Bacterial diversity and potential risk factors associated with \textit{Salmonella} contamination of seafood products sold in retail markets in Bangkok, Thailand

Edward R. Atwill 1, Saharuetai Jeamsripong 2

1 School of Veterinary Medicine, University of California, Davis, Department of Population Health and Reproduction, Davis, CA, USA
2 Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand

Corresponding Author: Saharuetai Jeamsripong
Email address: saharuetai.j@chula.ac.th

Consumption of contaminated food causes 600 million cases, including 420,000 of fatal infections every year. Estimated cost from food-borne illnesses is USD 110 billion per year, especially in low- and middle-income countries. Thailand is a leading producer and consumer of seafood, but little is known about bacterial contamination in seafood. In particular, public health agencies need to know the relationship between bacterial diversity in seafood and their risk factors, as assessed with readily available culture-dependent and bacterial phenotyping methods. To address this, levels of indicator bacteria, \textit{Salmonella} and \textit{Vibrio} in various seafood commodities were determined and to identify risk factors associated with \textit{Salmonella} contamination. A total of 335 samples were collected from October 2018 to July 2019 throughout Bangkok, Thailand; overall sample composition was Pacific white shrimp (n = 85), oysters (n = 82), blood cockles (n = 84), and Asian seabass (n = 84). The prevalence was 100\% for fecal coliforms and 85\% for \textit{E. coli}. In contrast, prevalence was 59\% for \textit{V. parahaemolyticus}, 49\% for \textit{V. cholerae}, 19\% for \textit{V. alginolyticus}, 18\% for \textit{V. vulnificus}, and 36\% for \textit{Salmonella}. Highest concentrations of fecal coliforms and \textit{E. coli} were in oysters. Highest concentrations of \textit{Salmonella} with Matopeni (31\%) being the predominant serotype were in shrimp. \textit{Salmonella} contamination was significantly associated with type of seafood, sampling location, retail conditions, and the presence of \textit{E. coli}, \textit{V. alginolyticus} and \textit{V. vulnificus}. A cutoff value for \textit{E. coli} concentration of 1.3×10^4 MPN/g predicted contamination of \textit{Salmonella}, with a sensitivity of 84\% and specificity of 61\%. Displaying seafood products on ice, presence of \textit{E. coli} and \textit{Vibrio}, and seafood derived from Eastern Thailand were associated with an increased risk of \textit{Salmonella} contamination.
Bacterial diversity and potential risk factors associated with *Salmonella* contamination of seafood products sold in retail markets in Bangkok, Thailand

Edward R. Atwill¹, Saharuetai Jeamsripong²

¹ Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
² Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand

Corresponding Author:
Saharuetai Jeamsripong
Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand
Email address: saharuetai.j@gmail.com

Abstract

Consumption of contaminated food causes 600 million cases, including 420,000 of fatal infections every year. Estimated cost from food-borne illnesses is USD 110 billion per year, especially in low- and middle-income countries. Thailand is a leading producer and consumer of seafood, but little is known about bacterial contamination in seafood. In particular, public health agencies need to know the relationship between bacterial diversity in seafood and their risk factors, as assessed with readily available culture-dependent and bacterial phenotyping methods. To address this, levels of indicator bacteria, *Salmonella* and *Vibrio* in various seafood commodities were determined and to identify risk factors associated with *Salmonella* contamination. A total of 335 samples were collected from October 2018 to July 2019 throughout Bangkok, Thailand; overall sample composition was Pacific white shrimp (n = 85), oysters (n = 82), blood cockles (n = 84), and Asian seabass (n = 84). The prevalence was 100% for fecal coliforms and 85% for *E. coli*. In contrast, prevalence was 59% for *V. parahaemolyticus*, 49% for *V. cholerae*, 19% for *V. alginolyticus*, 18% for *V. vulnificus*, and 36% for *Salmonella*. Highest concentrations of fecal coliforms and *E. coli* were in oysters. Highest concentrations of *Salmonella* with Matopeni (31%) being the predominant serotype were in shrimp. *Salmonella* contamination was significantly associated with type of seafood, sampling location, retail conditions, and the presence of *E. coli*, *V. alginolyticus* and *V. vulnificus*. A cutoff value for *E. coli* concentration of 1.3×10^4 MPN/g predicted contamination of *Salmonella*, with a sensitivity of 84% and specificity of 61%. Displaying seafood products on ice, presence of *E.
coli and Vibrio, and seafood derived from Eastern Thailand were associated with an increased risk of Salmonella contamination.
Introduction

The global fisheries and aquaculture both inland and marine reached 171 million tonnes in 2016 (Food and Agriculture Organization of the United Nations, 2018) and consumption of fish, and fishery products per capita double from 10 kg in 1960 to greater than 20 kg in 2016 (Food and Agriculture Organization of the United Nations, 2018). In Southeast Asia, consumption of fish and fishery products varies from 6 to 64 kg per capita per year (Food and Agriculture Organization of the United Nations, 2015). In Thailand, consumption of fish and fishery products is about 31 kg per capita per year, which accounts for 12% of total protein consumption per person (Food and Agriculture Organization of the United Nations, 2015). Thailand is one of the top ten exporters of fish and fishery products, which accounted for 4% of global exports in 2016 (Food and Agriculture Organization of the United Nations, 2018).

Due to the rapid growth of global consumption of fish and fishery products, seafood safety is of high public health concern. Foodborne diseases each year affect a third of the world population (World Health Organization, 2004), but data about the number of illnesses from seafood-borne outbreaks is limited for many parts of the world. Most examinations of seafood outbreaks have been done in the United States, where approximately 9.4 million illnesses, almost 56,000 hospitalizations, and 1,351 deaths, were associated with foodborne contamination per year (Scallan et al., 2011). Almost half (45%) of foodborne outbreaks reported in the U.S. are from bacteria, and fish are frequently implicated (Gould et al., 2013). In Europe, 5,175 foodborne outbreaks were reported in 2019. Salmonella spp. cause most of these outbreaks. There were 87,923 and 7,775 confirmed cases of salmonellosis and infections from Shiga-toxin-producing Escherichia coli, respectively (European Food Safety Authority; European Centre for Disease Prevention and Control, 2021).

Pollution, animal density, and global trading contribute to bacterial contamination of seafood products (Papadopoulou et al., 2007). The most common pathogens associated with seafood-borne diseases are Vibrio, Salmonella, Shigella, and Clostridium botulinum (Iwamoto et al., 2010). Seafood-borne outbreaks caused by V. parahaemolyticus, V. cholerae serogroup O139, V. vulnificus, Salmonella serotype Weltevreden, and E. coli have been reported (Bonnin-Jusserand et al., 2019; Heinitz et al., 2020; Martinez-Urtaza et al., 2016; Raymond & Ramachandran, 2019).

