Phenotypic Profiling in Subjects Heterozygous for One of Two Rare Variants in the Hypophosphatasia Gene (ALPL)

Daniel R. Tilden, M.D., Jonathan H. Sheehan Ph.D., John H. Newman, M.D., Jens Meiler Ph.D., John A. Capra Ph.D., Andrea Ramirez, M.D., Jill Simmons, and M.D., Kathryn Dahir, M.D.

From the Divisions of Endocrinology (K.M.D., D.R.T., A.S), and Allergy, Pulmonary and Critical Care Medicine (J.H.N.) of the Department of Medicine, Vanderbilt University Medical Center; Ian M. Burr Division of Pediatric Endocrinology (D.R.T., J.S) of the Department of Pediatrics, Monroe Carroll Jr. Children’s Hospital at Vanderbilt; Division of Infectious Diseases of the Department of Medicine, Washington University School of Medicine (J.H.S.); Center for Structural Biology (J.M., J.A.C.), Departments of Chemistry and Pharmacology (J.M.), Department of Biological Sciences and Biomedical Informatics (J.A.C.), Vanderbilt University Medical Center

Address reprint requests to Dr. Dahir at the Program for Metabolic Bone Disorders at Vanderbilt, 2215 Garland Ave, 807 Light Hall, Nashville, TN 37232-0202 or at kathryn.dahir@vanderbilt.edu

© Endocrine Society 2020. js.2020-00160
https://academic.oup.com/endocrinesociety/pages/Author_Guidelines for Accepted Manuscript disclaimer and additional information.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Corresponding author: Kathryn Dahir, MD

Address Reprints to:

Kathryn Dahir, MD
Professor of Medicine
Program for Metabolic Bone Disorders at Vanderbilt
1215 21st Avenue South
Medical Center East 8210
Nashville, TN 37232-8148
Email: kathryn.dahir@vanderbilt.edu
Tel 615 343-8332
Fax 615 343-8346

Support: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center’s BioVU, which is supported by numerous sources: institutional funding, private agencies, and federal grants. These include the NIH funded Shared Instrumentation Grant S10RR025141; and CTSA grants UL1TR002243, UL1TR00445, and UL1RR024975.

Disclosure Statement: none
Abstract

Context: Hypophosphatasia (HPP) is a syndrome marked by low serum alkaline phosphatase (AlkP) activity as well as musculoskeletal and/or dental disease. While the majority of subjects with HPP carry a pathogenic variant in the *ALPL* gene or its regulatory regions, individual pathogenic variants are often not tightly correlated with clinical symptomatology. We sought to better understand the genotype/phenotype correlation in HPP by examining the clinical and biochemical data of 37 subjects with two rare variants in *ALPL*.

Methods: Through BioVU, a DNA biobank that pairs subjects’ genetic information with their de-identified medical record, we identified subjects with two rare variants with distinct reported clinical phenotypes (p.D294A and p.T273M). We then performed a manual review of these subjects’ de-identified medical records along with computational modeling of protein structure to construct a genetic, biochemical and clinical phenotype for each subject and variant.

Results: 20 subjects with the p.D294A variant and 17 with the p.T273M variant had sufficient data for analysis. Among subjects in our cohort with the p.D294A variant, six (30.0%) had both clinical bone disease and serum AlkP activity below 40 IU/L while four subjects (23.5%) with the p.T273M variant met the same criteria despite the distinct clinical phenotypes of these variants.

Conclusions: Given the loose genotype/phenotype correlation in HPP seen in our cohort, clinical context is crucial for the interpretation of genetic test results to guide clinical care in this population. Otherwise, over- or under-diagnosis may occur, resulting in misidentifying those who may benefit from additional screening and perhaps pharmacologic intervention.

