Direct and Electronic Health Record Access to the Clinical Decision Support for Immunizations in the Minnesota Immunization Information System

Sripriya Rajamani1,2, Aaron Bieringer3, Stephanie Wallenius1, Daniel Jensen4, Tamara Winden2,5 and Miriam Halstead Muscoplat3

1Public Health Informatics Program, University of Minnesota, Minneapolis, MN, USA. 2Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA. 3Minnesota Department of Health, St. Paul, MN, USA. 4Olmsted County Public Health, Rochester, MN, USA. 5Allina Health, Minneapolis, MN, USA.

Supplementary Issue: Use of Biomedical Informatics for Improving Vaccine Uptake and Adherence

ABSTRACT: Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms that determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.

KEYWORDS: immunization, immunization information system, biomedial informatics, clinical decision support, electronic health record, Minnesota

SUPPLEMENT: Use of Biomedical Informatics for Improving Vaccine Uptake and Adherence

COMPETING INTERESTS: Authors disclose no potential conflicts of interest.

CORRESPONDENCE: sripriya@umn.edu

COPYRIGHT: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.

Paper subject to independent expert blind peer review. All editorial decisions made by independent academic editor. Upon submission manuscript was subject to anti-plagiarism scanning. Prior to publication all authors have given signed confirmation of agreement to article publication and compliance with all applicable ethical and legal requirements, including the accuracy of author and contributor information, disclosure of competing interests and funding sources, compliance with ethical requirements relating to human and animal study participants, and compliance with any copyright requirements of third parties. This journal is a member of the Committee on Publication Ethics (COPE). Published by Libertas Academica. Learn more about this journal.

Introduction

Immunization information systems. Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers.1 Individual providers, health care systems, and public health stakeholders in a given jurisdiction access these systems to provide appropriate immunizations and to improve individual- and population-based vaccination rates. IIS offer numerous functionalities such as comprehensive history of vaccinations given across multiple providers and over time, vaccine forecasting algorithms to predict immunizations/clinical decision support for immunizations (CDSi), immunization assessment reports, client follow-up with reminder/recall, vaccine management tools, and state-supplied vaccine ordering capability.

IIS currently operate in a health care ecosystem empowered by electronic health records (EHRs) and other health information technology (HIT). Adoption of these different electronic infrastructures is supported by incentives from the Centers for Medicare and Medicaid Services (CMS)2 through the federal Meaningful Use (MU) program. MU includes recommendations on standards to represent and exchange needed patient data and facilitate interoperability guided by Office of the National Coordinator for Health Information Technology (ONC).3 The three-stage MU program recognized the role of IIS in improving vaccination rates and requires standards-based reporting of immunizations to IIS in Stages 1 and 2 and recommendations to access IIS CDSi in Stage 3.4 The emerging health care reform under Medicare Access and CHIP Reauthorization Act (MACRA),5 which comprises Merit-Based Incentive Payment System (MIPS), does incorporate immunization registry reporting and receipt of immunization forecasts and histories from the public health IIS.

CDSi in IIS. The recommendations issued by the Advisory Committee on Immunization Practices (ACIP)6 serve
as the gold standard for guidelines related to immunizations. These ACIP recommendations are disseminated through various modalities including IIS. An important aspect to IIS is CDSi, which contains computable logic/vaccine forecasting algorithms based on ACIP recommendations that recognize gaps in immunizations and predict needed immunizations. This CDSi evaluation is complex, including factors such as age for vaccine administration, sex, the number of doses, their intervals, precautions, and contraindications.

With increase in use of EHRs, some of these complex immunization CDSi rules have been built directly into EHRs as CDS modules and/or accessed from IIS (through EHRs or directly via IIS interface). Due to immunization schedule complexity and need for a comprehensive vaccination history for accurate predictions, current recommendation is to access CDSi from IIS instead of locally in the EHR as types of CDS vary across provider groups and across EHR implementations.

Minnesota context. IIS in Minnesota (Minnesota Immunization Information Connection [MIIC])\(^7\) has been operational since 2002 and currently holds 75 million immunizations for 7.6 million individuals with 4,852 organizations as registered users. Minnesota has a strong e-Health environment with a state-wide eHealth Initiative\(^6\) led by an Advisory Committee and various laws related to e-Health.\(^9\) Minnesota has also high EHR adoption rate in clinics and hospitals (97% clinics and 100% hospitals),\(^10\) which presents a need and opportunity to better understand the access and use of IIS functions, including CDSi access through EHRs.

