New pharmacological treatments for heart failure with reduced ejection fraction (HFrEF)

A Bayesian network meta-analysis

Heng Li, PhDa, Yuting Duan, BSb, Benfa Chen, BSa, Yu Zhao, PhDa, Weiping Su, BSa, Shanhua Wang, MDa, Jiaming Wu, MDa, Liming Lu, PhDb,c

Abstract

Background: Heart failure with reduced ejection fraction (HFrEF) has contributed to an increasing number of deaths and readmissions over the past few decades. Despite the appearance of standard treatments, including diuretics, β-receptor blockers and angiotensin-converting enzyme inhibitor (ACEI), there are still a large number of patients who have progressive deterioration of heart function and, inevitably, end-stage heart failure. In recent years, new medications for treating chronic heart failure have been clinically applied, but there is controversy surrounding drug selection and whether patients with HFrEF benefit from these medications. Therefore, we aimed to compare and rank different new pharmacological treatments in patients with HFrEF.

Methods: We performed a network meta-analysis to identify both direct and indirect evidence from relevant studies. We searched MEDLINE, EMBASE, and PsycINFO through the OVID database and CENTRAL through the Cochrane Library for clinical randomized controlled trials investigating new pharmacological treatments in patients with HFrEF published up to September 30, 2018. We included trials of ivabradine, levosimendan, omega-3, tolvaptan, recombinant human B-type natriuretic peptide (rhBNP), isosorbide dinitrate and hydralazine (ISDN/HYD) and angiotensin-neprilysin inhibition (LCZ696). We extracted the relevant information from these trials with a predefined data extraction sheet and assessed the risk of bias with the Cochrane risk of bias tool. Based on these items, more than half of the entries were judged as having an overall low to moderate risk of bias; the remaining studies had a high or unclear risk of bias. The outcomes investigated were left ventricle ejection fraction (LVEF %), heart rate (HR) and serum level of B-type natriuretic peptide (BNP). We performed a random-effects network meta-analysis within a Bayesian framework.

Results: We deemed 32 trials to be eligible that included 3810 patients and 32 treatments. Overall, 32 (94.1%) trials had a low to moderate risk of bias, while 2 (5.9%) trials had a high risk of bias. The quality of the included studies was rated as low in regard to allocation concealment and blinding and high in regard to other domains according to the Cochrane tools. As for increasing LVEF%, levosimendan was better than placebo (−3.77 (−4.96, −2.43)) and was the best intervention for improving ventricle contraction. As for controlling HR, n3-PUFA was better than placebo (4.01 (−0.44, 8.48)) and was the best choice for regulating HR. As for decreasing BNP, omega-3 was better than placebo (94.19 (−47.48, 1952.89)) and was the best therapy for improving ventricle wall tension.

Conclusions: Our study confirmed the effectiveness of the included new pharmacological treatments for optimizing the structural performance and improving the cardiac function in the management of patients with HFrEF and recommended several interventions for clinical practice.

Abbreviations: ACEI = angiotensin-converting enzyme inhibitor, ADDIS = aggregate data drug information system, ARB = angiotensin-receptor antagonists, BNP = B-type natriuretic peptide, HFrEF = heart failure with reduced ejection fraction, HR = heart rate, HYD = hydralazine, ISDN = isosorbide dinitrate, LVEF = left ventricular ejection fraction, MD = mean difference, NYHA = New York Heart Association, PSRF = potential scale reduction factor, RCTs = randomized controlled trials, rhBNP = recombinant human B-type natriuretic peptide.

Keywords: heart failure with reduced ejection fraction, network meta-analysis, pharmacological treatments
1. Introduction

For patients with chronic heart failure with reduced ejection fraction (HFrEF), multiple medication therapy that includes angiotensin converting enzyme inhibitors or angiotensin-receptor antagonists (ACEI/ARB), β-receptor blocker and spironolactone has been proven to decrease mortality and hospitalization rates in large randomized controlled trials (RCTs). The clinical benefits of these medical therapies have generally been applied in routine clinical practice. Therefore, these drugs form the cornerstone of contemporary evidence-based HFrEF care and are supported by class I indications in clinical treatment guidelines.

Despite their proven benefits and strong guideline recommendations, these traditional medications are restricted in application because of the complicated condition of patients and their many contraindications. With the high prevalence and mortality of patients with HFrEF each year, starting from the pathogenesis of the neural fluid mechanism of heart failure, a series of new clinical drugs that break through the limitations of traditional medicine have emerged. On this basis, several RCTs have been designed to evaluate the advantages and disadvantages of the new pharmacological therapy and traditional drugs using the cardiac function and structural optimization as the clinical outcomes. However, there is still a lack of direct comparisons between the efficacies of the new medications. To obtain high-quality evidence for making clinical decisions, we performed a Bayesian network meta-analysis to compare and rank different new pharmacological therapies for the management of patients with HFrEF.

2. Methods

This study was conducted in accordance with the Cochrane Handbook for the Systematic Review of Interventions (for details, see at http://training.cochrane.org/handbook) and the Preferred Reporting Items for Systematic Review and Meta-Analyses. The included studies were classified according to the types of pharmacological treatments.

2.1. Search strategy

For the network meta-analysis, we searched MEDLINE, EMBASE, and PsycINFO through the OVID database and searched CENTRAL through the Cochrane Library. We searched studies published from their inception to September 30, 2018, and compared different pharmacological treatments for clinical outcomes in patients with HFrEF (Appendix 1).

2.2. Study selection

2.2.1. Types of studies. All RCTs with a sample size >10 per arm.

2.2.2. Types of participants. The inclusion criteria were as follows: diagnosis of HFrEF according to the report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Heart failure patients with preserved ejection fraction, acute or chronic infectious or inflammatory diseases and recent myocardial infarction (<8 weeks) or active ischemia were excluded. The details of eligibility criteria PICOS are shown in Table 1.

