Eighteen coral genomes reveal the evolutionary origin of Acropora strategies to accommodate environmental changes

Chuya Shinzato1\#, Konstantin Khalturin2, Jun Inoue1,2, Yuna Zayasu3, Miyuki Kanda3, Mayumi Kawamitsu3, Yuki Yoshioka1,4, Hiroshi Yamashita3, Go Suzuki3 and Noriyuki Satoh2

1 Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
2 Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
3 DNA Sequence Section (SQC), Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
4 Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
5 Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Okinawa 907-0451, Japan.

\#Corresponding author. Phone: +81-4-7136-6212; Fax: +81-4-7136-6213

E-mail: c.shinzato@aori.u-tokyo.ac.jp
Abstract

The genus *Acropora* comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of *Acropora* are unknown. Here we sequenced complete genomes of fifteen *Acropora* species and three other acroporid taxa belonging to the genera *Montipora* and *Astreopora*, to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all eighteen species. Molecular dating indicates that the *Acropora* ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene, and that diversification of *Acropora* may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in *Acropora*. Enzymes that cleave dimethlysulfoniopropionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the *Acropora* ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in *Acropora* are unclear, *Acropora* may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible anti-microbial peptides and symbiosis-related genes are under positive selection in *Acropora*, perhaps enabling adaptation to diverse environments. Our results suggest unique *Acropora* adaptations to ancient, warm marine environments, and provide insights into its capacity to adjust to rising seawater temperatures. (247 words)
Introduction

Coral reefs support the most diverse marine ecosystems on Earth (Wilkinson 2008). Coral reef structure depends upon calcium carbonate deposition by anthozoan cnidarians known as scleractinian corals. Corals form obligate endosymbioses with photosynthetic dinoflagellates of the family Symbiodiniaceae, which supply the vast majority of their photosynthetic products to the host corals (Yellowlees, et al. 2008). However, corals face a range of anthropogenic challenges, including ocean acidification and increasing seawater temperatures (Hoegh-Guldberg, et al. 2007). Tropical storms, predation by crown-of-thorns starfish, and coral bleaching, a breakdown of the mutualism between corals and their symbiotic dinoflagellates caused by high ocean temperatures, are major causes of coral reef decline (De'ath, et al. 2012). Bleaching has been observed around the world with increasing frequency (Hughes, et al. 2017; Nakamura 2017). Loss of coral reefs also destroys the habitats of diverse marine species, making extensive loss of reef habitats one of the most pressing environmental issues of our time.

The Genus *Acropora* (Family Acroporidae) is a keystone reef taxon globally, distributed from the Red Sea through the Indo-Pacific Ocean to the Caribbean. It is also the most diverse and abundant taxon, with more than 100 described species (Wallace 1999). The high growth rate of *Acropora* corals contributes significantly to reef growth, island formation, coastal protection, and support for fisheries (Shinn 1966; Bruckner 2002). The complex, three-dimensional structures of *Acropora* corals provide habitat and refuge for more than a million species of marine organisms (Hinrichsen 1997; Knowlton, et al. 2010). *Acropora* species are highly susceptible to coral bleaching induced by increasing sea water temperatures (Marshall and Baird 2000; Loya, et al. 2001; Hughes, et al. 2018); hence, they are expected to decline in the near future (Alvarez-Filip, et al. 2013). Due to their bleaching susceptibility, more than 70% of acroporid species are listed as near threatened or threatened in the International Union for Conservation of Nature Red List (Carpenter, et al. 2008).

The evolutionary history of *Acropora* is complex, with gaps in molecular data and fossil records. Although a molecular phylogenetic analysis using mitochondrial genes suggested that modern diversification of *Acropora* from a single Pliocene ancestor probably occurred after the Miocene, around 2 million years ago
(mya) (Fukami, et al. 2000), recent molecular phylogenetic analysis using nuclear and mitochondrial genes suggested that divergence of *Acropora* started around 34 mya (Richards, et al. 2013). Despite its bleaching susceptibility, the first appearances of *Acropora* in the fossil record are from Somalia (Carbone, et al. 1993) and Austria (Baron-Szabo 2006) during the Paleocene (66 mya), a warmer period than the present, in which there was no sea ice. An *Acropora*-dominated fossil assemblage is first seen in the Oligocene of Greece (Schuster 2000). It has been reported that 12 extant species were already present in the Indo-Pacific in the Early Miocene, suggesting that speciation and diversification of *Acropora* occurred throughout the Cenozoic, in different world regions, including the Indo-Pacific (Santodomingo, et al. 2015). In addition to *Acropora* fossil records from the Paleogene period (Paleocene, Eocene, and Oligocene), the presence of *Acropora* corals in seasonal warm water environments (the Southern Red Sea, Persian Gulf) as well as locations with large daily thermal fluctuations (reef pools in Ofu, Samoa) also suggest that they have the potential to cope with elevated ocean temperatures (Barshis, et al. 2013; Coles and Riegl 2013). The Intergovernmental Panel on Climate Change intermediate RCP 6.0 scenarios predicts that the global mean temperature will rise by average of 2.2°C by 2100 AD (IPCC 2013). How did *Acropora* corals survive under past warm ocean conditions and how will they cope with climate changes occurring today?

Because of the ecological significance of *Acropora*, the complete genome of *Acropora digitifera* was the first coral genome sequenced (Shinzato, et al. 2011), and additional coral genomic data are becoming available (Prada, et al. 2016; Voolstra, et al. 2017; Cunning, et al. 2018; Ying, et al. 2018; Helmkampf, et al. 2019; Shumaker, et al. 2019; Ying, et al. 2019). In order to identify genomic novelties that enabled *Acropora* to disperse widely and thrive, and to adapt to warmer environments, we sequenced genomes of 15 *Acropora* species (*A. acuminata*, *A. awi*, *A. cytherea*, *A. digitifera*, *A. echinata*, *A. florida*, *A. gemmifera*, *A. hyacinthus*, *A. intermedia*, *A. microphthalmus*, *A. muricata*, *A. nasta*, *A. selago*, *A. tenuis*, and *A. yongei*) (Fig. 1). We further sequenced genomes of confamilial taxa, *Montipora cactus*, *M. efflorescens*, and *Astreopora myriophthalma*. *Montipora* is another speciose genus (Fig. 1) (Veron 2000), and *Astreopora* represents the basal clade of the Acroporidae, based on molecular data (Fukami, et al. 2000). Together with available coral and anthozoan
cnidarian genomic data, we examine genomic novelties that could shed light on the evolutionary success of *Acropora*. Understanding such genetic mechanisms may facilitate predictions about whether and how they can survive current global warming.

Results and Discussion

Whole genome assembly, and gene predictions for acroporid corals

For the 15 *Acropora* species, we obtained draft genome assemblies of 384 to 447 Mbp with N50 sizes from 575 kbp to 3 Mbp (Table 1). These represent significant improvements over the first version of the *A. digitifera* genome assembly (N50, 484 kbp) (Shinzato, et al. 2011), and are of comparable or better quality than other coral genomes reported in the NCBI Reference Sequence (RefSeq) database, in terms of N50 sizes and numbers of scaffold sequences (Table 1). In contrast to the approximately 30,000 gene models in previous *Acropora* genome assemblies, without performing error correction or removing haplotype sequences (Mao, et al. 2018), we predicted approximately 22,000 genes from each *Acropora* species (Table 1).

