Family history of Alzheimer’s disease alters cognition and is modified by medical and genetic factors

Joshua S Talboom¹², Asta Håberg³, Matthew D De Both¹², Marcus A Naymik¹², Isabelle Schrauwen¹², Candace R Lewis¹², Stacy F Bertinelli¹, Callie Hammersland¹, Mason A Fritz¹, Amanda J Myers⁴, Meredith Hay²⁵, Carol A Barnes²⁵, Elizabeth Glisky²⁵, Lee Ryan²⁵, Matthew J Huentelman¹²*

¹The Translational Genomics Research Institute, Phoenix, United States; ²Arizona Alzheimer’s Consortium, Phoenix, United States; ³Norwegian University of Science and Technology, Trondheim, Norway; ⁴University of Miami, Miami, United States; ⁵University of Arizona, Tucson, United States

Abstract In humans, a first-degree family history of dementia (FH) is a well-documented risk factor for Alzheimer’s disease (AD); however, the influence of FH on cognition across the lifespan is poorly understood. To address this issue, we developed an internet-based paired-associates learning (PAL) task and tested 59,571 participants between the ages of 18–85. FH was associated with lower PAL performance in both sexes under 65 years old. Modifiers of this effect of FH on PAL performance included age, sex, education, and diabetes. The Apolipoprotein E ε4 allele was also associated with lower PAL scores in FH positive individuals. Here we show, FH is associated with reduced PAL performance four decades before the typical onset of AD; additionally, several heritable and non-heritable modifiers of this effect were identified.

Introduction Alzheimer’s disease (AD), the leading cause of dementia, is a progressive neurodegenerative disorder that typically first presents clinically as deficits in cognition. It is estimated that over five million people in the United States are currently living with AD, and by 2050, that number is expected to climb to 13.8 million (Hebert et al., 2013). The two major risk factors for the more common late-onset form of AD are increasing age and a first-degree family history of dementia (FH) (Braak et al., 2011; Green et al., 2002). FH is known to encompass both heritable and nonheritable risk factors for AD (Chang et al., 2012; Yi et al., 2018). FH has been associated with changes in multiple cognitive domains previously in children (13 years old) and young adults (35 years old); however, fewer cognitive domain changes were reported in middle-age (53 years old) and older (65–78 years old) FH adults (Aschenbrenner et al., 2016; Bloss et al., 2008; Honea et al., 2009; La Rue et al., 2008; Miller et al., 2005; Parra et al., 2015; Zeng et al., 2013). These effects were unrelated to the apolipoprotein (APOE) ε4 allele. Despite these FH findings, to the authors’ knowledge, there has not been a well-powered study of the effects of FH on memory across the lifespan. Furthermore, it is unknown if FH status interacts with demographics, common health and APOE genotype. Identification of factors potentiating or ameliorating an effect of FH is particularly crucial as one approach to identifying new avenues of risk reduction for AD. Indeed, risk reduction for AD is now more critical than ever due to the continued lack of a cure or effective disease-slowing treatments for AD (Barnes and Yaffe, 2011; Sperling et al., 2011; Takeda and Morishita, 2018). This fact underscores
risk reduction as one of the most practical means to attenuate the enormous burden AD places on society (Baumgart et al., 2015).

To overcome challenges associated with underpowered studies, we created MindCrowd (www.mindcrowd.org) as an accessible and easy-to-use web-based cognitive and demographic assessment; specifically, to elucidate the effects of FH on cognition in healthy participants. Participants were recruited across the entire adult lifespan to understand better how FH may alter cognition at different ages. The cognitive assessment consisted of an online, verbal paired-associates learning (PAL) task. PAL was chosen because it is a medial temporal lobe (MTL)-dependent learning and memory task affected early in the onset of AD (Pike et al., 2008). In addition, PAL is sensitive to changes in performance associated with healthy aging (Pike et al., 2013). Data on multiple demographic, medical, health, and lifestyle factors were also obtained (see Supplementary file 2). FH status was determined by self-report of having (FH+), or not having (FH−) based on the question, ‘Have you, a sibling, or one of your parents been diagnosed with Alzheimer’s disease?’ Further, a subset of FH participants was solicited to send us dried blood spots so that we could determine their apolipoprotein (APOE) genotype. APOE is a well-known genetic risk factor for AD. The risk of developing AD is higher by ~6% in ε4 allele carriers, while total genetic heritability risk for AD is 33% based on single nucleotide polymorphism data (Ridge et al., 2013), and ~60–75% in twin studies (Reynolds and Finkel, 2015). In addition, a recent study found a synergistic effect of FH and APOE ε4 on higher levels of amyloid-beta deposition measured via positron emission tomography (PET) imaging (Yi et al., 2018). As a result of these data and numerous other reports, we hypothesized that the APOE ε4 allele would relate to lower PAL scores in FH participants.

Results

As of August 15, 2018, MindCrowd, has recruited 59,571 qualified participants (see Data Quality Control in Materials and methods) from around the world (Figure 1A). The sample was 62.46% female and 37.54% male (Figure 1B). An overrepresentation of women has been previously described in studies drawn from the general population (Krokstad et al., 2013) as well as for AD (Roberts et al., 2004). The breakdown of race was American Indian or Alaska Native = 0.62%, Asian = 5.13%, Black/African American = 1.75%, Native Hawaiian/Pacific Islander = 0.39%, Mixed = 0.0009%, and White = 92.03%. In terms of years of education, we collapsed across education milestones for visualization purposes. Here we found that 10.78% reported ≤12 y, 29.64% reported ≤14 y, 35.32% ≤16 y, and 24.25% reported >20 y (Figure 1C). Across the entire sample, a FH of AD is present in 22.76% with the overall percentage swelling with age (Figure 1D).

