Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening

George T. Lountos1, Xue Zhi Zhao2, Evgeny Kiselev3, Joseph E. Tropea4, Danielle Needle4, Yves Pommier3, Terrence R. Burke, Jr2 and David S. Waugh4,*

1Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, 2Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA, 3Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA and 4Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA

Received October 16, 2018; Revised May 20, 2019; Editorial Decision May 22, 2019; Accepted June 11, 2019

ABSTRACT
Tyrosyl DNA-phosphodiesterase I (TDP1) repairs type IB topoisomerase (TOP1) cleavage complexes generated by TOP1 inhibitors commonly used as anticancer agents. TDP1 also removes DNA 3′ end blocking lesions generated by chain-terminating nucleosides and alkylating agents, and base oxidation both in the nuclear and mitochondrial genomes. Combination therapy with TDP1 inhibitors is proposed to synergize with topoisomerase targeting drugs to enhance selectivity against cancer cells exhibiting deficiencies in parallel DNA repair pathways. A crystallographic fragment screening campaign against the catalytic domain of TDP1 was conducted to identify new lead compounds. Crystal structures revealed two fragments that bind to the TDP1 active site and exhibit inhibitory activity against TDP1. These fragments occupy a similar position in the TDP1 active site as seen in prior crystal structures of TDP1 with bound vanadate, a transition state mimic. Using structural insights into fragment binding, several fragment derivatives have been prepared and evaluated in biochemical assays. These results demonstrate that fragment-based methods can be a highly feasible approach toward the discovery of small-molecule chemical scaffolds to target TDP1, and for the first time, we provide co-crystal structures of small molecule inhibitors bound to TDP1, which could serve for the rational development of medicinal TDP1 inhibitors.

INTRODUCTION
A member of the phospholipase D superfamily, tyrosyl-DNA phosphodiesterase I (TDP1) (E.C. 3.1.4.1) was discovered as a DNA-repair enzyme that cleaves the phosphodiester bond between a tyrosine residue of type IB topoisomerase (TOP1) and the 3′ phosphate of DNA that occurs in stalled TOP1-DNA cleavage complexes (TOP1cc) (1,2). Human cells encode six DNA topoisomerases that regulate DNA topology by transiently cleaving the DNA backbone to remove DNA supercoiling, unlinking post-replication catenanes and resolving DNA knots (3). The TOP1 active site tyrosine reversibly ‘breaks’ the phosphodiester linkage of one strand of the double-stranded DNA by a nucleophilic attack, resulting in a TOP1-DNA covalent reaction intermediate that links this Tyr to the 3′ end of the broken strand via a phosphodiester moiety. Inhibitors of TOP1 that block the religation of TOP1cc by binding at the enzyme–DNA interface (4) and generate stalled TOP1cc are used as anticancer drugs in the clinic (3,5). TDP1 has been hypothesized to be a pharmacological target for the treatment of cancer (6–10).

TDP1 repairs DNA lesions that are created by the trapping of TOP1 following treatment by camptothecin and its derivatives such as topotecan and irinotecan as well as

*To whom correspondence should be addressed. Tel: +1 301 846 1842; Fax: +1 301 846 7148; Email: waughd@nih.gov

Disclaimer: The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government.
those that accumulate under other physiological conditions where TOP1 acts on DNA alterations. (2,11–13). It carries out these functions by hydrolyzing the covalent bond between the TOP1 catalytic tyrosine residue and the 3’ end of the DNA in a two-step reaction (Figure 1) (2,8,13,14). First, it cleaves the 3’ tyrosyl bond by forming a transient covalent intermediate between a conserved histidine (H263 for human TDP1) and the 3’ phosphate end. The covalent TDP1-DNA bond is then released by hydrolysis, which requires a second histidine of TDP1 (H493 for human TDP1) (1,15,16) (Figure 1). Subsequently, poly nucleotide kinase phosphatase (PNKP) removes the residual 3’ phosphate and installs a phosphate on the 5’ end at the opposing side of the break. At last, DNA ligase III reseals the DNA (12). The repair function of TDP1 is not just limited to TOP1 cleavage complexes. It also removes 3’ phosphoglycolate caused by oxidative DNA damage and 3’ blocking lesions generated by oxygen radicals and alkylating agents (12,17,18). It can also serve as a backup repair pathway for DNA lesions generated by the trapping of DNA topoisomerase II (TOP2α and TOP2β) on DNA (17,19–21). These observations highlight a potentially broad and important role for TDP1 in the maintenance of genomic stability. TDP1-dependent repair pathways are normally redundant with other DNA damaging response pathways, such as Mre11 and XPF (22,23) that are often compromised in cancer cells.

Checkpoint and repair deficiencies are common in many cancer cells and, in these cases, TDP1 becomes the main mechanism for removal of TOP1-mediated DNA damage (3,24). It has been proposed that combination chemotherapy with TDP1 inhibitors and topoisomerase-targeting drugs should work synergistically to enhance selectivity toward cancer cell lines with pre-existing deficiencies in parallel repair pathways such as XPF-ERCC1, giving rise to synthetic lethality (25,26). Based on the broad spectrum of TDP1 substrates, TDP1 inhibitors should not only synergize with TOP1-targeting agents such as irinotecan, topotecan and other camptothecin derivatives, but also with the indenoisoquinoline derivative non-camptothecin TOP1 inhibitors in clinical development (5) and with gemcitabine, a drug that is used for the treatment of various cancers (27). Despite the potential therapeutic value of TDP1 as an anti-cancer drug target, there are no drugs currently in the clinic that specifically target TDP1 (7,10). Although, there are a limited number of TDP1 inhibitors that have been reported in the literature (7,10,14,28,29) and the first crystal structures of TDP1 were solved nearly 15 years ago (15,16), crystal structures of TDP1 bound to a small molecule inhibitor have yet to be reported. The determination of a crystal structure of TDP1 bound to a small molecule, therefore, could potentially facilitate structure-based drug design efforts focused on the development of novel TDP1 inhibitors.

Within the past decade, fragment-based drug discovery has grown into an effective and viable method for deriving new pharmacophores which have often progressed into lead compounds for a variety of challenging targets (30,31). Fragments found in many commercial screening libraries are typically low molecular weight compounds (<250 Da) that adhere to the Lipinski rule of three and are readily amenable to further chemical modification (32,33). Such fragments provide chemical scaffolds that are smaller and less complex than those typically found in high-throughput screening assays (34). In turn, this often leads to an increased probability that a fragment will bind to a target protein, resulting in higher hit rates and more efficient screening of diverse chemical space. A major advantage of fragment-based drug discovery is that it can identify lead compounds that possess high-ligand efficiency with the opportunity to fine-tune physicochemical properties during elaboration and optimization. Hits identified from fragment screens can also reveal unanticipated binding pockets or hot spots within a target protein (35,36). A wide array of biophysical techniques can be used to rapidly identify weak protein-binding fragments (37,38). X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy were among the first to be utilized in fragment-based drug discovery (38–40). Although still time-consuming and labor intensive, X-ray crystallography is a powerful primary method for screening fragment libraries that has noteworthy advantages over other biophysical screening methods (31,41). Many initial fragments tend to exhibit very weak binding affinities from the high micromolar to low millimolar range. X-ray crystallography provides the sensitivity needed to confirm the binding of such weak compounds and it concurrently reveals the structural information that is needed to immediately advance these fragments from hits to leads using structure-guided drug design (30).

