On the p-adic meromorphy of the function field height zeta function

C. Douglas Haessig
University of Rochester, New York

February 1, 2008

Abstract

In this brief note, we will investigate the number of points of bounded (twisted) height in a projective variety defined over a function field, where the function field comes from a projective variety of dimension greater than or equal to 2. A first step in this investigation is to understand the p-adic analytic properties of the height zeta function. In particular, we will show that for a large class of projective varieties this function is p-adic meromorphic.

1 Introduction

Number Fields. Let K be a number field of degree m and denote by H_K the relative multiplicative height function on the K-rational points in projective space $\mathbb{P}^n(K)$. Consider the number of K-rational points of height bounded above by d:

$$N_d(K) := \# \{ x \in \mathbb{P}^n(K) | H_K(x) \leq d \}.$$

An asymptotic estimate for $N_d(K)$ was provided by Schanuel [2], who proved

$$N_d(K) = a(K,n)d^{n+1} + \begin{cases} \mathcal{O}(d \log d) & \text{if } K = \mathbb{Q} \text{ and } n = 1 \\ \mathcal{O}(d^{n+1} \frac{\omega}{\zeta_K(n+1)}) & \text{otherwise} \end{cases}$$

where

$$a(K,n) = \frac{hR}{\zeta_K(n+1)} \left(\frac{2^{r_1} (2\pi)^{r_2}}{\sqrt{|D_K|}} \right)^{n+1} (n+1)^{r_1+r_2-1},$$

h is the class number of K, R the regulator, ω the number of roots of unity in K, ζ_K the Dedekind zeta function of K, D_K the discriminant, and r_1, r_2 the number of real and complex embeddings of K.

Function Fields. A function field analogue of Schanuel’s results is also known. Let F_q be the finite field with q elements, $q = p^r$. Let X be a non-singular projective curve of genus g defined over F_q, and let $\mathbb{F}_q(X)$ denote its function field. With an $\mathbb{F}_q(X)$-rational point $y := [y_0 : y_1 : \cdots : y_n] \in \mathbb{P}^n(\mathbb{F}_q(X))$ we may define the (logarithmic) height

$$h_X(y) := -\text{deg} \inf(y_i)$$

where $\inf_i(y_i)$ denotes the greatest divisor D of X such that $D \leq (y_i)$ for all i with $y_i \neq 0$. As before, consider the number of $\mathbb{F}_q(X)$-rational points of height bounded above by d:

$$N_d(\mathbb{P}^n) := \# \{ y \in \mathbb{P}^n(\mathbb{F}_q(X)) | h_X(y) \leq d \}.$$

An asymptotic estimate for $N_d(\mathbb{P}^n)$ was described by Serre [1] p.19], and improved upon by Wan [4] as follows: for any $\epsilon > 0$,

$$N_d(\mathbb{P}^n) = \frac{hq^{(n+1)(1-g)}}{\zeta_X(n+1)(q-1)} q^{(n+1)d} + \mathcal{O}(q^{\frac{n}{2}+\epsilon}). \quad (1)$$

Wan’s proof began by demonstrating that the associated function field height zeta function of \mathbb{P}^n is a rational function. This meant, for all d, $N_d(\mathbb{P}^n) = \sum \beta_d^i - \sum \alpha_d^i$ where α_i and β_i are the zeros and poles of this rational function. The next step was to analyze these zeros and poles to arrive at [1].

Function Field Variations. Three natural variations of the above study are:
1. Consider X with $\text{dim}(X) \geq 2$,

2. Replace \mathbb{P}^n with an arbitrary projective variety Y defined over $\mathbb{F}_q(X)$,

3. Twist the height function h_X by an element $A \in \text{GL}_{n+1}(\mathbb{F}_q(X))$.

Let us be more precise. Let X be a projective integral scheme X of finite type over \mathbb{F}_q and denote by $\mathbb{F}_q(X)$ its function field. Fix $A \in \text{GL}_{n+1}(\mathbb{F}_q(X))$. With an $\mathbb{F}_q(X)$-rational point $y := [y_0 : y_1 : \cdots : y_n] \in \mathbb{P}^n(\mathbb{F}_q(X))$ we may define the twisted (logarithmic) height

$$h_{X,A}(y) := -\text{deg} \inf(Ay)$$

where $\inf(Ay)$ means we are taking the infimum of the divisors of the coordinates of Ay. Let $Y \hookrightarrow \mathbb{P}^n_{\mathbb{F}_q(X)}$ be a projective variety defined over $\mathbb{F}_q(X)$. Define the (twisted) height zeta function of Y, with respect to A, as

$$Z_{ht}(Y(\mathbb{F}_q(X)), A, T) := \sum_{d=0}^{\infty} N_d(A,Y)T^d$$

where

$$N_d(A,Y) := \# \{ y \in Y(\mathbb{F}_q(X)) | h_{X,A}(y) \leq d \}.$$

When A is the identity matrix, we will simply write $Z_{ht}(Y(\mathbb{F}_q(X)), T)$ for the height zeta function.

