Abstract

We demonstrate the feasibility of database reconstruction under a cache side-channel attack on SQLite. Specifically, we present a Flush+Reload attack on SQLite that obtains approximate (or “noisy”) volumes of range queries made to a private database. We then present several algorithms that, taken together, reconstruct nearly the exact database in varied experimental conditions, given these approximate volumes. Our reconstruction algorithms employ novel techniques for the approximate/noisy setting, including a noise-tolerant clique-finding algorithm, a “Match & Extend” algorithm for extrapolating volumes that are omitted from the clique, and a “Noise Reduction Step” that makes use of the closest vector problem (CVP) solver to improve the overall accuracy of the reconstructed database. The time complexity of our attacks grows quickly with the size of the range of the queried attribute, but scales well to large databases. Experimental results show that we can reconstruct databases of size 100,000 and ranges of size 12 with an error percentage of 0.11% in under 12 hours on a personal laptop.

1 Introduction

Data processing in the cloud is becoming continually more pervasive and cloud computing is intrinsic to the business model of various popular services such as Microsoft’s Office 365, Google’s G suite, Adobe Creative Cloud or financial services such as intuit [1]. Besides for cloud usage by industry, federal agencies are now utilizing cloud services, even for storage and analytics of sensitive data. For example, Microsoft recently won a $10 billion government contract from the Department of Defense (DoD) to create a “secure cloud” for the Pentagon [3]. While providing important functionality, processing of sensitive information in the cloud raises important security challenges. In the extreme case, one may not trust the cloud server itself to handle the sensitive data, corresponding to a threat model in which the cloud server is assumed to be malicious. In this case, data must be encrypted, which raises the challenging task of computation over encrypted data. Techniques and tools for computation over encrypted data have been addressed in a myriad of papers [9, 12, 27, 31] and various privacy attacks have also been exhibited [23, 29].

A weaker threat model, considered in this work, assumes that the server may be trusted to handle the sensitive data (e.g. a privacy agreement has been signed with the cloud service), but that a spy process is running on the same public server. If a spy process is co-located with the victim on the same physical machine they will share hardware such as a cache, which serves as a side channel.

Our goal is to explore the effect of side-channels on open-source database engines. We present an attack on SQLite, a C-language library that implements a small and fast SQL database engine and is among the top ten databases in the ranking released by db-engines.com. Our threat model assumes that an external user queries a private database stored on a victim VM, upon which the victim VM processes the query using SQLite and returns the result to the external user. The attacker is disallowed from directly querying the database or observing the outputs of a query. Since the attacker is running a spy VM co-located with the victim VM in the cloud, it can monitor the shared cache to obtain side-channel leakage. The goal of the attacker is to reconstruct the column upon which the victim is making range queries.

Relationship to attacks on Searchable Encryption. Our work is inspired by the line of works of Kellaris et al. [23], Grubbs et al. [16], Lacharité et al. [26] and Grubbs et al. [17]. These works exhibited database reconstruction attacks in scenarios where range queries are made to an encrypted database and the access pattern (i.e. which records are returned) [23,26] or communication volume (i.e. the number of records re-
with standard database engines, such as order preserving en-
volumes for all ranges. We then apply a “Noise Reduction
reduced.

Our approach. We develop a new algorithmic approach
recovered cliques will then be used to obtain candidate databases that
“close” to the original database. To extrapolate volumes that may be entirely missing from the recovered cliques, we
develop a “Match & Extend” algorithm. After the Match &
expected to have reconstructed approximate volumes for all ranges. We then apply a “Noise Reduction
we consider a database of size n and an attribute with range size N for which range queries (i.e. SQL
queries) for 1 $\leq i \leq N$ are called “elementary volumes”. Note that
to fully recover all the ranges in the form $[i, i]$ it is enough to
recover “elementary volumes”. In this paper each volume
is represented by a node in a graph. A node with label v_i
correspond to a range of volume v_i. In this paper we refer to
each node of the graph by its label. The goal of our attack is
to reconstruct the entire column corresponding to the field
with range size N. Specifically, for each $i \in [N]$, we would
like to recover the number of records n_i that take value i in
the attribute under inspection. The focus of this work is on
“dense” databases, meaning that every possible value from 1
to N is taken by some records in the database. For simplicity,
we assume that ranges are always from 1 $-$ N. However, the result
generalizes to any range $a - b$, where database records

1To extract access pattern from the cache, Prime & Probe must be used to
monitor the data cache, and because a single record from the database can fill
a large portion of the cache, it is difficult to distinguish which records were
accessed by observing only the cache. Additionally, the mapping from the
memory location to cache line is not one to one and hence, a large number of
records will map to the same cache locations, making it difficult to distinguish
which records were accessed.

2We note that in the searchable encryption setting this is not the typi-
case since ciphertexts encrypting values between 1 and N are typically
sampled from a larger space. However, in this work, our main focus is on
cleartext databases and attackers who learn information about them via the
cache side-channel.
can take on at most N discrete values within the range. Our attack model assumes that a malicious party can only launch side-channel attacks to reconstruct the database. In particular, we assume that the attacker monitors its read timing from a cache line to deduce useful information about the victim. As discussed, the noise introduced by the cache side-channel makes our setting more challenging.\(^3\)

1.1 Our Contributions

We next summarize the main contributions of this work.

Weaker threat model: Side-channels. Prior work considers a threat model of a malicious server that is computing on an encrypted database. We consider an honest server computing on a cleartext (or encrypted) database and a malicious third-party that is co-located with the honest server in the cloud, sharing a cache, and cannot issue queries to the database. The malicious third-party can only obtain information by monitoring the shared cache. In particular, this means that the third-party cannot learn the *exact* volumes of range queries and only obtains *approximate* or *noisy* volumes.

Assessing effectiveness of previous algorithms in the noisy setting. We first analyzed the effectiveness of a brute force attack, similar to the one suggested in the work of Kelkaris et al. [23], but adapted to the *noisy* and *dense* database setting. When we ran this version of the brute-force search algorithm, it failed to return a result, even after a day of running. We expected this to be the case, since when the volumes are noisy, there are far more choices that need to be checked in each step of the brute force search.

We next analyzed the effectiveness of an attack based on clique-finding, as in the work of Grubbs et al. [16]. A graph is constructed based on the observed volumes of the range queries. To construct the graph from *exact* volumes, one first creates nodes with labels corresponding to their volume, i.e. the node with label v_i has volume v_i. There is a connection between node v_i to v_j if there exists a node v_k such that $v_i = v_j + v_k$. Note that by this construction the nodes corresponding to elementary volumes form a clique of size N which can be recovered by clique finding algorithm. The ranges $[1,1],[1,2],\ldots,[1,N]$ and the full database can then be recovered from this information.

In the noiseless setting we always expect to get a clique of size N; however, in the noisy setting there are multiple edges missing in the constructed graph and so a clique of size N will typically not exist. For example, when we ran the algorithm on our noisy data with $N = 12$, the size of the cliques returned was at most 3. Further, the clique of size 3 no longer corresponds to the volumes of the elementary volumes, and therefore is not useful for (even partial) reconstruction of the database.

