Fuerza muscular y porcentaje de grasa corporal en niños y adolescentes de la región del Maule, Chile

Muscle strength and body fat percentage in children and adolescents from the Maule region, Chile

Dr. Marco Cossio-Bolaños, Dra. Rossana Gómez-Campos, Dr. Luis Felipe Castelli Correia de Campos, Dr. Jose Sulla-Torres, Mg. Camilo Urra-Albornoz y Dr. Vitor Pires Lopes

INTRODUCCIÓN

El aumento de la prevalencia del sobrepeso y obesidad en niños y adolescentes es una de las principales preocupaciones de la salud pública en la actualidad. La previsión mundial de la prevalencia de sobrepeso y obesidad para niños de 5 a 7 años para 2015 fue del 15,0 % y del 5,4 %. Esto representaba, desde 2013, un aumento del 1,9 % de la prevalencia global de exceso de peso para niños de esta edad.1

En los países desarrollados, la prevalencia de sobrepeso, en 2013, fue estimada en el 24 % en niños y en el 23 % en niñas.2 Las prevalencias que correspondían a los países en desarrollo variaron del 8 % al 13 % en ambos sexos.3 En Chile, la última encuesta nacional de salud detectó un 39,8 % de sobrepeso y un 31,2 % de obesidad.4

En general, varios estudios basados en niños y adolescentes obesos han demostrado que son menos activos y presentan niveles de aptitud física inferiores a sus pares no obesos. De hecho, las relaciones entre actividad física (AF), actividad sedentaria (por ejemplo, ver televisión), aptitud física y obesidad no están debidamente aclaradas,5,6 por lo que estudiar la relación entre la fuerza de prensión manual relativa (FPMR) y la masa grasa (MG) en poblaciones pediátricas es relevante.

La aptitud física es un concepto físico multidimensional que incluye componentes como la aptitud cardiorrespiratoria, fuerza y...
resistencia de fuerza muscular, entre otras. Es considerada también como uno de los marcadores más relevantes de salud y es un predictor de morbilidad y mortalidad, asociada a dolencias cardiovasculares y a todas las causas de muerte. La aptitud física es, en parte, genéticamente determinada, pero también es muy influenciada por factores ambientales, como la AF habitual y el ejercicio físico y sus principales determinantes.

La aptitud cardiorrespiratoria y la aptitud muscular parecen tener un efecto combinado y acumulativo sobre los factores de riesgo de enfermedades cardiovasculares en adolescentes. Por ejemplo, García-Artero et al., constataron que una elevada capacidad aeróbica en hombres y un elevado grado de fuerza muscular en mujeres estaban asociados a un menor riesgo metabólico y que, para una determinada aptitud cardiorrespiratoria, un nivel aumentado de fuerza muscular estaba asociado a un menor riesgo metabólico asociado a una dolencia cardiovascular.

Steene-Johannessen et al., verificaron, en niños y jóvenes de 9 a 15 años de edad, que la aptitud muscular estaba negativamente asociada a factores metabólicos después de controlar la edad, el sexo y el estado de madurez. La fuerza muscular es uno de los componentes de la aptitud física, la cual es considerada como un factor importante en el desarrollo durante la infancia y la juventud. Es la base para las actividades lúdicas y en la interacción social con otros niños.

Una de las medidas más usuales de fuerza es la prensión manual (FPM), medida por dinamometría, y está positivamente asociada a diversas condiciones de salud. Un estudio transversal verificó que la FPM presentó asociación con la grasa del hígado en adolescentes con exceso de grasa corporal. Además, en un estudio longitudinal efectuado en adolescentes después de controlar el efecto de la aptitud cardiorrespiratoria, la AF y la masa libre de grasa, determinaron que la FPM se asociaba significativamente con el riesgo metabólico.

