Neutrino masses, leptogenesis, and sterile neutrino dark matter

Takanao Tsuyuki

Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan

Abstract

We analyze a scenario where the lightest heavy neutrino N_1 is a dark matter candidate and the second heaviest neutrino N_2 decays producing lepton number. If N_1 was in thermal equilibrium, its energy density today would be much larger than that of the observed dark matter, so we consider energy injection by the decay of N_2. In this paper, we show the parameters of this scenario which give the correct abundances of dark matter and baryonic matter and also induce the observed neutrino masses. This model can explain a possible sterile neutrino dark matter signal of $M_1=7$ keV in X-ray observation of XMM-Newton.
1 Introduction

There are at least three phenomena which cannot be explained within the standard model of particle physics (SM). They are neutrino masses, dark matter (DM), and baryon asymmetry of the universe (BAU). In the SM, particles acquire masses by the Higgs mechanism, but neutrinos are assumed not to couple to the Higgs particle so they remain massless. By introducing right handed neutrinos, neutrinos can couple to Higgs particle, and acquire Dirac masses. Right handed neutrinos are singlets under the SM gauge group $SU(2)_L \times U(1)_Y$, so they can also have Majorana masses without breaking the symmetry of the SM. If these Majorana masses are much larger than the Dirac masses, mass eigenstates are separated into two groups. One of them is active, light neutrinos mainly composed of left handed neutrinos, and the other is sterile, heavy neutrinos almost coinciding with right handed neutrinos. This is called the seesaw mechanism [1–3], and we use this mechanism in this paper.

Two other phenomena beyond the SM can be found in the universe. In the observable range of the universe, no antimatter has been found. In order to explain the asymmetry of matter and antimatter, we need CP violation [4]. By observation of the anisotropy of cosmic microwave background [5], the ratio of baryon density to critical density today is $\Omega_b h^2 = 0.02214 \pm 0.00024 (68\% \text{ limit})$, which can be converted into the baryon number to entropy ratio $Y_B \simeq 0.86 \times 10^{-10}$. In the SM, CP is violated by Yukawa couplings between the quarks and Higgs particle, but it is too small to explain this asymmetry. If there are right handed neutrinos, CP can also be broken by the couplings between the neutrinos and Higgs particle. A heavy neutrino, which is Majorana particle, can decay into either lepton or antilepton by Yukawa interaction. Difference between these decay rates results in nonzero lepton number (called leptogenesis [6]), and it is transferred to baryon number by electroweak processes (sphaleron processes [7]).

Another problem the universe offers us is dark matter. Dark matter does not interact with electromagnetic forces, and is stable or its lifetime is longer than the age of the universe. In the SM, such a particle is not included, and even massive left handed neutrinos are too light to explain all dark matter. Many candidates of dark matter have been proposed, and sterile neutrino is one of them. Sterile neutrinos of course do not participate in electromagnetic nor strong interactions. If its mass is roughly of order keV, it can live longer than the universe, so it can be dark matter (see [8,9] for reviews). There are several ways to produce sterile neutrino dark matter N_1. The simplest production mechanism is to use mixing of sterile and active neutrinos, proposed Dodelson and Widrow (DW mechanism, [10]). This model, however, is disfavored by observations of X-ray and Lyman alpha forest [11]. Another way is resonant production, or Shi-Fuller mechanism [12]. If there were relatively large lepton number (at least $Y_L \gtrsim 8 \times 10^{-6}$), light neutrinos can be efficiently converted to sterile neutrinos. In this case, some mechanism is needed to make this lepton number much larger than the baryon number after the freeze out of sphalerons. In the Neutrino Minimal Standard Model (νMSM), which is an extension of the SM with right handed neutrinos with masses smaller than the electroweak scale [13][14], this lepton asymmetry is produced by decay of sterile neutrinos N_2, N_3 with masses $\gtrsim 100\text{MeV}$. In this model, their masses need to be highly degenerate, roughly $(M_3 - M_2)/M_2 \lesssim 10^{-3}$ to produce BAU [15][16]. Note that in these models, the sterile neutrino dark matter does not enter into thermal equilibrium, so we must assume an initial abundance of them. Other production mechanisms need more extensions of the SM, such as decays of scalar fields [17][18] or new gauge interactions. We consider the last case in this paper. The Majorana mass term of the right handed neutrinos appears as the result of a gauge symmetry
breaking, and its scale is much higher than the electroweak scale. This naturally happens if grand unification exists at high energy.

