SELF-ORGANISATION IN CELLULAR AUTOMATA WITH COALESCENT PARTICLES: QUALITATIVE AND QUANTITATIVE APPROACHES

BENJAMIN HELLOUIN DE MENIBUS AND MATHIEU SABLIK

ABSTRACT. This article introduces new tools to study self-organisation in a family of simple cellular automata which contain some particle-like objects with good collision properties (coalescence) in their time evolution. We draw an initial configuration at random according to some initial σ-ergodic measure μ, and use the limit measure to describe the asymptotic behaviour of the automata. We first take a qualitative approach, i.e. we obtain information on the limit measure(s). We prove that only particles moving in one particular direction can persist asymptotically. This provides some previously unknown information on the limit measures of various deterministic and probabilistic cellular automata: 3 and 4-cyclic cellular automata (introduced in [Fis90b]), one-sided captive cellular automata (introduced in [The04]), N. Fatès' candidate to solve the density classification problem [Fat13], self stabilization process toward a discrete line [RR13]...

In a second time we restrict our study to to a subclass, the gliders cellular automata. For this class we show quantitative results, consisting in the asymptotic law of some parameters: the entry times (generalising [KFD11]), the density of particles and the rate of convergence to the limit measure.

1. INTRODUCTION

A cellular automaton is a complex system defined by a local rule which acts synchronously and uniformly on the configuration space. These simple models exhibit a wide variety of dynamical behaviors and even in the one-dimensional case (the focus of this article) they are not well understood. Formally, given a finite alphabet A, a configuration is an element of the set $A^\mathbb{Z}$ which is compact for the product topology and a cellular automata $F : A^\mathbb{Z} \to A^\mathbb{Z}$ is defined by a local function $f : A^{[-r,r]} \to A$, for some radius $r > 0$, which acts synchronously and uniformly on every cell of the configuration:

$$F(x)_i = f(x_{[i-r,i+r]}) \text{ for all } x \in A^\mathbb{Z} \text{ and } i \in \mathbb{Z}.$$ Equivalently, cellular automata can be defined as continuous functions that commute with the shift map σ defined by $\sigma(x)_i = x_{i+1}$ for all $x \in A^\mathbb{Z}$ and $i \in \mathbb{Z}$.

Even though cellular automata have been introduced by J. Von Neumann [vN56], the impulsion for their systematic study was given by the work of S. Wolfram [Wol84]. He instigated a systematic study of elementary cellular automata, which are the cellular automata defined on the alphabet $\{0,1\}$ with radius 1 (there are $2^{2^3} = 256$ such cellular automata and each of them is associated a number $\#n$). In particular he proposed a classification according to the observation of the space-time diagrams produced by the time evolution of cellular automata starting from a random configuration.

One of these classes corresponds to a particular form of self-organisation: from a random configuration, after a short transitional regime, regions consisting in a simple repeated pattern emerge and grow in size, while the boundaries between them persist under the action of the cellular automaton and can be followed from an instant to the next. Therefore their movement (time evolution) can be defined inductively, and in this case we call these boundaries particles. In the simplest case, these

Key words and phrases. Cellular automata, Particules, limit measures, Brownian motion.
particles evolve at constant speed and are annihilated when colliding with other particles; however, they can sometimes exhibit a periodic behavior or even perform a random walk, and the collisions may give birth to new particles following some more or less complicated rules.

This type of behavior was first observed empirically in elementary cellular automata #18, #122, #126, #146, and #182 [Gra83, Gra84], then #54, #62, #184 [BNR91], etc. The interest for these automata stems from their dynamics that appeared neither too simple nor too chaotic, giving hope to better understand their underlying structure. In Figure 1, we show the space-time diagrams of a sample of such automata iterated on a (uniform) random configuration.

Roughly speaking, studying particles in cellular automata requires two steps:

- identifying and describing the particles, usually as finite words;
- describing the particle dynamics and understanding its effect on the properties of the CA.

Historically, this study was often performed on individual or small groups of similar-looking CA, and the first step was done in a case-by-case manner. See for example [Fis90b, Fis90a] for the 3-state cyclic automaton, [BF95, BF05] for Rule #184 and other automata with similar dynamics, [Gra84, EN92] for Rule #18... Other works such as [Elo94] skip the first step and study particle dynamics in an abstract manner instead, deducing dynamical properties of automata by making assumptions on the dynamics of their particles (although examples of such particles are provided).

The first general formalism of particles in cellular automata was introduced by M. Pivato: homogeneous regions are correspond to words from a subshift Σ and particles are defects in a configuration of Σ. He developed some invariants to characterise the persistence of a defect [Piv07a, Piv07c] and he described the different possible dynamics of propagation of a defect [Piv07b].

In the present work we focus on the second step first. More precisely, we are interested in how the existence of some particle set with good dynamical properties affects the typical asymptotic behavior. Then we apply this general framework to a variety of examples, finding the sets of particles by Pivato’s methods or otherwise, to explain the self-organisation that is observed experimentally.

Let us define more formally what we mean by typical asymptotic behavior. Starting from a σ-invariant measure $\mu \in M_\sigma(\mathcal{A}^\mathbb{Z})$ (i.e. $\mu(\sigma^{-1}(U)) = \mu(U)$ for all borelian set U), we consider the iteration of a cellular automata F on this measure:

$$F^* : M_\sigma(\mathcal{A}^\mathbb{Z}) \rightarrow M_\sigma(\mathcal{A}^\mathbb{Z}) \quad \mu \mapsto F^* \mu \quad \text{where} \quad F^* \mu(U) = \mu(F^{-1}(U)) \text{ for all borelian } U.$$

We then study the asymptotic properties of the sequence $(F^*_t \mu)_{t \in \mathbb{N}}$, and particularly the set of cluster points called the limit measure(s). Sometimes our information on the μ-limit set, which is the union of the supports of all limit measures. Equivalently, it is the set of configurations containing only patterns whose probability to appear in the space-time diagram does not tend to zero as time tends to infinity. This set introduced in [KM00] corresponds to the configurations which are observed asymptotically when the automaton is iterated on a random configuration.

When studying typical asymptotic behaviour in this sense, it is unreasonable to except a general result since a wide variety of limit measures can be reached in the general case [HdMS13] and any nontrivial property of the μ-limit set is undecidable [Del11]. That is why we consider restricted cases for the dynamics of the particles. To determine the μ-limit set in some cases, P. Kurka suggests an approach based on particle weight function which assigns weights to certain words [Kur03]. However, this method does not cover any case when a defect can remain in the μ-limit set. Hence we aim at a more general approach, in terms of particle dynamics as well as initial measures.

One of our main motivations for this study is the class of captive cellular automata, where the local rule cannot make a colour appear if it is not already present in the neighbourhood. These automata were introduced by G. Theyssier in [The04] for their algebraic properties, but he also noticed an interesting phenomenon: when drawing a captive cellular automaton at random (fixed
alphabet and neighbourhood), most captive automata exhibited the type of behavior we described above. Any kind of general result regarding self-organisation of captive cellular automata remains a challenging open problem.

This article is divided into two main sections, corresponding to improved versions of results previously published in conferences [HdMS11, HdMS12]. In Section 2, we present a qualitative result generalising from [HdMS11] with an improved formalism, shorter proofs and a new application to probabilist cellular automata (Section 2.6). Then, in Section 3, we refine our approach on a subclass to obtain some quantitative results. Sections 3.1 to 3.3 were published in [HdMS12]; we correct some inaccuracies in the proofs and extend the study to other parameters.

Qualitative approach. In Section 2, we prove a qualitative result. For an initial \(\sigma\)-ergodic measure \(\mu\), assuming particles have good collision properties (coalescence), only particles moving in one particular direction can persist asymptotically. We introduce our own formalism of particle system in Section 2.1 so as to be able to describe the dynamics of the particles, and Section 2.3 is dedicated to the proof itself. Section 2.4 present a simplified version of Pivato’s formalism which is by far the simplest way to find such a particle system in most examples.

We spend Section 2.5 on various examples of automata where this result can be applied:

- **Section 2.5.1** we characterize the \(\mu\)-limit set of the “traffic” automaton (rule #184), a simple case that may clarify the formalism. The results were known for initial Bernoulli measures [BF95, BF05] but our method applies for every \(\sigma\)-ergodic measure;
- **Section 2.5.2** we consider the family of \(n\)-cyclic cellular automata introduced in [Fis90a, Fis90b]. Using our method, we go further in the study of these simple automata: in particular, for \(n = 3\) or \(4\), we show that the limit measure is unique and is a convex combination of Dirac measures supported by uniform configurations.
- **Section 2.5.3** we characterize the \(\mu\)-limit set of all one-sided captive cellular automata. This is a first step to the study of asymptotic behaviour of captive cellular automata.
- **Section 2.5.4** last, we apply our formalism to a cellular automaton where the particles do not have a linear speed but instead perform random walks by drawing randomness from the initial measure.

However, our results are not general enough to apply to defects of a sofic subshift that can have a particle-like behavior, such as in Rule #18 (see the bottom right picture in Figure 1 and [EN92]), or to more complicated particle systems such as those observed in general captive cellular automata.

Finally, in Section 2.6, we generalize our method to probabilistic cellular automata. As an application, we partially describe limit measures of the probabilistic cellular automata proposed by N. Fatès in [Fat13] as a candidate to solve the density classification problem. Another application proposed in Section 2.6.3 present a generalization to the infinite line of a self stabilization process toward a discrete line proposed in [RR15].

Quantitative approach. In Section 3, we improve the previous qualitative results with a quantitative approach, considering the time evolution of some parameters when the particle dynamics are very simple. This research direction was inspired by [KFD11], where the authors consider the waiting time before a particle crosses the central column (called entry time). Using the same approach as in [BF95, KM00], we show that the behavior of these automata can be described by a random walk process (Section 3.1), and we approximate this process by a Brownian motion using scale invariance (Section 3.3). Thanks to this tool, we answer negatively a conjecture proposed in [KFD11] by determining the correct asymptotic law for the entry time of a particle in the central column (Section 3.2). We then use the same approach on various natural parameters such as the density of particles at time \(t\) (Section 3.4) or the rate of convergence to the limit measure (Section 3.5). This generalises some known results on initial Bernoulli measures from [KFD11] and [BF05], in particular
relaxing the conditions on the initial measures. In Section 3.6, we exhibit various examples with similar dynamics on which these results apply.

In all the article, space-time diagrams were produced using the Sage mathematical software and follow the convention $\square = 0$, $\blacksquare = 1$, $\blacksquare = 2$, $\blacksquare = 3$.

Figure 1. Space-time diagrams of some cellular automata with particles, starting from a configuration drawn uniformly at random.
2. Particle-based organisation: qualitative results

In this section, we take a qualitative approach to self-organisation: that is, we assume some properties on the dynamics of the particles of some cellular automata and try to deduce properties of the \(\mu \)-limit measures set of the cellular automaton, with no regard to how fast this organisation takes place.

2.1. Particles

2.1.1. Definition of symbolic system

Given a finite alphabet \(\mathcal{A} \), a word is a finite sequence of elements of \(\mathcal{A} \). Denote \(\mathcal{A}^* = \bigcup_n \mathcal{A}^n \) the set of all words where \(\mathcal{A}^0 \) is the empty word \(\varepsilon \). An infinite sequence indexed by \(\mathbb{Z} \) is called a configuration and the set of configuration \(\mathcal{A}^\mathbb{Z} \) is a compact set. For a word \(u \in \mathcal{A}^* \) the cylinder \([u] \) is the set of configuration where \(u \) appears at the position 0.

On \(\mathcal{A}^\mathbb{Z} \) we define the shift map \(\sigma(x)_i = x_{i+1} \) for all \(x \in \mathcal{A}^\mathbb{Z} \) and \(i \in \mathbb{Z} \). A subshift is a closed \(\sigma \)-invariant subset of \(\mathcal{A}^\mathbb{Z} \). Equivalently a subshift can be defined with a set of forbidden patterns \(\mathcal{F} \) as the set of configuration where no pattern of \(\mathcal{F} \) appear. If \(\mathcal{F} \) is finite, we call it a subshift of finite type or SFT.

Given two finite alphabets \(\mathcal{A} \) and \(\mathcal{B} \), a morphism is a continuous function \(\pi : \mathcal{A}^\mathbb{Z} \to \mathcal{B}^\mathbb{Z} \) which commutes with the shift (i.e. \(\sigma(\pi(x)) = \pi(\sigma(x)) \) for all \(x \in \mathcal{A}^\mathbb{Z} \)). Equivalently a morphism can be defined by a local map \(f : \mathcal{A}^\mathcal{N} \to \mathcal{B} \) where \(\mathcal{N} \subset \mathbb{Z} \) is a finite set called the neighborhood such that

\[
\pi(x)_i = f(x_{[i-r,i+r]}) \quad \text{for all} \quad x \in \mathcal{A}^\mathbb{Z} \quad \text{and} \quad i \in \mathbb{Z}.
\]

The radius is the minimal \(r \in \mathbb{N} \) such that \(\mathcal{N} \subset [-r,r] \). A cellular automaton is a morphism \(\mathcal{A}^\mathbb{Z} \to \mathcal{A}^\mathbb{Z} \), that is, the input and the output are defined on the same alphabet. In particular a cellular automaton can be iterated and it makes sense to study its dynamics.

2.1.2. Particle system

Definition 1 (Particle system). Let \(F : \mathcal{A}^\mathbb{Z} \to \mathcal{A}^\mathbb{Z} \) be a cellular automaton. A particle system for \(F \) is a tuple \((\mathcal{P}, \pi, \phi) \), where:

- \(\mathcal{P} \) is a finite set whose elements are called particles;
- \(\pi : \mathcal{A}^\mathbb{Z} \to (\mathcal{P} \cup \{0\})^\mathbb{Z} \) is a morphism;
- \(\phi : \mathcal{A}^\mathbb{Z} \times \mathbb{Z} \to 2^\mathcal{Z} \) where \(2^\mathcal{Z} \) denotes the subsets of \(\mathcal{Z} \) is a function called update function,
 such that the update function satisfies the following properties for all \(x \in \mathcal{A}^\mathbb{Z} \) and \(k \in \mathbb{Z} \), denoting \(\text{Part}_{\mathcal{P},\pi}(x) = \{k \in \mathbb{Z} : \pi(x)_k \in \mathcal{P}\} \), and omitting \(\mathcal{P} \) and \(\pi \) when the particle system is fixed by the context:

 Locality: There is a constant \(r > 0 \) (its radius) such that \(\phi(x,k) \subset [k-r,k+r] \).
 The particles cannot “jump” arbitrarily far. By constant we mean it does not depend on \(x \) and \(k \).

 Surjectivity: \(\text{Part}(F(x)) = \phi(x,Z) \).
 A particle at time \(t+1 \) cannot appear from nowhere; it must be the image of some particle at time \(t \).

 Particle control: \(\forall k \in \mathbb{Z}, \ k \in \text{Part}(x) \Rightarrow \forall k' \in \phi(x,k), k' \in \text{Part}(F(x)) \);
 \(k \notin \text{Part}(x) \Rightarrow \phi(x,k) = \emptyset \).
 If a particle is sent somewhere, it remains a particle; conversely, a particle cannot come from a non-particle.

 Disjunction: \(k < k' \Rightarrow \phi(x,k) = \phi(x,k') \) or \(\max \phi(x,k) < \min \phi(x,k') \).
 Two different particles crossing is considered an interaction, in which case their common image is the resulting set of particles. This assumption excludes half-progression half-interaction cases where two particles share a part of their image.
Intuitively, the update function associate to each particle at time \(t \) (given as a coordinate in a configuration) its set of images at time \(t+1 \) under the action of the cellular automaton. This image can be one particle if the particle simply persists, but also \(\emptyset \) if it disappears or many particles. Particles that interact share the same image.