Developing algorithms for the noisy setting. Whereas Grubbs et al. [16] used exact volumes to reduce the database reconstruction to a clique-finding problem, we begin by reducing the reconstruction problem given volumes to a **Noise-Tolerant Clique Finding Problem** by introducing a notion called a *noise budget*. Remember in the *exact* volume case, there is a connection between node v_i to v_j if there exists a node v_k such that $v_i = v_j + v_k$. Here, to construct the graph from *noisy* volumes, we create a window, $w(v_k)$, of acceptable values around each leaked volume v_k, where the width of the windows is determined by the noise budget. We place an edge between node v_i and v_j if there exists a node v_k such that $|v_i - v_j| \in w(v_k)$. The clique finding algorithm will return a clique that allows one to recover the volumes, and the full database can then be recovered from this information. An attacker can determine a good setting of the noise budget by mounting an attack in a preprocessing stage on a different, known database under same or similar conditions. Specifically, the attacker can first create its own known database (unrelated to the unknown private database). The attacker can then simulate the side-channel attack on the known database on a similar system and compare the recovered approximate/noisy volumes with the correct volumes, and observe by how much they are off, to determine an appropriate noise budget. In some cases, incorporating the noise budget into the construction of the graph and running the clique-finding algorithm already allows us to successfully reconstruct a fairly accurate database. However, there are some cases where, even after increasing the noise budget, the algorithm fails to recover a candidate database (i.e. a clique of size N does not exist). Further, even in cases where increasing the noise budget does allow for reconstruction of some candidate database, the accuracy of the candidate database suffers and the run-time increases. We therefore introduce an additional algorithm called **Match & Extend**, which allows successful reconstruction of candidate databases with improved accuracy.

The **Match & Extend** algorithm starts by obtaining a candidate clique from the graph. If the size of the clique is equal to N (the maximum range) we are done. Otherwise, the algorithm looks at all the other cliques present in the graph starting from the largest to the smallest. For each clique, a potential database is recovered. We then pick one of the databases as our base solution and compare it with the other recovered databases. In the **Match** phase, the algorithm looks for the **“approximate longest common substring”** between two databases. The **“approximate”** version of the longest common substring considers two substrings equal if their corresponding values are within an acceptable range dictated by the noise budget. Two values a and b are **“approximately”** equal if $|a - b| \leq \min(a,b) \cdot 2 \cdot \text{noise budget}$. Then for the databases which have enough overlap with the base solution,
the Extend phase will compare the non-matching parts of the two solutions and will try to reconcile the volumes in them into one “combined” database.

Finally, in the Noise Reduction Step, we use the results of the previous steps along with a closest vector problem (CVP) solver to reconstruct nearly the exact original database, despite the noisy measurements. The recovered database of the previous step returns the ranges of the format \([1,1], [2,2], \ldots, [N,N]\). We can reconstruct potential volumes for each range with these recovered volumes and for each computed volume we select the closest volume from the initial noisy volume set obtained from the side-channel data. We construct a lattice basis using the known linear dependencies between the volumes of different ranges. The volumes obtained from the side-channel data correspond to the target point for the CVP problem. Using the CVP solver, we find a set of volumes contained in the lattice (so they satisfy the linear dependencies) that are closest to the target point. This “self-correction” technique allows us to recover a better candidate solution for the database.

Launching the side-channel attack. We adapt the Flush+Reload technique for obtaining the (approximate) volumes of responses to range queries in SQLite. This allows us to learn a set of noisy volumes corresponding to the range queries made by external parties to the database stored by the victim. The monitoring process starts as soon as an activity is detected and continues for the duration of the SQLite query processing. Since the databases we attack are large, the processing takes an extended amount of time, meaning that there are many opportunities for noise to be introduced into a trace. On the other hand, we require accurate measurements for our attack to succeed.\(^4\) We contrast our setting to other side-channel settings, which typically require accurate measurements over a short period or, can tolerate inaccurate measurements over a longer period. For example, side-channel attacks on cryptographic schemes require accurate information to reconstruct the high-entropy keys, but typically take a short period of time, since the keys themselves are short. On the other hand, side-channel attacks for profiling purposes typically monitor an application for longer periods of time, but can tolerate noise well since their goal is just to distinguish between several distinct scenarios.

To achieve high accuracy over a long period of time, we must handle interrupts as well as false positives and false negatives. For interrupts, we must mitigate their effects by detecting and dropping those traces in which an interrupt occurs. There can also be false positives as a result of CPU prefetching, which we show how to detect. False negatives occur if the victim process accesses the monitored line of code after the spy “Reloading” the line, and before the spy “Flushing” the line. We do not directly detect false negatives, but instead show how to deal with them algorithmically.

\(^4\)Similar to keystroke timing attacks of Gruss et al. [19]

1.2 Overview of Experimental Results

We ran our attacks in five different experimental settings including uniform and non-uniform queries on real databases and synthetic databases which were sampled from Gaussian (Normal) distributions with different standard deviations as well as in two sets of experiments where the system is under heavy load and other cases where some of the range queries are missing. The databases all contained 100,000 rows with 135 attributes. The synthetic database from the Gaussian distribution has the same number of entries and attributes, but the column on which the range queries are made is sampled from Gaussians with standard deviation of 3 and 4, which represent narrow and wide Gaussians, respectively. The Match & Extend algorithm recovered the database in 100% of the cases within 190 seconds with maximum error percentage of 0.11%.

1.3 Related Work

Cache Attacks were introduced by Tsunoo et al. [33] that shows a timing attack on MISTY1 block cipher. Later, Os- vik et al. [30] presented an attack that allowed the extraction of AES keys. In another early work, Acicmez [5] showed an attack that targets instruction cache. Ristenpart et al. [32] demonstrated the possibility of launching cache side-channel attacks in the cloud (as opposed to on a local machine) and they pointed out that such vulnerabilities leak information about the victim VM. Subsequent work showed how the cache side-channel can be used to extract cryptographic keys for ElGamal [38], AES [22], RSA [37] and recently BLISS [15] (a lattice-based signature scheme). In more recent work, Yarom and Falkner [37] presented a powerful attack using Flush+Reload on the Level 3 cache of a modern processor. They tested their attack in two main scenarios, (a) victim and spy running on two unrelated processes in a single operating system and (b) victim and spy running on separate virtual machines. Another attack of note by Yarom and Benger [36] on ECDSA leaks the nonce which results in signature forgery. A recent work by Moghimi et al. [28] showed the vulnerability of AES encryption in an SGX environment which, prior to this attack, was broadly believed to be secure. Ge et al. [14] surveyed recent attacks and classified them according to which shared hardware device they target. Yan et al. [34] shows the effectiveness of Flush+Reload and Prime & Probe to reduce the search space of DNN architectures. In a more recent type of attack, Hong et al. [20] shows how to perform Deep Neural Network fingerprinting by just observing the victim’s cache behavior. In another work by Hong et al. [21], it is shown how to use cache attack to construct the main components of the Neural Network on the cloud.

Database Reconstruction Kellaris et al. [23], motivated by practical implementations of searchable symmetric encryption or order-preserving encryption, studied the effect of aux-
iliary information on the overall security of the scheme. They identified two sources of leakage (a) access pattern (b) communication volume. They developed a reconstruction attack in which the server only needs to know the distribution of range query. They presented an attack using N^4 queries, where N is the ranges of the value. Lacharité et al. [26] presents various types of attacks: full reconstruction, approximate reconstruction as well as a highly effective attack in which adversary has access to a distribution for the target dataset. Their attacks are based on the leakage of access pattern as well as leakage from the rank of an element. Grubbs et al. [16] present an attack that reconstructs the database given the volumes of the response of range queries. They showed an attack using a graph-theoretic approach and specifically clique finding. Each volume is presented with a node in the graph. They demonstrated properties that hold in practice for typical databases and based on these properties they developed an algorithm which runs in multiple iterations of adding/deleting nodes. Once there is no more addition and deletion to be performed they announce that as the candidate database. They showed that this approach is indeed successful in recovering most of the columns of their example database. In cases where this algorithm could not find any possible result they used a clique algorithm to reconstruct the database, and they showed that clique could help to reconstruct even more instances.

