Regularization strategy for an inverse problem for a $1 + 1$ dimensional wave equation

Jussi Korpela1, Matti Lassas2,4 and Lauri Oksanen3

1Department of Mathematics and Statistics, University of Helsinki, Box 68, Helsinki, 00014, Finland
2Department of Mathematics and Statistics, University of Helsinki, Box 68, Helsinki, 00014, Finland
3Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK

E-mail: Jussi.Korpela@helsinki.fi, Matti.Lassas@helsinki.fi and l.oksanen@ucl.ac.uk

Received 31 August 2015, revised 25 February 2016
Accepted for publication 3 March 2016
Published 14 April 2016

Abstract
An inverse boundary value problem for a $1 + 1$ dimensional wave equation with a wave speed $c(x)$ is considered. We give a regularization strategy for inverting the map $\mathcal{A}: c \mapsto \Lambda$, where Λ is the hyperbolic Neumann-to-Dirichlet map corresponding to the wave speed c. That is, we consider the case when we are given a perturbation of the Neumann-to-Dirichlet map $\hat{\Lambda} = \Lambda + \mathcal{E}$, where \mathcal{E} corresponds to the measurement errors, and reconstruct an approximative wave speed \hat{c}. We emphasize that $\hat{\Lambda}$ may not be in the range of the map \mathcal{A}. We show that the reconstructed wave speed \hat{c} satisfies $\|\hat{c} - c\| \leq C\|\mathcal{E}\|^{1/2}$. Our regularization strategy is based on a new formula to compute c from Λ.

Keywords: inverse problems, regularization theory, wave equations

1. Introduction

We consider an inverse boundary value problem for the wave equation

\[
\left(\frac{\partial^2}{\partial t^2} - c(x)^2 \frac{\partial^2}{\partial x^2} \right) u(t, x) = 0,
\]

4 Author to whom any correspondence should be addressed.
and introduce a regularization strategy to recover the sound speed \(c(x)\) by using the knowledge of perturbed Neumann-to-Dirichlet map \(\Lambda\). Our approach is based on the Boundary Control method \([2, 6, 56]\).

A variant of the Boundary Control method, called the iterative time-reversal control method, was introduced in \([9]\). The method was later modified in \([16]\) to focus the energy of a wave at a fixed time, and in \([49]\) to solve an inverse obstacle problem for the wave equation. Here, we introduce yet another modification of the iterative time-reversal control method that is tailored for the \(1+1\) dimensional wave equation.

Classical regularization theory is explained in \([17]\). Iterative regularization of both linear and nonlinear inverse problems and convergence rates are discussed in Hilbert space setting in \([10, 19, 21, 43, 45]\) and in Banach space setting in \([20, 24, 25, 31, 50–52]\). Our new results give a direct regularization method for the nonlinear inverse problem for the wave equation. The result contains an explicit (but not necessarily optimal) convergence rate.

By direct methods for nonlinear problems, we mean the explicit construction of a nonlinear map solving the problem without resorting to a local optimization method. In our case, the map is given by \((63)\) below. The advantage of direct approaches is that they do not suffer from the possibility that the algorithm converges to a local minimum. In particular, they do not require \textit{a priori} knowledge that the solution is in a small neighborhood of a given function. There are currently only a few regularized direct methods for nonlinear inverse problems. An example is a regularization algorithm for the inverse problem for the conductivity equation in \([32]\). Also, a direct regularized inversion for blind deconvolution is presented in \([22]\).

1.1. Statement of the results

We define

\[
\|c\|_{C^k(M)} = \sum_{p=0}^k \sup_{x \in (0, \infty)} \left| \frac{\partial^p c}{\partial x^p}(x) \right|
\]

where we denote by \(M\) the half axis \(M = [0, \infty) \subset \mathbb{R}\). We denote the set of bounded \(C^k(M)\)-functions by

\[
C^k(M) = \{ c \in C^k(M) ; \|c\|_{C^k(M)} < \infty \}.
\]

Let \(C_0, C_1, L_0, L_1, m > 0\) and define the space of \(k\) times differentiable velocity functions

\[
\mathcal{V}^k = \{ c \in C^k(M) ; C_0 \leq c(x) \leq C_1, \|c\|_{C^k(M)} \leq m, c - 1 \in C^0_0([L_0, L_1]) \}.
\]

Here \(C^0_0([L_0, L_1])\) is the subspace of functions in \(C^0(M)\) that are supported on \([L_0, L_1]\). Let

\[
T > \frac{L_1}{C_0}
\]

For \(c \in \mathcal{V}^2\) and \(f \in L^2(0, 2T)\), the boundary value problem

\[
\left(\frac{\partial^2}{\partial t^2} - c(x)^2 \frac{\partial^2}{\partial x^2} \right) u(x, t) = 0 \quad \text{in } M \times (0, 2T),
\]

\[
\frac{\partial}{\partial t} u(0, t) = f(t),
\]

\[
u_t|_{t=0} = 0, \quad \theta_t u|_{t=0} = 0,
\]

has a unique solution \(u = u^f \in H^1(M \times (0, 2T))\). Using this solution we define the Neumann-to-Dirichlet operator \(\Lambda = \Lambda_c\).
We define for a Banach space E

$$
\mathcal{L}(E) := \{ A : E \to E; A \text{ is linear and continuous} \}.
$$

Let $X = L^\infty(M)$, $Z = C_b^1(M)$ and $Y = L(L^2(0, 2T))$. We define $\mathcal{D}(A) = Y^2$ and the direct map

$$
A : \mathcal{D}(A) \subset Z \to \mathcal{R}(A) \subset Y, \quad A(c) = \Lambda.
$$

The notation in (6) means that the range $\mathcal{R}(A) = A(Y^2)$ and the domain $\mathcal{D}(A)$ are equipped with the topologies of Y and Z, respectively. We show in appendix A, theorem 5, that the maps (5) and (6) are continuous.

We consider the inverse problem to recover the velocity function c by using the boundary measurements Λ. In our case, it is well-known that A is invertible, see e.g. [12, 13]. Let us record the following:

Theorem 1. A is invertible, that is, there exists a map

$$
A^{-1} : \mathcal{A}(Y^2) \subset Y \to Y^2 \subset Z, \quad A^{-1}(\Lambda) = c.
$$

For the convenience of the reader, we give a proof of theorem 1 in section 2, where we also give a new formula to compute c from Λ. When we restrict A to the set $Y^3 \subset Y^2$, the map $A|_{Y^3} : Y^3 \subset Z \to \mathcal{A}(Y^3)$ has a continuous inverse operator in the following sense:

Theorem 2. The inverse map

$$
A^{-1} : \mathcal{A}(Y^3) \subset Y \to Y^3 \subset Z, \quad A^{-1}(\Lambda) = c,
$$

is continuous.

Below, we will prove a result for the continuity modulus of A^{-1}. The continuity of A^{-1} in theorem 2 is abstract in the sense that it does not contain quantitative estimates. For the convenience of the reader, we give a proof of theorem 2 in appendix B.

Our main result concerns perturbations of the Neumann-to-Dirichlet operator of the form

$$
\tilde{\Lambda} = \Lambda + \mathcal{E},
$$

where $\mathcal{E} \in Y$ models the measurement error. We assume that $\|\mathcal{E}\|_Y \leq \epsilon$, where $\epsilon > 0$ is known. In this situation we cannot use the map A^{-1} to calculate function c since $\tilde{\Lambda}$ may not be in the range $\mathcal{R}(A)$. We recall the definition of a regularization strategy, see e.g. [17, 31].

Definition 1. Let Z, Y be Banach spaces and $\Omega \subset Z$. Let $A : \Omega \subset Z \to Y$ be a continuous mapping. Let $\alpha_0 \in (0, \infty]$. A family of continuous maps $\mathcal{R}_{\alpha} : Y \to Z$ parametrized by $0 < \alpha < \alpha_0$ is called a regularization strategy for $A : \Omega \to Y$ if

$$
\lim_{\alpha \to 0} \mathcal{R}_{\alpha}(A(c)) = c
$$

for every $c \in \Omega$. A regularization strategy is called admissible, if the parameter α is chosen as a function of $\epsilon > 0$ so that $\lim_{\alpha \to 0} \alpha(\epsilon) = 0$ and for every $c \in \Omega$

$$
\limsup_{\epsilon \to 0} \|\mathcal{R}_{\alpha}(c)\tilde{\Lambda} - c\|_Z : \tilde{\Lambda} \in Y, \quad \|\tilde{\Lambda} - A(c)\|_Y \leq \epsilon = 0.
$$
Below, we will use definition 1 for \mathcal{A} given in (6) with $\Omega = \mathcal{V}^3$. Figure 1 gives a schematic illustration of the regularization.

We are now ready to formulate our main result:

Theorem 3. Let $\beta = \frac{1}{\sqrt{3}}$. For operator $\mathcal{A} : \mathcal{V}^3 \subset \mathcal{Z} \rightarrow \mathcal{Y}$, there exists an admissible regularization strategy \mathcal{R}_α with the choice of parameter

$$\alpha(\epsilon) = 2\frac{\pi}{T^2} \epsilon \frac{\epsilon}{T}$$

that satisfies the following: For every $c \in \mathcal{V}^3$ there are ϵ_0 and $C > 0$ such that

$$\sup ||\mathcal{R}_\alpha(\widetilde{\lambda}) - c||_Z : \widetilde{\lambda} \in \mathcal{Y}, ||\mathcal{A}(c) - \widetilde{\lambda}||_Y \leq \epsilon \leq C \epsilon^\beta,$$

for all $\epsilon \in (0, \epsilon_0)$.

We will give explicit choices of \mathcal{R}_α and ϵ_0, in formulas (62), (63), and (64) below. For the convenience of the reader, we give a short summary on the regularization strategy. Assume that we are given $\widetilde{\lambda} \in \mathcal{Y}$, that is, the Neumann-to-Dirichlet map for the unknown wave speed $c(x)$ with measurements errors. Then the regularization strategy is obtained by doing the following steps:

1. Using (8) and (24) we calculate the operator $\widetilde{\mathcal{H}} = P\{(\mathcal{R} \mathcal{A} \mathcal{J}) - \mathcal{J}\}P$, for $r \in [0, T]$. This operator determines approximately the inner products of the waves by $\langle u^{h}(T), u^{h}(T) \rangle_{L^2(M)} \approx \langle \mathcal{H}, f_1, f_2 \rangle_{L^2}$ for all boundary sources $f_1, f_2 \in L^2(T - r, T)$.
2. Using operator $\widetilde{\mathcal{H}}$ we construct in (34) a source $\widetilde{f}_{A, r}$ that approximates the solution $f_{A, r}$ of the minimization problem (13). Here, the source $\widetilde{f}_{A, r}$ produces a wave such that $u^{h}_{A, r}(t, x)_{y = T}$ is close to the indicator function $1_{M(r)}(x)$ of the domain of influence $M(r)$, see (11) and figure 2.
3. Using sources $\widetilde{f}_{A, r}$ we compute approximately the volumes $V(r) = \text{Vol}_e(M(r))$ of the domains of influences, see (20).
4. Using finite differences we compute approximate values of the derivative of the volume of the domain influences $\partial_r V(r)$, see (44).
5. We interpolate the obtained values of $\partial_r V(r)$. This determines the approximate values of the wave speed $v(r)$ in the travel time coordinates, see (21).

