Identification of Novel MeCP2 Cancer-Associated Target Genes and Post-Translational Modifications

Isabel Castro-Piedras1, David Vartak1, Monica Sharma1, Somnath Pandey1, Laura Casas1, Deborah Molehin1, Fahmida Rasha1, Mohamed Fokar2, Jacob Nichols3, Sharilyn Almodovar1, Rakhshanda Layeeqr Rahman4 and Kevin Pruitt1*

1 Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States, 2 Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, United States, 3 Department of Internal Medicine, Texas Tech University, Lubbock, TX, United States, 4 Department of Surgery, Texas Tech University, Lubbock, TX, United States

Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.

Keywords: MeCP2, breast cancer, post-translational modification, ChIP-Seq analysis, transcriptional regulation
INTRODUCTION

Epigenetic dysregulation involving mutations or abnormal expression of DNA methylation readers has been associated with a broad spectrum of disorders that range from Rett Syndrome to human cancers (1–7), and alterations in both the writing and reading of epigenetic marks have been linked with tumor progression at every stage (8–12). Aberrant DNA methylation not only promotes disease progression but is targeted via therapeutics applied in the clinic (13–15). Because of the prevalence of abnormal epigenetic changes in tumor progression (16–22), exploitation of this property led to FDA approved “epigenetic” therapies (23, 24). Interestingly, DNA methylation readers, such as methyl-CpG-binding protein 2 (MeCP2), bridge DNA methylation and histone modifications by binding to methylated DNA and recruiting co-repressor proteins (25–28). While both normal and abnormal DNA methylation is read by MeCP2, much remains unknown about its role and regulation in cancer-associated pathologies. MeCP2 was shown early on to have an affinity for 5-methylcytosine in the context of methylated CG dinucleotides (mCG) (29, 30) and methylated CH (mCH), where H = A/C/T. MeCP2 binds methylated cytosine (31–33) and shows selectivity for mCG sequences with adjacent A/T sequences (34). However, it also binds to hydroxymethylated cytosine (31, 32, 35–37). While more investigation is needed, MeCP2 binding to mCH has been primarily noted on mCA (31–33, 35, 36, 38). Studies have also shown that MeCP2 binding in mouse brain is proportional to mCAC + mCG density wherein transcription is sensitive to MeCP2 occupancy (38). Additionally, MeCP2 regulates tumor suppressor genes (TSG) silencing, and serves as a critical bridge for histone methyltransferases (HMTs) (25), histone deacetylases (HDACs) (26, 28, 39), and other proteins that bind modified histones or that mediate nucleosome remodeling (27, 40, 41). Moreover, MeCP2 has been reported to be amplified in diverse cancer including human triple-negative breast cancers (TNBC), and it activates growth factor pathways targeted by activated Ras, MAPK and PI3K pathways (42). Novel interacting protein partners and gene targets in brain tissue have also been identified (43). These are the types of enigmatic and versatile properties of MeCP2 that have contributed to long-standing knowledge gaps. We previously reported that inhibition of SIRT1 triggers acetylation of endogenous MeCP2 at lysine (K171), a site that regulates MeCP2 interaction with HDAC1 and ATRX (44). These findings demonstrated that MeCP2 post-translational modifications (PTMs) can critically impact its function, yet few PTMs have been mapped despite the potential that they might affect substrate specificity (35, 45). This knowledge gap is especially important given reports demonstrating unique characteristics of MeCP2 domains in determining binding specificity (46, 47) and the impact of MeCP2 on chromatin-dependent regulation of epigenetic writers (48). In the present study, we have identified additional novel PTMs across the length of MeCP2 and target genes in cancer models. Our findings provide new insight on the versatile role of MeCP2 which is known to be critical in regulating gene imprinting (49), transcriptional activation and repression (50) in disparate conditions that range from autism to cancer (4, 51, 52).

MATERIALS AND METHODS

Cell Lines

MDA-MB-468 (HTB-132), MCF7 (HTB-22), MCF10A (CRL-10317), MCF12F (CRL-10783), PC3 (CRL-1435), T47D (HTB-133), BT549 (HTB-122), and MDA-MB 231 (HTB-26) cell lines used in this manuscript were purchased from ATCC which utilizes STR technology for cell authentication. Cells were used at a low passage (<20) within 6 months or less after receipt or resuscitation. MDA-MB-468, T47D, and BT549 cells were cultured in RPMI 1640 (Gibco). MCF10A and MCF12F were cultured in HuMEC medium supplemented with HuMEC supplement kit (Gibco). PC3 cells were cultured in ATCC formulated F-12K media (ATCC). MCF7 cells were propagated in MEM while MDA-MB-231 cells were cultured in DMEM (Gibco). T47D and MCF7 cells were cultured in media supplemented with 0.1% insulin (Sigma). All cells were grown in culture media supplemented with 1% pen-strep and 10% fetal bovine serum from GIBCO at 37 °C in 5% CO2.

Plasmids

pCDNA3.1 (–) was used as the backbone and Hemagglutinin (HA)-tagged-MeCP2-WT-pCDNA3.1 (–) (encoding MeCP2 e2 isoform), HA-tagged-K135Q-MeCP2-pCDNA3.1 (–) and HA-tagged-K135R-MeCP2-pCDNA3.1 (–) were generated using outward PCR method.

Bioluminescent MDA-MB-468 Cells

The pGL4.50[luc2/CMV/Hygro] plasmid (E1310) which encodes the luciferase reporter gene luc2 (Photinus pyralis) was purchased from Promega. MDA-MB-468 cells were plated in a 6-well plate (Genesee) at the seeding density of 2 × 105 cells in order to reach 60% confluency at the time of transfection. Cells were transfected with 1 µg of the pGL4.50[luc2/CMV/Hygro] plasmid for 48 h. Stable transfectants were selected with 0.5 mg/ml hygromycin (Sigma H3274-100MG)-containing media which was replaced every 3–4 days until total selection was achieved. Bioluminescence was confirmed by In Vivo Imaging System (IVIS) in the presence of luciferin substrate (Promega VivoGlo™ Luciferin, In Vivo Grade P1041).

MeCP2 Stable Knock-Down and Clonal Selection

MDA-MB-468 cells stably expressing pGL4.50[luc2/CMV/Hygro] plasmid (Promega E1310) were plated at the seeding density 2 × 105 cells in order to reach 60% confluency at the time
of transduction 48 h prior to infection and then infected with pLKO.1-puro based shRNA MISSION lentiviral transduction particles purchased from Sigma for MeCP2 (TRCN0000330971, TRCN0000330972) and Non-Targeting shRN control transduction particles (SHC002V). The transduction was enhanced with 5 µg/ml polybrene (Sigma Millipore) and 2x multiplicity of infection (MOI) viral particles was added to the media. After 24 h, culture media was replaced with fresh media for 2 days. Stable clones were selected with 6 µg/ml puromycin-containing media which was replaced every 3–4 days until selection was achieved and knockdown confirmed by Western blots and qPCR.

MeCP2 Stable Overexpression and Clonal Selection

MDA-MB-468 cells stably expressing pGL4.50[3×luc2/CMV/ Hygro] plasmid with >90% knocked down of endogenous MeCP2 were plated at the seeding density 2 × 10^5 cells in order to reach 60% confluence at the time of transfection, 48 h prior to transfection and then transduced with 1 µg of the pCDNA3.1 (−) backbone, Hemagglutinin (HA)-tagged-MeCP2-WT (encoding MeCP2 e2 isoform), HA-tagged-K135Q-MeCP2 and HA-tagged-K135R-MeCP2 plasmids. The G418 disulfate salt solution (Sigma G8168-10ML) selection was started 48 h after transfection at a concentration of 0.4 mg/ml, and the G418 containing media was replaced every 3–4 days until total selection was achieved and overexpression confirmed by Western blots.

