Incidental diagnosis and surgery outcomes of thyroid cancer in Ecuador

CURRENT STATUS: UNDER REVIEW

Paola Solis-Pazmino
Standford University

Jorge Salazar-Vega
Universidad de Las Americas Facultad de Ciencias de la Salud

Eddy Lincango-Naranjo
Knowledge and Evaluation Mayo Clinic

Cristhian Garcia
Hospital de Especialidades Eugenio Espejo

Gabriela Jaramillo Koupermann
Hospital de Especialidades Eugenio Espejo

Esteban Ortiz-Prado
Universidad de Las Americas

✉️ e.ortizprado@gmail.com Corresponding Author
ORCID: https://orcid.org/0000-0002-1895-7498

Tannya Ledesma
Universidad Central de Ecuador Facultad de Ciencias Medicas

Tatiana Rojas
Universidad San Francisco de Quito

Benjamin Alvarado-Mafila
Cancer de tiroides Catalina

Cesar Carcamo
Cancer de Tiroides Catalina

Oscar J. Ponce
Universidad Peruana Cayetano Heredia
Abstract

Background: In contrast to the rapid increase in thyroid cancer (TC) incidence, thyroid cancer mortality rates have remained low and stable over the last decades. In Ecuador, however, TC mortality has increased and to determine possible drivers, a retrospective analysis of all patients attending a thyroid cancer referral center in Ecuador was conducted. Methods: From June 2014 to December 2017, a cross-sectional study was conducted at the Hospital de Especialidades Eugenio Espejo (HEEE), a regional reference public hospital for endocrine neoplasia in adults in Quito, Ecuador. We identified the mechanism of detection, histopathology and treatment modalities from a patient interview and review of clinical records. Results: Among 452 patients, 74.8% were young adults and 94.2% (426) of patients were female. 13.7% had a family history of thyroid cancer, and median of tumor size was 2 cm. The incidental finding was 54.2% whereas 45.8% was non-incidental. Thyroid cancer histology reported that 93.3% had papillary thyroid cancer (PTC), 2.7% follicular, 1.5% Hurtle cells, 1.6% medullary, 0.7% poor differentiated, and 0.2% anaplastic carcinoma. The mean MACIS (metastasis, age, completeness, invasion, and size) score was 4.95 (CI 4.15-5.95) with 76.2% of the thyroid cancer patients having MACIS score equal or less than 6. The very low and low risk of recurrence was 18.1% (79) and 62% (271) respectively. An analysis of 319 patients with non-metastatic thyroid cancer showed that 10.7% (34) of patients had surgical complications. Moreover, around 62.5% (80 from 128 patients with thyroglobulin laboratory results) of TC patients had a stimulated-thyroglobulin (sTg) value equal or higher than 2 ng/ml. Overall, a poor surgical outcome was present in 35.1% (112) patients. Out of 436 patients with differentiated thyroid carcinoma (DTC), 86% (n=375) received radioactive iodine (RAI). Conclusion: Thyroid cancer histological characteristics and method of diagnosis are like the ones described in other reports without any evidence of the high frequency of aggressive thyroid cancer histology. However, we observed evidence of overtreatment and poor surgical outcomes that demand additional studies to understand their association with thyroid cancer mortality in Ecuador.

Background

The incidence of thyroid cancer (TC) has increased over the last three decades in most countries
around the globe1. In the United States, an analysis of the Surveillance, Epidemiology, and End Results (SEER) between 1975 and 2015 found that TC incidence has increased from 4.9 to 15 per 100,000 people2. Similar epidemiological changes have been observed in Central and South America. From 2008 to 2012, TC incidence rates in these regions increased 8 to 12 times3. In Ecuador, the annual incidence fluctuated from 3 to 22 per 100,000 in the last 16 years, with women having higher incident rates than men4.

In contrast with the rapid increased in TC incidence5-8, worldwide thyroid cancer mortality rates have remained low and stable over the last decades9-11. In Ecuador, however, thyroid cancer incidence and mortality have increased, and Ecuadorian thyroid cancer mortality rates are one of the highest in the world4,12,13. Ecuador is a setting with limited epidemiological resources, and the drivers behind this rising incidence and mortality rates are unclear.

Ideally, a large population-based study examining the thyroid cancer characteristics and treatment trends may help clarify the triggers of mortality rate in Ecuador. However, such a study design is not possible with the current TC data infrastructure in Ecuador. Instead, we conducted a retrospective analysis of all patients attending a thyroid cancer referral center in Ecuador to determine possible drivers of high rates of thyroid cancer mortality (type of thyroid cancer diagnosis and surgical outcome). This information might help gain insights into what factors could be contributed to thyroid cancer mortality.