Benchmarking Universal Single-Copy Orthologs (BUSCO) analyses (Simao, et al. 2015; Waterhouse, et al. 2017), which assess whether universal single-copy orthologous genes observed in more than 90% of metazoan species from the OrthoDB database of orthologs (www.orthodb.org, version 9) are recovered in a genome/transcriptome assembly, yielded completeness scores of genome assemblies and gene models of around 89% and 92% (average of Complete BUSCO %), respectively, in all of these *Acropora* species (Table 1). The *Montipora* and *Astreopora* genome assemblies were of comparable quality (Table 1). BUSCO completeness scores of both genome assemblies and gene models of the acroporid genomes were also comparable to those of other coral genomes available in NCBI RefSeq (Table 1), indicating that these draft genome assemblies and gene predictions are of reasonable quality.

Genome organization of acroporid genomes

Not surprisingly, proportions of various repetitive elements and repeat landscapes were similar
among the acroporid genomes (Supplementary Fig. S1). In *Acropora*, about 40-45% of the genomes consist of interspersed repeats (Supplementary Fig. S1). In *Montipora*, 50% of the genomes comprise repeats, possibly reflecting larger assembled sizes than those of *Acropora* (Supplementary Fig. S1, Table 1). The most abundant repeat types were LINE and SINE, among the annotated elements, but the majority of the repeats, comprising 28-30% of the genomes, seem to be novel and possibly acroporid- or anthozoan-specific (Supplementary Fig. S1). In order to compare genome organization of *Acropora* and other anthozoan genomes, *A. digitifera* scaffolds containing at least 100 orthologous groups (OG, see below) shared with other *Acropora* species, resulting in 38 scaffolds (125.7 Mbp, 30% of the genome), were used to evaluate synteny. Genome alignments to individual scleractinian genomes revealed high conservation of genome organization within *Acropora* (Supplementary Fig. S2). Commensurate with phylogenetic distances to *Acropora*, conservation of genome organization among acroporids (*Montipora* and *Astreopora*), another scleractinian (*Orbicella*) and a sea anemone (*Nematostella*) diminished progressively (Supplementary Fig. S2).

To determine whether large-scale (whole genome or chromosomal level) genome duplication occurred in the anthozoan lineage, we performed phylogenetic analyses of anthozoan genes (24 proteomes) using 300 randomly selected protein sequences from *A. digitifera*. We show 22 examples of phylogenetic analyses that were based on an alignment of ≥150 AAs in more than 80 gene sequences or ≥200 AAs in more than 40 gene sequences from 24 anthozoan proteomes (Supplementary Fig. S3). Almost all nodes supported by high bootstrap values (>80%) contained one sequence from each anthozoan species (Supplementary Fig. S3). In addition, there was no clear signature of large-scale duplications in genome alignment dotplots (Supplementary Fig. S2). Consequently, in contrast to a suggested whole genome duplication event in the common ancestor of *Acropora* (Mao and Satoh 2019), we detected no incontrovertible evidence of whole genome or large-scale duplication events in any anthozoan lineage, including scleractinians, the Acroporidae, or the Genus *Acropora*, in this study. Thus we did not take genome duplication events into account in subsequent analyses.

Common characteristics of gene repertoires of scleractinians and acroporids
In addition to the acroporid genomes, we used publicly available gene models of two anemones, *Nematostella vectensis* (Putnam, et al. 2007) and *Exaiptasia palida* (Baumgarten, et al. 2015), two corallimorpharians, *Amplexidiscus fenestrafer* and *Discosoma* spp. (Wang, et al. 2017), and two scleractinians, *Stylophora pistillata* (Voolstra, et al. 2017) and *O orbicella faveolata* (Prada, et al. 2016) for orthologous group (OG) clustering. Examination of OGs in anthozoan genomes allowed us to identify 21,697 OGs in all taxa, 20,765 in scleractinians, 19,737 in acroporids, and 18,692 in *Acropora*, respectively. Approximately 98% of *Acropora* genes and 93-97% of those of other acroporids (*Montipora* and *Astreopora*) belonged to OGs identified in other scleractinian species (Fig. 2A, Supplementary Table S1, S2), indicating high conservation of gene repertoires among scleractinians. Of the 21,697 OGs, 27 were exclusive to all scleractinians, but not observed in other groups, 48 to the Acroporidae, and 90 to *Acropora* (Supplementary Table S3, S4, S5). Among the 27 OGs exclusive to scleractinians, a known coral calcification gene, skeletal aspartic acid-rich protein 2 (Ramos-Silva, et al. 2013), was included (OG0002460, Supplementary Table S3), suggesting that this gene might be essential for coral skeleton formation. In addition, we also identified OGs that were not found in any corals (Supplementary Table S6, S7, S8), suggesting that these OGs were either lost in the coral clade, or that they arose after its divergence. In a previous study, we reported that cystathionine β-synthase, an essential enzyme for cysteine biosynthesis, was possibly lost from the *A. digitifera* genome (Shinzato, et al. 2011). Since *Acropora* species are sensitive to bleaching (Loya, et al. 2001), it is likely that *Acropora* depends upon symbiotic dinoflagellates to produce cysteine. In this study, we were unable to detect this gene in any acroporid genome, but we did identify it in other coral, corallimorpharian, and sea anemone genomes (OG0014971, Supplementary Table S7), supporting the notion that this enzyme was lost in the common ancestor of the Acroporidae and that differences in dependency on symbiotic algae could partially explain the high sensitivity of *Acropora* to bleaching.

Phylogenomic analysis revealed that the common ancestor of Acropora survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene

Phylogenomic analysis of these anthozoan genomes using 818 single-copy OGs yielded robust phylogenetic
relationships, with the major anthozoan cnidarian clades being supported by 100% bootstrap values (Fig. 2B). Almost all nodes among the 15 Acropora species in four distinct clades were also supported by 100% bootstrap values (Fig. 2B), indicating that these molecular phylogenetic relationships are well supported and are likely to reflect evolutionary relationships of the 15 Acropora species. Acropora corals exhibit diverse morphologies (arborescent, hispidose, corymbose, table, etc.) (Wallace 1999), and each clade contains species with different morphologies. For instance, hispidose branching corals, A. awi and A. echinata belong to clades II and IV, respectively (Fig. 1&2), indicating that the diverse colony forms of Acropora are the result of convergent evolution in each clade.

Molecular dating analysis using 2,126 single-copy OGs indicates that common ancestors of the Family Acroporidae emerged 199-147 mya, while those of the genus Acropora appeared later, between 119-52 mya (Fig. 3). In contrast to the suggested divergence timing of Acropora in a previous study using five genomes (<15 mya) without using scleractinian fossil records for dating calibration (Mao, et al. 2018), diversification of Acropora was thought to have occurred during the Eocene and Oligocene (around 25-50 mya), possibly accounting for the high species diversity of Acropora fossils known from the Miocene (5.3–23 mya) and the existence of 12 extant species in the Early Miocene (Fig. 3) (Santodomingo, et al. 2015). Although these molecular dating estimates could shift as additional fossils are discovered, our data suggest that the Acropora common ancestor originated and survived in warm environments during the mid-late Cretaceous and the Paleocene–Eocene Thermal Maximum (PETM, 55.8 mya), when global temperatures rose 5-8°C in 20,000 years (McInerney and Wing 2011), until the Early Eocene Climatic Optimum (EECO, 51-53 mya) when they reached a long-term maximum (Zachos, et al. 2001; Zachos, et al. 2008). Then a 17-myra cooling trend occurred until the beginning of the Oligocene (33.9 mya), which may have facilitated diversification of Acropora.

Gene expansions unique to Acropora include possible coral stress response genes

We detected 48 and 90 OGs that are restricted to the Acroporidae and Acropora, but not observed in the two other scleractinians, two corallimorpharians, or two anemones, respectively (Supplementary Table S4, S5). Of the 90 OGs observed exclusively in Acropora, four genes are involved in coral calcification (galaxins, aspartic
and glutamic acid-rich proteins, uncharacterized skeletal organic matrix protein 6) (Ramos-Silva, et al. 2013; Takeuchi, et al. 2016), implying independent evolutionary mechanisms of calcification in Acropora, in addition to shared mechanisms in scleractinians and possible involvement of these genes in the great diversity of morphologies and high levels of calcification rates in Acropora.