In this paper, we suppose the lightest sterile neutrino N_1 constitutes all dark matter and the second lightest one N_2 causes leptogenesis, and they were in thermal equilibrium by a gauge interaction of right handed neutrinos [19]. There are many advantages in this case over other production mechanisms. We need not assume an initial abundance of N_1 and N_2. Their abundance is completely determined by statistical mechanics without uncertainty. Lepton number is efficiently produced, because there is no cancelation of lepton asymmetry which happens if N_2 is produced by Yukawa interaction. The temperature of N_1 is colder compared to DW mechanism case, so constraint from Lyman alpha forest is weakened.

Drawback of thermal relic N_1 is its overproduction. This problem can be solved by the decay of an out of equilibrium particle. Such decay gives energy into the thermal bath, and the temperature of the thermal bath drops slowly compared to that of the decoupled particle N_1. The energy ratio of N_1 today becomes smaller, so the problem of overproduction can be solved. Cases of low scale new gauge interaction were considered in [19, 20].

We assume the scale of new gauge interaction is relatively high, and N_2 decay which produces lepton asymmetry diluted N_1 abundance simultaneously. This idea was proposed in [21]. They estimated the orders of M_2, M_3 and scale of gauge interaction of right handed neutrinos. We refine their analysis, considering seesaw mechanism and various constraints on parameters more seriously. We explicitly show the parameters which can explain observed neutrino masses, the BAU, and dark matter abundance.

As the result, we found that a Majorana mass term of left handed neutrinos M_L is essential for masses of active neutrinos m_ν, since the two eigenvalues of the difference $X_\nu \equiv m_\nu - M_L$ need to be very small, $X_1 \lesssim 10^{-10}$eV, $X_2 \lesssim 10^{-5}$eV. Third eigenvalue is much larger, $X_3 \gtrsim O(0.1)$eV, in order to produce the BAU. If there is no fine tuning, $M_2 \gtrsim O(10^8)$GeV and the scale of gauge interaction of right handed neutrinos is $G_{FR}^{-1/2} \gtrsim 10^{12}$GeV. Recently, an unidentified line at 3.5keV in X-ray spectra was found [22, 23]. There are many works to explain this anomaly (see, for example, [24, 25]). If this photon was emitted by dark matter, our model can explain it by decay of N_1, with $M_1=7$keV and $X_2 + X_3 |R_{31}|^2 \sim 1 \times 10^{-7}$eV ($R_{31}$ is a parameter of Yukawa coupling).

We use left-right symmetric model [26] as an example, but if N_1 and N_2 can be in thermal equilibrium, any other model is possible. Our discussion does not involve the detail of the new gauge interaction that we will introduce. Note that the idea of diluting dark matter by leptogenesis can be applied to other particles which freeze out before the decay of the heavy neutrino.

This paper is organized as follows. In section 2 to 4, we describe how right handed neutrinos can explain three beyond the SM phenomena described above. In section 5, we summarize constraints on parameters from various observations and our thermal history scenario. In section 6, we show parameters which satisfy all conditions obtained in previous sections, and compare the result with observations.

2 Neutrino masses

We assume three right handed neutrinos ν_R exist. The most general mass term of neutrinos can be written as

$$
-L_{\text{mass}} = \frac{1}{2} \begin{pmatrix} \nu_L & \nu_R \end{pmatrix} \begin{pmatrix} M_L & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix} + \text{h.c.},
$$

(1)
where M_L and M_R denote 3×3 Majorana mass matrices of left and right neutrinos and m_D represents 3×3 Dirac mass matrix. For example, this term appears in a model which has the symmetries of $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (called left-right symmetric model \cite{26,28}) as

$$- \mathcal{L}_{\text{mass}} = h_{\alpha\beta} T_L^\alpha \Delta L^\beta_R + g_{\alpha\beta} T_L^\alpha \tilde{\phi} L^\beta_R + \frac{h_{\alpha\beta}}{2} (T_L^\alpha i\tau_2 \Delta L^\beta_R + T_R^\alpha i\tau_2 \Delta R^\beta_R) + \text{h.c.},$$ \hspace{1cm} (2)

where $L_{L,R}$ represent $SU(2)_{L,R}$ doublets of left or right handed leptons,

$$L_{L,R\alpha} \equiv (\nu_{L,R\alpha}^L l_{L,R\alpha}^L), \quad \alpha = e, \mu, \tau,$$ \hspace{1cm} (3)

and $\phi, \Delta_{L,R}$ are $SU(2)_L \times SU(2)_R$ Higgs bidoublet and triplets, which acquire VEVs

$$\langle \Delta_{L,R}\rangle = \begin{pmatrix} 0 & 0 \\ v_{L,R} & 0 \\ 0 & 0 \end{pmatrix}, \quad \langle \phi\rangle = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix}, \quad |v_1|^2 + |v_2|^2 = v^2 = (174 \text{ GeV})^2,$$ \hspace{1cm} (4)

and $\tilde{\phi} \equiv \tau_2 \phi^* \tau_2$. By defining

$$m_{D\alpha\beta} \equiv y_{\alpha\beta} v \equiv h_{\alpha\beta} v_1 + g_{\alpha\beta} v_2^*, \quad M_{L\alpha\beta} \equiv f_{\alpha\beta}^* v_L^*, \quad M_{R\alpha\beta} \equiv f_{\alpha\beta} v_R,$$ \hspace{1cm} (5)

we recover (1).