RT-PCR and qPCR

Total RNA was isolated using the Aurum™ Total RNA Mini Kit (Bio Rad) and 2 µg of RNA was used to produce cDNA via the SuperScript® III First-Strand Synthesis System for RT-PCR (Invitrogen). Intron-spanning primers designed for gene expression analysis are summarized in Table 1. All primers were validated by end-point PCR (RT-PCR), a minus reverse transcription control (−RT control) was included in all RT-PCR experiments. Equal amount of synthesized cDNA was used for qPCR using the Power UP SYBR Green (Thermo Fisher Scientific, A25778) and the CFX96 Real-Time System C1000 Touch Thermal Cycler (Bio Rad). β-actin gene expression was used as endogenous control for mRNA quantification, as is not a MeCp2 target gene in both cell lines studied and its expression didn’t change after the depletion of MeCp2 in RNA-seq analysis.

Western Blots

Protein extracts were generated using RIPA lysis buffer supplemented with protease inhibitor cocktail (Thermo Fisher Scientific). The protein concentration was measured with the BCA method. Approximately 50 µg of protein from each sample was loaded on NuPAGE™ 4–12% Bis-Tris Protein Gels (Thermo Fisher Scientific) and run at 175 V constant voltage. A constant voltage of 30 V was used for protein transfer onto polyvinylidene fluoride (PVDF) membranes (Millipore-Sigma). Blots were probed with rabbit anti-MeCP2 antibodies (1:1,000; Cell Signaling) and mouse anti-HA antibodies (1:2,000; Santa Cruz) overnight at 4°C. After three washes with tris-buffered saline and polysorbate 20 (TBST; Fisher scientific), blot were then incubated with anti-rabbit HRP conjugate secondary antibody (1:5,000) and anti-mouse HRP conjugate at room temperature for 1 h. After washing three times, chemiluminescence (Pierce ECL Western blotting substrate: Thermofisher Scientific, A25778) was then used to visualize protein bands. β-actin antibody (1:10,000; Santa Cruz) was used as control.

Immunofluorescence

About 1 × 10^5 cells were plated on coverslips 48 h prior and they were washed with PBS and then fixed with 4% paraformaldehyde for 15 min. After washing with PBS they were then permeabilized with 0.2% Triton X-100 for 20 min and blocked with 5% BSA for 30 min. Following that, cells were incubated with primary antibodies MeCP2 (Cell Signaling, 3456S), or HA (Cell

TABLE 1 | qPCR Primers used in the current study.

qPCR	Forward primer	Reverse Primer
CDH1	TGC CCA GAA AAT GAA AAA GG	GTG TAT GTG GCA ATG CTG TCA
EGFR	CTA CCT GCT CCC AGT GCC TGA ATA	ACT CTT GCT GTC CTT TGA TAG T
HDAC1	GCA GAC GGG ATT GAT GAC GA	TGC AAA GTC ATG ACG ACT
HIPK3	AAA AGG AGG ATC TGC CCC TG	GGA AGG TTC ATG TGC TTT TCT G
IL6	CCA GGA GAA GAT TGC AAA GAT	AGA TCA TCA AAG ATC GAA GGG A
KDM3A	GCC ACA CCA GCT TCA ACA TCT A	QAC ACG CCG ATC TTT CAC CG
KDM3B	CCC ACA CCA GCT TCA ACA TCT A	CTC GCG ATG GCT GAT CTA AG
KMT2B	CTC CGG AGA TGC ACC TTG GA	TGC GCG ATG CTC ATC CCA
LANCL2	GGC AGC AAA AGT GGA CCA AG	TGT AA AAC GCC ACA ATC CCA
MALAT1	GCC TGG AAG ATG AAA AAC GG	CAG GAT CAT TCC CAC TCA CC
MAP1B	GAG ATG ATG CCC ATG CCI CT	QAC GAA TGG GGT CAT AT CAC
MECP2	GCC ATC AAC AGC GAA GAA AAG T	ACA TGC TGC CCT GGT GGA AC
MRPS17	TTG GCG GAG GTG AAC AAA	QGC TGC CCT ATG GAT GAA AG
NEAT1	CCG TCT GCT TCT GAC TTC AT	TGT GAA AAC GCC ACA ATC CCA
NUPR2	AGC TTT AGC ACT GGC TGC AC	CCT GAT AAC GCT CTT TGG CT
PSF1	CAG CAA GGA GTC GGT AA	QGC TGC GTC TCA AAA CC
SRA1	AGC CCA CAA GTG TGC AGC TG	QGC TGC AAA GCT CTT GGA CG

Frontiers in Oncology | www.frontiersin.org 3 December 2020 | Volume 10 | Article 576362
Signaling, 3724S) for 1 h at room temperature, washed with PBS three times and then incubated in the dark with Phalloidin 568 and secondary antibodies ALEXA-488 goat anti rabbit conjugate for 1 h at room temperature. After three PBS washes the coverslips were mounted with ProLong® Gold Antifade Mountant with DAPI (Thermo Fisher Scientific), the slides were allowed to cure for 4 h and then examined under the Nikon T-1E scanning confocal microscope, with a 60× objective, and analyzed with NIS software.

Chromatin Immunoprecipitation (ChIP)

Cells were plated for 72 h and the media was changed 24 h prior to the experiment. The cells were subjected to 1% formaldehyde cross-linking (Sigma) for 8 min at room temperature. The cross-linking reaction was quenched by adding glycine (Sigma) to a final concentration of 0.125 M for 5 min at room temperature. The medium was then removed and cells were washed twice with cold PBS containing protease inhibitor cocktail (Thermo Fisher Scientific). Cells were scraped in PBS and pelleted. Pellet was resuspended in SDS Lysis buffer (50 mM Tris–HCl pH 8.0, 10 mM 0.5M EDTA, and 1% SDS) with protease inhibitor cocktail and sonicated in a Diagenode Bioruptor 300 sonicator. Sonication conditions involved 20 cycles (30° ON/30° OFF) for MDA-MB-468 and 25 cycles for MCF7 cells. Sonication was determined using RNA Screen Tpe (Agilent). Ribosomal RNA depletion was achieved using NEBNext Ultra II Directional RNA Library Prep according to the manufacturer’s protocol (NEB # E7760L). PCR enriched libraries were quantified by Qubit and equimolar indexed libraries (different samples had different indexes for multiplexing) were pooled. Pooled libraries were quantitatively checked using the Agilent Tapestation 2200 and quantified using Qubit. The libraries were then diluted to 200 pM and spiked with 2% phiX libraries (Illumina control). The transcriptome sequencing was performed on the barcoded stranded RNA-Seq libraries using Illumina NovaSeq 6000 SP flow cell, paired-end reads (2 × 50 bp).

ChIP Sequencing and RNA Sequencing Data Analysis

For ChIP-Seq analysis, the FASTQ files were analyzed using DNASTAR’s Laser Gene software. MEME-ChIP was used to analyze MeCP2 binding motifs and TOMTOM to identify if those motifs were similar to known consensus sequences using the MEME Suite Programs http://meme-suite.org/index.html (53). We downloaded the FASTQ data sets of RRBS for MCF7 cells from the ENCODE portal (54) (https://www.encodeproject.org/) with the following identifiers: ENCSR943EFS, and ENCSR939RTX; then avsialized with Integrative Genomics Viewer (IGV). Venn diagrams to identify the overlapping genes were generated using the Venny tool https://bioinfogp.cnb.csic.es/tools/venny/index.html. For RNA-Seq analysis, the RNA-Seq reads were normalized by RPKM and assembled by mapping reads directly to the annotated human reference genome using the DNASTAR SeqMan software (DNASTAR, Inc., Madison, WI). Differential gene expression levels were quantified using Fisher’s Exact Test Signal Search in the DNASTAR ArrayStar software package (DNASTAR, Inc., Madison, WI). Differentially expressed genes were filtered if they met the criterion for a two-fold change, a p-value that was less than 0.05 at a 95% confidence interval. For each comparison, genes were sorted based on fold change, from low to high. The results were ported into Excel spreadsheets where the log2 of the fold change for each gene was calculated.

