6.0 log CFU) were stabbed into the semisolid medium without and with citral at 225 μM and 112.5 μM. The plates were incubated upside down at 37°C for 20 hours. The size of the swarm area in the presence or absence of citral was calculated using AutoCAD.

Visualization of Flagella by Electron Microscopy. Transmission electron microscopy was used to examine the morphology of flagella. C. sakazakii strain ATCC 29544 cells were taken from swimming plates at different citral concentrations (0, 112.5 μM and 225 μM) and suspended in sterile PBS. One drop of culture was placed on a Formvar-coated grid (Electron Microscopy Sciences) for 20 min. Excess liquid was wiped off and the grid was stained with 1% sodium phosphotungstic acid (pH 6.8) for 1 min and washed three times with distilled water. All specimens were examined with a transmission electron microscope (HT7700, Hitachi, Tokyo, Japan).

Specific Biofilm Formation (SBF) Inhibition Assay. Biofilm formation assays were performed according to the method described by Naves, et al. with minor modifications. Overnight cultures of C. sakazakii strains ATCC 29544 were centrifuged (4°C, 5000 × g, 10 min) and re-suspended in TSB. Then, 250 μL of the cell suspension (OD600 = 1) were inoculated in sterile 96-well microtiter plates, and citral was added to each of the wells to obtain a final concentration of 0, 112.5 μM and 225 μM. Non-inoculated TSB was used as a control. Six samples were included for each treatment. The plates were incubated at 25°C or 12°C for 24, 48 and 72 hours without agitation. At each time point, the optical densities (ODs) of cell growth were measured at 630 nm using a microplate.
spectrophotometer (Model 680; Bio-Rad, Hercules, CA, U.S.A.). The suspension was then removed and the wells were rinsed once with 350μL of distilled water. After being air dried for 30 minutes, the wells were stained with 250μL of 1% crystal violet (wt/vol) (Tianjin Kernel Chemical Regent Co., Ltd, Tianjin, China) for 20 minutes at room temperature. To remove the non-conjugated colorant, the wells were rinsed three times with 350μL of distilled water. After being air-dried for 30 minutes, the adhered colorant was solubilized in 250μL of 33% (vol/vol) glacial acetic acid and incubated for 20 minutes at room temperature. Then the OD of each well was measured at 570 nm. The SFB was calculated by correcting the OD at 570 with OD at 630.

Quantitative QS Inhibition Assay. The effect of citral on the QS inhibitory activity was measured by quantifying the violacein production with the indicator strain C. violaceum ATCC 1247260. First, the inhibitory effect of citral on the growth of C. violaceum was studied to determine the SIC to be used in further experiments. The two highest concentrations of citral that did not inhibit C. violaceum growth after 24 hours of incubation were selected as SICs for this study. Duplicate wells were included for each citral concentration and the experiment was repeated three times.

A flask incubation assay was used to quantify the QS-inhibitory activity of citral. An overnight culture of C. violaceum was diluted to an OD660 of 0.5. Volumes (30 mL) of LB broth that contained different concentrations of citral were placed into separate flasks. Each flask was inoculated with 100μL of culture. The flasks were incubated at 30°C for 24 hours with 150 rpm. The violacein extraction and quantitation were carried out as previously described by Choo et al.60 with minor modifications. Briefly, 5 mL of the C. violaceum culture was centrifuged (5000 × g, 5 min, 4°C) to precipitate insoluble violacein and the culture supernatant was discarded. Then, 1 mL of DMSO was added to the pellet and the solution was vortexed vigorously for 1 min to completely solubilize violacein. The solution was then centrifuged at 5000 × g for 10 min to remove the cells. Two hundred micro-litres of the violacein-containing supernatants were added to 96-well microtiter plates and the absorbance of violacein-containing supernatants was read with a microplate spectrophotometer (Model 680; Bio-Rad, Hercules, CA, U.S.A.) at a wavelength of 585 nm.

Cell Culture. Human colon adenocarcinoma cell line Caco-2 was maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Grand Island, NY, U.S.A.). Murine macrophage cell line RAW 264.7 cells were grown in RPMI 1640 (Gibco). Both media were supplemented with 10% (vol/vol) fetal bovine serum (FBS) (Hyclone, Logan, UT, U.S.A.), 1% (vol/vol) nonessential amino acids (Gibco) and 1% (vol/vol) double antibiotic solution (100 U/mL penicillin and 100μg/mL streptomycin; Hyclone). Maintenance of the cell lines and subsequent experiments were carried out at 37°C in a humidified atmosphere containing 5% CO2.