Methods

Setting and participants

From June 2014 to December 2017, a cross-sectional study was conducted at the Hospital de Especialidades Eugenio Espejo (HEEE), a regional reference public hospital for endocrine neoplasia in adults in Quito, Ecuador. Ecuador is geographically divided into four major natural regions (Coast, Highland, Amazon, and Galapagos Islands). Due to HEEE is located within the Highland region, its patients come mostly from this area. All the patients who were seen for thyroid cancer at HEEE were
included, except the patient who did not have the histopathology report. Patients who had initial management (including surgery) outside HEEE were also included.

Data collection and variables

Two sources of data were used to collect the variables of interest. First, a study coordinator interviewed eligible patients during their first postsurgical appointment at the endocrine clinic. During this process, the study coordinator captured: 1) demographic characteristics such as age, degree of education, region of residence (Coast, Highland, Amazon and Galapagos Islands), age at diagnosis, and ethnicity; 2) family history of TC; 3) environmental risk factors; 4) methods of diagnosis (incidental or non-incidental findings). Second, study team members reviewed medical records of included patients to extract the following information: 1) thyroid gland functionality (euthyroid, hypothyroidism, or hyperthyroidism), thyroid ultrasound characteristics, and thyroid nodule fine-needle aspiration (FNA) cytotologic results based on Bethesda System; 2) surgical characteristics such as type and extension of surgery; 3) thyroid gland histopathological features including tumor size, type, focality, minor or gross local invasion, and cervical lymph node involvement or distant metastases; 4) TC markers measured after thyroidectomy and before radioactive iodine therapy, including thyroid-stimulating hormone (TSH), stimulated thyroglobulin (sTg), inhibited (iTg), and anti-thyroglobulin antibodies (aTg); 5) surgical characteristics such as type and extension of surgery, and complications (hypocalcemia <6 months and >6 months after procedure, recurrent laryngeal nerve injury); and finally 6) the radioactive iodine treatment, its doses, and scan results.

Data management

Baseline characteristics data were managed as follows: employment and education were classified according to the National Institute of Statistics and Census (INEC) from Ecuador, and thyroid surgery settings were grouped as tertiary (hospitals providing specialized TC management) and non-tertiary hospitals. Furthermore, patients were considered to have a family history of TC when first and second generation-degree relatives had the disease. Based on thyroid histopathologic features, patients were diagnosed as medullar or non-medullar TC, the latter being further classified as differentiated (papillary and follicular), poorly differentiated, undifferentiated (anaplastic), or
squamous cell carcinoma15. The risk of recurrence in differentiated TC was calculated by using the American Thyroid Association (ATA) 2009 risk stratification system, which classifies patients’ risk of recurrence as low, intermediate, or high16. Due to the overwhelming increasing incidence of patients with papillary thyroid cancer (PTC) with an intrathyroidal tumor size of < 1 cm, a new category was included to the ATA risk of recurrence calculator: “very low risk”17. Furthermore, the risk of mortality in patients with PTC was estimated based on MACIS score (metastasis, age, completeness, invasion, and size)18. A cutoff of 6 was employed to group patients as either low (MACIS < 6) or high risk (MACIS ≥ 6) of mortality.

Thyroid cancer method of detection was divided in two groups: non-incidental diagnosis (when the TC was found in asymptomatic patient) and incidental diagnosis when a thyroid nodule harbouring TC is found during the workup of non-nodular thyroid disease, or during an imaging test requested for reasons unrelated to a thyroid disorder or symptom (e.g. preventive ultrasound), or TC is found incidentally in the histological examination of the thyroid gland removed for a benign condition11.

We classified the quality of thyroidectomy based on post-operative thyroglobulin \textit{sTg} levels (at least 6 weeks after the procedure)19–21, and the frequency of surgical complications22–24. We considered that the quality of surgery was optimal when there were no post-surgical complications and when patients had a \textit{sTg} ≤2 ng/dl, and poor when patients had at least one permanent surgical complication or post-operative \textit{sTg} > 2ng/dL. Given that surgical complications and post-operative \textit{sTg} levels could be affected by the presence of metastatic disease, we limited the assessment of the quality of surgical outcomes to patients with non-metastatic differentiated TC undergoing initial thyroid surgery (total thyroidectomy and central neck dissection).