In Thailand, V. parahaemolyticus and Salmonella spp. are the leading causes of foodborne diarrhea. Even though Thailand is one of the major exporters of seafood products, monitoring of bacterial pathogens of these exports is limited. Therefore, the objectives of this study were: 1) examine the prevalence of bacterial indicators, V. parahaemolyticus, V. cholerae, V. vulnificus, V. alginolyticus, and Salmonella isolated from Pacific white shrimp, oysters, blood cockle, and Asian seabass in fresh markets in Bangkok, Thailand; 2) identify serotypes of Salmonella among various seafood samples; and 3) determine risk factors for Salmonella contamination and a potential cutoff value for E. coli concentration predicting the presence of Salmonella in these samples.
Materials & Methods

Sample collection

Samples of fresh fish and shellfish (n = 335) were collected from open-air retail fresh markets between October 2018 and July 2019 from four districts in Bangkok, Thailand, resulting in a sample composition of Pacific white shrimp (Litopenaeus vannamei) (n = 85), oyster (Saccostrea cucullata) (n = 82), blood cockle (Tegillarca granosa) (n = 84), and Asian seabass (Lates calcarifer) (n = 84) (Table 1). Due to varying availability of these four different seafood commodities at each market, there were slightly different total sample sizes for some seafood commodities ranging from n = 82 to n = 85 (Table 1). Pacific white shrimp, oysters, and blood cockles are raised in saltwater ponds; the majority of Asian seabass are raised in estuaries, but some are raised in saltwater ponds.

Individual seafood samples were purchased in the early morning (5 to 7 a.m.). At least 200 g of the samples were placed into a double sterile plastic bag. The samples were kept on ice (< 10 °C) during transportation and kept in the cooler. All samples were submitted to the laboratory within 3 h. Microbiological determination was performed within 6 h after receiving samples in the Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University.

Average and standard deviation (sd) of minimum and maximum ambient air temperature (°C), wind speed (km/h), precipitation (mm), and relative humidity (%) in Bangkok, Thailand, were retrieved from the Thai Meteorological Department (www.tmd.go.th). The average (± sd) daily minimum and maximum ambient air temperature was 26.8 (± 1.8) °C and 34.1 (± 2.6) °C; average (± sd) wind speed was 13.0 (± 2.0) km/h, average 24-hour precipitation 1.4 (± 4.0) mm, and average relative humidity was 75.1 (± 7.4) %.

Predictor variables

Risk factors for Salmonella contamination included type of seafood (Pacific white shrimp, oyster, blood cockle, or Asian seabass), sampling district (Din Daeng, Huay Kwang, Samphanthawong, or Dusit), regional source of seafood (central, eastern, southern Thailand, or unidentified source), retail storage of fish and shellfish samples (pooling and combining different seafood products for retail display versus keeping each seafood type separate when on display), and retail display condition (on ice or without ice). The concentrations of fecal coliform (MPN/g) and E. coli (MPN/g), and the prevalence of V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. cholerae were evaluated as putative risk factors for Salmonella contamination.

Bacterial concentration and phenotyping

Seafood samples were analyzed in triplicate for coliforms, E. coli, Salmonella, V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. cholerae. Fecal coliform and E. coli were enumerated according to the U.S. Food and Drug Administration (U.S. FDA) Bacteriological Analytical Manual (BAM) with slight modification (Feng et al., 2002). Briefly, a 25 g sample (shrimp and Asian seabass) was aseptically cut into small pieces and placed into 225 mL of Buffered Peptone Water (BPW) (Difco, MD, USA). Pieces were then homogenized for 1
to 2 min. The resulting suspension was serially diluted using three-tube most probable number (MPN) at different dilutions from 10^{-1} to 10^{-4}. One mL of each solution was diluted in Lactose Broth (LB) (Difco), and then incubated at 35 °C for 24 h. A loopful of the mixture solution was transferred to Brilliant Green Lactose Bile (BGLB) (Difco) and EC broth (Difco), respectively. After overnight incubation, positive tubes were recorded and calculated as concentration of fecal coliforms (MPN/g). One loopful of EC broth was streaked on Eosin Methylene Blue (EMB; Difco) agar plates and reported as \textit{E. coli} concentration (MPN/g).

Fecal coliform and \textit{E. coli} were enumerated in oysters and blood cockles following \textit{(Feng et al., 2002)}. Briefly, 100 g of meat was added into 100 mL of Phosphate Buffered Saline (PBS) (Difco), which was then blended aseptically for 1 to 2 min. The resulting suspension was serially diluted in LB to 10^{-4}. These dilutions were transferred to BGLB and EC broth. Biochemical tests including indole test and Triple Sugar Iron (TSI; Difco) were performed on suspect colonies for all samples. The lower and upper limits of the detection of fecal coliforms and \textit{E. coli} were 1.0 and 1.1×10^{5} MPN/g, respectively.

\textit{Salmonella} detection followed ISO 6579-1:2017 (\textit{International Organization for Standardization, 2017}). Briefly, 25 g of seafood was cut, and added to 225 mL of BPW. The pieces were homogenized for 2 min and incubated at 37 °C for 18 h. After incubation, 0.1 mL of the suspension was inoculated into Modified Semi-solid Rappaport-Vassiliadis (MSRV) (Difco) agar plate and incubated at 42 °C overnight. A loopful from the MSRV plates was restreaked onto Xylose Lysine Deoxycholate (XLD) (Difco) agar. Presumptive colonies of \textit{Salmonella} were pink to red colonies with a black center. Biochemical tests (citrate utilization, TSI reaction, indole test) were used to confirm presumptive \textit{Salmonella} colonies according to a standard protocol from the U.S. FDA BAM (\textit{Andrews et al., 2007}). Three typical colonies of \textit{Salmonella} were selected for serotyping. Slide agglutination test was performed to determine serotype of \textit{Salmonella} followed by Kauffmann-White Scheme, Pasteur Institute (\textit{Grimont and Weill, 2007}). Commercial antiseraums (S&A Reagents Lab Ltd., Lat Phrao, Bangkok, Thailand) were used to determine the serotype of \textit{Salmonella}.

Isolation of \textit{Vibrio} spp. followed U.S. FDA BAM (\textit{Kaysner et al., 2004}). Briefly, 50 g of each sample was added to 450 mL of PBS, and homogenized for 1 to 2 min. One mL of resulting suspension was added to 10 mL of Alkaline Peptone Water (APW) (Difco) and incubated at 37 °C overnight. After incubation, one loopful of solution was streaked on Thiosulfate-Citrate-Bile Salts-sucrose (TCBS) (Difco) agar plate containing 2% of NaCl. Presumptive colonies of \textit{Vibrio} were confirmed using CHROMagar™ \textit{Vibrio} (HiMedia Laboratories, Mumbai, India) agar. TCBS and CHROMagar™ \textit{Vibrio} plates were incubated at 37 °C for 24 h. Colonies with green center on TCBS agar were presumed to be \textit{V. parahaemolyticus}. Colorless colonies were presumed to be \textit{V. vulnificus}. On CHROMagar™ \textit{Vibrio} agar plate, mauve colonies were presumed to be \textit{V. parahaemolyticus}, and green blue to turquoise blue were presumed to be of \textit{V. vulnificus}. Colorless colonies were presumed to be \textit{V. alginolyticus}.

Isolation of \textit{V. cholerae} followed U.S. FDA BAM (\textit{Kaysner et al., 2004}). Briefly, 25 g of sample was added to 225 mL of APW, homogenized for 1 to 2 min, and incubated at 35±2 °C for
8 h. A loopful of solution was streaked to TCBS agar plates. After incubation at 37 °C for 24 h, presumptive colonies of *V. cholerae* were confirmed on CHROMagar™ Vibrio. Typical colonies of *V. cholerae* on TCBS agar plate are 2 to 3 mm diameter, yellow, and flat colonies with opaque center, whereas the presumptive colonies of *V. cholerae* in CHROMagar™ Vibrio agar were green blue to turquoise blue. Biochemical tests including TSI, oxidase test, and growth in sodium chloride were conducted to confirm *Vibrio* identifications.

