Spectrum of Kidney Involvement in Patients with Myelodysplastic Syndromes

Nora Schwotzer1, François Provot2, Simon Ville3, Laurent Daniel4, Awena Le Fu5, Sébastien Kissling6, Noémie Jourde-Chiche7, Alexandre Karras8, Anne Moreau9, Jean-François Augusto10, Viviane Gennmi11, Hélène Perrochia12, Stanislas Bataille13, Moglie Le Quintrec14, Jean-Michel Goujon15, Samuel Rotman16 and Fadi Fakhouri17

1Transplantation Center, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland; 2Department of Nephrology and Renal Transplantation, CHRU de Lille, Lille, France; 3Department of Nephrology and Immunology, CHU de Nantes, Nantes, France; 4Pathology Department, CHU La Timone, Marseille, France; 5Department of Nephrology, CH La Roche-sur-Yon, La Roche-sur-Yon, France; 6Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; 7Department of Nephrology, Aix-Marseille Univ, C2VN, INSERM, INRAE, AP-HM CHU de la Conception, Marseille, France; 8Department of Nephrology, Hôpital Européen Georges Pompidou, Paris, France; 9Pathology Department, CHU de Nantes, Nantes, France; 10Department of Nephrology, CHU d’Angers, Angers, France; 11Pathology Department, CHRU de Lille, Lille, France; 12Pathology Department, CHU de Montpellier, Montpellier, France; 13Institut Phocéen de Néphrologie, Clinique Bouchard, Marseille, France; 14Department of Nephrology, CHU de Montpellier, Montpellier, France; 15Department of Pathology, CHU de Poitiers, Poitiers, France; 16Service of Clinical Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland; and 17Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland

Introduction: Myelodysplastic syndromes (MDS) are characterized by a high prevalence of associated autoimmune manifestations. Kidney involvement has been rarely reported in MDS patients. We report on the spectrum of kidney pathological findings in MDS patients.

Methods: We retrospectively identified MDS patients who had undergone a kidney biopsy between 2001 and 2019 in nine Swiss and French nephrology centres.

Results: Nineteen patients (median age 74 years [63-83]) were included. At the time of kidney biopsy, eleven (58%) patients had extra-renal auto-immune manifestations and sixteen (84%) presented with acute kidney injury. Median serum creatinine at diagnosis was 2.8 mg/dL [0.6-8.3] and median urinary protein to creatinine ratio was 1.2 g/g [0.2-11]. Acute tubulo-interstitial nephritis (TIN) was present in seven (37%) patients. Immunofluorescence study in one patient with acute TIN disclosed intense IgG deposits along the tubular basement membrane and Bowman’s capsule. Other kidney pathological features included ANCA-negative pauci-immune necrotizing and crescentic glomerulonephritis (n=3), membranous nephropathy (n=2), IgA nephropathy (n=1), IgA vasculitis (n=1), immunoglobulin-associated membrano-proliferative glomerulonephritis type I (n=1), crescentic C3 glomerulopathy (n=1), fibrillary glomerulonephritis (n=1) and minimal change disease (n=1). Eleven (58%) patients received immunosuppressive treatments, among whom one developed a severe infectious complication. After a median follow-up of 7 month [1-96], nine (47%) patients had chronic kidney disease stage 3 (n=6) or 4 (n=3) and five (26%) progressed to end-stage kidney disease. Three patients died.

Conclusions: MDS are associated to several autoimmune kidney manifestations, predominantly acute TIN. MDS are to be listed among the potential causes of autoimmune TIN.

Kidney Int Rep (2021) 6, 746–754; https://doi.org/10.1016/j.ekir.2020.12.030
KEYWORDS: acute tubulointerstitial nephritis; autoimmunity; myelodysplastic syndromes
© 2021 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Chronic myeloid neoplasms are clonal myeloid disorders of hematopoietic stem cells that include myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN) and MDS/MPN with overlapping features of both entities.

MDS are a heterogeneous group of acquired clonal disorders defined by ineffective hematopoiesis with dysplasia in one or several hematopoietic cell lineages leading to cytopenias. MDS carry a high morbidity related mainly to infections, bleeding and leukemic transformation. In contrast, MPN, which include polycythemia vera, essential thrombocythemia, chronic
myeloid leukemia and primary myelofibrosis, are characterized by predominant peripheral blood cell proliferation.\(^1,2\) Chronic myelomonocytic leukaemia, initially considered to be part of the spectrum of MDS, is now placed into a separate category with both myeloproliferative and myelodysplastic features.