RNA Analysis In Silico

Relative RNA expression of 20 selected genes in breast cancer and normal adjacent tissue was downloaded from UCSC Xena platform on 11th of April 2020 (1,092 breast cancer primary tumors and 114 normal tissues).

Liquid Chromatography/Mass Spectrometry (LC–MS/MS)

PC3 and MDA-MB-468 cells were cultured and seeded in p150 mm dishes at 37°C under atmospheric oxygen conditions. Once 70% confluent, cells were treated with DMSO, 2µM panobinostat, 10 µM Inhibitor-IV, 10 µM Inhibitor-VII, and 10 µM pracinostat for 45 min to 1.5 h and harvested in RIPA buffer (with complete protease inhibitor cocktail, 1 µM Trichostatin A and 1 mM nicotinamide). Protein concentration was quantified by the BCA method. Immunoprecipitation was performed using 4 µg of anti-MeCP2 antibody (Cell Signaling) and incubated for 2 h at 4°C. Protein A dynabeads (Invitrogen) were added to the immune-
complex and incubated for 2 h at 4°C. IP protocol was followed as mentioned above. Beads were washed with RIPA buffer (four times) and autoclaved water (two times). Dry beads were shipped to Applied Biomics Inc. (Hayward, CA) for acetylation site identification by LC–MS/MS mass spectrometry on a fee-based service. The specific lysine residues that were acetylated, exhibited ion peaks at mass/charge (m/z) ratio of ~126 as summarized in Figure 4A.

TABLE 2 | ChIP-PCR Primers used in the current study.

Forward primer	Reverse Primer	
ACO2	GCC TTT GCT GTG ATG GCT CT	AAG GTA GTG TGT GTT GGG GTA G
AP1M2	ACA GAG ATG TGG GGT GGA A	TTC CAC CCT GAG CCA TGG AT
AQP1	ACT TCA GGA ACC ACT GGG TAG	ATT TCC TGT CCT GTG GCT GTC
AGT4D	TGT ACC GTG GCC TCC TAT GC	CAC CTT TCC AGG GGA CA C
COT64	TGT GTT CAT TGC GAC TCA CA	TCA GTT GAG GGG GCG AGT TT
CHD2	AGT AAT GGC GTG ACC CAA TGT	TGG TGT GAA TTG GGA ACT TQA TQA
DKK1	ATT GGC AGG AAC AGG ATG TGT	GAG GAT TGA GAG GGA GTA TTA GTG
DLX1	GGT CTT CAT TTG TGT GC	AAT CCT TGC TGC GCA ATC TA
DNMT1	CAA AAG GGG AAC CTT GTT CA	CCT GGG AGG AAA CAA TAG GC
DLX4	TTG CCA TTT GTT CAC TCT GC	TQA TCC TGG GAT TGA AAC TG
EGFRI	CCT TGG CAC CCT TCT CTC ACT GC	TGA AAA ATC GCC TGC AAA AC
EGFRI2	ATT GGC TCA GGA CTA TTG GC	GGC TTT GCC ATC ATC AGC TT
EGFRI3	CCT CGG ACC ACC TCA AAG AC	ATC GGG CCT GAT GTA CAA AA
HDAC1	CTG AGC TAA ATC AGC ACC CG	CCT GGG ACC ACT CAT CAT
HIPK3	TCC TCC CGG ACC TCA CAC A	ACT GCC ACT CTT TGA TGG
HIST144F	TGT TGT TCG TCG ATC TAT CGT G	GGC TTC CCG TAT CAC ATC
ICAM1	ATT GTG CCA ACC ACT GGA CG	ACA ACA GCC GGT GAG GTA
ICAM3	CAT GGT CCA GTG GGA AAG GT	GTA GCC GGT GAG GAT
ICAM5	ACT AGA CCG AGG TGG GCA AGA	GTC AGA TTT CCA CCA CCG AG
ID2	GAG CCT GTG ACC GAA TTA CTG	ACC CTT GTG ATC ACA AGC
IL6	AGC ATC CCT CCA CTG CAA AG	GTG AAA ATC GCC TGA GTA
IL33	AGG CAG CTA CTC CTA CTA GAA	CAC CAG TGC TCC TCC TAA
JARID2	AGC AGT GTA TGG TGG AGT GC	CCA TGG CAG CAT TTA TGG CT
KDM1A	AAG CCA ACG GAC GAC TAA GC	ACA TCA CAT CTC TCA CTA
KDM1B	AGT TTG GAA AAC CTG CAA CAC T	AAG GTA GGT GAT TCC GGG
KDM2A	TGC TTC TCA ATG TGC CCA AAC AGG	GCC AGG AAA ACA CTT ACT
KDM3B	AAC ACC TTT GCT CTC AGC GT	TCC AAA TCT TAC CTC CTC
KDM4A	GGC TCA AAG CAC TTG GGG	GCC CTT TCA CAG ACC AAG
KMT2A	ACC ACC ATG TQA CTA GTG GAC TT	ACA GCT TTT ACA GGG AAA AGA
KMT2B	AAC CCG ACC CAT TCT CTC GTT	TGG GAG GCC AGG AGG TTA
KR11	TGA TTA ATG CGG GCC TTC CTC	TGC ACC ATC GTA CTT CTA
LANCL2	CCC TTA ACT TSG GAG GCT QA	GGA CTG CAA TGT CAC CAG T
METTL7A	GCT CTG TGG ATG TGG TCG TC	CTC ACA CCC TTT CAC TCA CCG
MRPS17	TAG GTG CCA AGG ATG TTG	CTC CCA AAG GTG AAG GAA
NU1PR1L	AAA GCC TGG GGA ACT TCA TA	GGA TGA TTT CCA CCT TCT GA
OXCT2	TTT ATG TCG TGC ACC GTC AG	GAC CTG GCG AAC TGG ATG AT
P2RYY1L	CTG GTG GTG GAG TCC GTG TGT	GGT GAT GGA GGT GAT GAA GA
PPAN-P2RY111	GAC ACT TGC TCT CCC CAC AGA	CTC AAT CGG GGT CGT TAC
PPSH	GTG CTT GAA GGT GGG TAG QA	CTG TGG ATT CTG CAA GAG QA
SEC61G	CCT GGG TTC AAG CAA TCT TG	GCC CCG AGG TGG GAG GTT TA
SIRT1	AAG AAA GGG AGT GGG AGC AT	GCC GAG GTA CTA AGA ACA CTA
SIRT5	AAC CAC AGA CCT GCC TGA GT	TCC TTC TCC CAT CAG GAT
SLC44A2	ACC CTA CTT CAT GTC GGC C	TCA GCC CCA ACT GAT CAT
SUMF2	CAA CAC AGA CCC CCA TCT CT	CAT GGC TCA CTA CAG CTA
TCEB3C	CTC AGA AAT CCG CTC CTG TC	GAG AGT GCT TGG GGG TTT GC
TCEB3CL2	CTC AGA AAT CCG CTC CTG TC	GGA GAG TGC TCC TGG GTG
VOPP1	TTC CAC AGC ACT CAC AG	GAA TGA GCC AGC AGA AGC TT
VSTM2A	AAG GTT GGA TGA GTG CTT CC	ACA CTA AGG TCC GGT TCC
WNT3A	GGC ATG AGG AGG TAT GGA AT	GCC TCT GCG CTC GCT TGT
WT1	GCT TGA ATG AGT GGT TGG GGA	ACC GCT GAC ACT GTG CTC CTC
ZNF154	TCT CCA GCA TCA TGA GAC AT	TCC TCT CAT TGG GAG AGC TT
ZNF713	AGT CAC AAA AAT CCA GAG CCC A	ACA AGC GGG AGG AAT CCA TGA
Statistical Analysis

Statistical analysis was performed using unpaired student’s t tests (Graph Pad Prism software) to assess whether differences observed in the various experiments were significant. All results are expressed as mean ± SEM and considered significant at *p <0.05, **p <0.01 and ***p <0.001.

