STUDYING ENVIRONMENTAL RISK FACTORS AND LEVELS OF SOME HEAVY METALS AMONG A SAMPLE OF AUTISTIC CHILDREN IN EGYPT

Manal M. Abdel Hack(1); Samia H. El-Damaty(2); Amal M. Metwally(1); Ehab R. Abdel Raoof(1) and Hasnaa A. Abu Seif(2)
1) National Research Centre 2) Faculty of Medicine, Ain Shams University

ABSTRACT

Background: Autism is a developmental disability characterized by severe deficits in social interaction and communication. Although the exact cause of autism spectrum disorder (ASD) is still not known, it is believed that both genetic and environmental factors influence the onset and development of this disorder. Aim of the study: To assess the possible environmental risk factors and the levels of aluminum, mercury and lead in the hair of children with ASD. Patients and methods: A case control study was carried out. Thirty ASD children were studied in comparison to 30 age- and sex-matched controls. All participants were subjected to a questionnaire for data collection, clinical evaluation and hair sample for measurement of level of aluminum, mercury and lead which reflects past exposure. Results: The mean age of the studied autistic children was 6.5±2.4 year compared to 5.4±1.8 year in the controls with no significant difference (P>0.05), 76.7% of the cases were boys. Living near to traffic was found to be higher among cases than among controls with p <0.05 indicating high statistically significant difference. A short distance (> 500m) between the house and nearby traffic was another risk factor. Autistic children were found to play with wall paint more than the controls with high statistical difference between them. The use of aluminum cooking utensils and spoons was significantly higher among families of cases than controls. The mean level of aluminum was significantly higher in cases compared to the control (20.79±10.2, 7.85±1 respectively with P<0.0001). Mean level of mercury among cases was significantly higher than among controls (1.24±1.12,
0.22±0.147 respectively). Cases also had significantly higher levels of lead compared to controls but they were within the normal levels. **Conclusion:** Aluminum and Mercury were significantly higher in cases compared to controls. **Key words:** aluminum, lead, mercury, autism, environmental risk factors.

INTRODUCTION

Autism spectrum disorder (ASD) is a group of lifelong neurodevelopmental disorder characterized by impairments in social and communication skills as well as by a restricted, repetitive, stereotyped patterns of behavior (Who.int, 1993). Although the exact cause of ASD is still not known, it is believed that both genetic and environmental factors influence the onset and development of this disorder (Lai, Lombardo and Baron-Cohen, 2014; Tordjman et al., 2014).

It is estimated that worldwide one in 160 children has an ASD. This estimate represents an average figure, and reported prevalence varies substantially across studies. The prevalence of ASD in many low- and middle-income countries is so far unknown (Who.int, 2019). The ASD prevalence in children has been reported to be as high as 2.6% (Kim et al., 2011). The reported increase in prevalence appears partly attributable to greater public awareness, broadening ASD diagnostic criteria, lower age at diagnosis, and diagnostic substitution (Fombonne, 2008). The unexplained increase in ASD prevalence has raised considerable public concern, with a possible effect on some parents’ health care decisions for their children.
Interaction between multiple genetic variants and epigenetic factors also increase the risk of having ASD (Tordjman et al., 2014).

The increase of ASDs prevalence cannot be fully explained by advances in diagnostics or sudden genetic shies. There is a growing consensus among scientists and clinicians that ASDs ensue from an interaction between biological vulnerability factors and environmental or iatrogenic insults (Aicardi et al., 2009). This points to the importance of environmental factors and raises the possibility of an etiological role for toxic exposures: either prenatal, postnatal, or in some cumulative pattern that combines the effect of maternal, gestational, and infant exposures (Adams et al., 2007).

Exogenous exposures known or suspected to interfere with neurodevelopment may play a role in ASD etiology. Heavy metals such as lead and mercury have been relatively well studied in relation to impaired neurodevelopment (Grandjean et al., 1997; Mendola et al., 2002). Aluminum causes oxidative stress within brain tissue, exacerbating the clinical presentation of autism by worsening of excitotoxicity and by microglial priming (Blaylock and Struneczka, 2009).

