A new candidate of calcium channel blocker in silico from *Tectona grandis* for treatment of gestational hypertension

To cite this article: A Azizah *et al* 2018 *J. Phys.: Conf. Ser.* 1022 012054

View the [article online](https://iopscience.iop.org/article/10.1088/1742-6596/1022/1/012054) for updates and enhancements.

Related content

- Effect of Fibreglass Reinforcement on Compressive Strength of Teak (*Tectona grandis L.f.* Leaves Waste Composite Masturi, Sunarno, W N Jannah *et al.*

- The usage of activated carbon from teak sawdust (*tectona grandis l.f.*) and zeolite for the adsorption of Cr(VI) and its analysis using solid-phase spectrophotometry (sps) S Saputro, M Masykuri, L Mahardiani *et al.*

- Miraxanthin-V, Liriodenin and Chitrane are Hepcidin Antagonist In silico for Iron Deficiency Anemia S Yotriana, YH Suselo, Muthmainah *et al.*
A new candidate of calcium channel blocker in silico from *Tectona grandis* for treatment of gestational hypertension

A Azizah¹, Y H Suselo²*, M Muthmainah³ and D Indarto²,⁴

¹) Medical Student, Faculty of Medicine, Universitas Sebelas Maret
²) Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret
³) Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret
⁴) Biomedical Laboratory, Faculty of Medicine, Universitas Sebelas Maret

Corresponding email: yulianaheri@staff.uns.ac.id

Abstract. Gestational Hypertension is one of the three main causes of maternal mortality in Indonesia. Nifedipine which blocks the Cav1.2 calcium channel has frequently been used to treat gestational hypertension. However the efficacy of nifedipine has not been established yet and the prevalence of gestational hypertension is still high (27.1 %). Indonesian herbal plants have potential to be developed as natural drugs. Molecular docking, a computational method, is very often used to depict interaction between molecules and target receptor. This study was therefore to identify Indonesian herbal plants that could inhibit the calcium channel in silico.

This was a bioinformatics study with molecular docking approach. Three-dimensional structure of human calcium channel Cav1.2 was determined by modelling with rabbit calcium channel (ID:5GJW) as template and using the SWISS MODEL software. Nifedipine was used as a standard ligand and obtained from ZINC database with the access code ZINC19594578. Active compounds of Indonesian herbal plants were registered in HerbalDB database and their molecular structure was obtained from PubChem. Binding affinity of human Cav1.2 model-ligand complexes were assessed using AutoDock Vina 1.1.2 software and visualization of molecular conformation used Chimera 1.10 and PyMol 1.3 softwares. The Lipinsky’s rules of five were used to determine active compounds which fulfilled drug criteria. The human Cav1-2 model had 72.35% sequence identity with rabbit Cav1.1. Nifedipine bound to the human Cav1.2 model with -2.1 kcal/mol binding affinity and had binding sites at Gln1060, Phe1129, Ser1132, and Ile1173 residues. A lower binding affinity was observed in 8 phytochemicals but only obtusifolin 2-glucoside (-2.2 kcal/mol) had similar binding sites as nifedipine did. In addition, obtusifolin 2-glucoside met the Lipinsky criteria and the molecule conformation was similar with nifedipine. From the HerbalDB database, obtusifolin 2-glucoside is found in *Tectona grandis*. Obtusifolin 2-glucoside computationally becomes a potential candidate of calcium channel blocker. In vitro assays should be performed to evaluate the antagonist effect of obtusifolin 2-glucoside on calcium channel Cav1.2.

1. Introduction

Gestational hypertension is one of the three main causes of maternal death in Indonesia. Based on Indonesian Health Profile (2014), the prevalence of gestational hypertension is 21.5% in 2010 and increases by 5.6 % in 2013 [1]. In short time, untreated gestational hypertension can cause pre-eclampsia, placental abruption, and cerebrovascular complications like intravascular coagulation [2-3].
Subsequently, premature birth, low birth weight, intrauterine fetal death and mental retardation are the most common complication that is found in babies who are delivered by pregnant women with gestational hypertension [3].

Pharmacological regimens which are currently available for treatment of gestational hypertension are methyldopa and nifedipine. Methyldopa is the first line drug for gestational hypertension but this drug has many side effects [5]. Although nifedipine is the second choice for gestational hypertension, it is commonly used in Indonesia. Nifedipine blocks calcium (Cav1.1 and Cav1.2) channels which results in systemic arterial dilation, increases oxygen transport to myocardial tissue and reduces total peripheral resistance, systemic blood pressure and afterload [6, 7]. Senadheera and co-workers (2013) have reported that the expression of Cav1.2 increases in uterine artery during pregnancy [8]. So, inhibition of Cav1.2 expression by nifedipine may have beneficial effects to treat gestational hypertension due to its tocolytic property and placental perfusion [2].

