Poly(ionic liquid)s: platform for CO₂ capture and catalysis

Xianjing Zhou,¹,² Jens Weber,³ Jiayin Yuan*²

¹ Zhejiang Sci-Tech University, Department of Chemistry, 310018 Hangzhou, China
² Stockholm University, Department of Materials and Environmental Chemistry (MMK), Svante Arrhenius väg 16C, 10691 Stockholm, Sweden (jiayin.yuan@mmk.su.se)
³ Hochschule Zittau/Görlitz (University of Applied Sciences), Theodor-Körner-Allee 16, 02763 Zittau, Germany

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

Capture and conversion of CO₂ are of great importance for environment-friendly and sustainable development of human society. Poly(ionic liquid)s (PILs) combine some unique properties of ILs with that of polymers and are versatile materials for CO₂ utilization. In this contribution, we briefly outline innovative poly(ionic liquid)s emerged over the past few years, such as polytriazoliums, deep eutectic monomer (DEM) based PILs, and polyurethane PILs. Additionally, we discuss their advantages and challenges as materials for Carbon Capture and Storage (CCS), and the fixation of CO₂ into useful materials.

Keywords
Poly(ionic liquid); CO₂ capture; CO₂ catalysis; CO₂ utilization

1. Introduction

Excessive emission of greenhouse gases, the main component of which is carbon dioxide (CO₂), has been considered as the major cause to global warming, ocean acidification and expansion of deserts in the subtropics [1-4]. The International Energy Agency (IEA) reported that the global atmospheric CO₂ concentration passed the historically high level, 400 ppm, in 2016 [5], around 40% higher than that in the mid-1800s and it is still in an average growth rate of 2 ppm/year in the last decades [6]. In this regard, global attention has cast on the development of efficient Carbon Capture and Storage (CCS) techniques as well as fixation of CO₂ into useful materials [7-9].

Current well-developed CCS techniques are often classified into three categories, i.e. post-combustion capture, oxyfuel combustion, and pre-combustion capture. Chemical absorption of CO₂ by aqueous amine solutions is a conventional and well-developed post-combustion capture technology but suffers from corrosion, volatility, toxicity, degradability and high energy consumption for regeneration [10-12]. Alternatively, various highly porous adsorbents, which operate mainly via physical adsorption, have been studied over the past two decades for potential use in pressure/temperature swing...
adsorption processes (PTSA). Materials under discussion include micro/meso-porous silica or zeolites [13,14], metal-organic frameworks (MOFs) [15-19], covalent organic frameworks (COFs) [20,21], carbonaceous materials [22,23], and more [24,25]. Among them, the hybrid MOFs (up to 27 wt%) and zeolites (up to 18 wt%) exhibit exceptionally high CO₂ uptake around room temperature and atmospheric pressure. [26,27] A still very valuable review of different material classes for CO₂ capture by adsorption, also with respect to technical issues, was provided by Hedin and coworkers recently [28]. Material combinations such as zeolite/activated carbon have already been implemented into pilot-scale in real power plants.[29]

Along this line, there is considerable interest in developing alternative techniques. Since Blanchard et al. [30] firstly reported CO₂ capture by ionic liquids (ILs), ILs have attracted much attention in the field of gas capture and separation. ILs carry unique properties, such as negligible vapor pressure, low flammability, high thermal stabilities, excellent gas selectivity, and tunable properties, just to name a few, which make them multifunctional [31]. However, the high viscosity and the associated relatively low CO₂ sorption/desorption rates of ILs [32-34] hamper their application in gas capture.

Recent success in poly(ionic liquid)s (PILs), i.e. the polymeric product of ILs, promotes their usage in and beyond CO₂ sorption due to a variety of new features of PILs in comparison to ILs [8,35-38]. PILs are composed of covalently linked IL species [31], and carry features of macromolecules, thus elegantly combining some unique properties and functions of ILs with that of polymers (e.g. easy processability and shape durability). Although suffering from a relatively poor capacity of CO₂ (generally <10 wt%) and a high cost in comparison to commercial CO₂ absorbents, the affinity of PILs towards CO₂ can be tailor-made through judicious choice of the IL groups and the polymer backbones, as well as the polymer structures [39-42]. Thus the PIL technology in CO₂ utilization encompasses not only CO₂ capture because of its scientific interest, but also the catalytic CO₂ activation, sensing, and conversion to value-added chemical feedstocks and high-end polymers. This contribution presents a brief overview of newly emerging PILs, and their CO₂ capture and catalysis from a general perspective.

