Ganglioneuroma and Its Very Rare Localisation: A Case Report and Review of the Literature

Jan Hemza*

Department of Neurosurgery, Saint Ann Faculty Hospital, Czech Republic

ABSTRACT

Ganglioneuroma is a very rare benign tumor growing from the vegetative, autonomic nervous system. It grows from the central or peripheral part. We describe cervical ganglioneuroma in a 38-year-old man growing in the C7/Th1 foramen area on the right before the fibers enter the ganglion stellatum. It is a non-dumbbell shaped tumor growing between ganglion stellatum and ganglion cervicale. Treatment is resection with total tumor excess. Complete surgical resection is a very effective therapy. The relapse of the tumor is not described in literature studies. Similar type of this case has been described only once in literature and reviewed from anglophone literature, which is selected with the exclusion of neurofibromatosis and with localization in the neck area [1].

Introduction

Ganglioneuroma is a very rare benign tumor growing from the vegetative, autonomic nervous system [2, 3]. It grows from the central or peripheral part. The most common localization is in the area of the posterior mediastinum, retroperitoneum, and from the adrenal glands; more rarely, it is located in the cervical area [3, 4]. From the literature, 1-5% of patients with a tumor in the neck area are presented [3, 5]. More often, it is localized in the neck area by growth from the peripheral part of the autonomous system and from areas exiting the truncus sympathetic, ganglia of the peripheral system, more at the distance of ramus communicantes grisei than from preganglion’s fibers – rami communicantes albi. In the cervical region, 34 cases were reported, of which 19 were in adults, 10 men and 9 women. In the area of foramen type, dumbbell shaped tumor found only in 2 cases and in the area of the upper cervical spine, only one case was found in the root area 8 [1].

Case Presentation

We describe cervical ganglioneuroma in a 38-year-old man growing in the C7/Th1 foramen area on the right before the fibers enter the ganglion stellatum. It is a non-dumbbell shaped tumor growing between ganglion stellatum and ganglion cervicale. The patient observed about 4 years of algoparesthesia on the ulnar side of the forearm, the pinky edge of the hand and the 4th and 5th fingers of the right hand. These were gradually worsening the problem. MRI performed with contrast substance, where expansion in the foramen intervertebrale C7/Th1 on the right, i.e. root C8, was detected (Figure 1). Furthermore, electrophysiological examination without signs of acute or distinct chronic lesion in the distribution of C7-Th1 roots on the right. The basic diagnosis was neurinoma or neurofibroma. The patient’s medical history was unobserved only after arthroscopy of both knees. In 2008, the patient was randomly examined for a foreign body of the right eye, which was removed instantly, a wider pupil to the right, which the patient did not notice. The examination of eyesight shows following findings: right eye under the upper eyelid of the foreign body, which was removed, cornea intact, intraocularly calm, papillae round, bounded, in niveau, with physiological excretion, retina without bearing changes, left eye anterior segment intact, papilla intact, with physiological excrement, pupil: pronounced anisocoria to the right wider, on the right eye the ocular reacts only very roundly to the light, noticeable on the slit lamp rather than with the naked eye, a pronounced reaction to convergence, on the right eye difficult to read, apparently a lack of accommodation. The conclusion of an anisocoria of unclear etiology from the eye point of...
Ganglioneuroma and Its Very Rare Localisation: A Case Report and Review of the Literature

Surgical Case Reports doi: 10.31487/j.SCR.2021.07.09 Volume 4(7): 2-5

view is most likely pulpition of the right eye. These were examined neurologically without pathological findings, except for the one on the right. Gradually, the disability was adjusted. In 2015, the findings were already in the norm. Genetic testing ruled out neurofibromatosis.

Surgery was indicated as a definitive solution and to determine the histological classification of the tumor. The operation was performed by anterolateral approach through the lateral corridor from the carotid-jugular bundle with the release of ventro-medial-lying ganglion stellatum transforaminally. In the foramen, we evaporate our own tumor from the nerve root, which we preserve and dorso-medially preserve even our own root ganglion on the back portion of the root. After resection, the histological finding shows connective pseudocapsule bound tumor infiltration consisting of structures of a differentiated Schwannian stroma (S100+, GFAP-, EMA focally weakly positive) and mature voluminous graduated ganglia cells (synaptophysin+, NSE+, NeuN+/–), bearing granular rusty brown pigment in the cytoplasm.