The four conditions ensure that the update function accurately describe the time evolution of the particles. Notice that since the morphism and update function are defined locally, the conditions can be checked in an automatic manner by simple enumeration of patterns up to a certain length.

In the context of a fixed particle system for \(F \), we use shorthands for the composition of the update function, defined inductively:

\[
\phi^t(x,k) = \bigcup_{k' \in \phi(x,k)} \phi^{t-1}(F(x),k') \text{ and } \phi^{-1} \circ \phi(x,k) = \{k' \in \mathbb{Z} \mid \phi(x,k') = \phi(x,k)\}.
\]

If \(\phi(x,k) \) is a singleton, we use “\(\phi(x,k) \)” instead of “the only member of \(\phi(x,k) \)” as an abuse of notation.

2.1.3. Coalescence

We postpone the discussion on how to actually find a particle system in a given cellular automata to Section 2.4. We now look for assumptions on the dynamics of the particles that let us deduce that some particles disappear asymptotically. Simulations suggest that this is the case when the particles are forced to collide, and that these collisions are destructive in the sense that the total number of particles decreases; thus we introduce the notion of coalescence.

Definition 2 (Coalescence). Let \(F : \mathcal{A}^\mathbb{Z} \to \mathcal{A}^\mathbb{Z} \) be a cellular automaton, and \((\mathcal{P}, \pi, \phi) \) a particle system for \(F \). This particle system is coalescent if, for every \(x \in \mathcal{A}^\mathbb{Z} \) and \(k \in \text{Part}(x) \), the particle has one of two possible behaviors:

- **Progression:** \(|\phi(x,k)| = |\phi^{-1}(\phi(x,k))| = 1 \), and \(\pi(x)_k = \pi(F(x))_{\phi(x,k)} \) (the particle persists and its type does not change), or
- **Destructive interaction:** \(|\phi(x,k)| < |\phi^{-1}(\phi(x,k))| \) (particles collide and strictly fewer particles are created).

Progressing and interacting particles of a configuration \(x \in \mathcal{A}^\mathbb{Z} \) are denoted \(\text{Prog}_{\mathcal{P},\pi,\phi}(x) \) and \(\text{Inter}_{\mathcal{P},\pi,\phi}(x) \), respectively, and \(\mathcal{P}, \pi \) and \(\phi \) are omitted when the particle system is clear from the context. \(k \in \text{Prog}_{\mathcal{P},\pi,\phi}(x) \) is the case when we use “\(\phi(x,k) \)” to mean “the only member of the singleton \(\phi(x,k) \)”.

Notice that, regardless of coalescence, we have because of locality \(|\phi(x,k)| + |\phi^{-1}(\phi(x,k))| \leq 2r + 2 \), where \(r \) is the radius of the update function. See Figure 2 for a visual proof.

![Figure 2. Visual proof that \(|\phi(x,k)| + |\phi^{-1}(\phi(x,k))| \leq 2r + 2 \).](image-url)

Even though the main result makes no reference to the speed of a particle, introducing this notion lets us state a corollary that is easier to use as well as corresponding more clearly to the intuition.
Definition 3 (Speed). Let F be a cellular automata and (P, π, ϕ) be a particle system for F.

A particle $p \in P$ has speed $v \in \mathbb{Z}$ if for any configuration $x \in A^Z$ and $k \in \mathbb{Z}$ such that $\pi(x)_k = p$, we have one of the following:

- **Eventual interaction**: $\exists t, \phi^t(x, k) \in \text{Inter}(F^t(x));$
- **Progression at speed** v: $\forall t, \phi^t(x, k) \in \text{Prog}(F^t(x))$ and $\phi^t(x, k) - k \sim pt$.

2.2. Probability measures and μ-limit sets

The μ-limit set was introduced in [KM00] to describe the asymptotic behaviour corresponding to empirical observations. It consists in the patterns whose probability to appear does not tend to 0 when the initial point is chosen at random. To define it formally, let us introduce some notations.

Denote $\mathcal{M}_\sigma(A^Z)$ the set of σ-invariant probability measure on A^Z (i.e. μ such that $\mu(\sigma^{-1}(U)) = \mu(U)$ for all borelian U). A measure is ergodic if every σ-invariant borelian set has measure 0 or 1, and we denote $\mathcal{M}_{\sigma-\text{erg}}(A^Z)$ the set of ergodic probability measures. [Wal82] gives a good introduction to ergodic probability measures.

Examples. The Bernoulli measure $\lambda(p_a)_{a \in A}$ associated with a sequence $(p_a)_{a \in A}$ of elements of $[0, 1]$ whose sum is 1 is defined by $\lambda(p_a)_{a \in A}([u]) = p_{u_0}p_{u_1} \cdots p_{u_{|u|-1}}$ for all $u \in A^*$. If all elements of $(p_a)_{a \in A}$ have the same value $\frac{1}{|A|}$ we call it the uniform Bernoulli measure denoted λ. For any finite word $u \in A^*$, we also define δ_u the unique σ-invariant probability measure supported by the σ-periodic configuration ω_u^ω.

Given a cellular automaton $F : A^Z \rightarrow A^Z$ and an initial measure $\mu \in \mathcal{M}_\sigma(A^Z)$, we define the measure $F_\ast \mu$ by $F_\ast \mu(U) = \mu(F^{-1}(U))$ for any borelian U. Since F commutes with σ, one has $F_\ast \mu \in \mathcal{M}_\sigma(A^Z)$. Moreover if $\mu \in \mathcal{M}_{\sigma-\text{erg}}(A^Z)$, then $F_\ast \mu \in \mathcal{M}_{\sigma-\text{erg}}(A^Z)$ as well. This allows to define the following action:

$$F_\ast : \mathcal{M}_\sigma(A^Z) \rightarrow \mathcal{M}_\sigma(A^Z) \quad \mu \mapsto F_\ast \mu.$$

We consider the set of cluster points of the sequence $(F_\ast^t \mu)_{t \in \mathbb{N}}$ called the *limit measures set* and denoted by $\mathcal{V}(F, \mu)$. The closure of the union of the supports of these measures is called the *μ-limit set* and it is denoted by $\Lambda_\mu(F)$. Equivalently, it can be defined as the subshift

$$\Lambda_\mu(F) = \left\{ x \in A^Z : x \in A^* \text{ does not appear in } x \text{ if and only if } \lim_{t \to \infty} F_\ast^t \mu([u]) = 0 \right\}.$$

2.3. A particle-based self-organisation result

Define the *frequency* with which the pattern u appears in the configuration x as

$$\text{Freq}(u, x) = \limsup_{n \to \infty} \frac{\text{Card}\{i \in [-n, n] : x_{i+|u|-1]} = u\}}{2n + 1}.$$

Similarly we define $\text{Freq}(S, x)$ where S is a set of patterns.

We introduce the following notations for all the subsequent proofs. For $n \in \mathbb{N}$, let B_n be the set $[-n, n] \subset \mathbb{Z}$. Let $F : A^Z \rightarrow A^Z$ be a cellular automaton. In the context of a fixed particle system (P, π, ϕ), we introduce the *densities of particles* in a configuration $x \in A^Z$:

for $p \in P$, $D_p(x) = Freq(p, \pi(x))$ and $D(x) = Freq(P, \pi(x));$

$$D_{\text{Prog}}(x) = \limsup_{t \to \infty} \frac{1}{2t + 1} \left| \text{Prog}(x) \cap B_t \right|$$ and similarly for $D_{\text{Inter}}(x)$,

the last two definitions applying only if the particle system is coalescent.
For \(\mu \in \mathcal{M}_{\text{-erg}}(\mathcal{A}^Z) \), the \(\lim \sup \) can be replaced by a simple limit in the definition of frequency for \(\mu \)-almost all configurations, this is the Birkhoff’s ergodic theorem. This implies for example that \(\mathcal{D}(x) = \sum_{p \in \mathcal{P}} D_p(x) \) for \(\mu \)-almost all \(x \).

First of all, the following proposition clarifies how controlling the frequency of interactions gives us information about the evolution of the density of the different kinds of particles.

Proposition 1 (Evolution of densities). Let \(F : \mathcal{A}^Z \rightarrow \mathcal{A}^Z \) be a cellular automaton, \(\mu \in \mathcal{M}_{\sigma-\text{erg}}(\mathcal{A}^Z) \), and \((\mathcal{P}, \pi, \phi)\) a coalescent particle system for \(F \), we denote \(r \) the radius of the update function \(\phi \). Then, for \(\mu \)-almost all \(x \in \mathcal{A}^Z \):

1. \(\mathcal{D}(F(x)) \leq \mathcal{D}(x) - \frac{1}{r+1} \mathcal{D}_{\text{Inter}}(x) \);
2. \(\forall p \in \mathcal{P}, \mathcal{D}_p(F(x)) \leq \mathcal{D}_p(x) + \mathcal{D}_{\text{Inter}}(x) \).

Proof. (i) By surjectivity of the update function, we have \(\text{Part}(F(x)) = \bigcup_{k \in \text{Part}(x)} \phi(x, k) \). Furthermore, by locality,

\[
\forall x \in \mathcal{A}^Z, \quad \forall n \in \mathbb{N}, \quad \text{Part}(F(x)) \cap B_n \subseteq \bigcup_{k \in \text{Part}(x) \cap B_{n+r}} \phi(x, k) \subseteq \bigcup_{k \in \text{Prog}(x) \cap B_{n+r}} \phi(x, k) \cup \bigcup_{k \in \text{Inter}(x) \cap B_{n+r}} \phi(x, k).
\]

The second line being obtained by coalescence: since \(\text{Part}(x) = \text{Prog}(x) \cup \text{Inter}(x) \), particles in \(F(x) \) are either images of progressing particles or of interacting particles. By disjunction:

\[
\forall x \in \mathcal{A}^Z, \quad \left| \bigcup_{k \in \text{Prog}(x) \cap B_{n+r}} \phi(x, k) \right| = |\text{Prog}(x) \cap B_{n+r}|
\]

and

\[
\forall x \in \mathcal{A}^Z, \quad \left| \bigcup_{k \in \text{Inter}(x) \cap B_{n+r}} \phi(x, k) \right| \leq \frac{r}{r+1} \left| \phi^{-1} \left(\bigcup_{k \in \text{Inter}(x) \cap B_{n+r}} \phi(x, k) \right) \right| \leq \frac{r}{r+1} |\text{Inter}(x) \cap B_{n+2r}|.
\]

This first equality is because progressing particles are “one-to-one”. The ratio \(\frac{r}{r+1} \) is due to the condition of coalescence plus the remark that \(| \phi(x, k) | + | \phi^{-1}(\phi(x, k)) | \leq 2r+2 \). The last inequality is by locality.

\[
\forall x \in \mathcal{A}^Z, \quad |\text{Part}(F(x)) \cap B_n| \leq |\text{Prog}(x) \cap B_{n+r}| + \frac{r}{r+1} |\text{Inter}(x) \cap B_{n+2r}|.
\]

Then, passing to the limit:

\[
\forall \mu x \in \mathcal{A}^Z, \quad \mathcal{D}(F(x)) \leq \mathcal{D}_{\text{Prog}}(x) + \frac{r}{r+1} \mathcal{D}_{\text{Inter}}(x) = \mathcal{D}(x) - \frac{1}{r+1} \mathcal{D}_{\text{Inter}}(x).
\]

(ii) Similarly, for any particle \(p \in \mathcal{P} \), one has for all \(x \in \mathcal{A}^Z \) and \(n \in \mathbb{N} \):

\[
\{ k \in B_n \mid \pi(F(x))_k = p \} \subseteq \bigcup_{k \in \text{Part}(x) \cap B_{n+r}} \phi(x, k) \quad \text{(locality)}.
\]

For \(k \in \text{Prog}(x) \), if \(\pi(F(x))_{\phi(x,k)} = p \), then by definition of coalescence \(\pi(x)_k = p \). For \(\mu \)-almost all \(x \), using \(\text{Part}(x) = \text{Prog}(x) \cup \text{Inter}(x) \), we conclude that \(\mathcal{D}_p(F(x)) \leq \mathcal{D}_p(x) + \mathcal{D}_{\text{Inter}}(x) \) by passing to the limit. \(\square \)

We state our main result. A simple version (Corollary 1) states that in a coalescent particle system with a \(\sigma \)-ergodic initial measure, if all particles can be assigned a speed, then only particles with one fixed speed can remain asymptotically. The more general result is designed to handle
more difficult cases such as particles performing random walks, as we can see on the last example of Section 2.5.

Definition 4 (Clashing). Let \(F : \mathcal{A}^\mathbb{Z} \rightarrow \mathcal{A}^\mathbb{Z} \) be a cellular automaton, \((\mathcal{P}, \pi, \phi)\) a coalescent particle system for \(F \), and \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) two subsets of \(\mathcal{P} \). We say that \(\mathcal{P}_1 \) clashes with \(\mathcal{P}_2 \) \(\mu \)-almost surely if, for every \(n \in \mathbb{N}^* \) and \(\mu \)-almost all \(x \in \mathcal{A}^\mathbb{Z} \),

\[
\pi(x)_0 \in \mathcal{P}_1 \text{ and } \pi(x)_n \in \mathcal{P}_2 \implies \exists \ell \in \mathbb{N}, \phi^\ell(x,0) \in \text{Inter}(F^\ell(x)) \text{ or } \phi^\ell(x,n) \in \text{Inter}(F^\ell(x))
\]

The intuition behind clashing particles in the following: if two clashing particles are present, then they end up interacting (almost surely) and thus decreasing the global frequency of particles. This is why they cannot both persist asymptotically. Note that clashing is oriented left to right: particles with speed +1 clash with particles of speed -1, but the converse is not true.

Theorem 1 (Main qualitative result). Let \(F : \mathcal{A}^\mathbb{Z} \rightarrow \mathcal{A}^\mathbb{Z} \) be a cellular automaton, \(\mu \) an initial \(\sigma \)-ergodic measure and \((\mathcal{P}, \pi, \phi)\) a coalescent particle system for \(F \) where \(\mathcal{P} \) can be partitioned into sets \(\mathcal{P}_1 \ldots \mathcal{P}_n \) such that, for every \(i < j \), \(\mathcal{P}_i \) clashes with \(\mathcal{P}_j \) \(\mu \)-almost surely.

Then all particles appearing in the \(\mu \)-limit set belong to the same subset, i.e. there exists \(a \) \(i \) such that

\[
\forall p \in \mathcal{P}, p \in \mathcal{L}(\pi(\Lambda_\mu(F))) \Rightarrow p \in \mathcal{P}_i.
\]

If furthermore there exists \(a \) \(j \) such that \(\mathcal{P}_j \) clashes with itself \(\mu \)-almost surely, then this set of particles does not appear in the \(\mu \)-limit set, i.e.

\[
\forall p \in \mathcal{P}, p \in \mathcal{L}(\pi(\Lambda_\mu(F))) \Rightarrow p \notin \mathcal{P}_j.
\]

Corollary 1 (Version with speedy particles). Let \(F : \mathcal{A}^\mathbb{Z} \rightarrow \mathcal{A}^\mathbb{Z} \) be a cellular automaton, \(\mu \) an initial \(\sigma \)-ergodic measure and \((\mathcal{P}, \pi, \phi)\) a coalescent particle system for \(F \).

If each particle \(p \in \mathcal{P} \) has speed \(v_p \in \mathbb{R} \), then there is a speed \(v \in \mathbb{R} \) such that:

\[
\forall p \in \mathcal{P}, p \in \mathcal{L}(\pi(\Lambda_\mu(F))) \Rightarrow v_p = v.
\]

Proof of Theorem 1. Let \(i = 1, j = 2 \) for clarity and assume there are two particles \(p_1 \in \mathcal{P}_1, p_2 \in \mathcal{P}_2 \) appearing in \(\mathcal{L}(\pi(\Lambda_\mu(F))) \). By definition, this means that \(\pi_* F^t_\mu([p_i]) \xrightarrow{t \to \infty} 0 \) for \(i \in \{1,2\} \).

