WELL-POSEDNESS FOR THE CAUCHY PROBLEM
OF THE KLEIN-GORDON-ZAKHAROV SYSTEM
IN FIVE AND MORE DIMENSIONS

ISAO KATO AND SHINYA KINOSHITA

ABSTRACT. We study the Cauchy problem of the Klein-Gordon-Zakharov system in spatial dimension $d \geq 5$ with initial datum $(u, \partial_t u, n, \partial_t n)|_{t=0} \in H^{s+1}(\mathbb{R}^d) \times H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d) \times \dot{H}^{s-1}(\mathbb{R}^d)$. The critical value of s is $s_c = d/2 - 2$. By U^2, V^2 type spaces, we prove that the small data global well-posedness and scattering hold at $s = s_c$ in $d \geq 5$.

1. Introduction

We consider the Cauchy problem of the Klein-Gordon-Zakharov system:

$$
\begin{aligned}
(\partial_t^2 - \Delta + 1)u &= -nu, \quad (t, x) \in [-T, T] \times \mathbb{R}^d, \\
(\partial_t^2 - c^2 \Delta)n &= \Delta |u|^2, \quad (t, x) \in [-T, T] \times \mathbb{R}^d, \\
(u, \partial_t u, n, \partial_t n)|_{t=0} &= (u_0, u_1, n_0, n_1) \in H^{s+1}(\mathbb{R}^d) \times H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d) \times \dot{H}^{s-1}(\mathbb{R}^d),
\end{aligned}
$$

where u, n are real valued functions, $d \geq 5$, $c > 0$ and $c \neq 1$. (1.1) describes the interaction of the Langmuir wave and the ion acoustic wave in a plasma. Physically, c satisfies $0 < c < 1$. When $d = 3$, Ozawa, Tsutaya and Tsutsumi [26] proved that (1.1) is globally well-posed in the energy space $H^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3) \times L^2(\mathbb{R}^3) \times \dot{H}^{-1}(\mathbb{R}^3)$. They applied the Fourier restriction norm method to obtain the local well-posedness. Then by the local well-posedness and the energy method, they obtained the global well-posedness. For $d = 3$, Guo, Nakanishi and Wang [7] proved the scattering in the energy class with small, radial initial data. They applied the normal form reduction and the radial Strichartz estimates. If we transform $u_\pm := \omega_1 u + i\partial_t u, n_\pm := n \pm$ 2010 Mathematics Subject Classification. 35Q55, 35B40, 35A01, 35A02.

Key words and phrases. scattering, well-posedness, Cauchy problem, low regularity, bilinear estimate, bilinear Strichartz estimate, U^2, V^2 type Bourgain spaces.
\[i(\omega)^{-1} \partial_t n, \omega_1 := (1 - \Delta)^{1/2}, \omega := (-\Delta)^{1/2}, \text{then (1.1) is equivalent to the following.} \]

\[
\begin{cases}
(i\partial_t \mp \omega_1)u_\pm = \pm (1/4)(n_+ + n_-)(\omega_1^{-1}u_+ + \omega_1^{-1}u_-), & (t, x) \in [-T, T] \times \mathbb{R}^d, \\
(i\partial_t \mp c\omega)n_\pm = \pm (4c)^{-1}\omega|\omega_1^{-1}u_+ + \omega_1^{-1}u_-|^2, & (t, x) \in [-T, T] \times \mathbb{R}^d, \\
(u_\pm, n_\pm)|_{t=0} = (u_{\pm 0}, n_{\pm 0}) \in H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d).
\end{cases}
\]

(1.2)

Our main result is as follows.

Theorem 1.1. Let \(d \geq 5, s = s_c = d/2 - 2 \) and assume the initial data \((u_{\pm 0}, n_{\pm 0}) \in H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d)\) is small. Then, (1.2) is globally well-posed in \(H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d) \).

Corollary 1.2. The solution obtained in Theorem 1.1 scatters as \(t \to \pm \infty \).

For more precise statement of Theorem 1.1 and Corollary 1.2, see Propositions 4.1, 4.2, [13] considered (1.2) for \(d \geq 4, 0 < c \) and \(c \neq 1 \). [13] applied \(U^2, V^2 \) type spaces and obtained (1.2) is globally well-posed in \(H^s_c(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d) \) if the initial data is small and radial. \(U^2, V^2 \) type spaces were introduced by Koch and Tataru [18]. These spaces works well as one consider well-posedness at the critical space [8], [11], [12], [14]. Theorem 1.1 is proved by the Banach fixed point theorem. The key is the bilinear estimate (Proposition 3.1). For \(d \geq 5 \), it seemed difficult to prove Proposition 3.1 only by applying \(U^2, V^2 \) type spaces, the modulation estimate (Proposition 2.12, Lemma 2.13) and the Strichartz type estimates (Proposition 2.8) for a nonlinear interaction [13]. In the present paper, to overcome the difficulty, we derive the bilinear Strichartz estimate for the nonlinear interaction and then we are able to prove Proposition 3.1. See Proposition 2.21 for the bilinear Strichartz estimate. \(c \neq 1 \) plays an important role in the proof of the bilinear Strichartz estimate as well as in the proof of Lemma 2.13.

In Section 2, we prepare some notations and lemmas with respect to \(U^p, V^p \), in Section 3, we prove the bilinear estimates and in Section 4, we prove the main result.

ACKNOWLEDGEMENT

The authors appreciate Professor M. Sugimoto and Professor K. Tsugawa for giving many useful advices to the authors. The second author is supported by Grant-in-Aid for JSPS Research Fellow 16J11453.

2. Notations and Preliminary Lemmas

In this section, we prepare some lemmas, propositions and notations to prove the main theorem. \(A \lesssim B \) means that there exists \(C > 0 \) such that \(A \leq CB \). Also, \(A \sim \)
Proposition 2.2. Let \(v \).

\(\text{Likewise, let } V \) is finite, where we use the convention that \(v \) is a Banach space.

Definition 1. Let \(1 \leq p < \infty \). For \(\{t_k\}_{k=0}^{K} \in \mathcal{Z} \) and \(\{\phi_k\}_{k=0}^{K-1} \subset L^2_x \) with \(\sum_{k=0}^{K-1} \|\phi_k\|_{L^2_x}^p = 1 \), we call the function \(a : \mathbb{R} \to L^2_x \) given by

\[
 a = \sum_{k=1}^{K} 1_{(t_{k-1}, t_k)} \phi_{k-1}
\]
a \(U^p \)-atom. Furthermore, we define the atomic space

\[
 U^p := \left\{ u = \sum_{j=1}^{\infty} \lambda_j a_j \left| a_j : U^p\text{-atom, } \lambda_j \in \mathbb{C} \text{ such that } \sum_{j=1}^{\infty} |\lambda_j| < \infty \right\}
\]
with norm

\[
 \|u\|_{U^p} := \inf \left\{ \sum_{j=1}^{\infty} |\lambda_j| \left| u = \sum_{j=1}^{\infty} \lambda_j a_j, \lambda_j \in \mathbb{C}, a_j : U^p\text{-atom} \right. \right\}
\]

Proposition 2.1. Let \(1 \leq p < q < \infty \).

(i) \(U^p \) is a Banach space.

(ii) The embeddings \(U^p \subset U^q \subset L^\infty_t(L^2_x) \) are continuous.

(iii) For \(u \in U^p \), it holds that \(\lim_{t \to t_0^+} \|u(t) - u(t_0)\|_{L^2_x} = 0 \), i.e. every \(u \in U^p \) is right-continuous.

(iv) The closed subspace \(U^p_c \) of all continuous functions in \(U^p \) is a Banach space.

The above proposition is in \([8]\) (Proposition 2.2).

Definition 2. Let \(1 \leq p < \infty \). We define \(V^p \) as the normed space of all functions \(v : \mathbb{R} \to L^2_x \) such that \(\lim_{t \to +\infty} v(t) \) exist and for which the norm

\[
 \|v\|_{V^p} := \sup_{\{t_k\}_{k=0}^{K} \in \mathcal{Z}} \left(\sum_{k=1}^{K} \|v(t_k) - v(t_{k-1})\|_{L^2_x}^p \right)^{1/p}
\]
is finite, where we use the convention that \(v(-\infty) := \lim_{t \to -\infty} v(t) \) and \(v(\infty) := 0 \). Likewise, let \(V^p_c \) denote the closed subspace of all \(v \in V^p \) with \(\lim_{t \to -\infty} v(t) = 0 \).

The definitions of \(V^p \) and \(V^p_c \), see also \([9]\).

Proposition 2.2. Let \(1 \leq p < q < \infty \).

(i) Let \(v : \mathbb{R} \to L^2_x \) be such that

\[
 \|v\|_{V^p_0} := \sup_{\{t_k\}_{k=0}^{K} \in \mathcal{Z}_0} \left(\sum_{k=1}^{K} \|v(t_k) - v(t_{k-1})\|_{L^2_x}^p \right)^{1/p}
\]
is finite. Then, it follows that $v(t_0^+) := \lim_{t \to t_0^+} v(t)$ exists for all $t_0 \in [-\infty, \infty)$ and $v(t_0^-) := \lim_{t \to t_0^-} v(t)$ exists for all $t_0 \in (-\infty, \infty]$ and moreover,
\[\|v\|_{V^p} = \|v\|_0. \]

(ii) We define the closed subspace V^p_{rc} (V^p_{-rc}) of all right-continuous V^p functions (for V^p functions). The spaces V^p, V^p_{rc}, V^p_{-rc} are Banach spaces.

(iii) The embeddings $U^p \subset V^p_{-rc} \subset U^q$ are continuous.

(iv) The embeddings $V^p \subset V^q$ and $V^p \subset U^q$ are continuous.

The proof of Proposition 2.2 is in [8] (Proposition 2.4 and Corollary 2.6). Let $\{F^{-1}_\xi[\varphi_n](x)\}_{n \in \mathbb{Z}} \subset S(\mathbb{R}^d)$ be the Littlewood-Paley decomposition with respect to x, that is to say
\[
\begin{cases}
\varphi(\xi) \geq 0, \\
\text{supp } \varphi(\xi) = \{ \xi \mid 2^{-1} \leq |\xi| \leq 2 \},
\end{cases}
\]
\[
\varphi_n(\xi) := \varphi(2^{-n}\xi), \quad \sum_{n=-\infty}^{\infty} \varphi_n(\xi) = 1 \ (\xi \neq 0), \quad \psi(\xi) := 1 - \sum_{n=0}^{\infty} \varphi_n(\xi).
\]

Let $N = 2^n$ $(n \in \mathbb{Z})$ be dyadic number. P_N and $P_{<1}$ denote
\[
F_x[P_Nf](\xi) := \varphi(\xi/N)F_x[f](\xi) = \varphi_n(\xi)F_x[f](\xi),
\]
\[
F_x[P_{<1}f](\xi) := \psi(\xi)F_x[f](\xi).
\]

Similarly, let \tilde{Q}_N be
\[
F_t[\tilde{Q}_Ng](\tau) := \phi(\tau/N)F_t[g](\tau) = \phi_n(\tau)F_t[g](\tau),
\]
where $\{F^{-1}_\tau[\tilde{\varphi}_n](t)\}_{n \in \mathbb{Z}} \subset S(\mathbb{R})$ be the Littlewood-Paley decomposition with respect to t. Let $K_\pm(t) = \exp\{\mp it(1 - \Delta)^{1/2}\} : L^2_x \to L^2_x$ be the Klein-Gordon unitary operator such that $F_x[K_\pm(t)u_0](\xi) = \exp\{\mp it(\xi)\}F_x[u_0](\xi)$. Similarly, we define the wave unitary operator $W_{\pm c}(t) = \exp\{\mpict(\pm \Delta)^{1/2}\} : L^2_x \to L^2_x$ such that $F_x[W_{\pm c}(t)n_0](\xi) = \exp\{\pmict(\xi)\}F_x[n_0](\xi)$. We set
\[
W_{L}^{\pm c} := \{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^d \mid L/2 \leq |\tau \pm c| \leq 2L \},
\]
\[
KG^{\pm}_L := \{(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^d \mid L/2 \leq |\tau \pm \langle \xi \rangle| \leq 2L \}.
\]

Definition 3. We define
(i) $U^p_{K_\pm} = K_\pm(\cdot)U^p$ with norm $\|u\|_{U^p_{K_\pm}} = \|K_\pm(\cdot)u\|_{U^p}$,
\((ii)\) \(V_{K_x}^p = K_\pm (\cdot) V^p\) with norm \(\|u\|_{V_{K_x}^p} = \|K_\pm (\cdot) u\|_{V^p}\).

