Technology-based assessment of motor and nonmotor phenomena in Parkinson disease

Aristide Merola, Andrea Sturchio, Stephanie Hacker, Santiago Serna, Joaquin A. Vizcarra, Luca Marsili, Alfonso Fasano and Alberto J. Espay

Introduction: The increasing development and availability of portable and wearable technologies is rapidly expanding the field of technology-based objective measures (TOMs) in neurological disorders, including Parkinson disease (PD). Substantial challenges remain in the recognition of disease phenomena relevant to patients and clinicians, as well as in the identification of the most appropriate devices to carry out these measurements.

Areas covered: The authors systematically reviewed PubMed for studies employing technology as outcome measures in the assessment of PD-associated motor and nonmotor abnormalities.

Expert commentary: TOMs minimize intra- and inter-rater variability in clinical assessments of motor and nonmotor phenomena in PD, improving the accuracy of clinical endpoints. Critical unmet needs for the integration of TOMs into clinical and research practice are the identification and validation of relevant endpoints for individual patients, the capture of motor and nonmotor activities from an ecologically valid environment, the integration of various sensor data into an open-access, common-language platforms, and the definition of a regulatory pathway for approval of TOMs. The current lack of multidomain, multisensor, smart technologies to measure in real time a wide scope of relevant changes remain a significant limitation for the integration of technology into the assessment of PD motor and nonmotor functional disability.

1. Introduction

Parkinson disease (PD) is a multisystem neurodegenerative disorder resulting in a complex pattern of disability due to the impairment of both motor (i.e., tremor, bradykinesia, rigidity) and nonmotor (i.e., cognition, sleep, autonomic) functional systems [1]. PD-associated clinical features are usually quantified by clinicians using validated clinical scales, such as the Movement Disorder Society Unified Parkinson’s disease Rating Scale (MDS-UPDRS) [2], and the Non-Motor Symptoms Scale for Parkinson’s disease (NMSS) [3]. These instruments, however, are prone to limitations such as subjectivity, inter-rater variability, and limited accuracy in capturing small variations between and within patients.

Technology advancements have expanded the application of a new generation of technology-based objective measures (TOMs) to detect and monitor a functional range critical for the comprehensive characterization and long-term monitoring of patients with PD [4,5]. TOMs may capture multiple motor activities, such as frequency and amplitude of movements, severity of tremor and dyskinesia, and extent of gait and postural impairment [6-8]. In addition, TOMs may characterize nonmotor phenomena that cannot be captured by conventional clinical scales, such as sleep architecture, respiratory rate, beat-to-beat blood pressure changes, heart rhythm variability (HRV), and electroencephalographic (EEG) activity [9,10].

By reducing the standard deviation of clinical endpoints and minimizing intra- and inter-rater variability in clinical assessments, TOMs have the potential to improve the quality of diagnostic definitions [11]. Multiple challenges, however, limit the integration of TOMs into the clinical and research practice, including standardization of extracted parameters, cost of technology, patient compliance [12], and risk of producing outcome measures that have little practical meaning to end-users [13,14]. In order to be purposeful, any measures of function need to represent variables that are important to patients and can be amenable to interventions by clinicians and researchers [15].

We sought to systematically review studies that employed technology for the evaluation of motor and nonmotor phenomena in PD, appraising the extent of current integration of TOMs into the assessment of functional disability.

1.1. Body

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [16].
1.1.1. Search methods
We searched PubMed for human studies published in English between January 1980 and June 2018 using a combination of free text and MeSH (Medical Subject Headings) for the following terms (Table e-1, online): Parkinson, smartphone, sensor, palm, computer, accelerometer, tablet, digital, electronic, microphone, gyroscope, actigraphy, gait analysis, voice analysis, pedometry, smartwatch, barometer, wearables, applications, apps, Wi-Fi, internet, Bluetooth, battery, touchscreen, camera, oximeter, facial recognition, tilt table, CANTAB, electroencephalogram, electrocardiogram, electromyogram, electronic diary, and UPSIT. No restrictions were applied to gender, age, ethnicity, disease duration, or disease severity.

1.1.2. Inclusion and exclusion criteria
We included original studies employing TOMs as primary, secondary, or exploratory outcomes for the qualitative or quantitative assessment of symptoms, severity, and functional disability associated with PD. We excluded case reports, review articles, and studies using imaging, genetic, or corporal fluids (e.g., blood, cerebrospinal fluid) sampling technologies.

1.1.3. Selection of studies
Abstracts were independently reviewed for eligibility criteria by two investigators (A.S. and S.S.). Disagreements were anticipated to be settled by consensus among the authors. Duplicated studies were identified and excluded. The reference lists of selected articles were additionally screened for pertinent studies not included in the original search strategy.

1.1.4. Data extraction and assessment of risk of bias
The following data were extracted from eligible studies using a standardized form: (a) year of publication; (b) study design; (c) study population; (d) inclusion and exclusion criteria; (e) primary and secondary outcome measures; (f) results; and (g) study limitations. Given the heterogeneity of study designs, we followed the Cochrane handbook recommendations and assessed the risk of bias of individual studies utilizing the National Heart, Lung, and Blood Institute tools (NHLBI) [17], as per the Cochrane handbook recommendations [18]. These tools are tailored to study types (i.e., cross-sectional, case-control, interventional) and include a qualitative, internal validity checklist (‘Yes,’ ‘No,’ and ‘Nonapplicable’) for domains such as methodological pertinence, potential sources of bias, confounding, and adequacy of results for quality classification as ‘good,’ ‘fair,’ or ‘poor.’ In general, a ‘good’ rating applies to studies with low risk of bias whose results are deemed valid; ‘fair’ to studies susceptible to some biases but deemed insufficient to invalidate their results; and ‘poor’ to studies with significant risk of bias.

1.1.5. Data analysis
Included studies were categorized per functional domain investigated (motor vs. nonmotor) and sorted per year of publication and technology employed. Results were summarized in tables and discussed in the text.

1.2. Results
The search strategy resulted in the identification of 2941 studies published between 1980 and 2018. A total of 2817 studies did not meet all inclusion criteria or were considered duplicates (Figure 1). Thus, we included 124 studies (106 cross-sectional, 11 case-control, and 7 prospective cohorts) which underwent data extraction and individual appraisal of the quality of evidence and risk of bias (Tables e-2 and e-3, online).

There were 61 studies (59 cross-sectional and 2 case-control) employing TOMs for the assessment of qualitative measures of motor phenomena such as gait and postural instability (n = 33 studies), bradykinesia (n = 13 studies), tremor (n = 8 studies), and rigidity (n = 7 studies), and 63 studies (48 cross-sectional, 7 prospective cohort, and 8 case control) employing TOMs for the assessment of nonmotor phenomena such as sleep disorders (n = 23 studies), cognitive impairment (n = 18 studies), dysautonomia (n = 12 studies), visual deficits (n = 3 studies), and voice analysis (n = 7 studies) (Figure 2). The overall number of published studies integrating TOMs into the assessment of PD-associated motor (gait, postural stability, bradykinesia, rigidity, tremor) and nonmotor (sleep, cognitive function, autonomic function, speech) deficits have steadily increased over the years (Figure 3).

1.2.1. Gait and posture stability
Kinematic systems [19–43] and wearable sensors [44–50] were employed in the assessment of temporal (reaction time, gait cycle duration), spatial (step length, step height), and biomechanical (ankle torque, vertical landing force) variables of gait, and in the evaluation of gait strategies (i.e., number of steps, single versus multiple step response) during treadmill-based assessments or instrumented walking tests, such as the timed-up-and-go [29,38,44,46]. Balance and postural instability were assessed using force platforms [27,28,32,37,51–55] and wearable sensors [44–48] (Figure 3) to measure the trajectory of the center of pressure (COP) and center of mass (COM) displacement [22,23,28,32,53], as well as the trunk acceleration [53] during backwards pull [27,32,48,52], double task tests [51], and postural sway with eyes open and eyes closed [23] (Figure 4).

Significant differences were observed in PD patients versus healthy controls in spatial and temporal gait variables [30,32,40,47,55], as well as in the postural response to external perturbations [32]. Gait parameters were also used to assess the progression of PD-associated gait and postural instability [22,24,25,27,28,37,45,47,52,53] and to assess the response to pharmacological [29] and nonpharmaceutical [20] therapies (Table 1).

Kinematic and EMG measurements were employed to assess turning and freezing of gait (FOG), evaluating both spatial and temporal gait parameters [30,50,56], as well as the pattern of axial muscle activation during turns [33]. Freezers showed greater variability in stride length, stride time, and cadence compared to nonfreezers [30,50,56] along with reduced thoracic adaptation to hip movements during gait and turns [31,33,34], increased number of steps, prolonged turning time [57], and decreased range of motion in the ankle and hip joints immediately before FOG episodes [35].
1.2.2. Bradykinesia and rigidity

Wearable sensors [58–60], infrared cameras [19,21,26,61,62], tablet-based measurements [63,64], Diadochokinesimeter (65), dexterity pegboard [65], and light emitting diode (LED) photosensitive system [66] were used to evaluate amplitude, smoothness, and peak velocity of movements during standardized motor tasks such as finger tapping [21,61,63], pronation-supination [67], reach-to-grasp [19,26,62], wrist extension [59], goal directed movements [60], handwriting [64], and facial expression [66,68,69]. Muscle rigidity was evaluated using a dynamometer [54,70].

There were similar reaction times and movement lengths in PD patients vs. healthy controls, but lower maximum speed and, consequently, longer execution time in PD [19,39]. TOMs accurately captured changes in transport time, wrist velocity, and arm acceleration during reach-to-grasp motor tasks [26,62]. Tablet-based measurements objectively quantified amplitude, velocity [64], and motor blocks during handwriting [63]. Wearable sensors were used to assess the effect of dopaminergic medications on speed and amplitude of movements, showing a more pronounced effect on the former [71]. Finally, optokinetic analyses were employed to assess orofacial movements, such as vertical jaw movements during speech [66] and hypomimia [68,69], showing sufficient accuracy in objectively capturing differences between PD patients and healthy controls (Table 2).

