The Shape of an Image
A Study of Mapper on Images

Alejandro Robles\(^1\), Mustafa Hajij\(^2\) and Paul Rosen\(^2\)
\(^1\)Department of Electrical Engineering, University of South Florida, Tampa, USA
\(^2\)Department of Computer Science and Engineering, University of South Florida, Tampa, USA
arobles1@mail.usf.edu, \{mhajij, prosen\}@usf.edu

Keywords: Mapper, Contour Tree, Topological Data Analysis

Abstract:
We study the topological construction called Mapper in the context of simply connected domains, in particular on images. The Mapper construction can be considered as a generalization for contour, split, and joint trees on simply connected domains. A contour tree on an image domain assumes the height function to be a piecewise linear Morse function. This is a rather restrictive class of functions and does not allow us to explore the topology for most real world images. The Mapper construction avoids this limitation by assuming only continuity on the height function allowing this construction to robustly deal with a significant larger set of images. We provide a customized construction for Mapper on images, give a fast algorithm to compute it, and show how to simplify the Mapper structure in this case. Finally, we provide a simple procedure that guarantees the equivalence of Mapper to contour, join, and split trees on a simply connected domain.

1 INTRODUCTION

Recently, the study of data has benefited from the introduction of topological concepts (Carlsson et al., 2006; Carlsson, 2009; Carlsson et al., 2008; Carlsson and Mémoli, 2008; Carlsson and Zomorodian, 2009; Collins et al., 2004), in a process known as Topological Data Analysis (TDA).

One of the most successful topological tools for shape analysis is the contour tree (Bozell and Ruston, 1963). The contour tree of a scalar function, defined on a simply connected domain, can be thought of as an efficient topological summary of that domain. This structure is obtained by encoding the evolution of the connectivity of the level sets induced by a scalar function defined on the domain. Reeb trees are of fundamental importance in computational topology, geometric processing, image processing and computer graphics.

Contour trees are particularly useful for processing massive data. Contour trees, and their more general version Reeb graphs (Reeb, 1946), have been used in shape understanding (Attene et al., 2003), visualization of isosurfaces (Bajaj et al., 1997), contour indexing (Bozell and Ruston, 1963), contour extraction (Cubes, 1987; Wyvill et al., 1986), terrain description (Freeman and Morse, 1967), embedding analysis (Takeshima et al., 2005; Zhang and Bajaj, 2007), feature detection (Takahashi et al., 2004), image processing (Kweon and Kanade, 1994), data simplification (Carr et al., 2004; Rosen et al., 2017b), and many other applications.

Contour tree algorithms can be found in many papers such as (Takahashi et al., 2009; Carr et al., 2010; Rosen et al., 2017a) and Reeb graphs algorithms are studied in (Shinagawa and Kunii, 1991; Cole-McLaughlin et al., 2003; Pascucci et al., 2007; Doraiswamy and Natarajan, 2009).

Singh et al. proposed a method to understand the shape of data using a topology-inspired construction called Mapper (Singh et al., 2007). Since then, Mapper has become one of the most popular tools used in TDA. It has been applied successfully for various data related problems (Lum et al., 2013; Nicolau et al., 2011) and studied from multiple points of view (Carrière and Oudot, 2015; Dey et al., 2017; Munch and Wang, 2015a).

The construction of Mapper is closely related to Reeb graphs and contour trees (Singh et al., 2007). Indeed this construction can be considered as a generalization of Reeb graph under some technical conditions (Munch and Wang, 2015b). The relation between Reeb graph and Mapper has recently been made precise in (Carrière and Oudot, 2015).

The true power of Mapper lies in its general description in terms of topological spaces and maps on them. This abstract version of the construction is usu-
ally called topological Mapper. In the original work where Mapper was introduced (Singh et al., 2007), Mapper was applied to study the shape of point clouds. This version of Mapper is now referred to as statistical Mapper (Stovner, 2012). While topological Mapper allows one to introduce the main ideas of Mapper in general terms, statistical Mapper deals with aspects related to point clouds, such as clustering and noise. Similar technical aspects arise when trying to apply Mappers on other domains, such as images.

The purpose of this article is to study Mapper on specific domains, namely simply connected domains and apply this study to images. While the focus of this article is Mapper on images, we state the results whenever possible on a general simply connected domain.