2.2.3. Types of interventions. Ivabradine, levosimendan, omega-3, tolvaptan, recombinant human B-type natriuretic peptide (rhBNP), isosorbide dinitrate and hydralazine (ISDN/HYD) and angiotensin-neprilysin inhibitor (LCZ696) were included. However, the data form the LCZ696 clinical trials did not satisfy the requirements of the network meta-analysis. In the control group, any of the above seven pharmacological treatments (positive control), placebo and usual care (blank control) were included.

2.2.4. Types of outcome measures. The primary outcomes were LVEF, heart rate (HR) and the serum level of the B-type natriuretic peptide (BNP), which were also analyzed by network meta-analysis.

2.3. Data extraction and quality assessment

Two investigators (HL, YTD) independently selected the studies. The review of the main reports and supplementary materials, the extraction of the relevant information from the included trials with a predetermined data extraction sheet, and the assessment of the risk of bias with the Cochrane risk of bias tool were independently performed by 3 investigators (BFC, YZ, JMW). Any disagreements were resolved through discussion. When the investigators did not reach a consensus, the final decision regarding each question was made by other investigators within the review team (SW, WSH, and LML).

We evaluated the quality of the included studies with the Cochrane Collaboration Recommendations assessment tool. The tool for assessing 7 domains, including random sequence generation, allocation concealment, blinding of participants and personnel, blinding (or masking) of outcome assessors, incomplete outcome data, selective reporting and other biases, is described in the Cochrane Handbook for Systematic Reviews of Interventions (see details at http://training.cochrane.org/handbook). Based on these items, more than half of the entries had an overall low to moderate risk of bias, and the remaining entries had a high or unclear risk of bias.

Table 1	Eligibility criteria PICOS.	
Inclusion criteria	**Exclusion criteria**	
Participants	Meet the diagnosis heart failure with reduced ejection fraction (HFrEF) of a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines	Heart failure with preserved ejection fraction; acute or chronic infectious or inflammatory diseases; recent myocardial infarction (<8 weeks) or active ischemia
Interventions	Ivabradine, levosimendan, omega-3, tolvaptan, recombinant human B-type natriuretic peptide (rhBNP), isosorbide dinitrate and hydralazine (ISDN/HYD) and Angiotensin-neprilysin inhibition (LCZ696)	
Comparisons	Any of above 7 pharmacological treatment (positive control); placebo; usual care (blank control)	
Outcomes	LVEF, heart rate, serum level of B-type natriuretic peptide	
Study design	Randomized controlled trials; sample size >10/arm	
2.4. Statistical analysis

A network meta-analysis with a Bayesian framework with Aggregate Data Drug Information System (ADDIS, version 1.16.8) was conducted to assess the clinical outcomes of pharmacological interventions. This software is based on the Bayesian framework and the Markov chain Monte Carlo method, which can evaluate a priori and process research data. We used a random-effects model to analyze the effect sizes in this study. The effect sizes for continuous outcomes were the mean difference (MD). Consistency and inconsistency were the 2 models used to estimate the effect size in ADDIS. A consistency assessment drew conclusions on the effect sizes of the included interventions and estimated the ranking probabilities for all the interventions. The consistency test results were judged by node-splitting analysis and an inconsistency model. When the P value of the node-splitting analysis was greater than .05, a consistency mode was selected. Otherwise, an inconsistency model was used. The potential scale reduction factor (PSRF) was used to evaluate the convergence of the model. The closer the PSRF value was to 1, the better the convergence. The convergence of the model was still acceptable if the PSRF value was less than 1.2. For each intervention, we estimated the ranking probabilities for each treatment at each possible rank.

3. Results

3.1. Study identification and selection

In total, 28,051 citations published between 1981 and September 30, 2018, were identified by the search. After removing duplicates and unrelated articles, 32 articles describing 32 RCTs including 3495 patients were eligible for further quantitative analyses. The flow chart of the specific screening procedures is shown in Figure 1.

A total of 3495 participants were included, with sample sizes that ranged from 25 to 341. Participants’ mean age in the included studies ranged from 53 to 74, and the intervention duration was in the range of 24 hours to 12 months. All of the studies were parallel, randomized, and controlled, among which 2 studies (6.3%) were single-blinded, 9 studies (28.1%) were double-blinded, 13 studies (40.6%) were open-label and the remaining studies had 2 designs. Among the included studies, levosimendan (65.6%) was the main therapy in the treatment group, 6 studies (18.8%) employed ivabradine as the treatment group, while the other 4 drugs (omega-3, tolvaptan, rhBNP, ISDN/HYD) were used as treatments in the remaining studies. Outcome measures such as LVEF%, HR, and the serum level of BNP were used to evaluate the cardiac function. Eleven studies (34.4%) also treated New York Heart Association (NYHA) heart function and mortality as observation outcomes. All the characteristics of the included studies are shown in Table 2.
Table 2

The characteristics of the included studies.