In an attempt to identify novel chemicals that bind to and inhibit TDP1, we carried out a crystallographic fragment screening campaign using a library of ~640 fragment compounds. Two types of fragments were identified that bind to the active site pocket and members from both series exhibit inhibitory activity against TDP1. Herein, for the first time we provide the high-resolution crystal structures of TDP1 bound to small molecules. These may provide structural insights for structure-guided drug design efforts to identify and optimize inhibitors of TDP1.

MATERIALS AND METHODS

Cloning and expression

A derivative of the Gateway™ vector pDONR221 containing the open reading frame (ORF) encoding the human TDP1 catalytic domain (residues S148–S608) preceded by a tobacco etch virus (TEV) protease recognition site was provided by Dr Tinoush Moulaei, Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute. The ORF was moved by recombinational cloning into the destination vector pDEST-527 to produce pDN2454. This plasmid directs the expression of human TDP1 (S148–S608) with an N-terminal hexahistidine tag and an intervening TEV protease cleavage/recognition site (ENLYFQ/S148) (42). The fusion protein was expressed in the Escherichia coli strain BL21 Star™ (DE3) (Invitrogen ThermoFisher Scientific). Cells containing pHDN2454 were grown to mid-log phase (OD600 ∼ 0.5) at 37 °C in Luria Bertani broth (Cellgro) containing 100 μg/ml ampicillin and 0.2% glucose. Overproduction of fusion protein was induced with isopropyl-β-D-thiogalactopyranoside at a final concentration of 1 mM for 18–20 h at 18°C. The cells were pelleted by centrifugation and stored at −80°C.
Figure 1. Schematic representation of TDP1 catalytic mechanism. Residue numbers refer to human TDP1. Curved arrows denote the transfer of electron pairs. (A) The imidazole N2 atom of H263 nucleophilically attacks the phosphate of the phosphotyrosyl group (B) Phosphohistidine covalent intermediate. (C) Hydrolysis of the phosphohistidine intermediate by H493-activated water molecule. (D) Generation of a final 3′ phosphate product and free TDP1.

Purification

All procedures were performed at 4–8°C. A total of 20–25 g of E. coli cell paste expressing human TDP1 (S148-S608) with an N-terminal hexahistidine tag were suspended in 250 ml ice-cold buffer A (50 mM Tris–HCl, 500 mM NaCl, 25 mM imidazole, pH 7.5) containing 5 mM benzamidine HCl (Sigma Aldrich Corporation) and Complete™ (ethylenediaminetetraacetic acid) EDTA-free protease inhibitor cocktail (Roche Diagnostics). The cells were lysed with an APV-1000 homogenizer (Invensys APV Products) at 10 000 psi and centrifuged at 30 000 × g for 30 min. The supernatant was filtered through a 0.45 μm polyethersulfone membrane and applied to a HisTrap FF column (GE Healthcare Life Sciences) equilibrated in buffer A. The column was washed to baseline with buffer A and eluted with a linear gradient of imidazole to 1 M. Fractions containing the His6-TDP1 fusion protein were pooled, concentrated using an Ultracel® 10 kDa ultrafiltration disc (EMD Millipore Corporation), diluted with 50 mM Tris–HCl pH 7.5 buffer to reduce the imidazole concentration to about 25 mM, and digested overnight at 4°C with His7-tagged TEV protease (43). The digest was applied to the HisTrap FF column equilibrated in buffer A and the TDP1 emerged in the column effluent. The effluent was incubated overnight at 4°C with 10 mM dithiothreitol, concentrated using an Ultracel® 10 kDa ultrafiltration disc, and applied to a HiPrep 26/60 Sephacryl S-300 HR column (GE Healthcare Life Sciences) equilibrated in 25 mM Tris–HCl, 500 mM NaCl, 2 mM tris(2-carboxyethyl)phosphine, pH 7.5 buffer. Fractions containing TDP1 (S148-S608) were pooled, concentrated as above, diluted with 50 mM Tris–HCl pH 7.5 buffer to reduce the NaCl concentration to 25 mM and applied to a HiTrap Q HP column (GE Healthcare Life Sciences) equilibrated in 50 mM Tris–HCl, 25 mM NaCl, pH 7.2 buffer. Recombinant protein that emerged in the column effluent was pooled and applied to a HiTrap SP HP column (GE Healthcare Life Sciences) equilibrated in 50 mM HEPES, 25 mM NaCl, pH 7.2 buffer. The column was washed to baseline with equilibration buffer and eluted with a linear gradient of NaCl to 500 mM. Fractions containing pure TDP1 were pooled, concentrated as above and applied to the HiPrep 26/60 Sephacryl S-300 HR
column equilibrated in 25 mM Tris–HCl, 150 mM NaCl, 2 mM tris(2-carboxyethyl) phosphine, pH 7.2 buffer. The peak fractions containing recombinant TDP1 (S148–S608) were pooled and concentrated to 30–50 mg/ml (estimated at 280 nm using a molar extinction coefficient of 112 300 M$^{-1}$ cm$^{-1}$ (derived using the Expasy ProtPram tool) (44). Aliquots were flash-frozen in liquid nitrogen and stored at -80°C. The final product was judged to be >95% pure by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight was confirmed by electrospray ionization mass spectroscopy (LC/ESMS).

Crystallization

The catalytic domain of TDP1 (residues S148–S608) was screened for crystallization conditions using several sparse-matrix crystallization screens from Hampton Research, Qiagen, Molecular Dimensions and Anatrace. The most promising conditions were obtained using the Morpheus crystallization screen (45). Crystallization plates were prepared using a Gryphon crystallization robot (Art Robbins Instruments). Diffraction-quality crystals were prepared by combining the program Phaser in the PHENIX suite (47). At least one crystal from each plate was processed using HKL3000 (46). For structuresolution, molecular replacement was performed using the coordi-

Recombinant TDP1 assay

A 5' 32P-labeled single-stranded DNA oligonucleotide containing a 3' phosphotyrosine (N14Y) (10) was incubated at 1 nM with 10 pM recombinant full-length TDP1 in the absence or presence of inhibitor for 15 min at room temperature in the assay buffer containing 50 mM Tris–HCl, pH 7.5, 80 mM KCl, 2 mM EDTA, 1 mM diethiothreitol (DTT), 40 µg/ml bovine serum albumin and 0.01% Tween-20 (53). Reactions were terminated by the addition of 1 volume of gel loading buffer [99.5% (v/v) formamide, 5 mM EDTA, 0.01% (w/v) xylene cyanol and 0.01% (w/v) bromophenol blue]. Reaction products were separated by a 16% denaturing polyacrylamide gel electrophoresis (PAGE). Gels were dried and exposed to a PhosphorImager screen (GE Healthcare Life Sciences). Gel images were scanned using a Typhoon FLA 9500 (GE Healthcare Life Sciences), and densitometry analyses were performed using the ImageQuant software (GE Healthcare Life Sciences).

