ON THE KOLMOGOROV ENTROPY OF THE WEAK GLOBAL ATTRACTOR OF 3D NAVIER-STOKES EQUATIONS: I

YONG YANG AND BINGSHENG ZHANG*

Department of Mathematics
The Pennsylvania State University
University Park, PA 16802, USA

and

Department of Mathematics
Texas A&M University
College Station, TX 77843, USA

(Communicated by Roger Temam)

Abstract. One particular metric that generates the weak topology on the weak global attractor A_w of three dimensional incompressible Navier-Stokes equations is introduced and used to obtain an upper bound for the Kolmogorov entropy of A_w. This bound is expressed explicitly in terms of the physical parameters of the fluid flow.

1. Introduction. In the study of the incompressible Navier-Stokes equations (NSEs), a frequently discussed problem is the understanding of the dynamics and the asymptotic behaviors of the solutions ([3, 5, 9, 10, 17, 18]). The asymptotic behaviors are often considered to be related with the so-called global attractor, which can usually be characterized as the compact set attracting all bounded sets with respect to the appropriate topology of some (phase) space H (see [17, 18]).

In the two-dimensional case, the strong global attractor A in the strong topology of the phase space can be easily defined due to the well-posedness of the incompressible NSEs. However, in three-dimensional case, one has to resort to the weak topology and define a weaker version of the global attractor, called weak global attractor, denoted by A_w (see [11]). Further discussion of interesting topological properties of A_w can be found in [8].

One significant difference between A and A_w is the complexities of these two geometric objects. It can be shown that A has finite Hausdorff and fractal dimensions (see [2, 12]). However, to the best knowledge of the authors, no estimates are known regarding either the fractal dimension or the Hausdorff dimension of A_w. One can even show that the interior of A_w is empty (see [1, 7]). It remains an open question to find a way to quantify the complexities of A_w. The concept of ϵ-entropy was introduced by Kolmogorov [13] to measure the complexities for totally bounded sets in a metric space. Kolmogorov ϵ-entropy can be viewed as a quantification of

2010 Mathematics Subject Classification. 35Q30, 76D05, 34G20, 37L05, 37L25.

Key words and phrases. 3D Navier-Stokes equations, fluid flow, weak global attractor, Kolmogorov entropy, functional dimension.

* Corresponding author: Bingsheng Zhang.
compactness property. It was defined to be the logarithm to the base 2 of the smallest number of elements in an \(\epsilon \)-covering for the set. Kolmogorov formulated such a definition in order to investigate the question of whether functions with \(n \geq 3 \) variables can be represented as compositions of functions with \(r < n \) variables. Kolmogorov successfully proved that each continuous function of several variables can be represented by sums and superpositions of continuous functions of one variable ([14]). The concept of Kolmogorov \(\epsilon \)-entropy is widely applied in branches of both pure and applied mathematics ([4, 14, 19, 20]).

The motivation for us to consider the Kolmogorov \(\epsilon \)-entropy for \(A_w \) comes from the fact proved in [8] that the weak topology on \(A_w \) is metrizable. Moreover, the weak topology on \(A_w \) can be generated by several different metric functions. The natural one will be the metric \(d_w \) (see (8) for its definition) induced by the norm of \(V' \), the dual of the space \(V \) defined in the next section. However, in this paper, we use another metric function, denoted by \(d_w \) (see (7) for its definition), which involves the exponentials of \(A_{1/2} \), where \(A \) denotes the Stokes operator. With the help of \(d_w \), we obtain an estimate on the upper bound of the Kolmogorov \(\epsilon \)-entropy of \(A_w \), denoted by \(H_\epsilon(A_w) \). This estimate is explicitly expressed in terms of the nondimensional number \(G_* \) (see Theorem 5.4). A consequence of this estimate which agrees with a general result given in [16] is that the functional dimension \(df(A_w) \) of \(A_w \) is finite and bounded above by 1. We remark that, in two-dimensional case, since \(A \) has finite fractal dimension, a quick application of Kolmogorov \(\epsilon \)-entropy and functional dimension on \(A_w \) is that \(H_\epsilon(A_w) \leq O(\ln \epsilon^{-1}) \) and \(df(A) \leq 1 \). So, using the metric function \(d_w \) gives us the same upper estimate on \(df(A_w) \) and \(df(A_w) \).

Following the same techniques, if \(d_n \) is used, we can only get \(df(A_w) \leq \infty \), which does not provide good enough information on the \(\epsilon \)-entropy of \(A_w \). So, one has to resort to different techniques. This will be done in ([6]).

2. The Navier-Stokes equations and Leray-Hopf weak solutions. The three-dimensional incompressible Navier-Stokes equations (NSEs) in Eulerian formulation are written as

\[
\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \nabla p = f, \quad \nabla \cdot u = 0
\]

where, the variable \(u = (u_1, u_2, u_3) \) denotes the velocity vector field, \(f \) assumed to be time-independent represents the mass density of volume force applied to the fluid, the parameter \(\nu > 0 \) is the kinematic viscosity, and \(p \) is the kinematic pressure. The space variable is denoted by \(x = (x_1, x_2, x_3) \) and the time variable by \(t \).

