Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum

Reiner Rincón-Rosales1, Lourdes Lloret2, Edith Ponce1 & Esperanza Martínez-Romero2

1Departamento de Biotecnología Vegetal, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico; and 2Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico

OnlineOpen: This article is available free online at www.blackwell-synergy.com

Abstract

Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum. A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70 T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate Acaciella (Rhizobium, Sinorhizobium and Mesorhizobium) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella.

Introduction

Bacteria in the roots or the stems of legumes fix nitrogen and provide the plant with this nutrient. Symbiotic bacteria have been studied from only a small proportion of the extant legume species, and diverse genera such as Rhizobium, Sinorhizobium, Mesorhizobium, Bradyrhizobium, Devosia, Methylobacterium, Burkholderia and Cupriavidus have been reported to contain nodulating species (Young & Haukka, 1996; Sprent, 2001; Sy et al., 2001; Rivas et al., 2002; Chen et al., 2003; Vandamme & Coenye, 2004; Elliott et al., 2007a,b). Mexico is a very diverse country and occupies the fourth place in plant diversity terms (Rzedowsky, 1978) with many endemic legumes. The genus Acaciella is found mainly in Mexico and has well-supported botanical differences to be recognized as a new species different from the Acacia genus where it was formerly classified (Rico-Arce & Bachean, 2006).

Nitrogen-fixing trees and shrubs are valuable to maintain forest fertility and N₂ fixation allows their growth in infertile soils while enriching soil nitrogen. In Chiapas, Acaciella angustissima shrubs that can grow in poor soils are being used in agroforestry systems, due to their rapid growth rate, high capacity for nitrogen fixation and the quality of the tannins that accumulate in their bark (Rincón-Rosas & Gutiérrez-Miceli, 2008). Interestingly, these shrubs are

Keywords

Acaciella angustissima; N₂ fixation; nodulation; rhizobial diversity; legume symbiosis.
the preferred hosts of *Llaveia mexicanorum* (Williams & MacVean, 1995), a native homeoptera scale insect, which is used by indigenous people of Chiapas and Mesoamerica to produce a fat for traditional lacquer wood handcrafts (Grillascas, 2007). We established nurseries to propagate *A. angustissima* plants and became aware that inoculants were required to attain good plant development. This prompted us to analyze and select strains for inoculation.

One of the *sinorhizobial* groups we encountered corresponded to a new species and we proposed the name *Sinorhizobium mexicanum* for this lineage (Lloret *et al*., 2007). However, modifications in the *Sinorhizobium* genus taxonomy have occurred (Young, 2003). The bacteria belonging to *Sinorhizobium* have been transferred to the genus *Ensifer* (Young, 2003) because according to judicial rules, *Ensifer* has priority over *Sinorhizobium*. This new *Sinorhizobium* species had to be named as *Ensifer mexicanus* (Lloret *et al*., 2007) instead of *S. mexicanum*. In this work, we chose to use the former name *Sinorhizobium* as used in many recently published papers.

Sinorhizobium mexicanum was not the only symbiont found in *A. angustissima* nodules. The objective of this study was to characterize the other symbionts of *A. angustissima* in Mexico (including a novel *sinorhizobial* species), their interstrain nodulation competitiveness and their plant growth promotion in *A. angustissima*.

Materials and methods

Sample sites

Isolates used in this study were obtained from root nodules of *A. angustissima* collected from the Sumidero Canyon National Park in Chiapas, Mexico, and from nodulated trap plants grown in pots containing soils collected from an ecological reserve area in Sierra de Huautla in Morelos, Mexico (Supporting Information, Fig. S1). The Chiapas and Morelos collecting sites were c. 1000 km apart and both are characterized by deciduous forest vegetation (Lloret *et al*., 2007).