A study evaluated PD-associated trunk rigidity using a dynamometer to measure resistive torques during passive trunk flexion and extension [54]. The internal validity of this approach was confirmed by different authors reporting a direct correlation between dynamometer-based rigidity assessment and health-related quality of life in PD [70]. Unlike this study, however, most studies did not evaluate the extent to which changes measured by specific TOMs correlated with relevant changes as perceived by patients.

1.2.3. Tremor

Accelerometer- [72–75], gyroscope- [76,77], EMG- [72–74,78], kinematic- [72], and tablet-based [78] measurements were used to capture key phenomenological characteristics of tremor, namely frequency, amplitude, and variability under different testing conditions. TOMs effectively differentiated between Parkinsonian, essential [76–78], and functional (psychogenic) tremors [79], and provided objective measurements of tremor severity in real-life condition using both wearable devices [74] and smartphone applications [75,80].
TOMs were also employed in the detection of subclinical tremor [73] and the analysis of the different tremor components during resting, movement initiation, and decelerating phase of movement [72]. Innovative machine-learning algorithms have been recently developed to evaluate the variability of tremor in the time-domain during resting and motor activities [76,77] (Table 2).

1.2.4. Speech

Multidimensional voice software programs for acoustic analysis (i.e., Praat, a freeware developed by the University of Amsterdam) have been employed for the quantitative assessment of amplitude, prosody, speed, grammar, and fluency of speech during sustained-vowels phonation, alternating and sequential motion rates, and normal reading [81]. TOMs proved useful in sensitively capturing differences in speech between PD patients and healthy controls, including maximal phonation time, phonation quotient, percent jitter, percent shimmer, and noise-to-harmonic ratio [81–83], suggesting their employment in the diagnostic assessment of PD [84], monitoring of PD-associated functional disability [85], and prognostic assessment of functionally relevant outcomes such as cognitive decline [86]. An automated speech assessment has been proposed as part of a battery of test, including also posture analysis, gait assessment, finger tapping, and response time, to monitor PD symptoms at the home environment using commercially available smartphone applications [87] (Table 3).

1.2.5. Sleep

Sleep studies employed polysomnography (PSG) and actigraphy to evaluate the quality of sleep in PD [88–92], or to diagnose PD-associated conditions such as sleep apnea [92,93], REM sleep behavior disorders [92–99], sleep attacks [100–102], periodic limb movements [103], and nocturia [104]. The effect of pharmacological and nonpharmacological treatments on nocturnal sleep quality was also investigated using PSG [100,105–107].

Fragmented sleep architecture and reduced quality of sleep were found both in mild and advanced PD [108], with strong correlation between sleep efficiency, as measured by the PSG, and clinical measures of sleep quality, such as the Epworth sleepiness scale (EPPS), the PD sleep scale (PSS), and the Pittsburgh Sleep Quality Index (PSQI) [109]. Additional studies evaluated the effect of pharmacological and nonpharmacological treatments on PD-associated quality of sleep, reporting an objective improvement in the architecture of sleep with advanced
therapeutic options such as levodopa/carbidopa intestinal gel infusion (LCIG) [106] and subthalamic nucleus deep brain stimulation [107]. (Table 4).

1.2.6. Cognitive function
Electroencephalographic (EEG) spectral analysis was used to evaluate cognitive function in PD [110–114], demonstrating a correlation between slow EEG rhythm in the temporo-occipital regions and poor performance on visuospatial tests [113,115], as well as a correlation between increased risk of dementia and slow EEG activity in the posterior regions during REM sleep, and in the temporal regions during wakefulness [112,115–118]. Promising yet preliminary results were reported by studies investigating the application of evoked potential-based measures in the differential diagnosis of PD [119,120] and in the assessment of PD-associated cognitive dysfunction [116–118,121–127], visual impairment [127–129], and behavioral disorders [130] (Table 3).

1.2.7. Autonomic function
Cardiovascular and sweating autonomic testing, as well as HRV and 24-hour ambulatory blood pressure monitoring have been employed in the assessment of sympathetic [131,132] parasympathetic [132,133], and cholinergic autonomic function [10]. Significant differences were observed between PD and healthy controls suggesting a role for autonomic testing in the diagnostic classification of PD [134], characterization of patients at risk of poor functional outcome [135] or higher risk of dementia [136], and in distinguishing PD from atypical Parkinsonian syndromes [137,138]. Recent studies also suggested that failure at the autonomic function testing might predict disease progression and survival in PD [139], as well as assist in the identification of patients expected to respond differentially to a range of treatments [140] (Table 5).

2. Conclusion
This systematic review showed that an increasing number of studies employed TOMs for the assessment of PD-associated motor and nonmotor phenomena over the last two decades (Figure 5). A range of technologies were used to evaluate motor endpoints such as gait, balance, bradykinesia, tremor, rigidity, and speech, as well as nonmotor endpoints such as sleep, cognition, and autonomic function. TOMs demonstrated the potential of capturing motor and nonmotor phenomena with greater accuracy and reduced intra- and inter-rater variability than clinical scales and self-administered questionnaires. However, only a few studies correlated TOMs with patient-centered clinical scales, quality of life questionnaires, or handicap index. In addition, minimal clinically important differences have been estimated for a limited number of TOMs.

A possible limitation of our study consists of a searching strategy limited to published studies. We did not conduct searches in multiple databases, as well as Grey Literature or ongoing trials (e.g., clinicaltrials.gov). Thus, our conclusions do not take into consideration currently ongoing research endeavors.
3. Expert commentary

While substantially improving the accuracy of both motor and nonmotor clinical endpoints in PD, ultimately resulting in improved diagnostics and monitoring of functional disability [11], the integration of TOMs into randomized controlled trials and routine clinical practice remains limited by several unresolved issues [141]. An important roadblock is the lack of a clear regulatory pathway from the FDA and the EMA for the routine employment of TOMs in both clinical and research settings. Less than 3% of ongoing clinical trials of neurodegenerative disorders have employed TOMs as an outcome measure. However, a survey from medical directors from pharmaceutical companies indicated that the majority of them are considering using TOMs in future clinical trials within the next five years [141]. Also, a smartwatch for the monitoring of epileptic seizures was recently approved by regulatory agencies based on data demonstrating their accuracy and usefulness in clinical practice [142,143]. This preliminary experience encourages similar studies in the field of movement disorders.

The ideal outcome measure would be objective, exhibit minimal intra- and inter-operator variability, continuously capture relevant data in the patient’s home environment, and sensitively capture small but meaningful changes over a prolonged period of time. Available TOMs meet some of these criteria but fail others, such as capturing motor and nonmotor activities from an ecologically valid environment. Currently, most of the gait and balance measures rely on tests assessing the patient’s functional capacity (e.g., timed-up-and-go) rather than functional activity (e.g., continuous recording of natural unrestricted gait). In addition, the resolution of biomechanical sensors remains restricted to the anatomical area on which the sensors are applied, possibly yielding low quantitative agreement with the broader range of motor disability, quality of life, and other measurable patient-relevant endpoints [11,144].

The assessment of nonmotor symptoms poses even more significant challenges due to the frequent use of cumbersome technologies such as PSG, EEG, or tilt table, which highlight the need for a tradeoff between the comprehensiveness of the assessment and their ecological validity. Simplified sleep mea-
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
Schlachetzki 2017	Cross-sectional	190 PD	Inc: PD, H&Y < 4; Exc: movement limitations for conditions other than PD	Measure gait characteristics in PD	Wearable sensor (accelerometer and gyroscope)	Gait parameters differed between HC and PD at moderate disease stage and/or higher levels of motor impairment	Good
Son 2017	Cross-sectional	20 PD	Inc: PD, H&Y < 4; Exc: movement limitations	Investigate turning in PD with 3D analysis during timed up and go	Motion analysis	Step length and foot clearance height, and timed up and go test during turning phase may be helpful turning measures in across multiple PD severities	Good
Conradsson 2017	Cross-sectional	19 PD	Inc: PD, age ≥ 60, MMSE ≥ 24, H&Y 2–3; Exc: movement limitations, visual impairment	Determine if dopaminergic medication improves preplanned and unplanned walking turns in PD	Kinematic analysis	Turning impairments remained even after dopaminergic medication	Good
Pham 2017	Cross-sectional	24 PD	Inc: PD, severe self-reported freezing; Exc: dementia, depression	Assess a model for detection of FOG in PD	FOG detector with kinematic analysis	FOG events can be detected with a automated single sensor located at the ankle or hip	Good
Pasloustra, 2015	Cross-sectional	139 PD	Inc: PD with pull test score 0–2; Exc: N/R	Assess postural instability in PD	Wearable sensor Accelerometer	PD foot motion estimates postural instability	Good
Svehlik 2009	Cross-sectional	20 PD	Inc: PD, PD meds, other medical conditions affecting gait; dementia	Evaluate time-distance, stride length, and ankle range of motion during gait in PD	Motion analysis Force plate	PD patients have slower and shorter stride length and reduced ankle range of motion	Good
Kim 2009	Cross-sectional	7 PD	Inc: PD; Exc: N/R	Evaluate postural responses of patients with PD during perturbation	Force plate Kinematic analysis	PD showed worse ankle feedback gain during perturbation	Good
Cho 2009	Cross-sectional	10 PD	Inc: PD; Exc: N/R	Examine walking dynamics in PD	Motion analysis	PD has greater gait impairment with decreased foot control and arm swing dynamics	Good
McVey 2009	Cross-sectional	10 PD	Inc: PD; Exc: N/R	Estimate postural instability in PD	Force plate Kinematic analysis	Early PD has greater postural instability vs. HC	Good
Alice 2007	Cross-sectional	10 PD	Inc: PD, history of FOG; Exc: medical conditions affecting gait other than PD	Describe strides characteristics prior to freezing vs. voluntary and ongoing gait	Kinematic analysis	PD had decrease in ankle and hip joint range of motion prior to freezing, with preserved movement shape	Good
Hong 2007	Cross-sectional	12 PD	Inc: PD, mild turning problems; Exc: N/R	Determine if PD retain turning ability after rotating platform walking	Kinematic analysis	PD retained turning ability after rotating platform walking task	Good
Ferrarin 2005	Cross-sectional	10 PD	Inc: PD, bilateral STN DBS, severe motor fluctuations, response to L-dopa; Exc: dementia, depression, abnormal cerebral MRI, other illnesses	Assess the effects of L-dopa and STN DBS separately and combined on gait in PD	Kinematic analysis	PD meds and bilateral STN DBS additively and synergistically improve gait parameters such as speed, stride length, and ROM of knee and ankle joints	Good
Stolze 2001	Cross-sectional	9 PD	Inc: Bilateral STN stimulation; Exc: N/R	Examine the impact of STN-DBS on gait in PD	Kinematic analysis	STN-DBS increases gait velocity and stride length	Good
Parisi 2015	Cross-sectional	34 PD	Inc: N/R; Exc: N/R	Correlate wearable sensor data with UPDRS	Wearable sensor	Wearable sensor accurately predicted UPDRS scores	Fair

