Abstract
Medicalization of common names of medicinal plants is a process that involves replacing popular native names by trademarked names of drugs, active principles or therapeutic indications used by modern biomedicine. In Brazil, this process seems to have been intensified in the early 2000s due to the increasing use of those names in ethnoscientific surveys in local communities. In this study, we aimed to trace the origins of that process. For this purpose, we reviewed data from the “grey literature” pre-1980, including 15 books, compendia, dictionaries, and guides of medicinal plants. Mercury and its lexical changes were the only medicalized names found in the literature before the 1980s. This is probably due to the ancient use of mercury in several medical systems through human history, including by Brazilian apothecaries since the seventeenth century. Moreover, Mercurochrome was the name of a Brazilian trademark of antiseptic that probably influenced the use of medicalized names of mercury in the past. The name “Mercury” and its “natural” epithet combinations, like “Mercúrio-vegetal” (Mercury-plant) and “Mercúrio-do-campo” (Field-mercury), could have been the original medicalized way of naming medicinal plants in Brazil.

Key words: ethnobotany, ethnotaxonomy, historical research, merbromin, pharmacy.

Resumo
A medicalização de nomes populares de plantas medicinais é o processo de substituição de nomes populares nativos por nomes de medicamentos comerciais, princípios ativos ou sua indicação terapêutica empregados pela biomedicina moderna. Aparentemente, este processo se intensificou no início dos anos 2000, visto que houve um aumento na quantidade desses nomes em pesquisas etnocientíficas realizadas em comunidades locais no Brasil. Nosso objetivo foi delinear as origens desse processo. Foram revisados dados da “literatura cinza” pré-1980, incluindo 15 livros, compêndios, dicionários e guias de plantas medicinais. Mercúrio e suas corruptelas lexicais foram os únicos nomes medicalizados encontrados antes dos anos 1980. Isso se deve provavelmente ao antigo uso de mercúrio por vários sistemas médicos durante a história humana, inclusive pelos boticários no Brasil desde o século XVII. Além disso, Mercurocrômico era uma marca brasileira de antisséptico que provavelmente influenciou o emprego medicalizado do nome mercúrio no passado. As combinações de “Mercúrio” e com epítetos “naturais,” como “Mercúrio-vegetal” e “Mercúrio-do-campo,” podem ser a forma original medicalizada de se nomear plantas medicinais no Brasil.

Palavras-chave: etnobotânica, etnotaxonomia, pesquisa histórica, merbromina, farmácia.

Several plant species have been assigned with common names similar to those of popular Brazilian drugs, e.g., Terramicine, Anador®, and Vick®. This is related to two cultural appropriation processes, the medicalization and pharmaceuticalization, which have been occurring for some decades in Brazil. Medicalization is generally conceptualized as a biomedical transformation of human
experiences and behaviors into medical concerns (Bortoli et al. 2019; Zola 1983). On the other hand, pharmaceuticalization can be defined as the overconsumption of pharmaceuticals and social dependency of commercial drugs (Fox & Ward 2008; Bell & Figert 2012).

Medicinal plants with medicalized names can be found cumulatively in ethnobiological surveys from the 1980s to the late 2010s (Siqueira et al. 2018). The medicalized names could have had an ethnotaxonomical origin, associated with extensive drug use by modern societies in the twentieth century (Siqueira et al. 2017, 2018). However, so far, no evidence has been found to support the recency of the medicalization process since, apparently, there are no surveys about it before the 1980s.

To trace the origins of the medicalization of common names of medicinal plants in Brazil, we evaluated the presence of medicalized names in the “grey literature” from the early twentieth century. Grey literature is defined as scientific productions that were not formally published, including book chapters, research reports, and other unpublished data (Hopewell et al. 2007). We consulted 15 books, compendia and dictionaries of medicinal plants, including those that were published before the 1980s, such as Correa’s (1926, 1931, 1952, 1969, 1974, 1975), Da Matta (1913), and Cruz (1979) (Tab. 1). These references were chosen based on their historical relevance in the field of Brazilian medicinal plants and availability.