Year	First author	Study design	Principle health problem	Patients	Sample size (I:C)	Male: Female (I:C)	Intervention (I)	Control (C)	Main outcomes	Mortality/ NYHA (Follow up)				
2007	Sophie Mayrov- gen[3][I]	RCT, open-label	Advanced HF (ischemic/idiopathic valvular)	NYHA II or IV; treatment with ACEIs, β-blockers, aldosterone LV ejection fraction of <30%; cardiac index <2.5L/min/m²	6m:20, 61:19	50 (25:25)	20:5:20:5	Levosimendan 0.1 μg/kg/min to 0.2 μg/kg/min (10-minute intravenous bolus of 6 μg/kg)	None	Mean HR: LVEF (%): 8%: 32%	6m			
2010	Osam Can Yon- tur[3][I]	RCT	Ischemic HF	NYHA IV	66:11, 67:7	58 (36:22)	39:19	Levosimendan + conventional treatment 0.1 μg/kg/min for 50 min to 0.2 μg/kg/min for an additional 23 h (0-6 μg/kg)	Dobutamine + conventional treatment 2.5 μg/kg to 5 μg/kg up to a 24-hour infusion for at least 6 h then gradually doubled up to 20 μg/kg/min	Dobutamine 5 μg/kg/min to the dabutamine dose was left for the physician for 24 h	HR (beats/min); LVEF; % LVESD (mm); LVEDD (mm); SBP (mm Hg); E (cm/s); E/A; A (cm/s); Sm (cm); LV ejection fraction	24 h		
2015	Ender Onel[3][I]	RCT, open-label	Severe LV systolic dysfunction	NYHA II or IV; LVEF <35%	6m:11, 64:9	60 (40:21)	32:8:18:3	Levosimendan 0.1 mg/kg/5 min to 0.2 mg/kg if tolerate	Levosimendan 24 h, initially at a rate of 0.1 μg/kg/min to 0.2 μg/kg/min for at least 6 h then gradually doubled up to 20 μg/kg/min	Dobutamine 10 μg/kg/min	LVEF %; PAP mmHg; Crea-tinine (mg/dl)	5d		
2009	Mehmet İbahun Yil- maz[3][I]	RCT, open-label	Severe low-output systolic HF	NYHA II or IV; left ventricular (LV) ejection fraction (EF) of <35%; RV fractional area change of ≤24%	65:9, 65:10	40 (27:13)	21:6:9:4	Levosimendan 24 h, initially at a rate of 0.1 μg/kg/min to 0.2 μg/kg/min	Dobutamine 24-hour infusion of 5 μg/kg/min for at least 6 h then gradually doubled up to 20 μg/kg/min	Dobutamine 24-h hour infusion of 5 μg/kg/min for at least 6 h then slowly doubled up to 20 μg/kg/min	LVEF %; PAP mmHg; Cre-a-tinine (mg/dl)	24 h		
2009	Hanaa Duye[3][I]	RCT, open-label	HF	NYHA II or IV; LVEF <40%	62:9, 58:6	46 (21:25)	14:7:18:7	Levosimendan 24-hour 0.1 μg/kg/min to 0.2 μg/kg/min	Dobutamine 10 μg/kg/min	Dobutamine 24-h hour infusion of 5 μg/kg/min for at least 6 h then gradually doubled up to 20 μg/kg/min	LVEF %; PAP mmHg; Creatinine (mg/dl)	24 h		
2012	Michael J. Boni[3][I]	RCT, open-label	End stage HF	NYHA IV; refractory to standard therapy; PCWP > 15 mm Hg	55:12, 53:13	42 (21:21)	20:1:20:1	Levosimendan 0.3 μg/kg/min	Levosimendan 24 h, initially at a rate of 0.1 μg/kg/min to 0.2 μg/kg/min	Dobutamine 24-h hour infusion of 5 μg/kg/min for at least 6 h then gradually doubled up to 20 μg/kg/min	LVEF %; HR; SBP mmHg; Mean right atrial pressures mmHg; Mean pulmonary arterial pressures mmHg; Pulmonary capillary wedge pressures	19%: 38%: 42%: 0.016: 0.026: 0.006 (3m)		
2011	Deddé Ibnbiod[3][I]	RCT, double-blind	Severe CHF of nonischemic origin	NYHA II IV; LVEF <35%	61.9±9.6, 56.6±7.0, 55.1±12.7	45 (13:16:16)	13:0:14:2:25:4	Levasimendan 4 g/day	Levasimendan 4 g/day	Levasimendan 4 g/day	LVEF (%)	3m		
2011	Mauricio Vehren- rani[3][I]	prospective, random- mized, open- blinded endpoint (PROBE) study	HF	NYHA I-II; clinically stable for the 3 wk before selection or discharged; 6 min walking test 100-400 m; heart rate ≥50 bpm; SBP <100 mm Hg; LV EF <40%; HR <70 bpm, sinus rhythm	67±10, 67±10	79 (41:38)	28:38:26:12	Levasimendan up to 7.5 mg bid	Levasimendan up to 7.5 mg bid	Levasimendan up to 7.5 mg bid	LVEF (%)	3m		
2016	Francisac J. Hidalgo[3][I]	RCT, open-label	Acute HF, either de novo or decompensated (PROBE) study	NYHA I-II; LVEF <35%; sinus rhythm HR <70; stable for ≥2 wk; sinus rhythm HR ≥70, stable for ≥2 wk; sinus rhythm; LVEF >40%	66±15, 66±12	71 (33:38)	24:9:26:12	Levasimendan 5 mg/12 h combined with low-dose beta-blockers	Levasimendan 5 mg/12 h combined with low-dose beta-blockers	Levasimendan 5 mg/12 h combined with low-dose beta-blockers	LVEF %; NYHA; LVESDI; LVEDVI	4m		
2011	C. Gocan[3][I]	RCT, double-blind	CHF (Previous MI)	NYHA III IV; LVEF <35%; sinus rhythm HR ≥70; stable for ≥2 wk; sinus rhythm HR ≥70; stable for ≥2 wk; sinus rhythm; LVEF >40%;	60±11, 59±11	611 (304:307)	244:60:252:55	Levasimendan 5 mg/12 h combined with low-dose beta-blockers	Levasimendan 5 mg/12 h combined with low-dose beta-blockers	Levasimendan 5 mg/12 h combined with low-dose beta-blockers	LVEF %; NYHA; LVESDI; LVEDVI	12m		
2013	J. Kojuri[3][I]	RCT, double-blind	CHF	NYHA II or III; sinus rhythm; LVEF <40%,	56, 58	70 (38:32)	22:12:9:20:12	omega-3 2 g/day	omega-3 2 g/day	omega-3 2 g/day	LVEF %; NYHA; LVESDI; LVEDVI	6m		
2007	John T. Parissi- sio[3][I]	RCT	Advanced HF (both ischemic/idiopathic)	NYHA II IV; LVEF <35%	65±8, 61±14	39 (26:13)	24:2:9:4	Levasimendan 24 h infusion, at a rate of 0.1 μg/kg/min without a loading dose.	Levasimendan 24 h infusion, at a rate of 0.1 μg/kg/min without a loading dose.	Levasimendan 24 h infusion, at a rate of 0.1 μg/kg/min without a loading dose.	LVEF %; NYHA; LVESDI; LVEDVI	3.6±0.3: 2.6±0.4: 3.1±0.4: 3.2±0.5 NYHA	Not clear	6m

