THE PROFILE OF NEONATAL SEPSIS IN DUHOK CITY AND PREDICTORS OF MORTALITY: A PROSPECTIVE CASE SERIES STUDY

AKREM M. ATRUSHI, MBCHB, FIBMS *

Submitted 17/4/2018; accepted 30/11/2018

ABSTRACT

Background: Neonatal sepsis is a major cause of death all over the world. Risk factors represent an interaction between maternal-fetal colonization and each of transplacental immunity and the defense mechanisms of the neonate. This study is to assess the epidemiological, clinical and laboratory profiles of neonates with sepsis in relation to outcome and to determine the predictors of outcome.

Subject and Methods: A prospective study included neonates with sepsis admitted to neonatal care unit. 126 neonates with features of sepsis were included with age ranged from (1-30) days. From each patient, neonatal and maternal data were collected and clinical features as well as laboratory test results of hemoglobin, platelets count, total white blood cell and absolute neutrophil count, C- reactive protein and blood culture were collected and statistically analyzed.

Results: of 126 neonates, 32 (25.39%) died while others survived. Age < 7 days was in 61.9% of all cases, 69.84% had respiratory distress syndrome, 7.93% had hypoxic ischemic encephalopathy, 60.31% were preterm, 61.9% were born vaginally and male to female ratio was 1.73:1. There is a significant relation of mortality to respiratory distress syndrome and hypoxic ischemic encephalopathy, preterm delivery, low birth weight and male gender. Vomiting, apnea, sclera, cyanosis and tachypnea were significantly related to the mortality. Eschericia coli were the most common followed by Klebsiella sp. The highest mortality is with Acenatobacterbaumani followed by Staphylococcus aureus with a significant relation. The C reactive protein was>10 mg/dl was in higher number of neonates with sepsis who died by comparison to those who survived, with a significant relation.

Conclusions: Neonatal sepsis is still a common cause of mortality in neonates with change in the pattern of causative organisms and this requires more monitoring and periodic surveillance. There is a real need to find out the local antibiotic sensitivities of pathogens to establish an optimal empirical treatment before the results of culture and sensitivity are available.

Keywords: Neonatal sepsis, Duhok city, A prospective case.

Neonatal sepsis is a major cause of death all over the world. Up to 4 million neonates die annually in developing countries most commonly due to sepsis, hypoxic ischemic encephalopathy, and consequences of prematurity and low birth weight. The incidence of neonatal sepsis is significantly higher in developing countries than in developed ones 1-4 vs 10-50/1000 live birth. Also, this incidence varies from a neonatal nursery to another and even it varies within the same nursery from time to time and depending...

*Assistant Professor, Department of Pediatric, College of Medicine, University of Duhok, Kurdistan Region, Iraq.

Correspondence author to: Akrem m. Atrushi, ammt1975@gmail.com, Mobil +964754331943
on the predisposing conditions6. Risk factors represent an interaction between maternal-fetal colonization and each of transplacental immunity and the defense mechanisms of the neonate, both physical and cellular7. Sepsis in neonates manifests as either focal or non-specific signs and symptoms of infection4. The virulence of the microorganism and neonate’s inflammatory response to that agent determine the clinical manifestations. The term systemic inflammatory response syndrome (SIRS) describes the unique process of infection and the subsequent systemic response4 while the term systemic inflammatory response(SIR) describes the syndrome that includes two or more of the following: tachycardia, tachypnea, fever or hypothermia, and abnormal white blood cells in immature forms. It is important to evaluate tests for neonatal sepsis because the infection may be a serious threat to the neonate. It is urgently necessary to know if the neonate has sepsis to start treatment as early as possible8. There is no enough specificity and sensitivity of any single laboratory test used and therefore lab confirmation must be used in conjunction with risk factors and clinical signs5. The lab tests used are: blood, urine and cerebrospinal fluid culture, profile of white blood cells, platelet count, acute phase reactants (ESR, C reactive protein), latex agglutination tests, or counter immune electrophoreses, and Polymerase Chain Reaction (PCR)4-7,9. Synthesis of C reactive protein (CRP) increases within (4-6) hours and then doubles every 8 hours after that and peaks at 36-50 hours after the onset of inflammation. With ongoing inflammation and tissue destruction, CRP level remains high, but declines rapidly with resolution of inflammation because of short half-life (4 to 7 hrs.), so it is parallel to the degree of injury and repair and this supports its value as an acute measure of disease activity. In the serum of normal healthy person CRP is in very low concentration \(< 0.02 \text{ mg/dl} \) and mostly does not exceed 6 mg/dl10-13. Depending on the definition of sepsis, the mortality rate from sepsis varies. When all bacteremic infections are included in the definition, the reported mortality rate in neonatal sepsis is 10-40\%5. To anticipate from the clinical history, to suspect from clinical presentation and to confirm diagnosis by preliminary laboratory test are essential to maintain intact survival of the neonate with sepsis7. To the best of our knowledge, there are no enough studies that cover this very vital subject in our locality. This study was accomplished on neonates with sepsis to assess the epidemiological, clinical and laboratory profiles of neonates with sepsis in relation to outcome (survival and mortality) and to determine the predictors of outcome.