2. Innovative Structures of PILs

By selecting different cation and anion pairs, polymer backbone and side groups, physics and chemistry of PILs could be tailored [8] [43]. A large number of cations and anions in IL chemistry can be understood as a big library of building blocks to design polymers. Cations such as imidazolium, pyridinium, pyrrolidinium, ammonium, phosphonium, guanidinium and piperidinium, and anions categorized into carboxylates, sulphonates, sulfonamide and inorganic type have been thoroughly researched. Typical chemical structures of PILs have been summarized by previous reviews [31]. However, the rich IL chemistry allows to produce constantly new PILs with the major discovery on polytriazoliums, deep eutectic monomer (DEM) based PILs, and polyurethane PILs (Fig. 1).
Figure 1. Chemical structures of PILs newly developed during the past 3 years.

Polytriazoliums have been previously seldom studied and have not been investigated in the form of PILs until very recently [44-49]. A triazolium unit has two isomers, that is, 1,2,3-, and 1,2,4-triazoliums, depending on the position of nitrogen atoms within the ring. Among them, 1,2,3-triazole derivatives that are precursors for 1,2,3-triazolium ILs can be easily obtained by copper catalyzed azide-alkyne cycloaddition [50,51]. 1,2,3-triazolium based PILs have been elegantly studied by Drockenmuller et al., either in the form of the main-chain (PIL-1) [52,53], side-chain PILs (PIL-2) [54-57], or as counter cations (PIL-3) [58]. There have been a related review published recently [46].

1,2,4-triazolium PILs are less known, though Shreeve et al. [59] studied briefly poly(1-vinyl-1,2,4-triazolium) as energetic materials. Miller et al. [60] reported a step-growth polymerization to prepare networks of a poly(1,2,4-triazolium)s by Michael addition reaction. Recently, our group constructed a series of 1-vinyl-1,2,4-triazolium-type PIL (PIL-4) [47-49,61].

A couple of years ago, deep eutectic solvents (DESs) emerged as non-toxic, cheap and easy-to-prepare alternatives to ILs [62]. Since then, DESs have been used as solvents, functional additives, and monomers in polymer science [63-68]. Mecerreyes et al. [69,70] introduced deep eutectic monomers (DEMs), which are molecular
complexes formed by mixing hydrogen bond donor and acceptor. The innovative PILs based on DEMs (PIL-5) were obtained by photopolymerization or polycondensation.

In addition to innovative monomers, there has been active efforts to incorporate ILs into the backbone of traditional polymers, such as ionic polyurethanes. Long’s group [71-73] synthesized novel cationic polyurethanes using imidazolium or phosphonium diol-based IL chain extenders. This strategy afforded polyurethane with controlled charge density normally present in the hard segments. Shaplov and Mecerreyes [74,75] synthesized a series of PIL-based polyurethanes having various diisocyanates, cations and anions (PIL-6). They investigated the correlation between the chemical structure and physical properties as well as the capacity of CO\(_2\) capture. Colby and Einloft [76-80] have produced polyurethane anionomer with IL counter-cations (PIL-7). Moreover, the ILs as chain terminators [81] or cross-linkers [82] were also reported. In addition, poly(ionic liquid)s featuring thiazolium units are in general rarely reported. [83-86] In new PILs, for example, the presence of an extra more electronegative nitrogen atom in the triazolium ring in comparison with imidazolium, a variety of hydrogen bond donors in DEM-based PILs, or designateable backbones of ionic polyurethanes may greatly enhance the CO\(_2\) absorption capacity.

3. PIL for CO\(_2\) capture

Some reports show that PILs exhibit a higher CO\(_2\) sorption capability and faster sorption rates than the corresponding ILs [35,37,87]. The results of several groups that studied previously the structural factors in the CO\(_2\) sorption capacity, including cation, anion, and polymeric backbone of PILs, are helpful to better understand this finding, [8].

Membranes are commonly used in gas separation techniques.[88-91] Gases show different permeability when they are forced to pass a membrane. The transport is usually described by a solution-diffusion mechanism and selectivity can be thought to be highly influenced by i) intermolecular interactions between the solute (gas) and the polymer matrix,[92] and ii) the (fractional) free volume of the polymer matrix. Both factors are affected by the chemical nature of the matrix and ionic liquid monomers.

