Diagnostic autoantibodies for autoimmune liver diseases

Ban-Hock Toh

Autoimmune liver diseases are conditions of low prevalence that comprise the triad of autoimmune hepatitis, primary biliary cholangitis (cirrhosis) and primary sclerosing cholangitis and their poorly characterised overlapping syndromes. Diagnostic autoantibodies are associated with autoimmune hepatitis and primary biliary cholangitis but not with primary sclerosing cholangitis. Autoantibodies are useful disease markers that facilitate early diagnosis of autoimmune hepatitis and primary biliary cholangitis and allow for therapeutic intervention to prevent progression to liver cirrhosis and associated complications. Adult onset type 1 autoimmune hepatitis is associated with F-actin reactive smooth muscle autoantibody, antinuclear autoantibody in 60% of patients, and autoantibody to SLA/LP in 15–20%. Juvenile onset type 2 autoimmune hepatitis is associated with LKM-1 and LC-1 autoantibodies. Primary biliary cholangitis is associated with a mitochondria-associated autoantibody designated M2 in > 90% of patients and with disease-specific antinuclear autoantibodies in 50% that bind to antigens in the nuclear core complex and in multiple nuclear dots. Autoantibodies to the nuclear core complex target gp210, nucleoporin p62 and nuclear lamin B receptor. Autoantibodies to multiple nuclear dots target Sp100 and PML antigens. Liver autoantibodies in asymptomatic patients with normal liver function may precede the subsequent development of overt autoimmune liver disease. For routine diagnostic immunology laboratories, initial screening for liver autoantibodies by immunofluorescence remains the method of choice with confirmation for reactivity with their target antigen by enzyme-linked immunosorbent assay (ELISA) or line blot when required.

Clinical & Translational Immunology (2017) 6, e139; doi:10.1038/cti.2017.14; published online 5 May 2017

INTRODUCTION

Autoimmune liver diseases comprising the triad of autoimmune hepatitis, primary biliary cholangitis (PBC) (cirrhosis) and primary sclerosing cholangitis and their overlap syndromes are uncommon. The nomenclatures for primary biliary cirrhosis have recently been changed to PBC largely because patients with this disease do not necessary have cirrhosis at the time of clinical presentation.1 The prevalence of autoimmune hepatitis varies from 0.1 to 1.9/100 000 among Caucasian populations2 and that of PBC is similar at 2.3/10 000.3 Nonetheless early diagnosis is essential because if untreated, the diseases progress to liver cirrhosis and death from liver failure, whereas early therapeutic intervention by immunosuppression for autoimmune hepatitis4 and by ursodeoxycholic acid (UDCA) for PBC5 can control disease progression. Liver autoantibodies play a key role in early identification of these diseases as they may occur in asymptomatic subjects before the development of overt disease.6

DIAGNOSTIC AUTOANTIBODIES FOR AUTOIMMUNE HEPATITIS

Codified criteria for the diagnosis of autoimmune hepatitis have been developed by the International Autoimmune Hepatitis group.6 The criteria comprise compatible liver histopathology including interphase hepatitis, elevated serum IgG, liver autoantibodies, elevated serum transaminases and negative serology for viral hepatitis. Interphase hepatitis is characterised by lymphocytic infiltration with or without plasma cells with associated hepatocyte cell death (piecemeal necrosis) at parenchymal-connective tissue junctions (interphases) around portal tracts.

Classification

Autoimmune hepatitis is divided into type 1 and type 2, distinguished by autoantibody profile and by age of onset, with type 1 in adults, and type 2 in children, but with indistinguishable clinical presentation. Patients who are asymptomatic at presentation have a good prognosis and may not require immunosuppressive therapy. On the other hand, cirrhosis on initial liver biopsy carries a poor prognosis.7 DRB1*04:01 positivity has been identified in association with a favourable clinical outcome.8

F-actin-specific smooth muscle autoantibody, antinuclear autoantibody and autoantibody to SLA/LP segregates with type 1 autoimmune hepatitis