METHODS

A prospective study was accomplished on neonates with sepsis who have been admitted to neonatal nursery at Maternity and Obstetric Hospital in Duhok city from the first of March 2015 to the first of March 2016. A total of 126 neonates with features of sepsis were included (we excluded neonates with previous use of antibiotic and those having congenital anomalies). Their age ranged from (1-30) days. The following data were taken: name, age, sex, mode and place of delivery, date of admission, gestational age

https://doi.org/10.31386/dmj.uod.18.12.2.2
(was assessed using Dubowitz criteria)4, any history of acute neonatal suffering i.e. any illness during birth or soon after it such as hypoxic ischemic encephalopathy and respiratory distress. Maternal data included: history of prolonged rupture of membrane more than 24 hour, antibiotic use, fever, and urinary tract infection (UTI). Clinical features of neonates included: lethargy, poor feeding, diarrhea, coffee-ground vomiting, temperature instability, convulsion, pallor, jaundice, cyanosis, tachycardia, apnea, respiratory distress, mottled skin, sclerema, omphalitis, hepato-splenomegaly and abdominal distension. The neonates were followed throughout their presence in the hospital and were divided into those who remained alive and those who died. A sample of 0.5 ml of blood was taken from every neonate for estimation of hemoglobin, platelets count, total white blood cell and absolute neutrophil count and before antibiotic use. A sample of at least 2ml of blood per set was taken from peripheral vein from 2 separate sites after adequate disinfection of skin by iodine solution that was left to dry and then wiped off using (70%) alcohol, then the both samples were cultured aerobically and anaerobically. C-reactive protein was measured using 0.5 ml of blood collected in a plain tube without EDTA by latex-agglutination test. The cutoff value for CRP > 10mg/dl4,5,10-13 was considered positive.

STATISTICAL ANALYSIS

Statistical analysis was done using SPSS package 20, data were expressed as mean + SD, Chi-square and exact Fisher's test were used for comparison of proportions, P-value of less than 0.05 was considered as statistically significant, P-value <0.01 as highly significant and P-value <0.001 as extremely significant.

The homogeneity of patients’ age, weight, and BMI was examined through the One-way ANOVA statistical tests. The differences between sensory and motor duration among three study groups were evaluated through the One-Way ANOVA and post-hoc statistical tests and chi-squared tests for adverse effects of different doses of dexamethasone. The p-value less than 0.05 was considered as statistically significant and less than 0.01 as a clinically substantial difference. The Statistical Package for Social Sciences version 23:00 (SPSS: IBM) was used for statistical calculations.

