A myelin gene causative of a catatonia-depression syndrome upon aging

Nora Hagemeyer1, Sandra Goebbels2, Sergi Papiol1,3†, Anne Kästner1, Sabine Hofer4,5, Martin Begemann1, Ulrike C. Gerwig2, Susann Boretius3,4, Georg L. Wieser2, Anja Ronnenberg1, Artem Gurvich1, Stephan H. Heckers6, Jens Frahm3,4,5, Klaus-Armin Nave2,3**, Hannelore Ehrenreich1,3*

Keywords: anxiety; axonal degeneration; diffusion tensor imaging; low-grade inflammation; social withdrawal

Severe mental illnesses have been linked to white matter abnormalities, documented by postmortem studies. However, cause and effect have remained difficult to distinguish. CNP (2',3'-cyclic nucleotide 3'-phosphodiesterase) is among the oligodendrocyte/myelin-associated genes most robustly reduced on mRNA and protein level in brains of schizophrenic, bipolar or major depressive patients. This suggests that CNP reduction might be critical for a more general disease process and not restricted to a single diagnostic category. We show here that reduced expression of CNP is the primary cause of a distinct behavioural phenotype, seen only upon aging as an additional ‘pro-inflammatory hit’. This phenotype is strikingly similar in Cnp heterozygous mice and patients with mental disease carrying the AA genotype at CNP SNP rs2070106. The characteristic features in both species with their partial CNP ‘loss-of-function’ genotype are best described as ‘catatonia-depression’ syndrome. As a consequence of perturbed CNP expression, mice show secondary low-grade inflammation/neurodegeneration. Analogously, in man, diffusion tensor imaging points to axonal loss in the frontal corpus callosum. To conclude, subtle white matter abnormalities inducing neurodegenerative changes can cause/amplify psychiatric diseases.

INTRODUCTION

The CNP gene encodes the enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) which is present in non-compacted myelin areas such as the inner mesaxon, paranodal loops and Schmidt-Lantermann incisures (Braun et al, 2004; Yu et al, 1994), and accounts for about 4% of total central nervous system myelin proteins (Braun et al, 2004). CNP is expressed early in development of oligodendrocytes (Yu et al, 1994), increases with onset of myelination and remains detectable in these cells throughout life (Scherer et al, 1994). In vitro and in vivo studies demonstrated a regulatory function of CNP for process outgrowth in oligodendrocytes (Gravel et al, 1996; Lee et al, 2005; Yin et al, 1997), as well as an interaction with microtubules, cytoskeleton and RNA (Bifulco et al, 2002; De Angelis & Braun, 1996; Gravel et al, 2009; Lee et al, 2005).

Studies employing homozygous Cnp-null mutant mice revealed that Cnp is essential for axonal survival but not for myelin assembly (Lappe-Siefke et al, 2003). In fact, Cnp−/− mice show progressive axonal swellings and brain inflammation with first motor deficits occurring at 4 months that progress to severe hindlimb paralysis and death at 8–15 months (Lappe-Siefke et al, 2003). In contrast, Cnp+/− mice with a 50% reduced Cnp expression do not exhibit any signs of inflamma-
tion nor of abnormalities in neurological scoring or behaviour at least until the age of 12 months (Lappe-Siefke et al, 2003; Wieser et al., in preparation), indicating that lower Cnp levels can be fully compensated for.

Nevertheless, decreased Cnp expression could have pathophysiological significance. Cnp is among the oligodendrocyte/myelin-associated genes identified to be most robustly reduced both on mRNA and protein level in postmortem brains of schizophrenic, bipolar or major depressive patients (Aston et al., 2005; Mitkus et al., 2008; Tkachev et al., 2003). These findings suggest that Cnp reduction might be critical in a more general disease process and that the potential role of this molecule is not restricted to a single diagnostic category but of global relevance for severe mental disorders.

Several genetic association studies have explored a potential impact of genetic variability in the Cnp gene (chr17q21.2, 11Kb) on the overall risk for schizophrenia, with inconclusive results so far (Che et al., 2009; Peirce et al., 2006). Interestingly, however, a synonymous (Gly/Gly) single nucleotide polymorphism (SNP), localized in the fourth exon of the gene (rs2070106), influences Cnp expression in the human cortex, especially in frontal areas, with the rarer A-allele showing lower expression in comparison to the G-allele (Iwamoto et al., 2008; Mitkus et al., 2008; Peirce et al., 2006).

Recent work indicates that in major psychiatric disorders like schizophrenia and depression, low-grade inflammation constitutes a crucial mechanism in the final common disease pathway (reviewed in Monji et al., 2009). Already the normal aging process is associated with slightly increased brain inflammation characterized by, for example, enhanced levels of pro-inflammatory cytokines, higher microglial numbers and increased reactivity with augmented expression of microglial surface markers (reviewed in, e.g. Miller & Streit, 2007; Sparkman & Johnson, 2008; Streit, 2006).

To address the pathophysiological relevance of reduced Cnp expression, we chose Cnp partial ‘loss-of-function’ genotypes with expression as an additional ‘pro-inflammatory hit’. We examined old Cnp+/- mice and schizophrenic patients with the AA versus GG genotype in the Cnp SNP rs2070106. We report here the surprising association of Cnp partial loss-of-function with a catatonia-depression syndrome both in mouse and man upon aging. Importantly, we provide evidence for late-onset low-grade inflammation in mice as a plausable pathophysiological mechanism. In patients carrying the low-expression genotype (AA), a comparable process might be reflected by axonal loss in the frontal corpus callosum as detectable by neuroimaging.