General synthetic procedures

Proton (1H) and carbon (13C) NMR spectra were recorded on a 400 MHz spectrometer (Varian) or 500 MHz spectrometer (Varian) and are reported in ppm referenced to the solvent in which the spectra were collected. Solvent was removed by rotary evaporation under reduced pressure and anhydrous solvents were obtained commercially and used without further drying. Purification by silica gel chromatography was performed using Combiflash units (Teledyne) with EtOAc–hexanes solvent systems. Preparative high-pressure liquid chromatography (HPLC) was conducted using a Waters 2535 Quaternary Gradient Module having a Waters 2998 photodiode array detector (Waters) and a C$_{18}$ column (Phenomenex, Cat. No. 00G-4436-P0-AX, 250 mm \times 21.2 mm 10 µm particle size, 110 Å pore). Binary solvent systems consisting of $A = 0.1%$ aqueous trifluoroacetic acid (TFA) and $B = 0.1%$ TFA in acetonitrile were employed with gradients.
Table 1. Compounds discussed in the text

Comp.	Name	STRUCTURE	TDP1 IC₅₀
1	benzene-1,2,4-tricarboxylic acid	![Structure1]	0.74 mM^a
2	4-oxo-1,4-dihydroquinoline-3-carboxylic acid	![Structure2]	7.2 mM
3	4-hydroxyphthalic acid	![Structure3]	1.9 mM
4	3-hydroxyphthalic acid	![Structure4]	3.1 mM
5	4-aminophthalic acid	![Structure5]	80 µM
6	8-isopropyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid	![Structure6]	N/A^b
7	4-oxo-1,4-dihydroquinoline-3,8-dicarboxylic acid	![Structure7]	N/A
8	8-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylic acid	![Structure8]	N/A
9	8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid	![Structure9]	15% at 1 mM^c
10	4-(3-carboxypropanamido)phthalic acid	![Structure10]	1.01 mM
11	4-(4-carboxybutanamido)phthalic acid	![Structure11]	0.96 mM

^aCompound 1 inhibited TDP1 in non dose-dependent manner, a midpoint between highest inactive and lowest active concentrations was chosen as IC₅₀. ^bNot active up to the highest tested concentration of 1 mM. ^cCompound 9 inhibited 15% of TDP1 activity at highest tested concentration of 1 mM.
Compound	Fragment concentration (nM)	Diffraction Source	Wavelength (Å)	Space group	α, β, γ (°)	Rmerge (I/σ(I))	Completeness (%)	Resolution Range (Å)	No. of non-H-atoms	Final B (Å²)	Ramachandran plot (%)
TDP1–1	5	SER-CAT	1.0000	P2₁/z1/z1	193.91	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–2	20	SER-CAT	1.0000	P2₁/z1/z1	194.00	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–3	5	SER-CAT	1.0000	P2₁/z1/z1	194.05	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–4	20	SER-CAT	1.0000	P2₁/z1/z1	194.10	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–5	5	SER-CAT	1.0000	P2₁/z1/z1	194.15	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–6	20	SER-CAT	1.0000	P2₁/z1/z1	194.20	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–7	5	SER-CAT	1.0000	P2₁/z1/z1	194.25	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–8	20	SER-CAT	1.0000	P2₁/z1/z1	194.30	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–9	5	SER-CAT	1.0000	P2₁/z1/z1	194.35	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–10	20	SER-CAT	1.0000	P2₁/z1/z1	194.40	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
TDP1–11	5	SER-CAT	1.0000	P2₁/z1/z1	194.45	0.98 (100)	99.6 (100)	37.12–1.78	0.173	0.184	94.9 (90)
Scheme 2. Synthesis of 8-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (8) and 8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (9) (55,59,60).

Scheme 3. Synthesis of 4-(3-carboxypropanamido)phthalic acid (10) and 4-(4-carboxybutanamido)phthalic acid (11).

as indicated. Products were obtained as amorphous solids following lyophilization. Electrospray ionization-mass spectrometry (ESI-MS) was performed with an Agilent LC/MSD system equipped with a multimode ion source (Agilent). The compounds, benzene-1,2,4-tricarboxylic acid (1), 4-oxo-1,4-dihydroquinoline-3-carboxylic acid (2), 4-hydroxyphthalic acid (3), 4-aminophthalic acid (5), 8-isopropyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (6), and 4-oxo-1,4-dihydroquinoline-3,8-dicarboxylic acid (7) were obtained from commercial sources. The compounds, 3-hydroxyphthalic acid (4) (54), 8-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (8) (55), and 4-oxo-8-sulfo-1,4-dihydroquinoline-3-carboxylic acid (9) (56), 4-(3-carboxypropanamido)phthalic acid (10) and 4-(4-carboxybutanamido)phthalic acid (11) were prepared according the published procedures with modifications as described below.

Preparation of 3-hydroxyphthalic acid (4)

In a variation of a previously reported procedure (54), commercially available 4-hydroxyisobenzofuran-1,3-dione (12, 169 mg, 1.0 mmol) was dissolved in aqueous NaOH (2N, 4.0 ml). The reaction mixture was stirred at room temperature (15 h) and then aqueous HCl (2N) was added to adjust the pH to 2. The resulting solution was purified by preparative HPLC using a linear gradient of 20% B to 50% B over 30 min at a flow rate of 10 ml/min; retention time = 17.4 min. Lyophilization yielded product 4 as a white amorphous solid (80 mg, 43% yield) (Scheme 1). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) δ 10.21 (bs, 1H), 7.33–7.27 (m, 2H), 7.08 (dd, \(J = 7.4, 1.8\) Hz, 1H). \(^{13}\)C NMR (101 MHz, DMSO-d\(_6\)) δ 168.97, 167.64, 155.12, 130.60, 130.32, 123.67, 120.26, 120.03. ESI-MS m/z: 183.0 (MH\(^+\)).

Preparation of 8-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (8) and 8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (9).

General procedure A to prepare compounds 15 (a, b). The mixture of commercially available aniline (13a or 13b, 3.5 mmol) and diethyl 2-(ethoxymethylene)malonate (14, 3.5 mmol) was heated (120\(^\circ\)C, 4 h). The reaction mixture was cooled to room temperature and purified by silica gel column chromatography. Compound diethyl 2-((phenylamino)methylene)malonate (15a or 15b) was afforded (Scheme 2).

General procedure B to prepare compounds 14 (a, b). Diethyl 2-((phenylamino)methylene)malonate (15a or 15b, 0.6 mmol) was suspended in Dowtherm A (0.5 ml) (eutectic mixture of 26.5% diphenyl + 73.5% diphenyl oxide) and the reaction mixture was heated (250\(^\circ\)C, 1 h). The resultant mixture was cooled to room temperature and filtered to afford ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate (16a or 16b) (Scheme 2).
Figure 2. (A) Stereoview of the active site of TDP1 from the crystal structure of TDP1 complexed with compound 1 obtained from soaking of TDP1 crystals with ZT0911 alone (single soak, PDB code: 6DIE). TDP1 carbon atoms are colored in gray, nitrogen atoms in blue and oxygen atoms in red. For clarity, some main chain atoms have been removed from selected residues. The carbon atoms of compound 1 are shaded in green. Hydrogen bonds are highlighted as red dashes. The fit of compound 1 and bound waters is shown to the $2F_o-F_c$ electron density maps (blue) at 1.78 Å resolution and contoured at 1.0σ level. (B) Stereoview of the active site of TDP1–compound 2 complex crystal structure at 1.78 Å obtained after soaking a TDP1 crystal with compound 2 (PDB code: 6DJD, carbon atoms in green). The fit of 2 and bound waters to the $2F_o-F_c$ map is shown at 1.0σ level contour. (C) The superimposed coordinates of the active site residues from the crystal structure of the TDP1–compound 1 complex (TDP1 carbon atoms in cyan, fragment carbon atoms in magenta) and TDP1–compound 2 complex (TDP1 carbon atoms in gray, fragment carbon atoms in green) illustrating the unique binding modes of the fragments.