RESULTS

MeCP2 Binds Novel Genes in Breast Cancer Cells Associated With Diverse Biological Functions

Since the discovery that MeCP2 regulates transcription and mutations in the gene cause Rett Syndrome, there has been considerable interest in what regulates its function and what downstream genes are targeted (55, 56). DNA methylation and its readers influence transcription activation and repression in a context-dependent manner depending on the genomic location of binding (57, 58). While this process is known to be frequently altered in cancers (59–61), many unknowns remain regarding the role of MeCP2 in regulating gene expression. Given abnormal DNA methylation in breast cancers (10, 12, 62, 63) and MeCP2 amplification in cancers (41), we wanted to identify new MeCP2 target genes and map novel sites of MeCP2 post-translational acetylation in breast cancer cells. We first examined MeCP2 protein expression in breast cancer cells and noted a range of expression across all lines with higher expression (64, 65) in MDA-MB-468 and BT-549 cells (Figure 1A). Both of these lines are derived from triple negative breast cancer (TNBC) which lack the expression of hormone receptors (ER and PR) and do not overexpress the growth factor receptor, HER2. To identify novel genomic targets of endogenous MeCP2, we performed MeCP2 ChIP-Seq analyses across two breast cancer cell lines (MCF7 and MDA-MB-468). These cells were chosen because they represent two different breast cancer subtypes and show relatively different MeCP2 protein expression levels. Also, inclusion of MCF7 in the ENCODE Project enabled comparison of our ChIP-Seq data with other publicly available data for epigenetic marks mapped in this cell line.

MeCP2 ChIP-Seq had not been done in MDA-MB-468 cells and our analysis revealed that MeCP2 binds to a wide spectrum of target genes (~20,000 in MDA-MB-468 and ~1,337 in MCF7 cells) ranging from miRNA, IncRNA, snRNA, processed and unprocessed pseudogenes, antisense and protein-coding genes. These genes are associated with a diverse range of cellular processes like gene expression, organization of the extracellular matrix, transport, or signal transduction, as shown in Figures 1B, C. In MeCP2 ChIP-Seq in MDA-MB-468 cells, we found that MeCP2 binds to multiple novel targets not previously associated with MeCP2 function in the context of breast cancer. Some of these included the following genes: a) SSU72 Homolog, RNA Polymerase II CTD Phosphatase (SSU72), a protein phosphatase that catalyzes the dephosphorylation of the C-terminal domain of RNA polymerase II (66); b) CAPN2 (Calpain 2), a calcium-sensitive cysteine protease (67); c) Plexin B2 (PLXNB2), a class B transmembrane receptor that participates in axon guidance and cell migration in response to semaphorins (68); d) Zinc Finger SWIM-Type Containing 4 (ZSWIM4); e) RUNX Family Transcription Factor 3 (RUNX3) a transcription factor that functions as a tumor suppressor and is frequently deleted or transcriptionally silenced in cancer (69, 70), and f) Solute Carrier Family 45 Member 4 (SLC45A4) (Figure 1B). Additionally, in MCF7 some of the notable genes included a) Ubiquitin Specific Peptidase 34 (USP34), a ubiquitin hydrolase that removes conjugated ubiquitin from AXIN1 and AXIN2, acting as a regulator of Wnt signaling pathway (71); b) Maltase–Glucoamylase (MGAM), an enzyme that plays a role in the digestion of starch (72); c) GDP-Mannose 4,6-Dehydrogenase (GMD), an enzyme that participates in the synthesis of GDP-fucose from GDP-mannose (73); d) Solute Carrier Family 45 Member 4 (SLC45A4); e) CCDC26 Long Non-Coding RNA (CCDC26), a IncRNA class associated with Malignant Glioma and Astrocytoma (74, 75); and f) Sidekick Cell Adhesion Molecule 1 (SDK1) (Figure 1C). Moreover, 60% of the MCF7 loci (806 of 1,336) overlapped with MDA-MB-468 loci, including gene such as USP34, MGAM, GMD, SLC45A4, CCDC26, and SDK1 (Figure 1D). We further analyzed the methylation status for genes in MCF7 cells for which publically available Reduced Representation Bisulfite Sequencing (RRBS) data was available (Figure S1). We found that MeCP2 binds to genes in MCF7 cells in regions where CpG methylation had been mapped such as SDK1, a cell adhesion molecule; Jagged 2 (JAG2), a Notch ligand; glycogenin 2 (GYG2), an enzyme involved in glycogen synthesis (Figure 1C, Figure S1C). These novel MeCP2 targets as well as others in Figure S1 had not previously been linked with MeCP2, but have been linked with pathobiology associated with cancer (76–84) or genetic disorders such as Leigh syndrome (85) and Raine syndrome (86, 87). We also found that MeCP2 binds to genomic regions devoid of CpG methylation such as for USP34, MGAM, GMD, SLC45A4, SSU72, CAPN2 and PLXNB2 (Figures S1B–C). Similarly, while these are novel targets of MeCP2, many have been implicated in diverse cancers (67, 71, 88–92). This further shows the complexity of MeCP2 binding across the genome. To identify the DNA motifs associated with MeCP2 genomic binding, we analyzed the genomic fragments sequenced in our MeCP2 ChIP-Seq analyses performed in triplicate. The MEME-ChIP analysis revealed a motif consistent across three independent experiments for both MDA-MB-468 and MCF7 cells (Figure 1E and Table 3).

MeCP2 Localizes to Novel Genes and Regulates Their Expression

We further determined the global occupancy of MeCP2 with respect to cellular functions and performed pathway analysis to identify the core pathways associated with the newly identified target genes in MDA-MB-468 and MCF7. We observed an enrichment of the gene expression, immune system, metabolism, metabolism of proteins, and signal transduction pathways (Figure 2A). We further randomly chose more than 100 genes identified in the triplicate analysis of MeCP2 ChIPseq in MDA-MB-468 cells and validated MeCP2 binding via MeCP2
ChIP-PCR, some of which are shown in Figure 2B. Consistent with our MeCP2 ChIPseq analyses, we found via MeCP2 ChIP-PCR that MeCP2 localizes to various gene promoters involved in diverse biological processes such as immune system regulation (IL6, ICAM3, and ICAM5), signal transduction (EGFR, WNT3A, and DKK1), transcription (KMT2A, SIRT1, HDAC1, DNMT1), developmental biology (DUX4) and lncRNAs (MALAT-1 and NEAT1) in MDA-MB-468 cells (Figure 2B). Several of the lncRNA targets identified are poorly studied, so we examined transcript expression patterns of some associated with MeCP2 MALAT1 and NEAT1 and established expression patterns across a panel of breast cancer cells. To determine whether MeCP2 depletion would lead to a change in expression of novel gene targets, MeCP2 was stably depleted...
TABLE 3 | MeCP2 binding motifs.