Basado en estas evidencias y debido a la elevada prevalencia de sobrepeso y obesidad observada en Chile, este estudio hipotetiza una posible asociación negativa entre la FPM y la MG determinada por absorciometría de rayos X de doble energía (dual-energy x-ray absorptiometry; DXA, por sus siglas en inglés) en niños y jóvenes chilenos. Esta información puede ser útil para los profesionales que trabajan con poblaciones pediátricas, especialmente, durante la pubertad, ya que no todos los adolescentes maduran al mismo ritmo e intensidad. El objetivo fue analizar, en niños y jóvenes chilenos, la asociación entre la FPM y la MG, controlando el posible efecto que podría ocasionar la maduración somática.

METODOLOGÍA

Participantes

Se efectuó un estudio descriptivo correlacional en escolares de ambos sexos de la región del Maule (Talca, Chile), durante el año 2016. Los participantes, niños y adolescentes con un rango de edad de ≥ 7,5 a ≤ 15,49 años, fueron seleccionados al azar de un total de 12 colegios de la región del Maule (Chile) de zona urbana. Se excluyeron los que tenían limitación física y los que presentaban prótesis y/o implantes metálicos en alguna parte del cuerpo.

Para la evaluación de las variables de estudio, se obtuvo de cada uno de los participantes el asentimiento, y de los respectivos padres, el consentimiento informado. También se solicitó el permiso a cada Dirección de los colegios, informando el objetivo de la investigación. El estudio fue aprobado por el Comité de Ética de la Universidad Autónoma de Chile.

Las evaluaciones se efectuaron en un laboratorio cerrado (22-24 °C) de la Universidad Autónoma. Se efectuó de lunes a viernes desde las 8:30 a las 12:30. Todos los escolares fueron trasladados ida y vuelta para realizar las evaluaciones y los procedimientos estuvieron a cargo de tres profesionales debidamente capacitados en variables antropométricas y escaneo por DXA.

Fuerza de prensión manual

La FPM se midió con la ayuda de un dinamómetro hidráulico manual JAMAR (Hydraulic Hand Dynamometer® Modelo PC-5030 J1, Fred Sammons, Inc., Burr Ridge, IL., EE. UU.). La precisión fue de 0,1 lbf para ambas manos. Se adoptó el protocolo propuesto por Richards et al. Los estudiantes adoptaron una posición estándar en cada mano. Para controlar los efectos de fatiga, se realizaron tres intentos para alternar las manos con, aproximadamente, 2 minutos de descanso entre cada uno de ellos. Se registraron los mejores resultados de cada ensayo en cada mano. Los resultados obtenidos en las dos manos se sumaron y dieron un indicador global de FPM.
Dimensiones corporales y estado de madurez

Todas las medidas somáticas fueron realizadas por dos antropometristas experimentados, siguiendo los protocolos descritos por Ross et al.13 El peso corporal, la estatura y la estatura sentada se midieron en las instalaciones de un laboratorio con ropa ligera (remera, short y descalzos). Para evaluar el peso corporal, se utilizó una balanza digital (Seca Gmbh & Co. KG, Hamburg, Germany) con aproximación a 0,1 kg. La estatura de pie fue medida a través de un estadiómetro (Seca & Co. KG, Hamburg, Germany) con una precisión de 0,1 mm y una escala de 0 ± 2,50 m. La estatura sentada fue evaluada utilizando un banco de madera (50 cm de alto) con una escala de medición de 0 a 150 cm, con precisión de 1 mm. Todas las variables fueron medidas dos veces. El error técnico de medida (ETM) fue del 0,8 % al 2 % en todas las medidas.

Se calculó el índice de masa corporal (IMC) [peso (kg)/altura2 (m2)]. El estado de madurez fue calculado por medio de los años de distancia al de pico de velocidad de crecimiento (APVC), estimado por medio de una ecuación de regresión antropométrica sugerida por Mirwald et al.14 Esta técnica es ampliamente utilizada en Chile por ser no invasiva y permitir evaluar el estado de madurez de forma transversal.15

Composición corporal

Se utilizó la DXA (Lunar Prodigy, General Electric, Fairfield, CT) siguiendo los procedimientos descritos por Kelly et al.,16 y las instrucciones del fabricante. Todas las mediciones fueron realizadas por un técnico especializado. Antes de comenzar el proceso de escaneado, el sujeto tenía que acostarse de espaldas sobre la plataforma de escaneado. Los brazos y las piernas se extendieron paralelos a la cama. Ambos tobillos fueron atados con un cinturón de velcro para garantizar una posición estándar para los sujetos. El porcentaje de grasa y la MG se registraron para este estudio.