General procedure C to prepare compounds 8 and 9. Ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate (16a or 16b, 0.3 mmol) was suspended in sodium hydroxide (2.7 mmol) (1.0 N, 4.0 ml) and EtOH (0.6 ml). The mixture was stirred (70°C, 16 h). The reaction was cooled and acidified by HCl (aq. 2.0 N) and the resulting white solid was filtered and washed with H2O. The solid was further purified by preparative HPLC to afford 4-oxo-1,4-dihydroquinoline-3-carboxylic acid (8 or 9) (Scheme 2).

Preparation of diethyl 2-(((2-bromophenyl)amino)methylene)malonate (15a). The title compound was afforded as a white solid in 88% yield from 2-bromoaniline (13a) and diethyl 2-(ethoxymethylene)malonate (14) using General Procedure A. 1H NMR (400 MHz, CDCl3) δ 11.28 (d, J = 13.3 Hz, 1H), 8.52 (d, J = 13.3 Hz, 1H), 7.61 (dd, J = 8.0, 1.4 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.05 – 6.99 (m, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 1H), 1.35 (t, J = 7.1 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 168.36, 165.65, 150.53, 137.73, 133.47, 128.75, 125.40, 115.96, 113.71, 95.54, 60.62, 60.30, 14.41, 14.35. ESI-MS m/z: 342.0, 344.0 (MH+).
Preparation of diethyl 2-(((2-nitrophenyl)amino)methylene)malonate (15b). The title compound was afforded as a yellow solid in 81% yield from 2-nitroaniline and diethyl 2-(ethoxymethylene)malonate (14) using General Procedure A. 1H NMR (400 MHz, CDCl$_3$) δ 12.60 (d, $J = 13.0$ Hz, 1H), 8.55 (dd, $J = 8.4$, 1.5 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.53 – 7.51 (m, 1H), 7.23 (ddd, $J = 8.5$, 7.2, 1.2 Hz, 1H), 4.42 (q, $J = 7.1$ Hz, 2H), 4.30 (q, $J = 7.1$ Hz, 2H), 1.41 (t, $J = 7.1$ Hz, 3H), 1.37 (t, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 166.74, 165.58, 148.28, 137.09, 136.08, 135.85, 126.81, 123.32, 116.73, 99.45, 60.96, 60.72, 14.36, 14.34. ESI-MS m/z: 309.1 (MH$^+$), 639.2 (M$_2$Na$^+$).

Preparation of ethyl 8-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylate (16a). The title compound was afforded as a brown solid in 21% yield from diethyl 2-(((2-bromophenyl)amino)methylene)malonate (15a) using General Procedure B. 1H NMR (500 MHz, DMSO-d$_6$) δ 11.63 (s, 1H), 8.45 (s, 1H), 8.17 (dd, $J = 8.1$, 1.4 Hz, 1H), 8.04 (dd, $J = 7.7$, 1.4 Hz, 1H), 7.36 (t, $J = 7.9$ Hz, 1H), 4.23 (q, $J = 7.1$ Hz, 2H), 1.28 (t, $J = 7.1$ Hz, 3H). 13C NMR (126 MHz, DMSO-d$_6$) δ 173.26, 164.76, 164.05, 137.10, 136.41, 129.29, 126.11, 126.06, 112.24, 110.75, 60.31, 14.74. ESI-MS m/z: 296.0, 298.0 (MH$^+$).

Preparation of ethyl 8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (16b). The title compound was afforded as a brown solid in 13% yield from diethyl 2-(((2-nitrophenyl)amino)methylene)malonate (15b) using General Procedure B. 1H NMR (400 MHz, DMSO-d$_6$) δ 12.18 (s, 1H), 8.65 (dd, $J = 8.1$, 1.6 Hz, 1H), 8.59 – 8.57 (m, 2H), 7.60 (t, $J = 8.0$ Hz, 1H), 4.25 (q, $J = 7.1$ Hz, 2H), 1.29 (t, $J = 7.1$ Hz, 3H). 13C NMR (101 MHz, DMSO-d$_6$) δ 172.48, 164.34, 146.68, 137.22, 134.36, 133.59, 130.69, 129.61, 124.19, 111.92, 60.53, 14.71. DUIS-MS m/z: 263.0 (MH$^+$).

Preparation of 8-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (8). The title compound was afforded as a white fluffy solid in 75% yield from ethyl 8-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylate (16a) using General Procedure C after HPLC purification using linear gradient of 20% B to 90% B over 30 min at a flow rate of 10 ml/min, retention time = 15.8 min. 1H NMR (400 MHz, DMSO-d$_6$) δ 14.86 (brs, 1H), 12.61 (s, 1H), 8.66 (s, 1H), 8.31 (dd, $J = 8.1$, 1.4 Hz, 1H), 8.24 (dd, $J = 7.7$, 1.3 Hz, 1H), 7.53 (t, $J = 7.9$ Hz, 1H). 13C NMR (101 MHz, DMSO-d$_6$) δ 178.61, 166.15, 146.36, 137.93, 137.53, 127.46, 126.69, 125.58, 113.16, 108.71. ESI-MS m/z: 268.0, 269.9 (MH$^+$).

Preparation of 8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (9). The title compound was afforded as a yellow fluffy solid in 45% yield from ethyl 8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate (16b) using General Procedure C after HPLC purification using linear gradient of 20% B to 90% B over 30 min at a flow rate of 10 ml/min, retention time = 15.1 min. 1H NMR (400 MHz, DMSO-d$_6$) δ 12.97 (brs, 1H), 8.83 – 8.81 (m, 2H), 8.74 (d, $J = 8.0$ Hz, 1H), 7.78 (t, $J = 8.1$ Hz, 1H). 13C NMR (126 MHz, DMSO-d$_6$) δ 177.91, 165.68, 147.21, 137.87, 133.71, 133.54, 132.11, 126.99, 125.70, 109.65. ESI-MS m/z: 235.0 (MH$^+$).

Preparation of 4-(3-carboxypropanamido)phthalic acid (10) and 4-(4-carboxybutanamido)phthalic acid (11). General Procedure D to prepare compounds 10 and 11. The appropriate carboxyl chlorides (0.67 mmol) were added to the mixture of 4-aminophthalic acid (5, 0.67 mmol) and Na$_2$CO$_3$ (1.68 mmol) in water (3.0 ml). The mixture was
Figure 4. (A) Superimposed active site residues from the structures of TDP1 complexed with compound 1 (TDP1 carbon atoms in gray, 1 carbon atoms in green, PDB code: 6DIE) and TDP1 with bound vanadate (yellow, PDB code: 1NOP). (B) The same superimposed coordinates now highlighting the position of cytosine 806 from the bound DNA substrate.