Key words: hypophosphatasia, alkaline phosphatase, ALPL gene, gene sequencing
Introduction:

Hypophosphatasia (HPP) is a disorder of reduced serum activity of the tissue non-specific alkaline phosphatase (TNSALP) protein, a product of the ALPL gene1-6. Subjects with ALPL variants have a widely variable clinical phenotype, likely due to variable expressivity and incomplete penetrance, from neonatal seizures and hypomineralization to isolated dental or joint disease in adults3,7-11. Those with mild phenotypes may progress into adulthood with subclinical disease and present only as older adults after years of subclinical disease1,9,12. If these subjects come to clinical attention, it is often due to mild, nonspecific findings or incidental findings on otherwise routine lab evaluation which prompts further evaluation and ultimately a diagnosis of HPP13,14. This highly variable clinical phenotype leads to significant diagnostic challenges, particularly in those with minor disease manifestations or a phenotype that may have multiple potential etiologies8,15-17. While there are no formal criteria for diagnosis of HPP, factors often considered supportive of a diagnosis include an alkaline phosphatase value below the normal range for age/sex and clinical features such as bone and/or dental disease consistent with the diagnosis1-3,16. However, as more is known about the genetic and biochemical underpinnings of the disease, genetic testing is often offered to subjects to help clarify their diagnosis1,3,9,16,18.

While significant effort has been expended to catalog and identify pathogenic variants in the ALPL gene, the rarity of the diagnosis has complicated these efforts16,19. Furthermore, with more than 400 described variants, the effect of a particular variant is usually based upon clinical experience with an extremely small cohort of subjects9,20. The absence of larger cohorts and the lack of clear genotype-phenotype correlations makes diagnosis difficult and can lead to both over- and under-diagnosis17. Subjects with genetic testing positive for a pathogenic variant may undergo further testing and monitoring and ultimately never develop symptomatic disease13. Conversely, other subjects may have genetic testing demonstrating no variant or a variant of undetermined significance; this can inappropriately be interpreted by providers to be inconsistent with HPP, resulting in exclusion of
subjects who may otherwise require additional testing and treatment. To better understand the relationship between genotype and phenotype, we identified subjects with TNSALP mutations from a general population database and reviewed their medical records for evidence of an HPP phenotype. Through this unbiased approach, we are able to better understand the phenotypic diversity of individuals with 2 variants to aid better understand phenotypic diversity in this disease.

Methods:

Subject Identification: The cohort studied for this case-series was taken from BioVU, Vanderbilt’s de-identified DNA biobank that pairs DNA isolated from leftover clinical blood samples from across the medical center with a de-identified and randomly date-shifted image of the electronic health record as previously described. In 2012–2013, ~40,000 subjects in BioVU were genotyped using the Illumina Infinium HumanExome BeadChip, which includes >240,000 mostly exonic markers, as well as SNPs from the GWAS catalog. Genotyping was performed at the Vanderbilt Technologies for Advanced Genomics (VANTAGE) Core, and genomic data were processed by the Vanderbilt Technologies for Advanced Genomics Analysis and Research Design (VANGARD) Core. Genotyping quality was evaluated using SNP call rates and concordance rates with HapMap controls; SNPs with <99.8% call rate or <98% concordance were excluded. Further details about GWAS coverage and QC protocols have previously been discussed in detail.

Ethics statement: This project was determined to be non-human subject research by the Vanderbilt Institutional Review Board [VUMC IRB# 120277] since there are no personal health identifiers (PHI) in the dataset. In accordance with the ethical framework previously described for BioVU studies, all investigators must have IRB determination prior to accessing the resource, and also sign a standard data use agreement.
Case Identification: We identified 13 ALPL SNPs which passed quality control as described above. The Illumina chip included 13 variants in the ALPL gene on the HumanExome BeadChip. Each variant was initially reviewed for this study. From the 13 identified variants, two were selected for further study – ALPL: rs121918002 (c.881A>C, p.D294A) and rs148405563 (c.818A>T, p.T273M) as they had sufficient subject numbers (having at least 15 subjects within the BioVU database), were sufficiently rare (minor allele frequency – MAF <0.002) and had adequate lab data (at least 2 AlkP values in the study time period)27. The total number of subjects in the cohort was 37, variant data is summarized in Table 1.

