PURSUING THE DOUBLE AFFINE GRASSMANNIAN II:
CONVOLUTION

ALEXANDER BRAVERMAN AND MICHAEL FINKELBERG

Abstract. This is the second paper of a series (started by [3]) which describes a conjectural analog of the affine Grassmannian for affine Kac-Moody groups (also known as the double affine Grassmannian). The current paper is dedicated to describing a conjectural analog of the convolution diagram for the double affine Grassmannian. In the case when $G = SL(n)$ our conjectures can be derived from [12].

1. Introduction

1.1. The usual affine Grassmannian. Let G be a connected complex reductive group and let $K = \mathbb{C}((s)), \mathfrak{o} = \mathbb{C}[[s]]$. By the affine Grassmannian of G we shall mean the quotient $Gr_G = G(K)/G(\mathfrak{o})$. It is known (cf. [1, 10]) that Gr_G is the set of \mathbb{C}-points of an ind-scheme over \mathbb{C}, which we will denote by the same symbol. Note that Gr_G is defined for any (not necessarily reductive) group G.

Let $\Lambda = \Lambda_G$ denote the coweight lattice of G and let Λ^\vee denote the dual lattice (this is the weight lattice of G). We let $2\rho^\vee_G$ denote the sum of the positive roots of G.

The group-scheme $G(\mathfrak{o})$ acts on Gr_G on the left and its orbits can be described as follows. One can identify the lattice Λ_G with the quotient $T(K)/T(\mathfrak{o})$. Fix $\lambda \in \Lambda_G$ and let s^λ denote any lift of λ to $T(K)$. Let Gr_G^λ denote the $G(\mathfrak{o})$-orbit of s^λ (this is clearly independent of the choice of $\lambda(s)$). The following result is well-known:

Lemma 1.2. (1) $\displaystyle\bigcup_{\lambda \in \Lambda_G} Gr_G^\lambda = Gr_G.$

(2) We have $Gr_G^\lambda = Gr_G^\mu$ if and only if λ and μ belong to the same W-orbit on Λ_G (here W is the Weyl group of G). In particular, $\displaystyle Gr_G = \bigsqcup_{\lambda \in \Lambda^+_G} Gr_G^\lambda.$

(3) For every $\lambda \in \Lambda^+$ the orbit Gr_G^λ is finite-dimensional and its dimension is equal to $\langle \lambda, 2\rho^\vee_G \rangle$.

Let $\overline{Gr_G^\lambda}$ denote the closure of Gr_G^λ in Gr_G; this is an irreducible projective algebraic variety; one has $Gr_G^\mu \subset \overline{Gr_G^\lambda}$ if and only if $\lambda - \mu$ is a sum of positive roots of G^\vee. We will denote by IC^λ the intersection cohomology complex on $\overline{Gr_G^\lambda}$. Let $Perv_{G(\mathfrak{o})}(Gr_G)$ denote the category of $G(\mathfrak{o})$-equivariant perverse sheaves on Gr_G. It is known that every object of this category is a direct sum of the IC^λ's.
1.3. **Transversal slices.** Consider the group $G[s^{-1}] \subset G((s))$; let us denote by $G[s^{-1}]_1$ the kernel of the natural ("evaluation at ∞") homomorphism $G[s^{-1}] \to G$. For any $\lambda \in \Lambda$ let $\text{Gr}_{G, \lambda} = G[s^{-1}] \cdot s^\lambda$. Then it is easy to see that one has

$$\text{Gr}_G = \bigsqcup_{\lambda \in \Lambda^+} \text{Gr}_{G, \lambda}$$

Let also $\text{W}_{G, \lambda}$ denote the $G[s^{-1}]_1$-orbit of s^λ. For any $\lambda, \mu \in \Lambda^+$, $\lambda \geq \mu$ set

$$\text{Gr}_{G, \mu}^\lambda = \text{Gr}_{G, \mu} \cap \text{Gr}_{G, \mu}^\lambda,$$
$$\text{Gr}_{G, \mu}^\lambda = \text{Gr}_{G, \mu} \cap \text{Gr}_{G, \mu}$$

and

$$\text{W}_{G, \mu}^\lambda = \text{W}_{G, \mu} \cap \text{W}_{G, \mu}^\lambda.$$

Note that $\text{W}_{G, \mu}^\lambda$ contains the point s^μ in it. The variety $\text{W}_{G, \mu}^\lambda$ can be thought of as a transversal slice to $\text{Gr}_{G, \mu}$ inside $\text{Gr}_{G, \lambda}$ at the point s^μ (cf. [3], Lemma 2.9).

1.4. **The convolution.** We can regard $G(\mathbb{X})$ as a total space of a $G(\mathcal{O})$-torsor over Gr_G. In particular, by viewing another copy of Gr_G as a $G(\mathcal{O})$-scheme, we can form the associated fibration

$$\text{Gr}_G \star \text{Gr}_G := G(\mathbb{X}) \times_{G(\mathcal{O})} \text{Gr}_G.$$

One has the natural maps $p, m : \text{Gr}_G \star \text{Gr}_G \to \text{Gr}_G$ defined as follows. Let $g \in G(\mathbb{X}), x \in \text{Gr}_G$. Then

$$p_1(g \times x) = g \mod G(\mathcal{O}); \quad m(g \times x) = g \cdot x.$$

For any $\lambda_1, \lambda_2 \in \Lambda_\mathbb{X}^+$ let us set $\text{Gr}_{G, \mu}^{\lambda_1} \star \text{Gr}_{G, \mu}^{\lambda_2}$ to be the corresponding subscheme of $\text{Gr}_G \star \text{Gr}_G$; this is a fibration over Gr_{G, λ_1} with the typical fiber Gr_{G, λ_2}. Its closure is $\overline{\text{Gr}_{G, \mu}^{\lambda_1} \star \text{Gr}_{G, \mu}^{\lambda_2}}$. In addition, we define

$$(\text{Gr}_{G, \lambda_1}^{\lambda_1} \star \text{Gr}_{G, \lambda_2}^{\lambda_2})^{\lambda_3} = m^{-1}((\text{Gr}_{G, \lambda_1}^{\lambda_3}) \cap (\text{Gr}_{G, \lambda_1}^{\lambda_1} \star \text{Gr}_{G, \lambda_2}^{\lambda_2})).$$

It is known (cf. [9]) that

$$\dim((\text{Gr}_{G, \lambda_1}^{\lambda_1} \star \text{Gr}_{G, \lambda_2}^{\lambda_2})^{\lambda_3}) = (\lambda_1 + \lambda_2 + \lambda_3, \rho_{G}^{\lambda_3}).$$

(1.1)

(1) Let $\text{S}_1, \text{S}_2 \in \text{Perv}_{G(\mathcal{O})}(\text{Gr}_G)$. Then $\text{S}_1 \star \text{S}_2 \in \text{Perv}_{G(\mathcal{O})}(\text{Gr}_G)$.

(2) The convolution \star extends to a structure of a tensor category on $\text{Perv}_{G(\mathcal{O})}(\text{Gr}_G)$.

(3) As a tensor category, $\text{Perv}_{G(\mathcal{O})}(\text{Gr}_G)$ is equivalent to the category $\text{Rep}(G^\vee)$. Under this equivalence, the object IC_{λ} goes over to the irreducible representation $L(\lambda)$ of G^\vee with highest weight λ).
1.6. n-fold convolution. Similarly to the above, we can define the n-fold convolution diagram

$$m_n : \underbrace{\text{Gr}_G \ast \cdots \ast \text{Gr}_G}_n \to \text{Gr}_G.$$

Here

$$\underbrace{\text{Gr}_G \ast \cdots \ast \text{Gr}_G}_n = G(\mathcal{K}) \times G(\mathcal{O}) \times \cdots \times G(\mathcal{K}) \times G(\mathcal{O})$$

and m_n is the multiplication map. Thus, given n objects S_1, \cdots, S_n of $\text{Perv}_{G(\mathcal{O})}(\text{Gr}_G)$ we may consider the convolution $S_1 \ast \cdots \ast S_n$; this will be again an object of $\text{Perv}_{G(\mathcal{O})}(\text{Gr}_G)$ which under the equivalence of Theorem 1.5 corresponds to n-fold tensor product in $\text{Rep}(G^\vee)$. In particular, let $\lambda_1, \cdots, \lambda_n$ be elements of Λ^+. One can consider the corresponding subvariety $\bigwedge^n_G \ast \cdots \ast \bigwedge^n_G$ in $\text{Gr}_G \ast \cdots \ast \text{Gr}_G$. Then the convolution $\text{IC}^{\lambda_1} \ast \cdots \ast \text{IC}^{\lambda_n}$ is just the direct image $(m_n)_!(\text{IC}(\bigwedge^n_G \ast \cdots \ast \bigwedge^n_G))$. In particular, we have an isomorphism

$$(m_n)_!(\text{IC}(\bigwedge^n_G \ast \cdots \ast \bigwedge^n_G)) \simeq \bigoplus_{\nu \in \Lambda^+} \text{IC}^{\nu} \otimes \text{Hom}(L(\nu), L(\lambda_1) \otimes \cdots \otimes L(\lambda_n)).$$

(1.2)

1.7. The group G_{aff}. From now on we assume that G is almost simple and simply connected. To a connected reductive group G as above one can associate the corresponding affine Kac-Moody group G_{aff} in the following way. One can consider the polynomial loop group $G[t, t^{-1}]$ (this is an infinite-dimensional group ind-scheme).

It is well-known that $G[t, t^{-1}]$ possesses a canonical central extension \tilde{G} of $G[t, t^{-1}]$:

$$1 \to \mathbb{G}_m \to \tilde{G} \to G[t, t^{-1}] \to 1.$$

Moreover, \tilde{G} has again a natural structure of a group ind-scheme.

The multiplicative group \mathbb{G}_m acts naturally on $G[t, t^{-1}]$ and this action lifts to \tilde{G}. We denote the corresponding semi-direct product by G_{aff}; we also let g_{aff} denote its Lie algebra.

