DATA NOTE

The draft genomes of five agriculturally important African orphan crops

Yue Chang1,2,†, Huan Liu1,2,†, Min Liu1,2,3,†, Xuezhu Liao1,2,3, Sunil Kumar Sahu1,2,3,†, Yuan Fu1,2, Bo Song1,2, Shifeng Cheng1,2, Robert Kariba4, Samuel Muthemba4, Prasad S. Hendre4, Sean Mayes5,6,7, Wai Kuan Ho6,7, Anna E.J. Yssel11, Presidor Kendabie5, Sibo Wang1,2, Linzhou Li1,2, Alice Muchugi4, Ramni Jamnadass4, Haorong Lu1,2, Shufeng Peng1,2, Allen Van Deynze4,8, Anthony Simons4, Howard Yana-Shapiro4,8, Yves Van de Peer9,10,11, Xun Xu1,2, Huanming Yang1,2, Jian Wang1,2 and Xin Liu1,2,3,12,*

1BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China, 2China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China, 3State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China, 4African Orphan Crops Consortium, World Agroforestry Centre (ICRAF), United Nations Avenue, Nairobi 00100, Kenya, 5Plant and Crop Sciences, Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK, 6Biosciences, University of Nottingham Malaysia Campus, Jalan Broga 43500 Semenyih, Selangor, Malaysia, 7Crops For the Future, Jalan Broga, 43500 Semenyih, Selangor, Malaysia, 8University of California, 1 Shields Ave, Davis, CA 95616, USA, 9Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium, 10Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium, 11Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa and 12BGI-Fuyang, BGI-Shenzhen, Fuyang 236009, China

*Correspondence address. Xin Liu, BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China. Tel: +86 18025460332; E-mail: liuxin@genomics.cn. http://orcid.org/0000-0003-3256-2940
†Equal contribution.

Abstract

Background: The expanding world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries currently face a serious burden of malnutrition, especially in Africa and south and southeast Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize, and rice provide the majority of calories. Therefore, to diversify and stabilize the global food supply, enhance agricultural productivity, and tackle malnutrition, greater use of neglected or underutilized local plants (so-called orphan crops, but also including a few...
plants of special significance to agriculture, agroforestry, and nutrition) could be a partial solution. **Results:** Here, we present draft genome information for five agriculturally, biologically, medicinally, and economically important underutilized plants native to Africa: *Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea,* and *Moringa oleifera.* Assembled genomes range in size from 217 to 654 Mb. In *V. subterranea,* *L. purpureus,* *F. albida,* *S. birrea,* and *M. oleifera,* we have predicted 31,707, 20,946, 28,979, 18,937, and 18,451 protein-coding genes, respectively. By further analyzing the expansion and contraction of selected gene families, we have characterized root nodule symbiosis genes, transcription factors, and starch biosynthesis-related genes in these genomes. **Conclusions:** These genome data will be useful to identify and characterize agronomically important genes and understand their modes of action, enabling genomics-based, evolutionary studies, and breeding strategies to design faster, more focused, and predictable crop improvement programs.

Keywords: orphan crops; food security; whole-genome sequencing; transcriptome; root nodule symbiosis; transcription factor

Background

The world’s population is expected to reach 9.8 billion by 2050. Ensuring a sustainable food supply to meet the energy and nutritional needs of the expanding population is one of the greatest global challenges [1]. Approximately 88% of countries currently face a serious burden of malnutrition [2]. To overcome this burgeoning food and nutritional challenge, the use of potential crop plants (both model and non-model) appears to be a better choice. Throughout history, humans have relied on an astonishing variety of plants for energy and nutrition; from 390,000 known plant species, around 5,000–7,000 have been cultivated or collected for food [1, 2]. However, in the present century, fewer than 150 species are commercially cultivated for food purposes, and just 30 species provide 95% of human food energy needs. More than half of the protein and calories we obtain from plants are acquired from just three “megacrops”: rice, wheat, and maize [3]. This narrow range of dietary diversity is partly a result of decades of intensive research focused on just a few species, which has successfully led to the production of high-yielding varieties of these major crops, usually cultivated under high-input agricultural systems. However, in some regions, we are now witnessing a drastic decrease in their yields, and the question has been raised as to whether rice and wheat (in particular) are currently making enough breeding progress to meet the challenge. All three megacrops are high-energy carbohydrate sources but are limited in protein content. Even if these crops can meet the energy requirement of the increasing world population, they cannot meet the nutritional requirement for active health by themselves [2].

To diversify the global food supply, enhance agricultural productivity, and tackle malnutrition, it is necessary to diversify and focus more on crop plants that are utilized in rural societies as a local source of nutrition and sustenance but have so far received little attention for crop improvement. These landraces (Traditional plant varieties) tend to be locally adapted and can often provide a rich source of nutrition, yet they have largely been ignored by modern interventions. The goal of the African Orphan Crops Consortium [4], an international public–private partnership, is to sequence, assemble, and annotate the genomes of 101 plants that contribute to traditional African food supplies by 2020. These neglected or orphan plants have been seldom studied by scientists but are of major importance in many African countries. They are usually grown by smallholder farmers, either for consumption or local sale, and are a major food source for 600 million rural Africans [5, 6]. In this study, we sequenced and assembled draft genomes of five African orphan plant species (Fig. 1), which are highly important to augment food and nutritional security in Africa.

Vigna subterranea (Bambara groundnut; National Center for Biotechnology Information [NCBI]: txid115715), belonging to the Fabaceae family, is a leguminous plant species that originated in West Africa and is cultivated in sub-Saharan areas, particularly Nigeria [7, 8]. With good nitrogen-fixing ability and drought tolerance, on average the seeds contain 63% carbohydrate, 19% protein, and 6.5% fat, thereby making bambara groundnut a complete food. Approximately 165,000 tons of this species are produced in Africa each year, but yields are low because efforts to improve Bambara have been neglected for many years [9]. The genotypes of mung bean and adzuki bean, which also belong to the *Vigna* genus, have been published [10, 11].

Moringa oleifera (Moring; NCBI: txid3735) is a highly nutritious, fast-growing, and drought-tolerant tree that is indigenous to northern India, Pakistan, and Nepal [12]. Presently, this species is ubiquitously distributed throughout tropical and sub-tropical countries, and in particular, covers the major agro-ecological region in Nigeria. The leaves are rich in protein, minerals, beta-carotene, and antioxidant compounds, which are generally used as nutritional supplements and in traditional medicine. The seeds are used to extract oil, and seed powder can be used for water purification [13, 14]. There are varying reports of *Moringa* production. India is the largest producer of *Moringa* with an annual production of 1.1–1.3 million tons of tender fruits from an area of 38,000 ha. In Limpopo province, *Moringa* is cultivated in relatively small areas (0.25–1 hectares), with seed yields of 50–100 kg/ha [15]. Prior to this study, a draft genome of *M. oleifera* from Yunnan (China) was reported [16], which estimated a similar genome assembly size and gene numbers to our version.