Satellite cells are found on the periphery of some ganglia cells. Stromata structures are graduated with bland morphology and without conclusive mitotic activity. Proliferation activity as measured by the Ki67 index below 1%.

Figure 1: Preoperative MRI, 2015y.

Figure 2: Postoperative MRI-apper 2017y, lower 2019y.
In conclusion compatibility is found with dg. ganglioneuroma, graduated; v.s. from the structures of cervical sympathetic ganglia - necessary clinical-pathological correlation. MKN: D361 MKN-O; M-94940. After resection, a slight disorder of the sensuality in the area of the pinky edge of the right hand, which over time regressed. A pupil is found without any pathological findings. The patient was monitored by regular MRI examination about 2021 with negative MRI findings (Figures 2 & 3).

Discussion

Ganglioneuroma is a slow-growing, well-differentiated tumor in the autonomic nervous system and is often asymptomatic. Clinically manifested by local symptoms from obstruction, some patients may have diarrhea, hypertension, virilization, and myasthenia gravis [3, 6]. Ganglioneuroma has a typical location in the thoracic cavity (60%), abdominal cavity (10-15%), retroperitoneum, adrenal glands, pelvic area, sacral and coccyx sympathetic ganglia, and retroperitoneum, adrenal glands, pelvic area, sacral and coccyx sympathetic ganglia, and cervical region (1-5%) [3, 7, 8]. Other minor localizations are the middle ear, parapharynx, skin, orbit, and gastrointestinal tract [3, 9-11]. The case of the primary brain tumor is of ganglioneurinoma, also known as ganglion cells, Schwann cells and fibrous tissue. They do not contain intermediate cells, or mitotic figures and necrosis is not a feature. Intracranial extramedullary ganglioneuromas have been reported but are extremely rare. Ganglioneuromas may occur de novo or may arise from maturing neuroblastomas and ganglioneuroblastomas [12]. Exclusion criteria for literature studies are:

i. Neurofibromatosis
ii. Irrelevant to our localization, localization only in the neck area
iii. Duplicated data

34 cases were found in 26 articles [1, 13-38]. Clinical data are summarised in (Table 1). All tumors were reported without metabolic activity. The proportion of adults and children is 56%: 44%. In adults, the proportion of men and women is 52%: 48%. Postoperative complications were most commonly Horner’s syndrome in 8 cases; one patient had only median left-sided ptosis of the eyelid and one child of myosis. In one case, there was postoperative vocal cord paresis. In one case, tetraparesis persisted, and in one hemiparesis. One case was similar to our ganglioneuroma case in the C8 root area with the same postoperative finding of transient sensitivity [1]. Imageology is an important helper in preoperative planning. The MRI informs us about the size, localization, composition of the mass and relations to the surrounding structures. On the MRI, it is a well-bounded, predominantly oval mass and in the case of an hourglass-type mass, the shape is of an hourglass. In the case of localization in the foramen, a CT is found to reduce bone structure and enlarge the form. On MRI, there are high-intensity tumors in T2W1 and is enhanced after administration of the contrast agent.

Case	Age/Gender	Size, cm	Side and localisation	Complication	Follow-up, mo
Strang (1962) [13]	63/F	3.0x1.0-2.0	Posterior root C2-C4	Some improvement of weakness	NED (4)
Ugarriza (2001) [14]	53/M	NA	C1-2 level bilat.	Tetraparesis, respiratory problems	NED (6)
Friedlander (2002) [15]	28/M	4.0x2.0x4.3	Carotid space/left	NA	NA
Leonardis (2003) [16]	50/M	10.0x6.8x4.0	Adjacent to the thyroid gland/left	A mild left palpebral ptosis	NA
Cannady (2005) [17]	6/F	4.0x3.3x5.3	Carotid space/right	None	NED (12)
Macroscopic tumor is often a well-bounded tumor. In our case, in microscopic surgery, it was possible to distinguish ganglionstellatum medially from the tumor, and then ganglion root C8, which was oppressed dorsally and, in the media, and grew probably from preganglion's rami comunicantes albi. Microscopic tumor is composed of intersecting bundle of spindle cells, loose myoidx struma, and dysplastic ganglion cells. The most common characteristic feature is the presence of mature ganglion cells with preganglion's fibers rami comunicantes albi.