We assume that the flow is periodic with period \(L \) in each spatial direction \(x_i, \ i = 1, 2, 3 \), and that the averages of the flow velocity and of the force \(f \) over \(\Omega = (0, L)^3 \) vanish,

\[
\int_\Omega u(x, t)dx = 0, \quad \int_\Omega f(x)dx = 0.
\]

Let us introduce the space \(H \) (respectively, \(V \)) as the subspace of \(L^2(\Omega)^3 \) (respectively, \(H^1(\Omega)^3 \)) which is the closure of the set of all \(\mathbb{R}^3 \)-valued trigonometric polynomials \(v \) such that

\[
\nabla \cdot v = 0 \quad \text{and} \quad \int_\Omega v(x)dx = 0.
\]
Denote the inner products in H and V respectively by
\[(u, v) = \int_{\Omega} u(x) \cdot v(x) dx, \quad ((u, v)) = \int_{\Omega} \sum_{i=1}^{3} \frac{\partial u}{\partial x_i} \cdot \frac{\partial v}{\partial x_i} dx,\]
and the associated norms by $|u| = (u, u)^{1/2}$, $||u|| = ((u, u))^{1/2}$. The phase space H can be identified with its dual space H', then it is easy to see that $V \subset H \subset V'$, with the injections being continuous and each space dense in the following one.

Let $\mathcal{P}: L^2(\Omega)^3 \to L^2(\Omega)^3$ be the orthogonal projection (called the Helmholtz-Leray projection) with range H, and define the Stokes operator as $A = -\mathcal{P} \Delta$ ($=-\Delta$, under periodic boundary conditions), which is positive, self-adjoint with a compact inverse. As a consequence, the space H has an orthonormal basis \(\{w_j\}_{j=1}^\infty\) consisting of eigenfunctions of A; namely, $Aw_j = \lambda_j w_j$, with $0 < \lambda_1 = \kappa_0^2 := (2\pi/L)^2 \leq \lambda_2 \leq \lambda_3 \leq \cdots$ (see [3]).

For any $\sigma \in \mathbb{R}$, the operator A^σ is defined as
\[A^\sigma v = \sum_{j=1}^{\infty} \lambda_j^\sigma (v, w_j) w_j,\]
for v in the domain of A^σ, denoted by
\[\mathcal{D}(A^\sigma) = \{v \in H : \sum_{j=1}^{\infty} \lambda_j^{2\sigma} (v, w_j)^2 < \infty\}.\]

We also recall the orthogonal projection $P_K : H \to \text{span} \{\omega_j : 1 \leq j \leq K\}$ which maps $v = \sum_{j=1}^{\infty} (v, w_j) w_j \in H$ to $P_K v = \sum_{j=1}^{K} (v, w_j) w_j$, where $K \geq 1$ is an integer.

The NSEs can be written as a differential equation (which will be referred to as the NSE) in the real Hilbert space H in the following form
\[\frac{du}{dt} + \nu Au + B(u, u) = g, \quad u \in H, \tag{1}\]
where the bilinear operator B and the driving force g are defined as
\[B(u, v) = \mathcal{P}(u \cdot \nabla v) \text{ and } g = \mathcal{P} f.\]

The following inequalities will be needed in this paper
\[k_0 |w| \leq |A^{1/2} w|, \quad \text{for } w \in V, \tag{2}\]
\[||w||_{\infty} \leq c_A |A^{1/2} w|^{1/2} |Aw|^{1/2}, \quad \text{for } w \in \mathcal{D}(A), \tag{3}\]
known, respectively, as Poincaré and Agmon inequalities, with c_A being a non-dimensional constant.

The definition of weak solutions used in this paper is the one given in [8].

Definition 2.1. A (Leray-Hopf) weak solution on a time interval $J \subset \mathbb{R}$ is defined as a function $u = u(t)$ on J with values in H satisfying the following properties:

i. $u \in L^\infty_{loc}(J; H) \cap L^2_{loc}(J; V)$;
ii. $\partial_t u \in L^{4/3}_{loc}(J; V')$;
iii. $u \in C(J; H_w)$, which means u is weakly continuous in H or equivalently for every $v \in H$, the function $t \mapsto (u(t), v)$ is continuous from J into \mathbb{R}, where H_w is the space H endowed with its weak topology;
iv. u satisfies (1) in the distribution sense on J with values in V'.
v. For almost all \(t' \) in \(J \), \(u \) satisfies the following energy inequality:

\[
\frac{1}{2} |u(t)|^2 + \nu \int_{t'}^t |A^{\frac{1}{2}} u(s)|^2 \, ds \leq \frac{1}{2} |u(t')|^2 + \nu \int_{t'}^t (g, u(s)) \, ds
\]

for all \(t \) in \(J \) with \(t > t' \). The allowed times \(t' \) are characterized as the points where \(u \) are continuous from the right in \(H \) and the set of all \(t' \) is of total Lebesgue measure and denoted by \(J'(u) \).

vi. If \(J \) is closed and bounded on the left, with its left end point denoted by \(t_0 \), then the solution is continuous in \(H \) at \(t_0 \) from the right, i.e., \(t_0 \in J'(u) \).