The Lie algebra g_{aff} is an untwisted affine Kac-Moody Lie algebra. In particular, it can be described by the corresponding affine root system. We denote by g_{aff}^\vee the Langlands dual affine Lie algebra (which corresponds to the dual affine root system) and by G_{aff}^\vee the corresponding dual affine Kac-Moody group, normalized by the property that it contains G^\vee as a subgroup (cf. [3], Subsection 3.1 for more details).

We denote by $\Lambda_{\text{aff}} = \mathbb{Z} \times \Lambda \times \mathbb{Z}$ the coweight lattice of G_{aff}; this is the same as the weight lattice of G_{aff}^\vee. Here the first \mathbb{Z}-factor is responsible for the center of G_{aff}^\vee (or G_{aff}^\vee); it can also be thought of as coming from the loop rotation in G_{aff}. The second \mathbb{Z}-factor is responsible for the loop rotation in G_{aff}^\vee it may also be thought of as coming from the center of G_{aff}. We denote by Λ_{aff}^+ the set of dominant weights of G_{aff}^\vee (which is the same as the set of dominant coweights of G_{aff}). We also denote by $\Lambda_{\text{aff}, k}$ the set of weights of G_{aff}^\vee of level k, i.e. all the weights of the form (k, λ, n). We put $\Lambda_{\text{aff}, k}^+ = \Lambda_{\text{aff}}^+ \cap \Lambda_{\text{aff}, k}$.

Important notational convention: From now on we shall denote elements of Λ by λ, μ, ν... (instead of just writing λ, μ, ν... in order to distinguish them from the coweights of G_{aff} (= weights of G_{aff}^\vee), which we shall just denote by λ, μ, ν...
Let $\Lambda^+_k \subset \Lambda$ denote the set of dominant coweights of G such that $\langle \lambda, \alpha \rangle \leq k$ when α is the highest root of g. Then it is well-known that a weight (k, λ, n) of G'_{aff} lies in $\Lambda^+_{\text{aff}, k}$ if and only if $\overline{\lambda} \in \Lambda^+_k$ (thus $\Lambda_{\text{aff}, k} = \Lambda^+_k \times \mathbb{Z}$).

Let also W_{aff} denote affine Weyl group of G which is the semi-direct product of W and Λ. It acts on the lattice Λ_{aff} (resp. $\hat{\Lambda}$) preserving each $\Lambda_{\text{aff}, k}$ (resp. each $\hat{\Lambda}_k$). In order to describe this action explicitly it is convenient to set $W_{\text{aff}, k} = W \rtimes k\Lambda$ which naturally acts on Λ. Of course the groups $W_{\text{aff}, k}$ are canonically isomorphic to W_{aff} for all k. Then the restriction of the W_{aff}-action to $\Lambda_{\text{aff}, k} \simeq \Lambda \times \mathbb{Z}$ comes from the natural $W_{\text{aff}, k}$-action on the first multiple.

It is well known that every W_{aff}-orbit on $\Lambda_{\text{aff}, k}$ contains unique element of $\Lambda^+_{\text{aff}, k}$. This is equivalent to saying that $\Lambda^+_k \simeq \Lambda/W_{\text{aff}, k}$.

1.8. Transversal slices for $\text{Gr}_{G_{\text{aff}}}$. Our main dream is to create an analog of the affine Grassmannian Gr_G and the above results about it in the case when G is replaced by the (infinite-dimensional) group G_{aff}. The first attempt to do so was made in [3]; namely, in loc. cit. we have constructed analogs of the varieties $W^\lambda_{G, \mu}$ in the case when G is replaced by G_{aff}. In the current paper, we are going to construct analogs of the varieties $m^{-1}_n(W^\lambda_{G, \mu}) \cap (\text{Gr}^\lambda_G \ast \cdots \ast \text{Gr}^\lambda_G)$ and $m^{-1}_n(W^\lambda_{G, \mu}) \cap (\text{Gr}^\lambda_G \ast \cdots \ast \text{Gr}^\lambda_G)$ (here $\lambda = \lambda_1 + \cdots + \lambda_n$) when G is replaced by G_{aff}. We shall also construct (cf. Section 3.11) analogs of the corresponding pieces in the Beilinson-Drinfeld Grassmannian for G_{aff} (cf. Section 3.10 for a short digression on the Beilinson-Drinfeld Grassmannian for G).

To formulate the idea of our construction, let us first recall the construction of the affine analogs of the varieties $W^\lambda_{G, \mu}$. Let $\text{Bun}_G(\mathbb{A}^2)$ denote the moduli space of principal G-bundles on \mathbb{P}^2 trivialized at the “infinite” line $\mathbb{P}^1_{\infty} \subset \mathbb{P}^2$. This is an algebraic variety which has connected components parametrized by non-negative integers, corresponding to different values of the second Chern class of the corresponding bundles; we denote the corresponding connected component by $\text{Bun}_G^{a}(\mathbb{A}^2)$ (here $a \geq 0$). According to [2] one can embed $\text{Bun}_G^{a}(\mathbb{A}^2)$ (as an open dense subset) into a larger variety $\mathcal{U}_G^{a}(\mathbb{A}^2)$ which is called the Uhlenbeck moduli space of G-bundles on \mathbb{A}^2 of second Chern class a.\footnote{This space is an algebraic analog of the Uhlenbeck compactification of the moduli space of instantons on a Riemannian 4-manifold.} Furthermore, for any $k \geq 0$, let $\Gamma_k \subset SL(2)$ be the group of k-th roots of unity. This group acts naturally on \mathbb{A}^2 and \mathbb{P}^2 and this action can be lifted to an action of Γ_k on $\text{Bun}_G(\mathbb{A}^2)$ and $\mathcal{U}_G(\mathbb{A}^2)$. This lift depends on a choice of a homomorphism $\Gamma_k \rightarrow G$ which is responsible for the action of Γ_k on the trivialization of our G-bundles on \mathbb{P}^1_{∞}; it is explained in [3] that to such a homomorphism one can associate a dominant weight μ of G'_{aff} of level k; in the future we shall denote the set of all such weights by Λ^+_k. We denote by $\text{Bun}_{G, \mu}(\mathbb{A}^2/\Gamma_k)$ the set of fixed points of Γ_k on $\text{Bun}_G(\mathbb{A}^2)$. In [3] we construct a bijection between connected components of $\text{Bun}_{G, \mu}(\mathbb{A}^2/\Gamma_k)$ and dominant weights λ of G_{aff} such that $\lambda \geq \mu$. We denote the corresponding connected component by $\text{Bun}_{G, \mu}^{\lambda}(\mathbb{A}^2/\Gamma_k)$; we also denote by $\mathcal{U}_{G, \mu}^{\lambda}(\mathbb{A}^2/\Gamma_k)$
its closure in $\mathcal{U}_G(\mathbb{A}^2)$.

In [3] we explain in what sense the variety $\mathcal{U}_{G,\mu}^{\lambda}$ should be thought of as the correct version of $\overline{\mathcal{W}}_{G,\mu}^{\lambda}$.

1.9. Bundles on mixed Kleinian stacks.

For a scheme X endowed with an action of a finite group Γ we shall denote by X/Γ the scheme-theoretic (categorical) quotient of X by Γ; similarly, we denote by X/Γ the corresponding quotient stack.

Given positive integers k_1, \ldots, k_n such that $\sum_{i=1}^n k_i = k$, we set

$$\mathbb{A}^2/\Gamma_k = \mathbb{A}_k \subset \overline{\mathbb{A}}_k := \mathbb{P}^2/\Gamma_k, \quad \mathbb{A}_k = S_k \subset \overline{S}_k = \mathbb{P}^2/\Gamma_k.$$

We define \overline{S}_k (resp. \mathbb{S}_k) as the minimal resolution of S_k (resp. \mathbb{S}_k) at the point 0. The exceptional divisor $E \subset \overline{S}_k$ is an A_{k-1}-diagram of projective lines E_1, \ldots, E_{k-1}. Since any E_1 is a -2-curve, it is possible to blow down an arbitrary subset of $\{E_1, \ldots, E_{k-1}\}$.

We define S_{k_1, \ldots, k_n} (resp. $\overline{S}_{k_1, \ldots, k_n}$) as the result of blowing down all the lines except for $E_{k_1}, E_{k_1+k_2}, \ldots, E_{k_1+\ldots+k_{n-1}}$ in \overline{S}_k (resp. \mathbb{S}_k). The surface S_{k_1, \ldots, k_n} (resp. $\overline{S}_{k_1, \ldots, k_n}$) possesses canonical stacky resolution S_{k_1, \ldots, k_n} (resp. $\overline{S}_{k_1, \ldots, k_n}$). We will denote by $s_1, \ldots, s_n \in S_{k_1, \ldots, k_n}$ the torus fixed points with the automorphism groups $\Gamma_{k_1}, \ldots, \Gamma_{k_n}$.

We denote by $\text{Bun}_G(S_{k_1, \ldots, k_n})$ the moduli space of G-bundles on $\overline{S}_{k_1, \ldots, k_n}$ trivialized on the boundary divisor $\overline{S}_{k_1, \ldots, k_n} \setminus S_{k_1, \ldots, k_n}$. For a bundle $\mathcal{F} \in \text{Bun}_G(S_{k_1, \ldots, k_n})$, the group Γ_k acts on its fiber $\mathcal{F}_{s_{k_1}}$ at the point s_{k_1}, and hence defines a conjugacy class of maps $\Gamma_k \to G$, i.e. an element of $\Lambda^+_{k_1}$. Similarly, the action of Γ_k at the fiber of \mathcal{F} at infinity defines an element of $\Lambda^+_{k_n}$. We denote by $\text{Bun}_{G,\overline{\nu}}^{\overline{\lambda}(1), \ldots, \overline{\lambda}(n)}(S_{k_1, \ldots, k_n})$ the subset of $\text{Bun}_G(S_{k_1, \ldots, k_n})$ formed by all $\mathcal{F} \in \text{Bun}_G(S_{k_1, \ldots, k_n})$ such that $\mathcal{F}_{s_{k_1}}$ is of class $\overline{\lambda}(1)$, and \mathcal{F}_∞ is of class $\overline{\nu}$. Clearly, it is a union of connected components of $\text{Bun}_G(S_{k_1, \ldots, k_n})$. We denote by $\text{Bun}_{G,\overline{\nu}}^{\overline{\lambda}(1), \ldots, \overline{\lambda}(n)}(S_{k_1, \ldots, k_n})$ the intersection of $\text{Bun}_{G,\overline{\nu}}^{\overline{\lambda}(1), \ldots, \overline{\lambda}(n)}(S_{k_1, \ldots, k_n})$ with $\text{Bun}_{G,\overline{\nu}}^{d/k}(S_{k_1, \ldots, k_n})$ (G-bundles of second Chern class d/k). Here d/k is the second Chern class on the stack; it is a rational number with denominator k.