Bacterial strains

The *A. angustissima* strains analyzed in this study are listed in Table 1. Bacteria were obtained as described by Vincent (1970) using peptone yeast agar (PY) as growth medium (Toledo *et al*., 2003). Plates were incubated aerobically at 28 °C for 3 days and the isolates were purified by streaking single colonies on fresh PY plates. Single colony formation and morphology were observed in yeast extract mannitol (YEM) and PY media at 28 °C as reported by Toledo *et al*. (2003). The acid/alkaline reaction was verified by spreading the inoculum on YEM plates (pH 7.0) containing 25 μg mL⁻¹ bromothymol blue (Vincent, 1970).

| Table 1. Bacteria isolated from nodules of *Acaciella angustissima* |
|-----------------------------|----------------|
| Species and strains* | Geographical origin |
| *Agrobacterium tumefaciens* |
I TTG 52	Chiapas, Mexico
I TTG 56	Chiapas, Mexico
I TTG 59	Chiapas, Mexico
I TTG 510	Chiapas, Mexico
CFN ESH11	Morelos, Mexico
CFN ESH16	Morelos, Mexico
Mesorhizobium plurifarium	
CFN ESH5	Morelos, Mexico
CFN ESH18	Morelos, Mexico
CFN ESH19	Morelos, Mexico
CFN ESH22	Morelos, Mexico
CFN ESH26	Morelos, Mexico
Rhizobium sp. (R. gallicum related)	
I TTG 511	Chiapas, Mexico
Rhizobium sp. (R. leguminosarum/R. etli related)	
CFN ESH6	Morelos, Mexico
CFN ESH7	Morelos, Mexico
CFN ESH34	Morelos, Mexico
Rhizobium tropici	
CFN ESH9	Morelos, Mexico
CFN ESH10	Morelos, Mexico
CFN ESH23	Morelos, Mexico
CFN ESH25	Morelos, Mexico
CFN ESH27	Morelos, Mexico
CFN ESH29	Morelos, Mexico
I TTG 57	Chiapas, Mexico
Sinorhizobium sp. (S. americanum related)	
I TTG 58	Chiapas, Mexico
Sinorhizobium chiapanecum sp. nov.	
I TTG R11	Chiapas, Mexico
I TTG S1	Chiapas, Mexico
I TTG S568	Chiapas, Mexico
I TTG S701	Chiapas, Mexico
I TTG S71	Chiapas, Mexico
Sinorhizobium mexicanum	
CFN ESH1	Morelos, Mexico
CFN ESH2	Morelos, Mexico
CFN ESH3	Morelos, Mexico
CFN ESH4	Morelos, Mexico
I TTG R4	Chiapas, Mexico
I TTG R71	Chiapas, Mexico
I TTG S3	Chiapas, Mexico
I TTG S4	Chiapas, Mexico
I TTG S5	Chiapas, Mexico
I TTG S64	Chiapas, Mexico

Identity according to the sequence analysis of the chromosomal gene rpoB.

Nodulation tests

Acaciella angustissima seeds were scarified with H₂SO₄ for 15 min and surface sterilized with 1% (v/v) sodium hypochlorite for 10 min. Treated seeds were germinated on 0.8% agar–water plates and then placed in glass tubes filled with vermiculite moistened with Fahraeus medium (Fahraeus, 2008).
DNA isolation, genomic fingerprinting and DNA–DNA hybridization

Isolates were grown overnight in 2 mL PY. Total DNA was isolated and purified using the Genomic PrepTM kit (Amer sham). Enterobacterial repetitive intergenic consensus (ERIC) genomic fingerprinting was obtained by PCR using primers ERIC1R and ERIC2 as described by Versalovic et al. (1994). The fingerprints were visually analyzed after resolution of PCR products using electrophoresis in 1.5% agarose gels loaded with half the volume of the 25 µL PCR reaction. ERIC fingerprinting was used only to confirm that the isolates analyzed were not clones or siblings (Ormeno-Orrillo et al., 2006; Lloret et al., 2007). Strains showing different patterns were considered for sequencing and phylogenetic analysis. The DNA relatedness was determined using DNA–DNA hybridization experiments using 32P-labelled DNA of the newly proposed species (described below) Sinorhizobium chiananeum ITTG S70T as a probe. A filter hybridization method described previously was used (Martínez-Romero et al., 1991). The amounts of DNA were standardized using integrating gel fluorescence with the Eagle Eye II system (Stratagene). ANOVA and t-tests were performed to compare the percentage of DNA–DNA hybridization values among species and within species using angular transformation of percentage data (Knudson & Curtis, 1947; Martínez-Romero & Rosenblueth, 1990).

