The Coxeter element and the branching law for the finite subgroups of $SU(2)$

BERTRAM KOSTANT*

0. Introduction

0.1. Let Γ be a finite subgroup of $SU(2)$. The question we will deal with in this paper is how an arbitrary (unitary) irreducible representation of $SU(2)$ decomposes under the action of Γ. The theory of McKay assigns to Γ a complex simple Lie algebra g of type $A-D-E$. The assignment is such that if $\tilde{\Gamma}$ is the unitary dual of Γ we may parameterize $\tilde{\Gamma}$ by the nodes (or vertices) of the extended Coxeter-Dynkin diagram of g.

Let $\ell = rank g$ and let $I = \{1, \ldots, \ell\}$. Let $I_{ext} = I \cup \{0\}$. The nodes may be identified with a set of simple roots of the affine Kac-Moody Lie algebra associated to g and are indexed by I_{ext}. We can then write $\Gamma = \{\gamma_i\}, i \in I_{ext}$. Let $\Pi = \{\alpha_i\}, i \in I$, be the set of simple roots of g itself. One has γ_0 is the trivial 1 dimensional representation of Γ and, for $i \in I$,

$$\text{dim } \gamma_i = d_i$$

(0.1)

where

$$\psi = \sum_{i \in I} d_i \alpha_i$$

(0.2)

is the highest root. For proofs and details about the McKay correspondence see e.g. [G-S,V], [M] and [St].

* Research supported in part by NSF grant DMS-0209473 and in part by the KG&G Foundation.
0.2. The unitary dual of $SU(2)$ is indexed by the set \mathbb{Z}_+ of nonnegative integers and will be written as $\{\pi_n\}, n \in \mathbb{Z}_+$ where

$$\dim \pi_n = n + 1$$ (0.3)

Our problem is the determination of $m_{n,i}$ where $n \in \mathbb{Z}_+, i \in I_{\text{ext}}$ and

$$m_{n,i} = \text{multiplicity of } \gamma_i \text{ in } \pi_n|\Gamma$$

It is resolved with the determination of the formal power series

$$m(t)_i = \sum_{n=0}^{\infty} m_{n,i} t^n$$ (0.4)

To do this one readily notes that it suffices to consider only the case where $\Gamma = F^*$ and F^* is the pullback to $SU(2)$ of a finite subgroup F of $SO(3)$. This eliminates only the case where Γ is a cyclic group of odd order and \mathfrak{g} is of type A_ℓ where ℓ is even. For the remaining cases the Coxeter number h of \mathfrak{g} is even and we will put

$$g = h/2$$ (0.5)

Also for the remaining cases there is a special index $i_* \in I$. If \mathfrak{g} is of type D or E then α_{i_*} is the branch point of the Coxeter-Dynkin diagram of \mathfrak{g}. If \mathfrak{g} is of type A_ℓ then α_{i_*} is the midpoint of the diagram (recalling that ℓ is odd).

If $i = 0$ the determination of $m(t)_0$ is classical and is known from the theory of Kleinian singularities. In fact there exists positive integers $a < b$ such that

$$m(t)_0 = \frac{1 + t^h}{(1 - t^a)(1 - t^b)}$$ (0.6)

The numbers a and b in Lie theoretic terms is given in

Theorem 0.1. One has $a = 2d_{i_*}$ and b is given by the condition that

$$ab = 2|F^*|$$

$$= 4|F|$$
It remains then to determine $m(t)_i$ for $i \in I$.

Proposition 0.2. If $i \in I$ there exists a polynomial $z(t)_i$ of degree less than h such that

$$m(t)_i = \frac{z(t)_i}{(1 - t^a)(1 - t^b)} \quad (0.7)$$

The problem then is to determine the polynomial $z(t)_i$. This problem was solved in [K] using the orbits of a Coxeter element σ on a set of roots Δ for \mathfrak{g}. In the present paper we will put the main result of [K] in a simplified form. See Theorem 1.13 in the present paper. Also the present paper makes explicit some results that are only implicit in [K]. For example introducing $\tilde{\Pi}$ (see (1.10)) and making the assertions in Remark 10 and Theorems 8, 9, 11 and 12.