1.10. Uhlenbeck spaces and convolution.

Our first goal in this paper is to define a certain partial Uhlenbeck compactification $\mathcal{U}_{G,\overline{\nu}}^{\overline{\lambda}(1), \ldots, \overline{\lambda}(n)}(S_{k_1, \ldots, k_n}) \supset \text{Bun}_{G,\overline{\nu}}^{\overline{\lambda}(1), \ldots, \overline{\lambda}(n)}(S_{k_1, \ldots, k_n})$. The definition is given in Section 2 for $G = \text{SL}(N)$ using Nakajima’s quiver varieties and in Section 3 for general G (using all possible embeddings of G into $\text{SL}(N)$). Choosing certain lifts $\lambda(i)$ of $\overline{\lambda}(i)$ and μ of $\overline{\nu}$ to level k dominant weights of G^\vee_{aff} we will reddenote $\mathcal{U}_{G,\nu}^{\lambda(1), \ldots, \lambda(n)}(S_{k_1, \ldots, k_n})$ by $\mathcal{U}_{G,\mu}^{\lambda(1), \ldots, \lambda(n)}(S_{k_1, \ldots, k_n})$. We will also construct a proper birational morphism $\varpi : \mathcal{U}_{G,\mu}^{\lambda(1), \ldots, \lambda(n)}(S_{k_1, \ldots, k_n}) \to \mathcal{U}_{G,\mu}^\lambda(S_k)$ for $\lambda = \lambda(1) + \ldots + \lambda(n)$. We believe that ϖ is the correct analog of the convolution morphism

$$m^{-1}_n(\overline{\mathcal{W}}_{G,\mu}) \cap (\mathcal{G}_{G,1}^\lambda \times \cdots \times \mathcal{G}_{G,n}^\lambda) \to \mathcal{W}_{G,\mu}^\lambda.$$

\[More precisely, in [3] we construct an open and closed subvariety $\text{Bun}_{\omega,\mu}^{\lambda}(\mathbb{A}^2/\Gamma_k)$ inside $\text{Bun}_G(\mathbb{A}^2/\Gamma_k)$ and formulate a conjecture, saying that it is connected (and thus it is a connected component of $\text{Bun}_G(\mathbb{A}^2/\Gamma_k)$). This conjecture is proved in [3] for $G = SL(n)$ and it is still open in general. \]
In particular, in the case $G = \text{SL}(N)$ we prove an analog of (1.2) for the morphism ϖ (the proof follows from the results of [12] by a fairly easy combinatorial argument). We conjecture that a similar decomposition holds for general G.

Let us note that the above conjecture is somewhat reminiscent of the results of [4] where similar moduli spaces have been used in order to prove the existence of convolution for the spherical Hecke algebra of G_{aff} (recall that the tensor category $\text{Perv}_{G(O)}(\text{Gr}_G)$ is a categorification of the spherical Hecke algebra of G).

1.11. Axiomatic approach to Uhlenbeck spaces. We note that the above constructions of the relevant Uhlenbeck spaces and morphisms between them are rather ad hoc; to give the reader certain perspective, let us formulate what we would expect from Uhlenbeck spaces for general smooth 2-dimensional Deligne-Mumford stacks. The constructions of Section 2 and Section 3 may be viewed as a partial verification of these expectations in the case of mixed Kleinian stacks.

1.11.1. Spaces. Let S be a smooth 2-dimensional Deligne-Mumford stack. Let \overline{S} be its smooth compactification, and let $D \subset \overline{S}$ be the divisor at infinity. Let $\overline{S} \subset \overline{S}$ be the coarse moduli spaces. In our applications we only consider the stacks with cyclic automorphism groups of points; more restrictively, only toric stacks.

Let G as before be an almost simple simply connected complex algebraic group. We assume that there are no G-bundles on S equipped with a trivialization on D with nontrivial automorphisms (preserving the trivialization). In this case there is a fine moduli space $\text{Bun}_G(S)$ of the pairs $(a_G$-bundle on S; its trivialization on D). We believe that $\text{Bun}_G(S)$ is open dense in the Uhlenbeck completion $\mathcal{U}_G(S)$. We believe that $\mathcal{U}_{\text{SL}(N)}(S)$ is a certain quotient of the moduli stack of perverse coherent sheaves on S which are n-dimensional vector bundles off finitely many points.

A nontrivial homomorphism $\varrho : G \to \text{SL}(N)$ gives rise to the closed embedding $\varrho_* : \text{Bun}_G(S) \hookrightarrow \text{Bun}_{\text{SL}(N)}(S)$ which we expect to extend to a morphism $\mathcal{U}_G(S) \hookrightarrow \mathcal{U}_{\text{SL}(N)}(S)$.

1.11.2. Morphisms. Assume that we have a proper morphism $\pi : \overline{S} \to \overline{S}$ which is an isomorphism in the neighbourhoods of D, D'. We believe π gives rise to a birational proper morphism $\varpi : \mathcal{U}_G(S) \to \mathcal{U}_G(S')$. If $\varrho : G \to \text{SL}(N)$ is a nontrivial representation of G, and $\phi \in \mathcal{U}_G(S)$, we choose a perverse coherent sheaf F on S representing $\varrho_*(\phi)$. According to Theorem 4.2 of [8], there is an equivalence of derived coherent categories on S and S' (it is here that we need the assumption that S and S' are toric). This equivalence takes F to a perverse coherent sheaf F' on S'. We believe that the class of F' in $\mathcal{U}_{\text{SL}(N)}(S')$ equals $\varrho_*(\varpi(\phi))$.

1.11.3. Families. Assume we have a morphism $\overline{S} \to X$ where X is a variety, and for every $x \in X$ the fiber \overline{S}_x over x is of type considered in Section 1.11.1. Then there should exist a morphism of varieties $\mathcal{U}_G(S) \to X$ such that for every $x \in X$ the fiber $\mathcal{U}_G(S)_x$ is isomorphic to $\mathcal{U}_G(S_x)$ where $S_x \subset \overline{S}_x$ is the canonical stacky resolution of $S_x \subset \overline{S}_x$, cf. Section 2.1 (note that we do not require the existence of a family of stacks over X with fibers S_x).
1.12. Acknowledgements. The idea of using mixed Kleinian stacks in order to describe convolution in the double affine Grassmannian was suggested to us by E. Witten (a differential-geometric approach to this problem is discussed in Section 5 of [14]); we are very grateful to him for sharing his ideas with us and for numerous very interesting conversations on the subject. Both authors would like to thank H. Nakajima for a lot of very helpful discussions and in particular for his patient explanations of the contents of [11], [12]. We are obliged to D. Kaledin, D. Kazhdan, and A. Kuznetsov for the useful discussions. This paper was completed when the first author was visiting the J.-V. Poncelet CNRS laboratory at the Independent University of Moscow.

A. B. was partially supported by the NSF grant DMS-0600851. M. F. was partially supported by the RFBR grant 09-01-00242 and the Science Foundation of the SU-HSE awards No.09-08-0008 and 09-09-0009.

2. The case of \(G = \text{SL}(N) \)

2.1. Stacky resolutions and derived equivalences. In this Section we would like to implement the constructions announced in Section 1.10 in the case \(G = \text{SL}(N) \). To do that let us first discuss some preparatory material.

Let \(S \) be an algebraic surface and let \(s_1, \ldots, s_n \) be distinct points on \(S \) such that the formal neighbourhood of \(s_i \) is isomorphic to the formal neighbourhood of 0 in the surface \(\mathbb{A}^2/\Gamma_{k_i} \) for some \(k_i \geq 1 \); note that Artin’s algebraization theorem implies that such an isomorphism exists also etale-locally. Let us also assume that \(\overline{S} \) is smooth away from \(s_1, \ldots, s_n \). Recall that for any \(k \geq 1 \) the surface \(\mathbb{A}^2/\Gamma_k \) possesses canonical minimal resolution \(\pi: \widetilde{\mathbb{A}}^2/\Gamma_k \to \mathbb{A}^2/\Gamma_k \) whose special fiber is a tree of type \(A_{k-1} \) of \(\mathbb{P}^1 \)'s having self-intersection \(-2\). Similarly, we have a stacky resolution \(\widetilde{\mathbb{A}}^2/\Gamma \to \mathbb{A}^2/\Gamma_k \). The existence of the above resolutions implies the existence of a resolution \(\widetilde{S} \to S \) and a stacky resolution \(S \to \overline{S} \) which near every \(s_i \) are etale locally isomorphic to respectively \(\widetilde{\mathbb{A}}^2/\Gamma_k \) and \(\mathbb{A}^2/\Gamma_k \).

For any scheme \(Y \) let us denote by \(D^b\text{Coh}(Y) \) the bounded derived category of coherent sheaves on \(Y \). Recall (cf. [7] and [5]) that we have an equivalence of derived categories

\[
\Psi: D^b\text{Coh}(\mathbb{A}^2/\Gamma_k) \to D^b\text{Coh}(\mathbb{A}^2/\Gamma_k).
\]

This equivalence is given by a kernel which is a sheaf on \(\mathbb{A}^2/\Gamma_k \times \mathbb{A}^2/\Gamma_k \) (and not a complex of sheaves). Thus (by gluing in etale topology) a similar kernel can also be defined on the product \(\overline{S} \times S \) and it will define an equivalence \(D^b\text{Coh}(\overline{S}) \to D^b\text{Coh}(S) \) which we shall again denote by \(\Psi \).