Gene duplication is a major driving force of genome evolution and facilitates acquisition of novel gene functions (Ohno 1970). In contrast to the lack of expanded or contracted genes in the common ancestor of scleractinians (Fig. 3), 28 OGs were predicted to have expanded in the common ancestor of Acropora, which is the largest number of expanded OGs in the entire scleractinian lineage (Fig. 3, Supplementary Table S9). These genes may contribute to adaptations to past warm environments, wide distributions, and ecological success of Acropora corals. These include genes possibly restricted to corals or cnidarians, Small Cysteine-Rich Peptides (SCRiPs) (OG0000795, only observed in Acropora and Montipora) (Sunagawa, et al. 2009) and a novel coral caspase type, Caspase-X (OG0000692, Supplementary Table S3) (Moya, et al. 2016). Phylogenetic analyses of SCRiPs and Caspase-X genes demonstrated that expansions originated by tandem duplication in Acropora genomes (Supplementary Fig. S4). Gene expression analysis showed that most of these genes were more highly expressed in adults than in embryos (Supplementary Fig. S4), suggesting that they function in adult corals. Phylogenetic analysis showed that the tandemly duplicated SCRiPs did not cluster together with reported SCRiPs in UniProt, suggesting that these belong to a novel class (Supplementary Fig. S4A). Some SCRiP genes were down-regulated and are highly responsive to thermal-stress (Sunagawa, et al. 2009) and are thought to be potent neurotoxins (Jouiaei, et al. 2015). It has been proposed that suppression of a caspase-mediated apoptotic cascade in host corals, induced by endogenous production of reactive oxygen species (ROS) from symbiotic algae, is important in thermal stress responses (Kvitt, et al. 2011; Tchernov, et al. 2011). Caspase-X genes possess both inactive and active caspase domains, probably interacting and controlling caspase activity (Moya, et al. 2016), as in cooperative and hierarchical binding of c-FLIP and caspase-8, in promoting or inhibiting apoptotic cell death (Hughes, et al. 2016), and may function in thermal stress responses of Acropora. Although detailed functions of Acropora-specific expanded SCRiPs and Caspase-X genes under thermal stress remain to be revealed, these genes may enable Acropora corals to cope with thermal stress and to disperse widely and
thrive globally.

DMSP lyases, which promote cloud formation and which may have been acquired by horizontal gene transfer from algal symbionts, are the most duplicated genes in the Acropora ancestor

Among the 28 expanded OGs in the *Acropora* ancestor, the most diversified (OG0000129) is similar to DMSP lyase of a coccolithophore, *Emiliania huxleyi* (Alcolombri, et al. 2015) (Fig. 3, 4, Supplementary Table S9, S10). This enzyme mediates cleavage of dimethlysulfoniopropionate (DMSP) into dimethyl sulfide (DMS) and acrylate. DMS is the principal form of sulfur that is released from oceans into the atmosphere; thus, it is a key component of the ocean sulfur cycle (Quinn and Bates 2011). DMS may be crucial for cloud formation, and may serve to reduce light levels and water temperatures in marine environments (Vallina and Simo 2007). Thus DMSP lyases in marine organisms participate in atmosphere-ocean feedback and may influence local climate regulation. Interestingly, concentrations of DMSP and DMS in corals are the highest reported among marine organisms, suggesting that corals are important sources of these two sulfur compounds (Broadbent, et al. 2002; Broadbent and Jones 2004).

Our analysis shows that DMSP lyase gene expansions occurred first in the common ancestor of *Acropora* and again after divergence of the basal clade (Supplementary Table S9, S10). Synteny analysis revealed that the second expansion occurred by tandem duplication (Fig. 4A). Relative expression levels of tandemly located genes in *A. digitifera* showed higher expression levels in gastrula and/or adult stages (Fig. 4A), corresponding to higher expression of a DMSP biosynthesis gene in larval stages of an *Acropora* coral (Raina, et al. 2013). Extant scleractinians comprise two major clades, “complex” and “robust”, based on molecular analyses (Romano and Palumbi 1996; Kitahara, et al. 2010). Although DMSP lyase could not be detected in genomes of “robust” corals, except for *Goniastrea aspera*, we did detect it in genomes of “complex” corals, including *Astreopora* and *Montipora*, and the two corallimorpharians (*Amplexidiscus* and *Discosoma*) (Fig. 4BC). We detected a single DMSP lyase locus in each scleractinian genome except for acroporids. Interestingly, ORTHOSCOPE analysis, for detecting orthologs, showed that among metazoans, DMSP lyases occur only in the Scleractinia and Corallimorpharia (Fig. 4B). Molecular phylogeny showed that
DMSP lyases from *Emiliania*, Symbiodiniaceae, Scleractinia and Corallimorpharia cluster together (Fig. 4B). Moreover, genes similar to *Acropora* DMSP lyase are only found in *Acropora*, *Emiliania*, and the Symbiodiniaceae, among eukaryotes in the NCBI NR database to date (BLASTP, 1e⁻⁵). These results suggest that anthozoan DMSP lyases may have been acquired by the common ancestor of scleractinians and corallimorpharians via horizontal gene transfer from symbiotic Symbiodiniaceae or *Emiliania* (Fig. 4C), and were later possibly lost in variety species of the “robust” clade (Fig. 4C). Then, expansions occurred in the common ancestor of *Acropora*. It has been suggested that DMSP participates in a wide-range of coral stress responses, including those to heat, sunlight, air exposure, and hyposalinity (Sunda, et al. 2002; Raina, et al. 2010; Deschaseaux, et al. 2014; Aguilar, et al. 2017). Higher DMSP concentrations were observed in *Acropora* than in other corals (Broadbent, et al. 2002). These species-specific phenomena may be supported by *Acropora*-specific gene expansions. Although the functions of expanded DMSP lyases in *Acropora* remain to be determined, *Acropora*-specific expansions suggest that warmer and shallower environments from the Cretaceous to the EECO may have enhanced gene duplication in the *Acropora* ancestor. Diversified functions of *Acropora* DMSP lyase may enable adaptation to stresses, such as intense heat, light, and salinity, probably by forming clouds to minimize ocean heating due to insolation.

Possible anti-microbial peptides and symbiosis genes are under positive selection in Acropora

In order to explore the genetic bases of *Acropora* diversification, we compared gene repertoires of *Acropora* corals. We identified 17 OGs for which amino acid sequences are identical among *Acropora* species (Supplementary Table S11), indicating that these serve fundamental functions in *Acropora*. Conserved genes included Homeobox, Forkhead, and Ras-related genes.

In contrast, fast-evolving genes (Ka/Ks >1) may be essential for *Acropora* adaptation to diverse or changing environments. Despite the highly conserved protein sequences of *Acropora* single-copy genes (Supplementary Fig. S5), manifesting Ka/Ks ratios below 1 (Supplementary Fig. S6), we identified 35 rapidly evolving candidate OGs (Supplementary Table S12). Among 14 OGs in which Ka/Ks ratios >1 were detected in more than three species combinations, 7 OGs were exclusive to scleractinians (Supplementary Table S3) or
Acropora (Supplementary Table S5). Interestingly, two candidate genes possibly involved in coral-alga symbiosis, prosaposin (OG0014095, Acropora restricted) and NHL domain-containing gene (OG0010986, scleractinian restricted), were included (Supplementary Table S12). These genes were exclusively up-regulated when planula larvae of Acropora tenuis were infected with native algal symbionts (Yoshioka et al., under review) and Ka/Ks ratios >1 were detected from all species combinations between Clade I and Clade II in prosaposin (Supplementary Table S12), suggesting possible diverse symbiotic mechanisms within the Acropora clade. Seven fast-evolving OGs with no similarity to proteins in the Swissprot/Pfam databases and shorter than 200 AA were predicted to be anti-microbial peptides (probability >0.95, iAMPpred), facilitating Acropora responses to diverse pathogens.