Lablab purpureus (Dolichos bean or hyacinth bean; NCBI: txid35936), a member of the Fabaceae family, is one of the most ancient (>3,500 years) domesticated and multipurpose legume species, which is used as an intercrop in livestock systems. Although it has large agromorphological diversity in south Asia, its origin appears to be African [17]. It is rich in protein, has good nitrogen-fixing ability, and is highly adaptable to diverse environmental conditions [18]. Limited production data are available, suggesting that yields are low. In southwestern parts of Bangladesh, Lablab is reported to have a total production area of approximately 48,000 hectares [17]. In other areas, it has a similarly relatively low production area, e.g., Kenya, approximately 10,000 hectares [19] and Karnataka, India, 79,000 hectares [20].

Faidherbia albida (apple-ring acacia; NCBI: txid138055) is the only tree species in the *Faidherbia* genus (Fabaceae). Its distinctive key features, such as reverse phenology (leaves grow in the long, dry season and shed during the rainy season) and nitrogen-fixing ability, mean that *F. albida* has been planted as a key agroforestry species in traditional African farming systems for hun-
dreds of years [21]. It originated in the Sahara or eastern and southern Africa, then spread across semi-arid tropical Africa, and later to the Middle East and Arabia. Estimates suggest that during the last decade, the tree was cultivated over an area of 300,000 hectares [22]. Average pod production ranges from 6–135 kg per tree per year in the Sudanian zone. In Mana Pools, Zimbabwe, two trees averaged 161 kg per tree in one year [23]. This yield per unit area is about 2,000–3,000 kg/ha, assuming a density of ∼20 mature trees per hectare [24].

Sclerocarya birrea (Marula; NCBI: txid289766) belongs to the Anacardiaceae family and is a traditional fruit tree found in southern Africa, mostly south of the Zambezi river [25]. Fruits are eaten fresh or are used to produce juices and wine, which has substantial socioeconomic and commercialization importance. The seeds of the fruits are rich in nutrition and oil content (56%) and are often consumed raw. It is estimated that the total value of the commercial marula trade is worth USD $160,000 per year to rural communities [26], with values per tree ranging from 315 kg (17,500 fruits) to 1,643 kg (91,300 fruits) [26, 27]. A survey in north-central Namibia showed that, on average, there are 5.33 farms per household, with a total of 13,278 fruiting trees.

Considering the limited systematic efforts to improve the breeding of these understudied tropical crops to date, making their genomic data available will provide much-needed impetus to conduct basic and applied translational research to improve and develop them as important, sustainably cultivated food crops. These efforts will be vital for directly or indirectly improving nutrition for the increasing urban populations in the regions where these crops are grown.

Data Description

Sample collection, library construction, and sequencing

Genomic DNA was extracted either from a tree (F. albida, M. oleifera) or from nursery plantlets (V. subterranea, L. purpureus, S. birrea) grown at the World AgroForestry Center campus in Kenya using a modified Cetyl TrimethylAmmonium Bromide (CTAB) method [28]. Extracted DNA was used to construct paired-end libraries (insert size ranging from 170 to 800 bp) and mate-pair libraries (insert size >2 kb) following Illumina (San Diego, CA) protocols. Subsequently, sequencing was performed on a HiSeq 2000 platform (Illumina) using a shotgun sequencing strategy to generate more than 100 Gb raw data for each species (see Additional file 1: Table S1). Data were filtered using SOAPfilter (v2.2) [29] as follows: (1) small insert size reads were discarded; (2) Polymerase Chain Reaction (PCR) duplicates and adapter contamination were discarded; (3) reads with ≥30% low-quality bases (quality score ≤15) were removed; (4) bases of low quality were trimmed from each end of the reads; and (5) reads with ≥10% uncalled (“N”) bases were removed. At the end, more than 100 × high-quality reads were obtained for each species according to their estimated genome size (see Additional file 1: Table S1).

RNA for transcriptome sequencing was extracted from different tissues of V. subterranea, L. purpureus, F. albida, and M. oleifera. The RNA was extracted using the PureLink RNA Mini Kit (Thermo Fisher Scientific, Carlsbad, CA) according to the manufacturer’s instructions. For each sample, RNA libraries were constructed by following the TruSeq RNA Sample Preparation Kit (Illumina) protocols.
Table 1: Statistical analysis of the final de novo genome assembly of Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera

Parameter	V. subterranea	L. purpureus	F. albida	S. birrea	M. oleifera									
	Contig	Scaffold												
Length (bp)														
N90	3,804	75,271	785	860	8,254	95,167	3,661	21,833	6,676	57,837				
N80	7,872	197,296	8,009	61,348	16,321	251,730	7,649	82,385	16,503	241,828				
N70	11,464	325,826	16,144	205,392	24,165	380,587	11,885	155,416	25,754	441,152				
N60	15,122	474,616	24,010	359,168	32,440	534,880	16,393	243,236	35,081	644,014				
N50	19,154	640,666	32,223	621,373	42,029	692,039	21,349	335,449	45,268	957,246				
N40	23,828	865,081	42,690	950,808	53,479	881,230	26,914	485,585	58,406	1,446,587				
N30	29,382	1,133,817	54,401	1,489,002	69,167	1,197,388	33,914	705,409	74,710	1,878,891				
N20	36,928	1,503,436	70,790	1,971,744	92,147	1,501,241	43,984	1,098,843	96,626	2,565,629				
N10	49,695	2,049,645	95,643	2,606,483	139,388	1,925,256	62,875	2,089,533	136,952	3,296,678				
Number														
N90	29,245	1,087	26,272	9,409	16,834	1,132	17,585	1,537	5,524	366				
N80	20,188	664	9,869	715	11,420	727	11,678	787	3,574	191				
N70	14,829	453	6,576	366	8,198	514	8,313	499	2,542	125				
N60	10,943	315	4,630	222	5,898	370	6,001	332	1,833	84				
N50	7,932	220	3,244	138	4,151	263	4,777	214	1,295	56				
N40	5,532	147	2,204	86	2,791	179	2,929	131	876	37				
N30	3,590	93	1,403	52	1,728	114	1,857	74	553	24				
N20	2,024	52	776	29	912	64	1,012	36	300	13				
N10	806	22	306	12	326	26	387	12	112	6				
Maximum length	148,612	3,684,321	240,194	5,699,750	529,842	4,746,824	227,874	5,850,796	449,426	4,637,711				
Total length	512,516	535,052,523	385,303,786	395,472,305	644,456,383	653,726,905	322,977,033	330,983,508	213,739,255	216,759,177				
Total number ≥100 bp	104,575	65,586	135,039	118,976	75,572	51,470	64,158	40,280	29,972	22,329				
Total number ≥2,000 bp	35,465	2,920	15,984	4,265	26,459	5,758	22,172	4,852	8,300	2,166				
N content (%)	4.21	2.57	1.42	2.42	1.39	1.39	1.39	1.39	1.39	1.39				
lumina) manual and were then sequenced on the Illumina HiSeq 2500 platform (paired-end, 100-bp reads), generating ~36 Gb of sequence data for each species. Data were then filtered using a similar method to that used in DNA filtration, with a slight modification: (1) reads with >10% low-quality bases (quality score <15) were removed and (2) reads with >5% uncalled (“N”) bases were removed (see Additional file 1: Table S2). All the transcriptome data from different tissues were compiled, and the combined version was used to check the completeness of the whole-genome sequence assembly.