MDS are also characterized by a unique high prevalence of associated autoimmune manifestations reported in 10-20% of patients.\(^3\) These autoimmune manifestations encompass systemic vasculitis, connective tissue diseases (including incomplete or unclassified forms), immune-mediated haematological abnormalities, isolated autoimmune diseases and asymptomatic serological autoimmune features. Conversely, a history of an autoimmune disease has been associated with an increased risk of developing MDS.\(^8,9\)

Kidney is a major target of autoimmunity. However, kidney involvement has been rarely reported in patients with MDS, mostly in case reports\(^10,11\) and kidney pathological data are particularly scarce in this setting. We aimed to describe the spectrum of kidney pathological findings in patients with MDS.

MATERIALS AND METHODS

We retrospectively identified, using computerized clinical and pathological databases, adult (>18 years of age) patients with MDS who had undergone a kidney biopsy in nephrology centers in nine university and general hospitals in France and Switzerland. Patients’ records were reviewed and relevant clinical and biological data were extracted. Kidney biopsies were locally reviewed in each pathology centre by an expert kidney pathologist. Glomerular filtration rate (eGFR) (ml/min/1.73 m\(^2\)) was estimated using the CKD-EPI equation.\(^12\) Nephrotic syndrome was defined by a proteinuria >3 g/day and a serum albumin <30 g/l.

This study was approved by the local research ethics committee (Swissethics, CER-VD, project number 2020-00167). Data are presented as percentages or medians and ranges.

We also performed a search using PubMed, with the following keywords: myelodysplastic syndromes, kidney biopsy, glomerulonephritis, interstitial nephritis, in order to identify previously reported cases of nephropathies documented by kidney biopsy in MDS patients.

RESULTS

Nineteen patients (5 female, 14 male; median age 74 years [63-83 years]) with MDS who had undergone a kidney biopsy between 2001 and 2019 were included. In the three centres that included the highest number of patients, kidney biopsy was performed in less than 1% of MDS patients followed in each institution during the inclusion period. Patients’ characteristics are shown in Table 1 and Table 2. Median time between MDS diagnosis and kidney biopsy was 1.5 years [0-7]. The diagnosis of MDS preceded the onset of kidney disease in 13 cases and was made concomitantly to or less than two months after kidney biopsy in six cases. At time of kidney biopsy, 11 (58%) patients had extrarenal manifestations. Median serum creatinine at diagnosis was 2.8 mg/dl [0.6-8.3] and all patients except three (patients 13, 18 and 19) presented with acute kidney injury. Patients 3 and 7 had a pre-existing chronic kidney disease of unknown cause with an eGFR of 40 and 34 ml/min/1.73 m\(^2\), respectively. Median urinary protein to creatinine ratio was 1.2 g/g [0.2-11] and two patients had a nephrotic syndrome. Microscopic haematuria was present in fifteen patients (macroscopic haematuria in patient 10). Anti-nuclear factors were detected in patients 5, 10, 11 and 17, anti-DNA antibodies and anti-cardiolipin antibodies (IgM) in patient 10 and anti-myeloperoxidase ANCA in patient 17.

Detailed pathology findings in kidney biopsies are shown in Table 3. The most frequent feature in kidney biopsies was acute tubulo-interstitial nephritis (TIN) present in seven (37%) patients (superimposed on chronic TIN in one patient) (Figure 1a-e). One additional patient had acute TIN associated to a glomerulonephritis. None of the patients with TIN had a new medication (particularly antibiotics and non-steroidal anti-inflammatory drugs) introduced in the last 6 months preceding acute kidney injury or kidney biopsy, except for patient 5 who received corticosteroids for arthritis two months earlier. Two patients (patients 2 and 3) only were on long-term treatment with a proton-pump inhibitor (detailed list of long-term treatment in patients with TIN is shown in Table S1). Patient 4 was on azacitidin at the time of acute kidney injury but was maintained on long-term azacitidin without any recurrence of acute TIN after corticosteroids withdrawal. Immunofluorescence study in patient 5 with acute TIN disclosed intense deposits of polyclonal IgG along the tubular basement membrane and Bowman’s capsule. The intensity of staining was similar for the IgG1, 2, 3 and 4 subclasses (Figure 1d).