For all \(x \in \mathcal{A}^\mathbb{Z} \), \((\mathcal{D}(F^t(x)))_{t \in \mathbb{N}} \) is a decreasing sequence of positive reals. For \(t \in \mathbb{N} \), by Birkhoff’s ergodic theorem applied to \(\pi_* F^t_\mu \), we have for \(\mu \)-almost all \(x \) \(\mathcal{D}(F^t(x)) = \pi_* F^t_\mu([\mathcal{P}]) \). Therefore, for \(\mu \)-almost all \(x \), \((\mathcal{D}(F^t(x)))_{t \in \mathbb{N}} = (\pi_* F^t_\mu([\mathcal{P}]))_{t \in \mathbb{N}} \) and therefore \(\pi_* F^t_\mu([\mathcal{P}]) \xrightarrow{t \to \infty} d_\infty \geq 0 \).

For \(x \in \mathcal{A}^\mathbb{Z} \), denote \(\mathcal{D}_{\mathcal{P}_i}(x) = \text{Freq}(\mathcal{P}_i, \pi(x)) \). By the first point of Proposition 1 we can see that for \(\mu \)-almost all \(x \in \mathcal{A}^\mathbb{Z} \),

\[
\sum_{t \in \mathbb{N}} \mathcal{D}_{\text{Inter}}(F^t(x)) \leq (r + 1) \left(\sum_{t \in \mathbb{N}} \mathcal{D}(F^{t+1}(x)) - \mathcal{D}(F^t(x)) \right) \leq (r + 1)(\mathcal{D}(x) - d_\infty) < +\infty.
\]

Again by Birkhoff’s theorem, \((\mathcal{D}_{\mathcal{P}_i}(F^t(x)))_{t \in \mathbb{N}} = (\pi_* F^t_\mu([\mathcal{P}_i]))_{t \in \mathbb{N}} \) for \(\mu \)-almost all \(x \). By the second point of Proposition 1

\[
\text{For } i \in \{1,2\}, \sup_{n \in \mathbb{N}} |\mathcal{D}_{\mathcal{P}_i}(F^{t+n}(x)) - \mathcal{D}_{\mathcal{P}_i}(F^t(x))| \leq \sum_{n=0}^\infty \mathcal{D}_{\text{Inter}}(F^{t+n}(x)) \to 0.
\]

Thus \(\pi_* F^t_\mu([\mathcal{P}_i]) \) is a Cauchy sequence and admits a limit \(d_i \neq 0 \).

Since clashing particles are present with positive frequency, they generate interactions that decrease the global density of particles. We will reach a contradiction with the fact that the global density tends to a limit.
Fix $\varepsilon < \frac{d_1 d_2}{2r + 2}$ and T large enough such that for $t \geq T$, $\pi_* F_t^\epsilon \mu([\mathcal{P}]) - d_\infty < \varepsilon$ and $|\pi_* F_t^\epsilon \mu([\mathcal{P}_i]) - d_i| < \varepsilon$ for $i \in \{1, 2\}$. By Birkhoff’s ergodic theorem applied on $\pi_* F_t^\epsilon \mu$, we have:

$$\frac{1}{K} \sum_{k=0}^K \pi_* F_t^\epsilon \mu([p_1]_0 \cap [p_2]_k) \longrightarrow_{K \to \infty} \pi_* F_t^\epsilon \mu([p_1]) \cdot \pi_* F_t^\epsilon \mu([p_2]),$$

and $\pi_* F_t^\epsilon \mu([p_1]) \cdot \pi_* F_t^\epsilon \mu([p_2]) \geq d_1 \cdot d_2 - (d_1 + d_2 - \varepsilon) \geq d_1 \cdot d_2 - 2\varepsilon$. In particular, one can find a k such that $\pi_* F_t^\epsilon \mu([p_1]_0 \cap [p_2]_k) > d_1 \cdot d_2 - 3\varepsilon$. By Birkhoff’s theorem, this means that words of $V_k = p_1(\mathcal{P} \cup \{0\})^{k-1}p_2 \subset (\mathcal{P} \cup \{0\})^*$ have frequency at least $d_1 \cdot d_2 - 3\varepsilon$ in $F_t^\epsilon(x)$, for μ-almost all $x \in \mathcal{A}^Z$.

Since \mathcal{P}_1 and \mathcal{P}_2 clash μ-almost surely, any occurrence of V_k yields an interaction:

$$\forall \mu x \in \mathcal{A}^Z, \mathcal{D}(F_t^\epsilon(x)) - d_\infty \geq \frac{1}{r + 1} \sum_{i=t}^{\infty} \mathcal{D}_{\text{Inter}}(F_t^\epsilon(x)) \quad \text{Proposition 1(i)}$$

$$\geq \frac{1}{2r + 2} \text{Freq}(V_k, F_t^\epsilon(x)) \quad \mathcal{P}_1 \text{ and } \mathcal{P}_2 \text{ clash } \mu\text{-almost surely}$$

$$\geq \frac{1}{2r + 2} (d_1 \cdot d_2 - 3\varepsilon) > \varepsilon,$$

which is a contradiction with the definition of ε. \qed

Proof of Corollary 2. Consider the set of speeds $\{v_p : p \in \mathcal{P}\}$ and order it as $v_1 > v_2 > \cdots > v_n$. Now partition the set of particles into $(\mathcal{P}_{v_i})_{0 \leq i \leq n}$ where \mathcal{P}_{v_i} is the set of particles with speed v_i, and apply the theorem.

We only need to show that for any $i < j$, \mathcal{P}_{v_i} clashes with \mathcal{P}_{v_j} μ-almost surely. Let $p_i \in \mathcal{P}_{v_i}$ and $p_j \in \mathcal{P}_{v_j}$, and $x \in \mathcal{A}^Z$ such that $\pi(x)_0 = p_i$ and $\pi(x)_n = p_j$ for some $n \in \mathbb{N}^*$. If both particles satisfy the second property in the definition of speed (Progression at speed v), then for some t large enough we have $\phi^t(x, 0) > \phi^t(x, n)$, which is forbidden by coalescence since two particles in progression cannot cross. Thus at some time t we have either $\phi^t(x, 0) \in \text{Int}(F^t(x))$ or $\phi^t(x, n) \in \text{Int}(F^t(x))$. \qed

2.4. Defects

Before giving a series of examples where this result can be used to describe the typical asymptotic behavior of a cellular automaton, we present the formalism introduced by Pivato in [Piv07a, Piv07c] that defines particles as defects with respect to a F-invariant subshift Σ. Indeed, this formalism gives us an easier way to find the particle systems in our examples.

Intuitively, the F-invariant subshift describes the homogeneous regions that persist under the action of F in the space-time diagram, and defects are the borders between these regions. This allows us to define \mathcal{P} and π in a way that corresponds to the intuition, even though it gives no information on the dynamics of the particles (the update function ϕ).

2.4.1. General definitions

For a cellular automaton F, consider Σ a F-invariant subshift. The defect field of $x \in \mathcal{A}^Z$ with respect to Σ is defined as:

$$F_x^\Sigma: \mathbb{Z} \to \mathbb{N} \cup \{\infty\}, \quad k \mapsto \max \left\{ n \in \mathbb{N} : x_{k+[-\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil]} \in \mathcal{L}_{\infty}(\Sigma) \right\},$$

where the result is possibly 0 or ∞ if the set is empty or infinite. Intuitively, this function returns the size of the largest word admissible for Σ centred on the cell k. A defect in a configuration
x relative to \(\Sigma \) is a local minimum of \(F_x^\Sigma \). Then the interval \([k,l]\) between two defects forms a homogeneous region in the sense that \(x_{[k+1,l]} \in L(\Sigma) \).

However, it is not true that we can always make a correspondence between defects and a finite set of words (forbidden patterns), so as to obtain a finite set of particles and a morphism. This is the case only when the set of forbidden patterns is finite, that is, when \(\Sigma \) is a SFT. In this case, a defect corresponds to the centre of the occurrence of a forbidden word. This is a limitation of our result.

The examples given in Figure 1 suggest that defects can usually be classified using one of these approaches:

- Regions correspond to different subshifts and defects behave according to their surrounding regions (interfaces - e.g. cyclic automaton);
- Regions correspond to the same periodic subshift and defects correspond to a “phase change” (dislocations - e.g. rule 184 automaton).

2.4.2. Interfaces

Let \(\Sigma \) be a SFT and assume \(\Sigma \) can be decomposed as a disjoint union \(\Sigma_1 \sqcup \cdots \sqcup \Sigma_n \) of \(F \)-invariant \(\sigma \)-transitive SFTs (the domains). The intuition is that between two defects, each region belongs to the language of only one of the domains, and we can classify defects according to which domain the regions surrounding them on the left and the right correspond to. Since each domain is \(F \)-invariant, this classification is conserved under the action of \(F \) for non-interacting defects.

Formally, since the different domains \((\Sigma_k)_{k \in [1,n]} \) are disjoint SFTs, there is a length \(\alpha > 0 \) such that \((L_n(\Sigma_k))_{k \in [1,n]} \) are disjoint where \(L_n(\Sigma_k) \) is the set of length \(\alpha \) of \(\Sigma_k \) (if two subshifts share arbitrarily long words, they share a configuration by closure). In particular, if \(u \in L_n(\Sigma) \), then there is a unique \(k \) such that \(u \in L_n(\Sigma_k) \): we say that \(u \) belongs to the domain \(k \). Thus, for a given configuration, we can assign a choice of a domain to each homogeneous region between two consecutive defects, and this choice is unique if this region is larger than \(\alpha \).

We call these defects interface defects and we can classify them according to the domain of the surrounding regions. Let \(\mathcal{P} = \{p_{ij} \mid (i,j) \in [1,n]^2 \} \) be the set of particles. Define the morphism \(\pi : \mathcal{A}^\mathbb{Z} \to (\mathcal{P} \cup \{0\})^\mathbb{Z} \) of order \(\max(r, 2\alpha) \), where \(r \) is the radius of \(\Sigma \), in the following way. For \(x \in \mathcal{A}^\mathbb{Z} \) and \(k \in \mathbb{Z} \):

- If \(x_{k+[\frac{-r}{2}, \frac{r}{2}]} \in L(\Sigma) \), then \(\pi(x)_k = 0 \);
- Else, let \(\begin{align*}
 u_1 &= x_{[k-m, k]} \quad \text{where } m = \max\{n \leq \alpha : x_{[k-n, k]} \in L(\Sigma)\} \\
 u_2 &= x_{[k+1, k+m]} \quad \text{where } m = \max\{n \leq \alpha : x_{[k+1, k+m]} \in L(\Sigma)\} \\
 d_i &= \text{a domain to which } u_i \text{ belongs } (i \in \{1, 2\})
\end{align*} \)
 and put \(\pi(x)_k = p_{d_1, d_2} \).

Notice that the domain choice (choice of \(d_i \)) is unique when domains are larger than \(\alpha \) cells; otherwise, the choice between the possible \(d_i \) is arbitrary, or fixed beforehand.
2.4.3. Dislocations

Contrary to interface defects that mark a change between languages of different SFT, dislocation defects mark a “change of phase” inside a single SFT.

Let Σ be a σ-transitive SFT of order $r > 1$. We say that Σ is P-periodic if there exists a partition V_1, \ldots, V_P of $L_{r-1}(\Sigma)$ such that

$$a_1 \cdots a_r \in L_r(\Sigma) \Leftrightarrow \exists i \in \mathbb{Z}/P\mathbb{Z}, a_1 \cdots a_{r-1} \in V_i \text{ and } a_2 \cdots a_r \in V_{i+1}.$$

The period of Σ is the maximal $P \in \mathbb{N}$ such that Σ is P-periodic. For example, the orbit of a finite word $u \in A^*$, defined as $\{\sigma^k(u^\infty) : k \in \mathbb{Z}\}$ is a periodic SFT of period less than $|u|$.

We thus associate to each $x \in \Sigma$ its phase $\varphi(x) \in \mathbb{Z}/P\mathbb{Z}$ such that $x_{[0,r-2]} \in V_{\varphi(x)}$. Obviously, $\varphi(\sigma^k(x)) = \varphi(x) + k \mod p$. For $x \in A^2$, we say that an homogeneous region $[a, b]$ (i.e. a region such that $x_{[a, b]} \in \Sigma$) is in phase k if $\exists y \in \Sigma, \varphi(y) = k, x_{[a, b]} = y_{[a, b]}$. If $b - a > r - 2$, the phase of a region is unique and means $x_{[a, a+r-2]} \in V_{k+a} \mod p$.

![Figure 4](image-url) Dislocations in the checkerboard subshift ($P = 2$), marked by slanted patterns. Red lines show the visual intuition of a change of phase, with the surrounding local phases.

As we can see in Figure 4, the finite word corresponding to a defect (here 00 or 11) does not depend only on the phase of the surrounding region but also on the position of the defect. More precisely, since $\varphi(\sigma(x)) = \varphi(x) + 1$, a defect in position j with a region in phase f to its left and a defect in position 0 with a region in phase $f + j \mod P$ to its left “observe” the same finite word to their left.

Therefore, we define for each defect its local phases $\varphi([i, j]) + j \mod P$ (left) and $\varphi([j, k]) + j \mod P$ (right), where j is the position of the defect and $[i, j]$ and $[j, k]$ are the surrounding homogeneous regions.

Now we classify the defects according to the local phase of the surrounding regions. Let $\mathcal{P} = \{p_{ij} : (i, j) \in \mathbb{Z}/P\mathbb{Z}^2\}$ be the set of particles. Since defects correspond to the centre of occurrences of forbidden words and the phase of a region can be locally distinguished, the morphism $\pi : A^2 \to (\mathcal{P} \cup \{0\})$ of order $2r - 2$ is defined exactly as in the interface case. The choice of local phase is unique if the region is larger than $r - 1$ cells.

In the general case, those two formalisms can be mixed by fixing a decomposition $\Sigma = \bigsqcup_{i \in A} \Sigma_i$ where some of the Σ_i have nonzero periods. We can classify defects according to the domains and local phase of the surrounding regions in a similar manner. Except for arbitrary choices for small regions, obtaining the set of particles and the morphism from the SFT decomposition can be done in an entirely automatic way.

2.5. Examples

2.5.1. Rule 184

We consider the rule \#184 or “traffic” automaton $F_{184} : \{0, 1\}^Z \to \{0, 1\}^Z$ defined by the following local rule: $f_{184}(x_{-1}x_0x_1) = 1$ if and only if $x_0x_1 = 11$ or $x_{-1}x_0 = 10$.

12
This time evolution of this automaton can be seen as a road where the symbol 1 represents vehicles and the symbol 0 an empty space. The vehicles go forward if the cell just before them is empty and stay put otherwise. In this context, the rule #184 has been very well studied, especially in the case of initial Bernoulli measures [BF95, BF05]. We use this example mostly as a simple case to better understand the formalism, although our method has the advantage to hold for more general probability measures.

Proposition 2. Let F_{184} be the traffic automaton and $\mu \in M_{\sigma-\text{erg}}$. Then:

- $\mu([00]) > \mu([11]) \Rightarrow 11 \not\in \Lambda_{\mu}(F_{184})$;
- $\mu([00]) < \mu([11]) \Rightarrow 00 \not\in \Lambda_{\mu}(F_{184})$;
- $\mu([00]) = \mu([11]) \Rightarrow \Lambda_{\mu}(F_{184}) = \{\infty01\infty, \infty10\infty\}$.

Figure 5. Particle system for the traffic automaton.