RESULTS

Brains of aging Cnp+/- mice are characterized by enhanced inflammation, astrogliosis and axonal degeneration

Immunohistochemical analysis of mouse brains from age 4 to 26 months revealed an age-related increase in the number of ionized calcium-binding adapter molecule 1 (IBA-1) and Mac-3 positive microglia, infiltrating T-lymphocytes (cluster of differentiation 3; CD3) and astrocytes (glial fibrillary acidic protein, GFAP) in corpus callosum, striatum and anterior commissure (month 4 vs. month 26: all p ≤ 0.01; for wild-type (Wt) as well as Cnp+/- mice). This increase was significantly more pronounced in old Cnp+/- as compared to Wt mice (Fig 1A–H). Axonal swellings (spheroids) as readout of neurodegeneration were determined in corpus callosum, striatum and anterior commissure using amyloid precursor protein (APP) immunoreactivity (Fig 1I/J). At the age of 4 months, no positive APP staining was detected. Thereafter, an age-dependent increase in axonal swellings became evident, again more prominent in Cnp+/- mice (Fig 1I/J). Determination of Cnp mRNA expression in brains of young versus old mice revealed a remarkable decrease upon aging in Wt mice, which, however, still maintained levels above those in Cnp+/- mice (Fig 1K). In both Wt and Cnp+/- mice, we found a corresponding age-dependent reduction of Cnp protein in purified myelin membranes, with the lowest overall level in aged Cnp+/- (Fig 1L). Protein lipid (Pip), a control protein for compact myelin, also decreased with age but independent of the Cnp genotype (Fig 1L). Taken together, old Cnp+/- mice show a more pronounced low-grade inflammatory phenotype with axonal degeneration compared to Wt mice.

Aged Cnp+/- mice have a slightly elevated anxiety profile but normal motor activity, coordination and strength

To test whether the pronounced histological changes upon aging are associated with any behavioural consequences, we investigated aged (24 months old) Cnp+/- and Wt mice employing a comprehensive test battery. In the open field test, a measure for general locomotor activity and anxiety, Cnp+/- mice tended to spend less time in the centre than Wt (p = 0.096; Fig 2A). Velocity and total distance travelled in the open field were comparable in both genotypes (Fig 2B and C), indicating normal activity. In the elevated plus maze, a classical anxiety test, open arm visits were reduced in Cnp+/- mice (p = 0.036; Fig 2D), whereas, the light/dark-box did not yield differences in the time spent in light (Fig 2E). Freezing behaviour is seen as another indicator of anxiety/fear in rodents. Cnp+/- mice showed higher percentage of freezing in the fear conditioning chamber already at baseline, that is before measurement of conditioned or cued memory (p = 0.007; Fig 2F), precluding the use of fear conditioning for memory assessment in these mice. Like basic motor activity, which proved to be normal, motor performance, coordination and motor learning, as evaluated in a 2-day rota-rod testing, were not different between genotypes (Fig 2G). Also, gait analysis detected no motor abnormalities or ataxia (see, e.g. Fig 2H depicts forelimb stride of left and right paw) and muscle strength, measured by the grip strength test, did not differ between genotypes (Fig 2I). To summarize, 24 months old Cnp+/- mice show normal overall motor performance and a mildly elevated anxiety profile in different anxiety-relevant tests compared to Wt mice.

Aged Cnp+/- mice show impaired social and exploratory behaviour

Social behaviour of aged Wt and Cnp+/- mice was tested in a three-partite chamber. This test measures the preference of a
Figure 1. Low-grade brain inflammation and axonal degeneration in aged Cnp+/- mice.

A. Representative microscopic images of the corpus callosum from 4 months (upper panels) and 26 months (lower panels) old Wt and Cnp+/- mice, immunostained for IBA-1; scale bar 20 μm.

B. Bar graph gives the age-dependent quantification of the total number of IBA-1 positive microglia in the corpus callosum of Wt and Cnp+/- mice. For all horizontal quantifications (B, D, F, H, J), n numbers indicated; mean ± s.e.m. presented; two-sided Student’s t-test used.

C. Representative microscopic images of the corpus callosum from 4 months (upper panels) and 26 months (lower panels) old Wt and Cnp+/- mice, immunostained for GFAP; scale bar 20 μm.

D. Bar graph gives the age-dependent quantification of the total number of Mac-3 positive microglia in the corpus callosum of Wt and Cnp+/- mice.

E. Representative microscopic images of the corpus callosum from 4 months (upper panels) and 26 months (lower panels) old Wt and Cnp+/- mice, immunostained for CD3; black arrows exemplify respective positive cells; scale bar 20 μm.

F. Bar graph gives the age-dependent quantification of the total number of CD3 positive T-lymphocytes in the corpus callosum, striatum and anterior commissure of Wt and Cnp+/- mice.

G. Representative microscopic images of the corpus callosum from 4 months (upper panels) and 26 months (lower panels) old Wt and Cnp+/- mice, immunostained for Cnp; scale bar 20 μm.

H. Densitometrical quantification of the GFAP positive area in the corpus callosum.

I. Representative microscopic images of the striatum from 4 months (upper panels) and 26 months (lower panels) old Wt and Cnp+/- mice, immunostained for APP; black arrows exemplify respective positive cells; scale bar 20 μm.

J. Bar graph gives the age-dependent quantification of the APP positive axonal swellings in the corpus callosum, striatum and anterior commissure of Wt and Cnp+/- mice.

K. Cnp mRNA expression level of Wt and Cnp+/- mice at months 2 and 24, normalized to mean value of ATP synthase subunit beta (Atpsb) and acidic ribosomal phosphoprotein PO (Rplp0) as housekeeper genes and to 2 months old Wt (1.0); mean ± s.e.m. presented; two-sided Student’s t-test used.

L. Cnp protein expression of Wt and Cnp+/- mice at months 2 and 24, compared to Plp as control protein of compact myelin; * low-size band detected in aged brain myelin with the Plp antibody directed against the C-terminus of PLP/DM20.
Aged \textit{Cnp}+/– mice show a phenotype composed of catatonia, depression, loss of interest, impaired social interaction and anxiety.