For dyadic numbers \(N, M\),

\[
Q_{N, K_\pm} := K_\pm (\cdot) \tilde{Q}_N K_\pm (-\cdot), \quad Q_{K_\pm}^{\geq M} := \sum_{N \geq M} Q_N, \quad Q_{K_\pm}^{\leq M} := Id - Q_{K_\pm}^{\geq M}.
\]

Here summation over \(N\) means summation over \(n \in \mathbb{Z}\). Similarly, we define \(U_{W_{\pm e}}^p, V_{W_{\pm e}}^p\).

Remark 2.1. For \(L_z^2\) unitary operator \(A = K_\pm \) or \(W_{\pm e}\),

\[
U_A^2 \subset V_{\pm e, A}^2 \subset L^\infty(\mathbb{R}; L_z^2)
\]

Definition 4. For the Klein-Gordon equation, we define \(Y_{K_\pm}^s\) (resp. \(Z_{K_\pm}^s\)) as the closure of all \(u \in C(\mathbb{R}; H^s_x) \cap (\nabla x)^{-s} V_{\pm e, K_\pm}\) (resp. \(u \in C(\mathbb{R}; H^s_x) \cap (\nabla x)^{-s} U_{K_\pm}^2\)) with \(Y_{K_\pm}^s\) (resp. \(Z_{K_\pm}^s\)) norm, where

\[
\|u\|_{Y_{K_\pm}^s} := \|P_{<1} u\|_{K^s_{\pm}} + \left(\sum_{N \geq 1} N^{2s} \|P_{N} u\|_{V_{N}^{2s}}^2\right)^{1/2},
\]

\[
\|u\|_{Z_{K_\pm}^s} := \|P_{<1} u\|_{U_{K_\pm}^2} + \left(\sum_{N \geq 1} N^{2s} \|P_{N} u\|_{U_{K_\pm}^2}^2\right)^{1/2}.
\]

For the wave equation, we define \(\dot{Y}_{W_{\pm e}}^s\), \(\dot{Z}_{W_{\pm e}}^s\) as the closure of all \(n \in C(\mathbb{R}; H^2_x) \cap (\nabla x)^{-s} V_{\pm e, W_{\pm e}}\) (resp. \(n \in C(\mathbb{R}; H^2_x) \cap (\nabla x)^{-s} U_{W_{\pm e}}^2\)) with \(\dot{Y}_{W_{\pm e}}^s\) (resp. \(\dot{Z}_{W_{\pm e}}^s\)) norm, where

\[
\|n\|_{\dot{Y}_{W_{\pm e}}^s} := \left(\sum_{N} N^{2s} \|P_{N} n\|_{V_{N}^{2s}}^2\right)^{1/2}, \quad \|n\|_{\dot{Z}_{W_{\pm e}}^s} := \left(\sum_{N} N^{2s} \|P_{N} n\|_{U_{N}^{2s}}^2\right)^{1/2}.
\]

Definition 5. For a Hilbert space \(H\) and a Banach space \(X \subset C(\mathbb{R}; H)\), we define

\[
B_{r}(H) := \{f \in H \mid \|f\|_{H} \leq r\},
\]

\[
X([0, T)) := \{u \in C([0, T); H) \mid \exists \tilde{u} \in X, \tilde{u}(t) = u(t), t \in [0, T)\}
\]

endowed with the norm \(\|u\|_{X([0, T))} = \inf\{\|\tilde{u}\|_{X} \mid \tilde{u}(t) = u(t), t \in [0, T)\}\).

We denote the Duhamel term

\[
I_{T, K_\pm}(n, v) := \pm \int_{0}^{t} 1_{[0, T]}(t') K_\pm (t - t') n(t')(\omega_1^{-1} v(t')) dt',
\]

\[
I_{T, W_{\pm e}}(u, v) := \pm \int_{0}^{t} 1_{[0, T]}(t') W_{\pm e}(t - t') \omega((\omega_1^{-1} u(t'))(\omega_1^{-1} v(t'))) dt'
\]

for the Klein-Gordon equation and the wave equation respectively. The following proposition is in [8] (Theorem 2.8 and Proposition 2.10).

Proposition 2.3. Let \(u \in V_{\pm e}^1 \subset U^2\) be absolutely continuous on compact intervals. Then, \(\|u\|_{U^2} = \sup_{v \in U^2, \|v\|_{V^2} = 1} \left| \int_{-\infty}^{\infty} \langle u'(t), v(t) \rangle_{L_z^2} dt \right|\).
Corollary 2.4. Let \(A = K_{\pm} \) or \(W_{\pm c} \) and \(u \in V_{-1,rc,A}^1 \subset U_{A}^2 \) be absolutely continuous on compact intervals. Then,
\[
\|u\|_{U_{A}^2} = \sup_{v \in V_{A}^1, \|v\|_{A} = 1} \left| \int_{-\infty}^{\infty} \langle A(t)(A(-\cdot)u)'(t), v(t) \rangle_{L_{x}^2} dt \right|.
\]

Proposition 2.5. Let \(T_0 : L_{x}^2 \times \ldots \times L_{x}^2 \rightarrow L_{loc}^{1}(\mathbb{R}; \mathbb{C}) \) be a n-linear operator.
Assume that for some \(1 \leq p < \infty \) and \(1 \leq q \leq \infty \), it holds that
\[
\|T_0(K_{\pm}(\cdot)\phi_1, \ldots, K_{\pm}(\cdot)\phi_n)\|_{L_{p}^{1}(\mathbb{R}; L_{x}^{q}(\mathbb{R}^d))} \lesssim \prod_{i=1}^{n} \|\phi_i\|_{L_{x}^{q}}.
\]
Then, there exists \(T : U_{p, K_{\pm}}^p \times \ldots \times U_{p, K_{\pm}}^p \rightarrow L_{p}^{1}(\mathbb{R}; L_{x}^{q}(\mathbb{R}^d)) \) satisfying
\[
\|T(u_1, \ldots, u_n)\|_{L_{p}^{1}(\mathbb{R}; L_{x}^{q}(\mathbb{R}^d))} \lesssim \prod_{i=1}^{n} \|u_i\|_{U_{p, K_{\pm}}^p},
\]
such that \(T(u_1, \ldots, u_n)(t)(x) = T_0(u_1(t), \ldots, u_n(t))(x) \) a.e.

See Proposition 2.19 in [8] for the proof of the above proposition.

Proposition 2.6. Let \(d \geq 3, 2 \leq r < \infty, 2/q = (d-1)(1/2 - 1/r), (q,r) \neq (2,2(d-1)/(d-3)) \) and \(s = 1/q - 1/r + 1/2 \). Then it holds that
\[
\|W_{\pm c}(t)f\|_{L_{x}^{q}(\mathbb{R}; L_{x}^{q}(\mathbb{R}^d))} \lesssim \|f\|_{L_{2}^{q}(\mathbb{R}^d)}.
\]
For the proof of Proposition 2.6 see [15], [5].

Proposition 2.7. Let \(d \geq 3, 2 \leq r < \infty, 2/q = (d-1)(1/2 - 1/r), (q,r) \neq (2,2(d-1)/(d-3)) \) and \(s = 1/q - 1/r + 1/2 \). Then it holds that
\[
\|K_{\pm}(t)f\|_{L_{x}^{q}(\mathbb{R}; L_{x}^{q}(\mathbb{R}^d))} \lesssim \|f\|_{L_{2}^{q}(\mathbb{R}^d)}.
\]
For the proof of Proposition 2.7 see [22]. Combining Proposition 2.2, Proposition 2.5, Proposition 2.6 and Proposition 2.7 we have the following.

Proposition 2.8. Let \(d \geq 3, 2 \leq r < \infty, 2/q = (d-1)(1/2 - 1/r), (q,r) \neq (2,2(d-1)/(d-3)) \) and \(s = 1/q - 1/r + 1/2 \). If \(p < q \) then it holds that
\[
\|f\|_{L_{x}^{q}(\mathbb{R}; L_{x}^{q}(\mathbb{R}^d))} \lesssim \|f\|_{V_{K_{\pm}}^{p}}, \quad \|f\|_{L_{x}^{q}(\mathbb{R}; L_{x}^{q}(\mathbb{R}^d))} \lesssim \|f\|_{V_{W_{\pm c}}^{p}}.
\]

Proposition 2.9. (i) Let \(T > 0 \) and \(u \in Y_{K_{\pm}}^{s,([0,T])}, u(0) = 0 \). Then, there exists \(0 \leq T' \leq T \) such that \(u_{\|Y_{K_{\pm}}^{s,([0,T])}\|} < \varepsilon \).
(ii) Let \(T > 0 \) and \(n \in Y_{W_{\pm c}}^{s,([0,T])}, n(0) = 0 \). Then, there exists \(0 \leq T' \leq T \) such that \(n_{\|Y_{W_{\pm c}}^{s,([0,T])}\|} < \varepsilon \).

For the proofs of (i) and (ii), see Proposition 2.24 in [8].
Lemma 2.10. Let $a \geq 0$. Then for $A = K_\pm$ or $W_{\pm c}$, it holds that
\[
\|\langle \nabla_x \rangle^a f\|_{V^2_{A}} \lesssim \|f\|_{Y^2_{A}}.
\]

Proof. We only prove for $A = K_\pm$ since we can prove similarly for $A = W_{\pm c}$. By L^2_x orthogonality, we have
\[
\|\langle \nabla_x \rangle^a f\|_{V^2_{K_\pm}}^2 \lesssim \sup_{\{t_i\}_{i=0}^\infty \in \mathbb{Z}} \sum_{i=1}^I \left(\|P_{<1}(K_\pm(-t_i)f(t_i) - K_\pm(-t_{i-1})f(t_{i-1}))\|_{L^2_x}^2 + \sum_{N \geq 1} N^{2a}\|P_N(K_\pm(-t_i)f(t_i) - K_\pm(-t_{i-1})f(t_{i-1}))\|_{L^2_x}^2\right) \\
\lesssim \sup_{\{t_i\}_{i=0}^\infty \in \mathbb{Z}} \sum_{i=1}^I \left(\|K_\pm(-t_i)P_{<1}f(t_i) - K_\pm(-t_{i-1})P_{<1}f(t_{i-1})\|_{L^2_x}^2 + \sum_{N \geq 1} N^{2a}\sup_{\{t_i\}_{i=0}^\infty \in \mathbb{Z}} \sum_{i=1}^I \|K_\pm(-t_i)P_Nf(t_i) - K_\pm(-t_{i-1})P_Nf(t_{i-1})\|_{L^2_x}^2\right) \\
\lesssim \|f\|_{Y^2_{K_\pm}}^2.
\]

Remark 2.2. Similarly, we see
\[
\|\nabla_x^a f\|_{V^2_{A}} \lesssim \|f\|_{Y^2_{A}}.
\]

Lemma 2.11. If f, g are measurable functions, then for $Q = Q^A_{<M}$ or $Q^A_{\geq M}$, $A = K_\pm$ or $W_{\pm c}$, it holds that
\[
\int_{\mathbb{R}^{1+d}} f(t, x)\overline{Qg(t, x)}dxdt = \int_{\mathbb{R}^{1+d}} (Qf(t, x))\overline{g(t, x)}dxdt.
\]

For the proof of Lemma 2.11 see [14], Lemma 2.17. Since $Q^A_{<M} = I_d - Q^A_{\geq M}$, we also obtain the result for $Q = Q^A_{<M}$.