Proof. We consider the checkerboard SFT $\Sigma = \{\infty(01)\infty, \infty(10)\infty\}$, which is 2-periodic and F_{184}-invariant. Using the dislocation formalism, we define the phases $\varphi(\infty(01)\infty) = 0$ and $\varphi(\infty(10)\infty) = 1$, obtaining a set of particles defined by their local phases $\{p_{01}, p_{10}\}$. The corresponding morphism of order $r = 2$ is defined by the local rule:

\[
\begin{align*}
00 & \rightarrow p_{01} \\
11 & \rightarrow p_{10} \\
\text{otherwise} & \rightarrow 0
\end{align*}
\]

Indeed, consider $x \in \mathcal{A}^\mathbb{Z}$ with a defect $x_{01} = 00$. The phase of the 0 in position 0 is 0 and the phase of the 0 in position 1 is 1, so this corresponds to a particle p_{01}. Changing the position of the defect would not change the particle since the local phase would be modified accordingly.

The update function is defined in the intuitive manner: with p_{01} evolving at speed -1 and p_{10} at speed $+1$ and both particles being sent to \emptyset in case of collision.

\[
\forall x \in \mathcal{A}^\mathbb{Z}, \forall k \in \mathbb{Z}, \phi(x, k) = \begin{cases}
\{k + 1\} & \text{if } \pi(x)_k = p_{10} \text{ and } \pi(x)_{k+1} \neq p_{01} \text{ and } \pi(x)_{k+2} \neq p_{01} \\
\{k - 1\} & \text{if } \pi(x)_k = p_{01} \text{ and } \pi(x)_{k-1} \neq p_{10} \text{ and } \pi(x)_{k-2} \neq p_{10} \\
\emptyset & \text{otherwise (and in particular if } \pi(x)_k = 0)
\end{cases}
\]

We now check that the particle system satisfies all necessary conditions. To do that, one should verify that the update function is defined properly, that is, show that for all $x \in \mathcal{A}^\mathbb{Z}$ and $k \in \mathbb{Z}$ we have:

\[
\pi(F(x))_{k+1} = p_{10} \Leftrightarrow \pi(x)_k = p_{10} \text{ and } \pi(x)_{k+1} \neq p_{01} \text{ and } \pi(x)_{k+2} \neq p_{01},
\]

and similarly for p_{01}. This is tedious due to the high number of cases but can be easily automated by enumerating all patterns of length 4. The different conditions follow from this claim:

Locality: Obvious by definition of ϕ.

13
Surjectivity: The \((\Rightarrow)\) direction of the claim implies that \(\pi(F(x))_{k+1} = p_{10} \Rightarrow \pi(x)_k = p_{10}\) and \(\{k + 1\} = \phi(x, k)\). The other cases are similar.

Particle control: The first condition is simply the \((\Leftarrow)\) direction of the claim. The second condition is by definition of \(\phi\).

Disjunction: For \(k < k'\), to have \(\phi(x, k) > \phi(x, k')\), the only way would be to have \(\pi(x)_{k'} = p_{01}\), \(\pi(x)_k = p_{10}\) and \(k' = k + 1\). In that case, by definition, \(\phi(x, k) = \phi(x, k') = \emptyset\).

Coalescence and speeds: Obvious by definition of \(\phi\).

Therefore we can apply Corollary 1 and only one type of particle remains in \(\Lambda_{\mu}(F_{184})\).

Furthermore, since the collisions are of the form \(p_{01} + p_{10} \rightarrow \emptyset\), it is clear that for all \(x \in \mathcal{A} \mathbb{Z}\), \(D_{p_{01}}(F_{184}(x)) - D_{p_{10}}(x) = D_{p_{10}}(F_{184}(x)) - D_{p_{10}}(x)\). Therefore, which particle remains is decided according to whether \(\mu([00]) > \mu([11])\) or the opposite, both particles disappearing in case of equality.

2.5.2. n-state cyclic automaton

The \(n\)-state cyclic automaton \(C_n\) is a particular captive cellular automaton defined on the alphabet \(\mathcal{A} = \mathbb{Z}/n\mathbb{Z}\) by the local rule

\[
c_n(x_{i-1}, x_i, x_{i+1}) = \begin{cases}
x_{i+1} & \text{if } x_{i-1} = x_i + 1 \text{ or } x_{i+1} = x_i + 1; \\
x_i & \text{otherwise.}
\end{cases}
\]

See Figure 1 for an example of space-time diagram.

This automaton was introduced by [Fis90b]. In this paper, the author shows that for all Bernoulli measure \(\mu\), the set \([i]\) \((i \in \mathcal{A})\) is a \(\mu\)-attractor iff \(n \geq 5\). Simulations starting from a random configuration suggest the following: for \(n = 3\) or \(4\), monochromatic regions keep increasing in size; for \(n \geq 5\), we observe the convergence to a fixed point where small regions are delimited by vertical lines. We use the main result to explain this observation.

Proposition 3. Define:

\[
u_+ = \{ab \in \mathcal{A}^2 : (b - a) \mod n = +1\};
\]
\[
u_- = \{ab \in \mathcal{A}^2 : (b - a) \mod n = -1\};
\]
\[
u_0 = \{ab \in \mathcal{A}^2 : (b - a) \mod n \neq \pm 1\}.
\]

Then, for any measure \(\mu \in \mathcal{M}_{\sigma-\text{erg}}((\mathbb{Z}/n\mathbb{Z})^\mathbb{Z})\), only one of those three sets can intersect the language of \(\Lambda_{\mu}(C_n)\).

If furthermore \(\mu\) is a Bernoulli measure, then the persisting set can only be \(\nu_0\).

Proof. We consider the interface defects relatively to the decomposition \(\Sigma = \bigsqcup_{i \in \mathcal{A}} \Sigma_i\), where \(\Sigma_i = \{\infty \cdots \}\). \(\Sigma\) is a \(C_n\)-invariant SFT of order \(r = 2\), and defects are exactly transitions between colours. Thus we define \(\mathcal{P} = \{p_{ab} : ab \in \mathcal{A}^2\}\). One cell is enough to distinguish between domains (\(\alpha = 1\)) and we obtain a morphism \(\pi\) of order 2 defined by the local rule:

\[
\mathcal{A}^2 \rightarrow \mathcal{P} \cup \{0\}
\]
\[
a \cdot a \mapsto 0 \quad \text{for all } a, b \in \mathcal{A}.
\]
\[
a \cdot b \mapsto p_{ab}
\]

Simulations suggest that \(p_{ab}\) evolves at constant speed +1 if \(ab \in \nu_+\), −1 if \(ab \in \nu_-\) and 0 if \(ab \in \nu_0\). Particles progress at their assigned speed unless they meet another particle, in which case they collide.
Proposition 4. Let \(p_+ = \{ p_{ab} : ab \in u_+ \} \) and \(p_- \) and \(p_0 \) similarly. Formally, for \(x \in \mathcal{A}^\mathbb{Z} \) and \(k \in \mathbb{Z} \) the update function is defined as:

\[
\phi(x, k) = \begin{cases}
 \{ k+1 \} & \text{if } \pi(x)_k \in p_+ \text{ and } \pi(x)_{k+1} \notin p_0 \cup p_- \text{ and } \pi(x)_{k+2} \notin p_-; \\
 \{ k-1 \} & \text{if } \pi(x)_k \in p_- \text{ and } \pi(x)_{k-1} \notin p_0 \cup p_+ \text{ and } \pi(x)_{k-2} \notin p_+; \\
 \{ k \} & \text{if } \pi(x)_k \in p_0 \text{ and } \pi(x)_{k+1} \notin p_- \text{ and } \pi(x)_{k-1} \notin p_+; \\
 \emptyset & \text{otherwise (and in particular if } \pi(x)_k = 0).
\end{cases}
\]

As previously, checking that this particle system satisfies all conditions necessary to apply Corollary [1] is tedious but can be automated, since it consists mostly in checking that the update function actually describes the dynamics of the particles on all words of length 6. Since \([p_+] = \pi([u_+]) \) and so on, we obtain the result.

If \(\mu \) is a Bernoulli measure: Consider the “mirror” application \(\gamma((a_k)_{k \in \mathbb{Z}}) = (a_{-k})_{k \in \mathbb{Z}}. \) \(\gamma \) is continuous, and thus measurable. We have \(\mu(\gamma([u])) = \mu([u^{-1}]) = \mu([u]), \) where \((u_1 \cdots u_n)^{-1} = u_n \cdots u_1. \) But \(\pi(x)_k \in p_+ \iff \pi(\gamma(x))_{-k} \in p_-, \) and conversely; since \(F \circ \gamma = \gamma \circ F, \) all measures \(F^t \mu \) are \(\gamma \)-invariant, and thus no particle in \(p_+ \) or \(p_- \) can persist in \(\Lambda(F) \) (since otherwise, the symmetrical particle would persist too).

For small values of \(n \) or particular initial measures, this proposition can be refined in the following manner:

\(n = 3: \) \(p_0 \) is empty. Given the combinatorics of collisions, where a particle in \(p_+ \) can only disappear by colliding with a particle in \(p_-, \) we see that particles in \(p_+ \) persist if and only if \(\pi_\mu([p_+]) > \pi_\mu([p_-]), \) and symmetrically. In the equality case (in particular, for any Bernoulli measure), no defect can persist in the \(\mu \)-limit set, which means that \(\Lambda_\mu(F) \) is a set of monochromatic configurations.

\(n = 4: \) If \(\mu \) is a Bernoulli measure, the result of [Fis90b] shows that \([i]_0 \) cannot be a \(\mu \)-attractor for any \(i. \) In other words, for \(\mu \)-almost all \(x, \) \(F^t(x) \) does not converge, which means that particles in \(p_+ \) or \(p_- \) cross the central column infinitely often (even though their probability to appear tends to 0). This could not happen if particles in \(p_0 \) were persisting in \(\pi(\Lambda_\mu(F)), \) and thus \(\Lambda_\mu(F) \) is a set of monochromatic configurations.

\(n \geq 5: \) If \(\mu \) is a nondegenerate Bernoulli measure, the result of [Fis90b] shows that \([i]_0 \) is a \(\mu \)-attractor for all \(i. \) This means that some particles in \(p_0 \) persist in \(\pi(\Lambda_\mu(F)), \) and any configuration of \(\Lambda_\mu(F) \) contains only homogeneous regions separated by vertical lines.

For \(n = 3 \) or 4, since \(\Lambda_\mu(F) \) is a set of monochromatic configurations we deduce that the sequence \((F^t \mu)_{n \in \mathbb{N}} \) converges to a convex combination of Dirac measures. However this method does not give any insight as to the coefficient of each component. As shown in [HdM14], if \(n = 3 \), then \(\hat{\mu} \) is a Bernoulli measure then

\[
C_{3, \mu} \xrightarrow{t \to \infty} \mu([2])\delta_0 + \mu([0])\delta_1 + \mu([1])\delta_2.
\]

The problem is open for the 4-cyclic cellular automaton.

2.5.3. One-sided captive cellular automata

We consider the family of captive cellular automata \(F : \mathcal{A}^\mathbb{Z} \to \mathcal{A}^\mathbb{Z} \) of neighbourhood \(\{0, 1\}, \) which means that the local rule \(f : \mathcal{A}^{\{0, 1\}} \to \mathcal{A} \) satisfies \(f(a_0a_1) \in \{a_0, a_1\}. \) See Figure [3] for an example of space-time diagram.

Proposition 4. Let \(F \) be a one-sided captive automaton and \(\mu \in \mathcal{M}_{\sigma-\text{erg}}(\mathcal{A}^\mathbb{Z}). \) Define:

\[
\begin{align*}
u_+ &= \{ ab \in \mathcal{A}^2 : a \neq b, \ f(a, b) = a \} \\
u_- &= \{ ab \in \mathcal{A}^2 : a \neq b, \ f(a, b) = b \}
\end{align*}
\]

Then either \(\nu_+ \notin \mathcal{L}(\Lambda_\mu(F)) \) or \(\nu_- \notin \mathcal{L}(\Lambda_\mu(F)). \)
If moreover, for all \(a, b \in A\), the local rule satisfies \(f(ab) = f(ba)\) and \(\mu\) is a Bernoulli measure, then \(\Lambda_\mu(F) \subseteq \{\infty a^\infty : a \in A\}\) (no particle remains).

Proof. We consider the interface defects relative to the decomposition \(\Sigma = \bigsqcup_{i \in A} \Sigma_i\) where \(\Sigma_i = \{\infty i^\infty\}\) and obtain the same particles \(\mathcal{P}\) and morphism \(\pi\) as the \(n\)-state cyclic automata. \(p_{ab}\) evolve at speed \(-1\) if \(f(a, b) = b\) and 0 if \(f(a, b) = a\), and we define \(p_{-1}\) and \(p_0\) accordingly. The update function is defined as follows:

\[
\forall x \in A^\mathbb{Z}, \forall k \in \mathbb{Z}, \phi(x, k) = \begin{cases} \{k\} & \text{if } \pi(x)_k \in p_0 \text{ and } \pi(x)_{k+1} \notin p_{-1} \\ \{k - 1\} & \text{if } \pi(x)_k \in p_{-1} \text{ and } \pi(x)_{k-1} \notin p_0 \\ \emptyset & \text{otherwise} \end{cases}
\]

As in the two previous examples, we can check that the update function describes the particles dynamics on all words of length 3, and deduce the properties of locality, growth, surjectivity, coalescence and speed from there. We then apply the main result.

If \(\mu\) is a Bernoulli measure: Then \(\mu\) is invariant under the mirror application \(\gamma\) and \(F \circ \gamma = \gamma \circ F\) by hypothesis. As in the previous example, we conclude that no particle can persist in \(\Lambda_\mu(F)\). □

2.5.4. An automaton performing random walks

Let \(F\) be defined on the alphabet \(A = (\mathbb{Z}/2\mathbb{Z})^2\) on the neighbourhood \(\{-2, \ldots, 2\}\) by the local rule \(f\) defined as follows:

\[
f((a_{-2}, b_{-2}), \ldots, (a_2, b_2)) \mapsto (a_{-2} + a_2, c)\text{ where } c = \begin{cases} 1 & \text{if } (a_{-1}, b_{-1}) = (0, 1) \text{ or } (a_0, b_0) = (1, 1); \\ 0 & \text{otherwise}. \end{cases}
\]

Intuitively, the first layer performs addition mod 2 at distance 2, while the ones on the second layer behave as particles, moving right if the first layer contains a 1 and not moving if it contains a 0. Two colliding particles simply merge.

![Figure 6. Automaton performing random walks iterated on the uniform measure.](image)

\(\square\) is a particle, while the second layer is represented by \(\square (0)\) or \(\square (1)\).

Proposition 5. Let \(\nu \in \mathcal{M}_{\sigma-\text{erg}}((\mathbb{Z}/2\mathbb{Z})^\mathbb{Z})\) and \(\mu = \lambda \times \nu\), where \(\lambda\) is the uniform measure on \((\mathbb{Z}/2\mathbb{Z})^\mathbb{Z}\). Then \(F^t_\star \mu \rightarrow_{t \to \infty} \lambda \times \delta_0\).

Proof. Pivato’s formalism is not necessary here. Consider the set of particles \(\mathcal{P} = \{1\}\) and the morphism \(\pi\) that is the projection on the second layer. The update function is defined as:

\[
\forall x \in A^\mathbb{Z}, \forall k \in \mathbb{Z}, \phi(x, k) = \begin{cases} \{k + 1\} & \text{if } x_k = (1, 1); \\ \{k\} & \text{if } x_k = (0, 1); \\ \emptyset & \text{otherwise}. \end{cases}
\]
Intuitively, each particle performs a random walk with independent steps and no bias. Thus Corollary 1 is not sufficient to conclude, and we need to use the general result of Theorem 1 by proving that \(\{1\} \) clashes with itself.

Let \(k \in \mathbb{N} \). We prove that, when \(x \) is chosen according to \(\mu_k \) the conditional measure of \(\mu \) relative to the event \(\pi(x)_0 = \pi(x)_k = 1 \), \(\phi^t(x, k) - \phi^t(x, 0) \) performs an unbiased and independent random walk with a “death condition” on 0 (particle collision).