The set Π generates a system, Δ_+, of positive roots. The highest root $\psi \in \Delta$ defines a certain subset $\Phi \subset \Delta_+$ of cardinality $2h - 3$. Because of its connection with a Heisenberg subalgebra of \mathfrak{g} this subset is referred to as the Heisenberg subsystem of Δ_+. The new formulation explicitly shows how the polynomials $z(t)_i$ arise from the intersection

$$(\text{orbits of the Coxeter element } \sigma) \cap (\text{the Heisenberg subsystem } \Phi) \quad (0.8)$$

The polynomials $z(t)_i$ are listed in [K]. The special case where \mathfrak{g} is of type E_8 is also given in the present paper (see Example 1.7.). Unrelated to the Coxeter element the polynomials $z(t)_i$ are also determined in Springer, [Sp]. They also appear in another context in Lusztig, [L1] and [L2]. Recently, in a beautiful result, Rossmann, [R], relates the character of γ_i to the polynomial $z(t)_i$.

1. **The main result - Theorem 1.13.**

1.1. Proofs of the main results stated here are in [K].
Let F be a finite subgroup of $SO(3)$ and let
\begin{equation}
F^* \subset SU(2)
\end{equation}
be the pullback of the double covering
\[SU(2) \rightarrow SO(3) \]
The unitary dual $\widehat{SU(2)}$ of $SU(2)$ is represented by the set $\{\pi_n\}, n \in \mathbb{Z}_+$, where if $S(\mathbb{C}^2)$ is the symmetric algebra then
\[\pi_n : SU(2) \rightarrow S^n(\mathbb{C}^2) \]
is the $n+1$ dimensional representation defined by the natural action of $SU(2)$ on \mathbb{C}^2.

We are ultimately interested in determining how the restriction $\pi_n|F^*$ decomposes into irreducible representations of the finite subgroup F^*, for any n, and relating this determination to the structure of the simple Lie algebra corresponding to F^* by the McKay correspondence. We now recall this correspondence.

Let \mathfrak{g} be a complex simple Lie algebra and let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. Let $\ell = rank \mathfrak{g}$, and if \mathfrak{h}' is the dual space to \mathfrak{h}, let $\Delta \subset \mathfrak{h}'$ be the set of roots for the pair $(\mathfrak{g}, \mathfrak{h})$. Let W, operating in \mathfrak{h}', be the Weyl group. Let Π be the set of simple positive roots with respect to a choice, Δ_+, of positive roots. If $I = \{1, \ldots, \ell\}$ we will write $\Pi = \{\alpha_i\}, i \in I$. We may regard Π as the vertices (or nodes) of the Coxeter-Dynkin diagram associated to \mathfrak{g}. The extended Coxeter-Dynkin diagram has an additional node α_0.

The McKay correspondence assigns to F^* a complex simple Lie algebra $\mathfrak{g} = \mu(F^*)$ of type $A - D - E$. The assignment has a number of properties: (1), the unitary dual $\widehat{F^*}$ may be parameterized by indices of the nodes of the extended Coxeter-Dynkin diagram of \mathfrak{g}. In particular $card \, \widehat{F^*} = \ell + 1$ and we can write $\widehat{F^*} = \{\gamma_i\}, i \in I_{ext} = I \cup \{0\}$. Next (2), γ_0 is the trivial 1-dimensional representation, and if $i \in I$, then
\[dim \gamma_i = d_i \]
where
\[\psi = \sum_{i=1}^{\ell} d_i \alpha_i \]
is the highest root in \(\Delta \). In addition (3), if \(\gamma \) is the two-dimensional representation defined by (1.1) and \(A \) is the \((\ell + 1) \times (\ell + 1)\) matrix defined so that
\[\gamma_i \otimes \gamma = \sum_{j=0}^{\ell} A_{ij} \gamma_j \] (1.2)
then \(C \) is the Cartan matrix of the extended Coxeter-Dynkin of \(g \) where
\[C_{ij} = 2\delta_{ij} - A_{ij} \]

1.2. Returning to our main problem, for \(i \in I_{ext} \) and \(n \in \mathbb{Z}^+ \), let
\[m_{n,i} = \text{multiplicity of } \gamma_i \text{ in } \pi_n|F^* \]
and introduce the generating formal power series
\[m(t)_i = \sum_{n=0}^{\infty} m_{n,i} t^n \]
If \(i = 0 \), the determination of \(m(t)_i \) is classical and is known from the theory of Kleinian singularities. That is, in this case
\[m_{n,0} = \text{dim} (S^n(\mathbb{C}))|F^* \]
In fact let \(h \) be the Coxeter number of \(g \) so that
\[\ell(h + 1) = \text{dim} \ g \]
Then there exists positive integers \(a < b \) such that
\[m(t)_0 = \frac{1 + t^h}{(1 - t^a)(1 - t^b)} \] (1.3)
To define the numbers a and b in Lie theoretic terms one notes that $\mu(F^*)$ is of type D, E or A_ℓ where ℓ is odd. In any of these case there is a special index $i_* \in I$. If $\mu(F^*)$ is of type D or E, then α_{i_*} is the branch point of the Coxeter-Dynkin diagram of g. If $\mu(F^*)$ is of type A_ℓ, then α_{i_*} is the midpoint of the diagram (recall that ℓ is odd in this case).