In general, the type of cation plays a dominant role in defining the PIL features in CO\(_2\) sorption while in ILs anions are more important [87,93,94]. The capacities of PILs with various types of cations and anions decreased in the order of ammonium > pyridinium > phosphonium > imidazolium and BF\(_4^-\) > PF\(_6^-\) > (CF\(_3\)SO\(_2\))\(_2\)N\(^-\), according to early studies [95,96]. PILs with backbone from polystyrene (PS) to polymethylmethacrylate (PMMA) and polyethylene glycol (PEG) have a CO\(_2\) sorption capacity in the order of PS > PMMA > PEG [87,93,94], an effect that partly can be ascribed to different modes of interactions and free volume distribution. The substituent of quaternized cations can also affect the CO\(_2\) sorption capacity [93,97-99].
The effects of the emerging PIL structures on the sorption of CO₂ has been studied. Mauter et al. [100] synthesized a series of PMMA-b-PIL block copolymers (PIL-BCPs, Figure 2) with a wide range of pendant ILs including allyl functionalized imidazolium (a), phosphonium (b), and triazolium (c-g) cations and the Tf₂N anion. They pointed out that phase separation in PIL-BCPs increased CO₂ permeability, being the highest for PIL-based materials. The performance of CO₂ capture for polyDEMs (PIL-5, Figure 1) was investigated experimentally and computationally. The CO₂ sorption capacity is comparable or even higher than conventional PILs carrying fluorinated anions. The interaction of acid-containing polyDEMs with CO₂ follows the sequence of citric acid > oxalic acid > malonic acid [70]. For ion polyurethanes, the nature of anion, cation and the structure of the diisocyanate are all affecting the CO₂ uptake, although the anion factor seems to be more dominant [101]. The CO₂ sorption capacity of PILs based on 4,4'-methylene bis(cyclohexyl isocyanate) and diquinuclidinium as cationic backbone and 13 different anions (PIL-6, Figure 1) were determined at 273 K and 1 bar, which follow the order of BF₄ > Ac > PF₆ > B(CN)₄ > CH₃CH(OH)COO > NO₃ > (CF₃CF₂SO₂)₂N > (CF₃SO₂)₂N > FeCl₃Br > CF₃SO₂-N-CN > N(CN)₂ > ZnCl₂Br > CuCl₂Br [101]. Inorganic anions such as BF₄ and PF₆ were found to provide the best CO₂ sorption capacity, which was also observed in traditional PILs [8].

Even though some trends have been found, there is no clear prediction, whether PIL based membranes could be suitable for industrial scale processes to date. In our opinion, it will be necessary to screen the most promising membrane candidates in the near future with respect to important parameters such as permeability, mixed gas separation performance and stability of the membranes against aging and degradation. Measurement of CO₂ capacity alone in our opinion will not be sufficient.

Separation by selective adsorption is a second important technique next to membrane processes. Micro/mesoporous materials such as zeolites, MOFs, COFs, and porous carbons are actively investigated for their excellent CO₂ adsorption ability [13-15,21,22]. Porous PILs combine increased intermolecular interactions due to their ionic character together with a micro/mesoporous network. As an example, Dani et al. [102] reported about a porous polyimidazolium network, termed CB-PCPs obtained via a
click reaction (Figure 3A, part a). It showed a better uptake of CO₂ at 1 bar and 273 K, but lower than that of zeolites or activated carbons. In their work, the CO₂ uptake depended on the nature of the anion (Figure 3A, part b) in the trend of Tf₂N⁻ > PF₆⁻ > TfO⁻ > BF₄⁻ > Ac⁻.

Furthermore, difference between the CO₂ capture by means of ionic CB-PCPs and therefrom derived N-heterocyclic carbene (NHC)-bearing CB-PCPs was investigated. The NHC was obtained by deprotonation of imidazolium by a strong base (Figure 3A, part c). The adsorption mechanism of CO₂ with NHC is different from imidazoliums. NHC can react chemically with CO₂ forming imidazolium carboxylate that decomposes at ca. 80 °C to release CO₂ and restore carbene, a process that can be cycled, as shown in Figure 3B [103-105]. Dani et al. demonstrated that the CO₂ loading in the NHC-carrying CB-PCPs is in the same capacity range as that of the imidazolium CB-PCPs [102]. Such materials could be of high interest due to good gas selectivity, but it must be clearly said that they are to date in a premature state. Again, a validation of the materials in term of laboratory experiments that mimic real processes is needed.

Figure 3. (A) The synthetic routes of ionic CB-PCPs and N-heterocyclic carbene-bearing CB-PCPs [102]. (B) Formation of NHC and NHC-CO₂ adducts from imidazolium-based ILs [106].

4. PIL for CO₂ catalysis

PILs can transform CO₂ into value-added chemical products due to their intrinsic catalytic capabilities [107]. The catalytic formation of cyclic carbonates from
cycloaddition of CO₂ with epoxides is a classic example, reaching 100% atom economy. The catalytic cycle of ILs/PILs bearing nucleophilic counter-anions (Nu) underwent three steps, as shown in Figure 4a [108-111]: the first and the rate-determining step is the nucleophilic attack and ring-open of epoxide by an anion to form oxy-anion species (I); the subsequent insertion of CO₂ is achieved by the reaction of negatively charged oxygen atom and the electrophilic carbon atom of CO₂ (II); the formation of cyclic carbonate product after the cyclization step (III). Overall the catalytic study revealed that both the cation and anion of ILs/PILs affect the activity of cycloaddition. The activities of cations and anions increased in the order of imidazolium > pyridinium and BF₄⁻ > Cl⁻ > PF₆⁻, respectively [112,113]. Moreover, Lewis acidic compounds or the hydrogen bond donors (HBDs) which resulted in the polarization of the C-O bond can facilitate the ring-open step, leading to a remarkable acceleration of the reaction rate [114-118].