(Continued)
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
Chomiak 2015	Case-control	24 PD w&w/o freezing	Inc: PD, walking unassisted	Evaluate if stepping-in-place with a concurrent mental task can be used for evaluating cognitive–motor deficits in PD	Kinematic analysis	Step height was significantly worse in PD during concurrent subtraction and stepping-in-place tasking	Fair
Dillmann 2014	Cross-sectional	40 PD 25 HC	Inc: akinetic-rigid PD	Analyze movements of the upper and lower limbs in PD	Kinematic analysis	PD demonstrated greater intersegmental coordination	Fair
Barbe 2014	Case-control	34 PD w&w/o freezing	Inc: PD, akinetic-rigid, right handed, age 40–80	Assess spatial and temporal gait variability between FOG episodes in freezers vs. nonfreezers	Kinematic analysis	Freezers have a higher spatial gait variability between freezing episodes	Fair
Moore 2013	Cross-sectional	25 PD	Inc: PD, self-reported freezing, MMSE ≥24	Evaluate sensor placement for accuracy in detecting FOG in PD	Accelerometer	A simpler single lumbar sensor had comparable accuracy to a 7 sensor system for detecting FOG	Fair
Zampieri 2011	Cross-sectional	6 PD 8 HC	Inc: N/R	Evaluate stride length, stride velocity, cadence, peak arm swing velocity, and turning velocity during Timed Up and Go	Wearable sensor	PD exhibited faster gait in laboratory than at home, although with shorter gait and steps in both conditions vs. HC	Fair
Merello 2010	Cross-sectional	20 PD 17 HC	Inc: PD Normal MRI H&Y in OFF = 3	Evaluate COM, COP, step length, and speed changes during festination in PD	Kinematic analysis	Patients with festination attempt to align COP to COM	Fair
Salarian 2010	Cross-sectional	12 PD 12 HC	Inc: H&Y 1 to 2.5, no history of PD drugs	Evaluate cadence, turning duration, and arm-swing angular velocity during Time Up and Go	Wearable sensor	PD demonstrated slower cadence and arm swing angular velocity and longer turning time duration	Fair
Ganesan 2010	Cross-sectional	20 PD 20 HC	Inc: H&Y = 2, stable PD meds, normal pull test, right dominance	Evaluate subclinical balance impairment in PD with normal pull test	Force plate	PD patients had subclinical direction-specific balance impairment	Fair
Johnsen 2010	Cross-sectional	22 PD	Inc: PD, STN DBS	Evaluate the effect of anatomical position of STN DBS on gait in PD	Kinematic analysis	Step velocity, step length, and balance had greater improvement with dorsal STN DBS compared to ventral STN DBS in PD.	Fair

(Continued)
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
Cantiniaux 2010	Cross-sectional	11 PD 11 HC	Inc: PD, bilateral STN DBS Exc: other walking or speech disorders	Assess the effects of L-dopa and STN DBS on gait and speech patterns in PD vs. HC	Kinematic analysis, Speech analysis	Walking and speech velocity were correlated, but STN DBS and L-dopa improved walking velocity while having no effect on speech velocity	Fair
Mancini 2009	Cross-sectional	11 PD 12 HC	Inc: PD, no history of PD meds Exc: other neurologic disorders or gait impairments	Evaluate anticipatory postural adjustments and characterize step initiation deficits in PD	Force plate, Accelerometer	Untreated PD exhibited smaller peak trunk acceleration vs. HC	Fair
Hong 2009	Cross-sectional	11 PD 12 HC	Inc: PD Exc: N/R	Determine objective differences in turning in PD vs. HC during a turning task	Kinematic analysis, EMG	PD differed from HC in axial control but had similar lower limb muscle patterns during turning task	Fair
Stack 2008	Cross-sectional	28 PD 12 HC	Inc: PD, walk w/o assistance Exc: Neurological comorbidities	Analyze differences in turning in PD vs. HC during a turning task	Motion analysis	PD differed on step count, time, and quality of turn versus HC	Fair
Huxham 2008	Cross-sectional	10 PD 10 HC	Inc: PD Exc: N/R	Analyze head and trunk rotation of PD vs. HC during walking turns	Kinematic analysis	PD demonstrated greater rotation of head and trunk versus HC	Fair
Carpinella 2007	Cross-sectional	6 PD	Inc: PD, UPDRS part III score 12–20 Exc: N/R	Quantitatively describe locomotor symptoms in mild PD	Kinematic analysis, Force plate	Early stage of PD had mild alterations of steady-state linear walking and in transitional conditions during direction changes	Fair
Ferrarin 2002	Cross-sectional	4 PD 4 HC	Inc: PD, STN DBS Exc: N/R	Assess gait changes with STN DBS in PD vs. HC	Kinematic analysis, Force plate	STN DBS improves gait patterns in PD but reduces ankle power production during stimulation	Fair
Van Emmerik 1999	Cross-sectional	27 PD 11 HC	Inc: recent PD diagnosis Exc: PD meds	Evaluate coordination and stability during walking in PD	Kinematic analysis	Analysis of changes in velocity during walking can identify coordination deficits and trunk rigidity	Fair
Doan 2010	Cross-sectional	10 PD 8 HC	Inc: PD Exc: N/R	Evaluate standing and reaching in a challenging environmental context	Force plate	PD delayed trunk flexion and peak end-point velocity	Poor
Bleuse 2008	Cross-sectional	10 PD 10 HC	Inc: PD Exc: N/R	Describe postural instability in PD vs. HC during limb movement	Force plate	PD had postural instability prior to limb movement	Poor

