Expanding Regulatory T Cells Alleviates Chikungunya Virus-Induced Pathology in Mice

Wendy W. L. Lee, Teck-Hui Teo, Zhisheng Her, Fok-Moon Lum, Yiu-Wing Kam, Doreen Haase, Laurent Rénia, Olaf Rötzschke, Lisa F. P. Ng

ABSTRACT

Chikungunya virus (CHIKV) infection is a reemerging pandemic human arboviral disease. CD4+ T cells were previously shown to contribute to joint inflammation in the course of CHIKV infection in mice. The JES6-1 anti-IL-2 antibody selectively expands mouse regulatory T cells (Tregs) by forming a complex with IL-2. In this study, we show that the IL-2 JES6-1-mediated expansion of Tregs ameliorates CHIKV-induced joint pathology. It does so by inhibiting the infiltration of CD4+ T cells due to the induction of anergy in CHIKV-specific CD4+ effector T cells. These findings suggest that activation of Tregs could also become an alternative approach to control CHIKV-mediated disease.

IMPORTANCE

Chikungunya virus (CHIKV) has reemerged as a pathogen of global significance. Patients infected with CHIKV suffer from incapacitating joint pain that severely affects their daily functioning. Despite the best efforts, treatment is still inadequate. While T cell-mediated immunopathology in CHIKV infections has been reported, the role of regulatory T cells (Tregs) has not been explored. The JES6-1 anti-interleukin 2 (IL-2) antibody has been demonstrated to selectively expand mouse Tregs by forming a complex with IL-2. We reveal here that IL-2 JES6-1-mediated expansion of Tregs ameliorates CHIKV-induced joint pathology in mice by neutralizing virus-specific CD4+ effector T (Teff) cells. We show that this treatment abrogates the infiltration of pathogenic CD4+ T cells through induction of anergy in CHIKV-specific CD4+ Teff cells. This is the first evidence where the role of Tregs is demonstrated in CHIKV pathogenesis, and its expansion could control virus-mediated immunopathology.

Chikungunya virus (CHIKV) infection is a reemerging pandemic human arboviral disease. CD4+ T cells were previously shown to contribute to joint inflammation in the course of CHIKV infection in mice. The JES6-1 anti-IL-2 antibody selectively expands mouse regulatory T cells (Tregs) by forming a complex with IL-2. In this study, we show that the IL-2 JES6-1-mediated expansion of Tregs ameliorates CHIKV-induced joint pathology. It does so by inhibiting the infiltration of CD4+ T cells due to the induction of anergy in CHIKV-specific CD4+ effector T cells. These findings suggest that activation of Tregs could also become an alternative approach to control CHIKV-mediated disease.
FIG 1 Pretreatment with IL-2 Ab Cx reduces joint swelling in CHIKV-infected mice. WT mice (n = 5 per group) were i.p. injected with PBS, IL-2 only, JES6-1 only, or IL-2 Ab Cx daily for 3 days. Blood samples were obtained from tail veins and analyzed with flow cytometry. (A) Representative scatter plots (left) and bar chart of the Foxp3+CD25+ peripheral Treg population in mice. Numbers indicate the frequency of Foxp3+CD25+ Tregs in total peripheral CD4+ cells. Following PBS, IL-2 only, JES6-1 only, or IL-2 Ab Cx treatment, the mice were infected s.c. with 10^6 PFU CHIKV-SGP011. Noninfected (NI) mice were included as negative control. (B) Representative images showing joint footpad swelling at 6 dpi in CHIKV-infected mice. Red arrows indicate areas of swelling. (C) Joint swelling was measured daily from 1 to 15 dpi. (D) Viremia was determined from blood collected from tail vein from 1 to 14 dpi. (E) Viral load of the infected joint footpad was measured at 6 dpi. All data are means and standard deviations (SD) and are representative of three independent experiments. Statistical analysis was done across all CHIKV-infected groups using one-way ANOVA, followed by Dunnett’s posttest comparing each group to the PBS-CHIKV group. (F) Histological analysis of CHIKV-infected footpad samples from 6 dpi pretreated with either PBS or IL-2 Ab Cx and stained with H&E. *, edema; arrows, infiltrates; B, bone; M, muscle; T, tendon. The bar chart shows the average cellular infiltrate per area. Data are means and SD. Statistical analysis was carried out using the Mann-Whitney two-tailed test. **, P = 0.0017 (2 dpi joint swelling) or 0.0059 (4 dpi joint swelling) and 0.0004 (6 dpi joint swelling).
Tregs Control Chikungunya Virus-Mediated Disease

MATERIALS AND METHODS

Study approval. All animals were handled in strict accordance with good animal practice as defined by the National Advisory Committee for Laboratory Animal Research (NACLAR) Guidelines under in facilities licensed by the Agri-Food and Veterinary Authority of Singapore (AVA). Three-week-old wild-type (WT) C57/BL6 mice were housed in the ABSL3 facility at the Biological Resource Center (BRC) at Biopolis, Singapore. Animals are fed daily and monitored closely by technical officers in charge of the animal facilities. All studies were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC approval no. 120714).