We found the following 20 medicalized names: Anador®, Atroveran®, Bromil®, Coramina®, Dipirona®, Dori®, Elixir-Paregórico®, Erva-iodex, Figatil®, Heparema®, Insulina, Insulina-vegetal, Melhoral®, Mercúrio-do-campo, Mercúrio-vegetal, Novalgina®, Penicilina, Saúde-da-mulher, Terramicina, and Vick®. However, in the pre-1980s literature (Correa 1926, 1931, 1952, 1969, 1974, 1975, Cruz 1979; Da Matta 1913) we detected only two medicalized names, both of them related to mercury, “Mercúrio-do-campo” and “Mercúrio-vegetal” (Tab. 2). The medicalized name “Mercúrio”

Table 1 – Titles, bibliographic classifications and references of “grey literature” consulted.

Grey literature	Bibliographic classification	Reference
Etnofarmácia: Fitoterapia popular e Ciência Farmacêutica	Book	Barbosa et al. 2009
Plantas medicinais na Amazônia: contribuição ao seu conhecimento sistêmático	Book	Berg 1993
Dicionário de plantas úteis do Brasil e das exóticas cultivadas Vol. I	Dictionary	Correa 1926
Dicionário de plantas úteis do Brasil e das exóticas cultivadas Vol. II	Dictionary	Correa 1931
Dicionário de plantas úteis do Brasil e das exóticas cultivadas Vol. III	Dictionary	Correa 1952
Dicionário de plantas úteis do Brasil e das exóticas cultivadas Vol. IV	Dictionary	Correa 1969
Dicionário de plantas úteis do Brasil e das exóticas cultivadas Vol. V	Dictionary	Correa 1974
Dicionário de plantas úteis do Brasil e das exóticas cultivadas Vol. VI	Dictionary	Correa 1975
Dicionário das plantas úteis do Brasil	Dictionary	Cruz 1979
Flora médica brasilense	Compendium	Da Matta 1913
Plantas medicinais na Amazônia e na Mata Atlântica	Book	Di Stasi & Hiruma-Lima 2002
Plantas medicinais no Brasil: nativas e exóticas	Compendium	Lorenzi & Matos 2008
Constituintes químicos ativos e propriedades biológicas de plantas medicinais brasileiras	Book	Matos et al. 2004
Plantas medicinais na Reserva Extrativista “Chico Mendes” - Acre	Book	Ming et al. 1997
Fitoterapia da Amazônia	Book	Vieira 1992

1 It’s a well-reputed encyclopedia of useful Brazilian plants published in the early twentieth century that is still widely used by botanists, pharmacists, and ethnoscientists, due to the historical content of the former herbalism practiced in Brazil.
Beginnings of the medicalization of Brazilian medicinal plants

Species	Medicalized name	Literature	Medicinal popular uses	Organoleptic characteristics	Pharmacological activities related to mercury
Erythroxylaceae	Erythroxylum suberosum A.St.-Hil	Mercúrio-do-campo (“Field Mercury”)	Correa 1926; Rodrigues et al. 2015	Brown-red bark	Antimicrobial (Violante et al. 2002), anti-inflammatory (Barros et al. 2017)
Euphorbiaceae	Croton antisyphiliticus Mart.	Lesions, inflammation, syphilis, rheumatisms	Reis et al. 2014	-	Anti-bacterial (Pereira et al. 2012), antifungal (Fenner et al. 2006), anti-inflammatory (Reis et al. 2014)
Moraceae	Brosimum acutifolium Huber	Mercúrio-vegetal (“Vegetable Mercury”)	Correa 1926; Da Matta 1913; Elisabetsky & Castilhos 1990	-	Anti-inflammatory (Baptista 2007), antibacterial (Moretti et al. 2006)
Pseudolmedia macrophylla Trécul	-	-	Cruz 1979	-	-
Solanaceae	Brunfelsia australis Benth	Rheumatism	Battisti et al. 2013	-	-
Brunfelsia brasiliensis subsp. macrocalyx (Dusén) Plowman	-	Rheumatism	Soares et al. 2004	-	-
Brunfelsia pauciflora (Cham. & Schltdl.) Benth	-	Rheumatism, syphilis	Uribe & Uribe-Uribe 1941	-	-
Brunfelsia uniflora (Pohl) D.Don	-	Rheumatism, Syphilis	Caminhoá 1871; Plowman 1977	-	Antimicrobial (Thiesen et al. 2018)

Note: Information not found in scientific literature were represented by the diacritical sign -.
(mercury) combined with the epithets “vegetal” (plant) and “campo” (field), both indicating natural sources, is the most ancient medicalized name in Brazil. The association of “natural” epithets seems to be a rudimentary method of creating medicalized names in popular Brazilian medicine.