In another line of work regarding searchable encryption, Cash et al. [11] presented leakage models for searchable encryption schemes and presented attacks. Specifically using this leakage they could recover queries as well as the plaintext. Naveed et al. [29] presented a series of attacks on Property-preserving Encrypted Databases. Their attack only used the encrypted column and used publicly known information. They showed an attack which could recover up to 80% of users. Grubbs et al. [18] presented an attack on order-preserving encryption and order-revealing encryption and showed they can reveal up to 99% of encrypted values. Kornaropoulos et al. [24] studied the database reconstruction given leakage from the k-nearest neighbours (k-NN) query. In a follow up work by the same authors, Kornaropoulos et al. [25] extended their previous work by presenting an attack on encrypted database without the knowledge of the data or query distribution. All these attacks are in the encrypted database setting in which each value is encrypted whereas the focus of this work is on databases where the value of each entry is saved in clear text, and an attacker who may only obtain information about the database via side channels.

2 Background

Cache Architecture In order to reduce the access time to main memory, modern CPUs are equipped with multiple levels of cache. They form a hierarchy such that the Level 1 cache is the fastest and smallest, whereas the Level 3 cache is the slowest and largest.

The Level 1 cache is divided into two separate caches, one holds the data and the other holds the instructions. In the higher level caches data and instructions are held in the same cache. Level 3 is a shared-memory space and is the Last Level Cache (LLC). The LLC is all-inclusive of the lower levels of the architecture, meaning that any data present in L1 and L2 is also present in the LLC.

Each cache comprises multiple sets and each set contains multiple cache lines. Each line of main memory is mapped to a unique cache set. Within this set, however, a memory line can be mapped to any of the cache lines. Typically, each line of cache holds 64 Bytes of data. Upon writing a line to a set that is already full, a decision regarding which memory line to evict must be made. This decision is called a Replacement Policy and depends on the cache architecture. A popular replacement policy is least-recently used (LRU), which replaces the least recently used entry with the new one.

Flush+Reload Attack Caches are vulnerable to information leakage since an adversary who is co-located with the victim on the same processor can retrieve useful information about a victim’s activities. Specifically, the adversary can monitor its own access time to the cache and use deviations in access time to deduce information about whether or not the victim has accessed a certain memory line or not. The reason that such an attack is feasible is that the adversary and victim share the same resource i.e. the cache. Moreover, in a setting where the adversary and victim share a library, they will both have access to the physical memory locations in which the single copy of the library is stored. The attacker can now explicitly remove a line corresponding to the shared physical memory from the cache. To exploit the shared physical memory in a useful way, Yarom and Falkner introduced an attack called Flush+Reload [37]. The attacker flushes a monitored line from the cache using a special command called clflush. This command causes the monitored line to be removed from the L1, L2 and L3 caches. As mentioned before, L3 is inclusive and as a result the removed line will be removed from all the other caches, even if the attacker and the victim are not on the same physical core. The attacker then lets the victim continue to run its program. After some time has elapsed, the attacker regains control and measures memory access time to determine whether or not the monitored line is present in the cache. If the monitored line is present in the cache (reloading runs fast), the attacker deduces that the same line was accessed by the victim during its run. If the monitored line is not present in the cache (reloading runs slow), the attacker deduces that the victim did not access the line during its run. Hence the attacker knows whether the victim accessed a specific line or not. In order to perform the Flush+Reload attack we used the package provided in the Mastik framework. Mastik [35] is a toolkit with various implementations of published micro-architectural side-channel attacks. It provides an interface that can be used to set the monitored lines. For our
work we used \texttt{fr-trace} to monitor various cache lines.

Cache Prefetching When an instruction or data is needed from memory, it is fetched and brought into the cache. To reduce execution time further, \textit{Cache Prefetching} is implemented to bring a memory line into the cache before it is needed. The prefetching algorithm decides what and when to bring data and instruction to the cache. Hence, when the program needs the data or instruction in the future, it will be loaded from the cache instead of memory. This is based on the past access patterns or on the compiler’s knowledge.

Range Queries A range query is an operation on a database in which records with column values between a certain lower and higher bound are returned. Assuming there exists a column \(c \) in a database with values between 1 and \(N \), the command \texttt{range}[\(a, b \)] for \(1 \leq a \leq b \leq N \) returns all the entries in the database which have a value in column \(c \) in the range \([a, b] \) (inclusive for both \(a \) and \(b \)).

Clique Finding Problem The Clique problem is the problem of finding a clique—a set of fully connected nodes—in a graph. We utilize the clique finding algorithm in the NetworkX Package.\(^3\) The NetworkX package can be used to find the clique number (size of the largest clique in the graph) as well as all cliques of different sizes in the graph.

3 Our Attack

In Section 3.1 we describe how to recover approximate volumes via the cache side-channel. In Section 3.2 we describe how the clique-finding algorithm was used in the prior work of Grubbs et al. \cite{grubbs2019} to recover a database from noiseless volumes. In Section 3.3 we explain our noise-tolerant clique-finding algorithm for our setting, where volumes are noisy. In Section 3.4 we present the details of the Match & Extend algorithm which is used for extrapolating volumes that are omitted from the clique. Finally in Section A.1 we describe how to use closest vector problem (CVP) solvers to further reduce the noise and improve the overall accuracy of the recovered databases.

3.1 Recovering Approximate Volumes

In this section, we explain how to find the lines of code in the SQLite library to monitor in the Flush+Reload attack and how to reduce the noise in our measurements. We will then explain how to recover the approximate volumes.

Victim’s Query The victim issues a range query to SQLite database. SQLite returns the relevant entries as it processes the query. These entries are simply saved in a linked list and once SQLite is finished with processing the query, the linked list is returned to the victim.

Detecting Lines to Monitor SQLite stores columns using the BTree data structure. We examined the SQLite program, and by using the \texttt{gcov} command we detected lines that are called once in every iteration of a range query. Monitoring the number of times these lines are called allows us to determine the volume of a query response. It is important to notice that the duration of each query can also be measured and that can also be used as an indicator for the volume. However, this resulted in far greater noise since there was no reliable way to translate time to volume (time to iterate over rows was inconsistent). Hence we decided to explicitly count. To obtain the number of times each line is executed we compiled our library using \texttt{-fprofile-archs} and \texttt{-ftest-coverage} flags. We ran the range query command and by using the \texttt{gcov} command we counted the number of times each line is executed in files sqlite3.c and main.c, respectively.

We looked for more lines throughout the SQLite\(^6\) program and we chose to simultaneously monitor two lines to increase the measurement accuracy. As also observed by Allan et al. \cite{allan2019}, monitoring two lines has the benefit that in case the attack code fails to detect an activity in one of the lines due to overlap between attacker reload and victim access there is still a high probability of seeing activity in the second line. There might be some excessive false positives due to the mismatch of hits for both of the lines and we mitigate for that by considering close hits to be from the same activity.

Using the Mastik Toolkit Once we detect the lines that leak the volume of the queries, we use the Mastik Toolkit to monitor those lines while SQLite is processing a range query. Figure 1 shows one sample measurement. Two monitored lines are represented by blue and orange color. Mastik-FR-trace will automatically start measuring once it detects a hit in either of the monitored lines in the SQLite program. Once there is no more activity detected by Mastik for a while (as set in the \texttt{IDLE} flag), it will automatically end the measurement. During the interval where range query execution occurs, there are samples with reload time less than 100 cycles. Those are the samples points in which SQLite accessed the line the attacker is monitoring and hence a small reload time is seen by the attacker. We then count the number of times there is a hit in either a blue or orange measurement. The hit count corresponds to the volume of the query.

Monitoring the relevant cache lines is also crucial to detect when/if range queries are issued. Figure 2 shows the cache

\(^3\)NetworkX is a Python library for studying graphs and networks.