Other pathological features included ANCA-negative pauci-immune necrotizing and crescentic glomerulonephritis (n = 3), membranous nephropathy (n = 2) (Figure 1f and g), IgA nephropathy (n = 1), IgA vasculitis (n = 1), immunoglobulin-associated membrano-proliferative glomerulonephritis type I (n = 1) (Figure 1h and i), crescentic C3 glomerulopathy (n = 1), fibrillary glomerulonephritis (n = 1) and minimal change disease (n = 1). In one patient, kidney biopsy...
Pt	Gender	Age (y)	MDS type	Treatment at KB	Time between MDS and KB (y)	S Cr (mg/dl)	U P/Cr (g/g)	H	CRP (mg/l)	Extra-renal manifestations	Diagnosis/KB	TRT	Outcome	
1	M	74	MDS-MLD	EPO	3	6.2	+	++	229	Fever, livedo, scleritis, polychondritis, coeliac disease	Acute TIN	Cs		
2	M	76	MDS-RS	EPO,	2	3.2	0.3	-	29	-	Acute TIN	Cs	S Cr 1 mg/dl (eGFR 74 ml/min/1.73 m2) and U P/Cr < 0.5 g/l at 5 months.	
3	M	74	MDS with isolated del(5q)	EPO	> 1 y	2.9†	0.47	+	17	Polyorchondritis	Acute TIN	-	ESKD at 1 month.	
4	F	76	MDS-EB	Azacitidin	1.5	4.5	0.6	+++	115	Fever, arthralgia, buccal ulcerations, skin nodules	Acute TIN	-	OKD: SO 2.5 mg/dl (eGFR 18 ml/min/1.73 m2) at 3 years.	
5	M	83	NA	Concomitant		1.9	0.8	g/l	13	Arthralgia	Acute TIN	Cs		
6	M	80	MDS-MLD	EPO	1.6	3.8	1.5	++	50	-	Acute TIN	IgAN	ESKD (patient declined dialysis) and Death 1 year later (AML).	
7	M	79	Not available	EPO, deferoxamin	7	8.3†	0.6	+++	142	-	Subacute TIN	None		
8	F	69	MDS-EB	RBC transfusions	1.5	3.7	3.9**	+++	50	Neutrophilic urticaria, sicca syndrome	ANCA-negative PiNCG	Cs + MMF / AZA	ESKD at 6 months.	
9	M	74	MDS-MLD	RBC transfusions, EPO, deferoxamin	MDS diagnosed 2 weeks after KB	4 1.1	+++	319	50	Fever, pleuritis	ANCA-negative PiNCG	Cs + CYP / RTX	OKD: SO 2.4 mg/dl (eGFR 25 ml/min/1.73 m2) at 6 years.	
10	M	73	MDS-MLD	EPO, GM-CSF	7	5.1 HD	2.3 g/l	+++	M 76	Thrombocytopenia	ANCA-negative PiNCG	Cs + RTX	Sc Cr decreased to 2 mg/dl at 3 weeks but increased again following septic shock and HD was restarted.	
11	M	74	MDS-RS	-	2 months after KB	2.5	9.4***	+ 1	Siocoa syndrome, peripheral neuropathy	MN.	Cs + MMF RBC Transfusions	Partial remission of the NS at 8 months (Alb, 38 g/l, Puria 1.2 g/24h). Stable OKD: S Cr 1.25 mg/dl (eGFR 51 ml/min/1.73 m2).		
12	F	72	MDS-MLD	EPO, RBC transfusions	1	1.3	7.9†	-	5	-	MN	ACEI	Stable OKD: S Cr 1.5 mg/dl (eGFR 35 ml/min/1.73 m2) and Puria 2 g/day at 15 months.	
13	F	78	MDS-SLD	EPO	> 3	1	0.8	+++	35	Purpura (leukocytoclastic vasculitis)	IgA vasculitis	-	Stable OKD: (SO 0.9 mg/dl; eGFR 58 ml/min/1.73 m2) and proteinuria (< 1 g/24h) at 8 years.	
14	M	69	MDS-MLD	- Concomitant	1.4	1	+++	-	IgAN	None	Stable OKD: SO 1.4 mg/dl (eGFR 50 ml/min/1.73 m2) at 2 years.			
15	M	63	MDS-U	Azacitidin	1	1	1 g/l	++	< 5	-	Ig-MPGN type 1	None	Stable OKD: Sc Cr 2 mg/dl (eGFR 33 ml/min/1.73 m2). Death 6 years later (AML).	
16	M	67	MDS-EB	Azacitidin, EPO	Concomitant	2.6	0.5	+	112	Arthralgia, livedo	Cresentic C3G Acute TIN	Cs + RTX	Ecu	ESKD at 3 months.
17	F	75	MDS-MLD	EPO	1 month	4.5	11	+++	32	-	Cresentic C3G Acute TIN	Cs, RTX	OKD: Sc Cr 2.7 mg/dl (eGFR 24 ml/min/1.73 m2) at 3 months.	
18	M	80	MDS-RS	RBC transfusion	2	0.6	9.7 g/l	-	< 5	-	MCD	Cs	Partial remission of NS. Death 1 month later (septic shock).	
19	M	80	MDS-U	RBC transfusions, EPO, GM-CSF, deferoxamin	4	0.6	1.24	+++	123	Peripheral neuropathy	Normal	Cs	Stable normal Scr. Normalization of proteinuria (0.3 g/24h).	