The first step in the study of $N_d(A,Y)$ is to determine the (p-adic) analytic behavior of the height zeta function. When $Y = \mathbb{P}^n_{\mathbb{F}_q(X)}$ and the monoid of effective divisor classes of X has rank 1, Wan [4] proved that $Z_{ht}(\mathbb{P}^n_{\mathbb{F}_q(X)}, T)$ is p-adic meromorphic, and rational when $\text{dim}(X) = 1$.

In this paper, under the same assumption that the monoid of effective divisor classes of X has rank 1, we will demonstrate that for a large class of projective varieties Y defined over $\mathbb{F}_q(X)$ with $\text{dim}(X) \geq 2$, the twisted height zeta function is p-adic meromorphic. As an example, suppose X is a complete intersection with $\text{dim}(X) \geq 3$ and consider the projective hypersurface Y defined by $F := \prod_{i=1}^n y_i G(y_1, \ldots, y_n)$ where G is a homogeneous polynomial in $\mathbb{F}_q(X)[y_1, \ldots, y_n]$ of degree d. As a consequence of Theorem 1 and Theorem 2 if $n > d^{\text{dim}(X)+1}$, then $Z_{ht}(Y(\mathbb{F}_q(X)), T)$ is p-adic meromorphic.

Our approach will be to reduce the study of the height zeta function to the study of two other zeta functions: the zeta functions of divisors and the Riemann-Roch zeta function. The zeta function of divisors has been studied in [3] [6] [7] and is expected to have a good p-adic theory. The Riemann-Roch zeta function is new, and section 3 explores a few of its properties.

2 Reduction of the height zeta function

In this section, we will reduce the study of the function field height zeta function to the study of two other zeta functions, namely the zeta function of divisors and the Riemann-Roch zeta function.

Define $\text{Div}(X/\mathbb{F}_q)$ as the free abelian group generated by the irreducible \mathbb{F}_q-subvarieties of X of codimension 1; we call these prime divisors. We say a divisor $D \in \text{Div}(X/\mathbb{F}_q)$ is effective if its unique decomposition into prime divisors P_i, written $D = \sum n_i P_i$, has $n_i \geq 0$ for each i. Let $E(X)$ denote the monoid of effective divisors of X. Effectiveness places a partial order on the group $\text{Div}(X/\mathbb{F}_q)$ as follows: we say $E \geq D$ if $E - D$ is effective.

Further, for any set of divisors $\{D_1, \ldots, D_k\}$, we may define $\sup_i D_i$ as the smallest divisor D such that every $D - D_i$ is effective. Similarly, we may define $\inf_i D_i$ as the greatest divisor D such that every $D_i - D$ is effective.

The zeta function of divisors of X is defined by

$$Z(X, T) := \sum_{D \in E(X)} T^{\text{deg}(D)} = \prod_{P \text{ prime divisor}} \frac{1}{1 - T^{\text{deg}(P)}}$$

where $\text{deg}(D)$ is the projective degree of the divisor; see [2] for the definition. Note, when X is a curve, then $Z(X, T)$ is the usual Weil zeta function, and hence is rational. When $\text{dim}(X) \geq 2$, then $Z(X, T)$ is never rational [5, Theorem 3.3].

Let $A(X)$ denote the group of linear equivalence classes of divisors of X. Define $A^+(X) \subset A(X)$ as the monoid of effective divisor classes. Wan [5] has conjectured that when the rank of $A^+(X)$ is finite, then $Z(X, T)$ is p-adic meromorphic. This was proven by Wan [5, Theorem 4.3] when the rank is one. Examples of p-adic meromorphy are also known for rank greater than one.

