Congenital lipoid adrenal hyperplasia (lipoid CAH) is the most fatal form of CAH, as it disrupts adrenal and gonadal steroidogenesis. Most cases of lipoid CAH are caused by recessive mutations in the gene encoding steroidogenic acute regulatory protein (StAR). Affected patients typically present with signs of severe adrenal failure in early infancy and 46,XY genetic males are phenotypic females due to disrupted testicular androgen secretion. The StAR p.Q258X mutation accounts for about 70% of affected alleles in most patients of Japanese and Korean ancestry. However, it is more prevalent (92.3%) in the Korean population. Recently, some patients have been showed that they had late and mild clinical findings. These cases and studies constitute a new entity of ‘nonclassic lipoid CAH’. The cholesterol side-chain cleavage enzyme, P450scc (CYP11A1), plays an essential role converting cholesterol to pregnenolone. Although progesterone production from the fetally derived placenta is necessary to maintain a pregnancy to term, some patients with P450scc mutations have recently been reported. P450scc mutations can also cause lipoid CAH and establish a recently recognized human endocrine disorder.

Keywords: Steroidogenic acute regulatory protein, Lipoid congenital adrenal hyperplasia, Cholesterol side-chain cleavage enzyme

Introduction

Congenital lipoid adrenal hyperplasia (lipoid CAH), the most fatal form of adrenal hyperplasia, seriously disrupts adrenal and gonadal steroidogenesis by a defect in the conversion of cholesterol to pregnenolone. Affected patients show salt loss from impaired mineralocorticoid and glucocorticoid synthesis. Deficient fetal testicular steroidogenesis in patients with a 46,XY karyotype results in phenotypically female external genitalia. The defect in lipoid CAH is mainly in the steroidogenic acute regulatory protein (StAR), which promotes entry of cholesterol into mitochondria, where it becomes the substrate for the cholesterol side-chain cleavage enzyme, P450scc. P450scc deficiency will also inhibit placental progesterone synthesis and probably interrupts pregnancy, although rare P450scc mutations have been reported in children with adrenal insufficiency. In steroidogenic disorders, such as steroid 21-hydroxylase deficiency, a spectrum of clinical findings results from different missense mutations. However, the clinical findings are remarkably similar in lipoid CAH. Most patients have female external genitalia regardless of chromosomal sex and have evidence of salt loss in the first year of life and usually within the first 2 months. Some patients have shown late and mild clinical findings. These cases and studies constitute a new entity of ‘nonclassic lipoid CAH’.

Steroid biosynthesis

Cholesterol is the precursor for steroidogenesis and the initial rate-limiting step is the conversion of cholesterol to pregnenolone. The acute stimulation of steroidogenesis is accomplished at the level of cholesterol import into mitochondria, which is promoted by...
StAR deficiency

Lipoid CAH is a rare autosomal recessive disorder that severely inhibits the synthesis of all adrenal and gonadal steroids\(^1\). A severe defect in fetal testicular biosynthesis is evident because affected 46,XY genetic males are born with all female external genitalia, reflecting an absence of testosterone synthesis between 6 and 12 weeks of gestation\(^2\). The adrenal glands are enlarged with cholesterol ester deposits at birth. Affected infants have low but measurable levels of testosterone seen in the sera of patients with lipoid CAH during the first month of life\(^3\). This, in turn, explains why infants with untreated lipoid CAH can survive without treatment for several months\(^4,10\), whereas patients with other forms of salt wasting CAH do not. However, these steroid hormone levels are too low to suppress secretion of adrenocorticotropic hormone (ACTH), gonadotropins, and angiotensin II\(^5\). These tropic hormones stimulate cellular uptake of low density lipoprotein-cholesterol and increase production of cholesterol from acetate, resulting in the accumulation of cholesterol esters, which finally destroy cells either via physical enlargement with droplets of cholesterol esters or by a chemical action of cholesterol oxidation products, or both\(^6\). This second hit disrupts the low levels of StAR-independent steroidogenesis, leading to undetectable levels of steroid in older children with lipoid CAH\(^6\). Fetal ovaries do not express the steroidogenic enzyme genes and, thus, do not make steroids\(^7\). Unlike the testes and adrenal glands, the ovaries only start to make steroid hormones at the onset of puberty\(^8\). Thus, the ovaries of 46,XX females affected with lipoid CAH do not receive the second hit until the onset of puberty, when luteinizing hormone stimulates low-levels of StAR-independent steroidogenesis\(^9\). Each month another follicle is recruited and stimulated by gonadotropins, presenting spontaneous breast development in affected girls\(^10\). However, gonadotropin stimulation quickly results in cholesterol accumulation in these cells (the second hit in lipoid CAH), so the later phase of ovarian steroidogenesis, secretion of large amounts of progesterone, does not occur\(^10\). Follicles that are not recruited remain unstimulated and constitute a reservoir of steroidogenic cells undamaged by the second hit of lipoid CAH, so a new undamaged follicle is recruited with each regular cycle, and estrogen is produced leading to cyclic uterine estrogen withdrawal bleeding that resembles a normal menstruation, but there is no progesterone, so these cycles are anovulatory\(^10\).