\textit{Statistical methods}

For categorical variables, frequencies and percentages were reported. For numerical variables, we used mean and median with their corresponding standard deviation (SD) or interquartile ranges (IQR), as measurements of central tendency and dispersion. Normal distribution was determined by visual inspection and by using the Kolmogorov-Smirnov test. Our dependent variables used for exploratory
analysis were incidental findings and quality of surgery, which are dichotomous variables. For our bivariate and multivariate analysis, we decided to use prevalence ratio (PR) instead of odds ratios (OR), due to PR is easier to interpret and OR tend to overestimate the results. To calculate this PR, we planned to use a generalized linear model (GLM) with the binomial family and the log link. However, convergence problems were found with some of the variables. Such issues are common. At the end we chose, from all possible solutions, to use Poisson as the family for the GLM with robust variance. For the multivariate analyses, we decided to include in the models for incidental findings and poor quality of surgery all variables which p-value was smaller than 0.05 and those considered to be important by the investigators. The results are reported as prevalence ratios (PR) and their respective 95% confidence interval. Statistical analysis was performed with STATA.

Results
From 2014 to 2017, 452 TC patients were included, 74.8% of the patients were between 20 to 54 years old and with a median tumor size of was 2 cm [IQ 1.2, 3.1]. Around 94.2% of TC patients were female, 13.7% had a family history of TC. Thyroid cancer histology was: 93.3% had papillary thyroid cancer (PTC), 2.7% follicular, 1.5% Hurtle cells, 1.6% medullary, 0.7% poor differentiated, and 0.2% anaplastic. The mean MACIS (metastasis, age, completeness, invasion, and size) score was 4.95 (IQ 4.15, 5.95) with 76.2% of the TCs having MACIS score equal or less than 6 (Table 1).

Mechanism of detection
The methods of TC diagnosis were: 54.2% incidental (93.5% by ultrasound, 5.3% histology, and 1.2% unrelated test) and 45.8% non-incidental (palpable and symptomatic nodule). Furthermore, 100% of patients with microcarcinoma (≤10mm) were incidental finding; the proportions further fell to 68.4%, 43.7%, 9.3%, and 23% for the 11-20mm, 21-30mm, 31-40mm and ≥41mm groups, respectively (Figure 1).
Multivariate analysis, controlled for MACIS score, age, the presence of cervical lymph nodes and risk of recurrence, found that a higher tumor size was associated with higher prevalence of people who were incidentally diagnosed with thyroid cancer (PR = 0.96 [CI: 0.94, 0.97]) (Table 2).

Treatment modalities

Surgical characteristics and outcomes

All patients were treated with total thyroidectomy. An analysis of 319 patients with non-metastatic differentiated thyroid carcinoma (DTC) showed that 10.7% (34) of patients had surgical complications, 7.8% (25) of patients developed permanent hypoparathyroidism, 2.2% (7) had recurrent laryngeal nerve injury, and 0.6% (2) showed spinal nerve injury. Moreover, around 61% (80 from 128 patients with thyroglobulin laboratory results) of TC patients had a sTg value equal or higher than 2 ng/ml. By using both surgical complications and sTg values, the percentage of patients who had a poor surgical outcome was 35%. The univariate analysis showed that the tumor size, MACIS score and the presence of metastatic cervical lymph nodes in the central compartment were associated with poor surgical outcome. However, in multivariate analysis, only metastatic cervical lymph nodes was associated with poor surgical outcome (PR=1.45 [IC:1.07, 1.97]) (Table 3).

Iodine therapy

Out of 436 patients with DTC, 86% (n=375) received radioactive iodine (RAI). The median dose of RAI was 100 mCi (IQR: 100-150) and the median lapse between surgery and RAI therapy was 4 months (IQR: 3-7 months). 95% of people with very low risk and low risk, received RAI treatment (Table 4).

Discussion

We conducted a retrospective analysis of all TC patients receiving care at a regional reference hospital in Ecuador. This analysis revealed that 74.8% of TC patients were between 20 and 54 years old, and the majority was papillary thyroid cancer at low or very low risk of recurrence. Approximately half of these cases were found incidentally (patients without symptoms of TC), and a quarter of TC patients had a poor surgical outcome. Despite being mostly low-risk cancer, all patients receive total
thyroidectomy, and the majority received RAI.