A-C Open arm parameters.
D. Elevated plus maze.
E. Light/dark box paradigm.
F. Baseline freezing in the context and cue memory task of fear conditioning.
G. Rota-rod.
H. Sociability testing in the three-partite chamber.
I. Buried-food finding test – latency to find hidden versus visible food pellets.
J. Hole board.
K. Tail suspension test.
L. Bar test for catatonia.
M. Typical posture of a catatonic \textit{Cnp}+/– mouse during the bar test; see also videos of Supporting Information.
N. Behavioural composite score displayed as intercorrelation network of Z-transformed items. Line thickness indicates the degree of correlation between 2 respective items. The composite score differs between genotypes (\(p = 0.0002\)). For all behavioural experiments, 24 months old mice were used: \textit{Wt} \(n = 9–11\) and \textit{Cnp}+/– \(n = 10–16\); mean ± s.e.m. presented; two-sided or paired t-tests used where applicable.

Mouse for a chamber containing a small wire cage with a stranger mouse in comparison to a chamber with an empty wire cage. Aged \textit{Wt} mice displayed the expected behaviour, that is spent significantly more time close to the cage with the stranger mouse compared to the empty wire cage (\(p = 0.019\)), whereas, \textit{Cnp}+/– mice did not show preference. To control for altered olfaction as a potential confounder of social behaviour in mice, the buried-food-finding test was performed, confirming normal olfactory function in both groups (Fig 2K). In the hole board test, measuring exploratory behaviour of mice, old \textit{Cnp}+/– mice had significantly less head dips (\(p = 0.011\); Fig 2L), indicating loss of interest (in the absence of any signs of altered basic motor activity). To conclude, old \textit{Cnp}+/– mice demonstrate several facets of a loss of interest in the outside world.

\textbf{Aged \textit{Cnp}+/– mice exhibit features of depression and catatonia}

In the Morris water maze task, \textit{Cnp}+/– mice displayed prominent floating behaviour, precluding analysis of this test for learning and memory. Analysis of the time mice spent floating within a swim trial of 90 s yielded threefold higher floating rates of \textit{Cnp}+/– mice in comparison to \textit{Wt}, which we interpret as a potential sign of depression (\(p = 0.016\); Fig 2M). To further consolidate this hypothesis, we performed an
established test to measure depression in rodents, the tail suspension test, which determines over 6 min the time mice spend immobile. Fractionated analysis revealed that Cnp+/− mice had a higher duration of immobility in the second and last third of the test period compared to Wt (p = 0.025; Fig 2N), consistent with the typical ‘give up’ behaviour of depressed individuals. A phenotype, thus far observed in mice only upon induction (e.g. body pinch or drug exposure; Amir, 1986; Chaperon & Thiebot, 1999) is catatonia/catalepsy, a state of immobility where mice persist in an externally imposed abnormal posture for a prolonged time period. Mice are put into a position where they have to grab a bar while standing with their hind paws on the floor (as illustrated in Fig 2P; for a striking example see videos of Supporting Information). Wt mice swiftly left this position, whereas, Cnp+/− mice persisted in this posture (p = 0.005; Fig 2O). Taken together, old Cnp+/− mice exhibit a catatonia-depression syndrome.

Creating a mouse behavioural composite, the ‘catatonia-depression score’

For translational purposes and confirmation of the internal consistency of our behavioural readouts in aged mice, we calculated intercorrelations between the observed behavioural sub-phenotypes catatonia, depression, loss of interest, impaired social interaction and anxiety as target variables. These variables, put together in a composite score, were internally consistent (Cronbach’s α = 0.686; Fig 2Q). Operationalization of the score items is detailed in the Materials and Methods Section. Expectedly, the score was significantly higher in Cnp+/− (0.32 ± 0.44) than in Wt mice (−0.43 ± 0.41; p = 0.0001). Based on these findings, we wondered whether reduced expression of the CNP gene in aging human patients may have a similar influence on the phenotype.

Exploiting the GRAS data base for a phenotype-based genetic association study on the role of CNP genotypes in a ‘catatonia-depression syndrome’

To search for potential behavioural consequences of a previously described CNP loss-of-function genotype in humans (Iwamoto et al, 2008; Mitkus et al, 2008; Peirce et al, 2006), we conducted a phenotype-based genetic association study (PGAS) targeting the CNP SNP rs2070106 (A/G; Fig 3A) in >1000 schizophrenic patients of the Göttingen Research Association for Schizophrenia (GRAS) data collection (Begemann et al, 2010; Ribbe et al, 2010). As a first step, we performed a case-control analysis (schizophrenic patients vs. healthy controls) and found that this genetic marker does not contribute to an increased risk of schizophrenia in our population, as proven by the genotypic and the allelic chi-square comparison (p > 0.05; Table I of Supporting Information).

Next, a composite score including all variables represented in the mouse behaviour composite was created that also yielded good internal consistency with a Cronbach’s α = 0.695 (Fig 3B). The operationalization of the score items is explained in the Materials and Methods Section. As illustrated in Fig 3C, the composite score shows a clear age and genotype (rs2070106) association: AA subjects develop a significantly higher score with increasing age as compared to GG carriers, with the dissociation of the regression lines starting at around the age of 40 years. We therefore set a cut-off of 40 years and focused on the older schizophrenic patients with our further PGAS analysis.

The characteristics of the GRAS patients with an age ≥40 years, separated by AA versus GG genotype of rs2070106, are presented in Table 1. These data demonstrate that both genotype groups are comparable with respect to basic sociodemographic and clinical/disease control variables but differ highly significantly in the composite score measuring the catatonia-depression syndrome. Interestingly, heterozygote individuals (GA) are very similar to GG subjects. They do not show an intermediate phenotype in the composite score (Table II of Supporting Information). Importantly, when screening all items of the composite separately, a significant age-associated genotype (GG vs. AA) effect, comparable to the mouse findings, becomes evident for all (Fig 1 of Supporting Information).