Virus stocks. CHIKV isolate (CHIKV-SGP011) used for in vitro and in vivo infections in mouse studies was isolated from an outbreak in Singapore in 2008 at the National University Hospital and propagated in C6/36 (30, 31). The titer of SGP011 was determined using standard plaque assays with Vero-E6 cells (30, 31).

Animal studies. Three-week-old wild-type (WT) C57/BL6 female mice were inoculated subcutaneously (s.c.) in the ventral side of the right hind footpad with 10⁶ PFU CHIKV in 30 μl phosphate-buffered saline (PBS). Ten microliters of blood was collected daily for 3 days. Fifteen microliters of blood were collected from the tail vein to check for Treg expansion. Briefly, blood was lysed and fixed using BD fluorescence-activated cell sorting (FACS) lysing buffer (BD Biosciences) and washed twice with PBS. Cells were stained with anti-CD4 (BD FACSCanto, BD Biosciences) and CD8 antibodies (eBioscience). Ten microliters of blood was collected daily and monitored closely by technical officers in charge of the animal facilities. All studies were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC approval no. 120714).

Viremia and viral load measurement. Viral RNA was extracted using a QiAamp viral RNA minikit (Qiagen) and quantified using Quantitect probe RT-PCR (Qiagen) with conditions as previously described (16, 31–34). All reactions were performed using a 7900HT Fast real-time PCR system machine (Applied Biosciences) with thermal cycling conditions as described previously (16, 31–33). The limit of detection is 10 RNA copies/μl.

Total RNA isolation and analysis. For total RNA extraction from tissues, mice were anesthetized with ketamine (150 mg/kg)-xylazine (10 mg/kg) and perfused with PBS (33). Joint footpads (the ankle joint and footpad) were obtained and stored in TRIzol (Invitrogen) at −80°C. Tissues were homogenized using a rotor-stator homogenizer (Xiril Dispermix) at 4,000 rpm for 15 s. Homogenized tissues were mixed with 230 μl of chloroform and centrifuged at 12,000 rpm for 10 min at 4°C. The aqueous phase was collected and isolated for total RNA using an RNeasy mini kit (Qiagen) according to the manufacturer’s instructions. Quantification of extracted total mRNA was measured by NanoDrop 1000 spectrophotometer (Thermo Scientific). Qualitative real-time PCR (qRT-PCR) was performed using a Kapa SYBR fast one-step qRT-PCR kit (KAPA Biosystems) according to the manufacturer’s recommendations in a 10-μl reaction volume. All reactions were performed using a 7900HT fast real-time PCR system machine (Applied Biosciences). Thermal cycling conditions were as follows: 95°C for 5 min followed by 40 cycles of 95°C for 5 s, 60°C for 30 s, and 95°C for 15 min. The fold change for each gene was calculated relative to the value for noninfected (NI) mice and presented as 2−ΔΔCT.

In vivo expansion of Tregs. PBS, 1.5 μg murine IL-2 (Peprotech), 50 μg anti-mouse IL-2 (JES6-1) (eBioscience), or 1.5 μg murine IL-2 complexed with 50 μg anti-mouse IL-2 were injected intraperitoneally (i.p.) daily for 3 days. Fifteen microliters of blood were collected from the tail vein to check for Treg expansion. Briefly, blood was lysed and fixed using BD fluorescein-activated cell sorting (FACS) lysing buffer (BD Biosciences) and washed twice with PBS. Cells were stained with anti-CD4 (BD FACSCanto, BD Biosciences) and anti-CD45 (BD FACSCanto, BD Biosciences), and 500,000 events were analyzed using Listmode 5 software (BD Biosciences). The CD45/CD4 ratio was then determined using the BD FACSCanto, BD Biosciences software.
were harvested at 6 dpi. Isolation of splenocytes and joint footpad cells was
and depletion of Tregs was maintained by DT administration every other
with flow cytometry. Mice were then infected with CHIKV-SGP011 s.c.,
and antibodies to CD3, CD4, CD11b, Ly6C, and Ly6G. (A) Representative scatter plots showing CD45 and CD4 expression, gated on live cells. Numbers in scatter plots indicate CD4+ population percentages of total live cells. Bar charts show average numbers of total leukocytes (left) and CD4+ T cell infiltrates (right). (B) Representative scatter plots showing CD11b and Ly6G expression gated on live CD45+ cells. Numbers in scatter plots indicate the percentages of cells in respective quadrants of total live CD45+ cells. Bar charts show average number of Ly6G macrophage (left) and Ly6C macrophage (right) infiltrates. All data are means and SD from 3 independent experiments. Statistical analysis was performed using one-way ANOVA across all CHIKV-infected groups, followed by Dunn’s postest comparing to the PBS-CHIKV group. ***, P < 0.0001 (IL-2 Ab Cx CD4+ T cells).