Theorem 1.1. One has $a = 2d_{i_*}$ and b is given by the condition that

$$ab = 2|F^*|$$

$$= 4|F|$$

(1.4)

See Lemma 5.14 in [K]. The cases under consideration are characterized by the condition that h is even. We put $g = h/2$. The parity of g will play a later role.

Remark 1.2. One proves (see Lemma 5.7 in [K]) that b may also be given by

$$b = h + 2 - a$$

(1.5)

so that b, as well as a, is even.

The following table lists the various cases under consideration. In the table Δ_n is the dihedral group of order $2n$.

F	g	a	b	h	g
\mathbb{Z}_n	A_{2n-1}	2	2n	2n	n
Δ_n	D_{n+2}	4	2n	2$n+2$	$n+1$
Alt_4	E_6	6	8	12	6
Sym_4	E_7	8	12	18	9
Alt_5	E_8	12	20	30	15

Proposition 1.3. There exists a unique partition

$$\Pi = \Pi_1 \cup \Pi_2$$

(1.6)
such that if $k = 1, 2$ and $\alpha_i, \alpha_j, \in \Pi_k$ where $i \neq j$ then α_i is orthogonal to α_j. Furthermore all the roots in Π_2 are orthogonal to the highest root ψ, or equivalently the root α_0 is orthogonal to all the roots in Π_2.

One has the disjoint union $I = I_1 \cup I_2$ where, if $k \in \{1, 2\}$, $\Pi_k = \{\alpha_i \mid i \in I_k\}$.

Remark 1.4. It is immediate from (1.2) that if $A_{ij} \neq 0$ and $i \in I_k$ then j is in the complement of I_k in I. It then follows that γ_i descends to a representation of F (i.e., $\gamma_i(-1) = 1$) if and only if $k = 2$. In particular

$$m_{n,i} = 0 \text{ if } n \text{ and } k \text{ have opposite parities where } \alpha_i \in \Pi_k. \quad (1.7)$$

If $i \in I$ let $s_i \in W$ be the reflection defined by α_i so that s_i commutes with s_j if $i, j \in I_k$, $k \in \{1, 2\}$. Put $\tau_k = \prod_{i \in I_k} s_i$. Then

$$\tau_1^2 = \tau_2^2 = \text{identity}$$

One defines a Coxeter element $\sigma \in W$ by putting

$$\sigma = \tau_2 \tau_1 \quad (1.8)$$

Remark 1.5. Every element in W is contained in a dihedral subgroup of W. Since, as one knows, the centralizer of a Coxeter element is the cyclic group (necessarily of order h) generated by the Coxeter element, a dihedral group containing the Coxeter element is unique. It is clear that τ_1 and τ_2 are in the dihedral group containing σ and, in fact, are in the complementary coset of the cyclic group generated by σ.

As a extension of (1.3) one knows (see (5.7.2) in [K]) that for any $i \in I$ there exists a polynomial $z(t)_i$ of degree less than h such that

$$m(t)_i = \frac{z(t)_i}{(1 - t^a)(1 - t^b)} \quad (1.9)$$
so that \(m(t)_i \) is known as soon as one knows the polynomial \(z(t)_i \).

Remark 1.6. Note that by (1.6) and evenness of \(a \) and \(b \) (Remark 1.2) one must have that the only powers of \(t \) which have a nonzero coefficient are odd if \(i \in I_1 \) and even if \(i \in I_2 \).

Example 1.7. Consider the case where \(F \) is the icosahedral group so that \(\mu(F^*) = E_8 \). In the listing of \(z(t)_i \) below we will replace the arbitrary index \(i \) by the more informative \(\{ d_i \} \). Since there exists in certain cases two distinct \(i,j \in I \) such that \(\dim \gamma_i = \dim \gamma_j \) we will write \(\{ d_j \} \) for \(j \) when the “distance” of \(\alpha_j \) to \(\alpha_0 \) is greater than the “distance” of \(\alpha_i \) to \(\alpha_0 \). Note that \(d_i = 6 \).