CNP rs2070106 genotypes influence myelin/axon integrity in the frontal corpus callosum fibres, a candidate region of catatonia-depression

Based on clinical observation of the affected individuals – both mouse and man – and the scarce information in the literature on brain areas potentially involved in the catatonic phenomenon (Arora & Praharaj, 2007; Northoff et al, 2004), we hypothesized that aging AA individuals displaying the catatonia-depression syndrome, in contrast to GG subjects, should show differences in axonal integrity of frontal crossing fibres. To prove this hypothesis, a subset of older patients of both genotypes (GG n = 11; AA n = 10) from the GRAS sample was selected and matched according to age, gender and duration of disease (Table 1). These patients, living all over Germany, were re-invited to Göttingen for diffusion tensor imaging (DTI). Indeed, DTI identified higher axial diffusivity (AD) and a higher apparent diffusion coefficient (ADC) in the frontal part of the corpus callosum (genu) of AA subjects as compared to GG patients (p ≤ 0.005 for both values; Fig 3E), consistent with a more progressed axonal loss/degeneration. This effect was specific for the frontal commissural fibres and was not observed in the posterior corpus callosum taken as a control region (Fig 3F). ADC values in the genu were generally correlated with age but, despite the small number of imaged subjects, resulted in a significant difference between genotypes upon linear discriminant analysis (LDA; p < 0.05; Fig 3G). Importantly, there were no global brain volume differences detectable between GG and AA subjects that could have accounted for DTI results (p > 0.05 for all comparisons; Fig 3H).

DISCUSSION

We report here the unexpected finding that CNP loss-of-function genotypes are causative of a mental syndrome, consisting of catatonia, depression, mild anxiety/social withdrawal, impaired social interaction and reduced interest in the outside world, which is remarkably similar in mouse and man. In both species, age becomes an important cofactor, supporting the view that the
underlying mechanism of this mental syndrome is a slowly progressive neurodegeneration, beginning in subcortical white matter, as described for the more rapid axonal loss in Cnp null mutant mice (Edgar et al, 2009; Lappe-Siefke et al, 2003). Importantly, the CNP loss-of-function genotype is causative of the here described behavioural syndrome but not of schizophrenia where it may only shape the aging phenotype.

In fact, the human part of this study has been obtained from a phenotypically extremely well characterized schizophrenic population (the ‘GRAS data collection’), which was accessible and where all assessed items of the catatonia-depression syndrome are potentially relevant for disease subphenotypes. If a similar database on patients with, for example major depression had been available, the study would have been extended to this population. We expect that in individuals suffering from other mental disorders and even to some (perhaps mild) degree in healthy subjects, the phenotypical consequence of the CNP rs2070106 AA genotype will be
comparable. Along these lines, we show that many schizophrenic patients (and virtually all patients younger than 40 years) lack this syndrome. We would therefore like to stress again that this syndrome is independent of the diagnosis schizophrenia, which is also supported by the behavioural homology of the Cnp mouse model.

Several studies have suggested that schizophrenia and affective disorders are on a continuum of liability. Genetic linkage and association studies have proposed common disease loci for both disorders (Berrettini, 2000; O’Donovan et al, 2008). Family studies document that first-degree relatives of bipolar patients have a threefold higher risk for schizophrenia compared with first-degree relatives of healthy controls (Sham et al, 1994; Valles et al, 2000). Psychopathological syndromes, as the catatonia-depression syndrome shown here, shared by subgroups of both patient populations, would also be compatible with this overlap. Indeed, catatonia has been found to be highly prevalent in elderly patients with major depression (Starkstein et al, 1996). It will be interesting to determine whether depressed individuals that exhibit catatonic signs are also preferentially carriers of the Cnp rs2070106 AA genotype.

To our knowledge, no spontaneous catalepsy in mice has as yet been reported, in contrast to pinch- or drug-induced catalepsy/catatonia (for review see, e.g. Amir, 1986; Chapelon & Thiebot, 1999). The here observed Cnp+/− associated catalepsy/catatonia represents, therefore, the first clearly defined genetic catatonia model. Catatonia as a prominent phenotype has been extensively described by Karl Kahlbaum in 1874 (Kahlbaum, 1874) and entered the Diagnostic and Statistic Manual of Mental Disorders (APA, 2000) from its first edition in 1952 on, where it appears until now in connection with mood disorders, schizophrenia, and general medical conditions (Heckers et al, 2010). Nevertheless, reports on potential brain areas involved in this phenomenon in man are still scarce and point to frontal regions, based on, for example pronounced catatonia in a case with butterfly glioma of the frontal corpus callosum (Arora and Praharaj, 2007) or on a functional magnetic resonance imaging (MRI) study in akinetic catatonic patients during negative emotional stimulation (Northoff et al, 2004). We hypothesized that genotype-dependent axonal degeneration should be detectable in the frontal commissural fibres of the corpus callosum. These considerations were supported by the fact that the catatonia presented here in the context of a ‘classical’ motor dysfunction. Indeed, we could localize axonal degeneration during negative emotional stimulation (Northoff et al, 2004).

The Cnp rs2070106 AA genotype leads to reduced expression of antipsychotic drug dose; PANSS, positive and negative syndrome scale (consisting of three parts: pos; positive symptoms; neg, negative symptoms; gen, general psychopathology); GAF, global assessment of functioning; CGI, clinical global impression (see Ribbe et al, 2010 for further details).

Due to missing data upon phenotyping, sample sizes vary between n = 242 and 280 in the sample of individuals with age equal or above 40 years.

*Rating according to graduation/certificate; patients currently in school or in educational training are excluded.

Statistical methods used: ANOVA or \(\chi^2 \)-test.

Result after correction for CPZ.
close vicinity (e.g. in the 3′-untranslated region (3′-UTR) of the CNP gene). Alternatively, according to previous studies, synonymous SNPs may modify translational timing due to differential codon usage (Kimchi-Sarfaty et al, 2007) or inactivate an exonic splicing silencer that compensates for other genetic variations in exonic splicing enhancers (Nielsen et al, 2007).