Conclusion

These comparative genomic analyses reveal genomic novelties that could have allowed Acropora ancestors to survive dynamic environmental changes during geological periods much warmer than the present. Acropora-specific gene duplications in probable stress responsive genes (Caspase-X and SCriPs) and DMSP lyases may also enable Acropora to cope with elevated ocean temperatures and to disperse and thrive around the world. Although further investigation will be needed, we identified candidate genes involved in Acropora diversification. Genetic mechanisms that enabled Acropora corals to survive past global warming periods may permit them to cope with current global warming. However, the speed of modern climate change may exceed their capacity to adapt, particularly when also confronting local anthropogenic stressors, such as coastal pollution and overexploitation. The present genomic resources, together with further molecular studies, will provide a powerful resource to understand how Acropora diversity originated and has been maintained.

Materials and Methods

Sampling and genomic DNA isolation from acroporid corals

Specimens of 14 Acropora species (Acropora acuminata, Acropora awi, Acropora cytherea, Acropora echinata, Acropora florida, Acropora gemmifera, Acropora hyacinthus, Acropora intermedia, Acropora microphthalmia,
Acropora muricata, Acropora nasta, Acropora selago, Acropora tenuis, and Acropora yongei) were collected in Sekisei Lagoon, Okinawa, Japan in May 2015, and were maintained in aquaria at the Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute, until spawning. As reported in Shinzato et al. (2011), each coral colony was separated into different buckets in order to avoid mixing gametes from different individuals, and buoyant egg-sperm bundles were collected to isolate sperm, which were used for isolation of high-quality genomic DNA for sequencing. DNA of A. digitifera was isolated from sperm from a colony collected at Onna Village, Okinawa, in June 2015. We collected eggs, blastulae, gastrulae, planula larvae, early polyps, and adult branches from A. tenuis and A. digitifera for RNA extraction. We also collected three acroporid corals (Astreopora myriophthalma, Montipora cactus, and Montipora efflorescens) in Sekisei Lagoon in June 2012 and May 2015. Gametes were collected during spawning and genomic DNA was isolated from sperm. Permits for coral collection were kindly provided by the Okinawa Prefectural Government for research use (Permits #23-47, 25-49, 25-67, 26-68, 27-73 and 27-12).

Genome assembly and repetitive element analysis

DNA from each species was isolated using the phenol-chloroform method and was fragmented into approximately 600-bp lengths. 200 ng of DNA were used for PCR-free shotgun library preparation. For mate-pair libraries, different sizes of DNA (approximately 3 kbp, 7 kbp, 10 kbp, and 15 kbp) were separated using SageELF (Sage Science). Nextera Mate Pair Library Prep Kits (Illumina) were used for library preparation, following manufacturer instructions. Each 250-bp paired-end library was sequenced using a HiSeq 2500 in Rapid mode (Illumina). Illumina adaptor sequences in raw sequencing data were removed using Trimmomatic (Bolger, et al. 2014), and cleaned sequencing data were assembled using Platanus genome assembler ver. 1.2.440 (Kajitani, et al. 2014). For A. digitifera, we used a PacBio for genome sequencing and data were assembled with FALCON_unzip (Chin, et al. 2016). Sequencing errors in assembled sequences were corrected with Arrows (SMRT Link ver. 4.0.0) using PacBio raw data. All raw genome sequencing data are available under BioProject Accession PRJDB8519. Assembled genomes were further improved by merging possible haploid sequences with HaploMerger2 (Huang, et al. 2017). Then possible errors in all genome assemblies were
corrected with Pilon version 1.22 (Walker, et al. 2014) using Illumina shotgun and 3-kbp mate-pair data. In the end we identified scaffold sequences with high or low coverage or those that may have originated from one of the two allelic copies of heterozygous regions, using Purge Haplotigs (Roach, et al. 2018), and excluded these from subsequent analyses. We assessed completeness of genome assembly with Benchmarking Universal Single-Copy Orthologs (BUSCO) ver. 3.0.2 (Simao, et al. 2015; Waterhouse, et al. 2017) and the Metazoan set (978 genes). Repetitive elements in the draft genomes of Acroporidaceae (Acropora, Montipora and Astreopora) were identified de novo with RepeatScout v.1.0.5 (Price, et al. 2005) and annotated with BLASTN and BLASTX searches against RepeatMasker.lib and RepeatPeps.lib bundled with RepeatMasker v.4.0.6 (Smit, et al. 1996-2010), as reported in Luo et al. (2015; 2018). For non-annotated or putative novel repeats, one additional class "Novel" was introduced. The expansion history of repetitive elements were calculated and visualized using perl scripts from RepeatMasker package (calcDivergenceFromAlign.pl and createRepeatLandscape.pl) as reported in Khalturin et al. (2019).

Gene prediction and annotation
We isolated RNA from eggs, blastulae, gastrulae, planula larvae, early polyps, and adult branches of A. tenuis and A. digitifera using RNeasy Mini Kits (Qiagen), and performed RNA-Seq using a HiSeq 2000 platform (Illumina). For gene prediction of Acropora genome assemblies, Augustus version 3.2.3 (Stanke, et al. 2006) was first trained using 2,000 high quality A. digitifera assembled transcriptome sequences (Shinzato, et al. 2011) selected by PASA (Haas, et al. 2003). Then the trained Augustus was used for gene prediction from repeat-masked genome assemblies produced by RepeatMasker (Smit, et al. 1996-2010) together with the A. tenuis and A. digitifera RNA-Seq data as gene structure hints. For Montipora and Astreopora, we used predicted protein sequences from A. digitifera and A. tenuis as hints. In order to remove gene models that sometimes originate from different haplotypes, each proteome was clustered using CDHIT (98% sequence identity) (Li and Godzik 2006), and proteins shorter than 30 amino acids were excluded from subsequent analyses. We also assessed completeness of repertoires of predicted genes (mRNA) using BUSCO with the “transcriptome” setting. All proteomes were BLASTed against the Uniprot/Swissprot (UniProt Consortium 2018) database and were
analyzed with InterProScan 5 (Jones, et al. 2014). Genome browsers for the eighteen acroporid genomes are available from the Marine Genomics Unit web site (https://marinegenomics.oist.jp/gallery).