Adhesion and Invasion Assay. The effect of citral on the adhesion and invasion of C. sakazakii was investigated by using Caco-2 cells, as described in a previous study.17 Trypsin-treated cells were seeded in 24-well tissue culture plates (Nunc) containing supplemented DMEM (105 cells per well) and incubated for 24 hours. C. sakazakii was grown to its mid-log phase with and without SICs of citral (56.25μM, 112.5μM and 225μM), then centrifuged and re-suspended in cell culture media without antibiotics. Then, the Caco-2 cells were stained with and inoculated in the medium with 105 CFU (10 MOI) of the C. sakazakii suspension. The tissue culture trays were centrifuged at 600 × g for 5 minutes and incubated at 37°C in a humidified, 5% CO2 incubator.

For the adhesion assay, the infected cell monolayers were rinsed three times in PBS after 1 hour of incubation, and lysed with 0.1% Triton X-100 (Amresco, Solon, OH, U.S.A.). The number of viable adherent C. sakazakii was determined by the serial dilution and plating on TSA agar plates and incubated at 37°C for 24 hours before counting. For the invasion assay, the cell monolayers were inoculated for 1 hour following infection, rinsed three times in PBS, and incubated for another 30 minutes in whole media containing gentamicin (100μg/mL; Amresco) to kill the extracellular bacteria. Finally, the wells were washed with PBS three times. The numbers of internalized C. sakazakii were determined as described in the adhesion assay. The numbers of bacteria in the treatments were expressed as a percentage relative to that of the control medium.

Effect of Citral on Intracellular Survival and Replication of C. sakazakii in RAW 264.7 Cells. The murine macrophage cell line RAW 264.7 cells were maintained in RPMI 1640 medium with 10% FBS. Twenty-four hours prior to infection, activated cells were seeded in 24-well tissue plates (105 cells per well) and cultured at 37°C under 5% CO2. C. sakazakii was grown to its mid-log phase at various concentrations of citral (0, 56.25μM, 112.5μM and 225μM). Then the RAW 264.7 cells were washed gently with PBS and incubated with 10μL of inoculation (MOI = 10) of C. sakazakii. The plates were incubated for 45 minutes at 37°C with 5% CO2. After incubation, RAW 264.7 cells were re-suspended in RPMI 1640 containing 1% FBS with gentamicin (100μg/mL; Amresco) and incubated at 37°C with 5% CO2 for 30 minutes.

For intracellular survival assays, the cells were then washed three times with PBS and lysed with 0.1% Triton. After dilution (PBS 1:10), the samples were enumerated on TSA plates. The results were presented as the number of intracellular C. sakazakii cells after citral treatment. For replication assays, each well containing bacterial cells was replenished with RPMI 1640 containing 1% FBS with gentamicin (10μg/mL) and incubated at 37°C with 5% CO2 for either 24 or 48 hours. Cell washing, lysis and plating procedures were identical to those used in the analysis of bacterial survival. All assays were conducted in triplicate and repeated at least three times on different days.

C. sakazakii Endotoxin Assay. ToxinSensor Chromogenic LAL Endotoxin Assay Kit (GenScript, Piscataway, NJ, U.S.A.) was used according to the method of Amalaradjou, et al.17 Overnight cultures of C. sakazakii strains ATCC 29544 was centrifuged (4°C, 5000 × g, 10 min) and re-suspended in TSB. Then, 50μL of the cell suspension (OD600 = 0.5) and citral solution was added in 30 mL TSB to obtain a final concentration of 0, 112.5μM and 225μM at 37°C to its mid-log phase. Non-inoculated TSB was used as a control. Samples
were treated following manufacturer instructions and analyzed by a microplate spectrophotometer (Model 680; Bio-Rad, Hercules, CA, U.S.A.).

Quantification of C. sakazakii/Virulence Gene Expression. The C. sakazakii strain was grown without and with SCIs of citral (112.5 μM and 225 μM) in TSB at 37°C to its mid-log phase. Next, the bacteria were centrifuged (5000 × g, 5 min, 4°C) and re-suspended in PBS. The total RNA was extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. RNA concentrations were measured with a nuclear acid and protein spectrophotometer (Nano-200; Aosheng Instrument Co., Ltd., Hangzhou, China). First-strand cDNA was synthesized from 3 μL of each RNA sample in a 10 μL reaction volume using the PrimeScript RT Reagent Kit (Takara). The cycling conditions included 1 cycle of 95°C for 30 seconds, 40 cycles of 95°C for 5 seconds and 60°C for 30 seconds. All samples were analyzed in triplicate and normalized to the endogenous control (ESA_04030) gene. Samples were run on the IQ5 system (Bio-Rad Laboratories, Hercules, CA, U.S.A.) and the expression of target genes versus ESA_04030 gene were determined as previously described.

Statistical Analysis. All experiments were carried out in independent triplicate. Data were expressed by mean ± standard deviation and analyzed with IBM SPSS v.19.0 software (version 19.0; SPSS Inc, IBM Co., Armonk, NY, USA). Differences were considered to be significant when $P ≤ 0.05$.