(continued)
Year	First author	Study design	Principle health problem	Patients	Age (C)	Sample size (C)	Male: Female (C)	Intervention (I)	Control (C)	Main outcomes	Morality / NYHA Follow up
2004	John T. Parisis	RCT	Decompensated HF (ischemic or dilated)	NYHA II–IV, currently on treatment with angiotensin-converting enzyme inhibitors, diuretic; LVEF < 30%	72±2; 69±3	27 (13:14)	Not clear	Levosimendan 10-minute intravenous bolus/kg followed by continuous infusion 0.1–0.4 μg/kg	Placebo	LVEF (%); Systolic blood pressure (mm Hg); LV end-diastolic diameter (cm); LV end-systolic diameter (cm); TnF-α (pg/ml); L-6 (μg/ml)	Not clear
2007	Ignatios Ikonami-	RCT	Advanced HF ischemic/dilated	NYHA II–IV; LVEF < 30%	63±8; 63±12	42 (21:21)	19:2	Levosimendan 24-hour infusion 0.1 μg/kg/min, with no a loading dose	Placebo	HR; LVEF (%); LV End-diastolic volume (mm3); LV End-systolic volume (mm3); BNP (pg/ml); Em (cm); Sm (cm)	24 h
2008	John T. Parisis	RCT	Advanced CHF ischemic/dilated	NYHA II–IV; LVEF < 30%	62±10; 62±11	26 (17:9)	16:1	Levosimendan 0.1 μg/kg/min	Placebo	BNP (pg/ml); L-6 (μg/ml); sICAM-1 (pg/ml); sVCAM-1 (pg/ml)	48 h
2008	Hamza Diagou	RCT, open-label	Acute decompen-sated HF with ischemic cardiomyopathy	NYHA II–IV; LVEF < 40%; sinus rhythm, not receiving digoxin, other parenteral positive inotropes, or β-blockers	64±10; 65±8	60 (30:30)	19:11	Dobutamine a continuous 24 h infusion of 5 μg/kg/min	Placebo	LVEF (%); E (cm/s); A (cm/s); sPAP (mm Hg)	Not clear
2005	John T. Parisis	RCT, open-label	Advanced HF ischemic/dilated	NYHA III (74/174)	66±5; 65±5	34 (17:17)	16:1	Levosimendan 10-minute intravenous bolus at 6 μg/kg, 0.1 to 0.4 μg/kg/min	Placebo	LV end-diastolic diameter (mm); LV end-systolic diameter (mm); BNP (pg/ml); Interleukin-6 (pg/ml)	24 h
2007	John T. Parisis	RCT, single-blind	Advanced CHF dilated/ischemic	NYHA II–IV; LVEF < 30%	65±8; 66±5	63 (42:21)	35:7	Levosimendan 24 h; levosimendan infusion 0.1 μg/kg/min	Placebo	LV end-diastolic diameter (mm); LV end-systolic diameter (mm); LVEF (%)	3.3±0.7
2006	John T. Parisis	RCT, open-label	Advanced HF ischemic/dilated	NYHA II–IV; LVEF < 35%	63±8; 63±12	54 (36:18)	34:2	Levosimendan 24-hour infusion 0.1 μg/kg/min	Placebo	LVEF (%); Pulmonary arterial pressure (mmHg); E (cm/s); A (cm/s); BNP (pg/ml); Interleukin-6 (pg/ml)	Not clear
2009	YT Zhang	RCT, single-blind	CHF ischemic or idiopathic dilated cardiomyopathy	NYHA II–III	74±6; 71±10	75 (56:37)	27:11	2 g n-3 PUFA 180 mg eicosapentaenoic acid + 120 mg docosahexaenoic acid	Placebo	LVEF (%); LVEDD (mm); LVEDV (mm); NT-proBNP (pg/ml); TnF-α (pg/ml); L-6 (μg/ml); ICM-1 (ng/ml)	3 m
2011	Savina Nodari	RCT, double-blind	CHF due to non-ischemic dilated cardiomyopathy	NYHA IV; LVEF ≤ 45%; at least 3 mo on evidence-based medical treatment	61±11; 64±9	133 (67:66)	64:3	n-3 PUFA 1.0 g gelatin capsules containing 850 to 900 mg of EPA and DHA ethyl esters	Placebo	LVEDV (mL); LVEF (%)	1.83±0.38
2011	Jean-Claude Tar-	RCT, double-blind	CHF and systolic dysfunction	NYHA I–II; LVEF ≤ 35%; sinus rhythm; HR ≥ 70 (bpm)	60±11; 59±11	611 (304:307)	244:60; 252:55	Levosimendan intermittent infusions 0.1 to 0.4 μg/kg/min	Placebo	LVEDV (mL); LVEF (%)	2.1±0.65
2006	J T Parisis	RCT, open-label	Decompensated HF ischemic/dilated	NYHA II or IV; LVEF ≤ 30%, currently taking AZDs and diuretics	67±6; 70±8	25 (17:8)	16:1	Levosimendan 10-min bolus intravenous injection of 6 mg/kg continuous 24 h 0.1 μg/kg/min	Placebo	HR; Systolic blood pressure (mm Hg); Diastolic blood pressure (mm Hg); LV end-diastolic diameter (mm); LV end-systolic diameter (mm); LVEF%; NT-proBNP (pg/ml)	30 d
2012	Gabriela Mal-	RCT, open-label	CHF ischemic/non-ischemic etiology	LVEF < 35%	71±7; 69±8	33 (22:11)	16:6	Levosimendan intermittent infusions 0.1 to 0.4 μg/kg/min	Placebo	Cardiac Index; BNP (pg/ml); Serum Na+ (mg/dL); Serum K+ (mEq/L); LVEF (%)	3.07±0.36
	fattolo									(continued)	