Figure 4. Possible mechanism for the reaction of CO₂ with epoxides catalyzed by PILs (a) and polyNHC adduct (b).

The first synthesis of cyclic carbonates using imidazolium-based PILs as catalyst can be dated back to 2007 [119]. A highly crosslinked PIL was prepared by copolymerization of 3-butyl-1-vinylimidazolium chloride with cross-linker divinylbenzene and showed better catalytic activity than the corresponding IL monomers and non-crosslinked PILs. Mesoporous PILs (MPILs) combine the features of mesoporous materials and ILs, representing a new direction on CO₂ catalysis [120-124]. Wang et al. [125] reported the ionothermal synthesis of a meso-/macroporous hierarchical PIL and observed its enhanced CO₂ conversion, which is the first metal/solvent/additive-free recyclable catalyst for heterogeneous cycloaddition of CO₂ at atmospheric pressure and low temperatures. The combination of porous material support and crosslinked PILs has also been studied. Ding and Jiang [126] incorporated imidazolium-based PILs into a MOF material via in situ polymerization of encapsulated monomers, and such material showed significantly enhanced catalytic activity under mild conditions (CO₂ pressure of 1 bar or lower, ≤ 70 °C).
The latest studies reveal that PILs could act as pre-catalysts for polyNHCs [106,127-129]. The CO₂ molecule could be activated by nucleophilic attack of the NHC catalyst to form zwitterionic NHC carboxylate adduct, which is more environment-tolerant than native carbenes (Figure 3B). This new feature simplifies the practical implementation of carbene-related catalytic reactions. A possible mechanism for the reaction of CO₂ with epoxides catalyzed by a NHC adduct runs as follows (Figure 4b) [130-133]: the zwitterionic NHC-CO₂ adduct firstly nucleophilic attacks epoxide to generate a new zwitterion (i); then the formed alkoxy anion nucleophilically attacks the slightly positively charged carbonyl carbon atom to produce a cyclic carbonate by intramolecular cyclic elimination (ii); finally, the released NHC reacts with CO₂ to regenerate the NHC-CO₂ adduct (iii). The development of new PILs and/or NHC complexes and the optimization of reaction conditions remains challenging. Further insight is expected from theoretical studies, which are getting more and more sophisticated. Latest results take intermolecular interactions of the surrounding into account and can help to elucidate mechanisms.[134] Finally, PILs also served as precursors for nitrogen-doped porous carbons, which showed excellent performance in CO₂ capture and conversion [135-138].

5. Conclusion

In this article, chemical structures of PILs that recently entered the field are highlighted with their utilization in CO₂ capture and catalysis. In addition, the CO₂ sorption/desorption and catalysis of deprotonated imidazolium/triazolium-based PILs, i.e. poly(NHC)s and poly(NHC)-CO₂ adducts, were also introduced. As mentioned above, the relatively poor capacity of CO₂ and a high cost in comparison to commercial CO₂ absorbents limits the practical application of PILs. Hence, future challenges are as follows according to our opinion:

i) The development of new structures which are of general academic interest, but also of specific interest for improved efficiency in catalysis or adsorption;

ii) Strategies for up-scaling the synthetic methods to reduce the cost of PILs;

Last but not the least, synthetic chemists are encouraged to work closely with (chemical) engineers who can provide valuable advices on the introduction of PILs-based materials into the industrial sector. The unique combination of IL properties and polymer architectures that PILs show, with all consequences and innovative potential, do render them high interest for future studies.

Acknowledgement

This work is supported by Strategic Research Fund at Stockholm University.

References

1. Arakawa H, et al.: Chem. Rev. 2001, 101: 953-996.
2. Olah GA, Mathew T, Goeppert A, Prakash GKS: Top. Catal. 2018, 61: 522-529.
3. Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW: Chem. Rev. 2016, 116: 11840-11876.
4. Zeng N, Yoon J: Geophys. Res. Lett. 2009, 36: L17401.
5. Globally averaged marine surface annual mean expressed as a mole fraction in dry air. Ed dlugokencky and pieter tans, noaa/esrl (www.esrl.noaa.gov/gmd/ccgg/trends/).

