New Quadratic Baryon Mass Relations

L. Burakovsky, T. Goldman

Theoretical Division, MS B285
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

and

L.P. Horwitz

School of Physics and Astronomy
Tel-Aviv University
Ramat-Aviv, 69978 Israel

Abstract

By assuming the existence of (quasi)-linear baryon Regge trajectories, we derive new quadratic Gell-Mann–Okubo type baryon mass relations. These relations are used to predict the masses of the charmed baryons absent from the Baryon Summary Table so far, in good agreement with the predictions of many other approaches.

Key words: flavor symmetry, quark model, charmed baryons, Gell-Mann–Okubo, Regge phenomenology

PACS: 11.30.Hv, 11.55.Jy, 12.39.-x, 12.40.Nn, 12.40.Yx, 14.20.Lq

*E-mail: BURAKOV@PION.LANL.GOV
†E-mail: GOLDMAN@T5.LANL.GOV
‡E-mail: HORWITZ@TAUNIVM.TAU.AC.IL. Also at Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
The investigation of the properties of hadrons containing heavy quarks is of great interest for understanding the dynamics of the quark-gluon interaction. Recently predictions about the heavy baryon mass spectrum have become a subject of increasing interest \([1 - 11]\), due to current experimental activity of several groups at CERN \([12]\), Fermilab \([13]\) and CESR \([14, 15]\) aimed at the discovery of the baryons so far absent from the Baryon Summary Table \([16]\). Recently, for the LHC, B-factories and the Tevatron with high luminosity, several experiments have been proposed in which a detailed study of heavy baryons can be performed. In this connection, an accurate theoretical prediction for the baryon mass spectrum becomes a guide for experimentalists. To calculate the heavy baryon mass spectrum, potential models \([1, 17 - 22]\), nonrelativistic quark models \([23 - 25]\), relativistic quark models \([6]\), bag models \([26 - 29]\), lattice QCD \([30 - 32]\), QCD spectral sum rules \([33]\), heavy quark effective theory \([11, 34 - 36]\), chiral perturbation theory \([2]\), chiral quark model \([1]\), SU(4) skyrmion model \([37]\), group theoretical \([10, 38, 39]\) and other approaches \([3 - 5, 7, 8, 40 - 44]\) are widely used.

The charm baryon masses measured to date are\(^1\) \([16]\)

\[
\begin{align*}
\Lambda_c &= 2285 \text{ MeV}, \\
\Sigma_c &= 2453 \pm 1 \text{ MeV}, \\
\Xi_c &= 2468 \pm 2 \text{ MeV}, \\
\Omega_c &= 2704 \pm 4 \text{ MeV}, \\
\Sigma_c^* &= 2521 \pm 4 \text{ MeV}, \\
\Xi_c^* &= 2644 \pm 2 \text{ MeV}.
\end{align*}
\]

An observation of the \(\Xi_c' = 2563 \pm 15 \text{ MeV}\) was reported by the WA89 Collaboration \([12]\). The \(\Omega_c^*\), as well as double- and triple-charmed baryons, have not yet been observed.

Almost all very recent calculations very consistently predict the mass of the \(\Xi_c^*\) to be around 2580 MeV \([2, 1, 4, 8, 11]\) (see also \([20, 11, 43]\)). Similarly, the mass of the \(\Omega_c^*\) is very consistently predicted to be around 2770 MeV \([2, 1, 4, 7, 9, 11]\) (see also \([1, 21, 26, 30, 41]\)). Predictions for the double- and triple-charmed baryon masses are less definite.

Here we wish to extend the approach based on the assumption of (quasi)-linearity of the Regge trajectories of heavy hadrons in the low-energy region, initiated in our previous papers for heavy mesons \([40, 47]\), to baryons. We shall show that new quadratic Gell-Mann–Okubo type baryon mass relations can be obtained, and used to predict the missing charmed baryon masses. As we shall see, the predicted masses are in good agreement with the results of many other approaches, which should add confidence to an experimental focus on the predicted ranges.