(continued)
Year	First author	Study design	Principle health problem	Age (I:C)	Sample size (I:C)	Male: Female (I:C)	Intervention (I)	Control (C)	Main outcomes	Morbidity/ NYHA	Follow up	
2007	Jay N. Cohn	RCT	CHF	57±13: 57±13	678 (337:341)	182:155; 225:116	ISDN 20 mg and HFD 37.5 mg	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	3.5±0.5	2.5±0.6	(3 months)
2007	Rudolf Berger	RCT, open-label	Advanced CHF	57±10: 54±10	75 (39:36)	32:29	Levosimendan 12 μg/kg for 10 min, 0.1 μg/kg/min for 24 h	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	2.5±0.6	2.1±0.8	(0 year)
2008	Hamza Duygu	RCT, open-label	CHF	62±10: 64±8	40 (20:20)	11:10	Levosimendan 10 min intravenous bolus infusion at 6–12 μg/kg, 12 μg/kg 24 h infusion at 0.1 μg/kg/min	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	2.1±0.7	2.1±0.7	(1 year)
2011	Mikko Jalanko	RCT, double-blind	Congestive CHF	63±12: 63±13	29 (18:11)	16:2	Levosimendan 1 mg	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	Not clear	Not clear	(Not clear)
2010	Ibrahim Hall Kurt	RCT, open-label	Decompensated CHF	63±12: 64±10	59 (30:29)	13:17	Levosimendan 12 μg/kg for 10 min intravenous bolus infusion at 0.1 μg/kg/min	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	37:5	37:5	(Not clear)
2005	Doddo Mort	RCT, open-label	CHF	57±2: 54±2	73 (38:35)	31:27	Levosimendan 0.1 μg/kg/min for 24 h	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	Not clear	Not clear	(Not clear)
2003	Mihai Ghiorghiu	RCT, double-blind	CHF	70±11: 67±13	127 (64:63)	40:24	Tolvaptan 30 mg/d	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	Not clear	Not clear	(Not clear)
2016	Hiroki Tsuchiya	RCT, double-blind	CHF	59±13: 60±14: 59±13	126 (42:42:42)	37:5	2.5 mg ivabradine 9D: 5 mg ivabradine 8D	Placebo	Plasma wave reflections, LV remodeling, 6MWT distance, NT-proBNP, and quality of life	Not clear	Not clear	(Not clear)

ACEI = angiotensin-converting enzyme inhibitor, BNP = B-type natriuretic peptide, CHF = congestive heart failure, DPP = diastolic blood pressure, HF = high frequency, HR = heart rate, HFD = hydralazine, ISDN = isosorbide dinitrate, LVEF = left ventricular ejection fraction, NYHA = New York Heart Association, PCWP = pulmonary capillary wedge pressure, SBP = systolic blood pressure.
3.2. Quality assessment of the included studies

We evaluated the quality of included studies with the Cochrane Collaboration Recommendations assessment tools. Among 32 trials, 32 studies (100%) described a random component in the sequence generation process, such as a computer-generated random number or a random number table. Allocation concealment was performed using an appropriately sealed method in 25% (8) of the studies, while 46.9% (15) either did not describe concrete methods or used an inappropriate allocation concealment method. In regard to performance bias, 34.4% (11) of the included trials reported the methods of blinding for both participants and personnel. In regard to detection bias, 53.1% (17) of the outcome assessors in the studies either could not be blinded or were unclear. In regard to attrition bias, 30 studies were deemed to have low-risk outcome data (ie, the reported dropout rates were within the range of the statistical estimations, provided detailed explanations of dropout rates or performed intention-to-treat analysis). Other risks were unclear due to insufficient information in 1 study. A detailed quality assessment is presented in Figures 2 and 3.

3.3. Bayesian network meta-analyses

3.3.1. Outcome 1: LVEF%. The network of eligible comparisons for efficacy consisted of 20 studies and 8 treatments (16 arms of levosimendan; 6 arms of dobutamine; 3 arms of ivabradine; 1 arm of PGE1, omega-3 and furosemide; 1 arm of placebo). The specific network is presented in Figure 4A.

Node-splitting analysis was used to assess consistency. All of the P values between the direct and indirect effects in node-splitting analysis were >.05 (Table 3). A PSRF value closer to 1 indicated convergence and stable results for the model. Therefore, the consistency model was selected for the subsequent network analysis.

The results of the network meta-analyses for LVEF% are presented as a league table in Figure 4B. In terms of efficacy, levosimendan was better than placebo (−3.77 (−4.96, −2.43)) and was the best intervention for improving ventricle contraction. The efficacies of ivabradine and PGE1 were also better than that of placebo (−2.92 (−4.41, −1.66)), −2.65 (−6.43, 0.99), respectively.

The ranking probability of treatments is presented in Figure 4C and D. The results indicated that levosimendan was significantly more effective than the other treatments. The second and third most effective interventions were ivabradine and PGE1, respectively.

3.3.2. Outcome 2: HR. The network of eligible comparisons for efficacy consisted of 11 studies and 6 treatments (10 arms of levosimendan; 2 arms of dobutamine and PGE1; 1 arm of n3-PUFA; 1 arm of blank; 6 arms of placebo). The specific network is presented in Figure 5A.

The results of the network meta-analyses for HR are presented as a league table in Figure 5B. In terms of efficacy, n3-PUFA was better than placebo (4.01 (−0.44, 8.48)) and was the best intervention for regulating HR. The efficacies of PGE1 was also better than placebo (0.85 (−4.48, 5.64)).