Although this sample only represents a small subset of all thyroid cancers in Ecuador, histological characteristics and method of diagnosis are similar to the ones described in other reports28–33. We did not see an increased frequency of aggressive thyroid cancer histological findings that might explain the increase in thyroid cancer mortality in Ecuador. We observed that the majority of thyroid cancer cases were of low risk of recurrence and mortality. Moreover, we found that more than half of thyroid cancers were diagnosed incidentally, and the minority of patients presented with symptoms resembling findings in countries where thyroid cancer overdiagnosis drives increasing incident trends34–37.

Even though thyroid cancer histology and mode of presentation did not show any hint to explain thyroid cancer increased mortality, we found that there was evidence of overtreatment and poor surgical outcomes. One-third of patients had either surgical adverse event or a post-surgical Tg value that suggested residual benign or malignant thyroid tissue. The high frequencies of poor surgical outcomes suggest a lack of surgical thyroid cancer expertise38,39. In Ecuador, there are no residency programs dedicated to training surgeons about the treatment of TC. The few existing thyroid focused surgeons are insufficient in covering the rising demand for new patients with this tumor. Yet, most TC patients do not receive care or treatment in a reference hospital, and thus, they maybe at higher risk of complications and perhaps unrecognized death due to thyroid cancer surgery. Another driver of the increased thyroid cancer mortality in Ecuador, not assessed in this study, maybe attribution bias. That is, patients with thyroid cancer who died, and the cause of death is attributed to thyroid cancer even if cancer was likely not it due40. This misclassification bias exaggerates cancer-specific mortality. Morticians not familiar with thyroid cancer prognosis may be more willing to allocate cause of death to thyroid cancer when the chain of events leading to death is unclear or unknown. Moreover, we observed that the majority of thyroid cancer cases were of low or very low risk of recurrence, however, most of them received high doses of RAI therapy. Although RAI use would not have a detrimental impact of thyroid cancer mortality, it used adds to the patient’s burden of treatment and
risk of adverse events. 41-43.

Conclusions
Considering the paucity of population-based cancer registries in Ecuador, this study provides additional information about the thyroid cancer diagnosis and treatment in a tertiary referral center in Ecuador. We observed thyroid cancer histological characteristics and method of diagnosis are like the ones described in other reports without any evidence of the high frequency of aggressive thyroid cancer histologists. However, we observed evidence of overtreatment and poor surgical outcomes that demand additional studies to understand their association with thyroid cancer mortality in Ecuador.

Limitations
This study has several limitations. This is not a population-based study; therefore, selection bias may influence our results. Furthermore, there were patients with missing data, lowering our sample size and confidence in the estimates. Information about the histopathological characteristics and post-surgical treatment were unavailable because not all patients began the treatment in HEE and some of them came to this hospital after surgery or after radioactive therapy was performed. Moreover, in the interview of the patients, the question of family history was exposed to recall bias. Finally, we were not able to provide information about the outcomes for these patients as this data is currently collected and become material for a subsequent study.

Declarations
Ethics approval and consent to participate

All data were collected from the patient’s medical records after obtaining written informed consent. The study was approved by the Hospital Eugenio Espejo review board. All data was anonymized, and all identifiable information and biological samples were storage according to the local guidelines.

Consent to publish
Written informed consent was obtained from every patient in the study.
Availability of data and materials
Since data came from the medical records where sensitive information is collected, no database is publicly available. Nevertheless, anonymized information can be shared privately upon reasonable request at e.ortizprado@gmail.com or jorgeluismh@hotmail.com.

Competing interests
The authors declare that they have no competing interests

Funding
This work did not receive financial support of any kind except for the publication fee paid in full by Universidad de las Americas, Quito, Ecuador.

Authors' Contributions
PSP and JLS were fully responsible for the conceptualization, data collection and elaboration of the study and both participate in the drafting the manuscript equally and fully responsible for it.
EL, GJ and CG contributed with the data collection (surgical information and pathological analysis) and the construction of figures and tables.
TL, TR, BA, CC and OP contributed with the descriptive statistical analysis and the discussion section of the manuscript.
EO-P and JPB added an important insight about the epidemiological point of view regarding mortality rates in Ecuador and the overall analysis of thyroid cancer in Ecuador respectively. Both critically reviewed the entire manuscript and produced several comments prior to the submission.

Acknowledgement: The authors thank the patients and their families who contributed to the completion of this analysis.

