Distribution of fluid flow pressure through tandem square cylinders with the addition of triangular cylinder as a disturbance object

Syahrir Habiba¹, Nasaruddin Salam¹, Rustan Tarakka¹*, Jalaluddin¹, Muhammad Ihsan²

¹Department of Mechanical Engineering, Hasanuddin University, Gowa, Indonesia
²Sekolah Tinggi Teknik Baramuli, Pinrang, Indonesia

e-mail: rustan_tarakka@yahoo.com

Abstract. Flow across a square cylinder in a tandem arrangement is a shape characterization that is often used in structural engineering, transportation, and heat exchangers, where wind and water loads are one of the main factors that need to be considered in the design because they are associated with loss of energy. This is a problem faced by various industries in increasing the efficiency and stability of their systems. To reduce this energy loss, flow modification can be carried out in the form of adding disturbance objects that are placed in the front area of the main object, so that the fluid flow can pass through the object without any flow separation and produce a uniform flow after passing through the object. The research objective is focused on analyzing the effect of adding a triangular cylinder as a disturbance object to the characteristics of the flow pattern and the pressure distribution on the walls of the square cylinder in a tandem arrangement. This research used numerical computation methods and was validated through experimental testing at an upstream velocity of 19 m/s. The hydraulic diameter of the disturbance object was determined to be 0.033 m and the distance ratios M/D were 0.05, 0.15, 0.25, 0.35, 0.45, and 0.55, respectively. The results showed that the application of a triangular cylinder as a disturbance object had an effect on the characteristics of the flow pattern and the pressure coefficient, where the lowest pressure coefficient on the front side and the highest pressure coefficient on the side and rear sides were obtained in a model with a distance ratio M/D=0.45.

1. Introduction
Flow across a square cylinder in a tandem arrangement is a shape characterization that is often used in structural engineering, transportation, and heat exchangers, where wind and water loads are one of the main factors that need to be considered in the design. When flowing through the characteristic square shape, the fluid will experience separation on the surface wall and the back edge of the object. This will cause a loss of flow energy to move towards the boundary layer, resulting in a decrease in the pressure distribution as well as creating a backward pull force due to a significant difference in pressure between the front and rear walls of the object. This is a problem faced by various industries in increasing the efficiency and stability of their systems. To reduce this energy loss, flow modification can be carried out in the form of adding disturbing objects that are placed in the front area of the main object, so that the fluid flow can pass through the object without any flow separation and produce a uniform flow after passing through the object.

Testing through a 2-dimensional numerical simulation approach related to flow dynamics around rectangular configuration cylinders was analyzed using the Boltzman lattice method (LBM) at the Reynolds number Re=100 carried out by Islam et al. The main focus of the study was determined on the effect of the distance between the L/D cylinders 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0, respectively. The results showed that the four different features of each single square cylinder, stable flow, wavy flow, and rotating flow [1].
Salam et al. have studied the flow drag across a square cylinder in tandem arrangement with the addition of an IDB in the form of a circular cylinder. This research used a numerical simulation method using Computational Fluid Dynamics (CFD) FLUENT 6.3.26 and was validated through laboratory experimental testing at Reynolds number $Re=30625$ to 96250. The ratio of the IDB circular cylinder diameter to the square cylinder diameter (d/D) was varied, respectively, $d/D = 0.08$, $d/D = 0.14$ and $d/D=0.20$. Meanwhile, the ratio between the distance between the cylinders and the diameter of the square cylinder (L/D) was varied at $L/D=0.0$ to 1.0. The experimental results show that the value of the drag coefficient (Cd) and the pressure coefficient (Cp) decreases with increasing L/D and d/D. Obtained the lowest Cd value of 1.67 or experiencing a reduction of 21.5962% compared to the model without IDB and the lowest Cp of 0.87 or a reduction of 14.7059% compared to the model without IDB at $L/D=0.43$ and $d/D=0.14$ (Salam et al, 2017). Salam et al have also investigated flow separation across three square cylinders in serial and parallel tandem arrangement [2].