What is known about environmental agents does not account for many cases, but it is a source of information on the nature of autism. (Elsawy et al., 2011)

The present study aimed at exploring possible associations between some known neurotoxic heavy metals and severity of autism among a sample of
Egyptian autistic children to uncover environmental causes of autism, especially in Egypt.

SUBJECTS AND METHODS

This study is a case control study. The cases were 30 autistic children, who were selected from El Fayoum governorate. They were diagnosed by DSM-V and classified according Childhood Autism Rating Scale (CARS) with a mean age (6.5±2.4) years. Also 30 children were randomly selected from the same area as a control group. Both groups were comparable with regards to age and gender and socioeconomic status.

Duration of the study 6/2017 to 12/2018

Questionnaire: The questionnaire was directed for the mothers of all confirmed 30 cases with ASD and corresponding number of children free from ASD.

Interview questions covered:
- Personal history, area of residency
- Socio demographic data including parent’s education
- Age of the parent
- Family income
- Mother’s medical history
- Family History including: Family history for any similar conditions, any genetic diseases, psychological or mental disorders in the family etc.

Methods for hair analysis: Sample Preparation:
Hair samples should be cut from the nape of the neck and cut with a stainless-steel implement into pieces about 2 cm in length. Mix the sample to insure homogeneity. Wash the sample in a 500-ml polyethylene bottle containing 150 ml of 1% solution of (non-ionic detergent) by agitating on a mechanical mixer for 30 minutes at room temperature.

Transfer the sample to polyethylene filter crucible and rinse with a total of one liter of deionized water. Dry overnight at 110°C, weigh and transfer to a 50-ml Erlenmeyer flask. Dry weight should be about 0.5 g. Add 6-ml of conc. HNO₃ and allow to react at room temp. Warm the digest and add 1 ml of HClO₄ and heat at 200°C until dense white fumes are evolved. The solution should be water clear. Transfer to a 50-ml volumetric flask and dilute to volume with deionized water.

Another digestion by using top wave to instead of by wet digestion. Sample preparation: lead (Pb) and other heavy metals.

Cut segments of hair about 5 to 10 mm in length and weighing at least 10 mg, treat each segment separately. Weigh each segment and wash in deionized water (DI) on a mechanical shaker and then boil. Transfer the sample to a 100-ml Teflon beaker and digest with a 1:5 mixture of HClO₄: HNO₃ until only a few drops of clear liquid remains. Dilute the sample 1:50 with (DI).

Equipment: Agilent 8800 ICP-QQQ (ICP-MS/MS analysis system will be used in Egypt for measuring: Lead, Mercury and Aluminum. It is similar to
and coping with international standards exactly the same as Micro Trace Metal Lab in Germany (Amin et al., 2011; Giangrosso et al., 2016).

Statistical Analysis: SPSS package program was used for statistical analysis. Cases and control subjects were compared by using the Student’s T-test for numeric variables.

Descriptive statistics (mean and standard deviation) is used for summary of quantitative data. Nonparametric tests (Mann Whitney) test is used in non-normally distributed data.

RESULTS

Table (1): Socio-demographic characteristic of the studied children

Socio-demographic characteristics	Cases Mean± SD	Controls Mean± SD	Test of significance	P value
Age (years) Mean± SD	6.5±24	5.4±1.8	t=1.87	0.07
Gender				
Boys (No (%))	23 (76.7%)	23 (76.7%)	X²=1	>0.05
Girls (No (%))	7 (23.3%)	7 (23.3%)		
Age of mother at birth	25.9±5.5	24.8±6.2	t=0.78	0.43
Age of father at birth	33.6±5.4	32.5±8.8	t=0.54	0.58
Family income (Egyptian pounds)	~2500	~2250	t=0.599	0.552
CARS (Mean± SD)				
Boys	38.68±5.23	38.65±4.8		
Girls	38.78±6.8			

Table (1) demonstrates the socio-demographic characteristics of the studied subjects. No significant differences were found between cases and controls in all studied aspects e.g. age, gender, CARS (Childhood Autism Rating Scale), parents’ age or family income.
Table (2): Hair Level of Aluminum, Mercury and Lead among the studied children