Replicate	CONSENSUS	Width	Fragments	E-value
Replicate #1	GTGATGTTGTGRTTCACTCAGAGGTTGA	30	3232	8.1e-3515
Replicate #1	TTAGCACAGAAKTATTTCAGAAACTT	26	3568	1.1e-2663
Replicate #1	TWCAYAGAGCAGWTTKGAAACACTTT	29	2923	6.5e-2645
Replicate #2	TGGATGTTGTGRTTCACTCAGAGGTTGA	29	3102	1.4e-3473
Replicate #2	AATCTAGAGAAKTATTTCAGAAACTT	26	3210	1.3e-2530
Replicate #2	AACVTTCCTTTTCAYAGAGCAGWTTKGAAACACTT	30	2685	5.0e-2508
Replicate #3	TGGATGTTGTGRTTCACTCAGAGGTTGA	30	1762	9.7e-1782
Replicate #3	TTAGCACAGAAKTATTTCAGAAACTT	30	1325	5.0e-1682
Replicate #3	TWCAYAGAGCAGWTTKGAAACACTT	30	1085	3.3e-1262
Replicate #1	YTAGACAGAAKTATTTCAGAAACTT	26	1530	2.0e-2663
Replicate #1	CTTTGTGATGTGRTTCACTCAGAGT	21	1428	7.5e-1387
Replicate #2	YTAGACAGAAKTATTTCAGAAACTT	24	1273	3.1e-2310
Replicate #2	CTTTGTGATGTGRTTCACTCAGAGT	29	698	5.1e-2488
Replicate #1	YTAGACAGAAKTATTTCAGAAACTT	26	1530	2.0e-2663
Replicate #1	CTTTGTGATGTGRTTCACTCAGAGT	29	815	7.2e-1616
Replicate #3	AACVTTYCTTTTCAYAGAGCAGWTTKGAAACACTT	30	1085	3.3e-1262
Replicate #3	AATCTAGACAGAAKTATTTCAGAAACTT	26	3210	1.3e-2530
Replicate #3	AACVTTYCTTTTCAYAGAGCAGWTTKGAAACACTT	30	1085	3.3e-1262
Replicate #2	CTTTGTGATGTGRTTCACTCAGAGT	21	1428	7.5e-1387
Replicate #2	CTAGACAGAAKTATTTCAGAAACTT	26	1530	2.0e-2663
Replicate #2	CTTTGTGATGTGRTTCACTCAGAGT	29	698	5.1e-2488
Replicate #1	CTAGACAGAAKTATTTCAGAAACTT	26	1530	2.0e-2663
Replicate #1	CTTTGTGATGTGRTTCACTCAGAGT	29	815	7.2e-1616

with two different shRNA (sh1 and sh3) in MDA-MB-468 cells (Figure S2A). We also observed by quantitative RT-qPCR a change in mRNA expression of novel targets in which were validated for knockdown (Figure S2A). A minimum of three independent experiments showed that depletion of MeCP2 caused a change in the expression of several of the genes whose promoter it bound. We found that knockdown of MeCP2 in MDA-MB-468 cells caused an increase in some genes and 875 genes, respectively (sh1 MeCP2 and NTC versus sh3 MeCP2 and found changes in 899 potential targets showed their participation in the immune system, metabolism, metabolism of proteins, and signal transduction, among other pathways (Table 4). Moreover, these genes were differentially expressed in normal vs. breast cancer tissue (Figure 3C), and several of these target genes have been previously reported to be tumor suppressors (93–99) while others were reported to be oncogenes (100–103) (Figure 3D).

Endogenous MeCP2 Is Acetylated at Key Lysine Residues and KDI Further Influence Its Acetylation Patterns

We previously reported that MeCP2 undergoes acetylation on Lys-171 in both MCF7 and RKO cells. We further demonstrated that a K171 acetylation mimic did not perturb binding to select gene targets, but it diminished interaction of MeCP2 with binding partners such as ATRX and HDAC1 in colorectal cancer cells (44). In vivo and in vitro studies have demonstrated the importance of MeCP2 post-translational regulation (45, 104–107), yet little has been done to comprehensively map novel MeCP2 PTMs. In the current study we wanted to extend our analyses and provide a comprehensive map of post-translational acetylation in other cancer cell line models. In order to further understand how MeCP2 is post-translationally regulated in TNBC breast and prostate cancer cell lines, we systematically identified the specific lysines on endogenous MeCP2 where acetylation was induced upon lysine deacetylase inhibition (KDACi). We inhibited SIRT1, a class III lysine deacetylase, using 10 µM Inhibitor-IV or 10 µM Inhibitor-VII, as well as the class I/II/IV lysine deacetylases using 2 µM panobinostat and 10 µM pracinostat. Given the links between DNA methylation and/or aberrant expression of DNA methylation readers in prostate cancer (4, 8), we focused on two model lines representing each cancer, PC3 and MDA-MB-468, respectively. Next, we performed immunoprecipitation of endogenous MeCP2 and analyzed the samples using LC–MS/MS. Figure 4A summarizes the specific lysine residues that were acetylated and exhibited ion peaks at mass/charge (m/z) ratio of ~126 under basal (vehicle control) and KDI-induced conditions (i.e., cells treated with panobinostat, Inhibitor-IV, Inhibitor-VII, and pracinostat) (also see Figure S3). The mass spectrometry analyses showed that...
endogenous MeCP2 was acetylated at eight lysine residues under basal conditions (i.e., vehicle control) with induction in acetylation on K417 with 2 µM panobinostat; K364, K417, K431, K435 with 10 µM Inhibitor-IV; K22, K24, K27, K210 with 10 µM Inhibitor-VII; and K12, K135, K144, K171, K233 with 10 µM pracinostat. We found changes in acetylation patterns induced by exposure to both pre-clinical KDIs such as SIRT1 inhibitors and pracinostat as well as an FDA-approved inhibitor, panobinostat, which is used in the clinic to treat leukemias and lymphomas (23, 108). Interestingly, some of the lysine residues detected as acetylation sites (K22 and K135) were also sites mutated in Rett Syndrome. Moreover, some of the lysine residues detected as acetylation sites (such as K135), have been previously reported as sites linked with ubiquitination (4). We found acetylated lysine residues across the length of the protein, including at the N-terminus, in the methyl-binding domain (MBD), in the intermediate domain (ID) and the transcriptional repression domain (TRD) as well at the C-terminus region (Figure 4B).

Together, these results indicate that MeCP2 is acetylated under basal and KDI-induced conditions in multiple cancer cell lines. Next, we wanted to determine the impact of K135 acetylation on MeCP2 subcellular localization. We chose to study this site since it is situated in a highly conserved MBD domain and is a
residue mutated in Rett syndrome patients. In order to probe the functional significance of MeCP2 acetylation, we generated HA-tagged wild-type MeCP2, HA-tagged deacetylation mimetics (K135R), HA-tagged acetylation mimetics (K135Q). Once the mutations were confirmed by sequencing, we then transfected and selected MDA-MB-468 cells with the plasmids for stable expression. Overexpression of HA-tagged MeCP2 constructs was confirmed by protein expression of WT and point mutants in MDA-MB-468 cells (Figure S4B). Using immunofluorescence assays, we detected that HA-tagged wild-type MeCP2, deacetylation mutants (K135R), and acetylation mutants (K135Q) were mostly in the nucleus of stably expressing MDA-MB-468 cells (Figure 5). These data demonstrate that post-translational acetylation on K135 lysine residue does not alter MeCP2 sub-cellular localization and calls for future studies to examine the role of acetylation at this residue as well as others identified in this report.

DISCUSSION

The present study provides valuable insight on two important fronts. First, we identify novel genes that are subject to MeCP2-mediated regulation. Second, we provide a comprehensive identification of novel sites of post-translational acetylation associated with different cancer types and in response to multiple classes of deacetylase inhibitors. Concerning genomic analyses, these findings are important because we identify novel MeCP2 target genes linked with tumor progression which were not previously linked with MeCP2. While global DNA
hypomethylation frequently occurs during tumorigenesis (60, 61), the promoters of TSGs may undergo hypermethylation (109–111) and these aberrant changes in both the marks and the enzymes that modify them are being intensively examined for novel therapies (112–116). These epigenomic changes may instigate genomic instability or generate a heritable molecular signature, which enables tumor progression, so identification of novel genomic targets of MeCP2 is very important (117–119).