In women and men 18–85 years old, our general linear model (GLM, see Figure 1—figure supplement 1 for regression diagnostic plots and Supplementary file 1 for a table all coefficient ns) revealed a significant Age coefficient ($B_{Age} = -0.20$ word pairs, $p_{Age} <2e-16$). Age was associated with a lowered PAL performance of two word-pairs per decade of life (Figure 2). Sex was also a significant predictor of PAL scores ($B_{Sex} = -1.82$, $p_{Sex} <2e-16$). Women were associated with nearly a two word-pair higher PAL score compared to men (Figure 2). Propensity score matching (PSM, see Statistical Methods in Materials and methods) revealed that the associated disparity between women and men’s PAL scores markedly grew around the 5th decade of life. PSM revealed an estimated effect size (i.e., average treatment effect among treated, ATT) of being a woman grew from the 5th to the 6th decade of life (50 s: $2.68^{ATT} ± 0.35$ D-word pairs, 60 s: $3.72^{ATT} ± 0.32$ D-word pairs). Educational Attainment was another significant predictor of PAL scores ($B_{Education} = 0.31$, $p_{Education} <2e-16$, Figure 3). For both women and men, each milestone of Educational Attainment was associated with around a third of a word pair higher PAL score. In women and men, PSM revealed an approximate effect size of one-word pair higher performance across each level of Educational Attainment (e.g., Male 12y vs. 14y $[ATT]0.72 ± SD0.28$, Female 12y vs. 14y= $[ATT]1.06 ± SD0.24$). However, the magnitude of this effect was not consistent for men and women across levels of Educational Attainment. Indeed, PSM estimated that women have a higher PAL score related to education than men, at all except the highest level of Educational Attainment (16y vs. 20y: Women=$[ATT]0.97 ± SD0.12$, Men=$[ATT]1.29 ± SD0.16$).

Notably, there was a significant main effect of FH ($B_{FH} = -2.39$, $p_{FH} = 3.47e-06$, Figure 4A.). This coefficient indicated that for women and men, having FH was associated with nearly a two-and-a-half-word pair lower PAL scores when compared to FH− participants. Further our model revealed a
significant Age x Diabetes ($B_{\text{Age} \times \text{Diabetes}} = 0.03$, $p_{\text{Age} \times \text{Diabetes}} = 0.03$) and Age x FH ($B_{\text{Age} \times \text{FH}} = 0.02$, $p_{\text{Age} \times \text{FH}} < 0.01$, Figure 4A) interaction. The significant interactions between Age and Diabetes as well as Age and FH indicate a greater association between Diabetes and FH with lower PAL scores at younger ages as compared to older ages. Indeed, the linear trend lines for diabetes cross at 50 years of age (data not shown) and at age 65 for FH (Figure 4A). Due to the significant Age x FH interaction, our analyses evaluating interactions with FH included only participants \leq 65 years old. A significant Sex x FH interaction ($B_{\text{Sex} \times \text{FH}} = -0.79$, $p_{\text{Sex} \times \text{FH}} = 7.97e-06$, Figure 4B) was found. Follow-up analyses of the estimated marginal mean (EMM, see Statistical Methods in Materials and methods) revealed that FH +women and men had lower PAL scores compared to FH- women and men.
...women: EMM = 1.01, \(t(53763) = 4.18, p<0.01 \); men: EMM = 1.58, \(t(53763) = 6.03, p<0.001 \); however, the magnitude of this effect was different between women and men. Indeed, PSM revealed that the estimated word pair reduction in PAL scores associated with FH status was larger in men (e.g., 20 s: \(\text{ATT} 1.93 \pm \text{SD} 0.60 \)) as compared to women (e.g., 20 s: \(\text{ATT} 0.60 \pm \text{SD} 0.67 \)), except for the 6th decade of life (60 s: Women\[\text{ATT} -0.50 \pm \text{SD} 0.18\], Men\[\text{ATT} 0.09 \pm \text{SD} 0.36\]), Figure 4 Inset).

There was a significant Educational Attainment x FH interaction (\(B_{\text{Education}}*FH = 0.08, p_{\text{Education}}*FH <0.01 \)). Follow-up analyses of the EMMs showed that FH was associated with lower PAL score at each milestone of educational attainment (ts(53758) > 3.45, ps <0.01); the magnitude of the associated decline in PAL scores attributed to FH was greater at lower milestones of educational attainment as compared to higher milestones (e.g., 12y [High school diploma]: FH- EMM = 16.4, FH +EMM = 14.8, difference = 1.6; 20y [Post graduate degree]: FH- EMM = 20.8, FH +EMM = 19.6, difference = 1.2). In FH +or FH- women and men 18–65 years old, our model revealed a significant FH x Diabetes (\(B_{\text{FH}}*\text{Diabetes} = -0.71, p_{\text{FH}}*\text{Diabetes} = 0.04, \) Figure 5) interaction. Follow-up analyses of the EMM revealed that participants with FH and diabetes were associated with lower PAL scores compared to participants with FH but no diabetes (FH +Diabetes + EMM = 16.9, FH +Diabetes-EMM = 18.1, \(t(53763) = 2.73, p=0.03 \)). Lastly, two models which included either: 1) the Number of APOE \(\varepsilon 4 \) alleles (i.e., 0, 1, or two copies) or 2) APOE Genotype (e.g., \(\varepsilon 2-\varepsilon 2, \varepsilon 2-\varepsilon 3, \varepsilon 4-\varepsilon 4, \) etc.) were...
evaluated. There was a significant main effect for the Number of APOE ε4 Alleles variable ($B_{\text{ε4Allele}} = -1.30$, $p_{\text{ε4Allele}} = 0.02$, Figure 6). These data indicated that in FH +participants, there was an association of one and a third word pair lower PAL score per each ε4 allele. Moreover, there was a significant main effect in the model comparing the ε4-ε4 to the ε2-ε3 genotype ($B_{\text{ε4-ε4 vs. ε2-ε3}} = 5.32$, $p_{\text{ε4-ε4 vs. ε2-ε3}} = 0.03$). Similarly, FH +participants with the ε4-ε4 genotype were associated with a five-word pair lower PAL scores compared to FH +participants with the ε2-ε3 genotype.