Statistical analyses

Chi-square test and odds ratios were used to examine the association between different species of bacterial contamination and different types of seafood. For the odds ratio calculations of the association between bacteria contamination among seafood samples, shrimp was set as the referent category based on its popularity in Thai cuisine and largest sample size (*n* = 85) of the four seafood commodities. In addition, logistic regression was used to determine the association between *Salmonella* contamination and various risk factors. To construct the final logistic regression model, univariate associations were first evaluated for all risk factors for *Salmonella* and an initial multivariable model constructed from only significant univariate risk factors (*P* ≤ 0.2). A backward stepping algorithm was then used to eliminate non-significant (*P* > 0.05) risk factors based on a likelihood ratio test resulting in a final multivariable logistic regression model with only significant (*P* ≤ 0.05) risk factors. Receiver operating characteristic (ROC) analysis was performed to predict contamination of *Salmonella* using estimation of the concentration of *E. coli*. Based on ROC analysis, the optimal cutoff value for the concentration of *E. coli* was determined. All statistical analyses were performed using Stata version 14.0 (StataCorp, College Station, TX, USA). A *P*-value < 0.05 was considered as statistically difference under the two-sided hypothesis test.

Results

Occurrence of indicator bacteria in seafood samples

All seafood products sampled in Bangkok were positive for fecal coliforms with total average concentration (± sd) at 9×10⁴ (± 4×10⁴) MPN/g (Table 2). The prevalence of *E. coli* was 85%, with total average concentration (± sd) of 2×10⁴ (± 4×10⁴) MPN/g. Oyster samples had the highest concentrations (± sd) of fecal coliforms at 1×10⁵ (± 7×10³) and *E. coli* at 5×10⁴ (± 5×10³), while blood cockle and seabass had the lowest concentrations of these indicator bacteria (Table 2).

Occurrence of *Vibrio* and *Salmonella* in seafood samples

The overall prevalence for the various bacterial pathogens observed in all 335 seafood samples was 59% for *V. parahaemolyticus*, 18% for *V. vulnificus*, 19% for *V. alginolyticus*, 49% for *V. cholerae* and 36% for *Salmonella*. The highest prevalence of *V. parahaemolyticus*, *V. vulnificus*, *V. alginolyticus*, *V. cholerae*, and *Salmonella* were observed in blood cockle (78%), Pacific white shrimp (33%), oyster (29%), Asian seabass (76%), and Pacific white shrimp (40%), respectively (Figure 1). The lowest prevalence (< 10%) of *V. vulnificus* was observed in blood cockle and for *V. alginolyticus* in Asian seabass. Moreover, shrimp were most likely to have any...
of the four pathogens, followed by oysters (Figure 1). Blood cockles exhibited very high contamination of *V. parahaemolyticus*, while Asian seabass tended to harbor *V. cholerae* (Figure 1). Based on Chi-square tests, the was a significant association between different types of samples and the occurrence of *V. parahaemolyticus, V. vulnificus, V. alginolyticus, V. cholerae,* and *Salmonella* contamination (*P* < 0.0001).

Pacific white shrimp exhibited a high prevalence of *V. parahaemolyticus* (59%), *V. cholerae* (53%) and *Salmonella* (47%), whereas oysters were mainly contaminated with *V. parahaemolyticus* (45%) and *Salmonella* (38%). In blood cockles, they had low prevalence of *V. cholerae, V. vulnificus,* and *V. alginolyticus.* Asian seabass exhibited a high prevalence of *V. cholerae* (91%) and *Salmonella* (46%).

Matopeni (31%), Corvallis (5%), Give (5%), and Rissen (5%) were the most common serotypes of *Salmonella* isolated from seafood products (Table 3). Matopeni was the predominant serotype (52/56) observed from Asian seabass samples (*n* = 56 isolates), whereas Itami and Leith were common serovars isolated from the shrimp samples (*n* = 47 isolates). For oysters (*n* = 43 isolates) and blood cockles (*n* = 24 isolates), the major serotypes were Give (19%) and Rissen (33%), respectively.

The distribution of *Salmonella, V. parahaemolyticus, V. vulnificus, V. cholerae,* and *V. alginolyticus* among seafood products

Odds of *V. vulnificus* contamination in shrimp was 7.0 (1/0.143) times higher than that for blood cockle (*P* = 0.002) (Table 4). Odds of *V. cholerae* contamination in shrimp were 7.5 (1/0.134) and 23.6 (1/0.043) times higher than for oyster (*P* < 0.0001) and blood cockle (*P* = 0.002), respectively. The presence of *V. parahaemolyticus* in the blood cockle was higher than in shrimp (OR = 9.1, *P* < 0.0001). The odds of *V. alginolyticus* contamination in shrimp was 13.3 (1/0.075) and 20.0 (1/0.050) times higher than in blood cockles and seabass, respectively.

Risk factors associated with *Salmonella* contamination

Salmonella contamination of seafood sold throughout Bangkok was significantly associated with type of seafood, sampling district, retail display condition, regional source of seafood, and the presence of *E. coli, V. alginolyticus,* and *V. vulnificus* (Table 5). *Salmonella* contamination in Pacific white shrimp was not different from Asian seabass; in contrast, both oysters and blood cockles had significantly lower odds of *Salmonella* contamination compared to shrimp. Seafood from markets in Huay Kwang (OR = 1.7) and Dusit (OR = 1.4) had a higher odds of *Salmonella* contamination compared to seafood from Din Daeng and Samphanthawong. Seafood displayed on ice (OR = 1.7, *P* < 0.0001) had a higher odds of *Salmonella* contamination compared to retail seafood products not displayed on ice. Seafood products sourced from Eastern Thailand had significantly higher odds of *Salmonella* contamination compared to seafood sourced from other regions (OR = 3.5, *P* < 0.0001). Lastly, the odds of *Salmonella* contamination were positively associated with the presence of *E. coli* and *V. alginolyticus,* but negatively associated with *V. vulnificus.*

ROC and area under the ROC curve
The area under the ROC curve (AUC) at 64% with standard error = 0.30 (C.I. = 58% - 70%) (Figure 2). The ROC AUC was statistically significant ($P < 0.0001$) compared to the null value of AUC = 0.5. The presence of *Salmonella* in seafood products was predicted by a concentration of $1.3 \times 10^4 E. coli$ MPN/g, with a sensitivity of 84% and specificity of 61%.

Discussion

According to the Ministry of Public Health for Thailand, the concentration of *E. coli* should not exceed 10 MPN/g of fresh or frozen seafood and less than 3 MPN/g of seafood consumed raw; in addition, all products must not contain detectable *Salmonella, V. cholerae, V. parahaemolyticus* in a 25 g sample (*Bureau of Quality and Safety of Food, 2020*). In this study, the concentration of *E. coli* averaged 2×10^4 MPN/g for all the seafood samples. In fact, only 18% ($n = 60/335$) of all seafood samples had concentrations of *E. coli* < 10 MPN/g and only 7% ($n = 6/82$) of oyster samples (often eaten raw) had < 3 MPN/g. Furthermore, the prevalence of *Salmonella* (36%), *V. cholerae* (49%), *V. parahaemolyticus* (59%) indicated widespread bacterial contamination of these seafood products, which also violates food safety standards. Therefore, implementation of basic sanitation and evaluation of microbiological contamination of seafood products sold in Bangkok are needed.