2.2. Recall the setup of [3] 7.1. Following [12] we denote by \(I = \{1, \ldots, k\} \) the set of vertices of the affine cyclic quiver; \(k \) stands for the affine vertex, and \(I_0 = I \setminus \{k\} \). Given \((a_1, \ldots, a_n) \in \mathbb{A}_n^k\) such that

\[
k_1a_1 + \ldots + k_na_n = 0, \tag{2.1}
\]

we consider a \(k \)-tuple \((b_1 = a_1, \ldots, b_{k_1} = a_1, b_{k_1+1} = a_2, \ldots, b_{k_1+k_2} = a_2, \ldots, b_{k_1+\ldots+k_{n-1}} = a_n, b_{k_1+\ldots+k_{n-1}+1} = a_n, b_k = a_n)\). We consider another \(k \)-tuple of complex numbers \(\zeta_i^k \) such that \(\zeta_i^k := b_i - b_{i+1} \) for \(i = 1, \ldots, k \) (for \(i = k \) it is understood that \(i+1 = 1 \)).
Furthermore, we set $I_0 \supset I_0^+ := \{k_1, k_1 + k_2, \ldots, k_1 + \ldots + k_{n-1}\}$, and $I_0^0 := I_0 \setminus I_0^+$. We consider a vector $\zeta_\mathbb{R} \in \mathbb{R}^I$ with coordinates $\zeta_{\mathbb{R},i} = 0$ for $i \in I_0^+$, and $\zeta_{\mathbb{R},i} = 1$ for $j \in I_0^+$, and $\zeta_{\mathbb{R},k} = 1 - n$.

Recall the setup of section 1 of [11]. In this note we are concerned with the cyclic \mathbb{A}_{k-1}-quiver only, so in particular, $\delta = (1, \ldots, 1)$. We consider the GIT quotient $X(\zeta_\mathbb{C},\mathbb{C}) := \{\xi \in M(\delta, 0) : \mu(\xi) = -\zeta_\mathbb{C} \} / \{\zeta(\mathbb{G}_m / \mathbb{C}^*)\}$ (see (1.5) of [11]). It is a partial resolution of the categorical quotient $X(\zeta_\mathbb{C},0) := \{\xi \in M(\delta, 0) : \mu(\xi) = -\zeta_\mathbb{C} \} / (\mathbb{G}_m / \mathbb{C}^*)$. The above surfaces admit the following explicit description: The surface $X(\zeta_\mathbb{C},0)$ is isomorphic to the affine surface given by the equation

$$xy = (z - a_1)^{k_1} \ldots (z - a_n)^{k_n}.$$

Note that when all a_i are equal to 0 we just get the equation $xy = z^n$ which defines a surface isomorphic to \mathbb{A}^2 / Γ_k. The surface $X(\zeta_\mathbb{C},\mathbb{C})$ has the following properties: if all the points a_i are distinct, then $X(\zeta_\mathbb{C},\mathbb{C}) = X(\zeta_\mathbb{C},\mathbb{C})$. On the other hand, if all a_i are equal (and thus they have to be equal to zero by (2.1)) then $X(\zeta_\mathbb{C},\mathbb{C})$ is obtained from \mathbb{A}^2 / Γ_k by blowing down all the exceptional \mathbb{P}^1s except those whose numbers are $k_1, k_1 + k_2, \ldots, k_1 + \ldots + k_{n-1}$. We leave the general case (i.e. the case of general a_i’s) to the reader.

The surface $X(\zeta_\mathbb{C},\mathbb{C})$ (resp. $X(\zeta_\mathbb{C},0)$) is of the type discussed in Section 2.1 and thus it has canonical minimal stacky resolution, which we shall denote by S_{a_1,\ldots,a_n} (resp. S_{a_1,\ldots,a_n}).

If we choose a generic stability condition $\zeta_{\mathbb{R}}$ in the hyperplane $\zeta_{\mathbb{R}} : \delta = 0$, then the corresponding GIT quotient $X(\zeta_{\mathbb{C}},\mathbb{C})$ is smooth; moreover, it is the minimal resolution of singularities of $X(\zeta_{\mathbb{C}},\mathbb{C})$. Recall the compactification $\overline{X}(\zeta_{\mathbb{C}},\mathbb{C})$ introduced in section 3 of [11]. According to Section 2.1 we have the equivalence $\Psi : D^b \text{Coh}(\overline{X}(\zeta_{\mathbb{C}},\mathbb{C})) \rightleftarrows D^b \text{Coh}(S_{a_1,\ldots,a_n})$. Recall the line bundles \mathcal{R}_i, $i \in I$, and their homomorphisms ξ on $\overline{X}(\zeta_{\mathbb{C}},\mathbb{C})$, introduced in sections 1(iii) and 3(i) of [11]. We will denote $\Psi(\mathcal{R}_i)$ by \mathcal{R}_i^\bullet. This is a line bundle on S_{a_1,\ldots,a_n} (this follows from the fact that a similar statement is true for the equivalence $D^b \text{Coh}(\mathbb{A}^2 / \Gamma_k) \rightarrow D^b \text{Coh}(\mathbb{A}^2 / \Gamma_k)$ under which the bundle \mathcal{R}_i goes to the Γ_k-equivariant sheaf on \mathbb{A}^2 corresponding to the structure sheaf of \mathbb{A}^2 on which Γ_k acts by its i-th character).

2.3. We consider the quiver variety $\mathfrak{M}(\zeta_{\mathbb{C}},\mathbb{C})(V,W)$ for the stability condition $\zeta_{\mathbb{C}}$, see section 2 of [12]. We consider a vector $\zeta_{\mathbb{R}} := \zeta_{\mathbb{R}} \pm (\varepsilon, \ldots, \varepsilon) \in \mathbb{R}^I$ for $0 < \varepsilon \ll 1$. Note that it lies in an (open) chamber of the stability conditions, so the corresponding quiver varieties $\mathfrak{M}(\zeta_{\mathbb{C}},\mathbb{C}) = (V,W)$ are smooth. Moreover, since $\zeta_{\mathbb{R}}$ lies in a face adjacent to the chamber of $\zeta_\mathbb{C}$, we have the proper morphism $\pi_{\zeta_{\mathbb{C}},\mathbb{C}} : \mathfrak{M}(\zeta_{\mathbb{C}},\mathbb{C})(V,W) \rightarrow \mathfrak{M}(\zeta_{\mathbb{C}},\mathbb{C})(V,W)$.

The construction of [11] (1.7), 3(ii) associates to any ADHM data $(B,a,b) \in \mathfrak{M}(V,W)$ satisfying $\mu(B,a,b) = \zeta\mathbb{C}$ a complex of vector bundles

$$L(\mathbb{R}^\bullet, V)(-\ell) \xrightarrow{\sigma} E(\mathbb{R}^\bullet, V) \oplus L(\mathbb{R}^\bullet, W) \xrightarrow{\tau} L(\mathbb{R}^\bullet, V)(\ell)$$

on S_{k_1,\ldots,k_n}.

The following proposition is a slight generalization of Proposition 4.1 of [11].

Proposition 2.4. Let $(B,a,b) \in \mu^{-1}(\zeta_{\mathbb{C}})$ and consider the complex (2.2). We consider σ, τ as linear maps on the fiber at a point in S_{k_1,\ldots,k_n}. Then
(1) \((B, a, b)\) is \(\zeta\) -stable if and only if \(\sigma\) is injective possibly except finitely many points, and \(\tau\) is surjective at any point.

(2) \((B, a, b)\) is \(\zeta\)-semistable if and only if \(\sigma\) is injective and \(\tau\) is surjective possibly except finitely many points.

Proof. The proof is parallel to that of Proposition 4.1 of [11], with the use of Lemma 3.2 of [12] in place of Corollary 4.3 of [11]. \(\square\)

2.5.
We consider the Levi subalgebra \(l \subset \mathfrak{s}(k) \subset \mathfrak{s}(k)_{\text{aff}}\) whose set of simple roots is \(I_0\), i.e. \(\{\alpha_1, \ldots, \alpha_{k-1}, \ldots, \alpha_{k+1}, \ldots, \alpha_{k-2}, \ldots, \alpha_{k-1}\}\). We will denote by \(\mathbb{Z}[I_0]\) the root lattice of \(l\). The multiplication by the affine Cartan matrix \(A_{k-1}^{(1)}\) embeds \(\mathbb{Z}[I_0]\) into the weight lattice \(P_{\text{aff}}\) of \(\mathfrak{s}(k)_{\text{aff}}\) spanned by the fundamental weights \(\omega_0, \ldots, \omega_{k-1}\), so we will identify \(\mathbb{Z}[I_0]\) with a sublattice of \(P_{\text{aff}}\). The inclusion \(l \subset \mathfrak{s}(k)\) also gives rise to the embedding \(\mathbb{Z}[I_0] \subset P\) into the weight lattice of \(\mathfrak{s}(k)\).

We have \(w = \dim W = (w_1, \ldots, w_k), \ v = \dim V = (v_1, \ldots, v_k)\). We set \(N := w_1 + \ldots + w_k\). Recall the setup of [3] 7.3. We associate to the pair \((v, w)\) the \(\mathfrak{s}(k)_{\text{aff}}\)-weight \(w' = \sum_{i=1}^k w_i \omega_i := \sum_{i=1}^k w_i \omega_i - \sum_{i=1}^k v_i \alpha_i\). In this note we restrict ourselves to the pairs \((v, w)\) satisfying the condition

\[
\tag{2.3}
w' \in N \omega_0 + \mathbb{Z}[I_0]
\]

The geometric meaning of this condition is as follows. The Proposition 2.4 implies that \(\mathcal{M}_{\text{reg}}^{(k)}(V, W)\) is the moduli space of vector bundles on the stack \(\mathfrak{S}_{k_1, \ldots, k_n}\) trivialized at infinity. The condition (2.3) guaranties that these vector bundles have trivial determinant, i.e. reduce to \(\text{SL}(N)\).