Conclusion

The treatment is resection with total tumor excess. The best surgical technique is microscopic technique. Complete surgical resection is a very effective therapy. The relapse of the tumor is not described in literature studies.

Conflicts of Interest

None.

Ethical Approval

Not applicable.

Consent

The patient gave informed consent before being included in this report.

REFERENCES

1. Uchida K, Kobayashi S, Kubota C, Imamura Y, Bangirana A et al. (2007) Microsurgical excision of ganglioneuroma arising from the C8 nerve root within the neuroforamen. Minim Invasive Neurosurg 50: 350-354. [Crossref]
2. Lamichhane N, Dhakal HP (2006) Ganglioneuroma of pelvis -- an unique presentation in a young man. Nepal Med Coll J 8: 288-291. [Crossref]
3. Xu T, Zhu W, Wang P (2019) Cervical ganglioneuroma: A case report and review of the literature. Medicine (Baltimore) 98: e15203. [Crossref]
4. Weiss GW, Goldblum JR (2008) Ewing's sarcoma: PNET tumor family and related lesions. Enzinger and Weiss's soft tissue tumors. Mosby Elsevier 5: 945-987.
5. Leeson MC, Hite M (1989) Ganglioneuroma of the sacrum. Clin Orthop Relat Res 246: 102-105. [Crossref]
6. Kaufman MR, Rhee JS, Fliegelman LJ, Costantino PD (2001) Ganglioneuroma of the parapharyngeal space in a pediatric patient. Otolaryngol Head Neck Surg 124: 702-704. [Crossref]
7. Albionico G, Pellegrino G, Maisano M, Kardon DE (2001) Ganglioneuroma of parapharyngeal region. Arch Pathol Lab Med 125: 1217-12178. [Crossref]
8. Califano L, Zapi A, Mangone GM, Long F (2001) Cervical ganglioneuroma report of a case. Otolaryngol Head Neck Surg 124: 115-116. [Crossref]
9. Cannon TC, Brown HH, Hughes BM, Wenger AN, Flinn SB et al. (2004) Orbital ganglioneuroma in a patient with chronic progressive proptosis. Arch Ophthalmol 122: 1712-1714. [Crossref]
10. Oztuoglu LN, Yilmaz I, Cagici CA, Bal N, Erdogan B (2007) Ganglioneuroma of the internal auditory canal: a case report. Audiol Neurol 12: 160-164. [Crossref]
11. Wallace CA, Hallman JR, Sanguenza OP (2003) Primary cutaneous ganglioneuroma: a report of two cases and literature review. Am J Dermatopathol 25: 239-242. [Crossref]
12. Ashraf A, Weerakkody Y (2021) Ganglioneuroma. Radiopaedia.
13. Strang RR, Nordenstam H (1962) Dumb-bell ganglioneuroma of cervical spine. Acta Neurol Scand 38: 60-66. [Crossref]
14. Ugarriza LF, Cabezudo JM, Ramírez JM, Lorenzana LM, Porras LF (2001) Bilateral and symmetric C1-C2 dumbbell ganglioneuromas producing severe spinal cord compression. Surg Neurol 55: 228-231 [Crossref]
15. Friedlander PL, Hunt JP, Palacios E (2002) Ganglioneuroma of the neck. Eur Arch Otorhinolaryngol 259: 1463-1466. [Crossref]
16. Leonards M, Sperb D, Alster C, Campisi C, Herter NT (2003) Ganglioneuroma of the neck, masquerading as a goiter. Eur J Surg Oncol 29: 929-930. [Crossref]
17. Cannady SB, Chung BJ, Hirose K, Garabedian N, Abbeete TVD et al. (2005) Surgical management of cervical ganglioneuromas in children. Int J Pediatr Otorhinolaryngol 70: 287-294. [Crossref]
18. Radulović DV, Branišavl D, Skender GaziBara MK, Igl N (2005) Cervical dumbbell ganglioneuroma producing spinal cord compression. Neurosl India 53: 370-371. [Crossref]
19. Zebing Z, Jianwei S, Yan C, Yan G (2008) Clinicopathological characteristics of neck ganglioneuroma. Oral Med Pathol 12: 131-134. [Crossref]