Hair level of some heavy metals	Cases	Controls	Test of significance	P value	Odds ratio		
Mean Level of Aluminum (ppm)	20.79±10.2	7.85±1.6	59.25	0.000			
≥8.0 ppm <8.0 ppm	28	93.3%	16	53.3%	12.27	0.001	12.25(2.46-60.91)
Mean Mercury level (ppm)	1.24±1.12	0.22±0.147	4.940	0.00			
Level of Mercury ≥0.30 ppm <0.30 ppm	24	80.0%	3	10.0%	29.69	0.000	36.0 (8.105-159.8)
Mean Lead Level (ppm)*	1.88±1.35	1.09±0.69	2.26	0.012			
Level of Lead ≥3.00 ppm <3.00 ppm	6	20.0%	1	3.3%	4.043	0.103	7.250 (0.815-64.45)

*Normal level: Aluminium :<8.0ppm, Lead (Pb):<3.00ppm and Mercury (Hg):<0.30ppm,

Table (2) shows that levels of aluminum, mercury and lead were much higher among cases than among controls with high statistical significance difference between them (p< 0.05). Cases also had significantly higher levels of lead compared to controls although they are within the normal levels.
Table (3): Environmental Risk factors among the studied children

Environmental Risk Factors	Cases N=30	Controls N=30	Test of significance	P value	Odds ratio
Home near by traffic	20 66.7%	7 23.3%	11.38	0.002	6.57 (2.10-20.47)
Distance to the traffic<500 meter	19 86.4%	3 42.9%	5.48	0.038	8.00 (1.15-55.26)
Near by factory	1 3.4%	1 3.4%	0	1.000	1 (0.60-16.79)
Living near cultivated land using pesticide	11 36.7%	8 26.7%	.69	0.580	1.592 (0.531-4.77)
Living near garbage	3 10.0%	4 13.3%	0.162	1.000	0.722 (0.147-3.545)
Storing pesticides inside safe place in house	11 37.9%	13 43.3%	0.178	0.792	0.799 (.282-2.264)
Use of pesticides	3 10.3%	4 13.3%	0.126	1.000	0.750 (0.153-3.687)
Wall paint: Oil Lime	28 93.3%	24 80.0%	2.31	.254	3.50 (0.645-18.98)
Wall paint is not good	9 30.0%	4 13.3%	2.455	0.209	2.78 (0.751-10.331)
Child messing with wall paint	9 30.0%	2 6.7%	5.455	0.04	6.00 (1.17-30.72)
Mother uses nail polish (yes/sometimes)	5 16.7%	1 3.3%	2.96	0.195	5.80 (0.63-5301)
Mother uses hair dye (yes/sometimes)	8 27.6%	5 16.7%	1.023	0.360	1.91 (054-6.708)
Cooking utensils Aluminum Other	26 86.7%	17 56.7%	6.65	0.020	7.971 (1.38-17.82)
Spoons made of Aluminum Other	23 76.7%	12 40.0%	8.29	0.008	4.92(1.61-15.07)
Child uses same utensils as parents	29 96.7%	28 93.3%	0.351	1.000	2.071(0.178-24.148)
Table (3) shows that several environmental living conditions were found to exist among autistic cases. Living near traffic was found to be higher among cases than among controls with p < 0.05 indicating high statistical significant difference. Also a short distance (> 500m) between the house and nearby traffic was another risk factor. Autistic children were found to play with house paint more than the controls with high statistical difference between them. Also the use of aluminum cooking utensils and spoons was significantly higher among families of cases than controls.