Para garantizar la confiabilidad de la exploración, los escaneos se repitieron poco después del primer escaneo (el mismo día), evaluando cada 10 sujetos al 10 % de la muestra. El ETM entre los evaluadores e intraevaluadores produjo valores inferiores al 1,5 %. El sobrepeso y la obesidad se definieron con los valores de grasa corporal obtenidos por la DXA utilizando como punto de corte el percentil 85 para sobrepeso y 95 para obesidad para cada edad y sexo.17,18

Al final del desarrollo del proyecto, los padres fueron informados sobre los resultados alcanzados en la investigación. Los casos que reflejaban elevado riesgo fueron derivados a pediatras especialistas para su tratamiento.

Análisis estadístico

Se constituyeron 4 grupos de acuerdo con la edad, con intervalo de 2 años -grupo 1: 7,5-9,4 años; grupo 2: 9,5-11,4 años; grupo 3: 11,5-13,4 años; grupo 4: 13,5-15,4 años-. Para determinar la FPMR, se dividió la FPM por la masa corporal. Luego de verificar la normalidad de los datos, se calculó la estadística descriptiva de media aritmética, desviación estándar y rango por edad y sexo.

Se utilizó el análisis de la varianza (analysis of variance; ANOVA, por sus siglas en inglés) de un factor para analizar la diferencia entre cada grupo etario en ambos sexos. Se aplicó el análisis de covarianza (ANCOVA) para determinar las diferencias en cada sexo y grupo etario, entre los niños con peso normal y los obesos en los niveles de FPMR, teniendo como covariables los APVC. La correlación parcial (Pearson) se utilizó para analizar la relación entre los niveles de FPMR y el porcentaje de MG, controlando, para tal efecto, los APVC.

RESULTADOS

El proceso de selección de la muestra de estudio se observa en la Figura 1. En la Tabla 1, se describe la media aritmética y desviación estándar para las seis variables analizadas por grupo etario y sexo. En todas las variables y grupos de edad, no hubo diferencias significativas entre hombres y mujeres. Únicamente, se observaron diferencias significativas en el APVC entre los niños con peso normal y los obesos en los niveles de FPMR, teniendo como covariables los APVC. La correlación parcial (Pearson) se utilizó para analizar la relación entre los niveles de FPMR y el porcentaje de MG, controlando, para tal efecto, los APVC.

En la Tabla 2, se presenta la estadística descriptiva de media aritmética y desviación estándar del porcentaje de MG y los valores de prevalencia de obesidad por edad y sexo. Se consideró como criterio de clasificación la MG.16 Los valores medios de MG fueron elevados en todos los grupos etarios en ambos sexos. En cuanto a la prevalencia global de sobrepeso y obesidad elevada, el 53,6 % de los participantes eran obesos. En general, las mujeres de todos los grupos presentaron valores de MG superiores a los varones.
Figura 1. Flujograma del proceso de selección de la muestra

IC: intervalo de confianza; APVC: años de pico de velocidad de crecimiento.