Assuming the orders of M_L and $m_D = yv$ are much smaller than that of M_R, we get mass eigenvalues,

$$- \mathcal{L}_{\text{mass}} = \frac{1}{2} \begin{pmatrix} \nu_{L} & \nu_{R}^c \end{pmatrix} \begin{pmatrix} m_\nu^\text{diag} & 0 \\ 0 & M_N^\text{diag} \end{pmatrix} \begin{pmatrix} \nu_{L}^c \\ \nu_{R}^c \end{pmatrix} + \text{h.c.},$$ \hspace{1cm} (6)

where

$$m_\nu^\text{diag} = U^\dagger m_\nu U^* = \text{diag}[m_1, m_2, m_3],$$ \hspace{1cm} (7)

$$M_N^\text{diag} = V^T M_N V = \text{diag}[M_1, M_2, M_3],$$ \hspace{1cm} (8)

$$m_\nu = M_L - v^2 y M_R^{-1} y^T,$$ \hspace{1cm} (9)

$$M_N = M_R.$$ \hspace{1cm} (10)

(9) is the seesaw relation \cite{29}, which gives a relation between masses of light neutrinos and heavy neutrinos. The matrix U which diagonalizes m_ν is the PMNS matrix. Flavor eigenstates $\nu_{L\alpha}$ can be written with mass eigenstates $\nu_{L_i}^\prime, \nu_{R_i}^\prime (i, I = 1, 2, 3)$ as

$$\nu_{L\alpha} = U_{\alpha I} \nu_{L_i}^\prime + \Theta_{\alpha I} \nu_{R_i}^\prime, \quad \Theta_{\alpha I} \equiv (m_D M_R^{-1} V^*)_{\alpha I}.$$ \hspace{1cm} (11)

The strength of interaction of ν_{RI} through this mixing is parametrized by the active-sterile mixing angle,

$$\Theta^2_{\alpha I} \equiv \sum_\alpha |\Theta_{\alpha I}|^2.$$ \hspace{1cm} (13)

The flavor eigenstates of right handed neutrinos are, ignoring $O(\Theta)$ terms,

$$\nu_{R\alpha} \simeq V_{\alpha I} \nu_{R_i}^\prime,$$ \hspace{1cm} (14)

It is conventional to define Majorana fields $\bar{N}_I \equiv \nu_{R_i}^c + \nu_{R_i}^\prime$. They are called sterile or heavy neutrinos. $I = 1, 2, 3$ are ordered to give $M_1 < M_2 < M_3$.

\hspace{1cm} (3)
3 Dark matter and entropy production

We suppose dark matter consists entirely of N_1 ($M_1 \sim O(1)$keV) and N_2 ($M_2 \gtrsim 10^9$GeV) causes leptogenesis. The thermal history we consider in this paper is as follows [21]. N_1 and N_2 were once in thermal equilibrium, and they freeze out when they are still relativistic ($T_f \gtrsim 10^{10}$GeV). As the temperature goes down, N_2 becomes nonrelativistic and dominates the universe. N_2 decays at $T \gtrsim 10^{5}$GeV, which is much higher than sphaleron freeze out temperature. This decay creates lepton number and gives energy to the thermal bath, i.e., entropy is produced. This lepton number is transformed into the BAU observed today. By this entropy production, the abundance of N_1 becomes the observed DM abundance, $\Omega_{DM} h^2 \simeq 0.12$.

The Yukawa interaction of N_1 is too weak to bring it to thermal equilibrium. We have to introduce a new gauge interaction between right handed neutrinos and the SM particles [19]. In the left-right symmetric model, the gauge interaction term of right handed neutrinos is written as [30]

$$-\mathcal{L}_{R,\text{int}} = g_R \overline{R} W^\mu_R \gamma_\mu L_R.$$ (15)

Right handed neutrinos freeze out from thermal bath when the rate of gauge interaction equals to the Hubble rate,

$$G^2_{FR} T^5_f \sim \sqrt{g_{\star f}} \frac{T_f^2}{M_{Pl}}.$$ (16)

where $M_{Pl} = 1.22 \times 10^{19}$GeV, $G_{FR} \equiv \frac{\sqrt{2} g^2_{\star f}}{8 \pi^2}$ and M' represents the mass of the new gauge boson. For the effective degrees of freedom of particles in the thermal bath, we take $g_{\star f} \sim 110$. By solving (16), we obtain the freeze out temperature

$$T_f \sim 10^{10} \text{GeV} \left(\frac{(10^{12} \text{GeV})^{-2}}{G_{FR}} \right)^{2/3}. (17)$$