1.1 Contribution

Mapper construction on images operates on a height function defined on the image domain. The height function can be a color channel or luminance of the input image itself or the gradient magnitude of the image, which is typically a compact and connected region in \mathbb{R}^2. After discussing the topological and statistical versions of Mapper construction on image domains, we relate this construction to the contour tree algorithm that enables Mapper to realize contour, merge, and split trees.

The method we propose here has multiple advantages. Beside being theoretically justified, the construction of Mapper is flexible and applicable to continuous scalar function defined on a simply connected domain in any dimension. Contour tree algorithms on simply connected domains assume the height function on the domain to be piecewise linear Morse function. While this class of function is useful for a wide variety of applications, it is rather restrictive for images and it does not allow us to explore the topology for most real world images without heavy preprocessing of the image height function. Mapper construction avoids this limitation by assuming only continuity on the height function allowing this construction to robustly deal with a significantly larger class of images. Moreover, Mapper naturally gives a multi-resolution hierarchical understanding of topology of the underlying domain.

The approach we take to Mapper here is geared for simply connected domains and, in particular, for images. Using the properties of such domains, we provide a fast construction algorithm. Finally, we provide a simple algorithm that guarantees the equivalence of Mapper construction to contour, join, and split trees on a simply connected domain.

2 PRELIMINARIES AND MOTIVATION

As mentioned in the introduction, Mapper is closely related to the contour tree. This related structure motivates the construction of Mapper.

Contour Trees. The contour tree of a scalar field, defined on a simply connected domain, tracks the evolution of contours in that field and stores this information in a tree structure. Each node in the tree represents a critical point where contours appear, disappear, merge, or split. Each edge corresponds to adjacent and topologically equivalent contours. In essence, the contour tree forms a topological skeleton that connects critical points (i.e. local minima, maxima, and saddle points). Figure 1 shows an example of the contour tree of a scalar field defined on a 2d domain.

![Figure 1](image-url)

(a) (b) (c) (d)

Figure 1: (a) Scalar function is segmented into (b) topological regions by converting that scalar field into a (c) landscape, using the intensity value for height. The connection of those regions can be converted into a contour tree (d) that describes the topology.

Formally speaking, let X be a simply connected domain and let $f : X \rightarrow [a, b] \subset \mathbb{R}$ be a differentiable scalar function defined on the domain X. The nodes of the contour tree of f are represented by the critical points of f. Recall that a point $x \in X$ is called a critical point of f if the differential df_x is zero. Moreover, a value c in \mathbb{R} is called a critical value of the function f is $f^{-1}(c)$ contains a critical point of f. On the other hand, if a point in X is not critical then it is called a regular point. Similarly, if a value $c \in \mathbb{R}$ is not a critical value then we call it a regular value.
The case when X is an n-manifold plays an important role for practical applications. In this case, the inverse function theorem implies that for every regular value c in \mathbb{R} the level set $f^{-1}(c)$ is an $(n-1)$-manifold. For instance, when X is a surface and c is a regular value then $f^{-1}(c)$ is a disjoint union of simply closed curves. If c is a regular value of f then $f^{-1}(c)$ is called an isosurface. A contour is a connected component of an isosurface. A critical point is called non-degenerate if the matrix of the second partial derivatives of f is non-singular. If all the critical points of f are non-degenerate and all critical points have distinct values, then f is a Morse function (Milnor, 2016).

The contour tree $T(X,f)$ of a Morse scalar function f defined on a simply connected domain X is constructed as follows. Define the equivalence relation \sim on X by $x \sim y$ if and only if x and y belong to the same connected component of a level set $f^{-1}(c)$ for the same $c \in [a,b]$. The set X/\sim with the standard quotient topology induced by the function $\pi : X \to X/\sim$ is called the contour tree of f. See Figure 1 for an example of a contour tree defined on the 2d domain of an image. See also Figure 3 for an example the contour tree of 1d function.

In practice, we usually want to compute contour trees on a piecewise linear Morse function defined on a simplicial complex. The mathematical framework specified for contour tree does not apply directly on such domains. The difficulty rises when one tries to extract isosurfaces for a scalar value as the pre-images of an scalar values may not be an isosurface (Szymczak, 2005). Nonetheless several contour tree algorithms have been proposed, but they all depend some method of isosurface extraction. Hence two different methods of isosurface extraction might lead to two different contour trees.

Mapper. The construction of Mapper avoids the problem of dealing with isosurfaces all together by focusing on portions of the range of the scalar field. To illustrate this, consider the simple scalar function $f : X \to [a,b]$ example given in Figure 2. Cover the range $[a,b]$ by two overlapping intervals $A := (a-\epsilon, c+\epsilon)$ and $B := (c-\epsilon, b+\epsilon)$ such that $c \in [a,b]$ and $\epsilon > 0$. Note the interval A and B cover the interval $[a,b]$ in the sense : $[a,b] \subset A \cup B$.