ACEI, angiotensin converting enzyme inhibitor; AML, acute myeloid leukemia; ANCA, anti-neutrophil cytoplasm antibodies; AZA, azathioprine; Cs, corticosteroids; CKD, chronic kidney disease; CRP, C-reactive protein; CYP, cyclophosphamide; EB, excess of blasts; Ecu, eculizumab; eGFR, estimated glomerular filtration rate; EPO, erythropoietin; ESKD, end-stage kidney disease; F, female; GM-CSF, Granulocyte Macrophage Colony-Stimulating Factor; H, hematuria; HD, haemodialysis; IgAN, IgA nephropathy; IgG, IgG glomerulonephritis; Ig-MPGN, immunoglobulin-mediated membrano-proliferative glomerulonephritis; KB, kidney biopsy; M, male; MCD, minimal change disease; MLD, multiple lineage dysplasia; MMF, mycophenolate mofetil; MN, membranous nephropathy; NS, nephrotic syndrome; PiNCG, pauci-immune necrotizing and crescentic glomerulonephritis; Pt, patient; RBC, red blood cells; RS, ring sideroblasts; RTX, rituximab; SCr, serum creatinine; SLD, single lineage dysplasia; TIN, tubulo-interstitial nephritis; TRT, treatment; U, unclassifiable; U P/Cr, urinary protein to creatinine ratio; Y, years.

*patient with pre-existing CKD
**NS, serum albumin 27 g/l
***NS, serum albumin 25 g/l
£absence of NS, serum albumin 42 g/l
aThe patient developed pancytopenia within two weeks of the start of cyclophosphamide (single infusion) and was switched to rituximab
bNo monoclonal component was detected in the serum or urine.
was normal and the diagnosis of polyarteritis nodosa was made based on the presence of distal arterial microaneurysms on renal arteriography.

Among the two patients with membranous nephropathy, patient 11 had persistently negative anti-phospholipase A2 receptor 1 (PLA2R1) antibodies but a positive PLA2R1 staining in his second kidney biopsy. The status of anti-PLA2R1 antibodies is unknown for patient 12. The two patients with C3 glomerulopathy and immunoglobulin-associated membrano-proliferative glomerulonephritis type I had normal C3 and C4 plasma levels and patient 16 had no detectable C3 nephritic factor, anti-factor H and anti-factor B antibodies.

Three patients had a repeat biopsy that confirmed the diagnosis based on the first biopsy in patient 11 and the resolution of acute kidney lesions following treatment in patients 4 and 9.

Eleven (58%) patients received immunosuppressive treatments, including steroids in all. In patient 9, severe pancytopenia occurred within two weeks after the start of cyclophosphamide and the diagnosis of MDS was made (the patient was subsequently switched to rituximab). One patient had severe infectious complications (pneumonia) related to immunosuppressive treatments. After a median follow-up of 7 months [1-96], nine (47%) patients had CKD stage 3 (n = 6) or 4 (n = 3) and five (26%) had progressed to end-stage kidney disease. Three patients died in the setting of acute myeloid leukemia and septic choc.

The search in the literature retrieved only six cases of kidney biopsies performed in adult patients with MDS (Table 4). Median age at kidney biopsy was 64 years [61-74 years]. Kidney biopsies disclosed a membranous glomerulonephritis (MN) in four cases, an ANCA-associated pauci-immune necrotizing and crescentic glomerulonephritis in one, and an immunoglobulin-associated membrano-proliferative glomerulonephritis in one. In five cases, MDS was diagnosed in the workup of the newly diagnosed nephropathy and in one case, MDS was diagnosed 6 months after kidney biopsy. During follow-up, one progressed to end-stage kidney disease.