Proposition 2.12. It holds that
\[
\|Q^\pm_{M} u\|_{L^2_{x,t}(\mathbb{R}^{1+d})} \lesssim M^{-1/2}\|u\|_{V^2_{K^\pm}} \quad \|Q^\pm_{\geq M} u\|_{L^2_{x,t}(\mathbb{R}^{1+d})} \lesssim M^{-1/2}\|u\|_{V^2_{K^\pm}},
\]
\[
\|Q^\pm_{< M} u\|_{V^2_{K^\pm}} \lesssim \|u\|_{V^2_{K^\pm}} \quad \|Q^\pm_{\geq M} u\|_{V^2_{K^\pm}} \lesssim \|u\|_{V^2_{K^\pm}}.
\]

The same estimates hold by replacing the Klein-Gordon operator K_\pm by the wave operator $W_{\pm c}$.
Lemma 2.13. Let $c > 0, c \neq 1$ and $\tau_3 = \tau_1 - \tau_2, \xi_3 = \xi_1 - \xi_2$. If $|\xi_1| \gg |\xi_2|$ or $\langle \xi_1 \rangle \ll |\xi_2|$, then it holds that

$$\max\{|\tau_1 \pm \langle \xi_1 \rangle|, |\tau_2 \pm \langle \xi_2 \rangle|, |\tau_3 \pm c|\xi_3|| \gtrsim \max\{|\xi_1|, |\xi_2|\}. \quad (2.2)$$

Proof. We only prove the case $|\xi_1| \gg |\xi_2|$ since the case $\langle \xi_1 \rangle \ll |\xi_2|$ is proved by the same manner.

$$\text{(l.h.s.)} \gtrsim \left|(\tau_1 \pm (1 + |\xi_1|)) - (\tau_2 \pm (1 + |\xi_2|)) - (\tau_3 \pm c|\xi_3|)\right| \quad (2.3)$$

If $0 < c < 1$, then we take ε_c such that $0 < \varepsilon_c < (1 - c)/(1 + c), |\xi_2| \leq \varepsilon_c|\xi_1|$. Then, the right hand side of (2.3) is bounded by

$$(1 + |\xi_1|) - (1 + |\xi_2|) - c|\xi_1 - \xi_2| \geq |\xi_1| - \varepsilon_c|\xi_1| - c(1 + \varepsilon_c)|\xi_1| \gtrsim |\xi_1|.$$

If $c > 1$, then we take $\tilde{\varepsilon}_c$ such that $0 < \tilde{\varepsilon}_c < (c - 1)/(c + 3), |\xi_2| \leq \tilde{\varepsilon}_c|\xi_1|, |\xi_1| \geq 1/\tilde{\varepsilon}_c$. Then, the right hand side of (2.3) is bounded by

$$c|\xi_1 - \xi_2| - (1 + |\xi_1|) - (1 + |\xi_2|) \geq c(1 - \tilde{\varepsilon}_c)|\xi_1| - (1 + \tilde{\varepsilon}_c)|\xi_1| - 2\tilde{\varepsilon}_c|\xi_1| \gtrsim |\xi_1|.$$

Remark 2.3. From (2.1) and (2.2), we can obtain a half derivative.

Lemma 2.14. Let $\tilde{u}_{N_1} := 1_{[0,T]}P_{N_1}u, \tilde{v}_{N_2} := 1_{[0,T]}P_{N_2}v, \tilde{n}_{N_3} := 1_{[0,T]}P_{N_3}n, Q_1, Q_2 \in \{Q_{<M}, Q_{=M}, Q_{=c}\}, Q_3 \in \{Q_{<M}, Q_{=c}\}$. Let $s = s_c = d/2 - 2$. Then the following estimates hold for all $0 < T < \infty$:

(i) If $N_3 \lesssim N_2 \sim N_1$, then

$$|I_1| := \left| \int_{R^{1+d}} (\omega_{1}^{-1} \tilde{u}_{N_1})(\omega_{1}^{-1} \tilde{v}_{N_2})(\omega \tilde{n}_{N_3})dxdt \right| \lesssim N_3^s \|u_{N_1}\|_{V^1_{K_\pm}} \|v_{N_2}\|_{V^1_{K_\pm}} \|n_{N_3}\|_{V^2_{K_\pm}}.$$

(ii) It holds that

$$|I_2| := \left| \int_{R^{1+d}} \tilde{n}(\omega_{1}^{-1} \tilde{v})(\omega_{1}^{-1} \tilde{n} \tilde{u}_{N_1})dxdt \right| \lesssim \|n\|_{Y^s_{W_{-K_\pm}^\pm}} \|v\|_{Y^s_{K_\pm}} \|P_{<1} u\|_{V^2_{K_\pm}}.$$

(iii) If $N_1 \sim N_2$, then

$$|I_3| := \left| \int_{R^{1+d}} \left(\sum_{N_3 \lesssim N_2} \tilde{n}_{N_3}\right)(\omega_{1}^{-1} \tilde{v}_{N_2}) \tilde{u}_{N_1}dxdt \right| \lesssim \|n\|_{Y^s_{W_{-K_\pm}^\pm}} \|v_{N_2}\|_{V^2_{K_\pm}} \|n_{N_1}\|_{V^2_{K_\pm}}.$$

(iv) If $N_1 \sim N_3, N_1 \gg 1, M = \varepsilon N_1$ and $\varepsilon > 0$ is sufficiently small, then

$$|I_i| \lesssim \|n_{N_3}\|_{V^2_{W_{-K_\pm}^\pm}} \|v\|_{Y^s_{K_\pm}} \|u_{N_1}\|_{V^2_{K_\pm}}, \quad (i = 4, 5)$$
We prove (iii). From Proposition 2.8, (2.7), Remark 2.2 and Lemma 2.10, we obtain

\[I_4 := \int_{\mathbb{R}^{1+d}} (Q_{\leq M}^{W+c} \tilde{n}_N) \left(\sum_{N_2 \leq N_1} Q_{2}^{\omega^{-1} v_{n_2}} (Q_{1}^{u_{n_1}}) \right) dx dt, \]
\[I_5 := \int_{\mathbb{R}^{1+d}} (Q_{3} \tilde{n}_N) \left(\sum_{N_2 \leq N_1} Q_{2}^{\omega^{-1} v_{n_2}} (Q_{\geq M}^{u_n}) \right) dx dt. \]

Proof. We show (i) first. For \(f \in V_A^2, A \in \{ K_\pm, W_\pm \} \), we see

\[\| 1_{[0,T]} f \|_{V_A^2} \lesssim \| f \|_{V_A^2}. \] (2.4)

For \(d \geq 5 \), we apply the H"older inequality to have

\[|I_1| \lesssim \| \omega^{-1} \tilde{u}_N \|_{L^2(dt)} \| \omega^{-1} \tilde{v}_N \|_{L^2(dt)} \| \omega \tilde{n}_N \|_{L_{2}(dt)}. \] (2.5)

We apply Proposition 2.8 (2.4) and the Sobolev inequality, then we have

\[\| \omega^{-1} \tilde{f}_N \|_{L^2(dt)} \lesssim \langle N \rangle^{-1/2} \| f_N \|_{V_A^2}, \] (2.6)
\[\| \omega \tilde{n}_N \|_{L_{2}(dt)} \lesssim \| \nabla_x \|^{d/(2d-1)} \| \omega \tilde{n}_N \|_{L_{2}(dt)} \lesssim \| \nabla_x \|^{d/(2d-1)} \| \omega \tilde{n}_N \|_{V_A^2}. \] (2.7)
\[\lesssim N_3^{\delta_e +1} \| n_N \|_{V_A^2}. \] (2.8)

Collecting (2.5), (2.6), (2.8) and \(N_3 \lesssim N_1 \sim N_2 \), we obtain

\[|I_1| \lesssim N_3^{\delta_e} \| n_N \|_{V_A^2} \| n_N \|_{V_A^2} \| n_N \|_{V_A^2}. \]

Next, we prove (ii). For \(d \geq 5 \), by the H"older inequality to have

\[|I_2| \lesssim \| \tilde{n} \|_{L_{2}(dt)} \| \omega^{-1} \tilde{v} \|_{L^2(dt)} \| P_{<1} \tilde{u} \|_{L^2(dt)}. \] (2.9)

From Proposition 2.8 (2.7), Remark 2.2 and Lemma 2.10, we obtain

\[\| n \|_{Y_{W_c}^e} \lesssim \| n \|_{Y_{W_c}^e}, \] (2.10)
\[\| \omega^{-1} \tilde{v} \|_{L^2(dt)} \lesssim \| \langle \nabla_x \rangle^{-1/2} v \|_{V_A^2} \lesssim \| \langle \nabla_x \rangle^{\delta_e} v \|_{V_A^2} \lesssim \| v \|_{Y_{K_c}^e}, \] (2.11)
\[\| P_{<1} \tilde{u} \|_{L^2(dt)} \lesssim \| \langle \nabla_x \rangle^{1/2} P_{<1} u \|_{V_A^2} \lesssim \| P_{<1} u \|_{V_A^2}. \] (2.12)

Collecting (2.9)–(2.12), we obtain

\[|I_2| \lesssim \| n \|_{Y_{W_c}^e} \| v \|_{Y_{K_c}^e} \| P_{<1} u \|_{V_A^2}. \]

We prove (iii) for \(d \geq 5 \). We apply the H"older inequality to have

\[|I_3| \lesssim \| \sum_{N_3 \leq N_2} \tilde{n}_N \|_{L^2(dt)} \| \omega^{-1} \tilde{v}_N \|_{L^2(dt)} \| \tilde{u}_N \|_{L^2(dt)}. \] (2.13)
Similar to (2.7), the Sobolev inequality and Proposition 2.8 we have
\[\left\| \sum_{N_3 \leq N_2} \tilde{n}_{N_3} \right\|_{L_{t,x}^{(d+1)/2}} \lesssim \left\| \nabla_x \right\|_{L_{t,x}^{(d+1)/2}} \left\| \sum_{N_3 \leq N_2} \tilde{n}_{N_3} \right\|_{W_{x,\pm_c}^{2}}. \]
(2.14)

By the $L_{t,x}^2$ orthogonality, we obtain
\[\left\| \nabla_x \right\|_{L_{t,x}^{(d+1)/2}} \sum_{N_3 \leq N_2} \left\| \tilde{n}_{N_3} \right\|_{W_{x,\pm_c}^{2}}^2 \lesssim \sup_{\{t_i\}_{i=0}^I} \sum_{i=1}^I \sum_{N} N_{2} \left\| P_{N} \left\{ W_{\pm c}(-t_i) \left(\sum_{N_3 \leq N_2} \tilde{n}_{N_3}(t_i) \right) \right. \right. \]
\[\left. \left. - W_{\pm c}(-t_i-1) \left(\sum_{N_3 \leq N_2} \tilde{n}_{N_3}(t_{i-1}) \right) \right\|_{L_{t}^2}^2. \]
(2.15)

Since $P_{N} \tilde{n}_{N_3} = 0$ if $N_3 > 2N$ or $N_3 < N/2$ and P_{N} is projection, the right-hand side is bounded by
\[\sup_{\{t_i\}_{i=0}^I} \sum_{i=1}^I \sum_{N} N_{2} \left\| W_{\pm c}(-t_i) P_{N} \tilde{n}(t_i) - W_{\pm c}(-t_i-1) P_{N} \tilde{n}(t_{i-1}) \right\|_{L_{x}^2}^2 \]
\[\lesssim \sum_{N} N_{2} \sup_{\{t_i\}_{i=0}^I} \left\| W_{\pm c}(-t_i) P_{N} \tilde{n}(t_i) - W_{\pm c}(-t_i-1) P_{N} \tilde{n}(t_{i-1}) \right\|_{L_{x}^2}^2 \]
\[\lesssim \left\| n \right\|_{Y_{W_{x,\pm_c}}^{2}}^2. \]
(2.16)