MIIC currently offers an option branded as “Alternate Access” to query and access MIIC and the CDSi from within the provider EHR.\(^7\) This solution offers the ability to generate a query to MIIC for vaccination history and forecasting based on demographics of the EHR record. The display of query results and capability for reconciliation of immunization data vary across EHR platforms and implementation of this functionality.

EHRs and IIS. To date, EHR-IIS research includes concept papers,\(^11,12\) single clinical setting reports,\(^13,14\) assessment of automated reporting from EHR to IIS,\(^15,16\) creation of computable CDSi logic,\(^17\) impact of IIS-supplemented EHR reminders on flu vaccination,\(^18\) responses to regulations,\(^19,20\) and refinement of relevant standards.\(^21,22\) Literature review reveals limited studies on exchange of data across public health systems and clinical care and these have focused primarily on clinician alerts for diseases.\(^23,24\) Studies with emphasis on data interchange between IIS and EHRs have been limited with a paucity of research on CDSi offered by IIS. Prior research by the authors has focused on understanding the technological context around reporting of immunization from EHRs to IIS\(^25\) and in characterizing the access to CDSi in IIS based on volume of queries to the IIS.\(^26\)

The objective of this study was to analyze the CDSi presentation by MIIC IIS through direct access by IIS interface and by access through EHRs to outline similarities and differences. This will lead to better understanding of the display of immunization-related information, clinical decision support, and available user functionalities, with the ultimate goal of promoting IIS CDSi to improve vaccination rates.

Methods

The study was conducted in Minnesota using its IIS, the MIIC. Review of CDSi representation was completed through two modes: interviews of subject matter experts and by review of CDSi-related system functionalities in MIIC and EHRs. The experts for the study were chosen based on their knowledge of CDSi in MIIC and in selected EHR systems. Staff members from the following four organizations were included: the MIIC program, a large non-profit health care system, a local public health department, and an EHR vendor. The interviews were conducted during the time period of March–May 2015 in semi-structured format. The objective was to solicit information on access to MIIC CDSi, fit within the workflow, display of immunization data in user interface of MIIC and EHRs, representation of immunization data elements (including vaccine forecasting) from query of MIIC CDSi, and functional capability of EHRs to incorporate MIIC CDSi data and to understand the process of reconciliation of immunizations across the two systems. Topics included in the semi-structured interview are displayed in Table 1.

The EHR systems (Epic®, PH-Doc®) examined in this process were selected based on high adoption in Minnesota with Epic® being used by 49% of clinics\(^27\) in the state and PH-Doc® used by 56% of local public health departments.\(^28\) Apart from being the dominant market product in private and public health care, these products also had varying functionality with Epic® offering a static (read-only) view of MIIC CDSi and PH-Doc® offering an interactive option for movement of data across MIIC and EHR. Screenshots of the various user interfaces relevant to CDSi were collected from MIIC and from the two EHR systems as part of this

Table 1. Semi-structured interview topics.

Participants and their role	Demonstration of access to CDSi and its fit within workflow
Representation of immunization data elements (including vaccine forecasting) from query of MIIC CDSi	Display and presentation of immunization data in user interface of IIS and EHRs
Functional capability of EHRs to incorporate MIIC CDSi data and the Immunization Reconciliation Process	Other relevant information
process. Analysis focused on the data elements presented, categories of information, presentation of data and ability for reconciliation of immunization data with capabilities for data comparison, data edits, and data input into EHR from MIIC.

Results

Both the EHR products examined (Epic®, PH-Doc®) had access to MIIC positioned within the immunization workflow. Both EHRs offered the ability to generate a query to MIIC for vaccination history and forecasting based on demographics of the EHR record. This option addresses the issue of repeat data entry for the query and also does not require logging into the MIIC system separately. Data displayed from MIIC and the two EHR systems are presented in Table 2. There is overlap of displayed immunization history and vaccine forecasting data elements between MIIC and the EHR systems, as the EHR system draws in response data from MIIC and displays it for the user. The MIIC CDSi through its user interface presented immunization information composed of data elements in three distinct categories: individual demographic data (19), vaccination history (7), and vaccine forecasting recommendations (5). Figure 1 presents the 31 data elements presented by MIIC in the direct interface access. Figures 2 and 3 highlight the vaccination history and vaccine forecasting display provided by MIIC.