6. CO₂ emissions from fuel combustion highlights (2017 edition); 978-92-64-27819-6 International Energy Agency: 2017.

7. Meylan FD, Moreau V, Erkman S: J. CO₂ Util. 2015, 12: 101-108.

8. Zulfiqar S, Sarwar M, Mecerreyes D: Polym. Chem. 2015, 6: 6435-6451.

9. Leung DYC, Caramanna G, Maroto-Valer MM: Renewable Sustainable Energy Rev. 2014, 39: 426-443.

10. Lee S, Filburn TP, Gray M, Park JW, Song HJ: Ind. Eng. Chem. Res. 2008, 47: 7419-7423.

11. Abanades JC, Rubin ES, Anthony EJ: Ind. Eng. Chem. Res. 2004, 43: 3462-3466.

12. Wang Y, Zhao L, Otto A, Robinius M, Stolten D: Energy Procedia 2017, 114: 650-665.

13. Mason JA, McDonald TM, Bae T-H, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR: J. Am. Chem. Soc. 2015, 137: 4787-4803.

14. Qi GG, Fu LL, Giannelis EP: Nat. Commun. 2014, 5: 5796.

15. Furukawa H, et al.: Science 2010, 329: 424-428.

16. Farha OK, Özgür Yazaydın A, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT: Nat. Chem. 2010, 2: 944.

17. Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI: Energy Environ. Sci. 2011, 4: 4239-4245.

18. Slater AG, Cooper AI: Science 2015, 348: 988.

19. Li H, Sadiq MM, Suzuki K, Ricco R, Doblin C, Hill AJ, Lim S, Falcaro P, Hill MR: Adv. Mater. 2016, 28: 1839-1844.

20. Xiang Z, Mercado R, Huck JM, Wang H, Guo Z, Wang W, Cao D, Haranczyk M, Smit B: J. Am. Chem. Soc. 2015, 137: 13301-13307.

21. Feng X, Ding X, Jiang D: Chem. Soc. Rev. 2012, 41: 6010-6022.

22. Zhu X, et al.: Adv. Mater. 2013, 25: 4152-4158.

23. Hwang C-C, Tour JJ, Kittrell C, Espinal L, Alemany LB, Tour JM: Nat. Commun. 2014, 5: 3961.

24. Wang Q-Q, Luo N, Wang X-D, Ao Y-F, Chen Y-F, Liu J-M, Su C-Y, Wang D-X, Wang M-X: J. Am. Chem. Soc. 2017, 139: 635-638.

25. Vericella JJ, et al.: Nat. Commun. 2015, 6: 6124.

26. Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM: Nat. Rev. Mater. 2017, 2: 16.

27. Bao Z, Yu L, Ren Q, Lu X, Deng S: J. Colloid Interface Sci. 2011, 353: 549-556.

28. Hedin N, Andersson L, Bergström L, Yan J: Appl. Energy 2013, 104: 418-433.

29. Wang L, Yang Y, Shen W, Kong X, Li P, Yu J, Rodrigues AE: Ind. Eng. Chem. Res. 2013, 52: 7947-7955.

30. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF: Nature 1999, 399: 28.