RESULTS

Among all participants, 32 (25.39%) died while others survived. Most common age of patient was less than 7 days in 61.9% of all cases, 69.84% had respiratory distress syndrome, 7.93% had hypoxic ischemic encephalopathy, 60.31% were preterm, 61.9% were born vaginally and male to female ratio was 1.73:1. The outcome of sepsis in relation to neonates’ characteristics is shown in Table 1. There is a significant relation of mortality to respiratory distress syndrome and hypoxic ischemic encephalopathy, preterm delivery, low birth weight and male gender.
THE PROFILE OF NEONATAL SEPSIS IN DUHOK CITY AND PREDICTORS

Table 1: The Relation of Neonates' Variables to the Outcome of Neonates with Sepsis

Variables	Alive 94 (%)	Dead 32 (%)	P value
Age (days)			
<7 (78)	56(71.7%)	22(28.3%)	0.256
7-28 (48)	38(79.1%)	10(20.9%)	
Acute suffering			
RDS* (88)	62(70.4%)	26(29.6%)	0.031
HIE** (10)	6 (60%)	4(40%)	
None (28)	26(92.8%)	2(7%)	
Gestational Age			
Preterm (76)	48(63.1%)	28(36.9%)	0.0001
Term (50)	46(92%)	4(8%)	
Birth weight (grams)			
Mean +/- SD	2288 +/- 776	1825 +/- 588	0.0001
Delivery mode			
Vaginal (78)	56(71.8%)	22(28.2%)	0.256
Caesarean (48)	38(79.2%)	10(20.8%)	
Sex			
Male (80)	54(67.5%)	26(32.5%)	0.009
Female (46)	40(87%)	6(13%)	

*Respiratory distress syndrome
** hypoxic ischemic encephalopathy

The maternal characteristics include prolonged rupture of membranes that occurred in 3.17% of cases, the use of antibiotics before delivery in 7.93%, maternal fever in 9.52% and urinary tract infection in 17.46% of all cases. As shown in Table 2, none of these variables was significantly related to the outcome of sepsis.

Table 2: The Relation of Neonates' Variables to the Outcome of Neonates with Sepsis

Variables	Alive 94 (%)	Dead 32 (%)	P value
PROM*	Yes 4(100%)	0 (0%)	0.222
	No 90(73.8%)	32(26.2%)	
Antibiotics use	Yes 8(80%)	2(20%)	0.625
	No 86(74.2%)	30(25.8%)	
fever	Yes 6(50%)	6(50%)	0.092
	No 88(77.2%)	26(22.8%)	
UTI**	Yes 16(72.8%)	6(27.2%)	0.955
	No 78(75%)	26(25%)	

*Respiratory distress syndrome
** hypoxic ischemic encephalopathy

The clinical symptoms of sepsis are presented in Table 3. Lethargy and poor feeding are the most frequent symptoms. Vomiting is significantly related to mortality while the other symptoms are not.

Table 3: The Role of Clinical Symptoms as Predictors of Mortality in Neonates with Sepsis

Symptoms	Alive 94 (%)	Dead 32 (%)	P value	
Lethargy	Present 66(75%)	22(25%)	0.967	
	Absent 28(73.7%)	10(26.3%)	38	
Poor feeding	Present 62(73.8%)	22(26.2%)	84	0.622
	Absent 32(76.2%)	10(23.8%)	42	
Diarrhea	present 4(66.7%)	2(33.3%)	6	0.701
	Absent 92(75.4%)	30(24.6%)	120	
Vomiting	present 12(54.6%)	10(45.4%)	22	0.027
	Absent 82(78.9%)	22(21.1%)	104	
Seizures	present 12(66.7%)	6(33.3%)	18	0.483
	Absent 82(75.93%)	26(24.07%)	108	

*Respiratory distress syndrome
** hypoxic ischemic encephalopathy

https://doi.org/10.31386/dmj.uod.18.12.2.2
Tachypnea, cyanosis, sclerema and apnea were the most frequent signs in septic neonates followed by jaundice, fever, hypothermia and abdominal distension. As shown in Table 4, apnea, sclerema, cyanosis and tachypnea were significantly related to the mortality.