In some cases, extensive use of nifedipine, however, does not reduces the incidence of gestational hypertension, which leads to high morbidity and mortality rates. In addition, several side effects of nifedipine treatment has been reported including gingival hyperplasia, peripheral edema, vomiting, fatigue, constipation, bradycardia, atrioventricular block, and heart failure [9]. Therefore, it is required for development of new drugs as an alternative treatment for gestational hypertension.

Herbal plants have been used for human remedy either their natural products or derivatives for thousand years ago in the world including Indonesia [13]. Indonesia has more than 30.000 plants and around 9.600 of them are known to have pharmacological properties [14]. Digitalis purpurea and Allium sativum are identified to have anti-hypertension properties [15] but these plants have not been developed yet as an anti-hypertension drug.

Virtual screening is one of the common method for drug development which is started by searching small molecules [10]. Molecular docking is a computational method that is widely used to describe interaction between molecules and target receptor [11]. This method can certainly be used to investigate phytochemicals which are able to interact with target receptors [12]. Thus, the aim of this study was to explore Indonesian phytochemicals which can act as calcium channel blocker for development of gestational hypertension drug.

2. Methods

Three dimensional (3D) structure of Cav1.2 calcium channel, nifedipine, and Indonesian phytochemicals were used in this bioinformatics study with a molecular docking approach. Sequence target of human Cav1.2 protein was downloaded from Uniprot with ID: Q13936. Nifedipine was a standard ligand which was obtained from ZINC database with the access code ZINC19594578. Phytochemicals derived from Indonesian herbal plants should be registered in HerbalDB database and have 3D structures which were obtained from PubChem NCBI. Selected phytochemicals had to meet the Lipinski’s rule of five. Because 3D structure of human (h) Cav1.2 protein has not been established yet, this protein structure was made by modeling with the rabbit (r) Cav1.1 channel (ID: 5GJW) using SWISS-MODEL (http://swissmodel.expasy.org/). PyRx 0.8 and AutoDock Tools 1.5.6 softwares were used to molecularly dock phytochemicals with the hCav1.2 model while Chimera 1.10 and PyMol 1.3 softwares were used to visualize phytochemical- Cav1.2 binding complexes.

To optimize interaction between hCav1.2 model and nifedipine as the standard ligand, water molecules were removed from the hCav1.2 model and it was then added with hydrogen molecules. Molecular docking was run in the grid box position at X center = ±148.378, Y center = ±184.750 and Z center = ±174.310 to restrict area interaction between hCav1.2 model and nifedipine. Nifedipine was molecularly docked with the hCav1.2 model at least three times to get the root mean square deviation (RMSD) <2 Å as a valid conformation. Nifedipine- hCav1.2 binding complexes were then visualized using Chimera 1.10 and PyMol 1.3 and their binding sites were compared with the existing binding sites of rCav1.1 (Gln^{949}, Phe^{1008}, Ser^{1011}, and Ile^{1052}). Phytochemicals were finally docked with the hCav1.2 model and considered as calcium channel blocker when the docking score was lower or equal
to the docking score of nifedipine and they similarly bound to Cav1.2 at four residues after visualization with Chimera and PyMol softwares [16].

3. Results and Discussion

3.1 Human Cav1.2 Model

In this study, we have firstly demonstrated 3D structure of hCav1.2 which was generated from rCav1.1 as calcium channel template. The superposition showed that the hCav1.2 model had 72.35% similarity with rCav1.1 (Figure 1).