6. Finally, we change the coordinates from the travel time coordinates to the Euclidean coordinates to obtain the approximate values of the wave speed $c(x)$ for $x \in M$.

1.2. Previous literature

From the point of view of uniqueness questions, the inverse problem for the $1+1$ dimensional wave equation is equivalent with the one-dimensional inverse boundary spectral problem. The latter problem was thoroughly studied in the 1950s [18, 33, 44] and we refer to [23] [pp 65–67] for an historical overview. In the 1960s Blagoveščenskii [12, 13] developed an approach to solve the inverse problem for the $1+1$ dimensional wave equation without reducing the problem to the inverse boundary spectral problem. This and later dynamical methods have the advantage over spectral methods that they require data only on a finite time interval. The applications of one-dimensional inverse problems have been discussed widely in [11, 23, 27].

The method in the present paper is a variant of the Boundary Control method that was pioneered by Belishev [2] and developed by Belishev and Kurylev [5, 6] in the late 1980s and early 1990s. Of crucial importance for the method was the result of Tataru [56] concerning a Holmgren-type uniqueness theorem for non-analytic coefficients. The Boundary Control method for multidimensional inverse problems has been summarized in [3, 27], and considered for $1+1$ dimensional scalar problems in [4, 7] and for multidimensional scalar problems in [26, 29, 34, 37, 38]. For systems, it has been considered in [35, 36]. Stability results for the method have been considered in [1, 30].
The inverse problem for the wave equation can also be solved by using complex geometrical optics solutions. These solutions were developed in the context of elliptic inverse boundary value problems \[55\], and in \[47\] they were employed to solve an inverse boundary spectral problem. Local stability results can be proved using (real) geometrical optics solutions \[8, 53, 54\], and in \[42\] a stability result was proved by using ideas from the Boundary Control method together with complex geometrical optics solutions. Finally, we mention the important method based on Carleman estimates \[15\] that can be used to show stability results when the initial data for the wave equation are non-vanishing.

2. Modification of the iterative time-reversal control method

In this section, we prove theorem 1 in such a way that we can utilize the proof to construct a regularization strategy as in theorem 3. Let \(\Lambda\) be as defined in \((5)\). Let \(r \in [0, T]\). We define linear operators in \(Y\) by

\[
Jf(t) = \frac{1}{2} \int_0^{2T} 1_\alpha(t, s) f(s) \, ds,
\]

\[
Rf(t) = f(2T - t), \quad K = RAJ - J\Lambda,
\]

\[
Bf(t) = 1_{0,T_1}(t) \int_0^T f(s) \, ds, \quad Pf(t) = 1_{(T-r,T)}(t)f(t),
\]

where

\[
1_\alpha(t, s) = \begin{cases}
1, & t + s \leq 2T \text{ and } s > t > 0, \\
0, & \text{otherwise}
\end{cases}
\]

and

\[
1_{(T-r,T)}(t) = \begin{cases}
1, & t \in (T - r, T), \\
0, & \text{otherwise}.
\end{cases}
\]

Let \(f \in L^2(0, 2T)\). Using the solution \(u^\ell \in H^1(M \times (0, 2T))\) of \((4)\) we define

\[
U_T : L^2(0, 2T) \mapsto H^1(M), \quad U_T f = u^\ell|_{t=T}.
\]

We show in appendix A, theorem 5, that the map \((9)\) is continuous. Let us denote \(dV = c^{-2} dx\) and \(u^\ell(T) = u^\ell|_{t=T}\). Let us recall the Blagovestchenskii identities

\[
\langle u^\ell(T), 1 \rangle_{L^2(M; dV)} = \langle f, B1 \rangle_{L^2(0,2T)}, \\
\langle u^\ell(T), u^h(T) \rangle_{L^2(M; dV)} = \langle f, Kh \rangle_{L^2(0,2T)}.
\]

The identities \((10)\) originate from \[11\], and their proofs can be found e.g. in \[9\]. We define the domain of influence

\[
M(r) = \{ x \in M; d(x, 0) \leq r \},
\]

where \(d(x, 0) = \int_0^x \frac{1}{\sqrt{1 + v^2}} \, dt\) is the travel time of the waves from 0 to the point \(x\). See figure 2 for a visualization of \(M(r)\).

We use the following result that is closely related to \[9, 48\].

Theorem 4. Let \(r \in [0, T]\) and \(\alpha > 0\). Let \(K, B, \text{ and } P\) be as defined in \((8)\). Let us define

\[
S_r = \{ f \in L^2(0, 2T) : \text{supp}(f) \subset [T - r, T] \}.
\]
Then the regularized minimization problem
\[
\min_{f \in \mathcal{S}} (\langle f, Kf \rangle_{L^2(0,2T)} - 2\langle f, B1 \rangle_{L^2(0,2T)} + \alpha\|f\|_{L^2(0,2T)}^2).
\] (13)
has a unique minimizer
\[
f_{\alpha,r} = (P_rKP_r + \alpha)^{-1}P_rB1
\] (14)
and the map \(r \mapsto f_{\alpha,r}\) is continuous \([0, T] \to L^2(0, 2T)\). Moreover \(u^{\alpha,r}(T)\) converges to the indicator function of the domain of influence,
\[
\lim_{\alpha \to 0} \|u^{\alpha,r}(T) - 1_{M(r)}\|_{L^2(M,\text{d}V)} = 0.
\] (15)

For the convenience of the reader, we give a proof.

Proof of theorem 4. Let \(\alpha > 0\) and let \(f \in \mathcal{S}_r\). We define the energy function
\[
E(f) := \langle f, Kf \rangle_{L^2(0,2T)} - 2\langle f, B1 \rangle_{L^2(0,2T)} + \alpha\|f\|_{L^2(0,2T)}^2.
\] (16)
The finite speed of wave propagation implies \(\text{supp}(u^r(T)) \subset M(r)\). Using (10) we can write
\[
E(f) = \|u^r(T) - 1_{M(r)}\|_{L^2(M,\text{d}V)}^2 - \|1_{M(r)}\|_{L^2(M,\text{d}V)}^2 + \alpha\|f\|_{L^2(0,2T)}^2.
\] (17)
Let \((f_j)_{j=1}^\infty \subset \mathcal{S}_r\) be such that
\[
\lim_{j \to \infty} E(f_j) = \inf_{f \in \mathcal{S}_r} E(f).
\]
Then
\[
\alpha\|f_j\|_{L^2(0,T)} \leq E(f_j) + \|1_{M(r)}\|_{L^2(M,\text{d}V)}^2,
\]
and we see that \((f_j)_{j=1}^\infty\) is bounded in \(\mathcal{S}_r\). As \(\mathcal{S}_r\) is a Hilbert space, there is a subsequence of \((f_j)_{j=1}^\infty\) converging weakly in \(\mathcal{S}_r\). Let us denote the limit by \(f_\infty \in \mathcal{S}_r\) and the subsequence still by \((f_j)_{j=1}^\infty\).

The map \(U_T : L^2(0, 2T) \to H^1(M)\), as defined in (9), is bounded. The embedding \(I : H^1(M) \hookrightarrow L^2(M)\) is compact and thus \(U_T : f \mapsto u^r(T)\) is a compact operator
\[
U_T : L^2(0, 2T) \to L^2(M).
\]
Hence, we have a subsequence \((f_j)_{j=1}^\infty\) for which \(u^r(T) \to u^{\alpha,r}(T)\) in \(L^2(M)\) as \(j \to \infty\). Moreover, the weak convergence implies
\[
\|f_\infty\|_{L^2(0,2T)} \leq \liminf_{j \to \infty} \|f_j\|_{L^2(0,2T)}.
\]
Hence
\[
E(f_\infty) = \lim_{j \to \infty} \|u^r(T) - 1_{M(r)}\|_{L^2(M,\text{d}V)}^2 - \|1_{M(r)}\|_{L^2(M,\text{d}V)}^2 + \alpha\|f_\infty\|_{L^2(0,2T)}^2
\]
\[
\leq \lim_{j \to \infty} \|u^r(T) - 1_{M(r)}\|_{L^2(M,\text{d}V)}^2 - \|1_{M(r)}\|_{L^2(M,\text{d}V)}^2 + \alpha\liminf_{j \to \infty} \|f_j\|_{L^2(0,2T)}^2
\]
\[
= \liminf_{j \to \infty} E(f_j) = \inf_{f \in \mathcal{S}_r} E(f),
\]
and thus \(f_\infty \in \mathcal{S}_r\) is a minimizer for (16). We denote by \(D_h\) the Fréchet derivative to direction \(h\). Note that \(\inf_{f \in \mathcal{S}_r} E(f) = \inf_{f \in L^2(0,2T)} E(P_r f)\).
If
\[0 = D_h E(f) = 2 \langle h, P_KP_B f \rangle_{L^2(0,2T)} - 2 \langle h, P_B f \rangle_{L^2(0,2T)} + 2 \alpha \langle h, f \rangle_{L^2(0,2T)}, \]
for all \(h \in S \subset L^2(0,2T) \), then
\[\langle (P_KP_B + \alpha) f, f \rangle_{L^2(0,2T)} = \langle P_B f, f \rangle_{L^2(0,2T)}. \]
Using (10) we have
\[\langle (P_KP_B + \alpha) f, f \rangle_{L^2(0,2T)} = \langle u_p^\delta (T), u_p^\delta (T) \rangle_{L^2(M, dV)} + \langle \alpha f, f \rangle_{L^2(0,2T)}. \]
Operator \(P_KP_B + \alpha \) is coercive when \(\alpha > 0 \). The Lax–Milgram theorem implies that it is invertible, and we have an expression for minimizer
\[f_{\alpha,r} = f_\infty = (P_KP_B + \alpha)^{-1} P_B f. \]
According to [56], see also [28], we know that
\[\{ u^\ell (T) \in L^2 (M (r)); f \in S_r \} \]
is dense in \(L^2 (M (r)) \). Let \(\delta > 0 \). For \(\epsilon = \frac{\delta^2}{2} \), let us choose \(f_{\epsilon} \in S_r, f_{\epsilon} = 0 \) such that
\[\| u^\ell (T) - 1_{M(r)} \|^2_{L^2(M, dV)} \leq \epsilon. \]
Using (17) we have
\[\| u_{\alpha,r}^\delta (T) - 1_{M(r)} \|^2_{L^2(M, dV)} \leq E (f_{\alpha,r}) + \| 1_{M(r)} \|^2_{L^2(M, dV)}. \]
Because \(E (f_{\alpha,r}) \leq E (f_{\epsilon}) \) we have
\[\| u_{\alpha,r}^\delta (T) - 1_{M(r)} \|^2_{L^2(M, dV)} \leq \| u^\ell (T) - 1_{M(r)} \|^2_{L^2(M, dV)} + \alpha \| f_{\epsilon} \|^2 \leq \epsilon + \alpha \| f_{\epsilon} \|^2. \]
When \(0 < \alpha < \alpha_r = \frac{\delta^2}{2 \| f_{\epsilon} \|^2} \), we see that
\[\| u_{\alpha,r}^\delta (T) - 1_{M(r)} \|_{L^2(M, dV)} \leq (\epsilon + \alpha \| f_{\epsilon} \|^2)^\frac{1}{2} = \delta. \]
Thus
\[\lim_{\alpha \to 0} \| u_{\alpha,r}^\delta (T) - 1_{M(r)} \|_{L^2(M, dV)} = 0. \]