Table (4): Association between Risk factors and level of Aluminum in hair of Autistic children

Risk Factors	Aluminum Level in the hair of Autistic children	P value	Odds ratio			
	≥8.0 ppm (n= 28)	<8.0 ppm (n=2)				
Age	14	50%	1	50.0%	1.00	1.00(0.057-17.62)
>=6 <6						
Age of mother at birth >=30 <30	9	32.1%	1	50.0%	1.00	0.47(0.027-8.46)
Age of father at birth >=35 <35	18	64.3%	0	.0%	0.152	-----------
Cooking utensils Aluminum	27	96.4%	1	50.0%	0.131	27.0(0.89-821.79)
Spoon made of Aluminum	23	82.1%	0	0.0%	0.048	-----------
Child uses aluminum utensils as parents	27	96.4%	2	100%	1.000	-----------
Table (4) shows that using spoons made of aluminum was significantly higher among families of autistic children with increased levels of aluminum in their hair (p<0.05) than among autistic children but with normal aluminum levels.

Table (5): Risk factors among the studied children with level of Aluminum in their hair above normal (≥8.0ppm)

Risk Factors	Aluminum above the normal level≥8.0ppm	P value	Odds ratio	
	Autistic children (n=28)	Control (n=16)		
Cooking utensils Aluminum	27 96.4%	9 56.3%	0.002	21.0(2.26-194.7)
Spoon made of Aluminum	23 82.1%	6 37.5%	0.007	7.66(1.89-31.08)
Child uses aluminum utensils as parents	27 96.4%	15 93.8%	1.000	1.8(0.10-30.89)

Table (5) shows that the most important risk factors for increased level of aluminum in the hair in studied children were the use of cooking utensils and spoons made of aluminum with high statistically significant difference between cases and controls. The percentage of autistic children using aluminum spoons as their parents was also higher than the normal children using aluminum spoons. However, the difference was not significant.
Table (6): Association between Risk factors and level of mercury in hair of Autistic children

Risk Factors	Mercury Level in Autistic children	P value	Odds ratio
	≥0.30 ppm (n= 24)	<0.30 ppm (n=6)	
Age:			
>=6	13 54.2%	2 33.3%	0.651 2.36(0.36-15.45)
<6	11 45.8%	4 66.7%	
Age of mother at birth: >=30	9 37.5%	1 16.7%	0.633 3.0(0.30-29.9)
<30	15 62.5%	5 83.3%	
Age of father at birth: >=35	14 58.3%	4 66.7%	1.000 0.70(0.107-4.59)
<35	10 41.7%	2 33.3%	
Wall paint	22 91.7%	6 100%	1.000
Oil	2 8.3%	0 0%	
Lime			
Wall paint is not good	9 37.5%	1 16.7%	0.633 3.0 (0.30-29.9)
Child messing with wall paint	8 33.3%	1 16.7%	0.637 2.5(0.248-25.15)
Child exposed to broken thermometer	8 33.3%	1 16.7%	0.637 2.5(0.24-25.15)
Mother dental amalgum	3 12.5%	1 16.7%	1.00 0.71(0.06-8.39)

Table (6) shows that autistic children with high levels of mercury in hair were more exposed to broken thermometers than those with normal mercury levels. However, the difference between them was not statistically significant.
Table (7): Risk factors among the studied Autistic children regarding the level of Lead in their Hair

Risk Factors	Lead Level in Autistic children	P value	Odds ratio			
	≥3.0ppm (n= 6)	<3.0ppm (n=24)				
Age: >=6	3	50.0%	12	50.0%	1.000	1.0(0.16-5.98)
Age: <6	3	50.0%	12	50.0%	1.000	1.0(0.15-6.67)
Age of mother at birth >=30	2	33.3%	8	33.3%	1.000	1.0(0.15-6.67)
Age of mother at birth <30	4	66.7%	16	66.7%	1.000	1.0(0.15-6.67)
Age of father at birth >=35	3	50.0%	15	62.5%	0.66	0.60(0.09-3.63)
Age of father at birth <35	3	50.0%	9	37.5%	0.66	0.60(0.09-3.63)
Home near traffic	5	83.3%	15	62.5%	0.633	3.0 (0.30-29.9)
Distance to the traffic <500 meter (out of 20 child home near by traffic)	5	100%	12	80.0%	0.539	0.21(0.012-4.09)
House paint: Oil Geer	5	83.3%	23	95.8%	0.366	0.21(0.012-4.09)
Wall paint is not good	1	16.7%	1	4.2%	0.366	0.21(0.012-4.09)
Child messing with wall paint	4	66.7%	6	25.0%	0.14	6.0(0.86-41.4)
House floor made of dust	3	50.0%	6	25.0%	0.329	3.0(0.47-19.0)
Tap water inside the house	6	100%	24	100%	---	---
Mother uses nail polish (yes/sometimes)	1	16.7%	4	16.7%	1.000	1.00(0.09-11.02)
Mother uses hair dye	2	33.3%	6	26.1%	1.000	1.41(0.20-9.81)
Mother uses makeup	2	33.3%	6	26.1%	1.000	1.41(0.20-9.81)
Mother puts kohl in child’s eyes	4	66.7%	6	25.0%	0.141	6.00(0.86-41.44)