DISCUSSION

The present study is the first description of the spectrum of kidney diseases documented by kidney biopsy in patients with MDS. It clearly indicates that the kidney, along with other organs, is a target of autoimmunity in the setting of MDS. The predominant pathological feature in our series was acute TIN present in 37% of cases. Thus, MDS are, most probably, to be listed among the disorders associated to acute TIN. The absence of previous published series has potentially led to the under-recognition (and hence to the under-diagnosis) of the association of acute TIN with MDS. Acute TIN has been reported in patients with chronic myelomonocytic leukemia, a hemopathy which was previously included in the spectrum of MDS. However, TIN in chronic myelomonocytic leukemia patients is either due to lysozyme toxicity or to a specific leukemic infiltrate, in contrast to the non-specific infiltrate composed mostly of lymphocytes and macrophages seen in MDS patients. Finally, no case of TIN associated with MPN has been documented in published series.

Based on our findings, the diagnostic workup of an acute TIN should include an assessment for the presence of MDS and both disorders can be concomitantly
Table 3. Features of light microscopy and immunofluorescence (IF) studies of 22 kidney biopsies performed in 19 patients with myelodysplastic syndromes. Three patients underwent a repeat kidney biopsy

Pt	Glomeruli	Light microscopy	Interstitium	Vessels	IF	Diagnosis
1	9 (4 sclerotic). Normal appearance.	Rare atrophic tubules	Edema and diffuse (+ + +) inflammatory cells infiltrate mononuclear cells	Normal	Mesangial IgA deposits (+ + +)	Acute TIN
2	22 (1 sclerotic). Normal appearance.	Epithelial cell vacuolization. Exocytosis of inflammatory cells in tubular sections	Oedema and diffuse (+ + +) inflammatory cells infiltrate (lymphocytes and plasmocytes). Fibrosis <10%	Mild arteriosclerosis	No significant deposits.	Acute TIN
3	20 (9 sclerotic). Focal segmental lesions. Absence of proliferation.	Several tubular atrophy. Focal tubulitis	Inflammatory cell infiltrate (+ + + / + + +) (lymphocytes, plasmocytes, macrophages) in 30-40% of cortex area. Fibrosis 70%	Severe intimal fibrosis. Absence of thrombosis.	No significant deposits.	Acute TIN
4	1st KB	Acute tubular necrosis	Oedema and inflammatory cells infiltrate (+ + + / + + +) (neutrophils, lymphocytes, plasmocytes) (including in peritubular capillaries)	Very mild arteriosclerosis	No glomeruli.	Acute TIN
2nd KB (4 months later)	No significant lesion	Regression of inflammatory cells infiltrate. Fibrosis 10%	Very mild arteriosclerosis	No significant deposits.	Acute TIN. IgAN	
5	13 glomeruli (3 sclerotic). Absence of proliferation. Thickening of Bowman’s capsule (5 glomeruli).	Deposits within the tubular basement membrane. Acute injury in rare tubules	Inflammatory cell infiltrate (+ + +) (lymphocytes, plasmocytes, eosinophils). Multifocal fibrosis (50-60%)	Moderate to severe arteriosclerosis Polyclonal IgG (++ / ++ / ++) deposits in Bowman’s capsule and TBM. Similar staining for IgG 1-4 subclasses.	Acute TIN	
6	13/2 (sclerotic). Mild mesangial proliferation (+). Focal segment lesions (2 glomeruli).	Focal tubular atrophy	Inflammatory cell infiltrate (+ + +) (lymphocytes/plasmocytes) in 30% of the cortical area. Fibrosis 60%	Mild intimal fibrosis Mesangial IgA and C3 deposits (+ + +)	Acute TIN. IgAN	
7	8 (2 sclerotic). Normal appearance.	Mild tubular atrophy	Focal (+ + +) inflammatory cell infiltrate (lymphocytes). Fibrosis 30-40%	Mild intimal fibrosis	No significant deposits.	Subacute/Chronic TIN
8	17 (3 sclerotic).	Tubular atrophy	Giant-cell granulomas Fibrosis 50%	Normal	No significant deposits.	PANC
9	1st KB	Rare atrophic tubules	Cortical inflammatory cell infiltrate (+ + + / + + +) (neutrophils, lymphocytes, plasmocytes). Fibrosis 20%	Mild intimal fibrosis	No significant deposits.	PANC
2nd KB (10 months later). 10 glomeruli (2 sclerotic). Normal appearance.	Mild (+ + +) tubular atrophy	Fibrosis 30-40%	Normal	No significant deposits.	PANC	
10	11 (1 sclerotic). Cellular crescents (3 glomeruli).	Mild (+) tubular injury	Inflammatory cell infiltrate (+ + +) (lymphocytes and plasmocytes) Severe arteriosclerosis	No significant deposits.	PANC	
11	1st KB	Normal	Normal	Mild intimal fibrosis	Granular IgG (+ + +), C3 (+ + +) and IgM (+) along the capillary walls. Negative PLA2R1 staining. MN	
11	22 (1 sclerotic). Stiffness of the capillary walls. Absence of proliferation.	Normal	Normal	Mild intimal fibrosis	Granular IgG (+ + +), C3 (+ + +) and IgM (+) along the capillary walls. Positive PLA2R1 staining. MN	
19	1 (sclerotic). Thickening of the capillary walls. Presence of inflammatory cells (lymphocytes, monocytes, neutrophils) in capillaries.	Mild atrophy	Moderate (+ + +) inflammatory cell infiltrate (lymphocytes)	Mild intimal fibrosis	Granular IgG (+ + +), C3 (+ + +) along the capillary walls. Positive PLA2R1 staining. MN	
12	10 (0 sclerotic).	Mild tubular atrophy	Mild fibrosis	Mild arteriosclerosis	Parietal granular polyclonal IgG (+ + +) deposits. MN	
13	9 glomeruli (0 sclerotic). Mild mesangial proliferation (+ + +).	Normal	Fibrosis <20%	Mild arteriosclerosis	Mesangial and parietal IgA (+), fibrin (+ + +) IgA and C3 (+) deposits. IgA vasculitis	