We define the travel time coordinates for \(x \in M \) by
\[\tau : [0, \infty) \to [0, \infty), \quad \tau (x) = d (x, 0). \]
The function \(\tau \) is strictly increasing and we denote its inverse by
\[\chi = \tau^{-1} : [0, \infty) \to [0, \infty). \]
We have
\[\chi (0) = 0, \quad \chi '(t) = \frac{1}{\tau '(\chi (t))} = c(\chi (t)). \]
Thus denoting \(v(t) = c(\chi (t)) \) and using \(V(r) \) to denote the volume of \(M(r) \) with respect to the measure \(dV \) we have
\[V(r) = \| M(r) \|_{L^1(M, dV)}^2 = \int_0^r \frac{\chi'(t)}{c(t)^2} \ dt = \int_0^r \frac{\chi'(t)}{v(t)^2} \ dt = \int_0^r \frac{\ dt}{v(t)}. \quad (20) \]

Note that \(M(r) = [0, \chi(r)] \). In particular, \(V(r) \) determines the wave speed in the travel time coordinates,
\[v(r) = \frac{1}{\partial_r V(r)}, \quad (21) \]
and also in the original coordinates since
\[c(x) = v(\chi^{-1}(x)), \quad \chi(t) = \int_0^t v(t') \ dt'. \quad (22) \]

Using theorem 4 and (10) we have a method to compute the volumes of the domains of influence
\[V(r) = \| M(r) \|_{L^2(M, dV)}^2 = \lim_{\alpha \to 0} \alpha (f_{\alpha, r}, B1)_{L^2(0, 2T)}, \quad (23) \]
where \(r \in [0, T] \). We are ready to prove theorem 1.

Proof of theorem 1. For a given measurement \(\Lambda \), theorem 4 and equations (21)–(23) give us a way to calculate for all \(x \in (0, L) \) the value of the velocity function
\[c(x) = v(\chi^{-1}(x)) = A^{-1}(\Lambda)(x). \]
As we assumed that outside of the interval \((0, L)\) the function \(c \) is identically one, the proof for the existence of inverse map \(A^{-1} \) is complete.

3. Stability of regularized problem

In this section, we prove theorem 3. We will construct the operator \(R_{\alpha}(r) \) as a composition of several operators. The construction is motivated by the proof of theorem 1. We define for a Banach space \(E \)
\[\mathcal{K}(E) = \{ A \in \mathcal{L}(E); \ A \text{ is compact} \}. \]
Let \(J, R \) be as defined in (8). Using (8) we see that \(J \in \mathcal{K}(L^2(0, 2T)) \). We define
\[K : Y \to \mathcal{K}(L^2(0, 2T)), \quad K\tilde{\Lambda} = \tilde{R}\tilde{J}\tilde{R} = \tilde{J}\tilde{\Lambda}, \]
\[H : Y \to C([0, T], Y), \quad H\tilde{\Lambda} = r \mapsto P_r(K\tilde{\Lambda})P_r. \quad (24) \]

Proposition 1. We have \(\| H \|_{Y \to C([0, T], Y)} \leq T. \)

Proof. Let \(r \in [0, T] \). We have estimates \(\| P_r \|_Y \leq 1, \| R \|_Y \leq 1, \| J \|_Y \leq \frac{T}{2} \), and
\[\| H\tilde{\Lambda}(r) \|_{L^2(0, 2T)} \leq 2 \| J \|_{L^2(0, 2T)} \| \tilde{\Lambda} \|_{L^2(0, 2T)} \leq T \| \tilde{\Lambda} \|_{L^2(0, 2T)}. \]
Thus

\[\|H\|_{Y-L^2([0,T],Y)} \leq T. \]

It remains for us to show that \(r \mapsto H\tilde{\Lambda}(r) \) is continuous. Let us denote \(\tilde{K} = K\tilde{\Lambda}. \) Let \(r, s \in [0, T]. \) We use the singular value decomposition for the compact operator \(\tilde{K}. \) There are orthonormal bases \(\{\phi_n\}_{n=1}^{\infty} \in L^2(0, 2T) \) and \(\{\psi_n\}_{n=1}^{\infty} \in L^2(0, 2T) \) such that

\[\tilde{K}f = \sum_{n=1}^{\infty} \mu_n(f, \phi_n)\psi_n, \]

for all \(f \in L^2(0, 2T), \) where \(\mu_n \in \mathbb{R} \) are the singular values of \(\tilde{K}. \) We define the family \(\{\tilde{K}^m\}_{m=1}^{\infty} \) of finite rank operators by the formula

\[\tilde{K}^m f = \sum_{n=1}^{m} \mu_n(f, \phi_n)\psi_n. \]

Then

\[
\begin{align*}
&\|P_{\tilde{K}}\tilde{K}^m f - P_{\tilde{K}}\tilde{K}f\|_{L^2(0,2T)} \\
&\leq \|P_{\tilde{K}}\tilde{K}^m f - P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f\|_{L^2(0,2T)} + \|P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f - P_{\tilde{K}}\tilde{K}^m f\|_{L^2(0,2T)} \\
&\quad + \|P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f - P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f\|_{L^2(0,2T)} + \|P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f - P_{\tilde{K}}\tilde{K}^m f\|_{L^2(0,2T)}. \tag{27}
\end{align*}
\]

Let \(\epsilon > 0 \) and let \(\|f\|_{L^2(0,2T)} \leq 1. \) By choosing \(m \) large enough we have

\[\|P_{\tilde{K}}\tilde{K}^m f - P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f\|_{L^2(0,2T)} + \|P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f - P_{\tilde{K}}\tilde{K}^m f\|_{L^2(0,2T)} \leq \frac{\epsilon}{2}. \]

Applying projections to (26) we see that

\[P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f = \sum_{n=1}^{m} \mu_n(f, P_{\tilde{K}}(P_{\tilde{K}} - P_{\tilde{K}})) P_{\tilde{K}} \psi_n. \]

For the second term in the sum (27) we have an estimate

\[
\|P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f - P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f\|_{L^2(0,2T)} = \left\| \sum_{n=1}^{m} \mu_n(f, P_{\tilde{K}}(P_{\tilde{K}} - P_{\tilde{K}})) P_{\tilde{K}} \psi_n \right\|_{L^2(0,2T)} \\
\leq \sum_{n=1}^{m} \|\mu_n|||\psi_n\|_{L^2(0,2T)} \leq C(m)|r - s|^2.
\]

For the third term in the sum we have an analogous estimate

\[\|P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f - P_{\tilde{K}}\tilde{K}^m P_{\tilde{K}} f\|_{L^2(0,2T)} \leq C(m)|r - s|^2. \]

Putting these estimates together and choosing \(|r - s| \leq \delta(\epsilon) = \frac{\epsilon^2}{4C(m)^2}, \) we see that

\[\|P_{\tilde{K}}\tilde{K} P_{\tilde{K}} - P_{\tilde{K}}\tilde{K} P_{\tilde{K}}\|_{Y} \leq \epsilon. \]

Let us define

\[M_1 = \sup\{\|A(c)\|_{L^2(0,2T)}; c \in V^2\}. \tag{28} \]

Using the continuity of \(A, \) see theorem 5 below, we see that \(M_1 < \infty. \) We define \(M_2 = 2TM_1. \) Let \(c \in V^2 \) and denote \(\Lambda = A(c). \) We use again the notations \(H = H\Lambda, \tilde{H} = H\tilde{\Lambda} \) and \(\tilde{H}_r = H\tilde{\Lambda}(r). \) Using proposition 1 we have
We define \(M_3 = M_2 + 3 \) and a family \(\{ \Psi_\alpha^Z \}_{\alpha \in (0, 2]} \subset C(\mathbb{R}) \) by
\[
\Psi_\alpha^Z(s) = \begin{cases}
0, & \text{if } s > M_3 - \frac{\alpha}{4}, \\
- \frac{4}{\alpha}\left(1 + \frac{M_3}{\alpha}\right) - 1, & \text{if } s \in \left(M_3 - \frac{\alpha}{2}, M_3 - \frac{\alpha}{4}\right], \\
1, & \text{if } s \leq M_3 - \frac{\alpha}{2}.
\end{cases}
\]
For \(\alpha \in (0, 2] \) we define
\[
Z_\alpha : C([0, T], Y) \to C([0, T], Y),
\]
\[
Z_\alpha(\widehat{H}) = r \mapsto \Psi_\alpha^Z(\|M_3 - (\widehat{H} + \alpha)\|_{C([0,T],Y)}) (\widehat{H} + \alpha)^{-1}.
\]
Let \(E \) be a Banach space and let \(H \in E \). Let \(\epsilon > 0 \). We denote
\[
B_\epsilon(H) = \{ \widehat{H} \in E : \|H - \widehat{H}\|_E < \epsilon \}.
\]

Proposition 2. Let \(\epsilon \in (0, 1) \) and let \(p \in \left(0, \frac{1}{2}\right) \). Let \(\alpha = 2\epsilon^p \) and let \(\|H\|_{C([0,T],Y)} \leq M_2 \). Let \(H_r \in Y \) be positive semidefinite. Let us assume that \(\widehat{H} \in B_\epsilon(C([0,T],Y)) \). Then
\[
\|Z_\alpha(H) - Z_\alpha(\widehat{H})\|_{C([0,T],Y)} \leq 2^{-1} \epsilon^{1-2p}.
\]