Lipoid CAH has been reported in most ethnic groups but is common among the Japanese, Korean, and Palestinian Arab populations\(^1,3,4,10,11,13,29-32\). To date, forty-eight different mutations in the StAR gene have been reported in various ethnic groups (http://www.hgmd.org/). The incidence of certain mutations is very high in specific ethnic groups. Genetic clusters consistently contain the p.Q258X mutation in the Japanese and Korean populations\(^10,30\), the p.R182L mutation in Palestinian Arabs\(^1\), the p.R182H mutation in eastern Saudi Arabians\(^1\), and the p.L260P mutation in the Swiss population\(^11\). Most patients with lipoid CAH have female external genitalia regardless of genetic sex and have evidence of salt loss in the first year of life\(^11\). Recently, some patients have shown that they had late and mild clinical findings with male external genitalia\(^11\). These unique clinical courses, which are consistent with the demonstrated partial functional activity of each mutation, constitute a new entity called "nonclassic lipoid CAH", indicating that the clinical finding of StAR mutations is substantially broader than had been appreciated previously\(^11\). Nonclassic lipoid CAH is a new form of nonautoimmune Addison disease that presents with or without salt loss\(^10\).

P450scce deficiency

Placental production of progesterone is essential to prevent uterine contractility, permitting a pregnancy to be maintained. Thus, human pregnancy relies on progesterone from the mother’s corpus luteum during the first trimester. Furthermore
there is a ‘luteo-placental shift’ to production of progesterone by the placental fetal syncytiotrophoblasts[33]. In the pregnancies of some animals, such as the rabbit and rodent, progesterone is supplied by the corpus luteum during pregnancy, so deletion of P450scc remains compatible with term gestation[33]. Thus, it was thought that the interruption of progesterone synthesis by the human placenta would result in second trimester spontaneous abortion[34], but several cases of severe P450scc mutations have now been reported[14,35]. P450scc deficiency is a novel, rare disorder that can present as acute adrenal insufficiency at any time from infancy to early childhood[33]. In all cases, ACTH and plasma renin activity are grossly elevated and adrenal steroids are inappropriately low or absent; the 46,XY patients have female external genitalia, sometimes with clitoromegaly[35]. In contradiction to the huge adrenal enlargement typically seen in lipoid CAH caused by mutations in StAR[32], no patients with a P450scc deficiency has been reported to have adrenal hyperplasia[36]. Although a small number of patients with STAR mutations have normal-sized adrenal glands[14,32], this may be useful to distinguish these disorders. Additional cases, particularly those studied hormonally during pregnancy, may present further information about the hormonal control of childhood and elucidate the pathophysiology of P450scc deficiency.

Korean patients with StAR deficiency

The p.Q258X mutation is associated with about 70% of affected Japanese and Korean patients[37]. However, it is more prevalent (92.3%) in Korean alleles[38]. These results suggest that the genetic defect in the StAR gene in Korean patients with lipoid CAH is highly homogeneous, probably reflecting a founder effect[38]. The majority of patients with lipoid CAH carrying the p.Q258X mutation typically show severe adrenal failure within the first 2 months of life[10,36]. It has been demonstrated that p.Q258X is a null mutation, resulting in elimination of StAR function[32]. Kim et al.[38] found that the gene frequency for the p.Q258X mutation in the Korean population was ~1/500, with a 1/250 carrier frequency. The confidence limits of the gene frequency for the mutant allele are 0.5–8.0 among 1,000 alleles. Therefore, the carrier frequency could be lower (1/1,000) or higher (16/1,000)[38]. However, the estimated incidence could be inaccurate due to insufficient sample size[38]. The p.Q258X mutation is the most commonly found STAR gene mutation in Korean patients with lipoid CAH. Additionally, other mutations (p.R272H, p.R217fsX48, p.V187M, p.R182C, p.R182H, p.L98R, and c.745-6_810del) have been reported infrequently[30].

Differences between StAR and P450scc deficiency

The clinical and laboratory findings in patients with mutations in the StAR or CYP11A1 genes are essentially indistinguishable, and their treatment is the same; hormonal replacement therapy with physiological doses of glucocorticoids and mineralocorticoids[36]. Most patients with lipoid CAH have massive adrenal enlargement; however, small adrenal glands have rarely been reported in classic lipoid CAH[32]. In contrast, none of the patients with CYP11A1 mutations reported to date has had adrenal enlargement[36]. However, an ultrasonogram may not be as sensitive as computed tomography scanning, and the ultrasound was conducted in the first week of life when the adrenal glands may not yet be enlarged. Therefore, clinical, imaging and hormonal findings alone may not distinguish between P450scc and STAR deficiency; gene sequencing is the only definitive diagnostic method[36]. Discriminating these two very similar diseases permits prenatal diagnosis and genetic counseling[36].