Smooth muscle antibody with specificity for F-actin microfilaments is the prototype autoantibody that segregates with type 1 autoimmune...
Diagnostic autoantibodies for autoimmune liver diseases
B-H Toh

Autoantibody to soluble liver antigen/liver pancreas (SLA/LP) is an additional, more recent and less frequent diagnostic marker for type 1 autoimmune hepatitis. It is found in about 60% of patients. Designated smooth muscle autoantibody because of its reactivity with smooth muscle has since been found to react with F-actin microfilaments in skeletal muscle (Figure 1), cardiac muscle and non-muscle cells that include gastric parietal cells and brain synapses. Specificity for actin was first demonstrated by Gabbiani et al. by immunoblotting with platelet actin. In routine diagnostic laboratories, smooth muscle autoantibody is recognised by the immunofluorescence (IF) staining of the gastric muscularis externa, muscularis mucosa and smooth muscle fibres that extend from the muscularis mucosa into the lamina propria. F-actin-specific smooth muscle autoantibody is recognised by the additional characteristic pattern of IF staining of contractile fibrils around renal tubules (Figure 2) and designated as 'SMA-T' autoantibodies, frequently with staining of the mesangial cells of renal glomeruli (SMA-G) (Figure 3) together with staining of blood vessels of renal blood vessels (SMA-V). The original subclassification of smooth muscle antibody into SMA-V, SMA-G and SMA-T introduced by Botazzo remains useful to this day. The classic 'picket-fence' staining around renal tubules of SMA-T is diagnostic when it is clearly visualised (Figure 2). However, this pattern of staining may be difficult to identify with low-titre autoantibodies; hence it is prudent to confirm SMA-T autoantibody by using as substrate cultures of cell lines, which then display characteristic 'actin cables' by immunofluorescence (Figure 4). One possible explanation may be the depolymerisation of filamentous F-actin to monomeric globular G-actin as antibody to G-actin is not specific for type 1 autoimmune hepatitis. In contrast, SMA-T autoantibody directed against F-actin microfilaments, SMA-V autoantibody is typically directed to vimentin intermediate filaments that can be seen with a variety of viral infections. Smooth muscle autoantibody is thus a heterogeneous set of autoantibodies that react with various molecular targets of the cytoskeleton.

Autoantibody to soluble liver antigen/liver pancreas (SLA/LP) is an additional, more recent and less frequent diagnostic marker for type 1 autoimmune hepatitis that, occurring either alone or together with autoantibody to Ro52, carries a poor prognosis. The target antigen has been identified as UGA suppressor tRNA-associated protein, a serine tRNA protein complex implicated in cotranslational incorporation of selenocysteine into cells. It is present in 15–20% of patients. SLA/LP autoantibodies are major risk factors for a poor short- and long-term outcome. These patients are in need of high surveillance. The presence of anti-SLA autoantibody conferred 3.1-fold increased risk of hepatic death in AIH patients. The remission rates were comparable between anti-SLA seropositive and seronegative AIH patients, while anti-SLA positivity was associated with nearly two-fold increased risk of relapse after drug withdrawal. Human leukocyte antigen (HLA) allele DR3 was positively associated with anti-SLA autoantibody.

Antinuclear autoantibody giving speckled or homogeneous nuclear staining by immunofluorescence along with autoantibodies to nucleoli frequently segregates with F-actin-specific SMA-T autoantibody and is found in about 60% of patients. The presence of Lupus Erythematosus (LE) cells was the basis for the outdated nomenclature of 'Lupoid Hepatitis'. The designation 'chronic active hepatitis' first applied to a novel liver disease in the 1950s was replaced by the designation 'Autoimmune Hepatitis' in 1965.