Proof. By the definition (30) of \(\Psi_\alpha^Z \), we see that if
\[
\Psi_\alpha^Z(\|M_3 - (\widehat{H} + \alpha)\|_{C([0,T],Y)}) > 0,
\]
then
\[
\|M_3 - (\widehat{H} + \alpha)\|_{C([0,T],Y)} \leq M_3 - \frac{\alpha}{4} < M_3
\]
and \((\widehat{H} + \alpha)^{-1} \) is defined by the formula
\[
(\widehat{H} + \alpha)^{-1} = \frac{1}{M_3} \sum_{j=1}^{\infty} \left(I - \frac{M_3 - (\widehat{H} + \alpha)}{M_3} \right)^{-1} = \frac{1}{M_3} \sum_{j=1}^{\infty} \left(\frac{M_3 - (\widehat{H} + \alpha)}{M_3} \right)^{-1}.
\]
This gives that \(Z_\alpha(\widehat{H})(r) \in Y \), when \(r \in [0, T] \). Proposition 1 gives continuity for the map \(r \mapsto \widehat{H}_r \). As \(\widehat{H} + \alpha \mapsto (\widehat{H} + \alpha)^{-1} \) is a continuous operation we see that \(Z_\alpha(\widehat{H}) \in C([0, T], Y) \). It remains for us to show that the norm estimate holds. By assumption, \(H_r = H(r) \) is positive semidefinite, that is, \(H_r : L^2(0, 2T) \to L^2(0, 2T) \) is selfadjoint and \(H_r \geq 0 \). Also, \(\|H_r\|_r \leq M_2 \). Thus \(0 \leq H_r \leq M_2 \) and as \(M_3 = M_2 + 3 \) and \(0 \leq \alpha \leq 2 \), we have \(0 \leq M_2 - H_r \leq M_2 \). Thus
\[
I \leq M_2 - \alpha I - H_r \leq M_2 - \alpha I.
\]
Hence \(\|(M_3 - \alpha I) - H_r\|_{C([0,T],Y)} \leq M_3 - \alpha \). As \(\|H - \widehat{H}\|_{C([0,T],Y)} \leq \epsilon \leq \frac{\alpha}{T} \), we have
\[
\|M_3 - (\widehat{H} + \alpha)\|_{C([0,T],Y)} \leq M_3 - \frac{\alpha}{2}.
\]
Thus \(\Psi_\alpha^Z(\|M_3 - (\widehat{H} + \alpha)\|_{C([0,T],Y)}) = 1 \) and \(Z_\alpha(\widehat{H}) \) is the map
\[
r \mapsto (\widehat{H} + \alpha)^{-1}.
\]
Let $r \in [0, T]$. We denote
\[
H_{a,r} = (H_r + \alpha), \quad \tilde{H}_{a,r} = (\tilde{H}_r + \alpha), \quad E = \tilde{H}_{a,r} - H_{a,r}.
\]
As H_r is positive semidefinite we have
\[
\|H_{a,r}^{-1}\|_Y \leq \alpha^{-1}.
\] (32)
Moreover
\[
\|\tilde{H}_{a,r}^{-1} - H_{a,r}^{-1}\|_Y = \|(I + (H_{a,r}^{-1}E)^{-1} - I)H_{a,r}^{-1}\|_Y.
\]
Thus
\[
\|\tilde{H}_{a,r}^{-1} - (H_{a,r})^{-1}\|_Y \leq \frac{\|H_{a,r}^{-1}E\|_Y}{1 - \|H_{a,r}^{-1}E\|_Y}\|H_{a,r}^{-1}\|_Y.
\] (33)
We have $\frac{1}{2} \geq \frac{\alpha}{\alpha}$. Using (32) and (33) we have
\[
\|\tilde{H}_{a,r}^{-1} - (H_{a,r})^{-1}\|_Y \leq \frac{\alpha^2 - 1}{2} \|H_{a,r}^{-1}\|_Y \leq 2 \frac{e^2}{\alpha^2} = 2^{-1}e^{1-2p}.
\]
\[
\square
\]

Let P_r and B be as defined in (8). We define
\[
S : C([0, T], Y) \to C([0, T]),
\]
\[
S(\tilde{Z}_a)(r) = (\tilde{Z}_a(r)P_rB_1, B_1)_{L^2(0,2T)},
\]
\[
\tilde{f}_{a,r} = \tilde{Z}_a(r)P_rB_1.
\] (34)

Proposition 3. We have $\|S\|_{C([0,T])} \leq \frac{r^3}{3}$.

Proof. As the maps $r \mapsto P_r B_1$ and $r \mapsto Z_a(r)$ are continuous, we have that $S(\tilde{Z}_a) \in C([0, T])$. Let $r \in [0, T]$. We have
\[
\|P_r\|_Y \leq 1, \quad \|B_1\|^2_{L^2(0,2T)} = \frac{T^3}{3},
\]
and therefore
\[
|S(\tilde{Z}_a)(r)| = |(\tilde{Z}_a(r)P_rB_1, B_1)_{L^2(0,2T)}| \leq \frac{T^3}{3}\|\tilde{Z}_a(r)\|_Y.
\]
\[
\square
\]

Lemma 1. Let $c \in \mathbb{V}^2$. There is $C > 0$ such that for all $r > 0$ and $p \in H^1(M)$ satisfying $\text{supp}(p) \subseteq M(r)$ there is $f \in S_r$ such that $u^f(x, T) = p(x)$ and
\[
\|f\|_{L^2(0,2T)} \leq C\|p\|_{H^1(M)}.
\] (35)
We recall that $M(r)$ is defined by (11) and S_r is defined by (12). We note that in the study of the multidimensional inverse problem, estimate (35) needs to be replaced by the Tataru
inequality \([56, 57]\) (see also \([14, 39]\)), that is significantly weaker than \((35)\). This is one of the key differences between one-dimensional and multidimensional cases.

Proof. Let us consider the wave equation with time and space having the exchanged roles

\[
(\partial^2_x - c(x)^2 \partial^2_t) \tilde{u}(x, t) = 0, \quad (x, t) \in (0, \chi(T)) \times (0, T),
\]

\[
\tilde{u}(x, T) = p(x), \quad x \in [0, \chi(T)],
\]

\[
\tilde{u}(\chi(T), t) = \partial_t \tilde{u}(\chi(T), t) = 0, \quad t \in (0, T).
\] (36)

By \([40, 41]\) the solution of \((36)\) satisfies

\[
\|\tilde{u}(0, \cdot)\|_{H^1([0, T])} \leq C\|p\|_{H^1(M)}.
\] (37)

If \(\text{supp}(p) \subseteq M(r)\) then \(\text{supp}(\tilde{u}(0, \cdot)) \subseteq [T - r, T]\) and \(\tilde{u}(x, 0) = \partial_t \tilde{u}(x, 0) = 0\), when \(x \in [0, \chi(T)]\), by finite speed of propagation. We choose \(f(t) = \tilde{u}(0, t)\).

Let \(f_{\alpha,r}\) be as in \((14)\) and define

\[
s_\alpha \in C([0, T]), \quad s_\alpha(r) = \langle f_{\alpha,r}, B1 \rangle_{L^2([0,2T])}.
\] (38)

Lemma 2. Let \(\alpha \in \left(0, \min\left(1, \frac{1}{\chi(r)^2}\right)\right)\). Let \(V\) be as defined in \((20)\). Then, there is \(C > 0\), independent \(\alpha\), such that

\[
\|s_\alpha - V\|_{L^2([0,T])} \leq C\alpha^{\frac{1}{2}}.
\]

Proof. Let \(r \in [0, T]\) and \(\delta > 0\). Let us define \(w_\delta \in H^1(M)\)

\[
w_\delta(x) = \begin{cases}
1, & \text{if } x \in (0, \chi(r)) \\
1 - \frac{x - \chi(r)}{\delta}, & \text{if } x \in [\chi(r), \chi(r) + \delta], \\
0, & \text{if } x \in (\chi(r) + \delta, \infty).
\end{cases}
\]

Using \(c(x) > C_0\) we have

\[
\|w_\delta - 1_{M(r)}\|^2_{L^2(M, dV)} \leq \frac{\delta}{3C_0^2}.
\] (39)

When \(\delta \in \left(0, \min\left(1, \frac{1}{\chi(r)^2}\right)\right)\) we have

\[
\|w_\delta\|^2_{H^1(M)} \leq \chi(T) + \frac{\delta}{3} + \frac{1}{\delta} \leq \frac{3}{\delta}.
\] (40)

Below \(C > 0\) denotes a constant that may grow between inequalities, and that depends only on \(m, C_0, C_1, L_4\). Lemma 1 gives us \(f_\delta\) for which \(w_\delta(x, T) = w_\delta(x)\). Thus \((40)\) implies

\[
\|f_\delta\|_{L^2([0,2T])} \leq C\|w_\delta\|_{H^1(M)} \leq \frac{C}{\delta^{\frac{1}{2}}}.
\] (41)
Let $f \in S_r$. We define

$$G_{a,r}(f) = \|u^f(T) - 1_{M(r)}\|_{L^2(M, d\nu)}^2 + \alpha \|f\|_{L^2(0, T)}^2.$$

Using (39) and (41) we have

$$G_{a,r}(f_\delta) = \|w_\delta - 1_{M(r)}\|_{L^2(M, d\nu)}^2 + \alpha \|f_\delta\|_{L^2(0, T)}^2 \leq \frac{\delta}{C} + \alpha \frac{C}{\delta}.$$

(43)

Functional (42) and the functional defined in theorem 4 have the same minimizer $f_{a,r}$. Using (10), (23), and (38) we have

$$\|s_\alpha - V\|_{C^1(0, T)}^2 = \sup_{r \in (0, T)} \|f_{a,r} B \|_{L^2(0, T)}^2.$$

(44)

$$= \sup_{r \in (0, T)} \|u^f(T) - 1_{M(r)}\|_{L^2(M, d\nu)}^2.$$

$$\leq C \sup_{r \in (0, T)} \|u^f(T) - 1_{M(r)}\|_{L^2(M, d\nu)}^2$$

$$\leq C \sup_{r \in (0, T)} G_{a,r}(f_{a,r})$$

Using (43) and choosing $\delta = a^2$ we have

$$\|s_\alpha - V\|_{C^1(0, T)}^2 \leq C a^2.$$

Lemma 3. There is $\bar{m} > 0$ such that the following holds: When $c \in V^2$, the functions v and V, defined in (21) and (20), satisfy

$$\|v\|_{C^1(0, T)} \leq \bar{m} \quad \text{and} \quad \|V\|_{C^1(0, T)} \leq \bar{m}.$$

Proof. Equations (19)–(22) with the chain rule and the formula for the derivatives of inverse functions give us the result. \qed

For small $h > 0$ we consider the partition

$$(0, T) = (0, h) \cup [h, 2h) \cup [2h, 3h) \cup \ldots \cup [Nh - h, Nh) \cup [Nh, T),$$

where $N \in \mathbb{N}$ satisfies $T - h \leq Nh < T$. We define a discretized and regularized approximation of the derivative operator ∂_r by

$$D_h : C([0, T]) \rightarrow L^\infty(0, T),$$

$$D_h(s_\alpha)(r) = \begin{cases} \frac{s_\alpha(h)}{h}, & r \in (0, h), \\ \frac{\dot{s}(r) - s_\alpha(h)}{h}, & r \in [jh, jh + h), \\ \frac{s(T) - s_\alpha(Nh)}{h}, & r \in [Nh, T). \end{cases}$$

(44)

Proposition 4. Let $\beta > 0$ and $\epsilon \in \left(0, \min\left(\frac{1}{\beta^2}, \frac{1}{\beta^2 + C^2}\right)\right)$. Let $\alpha = \beta \epsilon^4$, $h = \epsilon^4$, V be as defined in (20) and let s_α be as defined in (38). Let us assume that $\bar{s}_\alpha \in B_{C(0, T)}(s_\alpha, \epsilon)$. Then

$$\|D_h(\bar{s}_\alpha) - \partial_r V\|_{L^\infty(0, T)} \leq C \epsilon^2.$$

where C is independent of α and \tilde{s}_α.