Writing \((a^t_n, b^t_n) = F^t(x)_n \), we have \(a^0_t = \sum_{n=0}^{t} \binom{t}{n} a^{2n} - 2t + 4n \mod 2 \) by straightforward induction. Consider the evolution of \(\phi^t(x, k) - \phi^t(x, 0) \) at each step:

\[
\delta_t(x) = (\phi^{t+1}(x, k) - \phi^t(x, k)) - (\phi^{t+1}(x, 0) - \phi^t(x, 0))
= a^t_{\phi^t(x, k)} - a^t_{\phi^t(x, 0)}
= \left(\sum_{n=0}^{t} \binom{n}{t} a^0_{\phi^t(x, k) - 2t + 4n} \mod 2 \right) - \left(\sum_{n=0}^{t} \binom{n}{t} a^0_{\phi^t(x, 0) - 2t + 4n} \mod 2 \right).
\]

Notice that:
- \(a^0_{\phi^t(x, k) + 2t} \) has coefficient 1 in the left-hand term and 0 in the right-hand term;
- \(a^0_{\phi^t(x, 0) - 2t} \) has coefficient 0 in the left-hand term and 1 in the right-hand term.

Because the particle cannot move by more than one cell per step, these variables did not appear in the expression of any previous \(\delta_t'(x), t' < t \). Because the initial measure is uniform, all variables \(a^0_t \) are chosen independently and fairly between 0 and 1. Since both terms are sums of variables taking values in \(\mathbb{Z} / 2\mathbb{Z} \), this is enough to show that the terms are independent of each other, independent from all previous \(\delta_t'(x), t' < t \), and are fairly distributed between 0 and 1. Therefore \(\delta_t(x) \) takes value 0 with probability \(\frac{1}{2} \), -1 with probability \(\frac{1}{4} \) and +1 with probability \(\frac{1}{4} \), independently from all previous \(\delta_t' \).

Therefore \(\phi^t(x, k) - \phi^t(x, 0) \) performs an unbiased and independent random walk, which implies that \(\mu_k(\{x : \forall t, \phi^t(x, k) > \phi^t(x, 0)\}) = 0 \) (standard result in one-dimensional random walks). Since particles cannot cross, they almost surely end up being in interaction, and therefore \(\{1\} \) clashes with itself \(\mu \)-almost surely. Applying the theorem, we find that no particle can remain in \(\Lambda_\mu(F) \).

More precisely, if we write \(\pi_i \) the morphism projecting on the \(i \)-th coordinate, \(\pi_2 F_\mu \to \delta_0 \). Since the addition mod 2 automaton is surjective, it leaves the uniform measure invariant. Therefore \(\pi_1 F_\mu = \lambda \), and we conclude that \(F_\mu \to \lambda \times \delta_0 \). \(\square \)

2.6. Probabilistic cellular automata

2.6.1. Adaptation of our formalism for probabilistic cellular automata

This approach can be adapted to non-deterministic cellular automata, and in particular probabilistic cellular automata. We use here a generalised version of the standard definition.

Definition 5. Let \(\mathcal{A} \) be a finite alphabet and \(\mathcal{N} \subset \mathbb{Z} \). We define the application that applies a bi-infinite sequence of local rules to a configuration componentwise:

\[
\Phi_{\mathcal{N}} : \left(\mathcal{A}^{\mathcal{N}^\mathbb{Z}} \times \mathcal{A}^\mathbb{Z} \right) \to \mathcal{A}^\mathbb{Z},
((f_i)_{i \in \mathbb{Z}}, (x_i)_{i \in \mathbb{Z}}) \mapsto (f_i((x_{i+r})_{r \in \mathcal{N}}))_{i \in \mathbb{Z}}.
\]

Definition 6 (Generalised probabilistic cellular automaton \(F \) on the alphabet \(\mathcal{A} \) with neighbourhood \(\mathcal{N} \)) is defined by a measure on bi-infinite sequence of local rules \(\nu \in M_\sigma(\mathcal{A}^{\mathcal{N}^\mathbb{Z}}) \).

17
For a configuration \(x \in \mathcal{A}^\mathbb{Z} \), \(\tilde{F} : \mathcal{A}^\mathbb{Z} \to \mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z}) \) is then defined as:

\[
\text{For any borelian } U, \quad \tilde{F}(x)(U) = \int_{(\mathcal{A} \mathcal{A}^N)^\mathbb{Z}} 1_U(\Phi_N(f, x))d\nu(f).
\]

A deterministic cellular automaton \(F \) defined by a local rule \(f \) corresponds in this formalism to a Dirac \(\nu = \delta_f \) (in which case the image measure is a Dirac on the image configuration), and usual probabilistic cellular automata correspond to the case where \(\nu \) is a Bernoulli measure; in other words, the local rule that applies at each coordinate is drawn independently among a finite set of local rules \(\mathcal{A}^N \to \mathcal{A} \).

Definition 7 (Action on the space of measures). A generalised probabilistic cellular automaton defined by a measure \(\nu \in \mathcal{M}_\sigma((\mathcal{A}^A)^\mathbb{Z}) \) extends naturally to an action \(\tilde{F}_* : \mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z}) \to \mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z}) \) by defining

\[
\tilde{F}_* \mu(U) = \int_{\mathcal{A}^\mathbb{Z}} \int_{(\mathcal{A} \mathcal{A}^N)^\mathbb{Z}} 1_U(\Phi_N(f, x))d\nu(f)d\mu(x).
\]

The \(\mu \)-limit measures set of \(\tilde{F} \), \(\mathcal{V}(\tilde{F}, \mu) \), is the iset of adherence values of the sequence \((\tilde{F}_* \mu)_t \) \(t \in \mathbb{N} \), and the \(\mu \)-limit set can be defined as

\[
\Lambda_\mu(\tilde{F}) = \bigcup_{\eta \in \mathcal{V}(\tilde{F}, \mu)} \text{supp} \eta.
\]

The definitions of a particle system extend directly, except that the update function also depends on the choice of the local rules as well as on the configuration. Therefore we write \(\phi(x, n, (f_i)) \) instead of \(\phi(x, n) \), where \(x \in \mathcal{A}^\mathbb{Z}, n \in \mathbb{Z} \) and \((f_i) \in (\mathcal{A}^A)^\mathbb{Z} \), and the composition notation is simplified as follows (inductively):

\[
\phi^t(x, n, (f^k)_{0 \leq k < t}) = \bigcup_{m \in \phi(x, n, f^t)} \phi^{t-1}(\Phi_N(f^{t-1}, x), m, f^{t-1}),
\]

where each \(f^t \in (\mathcal{A}^A)^\mathbb{Z} \) is a bi-infinite sequence of local rules.

A particle system is said to be coalescent \(\nu \)-almost surely if the coalescence conditions hold for all \(x \in \mathcal{A}^\mathbb{Z} \) and \(\nu \)-almost every \(f \in (\mathcal{A}^A)^\mathbb{Z} \), and a particle \(p \in \mathcal{P} \) has speed \(\nu \)-almost surely if the speed conditions hold for \(\nu \)-almost every sequence \((f^t)_{t \in \mathbb{N}} \), where \(\nu \)-is the product measure (i.e. each \(f^t \) is drawn independently according to \(\nu \)). The clashing conditions are extended similarly.

Theorem 2 (Qualitative result for probabilistic automata). Let \(\tilde{F} : \mathcal{A}^\mathbb{Z} \to \mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z}) \) be a probabilistic cellular automaton defined by \(\nu \in \mathcal{M}_\sigma((\mathcal{A}^A)^\mathbb{Z}) \), \(\mu \) an initial \(\sigma \)-ergodic measure and \((\mathcal{P}, \pi, \phi) \) a \(\nu \)-almost surely coalescent particle system for \(\tilde{F} \) where \(\mathcal{P} \) can be partitioned into sets \(\mathcal{P}_i \) such that, for any \(i \neq j \), \(\mathcal{P}_i \) clashes with \(\mathcal{P}_j \), \(\nu \)-almost surely.

Then all particles appearing in the \(\mu \)-limit set belong to the same subset, i.e. there exists a \(i \) such that

\[
\forall p \in \mathcal{P}, \quad p \in \mathcal{L}(\pi(\Lambda_\mu(F))) \Rightarrow p \in \mathcal{P}_i.
\]

If furthermore there exists a \(j \) such that \(\mathcal{P}_j \) clashes with itself \(\mu \), \(\nu \)-almost surely, then this set of particles does not appear in the \(\mu \)-limit set, i.e.

\[
\forall p \in \mathcal{P}, \quad p \in \mathcal{L}(\pi(\Lambda_\mu(F))) \Rightarrow p \notin \mathcal{P}_j.
\]

Corollary 2 (Main result with speedy particles - probabilistic automata). Let \(\tilde{F} : \mathcal{A}^\mathbb{Z} \to \mathcal{A}^\mathbb{Z} \) be a probabilistic cellular automaton defined by \(\nu \in \mathcal{M}_\sigma((\mathcal{A}^A)^\mathbb{Z}) \), \(\mu \) an initial \(\sigma \)-ergodic measure and
(\mathcal{P}, π, ϕ) a ν^∞-almost surely coalescent particle system for \tilde{F}. Assume that each particle $p \in \mathcal{P}$ has speed $v_p \in \mathbb{R}$ ν^∞-almost surely, then there is a speed $v \in \mathbb{R}$ such that:

$$\forall p \in \mathcal{P}, p \in \mathcal{L}(\pi(\Lambda_\mu(F))) \Rightarrow v_p = v.$$

The proof of these statements are exactly the same as the proofs of Theorem 1 and Corollary 1, except that every statement in the proof holds ν^∞-almost surely.

This Theorem and Corollary can be applied for different probabilistic cellular automata, for exemple when we mix two one sided captive CA (see Figure 7). We are going to detail two exemples from the literature and obtain new information about its limit measures (Section 2.6.2 and 2.6.3).

Figure 7. Exemple of probabilistic cellular automata where the update of each cell is chosen between two one sided captive CA.

2.6.2. Example: Fatès’ density classifying candidate

For any real $p \in [0,1]$, consider the probabilistic automaton \tilde{F} on the alphabet $\{0,1\}$ defined on the neighbourhood $\mathcal{N} = \{-1,0,1\}$ by local rules drawn independently between the traffic rule (rule $\#184$ defined in Section 2.5.1) with probability p and the majority rule (rule $\#232$ where $F(x)_i = 1$ if and only if $x_{-1} + x_0 + x_1 \geq 2$) with probability $1-p$. This corresponds to the case where ν is a Bernoulli measure.

This automaton was introduced by Fatès in [Fat13] as a candidate to solve the density classification problem. Even though the following result does not answer this question, it is new to our knowledge.

Proposition 6. Let $\mu \in \mathcal{M}_{\sigma-erg}(A^\mathbb{Z})$ and p be a real in $[0,1]$. Then

$$\Lambda_\mu(\tilde{F}) \subset \{^0\infty, ^1\infty, ^01\infty, ^10\infty\}.$$

As a consequence, any limit measure of $(\tilde{F}_t \mu)_{t \in \mathbb{N}}$ is a convex combination of $\hat{\delta}_0, \hat{\delta}_1$ and $\hat{\delta}_{01}$.

Proof. The cases $p = 0,1$ correspond to deterministic automata and can be treated easily. The visual intuition suggests to consider interface defects according to the decomposition $\Sigma_0 \sqcup \Sigma_1 \sqcup \Sigma_2$, where $\Sigma_0 = \{^\infty0^\infty\}$, $\Sigma_1 = \{^\infty1^\infty\}$ (monochromatic subshifts) and $\Sigma_2 = \{^\infty01^\infty, ^\infty10^\infty\}$ (checkerboard subshift), since those SFTs are invariant under the action of both rules. The set of particles would be $\mathcal{P} = \{p_{i,j} : i \neq j \in \{0,1,2\}\}$.

However, as Figure 9 shows, the particle p_{10} can “explode” and give birth to two particles p_{12} and p_{20}, contradicting the condition of coalescence. To solve this problem, we tweak the particle system by replacing each particle p_{10} by one particle p_{12} and one particle p_{20}.
Figure 8. Dynamics of the traffic-majority automaton iterated on the initial measure $\text{Ber}(\frac{3}{5}, \frac{2}{5})$. Density classification is more efficient with p close to 1.

Figure 9. Fatès’ traffic-majority probabilistic automaton, with $p = \frac{3}{4}$.

The corresponding morphism π is defined on the neighbourhood $\{0, \ldots, 3\}$ by the local rule:

\[
\begin{align*}
0011 & \mapsto p_{01} \\
0010 & \mapsto p_{02} \\
1011 & \mapsto p_{21} \\
\end{align*}
\]

where the wildcards _ can take both values.

In the absence of interactions, the update function $\phi(x, k, f)$ can be defined in the following manner.

Regardless of the rule that is applied, p_{01}, p_{02} and p_{21} move at a constant speed 0, +1 and −1 respectively. A particle p_{12} move at speed −1 if rule #184 is applied at its position and at speed +1 otherwise (independent random walk with bias $1 - 2p$), except if a particle p_{20} prevents its movement to the right, in which case it does not move. The particle p_{20} behaves symmetrically. Furthermore all interactions are of the form $p_{ij} + p_{ji} \rightarrow \emptyset$ or $p_{ij} + p_{jk} \rightarrow p_{ik}$ (when $(i, j, k) \neq (1, 2, 0)$, by the last remark). A formal definition of the update function would be tedious, but it is entirely described by these remarks. The various conditions of locality, disjunction, particle control, surjectivity and coalescence are proved similarly to the previous examples.
Assume $p \geq \frac{1}{2}$. We show that no particle can remain asymptotically by applying the main result on the sets $(\mathcal{P}_i)_{0 \leq i \leq 4}$: $\{p_{02}\}$, $\{p_{20}\}$, $\{p_{01}\}$, $\{p_{12}\}$ and $\{p_{21}\}$. We need only to show the clashes relative to the second and fourth sets since all other clashes are consequences of the speed of these particles.

Let $k \in \mathbb{N}$ and x be such that $\pi(x)_0 = p_{02}$ and $\pi(x)_k \in \{p_{12}, p_{20}\}$. Since p_{02} progresses at speed 1, the distance $\phi^i(x, k) - \phi^i(x, 0)$ cannot increase, and it decreases by at least one with probability p (respectively $1 - p$). It is clear that the particles end up in interaction ν^{∞}-almost surely. Showing that p_{12} and p_{20} clash with p_{21} is symmetric.

Let x be such that $\pi(x)_0 = p_{20}$ and $\pi(x)_k = p_{01}$. As long as there are no interactions, the distance $\phi^i(x, k) - \phi^i(x, 0) = -\phi^i(x, 0)$ performs an independent random walk of bias $2p - 1$, where a increasing step is sometimes replaced by a constant step. Such a random walk reaches 0 ν^{∞}-almost surely, which shows that the particles end up in interaction ν^{∞}-almost surely. Showing that p_{12} and p_{20} clash with p_{21} is symmetric.