Autoantibody to LKM-1 and LC-1 segregates with type 2 autoimmune hepatitis
Autoantibody to Liver Kidney Microsomes-1 (LKM1) is the signature antibody of type 2 autoimmune hepatitis. Its major target antigen is...
Cytochrome P4502D6 (CYP2D6). Anti-LKM autoantibody gives characteristic staining of the proximal renal tubules (Figure 5) and hepatocytes (Figure 6) by immunofluorescence. LKM-1 autoantibody is also found in up to 10% of patients with hepatitis C virus infections. Autoantibody to LC-1 stains the hepatocytes by immunofluorescence but spares cells around the central vein (Figure 7). The target antigen has been identified as formiminotransferase cyclodeaminase, a 62 kDa cytosolic protein. LC-1 antibody is found together with LKM autoantibody in 30% of cases, and in 10% of cases it is the sole autoantibody. In contrast to autoantibody to LKM, anti-LC-1 autoantibody parallels liver disease activity. Its presence is associated with a unfavourable clinical course and a more rapid disease progression.

DIAGNOSTIC AUTOANTIBODIES FOR PBC

PBC is a progressive disease of insidious onset resulting in destruction of epithelial cells of small intrahepatic bile ducts leading to cholestasis and cirrhosis. As with autoimmune hepatitis, early diagnosis is essential as it can be controlled by UDCA. It is characterised by elevated serum alkaline phosphatase, diagnostic autoantibodies to mitochondria and PBC-specific anti-nuclear autoantibodies and liver histopathology of granulomas around the bile ducts.

Autoantibodies to mitochondria, designated M2 diagnostic for PBC are found in 95–98% of patients. The cDNA encoding the target antigen was molecularly cloned by Gershwin et al. and identified as the inner lipoyl domain of the E2 subunit of pyruvate dehydrogenase complex. In routine diagnostic laboratories, it is identified by distinctive immunofluorescence staining of distal renal tubules, gastric parietal cells and liver hepatocytes. In doubtful instances, the presence of the antibody can be confirmed by line blots with the target M2 antigen.

Autoantibodies to PBC-specific anti-nuclear autoantibody

PBC-specific anti-nuclear autoantibody (ANA) comprises antibody to the nuclear pore complex that targets gp210 and nucleoporin p62 as well as antibody to multiple nuclear dots that target Sp100 and PML, and are found in about 50% of patients with PBC. PML is a transformation and cell growth suppressing protein expressed in promyelocytic leukaemia cells that is co-localised with Sp100 in nuclear dots. Sp100 may function as a nuclear hormone transcriptional coactivator. Autoantibody to the nuclear pore complex that
gives punctate nuclear rim immunofluorescence staining accounts for about 25% of PBC-specific ANA,50 binds to the lamin B receptor51 and to gp210 that binds preferentially to the N terminus of gp21052 and is a poor prognostic marker.53 Autoantibody to centromeres, although not specific to PBC may also be found in this disease.54 PBC-specific ANA may be particularly useful in M2-negative primary biliary cirrhosis.

CONFLICT OF INTEREST
The author declare no conflict of interest.

Table 1 Diagnostic autoantibodies in autoimmune hepatitis and primary biliary cholangitis

Type 1 autoimmune hepatitis	F-actin reactive smooth muscle autoantibody
	Anti-nuclear autoantibody
	SLA/LP autoantibody
Type 2 autoimmune hepatitis	LKM-1 autoantibody
	LC-1 autoantibody
Primary biliary cholangitis	M2 mitochondria autoantibody
	Nuclear core complex autoantibody directed to gp230, nucleoplin p62 and nuclear lamin B receptor
	Multiple nuclear dots autoantibody directed to sp100 and PML