Tabla 1. Estadística (media aritmética y desviación estándar) para las variables antropométricas, años de pico de velocidad de crecimiento (estado de madurez) y fuerza de prensión manual por grupo de edad y sexo (n = 1685)

Grupo de edad	N	Peso (kg)	Estatura (cm)	IMC (kg/m²)	APVC (años)	FPM (kg)	
		x	DE	x	DE	x	DE
Mujeres							
1 (7,5-9,4)	156	32,8	7,1	131,0	6,7	19,0	3,0
2 (9,5-11,4)	216	41,2	9,6	144,1*	8,0	20,1	3,4
3 (11,5-13,4)	191	52,1	11,5	154,1	7,2	21,9*	4,1
4 (13,5-15,4)	168	58,4	10,8	158,0*	6,2	23,3*	4,0
Hombres							
1 (7,5-9,4)	180	33,3	7,6	131,4	6,8	19,2	3,6
2 (9,5-11,4)	213	41,4	11,6	140,1	15,9	20,5	3,9
3 (11,5-13,4)	241	50,3	11,1	154,5	8,6	20,9	3,8
4 (13,5-15,4)	320	60,1	12,4	165,1	8,5	22,0	3,9

X: promedio; DE: desviación estándar; IMC: índice de masa corporal; *: diferencia significativa en relación con los hombres; APVC: años de pico de velocidad de crecimiento (estado de madurez); FPM: fuerza de prensión manual.
La Tabla 3 muestra los valores de la FPMR a la masa corporal (kg) para niños y niñas obesos y con peso normal por edad. Los valores de FPMR fueron más altos en los grupos de mayor edad y, por lo tanto, hubo un crecimiento con la edad en ambos sexos. Sin embargo, en el grupo 3, en ambos sexos, hubo una disminución, excepto para los grupos 3 y 4 en niñas y el grupo 4 en niños. Los participantes de peso normal tenían una FPMR significativamente más alta que los obesos.

Las correlaciones de orden cero y parcial se observan en la Tabla 4. En ambos casos, se

| Tabla 2. Valores descriptivos del porcentaje de masa grasa y prevalencia de obesidad por grupo de edad y sexo (n = 1685) |
|------------------|-----------|----------|----------------|
| Grupos de edad | Masa grasa (%) | Prevalencia de obesidad (%) |
| | X | DE | |
| **Mujeres** | | | |
| 1 (7,5-9,4) | 35,3 | 6,1 | 93,6 |
| 2 (9,5-11,4) | 35,0 | 6,7 | 69,0 |
| 3 (11,5-13,4) | 33,5 | 6,9 | 49,2 |
| 4 (13,5-15,4) | 35,6 | 6,1 | 54,2 |
| Total | 35,2 | 6,4 | 65,7 |
| **Varones** | | | |
| 1 (7,5-9,4) | 30,8 | 7,5 | 72,2 |
| 2 (9,5-11,4) | 32,8 | 7,8 | 59,2 |
| 3 (11,5-13,4) | 27,3 | 8,6 | 31,5 |
| 4 (13,5-15,4) | 23,8 | 8,6 | 28,4 |
| Total | 26,1 | 8,7 | 44,3 |
| Total de ambos | 29,7 | 9,0 | 53,6 |

X: promedio; DE: desviación estándar.

| Tabla 3. Valores descriptivos de la fuerza de prensión manual relativa al peso corporal (kg) para niños obesos y peso normal por edad y por sexo (n = 1685) |
|-----------------|----------|-----------|--------|----------------|
| Grupos de edad | Peso normal | Obesos | Ambos |
| | X | DE | X | DE | |
| **Mujeres** | | | | | |
| 1 (7,5-9,4) | 0,75 | 0,3 | 0,59 | 0,19 | 0,020 |
| 2 (9,5-11,4) | 0,73 | 0,22 | 0,59 | 0,19 | < 0,001 |
| 3 (11,5-13,4) | 0,69 | 0,27 | 0,70 | 0,25 | 0,078 |
| 4 (13,5-15,4) | 0,83 | 0,24 | 0,77 | 0,17 | 0,082 |
| **Varones** | | | | | |
| 1 (7,5-9,4) | 0,7 | 0,34 | 0,57 | 0,22 | 0,030 |
| 2 (9,5-11,4) | 0,74 | 0,24 | 0,57 | 0,19 | 0,001 |
| 3 (11,5-13,4) | 0,72 | 0,3 | 0,65 | 0,26 | 0,020 |
| 4 (13,5-15,4) | 0,85 | 0,33 | 0,88 | 0,23 | 0,3996 |

