Formal language of Lanna Shop House’s Façade in Lampang Old city, Thailand

Natthakit Phetsuriya

1 Faculty of Architecture, Chiang Mai University, 239 Rd. Huaykaew T. Suthep A. Muang Chiang Mai, 50200Thailand

natthakit.p@cmu.ac.th

Abstract. This article aims to presents ‘the formal architectural language of Lanna Designs” that is a linguistic paradigm for decrypt the linguistic system which is hidden in the Lanna façade style. Lanna Designs present an identity of vital ordered and crucial articulated formal language which inherently set of mathematical rules for the arrangement of ornaments. The scope of this article is attempted to the morphology of façades of the ten shop houses which located in Lampang Old city and have familiar proportion and style. In this article, the sampling of façade buildings required proportion as three-stall and two-story with familiar style. The morphology is described based on terms of a symbolic encoding system that is represented as graphically building grammar. The system helps to emphasize commonalities in façade languages and propose a prototype of identified Lanna façade design. This methodology might be the option for decrypt or study in every facades style.

1. Introduction

This article attempts to decrypt the linguistic of façade which has style as Lanna design. It is suggested that the paradigm of computational representations in linguistic [1]. Furthermore, many of research attempt to expand their applicability to explain architectural language composition, Eilouti [2] is describes the FSA method which could define the style of Palladio’s design. The selected method has been represented by a string recognition device that is known as a finite state automaton. The concept underlying this automaton is borrowed from formal language studies. However, the advantages of formal language techniques to explain architectural language composition are still explored.

The Formal language is the regular language which represents the simplest form of language definition and process. The device is known as a finite state automaton (FSA). They consist of string (words) constructed from given alphabet of symbols (letters). It is a simple device to use defines to help classify strings into languages. A finite state automaton is an especially simple device to understand the language. Raksawin [5] is explains about Lanna shop house’s façade study which emphasizes only regionalism style. The method essential concerns about using a part of finite state automaton to decrypt the formal language of Lanna façade by the comparative relation with Eilouti method, [5]. Lanna shop house had classified by building physical in regionalism style, [6]. The building generally had two layers of the façade building; Inner façade and Outer façade. In this article will concern to study in two layers of façades.

Raksawin [5] ensured that this process could adapt to use to explain the formal language of Lanna Façade as the same of FSA. The essential of this method is classified alphabet of the symbol into language based on terms of symbolic encoding system to represent as graphically building grammar.
Moreover, this methodology could increase research boundary such as the meticulous elements of façade. By this newly methodology could be made a wider explore of façade study.

2. Context
Lanna Kingdom [8] (late 13th – 16th centuries) was situated in the north of Thailand with Chiang Mai as the center of the state. The northern area of Thailand used to be a majority part of Lanna and cover around 18 percent of the country’s land now is divided into nine provinces. Lampang Old City was one of the province which extremely important to the Lanna Kingdom before colonized by Siam or Kingdom of Thailand [1], [9]. By conservation of Natural and Cultural Environment centre was specified the conservation area for Lampang. The area is about 3.806 square kilometres which are located in Lampang three era areas. In the first era, it started on 13 B.E. the urban city was designed as a conch shell shape in the upper north of the land. The urban design was influenced by Hariphunchai (Former name of Lammun province) urban city. On 1845 B.E., the second era, the ruler of Lampang decided to expand the area to the south of the land where close to Wung River for start merchandising with other countries. The last era, began in 2325 B.E. the land expand to other side of river and prepare for train route which is appeared for connected Lanna with Siam (former name of Kingdom of Thailand). From the crucial history of this area, Conservation of Natural and Cultural Environment center is firstly chosen from its rich historical context as the Lanna building style and cultural diversity. Since 2420 B.E. [6] Lampang was the vital trade route along Wung River which was the most important river for forest concession process and trading with Burma Chan Yunan and Keng Tung.

3. The methodology
In this article examine the formal language of Lanna Shophouses Façade by encoding system which is a part of the idea of Finite state automata, it is a regular language. [5] The methodology to study Lanna Shop house facade has five stages of them.

3.1 Define style of sampling and Extrapolation and Digitizing sampling
Firstly, the definition the physical of Lanna Shop house building [5] and choose the sampling which has familiar proportion and style. Extrapolation and Digitizing are the methods to transfer the cross-referenced data by using a CAD program, [10]. The digitized drawings of individual shop houses within Lampang Old City area then form the empirical basis for the study.
3.2 Define L - line
This part aims to divide the façade area in horizon line for study. [5] Define L- line in four levels namely, L1 = Ground floor level, L2 = Entablature level, L3 = Second floor level, L4 = Roof level. However, in this article define five of L – line to divide in meticulous scale.