Table (7) shows that 50% autistic children with high hair lead levels were living in houses whose floors were made of dust. Only 4.2% of autistic
children with normal hair lead levels lived in such houses. Difference between both groups was highly statistically significant. High hair lead levels were also found in the majority of autistic children whose homes were near to traffic (83.3%) and the distance between their homes and traffic was less than 500 meters (100%). However the difference between them and those with normal lead levels was not statistically significant.

DISCUSSION

Autism is a multifactorial neurodevelopmental disorder which is caused by genetic and environmental factors. Due to the increasing prevalence of autism over the last decades, many studies were done in order to identify etiologic and risk factors of autism. Although research examining the etiology of autism across the last 25 years has been dominated by a focus on genetic factors; however, there is an increasing awareness of the potential significance of environmental influences in the etiology of autism.

In this study, some environmental factors were studied as potential risk factors involved in the occurrence of autism. Investigated environmental risk factors included toxic exposures to some heavy metals namely aluminum, lead and mercury.

The current study included 30 autistic children; their ages ranged from 3 to 11 years with a mean of 6.5 years. Nearly 77% were males and 23% were females. Thirty normal children with matched socio-demographic
characteristics were taken as controls. Hair levels of aluminum, mercury and lead were measured for all studied children.

The comparison between the levels of these heavy metals in the hair of autistic children and the controls showed statistically significantly higher levels among cases than controls (p<0.05). While previous Egyptian studies agreed with these results (El Baz et al., 2015; El-Sheshtawy et al., 2011), other studies reported that there was no correlation between a higher levels of toxic metals and autism (Abdullah et al., 2012; Lenti et al., 2012). A recent meta-analysis examining the link between toxic metals and autism found that autism cases presented with higher levels of lead and mercury (Lam et al., 2016).

The increased hair levels of toxic heavy metals in autistic cases may not be due to excessive exposure only, but may be caused by the inability to eliminate these metals from the body. Several studies have suggested that hair toxic metal concentrations may be related to poor excretion rate (Adams et al., 2009; Geier et al., 2008).

In the current study, the mean aluminum (Al) hair level in the autistic children was significantly higher than that in the controls. Al is a neurotoxic metal that is blamed to be a significant contributing factor to the rising prevalence of autism in the Western world (Tomljenovic and Shaw, 2011).

Exposure to Al through the use of cooking utensils made of aluminum was found in the great majority of autistic children (96.4%) and with high
significant difference than their controls. Also eating with aluminum spoons was another significant risk factor.

As for mercury, the mean mercury hair level in the autistic patients was significantly higher than that of the controls which was consistent with other studies assessing the increased mercury body toxicity in subjects diagnosed with autism (Geier et al., 2012; Al-Farsi et al., 2012).

Several risk factors associated with mercury toxicity were studied. It was found that autistic children with high mercury hair levels were more exposed to broken thermometers. However there was no evidence that maternal use of dental amalgam was associated with increased mercury levels. Contrary to our results, some studies showed that mercury levels increased in autistic patients as the maternal use of dental amalgam increased. (El-Sheshtawy et al., 2011; Palkovicova et al., 2008).

