The F-box-like protein FBL17 is a regulator of DNA-damage response and co-localizes with RETINOBLASTOMA RELATED 1 at DNA lesion sites

Naomie Gentric¹, Kinda Masoud¹, Robin P. Journot¹, Valérie Cognat¹, Marie-Edith Chabouté¹, Sandra Noir*¹ and Pascal Genschik*¹

1 Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, [12 rue du Général Zimmer, 67084] Strasbourg, France.

Author for Contact:
Sandra Noir, Institut de Biologie Moléculaire des Plantes (CNRS), 12, rue du Général Zimmer 67084 Strasbourg, France. Tel.: +33 3 88 41 53 38; E-mail: Sandra.Noir@ibmp-cnrs.unistra.fr

Senior Author:
Pascal Genschik, Institut de Biologie Moléculaire des Plantes (CNRS), 12, rue du Général Zimmer 67084 Strasbourg, France. Tel.: +33 3 88 41 72 78; E-mail: pascal.genschik@ibmp-cnrs.unistra.fr

One-sentence summary: The mutation of FBL17 leads to a strong upregulation of genes involved in DNA damage and repair processes, and FBL17 protein is recruited at nuclear DNA lesion foci upon double-strand break induction.

Author Contributions
S.N. and P.G conceived the original research plans; N.G., K.M. and M.E.C. performed experiments based on immunolabeling and confocal imaging. N.G., K.M. and S.N. performed experiments based on RT-qPCR analysis. N.G. carried out the preparation of the RNAseq libraries; R.P.J., V.C., N.G and S.N. performed the bioinformatics analyses; N.G., M.E.C., P.G. and S.N. designed the experiments and analyzed the data; N.G., S.N. and P.G. wrote the article with contributions of all the authors.
In Arabidopsis, the F-box protein FBL17 (F BOX-LIKE17) was previously identified as an important cell-cycle regulatory protein. FBL17 is required for cell division during pollen development and for normal cell-cycle progression and endoreplication during the diploid sporophyte phase. FBL17 was reported to control the stability of the CDK (CYCLIN-DEPENDENT KINASE) inhibitor KIP-RELATED PROTEINs (KRPs), which may underlie the drastic reduction in cell division activity in both shoot and root apical meristems observed in fbl17 loss-of-function mutants. However, whether FBL17 has other substrates and functions besides degrading KRPs remains poorly understood. Here we show that mutation of FBL17 leads not only to misregulation of cell cycle genes, but also to a strong upregulation of genes involved in DNA damage and repair processes. This phenotype is associated with a higher frequency of DNA lesions in fbl17 and increased cell death in the root meristem, even in the absence of genotoxic stress. Notably, the constitutive activation of DNA damage response (DDR) genes is largely SOG1-independent in fbl17. In addition, through analyses of root elongation, accumulation of cell death, and occurrence of γH2AX foci, we found that fbl17 mutants are hypersensitive to DNA double-strand break (DSB)-induced genotoxic stress. Notably, we observed that the FBL17 protein is recruited at nuclear foci upon DSB induction and co-localizes with γH2AX, but only in presence of RETINOBLASTOMA RELATED 1 (RBR1). Altogether, our results highlight a role for FBL17 in DDR, likely by ubiquitylating proteins involved in DNA-damage signaling or repair.
INTRODUCTION

The eukaryotic cell cycle is composed of four phases: in S phase DNA replication occurs and in mitosis (M) phase, chromosomes segregate into two nuclei, followed by cytokinesis, allowing cells to be divided into two daughter cells (Nurse, 2000). These two phases are separated by two gap phases (G1 and G2) during which cells increase their size, number of organelles, and are subjected to cell-cycle checkpoints. The proper orchestration of the cell cycle requires numerous levels of control. In particular, cyclin-dependent kinases (CDKs), activated by cyclins, are crucial players in this process and their activities are strictly regulated (Malumbres and Barbacid, 2005; De Veylder et al., 2007). For instance, several CDKs are inactivated by cyclin-dependent kinase inhibitors CKIs (Denicourt and Dowdy, 2004) and, in both fungi and metazoans, it has been established that CKI degradation at the G1-to-S transition releases CDK activity, which in turn is required to enter S phase. In budding yeast, this is achieved by the ubiquitin E3 ligase complex SCF$^{\text{Cdc4}}$ (Skp1, Cdc53/CULLIN, and Cdc4, a WD40-type F-box protein), which ubiquitylates the CKI Sic1 protein leading to its proteolysis shortly before S phase (Schwob et al., 1994; Feldman et al., 1997). Similarly, in mammalian cells, the CKI protein p27$^{\text{Kip1}}$ becomes unstable when cells enter S phase, as targeted by the SCF$^{\text{Skp2}}$ (Skp2 being a leucine rich repeat-containing F-box protein) ubiquitin ligase (reviewed in Starostina and Kipreos, 2012). Notably, the human SCF$^{\text{Skp2}}$ E3 targets also several other essential regulators of S-phase progression as well as other regulatory proteins.

Whether a similar regulation also occurs in plants is still not fully understood, but the Arabidopsis F-box protein FBL17 has been proposed to mediate such a process. FBL17 loss-of-function mutants fail to undergo pollen mitosis II, which normally generates the two sperm cells in a mature pollen grain (Kim et al., 2008; Gusti et al., 2009). This major cell-cycle defect could be, at least partially, suppressed by the mutation of some CKI genes, called KIP-RELATED PROTEINS (KRP) (Gusti et al., 2009; Zhao et al., 2012). As some viable, though sterile, fbl17 loss-of-function plants could be recovered, it was possible to show that these mutants accumulate a higher level of the KRP2 CKI protein and share some phenotypic characteristics with plants overexpressing KRP proteins (Noir et al., 2015). However, it also appeared that fbl17 mutant plants exhibited some characteristics not observed in KRP overexpressors, suggesting that this F-box protein might have other proteins targets and functions. In particular, we observed in fbl17 mutant root tips the occurrence of cell death and...
abnormal chromosome segregations, suggesting defects in genome stability (Noir et al., 2015).

The maintenance of genome integrity requires efficient DNA damage sensing and repair mechanisms (Cools and De Veylder, 2009; Nisa et al., 2019). Cells are constantly subjected to DNA damage that arises from multiple origins, such as replication errors, mutations induced by the production of reactive oxygen species, or exposure to UV light, among others.

However, most DNA damage will be detected and efficiently repaired by several DNA repair pathways (reviewed in (Spampinato, 2017)). For cells, the most deleterious type of DNA damage are double-strand breaks (DSBs), which can lead to chromosomal rearrangements, loss of genetic information, and eventually to cell death (Amiard et al., 2013). DSBs induce a DNA damage response (DDR) which activates both cell-cycle checkpoints and DNA repair pathways (Hu et al., 2016). At the molecular level, when DSBs occur on chromatids, these DSBs are recognized by the MRE11-RAD50-NBS1 (MRN) complex (Syed and Tainer, 2018), which recruits ataxia telangiectasia mutated (ATM) kinase. Note that another kinase, ATM- and RAD3-related (ATR), is not activated by DSBs but rather by single-stranded DNA damage and replication fork stalling. Upon ATM activation, the kinase phosphorylates a multitude of downstream proteins involved in DDR. Among these, ATM phosphorylates the plant-specific transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) (Yoshiyama et al., 2013), which plays a central role in DDR by activating the expression of genes that participate in DNA repair, cell cycle arrest, and cell death (Yoshiyama et al., 2009; Bourbousse et al., 2018). For instance, SOG1 binds to the promoters and induces the expression of B1-type cyclin CYCB1;1 (Weimer et al., 2016), CDK inhibitors SIAMESE-RELATED 5 (SMR5) and SMR7 (Yi et al., 2014), and the DNA repair protein BRCA1 (Sjogren et al., 2015). Another important target of ATM is the histone variant H2AX, which upon phosphorylation becomes γH2AX (Friesner et al., 2005; Dickey et al., 2009). Gamma-H2AX form foci at DSB sites which are important for the recruitments of DNA repair proteins such as RADIATION SENSITIVE 51 (RAD51) and BRCA1 (Biedermann et al., 2017; Horvath et al., 2017). Strikingly, cell-cycle regulators are not only transcriptionally regulated during DDR, but may also directly participate in the repair mechanism. Indeed, it has recently been reported that upon DNA damage, the Arabidopsis RETINOBLASTOMA RELATED (RBR1) protein and its binding partner E2FA are recruited to γH2AX-labelled foci in an ATM- and ATR-dependent manner, and even that RBR1 and BRCA1 physically interact (Lang et al., 2012; Biedermann et al., 2017; Horvath et al., 2017). Moreover, RBR1 also partially co-localizes at DNA break sites with RAD51, a recombinase involved in
homology-dependent DNA repair (Biedermann et al., 2017). However, the functional relevance for genome integrity of the specific association of RBR1 with DNA repair proteins remains to be elucidated. Notably, RBR1 silencing leads to the upregulation of several genes involved in DDR and at least for BRCA1, RBR1 represses its expression through the DNA-binding of the E2FA transcription factor (Horvath et al., 2017).