Manual Chart Review: We then performed a manual record review to better define the clinical phenotype of subjects with these variants. The de-identified chart was accessed in the BioVU interface, which allows review of the entire medical record of each subject. A search function was used to identify key phrases within documents to flag them for further review. For bone disease, chart documents were flagged for review if they included the following terms: Fracture, broken, broken bone, broke, compression, lumbar, long bone, humeral, radial, clavicular, sternal, tibial, fibular, femoral, spinal, cervical, thoracic, metaphyseal, spondylolisthesis, spondylosis, scoliosis, osteonecrosis, CPPD, pseudogout, gout, pyrophosphate, osteoporosis, osteopenia, osteomalacia, rickets, DEXA, bone density, osteogenesis, short stature, stone, calculus. Charts were similarly flagged for review of dental disease if they included the following terms: Dental, teeth, tooth, dental fractures, extractions, tooth loss, broken tooth, broken teeth, caries, periodontal, tooth extraction, crown, implant, tooth abscess, ONJ, TMJ, osteonecrosis of the jaw, cracking, chipping. A blinded manual abstraction of the medical records was performed by two independent reviewers for the 37 total subjects with identified ALPL variants. Records were manually abstracted to document clinical and laboratory findings consistent with the known skeletal and dental phenotype of HPP. On average, EHR data between 2000 to 2012 were reviewed, which also includes problem lists, lab results, imaging reports, and narrative reports from the EHR. Alkaline phosphatase assays were performed by a single lab as a part of routine clinical care. The assay used during this time period
was a photometric assay done at non-physiologic pH and with an artificial substrate. This assay has the following reference ranges: 0 to 14 days: 90-273 U/L; 15 days to <1 yr: 134-518 U/L; 1 yr to <10yrs: 156-369 U/L; 10 to <13 yrs: 141-460 U/L; 13 yrs to <1 yr: F 62/ M 127 - F 280/ M 517 U/L; 15 yrs to <17 yrs: F 54/ M 89 - F 128/ M 365 U/L; 17 yrs- <19 yrs: F 48/ M 59 - F 95/ M 164 U/L.

Descriptive statistics were calculated manually as presented in Table 2.

Computational Modelling: A model of dimeric TNSALP was generated using RosettaCM to combine elements from two template crystal structures. The model was based on 4kjj.pdb (rat intestinal alkaline phosphatase) and 1zef.pdb (human placenta alkaline phosphatase). In order to compare the location of each variant to the spatial distributions of known benign versus disease-associated variants, the PathProx algorithm was used to map known ExAC and ClinVar missense variants to the structure and calculate a relative proximity score. Thermodynamic destabilization by the variants was predicted using Rosetta’s ddG_monomer application, which calculates energy scores for the structure before and after mutation, allowing repacking of sidechains without backbone movement. Because the model was not a high-resolution X-ray crystal structure, the low-resolution protocol was used, corresponding to row three of Table 1 from Kellogg et al. Molecular graphics were generated using UCSF Chimera (supported by NIH P41 RR-01081) as distributed by SBGRID.

Results:

Among the 40,000 patients who had been evaluated at our facility for any reason and for whom SNP data was available, two variants were identified for further study. The first variant, p.D294A, has previously been studied in vitro and has 8.9% of native protein function and shows negligible dominant negative effect. In vivo this variant has been found to be disease-causing with a broad range of ages of onset and disease severity. The MAF of 0.00002 demonstrates that this is a rare variant in the population but was detected within our sample in 20 subjects of approximately 40,000 screened. The second variant, p.T273M has been reported in the literature as causing low AlkP and low bone mineral density. Recent data shows this variant to have near normal in vitro
enzymatic activity without a dominant negative effect36. No data regarding the \textit{in vivo} enzymatic activity for this variant was identified in our review of the literature. While still rare, this variant is slightly more common in the general population with an MAF of 0.00118 and was present in 17 subjects within our sample27.