From now on, a weak solution will always mean a Leray-Hopf weak solution.

An important nondimensional parameter associated with the strength of the driving force \(g \) is the Grashof number \([8]\):

\[
G = \frac{|g|}{\nu^2 \kappa_0^{1/2}}.
\]

A related nondimensional parameter that will be used in our paper is

\[
G_* = \frac{|A^{-1/2}g|}{\nu^2 \kappa_0^{1/2}}.
\]

By Poincaré inequality (2), one has

\[
G_* = \frac{|A^{-1/2}g|}{\nu^2 \kappa_0^{1/2}} \leq \frac{\kappa_0^{-1} |g|}{\nu^2 \kappa_0^{1/2}} = G,
\]

where the equality occurs only if \(g \) is an eigenvector of \(A \).

3. Weak global attractor and Kolmogorov \(\epsilon \)-entropy. The weak global attractor \(\mathcal{A}_w \), introduced in [11], is defined as the set of all points in \(H \) each of which belongs to a global weak solution uniformly bounded in \(H \) on \(\mathbb{R} \), i.e.,

\[
\mathcal{A}_w := \{ u_0 \in H : \exists \text{ a global weak solution } u \text{ s.t., } \sup_{t \in \mathbb{R}} |u(t)| < \infty \text{ and } u(0) = u_0 \}.
\]

It is shown in [8] that

\[
\mathcal{A}_w \subset \{ u \in H : |u(t)| \leq G_* \nu \kappa_0^{-1/2}, \ \forall t \in \mathbb{R} \},
\]

and \(\mathcal{A}_w \) is a totally bounded set in \(H_w \). Therefore the weak topology of \(H \) is metrizable on \(\mathcal{A}_w \). Recall that a set \(F \) in the metric space \((X, d) \) is totally bounded if, for any \(\eta > 0 \), there exists finitely many open balls of radius \(\eta \) whose union covers \(F \). It is well known that all compact sets are totally bounded and that a metric space is compact if and only if it is complete and totally bounded. We choose the metric function that generates the weak topology on \(\mathcal{A}_w \) as

\[
d_w(u, v) := \nu^{-1} \kappa_0^{1/2} |e^{-e^{-\kappa_0^{-1/2}} |A^{1/2}(u - v)|}|
\]

for \(u, v \in \mathcal{A}_w \).

Two other metric functions that will be used are

\[
d_n(u, v) = \nu^{-1} \kappa_0^{3/2} |A^{-1/2}(u - v)|,
\]

and

\[
d_s(u, v) = \nu^{-1} \kappa_0^{1/2} |u - v|.
\]

Note that the metric functions \(d_s, d_n, \) and \(d_w \) do not have physical dimensions.
For a metric space \((X,d)\), let \(B_d(x_0,\rho)\) denote the ball with radius \(\rho\) centered at \(x_0\),

\[
B_d(x_0,\rho) := \{ x \in X : d(x,x_0) < \rho \}.
\]

The following definitions were introduced by Kolmogorov in [15].

Definition 3.1. Suppose \(F\) is a totally bounded, non-empty set in a metric space \((X,d)\), and let \(\epsilon > 0\) be any real number.

(i). The system \(\gamma\) of sets \(U \subset X\) is said to be an \(\epsilon\)-covering of the set \(F\), if the diameter of any \(U \in \gamma\), \(\sup_{u_0,u_1 \in U} d(u_0,u_1)\), is no greater than \(2\epsilon\) and

\[
F \subset \bigcup_{U \in \gamma} U.
\]

(ii). The Kolmogorov \(\epsilon\)-entropy of the set \(F\), denoted by \(\mathcal{H}_\epsilon(F)\), is defined as

\[
\mathcal{H}_\epsilon(F) := \ln \mathcal{N}_\epsilon(F),
\]

and \(\mathcal{N}_\epsilon(F) = \min\{\text{card}(\gamma) : \gamma\text{ is an }\epsilon\text{-covering of }F\}\), where \(\text{card}(\gamma)\) is the cardinal of the system \(\gamma\).

(iii). The functional dimension of the set \(F\) is defined as

\[
df(F) := \lim_{\epsilon \to 0^+} \frac{\ln \mathcal{H}_\epsilon(A)}{\ln \ln 1/\epsilon}
\]

Remark 1. The above definition is not exactly the same as the one in [15], where Kolmogorov used the logarithm to the base 2 to define the \(\epsilon\)-entropy and functional dimension of a set \(F\). For the simplicity of the notations, we instead use natural logarithm.