We assume heavy neutrinos N_1 and N_2 decouple when they are still relativistic, i.e., $T_f > M_2$. Then the yield of N_1 after freeze out is

$$Y_{N_1}\bigg|_f \equiv \frac{n_{N_1}}{s}\bigg|_f = \frac{1}{g_{\star f}} \frac{135 \zeta(3)}{4\pi^4} = 0.416 \frac{135 \zeta(3)}{4\pi^4}. (18)$$

This is constant if there is no entropy production. The energy ratio of N_1 today is

$$\Omega_{N_1} = 9.5 \Omega_{DM} \frac{110 M_1}{g_{\star f} \text{keV}} \frac{S_f}{S_0}, (19)$$

where S_f and S_0 represent entropy in comoving volume at N_1 freeze out and today. From the observation of dwarf spheroidal galaxies, the mass of fermion dark matter particle must be larger than 1 keV [31]. If $\Omega_{N_1} = \Omega_{DM} = 0.12/h^2$ [5], entropy needs to become about 10 times larger.

We consider entropy production by the decay of N_2. The ratio of S_0 to S_f can be expressed by Γ_{N_2}, the decay rate of N_2, as

$$\frac{S_0}{S_f} = 0.76 \frac{(g_{\star f})^{3/4} M_2}{g_{\star f} \sqrt{\Gamma_{N_2} M_{Pl}}}, (20)$$
\[\langle g^{1/3}_* \rangle \] is the average of \(g^{1/3}_* \) during the decay [32]. Substituting this to (19), and from the condition \(\Omega_{N_1} = \Omega_{\text{DM}} \), the decay rate must satisfy

\[
\Gamma_{N_2} = 0.50 \times 10^{-6} \langle g^{1/3}_* \rangle^{3/2} \frac{M_2^2}{M_{\text{Pl}}} \left(\frac{\text{keV}}{M_1} \right)^2.
\] (21)

There are two decay channels of \(N_2 \) at tree level (see fig. 1). In order to generate lepton number successfully, the decays by Yukawa interaction have to be dominant,

\[
\Gamma_{N_2} \simeq \Gamma_{N_2 \to L_L \phi} = \frac{(\tilde{y}^\dagger \tilde{y})_{22}}{8\pi} M_2,
\] (22)

where \(\tilde{y} \equiv yV \). We will check the condition for this approximation in section 5. Then we obtain a condition for Yukawa coupling constants,

\[
(\tilde{y}^\dagger \tilde{y})_{22} = 1.1 \times 10^{-14} \left(\frac{\text{keV}}{M_1} \right)^2 \left(\frac{M_2}{10^9 \text{GeV}} \right).
\] (23)

4 Baryon asymmetry

\(N_2 \) is a Majorana field, so it can decay into both lepton and antilepton. Difference between these decay rates results in a net lepton number production [6]. This lepton number is transformed into baryon number by electroweak processes [7]. By integrating the Boltzmann equations for \(N_2 \) and leptons, we obtain the yield of baryon number today,

\[
Y_B = -\frac{28}{79} \frac{0.416}{g_{*f}} S_0 \frac{S_{\phi}}{S_f} = -1.4 \times 10^{-4} \epsilon \left(\frac{\text{keV}}{M_1} \right).
\] (24)

\(\epsilon \) denotes the asymmetry of decay rates, calculated as

\[
\epsilon = -\frac{1}{8\pi} \text{Im}[(\tilde{y}^\dagger \tilde{y})_{32}]^2 (M_3^2/M_2^2),
\] (25)

\[
g(x) \equiv \sqrt{x} \left(\frac{1}{1-x} + 1 - (1+x) \ln \frac{1+x}{x} \right).
\] (26)
We ignored the contribution of \(N_1 \), since \((\tilde{y}^\dagger \tilde{y})_{12}\) is much smaller than \((\tilde{y}^\dagger \tilde{y})_{32}\) in our scenario (see section 6). By the observation of cosmic microwave background [5], \(Y_B \simeq 0.86 \times 10^{-10} \), so

\[
\epsilon = -6.1 \times 10^{-7} \frac{M_1}{\text{keV}}
\]

(27)
is needed. Using (23), (25) and (27), we get another condition for Yukawa couplings,

\[
\text{Im} [(\tilde{y}^\dagger \tilde{y})_{32}^2] = 1.7 \times 10^{-19} \frac{\text{keV}}{M_1} \frac{M_2}{10^9 \text{GeV}} \frac{1}{g(M_3^2/M_2^2)}.
\]

(28)

5 Constraints on Parameters

There are constraints on parameters \(G_{FR}, M_I \) and \(\Theta_2^2 \) from our thermal history model and observations. We enumerate them in this section.