REFERENCES

1. Beuers U, Gerwins ME, Gish RG, Invernizzi P, Jones DE, Lindor K et al. Changing nomenclature for PBC: From ‘cirrhosis’ to ‘cholangitis’. J Hepatol 2015; 63: 1285–1287.
2. Bobberg KM. Prevalence and epidemiology of autoimmune hepatitis. Clin Liver Dis 2002; 6: 635–647.
3. Triger DR, Berg PA, Rodgers J. Epidemiology of primary biliary cirrhosis. Liver 1984; 4: 195–200.
4. Mackay IR, Weiden S, Ungar B. Treatment of active chronic hepatitis and lupoid hepatitis with 6-mercaptopurine and azothioprine. Lancet 1964; 1: 899–902.
5. Mayo MJ. Natural history of primary biliary cirrhosis. Clin Liver Dis 2008; 12: 277–288 viii.
6. Manns MP, Czaja AJ, Gorham JD, Krawitt EL, Miel-I-Vergani G, Vergani D et al. Diagnosis and management of autoimmune hepatitis. Hepatology 2010; 51: 2193–2213.
7. Feld JJ, Dinh H, Areouchov T, Marcus VA, Wanless IR, Heathcote EJ. Autoimmune hepatitis: effect of symptoms and cirrhosis on natural history and outcome. Hepatology 2005; 41: 53–62.
8. Kirschen MM, Metzler F, Geiger E, Heinrich E, Hallensleben M, Manns MP et al. Prediction of short- and long-term outcome in patients with autoimmune hepatitis. Hepatology 2015; 62: 1524–1535.
9. Couto CA, Billencourt PL, Porta G, Abrantes-Lemos CP, Carrilho FJ, Guardia BD et al. Antismooth muscle and antilactin antibodies are indirect markers of histological and biochemical activity of autoimmune hepatitis. Hepatology 2014; 59: 592–600.
10. Bayraktar Y, Bayraktar M, Gurakar A, Hassanein T, Van Thiel DH. A comparison of the prevalence of autoantibodies in individuals with chronic hepatitis C and those with autoimmune hepatitis: the role of interferon in the development of autoimmune diseases. Hepatagastroenterology 1997; 44: 417–425.
11. Toh BH. Smooth muscle autoantibodies and autoantigens. Clin Exp Immunol 1979; 38: 621–628.
12. Johnson GD, Holbroow EJ, Glynn LE. Antibody to smooth muscle in patients with liver disease. Lancet 1965; 2: 878–879.
13. Chaponnier C, Kohler L, Gabbiani G. Fixation of human anti-actin autoantibodies on skeletal muscle fibres. Clin Exp Immunol 1977; 27: 278–284.
14. Toh BH, Clarke FM, Ceredig R. Reaction of human smooth muscle autoantibody with skeletal muscle, cardiac muscle, and thymic myoid cells. Clin Immunol Immunopathol 1978; 9: 28–36.
15. Ceredig R, Toh BH. Reaction of human smooth muscle autoantibody with gastric parietal cells: a pitfall in the diagnosis of parietal cell autoantibody. J Clin Pathol 1977; 30: 666–670.
16. Toh BH, Gallicchio HA, Jeffrey PL, Livett BG, Muller HK, Cauchi MN et al. Anti-actin stains synapses. Nature 1976; 264: 648–650.
17. Gabbiani G, Ryan GB, Lameirin JP, Vassalli P, Majno G, Bouvier CA et al. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to ‘nonmuscular’ cells. Am J Pathol 1973; 72: 473-488.
18. Bottazzo GF, Flinn-Chistensen A, Fairfax A, Swana G, Doniach D, Greeshel-Stewart U. Classification of smooth muscle autoantibodies detected by immunofluorescence. J Clin Pathol 1976; 29: 403–410.
19. Toh BH, Taylor R, Pollock W, Dearden S, Gil CC, Buchner C et al. ‘Anti-reactive’ discriminated from ‘non-actin-reactive’ smooth muscle autoantibody by immunofluorescence reactivity with rat epithelial cell line. Pathology 2010; 42: 463–469.
20. Granita A, Muratori L, Muratori P, Pappas G, Guidi M, Cassani F et al. Antibodies to filamentsous actin (F-actin) in type 1 autoimmune hepatitis. J Clin Pathol 2006; 59: 280–284.
21. Kurki P, Linder E, Virmanen I, Stenman S. Human smooth muscle autoantibodies reacting with intermediate (100A) filaments. Nature 1977; 268: 240–241.
22 Toh BH, Yildiz A, Sotole J, Ousng O, Holbroj EW, Kanakoudi F et al. Viral infections and IgM autoantibodies to cytoplasmic intermediate filaments. Clin Exp Immunol 1979; 37: 76–82.