Proof. Let $r \in [jh, jh + h)$. Using the definition of $D_h(\tilde{s}_\alpha)$ (44) we have
\[
|D_h(\tilde{s}_\alpha)(r) - \partial_r V(r)| = \left| \frac{\tilde{s}_\alpha(jh + h) - \tilde{s}_\alpha(jh)}{h} - \partial_r V(r) \right|
\]
\[
\leq \left| \frac{\tilde{s}_\alpha(jh + h) - s_\alpha(jh + h)}{h} \right| + \left| \frac{s_\alpha(jh) - \tilde{s}_\alpha(jh)}{h} \right| + \left| \frac{V(jh + h) - V(jh)}{h} \right| + \left| \partial_r V(r) - \partial_r V(jh) \right|.
\]

Lemma 3 gives us $||V||_{C^1([0, T])} \leq \tilde{m}$. When $r \in [jh, jh + h)$ there is $\xi \in (jh, jh + h)$ such that
\[
\left| \frac{V(jh + h) - V(jh)}{h} \right| = |\partial_r V(\xi) - \partial_r V(r)| \leq \tilde{h}\tilde{m}.
\]

Using (45) and lemma 2 with assumption we get
\[
|D_h(\tilde{s}_\alpha)(r) - \partial_r V(r)| \leq \frac{2\epsilon}{h} + \frac{2C_1^2}{h} + \tilde{h}\tilde{m}.
\]

Let us choose $h = \epsilon^2$ and $\alpha = \beta \epsilon^4$. Then
\[
|D_h(\tilde{s}_\alpha)(r) - \partial_r V(r)| \leq C^\frac{7}{2}.
\]

The proof is almost identical when $r \in (0, h)$ or $r \in [Nh, T)$. Note that the right-hand side of (46) is independent of r. \hfill \square

Let C_0 and C_1 be as in (2). Let $\tilde{\tilde{k}}_\alpha \in L^\infty(0, T)$ and we define
\[
\Psi^W(\tilde{\tilde{k}}_\alpha)(r) = \begin{cases} \frac{1}{C_1}, & \text{if } \tilde{\tilde{k}}_\alpha(r) < C_1^{-1}, \\ \frac{1}{\tilde{\tilde{k}}_\alpha(r)}, & \text{if } C_1^{-1} \leq \tilde{\tilde{k}}_\alpha(r) \leq C_0^{-1}, \\ \frac{1}{C_0}, & \text{if } \tilde{\tilde{k}}_\alpha(r) > C_0^{-1}. \end{cases}
\]

We define
\[
W : L^\infty(0, T) \rightarrow L^\infty(M), \quad W(\tilde{\tilde{k}}_\alpha)(r) = \begin{cases} \Psi^W(\tilde{\tilde{k}}_\alpha)(r), & \text{if } r \in (0, T), \\ 1, & \text{if } r \in [T, \infty). \end{cases}
\]

Proposition 5. Let V be as defined in (20) and v be as defined in (21). Let us assume that $\tilde{\tilde{k}}_\alpha \in \mathcal{B}_{L^\infty(0, T)}(\partial_r V, \epsilon)$. Then
\[
||W(\tilde{\tilde{k}}_\alpha) - v||_{L^\infty(M)} \leq C_1^2 \epsilon.
\]

Proof. For all $x \in M$, we have $0 < C_0 \leq c(x) \leq C_1$. Let $r \in (0, T)$ and assume that $C_1^{-1} \leq \tilde{\tilde{k}}_\alpha(r) \leq C_0^{-1}$. Using (21) and (22) we have $0 < \frac{1}{C_1} \leq \partial_r V(r) \leq \frac{1}{C_0}$, Then
In the case when \(r \in (0, T) \) and \(\hat{k}_0(r) < C_1 \) or \(\hat{k}_0(r) > C_0^{-1} \) we obtain similar estimates. Note that the right-hand side of (48) is independent of \(r \). When \(r \geq T \) the left-hand side is identically zero.

For \(\tilde{w}_0 \in L^\infty(M) \) we define two operators

\[
\Psi^\Phi : L^\infty(M) \to L^\infty(M), \quad \Psi^\Phi(\tilde{w}_0)(r) = \begin{cases} C_0, & \text{if } \tilde{w}_0(r) < C_0, \\
C_0 \leq \tilde{w}_0(r) \leq C_1, & \\
C_1, & \text{if } \tilde{w}_0(r) > C_1. \end{cases}
\]

and

\[
\Upsilon : L^\infty(M) \to C(M), \quad \Upsilon(\tilde{w}_0)(t) = \int_0^t \tilde{w}_0(t') dt'.
\]

Using (49) and (50) we see that \(\Upsilon \circ \Psi^\Phi(\tilde{w}_0) : M \to M \) is bijective as a function of \(t \). Let us denote \(\tilde{\chi} = \Upsilon \circ \Psi^\Phi(\tilde{w}_0) \) and \(\tilde{\chi}^{-1} = (\Upsilon \circ \Psi^\Phi(\tilde{w}_0))^{-1} \). We define an operator

\[
\Phi : L^\infty(M) \to L^\infty(\mathbb{R}), \quad \Phi(\tilde{w}_0) = \begin{cases} 1, & \text{if } x \in (-\infty, 0), \\
\tilde{w}_0 \circ \tilde{\chi}^{-1}, & \text{if } x \in [0, L_1), \\
1, & \text{if } x \in [L_1, \infty). \end{cases}
\]

Let us define \(\eta \in C^\infty(\mathbb{R}) \) by

\[
\eta(x) = \begin{cases} C \exp \left(\frac{-1}{x^2 - 1} \right), & \text{if } x \in (-1, 1), \\
0, & \text{if } |x| \geq 1, \end{cases}
\]

where the constant \(C > 0 \) selected so that \(\int_{-\infty}^{\infty} \eta(x) = 1 \). For \(\nu > 0 \) we define

\[
\eta_{\nu}(x) = \frac{1}{\nu} \eta \left(\frac{x}{\nu} \right).
\]

By using convolution we define a smooth approximation to a given function \(\Phi(\tilde{w}_0) \in L^\infty(\mathbb{R}) \) by setting

\[
\Gamma_{\nu} : L^\infty(\mathbb{R}) \to C^\infty(\mathbb{R}), \quad \Gamma_{\nu}(\Phi(\tilde{w}_0)) = \eta_{\nu} * \Phi(\tilde{w}_0). \]

Let us denote \(\tilde{c}_{\nu} = (\Gamma_{\nu} \circ \Phi)(\tilde{w}_0) = \eta_{\nu} * \Phi(\tilde{w}_0) \).

Proposition 6. Let \(\epsilon > 0 \) and \(\nu = \epsilon^{\frac{1}{m}} \). Let \(m > 0 \) be as in (21). Let \(\nu \) be as in (21). Let \(c \in \mathbb{Y} \). Let us assume that \(\tilde{w}_0 \in B_{L^\infty(M)}(\nu, \epsilon) \). Thus, we have

(i) \(\| \Phi(\tilde{w}_0) - c \|_{L^\infty(M)} \leq C\epsilon \),

(ii) \(\| \tilde{c}_{\nu} - c \|_{C^2(M)} \leq C\epsilon^{\frac{1}{m}}. \)

Proof. Let \(x \in [0, L_1) \). Let us denote \(t = \chi^{-1}(x) \) and \(\tilde{t} = \tilde{\chi}^{-1}(x) \). Having \(\chi \) as in (22) and \(\tilde{\chi} \) as in (51) we see that

\[
| \Phi(\tilde{w}_0)(x) - c(x) | = | \tilde{w}_0(\tilde{t}) - v(\tilde{t}) | \leq | \tilde{w}_0(\tilde{t}) - v(\tilde{t}) | + | v(\tilde{t}) - v(t) |.
\]