Hence, from (2.13)-(2.16), (2.6) and $N_1 \sim N_2$, we have
\[|I_3| \lesssim \left\| n \right\|_{Y_{W_{x,\pm_c}}^{2}} \left\langle N_2 \right\rangle^{-1/2} \left\| v_{N_2} \right\|_{V_{K_{\pm}}^{2}} \left\langle N_1 \right\rangle^{1/2} \left\| u_{N_1} \right\|_{V_{K_{\pm}}^{2}} \]
\[\lesssim \left\| n \right\|_{Y_{W_{x,\pm_c}}^{2}} \left\| v_{N_2} \right\|_{V_{K_{\pm}}^{2}} \left\| u_{N_1} \right\|_{V_{K_{\pm}}^{2}}. \]

We prove (iv). The estimate for I_5 is obtained by the same manner as the estimate for I_4, so we only estimate I_4. We apply the Hölder inequality to have
\[|I_4| \lesssim \left\| Q_{\geq N_1} \tilde{n}_{N_3} \right\|_{L_{t,x}^{2}} \left\| \sum_{N_2 \ll N_1} Q_{\geq N_2} \tilde{u}_{N_2} \right\|_{L_{t,x}^{d+1}} \left\| Q_{N_1} \tilde{u}_{N_1} \right\|_{L_{t,x}^{2(d+1)/d-1}}. \]
(2.17)

By Proposition 2.12, (2.6) and (2.3), we have
\[\left\| Q_{\geq N_1} \tilde{n}_{N_3} \right\|_{L_{t,x}^{2}} \lesssim N_1^{-1/2} \left\| n_{N_3} \right\|_{V_{W_{x,\pm_c}}^{2}}, \]
(2.18)
\[\left\| Q_{N_1} \tilde{u}_{N_1} \right\|_{L_{t,x}^{2(d+1)/d-1}} \lesssim \left\langle N_1 \right\rangle^{1/2} \left\| u_{N_1} \right\|_{V_{K_{\pm}}^{2}}. \]
(2.19)

We apply the Sobolev inequality, Proposition 2.8 Proposition 2.12 and (2.4), we have
\[\left\| \sum_{N_2 \ll N_1} Q_{\geq N_2} \tilde{u}_{N_2} \right\|_{L_{t,x}^{d+1}} \lesssim \left\| \nabla_x \right\|_{L_{t,x}^{d+1}} \sum_{N_2 \ll N_1} Q_{\geq N_2} \tilde{u}_{N_2} \left\| L_{t,x}^{d+1} L_{t,x}^{2(d-1)/d-5} \right\| \]
\[\lesssim \left\| \nabla_x \right\|_{L_{t,x}^{d+1}} \sum_{N_2 \ll N_1} \tilde{u}_{N_2} \left\| V_{K_{\pm}}^{2} \right\|. \]
(2.20)
Similar to (2.13) and (2.16), we have
\[
\left\| \left(\nabla_{\mathbb{Z}} \right)^{\frac{d(d-3)}{2(d-1)+1}} \sum_{N_2 \leq N_1} \tilde{v}_{N_2} \right\|_{L_{t,x}^2}^2 \lesssim \| v \|_{Y_{K^\pm}^{\infty}}^2.
\] (2.21)

Collecting (2.17)–(2.21) and \(N_1 \gg 1 \), we obtain
\[
|I_4| \lesssim \|\eta_{N_3}\|_{Y_{m,\pm}^{1}} \| v \|_{Y_{K^\pm}^{\infty}} \| u_{N_1} \|_{Y_{K^\pm}^{1}}.
\]

The following proposition is in [27], Proposition 10.

Proposition 2.15. (\(L^4 \) Strichartz estimate) For all dyadic numbers \(H \geq 1 \) and \(N \), it holds that
\[
\| W_{\pm c}(t) P_N \phi \|_{L_{t,x}^4} \lesssim N^{(d-1)/4} \| P_N \phi \|_{L_x^4}, \quad \| K_{\pm}(t) P_H \phi \|_{L_{t,x}^4} \lesssim H^{(d-1)/4} \| P_H \phi \|_{L_x^4}.
\]

From Proposition 2.5 and the above proposition, we obtain the following.

Proposition 2.16. For dyadic numbers \(H \geq 1 \) and \(N \), it holds that
\[
\| u_N \|_{L_{t,x}^4} \lesssim N^{(d-1)/4} \| u_N \|_{W_{m,\pm}^{1}}, \quad \| v_H \|_{L_{t,x}^4} \lesssim H^{(d-1)/4} \| v_H \|_{L_{K^\pm}^4}.
\]

Proposition 2.17. Let \(u_M, v_N \in L^2(\mathbb{R}^{1+d}) \) be such that
\[
supp \mathcal{F} u_M \subset W_{L_1}^{\pm, c} \cap (\mathbb{R} \times (C \cap P_M)), \quad supp \mathcal{F} v_N \subset KG_{L_2}^{\pm} \cap P_N
\]
for dyadic numbers \(L_1, L_2, M, N \) and a cube \(C \subset \mathbb{R}^d \) of side length \(e \). If \(L \ll M \sim N, c > 0 \) and \(c \neq 1 \), it holds that
\[
\| P_L(u_M v_N) \|_{L_{t,x}^2} \lesssim L^{(d-1)/2} (L_1 L_2)^{1/2} \| u_M \|_{L_{t,x}^2} \| v_N \|_{L_{t,x}^2}.
\]

Proof. Let \(f := \mathcal{F} u_M, g := \mathcal{F} v_N \). By the Cauchy-Schwarz inequality, we have
\[
\left\| \int_{|\xi| \sim L} f(\tau_1, \xi_1)g(\tau - \tau_1, \xi - \xi_1) d\tau_1 d\xi_1 \right\|_{L_{t,\xi}^2} \lesssim \sup_{\tau, \xi} E(\tau, \xi)^{1/2} \| f \|_{L^2} \| g \|_{L^2}
\]
where
\[
E(\tau, \xi) = \{(\tau_1, \xi_1) \in supp f; (\tau - \tau_1, \xi - \xi_1) \in supp g, |\xi| \sim L \} \subset \mathbb{R}^{1+d}.
\]

Put \(\mathcal{L} := \min\{L_1, L_2\} \), \(\mathcal{L} := \max\{L_1, L_2\} \). By the Fubini theorem,
\[
|E(\tau, \xi)| \leq \mathcal{L} \{ |\xi_1| \leq \mathcal{L}, |\tau \pm c| \xi_1| \pm |\xi - \xi_1| \leq \mathcal{L}, \xi_1 \in C, |\xi_1| \sim M, |\xi - \xi_1| \sim N, |\xi| \sim L \}.
\]
In the right-hand side of the above inequality, the subset of the \(\xi_1 \) is contained in a cube of side length \(m \), where \(m \sim \min\{e, N\} \sim L \). For some \(i \in \{1, ..., d\} \), we set \(|(\xi - \xi_1)_i| \geq N \), where \((\xi - \xi_1)_i\) denotes the \(i \)-th component of \(\xi - \xi_1 \). We compute
\[
|\partial_{\xi_1,i}(\tau \pm c|\xi_1| \pm (1 + |\xi - \xi_1|)|) = \left| \frac{((\xi - \xi_1)_i)}{|\xi - \xi_1|} \right| + c \frac{\xi_{1,i}}{|\xi_1|},\]
(2.22)
where $\xi_{1,i}$ be the i-th component of ξ_1. Since $|[(\xi - \xi_1)_i| \gtrsim N$ and $|\xi| \sim L$, it suffices to consider the case $|\xi_{0,i}| \ll |\xi_{1,i}|$, where $\xi_{0,i}$ be the i-th component of ξ. Firstly, we consider the case $0 < c \ll 1$. We have
\[
\text{r.h.s. of } (2.22) \geq \left| \frac{|(\xi - \xi_1)_i|}{|\xi - \xi_1|} - c \frac{|\xi_{1,i}|}{|\xi_1|} \right| \gtrsim 1 - c
\]
from $|(\xi - \xi_1)_i| \gtrsim N \sim |\xi - \xi_1|$ and $|\xi_1| \geq |\xi_{1,i}|$. Secondly, we consider the case $c \sim 1, c \neq 1$. The assumption $L \ll N \sim M$ implies $(1 - \varepsilon)|\xi_1 - \xi| \leq |\xi| \leq (1 + \varepsilon)|\xi - \xi_1|$ for sufficiently small $\varepsilon > 0$. From the above inequality and $|\xi_{0,i}| \ll |\xi_{1,i}|$, we obtain
\[
\text{r.h.s. of } (2.22) \gtrsim \left| c \frac{|\xi_{1,i}|}{|\xi_1|} - \frac{|(\xi - \xi_1)_i|}{|\xi - \xi_1|} \right| \gtrsim |c - 1|.
\]
Finally, we consider the case $c \gg 1$. We have
\[
\text{r.h.s. of } (2.22) \gtrsim c \left| \frac{|\xi_{1,i}|}{|\xi_1|} - \frac{|(\xi - \xi_1)_i|}{|\xi - \xi_1|} \right| \gtrsim c - 1
\]
since $|(\xi - \xi_1)_i| \gtrsim N$ and $|\xi_{0,i}| \ll |\xi_{1,i}|$. Therefore,
\[
|\partial_{\xi_{1,i}}(r \pm c|\xi_1| \pm (1 + |\xi - \xi_1|))| \gtrsim |c - 1|.
\]
Hence by (2.23) and the mean value theorem, we have
\[
\left| \{ \xi_1 : |r \pm c|\xi_1| \pm |\xi - \xi_1| \ll 7, \xi_1 \in C, |\xi_1| \sim M, |\xi - \xi_1| \sim N, |\xi| \sim L \} \right| \lesssim |c - 1|^{-1}m^{d-17}.
\]
From $m \sim L$, we have
\[
|E(\xi, r)|^{1/2} \lesssim (|c - 1|^{-1}m^{d-17})^{1/2} \sim |c - 1|^{-1/2}(L_1L_2)^{1/2}L^{(d-1)/2}.
\]
Thus, we obtain the result.

Proposition 2.17 implies the following.

Proposition 2.18. Let $L \ll M \sim N, c > 0$ and $c \neq 1$. For $u_M = W_{\pm c}(t)P_M\varphi, v_N = K_{\pm}(t)P_N\varphi$, it holds that
\[
\|P_L(u_Mv_N)\|_{L^2_{t,x}} \lesssim L^{(d-1)/2}\|P_M\varphi\|_{L^2_{t}}\|P_N\varphi\|_{L^2_{t}}.
\]

From Proposition 2.13 and the above proposition, we have the following.