(Continued on following page)
Table 3. (Continued) Features of light microscopy and immunofluorescence (IF) studies of 22 kidney biopsies performed in 19 patients with myelodysplastic syndromes. Three patients underwent a repeat kidney biopsy.

Study	Vessels	Glomeruli	Tubules	Interstitium
Pt 1	× 14	7 (2 sclerotic)	Mild tubular atrophy	Fibrinosis < 10%
Pt 15	× 11	8 glomeruli (1 sclerotic)	Mild acrue tubular lesions	Mild atrophy
Pt 16	× 20 (3 sclerotic)	Mesangial and parietal glomerulosclerosis (2 glomeruli)	Acute tubular necrosis	Mild tubular necrosis
Pt 17	× 10	11 (4 sclerotic)	Mesangial matrix expansion (1 glomerulus)	Mesangial cell proliferation
Pt 18	× 9	9 (1 glomerulus)	Mesangial matrix expansion (1 glomerulus)	Normal
Pt 19	× 7	9 (0 sclerotic)	Mesangial matrix expansion (1 glomerulus)	Normal

 Gazenko et al. *Kidney International* Repot (2021) 8, 748–754.

*Electron microscopy study disclosed the presence of glomerular non-dense deposits/C6 standard deviation of 10 random measurements) in excretory diameter of the patients included in this series had extra-renal manifestations. Half of the patients included in this series had extra-renal manifestations at the time of kidney biopsy and 20% had autoantibodies, even though the latter are not
diagnosed, as exemplified by one case from this series. The presence of an intense staining of the tubular basement membrane (and of Bowman’s capsule) with polyclonal IgG in one patient reported here is highly intriguing. It suggests that a humoral autoimmune process (along with a cellular one) may be involved in the pathogenesis of TIN in the setting of MDS. Sera from MDS patients with TIN in this series were not available for the detection of potential circulating autoantibodies targeting the tubular sections. However, anti-tubular basement membrane antibodies have been previously reported in patients with acute TIN and are believed to be directed against a 58-kDa non-collagenous protein involved in the regulation of tubulogenesis.

The other kidney pathological findings in MDS patients from this series encompass a wide range of autoimmune glomerulonephritis. Some of these nephropathies have been previously reported in MDS patients in a limited number of case reports, particularly membranous nephropathy (Table 4). However, our findings are remarkable for the presence of very rare glomerulopathies: ANCA-negative pauci-immune necrotizing and crescentic glomerulonephritis, crescentic C3 glomerulopathy, fibrillary glomerulonephritis and immunoglobulin-associated membranoproliferative glomerulonephritis. The occurrence of these glomerulopathies may result from a MDS-linked autoimmune dysregulation (including complemet dysregulation) and abnormal activation of granulocytes in ANCA-negative necrotizing and crescentic glomerulonephritis. Interestingly, ANCA negative and more rarely ANCA positive as well as IgA extra-renal vasculitis have been reported in MDS patients. Besides, C3 glomerulopathy and immunoglobulin-associated membranoproliferative glomerulonephritis have been linked to autoimmune processes. Furthermore, fibrillary glomerulonephritis probably results from glomerular deposition of immune complexes that have the ability to undergo fibrillogenesis and has been reported in the setting of various auto-immune diseases, including systemic lupus erythematosus and Sjögren’s syndrome. However, the exact mechanisms underlying autoimmune manifestations in MDS patients remain speculative.