Lemma 3 gives us \(\| v \|_{C^2(0, T)} \leq \tilde{m} \) and we have

\[
| v(\tilde{t}) - v(t) | \leq \tilde{m} | \tilde{t} - t |.
\]
Using (2) and (22) we see that $0 < C_0 \leq v(t) \leq C_t$ and hence
\begin{equation}
C_0 |\tilde{r} - r| \leq \left| \int_{t}^{t'} v(t') \, dt' \right| = |\chi(t) - \chi(t')|.
\end{equation}
Having $\chi(\tilde{t}) = x = \chi(t)$ and using (22) and (50) we see that
\begin{equation}
|\chi(\tilde{t}) - \chi(t)| = |\chi(t) - \chi(\tilde{t})| = \left| \int_{0}^{t} (v(t') - \Psi^{\Phi}(\tilde{u}_t(t')) \, dt' \right|.
\end{equation}
Using (22) and (50) we see that $|v(t') - \Psi^{\Phi}(\tilde{u}_t(t'))| \leq |v(t') - \tilde{u}_t(t')|$ for all $t' \in M$. Hence
\begin{equation}
|\chi(\tilde{t}) - \chi(t)| = \left| \int_{0}^{\tilde{t}} (v(t') - \tilde{u}_t(t')) \, dt' \right| \leq C_t^{-1} \epsilon.
\end{equation}
Using (55), (56), and (58) we have
\begin{equation}
|\Phi(\tilde{u}_t)(x) - c(x)| \leq \left(1 + \frac{\tilde{m}C_t^{-1}(L_t)}{C_0} \right) \epsilon.
\end{equation}
Note that the right-hand side in (59) does not depend on x. When $x \in [L_t, \infty)$ the left-hand side in identically zero and we have inequality in case (i). Let us define that $c(x) = 1$, for $x \in (-\infty, 0)$. Using (1) we have
\begin{equation}
\|\eta_v \ast \Phi(\tilde{u}_t) - \eta_v \ast c\|_{L^2(\mathbb{R})} \leq \|\eta_v\|_{L^{\infty}(\mathbb{R})} \|\Phi(\tilde{u}_t) - c\|_{L^2(\mathbb{R})}.
\end{equation}
Let $\nu \in (0, 1)$. Using inequality (i) from proposition 6 and definitions (51), (53) and (54) we have
\begin{equation}
\|\eta_v \ast \Phi(\tilde{u}_t) - \eta_v \ast c\|_{L^2(\mathbb{R})} \leq C \nu^{-2} \epsilon.
\end{equation}
Using (52) and (53) we see that supp(η_v) $\subset [-\nu, \nu]$. Combining that with the assumption that $c \in \mathcal{V}^3$ we have
\begin{equation}
\|\eta_v \ast c - c\|_{L^2(\mathbb{R})} \leq 2\nu \|c\|_{L^2(\mathbb{R})} \leq 2\nu \epsilon.
\end{equation}
By $\nu = \epsilon^\frac{3}{4}$ and using (60) and (61) we have
\begin{equation}
\|\epsilon \ast c\|_{L^2(\mathbb{R})} \leq C \nu^{-2} \epsilon + \nu 2m \leq (C + 2m) \epsilon^\frac{1}{4}.
\end{equation}
\hfill \square

Proof of theorem 3. Let
\begin{equation}
\epsilon_0 = \min \left\{ 1, \frac{1}{2T}, \frac{1}{2^{2}T}, \frac{1}{2^{4}T_{\lambda}(T)^{2}}, \frac{3^{g}2^{8}}{C^{18}C_{1}^{10}T^{28}} \right\}
\end{equation}
Suppose that $\tilde{\Lambda} \in \mathcal{B}(\Lambda, \epsilon)$ and $\epsilon \in (0, \epsilon_0)$. We denote $\tilde{H} = H \Lambda$ and $\tilde{H} = H \tilde{x}$. Using proposition 1 we get
\begin{equation}
\|H - \tilde{H}\|_{C([0,T],Y)} \leq 2T \epsilon.
\end{equation}
We denote $Z_0 = Z_0(H)$ and $\tilde{Z}_0 = Z_0(\tilde{H})$. We have $\tilde{H} \in \mathcal{B}(C([0,T],Y)(H, 2Te))$ and $\epsilon \in \left(0, \min \left(1, \frac{1}{2T} \right) \right)$. Proposition 2 with $p = \frac{3}{4}$ gives us
\begin{equation}
\|Z_0 - \tilde{Z}_0\|_{C([0,T],Y)} \leq 2^{\frac{3}{4}}T^{\frac{1}{4}} \epsilon_{1} = \epsilon_1,
\end{equation}
since $\alpha = 2^{p+1}T_{\lambda}p = 2^{\frac{3}{4}T_{\lambda}^{\frac{1}{4}} \epsilon_1}$. We denote $s_\alpha = sZ_\alpha$ and $\tilde{s}_\alpha = s\tilde{Z}_\alpha$. We have $\tilde{Z}_\alpha \in \mathcal{B}(C([0,T],Y)(Z_\alpha, \epsilon_1))$. Proposition 3 gives us
We denote \(\tilde{k}_o = D_h(\xi) \). We have \(\tilde{x}_o \in \mathcal{B} \subset (0,T_1) \left(\mathcal{C} \right) \) and \(\epsilon_2 \in \left(0, \min \left(\frac{1}{\beta_1}, \frac{1}{\beta_2} \right) \right) \).

Proposition 4 with \(\beta = 3^425T^{-12} \) gives us

\[
\| \tilde{k}_o - \partial V \|_{\mathcal{L}^\infty(0,T_1)} \leq C 3^{3 \frac{1}{2}} \cdot 2^{-2} T^{12} e^{\frac{1}{2}} = \epsilon_3,
\]

where \(\alpha = \beta (3^{3 \frac{1}{2}} \cdot 2^{-2} T^{12} e^{\frac{1}{2}})^{\frac{1}{4}} = \beta (3^{-4} \cdot 2^{-\frac{2}{3}} T^{\frac{12}{3}} e^{\frac{1}{2}}) = 2^{\frac{3}{2}} T^{2} e^{\frac{1}{2}}. \) We denote \(\tilde{\eta}_o = W(\tilde{k}_o) \).

We have \(\tilde{k}_o \in \mathcal{B}(0,T_1)(\partial V, \epsilon_3). \) Proposition 5 gives us

\[
\| \tilde{\eta}_o - \nu \|_{\mathcal{L}^\infty(M)} \leq C 3^{3 \frac{1}{2}} \cdot 2^{-2} T^{12} e^{\frac{1}{2}} = \epsilon_4.
\]

Let \(\epsilon_4 \in (0, 1) \) and \(\nu = \frac{1}{3}. \) We denote \(\tilde{v}_o = \eta \star \Phi(\tilde{\eta}_o). \) We have \(\tilde{\eta}_o \in \mathcal{B}^{\infty}(M, \nu, \epsilon_4). \) Let \(c \in \mathcal{V} \) and proposition 6 gives us

\[
\| \tilde{v}_o - c \|_{\mathcal{C}(M)} \leq C e^{\bar{\beta}^2},
\]

where \(c \in (0, \epsilon_0). \) Using (24), (30), (34), (44), (47), (51) and (54) we define

\[
\mathcal{R}_{\mathcal{A}(c)} : Y \rightarrow Z,
\]

\[
\mathcal{R}_{\mathcal{A}(c)} = \Gamma_r \circ \Phi \circ W \circ D_h \circ S \circ Z_o \circ H,
\]

and we have an estimate

\[
\| \mathcal{R}_{\mathcal{A}(c)}(\tilde{X}) - c \|_Z \leq C e^{\bar{\beta}^2}. \tag{64}
\]

Appendix A: The direct problem

Theorem 5. Let \(c \in \mathcal{V} \) and \(f \in \mathcal{L}^2(0, 2T). \) Then the boundary value problem (4) has a unique solution \(u_0^f \in \mathcal{H}^1(0, 2T) \times M \). The operators \(\Lambda \) and \(\mathcal{U}_c, \) defined in (5) and (9), are bounded, and the direct map \(\mathcal{A} : \mathcal{V} \rightarrow \mathcal{Z} \rightarrow Y \), defined in (6), is continuous, and moreover

\[
M_I = \sup \{ \| \mathcal{A}(c) \|_{\mathcal{L}^\infty(0,2T)} : c \in \mathcal{V} \}< \infty.
\]

Proof. Let us consider the wave equation (4). When \(c = 1 \) on \(M \) we denote the solution by \(u_0^f \) and have

\[
\begin{cases}
 u_0^f(t, x) = h(t - x), & t > 0, \\
 0, & t \leq 0.
\end{cases}
\]

Note that \(f \mapsto u_0^f \) is continuous from \(\mathcal{L}^2(0, 2T) \) to \(\mathcal{C}^1([0, 2T]; \mathcal{L}^2(M)) \cap \mathcal{C}([0, 2T]; \mathcal{H}^1(M)) \).

Let us consider the wave equation

\[
(\partial_t^2 - c(x)^2 \partial_x^2)w(t, x) = F(t, x) \quad \text{in } (0, 2T) \times M,
\]

\[
\partial_t w(t, 0) = 0, \quad w|_{t=0} = \partial_t w|_{t=0} = 0.
\]

For the wave equation (65) the existence and uniqueness of the solutions and the continuity of the map \(W : F \rightarrow w, \) given by

\[
W : \mathcal{L}^2(0, 2T) \times M \rightarrow \mathcal{C}([0, 2T]; \mathcal{H}^1(M)) \cup \mathcal{C}^1([0, 2T]; \mathcal{L}^2(M)),
\]

follow from the results of [40] (ch 3, theorems 8.1 and 8.2), and [41] (p 93).
Let \(\psi \in C^\infty(M) \) be such that \(\psi = 1 \) near \(x = 0 \) and \(\psi = 0 \) when \(x > \frac{L_2}{2} \). Note that \(c = 1 \) in support of \(\psi \). The commutator \(A = [\partial^2_t, \psi] \) is a first-order differential operator, whence \(Au^f_0 \in L^2((0, 2T) \times M) \) for \(f \in L^2(0, 2T) \).

Let us choose \(F(t, x) = Au^f_0(t, x) \) in (65) and define \(u^f = \psi u^f_0 + v \). Then
\[
(\partial^2_t - c^2 \partial^2_x)u^f = \psi(\partial^2_t - \partial^2_x)u^f + Au^f_0 = 0,
\]
where \(u^f = \psi u^f_0 + v \in C^1([0, 2T]; L^2(M)) \cap C([0, 2T]; H^1(M)) \) is the solution of (4). As \(\psi = 1 \) near \(x = 0 \), we see that \(u \) also satisfies the boundary conditions in (4). In particular, \(u^f \in H^1((0, 2T) \times M) \). The above shows that \(f \mapsto u^f \) is a continuous operator from \(L^2(0, 2T) \) to \(u^f \in C^1([0, 2T]; L^2(M)) \cap C([0, 2T]; H^1(M)) \), and hence \(U_T : L^2(0, 2T) \rightarrow H^1(M) \) is continuous. Using the Trace theorem, we see that the map \(\Lambda \) is continuous from \(L^2(0, 2T) \) to \(H^2(0, 2T) \).