X: promedio; DE: desviación estándar.

| Tabla 4. Correlación de orden cero y parcial por grupo de edad y sexo, controlando el efecto de los años de pico de velocidad de crecimiento entre porcentaje de masa grasa y fuerza de prensión manual relativa (n = 1685) |
|----------------|----------------|----------------|
| Grupos de edad | Correlación de orden cero | Correlación parcial (APVC) |
| | r | p | | r | p |
| **Mujeres** | | | | | |
| 1 (7,5-9,4) | -0,26 | 0,015 | -0,31 | 0,004 |
| 2 (9,5-11,4) | -0,48 | < 0,001 | -0,45 | < 0,001 |
| 3 (11,5-13,4) | -0,01 | 0,068 | 0,02 | 0,062 |
| 4 (13,5-15,4) | -0,12 | 0,078 | -0,09 | 0,074 |
| **Varones** | | | | | |
| 1 (7,5-9,4) | -0,28 | 0,003 | -0,30 | 0,001 |
| 2 (9,5-11,4) | -0,45 | < 0,001 | -0,44 | < 0,001 |
| 3 (11,5-13,4) | -0,14 | 0,059 | -0,16 | 0,037 |
| 4 (13,5-15,4) | -0,18 | 0,076 | -0,04 | 0,065 |

r: correlación de Pearson; APVC: años de pico de velocidad de crecimiento (estado de madurez).
controló el efecto del APVC entre la FPMR y el porcentaje de MG (por edad y sexo). Las correlaciones obtenidas entre las dos variables fueron negativas. Los valores de las correlaciones resultaron moderados; fueron bajos y no significativos únicamente en los grupos 3 y 4 en las mujeres y en el grupo 4 en los varones.

DISCUSIÓN

La FPM parece ser un buen indicador de salud, puesto que está asociada a menores riesgos de enfermedad cardiovascular, tanto en adultos como en adolescentes. 6,8,11 Los resultados indican que el porcentaje de MG y la FPMR ajustada al peso corporal se asocian negativamente, y esta es más elevada en los grupos de menor edad. De hecho, en los adolescentes del grupo 4 de ambos sexos, la correlación después de ponderar el efecto del estado de madurez no es significativa. Estos hallazgos son consistentes debido a la elevada prevalencia de obesidad observada a edades tempranas y la disminución a edades más avanzadas. Además, los resultados obtenidos en esta investigación son similares a los encontrados en la literatura. 17

En general, los estudios han analizado la asociación entre la FPMR y la composición corporal utilizando medidas indirectas, sobre todo, el IMC. A diferencia de la evaluación por DXA, en el IMC, todos los compartimentos de la masa corporal se incluyen (MG y masa libre de grasa). Tal vez por esa razón, algunos estudios indican una asociación positiva entre el IMC y la FPMR, dado que, por lo general, no se excluye la masa muscular. 17-19 De hecho, Jürimäe et al., 20 constataron que la estatura era la variable antropométrica más importante relacionada con la FPM, en comparación con el peso y el IMC, posiblemente, porque este factor estaba más relacionado con la masa libre de grasa. En la presente investigación, la asociación fue estudiada después de ajustar la FPMR al peso corporal.

Además, en un estudio reciente realizado por Cohen et al., 21 se mostró que la FPMR estaba inversamente asociada con diversos factores de riesgo de enfermedad cardiovascular en niños con exceso de MG, pero no en niños con un porcentaje normal de MG. En esa misma perspectiva, Ramírez-Vélez et al., 19 demostraron, recientemente, que la FPMR en niños y adolescentes se asociaba con los depósitos de grasa en el hígado en niños con exceso de MG. Estos resultados apoyan de alguna forma las evidencias observadas en nuestro estudio,

aunque, para confirmar estos hallazgos, sería necesario efectuar un estudio longitudinal. De hecho, en nuestro estudio, los niños y jóvenes con mayor MG presentaron niveles de FPMR inferiores.