\[
\begin{align*}
 z(t)_{(2)} &= t + t^{11} + t^{19} + t^{29} \\
 z(t)_{(3)} &= t^2 + t^{10} + t^{12} + t^{18} + t^{20} + t^{28} \\
 z(t)_{(4)} &= t^3 + t^9 + t^{11} + t^{13} + t^{17} + t^{19} + t^{21} + t^{27} \\
 z(t)_{(5)} &= t^4 + t^8 + t^{10} + t^{12} + t^{14} + t^{16} + t^{18} + t^{20} + t^{22} + t^{26} \\
 z(t)_{(6)} &= t^5 + t^7 + t^9 + t^{11} + t^{13} + 2t^{15} + t^{17} + t^{19} + t^{21} + t^{23} + t^{25} \\
 z(t)_{(4)} &= t^6 + t^8 + t^{12} + t^{14} + t^{16} + t^{18} + t^{22} + t^{24} \\
 z(t)_{(2)} &= t^7 + t^{13} + t^{17} + t^{23} \\
 z(t)_{(3)} &= t^6 + t^{10} + t^{14} + t^{16} + t^{20} + t^{24}
\end{align*}
\]

We now modify II by defining

\[
 \tilde{\Pi} = \{ \beta_i \mid i \in I \} \quad \text{(1.10)}
\]

where \(\beta_i = \alpha_i \) if \(i \in I_1 \) and \(\beta_i = -\alpha_i \) if \(i \in I_2 \). Let \(Z \subset W \) be the cyclic group generated by the Coxeter element \(\sigma \). Recall \((h + 1)\ell \) so that

\[
 \text{card } \Delta = h \ell \quad \text{(1.11)}
\]
We have shown that \(\sigma \) has \(\ell \) orbits in \(\Delta \), each with \(h \)-elements, and that each orbit contains a unique element of \(\tilde{\Pi} \). That is, one has

Theorem 1.8. For any \(i \in I \) the \(\sigma \)-orbit \(Z \cdot \beta_i \) has \(h \) elements and one has the disjoint union

\[
\Delta = \bigsqcup_{i=1}^{\ell} Z \cdot \beta_i
\]

(1.12)

This result is readily proved using (6.9.2) in [K].
For any \(i \in I \) let \((Z \cdot \beta_i)_+ = \Delta_+ \cap Z \cdot \beta_i\). One has (see (0.5))

\[
\Delta_+ = g \ell
\]

(1.13)

Theorem 1.9. For any \(i \in I \) one has \(\text{card} (Z \cdot \beta_i)_+ = g \) and the disjoint union

\[
\Delta_+ = \bigsqcup_{i \in I} (Z \cdot \beta_i)_+
\]

(1.14)

It follows from (5.6.2) in [K] that (see (0.5))

\[
\alpha_{i_*} \in \Pi_2 \text{ if } g \text{ is even and } \alpha_{i_*} \in \Pi_1 \text{ if } g \text{ is odd.}
\]

(1.15)

Let \(\kappa \) be the long element of the Weyl group. One has (see Lemma 4.9 in [K]) the following result of Steinberg:

\[
\sigma^g = \kappa
\]

(1.16)

so that \(\kappa \in Z \).

Remark 1.10. Recall that \(\psi \) is the highest root. It is a consequence of (5.6.2) in [K] that one has \(\psi \) and \(\beta_{i_*} \) are in the same \(\sigma \) orbit. In fact if \(g \) is odd then

\[
\sigma^{\frac{g-1}{2}} (\psi) = \beta_{i_*}
\]

\[
= \alpha_{i_*}
\]

(1.17)
and if \(g \) is even then

\[
\sigma^\frac{g}{2}(\psi) = \beta_{i_*} \\
= -\alpha_{i_*}
\] \hspace{1cm} (1.18)

One easily has that \(\sigma^g \) commutes with \(\tau_1 \) and \(\tau_2 \) so that, for \(k \in \{1, 2\} \),

\[
\sigma^g(\Pi_k) = -(\Pi_k) \hspace{1cm} (1.19)
\]

Furthermore since \(\kappa(\psi) = -\psi \) one has that

\[
\sigma^g(\alpha_{i_*}) = -\alpha_{i_*} \hspace{1cm} (1.20)
\]

so that in any case

\[
\psi \text{ and } \alpha_{i_*} \text{ lie in the same } \sigma\text{-orbit} \hspace{1cm} (1.21)
\]

1.3. We come now to the main result—the determination of \(z(t)_i \) in terms of the orbit structure of \(\sigma \) on \(\Delta \). For any \(\varphi \in \Delta_+ \) let \(i_\varphi \in I \) be defined so that (by Theorem 1.9)

\[
\varphi \in (Z \cdot \beta_{i_\varphi})_+ \hspace{1cm} (1.22)
\]

But then there exists \(k_\varphi \in \{1, 2\} \) such that

\[
i_\varphi \in I_{k_\varphi} \hspace{1cm} (1.23)
\]

The following result follows from (6.9.2) in [K].