Figure 5. (A) Superimposed active site residues from the structures of TDP1 complexed with compound 2 (TDP1 carbon atoms in gray, 2 carbon atoms in green, PDB code: 6DJD) and TDP1 with bound vanadate (yellow, PDB code: 1NOP). (B) The same superimposed coordinates now highlighting the position of Y723 and L723 from the bound topoisomerase-derived peptide substrate.
stirred (rt, 16 h). The resultant mixture was acidified by HCl (2.0 N) and purified by HPLC to afford 4-amidophthalic acids (7b-e) (Scheme 3).

Preparation of 4-(3-carboxypropanamido)phthalic acid (10). The title compound was afforded as a white solid in 32% yield from 4-aminophthalic acid (5) and succinyl dichloride using general procedure D after HPLC purification using linear gradient of 10% B to 15% B over 20 min at a flow rate of 20 ml/min, retention time = 13.8 min. \(^1 \)H NMR (400 MHz, DMSO-\(\text{d}_6 \)) \(\delta \) 12.68 (brs, 3H), 10.34 (s, 1H), 7.86 (s, 1H), 7.70 (s, 2H), 2.62 – 2.54 (m, 4H). \(^{13} \)C NMR (101 MHz, DMSO-\(\text{d}_6 \)) \(\delta \) 174.18, 171.30, 169.59, 168.02, 142.21, 135.87, 130.55, 125.61, 119.87, 118.01, 31.61, 29.07. ESI-MS m/z: 282.1 (MH\(^+\)), 304.0 (MNa\(^+\)).

Preparation of 4-(4-carboxybutanamido)phthalic acid (11). The title compound was afforded as a white solid in 26% yield from 4-aminophthalic acid (5) and glutaroyl dichloride using general procedure D after HPLC purification using linear gradient of 10% B to 40% B over 20 min at a flow rate of 20 ml/min, retention time = 7.6 min. \(^1 \)H NMR (400 MHz, DMSO-\(\text{d}_6 \)) \(\delta \) 12.59 (brs, 3H), 10.19 (s, 1H), 7.79 (d, \(J = 1.9 \) Hz, 1H), 7.64 (d, \(J = 2.0 \) Hz, 1H), 7.63 (s, 1H), 2.32 (t, \(J = 7.4 \) Hz, 2H), 2.21 (t, \(J = 7.3 \) Hz, 2H), 1.74 (p, \(J = 7.4 \) Hz, 2H). \(^{13} \)C NMR (101 MHz, DMSO-\(\text{d}_6 \)) \(\delta \) 174.56, 171.88, 169.58, 168.03, 142.20, 135.84, 130.55, 125.70, 120.00, 118.17, 35.91, 33.36, 20.68. ESI-MS m/z: 296.1 (MH\(^+\)), 318.1 (MNa\(^+\)).

RESULTS

Fragment screening

A crystallographic fragment screening campaign targeting TDP1 was conducted using the Zenobia Fragments libraries 1 and 2.2. A total of 640 compounds were divided into cocktails that each contained four fragments. Two fragments, the hydrolysis product of ZT0911, 1,2,4-benzenetricarboxilic acid (1) and fragment ZT1982, 4-hydroxyquinoline-3-carboxylic acid (2), could be unambiguously identified from the \(F_o-F_c \) difference electron density maps at 1.63 Å resolution (PDB code: 6DHU) and 1.81 Å resolution (PDB code: 6DIM), respectively (Table 2). To confirm these results, TDP1 crystals were soaked with compounds 1 and 2, individually, and X-ray diffraction datasets were collected at 1.78 Å resolution for both complexes (Figure 2A and B; PDB codes: 6DIE and 6DJD, respectively). In the single component soaks, both fragments bound to several catalytic residues within the active site (57) in the same man-
that was observed in the multicomponent soaks. Comparison with previously reported crystal structures of TDP1 reveal no major conformational changes in the protein upon fragment binding.

Compound 1 binds to the active site of TDP1 by direct hydrogen bonds involving its carboxylate oxygen atoms with the catalytic residues H263 (3.1 Å hydrogen bond distance), K265 (2.6 Å), N283 (2.8 Å), S399 (2.6 Å), H493 (2.8 Å) and K495 (2.7 Å) (Figure 2A, PDB code: 6DIE). The carboxylate oxygen atoms are engaged in hydrogen bonds with the side chains of the catalytic residues K265 (3.0 Å), N283 (2.9 Å) and the hydroxyl group of 1 to H493 (2.6 Å). Three water-mediated bridges between 1 and the active site are also observed: the nitrogen atom of 1 with the side chain of H263 via water 954 (Wa954), the hydroxyl oxygen of 1 with the side chain of S459 via Wa980 and the carboxylate oxygen of 1 with the side chains of K495 and N516 via Wa923. Additionally, the side chains of Y204, P461 and W590 participate in hydrophobic interactions with compound 1. Biochemical measurements indicate that 2 exhibits weak inhibitory activity against TDP1 by nearly completely inhibiting DNA substrate conversion at 10 mM (Figure 3B).

Comparison of binding modes

Compounds 1 and 2 both bind to the active site of TDP1 through several direct hydrogen bonds with some of the key catalytic residues. However, each exhibits a unique binding mode (Figure 2C). A common feature of the two fragments is that the carboxylate moieties occupy the similar position as observed in the crystal structure of TDP1 in complex with vanadate which represents a transition-state mimic (16). In Figure 4A, the coordinates of TDP1 in complex with 1 are superimposed onto the coordinates of the crystal structure of TDP1 complexed with vanadate, DNA substrate and a TOPO1 derived peptide (PDB code: 1NOP) (57). Oxygen atoms from both carboxylate moieties of 1 occupy the same space as the oxygen atoms of the vanadate molecule. The vanadate molecule is observed in a trigonal bipyramidal state that mimics the transition state that arises during the SN2 nucleophilic attack on the phosphate atoms in the first step of the enzymatic reaction (57). Compound 1 is observed to interact with the TDP1 K495, N283, H493 and K495 side chains. Similarly, the superimposed coordinates of the TDP1–compound 2 complex with the 1NOP structure reveal one oxygen of the carboxylate moiety of 2 overlaps with the O3 oxygen of the vanadate molecule (Figure 5A). The O3 atom of vanadate makes direct hydrogen bonds with the side chains of N14Y and K265, as does the hydroxyl oxygen in 2.

While 1 and 2 both bind in the same position as does the vanadate molecule in the 1NOP coordinates, each fragment occupies different spaces with respect to the DNA and topoisomerase-derived peptide components of the substrate. Fragment 1 superimposes with the cytosine 806 base of the DNA substrate (Figure 4B) while fragment 2 overlaps with the Y723 residue of the peptide substrate that is covalently attached to vanadate and mimics the phosphotyrosine bond (Figure 5B) (57). The two different binding modes of the fragments, combined with the common feature of overlapping with the vanadate binding spot, may present two possible pathways for inhibitor design against TDP1. The carboxylate moieties that interact with the catalytic TDP1 residues can potentially serve as an anchor...
to the active site while the different binding modes can be taken advantage of in targeting both the DNA and peptide substrate binding sites.