Here we show that the F-box protein FBL17, previously reported for its functions in cell-cycle regulation, is also involved in DNA damage and repair processes. FBL17 loss of function is associated with a constitutive activation of DDR gene expression, a higher frequency of DNA lesions, and increased cell death in the root meristem, even in the absence of genotoxic stress. Moreover, the FBL17 mutation leads to hypersensitivity to DSB-induced genotoxic stress. Notably, the FBL17 protein is recruited at nuclear foci upon DSB induction and partially co-localizes with γH2AX. The possible roles of FBL17 in DNA damage-signaling or repair are discussed.

RESULTS

The *fbl17* mutant transcriptome exhibits a strong upregulation of genes related to DNA damage and repair processes

Previous analyses have shown that Arabidopsis *fbl17* mutation leads to reduced leaf size, the appearance of serrated leaves, and sterility, likely caused by multiple cell-cycle defects (Noir et al., 2015). To further investigate the molecular basis of this phenotype, we performed a RNA sequencing (RNA-seq) analysis based on three biological replicates to identify differentially expressed genes (DEGs) between Col-0 and *fbl17-1* homozygous seedlings (Figure 1A; Supplemental Table 1). The comparative analysis of Col-0 and *fbl17-1* transcriptome data revealed that there are 6804 DEGs (i.e. ~ 25% of the whole transcriptome) in *fbl17-1* mutant (*p* value adjusted < 0.05), with almost 54% of those being upregulated (Figure 1A). Considering all DEGs in *fbl17*, a Gene Ontology (GO) term enrichment analysis, based on Biological Process category, showed an overrepresentation of genes involved in primary metabolic pathways such as the photosynthesis, and other cellular responses, most of them being related to stress conditions (Supplemental Table 2), in line with the severe global phenotypic alterations of the mutant plants.
Remarkably, by filtering DEGs based on Fold Change (i.e. log₂FC absolute value > 1.5; Figure 1B), the comparative RNA-seq analysis revealed that there are still more than 1,400 DEGs in fbl17 mutant and their GO term enrichment analysis highlighted their implication in cell cycle progression, DNA replication mechanisms, chromosome dynamics and, in an unexpectedly extended manner, also DNA repair and stress response. This latest category represents 59% of the DEGs (Figure 1B, Supplemental Figure 1), with 405 genes (ca. 79%) exhibiting an up-regulation suggesting a constitutive induction of genes linked to DNA damage and stress response. More precisely, using the KEGG (Kyoto Encyclopedia of Genes and Genomes; (Kanehisa et al., 2017) enrichment analysis, six enriched pathways were identified (Supplemental Table 3). One corresponds to pyrimidine metabolism, involving modifications of both DNA and RNA nucleic acids. The five others are related to DNA metabolism and in particular to DNA replication and DNA repair mechanisms, including mismatch repair, homologous recombination, nucleotide excision repair, and base excision repair. Remarkably, in the six enriched pathways, the identified genes were all up-regulated in fbl17-1 compared to Col-0.

Finally, to validate the RNAseq approach, genes implicated in distinct DNA damage pathways, suggested by the KEGG analysis and some other genes, were selected and their expression was monitored for comparison by reverse transcription quantitative PCR (RT-qPCR) in wild-type Col-0 and the fbl17-1 homozygous mutant as well as in the KRP2 overexpressor line (KRP2^{OE}, (Noir et al., 2015) under standard culture conditions (Figure 1C). Each of the 22 tested genes revealed the same tendency in terms of expression levels in both analyses, thus validating the data of the RNAseq analysis. Furthermore, besides the expression of WEE1, ATR, CYCB1;1, CDKB1;1, and BRCA1 already reported (Noir et al., 2015), the selected genes PARP2, RPA1E, RAD51A, MSH5, MSH4, POL2A, and PCNA1 are also upregulated under standard growth conditions in fbl17 but not in the control Col-0 (Figure 1C). Given that fbl17 mutants present an accumulation of the CDK inhibitor KRP2, it is expected that the KRP2^{OE} line might mimic some of the fbl17 mutant phenotypes (Noir et al., 2015). Interestingly, in this analysis, KRP2^{OE} line exhibited a comparable expression pattern to Col-0, indicating that the constitutive upregulation of DDR genes in fbl17 is not a direct consequence of KRP2 overaccumulation. Altogether, this analysis indicates that loss of FBL17 function causes a constitutive and rather global induction of the DDR.

fbl17 mutants reveal an increased frequency of DNA lesions
The constitutive transcriptional DDR suggests that \textit{fbl17} mutants are subjected to genome instability, which is further supported by the occurrence of micronuclei and chromosome bridges previously observed in dividing mutant cells (Noir et al., 2015). To further investigate this issue, we used the sensitive and highly specific γH2AX marker, whereby detection by immunolabeling can reveal DNA break sites (Figure 2A). Interestingly, the accumulation of γH2AX foci in the \textit{fbl17} mutant background was observed. More precisely, whereas the frequency of root nuclei exhibiting constitutive γH2AX foci in \textit{fbl17} was only slightly increased in comparison to Col-0 (i.e. around 30\% in \textit{fbl17} vs 20\% in Col-0; Figure 2A), the number of γH2AX-marked foci per nucleus reached a much higher amount in \textit{fbl17} than in Col-0 nuclei (Figure 2B), reflecting an excessive frequency of DNA lesions even in the absence of genotoxic stress.

\textit{fbl17} mutants are hypersensitive to drug-induced DSB DNA lesions

Given the specificity of γH2AX recruitment at DNA lesion sites and their accumulation in the \textit{fbl17} loss-of-function mutant, and also considering that this type of DNA lesions can especially result in the loss of genetic information, we turned our attention to genotoxic conditions triggering DSB DNA lesions. To begin with, transcript levels of the previously tested DNA-damage genes were evaluated after the treatment of seedlings with zeocin, an antibiotic of the bleomycin (BLM) family widely used as an inducer of DSBs. It should be mentioned that the \textit{FBL17} gene itself is not differentially regulated upon genotoxic stress or in the tested DDR mutant background \textit{sog1-1} (Figure 3). Under zeocin treatment, a number of genes known to be involved in DDR pathways, such as \textit{RAD51A}, \textit{TSO2}, \textit{BRCA1}, \textit{SMR7}, \textit{GR1}, \textit{RPA1E}, \textit{RAD17}, \textit{PARP2}, \textit{XRI1}, \textit{SYN2}, \textit{CYCB1;1}, and \textit{SIP4}, among others, appeared strongly induced in the control Col-0 (i.e. fold change up to 200; Figure 3B). According to the literature, many of these genes are known to be induced after DSB-inducing stress, and are targeted by the transcription factor SOG1 (Culligan et al., 2006; Ogita et al., 2018). Notably, for several genes such as \textit{RAD51A}, \textit{BRCA1}, \textit{SMR7}, \textit{PARP2}, and \textit{XRI1}, whereas they were also induced in \textit{fbl17} (i.e. fold change between 2 and 6), their expression induction was less compared to the Col-0 control, possibly due to the pre-existing constitutive induction of these genes in the mutant (Figure 3A). In addition, \textit{TSO2}, \textit{NSE4}, \textit{GR1}, \textit{TIL1}, \textit{RPA1E}, \textit{WEE1}, \textit{RPA70C}, and \textit{RAD17} did not appear to be induced by zeocin in \textit{fbl17}, likely because they were already at maximal gene expression levels in the mutant even in the absence of the drug. Lastly, some genes (among which were some constitutively up-regulated in \textit{fbl17}) were not upregulated after zeocin treatment in the \textit{fbl17} mutant or in the control (i.e.
LIG4, PCNA1, FAN1, ATM, and ATR; Supplemental Figure 2). This is in accordance with previous analyses showing that these genes are not induced by DSB stress and are not targeted by SOG1 (Culligan et al., 2006).

Next, we investigated the sensitivity of the fbl17 mutant to zeocin treatment using a root elongation assay. As already observed, the severe delay of fbl17 primary root elongation was confirmed under standard conditions (Figure 4A). The atm-2 mutant was used as a sensitive control (García et al., 2003) and, as expected, the primary root elongation of this mutant started to be slightly delayed after 4 days of zeocin treatment (Figure 4A), confirming the efficacy of the treatment. At the same time point, Col-0 and KRP2^{OE} were not yet affected by the chemical treatment, whereas fbl17 root elongation completely stopped already by day 3. After 7 days of zeocin treatment, atm-2 exhibited an intermediate phenotype of root length inhibition (i.e. 40%, median value), which lay between the respective ratios of around 5–6% for the Col-0 and KRP2^{OE} and 60% for the fbl17 mutant line (Figure 4B).