Por lo tanto, es probable que los niveles de AF habitual sean un factor determinante en la relación entre FPMR y MG. Futuros estudios deben tomar en consideración la evaluación de los patrones de AF y el gasto energético en ambos grupos (peso normal y obeso). Esta información puede ayudar a analizar con mayor claridad los resultados obtenidos en el presente estudio.

La prevalencia de obesidad determinada por medio del porcentaje de MG (DXA) es muy elevada (el 53,6 %); se encuentra por encima del percentil 85, según algunos estudios. 16,22 Estos hallazgos son consistentes con los valores de prevalencia del sobrepeso y la obesidad observados en la última encuesta nacional de salud, 4 en la que se utilizó como criterio el IMC según la Organización Mundial de la Salud (OMS), que se destacaron en el 71,2 % (el 39,8 % para el sobrepeso y el 31,2 % para la obesidad).

Los valores de FPMR de ambas manos fueron más bajos en todas las edades y en ambos sexos que los valores normativos publicados por McQuiddy et al. 23 Esta información es similar a otros estudios, en los que los valores de FPMR son más elevados en los niños mayores 18,23 y aumentan con la edad y, posiblemente, con el estado de madurez biológica, en especial, asociada a un mayor incremento de la masa muscular en el sexo masculino. 3 Tal vez por esa razón, solo se encontraron diferencias significativas entre los dos sexos en el grupo etario 4, ya que, después de los 10 a los 11 años de edad, el aumento de la FPM fue mucho mayor en el sexo masculino que en el sexo femenino. 17,24 De hecho, Clary et al., 25 investigando los cambios en el desarrollo y previsibilidad de la fuerza estática en individuos de diferentes estados de madurez, constataron que la FPM era superior en niños con maduración precoz entre los 13 y los 16 años de edad.

En la presente investigación, se constata que la FPM relativa al peso corporal aumenta a lo largo de la edad, excepto entre los 11,5 y los 13,4 años de edad, que presentan valores disminuidos (superiores en las mujeres). Este período de edad puede coincidir con el salto de la pubertad durante la etapa de crecimiento y maduración biológica, que, por cierto, podría afectar la composición corporal y los niveles de fuerza en general.
Algunas fortalezas deben ser reconocidas en este estudio, puesto que la selección y el tamaño de la muestra son aspectos relevantes que permiten generalizar los resultados a poblaciones con similares características en Chile. Además, se debe considerar como debilidad el diseño transversal, ya que no permite explicar las relaciones de causalidad.

CONCLUSIÓN

Se constató que la FPMR estaba negativamente asociada a la MG en niños y jóvenes, tras controlar el efecto del estado de madurez. Se deben realizar futuros estudios longitudinales para confirmar estos hallazgos.