Tsutsui and Igarashi conducted research related to the effect of applying a disturbance rod in front of a circular cylinder on aerodynamic drag. The results showed that the Reynolds number and the diameter of the disturbing rods influenced the flow patterns around the model. The highest inhibition reduction was obtained by 63% [3].

Daloglu conducted research related to the relationship between circular cylinders and square cylinders arranged in tandem in an alternating wind tunnel. The distance between cylinders was varied in the ratio S/d 0 to 10. The results showed that the pressure drop characteristics were influenced by the ratio of the cylinder diameter and the ratio of the distance between the cylinder and the diameter of the circular cylinder (S/d). It is interesting to see that at $S/d=2$ there is a decrease in the smallest pressure value in all treatments for variations in diameter, Reynolds number, and cylinder position [4].

Hasabe et al. conducted a study on 2 square cylinders arranged in tandem with L/D variations of 2 to 5. Pressure taps were installed at half the circumference of each cylinder. The results showed that the distribution of the average pressure coefficient at each tap position was different for each change in L/D. The average pressure coefficient at the top and back of each cylinder is negative because at that position there is flow separation. The lowest pressure coefficient is obtained at $L/D=4$ [5].

2. Method

The research was carried out through a numerical simulation approach using a fluent CFD 6.3.26 program and validated through experimental laboratory testing. This method has been widely used to display features that are relevant to real objects [6, 7, 8, 9]. For the numerical computation approach, the test model design utilizes the Autodesk Inventor program as shown in Figure 1, and is defined into the computational domain. At this simulation stage, the analysis is focused on the dynamics of the flow which is formed in the form of a velocity pathline and a pressure contour around the test model. The rectangular cylinder is 0.1 m long and 0.1 m high. Meanwhile, the disturbing object has a hydraulic diameter of 0.033 m. The ratio of the distance between IDB and square cylinder is varied, respectively written $M/D=0.05$, $M/D=0.15$, $M/D=0.25$, $M/D=0.35$, $M/D=0.45$, and $M/D=0.55$.

![Figure 1. Test model](image-url)
Furthermore, the test model passes through the meshing process using the Gambit device as well as defining the boundary conditions. The test is carried out at an upstream speed of 19 m/s. The computational conditions are shown in table 1.

Table 1. Computational condition

Fluid properties	Viscosity	0.000018348 kg/ms
Density	1.186 kg/m³	

Boundary condition	Inlet	Velocity inlet
Outlet	Pressure outlet	
Wall	Wall	
Test model	Wall	

After going through the numerical computation process, the research was continued with validation through laboratory experimental testing including flow and pressure field visualization using the sub-sonic wind tunnel as shown in Figure 2.

Figure 2. Sub-sonic wind tunnel

Pressure measurement is focused on 25 points to determine the effect of adding a triangular cylinder to the pressure distribution on the surface of the test model. The position of the pressure distribution data collection is shown in Figure 3.

Figure 3. Pressure tap positions

The pressure distribution data obtained is then displayed in dimensionless units through the application of
equation 1 [10].

\[C_p = \frac{P - P_0}{\frac{1}{2} \rho U^2} \]

(1)

3. Results and discussion

3.1. Flow pattern Characteristics

Comparison of the flow pattern characteristics of the computational approach and flow visualization of a square cylinder in tandem arrangement with the addition of a triangular cylinder as a disturbance at the distance ratio M/D 0.05, 0.15, 0.25, 0.35, 0.45, and 0.55 respectively is shown in Figure 4 and Figure 5. For the front side in distance ratio M/D=0.45 cylinder 1 shows greater flow drag due to the application of the triangular cylinder as a disturbance. So that the fluid pressure on that side is getting smaller.

Besides, all distance ratios M/D show that the separation process occurs on the sides and back of square cylinder 1 and cylinder 2 both computationally and visually. This is because when the flow reaches the side edge of the square cylinder, it will lose energy to move towards the boundary layer. As a result, the flow slows down, where the low-speed flow tends to stick to the wall. A model with a distance ratio of M/D=0.45 has the smallest flow retarding on the side of the square cylinder.