The majority of species cited as “Mercúrio” in the grey literature is also mentioned with non-medicalized names, with six cited as useful to treat diseases. Croton antisyphiliticus Mart. (Euphorbiaceae) was named as Curraleira (Botrel et al. 2006; Hirschmann & Arias 1990) and Canela-des-saracura (Hirschmann & Arias 1990); Erythroxylum suberosum A.St.-Hil (Erythroxylaceae) as Bananinha-do-campo (Hirschmann & Arias 1990) and Galinha-choca (Hirschmann & Arias 1990; Silberbauer-Gottsberger 1981); Brosimum acutifolium Huber (Moraceae), as Mururé and Mureré (Coutinho & Travassos 2002; Monteles & Pinheiro 2007); Brunfelsia australis Benth. (Solanaceae), as Primavera (Battisti et al. 2013); Brunfelsia brasiliensis (Spreng.) L.B.Sm. & Downs (Solanaceae), as Manacá (Guedes et al. 1985); Brunfelsia uniflora (Pohl) D.Don (Solanaceae), as Manacá or Flor-da-trovoada (Tribess et al. 2015), and Primavera or Macaé (Bieski et al. 2015); Brunfelsia pauciflora (Cham. & Schltdl.) Benth. (Solanaceae), as Manacá-de-cheiro (Sanquetta et al. 2010) (used, however, only as an ornamental plant); finally, Pseudolmedia macrophylla Trécul (Moraceae) was not cited as medicinal and had no common names related to it. The majority of species were reported in the scientific literature to treat syphilis or rheumatism (Tab. 2).

In the literature post-1980s, “Mercúrio” mainly refers to Alternanthera brasiliana (L.) Kuntze (Amaranthaceae); Chelidonium majus L. (Papaveraceae); Erythroxylum tortuosum Mart. (Erythroxylaceae); Jatropha multifida L. (Euphorbiaceae) (Fig. 1). Additionally, “Mercúrio-do-campo” refers only to Galphimia brasiliensis (L.) A. Juss. (Malpighiaceae) (Siqueira et al. 2018). Thus, the binomial “Mercúrio-do-campo” lost representation of C. antisiphiliticus, although it has retained E. tortuosum as the related species. “Mercúrio-vegetal,” however, lost every related species; thus, it became an extinct medicalized name in the post-1980s.

The former practice of naming medicinal plant species as “Mercúrio” is mainly related to the ancient therapeutic use of the mercury element, predominantly extracted from cinnabar (Broussard et al. 2002), in several traditional pharmacopoeias worldwide, like the Caribbean (Zayas & Ozuah 1996), Indian-Tibetan (Kumar & Prabhakar 1987; Leslie 1976), and Chinese (Tang et al. 2008). The therapeutic use of mercury in drug preparations in Brazilian pharmacies and apothecaries dates back to the eighteenth century (Edler 2006), but probably was a common “chemical medicine” since the sixteenth century (Almeida 2017).

The Brazilian Pharmacopoeia also mentioned its use in several pharmaceuticals to treat syphilis and wounds until the 1920s and 1990s, respectively, since the first edition (Silva 1929). This probably explains the majority of popular antisiphilitic indications of species, pre-1980s, listed in Table 2. The “antirheumatic” indications were probably related to congenital and acquired syphilitic arthritis that overcome in several clinical cases of the disease (Gray & Philip 1963), or to the similarity of those symptoms with other musculoskeletal disorders.

