Abstract

The V-algebras are the non-local matrix generalization of the well-known W-algebras. Their classical realizations are given by the second Poisson brackets associated with the matrix pseudodifferential operators. In this paper, by using the general Miura transformation, we give the decomposition theorems for the second Poisson brackets, from which we are able to construct the free field realizations for a class of V-algebras including $V_{(2k,2)}$-algebras that corresponds to the Lie algebra of C_k-type as the particular examples. The reduction of our discussion to the scalar case provides the similar result for the W_{BKP}-algebra.
Recently, Bilal [1-3] has proposed non-local matrix generalizations of W-algebras, called $V_{(m,n)}$-algebras. Their classical realizations appears naturally as the second Hamiltonian structures associated with the matrix version of the m^{th}-order differential operators

$$L = \partial^m + \sum_{j=0}^{m-2} U_j \partial^j$$

where U_j are $n \times n$ matrix valued functions. The simplest example is the $V_{(2,2)}$-algebra. It arises in the study of the non-abelian Toda field theory as a model for strings propagating on a black hole background [1] and its Poisson bracket version can be given by the second Hamiltonian structure associated with [2]

$$L = \partial^2 - U, \quad U = \begin{pmatrix} T & -\sqrt{2} V^+ \\ -\sqrt{2} V^- & T \end{pmatrix}$$

The free field realization of the $V_{(2,2)}$-algebra was constructed first by the factorization

$$L = \partial^2 - U = (\partial + P)(\partial - P)$$

such that

$$U = P' + P^2$$

and then by expressing P in terms of the vertex-like operators. In analogy to the scalar case, (4) is called the Miura transformation.

In general, the Miura transformation can be given by the similar factorization [3]

$$L = \partial^m + \sum_{j=0}^{m-2} U_j \partial^j = \prod_{j=1}^{m} (\partial + P_j)$$

and relates the second Poisson bracket of U_j to much simpler ones of P_j, where P_j are $n \times n$ matrices and satisfy the constraint $\sum P_j = 0$. However to the contrary of the scalar (i.e. $n = 1$) case, the P_j are not free fields in general, and as far as we know, except $V_{(2,2)}$-algebras, it is not clear how to give the free field realization for general $V_{(m,n)}$-algebra. As pointed by Bilal [3], the reason of this difference between the W-algebras and their matrix generalization V-algebras is the existence of non-local terms in the V-algebras.
In this paper, we first generalize Bilal’s $V_{(m,n)}$-algebra to the V-algebra associated with the m^{th}-order matrix pseudodifferential operator (matrix ΨDO)

$$L = \partial^m + \sum_{j=-\infty}^{m-1} U_j \partial^j$$

where U_j are $n \times n$ matrix valued functions, then give a general decomposition theorem for the second Poisson bracket associated with (6) by using the factorization $L = L_1L_2$, where both L_1 and L_2 are matrix ΨDOs with the order being m_1 and m_2 respectively and satisfying $m_1 + m_2 = m$. It is not difficult to generalize the factorization to the rational form $L = L_1L_2^{-1}$ since we may think that L_1 is factorized by $L_1 = LL_2$. The above discussion is nothing but matrix generalization of our previous work on the scalar case [4,5]. Thirdly, we consider the free field realization of a more general class of V-algebras that correspond to the L of (6) with 2×2 matrix coefficients and satisfying $L = L^*$ for a proper defined adjoint action of the matrix ΨDOs. Finally, as a consequence, when we restrict to the scalar case, we obtain the W-algebras represented by the second Poisson brackets of the BKP hierarchy and their free field realization.