PCR amplification and gene sequencing

An internal fragment of the chromosomal genes gyrA, nolR, recA, rpoB and 16S rRNA gene (rrs), and the symbiotic genes nifH and nodA were amplified using standard PCRs. Primers and annealing temperatures used for gyrA, nolR, recA, rrs, rpoB and nifH genes were performed as described in Lloret et al. (2007) and by Haukka et al. (1998) for nodA. Before sequencing, the amplification mixture was purified using the PCR product purification system of Roche™. The sequences generated were deposited in the GenBank public database and their accession numbers were included in the phylogenetic trees.

Phylogenetic analysis

The protein-coding sequences were aligned using the program CLUSTAL W (Thompson et al., 1994) and then aligned based on codons using DAMBE v4.2.13 (Xia & Xie, 2001). The alignments were edited with MOLEDIT v5 (Hall, 1999). The best-fit evolutive models for each set of sequences were selected by the AKAIKE information criterion implemented in the MODELLER v3.06 (Posada & Buckley, 2004). rpoB gene sequences were analyzed using the TrN+1+Γ model of evolution based on an alignment of 642 nucleotides from positions 3262 to 3903; nodA using the GTR+1+Γ model with 522 nucleotides from positions 67 to 588; nifH with the TrN+1+Γ model of evolution based on 474 nucleotides from positions 313 to 787; and for the gyrA, recA and nolR genes the model of evolution and alignment positions were as reported by Lloret et al. (2007). These positions were based on the rpoB, nolR, nodA and nifH genes of Sinorhizobium meliloti 1021 and recA and gyrA of Agrobacterium tumefaciens C58. The phylogenetic trees were inferred with the maximum-likelihood (ML) method using the program PHYML v2.4.4 (Guindon & Gascuel, 2003) considering the θ-parameter for the Gamma distribution and the proportion of invariable sites estimated by the program. For the inference of the rrs phylogenetic tree, Sinorhizobium type strains were analyzed by the neighbor-joining method (NJ) (Saitou & Nei, 1987) implemented in MEGA v3.1 (Kumar et al., 2004) using the TrN+G model with the θ-parameter for the Gamma distribution estimated with MODELLER. The rrs phylogenetic tree was constructed using an alignment of 1417 nucleotides from positions 28 to 1444 with respect to the rrs gene of S. meliloti 1021. The topology robustness was estimated by a nonparametric bootstrap test using 100 pseudoreplicates for ML and 1000 for NJ.

Competition assays

The nodulation capacity was evaluated in competition assays of S. mexicanum ITTG R7T or S. chiananeum ITTG S70T against one randomly selected strain from each of the bacterial groups identified previously by rpoB gene sequence analysis. Twenty-one treatments resulted from the 12 combination mixtures plus each of the eight single strains as positive nodulation controls, and the negative control (uninoculated plants). Four replicates of inoculated plants were used per treatment. The plant growth conditions were as mentioned above for nodulation tests. The competitiveness was evaluated by the number of nodules obtained from each member of the mixture with respect to the total number of nodules.
nODULES. The identity of the reisolated strains was determined by plasmid patterns using the Eckhardt procedure (Eckhardt, 1978). The variation in nodule number was analyzed statistically by ANOVA using SAS software (SAS Institute Inc., 1989), followed by comparison of means by Tukey’s test ($P < 0.05$).