Clustering of orthologous anthozoan genes

In addition to the acroporid genomes, we used publicly available gene models of two anemones, *Nematostella vectensis* (Putnam, et al. 2007) and *Exaiptasia palida* (Baumgarten, et al. 2015), two corallimorpharians, *Amplexidiscus fenestrafer* and *Discosoma* spp. (Wang, et al. 2017), and two scleractinians, *Stylophora pistillata* (Voolstra, et al. 2017) and *Orbicella faveolata* (Prada, et al. 2016). For the *S. pistillata*, *O. faveolata*, and *E. palida* genomes, we downloaded data from the NCBI RefSeq database. For *Acropora*, *Montipora*, and *Astreopora* gene models, we selected the longest transcript variant from each gene and used it for subsequent analyses. Then, using OrthoFinder version 2.1.2 (Emms and Kelly 2015), we performed clustering of orthologous groups (OG), the genes descended from a single gene in the last common ancestor of a group of species. CAFE (Computational Analysis of gene Family Evolution, version 4.1) (Han, et al. 2013) was used to analyze changes in OG family size in order to account for phylogenetic history. In addition, we prepared a special updated version of ORTHOSCOPE (Inoue and Satoh 2019) for gene tree and orthogroup estimation in publicly available metazoan genomes by incorporating acroporid genomic data (https://www.orthoscope.jp), from which nucleotide and translated amino acid sequences of acroporid gene models used in this study are available. For DMSP lyase analysis, we used *Montipora*, *Astreopora*, *Discosoma*, and *Emiliana* DMSP genes for BLASTP (1e⁻⁴) homologous gene search of eukaryote genomes in ORTHOSCOPE, and numbers of expanded genes in each node were predicted using NOTUNG (Chen, et al. 2000). We also searched DMSP lyase (TBLASTN, 1e⁻⁵) in genomes of *Fungia* spp., *Goniastrea aspera*, *Pocillopora damicornis*, *Porites lutea*, *Galaxea fascicularis* and *Pachyseris speciosa* deposited in Reefgenomics website (http://reefgenomics.org/) (Voolstra, et al. 2015; Liew, et al. 2016). For molecular phylogenetic analysis of DMSP lyase, we retrieved possible DMSP lyase sequences from available *G. aspera* and *G. fascicularis* gene models. Although no probable DMSP lyase locus was identified in the *P. lutea* genome and gene models in Reefgenomics, we included a probable DMSP lyase (accession: FX437344.1) identified from the *Porites australiensis*
transcriptome assembly (Shinzato, et al. 2014) for the molecular phylogenetic analysis. For *Acropora* sequences, we used single species from each of the four clades as follows; I: *A. tenuis*, II: *A. intermedia*, III: *A. digitifera*, IV: *A. selago*.

Comparison of anthozoan genome organization and assessment of genome duplication

In order to select highly conserved *Acropora* genome sequences, we selected scaffolds from the *A. digitifera* genome assembly that share more than 100 OGs in at least one scaffold of the other 14 *Acropora* genomes, resulting in 38 scaffolds (total 125.7 Mbp, 30% of the total assembly size). Conserved 38 *A. digitifera* scaffold sequences were aligned against each acroporid (*Acropora tenuis*, *Acropora intermedia*, *Acropora microphthalma*, *Acropora selago*, *Montipora cactus* and *Astreopora myriophthalma*), scleractinian (*Stylophora pistillata*) and sea anemone (*Exaiptasia palida*) genome using LAST (version 956) (Kielbasa, et al. 2011). For each genome alignment, we selected genome sequences showing the three highest alignment scores for each query sequence, and alignments with error probabilities >10\(^{-5}\) were discarded. Dot plots of the alignments sorted by alignment order and orientation of the query were drawn using last-dotplot (Kielbasa, et al. 2011). To analyze whether genome- or chromosome-level genome duplication events occurred in anthozoans, we used 300 randomly selected protein sequences of *A. digitifera* as queries in subsequent BLAST searches. Each selected *A. digitifera* protein was searched against each anthozoan proteome using BLASTP with an e-value cutoff of e\(^{-5}\). Then the top five hits were retrieved. Retrieved protein sequences were aligned using MAFFT (ver. 7.310. with –auto option) (Katoh and Standley 2013), and gaps in the aligned sequences were trimmed using TrimAL (Capella-Gutierrez, et al. 2009) with the –gappyout option. After that, poorly aligned sequences were removed (-resoverlap 0.75 -seqoverlap 80). Finally all gaps in alignments were removed using the –nogaps option. In order to restrict protein sequences to those with high-quality alignments and to increase the number of genes for subsequent phylogenetic analyses, we selected alignments containing >200 AAs and more than 40 sequences or >150 AA with more than 80 sequences. Then we performed molecular phylogenetic analysis of the selected alignments using RAxML (maximum likelihood method) with 100 bootstrap replicates (Stamatakis 2014).
Molecular phylogeny and divergence time estimation

For molecular phylogenetic analysis of anthozoans, we used 818 OGs that were assigned by OrthoFinder as single-copy genes in all of the above anthozoan genomes. All amino acid sequences belonging to same OG were aligned with MAFFT (Katoh and Standley 2013) and all gaps in the alignment were removed with TrimAL (Capella-Gutierrez, et al. 2009). Then all sequences from the same species were concatenated, and finally, a maximum likelihood analysis was performed using concatenated sequences (176,160 amino acids in length) from RAxML with 100 bootstraps. To estimate acroporid divergence times, we performed molecular phylogenetic analysis using 2,126 single-copy OGs among S. pistillata and acroporid corals, and concatenated sequences (621,659 amino acids in length) were analyzed using PhyloBayes v.1.6j (Lartillot, et al. 2013) with the -cat-gtr model. We used the oldest fossil records of *Astreopora*, *Montipora*, *Acropora*, and the Suborder Astrocoeniina, the parent taxon of the Acroporidae and Pocilloporidae, found in the Fossilworks database (Behrensmeyer and Turner 2013). For the *Stylopora* (Pocilloporidae) and *Astreopora* (Acroporidae) divergence calibration, we applied the oldest fossil record (225.1 mya) of suborder Astrocoeniina, parent taxon of both the Acroporidae and Pocilloporidae as the upper limit and considered the oldest fossil record of the Acroporidae (164.7 mya) as the lower limit. For the *Astreopora* and *Montipora* divergence calibration, we applied the oldest fossil record of the Acroporidae for the upper limit and used the oldest fossil record of *Astreopora* (136.4 mya) for the lower limit. To calibrate the divergence of *Acropora* and *Montipora*, we applied the oldest fossil record of *Astreopora* for the upper limit, since *Astreopora* is a more basal clade than *Acropora* and *Montipora*, and applied the oldest fossil record of *Montipora* (70.6 mya) for the lower limit. For calibrations between *Acropora* species, we employed the oldest fossil record of *Acropora* (55.8 mya) as the upper limit and applied the oldest fossil record of each species as the lower limit. Fossil calibrations used are shown in Supplementary Table S13.

Identification of highly conserved and fast-evolving *Acropora* genes

In order to avoid comparisons of paralogs, we restricted the following calculations to OGs assigned in this study as single-copy genes in *Acropora* species (4,548 OGs). In addition, to avoid comparing different transcript
variants between species, nucleotide and translated amino acid sequences of the longest transcript variant from each species were retrieved for each single-copy OG. Translated amino acid sequences of each group were aligned with MAFFT (with –auto option). Then, aligned nucleotide codon sequences without alignment gaps were retrieved using the PAL2NAL script (Suyama, et al. 2006). In order to analyze single-copy OGs with reliable alignment among Acropora, we selected OGs as follows: 1) alignment nucleotide sequence lengths had to be longer than 90 bp, 2) species for which aligned nucleotide residues were shorter than 90% of alignment were removed using TrimAL “-seqoverlap 90” option, 3) alignment had to include at least 14 of the 15 species. Average percent identities of aligned nucleotides were calculated using TrimAL. In order to identify possible fast-evolving genes, we calculated nonsynonymous (Ka) and synonymous (Ks) substitution rates of Acropora single-copy OGs by pairwise species comparisons of the 15 Acropora species (105 species combinations in total) using KaKs_Calculator 2.0 (Wang, et al. 2010), which incorporates 17 methods for calculation of Ka and Ks substitution rates with the –MA option. To exclude paralogous gene comparisons, we ignored OGs showing synonymous substitution rates > 0.1 (Bustamante, et al. 2005), and poorly aligned genes (PAL2NAL codon alignment length was shorter than 95% of the average length of the two sequences) were removed from the calculation. Finally OGs showing Ka/Ks >1 with p< 0.05 (Fisher’s exact test, KaKs_Calculator 2.0) were identified for each pairwise combination. For genes without homology to any sequence in the Uniprot/Swissprot database, we predicted transmembrane helices in translated amino acid sequences using the TMHMM Server v. 2.0 (Krogh, et al. 2001), and antimicrobial peptides (AMPs) using iAMPpred (Meher, et al. 2017).