Next, let $W \hookrightarrow A^0_{\mathbb{F}_q(X)}$ be an affine variety defined over $\mathbb{F}_q(X)$. For each divisor D of X, define the Riemann-Roch space $L(D)$ as the finite dimensional \mathbb{F}_q-vector space

$$L(D) := \{ f \in \mathbb{F}_q(X) | (f) + D \geq 0 \} \cup \{0\}.$$
Denote its dimension by $l(D)$. The Riemann-Roch zeta function of W over $\mathbb{F}_q(X)$ is defined by

$$Z_{RR}(W(\mathbb{F}_q(X)), T) := \sum_{D \in E(X)} S_D T^{\deg(D)}$$

where S_D denotes the number of $\mathbb{F}_q(X)$-rational points of W whose affine coordinates lie in $L(D)$; that is,

$$S_D := \# (L(D)^n \cap W) = \# \{ f := (f_1, \ldots, f_n) \in L(D)^n | f \in W \}.$$

Our main theorem in this paper, proven in the next section, will show that the Riemann-Roch zeta function is often p-adic meromorphic.

Question 1. Assuming the rank of $A^+(X)$ is finite, is the Riemann-Roch zeta function always p-adic meromorphic?

Question 2. If X is a curve, is the Riemann-Roch zeta function always rational?

We are now able to reduce the height zeta function as a sum of the two zeta functions above. First, recall the following decomposition of projective space. Denote by $y = [y_0 : y_1 : \cdots : y_n]$ the points of $\mathbb{P}^n_\mathbb{F}_q(X)$. Let S_{n+1} denote the symmetric group on the set $\{0, 1, \ldots, n\}$ and fix $\sigma \in S_{n+1}$. Let $A \in \text{GL}_{n+1}(\mathbb{F}_q(X))$ and denote its rows by A_i. For each i, define the affine space $\mathbb{A}^{n-1}_{\mathbb{F}_q(X)} \hookrightarrow \mathbb{P}^n_\mathbb{F}_q(X)$ as the variety defined by setting $A_{\sigma(0)}y = \cdots A_{\sigma(i-1)}y = 0$ and $A_{\sigma(i)}y = 1$. Then we have the decomposition of projective space into a disjoint union:

$$\mathbb{P}^n_\mathbb{F}_q(X) = \mathbb{A}^n_{\mathbb{F}_q(X)} \cup \mathbb{A}^{n-1}_{\mathbb{F}_q(X)} \cup \cdots \cup \mathbb{A}^0_{\mathbb{F}_q(X)}.$$

Let $Y \hookrightarrow \mathbb{P}^n_\mathbb{F}_q(X)$ be a projective variety. For each i we may define the affine algebraic variety $Y_i := Y \cap \mathbb{A}^i_{\mathbb{F}_q(X)}$. To keep the notation clean, we have neglected to indicate notationally the dependence of Y_i on A and the choice of σ.

Theorem 1. We may decompose the height zeta function as follows:

$$Z_{ht}(Y(\mathbb{F}_q(X)), A, T) = \frac{1}{Z(X, T)} \sum_{i=0}^{n} Z_{RR}(Y_i(\mathbb{F}_q(X)), T).$$

Remark. The decomposition in the theorem depends on A and the choice of $\sigma \in S_{n+1}$. This flexibility often allows one to prove $Z_{ht}(Y(\mathbb{F}_q(X)), A, T)$ is p-adic meromorphic for specific examples.

Proof. Since every coordinate of $y = [y_0 : y_1 : \cdots : y_n] \in \mathbb{P}^n_\mathbb{F}_q(X)$ cannot be simultaneously zero, we may assume $y_i = 1$ for some i. It follows that $-\inf_i(y_i) = \sup_i(y_i)_{\infty}$, where $(y_i)_{\infty}$ is the polar divisor of $y_i \in \mathbb{F}_q(X)$. Thus,

$$Z_{ht}(Y(\mathbb{F}_q(X)), A, T) = \sum_{[y_0, \cdots, y_n] \in Y} T^{-\deg \inf(Ay)}$$

$$= \sum_{i=0}^{n} \sum_{(y_0, \cdots, y_n) \in Y_i} T^{\deg \sup(Ay)_{\infty}}$$

$$= \sum_{i=0}^{n} \sum_{D \in E(X)} H_D^{(i)} T^{\deg(D)}$$

where $H_D^{(i)} := \# \{(y_0, \cdots, y_n) \in Y_i | \sup(Ay)_{\infty} = D \}$; note, we put round-brackets to indicate that the point (y_0, \ldots, y_n) lies in the affine space $\mathbb{A}^i_{\mathbb{F}_q(X)}$. Now,

$$Z(X, T) \left(\sum_{D \in E(X)} H_D^{(i)} T^{\deg(D)} \right) = \sum_{E \in E(X)} \left(\sum_{0 \leq D \leq E} H_D^{(i)} \right) T^{\deg(E)}.$$

The theorem follows since $S_E = \sum_{0 \leq D \leq E} H_D^{(i)}$. \qed

3
3 The Riemann-Roch zeta function

In this section, we will study the p-adic meromorphy of the Riemann-Roch zeta function. Our main result will be to show, for a large class of affine varieties, that it is p-adic entire. After this, we present some explicit examples.