The rarity of these autoimmune glomerulonephritides (and the relative rarity of acute unexplained TIN) is the first argument against a fortuitous association between MDS and nephropathies described herein. Furthermore, as already stated, autoimmunity is a well-recognized feature of MDS in extra-renal organs. Half of the patients included in this series had extra-renal manifestations at the time of kidney biopsy and 20% had autoantibodies, even though the latter are not
necessarily pathogenic. Besides, in six out of 19 patients, the diagnosis of MDS was made concomitantly or shortly (less than 2 months) after kidney biopsy and acute kidney injury. Nevertheless, the nature of the glomerulopathies associated to MDS in the present study was heterogeneous and a definite link between these glomerular diseases and the underlying hemopath cannot be formally established. However, extra-renal auto-immune manifestations, frequently reported in MDS patients, are similarly highly heterogeneous in their presentation and severity.

Noteworthy, the glomerular pathological findings in our patients with MDS sharply contrast with those previously documented in MPN, particularly the “MPN-related glomerulopathy” characterized by mesangial sclerosis and hypercellularity, segmental sclerosis, features of chronic thrombotic microangiopathy, and intracapillary hematopoietic cell infiltration.

The treatment of nephropathies associated with MDS relies mostly on immunosuppressive treatments, which carry specific morbidity (mostly infectious) and mortality, as illustrated by several cases from the present series. Moreover, the use of cytotoxic drugs may lead to a worsening of MDS-associated cytopenias or uncover yet undiagnosed MDS as in one patient from this
series. Rapid tapering of steroids and, when feasible, the use of non-cytotoxic agents (such as rituximab) is recommended in these patients.

In total, the kidney is a new identified target of autoimmunity in MDS patients. MDS are associated to several autoimmune kidney manifestations, predominantly acute TIN, and more rarely various immune glomerulonephritis.

DISCLOSURE

All the authors declared no competing interests.

ACKNOWLEDGMENTS

We would like to thank Prof. Manuel Pascual (Centre de Transplantation d’Organes, CHUV, Lausanne) for his critical reading and comments on the manuscript.

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

REFERENCES

1. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. *Blood*. 2016;127(20):2391–2405.

2. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. *Am J Hematol*. 2018;93(6):824–840.

3. Mekinian A, Grignano E, Braun T, et al. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. *Rheumatology (Oxford)*. 2016;55(2):291–300.

4. de Hollanda A, Beucher A, Henrion D, et al. Systemic and immune manifestations in myelodysplasia: a multicenter retrospective study. *Arthritis Care Res (Hoboken)*. 2011;63(8):1188–1194.

5. Lee SJ, Park JK, Lee EY, et al. Certain Autoimmune Manifestations Are Associated With Distinctive Karyotypes and Outcomes in Patients With Myelodysplastic Syndrome: A Retrospective Cohort Study. *Medicine (Baltimore)*. 2016;95(13):e3091.

6. Enright H, Jacob HS, Vercellotti G, Howe R, Belzer M, Miller W. Paraneoplastic autoimmune phenomena in patients with myelodysplastic syndromes: response to immunosuppressive therapy. *Br J Haematol*. 1995;91(2):403–408.

7. Saif MW, Hopkins JL, Gore SD. Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. *Leuk Lymphoma*. 2002;43(11):2083–2092.

8. Montoro J, Gallur L, Merchan B, et al. Autoimmune disorders are common in myelodysplastic syndrome patients and

Table S1. Long-term treatment received by the seven patients with MDS and acute/subacute tubulo-interstitial nephritis.

Ref	Gender, Age	MDS type	**At time of KB**	Time between MDS and KB	Treatment	Outcome	
1	M, 65	Hypoplastic	EPO, Cs	6.7	Aracytin-C + Cs, decitabine	8.7 + 8.5	MN Cs, CYP. Urea 30 mg/dl, proteinuria < 0.3 g/24h at 3 months
2	F, 74	Refractory anemia with multilineage dysplasia	EPO, Cs	0.94	+	NS at 3 months	
3	F, 63	Refractory anemia	EPO, Cs	0.9	+	NS at 3 months	
4	M, 61	Hypoplastic	Cs, decitabine	1.2	+	NS at 3 months	
5	F, 69	Refractory anemia with myelodysplasia	Cs, decitabine	2.1	+	NS at 3 months	
6	M, 65	Hypoplastic	Cs, decitabine	2.1	+	NS at 3 months	
7	F, 65	Hypoplastic	Cs, decitabine	2.1	+	NS at 3 months	

ACKNOWLEDGMENTS

We would like to thank Prof. Manuel Pascual (Centre de Transplantation d’Organes, CHUV, Lausanne) for his critical reading and comments on the manuscript.
confer an adverse impact on outcomes. Ann Hematol. 2018;97(8):1349–1356.