Table 2. Immunization data elements displayed.

DISPLAY ELEMENT	MIIC	PH-Doc®	EPIC®
Individual information			
Name	✓	✓	✓
Birthdate	✓	✓	✓
Gender	Stored elsewhere	Stored elsewhere	✓
Address	✓	✓	✓
Mother’s maiden name	✓	✓	✓
Chart#/MIIC ID	✓	✓	✓
VFC eligible	✓	✓	✓
Schedule name	✓	✓	✓
Client comment	✓	✓	✓
Vaccination history			
Date administered	✓		✓
Series	✓	Stored elsewhere	✓
Vaccine group	✓	✓	✓
Vaccine/trade name	✓	✓	✓
Dose	✓	✓	✓
Owned?	✓	Stored elsewhere	✓
Reaction	Stored elsewhere	Stored elsewhere	✓
Historical?	✓	✓	✓

Figure 1. Clinical Decision Support for Immunizations (CDSi) presented by MIIC.
The variation was in presentation of the vaccination history and the ability to integrate data across the two EHR products examined. The MIIC CDSi data displayed by the PH-Doc© system (Fig. 4) holds much of the same data elements as the MIIC display. A key functionality of PH-Doc© is the dynamic data exchange between MIIC data from query of IIS and the EHR system. Data can be reconciled by incorporating data from the MIIC query directly into the EHR without the need for manual data entry. PH-Doc© provided the capability to compare immunization differences between MIIC and the EHR system in a side-by-side view of both systems. In addition, it highlighted differences in immunizations between the two systems.

Figure 2. Vaccination history display in MIIC.
Screenshot: Courtesy of MIIC.

Figure 3. Vaccine forecasting display in MIIC.
Screenshot: Courtesy of MIIC.
systems, which is essential for reconciliation of immunization data. Review of Epic© pointed to a read-only view of the MIIC data obtained from Alternate Access query (Fig. 5) and did not support side-by-side comparison of data from the two systems. The data display utilized the same formatting options as in MIIC with similar display of vaccination history and forecasting.

Figure 4. Dynamic data display provided by PH-Doc©.
Notes: MCCC confidential. These materials contain copyrighted confidential and/or proprietary information of Minnesota Counties Computer Cooperative. Reproduction, distribution, or other use of this information requires the prior written consent of MCC. ©2011 Minnesota Counties Computer Cooperative. All rights reserved.

Figure 5. MIIC CDSi data display in Epic.
Notes: Copyright © Epic Systems Corporation. Screenshot: Courtesy of MiIC.
Discussion

As immunization guidelines are increasingly embedded into various electronic tools, including EHRs, there is a need to decrease the variability due to varying logic (CDSi rules) across the variety of clinical decision support options. IIS CDSi incorporates ACIP recommendations and presents a great opportunity to increase the uniformity in implementation of immunization guidelines. Both current efforts to promote EHR adoption/use (MU) and emerging payment reform efforts ensure use of interoperable and certified EHRs. Given this EHR landscape, there is a growing need for research on access and use of CDSi at the point of care, specifically through EHRs.

This study contribution is to analyze and present information about the IIS CDSi through various access options, both directly through the IIS interface and by access through EHRs. Study limitations are that it presents functionality during early 2015 and does not describe current EHR product upgrades. Additionally, current Epic® and PH-Doc® installations do support dynamic data movement between MIIC and EHR, which is essential for reconciliation of the immunization data. Another limitation is that the study focuses on presentation of immunization data and does not validate the rules/decision logic in both MIIC and the two EHR systems.

Identifying how best to utilize decision support and immunization data available through IIS will be of high importance as bidirectional exchange across EHRs and IIS is implemented. Recent projects have evaluated the capability of select EHR products in their ability to submit data to the IIS and query the IIS38 and in the process of developing usability guidance documents.30 Vendors and users should participate in the usability review process and also utilize the guidance for product enhancements and EHR review/selection. It will be of great benefit if national organizations such as the American Immunization Registry Association11 can work collaboratively with IIS and EHR communities to develop best practices around presentation of IIS data in the EHR and issue guidelines on reconciliation of immunization data across the two systems.