Let L in (6) be the m^{th}-order matrix ΨDO. For any functional

$$\tilde{f} = \int f(U_{m-1}, U_{m-2}, \cdots) dx$$

we define

$$\frac{\delta f}{\delta L} = \sum_{j=-\infty}^{m-1} \partial^{-j-1} \frac{\delta f}{\delta U_j}$$

and

$$(\frac{\delta f}{\delta U_j})_{\alpha\beta} = \sum_{r=0}^{\infty} (-1)^r \frac{\partial^r}{\partial x^r} \frac{\partial f}{\partial (U_j^{(r)})_{\beta\alpha}}$$

is the matrix version of the Euler variation, where $(U_j^{(r)})_{\beta\alpha}$ denotes the (β, α) matrix element of r^{th} derivative of U_j. Using (7) we find

$$d\tilde{f} = <\frac{\delta f}{\delta L}, \delta L>$$

where the product $<\cdot, \cdot>$ is defined by

$$<A, X> = \int \text{tr res} AX dx$$
for any two matrix \(\Psi DOs \) of the form
\[
A = \sum_{j=-\infty}^{m-1} A_j \partial^j \quad \text{and} \quad X = \sum_{j=-\infty}^{m-1} \partial^{-j-1} X_j.
\]
As in the scalar case, \(A \) corresponds to the “vector field” \(\partial_A \) and \(X \) is called “one form” paired by (10) with the vector field. The residues in (10) is defined to be the coefficient of \(\partial^{-1} \) term.

According to [3], the second Poisson bracket associated with (6) can be defined in analogy with the scalar case [6]
\[
\{ \tilde{f}, \tilde{g} \}_{L} = \langle H \left(\frac{\delta f}{\delta L} \right), \frac{\delta g}{\delta L} \rangle \tag{11}
\]
where
\[
H(X) = (LX)_+ L - L(XL)_- = L(XL)_- - (LX)_+ L \tag{12}
\]
mapping an one form \(X = \sum_{j=-\infty}^{m-1} \partial^{-j-1} X_j \) to the vector field \(\partial_{H(X)} \), where the subscripts “\(\pm \)” are understood as the pure differential part or the residual part of the \(\Psi DO \). If \(U_{m-1} = 0 \) is assumed the following condition
\[
\text{res} \left[\frac{\delta f}{\delta L}, L \right] = 0 \tag{13}
\]

must be taken into account such that the leading coefficient of \(\frac{\delta f}{\delta L} \) is expressed in terms of others. The second Poisson bracket (11) constrained to \(U_{m-1} = 0 \) is called the \(V \)-algebra [1-3].

The bracket (11) is bilinear and anti-symmetric because of the apparent properties of the product (10). It will follow from the results on the Miura transformation that for a class of matrix \(\Psi DOs \) used in this paper, (11) also obeys the Jacobi identity. Nevertheless the following theorem does not depend on the property of the Jacobi identity.

Theorem 1 By the factorization
\[
L = L_1 L_2 \tag{14}
\]
where
\[
L_i = \partial^{m_i} + \sum_{j=-\infty}^{m_i-1} U_{ij} \partial^j, \quad i = 1, 2 \tag{15}
\]
are \(m_i \text{th} \)-order matrix \(\Psi DOs \) with \(m_1 + m_2 = m \), then the Poisson bracket associated with \(L \) of (6) is decomposed to the summation of two brackets that are associated with \(L_1 \) and \(L_2 \) respectively
\[
\{ \tilde{f}, \tilde{g} \}_L = \{ \tilde{f}, \tilde{g} \}_L_1 + \{ \tilde{f}, \tilde{g} \}_L_2 \tag{16}
\]
If $U_{m-1} = U_{m_1-1} + U_{m_2-1} = 0$ is assumed, then (13) is equivalent to

$$\text{res}\left[\frac{\delta f}{\delta L_1}, L_1 \right] + \text{res}\left[\frac{\delta f}{\delta L_2}, \delta L_2 \right] = 0$$

(17)

The proof of this theorem is essentially the same as we shown for the scalar case in [4,5], i.e. by (14) any functional \tilde{f} of U_j is also a functional of U_{1j} and U_{2j}, therefore on the one hand we have

$$d\tilde{f} = \int \text{tr} \left(\frac{\delta f}{\delta L} \delta L dx = \int \text{tr} \left(\frac{\delta f}{\delta L}(\delta L_1 L_2 + L_1 \delta L_2) dx \right)$$

and on the other hand

$$d\tilde{f} = \int \text{tr} \left(\frac{\delta f}{\delta L_1} \delta L_1 + \frac{\delta f}{\delta L_2} \delta L_2 \right) dx$$