Applying Theorem 2, we conclude that only one particle p_{ij} can remain in the μ-limit set. However, if we consider $V_k = \{x \in \Lambda_\mu(F) : \pi(x)_k = p_{ij}\}$, we notice that configurations in V_k are of the form $y \cdot z$, where $y \in \mathcal{A}^{-\infty, k]}$ is admissible for Σ_i and $z \in \mathcal{A}^{[k+1, +\infty]}$ is admissible for Σ_j; in particular, they contain only one particle, and the $(V_k)_{k \in \mathbb{Z}}$ are disjoint. By σ-invariance, for any measure $\eta \in \mathcal{M}(F, \mu)$, $\eta(V_k)$ is independent from k and $\eta(\bigcup_k V_k) = \sum_k \eta(V_k) \leq 1$. Consequently, $\eta(V_k) = 0$, which means $V_k \notin \text{supp}(\eta)$, and we conclude that no particle remain in the μ-limit set. In other words, $\Lambda_\mu(F) \subset \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$. □

2.6.3. Example: Approximation of a line

In [RR15], the authors introduce a random process that, starting from a finite word on $\{0, 1\}$, organises bits through local flips to obtain asymptotically a discrete line whose slope corresponds to the frequency of symbols 1 in the initial finite word. Different local rules are used to obtain every rational slope in this way. If the flips are performed in parallel instead, we obtain a probabilistic cellular automata for every slope $\alpha \in \mathbb{Q} \cap [0, 1]$. We consider its action on any initial σ-ergodic measure satisfying $\mu([1]) = \alpha$. Theorem 2 shows that the sequence of measures converges towards the measure supported by a periodic configuration representing a discrete line of slope α. To simplify the presentation, we consider here that $\alpha = \frac{1}{2}$; the method can be easily generalised to other slopes.

Define the following local rules:

- f_0 is the identity;
- $f_{-1}(x_{-2}, x_{-1}, x_0, x_1) = \begin{cases} x_0 & \text{if } x_{-2}x_{-1}x_0x_1 = 0101 \text{ or } 1010, \\ x_{-1} & \text{otherwise}; \end{cases}$
- $f_1(x_{-1}, x_0, x_1, x_2) = \begin{cases} x_0 & \text{if } x_{-1}x_0x_1x_2 = 0101 \text{ or } 1010, \\ x_1 & \text{otherwise}. \end{cases}$

Let \tilde{F}_{line} be a probabilistic cellular automaton (represented in figure 10) defined by a σ-ergodic measure $\nu \in \mathcal{M}_\sigma(\{f_0, f_1, f_{-1}\})$ whose support is the subshift of finite type defined by the set of forbidden patterns

$$\{f_0f_{-1}, f_1f_1, f_1f_0, f_{-1}f_{-1}, f_{-1}f_1\}.$$

To put it more simply, any time the local rules in two consecutive cells are f_1 and f_{-1} (which happens with positive probability), the probabilistic CA permutes these two letters, except if they are at the center of a four-letter words 1010 or 0101. In any other situation, it acts as the identity.

We consider the interface defects with regards to the checkerboard SFT $\Sigma = \{\infty(01)^{\infty}, \infty(10)^{\infty}\}$. The defects 11 and 00 form a ν^{∞}-almost surely coalescent particle system for \tilde{F}_{line}. Thus if the
initial measure μ is σ-ergodic such that $\mu([1]) = \mu([0])$, the sequence $\tilde{F}_n \mu$ converges toward the σ-invariant measure supported by the σ-periodic orbit $\infty (01) \infty$ which correspond to the discrete line of slope $\frac{1}{2}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Example of space time diagram of \tilde{F}_n where ν is chosen to the Markov measure which maximizes the entropy of the subshift of finite type where the forbidden patterns are $\{f_0 f_{-1}, f_1 f_0, f_1 f_{-1}, f_{-1} f_1\}$.}
\end{figure}

3. Particle-Based Organisation: Quantitative Results

For some cellular automata with simple defect dynamics, the previous results can be refined with a quantitative approach: that is, to determine the asymptotic distribution of random variables related to the particles. In [KFD11], P. Kůrka, E. Formenti and A. Dennunzio considered $T_n(x)$, the entry time after time n on the initial configuration x, which is the waiting time before a particle appears in a given position after time n. They restricted their study to a gliders automaton, which is a cellular automaton on 3 states: a background state and two particles evolving at speeds 0 and -1 that annihilate on contact. Thus, we have one entry time for each type of particle ($T_n^+(x)$ and $T_n^-(x)$). When the initial configuration is drawn according to the Bernoulli measure of parameters $(\frac{1}{2}, 0, \frac{1}{2})$, which means that each cell contains, independently, a particle of each type with probability $\frac{1}{2}$, they proved that:

$$\forall \alpha \in \mathbb{R}^+, \mu \left(\frac{T_n^-(x)}{n} \leq \alpha \right) \xrightarrow{n \to \infty} \frac{2}{\pi} \arctan \sqrt{\alpha}.$$

They also called to develop formal tools in order to be able to handle more complex automata, starting with the $(-1, 1)$ symmetric case.

In Section [32] we extend this result to allow arbitrary values for the particle speeds v_- and v_+, and relax the conditions on the initial measure to some α-mixing conditions. Then, when $v_- < 0$ and $v_+ \geq 0$, we have:

$$\forall x \in \mathbb{R}^+, \mu \left(\frac{T_n^-(x)}{n} \leq \alpha \right) \xrightarrow{n \to \infty} \frac{2}{\pi} \arctan \left(\sqrt{\frac{-v_- \alpha}{v_+ - v_- + v_+ \alpha}} \right),$$

and symmetrically if we exchange $+$ and $-$. The proof relies on the fact that the behavior of gliders automata can be characterised by some random walk process; this idea was introduced by V. Belitsky and P. Ferrari in [BF95] and was already used in [KM00] and [KFD11]. In our case, a particle appearing in a position corresponds to a minimum between two concurrent random walks. The new tool here is that under α-mixing conditions, we rescale this process and approximate it with a Brownian motion. Thus we obtain the explicit asymptotic distribution of entry times.
This method, consisting in associating a random walk to each gliders automata and studying this random walk using scale invariance, is not limited to this particular conjecture concerning entry times. Indeed, we see in the next two sections that it can be used to study the asymptotic behavior of two other, arguably more natural, parameters: the particle density at time t and the rate of convergence to the limit measure. However, we obtain only an upper bound instead of an explicit asymptotic distribution. There is no doubt this method can be adapted to other parameters in a similar way.

Furthermore, these results can be extended to other automata with similar behavior, such as those in Figure 1, by factorising them onto a gliders automaton. This point is discussed in Section 3.6. This method is more difficult to generalize when there is birth of particle, even in simple case as the 4-cyclic cellular automaton.

3.1. Gliders automata and random walks

In this section we give the definition and the first properties of the class of cellular automata studied.

Definition 8 (Gliders automata). Let $v_+ < v_+ \in \mathbb{Z}$. The (v_-, v_+)-gliders automaton (or GA) G is the cellular automaton of neighbourhood $[-v_+, -v_-]$ defined on the alphabet $A = \{-1, 0, +1\}$ by the local rule:

$$
f(x_{-v_+} \ldots x_{-v_-}) = \begin{cases}
+1 & \text{if } x_{-v_+} = +1 \text{ and } \forall N \leq -v_-; \sum_{n=-v_+}^{N} x_n \geq 0 \\
-1 & \text{if } x_{-v_-} = -1 \text{ and } \forall N \geq -v_+; \sum_{n=-v_-}^{-v_-} x_n \leq 0 \\
0 & \text{otherwise.}
\end{cases}
$$

In all the following, $A = \{-1, 0, +1\}$ and the diagrams are represented with the convention $\square = 0$, $\blacksquare = +1$, $\blacklozenge = -1$.

Figure 11. Space-time diagram of the $(−1, 0)$-gliders automaton on a random initial configuration.

Our results apply on automata with simple defects dynamics, namely, automata admitting a particle system with $P = \{±1\}$ and whose update function corresponds to a gliders automaton. We first prove our results for gliders automata before generalising them in Section 3.6. Let us introduce some tools that turn the study of the dynamics of a gliders automaton into the study of some random walk.

Definition 9 (Random walk associated with a configuration). Let $x \in \{-1, 0, 1\}^\mathbb{Z}$. Define the partial sums S_x by:

$$S_x(0) = 0 \quad \text{and} \quad \forall k \in \mathbb{Z}; \quad S_x(k + 1) - S_x(k) = x_k.$$
We extend S_x to \mathbb{R} by putting $S_x(t) = ([t] - t)S_x([t]) + (t - [t])S_x([t])$ for $t \in \mathbb{R}$. We also introduce the rescaled process $S_x^k : t \mapsto S_x(kt)/\sqrt{k}$.

This random walk is simpler to study than the space-time diagram of the gliders automaton, and actually contains the same amount of information, as shown by the following technical lemmas.

Definition 10. Let $f : \mathbb{R} \to \mathbb{R}$ and $U \subset \mathbb{R}$. We define $\argmin_U f$ by:

$$\forall t \in U, \ t = \argmin_U f \iff \forall t' \in U \setminus \{t\}, f(t) < f(t').$$

In other words, t realises the strict minimum of f on U; this point is not always defined.

Lemma 1. Let G be the (v_-, v_+)-gliders automaton. For all $j \in \mathbb{Z}$ and $n \geq 1$,

$$j = \argmin_{[j, j+n]} S_G(x) \iff j - v_+ = \argmin_{[j-v_+, j+n-v_-]} S_x$$

$$j = \argmin_{[j-n, j]} S_G(x) \iff j - v_- = \argmin_{[j-n-v_+, j-v_-]} S_x.$$

Proof. We prove those equivalences by induction on n. At each step, we prove only the first equivalence, the other one being symmetric.

Base case:

$$S_G(x)(j) < S_G(x)(j + 1) \iff G(x)_{j} = +1$$

$$\iff x_{j-v_+} = +1 \text{ and } \forall N \leq -v_-, \sum_{t=-v_+1}^{N} x_{j+t} \geq 0$$

$$\iff S_x(j - v_+) < \min_{[j+1-v_+, j+1-v_-]} S_x.$$

Induction: Assume both equivalences hold for some $n \geq 1$.

Suppose $j = \argmin_{[j, j+n]} S_G(x)$. In particular $j = \argmin_{[j, j+n]} S_G(x)$, and by induction hypothesis $j - v_+ = \argmin_{[j-v_+, j+n-v_-]} S_x$. We distinguish two cases:

- if $S_x(j + n - v_- + 1) > S_x(j - v_+)$, then $j - v_- = \argmin_{[j-v_+, j+n-v_-+1]} S_x$ and we conclude;
- otherwise, this means that $S_x(j + n - v_- + 1) = S_x(j - v_+)$ (the walk can decrease by at most one at each step), and thus

$$j + n - v_- + 1 = \argmin_{[j-v_+, j+n-v_-+1]} S_x.$$

By induction hypothesis,

$$j + n + 1 = \argmin_{[j+1, j+n+1]} S_G(x),$$

and in particular $S_G(x)(j+n+1) < S_G(x)(j+1)$. Therefore $S_G(x)(j+n+1) \leq S_G(x)(j)$, a contradiction with the first assumption.

The converse is proved in a similar manner.

Lemma 2. Let G be the (v_-, v_+)-gliders automaton. For all $j \in \mathbb{Z}$ and $k \geq 0$,

$$G^t(x)_j = -1 \iff j - v_- t + 1 = \argmin_{[j-v_- t, j-v_- t+1]} S_x$$

$$G^t(x)_j = +1 \iff j - v_+ t = \argmin_{[j-v_+ t, j-v_+ t+1]} S_x.$$
This is illustrated in Figure 12.

Figure 12. Illustration of Lemma 2. A strict minimum is reached on \(j - k + 1 \).

Proof. By induction on \(t \), proving only the first equivalence at each step:

Base case \((t = 0) \): By definition of \(S_x \), \(S_x(j + 1) < S_x(j) \Leftrightarrow x_j = -1 \).

Induction: Assume that both equivalences hold for a given item \(t \). By applying the induction hypothesis on \(G(x) \), \(G^{t+1}(x)_j = -1 \Leftrightarrow j - v_{-t} + 1 = \text{argmin}_{[j-v_{-t}, j-v_{-t+1}]} S_G(x) \) and we conclude by applying Lemma 1.

\[\square \]

3.2. Entry times

The main result of Section 2 implies that, for any \(\sigma \)-ergodic initial measure \(\mu \), \(\Lambda_G(\mu) \) contains at most one kind of particle, which one depending on whether \(\mu([+1]) > \mu([-1]) \) or the opposite. When \(\mu([+1]) = \mu([-1]) \), \(\Lambda_G(\mu) \) only contains the particleless configuration \(\infty 0 \infty \). In other words, \(G^t \mu \to \delta_0 \), which means that the probability of seeing a particle in any fixed finite window tends to 0 as \(t \to \infty \).

Definition 11 (Entry times). Let \(v_- < 0 \leq v_+ \in \mathbb{Z} \), \(G \) the \((v_-, v_+)\)-GA and \(x \in \{-1, 0, 1\}^\mathbb{Z} \). We define:

\[
T_n^-(x) = \min\{k \in \mathbb{N} : \exists i \in [0, |v_-| - 1], G^{k+n}(x)_i = -1\},
\]

with \(T_n^-(x) = \infty \) if this set is empty. This is the entry time of \(x \) into the set \(\{b \in \{-1, 0, 1\}^\mathbb{Z} : \exists i \in [0, |v_-| - 1], b_i = -1\} \) after time \(n \) at position 0. We define \(T_n^+(x) \) in a symmetrical manner.

The size of the considered window is such that any particle “passing through” the column 0 appears in this window exactly once (See Figure 13). Of course entry times for particles of speed 0 make no sense. From now on, we only consider \(T^- \) for simplicity, all the results being valid for \(T^+ \).

As a consequence of Birkhoff’s ergodic theorem, when \(\mu([-1]) > \mu([+1]) \), \(-1\) particles persist \(\mu \)-almost surely and their density converges to a positive number. Therefore:

- \(\mu(T_n^+(x) = \infty) \xrightarrow{n \to \infty} 1 \);
- \(\forall \alpha > 0, \mu \left(\frac{T_n^-(x)}{n} \leq \alpha \right) \xrightarrow{n \to \infty} 1 \),
and symmetrically. This is why we only consider the case \(\mu([-1]) = \mu([+1]) \). Kůrka and al. proved the following result:

Theorem 3 ([KFD11]). For the \((-1,0)-GA ("Asymmetric gliders") with an initial measure \(\mu = \text{Ber}(\frac{1}{2}, 0, \frac{1}{2}) \):

\[
\forall \alpha > 0, \quad \mu \left(\frac{T_n^-(x)}{n} \leq \alpha \right) \xrightarrow{n \to \infty} \frac{2}{\pi} \arctan \sqrt{\alpha}.
\]

In the same article, they conjectured that this result could be extended to any initial Bernoulli measure of parameters \((p, 1-2p, p)\) for \(0 \leq p \leq \frac{1}{2}\) by replacing the right-hand term by \(\frac{2}{\pi} \arctan \sqrt{2p\alpha}\). We will prove that this conjecture is actually incorrect.

To state our result, we introduce two particular subclasses of \(\mathcal{M}_\sigma(A^\mathbb{Z})\). We recall the definition of the \(\alpha\)-mixing coefficients of a measure \(\mu \in \mathcal{M}_\sigma(A^\mathbb{Z})\):

\[
\alpha_\mu(n) = \sup \{|\mu(A \cap B) - \mu(A)\mu(B)| : A \in \mathfrak{B}_{[-\infty,0]}, B \in \mathfrak{B}_{[n,\infty]}\}.
\]

Define:

- \(\text{Ber}_\infty\) the set of Bernoulli measures on \([-1, 0, +1]^\mathbb{Z}\) and parameters \((p, 1-2p, p)\) for some \(0 < p \leq \frac{1}{2}\);
- \(\text{Mix}\) the set of measures \(\mu \in \mathcal{M}_\sigma([-1, 0, +1]^\mathbb{Z})\) satisfying:
 - \(\int_{A^\mathbb{Z}} x_0 \, d\mu(x) = 0\);
 - \(\sum_{k=0}^{\infty} \int_{A^\mathbb{Z}} x_0 \cdot x_k \, d\mu(x)\) converges absolutely to a real \(\sigma_\mu^2 > 0\) (asymptotic variance);
 - \(\exists \varepsilon > 0, \sum_{n \geq 0} \alpha_\mu(n)^{\frac{1}{2} - \varepsilon} < \infty\).

In particular, \(\text{Ber}_\infty \subset \text{Mix}\).