On the other hand, pharmacological activities and organoleptic characteristics may explain the case of Erythroxylum suberosum due to the reddish color of the inner bark and its antimicrobial and anti-inflammatory activities (Tab. 2). The red inner bark is a morphological characteristic that could refer to the alcoholic solution of merbromin.
“Mercúrio” usually refers to the Brazilian trademarked name “Mercúrio-cromo” (Mercurochrome) (Fig. 2), a topical antiseptic formerly used to treat wounds and perforations in the epidermis (Campos 1978) (Fig. 3). The main constituent of “Mercúrio-cromo” is Merbromin, a sodium organomercuric compound prohibited as a commercial drug by ANVISA (Brazilian National Health Surveillance Agency) since 2001 (ANVISA 2001). Therefore, the medicalized name “Mercúrio” may become obsolete due to this relatively recent ban on the use of mercury compounds in Brazilian drugs. On the other hand, another medicalized name of antiseptic, “Merthiolate,” is derived from the trademark name Merthiolate® and it has been used to the same therapeutic purposes (Bieski et al. 2015; Caetano et al. 2015; Leite & Oliveira 2012; Martins et al. 2005). In this context, we hypothesize a gradual functional substitution of the name “Mercury” by “Merthiolate” to name medicinal plants with antiseptic and wound-healing properties.