A strategy undertaken by multicellular organisms to eliminate damaged cells is to actively trigger cell death (Hu et al., 2016). Using the same experimental culture conditions, occurrence of cell death was estimated after 3 days of zeocin exposure. As expected, the atm-2 sensitive mutant exhibited more cell death than the control Col-0 (Fulcher and Sablowski, 2009) and the KRP2^{OE} line. Remarkably, whereas fbl17 root tips already exhibited constitutive cell death, further accumulation was noticed upon zeocin treatment, which corresponded to an even wider area of dead cells than that observed in the atm-2 mutant (Figures 4C and 4D). In addition, whereas cell death observed in Col-0 root tips was qualitatively mainly located at the level of the quiescent centre (QC), cell death in fbl17 occurred at the QC level as well as in more distant tissues of the root. Finally, the frequency of γH2AX foci was monitored after zeocin treatment in Col-0 and fbl17 (Figure 2A). Under this condition, the frequency of γH2AX-marked nuclei in fbl17 (ca. 70%) was significantly higher than in Col-0 (ca. 30%; Figure 2B). Moreover, γH2AX-marked nuclei accumulated a larger number of foci per nucleus in fbl17, in some of which more than 20 γH2AX foci were observed in a single nucleus.

Altogether, the impaired root meristem activity, the accumulation of cell death, and the increased number of γH2AX foci upon zeocin treatment indicate that the fbl17 mutant is hypersensitive to DSB-induced genotoxic stress. This phenotype is not the consequence of KRP overaccumulation occurring in fbl17 mutants, but rather suggests that FBL17 might be involved in DDR beyond its cell-cycle regulatory functions.
fbl17 constitutive overexpression of DDR genes and hypersensitivity to drug-induced DSBs are SOG1-independant

Mechanisms sensing DNA lesions and initiating DDR involve massive gene regulation ultimately leading to DNA repair. At this level of control, the Arabidopsis SOG1 transcription factor of the NAC family has been shown to be a master regulator controlling multiple DDR pathways (Yoshiyama, 2016; Bourbousse et al., 2018; Ogita et al., 2018). As already mentioned above (see Figure 3), SOG1 is not differentially regulated in fbl17 at the transcriptional level. In order to investigate the putative implication of SOG1 in the DDR observed in the fbl17 mutant, the double mutant fbl17-1 sog1-1 was generated. At a macroscopic level, the developmental phenotype of the double mutant was similar to the fbl17 single mutant (Supplemental Figure 3). Though, regarding its root growth, the double mutant exhibits a minor rescue of the root length (Figure 4A). Upon genotoxic stress, whereas sog1-1 exhibits a slight resistance to zeocin in our experimental conditions (Figure 4B; see also (Adachi et al., 2011), the fbl17-1 sog1-1 double mutant shares a similar level of sensitivity with the fbl17 single mutant when tested both for root growth inhibition (Figure 4B) and for cell death occurrence (Figures 4C-D). Despite the absence of obvious rescue of the fbl17 phenotype by the sog1 mutation, we next asked whether SOG1 loss of function could at least partially attenuate the global up-regulation of DNA-damage genes observed in the fbl17 mutant background.

At first, by testing some gene targets of SOG1 not implicated in DDR according to Ogita et al. (2018), we verified that those genes (e.g. EDA18, KRP6, SAG101, BRL3, AGO2) are not constitutively up-regulated in the fbl17 single mutant and as expected in fbl17-1 sog1-1 (Figure 3A). Nevertheless, most of the DDR genes constitutively induced without genotoxic stress were similarly differentially expressed in fbl17-1 sog1-1 as in the fbl17 single mutant (Figure 3A), with the exception of TSO2 and SMR7 showing only a slight decrease of expression. By contrast and as expected, the induction by zeocin of these genes was fully suppressed in the sog1-1 single mutant and also in the fbl17-1 sog1-1 double mutant (Figure 3B). It is however noteworthy that upon zeocin treatment, only the additive increase of expression of some DDR genes in fbl17 (e.g. RAD51A, BRCA1, SMR7, PARP2) was dependent on SOG1. Altogether these results indicate that the constitutive DDR and the hypersensitivity to DSB-induced genotoxic stress observed in fbl17 do not depend on SOG1, and likely involves other transcriptional regulatory mechanisms.

FBL17 is recruited at nuclear foci upon DSB induction
It was previously shown that FBL17 is a nuclear F-box protein restricted to few cells in the root meristem, showing a cell cycle phase-dependent expression pattern (Noir et al., 2015; Desvoyes et al., bioRxiv 774109). We next investigated whether DNA damage affects the subcellular distribution of FBL17. To answer this question, we took advantage of the previously established fbl17-1, pFBL17:FBL17-GFP line (Noir et al., 2015). At first, the sensitivity of this reporter line to zeocin was monitored using a root elongation assay (Supplemental Figures 4A, B) and by RT-qPCR analysis (Supplemental Figure 4D). In the tested conditions, the reporter line exhibited a similar behavior as the Col-0 wild-type control, supporting that the FBL17-GFP protein is functional and can confidently be used for our analyses. Consequently, the GFP-reporter line was exposed to distinct genotoxic stresses and the distribution of the fusion protein was imaged by confocal microscopy (Figure 5A). For this assay, we used zeocin to induce DSB DNA lesions and, due to the implication of FBL17 in DNA replication, cisplatin and hydroxyurea (HU) treatments were also applied to trigger DNA crosslinking and stalled replication forks, respectively. Under these conditions, no obvious differential distribution of the FBL17-GFP protein at a tissue level was observed between the three treatments tested. However, focusing at a subcellular nuclear level, the formation of FBL17 nuclear foci could be observed only with the zeocin treatment, but neither with cisplatin nor HU, suggesting that the formation of FBL17 foci might be specific to DSB-type DNA lesions.

DSB-type DNA lesions recruit FBL17 at γH2AX foci

The observation of FBL17 foci upon genotoxic stress was reminiscent of the γH2AX foci formation. Intriguingly, it was recently shown that, besides the expected proteins from the DNA damage machinery, some cell-cycle transcriptional regulators, both the Arabidopsis E2FA and the Nicotiana tabacum E2F transcription factors, and the RETINOBLASTOMA RELATED 1 (RBR1) also localized at DNA damage sites (Lang et al., 2012; Biedermann et al., 2017; Horvath et al., 2017). To better define the FBL17 foci, we used an immunostaining approach which despite revealing a low frequency of nuclei with FBL17 foci (Supplemental Table S9), allowed us to investigate whether they co-localize with γH2AX foci and/or RBR1. Indeed, we observed the co-localization of FBL17 with γH2AX foci in some nuclear foci supporting the recruitment of the F-box protein at DNA lesion sites upon zeocin treatment (Figure 5B). More interestingly, we also observed a clear co-localization of FBL17 and RBR1 (Figures 5B and 5C). In fact, quantification of these nuclear foci under zeocin treatment (Figure 5D) revealed a mean value of 5% co-localization of RBR1 with γH2AX and 5% co-
localization of FBL17 with RBR1 (Supplemental Table S9). Note that FBL17 and γH2AX never co-localize if RBR1 is not itself detected at these foci (Figure 5D and Supplemental Table S9) and co-localization of all three proteins together represented only 1% of our observations. These results suggest that FBL17 and RBR1 follow a dynamic recruitment at the DNA damage sites, where they likely contribute to DNA repair and genome integrity.

DISCUSSION

We have previously shown that Arabidopsis *FBL17* loss of function slows plant growth by decreasing cell proliferation and also suppressing endoreplication (Noir et al., 2015). At the molecular level, *fbl17* mutant plants showed increased accumulation of the KRP2 protein, which is known to switch off CDKA;1 kinase activity (Verkest et al., 2005), and phenotypically resembled the *cdka;1* null mutant (Nowack et al., 2012), indicating that a main function of FBL17 is to positively regulate CDKA;1 activity. In line with such a role, the loss of *FBL17* delayed or even blocked S-phase in some cells and led to the differential expression of cell-cycle genes and consistently among them genes involved in the process of DNA replication (Noir et al., 2015). However, our transcriptomic approach revealed that the *fbl17* mutation also leads to a broader activation of numerous DNA damage and repair genes beyond those solely linked to DNA replication stress. Note that genome-wide transcriptional studies of synchronized plant cells revealed that several DDR genes have their expression maximum in S-phase (Menges et al., 2005; Trolet et al., 2019).