Biosciences) and anti-CD25 (eBioscience). Intracellular staining of Foxp3
was done using a Foxp3 staining buffer set (eBioscience) and anti-Foxp3
following the manufacturer’s instructions. Data were acquired using a BD
LSRFortessa cell analyzer. Dead cells and duplets were excluded in all
analyses using forward and side scatter gating. Results were analyzed with
FlowJo version X software (Tree Star, Inc.).

Histology. Mice were anesthetized with ketamine (150 mg/kg)-xyla-
zine (10 mg/kg) and perfused by intracardiac injection with PBS followed
by 4% paraformaldehyde. Tissues were stored in 4% paraformaldehyde,
decalcalified, and embedded in paraffin wax before 5-μm-thick sections
were cut. Hematoxylin and eosin (H&E) staining was done using estab-
lished protocols as previously described (16, 33). ImageJ software (Na-
tional Institutes of Health) was used for binary image conversion of his-
tological images and for particle analysis (average number of particles per
30,000 square pixels of area selected) to determine the number of cellular
infiltrates (35).

Depletion of Tregs. Depletion of regulatory T cell (DEREG) (36) mice
were treated with IL-2 Ab Cx for 3 days, following which 0.5 μg of dipher-
theria toxin (DT) was administered daily to each mouse for 2 days. Treg
depletion was checked by taking 10^6 cells. Bar charts show average numbers of total myeloid cells (left) and neutrophil infiltrates (right). (C) Representative scatter plots showing CD11b and Ly6C expression gated on live
CD45+ cells. Numbers in scatter plots indicate the percentages of cells in respective quadrants of total live CD45+ cells. Bar charts show average number of Ly6C macrophage (left) and Ly6C macrophage (right) infiltrates. All data are means and SD from 3 independent experiments. Statistical analysis was performed using pretreatment with IL-2 Ab Cx abrogates CD4+ infiltration into the joint footpads of CHIKV-infected mice. WT mice (n = 5 per group) were infected s.c.
with 10^7 PFU CHIKV-SGP011 after treatment with PBS, IL-2 only, JES6-1 only, or IL-2 Ab Cx. Joint footpad cells from these treated animals were isolated at 6 dpi, enriched by Percoll, and analyzed by flow cytometry. Cells were stained with Live/Dead aqua and with antibodies to CD3, CD4, CD11b, Ly6C, and Ly6G. (A)

Splenocytes, joint footpad cells, and pLN cells were added at 2
10^4 cells per well, respectively. ELISpot assay. Polyvinylidene difluoride (PVDF) membrane plates (Millipore) were humidified with 35% ethanol and washed with water. Wells were coated with anti-gamma interferon (IFN-γ) capture antibody (clone AN18; Mabtech) overnight at 4°C. Mice were sacrificed at 6 dpi, and joint footpad and pLN cells were isolated as described above. Splenocytes, joint footpad cells, and pLN cells were added at 2 × 10^5, 2.5 × 10^4, and 5 × 10^3 cells per well, respectively. Ex vivo CD4+ enrich-
ment was performed using a mouse CD4+ T cell isolation kit II (Miltenyi Biotec) according to the manufacturer’s instructions. Stimulation of CHIKV-specific T cells was done in complete RPMI containing 30 U/ml IL-2 and 1.5 × 10^6 VeroE6-derived SGP011 virions per well. Complete RPMI containing 30 U/ml IL-2 was included as a negative control. For all wells containing joint footpad cells, 1.5 × 10^6 splenocytes from NI mice were added to serve as antigen-presenting cells (APCs). The plates were incubated at 37°C and 5% CO₂ for 18 h. After incubation, cells were removed and wells were washed six times using PBS. Spot detection was done using a mouse IFN-γ enzyme-linked immunospot (ELISPOT) kit with alkaline phosphatase (ALP) (Mabtech) following the manufacturer’s instructions.