Now, consider the inverse images $f^{-1}(A)$ and $f^{-1}(B)$. Figure 2(c) illustrates that $f^{-1}(A)$ consists of two connected components α_1 and α_2 and $f^{-1}(B)$ consists of three connected components β_1, β_2 and β_3. Moreover, there are some overlaps between these connected components. Namely, the intersections $\alpha_1 \cap \beta_1$, $\alpha_1 \cap \beta_2$, $\alpha_1 \cap \beta_3$ and $\alpha_2 \cap \beta_3$ are non-empty. We record the information of the connected components and their non-empty overlap by a graph structure. The nodes of this graph represent the connected components and the edges represent the non-empty intersection between these components. The Mapper construction is the graph associated to the function f and the cover $\{A,B\}$ in this manner.

Mapper’s Relationship to Contour Trees. One can notice that this graph is very related to the contour tree of f illustrated in Figure 2. The only difference in this example seems to be the missing details that the contour tree has but Mapper misses. However, choosing a different cover for the range $[a,b]$ and run the Mapper construction similar to the way we did earlier,
one may recover the same structure of the original contour tree.

The choice of the cover plays an important role in the construction of Mapper, and it allows one to look at the different levels of details of the scalar function and the topology of the considered domain. Figure 4 shows that by increasing the “resolution” of the cover imposed on \([a, b]\), one may recover the details encoded in the original contour tree. Note also that the choice of cover given in Figure 4(b) gives a similar result to the contour tree example given in Figure 4.

Both contour tree and Mapper essentially track the same topological information in the scalar field, but the way this information is encoded in each one of them is different. The nodes of the contour tree of a scalar field are represented by the critical points the field and the edges represent the regions in the domain where there are no topological change in the contours. On the other hand the nodes in Mapper represent connected regions in the domain and the edges represent an overlap between two different connected components.

3 TOPOLOGICAL MAPPER

We now give the general definition of Mapper for a continuous scalar function defined on a simply connected domain.

Let \(X\) be a simply connected domain in \(\mathbb{R}^n\). We will assume that \(X\) is compact and connected. A cover of \(X\) is a collection of open sets \(\mathcal{U} = \{U_i\}_{i \in I}\) such that \(X \subset \bigcup_{i \in I} U_i\). Here is any indexing set. The compactness condition implies that we can always find a finite cover for \(X\). In the case of an image, \(X\) is a compact simply connected subset of \(\mathbb{R}^2\). See Figure 5 for a schematic 2d domain and a cover defined on it.

![Figure 5: A cover example for a 2d domain.](image)

The 1-nerve of \(N_1(\mathcal{U}, X)\) of \(X\) induced by the cover \(\mathcal{U}\) is a graph with nodes represented by the elements of \(\mathcal{U}\) and edges represented by the pairs \(A, B\) of \(\mathcal{U}\) such that \(A \cap B \neq \emptyset\). The nerve of a space \(X\) is well-studied in topology (Munkres, 2000), and it can be thought as a topological skeleton the underlying space.

For a general domain \(X\), constructing a cover is not a trivial computational task. The main idea of Mapper lies in the way of constructing this cover using the range of a function \(f\) defined on \(X\). The cover of the range can be then pullback using the function \(f\) to obtain a cover for \(X\). This cover can be then used to construct the 1-nerve graph.

More precisely, a continuous scalar function \(f : X \rightarrow [a, b]\) on \(X\) and a cover for the range of \(f\) give rise to a natural cover of \(X\) in the following way. A cover for an interval \([a, b]\) is finite collection of open intervals \(\mathcal{U} = \{(a_1, b_1), \ldots, (a_n, b_n)\}\) that cover \([a, b]\), i.e. \([a, b] \subset \bigcup_{i=1}^{n} (a_i, b_i)\). Now take the inverse images of each open set in \(\mathcal{U}\) under the function \(f\). The result is \(\mathcal{U}(f) := \{f^{-1}(a_1, b_1), \ldots, f^{-1}(a_n, b_n)\}\) is an open cover for the space \(X\). The open cover \(\mathcal{U}(f)\) can now be used to obtain the 1-nerve graph \(M(X, f, \mathcal{U}) := N_1(X, \mathcal{U}(f))\). The Mapper construction is by definition the graph \(M(X; f, \mathcal{U})\).