Plant inoculation assays

The strains with the best nodulation capacity and high competitiveness were used as inoculants. Germinated seedlings of *A. angustissima* were planted in vermiculite tubes with Fahraeus medium (Fahraeus, 1957) and inoculated as described above. Plants without inoculum, with or without 30 mg KNO$_3$-N per plant, served as control (Hungria et al., 2001). Six replicate tubes were used per treatment and these were arranged in a completely randomized design. The plants were grown in a climate chamber at 28°C for 90 days. At harvest, the shoot height, shoot dry weight, root dry weight and nodule number were determined, and total shoot nitrogen was assayed using the Kjeldahl method (Bremner & Mulvaney, 1982). The effect of the inoculation was analyzed statistically by ANOVA, followed by comparison of means using Tukey’s test ($P < 0.05$).

Results

Strain identity, diversity and phylogeny

A total of 94 strains were obtained from *A. angustissima* root nodules in Chiapas and Morelos that were confirmed to form nodules in the original host. Thirty-eight strains that represented the different ERIC-PCR electrophoretic patterns were used for PCR amplification and sequencing. The taxonomic position of the selected strains from *A. angustissima* was determined according to the phylogenetic analysis performed with partial sequences of the chromosomal gene *rpoB*, which encodes the β-subunit of RNA polymerase (Fig. 1).

The largest percentage of isolates found at both sites corresponded to *S. mexicanum* (26.3%) while the lowest corresponded to bacteria related to *S. americanum* and *Rhizobium gallicum*, both with 2.6%. A new lineage related to *S. mexicanum* and *Sinorhizobium terangae* was isolated only in Chiapas while only the strains related to *Rhizobium etli* and *Mesorhizobium plurifarium* were found in Morelos. The largest percentage of the isolates in Chiapas corresponded to *S. mexicanum* (33.3%) and in Morelos *Rhizobium tropici* (30.0%).

The *Sinorhizobium* sp. strain ITTG S70T *rrs* gene was found to be different from all sequences available in the GenBank database and had 99% identity to its closest relative *S. mexicanum*. The phylogenetic tree with the sequences of *rrs* genes (Fig. 2) and the phylogenetic trees with *rpoB* (Fig. 1), *gyrA*, *nolR* and *recA* genes (Fig. 3) were constructed including all of the type strains of *Sinorhizobium* species. The *recA* gene has been used previously in rhizobial phylogenetic studies (Gaunt et al., 2001; Vinuesa et al., 2005); *gyrA*, *recA*, *nolR* and *rpoB* were used previously to describe a new *Sinorhizobium* species (Lloret et al., 2007). *gyrA* encodes the alpha-subunit of DNA gyrase, *nolR* encodes a transcriptional regulator (Chen et al., 2000, 2005) and *recA* encodes the recombination protein RecA. In all phylogenetic trees, the position of strain ITTG S70T as a different lineage within the *Sinorhizobium* genus was well supported. Strains ITTG R11, ITTG S68 and ITTG S71 had sequences identical to those from ITTG S70T that was chosen to represent this new lineage.

Total DNA from the strain ITTG S70T showed low hybridization with the strains belonging to *S. mexicanum* (<42%) and *S. terangae* (<56%), while hybridization to three strains from its own group, ITTG S68, ITTG S71 and ITTG R11 (>74%), was higher than the limit proposed for new species (70%, Stackebrandt et al., 2002) (Table S2). DNA–DNA hybridization differences between *S. chiapanecum* strains and the closest species, *S. mexicanum* and *S. terangae*, were statistically significant with $P < 0.05$ and $P < 0.10$, respectively. It remains to be established whether similar plasmids in *S. terangae* and *S. chiapanecum* account for part of the DNA hybridization obtained. Description of species should be based on chromosomal and not plasmidic characteristics (Martínez-Romero & Jarvis, 1993). Also, phenotypic differences distinguishing *S. chiapanecum*, *S. terangae* and *S. mexicanum* are presented as Table S1.