![Graphs and images](https://example.com/graphs.png)

FIG 4 Pretreatment with IL-2 Ab Cx reduces production of proinflammatory cytokines in joint footpads of CHIKV-infected mice. WT mice (n = 5 per group) were infected s.c. with 10^6 PFU CHIKV-SGP011 after treatment with PBS, IL-2 only, JES6-1 only, or IL-2 Ab Cx. Cells were stimulated with either IL-2 only or IL-2 plus CHIKV. ELISPOT was performed in quadruplicate to detect for CHIKV-specific IFN-γ-producing cells. (A and B) Representative images of ELISPOT wells depicting the number of IFN-γ-producing cells in total cells (A) and enriched CD4+ T cells (B) from joint footpads. Bar charts show average numbers of IFN-γ-producing cells per infected joint footpad after subtraction of the background of the IL-2-only stimulation control. (C) mRNA was extracted from joint footpads, and qRT-PCR was performed to detect the expression of IL-6, IL-10, ENTPD1, IFN-γ, STAT1, and CXCL10. Statistical analysis was done using one-way ANOVA across all CHIKV-infected groups, followed by Dunnett’s posttest comparing to the PBS-CHIKV group. Data are means and SD from three independent experiments. *, P = 0.0127 (IL-2 Ab Cx IL-6) or 0.0113 (IL-2 Ab Cx IL-10); **, P = 0.0037 (IL-2 Ab Cx ENTPD1), 0.0036 (IL-2 Ab Cx IFN-γ), 0.0032 (IL-2 Ab Cx STAT1), or 0.0067 (IL-2 Ab Cx CXCL10); ***P = 0.0008 (IL-2 Ab Cx IFN-γ-producing cells per joint footpad) or 0.0126 (IL-2 Ab Cx IFN-γ-producing CD4+ T cells per joint footpad).
In vitro T cell proliferation. Cells were isolated from pLN as described above. Ex vivo CD4+ enrichment was performed using an EasySep mouse CD4+ T cell enrichment kit (Stemcell) according to the manufacturer’s instructions. Enriched CD4+ T cells were then labeled with 2.5 μM carboxyfluorescein succinimidyl ester (CFSE) for 10 min at 37°C in the dark. Labeled cells were plated at 1 x 10^5 cells/well and stimulated with either anti-CD3/CD28 Dynabeads (Life Technologies) or CD4-depleted splenocytes from naive mice pulsed with 1.5 x 10^6

FIG 5 Pretreatment with IL-2 Ab Cx reduces the frequency of CHIKV-specific responses in pLN. WT mice (n = 5 per group) were infected s.c. with 10^6 PFU CHIKV-SGP011 after treatment with PBS, IL-2 only, JES6-1 only, or IL-2 Ab Cx. Cells from draining pLN were isolated at 6 dpi and analyzed using flow cytometry. (A through D) The bar charts show CD45+ T cells (A), CD4+ T cells (B), CD4+ Teff cells (C), and CD4+ Tregs (D) per pLN. Cells were stimulated with either IL-2 only or IL-2 plus CHIKV. ELISpot was performed in quadruplicate to detect for CHIKV-specific IFN-γ-producing cells. (E and F) Representative images of ELISpot wells depicting the number of IFN-γ-producing cells in total cells (E) and enriched CD4+ T cells (F) from pLN. The bar charts show the average numbers of IFN-γ-producing cells per pLN after subtraction of the background of the IL-2-only stimulation control. Statistical analysis was done using one-way ANOVA across all CHIKV-infected groups, followed by Dunnett’s posttest comparing to the PBS-CHIKV group. Data are means and SD from three independent experiments. ***, P < 0.0001 (IL-2 Ab Cx Tregs per pLN), 0.0008 (IL-2 Ab Cx IFN-γ-producing cells per pLN), or 0.0007 (IL-2 Ab Cx IFN-γ-producing CD4+ T cells per pLN).
SGP011 virions per well. Cells were then incubated at 37°C for 4 days.

Statistical analyses.
All statistical analyses were performed using GraphPad Prism 6. All analyses between the PBS-CHIKV, IL-2-CHIKV, JES6-1-CHIKV, and IL-2 Ab Cx-CHIKV groups were done using one-way analysis of variance (ANOVA) followed by Dunnett’s multiple-comparison test comparing all other groups to the PBS-CHIKV group. Comparison between IL-2 Ab Cx with Treg depletion and IL-2 Ab Cx without depletion were done using an unpaired t test. Comparison between particle analysis of the PBS-CHIKV and IL-2 Ab Cx-CHIKV groups was done using a Mann-Whitney U test. A P value of less than 0.05 is considered statistically significant.