Salmonella is an important pathogen that is responsible for seafood-borne illness worldwide (*Barrett et al., 2017; European Food Safety Authority, 2014*). However, *Salmonella* is not a normal flora in finfish and shellfish products. The major sources of *Salmonella* contamination in seafood include aquatic and aquaculture systems, seafood processing facilities, hygiene practices during transport, storage, and handling (*Amagliani et al., 2012; Fernandes et al., 2018*). In this study, the prevalence of *Salmonella* ranged from 14% to 47%. This prevalence was similar to the prevalence of 25% *Salmonella* contamination of shrimp cultured in Vietnam (*Phan et al., 2005*), but substantially less than the 90 to 100% prevalence of *Salmonella* contamination in fish (93%) and shrimp (100%) collected from a market in Indonesia (*Pramono et al., 2019*).

Type of seafood, sampling retail location, use of ice during retail display, regional source of seafood, and presence of *E. coli* and *Vibrio* were all significantly associated with the presence of *Salmonella* (Table 5). These risk factors should be interpreted with caution given the observational nature of this study and the possibility of undetected confounding in the statistical analysis. The presence of *E. coli* in a seafood sample was associated with a 4-fold increase in the odds of *Salmonella* contamination (OR = 4.0, $P < 0.0001$); similarly, the presence of *V. alginolyticus* in a seafood sample was associated with a 1.4-fold increase in the odds of *Salmonella* contamination (OR = 1.4, $P < 0.04$).

Seafood displayed on ice during retail had almost twice the odds of *Salmonella* contamination (OR = 1.7, $P < 0.0001$) than seafood not displayed on ice. This may seem counterintuitive, but ice used to chill seafood can be contaminated with pathogenic microorganisms (*Falcão et al., 2009*). Ice can be a vehicle for various pathogenic organisms, including diarrheagenic *E. coli, Aeromonas, S. enteritidis* and fecal coliforms (*Falcão et al., 2009*).
In this study, most of the ice used to store seafood was at risk of rapidly melting due to high ambient temperatures in open air conditions. Melting ice can spread bacteria from one seafood item to nearby retail items, readily contaminating other seafood left standing in contaminated melt water.

In addition, the physical placement of seafood for display in retail markets can spread bacterial contamination between seafood items if seafood handlers do not practice proper sanitation during handling (i.e., bare hands touching multiple seafood items; not replacing latex or plastic gloves at high enough frequency during retail display placement of seafood items). Therefore, maintaining sanitary conditions during the production, storage, and use of ice to prevent microbial contamination should be closely observed. Implementation of programs for food safety and also for prevention and control of diarrheal diseases have reduced mortality and morbidity rates of diarrheal diseases and strengthened food safety in Thailand (Food Control Division, Food and Drug Administration, Thailand. 2004).

Seafood sourced from Eastern Thailand had a 3.5-higher odds of Salmonella contamination than seafood from other regions (OR = 3.5, \(P < 0.0001 \)). The coastal area of Eastern Thailand has concentrated areas of industrialization, agricultural development, and tourism-related urbanization, with major concerns of increased water pollution and resource depletion (Nitivattananon and Srinonil, 2019). Wastewater quality is a major concern for this area, especially in Chonburi and Rayong Provinces due to several industrial estates. Moreover, Chonburi, Chachoengsao, and Rayong Provinces have been designated for developing the Eastern Economic Corridor (EEC), so reduction of waste and wastewater is of increasing concern.

In this study, the diversity of Salmonella serovars varied between the different seafood products. Pacific white shrimp had the greatest diversity, 21 different serovars with prevalence per serovar ranging from 1-3%. Eleven serovars from isolated from oysters, with prevalence per serovar ranging from 1-5% similar to Pacific white shrimp. In contrast, only 5 serovars were isolated from blood cockles, with a similar range of prevalence per serovar of 2-5%. Least diverse were isolates from Asian seabass where only two serovars were recovered, with 52 of 56 of these Salmonella isolates being Matopeni and the remainder being Paratyphi B. Serotype Matopeni has been reported in aquatic pet shops (Gaulin et al., 2005) and in food supplements from Germany (European Commission, 2018). The infection of S. Matopeni has been reported in Malaysian children (Lee et al., 2003). Salmonella Paratyphi B in raw tuna sushi imported from Indonesia in 2015 caused 65 foodborne cases in the U.S. (Centers for Disease Control and Prevention, 2018). S. Typhimurium, S. Enteritidis, S. Typhi, and S. Paratyphi B were also detected in fresh fish in Iran (Rahimi et al., 2013). S. Paratyphi B can be classified as d-tartrate fermenting (dT+) and d-tartrate non-fermenting (dT-) strains. The dT+ strain is less virulent and commonly reported with gastroenteritis, while the dT- strain is associated with paratyphoid fever. The dT+ strain is associated with a significant emerging disease worldwide and of public health concern (Denny et al., 2007, Hassan et al., 2018). Hence, classification of S. Paratyphi B biotype should be further investigated.
The common serovars in Pacific white shrimp were Itami (11%, \(n = 5/47 \)) and Leith (9%, \(n = 4/47 \)). Itami was first documented as a new serovar from a traveler to Thailand suffering from gastroenteritis (Sakazaki et al., 1981). Itami has also been reported from infected humans in Taiwan (Kuo et al., 2014). In contrast to serovars isolated during this study, serovars \(S. \) Weltevreden, \(S. \) Tennessee, and \(S. \) Dessau were isolated from shrimp from the Mekong Delta, Vietnam (Phan et al., 2005). The most common \(S. \) enterica serovar isolated from oysters was Give (19%, \(n = 8/43 \) isolates), which is different from oysters in the U.S. where Newport was the most common serotype (Brands et al., 2005). A previous study in Western Thailand found that the most common serovar in cultured oysters (\(C. \) lugubris and \(C. \) belcheri) from Phang Nga Province was Paratyphi B (Jeamsripong et al., 2018). This suggests that the distribution of \(Salmonella \) serovars within Thailand depends on geographical location and type of seafood. Serovar Give is an enteric serotype usually isolated from swine and ruminants, but rarely found in humans (Higgins et al., 1997). It is possible that the contamination of Give may be the result of livestock or agricultural production near the oyster growing site. \(S. \) enterica Give has been frequently reported in European national laboratories (Jansen et al., 2005). The higher virulence of the Give serovar compared to other non-typhoidal \(Salmonella \) may explain the higher hospital rate associated with human Give infections (Girardin et al., 2006).

Even though typhoid and paratyphoid salmonellosis are endemic diseases in Thailand, typhoid fever rates declined, and paratyphoid stabilized from 2003 to 2014 in this nation (Techasaensiri et al., 2018). In Thailand, \(S. \) enterica Weltevreden is commonly reported in human, frozen seafood, frozen ducks, and polluted water (Bangtrakulnonth et al., 2004). \(S. \) Weltevreden, \(S. \) Stanley, \(S. \) Anatum, and \(S. \) Rissen are frequently reported in human from northern and central Thailand (Prasertsee et al., 2019; Sirichote et al., 2010). Therefore, surveillance and monitoring of oysters due to this ~20% prevalence of \(Salmonella \) contamination, and fully cooking oysters prior to consumption are both needed to reduce the risk of food-borne \(Salmonella \) infection from Thai-cultured oysters.

In this study, the most common \(Salmonella \) serovar found in blood cockles was Rissen (33%, \(n = 8/24 \) isolates), similar to a study in India (Kumar et al., 2009), but it should be noted that none of the five different serovars isolated from cockles had a prevalence above 5%.