3.3 Define Q - line
This part aims to divide the façade area in vertical line. Define Q- line in four levels by considering from the edge of building and column [5]. The Q – line will start at Q1 – Q2 and will return to Q1 if the element which appears does not change. However, the system will continue to Q3 if the element has changed to other style or completely change the element.

3.4 Define symbol of each façade elements
This part aims to divide the façade elements in the symbol. The symbol consists of letter and number of each element. For example, W1 = wall with 1 window.

3.5 Translate symbol by string system
This part is considered to encode the façade elements to the symbol. For example;

\[
\begin{align*}
L1 &= C1 W34 V13 C1 W14 V13 C1 W34 V13 C1 \\
L2 &= C1 V13 C1 V13 C1 V13 C1 \\
L3 &= W51 W51 W51 \\
L4 &= W51 V42 V43 W51 V42 V43 W51 V42 V43 \\
L5 &= R3 R3 R3
\end{align*}
\]

4. The Lanna Design Study Sample
For the purpose of this study, the scope of analysis is limited to the design of Lanna Shop house’s façade which chosen from [4] The Preference studies of Lampang Shop house façades. In this Thesis, the criterion to chosen sampling was first chosen the similar proportion which was three-stall and two-story building. Definition about Lanna shop house style [7] that people realized the building as regionalism style with a height of the building that is not more than two-story. Many of the Lanna Shop houses have styles [8] of simple stores and Chinese commercial buildings were merged, becoming a single-or-two-storey terraced building of two-three units. The wooden floor was slightly raised. The wall was composed of wood planks. The gable roof or hip roof was covered with corrugated zinc steel sheets, baked clay tiles (Din khor) or kite-shaped tiles. Otherwise, there is a terraced house built with reinforced concrete and lime. Hip roofs can be found together with hip roofs can be found together with other forms. Stucco is mostly used to adorn the protruding balcony and other parts like vent, façade, beam, pole, and capital. It has the same style of Saranai building which was design mix between Chinese and early Victorian (Gingerbread House) architectural style with carved wood decorations.

![Figure 2. Lanna Shop house building](image-url)
In the following section, the methodology introduced in the previous section will be applied to selected Lanna facades to present their formal language. As such, façades of the ten buildings will be analysed according to their lexical structure and encoded in the form of formal language.

5. The Lanna Façade Language

The architecture elements appearing on the Lanna Shop house façade style display completely of all elements of a formal language that can be assembled into a finite alphabet and a finite set of composition rule. The major of this part will be to encode the elements of Lanna façade design. The main vocabulary elements shared by the facades of Lanna consist of wall units, columns, terrace, roofs and sculpture units. The Lanna vocabulary set consists of:

W: Wall unit
- W0 = space between wall and column.
- W1 = wall with 1 window. It has a variation W11, W12, W13 etc.
- W2 = wall with 2 windows. It has a variation W21, W22, W23 etc.
- W3 = wall with 1 door. It has a variation W31, W32, W33 etc.
- W4 = wall with 2 doors. It has a variation W41, W42, W43 etc.
- W5 = wall with door and window. It has a variation W51, W52, W53 etc.

C: Column unit
- C1 = Concrete Column in wall
- C2 = Concrete Column
- C3 = Wood Column

RA: Railing Unit
- RA1 = Concrete railing. It has a variation RA11, RA12, RA13 etc.
- RA2 = Wood railing. It has a variation RA21, RA22, RA23 etc.

V: Void Unit
- V1 = Wood void. It has a variation V11, V12, V13 etc.
- V2 = Concrete void. It has a variation V21, V22, V23 etc.
- V3 = Concrete and wood void. It has a variation V31, V32, V33 etc.
- V4 = Glass and aluminum void. It has a variation V41, V42, V43 etc.
- V5 = Glass and wood void. It has a variation V51, V52, V53 etc.

D: Decorate Unit
- D1 = Terrace concrete column. It has a variation D11, D12, D13 etc.
- D2 = Concrete brace. It has a variation D21, D22, D23 etc.
- D3 = Sculpture. It has a variation D31, D32, D33 etc.
- D4 = Tiny roof
- D5 = Frieze board
- D6 = Wood brace with decoration
- D7 = Wood panel decorate
- D8 = Strip wood panel

E: Eave Unit
- E1 = Wood eaves
- E2 = Concrete eaves

CA: Awning unit
- CA1 = Awning concrete
- CA2 = Wood Joist
- CA3 = Apron lining
6. Results and discussions

In this section, selected ten Lanna façade building will be represented by encoded symbols. For each Lanna façade, encoded diagram will be illustrated. This representation will describe the Lanna language of façade compositions.