Fragment derivatives

Derivatives of both 1 and 2 were designed to demonstrate the potential for elaboration and optimization of the initial fragment hits. Three derivatives based on the chemical structure of 1 were examined for binding and inhibitory activity against TDP1. Compound 3 (Table 1), which is commercially available from Sigma-Aldrich (PH004941), features a hydroxyl substitution in place of the carboxylate moiety in position 4. The crystal structure of TDP1 complexed to compound 3 (PDB code: 6DIH) at a resolution of 1.78 Å reveals that this derivative retains the direct hydrogen bonding interactions between the carboxylate moieties and the side chains of K495 (2.7 Å), S399 (2.7 Å), H493 (2.7 Å), N283 (2.7 Å) K265 (2.5 Å) and H263 (3.0 Å) (Figure 6A). The hydroxyl at position 4 participates in a water-mediated bridge to the side chain of S400 via Wa823.

Compound 4 (Table 1) differs from 1 in that the carboxylate moiety at position 4 has been removed and a hydroxyl group has been added at position 3. The 1.75 Å resolution crystal structure of TDP1 bound to 4 (PDB code: 6DJI) revealed that the compound binds to the active site via several direct hydrogen bonds and water-mediated bridges (Figure 6B). The carboxylate at position 1 forms direct hydrogen bonds with the side chains of H493 (2.8 Å) and N283 (2.7 Å), while the carboxylate group at position 2 forms direct hydrogen bonds with the side chain of S399 (3.0 Å), K495 (2.7 Å) and a water-mediated bridge to the backbone carbonyl oxygen of S514 via Wa994. The hydroxyl oxygen at position 3 forms a water-mediated bridge with the side chain hydroxyl of S400 through Wa877. The side chains of Y204 and P461 interact with 4 via hydrophobic interactions. As commonly observed for initial low molecular weight fragments, compounds 3 and 4 exhibited weak potencies with IC$_{50}$ values of 1.9 and 3.1 mM, respectively (30).

Higher inhibitory activity was observed for compound 5 (Table 1), in which the carboxylate moiety at position 4 in compound 1 was replaced by an amino group. The IC$_{50}$ in this case was estimated to be \sim80 μM (Figure 7). The 1.74 Å resolution structure of TDP1 complexed to 5 (PDB code:
6DJI) demonstrates that the amino group substitution enhances the binding such that the amino group is positioned within 3.3 Å of the hydroxyl oxygen of the Y204 side chain residue. In addition, the carboxylate groups at positions 1 and 2 retain direct hydrogen bonding interactions with the side chains of S399 (2.7 Å), K495 (3.0 Å), H263 (2.6 Å), H493 (2.7 Å), N283 (2.7 Å) and K265 (2.6 Å), as in compound 1 (Figure 6C and D). The P461 and Y204 side chains also interact with the aryl portion of 5 via hydrophobic interactions.

Elaborated fragments based on the chemical scaffold of 2 were also examined. A crystal structure of TDP1 in complex with compound 6 (Sigma-Aldrich compound CDS010292) was solved at 1.70 Å resolution (PDB code: 6DJE). Compound 6 features an isopropyl extension at position 8 (Table 1). The binding mode reveals that the core structure retains the same binding interactions as the parent molecule 2 while the isopropyl substituent extends into the DNA binding region of TDP1 and makes hydrophobic contacts with the side chains of P461 and W590 (Figure 8A). Compound 7 also yielded a high resolution crystal structure (PDB code: 6DJF). It has a carboxylate moiety instead of an isopropyl group at position 8 (Table 1), which also extends into the DNA binding pocket and forms a water-mediated bridge.
Potential for fragment elongation

A key step in the fragment approach to drug development is the process of elongating a fragment into a larger compound that can pick up new binding interactions with the target protein. Crystal structures of TDP1 bound to 6, 7, 8 and 9 demonstrate that fragment elongation at the 8-position of the 4-hydroxyquinoline-3-carboxylic acid series can be used to pick up new binding interactions that may enable the fragment to grow into the peptide binding pocket. Additionally, using structure-guided design, we prepared two phthalic acid derivatives, compounds 10 and 11 (Table 1) with linker groups at the fourth position (3-carboxypropanoamido and 4-carboxybutanamido, respectively) that extend into the DNA-binding pocket of TDP1. Compound 10 (Figure 9A, PDB code: 6N17) is anchored in the active site by hydrogen bonds between the 1- and 2-carboxylates to the side chains of H263 (2.6 and 2.8 Å, sidechain existing in two alternate conformations), K265 (2.5 Å), N283 (2.8 Å), S399 (2.7 Å), H493 (2.7 Å) and K495 (2.7 Å). The linker group of 10 picks up two water-mediated hydrogen bond bridges with TDP1. The carbonyl 007 group forms a hydrogen bond to Wa1061 (3.1 Å) which is hydrogen bonded to the ND2 atom of the side chain of N516 (2.9 Å). The O03 atom of 10 is hydrogen bonded to Wa834 (2.6 Å), which forms a water-bridge to the side chain of S400 (3.1 Å). Compound 11 (Figure 9B, PDB code: 6N19) forms hydrogen bonds between the 1- and 2-carboxylates and the side chains of the active site residues H263 (3.0 Å), K265 (2.7 Å), N283 (2.8 Å), S399 (2.8 Å), H493 (2.7 Å) and K495 (2.7 Å). The linker group at the fourth position picks up a direct hydrogen bonding interaction between the carboxylate O08 atom and the side chain of S400 (2.5 Å). Wa848 mediates a water-bridge between the O03 atom (2.6 Å) and the side chain of S518 (2.7 Å). These compounds show millimolar inhibition of TDP1 (IC50 values of 1.01 and 0.96 mM, respectively, Figure 10). The addition of a growing linker that picks up new binding interactions demonstrates the potential to use structure-guided design to elongate the fragments into the DNA-binding pocket (Figure 9C and D).

DISCUSSION

To our knowledge, this study is the first to report crystal structures of organic chemical probes bound to the catalytic site of human TDP1. Two chemically distinct fragments were discovered that bind at the catalytic site as revealed by high resolution crystal structures. Both phthalic acids and quinolone-based fragments engage the catalytic core of TDP1 in a fashion similar to the previously described phosphate mimic vanadate. The difference in the chemical nature of the two fragment classes results in a somewhat different arrangement of their planar aromatic cores and overlapping polar contact networks. This finding points to the fact that polar groups within and in close proximity to the TDP1 catalytic site are capable of forming a broad interaction network with either the substrate or an inhibitor.

Each of the eleven compounds engage one of the two conserved catalytic triad residues of human TDP1 (H263, K265, N283) (Figure 1) (16,58). All phthalic and some 4-hydroxiquinoline-3-carboxylic acid analogues exhibited detectable enzyme inhibition. Their low potency is consistent with the fact that, at this stage, the compounds correspond to low molecular weight fragments (30,39,40). Further improvements in potency, which may be obtained by elaboration of the fragments, will be required before their efficacy can be evaluated in vivo. The greatest inhibitory potency was seen for compound 5, which engages both HKN catalytic triads centered on H263 and H493, respectively (see Figure 1). The higher potency of compound 5 in compari-
son to other phthalic acid derivatives (compounds 1, 3 and 4) could be attributed to its additional interaction with the edge of the catalytic groove by forming a hydrogen bond with Y204. The crystal structures of TDP1 bound to 10 and 11 also demonstrate that further elaboration of molecules based on the current chemical fragments may lead to larger compounds that pick up additional binding interactions with the TDP1 active site. The crystal structures of TDP1 in complex with the fragments and their derivatives described here finally open the door for structure-based drug design on this important molecular target.