Seafood such as cockles can acquire \(Salmonella \) from contaminated water or other environmental matrices during aquaculture, processing, shipping, and retail display. Good hygiene and basic sanitation together with proper seafood handling and storage should be performed throughout the food chain (farm to fork) to reduce the risk of seafood-related \(Salmonella \).

According to BQSF for Thailand seafood for human consumption should have no detectable \(V. \) parahaemolyticus and \(V. \) cholerae in 25 g of sample; however, 50-60% of samples contained these bacteria. This high prevalence is consistent with previous work demonstrating that between 2003 and 2015 the prevalence of \(V. \) parahaemolyticus was 64% in oysters, followed by clams (53%), fish (51%), and shrimp (48%) (Odeyemi, 2016). \(V. \) parahaemolyticus, \(V. \) cholerae, and \(V. \) vulnificus are important seafood-borne pathogens that cause gastroenteritis in humans. \(V. \) alginolyticus can cause ear infection and intestinal disease in humans. In this study,
the main source of *V. parahaemolyticus* was blood cockles (OR = 9.1, *P* < 0.05), while *V. cholerae* was commonly found in Asian seabass (OR = 4.0, *P* > 0.05). *V. parahaemolyticus* and *V. vulnificus* have been reported in bivalves in many countries such as Thailand, China, and Korea (Changchai & Saunjit, 2014; Jiang et al., 2019; Ryu et al., 2019). In this study, shrimp and oysters were predominantly contaminated with *V. vulnificus* and *V. alginolyticus*.

Clostridium perfringens, *Staphylococcus aureus*, *V. parahaemolyticus*, and *Salmonella* spp. are the leading causes of foodborne illnesses in Thailand (Bureau of Epidemiology, 2019). In Thailand, human salmonellosis caused 167 illnesses per 100,000 persons in 2019. Contaminated produce and water have been indicated as important sources of *Salmonella* infection (Bureau of Epidemiology, 2019). The trend of *V. cholerae* infection decreased from 2.51 to 0.02 cases per 100,000 persons during 2010-2019, and contaminated water and seafood, poor sanitation, and dense housing have been blamed as sources of contamination (Bureau of Epidemiology, 2019).

In this study, the determination of bacterial prevalence and abundance was made using culture-dependent methods. For *Salmonella* spp. and *Vibrio* spp. detection this approach has high accuracy and sensitivity compared with certain molecular techniques (Almeida et al., 2013; Eriksson & Aspan 2007; Hara-Kudo et al., 2001; Mainar-Jaime et al., 2013; Yeung & Thorsen, 2016). However, these methods can fail to detect viable but nonculturable state (VBNC) strains. VBNC bacteria can preserve metabolic activity and generate virulent proteins (Alleron et al., 2013; Morishige et al., 2015). Hence, molecular techniques are recommended to determine bacterial contamination, but unfortunately such equipment, needed supplies and training required to implement these molecular techniques are not readily available to many food safety officers, even in the developed world. In the absence of molecular equipment, the use of an appropriate MPN assay is justified and provides an estimate of bacterial load, along with ease of interpretation of the results. In this study, the determination of bacterial species was made using bacterial phenotyping methods, a culture-based method which could also estimate the number of culturable bacteria in Bangkok seafood commodities. Identification of specific serogroups of *Vibrio* spp., virulence factors, and bacterial toxins should be examined in future work.

E. coli concentrations appeared well suited to predicting *Salmonella* contamination of seafood. Based on the Youden index that uses the maximal difference between sensitivity and 1-specificity (Ruopp et al., 2008), a cutoff value for *E. coli* was 1.3×10^4 MPN/g can be implemented for both monitoring seafood for *Salmonella* contamination and to establish threshold control measures at processing or during retail storage. This cutoff is much higher than the microbiological criteria set forth in the Commission Regulation (EC) No 2073/2005 (European Commission, 2005), and the BQSF, Thailand (Bureau of Quality and Safety of Food, 2020). This may be because high concentrations of *E. coli* in this sample collection generated a high cutoff value to discriminate the presence or absence of *Salmonella* in the samples. Lastly, given that the detection of *Salmonella* and *Vibrio* spp. is of similar expense and technical difficulty as quantifying *E. coli* concentrations in seafood matrices, it may be more expeditious
and more accurate to focus seafood safety monitoring protocols on *Salmonella* and *Vibrio* spp. detection rather than rely on indicator bacteria like *E. coli* that invariably suffer from false-positive and false-negative signals.

Conclusions

Finfish and shellfish products sold in Bangkok are contaminated with diverse *Salmonella* serovars and species of *Vibrio*. Although the concentration of *E. coli* predicted *Salmonella* contamination for these seafood samples, the high cutoff value (1.3×10⁴ MPN/g) for maximal test accuracy will likely prevent this method from being adopted as a food hygiene surveillance tool. Current Thai BQSF regulations require no more than 10 *E. coli* MPN/g for fresh or frozen seafood. Bacterial contamination varied by seafood commodity, with substantial differences between Asian seabass, oysters, blood cockle, and Pacific white shrimp. This may reflect different aquaculturing, harvesting, processing, and retail display practices.

Acknowledgements

The authors thank Chailai Chareamchainukul, Mullika Kuldee, Varangkana Thaotumpitak, and Saweeyah Toodbat for their technical assistance.

References

Alleron L, Khemiri A, Koubar M, Lacombe C, Coquet L, Cosette P, Jouenne T, Frere J. 2013. VBNC *Legionella pneumophila* cells are still able to produce virulence proteins. *Water Research* **47**:6606-6617 [DOI 10.1016/j.watres.2013.08.032].

Almeida C, Cerqueira L, Azevedo NF, Vieira MJ. 2013. Detection of *Salmonella enterica* serovar Enteritidis using real time PCR, immunocapture assay, PNA FISH and standard culture methods in different types of food samples. *International Journal of Food Microbiology* **161**:16-22 [DOI 10.1016/j.ijfoodmicro.2012.11.014].

Amagliani G, Brandi G, Schiavano GF. 2012. Incidence and role of *Salmonella* in seafood safety. *Food Research International* **45**:780-788 [DOI 10.1016/j.foodres.2011.06.022].

Andrews WH, Wang H, Jacobson A, Ge B, Zhang G, Hammack T. 2007. Bacteriological Analytical Manual (BAM). Chapter 5: *Salmonella*. Retrieved February 14, 2014. Available at https://www.fda.gov/food/laboratory-methods-food/bam-chapter-5-salmonella.

Bangtrakulnonth A, Pornreongwong S, Pulsrikarn C, Sawanpanyalert P, Hendriksen RS, Lo Fo Wong DM, Aarestrup FM. 2004. *Salmonella* serovars from humans and other sources in Thailand, 1993-2002. *Emerging Infectious Diseases Journal* **10**:131-136 [DOI 10.3201/eid1001.02-0781].

Barrett KA, Nakao, JH, Taylor, EV, Eggers C, Gould LH. 2017. Fish-Associated Foodborne Disease Outbreaks: United States, 1998-2015. *Foodborne Pathogens and Disease* **14**:537-543 [DOI 10.1089/fpd.2017.2286].

Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grrard T, Midelet-Bourdin G. 2019. *Vibrio* species involved in seafood-borne outbreaks (*Vibrio*...
cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Critical Reviews in Food Science and Nutrition 59:597-610 DOI 10.1080/10408398.2017.1384715.

Brands DA, Inman AE, Gerba CP, Maré CJ, Billington SJ, Saif LA, Levine JF, Joens LA. 2005. Prevalence of Salmonella spp. in oysters in the United States. Applied and Environmental Microbiology 71:893-897 DOI 10.1128/AEM.71.2.893-897.2005.