Data availability

The data underlying this article have been registered at GenBank under the BioProject accession PRJDB8519. Genome assemblies have been deposited at the DNA DataBank of Japan/European Nucleotide Archive/GenBank under accession numbers BLEZ01000000 (Acropora acuminata), BLFA01000000 (Acropora awi), BLFB01000000 (Acropora cytherea), BLFC01000000 (Acropora digitifera), BLFD01000000 (Acropora echinata), BLFE01000000 (Acropora florida), BLFF01000000 (Acropora gemmifera), BLFG01000000 (Acropora hyacinthus), BLFH01000000 (Acropora intermedia), BLFI01000000 (Acropora
microphthalmal), BLFJ0100000 (Acropora muricata), BLFL01000000 (Acropora nasta), BLFM01000000 (Acropora selago), BLAZ01000000 (Acropora tenuis), BLFN01000000 (Acropora yongei), BLFK01000000 (Astreopora myriophthalma), BLFO01000000 (Montipora cactus), and BLFP01000000 (Montipora efflorescens). Genome browsers for the eighteen acroporid genomes are available at the Marine Genomics Unit web site (https://marinegenomics.oist.jp/gallery), and nucleotide and translated amino acid sequences of the acroporid gene models are available at ORTHOSCOPE (https://www.orthoscope.jp).

Acknowledgements

We thank Dr. Takeshi Takeuchi, Dr. Asuka Arimoto, Dr. Eiichi Shoguchi, and Dr. Yi-Jyun Luo for fruitful discussions. We thank Kanako Hisata for creating the genome browsers. We thank Keiichi Nomura and Go Shimada for helping with species identification of Montipora and Astreopora, respectively. This study was partially supported by JSPS KAKENHI grants (17KT0027, 17K07949, 17H03861 and 20H03235 for CS, 17K15179 for YZ, 26291094 and 18H02270 for HY, 15H04538 for GS).

Author contributions

CS and GS conceptualized, and CS and NS designed the project. YZ, HY and GS performed animal collection, acroporid species identification, coral culturing, and sample collection. MiK and MaK prepared sequencing libraries and produced sequencing data. CS assembled genomes and performed gene predictions. CS, KK, JI, and YY performed data analyses. CS and NS wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

References

Aguilar C, Raina JB, Motti CA, Foret S, Hayward DC, Lapeyre B, Bourne DG, Miller DJ. 2017. Transcriptomic
analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals. BMC Genomics 18:612.

Alcolombri U, Ben-Dor S, Feldmesser E, Levin Y, Tawfik DS, Vardi A. 2015. MARINE SULFUR CYCLE. Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle. Science 348:1466-1469.

Alvarez-Filip L, Carricart-Ganivet JP, Horta-Puga G, Iglesias-Prieto R. 2013. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci Rep 3:3486.

Baron-Szabo RC. 2006. Corals of the K/T-boundary: scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphistreaeina. Journal of Systematic Palaeontology 4:1-108.

Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR. 2013. Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A 110:1387-1392.

Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, et al. 2015. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A 112:11893-11898.

Taxonomic occurrences of Suidae recorded in the Paleobiology Database. Fossilworks. [Internet]. 2013. Available from: http://fossilworks.org

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.

Broadbent AD, Jones GB. 2004. DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Marine and Freshwater Research 55:849-855.

Broadbent AD, Jones GB, Jones RJ. 2002. DMSP in Corals and Benthic Algae from the Great Barrier Reef. Estuarine, Coastal and Shelf Science 55:547-555.

Bruckner AW. 2002. Proceedings of the Caribbean Acropora Workshop: Potential Application of the U.S. Endangered Species Act as a Conservation Strategy. NOAA Technical Memorandum NMFS-OPR-24. Silver Spring, MD.

Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White
TJ, Sninsky JJ, Hernandez RD, et al. 2005. Natural selection on protein-coding genes in the human genome. Nature 437:1153-1157.

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-1973.

Carbone F, Matteucci R, Pignatti JS, Russo A. 1993. Facies analysis and biostratigraphy of the Auradu Limestone Formation in the Berbera-Sheikh area, northwestern Somalia. Geologica Romana 29:213-235.

Carpenter KE, Abrar M, Aebi G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, Devantier L, et al. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560-563.

Chen K, Durand D, Farach-Colton M. 2000. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J Comput Biol 7:429-447.

Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O'Malley R, Figueroa-Balderas R, Morales-Cruz A, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 13:1050-1054.

Coles SL, Riegl BM. 2013. Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Mar Pollut Bull 72:323-332.

Cramwinckel MJ, Huber M, Kocken JJ, Agnini C, Bijl PK, Bohaty SM, Frieling J, Goldner A, Hilgen FJ, Kip EL, et al. 2018. Synchronous tropical and polar temperature evolution in the Eocene. Nature 559:382-386.

Cunning R, Bay RA, Gillette P, Baker AC, Traylor-Knowles N. 2018. Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution. Sci Rep 8:16134.

De'ath G, Fabricius KE, Sweatman H, Puotinen M. 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995-17999.

Deschaseaux ESM, Jones GB, Deso MA, Shepherd KM, Kiene RP, Swan HB, Harrison PL, Eyre BD. 2014. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnology and Oceanography 59:758-768.

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically
improves orthogroup inference accuracy. Genome Biology 16:157.

Felsenstein J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6.

Fukami H, Omori M, Hatta M. 2000. Phylogenetic relationships in the coral family acroporidae, reassessed by inference from mitochondrial genes. Zoolog Sci 17:689-696.

Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Jr., Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, et al. 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31:5654-5666.

Han MV, Thomas GW, Lugo-Martinez J, Hahn MW. 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987-1997.

Helmkampf M, Bellinger MR, Geib SM, Sim SB, Takabayashi M. 2019. Draft Genome of the Rice Coral Montipora capitata Obtained from Linked-Read Sequencing. Genome Biol Evol 11:2045-2054.

Hinrichsen D. 1997. Coral reefs in crisis: An overview of these vanishing ecosystems, the problems that plague them, and the means for saving them. BioScience 47:554-558.

Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1737-1742.

Huang S, Kang M, Xu A. 2017. HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 33:2577-2579.

Hughes TP, Kerry JT, Alvarez-Noriega M, Alvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, et al. 2017. Global warming and recurrent mass bleaching of corals. Nature 543:373-377.

Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, et al. 2018. Global warming transforms coral reef assemblages. Nature 556:492-496.

Hughes MA, Powley IR, Jukes-Jones R, Horn S, Feoktistova M, Fairall L, Schwabe JW, Leverkus M, Cain K, MacFarlane M. 2016. Co-operative and Hierarchical Binding of c-FLIP and Caspase-8: A Unified Model Defines How c-FLIP Isoforms Differentially Control Cell Fate. Mol Cell 61:834-849.
Inoue J, Satoh N. 2019. ORTHOSCOPE: An Automatic Web Tool for Phylogenetically Inferring Bilateral Orthogroups with User-Selected Taxa. Mol Biol Evol 36:621-631.

IPCC. 2013. Summary for Policymakers. In: [Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236-1240.

Jouiaei M, Sunagar K, Federman Gross A, Scheib H, Alewood PF, Moran Y, Fry BG. 2015. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. Mol Biol Evol 32:1598-1610.

Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H, et al. 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384-1395.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772-780.