As delivery of certain preventive services including immunizations have spread beyond the confines of traditional health care organizations, IIS serve as a hub for immunization data by holding immunization information across providers and over time. In addition, they can serve as a central resource for decision support logic based on current ACIP recommendations. It is essential to understand the access and use of the IIS CDSi functionality, given the increasing adoption and use of EHRs. Findings will help to guide best practices in immunization data integration and data display and, ultimately, support clinical decisions on immunizations.

Acknowledgments

The authors would like to thank Dr Genevieve Melton-Meaux, MD, PhD, FACMI, for her guidance with the project grant. The authors express their gratitude to Emeritus Professor Laël C. Gatewood, PhD, FACMI, for her editorial assistance with the manuscript. In addition, the authors would like to thank Deb Castellanos and Mary Thompson from Xerox Corporation for sharing their expertise related to immunization decision support by PH-Doc®. Finally, the authors acknowledge the support of Minnesota Counties Computer Cooperative for providing permission to utilize the screenshot from PH-Doc® and to MIC Leadership for allowing usage of various screenshots.

Author Contributions

Conceived and designed the project: SR. Participated in project: SW, AB, DJ, TW, MM. Wrote the first draft of the manuscript: SR. Contributed to the writing of the manuscript: SW, MM. Provided content for manuscript: AB, DJ, TW. All authors reviewed and approved the final manuscript.

REFERENCES

1. Centers for Disease Control and Prevention. Immunization Information Systems (IIS); 2014 [cited October 2, 2016]. Available at: http://www.cdc.gov/vaccines/programs/iis/index.html
2. Centers for Medicare and Medicaid Services. EHR Incentive Programs; 2010 [cited September 23, 2016]. Available at: http://www.cms.gov/ez incentiveprograms
3. Office of the National Coordinator for Health Information Technology. Standards and Interoperability; 2010 [cited September 23, 2016]. Available at: http://www.healthit.gov/policy-researchers/impl ementers/standards-interoperability
4. Centers for Medicare & Medicaid Services. Electronic Health Record Incentive Program – Stage 3 and Modifications to Meaningful Use in 2015 Through 2017; 2015 [cited October 1, 2016]. Available at: https://www.federalregister.gov/documents/2015/10/16/2015-25593/medicare-and-medicaid-programs-electronic-health-record-incentive-program-stage-3-and-modifications
5. Centers for Medicare and Medicaid Services. Medicare Access & CHIP Reauthorization Act of 2015 (MACRA); 2015 [cited October 1, 2016]. Available at: https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment- Instruments/Value-Based-Programs/MACRA-MIPS-and-APMs/MACRA-MIPS-and-APMs.html
6. Advisory Committee on Immunization Practices (ACIP). Immunization Schedules; 2012 [cited October 1, 2016]. Available at: http://www.cdc.gov/vaccines/schedules/hcp/index.html
7. Minnesota Immunization Information Connection. Submitting and Exchanging Data; 2015 [cited September 20, 2016]. Available at: http://www.health.state.mn.us/divs/idepc/immunize/registry/hcp/data.html
8. Minnesota e-Health. Minnesota eHealth Initiative and Advisory Committee; 2007 [cited September 28, 2016]. Available at: http://www.health.state.mn.us/e-health/abouthome.html
9. Minnesota e-Health Initiative. Minnesota Laws and Mandates Related to e-Health; 2015 [cited September 28, 2016]. Available at: http://www.health.state.mn.us/e-health/lawsum.html
10. MDH Office of Health IT. Minnesota e-Health Assessment Reports, Factsheets and Briefs; 2014 [cited September 15, 2016]. Available at: http://www.health.state.mn.us/e-health/assessment.html
11. HLN Consulting. IIS and EHR Feature Overlay. 2014. Available at: https://www. hln.com/assets/pdf/HLN-IIS-EHR-Overlay-White-Paper.pdf
12. Dombkowski KJ, Clark SJ. Redefining meaningful use: achieving interoperability with immunization registries. Am J Prev Med. 2012;42(4):33–5.
13. Agency for Healthcare Research and Quality (AHRQ). DEVISE: Data Exchange of Vaccine Information between an Immunization Information System and Electronic Health Record (New York); 2013 [cited May 8, 2015]. Available at: http://healthit.ahrq.gov/devise-data-exchange-vaccine-information-between-immunization-information
14. Stevens LA, Palma JP, Fandher KK, Longhurst CA. Immunization registries in the EMR Era. Outlin e J Public health Inform. 2013;5(2):211.
15. Merrill JJ, Phillips A, Keeling J, Kaushal R, Senathirajah Y. Effects of automated immunization registry reporting via an electronic health record deployed in community practice settings. Appl Clin Inform. 2011;4(2):267-75.
16. Schauer SL, Maers TR, Verdon MJ, Hopfensperger DJ, Davis JP. The Wisconsin immunization registry experience: comparing real-time and batched file submissions from health care providers. JMIF. 2014;113(3):102–6.
17. National Center for Immunization and Respiratory Diseases – Centers for Disease Control and Prevention. Clinical Decision Support for Immunization (CDSi); 2013 [cited September 17, 2016]. Available at: http://www.cdc.gov/vaccines/ programs/iis/cdsi.html