4. **Two lemmas.** To estimate the Kolmogorov \(\epsilon\)-entropy \(\mathcal{H}_\epsilon(A_w)\), the next two lemmas will be useful.

Lemma 4.1. Let \(u(\cdot)\) be a solution of NSE in \(A_w\). Then for any \(t_0 \in \mathbb{R}\),

\[
\nu \int_{t_0}^t |A^{\frac{1}{2}}u(\tau)|^2 d\tau \leq G_s^2 \nu^2 \kappa_0^{-1} (1 + \nu \kappa_0^2 (t - t_0)), \quad t \geq t_0,
\]

where \(G_s\) is defined in (5).

In particular, for any \(m > 0\), there exists \(t_1 \in [t_0, t_0 + \frac{1}{m \nu \kappa_0}]\) such that \(u(t_1) \in \mathcal{D}(A^{\frac{1}{2}})\) and

\[
|A^{\frac{1}{2}}u(t_1)| \leq G_s \nu \kappa_0^{1/2} \sqrt{1 + m}.
\]

Proof. Applying the energy inequality (4) and invoking (6), we obtain that

\[
|u(t)|^2 + 2\nu \int_{t_0}^t |A^{\frac{1}{2}}u(\tau)|^2 d\tau \leq |u(t_0)|^2 + 2 \int_{t_0}^t (g, u(\tau)) d\tau
\]

\[
\leq G_s^2 \nu^2 \kappa_0^{-1} + 2 \frac{|A^{-\frac{1}{2}}g|}{\nu^{\frac{1}{2}}} \int_{t_0}^t \nu^{\frac{1}{2}} |A^{\frac{1}{2}}u(\tau)| d\tau
\]

\[
\leq G_s^2 \nu^2 \kappa_0^{-1} + 2 \frac{|A^{-\frac{1}{2}}g|}{\nu^{\frac{1}{2}}} (\int_{t_0}^t \nu^{\frac{1}{2}} |A^{\frac{1}{2}}u(\tau)|^2 d\tau)^{\frac{1}{2}}
\]

\[
\leq G_s^2 \nu^2 \kappa_0^{-1} + \frac{|A^{-\frac{1}{2}}g|^2}{\nu} (t - t_0) + \int_{t_0}^t \nu^{\frac{1}{2}} |A^{\frac{1}{2}}u(\tau)|^2 d\tau,
\]

for any \(t \geq t_0\).
It follows that
\[\nu \int_{t_0}^{t} |A^\frac{1}{2} u(\tau)|^2 d\tau \leq G^*_\nu^2 \kappa_0^{-1}(1 + \nu \kappa_0^2 (t - t_0)), \quad \forall t \geq t_0. \] (11)

Choosing \(t = t_0 + \frac{1}{m \nu \kappa_0^2} \), we obtain from (11) that
\[m \nu \kappa_0^2 \int_{t_0}^{t_0 + \frac{1}{m \nu \kappa_0^2}} |A^\frac{1}{2} u(\tau)|^2 d\tau \leq G^*_\nu^2 \kappa_0^- (1 + m). \]

Therefore, there exists at least one point \(t_1 \in [t_0, t_0 + 1/m \nu \kappa_0^2] \) where the inequality (10) is satisfied.

For any \(\delta > 0 \), let us introduce
\[C_\delta = \{ u \in \mathcal{D}(A^{1/2}) : |A^{1/2} u| \leq G^*_\nu |1 + \frac{1}{\delta}\} , \] (12)
and
\[F_\delta = C_\delta \cap \mathcal{A}_w. \]

Using Lemma 4.1, we can get a property about \(F_\delta \).

Lemma 4.2. For any \(u_0 \in \mathcal{A}_w \) and \(\delta > 0 \), there exists \(u_1 \in F_\delta \) satisfying
\[d_w(u_0, u_1) \leq r_\delta, \]
where
\[r_\delta := e^{-e(\epsilon A G^*_\nu^2 + 2G_\nu^*) \delta}. \] (13)

Proof. Let \(u(\cdot) \in \mathcal{A}_w \) be the weak solution of NSE with initial value \(u(0) = u_0 \), then (6) gives that \(|u(t)| \leq G^*_\nu \kappa_0^{-1/2} \), for all \(t \geq 0 \). From NSE, we see that
\[\left| \frac{d}{dt} e^{-e^{-e_0^{-1} A^{1/2}}} g \right| = |e^{-e^{-e_0^{-1} A^{1/2}}} g - \nu A e^{-e^{-e_0^{-1} A^{1/2}}} u - e^{-e^{-e_0^{-1} A^{1/2}}} B(u, u)| \leq |e^{-e^{-e_0^{-1} A^{1/2}}} g| + \nu |A e^{-e^{-e_0^{-1} A^{1/2}}} u| + |e^{-e^{-e_0^{-1} A^{1/2}}} B(u, u)|. \]