Conclusions

Lipoid CAH is the most fatal form of CAH and is common in Japan and Korea. Most cases of lipoid CAH are caused by recessive mutations in the StAR gene. To date, 48 different mutations in the StAR gene have been reported in various ethnic groups. The incidence of certain mutations is very high in specific ethnic groups, and the p.Q258X mutation is hot spot in Korean alleles. Some patients with lipoid CAH have shown late and mild clinical findings. These cases constitute a new entity of ‘nonclassic lipoid CAH’. Additionally, P450scc mutations can also cause lipoid CAH and establish a recently recognized human endocrine disorder. The clinical and laboratory findings in patients with mutations in the StAR or CYP11A1 genes are essentially indistinguishable. Clinical and hormonal findings alone may not distinguish between P450scc and STAR deficiency, and gene sequencing is the only definitive diagnostic method.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

References

1. Miller WL. Congenital lipoid adrenal hyperplasia: the human gene knockout for the steroidogenic acute regulatory protein. J Mol Endocrinol 1997;19:227–40.
2. Hauffa BP, Miller WL, Grumbach MM, Conte FA, Kaplan SL. Congenital adrenal hyperplasia due to deficient cholesterol side-chain cleavage activity (20, 22-desmolase) in a patient treated for 18 years. Clin Endocrinol (Oxf) 1985;23:481–93.
3. Lin D, Sugawara T, Strauss JF 3rd, Clark BJ, Stocco DM, Saenger P, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995;267:1828–31.
4. Bose HS, Sugawara T, Strauss JF 3rd, Miller WL;
International Congenital Lipoid Adrenal Hyperplasia Consortium. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 1996;335:1870-8.
5. Stocco DM, Clark BIl. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996;17:221-44.
6. al Kandari H, Katsumata N, Alexander S, Rasoul MA. Homozygous mutation of P450 side-chain cleavage enzyme gene (CYP11A1) in 46, XY patient with adrenal insufficiency, complete sex reversal, and agenesis of corpus callosum. J Clin Endocrinol Metab 2006;91:2821-6.
7. Katsumata N, Ohtake M, Hojo T, Ogawa E, Haru T, Sato N, et al. Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab 2002;87:3808-13.
8. Hiort O, Holterhus PM, Werner R, Marschke C, Hoppe U, Partsch CI, et al. Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46,XY sex reversal, and severe adrenal failure. J Clin Endocrinol Metab 2005;90:538-41.
9. Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL. Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab 2001;86:3820-5.
10. Nakae J, Tajima T, Sugawara T, Arakane F, Hanaki K, Hotsubo T, et al. Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congenital lipoid adrenal hyperplasia. Hum Mol Genet 1997;6:571-6.
11. Flass CE, Maret A, Mallet D, Portrat-Doyen S, Achermann JC, Leheup B, et al. A novel mutation L260P of the steroidogenic acute regulatory protein gene in three unrelated patients of Swiss ancestry with congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 2005;90:5304-8.
12. Gassner CE, Toppa J, Quinteiro Gonzalez S, Miller WL. Near-miss apparent SIDS from adrenal crisis. J Pediatr 2004;145:178-83.
13. Chen X, Baker BY, Abduljabbar MA, Miller WL. A genetic isolate of congenital lipoid adrenal hyperplasia with atypical clinical findings. J Clin Endocrinol Metab 2005;90:835-40.
14. Baker BY, Lin L, Kim CJ, Raza J, Smith CP, Miller WL, et al. Nonclassic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. J Clin Endocrinol Metab 2006;91:4781-5.
15. Chang CY, Wu DA, Lai CC, Miller WL, Chung BC. Cloning and structure of the human adrenodoxin gene. DNA 1988;7:609-15.
16. Morohashi K, Sogawa K, Omura T, Fujii-Kuriyama Y. Gene structure of human cytochrome P-450(SCC), cholesterol desmolase. J Biochem 1987;101:879-87.
17. Black SM, Harikrishna JA, Szklarz GD, Miller WL. The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc. Proc Natl Acad Sci U S A 1994;91:7247-51.
18. Prader A, Gurtner HP. The syndrome of male pseudohermaphrodisim in congenital adrenocortical hyperplasia without overproduction of androgens (adrenal male pseudohermaphrodisim). Helv Paediatr Acta 1955;10:397-412.