References
1. Gurtler, J. B., Kornacki, J. L. & Beuchat, L. R. Enterobacter sakazakii: A coliform of increased concern to infant health. Int J Food Microbiol 104, 1–34 (2005).
2. Joseph, S. et al. Comparative analysis of genome sequences covering the seven Cronobacter species. Plos One 7 (2012).
3. Healy, B. et al. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis 7, 339–350 (2010).
4. Chan, K. L., Saing, H., Yung, R. W. H., Yeung, Y. P. & Tsol, N. S. A Study of pre-antibiotic bacteriophage in 125 patients with necrotizing enterocolitis. Acta Paediatr 83, 45–48 (1994).
5. Bowen, A. B. & Braden, C. R. Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis 12, 1185–1189 (2006).
6. Alamjed, F. S. & Forsythe, S. J. Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microb Pathogenesis 90, 55–63 (2016).
7. Townsend, S., Hurrell, E. & Forsythe, S. Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 8, 1–9 (2008).
8. Townsend, S. M. et al. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology-Sgm 153, 3538–3547 (2007).
9. Costerton, J. W., Caldwell, D. E., Korber, D. R., Lappinscott, H. M. & Lewandowski, Z. Microbial biofilms [Review]. Annu Rev Microbiol 49, 711–745 (1995).
10. Brooks, J. D. & Flint, S. H. Biofilms in the food industry: problems and potential solutions. Int J Food Sci Tech 43, 2163–2176 (2008).
11. Kim, H., Ryu, J. H. & Beuchat, L. R. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl Environ Microbiol 72, 5846–5856 (2006).
12. Hurrell, E. et al. Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect Dis 9, 1–9 (2009).
13. Kim, H., Bang, J., Beuchat, L. R. & Ryu, J. H. Fate of Enterobacter sakazakii attached to or in biofilms on stainless steel upon exposure to various temperatures or relative humidities. J Food Prot 71, 940–945 (2008).
14. Garcia-Contreras, R., Maeda, T. & Work, T. K. Can resistance against quorum-sensing interference be selected? J Dose 4, 10–16 (2016).
15. Heinzlmann, M., Polk, H. C., Jr., Chernobelsky, A., Stites, T. P. & Gordon, L. E. Endotoxin and muramyl dipeptide modulate surface receptor expression on human mononuclear cells. Immunopharm 48, 117–128 (2000).
16. Ozue, N., Garcia, S., Heredia, N. & Garcia-Heredia, A. Efficacy of citrus-based disinfectants to inhibit growth, swarming, and biofilm formation of Salmonella and decontaminate parakey, J Food Agric Environ 11, 1285–1299 (2013).
17. Amalaradjou, M. A. M., Kim, K. S. & Venkitanarayanan, K. Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro. Int J Mol Sci 15, 8639–8655 (2014).
18. Choi, S. J., Decker, E. A., Henson, L., Popplewell, L. M. & McClements, D. J. Inhibition of citral degradation in model beverage emulsions using micelles and reverse micelles. Food Chem 122, 111–116 (2010).
19. Friedmann, M., Henika, P. R., Levin, C. E. & Mandrell, R. E. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J Age Food Chem 52, 6042–6048 (2004).
20. Silva-Angulo, A. B. et al. Combined effect of carvacrol and citral on the growth of Listeria monocytogenes and Listeria innocua and on the occurrence of damaged cells. Food Control 53, 156–162 (2015).
21. Somolinos, M., Garcia, D., Condon, S., Mackey, B. & Pagan, R. Inactivation of Escherichia coli by citral. J Appl Microbiol 108, 1928–1939 (2010).
22. Suarez, G. et al. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44, 344–361 (2008).
23. Barken, K. B. et al. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10, 2331–2343 (2008).
24. Almasri, M., Tan, K. L., Berrut, C., Chevallet, J. P. & Mulhem, D. Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. J Bacterial 178, 554–559 (1996).
25. Houry, A., Briandet, R., Aymerich, S. & Gohar, M. Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 156, 1009–1018 (2010).
26. Burt, S. A. et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol 73, 4484–4490 (2007).
27. Di Cicco, P. et al. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control 50, 930–936 (2015).
28. Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A. & Venkitanarayanan, K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol 36, 79–89 (2013).
29. Amalaradjou, M. A. R. & Venkitanarayanan, K. Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. Int J Food Prot 74, 200–208 (2011).
30. Amalaradjou, M. A., Hoagland, T. A. & Venkitanarayanan, K. Inactivation of Enterobacter sakazakii in reconstituted infant formula by trans-cinnamaldehyde. Int J Food Microbiol 129, 146–149 (2009).
Inhibition of Cronobacter sakazakii: Shi, C. et al.
The authors declare no competing financial interests.

Author Contributions
Conceived and designed the experiments: C.S., Y.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X. Performed the experiments: Z.L., D.G. and H.S. Contributed reagents/materials/analysis tools: W.Z., Q.W. and X.P. Wrote the manuscript: C.S. and X.X.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shi, C. et al. Inhibition of Cronobacter sakazakii Virulence Factors by Citral. Sci. Rep. 7, 43243; doi: 10.1038/srep43243 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017