(i) \(N_2 \) must decouple while it is relativistic. From (17) and \(T_f > M_2 \), we derive

\[
G_{FR} \lesssim 10^{-23} \text{GeV}^{-2} \left(\frac{10^9 \text{GeV}}{M_2} \right)^{3/2}.
\]

(29)

(ii) \(N_2 \to L_L \Phi \) must be a dominant decay channel of \(N_2 \). Decay diagram of fig.1(b) is similar to decay of muon \((\mu \to e \nu_e \nu_\mu) \), so its rate can be estimated as

\[
\Gamma_{N_2 \to l_R l_R \nu_R} \sim 2 \times \frac{G_{FR}^2}{192 \pi^3} M_2^5
\]

(30)

(there is factor 2 because \(N_2 \) is Majorana particle). Applying \(\Gamma_{N_2 \to l_R l_R \nu_R} < \Gamma_{N_2} \), we obtain

\[
G_{FR} \lesssim 10^{-23} \text{GeV}^{-2} \left(\frac{\text{keV}}{M_1} \right)^2 \left(\frac{10^9 \text{GeV}}{M_2} \right)^{3}.
\]

(31)

This bound is similar to (29).

(iii) \(N_2 \) must decay when sphaleron transitions are still active [7]. Temperature after \(N_2 \) decay is, using the decay rate (21),

\[
T_{\text{decay}} \sim \left(\frac{3}{8 \pi g_*} \right)^{1/4} \sqrt{\Gamma_{N_2} M_{Pl}}
\]

(32)

\[
= 4 \times 10^5 \text{GeV} \frac{M_2}{10^9 \text{GeV}} \frac{\text{keV}}{M_1}.
\]

(33)

By \(T_{\text{decay}} > 100 \text{GeV} \), we get

\[
M_2 \gtrsim 10^5 \text{GeV} \frac{M_1}{\text{keV}}.
\]

(34)

As we will see later, a condition for sufficient lepton asymmetry production naturally satisfies this bound.
(iv) By phase space analysis of dwarf spheroidal galaxies and considering Pauli blocking, fermion dark matter must satisfy $M_1 \gtrsim 1\,\text{keV}$ \cite{31}.

(v) By comparing the Lyman-alpha forest data and numerical simulations, upper bound on the initial average velocity of warm dark matter are derived \cite{33}. Those bound can be converted to lower bounds of dark matter mass depending on their production mechanism. For thermal relic dark matter, $M_1 > 1.5\,\text{keV}$.

(vi) N_1 is produced as thermal relic, not through oscillations. The condition for the active-sterile mixing angle can be approximated as \cite{11}
\[
\sin^2 2\Theta_1 \lesssim 8 \times 10^{-8} \left(\frac{M_1}{\text{keV}}\right)^2.
\]

(vii) N_1 can decay into a photon and a light neutrino. Here we assume the radiative decay rate is same as the case where the gauge interaction is not extended \cite{34}, \cite{261}
\[
\Gamma_{N_1 \rightarrow \nu\gamma} = \frac{9G_F^2\alpha}{256\pi^4} \Theta_1^2 M_1^5.
\]

Non-detection of those photons by X-ray observations give a bound on Θ_1^2 \cite{35} \cite{38} (see \cite{39} for a recent review). It can be roughly approximated as
\[
\sin^2 2\Theta_1 \lesssim 5 \times 10^{-7} \left(\frac{M_1}{\text{keV}}\right)^{-3.9}.
\]

6 Combined analysis

In this section, we find parameters which satisfy all conditions described above, and compare them with observations. It is convenient to parametrize Yukawa couplings as
\[
\tilde{y}_\nu = i V^*_{\nu} (X_{\nu}^{\text{diag}})^{1/2} R (M_R^{\text{diag}})^{1/2},
\]
where $X_{\nu} \equiv m_{\nu} - M_L$, $X_{\nu}^{\text{diag}} \equiv V^T_{\nu} X_{\nu} V_{\nu}$ \cite{10}. Seesaw relation (9) is transformed into an orthogonal condition for R,
\[
RR^T = 1,
\]
which is much easier to treat. We rewrite the conditions for Yukawa couplings (23), (25), (28) by X_{ν} and R. The results are
\[
\sum_j X_j |R_{j2}|^2 = 3.3 \times 10^{-10}\text{eV} \left(\frac{\text{keV}}{M_1}\right)^2,
\]
\[
\sum_j X_j |R_{j1}|^2 < 2 \times 10^{-5}\text{eV} \frac{\text{keV}}{M_1},
\]
\[
\text{Im} \left[\left(\sum_j X_j R^*_{j3} R_{j2} \right)^2 \right] = 1.5 \times 10^{-10}\text{eV}^2 \frac{\text{keV}}{M_1} \frac{10^9\text{GeV}}{M_3} \frac{1}{g(M_3^2/M_2^2)}.
\]