Computational modeling of the TNSALP protein was performed to provide additional insight into the impact of the variants in this study. The p.D294A variant is highlighted in Figure 1 within the dimeric TNSALP enzyme. This mutation, D294A, was analyzed using PathProx, an algorithm which compares the proximity to the 3D distribution of known pathogenic variants from the ClinVar database, versus proximity to the putative neutral variants from the ExAC database. The PathProx score of 0.44 indicates strong colocalization with pathogenic variants. This variant also produced a positive value of 2.0 in Rosetta’s delta-delta-G calculation, predicting thermodynamic destabilization of the structure as a result of the mutation. In contrast, the p.T273M variant, scored only 0.10 by PathProx, indicating weaker colocalization with known disease-associated variants. It also produced a small negative delta-delta-G score of -1.51, suggesting a minor over-stabilizing effect, if any.

Detailed chart review of this cohort of subjects demonstrated that regardless of their variant, the majority of subjects had at least one HPP associated finding – a low AlkP activity or clinical history associated with HPP – and a smaller, but significant number had both associated findings (Table 2). Despite this, none of the subjects had a clinical diagnosis of HPP. While those with the p.T273M variant were slightly older than those in the p.D294A cohort (71.8yrs vs. 60.2yrs, respectively), the cohorts were similar in number and sex composition. As would be predicted from previous \textit{in vitro} work noted above, subjects in the p.D294A cohort were more likely to have at least one abnormally low AlkP value (80\% vs. 47.1\%). Interestingly, while these low values were more common in the p.D294A cohort, the mean serum AlkP was lower in the p.T273M cohort compared to those with the p.D294A variant (53.92 vs. 70.67). In terms of clinical phenotype, bone and dental disease (scoliosis, fractures, low BMD and dental disease) identified during chart review were each more common
among patients with the p.T273M variant. The rate of long bone fractures was 10.0% in the p.D294A cohort and 35.3% in the p.T273M group. The rate of scoliosis was 10.0% in the p.D294A cohort and 23.5% in the p.T273M group. Finally, 30.0% of the p.D294A cohort had both a low AlkP activity and clinical findings associated with disease while these were observed together in 23.5% of the p.T273M group.

On an individual level, there was no observed correlation between average serum AlkP and clinical manifestations of disease (Figures 2 and 3). In subjects with the p.D294A variant, all subjects except for subjects 7,8,19 and 20 had at least one recorded AlkP below the lower limit of normal, but only subjects 1-8 had finding in their clinical history consistent with disease. This left subjects 1-6 with both a low AlkP level and a clinical manifestation associated with HPP. All subjects within this genotype cohort except for subjects 19 and 20 had a least one biochemical or clinical history marker associated with HPP. Among those with the p.T273M variant, subjects 21-24 and 32-36 had at least one low AlkP value while subjects 21-31 each had at least one clinical feature consistent with disease. Subjects 21-24 had both a low AlkP and at least one disease-related manifestation associated with HPP. Within this genotype cohort, all subjects except for subject 37 had either a biochemical or clinical history consistent with disease. Interestingly, while many subjects in the p.T273M cohort had multiple bone or dental findings, only subjects 1 and 2 in the p.D294A had multiple co-occurring markers on clinical history.

