Fatty acid profiles of egg yolk and albumen from Cemani and White Leghorn chickens

T Kostaman, B D P Soewandi and T Pasaribu
Balai Penelitian Ternak, Jl. Veteran III, Banjarwaru Ciawi, Bogor 16720
E-mail: tatankostaman@gmail.com

Abstract. The composition of the yolk and albumen content in the egg was 60 and 30%, respectively. The purpose of this paper is to examine the fatty acid profile (FA) of egg yolk and albumen in cemani and white leghorn chickens. Cemani and white leghorn chickens were given a commercial feed of 110 g/head/day, and drinking water was given ad libitum. Two fresh eggs from each hen were used in this study to examine egg yolk and albumen fatty acids by gas chromatography. The data obtained were analyzed statistically with an independent sample T-test. The results showed that the FA profiles of egg yolk and albumen were not significantly different (P>0.05) for the parameters of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) from chicken. Cemani and white leghorn chickens, monounsaturated fatty acids (MUFA) are found in more amounts than SFA and PUFA in egg yolks and albumen. It can be concluded that the FA profiles of cemani and white leghorn chickens are almost the same.

1. Introduction
Eggs are the cheapest and best source of protein and are consumed by almost everyone. Egg structure consists of albumen (±60%), yolk (±30%), and shell (±10%). Albumen is a clear fluid contained in the egg and is formed from the secretory layer of the anterior part of the oviduct during the egg’s passage. About 10% consists of water-soluble protein. Its main function is to protect the yolk, and provide additional nutrition for embryo growth, it is rich in protein, and contains almost no fat, unlike egg yolks which have a high-fat value. The yolk is the part of the yolk ball that is surrounded by albumen, and functions to feed the developing embryo.

The plants, animal tissue, and animal products contain a substance called fat. One example of fat that comes from animal sources, namely from eggs. The fat content in eggs varies depending on the genetic type. Fatty acids are the main building blocks of fat. Based on the level of saturation, fatty acids can be divided into three major subsections, namely saturated fatty acids (SFA) that do not have double bonds, for example, palmitic acid; monounsaturated fatty acids (MUFA) have one double bond, for example, oleic acid; and polyunsaturated fatty acids (PUFA) which have > 2 double bond, for example, omega-3 and omega-6 fatty acids [1].

Cemani chicken is one of the rarest chickens in the world [2], and has broad market prospects, not only limited to local markets but also global markets [3]. In Indonesia, sometimes it is also used in medicine and ritual ceremonies [4]. In addition, cemani chicken also has a high resistance to disease, especially viral infections, and intestinal pathogens [4,5].
White leghorn chicken is chicken that serves as a genetic basis for producing an egg. In addition, white leghorn chicken has the advantage of fast growth, and are not aggressive [6]. Cemani chicken is a local chicken that still needs to be observed to know the potential of this chicken. In Indonesia, the identification of fatty acids found cemani and white leghorn chickens has not been reported. So, the purpose of writing a paper is to look at the profiles of fatty acids (FA) that exist in egg yolk and albumen in cemani, and white leghorn chickens.

2. Materials and methods
The maintenance of cemani and white leghorn chickens of the colony (1 male: 5 female). Cemani and white leghorn chickens are given commercial feed with nutritional content (table 1) of 110 g/head/day, and drinking water is given ad libitum. Egg collection is carried out every day between 09.30–12.00 WIB. Eggs are marked according to the species of chickens, cages, and date of laying. Two fresh eggs from each chicken were used in this study to examine the fatty acids present in egg yolk and albumen by gas chromatography according to AOAC [7]. The variables observed in the study were the percentage of fatty acid (SFA, MUFA, and PUFA) found in egg yolks and albumen. Data obtained at averages are then compared with the independent-sample T-test using the help of the SPSS Statistics version 22.0.

Table 1. The nutritional content of commercial feed given to Cemani and White Leghorn chickens.