\(^6\)The attack presented in this paper can be extended to other database management system, as long as the volume of the returned query can be obtained through monitoring the I-cache.
Figure 1: The result of running Flush+Reload attack on SQLite. There are two lines being monitored by attacker. The x-axis shows the sample point in which reload occurs and y-axis depicts the amount of time needed to reload the monitored line from memory at that time instance. Since two lines are being monitored, we have two sets of measurement at each time instance. Notice there are some orange lines appearing close to each other, those are because of speculative execution.

activity of three cache lines in the first couple of thousands of samples. The cache line activity represents the number of hits detected by the attacker. Counting the number of hits represents whether or not the victim is using a specific line. We expect to see multiple cache activities in lines related to range queries and for the queries that are not relevant to range queries there is not much activity going on in at least one of the cache lines.

Noise in the traces The number of hits that we count might be different than the actual value of the volume since measurements are not noiseless. Here we explain some of the sources of noise.

- False Positive: Speculative execution of an instruction causes the memory line to be brought into the cache before it is executed. In terms of the Flush+Reload attack, it will still look like this instruction was executed, since there will be a fast access. Generally the true hits happen at fixed time intervals. If we see a hit which happens much sooner than the expected time for a hit it is most likely a false positive and we assume it occurred due to speculative execution and do not count it as a hit.

- False Negative: These occur if the victim process accesses the monitored line of code after the spy Reloads the line, and before the spy Flushes the line. We do not attempt to detect false negatives experimentally, but rather deal with them algorithmically: as will be discussed in Section 3.3, we use an asymmetric window around each observed volume to compensate for the fact that true volumes are typically greater than the observed volume. In our experiments we allocate 90% of the window width to the values greater than the observed volume.

Running the experiment We randomly select and execute range query \([a, b]\) while concurrently monitoring lines using Mastik-FR-trace to gather a single trace. We repeat this experiment a number of times in order to gather enough traces. For each trace we count the number of times that either of the lines shows a hit and after mitigating the False Positive issue, we report the number of hits as the volume of the range query for that trace.

Figure 3 shows the result of aggregating the volumes reported by the traces. Some volumes are observed far more frequently than others, and those values are saved as an approximation to the expected volumes. In a noiseless setting we expect to see at most \(\binom{N}{2} + N \) values (there might be some volumes which correspond to more than one range query). In the noisy setting, there are cases where the trace is “good enough” but the volume is not correct. By aggregating all the traces the effect of those instances will be insignificant and the approximation of correct volumes will stand out. However, the volumes we recover are not exactly the correct volumes from the database. Figure 4 shows a closer snapshot of Figure 3 for volumes in the range 7700 – 8800. The red dotted bars represent the actual volume of the range query response, while the blue line shows the approximate volumes recovered by the cache attack. For every correct volume (red line), there is a blue line with some high value close to it.

3.2 Clique Finding–Noiseless Volumes

To construct the graph we first explain the clique finding algorithm of Grubbs et. al. [16] and then extend their technique to cover the noisy case. There are two main parts to the Algorithm.
Approximate Volumes Recovered by Cache Attack

Figure 3: Sample noisy volumes recovered by cache attack. The x-axis is the volume and y-axis shows the number of occurrence of that volume. For a sample database, we ran the range query multiple times and for each range query we monitored the cache activity to recover the volume of the range for that query. We repeated this process multiple times and counted how many times a volume occurred.

• Creating Nodes Given the set of recovered volumes \(V \) we create a node for representing each volume and label the node by its corresponding volume, meaning the node \(v_i \) has volume \(v_i \).

• Creating Edges We create an undirected edge between two nodes \(v_i, v_j \in V \) if there exists a node \(v_k \in V \) such that \(v_i = v_j + v_k \).

By running the clique finding algorithm on the constructed graph, one can recover the volumes. Assuming the range of values are from 1 to \(N \) there are \(\binom{N}{2} + N = \frac{N(N+1)}{2} \) possible ranges, and therefore \(\frac{N(N+1)}{2} \) nodes in the graph. Each range \([i, j]\) for \(1 \leq i \leq j \leq N \) is represented by a node. The nodes that correspond to ranges of the format \([1, i]\) for \(1 \leq i \leq N \), i.e. elementary volumes, form a clique, since for each pair of ranges of the form \([1, i]\) and \([1, j]\) for \(1 \leq i < j \leq N \) there is another range of the form \([i+1, j]\) for \(1 \leq i < j \leq N \), which implies, due to how the graph is constructed, that there is an edge between \([1, i]\) and \([1, j]\). The clique finding algorithm finds the nodes \([1, i]\) for \(1 \leq i \leq N \). To recover the original ranges which are of the form \([i, j]\) for \(1 \leq i \leq N \), all that is needed is to sort the nodes based on their labels, which corresponds to their volumes, and subtract them sequentially since \([i, j] = [(1, i)] - [(1, i-1)]\) for \(1 < i \leq N \).

3.3 Clique Finding–Noisy Volumes

In the noisy case considered here, all recovered volumes are close to the correct volumes, but the exact volumes may not have been recovered. Hence, the procedure for noiseless case fails to find the cliques of large enough size. This is because the condition to connect nodes \(v_i, v_j \) will almost always fail (even when there should be an edge) since there will not be a third volume \(v_k \) such that the equation \(v_i = v_j + v_k \) is exactly satisfied. This means that the constructed graph is missing too many edges and the large cliques are not formed. To mitigate the effect of the noise, we modify the second step of the graph generation algorithm i.e. Creating Edges.

While the recovered volumes are close to the correct ones, as explained in Section 3.1, since the traces are noisy we do not expect to get the exact volumes and we often undercount. We call the ratio of the recovered volume to the correct volume the "noise ratio". In the first step the attacker performs a preprocessing step which involves mounting the attack on a database known to the attacker. The attacker then assesses the quality of the traces to find the approximate value of the "noise ratio". To find it the attacker heuristically looks at the recovered volumes and compares them to the correct volumes they are expecting to compute. Then based on all the noise ratios, the attacker sets a value for "noise budget" which is the mean of the "noise ratio" he observed over all volumes. Once the noise budget is fixed, for each recovered volume the attacker creates a window of acceptable values around it. Assuming the recovered volume is \(v_i \), the attacker creates an asymmetric window around \(v_i \) with lower bound and upper bound of \(v_i \times (1 - 0.1 \cdot \text{noise budget}) \) and \(v_i \times (1 + 0.9 \cdot \text{noise budget}) \), respectively. As also mentioned in Section 3.1, the window is asymmetric with 90% of its width on the right hand side of it, as the noisy volumes are typically less than the true volumes. For a volume \(v_i \) we denote by \(w(v_i) \) the window around it. To construct the graph in the noisy case we modify the second step of the algorithm explained in Section 3.2 as follows:

• (Modified) Creating Edges We create an undirected edge between two nodes \(v_i \in V \) and \(v_j \in V \) if there exists a node \(v_k \in V \) such that \(|v_i - v_j| \in w(v_k) \).

In particular, we will say that candidate volumes \(u \) and \(v \)
are “approximately equal” if \(\frac{|v_i - v_j|}{\min(v_i, v_j)} \leq \text{noise budget} \). As we will show in Section 4, using the above algorithm with the just-mentioned modification is in some cases sufficient to approximately reconstruct the database.

3.4 Match & Extend

In this section we describe an improvement on the noisy clique-finding algorithm that is used in cases where the noisy clique-finding algorithm fails to find a maximal clique of size \(N \), even with appropriate adjustment of the noise budget.