Discussion:

Current knowledge about genotype/phenotype correlations in HPP are limited by it being an uncommon diagnosis caused by a multitude of ALPL variants. Additional complexity occurs as ALPL variants can exhibit a dominant-negative effect (DNE) as a result of interactions between mutated and wild-type monomers, and it has been suggested that clinical presentation of HPP may be affected by strength of the DNE. We evaluated the phenotypes of subjects with 2 distinct variants in the ALPL gene who did not have a clinical diagnosis of HPP, and thus, our cohort is likely
to include a broad representation of the clinical manifestations of HPP, not driven by presumptive diagnosis. Despite using multiple methods to attempt to predict a phenotype consistent with disease, no single predictor – \textit{in vitro} assays, \textit{in silico} modeling, \textit{in vivo} enzyme activity – consistently correlated with disease in our cohort. With respect to the p.D294A variant, our \textit{in silico} modeling gives a clear hypothesis for the observed decreased functional activity of this enzyme due to the replacement of the negatively charged aspartate residue by a neutral alanine in the active site of the enzyme. This is also reflected in the \textit{in vivo} results from the chart review of subjects, as they have low-normal average serum alkaline phosphatase levels and frequently have serum AlkP below the lower limit of normal. Despite the correlation between genotype and enzymatic phenotype, only 30% of subjects with this variant have both a low serum AlkP and a musculoskeletal manifestation consistent with the clinical disease. In contrast, the molecular modeling in the p.T273M variant places this away from the enzymatic active site and metal or collagen binding domains, making a clear hypothesis about the biologic consequence of this residue change more difficult to construct. Furthermore, recent evidence suggests that this variant does not result in a significant reduction in enzyme activity alone or when co-expressed with wild type enzyme36. However, patients in this cohort had a serum AlkP less than the lower limit of normal (40 IU/L) and a similar proportion had an orthopedic manifestation. The lack of correlation between enzymatic activity and phenotypic manifestations in this cohort suggests that better understanding the protein structure changes induced by these variants outside of their enzymatic function may be needed to more fully explain the pathogenic mechanisms in this disease process.

Of note, while previous observations have suggested that HPP is more prevalent in women13,21, our sample contains equal numbers of women and men who had both clinical criteria associated with diagnosis. While not definitive due to a lack of complete clinical information and small sample size of our cohort, this suggests that reports of higher rates of HPP diagnosis among women may be a product of our current diagnostic assumptions and not a characteristic of the underlying disease.
Taken together, our data have several implications for clinical practice and future study. In contrast to previous work with patients with pediatric onset HPP, our sample of mostly adults who have less severe HPP-associated disease shows minimal, if any, concordance between serum AlkP levels and clinical disease15. While one might expect that lower serum alkaline phosphatase activities would predict more severe musculoskeletal disease, this was not the case among our cohort. Indeed, among our cohort, even those with mean AlkP within the normal range were noted to have symptoms consistent with disease, while, on the other hand, several subjects with mean AlkP activities well below the lower limit of normal had no skeletal manifestations discovered during chart review. This lack of concordance between \textit{in vitro} activity and clinical disease suggests that other pathways may be able to either exacerbate or diminish the effects of even small changes in TNSALP enzymatic activity. Furthermore, while potentially an artifact of our relatively small sample size, the observation that the mean AlkP activity among those with the p.T273M was lower than in those with the p.D294A variant despite \textit{in vitro} assays requires further study to better understand the molecular basis of this observation.