Discussion

Overall, this study finds that having a first-degree relative diagnosed with Alzheimer’s disease (FH) is associated with lower verbal learning and memory performance (i.e., paired-associates learning; PAL) below the age of 65. Notably, FH men showed a greater reduction in cognition compared to FH women. This effect is not surprising since women, regardless of FH, perform better on PAL compared to men (Kaushanskaya et al., 2011), an effect replicated in this study. To that end, we demonstrate the sex-effect for PAL extends across the entire adult lifespan; indeed, the first time to the authors’ knowledge that this has been demonstrated: 1) in a large cohort, 2) using the same test, and 3) in a single study. It is interesting that our study found the associated disparity between women’s and men’s PAL scores enlarged around the 5th decade of life. The 5th decade of life is the approximate age when women undergo menopause in developed countries. Menopause-related changes to women’s hormonal milieu, either endogenously or via hormone treatment or gynecological surgery have been found to alter cognition during this period (discussed in Koebel and Bimonte-Nelson, 2016). Future studies of this cohort will dissect which medical choices at menopause, and medical choices earlier in a woman’s lifespan, may underlie better preservation of verbal memory in middle aged women as compared to men. Lastly, educational attainment was associated with milestone-dependent higher learning and memory performance. Regardless of FH status, education in women was associated with better PAL scores compared to men, at all except the highest reported level of educational attainment (i.e., 16 vs. 20 years of education). The effect of education on PAL scores is in line with observations in a clinical study demonstrating that higher levels of education are associated with delayed AD onset (Vemuri et al., 2014; Wang et al., 2012).

In terms of health, lifestyle, and genetic factors, this study found that diabetes modified the effect of FH on PAL. Specifically, in both women and men, diabetes and FH were associated with reduced
PAL performance. It is not surprising that diabetes exacerbates the effects of FH on cognition since diabetes has been linked to worse cognitive deficits in AD (Takeda and Morishita, 2018). Several factors may underlie this effect: 1) there are differences in the risk of dementia for type one diabetes and type two diabetes, 2) specific type two diabetes treatments may reduce age-related declines in neural metabolism (Hamed, 2017; Kuo et al., 2018), and 3) vascular damage may combine with other genetic and environmental factors. As for genetic factors that modify FH, we supported our hypothesis whereby the presence of an APOE ε4 allele was associated with lower PAL performance in a dose-dependent-like manner in FH individuals. These data suggest that APOE genotype is an important genetic factor that influences memory. Our findings are in line with results from a voxel-wise study in humans noting a synergistic effect of FH and the APOE ε4 allele to intensify amyloid-beta deposition and reduce glucose use in regions of the MTL and other AD-related brain regions (Yi et al., 2018).

At the systems level, these results suggest that the collection of heritable and non-heritable changes due to FH status alter the functioning of the MTL and associated structures (Yi et al., 2018). The fact that these effects were only observed in participants that were ≤65 years old could be due to age-related differences in the effect of FH or participation differences between younger and older FH test takers. The ≤65 years old effect is partially in line with earlier smaller and more age-specific studies of FH status and cognition demonstrating an effect of FH, but only in children and younger adults (Bloss et al., 2008; Parra et al., 2015; Zeng et al., 2013). Since the prevalence of AD rises after age 60, it is also possible that older FH participants consenting to our study are
those that have remained cognitively intact. Thus, participants that were experiencing noticeable age- or disease-related cognitive impairment may choose not to participate.

It is important to acknowledge some limitations of our work. FH risk is known to vary depending on the relationship of the diagnosed relative, and previous reports have demonstrated that first-degree FH results in higher risk for dementia compared to second- and third-degree FH (Cannon-Albright et al., 2019). In our study, we asked about the first-degree FH only; therefore, it is possible that individuals who have other FH risk from extended family members were included in our non-FH group. Additionally, it is possible that the form of AD, late-onset versus the rarer early-onset form, may encode different levels of FH risk. Future work is planned to investigate the FH effect in the study cohort, including an improved ability to separate late and early onset FH for each participant as well as to inquire about additional extended family member FH status.

It is likely that we did not measure all demographic, lifestyle, and health factors that are associated with differential PAL performance. One such example is socioeconomic status (SES). SES has been shown to have an association with brain structure and cognitive measures during development (reviewed in Brito and Noble, 2014) and work also suggests SES could play a role in AD risk (Qian et al., 2014; Stępkowski et al., 2015; reviewed in Seifan et al., 2015). Importantly, while we did not measure SES directly, we did assess factors commonly used to construct the SES composite.

Figure 5. Diabetes modified the FH effect on PAL performance. Linear regression fits (line fill ±95% CI, error bars ± SEM) of the PAL total number of correct in FH- Diabetes+, FH +Diabetes-, and FH +Diabetes + participants from 18 to 65 years old. Regardless of sex, diabetes in FH +participants led to lower PAL scores ($B_{FH*Diabetes} = -0.71$, $p_{FH*Diabetes} = 0.04$, AD- DI- $n= 47970$, AD- DI + $n= 2041$, AD + DI n=13841, and AD + DI + n=898).

DOI: https://doi.org/10.7554/eLife.46179.008
Due to the large, distributed, and electronic nature of our study cohort, we rely on self-report answers to demographic, lifestyle, and health questions. Current studies comparing self-report data given over the internet versus in-person collected data show anywhere from a 0.3–20% discrepancy for height and weight measurements (Maukonen et al., 2018; Nikolaou et al., 2017). To investigate the potential role that such error may play on our FH AD effect, we re-analyzed the FH effect after introducing additional error into the coding of the FH self-report response. Additional error was added by randomly re-assigning FH status to various percentages of the cohort (stepwise from 2–30% of individuals) and re-analyzing the effect of FH using our complete statistical model. This was performed a total of 10,000 times for each error percentage, and the resulting influences on the p-value were reported using boxplots. With 8% additional introduced error we are able to show statistically significant effect of FH on PAL in 100% of the 10,000 tested iterations while an additional 24% error in FH status would still result in a statistically significant effect of FH on PAL in over 50% of the iterations (see Figure 1—figure supplement 2). These results suggest that it is unlikely that FH self-report error is driving the significant effect of FH on PAL. Lastly, PAL was tested cross-
sectionally in the cohort; therefore, determinations about the influence of collected factors on trajectories of change in performance across time within an individual subject are not possible. Additional longitudinal-based studies will be necessary to identify this class of variables.