First, recall that the idea behind the clique finding algorithm is that if we have the volumes of all ranges present in our data, then there must exist a clique in the graph corresponding to the volumes of the ranges \([1, i]\) for \(1 \leq i \leq N \). Now, let us assume there is a missing (approximate) volume corresponding to range \([i, j]\). This will result in the missing connection from the node \([1, j]\) to node \([1, i−1]\) as the reason that there had to be a connection was because \(|[1, j]| \approx |[1, i−1]| + |i, j| \). As a result of this missing volume, the maximal clique of size \(N \) will not form. If we run the clique finding algorithm on the data with the missing volume, it will return cliques of size smaller than \(N \) and for each of them recover a candidate database. Then the algorithm will merge the information in these smaller databases to form larger ones. In the following we explain the idea of the algorithm with an example. Consider a database with 5 possible values in the range, i.e. \(N = 5 \), assume the database is \([30, 100, 80, 30, 60]\) (i.e. the database contains 30 records with value 1, 100 records with value 2, etc.). The set of possible values for the volume of a range query is \(V = \{30, 60, 80, 90, 100, 110, 130, 170, 180, 210, 240, 270, 300\} \), i.e. \(|[1, 1]| = 30, |[1, 2]| = 130 \) and so on. The graph constructed from the these volumes is shown in Figure 5a and the maximal clique found by the clique finder algorithm is shown by bold connections. The returned nodes are \([30, 130, 210, 240, 300]\) and the reconstructed database is \([30, 100, 80, 30, 60]\). Assume the recovered volumes are noisy and the set of possible values for the volume of a range query is \(V = \{29, 58, 79, 89, 98, 108, 128, 160, 178, 209, 239, 268, 299\} \). In Figure 5b all the noisy volumes are rather close to their actual values except the volume 160 which is far from the correct one — 170. To construct the graph in this setting we use the algorithm mentioned in Section 3.3 and only for the sake of this example we take the window around volume \(v_1 \) to have lower and upper bound of \(v_1 - 1 \) and \(v_1 + 3 \), respectively. Some connections will be missing as a result of the error in the measurement. For example the connection from node 299 to node 128 is not going to be formed since there is no longer a window which contains 171. If we run the clique finding algorithm on the new graph the result is going to be a clique of size smaller than \(N = 5 \). As seen in Figure 5c, the clique finding algorithm returns a clique of size 4 with values \([29, 128, 209, 239]\) that results in database \([29, 99, 81, 30]\). Figure 5d shows another clique of size 4 with values \([29, 209, 239, 299]\) that results in database \([29, 180, 30, 60]\). It can be observed the two databases “approximately” match in some locations, i.e. \([29, 180(99 + 81), 30]\). It is important to note that although in this example 180 is exactly equal to 99 + 81, this need not hold in general, thus we consider two sequences a match if their corresponding values are “approximately” equal. Having established this long match, we can deduce that value 60 also belongs to the database and we can “extend” the initial candidate to include 60 and return the database \([29, 99, 81, 30, 60]\). In another scenario assume we first detect the database of Figure 5d and then we discover the database in Figure 5c. In that case we can see that we can rewrite the initial candidate, i.e. \([29, 180, 30, 60]\) as \([29, 180 = (99 + 81), 30, 60]\) using the second candidate.

We next describe in detail the main steps taken in the Match & Extend algorithm. The high level steps of the Match & Extend can be found in Algorithm 1. We note that, in some cases, simply increasing the noise budget allows us to successfully find a clique of size \(N \). However, as we will discuss in Section 4, by not increasing the noise budget and instead running the Match & Extend algorithm, we can recover a database that is closer to the true database.

Algorithm 1: Match & Extend Algorithm

```
Result: A database with \( N \) values
baseSolution = FindMaximalClique();
allCliques = FindRemainingCliques(K, \( \ell \));
while length(baseSolution) < \( N \) do
    candidateSolution = FindBestCandidate(allCliques);
    baseSolution = Merge(baseSolution, candidateSolution);
end
return baseSolution
```

FindMaximalClique The first step in the Match & Extend algorithm is to find a maximal clique in the constructed graph. Let \(K \) denote the size of a maximal clique recovered in this step. If there is more than one clique with the same maximal size select one of them arbitrarily. Once the clique is found, the corresponding database is computed. We call this database baseSolution and the rest of the algorithm will expand this database. If the size of maximal clique found in this step is \(N \) we are done, otherwise the Match & Extend algorithm expands the baseSolution.

FindRemainingCliques Recover all cliques of size \(K, K−1, K−2, \ldots, K−\ell \) and sort them from the largest clique size to the smallest. For each clique, the corresponding database is found and is called candidateSolution. The candidateSolution is in the form of an ordered list of volumes that correspond to neighbouring ranges of the database. Note that the cliques to be found in this step are not restricted to be from the ranges in the form \([1, 1], [1, 2], \ldots, [1, K]\) for
Figure 5: The graph constructed from the exact volumes has a maximal clique which can be used to recover the original database, while the noisy volumes might have smaller maximal cliques and the original database can not be recovered from just one clique.

Given the baseSolution and a candidateSolution in form of lists of volumes of neighboring ranges, it finds the longest common substring of these solutions, i.e. the longest contiguous list of volumes where both solutions agree. We call this substring the commonSub-Solution. To find it, we use a standard longest common substring algorithm with a modification that the elements of the substring need to be only approximately equal (as defined in Section 3.3) to the corresponding elements of baseSolution and candidateSolution. At termination this will return the commonSub-Solution and the starting and ending indices of commonSub-Solution in the two given solutions.

ApproximateLCSubstring This is a subroutine that is invoked as a part of **Merge** function. Given a baseSolution and a candidateSolution in form of lists of volumes of neighboring ranges, it finds the longest common substring of these solutions, i.e. the longest contiguous list of volumes where both solutions agree. We call this substring the commonSub-Solution. To find it, we use a standard longest common substring algorithm with a modification that the elements of the substring need to be only approximately equal (as defined in Section 3.3) to the corresponding elements of baseSolution and candidateSolution. At termination this will return the commonSub-Solution and the starting and ending indices of commonSub-Solution in the two given solutions.