31. Mecerreyes D: Prog. Polym. Sci. 2011, 36: 1629-1648.

32. Zhu JM, He KG, Zhang H, Xin F: Adsorpt. Sci. Technol. 2012, 30: 35-41.

33. Yu G, Li Q, Li N, Man Z, Pu C, Asumana C, Chen X: Polym. Eng. Sci. 2014, 54:
59-63.
34. Bernard FL, Dalla Vecchia F, Rojas MF, Ligabue R, Vieira MO, Costa EM, Chaban VV, Einloft S: *J. Chem. Eng. Data* 2016, **61**: 1803-1810.
35. Tang JB, Sun WL, Tang HD, Radosz M, Shen YQ: *Macromolecules* 2005, **38**: 2037-2039.
36. Yuan JY, Mecerreyes D, Antonietti M: *Prog. Polym. Sci.* 2013, **38**: 1009-1036.
37. Supasitmongkol S, Styling P: *Energy Environ. Sci.* 2010, **3**: 1961-1972.
38. Shaplov AS, Morozova SM, Lozinskaya EI, Vlasov PS, Gouveia ASL, Tome LC, Marrucho IM, Vygodskii YS: *Polym. Chem.* 2016, **7**: 580-591.
39. Tome LC, Florindo C, Freire CSR, Rebelo LPN, Marrucho IM: *PCCP* 2014, **16**: 17172-17182.
40. Ramdin M, de Loos TW, Vlugt TJH: *Ind. Eng. Chem. Res.* 2012, **51**: 8149-8177.
41. Bates ED, Mayton RD, Ntai I, Davis JH: *J. Am. Chem. Soc.* 2002, **124**: 926-927.
42. Tome LC, Patinha DJS, Freire CSR, Rebelo LPN, Marrucho IM: *Rsc Advances* 2013, **3**: 12220-12229.
43. Li J, Jia DG, Guo ZJ, Liu YQ, Lyu YN, Zhou Y, Wang J: *Green Chem.* 2017, **19**: 2675-2686.
44. Nakabayashi K, Umeha A, Sato Y, Mori H: *Polymer* 2016, **96**: 81-93.
45. Shaplov AS, Marcilla R, Mecerreyes D: *Electrochim. Acta* 2015, **175**: 18-34.
46. Obadia MM, Drockenmuller E: *Chem. Commun.* 2016, **52**: 2433-2450.
47. Zhang WY, Kochovski Z, Schmidt BVK, Antonietti M, Yuan JY: *Polymer* 2016, **107**: 509-516.
48. Zhang WY, Yuan JY: *Macromol. Rapid Commun.* 2016, **37**: 1124-1129.
49. Zhang W, Kochovski Z, Lu Y, Schmidt BVKJ, Antonietti M, Yuan J: *ACS Nano* 2016, **10**: 7731-7737.
50. Thibault RJ, Takizawa K, Lowenheilm P, Helms B, Mynar JL, Fréchet JMJ, Hawker CJ: *J. Am. Chem. Soc.* 2006, **128**: 12084-12085.
51. Beghdadi S, Miladi IA, Addis D, Romdhane HB, Bernard J, Drockenmuller E: *Polym. Chem.* 2012, **3**: 1680-1692.
52. Mudraboyina BP, Obadia MM, Allaoua I, Sood R, Serghei A, Drockenmuller E: *Chem. Mater.* 2014, **26**: 1720-1726.
53. Mudraboyina BP, Obadia MM, Abdelhedi-Miladi I, Allaoua I, Drockenmuller E: *Eur. Polym. J.* 2015, **62**: 331-337.
54. Sood R, Obadia MM, Mudraboyina BP, Zhang B, Serghei A, Bernard J, Drockenmuller E: *Polymer* 2014, **55**: 3314-3319.
55. Obadia MM, Colliat-Dangus G, Debuigne A, Serghei A, Detrembleur C, Drockenmuller E: *Chem. Commun.* 2015, **51**: 3332-3335.
56. Sood R, Zhang B, Serghei A, Bernard J, Drockenmuller E: *Polym. Chem.* 2015, **6**: 3521-3528.
57. Jourdain A, Serghei A, Drockenmuller E: *ACS Macro Lett.* 2016, **5**: 1283-1286.*
58. Obadia MM, Mudraboyina BP, Serghei A, Phan TNT, Gigueles D, Drockenmuller E: *ACS Macro Lett.* 2014, **3**: 658-662.
59. Xue H, Gao HX, Shreeve JM: *J. Polym. Sci., Part A: Polym. Chem.* 2008, **46**: 2414-2421.
60. De La Hoz AT, Miller KM: Polymer 2015, 72: 1-9.
61. Zhang W, Willa C, Sun J-K, Guterman R, Taubert A, Yuan J: Polymer 2017, 124: 246-251.*
62. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK: J. Am. Chem. Soc. 2004, 126: 9142-9147.
63. Mota-Morales JD, Gutiérrez MC, Sanchez IC, Luna-Bárcenas G, del Monte F: Chem. Commun. 2011, 47: 5328-5330.
64. Mota-Morales JD, Gutiérrez MC, Ferrer ML, Sanchez IC, Elizalde-Peña EA, Pojman JA, Monte FD, Luna-Bárcenas G: J. Polym. Sci., Part A: Polym. Chem. 2013, 51: 1767-1773.
65. Serrano MC, Gutiérrez MC, Jiménez R, Ferrer ML, Monte Fd: Chem. Commun. 2012, 48: 579-581.