Bureau of Epidemiology. 2019. Annual epidemiological surveillance report 2019. department of disease control, ministry of public health. Retrieved August 2, 2021. Available at https://apps.doe.moph.go.th/boeeng/annual.php Bureau of Quality and Safety of Food. 2020. Assessment of Microbiological Quality. Retrieved February 14, 2021. Available at http://bqsf.dmsc.moph.go.th.

Centers for Disease Control and Prevention. 2018. Multistate outbreak of Salmonella Paratyphi B variant L(+) tartrate(+) and Salmonella Weltevreden infections linked to frozen raw tuna: USA, March-July 2015 Epidemiology and Infection 146:1461-1467. DOI 10.1017/S0950268818001462.

Changchai N, Saunjit S. 2014. Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus in retail raw oysters from the eastern coast of Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health 45:662-669.

Denny J, Threlfall J, Takkinen J, Löfdahl S, Westrell T, Varela C, Adak B, Boxall N, Ethelberg S, Torpdahl M, Straetemans Masja, van Pelt W. 2007. Multinational Salmonella Paratyphi B variant Java (Salmonella Java) outbreak, August - December 2007. Eurosurveillance 12:pii=3332.

Eriksson E, Aspan A. 2007. Comparison of culture, ELISA and PCR techniques for salmonella detection in faecal samples for cattle, pig and poultry. BMC Veterinary Research 3:21 DOI 10.1186/1746-6148-3-21.

European Commission. 2005. Commission regulation (EC) No 2073/2005 microbiological criteria for foodstuffs. Official Journal of the European Union, 1-26.

European Commission. 2018. Salmonella enterica ser. Matopeni (presence /25g) in food supplement from Germany.

European Food Safety Authority. 2014. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA Journal 12:3547 DOI 10.2903/j.efsa.2014.3547.

European Food Safety Authority; European Centre for Disease Prevention and Control. 2021. The European Union One Health 2019 Zoonoses Report. EFSA journal 19:2 e06406. DOI 10.2903/j.efsa.2021.6406.

Falcão JP, Dias AMG, Correa EF, Falcão DP. 2002. Microbiological quality of ice used to refrigerate foods. Food Microbiology 19:269-276 DOI 10.1006/fmic.2002.0490.

Falcão JP, Falcão DP, Gomes TAT. 2004. Ice as a vehicle for diarrheagenic Escherichia coli. International Journal of Food Microbiology 91:99-103 DOI 10.1016/S0168-1605(03)00327-1.
Feng P, Weagant SD, Grant MA, Burkhardt W, Shellfish M, Water B. 2002. Bacteriological Analytical Manual (BAM): Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Retrieved February 14, 2021. Available at https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria.

Fernandes DVGS, Castro VS, Cunha Neto Ad, Figueiredo EEdS. 2018. Salmonella spp. in the fish production chain: a review. Ciência Rural 48:e20180141 DOI 10.1590/0103-8478cr20180141.

Food and Agriculture Organization of the United Nations. 2015. The consumption of fish and fish products in the Asia-Pacific region based on household surveys. Retrieved February 14, 2021. Available at http://www.fao.org/publications/card/en/c/ba100e66-4b37-4a1b-ba2b-364e6a3205bc/.

Food and Agriculture Organization of the United Nations. 2018. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Retrieved February 14, 2021. Available at http://www.fao.org/documents/card/en/c/I9540EN/.

Food Control Division, Food and Drug Administration, Thailand. 2004. FAO/WHO regional conference on food safety for Asia and the Pacific. Country report. Foodborne diseases: situation of diarrheal diseases in Thailand. Retrieved August 2, 2021. Available at http://www.fao.org/3/ad703e/ad703e00.htm.

Gaulin C, Vincent C, Ismail J. 2005. Sporadic infections of Salmonella Paratyphi B, var. Java associated with fish tanks. Canadian Journal of Public Health 96:471-474 DOI 10.1007/BF03405194.

Girardin F, Mezger N, Hächler H, Bovier PA. 2006. Salmonella serovar Give: an unusual pathogen causing splenic abscess. European Journal of Clinical Microbiology and Infectious Diseases 25:272-274.

Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT, Hall AJ, Cole D. 2013. Surveillance for foodborne disease outbreaks - United States, 1998-2008. Morbidity and Mortality Weekly Report: Surveillance Summaries 62:1-34.

Grimont PAD, Weill FX. 2007 Antigenic Formulae of the Salmonella Serovars. 9th Edition, World Health Organization Collaborating Center for Reference and Research on Salmonella, Institute Pasteur, Paris.

Hara-Kudo Y, Nishina T, Nakagawa H, Konuma H, Hasegawa J, Kumagai S. 2001. Improved method for detection of Vibrio parahaemolyticus in Seafood. Applied and Environmental Microbiology 67:5819-5823 DOI 10.1128/AEM.67.12.5819-5823.2001.

Hassan R, Teele S, Adcock B, Kellis M, Weiss J, Saupe A, Sorenson A, Klos R, Blankenship J, Blessington T, Whitlock L, Carleton HA, Concepción-Acevedo J, Tolar B, Wise M, Neil KP. 2018. Multistate outbreak of Salmonella Paratyphi B variant L(+) tartrate(+) and Salmonella Weltevreden infections linked to imported frozen raw tuna: USA, March-July 2015. Epidemiology and infection 146:1461-1467 DOI 10.1017/S0950268818001462.

Heinitz ML, Ruble R, Wagner DE, Tatini S. 2000. Incidence of Salmonella in fish and seafood. Journal of Food Protection 63:579-592 DOI 10.4315/0362-028X-63.5.579.
Martinez-Urtaza J, Powell A, Jansa J, Rey JL, Montero OP, Campello MG, López MJ, Pousa A, Valles MJ, Trinanes J, Hervio-Heath D, Keay W, Bayley A, Hartnell R, Baker-Austin C. 2016. Epidemiological investigation of a foodborne outbreak in Spain associated with U.S. West Coast genotypes of *Vibrio parahaemolyticus*. *SpringerPlus* 5:1-8 DOI 10.1186/s40064-016-1728-1.

Morishige Y, Fujimori K, Amano F. 2015. Use of flow cytometry for quantitative analysis of metabolism of VBNC (Viable But Non-Culturable) *Salmonella*. *Biological and Pharmaceutical Bulletin* b15-00005 DOI 10.1248/bpb.b15-00005.

Phan TT, Khai LT, Ogasawara N, Tam NT, Okatani AT, Akiba M, Hayashidani H. 2005. Contamination of *Salmonella* in retail meats and shrimps in the Mekong Delta, Vietnam. *Journal of Food Protection* 68:1077-1080 DOI 10.4315/0362-028x-68.5.1077.

Prasertsee T, Chokesajjawatee N, Santiyanont P, Chuammitri P, Deeudom M, Tadee P, Patchanee P. 2019. Quantification and rep-PCR characterization of *Salmonella* spp. in retail meats and hospital patients in Northern Thailand. *Zoonoses Public Health* 66:301-309 DOI 10.1111/zph.12565.

Nitivattananon V, Srinonil S. 2019. Enhancing coastal areas governance for sustainable tourism in the context of urbanization and climate change in eastern Thailand. *Advances in Climate Change Research* 10:47-58 DOI 10.1016/j.accre.2019.03.003.