\(^1\)For \(\Sigma_c^*\) we take the uncertainty weighted average of the results of ref. \([13]\), \(2530 \pm 5 \pm 5 \text{ MeV}\), and the most recent results by CLEO \([14]\), \(2518.6 \pm 2.2 \text{ MeV}\).
Let us assume, as in [46, 47], the (quasi)-linear form of Regge trajectories for baryons with identical \(J^P \) quantum numbers (i.e., belonging to a common multiplet). Then for the states with orbital momentum \(\ell \) one has (\(i, j, k \) stand for the corresponding flavor content)

\[
\ell = \alpha'_{kii} m^2_{kii} + a_{kii}(0),
\]

\[
\ell = \alpha'_{kji} m^2_{kji} + a_{kji}(0),
\]

\[
\ell = \alpha'_{kjj} m^2_{kjj} + a_{kjj}(0).
\]

Using now the relation among the intercepts [48, 49, 50],

\[
a_{kii}(0) + a_{kjj}(0) = 2a_{kji}(0),
\]

one obtains from the above relations

\[
\alpha'_{kii} m^2_{kii} + \alpha'_{kjj} m^2_{kjj} = 2\alpha'_{kji} m^2_{kji}.
\]

In order to eliminate the Regge slopes from this formula, we need a relation among the slopes. Two such relations exist,

\[
\alpha'_{kii} \cdot \alpha'_{kjj} = \left(\alpha'_{kji}\right)^2,
\]

which follows from the factorization of residues of the \(t \)-channel poles [51, 52, 53], and

\[
\frac{1}{\alpha'_{kii}} + \frac{1}{\alpha'_{kjj}} = \frac{2}{\alpha'_{kji}},
\]

which may be derived by generalizing the corresponding relation for quarkonia based on topological expansion and the \(q\bar{q} \)-string picture [50] to the case of a baryon viewed as a quark-diquark-string object [57].

For light baryons (and small differences in the \(\alpha' \) values), there is no essential difference between these two relations; viz., for \(\alpha'_{kji} = \alpha'_{kii}/(1 + x), \ x \ll 1 \), Eq. (4) gives \(\alpha'_{kjj} = \alpha'_{kii}/(1 + 2x) \), whereas Eq. (3) gives \(\alpha'_{kjj} = \alpha'_{kii}/(1 + x)^2 \approx \alpha'/(1 + 2x) \), i.e., essentially the same result to order \(x^2 \). However, for heavy baryons (and expected large differences from the \(\alpha' \) values for the light baryons) these relations are incompatible; e.g., for \(\alpha'_{kjj} = \alpha'_{kii}/2 \), Eq. (3) will give \(\alpha'_{kjj} = \alpha'_{kii}/4 \), whereas from Eq. (4), \(\alpha'_{kjj} = \alpha'_{kii}/3 \). One therefore has to choose between these relations in order to proceed further. Here, as in [46, 47], we use Eq. (4), since it is much more consistent with (2) than is Eq. (3), which we tested by using measured light-quark baryon masses in Eq. (2). Kosenko and Tutik [40] used the relation (3) and obtained much higher values for the charmed baryon masses than the measured ones (e.g., \(\Omega_c = 2788 \text{ MeV} \)) and those predicted by most other approaches (see Table I). The reason for this is that lower values for the Regge slopes, as illustrated by the example above, lead to higher values

\[\text{This structure is known to be responsible for the slopes of baryon trajectories being equal to those of meson trajectories [54, 55, 53].}\]
for the masses. We shall justify our choice of Eq. (4) in more detail in a separate publication [57].

It is easy to see that the following relation solves Eq. (4):

\[a_{i_n, j_s, k_c}^*(0) = a^*(0) - \lambda^*_s j_s - \lambda^*_c k_c, \quad a^*(0) \equiv a_{3,0,0}^*(0), \quad (5) \]

\[\frac{1}{\alpha_{i_n, j_s, k_c}^*} = \frac{1}{\alpha^*_s} + \gamma_s^* j_s + \gamma_c^* k_c, \quad \alpha_s^* \equiv \alpha_{s,3,0,0}^*, \quad i_n + j_s + k_c = 3, \quad (6) \]

where \(i_n, j_s, k_c = 1, 2, 3 \) are the numbers of \(n-, s-, \) and \(c- \) quarks, respectively, which constitute the baryon, and the sub- and superscript \(\star \) allows for possible differences between multiplets (such as \(\frac{1}{2}^+ \) octet and \(\frac{3}{2}^+ \) decuplet).

It then follows from (6) that

\[\alpha_s' = \alpha_s, \quad (7) \]

\[\alpha_s = \frac{\alpha_N'}{1 + \gamma_N^s \alpha_N'}, \quad (8) \]

\[\alpha_c' = \alpha_c, \quad (9) \]

\[\alpha_c = \frac{\alpha_N'}{1 + \gamma_c^N \alpha_N'}, \quad (10) \]

\[\alpha_s' = \alpha_s', \quad (11) \]

\[\alpha_s' = \frac{\alpha_N'}{1 + (\gamma_N^s + \gamma_c^N) \alpha_N'}, \quad (12) \]

\[\alpha_c = \frac{\alpha_N'}{1 + (2 \gamma_c^N) \alpha_N'}, \quad (13) \]