66. García-Argüelles S, Serrano MC, Gutiérrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F: Langmuir 2013, 29: 9525-9534.
67. Gutiérrez MC, Carriazo D, Ania CO, Parra JB, Ferrer ML, del Monte F: Energy Environ. Sci. 2011, 4: 3535-3544.
68. Patiño J, Gutiérrez MC, Carriazo D, Ania CO, Fierro JLG, Ferrer ML, del Monte F: J. Mater. Chem. A 2014, 2: 8719-8729.
69. Isik M, Ruiperez F, Sardon H, Gonzalez A, Zulfiqar S, Mecerreyes D: Macromol. Rapid Commun. 2016, 37: 1135-1142.*
70. Isik M, Zulfiqar S, Edhaim F, Ruiperez F, Rothenberger A, Mecerreyes D: ACS Sustainable Chem. Eng. 2016, 4: 7200-7208.*
71. Gao RL, Zhang MQ, Wang SW, Moore RB, Colby RH, Long TE: Macromol. Chem. Phys. 2013, 214: 1027-1036.
72. Zhang MS, Hemp ST, Zhang MQ, Allen MH, Carmean RN, Moore RB, Long TE: Polym. Chem. 2014, 5: 3795-3803.
73. Williams SR, Wang WQ, Winey KI, Long TE: Macromolecules 2008, 41: 9072-9079.
74. Morozova SM, Shaplov AS, Lozinskaya EI, Mecerreyes D, Sardon H, Zulfiqar S, Suarez-Garcia F, Vygodskii YS: Macromolecules 2017, 50: 2814-2824.*
75. Morozova SM, Shaplov AS, Lozinskaya EI, Vlasov PS, Sardon H, Mecerreyes D, Vygodskii YS: High Perform. Polym. 2017, 29: 691-703.
76. Wang SW, Liu WJ, Colby RH: Chem. Mater. 2011, 23: 1862-1873.
77. Magalhaes TO, Aquino AS, Dalla Vecchia F, Bernard FL, Seferin M, Menezes SC, Ligabue R, Einloft S: Rsc Advances 2014, 4: 18164-18170.
78. Rojas MF, Bernard FL, Aquino A, Borges J, Vecchia FD, Menezes S, Ligabue R, Einloft S: J. Mol. Catal. A: Chem. 2014, 392: 83-88.
79. Bernard FL, et al.: Polymer 2016, 102: 199-208.
80. Bernard FL, Polesso BB, Cobalchini FW, Chaban VV, do Nascimento JF, Dalla Vecchia F, Einloft S: Energy Fuels 2017, 31: 9840-9849.
81. Texter J, Kuriakose N, Shendre S, Lewis K, Venkatraman S, Gupta H: Chem. Commun. 2018, 54: 503-506.
82. Mori DI, Martin RM, Noble RD, Gin DL: Polymer 2017, 112: 435-446.
83. Grygiel K, Lee J-S, Sakaushi K, Antonietti M, Yuan J: ACS Macro Lett. 2015, 4:
84. Tejero R, Arbe A, Fernandez-Garcia M, Lopez D: *Macromolecules* 2015, **48**: 7180-7193.
85. Grygiel K, Zhang W, Detrembleur C, Yuan J: *Rsc Advances* 2016, **6**: 57117-57121.
86. Bivona LA, Quertinmont F, Beejapur HA, Giacalone F, Buaki-Sogo M, Gruttaduria M, Aprile C: *Adv. Synth. Catal.* 2015, **357**: 800-810.
87. Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y: *Chem. Commun.* 2005: 3325-3327.
88. Gin DL, Noble RD: *Science* 2011, **332**: 674-676.
89. Yampolskii Y, Alentiev A, Bondarenko G, Kostina Y, Heuchel M: *Ind. Eng. Chem. Res.* 2010, **49**: 12031-12037.
90. Yampolskii Y: *Macromolecules* 2012, **45**: 3298-3311.
91. Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD: *Macromolecules* 2017, **50**: 7809-7843.
92. Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA: *J. Am. Chem. Soc.* 1996, **118**: 1729-1736.
93. Tang J, Tang H, Sun W, Radosz M, Shen Y: *Polymer* 2005, **46**: 12460-12467.
94. Tang J, Tang H, Sun W, Radosz M, Shen Y: *J. Polym. Sci., Part A: Polym. Chem.* 2005, **43**: 5477-5489.
95. Tang J, Shen Y, Radosz M, Sun W: *Ind. Eng. Chem. Res.* 2009, **48**: 9113-9118.
96. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ: *J. Am. Chem. Soc.* 2004, **126**: 5300-5308.
97. Carlisle TK, Wiesenerau EF, Nicodemus GD, Gin DL, Noble RD: *Ind. Eng. Chem. Res.* 2013, **52**: 1023-1032.
98. Kammakakam I, Nam S, Kim T-H: *RSC Advances* 2016, **6**: 31083-31091.
99. Gye B, Kammakakam I, You H, Nam S, Kim T-H: *Sep. Purif. Technol.* 2017, **179**: 283-290.