Collectively, this study supports recommendations underscoring the importance of living a healthy lifestyle, properly treating disease states such as diabetes, and building cognitive reserve through education (i.e., risk reduction) to attenuate age- and AD-risk-related cognitive declines. Further, our findings specifically highlight the positive effects of such interventions on FH-associated risk, opening the door to the development of more targeted risk reduction approaches to combat AD. In addition, this work underscores the utility of web-based cohort recruitment and study; thus, facilitating large sample sizes in a cost- and time-effective fashion. Statistical power concerns are common in many scientific studies, and underpowered study designs can lead to several potential issues associated with false positive and negative rates. It should be acknowledged that web-based studies are not without concerns, however, we propose that the advantage of considerably larger sample sizes and enriched cohort diversity in online research mostly diminishes the potential disadvantages.

Materials and methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Gene (Apolipoprotein E)	APOE	PMCID: PMC6106945	HGNC: HGNC:613	
Sequence-based reagent	APOE PCR Primers	Integrated DNA Technologies, Inc (IDT)	F 5’-ACA-GAA-TTG-GCC-CCG-GCC-TGG-TAC-3’, R 5’-TAA-GCT-TGG-GAC-GGC-TGT-CCA-AGG-A-3’	0.5 µL of each 50 µM Primer
Chemical compound, drug	FailSafe PCR Enzyme and 2X PreMix Buffers	Lucigen	FSP995J	
Chemical compound, drug	HHA1	NEB	R0139S	0.5 µL/20 µL of PCR product
Other	Whatman 903 Protein Saver Card	VWR	05-715-121	
Chemical compound, drug	Ultrapure Agarose	Thermo	16500500	4%
Chemical compound, drug	GelStar Gel Stain	Lonza	50535	7 µL/300 mL of gel mix
Chemical compound, drug	Ultra-Low Range DNA Ladder	Invitrogen	10597012	
Chemical compound, drug	Amplitaq Gold Fast Master Mix	Thermo	4390941	
Chemical compound, drug	Oragene Saliva Kit	DNAGenotek	OGR-500	
Chemical compound, drug	Tris-Acetate-EDTA (TAE) 50 X (20L)	Fisher	BP1332-20	
Software, algorithm	R	The R Foundation	Version 3.5.1	RRID:SCR_001905
Software, algorithm	R package, ggplot2	Comprehensive R Archive Network (CRAN)	Version 3.1.1	RRID:SCR_014601
Software, algorithm	R package, emmeans	Comprehensive R Archive Network (CRAN)	Version 1.3.0	
Software, algorithm	R package, Zelig	Comprehensive R Archive Network (CRAN)	Version 5.1.6	
Software, algorithm	R package, MatchIt	Comprehensive R Archive Network (CRAN)	Version 3.0.2	

Talboom et al. eLife 2019;8:e46179. DOI: https://doi.org/10.7554/eLife.46179 9 of 16
Study participants
In January 2013, Phase I began with the launch of our internet-based study site at www.mindcrowd.org. Website visitors, who were 18 years or older, were asked to consent to our study before any data collection via an electronic consent form. As of 8-15-2018, we have had 256,674 non-duplicate or unique visitors to the website. Of these unique visitors, over 139,740 consented to participate. The final data set contained 59,571 participants who completed the paired associates learning (PAL) task and answered 22 demographic, lifestyle, and health questions (see Supplementary file 2). In addition, 973 participants, who completed Phase I and indicated they had a first-degree relative with Alzheimer’s disease (FH), consented to provide a self-collected biospecimen (either dried blood or saliva) via the mail. Over 742 participants returned the biospecimen collection kits. Approval for this study was obtained from the Western Institutional Review Board (WIRB study number 1129241).

Phase I: PAL test and demographic, medical, health, and lifestyle questions
After consenting to the study and answering an initial five demographic questions (age, sex, years of education, primary language, and country), participants were asked to complete a web-based paired-associates learning (PAL) task. For this cognitive task, during the learning phase, participants were presented 12 word-pairs, one word-pair at a time (2 s/word-pair). During the recall phase, participants were presented with the first word of each pair and were asked to use their keyboard to type (i.e., recall) in the missing word. This learning-recall procedure was repeated for two additional trials. Prior to beginning the task, each participant received one practice trial consisting of three word-pairs not contained in the 12 used during the test. Word-pairs were presented in different random orders during each learning and each recall phase. The same word pairs and orders of presentation were used for all participants. The dependent variable/criterion was the total number of correct word pairs entered across the three trials (i.e., $12 \times 3 = 36$, a perfect score).

Upon completing the PAL task, participants were directed to a webpage asking them to fill out an additional 17 demographic and health/disease risk factor questions. These questions included: marital status, handedness, race, ethnicity, number of daily prescription medications, a first-degree family history of dementia, and yes/no responses to the following: seizures, dizzy spells, loss of consciousness (more than 10 min), high blood pressure, smoking, diabetes, heart disease, cancer, stroke, alcohol/drug abuse, brain disease and/or memory problems). Next, participants were shown their results and provided with different comparisons to other test takers based on the average scores across all participants, as well as across sex, age, education, etc. On this same page of the site, the participants were also provided with the option to be recontacted for future research or not.

Phase II: Biospecimen collection
Biospecimen collection: 4961 participants who completed phase I and had a FH of AD were solicited via email to self-collect and ship back either dried blood spots (DBS) on a 903 Protein Saver Card (Whatman, Little Chalfont, United Kingdom) or a saliva sample using an Oragene Discover kit (DNA Genotek Inc, Ottawa, Canada). Consenting participants ($N = 973, 19.7\%$) were sent kits containing easy to use instructions and everything they needed to collect, and ship DBS or stabilized saliva back to our laboratory. Received DBS were stored at 4°C. Participants who unable to collect enough blood for adequate DBS were sent the saliva kit instead. For saliva, DNA was extracted and purified as per the Oragene Discover kit’s instructions. Extracted DNA was stored at –20°C.