The ranking probability of treatments is presented in Figure 5C and D. The results indicated that ivabradine was significantly more effective than the other treatments. The next most effective interventions were PGE1 respectively.

3.3.3. Outcome 3: BNP. The network of eligible comparisons for efficacy consisted of 10 studies and 6 treatments (8 arms of levosimendan; 1 arm of omega-3, ISDN/HYD, PGE1 and furosemide; 8 arms of placebo). The specific network is presented in Figure 6A.

The results of the network meta-analyses for BNP are presented as a league table in Figure 6B. In terms of efficacy, omega-3 was better than placebo (941.99 (−47.48, 1952.89)) and was the best therapy for improving ventricle wall tension. The efficacies of levosimendan and PGE1 were also better than that of placebo (365.88 (199.34, 550.01)), 306.39 (−159.12, 753.17), respectively.

The ranking probability of treatments is presented in Figure 6C and D. The results indicated that omega-3 was significantly more effective than the other treatments. The second and third most effective interventions were levosimendan and PGE1, respectively.

4. Discussion

4.1. Summary of results

This comprehensive network meta-analysis found that levosimendan was superior to the other therapeutic drugs in improving the ventricular systolic function and reducing ventricular wall tension. In the reduction of HR, n3-PUFA plays a critical role that is compatible with its pharmacological effect. The effects of omega-3 in reducing rBNP were better than that of the control group, suggesting that they were only used in specific circumstances.
4.2. Clinical implications

As a new medication designed for improving cardiac contractility, levosimendan can obtain improved myocardial contraction and blood oxygen supply without increasing the intracellular Ca2+ concentration and avoid adverse events, such as myocardial stunning and malignant arrhythmia. A series of clinical studies, including LIDO, RUSSLAN, CASINO, SURVICE, and REVIVE, have confirmed that levosimendan can improve the clinical outcome in patients with congestive heart failure caused by systolic dysfunction. In this study, it was found that levosimendan was superior to other drugs in regard to improving myocardial contraction (higher LVEF%, SMD = 3.77 (–4.96, –2.43)) and reducing ventricular wall tension (lower serum BNP level, SMD: 365.88 (199.34, 550.01)) mainly because of its unique biological effects in vivo. Levosimendan increases myocardial contraction and improves ventricular diastolic function during the cardiac cycle by pulsed binding to troponin C at low Ca2+ concentrations, which has been demonstrated in laboratory and clinical studies.

Given that the latest guidelines consider HR (frequency) control to be an important component of heart failure management, the use of ivabradine has increased. Unlike the negative muscle force and conduction induced by a β receptor blocker, ivabradine reduces both atrial rhythm and ventricular nonconduction by specifically inhibiting the cationic current If (funny current), which is activated by the hyperpolarization of the sinoatrial node. Studies such as SHIFT and BEAUTIFUL have shown that ivabradine can translate HR reduction into beneficial effects for improving the prognosis of heart failure.

As a third generation β receptor blocker, carvedilol regulates the adverse effects of catecholamines on the heart and kidneys via non-selective inhibition of the β receptor and selective inhibition of the α1 receptor, thereby improving the long-term prognosis of patients with HFrEF. Further clinical studies have also confirmed that patients with HFrEF taking carvedilol have improved survival compared to those taking a metoprolol succinate or tartrate formulation.

As a suplement to traditional diuretics, tolvaptan is mainly used by patients with heart failure with high volume of hyponatremia. EVEREST and other trials have shown that tolvaptan can only alleviate short-term symptoms and signs (sodium retention and dyspnea), but does not help decrease mortality. Similar to atorvastatin, exogenous rhBNP (nesiritide) supplementation may improve short-term hemodynamics and acute symptoms in patients with HFrEF, but is not helpful for improving the long-term prognosis.
Considered the antiarrhythmic, anti-inflammatory and antioxidant effects of omega-3 polyunsaturated fatty acids, GISSI-HF study from Tavazzi et al. further revealed that omega-3 supplementation may reduce heart failure-related hospitalizations and death in patients with HFrEF (56 patients needed to be treated for a median duration of 3.9 years to avoid one death or 44 to avoid one event like death or admission to hospital for cardiovascular reasons[28,29]). It was also found in this study that omega-3 polyunsaturated fatty acids supplements improved myocardial performance for patients with HFrEF. Therefore, we suggest that HFrEF patients may benefit from omega-3 supplementation to lower their risk of congestive heart failure-related hospitalizations and death.
Table 3
Direct and indirect effects between drugs.

Name	Direct effect	Indirect effect	Overall	P value
Blank, ivabradine	1.08 (–3.47, 5.52)	6.52 (1.56, 11.45)	N/A	.11
Blank, levosimendan	7.02 (2.71, 11.19)	1.58 (–3.46, 6.70)	N/A	.10
Ivabradine, placebo	–3.11 (–4.86, –1.38)	2.15 (–4.05, 8.67)	N/A	.11
Levosimendan, placebo	–3.83 (–5.16, –2.23)	–9.52 (–15.29, –2.82)	N/A	.09

Figure 5. Rank probability of HR in pharmacological treatments. HR = heart rates, n3-PUFA = n-3 polyunsaturated fatty acids, PGE1 = prostaglandin E1.
4.3. Limitations

There were several limitations in the current study. First, the quality of several of the included studies was not optimal. When evaluating these studies, we found that many lacked details on allocation concealment or blinding. Additionally, several studies had high dropout rates, inevitably due to the lengths of the trials. Second, although we evaluated the studies according to the tool, any evaluation of bias is subjective. There is no quantitative index that can evaluate only an artificial risk of bias. Third, because we used strict inclusion and exclusion criteria, the number of included studies was low, which may have influenced the strength of the evidence. For example, 2 RCTs on LCZ696 were not included in this study due to the lack of the main outcomes required for meta-analysis. Nonetheless, as a revolutionary drug that is most likely able to change the status of heart failure, LCZ696 has been shown to significantly reduce the risk of cardiovascular death and readmission due to heart failure by 20%, while the total mortality is reduced by approximately 20%.\[30,31\]
Figure 6. (Continued)