3.1 Cover Resolution

For a fixed function \(f\) the graph \(M(X, f, \mathcal{U})\) depends on the choice of the cover \(\mathcal{U}\) of the interval \([a, b]\). Figure 4 shows how the choice of the cover affects the Mapper construction.

This idea of Mapper resolution can be made precise via the notion of cover refinement (Munkres, 2000). Let \(X\) be a space and let \(\mathcal{A}\) and \(\mathcal{B}\) be two covers of \(X\). The cover \(\mathcal{B}\) is a refinement a cover \(\mathcal{A}\) if for each element of \(B\) of \(\mathcal{B}\) there is at least one element \(A\) of \(\mathcal{A}\) that is contained in \(B\).
A such that $B \subseteq A$. If B is a refinement a cover \mathcal{A}, there is an embedding of the graph $\mathcal{N}_1(X, \mathcal{A})$ inside the graph $\mathcal{N}_1(X, \mathcal{B})$. That is there is one-to-one function ϕ that maps between the vertices sets $\mathcal{N}_1(X, \mathcal{A})$ and $\mathcal{N}_1(X, \mathcal{B})$ together with an assignment that assigns to every edge $e = (u, v)$ in $\mathcal{N}_1(X, \mathcal{A})$ a path in $\mathcal{N}_1(X, \mathcal{B})$ between $\phi(u)$ and $\phi(v)$. See [Munkres, 2000].

Intuitively, this means that when the resolution of a cover increases, the resulting refined graph obtained from the more refined cover has a copy of the node set of coarse graph. Moreover, each edge of the coarse graph will exist in the refined graph but probably with a higher resolution in the sense that there are some additional nodes inserted along the edge. Figure 12 show examples 4 nested sequences of cover refinement along with their corresponding graphs. Starting from left to right, notice how each graph can be embedded in the next graph, in the sense of graph embedding given above. This simple, effective, way to give a multi-resolution Mapper is one of its main advantages over contour tree.

4 TOPOLOGICAL MAPPER ON IMAGES

In this section, we discuss the details of topological Mapper on images that will be used in our algorithm for the statistical Mapper on images discussed in section 5.

Mapper construction on an image operates on the a height function defined on the domain of the image. The height function can be the gradient magnitude of the image or one of the channels or luminance of the input image. In this section, we assume that $f : X \rightarrow [a, b]$ is continuous height function defined on the image domain $X \subseteq \mathbb{R}^2$. The range $[a, b]$ represents the range of possible values for the chosen height function. The idea of Mapper, illustrated previously on 1d functions, extends analogously to 2d functions. Namely, starting by covering the range $[a, b]$ by a finite collection of open intervals. Then, we find the connected components within the inverse image of each interval and check their intersection. Figure 6 shows a schematic example of Mapper on a 2d image domain.

4.1 Choosing the Cover

The choice of cover for the Mapper construction is very flexible. As mentioned in the previous section, this can be used to give a multi-resolution structure that summarizes the scalar function information. That being said, there are certain covers that give rise to a non-desirable tree structure. Moreover, a poor choice of the cover can significantly increase the number of calculations needed for the construction. We describe an effective way to construct the cover for the domain that will help in computing Mapper efficiently.

Start by splitting the interval $[a, b]$ into n subintervals $[c_1, c_2], [c_2, c_3], \ldots, [c_{n-1}, c_n]$ such that $c_1 = a$ and $c_n = b$. Choose $\varepsilon > 0$ and construct a cover $\mathcal{U}(\varepsilon, n) = \{U_i = (c_i - \varepsilon, c_{i+1} + \varepsilon)\}_{i=1}^{n-1}$ for the interval $[a, b]$. We want to choose ε so that only adjacent intervals intersect. The choice of ε should satisfies the following conditions:

1. The intersection $U_i \cap U_j = \emptyset$ unless $j \in \{i-1, i, i+1\}$ for $2 \leq i, j \leq n - 2$.
2. $U_i \cap U_j = \emptyset$ unless $j \in \{1, 2\}$ and finally $U_{n-1} \cap U_1 = \emptyset$ unless $j \in \{n-2, n-1\}$.