It is interesting to see that the separation process due to low velocity on the side and rear is reduced for square cylinder 2. A significant increase in flow velocity is seen when the fluid reaches the side corner of the first square cylinder, where this increase occurs in all models with a distance ratio M/D. However, this increase in speed is not experienced by cylinder 2. Overall, the model with the ratio of the distance M/D=0.45 is the model with the best flow pattern characteristics when compared to other models.

Figure 4. The characteristic flow pattern with upstream velocity, \(U_0 = 19 \text{ m/s} \) (a,b)
Figure 5. The characteristic flow pattern with upstream velocity, $U_0 = 19$ m/s (c,d,e)
3.2. Pressure distribution
Comparison of computational approach pressure contours at each distance ratio M/D=0.05, M/D=0.15, M/D=0.25, M/D=0.35, M/D=0.45, and M/D=0.55 shown in the Figure 6. Based on the comparison of the M/D distance ratio, the lowest pressure on the front side of cylinder 1 (taping position 0, 1, 2, and 3) and the second cylinder (taping position 14, 15, 16, and 17) is obtained in a model with a distance ratio of M/D=0.45.

Figure 6. Pressure contour at upstream velocity, $U_0=19$ m/s by computational approach
As for the side, the highest-pressure contour is also obtained on the model with a distance ratio of M/D=0.45 for both cylinder 1 and cylinder 2. The same phenomenon also occurs on the backside of cylinder 1 and cylinder 2, where the model with a distance ratio of M/D=0.45 has the highest contour pressure compared to other models. This indicates that the flow slowdown is minimized thereby reducing the pressure drop on the back wall.

Comparison of the experimental approach pressure coefficients for each distance ratios, M/D=0.05, M/D=0.15, M/D=0.25, M/D=0.35, M/D=0.45, and M/D=0.55 are shown in the Figure 7. For the front walls of cylinder 1 and cylinder 2 (taping positions 0, 1, 2, 3 and 14, 15, 16, 17) the lowest pressure coefficient is obtained at the ratio of the distance M/D=0.45. This is consistent with the characteristics of the flow pattern in Figure 4 and the pressure contour in Figure 5 which shows that the M/D distance ratio 0.45 is a model that has the lowest flow velocity and pressure contour characteristics on the front wall compared to models with other M/D distance ratios.

For the sidewalls of cylinder 1 and cylinder 2 (taping positions 4, 5, 6, 7, 8 and 18, 19, 20, 21, 22) it shows that the highest-pressure coefficient is also obtained in the model with a distance ratio of M/D=0.45. This confirms

![Figure 7. Pressure coefficient at upstream velocity, U₀=19 m/s with experimental approach](image)

Overall, it shows that the optimum results based on a review of the characteristics of the flow pattern and pressure distribution are obtained at a distance ratio of M/D=0.45. These results are in line with research conducted by Salam et al, which revealed that the distance ratio between square cylinders and disturbance objects (IDB) of 0.43 gives optimum results compared to other models [2].

4. Conclusion
The addition of a triangular cylinder as a disturbance has a significant effect on the characteristics of the flow pattern and pressure distribution on the front, side, and rear walls of a square cylinder in a tandem arrangement. The flow pattern characteristics show that the lowest flow velocity on the front side of the square cylinder is obtained in the model with a distance ratio of M/D=0.45. These results are consistent with the pressure distribution on the front, side, and rear walls of the square cylinder, where the model with a distance ratio of M/D=0.45 gives the optimum result compared to other models.

Reference
[1] D. Sumner, S.J. Price, M.P. Paidoussis. “Flow-pattern identification for two staggered circular cylinders in cross-flow”. *J. Fluid Mech.*, vol. 411, pp. 263–303, 2000.
[2] N. Salam, R. Tarakka, Jalaluddin, M. Ihsan. “Flow Separation Across Three Square Cylinders Arranged in Serial and Parallel Tandem Configuration”. *International Journal on*
Acknowledgements
We extend our gratitude to the Head and staff of the Fluid Mechanics Laboratory of the Faculty of Engineering, Hasanuddin University, who gave permission and helped carry out this research.