PD, Parkinson’s disease; HC, Healthy control; Inc, Inclusion; Exc, Exclusion; w&h/o, with and without; N/R, nonreported; min, minutes; REM, Rapid eye movement; DBS, Deep brain stimulation; STN, Subthalamic nucleus; COM, center of mass; COP, center of pressure; H&Y, Hoehn & Yahr; MMSE, Mini-Mental State Examination; ROM, range of motion.
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
Rabelo 2017	Cross-sectional	15 PD	Inc: Older patients with PD	Propose and evaluate an objective method for the assessment of	Gyroscope, accelerometer, magnetometer, and EMG	Methods detected objective bradykinesia differences between PD and HC	Good
		12 HC	Exc: Dementia, upper limb movement limitations	bradykinesia			
Jeon 2017	Cross-sectional	85 PD	Inc: PD with hand tremor	Assess automatic scoring system for PD	Wearable sensor, Gyroscope, Accelerometer	Predicted UPDRS tremor scores with high accuracy	Good
			Exc: leg tremor and dyskinesia	tremor			
Bologna 2016	Cross-sectional	18 PD	Inc: PD	Assess deficits in facial emotional processing and recognition in PD	Optokineti system	Altered emotional processing in PD	Good
		16 HC	Exc: dementia, neuropsychiatric disorders, facial movements or trauma				
Ricciardi, 2015	Cross-sectional	40 PD	Inc: PD	Correlate reduced expressiveness and altered emotion processing in PD	Optokineti system	Reduced facial expressiveness correlates with impaired emotional	Good
		17 HC	Exc: cognitive deficits, depression			recognition.	
Muller 2010	Cross-sectional	27 PD	Inc: PD patients	Evaluate pronation and supination of forearm in PD vs. HC	Diadochokinesimeter	PD patients showed reduced maximum velocity, interval and amplitude	Good
		27 HC	Exc: motor fluctuations				
Rand 2010	Cross-sectional	12 PD	Inc: PD	Assess wrist and trunk kinematic parameters in PD vs. HC	Kinematic systems	PD considerably lengthened transport time, especially during the	Good
		12 HC	Exc: other neurological disease			aperture closure period, and decreased peak velocity of wrist	
						and trunk movement	
Espay 2009	Cross-sectional	23 PD	Inc: PD	Categorize the spectrum of movements in PD in terms of speed and	Wearable motion sensor	Amplitude and speed impairments may be associated with different	Good
		16 HC	Exc: severe tremor, DBS, cognitive impairment, UMN/LMN signs, atypical parkinsonism	amplitude		functional aspects in PD	
Mak 2007	Cross-sectional	21 PD	Inc: PD, H&Y 2 or 3, stable PD medication	Develop an objective measure to quantify trunk rigidity in PD	Force plate	Method differentiated trunk rigidity in PD versus HC. There were	Good
		21 HC	Exc: N/R			increases in work done and resistive peak torques upon motor tasks	
Castiello 2000	Cross-sectional	14 PD	Inc: PD patient; Right dominance	Evaluate reach-to-grasp movement in PD patients during ON and OFF	Motion analysis	Dopaminergic medication reduced bradykinesia and fine-tuning kinematic	Good
		14 HC	Exc: Motor complications due to therapy	states		movement during reach-to-grasp task	
Lin 2018	Cross-sectional	15 ET	Inc: ET or PD	Quantify tremor spatially and temporally in PD	Tablet-based	Tablet measures of tremor correlates well with current clinical	Fair
		15 PD	Exc: N/R			assessments	
Summa 2017	Cross-sectional	7 PD	Inc: PD, H&Y 1 – 2.5	Analyze the kinematic and dynamic characteristics of goal-directed	Kinematic analysis	Prono-supination task is consistent to quantify bradykinesia with	Fair
		7 HC	Exc: movement limitations for conditions other than PD	movements		gyroscopes. Peak power seems appropriate for bradykinesia symptom	
						evaluation.	
Heremans 2016	Cross-sectional	30 PD	Inc: PD, H&Y 1 – 3	Assess writing quality in PD with and without FOG	Tablet-based	Patients with FOG showed decreased writing amplitudes and increased	Fair
		15 HC	Exc: depression, neurological comorbidities			variability compared to HC and PD w/o FOG	
Fraiwan 2016	Cross-sectional	21 PD	Inc: PD	Detect and quantify hand tremor in PD	Accelerometer	Detected hand tremor and diagnosed PD with high accuracy	Fair
		21 HC	Exc: N/R				
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
-----------------------	-----------------	------------	---	--	--------------------------	--	---------
Van Gilst 2015	Case-control	36 PD	Inc: PD; Exc: psychiatric diagnosis, DBS, other neurological disease, hypnotics	Evaluate the influence of sleep on motor functioning in PD	PSG dexterity pegboard	Sleep benefit is not paralleled by an actual improvement in motor functioning	Fair
Thanawattano 2015	Cross-sectional	22 ET	Inc: ET or PD; Exc: N/R	Assess tremor in time domain ('temporal fluctuation')	Wearable sensor gyroscope	Temporal fluctuation distinguishes tremor in PD and ET	Fair
Thanawattano 2015	Cross-sectional	30 PD	Inc: PD or ET; Exc: N/R	Quantify tremor fluctuation during resting and kinetic tasks in PD	Gyroscope	Tremor fluctuation can distinguish PD from ET tremor	Fair
Kotschet 2014	Cross-sectional	68 PD	Inc: levodopa responsive PD; Exc: N/R	Evaluate relationship between episodes of sleep immobility to bradykinesia, dyskinesia and daytime sleepiness	Accelerometer	Immobility is a marker of daytime sleep in PD	Fair
Cano-de-la-Cuerda, 2014	Cross-sectional	36 PD	Inc: PD with good walking ability; Exc: Dementia, depression	Evaluate finger-tapping in PD	Kinematic systems	Wearable sensor detected decreased amplitude of finger-tapping in PD	Fair
Jobbágy 2004	Cross-sectional	10 PD	Inc: N/R; Exc: N/R	Assess a qualitative pattern-matching technique for detecting events in movement recordings	Motion analysis	Reaction time and movement length were similar in PD and HC, but PD reached lower maximum speeds longer execution times than HC.	Fair
Fimbel 2003	Cross-sectional	18 PD	Inc: PD, atypical parkinsonism, right handed; Exc: neurological comorbidities	Measure frequency changes during tapping	EMG	Absolute change in tremor frequency and marked intraindividual variability with tapping in psychogenic tremor	Fair
Zeuner 2003	Cross-sectional	12 PD	Inc: N/R; Exc: N/R	Examine the impact of levodopa on the voluntary movements in PD	Kinematic systems	PD patients increase reach velocity and decrease movement time after taking levodopa	Fair
Kelly 2002	Cross-sectional	9 PD	Inc: N/R; Exc: N/R	Evaluate distance between the vertical projections of the COM and the COP to reflect postural control during gait initiation	Kinematic systems	PD patients allow less COM-COP distance than HC	Fair
Martin 2002	Cross-sectional	12 PD	Inc: PD; H&Y 1 to 3; Exc: acute illnesses, OH	Evaluate kinetic tremor (reach a target) in tremor-dominant PD	Accelerometer EMG Kinematic systems	Accelerometer detected greater frequency of kinetic tremor before the onset of the movement in PD Levodopa increase velocity in self-paced tasks	Fair
Johnson 1994	Cross-sectional	13 PD	Inc: H&Y 1 to 3, hand rest tremor; Exc: N/R	Evaluate the acute change in motor performance after Levodopa	Kinematic systems	Motion analysis detected differences between ON and OFF motor states during a syllable repetition task	Fair
Svensson 1993	Cross-sectional	9 PD	Inc: PD; Exc: Poor dental status	Examine tremor features in PD	Tablet-based	Digitizing tablet can be used to record sudden discontinuations during planar movements in PD	Poor
Vaillancourt 2000	Cross-sectional	12 HC	Inc: no clinical signs of tremor; Exc: N/R	PD tremor was more regular vs. physiological tremor in HC	Accelerometer EMG	PD tremor was more regular vs. physiological tremor in HC	Poor

PD, Parkinson's disease; HC, Healthy control; Inc, Inclusion; Exc, Exclusion; w&w/o, with and without; N/R, nonreported; DBS, Deep brain stimulation; STN, Subthalamic nucleus; EMG, Electromyography; UMN, upper motor neuron; LMN, lower motor neuron; COM, center of mass; COP, center of pressure; H&Y, Hoehn & Yahr; FOG, freezing of gait
Table 3. Eligible studies assessing cognitive function and speech.

Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
Godino-Llorente 2017	Cross-sectional	50 PD	Inc: PD, Exc: other neurological disorders	Assess speech biomarkers to evaluate PD	Speech analysis	Articulatory biomarkers accurately identify PD	Good
Vaicikynas 2017	Cross-sectional	64 PD	Inc: PD, Exc: N/R	Assess sustained phonation for diagnosis of PD	Speech analysis	Acoustic analysis can accurately detect PD	Good
Markser 2015	Case-control	30 PD w/o cognitive impairment	Inc: DBS indication, Exc: N/R	EEG metrics after DBS	EEG	STN-DBS has a negative effect on the patients grand total EEG scores	Good
Arora 2015	Cohort	10 PD 10 HC	Inc: PD, Exc: N/R	Assess if symptom recordings can differentiate PD vs. HC	Tablet-based Speech analysis Gyroscope Accelerometer	PD symptoms can be feasibly measured via smartphone	Good
Nojszewsk 2009	Cross-sectional	46 PD 14 HC	Inc: PD, Exc: severe illness, deafness	Neuropsychological test relation determination to AEP	AEP	AEP of different latencies are helpful in the assessment of cognitive changes associated with PD.	Good
Tanaka 2018	Cross-sectional	137 PD	Inc: PD with ambulatory and OH data, Exc: acute illnesses	Assess relationship between nocturnal BP and dementia in PD	24-hour ambulatory BP and heart rate	Nocturnal BP rise and OH correlated with dementia	Fair
Gauvin 2017	Cross-sectional	18 PD 16 HC	Inc: PD, Exc: other neurological disorders	Assessed verbal monitoring in PD	Speech analysis	PD has different verbal monitoring patterns and greater impairment vs. HC	Fair
Latrelle 2016	Prospective cohort	68 PD 44 HC	Inc: PD, Exc: dementia, stroke, epilepsy	Prediction of PDD by PSG	PSG	PD patients who developed PDD had higher slowing ratio in temporal, parietal, and occipital regions during REM sleep	Fair
Rektorova 2016	Cohort	44 PD	Inc: PD, Exc: depression	Assessed relationship between speech impairment and cognitive decline	Speech analysis	Impairment of speech prosody predicted rapid cognitive decline	Fair
Zimmermann 2015	Cross-sectional	48 PD	Inc: PD, Exc: dementia, stroke, epilepsy, low-quality EEG	Test EEG slowing relation to cognitive performance	EEG	Global EEG slowing is a marker for overall cognitive impairment and specific domains	Fair
Latrelle 2015	Prospective cohort	68 PD w/o cognitive impairment 47 HC	Inc: PD, Exc: dementia, stroke, epilepsy	Test PSG prediction of dementia	PSG	Sleep spindle alterations related to dementia development	Fair
Fischer 2010	Cross-sectional	10 PD 9 HC	Inc: English native speakers, Exc: dementia, depression, serious illness, speech impairment	Examine voice onset measures in PD	Voice analysis	PD medication had an effect on voice onset time change	Fair
Fonseca 2009	Cross-sectional	32 PD 26 HC	Inc: PD, Exc: antipsychotics, benzodiazepines	Evaluate relation between quantitative EEG and cognitive disturbance	EEG	EEG abnormalities were associated with mild cognitive impairment or dementia in PD versus HC	Fair
Matsui 2007	Cross-sectional	40 PD w/o dementia	Inc: H&Y 3 or 4	Examine P300 differences between PDD and PD	EEG	P300 latency was markedly delayed in PDD patients	Fair
Bunton 2005	Cross-sectional	7 PD 6 HC	Inc: PD, Exc: atypical parkinsonism	Determine patterns of lung volume use in PD during an extemporaneous speaking task	Microphone, magnetometer	Speakers with PD began speaking at lower lung volumes and had an increased variability in starting lung volumes across the speech sample versus HC	Fair
Katsarou 2004	Cross-sectional	45 PD 40 HC	Inc: PD, MMSE > 25, Exc: dementia	Compare P300 between PD patients and HC	EEG	Nondemented PD patients had a prolonged P300 latency versus HC	Fair
Antal 2000	Cross-sectional	20 PD 20 ET 20 HC	Inc: PD or ET, Exc: retinopathy, glaucoma, DM, alcoholism	Compare components of VEP in patients with PD and ET	VEP	No significant overall group difference	Fair
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
---------------	-----------------	------------	---	---	------------------	--	---------
Hawkes 1997	Cross-sectional	37 PD	Inc: PD, MMSE > 26, Exc: head trauma, DM, alcoholism	Evaluate olfactory function in PD	UPSIT, Olfactory	Over 70% of PD were abnormal. The evoked potentials were significantly	Fair
		47 HC			evoked potentials	delayed but comparable to HC. Simultaneous VEP and visual event related	
					VEP	potentials recordings are helpful to distinguish younger PD patients from	
					EEG	HC	
Sagliocco 1997	Cross-sectional	17 PD	Inc: PD, MMSE ≥ 23, visual acuity ≥ 20/40, Exc: unable to cooperate	Compare simultaneously recorded VEP and event related potentials in PD	VEP	P3 amplitude may be more sensitive than neuropsychological measures for	Fair
		17 HC			EEG	subtle brain dysfunction in early PD	
Green 1996	Cross-sectional	20 PD	Inc: PD, Exc: depression	Understand P3-associated variability in PD	EEG		Fair
		20 HC					
Pekkonen 1995	Cross-sectional	13 PD	Inc: severe illness, deafness	Determine stimulus change impairment in PD	EEG		Fair
		11 HC					
Okuda 1995	Case-control	32 PD	Inc: visual acuity > 0.7, Exc: ophthalmological disease	Measure differences in VEP in PD, PDD, and HC	VEP		Fair
		22 HC					
Kim 1995	Cross-sectional	16 PD	Inc: PD, MMSE > 24, Exc: antipsychotics, brain image lesion	Use P300 as index of cognitive function in PD	EEG		Fair
		15 HC					
Peppe 1995	Cross-sectional	18 PD	Inc: de novo PD, Exc: DM, retinopathy	Determine VEP characteristics in de novo PD	VEP		Fair
		8 HC					
Bodis-Wollner	Cross-sectional	50 PD	Inc: PD, Exc: dementia, thalamotomy, depression	Determine event related potentials characteristics in PD	EEG		Fair
1995							
Vierregge 1994	Cross-sectional	14 PD	Inc: right handed, Exc: depression, dementia, deafness	Assess selective auditory attention with processing negativity in PD	EEG		Fair
		16 HC					
Filipovic 2001	Cross-sectional	16 PD w&w/o depression	Inc: PD, Exc: severe tremor, focal brain lesions	Determine readiness potential patterns that distinguish w&w/o depression	EEG		Poor
Buttner 1996	Cross-sectional	39 PD	Inc: PD, Exc: dementia, retinopathy, Daltonism	Assess chromatic VEP in PD patient	VEP		Poor
		43 HC					