This choice of ε ensures that only adjacent intervals intersect with each other. Now let \mathcal{U}_{odd} be the subset of \mathcal{U} consisting of intervals with odd indices. Similarly define $\mathcal{U}_{\text{even}}$ to be the collection of open sets $U_i \in \mathcal{U}$ such that index i is even. Note that for two open sets $A, B \in \mathcal{U}_{\text{odd}}$, we have $A \cap B = \emptyset$. Similarly the intersection of any two sets in $\mathcal{U}_{\text{even}}$ is empty. The split of the cover \mathcal{U} in this manner will be utilized in the algorithm.

4.2 Determining the Nodes

A node in Mapper is a connected component of $f^{-1}((c, d))$, where (c, d) is an open interval in the cover \mathcal{U} of the range of f. Given a range (c, d), in the case of an image X, we want to find the those pixels
in \(X \) whose pixel value lie in \((c, d)\). Given a region \(R \) in an image \(X \) consisting of a collection of pixels whose pixel value lie within the range \((a, b)\), we want to determine the connected components in the \(R \).

Here one needs to specify what exactly is meant by a connected component in this context. The image \(X \) induces a graph structure with nodes being the pixels and the edges are determined by the local pixel adjacency relation. There are two common types of pixel adjacency relations shown in Figure 7.

Figure 7: The two types of pixel adjacency relation.

Using the graph on an image with either one of the pixel adjacency relation conventions, we can now consider the connected components of subgraph consists of the pixels in a region \(R \). A walk on a graph \(G \) is a sequence of vertices and edges \((v_0, e_0, v_1, \cdots, e_{l-1}, v_l)\) such that \(e_i = [v_{i-1}, v_i] \in E(G) \). A graph is said to be connected if there is a walk between any two vertices. A connected component in a graph is a maximal connected subgraph. Finding connected components of a graph is well-studied in graph theory and it can be found in linear time using either breadth-first search or depth-first search (Hopcroft and Tarjan, 1971).

5 ALGORITHM

The creation of the Mapper graph is done in three stages. First, all pixels in the image are labeled by the cover they map to. Pixels with the same label are then grouped by searching for all connected components with the same label. This provides the nodes for the Mapper graph. Next, the connected component regions are scanned for overlaps. Every pair of overlapping regions in the image corresponds to an edge connecting the nodes in the Mapper graph. Finally, the third stage simplifies the Mapper graph by removing nodes with two valencies.

5.1 Node Finding

In our approach, pixel labeling is done using a pair of lookup tables, one for the even cover \(U_{even} \) and one for the odd cover \(U_{odd} \). When a lookup table maps outside of its set of covers, it returns a value that signifies that the pixel does not map to a cover in this table. This even/odd separation has an important benefit that when one lookup table is applied to the image, none of the resulting regions overlap. This means that instead of processing the image for each cover one-by-one, the image only needs to be processed twice, once for \(U_{even} \) and once for \(U_{odd} \), to find all the connected regions.

Breadth-first search (BFS) is used to find connected regions once the pixels have been labeled. By taking advantage of the queue structure of BFS, every pixel in a connected region can be traversed before moving onto the next region as long as only the top of the queue is being modified. This continuity of the search allows us to add pixels in other regions to the same queue, thus allowing processing many regions with one search. As a region is traversed, pixels are marked with an identification unique to that region. In our implementation, this identification is created using the position of the first pixel in the region touched during the search.

Figure 8: Line scanning for candidate pixels

Our approach initializes the BFS queue with candidate pixels which are pixels found by scanning each
Input Even Odd Overlap

Figure 9: Region search applied to Perlin noise. The search is done twice, once for even and once for odd covers. Here, each region identified during the search is given a unique color. If a pixel is not found to map to a cover during the search the, pixel is not colored (these are the pixels colored in black in the middle two images). This shows how splitting the covers gives a pair of images which do not contain overlapping regions. Regions in one image will, however, overlap with regions in the other image, as shown in the image on the far left.

row in the image from left to right until a pixel which differs in label from the previous pixel is found (see Figure 8). This gives the pixels which start a region along every line in the image. Since a region needs at least one pixel to be in the queue at the start of the search, the use of candidate pixels ensures each region in the image will be traversed, while reducing the number of pixels in the queue at the start of the search.

At the end of the search, every pixel will have an associated identification that represents the connected component region it belongs to. Finally, these regions define the nodes in the Mapper graph. See Figure 9 for illustration of the process of node finding done on an example image.

5.2 Edge Finding

Once the regions in the image have been identified for both the even and odd covers, overlaps between regions need to be found. A naive approach would be to create a set of pixel locations for every region in both sets of covers, and check whether pairs of sets are disjoint. This type of approach, however, requires every pair of sets to be tested for disjointness, making it inefficient.