In plants, a major regulator of the DDR is the transcription factor SOG1, which has been functionally compared to the mammalian tumor suppressor p53 (Yoshiyama et al., 2009; Yoshiyama, 2016). SOG1 is directly phosphorylated by ATM and its mutation impairs DNA repair, cell cycle arrest, and activation of cell death (Preuss and Britt, 2003; Yoshiyama et al., 2009; Furukawa et al., 2010). Whereas post-translational regulation of SOG1 by FBL17 cannot be fully excluded, according to our analysis, *FBL17* does not seem to act in *SOG1* transcription regulation. First, the constitutive transcriptional activation of DDR genes in *fbl17* is not suppressed by the *sog1* mutation. Second, many of the SOG1 target genes can still be induced upon zeocin treatment in the *fbl17* mutant background. Third, *fbl17* mutant hypersensitivity to DSB inducing agents as well as their increased amount of cell death is not dependent on SOG1.
Interestingly, it has recently been shown that several genes involved in DNA damage repair are induced when RBR1 is down-regulated by RNAi or in the hypomorphic \textit{rbr1-2} mutant (Biedermann et al., 2017; Horvath et al., 2017). At least for Arabidopsis \textit{BRCA1}, it was shown that RBR1 directly represses this gene through the E2F transcription factor (Horvath et al., 2017). A genome-wide RBR1-ChIP analysis further indicated that RBR1 is recruited to E2F-sites present in the promoter of many DDR genes (Bouyer et al., 2018). According to our analysis combining the information of E2FA-binding sites (Verkest et al., 2014) with the RBR1-ChIP dataset (Bouyer et al., 2018), several of the DDR genes constitutively induced in \textit{fbl17} are likely targets of RBR1/E2FA.

At the functional level, it was reported that \textit{rbr1} mutants exhibit an elevated level of DNA damage in normal growth conditions, whereas after BLM-treatment, these mutants show a significantly higher level of DNA fragmentation (Biedermann et al., 2017; Horvath et al., 2017). Moreover, both the lack of functional RBR1 and the loss of E2FA resulted in hypersensitivity against DNA DSB-inducing agents (Roa et al., 2009; Lang et al., 2012; Biedermann et al., 2017). Thus, the loss of \textit{FBL17} function shares many similarities with the phenotype of RBR1/E2FA-deficient plants, suggesting that the F-box protein could act at this level. Indeed, we observed the co-localization of FBL17 and RBR1 at DNA damage sites. The recruitment of RBR1 and E2FA to γH2AX foci has been previously reported (Lang et al., 2012; Biedermann et al., 2017; Horvath et al., 2017), suggesting that these proteins might play a more direct role in DNA repair besides their known transcriptional regulatory function. Interestingly, RBR1 co-localizes with the RADIATION SENSITIVE 51 (RAD51) protein and is necessary for RAD51 localization to DNA after BLM treatment (Biedermann et al., 2017). RBR1 also co-localizes with BRCA1 foci upon DNA stress, although RBR1 recruitment to γH2AX foci was found independent of BRCA1 (Horvath et al., 2017). As shown in mammals, where Rb physically interacts with the BRCA1 (Aprelikova et al., 1999), RBR1 also directly interacts with BRCA1 in plants (Horvath et al., 2017), suggesting a structural role of the Retinoblastoma in the DNA damage repair machinery. Our observation that FBL17 and RBR1 co-localize in nuclear foci after DNA damage generating DSBs suggests that the F-box protein directly participates in the process of DNA repair. Since FBL17 association with γH2AX seems to depend on RBR1, it is possible that the later recruits FBL17 at the DNA damage sites in a dynamic manner. This raises the question of which proteins might be ubiquitylated by FBL17 at the sites of DNA lesions.

In mammalian cells, DSB repair implies a complex interplay between ubiquitylation and SUMOylation for a faithful repair of such damage (Schwertman et al., 2016). In
particular, it has been shown that ubiquitylation of proteins in the vicinity of DNA lesions functions as a recruitment signal for DSB repair factors. Ubiquitylation and deubiquitylation cycles also control the steady-state level of DSB repair factors and/or their interactions. Of particular interest for our study is the mammalian F-box protein Skp2. Whereas Skp2 is a main regulator of the cell cycle (Frescas and Pagano, 2008; Starostina and Kipreos, 2012), it has also been involved in DDR. Thus, it was shown that Skp2 is required for the activation and recruitment of the ATM kinase to DNA damage foci (Wu et al., 2012). At the molecular level, in response to DSBs, Skp2 triggers the K63-dependent ubiquitylation of NBS1, a component of the MRN complex, which in turn facilitates ATM recruitment to the DNA foci for activation. Skp2 also ubiquitylates other proteins at DSBs such as BRCA1, which seems important for the timing of end resection (Parameswaran et al., 2015). Similarly to Skp2, the Arabidopsis FBL17 F-box protein is able to degrade CKI proteins (Noir et al., 2015 and references therein), but whether it also ubiquitylates components of the DNA repair machinery is presently unknown. Note that at the DNA damage sites, RBR1 itself and/or E2FA are also possible candidate substrates of the SCF_{FBL17} ubiquitin E3 ligase. Therefore, further experiments will be necessary to elucidate the function of this plant F-box protein at DSB sites.

MATERIALS AND METHODS

Plant Material

The following <i>Arabidopsis</i> lines were used in this study: the T-DNA insertion lines <i>fbl17-1</i> (Gabi-KAT_170-E02; (Noir et al., 2015), <i>atm-2</i> (SALK_006953; (Garcia et al., 2003)), the EMS mutant line <i>sog1-1</i> (Yoshiyama et al., 2009), and the Arabidopsis reporter and/or overexpressor lines <i>fbl17-1</i>, pFBL17:FBL17-GFP, 35S:FBL17-GFP, and GFP-KRP2OE described in Noir et al. (2015). T-DNA insertions and mutations were confirmed by PCR-based genotyping and by further sequencing for the <i>sog1-1</i> allele. The <i>fbl17-1 sog1-1</i> double mutant was generated by performing crosses and genotyping/sequencing of the resulting F₂ and/or F₃ progenies by PCR-based approaches. Primers designed for this purpose are listed in the Supplemental Data (Supplemental Table S10).

Plant Growth Conditions
For *in vitro* growth conditions, seed sterilization, stratification, and *in vitro* culture were performed as described previously (Noir et al., 2015) with or without supplemented genotoxic agent. To obtain flowering plants and seeds, seedlings initially grown under *in vitro* culture were transferred on soil at day 6–8 and kept in 16-h light/8-h dark growth chambers under fluorescent light (Osram Biolux 49W/965).

For the monitoring of root growth, seedlings were germinated and grown *in vitro* on vertical plates using 1% w/v agar MS medium and transferred at day 5 on 1% w/v agar MS medium with or without 5 µM zeocin (Invitrogen). Root elongation was scored each day for 7 days and root length was measured using Fiji software (ImageJ 1.52p; http://imageJ.nih.gov/ij). The final values were calculated by determining the arithmetic mean of the root length values of three biological replicates, which were themselves the average of 4–37 plants using the R software (version 3.6.1).

Reverse transcription quantitative PCR analysis

The purification of total RNA from 8-day-old seedlings grown under *in vitro* conditions was performed using Tri-Reagent (Molecular Research Center, Inc) according to the manufacturer’s instructions. cDNAs were prepared using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Quantitative PCR (qPCR) was performed using gene-specific primers and SYBR Green Master Mix (Roche) on a LightCycler LC480 apparatus (Roche) according to the manufacturer’s instructions. The mean value of three replicates was normalized using the *TIP4.1* (AT4G34270) and *SAND* (AT2G28390) genes as internal controls. All primers used in RT-qPCR analyses are listed in Supplemental Table S10.

Nucleic acid isolation, cDNA library preparation, sequencing, and data analysis

Total RNA was extracted by using Trizol solution (Invitrogen) from 10-day-old *fbl17-1* and Col-0 seedlings grown *in vitro*, with extraction performed as described above and completed by a second phenol/chloroform treatment. Three biological replicates were used as starting material. RNA concentrations were determined with a QuBit Fluorometer (Thermo Fisher Scientific). RNA integrities were checked using the 2100 Bioanalyzer (Agilent). mRNA was isolated from total RNA by using the NEBNext® Poly(A) mRNA Magnetic Isolation Module (NEB) for mRNA libraries preparation. Sequencing libraries were prepared using the Colibri stranded RNA library kit for Illumina (Invitrogen). The libraries were sequenced using an Illumina Nextseq 500 system (single-end mode 1 × 75 bp). RNA-seq data
have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-9050.

For the bioinformatics analysis, the pre-processing of the sequencing data was performed using TrimGalore (v0.5.0; https://www.bioinformatics.babraham.ac.uk/projects/trim_galore): reads were processed by removing the Illumina adaptor sequences using Cutadapt v1.18 and quality was assessed using FastQC v0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads with quality > 30 and minimal read length of 50 pb were kept. The data were mapped to the Arabidopsis thaliana genome (TAIR10) using Hisat2 (v2.1.0) software (Kim et al., 2015) and sorted with Samtools v1.9 (Li et al., 2009). For each gene, read quantification was performed using the HTSeq-count v0.11.0 software (with parameter "intersection nonempty") (Anders et al., 2015). Differential expression analysis by pairwise comparison was performed using the R package DESeq2 (v1.24.0) (Anders and Huber, 2010) and betaprior parameter set to true. Gene Ontology and KEGG enrichment analysis were performed using ShinyGo v0.61 software (Ge et al., 2019).