For the first term of the right hand side, we have
\[|e^{-e^{-e_0^{-1} A^{1/2}}} g| = |A^{1/2} e^{-e^{-e_0^{-1} A^{1/2}}} A^{-1/2} g| \leq \kappa_0 \sup_{K \geq 1} (|K e^{-e^K}|) |A^{-1/2} g| = \kappa_0 e^{-e} |A^{-1/2} g| = e^{-e} G_\nu^* \nu^2 \kappa_0^3/2, \]
the second term is estimated by
\[\nu |A e^{-e^{-e_0^{-1} A^{1/2}}} u| \leq \nu \kappa_0^2 \sup_{K \geq 1} (|K^2 e^{-e^K}|) |u| = \nu \kappa_0^2 e^{-e} |u| \leq e^{-e} G_\nu^* \nu^2 \kappa_0^3/2. \]
and, the third term can be estimated by using (3); indeed, the inequality
\[|(e^{-\epsilon_0^{-1}A_{1/2}^j}B(u, u), w)| = |(B(u, e^{-\epsilon_0^{-1}A_{1/2}^j}w), u)| \]
\[\leq \left(c_A |Ae^{-\epsilon_0^{-1}A_{1/2}^j}w|^{1/2} |A^{3/2}e^{-\epsilon_0^{-1}A_{1/2}^j}w|^{1/2} \right) |u|^2 \]
\[\leq c_A e^{-\epsilon \kappa_0^{5/2}} |u|^2 |w|, \]
implies that,
\[|e^{-\epsilon_0^{-1}A_{1/2}^j}B(u, u)| \leq c_A e^{-\epsilon \kappa_0^{5/2}} |u|^2 \leq c_A e^{-\epsilon G^2 \nu^2 \kappa_0^{3/2}}. \]
For any \(t > t_0 := 0, \) we have
\[\int_{t_0}^{t} |e^{-\epsilon_0^{-1}A_{1/2}^j} \frac{du}{dt}| d\tau \leq e^{-\epsilon (c_A G^2 + 2G \nu^2 \kappa_0^{3/2}) (t - t_0)}. \] \hspace{2cm} (14)
Using Lemma 4.1, we could choose \(t_1 \in [0, \frac{\delta}{\nu \kappa_0^{3/2}}], \) such that \(u_1 := u(t_1) \in F_\delta. \) Then (14) implies that
\[d_w(u_0, u_1) = \nu^{-1} \kappa_0^{1/2} \left| e^{-\epsilon_0^{-1}A_{1/2}^j} (u_1 - u_0) \right| \leq \nu^{-1} \kappa_0^{1/2} \int_{t_0}^{t_1} |e^{-\epsilon_0^{-1}A_{1/2}^j} \frac{du}{dt}| d\tau \leq \delta. \]

Remark 2. Lemma 4.2 can be also stated as follows, for any \(\delta > 0, \)
\[A_w \subset \bigcup_{u \in F_\delta} B_{d_w}(u, r_\delta), \]
where \(r_\delta \) is given in (13).

This remark has the following consequence,

Lemma 4.3. For any \(\delta > 0, \) and \(r > 0. \) If \(C_\delta \) can be covered by \(b_r \) balls \(B_{d_w}(v_i, r), i = 1, \ldots, b_r, \) then \(A_w \) can be covered with \(m \) balls \(B_{d_w}(u_j, 3r + r_\delta), i = 1, \ldots, m, \) where \(m \leq b_r \) and \(u_j \in F_\delta, \) for \(i = 1, \ldots, m. \)

Proof. First consider the ball \(B_{d_w}(v_1, r), \) if \(F_\delta \cap B_{d_w}(v_1, r) \neq \emptyset, \) we choose \(u_j \in F_\delta \) such that \(u_j \in B_{d_w}(v_1, r). \) Otherwise, we begin with the next ball \(B_{d_w}(v_2, r). \)

Suppose we have dealt with \(B_{d_w}(v_i, r), i = 1, \ldots, j \) and obtained \(u_{j_n}, n = 1, \ldots, l. \) For \(B_{d_w}(v_{j+1}, r), \) if there is some point \(u_{j_n}, 1 \leq n \leq l \) such that \(u_{j_n} \in B_{d_w}(v_{j+1}, r) \) or there does not exist any other points of \(F_\delta \) in \(B_{d_w}(v_{j+1}, r), \) we will consider the next ball \(B_{d_w}(v_{j+2}, r). \) Otherwise we can choose one point in \(F_\delta, \) denoted as \(u_{j, n+1} \) which is contained in \(B_{d_w}(v_{j+1}, r) \) and is different from \(u_{j_n}, n = 1, \ldots, l. \) After having processed all \(b_r \) balls, we can get a set \(\{ u_{j_n}, n = 1, \ldots, m \} \subset F_\delta. \)

Clearly, the number \(m \) is finite and \(m \leq b_r. \)