\footnote{In the left-right symmetric model, this assumption corresponds to taking the limit $|v_1 v_2/v_R^2| \ll 1$ \cite{19}. Reasonable parameters satisfy this inequality by the constraints (29) and (31).}
Let us consider a simple case, $M_L = 0$ first. We show this case does not give the correct neutrino mass matrix. From the orthogonality condition, at least one component of each column of R must be larger than 1/3. Considering (40), one of the eigenvalues of $X_{ν} = m_{ν}$ must be equal or smaller than $\sim 10^{-10}$ eV. This is much smaller than observed values of neutrino mass differences, so masses of light neutrinos are determined except hierarchy. For a normal hierarchy case, using the experimental data [41]

$$m_2^2 - m_1^2 = 7.54 \times 10^{-5} \text{eV}^2, \quad m_3^2 - \frac{m_2^2 + m_1^2}{2} = 2.44 \times 10^{-3} \text{eV}^2 \quad \text{(best fit)},$$

we obtain the masses of neutrinos

$$m_1 \lesssim 10^{-10} \text{eV} \ll m_2 = 8.7 \times 10^{-3} \text{eV}, \quad m_3 = 5.0 \times 10^{-2} \text{eV}. \quad (44)$$

In order to satisfy (40) and (41), the first and second columns of R must be almost $(1,0,0)^T$, which contradicts the orthogonality of R. The $M_L = 0$ case does not give correct neutrino mass matrix. In short, two eigenvalues of $X_{ν}$ must be much smaller than the orders of observed mass differences,

$$X_1 \leq 3.3 \times 10^{-10} \text{eV} \left(\frac{\text{keV}}{M_1}\right)^2, \quad (45)$$

$$X_2 < 2 \times 10^{-5} \text{eV} \left(\frac{\text{keV}}{M_1}\right). \quad (46)$$

These conditions require M_L to be nonzero.

For concreteness, let us assume

$$X_1 \ll X_2 \ll X_3. \quad (47)$$

Then, R is almost determined as

$$R \simeq \begin{pmatrix} -R_{22} & 1 & -R_{31} \\ 1 & R_{22} & -R_{32} \\ R_{31} & R_{32} & 1 \end{pmatrix}, \quad (48)$$

$$|R_{31}|^2 < 2 \times 10^{-5} \text{eV} \left(\frac{\text{keV}}{X_3 M_1}\right), \quad (49)$$

$$|R_{22}|^2 \leq 3.3 \times 10^{-5} \frac{10^{-5} \text{eV}}{X_2} \left(\frac{\text{keV}}{M_1}\right)^2, \quad (50)$$

$$|R_{32}|^2 \leq 3.3 \times 10^{-10} \frac{\text{eV}}{X_3} \left(\frac{\text{keV}}{M_1}\right)^2, \quad (51)$$

$$\text{Im} \left[R_{32}^2\right] = 1.5 \times 10^{-10} \left(\frac{\text{eV}}{X_3}\right)^2 \frac{\text{keV} 10^9 \text{GeV}}{M_1 M_3} \frac{1}{g(M_3^2/M_2^2)}. \quad (52)$$

R_{22}, R_{31}, R_{32} are much smaller than 1, so R is approximately orthogonal. From (51), (52), and using $|\text{Im}[R_{32}^2]| \leq |R_{32}|^2$, we obtain

$$X_3 \geq 0.45 \text{eV} \left(\frac{M_1}{\text{keV}}\right) 10^{9} \text{GeV} \frac{1}{M_3} \frac{1}{|g(M_3^2/M_2^2)|}. \quad (53)$$
This partly justifies the assumption (47). If there is no tuning between the two terms in the right hand side of (9), $X_{1,2,3}$ is smaller than $O(1)$ eV. Assuming also $M_3 > 2M_2$, $g(M_3^2/M_2^2)$ can be approximated as

$$g(M_3^2/M_2^2) \sim \frac{3M_2}{2M_3}.$$ (54)

From (53) we obtain

$$M_2 \gtrsim O(10^8)\text{GeV}.$$ (55)

This is the reason for dividing M_2 by 10^9GeV. The condition from the sphaleron freeze out temperature (34) is satisfied naturally.