![Figure 1. Superposition of 3D structure between rCav1.1 and h Cav1.2. Homology modeling was performed using SWISS-MODEL and superposition was visualized using Chimera 1.10 software. Blue ribbon indicated 3D rCav1.1 structure. Red ribbon was hCav1.2 model, yellow sticks were nifedipine structure and yellow circle was calcium channel binding site.](image)

Figure 2 indicated sequence alignment between hCav1.2 and rCav1.1 which were comparable from residue 74 to 2.221. The binding sites of hCav1.2 were as same as binding sites of rCav1.1 and located at residues Gln1060, Phe1129, Ser1132 and Ile1173. The hCav1.2 model was then analyzed using homology modeling curve [17]. Our hCav1.2 model contained 2.221 amino acids with 72.35% sequence identity so that the created hCav1.2 model was located in a safe and represented the 3D hCav1.2 (Figure 3).
Figure 2. Sequence alignment between hCav1.2 (Q13936) and rCav1.1 (5GJW) primary structures. The binding sites of hCav1.2 were localized at Gln1060, Phe1129, Ser1132, and Ile1173 (black boxes) and red boxes designated binding sites of rCav1.1 at Gln939, Phe1008, Ser1011, and Ile1052. Residue deletion or insertion were indicated by dash. Vertical bar designated identical amino acids and colon was amino acid with similar property whilst dot was different amino acids.

![Sequence alignment between hCav1.2 and rCav1.1](image1)

Figure 3. The homology modeling threshold (curved line) of hCav1.2 model. The red-cross mark showed the plot of residue number of hCav1.2 model and its sequence identity.

3.2 Validation of Nifedipine-hCav1.2 Binding Complexes

After five times docking, nifedipine bound to hCav1.2 model with -2.1 kcal/mol binding energy and RMSD value = 0 (Figure 4). The localization of binding sites was the same as the binding sites in the sequence alignment. Hydrogen bond was observed at residue Gln1060 and Van der Waals bond was at Phe1129, Ser1132, and Ile1173.

![Nifedipine-hCav1.2 Binding Complexes](image2)
Figure 4. a) Visualization of nifedipine-hCav1.2 binding complexes with Chimera 1.10. White boxes showed interaction between nifedipine (grey bar) and hCav1.2 model (blue ribbon) at Gln\(^{1060}\), Phe\(^{1129}\), Ser\(^{1132}\), and Ile\(^{1173}\) residues. Yellow lines were atom interaction between nifedipine and hCav1.2 model. b) Nifedipine bound to hCav1.2 model at Gln\(^{1060}\) which was visualized using PyMol 1.3. Green: carbon (C), red: oxygen (O), white: hydrogen, blue: nitrogen (N), yellow dashes: detailed interaction between nifedipine and hCav1.2 model at Gln\(^{1060}\) residue.

4. Docking of Indonesian Phytochemicals and hCav 1.2

A total of 6,776 phytochemicals registered in the HerbalDB database, 517 met the Lipinski’s rule of five and had their 3D structures. After molecularly docked with hCav1.2 model, it revealed 66 compounds with lower binding energy, compared to nifedipine. There were only 8 phytochemicals that bound to hCav1.2 at Gln\(^{1060}\), Phe\(^{1129}\), Ser\(^{1132}\), and Ile\(^{1173}\) residues (Table 1). Among these phytochemicals, morindone, obtusifolin 2-glucoside, actinodaphnine, oxonantenine, and gibberellin A44 had optimal lipophilicity. Obtusifolin 2-glucoside had five H-bond donors and ten H-bond acceptors. The conformation of obtusifolin 2-glucoside fitted with nifedipine (Figure 5a). This compound had Van der Waals bond at Gln\(^{1060}\), Phe\(^{1129}\), and Tyr\(^{1169}\) residues while the hydrogen bonds were at Gln\(^{1060}\), Met\(^{1126}\), Tyr\(^{1130}\), and Ser\(^{1132}\) (Figure 5b). Additional binding sites of obtusifolin 2-glucoside to hCav1.2 was observed at Met\(^{1126}\), Thr\(^{1130}\), and Tyr\(^{1169}\) residues but the specific function is unknown [18].

In contrast to obtusifolin 2-glucoside, actinodaphnine had two H-bond donors and five H-bond acceptors. It had Van der Waals bond at Gln\(^{1060}\), Phe\(^{1129}\), and Leu\(^{1128}\) residues and hydrogen bond at Ser\(^{1132}\) residue. Oxonantenine did not have H-bond donor but had six H-bond acceptors. This compound bound to Cav1.2 at Gln\(^{1060}\), Phe\(^{1129}\), and Ser\(^{1132}\) residues with hydrogen bond and at Phe\(^{1129}\) residue with Van der Waals bond. Morindone had three H-bond donor and five acceptors. It interacted with hCav1.2 at Phe\(^{1129}\) residue with Van der Waals bond and at Gln\(^{1060}\) and Ser\(^{1132}\) residues with hydrogen bond. However, their conformation did not fit with nifedipine.