Regarding Lead (Pb), the results of the current study indicated that although the mean lead hair levels of autistic children were within the normal levels, yet they were significantly higher than in the controls. El Baz et al.(2015) studied heavy metal concentrations in hair of preschool autistic children and found that hair lead concentration was significantly elevated. (EL-Baz et al., 2015). The most common lead exposure pathway for children are ingestion or inhalation of lead-bearing road dust, whether in the household or outdoor environment and its most common sources are fossil fuels, asphalt and paints (Arora et al., 2017; Curtin et al., 2018).
The current study showed a statistical increase in lead levels with a presence of nearby heavy traffic. This is in agreement with a study Naeher et al. (2004), that demonstrated that the lead levels of children living nearby gas stations were marginally higher than for children living away from gas stations (Naeher et al., 2004).

Researchers found that early-life exposure to air pollution may be a risk factor for autism. Children living 310 meters or less near a highway, and traffic-related pollution, were twice as likely to develop ASD (Volk et al., 2011).

Similarly, our study found that families living in houses 500 meters or less near traffic or near factories had children with autism more than those living at a far distance from traffic-polluted areas. These findings emphasize the importance of limiting exposure to harmful airborne pollutants. Parents must care about where they choose to live to be far from environmental pollutions. Recreational and clinical facilities must be available wherever possible. Limitations of our study were the sample size. A larger sample size would be needed to improve the power of the study and validate the findings.

CONCLUSION AND RECOMMENDATIONS

This study demonstrates several environmental risk factors which are significantly associated with autism. Detection of these factors can help parents avoid the danger of autism onset in their children.
Understanding of the causal role of environmental factors in the etiology of autism can potentially inform both primary prevention and evidence-based interventions.

REFERENCES

Abdullah, M.; Ly A.; Goldberg, W.; Clarke-Stewart, K.; Dudgeon J.; Mull C.; Chan T.; Kent E.; Mason A. and Ericson J. (2012): Heavy Metal in Children’s Tooth Enamel: Related to Autism and Disruptive Behaviors? Journal of Autism and Developmental Disorders, 42(6):929-936.

Adams J.; Baral M.; Geis E.; Mitchell J.; Ingram J.; Hensley A.; Zappia I.; Newmark S.; Gehn E.; Rubin R.; Mitchell K.; Bradstreet J. and El-Dahr J. (2009): The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels. Journal of Toxicology, 2009:1-7.

Adams J.; Romdalvik J.; Ramanujam V. and Legator M. (2007): Mercury, Lead, and Zinc in Baby Teeth of Children with Autism Versus Controls. Journal of Toxicology and Environmental Health, Part A, 70(12):1046-1051.

Aicardi J.; Bax M. and Gillberg C. (2009): Diseases of the nervous system in childhood. London: Mac Keith Press. 902 - 921.

Al-Farsi Y.; Al-Sharbati M.; Waly M.; Al-Farsi O.; Al-Shafae M.; Al-Khaduri M.; Trivedi M. and Deth R. (2012): Effect of suboptimal breast-feeding on occurrence of autism: A case–control study. Nutrition, 28(7-8):e27-e32.

Amin O.; Blaurock-Busch E. and Rabah T. (2011): Heavy metals and trace elements in hair and urine of a sample of arab children with autistic spectrum disorder. European Psychiatry, 27:247–257.
Arora M.; Reichenberg A.; Willfors C.; Austin C.; Gennings C.; Berggren S.; Lichtenstein P.; Anckarsäter H.; Tammimies K. and Bölte S. (2017): Fetal and postnatal metal dysregulation in autism. Nature Communications 8(1).

Blaylock R. and Strunacka A. (2009): Immune-Glutamatergic Dysfunction as a Central Mechanism of the Autism Spectrum Disorders. Current Medicinal Chemistry, 16(2): 157-170.

Curtin P.; Austin C.; Curtin A.; Gennings C.; Arora, M.; Tammimies K.; Willfors C.; Berggren S.; Siper P.; Rai D.; Meyering K.; Kolevzon A.; Mollon J.; David A.; Lewis G., Zammit S.; Heilbrun L.; Palmer R.; Wright R.; Bölte S. and Reichenberg A. (2018): Dynamical features in fetal and postnatal zinc-copper metabolic cycles predict the emergence of autism spectrum disorder. Science Advances, 4(5).