Proposition 2.19. Let $L \ll M \sim N, c > 0$ and $c \neq 1$. It holds that
\[
\|P_L(u_Mv_N)\|_{L^2_{t,x}} \lesssim L^{(d-1)/2}\|u_M\|_{W^{2}_{\pm c}}\|v_N\|_{W^{2}_{\pm c}}.
\]

The following proposition is in [8], Proposition 2.20.
Proposition 2.20. Let \(q > 1, E \) be a Banach space, \(A = K_\pm \) or \(W_{\pm c} \) and \(T : U_A^q \to E \) be a bounded, linear operator with \(\| Tu \|_E \leq C_q \| u \|_{U_A^q} \) for all \(u \in U_A^q \). In addition, assume that for some \(1 \leq p < q \) there exists \(C_p \in (0, C_q] \) such that the estimate \(\| Tu \|_E \leq C_p \| u \|_{V_A^p} \) holds true for all \(u \in U_A^p \). Then, \(T \) satisfies the estimate

\[
\| Tu \|_E \leq C_p (1 + \ln(C_q/C_p)) \| u \|_{V_A^p}, \quad u \in V_A^p.
\]

Proposition 2.21. Let \(L \ll M \sim N, N \geq 1, c > 0 \) and \(c \neq 1 \). For sufficiently small \(\varepsilon > 0 \), it holds that

\[
\| P_L(u_M v_N) \|_{L^2_{t,x}} \lesssim L^{(d-1)/2} (M/L)^{\varepsilon} \| u_M \|_{V_{w_{\pm c}}^2} \| v_N \|_{V_{w_{\pm c}}^2}.
\]

Proof. By the Hölder inequality, \(M \sim N, N \geq 1 \) and Proposition 2.16 we obtain

\[
\| P_L(u_M v_N) \|_{L^2_{t,x}} \lesssim \| u_M \|_{L^4_{t,x}} \| v_N \|_{L^4_{t,x}} \lesssim M^{(d-1)/2} \| u_M \|_{U_{w_{\pm c}}^4} \| v_N \|_{U_{w_{\pm c}}^4}.
\]

Let \(Su := P_L(\check{P}_M u \check{P}_N v) \), where \(\check{P}_M = P_{M/2} + P_M + P_{2M} \), such that \(\check{P}_M P_M = P_M \check{P}_M \) is defined by the same manner as \(\check{P}_M \). From (2.24) and \(U_{w_{\pm c}}^2 \subset U_{w_{\pm c}}^4 \), we have

\[
\| Su \|_{U_{w_{\pm c}}^2} \to L^2 \lesssim M^{(d-1)/2} \| u \|_{U_{w_{\pm c}}^4} \lesssim M^{(d-1)/2} \| u \|_{U_{w_{\pm c}}^2}. \tag{2.25}
\]

From Proposition 2.19 we have

\[
\| Su \|_{U_{w_{\pm c}}^2} \to L^2 \lesssim L^{(d-1)/2} \| u \|_{U_{w_{\pm c}}^2}. \tag{2.26}
\]

From (2.25), (2.26) and Proposition 2.20 for sufficiently small \(\varepsilon' > 0 \), we have

\[
\| Su \|_{V_{w_{\pm c}}^2} \to L^2 \lesssim L^{(d-1)/2} (M/L)^{\varepsilon'} \| u \|_{U_{w_{\pm c}}^2}. \tag{2.27}
\]

Let \(Tu := P_L(\check{P}_M u \check{P}_N v) \). From Proposition 2.16 \(M \sim N \) and \(V_{w_{\pm c}}^2 \subset U_{K_{\pm c}}^4 \), we have

\[
\| Tu \|_{V_{w_{\pm c}}^2} \to L^2 \lesssim N^{(d-1)/2} \| v_N \|_{V_{w_{\pm c}}^4} \lesssim N^{(d-1)/2} \| v_N \|_{V_{w_{\pm c}}^2} \lesssim N^{(d-1)/2} \| v \|_{V_{w_{\pm c}}^2}. \tag{2.28}
\]

By (2.27), we have

\[
\| Tu \|_{V_{w_{\pm c}}^2} \to L^2 \lesssim L^{(d-1)/2} (M/L)^{\varepsilon'} \| v \|_{V_{w_{\pm c}}^2}. \tag{2.29}
\]

Collecting (2.28), (2.29), \(M \sim N \) and Proposition 2.20 we obtain

\[
\| Tu \|_{V_{w_{\pm c}}^2} \to L^2 \lesssim L^{(d-1)/2} (M/L)^{2\varepsilon'} \| v \|_{V_{w_{\pm c}}^2}. \tag{2.28}
\]

Taking \(\varepsilon = 2\varepsilon' \), the claim follows. \(\square \)
3. Bilinear estimates

Proposition 3.1. Let \(d \geq 5, s = s_c = d/2 - 2 \) and \(c > 0, c \neq 1 \). Then for all \(0 < T < \infty \), it holds that

\[
\|I_{T,K_\pm}(n,v)\|_{{Z_{K_\pm}^{Z_c}}} \lesssim \|n\|_{Y_{W_c}^{Z_c}} \|v\|_{Y_{K_\pm}^{Z_c}},
\]

(3.1)

\[
\|I_{T,W_\pm}(u,v)\|_{{Z_{W_\pm}^{Z_c}}} \lesssim \|u\|_{Y_{K_\pm}^{Z_c}} \|v\|_{Y_{K_\pm}^{Z_c}}.
\]

(3.2)

Remark 3.1. In (3.1) and (3.2), the implicit constant does not depend on \(T \).

Proof. We denote \(\tilde{u}_{N_1} := 1_{[0,T]}P_{N_1}u, \tilde{v}_{N_2} := 1_{[0,T]}P_{N_2}v, \tilde{n}_{N_3} := 1_{[0,T]}P_{N_3}n \). To prove (3.1), we need to estimate the following.

\[
\|I_{T,K_\pm}(n,v)\|_{{Z_{K_\pm}^{Z_c}}}^2 \lesssim \sum_{i=0}^{3} J_i
\]

where

\[
J_0 := \left\| \int_0^t 1_{[0,T]}(t')K_\pm(t - t')P_{1}(\tilde{n}(\omega_1^{-1}\tilde{v}))(t')dt' \right\|^2_{U_{K_\pm}^{Z_c}},
\]

\[
J_1 := \sum_{N_1 \geq 1} N_1^{2s_c} \left\| \int_0^t 1_{[0,T]}(t')K_\pm(t - t') \sum_{N_2 \sim N_1} \sum_{N_3 \leq N_2} P_{N_1}(\tilde{n}(\omega_1^{-1}\tilde{v}_{N_2}))(t')dt' \right\|^2_{U_{K_\pm}^{Z_c}},
\]

\[
J_2 := \sum_{N_1 \geq 1} N_1^{2s_c} \left\| \int_0^t 1_{[0,T]}(t')K_\pm(t - t') \sum_{N_2 \ll N_1} \sum_{N_3 \sim N_1} P_{N_1}(\tilde{n}(\omega_1^{-1}\tilde{v}_{N_2}))(t')dt' \right\|^2_{U_{K_\pm}^{Z_c}},
\]

\[
J_3 := \sum_{N_1 \geq 1} N_1^{2s_c} \left\| \int_0^t 1_{[0,T]}(t')K_\pm(t - t') \sum_{N_2 \gg N_1} \sum_{N_3 \sim N_2} P_{N_1}(\tilde{n}(\omega_1^{-1}\tilde{v}_{N_2}))(t')dt' \right\|^2_{U_{K_\pm}^{Z_c}}.
\]

By Corollary 2.4 and Lemma 2.14 (ii), we have

\[
J_0^{1/2} \lesssim \sup_{\|u\|_{V_{K_\pm}^{Z_c}} = 1} \left| \int_{\mathbb{R}^{1+d}} \tilde{n}(\omega_1^{-1}\tilde{v})(P_{<1}\tilde{u})dxdt \right|
\]

\[
\lesssim \|n\|_{Y_{W_c}^{Z_c}}^2 \|v\|_{Y_{K_\pm}^{Z_c}}.
\]

(3.3)

We apply Corollary 2.4, \(N_1 \sim N_2 \), Lemma 2.14 (iii) and \(\|\tilde{u}_{N_1}\|_{V_{K_\pm}^{Z_c}} \lesssim \|u\|_{V_{K_\pm}^{Z_c}} \), then

\[
J_1 \lesssim \sum_{N_1 \geq 1} N_1^{2s_c} \sup_{\|u\|_{V_{K_\pm}^{Z_c}} = 1} \left| \sum_{N_2 \sim N_1} \sum_{N_3 \leq N_2} \int_{\mathbb{R}^{1+d}} \tilde{n}_{N_3}(\omega_1^{-1}\tilde{v}_{N_2})\tilde{u}_{N_1}dxdt \right|^2
\]

\[
\lesssim \sum_{N_2 \geq 1} N_2^{2s_c} \|n\|_{Y_{W_c}^{Z_c}}^2 \|v_{N_2}\|_{V_{K_\pm}^{Z_c}}^2
\]

\[
\lesssim \|n\|_{Y_{W_c}^{Z_c}}^2 \|v\|_{Y_{K_\pm}^{Z_c}}^2.
\]

(3.4)
For the estimate of J_2, we take $M = \varepsilon N_1$ for sufficiently small $\varepsilon > 0$. Then, from Lemma 2.13, we have

$$P_{N_1}Q_{<M}^{K_\pm}((Q_{<M}^{W_{\pm c}}\tilde{n}_{N_3})(Q_{<M}^{K_\pm}\omega_1^{-1}\tilde{v}_{N_2}))$$

$$= P_{N_1}Q_{<M}^{K_\pm}\left[\mathcal{F}^{-1}\left(\int_{\tau_1=\tau_2+\tau_3,\xi_1=\xi_2+\xi_3} (Q_{<M}^{W_{\pm c}}\tilde{n}_{N_3})(\tau_3, \xi_3)(Q_{<M}^{K_\pm}\omega_1^{-1}\tilde{v}_{N_2})(\tau_2, \xi_2)\right)\right] = 0$$

when $N_1 \gg \langle N_2 \rangle$. Therefore,

$$P_{N_1}(\tilde{n}_{N_3}(\omega_1^{-1}\tilde{v}_{N_2})) = \sum_{i=1}^{3} P_{N_1}F_i,$$

where

$$F_1 := Q_1((Q_{\geq M}^{W_{\pm c}}\tilde{n}_{N_3})(Q_{\geq M}^{K_{\pm}}\omega_1^{-1}\tilde{v}_{N_2})), \quad F_2 := Q_1((Q_{\geq M}^{K_{\pm}}\tilde{n}_{N_3})(Q_{\geq M}^{K_{\pm}}\omega_1^{-1}\tilde{v}_{N_2})), \quad F_3 := Q_{\geq M}^{K_\pm}((Q_{\geq M}^{K_{\pm}}\tilde{n}_{N_3})(Q_{\geq M}^{K_{\pm}}\omega_1^{-1}\tilde{v}_{N_2})).$$

Here, $Q_1, Q_2 \in \{Q_{<M}^{K_{\pm}}, Q_{\geq M}^{K_{\pm}}\}$ and $Q_3 \in \{Q_{<M}^{W_{\pm c}}, Q_{\geq M}^{W_{\pm c}}\}$. For the estimate of F_1, we apply Corollary 2.4, Lemma 2.11, Lemma 2.14 (iv), $N_3 \sim N_1 \geq 1$ and $\|\tilde{u}_{N_1}\|_{V_{K_\pm}^2} \lesssim \|u\|_{V_{K_\pm}^2}$, then we have

$$\sum_{N_1 \geq 1} N_1^{2s_c} \left|\int_0^T \mathbf{1}_{[0,T)}(t') K_{\pm}(t-t') \sum_{N_2 \ll N_1} \sum_{N_3 \sim N_1} P_{N_1}F_1(t')dt'\right|^2_{U_{K_\pm}^2}$$

$$\lesssim \sum_{N_1 \geq 1} N_1^{2s_c} \sup_{\|u\|_{V_{K_\pm}^2} = 1} \left|\sum_{N_2 \ll N_1} \sum_{N_3 \sim N_1} \int_{\mathbb{R}^{1+d}} (Q_{\geq M}^{W_{\pm c}}\tilde{n}_{N_3})(Q_{\geq M}^{K_{\pm}}\omega_1^{-1}\tilde{v}_{N_2})(Q_{\geq M}^{K_\pm}\tilde{u}_{N_1})dxdt\right|^2$$

$$\lesssim \sum_{N_3 \geq 1} N_3^{2s_c} \|n_{N_3}\|_{V_{\tilde{w}_{K_\pm}^2}}^2 \|v\|_{V_{K_\pm}^{2s_c}}^2$$

$$\lesssim \|n\|_{V_{\tilde{w}_{K_\pm}^2}}^{2s_c} \|v\|_{V_{K_\pm}^{2s_c}}. \quad (3.5)$$