Sign	Alive 94	Dead 32	Total	P value
Fever present	26(86.7%)	4(13.3%)	30	0.061
Fever absent	68(70.9%)	28(29.1%)	96	
Hypothermia present	14(58.4%)	10(41.6%)	24	0.063
Hypothermia absent	80(78.5%)	22(21.5%)	102	
Cyanosis present	24(57.2%)	18(42.8%)	42	0.004
Cyanosis absent	70(83.4%)	14(16.6%)	84	
Apnea present	22(55%)	18(45%)	40	0.001
Apnea absent	72(83.73%)	14(16.27%)	86	
Tense fontanel present	4(50%)	4(50%)	8	0.121
Tense fontanel absent	90(76.3%)	28(23.7%)	108	
Tachypnea present	38(86.4%)	6(13.6%)	44	0.017
Tachypnea absent	56(68.3%)	26(31.7%)	82	
Pallor present	14(77.8%)	4(22.2%)	18	0.653
Pallor absent	80(74.1%)	28(25.9%)	108	
Jaundice present	28(77.8%)	8(22.2%)	36	0.487
Jaundice absent	66(73.4%)	24(26.6%)	90	
Purpura present	6(75%)	2(25%)	8	0.918
Purpura absent	88(74.6%)	30(25.4%)	118	
Sclerema present	24(57.2%)	18(42.8%)	42	0.004
Sclerema absent	70(83.4%)	14(16.6%)	84	
Abdominal distension present	12(60%)	8(40%)	20	0.139
Abdominal distension absent	72(75%)	24(25%)	96	
Hepato-splenomegaly present	2(50%)	2(50%)	4	0.281
Hepato-splenomegaly absent	92(75%)	30(24.6%)	122	

*Respiratory distress syndrome
** Hypoxic ischemic encephalopathy

According to the results of blood culture, the most common isolated bacteria were Eschericia coli followed by Klebsiella sp. and then Non coagulase staphylococci and non-lactose fermenters. As in Table 5, the highest mortality is with Acinetobacter baumannii followed by Staphylococcus aureus and then Escherichia coli and Klebsiella sp. with a significant relation.

Bacteria isolated	Total	Alive 94	Dead 32
Escherichia coli	74	54 (72.98%)	20 (27.02%)
Klebsiella sp.	18	13 (72.23%)	5 (27.77%)
Non coagulase staphylococci	11	11 (100%)	0 (0%)
Non lactose fermentors	11	11 (100%)	0 (0%)
Acinetobacter baumannii	4	0 (0%)	4 (100%)
Staphylococcus aureus	4	2 (50%)	2 (50%)
Gram positive cocci	4	4 (100%)	0 (0%)

\[P=0.003 \]
The hematologic variables are presented in Table 6. The mean hemoglobin, platelet count, white blood cell count and platelet count is lower in neonates who died of sepsis as compared to those who survived but no statistical significance was found. The C reactive protein as shown also in this table is ≥10mg/dl in a significantly higher number of neonates with sepsis who died by comparison to those who survived, with a significant relation.

Variables	Outcome	P	
	Alive 94	Dead 32	
Hemoglobin (g/dl)	14.6+/- 3.7	13.4+/- 3.9	0.18
Platelets (cell / mm3)	176+/- 136	174.78+/- 172.15	0.075
White blood cells (cell / mm3)	15.1+/-9.48	14.4+/-.947	0.091
Absolute neutrophil count (cell / mm3)	13.6+/-4.2	5.9+/-.4.8	0.077
C-reactive protein	Positive 59	28	0.003
	Negative 35	4	

DISCUSSION

To evaluate the perinatal care in a community it is wise rely on the neonatal mortality rate to establish an effective health care delivery system. It is very essential to have an integrated statistical information about the neonatal mortality in order to develop a sound program for the early diagnosis of the neonatal sepsis and assessment of treatment and outcome. Neonatal sepsis may just manifest as diverse, subtle and nonspecific signs and symptoms. If the diagnosis is not made early and treatment not started immediately, both morbidity and mortality rates rise significantly. Mortality from neonatal sepsis in this study was 25.39%, which is close to the results of other studies where it was in United Arab Emirates (26%) in USA, and Saudi Arabia it was 28% in United Arab Emirates (26%). It is higher than what was found in Nigeria, where it was 19.3% but the mortality is lower than two Iraqi studies where they were(44.2%) and (43.5%) a study in Nepal(36.95%) a Saudi study (44%) and Mexican study (43.9%). Many factors explain the difference in mortality rate among different countries like use of ventilators, different microorganisms, socioeconomic and racial factors, incubators, use of different antibiotics and geographical factors. Although early onset sepsis is more frequent in this study and the mortality is higher than late onset, it is not significant. Other studies have proved similar results with significant differences and conversely, others found late onset sepsis to be associated with higher mortality. However, the causative agents in early onset sepsis mainly comes from mother’s genitor-urinary tract while in late onset sepsis it comes from prolonged antibiotic use, invasive procedures and prolonged hospitalization. Male gender is a predictor of mortality in this study, which suggests the probability of sex related factors in host susceptibility. Similar results were found by other studies while others did not find any role of sex in predilection to mortality. Mostly, because of inherent immunodeficiency in premature neonates.