Odeyemi OA. 2016. Incidence and prevalence of *Vibrio parahaemolyticus* in seafood: a systematic review and meta-analysis. *SpringerPlus* 5:464 DOI 10.1186/s40064-016-2115-7.

Papadopoulou C, Economou E, Zakas G, Salamoura C, Dontorou C, Apostolou J. 2007. Microbiological and pathogenic contaminants of seafood in Greece. *Journal of Food Quality* 30:28-42 DOI 10.1111/j.1745-4557.2007.00104.x.

Pramono H, Kurniawan A, Andika N, Putra TF, Hazwin MAR, Utari S, Kurniawan AP, Masithah ED, Sahidu AM. 2019. Detection of antibiotic-resistant *Salmonella* sp. in the seafood products of Surabaya local market. *IOP Conference Series: Earth and Environmental Science* 236:012115.

Rahimi E, Shakerian A, Falavarjani AG. 2013. Prevalence and antimicrobial resistance of *Salmonella* isolated from fish, shrimp, lobster, and crab in Iran. *Comparative Clinical Pathology* 22:59-62 DOI 10.1007/s00580-011-1368-3.

Raymond A, Ramachandran A. 2019. Bacterial Pathogens in Seafood-Indian Scenario. *Fishery Technology* 56:1-22.

Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. 2008. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. *Biometrical Journal* 50:419-430 DOI 10.1002/bimj.200710415.

Ryu AR, Mok JS, Lee DE, Kwon JY, Park K. 2019. Occurrence, virulence, and antimicrobial resistance of *Vibrio parahaemolyticus* isolated from bivalve shellfish farms along the southern coast of Korea. *Environmental Science and Pollution Research* 26:21034-21043 DOI 10.1007/s11356-019-05426-1.
Sakazaki R, Tamura K, Abe H, Ogawa Y, Miyata Y. 1981. A new Salmonella serovar: Salmonella itami (9,12:1,z13:1,2). *Japanese Journal of Medical Science and Biology* 34:179-180 DOI 10.7883/yoken1952.34.179.

Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States-major pathogens. *Emerging Infectious Diseases Journal* 17:7-15 DOI 10.3201/eid1701.P11101.

Sirichote P, Bangtrakulnonth A, Tianmanee K, Unahalekhaka A, Oulai A, Chittaphithakchai P, Kheowrod W, Hendriksen RS. 2010. Serotypes and antimicrobial resistance of Salmonella enterica ssp in central Thailand, 2001-2006. *The Southeast Asian Journal of Tropical Medicine and Public Health* 41:1405-15.

Techasaensiri C, Radhakrishnan A, Als D, Thisyakorn U. 2018. Typhoidal Salmonella Trends in Thailand. *American Journal of Tropical Medicine and Hygiene* 99:64-71 DOI 10.4269/ajtmh.18-0046.

World Health Organization. 2004. Food safety at risk in Asia and the Pacific. Retrieved February 14, 2021. Available at https://apps.who.int/mediacentre/news/releases/2004/pr34/en/index.html.

Yeung M, Thorsen T. 2016. Development of a more sensitive and specific chromogenic agar medium for the detection of Vibrio parahaemolyticus and other Vibrio species. *Journal of visualized experiments* 117: 54493 DOI 10.3791/54493.
Table 1 (on next page)

Factors associated with bacterial contamination of seafood products sold in Bangkok, Thailand.

¹ Row totals of percentages may not add to 100% during to rounding of decimals.
1. **TABLE 1** Factors associated with bacterial contamination of seafood products sold in Bangkok, Thailand.

Risk factors	Pacific white shrimp	Oyster	Blood cockle	Asian seabass	Total
Type of seafood					
Sampling district					
Din Daeng	85 (25.4%)	82 (24.5%)	84 (25.1%)	84 (25.1%)	335 (100%)
Huay Kwang	11 (30.6%)	7 (19.4%)	4 (11.1%)	14 (38.9%)	36 (100%)
Samphanthawong	28 (25.5%)	26 (23.6%)	28 (25.5%)	28 (25.5%)	110 (100%)
Dusit	29 (25.7%)	28 (24.8%)	28 (24.8%)	28 (24.8%)	113 (100%)
Regional source of seafood					
Central	65 (25.3%)	53 (20.6%)	72 (28.0%)	60 (26.1%)	257 (100%)
Eastern	3 (10.7%)	0 (0%)	16 (57.1%)	9 (32.1%)	28 (100%)
Southern	10 (40.0%)	6 (24.0%)	5 (20.0%)	4 (16.0%)	25 (100%)
Unidentified	7 (28.0%)	7 (28.0%)	7 (28.0%)	4 (16.0%)	25 (100%)
Retail storage					
Pool	4 (4.9%)	0 (0%)	0 (0%)	78 (95.1%)	82 (100%)
Separate	81 (32.0%)	82 (32.4%)	84 (33.2%)	6 (2.4%)	253 (100%)
Retail display condition					
Without ice	39 (31.2%)	28 (22.4%)	47 (37.6%)	11 (8.8%)	125 (100%)
On ice	46 (21.9%)	54 (25.7%)	37 (17.6%)	73 (34.8%)	210 (100%)

1. Row totals of percentages may not add to 100% during to rounding of decimals.
Table 2 (on next page)

Concentrations of fecal coliforms and *E. coli* in seafood products sold in Bangkok, Thailand.

Notes sd, standard deviation.
TABLE 2 Concentrations of fecal coliforms and *E. coli* in seafood products sold in Bangkok, Thailand.

Samples	Fecal coliforms	E. coli		
	Prevalence (%)	Average ± sd (MPN/g)	Prevalence (%)	Average ± sd (MPN/g)
Shrimp (*n* = 85)	85 (100%)	9.43×10⁴ (3.4×10⁴)	85 (100%)	1.07×10⁴ (2.5×10⁴)
Oyster (*n* = 82)	82 (100%)	1.10×10⁵ (7.1×10³)	82 (100%)	5.13×10⁴ (4.5×10³)
Blood cockle (*n* = 84)	84 (100%)	5.71×10⁴ (4.8×10⁴)	68 (81.0%)	5.85×10³ (2.2×10⁴)
Asian seabass (*n* = 84)	84 (100%)	8.70×10⁴ (4.1×10⁴)	56 (66.7%)	1.30×10³ (2.6×10³)
Total (*n* = 335)	335 (100%)	8.70×10⁴ (4.1×10⁴)	285 (85.1%)	1.85×10⁴ (3.7×10⁴)

Notes

sd, standard deviation.
Table 3 (on next page)

Distribution of *Salmonella* serovars in seafood products sold in Bangkok, Thailand (*n* = 170 isolates).
TABLE 3 Distribution of *Salmonella* serovars in seafood products sold in Bangkok, Thailand (n = 170 isolates).