100. Adzima BJ, Venna SR, Klara SS, He H, Zhong M, Luebke DR, Mauter MS, Matyjaszewski K, Nulwala HB: *J. Mater. Chem. A* 2014, **2**: 7967-7972.*
101. Morozova SM, Shaplov AS, Lozinskaya EI, Mecerreyes D, Sardon H, Zulfiqar S, Suárez-García F, Vygodskii YS: *Macromolecules* 2017, **50**: 2814-2824.*
102. Dani A, Crocellà V, Magistris C, Santoro V, Yuan J, Bordiga S: *J. Mater. Chem. A* 2017, **5**: 372-383.*
103. Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J: *J. Org. Chem.* 2009, **74**: 7935-7942.
104. Zhou H, Zhang W-Z, Wang Y-M, Qu J-P, Lu X-B: *Macromolecules* 2009, **42**: 5419-5421.
105. Yang L, Wang H: *ChemSusChem* 2014, **7**: 962-998.
106. Pinaud J, Vignolle J, Gnanou Y, Taton D: *Macromolecules* 2011, **44**: 1900-1908.
107. Xu D, Guo J, Yan F: *Prog. Polym. Sci.* 2018, **79**: 121-143.*
108. Wang J, Sng W, Yi G, Zhang Y: *Chem. Commun.* 2015, **51**: 12076-12079.
109. Wang J-Q, Dong K, Cheng W-G, Sun J, Zhang S-J: *Catal. Sci. Technol.* 2012, **2**: 1480-1484.
110. North M, Pasquale R, Young C: *Green Chem.* 2010, **12**: 1514-1539.
111. Caló V, Nacci A, Monopoli A, Fanizzi A: *Org. Lett.* 2002, **4**: 2561-2563.
112. Chaugule AA, Tamboli AH, Kim H: *Fuel* 2017, **200**: 316-332.
113. Peng J, Deng Y: *New J. Chem.* 2001, **25**: 639-641.
114. Wang J-Q, Sun J, Cheng W-G, Dong K, Zhang X-P, Zhang S-J: *PCCP* 2012, **14**: 11021-11026.
115. Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE: *ChemSusChem* 2015, **8**: 2436-2454.
116. Whiteoak CJ, Nova A, Maseras F, Kleij AW: *ChemSusChem* 2012, **5**: 2032-2038.
117. Whiteoak CJ, Henseler AH, Ayats C, Kleij AW, Pericàs MA: *Green Chem.* 2014, **16**: 1552-1559.
118. Anthofer MH, Wilhelm ME, Cokoja M, Drees M, Herrmann WA, Kühn FE: *ChemCatChem* 2015, **7**: 9-98.
119. Xie Y, Zhang Z, Jiang T, He J, Han B, Wu T, Ding K: *Angew. Chem. Int. Ed.* 2007, **46**: 7255-7258.
120. Zhao Q, Zhang P, Antonietti M, Yuan J: *J. Am. Chem. Soc.* 2012, **134**: 11852-11855.
121. Wilke A, Yuan J, Antonietti M, Weber J: *ACS Macro Lett.* 2012, **1**: 1028-1031.
122. Liu F, Wang L, Sun Q, Zhu L, Meng X, Xiao F-S: *J. Am. Chem. Soc.* 2012, **134**: 16948-16950.
123. Wang X, Li J, Chen G, Guo Z, Zhou Y, Wang J: *ChemCatChem* 2015, **7**: 993-1003.
124. Qin L, Wang B, Zhang Y, Chen L, Gao G: *Chem. Commun.* 2017, **53**: 3785-3788.
125. Wang X, Zhou Y, Guo Z, Chen G, Li J, Shi Y, Liu Y, Wang J: *Chem. Sci.* 2015, **6**: 6916-6924.*
126. Ding M, Jiang H-L: *ACS Catal.* 2018, **8**: 3194-3201.*
127. Zhang Y, Zhao L, Patra PK, Hu D, Ying JY: *Nano Today* 2009, **4**: 13-20.
128. Kuzmicz D, Coupillaud P, Men Y, Vignolle J, Vendraminneto G, Ambrogi M, Taton D, Yuan J: *Polymer* 2014, **55**: 3423-3430.
129. Soll S, Zhao Q, Weber J, Yuan J: *Chem. Mater.* 2013, **25**: 3003-3010.
130. Paddock RL, Nguyen ST: *J. Am. Chem. Soc.* 2001, **123**: 11498-11499.
131. Jeong W, Hedrick JL, Waymouth RM: *J. Am. Chem. Soc.* 2007, **129**: 8414-8415.
132. Shen Y-M, Duan W-L, Shi M: *Adv. Synth. Catal.* 2003, **345**: 337-340.
133. Yoichi T, Masahiko Y, Isao S, Yasuo S: *Bull. Chem. Soc. Jpn.* 1989, **62**: 474-478.
134. Yang H, Zheng D, Zhang J, Chen K, Li J, Wang L, Zhang J, He H, Zhang S: *Ind. Eng. Chem. Res.* 2018, **57**: 7121-7129.
135. Gong J, Antonietti M, Yuan J: *Angew. Chem.* 2017, **129**: 7665-7671.*
136. Gong J, Lin H, Antonietti M, Yuan J: *J. Mater. Chem. A* 2016, **4**: 7313-7321.
137. Wang H, et al.: *Angew. Chem.* 2017, **129**: 7955-7960.
138. Gong J, Lin H, Grygiel K, Yuan J: *Applied Materials Today* 2017, **7**: 159-168.*