Drug	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6
Furosemide	0.64	0.11	0.14	0.06	0.04	0.01
ISDN/HYD	0.07	0.23	0.52	0.14	0.03	0.01
Levosimendan	0	0	0.02	0.35	0.55	0.07
PGE1	0.04	0.06	0.13	0.34	0.33	0.06
Omega-3	0.01	0.02	0.02	0.05	0.05	0.05
Placebo	0.23	0.59	0.17	0.02	0.0	0

Figure 6B

Drug	258.86 (-940.10, 467.88)	-535.79 (-1197.53, 71.76)	-467.43 (-1215.60, 282.73)	-1108.37 (-2272.31, 110.05)	-169.71 (-830.61, 475.79)
ISDN/HYD	258.86 (-467.88, 940.10)	-282.31 (-650.51, 43.47)	-218.68 (-761.32, 864.91)	318.41 (1918.12, 182.82)	84.45 (-227.29, 248.16)
Levosimendan	535.79 (-71.76, 1197.53)	282.31 (-43.47, 650.51)	63.49 (-387.10, 495.60)	-584.05 (-1602.52, 450.31)	365.88 (199.34, 550.01)
PGE1	467.43 (-282.73, 1215.60)	218.68 (-318.41, 761.32)	-63.49 (-495.60, 367.10)	-633.45 (-1737.56, 753.17)	506.39 (-159.12, 753.17)
Omega-3	1108.37 (-110.05, 2272.31)	864.91 (-182.82, 1918.12)	584.05 (-450.31, 1602.52)	633.45 (-465.47, 1737.56)	941.99 (-47.48, 1952.89)
Placebo	169.71 (-475.79, 830.61)	-84.45 (-371.56, 227.29)	-365.88 (-550.01, -199.34)	-306.39 (-753.17, 159.12)	-941.99 (-1952.89, 47.48)
5. Conclusion

Our study confirmed the effectiveness of the included new pharmacological treatments for optimizing the structural performance and improving the cardiac function in the management of patients with HF/REF and recommended several interventions for clinical practice. No single clinical trial can answer all pertinent questions, nor can all trial results be perfectly replicated in clinical practice. Additional high-quality RCTs should be performed to provide more powerful evidence in a wider population of heart failure patients.

Author contributions

Conceptualization: Benfa Chen.
Data curation: Yuting Duan, Benfa Chen.
Formal analysis: Yuting Duan.
Funding acquisition: Liming Lu.
Investigation: Shanhua Wang.
Methodology: Jiaming Wu, Liming Lu.
Resources: Yu Zhao.
Software: Yuting Duan.
Supervision: Liming Lu.
Validation: Weiping Su.
Writing – original draft: Heng Li, Yuting Duan.

References

[1] Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/Heart Failure Society of America and the American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:147–239.

[2] Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACC/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 2017;70:776–803.

[3] Fonarow GC, Albert NM, Curtis AB, et al. Incremental reduction in risk of death associated with use of guideline-recommended therapies in patients with heart failure: a nested case-control analysis of IMPROVE-HEART J Hop 2012;1:16–26.

[4] Fonarow GC, Hernandez AF, Solomon SD, et al. Potential mortality reduction with optimal implementation of angiotensin receptor neprilysin inhibitor therapy in heart failure. JAMA Cardiol 2016;1:714–7.

[5] Clyde W, Yancy , Mariell Jessup , Biykem Bozkurt , et al. 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACC/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2016;134:282–93.

[6] Swedberg K, Konmadi M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010;376:873–85.

[7] Ruilope LM, Dukat A, Bohm M, et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study, Lancet 2010;375:1255–66.

[8] McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014;371:993–1004.

[9] Rognoni A, Lupi A, Lazzero M, et al. Levosimendan: from basic science to clinical Trials. Recent Patents on Cardiovascular Drug Discovery 2011;6:59–15.

[10] Liberati A, Altman D, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.
[32] Mavrogeni S, Giamouzis G, Papadopoulou E, et al. A 6-Month Follow-up of Intermittent Levosimendan Administration Effect on Systolic Function, Specific Activity Questionnaire, and Arrhythmia in Advanced Heart Failure. J Card Fail 2007;13:556–9.

[33] Osman Can Yontar, Mehmet Birhan Yilmaz, Kenan Yalta, et al. Acute Effects of Levosimendan and Dobutamine on QRS Duration in Patients with Heart Failure. Arq Bras Cardiol 2010;95:738–42.

[34] Oner E, Erturk M, Birant A, et al. Assessment of sustained effects of levosimendan and dobutamine on left ventricular systolic functions by using novel tissue Doppler derived indices in patients with advanced heart failure. Cardiol J 2015;22:87–93.

[35] Mehmet Birhan Yilmaz, Can Yontar, Alim Erdem, et al. Comparative effects of levosimendan and dobutamine on right ventricular function in patients with biventricular heart failure. Heart Vessels 2009;24:16–21.

[36] Hamza Duygu, Sanem Nalbantgil, Mehdi Zoghi, et al. Comparison of Ischemic Sider Effects of Levosimendan and Dobutamine with Integrated Backscatter Analysis. Clin. Cardiol 2009;32:187–92.

[37] Bonios MJ, Terrovitis JV, Drakos SG, et al. Comparison of three different regimens of intermittent inotrope infusions for end stage heart failure. Int J Cardiol 2012;159:225–9.

[38] Moertl D, Hammer A, Steiner S, et al. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study. Am Heart J 2011;161:915.e1–9.

[39] Volterrani M, Cice M, Caminiti G, et al. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with Heart Failure (the CARVIVA HF trial). Int J Cardiol 2011;151:218–24.