We claim that \(A_w \subset \bigcup_{n=1}^{m} B_{d_w}(u_{j_n}, 3r + r_\delta). \) Indeed, for each \(u \in A_w, \) by Remark 2, there exist \(u_{j_n} \) such that \(u_{j_n} \in F_\delta \) and \(u \in B_{d_w}(u_{j_n}, r_\delta). \) Furthermore, there exist \(v_n \) and \(u_{j_n} \) such that \(u_j \in B_{d_w}(v_n, r) \) and \(u_{j_n} \in B_{d_w}(v_n, r). \) It follows that
\[d_w(u, u_{j_n}) \leq d_w(u, u_j) + d_w(u_j, v_n) + d_w(v_n, u_{j_n}) \leq 2r + r_\delta. \]
That is \(u \in B_{d_w}(u_{j_n}, 2r + r_\delta) \subset B_{d_w}(u_{j_n}, 3r + r_\delta). \) This completes the proof. \(\square \)

In the next section, we will give an estimate on \(b_r, \) the number of balls with radius \(r > 0 \) covering \(C_\delta. \)
5. Kolmogorov ε-entropy of the weak global attractor.

5.1. Covering of C_δ. According to Lemma 4.3, for any given $\delta > 0$, in order to get a covering of the weak global attractor A_u, it suffices to find a covering of $C_\delta = \{ u \in D(A^{1/2}) : |A^{1/2} u| \leq G_*K_0^{1/2}\sqrt{1 + 3/\delta} \}$ with balls of radius $r > 0$ in the metric d_w.

Lemma 5.1. Given $\delta > 0$ and $r > 0$. If K is chosen to be the integer satisfying (18) and (19), then $N_{2r}(C_\delta) \leq N_r(C_\delta \cap P_K H)$.

Proof. For any $u_1, u_2 \in C_\delta$, denote $u = u_1 - u_2$. By the definition of d_w in (7),

$$d_w(u_1, u_2)^2 = \nu^{-2}\kappa_0|e^{-e\phi_0^-A_{1/2}} u|^2$$

$$= \nu^{-2}\kappa_0|e^{-e\phi_0^-A_{1/2}} P_K u|^2 + \nu^{-2}\kappa_0|e^{-e\phi_0^-A_{1/2}} (I - P_K) u|^2$$

$$\leq \nu^{-2}\kappa_0|e^{-e\phi_0^-A_{1/2}} P_K u|^2 + \nu^{-2}\kappa_0(K_0 K)^{-2}e^{-2e\kappa} |(I - P_K) A^{1/2} u|^2$$

$$\leq \nu^{-2}\kappa_0|e^{-e\phi_0^-A_{1/2}} P_K u|^2 + 2K^{-2}e^{-2e\kappa} G_0^2(1 + 1/\delta),$$

where $K \geq 1$ is an integer, and I denotes the identity operator.

Consequently, if K is chosen to be large enough such that

$$2K^{-2}e^{-2e\kappa} G_0^2(1 + 1/\delta) \leq r^2$$

then

$$d_w(u_1, u_2)^2 \leq \nu^{-2}\kappa_0|e^{-e\phi_0^-A_{1/2}} P_K u|^2 + r^2. \tag{16}$$

The inequality (15) is equivalent to

$$K e^K \geq \sqrt{2G_*} \sqrt{1 + 1/\delta}. \tag{17}$$

A sufficient condition to guarantee that (17) holds is

$$e^K \geq \ln(\sqrt{2G_*} \sqrt{1 + 1/\delta}). \tag{18}$$

Taking the first integer $K \geq 1$ that satisfies (18), then

$$K \leq 1 + \ln(\ln(\sqrt{2G_*} \sqrt{1 + 1/\delta})). \tag{19}$$

By (16), it follows that for any r-covering of $C_\delta \cap P_K H$, we can find a $2r$-covering of C_δ having the same number of sets. This completes the proof.

A special finite covering of the set $C_\delta \cap P_K H$ with respect to the metric d_s, defined in (9), and an upper bound of the cardinal number of this covering are given in the following lemma.

Lemma 5.2. For any $\eta > 0$ and integer $K \geq 1$, we have,

$$C_\delta \cap P_K H \subset \bigcup_{u_0 \in S} B_{d_s}(u_0, \eta)$$

where $S \subset C_\delta$ and the cardinal of S satisfies the estimate

$$\text{card} (S) \leq \left(\frac{2G_* \sqrt{1 + 1/\delta}}{\eta} + 1\right)^{\text{dim} P_K H}.$$
Proof. It follows from the definition of \(C_\delta \) in (12) and Poincaré inequality (2) that
\[
C_\delta \cap P_K H \subset \{ u \in P_K H : |u| \leq G_* \nu \kappa_0^{-1/2} \sqrt{1 + 1/\delta} \}.
\]