Theorem 2. Suppose $A^+(X)$ is of rank one and $\dim(X) \geq 2$. Let $Y \hookrightarrow \mathbb{A}^n_{\mathbb{Q}}(X)$ be an affine hypersurface defined by a polynomial $F \in \mathbb{F}_q(X)[y_1, \ldots, y_n]$. Define $d := \deg(F)$. If $n > \rho \dim(X) + 1$, then $Z_{RR}(Y(\mathbb{F}_q(X)), T)$ is a p-adic entire function.

Proof. We begin by writing

$$Z_{RR}(Y(\mathbb{F}_q(X)), T) := \sum_{D \in E(X)} S_D T^{\deg(D)} = \sum_{k \geq 0} M_k T^k$$

where

$$M_k := \sum_{D \in E(X), \deg(D) = k} S_D. \tag{2}$$

We will show that under the given hypothesis, for all k sufficiently large, $\text{ord}_q(S_D)$ is bounded below by a polynomial of degree $\dim(X)$. Hence, the same is true for $\text{ord}_q(M_k)$ proving the theorem.

Decomposing $A(X)$ into its torsion part and free part, we have $A(X) = \{ D_1^\ast, \ldots, D_n^\ast \}_{\text{tor}} \oplus ZD$ for some divisor $D > 0$. Let $\mu := \deg(D)$. Thus, every effective divisor E of X has degree $k\mu$ for some $k \in \mathbb{Z}_{\geq 0}$. Further, if $\deg(E) = k\mu$, then E is linearly equivalent to $D_j^\ast + kD$ for some j. By [7, Proposition 2], for $k \gg 0$ and $\deg(E) = k\mu$, the dimension of the Riemann-Roch space satisfies:

$$l(E) = l(D_j^\ast + kD) = ck^{\dim(X)} + O(k^{\dim(X) - 1})$$

where $c := D^{\dim(X)}_{\mathbb{Q}}$.

From now on, we will assume k is large enough so that the above formula holds for any effective divisor of degree $k\mu$.

Next, let us write $F = \frac{1}{D^{\dim(X)}_{\mathbb{Q}}} \sum_{j=1}^J \alpha_j y_j$ where $\alpha_j \in \mathbb{F}_q(X)$ and $y_j \in \mathbb{Z}_q$. With the effective divisor $W := \text{supp}(\alpha_j)\infty$, we have $\alpha_j \in L(W)$ for every $j = 1, \ldots, J$. Find i and ρ such that $D_i^\ast + \rho D$ is linearly equivalent to W. Using this, we observe that if $(f_1, \ldots, f_n) \in L(E)^n$, then $F(f_1, \ldots, f_n) \in L(dE + W)$.

Let u_1, \ldots, u_s be a basis of $L(E)$ over \mathbb{F}_q. Thus, for every $h \in L(E)$, there exists unique $x_i \in \mathbb{F}_q$ such that $h = x_1 u_1 + \cdots + x_s u_s$, and vice versa. Using this structure, we may rewrite the polynomial $F(y_1, \ldots, y_n)$ with the substitution

$$y_1 = x_1^{(1)} u_1 + \cdots + x_s^{(1)} u_s$$
$$y_2 = x_1^{(2)} u_1 + \cdots + x_s^{(2)} u_s$$
$$\vdots$$
$$y_n = x_1^{(n)} u_1 + \cdots + x_s^{(n)} u_s.$$

Thus, we now have F as a function in the variables $x_i^{(j)}$ for $1 \leq i \leq s$ and $1 \leq j \leq n$. If we let w_1, \ldots, w_r be a basis of $L(dE + W)$, then we may write

$$F(x_i^{(j)}) = g_1(x_i^{(j)}) w_1 + \cdots + g_r(x_i^{(j)}) w_r$$

for some $g_i \in \mathbb{F}_q[x_i^{(j)} : 1 \leq i \leq s$ and $1 \leq j \leq n]$. Notice that $\deg(g_i) \leq d$. Writing F in this form means that elements of S_E are precisely the elements in the zero locus of the set $\{ g_1, \ldots, g_r \}$ in the affine space $\mathbb{A}^n_{\mathbb{Q}}$.