We compare the results with observations, especially X-ray observation. The mixing of N_1 is

$$\sin^2 2\Theta_1 = 4\frac{X_2 + X_3|R_{31}|^2}{M_1}.$$ (56)

Note that $X_1|R_{11}|^2 \ll X_2, X_3|R_{31}|^2$ so X_1 does not contribute to Θ_1^2. We have plotted this result in figure 2 with various constraints. If $X_2 + X_3|R_{31}|^2$ is smaller than 10^{-9}eV, dark matter mass can be heavier than 50 keV. This is deferent from the νMSM, which needs $M_1 \lesssim 50$ keV due to a constraint from maximal lepton asymmetry [15, 16].

Recently, a possible sterile neutrino decay signal was found in XMM-Newton data [22, 23]. They say

$$M_1 \simeq 7\text{keV},$$ (57)

$$\sin^2 2\Theta_1 \simeq 7 \times 10^{-11}.$$ (58)

These values correspond to

$$X_2 + X_3|R_{31}|^2 \simeq 1 \times 10^{-7}\text{eV}$$ (59)

in our model. This point is shown in fig. 2. The much better energy resolution of the satellite ASTRO-H [42] will be able to distinguish the decaying dark matter line from plasma emission lines.

7 Conclusion

We considered a model in which heavy neutrinos N_1 and N_2 were in thermal equilibrium due to a new gauge interaction at the temperature $T \gtrsim 10^{10}$ GeV. In this case, dark matter N_1 is overproduced, so we supposed N_1 was diluted by out of equilibrium decay of N_2. This decay also produces the observed matter-antimatter asymmetry. Due to the condition from entropy production, and an oscillation constraint of N_1, the two eigenvalues of $X_\nu \equiv m_\nu - M_L$ have to be much smaller than observed mass differences. This means M_L is needed in our scenario. We determined the possible range of eigenvalues of X_ν, masses of right handed neutrinos M_I, and parameter of Yukawa couplings R, which can simultaneously explain three beyond the SM phenomena; neutrino masses, the BAU, and dark matter. In this model, a wider range of dark matter mass M_1 is allowed than the DW mechanism and the νMSM. Our model can explain the recent anomaly in X-ray observation by taking $M_1 \simeq 7\text{keV}$, $X_2 + X_3|R_{31}|^2 \sim 1 \times 10^{-7}\text{eV}$. In the near future, the ASTRO-H mission will clarify whether this signal is from a dark matter decay or not.
Figure 2: Active-sterile mixing angle of N_1. We plotted our result for $X_2 + X_3 |R_{31}|^2 = 10^{-5}$ eV, 10^{-7} eV, 10^{-9} eV. Colored region is excluded by observation (see section [4]). The circle at $(M_1, \sin^2 2\Theta_1) = (7 \text{keV}, 7 \times 10^{-11})$ shows possible detection reported in [22, 23].

Acknowledgments
The author is grateful to Masahiro Kawasaki, Takehiko Asaka, and Euan Richard for useful discussions and comments.

References

[1] Peter Minkowski. $\mu \rightarrow e$ gamma at a Rate of One Out of 1-Billion Muon Decays? Phys.Lett., B67:421, 1977.

[2] Tsutomu Yanagida. HORIZONTAL SYMMETRY AND MASSES OF NEUTRINOS. Conf.Proc., C7902131:95–99, 1979.

[3] M Gell-Mann and P Ramond. R. slansky in supergravity. edited by F. Nieuwenhuizen and D. Friedman, North Holland, Amsterdam, page 315, 1979.

[4] A.D. Sakharov. Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe. Pisma Zh.Eksp.Teor.Fiz., 5:32–35, 1967.

[5] P.A.R. Ade et al. Planck 2013 results. I. Overview of products and scientific results. 2013.

[6] M. Fukugita and T. Yanagida. Baryogenesis Without Grand Unification. Phys.Lett., B174:45, 1986.
[7] V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. *Phys.Lett.*, B155:36, 1985.

[8] Alexander Kusenko. Sterile neutrinos: The Dark side of the light fermions. *Phys.Rept.*, 481:1–28, 2009.

[9] Alexander Merle. keV Neutrino Model Building. *Int.J.Mod.Phys.*, D22:1330020, 2013.

[10] Scott Dodelson and Lawrence M. Widrow. Sterile-neutrinos as dark matter. *Phys.Rev.Lett.*, 72:17–20, 1994.

[11] Takehiko Asaka, Mikko Laine, and Mikhail Shaposhnikov. Lightest sterile neutrino abundance within the nuMSM. *JHEP*, 0701:091, 2007.

[12] Xiang-Dong Shi and George M. Fuller. A New dark matter candidate: Nonthermal sterile neutrinos. *Phys.Rev.Lett.*, 82:2832–2835, 1999.

[13] Takehiko Asaka, Steve Blanchet, and Mikhail Shaposhnikov. The nuMSM, dark matter and neutrino masses. *Phys.Lett.*, B631:151–156, 2005.