Table 1. A formal language of Lanna Shop house’s Façade 01

F0	F1
L1 0	L1 C2 W3 C2 W3 C2 W3 C2
L2 0	L2 C2 V11 C2 V11 C2 V11 C2
L3 D1 Ra1 Cal D1 Ra11 Ca1 D1 Ra11 Ca1 D1	L3 C2 W41 C2 W41 C2 W41 C2
L4 0	L4 C2 W41 V11 D43 V11 D43 C1 W41 V11 D43 V11 D43 C1 W41 V11 D43 V11 C2
L5 R2 E2 E2 E2 R2	L5 R2 R11 R11 R11 R2
Table 2. A formal language of Lanna Shop house’s Façade 02

Fo		F1
L1	0	L1 C2 W31 C1 W32 C1 W33 C2
L2	D2 C1 D2 C11 D2 C1 D2	L2 C2 D2 V0 D0 D2 V0 D2 V0 C2 D2
L3	CA1 CA1 CA1	L3 CA1 CA1 CA1
L4	0	L4 C2 W41 V2 D3 W41 V2 D3 W41 V2 D3 C2
L5	R2 E2 E2 R21	L5 R2 R11 R11 R11 R2

![Figure 5 Lanna Shop house’s Façade 03](image)

Table 3. A formal language of Lanna Shop house’s Façade 03

Fo		F1
L1	0	L1 C1 W34 V13 C1 W14 V13 C1 W34 V13 C1
L2	0	L2 C1 V13 C1 V13 C1 V13 C1
L3	CA3 RA2 CA3 RA2 CA3 RA2	L3 W51 W51 W51
L4	C3 W0 C3 W0 C3 W0 C3	L4 W51 V42 V43 W51 V42 V43 W51 V42 V43
L5	E1 E1 E1	L5 R3 R3 R3

![Figure 6. Lanna Shop house’s Façade 04](image)
Table 4. A formal language of Lanna Shop house’s Façade 04

Fo	F1		
L1	0	L1	C2 W35 C1 W35 C1 W35 C2
L2	0	L2	V0 V0 V0
L3	CA1 CA1 CA1	L3	CA1 CA1 CA1
L4	W0 W0 W0	L4	C2 W11 D31 D3 C2 W11 D31 D3 C2 W11 D31 D3 C2
L5	R21 E2 E2 E2 R21	L5	R2 R13 R13 R13 R2

Figure 7. Lanna Shop house’s Façade 05

Table 5. A formal language of Lanna Shop house’s Façade 05

Fo	F1		
L1	C31 W0 C31 W0 C31 W0 C31	L1	C2 W36 C2 W36 C2 W36 C2
L2	C3 E1 R2 C3 E1 R2 C3 E1 R2 C3	L2	C2 V14 C2 V14 C2 V14 C2
L3	0	L3	C2 D32 D3 C2 D32 D3 C2 D32 D3 C2
L4	0	L4	C2 D21 W13 D3 V46 C2 W13 D3 V46 C2 W13 D3 V46 C2
L5	E2 D21 E2 D21 E2	L5	E2 R11 E2 R11 E2 R11

Figure 8. Lanna Shop house’s Façade 06
Table 6. A formal language of Lanna Shop house’s Façade 06

Fo	F1		
L1	C1 W0 C11 W0 C1	L1	W39 W39 W39
L2	C1 W0 C11 W0 C1	L2	V15 V15 V15
L3	D33 D5 D5 D5 D33	L3	C2 CA1 W14 CA1 W14 CA1 W14 C2
L4	C2 R23 D6 D9 W0 D6 C32 R23 D6 D9 W0 D6 C32 D23 D6 W0 D9 D6 C2	L4	W14 V16 W14 V16 W14 V16
L5	R21 D51 R11 D51 R11 D51 R11 R21	L5	R21 R11 R11 R11 R21

Figure 9. Lanna Shop house’s Façade 07

Table 7. A formal language of Lanna Shop house’s Façade 07

Fo	F1		
L1	0	L1	C2 W35 C2 W35 C2 W39 C2
L2	0	L2	C2 V18 C2 V18 C2 V18 C2
L3	CA1 R13 CA1 R13 CA1 R13	L3	CA1 W52 CA1 W52 CA1 W52
L4	0	L4	C2 D22 W52 V17 D41 C2 W52 V17 D41 C2 W52 V17 D41 D22 C2
L5	D22 E2 E2 E2 D22	L5	D22 E2 E2 E2 D22