PD, Parkinson’s disease; HC, Healthy control; Inc, Inclusion; Exc, Exclusion; w&w/o, with and without; N/R, nonreported; min, minutes; PDD, Parkinson’s disease dementia; PSG, Polysomnography; DBS, Deep brain stimulation; STN, Subthalamic nucleus; EEG, electroencephalography; VEP, Visual evoked potentials; AEP, Auditory evoked potentials; DM, Diabetes mellitus; HTN, Hypertension; & Yahr; MMSE, Mini-Mental State Examination; OH, orthostatic hypotension; ERP, event related potential; UPSIT, Smell Identification Test
Table 4. Eligible studies assessing sleep.

Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
Loo 2008	Prospective Case-control	200 PD	Inc: newly diagnosed PD, MMSE > 24	Correlate RLS and PD	PSG	Weak association between RLS and PD	Good
		200 HC	Exc: N/R				
Zibetti 2017	Prospective Cohort	11 PD	Inc: Levodopa carbidopa intestinal gel	Evaluate the impact of gel infusion on sleep parameters	PSG	PSG showed less fragmented sleep pattern in PD patients treated with Levodopa carbidopa intestinal gel	Fair
Schroeder 2016	Case-control	50 PD	In: early and mid-duration PD	Explore REM density in PD across disease duration	PSG	REM density is reduced in patients with mid-duration PD and correlates with subjective scores on sleep impairment	Fair
		31 HC	Exc: Dementia				
Alatriste-Booth 2015	Cross-sectional	120 PD	In: PD	Sleep disorders prevalence in PD	PSG	Sleep apnea-hypopnea syndrome and RBD were the most frequent sleep disorders.	Fair
Valli 2015	Prospective cohort	15 PD	Inc: PSG recording	Test differences in dream content of PD patients w&w/o RBD	PSG	No differences in dream content of PD patients w/w/o RBD.	Fair
		w&w/o RBD	Exc: Dementia, hallucinations				
Louter 2014	Case-control	45 PD	In: PD	Actigraphy as a diagnostic tool for RBD in PD patients	Actigraphy	PD patients w/RBD have more bouts scored as 'wake' using actigraphy, compared to patients w/o RBD.	Fair
		w&w/o RBD	Exc: <10 min of REM sleep in PSG				
Vaughan 2013	Cross-sectional	60 PD	In: PD	Clinical factors related to nocturia and sleep disruption	PSG	More episodes of nocturia associated with less total sleep time and efficiency	Fair
			Exc: dementia, DBS, serious comorbidities				
Naismith 2010	Cross-sectional	22 PD	In: PD	Evaluate actigraphy for RBD reported by PD patients	Actigraphy	PD patients w/RBD have higher number of wake bouts than PD patients w/o RBD	Fair
		w&w/o RBD	Exc: N/R				
Shpirer 2006	Prospective cohort	46 PD	In: PD	Compare sleep characteristics of PD versus HC	PSG	PD had lower sleep efficiency, longer Stage 2 sleep and shorter REM sleep	Fair
Dhawan 2006	Cross-sectional	59 PD	In: PD, H&Y 3 to 5	Compare sleep problems in untreated PD compared to advanced PD and HC	PSG	Advanced PD demonstrated PSG patterns of periodic limb movement of sleep, obstructive sleep apnea, and RBD	Fair
		131 HC	Exc: N/R				
Diederich 2005	Case-control	49 PD	In: PD	Nocturnal respiration impact on sleep continuity and architecture	PSG	In nonobese PD patients, sleep apnea syndrome is not a major cause for sleep fragmentation	Fair
		49 HC	Exc: N/R				
Gagnon 2004	Cross-sectional	15 PD	In: PD, H&Y 1 to 3	Compare EEG of PD w&w/o RBD	EEG	EEG slowing reported during wakefulness in nondemented PD is strongly correlated to RBD	Fair
			Exc: atypical parkinsonism, antidepressants, serious illness				
			Inc: PD undergoing DBS				
Cicolin 2004	Cross-sectional	5 PD	In: PD	Evaluate sleep architecture modifications after STN DBS	PSG	STN DBS increases total sleep time and reduces wakefulness after sleep onset	Fair
			Exc: N/R				
Moller 2002	Cross-sectional	6 PD	In: unusually fast or sudden onset of sleep, combined dopamine agonist + levodopa	Investigate nighttime sleep quality and degree of daytime sleepiness in PD patients with sleep attacks	PSG	Unusually fast or sudden onset of sleep in PD patients is a phenomenon of daytime sleepiness	Fair
			Exc: N/R				
Gagnon 2002	Cross-sectional	33 PD	In: H&Y 1–3, use of dopamine agonists	Determine the frequency of RBD among patients with PD	PSG	A third of patients with PD meet RBD criteria based on PSG, but only half of these cases would have been detected by history taking.	Fair
		16 HC	Exc: atypical signs for PD diagnosis				
Young 2002	Cross-sectional	18 PD	In: PD, Epworth scale ≥8	Determine the effect of mild versus severe PD on sleep parameters	PSG	There was no significant difference in objective sleep parameters between the two groups.	Fair
			Exc: H&Y 3				
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
---------------	------------	------------	--	--	------------	--	---------
Comella 1993	Cross-sectional	10 PD	Inc: L-dopa + dopamine agonist for ≥6 months	Compare PSG in PD with and without hallucinations	PSG	The hallucinator group had a lower sleep efficiency, a reduced total REM sleep time, and a reduced REM percentage	Fair
			Exc: dementia, depression, serious illness				
Perez-Lloret 2009	Cross-sectional	71 PD 21 HC	Inc: PD, MMSE >24	Correlate sleep logs compared to PD Sleep Scale	Actigraphy	Retrospective sleep quality evaluation by the PDSS and day-to-day evaluation by sleep log coincided	Poor
Norlinah 2009	Cross-sectional	51 PD	Inc: PD	Determine the prevalence of sleep disorders in PD	PSG	The prevalence of PSG-quantified sleep disturbances is high. Sleep fragmentation is the most common	Poor
			Exc: active psychiatric condition, benzodiazepine, sedative or excessive alcohol use				
Moller 2009	Case-control	14 PD w&w/o sleep attack	Inc: PD, sudden sleep onset	Characterize and analyze sleep attack patterns on EEG	EEG	Sleep attacks are characterized by NREM stage 1 and 2 sleep in daytime EEG	Poor
Diederich 2009	Cross-sectional	62 PD	Inc: PD, sleep complaints	Examine the influence of diurnal dopaminergic medication on sleep	PSG	No impact of diurnal dopaminergic medication on nocturnal slow-wave sleep in PD patients	Poor
Uemura 2009	Cross-sectional	79 PD 79 HC	Inc: PD	Examine the relation between the PD sleep scale and PSG	PSG	PD sleep scale had significant correlation with PSG-measured sleep efficiency.	Poor
Roth 2003	Case-control	16 PD w&w/o sleep episodes	Inc: H&Y 1–3, use of dopamine agonists	Determine the association of dopamine agonists, daytime sleepiness, and sleep episodes	PSG	Sleep episodes are related with excessive daytime sleepiness and unrelated to nocturnal sleep or use of any specific dopamine agonist	Poor