The DNA–DNA hybridization, the phylogenetic position and phenotypic characteristics support that this *Sinorhizobium* lineage corresponds to a new species within the genus *Sinorhizobium*, and the proposed name is *S. chiapanecum* because it was isolated in Chiapas.

The *nifH* and *nodA* phylogenetic trees are shown in Figs 4 and 5, respectively. Symbiotic genes from the different rhizobia isolated from *A. angustissima* had affiliations with the corresponding genes from species in the genera *Rhizobium, Sinorhizobium* and *Mesorhizobium*. The phylogenies of these two symbiotic genes were incongruent with the phylogeny obtained with the chromosomal gene *rpoB*. The *nodA* sequences from *Rhizobium* sp. strains CFN ESH6 and CFN ESH34 (related to *R. etli*) isolated from *A. angustissima* were similar to the *nodA* gene of *Rhizobium giardinii* H152T isolated from common bean in France, but with the *nifH* gene analysis these strains were found to be related to the *nifH* gene of *R. etli* bv. *mimosae* Mim2 isolated from *Mimosa affinis* in Mexico. The *nodA* and *nifH* genes of *R. tropici* strains CFN ESH23, CFN ESH25, CFN ESH10, CFN ESH29 and CFN ESH9 were related but not identical to *nodA* and *nifH* gene sequences from *R. tropici* CFN299 isolated from *P. vulgaris* in Mexico. The symbiotic gene sequences of *S. chiapanecum* and *S. mexicanum* isolated...
from *A. angustissima* clustered together and were related to a different and well-supported group that included mainly sequences from *Sinorhizobium* isolated from American legumes, among them, the strains *Sinorhizobium* sp. BR827 and BR816 from *L. leucocephala* in Brazil and *S. americanum* CFN EI156 isolated from *Acacia acutifolia* in Mexico. The nodA and nifH gene sequences from *S. terangae*, the closest relative of *S. mexicanum* according to *rpoB* gene sequences,
grouped in a far distant cluster. *Mesorhizobium plurifarium* isolated from *A. angustissima* has nodA and nifH gene sequences similar to several *Mesorhizobium* species isolated from American and African hosts, mainly with the strains *Mesorhizobium* sp. DWO366 isolated from *Acacia polyaquanta* in Kenya and *Mesorhizobium* sp. INPA78b isolated from *L. leucocephala* in Brazil.

Nodulation and nodule occupancy in competition assays

Nodule occupancy evaluated from interstrain competition assays is shown in Table 2. The strains ITTG R7, ITTG S7, CFN ERS34, CFN ERS5 and ITTG S7 showed the best nodulation capacity and high competitiveness.
Sinorhizobium mexicanum strain ITTG R7T always had a greater occupancy of the nodules than the respective competing strain, ranging from 65% when combined with Sinorhizobium sp. ITTG S8 to 100% when combined with Rhizobium sp. ITTG S11. The S. chiapanecum strain ITTG S70T did not always have a greater occupancy of the nodules than the competing strain, although this strain and S. mexicanum ITTG R7 were highly effective in inoculation assays with A. angustissima (Table 3). Mesorhizobium plurifarium CFN ESH5 and Rhizobium sp. CFN ESH34 had a greater occupancy than ITTG S70T (67% and 77%), respectively. Significantly lower numbers of nodules were obtained with M. plurifarium CFN ESH5, R. tropici ITTG S7, Sinorhizobium sp. ITTG S8 (related to S. americanum), Rhizobium sp. ITTG S11 (related to R. gallicicum) and A. tumefaciens ITTG S2, with the latter showing the lowest number of nodules and very low nitrogen fixation. All reisolated strains showed colony morphology and plasmid patterns identical to the original inoculated strains (data not shown).