The above two expression imply that

$$\frac{\delta f}{\delta L_1} = L_2 \frac{\delta f}{\delta L}, \quad \frac{\delta f}{\delta L_2} = \frac{\delta f}{\delta L_1} L_1$$

(18)

each of them modular an $(-m_1 - 1)^{th}$-order and $(-m_2 - 1)^{th}$-order matrix ΨDO respectively. Substitute (18) to the right hand side of (16) and by the same calculation as that in [4,5], we can prove the theorem.

It is easy to generalize Theorem 1 to the factorization $L = L_1 \cdots L_r$, in particular if $r = m$ and $L_j = \partial + P_j$, we immediately recover the result of Bilal [3]

$$\{ \tilde{f}, \tilde{g} \}_L = \sum_{j=1}^{m} \int \text{tr} \left[\frac{\delta f}{\delta P_j}, \partial + P_j \right] \frac{\delta g}{\delta P_j} dx$$

(19)

since the second Poisson bracket associated with $L_j = \partial + P_j$ is simply

$$\{ \tilde{f}, \tilde{g} \}_{P_j} = \int \text{tr} \left[\frac{\delta f}{\delta P_j}, \partial + P_j \right] \frac{\delta g}{\delta P_j} dx$$

(20)

The constraint $U_{m-1} = \sum P_j = 0$ is then equivalent to

$$\sum_{j=1}^{m} \left(\frac{\delta f}{\delta P_j} \right)' = 0$$

(21)
Theorem 2 If

\[L = L_1 L_2^{-1} \]

(22)

where for the simplicity we assume that \(L_1 \) and \(L_2 \) are \((m+k)\text{-th}\)-order and \(k\text{-th}\)-order matrix differential operators respectively, then

\[\{ \tilde{f}, \tilde{g} \}_L = \{ \tilde{f}, \tilde{g} \}_{L_1} - \{ \tilde{f}, \tilde{g} \}_{L_2} \]

(23)

The proof of this theorem can be completed simply by considering that \(L_1 = LL_2 \) is factorized and then by applying Theorem 1. The scalar version of the factorization \(L = L_1 L_2^{-1} \) was appeared in \([7,8]\) for the study of \(W \)-algebras.

In the following we discuss the reduction of the second Poisson bracket (11) to the subspace of matrix \(\Psi \)DOs that satisfy \(L = L^* \). For the matrix \(\Psi \)DOs \(A = \sum A_j \partial^j \), we define the matrix version of the adjoint action on \(A \) by

\[A^* = \sum (-\partial)^j \sigma A_j^T \sigma^{-1} \]

(24)

where “\(T \)” denotes the matrix transposition, \(\sigma \) is an \(n \times n \) constant matrix such that the adjoint action satisfies

\[
\begin{align*}
(A^*)^* &= A \\
(AB)^* &= B^* A^* \\
(A^*)_+ &= (A_+)^* \\
\int \text{tr res} A^* dx &= - \int \text{tr res} A dx
\end{align*}
\]

(25)

It is easy to see that such a matrix can be chosen freely as long as \(\sigma \) is symmetric.

Let

\[W = L - L^* = \sum W_j \partial^j \]

(26)

where

\[W_j = U_j - \sum_{i=j}^{m-1} (-1)^i \binom{i}{i-j} \sigma \frac{\partial^{i-j} U_i^T}{\partial x^{i-j}} \sigma^{-1} \]

(27)

then we can calculate that

\[\frac{\delta (W_j)_{\alpha \beta}}{\delta L} = (E_{\beta \alpha} - (-1)^j \sigma E_{\alpha \beta} \sigma^{-1}) \partial^{-j-1} \]

(28)
are symmetric

\[
\frac{\delta(W_j)_{\alpha\beta}}{\delta L} = (\frac{\delta(W_j)_{\alpha\beta}}{\delta L^*})^*
\]

(29)

with respect to the matrix version of adjoint action, where \(E_{\alpha\beta}\) are the \(n \times n\) matrices only with the \((\alpha, \beta)^{th}\) matrix element being equal to one and others to zero.