[14] Takehiko Asaka and Mikhail Shaposhnikov. The nuMSM, dark matter and baryon asymmetry of the universe. *Phys.Lett.*, B620:17–26, 2005.

[15] M. Laine and M. Shaposhnikov. Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry. *JCAP*, 0806:031, 2008.

[16] Laurent Canetti, Marco Drewes, Tibor Frossard, and Mikhail Shaposhnikov. Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos. *Phys.Rev.*, D87:093006, 2013.

[17] Kalliopi Petraki and Alexander Kusenko. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector. *Phys.Rev.*, D77:065014, 2008.

[18] Alexander Merle, Viviana Niro, and Daniel Schmidt. New Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of Frozen-In Scalars. *JCAP*, 1403:028, 2014.

[19] F. Bezrukov, H. Hettmansperger, and M. Lindner. keV sterile neutrino Dark Matter in gauge extensions of the Standard Model. *Phys.Rev.*, D81:085032, 2010.

[20] Miha Nemevsek, Goran Senjanovic, and Yue Zhang. Warm Dark Matter in Low Scale Left-Right Theory. *JCAP*, 1207:006, 2012.

[21] F. Bezrukov, A. Kartavtsev, and M. Lindner. Leptogenesis in models with keV sterile neutrino dark matter. *J.Phys.*, G40:095202, 2013.

[22] Esra Bulbul, Maxim Markevitch, Adam Foster, Randall K. Smith, Michael Loewenstein, et al. Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters. 2014.

[23] Alexey Boyarsky, Oleg Ruchayskiy, Dmytro Iakubovskyi, and Jeroen Franse. An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. 2014.
[24] Mads Frandsen, Francesco Sannino, Ian M. Shoemaker, and Ole Svendsen. X-ray Lines from Dark Matter: The Good, The Bad, and The Unlikely. 2014.

[25] Kevork N. Abazajian. Resonantly-Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites. 2014.

[26] Rabindra N. Mohapatra and Jogesh C. Pati. Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation. *Phys.Rev.*, D11:566–571, 1975.

[27] R.N. Mohapatra and Jogesh C. Pati. A Natural Left-Right Symmetry. *Phys.Rev.*, D11:2558, 1975.

[28] Rabindra N. Mohapatra and Goran Senjanovic. Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation. *Phys.Rev.*, D23:165, 1981.

[29] M. Magg and C. Wetterich. Neutrino Mass Problem and Gauge Hierarchy. *Phys.Lett.*, B94:61, 1980.

[30] Yue Zhang, Haipeng An, Xiangdong Ji, and Rabindra N. Mohapatra. General CP Violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale. *Nucl.Phys.*, B802:247–279, 2008.

[31] D. Gorbunov, A. Khmelnitsky, and V. Rubakov. Constraining sterile neutrino dark matter by phase-space density observations. *JCAP*, 0810:041, 2008.

[32] Robert J. Scherrer and Michael S. Turner. Decaying Particles Do Not Heat Up the Universe. *Phys.Rev.*, D31:681, 1985.

[33] Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, and Matteo Viel. Lyman-alpha constraints on warm and on warm-plus-cold dark matter models. *JCAP*, 0905:012, 2009.

[34] Palash B. Pal and Lincoln Wolfenstein. Radiative Decays of Massive Neutrinos. *Phys.Rev.*, D25:766, 1982.

[35] Kevork Abazajian, George M. Fuller, and Wallace H. Tucker. Direct detection of warm dark matter in the X-ray. *Astrophys.J.*, 562:593–604, 2001.

[36] Alexey Boyarsky, A. Neronov, Oleg Ruchayskiy, and M. Shaposhnikov. Constraints on sterile neutrino as a dark matter candidate from the diffuse x-ray background. *Mon.Not.Roy.Astron.Soc.*, 370:213–218, 2006.

[37] Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, and Vladimir Savchenko. Constraints on decaying Dark Matter from XMM-Newton observations of M31. *Mon.Not.Roy.Astron.Soc.*, 387:1361, 2008.

[38] Signe Riemer-Sorensen and Steen H. Hansen. Decaying dark matter in Draco. 2009.

[39] Marco Drewes. The Phenomenology of Right Handed Neutrinos. *Int.J.Mod.Phys.*, E22:1330019, 2013.
[40] Evgeny Kh. Akhmedov and Werner Rodejohann. A Yukawa coupling parameterization for type I + II seesaw formula and applications to lepton flavor violation and leptogenesis. *JHEP*, 0806:106, 2008.

[41] F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, et al. Status of three-neutrino oscillation parameters, circa 2013. 2013.

[42] Tadayuki Takahashi, Kazuhisa Mitsuda, Richard Kelley, Henri Aharonian, Felix Aarts, et al. The ASTRO-H X-ray Observatory. 2012.