Previous reports linked MeCP2 expression with ER status (3) and with BRCA1 promoter silencing (120), which provided further rationale for assessing genome-wide MeCP2 profiling in both MCF7 and MDA-MB-468 cells, which represent two subtypes of breast cancer. We found that MeCP2 binds to multiple regions of genes, including promoters, exons, and introns. These novel targets have been associated with a wide range of regulatory and signaling pathways. We found that there was an overlap of around 800 genes between the two cell lines, and there were distinct MeCP2 binding motif enrichments between both cell lines. We observed that not only did MeCP2 bind many novel gene targets, but its depletion also led to both increases and decreases in their corresponding RNA transcripts. This is especially important given that studies demonstrate MeCP2 binds to methylated cytosines and hydroxymethylated cytosines in mCH dinucleotides, a property wherein many unknowns remain (31–33, 35, 36, 38, 121). We discovered that MeCP2 localizes at various gene promoters involved in diverse processes such as autophagy (ATG4D), immune cell regulation (IL6), chromatin organization (KDM3B, KDM2A, KMT2B, KMT2A, KDM1A, HDAC1, HIST1H4F), circadian clock (SIRT1), developmental biology (EGFR, DKK1, SUMF2), extracellular matrix organization (ICAM5, ICAM3, ICAM1) and metabolism (EIF3G, SLC44A2, SUMF2, OCXCT2, ACOT2, PSIP1).

Recently, MeCP2 was shown to be amplified in human tumors and can mimic the function of activated Ras in cancer models (42), and also acts as a critical bridge linking information encoded in methylated DNA to epigenetic regulators (40, 122). Although MeCP2 binds methyltransferases (25), co-repressors (123) and methylated DNA to epigenetic regulators (4), much remains unknown about what regulates these interactions and what regulates binding to mCG vs. mCA dinucleotides as well as methylation-independent binding (126).

However, our previous report provided some of the first insight into the role of post-translational regulation of MeCP2 binding to co-repressor proteins. We found that K171 acetylation regulates MeCP2-ATRX binding, which is a critical aspect of MeCP2 function (43). Our present study demonstrates an additional 17 novel sites of post-translational modification of MeCP2, including PTM on MeCP2 (44). These findings provide new insights into the regulation of MeCP2 function and may have implications for the development of new therapeutic strategies for diseases associated with MeCP2 aberrations.
MeCP2 acetylation in triple-negative breast cancer and prostate cancer cell lines. Notably, nine of these lysines (K12, K135, K144, K177, K210, K233, K289, K364, K352, and K417) have been shown to be mutated in patients with Rett Syndrome. We identified four of these sites in our previous study mapping MeCP2 acetylation in MCF7 breast cancer cells and RKO colon cancer cells (K22, K135, K171, and K289) (43). Based on previous findings one may reason that one or more of these novel PTMs may be influencing MeCP2 function in cancer progression. Another example of the impact of post-translational regulation comes from transgenic models involving single MeCP2 serine residues that undergo post-translational regulation which show distinct neurological defects (106, 128), and phosphorylation of specific serine residues is enriched at specific gene promoters (104). However, much less is known about the role of MeCP2 acetylation as a regulatory switch in any context. Our more thorough mapping of novel MeCP2 acetylation PTMs performed here is a first step in defining their functional significance which is beyond the scope of the present study. Based on MeCP2 acetylation patterns induced by the various pre-clinical or clinical lysine deacetylase inhibitors, it is likely that KDACi’s that target class I/II vs. class III HDACs will influence MeCP2 function in both common and distinct ways. Based on

FIGURE 4 | Endogenous MeCP2 is acetylated at key lysine residues. (A) The table indicates putative lysine residues that were found to be acetylated on MeCP2 under basal condition (DMSO) and upon deacetylase inhibition using 2 µM panobinostat (PANO), 10 µM SIRT1/2 Inhibitor-IV (IV), 10 µM SIRT1/2 Inhibitor-VII (VII), and 10 µM pracinostat (PRAC) and showed ion peaks at mass/charge (m/z) ratio of ∼126 in PC3 and MDA-MB-468 cells. (B) Approximate representation of the position of acetylated lysine (K) residues on MeCP2 conserved domain is shown. N, N-terminal; MBD, Methyl-binding-domain; A-T Hook domain: TRD, Transcriptional repression domain; His-rich, Histidine-rich domain; Pro-rich, Proline-rich domain, C, C-terminal.
acetylation mapping one can also reason that MeCP2 interaction with different KDACs may lead to important role in cell-type-specific biology driven by unique acetylation patterns. We previously demonstrated that lysine acetylation serves as a regulatory switch in Wnt pathway signaling (129, 130) and cancer-associated steroidogenesis (131, 132). The current study provides yet another example of the scope of post-translational acetylation and may help explain how SIRT1 preferentially targets active (133, 134) vs. repressed genes (135) depending on its deacetylation of specific non-histone partners (136, 137). Future work may identify more factors involved in this SIRT1-MeCP2 regulatory network, and through such work, our understanding of the key molecular relationships in cancer may lead to deeper understanding of the mechanism of action of epigenetic therapies and KDAC inhibitors.

DATA AVAILABILITY STATEMENT

Sequences and processed ChIP-Seq and RNA-Seq data files were deposited in the NCBI Gene Expression Omnibus (GEO) database under accession number GSE160150 and the BioProject: PRJNA667107.
AUTHOR CONTRIBUTIONS
IC-P, DV, MS, SP, LC, DM, MF, and KP discussed and designed the experiments. IC-P, DV, MS, SP, LC, DM, and MF performed experiments and/or analyzed data. IC-P, MS, DM, and KP wrote and edited the paper with input from all authors. IC-P, MS, SP, LC, DM, MF, JN, SA, RL, FR, and KP reviewed and revised the paper. All authors contributed to the article and approved the submitted version.

FUNDING
This work was supported by the National Institute of Health (CA155223) to KP and a Cancer Prevention and Research Institute of Texas (CPRIT), Recruitment of Rising Stars Award (RR410008) to KP.

ACKNOWLEDGMENTS
Immunofluorescence images were generated in the Image Analysis Core Facility, supported in part by TTUHSC.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2020.576362/full#supplementary-material

REFERENCES
1. Amir RE, Van den Veyver IB, Wang M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet (1999) 23:185–8. doi: 10.1038/13810
2. Babec T, Defossez PA. Reading DNA Modiﬁcations. J Mol Biol (2020) S0022-2836(20):30096-6. doi: 10.1016/j.jmb.2020.02.001
3. Muller HM, Figl H, Goebel G, Hubalek MM, Widschwendter A, Muller-Holzner E, et al. MeCP2 and MB2 expression in human neoplastic and non-neoplastic breast tissue and its association with oestrogen receptor status. Br J Cancer (2003) 89:1934–9. doi: 10.1038/sj.bjc.6601392
4. Pandey S, Prutt K. Functional assessment of MeCP2 in Rett syndrome and cancers of breast, colon, and prostate. Biochem Cell Biol (2017) 95:368–78. doi: 10.1139/bcb-2016-0154
5. Lawry LA, Ure K, Wan YW, Luo C, Trostle AI, Wang W, et al. Losing Dnm1a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. Elife (2020) 9:e52981. doi: 10.7554/eLife.52981
6. Manners MT, Ertel A, Tian Y, Ajit SK. Genome-wide redistribution of MeCP2 in dorsal root ganglia after peripheral nerve injury. Epigenetics (2016) 9:23. doi: 10.1168/e03.072-116-0073-5
7. Zhao L, Liu Y, Tong D, Qin Y, Yang J, Xue M, et al. MeCP2 Promotes Gastric Cancer Progression Through Regulating FOXF1/Wnt5a/beta-Catenin and MYOD1/ caspase-3 Signaling Pathways. EBiomedicine (2017) 5:16–87. doi: 10.1016/j.ebiom.2016.08.008
8. Bernard D, Gil J, Dumont P, Rizzo S, Monte D, Quatannens B, et al. The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene (2006) 25:1358–66. doi: 10.1038/sj.onc.1209179
9. Du Q, Luu PL, Stizarker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics (2015) 7:1051–73. doi: 10.2217/epi.15.39
10. Mathl A, Wong-Brown M, Locke WJ, Stizarker C, Brayre SG, Forbes JF, et al. DNA methylation profile of triple negative breast cancer-specific genes

SUPPLEMENTARY FIGURE 2 | Validation of MeCP2 knockdown. (A) Left panel. Western blot to evaluate the protein levels of MeCP2 in MDA-MB-468 (NTC, sh1 MeCP2, and sh3 MeCP2) cells. Right panel. RT-qPCR analysis to evaluate expression of MeCP2 in MDA-MB-468 (NTC, sh1 MeCP2, and sh3 MeCP2) cells. Transcript levels were normalized to actin transcript levels. (B) Representative of two-independent RT-qPCR-based analysis to evaluate expression changes of NUPR2, PSH4, LANC2L, MRPS17, HDA1C, KDM3B, HIPK3, KDM3A, EGFR and KMT2B genes in MDA-MB-468 (NTC and sh MeCP2) cells. Transcript levels were normalized to actin transcript levels.