If we suppose that \(m = 2k\) and \(L\) is symmetric

\[L = L^*\]

(i.e. \(W_j = 0\)), then the “vector fields” \(\partial_A\) on the submanifold \(W_j = 0\) will be parametrized by the deformations of \(L\) that remain symmetric. These \(A\) are clearly the matrix \(\Psi DOs\) of order at most \(2k - 1\) obeying the symmetric property \(A = A^*\). The “one forms” \(X = \sum \partial^{-j-1}X_j\) on the submanifold \(W_j = 0\) must be chosen to be those which are mapped via the Hamiltonian map \(H\) to the vector fields \(\partial_{H(X)}\) tangent to the submanifold \(W_j = 0\). In other words, \((H(X))^* = H(X)\). Since

\[(H(X))^* = -H(X^*),\]

(31)

\(X\) must be anti-symmetric \(X = -X^*\) modular \(a (-m - 1)^{th}\) order of matrix \(\Psi DO\) (i.e. the kernel of \(H\)). It can easily be checked that these one forms are nondegenerately paired with the vector fields \(\partial_A\), \(A = A^*\). Actually we have checked that for some simple cases for any functional \(\tilde{f} = \int fdx\) restricted on \(W_j = 0\), \(X = \frac{\delta f}{\delta L}\) really satisfies \(X = -X^*\) modular the kernel of \(H\).

Therefore the Poisson bracket of two functionals \(\tilde{f} = \int fdx\) and \(\tilde{g} = \int gdx\) on the submanifold can be given by

\[
\{\tilde{f}, \tilde{g}\}_L = \frac{1}{4} < H(\frac{\delta f}{\delta L} - (\frac{\delta f}{\delta L})^*), \frac{\delta g}{\delta L} - (\frac{\delta g}{\delta L})^*> = \frac{1}{4} < H(\frac{\delta f}{\delta L} - (\frac{\delta f}{\delta L})^*), \frac{\delta g}{\delta L} >
\]

(32)

with \(L\) being symmetric.

The above argument is an analogue of that for the supersymmetric BKP hierarchy [9]. The following theorem will provide another argument.

Theorem 3. If the \(m^{th}\)-order \((m = 2k)\) symmetric matrix \(\Psi DO\) \(L\) is factorized by

\[L = L_1^*L_1\]

(33)
with
\[L_1 = \partial^k + \sum_{j=-\infty}^{k-1} V_j \partial^j \]
then we have
\[\{ \tilde{f}, \tilde{g} \}_L = \frac{1}{2} \{ \tilde{f}, \tilde{g} \}_{L_1} \]
\[\textbf{Proof:} \] Any functional of \(U_{m-1}, U_{m-2}, \cdots \) is also a functional of \(V_{k-1}, V_{k-2}, \cdots \) via the relation of (33). Therefore
\[d\bar{f} = \langle \frac{\delta f}{\delta L}, \delta L \rangle = \langle \frac{\delta f}{\delta L_1}, \delta L_1 \rangle \]
so
\[\frac{\delta f}{\delta L_1} = (\langle \frac{\delta f}{\delta L}, \delta L \rangle) - (\langle \frac{\delta f}{\delta L}, \delta L \rangle)^* L_1^* \]
modulo a \((-k-1)^{\text{th}}\)-order matrix \(\Psi DO \).

Substitute this expression to the Poisson bracket \(\{ \cdot, \cdot \}_L \) with respect to \(L_1 \) we have the Poisson bracket (32) with respect to \(L \), which can be expressed by (35).