Obtusifolin-2-glucoside which is a secondary metabolite belongs to glycoside group and is found in Tectona grandis (teak). Some studies has showed that this compound has antiviral effect against Chikungunya virus, antiplasmodial property, antibacterial effect, analgesics, and anti-inflammation [19-22].
Table 1. Binding energy, sites and Lipinski’s criteria of phytochemicals and hCav1.2 model

No	Pubchem Code	Compound Name	Average Docking Score	Binding site (with Pymol)	Bond Type
1	4485	Nifedipine	-2.1 \(\pm\) 0.000	Gln-1060, Phe-1129, Ser-1132, Ile-1173	Hydrogen Van der Waals
2	442756	Morindone	-2.2 \(\pm\) 0.000	Gln-1060, Ser-1132 Met-1125, Phe-1129	Hydrogen Van der Waals
3	442761	Obtusifolin 2-glucoside	-2.2 \(\pm\) 0.000	Gln-1060, Met-1126, Phe-1129, Tyr-1130, Ser-1132, Tyr-1169	Hydrogen Van der Waals
4	72276	(-)-Epicatechin	-2.2 \(\pm\) 0.173	Gln-1060, Phe-1129, Ser-1132	Hydrogen Van der Waals
5	13964005	BR-xanthone A	-2.3 \(\pm\) 0.000	Gln-1060, Leu-1128, Ser-1132 Met-1125, Phe-1129	Hydrogen Van der Waals
6	160502	Actinodaphnine	-2.3 \(\pm\) 0.000	Ser-1132 Gln-1060, Phe-1129	Hydrogen Van der Waals
7	3084224	Oxonantenine	-2.3 \(\pm\) 0.000	Gln-1060, Ser-1132 Phe-1129	Hydrogen Van der Waals
8	392169	Thwaitesixanthone	-2.3 \(\pm\) 0.000	Gln-1060, Ala-1124, Met-1126, Leu-1128	Hydrogen Van der Waals
9	46173798	Gibberellin A44	-2.3 \(\pm\) 0.000	Gln-1060, Ser-1132 Phe-1129	Hydrogen Van der Waals

No	Pubchem Code	Compound Name	Molecule Formula	Molecular weight (<500g/mol)	H-Bond Donor (<5)	H-Bond Acceptor (<10)	Lipinski’s Rule of Five
1	4485	Nifedipine	C17H18N2O6	346.339	1	7	2.2
2	442756	Morindone	C15H10O5	270.24	3	5	3.3
3	442761	Obtusifolin 2-	C22H22O10	446.408	5	10	1.2
4	72276	(-)-Epicatechin	C15H14O6	290.271	5	6	0.4
5	13964005	BR-xanthone A	C23H24O6	396.439	2	6	4.8
6	160502	Actinodaphnine	C18H17NO4	311.337	2	5	2.4
7	3084224	Oxonantenine	C19H13NO5	335.315	0	6	3.3
8	392169	Thwaitesixanthone	C23H20O5	376.408	1	5	5
9	46173798	Gibberellin A44	C20H26O5	346.423	2	5	1.6
Figure 5. Visualisation of obtusifolin 2-glucoside- hCav1.2 binding complexes. (a) Superposition of obtusifolin 2-glucoside (cream-coloured) and nifedipine (purple) in hCav1.2 model with Chimera 1.10; (b) Binding sites at Gln^{1060}, Met^{1126}, Phe^{1129}, Thr^{1130}, Ser^{1132}, Tyr^{1169} residues (yellow dashes). Green: carbon (C), red: Oxygen (O), white: Hydrogen (H), blue: Nitrogen (N), yellow dashes: interaction between atom

5. Limitation of The Study
Because biochemical properties of human Cav1.2 channel are limited, it is likely that the endogenous structure and function of calcium channels in both species differ. Secondly, AutoDockVina software is a rigid receptor-flexible ligand program which is unable to describe receptor-macromolecule interaction inside the human body since endogenous receptors have flexibility to interact with macromolecules.
6. Conclusion
Obtusifolin 2-glucoside becomes a potential candidate of calcium channel blocker in silico. In vitro assays should be performed to evaluate the antagonist effect of obtusifolin 2-glucoside on hCav1.2 channel.