Khalturin K, Shinzato C, Khalturina M, Hamada M, Fujie M, Koyanagi R, Kanda M, Goto H, Anton-Erxleben F, Toyokawa M, et al. 2019. Medusozoan genomes inform the evolution of the jellyfish body plan. Nat Ecol Evol 3:811-822.

Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. 2011. Adaptive seeds tame genomic sequence comparison. Genome Res 21:487-493.

Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ. 2010. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One 5:e11490.

Kitahara MV, Fukami H, Benzoni F, Huang D. 2016. The New Systematics of Scleractinia: Integrating Molecular and Morphological Evidence. In: Goffredo S, Dubinsky Z, editors. The Cnidaria, Past, Present and Future: The world of Medusa and her sisters. Cham: Springer International Publishing. p. 41-59.
Knowlton N, Brainard RE, Fisher R, Moews M, Plaisance L, Caley MJ. 2010. Coral Reef Biodiversity. In. McIntyre AD (ed.). Life in the World's Oceans: Diversity, Distribution, and Abundance. Chichester: Wiley-Blackwell. p. 65-79.

Liew YJ, Aranda M, Voolstra CR. 2016. Reefgenomics.Org - a repository for marine genomics data. Database (Oxford) 2016.

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567-580.

Kvitt H, Rosenfeld H, Zandbank K, Tchernov D. 2011. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching. PLoS One 6:e28665.

Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 62:611-615.

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658-1659.

Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R. 2001. Coral bleaching: the winners and the losers. Ecology Letters 4:122-131.

Luo YJ, Kanda M, Koyanagi R, Hisata K, Akiyama T, Sakamoto H, Sakamoto T, Satoh N. 2018. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nat Ecol Evol 2:141-151.

Luo YJ, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, Fujie M, Yamasaki S, Endo K, Satoh N. 2015. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat Commun 6:8301.

Mao Y, Economo EP, Satoh N. 2018. The Roles of Introgression and Climate Change in the Rise to Dominance of Acropora Corals. Curr Biol 28:3373-3382 e3375.

Mao Y, Satoh N. 2019. A Likely Ancient Genome Duplication in the Speciose Reef-Building Coral Genus, Acropora. iScience 13:20-32.

Marshall PA, Baird AH. 2000. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among
taxa. Coral Reefs 19:155-163.

McInerney FA, Wing SL. 2011. The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annual Review of Earth and Planetary Sciences, Vol 39 39:489-516.

Meher PK, Sahu TK, Saini V, Rao AR. 2017. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC. Sci Rep 7:42362.

Moya A, Sakamaki K, Mason BM, Huisman L, Foret S, Weiss Y, Bull TE, Tomii K, Imai K, Hayward DC, et al. 2016. Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bel-2 and caspase repertoires of Acropora millepora. BMC Genomics 17:62.

Nakamura T. 2017. Mass coral bleaching event in Sekisei lagoon observed in the summer of 2016. Journal of the Japanese Coral Reef Society 19:29-40.

Ohno S. 1970. Evolution by gene duplication: George Allen & Unwin, London.

Olde K, Jarvis I, Ulicny D, Pearce MA, Trabucho-Alexandre J, Cech S, Grocke DR, Laurin J, Svabenicka L, Tocher BA. 2015. Geochemical and palynological sea-level proxies in hemipelagic sediments: A critical assessment from the Upper Cretaceous of the Czech Republic. Palaeogeography Palaeoclimatology Palaeoecology 435:222-243.

Prada C, Hanna B, Budd AF, Woodley CM, Schmutz J, Grimwood J, Iglesias-Prieto R, Pandolfi JM, Levitan D, Johnson KG, et al. 2016. Empty Niches after Extinctions Increase Population Sizes of Modern Corals. Curr Biol 26:3190-3194.

Price AL, Jones NC, Pevzner PA. 2005. De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl 1:i351-358.

Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86-94.

Quinn PK, Bates TS. 2011. The case against climate regulation via oceanic phytoplankton sulphur emissions.
Nature 480:51-56.

Raina JB, Dinsdale EA, Willis BL, Bourne DG. 2010. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18:101-108.

Raina JB, Tapiolas DM, Foret S, Lutz A, Abrego D, Ceh J, Seneca FO, Clode PL, Bourne DG, Willis BL, et al. 2013. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502:677-680.

Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Cleon I, Guichard N, Miller DJ, Marin F. 2013. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol 30:2099-2112.

Richards ZT, Miller DJ, Wallace CC. 2013. Molecular phylogenetics of geographically restricted Acropora species: Implications for threatened species conservation. Molecular Phylogenetics and Evolution 69:837-851.

Roach MJ, Schmidt SA, Borneman AR. 2018. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 19:460.

Romano SL, Palumbi SR. 1996. Evolution of Scleractinian Corals Inferred from Molecular Systematics. Science 271:640-642.

Santodomingo N, Wallace CC, Johnson KG. 2015. Fossils reveal a high diversity of the staghorn coral genera Acropora and Isopora (Scleractinia: Acroporidae) in the Neogene of Indonesia. Zoological Journal of the Linnean Society 175:677-763.

Schuster F. 2000. Oligocene and miocene examples of Acropora-dominated palaeoenvironments: Mesohellenic Basin (NW Greece) and northern Gulf of Suez (Egypt). Proceedings 9th International Coral Reef Symposium 1:23-27.

Shinn EA. 1966. Coral growth-rate, an environmental indicator. Journal of Paleontology 40:233-240.

Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, et al. 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320-323.

Shinzato C, Inoue M, Kusakabe M. 2014. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.
PLoS One 9:e85182.

Shumaker A, Putnam HM, Qiu H, Price DC, Zelzien E, Harel A, Wagner NE, Gates RD, Yoon HS, Bhattacharya D. 2019. Genome analysis of the rice coral Montipora capitata. Sci Rep 9:2571.

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210-3212.

Smit A, Hubley R, Green P. 1996-2010. RepeatMasker Open-3.0: http://www.repeatmasker.org.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435-439.

Sunagawa S, DeSalvo MK, Voolstra CR, Reyes-Bermudez A, Medina M. 2009. Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals. PLoS One 4:e4865.

Sunda W, Kieber DJ, Kiene RP, Huntsman S. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature 418:317-320.

Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609-612.

Takeuchi T, Yamada L, Shinzato C, Sawada H, Satoh N. 2016. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics. PLoS One 11.

Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowski PG. 2011. Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci U S A 108:9905-9909.

UniProt Consortium T. 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699.

Vallina SM, Simo R. 2007. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315:506-508.

Veron JEN. 2000. Corals of the world. Townsville: Australian Institute of Marine Science.
Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, Tambutte S, Allemand D, Aranda M. 2017. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep 7:17583.

Voolstra C, Miller D, Ragan M, Hoffmann A, Hoegh-Guldberg O, Bourne D, Ball E, Ying H, Foret S, Takahashi S, et al. 2015. The ReFuGe 2020 Consortium—using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change. Frontiers in Marine Science 2.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963.

Wallace C. 1999. Staghorn corals of the world: a revision of the genus Acropora. Collingwood, Victoria, Australia: CSIRO PUBLISHING

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics 8:77-80.

Wang X, Liew YJ, Li Y, Zoccola D, Tambutte S, Aranda M. 2017. Draft genomes of the corallimorpharians Amplexidiscus fenestrafer and Discosoma sp. Mol Ecol Resour 17:e187-e195.

Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. 2017. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol.

Wilkinson C. 2008. Status of coral reefs of the world. In. Townsville, Australia: Global Coral Reef Monitoring Network and Reef And Rainforest Research Center.

Yellowlees D, Rees TA, Leggat W. 2008. Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679-694.