Evaluation of genome size

Clean reads of the paired-end libraries were used to estimate genome sizes (insert size 250 bp and 500 bp). k-mer frequency distribution analysis was performed using the following formula:

\[
\text{Gen} = \text{Num'} (\text{Len} - 17 + 1)/\text{K}_{\text{Dep}}
\]

where Num represents the read number of reads used, Len represents the read length, K represents the k-mer length, and K_{Dep} refers to where the main peak is located in the distribution curve [30]. k-mer distributions of *F. albida*, *S. birrea*, and *M. oleifera* showed two distinct peaks (see Additional file 1: Fig. S1), where the second peak was confirmed as the main one for each of the species. The genome sizes of *V. subterranea*, *L. purpureus*, *F. albida*, *S. birrea*, and *M. oleifera* were predicted as 550, 423, 661, 356, and 278 Mb, respectively (see Additional file 1: Table S3).

De novo genome assembly

For de novo genome assembly, SOAPdenovo2 (SOAPdenovo2, RRID:SCR_014986) [29] was used for constructing contigs, followed by scaffolding, and finally gap filling. To build contigs, libraries ranging from 170 to 800 bp were used to construct de Bruijn graphs with the parameters “pregraph -d 2 -K 55,” and contigs were subsequently filtered with the parameters “contig -g -D 1” to delete links with low coverage. In the scaffolding step, paired-end and mate-pair information was used to order the contigs with parameters “scaffold -F” and “map -g -k 55.” Finally, to fill the gaps within scaffolds, GapCloser version 1.12 (GapCloser, RRID:SCR_015026) [29] was used with the parameters “-l 150 -t 32” using the pair-end libraries. Finally, total assembled lengths of 535.05, 395.47, 653.73, 330.98, and 216.76 Mb were obtained for *V. subterranea*, *L. purpureus*, *F. albida*, *S. birrea*, and *M. oleifera* genomes, respectively (Table 1). This accounted for approximately 97.3%, 93.5%, 98.9%, 92.9%, and 77.9% of their respective estimated genome sizes.

Genome evaluation

Genome assembly completeness was assessed with Benchmarking Universal Single-Copy Orthologs (BUSCO) version 3.0.1 (BUSCO, RRID:SCR_015008) [31]. From the 1,440 core embryophyta genes, 1,326 (92.1%), 1,341 (93.2%), 1,315 (91.3%), 1,384 (96.1%), and 1,297 (90.1%) were identified in the *V. subterranea*, *L. purpureus*, *F. albida*, *S. birrea*, and *M. oleifera* assemblies, respectively, with 1,244 (86.4%), 1,258 (87.4%), 1,231 (85.5%), 1,352 (93.9%), and 1,278 (88.8%) genes, respectively, being complete (Table 2).

To evaluate the completeness of genes in the assemblies, unigenes were generated from the transcript data of each species using Bridger software with the parameters “–kmer_length 25 –min_kmer_coverage 2” [32] and then aligned to the corresponding assembly using Basic Local Alignment Search Tool (BLAST)-like alignment tool (BLAT, RRID:SCR_011919) [33]. The results indicated that each of the assemblies covered about 90% of the expressed unigenes, suggesting that the assembled genomes contained a high percentage of expressed genes (Table 3).

To confirm the accuracy of the assemblies, some of the paired-end libraries were mapped to the genome assemblies, and the sequencing coverage was calculated using SOAPaligner, version 2.21 (SOAPaligner/soap2, RRID:SCR_005503) [34]. Sequencing coverage showed that >99% of the bases had a sequencing depth of more than 10× and confirmed the accuracy at the base level (see Additional file 1: Fig. S2). GC content and average depth were also calculated with 10 kb non-overlapping windows. The distribution of GC content indicated a relatively pure single genome without contamination or GC bias (see Additional file 1: Fig. S3). The GC content of each sequenced genome was also compared with that of a related species. As expected, close peak positions showed that the related species were similar in GC content (see Additional file 1: Fig. S4).

Repeat annotation

Repetitive sequences were identified using RepeatMasker (version 4.0.5) [35], with a combined Repbase and a custom library obtained through careful self-training. The custom library comprised three parts: MITEs (miniature inverted repeat transposable elements), LTRs (long terminal repeats), and an extensive library that was constructed as follows. First, the annotated MITE library was created using MITE-hunter [36] with default parameters. Then, a library of LTR elements with lengths of 1.5–25 kb and two libraries of terminal repeats ranging from 100 to 6,000 bp with ≥85% similarity were constructed using LTRharvest [37] integrated in Genometales (version 1.5.8) [38] with parameters “–minlenlitr 100, –maxlenlitr 6000, –mindistlitr 1500, –maxdistlitr 25000, –mintstd 5, –maxtstd 5, –similar 90, –vic 10.” Subsequently,
we used several strategies to filter the candidates, i.e., (1) presence of intact poly purine tracts or primer binding sites [39] using the eukaryotic tRNA library [40]; (2) removal of contamination from local gene clusters and tandem local repeats by inspecting 50 bases of the upstream and downstream LTR flanks using multiple sequence comparison by log-expectation (MUSCLE, RRID:SCR_011812) [41] for a minimum of 60% identity; and (3) removal of nested LTR candidates from other types of the elements. Exemplars for the LTR library were extracted from the filtered candidates using a cutoff of 80% identity in 90% of the sequence. Regions of the genome annotated as LTRs and MITEs were masked and then put into RepeatModeler (version 1-0-8; RepeatModeler, RRID:SCR_010835) to predict other repetitive sequences for the genome, as summarized in Table 5 and Additional file 1: Fig. S5. BUSCO evaluation showed that at least 85% of 1,440 core genes could be identified across all the species, suggesting an acceptable quality of gene annotation for the five sequenced genomes (see Additional file 1: Table S4).

Gene prediction

Repetitive regions of the genome were masked before gene prediction. Structures of protein-coding genes were predicted using the MAKER-P pipeline (version 2.31) [42] based on RNA, homologous, and de novo prediction evidence. For RNA evidence, the clean transcriptome reads were assembled into inchworms using Trinity (version 2.0.6) [43] and then provided to MAKER-P as expressed sequence tag evidence. For homologous comparison, protein sequences from the model plant Arabidopsis thaliana and related species of each sequenced species were downloaded and provided as protein evidence. Related species used for homologous evidence were Arachis duranensis, A. ipaensis, Glycine max, Lotus japonicus, Medicago truncatula, and Vigna angularis for V. subterranea; A. duranensis, Cajanus cajan, G. max, M. truncatula, Phaseolus vulgaris, and V. angularis for L. purpureus; C. cajan, V. angularis, L. japonicus, P. vulgaris, M. truncatula, and G. max for F. albida; Actinidia chinensis and Musa acuminata for S. birrea; and G. max, Oryza sativa, Populus trichocarpa, and Sorghum bicolor for M. oleifera.