\[\alpha_s' = \alpha_s', \quad (14) \]

\[\alpha_s' = \frac{\alpha_N'}{1 + 2 \gamma_c^N \alpha_N'}, \quad (15) \]

\[\alpha_s' = \frac{\alpha_N'}{1 + 3 \gamma_c^N \alpha_N'}, \quad (16) \]

\[\alpha_s' = \frac{\alpha_N'}{1 + \gamma_c^N \alpha_N'}, \quad (17) \]

\[\text{where we use } \star = N \text{ to represent the } \frac{1}{2}^+ \text{ multiplet, and with } \star = \Delta \text{ to represent the } \frac{3}{2}^+ \text{ multiplet}, \]

\[\alpha_s' = \alpha_s', \quad (18) \]

\[\alpha_s' = \frac{\alpha_N'}{1 + \gamma_s^N \alpha_N'}, \quad (19) \]

\[\alpha_s' = \frac{\alpha_N'}{1 + \gamma_c^N \alpha_N'}, \quad (20) \]

\[\text{The notation has changed here, as compared to Eqs. (1)-(4); e.g., } a_{\text{odd}}(0) \equiv a_{3,0,0}(0), \quad a_{\text{even}}(0) \equiv a_{2,1,0}(0), \quad \text{etc.} \]
Consider first the $J^P = \frac{3}{2}^+$ baryons. Introduce, for simplicity,

\[x \equiv \gamma_s \alpha'_\Delta, \quad y \equiv \gamma_c \alpha'_\Delta. \]

It then follows from (5)-(13) that

\[\Delta^2 = \Sigma^2_{s} - \lambda_s^\Delta = \Xi^2_{s} - 2\lambda_s^\Delta = \Omega^2_{s} - 3\lambda_s^\Delta \]

\[= \Xi^2_{c} - \lambda_c^\Delta = \Omega^2_{c} - 2\lambda_c^\Delta - \lambda_c^\Delta \]

\[= \Xi^2_{cc} - 2\lambda_c^\Delta = \Omega^2_{cc} - \lambda_c^\Delta - 2\lambda_c^\Delta \]

\[= \Omega^2_{ccc} - \lambda_c^\Delta. \]

Note that there are four unknown parameters for each multiplet. By eliminating them, i.e., $x, y, \lambda_s^\Delta, \lambda_c^\Delta$, from the above nine equalities, we can obtain five relations for baryon masses; e.g.,

\[\Omega^2 - \Delta^2 = 3 (\Xi^2 - \Sigma^2), \]

\[\Omega^2_{ccc} - \Delta^2 = 3 (\Xi^2_{cc} - \Sigma^2), \]

\[\Omega^2_{ccc} - \Omega^2 = 3 (\Omega^2_{cc} - \Omega^2). \]

\[(\Xi^2_{c} - \Delta^2) + (\Omega^2_{cc} - \Xi^2) = 2 (\Xi^2_{c} - \Sigma^2), \]

\[(\Omega^2_{cc} - \Xi^2_{cc}) + (\Xi^2 - \Delta^2) = 2 (\Xi^2 - \Sigma^2). \]

However, just four of them are linearly independent, because of an invariance of the nine equalities under simultaneous permutation ($x \leftrightarrow y, \lambda_s \leftrightarrow \lambda_c$).

Here only Eq. (25) can be tested, since Eqs. (26)-(29) contain the baryon masses not measured so far. For Eq. (25), one obtains (on GeV2) 1.280 ± 0.005 vs. $1.300 \pm$
0.030, taking the electromagnetic mass splittings as a measure of the uncertainty (since electromagnetic corrections are not included in our analysis).

The analysis may be easily repeated for the \(J^P = \frac{1}{2}^+ \) baryons, leading to the following two independent mass relations,

\[
\left(\Sigma_c^2 - N^2 \right) + \left(\Omega_c^2 - \Xi^2 \right) = 2 \left(\tilde{\Xi}_c^2 - \Sigma_c^2 \right), \tag{30}
\]

\[
\left(\Omega_{cc}^2 - \Xi_{cc}^2 \right) + \left(\Sigma_c^2 - N^2 \right) = 2 \left(\tilde{\Xi}_c^2 - \Sigma_c^2 \right), \tag{31}
\]

where

\[
\Sigma' \equiv a \Lambda^2 + (1 - a) \Sigma^2, \tag{32}
\]

\[
\Sigma_c' \equiv b \Lambda_c^2 + (1 - b) \Sigma_c^2, \tag{33}
\]

\[
\tilde{\Xi}_c \equiv c \Xi_c^2 + (1 - c) \Xi_c'^2 \tag{34}
\]