RESULTS
Tregs limit CHKV-induced joint pathology. In order to assess if Tregs have a role in CHIKV-induced pathology, we made use of an in vivo method that allows the selective expansion of Tregs by administering IL-2 to form a complex with the anti-IL-2 antibody JES6-1, termed IL-2 Ab Cx (29). PBS, IL-2 only, or JES6-1 only was administered to mice prior to CHIKV infection as an experimental control (referred to as infected control groups). A significant increase in the proportion of circulating Tregs was observed only with IL-2 Ab Cx treatment (Fig. 1A)(29). This treatment was highly effective, as it increased the average frequency of Tregs in the blood from less than 10% to nearly 70% (Fig. 1A). Furthermore, the expanded Tregs were also activated, as indicated by high CD25 expression (Fig. 1A). The impact of Treg expansion on CHIKV infection was next explored in mice pretreated with PBS (control), IL-2, JES6-1, or IL-2 Ab Cx for 3 days followed by virus inoculation into the footpad of the hind limb (27). Viremia and joint footpad swelling were monitored daily (Fig. 1B to E). Compared to noninfected (NI) mice, CHIKV infection resulted in substantial swelling of the joint that peaked at 6 days postinfection (dpi) (Fig. 1B and C). Differences were not observed within the control groups of CHIKV-infected mice (Fig. 1B and C). However, a marked reduction in swelling of the joint footpad was observed in mice pretreated with IL-2 Ab Cx, especially at 6 dpi (Fig. 1B and C). Notably, these mice also recovered faster, with undetectable levels of swelling by 8 dpi, than the other control groups, where swelling subsided only after 14 dpi (Fig. 1C).

The action of Tregs on reducing joint pathology did not have any effect on virus clearance, as differences in viral load were not observed between IL-2 Ab Cx-treated mice and CHIKV-infected control groups (Fig. 1D and E). Tissue sections of infected joint footpad were obtained for histological assessments, where PBS-treated CHIKV-infected mice exhibited typical necrotizing myositis with massive immune infiltrates as well as extensive edema (18, 37) in the loose connective tissue layer of the dermis layer (Fig. 1F). However, treatment with IL-2 Ab Cx markedly reduced edema within the dermis layer (Fig. 1F).

To ascertain that the reduced pathology observed in the IL-2 Ab Cx-treated mice was caused by the suppressive activity of Tregs
and not due to a direct impact of the IL-2 Ab Cx on the effector cells, DEREG mice were explored (36). These mice express diphtheria toxin receptor (DTR) under the control of Foxp3 promoter, which allows the specific ablation of Tregs with DT administration (Fig. 2A). In the absence of DT, treatment with IL-2 Ab Cx protected the CHIKV-infected DEREG mice from pronounced joint swelling (Fig. 2B). However, this protection was completely lost upon depletion of Tregs with DT (Fig. 2B). Joint swelling was comparable in DT-treated WT CHIKV-infected mice and in DT-treated DEREG mice with IL-2 Ab Cx treatment (Fig. 2B), verifying that the protection against CHIKV-induced swelling is mediated primarily by Tregs (Fig. 2).

Expansion of Tregs abrogates infiltration of Teff cells during CHIKV infection in pLN. In order to decipher how IL-2 Ab Cx ameliorates CHIKV-induced joint swelling, immune infiltrates at the site of infection were analyzed from harvested joint footpad samples isolated during the peak of inflammation at 6 dpi. A significant increase in the CD45^+ leukocyte population was observed across all groups of CHIKV-infected mice (Fig. 3A). Flow cytometry analysis revealed that the infiltrates consisted mainly of CD11b^+ myeloid cells that include macrophages and neutrophils (Fig. 3B). While CHIKV infection had no effect on the number of neutrophils (CD11b^+ Ly6G^+) (Fig. 3B), the number of infiltrating CD11b^+ Ly6c^- inflammatory macrophages (Fig. 3C) increased dramatically. While the expansion of Tregs did not impact the infiltration of macrophages induced by CHIKV infection, a striking selective effect was observed for CD4^+ T cells infiltration on 6 dpi. While IL-2 and JES6-1 did not affect the influx of CD4^+ T cells into the infected footpad, their infiltration was significantly reduced with IL-2 Ab Cx treatment (Fig. 3A).

IFN-γ ELISpot analysis on cells isolated from CHIKV-infected joint footpad samples further revealed that the reduced infiltrating CD4^+ T cells correlated with a reduction of the antigen-specific CD4^+ T cell response (Fig. 4A and B). Transcript analysis performed on total mRNA isolated from joint footpad cells indicated that although CHIKV infection induced high expression of proinflammatory genes, such as those encoding IL-6, IL-10, ENTPD1, IFN-γ, STAT1, and CXCL10, addition of IL-2 Ab Cx reversed this effect (Fig. 4C). A plausible explanation for this protective effect could be the interference by expanded Tregs on the priming of CHIKV-specific CD4^+ Teff cells. To verify this, IFN-γ ELISpot and flow cytometry analyses were carried out on cells isolated from the draining pLN. Flow cytometry detected only minor differences in the absolute number of pLN cells (Fig. 5A to D). In contrast, IFN-γ ELISpot showed that CHIKV-specific stimulation yielded a high frequency of antigen-specific responses from total pLN and isolated CD4^+ T cells in all CHIKV-infected groups except for the
IL-2 Ab Cx-treated group (Fig. 5E and F). This suggests that generation of CHIKV-specific CD4+ Teff cells is likely to be perturbed in the presence of expanded Tregs. Tregs block proliferation and differentiation of CHIKV-specific Teff cells.