For de novo prediction evidence, a series of training sets was made to optimize different ab initio gene predictors. Initially, a set of transcripts was generated by a genome-guided approach using Trinity with the parameters “–full_cleanup, –jaccard_clip, –genome_guided_max_intron 10000, –min_contig_length 200.” The transcripts were then mapped back to the genome using PASA (version 2.0.2) [44], and a set of gene models with real gene characteristics (e.g., size and number of exons/introns per gene, features of splicing sites) was generated. Complete gene models were picked for training Augustus [45]. Genemark-ES (version 4.21) [46] was self-trained with default parameters. The first round of MAKER-P was run based on the evidence as above, with default parameters except “est2genome” and “protein2genome” being set to “1,” yielding only RNA and protein-supported gene models. SNAP [47] was then trained with these gene models. Default parameters were used to run the second and final rounds of MAKER-P, producing the final gene models.

The number of protein-coding genes identified in each species was 31,707 in V. subterranea, 20,946 in L. purpureus, 28,979 in F. albida, 18,937 in S. birrea, and 18,451 in M. oleifera. Compared to the other sequenced species in the same genus [10, 11], V. subterranea has more genes than mung bean (22,427) but fewer than adzuki bean (34,183). Various gene structure parameters were compared to the related species of each sequenced genome, as summarized in Table 5 and Additional file 1: Fig. S5. BUSCO evaluation showed that at least 85% of 1,440 core genes could be identified across all the species, suggesting an acceptable quality of gene annotation for the five sequenced genomes (see Additional file 1: Table S4).

Non-coding RNA genes in the sequenced genomes were also annotated. Using BLAST, ribosomal RNA (rRNA) genes were searched against the A. thaliana rRNA database or by searching for microRNAs (miRNA) and small nuclear RNA (snRNA) against the Rfam database (Rfam, RRID:SCR_004276; release 12.0) [48]. tRNAscan-SE (tRNAscan-SE, RRID:SCR_010835) was also used to scan for tRNAs [49]. The results are summarized in Table 6.
Functional annotation of protein-coding genes

Functional annotation of protein-coding genes was based on sequence similarity and domain conservation by aligning predicted amino acid sequences to public databases. Protein-coding genes were first searched against protein sequence databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG, RRID:SCR_012773) [50], the National Center for Biotechnology Information (NCBI) non-redundant (NR) and the Clusters of Orthologous Groups (COGs) databases [51], SwissProt, and TrEMBL [52], for best matches using BLASTP with an E-value cutoff of 1e-5. Then, InterProScan 55.0 (InterProScan, RRID:SCR_005829) [53] was used to identify domains and motifs based on Pfam (Pfam, RRID:SCR_004726) [54], SMART (SMART, RRID:SCR_005026) [55], PANTHER (PANTHER, RRID:SCR_004869) [56], PRINTS (PRINTS, RRID:SCR_003412) [57], and ProDom (ProDom, RRID:SCR_006969) [58]. In total, 98.0%, 98.2%, 93.6%, 98.1%, and 98.8% of genes in V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera, respectively, were functionally annotated. Of the unannotated genes, 400, 305, 1,514, 293, and 172 were specific to V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera, respectively (Table 7).

Gene family construction

Protein and nucleotide sequences from the five sequenced species and nine other species (A. thaliana, Carica papaya, Citrus sinensis, G. max, M. truncatula, O. sativa, P. vulgaris, S. bicolor, and Theobroma cacao) were retrieved to construct gene families using OrthoMCL software [59] based on an all-versus-all BLASTP alignment with an E-value cutoff of 1e-5. A total of 609, 104, 499, 205, and 150 gene families were found specific to V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera, respectively (see Additional file 1: Table S5).

Furthermore, the 10,103 gene families of V. subterranea, L. purpureus, F. albida, M. truncatula, and G. max were clustered (Fig. 2A). There were 1,105 orthologous families shared by the four Papilionoideae species, while 808 gene families containing 1,966 genes were specific to F. albida, 281 gene families containing 538 genes were specific to L. purpureus, and 789 gene families containing 3,118 genes were specific to V. subterranea.

Moreover, 8,184 gene families of S. birrea, M. oleifera, C. papaya, C. sinensis, and T. cacao were clustered (Fig. 2B), of which 365 gene families containing 798 genes were specific to M. oleifera and 362 gene families containing 796 genes were specific to S. birrea. KEGG pathway enrichment analysis of paralog genes was also conducted (Additional file 1: Tables S6, S7). Functional annotation revealed that in V. subterranea, these paralogs corresponded mainly with carbon fixation, zeatin biosynthesis, and glyoxylate and dicarboxylate metabolism. However, for L. purpureus, the fatty acid elongation pathway was enriched, while in F. albida, pathways corresponding to plant–pathogen interactions and cyanoamino acid metabolism were enriched. In S. birrea, enrichment occurred in plant–pathogen interaction, starch and sucrose metabolism, and fatty acid biosynthesis pathways. In M. oleifera, pathways related to fatty acid and diterpenoid biosynthesis and with cyanoamino acid metabolism were enriched. Using Gene Ontology (GO) analysis, paralog genes in V. subterranea, L. purpureus, F. albida, M. oleifera, and S. birrea were enriched in ion binding, metabolic processes, disease resistance, cell components, and biological processes, respectively.
Phylogenetic analysis and estimation of divergence time

We identified 141 single-copy genes in the 14 species used for the above analysis and subsequently used them to build a phylogenetic tree. Coding DNA sequence alignments of each single-copy family were generated following protein sequence alignment with MUSCLE (MUSCLE, RRID:SCR_011812) [41]. The aligned coding DNA sequences of each species were then concatenated to a supergene sequence. The phylogenetic tree was constructed with PhyML-3.0 (PhyML, RRID:SCR_014629) [61], with the HKY85+gamma substitution model on extracted four-fold degenerate sites. Divergence time was calculated using the Bayesian relaxed molecular clock method with MCMCTREE in PAML (PAML, RRID:SCR_014932) [62], based on published calibration times (39–59 Ma between M. truncatula and the main branch of legumes, 15–30 Ma between G. max and P. vulgaris, and 83–90 Ma between T. cacao and A. thaliana) [11, 63].