References
1. Wiltshire JJ, Drake TM, Uttley L, Balasubramanian SP. Systematic Review of Trends in the Incidence Rates of Thyroid Cancer. Thyroid. 2016;26(11):1541-1552.
2. SEER Cancer Statistics Review. National Cancer Institute- SEER Cancer Statistics Review. *SEER Cancer Stat Rev 1975-2014, Natl Cancer Inst.* 2017:1992-2015.
doi:http://seer.cancer.gov/csr/1975_2013/results_merged/sect_15_lung_bronchus.pdf#search=lung+cancer

3. Sierra MS, Soerjomataram I, Forman D. Thyroid cancer burden in Central and South America. *Cancer Epidemiol.* 2016;44:S150-S157. doi:10.1016/j.canep.2016.07.017

4. Salazar-Vega J, Ortiz-Prado E, Solis-Pazmino P, et al. Thyroid Cancer in Ecuador, a 16 years population-based analysis (2001–2016). *BMC Cancer.* 2019;19(1):294.
doi:10.1186/s12885-019-5485-8

5. Morris LGT, Sikora AG, Tosteson TD, Davies L. The Increasing Incidence of Thyroid Cancer: The Influence of Access to Care. *Thyroid.* 2013;23(7):885-891.
doi:10.1089/thy.2013.0045

6. Park S, Oh CM, Cho H, et al. Association between screening and the thyroid cancer “epidemic” in South Korea: Evidence from a nationwide study. *BMJ.* 2016;355:1-8.
doi:10.1136/bmj.i5745

7. Brito JP, Al Nofal A, Montori VM, Hay ID, Morris JC. The Impact of Subclinical Disease and Mechanism of Detection on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Olmsted County, Minnesota During 1935 Through 2012. *Thyroid.* 2015;25(9):999-1007. doi:10.1089/thy.2014.0594

8. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013. *Jama.* 2017;317(13):1338.
doi:10.1001/jama.2017.2719

9. Minelli G, Conti S, Manno V, Olivieri A, Ascoli V. The Geographical Pattern of Thyroid Cancer Mortality Between 1980 and 2009 in Italy. *Thyroid.* 2013;23(12):1609-1618.
doi:10.1089/thy.2013.0088
10. Keinan-Boker L, Silverman BG. Trends of Thyroid Cancer in Israel: 1980–2012. *Rambam Maimonides Med J.* 2016;7(1):e0001. doi:10.5041/RMMJ.10228

11. Rosário PW, Ward LS, Carvalho GA, et al. Thyroid nodules and differentiated thyroid cancer: update on the Brazilian consensus. *Arq Bras Endocrinol Metabol.* 2013;57(4):240-264. doi:10.1590/S0004-27302013000400002

12. Vecchia C La, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: A global overview. 2012:1-9. doi:10.1002/ijc.29251

13. Gavilanez EL, Franco KG, Bajaña AS, et al. Trends of Thyroid Cancer Mortality Rates in Ecuador. *J Endocrinol Diabetes.* 2018:3-8. doi:10.15226/2374-6890/5/4/01114

14. INEC. Anuario de Estadisticas vitales: Nacimientos y Defunciones. 2013.

15. King-yin Lam A. Pathology of Endocrine Tumors Update: World Health Organization New Classification 2017—Other Thyroid Tumors. *AJSP Rev Reports.* 2017;22(4):209-216. doi:10.1097/PCR.0000000000000183

16. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. *Thyroid.* 2016;26(1):1-133. doi:10.1089/thy.2015.0020

17. Pitoia F, Califano I, Vázquez A, et al. Consenso intersocietario sobre tratamiento y seguimiento de pacientes con cáncer diferenciado de tiroides. *Rev Argent Endocrinol Metab.* 2014;51(2):85-118.

18. Tuttle RM, Haugen B, Perrier ND. Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why? *Thyroid.* 2017;27(6):751-756. doi:10.1089/thy.2017.0102
19. Lee JI, Chung YJ, Cho BY, Chong S, Seok JW, Park SJ. Postoperative-stimulated serum thyroglobulin measured at the time of 131I ablation is useful for the prediction of disease status in patients with differentiated thyroid carcinoma. Surg (United States). 2013;153(6):828-835. doi:10.1016/j.surg.2012.12.008

20. Chang YW, Kim HS, Jung SP, et al. Pre-ablation stimulated thyroglobulin is a better predictor of recurrence in pathological N1a papillary thyroid carcinoma than the lymph node ratio. Int J Clin Oncol. 2016;21(5):862-868. doi:10.1007/s10147-016-0956-2

21. Salvatori M, Raffaelli M, Castaldi P, et al. Evaluation of the surgical completeness after total thyroidectomy for differentiated thyroid carcinoma. Eur J Surg Oncol. 2007;33(5):648-654. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med5&AN=17433606
http://sfxhosted.exlibrisgroup.com/mayo?sid=OVID:medline&id=pmid:17433606&id=doi:10.1016%2Fj.ejso.2007.02.034&issn=0748-7983&isbn=&volume=33&issue=5&spage=648&pages=648-.