Let us now suppose that \(f \in C_c^\infty(0, 2T) \). Let \(u^f \) be solution for the boundary value problem in (4) and \(c(x) \) be as defined in (2). Let \(x \in M \) and we define
\[
k \in C^2(M), \quad k(x) = c(x)^{1/2}
\]
and
\[
G : C^2(M \times (0, 2T)) \rightarrow C(M \times (0, 2T)),
\]
\[
G(u) = k^{-1}(\partial^2_t - c^2\partial^2_x)k u
\]
\[
= (\partial^2_t - c^2 \partial^2_x - 2c^2k^{-1} \partial_x - c^2k^{-1}(\partial^2_x k))u.
\]

Let \(x \in M \) and define
\[
\phi(x) = \int_0^x c(x')^{-1} \mathrm{d}x'.
\]
Let us denote \(\tilde{x} = \phi(x) \) and define
\[
\tilde{u}^f(\tilde{x}, t) = u^f(\phi(x), t) = \frac{u^f(x, t)}{k(x)}.
\]
Using (3), (66)–(69) and the property of finite speed of propagation we see that \(\tilde{u}^f(\tilde{x}, t) \) is a solution of the boundary value problem
\[
(\partial^2_t - \partial^2_x + q(\tilde{x}))\tilde{u}^f(\tilde{x}, t) = 0, \quad (\tilde{x}, t) \in (0, 2T) \times (0, 2T),
\]
\[
\partial_\tilde{x}\tilde{u}^f(0, t) = f(t), \quad \partial_\tilde{x}\tilde{u}^f(2T, t) = 0, \quad t \in (0, 2T),
\]
\[
\tilde{u}^f(x, 0) = \partial_\tilde{x}\tilde{u}^f(x, 0) = 0, \quad \tilde{x} \in [0, 2T],
\]
where
\[
q(\tilde{x}) = -c^2(\phi^{-1}(\tilde{x}))k^{-1}(\phi^{-1}(\tilde{x}))\partial^2_x k(\phi^{-1}(\tilde{x})).
\]

Let \(\tilde{x} \in [0, T] \). Using (2), (3), (66), (68), (71) we see that for every \(q \) that corresponds to some \(c \in \Gamma^2 \) via formula (71) there is a constant \(C_3 = C_3(C_0, C_1, L_m, m, T) \) for which
\[
|q(x)| \leq C_3.
\]
Let \(\tilde{x} \geq T \). Using (2) we have \(c(x) = 1 \) and thus by using (71) we see that \(q(\tilde{x}) = 0 \). We define \(\Lambda_{\tilde{x}}^f = \tilde{u}^f|_{\tilde{x}=0} \). Let us consider two velocity functions \(c_1 \) and \(c_2 \), and let \(q_1 \) and \(q_2 \) be the potentials corresponding to \(c_1 \) and \(c_2 \) via formula (71). Using (69) and the property that \(C_0^\infty(0, 2T) \subset L^2(0, 2T) \) is dense, we have
Let us denote by \(u^f_{q_1} \) and \(u^f_{q_2} \) the two solutions with respect to potentials \(q_1 \) and \(q_2 \) for the problem (70). Let us define \(w(\vec{x}, t) = \tilde{u}^f_{q_1}(\vec{x}, t) - \tilde{u}^f_{q_2}(\vec{x}, t) \). Then \(w \) is the solution of
\[
(\partial_t^2 - \partial_x^2 + q(\vec{x}))w(\vec{x}, t) = F(\vec{x}, t), \quad (\vec{x}, t) \in (0, 2T) \times (0, 2T),
\]
\[
\partial_x w(0, t) = 0, \quad \partial_x w(2T, t) = 0, \quad t \in (0, 2T),
\]
\[
w(\vec{x}, 0) = \partial_t w(\vec{x}, 0) = 0, \quad x \in [0, 2T],
\]
where
\[
F(\vec{x}, t) = (q_1(\vec{x}) - q_2(\vec{x}))\tilde{u}^f_{q_2}(\vec{x}, t).
\]

Using the results of [40] (ch 3), or alternatively, the same proof that is in [28], lemma 1.9 for the initial boundary value problem with the Dirichlet boundary condition, we see for (74), that there is a constant \(C_4 = C_4(C_0, C_1, C_3, L_k, m, T) \) such that for all potentials \(q \) satisfying (72) the solution of the wave equation satisfies
\[
\|w\|_{L^2((0,2T) \times (0,2T))} \leq C_4 \|F\|_{L^2((0,2T) \times (0,2T))}.
\]

Using (69) we see that \(u^f_{q_1} \in H^1((0, 2T) \times (0, 2T)) \). That with (72) and (75) imply
\[
\|F\|_{L^2((0,2T) \times (0,2T))} \leq \|q_1 - q_2\|_{L^\infty(0,2T)} \|u^f_{q_1}\|_{H^1((0,2T) \times (0,2T))}.
\]

When \(q = 0 \), we can construct an explicit solution of (70), see [28], formula (1.34). Similar to the estimate (76), we see using the results of [40] (ch 3) or [28] that there is a constant \(C_4 \) that depends only on \(C_0, C_1, L_k, m, T \) such that
\[
\|\tilde{u}^f_{q_i}\|_{H^1((0,2T) \times (0,2T))} \leq C_5 \|f\|_{L^2(0,2T)}.
\]

Using the Trace theorem we have
\[
\|A_{q_1}f - A_{q_2}f\|_{L^2(0,2T)} \leq C(T) \|u^f_{q_1} - u^f_{q_2}\|_{H^1((0,2T) \times (0,2T))}.
\]

Havq \(\hat{q}(\vec{x}) = 0 \), when \(\vec{x} \geq T \), and using (76)–(79) we have
\[
\|A_{q_1} - A_{q_2}\|_{L^2(0,2T)} \leq C_1\|q_1 - q_2\|_{L^\infty(0,2T)} = C_1\|q_1 - q_2\|_{L^\infty(0,2T)},
\]
where \(C_1 \) depends only on \(C_0, C_1, L_k, m, \) and \(T \).

Let \(c_1, c_2 \in \mathbb{V}^2 \), where \(c_1 \in \mathbb{V}^2 \) is fixed. Let \(\|c_1 - c_2\|_{C^2(M)} \leq \epsilon \). Let \(\vec{x} \in (0, T) \). Using (68) and (71) we have
\[
q_1(x) = -c_1^2(x)k_1^{-1}(x)\partial_x^2 k_1(x)_{x = \phi_1^{-1}(\vec{x})},
\]
\[
q_2(x) = -c_2^2(x)k_2^{-1}(x)\partial_x^2 k_2(x)_{x = \phi_2^{-1}(\vec{x})}.
\]

Let us denote \(y = \phi_1^{-1}(\vec{x}) \) and \(x = \phi_2^{-1}(\vec{x}) \). Note that for all \(c_1, c_2 \in \mathbb{V}^2 \) and \(\vec{x} \in (0, T) \) we have \(x, y \in [0, TC] \). Let \(x, y \in [0, TC] \) and define
\[
h_1(x) = -c_1^2(x)k_1^{-1}(x)\partial_x^2 k_1(x), \quad h_2(x) = -c_2^2(x)k_2^{-1}(x)\partial_x^2 k_2(x).
\]

We have
\[
|q_1(x) - q_2(x)| \leq |h_1(\phi_1^{-1}(\vec{x})) - h_1(\phi_2^{-1}(\vec{x}))| + |h_1(\phi_2^{-1}(\vec{x})) - h_2(\phi_2^{-1}(\vec{x}))|.
\]
For the second term on the right-hand side of (81) we have
\[
|h_1(x) - h_2(x)| = |c_2^2(x)k_2^{-1}(x)\partial_x^2k_2(x) - c_1^2(x)k_1^{-1}(x)\partial_x^2k_1(x)| \\
\leq |c_1^2(x) - c_2^2(x)||k_1^{-1}(x)||\partial_x^2k_1(x)| \\
+ |k_1^{-1}(x) - k_2^{-1}(x)||c_2^2(x)||\partial_x^2k_1(x)| \\
+ |\partial_x^2k_1(x) - \partial_x^2k_2(x)||c_2^2(x)||k_2^{-1}(x)|,
\]
where \(x = \phi^{-1}_2(\bar{x}) \). Having \(x \in [0, TC_1] \) and using (2), (68), (66) we can bound each of these three terms and get
\[
|h_1(x) - h_2(x)| \leq C_8\|c_1 - c_2\|_{C^2(M)},
\]
(82)
where \(C_8 \) depends only on \(C_0, C_1, L_t, m, T \). As \(h_1 \) is continuous on \(M \) and zero on \([0, L_0] \cup (L_1, \infty) \), \(h_1 \) is uniformly continuous on \(M \). Moreover, we have a function \(\omega : M \rightarrow M \), the continuity modulus of \(h_1 \), for which
\[
|h_1(x) - h_1(y)| \leq \omega(\epsilon),
\]
(83)
for \(x, y \in M \) satisfying \(|x - y| \leq \epsilon \). Thus, for the first term on the right-hand side of (81) we have
\[
|h_1(\phi^{-1}_1(\bar{x})) - h_1(\phi^{-1}_2(\bar{x}))| \leq \omega(|\phi^{-1}_1(\bar{x}) - \phi^{-1}_2(\bar{x})|).
\]
(84)
Having \(x \in [0, TC_1] \) and using (2) and (68) we have
\[
|\phi_2(x) - \phi_1(x)| \leq \int_0^x \frac{|c_2(x') - c_1(x')|}{c_1(x')c_2(x')} dx \leq \frac{TC_0\|c_1 - c_2\|_{C^2(M)}}{C_0^2}.
\]
(85)
As \(\frac{1}{c_1} \leq \frac{\phi_0}{dx}(x) \leq \frac{1}{c_0} \), we have
\[
\frac{1}{C_1}|x - y| \leq |\phi_1(x) - \phi_1(y)| \leq \frac{1}{C_0}|x - y|.
\]
(86)
Using (85) and (86) we have
\[
|\phi^{-1}_1(\bar{x}) - \phi^{-1}_2(\bar{x})| \leq C_1|\phi_1(\phi^{-1}_1(\bar{x})) - \phi_1(\phi^{-1}_2(\bar{x}))| \\
\leq C_1|\phi_1(\phi^{-1}_1(\bar{x})) - \phi_1(\phi^{-1}_2(\bar{x}))| + |\phi_2(\phi^{-1}_2(\bar{x})) - \phi_1(\phi^{-1}_2(\bar{x}))| \\
\leq C_1\left(0 + \frac{TC_0\|c_1 - c_2\|_{C^2(M)}}{C_0^2}\right) \leq C_0 C_1 T\|c_1 - c_2\|_{C^2(M)}.
\]
(87)
Using (81), (82), (84), and (87) we have
\[
|q_1(x) - q_2(x)| \leq \omega(C\|c_1 - c_2\|_{C^2(M)}) + C\|c_1 - c_2\|_{C^2(M)},
\]
(88)
where \(\bar{x} \in (0, T) \). As \(\omega \) is continuous at zero, we see that when \(c_2 \rightarrow c_1 \) in \(V^2 \subset C^2_0(M) \) we get by using (88) that \(q_2 \rightarrow q_1 \) in \(L^\infty(0, T) \). Using this with (73) and (80) we obtain \(A(c_1) \rightarrow A(c_2) \) in \(L(L^2(0, 2T)) \) when \(c_2 \rightarrow c_1 \) in \(V^2 \subset C^2_0(M) \).