Based on the tree constructed using single-copy-family genes, the divergence time between F. albida and Papilionoideae was predicted to be 79.1 (70.0–87.0) Ma. This is a little different from a previous prediction of the origin of legumes based on two gene markers (matk and rbcL) [64]. The divergence time between M. oleifera and C. papaya was predicted to be 65.4 (59.2–71.1) Ma and 67.9 (53.6–77.3) Ma between S. birrea and C. sinensis (Fig. 1).

Subsequently, to evaluate gene gain and loss, CAFE (CAFE, RR ID:SCR_005983) [65] was employed to estimate the universal gene birth and death rate, λ, under a random birth and death model using the maximum likelihood method. Results for each branch of the phylogenetic tree were estimated and are represented in Fig. 1.

GO enrichment analysis was also conducted on gene pathways in expanded families in the lineage of each sequenced species (Additional file 1: Tables S8, S9). Terms related to energy and nutrient metabolism were commonly distributed in the enrichment output of V. subterranea, L. purpureus, F. albida, M. oleifera, S. birrea, and C. sinensis, e.g., transport or regulation, e.g., signaling receptor activity, phosphatase regulator activity, and regulation of response to stimulus. Furthermore, the regulatory factors GLABRA3, ENHANCER OF GLABRA 3, AUX1, LAX2, and LAX3 [66–68], which are related to the formation of root hairs and lateral roots, were identified in these families. As a traditional agroforestry tree in Africa, F. albida was previously reported to have a root system architecture that displays wide variation under different environmental factors (soil depth, nutrient amount, or water reservoir) [69]. This suggests its adaptability to the complex environment, which requires signal transferring and regulation. The results obtained from the GO enrichment analysis were consistent with the biological characteristics of F. albida.

Mining of transcription factors

Transcription factors (TFs) in the sequenced species were identified using protein sequences of plant TfTs from the plant Tf database [70] by BLASTP search with an e-value cutoff of 10e–10, a minimum identity of 40%, and a minimum query coverage of 50%. About 59 TF families were revealed across the genes in M. truncatula, G. max, P. vulgaris, C. papaya, C. sinensis, and the five sequenced species (see Additional file 2: Table S14). Among these TFs, bHLH, NAC, ERF, MYB-related, C2H2, WRKY, bZIP, FAR1, C3H, B3, G2-like, Trihelix, LBD, GRAS, M-type MADS, HD-ZIP, MIKC_MADS, HSF, and GATA were found in abundance (Fig. 3).

Identification of protein, starch, and fatty acid biosynthesis-related genes

Using the amino acid, starch, and fatty acid synthesis genes in soybean [11, 71] as bait, we performed an ortholog search in V. subterranea, L. purpureus, F. albida, S. birrea, M. oleifera, G. max, Triticum aestivum, Zea mays, and O. sativa (Additional file 1: Tables S10–S13). Vigna subterranea is a good source of resistant starch (RS) [72], which has the potential to protect against diabetes and reduce the incidence of diarrhea and other inflammatory bowel diseases [73]. High amylose levels can contribute to RS. Previously, studies have shown that deficiency in SSIIa (soluble starch synthase gene) decreases amylpectin biosynthesis and increases amylose biosynthesis by a granule-bound starch synthase (GBSS) encoded by the Wx gene in O. sativa indica [74]. Downregulation of the soluble starch synthase SSII and of SBE leads to higher levels of RS in barley [75]. Interestingly, in V. subterranea, two out of four GBSSs underwent expansion, suggesting their vital role in controlling starch synthesis (Fig. 4) at the transcriptional and post-transcriptional level. No expansion in GBSS was observed in the genomes of L. purpureus, F. albida, S. birrea, or M. oleifera; in V. subterranea, soluble starch synthase was not

Table 5: Gene structure parameters of Vigna subterranea, Lablab purpureus, Faidherbia albida, Medicago truncatula, Glycine max, Sclerocarya birrea, Moringa oleifera, Carica papaya, Theobroma cacao, and Citrus sinensis

Species	Protein-coding gene number	Mean gene length (bp)	Mean coding sequence length (bp)	Mean exons per gene	Mean exon length (bp)	Mean intron length (bp)
V. subterranea	31,707	3,287	1,163	5	222	501
L. purpureus	20,946	3,696	1,276	5	239	557
F. albida	28,979	3,396	1,207	5	226	504
M. truncatula	50,358	2,334	986	4	243	440
G. max	55,137	3,144	1,169	5	232	488
S. birrea	18,937	3,561	1,343	6	239	479
M. oleifera	18,451	3,308	1,238	5	232	478
C. papaya	24,107	2,531	962	4	223	473
T. cacao	41,951	3,684	1,323	6	223	479
C. sinensis	35,182	3,797	1,424	6	237	475
expanded. Therefore, we speculate that the expansion of GBSS might be why *V. subterranea* is rich in RS.

Similarly, differences in the copy numbers of choline kinase, a key factor in fatty acid synthesis and storage, were found between the four legumes (*V. subterranea*, *7*; *F. albida*, *4*; *L. purpureus*, *2*; and *G. max*, *5*) and between two orphan species (*S. birrea*, *1*, and *M. oleifera*, *3*). Choline kinase is the first enzyme in the cytidine diphosphate–choline pathway that is involved

Table 6: Annotation of non-coding RNA genes in the genomes of *Vigna subterranea*, *Lablab purpureus*, *Faidherbia albida*, *Sclerocarya birrea*, and *Moringa oleifera*

Species	Type	Copy	Average length (bp)	Total length (bp)	% of genome
V. subterranea	miRNA	102	122	12,466	0.002330
	tRNA	756	75	56,639	0.010586
	rRNA	1,080	124	134,185	0.025079
	18S	55	560	30,798	0.005756
	28S	62	126	7,793	0.001456
L. purpureus	5.8S	17	134	2,110	0.000394
	5S	946	99	93,484	0.017472
F. albida	snRNA	523	117	61,006	0.011402
	CD-box	327	100	32,643	0.006101
	HACA-box	47	133	6,236	0.001165
	splicing	149	149	22,127	0.004135
S. birrea	miRNA	109	123	13,398	0.003388
	tRNA	611	75	45,748	0.011568
	rRNA	633	227	143,466	0.036277
	18S	213	446	95,074	0.024041
	28S	283	121	34,186	0.008644
	5.8S	53	135	7,177	0.001815
	5S	84	84	7,029	0.001777
M. oleifera	snRNA	457	118	54,029	0.013662
	CD-box	278	97	26,915	0.006806
	HACA-box	48	133	6,371	0.001661
	splicing	131	158	20,743	0.005245
	miRNA	126	122	15,364	0.002350
	tRNA	458	75	34,388	0.005260
	rRNA	1,008	107	107,518	0.016447
	18S	25	321	8,034	0.001229
	28S	26	118	3,063	0.000464
F. albida	5.8S	6	118	710	0.000109
	5S	951	101	95,711	0.014641
S. birrea	snRNA	1,996	108	216,482	0.033115
	CD-box	1,836	106	194,676	0.029779
	HACA-box	42	132	5,548	0.000849
	splicing	118	138	16,258	0.002487
M. oleifera	miRNA	111	119	13,161	0.006072
	tRNA	1,241	75	93,620	0.043191
	rRNA	8,406	309	2,598,079	1.198502
	18S	3,256	608	1,979,080	0.913032
	28S	3,808	113	430,280	0.198506
M. oleifera	5.8S	1,182	150	177,612	0.081949
	5S	160	69	11,107	0.005124
	snRNA	229	119	27,158	0.012529
	CD-box	119	97	11,578	0.003541
	HACA-box	38	132	4,999	0.002306
	splicing	72	147	10,581	0.004881
Table 7: Statistical analysis of the functional annotations of protein-coding genes in the genomes of Vigna subterranea, Lablab purpureus, Faidherbia albida, Sclerocarya birrea, and Moringa oleifera