[Link to the original article](https://doi.org/10.31386/dmj.uod.18.12.2.2)
and the need for prolonged hospitalization in low birth weight neonates, sepsis was more common and mortality was higher in these two groups of neonates in our study. This is similar to what was found in other studies in different parts of the world \cite{15,17,22,23,27-29}, but different from other studies \cite{21,31} that found them not significant. Neonates who had, in addition to sepsis, other acute illnesses like respiratory distress and hypoxic ischemic encephalopathy did show a significantly higher mortality in agreement with what was found in other studies \cite{17,23} because they need prolonged hospital stay and may be subjected to more invasive procedures. Similar to what was found in a Saudi study \cite{22}, prolonged rupture of membranes was not found frequently in septic neonates and is not predictor of mortality from sepsis, probably because the affected mothers are treated with antibiotics in such cases which seems to be protective for neonate. This is in contrast to other different studies that found it a significant factor \cite{15,19,24,27,29-31}.

Among presenting signs and symptoms of sepsis, predictors of mortality were apnea, cyanosis, sclerema and vomiting in accordance with other studies \cite{1,s19,23,27,30}. The causative microorganisms isolated from blood culture were most commonly *Escherichia coli* followed by *Klebsiella sp*. with similar mortality rates, while the highest rate of mortality was found with *Acinetobacter baumannii* followed by *Staphylococcus aureus*. This is similar to another study \cite{30} but in contrast to an Iraqi study \cite{19} where the mortality rates were *P. aeruginosa* (100%), *Staphylococcus aureus* (100%) followed by *klebsiella* (71.1%) and *E. coli* (48.5%) and other different studies showed similar results \cite{15,20-23,26,32}. The hematological variables including hemoglobin, white blood cells, absolute neutrophil count and platelets were found lower in septic neonates who died as compared to those who survived but this difference was not significant. These were found significantly lower in those who died in other studies \cite{12,19,23,33,34} since the toxins produced by the causative bacteria suppress the bone marrow hematopoietic process.

The mortality was higher in septic neonates with C-reactive protein level > 10 mg/dl. This agrees with other studies \cite{10,13,19,34}. CRP has a high sensitivity and specificity with high negative predictive values and high positive predictive values as well \cite{12}.

The main limitation of this study was that serum procalcitonin was not measured for the neonates with sepsis since it is more sensitive and specific than CRP.

In conclusion, Neonatal sepsis is still a common cause of mortality in neonates. There is a change in the pattern of organisms causing sepsis in the newborn. This requires more monitoring and periodic surveillance, and there is a real need to find out the local antibiotic sensitivities of pathogens to establish an optimal empirical treatment before the results of culture and sensitivity are available.