We may continue to factorize \(L_1 \)
\[L_1 = \prod_{j=1}^{l}(\partial + P_j)^{-1} \prod_{j=l+1}^{k+2l}(\partial + P_j) \]
where \(l \) is an arbitrary integer, and then apply Theorem 2 and 3, we find that the Poisson bracket (32) of \(L = L_1^* L_1 \) becomes
\[\{ \tilde{f}, \tilde{g} \}_L = \frac{1}{2} \sum_{j=l+1}^{k+2l} \{ \tilde{f}, \tilde{g} \}_P_j - \frac{1}{2} \sum_{j=1}^{l} \{ \tilde{f}, \tilde{g} \}_P_j \]
with each \(\{ \tilde{f}, \tilde{g} \}_P_j \) being given by (20).

Let us now calculate the coefficient of the second leading term of \(L = L_1^* L_1 \) with \(L_1 \) being in (38). It is
\[U_{m-1} = (-1)^k \sum_{j=l+1}^{k+2l} (P_j - \sigma P_j^T \sigma^{-1}) - (-1)^l \sum_{j=1}^{l} (P_j - \sigma P_j^T \sigma^{-1}) \]
8
We immediately find that a sufficient condition of \(U_{m-1} = 0 \) is
\[
P_j - \sigma P_j^T \sigma^{-1} = 0, \; j = 1, 2, \ldots, k + 2l
\]
(41)
namely the restriction of the Poisson bracket (32) of \(L \) to the submanifold \(U_{m-1} = 0 \) can be realized if each copy of the Poisson bracket in the form of (20) associated with \(\partial + P_j \) can be restricted to the submanifold of (41).

According to the above analysis, we choose \(n = 2 \),
\[
\sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]
(42)
and \(k + 2l \) copies of Bilal’s \(V_{(2,2)} \)-algebra
\[
P_j = \begin{pmatrix} T_j & -\sqrt{2}V_j^+ \\ -\sqrt{2}V_j^- & T_j \end{pmatrix}, \; 1 \leq j \leq k + 2l
\]
(43)
among them the first \(l \) copies have a sign difference with the \(V_{(2,2)} \)-algebra. It is obvious that \(P_j \) obey (41) and their elements can be expressed in terms of \(k + 2l \) independent groups of vertex-like fields. Thus we may construct the free field realization of the \(V \)-algebra that corresponds to the second Poisson bracket on the space of \(m \)-th-order (\(m = 2k \)) and \(2 \times 2 \) matrix \(\Psi \)DOs restricted by \(L = L^\ast \). A simple case is for \(l = 0 \), i.e. if \(L_1 \) is a pure differential operator, so
\[
L = L_1^\ast L_1 = (-1)^k (\partial - P_k) \cdots (\partial - P_1)(\partial + P_1)(\partial + P_k)
\]
(44)
the \(V_{(2k,2)} \)-algebra in this case corresponds to the Lie algebra of the \(C_k \)-type [3]. Our result gives its free field realization. Note that from mathematical point of view, the \((-1)^k\) factor does not affect the structure of Poisson bracket essentially.

Finally we are going to restrict the above results to the scalar case \(n = 1 \) and connect the Poisson bracket (32) for \(n = 1 \) with the Poisson bracket for the BKP hierarchy. Let
\[
\Lambda = \partial^{2k+1} + \sum_{j=-\infty}^{2k} v_j \partial^j
\]
(45)
where \(v_j \) are scalar functions. Then we define
\[
L = \partial \Lambda = \partial^{2k+2} + \sum_{j=-\infty}^{2k+1} u_j \partial^j
\]
(46)
The relation between v_j and u_j can be given explicitly

$$
u_{2k+1} = v_{2k}$$
$$u_j = v'_j + v_{j-1}$$

from which we first have

$$\frac{\partial f}{\partial v_j^{(l)}} = \frac{\partial f}{\partial u_j^{(l)}} + \frac{\partial f}{\partial u_j^{(l-1)}}$$

and so

$$\frac{\delta f}{\delta v_j} = \frac{\delta f}{\delta u_j^{(l-1)}} - (\frac{\delta f}{\delta u_j})'$$

which implies that

$$\frac{\delta f}{\delta L} = \frac{\delta f}{\delta \Lambda} \partial^{-1} + (a (-2k - 3)^{th}\text{-order} \: \Psi DO)$$