PD, Parkinson’s disease; HC, Healthy control; Inc, Inclusion; Exc, Exclusion; w&w/o, with and without; N/R, nonreported; PSG, Polysomnography; REM, Rapid eye movement; DBS, Deep brain stimulation; STN, Subthalamic nucleus; EEG, electroencephalography; RBD, REM-sleep behavior disorder; H&Y, Hoehn & Yahr; MMSE, Mini-Mental State Examination
Study	Design	Population	Selection Criteria	Aim	Technology	Results	Quality
Pavy-LeTraon 2018	Cross-sectional	62 MSA-P	Inc: PD or MSA-P, Exc: N/R	Differentiate MSA from PD	Cardiovascular and sweating autonomic testing	Cardiovascular and sweating tests are useful for differentiating MSA-P and PD	Good
		96 PD	Inc: PD or probable MSA with OH, Exc: other illnesses that affect autonomic function	24 h ambulatory blood pressure compared to head-up tilting for diagnosing OH in PD and MSA		24 h ambulatory BP and heart rate	
Vichayanrat 2017	Cross-sectional	23 MSA	Inc: PD or probable MSA with OH, Exc: other illnesses that affect autonomic function	Assess 24 h ambulatory blood pressure compared to head-up tilting for diagnosing OH in PD and MSA	Cardiovascular autonomic testing	Dysautonomia affected patients with STN DBS and LCIG equally	Good
		18 PD	33 PD w/o AF	Assess dysautonomia in PD with STN DBS or LCIG			
		w/autonomic failure	30 PD w/STN-DBS, 30 PD w/LCIG				
Merola 2017	Cross-sectional	30 PD	Inc: PD, Exc: N/R	Assess dysautonomia in PD with STN DBS or LCIG	Cardiovascular autonomic testing	Earlier autonomic dysfunction onset correlates with rapid progression and shorter survival	Good
		w/STN-DBS	30 PD w/LCIG				
De Pablo-Fernandez 2017	Cross-sectional	100 PD	Inc: PD from autopsy, Exc: atypical Parkinsonisms and other illnesses	Correlate onset of autonomic dysfunction with progression and survival	Autonomic function testing (urinary/ED, GI, cardiovascular, and sweating)		Fair
Baschieri 2015	Cross-sectional	34 MSA-P	Inc: PD or MSA-P, Exc: other illnesses that affect autonomic function	Differentiate MSA from PD	Cardiovascular autonomic testing		Fair
Haapaniemi 2001	Cross-sectional	54 PD	Inc: treatment-naive PD, Exc: autonomic dysfunction	Examine autonomic cardiovascular regulation in untreated PD	24-hour ECG monitoring	Patients with mild hypokinesia had higher heart frequency than patients with more severe hypokinesia.	Fair
		47 HC					
Tanaka 2000	Cross-sectional	29 PD	Inc: PD, Exc: atypical parkinsonism, depression	Compare the P3 and N1 amplitude between demented, nondemented PD, and HC	ECG	There was an increased P3 amplitude and ECG power in nondemented PD patients versus controls	Fair
		11 HC					
Oka 1997	Cross-sectional	30 PD	Inc: PD, H&Y 1–4, Exc: atypical parkinsonism, anti Parkinsonian drugs other than L-dopa/carbidopa	Evaluation of QTc interval in patients with PD versus HC	ECG	QTc intervals in PD significantly longer than in HC. Unrelated to administration of levodopa	Fair
		30 HC					
Oka 2003	Cross-sectional	20 PD	Inc: N/R, Exc: N/R	Evaluation of R-R interval and BP during Valsava maneuver and deep inspiration	ECG, continuous BP monitoring	Baroreflex sensitivity in PD is smaller than in HC	Poor
		50 HC					
Mastrocola 1999	Cross-sectional	13 PD	Inc: PD, Exc: DM, HTN, drugs affecting autonomic tone	Evaluate autonomic dysfunction in PD	24-h ECG monitoring	Significant difference in ECG parameters between PD and HC, reflecting a reduction in autonomic function.	Poor

PD, Parkinson’s disease; HC, Healthy control; Inc, Inclusion; Exc, Exclusion; w&/w/o, with and without; N/R, nonreported; min, minutes; PDD, Parkinson’s disease dementia; DBS, Deep brain stimulation; STN, Subthalamic nucleus; EEG, electroencephalography; ECG, Electrocardiography; DM, Diabetes mellitus; HTN, Hypertension; LCIG, levodopa-carbidopa infusion gel; MSA and MSA-P, Multiple System Atropia – Parkinsonism; OH, orthostatic hypotension; BP, blood pressure; H&Y, Hoehn and Yahr
surements collected from an actigraphy may be preferred over the more accurate but less ecologically representative PSG [145]. A similar context applies to the evaluation of autonomic function. In a recent publication [146], we proposed that a 24h-ambulatory blood pressure monitoring might be effectively employed as a screening test for cardiovascular autonomic neuropathy, a disabling comorbidity in PD with relevant socio-economic impact [147]. Autonomic dysfunction remains underrecognized and undertreated in PD [148] in part because its ascertainment relies on cardiovascular autonomic testing available only in a few specialized laboratories. In conclusion, these findings highlight the urgent need for developing relatively simple and unobtrusive systems to monitor motor and nonmotor endpoints in the home and community settings rather than during in-hospital evaluations.

A significant limitation consists of the lack of a multisensor, open-access, common-language platform combining the results of different sensors into a multidimensional TOM expressing a global measure of PD-associated functional disability. Although this unmet need has been reiterated by the Movement Disorders Society (MDS) in various international meetings and position papers [149], diagnostic and monitoring systems developed by different manufacturers continue to remain incompatible with one another. As a result, it is difficult or impossible to combine data gathered by different TOMs. This point represents one of the most critical areas of need, identified by the MDS Task Force for the Integration of Technology in PD as requiring further development. Only few studies have employed a smartphone application that integrates the capture of voice, posture, gait, finger tapping, and response time in the patient home environment, with high patient participation as well as sensitivity and specificity in the collected outcome measures [87].

4. Five-year view

Continuous improvements in technology are creating increasing opportunities for TOMs to improve self-management options and overall healthcare outcomes in PD. Thus, their integration into research and practice is expected to grow in the next five years. Critical challenges consist of validation of measures with patient-centered relevant endpoints, standardization of procedures, and approval by regulatory authorities.

Key issues
- Clinical scales for the assessment of Parkinson disease (PD) symptoms are prone to limitations such as subjectivity, inter-rater variability, and limited accuracy in capturing small variations within and between patients. A new generation of technology-based objective measures (TOMs) may provide a more accurate characterization of motor and nonmotor phenomena associated with PD.
- We searched PubMed for human studies employing TOMs as primary, secondary, or exploratory outcomes for the qualitative or quantitative evaluation of PD-associated motor and nonmotor symptoms. There were 61 studies assessing motor phenomena such as gait and postural instability (n = 33 studies), bradykinesia (n = 13 studies), tremor (n = 8 studies), and rigidity (n = 7 studies), and 63 studies assessing nonmotor phenomena such as sleep disorders (n = 23 studies), cognitive impairment (n = 18 studies), dysautonomia (n = 12 studies), sensory deficits (n = 3 studies), and voice analysis (n = 7 studies).
- Although TOMs have the potential to significantly improve the accuracy of both motor and nonmotor clinical endpoints, their integration into randomized controlled trials and routine clinical practice remains limited by several unresolved issues, including validation of patient-centered outcomes, standardization of measurements, and approval by regulatory authorities.
- While TOMs have not yet been shown to be superior to the clinical evaluation, their integration into research and practice is expected to substantially increase in the next five years and translate into enhanced care, better self-management options for PD patients, and overall improved healthcare outcomes. A survey from 12 medical directors from pharmaceutical companies indicated that 83% of them are considering using TOMs in future clinical trials within the next five years.
Declaration of interest
A Merola is supported by the NIH (KL2 TR001426), has received speaker honoraria from CSL Behring and Cygnus Therapeutics, and has received grant support from Lundbeck. A Fasano has received grants/research support from MJ Fox Foundation, University of Toronto, McLaughlin Centre; has received honoraria or consultation fees from AbbVie, Boston Scientific, Chiesi Farmaceutici, Ipsen, Medtronic, Novartis, TEVA Canada, UCB Pharma; and has participated in sponsored advisory boards for AbbVie, Boston Scientific, and Ipsen. AJ Espay is supported by the NIH, has received grant support from CleveMed/Great Lakes Neurotechnologies, Davis Phinney Foundation, and MJ Fox Foundation; was an investigator in Chelsea-sponsored studies, has acted as a scientific advisor to Lundbeck, and is marketer for Droxidopa but has no financial interest in either company. They have received personal compensation as a consultant/advisory board member for Solvay, Abbott, Chelsea Therapeutics, TEVA, Impax, Merz, Lundbeck, and Eli Lilly; has received honoraria from TEVA, UCB, the AAN, and the Movement Disorder Society; and publishing royalties from Lippincott Williams & Wilkins, Cambridge University Press, and Springer. The authors have no further conflicts of interest to declare.

Reviewer disclosures
Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Funding
This paper was not funded.

References
Papers of special note have been highlighted as either of interest (✓) or of considerable interest (○) to readers.

1. Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Prim 2017;3:17013
2. Goetz CG, Stebbins GT, Wolff D, et al. Testing objective measures of motor impairment in early Parkinson’s disease: feasibility study of an at-home testing device. Mov Disord. 2009;24:551–556
3. Martínez-Martín P, Chaudhuri KR, Rojo-Abuín JM, et al. Assessing the non-motor symptoms of Parkinson’s disease: MDS-UPDRS and NMS Scale. Eur J Neurol. 2015;22:37–43

Assessment of Parkinson’s disease-associated symptoms using wearables.

4. Roy SH, Cole BT, Gilmore LD, et al. High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity. Mov Disord 2013;28:1080–1087
5. Zhan A, Mohan S, Tarolli C, et al. Using smartphones and machine learning to quantify parkinson disease severity. JAMA Neurol 2018;75:876–880
6. Aghanavasi S, Nyholm D, Senek M, et al. A smartphone-based system to quantify dexterity in Parkinson’s disease patients. Informatics Med Unlocked. 2017;9:11–17
7. Kostikis N, Hristu-Varsakelis D, Amaoutoglou M, et al. A smartphone-based tool for assessing Parkinsonian hand tremor. IEEE J Biomed Heal Informatics. 2015;19:1835–1842
8. Haubenberger D, Kalowitz D, Nahab FB, et al. Validation of digital spiral analysis as outcome parameter for clinical trials in essential tremor. Mov Disord 2011;26:2073–2080
9. Naimsmith SL, Rogers NL, Mackenzie J, et al. The relationship between actigraphically defined sleep disturbance and REM sleep behavior disorder in Parkinson’s disease. Clin Neurol Neurosurg. 2010;112:420–423
10. Vichyananrat E, Low DA, Lodice V, et al. Twenty-four-hour ambulatory blood pressure and heart rate profiles in diagnosing orthostatic hypotension in Parkinson’s disease and multiple system atrophy. Eur J Neurol 2017;24:99–107
11. Maetzler W, Domingos J, Srulijes K, et al. Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord 2013;28:1628–1637
12. Stone AA, Shiffman S, Schwartz JE, et al. Patient compliance with paper and electronic diaries. Control Clin Trials 2003;24:182–199
13. Hobart JC, Cano SJ, Zajicek JP, et al. Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations. Lancet Neurology 2007;6:1094–1105
14. Broderick JE Electronic diaries: appraisal and current status. Pharmaceut Med. 2008;22:69–74
15. Food and Drug Administration 2009. Patient-reported outcome measures: use in medicinal product development to support labeling claims. Washington, DC: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration
16. Moher D, Liberati A, Tetzlaff J, et al., PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269
17. NHLBI, Research Triangle Institute International. National heart, lung, and blood institute quality appraisal tools [online]. [cited 2018 Jun 14]. Available from: https://www.nhlbi.nih.gov/health-topics/studyquality-assessment-tools
18. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of InterventionsVersion 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. https://training.cochrane.org/handbook

Assessment of gait and posture in Parkinson’s disease using technology-based objective measures.