DATA AVAILABILITY

Protein Data Bank (https://www.rcsb.org/): 6DHU, 6DIE, 6DIH, 6DIM, 6DJD, 6DJF, 6DJH, 6DJJ, 6MJ5, 6N17, 6N19.

ACKNOWLEDGMENTS

We thank Drs Tinoosh Moulaei and Alexander Wlodawer of the Macromolecular Crystallography Laboratory, NCI at Frederick, for providing the TDP1 clone. We thank the Biophysics Resource in the Structural Biophysics Laboratory, NCI at Frederick, for use of the LC/ESMS instrument. X-ray diffraction data were collected at the Southeast Regional Collaborative Access Team (SER-CAT) beamlines 22-ID and 22-BM of the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at http://www.ser-cat.org/members.html.

FUNDING

Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health [HHSN26120080001E]; Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]. Funding for open access charge: Intramural Research Program of the National Cancer Institute.

Conflict of interest statement. None declared.

REFERENCES

1. Interthal,H., Pouliot,J.J. and Champoux,J.J. (2001) The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc. Natl. Acad. Sci. U.S.A., 98, 12009–12014.
2. Yang,S.W., Burgin,A.B. Jr, Huizenga,B.N., Robertson,C.A., Stover,E.H., Konstantinopoulos,P.A., Matulonis,U.A. and Povirk,L.F. (2018) Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res., 46, 520–537.
3. Davies,R.D., Interthal,H., Champoux,J.J. and Hol,W.G. (2002) The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Structure, 10, 237–248.
4. Davies,R.D., Interthal,H., Champoux,J.J. and Hol,W.G. (2002) Insights into substrate binding and catalytic mechanism of human tyrosyl-DNA phosphodiesterase (Tdp1) from vanadate and tustate-inhibited structures. J. Mol. Biol., 324, 917–932.
5. Murai,J., Huang,S.Y., Das,B.B., Dextheimer,T.S., Takeda,S. and Pommier,Y. (2012) Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylolation in vertebrate cells. J. Biol. Chem., 287, 12848–12857.
6. Zhou,T., Akopiants,K., Mohapatra,S., Lin,P.S., Valerie,K., Ramsden,D.A., Lees-Miller,S.P. and Povirk,L.F. (2009) Tyrosyl-DNA phosphodiesterase and the repair of 3′-phosphoglycolate-terminated DNA double-strand breaks. DNA Repair (Anast.), 8, 901–911.
7. Laev,S.S., Salakhutdinov,N.F. and Lavrik,O.I. (2016) Tyrosyl-DNA phosphodiesterase inhibitors: progress and potential. Bioorg. Med. Chem., 24, 5017–5027.
8. Dextheimer,T.S., Stephen,A.G., Fivash,M.J., Fisher,R.J. and Pommier,Y. (2010) The DNA binding and 3′-end preferential activity of human tyrosyl-DNA phosphodiesterase. Nucleic Acids Res., 38, 2444–2452.
9. Dextheimer,T.S., Antony,S., Marchand,C. and Pommier,Y. (2008) Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med. Chem., 8, 381–389.
10. Marchand,C., Huang,S.Y., Dextheimer,T.S., Lea,W.A., Mott,B.T., Chergui,A., Naumova,A., Stephen,A.G., Rosenthal,A.S., Rai,G. et al. (2014) Biochemical assays for the discovery of TDP1 inhibitors. Mol. Cancer Ther., 13, 2116–2126.
11. Beretta,G.L., Cossa,G., Gatti,L., Zunino,F. and Perego,P. (2010) Tyrosyl-DNA phosphodiesterase 1 targeting for modulation of camptothecin-based treatment. Curr. Med. Chem., 17, 1500–1508.
12. Pommier,Y., Huang,S.Y., Gao,R., Das,B.B., Murali,J. and Marchand,C. (2014) Tyrosyl-DNA phosphodiesterases (TDP1 and TDP2). DNA Repair (Anast.), 19, 114–129.
13. Interthal,H., Chen,H.J. and Champoux,J.J. (2005) Human Tdp1 cleaves a broad spectrum of substrates including phosphoamide linkages. J. Biol. Chem., 280, 36518–36528.
14. Kawale,A.S. and Povirk,L.F. (2018) Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res., 46, 520–537.
15. Davies,R.D., Interthal,H., Champoux,J.J. and Hol,W.G. (2002) The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Structure, 10, 237–248.
16. Davies,R.D., Interthal,H., Champoux,J.J. and Hol,W.G. (2002) Insights into substrate binding and catalytic mechanism of human tyrosyl-DNA phosphodiesterase (Tdp1) from vanadate and tustate-inhibited structures. J. Mol. Biol., 324, 917–932.
17. Murai,J., Huang,S.Y., Das,B.B., Dextheimer,T.S., Takeda,S. and Pommier,Y. (2012) Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylolation in vertebrate cells. J. Biol. Chem., 287, 12848–12857.
18. Zhou,T., Akopiants,K., Mohapatra,S., Lin,P.S., Valerie,K., Ramsden,D.A., Lees-Miller,S.P. and Povirk,L.F. (2009) Tyrosyl-DNA phosphodiesterase and the repair of 3′-phosphoglycolate-terminated DNA double-strand breaks. DNA Repair (Anast.), 8, 901–911.
19. Borda,M.A., Palmittelli,M., Veron,G., Gonzalez-Cid,M. and de Campos Nebel,M. (2015) Tyrosyl-DNA-phosphodiesterase I (TDP1) participates in the removal and repair of stabilized-Top2alpha-cleavage complexes in human cells. Mutat. Res., 781, 37–48.
20. Nittis,K.C., Malik,K., He,X., White,S.W. and Nittis,J.L. (2006) Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damage. Proc. Natl. Acad. Sci. U.S.A., 103, 8953–8958.
21. Visconti,R., Della Monica,R. and Grieco,D. (2016) Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J. Exp. Clin. Cancer Res., 35, 153–160.
22. Day,D. and Siu,L.U. (2016) Approaches to modernize the combination drug development paradigm. Genome Med., 8, 115–128.
23. Stover,E.H., Konstantinopoulos,P.A., Matulonis,U.A. and Swisher,E.M. (2016) Biomarkers of response and resistance to DNA repair targeted therapies. Clin. Cancer Res., 22, 5651–5660.
24. Dubeys,R.D., Saneja,A., Gupta,P.K. and Gupta,P.N. (2016) Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur. J. Pharm. Sci., 93, 147–162.
28. Huang, S.N., Pommier, Y. and Marchand, C. (2011) Tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. *Expert Opin. Ther. Pat.*, 21, 1285–1292.

29. Li-Zhulanov, N.S., Zakharenko, A.L., Chepanova, A.A., Patel, J., Zafar, A., Vołcho, K.P., Salakhutdinov, N.F., Reynisson, J., Leung, I.K.H. and Lavrik, O.I. (2018) A novel class of tyrosyl-DNA phosphodiesterase 1 inhibitors that contains the octahydro-2H-chromen-4-ol scaffold. *Molecules*, 23, 2468–2481.

30. Badger, J. (2012) Crystallographic fragment screening. *Methods Mol. Biol.*, 841, 161–177.

31. Patel, D., Bauman, J.D. and Arnold, E. (2014) Advantages of crystallographic fragment screening: functional and mechanistic insights from a powerful platform for efficient drug discovery. *Prog. Biophys. Mol. Biol.*, 116, 92–100.