Apolipoprotein E (APOE) genotyping: DBS or extracted DNA was assayed via polymerase chain reaction (PCR, F 5’-ACA-GAA-TTG-GCC-CCG-GCC-TGG-TAC-3’, R 5’-TAA-GCT-TGG-CAC-GGC-TGT-CCA-AGG-A-3’) and restriction fragment length polymorphism (RFLP). For DBS, PCR was performed directly from a 1 mm punch of a DBS and the FailSafe PCR System using PreMix J and the above primers (Epicentre, Madison, WI). For extracted DNA from saliva, approximately 100 ng of DNA was added to AmpliTaq Gold Fast PCR Master Mix (Applied Biosystems: Thermo Fisher Scientific, Waltham, MA) with the above primers. After PCR, for RFLP, each sample was incubated with 0.5 mL of the HhaI (New England BioLabs, Ipswich, MA) restriction enzyme for 16 hr at 37°C. RFLP samples were run for approximately ~4 hr at 100V on a 4% agarose gel (Invitrogen, Carlsbad, CA), using GelStar Nucleic Acid Gel Stain (Lonza, #50535) and Ultra Low Range DNA Ladder (Invitrogen).
Images of the gel were acquired using a Canon G15 digital (Canon, Tokyo, Japan) camera using a DarkReader transilluminator (Clare Chemical Research Inc, Dolores, CO). APOE genotypes were then called according to previously published methods (Oh et al., 1997). A total of 743 FH + participants were APOE genotyped. After filtering a total of 673 were used for the final analyses. The variables were the presence or absence of an APOE ε4 allele (Carriers vs. Non-Carriers) and the Total Number of APOE ε4 alleles (i.e., 0, 1, or 2).

Data quality control
The final dataset was filtered prior to analysis to remove participants: a) with duplicate email addresses (only 1st entry kept), b) who did not complete all three rounds of the PAL test, c) whose primary language was not English, d) who was not between 18–85 years old, e) who did not report FH status, f) who reported a history of brain disease or memory problems, and g) whose Educational Attainment in years was less than or equal to participants self-reported chronological age minus four.

Statistical methods
Statistical analysis was conducted using R (version 3.5.1). For all analyses, the general linear model (GLM)/multiple regression analysis was used to model the Total Word Pairs Correct (criterion/dependent variable) as a function of our Demographic, Health, and Lifestyle Questions as well as APOE status (predictor/independent variables). Regression fit and GLM assumptions were evaluated by plotting residuals, testing if these data were normally distributed, the presence of outliers and highly influential data points, the autocorrelation of the residuals, and the presence of multicollinearity (Figure 1—figure supplement 1). All measurements were taken from distinct samples. The demographic variables used for analysis were: Age, Biological Sex, Race, Ethnicity, Educational Attainment, Marital Status, Handedness, Number of Daily Prescription Medications, Seizures, Dizziness, Loss of Consciousness, Hypertension, Smoking, Heart Disease, Stroke, Alcohol/Drug Abuse, Diabetes, Cancer, and FH. For APOE analyses, the variables were the Number of APOE ε4 alleles and APOE Genotype. Due to low APOE sample size (n = 519) in relation to the overall study (N = 59,571), two GLMs (one per APOE variable), including only FH + participants, were evaluated. It is important to note that each of the above demographic variables and indicated interaction terms were included in every analysis unless stated otherwise due to model limitations. All plots were created with the R package, ggplot2. Since at age 65, the FH + and FH- performance converged, primary FH modifier analyses were conducted in participants ≤ 65. Categorical by categorical interactions were estimated using the R package, emmeans (version 1.3.0) R package. Adjustments for multiple comparisons were evaluated using Tukey’s method via the emmeans package. Preprocessing with propensity score matching (PSM) was used before statistical modeling to reduce bias and variance (Ho et al., 2007; Ho et al., 2011). Matching was performed using the R package, Matchit (version 3.0.2). Effect sizes were estimated from the matched cohort using the R package, Zelig (version 5.1.6). Zelig uses least squares regression on matched data to estimate the partial effect on an outcome of interest, in our case, total word pairs correct (Imai et al., 2008; Imai et al., 2009).

Availability of the materials and resources
All reagents, programs/software, and other materials described herein are publicly or commercially available. A description of procedures necessary to conduct an independent replication of this research is available upon request from the corresponding author.

Acknowledgements

Funding
The authors wish to acknowledge the Mueller Family Charitable Trust for funding the initial creation of the MindCrowd site and to Mike Mueller for his significant donation of personal time during the development, testing, and ongoing evolution of the study. This work was also supported in part by the State of Arizona DHS in support of the Arizona Alzheimer’s Consortium (PI; Eric Reiman), the Flinn Foundation (PI; Matt Huentelman), The McKnight Brain Research Foundation, The Fulbright Program, and NIH-NIA grants R01-AG041232 (Multiple-PI; to Matt Huentelman and Amanda Myers).
and R01-AG049465-05 (PI; Carol Barnes). We also acknowledge the following individual donors: Kristina Adams, Beverly Aldous, Peter Ax, Betty Barnes, Catherine Bartlett, Murali and Jori Bathina, Cathleen Becskehazy, Matt and Mary Birk, David Blake, Irwin and Marie Bliss, Sandra Bolduc, Michael and Anna Brennan, William and Tess Burleson, Christopher and Jan Cacheris, Thomas Clancy, Margaret Clark, Larry and Carol Clemmensen, Ronald Cocciole, James Conley, Linda Bowles Da Silva, Vernon Daniel, Birdeena Dapples, Virginia Davis, Brent Donaldson, Bennett and Jacquie Dorrance, Robert and Annette Dunlap, Julia Eggleston, Pat Eisenberg, Rhian Ellis, Mark Flint, Jayne Gasperson, Don and Kim Gray, Jane Hamblin, Elaine Harris, Steve and Suzi Hilton, Carolyn Horton, Jeffrey Hunt, Intel Foundation, Bill Johnsen, Marie Johnson, A.J. Kearney, Jeri Kelley, Maria Cesaria Lancaster, Bill and Julie Lavidge, Debra Lesperance, Donald Lindsay, Nate Lowrie, Marsha Luey, Terry and Gabriela McManus, Burt Moorhouse, Kathleen Parker, Brian Patrick, Nils Pearson, Lawrence Reba, Sharii Rey, Mary Riter, Lucy Roth, Victoria Ruppert, Roger Salomon, Patty Sandler, Seymour Sargent, Michael and Sheryl Sculley, Donald J Stanforth, Dean Taylor, Thomas Thimons, Paul Timm, Rex Travis, Karl Volk, Patricia Wargo, Philip Welp, Michael Wintory, Stanley Wolf, and thirty-two additional anonymous donors. Fundraising efforts for MindCrowd were led by the TGen Foundation staff, and we would like to acknowledge the efforts of Michael Bassoff and T.J. Isaacs.