REFERENCES

1. Weber MW, Carlin JB, Gatchalian S, Lehmann D, Muhe L, Mulholland EK et al. Predictors of neonatal sepsis in developing countries. Pediatric Infect Dis J 2003; 22(8):711-717.
2. Meeting report. Explore simplified antimicrobial regimens for the treatment of neonatal sepsis. WHO, Geneva 30th September-1st October 2002;1.
3. Mathai E, Christopher U, Mathai M, Jana AK, Rose D, Bergstrom S. Is Creactive
protein useful in differentiating infected from uninfected neonates among those at risk of infection? Indian J Pediatrics 2004; 41(9):895-900.
4. Stoll BJ, kleigman RM. The fetus and the neonatal infant. In: Behrman RE, Kliegman RM, Jenson HB (ed). Nelson’s Textbook of Pediatrics. 17ed. Philadelphia. WB Saunders CO 2004; 552, 623-639.
5. Khalid N. Neonatal infection. In: McIntosh N, Helms P, Smyth R (eds). Forfar and Arneil textbook of pediatrics. 6th ed. Philadelphia. Churchill Livingstone CO 2003; 336-343.
6. Gross M. Infection of Neonates. In: Rudolph A, Hoffman J, Rudolph C (eds). Rudolph’s Pediatrics. 20th ed. United States of America. Prentice Hall International CO 1996; 530-536.
7. Finer N. Neonatal sepsis. San Diego Journal of Pediatrics for Neonatology 2003; 15(5): 855-867.
8. Chiesa C, Panero A, Osborn JF, Simonetti AF, Pacifico L. Diagnosis of neonatal sepsis: a clinical and laboratory challenge. Clinical Biochemistry 2004; 50: 279-287.
9. Loo S. Neonatal Sepsis. Hawaii Journal of Pediatrics 2002; 10 (3): 49-55.
10. Isaac man D, Burke B. Utility of serum C-reactive protein for detection of occult bacterial infection in children. Archives of Pediatrics and Adolescent Medicine 2002; 156: 903-909.
11. Nuntnarumit P, Pinkaew O, Kitiwanwaichs. Predictive values of serial C-reactive protein in neonatal sepsis. J. Med Assoc Thai 2002; 85(4): 1151-1158.
12. Ahmed Z, Ghafoor T, Waqar T, Ali S, Aziz S, Mahmud S. Diagnostics value of C-reactive protein and hematological parameters in neonatal sepsis. J Coll Physician Surgpak 2005; 15(3): 152-156.
13. Chiesa C, Pellegrini G, Panero A. C-reactive protein, interleukin-6, and procalcitonin in the immediate postnatal period: influence of illness severity, risk status, antenatal and perinatal complications and infection. Clin Chemist 2003; 49(1):60-68.
14. Bassuni W, Abbag F, Asindi A. Neonatal Death in Asir region of Saudia: Experience in a referral Neonatal intensive care unit. Saudi Med J 1995; 21 (2): 16-24.
15. Koutouby A, Habibullah J. Neonatal sepsis inDubai, United Arab Emirates. J tropical pediatrics 1995; 41: 177-180.
16. Stoll B, Holman R, Schuchat A. Decline in sepsis associated Neonatal and infant death in United States, 1979 through 1994. J of Ped. 1995; 102 (2): 18-26.
17. Dawadu A, AL-Umran K, TwumDanso K. A case control study of Neonatal sepsis: Experience from Saudi Arabia. J tropical pediatrics 1997; (43): 84-88.
18. Ezechukwa CC, Ugochukwu A, Egbuonu I, Chukwuka JO. Risk Factors for neonatal mortality in a regional tertiary hospital in Nigeria. Nigerian Journal of clinical practice 2004; 7(2):50-52.
19. JumahDS, HassanMK. Predictors of mortality outcome in neonatal sepsis. Medical Journal of Basrah University2007; 25(1):11-18.
20. Radhy H. Neonatal sepsis causative agents and outcome. Thesis submitted to the Iraqi commission for medical specialization 2001; 1-36.
21. Shrestha S, Dongol Singh S, Shrestha NC, Shrestha RPB, Madhup SK. Anterior comparison of Clinical and Laboratory
Parameters in Culture Proven and Unproven Early Onset Sepsis in NICU. *Kathmandu Univ Med J* 2013;44(4):310-314.

22. Asindi A, Bilal N, AL-shehri M, Fatinni YA, Manna N, Habeeb SM. Neonatal sepsis. Saudi Med J 1999; 20 (12): 942-946.

23. Rodriguez M, Canadiani C, Garcia J, Gutiérrez P, Sánchez F.. Morbidity and Mortality from neonatal sepsis in a tertiary care level hospital. Saludpublica de Mexico 2003; 45 (2): 90-95.

24. Schuchat A, Zywieki S, Dinsmoor M, Mercer B, Romaguera J, O'Sullivan MJ *et al*. Risk factors and opportunities for prevention of early onset neonatal sepsis: A multicenter case-control study. Georgia J of Pediatrics 2000; 105 (1): 21-26.