Database	V. subterranea	L. purpureus	F. albida	S. birrea	M. oleifera					
	N	%	N	%	N	%	N	%	N	%
NR	31,013	97.81	20,540	98.06	27,021	93.24	18,547	97.94	18,203	98.65
SwissProt	22,496	70.95	15,905	75.93	21,247	73.32	15,513	81.92	15,109	81.88
KEGG	22,141	69.83	14,699	70.18	20,184	69.65	14,623	77.22	14,044	76.11
COG	10,814	34.11	7,854	37.50	10,526	36.32	7,715	40.74	7,662	41.52
TrEMBL	30,964	97.66	20,489	97.82	26,828	92.58	18,477	97.57	18,193	98.60
InterPro	22,744	71.73	18,911	90.28	25,401	87.65	15,537	82.05	15,134	82.02
Gene Ontology	18,894	59.59	13,811	65.94	15,182	52.39	11,505	60.75	11,877	64.37
Overall	31,074	98.00	20,574	98.22	27,118	93.58	18,573	98.08	18,236	98.83
Unannotated	633	2.00	372	1.78	1,861	6.86	364	1.92	216	1.17

Figure 2: The groups of orthologs shared by the orphan crops. (A) Groups of orthologs shared between Lablab purpureus (L. pur), Faidherbia albida (F. alb), Glycine max (G. max), Medicago truncatula (M. tru), and Vigna subterranea (V. sub). (B) Groups of orthologs shared between Sclerocarya birrea (S. bir), Moringa oleifera (M. ole), Carica papaya (C. pap), Citrus sinensis (C. sin), and Theobroma cacao (T. cac). Venn diagram generated using [60].

in lecithin biosynthesis [76, 77]. Based on these observations, we inferred that all the factors required to synthesize lecithin are present in V. subterranea. However, gene expression data remain lacking in terms of the GBSS and choline kinase genes in these five species. More transcriptomic analysis and chemical tests are required to uncover the mechanisms of their nutrition metabolism.

Identification of the root nodule symbiosis pathway

Legumes (Fabaceae) are well known for their ability to fix nitrogen; an important trait to replenish nitrogen supplies in soil and agricultural systems. Being part of the human food production chain, legumes have a major impact on the global nitrogen cycle. Nitrogen-fixing plants can fix nitrogen through root nodule symbiosis (RNS) using symbiotic nitrogen-fixing bacteria. In a previous report, RNS was revealed to be restricted to Fabales, Fagales, Cucurbitales, and Rosales, which together form the monophyletic nitrogen-fixing clade. This suggests a predispositional event in their common ancestor, which enabled their subsequent evolution [78]. Despite this genetic predisposition, many leguminous members of the nitrogen-fixing clade are non-fixers [79]. This has raised the question as to whether the nodulation trait evolved independently in a convergent manner or originated from a single evolutionary event followed by multiple losses. The answer to this question cannot be explained with current genomic approaches because available genomic information of nodulating species is, at present, limited to a single subfamily, the Papilionoideae, in the Fabaceae. Although the Mimosoideae subfamily within the Fabaceae also contains nitrogen-fixing species, none of its members have been genome sequenced.
Figure 3 Percentages of transcription factors in five orphan species. Blastp was used to search against 58 plant transcription factor families obtained from PlantTFDB [70] (see Additional file 2: Table S14). In this figure, MADS includes M-type MADS and MIKC-MADS. MYB includes MYB and MYB-related. NF-YA/B/C includes NF-YA, NF-YB and NT-YC. "Others" comprises 31 types of transcription factors (E2F/DP, Nin-like, TALE, YABBY, GbBP, BES1, DD2, CO-like, CPP, SSB, STAT, WOX, BBR-BPC, CAMTA, AP2, ZF-HD, S1Fa-like, ARR-B, SRS, GRF, LSD, NF-X1, EIL, RAV, HRT-like, HB-PHD, VOZ, Whirly, SAP, LFY and NZZ/SPL) whose percentage was less than 1%.
In this analysis, we identified 16 RNS signal (Sym) pathway genes in three legumes (V. subterranea, L. purpureus, and F. albida) and two non-legumes (S. birrea and M. oleifera). First, we collected the protein sequences of previously reported genes in the Sym pathways of L. japonicus and M. truncatula [80] (Fig. 5). Using these sequences as bait, we predicted the Sym genes in V. subterranea, L. purpureus, F. albida, S. birrea, and M. oleifera through reciprocal best hits generated by a BLASTP search with an E-value of 1e-5 (Table 8). To verify this prediction with syntenic analysis, all-versus-all BLASTP results were subjected to MCSCANX [81] with default parameters to generate syntenic blocks. The result showed that among the legumes, all of the components in the pathway were conserved except for MtNFP/LjNFR5, LjCASTOR, CCaMK, MtCRE1/LjLHK1, and NF-YA2, while many components were missing in the non-legumes. Among the three legumes, the orthologous genes MtNFP/LjNFR5, LjCASTOR, and MtIPD3/LjCYCLOPS were absent in F. albida. As previously reported, the expression of NIN is lower in the ipd3-mutant line [82]; analysis of the M. truncatula mutant C31 showed that the Nod Factor Perception gene is essential in Nod factor perception at early stages of the symbiotic interaction [83]. Meanwhile, the function of IPD3 was proved to be partly redundant, which means it is likely that other proteins phosphorylated by CCaMK can partially fulfill this role when IPD3 is absent [82]. Differences in the components of the RNS pathway (Table 8), together with the relatively weak nitrogen-fixing ability [84] of F. albida, is thus a good reference for RNS diversification research.

Conclusion

This comprehensive study reports the sequencing, assembly, and annotation of five genomes of underutilized plants in Africa, along with details of their key evolutionary features. The draft genomes of these species will serve as an important complementary resource for non-model food crops, especially the leguminous plants, and will be valuable for both agroforestry and evolutionary research. Improving these underutilized plants using genomics-assisted tools and methods could help to bring food security to millions of people.