22. Papaleontiou M, Hughes DT, Guo C, Banerjee M, Haymart MR. Population-based assessment of complications following surgery for thyroid cancer. J Clin Endocrinol Metab. 2017;102(7):2543-2551. doi:10.1210/jc.2017-00255

23. Adam MA, Thomas S, Youngwirth L, et al. Is there a minimum number of thyroidectomies a surgeon should perform to optimize patient outcomes? Ann Surg. 2017;265(2):402-407. doi:10.1097/SLA.0000000000001688

24. Liu JB, Sosa JA, Grogan RH, et al. Variation of thyroidectomy-specific outcomes among hospitals and their association with risk adjustment and hospital performance. JAMA Surg. 2018;153(1):1-10. doi:10.1001/jamasurg.2017.4593

25. Barros AJD, Hikakata VN. Alternatives for logistic regression in cross-sectional
studies: An empirical comparison of models that directly estimate the prevalence ratio. *BMC Med Res Methodol.* 2003;3:1-13. doi:10.1186/1471-2288-3-21

26. Espelt A, Marí-Dell M, Penelo E, Bosque-Prous M. Resumen Abstract Applied Prevalence Ratio estimation with different Regression models: An example from a cross-national study on substance use research Estimación de la Razón de Prevalencia con distintos modelos de Regresión: Ejemplo de un estudio internacional en investigación de las adicciones. *Adicciones.* 2016;29(·):105-112. https://pdfs.semanticscholar.org/6325/45c807ee22974ee92aa74f5287159104a543.pdf.

27. Coutinho LMS, Scazufca M, Menezes PR. Methods for estimating prevalence ratios in cross-sectional studies. *Rev Saude Publica.* 2008;42(6):992-998. http://www.ncbi.nlm.nih.gov/pubmed/19009156.

28. Weeks KS, Kahl AR, Lynch CF, Charlton ME. Racial/ethnic differences in thyroid cancer incidence in the United States, 2007-2014. *Cancer.* 2018:2007-2014. doi:10.1002/cncr.31229

29. Tortolero-Luna G, Torres-Cintrón CR, Alvarado-Ortiz M, Ortiz-Ortiz KJ, Zavala-Zegarra DE, Mora-Piñero E. Incidence of thyroid cancer in Puerto Rico and the US by racial/ethnic group, 2011-2015. *BMC Cancer.* 2019;19(1):1-9. doi:10.1186/s12885-019-5584-3

30. Russo Picasso MF, Vicens J, Giuliani C, et al. Role of the Mechanisms of Detection in the Increased Risk of Thyroid Cancer: A Retrospective Cohort Study in an HMO in Buenos Aires. *J Cancer Epidemiol.* 2018;2018. doi:10.1155/2018/8986074

31. Tsuda T, Tokinobu A, Yamamoto E, Suzuki E. Thyroid Cancer Detection by Ultrasound Among Residents Ages 18 Years and Younger in Fukushima, Japan. *Epidemiology.* 2016;27(3):316-322. doi:10.1097/EDE.0000000000000385

32. Al-Ammar Y, Al-Mansour B, Al-Rashood O, et al. Impact of body mass index on
survival outcome in patients with differentiated thyroid cancer. *Rev Bras Otorrinolaringol.* 2018;84(2):220-226.
doi:https://dx.doi.org/10.1016/j.bjorl.2017.02.002

33. Estrada-Florez AP, Bohórquez ME, Sahasrabudhe R, et al. Clinical features of Hispanic thyroid cancer cases and the role of known genetic variants on disease risk. *Med (United States).* 2016;95(32):1-7. doi:10.1097/MD.0000000000004148

34. Janovsky CCPS, Bittencourt MS, Novais MAP de, Maciel RMB, Biscolla RPM, Zucchi P. Thyroid cancer burden and economic impact on the Brazilian public health system. *Arch Endocrinol Metab.* 2018;62(5):537-544. doi:10.20945/2359-3997000000074

35. Massimino M, Evans DB, Podda M, et al. Thyroid cancer in adolescents and young adults. *Pediatr Blood Cancer.* 2018:e27025. doi:10.1002/pbc.27025