REFERENCIAS

1. Lobstein T, Jackson-Leach R. Planning for the worst: estimates of obesity and comorbidities in school-age children in 2025. Pediatr Obes. 2016; 11(5):321-5.
2. World Health Organization. Final report of the Commission on Ending Childhood Obesity. Geneva: World Health Organization; 2016.
3. Malina RM, Bouchard C, Bar-Oz O. Growth, Maturation and Physical Activity. 2nd ed. Champaign: Human Kinetics; 2004.
4. Ministerio de Salud, Gobierno de Chile. Encuesta Nacional de Salud 2016-2017. Santiago: MINSAL; 2017. [Acceso: 3 de junio de 2020]. Disponible em: http://epi.minsal.cl/resultados-encuestas/.
5. Drenowatz C, Köbel S, Kettner S, Keszytius D, et al. Interaction of sedentary behaviour, sports participation and fitness with weight status in elementary school children. Eur J Sport Sci. 2014; 14(1):100-5.
6. Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2008; 32(1):1-11.
7. Moora S, Redberg RF, Cui Y, Whitman MK, et al. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA. 2003; 290(12):1600-7.
8. García-Artero E, Ortega FB, Ruiz JR, Mesa JL, et al. El perfil lipídico-metabolico en los adolescentes esta más influido por la condición física que por la actividad física (estudio AVENA). Rev Esp Cardiol. 2007; 60(6):581-8.
9. Steene-Johannessen J, Anderson SA, Kolle E, Andersen LB. Low Muscle Fitness Is Associated with Metabolic Risk in Youth. Med Sci Sports Exerc. 2009; 41(7):1361-7.
10. Ramírez-Vélez R, Izquierdo M, Correa-Bautista JE, Tordecilla-Sanders A, et al. Grip strength moderates the association between anthropometric and body composition indicators and liver fat in youth with an excess of adiposity. J Clin Med. 2018; 7(10):347.
11. Peterson MD, Gordon PM, Smeding S, Visich P. Grip Strength Is Associated with Longitudinal Health Maintenance and Improvement in Adolescents. J Pediatr. 2018; 202:226-30.
12. Richards LG, Olson B, Palmer-Smith Thomas P. How Forearm Position Affects Grip Strength. Am J Occup Ther. 1996; 50(2):133-8.
13. Ross WD, Marfell-Jones MJ. Kinanthropometry. In MacDougall JD, Wenger HA, Geeney H (eds.). Physiological testing of elite athlete. London: Human Kinetics; 1991. Págs.223-308.
14. Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002; 34(4):689-94.
15. Cossio-Bolaños MA, Arruda M, Sulla Torres J, Urra Albornoz C, et al. Desarrollo de ecuaciones y propuesta de valores referenciales para estimar la masa grasa de niños y adolescentes chilenos. Arch Argent Pediatr. 2017; 115(5):453-6.
16. Marques-Vidal P, Marcelino G, Ravasco P, Camilo ME, et al. Body fat levels in children and adolescents: Effects on the prevalence of obesity. Eur J Clin Nutr Metab. 2008; 3(6):e321-7.
17. Sartorio A, Lafortuna CL, Pogliaghi S, Trecate L. The impact of gender, body dimension and body composition on handgrip strength in healthy children. J Endocrinol Invest. 2002; 25(5):431-5.
18. Zurita-Ortega F, Castro-González M, Rodríguez-Fernández S, Cofré-Boladós C, et al. Actividad física, obesidad y autoestima en escolares chilenos: Análisis mediante ecuaciones estructurales. Rev Med Chil. 2017; 145(3):299-308.
19. Lad UP, Satyanarayana P, Shisode-Lad S, Siri CC, et al. A Study on the Correlation Between the Body Mass Index (BMI), the Body Fat Percentage, the Handgrip Strength and the Handgrip Endurance in Underweight, Normal Weight and Overweight Adolescents. J Clin Diag Res. 2013; 7(1):51-4.
20. Jüirimäe T, Hurbo T, Jüirimäe J. Relationship of handgrip strength with anthropometric and body composition variables in prepubertal children. HOMO. 2009; 60(3):225-38.
21. Cohen DD, Gómez-Arbeláez D, Camacho PA, Pinzón S, et al. Low muscle strength is associated with metabolic risk factors in Colombian children: the ACFIES study. PloS one. 2014; 9(4):e93150.
22. Laurson KR, Eisenmann JC, Welk GJ. Body Fat Percentile Curves for U.S. Children and Adolescents. Am J Prev Med. 2011; 41(4 Suppl 2):S87-92.
23. McQuiddy VA, Scheerer CR, Lavalley R, McGrath T, et al. Normative Values for Grip and Pinch Strength for 6- to 19-Year-Olds. Arch Phys Med Rehabil. 2015; 96(9):1627-33.
24. Moleenaar HMT, Selles RW, Zuidam JM, Willemsen SP, et al. Growth diagrams for grip strength in healthy children. Clin Orthop Relat Res. 2010; 468(1):217-23.
25. Taeymans J, Clarys P, Abidi H, Hebelinck M, et al. Developmental changes and predictability of static strength in individuals of different maturity: A 30-year longitudinal study. J Sports Sci. 2009; 27(8):833-41.