Acknowledgments

Our study was supported by CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico (307568/2015-6), CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (1237264), and MUSEU NACIONAL/UFRJ (000888/2013). We thank Alda Lucia Heizer for historical insights. CMS is grateful to the CNPq for the research grant.
References
Almeida DS (2017) O trato das plantas: os intermediários da cura e do comércio de drogas na América portuguesa, 1750-1808. Doctoral dissertation. Fundação Oswaldo Cruz. Casa de Oswaldo Cruz, Rio de Janeiro. 382p.
ANVISA - Agência Nacional de Vigilância Sanitária (2001) Resolução RE nº 528, de 17 de abril de 2001. Diário Oficial da União (DOU) de 18 de abril de 2001, Seção 1, Brasília, 256p.
Barbosa WLR, Pinto LN, Silva WB, Fernandes JGS & Soler O (2009) Etnofarmacária: fitoterapia popular e ciência farmacêutica. NUMA/ UFPA, Belém. 124p.
Barros IMDC, Leite BH, Leite CF, Fagg CW, Gomes SM, Resck IS, Fonseca-Bazzo YM, Magalhães PO & Silveira D (2017) Chemical composition and antioxidant activity of extracts from Erythroxylum suberosum A. St. Hil. leaves. Journal of Applied Pharmaceutical Science 7: 88-94.
Battisti C, Garlet TMB, Essi L, Horbach RK, Andrade A & Badke MR (2013) Plantas medicinais utilizadas no município de Palmeira das Missões, RS, Brasil. Revista Brasileira de Biociências 11: 338-348.
Bell SE & Figert AE (2012) Medicalization and pharmaceuticalization at the intersections: looking backward, sideways and forward. Social Science and Medicine 75: 775-783.
Berg ME (1993) Plantas medicinais na Amazônia: contribuição ao seu conhecimento sistemático. 2. ed. rev. aum. il. (Coleção Adolpho Ducke). Museu Paraense Emilio Goeldi, Belém. 207p.
Bieski IG, Leonti M, Arnason JT, Ferrier J, Rapinski M, Berg ME (1993) Plantas medicinais na Amazônia e na Mata Atlântica. 2. ed. Ed. Visão Acadêmica 3: 7-12.
Bortoli FR, Kovaleski DF & Moretti-Pires RO (2019) Medicinalization social and bicultural: a busca pela superação da técnica. Cadernos Saúde Coletiva 29: 67-72.
Botrel RT, Rodrigues LA, Gomes LJ, Carvalho DA & Fontes MAL (2006) Uso da vegetação nativa pela população local no município de Ingaí, MG, Brasil. Acta Botanica Brasilica 20: 143-156.
Broussard LA, Hamnett-Stabler CA, Winecker RE & Ropero Miller JD (2002) The toxicology of mercury. Lab Med 33: 614-625.
Caetano NLB, Ferreira TF, Reis MRO, Neo GGA & Carvalho AA (2015) Plantas medicinais utilizadas pela população do município de Lagarto-SE, Brasil - ênfase em pacientes oncológicos. Revista Brasileira de Plantas Medicinais 17: 748-756.
Caminhoá JM (1871) Das plantas tóxicas do Brazil. Perspectiva, 1871. Tese. Faculdade de Medicina do Rio de Janeiro, Rio de Janeiro. 186p.
Campos MP (1978) Contribuição para o tratamento do mal perfurante plantar na hanseníase. Hansen International 3: 59-61.
Correa MP (1926) Dicionário de plantas úteis do Brasil e das exóticas cultivadas. Vol. 1. Ed. Ministério da Agricultura, Rio de Janeiro. 774p.
Correa MP (1931) Dicionário de plantas úteis do Brasil e das exóticas cultivadas. Vol. 2. Ed. Ministério da Agricultura, Rio de Janeiro. 707p.
Correa MP (1952) Dicionário de plantas úteis do Brasil e das exóticas cultivadas. Vol. 3. Ed. Ministério da Agricultura, Rio de Janeiro. 646p.
Correa MP (1969) Dicionário de plantas úteis do Brasil e das exóticas cultivadas. Vol. 4. Ed. Ministério da Agricultura, Rio de Janeiro. 759p.
Correa MP (1974) Dicionário de plantas úteis do Brasil e das exóticas cultivadas. Vol. 5. Ed. Ministério da Agricultura, Rio de Janeiro. 687p.
Correa MP (1975) Dicionário de plantas úteis do Brasil e das exóticas cultivadas. Vol. 6. Ed. Ministério da Agricultura, Rio de Janeiro. 777p.
Coutinho DF & Travassos LMA (2002) Estudo etnobotânico de plantas medicinais utilizadas em comunidades indígenas no estado do Maranhão - Brasil. Visão Acadêmica 3: 7-12.
Cruz GL (1979) Dicionário das plantas úteis do Brasil. Vol. 4. Editora Civilização Brasileira, Rio de Janeiro. 599p.
Da Matta AA (1913) Flora medica brasileiiense. Secção de Obras da Imprensa Official, Manaus. 318p.
Di Stasi LC & Hiruma-Lima CA (2002) Plantas medicinais na Amazônia e na Mata Atlântica. 2. ed. Editora Universidade Estadual Paulista, São Paulo. 604p.
Duke JA (2008) Duke’s handbook of medicinal plants of Latin America. CRC Press Taylor & Francis Group, New York. 832p.
Edler FC (2006) Boticas e farmacias: uma história ilustrada da farmácia no Brasil. Casa da Palavra, Rio de Janeiro. 160p.
Elisabetsky E & Castilhos ZC (1990) Plants used as analgesics by Amazonian caboclos as a basis for selecting plants for investigation. International Journal of Crude Drug Research 28: 309-320.
Fenner R, Betti AH, Mentz LA & Rates SMK (2006) Plantas utilizadas na medicina popular brasileira com potencial atividade antifúngica. Brazilian Journal of Pharmaceutical Science 42: 369-394.
Fox NJ & Ward KJ (2008) Pharma in the bedroom and the kitchen. The pharmaceuticalisation of daily life. Sociology of Health & Illness 30: 856-868.
Gray MS & Philp T (1963) Syphilitic arthritis: diagnostic problems with reference to congenital syphilis. Annals of the Rheumatic Diseases 22: 19-25.
Guedes RR, Profice SR, Costa EL, Baumgratz JFA & Rates SMK (2006) Uso da vegetação nativa pela população do município de Lagarto-SE, Brasil - ênfase em pacientes oncológicos. Revista Brasileira de Plantas Medicinais 17: 748-756.
Hopewell S, McDonald S, Clarke M & Egger M (2007)
Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database Systematic Reviews 2: MR000010.

Hirschmann GS & Arias AR (1990) A survey of medicinal plants of Minas Gerais, Brazil. Journal of Ethnopharmacology 29: 159-172.

Kumar DS & Prabhakar VS (1987) On the ethnomedical significance of the arjuna tree, *T. arjuna* (Roxb.). Journal of Ethnopharmacology 20: 173-190.