Design, testing, and administrative support

The MindCrowd site was built by The Lavidge Company (Scottsdale, Arizona) and we acknowledge their support through the donation of significant pro bono employee hours and resources, in particular, those provided by Stephen Heitz, Meghan Mast, and Bill Lavidge. John Tabar provided project management and volunteer hour contributions during the design and testing phases of MindCrowd. Members or past members of the Huentelman laboratory are also recognized for their conceptual contributions to MindCrowd including Chris Balak, Ashley Siniard, Adrienne Henderson-Smith, Ryan Richholt, Mari Turk, Ryan Bruhns, Claire Cambron, Amanda Wolfe, and Jim Peden. We also acknowledge the administrative support of Stephanie Althoff, Kara Karaniuk, Mary Ellen Ahearn, and Stephanie Buchholtz (for CRC and IRB activities); Galen Perry, Jeffrey Watkins and Steve Yozwiak (for marketing and communications activities); and Valerie Jones, Brian Anderson, Kati Kotkay, and Russ Brandt (for administrative coordination and project management). William Burleson, James Lowey, and Planet Argon (Gary Blessington and Robby Russell) have contributed to the current version and administration of the MindCrowd website. We acknowledge LeaseHawk (Scottsdale, Arizona) for participating in the alpha testing of MindCrowd and for providing quiet ‘bunker’ facilities during the drafting of this manuscript.

Recruitment and social media

Heather Hanson, Anna Gunderson, Bryeson Rodgers, Emily Schilling, Tayllor Lillestol, and Emma Totten (and her company BuzzlyMedia) participated in social media campaigns for MindCrowd. Jennifer Jenkin and Julie Euber perform public outreach duties for MindCrowd. The Alzheimer’s Association TrialMatch service for directing participants to MindCrowd and we acknowledge the support of the Alzheimer’s Association Desert Southwest Chapter (Phoenix, Arizona) and the past Executive Director Deborah Schaus and current Executive Director Dan Lawler in facilitating those efforts. The Alzheimer’s Prevention Initiative at Banner Alzheimer’s Institute (Phoenix, Arizona) also helped with recruitment, and we acknowledge their support as well, including the Program Director Jessica Langbaum. Lastly, we would like to thank our MindCrowd Facebook friends, Twitter followers, Redditors, and other social media participants especially Lynda Carter, Ashton Kutcher, and Valerie Bertinelli for their support in the social marketing of MindCrowd.

In memoriam

This manuscript is dedicated to the memory of our dear friend and colleague Jason Corneveaux, who originated the MindCrowd name. His contributions to our laboratory were innumerable and significant, and he continues to be sorely missed by our research team.

Additional information

Funding

Funder	Grant reference number	Author
Mueller Family Charitable Trust		Matthew J Huentelman
Arizona Department of Health Services
Arizona DHS in support of the Arizona Alzheimer’s Consortium
Matthew J Huentelman

Flinn Foundation
Matthew J Huentelman

National Institutes of Health
R01-AG041232
Amanda J Myers

National Institutes of Health
R01-AG049465-05
Carol A Barnes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
Joshua S Talboom, Isabelle Schrauwen, Conceptualization, Data curation, Formal analysis, Supervision, Investigation, Visualization, Methodology, Writing—original draft, Project administration, Writing—review and editing; Asta Häberg, Conceptualization, Data curation, Formal analysis, Supervision, Visualization, Methodology, Writing—original draft, Project administration, Writing—review and editing; Matthew D De Both, Conceptualization, Resources, Data curation, Software, Formal analysis, Supervision, Validation, Investigation, Visualization, Methodology, Writing—original draft, Project administration, Writing—review and editing; Marcus A Naymik, Data curation, Software, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing; Candace R Lewis, Conceptualization, Formal analysis, Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing; Stacy F Bertinelli, Conceptualization, Data curation, Project administration, Writing—review and editing; Callie Hammersland, Supervision, Project administration; Mason A Fritz, Data curation, Formal analysis, Investigation; Amanda J Myers, Conceptualization, Methodology, Writing—review and editing; Meredith Hay, Elizabeth Glisky, Lee Ryan, Conceptualization, Methodology, Writing—original draft, Writing—review and editing; Carol A Barnes, Conceptualization, Visualization, Methodology, Writing—review and editing; Matthew J Huentelman, Conceptualization, Resources, Data curation, Software, Formal analysis, Supervision, Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs
Joshua S Talboom https://orcid.org/0000-0002-4327-4103
Matthew J Huentelman https://orcid.org/0000-0001-7390-9918

Ethics
Human subjects: For all participants, informed consent, and consent to publish was obtained before study participation. This protocol and consent were approved by the Western Institutional Review Board (WIRB, protocol #20111988).