To further address how Tregs suppress the initial priming of CD4+ Teff cells in the pLN, bromodeoxyuridine (BrdU) was administered before the peak of joint swelling at 4 dpi and 5 dpi to detect in vivo proliferation of CD4+ Teff cells. About 10% of CD4+ Teff cells from CHIKV-infected PBS-treated control mice were BrdU+/Hoechst (Fig. 6A), suggesting that these cells were actively proliferating in response to virus infection. On the other hand, Teff cells from IL-2 Ab Cx-treated mice had significantly lower detectable levels of BrdU+ cells (Fig. 6A). In order to confirm if the lack of BrdU uptake was due to a disruption in the proliferation of CD4+ Teff cells, Ki-67 staining was performed to assess cell cycle advancement (38). Draining pLN from CHIKV-infected control mice revealed that approximately 30% of CD4+ Teff cells expressed Ki-67, indicating active proliferation of these lymphocytes (Fig. 6B). However, only 20% of CD4+ Teff cells from IL-2 Ab Cx-treated mice expressed Ki-67 (Fig. 6B). More importantly, Teff cells from the IL-2 Ab Cx-treated group showed significantly reduced Ki-67 detection compared to the CHIKV-infected control groups (Fig. 6B). Taken together, these findings suggest that CD4+ Teff cells with IL-2 Ab Cx treatment did proliferate but did not enter S phase (Fig. 6).

Tregs block proliferation and differentiation of CHIKV-specific Teff cells. To further address how Tregs suppress the initial priming of CD4+ Teff cells in the pLN, bromodeoxyuridine (BrdU) was administered before the peak of joint swelling at 4 dpi and 5 dpi to detect in vivo proliferation of CD4+ Teff cells. About 10% of CD4+ Teff cells from CHIKV-infected PBS-treated control mice were BrdU+ (Fig. 6A), suggesting that these cells were actively proliferating in response to virus infection. On the other hand, Teff cells from IL-2 Ab Cx-treated mice had significantly lower detectable levels of BrdU+ cells (Fig. 6A). In order to confirm if the lack of BrdU uptake was due to a disruption in the proliferation of CD4+ Teff cells, Ki-67 staining was performed to assess cell cycle advancement (38). Draining pLN from CHIKV-infected control mice revealed that approximately 30% of CD4+ Teff cells expressed Ki-67, indicating active proliferation of these lymphocytes (Fig. 6B). However, only 20% of CD4+ Teff cells from IL-2 Ab Cx-treated mice expressed Ki-67 (Fig. 6B). More importantly, Teff cells from the IL-2 Ab Cx-treated group showed significantly reduced Ki-67 detection compared to the CHIKV-infected control groups (Fig. 6B). Taken together, these findings suggest that CD4+ Teff cells with IL-2 Ab Cx treatment did proliferate but did not enter S phase (Fig. 6).

Tregs inhibit priming of CHIKV-specific Teff cells due to the induction of anergy. Finally, to address proliferation arrest (39–41), CD4+ Teff cells were isolated from pLN of CHIKV-infected mice on 6 dpi and challenged with either CHIKV-pulsed APCs or anti-CD3/CD28 Dynabeads. Tregs were depleted using anti-CD25 positive selection, as they are known to exhibit suppressive effects during mixed lymphocyte reactions (42). To monitor proliferation, isolated CD4+ Teff cells were labeled with carboxyfluorescein succinimidyl ester (CFSE), a tracking dye for proliferation (43). CD4+ Teff cells from all groups responded to nonspecific anti-CD3/CD28 stimulation (Fig. 7). While CD4+ Teff cells from IL-2 Ab Cx showed a weaker proliferation that was comparable to that in the NI group (Fig. 7A, panel 2), CHIKV-specific stimula-
tion did not (Fig. 7A, panel 4). Proliferation was observed only in the CHIKV-infected control groups, not in the IL-2 Ab Cx-treated mice (Fig. 7A, panel 4). This demonstrates that anergy induction is specific to CHIKV-specific CD4⁺ T cell responses.