7. References
[1] Ministry of Health Republic of Indonesia 2015 Indonesian Health Profile 2014 Jakarta
[2] Moussa H N, Arian S E and Sibai B M 2015 Management of hypertensive disorders in pregnancy *Women's Health* **10**(4) 385-404
[3] Kintiraki E, Papakatsika S, Kotronis G, Goulis D G and Kotsis V 2015 Pregnancy-Induced hypertension *Hormones* **14**(2) 211-23
[4] Mudjari N S and Samsu N 2015 Management of Hypertension in Pregnancy *Acta Med. Indo. – The Indo. J. of Inte. Med.* **47**(1) 78-86
[5] Royal College of Obstetricians and Gynecologists (RCOG) 2011 Hypertension in pregnancy: the management of hypertensive disorders during pregnancy. London: Royal College of Obstetricians and Gynaecologists 111–47
[6] Sojitra R, Dungrani M, Virani P, Raj H and V S R 2015 A review on Nifedipine co-administered with Metoprolol succinate for the treatment of hypertension *Intl. J. of Adv. in Scie. Res.* **1**(3) 129-31
[7] Alexander S P H, Catterall W A, Kelly E, Marrion N, Peters J A, Benson H E, Faccenda E et al. 2015 The concise guide to pharmacology 2015/16: Voltage-gated ion channels *British Journal of Pharmacology* **172** 5904–41
[8] Senadheera S, Bertrand P P, Grayson T H, Leader L, Tare M, Murphy T V and Sandow S L 2013 Enhanced contractility in pregnancy is associated with augmented TRPC3, L-type, and T-type voltage-dependent calcium channel function in rat uterine radial artery *Amer. J. of Phys. Reg. Intg. and Comp. Phys.* **305** 917-26
[9] Vekaria A, Sheth T, Shah S and Shah M 2015 Nifedipine-induced gingival enlargement - a case report *J. of Advd. Oral Res.* **6**(3) 49-52
[10] Atanasov A G, Waltenberger B, Pferschy-Wenzig E M, Linderd T, Wawroscha C, Uhrine P, Temm V et al. 2015 Discovery and resupply of pharmacologically active plantderived natural products: A review *Biotechnol Advances* **33**(8) 1582–614
[11] Yanuar A, Munˇim A, Lagho A B A, Syahdi R R, Rahmat M and Suhartanto H 2011 Medicinal plants database and three dimensional structure of the chemical compounds from medicinal plants in Indonesia *Intl. J. Comp. Scie.* **8**(5) 180–83
[12] Shouk R, Abdou A, Shetty K, Sarkar D and Eid AH 2013 Mechanisms underlying the antihypertensive effect of garlic bioactives *Nutrition Research* **34** 106-15
[13] Hughes J P, Rees S, Kalindjian S B and Philpott K L 2011 Principles of early drug *Brit. J. of Phar.* **162** 1239-49
[14] Yanuar A 2012 Penambatan Molekular: Praktek dan Aplikasi pada Virtual Screening. Fakultas Farmasi Universitas Indonesia Jakarta.
[15] Meng XY, Zhang HX, Mezei M and Cui M 2011 Molecular docking: a powerful approach for structure-based drug discovery *Current Computer-Aided Drug Design* **7**(2) 146-57
[16] Xu L, Li D, Tao L, Yang Y, Li Y and Houa T 2016 Binding mechanisms of 1,4-dihydropyridine derivatives to L-type calcium channel Cav1.2: Molecular modeling study. *Molecular Biology System* **2**(2) 379-90
[17] Krieger E, Nabuurs S B and Vriend G 2003 Homology modeling *Structural Bioinformatics* **44**(25) 507-21
[18] Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q et al. 2016 Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution *Nature* **537** 191-96
[19] Sangeetha K, Purushothaman I, and Rajarajan S 2016 Spectral characterization, antiviral activities, in silico ADMET and molecular docking of compounds isolated from Tectona grandis to chikungunya virus *Biomedicine & Pharmacotherapy* **87** 302-10
[20] Komlaga G, Cjean S, Dickson R A, Beniddir M A, Suyagh-Albouz S, Mensah MLK, Agyare C, Champy P and Loiseau PM 2016 Antiplasmodial activity of selected medical plants used
to treat malaria in Ghana *Parasitology Research* **115**(8) 3185–95

[21] Bitchagno G T M, Fonkeng L S, Kopa T K, Tala M F, Wabo H K, Turne C B, Tane P et al. 2015
Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae) *BioMed Central Complementary and Alternative Medicine* **15** 265

[22] Giri S P and Varma SB 2015 Analgesic and anti-inflammatory activity of Tectona grandis Linn stem extract *J. of Bas. and Clin. Phys. and Phar.* **26**(5) 479-8