20. Baisakhiya NK, Mukundan S (2008) Ganglioneuroma of the neck. J Pak Med Assoc 58: 699-701. [Crossref]
21. De Bernardi B, Gambini C, Haupts R, Granata C, Rizzo A et al. (2008) Retrospective study of childhood ganglioneuroma. J Clin Oncol 26: 1710-1716. [Crossref]
22. Pucci A, Pucci E, Santini F, Altea MA, Faviana P et al. (2009) A ganglioneuroma with features of a thyroid nodule: intense pain on fine needle biopsy as a diagnostic clue. Thyroid 19: 201-214. [Crossref]
23. Cavanaugh DA, Jawahar A, Harper J, McLaren BK, Wooten T et al. (2010) Cervical ganglioneuroma in an adult man: case report and literature review of a rare occurrence. J La State Med Soc 162: 218-221. [Crossref]
24. Kolte SS (2011) Ganglioneuroma presenting as a neck mass diagnosed by fine needle aspiration cytology. Cytopathology 22: 205-206. [Crossref]
25. Mahajan N, Aggarwal S, Khurana N, Jain S, Gulati A (2013) Ganglioneuroma in the neck masquerading as a benign mesenchymal lesion on cytology: a morphological mimic. Cytopathology 24: 65-67. [Crossref]
26. Ma J, Liang L, Liu H (2012) Multiple cervical ganglioneuroma: A case report and review of the literature. Oncol Lett 4: 509-512. [Crossref]
27. González Aguado R, Morales Angulo C, Obeso Agüera S, Longarela Herrero Y, García Zornoza R et al. (2012) Horner's syndrome after neck surgery. Acta Otorrinolaringol Esp 63: 299-302. [Crossref]
28. Ramani M, Radhika Krishna OH, Reddy KR, Sanakaya P, Sowjanya R (2013) An interesting case of differentiated neuroblastoma-ganglioneuroma of the neck in a 5 year old female child. J Evol Med Dent Sci 2: 4298-4301.
29. Bhadare PS, Poffle SV (2014) Aspiration cytology in the preoperative diagnosis of ganglioneuroma presenting as a neck mass. J Cytol 31: 57-58. [Crossref]
30. Jabbour MN, Zaatari GS, Salem Z, Khalifeh I (2015) Cervical ganglioneuroma in collision with a metastatic undifferentiated carcinoma. J Oral Maxillofac Pathol 19: 88-91. [Crossref]
31. Spinelli C, Rossi L, Barbetta A, Ugolino C, Strambini S (2015) Incidental ganglioneuromas: a presentation of 14 surgical cases and literature review. J Endocrinol Invest 38: 547-554. [Crossref]
32. Dutta HK (2016) Cervical Ganglioneuroma in a Child. SM J Pediatr Surg 2: 1013-1015.
33. Dalmia D, Behera SK, Motiwala MA (2016) Cervical vagal nerve ganglioneuroma: a rare case report. Int J Otorhi Head Neck Surg 2: 274-276.
34. Fialová M, Adámek S, Adámková J, Škapa P, Broulová J et al. (2015) Ganglioneuroma of the neck in a 5 year old female child. J Radiol Plast Reconstr Surg 15: 1015. [Crossref]
35. Fotopoulou K, Chelva A, Papatheonas A, Vaihtsevans K, Antoniades K (2017) Synchronous Ganglioneuroma and Schwannoma Mistaken for Carotid Body Tumor. Case Rep Otolaryngol 2017: 7973034. [Crossref]
36. Kiflu W, Nigussie T (2017) Ganglioneuroma of the Neck: A case report. Ethio J Med Sect 12: 164. [Crossref]
37. Misagh P, Zhila K, Mehdi C (2017) Cervical Spine Ganglioneuroma: A Case Report. Glob J Oto 12.
38. Helal AA, Badawy R, Mahtouz M, Hussien T (2018) Adjacent cervical ganglioneuromas. J Pediatr Surg Case Rep 34: 7-9.
39. Can IH, Kantekin Y, Ayıkın B, Yanık S, Atılık K (2019) Ganglioma of the neck: A case report. Arch Otol Rhino 5: 59-61.