In effect, the determinant in question is a line bundle on \(\mathfrak{S}_{k_1, \ldots, k_n}\) trivialized at infinity. So the determinant is trivial iff its restriction to the open substack \(S_{k_1, \ldots, k_n}\) is trivial, i.e. is a zero element of \(\text{Pic}(S_{k_1, \ldots, k_n})\). Recall that \(K(S_{k_1, \ldots, k_n}) \simeq P_{\text{aff}}, \ R_i \rightarrow \omega_i\), and we have the homomorphism \(\text{det} : K(S_{k_1, \ldots, k_n}) \rightarrow \text{Pic}(S_{k_1, \ldots, k_n})\). The class in \(K(S_{k_1, \ldots, k_n}) \simeq P_{\text{aff}}\) of any vector bundle in \(\mathcal{M}_{\text{reg}}^{(k)}(V, W)\) is given by \(w' \in P_{\text{aff}}\). So the triviality of its determinant is a consequence of the following lemma.

Lemma 2.6. There is a canonical isomorphism \(\text{Pic}(S_{k_1, \ldots, k_n}) \simeq P/\mathbb{Z}[I_0]\) such that the homomorphism \(\text{det} : K(S_{k_1, \ldots, k_n}) \rightarrow \text{Pic}(S_{k_1, \ldots, k_n})\) identifies with the composition of the projection \(P_{\text{aff}} \rightarrow P, \ \omega_i \rightarrow \omega_i - \delta_0 \omega_0, \) and the projection \(P \rightarrow P/\mathbb{Z}[I_0]\).

Proof. Let \(\bar{X}_{(\zeta, \zeta^*)}\) stand for the minimal resolution of the surface \(X_{(\zeta, \zeta^*)}\). Let \(X_{(\zeta, \zeta^*)}\) stand for the open subset of \(X_{(\zeta, \zeta^*)}\) obtained by removing all the singular points. The projection \(\bar{X}_{(\zeta, \zeta^*)} \rightarrow X_{(\zeta, \zeta^*)}\) identifies \(X_{(\zeta, \zeta^*)}\) with the open subset of \(\bar{X}_{(\zeta, \zeta^*)}\) obtained by removing the components \(\{E_i, \ i \in I_0\}\) of the exceptional divisor. Since any line bundle on \(X_{(\zeta, \zeta^*)}\) extends uniquely to a line bundle on \(S_{k_1, \ldots, k_n}\), we obtain the restriction to the open subset homomorphism \(\text{Pic}(\bar{X}_{(\zeta, \zeta^*)}) \rightarrow \text{Pic}(X_{(\zeta, \zeta^*)}) = \text{Pic}(S_{k_1, \ldots, k_n})\). Clearly, the kernel of this restriction homomorphism is spanned by the classes of the line bundles \(\langle [\mathcal{O}(E_i)], \ i \in I_0\rangle\) in \(\text{Pic}(\bar{X}_{(\zeta, \zeta^*)})\).
Now recall that we have a canonical isomorphism \(\text{Pic}(\tilde{X}_{(\zeta, \nu)}) \cong P \) such that the composition \(\text{det} : P_{\text{aff}} = K(\tilde{X}_{(\zeta, \nu)}) \to \text{Pic}(\tilde{X}_{(\zeta, \nu)}) \cong P \) identifies with the projection \(p : P_{\text{aff}} \to P, \omega_i \mapsto \omega_i - \delta_{i0} \omega_0 \). Moreover, the class \([0(E_i)] \in \text{Pic}(\tilde{X}_{(\zeta, \nu)})\) gets identified with \(p(\alpha_i) \). This follows by embedding \(\tilde{X}_{(\zeta, \nu)} \) as a slice into Grothendieck simultaneous resolution \(\mathfrak{S}_k \).

This completes the proof of the lemma.

\(\square \)

2.7. Our next goal is to encode the quiver data \((v, w)\) by the weight data of \(\mathfrak{sl}(N)_{\text{aff}} \).

From now on we assume that \(w \) corresponds to an \(N\)-dimensional representation of \(\Gamma_k \) with trivial determinant, i.e. a homomorphism \(\Gamma_k \to \text{SL}(N) \). Then the dominant weight \(w_1 \omega_1 + \ldots + w_{k-1} \omega_{k-1} \) of \(\mathfrak{sl}(k) \) is actually a weight of \(\text{PSL}(k) \), and can be written uniquely as a generalized Young diagram \(\tau = (\tau_1 \geq \ldots \geq \tau_k) \) such that \(\tau_1 - \tau_{i+1} = w_i \) for any \(1 \leq i < k-1 \), and \(\tau_1 - \tau_k \leq N \), and \(\tau_1 + \ldots + \tau_k = 0 \). We write \(\tau = \tau^1 \), and \(\tau = \tau^1 \).

Here is an explicit construction of the transposition operation on the generalized Young diagrams. If \(\tau \) consists of all zeroes, then so does \(\tau \). Otherwise we assume \(\mu_r > 0 \geq \mu_{r+1} \) for some \(0 < r < N \). Then we have an ordinary Young diagram \(\tau' := (k + \mu_r + 1 \geq k + \mu_{r+2} \geq \ldots \geq k + \mu_1 \geq \ldots \geq \mu_r) \) formed by positive integers. We denote the ordinary transposition \(\tau' \) by \(\tau' = (\tau'_1 \geq \ldots \geq \tau'_k) \), and finally we set \(\tau = \tau^1 \). In other words,

\[
\tau = \tau^1 = (r^{\mu_r}, (r - 1)^{\mu_{r-1} - \mu_r}, \ldots, 1^{\mu_1 - \mu_2}, 0^{k+\mu_N - \mu_1}, (-1)^{\mu_N - 1 - \mu_N}, \ldots, (r - N)^{-\mu_{r+1}}) \quad (2.4)
\]

Furthermore, we write down the weight \(w' = \sum_{i=1}^k w_i \omega_i - \sum_{i=1}^k v_i \alpha_i \) as a sequence of integers \((\sigma_1, \ldots, \sigma_k) \). The condition \(\mathfrak{m}_{\text{aff}}(V, W) \neq 0 \) implies \(\sigma_i \geq \sigma_{i+1} \) for \(i \in I_0 \), and \(\sigma_{k_0 + \ldots + k_{p-1} + 1 - \sigma_{k_0 + \ldots + k_p} \leq N} \) for any \(0 < p \leq n \), where we put for convenience \(k_0 = 0 \). The condition (2.3) implies that \(\sigma_{k_1 + \ldots + k_{p-1} + 1} + \ldots + \sigma_{k_1 + \ldots + k_p} = 0 \) for any \(0 < p \leq n \). Thus the sequence \((\sigma_{k_1 + \ldots + k_{p-1} + 1}, \ldots, \sigma_{k_1 + \ldots + k_p}) \) is a generalized Young diagram to be denoted by \(\sigma^p \). The transposed generalized Young diagram \(\tilde{\lambda}^p \) corresponds to the same named level \(k_p \) dominant \(\mathfrak{sl}(N) \)-weight \(\tilde{\lambda}^p \in \Lambda^+_{k_p}(\mathfrak{sl}(N)) \).

Recall that the affine Weyl group \(W_{\text{aff}} \) acts on the set of level \(N \) weights of \(\mathfrak{sl}(k) \). If we write down these weights as the sequences \((\chi_1, \ldots, \chi_k) \) then the action of \(W_{\text{aff}} \) is generated by permutations of \(\chi_i \)'s and the operations which only change \(\chi_i, \chi_j \) for some pair \(i, j \in I \); namely, \(\chi_i \mapsto \chi_i + N, \chi_j \mapsto \chi_j - N \).

Lemma 2.8. The sequence \((\sigma_1, \ldots, \sigma_k) \) is \(W_{\text{aff}} \)-conjugate to \(\tau^1, \ldots, \tau^n \).

Proof. To simplify the notation we assume that \(n = 2 \); the general case is not much different. Let \(\tilde{\lambda}^1 = (\lambda_1^1 \geq \ldots \geq \lambda_N^1) \), and \(\tilde{\lambda}^2 = (\lambda_1^2 \geq \ldots \geq \lambda_N^2) \). We set \(\tilde{\lambda} = (\lambda_1 \geq \ldots \geq \lambda_N) \)

where \(\lambda_i := \lambda_i^1 + \lambda_i^2 \). We assume \(\lambda_r^1 > 0 \geq \lambda_{r+1}^1 \) for some \(0 < r_1 < N \), and \(\lambda_r^2 \geq 0 \geq \lambda_{r+1}^2 \) for some \(0 < r_2 < N \). If \(r_1 = r_2 \), then the formula (2.4) makes it clear that
the sequence \((\sigma_1, \ldots, \sigma_k)\) being a concatenation of the sequences \((\sigma_1, \ldots, \sigma_{k_1}) = \int(1)\) and
\((\sigma_{k_1+1}, \ldots, \sigma_k) = \int(2)\) differs by a permutation from the sequence \((\int(1), \int(2))\).