are introduced to distinguish between the states having the same flavor content and \(J^P \) quantum numbers, and \(a, b, c \) are not known \textit{a priori}. In order to establish the values of \(a, b \) and \(c \), we use the following relation for the intercepts of the \(\frac{1}{2}^+ \) baryon trajectories in the non-charmed sector \[58\],

\[
2 \left[a_N(0) + a_\Xi(0) \right] = 3a_\Lambda(0) + a_\Sigma(0), \tag{35}
\]

which has been subsequently generalized to the charmed sector by replacing the \(s \)-quark by the \(c \)-quark, as follows \[40\]:

\[
2 \left[a_N(0) + a_{\Xi_{cc}}(0) \right] = 3a_{\Lambda_c}(0) + a_{\Sigma_c}(0). \tag{36}
\]

It then follows from the corresponding relations based on (1),(2) that, respectively,

\[
\alpha'_N N^2 + \alpha'_\Xi \Xi^2 = 2\alpha_{\Sigma'} \left(\frac{3}{4} \Lambda^2 + \frac{1}{4} \Sigma^2 \right), \quad \alpha_{\Sigma'} \equiv \alpha'_\Lambda = \alpha'_\Sigma, \tag{37}
\]

\[
\alpha'_N N^2 + \alpha'_{\Xi_{cc}} \Xi_{cc}^2 = 2\alpha_{\Sigma'_c} \left(\frac{3}{4} \Lambda_c^2 + \frac{1}{4} \Sigma_c^2 \right), \quad \alpha_{\Sigma'_c} \equiv \alpha'_{\Lambda_c} = \alpha'_{\Sigma_c}, \tag{38}
\]

and therefore

\[
\Sigma' = \frac{3}{4} \Lambda^2 + \frac{1}{4} \Sigma^2, \tag{39}
\]

\[
\Sigma'_c = \frac{3}{4} \Lambda_c^2 + \frac{1}{4} \Sigma_c^2, \tag{40}
\]

i.e., in the relations (32),(33) \(a = b = \frac{3}{4} \). It is also seen that the only parameter which is responsible for different weighting of the states having the same flavor content and \(J^P \) quantum numbers is the isospin of the state. Thus, since both \(\Xi_c \) and \(\Xi'_c \) have equal isospin \((I = \frac{1}{2}) \), they should enter a mass relation with equal weights, i.e., in Eq. (34) \(c = 1/2 \), and

\[
\tilde{\Xi}_c \equiv \frac{\Xi_c^2 + \Xi'_c^2}{2}. \tag{41}
\]
Equations (25)-(31), with (39)-(41), are new quadratic baryon mass relations. In the following, we shall make predictions for the baryon masses not measured so far using these relations.

For the $\frac{1}{2}^+$ baryons, in the approximation of equality of the slopes in the light quark sector, $\alpha'_N \cong \alpha'_{\Sigma'} \cong \alpha'_\Xi$ (i.e., $\gamma_{N}^{N} \alpha'_{N} \ll 1$ in Eqs. (7),(8)), it follows from (37) that
\[2 \left(N^2 + \Xi^2 \right) \cong 3 \Lambda^2 + \Sigma^2, \]
(42)
which is a relation obtained by Oneda and Terasaki in the algebraic approach to hadronic physics [59] which holds with an accuracy of $\sim 1.5\%$: (in GeV) 5.235±0.015 vs. 5.160 ± 0.010. Similar approximation for the $\frac{3}{2}^+$ baryons leads, through (2), to relations
\[\Omega^2 - \Xi^*2 \cong \Xi^*2 - \Sigma^*2 \cong \Sigma^*2 - \Delta^2, \]
(43)
which have long been discussed in the literature [49, 59, 60, 61] and hold with a high accuracy, as well as (42).

The mass of the Ξ_c^* can now be obtained from Eqs. (30),(39)-(41). Using the measured masses of the states entering these relations, one finds
\[\Xi_c^* = 2569 \pm 6 \text{ MeV}. \]
(44)
The mass of the Ω_c^* is obtained from (28):
\[\Omega_c^* = 2767 \pm 7 \text{ MeV}. \]
(45)
One sees that the value for the Ξ_c^* mass (44) lies within the interval provided by experiment [12]. Both (44) and (45) are consistent with the values 2580 and 2770 MeV, respectively, predicted by almost all very recent calculations [2, 4, 5, 7, 11].