Our data have several strengths. Because our cohort is drawn from all patients presenting to our medical facility, and inclusion is solely based on genotype, we are better able to capture the entire spectrum of disease manifestations and not only those with severe disease seen in subspecialty clinics. As a retrospective review of the entire medical records of these subjects, we were able to retrospectively capture clinical data for decades, and review radiology reports and subspecialty notes, ensuring dense medical history. Similarly, most subjects also had AlkP values from multiple time-points, ensuring an accurate reflection of the AlkP trends over time. However, our study has multiple limitations. First, our genotype data are the result of GWAS screening, and while it includes multiple loci within the TNSALP gene, it is by no means comprehensive and without further sequencing we cannot exclude the possibility that our patients may have additional undetected variants. Additionally, as a retrospective study, our sample is vulnerable, particularly among the younger subjects in the cohort, to the future discovery of clinical manifestations of disease which
might change subject categorization past the conclusion of our analysis. Also, because radiologic studies and physical exams of these subjects were performed by practitioners performing general exams not focused particularly on HPP manifestations, it is likely that certain disease manifestations and classic radiographic findings are underreported within our cohort, as these are less commonly the focus of general medical exams. Finally, the musculoskeletal search terms (scoliosis, long bone fractures, low bone mineral density, spinal fractures, and dental disease) are nonspecific and could be due to other etiologies. Furthermore, because our data is from a single tertiary referral center and patients had inconsistent follow up, we are unable to directly calculate prevalence of these outcomes but suspect they are an underestimate of these rates. However, comparing rates of fracture and scoliosis in our cohort to epidemiologic data suggests that our cohort has excess risk of these complications compared to their expected background prevalence40-42. Despite these limitations, this study demonstrates that, the lack of a tight genotype/phenotype correlation in HPP should give clinicians pause when using genotypic information to guide patient care in this disease.
References:

1. Whyte MP. Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nature reviews Endocrinology 2016;12:233-46.
2. Bianchi ML. Hypophosphatasia: an overview of the disease and its treatment. Osteoporosis International: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2015;26:2743-57.
3. Whyte MP. Hypophosphatasia: an overview For 2017. Bone 2017;102:15-25.
4. Stoll C, Fischbach M, Terzic J, Alemibik Y, Vuillemin MO, Mornet E. Severe hypophosphatasia due to mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. Genetic counseling (Geneva, Switzerland) 2002;13:289-95.
5. Henthorn PS, Raducha M, Fedde KN, Lafferty MA, Whyte MP. Different missense mutations at the tissue-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc Natl Acad Sci U S A 1992;89:9924-8.
6. McKiernan FE, Berg RL, Fuehrer J. Clinical and radiographic findings in adults with persistent hypophosphatasemia. J Bone Miner Res 2014;29:1651-60.
7. Reibel A, Manière M-C, Clauss F, et al. Oro dental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet Journal of Rare Diseases 2009;4:6.
8. Braunstein NA. Multiple fractures, pain, and severe disability in a patient with adult-onset hypophosphatasia. Bone reports 2016;4:1-4.
9. Whyte MP, Zhang F, Wenkert D, et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 2015;75:229-39.
10. Bloch-Zupan A. Hypophosphatasia: diagnosis and clinical signs - a dental surgeon perspective. International journal of paediatric dentistry 2016;26:426-38.
11. Foster BL, Raminitz MS, Gafni RI, et al. Rare bone diseases and their dental, oral, and craniofacial manifestations. Journal of dental research 2014;93:7s-19s.
12. Taketani T, Onigata K, Kobayashi H, Mushimoto Y, Fukuda S, Yamaguchi S. Clinical and genetic aspects of hypophosphatasia in Japanese patients. Archives of disease in childhood 2014;99:211-5.
13. Berkseth KE, Tebben PJ, Drake MT, Hefferan TE, Jewison DE, Wermers RA. Clinical spectrum of hypophosphatasia diagnosed in adults. Bone 2013;54:21-7.
14. Nielson CM, Zmuda JM, Carlos AS, et al. Rare coding variants in ALPL are associated with low serum alkaline phosphatase and low bone mineral density. J Bone Miner Res 2012;27:93-103.
15. Whyte MP, Coburn SP, Ryan LM, Ericson KL, Zhang F. Hypophosphatasia: Biochemical hallmarks validate the expanded pediatric clinical nosology. Bone 2018;110:96-106.
16. Mornet E. Hypophosphatasia. Metabolism: clinical and experimental 2017.
17. Mornet E. Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations. Sub-cellular biochemistry 2015;76:25-43.
18. Taillardier A, Domingues C, De Cazanove C, et al. Molecular diagnosis of hypophosphatasia and differential diagnosis by targeted Next Generation Sequencing. Molecular genetics and metabolism 2015;116:215-20.
19. Mornet E, Yvard A, Taillardier A, Fauvert D, Simon-Bouy B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Annals of human genetics 2011;75:439-45.
20. The Tissue Nonspecific Alkaline Phosphatase Gene Mutations Database. 2019. (Accessed 6/17/2019, at http://www.sesep.uvsq.fr/03_hypo_mutations.php.)
21. Weber TJ, Sawyer EK, Moseley S, Odrilij T, Kishnani PS. Burden of disease in adult patients with hypophosphatasia: Results from two patient-reported surveys. Metabolism: clinical and experimental 2016;65:1522-30.
22. Roden DM, Pulley JM, Basford MA, et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clinical pharmacology and therapeutics 2008;84:362-9.
23. Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic acids research 2014;42:D1001-6.
24. Cronin RM, Field JR, Bradford Y, et al. Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index. Front Genet 2014;5:250.
25. Guo Y, He J, Zhao S, et al. Illumina human exome genotyping array clustering and quality control. Nat Protoc 2014;9:2643-62.
26. Pulley J, Clayton E, Bernard GR, Roden DM, Masys DR. Principles of human subjects protections applied in an opt-out, de-identified biobank. Clinical and translational science 2010;3:42-8.
27. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. bioRxiv 2020:531210.
28. Song Y, DiMaio F, Wang RY, et al. High-resolution comparative modeling with RosettaCM. Structure 2013;21:1735-42.
29. Ghosh K, Mazumder Tagore D, Anumula R, et al. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases. J Struct Biol 2013;184:182-92.
30. Llinas P, Stura EA, Menez A, et al. Structural studies of human placental alkaline phosphatase in complex with functional ligands. J Mol Biol 2005;350:441-51.
31. Sivley RM, Sheehan JH, Kropski JA, et al. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia. BMC Bioinformatics 2018;19:18.
32. Sivley RM, Dou X, Meiler J, Bush WS, Capra JA. Comprehensive Analysis of Constraint on the Spatial Distribution of Missense Variants in Human Protein Structures. Am J Hum Genet 2018;102:415-26.
33. Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 2011;79:830-8.
34. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-12.
35. Morin A, Eisenbraun B, Key J, et al. Collaboration gets the most out of software. Elife 2013;2:e01456.
36. Del Angel G, Reynders J, Negron C, Steinbrecher T, Mornet E. Large-scale in vitro functional testing and novel variant scoring via protein modeling provide insights into alkaline phosphatase activity in hypophosphatasia. Hum Mutat 2020.
37. Fukushi-Irie M, Ito M, Amaya Y, et al. Possible interference between tissue-non-specific alkaline phosphatase with an Arg54-->Cys substitution and a counterpart with an Asp277-->Ala substitution found in a compound heterozygote associated with severe hypophosphatasia. Biochem J 2000;348 Pt 3:633-42.
38. Mumm S, Jones J, Finnegan P, Henthorn PS, Podgornik MN, Whyte MP. Denaturing gradient gel electrophoresis analysis of the tissue nonspecific alkaline phosphatase isoenzyme gene in hypophosphatasia. Molecular genetics and metabolism 2002;75:143-53.
39. Camacho PM, Mazhari AM, Wilczynski C, Kadanoff R, Mumm S, Whyte MP. Adult Hypophosphatasia Treated with Teriparatide: Report of 2 Patients and Review of the Literature. Endocr Pract 2016;22:941-50.
40. Wolfe JA, Wolfe H, Banag A, Tintel S, Perez Koehlmoos T. Early Pediatric Fractures in a Universally Insured Population within the United States. BMC Pediatr 2019;19:343.
41. Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton LJ, 3rd. Trends in fracture incidence: a population-based study over 20 years. J Bone Miner Res 2014;29:581-9.
42. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 2013;7:3-9.
Table 1: ALPL Variants identified among subjects included as cases.