Otherwise we assume \(r_1 > r_2\), and \(\lambda_r > 0 \geq \lambda_{r+1}\) for some \(r_1 \geq r \geq r_2\). Once again, to simplify the exposition, let us assume that \(r_1 > r > r_2\). According to the formula (2.4), if we reorder the concatenation of \((\int(1), \int(2))\) to obtain a nonincreasing sequence, we get

\[
(r_1^{\lambda_1(1)}, \ldots, r_i^{\lambda_i(1)} - \lambda_{r+1}, \ldots, r_2^{\lambda_2(2)} - \lambda_{r_2+1} + \lambda_{r_2+1}', \ldots, (r_1 - N)^{-\lambda_{r_1+1} + \lambda_{r_1+1}'} - \lambda_{r_1+1}', \ldots),
\]

On the other hand, the sequence \((\int(1), \int(2))\) reads

\[
(\nu, \lambda_{r_1}^{(1)} + \lambda_{r_1+1} - \lambda_{r_1+1}, \ldots, \nu - \lambda_{r_1+1}, \ldots),
\]

Now it is immediate to check that for any residue \(h\) modulo \(N\) its multiplicity in the latter sequence is the sum of multiplicities of the same residues in the former sequence. This means that the former sequence is \(W_{\text{aff}}\)-conjugate to the latter one. The lemma is proved.

\[\square\]

2.9. Birational convolution morphism. Recall that we have a proper morphism \(\pi_{0,\zeta} : M_{\mu,\zeta}(V, W) \to M_{\mu,0}(V, W)\) introduced in [12] 3.2. Since \(w'\) is not necessarily dominant weight of \(sl(k)\), the open stratum \(M_{\mu,0}(V, W)\) may be empty. However, replacing \(v\) by \(v' = (v'_1, \ldots, v'_k)\) so that \(w'' = \sum_{i=1}^{k} v'_i \omega_i = \sum_{i=1}^{k} v'_i \omega_i - \sum_{i=1}^{k} v'_i \alpha_i\) is dominant and \(W_{\text{aff}}\)-conjugate to \(w'\), we can identify \(M_{\mu,0}(V, W)\) with \(M_{\mu,0}(V', W)\). Moreover, in this case the open subset \(M_{\mu,0}(V', W)\) is not empty, and the morphism \(\pi_{0,\zeta} : M_{\mu,0}(V, W) \to M_{\mu,0}(V', W)\) is birational. Recall that for \(C = 0\), in section 7 of [3] we identified \(M_{\mu,0}(V', W)\) with the Uhlenbeck space \(U_{\lambda, (\mu,\zeta)}(A^2/T_k)\) for certain level \(k\) dominant \(sl(N)\) weights \(\lambda, \mu\). In the notations of current Section 2.7 we have \(\mu = (k, \zeta, \frac{-1}{\zeta} (2d + (\zeta, \bar{\zeta}) - (\lambda, \bar{\lambda})))\), \(\lambda = (k, \bar{\lambda}, 0)\). Here \(d = \sum_{i=1}^{k} v'_i\), and \(\bar{\lambda} = \sum_{p=1}^{n} \lambda^{(p)}\) according to Lemma 2.8.

For \(1 \leq p \leq n\) we introduce a level \(k_p\) dominant \(sl(N)\) weight \(\lambda^{(p)} = (k_p, \lambda^{(p)}), 0\). For arbitrary \(\zeta\) we define \(\mathbb{U}_{\lambda,\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n})\) as \(M_{\mu,0}(\zeta,\zeta)(V, W)\). We define the convolution morphism \(\varpi : U_{\mu}(\lambda,\mu) \to U_{\lambda}(\lambda,\mu)\) as \(\pi_{0,\zeta} : M_{\mu,0}(V, W) \to M_{\mu,0}(V', W)\). We will mostly use the particular case \(\varpi : U_{\lambda,0}(\lambda,\mu) \to U_{\lambda,0}(\lambda,\mu)(S_{k_1,\ldots,k_n}) = U_{\lambda,0}(\lambda,\mu)(A^2/T_k)\) defined as \(\pi_{0,\zeta} : M_{\mu,0}(V, W) \to M_{\mu,0}(V', W)\) for \(\zeta = (0, \ldots, 0)\).

2.10. Tensor product. Recall the notations of Section 2.3. Now the construction of section 5(i) of [11] gives rise to a morphism \(\eta^{\pm}\) from \(M_{\mu,0}(V, W)\) to the moduli space of certain perverse coherent sheaves on \(S_{k_1,\ldots,k_n}\) trivialized at \(\ell_{\infty}\). It follows from Proposition 2.4(1) (“only if” part) that the image of \(\eta^+\) consists of torsion free sheaves, which
implies that the image of η^+ consists of the perverse sheaves which are Serre-dual to the torsion free sheaves. We will denote the connected component of the moduli stack of torsion free sheaves (resp. of Serre-dual of torsion free sheaves) on $S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}$ birationally mapping to $U^{\lambda(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$ by $\mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$ (resp. by $\mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$).

Lemma 2.11. The morphisms $\eta^- : \mathcal{M}_{(\zeta^\bullet,\zeta^\ast)}(V,W) \to \mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$, $\eta^+ : \mathcal{M}_{(\zeta^\bullet,\zeta^\ast)}(V,W) \to \mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$ are isomorphisms.

Proof. Follows from Proposition 2.4(1) by the argument of section 5 of [11]. \Box

We consider the locally closed subvariety $\mathcal{M}_{(\zeta^\bullet,\zeta^\ast)}(V,W) \subset \mu^{-1}(\zeta^\bullet) \subset \mathcal{M}(V,W)$ formed by all the ζ^\ast-semistable modules. Let us denote by $\text{Perv}_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$ the moduli stack of perverse coherent sheaves on $S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}$ trivialized at ℓ_∞ and having the same numerical invariants as the torsion free sheaves in $\mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$. The construction of section 5(i) of [11] gives rise to a morphism $\eta^\ast : \mathcal{M}_{(\zeta^\bullet,\zeta^\ast)}(V,W)/GL_V$ to $\text{Perv}_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$.

Lemma 2.12. $\eta^\ast : \mathcal{M}_{\ast}(V,W)/GL_V \to \text{Perv}_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$ is an isomorphism.

Proof. Follows from Proposition 2.4(2) by the argument of section 5 of [11]. \Box

It follows from Lemma 2.12 and Lemma 2.11 that we have a projective morphism $\pi_{\zeta^\bullet,\zeta^\ast} : \mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}) \to U_{\SL(N),\mu}^{\lambda(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$ (resp. $\pi_{\zeta^\bullet,\zeta^\ast} : \mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}) \to U_{\SL(N),\mu}^{\lambda(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$).

Lemma 2.13. If E is a torsion free coherent sheaf on $S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}$, and E' is the Serre dual of a torsion free coherent sheaf on $S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}$, then $E \otimes E'$ is a perverse coherent sheaf on $S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}$.

Proof. Clearly, $H^1(E \otimes E')$ vanishes, $H^1(E \otimes E')$ is a torsion sheaf supported at finitely many points, and $H^1(E \otimes E')$ is torsion free. The same is true for the Serre dual sheaf of $E \otimes E'$ (being a tensor product of the same type). \Box

Thus we obtain a morphism $\mathcal{G}ies_{\mu}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n}) \times \mathcal{G}ies_{\mu'}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$ to $\text{Perv}_{\mu \otimes \mu'}^{(1),\ldots,\lambda(n)}(S_{k_1,\ldots,k_n}^{a_1,\ldots,a_n})$. Here we understand $\overline{\mu}$ (resp. $\overline{\mu'}$) as a homomorphism $\Gamma_k \to \SL(N)$ (resp. $\Gamma_k \to \SL(N')$), and $\overline{\mu} \otimes \overline{\mu'}$ as the tensor product homomorphism $\Gamma_k \to \SL(NN')$; similarly for $\overline{\lambda}$'s. Furthermore, we set $\lambda(p) \otimes' \lambda(p) := (k,\overline{\lambda(p)} \otimes \overline{\lambda(p)},0)$, and for $\mu := (k,\overline{\mu},m)$, $\mu' := (k,\overline{\mu'},m')$ we set $\mu \otimes \mu' := (k,\overline{\mu} \otimes \overline{\mu'},m)$ where

$$m := mN' + m'N + \frac{1}{2k} \left[N'(\overline{\mu},\overline{\mu}') - N'(\sum_{p=1}^n \overline{\lambda(p)},\sum_{p=1}^n \overline{\lambda(p)}) + N(\overline{\mu},\overline{\mu}') -
$$
\[
-N\left(\sum_{p=1}^{n} \lambda(p), \sum_{p=1}^{n} \lambda(p)^{\prime}\right) - (\pi \otimes \pi^{'}, \pi \otimes \pi^{'}) + \left(\sum_{p=1}^{n} \lambda(p) \otimes \lambda(p)^{\prime}, \sum_{p=1}^{n} \lambda(p) \otimes \lambda(p)^{\prime}\right) \right].
\]

Composing this morphism with the further projection \(\text{Prym}_{\mu \otimes \mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}}) \to \mathcal{U}_{\text{SL}(N'N'),\mu \otimes \mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}})\) we obtain the morphism \(\tau : \text{Higgs}_{\mu}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}}) \times \mathcal{G} \cdot \text{Higgs}_{\mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}}) \to \mathcal{U}_{\text{SL}(N'N'),\mu \otimes \mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}})\).

Proposition 2.14. The morphism \(\tau\) factors through \(\bar{\tau} : \mathcal{U}_{\text{SL}(N),\mu}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}}) \times \mathcal{U}_{\text{SL}(N'),\mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}}) \to \mathcal{U}_{\text{SL}(N'N'),\mu \otimes \mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}})\).

Proof. Let us denote \(\text{Higgs}_{\mu}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}}) \times \mathcal{G} \cdot \text{Higgs}_{\mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}})\) by \(X\), and \(\mathcal{U}_{\text{SL}(N),\mu}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}}) \times \mathcal{U}_{\text{SL}(N'),\mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}})\) by \(Y\), and \(\mathcal{U}_{\text{SL}(N'N'),\mu \otimes \mu^{'}}^{\lambda(1) \otimes \lambda(n) \otimes \lambda(n) \otimes \lambda(n)}(S_{k_{1},...,k_{n}})\) by \(Z\) for short. We have to prove that the morphism \(\tau : X \to Z\) factors through the morphism \(\pi := \pi_{\mu \otimes \mu^{'}} \times \pi_{\mu \otimes \mu^{'}} : X \to Y\), and a morphism \(\bar{\tau} : Y \to Z\). It is easy to see that \(\tau\) contracts the fibers of \(\pi\), that is for any \(y \in Y\) we have \(\tau(\pi^{-1}(y)) = z\) for a certain point \(z \in Z\). It means that the image \(T\) of \(\pi \times \tau : X \to Y \times Z\) projects onto \(Z\) bijectively. Furthermore, \(T\) is a closed subvariety of \(Y \times Z\) since both \(\pi\) and \(\tau\) are proper. Finally, \(Y\) is normal by a theorem of Crawley-Boevey. This implies that the projection \(T \to Y\) is an isomorphism of algebraic varieties. Hence \(T\) is the graph of a morphism \(Y \to Z\). This is the desired morphism \(\pi\).