Contents	Percentage (%)
Water content	12
Crude protein	16.5–18
fat	3
fiber	6
Ash	13.5
Calcium	3.25–4.25
Phosphor	0.45

3. Results and discussion

3.1. Egg yolk
The fatty acid composition of eggs varies widely with the possibility of differences in chicken feed. However, collectively, it is clear that SFA is less variable than MUFA and PUFA [8]. The SFA group in the cemani chicken egg yolk sample was more than that of white leghorn chicken (table 2). However, the profile of the origin of SFA fat in egg yolk was not influenced by chicken species (P>0.05). The results of this study differ from those reported by Mustonen et al (2009), the variation of fatty acids is influenced by species [9]. The absence of differences in egg yolk SFA was most likely due to the same feed given to cemani and white leghorn chickens, namely the commercial feed for laying (P>0.05). However, if the feed given is different, it will affect the acid variation [10].

As for the MUFA group, cemani chicken was more than white leghorn chicken. However, after the independent sample T-test, there was no difference (P>0.05). The possibility of this is because there are only 2 MUFA groups in the study, namely Cis-10-Heptadecanoic acid (C17:1), and Oleic acid (C18:1n9c). The percentage of oleic acid (C18:1n9c) in the study is lower than the previous one reported [11] and [12], namely 44.90 and 47.92%, respectively. Thus the percentage of total MUFA in this study was also lower than that reported [12], namely 54.08%.

Unlike the two previous fatty acids, PUFA fatty acid in cemani chicken is less than those in white leghorn chicken. However, it did not significant (P>0.05). The low PUFA in cemani chicken enables...
the conversion of PUFA in cemani chicken livers to be very efficient. This is similar to previously reported for commercial layer egg [8,14].

The percentages of linoleic (C18:2n6c), γ-linolenic (C18:3n6), and linolenic acid (C18:3n3) in the study were lower than those reported by Altuntas (2014) which could reach 16.46, 0.14, and 0.54%, and Cherian Quezada (2016) the percentage of linoleic (C18:2n6c), and γ-linolenic acid (C18:3n6) could reach 51.71, and 5.19%, respectively [11,12]. Meanwhile, for cis-11,14-eicosadienoic acid (C20:2) the white leghorn chicken was higher than that reported by Altuntas (2014) which was only 0.15% [11]. Thus, differences in the studies of fatty acid profiles with those previously reported by researchers are influenced by feed, chicken age, and geographical location [15].

Table 2. Fatty acid profiles found in egg yolk samples.

Parameter	Chickens	Statistic test	
	Cemani	White Leghorn	
Myristic acid (C14:0)	0.28	0.29	
Palmitic acid (C16:0)	23.53	22.14	
Heptadecanoic acid (C17:0)	0.07	0.11	
Arachidic acid (C20:0)	0.04	0.03	
SFA	23.92±11.70	22.57±11.00	ns
Cis-10-Heptadecanoic acid (C17:1)	0.11	0.02	
Oleic acid (C18:1n9c)	39.55	36.14	
MUFA	39.66±27.89	36.16±25.54	ns
Linoleic acid (C18:2n6c)	14.54	14.97	
Cis-11,14-Eicosadienoic acid (C20:2)	0.07	0.16	
γ-Linolenic acid (C18:3n6)	0.10	0.07	
Linolenic acid (C18:3n3)	0.16	0.31	
Cis-8, 11, 14-Eicosatrienoic acid (C20:3n6)	0.15	0.13	
PUFA	15.02±3.77	28.51±6.62	ns
Total fatty acid	78.43	80.97	

Laboratory analysis results of testing, calibration and certification services, Bogor Agricultural University, ns=non significant.

The total fatty acid of the white leghorn chicken egg yolk is higher than that in the cemani chicken, which is 80.97 vs 78.43%. This result of the study is because, the fat content in purebred chicken eggs (example white leghorn) is higher compared to free-range chicken (example cemani), which is 11.3 vs 10.3% [16] so that the total fatty acid of white leghorn chicken will be more.

3.2. Albumen

Albumen are a source of complete protein, and contain all the amino acids the body needs for protein synthesis. Although albumen is a source of low fat and high protein nutrition, a small percentage of people cannot eat it because of egg allergy associated with some proteins.

Almost the same as the fatty acid profiles found in egg yolk, the SFA albumen fatty acid in cemani chicken were more than those in white leghorn chicken (table 3). After being analyzed by an independent sample T-test, there was not significant (P>0.05). In cemani chicken, the percentage of myristic acid (C14:0) is less than compared to white leghorn chicken. However, for other SFA, cemani chicken is more than white leghorn chicken, so the total SFA in cemani chicken is more than compared to white leghorn chicken.