25. Stoll B, Hansen N, Fanaroff A. late onset sepsis in very low Birth weight neonates: the Experience of the NICHD Neonatal Research Net work. J of pediatrics 2002; 110(2): 285-291.

26. Obi J, kafrawi M, Igancio L. Neonatal septicemia. Saudi Med J 1999; 20(6): 433-437.

27. Gebrehiwot A, Lakew W, Moges F, Moges B, Anagaw B, Unakal C *et al*. Predictors of positive blood culture and death among neonates with suspected neonatal sepsis in Gondar University Hospital, Northwest Ethiopia. *Euro. J. Exp. Bio.*, 2012; 2 (6):2212-2218

28. Morgan M, Ruel T, Kumar G S, Sabnis A, Kaiser S. Predictors of Neonatal Sepsis in Rural Karnataka, India. Asian Journal of Clinical Pediatrics and Neonatology 2013;1(4):73-6.

29. Sharma D, Kumar C, Pandita A, Pratap OT, Dasi T, Murki S. Bacteriological profile and clinical predictors of ESBL neonatal sepsis. J matern Fetal Neonatal Med. 2016;29(4):567-70.

30. Kayange N, Kamugisha E, Mwizamholya1 D, Jeremiah S , Mshana S. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza- Tanzania. *BMC Pediatrics* 2010; 10:39.

31. Puopolo K, Draper D, Wi S, Newman T, Zupancic J, Lieberman E *et al*. Estimating the Probability of Neonatal Early-Onset Infection on the Basis of Maternal Risk Factors. *Pediatrics* 2011;128:e1155–e1163.

32. Jaber E, AL. Zwaini k. Neonatal septicemia in the neonatal care unit in AL- Anbar governorate in Iraq. East Med. Health J 2002; 8 (4): 30-36.

33. Guida JD, Kunig AM, Leet KH, McKenzie SE, Paul DA. Platelet count and sepsis in very low birth weight neonates: is there an organism-specific response? *Pediatrics* 2003;111:1411-1415.

34. Dhananjay, Kumar S .Comparison Of Biochemical and Pathological Markers in Neonates with Sepsis and Neonates without Sepsis. Int J Biol Med Res. 2011; 2(4): 1131 – 1134.
توخّت

سيماي تیسبوئونا خوئینی لدیف دازوکیت سافا د لدوک و ثیبیئینکارنا نادجئامی وی
دجووری ماکیودا دیوار هی. ظا کولینییا شاتشیپی لساتر 105 نخوشان

ثیکیئی:
تیسبوئونا نئتیه خوئینی تیسبوئونا خوئینی لدیف دازوکیت سافا د لدوک و ثیبیئینکارنا نادجئامی وی
دجووری ماکیودا دیوار هی. ظا کولینییا شاتشیپی لساتر 105 نخوشان

روشکی ظا کولینییا:
نئت ظا کولینییاکارنا کون لساتر دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
لئان خوئینی دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
دویو دیوی کارمی تیسبوئونا خوئینی لئان دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین

چیکیکی نئووین تکئین داده دیوی ۱۹۸۰ دیوینی تکئین داده دیوی

وتکئین نئووین تکئین داده دیوی ۱۹۸۰ دیوینی تکئین داده دیوی

ثیکیئی:
تیسبوئونا نئتیه خوئینی تیسبوئونا خوئینی لدیف دازوکیت سافا د لدوک و ثیبیئینکارنا نادجئامی وی
دجووری ماکیودا دیوار هی. ظا کولینییا شاتشیپی لساتر 105 نخوشان

روشکی ظا کولینییا:
نئت ظا کولینییاکارنا کون لساتر دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
لئان خوئینی دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
doیو دیوی کارمی تیسبوئونا خوئینی لئان دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین

چیکیکی نئووین تکئین داده دیوی ۱۹۸۰ دیوینی تکئین داده دیوی

ثیکیئی:
تیسبوئونا نئتیه خوئینی تیسبوئونا خوئینی لدیف دازوکیت سافا د لدوک و ثیبیئینکارنا نادجئامی وی
دجووری ماکیودا دیوار هی. ظا کولینییا شاتشیپی لساتر 105 نخوشان