This argument was explained to us by A. Kuznetsov. \(\square\)

3. Tannakian Approach

3.1. Given an almost simply simply connected group \(G\), and the weights \(\overline{\mu} \in \Lambda^+_{k_{0}}, \overline{\lambda}^{(i)} \in \Lambda^+_{k_{i}}, 1 \leq i \leq n\), and a positive integer \(d\), we consider the moduli space \(\text{Bun}_{G,\overline{\pi}}^{\overline{\lambda}(1),...,\overline{\lambda}(n),d/k}(S_{k_{1},...,k_{n}})\) introduced in Section 1.9. It classifies the \(G\)-bundles on the stack \(S_{k_{1},...,k_{n}}\) of second Chern class \(d/k\), trivialized at infinity such that the class of the fiber at infinity is given by \(\overline{\lambda}\), while the class of the fiber at \(s_{i}\) is given by \(\overline{\lambda}^{(i)}\).

Conjecture 3.2. \(\text{Bun}_{G,\overline{\pi}}^{\overline{\lambda}(1),...,\overline{\lambda}(n),d/k}(S_{k_{1},...,k_{n}})\) is connected (possibly empty).

Following the numerology of Section 2.9, we introduce the weights \(\overline{\lambda}^{(1)} := (k_{1},\overline{\lambda}^{(1)}), 0) \in \Lambda^+_{\text{aff},k_{1}}\) and \(\mu := (k,\overline{\mu},-\frac{1}{2k}(2d+(\overline{\mu},\mu)-(\overline{\lambda},\overline{\lambda}))) \in \Lambda^+_{\text{aff},k_{0}}\). We also set \(\lambda := (k,\overline{\lambda},0)\). Now we recompute \(\text{Bun}_{G,\overline{\pi}}^{\overline{\lambda}(1),...,\overline{\lambda}(n),d/k}(S_{k_{1},...,k_{n}})\) by \(\text{Bun}_{G,\overline{\mu}}^{\lambda(1),...,\lambda(n)}(S_{k_{1},...,k_{n}})\).

Given a representation \(\rho : G \to \text{SL}(W_{\rho})\) we have a morphism \(\rho_{\ast} : \text{Bun}_{G,\mu}^{\lambda(1),...,\lambda(n)}(S_{k_{1},...,k_{n}}) \to \text{Bun}_{\text{SL}(W_{\rho}),\rho_{\ast}}^{\rho_{\ast}\lambda(1),...,\rho_{\ast}\lambda(n)}(S_{k_{1},...,k_{n}})\) of \(S_{k_{1},...,k_{n}}\).

Here \(\lambda^{(i)} := (k_{p},\overline{\lambda}^{(i)}), 0) \otimes \rho_{\ast}(\lambda) \in (k_{p},\overline{\lambda}^{(i)}, 0) \otimes (k_{p},\rho_{\ast}(\overline{\lambda}^{(i)}), 0); \mu = (k,\overline{\mu},m), \rho_{\ast}(\mu) := (k,\overline{\mu},\rho_{\ast}(m), m)\), and \(\rho_{\ast}\) is the Dynkin index of the representation \(\rho\) (we stick to the notation of [2], 6.1).

We define \(\text{Bun}_{G,\mu}^{\lambda(1),...,\lambda(n)}(S_{k_{1},...,k_{n}})\) as the closure of the image of \(\prod_{\rho} \rho_{\ast}(\text{Bun}_{G,\mu}^{\lambda(1),...,\lambda(n)}(S_{k_{1},...,k_{n}}))\) inside \(\prod_{\rho} \text{Bun}_{\text{SL}(W_{\rho}),\rho_{\ast}}^{\rho_{\ast}\lambda(1),...,\rho_{\ast}\lambda(n)}(S_{k_{1},...,k_{n}})\). For any \(\rho\) we have an evident projection morphism.
Proposition 3.3. Assume that any representation of G is a direct summand of a tensor power of ϕ (this is equivalent to asking that ϕ is faithful). Then $g_s : \mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}) \to \mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ is a closed embedding. In particular, $\mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ is of finite type.

Proof. Let $x \in \mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ be a point in the closure of the locally closed subvariety $g_s(Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}))$. There is an affine pointed curve $(C,c) \subset \mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ such that $(C - c) \subset g_s(Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}))$, and $c = x$.

Let $\varsigma : G \to SL(W_c)$ be another representation of G. We choose a projection $\varsigma' : \phi^{\otimes m} \to \varsigma$. According to Proposition 2.14, we consider $\bar{\tau}(C) \subset \mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$, and then $x = \bar{\tau}(C) \subset \mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$. Since $x = \bar{\tau}(C - c) \subset Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$, we have lifted $x = c$ to a point of $\mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$.

It remains to prove that such a lift is unique. Let $\varsigma'' : \phi^{\otimes m'} \to \varsigma$ be another projection. Then $\varsigma''(C - c) \subset Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$. Since $\mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ is separated, it follows that $x = \varsigma''(C - c) = \varsigma''(C)$.

This completes the proof of the proposition.

3.4. Convolution morphism. The collection of convolution morphisms $\mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}) \to \mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ (see Section 2.9) gives rise to the convolution morphism $\varpi : \mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}) \to \mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$.

Lemma 3.5. The morphism $\varpi : \mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}) \to \mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ is birational.

Proof. It suffices to check that ϖ is an isomorphism when restricted to the open subset $Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}) \subset \mathcal{U}_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$. For any representation $\varsigma : G \to SL(W_c)$ and the corresponding closed embedding $s_{\varsigma} : Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}) \subset Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ we have $s_{\varsigma}(Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})) \subset Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$. Any $\mathcal{F} \in Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ has a unique preimage \mathcal{F}' under the convolution morphism $\mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n}) \to \mathcal{U}_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$, to be denoted \mathcal{F}'; moreover, $\mathcal{F}' \in Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$ since the 0-stability implies the $\varsigma_{\mathcal{F}}$-stability. Clearly, if \mathcal{F} lies in the image $s_{\varsigma}(Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})) \subset Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$, then \mathcal{F}' lies in the image $s_{\varsigma}(Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})) \subset Bun_{SL(W_c),\phi\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$. Thus ϖ is an isomorphism when restricted to the open subset $Bun_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})$.
3.6. **Main conjecture.** We have a proper surjective morphism \(\varpi : U_{G,\mu}^{(\lambda_1,\ldots,\lambda_n)}(S_{k_1,\ldots,k_n}) \to U_{G,\mu}^{\lambda}(k^2/\Gamma_k) \), and we are interested in the multiplicities in \(\varpi_* IC(U_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})) \). For \(\mu \leq \nu \leq \lambda \) we will denote the multiplicity of \(IC(U_{G,\mu}^{\nu}(k^2/\Gamma_k)) \) in \(\varpi_* IC(U_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})) \) by \(M^{\lambda_1,\ldots,\lambda_n}_{\nu,\mu} \).

Conjecture 3.7.

a) \(\varpi \) is semismall, and hence \(M^{\lambda_1,\ldots,\lambda_n}_{\nu,\mu} \) is just a vector space in degree zero.

b) \(M^{\lambda_1,\ldots,\lambda_n}_{\nu,\mu} \) is independent of \(\mu \) and equals the multiplicity of the \(\Gamma_{\text{aff}} \)-module \(L(\nu) \) in the tensor product \(L(\lambda_1) \otimes \cdots \otimes L(\lambda_n) \).

Remark 3.8. The direct image \(\varpi_* IC(U_{G,\mu}^{\lambda_1,\ldots,\lambda_n}(S_{k_1,\ldots,k_n})) \) is not isomorphic to the direct sum \(\bigoplus_{\mu} M^{\lambda_1,\ldots,\lambda_n}_{\nu,\mu} \otimes IC(U_{G,\mu}^{\nu}(k^2/\Gamma_k)) \): it contains the IC sheaves of other strata of \(U_{G,\mu}^{\nu}(k^2/\Gamma_k) \) with nonzero multiplicities. This observation is due to H. Nakajima [12].

The following Proposition is essentially proved in [12].

Proposition 3.9. Conjecture 3.7 for \(G = \text{SL}(N) \) holds true.

Proof. By definition, the desired multiplicity \(M^{\lambda_1,\ldots,\lambda_n}_{\nu,\mu} \) can be computed on the quiver varieties, in the particular case \(\zeta^0_C = (0,\ldots,0) \). It is computed in Theorem 5.15 (equation (5.16)) of [12] under the name \(V_{\nu',0}^{0,0} \). Note that we are interested in the particular case \(\mu = \emptyset = \lambda \), \(\nu^0 = \nu \), thereof (we apologize for the conflicting roles of \(\lambda,\mu \) in \(\text{loc. cit.} \) and in the present paper). We set \(d = v_1 + \cdots + v_k, \ d' = v'_1 + \cdots + v'_k \). Finally, \(\nu \) is associated to the pair \((\nu',\nu^0) \) as in [3] 7.3, and \(\nu = \left(k,\nu,\frac{1}{k}\left[2d'-2d-(\nu',\nu)+(\lambda^1 + \cdots + \lambda^m)\right]\right) \).

Furthermore, in the Remark 5.17.3 of [12] the multiplicity \(V_{\nu',0}^{0,0} \) is identified via I. Frenkel’s level-rank duality with the multiplicity of the \(\Gamma_{\text{aff}} \)-module \(L(\nu) \) in the tensor product \(L(\lambda^{(1)}) \otimes \cdots \otimes L(\lambda^{(n)}) \).

3.10. **Digression on the Beilinson-Drinfeld Grassmannian.** Let \(C \) be a smooth algebraic curve and let \(c \) be a point of \(C \). It is well-known that a choice of formal parameter at \(c \) gives rise to an identification of \(\text{Gr}_G \) with the moduli space of \(G \)-bundles on \(C \) endowed with a trivialization away from \(c \). Similarly, for any \(n \geq 1 \) one can introduce the **Beilinson-Drinfeld Grassmannian** \(\text{Gr}_{C,G,n} \) as the moduli space of the following data:

1) An ordered collection of points \((c_1,\ldots,c_n) \in C^n \);
2) A \(G \)-bundle \(\mathcal{F} \) on \(C \) trivialized away from \((c_1,\ldots,c_n) \).