Now, we have two (independent) relations for the $\frac{3}{2}^+$ baryons, Eqs. (26) or (27), and (29), to make predictions for the three unknown masses of the Ξ_{cc}^*, Ω_{cc}^*, and Ω_{ccc}. Similarly, we have one relation for the $\frac{1}{2}^+$ baryons, Eq. (31), to make predictions for the two unknown masses of the Ξ_{cc} and Ω_{cc}. In order to obtain two additional relations (for each of the two multiplets), we shall use the approximation of equality of the slopes in the light quark sector referred to above. Indeed, we have fitted the three, vector meson, octet baryon, and decuplet baryon mass spectra simultaneously, by using a common value of x in Eq. (24) and similar relations for vector mesons and octet baryons for all three multiplets. Our results are shown in Table I (the calculation is completed when λ^c_{Δ} becomes zero first of the three λ's). It is seen that the best simultaneous fit corresponds to $x = 0.05 \pm 0.01 \ll 1$, and therefore the approximation of equality of the slopes in the light quark sector is completely justified.

For the $\frac{1}{2}^+$ baryons, it then follows from (7)-(10) (with $\gamma_{N}^{N} \alpha'_{N} \ll 1$) that
\[\alpha'_\Xi \cong \alpha'_{N}, \quad \alpha'_{\Xi_{cc}} \cong \alpha'_{\Xi_{cc}}. \]
(46)
We now apply the procedure developed for mesons in [46] to baryons, using the following relations based on (2) and (46),

\[\alpha_N^2 N^2 + \alpha_{\Xi_{cc}}^2 \Xi_{cc}^2 = 2\alpha_{\Sigma_{cc}}^2 \Sigma_{cc}^2, \]
\[\alpha_N^2 \Xi^2 + \alpha_{\Xi_{cc}}^2 \Xi_{cc}^2 = 2\alpha_{\Sigma_{cc}}^2 \Sigma_{cc}^2, \]
\[\frac{1}{\alpha_N} + \frac{1}{\alpha_{\Xi_{cc}}} = \frac{2}{\alpha_{\Sigma_{cc}}}, \]

and obtain a sixth power relation for the \(\frac{1}{2}^+ \) baryon masses:

\[\left(\Xi^2 \Sigma_{cc}^2 - N^2 \Xi_{cc}^2 \right) \left(\Xi^2 - N^2 \right) + \Xi_{cc}^2 \left(\Xi_{cc}^2 - \Sigma_{cc}^2 \right) \left(\Xi^2 - N^2 \right) = 4 \left(\Xi^2 \Sigma_{cc}^2 - N^2 \Xi_{cc}^2 \right) \left(\Xi_{cc}^2 - \Sigma_{cc}^2 \right). \quad (47) \]

The same procedure applied for the \(\frac{3}{2}^+ \) baryons leads to a similar sixth power relation for the \(\frac{3}{2}^+ \) baryon masses:

\[\left(\Xi^* \Sigma^*_{cc} \right) \left(\Xi^* - \Delta^2 \Xi_{cc}^* \right) + \Xi^*_{cc} \left(\Xi_{cc}^* - \Sigma^*_{cc} \right) \left(\Xi^* - \Delta^2 \right) = 4 \left(\Xi^* \Sigma^*_{cc} \right) \left(\Xi^*_{cc} - \Sigma^*_{cc} \right). \quad (48) \]

Equations (47) and (48) yield the following values for the masses of the \(\Xi_{cc} \) and \(\Xi_{cc}^* \):

\[\Xi_{cc} = 3610 \pm 3 \text{ MeV}, \quad (49) \]
\[\Xi_{cc}^* = 3735 \pm 17 \text{ MeV}. \quad (50) \]

The values for the masses of the \(\Omega_{cc} \) and \(\Omega_{cc}^* \) can now be obtained from Eqs. (29) and (31), respectively:

\[\Omega_{cc} = 3804 \pm 8 \text{ MeV}, \quad (51) \]
\[\Omega_{cc}^* = 3850 \pm 25 \text{ MeV}. \quad (52) \]

The remaining value for the \(\Omega_{ccc} \) mass is obtained either from (26) or (27):

\[\Omega_{ccc} = \begin{cases}
4930 \pm 45 \text{ MeV} \quad \text{from (26)}, \\
4928 \pm 70 \text{ MeV} \quad \text{from (27)}.
\end{cases} \quad (53) \]

Both results are consistent, as they should be.

The effect on the \(\frac{1}{2}^+ \) and \(\frac{3}{2}^+ \) baryon spectra of setting \(x = 0 \) in Eqs. (24) and corresponding relations for \(\frac{1}{2}^+ \) baryons is negligible (\(\leq \) few MeV), except for the splitting between nonstrange and singly strange baryons (see (42),(43)). Even in this case the absolute size of this splitting is small, and so the included error is not more than 2%. More significantly, this does not affect the multiply strange and charm states by more than 1%.