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.46179.017
Author response https://doi.org/10.7554/eLife.46179.018

Additional files
Supplementary files

- Source code 1. R-based statistical analysis and plotting script.
 DOI: https://doi.org/10.7554/eLife.46179.010

- Supplementary file 1. Sample sizes. Table displaying the sample size (n) for each evaluated demographic, health, and lifestyle factor.
 DOI: https://doi.org/10.7554/eLife.46179.011

- Supplementary file 2. Questions each participant was asked and how it was coded in R. Table displaying each question that a participant was asked on the MindCrowd website, whether the question...
was asked before or after the PAL test, the question number, and how each question was coded for analysis via R (version 3.5.1).

DOI: https://doi.org/10.7554/eLife.46179.012

• Transparent reporting form

DOI: https://doi.org/10.7554/eLife.46179.013

Data availability

The data that support the findings of this study are freely available at Dryad (https://datadryad.org) doi:10.5061/dryad.2867k2m).

The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Talboom J, Häberg A, De Both M, Naymik M, Schroauen I, Lewis C, Bertinelli S, Hammersland C, Fritz M, Myers A, Hay M, Barnes C, Glisky E, Ryan L, Huentelman M	2019	Data from: Family history of Alzheimer’s disease alters cognition and is modified by medical and genetic factors	https://dx.doi.org/10.5061/dryad.2867k2m	Dryad Digital Repository, 10.5061/dryad.j1fd7

References

Aschenbrenner AJ, Balota DA, Gordon BA, Ratcliff R, Morris JC. 2016. A diffusion model analysis of episodic recognition in preclinical individuals with a family history for Alzheimer’s disease: The adult children study. *Neuropsychology* 30:225–238. DOI: https://doi.org/10.1037/neu0000222, PMID: 26192539

Barnes DE, Yaffe K. 2011. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. The Lancet Neurology 10:819–828. DOI: https://doi.org/10.1016/S1474-4422(11)70072-2, PMID: 21775213

Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. 2015. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. *Alzheimer’s & Dementia* 11:718–726. DOI: https://doi.org/10.1016/j.jalz.2015.05.016, PMID: 26045020

Bloss CS, Delis DC, Salmon DP, Bondi MW. 2008. Decreased cognition in children with risk factors for Alzheimer’s disease. *Biological Psychiatry* 64:904–906. DOI: https://doi.org/10.1016/j.biopsych.2008.07.004, PMID: 18722591

Braak H, Thal DR, Ghebremedhin E, Del Tredici K. 2011. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. *Journal of Neuropathology & Experimental Neurology* 70:960–969. DOI: https://doi.org/10.1097/NEN.0b013e318232a379, PMID: 22002422

Brito NH, Noble KG. 2014. Socioeconomic status and structural brain development. *Frontiers in Neuroscience* 8:276. DOI: https://doi.org/10.3389/fnins.2014.00276, PMID: 25249931

Cannon-Albright LA, Foster NL, Schliep K, Farnham JM, Teerlink CC, Kaddas H, Tschanz J, Corcoran C, Kauwe JSK. 2019. Relative risk for Alzheimer disease based on complete family history. *Neurology* 92:e1745–e1753. DOI: https://doi.org/10.1212/WNL.0000000000007231, PMID: 30867721

Chang TS, Coen MH, La Rue A, Jonaitis E, Koscik RL, Hermann B, Sager MA. 2012. Machine learning amplifies the effect of parental family history of Alzheimer’s disease on list learning strategy. *Journal of the International Neuropsychological Society* 18:428–439. DOI: https://doi.org/10.1017/S1355617711001834, PMID: 22321601

Green RC, Cupples LA, Go R, Benke KS, Edeki T, Griffith PA, Williams M, Hippis Y, Graff-Radford N, Bachman D, Farrer LA, MIRAGE Study Group. 2002. Risk of dementia among white and African American relatives of patients with Alzheimer disease. *JAMA* 287:329–336. DOI: https://doi.org/10.1001/jama.287.3.329, PMID: 11790212

Hamed SA. 2017. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. *Expert Review of Clinical Pharmacology* 10:409–428. DOI: https://doi.org/10.1080/17512433.2017.1293521, PMID: 28276776

Hebert LE, Weuve J, Scherr PA, Evans DA. 2013. Alzheimer disease in the united states (2010-2050) estimated using the 2010 census. *Neurology* 80:1778–1783. DOI: https://doi.org/10.1212/WNL.0b013e31828726f5, PMID: 23390181

Ho DE, Imai K, King G, Stuart EA. 2007. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. *Political Analysis* 15:199–236.

Ho DE, Imai K, King G, Stuart EA. 2011. Matchit: nonparametric preprocessing for parametric causal inference. *Journal of Statistical Software* 42:1–28.

Honnea RA, Vidoni E, Harsha A, Burns JM. 2009. Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. *Journal of Alzheimer’s Disease* 18:553–564. DOI: https://doi.org/10.3233/JAD-2009-1163, PMID: 19584447
Imai K, King G, Lau O. 2008. Toward a common framework for statistical analysis and development. *Journal of Computational and Graphical Statistics* **17**:892–913. DOI: https://doi.org/10.1198/106186008X384898

Imai K, King G, Lau O. 2009. Želig: Everyone’s statistical software. *R Package Version.*

Kaushanskyka M, Marivan V, Yoo J. 2011. Gender differences in adult word learning. *Acta Psychologica* **137**:24–35. DOI: https://doi.org/10.1016/j.actpsy.2011.02.002, PMID: 21392726

Koebele SV, Bimonte-Nelson HA. 2016. Modeling menopause: the utility of rodents in translational behavioral endocrinology research. *Maturitas* **87**:5–17. DOI: https://doi.org/10.1016/j.maturitas.2016.01.015, PMID: 27013283

Krokstad S, Langhammer A, Hveem K, Holmen TL, Midthjell K, Stene TR, Bratberg G, Heggland J, Holmen J. 2013. Cohort profile: the HUNT study. *European Journal of Epidemiology* **42**:968–977. DOI: https://doi.org/10.1007/s10618-013-9853-6, PMID: 24244562