Serotype	Shrimp	Oyster	Blood cockle	Asian seabass	Total
Agona	-	-	4 (2.35)	-	4 (2.35)
Aminatu	2 (1.18)	-	-	-	2 (1.18)
Australia	1 (0.59)	-	-	-	1 (0.59)
Bardo	-	4 (2.35)	-	-	4 (2.35)
Bonames	3 (1.76)	-	-	-	3 (1.76)
Breukelen II	-	4 (2.35)	-	-	4 (2.35)
Corvallis	-	4 (2.35)	4 (2.35)	-	8 (4.71)
Dabou	-	4 (2.35)	-	-	4 (2.35)
Dresden	1 (0.59)	-	-	-	1 (0.59)
Enteritidis	3 (1.76)	-	-	-	3 (1.76)
Farmingdale	-	4 (2.35)	-	-	4 (2.35)
Give	-	8 (4.71)	-	-	8 (4.71)
Glidji	-	2 (1.18)	-	-	2 (1.18)
Hisingen	2 (1.18)	-	-	-	2 (1.18)
Itami	5 (2.94)	-	-	-	5 (2.94)
Kentucky	3 (1.76)	-	-	-	3 (1.76)
Konongo	1 (0.59)	-	-	-	1 (0.59)
Lansing	1 (0.59)	-	-	-	1 (0.59)
Leith	4 (2.35)	-	-	-	4 (2.35)
Lexington	-	4 (2.35)	-	-	4 (2.35)
Lezennes	-	-	4 (2.35)	-	4 (2.35)
Linguere	2 (1.18)	-	-	-	2 (1.18)
Matopeni	-	-	52 (30.59)	-	52 (30.59)
Oslo	3 (1.76)	-	-	-	3 (1.76)
Paratyphi B2	-	-	4 (2.35)	-	4 (2.35)
Rissen	-	-	8 (4.71)	-	8 (4.71)
Ruiru	-	4 (2.35)	-	-	4 (2.35)
Stanley	-	-	4 (2.35)	-	4 (2.35)
Stuttgart	2 (1.18)	-	-	-	2 (1.18)
Soerenga	-	1 (0.59)	-	-	1 (0.59)
Tounouma	1 (0.59)	-	-	-	1 (0.59)
Typhimurium	1 (0.59)	-	-	-	1 (0.59)
Victoria	3 (1.76)	-	-	-	3 (1.76)
Windermere	3 (1.76)	-	-	-	3 (1.76)
Weltevreden	-	4 (2.35)	-	-	4 (2.35)
Location	Case 1 (Cases)	Case 2 (Cases)	Case 3 (Cases)	Total (Cases)	
---------------	--------------	--------------	--------------	--------------	
Wohlen	2 (1.18)	-	-	2 (1.18)	
Yeerongpilly	1 (0.59)	-	-	1 (0.59)	
II/IIa/IV	3 (1.76)	-	-	3 (1.76)	
Total	**47 (27.65)**	**43 (25.29)**	**24 (14.12)**	**170 (100.00)**	
Table 4 (on next page)

Comparing the odds of contamination from *Salmonella*, *V. parahaemolyticus*, *V. vulnificus*, *V. cholerae*, or *V. alginolyticus* among seafood products sold in Bangkok, Thailand.

Notes. Referent category, based on shrimp’s popularity in Thai cuisine and largest sample size among the four seafood commodities. OR, Odds ratio. S.E., standard error. C.I., confidence interval.
TABLE 4 Comparing the odds of contamination from *Salmonella*, *V. parahaemolyticus*, *V. vulnificus*, *V. cholerae*, or *V. alginolyticus* among seafood products sold in Bangkok, Thailand.

Parameters	OR	S.E.	95% C.I.	P-value
Salmonella				
Shrimp\(^1\)	1.0	-	-	-
Oyster	0.684	0.155	0.439-1.065	0.093
Blood cockle	0.188	0.388	0.125-0.281	< 0.0001
Asian seabass	0.975	0.767	0.209-4.555	0.974
Constant	0.889	0.394	0.373-2.121	0.791
V. parahaemolyticus				
Shrimp\(^1\)	1.0	-	-	-
Oyster	0.576	0.096	0.413-0.802	0.001
Blood cockle	9.100	1.686	6.329-13.085	< 0.0001
Asian seabass	0.431	0.276	0.122-1.515	0.189
Constant	1.429	0.277	0.977-2.088	0.065
V. vulnificus				
Shrimp\(^1\)	1.0	-	-	-
Oyster	0.353	0.196	0.119-1.045	0.060
Blood cockle	0.143	0.088	0.043-0.477	0.002
Asian seabass	0.100	0.130	0.008-1.285	0.077
Constant	0.635	0.325	0.233-1.731	0.374
V. cholerae				
Shrimp\(^1\)	1.0	-	-	-
Oyster	0.134	0.060	0.056-0.322	< 0.0001
Blood cockle	0.043	0.045	0.006-0.329	0.002
Asian seabass	3.958	5.020	0.329-47.548	0.278
Constant	2.400	1.596	0.652-8.835	0.188
V. alginolyticus				
Shrimp	1.0	-	-	-
Oyster\(^1\)	1.114	0.418	0.534-2.322	0.774
Blood cockle	0.075	0.087	0.008-0.715	0.024
Asian seabass	0.050	0.042	0.009-0.260	< 0.0001
Constant	0.491	0.131	0.292-0.827	0.007

Notes.

\(^1\) referent category, based on shrimp’s popularity in Thai cuisine and largest sample size among the four seafood commodities. OR, Odds ratio. S.E., standard error. C.I., confidence interval.
Table 5 *(on next page)*

Final multivariable logistic regression model for risk factors associated with *Salmonella* contamination of seafood products sold in Bangkok, Thailand.

AIC = 368.67

Notes. 1 reference group. OR, Odds ratio. S.E., standard error. C.I., confidence interval. AIC, Akaike information criterion.
TABLE 5 Final multivariable logistic regression model for risk factors associated with *Salmonella* contamination of seafood products sold in Bangkok, Thailand.

Parameters	OR	S.E.	95% C.I.	*P*-value
Type of seafood				
Shrimp\(^1\)	1.0	-	-	-
Oyster	0.48	0.089	0.331-0.689	< 0.0001
Blood cockle	0.19	0.045	0.119-0.303	< 0.0001
Asian seabass	1.06	0.638	0.328-3.450	0.919
Sampling district				
Din Daeng\(^1\)	1.0	-	-	-
Huay Kwang	1.66	0.232	1.259-2.182	< 0.0001
Samphanthawong	0.43	0.046	0.351-0.532	< 0.0001
Dusit	1.42	0.120	1.205-1.676	< 0.0001
Retail display condition				
No ice\(^1\)	1.0	-	-	-
On ice	1.71	0.201	1.360-2.154	< 0.0001
Regional source of seafood				
Central\(^1\)	1.0	-	-	-
Eastern	3.46	0.670	2.325-5.141	< 0.0001
Southern	0.89	0.061	0.780-1.020	0.094
Unidentified	0.81	0.135	0.581-1.120	0.199
Presence of *E. coli*				
No\(^1\)	1.0	-	-	-
Yes	4.02	1.223	2.213-7.295	< 0.0001
Presence of *V. alginolyticus*				
No\(^1\)	1.0	-	-	-
Yes	1.37	0.212	1.008-1.851	0.044
Presence of *V. vulnificus*				
No\(^1\)	1.0	-	-	-
Yes	0.61	0.130	0.405-0.930	0.021
Constant	0.19	0.051	0.109-0.318	< 0.0001

3 AIC = 368.67

4 Notes.

5 \(^1\)reference group. OR, Odds ratio. S.E., standard error. C.I., confidence interval. AIC, Akaike information criterion.
The prevalence of *V. parahaemolyticus* (VP), *V. vulnificus* (VV), *V. alginolyticus* (VA), *V. cholerae* (VC), and *Salmonella* spp. in shrimp (*n* = 85), oyster (*n* = 82), blood cockle (*n* = 84), and
Area under the ROC curve and cutoff value for concentration of *E. coli* were used to maximally predict the contamination of *Salmonella* in retail seafood commodities (*n* = 335).