8
Our results are shown in Table II, together with the predictions of many other approaches. One sees that our predictions for the charmed baryon masses done in the Regge framework are in good agreement with those of different approaches. In particular, the predicted value for the Ξ'_c lies in the range provided by experiment [12], and is in close proximity to 2580 MeV, consistent with the very recent predictions [2, 4, 7, 8, 11]. The predicted value for the Ω'_c mass is in close proximity to 2770 MeV, consistent with almost all very recent calculations [1 – 5, 7, 9, 11].

As remarked by Kaidalov [50], the relations (2),(4), on which our mass predictions are based, have such a structure that a variation of α'_{kji} by 10-15 % leads only to about 1% change in the values of masses m_{kji}. Thus, although our calculation of the baryon masses in the double- and triple-charm sectors is based on the assumption of equality of the slopes in the light quark sector, we expect our results to be insensitive to any further adjustment of the values of these slopes.

Extension of the present framework to the beauty sector, and predictions for the masses of the beauty baryons will be the subject of a separate publication.

We note (from Table II) with interest that our results are closest to those derived using a quark-diquark model [43]. Agreement between such a model and linear Regge trajectories is expected from both the QCD area law of the Wilson loop [57] and string approach [54]. We plan to investigate this further in the future.
x	λ^p_s	λ^N_s	λ^Δ_s	K^*	ϕ	Σ^2	Ξ	Σ^*	Ξ^*	Ω
0	0.219	0.422	0.420	900	1015	1.304	1314	1392	1536	1667
0.010	0.209	0.407	0.395	899	1015	1.302	1315	1390	1534	1669
0.020	0.201	0.392	0.371	899	1016	1.299	1316	1388	1533	1670
0.030	0.192	0.377	0.348	898	1017	1.296	1317	1386	1532	1671
0.040	0.182	0.363	0.326	897	1017	1.295	1318	1385	1531	1672
0.050	0.175	0.350	0.305	897	1018	1.293	1319	1383	1530	1673
0.060	0.167	0.336	0.285	897	1018	1.291	1319	1382	1529	1673
0.070	0.159	0.323	0.266	896	1018	1.289	1320	1382	1529	1674
0.080	0.152	0.310	0.249	896	1019	1.287	1320	1381	1529	1675
0.100	0.137	0.286	0.215	895	1019	1.284	1321	1381	1529	1677
0.150	0.104	0.232	0.140	894	1019	1.281	1323	1381	1529	1676
0.200	0.075	0.185	0.077	894	1019	1.280	1324	1383	1530	1673
0.277	0.038	0.122	0	896	1018	1.282	1323	1392	1535	1667

Table I. Simultaneous fit to the vector meson, octet baryon, and decuplet baryon spectra, through the relations

$$
\rho^2 = \frac{K^{*2}}{1 + x} - \lambda^p_s = \frac{\phi^2}{1 + 2x} - 2\lambda^p_s,
$$

$$
N^2 = \frac{\Sigma^2}{1 + x} - \lambda^N_s = \frac{\Xi^2}{1 + 2x} - 2\lambda^N_s,
$$

$$
\Delta^2 = \frac{\Sigma^*^2}{1 + x} - \lambda^\Delta_s = \frac{\Xi^*^2}{1 + 2x} - 2\lambda^\Delta_s = \frac{\Omega^2}{1 + 3x} - 3\lambda^\Delta_s,
$$

as compared to the measured values:

$$
K^{*0} = 896 \text{ MeV}, \quad \phi = 1019 \text{ MeV},
$$

$$
\Sigma^2 = 1.290 \pm 0.003 \text{ GeV}^2, \quad \Xi = 1318 \pm 3 \text{ MeV},
$$

$$
\Sigma^* = 1385 \pm 2 \text{ MeV}, \quad \Xi^* = 1533.5 \pm 1.5 \text{ MeV}, \quad \Omega = 1672.5 \text{ MeV}.
$$

The input parameters are:

$$
\rho = 769 \text{ MeV}, \quad N = 939 \text{ MeV}, \quad \Delta = 1232 \text{ MeV}.
$$

λ's are measured in GeV2.