To determine region overlap, we take advantage of the candidate pixels found during node finding, see Figure 8. Since these pixels signifies the entrance of a region with a different labeling, this means that there are two different regions from the two opposing covers overlap. Notice that this method takes advantage of the way we construct the cover in section 4.1.

5.3 Graph Simplification

The resulting Mapper graph can contain thousands of nodes. Many of these nodes can be removed as they do not indicate topological events. In the Mapper graph, a node with valency equal to 2 corresponds to a region where no topological event occur. In other words, such a node is not a merge, split, creation, or termination of a region. These nodes are analogous to regular points in the contour tree. Hence, these nodes can be safely removed to obtain a simplified graph, such as in Figure 10.

Figure 10: Simplification of the mapper graph for a saddle point and Perlin noise. This shows how information about the topology is retained after the simplification.

6 REALIZING THE CONTOUR TREE

The Mapper construction can be used to realize the contour tree. Here we give a choice of cover that guarantees Mapper gives rise to all the topological information encoded in the contour tree. We need to assume that the given scalar function is a piecewise linear Morse function \(f : X \rightarrow [a, b] \) on a simply con-
Remark 6.1. Notice that the Mapper construction does not require nor assume the function to be a Morse function. However, this assumption is needed in this section because we want to show that in the case when the function is Morse, then Mapper can give essentially the same structure as the contour tree.

7 Join and Split Trees

The previous sections describe how Mapper can be used to obtain a contour tree. The Mapper construction is general and can be used to realize other structures such as the join and split trees (Carr et al., 2003). The only change one needs to make to the previous setup is making a different choice for the shape of the open intervals that form the cover of the range. These choices will be justified after we illustrate the basic ideas of join/split trees.

For a continuous scalar function \(f : X \rightarrow [a,b] \) defined on a simply connected domain \(X \) the split tree \(ST(f,X) \) of \(f \) on \(X \) tracks the topological changes occur of the set \(\{ p \in X | f(p) \geq c \} \) of a value \(c \) as this value is swept from \(-\infty \) to \(\infty \). Similarly, the join tree \(JT(f,X) \) of \(f \) on \(X \) tracks the topological changes occur to the topology of the set \(\{ p \in X | f(p) \leq c \} \) as the value \(c \) goes from \(-\infty \) to \(\infty \). Note that join and split trees can be obtained from the contour tree. Namely, if one sweeps the contour tree from bottom to top, keeping track of the merging events and ignoring splitting events, then one obtains the join tree. On the other hand, if we sweep the contour tree from top bottom, keeping track of the splitting events only, then we obtain the split tree. The join and split trees can also be used together to reconstruct the contour tree (Carr et al., 2003). The Mapper construction can be used to compute both split and join trees on any simply connected domain. The setup to obtain these two structures is similar to the one we demonstrated for the contour tree. The only difference is the shape of the open intervals for the cover \(\mathcal{U} \) of range \([a,b] \).

The choice of cover for a join tree should be of a collection of open intervals of the form \((\infty, c)\) that covers the interval \([a,b] \). That is, the cover must be a finite set \(((-\infty, c_1),...,(\infty, c_n))\) such that \([a,b] \subset \cup_{i=1}^{n} (-\infty, c_i)\). As the values to \(c_i \) increase the only merging events occur in the set \(\{ p \in X | f(p) \geq c \} \), which is reflected in the resulting Mapper graph. On the other hand, the choice of cover needed to construct the split tree is a collection of open intervals of the form \((c, \infty)\).

8 RESULTS

To demonstrate how our work performs we run a few experiments on some images with various complexities. Figure shows the illustrative examples on some images. The height functions chosen on these images are the input images themselves. The figure shows the images along with the Mapper graph on drawn on the top of them. The vertical position of the
node is chosen to be the average of the pixel values of the region that corresponds to that node. On the other hand the \((x, y)\) position of a node is the center mass of the pixel positions of the pixels in the region. The size of the node is proportional to the number of pixels in the corresponding connected component.

In Figure 12 we show how multiple refinement of cover give rise to a hierarchy of Mapper on the same image. The graphs in the figure, shown from left to right, are generated by using 2, 4, 8, 16 slices of the cover. The figure shows immediately the effect of cover refinement of the resolution and level of details.

The same hierarchy construction of Mapper is applied to more complicated images and shown in Figure 13. For a better visualization, the graphs in this figure were optimized as described in 5.2.