Choosing \(c_2(x) = 1 \) for all \(x \in M \), we see that \(A(c_2)f = 0 \) for all \(f \in L^2(0, 2T) \). Using this with (73) we have
\[
\|A(c_1)\|_{L(L^2(0,2T))} = \|A(c_1) - A(c_2)\|_{L(L^2(0,2T))} \leq C_0\|q_1 - q_2\|_{L^\infty(0,T)},
\]
(89)
where \(C_0 \) depends only on \(C_0, C_1, L_t, m, T \). When \(c_2(x) = 1 \) for all \(x \in M \), \(q_2 \) is zero on \(M \). This with (72) and (80) implies \(\|q_1 - q_2\|_{L^\infty(0,T)} \leq C_3 \), for all \(c_1 \in V^2 \). Using this and (89) we see that
\[M_1 = \sup\{ \| A(c) \|_{C^1(0,2\pi)} ; c \in V^2 \} < \infty. \]

\[\square \]

Appendix B: the proof of theorem (2)

Proof. Let \(V^k \) as defined in (2). By theorem 5, the map
\[
A : V^2 \subset X \rightarrow Y, \quad A(c) = \Lambda,
\]
is continuous. Also by theorem 1, \(A : V^2 \rightarrow A(V^2) \) is one-to-one. By the Arzela–Ascoli theorem \(cl_{C^1(M)}(V^3) = \overline{V^3} \) is a compact subset of \(C^2(M) \). Let \(U \subset \overline{V^3} \) be open. Thus \(\overline{V^3} \setminus U \) is closed and compact. Using the continuity of \(A \) we see that \(A(\overline{V^3} \setminus U) = A(\overline{V^3}) \setminus A(U) \) is compact. As \(Y \) is a Hausdorff space, \(A(\overline{V^3}) \setminus A(U) \) is closed. Thus \(A(U) \subset A(\overline{V^3}) \) is open and
\[
A : \overline{V^3} \rightarrow A(\overline{V^3}), \quad A(c) = \Lambda,
\]
is a homomorphism. Note that \(\overline{V^3} \) has the relative topology determined by the norm \(\| \|_{C^1(M)} \) and \(A(\overline{V^3}) \) has the relative topology induced from \(Y \).

\[\square \]

Acknowledgments

We thank Samuli Siltanen for inspiring discussions on the regularization of inverse problems. L. Oksanen was partly supported by EPSRC. J Korpela and M Lassas were supported by the Academy of Finland, projects 263235, 273979 and 284715.

References

[1] Anderson M, Katsuda A, Kurylev Y, Lassas M and Taylor M 2004 Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem Invent. Math 158 261–321

[2] Belishev M I 1987 An approach to multidimensional inverse problems for the wave equation Dokl. Akad. Nauk SSSR 297 524–3

[3] Belishev M I 1997 Boundary control in reconstruction of manifolds and metrics (the BC method) Inverse Problems 13 R1–45

[4] Belishev M I and Kachalov A P 1989 Methods in the theory of boundary control in an inverse spectral problem for an inhomogeneous string Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (LOMI) 13 14–22

[5] Belishev M I and Kurylev Y V 1987 A nonstationary inverse problem for the multidimensional wave equation ‘in the large’ Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 189 21–30

[6] Belishev M I and Kurylev Y V 1992 To the reconstruction of a Riemannian manifold via its spectral data (BC-method) Comm. Partial Differential Equations 17 767–804

[7] Belishev M I, Ryazhov V A and Filippov V B 1994 A spectral variant of the VS-method: theory and numerical experiment Dokl. Akad. Nauk. 337 172–6

[8] Bellassoued M and Dos Santos Ferreira D 2011 Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map Inverse Probl. Imaging 5 745–73

[9] Bingham K, Kurylev Y, Lassas M and Siltanen S 2008 Iterative time-reversal control for inverse problems Inverse Probl. Imaging 2 63–81

[10] Bissantz N, Hohage T and Munk A 2004 Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise Inverse Problems 20 1773–89
[11] Blagoveshchenskii A S 1966 The inverse problem of the theory of seismic wave propagation Problems of Mathematical Physics, Spectral Theory and Wave Processes (Russian) (Leningrad. Univ. press) 68–81

[12] Blagoveshchenskii A S 1969 A one-dimensional inverse boundary value problem for a second order hyperbolic equation Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 15 85–90

[13] Blagoveshchenskii A S 1971 The inverse boundary value problem of the theory of wave propagation in an anisotropic medium Trudy Mat. Inst. Steklov 115 39–56

[14] Bosi R, Kurylev Y and Lassas M 2015 Stability of the unique continuation for the wave operator via Tataru inequality and applications arXiv:1506.04318

[15] Bukhgeim A L and Klibanov M V 1981 Uniqueness in the large of a class of multidimensional inverse problems Dokl. Akad. Nauk SSSR 260 269–72

[16] Dahl M F, Kirpichnikova A and Lassas M 2009 Focusing waves in unknown media by modified time reversal iteration SIAM J. Control Optim. 48 839–58

[17] Engl H W, Hanke M and Neubauer A 1996 Regularization of inverse problems (Mathematics and its Applications 375) (Dordrecht: Kluwer Academic Publishers Group)

[18] Gel’fand I M and Levitan B M 1951 On the determination of a differential equation from its spectral function Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 309–60

[19] Hanke M 1997 Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems Numer. Funct. Anal. Optim 18 971–93

[20] Hofmann B, Kaltenbacher B, Pöschl C and Scherzer O 2007 A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators Inverse Problems 23 987–1010

[21] Hohage T and Pricop M 2008 Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise Inverse Probl. Imaging 2 271–90

[22] Justen L and Ramlau R 2006 A non-iterative regularization approach to blind deconvolution Inverse Problems 22 771–800

[23] Kabaniukhin S I, Satybaev A D and Shishlenin M A 2005 Direct methods of solving multidimensional inverse hyperbolic problems Inverse and Ill-posed Problems Series (Utrecht: VSP)

[24] Kaltenbacher B and Neubauer A 2006 Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions Inverse Problems 22 1105–19

[25] Kaltenbacher B, Neubauer A and Scherzer O 2008 Iterative regularization methods for nonlinear ill-posed problems vol 6 (Berlin: Walter de Gruyter GmbH & Co. KG)

[26] Katchalov A and Kurylev Y 1998 Multidimensional inverse problem with incomplete boundary spectral data Comm. Partial Differential Equations 23 55–95

[27] Katchalov A, Kurylev Y and Lassas M 2001 Inverse boundary spectral problems Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 123 (Boca Raton, FL: Chapman & Hall/CRC)

[28] Katchalov A, Kurylev Y and Lassas M 2001 Inverse boundary spectral problems Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 123 (Boca Raton, FL: Chapman & Hall/CRC)

[29] Katchalov A, Kurylev Y, Lassas M and Mandache N 2004 Equivalence of time-domain inverse problems and boundary spectral problems Inverse Problems 20 419–36

[30] Katsuda A, Kurylev Y and Lassas M 2007 Stability of boundary data reconstruction of Riemannian manifolds Inverse Probl. Imaging 1 135–57

[31] Kirsch A 1996 An Introduction to the Mathematical Theory of Inverse Problems (New York, NY: Springer-Verlag)

[32] Knudsen K, Lassas M, Mueller J L and Siltanen S 2009 Regularized D-bar method for the inverse conductivity problem Inverse Probl. Imaging 3 599–624

[33] Krein M G 1951 Solution of the inverse Sturm-Liouville problem Doklady Akad. Nauk SSSR 76 21–4

[34] Kurylev Y 1995 An inverse boundary problem for the Schrödinger operator with magnetic field J. Math. Phys. 36 2761–76

[35] Kurylev Y and Lassas M 2009 Inverse problems and index formulae for Dirac operators Adv. Math 221 170–216

[36] Kurylev Y, Lassas M and Somersalo E 2006 Maxwell’s equations with a polarization independent wave velocity: direct and inverse problems J. Math. Pures Appl. 86 237–70
[37] Lassas M and Oksanen L 2014 Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets Duke Math. J 163 1071–103

[38] Lassas M and Oksanen L 2014 Local reconstruction of a Riemannian manifold from a restriction of the hyperbolic Dirichlet-to-Neumann operator Inverse problems and applications Contemp. Math. 615 (RI: Amer. Math. Soc., Providence) pp 223–31

[39] Laurent C and Léautaud M 2015 Quantitative unique continuation for operators with partially analytic coefficients Application to approximate control for waves arXiv:1506.04254

[40] Lions J-L and Magenes E 1972 Non-homogeneous boundary value problems and applications (Die Grundlehren der mathematischen Wissenschaften, Band vol 1) ed P Kenneth (New York: Springer) 181

[41] Lions J-L and Magenes E 1972 Non-homogeneous boundary value problems and applications (Die Grundlehren der mathematischen Wissenschaften, Band vol 2) ed P Kenneth (New York: Springer) 182

[42] Liu S and Oksanen L 2012 A lipschitz stable reconstruction formula for the inverse problem for the wave equation Submitted. Preprint arXiv:1210.1094

[43] Lu S, Pereverzev S V and Ramlau R 2007 An analysis of Tikhonov regularization for nonlinear ill-posed problems under a general smoothness assumption Inverse Problems 23 217–30

[44] Marčenko V A 1950 Concerning the theory of a differential operator of the second order Doklady Akad Nauk SSSR. 72 457–60

[45] Mathé P and Hofmann B 2008 How general are general source conditions? Inverse Problems 24 015009

[46] Mueller J L and Siltanen S 2012 Linear and Nonlinear Inverse Problems with Practical Applications (Philadelphia, PA: SIAM)

[47] Nachman A, Sylvester J and Uhlmann G 1988 An n-dimensional Borg-Levinson theorem Comm. Math. Phys. 115 595–605

[48] Oksanen L 2011 Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements Inverse Probl. Imaging 5 731–44

[49] Oksanen L 2013 Inverse obstacle problem for the non-stationary wave equation with an unknown background Commun. Partial Differential Equations 38 1492–518

[50] Ramlau R 2008 Regularization properties of Tikhonov regularization with sparsity constraints Electron. Trans. Numer. Anal. 30 54–74

[51] Ramlau R and Teschke G 2006 A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints Numer. Math 104 177–203

[52] Resmerita E 2005 Regularization of ill-posed problems in Banach spaces: convergence rates Inverse Problems 21 1303–14

[53] Stefanov P and Uhlmann G 1998 Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media J. Funct. Anal 154 330–58

[54] Stefanov P and Uhlmann G 2013 Recovery of a source term or a speed with one measurement and applications (English summary) Trans. Am. Math. Soc. 365 5737–58

[55] Sylvester J and Uhlmann G 1987 A global uniqueness theorem for an inverse boundary value problem Ann. of Math 125 153–69

[56] Tataru D 1995 Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem Comm. Partial Differential Equations 20 855–84

[57] Tataru D 1999 Unique continuation for operators with partially analytic coefficients Journal de Mathématiques Pures et Appliquées 78 305–21