Plant growth, nodulation and nitrogen fixation of A. angustissima inoculated with selected strains

The inoculation using the selected rhizobia strains had a significant effect on the growth of A. angustissima (Table 3). Rhizobium sp. CFN ESH34, S. mexicanum ITTG R7T and S. chiapanecum ITTG S70T had a positive effect on shoot height, shoot dry weight and root dry weight compared with the uninoculated control plants and those with added KNO\textsubscript{3}. Plants inoculated with these strains were on average 8.3 cm taller and weighted 109 mg more than noninoculated plants 90 days postinoculation. The number of nodules obtained with S. mexicanum ITTG R7T and S. chiapanecum ITTG S70T was significantly different ($P < 0.05$) compared with the rest of the treatments. None of the noninoculated plants formed nodules. The plants inoculated with ITTG R7T showed a significantly higher total shoot nitrogen compared with other treatments ($P < 0.05$). ITTG R7T was found to be the most effective strain in terms of plant growth promotion as indicated by total plant nitrogen content.

Characteristics of S. chiapanecum sp. nov.

Sinorhizobium chiapanecum (chia,pa,ne’cum. N.L. neut. adj. chiapanecum of Chiapas, the name of a state in Mexico where the bacterium was isolated). Gram-negative, aerobic, motile and nonspore-forming rods. Strains are fast growing and acid producers in YEM medium. The generation time for ITTG S70T in YEM broth is 2.33 h at 28 °C. Colonies on PY or YEM are circular, pearly, slightly translucent and
produce copious amounts of polysaccharides. Colonies are normally more than 2–4 mm in diameter within 2 days of incubation at 28°C. The strains are resistant to nalidixic acid (120 μg mL⁻¹) but not to carbenicillin (20 μg mL⁻¹), ampicillin (10 μg mL⁻¹) or chloramphenicol (10 μg mL⁻¹). They grow in media containing 0.5%, 1.0% and 2.0% NaCl but not with 3.0% NaCl. Total DNA from strain ITTG S70T showed low hybridization values with the strains belonging to Sinorhizobium chiapanecum ITTG S70 (EF463930), S. medicae A321 (DQ411937), S. meliloti USDA1002T (AJ294381), S. arabis HMBI1552T (DQ411946), S. morelense Lc04 (EF198422), S. adhaerens ATCC33499 (EF027947), S. terangae ORS1009T (DQ411944), S. mexicanum ITTG R7T (DQ411951), S. xinjiangense CCBAU1110T (DQ411944), S. fredii USDA205T (AJ294379), S. arboris HMBI1552T (DQ411947), S. saheli ORS600 (DQ411938), S. kostiense HMBI1489T (DQ411943), S. terangae ORS1009T (DQ411943), S. arboris (DQ411925), S. terangae ORS1009T (DQ411943), S. saheli ORS600 (DQ411938), S. kostiense HMBI1489T (DQ411943).
Fig. 4. Phylogenetic tree estimated using the ML method with partial sequences of the symbiotic protein encoding\textit{nifH} gene using the \textsc{phyml} program. The alignment length was 474 nucleotides from positions 313 to 786 of the \textit{nifH} gene with respect to the \textit{nifH} gene encoded on the\textit{psymA} of \textit{Sinorhizobium melloti} 1021. Only bootstrap values $\geq 50\%$ are shown. Type strains are indicated by superscript\text{T}. The \textit{Acacia} angustissima strains are shown in bold. The accession numbers for the sequences are indicated within parentheses. Those generated in this work are shown in bold.

The tree was drawn using the \textsc{figtree} software.