Immunolabeling

Fixation and immunostaining were performed as previously described (Batzenschlager et al., 2015) using 6-day-old in vitro-grown seedlings. The primary antibodies used were the rabbit polyclonal anti-γH2AX (diluted at 1/500; provided by Davids biotechnologie, Regensburg, Germany) against the synthetic phosphopeptide VGKNKGDIGSA(p)SQGEF as described in Friesner et al. (2005), the mouse monoclonal anti-GFP (1/500; Life Technologies) and the chicken polyclonal anti-RBR1 (1/7000; Agrisera). Depending on the experiments, the conjugated-secondary antibodies for γH2AX detection were either the goat anti-rabbit Alexa Fluor 568 (1/300; Life Technologies) for red signals or the goat anti-rabbit Cyn5 (1/500; Life Technologies) for purple signals. For GFP and RBR1 detection, the conjugated secondary antibodies used were, respectively, the goat anti-mouse Alexa Fluor 488 (1/200; Interchim) for the green signal and, the goat anti-chicken Alexa Fluor 568 (1/300; Life Technologies) for red signal.

Confocal Microscopy Analyses and Image Treatments

All confocal microscopy observations were performed by using the Leica TCS SP8 microscope. Roots of seedlings expressing fluorescent reporter constructs were observed after treatment with 20 μM zeocin (Invitrogen), 15 μM cisplatin (Sigma), or 5 mM hydroxyurea.
(Sigma) or after transfer to standard conditions for 16 h, and just before observation, were counterstained in 75 mg/mL propidium iodide (Fluka). To score cell death, 8-day-old seedlings not treated or treated for 3 days with 5 µM zeocin were stained as described previously (Biedermann et al., 2017). Dead cell quantification was performed at the quiescent centre (QC) plan considering a fixed area of 15,000 µm² (200-µm length from the QC towards the elongation zone on 75-µm width) using Fiji software (ImageJ 1.52p; http://imageJ.nih.gov/ij). The final values were calculated by determining the arithmetic mean of three biological replicates (4 <N per genotype < 11) using the R software (version 3.6.1). For immunolabeling imaging, confocal images of fixed nuclei were taken as a consecutive series along the Z-axis. Microscope settings were kept the same for image acquisition of each genotype and/or condition, and signal co-localization was evaluated using the Fiji software.

Accession Numbers

The accession numbers of the main genes mentioned in this study are as follows:

- AT1G02970 (*WEE1*), AT1G07370 (*PCNA1*), AT1G07745 (*RAD51D*), AT1G08130 (*LIG1*), AT1G08260 (*TIL1*), AT1G08260.1 (*POL2A*), AT1G16970 (*KU70*), AT1G25580 (*SOG1*), AT1G31280 (*AGO2*), AT1G48050 (*KU80*), AT1G48360 2 (*FAN1*), AT1G51130 (*NSE4A*), AT1G80420 (*XRCCI*), AT2G28390 (*SAND*), AT2G34920 (*EDA18*), AT3G13380 (*BRL3*), AT3G19150 (*KRP6*), AT3G20475 (*MSH5*), AT3G27060 (*TSO2*), AT3G27630 (*SMR7*), AT3G48190 (*ATM*), AT3G52115 (*GRI*), AT3G54180 (*CDKB1;1*), AT3G54650 (*FBL17*), AT4G02390 (*PARP2*), AT4G09140 (*MLH1*), AT4G17380 (*MSH4*), AT4G19130 (*RP41E*), AT4G21070 (*BRCA1*), AT4G34270 (*TIP41*), AT4G37490 (*CYCB1;1*), AT5G14930 (*SAG101*), AT5G20850 (*RAD51A*), AT5G24280 (*GMI1*), AT5G40820 (*ATR*), AT5G41150 (*UVH1*), AT5G45400 (*RP470C*), AT5G46740 (*UBP21*), AT5G48720.02 (*XRII*), AT5G49520 (*WRKY48*), AT5G57160 (*LIG4*), AT5G58760 (*DDB2*), AT5G66130 (*RAD17*), AT5G40840.2 (*SYN2*).

ACKNOWLEDGMENTS

We thank Jérôme Mutterer from the IBMP Microscopy and Cellular Imaging platform for confocal microscopy support, Sandrine Koechler and Abdelmalek Alioua from the IBMP Gene Expression Analysis platform as well as Anne Molitor, Antoine Hanauer and Raphael Carapito from the GENOMAX platform of INSERM UMRS_1109 for Next-Generation Sequencing experiments.
This work was supported by the Grand-Est Region (N° 168947), the Agence Nationale de la Recherche-PRCI program ANR-RHiD “ANR-19-CE13-0032” and the LABEX program “ANR-10-LABX-0036_NETRNA.”

SUPPLEMENTAL DATA

Supplemental Figure S1. Details of the Gene Ontology (GO) functional analysis of DEGs in *fbl17* exhibiting a log2FC absolute value > 1.5 (i.e. 1,443 genes) illustrated in Figure 1B.

Supplemental Figure S2. Gene expression analysis under standard condition and upon zeocin treatment.

Supplemental Figure S3. The *fbl17-1 sog1-1* double mutant exhibits the same phenotype as the *fbl17* single mutant.

Supplemental Figure S4. FBL17-GFP reporter lines exhibit the same sensitivity as Col-0 under zeocin treatment.

Supplemental Table S1. Set of genes differentially regulated in *fbl17-1* seedlings compared with Col-0 plants (i.e. 6,804 DEGs).

Supplemental Table S2. Gene Ontology enrichment analysis of all DEGs in *fbl17* compared to Col-0 (i.e. 6,804 DEGs).

Supplemental Table S3. KEGG pathway enrichment analysis based on DEGs in *fbl17* compared to Col-0 (log2FC>1.5 absolute value; i.e. 1,443 genes).

Supplemental Table S4. Statistical significance table for Figure 4A regarding the root length of *fbl17-1* and *fbl17-1 sog1-1* under standard conditions (Wilcoxon-Mann-Whitney test).

Supplemental Table S5. Statistical significance table for Figure 4A, regarding the root length of *fbl17-1* and *fbl17-1 sog1-1* under zeocin conditions (Wilcoxon-Mann-Whitney test).

Supplemental Table S6. Statistical significance table for Figure 4B, root length inhibition (Wilcoxon-Mann-Whitney test).

Supplemental Table S7. Statistical significance table for Figure 4D, cell death quantification (Wilcoxon-Mann-Whitney test).

Supplemental Table S8. Statistical significance analysis of the FBL17-, RBR1-, and γH2AX-signal co-localization (Pearson’s coefficient and Mander’s coefficient).

Supplemental Table S9. Frequency of nuclei showing γH2AX-, RBR1- and/or FBL17-foci compared to the total number of nuclei with foci, and frequency of foci showing γH2AX-, RBR1- and/or FBL17-foci compared to the total number of foci.

Supplemental Table S10. Primer combinations used for genotyping and RT-qPCR analyses.
FIGURE LEGENDS

Figure 1. The whole transcriptome of the *fbl17* mutant reveals misexpression of numerous cell-cycle and DNA-damage/repair genes.

(A) All differentially expressed genes (DEGs) in *fbl17* compared with Col-0 wild-type plants (log₂ fold-change; x-axis) were plotted against the -log₁₀(adjusted p-value). The horizontal line indicates the significance threshold for DEGs (p-value <0.05). Up- and down-regulated genes are shown with green and red dots, respectively. Non-DEGs are shown with grey dots.

(B) Gene Ontology (GO) functional analysis of DEGs in *fbl17* exhibiting a log₂FC absolute value > 1.5 (i.e. 1,443 genes). The GO enrichment analysis is based on Biological Process functional categories of the ShinyGo v0.61 software. The 5 major functional groups are based on the 50 most significant terms taken account from the hierarchical clustering tree summarizing the correlation among pathways with many shared genes (Supplemental Figure S1). The number of non-redundant genes (n) per functional group and the corresponding percentage are indicated in brackets.

(C) Relative expression levels of gene transcripts from 8-day-old *in vitro* grown plants of the indicated genotype as determined by RT-qPCR. The bar graph depicts expression level mean values of the indicated transcripts of one independent replicate (±SE of the technical triplicate). The experiment was repeated two times giving the same tendency.

Figure 2. Increased accumulation of γH2AX foci in *fbl17*.

(A) Representative images of Col-0 and *fbl17*-1 after immunostaining of γH2AX foci (red) in root-tip nuclei from seedlings under control conditions (Control) or treated for 16 hours with 5 µM zeocin (Zeocin). Nuclei were counterstained with DAPI (blue). Scale bar = 2 µm.

(B) Quantification of γH2AX foci in nuclei from Col-0 and *fbl17*-1 seedlings under control conditions or treated with zeocin. Between 79 and 233 nuclei per line per replicate were analyzed and categorized into six types (no γH2AX, 1–2, 3–5, 6–10, 11–20, or more than 20 γH2AX foci/nuclei, respectively). Two independent replicates were performed. Error bars indicate the standard deviation.