8.1 Running time

We tested our algorithm on a 3.7 GHs AMD with a 16 GB of memory. We implemented the results shown in Figures in Java and tested them on the Windows platform. We tested the running time of the algorithm against two parameters: changing number of slices in the covers and increasing the resolution of the image. The images that we used in our tests are shown in Figure 15. See also Figure 14 for the performance analysis.

![Figure 15: The four images that were used in performance analysis. Top: patterns 1 and 2, bottom: patterns 3 and 4.](image)

We also ran a comparison between the Mapper algorithm we present here and a contour tree algorithm. The contour tree algorithm we used is a version of algorithm given in \((\text{Carr et al., } 2003)\).

While both contour tree and Mapper give almost identical performance for images with small resolutions, Mapper outperforms contour tree as we increase the resolution of on the image. See Figure 14.

One can notice here that the performance computation time of Mapper increase linearly with the increase of number of slices in the cover. Moreover, observe in Figure 14 that Mapper computes faster than contour tree even when we choose to calculate it on the highest resolution.

9 LIMITATIONS

Mapper assumes the underlying height function to be continuous. If the provided function is not continuous Mapper still produces a graph, but it is no longer guaranteed that this graph is a tree. Figure 16 an example of an image whose height function is discontinuous. This image was created by drawing the ring shape with a constant single color then multiplying pixel values of this image by a gradient. The resulting graph has a clear cycle obtained by the nature of the discontinuity in the ring.

![Figure 16: Mapper on discontinuous height function of an image is not guaranteed to produce a tree.](image)

Depending on the application at a hand this limitation of Mapper could potentially be used for image understanding. As illustrated in Figure 16 the graph captures the "shape" in the underlying image. This is illustrated further in Figure 17.

10 CONCLUSIONS AND FUTURE WORK

Mapper is a powerful tool that can be used to study the topology of a certain domain with a scalar function attached to it. Mapper was originally defined
and studied on point clouds. We introduce the study of Mapper on simply connected domains and in particular 2d images. On simply connected domains, the Mapper construction generalizes contour, split, and join trees. The Mapper construction has multiple advantages over other contour tree algorithms. All previous contour tree algorithms assume the height function to be piecewise linear Morse functions. By assuming only continuity on the height function the Mapper graph allows us to extend the study of images using topology-based approaches to a much larger class of images. Most research related to Mapper has been geared towards topological Mapper. Our work here uses the properties of the image domain to obtain a customized algorithm for Mapper on images, which we show to have advantages in making the graph calcu-
Figure 14: Performance analysis of Mapper in comparison with contour tree on the four patterns given in Figure 15. Tests were done on images with the resolutions: 256^2, 512^2, 1024^2, 2048^2, 4096^2, and 8192^2. Each resolution was tested against Mapper and contour tree. Mapper was tested using 16, 32 and 64 cover slices. The x-axis represents the square root of the resolution of the image. The y-axis represents the running time in milliseconds.

Figure 17: Mapper on an image consists of letters. The Mapper construction on this image gives a collection of disjoint graphs that have the same shape as the letters written in the image.

More efficient. The algorithmic aspects to deal with additional domains have also been addressed in this work. We plan to investigate such directions more in the future.

ACKNOWLEDGEMENTS

This work was supported in part by a grants from the National Science Foundation (IIS-1513616) and (OAC-1443046).

REFERENCES

Attene, M., Biasotti, S., and Spagnuolo, M. (2003). Shape understanding by contour-driven retiling. *The Visual Computer*, 19(2):127–138.

Bajaj, C. L., Pascucci, V., and Schikore, D. R. (1997). The contour spectrum. In *Proceedings of the 8th Conference on Visualization’97*, pages 167–ff. IEEE Computer Society Press.

Bozell, R. L. and Ruston, H. (1963). Hybrid techniques for real-time radar simulation. In *Proceedings of the November 12-14, 1963, Fall Joint Computer Conference*, pages 445–458. ACM.

Carlsson, E., Carlsson, G., and De Silva, V. (2006). An algebraic topological method for feature identification. *International Journal of Computational Geometry & Applications*, 16(04):291–314.

Carlsson, G. (2009). Topology and data. *Bulletin of the American Mathematical Society*, 46(2):255–308.

Carlsson, G., Ishkhanov, T., De Silva, V., and Zomorodian, A. (2008). On the local behavior of spaces of natural images. *International Journal of Computer Vision*, 76(1):1–12.