36. Seib CD, Sosa JA. Evolving Understanding of the Epidemiology of Thyroid Cancer. *Endocrinol Metab Clin North Am.* 2019;48(1):23-35. doi:10.1016/j.ecl.2018.10.002

37. Brito JP, Davies L. Is there really an increased incidence of thyroid cancer? *Curr Opin Endocrinol Diabetes Obes.* 2014;21(5):405-408. doi:10.1097/MED.0000000000000094

38. Cavalheiro BG, Matos LL, Leite AKN, Kulcsar MA V., Cernea CR, Brandão LG. Surgical treatment for thyroid carcinoma: retrospective study with 811 patients in a Brazilian tertiary hospital. *Arch Endocrinol Metab.* 2016;60(5):472-478. doi:10.1590/2359-399700000209

39. Doubleday A, Sippel RS. Surgical options for thyroid cancer and post-surgical management. *Expert Rev Endocrinol Metab.* 2018;13(3):137-148.
doi:https://dx.doi.org/10.1080/17446651.2018.1464910

40. Leite AKN, Cavalheiro BG, Kulcsar MA, et al. Deaths related to differentiated thyroid cancer: a rare but real event. *Arch Endocrinol Metab.* 2017;61(3):222-227.
doi:10.1590/2359-399700000261
41. Lamartina L, Grani G, Durante C, Borget I, Filetti S, Schlumberger M. Follow-up of differentiated thyroid cancer - what should (and what should not) be done. Nat Rev Endocrinol. 2018;14(9):538-551. doi:https://dx.doi.org/10.1038/s41574-018-0068-3

42. Metter D, Phillips WT, Walker RC, Blumhardt R. To use or not to use 131I in thyroid cancer. Clin Nucl Med. 2018;43(9):670-671. doi:10.1097/RLU.0000000000002190

43. Michael Tuttle R, Ahuja S, Avram AM, et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular. Vol 29.; 2019. doi:10.1089/thy.2018.0597

44. StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC.

Tables

Table 1. Characteristics of Thyroid Cancer Patients Before Thyroidectomy

Variable*	Total (n = 452)
	n (%)
Sex	
Female	426
Males	26
Age at diagnosis (mean: 44.6, SD: 14.56)	
<20 years old	17 3.8
20-34 years old	106 23.5
35-44 years old	104 23
45-54 years old	128 28.3
55-64 years old	53 11.7
65-74 years old	26 5.8
75-84 years old	16 3.5
>84 years old	2 0.4
Residence	
Coast	49 10.8
Highland	389 86.1
Amazon	14 3.1
Galapagos	0 0
Employment	
Domestic chores	332 73.5
Student	20 4.4
Labor	100 22.1
Education level	
None	22	4.9	
Elementary	267	59.1	
School			
High school	132	29.2	
College	31	6.9	
Family history of thyroid cancer			
Yes	62	13.7	
No	390	86.3	
BMI ($n = 298$) ($mean: 28.75, SD: 5.53$)			
Normal	76	25.5	
Overweight	113	37.9	
Obesity	109	36.6	
Self-reported exposure to ($n = 63$)			
Radiation	4	6.3	
Chemicals in agriculture	59	93.7	
Cigarette Smoking ($n = 393$)			
Yes	17	4.3	
No	376	95.7	
Thyroid function			
Euthyroid	372	82.3	
Hypothyroidism	72	15.9	
Hyperthyroidism	8	1.8	
Methods of detection			
Non- incidental	207	45.8	
(palpable nodule)			
Incidental	245	54.2	
Ultrasound	229	93.5	
Histology	13	5.3	
Unrelated test	3	1.2	
Setting of thyroid surgery ($n = 450$)			
Tertiary Hospital	270	60	
Non- tertiary hospital	180	40	
Size of tumor ($n = 406$) ($median = 2 cm [IQ 1.2, 3.1]$)			
≤1cm	89	21.9	
>1cm	317	78.1	
Focality ($n = 416$)			
Unifocal	230	55.3	
Multifocal	186	44.7	
Cervical Lymph nodes metastasis ($n = 436$)			
Si	211	48.4	
No	225	51.6	
MACIS score ($n = 408$) ($median = 4.95 cm [IQ 4.15, 5.95]$)			
≤6	311	76.2	
----------------	--------	-----	
	Histopathology, (n=447)		
	Papillary	417	93.3
	Follicular	12	2.7
	Hurtle cells	7	1.5
	Poor	3	0.7
differentiated	Anaplastic	1	0.2
	Medullary	7	1.6
Risk recurrence (n=437)	Very low risk	79	18.1
	Low risk	271	62.0
	Indeterminate	49	11.2
risk	High risk	38	8.7