For the estimate of F_2, we apply Corollary 2.4, Lemma 2.11 and the triangle inequality, we have

$$\sum_{N_1 \geq 1} N_1^{2s_c} \left|\int_0^T \mathbf{1}_{[0,T)}(t') K_{\pm}(t-t') \sum_{N_2 \ll N_1} \sum_{N_3 \sim N_1} P_{N_1}F_2(t')dt'\right|^2_{U_{K_\pm}^2}$$

$$\lesssim \sum_{N_1 \geq 1} N_1^{2s_c} \sup_{\|u\|_{V_{K_\pm}^2} = 1} \left|\sum_{N_2 \ll N_1} \sum_{N_3 \sim N_1} \int_{\mathbb{R}^{1+d}} (Q_{\geq M}^{K_{\pm}}\tilde{n}_{N_3})(Q_{\geq M}^{K_\pm}\omega_1^{-1}\tilde{v}_{N_2})(Q_{\geq M}^{K_\pm}\tilde{u}_{N_1})dxdt\right|^2$$

$$\lesssim \sum_{N_1 \geq 1} N_1^{2s_c} \|n_{N_3}\|_{V_{\tilde{w}_{K_\pm}^2}}^2 \|v\|_{V_{K_\pm}^{2s_c}}^2.$$

$$\lesssim \|n\|_{V_{\tilde{w}_{K_\pm}^2}}^{2s_c} \|v\|_{V_{K_\pm}^{2s_c}}. \quad (3.6)$$
By Proposition \[2.21\], \(N_2 \ll N_1 \sim N_3, N_1 \geq 1\) and Proposition \[2.12\] we have

\[
\left| \int_{\mathbb{R}^{1+d}} (Q_3 \tilde{n}_{N_3}) (Q_{N_3}^{K_{\pm}^{1/2} \omega_1^{-1}} \tilde{v}_{N_2}) (Q_1 \tilde{u}_{N_1}) \, dxdt \right| \\
\lesssim \|Q_{N_3}^{K_{\pm}^{1/2} \omega_1^{-1}} \tilde{v}_{N_2}\|_{L^2_t} \|P_{N_2}((Q_3 \tilde{n}_{N_3})(Q_1 \tilde{u}_{N_1}))\|_{L^2_t} \\
\lesssim N_3^{-1/2} \langle N_2 \rangle^{-1} \|v_{N_2}\|_{V^2_{K_{\pm}}}^{N_2} N_2^{(d-1)/2} (N_3/N_2)^{\varepsilon} \|n_{N_3}\|_{V^2_{\pm}} \|u_{N_1}\|_{V^2_{K_{\pm}}} \\
\lesssim N_2^s \langle N_2/N_3 \rangle^{1/2-\varepsilon} \|v_{N_2}\|_{V^2_{K_{\pm}}} \|n_{N_3}\|_{V^2_{\pm}} \|u_{N_1}\|_{V^2_{K_{\pm}}} . \tag{3.7}
\]

By (3.7) and the Cauchy-Schwarz inequality, the right-hand side of (3.6) is bounded by

\[
\sum_{N_3 \geq 1} N_3^{2s} \|n_{N_3}\|_{V^2_{K_{\pm}^-}}^2 \left(\sum_{N_2 \ll N_3} \langle N_2/N_3 \rangle^{1/2-\varepsilon} N_2^s \|v_{N_2}\|_{V^2_{K_{\pm}}}^2 \right)^2 \\
\lesssim \|n\|_{Y^s_{w,\pm}^c}^2 \|v\|_{Y^s_{K_{\pm}^-}^c}^2 . \tag{3.8}
\]

For the estimate for \(F_3\), we apply Corollary \[2.4\] Lemma \[2.11\] Lemma \[2.14\] \((iv)\), \(N_3 \sim N_1 \geq 1\) and \(\|\tilde{u}_{N_1}\|_{V^2_{K_{\pm}^-}} \lesssim \|u\|_{V^2_{K_{\pm}^-}}\), then we obtain

\[
\sum_{N_1 \geq 1} N_1^{2s} \left\| \int_0^t 1_{(0,T)}(t') K_{\pm}(t-t') \sum_{N_2 \ll N_1} \sum_{N_3 \sim N_1} P_{N_3} F_3(t') \, dt' \right\|_{V^2_{K_{\pm}^-}}^2 \\
\lesssim \sum_{N_1 \geq 1} N_1^{2s} \sup_{\|u\|_{V^2_{K_{\pm}^-}} = 1} \left| \sum_{N_2 \ll N_1} \sum_{N_3 \sim N_1} \int_{\mathbb{R}^{1+d}} (Q_3 \tilde{n}_{N_3}) (Q_{2\omega_1^{-1}} \tilde{v}_{N_2}) (Q_{K_{\pm}^{1/2} \omega_1^{-1}} \tilde{u}_{N_1}) \, dxdt \right|^2 \\
\lesssim \sum_{N_1 \geq 1} N_1^{2s} \|n_{N_3}\|_{V^2_{w,\pm}^c}^2 \|v\|_{Y^s_{K_{\pm}^-}^c}^2 \\
\lesssim \|n\|_{Y^s_{w,\pm}^c}^2 \|v\|_{Y^s_{K_{\pm}^-}^c}^2 . \tag{3.9}
\]

Collecting (3.5), (3.8) and (3.9), we have

\[
J_2 \lesssim \|n\|_{Y^s_{w,\pm}^c}^2 \|v\|_{Y^s_{K_{\pm}^-}^c}^2 . \tag{3.10}
\]

By Corollary \[2.4\] and the triangle inequality to have

\[
J_3 \lesssim \sum_{N_1 \geq 1} N_1^{2s} \sup_{\|u\|_{V^2_{K_{\pm}^-}} = 1} \left| \sum_{N_2 \gg N_1} \sum_{N_3 \sim N_2} \int_{\mathbb{R}^{1+d}} \tilde{n}_{N_3} (\omega_1^{-1} \tilde{v}_{N_2}) \tilde{u}_{N_1} \, dxdt \right|^2 \\
\lesssim \sum_{N_1 \geq 1} N_1^{2s} \left(\sum_{N_2 \gg N_1} \sum_{N_3 \sim N_2} \|u\|_{V^2_{K_{\pm}^-}} \right) \left| \int_{\mathbb{R}^{1+d}} \tilde{n}_{N_3} (\omega_1^{-1} \tilde{v}_{N_2}) \tilde{u}_{N_1} \, dxdt \right|^2 . \tag{3.11}
\]

By the same manner as the estimate for Lemma \[2.14\] \((iii)\), we obtain

\[
\left| \int_{\mathbb{R}^{1+d}} \tilde{n}_{N_3} (\omega_1^{-1} \tilde{v}_{N_2}) \tilde{u}_{N_1} \, dxdt \right| \lesssim N_3^s \|n_{N_3}\|_{V^2_{w,\pm}^c} \|v_{N_2}\|_{V^2_{K_{\pm}^-}^c} \|u_{N_1}\|_{V^2_{K_{\pm}^-}} . \tag{3.12}
\]
From (3.12), the right-hand side of (3.11) is bounded by

\[\sum_{N_1 \geq 1} \left(\sum_{N_2 \gg N_1} \sum_{N_3 \leq N_2} N_1^{2s_c} N_3^{s_c} \| n_{N_3} \|_{v_{k_{\pm}}^2} \| v_{N_2} \|_{r_{k_{\pm}}^2} \right)^2. \]

From \(s_c > 0, \| \cdot \|_{L^2} \lesssim \| \cdot \|_{L^2} \) and the Cauchy-Schwarz inequality, we have

\[J_3^{1/2} \lesssim \sum_{N_2 \gg 1} \sum_{N_1 \ll N_2} \left(\sum_{N_3 \leq N_1} N_1^{2s_c} N_3^{s_c} \| n_{N_3} \|_{v_{k_{\pm}}^2} \| v_{N_2} \|_{r_{k_{\pm}}^2} \right)^{1/2}. \]

Collecting (3.3), (3.4), (3.10) and (3.13), we obtain (3.1). We prove (3.2) below. By Corollary 2.4 we only need to estimate \(K_i \) \((i = 1, 2, 3)\):

\[K_1 := \sum_{N_1} \left(\sum_{N_2 \gg N_1} \sum_{N_3 \leq N_2} \int_{\mathbb{R}^{1+d}} (\omega_1^{-1} \tilde{u}_{N_1})(\omega_1^{-1} \tilde{v}_{N_2}) (\omega \tilde{n}_{N_3}) dx dt \right)^2. \]

\[K_2 := \sum_{N_1} \left(\sum_{N_2 \ll N_1} \sum_{N_3 \leq N_1} \int_{\mathbb{R}^{1+d}} (\omega_1^{-1} \tilde{u}_{N_1})(\omega_1^{-1} \tilde{v}_{N_2}) (\omega \tilde{n}_{N_3}) dx dt \right)^2. \]

\[K_3 := \sum_{N_1} \left(\sum_{N_2 \gg N_1} \sum_{N_3 \leq N_2} \int_{\mathbb{R}^{1+d}} (\omega_1^{-1} \tilde{u}_{N_1})(\omega_1^{-1} \tilde{v}_{N_2}) (\omega \tilde{n}_{N_3}) dx dt \right)^2. \]

First, we estimate \(K_1 \). Put \(K_1 = K_{1,1} + K_{1,2} \) where

\[K_{1,1} := \sum_{N_1 \leq 1} \left(\sum_{N_2 \ll N_1} \sum_{N_3 \leq N_1} \int_{\mathbb{R}^{1+d}} (\omega_1^{-1} \tilde{u}_{N_1})(\omega_1^{-1} \tilde{v}_{N_2}) \times (\omega \tilde{n}_{N_3}) dx dt \right)^2. \]

\[K_{1,2} := \sum_{N_1 \gg 1} \left(\sum_{N_2 \ll N_1} \sum_{N_3 \leq N_1} \int_{\mathbb{R}^{1+d}} (\omega_1^{-1} \tilde{u}_{N_1})(\omega_1^{-1} \tilde{v}_{N_2}) (\omega \tilde{n}_{N_3}) dx dt \right)^2. \]

By the same manner as the proof for Lemma (2.14) \((i)\), we see

\[\left| \int_{\mathbb{R}^{1+d}} \left(\sum_{N_1 \ll N_3} (\omega_1^{-1} \tilde{u}_{N_1})(\omega_1^{-1} \tilde{v}_{N_2}) (\omega \tilde{n}_{N_3}) dx dt \right) \right| \lesssim \langle N_2 \rangle^{-1/2} \langle N_3 \rangle^{3/2} \| u \|_{L^2} \| v_{N_2} \|_{r_{k_{\pm}}^2} \| n_{N_3} \|_{v_{k_{\pm}}^2} \| v_{k_{\pm}}^2 \|_{W_{k_{\pm}}^2}^2. \]
Collecting \((3.14), (3.15)\) and \(N_2 \sim N_3 \leq 1\), we obtain

\[
K_{1,1} \lesssim \sum_{N_2 \leq 1} N_2^{2s_c} (\|u\|_{Y_{K_+}^{sc}} \langle N_2 \rangle^{-1/2+3/2} \|v_{N_2}\|_{V_{K_+}^{sc}}) \lesssim \|u\|_{Y_{K_+}^{sc}} \sum_{N_2 \leq 1} N_2^{2s_c} \|v_{N_2}\|_{V_{K_+}^{sc}} \lesssim \|u\|_{Y_{K_+}^{sc}} \|v\|_{V_{K_+}^{sc}}.
\]