We demonstrated increased numbers of inflammatory cells, gliosis and axonal degeneration in old CNp+/− mice suggesting an important role of low-grade inflammation in the described syndrome. Even though brain sections of human patients with the respective CNP genotypes were not available in the present study, the axonal degeneration detected by DTI is an intriguing observation that might point to the hypothesis of a comparable disease mechanism in mouse and man. Mechanistic details on the subcellular functions of CNP in myelinating oligodendrocytes have been reported (Gravel et al, 2009) and are under further investigation. The secondary neuroinflammation is a well-known cause of nitric oxide-mediated axonal stress and neurodegeneration (for review see Amor et al, 2010; Smith & Lassmann, 2002). We note that a diverse group of inherited myelinopathies in the nervous system of mice can trigger the recruitment of microglia/macrophages and T-cells (Ip et al, 2006; Kassmann et al, 2007; Martini & Toyka, 2004), demonstrating that low-grade inflammation is a rather unspecific response of myelinating glial cells to cellular stress, possibly related to perturbed lipid metabolism (Dumser et al, 2007). Interestingly, low-grade inflammation has been found to be associated with behavioural consequences in mouse studies (Bercik et al, 2010) and hypothesized to play a role in mental diseases (Gardner & Boles, 2011; Monji et al, 2009; Muller & Schwarz, 2008; Schnieder & Dwork, 2011). Respectively first clinical trials employing antiinflammatory strategies in bipolar disease and schizophrenia yielded positive signals (Laan et al, 2010; Muller et al, 2010). Having information available on a predisposing genotype, individualized preventive and therapeutic approaches may be possible in the future.

To conclude, the major finding of the present study is the proof-of-principle that subtle changes of subcortical white matter can be the cause, rather than merely the consequence, of a complex neuropsychiatric syndrome. This distinction is extremely difficult in human patients with a psychiatric disease of unknown etiology, specifically when pharmacologically extremely difficult in human patients with a psychiatric disease of unknown etiology, specifically when pharmacologically

Materials and Methods

Human studies

Healthy subjects

Blood donors (n = 1045; Begemann et al, 2010) were recruited for the case-control study. Ethnicity (Caucasian 97.8%; other ethnicities 2%; unknown 0.2%) was comparable to the patient population (Caucasian 95.5%; other ethnicities 1.8%; unknown 2.7%).

Schizophrenic patients

The GRAS data collection was approved by Ethics Committees of the Georg-August-University of Göttingen and participating centres, and comprises at present 1048 patients with Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV; APA, 2000) diagnosis of schizophrenia (81.9%) or schizoaffective disorder (18.3%), examined between 2005–2010 in 23 centres all over Germany (for details see Ribbe et al, 2010). Interviews, testing and ratings were conducted by an invariable team of trained examiners using the ‘GRAS Manual’ (Begemann et al, 2010; Ribbe et al, 2010).

Catatonia-depression composite

The score consists of five phenotype domains: Depression was operationalized by items 3 (guilt feelings) and 6 (depression) of general psychopathology subscale of Positive and Negative Syndrome Scale (PANSS) (Kay et al, 1987). Catatonia was based on catatonic signs subscale of the Cambridge Neurological Inventory (gait mannerism, gegenhalten, mitgehen, imposed posture, abrupt or exaggerated spontaneous movements, iterative movements, automatic obedience and echopraxia; Chen et al, 1995). Deficits in social interaction were built on items 1 (blunted affect) and 3 (poor rapport) of PANSS negative subscale, combined with item 44 (never feeling close to another person) of Brief Symptom Inventory (Derogatis & Melisaratos, 1983). Social withdrawal/anxiety was assessed by item 4 (social withdrawal) of PANSS negative subscale and item 12 (suddenly scared for no reason) of Brief Symptom Inventory. Loss of interest in the outside world was estimated by item 7 (self-centred attitude) of PANSS negative and item 15 (preoccupation) of general subscale. Phenotype domains were Z-standardized to be normally distributed with expectation zero and variance one. Higher values indicate worse outcome. Composite calculation was based on subjects without missing data (n = 929). Correlations of the five target phenotypes were assessed using Pearson product–moment correlation and internal consistency was determined using Cronbach’s α.

Genotyping

Genotyping of SNP rs2070106 was performed using SimpleProbes (TIB Molbiol, Berlin, Germany) on LightCycler480 (Roche Diagnostics, Basel, Switzerland).

Research Article

CNP genotypes are associated with catatonia-depression

CNP
MRI/DTI

For MRI/DTI analyses, a subset of patients ≥40 years of both genotypes (GG \(n = 11\); AA \(n = 10\)) from the GRAS sample was selected and matched according to age, gender and duration of disease. Studies were conducted at 3T (Tim Trio, Siemens Healthcare, Erlangen, Germany) using a 32-channel head coil. DTI was performed at 2 mm isotropic resolution using diffusion-weighted single-shot stimulated echo acquisition mode (STEAM) sequences (Hofer et al, 2010; Karaus and Frahm, 2009) combining 6/8 partial Fourier encoding and parallel imaging. Protocol comprised 24-independent diffusion gradient directions and \(b\)-values of 0 and 900 s/mm\(^2\). A total of 55 transverse sections (2 mm thickness) covered brain parts dorsal and ventral to the corpus callosum. To increase signal-to-noise ratio, acquisition was repeated three times (17 min). Anatomical images were based on \(T_\text{2}\)-weighted 3D fast low angle shot (FLASH) MRI sequence (repetition time \(TR = 11\) ms, echo time \(TE = 4.9\) ms, flip angle 15°).

DTI regions of interest (ROI)

Before calculation of diffusion tensor, diffusion-weighted MRI data sets were interpolated to 1 mm isotropic resolution and smoothed with a 3D Gaussian filter (half width 1 mm). Individual ROIs were manually defined on colour-coded maps of the main diffusion direction without thresholding. ROIs for the corpus callosum were placed in the midsagittal plane as well as in two directly neighbouring parasagittal sections covering central portions of genu and most posterior part of splenium (Hofer & Frahm, 2006). Mean values of fractional anisotropy (FA), ADC, AD and radial diffusivity (RD) were calculated.