If we assume that Λ is the ΨDO associated with the BKP hierarchy [10]

$$\Lambda^* = -\partial \Lambda \partial^{-1}$$

then L in (46) is symmetric $L = L^*$ and $u_{2k+1} = v_{2k} = 0$ where the adjoint action on the scalar ΨDO $A = \sum a_j \partial^j$ is defined as usual $A^* = \sum (-\partial)^j a_j$. Substitute (48) into (32) for $n = 1$ we notice that the second term of the right hand side does not contribute anything and the Poisson bracket in terms of Λ is given by

$$\{\tilde{f}, \tilde{g}\}_\Lambda = \int \text{res}[\partial^{-1}(\partial \Lambda \frac{\delta f}{\delta \Lambda} - \Lambda (\frac{\delta f}{\delta \Lambda})_+ \partial \Lambda - \Lambda (\frac{\delta f}{\delta \Lambda})_+ \partial \Lambda]$$

We define $W_{BKP}^{(2k+1)}$-algebra corresponding to the second Poisson bracket (50) associated with the BKP hierarchy. Its free field realization is given by the following factorization

$$\Lambda = \partial^{-1} L_1^* L_1$$

with

$$L_1 = \prod_{j=1}^{l} (\partial + p_j)^{-1} \prod_{j=1+1}^{k+1+2l} (\partial + p_j)$$
where p_j are independent fields and satisfy

$$
\{p_i(x), p_j(y)\} = -\delta_{ij}\delta'(x - y) \quad 1 \leq i, j \leq l
$$

$$
\{p_i(x), p_j(y)\} = \delta_{ij}\delta'(x - y) \quad l + 1 \leq i, j \leq k + 1 + 2l
$$

$$
\{p_i(x), p_j(y)\} = 0 \quad 1 \leq i \leq l, \quad l + 1 \leq j \leq k + 1 + 2l
$$

(53)

In conclusion we have discussed the properties of the second Poisson structure associated with the matrix ΨDO. These properties enable us to construct the free field realizations for a more general class of V-algebras that correspond to the second Poisson brackets of matrix ΨDO. Because of the non-locality of the V-algebras, the free field realizations for them become more difficult than for W-algebras. It would be of interest to investigate these problems for the general V-algebras.

Acknowledgements

This work was supported by the National Basic Research Project for “Non-linear Science” and Fund of CAS.

References

[1] A.Bilal: *Non-abelian Toda theory: a completely integrable model for strings on a black hole background*, Nucl. Phys. **B422**, 258 (1994)

[2] A.Bilal: *Multi-component KdV hierarchy, V-algebra and non-abelian Toda theory*, Lett. Math. Phys. **32**, 103 (1994)

[3] A.Bilal: *Non-local matrix generalizations of W-algebras*, Comm. Math. Phys. **170**, 117 (1995)

[4] Y.Cheng: *The free field realization of $W_{KP}^{(n)}$-algebras*, Lett. Math. Phys. **33**, 159 (1995)

[5] Y.Cheng: *Modifying the KP, the n^{th} constrained KP hierarchies and their second Hamiltonian structures*, Comm. Math. Phys. **171**, 661 (1995)
[6] L.A.Dickey: *Soliton equation and Hamiltonian systems.* Advanced Series in Math. Phys. vol.12 Singapore: World Scientific 1991

[7] F.Yu: *Many boson realizations of universal nonlinear W∞-algebras, modified KP hierarchies, and graded Lie algebras,* Lett. Math. Phys. **29**, 175 (1993)

[8] J.Mas, E.Ramos: *The constrained KP hierarchy and the generalised Miura transformation,* [q-alg/9501009](https://arxiv.org/abs/q-alg/9501009)

[9] E.Ramos, S.Stanciu: *On the supersymmetric BKP hierarchy,* Nucl. Phys. **B427**, 338 (1994)

[10] E.Date, M.Jimbo, N.Kashiwara, T.Miwa: *Transformation groups for soliton equations,* In: Nonlinear integrable systems-classical and quantum theory. M.Jimbo and T.Miwa eds. Singapore: World Scientific, 1983