Figure 10. Lanna Shop house’s Façade 08
Table 8. A formal language of Lanna Shop house’s Façade 08

Fo	F1
L1 0	L1 C2 W31 C2 W36 C2 W36 C2
L2 0	L2 C2 V0 C2 V43 C2 V43C2
L3 E1 R3 E1 R3 E1 R3	L3 R3 R3 R3
L4 0	L4 C2 W27 D4 V46 C2 W28 D4 V46 C2 W37 D4 V46 C2
L5 E1 E1 E1	L5 R23 R11 R11 R11 R23

Figure 11. Lanna Shop house’s Façade 09

Table 9. A formal language of Lanna Shop house’s Façade 09

Fo	F1
L1 0	L1 C2 W36 C2 W36 C2 W36 C2
L2 0	L2 C2 D24 D25 D3 V19 C2 D24 D25 D34 V19 C2 D24 D25 D3 V19 C2
L3 CA1 D1 RA12 CA1 D1 RA12 CA1 D1 RA12 D1	L3 W35 W35 W35
L4 C32 W0 E1 C32 W0 E1 C32 W0 E1 C32	L4 W35 W35 W35
L5 E1 E1 E1	L5 R11 R11 R11

Figure 12. Lanna Shop house’s Façade 10
Table 10. A formal language of Lanna Shop house’s Façade 10

Fo	F1		
L1	0		
L2	0		
L3	CA1 CA1 CA1		
L4	D8 RA13 D8 RA13 D8	L4	C2 D8 W42 V18 D42 V18 D42 D8 W42 V18 D42 V18 D42 D8 W42 V18 D42 V18 D42 D8 C2
L5	D2 E2 E2 E2 D2	L5	R23 R11 R11 R11 R23

7. Conclusions

From the results, the ten of Lanna façades style which located in Lampang Old city are shown the familiar of elements. From the formal language of Lanna façade, it could conclude that the external façade had less ornament than internal façade. Some of elements appear as terrace (RA), eave (E) and awning (CA). It could summarize that Lanna façade always has terrace with concrete railing (RA1) on outer façade. In the inner façade, the walls with one door (W3) and void unit (V4) have many styles of doors more than other wall unit and void unit. It could discuss that door and void style are not significant for briefly as Lanna style. In both of façade layers, it could summarize that concrete column (C2) was the most popular element more than wood column (C3). Lanna façade was divided roof style (R) in two types otherwise, tile roof was preferable. Finally, A encoded system which comparative relation with FSA method can decrypt the formal language in clearly symbol and can representation and demonstrated to help add a different layer of façade to commonalities of system for classify elements language.

References

[1] Conservation of Natural and Cultural Environment center, online: http://wetland.onep.go.th/onep/ncecd/index.php?name=onep_3&file=readnews&id=16, 2010.
[2] Eillouti B. H., “A Formal Language for Palladian Palazzo Façade Represented by a string Recognition Device”, Nexus Network Journal 10 No.2 (2008), pp 245-268, 2008.
[3] Hengsadeekul K. “Kad-Kong-Tah Old district of Lampang”, Burirattara press, Lampang, 2011.
[4] Phetsuriya N., “The Preferences of Lampang Shop houses’ Façades”, Master of Architecture, Chiang Mai University, 2013.
[5] Raksawin K., “The guideline for study Lanna Shop house Characteristics”, Chiang Mai University Press, Chiang Mai, 2015.
[6] Raksawin K. and Kana K, “The Development of Shop house Facade Designs in Chiang Mai City”, CD Proceeding of the 10th Asian Urbanization Conference. (In English), 2009.
[7] Romcai C., “Application of Vernacular Characteristics on Shop houses in Chiang Mai Historic District from Residents’ Perceptions”, Master of Architecture, Chiang Mai University, 2007.
[8] Sthapitanonda N., “Architecture of Lanna”, Bangkok, Li-Zenn Publishing Limited, 2016.
[9] The Research for develop public local life of Lampang Province, 2nd edition, Silpa Press, Lampang, 2006
[10] Tze Ling Li, “A study of Ethnic Influence on the Facade of Colonial shophouses in Singapore: A case study of Telok Ayer in Chinatown”, Ph.D. University of Tokyo, Japan, 2007.