18. Stockwell MS, Catallozzi M, Camargo S, et al. Registry-linked electronic influenza vaccine provider reminders: a cluster-crossover trial. *Pediatrics*. 2015;135(1):e75–82.

19. American Immunization Registry Association (AIRA). Resources; 2000 [cited September 22, 2016]. Available at: http://www.immregistries.org/resources

20. Minnesota eHealth Initiative. Minnesota eHealth Coordinated Responses to Regulations; 2007 [cited September 17, 2016]. Available at: http://www.health.state.mn.us/e-health/coordresponse.html

21. Centers for Disease Control and Prevention. HL7 Version 2.5.1: Implementation Guide for Immunization Messaging, version 1.5; 2014 [cited April 15, 2015]. Available at: http://www.cdc.gov/vaccines/programs/iis/technical-guidance/hl7.html

22. Office of the National Coordinator for Health Information Technology. 2015 Edition Health Information Technology (Health IT) Certification Criteria, 2015 Edition Base Electronic Health Record (EHR) Definition, and ONC Health IT Certification Program Modifications; 2015 [cited September 15, 2016]. Available at: https://www.federalregister.gov/articles/2015/03/30/2015-06612/2015-edition-health-information-technology-health-it-certification-criteria-2015-edition-base

23. Dixon BE, Gamache RE, Grannis SJ. Towards public health decision support: a systematic review of bidirectional communication approaches. *J Am Med Inform Assoc*. 2013;20(3):577–83.

24. Gamache R, Stevens KC, Merriwether R, Dixon BE, Grannis S. Development and assessment of a public health alert delivered through a community health information exchange. *Online J Public Health Inform*. 2010;Vol 2, No 2.

25. Rajamani S, Roche E, Soderberg K, Bieringer A. Technological and organizational context around immunization reporting and interoperability in Minnesota. *Online J Public Health Inform*. 2014;6(3):e192.

26. Rajamani S, Bieringer A, Muscoplat M. Characterizing the access of clinical decision support offered by immunization information system in Minnesota. *Online J Public Health Inform*. 2015;7(3):e227.

27. Minnesota Department of Health – Office of Health Information Technology. Minnesota eHealth Report–Clinics: Adoption and Use of EHRs and Exchange of Health Information, 2015, 2015 [cited November 11, 2015]. Available at: http://www.health.state.mn.us/e-health/summaries/reportclinic2014.pdf

28. Minnesota Department of Health – Office of Health Information Technology. Local Public Health: e-Health Capacity, Capability, and Challenges, 2014, 2015 [cited June 23, 2016]. Available at: http://www.health.state.mn.us/e-health/summaries/reportlph2014.pdf

29. CNI Advantage LC. Immunization-Related Capabilities for Clinical Software; 2015. [cited October 15, 2015]. Available at: http://www.immunizationsand-healthit.org/

30. Healthcare Information and Management Systems Society (HIMSS). Immunization Integration Program; 2016 [cited August 23, 2016]. Available at: http://www.himssinnovationcenter.org/immunization-integration-program/availability

31. American Immunization Registry Association (AIRA). AIRA Vision and Mission; 2000 [cited August 23, 2016]. Available at: http://www.immunregistries.org/aboutaira/vision-mission