Figure 3. DDR gene expression levels in Col-0, *fbl17* and *sog1* single-mutant, and *fbl17* *sog1* double-mutant backgrounds with and without zeocin treatment.
(A) Relative expression levels of genes in 8-day-old *in vitro*-grown plants (standard conditions) of the indicated genotypes as determined by RT-qPCR. Data are compared to the Col-0 value normalized at 1.

(B) Relative expression levels of genes in 8-day-old *in vitro*-grown plants of the indicated genotypes after 3 hours of 20 µM zeocin treatment as determined by RT-qPCR. Data are compared to the value of the same genotype under standard conditions (panel A) normalized at 1.

(A,B) The bar graph depicts expression level mean values of the indicated transcripts of one independent replicate (±SE of the technical triplicate). The experiment was repeated two times with similar results.

Figure 4. The *fbl17* mutant exhibits hypersensitivity to zeocin treatment.

(A) Root growth elongation of the indicated genotypes in 5-day-old seedlings grown under standard conditions and then transferred onto control medium (upper graph) or medium containing 5 µM zeocin (lower graph) for a further 7 days of culture. Error bars indicate the standard deviation of the mean value of three independent experiments (4 <N per genotype <37). The asterisks indicate a *p*-value <0.05(*), <0.01(**) and <0.001(***) in Wilcoxon-Mann-Whitney test between *fbl17*-1 and *fbl17*-1 *sog1*-1. Complete statistical analyses are given in Supplemental Tables S4 and S5.

(B) Percentage of root length inhibition for the experiment described in (A). Statistical significance analysis has been calculated by Wilcoxon-Mann-Whitney test. Box whiskers with different letters (a, b, c, d, and e) denote statistical differences (one-way analysis of variance, *p* < 0.05 at least). Complete statistical analysis is given in Supplemental Table S6.

(C) Representative images of root tips of 5-day-old seedlings transferred onto control medium or medium containing 5 µM zeocin for a further 3 days of growth before propidium iodide staining. Scale bars = 50 µm. Three independent replicates were performed (4 < N per genotype <11).

(D) Cell death quantification of the root samples illustrated in (C) on control medium (-) or medium containing 5 µM zeocin (+) for a further 3 days. Statistical significance analysis has been calculated by Wilcoxon-Mann-Whitney test. Box whiskers with different letters (a, b, c, d, and e) denote statistical differences (one-way analysis of variance, *p* < 0.05 at least). Complete statistical analysis is given in Supplemental Table S7.
Figure 5. FBL17 proteins are recruited at γH2AX foci and co-localize with RBR1 upon DSB-inducer stress.

(A) Live microscopy of fbl17-1, pFBL17:FBL17-GFP after 16 hours of genotoxic treatment (zeocin 20 µM, cisplatin 15 µM, or hydroxyurea 5 mM). Scale bars = 50 µm (upper panel) and 2 µm (lower panel). Three independent experiments were analyzed (5 <N per genotype < 10).

(B) Representative images of fbl17-1, pFBL17:FBL17-GFP root nuclei with triple immunolocalization of γH2AX (purple), RBR1 (red), and FBL17-GFP (anti-GFP, green), showing co-localization of the 3 signals after 16 hours of zeocin treatment (20 µM) highlighted by arrowheads. Nuclei were counterstained with DAPI (blue). Scale bar = 2 µm.

(C) Signal intensity distribution of the total amount of pixels at the X-axis shown in zeocin-treated nucleus in (B). Statistical significance analysis of the signal co-localization is given in Supplemental Table S8.

(D) Venn diagram showing the frequency of the different co-localization combinations of FBL17-, RBR1-, and γH2AX-foci in the nuclei of one replicate (total number of foci = 758). Complete frequency analysis of the three independent replicates is given in Supplemental Table S9.

REFERENCES

Adachi S, Minamisawa K, Okushima Y, Inagaki S, Yoshiyama K, Kondou Y, Kaminuma E, Kawashima M, Toyoda T, Matsui M, et al (2011) Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proc Natl Acad Sci 108: 10004–10009

Amiard S, Gallego ME, White CI (2013) Signaling of double strand breaks and deprotected telomeres in arabidopsis. Front Plant Sci 4: 1–6

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106

Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169

Aprelikova ON, Fang BS, Meissner EG, Cotter S, Campbell M, Kuthiala A, Bessho M, Jensen RA, Liu ET (1999) BRCA1-associated growth arrest is RB-dependent. Proc
Batzenschlager M, Lermontova I, Schubert V, Fuchs J, Berr A, Koini MA, Houlné G, Herzog E, Rutten T, Alioua A, et al (2015) Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci U S A 112: 8656–8660

Biedermann S, Harashima H, Chen P, Heese M, Bouyer D, Sofroni K, Schnittger A (2017) The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J 36: 1279–1297

Bourbousse C, Vegesna N, Law JA (2018) SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci 115: E12453–E12462

Bouyer D, Heese M, Chen P, Harashima H, Roudier F, Grüttnier C, Schnittger A (2018) Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet. doi: 10.1371/journal.pgen.1007797

Cools T, De Veylder L (2009) DNA stress checkpoint control and plant development. Curr Opin Plant Biol 12: 23–28

Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB (2006) ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J 48: 947–961

Denicourt C, Dowdy SF (2004) Cip/Kip proteins: More than just CDKs inhibitors. Genes Dev 18: 851–855

Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM (2009) H2AX: Functional roles and potential applications. Chromosoma 118: 683–692

Feldman RMR, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91: 221–230

Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: Tipping the scales of cancer. Nat Rev Cancer 8: 438–449

Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing Radiation–dependent γ-H2AX Focus Formation Requires Ataxia Telangiectasia Mutated and Ataxia Telangiectasia Mutated and Rad3-related. Mol Biol Cell 16: 2566–2576

Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci 106: 20984–20988
Furukawa T, Curtis MJ, Tominey CM, Duong YH, Wilcox BWL, Aggoune D, Hays JB, Britt AB (2010) A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation. DNA Repair (Amst) 9: 940–948

Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A (2003) AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15: 119–132

Ge SX, Jung D, Yao R (2019) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 1–2

Gusti A, Baumberger N, Nowack M, Pusch S, Eisler H, Potuschak T, De Veylder L, Schnittger A, Genschik P (2009) The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS One. doi: 10.1371/journal.pone.0004780

Horvath BM, Kourova H, Nagy S, Nemeth E, Magyar Z, Papdi C, Ahmad Z, Sanchez-Perez GF, Perilli S, Biliou I, et al (2017) Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO J 36: 1261–1278

Hu Z, Cools T, De Veylder L (2016) Mechanisms Used by Plants to Cope with DNA Damage. Annu Rev Plant Biol 67: 439–462

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45: D353–D361

Kim D, Langmead B, Salzberg SL (2015) HISAT: A fast spliced aligner with low memory requirements. Nat Methods 12: 357–360

Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H, Hwang I, Twell D, Nam HG (2008) Control of plant germline proliferation by SCF FBL17 degradation of cell cycle inhibitors. doi: 10.1038/nature07289

Lang J, Smetanova O, Sanchez-Calderon L, Lineker F, Genestier J, Schmit AC, Houlné G, Chabouté ME (2012) Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. New Phytol 194: 353–363

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079

Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30: 630–641
Menges M, De Jager SM, Gruissem W, Murray JAH (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41: 546–566

Nisa M, Huang Y, Benhamed M, Raynaud C (2019) The Plant DNA Damage Response: Signaling Pathways Leading to Growth Inhibition and Putative Role in Response to Stress Conditions. 10: 1–12

Noir S, Marrocco K, Masoud K, Thomann A, Gusti A, Bitrian M, Schnittger A, Genschik P (2015) The Control of Arabidopsis thaliana Growth by Cell Proliferation and Endoreplication Requires the F-Box Protein FBL17. Plant Cell 27: 1461–1476

Nowack MK, Harashima H, Dissmeyer N, Zhao X, Bouyer D, Weimer AK, De Winter F, Yang F, Schnittger A (2012) Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis. Dev Cell 22: 1030–1040

Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100: 71–78

Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsui M, Okamoto-Yoshiyama K, Sakamoto T, et al (2018) Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J 94: 439–453

Parameswaran B, Chiang HC, Lu Y, Coates J, Deng CX, Baer R, Lin HK, Li R, Paull TT, Hu Y (2015) Damage-induced BRCA1 phosphorylation by Chk2 contributes to the timing of end resection. Cell Cycle 14: 437–448

Preuss SB, Britt AB (2003) A DNA-damage-induced cell cycle checkpoint in arabidopsis. Genetics 164: 323–334

Roa H, Lang J, Culligan KM, Keller M, Holec S, Cognat V, Montané MH, Houlné G, Chabouté ME (2009) Ribonucleotide reductase regulation in response to genotoxic stress in arabidopsis. Plant Physiol 151: 461–471