Kuo CL, Lu CL, Chang YH, Li CY. 2018. Population-Based cohort study on dementia risk in patients with type 1 diabetes mellitus. *Neuroepidemiology* **50**:57–62. DOI: https://doi.org/10.1159/000486719, PMID: 29393220

La Rue A, Hermann B, Jones JE, Johnson S, Asthana S, Sager MA. 2008. Effect of parental family history of Alzheimer’s disease on serial position profiles. *Alzheimer’s & Dementia* **4**:285–290. DOI: https://doi.org/10.1016/j.jalz.2008.03.009, PMID: 18631980

Maukonen M, Männistö S, Tolonen H. 2018. A comparison of measured versus self-reported anthropometrics for assessing obesity in adults: a literature review. *Scandinavian Journal of Public Health* **46**:565–579. DOI: https://doi.org/10.1177/1403494817743949, PMID: 29528773

Miller KJ, Rogers SA, Siddarth P, Small GW. 2005. Object naming and semantic fluency among individuals with genetic risk for Alzheimer’s disease. *International Journal of Geriatric Psychiatry* **20**:128–136. DOI: https://doi.org/10.1002/gps.1262, PMID: 15660408

Nikolaou CK, Hankey CR, Lean MEJ. 2017. Accuracy of on-line self-reported weights and heights by young adults. *European Journal of Public Health* **27**:898–903. DOI: https://doi.org/10.1093/eurpub/ckw277, PMID: 28633350

Oh MJ, Chung EK EK, Shin YM, Lee KO, Park YS. 1997. The apolipoprotein E genotyping using the PCR-RFLP method was useful to linkage analysis of Alzheimer’s disease families. *Experimental & Molecular Medicine* **29**:161–164.

Parra MA, Saarimäki H, Bastin ME, Londoño AC, Pettit L, Lopera F, Della Sala S, Abrahams S. 2015. Memory binding and white matter integrity in familial Alzheimer’s disease. *Brain* **138**:1355–1369. DOI: https://doi.org/10.1093/brain/aws048, PMID: 25726465

Pike KE, Rowe CC, Moss SA, Savage G. 2008. Memory profiling with paired associate learning in Alzheimer’s disease, mild cognitive impairment, and healthy aging. *Neuropsychology* **22**:718–728. DOI: https://doi.org/10.1037/a0013050, PMID: 18999345

Pike KE, Kinsella GJ, Ong B, Mullaly E, Rand E, Storey E, Arnes D, Saling M, Clare L, Parsons S. 2013. Is the WMS-IV verbal paired associates as effective as other memory tasks in discriminating amnestic mild cognitive impairment from normal aging? *The Clinical Neuropsychologist* **27**:908–923. DOI: https://doi.org/10.1080/13854064.2013.809149, PMID: 23767765

Qian W, Schweizer TA, Fischer CE. 2014. Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic. *International Psychogeriatrics* **26**:597–603. DOI: https://doi.org/10.1017/S1041610213002299, PMID: 24331159

Reynolds CA, Finkel D. 2015. A meta-analysis of heritability of cognitive aging: minding the “missing heritability” gap. *Neuropsychology Review* **25**:97–112. DOI: https://doi.org/10.1007/s11065-015-9280-2, PMID: 25732892

Ridge PG, Mukherjee S, Crane PK, Kauwe JS, Alzheimer’s Disease Genetics Consortium. 2013. Alzheimer’s disease: analyzing the missing heritability. *PLOS ONE* **8**:e79771. DOI: https://doi.org/10.1371/journal.pone.0079771, PMID: 24244562

Roberts JS, Barber M, Brown TM, Cupples LA, Farrer LA, LaRusse SA, Post SG, Quaid KA, Ravdin LD, Relkin NR, Sadovnick AD, Whitehouse PJ, Woodward JL, Green RC. 2004. Who seeks genetic susceptibility testing for Alzheimer’s disease? Findings from a multisite, randomized clinical trial. *European Journal of Public Health* **14**:565–579.

Shin YM, Lee KO, Park YS. 1997. The apolipoprotein E genotyping using the PCR-RFLP method was useful to linkage analysis of Alzheimer’s disease families. *Experimental & Molecular Medicine* **29**:161–164.

Stepkowsk W, Woźniak G, Studnicki M. 2015. Correlation of Alzheimer’s disease death rates with historical per capita personal income in the USA. *PLOS ONE* **10**:e0126139. DOI: https://doi.org/10.1371/journal.pone.0126139, PMID: 25961738

Takeda S, Morishita R. 2018. Diabetes and Alzheimer’s Disease. In: Yamagishi S, I (Ed). *Diabetes and Aging-Related Complications*. Singapore: Springer. p. 101–111.

Vemuri P, Lesnick TG, Przybelski SA, Machulda M, Knopman DS, Mielke MM, Roberts RO, Geda YE, Rocca WA, Petersen RC, Jack CR. 2014. Association of lifetime intellectual enrichment with cognitive decline in the older adult. *JAMA Neurology* **71**:1017–1024. DOI: https://doi.org/10.1001/jamaneurol.2014.963, PMID: 25054282
Yi D, Lee Y, Byun MS, Lee JH, Ko K, Sohn BK, Choe YM, Choi HJ, Baek H, Sohn CH, Kim YK, Lee DY, KBASE research group. 2018. Synergistic interaction between APOE and family history of Alzheimer’s disease on cerebral amyloid deposition and glucose metabolism. Alzheimer’s Research & Therapy 10:84. DOI: https://doi.org/10.1186/s13195-018-0411-x, PMID: 30134963

Zeng Y, Chang W, Shu C, Ma L, Huang Y, Wang R, Zhang J, Zhu C, McClintock SM. 2013. Decreased cognitive function in extended family members from the single late-onset-Alzheimer’s-disease pedigree. Journal of the International Neuropsychological Society 19:809–819. DOI: https://doi.org/10.1017/S1355617713000581, PMID: 23742872