The profile of MUFA fat chicken, cemani chicken is less than compared to white leghorn chicken. After being tested by an independent sample T-test, there was not significant (P>0.05). However, if we look at the profiles of palmitoleic acid (C16:1), and cis-10-Heptadecanoic acid (C17:1) fatty acids in cemani chicken are more than white leghorn chicken, except for oleic acid (C18:1n9c) is less. While for
cis-11-Eicosenoic acid (C20:1) the percentage of fatty acids in cemani and white leghorn chickens are the same, which is 0.03%.

Table 3. Fatty acid profile found in albumen samples

Parameter	Cemani	White Leghorn	Statistik test
Myristic acid (C14:0)	0.26	0.29	
Pentadecanoic acid (C15:0)	0.04	0.08	
Palmitic acid (C16:0)	20.37	19.28	
Heptadecanoic acid (C17:0)	0.07	0.06	
Arachidicacid (C20:0)	0.02	0.03	
Lignoceric acid (C24:0)	0.01	0.02	
SFA	20.77±8.28	19.76±7.83	ns
Palmitoleic acid (C16:1)	3.05	2.92	
Cis-10-Heptadecanoic acid (C17:1)	0.11	0.09	
Cis-11-Eicosenoic acid (C20:1)	0.03	0.03	
Oleic acid (C18:1n9c)	31.80	32.38	
MUFA	34.99±15.53	35.42±15.74	ns
Linoleic acid (C18:2n6c)	8.51	9.86	
Cis-11,14-Eicosadienoic acid (C20:2)	0.14	0.15	
y-Linolenic acid (C18:3n6)	0.08	0.09	
Linolenic acid (C18:3n3)	0.17	0.18	
Cis-8, 11, 14-Eicosatetraenoic acid (C20:3n6)	0.13	0.16	
Arachidonic acid (C20:4n6)	1.65	1.59	
Cis-5, 8, 11, 14, 17-Eicosapentaenoic acid	0.02	0.02	
(C20:5n3)			
PUFA	10.70±3.13	12.05±3.63	ns
Total fatty acid	66.55	67.23	

Laboratory analysis results of testing, calibration and certification services, Bogor Agricultural University, ns=non significant.

In white leghorn chicken, PUFA profiles are more than cemani chicken. However, after being tested with an independent sample T-test it did not significant (P>0.05). The percentage of PUFA profile of cemani chicken is more than that of white leghorn chicken except for arachidonic acid (C20:4n6), while the other fatty acid profiles in white leghorn chicken are more, namely for linoleic acid (C18:2n6c), cis-11,14-eicosadienoic acid (C20:2), y-linolenic acid (C18:3n6), and linolenic acid. As for cis-5, 8, 11, 14, 17-eicosapentaenoic acid (C20:5n3), the percentage of fatty acids in cemani and white Leghorn chickens are the same, which is 0.02%. So that the total PUFA of white leghorn chicken is more than cemani chicken.

The total fatty acid albumen of white leghorn chicken is more than that in cemani chicken, which is 67.23 vs 66.55%. This is because, the fat content in purebred chicken eggs (example white leghorn) is more compared to free-range chicken (example cemani), which is 11.3 vs 10.3% [16] so that the total fatty acid of white leghorn chicken will be more.

So, the percentage of SFA and MUFA fatty acids in the albumen is less than in the egg yolk. The less percentage of SFA, and MUFA fatty acids in the albumen is caused by the less albumen fat content compared to egg yolk. The percentage of PUFA fatty acids in cemani chickens were more than egg yolks, but the percentage of PUFA fatty acids in albumin were less than egg yolks in white leghorn chicken [16–18].

In general, the results showed that the FA profiles (egg yolk and albumen) of cemani and white leghorn chickens were not different. This suggests that the breed does not affect the FA profile. Similar
results were reported Lordelo et al (2017) in free-range and commercial layer hens in which egg yolk and albumen content did not differ between races [14]. It is unlikely that production systems and breeds will influence broad characteristics [14].

4. Conclusion
The SFA, MUFA, and PUFA fatty acid profiles in egg yolks and albumen found in cemani and white leghorn chickens were almost the same from the samples examined. So that in this study, SFA, MUFA, and PUFA fatty acids are not affected by livestock species.