Ying H, Cooke I, Sprungala S, Wang W, Hayward DC, Tang Y, Huttley G, Ball EE, Foret S, Miller DJ. 2018. Comparative genomics reveals the distinct evolutionary trajectories of the robust and complex coral lineages. Genome Biology 19:175.

Ying H, Hayward DC, Cooke I, Wang W, Moya A, Siemering KR, Sprungala S, Ball EE, Foret S, Miller DJ. 2019. The Whole-Genome Sequence of the Coral Acropora millepora. Genome Biol Evol 11:1374-1379.
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686-693.

Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279-283.
Table 1. Genome assembly and gene prediction statistics for *Acropora*, *Montipora*, and *Astreopora* species (Family Acroporidae) used in this study and comparisons with publicly available scleractinian coral genomes (NCBI RefSeq).

Coral species	Total assembly size (Mb)	Gap rate (%)	No. scaffolds	Scaffold N50 (Kbp)	No. predicted genes	BUSCO completeness % (upper: lower: gene model)	Accession numbers or reference
This study							
Acropora microphthalmal	384	9.3	4,878	1,061	22016	C:88.6 [S:86.9, D:1.7], F:2.6, M:8.8	BLF10000001-15
Acropora maricata	421	6.8	6,861	575	23,103	C:88.3 [S:85.8, D:2.5], F:3.2, M:8.5	BLF10000001-15
Acropora nassa	416	7.2	4,717	1,051	22,545	C:90.5 [S:86.4, D:4.1], F:1.7, M:7.8	BLF10000001-15
Acropora selago	393	6.2	5,816	657	22,616	C:87.6 [S:85.5, D:2.1], F:3.5, M:8.9	BLF10000001-15
Acropora tenuis	403	7.4	1,538	1,166	22,802	C:90.5 [S:89.4, D:1.1], F:1.8, M:7.7	BLF10000001-15
Acropora yongei	438	6.7	1,010	3,033	23,044	C:88.6 [S:86.2, D:2.4], F:2.8, M:8.6	BLF10000001-15
Astreopora myriophthalma	373	5.4	1,149	1,634	28,712	C:89.3 [S:87.7, D:1.6], F:2.6, M:8.1	BLF10000001-15
Montipora cactus	653	7.9	4,925	899	21,983	C:88.5 [S:86.7, D:1.8], F:2.7, M:8.8	BLF10000001-15
Montipora efflorescens	643	9.0	5,162	1,132	21,370	C:86.4 [S:84.8, D:1.6], F:2.7, M:10.9	BLF10000001-15
NCBI RefSeq							
Acropora digitifera	419	15.2	2,420	484	26,060	C:75.9 [S:71.0, D:4.9], F:3.5, M:15.6	BLF10000001-15
Acropora millepora	387	9.7	3,869	494	23,710	C:91.3 [S:89.5, D:1.3], F:1.5, M:7.2	BLF10000001-15
Montipora capitata	614	6.9	27,865	185	NA*	C:96.0 [S:94.5, D:1.5], F:6.6, M:11.3	BLF10000001-15
Stylophora pistillata	400	10.5	5,687	457	24,833	C:88.3 [S:86.8, D:1.5], F:3.3, M:8.4	BLF10000001-15
Orcicella faveolata	486	26.7	1,932	1,162	25,916	C:85.8 [S:83.2, D:2.6], F:4.5, M:9.7	BLF10000001-15
Pocillopora damicornis	234	3.7	3,492	326	19,935	C:89.2 [S:88.7, D:1.0], F:2.4, M:8.4	BLF10000001-15
Pocillopora damicornis	234	3.7	3,492	326	19,935	C:94.0 [S:93.0, D:0.5], F:2.3, M:3.5	BLF10000001-15

*1: C: Complete BUSCOs, S: Complete and single-copy BUSCOs, D: Complete and duplicated BUSCOs, F: Fragmented BUSCOs, M: Missing BUSCOs.

*2: Not available in NCBI RefSeq100
Figure Legends

Fig. 1. Fifteen Acropora, two Montipora and Astreopora species for which we sequenced complete genomes in this study. (A) Acropora acuminata (B) A. awi (C) A. cytherea (D) A. digitifera (E) A. echinata (F) A. florida (G) A. gemmifera (H) A. hyacinthus (I) A. intermedia (J) A. microphthalmalma (K) A. muricata (L) A. nasta (M) A. selago (N) A. tenuis (O) A. yongei (P) Montipora cactus (Q) M. efflorescens (R) Astreopora myriophthalma.

Fig. 2. Comparisons of orthologous groups and phylogenetic relationships of anthozoan genomes. (A) Proportions of shared orthologous group genes among anthozoans. Scleractinians are shaded in blue. Astreopora and Montipora species are in yellow, and Acropora species are in red. (B) Molecular phylogeny of anthozoans using 818 single-copy orthologous genes (176,160 amino acids). Nodes with 100% bootstrap support are shown with black circles.

Fig. 3. Divergence time estimates for acroporid corals using 2,126 single-copy, orthologous genes (621,659 amino acid length) and evolution of gene family size changes in scleractinians. Numbers of significantly (p<0.01) expanded or contracted orthologous groups with more or less than 3 genes are shown at each node. Expected sea level changes based on Olde et al. (2015) are shown with a blue dotted line and tropical sea surface temperature of the Eocene (Cramwinckel et al. 2018) is shown with a red line. The Paleocene–Eocene Thermal Maximum (PETM) is indicated with an arrowhead, and the Early Eocene Climatic Optimum (EECO) is highlighted in light grey. An approximate geological time scale is shown at the bottom. Abbreviations of geologic periods are as follows; J: Jurassic Period, C: Cretaceous Period, P: Paleocene, E: Eocene, O: Oligocene, and M: Miocene.

Fig. 4. Expansions of DMSP lyase specific to the genus Acropora. (A) Examples of tandem duplication of DMSP lyase in Acropora genomes. Genomic sequences of Acropora species from four clades in which neighboring genes of DMSP lyases (both 5' and 3') were correctly assembled, are shown. DMSP lyase genes are shown with blue arrows and other genes are shown as white boxes. Genes belonging to the same orthologous
groups are connected by dot lines. Relative gene expression levels of *A. digitifera* tandemly located genes in embryonic and adult stages are shown in Z-scores. (B) Maximum likelihood analysis of DMSP lyase using homologous eukaryote genes identified with ORTHOSCOPE (Inoue and Satoh 2019). Asterisks indicate query sequences in ORTHOSCOPE analysis (BLASTP, 1e⁻⁴), including *Montiopra*, *Astreopora*, *Discosoma*, and *Emilania* DMSP lyase genes. Species are colored as shown at the top right. Bootstrap support for representative nodes is shown. The eukaryote DMSP lyase clade is highlighted in grey and the cnidarian clade is in purple. Scleractinian DMSP lyase sequences identified from *Goniastrea*, *Galaxea* and *Porites* were also included in the analysis. (C) Proposed evolutionary history of DMSP lyase in the Anthozoa. Two gene expansion events are shown in red in the phylogenetic tree, and numbers represent the number of genes expanded at each node. Phylogenetic relationships of scleractinian corals are derived from Kitahara et al. (2016).
Fig. 2
Fig. 3
Fig. 4

I: *A. tenuis* scaffold 32
II: *A. florida* scaffold 125
III: *A. digitifera* scaffold 178
IV: *A. echinata* scaffold 10

Z-score

DMSP lyase

Symbiodinium
Emiliana

Gene gain
Gene loss

Anemone
Corallimorpharia

Orbicella
Goniastrea
Fungiia
Stylophora
Pocillogora
Porites
Pachyseris
Galaxea
Astreopora
Montipora
Acropora

Scleractinian

Fig. 4