For the estimate for \(K_{1,2}\), we take \(M = \varepsilon N_2\) for sufficiently small \(\varepsilon > 0\). Then, from Lemma 2.13, we have

\[
P_{N_1} Q_{< M}^K \omega_1^{-1} ((Q_{< M}^K \omega_1^{-1} \tilde{v}_{N_2}) (Q_{< M}^W \omega \tilde{n}_{N_3})) = P_{N_1} Q_{< M}^K \omega_1^{-1} \left[\mathcal{F}^{-1} \left(\int \tau_1 = \tau_2 + \tau_3, \xi_1 = \xi_2 + \xi_3 (Q_{< M}^K \omega_1^{-1} \tilde{v}_{N_2})(\tau_2, \xi_2)(Q_{< M}^W \omega \tilde{n}_{N_3})(\tau_3, \xi_3) \right) \right] = 0
\]

when \(N_2 \gg \langle N_1 \rangle\). Therefore,

\[
P_{N_1} ((\omega_1^{-1} \tilde{v}_{N_2})(\omega \tilde{n}_{N_3})) = \sum_{i=1}^3 P_{N_1} G_i,
\]

where

\[
G_1 := Q_{\geq M}^K ((Q_{\geq M}^K \omega_1^{-1} \tilde{v}_{N_2}) (Q_{3} \omega \tilde{n}_{N_3})), \quad G_2 := Q_1 ((Q_{\geq M}^K \omega_1^{-1} \tilde{v}_{N_2}) (Q_{3} \omega \tilde{n}_{N_3})), \quad G_3 := Q_1 ((Q_{2} \omega_1^{-1} \tilde{v}_{N_2}) (Q_{W_{< M}}^c \omega \tilde{n}_{N_3})).
\]

Here, \(Q_1, Q_2 \in \{Q_{< M}^K, Q_{\geq M}^K\}\) and \(Q_3 \in \{Q_{W_{< M}}^c, Q_{W_{\geq M}}^c\}\). Hence, it follows that

\[
K_{1,2} \leq \sum_{i=1}^3 K_{1,2,i}
\]

where

\[
K_{1,2,i} := \sum_{N_3 \gg 1} N_3^{2s_c} \sup_{\|n\|_{W_{\geq M}}^c = 1} \left| \sum_{N_2 \sim N_3, N_1 \ll N_3} \int_{\mathbb{R}^{1+d}} (\omega_1^{-1} \tilde{u}_{N_1}) G_i dx dt \right|^2, \quad i = 1, 2, 3.
\]
By Lemma 2.11, we have

\[
K_{1,2,1} \lesssim \sum_{N_3 \gg 1} N_3^{2s_c} \sup_{\|u\|_{W^{1,c}_{x,t}}} = 1 \sum_{N_2 \sim N_3} \sum_{N_1 \ll N_3} \int_{\mathbb{R}^{1+d}} \left(Q_{\geq M}^{K_+ \omega_1^{-1}} \tilde{u}_{N_1} \right) (Q_{\geq M}^{K_+ \omega_1^{-1}} \tilde{v}_{N_2}) \times (Q_{3} \tilde{\omega} \tilde{n}_{N_3}) dx dt, \tag{3.16}
\]

\[
K_{1,2,2} \lesssim \sum_{N_3 \gg 1} N_3^{2s_c} \sup_{\|u\|_{W^{1,c}_{x,t}}} = 1 \sum_{N_2 \sim N_3} \sum_{N_1 \ll N_3} \int_{\mathbb{R}^{1+d}} \left(Q_{1} \omega_1^{-1} \tilde{u}_{N_1} \right) (Q_{\geq M}^{K_+ \omega_1^{-1}} \tilde{v}_{N_2}) \times (Q_{3} \tilde{\omega} \tilde{n}_{N_3}) dx dt, \tag{3.17}
\]

\[
K_{1,2,3} \lesssim \sum_{N_3 \gg 1} N_3^{2s_c} \sup_{\|u\|_{W^{1,c}_{x,t}}} = 1 \sum_{N_2 \sim N_3} \sum_{N_1 \ll N_3} \int_{\mathbb{R}^{1+d}} \left(Q_{1} \omega_1^{-1} \tilde{u}_{N_1} \right) (Q_{\geq M}^{K_+ \omega_1^{-1}} \tilde{v}_{N_2}) \times \left(Q_{W^{1,c}_{x,t}} \tilde{\omega} \tilde{n}_{N_3} \right) dx dt, \tag{3.18}
\]

By the same manner as the estimate for F_2, we apply Proposition 2.21, $N_1 \ll N_2 \sim N_3$, $N_3 \gg 1$ and Proposition 2.12, then we obtain

\[
\left| \int_{\mathbb{R}^{1+d}} \left(Q_{\geq M}^{K_+ \omega_1^{-1}} \tilde{u}_{N_1} \right) (Q_{1} \omega_1^{-1} \tilde{v}_{N_2}) (Q_{3} \tilde{\omega} \tilde{n}_{N_3}) dx dt \right|
\lesssim \| Q_{\geq M}^{K_+ \omega_1^{-1}} \tilde{u}_{N_1} \|_{L^{2}_{t,x}} \| P_{N_1} \left((Q_{1} \omega_1^{-1} \tilde{v}_{N_2}) (Q_{3} \tilde{\omega} \tilde{n}_{N_3}) \right) \|_{L^{2}_{t,x}}
\lesssim N_3^{-1/2} \langle N_1 \rangle^{-1} \| u_{N_1} \|_{V_{K_+}^{2}} N_1 (d-1)/2 \langle N_3/N_1 \rangle^\epsilon \langle N_2 \rangle^{-1} \| v_{N_2} \|_{V_{K_+}^{2}} N_3 \| n_{N_3} \|_{V_{W^{1,c}_{x,t}}^{2}}
\lesssim N_1^{s_c} \langle N_1/N_3 \rangle^{1/2-\epsilon} \langle N_2 \rangle^{-1} N_3 \| u_{N_1} \|_{V_{K_+}^{2}} \| v_{N_2} \|_{V_{K_+}^{2}} \| n_{N_3} \|_{V_{W^{1,c}_{x,t}}^{2}}. \tag{3.19}
\]

From (3.16), (3.19), $N_3 \gg 1$, $N_2 \sim N_3$ and the Cauchy-Schwarz inequality, we have

\[
K_{1,2,1} \lesssim \sum_{N_2 \gg 1} N_2^{2s_c} \left(\sum_{N_1 \ll N_2} N_1^{s_c} \| u_{N_1} \|_{V_{K_+}^{2}} (N_1/N_2)^{1/2-\epsilon} \langle N_2 \rangle^{-1} N_2 \| v_{N_2} \|_{V_{K_+}^{2}} \right)^2
\lesssim \| u \|_{Y_{K_+}^{s_c}}^2 \| v \|_{Y_{K_+}^{s_c}}^2. \tag{3.20}
\]

By Lemma 2.13 (iv), $i = 5$, we obtain

\[
\left| \int_{\mathbb{R}^{1+d}} \left(\sum_{N_1 \ll N_3} Q_{1} \omega_1^{-1} \tilde{u}_{N_1} \right) (Q_{\geq M}^{K_+ \omega_1^{-1}} \tilde{v}_{N_2}) (Q_{3} \tilde{\omega} \tilde{n}_{N_3}) dx dt \right|
\lesssim \langle N_2 \rangle^{-1} N_3 \| u \|_{Y_{K_+}^{s_c}} \| v_{N_2} \|_{V_{K_+}^{2}} \| n_{N_3} \|_{V_{W^{1,c}_{x,t}}^{2}}. \tag{3.21}
\]

From (3.17), (3.20), $N_3 \gg 1$ and $N_2 \sim N_3$, we have

\[
K_{1,2,2} \lesssim \sum_{N_2 \gg 1} N_2^{2s_c} \left(\| u \|_{Y_{K_+}^{s_c}} \| v_{N_2} \|_{V_{K_+}^{2}} \right)^2 \lesssim \| u \|_{Y_{K_+}^{s_c}}^2 \| v \|_{Y_{K_+}^{s_c}}^2. \tag{3.22}
\]
By Lemma 2.14 (iv), we obtain
\[
\left| \int_{\mathbb{R}^{1+d}} \left(\sum_{N_1 \ll N_3} Q_1 \omega_1^{-1} \bar{u}_{N_1} \right) \left(\bar{Q}_2 \omega_1^{-1} \bar{v}_{N_2} \right) \left(\bar{Q}_{\geq M} \omega \bar{n}_{N_3} \right) dx dt \right|
\leq \left(N_2 \right)^{-1} N_3 \| u \|_{Y_{k_\pm}^{s_c}} \| v_{N_2} \|_{V_{k_\pm}^{2}} \| n_{N_3} \|_{V_{w_{k_\pm}}^{3}}.
\] (3.21)

From (3.18), (3.21), \(N_3 \gg 1 \) and \(N_2 \sim N_3 \), we have
\[
K_{1,2,3} \lesssim \sum_{N_2 \gg 1} N_2^{2s_c} (\| u \|_{Y_{k_\pm}^{s_c}} \| v_{N_2} \|_{V_{k_\pm}^{2}})^2 \lesssim \| u \|_{Y_{k_\pm}^{s_c}} \| v \|_{Y_{k_\pm}^{s_c}}.
\]

By symmetry, the estimate for \(K_2 \) is obtained by the same manner as the estimate for \(K_1 \). Hence, we omit the estimate for \(K_2 \). By the triangle inequality, Lemma 2.14 (i) and the Cauchy-Schwarz inequality, we have
\[
K_{3}^{1/2} \lesssim \sum_{N_2} \sum_{N_1 \sim N_2} \sum_{N_3 \lesssim N_2} N_2^{2s_c} \| n \|_{V_{w_{k_\pm}}^{3}} \left\| \int_{\mathbb{R}^{1+d}} (\omega_1^{-1} \bar{u}_{N_1} (\omega_1^{-1} \bar{v}_{N_2}) (\omega \bar{n}_{N_3}) dx dt \right\|^2 \right\}^{1/2}
\]
\[
\lesssim \sum_{N_2} \sum_{N_1 \sim N_2} \sum_{N_3 \lesssim N_2} N_2^{2s_c} \left(N_3 \| u_{N_1} \|_{V_{k_\pm}^{2}} \| v_{N_2} \|_{V_{k_\pm}^{2}} \right)^2 \right\}^{1/2}
\]
\[
\lesssim \sum_{N_2} \sum_{N_1 \sim N_2} \sum_{N_3 \lesssim N_2} N_1^{s_c} N_2^{s_c} \| u_{N_1} \|_{V_{k_\pm}^{2}} \| v_{N_2} \|_{V_{k_\pm}^{2}}
\]
\[
\lesssim \| u \|_{Y_{k_\pm}^{s_c}} \| v \|_{Y_{k_\pm}^{s_c}}.
\]

Therefore, we obtain (3.2).

\[\Box\]

4. THE PROOF OF THE MAIN THEOREM

We define
\[
u_\pm := \omega_1 \nu \pm i \partial_t \nu, \quad n_\pm := n \pm i(\omega)^{-1} \partial_t n
\]
where \(\omega_1 := (1 - \Delta)^{1/2}, \omega := (-\Delta)^{1/2} \). Then the wave equation in (1.1) is rewritten into
\[
\begin{cases}
i \partial_t u_\pm \mp \omega_1 u_\pm = \pm (1/4) (n_+ + n_-) (\omega_1^{-1} u_+ + \omega_1^{-1} u_-), & (t, x) \in [-T, T] \times \mathbb{R}^d, \\
i \partial_t n_\pm \mp \omega n_\pm = \pm (4c)^{-1} \omega |\omega_1^{-1} u_+ + \omega_1^{-1} u_-|^2, & (t, x) \in [-T, T] \times \mathbb{R}^d, \\
(u_\pm, n_\pm)|_{t=0} = (u_{\pm 0}, n_{\pm 0}) \in H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d).
\end{cases}
\] (4.1)

Hence by the Duhamel principle, we consider the following integral equation corresponding to (4.1) on the time interval \([0, T]\) with \(0 < T \leq \infty\):
\[
u_\pm = \Phi_1(u_\pm, n_+, n_-), \quad n_\pm = \Phi_2(n_\pm, u_+, u_-),
\] (4.2)
where

\[\Phi_1(u_\pm, n_+, n_-) := K_\pm(t)u_\pm(t) + \frac{1}{4}\{I_{T,K_+}(n_+, u_+)(t) + I_{T,K_-}(n_+, u_-(t)) + I_{T,K_-}(n_-, u_+)(t) + I_{T,K_+}(n_-, u_-)(t) \} , \]

\[\Phi_2(n_+, u_+, u_-) := W_{\pm c}(t)n_\pm(t) + (4c)^{-1}\{I_{T,W_{\pm c}}(u_+, u_+)(t) + I_{T,W_{\pm c}}(u_+, u_-)(t) + I_{T,W_{\pm c}}(u_-, u_+)(t) + I_{T,W_{\pm c}}(u_-, u_-)(t) \} . \]

Proposition 4.1. (i) Let \(u \) and \((−1, 0)\) be unique solutions of (4.2) for all \(T > 0 \), there exists a unique solution of (4.1) on \([0, T]\) such that

\[(u_\pm, n_\pm) \in Y_{K_\pm}([0, T]) \times \dot{Y}_{W_{\pm c}}([0, T]) \subset C([0, T]; H^s(\mathbb{R}^d)) \times C([0, T]; \dot{H}^s(\mathbb{R}^d)) . \]

(ii) The flow map obtained by (i):

\[B_3(H^s(\mathbb{R}^d)) \times B_3(\dot{H}^s(\mathbb{R}^d)) \ni (u_\pm, n_\pm) \mapsto (u_\pm, n_\pm) \in Y_{K_\pm}([0, T]) \times \dot{Y}_{W_{\pm c}}([0, T]) \]

is Lipschitz continuous.