Therefore, by a theorem of Ax-Katz [3]

$$\text{ord}_q(S_E) \geq \frac{sn - \sum_{i=1}^r \deg(g_i)}{\max \deg(g_i)}.$$

Since, $s = l(E)$ and $r = l(dE + W)$, and recalling that E and W are linearly equivalent to $D_j^\ast + kD$ and $D_i^\ast + \rho D$, we have

$$\text{ord}_q(S_E) \geq \frac{sn - \sum_{i=1}^r \deg(g_i)}{\max \deg(g_i)}.$$
respectively, we see that
\[
ord_q(S_E) \geq \frac{sn - \sum_{i=1}^{r} \deg(g_i)}{\max \deg(g_i)} \\
\geq \frac{1}{d} |l(E)n - l(dE + W)d| \\
= \frac{1}{d} \left[l(D_1^* + kD)n - l((D_1^* + D_1^*) + (dk + \rho)D)d \right] \\
= \frac{1}{d} \left[c_k^{\dim(X)n} - c(kd + \rho)^{\dim(X)d} \right] + O(k^{\dim(X)-1}) \\
= \frac{ck^{\dim(X)}}{d}[n - ad^{\dim(X)+1}] + O(k^{\dim(X)-1}).
\]

The theorem follows. \qed

Corollary 1. Suppose \(A^+(X)\) is of rank one and \(\dim(X) \geq 2\). Let \(Y \subset A^n_{\mathbb{F}_q(X)}\) be the affine variety defined by the polynomials \(F_1, \ldots, F_r \in \mathbb{F}_q(X)[y_1, \ldots, y_n]\). Define \(d_i := \deg F_i\). Suppose \(n > \sum_{i=1}^{r} d_i^{\dim(X)+1}\). Then \(Z_{RR}(Y(\mathbb{F}_q(X)), T)\) is a \(p\)-adic entire function.

Example 1. Consider affine \(n\)-space \(A^n_{\mathbb{F}_q(X)}\). In this case, we have
\[
Z_{RR}(A^n(\mathbb{F}_q(X)), T) = \sum_{D \geq 0} q^{n(D)}T^{\deg(D)}.
\]

It follows that if \(A^+(X)\) is of rank one, then this is a \(p\)-adic entire function when \(\dim(X) \geq 2\) and a rational function when \(X\) is a curve.

Wan [4] has conjectured that when the rank of \(A^+(X)\) is finite, then the height zeta function of projective space \(\mathbb{P}_{\mathbb{F}_q(X)}^n\) is \(p\)-adic meromorphic. An equivalent conjecture is that the Riemann-Roch zeta function of affine space \(A^n_{\mathbb{F}_q(X)}\) is \(p\)-adic meromorphic.

Example 2. Combining Theorem [2] or Corollary [4] with Theorem [4], we see that the height zeta function is \(p\)-adic meromorphic for many projective varieties \(Y\). Fix \(A \in GL_{n+1}(\mathbb{F}_q(X))\) and let \(A_0\) denote its first row. As an arbitrary example, consider the projective hypersurface \(Y\) defined by \(F := (A_0y)^T G(y_1, \ldots, y_n)\) where \(G\) is a homogenous polynomial in \(\mathbb{F}_q(X)[y_1, \ldots, y_n]\) of degree \(d\). If \(A^+(X)\) is of rank one and \(n > d^{\dim(X)+1}\), then the twisted height zeta function \(Z_{ht}(Y(\mathbb{F}_q(X)), A, T)\) is \(p\)-adic meromorphic.

References

[1] J-P. Serre, *Lectures on the Mordell-Weil Theorem*, Aspects of Math., Vieweg, 1989.

[2] S. Shanuel, *Heights in number fields*, Bull. Soc. Math. France 107, 1979, 433-449.

[3] D. Wan, *An Elementary Proof of a Theorem of Katz*, Amer. J. Math., No. 1 (Feb 1989), 1 - 8.

[4] D. Wan, *Heights and Zeta Functions in Function Fields*, The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University, June 17-26, (1991).

[5] D. Wan, *Zeta Functions of Algebraic Cycles Over Finite Fields*, Manuscripta Mathematica, 74, (1992), 413-444.

[6] D. Wan, *Pure L-functions from algebraic geometry over finite fields*, Finite Fields and Applications, eds. D. Jungnickel and H. Niederreiter, Springer, (2001), 437-461.

[7] D. Wan and C. D. Haessig, *On the p-adic Riemann hypothesis for the zeta function of divisors*, Journal of Number Theory, 104, (2004), 335-352.