We have an obvious map \(p_n : \text{Gr}_{C,G,n} \to C^n \) sending the above data to \((c_1,\ldots,c_n) \). When all the points \(c_i \) are distinct, the fiber \(p_n^{-1}(c_1,\ldots,c_n) \) is non-canonically isomorphic to \(\text{Gr}_G^n \). When all the points coincide, the corresponding fiber is isomorphic to just one copy of \(\text{Gr}_G^n \). For any \(\lambda_1,\ldots,\lambda_n \in \Lambda^+ \) one can define the closed subvariety \(\overline{\text{Gr}}_{C,G}^{\lambda_1,\ldots,\lambda_n} \)
in $\text{Gr}_{C,G,n}$ such that for any collection (p_1, \ldots, p_n) of distinct points of C the intersection $p_n^{-1}(c_1, \ldots, c_n) \cap \overline{\text{Gr}}_{\lambda_1, \ldots, \lambda_n}$ is isomorphic to $\text{Gr}_{\lambda_1} \times \ldots \times \text{Gr}_{\lambda_n}$ and the intersection $p_n^{-1}(c, \ldots, c) \cap \overline{\text{Gr}}_{\lambda_1, \ldots, \lambda_n}$ is isomorphic to $\text{Gr}_{\lambda_1 + \ldots + \lambda_n}$.

Similarly, given C and n as above one defines the scheme $\overline{\text{Gr}}_{G,C,n}$ classifying the following data:
1) An element $(c_1, \ldots, c_n) \in C^n$.
2) An n-tuple $(\mathcal{F}_1, \ldots, \mathcal{F}_n)$ of G-bundles on C; we also let \mathcal{F}_0 denote the trivial G-bundle on C.
3) An isomorphism κ_i between $\mathcal{F}_{i-1}|_{C \setminus \{c_i\}}$ and $\mathcal{F}_i|_{C \setminus \{c_i\}}$ for each $i = 1, \ldots, n$.

We denote by \tilde{p}_n the natural map from $\overline{\text{Gr}}_{C,G,n}$ to C^n. Note that from 3) one gets a trivialization of \mathcal{F}_n away from (c_1, \ldots, c_n). Thus we have the natural map $\overline{\text{Gr}}_{G,C,n} \rightarrow \text{Gr}_{C,G,n}$. This map is proper and it is an isomorphism on the open subset where all the points c_i are distinct. On the other hand, the morphism $\tilde{p}_n^{-1}(c, \ldots, c) \rightarrow \text{Gr}_{C,G,n}$ is isomorphic to the morphism $\overline{\text{Gr}}_{G,\lambda_1, \ldots, \lambda_n} \rightarrow \text{Gr}_G$. For $\lambda_1, \ldots, \lambda_n$ as above we denote by $\overline{\text{Gr}}_{G,\lambda_1, \ldots, \lambda_n}$ the closed subset of $\overline{\text{Gr}}_{G,C,n}$ given by the condition that each κ_i lies in $\overline{\text{Gr}}_{G,\lambda}$. Then the intersection $\tilde{p}_n^{-1}(c, \ldots, c) \cap \overline{\text{Gr}}_{G,\lambda_1, \ldots, \lambda_n}$ is isomorphic to $\overline{\text{Gr}}_{G,\lambda_1} \times \ldots \times \overline{\text{Gr}}_{G,\lambda_n}$.

3.11. Beilinson-Drinfeld Grassmannian for G_{aff}

Our next task will be to define an analog of (some pieces) of the Beilinson-Drinfeld Grassmannian for G_{aff} in the case when $C = \mathbb{A}^1$. The idea is that as $(a_1, \ldots, a_n) \in \mathbb{A}^{n-1}$ varies, we will organize $\mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n}))$ (resp. $\mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n}))$) into a family $\mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n}))$ (resp. $\mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n}))$) over $X = \mathbb{A}^{n-1}$ (though there is no family of smooth 2-dimensional stacks over X). We will also construct a proper birational morphism $\varpi : \mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n})) \rightarrow \mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n}))$ specializing to the morphisms ϖ of Section 3.4 for the particular values of (a_1, \ldots, a_n).

In case $G = \text{SL}(N)$, we define $\mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n}))$ (resp. $\mathcal{U}_{G,\mu}^{(1)}(\lambda_{\mathbb{A}}(\mathcal{S}_{k_1, \ldots, k_n}))$) as the families of quiver varieties $\mathcal{M}_{G,\mu}(V, W)$ (resp. $\mathcal{M}_{G,\mu}(V, W)$) over the variety X of moment levels ζ_V (recall that ζ_V is reconstructed from (a_1, \ldots, a_n) by the beginning of Section 2.2), see [12] between Lemma 5.12 and Remark 5.13.

For general G we repeat the procedure of Section 3.1. We only have to define the morphism $\tilde{\tau} : \mathcal{U}_{\text{SL}(N),\mu}^{(1)}(\mathcal{S}_{k_1, \ldots, k_n}) \times \mathcal{U}_{\text{SL}(N'),\mu'}^{(1)}(\mathcal{S}_{k_1, \ldots, k_n}) \rightarrow \mathcal{U}_{\text{SL}(NN'),\mu \odot \mu'}^{(1)}(\mathcal{S}_{k_1, \ldots, k_n})$, that is to prove a relative analogue of Proposition 2.14.

To this end we consider the resolution $\mathcal{M}_{G,\mu}(V, W) \rightarrow \mathcal{M}_{G,\delta}(V, W) \rightarrow \mathcal{M}_{G,\delta}(V, W)$, see [12] between Lemma 5.12 and Remark 5.13. Here δ_{μ} is (chosen and fixed) generic in the hyperplane $\zeta_{G,\mu} : \mathcal{M}_{G,\mu}(V, W)$, and $\zeta_{G,\mu}$ is in the chamber containing $\zeta_{G,\mu}$ in its closure with $\zeta_{G,\mu} : \mathcal{M}_{G,\mu}(V, W)$, see [12] between Lemma 5.12 and Remark 5.13. Here δ_{μ} is (chosen and fixed) generic in the hyperplane $\zeta_{G,\mu} : \mathcal{M}_{G,\mu}(V, W)$, and $\zeta_{G,\mu}$ is in the chamber containing $\zeta_{G,\mu}$ in its closure with $\zeta_{G,\mu} : \mathcal{M}_{G,\mu}(V, W)$, see [12] between Lemma 5.12 and Remark 5.13.
is a family \(q \) different from the fiber \(q \) of Section 3.11. This is nothing else than the partial resolution \(S \) of \(R \). By the axioms of Section 1.11, we should have a proper birational morphism \(p : U_G(S) \to X \) to be locally acyclic. Hence the specialization of the intersection cohomology sheaf \(IC(U_G(S)) \) to the fiber \(p^{-1}(0,\ldots,0) \) coincides with \(IC(U_G(S_{k_1,\ldots,k_n})) \). Since the specialization commutes with proper morphisms, we obtain \(\varpi_*IC(U_G(S_{k_1,\ldots,k_n})) = Sp(0,\ldots,0)\varpi_*IC(U_G(S)) = Sp(0,\ldots,0)IC(U_G(S')) \). Here the second equality holds since \(\varpi \) is an isomorphism off the diagonals in \(X \). It follows that \(\varpi_*IC(U_G(S_{k_1,\ldots,k_n})) \) is perverse (and semisimple, by the decomposition theorem).

References

1. A. Beilinson and V. Drinfeld, *Quantization of Hitchin’s Hamiltonians and Hecke eigen-sheaves*, Preprint, available at http://www.math.uchicago.edu/~mitay/langlands.html
2. A. Braverman, M. Finkelberg and D. Gaitsgory, *Uhlenbeck spaces via affine Lie algebras*, Progress in Math. 244 (2006), 17–135.
3. A. Braverman and M. Finkelberg, *Pursuing the double affine Grassmannian I: Transversal slices via instantons on \(A_k \)-singularities*, preprint math/0711.2083.
4. A. Braverman and D. Kazhdan, *The spherical Hecke algebra for affine Kac-Moody groups*, preprint math/0809.1461.
5. T. Bridgeland, A. King, M. Reid, *The McKay correspondence as an equivalence of derived categories*, J. Amer. Math. Soc. 14 (2001), 535–554.
6. V. Ginzburg, *Perverse sheaves on a loop group and Langlands duality*, Preprint, alg-geom/9511007.
7. M. Kapranov, E. Vasserot, *Kleinian singularities, derived categories and Hall algebras*, Math. Ann. 316 (2000), 565–576.
[8] Y. Kawamata, *Log Crepant Birational Maps and Derived Categories*, J. Math. Sci. Univ. Tokyo 12 (2005), 211–231.
[9] G. Lusztig, *Singularities, character formulas, and a q-analog of weight multiplicities*, Analysis and topology on singular spaces, Astérisque, 101-102 (1983), 208–229.
[10] I. Mirković and K. Vilonen, *Geometric Langlands duality and representations of algebraic groups over commutative rings*, Annals of Math. (2) 166 (2007), 95–143.
[11] H. Nakajima, *Sheaves on ALE spaces and quiver varieties*, Moscow Math. Journal 7 (2007), 699–722.
[12] H. Nakajima, *Quiver varieties and branching*, SIGMA 5 (2009), 003, 37 pages.
[13] K. Saito, *A new relation among Cartan matrix and Coxeter matrix*, J. Algebra 105 (1987), 149–158.
[14] E. Witten, *Geometric Langlands from Six Dimensions*, arXiv:0905.2720.

A.B.: Department of Mathematics, Brown University, 151 Thayer St., Providence RI 02912, USA; braval@math.brown.edu
M.F.: IMU, IITP and State University Higher School of Economics
Department of Mathematics, rm. 517
20 Myasnitskaya st, Moscow 101000 Russia;
fnklberg@gmail.com