\section*{to S. terangae ORS10091 (< 48\%) and with S. mexicanum ITTGR72 (< 33\%). This species can be differentiated from other described \textit{Sinorhizobium} species on the basis of the phylogenetic analysis of the chromosomal genes \textit{rrs}, \textit{gyrA}, \textit{recA}, \textit{rpoB} and \textit{nolR}. The type strain ITTG S701 was isolated from nodules of \textit{A. angustissima} collected in the Sumidero Canyon National Park, Chiapas, Mexico. \textit{Sinorhizobium chiapanecum} ITTG S702 nodulated and fixed nitrogen in a. \textit{angustissima}, \textit{Acacia cochlbiancantha}, \textit{Acacia farnesiana}, \textit{Acacia pennatula}, \textit{Dolichos lablab}, \textit{P. vulgaris}, \textit{L. leucocephala} and \textit{Lysiloma acapulcensis} and tolerated salinity and acidity (data not shown). ITTG S702 has characteristics of the species.}
Fig. 5. Phylogenetic tree estimated using the ML method with partial sequences of the symbiotic protein encoding the nodA gene using the PHYML program. The alignment length was 522 nucleotides from positions 67 to 588 of the nodA gene with respect to the nodA encoded on the pSymA of Sinorhizobium meliloti 1021. Only bootstrap values ≥50% are shown. Type strains are indicated by superscript T. The Acacia angustissima strains are shown in bold. The accession numbers for the sequences are indicated within parentheses. Those generated in this work are shown in bold. Host and geographical origin are in parentheses.
Discussion

Tropical forests in Mexico harbor many endemic plants and a high richness of species (Rzedowsky, 1978). Forests have abiotic and biotic characteristics that allow such diversity to exist. Plant speciation in Mexico seems to be driven by geographical isolation due to the complex topography of the country. The tropics have a large diversity of rhizobia (Wang et al., 1999; Mohamed et al., 2000; Räsänen et al., 2001; Toledo et al., 2003; Wolde-Meskel et al., 2004). Sinorhizobia seem to have radiated in Mexico in relation to the geographical isolation and diversity of climates, conditions and plants (Toledo et al., 2003; Lloret et al., 2007). The sinorhizobia-nodulating legumes in Africa and in the Americas are considered to have had a long period of diverging evolution (Haukka et al., 1998; Toledo et al., 2003; Lloret et al., 2007). Our results showed that A. angustissima was preferentially nodulated by closely related members of the Alphaproteobacteria, especially sinorhizobia. Differences in symbiotic efficiency and competitiveness were found among the isolates, with S. mexicanum and S. chiapanecum strains being highly effective symbionts and good competitors. In

Table 2. Nodule occupancy by strains of Sinorhizobium mexicanum ITTG R7 and Sinorhizobium chiapanecum ITTG S70 and the coinoculated bacteria in competition assays in Acaciella angustissima

Treatments	Nodule number (per plant) (± SD)*	Nodule occupancy (%) by	
		First strain of the combination	Second strain of the combination
Uninoculated	0	61 (18)	39
A. tumefaciens ITTG S2	4.5 (± 1.3)t	33 (18)	67
M. plurifarium CFN ESH5	4.25 (± 1.7)t	82 (17)	18
Rhizobium sp. ITTG S11	3.25 (± 1.9)t	23 (13)	77
Rhizobium sp. CFN ESH34	2.5 (± 1.3)t	80 (10)	20
R. tropici ITTG S7	3.75 (± 2.1)t	67 (15)	33
Sinorhizobium sp. CFN ESH34	6.0 (± 1.4)	75 (24)	25
S. mexicanum ITTG R7+A. tumefaciens ITTG S2	8.75 (± 5.1)	89 (35)	11
S. mexicanum ITTG R7+M. plurifarium CFN ESH5	5.5 (± 1.9)	100 (22)	0
S. mexicanum ITTG R7+Rhizobium sp. ITTG S11	12.0 (± 1.4)	71 (48)	29
S. mexicanum ITTG R7+Rhizobium sp. CFN ESH34	3.75 (± 1.3)	67 (15)	33
S. mexicanum ITTG R7+Sinorhizobium sp. ITTG S8	6.5 (± 3.4)	65 (26)	35

*Mean values of four replicates. The means followed by the same letter are not significantly different (P < 0.05).