Flow cytometry was further performed to assess if the induction of anergy was due to a lack of costimulation on the APCs during T cell activation (39–41, 44–47). Although migratory dendritic cells (DCs) (CD11b⁺CD11c⁺MHCIIhi) (48) isolated from the draining pLN of CHIKV-infected control groups revealed a typical increased in CD80 (Fig. 7B), treatment with IL-2 Ab Cx resulted in a significant reduction of CD80 (Fig. 7B). These observations further substantiate the idea that Tregs disrupted the response of CHIKV-specific CD4⁺ T cells by altering the priming capacity of APCs (49–52).

DISCUSSION

Arboviral infections have illustrated the importance of T cells in regulating disease pathology (53–55). CD8⁺ T cells were demonstrated to mediate encephalitis during Murray Valley encephalitis virus (MVE) infection (54). Cross-reactive CD4⁺ T cells were found to exacerbate dengue hemorrhagic fever (DHF) during secondary infections (55), while CD8⁺ T cells have an ambivalent role, as they exhibit both protective and pathogenic affects in WNV-infected mice (56). More recently, CD4⁺ T cells were showed to be responsible in mediating CHIKV-induced pathology (16). While T cell-mediated immunopathology in arbovirus infections has been extensively reported (54, 55, 57, 58), information on the role of Tregs remains limited. Here, aberrant immune responses responsible for the development of CHIKV-induced immunopathology were controlled by selectively expanding Tregs in vivo through administering IL-2 Ab Cx prior to virus infection (29). The expansion and activation of Tregs led to the effective amelioration of the characteristic CHIKV-induced joint swelling. The reduced inflamed joint pathology was similar to that observed in CHIKV-infected CD4⁻/⁻ mice, where a decline in viremia was not affected by the absence of CD4⁺ T cells (16).

Further characterization of the action of these expanded Tregs during CHIKV infection established that Tregs selectively inhibit CHIKV-specific CD4⁺ T cells. IFN-γ ELISpot performed on splenocytes and cells from draining pLN isolated from IL-2 Ab Cx-treated CHIKV-infected mice resulted in a sharp reduction in the frequency of CHIKV-specific CD4⁺ T cells. Consequently, only a low number of CHIKV-specific CD4⁺ T cells could migrate into infected tissues to maintain inflammation and inflict further damage. Notably, the influx of other immune subsets, such as macrophages and CD8⁺ T cells, was not affected, indicating no impairment in the overall immune response. BrdU and Ki-67 analysis suggested cell cycle arrest in CD4⁺ T cells (16). In line with this, a reduction in the level of CD80 in migratory DCs further suggested the indirect immunosuppressive effect of Tregs on Teff cells via the effect of Tregs on APCs (49–52). During virus infection, viral antigens are picked up by tissue-resident DCs that mature into migratory DCs and are transported to the draining LN to prime virus-specific T cells (62). These activated T cells then migrate back to the site of infection and exacerbate the proinflammatory microenvironment. Findings in this study suggest that Tregs expansion perturbs this inflammatory cycle by interacting with the APCs to inhibit the upregulation of costimulatory mole-

cules that cause induction of anergy due to incomplete T cell activation in the primed cells (Fig. 8).

The protective role of Tregs in reducing immunopathology seen in this study could be further extended to other clinically important arboviruses such as O’nyong-nyong virus (ONNV), Ross river virus (RRV), and Dengue virus (DENV) (63–65) as a means to prevent or reduce pathology (53, 66). Nonetheless, observations in this study imply that pharmaceutical immunosuppressants blocking T cell activation and/or proliferation have a wealth of therapeutic potential (67) and could represent an alternative way to control virus-induced pathology during the acute phase of infection.

ACKNOWLEDGMENTS

We thank Anis Larbi and the SlgN Flow Cytometry core facility for assistance with flow cytometry analysis. We are also grateful to the Mutant Mouse Collection (SlgN, A*STAR) and A*STAR Biological Resource Centre (BRC) for their assistance with breeding and supply of mice used in this study. We also thank the Advanced Molecular Pathology Laboratory (IMCB, A*STAR) for performing the histology work. We acknowledge Kai-Er Eng from SlgN for assistance with manuscript editing.

The study was supported by the Biomedical Research Council, A*STAR. Wendy W. L. Lee was supported by a postgraduate scholarship from the NUS Graduate School for Integrative Science and Engineering (NGS). Teck-Hui Teo was supported by an A*STAR postgraduate scholarship. Fok-Moon Lum was supported by the President’s Graduate Fellowship from the Yong Loo Lin School of Medicine, National University of Singapore (Singapore).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We declare that no conflict of interest exists.