Theorem 4 (Quantitative result for entry time). For any \((v_-, v_+)-GA with v_- < 0 \text{ and } v_+ \geq 0\) and any initial measure \(\mu \in \text{Mix}\),

\[
\forall \alpha > 0, \quad \mu \left(\frac{T_n^-(x)}{n} \leq \alpha \right) \xrightarrow{n \to \infty} \frac{2}{\pi} \arctan \left(\sqrt{\frac{-v_-\alpha}{v_+-v_-+v_+\alpha}} \right).
\]

Notice that this limit is independent from \(\mu\) (as long as \(\mu \in \text{Mix}\)), disproving the conjecture when \(\mu \in \text{Ber}_\infty\).

3.3. Brownian motion and proof of the main result

The third hypothesis for \(\text{Mix}\) is chosen so that the large-scale behavior of the partial sums \(S_z(t)\) can be approximated by a Brownian motion. This invariance principle is the core of our proofs. The first and second conditions ensures that the Brownian motion obtained this way have no bias and nonzero variance, respectively.
Definition 12 (Brownian motion). A Brownian motion (or Wiener process) B of mean 0 and variance σ^2 is a continuous time stochastic process taking values in \mathbb{R} such that:

- $B(0) = 0$,
- $t \mapsto B(t)$ is almost surely continuous,
- $B(t_2) - B(t_1)$ follow the normal law of mean 0 and variance $(t_2 - t_1)\sigma^2$;
- For $t_1 < t_2 \leq t'_1 < t'_2$, increments $B(t_2) - B(t_1)$ and $B(t'_2) - B(t'_1)$ are independent.

See [MP10] for a general introduction to Brownian motion.

Proposition 7 (Rescaling property). Let B be a Brownian motion. Then, for any $k > 0$, $t \mapsto \frac{1}{\sqrt{k}}B(kt)$ is a Brownian motion with same mean and variance.

We now state some invariance principles, which consists in approximating rescaled random walks by Brownian motion. We use a strong version, which guarantees an almost sure convergence by considering a copy of the process in a richer probability space.

Theorem 5 ([ZC96], Corollary 9.3.1). Let $X = (X_i)_{i \in \mathbb{N}}$ be a family of random variables taking values in $\{-1, 0, 1\}$. We denote $\alpha_X(n)$ its α-mixing coefficients defined as:

$$\alpha_X(n) = \sup \{|P(A \cap B) - P(A)P(B)| : t \in \mathbb{N}, A \in \mathcal{X}_{[0,t]}, B \in \mathcal{X}_{[t+n,+\infty]}\},$$

where $\mathcal{X}_{[a,b]}$ is the sigma-algebra generated by (X_a, \ldots, X_b).

Assume that:

1. $\forall i, \mathbb{E}(X_i) = 0$;
2. $\frac{1}{t}\mathbb{E} \left(\sum_{i,j=1}^{[t]} X_i \cdot X_j \right)$ converges absolutely to some positive real σ^2;
3. $\exists \varepsilon > 0, \sum_{n=1}^{\infty} \alpha_X(n)^{\frac{1}{2}+\varepsilon}$.

Then we can define two processes $X' = (X_i')_{i \in \mathbb{N}}$ and B on a richer probability space (Ω, \mathbb{P}) such that:

1. X and X' have the same distribution;
2. B is a Brownian motion of mean 0, variance σ^2;
3. for any $\varepsilon > 0$,

$$\left| \sum_{i=1}^{[t]} X_i - B(t) \right| = O \left(t^{\frac{1}{2}+\varepsilon} \right) \text{ \mathbb{P}-almost surely.}$$

Corollary 3. Let $\mu \in \mathcal{M}ix$. For any fixed constants $q < r \in \mathbb{R}$, we can define a process $X' = (X_i')_{i \in \mathbb{Z}}$ and a family of processes $(t \mapsto B_n(t))_{n \in \mathbb{N}}$ on a richer probability space (Ω, \mathbb{P}) such that:

1. X' has distribution μ;
2. every B_n is a Brownian motion of mean 0 and variance $\sigma^2 \mu > 0$;
3. for any $\varepsilon > 0$, denoting $S_{X'}$ the piecewise linear function defined by $S_{X'}(0) = 0$ and $S_{X'}(k+1) - S_{X'}(k) = X'_k$ for all $k \in \mathbb{Z}$,

$$\forall n \in \mathbb{N}, \sup_{t \in [q,r]} \left| \frac{S_{X'}(nt)}{\sqrt{n}} - B_n(t) \right| = O \left(n^{-\frac{1}{2}+\varepsilon} \right) \text{ \mathbb{P}-almost surely.}$$

Proof. We apply Theorem 5 on $(x_i)_{i \in \mathbb{N}}$, where x has distribution μ. Because μ is σ-invariant, this is a stationary process. The first and third conditions are satisfied by definition of $\mathcal{M}ix$. For the second condition,

$$\frac{1}{n} \mathbb{E}(S_{X}(n)^2) = \frac{1}{n} \sum_{0 \leq i, j \leq n} \mathbb{E}(x_i \cdot x_j) \xrightarrow{n \to \infty} \sigma^2 \mu$$
by stationarity. We obtain two processes \(X^1 = (X^1_i)_{i \in \mathbb{N}} \) and \(B^1 \) on a richer probability space \((\Omega, \mathbb{P})\) such that \(X^1 \) has the same distribution as \(x \), \(B^1 \) is a Brownian motion of mean 0, variance \(\sigma^2 \), and:

\[
\forall \varepsilon > 0, \left| \sum_{i=1}^{[t]} X^1_i - B^1(t) \right| = O \left(\frac{1}{t^{1/2} + \varepsilon} \right) \quad \mathbb{P}\text{-almost surely.}
\]

Since the variables \(X^1_i \) take value in \([-1, 0, 1]\), we have for any \(t \) \(\left| \sum_{i=1}^{[t]} X^1_i - S_{X^1}(t) \right| < 1 \) (a staircase and piecewise linear function having the same values on \(\mathbb{N} \)). Therefore:

\[
\forall \varepsilon > 0, |S_{X^1}(t) - B^1(t)| = O \left(\frac{1}{t^{1/2} + \varepsilon} \right) \quad \mathbb{P}\text{-almost surely.}
\]

\[
\forall \varepsilon > 0, \forall n \in \mathbb{N}, \frac{1}{\sqrt{n}} |S_{X^1}(tn) - B^1(tn)| = O \left(n^{-1/4} + \varepsilon \right) \cdot O \left(\frac{1}{t^{1/4} + \varepsilon} \right) \quad \mathbb{P}\text{-almost surely.}
\]

For any \(r \in \mathbb{R}_+^2 \), taking the sup for \(t \in [0, r] \), we obtain:

\[
\forall \varepsilon > 0, \forall n \in \mathbb{N}, \sup_{t \in [0, r]} \left| \frac{S_{X^1}(tn)}{\sqrt{n}} - \frac{B^1(tn)}{\sqrt{n}} \right| = O \left(n^{-1/4} + \varepsilon \right) \quad \mathbb{P}\text{-almost surely.}
\]

By rescaling property \(B^1_n : t \mapsto \frac{B^1(tn)}{\sqrt{n}} \) is a Brownian motion of same mean and variance as \(B^1 \).

To extend the result to negative values, we apply the theorem again to \((x_{-i})_{i \in \mathbb{N}} \), obtaining a process \(X^2 \) and a Brownian motion \(B^2 \) satisfying the same asymptotic bound on \(t \to -\infty \). Joining both parts, we can see that the process \(X' = \ldots, X^2_{-2}, x_{-2}, X^1_0, X^1_1 \ldots \) have distribution \(\mu \) and \(B_n : t \mapsto B^1_n(t) \) if \(t \geq 0 \), \(B^2_n(t) \) if \(t < 0 \) is a Brownian motion. \(\square \)

For a survey of invariance principles under different assumptions, see [MR12].

Using this last result, we prove the main theorem.

Proof of Theorem. For any \(x \in \{-1, 0, 1\}^\mathbb{Z} \), Lemma 2 applied on the column 0 gives:

\[
T^-_n(x) = \min \left\{ k \in \mathbb{N} \mid \exists j \in [0, -v_-], S_x(-v_-(n+k) + j + 1) < \min_{[v_-(n+k)+j, -v_-(n+k)+j]} S_x \right\}
\]

\[
= \min \left\{ k \in \mathbb{N} \mid \exists j \in [0, -v_-], S_x(-v_-(n+k) + j + 1) < \min_{[v_-(n+k)+j, -v_-(n+k)+j]} S_x \right\}
\]

Note that if this condition is reached on \(k \in \mathbb{N} \), since \(S_x \) is piecewise linear, it is attained for \(t \) as soon as \(t > k - 1 \) and reciprocally. Thus:

\[
T^-_n(x) = \inf \left\{ t \geq 0 \mid \exists j \in [0, -v_-], S_x(-v_-(n+t) + j + 2) < \min_{[v_-(n+t)+j+1, -v_-]} S_x \right\}
\]

Replacing \(j \) by 0 in this expression adds to the infimum a value comprised between 0 and \(\frac{-v_- - 1}{-v_-} \) (remember \(v_- < 0 \)). Since the infimum is necessarily an integer, we compensate by taking the
integer part:

\[
T_n^-(x) = \left[\inf \left\{ t \geq 0 \mid S_x(-v_-(n + t) + 2) < \min_{[-v_+(n + t) + 1, -v_-n]} S_x \right\} \right]
\]

\[
= \left[\inf \left\{ t \geq 0 \mid S_x^n \left(-v_- \left(1 + \frac{t}{n} \right) + \frac{2}{n} \right) < \min_{\left[-v_+(1+\frac{1}{n})+\frac{1}{n}, -v_-\right]} S_x^n \right\} \right]
\]

\[
= \left[n \cdot \inf \left\{ t \geq 0 \mid S_x^n \left(-v_-(1 + t) + \frac{2}{n} \right) < \min_{\left[-v_+(1+t)+\frac{1}{n}, -v_-\right]} S_x^n \right\} \right]
\]

Dividing by \(n \), since \(S_x^n \) is \(\sqrt{n} \)-Lipschitz and \(t - \frac{1}{n} \leq \frac{|nt|}{n} \leq t \) for all \(t, n \in \mathbb{R} \times \mathbb{N} \):

\[
\mu \left(\frac{\min_{[-v_-, -v_-(1+\alpha)]} S_x^n + 4 \sqrt{n}}{\left[-v_+(1+\alpha), -v_- \right]} < \min_{[-v_+(1+\alpha), -v_-]} S_x^n \right) \leq \mu \left(\frac{T_n^-(x)}{\sqrt{n}} \leq \alpha \right)
\]

(1)

\[
\mu \left(\frac{T_n^-(x)}{\sqrt{n}} \leq \alpha \right) \leq \mu \left(\frac{\min_{[-v_-, -v_-(1+\alpha)]} S_x^n - \frac{3}{\sqrt{n}}}{\left[-v_+(1+\alpha), -v_-\right]} < \min_{[-v_+(1+\alpha), -v_-]} S_x^n \right)
\]

Using Corollary 3, we build a process \(X' \) and a family of processes \((B_n)_{n \in \mathbb{N}} \) on a richer probability space \((\Omega, \mathbb{P}) \) such that \(X' \) is distributed according to \(\mu \) and the \(B_n \) are Brownian motions.

\[
\forall n \in \mathbb{N}, \sup_{[-v_+(1+\alpha), -v_- \left(1+\alpha\right)]} \left| \frac{S_x'(nt)}{\sqrt{n}} - B_n(t) \right| = O \left(n^{-\frac{1}{4} + \varepsilon} \right) \quad \mathbb{P}-\text{almost surely}
\]

By symmetry, \(B_n^l(t) = B_n(-v_- - t) - B_n(-v_-) \) and \(B_n^r(t) = B_n(-v_- + t) - B_n(-v_-) \) are two independent Brownian motions on \([0, v_- - v_+(1 + \alpha)]\) and \([0, -v_- \alpha] \), respectively. Consequently, for any \(\varepsilon > 0 \) and \(n \) large enough:

\[
\mu \left(\min_{[-v_-, -v_-(1+\alpha)]} S_x^n - \varepsilon < \min_{[-v_+(1+\alpha), -v_-]} S_x^n \right) = \mathbb{P} \left(\min_{[-v_-, -v_-(1+\alpha)]} S_x^n - \varepsilon < \min_{[-v_+(1+\alpha), -v_-]} S_x^n \right)
\]

\[
\leq \mathbb{P} \left(\min_{[-v_-, -v_-(1+\alpha)]} B_n - 2\varepsilon < \min_{[-v_+(1+\alpha), -v_-]} B_n \right)
\]

(2)

\[
\leq \mathbb{P} \left(\min_{[0, -v_- \alpha]} B_n^l - 2\varepsilon < \min_{[0, -v_- + v_+(1+\alpha)]} B_n^r \right)
\]

and a symmetrical lower bound for the first term of (1). We evaluate this last term.

For any Brownian motion \(B \) and \(b > 0 \), we have by rescaling \(\mathbb{P} \left(\min_{[0,b]} B \geq m \right) = \mathbb{P} \left(\min_{[0,1]} B \geq \frac{m}{\sqrt{b}} \right) \).

Furthermore, since \(B_n^l \) and \(B_n^r \) are independent, so are \(\min_{[0,1]} B_n^l \) and \(\min_{[0,1]} B_n^r \). Denote \(\mu_m \) the law of the minimum of a Brownian motion on \([0,1]\), which is defined by the density function:

\[
\mathbb{R} \to \mathbb{R} \\
t \mapsto \frac{e^{-t^2}}{2} \quad \text{if } t \leq 0, \quad (\text{see } \text{[MPI10]}).
\]

This means that for any \(y, z > 0 \):
When \(\sigma \in M \) by using the law of the minimum of a Brownian motion, (ii) by passing in polar variables. For \(\varepsilon > 0 \), a similar calculation gives:

\[
\left| \mathbb{P}\left(\min_{[0,y]} B_n^t < 2\varepsilon < \min_{[0,y]} B_n^t \right) - \mathbb{P}\left(\min_{[0,y]} B_n^t < \min_{[0,y]} B_n^t \right) \right| \leq \frac{4}{2\pi} \int_{-\infty}^{0} \int_{-\infty}^{0} \frac{\sqrt{\pi m_2 + 2\varepsilon}}{\sqrt{3}} e^{-\frac{m_2^2}{2}} e^{-\frac{m_2^2}{2}} dm_1 dm_2
\]

\[
\leq \frac{8\varepsilon}{2\pi \sqrt{y}} \int_{-\infty}^{0} e^{-\frac{m_2^2}{2}} e^{-\frac{m_2^2}{2}} dm_2
\]

\[
\rightarrow 0 \quad \varepsilon \rightarrow 0
\]

To sum up, the right-hand term in (2) converges to \(\frac{2}{\pi} \arctan \left(\sqrt{\frac{y}{z}} \right) \) as \(\varepsilon \rightarrow 0 \). The first term in (1) can be bounded from below by the same method. Since \(\varepsilon \) can be taken as small as possible by taking \(n \) large enough, the theorem follows.

\[
\square
\]

3.4. Particle density

Definition 13 (Particle density in a configuration). The \(-1 \) particle density in \(x \in \{-1,0,1\}^Z \) is defined as \(d_{-}(x) = \text{Freq}(-1,x) \). \(d_{+}(x) \) is defined in a symmetrical manner.

In all the following, any result on \(d_{-} \) also holds for \(d_{+} \) by symmetry.