MRI volumetry

Analyses were performed with an automatic brain segmentation tool for surface-based cortical thickness (http://surfer.nmr.mgh.harvard.edu). \(T_\text{1}\)-weighted images underwent corrections for intensity inhomogeneity, skull strip and registration into Talairach space followed by segmentation into grey matter, white matter and various brain areas. Regional differences of cortical thickness between patient groups were investigated using Qdec (FreeSurfer for multiple comparisons and voxel-based morphometry). Statistics relied on \(p \leq 0.05\) (false discovery rate corrected for multiple comparisons). Visualization employed an inflated pial surface model.

Mouse studies

Mouse mutants

Experiments were carried out according to animal policies of the German Federal State of Niedersachsen. \(Cnp^+/-\) mice were genotyped with primers \(Cnp\text{-E3s, 5}'-GCCCTCAAAATGGCTCATCTC-3'; \(Cnp\text{-E3as, 5}'-CCCACCCTTTATTCAC-3'\) and \(puro3, 5'-CATACGCTGAA-GAACCAGA-3'\).

Immunostaining

Mice were anesthetized with Avertin (Sigma–Aldrich, Taufkirchen, Germany) and perfused through the left ventricle with 15 ml of Hank’s balanced salt solution (Lonzar, Basel, Switzerland), followed by 50 ml of 4% paraformaldehyde in phosphate buffered saline (PBS). Brains were harvested and postfixed in 4% paraformaldehyde overnight at 4°C and then embedded in Paraplast (Surgipath Paraplast; Leica, Wetzlar, Germany). Microtome sections of 5 \(\mu\)m (Microm HM400, Walldorf, Germany) were prepared. For diaminobenzidine (DAB)-based immunostaining of paraffin sections, Dako-LSAB\(_2\) system or Vectastain Elite ABC kit (Vector laboratories, Burlingame, CA, USA) were used according to manufacturer’s instructions. Primary antibodies were directed against APP (1:750, Chemicon (Millipore) Billerica, MA, USA), CD3 (1:150, Serotec, Oxford, UK), GFAP (1:200, Novocastra (Leica) Newcastle Upon Tyne, UK), IBA-1 (1:1000, Wako, Neuss, Germany) and Mac-3 (1:400, BD Pharmingen, Franklin Lakes, NJ, USA).

Quantitative real time polymerase chain reaction (qRT-PCR)

qRT-PCR was performed using SYBR green master mix (Applied Biosystems, Foster City, CA, USA) and 7500 Fast Real-Time PCR System (Applied Biosystems). Specific qRT-PCR primers were designed by Roche Universal ProbeLibrary Assay Design Center (Cnp, forward 5'-TAACCCCTCAACCTGGCCCT-3', reverse 5'-GCTCCATAGAGTGCGGACT-3'); for normalization: \(Atp5b\) forward 5'-GAATCTGCTGCCCCCATAC-3', reverse 5'-CTTTCCAACCCGACACCT-3', \(Riplp0\) forward 5'-GATGCC-CAGGGAAAGAC-3', reverse 5'-ACATGAGGATTGTGATAATCA-3'). Data were analysed with Microsoft Excel 2010.

Western blot

Myelin purified from protein lysates was performed according to (Norton & Poduslo, 1973). For Western blotting, proteins were size-separated in 12% sodium dodecyl sulphate (SDS)–polyacrylamide gels (0.2 \(\mu\)g/\(\mu\)l), blotted onto polyvinylidene difluoride membranes (Hybond P; GE Healthcare, München, Germany), blocked with 5% milk powder in Tris-buffered saline (TBS) and Tris-buffered saline + Trition X-100 (TBS/T; 150 mM NaCl, 10 mM Tris/HCl, pH 7.4; 0.1% Tween20), and incubated with primary antibodies (CNPase, 1:5000, Sigma, Saint Louis, MO, USA; Plp (A431), 1:5000; Jung et al, 1996), overnight at 4°C. Blots were washed with TBS/0.05% Tween20, incubated with appropriate secondary horseradish peroxidase-conjugated antibodies (Dianova, Hamburg, Germany), washed with TBS/0.05% Tween20 and developed by enhanced chemiluminescence (Pierce, Rockford, IL, USA).

Morphometry

Digitized overlapping light microscopic images (20X if not otherwise stated), fused to a continuous image of a complete corpus callosum (bregma 0.74 mm) by using Photoshop CS5 and ImageJ software were analysed for absolute numbers of IBA-1 and Mac-3 positive cells. To quantify GFAP positive areas, a plug-in for the ImageJ software for semi-automated analysis was implemented (http://www1.em.mpg.de/wiese). APP positive axonal spheroids (analysed at 40X magnification) and CD3 positive T-cells are expressed as total numbers quantified in corpus callosum, anterior commissure and striatum. For all stainings, two sections per mouse were quantified.

Behavioural testing

Tests were performed as described in detail previously, using the following order: Elevated plus maze (Raduyshkin et al, 2010), open field (Raduyshkin et al, 2010), light/dark box (Finn et al, 2003), rota-rod (Raduyshkin et al, 2010), gait analysis (Brooks & Dunnett, 2009), grip strength (Raduyshkin et al, 2010), hole board (Raduyshkin et al, 2009), sociability (Moy et al, 2004), buried-food-finding test for olfaction (Raduyshkin et al, 2005), floating behaviour (analysis of swimming/ floating during a 90s trial in the Morris water maze pool; Morris, 1984;
PROBLEM:
Myelin and white matter abnormalities have been documented in neuropsychiatric diseases such as schizophrenia, major depression and bipolar disorder. However, their significance for disease mechanisms, pathogenesis or phenotypes is still obscure. A considerable number of postmortem studies found reduced expression of several myelin genes, including 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), in the brains of individuals with severe mental disease. In the present translational approach, we report for the first time phenotypical consequences of moderate CNP ‘loss-of-function’ genotypes, that is genetic variants leading to decreased CNP expression, both in man (single nucleotide polymorphism rs2070106) and mouse (heterozygous Cnp null mutant mice).