Notice that \(P_K H \) is a Banach space of finite dimension. For fixed \(R > 0 \), let \(u_1, \ldots, u_N \eta \) (\(N_\eta \) is called metric entropy, which is an upper bound for covering number) be a maximum set of points in \(B_{d_s}(0, R) \), the ball of radius \(R > 0 \) in \(P_K H \) with \(|u_i - u_j| > \eta \), for \(i \neq j \), then the closed balls of radius \(\eta/2 \) centered at the \(u_j \)'s are disjoint, and their union lies within the ball of radius \(R + \eta/2 \) centered at the origin. Consequently,
\[
N_\eta \cdot (\eta/2)^{\dim P_K H} \leq (R + \eta/2)^{\dim P_K H}.
\]
and thus,
\[
N_\eta(B_{d_s}(0, R)) \leq N_\eta \leq \left(\frac{R + \eta/2}{\eta/2} \right)^{\dim P_K H} = \left(1 + \frac{2R}{\eta} \right)^{\dim P_K H}.
\]

The result follows by applying (20) with \(R = G_* \sqrt{1 + 1/\delta} \).

Remark 3. An estimate for \(\dim(P_K H) = \text{card} \{ k \in \mathbb{Z}^3 \setminus \{0\} : |k| \leq K \} \) is (see page 43-44 in [3]),
\[
2 \left(\frac{4\pi}{3} \left(K - \frac{\sqrt{3}}{2} \right)^3 - 1 \right) \leq \dim(P_K H) \leq 2 \left(\frac{4\pi}{3} \left(K + \frac{\sqrt{3}}{2} \right)^3 - 1 \right),
\]

Using (18), it follows that
\[
\dim(P_K H) \leq 2 \left(\frac{4\pi}{3} \left(\ln \ln \left(\frac{\sqrt{2}G_* \sqrt{1 + 1/\delta}}{r} \right) + \frac{\sqrt{3}}{2} + 1 \right)^3 - 1 \right).
\]

Lemma 5.3. For any \(v \in H \), and real number \(\rho > 0 \), the following holds,
\[
B_{d_s}(v, \rho) \subset B_{d_w}(v, \rho).
\]

Proof. The result follows from the following inequalities
\[
|e^{-\epsilon \alpha_0^{-1/2} A^{1/2}} v| \leq |v| \sup_{|k| \geq 1} e^{-\epsilon |k|} = e^{-\epsilon} |v| \leq |v|.
\]

Due to Lemma 5.2 and Lemma 5.3, the following covering of \(C_\delta \) using the metric \(d_w \) can be obtained,
\[
C_\delta \cap P_K H \subset \bigcup_{u_0 \in S} B_{d_w}(u_0, \eta).
\]

5.2. Kolmogorov \(\epsilon \)-entropy. Now, for any fixed \(\epsilon > 0 \), based on the above lemmas, we are ready to the get a estimate on the Kolmogorov \(\epsilon \)-entropy of the weak attractor \(A_w \) in the space \(H \) endowed with the weak topology generated by the metric \(d_w \).

Theorem 5.4. The Kolmogorov \(\epsilon \)-entropy for the weak global attractor \(A_w \), endowed with the weak topology generated by \(d_w \), of 3D Navier-Stokes equations is bounded above by the following explicit formula,
\[
\mathcal{H}_\epsilon(A_w) \leq 2 \left(\frac{4\pi}{3} \left(\frac{\sqrt{3}}{2} + 1 + \ln \ln \beta \right)^3 - 1 \right) \ln(\sqrt{2} \beta + 1),
\]
where
\[
\beta := \frac{\sqrt{2} G_* \sqrt{1 + 1/\delta_0}}{\eta_0} = \frac{12 \sqrt{2} G_*}{\epsilon} \sqrt{1 + \frac{2e^{-\epsilon}(c_A G_*^2 + 2G_*)}{\epsilon}}.
\]

Proof. Choose
\[
\delta = \delta_0 := \frac{\epsilon}{2e^{-\epsilon}(c_A G_*^2 + 2G_*)},
\]
and
\[
\eta = \eta_0 := \frac{\epsilon}{12}.
\]
Using (13), we have
\[
r_\delta \geq \frac{\epsilon}{2},
\]
which implies that
\[
r_\delta + 6\eta = \epsilon.
\]
By Lemma 4.3 and Lemma 5.1, for any \(\eta > 0 \), the following inequalities hold
\[
N_{6\eta + r_\epsilon}(A_w) \leq N_{2\eta}(C_\delta) \leq N_\eta(C_\delta \cap P_K H).
\]
That is
\[
A_w \subset \bigcup_{u_0 \in S} B_{d_w}(u_0, \epsilon),
\]
where the set \(S \) is as given in Lemma 5.2.

Taking into account Lemma 5.2 and Remark 3, we see that
\[
\mathcal{H}_\epsilon(A_w) = \ln(N_\epsilon(A_w)) \leq \ln(\text{card}(S))
\]
\[
\leq \dim P_K H \times \ln \left(\frac{2G_* \sqrt{1 + 1/\delta_0}}{\eta_0} + 1 \right)
\]
\[
\leq 2 \left(\frac{4\pi}{3} \left(\ln \left(\frac{\sqrt{2} G_* \sqrt{1 + 1/\delta_0}}{\eta_0} + \frac{\sqrt{3}}{2} + 1 \right)^3 - 1 \right) \right) \ln \left(\frac{2G_* \sqrt{1 + 1/\delta_0}}{\eta_0} + 1 \right).
\]
This completes the proof.