19. Degenhart HJ, Visser HK, Boon H, O’Doherty NJ. Evidence for deficient 20-cholesterol-hydroxylase activity in adrenal tissue of a patient with lipidoid adrenal hyperplasia. Acta Endocrinol (Copenh) 1972;71:512-8.
20. Koizumi S, Kyoya S, Miyawaki TM, Kidani H, Funabashi T. Cholesterol side-chain cleavage enzyme activity and cytochrome P-450 content in adrenal mitochondria of a patient with congenital lipidoid adrenal hyperplasia (Prader disease). Clin Chim Acta 1977;77:301-6.
21. Matteson KL, Chung BC, Urdea MS, Miller WL. Study of cholesterol side-chain cleavage (20,22 desmolase) deficiency causing congenital lipidoid adrenal hyperplasia using bovine-sequence P450scc oligodeoxyribonucleotide probes. Endocrinology 1986;118:1296-305.
22. Lin D, Gitelman SE, Saenger P, Miller WL. Normal genes for the cholesterol side chain cleavage enzyme, P450scc, in congenital lipidoid adrenal hyperplasia. J Clin Invest 1991;88:1955-62.
23. Sakai Y, Yanase T, Hara T, Takayanagi R, Haji M, Nawata H. Mechanism of abnormal production of adrenal androgens in patients with adrenocortical adenomas and carcinomas. J Clin Endocrinol Metab 1994;78:36-40.
24. Fukami M, Sato S, Ogata T, Matsuo N. Lack of mutations in P450scc gene (CYP11A1) in six Japanese patients with congenital adrenal lipoid hyperplasia. Clin Pediatr Endocrinol 1995;4:39-46.
25. Tee MK, Lin D, Sugawara T, Holt JA, Guiguen Y, Buckingham B, et al. T-->A transversion 11 bp from a splice acceptor site in the human gene for steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. Hum Mol Genet 1995;4:2299-305.
26. Miller WL. Androgen biosynthesis from cholesterol to DHEA. Mol Cell Endocrinol 2002;198:7-14.
27. Voutilainen R, Miller WL. Developmental expression of genes for the steroidogenic enzymes P450scc (20,22 desmolase), P450c17 (17 alpha-hydroxylase/17,20-lyase), and P450c21 (21-hydroxylase) in the human fetus. J Clin Endocrinol Metab 1986;63:1145-50.
28. Bose HS, Pescozovit OH, Miller WL. Spontaneous feminization in a 46,XX female patient with congenital lipoid adrenal hyperplasia due to a homozygous frameshift mutation in the steroidogenic acute regulatory protein. J Clin Endocrinol Metab 1997;82:1511-5.
29. Fujieda K, Tajima T, Nakae J, Sageshima S, Tachibana K, Kim CJ. Congenital lipoid adrenal hyperplasia. N Engl J Med 1986;335:1870-8.
(StAR) gene. J Clin Invest 1997;99:1265-71.
30. Yoo HW, Kim GH. Molecular and clinical characterization of Korean patients with congenital lipoid adrenal hyperplasia. J Pediatr Endocrinol Metab 1998;11:707-11.
31. Achermann JC, Meeks JJ, Jeffs B, Das U, Clayton PE, Brook CG, et al. Molecular and structural analysis of two novel StAR mutations in patients with lipoid congenital adrenal hyperplasia. Mol Genet Metab 2001;73:354-7.
32. Bose HS, Sato S, Aisenberg J, Shalev SA, Matsuo N, Miller WL. Mutations in the steroidogenic acute regulatory protein (StAR) in six patients with congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 2000;85:3636-9.
33. Csapo A, Pulkkinen MO, Wiest WG. Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am J Obstet Gynecol 1973;115:759-65.
34. Miller WL. Why nobody has P450scc (20,22 desmoslase) deficiency. J Clin Endocrinol Metab 1998;83:1399-400.
35. Kim CJ, Lin L, Huang N, Quigley CA, AvRuskin TW, Achermann JC, et al. Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab 2008;93:696-702.
36. Gucev ZS, Tee MK, Chitayat D, Wherrett DK, Miller WL. Distinguishing deficiencies in the steroidogenic acute regulatory protein and the cholesterol side chain cleavage enzyme causing neonatal adrenal failure. J Pediatr 2013;162:819-22.
37. Katsumata N, Kawada Y, Yamamoto Y, Noda M, Nimura A, Horikawa R, et al. A novel compound heterozygous mutation in the steroidogenic acute regulatory protein gene in a patient with congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 1999;84:3983-7.
38. Kim JM, Choi JH, Lee JH, Kim GH, Lee BH, Kim HS, et al. High allele frequency of the p.Q258X mutation and identification of a novel mis-splicing mutation in the STAR gene in Korean patients with congenital lipoid adrenal hyperplasia. Eur J Endocrinol 2011;165:771-8.