Schwertman P, Bekker-Jensen S, Mailand N (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 17: 379–394

Schwob E, Böhm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell. doi: 10.1016/0092-8674(94)90193-7

Sjogren CA, Bolaris SC, Larsen PB (2015) Aluminum-Dependent Terminal Differentiation of the Arabidopsis Root Tip Is Mediated through an ATR-, ALT2-, and SOG1-Regulated
Transcriptional Response. Plant Cell 27: 2501–2515

Spampinato CP (2017) Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 74: 1693–1709

Starostina NG, Kipreos ET (2012) Multiple degradation pathways regulate versatile CIP / KIP CDK inhibitors. Trends Cell Biol 22: 33–41

Syed A, Tainer JA (2018) The MRE11–RAD50–NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 87: 263–294

Trolet A, Baldrich P, Criqui M-C, Dubois M, Clavel M, Meyers BC, Genschik P (2019) Cell Cycle-dependent Regulation and Function of ARGONAUTE1 in Plants. Plant Cell tpc.00069.2019

Verkest A, Abeel T, Heyndrickx KS, Van Leene J, Lanz C, Van De Slijke E, De Winne N, Eeckhout D, Persiau G, Van Breusegem F, et al (2014) A generic tool for transcription factor target gene discovery in Arabidopsis cell suspension cultures based on tandemchromatinaffinity purification. Plant Physiol 164: 1122–1133

Verkest A, Manes C-L de OC-LDO, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inze D, De Veylder L, et al (2005) The Cyclin-Dependent Kinase Inhibitor KRP2 Controls the Onset of the Endoreduplication Cycle during Arabidopsis Leaf Development through Inhibition of Mitotic CDKA;1 Kinase Complexes. Plant Cell 17: 1723–1736

De Veylder L, Beeckman T, Inzé D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol 8: 655–665

Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, Foreman J, Guan Y, Pochon G, Heese M, Van Damme D, et al (2016) The plant-specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis . EMBO J 35: 2068–2086

Wu J, Zhang X, Zhang L, Wu CY, Rezaeian AH, Chan CH, Li JM, Wang J, Gao Y, Han F, et al (2012) Skp2 E3 Ligase Integrates ATM Activation and Homologous Recombination Repair by Ubiquitinating NBS1. Mol Cell 46: 351–361

Yi D, Alvim Kamei CL, Cools T, Vanderauwera S, Takahashi N, Okushima Y, Eekhout T, Yoshiyama KO, Larkin J, Van den Daele H, et al (2014) The Arabidopsis SIAMESE-RELATED Cyclin-Dependent Kinase Inhibitors SMR5 and SMR7 Regulate the DNA Damage Checkpoint in Response to Reactive Oxygen Species. Plant Cell 26: 296–309
Yoshiyama K, Conklin PA, Huefner ND, Britt AB (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci 106: 12843–12848

Yoshiyama KO (2016) SOG1: A master regulator of the DNA damage response in plants. Genes Genet Syst 90: 209–216

Yoshiyama KO, Kobayashi J, Ogita N, Ueda M, Kimura S, Maki H, Umeda M (2013) ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO Rep 14: 817–822

Zhao XA, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, Bouyer D, Rademacher S, Nowack MK, Novak B, et al (2012) A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant Arabidopsis thaliana. PLoS Genet 8: e1002847
Figure 1. The whole transcriptome of the fbl17 mutant reveals misexpression of numerous cell-cycle and DNA-damage/repair genes.

(A) All differentially expressed genes (DEGs) in fbl17 compared with Col-0 wild-type plants (log\textsubscript{2} fold-change; x-axis) were plotted against the -log\textsubscript{10}(adjusted p-value). The horizontal line indicates the significance threshold for DEGs (p-value < 0.05). Up- and down-regulated genes are shown with green and red dots, respectively. Non-DEGs are shown with grey dots.

(B) Gene Ontology (GO) functional analysis of DEGs in fbl17 exhibiting a log\textsubscript{2}FC absolute value > 1.5 (i.e. 1,443 genes). The GO enrichment analysis is based on Biological Process functional categories of the ShinyGo v0.61 software. The 5 major functional groups are based on the 50 most significant terms taken account from the hierarchical clustering tree summarizing the correlation among pathways with many shared genes (Supplemental Figure S1). The number of non-redundant genes (n) per functional group and the corresponding percentage are indicated in brackets.

(C) Relative expression levels of gene transcripts from 8-day-old in vitro grown plants of the indicated genotype as determined by RT-qPCR. The bar graph depicts expression level mean values of the indicated transcripts of one independent replicate (±SE of the technical triplicate). The experiment was repeated two times giving the same tendency.
Figure 2. Increased accumulation of γH2AX foci in *fbl17*.

(A) Representative images of Col-0 and *fbl17-1* after immunostaining of γH2AX foci (red) in root-tip nuclei from seedlings under control conditions (Control) or treated for 16 hours with 5 µM zeocin (Zeocin). Nuclei were counterstained with DAPI (blue). Scale bar = 2 µm.

(B) Quantification of γH2AX foci in nuclei from Col-0 and *fbl17-1* seedlings under control conditions or treated with zeocin. Between 79 and 233 nuclei per line per replicate were analyzed and categorized into six types (no γH2AX, 1–2, 3–5, 6–10, 11–20, or more than 20 γH2AX foci/nuclei, respectively). Two independent replicates were performed. Error bars indicate the standard deviation.
Figure 3. DDR gene expression levels in Col-0, fbl17 and sog1 single-mutant, and fbl17 sog1 double-mutant backgrounds with and without zeocin treatment.

(A) Relative expression levels of genes in 8-day-old in vitro-grown plants (standard conditions) of the indicated genotypes as determined by RT-qPCR. Data are compared to the Col-0 value normalized at 1.

(B) Relative expression levels of genes in 8-day-old in vitro-grown plants of the indicated genotypes after 3 hours of 20 µM zeocin treatment as determined by RT-qPCR. Data are compared to the value of the same genotype under standard conditions (panel A) normalized at 1.

(A,B) The bar graph depicts expression level mean values of the indicated transcripts of one independent replicate (±SE of the technical triplicate). The experiment was repeated two times with similar results.
Figure 4. The *fb17* mutant exhibits hypersensitivity to zeocin treatment. (A) Root growth elongation of the indicated genotypes in 5-day-old seedlings grown under standard conditions and then transferred onto control medium (upper graph) or medium containing 5 µM zeocin (lower graph) for a further 7 days of culture. Error bars indicate the standard deviation of the mean value of three independent experiments (4 < N per genotype < 37). The asterisks indicate a *p*-value <0.05(*), <0.01(**) and <0.001(***) in Wilcoxon-Mann-Whitney test between *fbl17*-1 and *fbl17*-1 *sog1*-1. Complete statistical analyses are given in Supplemental Tables S4 and S5. (B) Percentage of root length inhibition for the experiment described in (A). Statistical significance analysis has been calculated by Wilcoxon-Mann-Whitney test. Box whiskers with different letters (a, b, c, d, and e) denote statistical differences (one-way analysis of variance, *p* < 0.05 at least). Complete statistical analysis is given in Supplemental Table S6. (C) Representative images of root tips of 5-day-old seedlings transferred on control medium or medium containing 5 µM zeocin for 3 days of growth before propidium iodide staining. Scale bars = 50 µm. Three independent replicates were performed (4 < N per genotype < 11). (D) Cell death quantification of the root samples illustrated in (C) on control medium (-) or medium containing 5 µM zeocin (+) for a further 3 days. Statistical significance analysis has been calculated by Wilcoxon-Mann-Whitney test. Box whiskers with different letters (a, b, c, d, and e) denote statistical differences (one-way analysis of variance, *p* < 0.05 at least). Complete statistical analysis is given in Supplemental Table S7.
Figure 5. FBL17 proteins are recruited at γH2AX foci and co-localize with RBR1 upon DSB-inducer stress.

(A) Live microscopy of fbl17-1, pFBL17:FBL17-GFP after 16 hours of genotoxic treatment (zeocin 20 µM, cisplatin 15 µM, or hydroxyurea 5 mM). Scale bars = 50 µm (upper panel) and 2 µm (lower panel). Three independent experiments were analyzed (5 < N per genotype < 10).

(B) Representative images of fbl17-1, pFBL17:FBL17-GFP root nuclei with triple immunolocalization of γH2AX (purple), RBR1 (red), and FBL17-GFP (anti-GFP, green), showing co-localization of the 3 signals after 16 hours of zeocin treatment (20 µM) highlighted by arrowheads. Nuclei were counterstained with DAPI (blue). Scale bar = 2 µm.

(C) Signal intensity distribution of the total amount of pixels at the X-axis shown in zeocin-treated nucleus in (B). Statistical significance analysis of the signal co-localization is given in Supplemental Table S8.