Merge Given the baseSolution and a candidateSolution in the form of lists of volumes, attempt to combine the information in them into one larger solution. We refer to this as “merging” the two solutions. The **Merge** function first invokes **ApproximateLCSubstring** to find the approximate longest common substring of the two solutions. After the longest common substring of the two solutions and the locations of this substring in the two solutions are found, there can still be volumes where the baseSolution and candidateSolution agree, which are not recognized by the **ApproximateLCSubstring**. For example, if the baseSolution is (29,99,81,30) and candidateSolution is (29,180,30,60), the commonSub-Solution may be found as (29), however one can see that the two solutions agree at (99,81) as well, only in the candidateSolution this information appears as the volume of one range (180) which is the union of those two neighboring ranges in baseSolution. The merging algorithm identifies such cases and extends the commonSub-Solution accordingly. The algorithm searches for occurrences where a volume v_i next to the end of the commonSub-Solution in one of the solutions (say in baseSolution) is approximately equal to the sum of volumes $u_j, u_{j+1}, ..., u_{j+r}$, for $r \geq 0$ next to the same end of the commonSub-Solution in the other solution (say candidateSolution). In such a case, it extends the commonSub-Solution by appending to it $\langle u_j, u_{j+1}, ..., u_{j+r} \rangle$, and changing endpoints of the commonSub-Solution in baseSolution and candidateSolution. So in the database given above, the algorithm will look at the neighbors of (29) and discover that 180 $\approx 99 + 81$, and extend the commonSub-Solution to (29,99,81). Then, the algorithm will look at the neighbors of (29,99,81) and discover that 30 ≈ 30, extending the commonSub-Solution further to (29,99,81,30). It is important to mention that while the values in the example were exactly equal, the algorithm accepts values which are approximately equal as well, meaning that we look for whether 180 $\approx 99 + 81$ or whether 30 ≈ 30. After the commonSub-Solution is maximally extended, our two solutions will have the following form: baseSolution = \langle pref1, comm, suff1 \rangle and candidateSolution = \langle pref2, comm, suff2 \rangle, where comm is the commonSub-Solution found as previously explained, and any of the prefixes and suffixes may be empty. The algorithm then will do one of four things: (a) if pref1 (similarly, suff1) is empty, it will extend the commonSub-Solution to comm = pref2 || comm (similarly, comm || suff2), (b) if pref2 (similarly, suff2) is empty, it will extend the commonSub-Solution to comm = pref1 || comm (similarly, comm || suff1), (c) if both pref1 and pref2 (similarly, comm || suff1), (d) if both pref1 and pref2 (similarly, comm || suff2), (e) if neither pref1 nor pref2 (similarly, comm || suff1), (f) if neither pref1 nor pref2 (similarly, comm || suff2), (g) if both pref1 and pref2 (similarly, comm || suff1), (h) if both pref1 and pref2 (similarly, comm || suff2).
We performed five sets of experiments. The first two experiments (III) in Section 4.1 studies the effect of extra load on the system while taking measurements. The third set of experiments (IV) in Section 4.2 looks at different query distributions. In the last set of experiments (V) in Section 4.3, we look at the effect of missing some volumes due to the fact that some range queries may have never been issued, or due to noise causing a query to be missed entirely. In Experiment I, we first prepare 10 databases from the NIS2008 database, by randomly selecting 100,000 records. Nationwide Inpatient Sample (NIS) is part of the Healthcare Cost and Utilization Project (HCUP) which is used to analyze national trends in healthcare [4]. The NIS is collected annually and it gathers approximately 5 to 8 million records of inpatient stays. We selected NIS from the year 2008; the full description of each attribute of the database is reported in [4, Table1]. In the first set of experiments we performed uniform range queries on the AMONTH attribute which corresponds to admission month coded from (1) January to (12) December (i.e., each of the possible ranges were queried with equal probability). In the second set of experiments (Experiment II) we sampled the database as follows: For each of the 10 databases from Experiment I, for each record in the database, instead of using the real value for the AMONTH column, we generated synthetic data by sampling a value from a Gaussian (Normal) distribution with mean \(\frac{1}{2}N \) and standard deviation 3 and 4, respectively. So within Experiment II, we considered two data distributions, a “narrow” Gaussian with standard deviation 3 and a “wide” Gaussian with standard deviation 4.

We ran the experiments on a Lenovo W540 Laptop with Intel Core i7-4600M CPU clocking at 2.9 GHz running Ubuntu 16.04. The L1, L2 and L3 caches have capacities 32KB, 256KB and 4MB, respectively. For the SQLite, we use the amalgamation of SQLite in C, version 3.20.1. We heuristically observed that if we gather around 120 measurements for any one range query, the aggregated side-channel measurements will result in a peak corresponding to the approximate volume. Since there are at most 78 different range queries for \(N = 12 \) we decided to gather around 10,000 traces to make sure there are enough traces for each range to be able to see a peak for each approximate volume.

We gathered 10,000 traces corresponding to 10,000 uniformly chosen range queries for Experiments I and II, i.e. 1 trace for each query. We processed all those traces to obtain the approximate/noisy volumes. On average, gathering 10,000 traces takes around 8 hours and processing them takes another 3 hours. The experiments and the code to run the Clique-finding algorithm, Match & Extend and noise reduction step can be found here [2].

After processing the measurements, we obtained a set of approximate volumes, on which we then ran noisy clique-finding and Match & Extend, which in turn output reconstructed databases. Figure 6a illustrates the quality of the recovered values for the noisy clique-finding and Match & Extend algorithms. The noisy clique-finding algorithm is run with several values for the noise budget while the Match & Extend is run with a fixed noise budget of 0.002. For each of the \(N \) values 1, 2, …, \(N \), we expect to recover a candidate volume, corresponding to the number of records in the database.
that take that value. For a database with range of size \(N \), we define the success rate as the number of candidate volumes recovered divided by \(N \). For example in our experiments if we recover only 11 candidate values for a database of range of size \(N = 12 \), then we have a success rate of 11/12. It is also worth mentioning that the attacker can distinguish a successful attack from the failed one, since \(N \), i.e. the size of the range, is known to the attacker. We define the error rate of a recovered volume as its percentage of deviation from the original volume that it corresponds to. We look at the recovered database and compare it to the original one. For each candidate volume \(v' \) that is recovered, we compare it to the corresponding value in the real database, \(v \) and report the error rate as \(\left(\frac{|v' - v|}{v} \right) \times 100 \). So for example, if a recovered volume is 7990 and the actual volume was 8000 we report an error percentage of 0.12%. If the algorithm only recovered 11 values for a database of size 12, we will report the percentage error for the 11 recovered values.

Figure 6a and 6b show both the success rate and the error percentage for Experiment I and II. For success rate (orange line), it can be seen that for the noisy clique-finding algorithm, increasing the noise budget helps to recover more volumes in both experiments. The Match & Extend algorithm, used with a fixed noise budget of 0.002 could recover all the volumes in both of the experiments. For error percentage the average percentage of error is marked with a blue dot. The 90% confidence interval is marked with the black marker. The confidence interval indicates that for a new set of experiments with the same setting, we are 90% confident that the average error rate will fall within that interval. For the noisy clique-finding algorithm, increasing the noise budget causes the average error percentage to increase and the confidence interval to grow. In some cases with noise budget 0.005 and 0.006, some of the recovered databases in Experiment I were very far off from the actual databases, causing the error interval in these settings to be much larger than in other settings.

In a nutshell, although it seems that increasing the noise budget helped to achieve higher success rates, since the error percentage grows, the quality of the recovered databases is lower. For the Match & Extend algorithm the average amount of error and the width of error interval is comparable to the noisy clique-finding algorithm with small noise budget but the success rate is much higher. Figure 6c shows the average run time as well as 90% confidence interval of the successful database recovery in seconds. It can be seen that the average run time of noisy clique grows with the size of the noise budget. The Match & Extend algorithm, however, always uses noise budget of 0.002 and so its average running time remains low.

Table 1 compares the performance of the Match & Extend algorithm and the noisy clique algorithm on successful instances (meaning, the performance of the noisy-clique is taken only over the instances for which the recovered database had the correct size \(N \)). The noisy clique-finding algorithm with noise budget 0.006 performs better in terms of success rate than noisy clique-finding with smaller noise budgets, and we select it as a comparable algorithm to Match & Extend algorithm. We are 99% certain that in a new set of experiments with the same setting as presented here, the Match & Extend algorithm would output a result in at most 190 seconds with at most 0.11% error. The noisy clique finding algorithm, on the other hand, would output a result in at most 1900 seconds with at most 0.27% error. We have also analyzed the effect of noise reduction step to further reduce the noise, which can be found in Section A.2.

4.1 Additional Noisy Process Running

For Experiment III, we extend our analysis to the case where there is extra load on the system—i.e. extra processes running—during the time of the attack. To run the noisy processes we use the command \texttt{stress -m i}, where \(i \) represents the number of parallel threads running with CPU load of 100%. We repeat the experiment for \(i \in \{1, 2, 8\} \) and present the results in Figure 7. We took 5 databases from Experiment I and obtained new sets of traces while the system had noisy processes running at the background. We recovered all the coordinates of the databases for all cases, so the success rate for all cases remains at 100%. The quality of the recovered databases worsened with heavier loads, however even with 8 noisy processes the average error remains less than 2%.