SUPPLEMENTARY FIGURE 3 | Pharmacological inhibition of lysine deacetylases and key lysine residues acetylated on endogenous MeCP2. Acetylation of MeCP2 detected by Western blotting. (A) PC3 cells were treated with deacetylase inhibitors: DMSO as vehicle control, and SIRT1/2 Inhibitor-IV for a short time period range from 10 min to 1:15 h. (B) MDA-MB-468 were treated with deacetylase inhibitors: DMSO as vehicle control, and SIRT1/2 Inhibitor-IV for a short time period range from 10 to 120 min. (C) MDA-MB-468 were treated with deacetylase inhibitor: DMSO as vehicle control, and with various doses of SIRT1/2 Inhibitor-IV. For all immunoprecipitations equal amount of protein were loaded for each immunoprecipitation set up using acetyl-lysine (Ac-K) antibody as per protocol. Acetylation of MeCP2 was detected by Western blotting along with positive control, whole cell extract (WCE) using MeCP2 specific antibody. Species-matched IgG was used as a negative control, IgG heavy chain (IgG Hc) was blotted for as a control for equal antibody loading for immunoprecipitation and GAPDH for WCE. (D) The table indicates putative lysine residues that were found to be acetylated on MeCP2 under basal condition (DMSO) and upon deacetylase inhibition using 2 µM panobinostat (PANO), 10 µM Inhibitor-IV (IV), 10 µM Inhibitor-VII (VII), and 10 µM pracinostat (PRAC) and showed ion peaks at mass/charge (m/z) ratio of ~126 in PC3 and MDA-MB-468 cells.

SUPPLEMENTARY FIGURE 4 | Expression profile of lncRNA across normal and breast cancer cell lines. (A) RNA samples were extracted and converted to cDNA by reverse transcriptase enzyme. RT-PCR was performed to determine the expression of MALAT-1, MEG3, NEAT-1, CDKN2B, GAS5, APA1, MRPS1HG LncRNAs, and Beta actin as positive control in MCF12F normal breast cells and MCF7, BT549, MDA-MB-468, MDA-MB-231 and T47D breast cancer cell lines. (B) Stable expression of empty vector (EV), HA-epitope tagged MeCP2 wild type (WT), HATagged deacetylation mutants (k to R), HA-tagged acetylation mutants (K to Q) on K135 lysine residues in MDA-MB-468 cells.
comparing lymph node positive patients to lymph node negative patients. Sci Rep (2016) 6:33435. doi: 10.1038/srep33435
11. Nohræn R, Reinswardt C, Sarsøva EO, Rasmund F, Ghiani L, Jodice MG, et al. Profiling of Epigenetic Features in Clinical Samples Reveals Novel Widespread Changes in Cancer. Cancers (Basel) (2019) 11:723. doi: 10.3390/cancers11050723
12. Stitzraker C, Zotenko E, Song JZ, Qu W, Nair SS, Locke WJ, et al. Methyloyme sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun (2015) 6:5899. doi: 10.1038/ncomms6899
13. Fandy TE, Jiemjit A, Thakar M, Rhoden P, Suarez L, Gore SD. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes. Clin Cancer Res (2014) 20:1249–58. doi: 10.1158/0821-6338.CCR-13-1453
14. O’Connor OA, Falchi L, Lue JK, Marchi E, Kinahan C, Sawas A, et al. Oral 5-azacytidine and romdepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study. Blood (2019) 134:1395–405. doi: 10.1182/blood.2019001285
15. Si J, Boumber YA, Shu J, Qin T, Ahamed S, He R, et al. Chromatin remodeling involving in synaptic plasticity and homeostasis?
16. Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, et al. Methyl-CpG binding protein MeCP2 targets and post-translational modifications. Nat Rev Genet (2017) 18:29–41. doi: 10.1038/nrg.2016.177
17. Castro-Piedras et al. MeCP2 Targets and Post-Translational Modifications.
49. Drewell RA, Goddard CJ, Thomas JO, Surani MA. Methylation-dependent silencing at the H19 imprinting control region by MeCP2. Nucleic Acids Res (2002) 30:1139–44. doi: 10.1093/nar/gkf117

50. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science (2008) 320:1224–9. doi: 10.1126/science.1153252

51. Crespi B. Autism and cancer risk. Autism Res (2011) 4:302–10. doi: 10.1002/aur.208

52. Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mescarmin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci USA (2014) 111:4596–601. doi: 10.1073/pnas.1311114111

53. Bailey TL, Boden M, Buke FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res (2009) 37: W202–8. doi: 10.1093/nar/gkp335

54. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res (2018) 46:D794–801. doi: 10.1093/nar/gkx1081

55. Hite KC, Adams VH, Hansen JC. Recent advances in MeCP2 structure and function. Biochim Biophys Acta (2009) 87:219–27. doi: 10.1139/o08-115

56. Li C, Jiang S, Liu SQ, Lykken E, Zhao LT, Sevilla J, et al. MeCP2 enforces imprinting at H19 by specific interactions with H3K9me3. Nucleic Acids Res (2018) 46:427–82. doi: 10.1093/nar/gky1174

57. Schubeler D. Function and information content of DNA methylation. Nature (2015) 517:321–6. doi: 10.1038/nature14192

58. Surani MA. Imprinting and the initiation of gene silencing in the germ line. Cell (1998) 93:309–12. doi: 10.1016/S0092-8674(00)81156-3

59. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet (2000) 16:168–74. doi: 10.1016/S0168-9525(99)01971-X

60. Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colon neoplasms. Cancer Res (1988) 48:1561–6.

61. Goedz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science (1985) 228:187–90. doi: 10.1126/science.2579435

62. Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR, et al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PloS Genet (2010) 6:e1001043. doi: 10.1371/journal.pgen.1001043

63. Skvortsova K, Maal-Farquhar E, Luu PL, Song JZ, Zuo W, Zotenko E, et al. DNA 5-Methylcytosine content in human colon cancer. Cancer Res (1998) 58:3597–314. doi: 10.1555/cancer.1998.01004

64. Ito-Ishida A, Yamalanchili HK, Shao Y, Baker SA, Heckman LD, Lavery LA, et al. Genome-wide distribution of linker histone H1.0 is independent of 35:297. doi: 10.1555/cancer.1998.01004

65. Miao C, Liang C, Tian Y, Xu A, Zhu J, Zhao K, et al. Overexpression of CAPN2 promotes cell metastasis and proliferation via AKT/mTOR signaling in renal cell carcinoma. Oncotarget (2017) 8:9781–21. doi: 10.18632/oncotarget.22083

66. Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem (2002) 277:43115–20. doi: 10.1074/jbc.M20605200

67. Kang KA, Zhang R, Kim GY, Bae SC, Hyun JW. Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol (2012) 33:403–12. doi: 10.1007/s13277-012-0322-6

68. Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem (2002) 277:43115–20. doi: 10.1074/jbc.M20605200

69. Manandhar S, Lee YM. Emerging role of RUNX3 in the regulation of tumor microenvironment. BMB Rep (2018) 51:174–81. doi: 10.5483/BMBRep.2018.51.4033