روشکی ظا کولینییا:
نئت ظا کولینییاکارنا کون لساتر دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
لئان خوئینی دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
doیو دیوی کارمی تیسبوئونا خوئینی لئان دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین

چیکیکی نئووین تکئین داده دیوی ۱۹۸۰ دیوینی تکئین داده دیوی

نالخچی:
تیسبوئونا نئتیه خوئینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
لئان خوئینی دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین هانیئة نظادن لیکاکارا طریکی
doیو دیوی کارمی تیسبوئونا خوئینی لئان دازوکیت سافا د 7وی دیوینی تیسبوئونا خوئینی نئووین

چیکیکی نئووین تکئین داده دیوی ۱۹۸۰ دیوینی تکئین داده دیوی

 Coronavirus Disease 2019 (COVID-19) is a respiratory illness that can cause severe illness and even death. It is caused by a new virus called SARS-CoV-2. The virus spreads from person to person through respiratory droplets when an infected person coughs or sneezes. Anyone can be infected, but older adults and those with chronic health conditions are at higher risk of severe illness or death. It is recommended to maintain good hand hygiene, maintain distance from others, and wear a face mask when in public. However, the guidelines may vary depending on the country and region. Therefore, it is important to follow the rules and regulations provided by the respective authorities.
الخلاصة

صورة إنتان الدم عند حديثي الولادة في دهوك ومتونيات الوفاة

الخلفية والأهداف: إنتان الدم عند حديثي الولادة سبب رئيسي للموت في جميع أنحاء العالم. تظهر علامات السريري لمشكل اعراض مقروفة أو غير محددة لانتشار مجموعة متعددة من البكتيريا المسببة لانتشار المرض، بما في ذلك: الأحيائية البلاه، Staph. aureus، Acenatobacter، Klebsiellasp.. هذه المجموعة تشكل نسبة كبيرة من المسببات المحتملة لانتشار إنتان الدم في حديثي الولادة. استعمال مضادات الحيوية لعلاج مناطق إنتان الدم لدى حديثي الولادة سبب في المapatkan ب�单 roi في الأذار2015، ثم في الأذار2016. تم استعمال مضادات حيوية للتعامل مع إنتان الدم عند حديثي الولادة. حيث تم اكتشاف أن نسبة الفئات المصابين بانتشار المرض كانت 61.9% في مجموع الحوامل، 73% في حديثي الولادة، 94.8% في الماضية، و100% في حالات إنتان الدم. تم استخدام سلسلة من المضادات الحيوية لعلاج إنتان الدم عند حديثي الولادة، حيث تم استخدام مضادات حيوية لعلاج إنتان الدم عند حديثي الولادة. النتائج: من على 126 مشارك توفي 32 (39.25%) عمر المصابين أقل من 7 أيام من الحالات. الزمن وجد عند حالة 69.48% انتقال القاع عدد 7.93% والولادة الحادة وجدت عند 60.31% والولادة المهنية وجدت عند 61.9% من الحالات. من العوامل المسببة لانتشار المرض، وكل من عمر التلف، العامل الإصابة بالبكتيريا، دورة العلاج وعينات الدم. النتائج: عند 93.9% من الحالات. استعمال المضادات الحيوية من قبل الأم قبل الولادة وجد عند 3.17% من الحالات. الصناعي الاضطرابات السريرية متنوعة عند المصابين في الحالات الفردية. تتضمن الإصابة الناتجة عن التسمم. TTP / ATR / HUS. يمكن تفتيح E. coli. Staph. aureus. كاشف في الحالات الطبية أو الالتهاب أو التحشير أو الالتهاب أو التهاب. النتائج: عند احتمال الإصابة، 10 ملغم / كل كان أكثر شيوعًا عند المختلفزن مع علاقة لها، بسرعة، في النتائج. الإستنتاجات: إنتان الدم لايزال سببًا مهمًا للوفاة عند حديثي الولادة، وهو تطوير حقيقية لإيجاد سلسلة من المضادات الحيوية لعلاج إنتان الدم عند حديثي الولادة. النتائج: عند احتمال إنتان الدم عند حديثي الولادة، 10 ملغم / كل كان أكثر شيوعًا عند المختلفزن مع علاقة لها.