SNP	rsID	Previously Reported Phenotype	Molecular consequence	Functional Consequence	Carrier Count	MAF
exm28158	rs121918002	Infantile³	c.881A>C p.D294A	35% normal³⁷	20	0.00002
exm28148	rs148405563	Asymptomatic, low BMD¹⁴	c.818C>T p.T273M	Unknown	17	0.00118

Abbreviations: SNP, single nucleotide polymorphism, rsID, accession number assigned to refer to specific SNPs, MAF, minor allele frequency – the frequency of the second most common allele in a given population to differentiate between common and rare variants.
Table 2: Aggregate demographic, alkaline phosphatase and skeletal phenotype data skeletal observed within the study populations defined by their genetic variants. Phenotypic data is the result of a manual chart review of subjects with each of the noted SNPs. No subject had a clinical diagnosis of hypophosphatasia.

Demographics	p.D294A	p.T273M
Number of subjects with variant	20	17
Age (SD)	60.2 (28.65)	71.8 (19.05)
Percent Female	35.0%	35.3%
Alkaline Phosphatase		
Mean (SD)*	59.6 (42.47)	50.65 (11.95)
Subjects with at least one AlkP under 50	17 (85%)	15 (88.2%)
Subjects with at least one AlkP under 40	16 (80%)	8 (47.1%)
Bone Disease		
Scoliosis	2 (10.0%)	4 (23.5%)
Low bone mineral density	4 (20.0%)	7 (41.2%)
Long bone fractures	2 (10.0%)	6 (35.3%)
Spine fractures	2 (10.0%)	2 (11.8%)
Dental disease	1 (5.0%)	3 (17.6%)
Disease Phenotype		
Both AlkP <40 and disease phenotype	6 (30.0%)	4 (23.5%)

*reference range 40-150 (IU/L)
Dental disease included: dental fractures, extractions or other tooth loss.
Long Bone fractures included humeral, radial, clavicular, sternal, tibial, fibular or femoral fractures.
Spinal Fractures: Cervical, Thoracic, lumbar or sacral fracture
Figure 1: Location of variants of interest, metal ions and other known pathogenic variants within the TNSALP homodimer.

Figure 1

Structural model of dimeric alkaline phosphatase, tissue-nonspecific isozyme, showing the location of the p.D294A and p.T273M variants (cyan) in the context of the pathogenic variants collected from ClinVar (red) and bound zinc and magnesium ions (blue). The p.D294A substitution has a higher PathProx score (0.44 vs 0.10) compared to the p.T273M variant, indicating greater spatial colocalization with the pathogenic variants than with the neutral distribution from ExAC.

Figure 2: Subject data for those with the p.D294A variant.

Figure 2

Figure 3: Subject data for those with the p.T273M variant.

Figure 3
Figure 1

p.D294A

p.T273M

p.D294A

p.T273M
Figure 2

Subject Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Sex	F	F	F	M	M	F	M	F	M	M	M	M	M	M	F	F	M	M	M	M
Age at Review	82	98	45	56	59	91	26	72	87	76	84	74	93	8	66	72	13	17	23	
Scoliosis																				
Low BMD																				
Long Bone Fracture																				
Spine Fracture																				
Dental Disease																				
≥1 phenotypic marker																				
Mean AlkP	36	24	27	56	44	28	81	110	82	17	41	41	26	28	40	196	49	104	83	79
One AlkP value ≤ 40																				
Both markers present																				
Figure 3

Subject Number	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
Sex	F	M	M	M	M	M	F	M	F	M	M	F	M	F	M	F	
Age	90	94	102	70	90	91	71	88	50	49	59	59	47	44	68	88	
Scoliosis																	
Low BMD																	
Long Bone Fracture																	
Spine Fracture																	
Dental Disease																	
≥1 phenotypic marker																	
Mean AlkP	41	39	47	39	64	52	58	65	81	52	52	50	37	43	42	39	60
One AlkP value ≤ 40																	
Both markers present																	