Availability of supporting data

The raw data from our genome project was deposited in the NCBI Sequence Read Archive database with Bioproject IDs PRJNA453822 and PRJNA474418. Assembly and annotation of the five genomes and other supporting data, including BUSCO results, are available in the GigaDB repository [85], and the data reported in this study are also available in the CNGB Nucleotide Sequence Archive (CNSA: https://db.cngb.org/cnsa; accession number CNP0000096). All genome annotations described here are also available at http://bioinformatics.psb.ugent.be/orcae/AOCC.

Additional files

Figure S1: K-mer (K = 17) analysis of five genomes.
Figure S2: Distribution of sequencing depths of the assembly data.
Figure S3: The GC content.
Figure S4: Comparison of GC content across closely related species.
Figure S5: Statistics of gene models in Vigna subterranea, Lablab purpureus, Faidherbia albida, Moringa oleifera and Sclerocarya birrea.
Figure S6: Expansion and contraction of gene families.
Table S1: Statistics of the raw and clean data of DNA sequencing.
Table S2: Summary statistics of the transcriptome data in four species.
Table S3: Estimation of genome size based on k-mer statistics in five species.
Table S4: BUSCO evaluation of the annotated protein-coding genes in five species.
Table S5: Analysis of gene families of different species.
Table S6: Enriched pathways of unique paralogs genes in families.
Table S7: Enriched GO terms (level 3) of unique paralogs genes in families.
Table S8: Enriched GO terms (level 3) of unique paralogs genes in families with expansion.
Table S9: Enriched pathways of genes in families with expansion.
Table S10: The copy numbers of protein biosynthesis-related genes in each species.
Table S11: The copy numbers of starch biosynthesis-related genes in each species.
Figure 5: The common symbiosis signaling pathway among the orphan crops. Sixteen root nodulation symbiosis signal (Sym) pathway genes were identified in three legumes (Vigna subterranea, Lablab purpureus, and Faidherbia albida) and two non-legumes (Sclerocarya birrea and Moringa oleifera). Lj, Lotus japonicus; Mt, Medicago truncatula; LCOs, Lipochitooligosaccharides.

Table S12: The copy numbers of fatty acid synthesis and storage-related genes in each species.

Table S13: The copy numbers of fatty acid degradation-related genes in each species.

Table S14: Numbers of transcription factors in the studied species.

Abbreviations

CTAB: Cetyl TrimethylAmmonium Bromide; PCR: Polymerase Chain Reaction; BLAST: Basic Local Alignment Search Tool; BUSCO: Benchmarking Universal Single-Copy Orthologues; GBSS: granule-bound starch synthase; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; COGs: the Clusters of Orthologous Groups; LTR: long terminal repeats; MITE: miniature inverted repeat transposable elements; MUSCLE: multiple sequence comparison by log-expectation; Mya: million years ago; NCBI: National Center for Biotechnology Information; RNS: root nodule symbiosis; RS: resistant starch; TF: transcription factor.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by funding from the Shenzhen Municipal Government of China (grants JCYJ20150831201643396 and JCYJ20150529150409546) and the Guangdong Provincial Key Laboratory of Genome Read and Write (grant 2017B030301011). This work is part of the 10KP project led by BGI-Shenzhen and China National GeneBank.
Table 8: Orthologs of nitrogen fixation genes in Vigna subterranea, Lablab purpureus, Faidherbia albida, Moringa oleifera, and Sclerocarya birrea

Gene	V. subterranea	L. purpureus	F. albida	S. birrea
MtLYK3/LjNFR1	Vigna1762537, VIGSU	Vigna19859401,17,1,17,VIGSU	Vigna10799576, VIGSU	Vigna10789915,17,1,17,VIGSU
MtNFP/LjNFR5	Vigna10789915, VIGSU	Vigna10789915, VIGSU	Vigna10789915, VIGSU	Vigna10789915, VIGSU
MtDMI2/LjSYMRK	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
LjCASTOR	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
MtHMG1 —— —— —— —— ——	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
MtDMI1/LjPOLLUX	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
NSP1	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
NSP2	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
CCaMK	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
MtIPD3/LjCYCLOPS	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
NIN	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
MtCRE1/LjLHK1	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
NF-YA1	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
MtERN1	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU
MtERN2	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU	Vigna10799576, VIGSU

Author contributions

X.L., X.X., H.Y., J.W., P.S.H., R.J., A.V., Y.V.D.P., and Y.C. conceived the project and supervised the respective components: DNA extraction, sample logistics, and collection conducted by the African Orphan Crops Consortium of the World Agroforestry Centre and data generation and analyses conducted by BGI. Y.C. supervised the analyses. R.K. and S.M. collected and extracted the DNA and RNA. S.B. and F.Y. performed the genome assembly. M.L., X.Z.L., S.B.W., A.E.J.Y., and L.Z.L. performed the genome annotation, gene family analysis, and identification of genes related to root growth and RNS. Y.C., H.L., S.K.S., P.S.H., and A.V. wrote the manuscript. H.R.L. and S.F.P. sequenced the samples. S.M., W.K.H., A.M., P.S.H., J.W., and H.M.Y. revised the manuscript. All authors read, edited, and approved the final version of the manuscript.

Acknowledgements

Authors duly acknowledge Shu-Min Kao and Dr. Lieven Sterck for their help in technical issues.

References

1. United Nations, Department of Economic and Social Affairs, Population Division. World population prospects: the 2017 revision, Key Findings and Advance Tables. 2017. Working Paper No. ESA/P/WP/248.
2. Development Initiatives. Global nutrition report 2017: nourishing the SDGs. Bristol, UK: Development Initiatives; 2017.
3. Allender C. The second report on the state of the world’s plant genetic resources for food and agriculture. Experimental Agriculture 2011;47(3):574–574.
4. African Orphan Crops Consortium: http://www.africanorphanhancrops.org (2018). Accessed 20 Nov 2018.
5. Varshney RK, Chen W, Li Y, et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 2011;30:83–9.
6. Foyer CH, Lam H-M, Nguyen HT, et al. Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2016;2:16112.
7. Borget M. Food legumes. In: The Tropical Agriculturalist, CTA Macmillan; 1992.
8. Linnemann AR, Azam-Ali SN. Bambara groundnut (Vigna subterranea) literature review: a revised and updated bibliography. Department of Tropical Agriculture, Wageningen Agricultural University. 1992.
9. Gbaguidi AA, Dansi A, Dossou-Aminon I, et al. Agromorphological diversity of local Bambara groundnut (Vigna subterranea (L.) Verdc.) collected in Benin. Genet Resour Crop Evol 2018;65(4):1159–71.
10. Kang YJ, Kim SK, Kim MY, et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 2014;5:5443.
11. Yang K, Tian Z, Chen C, et al. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc Natl Acad Sci USA 2015;112(43):13213–8.
12. Jung IL. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS One 2014;9(4):e95492.
13. Leone A, Spada A, Battezzati A, et al. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacol-
ogy of Moringa oleifera Leaves: an overview. Int J Mol Sci 2015;16(6):12791–835.