Carlsson, G. and Mémoli, F. (2008). Persistent clustering and a theorem of j. kleinberg. *arXiv preprint arXiv:0808.2241*.

Carlsson, G. and Zomorodian, A. (2009). The theory of multidimensional persistence. *Discrete & Computational Geometry*, 42(1):71–93.

Carlsson, G., Zomorodian, A., Collins, A., and Guibas, L. J. (2005). Persistence barcodes for shapes. *International Journal of Shape Modeling*, 11(02):149–187.

Carr, H., Snoeyink, J., and Axen, U. (2003). Computing contour trees in all dimensions. *Computational Geometry*, 24(2):75–94.

Carr, H., Snoeyink, J., and van de Panne, M. (2004). Simplifying flexible isosurfaces using local geometric measures. In *Visualization, 2004. IEEE*, pages 497–504. IEEE.

Carr, H., Snoeyink, J., and Van De Panne, M. (2010). Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. *Computational Geometry*, 43(1):42–58.

Carrière, M. and Oudot, S. (2015). Structure and stability of the 1-dimensional mapper. *arXiv preprint arXiv:1511.05823*.

Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. (2003). Loops in reeb graphs of...
2-manifolds. In Proceedings of the nineteenth annual symposium on Computational geometry, pages 344–350. ACM.

Collins, A., Zomorodian, A., Carlsson, G., and Guibas, L. J. (2004). A barcode shape descriptor for curve point cloud data. *Computers & Graphics*, 28(6):881–894.

Cubes, M. (1987). A high resolution 3d surface construction algorithm/william e. Lorenzen, Harvey E. Cline–SIG '87.

Dey, T. K., Memoli, F., and Wang, Y. (2017). Topological analysis of nerves, reeb spaces, mappers, and multi-scale mappers. *arXiv preprint arXiv:1703.07387*.

Doraiswamy, H. and Natarajan, V. (2009). Efficient algorithms for computing reeb graphs. *Computational Geometry*, 42(6):606–616.

Freeman, H. and Morse, S. (1967). On searching a contour map for a given terrain elevation profile. *Journal of the Franklin Institute*, 284(1):1–25.

Hopcroft, J. and Tarjan, R. (1971). Efficient algorithms for graph manipulation. Technical report, STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE.

Kweon, I. S. and Kanade, T. (1994). Extracting topographic terrain features from elevation maps. *CVGIP: image understanding*, 59(2):171–182.

Lum, P., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., and Carlsson, G. (2013). Extracting insights from the shape of complex data using topology. *Scientific reports*, 3:1236.

Milnor, J. (2016). *Morse Theory*(AM-51), volume 51. Princeton university press.

Munch, E. and Wang, B. (2017). Using contour trees in the analysis and visualization of radio astronomy data cubes. *arXiv preprint arXiv:1704.04561*.

Shinagawa, Y. and Kunii, T. L. (1991). Constructing a reeb graph automatically from cross sections. *IEEE Computer Graphics and Applications*, 11(6):44–51.

Singh, G., Mémoli, F., and Carlsson, G. E. (2007). Topological methods for the analysis of high dimensional data sets and 3d object recognition. In *SPBG*, pages 91–100.

Stovner, R. B. (2012). On the mapper algorithm: A study of a new topological method for data analysis. Master’s thesis, Institutt for matematisk fag.

Szymczak, A. (2005). Subdomain aware contour trees and contour evolution in time-dependent scalar fields. In *Shape Modeling and Applications, 2005 International Conference*, pages 136–144. IEEE.

Takahashi, S., Fujishiro, I., and Okada, M. (2009). Applying manifold learning to plotting approximate contour trees. *IEEE Transactions on Visualization and Computer Graphics*, 15(6):1185–1192.

Takahashi, S., Takeshima, Y., and Fujishiro, I. (2004). Topological volume skeletonization and its application to transfer function design. *Graphical Models*, 66(1):24–49.

Takeshima, Y., Takahashi, S., Fujishiro, I., and Nielson, G. M. (2005). Introducing topological attributes for objective-based visualization of simulated datasets. In *Volume Graphics, 2005. Fourth International Workshop on*, pages 137–236. IEEE.

Wyvill, G., McPheeters, C., and Wyvill, B. (1986). Data structure forsoft objects. *The visual computer*, 2(4):227–234.

Zhang, X. and Bajaj, C. (2007). Extraction, visualization and quantification of protein pockets. *Comp. Syst. Bioinf. CSM2007*, 6:275–286.