[40] Hidalgo FJ, Angueta M, Castillo JC, et al. Effect of early treatment with ivabradine combined with beta-blockers versus beta-blockers alone in patients hospitalised with heart failure and reduced left ventricular ejection fraction (ETHIC-AHF): A randomised study. Int J Cardiol 2016;217:7–11.

[41] Cocomi C, Freedman SB, Tardif JC, et al. Effect of heart rate reduction by ivabradine on left ventricular remodeling in the echocardiographic substudy of BEAUTIFUL. Int J Cardiol 2011;146:408–14.

[42] Koşur J, Ostovan MA, Rezaian GR, et al. Effect of omega-3 on brain natriuretic peptide and echocardiographic findings in heart failure: Double-blind placebo-controlled randomized trial. Journal of Cardiovascular Disease Research 2013;4:20–4.

[43] Parissis JT, Andreadoul Ι, Markantonis SL, et al. Effects of Levosimendan on circulatory markers of oxidative and nitrosative stress in patients with advanced heart failure. Atherosclerosis 2007;195:e210–5.

[44] Parissis JT, Adamopoulos S, Antoniades C, et al. Effects of Levosimendan on Circulating Proinflammatory Cytokines and Soluble Apoptosis Mediators in Patients With Decompensated Advanced Heart Failure. Am J Cardiol 2004;13:1309–12.

[45] Ignatios Ikonomidou, John T. Parissis, Ioannis Paraskevaidis, et al. Effects of levosimendan on coronary artery flow and cardiac performance in patients with advanced heart failure. European Journal of Heart Failure 2007;9:1172–7.

[46] Parissis JT, Karavaldas A, Ibitola V, et al. Effects of levosimendan on flow-mediated vasodilation and soluble adhesion molecules in patients with advanced heart failure. Atherosclerosis 2008;197:278–82.

[47] Duygu H, Nalbantgil S, Ozerkan F, et al. Effects of Levosimendan on Left Atrial Functions in Patients with Ischemic Heart Failure. Clin Cardiol 2008;31:607–13.

[48] Parissis JT, Panou F, Farmakis D, et al. Effects of Levosimendan on Markers of Left Ventricular Diastolic Function and Neurohormonal Activation in Patients With Advanced Heart Failure. Am J Cardiol 2005;96:423–6.

[49] Parissis JT, Papadopoulos C, Nikolau M, et al. Effects of Levosimendan on Quality of Life and Emotional Stress in Advanced Heart Failure Patients. Cardiovasc Drugs Ther 2007;21:263–8.

[50] Parissis JT, Paraskevaidis I, Bistola V, et al. Effects of Levosimendan on Right Ventricular Function in Patients with Advanced Heart Failure. Am J Cardiol 2006;98:1489–92.

[51] Zhao YT, Shao L, Teng LL, et al. Effects of n-3Polyunsaturated Fatty Acid Therapy on Plasma Inflammatory Markers and N-Terminal Pro-brain Natriuretic Peptide in Elderly Patients with Chronic Heart Failure. Int J Med Res 2009;37:1831–41.

[52] Savina Nodari, Marco Triggiani, Umberto Campia, et al. Effects of n-3 Polyunsaturated Fatty Acids on Left Ventricular Function and Functional Capacity in Patients With Dilated Cardiomyopathy. J Am Coll Cardiol 2011;7:870–9.

[53] Tardif JC, O’Meara E, Komajda E, et al. Effects of selective heart rate reduction with ivabradine on left ventricular remodeling and function: results from the SHyVital echocardiography substudy. Eur Heart J 2011;32:2507–15.

[54] Parissis JT, Adamopoulos S, Farmakis D, et al. Effects of serial levosimendan infusions on left ventricular performance and plasma biomarkers of myocardial injury and neurohormonal and immune activation in patients with advanced heart failure. Heart 2006;92:1768–72.

[55] Malfatto G, Della Rosa F, Villani A, et al. Intermittent Levosimendan Infusions in Advanced Heart Failure: Favourable Effects on Left Ventricular Function, Neurohormonal Balance, and One-Year Survival. J Cardiovasc Pharmacol 2012;5:450–5.

[56] Cohn JN, Tam SW, Anand IS, et al. Bosorbidine Dinitrate and Hydralazine in a Fixed-Dose Combination Produces Further Regression of Left Ventricular Remodeling in a Well-Treated Black Population With Heart Failure: Results From A-HeFT. J Card Fail 2007;5:331–9.

[57] Berger R, Moertl D, Huelsmann M, et al. Levosimendan and prostaglandin E1 for up-titration of beta-blockade in patients with refractory, advanced chronic heart failure. Eur J Heart Fail 2007;9:202–8.

[58] Duygu H, Turk U, Ozdogan O, et al. Levosimendan versus Dobutamine in Heart Failure Patients Treated Chronically with Carvedilol. Cardiovasc Ther 2008;26:182–8.

[59] Jalanko M, Kivikko M, Harjola VP, et al. Oral levosimendan improves filling pressure and systolic function during long-term treatment. Scandinavian Cardiovascular Journal 2011;45:91–7.

[60] Kurt IH, Yavuzer K, Batur MK, et al. Short-term effect of levosimendan on free light chain kappa and lambda levels in patients with decompensated chronic heart failure. Heart Vessels 2010;25:392–9.

[61] Moertl D, Berger R, Huelsmann M, et al. Short-term effects of levosimendan and prostaglandin E1 on hemodynamic parameters and B-type natriuretic peptide levels in patients with decompensated chronic heart failure. Eur J Heart Fail 2005;7:1156–63.

[62] Gheorghiade M, Niazi I, Ouyang J, et al. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 2003;107:2690–6.

[63] Tsutsui H, Momomura S, Yamashina A, et al. Heart Rate Control with If Inhibitor, Ivabradine, in Japanese Patients with Chronic Heart Failure. Circ J 2016;80:668–76.