14. Lea M. Bioremediation of turbid surface water using seed extract from Moringa oleifera Lam. (drumstick) tree. Curr Protoc Microbiol 2014;33:G.2.1–G.2.8.

15. Mabapa MP, Ayisi KK, Mariga IK, et al. Production and utilization of moringa by farmers in Limpopo Province, South Africa. International Journal of Agricultural Research 1962;12(4):160–71.

16. Tian Y, Zeng Y, Zhang J, et al. High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop. Science China Life Sciences 2015;58(7):627–38.

17. Maass Bl, Knox MR, Venkatesha SC, et al. Lablab purpureus—a crop lost for Africa? Trop Plant Biol 2010;3(3):123–35.

18. Robotham O, Chapman M. Population genetic analysis of hyacinth bean (Lablab purpureus (L.) Sweet, Leguminosae) indicates an East African origin and variation in drought tolerance. Genet Resour Crop Evol 2017;64(1):139–48.

19. Wang ML, Morris JB, Barkley NA, et al. Evaluation of genetic diversity of the USDA Lablab purpureus germplasm collection using simple sequence repeat markers. J Hortic For 2012;4(9):153–60.

20. Vajijayanti PV, Ramesh S, Gowda MB, et al. Genetic variability for morpho-metric traits in Dolichos bean (Lablab purpureus L. Sweet) germplasm. Journal of Food Legumes 2015;28(1):5–10.

21. Mokgolodi NC, Setshogo MP, Shi L-L, et al. Achieving food and nutritional security through agroforestry: a case of Faidherbia albida in sub-Saharan Africa. For Stud China 2011;13(2):123–31.

22. Garrity DP, Akinnifesi FK, Ajayi OC, et al. Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec 2010;2(3):197–214.

23. Dunham KM. Biomass dynamics of herbaceous vegetation in Zambezi riverine woodlands. Afr For J Ecol 1990;2(3):197–214.

24. Barnes RD, Fagg CW. Faidherbia albida monograph and annotated bibliography. Oxford Forestry Inst; 2003;41–267.

25. Nerd A, Mizrahi Y, Janick J, et al. Domestication and introduction of marula (Sclerocarya birrea subsp. caffra) as a new crop to southern Africa. Science China Life Sciences 2015;58(11):3210–2.

26. Mng’Omba SA, Silesie GW, Jamnadsass R, et al. Scion and stock diameter size effect on growth and fruit production of Sclerocarya birrea (Marula) trees. J Hortic For 2012;49(9):153–60.

27. Gouwakinnou GN, Lykke AM, Assogbadjo AE, et al. Local knowledge, pattern and diversity of use of Sclerocarya birrea. J Ethnobiol Ethnomed 2011;7(1):1–9.

28. Yang T, Wu C. DNA Extraction for plant samples by CTAB. protocols.io 2018; dx.doi.org/10.17504/protocols.io.pzqdp5w.

29. Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2012;1(1):1–6.

30. Teh BT, Lim K, Yong CH, et al. The draft genome of tropical fruit durian (Durio zibethinus). Nat Genet 2017;49:1633–41.

31. Simao FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015;31(19):3210–2.

32. Chang Z, Li G, Liu J, et al. BridgeR: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol 2015;16:30.

33. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res 2002;12(4):656–64.

34. Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009;25(15):1966–7.
function analysis with the PANTHER classification system. Nat Protoc 2013;8:1551–66.
57. Attwood TK, Bradley P, Flower DR, et al. PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res 2003;31(1):400–2.
58. Corpet F, Servant F, Gouzy J, et al. ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res 2000;28(1):267–9.
59. Li L, Stoeckert CJ, Jr, and Roos DS. OrthoMCL: identification of orthologous groups for eukaryotic genomes. Genome Res 2003;13(9):2178–89.
60. Bioinformatics & Evolutionary Genomics: http://bioinformatics.psb.ugent.be/webtools/Venn/. Accessed 20 Nov 2018.
61. Guindon S, Dufayard JF, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010;59(3):307–21.
62. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007;24(8):1586–91.
63. He N, Zhang C, Qi X, et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun 2013;4:2445.
64. Lavin M, Herendeen PS, Wojciechowski MF, et al. Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 2005;54(4):575–94.
65. De Bie T, Cristianini N, Demuth JP, et al. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 2006;22(10):1269–71.
66. Bernhardt C, Lee MM, Gonzalez A, et al. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 2003;130(26):6431–9.
67. Paponov IA, Paponov M, Teale W, et al. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 2008;1(2):321–37.
68. Vanneste S, Rybel BD, Beemster GTS, et al. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 2005;17(11):3035–50.
69. Vandenbeldt RJ, Faidherbia albida in the West African semi-arid tropics. ICRISAT. 1992. p. 107–10.
70. Jin J, Tian F, Yang D-C, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 2017;45(D1):D1040–D5.
71. Jang YE, Kim MY, Shim S, et al. Gene expression profiling for seed protein and oil synthesis during early seed development in soybean. Genes Genom 2015;37(4):409–18.
72. Bamshaiye OM, Adegbola JA, Bamshaiye EI. Bambara groundnut: an under-utilized nut in Africa. Adv Agric Biotechnol 2011;1:60–72.
73. Raigond P, Ezekiel R, Raigond B. Resistant starch in food: a review. J Sci Food Agric 2015;95(10):1968–78.
74. Zhou H, Wang L, Liu G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci U S A 2016;113(45):12844–9.
75. Bird AR, Flory C, Davies DA, et al. A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J Nutr 2004;134(4):831–5.
76. Morre DJ, Nyquist S, Rivera E. Lecithin biosynthetic enzymes of onion stem and the distribution of phosphorylcholine-cytidyl transferase among cell fractions. Plant Physiol 1970;45(6):800–4.
77. Johnson KD, Kende H. Hormonal control of lecithin synthesis in barley aleurone cells: regulation of the CDP-choline pathway by gibberelins. Proc Natl Acad Sci U S A 1971;68(11):2674–7.
78. Soltis DE, Soltis PS, Morgan DR, et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci U S A 1995;92(7):2647–51.
79. Doyle JJ. Phylogenetic perspectives on the origins of nodulation. Mol Plant Microbe Interact 2011;24(11):1289–95.
80. Geurts R, Xiao TT, Reinhold-Hurek B. What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci 2016;21(3):199–208.
81. Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 2012;40(7):e49.
82. Horváth B, Li HY, Domonkos Á, et al. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant Microbe Interact 2011;24(11):1345–58.
83. Amor BB, Shaw SL, Oldroyd GED, et al. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 2008;54(4):495–506.
84. Ndoye I, Gueye M, Danso SKA, et al. Nitrogen fixation in Faidherbia albida, Acacia radiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil 1995;172(2):175–80.
85. Chang Y, Liu H, Liu M, et al. Supporting data for “The draft genomes of five agriculturally important African orphan crops.” GigaScience Database 2018. http://dx.doi.org/10.5524/100504.