70. Lui TT, Lacroix C, Ahmed SM, Goldberg SJ, Leach CA, Daulat AM, et al. The ubiquitin-specific protease USP34 regulates axin stability and Wnt/beta-catenin signaling. Mol Cell Biol (2011) 31:2053–65. doi: 10.1128/MCB.01094-10

71. Diaz-Sotomayor M, Quezada-Calvillo R, Avery SE, Chacko SK, Yan LK, Lin AH, et al. Malts-glucoloylase modulates gluconegenesis and sucrose-isomaltase dominates starch digestion gluconeogenesis. J Pediatr Gastroenterol Nutr (2013) 57:704–12. doi: 10.1097/MPG.0b013e3182a73478

72. Hernandez-Zavala A, Cortes-Camacho F, Palma L, Godinez-Aguilar R, Espinoza-Garcia AM, Perez-Duran J, et al. Two Novel FAM20C Variants in A Family with Raine Syndrome. Genes (Basel) (2020) 11(2):222. doi: 10.3390/genes11020222

73. Hung CY, Rodriguez M, Roberts A, Bauer M, Mihalek I, Bodamer O. A novel FAM20C mutation causes a rare form of neonatal lethal Raine syndrome. Am J Med Genet A (2019) 179:1866–71. doi: 10.1002/ajmg.a.61291
88. Lin C, Xia J, Gu Z, Meng Y, Gao D, Wei S. Downregulation of USP34 Inhibits the Growth and Migration of Pancreatic Cancer Cells via Inhibiting the PRR11. *Onco Targets Ther* (2020) 13:1471–80. doi: 10.2147/OTT.S228857

89. Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, et al. Genome wide analysis of chromosomal alterations in oral squamous cell carcinomas revealed over expression of MGAM and ADAM9. *PloS One* (2013) 8:e54705. doi: 10.1371/journal.pone.0054705

90. Wei X, Zhang K, Qin H, Zhu J, Qin Q, Yu Y, et al. GMDS knockdown impairs cell proliferation and survival in human lung adenocarcinoma. *MRC Cancer* (2018) 18:660. doi: 10.1186/s12885-018-4524-1

91. Xiang G, Cheng Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. *Reprod Biol* (2018) 18:218–24. doi: 10.1016/j.reproto.2018.07.005

92. Xie XQ, Wang MJ, Li Y, Lei LP, Wang N, Lv ZY, et al. miR-124 Intensified Oxaiplatin-Based Chemotherapy by Targeting CAPN2 in Colorectal Cancer. *Mol Ther Oncolytics* (2020) 17:320–31. doi: 10.1016/j.jmto.2020.04.003

93. DiFeo A, Narla A, Camacho-Vanegas O, Nishio H, Rose SL, Buller RE, et al. E-cadherin is a novel transcriptional target of the KLF6 tumor suppressor. *Oncogene* (2006) 25:6206–31. doi: 10.1038/sj.onc.1296611

94. Du C, Chen L, Zhang H, Wang Z, Liu W, Xie X, et al. Caveolin-1 limits the contribution of BKCa channel to MCF-7 breast cancer cell proliferation and invasion. *Int J Mol Sci* (2014) 15:20706–22. doi: 10.3390/ijms151120706

95. Grant FM, Yang J, Nasrallah R, Clarke J, Sadiyah F, Whiteside SK, et al. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. *J Exp Med* (2020) 217(9): e20190711. doi: 10.1084/jem.20190711

96. Kang J, Park JH, Lee HJ, Jo U, Park JK, Seo JH, et al. Caveolin-1 Modulates Docetaxel-Induced Cell Death in Breast Cancer Cell Subtypes through Different Mechanisms. *Cancer Res Treat* (2016) 48:715–26. doi: 10.4143/ct.2015.227

97. Kim SK, Jang HR, Kim JH, Noh SM, Song KS, Kim MR, et al. The epigenetic silencing of LIM2 in gastric cancer and its inhibitory effect on cell migration. *Biochem Biophys Res Commun* (2006) 349:1032–40. doi: 10.1016/j.bbrc.2006.08.128

98. Liu G, Hou G, Li L, Li Y, Zhou W, Liu L. Potential diagnostic and prognostic marker dimethylglycine dehydrogenase (DMGDH) suppresses hepatocellular carcinoma metastasis in vitro and in vivo. *Oncotarget* (2016) 7:32607–16. doi: 10.18632/oncotarget.8927

99. Slavin DA, Koritschoner NP, Prieto CC, Lopez-Diaz FJ, Chatton B, Bocco JL. A new role for the Kruppel-like transcription factor KLF6 as an inhibitor of c-Jun proto-oncoprotein function. *Oncogene* (2004) 23:8196–205. doi: 10.1038/sj.onc.1208020

100. Desai SD, Reed RE, Burks J, Wood LM, Pullikuth AK, Haas AL, et al. ISG15 promotes regional translation of the 5’ untranslated region of the IRES cofactor associations and the dynamics of protein MeCP2 and chromatin. *Sci Rep* (2016) 6:28295. doi: 10.1038/srep28295
127. Ratnakumar K, Bernstein E. ATRX: the case of a peculiar chromatin remodeler. *Epigenetics* (2013) 8:3–9. doi: 10.4161/epi.23271

128. Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. *Neuron* (2011) 72:72–85. doi: 10.1016/j.neuron.2011.08.022

129. Sharma M, Castro-Piedras I, Simmons GE Jr., Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. *Cell Signal* (2018) 47:52–64. doi: 10.1016/j.cellsig.2018.03.004

130. Sharma M, Molehin D, Castro-Piedras I, Martinez EG, Pruitt K. Acetylation of conserved DVL-1 lysines regulates its nuclear translocation and binding to gene promoters in triple-negative breast cancer. *Sci Rep* (2019) 9:16257. doi: 10.1038/s41598-018-32723-3

131. Manna PR, Ahmed AU, Vartak D, Molehin D, Pruitt K. Overexpression of the steroidogenic acute regulatory protein in breast cancer: Regulation by histone deacetylase inhibition. *Biochem Biophys Res Commun* (2019) 509:476–82. doi: 10.1016/j.bbrc.2018.12.145

132. Molehin D, Castro-Piedras I, Sharma M, Sennoune SR, Arena D, Manna PR, et al. Aromatase Acetylation Patterns and Altered Activity in Response to Sirtuin Inhibition. *Mol Cancer Res* (2018) 16:1530–42. doi: 10.1158/1541-7786.MCR-18-0047

133. Holloway KR, Barbieri A, Malyarchuk S, Saxena M, Nedeljkovic-Kurepa A, Cameron MM, et al. SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. *Mol Endocrinol* (2013) 27:480–90. doi: 10.1210/me.2012-1347

134. Simmons GE Jr, Pandey S, Nedeljkovic-Kurepa A, Saxena M, Wang A, Pruitt K. Frizzled 7 expression is positively regulated by SIRT1 and beta-catenin in breast cancer cells. *PloS ONE* (2014) 9:e90861. doi: 10.1371/journal.pone.0090861

135. Pruitt K, Zinn RL, Ohnn JE, McGarvey KM, Kang SH, Watkins DN, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. *PloS Genet* (2006) 2:e30. doi: 10.1371/journal.pgen.0020040

136. Castro-Piedras I, Sharma M, den BM, Molehin D, Martinez EG, Vartak D, et al. DVL1 and DVL3 differentially localize to CYP19A1 promoters and regulate aromatase mRNA in breast cancer cells. *Oncotarget* (2018) 9:35639–54. doi: 10.18632/oncotarget.26257

137. Simmons GE Jr, Pruitt WM, Pruitt K. Diverse roles of SIRT1 in cancer biology and lipid metabolism. *Int J Mol Sci* (2015) 16:950–65. doi: 10.3390/ijms16010950

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Castro-Piedras, Vartak, Sharma, Pandey, Casas, Molehin, Rasha, Fokar, Nichols, Almodovar, Rahman and Pruitt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.