El-Baz F.; Zaky E.; El-Sayed A.; El-Hossieny R.; Zahra S.; Salah Eldin, W.; Youssef W.; Khaled R. and Youssef A. (2015): Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism. Behavioural Neurology, 2015:1-9.

El-Sawy M. A.; Awadalla H. I.; Mohamed R. R.; Zaki O. K. and Mohamed O. A. (2011): Study of some environmental and genetic determinants of autism in Egyptian children, INT. J. of Psychology and Counselling 3(8):130-6.

El-Sheshtawy E.; Tobar S.; Sherra K.; Atallah S. and El-Kasaby R. (2011): Study of some biomarkers in hair of children with autism. Middle East Current Psychiatry, 18(1):6-10.

Fombonne E. (2008): Thimerosal Disappears but Autism Remains. Archives of General Psychiatry, 65(1):15.
Geier D.; Kern J.; King P.; Sykes L. and Geier M. (2012): Hair Toxic Metal Concentrations and Autism Spectrum Disorder Severity in Young Children. International Journal of Environmental Research and Public Health, 9(12):4486-4497.

Geier D.; Kern J.; King P.; Sykes L. and Geier M. (2008): A comprehensive review of mercury provoked autism, Indian Journal of Medical Research, 128(4):383–411.

Giangrosso G.; Cammilleri G.; Macaluso A.; Vella A.; D’Orazio N.; Graci S.; Lo Dico G.; Galvano F.; Giangrosso M. and Ferrantelli V. (2016): Hair Mercury Levels Detection in Fishermen from Sicily (Italy) by ICP-MS Method after Microwave-Assisted Digestion. Bioinorganic Chemistry and Applications, 2016:1-5.

Grandjean P.; Weihe P.; White R.; Debes F.; Araki S.; Yokoyama K.; Murata K.; SØRENSEN N.; Dahl R. and JØRGENSEN P. (1997): Cognitive Deficit in 7-Year-Old Children with Prenatal Exposure to Methylmercury. Neurotoxicology and Teratology, 19(6):417-428.

Kim Y.; Leventhal B.; Koh Y.; Fombonne E.; Laska E.; Lim E.; Cheon, K.; Kim S.; Kim Y.; Lee H.; Song D. and Grinker R. (2011): Prevalence of Autism Spectrum Disorders in a Total Population Sample. American Journal of Psychiatry, 168(9):904-912.

Lai M.; Lombardo M. and Baron-Cohen S. (2014): Autism. The Lancet, 383(9920):896-910.

Lam J.; Sutton P.; Kalkbrenner A.; Windham G.; Halladay A.; Koustas E.; Lawler C.; Davidson L.; Daniels N.; Newschaffer C. and Woodruff T. (2016): A Systematic Review and Meta-Analysis of Multiple Airborne Pollutants and Autism Spectrum Disorder. PLOS ONE, 11(9).

Lenti C.; Albizzati A.; More L.; Di Candia D. and Saccani M. (2012): Normal concentrations of heavy metals in autistic spectrum disorders. Minerva Pediatrica, 64(1):27–31.
Mendola P.; Selevan S.; Gutter S. and Rice D. (2002): Environmental factors associated with a spectrum of neurodevelopmental deficits. Mental Retardation and Developmental Disabilities Research Reviews, 8(3):188-197.

Naeher L.; Aguilar-Villalobos M. and Miller T. (2004): Blood Lead Survey of Children, Pregnant Women, Professional Drivers, Street Workers, and Office Workers in Trujillo, Peru. Archives of Environmental Health: An International Journal, 59(7): 359-362.

Palkovicova L.; Ursinyova M.; Masanova V.; Yu Z. and Hertz-Picciotto I. (2008): Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn. Journal of Exposure Science & Environmental Epidemiology, 18(3):326-331.

Tomljenovic L. and A. Shaw C. (2011): Aluminum Vaccine Adjuvants: Are they Safe? Current Medicinal Chemistry, 18(17):2630-2637.