19. Kelly VE, Hingstom A5, Rundle MM, et al. Interaction of levodopa and cues on voluntary reaching in Parkinson’s disease. Mov Disord. 2002;17:38–44
20. Stolze H, Klebe S, Pfepping M, et al. Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology. 2001;57:144–146
21. Johnson MT, Mendez A, Kipnis AN, et al. Acute effects of levodopa on wrist movement in Parkinson’s disease. Kinematics, volitional EMG modulation and reflex amplitude modulation. Brain. 1994;117:1409–1422
22. Merello M, Fantacone N, Balej J Kinematic study of whole body center of mass position during gait in Parkinson’s disease patients with and without festination. Mov Disord. 2010;25:747–754
23. Martin M, Shinberg M, Kuchibhatla M, et al. Gait initiation in community-dwelling adults with Parkinson disease: comparison with older and younger adults without the disease. Phys Ther. 2002;82:566–577
24. Chomiak T, Pereira FV, Meyer N, et al. A new quantitative method for evaluating freezing of gait and dual-attention task deficits in Parkinson’s disease. J Neurol Transm (Vienna). 2015;122:1523–1531
25. Dillmann U, Holzhofer C, Johann Y, et al. Principal component analysis of gait in Parkinson’s disease: relevance of gait velocity. Gait Posture. 2014;39:882–887
26. Rand MK, Lemay M, Squire LM, et al. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson’s disease. Exp Brain Res. 2010;201:509–525
27. Kim S, Horak FB, Carlson-Kuhta P, et al. Postural feedback scaling deficits in Parkinson’s disease. J Neurophysiol. 2009;102:2910–2920
28. Carpinella I, Crenna P, Calabrèse E, et al. Locomotor function in the early stage of Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng. 2007;15:543–551
29. Conradsson D, Paquette C, Løkk J et al. Pre- and unplanned walking turns in Parkinson’s disease - effects of dopaminergic medication. Neuroscience. 2017;341:18–26
30. Barbe MT, Amarell M, Snijders AH, et al. Gait and upper limb variability in Parkinson’s disease patients with and without freezing of gait. J Neurol. 2014;261:330–342
31. Van Emmerik RE, Wagenaar RC, Winogrodzka A, et al. Identification of axial rigidity during locomotion in Parkinson disease. Arch Phys Med Rehabil. 1999;80:186–191
Assessment of Parkinson’s disease-associated bradykinesia and rigidity using technology-based objective measures.

Kotschet K, Johnson W, McGregor S, et al. Daytime sleep in Parkinson’s disease measured by episodes of immobility. Parkinsonism Relat Disord. 2014;20:578–583.

Rabelo AG, Neves LP, ApS P et al. Objective assessment of Bradykinesia estimated from the wrist extension in older adults and patients with Parkinson’s disease. Ann Biomed Eng. 2017;45:2614–2625.

Summa S, Tosi J, Taffoni F, et al. Assessing bradykinesia in Parkinson’s disease using gyroscope signals. IEEE Int Conf Rehabil Robot. 2017;2017:1556–1561.

Jobbágy A, Harcos P, Karoly R, et al. Analysis of finger-tapping movement. J Neurosci Methods. 2005;141:29–39.

Castiello U, Bennett KM, Bonfiglioli C, et al. The reach-to-grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia. 2000;38:46–59.

Popovic MB, Dzoljic E, Kostic V A method to assess hand motor blocks in Parkinson’s disease with digitizing tablet. Tohoku J Exp Med. 2008;216:317–324.

Heremans E, Nackaerts E, Broeder S, et al. Handwriting impairments in people with Parkinson’s disease and freezing of gait. Neurorehabil Neural Repair. 2016;30:911–919.

Van Gilst MM, van Mierlo P, Bloem BR, et al. Quantitative motor performance and sleep benefit in Parkinson disease. Sleep. 2015;38:1567–1573.

Svensson P, Henningson C, Karlsson S Speech motor control in Parkinson’s disease: a comparison between a clinical assessment protocol and a quantitative analysis of mandibular movements. Folia Phoniatr (Basel). 1993;45:157–164.

Müller T, Harati A Diadochokinetic movements differ between patients with Parkinson’s disease and controls. J Neural Transm (Vienna). 2010;117:189–195.

Ricciardi L, Bologna M, Morgante F, et al. Reduced facial expressiveness in Parkinson’s disease: a pure motor disorder? J Neurol Sci. 2015;358:125–130.

Bologna M, Berardelli I, Paparella G, et al. Altered kinematics of facial emotion expression and emotion recognition deficits are unrelated in Parkinson’s disease. Front Neurol. 2016;7:230.

Cano-de-la-Cuerda R, Vela-Desojo L, Miangolarra-Page JC, et al. Isokinetic dynamometry as a technologic assessment tool for trunk rigidity in Parkinson’s disease patients. NeuroRehabilitation. 2014;35:493–501.

Espay AJ, Beaton DE, Morgante F, et al. Impairments of speed and amplitude of movement in Parkinson’s disease: a pilot study. Mov Disord. 2009;24:1001–1008.

Assessment of Parkinson’s disease-associated tremor using technology-based objective measures.

Wenzelburger R, Raethjen J, Löffler K et al. Kinetic tremor in a reach-to-grasp movement in Parkinson’s disease. Mov Disord. 2000;15:1084–1094.

Vaillancourt DE, Newell KM The dynamics of resting and postural tremor in Parkinson’s disease. Clin Neurophysiol. 2000;111:2046–2056.

Jeon H, Lee W, Park H, et al. Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device. Sensors (Basel). 2017;17. doi:10.3390/s17092067
Application of technology-based objective measures to assess sleep quality index, the Parkinson's disease hand tremor detection system for mobile application. J Med Eng Technol. 2016;40:127–134

Thanawattano C, Pongthornseri R, Anan C, et al. Temporal fluctuations of tremor signals from inertial sensor: a preliminary study in differentiating Parkinson's disease from essential tremor. Biomed Eng Online. 2015;14:101

Thanawattano C, Anan C, Pongthornseri R, et al. Temporal fluctuation analysis of tremor signal in Parkinson's disease and essential tremor subjects. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6054–6057

Lin PC, Chen KH, Yang BS, et al. A digital assessment system for evaluating kinetic tremor in essential tremor and Parkinson's disease. BMC Neurol. 2018;18:25

Zeuner KE, Shoge RO, Goldstein SR, et al. Accelerometry to distinguish psychogenic from essential or parkinsonian tremor. Neurology. 2003;61:548–550

Balachandar A, Fasano A Characterizing orthostatic tremor using a smartphone application. Tremor Other Hyperkinet Mov (N Y). 2017;7:488

- Application of technology-based objective measures to assess speech using technology-based objective measures.

Godino-Llorente J, Shattuck-Hufnagel S, Choi JY, et al. Towards the identification of idiopathic Parkinson's disease from the speech, new articulatory kinetic biomarkers. PLoS One. 2017 Dec

Bunton K Patterns of lung volume use during an exteroceptive speech task in persons with Parkinson disease. J Commun Disord. 2005;38:331–348

Fischer E, Goberman AM Voice onset time in Parkinson disease from sustained phonation and speech signals. J Commun Disord. 2010;43:21–34

Vaičiukynas E, Verikas A, Gelzinis E, et al. Detecting Parkinson's disease from sustained phonation and speech signals. PLoS One. 2017;12:e0185613

Gauvin HS, Mertens J, Mariën P, et al. Verbal monitoring in Parkinson's disease: a comparison between internal and external monitoring. PLoS One. 2017;12:e0182159

Rektorova I, Mekyjska J, Janusová E, et al. Speech prosody impairment predicts cognitive decline in Parkinson's disease. Parkinsonism Relat Disord. 2016;29:90–95

Arora S, Venkataraman V, Zhan A, et al. Detecting and monitoring the symptoms of Parkinson's disease using smartphones: A pilot study. Parkinsonism Relat Disord. 2015;21:650–653

- Assessment of Parkinson's disease-associated sleep disorders using polysomnography and other technology-based objective measures.

Perez-Lloret S, Rossi M, Nouzeilles M, et al. Parkinson's disease sleep scale, sleep logs, and actigraphy in the evaluation of sleep in parkinsonian patients. J Neurol. 2009;256:1480–1484

Norlinai M, Afidah KN, Noradina AT, et al. Sleep disturbances in Malaysian patients with Parkinson's disease using polysomnography and PDSS. Parkinsonism Relat Disord. 2009;15:670–674

Loo HV, Tan EK Case-control study of restless legs syndrome and quality of sleep in Parkinson's disease. J Neurol Sci. 2006;266:145–149

Shipirer I, Minovitz A, Klein C, et al. Excessive daytime sleepiness in patients with Parkinson's disease: a polysomnography study. Mov Disord. 2006;21:1432–1438

Alatristle-Booth V, Rodriguez-Violante M, Camacho-Ordóñez A, et al. Prevalence and correlates of sleep disorders in Parkinson's disease: a polysomnographic study. Arq Neuropsiquiatr. 2015;73:241–245

Diederich NJ, Vaillant M, Leischen M, et al. Sleep apnea syndrome in Parkinson’s disease. A case-control study in 49 patients. Mov Disord. 2005;20:1413–1438

Gagnon JF, Bédard MA, Fantini ML, et al. REM sleep behavior disorder and REM sleep without atonia in Parkinson's disease. Neurology. 2002;59:585–589

Gagnon JF, Fantini ML, Bédard MA, et al. Association between waking EEG slowing and REM sleep behavior disorder in PD without dementia. Neurology. 2004;62:401–406.

Valli K, Frauscher B, Peltomaa T et al. Dreaming furiously? A sleep laboratory study on the dream content of people with Parkinson's disease and with or without rapid eye movement sleep behavior disorder. Sleep Med. 2015;16:419–427

Louter M, Arends JB, Bloem BR, et al. Actigraphy as a diagnostic aid for REM sleep behavior disorder in Parkinson's disease. BMC Neurol. 2014;14:76

Comella CL, Tanner CM, Ristanovic RK Polysomnographic sleep measures in Parkinson's disease patients with treatment-induced hallucinations. Ann Neurol. 1993;34:710–714

Schoeder LA, Rufra Q, Sauvageot N, et al. Reduced rapid eye movement density in parkinson disease: a polysomnography-based case-control study. Sleep. 2016;39:21339.