23 Brown C, Pedersen J, Underwood JR, Gust I, Toh BH. Autoantibodies to intermediate filaments in acute viral hepatitis A, B and non-A, non-B are directed against vimentin. J Clin Lab Immunol 1986; 19: 1–4.

24 Toh BH. Anti-cytoplasmal autoantibodies: diagnostic significance for liver diseases, infections and systemic autoimmune diseases. Autoimmunity 1991; 11: 119–125.

25 Ballot E, Hornberg JC, Johancet C. Antibodies to soluble liver antigen: an additional marker in type 1 autoimmune hepatitis. J Hepatol 2000; 33: 208–215.

26 Chen ZX, Shao JG, Shen Y, Zhang J, Hua Y, Wang LJ et al. Prognostic implications of antibodies to soluble liver antigen in autoimmune hepatitis: a PRISMA-compliant meta-analysis. Medicine 2015; 94: e963.

27 Montana-Loza AJ, Shums Z, Norman GL, Czaja AJ. Prognostic implications of antibodies to Ro/SSA and soluble liver antigen in type 1 autoimmune hepatitis. Liver Int 2012; 32: 85–92.

28 Wies I, Brunner S, Henninger J, Herkel J, Kanzler S, Cancado EL. Antibodies against a serine tRNA-synthetase in primary biliary cirrhosis and the nuclear pore complex. J Hepatol 2000; 33: 1510–1515.

29 Gelpi C, Sonthimer EJ, Rodriguez-Sanchez JL. Autoantibodies against a serine tRNA-protein complex implicated in cytoplasmic selenocysteine insertion. Proc Natl Acad Sci USA 1989; 86: 9739–9743.

30 Baeres M, Herkel J, Czaja AJ, Wies I, Kanzler S, Hitchman E. Identification of target antigen for SLA/LP autoantibodies in autoimmune hepatitis. Lancet 2000; 355: 1510–1515.

31 Murphy KJ, Tan EM, Sullivan KF. Major antigen of liver kidney microsomal antibodies to soluble liver antigen in autoimmune hepatitis: a PRISMA-compliant evidence-based diagnostic meta-analysis. Clin Transl Immunol 2016; 5: 55.

32 Wesierska-Gadek J, Penner E. Autoantibodies against nuclear PPP1R15A: a novel marker of primary biliary cirrhosis. Autoimmunity 1996; 110: 840–847.

33 Wiesierska-Gadek J, Klimek A, Komin O, Ranftler C, Inverniatti Z, Penner E. Characterization of autoantibodies against components of the nuclear pore complexes: high frequency of anti-p62 nucleoporin antibodies. Ann NY Acad Sci 2007; 1109: 519–530.

34 Wiesierska-Gadek J, Penner E. Autoantibodies against nuclear PPP1R15A: a novel marker of primary biliary cirrhosis. Autoimmun Rev 2003; 2: 211–217.

35 Sternglau T, Gundel HH, Szostek C, Grotzinger T, Will H. Two nuclear dot-associated proteins, PML and Sp100, are often co-autoimmunogenic in patients with primary biliary cirrhosis. Scand J Immunol 1995; 42: 257–268.

36 Wesierska-Gadek J, Penner E. Autoantibodies against nuclear PPP1R15A: a novel marker of primary biliary cirrhosis. Autoimmun Rev 2003; 2: 211–217.

37 Sternglau T, Gundel HH, Szostek C, Grotzinger T, Will H. Two nuclear dot-associated proteins, PML and Sp100, are often co-autoimmunogenic in patients with primary biliary cirrhosis. Scand J Immunol 1995; 42: 257–268.

38 Wesierska-Gadek J, Penner E. Autoantibodies against nuclear PPP1R15A: a novel marker of primary biliary cirrhosis. Autoimmun Rev 2003; 2: 211–217.