Theorem 1.11. Let \(\varphi \in \Delta_+ \). Then there exists a unique positive integer \(n(\varphi) \) where \(1 \leq n(\varphi) \leq h \) with the same parity as \(k_\varphi \) such that if \(k_\varphi = 1 \) then

\[
\sigma^{\frac{n(\varphi)-1}{2}}(\varphi) = \beta_{i_\varphi} \hspace{1cm} (1.24)
\]

If \(k_\varphi = 2 \) then

\[
\sigma^{\frac{n(\varphi)}{2}}(\varphi) = \beta_{i_\varphi} \hspace{1cm} (1.25)
\]
One also has (see Remark 6.10 in [K])

Theorem 1.12. For any $i \in I_1$ the map

$$(Z \cdot \beta_i)_+ \to \{0, 1, \ldots, g - 1\}, \quad \varphi \mapsto \frac{n(\varphi) - 1}{2} \quad (1.26)$$

is a bijection and for any $i \in I_2$ the map

$$(Z \cdot \beta_i)_+ \to \{1, \ldots, g\}, \quad \varphi \mapsto \frac{n(\varphi)}{2} \quad (1.27)$$

is a bijection.

Let (φ, φ') be the restriction to Δ of the W-invariant bilinear form on h' induced by the Killing form on g. Let $\Phi = \{\varphi \in \Delta \mid (\psi, \varphi) > 0\}$. One easily has that $\Phi \subset \Delta_+$. Obviously $\psi \in \Phi$. One has

$$\text{card } \Phi = 2h - 3 \quad (1.28)$$

Because of its connection with a Heisenberg subalgebra of g we refer to Φ as the Heisenberg subsystem of Δ_+. For $i \in I$ let $\Phi^i = \Phi \cap (Z \cdot \beta_i)_+$. Our main result is

Theorem 1.13. Let $i \in I - \{i_*\}$. Then

$$z(t)_i = \sum_{\varphi \in \Phi^i} t^{n(\varphi)} \quad (1.29)$$

Furthermore

$$\text{card } \Phi^i = 2d_i \quad (1.30)$$

In addition all the coefficients of $z(t)_i$ are either 1 or 0 so that

$$z(1)_i = 2d_i \quad (1.31)$$

For $i = i_*$ one has

$$z(t)_{i_*} = 2t^g + \sum_{\varphi \in \Phi^{i_*}, \varphi \neq \psi} t^{n(\varphi)} \quad (1.32)$$
In addition the coefficient of t^g is 2 and all the other coefficients of $z(t)_{i_*}$ are either 0 or 1. One also has
\[
 z(1)_{i_*} = 2 d_{i_*}
\]
\[
 = a
\]
(1.33)

Finally
\[
 z(t)_{i_*} = t^{g-a+2} + t^{g-a+4} + \ldots + t^{g-2} + 2 t^g + t^{g+2} + \ldots + t^{g+a-4} + t^{g+a-2} \tag{1.34}
\]

Theorem 1.13 combines Theorem 6.6 and Lemma 6.14 in [K]. We note also that the expression (1.32) for $z(t)_{i_*}$ in Theorem 1.13 follows from the proof of Theorem 6.6 in [K] (see especially (5.8.1) in [K]).

References

[G-S,V] Construction géométrique de la correspondance de McKay. Ann. Sci. École Norm. Sup. 16, n°3 (1983), 410-449.

[K] B. Kostant, The McKay correspondence, the Coxeter element and representation theory. In Élie Cartan et les mathématiques d’aujourd’hui (Lyon 1984). Astérisque, hors série, (1985), 209-255.

[L1] G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Trans. AMS 277(1983), 153-215.

[L2] G. Lusztig, Subregular nilpotent elements and bases in K-theory. Canad. J. Math., 51 (6) (1999), 1194-1225.

[M] J. McKay, Graphs, singularities and finite groups. Proc. Symp. Pure math., 37 (1980), 183-186.

[R] W. Rossmann, McKay’s correspondence and characters of finite subgroups of SU(2), Noncommutative Harmonic Analysis, in honor of Jacques Carmona, Prog.in Math. 220(2004), Birkhäuser, 441-458.
[Sp] T. Springer, Poincaré series of binary polyhedral groups and McKay’s correspondence. *Math. Ann.* **278**(1985), 587-598.

[St] Finite subgroups of SU₂, affine Dynkin diagrams and affine Coxeter elements.

 Pac. J. Math. **118**(1985), 587-598, Preprint 1982.

Bertram Kostant
Dept. of Math.
MIT
Cambridge, MA 02139

E-mail kostant@math.mit.edu