10
Reference	Ξ_c	Ξ_{cc}	Ω_{cc}	Ω^*_c	Ξ^*_c	Ω^*_{cc}	Ω_{cc}
Present work	2569 ± 6	3610 ± 3	3804 ± 8	2767 ± 7	3735 ± 17	3850 ± 25	4930 ± 45
[1]							
[2]	2579						
[3]							
[4]	2580 ± 20	3660 ± 70	3740 ± 80	2770 ± 30	3740 ± 70	3820 ± 80	2770 ± 10
[5]	2582	3676	3787	2775	3746	3851	
[6]		3660	3760	3810	3890		
[7]	2580 ± 10						
[8]	2583						
[9]	2593						
[11]	2581 ± 2						2761 ± 5
[17]	2510	3550	3730	2720	3610	3770	4810
[18]	2532			2780			5026
[19]	2566	3605	3730	2830	3680	3800	4793
[20]	2579	3645	3824	3733	4837		
[21]	2558	3613	3703	2775	3741	3835	4797
[22]	3710						4923
[23]	2590			2805			
[25]	2608			2822			
[26]	2530	3511	3664	2764	3630	3764	4747
[27]							5040
[28]	2500			2710			
[29]	2467			2659			
[30]				2767 ± 35			
[32]	2570^{+6}_{-3-6}		2660^{+5}_{-3-7}				
[33]	3630 ± 50	3720 ± 50		3735 ± 50		3840 ± 50	
[35]		3742		3811			
[36]	2570	3610	3710	2740	3680	3760	4730
[37]	2596	3752	3934	2811	3793	3964	5127
[38]	2600	3725	3915	2811	3783	3953	5106
[39]	2690	3700	3960	2810	3768	3931	5019
[40]	2616	3837	4036				
[41]	2583						2772
[42]	2542	3710	3852	2798	3781	3923	5048
[43]	2578	3661	3785	2782	3732	3856	4895
[44]	2584	3758	3861				

Table II. Comparison of predictions for the charmed baryon masses not measured so far (in MeV).

Potential models: [1,17-22]
Chiral perturbation theory: [2]
Relativistic quark model: [6]
Chiral quark model: [9]
Heavy quark effective theory: [11,35,36]
Nonrelativistic quark models: [23,25]
Bag models: [26-29]
Lattice QCD: [30,32]
QCD spectral sum rules: [33]
SU(4) skyrmion model: [37]
Group theoretical models: [38,39]
Other models: [3-5,7,8,40-44]

References

[1] A. Martin and J.-M. Richard, Phys. Lett. B 355 (1995) 345
[2] M.J. Savage, Phys. Lett. B 359 (1995) 189
[3] J.L. Rosner, Phys. Rev. D 52 (1995) 6461
[4] R. Roncaglia, D.B. Lichtenberg and E. Predazzi, Phys. Rev. D 52 (1995) 1722
[5] D.B. Lichtenberg, R. Roncaglia and E. Predazzi, Phys. Rev. D 53 (1996) 6678
[6] D. Ebert et al., Heavy baryons in the relativistic quark model, hep-ph/9607314
[7] A. Zalewska and K. Zalewski, Heavy baryon masses, hep-ph/9608240
[8] J. Franklin, Phys. Rev. D 53 (1996) 564
[9] L.Ya. Glozman and D.O. Riska, Nucl. Phys. A 603 (1996) 326
[10] R.F. Lebed, Phys. Rev. D 54 (1996) 4463
[11] E. Jenkins, Phys. Rev. D 54 (1996) 4515, 55 (1997) R10
[12] WA89 Coll., Charmed baryon production in the CERN hyperon beam, presented by E. Chudakov at Heavy Quark '94, Virginia, October 1994; WA89 Coll., R. Werding, in Proceedings of 27th Intern. Conf. on High Energy Phys., Glasgow, Scotland, 1994, eds. P.J. Bussey and I.G. Knowles (IOP, London, 1995)
[13] E687 Coll., P.L. Frabetti et al., Phys. Lett. B 338 (1994) 106, 365 (1996) 461
[14] CLEO Coll., P. Avery et al., Phys. Rev. Lett. 75 (1995) 4364; L. Gibbons et al., ibid. 77 (1996) 810
[15] CLEO Coll., G. Brandenburg et al., ibid. 78 (1997) 2304
[16] Particle Data Group, Phys. Rev. D 54 (1996) 1
[17] A. De Rújula, H. Georgi and S.L. Glashow, Phys. Rev. D 12 (1975) 147
[18] J.-L. Basdevant and S. Boukraa, Z. Phys. C 30 (1986) 103
[19] A.M. Badalyan, Phys. Lett. B 199 (1987) 267
 A.M. Badalyan and D.I. Kitoroage, Sov. J. Nucl. Phys. 47 (1988) 515
[20] C. Itoh, T. Minamikawa, K. Miura and T. Watanabe, Phys. Rev. D 40 (1989) 3660