* All variables without a specific number of patients were calculated from the whole population (n=452). All the others show the number of people from which the variables were available.
Table 2. Factors associated with the prevalence of diagnosis

Variables	Incidental	Univariate analysis	Multivariate analysis	
	No (n= 206)	Yes (n= 246)	PR (95% CI) p	
Age, mean (SD)	43.0 (16.1)	46.3 (13.4)	1.01 (1.00, 1.01) 0.037	1.01 (1.00, 1.01)
Sex, n (%)				
Male	14 (6.8)	12 (4.9)	Reference 0.433	
Female	192 (93.2)	234 (95.1)	1.19 (0.78, 1.81)	
Positive Family history n (%)				
No	179 (86.5)	211 (86.1)	Reference 0.914	
Yes	28 (13.6)	34 (13.8)	1.01 (0.79, 1.29)	
BMI, (n= 299) mean, (SD)	n= 142	n= 157	1.00 (0.99, 1.02) 0.630	
Tumor size in mm, (n= 406) mean, (SD)	n= 177	n= 229	0.96 (0.95, 0.97) 0.000	0.96 (0.94, 0.97)
Multifocal (n= 328), n (%)				
Unifocal, n (%)	103 (55.4)	127 (55.2)	Reference 0.974	Reference
Multifocal, n (%)	83 (44.6)	103 (44.8)	1.00 (0.84, 1.19)	1.32 (1.13, 1.54)
Positive Cervical Lymph nodes n (%)				
No	93 (46.3)	132 (56.2)	Reference 0.041	Reference
Yes	108 (53.7)	103 (43.8)	0.83 (0.70, 0.99)	1.09 (0.93, 1.27)
MACIS score (n=406), mean (SD)	5.6 (1.6)	4.9 (1.4)	0.86 (0.79, 0.92) 0.000	0.92 (0.81, 1.04)
Risk recurrence (n=437)				
Very low risk	0	79 (33)	Reference*	
Low risk	147 (73.5)	124 (52.3)		
Intermediate risk	33 (16.5)	16 (6.8)	0.56 (0.37, 0.85) 0.006	0.98 (0.67, 1.43)
High risk	20 (10.0)	18 (7.6)	0.77 (0.54, 1.11) 0.163	1.04 (0.82, 2.16)

* For univariate and multivariate analysis low and very low risk categories were combined and taken as reference.
Table 3. Factors associated with poor optimal surgical outcomes

	Univariate analysis	Multivariate analysis	
	PR (95% CI)	P value	
		PR (95% CI)	P value
Sex			
Male	Reference	0.295	
Female	0.74 (0.42, 1.30)	0.684	
Age, mean (SD)	1.00 (0.99, 1.01)	0.191	
Setting of Surgery			
Tertiary Hospital	Reference	0.878	
Non-tertiary hospital	0.98 (0.71, 1.32)	1.01 (0.75, 1.37)	
Tumor size (n=306), mean (SD)	1.01 (1.00, 1.02)	0.001	
Tumor focality, n (%)			
Unifocal	Reference	0.425	
Multifocal	1.13 (0.84, 1.53)		
Positive Central Cervical Lymph nodes metastasis, n (%)			
No	Reference	0.004	
Yes	1.54 (1.15, 2.06)	1.45 (1.07, 1.97)	
MACIS score	1.14 (1.02, 1.28)	0.017	
Histology variant			
Non-aggressive	Reference	0.651	
Aggressive	1.11 (0.70, 1.79)		
Risk recurrence			
Very low risk	Reference*		
Low risk	0.95 (0.51, 1.77)	0.861	
Indeterminate risk			
High risk	0.95 (0.19, 4.73)	0.946	

* For univariate and multivariate analysis low and very low risk categories were
Table 4. **Radioactive Iodine and risk of recurrence**

Risk recurrence	Yes n = 375 (89.3%)	No n = 45 (10.7%)	PR (95 % CI)	P value
Very low risk (micro PTC) n (%)	49 (63.6)	28 (36.4)	0.2 (0.13, 0.35)	0.001
Low risk	248 (95)	13 (5)		
Indeterminate risk	43 (91.5)	4 (8.5)		
High risk	35 (100)	0 (0)		

Figures

![Figure 1](image)

Figure 1

Tumor size by method of diagnosis