References
[1] Ao X, Yoo J S, Lee J H, Jang H D, Wang J P, Zhou T X and Kim I H 2010 Effects of fermented garlic powder on production performance, egg quality, blood profiles and fatty acids composition of egg yolk in laying hens Asian-Austr. J. Anim. Sci. 23 786–91
[2] Jewitt A 2015 Ayam Cemani Chicken The Indonesia Black Hen (United Kindom: Whytbank Publishing)
[3] Tjahjadi H 2010 Potensi Usaha Peternakan Ayam Cemani: Studi Kasus Peternakan Ayam Cemani di Temanggung Thesis (Bogor: Institut Pertanian Bogor)
[4] Sulandari S, Zein M S A, Astuti D and Sartika T 2009 Genetic polymorphisms of the chicken antiviral Mx gene in a variety of Indonesian indigenous chicken breeds Indon. Vet. J. 10 50–6
[5] Nataamijaya A G 2010 Pengembangan potensi ayam lokal untuk menunjang peningkatan kesejahteraan petani J. Littbang Pertanian 29 131–8
[6] Pisenti J M, Delany M E, Taylor J R L, Abbott U K, Abplanalp H, Arthur J A, Bakst M R, Baxter-Jones C, Bitgood J J, Bradley F A 1999 Avian genetic resources at risk: An assessment and proposal for conservation of genetic stocks in the USA and Canada (California USA: Genetic Resources Conservation Program)
[7] Baur F J and Ensminger L G 1977 The association of official analytical chemists (AOAC) J. of the American Oil Chem. Soc. 54 171–2
[8] Fraeye I, Bruneel C, Lemahieu C, Buyse J, Mylært K and Foubert I 2009 Dietary enrichment of eggs with omega-3 fatty acids: a review Food Res. Intl. 48 961–9
[9] Mustonen A M, Kääkelä R, Asikainen J and Nieminen P 2009 Selective fatty acid mobilization from adipose tissues of the pheasant (Phasianus colchicus mongolicus) during food deprivation Physiol. Biochem. Zool. 82 531–40
[10] van Krimpen M, Veldkamp T, Binnendijk G and de Veer R 2011 Effect of four processed animal proteins in the diet on behavior in laying hens Appl. Anim. Behav. Sci. 132 138–45
[11] Altuntas A and Aydin R 2014 Fatty acid composition of egg yolk from chickens fed a diet including marigold (Tagetes erecta L.) J. Lipids 1–4
[12] Cherian G and Quezada N 2016 Egg quality, fatty acid composition and immunoglobulin Y content in eggs from laying hens fed full fat camelina or flax seed J. Anim. Sci. Biotechnol. 7 1–8
[13] Sarma M, Nahardeka N, Islam R, Borah M, Deka P and Mahanta J 2017 Fatty acid profiles and physical qualities of different varieties of chicken and duck eggs Int. J. Livestock Res. 7 105–11
[14] Lordelo M, Fernandes E, Bessa R J B and Alves S P 2017 Quality of eggs from different laying hen production systems, from indigenous breeds and specialty eggs Poult. Sci. 96 1485–91
[15] Muchtadi T R dan Ayustaningwario F 2010 Teknologi Proses Pengolahan Pangan 4th Ed (Bandung: Alfabeta)
[16] Adriani L and Mushawwir A 2020 Correlation between blood parameters, physiological and liver gene expression levels in native laying hens under heat stress IOP Conf. Ser.: Earth Environ. Sci. 466 012015
[17] Kamil K A, Latipudin D, Mushawwir A, Rahmat D and Balia R L 2020 The effects of ginger volatile oil (GVO) on the metabolic profile of glycolytic pathway, free radical and antioxidant activities of heat-stressed cihateup duck Int. J. Advan. Sci., Engineering Info. Technol. 10 1228–33
[18] Mushawwir A, Tanuwiria U H, Kamil K A, Adriani L, Wiradimadja R and Suwarno N 2018 Evaluation of haematological responses and blood biochemical parameters of heat-stressed broilers with dietary supplementation of Javanese ginger powder (Curcuma Xanthorrhiza) and garlic extract (Allium sativum) Int. J. Poult. Sci. 17 452–8