4.2 Non-uniform Query Distribution

As mentioned, in order to be able to detect an approximate volume in our side-channel measurements, we need to observe at least 120 measurements per range query. While we require that each query must be made some minimum number of times, we do not impose that the query distribution must be uniform. This is in contrast to previous work by Kellaris et al. [23] who crucially required uniform query distribution. Our requirement can be seen as the noisy analogue of Grubbs et al. [16], who required each volume to be observed at least once in the noiseless setting. To tolerate the noise present in the measurement in our setting, we require each query to be observed at least 120 times. Later, in Subsection 4.3, we will further relax this requirement by showing that the recovery can be done even if some of the range queries are

Error Percentage	Noisy Clique (0.006)	Match & Extend
Run Time (s)	0 - 1900	38 - 190
For Experiment IV, we study the performance of our algorithm when some of the ranges are never queried. We consider two cases. In the first case, we look at a setting in which certain randomly chosen ranges are never queried and in the second case, we consider a setting in which the queries corresponding to the largest volumes are never made. For the first case, we randomly drop \{1, 2, 4, 6, 8\} volumes from the measurements. The performance of Match & Extend algorithm can be seen in Figure 8b. As more and more volumes are dropped, the success rate of the algorithm decreases. For example, in the case where 8 volumes are missing we recovered around 95% of the databases entries. However, the error percentage grows as more and more volumes are missing, although it remains below 1% error even for the case where 8 volumes are missing. For the second case, we first look at the case where the query \([1, N]\) is blocked, i.e. the attacker is not allowed to query the whole database. In other cases the queries which ask for more than 90%, 80% and 70% of the database is blocked, respectively. It can be seen in Figure 8c that in these cases the success rate remains around 98% and entirely omitted. This can be viewed as a weakening of even the requirements of Grubbs et al. [16].

For Experiment IV, we used the same databases as in Experiment I, but performed non-uniform range queries. We picked 5 database from Experiment I and tested them with 3 sets of non-uniform query distributions which results in 15 scenarios in total. The first query distribution is chosen based on the assumption that queries of the form \([i, i+1]\) are made twice as often as the other queries. The second query distribution assumed that queries in the form of \([i, i+1]\) and \([i, i+2]\) are made twice as often as the other queries. For the last query distribution, we tested the hypothesis that the determining factor for our attack seems to be the ability to identify “peaks” that roughly correspond to the volumes of the range queries (e.g. see Figure 3 and Figure 4). A challenging query distribution is therefore one which causes one of the peaks to disappear as the peak adjacent to it dominates it. To test our hypothesis, we chose a distribution in which range \([a,b]\) was queried twice as often as \([c,d]\) when ranges \([a,b]\) and \([c,d]\) had close volumes (and therefore close peaks).

Figure 6: (a),(b) Comparison of the Success rate and Error Percentage for the noisy clique algorithm and Match & Extend algorithm. The noisy clique algorithm is run using noise budget in the range 0.001 – 0.006 and Match & Extend is run with noise budget 0.002. The orange line is the success rate (higher is better). The blue dot is the average error percentage and the black line segment is the 90% confidence interval (lower dot and narrower interval is better). (c) Average running time of Noisy Clique for different Noise Budget vs. Match & Extend Algorithm.

Figure 7: Success Rate and error percentage for Experiment III. The system is analyzed under different varying load. The load is increased by adding extra 1,2,8 processes.

4.3 Missing Queries

For Experiment V, we study the performance of our algorithm when some of the ranges are never queried. We consider two cases. In the first case, we look at a setting in which certain randomly chosen ranges are never queried and in the second case, we consider a setting in which the queries corresponding to the largest volumes are never made. For the first case, we randomly drop \{1, 2, 4, 6, 8\} volumes from the measurements. The performance of Match & Extend algorithm can be seen in Figure 8b. As more and more volumes are dropped, the success rate of the algorithm decreases. For example, in the case where 8 volumes are missing we recovered around 95% of the databases entries. However, the error percentage grows as more and more volumes are missing, although it remains below 1% error even for the case where 8 volumes are missing. For the second case, we first look at the case where the query \([1, N]\) is blocked, i.e. the attacker is not allowed to query the whole database. In other cases the queries which ask for more than 90%, 80% and 70% of the database is blocked, respectively. It can be seen in Figure 8c that in these cases the success rate remains around 98% and
the error percentage of the recovered coordinates stays below 2%.

5 Conclusions and Future Work

In this work we launched a cache side-channel attack against the SQLite database management system. We developed two algorithms that approximately recover the database using the information leaked from the side-channel attack. Finally, we showed the effectiveness of closest vector problem (CVP) solvers in reducing the overall noise in the recovered databases to obtain databases with improved accuracy. We showed that for attributes with range of size 12 our algorithm can recover the approximate database in at most 190 seconds with maximum error percentage of 0.11%. We have also extended our analysis to study the effect of heavy load on the system as well as cases where some of the ranges are missing. We have shown that the error percentage for those cases remain below 2%.

As a possible approach to mitigate the attacks presented in this work, we suggest that when processing a range query, a random number of dummy elements get appended to the results and returned in addition to the true matches. The effect of such a countermeasure is twofold. (1) It makes it difficult for the side-channel attacker to able to aggregate information over different runs to obtain good approximations of the volumes. (2) It makes the graph generation and clique-finding algorithms more expensive, as there will be a large number of additional nodes and edges in the graph (recall that each observed volume corresponds to a node in the graph). Since clique-finding is NP-hard, adding even a small fraction of nodes to the graph can make the attack infeasible.

As a future work, it would be interesting to explore the effectiveness of the attack using fewer traces; in the extreme case it is interesting to study the scenario where only 1 trace per query is given. Moreover, it would be of interest to study the performance of the Prime & Probe [30] which is a more generic type of cache side-channel attack that can be used even in scenarios where the victim and attacker do not have a shared library. Further, as mentioned previously, improved attacks on encrypted databases are possible when the full access pattern can be obtained (cf. Grubbs et al. [17]). It will be interesting to explore whether partial information about the access pattern can be obtained via the cache side-channel and whether this information can be used to obtain improved attacks. We have simulated some non-uniform query distribution, and one area that can be explored more is to study what are the most realistic query distribution. One limitation we faced in the work is the scalability of solver for NP-hard problem, i.e. clique finding algorithm. The work of Grubbs et al. [16] tolerate this by having a prepossessing step. This step enables the algorithm to work even for the cases where the size of the graph is large and it is interesting to study whether a prepossessing step can be applied to cases where volumes are noisy.

Acknowledgments

The authors would like to thank the members of the Dachman-Soled group in REU-CAAR 2017 (funded by NSF grant #CNS-1560193), Stuart Nevans Locke, Shir Maimon, Robert Metzger, Laura B. Sullivan-Russett, who helped us test preliminary ideas on cache side-channel attacks for database reconstruction. We also thank Uzi Vishkin and Lambros Mertzianis for helpful discussions during various stages of this project. The authors would also like to thank the anonymous reviewers for their insightful comments and suggestions.

References

[1] Cloud Services. https://www.datamation.com/cloud-computing/slideshows/
The experiments and the code for algorithms. https://github.com/ariashahverdi/database_reconstruction.

Microsoft Wins Pentagon’s $10 Billion JEDI Contract, Thwarting Amazon. https://www.nytimes.com/2019/10/25/technology/dod-jedi-contract.html. Accessed: 2020-05-08.

Introduction to the HCUP Nationwide Inpatient Sample (NIS) 2008, (accessed June 15, 2020).