32. Congreve, M., Carr, R., Murray, C. and Jhoti, H. (2003) A ‘rule of three’ for fragment-based lead discovery? *Drug Discov. Today*, 8, 876–877.

33. Jhoti, H., Williams, G., Rees, D.C. and Murray, C.W. (2013) The ‘rule of three’ for fragment-based drug discovery: where are we now? *Nat. Rev. Drug Discov.*, 12, 644–645.

34. Leach, A.R. and Hann, M.M. (2011) Molecular complexity and fragment-based drug discovery: ten years on. *Curr. Opin. Chem. Biol.*, 15, 489–496.

35. Ludlow, R.F., Verdonk, M.L., Saini, H.K., Tickle, J.I. and Jhoti, H. (2015) Detection of secondary binding sites in proteins using fragment screening. *Proc. Natl. Acad. Sci. U.S.A.*, 112, 15910–15915.

36. Koh, C.Y., Siddaramaiah, L.K., Ranade, R.M., Nguyen, J., Jian, T., Zhang, Z., Gillespie, J.R., Buckner, F.S., Verlinde, C.L., Fan, E. et al. (2015) A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens. *Acta Crystallogr. D. Biol. Crystallogr.*, 71, 1684–1698.

37. Pfaff, S.J., Chimenti, M.S., Kelly, M.J. and Arkin, M.R. (2015) Biophysical methods for identifying fragment-based inhibitors of protein-protein interactions. *Methods Mol. Biol.*, 1278, 587–613.

38. Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W. (1996) Discovering high-affinity ligands for proteins: SAR by NMR. *Science*, 274, 1531–1534.

39. Nienaber, V.L., Richardson, P.L., Klighover, V., Bouska, J.J., Giranda, V.L. and Greer, J. (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. *Nat. Biotechnol.*, 18, 1105–1108.

40. Verlinde, C.L., Fan, E., Shibata, S., Zhang, Z., Sun, Z., Deng, W., Ross, J., Kim, J., Xiao, L., Arakaki, T.L. et al. (2009) Fragment-based cocktail crystallography of the medical genomics of pathogenic protozoa consortium. *Curr. Top. Med. Chem.*, 9, 1678–1687.

41. Schiebel, J., Krimmer, S.G., Rower, K., Knorlein, A., Wang, X., Park, A.Y., Stieler, M., Ehrmann, F.R., Fu, K., Radeva, N. et al. (2016) High-throughput crystallography: reliable and efficient identification of fragment hits. *Structure*, 24, 1398–1409.

42. Raran-Kurussi, S., Cherry, S., Zhang, D. and Waugh, D.S. (2017) Removal of affinity tags with TEV protease. *Methods Mol. Biol.*, 1586, 221–230.

43. Kapust, R.B., Tozser, J., Fox, J.D., Anderson, D.E., Cherry, S., Copeland, T.D. and Waugh, D.S. (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. *Protein Eng.*, 14, 993–1000.

44. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Apple, R.D. and Bairoch, A. (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Res.*, 31, 3784–3788.

45. Gorrec, F. (2009) The MORPHEUS protein crystallization screen. *J. Appl. Crystallogr.*, 42, 1035–1042.

46. Minor, W., Cymborowski, M., Otwonowski, Z. and Chruszcz, M. (2006) HKL-3000: the integration of data reduction and structure solution from diffraction images to an initial model in minutes. *Acta Crystallogr. D. Biol. Crystallogr.*, 62, 859–866.

47. Zwart, P.H., Afonine, P.V., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., McKee, E., Moriarty, N.W., Read, R.J., Sacchettini, J.C. et al. (2008) Automated structure solution with the PHENIX suite. *Methods Mol. Biol.*, 426, 419–435.

48. Moriarty, N.W., Grosse-Kunstleve, R.W. and Adams, P.D. (2009) electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. *Acta Crystallogr. D. Biol. Crystallogr.*, 65, 1074–1080.

49. Emsley, P., Lohkamp, B., Scott, W.G. and Cowtan, K. (2010) Features and development of Coot. *Acta Crystallogr. D. Biol. Crystallogr.*, 66, 486–501.

50. Debreczeni, J.E. and Emsley, P. (2012) Handling ligands with Coot. *Acta Crystallogr. D. Biol. Crystallogr.*, 68, 425–430.

51. Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zhuravlev, V. and Adams, P.D. (2012) Towards automated crystallographic structure refinement with phenix.refine. *Acta Crystallogr. D. Biol. Crystallogr.*, 68, 352–367.

52. Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, E.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Chen, V.B. et al. (2018) MolProbity: more and better reference data for improved all-atom structure validation. *Acta Crystallogr. D. Biol. Crystallogr.*, 64, 654–667.

53. Nguyen, T.X., Morrell, A., Conda-Sheridan, M., Marchand, C., Agama, K., Bermingham, A., Stephen, A.G., Chergui, A., Naumova, A., Fisher, R. et al. (2012) Synthesis and biological evaluation of the first dual tyrosyl-DNA phosphodiesterase I (Tdp1)-topoisomerase I (Top1) inhibitors. *J. Med. Chem.*, 55, 4457–4478.

54. Hiraiwa, Y., Morinaka, A., Fukushima, T. and Kudo, T. (2013) Metallo-beta-lactamase inhibitor activity of 3-alkyloxy and 3-amino phthalic acid derivatives and their combination effect with carbapenem. *Bioorg. Med. Chem.*, 21, 5841–5850.

55. Pasquini, S., De Rosa, M., Pedani, V., Mugnaini, C., Guida, F., Luongo, L., De Chiaro, M., Maione, S., Dragoni, S., Frosini, M. et al. (2011) Investigations on the 4-quinolone-3-carboxylic acid motif 4. Identification of new potent and selective ligands for the cannabinoid type 2 receptor with diverse substitution patterns and antihyperalgesic effects in mice. *J. Med. Chem.*, 54, 5444–5453.

56. Suen, Y.F., Robins, L., Yang, B., Verkman, A.S., Nantz, M.H. and Kurth, M.J. (2006) Sulfamoyl-4-oxoquinoline-3-carboxamides: novel potent inhibitors of defective DeltaF508-cystic fibrosis transmembrane conductance regulator chloride channel gating. *Bioorg. Med. Chem. Lett.*, 16, 537–540.

57. Davies, D.R., Interthal, H., Champoux, J.J. and Hol, W.G. (2003) Crystal structure of a transition state mimic for Tdp1 assembled from vanadate, DNA, and a topoisomerase I-derived peptide. *Chem. Biol.*, 10, 139–147.

58. Raymond, A.C., Rideout, M.C., Staker, B., Hjerrild, K. and Burgin, A.B. Jr (2004) Analysis of human tyrosyl-DNA phosphodiesterase I catalytic residues. *J. Mol. Biol.*, 338, 895–906.

59. Gould, R.G. and Jacobs, W.A. (1939) The Synthesis of Certain Substituted Quinolines and 5,6-Benzoxquinolines. *J. Am. Chem. Soc.*, 61, 2890–2895.

60. Peet, N.P., Baugh, L.E., Sunder, S. and Lewis, J.E. (1985) Synthesis and antiaggregative activity of some quinolinolines and imidazooquinolinolines. *J. Med. Chem.*, 28, 298–302.