Tordjman S.; Somogyi E.; Coulon N.; Kermarrec S.; Cohen D.; Bronsard G.; Bonnot O.; Weismann-Arcache C.; Bothol M.; Lauth B.; Ginchat V.; Roubertoux P.; Barburoth M.; Kovess V.; Geoffray M. and Xavier J. (2014): Gene x Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms. Frontiers in Psychiatry, 5.

Volk H.; Hertz-Picciotto I.; Delwiche L.; Lurmann F. and McConnell R. (2011): Residential Proximity to Freeways and Autism in the CHARGE Study. Environmental Health Perspectives, 119(6):873-877.

Who. Int. (1993): The ICD-10 Classification of Mental and Behavioural Disorders, Diagnostic criteria for research. [online] Available at: https://www.who.int/classifications/icd/en/GRNBOOK.pdf [Accessed 22 Nov. 2019].

Who. Int. (2019): Autism spectrum disorders. [online] Available at: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders [Accessed 20 Nov. 2019].
دراسة عوامل الخطر البيئية ومستويات بعض المحاذن الثقيلة في عينة من الأطفال المصابين بالتوحد في مصر

منال محمد عبد الحق (1) - سامية حسن المطاوي (1) - إيهاب عبد الروؤف (1) - حناء أبو سيف (1)
(1) المركز القومي للبحوث 2) كلية الطب جامعة عين شمس

المستفيض

الخلفية: التوحد هو إعاقة في التنمو تتميز بعجز شديد في التفاعل والتواصل الاجتماعي. على الرغم من أن السبب الحقيقي لمرض التوحد لا يزال غير معروف، إلا أنه يعتقد أن كلا من العوامل الوراثية والبيئية تؤثر على بداية هذا الاضطراب وتطوره. هدف الدراسة: تقييم عوامل الخطر البيئية المحتملة ومستويات الألومنيوم والرقيق والرصاص في شعر الأطفال الذين يعانون من التوحد.

طريقة إجراء البحث: تم إجراء الدراسة على 30 طفل مصاب بالتوحد والمقارنة مع 30 من العينة الضابطة من نفس العمر والذع. تعرض جميع المشاركين إلى استبان لجميع البيانات، وتقديم السريري وتحليل عينة الشعر لقياس مستوى الألومنيوم والرقيق والرصاص والذي يعكس التعرض السابق للتوحد.

النتائج: المتوسط عمر الأطفال المصابين بالتوحد كان 6.4 سنة مقارنة مع 5.4 سنة في العينة الضابطة مع عدم وجود اختلاف إحصائي. وكان 76.7 % من الأولاد المصابين من الذكور. كما وجد أن عدد كبير من المصابين بالتوحد كانوا يعيشون في مناطق قريبة من الحركة المرورية الكثيفة مع وجود دلالة إحصائية. كما أن المسافة بين السكن وحركة المرور كانت لا تزيد عن 500 متر مما يشير إلى أن ذلك من عوامل الخطر. تم اكتشاف أن الأطفال المصابين بالتوحد يثير للقلق ببطء المنازل أكثر من أطفال العينة الضابطة مع وجود فرق إحصائي كبير بينهما. كما وجد أن استخدام أولي الطبي والملاعق المصنوعة من الألومنيوم كانت أكثر بين الحالات المصابية للحالات الضابطة. أما عن مستويات الألومنيوم بالشعر فإنه كان أعلى بكثير في الحالات مقارنة بالعينة الضابطة (2.07 ± 1.25 مللي 10 ب/كغ، P<0.05) أما عن متوسط مستويات الرقيق بين الحالات فكان أعلى بكثير من مستويات في العينة الضابطة (2.47 ± 1.12 مللي 10 ب/كغ، P<0.05) كما كان مستوي الرصاص أعلى في الحالات مقارنة بالعينة الضابطة ولكنه كان في حدود المستوى الطبيعي.
الكلمات الدالة: الونديوم، رصاص، زئبق، التوحد، عوامل الخطر البيئية.