Onur Acıiçmez. Yet another microarchitectural attack:: exploiting I-cache. In Proceedings of the 2007 ACM workshop on Computer security architecture, pages 11–18. ACM, 2007.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikan, and Yirong Xu. Order-Preserving Encryption for Numeric Data. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, June 13-18, 2004, pages 563–574, 2004.

Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van de Pol, and Yuval Yarom. Amplifying side channels through performance degradation. In Proceedings of the 32nd Annual Conference on Computer Security Applications, pages 422–435. ACM, 2016.

Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-preserving symmetric encryption revisited: Improved security analysis and alternative solutions. In Annual Cryptology Conference, pages 578–595. Springer, 2011.

Dave Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman. Semantically Secure Order-Revealing Encryption Without Obfuscation. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 563–594, 2015.

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against searchable encryption. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, pages 668–679. ACM, 2015.

David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roșu, and Michael Steiner. Highly-scalable searchable symmetric encryption with support for boolean queries. In Annual Cryptology Conference, pages 353–373. Springer, 2013.

The FPLLL development team. fplll, a lattice reduction library. Available at https://github.com/fplll/fplll, 2016.

Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural timing attacks and countermeasures on contemporary hardware. Journal of Cryptographic Engineering, 8(1):1–27, 2018.

Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush, Gauss, and reload--a cache attack on the bliss lattice-based signature scheme. In International Conference on Cryptographic Hardware and Embedded Systems, pages 323–345. Springer, 2016.

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Pump up the volume: Practical database reconstruction from volume leakage on range queries. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 315–331. ACM, 2018.

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Learning to Reconstruct: Statistical Learning Theory and Encrypted Database Attacks. In IEEE Symposium on Security and Privacy (S&P) 2019, 2019.

Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart. Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE Symposium on Security and Privacy (SP), pages 655–672. IEEE, 2017.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Automating attacks on inclusive last-level caches. In 24th USENIX Security Symposium (USENIX Security 15), pages 897–912, 2015.

Sanghyun Hong, Michael Davinroy, Yiğitcan Kaya, Stuart Nevans Locke, Ian Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitraș. Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks. CoRR, abs/1810.03487, 2018.

Sanghyun Hong, Michael Davinroy, Yiğitcan Kaya, Dana Dachman-Soled, and Tudor Dumitraș. How to Own the NAS in Your Spare Time. In International Conference on Learning Representations, 2020.
A Appendix

Closest Vector Problem (CVP) Given n-linearly independent vectors $b_1, b_2, \ldots, b_n \in \mathbb{R}^m$, the lattice generated by b_1, b_2, \ldots, b_n is the set of all the integer linear combination of them i.e. $L(b_1, b_2, \ldots, b_n) = \{ \sum_{i=1}^{n} x_i b_i \mid x_i \in \mathbb{Z} \}$. The set $\{b_1, b_2, \ldots, b_n\}$ is called the basis of the lattice and is presented by matrix B in which basis b_i is i-th row of the matrix. In the closest vector problem target vector y is given. The target vector y does not necessarily belong to lattice L. The solution is a lattice point $y' = xB$ which is closest to target vector y and also $y' \in L$. Notice that a lattice point y' is a linear combination of basis, while the target vector y is not. The significance of the CVP problem is to find a closest vector to y such that the linear combination is satisfied. CVP problem is also known to be NP-complete and we use \texttt{fplll} \cite{2016} for finding the closest vector in lattice.
A.1 Error Reduction Step

As explained in Section 3.3 and Section 3.4 by using the noisy clique-finding and Match & Extend algorithms on the noisy data we get some close answer to the real database. Here we outline a technique which can reduce the noise and output a more accurate answer. The first step is to compute all the \(\binom{N}{3} + N \) volumes corresponding to each range. Specifically, the ranges \([i, j]\) are obtained using noisy clique-finding or Match & Extend. Each range \([i, j]\) can be computed from the elementary volumes as \([i, j] = [1, j] - [1, i - 1]\). Instead of taking the computed value for range \([i, j]\), we choose the value in the set of volumes (obtained from the side-channel data) that is closest to this computed value. This procedure results in \(N' = \binom{N}{3} + N\) volumes which we call candidate volumes. Now note that given the volumes of the ranges \([1, 1], [2, 2], \ldots, [N, N]\), the volume of any other range \([i, j]\) can be expressed as a linear combination of these values. Therefore, our variable \(\vec{x} = (x_1, \ldots, x_N)\) corresponds to the volumes of the ranges \([1, 1], [2, 1], \ldots, [N, N]\) and our candidate volumes \(\vec{v} = (v_1, \ldots, v_{N'})\), correspond to noisy linear combinations of the \(x_i's\). Thus, solving for the \(\vec{x}\) which yields the closest solution to \(\vec{v} = (v_1, \ldots, v_{N'})\) under the linear constraints, corresponds to solving a Closest Vector Problem (CVP).

For example, if the range has size \(N = 3\), then we obtain a total of 6 volumes \(v_1, \ldots, v_6\) corresponding to the ranges \([1, 1], [2, 2], [3, 3], [1, 2], [2, 3], [1, 3]\) and can construct the following system of equations:

\[
A\vec{x} + \vec{e} = \vec{v}
\]

where

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\(\vec{v} = (v_1, \ldots, v_6)\), \(\vec{e}\) is the amount of error and \(\vec{x}\) is known. To solve this problem, we can consider the lattice defined by \(A\vec{x}\), where \(A\) is the basis and \(\vec{x}\) is any integer vector. Now, given \(\vec{v}\), we would like to find the closest lattice vector \(\vec{y} = A\vec{x}\) to \(\vec{v}\). Once we have \(\vec{y}\), we can solve to get \(\vec{x}\). To create a full rank matrix for our solver, we can modify matrix \(A\) as following:

\[
A' = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & T & 0 & 0 \\
0 & 1 & 1 & T & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & T \\
\end{bmatrix}
\]

where \(T \gg n\) and \(\vec{y}\) stays the same.

Now we obtain a solution of dimension 6 (as opposed to dimension 3), but the last three coordinates should always be 0, since if they are non-zero there will be at least \(\pm T\) in the corresponding coordinate of \(\vec{v}\), which will clearly not be the closest vector.

A.2 Error Reduction Step Experiments

Table 2 and Table 3 compare the clique and Match & Extend algorithms and the improvement achieved by the error reduction step using the CVP solver. Recall that the error percentage is computed for each recovered coordinate. We measured the quality of the recovered databases in two ways: in Table 2 we report the average value of the error percentage over all the volumes in all recovered databases. For Table 3, we compute for each database the largest error percentage of its coordinates, and we report the average of all these maxima over all databases in Experiments I, II and IV. The effectiveness of CVP is for the cases where the initial reconstructed database is within some close distance of the correct database. Hence for the other two experiments, the plain CVP is not effective as the initial recovered database is rather far from the correct answer, and generally CVP can not be effective. Moreover, the CVP algorithm needs to have all the initial volumes, so for the experiments where some of the volumes are missing, CVP can not be used.

It can be seen that for Match & Extend algorithm the average error percentage is reduced from 0.09 to 0.07, from 0.09 to 0.08 and from 0.09 to 0.08 in Experiments I, II and IV, respectively. Table 3 shows similar results for maximum error percentage. Namely for Match & Extend algorithm the maximum error percentage is reduced from 0.22 to 0.20, from 0.30 to 0.22 and from 0.24 to 0.22 in Experiments I, II and IV, respectively.\(^7\)

\(^7\)Table 2 and Table 3 present the \(L_1\) norm and \(L_{\infty}\) norm, respectively. The CVP solver optimizes for \(L_2\) norm, so it has a larger effect on decreasing \(L_{\infty}\) norm than \(L_1\) norm. In case the objective is to minimize the \(L_1\) norm, an integer programming approach would be preferable.