Roth T, Rye DB, Borchert LD, et al. Assessment of sleepiness and unintended sleep in Parkinson's disease patients taking dopamine agonists. Sleep Med. 2003;4:275–280.

Möller JC, Stiasny K, Hargutt V, et al. Evaluation of sleep and driving performance in six patients with Parkinson's disease reporting sudden onset of sleep under dopaminergic medication: a pilot study. Mov Disord. 2002;17:474–481.

Möller JC, Unger M, Stiasny-Kolster K et al. Continuous sleep EEG monitoring in PD patients with and without sleep attacks. Parkinsonism Relat Disord. 2009;15:238–241

Dhawan V, Dhoat S, Williams AJ, et al. The range and nature of sleep dysfunction in untreated Parkinson's disease (PD). A comparative controlled clinical study using the Parkinson's disease sleep scale and selective polysomnography. J Neurol Sci. 2006;248:158–162

Vaughan CP, Juncos JL, Tronti LM, et al. Nocturia and overnight polysomnography in Parkinson disease. Neurol Urodyn. 2013;32:1080–1085

Diederich NJ, Paolini V, Vaillant M Slow wave sleep and dopaminergic treatment in Parkinson's disease: a polysomnographic study. Acta Neurol Scand. 2009;120:308–313

Zibetti M, Romagnolo A, Merola A, et al. A polysomnographic study in parkinsonian patients treated with intestinal levodopa infusion. J Neurol. 2017;264:1085–1090

Cicolin A, Lopiano L, Zibetti M, et al. Effects of deep brain stimulation of the subthalamic nucleus on sleep architecture in parkinsonian patients. Sleep Med. 2004;5:207–210

Young A, Home M, Churchward T, et al. Comparison of sleep disturbance in mild versus severe Parkinson's disease. Sleep. 2002;25:573–577

Uemura Y, Nomura T, Inoue Y, et al. Validation of the Parkinson's disease sleep scale in Japanese patients: a comparison study using the Pittsburgh sleep quality index, the epworth sleepiness scale and polysomnography. J Neurol Sci. 2009;287:36–40

- Assessment of Parkinson's disease-associated cognitive symptoms using electroencephalography and evoked potentials.

Tanaka H, Koenig T, Pascaud-Marqui RD, et al. Event-related potential and EEG measures in Parkinson's disease without and with dementia. Dement Geriatr Cogn Disord. 2000;11:39–45

Fonseca LC, Tedrus GM, Letro GH, et al. Dementia, mild cognitive impairment and quantitative EEG in patients with Parkinson's disease. Clin EEG Neurosci. 2009;40:168–172

Zimmermann R, Gschwandtner U, Hatz F, et al. Correlation of EEG slowing with cognitive domains in nondemented patients with Parkinson’s disease. Dement Geriatr Cogn Disord. 2015;39:207–214

Latreille V, Carrier J, Lafontune M, et al. Sleep spindles in Parkinson's disease may predict the development of dementia. Neurobiol Aging. 2015;36:1083–1090

Markser A, Maier F, Lewis CJ, et al. Deep brain stimulation and cognitive decline in Parkinson's disease: the predictive value of electroencephalography. J Neurol. 2015;262:2275–2284

Latreille V, Carrier J, Gaudet-Fex B, et al. Electroencephalographic prodromal markers of dementia across conscious states in Parkinson's disease. Brain. 2016;139:1189–1199

Matsui H, Nishinaka K, Oda M, et al. Auditory event-related potentials in Parkinson's disease: prominent correlation with attention. Parkinsonism Relat Disord. 2007;13:394–398
Assessment of Parkinson’s disease-associated autonomic dysfunction using technology-based objective measures.

117. Katsarou Z, Bostjantjopoulou S, Kimiskidis V, et al. Auditory event-related potentials in Parkinson’s disease in relation to cognitive ability. Percept Mot Skills. 2004;98:1441–1448

118. Bodis-Wollner I, Borod JC, Cicero B, et al. Modality dependent changes in event-related potentials correlate with specific cognitive functions in nondecremented patients with Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1995;9:197–209

119. Hawkes CH, Shephard BC, Daniel SE Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62:436–446

120. Peppe A, Stanzione P, Pierelli F, et al. Visual alterations in de novo Parkinson’s disease: pattern electroretinogram latencies are more delayed and more reversible by levodopa than are visual evoked potentials. Neurology. 1995;45:1144–1148

121. Pekkonen E, Jousmäki V, Reinikainen K, et al. Automatic auditory discrimination is impaired in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1995;95:47–52

122. Green J, Woodard JL, Sirockman BE, et al. Event-related potential P3 change in mild Parkinson’s disease. Mov Disord. 1996;11:32–42

123. Okuda B, Tachibana H, Kawabata K, et al. Visual evoked potentials (VEPs) in Parkinson’s disease: correlation of pattern VEPs abnormality with dementia. Alzheimer Dis Assoc Disord. 1995 Summer;9:68–72

124. Vieregge P, Verleger R, Wascher E, et al. Auditory selective attention is impaired in Parkinson’s disease—event-related evidence from EEG potentials. Brain Res Cogn Brain Res. 1994;2:117–129

125. Nojszewska M, Pilczuk B, Zakrezewska-Pniewska B, et al. The auditory system involvement in Parkinson disease: electrophysiological and neuropsychological correlations. J Clin Neurophysiol. 2009;26:430–437

126. Kim GW, Sohn YH, Huh K, et al. Relationship between the auditory P300 and the procedural memory function in drug-naive patients with Parkinson’s disease. J Bioelectrochem. 1995;27:101–111

127. Sagliocco L, Bandini F, Pierantozzi M, et al. Electrophysiological evidence for visuospatial dysfunction in younger non-Caucasian patients with Parkinson’s disease. J Neural Transm (Vienna). 1997;104 (4–5): 427–439

128. Antal A, Dibö G, Kéri S, et al. P300 component of visual event-related potentials distinguishes patients with idiopathic parkinsonian disease from patients with essential tremor. J Neural Transm (Vienna). 2000;107:787–797

129. Büttnert T, Kuhn W, Müller T, et al. Chromatic and achromatic visual evoked potentials in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1996;100:443–447

130. Filipović SR, Sternić N, Svetel M, et al. Bereitschaftspotential in depressed and non-depressed patients with Parkinson’s disease. Mov Disord. 2001;16:294–300

- Assessment of Parkinson’s disease-associated autonomic dysfunction using technology-based objective measures.

131. Low PA, Tomalia VA, Park KJ Autonomic function tests: some clinical applications. J Clin Neurol. 2013;9:1–8

132. Oka H, Mochio S, Yoshio M, et al. Evaluation of baroreflex sensitivity by the sequence method using blood pressure oscillations and R-R interval changes during deep respiration. Eur Neurol. 2003;50:230–243

133. Oka H, Mochio S, Sato H, et al. Prolongation of QTc interval in patients with Parkinson’s disease. Eur Neurol. 1997;37:186–189

134. Mastrolaco C, Vanacore N, Giovani A et al. Twenty-four-hour heart rate variability to assess autonomic function in Parkinson’s disease. Acta Neurol Scand. 1999;99:245–247

135. Haapaniemi TH, Pursiainen V, Korpelainen J, et al. Ambulatory ECG and analysis of heart rate variability in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70:305–310

136. Tanaka R, Shimo Y, Yamashiro K, et al. Association between abnormal nocturnal blood pressure profile and dementia in Parkinson’s disease. Parkinsonism Relat Disord. 2018;46:24–29

137. Pavy-LeTraon A, Brefel-Courbon C, Dupouy J, et al. Combined cardiovascular and sweating autonomic testing to differentiate multiple system atrophy from Parkinson’s disease. Neurophysiol Clin. 2018;48:103–110

138. Baschieri F, Calandra-Buonaura G, Doria A, et al. Cardiovascular autonomic testing performed with a new integrated instrumental approach is useful in differentiating MSA-P from PD at an early stage. Parkinsonism Relat Disord. 2015;21:477–482

139. De Pablo-Fernandez E, Tur C, Revesz T, et al. Association of autonomic dysfunction with disease progression and survival in Parkinson disease. JAMA Neurol. 2017;74:970–976

140. Merola A, Romagnolo A, Comi C et al. Prevalence and burden of dysautonomia in advanced Parkinson’s disease. Mov Disord. 2017;32:796–797

141. Artusi CA, Mishra M, Latimer P, et al. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases. Parkinsonism Relat Disord. 2018;46:553–556

142. Onorati F, Regalia G, Caborni C, et al. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia. 2017;58:1870–1879

143. Rylwin P, Ciumas C, Wisniewski I, et al. Wearable devices for sudden unexpected death in epilepsy prevention. Epilepsia. 2018;59 Suppl 1:61–66

144. Ellis T, Cavanaugh JT, Earhart GM, et al. Which measures of physical function and motor impairment best predict quality of life in Parkinson’s disease? Parkinsonism Relat Disord. 2011;17:693–697

145. Sánchez-Ortuño MM, Edinger JD, Means MK, et al. Home is where sleep is: an ecological approach to test the validity of actigraphy for the assessment of insomnia. J Clin Sleep Med. 2010;6:21–29

146. Milazzo V, Di Stefano C, Valleronga F, et al. Reverse blood pressure dipping as marker of dysautonomia in Parkinson disease. Parkinsonism Relat Disord. 2018. doi:10.1016/j.parkreldis.2018.06.032

147. Merola A, Sawyer RP, Artusi CA, et al. Orthostatic hypotension in Parkinson disease: impact on health care utilization. Parkinsonism Relat Disord. 2018;47:45–49

148. Merola A, Romagnolo A, Rosso M, et al. Orthostatic hypotension in Parkinson’s disease: does it matter if asymptomatic? Parkinsonism Relat Disord. 2016 Dec;23:65–71

149. Espay AJ, Bonato P, Nahab FB, et al. Movement disorders society task force on technology. Technology in Parkinson’s disease: challenges and opportunities. Mov Disord. 2016;31:1272–1282