Leite CC & Oliveira GL (2012) Plantas medicinais cultivadas e utilizadas na Associação Casa de Ervas Barranco da Esperança e Vida (ACEBEV), Porteirinha, MG. Revista Fitos 7: 26-36.

Leslie C (1976) Asian medical systems: a comparative study. University of California Press, Berkeley. 419p.

Lorenzi H & Matos FJA (2008) Plantas medicinais brasileiras, 2ª ed. Edições UFC, Fortaleza. 448p.

Martins LGS, Senna-Valle L & Pereira NA (2005) Princípios ativos e atividades farmacológicas de 8 plantas popularmente conhecidas por nome de medicamentos comerciais. Revista Brasileira de Plantas Medicinais 7: 73-76.

Matos FJA, Sousa MP, Matos MEO, Machado MIL & Craveiro AA (2004) Constituintes químicos ativos e propriedades biológicas de plantas medicinais brasileiras, 2ª ed. Edições UFC, Fortaleza. 448p.

Ming LC, Gaudêncio P & Santos VP (1997) Plantas medicinais na Reserva Extrativista “Chico Mendes” - Acre. UNESP, São Paulo. 165p.

Monteles R & Pinheiro CUB (2007) Plantas medicinais em um quilombo maranhense: uma perspectiva etnobotânica. Revista de Biologia e Ciências da Terra 7: 38-48.

Moretti C, Gailllard Y, Grenand P, Bévalot F, Prévosto JM (2006) Identification of 5-hydroxytryptamine (bufotenine) in takini (*Brosimum acutifolium* Huber subsp. *acutifolium* C.C. Berg, Moraceae), a shamanic potion used in the Guiana Plateau. Journal of Ethnopharmacology 106: 198-202.

Pereira S, Taleb-Contini S, Coppede J, Pereira P, Bertoni B, Moretti C, Gaillard Y, Grenand P, Bévalot F, Prévosto JM, Colla IM, Silva GJ, Kubiak MG, Faria MGI, Gazim ZC, Linde G & Colauto, NB (2018) Antioxidant and antimicrobial activity of *Brunfelsia uniflora* leaf extract. Arquivos de Ciências Veterinárias e Zoológia da UNIPAR 21: 93-97.

Silberbauer-Gottsberger I (1981) O cerrado como potencial de plantas medicinais e tóxicas. Oréades 8: 15-30.

Soares ELC, Vendruscolo GS, Eisinger SM & Zaïchia RA (2004) Estudo etnobotânico do uso dos recursos vegetais em São João do Polesine, RS, Brasil, no período de Outubro de 1999 a Junho de 2001. I - Origem e fluxo do conhecimento. Revista Brasileira de Plantas Medicinais 6: 69-95.

Tang JL, Liu B & Ma KW (1980) Traditional Chinese medicine. Lancet 372: 1938-1940.

Thiesen LC, Colla IM, Silva GJ, Kubiak MG, Faria MGI, Gazim ZC, Linde G & Colauto, NB (2018) Antioxidant and antimicrobial activity of *Brunfelsia uniflora* leaf extract. Arquivos de Ciências Veterinárias e Zoológia da UNIPAR 21: 93-97.

Tribess B, Pintarelli GM, Bini LA, Camargo A, Funez LA, Gasper AL & Zeni ALB (2015). Ethnobotanical study of plants used for therapeutic purposes in the Atlantic Forest region, Southern Brazil. Journal of Ethnopharmacology 164: 136-146.

Uribe JA & Uribe-Urbi L (1941) Flora de Antioquia. Imprenta Departamental, Medellin. 383p.

Veirea LS (1992) Fitoterapia da Amazônia. Ed. Ceres, São Paulo. 347p.

Violante IMF, Hamerski L, Garcez WS, Batista AL, Chang MR, Pott VJ & Garcez FR (2012) Antimicrobial activity of some medicinal plants from the Cerrado of the central-western region of Brazil. Brazilian Journal of Microbiology 43: 1302-1308.

Zayas LH & Ouzah PO (1996) Mercury use in espiritismo: a survey of botanicas. American Journal of Public Health 86: 111-112.

Zola IK (1983) Socio-medical inquiries. Temple University Press, Philadelphia. 349p.