[21] S. Fleck and J.M. Richard, Particle World 1 (1990) 67

[22] Yu-Bing Dong, Comm. Theor. Phys. 24 (1995) 439

[23] K. Maltman and N. Isgur, Phys. Rev. D 22 (1980) 1701

[24] S. Capstick and N. Isgur, Phys. Rev. D 34 (1986) 2809

[25] H.-W. Siebert, in Topics in Hadron Spectroscopy, ed. D.C. Peasley (Nova Science Publ., Commack, NY, 1995), Vol. 3, p. 11

[26] W.A. Ponce, Phys. Rev. D 19 (1979) 2197

[27] A.T. Aerts and L. Heller, Phys. Rev. D 25 (1982) 1365

[28] D. Izatt, C. DeTar and M. Stephenson, Nucl. Phys. B 199 (1982) 269

[29] M. Sadzikowski, Acta Phys. Pol. B 24 (1993) 1121

[30] S. Samuel and K.J.M. Moriarty, Phys. Lett. B 166 (1986) 413, 175 (1986) 197

[31] C. Alexandrou et al., Phys. Lett. B 337 (1994) 340

[32] K.C. Bowler et al., Phys. Rev. D 54 (1996) 3619

[33] E. Bagan et al., Z. Phys. C 64 (1994) 57
S. Narison, Nucl. Phys. B (Proc. Suppl.) 39B,C (1995) 446

[34] J. Savage and M.B. Wise, Phys. Lett. B 248 (1990) 177
C. Liu, Phys. Lett. B 389 (1996) 347

[35] T. Ito, T. Morii and M. Tanimoto, Z. Phys. C 59 (1993) 57

[36] J.G. Körner, M. Krämer and D. Pirjol, Prog. Part. Nucl. Phys. 33 (1994) 787

[37] M. Rho, D.O. Riska and N.N. Scoccola, Phys. Lett. B 251 (1990) 597

[38] L.-H. Chan, Phys. Rev. D 15 (1977) 2478

[39] G.Q. Sofi and M. Ahmad, Acta Phys. Pol. B 10 (1979) 619

[40] A.I. Kosenko and R.S. Tutik, Ukr. Fiz. Zh. 35 (1990) 1292

[41] J. Dey, M. Dey and P. Volkovitsky, Phys. Lett. B 261 (1991) 493; addendum: ibid., 375 (1996) 358

[42] S. Iwao, Prog. Theor. Phys. 87 (1992) 1443

[43] K. Suzuki and H. Toki, Mod. Phys. Lett. A 7 (1992) 2867
[44] W.S. Carvalho and A.C.B. Antunes, A three configurations diquark model for baryons, hep-ph/9404298

[45] V.V. Ammosov et al., JETP Lett. 58 (1993) 247

[46] L. Burakovsky, T. Goldman and L.P. Horwitz, New mass relations for heavy quarkonia, hep-ph/9704440; to be published

[47] L. Burakovsky, T. Goldman and L.P. Horwitz, New mass relation for meson 25-plet, hep-ph/9704432; to be published

[48] K. Kawarabayashi, S. Kitakado and H. Yabuki, Phys. Lett. B 28 (1969) 432
R.C. Brower, J. Ellis, M.G. Schmidt and J.H. Weis, Nucl. Phys. B 128 (1977) 175

[49] V.V. Dixit and L.A. Balazs, Phys. Rev. D 20 (1979) 816

[50] A.B. Kaidalov, Z. Phys. C 12 (1982) 63

[51] J. Pasupathy, Phys. Rev. Lett. 37 (1976) 1336

[52] K. Igi, Phys. Lett. B 66 (1977) 276; Phys. Rev. D 16 (1977) 196

[53] M. Kuroda and B.-L. Young, Phys. Rev. D 16 (1977) 204

[54] T. Eguchi, Phys. Lett. B 59 (1975) 457

[55] Yu.A. Simonov, Phys. Lett. B 228 (1989) 413

[56] M. Fabre de la Ripelle and Yu.A. Simonov, Ann. Phys. 212 (1991) 235

[57] L. Burakovsky, T. Goldman and L.P. Horwitz, in preparation

[58] N.A. Kobylinsky, A.I. Kosenko and R.S. Tutik, Interrelations between baryon trajectories and new mass formulas for baryon octet, Kiev Inst. Theor. Phys. preprint ITF-79-36E

[59] S. Onega and K. Terasaki, Prog. Theor. Phys. Suppl. 82 (1985) 1

[60] C.E. Jones and J. Uschersohn, Phys. Rev. Lett. 45 (1980) 1901

[61] L. Burakovsky and L.P. Horwitz, Found. Phys. Lett. 10 (1997) 61