(D) Venn diagram showing the frequency of the different co-localization combinations of FBL17-, RBR1-, and γH2AX-foci in the nuclei of one replicate (total number of foci = 758). Complete frequency analysis of the three independent replicates is given in Supplemental Table S9.
Adachi S, Minamisawa K, Okushima Y, Inagaki S, Yoshiyama K, Kondou Y, Kaminuma E, Kawashima M, Toyoda T, Matsui M, et al (2011) Programed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proc Natl Acad Sci 108: 10004–10009
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Amiard S, Gallego ME, White CI (2013) Signaling of double strand breaks and deprotected telomeres in arabidopsis. Front Plant Sci 4: 1–6
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Anders S, Pyl PT, Huber W (2015) HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Aprelikova ON, Fang BS, Meissner EG, Cotter S, Campbell M, Kuthiala A, Bessho M, Jensen RA, Liu ET (1999) BRCA1-associated growth arrest is RB-dependent. Proc Natl Acad Sci U S A 96: 11866–11871
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Batzenschlager M, Lermontova I, Schubert V, Fuchs J, Berr A, Koini MA, Houlné G, Herzog E, Rutten T, Alioua A, et al (2015) Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci U S A 112: 8656–8660
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Biedermann S, Harashima H, Chen P, Heese M, Bouyer D, Sofroni K, Schnittger A (2017) The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J 36: 1279–1297
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bourbousse C, Vegesna N, Law JA (2018) SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci 115: E12453–E12462
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bouyer D, Heese M, Chen P, Harashima H, Roudier F, Grütter C, Schnittger A (2018) Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet. doi: 10.1371/journal.pgen.1007797
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Cools T, De Veylder L (2009) DNA stress checkpoint control and plant development. Curr Opin Plant Biol 12: 23–28
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB (2006) ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J 48: 947–961
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Denicourt C, Dowdy SF (2004) Cip/Kip proteins: More than just CDKs inhibitors. Genes Dev 18: 851–855
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM (2009) H2AX: Functional roles and potential applications. Chromosoma 118: 683–692
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Feldman RMR, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91: 221–230
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: Tipping the scales of cancer. Nat Rev Cancer 8: 438–449
PubMed: Author and Title
Google Scholar: Author Only Title Only Author and Title
Friesner JD, Liu B, Culligan K, Britt AB (2005) Ionizing Radiation–dependent γH2AX Focus Formation Requires Ataxia Telangiectasia Mutated and Ataxia Telangiectasia Mutated and Rad3-related. Mol Biol Cell 16: 2566–2576

Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci 106: 20984–20988

Furukawa T, Curtis MJ, Tominey CM, Duong YH, Wilcox BWL, Aggoune D, Hays JB, Britt AB (2010) A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation. DNA Repair (Amst) 9: 940–948

Garcia V, Bruchet H, Camesascasse D, Granier F, Bouchez D, Tissier A (2003) ATATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15: 119–132

Ge SX, Jung D, Yao R (2019) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 1–2

Gusti A, Baumberger N, Nowack M, Pusch S, Eisler H, Potuschak T, De Veylder L, Schnittger A, Genschik P (2009) The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS One. doi: 10.1371/journal.pone.0004780

Horvath BM, Kourova H, Nagy S, Nemeth E, Magyar Z, Papdi C, Ahmad Z, Sanchez-Perez GF, Perilli S, Billou I, et al (2017) Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO J 36: 1261–1278

Hu Z, Cools T, De Veylder L (2016) Mechanisms Used by Plants to Cope with DNA Damage. Annu Rev Plant Biol 67: 439–462

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45: D353–D361

Kim D, Langmead B, Salzberg SL (2015) HISAT: A fast spliced aligner with low memory requirements. Nat Methods 12: 357–360

Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H, Hwang I, Twell D, Nam HG (2008) Control of plant germline proliferation by SCF FBL17 degradation of cell cycle inhibitors. doi: 10.1038/nature07289

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45: D353–D361

Lang J, Sm etana O, Sanchez-Calderon L, Lincker F, Genestier J, Schmit AC, Houlné G, Chaboute ME (2012) Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. New Phytol 194: 353–363

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079

Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30: 630–641

Menges M, De Jager SM, Gruissem W, Murray JAH (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41: 546–566

Nisa M, Huang Y, Benhamed M, Raynaud C (2019) The Plant DNA Damage Response: Signaling Pathways Leading to Growth Inhibition
and Putative Role in Response to Stress Conditions. 10: 1–12

Noir S, Marrocco K, Masoud K, Thomann A, Gusti A, Bitrian M, Schnittger A, Genschik P (2015) The Control of Arabidopsis thaliana Growth by Cell Proliferation and Endoreplication Requires the F-Box Protein FBL17. Plant Cell 27: 1461–1476

Nowack MK, Harashima H, Dissmeyer N, Zhao X, Bouyer D, Weimer AK, De Winter F, Yang F, Schnittger A (2012) Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis. Dev Cell 22: 1030–1040

Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100: 71–78

Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsu M, Okamoto-Yoshiyama K, Sakamoto T, et al (2018) Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J 94: 439–453

Parameswaran B, Chiang HC, Lu Y, Coates J, Deng CX, Baer R, Lin HK, Li R, Paull TT, Hu Y (2015) Damage-induced BRCA1 phosphorylation by Chk2 contributes to the timing of end resection. Cell Cycle 14: 437–448

Preuss SB, Britt AB (2003) DNA-damage-induced cell cycle checkpoint in arabidopsis. Genetics 164: 323–334

Roa H, Lang J, Culligan KM, Keller M, Holec S, Cognat V, Montané MH, Houlné G, Chabouté ME (2009) Ribonucleotide reductase regulation in response to genotoxic stress in arabidopsis. Plant Physiol 151: 461–471

Sjogren CA, Bolaris SC, Larsen PB (2015) Aluminum-Dependent Terminal Differentiation of the Arabidopsis Root Tip Is Mediated through an ATR-, ALT2-, and SOG1-Regulated Transcriptional Response. Plant Cell 27: 2501–2515

Spamminato CP (2017) Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 74: 1693–1709

Starostina NG, Kipreos ET (2012) Multiple degradation pathways regulate versatilite CIP / KIP CDK inhibitors. Trends Cell Biol 22: 33–41

Syed A, Tainer JA (2018) The MRE11–RAD50–NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 87: 263–294

Trolet A, Baldrich P, Criqui M-C, Dubois M, Clavel M, Meyers BC, Genschik P (2019) Cell Cycle-dependent Regulation and Function of ARGONAUTE1 in Plants. Plant Cell tpc.00069.2019

Verkest A, Abeel T, Heyndrickx KS, Van Leene J, Lanz C, Van De Slikke E, De Winne D, Eeckhout D, Persiau G, Van Breusegem F, et al (2014) A generic tool for transcription factor target gene discovery in Arabidopsis cell suspension cultures based on tandemchromatinaffinity purification. Plant Physiol 164: 1122–1133
Verkest A, Manes C-L de OC-LDO, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inze D, De Veylder L, et al (2005) The Cyclin-Dependent Kinase Inhibitor KRP2 Controls the Onset of the Endoreduplication Cycle during Arabidopsis Leaf Development through Inhibition of Mitotic CDKA1 Kinase Complexes. Plant Cell 17: 1723–1736

De Veylder L, Beeckman T, Inzé D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol 8: 655–665

Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, Foreman J, Guan Y, Pochon G, Heese M, Van Damme D, et al (2016) The plant-specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis. EMBO J 35: 2068–2086

Wu J, Zhang X, Zhang L, Wu CY, Rezaeian AH, Chan CH, Li JM, Wang J, Gao Y, Han F, et al (2012) Skp2 E3 Ligase Integrates ATM Activation and Homologous Recombination Repair by Ubiquitinating NBS1. Mol Cell 46: 351–361

Yi D, Alvim Kamei CL, Cools T, Vanderwaerea S, Takahashi N, Okushima Y, Eekhout T, Yoshiyama KO, Larkin J, Van den Daele H, et al (2014) The Arabidopsis SIAMESE-RELATED Cyclin-Dependent Kinase Inhibitors SMR5 and SMR7 Regulate the DNA Damage Checkpoint in Response to Reactive Oxygen Species. Plant Cell 26: 296–309

Yoshiyama K, Conklin PA, Huefner ND, Britt AB (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci 106: 12843–12848

Yoshiyama KO (2016) SOG1: A master regulator of the DNA damage response in plants. Genes Genet Syst 90: 209–216

Yoshiyama KO, Kobayashi J, Ogita N, Ueda M, Kimura S, Maki H, Umeda M (2013) ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO Rep 14: 817–822

Zhao XA, Harashima H, Dissmeyer N, Pusch S, Weimer AK, Bramsiepe J, Bouyer D, Rademacher S, Nowack MK, Novak B, et al (2012) A General G1/S-Phase Cell-Cycle Control Module in the Flowering Plant Arabidopsis thaliana. PLoS Genet 8: e1002847