Theorem 6 (Decrease rate of the particle density). Let \(G \) be a \((v_{-}, v_{+})\)-GA with initial measure \(\mu \in \text{Mix} \). Then:

\[
\forall \mu x \in \{-1,0,1\}^Z, \forall \varepsilon > 0, \, d_{-}(G^t(x)) = O\left(t^{-\frac{1}{2} + \varepsilon}\right)
\]

If furthermore \(\mu \in \text{Ber}_{\alpha} \):

\[
\forall \mu x \in \{-1,0,1\}^Z, \, d_{-}(G^t(x)) \sim t^{-\frac{1}{2}}
\]

Proof. When \(\mu \in \text{Mix} \), it is in particular \(\sigma \)-ergodic, and so are its images \(G^t \mu \). By Birkhoff’s ergodic theorem, one has \(d_{-}(G^t(x)) = G^t \mu([-1]) = \mu(G^t(0) = -1) \) for \(\mu \)-almost all \(x \in \{-1,0,1\}^Z \).

We first prove the theorem when \(G \) is the \((-1,0)\)-gliders automaton. By Lemma 2

\[
\mu(G^t(x)_0 = -1) = \mu\left(S_x(t + 1) < \min_{[0,t]} S_x\right).
\]
Equivalent ($\mu \in \text{Ber}$): By symmetry,

$$
\mu \left(S_x(t + 1) < \min_{[0,t]} S_x \right) = \mu \left(S_x(0) < \min_{[1,t+1]} S_x \right),
$$

which is the probability that the random walk starting from 0 remains strictly positive during t steps, also known as its probability of survival. According to [Red01], when the random walk is symmetric and the steps are independent, we have the equivalent $\mu(G^t(x) = -1) \sim \frac{1}{\sqrt{t}}$.

Upper bound:

$$
\mu \left(S_x(t + 1) < \min_{[0,t]} S_x \right) \leq \mu \left(S_x^t(1) = \min_{[0,1]} S_x^t \right).
$$

Using Corollary 3 we have:

$$
\mu \left(S_x^t(1) = \min_{[0,1]} S_x^t \right) = \mathbb{P} \left(S_x^t(1) = \min_{[0,1]} S_x^t \right) \\
\leq \mathbb{P} \left(B_{t+1}(0) \leq \min_{[0,1]} B_{t+1} + C_{t+1} \right),
$$

where $C_{t+1} = \sup_{[0,1]} |S_x^t - B_{t+1}| = O \left(t^{-1/2} \right)$ \mathbb{P}-almost surely, and where the third line is obtained by symmetry of the Brownian motion.

Furthermore $\mathbb{P} \left(\min_{[0,1]} B_{t+1} > -C_{t+1} \right) = \int_{-C_{t+1}}^{0} e^{-x^2/2} dx \leq C_{t+1} = O \left(t^{-1/2} \right)$.

General case (any $v_- < v_+$): Let G' be the (v_-, v_+)-GA. Then

$$
G' = \sigma^{v_+} \circ G^{v_+-v_-}.
$$

To conclude, it is enough to see that the particle density is σ-invariant and decreasing under the action of G. □

3.5. Rate of convergence

In this section, we estimate the rate of convergence to the limit measure. For that we fix a distance on the space $M_\sigma(A^Z)$ of σ-invariant measures, which induces the weak* topology:

$$
d_M(\mu, \nu) = \sum_{n \in \mathbb{N}} \frac{1}{2^n} \max_{u \in A^n} |\mu([u]) - \nu([u])|.
$$

Theorem 7 (Rate of convergence to the limit measure). Let G be the (v_-, v_+)-GA with initial measure $\mu \in \text{Mix}$. Then:

- For all $\varepsilon > 0$, $d_M(G^t\mu, \hat{\delta}_0) = O \left(t^{-1/4+\varepsilon} \right)$

- If furthermore $\mu \in \text{Ber}$:

$$
d_M(G^t\mu, \hat{\delta}_0) = \Omega \left(t^{-1/2} \right)
$$

Proof. We first prove the theorem when G is the $(-1,0)$-gliders automaton. By defining $0^\ell \in A^\ell$ the word containing only zeroes, the distance can be rewritten:

$$
\forall t \in \mathbb{N}, d_M(G^t\mu, \hat{\delta}_0) = \sum_{\ell=1}^{\infty} \frac{1}{2^\ell} G^\ell_\mu \left(A^Z \setminus [0^\ell] \right).
$$
Lower bound when \(\mu \in \text{Ber}_- \): \(d_\mathcal{M}(G^*_\mu, \tilde{\delta}_0) > G^*_\mu \left(\mathcal{A}^\mathbb{Z} \setminus \{0\} \right) \). We conclude with Theorem\[6\]

Upper bound: We give an upper bound for \(G^*_\mu(\mathcal{A}^\mathbb{Z} \setminus \{0\}^\ell) = \mu(\exists 0 \leq d \leq \ell, G^t(x)_d = \pm 1) \) for \(\ell \in \mathbb{N} \) and \(t \in \mathbb{N} \). By Lemma\[2\]

\[
\forall d \in \mathbb{Z}, \ G^t(x)_d = +1 \iff S_x(d) < \min_{[d+1,d+t]} S_x.
\]

Therefore:

\[
G^*_\mu \left(\bigcap_{d=0}^\ell [+1)_d \right) \leq \mu \left(\min_{[0,\ell]} S_x < \min_{[\ell+1,\ell]} S_x \right)
\leq \mu \left(\min_{[0,\ell]} S_x \geq -\ell \right)
\leq \mu \left(\min_{[0,1]} S_x^t \geq -\frac{\ell}{\sqrt{t}} \right)
\]

By Corollary\[3\] using the same notations as in the previous proofs:

\[
G^*_\mu(\exists 0 \leq d \leq \ell, x_d = +1) \leq \mathbb{P} \left(\min_{[0,1]} S_x^\ell \geq -\frac{\ell}{\sqrt{t}} \right)
\leq \mathbb{P} \left(\min_{[0,1]} B_t \geq -\frac{\ell}{\sqrt{t}} - C_t \right) \quad \text{where } C_t = O \left(t^{-\frac{1}{2} + \varepsilon} \right)
\]

\[
= O \left(t^{-\frac{1}{4} + \varepsilon} \right)
\]

for any \(\varepsilon > 0 \), following the same calculations as in Section 3.4. The case of \(-1\) particles is symmetrical, and we conclude.

General case: Apply the same method as in the previous section, considering that \(d_\mathcal{M} \) and all considered measures are \(\sigma \)-invariant and that any CA is Lipschitz w.r.t \(d_\mathcal{M} \).

\[\square \]

3.6. Extension to other cellular automata

Definition 14. Let \(F_1, F_2 \) be two CAs on \(\mathcal{A}^\mathbb{Z} \) and \(\mathcal{B}^\mathbb{Z} \), respectively. We say that \(F_1 \) *factorises onto* \(F_2 \) if there exists a *factor* \(\pi : \mathcal{A}^\mathbb{Z} \to \mathcal{B}^\mathbb{Z} \) such that \(\pi \circ F_1 = F_2 \circ \pi \).

In other words, \(F_1 \) admits a particle system \((\mathcal{P}, \pi, \phi)\) with \(\mathcal{B} = \mathcal{P} \cup \{0\} \) and where \(\phi \) is a cellular automaton on \(\mathcal{B}^\mathbb{Z} \).

In this section, we extend the Theorems\[4\] and\[6\] to automata that factorise onto a gliders automaton, and discuss conditions for the extension of Theorem\[7\]. In Section 2.4, we exhibited a general method to find such a factor using experimental intuition when such a factor is not obvious.

In other words, using the formalism from Section 2, we extend the theorems to automata that admit a particle system \((\mathcal{P}, \pi, \phi)\), where \(\mathcal{P} = \{-1, +1\} \) and \(\phi \) acts as a gliders automaton.

In order to extend the theorem to such CAs, starting from an initial measure \(\mu \), we must first ensure that \(\pi_* \mu \in \text{Mix} \). We show that the third condition in the definition of \(\text{Mix} \) is invariant under morphism.

Proposition 8. Let \(\pi : \mathcal{A}^\mathbb{Z} \to \mathcal{B}^\mathbb{Z} \) be a morphism, \(\mu \in \mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z}) \) and \(k > 0 \) any real such that \(\sum_{n \geq 0} \alpha_\mu(n)^k < \infty \). Then, \(\sum_{n \geq 0} \alpha_{\pi_* \mu}(n)^k < \infty \).

Proof. We keep the notations from the definition of \(\alpha_\mu(n) \). \(\pi \) is defined by a local rule with neighbourhood \(\mathcal{N} \subset [-r, r] \) for some \(r > 0 \). Then, \(\pi^{-1} \mathcal{B}_r^\infty \subset \mathcal{B}_r^\infty \) and \(\pi^{-1} \mathcal{B}_r^\infty \subset \mathcal{B}_r^\infty \). By \(\sigma \)-invariance, we have for all \(n \) \(\alpha_{\pi_* \mu}(n) < \alpha_\mu(n - 2r) \), and the result follows. \[\square \]
Hence, if \(\mu \in \text{Mix} \), we only have to prove that \(\pi_*\mu \) weighs evenly the sets of particles \(-1\) and \(+1\), and that the corresponding asymptotic variance is not zero. Under these assumptions, we can extend some of the previous results with the forbidden patterns playing the role of the particles.

Corollary 4. Let \(F : \mathbb{Z} \to \mathbb{Z} \) be a CA and \(\mu \in \mathcal{M}_r(\mathbb{Z}) \). Suppose that \(F \) factorises onto a \((v_-, v_+)-GA\) via a factor \(\pi \) such that \(\pi_*\mu \in \text{Mix} \).

Then Theorem 4 and the first point of Theorem 6 hold if we replace “\(x_k = \pm 1 \)” by “\(\pi(x)_k = \pm 1 \)”.

Figure 14. The 3-state cyclic CA, a one-sided captive CA and the product CA.

Examples:

Traffic automaton: Let \(\mathcal{A} = \{0, 1\} \) and \(F_{184} \) be the elementary CA corresponding to rule \#184. \(F_{184} \) factorises on the \((-1, +1)\)-gliders automaton, using the factor found in Section 2.5:

\[
\begin{align*}
00 & \mapsto +1 \\
11 & \mapsto -1 \\
\text{otherwise} & \mapsto 0
\end{align*}
\]

This factor is represented in Figure 6. If \(\mu \) is a measure such that \(\pi_*\mu \in \text{Mix} \), then Theorem 4 and the first point of Theorem 6 hold.

For example, this is true for the 2-step Markov measure defined by the matrix \(\begin{pmatrix} p & 1-p & 1-p \\ 1-p & p & 0 \\ 0 & 0 & 0 \end{pmatrix} \) with \(p > 0 \). A particular case is the Bernoulli measure of parameters \(\left(\frac{1}{2}, \frac{1}{2} \right) \). Theorem 7 can also be extended by considering \(d_{\mathcal{M}}(F_{184}^{t}\mu, \hat{\delta}_{01}) \), since this distance can be bounded knowing the density of particles.

3-state cyclic automaton: Let \(\mathcal{A} = \mathbb{Z}/3\mathbb{Z} \) and \(C_3 \) be the 3-state cyclic automaton. We consider the factor \(\pi \) defined in Section 2.5:

\[
\begin{align*}
ab & \mapsto +1 \quad \text{if } a = b + 1 \mod 3 \\
ab & \mapsto -1 \quad \text{if } a = b - 1 \mod 3 \\
ab & \mapsto 0 \quad \text{if } a = b
\end{align*}
\]

If \(\mu \) is such that \(\pi_*\mu \in \text{Mix} \), then Theorem 6 applies. This is true in particular when \(\mu \) is any 2-step Markov measure defined by a matrix \((p_{ij})_{1 \leq i,j \leq 3} \) satisfying \(p_{01} + p_{12} + p_{20} = \)
\(p_{10} + p_{21} + p_{02}, \) all of these values being nonzero, with \((\mu_i)_{1 \leq i \leq 3}\) its only eigenvector. This includes any nondegenerate Bernoulli measure. However, even when the limit measure is known (e.g. starting from the uniform measure), Theorem 7 does not apply directly.

One-sided captive automata: Let \(F \) be any one-sided captive cellular automaton defined by a local rule \(f \). As explained in Section 2.5 \(F \) factorises onto the \((-1, 0)\)-gliders automaton with a factor defined by:

\[
\begin{align*}
ab &\mapsto +1 \quad \text{if } a \neq b, f(a, b) = a \\
ab &\mapsto -1 \quad \text{if } a \neq b, f(a, b) = b \\
ab &\mapsto 0 \quad \text{if } a = b
\end{align*}
\]

For an initial measure \(\mu \), if \(\pi_* \mu \in \mathcal{M}_{\text{ix}} \), then Theorem 4 and the first point of Theorem 6 apply.

Notice that this class of automata contains the identity \((\forall a, b \in \mathcal{A}, f(a, b) = b)\) and the shift \((\forall a, b \in \mathcal{A}, f(a, b) = a)\). However, since we have in each case \(\pi^{-1}(+1) = \emptyset \) or \(\pi^{-1}(-1) = \emptyset \), it is impossible to find an initial measure that weighs evenly each kind of particle, and so \(\pi_* \mu \) cannot belong in \(\mathcal{M}_{\text{ix}} \). The limit measure, however, depends on the exact rule, and Theorem 7 does not apply directly.

Counter-example:

Product automaton: Let \(\mathcal{A} = \mathbb{Z}/2\mathbb{Z} \) and \(F_{128} \) be the CA of neighbourhood \(\{-1, 0, 1\} \) defined by the local rule \(f(x_{-1}, x_0, x_1) = x_{-1} \cdot x_0 \cdot x_1 \). Using the formalism from Section 2.4 we can see that \(F_{128} \) factorises onto the \((-1, 1)\)-GA by the factor

\[
\pi : \begin{cases}
01 &\mapsto +1 \\
10 &\mapsto -1 \\
\text{otherwise} &\mapsto 0
\end{cases}
\]

If \(\mu \) is any Bernoulli measure, then \(\pi_* \mu \) satisfies all conditions of \(\mathcal{M}_{\text{ix}} \) except that \(\sigma_{\mu} = 0 \); indeed, we can check that for \(\pi_* \mu \)-almost all configurations, the particles \(+1 \) and \(-1 \) alternate. Hence, only one particle can cross any given column after time 0, and therefore \(\forall \alpha > 0, \ \mu \left(\frac{T_{\alpha}(x)}{n} \leq \alpha \right) \xrightarrow{n \to \infty} 0 \). Furthermore, any particle survives up to time \(t \) only if it is the border of a initial cluster of black cells larger than \(2t \) cells, which happens with a probability \(\mu([1])^2t \) exponentially decreasing in \(t \).

Even though we showed that the asymptotic distributions of entry times are known for some class of cellular automata and a large class of measures, this covers only very specific dynamics. It is not known how these results extend for more than 2 particles and/or other kind of particle interaction. In particular, there is no obvious stochastic process characterising the behavior of such automata that would play the role of \(S_x \) in our proofs.

Acknowledgements

This work was partially supported by the ANR project QuasiCool (ANR-12-JS02-011-01) and the ANR project Valet (ANR-13-JS01-0010).
[S+12] William A. Stein et al. Sage Mathematics Software (Version 4.2.1). The Sage Development Team, 2012. http://www.sagemath.org.

[The04] Guillaume Theyssier. Captive Cellular Automata. MFCS 2004, LNCS 3153:427–438, 2004.

[vN56] John von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata studies, 34:43–98, 1956.

[Wal82] Peter Walters. An introduction to ergodic theory, volume 79 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982.

[Wol84] Stephen Wolfram. Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena, 10(1):1–35, 1984.

[ZC96] Lin Zhengyan and Lu Chuanrong. Limit theory for mixing dependent random variables, volume 378. Springer, 1996.

Andrés Bello University and Centro de Modelamiento Matemático (Universidad de Chile), Santiago.
E-mail address: benjamin.hellouin@gmail.com
URL: http://mat-unab.cl/~hellouin/

Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, 13453, Marseille, France
E-mail address: sablik@univ-amu.fr
URL: http://www.i2m.univ-amu.fr/~sablik/