9. Kristinsson SY, Bjorkholm M, Hultcrantz M, Derolf AR, Landgren O, Goldin LR. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol. 2011;29(21):2897–2903.

10. Komatsuda A, Miura I, Ohtani H, et al. Crescentic glomerulonephritis accompanied by myeloperoxidase-antineutrophil cytoplasmic antibodies in a patient having myelodysplastic syndrome with trisomy 7. Am J Kidney Dis. 1998;31(2):336–340.

11. Paydas S, Paydas S, Tuncer I, Zorludemir S, Gonlusen G. A case with membranous glomerulonephritis and myelodysplastic syndrome. Nephron. 1992;62(2):231–232.

12. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612.

13. Kobayashi K, Yokote T, Tsuji M, Takubo T, Inoue T, Hanafusa T. Renal infiltration associated with chronic myelomonocytic leukaemia. Br J Haematol. 2009;147(4):414.

14. Maraj A, MacEneaney O, Doyle B, Quinn J. Lysozyme-induced nephropathy: a rare manifestation of chronic myelomonocytic leukaemia. Br J Haematol. 2020;189(3):393.

15. Rahimian S, Johnson T, Herb R. A Case of Essential Thrombocythemia and IgA Nephropathy with Literature Review of the Concurrency. Case Rep Oncol Med. 2019;2019:5086963.

16. Said SM, Leung N, Sethi S, et al. Myeloproliferative neoplasms cause glomerulopathy. Kidney Int. 2011;80(7):753–759.

17. Lusco MA, Fogo AB, Najafian B, Alpers CE. AJKD Atlas of Renal Pathology: Anti-Tubular Basement Membrane Antibody Disease. Am J Kidney Dis. 2017;70(1):e3–e4.

18. Eisenberger U, Fakhouri F, Vanhille P, et al. ANCA-negative pauci-immune renal vasculitis: histology and outcome. Nephrol Dial Transplant. 2005;20(7):1392–1399.

19. Le Quintrec M, Lapeyraque AL, Lionet A, et al. Patterns of Clinical Response to Eculizumab in Patients With C3 Glomerulopathy. Am J Kidney Dis. 2018;72(1):84–92.

20. Nasr SH, Valeri AM, Cornell LD, et al. Fibrillary glomerulonephritis: a report of 66 cases from a single institution. Clin J Am Soc Nephrol. 2011;6(4):775–784.

21. Andeen NK, Troxell ML, Riazy M, et al. Fibrillary Glomerulonephritis: Clinicopathologic Features and Atypical Cases from a Multi-Institutional Cohort. Clin J Am Soc Nephrol. 2019;14(12):1741–1750.

22. Pertuiset E, Liote F, Launay-Russ E, Kemiche F, Cerf-Payrastre I, Chesneau AM. Adult Henoch-Schonlein purpura associated with malignancy. Semin Arthritis Rheum. 2000;29(6):360–367.

23. Levine AP, Chan MMY, Sadeghi-Alavijeh O, et al. Large-Scale Whole-Genome Sequencing Reveals the Genetic Architecture of Primary Membranoproliferative GN and C3 Glomerulopathy. J Am Soc Nephrol. 2020.

24. Grignano E, Jachiet V, Fenaux P, Ates L, Fain O, Mekinian A. Autoimmune manifestations associated with myelodysplastic syndromes. Ann Hematol. 2018;97(11):2015–2023.

25. Apostolou T, Sotsiou F, Pappas C, Rontoianni D, Apostolidis J, Nikolopoulos N. Atheroembolic renal disease and membranous nephropathy, in a patient with myelodysplastic syndrome, eosinophilia, and trisomy 8. Nephrol Dial Transplant. 2002;17(7):1336–1338.

26. Ko KI, Lee MJ, Doh FM, et al. Membranous glomerulonephritis in a patient with myelodysplastic syndrome-refractory cytopenia with multilineage dysplasia. Kidney Res Clin Pract. 2013;32(3):134–137.