RESULTS:
We show that reduced CNP expression causes a distinct behavioural abnormality, seen only upon aging as an additional ‘pro-inflammatory hit’. This phenotype is strikingly similar between Cnp heterozygous mice and patients with mental disease, carrying the AA genotype at CNP SNP rs2070106. The characteristic features in both species are best described as a ‘catatonia-depression’ syndrome and include bizarre posturing, depression, anxiety, loss of interest in the outside world and social withdrawal. As a consequence of perturbed CNP expression, mice show secondary low-grade inflammation and degeneration of nerve fibres. Analogously, in man, diffusion tensor imaging points to axonal loss in the frontal corpus callosum.

IMPACT:
Our genetic data demonstrate that subtle white matter abnormalities can be the cause of a psychiatric syndrome. To our knowledge, CNP is the first gene identified to be associated with catatonia, and aged heterozygous null mutant mice are the first animal model of spontaneous catatonia. Moderately reduced CNP expression contributes to a distinct phenotype, which is not restricted to a single diagnostic category but could explain features of catatonia-depression in different mental disorders and possibly – to a milder degree – even in aging healthy individuals. This knowledge will help defining subgroups of (aging) subjects who may profit from novel, more specific therapeutic approaches including anti-inflammatory strategies.

Acknowledgements
We are indebted to all patients for their participation in the GRAS (Göttingen Research Association for Schizophrenia) study and all collaborating GRAS centres for their support. We are grateful to all colleagues who contributed to the GRAS data collection. This work was supported by the Max Planck Society, the DFG-Research Center for Molecular Physiology of the Brain (CMPB) and the Bernstein Center for Computational Neuroscience (BCCN) (Grant 01GQ0431). K.A.N. acknowledges grant support from ERA-Net Neuron (Grant 01EO042). K.A.N. acknowledges grant support from ERA-Net Neuron (Grant 01EO042) and is recipient of an ERC Advanced Grant (Axoglia).

Supporting Information is available at EMBO Molecular Medicine online.
The authors declare that they have no conflict of interest.

References

Amir S (1986) Catalepsy induced by body pinch: relation to stress-induced analgesia. Ann N Y Acad Sci 467: 226-237
Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129: 154-169
APA. (2000) Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, Washington, American Psychiatric Association.
Arora M, Praharaj SK (2007) Butterfly glioma of corpus callosum presenting as catatonia. World J Biol Psychiatry 8: 54-55
Aston C, Jiang L Sokolov BP (2005) Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 10: 309-322
Begemann M, Grube S, Papilo S, Malzahn D, Krampe K, Friedrichs H, Raduyskhi KN, El-Kordi A Benseler F, et al (2010) Modification of cognitive performance in schizophrenia by complex 2 gene polymorphisms. Arch Gen Psychiatry 67: 879-888
Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blenerhassett P, Neufeld KA, et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139: 2102-2112
Berrettini WH (2000) Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 48: 531-538
Bifulco M, Laezza C, Stingo S, Wolff J (2002) 2'-3'-Cyclic nucleotide 3'-5'-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc Natl Acad Sci USA 99: 1807-1812
Braun PE, Lee J, Gravel M (2004) 2'-3'-Cyclic nucleotide 3'-phosphodiesterase: structure, biology, and function. In: Myelin Biology and Disorders, Lazzarini RA (ed), San Diego: Elsevier Academic Press pp 499-522.
Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 10: 519-529
Chaperon F, Thiebot MH (1999) Behavioral effects of cannabinoid agents in animals. Crit Rev Neurobiol 13: 243-281
Che R, Tang W, Zhang J, Wei Z, Zhang Z, Huang K, Zhao X, Gao J, Zhou C, Huang P, et al (2009) No relationship between 2',3'-cyclic nucleotide 3'-5'-phosphodiesterase and schizophrenia in the Chinese Han population: an expression study and meta-analysis. BMC Med Genet 10: 31
Chen EY, Shapleske J, Luque R, McKenna PJ, Hodges JR, Calloway SP, Hymas NF, Aston C, Jiang L Sokolov BP (2005) Transcriptional profiling reveals evidence for myelin-related dysfunction. Arch Gen Psychiatry 62: 103-108
Chaperon F, Thiebot MH (1999) Behavioral effects of cannabinoid agents in animals. Crit Rev Neurobiol 13: 243-281
Che R, Tang W, Zhang J, Wei Z, Zhang Z, Huang K, Zhao X, Gao J, Zhou C, Huang P, et al (2009) No relationship between 2',3'-cyclic nucleotide 3'-5'-phosphodiesterase and schizophrenia in the Chinese Han population: an expression study and meta-analysis. BMC Med Genet 10: 31
Chen EY, Shapleske J, Luque R, McKenna PJ, Hodges JR, Calloway SP, Hymas NF, Aston C, Jiang L Sokolov BP (2005) Transcriptional profiling reveals evidence for myelin-related dysfunction. Arch Gen Psychiatry 62: 103-108
Chapelon F, Thiebot MH (1999) Behavioral effects of cannabinoid agents in animals. Crit Rev Neurobiol 13: 243-281
Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29: 571-625
Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, Buxbaum J, Haroutunian V (2003) White matter changes in schizophrenia: a novel RNA-binding protein that inhibits protein synthesis. J Neurosci Res 87: 1069-1079
Heckers S, Tandon R, Bustoillo J (2010) Catatonia in the DSM—shall we move or not? Schizophr Bull 36: 205-207
Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32: 989-994
Hofer S, Karas A, Frahm J (2010) Reconstruction and dissection of the entire human visual pathway using diffusion tensor MRI. Front Neuroanat 4: 15
Ip CW, Kroner A, Bendszus M, Leder C, Kobsar I, Fischer S, Wiendl H, Nave KA, Martini R (2006) Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J Neurosci 26: 8206-8216
Iwamoto K, Ueda J, Bundo M, Nakano Y, Kato T (2008) Effect of a functional single nucleotide polymorphism in the 2',3'-cyclic nucleotide 3'-5'-phosphodiesterase gene on the expression of oligodendrocyte-related genes in schizophrenia. Psychiatry Clin Neurosci 62: 103-108
Jung M, Sommer I, Schachner M, Nave KA (2006) Monoclonal antibody O10 defines a conformationally sensitive cell-surface epitope of proteolipid protein (PLP): evidence that PLP misfolding underlies dysmyelination in mutant mice. J Neurosci 16: 7920-7929
Kahlbaum K (1874) Die Katatonie oder das Spannungssirresein., Berlin: Hirschwald
Karas AH S, Frahm J (2009) Separation of Fiber Tracts within the Human Cingulum Bundle using Single-Shot STEAM DTI. Open Med Imaging J 3: 21-27
Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, et al (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39: 969-976
Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13: 261-276
Kimchi-Sarfaty C, Oh J, Miyawaki A, Weinberg AM, Ambudkar SV, Gottesman MM (2007) A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528
Kuschinsky K, Hornykiewicz O (1972) Morphine catatopy in the rat: relation to striatal dopamine metabolism. Eur J Pharmacol 19: 119-122
Laan W, Grobbee DE, Selten JP, Jager JW, Heijnen CJ, Kahn RS, Burger H (2010) Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 71: 520-527
Lappe-Siefke C, Coebels S, Gravel M, Nicksch E, Lee J, Braun PE, Gwinnth IR Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33: 366-374
Lee J, Gravel M, Zhang R, Bihbault P, Braun PE (2005) Process outgrowth in oligodendrocytes is mediated by CNP1, a novel microtubule assembly myelin protein. J Cell Biol 170: 661-673
CNP genotypes are associated with catatonia-depression