Remark 4. In Theorem 5.4, we have \(\delta_0 = O(\epsilon), \eta_0 = O(\epsilon) \) and \(\beta = O(\epsilon^{-3/2}) \), as \(\epsilon \to 0^+ \).

An immediate consequence of Theorem 5.4 is the following estimate regarding the functional dimension of \(A_w \).

Corollary 1. The functional dimension of \(A_w \), endowed with the weak topology generated by \(d_w \), is bounded above by 1, i.e., \(d_f(A_w) \leq 1 \).

Remark 5. The upper bound given in Corollary 1 is consistent with a general result obtained in [16].
Remark 6. If the natural metric d_n, defined in (8), is used for the weak topology on A_w, the above arguments will lead to an upper bound on the Kolmogorov-ϵ entropy that implies $d_f(A_w) \leq \infty$. Hence, if one consider A_w endowed with the weak topology generated by the metric d_n, the techniques used in this paper will not provide good estimate on $H_\epsilon(A_w)$.

Acknowledgments. The authors want to thank Dr. Ciprian Foias for his invaluable help and pertinent advice. This work was supported in part by NSF grants number DMS-1109638, DMS-1109784 and DMS-1516866.

REFERENCES

[1] A. Biswas, C. Foias and A. Larios, On the attractor for the semi-dissipative Boussinesq equation, *Annales de l’Institut Henri Poincare (C) Non Linear Analysis*, Elsevier, 34 (2017), 381–405, arXiv:1507.00080.

[2] P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, *Communications on Pure and Applied Mathematics*, 38 (1985), 1–27.

[3] P. Constantin and C. Foias, *Navier-Stokes Equations*, Chicago Lectures in Mathematics, University of Chicago Press, 1988.

[4] R. M. Dudley, Metric entropy and the central limit theorem in $C(S)$ *Ann. Inst. Fourier (Grenoble)*, 24 (1974), 49–60.

[5] C. Foias, O. P. Manley, R. Rosa and R. Temam, *Navier-Stokes Equations and Turbulence*, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 2001.

[6] C. Foias, C. Mondaini and B. Zhang, On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations: II, In preparation.

[7] C. Foias, C. Mondaini and B. Zhang, Remarks on the Weak Global Attractor of 3D Navier-Stokes Equations, In preparation.

[8] C. Foias, R. Rosa and R. Temam, Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations, *Discrete and Continuous Dynamical System*, 27 (2010), 1611–1631.

[9] C. Foias and J. C. Saut, Asymptotic behavior, as $t \to \infty$ of solutions of Navier-Stokes equations and nonlinear spectral manifolds, *Indiana University Mathematics Journal*, 33 (1984), 459–477.

[10] C. Foias and J. C. Saut, Asymptotic integration of Navier-Stokes equations with potential forces, *Indiana Univ. Math. J.*, 40 (1990), 305–320.

[11] C. Foias and R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory, in Directions in Partial Differential Equations (Madison, WI, 1985), *Publ. Math. Res. Center Univ. Wisconsin*, 54, *Academic Press*, Boston, MA, 54 (1987), 55–73.

[12] C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, *J. Math. Pures et Appl.*, 58 (1979), 339–368.

[13] A. N. Kolmogorov, On certain asymptotic characteristics of completely bounded metric spaces, *Dokl. Akad. Nauk SSSR*, 108 (1956), 385–388.

[14] A. N. Kolmogorov, The representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, *Doklady Akademi Nauk SSSR*, 114 (1957), 953–956.

[15] A. N. Kolmogorov and V. M. Tikhomirov, ϵ-entropy and ϵ-capacity of sets in functional spaces, *Amer. Math. Soc. Transl. Ser. 2*, 17 (1961), 277–364.

[16] S. Liu and B. Li, The functional dimension of some classes of spaces, *Chin. Ann. Math.*, 26 (2005), 67–74.

[17] R. Temam, *Navier-Stokes Equations and Nonlinear Functional Analysis*, CBMS-NSF Regional Conference Series in Applied Mathematical, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.

[18] R. Temam, *Infinite Dimensional Dynamical Systems in Mechanics and Physics*, 2nd edition, Applied Mathematical Sciences, Springer-Verlag, New York, 68, 1997.

[19] V. M. Tikhomirov, On ϵ-entropy of classes of analytic functions, *Dokl. Akad. Nauk SSSR*, 117 (1957), 191–194.
[20] V. M. Tikhomirov, *Approximation theory in the twentieth century*, In *Mathematical Events of the Twentieth Century*, Springer, Berlin, (2006), 409–436.

Received June 2016; revised December 2016.

E-mail address: yyy5104@psu.com

E-mail address: shanby.bing@gmail.com