REFERENCES

1. Kennedy A, Fleming J, Solomon L. 1979. Chikungunya viral arthropathy: a clinical description. J Rheumatol 7:231–236.
2. Pfafferhorn ER, Shapiro D. 1974. Reproduction of togaviruses, p 171–230. In: Fraenkel-Conrat H, Wagner RR (ed), Reproduction: small and intermediate RNA viruses. Springer, New York, NY.
3. Renault P, Solet J-L, Sissoko D, Balleydier E, Larrieu S, Filleul L, Lassalle C, Thiria J, Rachou E, de Valk H, Ilef D, Ledrans M, Quenel P, Pierre V. 2007. A major epidemic of chikungunya virus infection on Réunion Island, France, 2005-2006. Am J Trop Med Hyg 77:727–731.
4. Pialoux G, Gauzère B-A, Jauréguiberry S, Strobel M. 2007. Chikungunya, an epidemic arbovirus. Lancet Infect Dis 7:319–327. [http://dx.doi.org/10.1016/S1473-3099(07)70107-X] .
5. Powers AM, Logue CH. 2007. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377. [http://dx.doi.org/10.1099/vir.0.82858-0] .
6. Rezza G, Nicoletti I, Angelini R, Romi R, Finarelli AG, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Giufolini MG, Majori GC, Cassone A. 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846. [http://dx.doi.org/10.1016/S0140-6736(07)61779-6] .
7. Granadon M, Caro V, Plument S, Thibierge JM, Souarès Y, Failloux AB, Mauduit C, Yang J, Guesdon JL, Follier A, Thouvenot E, Houri P, Girard S, Zaninetti A, Deyi S, Masmoudi M, Pletinckx D, Zupic N, Petit J, Duranceau S, Belghith D, Pavani S, Février S, Auphan N. 2014. Chikungunya virus, southeastern France. Emerg Infect Dis 20:1790–1800. [http://dx.doi.org/10.3201/eid2012.140773] .
8. Cagney H. 2014. Infectious disease surveillance update. Lancet Infect Dis 14:377. [http://dx.doi.org/10.1016/S1473-3099(14)70762-5] .
9. Leparc-Goffart I, Neug∉re A, Cassadou S, Prat C, de Lambellerie X. 2014. Chikungunya in the Americas. Lancet 383:514. [http://dx.doi.org/10.1016/S0140-6736(14)60185-9] .
10. Pan American Health Organization. 31 Oct 2014. Number of reported cases of chikungunya fever in the Americas, by country or territory. [http://www.paho.org/hq/index.php?option=com_docman&task=doc_down

Downloaded from jvi.asm.org on July 15, 2018 by guest
The text is not visible due to formatting issues. It seems to be a page from a journal article with text that is not legible or is distorted. This is not a natural representation of the document.
BR, Nadler LM. 2000. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of allorreactive human and mouse helper T lymphocytes. Nat Med 6:290–297. http://dx.doi.org/10.1016/S0162-3109(00)80016-7.

Kang SM, Beverly B, Tran AC, Brobson K, Schwartz RH, Lenardo MJ. 1992. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257:1134–1138. http://dx.doi.org/10.1126/science.257.5073.1134.

Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. 2001. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193:51–60.

Hänig J, Lutz MB. 2008. Suppression of mature dendritic cell function by regulatory T cells in vivo is abrogated by CD40 licensing. J Immunol 180:1405–1413. http://dx.doi.org/10.4049/jimmunol.180.3.1405.

Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. 2000. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105:10113–10118. http://dx.doi.org/10.1073/pnas.071106105.

Licon Luna RM, Lee E, Müllbacher A, Blanck SM, Beverly B, Tran AC, Brorson K, Schwartz RH, Lenardo MJ. 2004. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of allorreactive human and mouse helper T lymphocytes. Nat Med 6:290–297. http://dx.doi.org/10.1016/S0162-3109(00)80016-7.

Yu W, Mengersen K, Dale P, Mackenzie JS, Toloo G, Wang X, Tong S. 2008. Dendritic cells. Springer, New York, NY.

Powers AM. 2013. Infection patterns and emergence of O’nyong’nyong virus, p 433–444. In Singh SK (ed), Viral infections and global change. John Wiley & Sons, Inc., New York, NY.

Yu W, Mengersen K, Dale P, Mackenzie JS, Toloo G, Wang X, Tong S. 2014. Epidemiologic patterns of Ross River virus disease in Queensland, Australia, 2001-2011. Am J Trop Med Hyg 91:109–118. http://dx.doi.org/10.4269/ajtmh.2010.09-0346.

San Martin JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooge A, Dayan GH, Guzmán MG. 2010. The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. Am J Trop Med Hyg 82:128–133. http://dx.doi.org/10.4269/ajtmh.2010.09-0346.

Allison AC. 2000. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47:83–83. http://dx.doi.org/10.1016/S0162-3109(00)00186-7.