Remark 4.1. Due to the time reversibility of the Klein-Gordon-Zakharov equation, Proposition 4.1 also holds in corresponding time interval \([-T, 0]\).

Remark 4.2. By (i) in Proposition 4.1 and Remark 4.1, for any \(T > 0 \), we have solutions to (4.2) \((u_\pm(t), n_\pm(t))\) on \([0, T]\) and \([-T, 0]\). If initial data \((u_\pm, n_\pm) \in B_3(H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d))\), then we can take \(T \) arbitrary large and by uniqueness, \((u_\pm(t), n_\pm(t)) \in C((−\infty, \infty); H^s(\mathbb{R}^d)) \times C((−\infty, \infty); \dot{H}^s(\mathbb{R}^d))\) can be defined uniquely.

Proposition 4.2. Let the solution \((u_\pm(t), n_\pm(t))\) to (4.2) on \((−\infty, \infty)\) obtained by Proposition 4.1, Remark 4.1 and Remark 4.2 with initial data \((u_\pm, n_\pm) \in B_3(H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d))\). Then, there exist \((u_\pm, n_\pm, \infty)\) and \((u_\pm, n_\pm, −\infty)\) in \(H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d)\) such that

\[\lim_{t \to +\infty} (\|u_\pm(t) − K_\pm(t)u_\pm,∞\|_{\dot{H}^s(\mathbb{R}^d)}) + (\|n_\pm(t) − W_{\pm c}(t)n_\pm,∞\|_{\dot{H}^s(\mathbb{R}^d)}) = 0 , \]

\[\lim_{t \to −\infty} (\|u_\pm(t) − K_\pm(t)u_\pm,−\infty\|_{\dot{H}^s(\mathbb{R}^d)}) + (\|n_\pm(t) − W_{\pm c}(t)n_\pm,−\infty\|_{\dot{H}^s(\mathbb{R}^d)}) = 0 . \]

Proof of Proposition 4.1. First, we prove (i). By Proposition 2.8 there exists \(C > 0 \) such that

\[\|K_\pm(t)u_\pm\|_{Y_{K_\pm}^s} \leq C\|u_\pm\|_{H^s} , \quad \|W_{\pm c}(t)n_\pm\|_{\dot{Y}_{W_{\pm c}}^s} \leq C\|n_\pm\|_{\dot{H}^s} . \]

We denote time interval \(I := [0, T] \). If \((u_\pm, n_\pm) \in B_3(H^s(\mathbb{R}^d) \times \dot{H}^s(\mathbb{R}^d))\) is small and \((u_\pm, n_\pm) \in B_r(Y_{K_\pm}^s(I) \times \dot{Y}_{W_{\pm c}}^s(I)), s = d/2 − 2\), then by Proposition 3.1 and
Remark 3.1 We have
\[
\|\Phi_1(u_\pm, n_+, n_-)\|_{Y_{K_\pm}^s(t)} \\
\le C\delta + (C/4)(\|n_+\|_{Y_{W_+c}^s(t)} + \|n_-\|_{Y_{W_-c}^s(t)})
\]
By a translation in \(t \), it suffices to consider \(T' = 0 \). Let \(0 < \tau \le T \) be fixed later.
From (4.3) and Proposition 2.9, we obtain
\[
\|u_\pm - v_\pm\|_{Y_{K_\pm}^s([0, \tau])} \\
\le (1/7)(\|n_+ - m_+\|_{Y_{W_+c}^s([0, \tau])} + \|n_- - m_-\|_{Y_{W_-c}^s([0, \tau])})
\]
From (4.3) and (4.4), we obtain
\[
u_\pm = v_\pm, \quad n_\pm = m_\pm
on $[0, \tau]$ if $0 < \tau \leq T$ be sufficiently small. This contradicts the definition of T'. Therefore, the uniqueness of the solution (u_\pm, n_\pm) is showed. (ii) follows from the standard argument, so we omit the proof.

Finally, we prove Proposition 4.2. The proof is the same manner as the proof for Proposition 4.2 in [14].

Proof. There exists $M > 0$ such that for all $0 < T < \infty$,

$$\|u_\pm\|_{Y^s_{K\pm}([0,T])} + \|n_\pm\|_{\dot{Y}^s_{W\pm}([0,T])} < M,$$

$$\|u_\pm\|_{Y^s_{K\pm}([-T,0])} + \|n_\pm\|_{\dot{Y}^s_{W\pm}([-T,0])} < M$$

holds since r in the proof of Proposition 4.1 does not depend on T. Take $\{t_k\}_{k=0}^K \in \mathbb{Z}$ and $0 < T < \infty$ such that $-T < t_0, t_K < T$. By L^2_x orthogonality,

$$\left(\sum_{k=1}^K \|\langle \nabla_x \rangle^s (K_\pm(-t_k)u_\pm(t_k) - K_\pm(-t_{k-1})u_\pm(t_{k-1}))\|^2_{L^2_x}\right)^{1/2} \lesssim \|\langle \nabla_x \rangle^s u_\pm\|_{V^s_{K\pm}([0,T])} + \|\langle \nabla_x \rangle^s u_\pm\|_{V^s_{K\pm}([-T,0])}$$

$$\lesssim \|u_\pm\|_{Y^s_{K\pm}([0,T])} + \|u_\pm\|_{Y^s_{K\pm}([-T,0])}$$

$$< 2M.$$

Thus,

$$\sup_{\{t_k\}_{k=0}^K \in \mathbb{Z}} \left(\sum_{k=1}^K \|\langle \nabla_x \rangle^s K_\pm(-t_k)u_\pm(t_k) - \langle \nabla_x \rangle^s K_\pm(-t_{k-1})u_\pm(t_{k-1})\|^2_{L^2_x}\right)^{1/2} \lesssim M.$$

Hence, there exists $f_\pm := \lim_{t \to \pm\infty} \langle \nabla_x \rangle^s K_\pm(-t)u_\pm(t)$ in $L^2_x(\mathbb{R}^d)$. Then put $u_{\pm\infty} := \langle \nabla_x \rangle^{-s} f_\pm$, we obtain

$$\|\langle \nabla_x \rangle^s K_\pm(-t)u_\pm(t) - f_\pm\|_{L^2_x} = \|u_\pm(t) - K_\pm(t)u_\pm\|_{H^s_x} \to 0$$

as $t \to \pm\infty$. The scattering result for the wave equation is obtained similarly. \qed

References

[1] I. Bejenaru, S. Herr, J. Holmer, and D. Tataru, On the 2D Zakharov system with L^2 Schrödinger data, Nonlinearity 22 (2009), 1063–1089.

[2] I. Bejenaru, and S. Herr, Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal. 261 (2011), 478–506.

[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations, GAFA 3 (1993), 107–156.

[4] J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384–436.
[5] J. Ginibre, and G. Velo, Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Anal. 133 (1995), 50–68.

[6] Z. Guo, and K. Nakanishi, Small energy scattering for the Zakharov system with radial symmetry, Int. Mat. Res. Not. 9 (2014), 2327–2342.

[7] Z. Guo, K. Nakanishi, and S. Wang, Small energy scattering for the Klein-Gordon-Zakharov system with radial symmetry, Math. Res. Nett. 21 (2014), no. 4, 733–755.

[8] M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. I. H. Poincaré AN 26 (2009), 917–941.

[9] M. Hadac, S. Herr, and H. Koch, Erratum to "Well-posedness and scattering for the KP-II equation in a critical space" [Ann. I. H. Poincaré AN 26 (2009), 917–941], Ann. I. H. Poincaré AN 27 (2010), no. 3, 971–972.

[10] S. Herr, D. Tataru, and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(T^3)$, Duke. Math. J. 159 (2011), no. 2, 329–349.

[11] H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity, Funkcialaj Ekvacioj 58 (2015), 431–450.

[12] M. Ikeda, N. Kishimoto, and M. Okamoto, Well-posedness for a quadratic nonlinear Schrödinger system at the critical regularity, J. Funct. Anal. 271 (2016), no. 4, 747–798.

[13] I. Kato, Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions, Comm. Pure. Appl. Anal. 15 (2016), no. 6, 2247–2280.

[14] I. Kato, and K. Tsugawa, Scattering and well-posedness for the Zakharov system at a critical space in four and more spatial dimensions, arXiv:1512.00551v2.

[15] T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure. Math 23 Math. Soc. Japan, Tokyo, (1994), 223–238.

[16] C. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Soc. 9 (1996), 573–603.

[17] M. Keel, and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–980.

[18] H. Koch, and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure. Appl. Math. 58 (2) (2005), 217–284.

[19] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996), 1–16.

[20] H. Lindblad, and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357–426.

[21] S. Machihara, K. Nakanishi, and T. Ozawa, Nonrelativistic limit in the energy space for non-linear Klein-Gordon equations, Math. Ann. 322 (2002), 603–621.

[22] S. Machihara, K. Nakanishi, and T. Ozawa, Small global solutions and the nonrelativistic limit for the Dirac equation, Rev. Mat. Iberoamericana. 19 (2003), 179–194.

[23] N. Masmoudi, and K. Nakanishi, From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ. 2 (2005), 975–1008.

[24] N. Masmoudi, and K. Nakanishi, From the Klein-Gordon-Zakharov system to a singular non-linear Schrödinger system, Ann. I. H. Poincaré AN 27 (2010), 1073–1096.
[25] T. Ozawa, K. Tsutaya, and Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. I. H. Poincaré AN 12 (1995), 459–503.

[26] T. Ozawa, K. Tsutaya, and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann. 313 (1999), no. 1, 127–140.

[27] T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, arXiv:1209.1518v2.

[28] S. Selberg, Anisotropic bilinear L^2 estimates related to the 3D wave equation, Int. Mat. Res. Not. (2008), Art. ID rnm 107, 63 pages.

[29] S. Selberg, Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Diff. Eq. 16 (2011), no. 7–8, 667–690.

[30] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, AMS (2006).

[31] D. Tataru, Local and global results for wave maps I, Comm. Part. Diff. Eq. 23 (1998), 1781–1793.

(Isao Kato) Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan

(Shinya Kinoshita) Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan

E-mail address, Isao Kato: kato.isao@f.mbox.nagoya-u.ac.jp
E-mail address, Shinya Kinoshita: m12018b@math.nagoya-u.ac.jp