Martini R, Toyka KV (2004) Immune-mediated components of hereditary demyelinating neuropathies: lessons from animal models and patients. Lancet Neurol 3: 457-465

Miller KR, Streit WJ (2007) The effects of aging, injury and disease on microglial function: a case for cellular senescence. Neuron Glia Biol 3: 245-253

Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE, Lipska BK (2008) Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 98: 129-138

Monji A, Kato T, Kanba S (2009) Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci 63: 257-265

Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11: 47-60

Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnunson TR, Piven J, Crawley JN (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3: 287-302

Muller N, Schwarz MJ (2008) A psychoneuroimmunological perspective to Emil Kraepelins dichotomy: schizophrenia and major depression as inflammatory CNS disorders. Eur Arch Psychiatry Clin Neurosci 258: 97-106

Muller N, Krause D, Dehning S, Musil R, Schennach-Wolff R, Obermeier M, Muller N, Schwarz MJ, Riedel M (2010) Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res 121: 118-124

Nielsen KB, Sorensen S, Cartegni L, Cordyon Tj, Doktor TK, Schroeder LD, Reinert LS, Elpeleg O, Krainer AR, Gregersen N, et al (2007) Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet 80: 416-432

Northoff G, Kotter R, Baumgart F, Danos P, Boeker H, Kaulisch T, Schlagenhauf N, Vinken PF, Krabbendam L, Boks M, Penninx BWJH, van Os J, Kahn RSP (2008) Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 63: 18-24

Radyushkin K, Hammerschmidt K, Boretius S, Varoqueaux F, El-Kordi A, Ronnenberg A, Winter D, Frahm J, Fischer J, Brose N, et al (2009) Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 8: 416-425

Radyushkin K, El-Kordi A, Boretius S, Castaneda S, Ronnenberg A, Reim K, Bickeboller H, Frahm J, Brose N, Ehrenreich H (2010) Complexin2 null mutation requires a 'second hit' for induction of phenotypic changes relevant to schizophrenia. Genes Brain Behav 9: 592-602

Ribe K, Friederichs H, Begemann M, Grube S, Papilis S, Kastner A, Gerchen MF, Ackermann V, Tarami A, Treitz A, et al (2010) The cross-sectional GRAS sample: a comprehensive phenotypical data collection of schizophrenic patients. BMC Psychiatry 10: 91

Scherer SS, Braun PE, Grinspan J, Collarini E, Wang DY, Kamholz J (1994) Differential regulation of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene during oligodendrocyte development. Neuron 12: 1363-1375

Schneider TP, Dwork AJ (2011) Searching for neuropathology: glosis in schizophrenia. Biol Psychiatry 69: 134-139

Sham PC, Jones P, Russell A, Gilvary K, Bebbington P, Lewis S, Toone B, Murray R (1994) Age at onset, sex, and familial psychiatric morbidity in schizophrenia. Camberwell Collaborative Psychosis Study. Br J Psychiatry 165: 466-473

Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1: 232-241

Sparkman NL, Johnson RW (2008) Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation 15: 323-330

Starkstein SE, Petracca G, Teson A, Chemerinski E, Merello M, Migliorelli R, Leiguarda R (1996) Catatonia in depression: prevalence, clinical correlates, and validation of a scale. J Neurol Neurosurg Psychiatry 60: 326-332

Stone EA, Lin Y (2011) Open-space forced swim model of depression for mice. Curr Protoc Neurosci 9: 36

Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29: 506-510

Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ, Yoklen RH, Bahn S (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362: 798-805

Valles V, Van Os J, Guillamat R, Gutierrez B, Campillo M, Gento P, Fananas L, Gagel J, Van den Bosch L, Vancampfort D, Desclot B, Brandt M, Wenig M, van der Zee J, Exner C, Mohedano M, Soto R, et al (2010) Increased morbidity for schizophrenia in families of in-patients with bipolar illness. Schizophr Res 43: 310-315

Yin X, Peterson J, Gravel M, Pirvov A, Trapp BD (1997) CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci 17: 4366-4376

Yu WP, Collarini E, Pringle NP, Richardson WD (1994) Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12: 1353-1362