Table 3. Effect of inoculation by the strains with high competitiveness and nodulation capacity on the growth, nodulation and nitrogen fixation of Acaciella angustissima

Strains	Shoot height (cm)	Shoot dry weight (mg)	Root dry weight (mg)	Nodule number	Total shoot N (mg per plant)
Uninoculated	15.0 cm*	76.1 b	46.3 b	0 b	30.4 c
M. plurifarium CFN ESH5	16.5 bc	95.0 b	40.3 a	2.1 b	39.9 c
Rhizobium sp. CFN ESH34	20.1 b	101.0 b	44.9 a	2.3 b	51.5 c
R. tropici ITTG S7	17.0 bc	96.4 b	42.9 a	2.3 b	44.3 c
S. chiapanecum ITTG S70	24.8 a	112.9 a	44.0 a	5.3 a	101.6 b
S. mexicanum ITTG R7	25.1 a	134.7 a	52.6 a	5.8 a	158.9 a
KNO3-N (30 mg per plant)	15.3 c	56.1 c	25.3 b	0 b	22.4 c

*Mean values of six replicates. The means followed by the same letter are not significantly different (P < 0.05).
contrast to acacias, no bradyrhizobia or Betaproteobacteria strains were found nodulating this legume. *Acaciaella angustissima* was among the legume hosts of Latin American origin that formed nitrogen-fixing nodules with the African sinorhizobial strains *Sinorhizobium arboris* HAMBI 1552, *Sinorhizobium kostienii* 1489 and *S. terangae* bv. *acaciae* ORS 1058 (Rásänen et al., 2001). Tropical legumes seem to have a mild specificity when associating with nodulating bacteria (Moreira et al., 1998), although under natural conditions predominant rhizobial species may be preferentially encountered in promiscuous plants (Bala & Giller, 2001; Bala et al., 2003; Martínez-Romero, 2003) as shown here.

Mesorhizobium plurifarium strains originally isolated from *Acacia senegal* (de Lajudie et al., 1998) encompass a set of diverging strains. In this study, *M. plurifarium* strains were found in *A. angustissima* only in Morelos. In Mexico, *M. plurifarium* were found nodulating *Sesbania (Papilionoideae)* trees (Wang et al., 1999) and *Leucacephala* plants grown in Morelos soils. *Acaciaella and Leucaena* belong to the Mimosoideae subfamily of the Leguminosae. Plant traps with soils from Morelos were used to collect the bacteria and it has been shown that by doing so a larger diversity of bacteria may be obtained nodulating a single legume (Hungria et al., 2001), and so we predicted that *Mesorhizobium* strains were the less adapted to nodulate *A. angustissima*. This turned out to be true.

We found seven isolates of *Rhizobium* similar to *R. tropici* type A, with *nod* genes more closely related (but not identical) to *nodA* of *R. tropici* than to other *nod* genes. *Rhizobium tropici* strains are common in tropical soils and nodulate some trees from the Mimosoideae subfamily of the *Leguminosae* such as *L. leucocephala* (Martínez-Romero et al., 1991) as well as *A. angustissima* (not shown).

Rhizobium etli is commonly isolated from *P. vulgaris* (Segovia et al., 1993), but has also been isolated from other shrub legumes in Kenya (Odee et al., 2002). Biovars that refer to host specificity have been described in *R. etli*. Nodulation of *Mimosoideae* plants such as *M. affinis* and *Leucaena* spp. is the characteristic of biovar mimosae (Wang et al., 1999). It is probable that the *Rhizobium* sp. strains (related to *R. etli* and *R. leguminosarum*) from *A. angustissima* correspond to biovar mimosae. Strain ITTG S11 was found to be related to *R. gallicum* (Amarger et al., 1997). *Rhizobium gallicum* bv. *gallicum* was isolated from common bean and can also nodulate *L. leucocephala* (Amarger et al., 1997; Silva et al., 2005) and other species from the Mimosoideae subfamily of the *Leguminosae* (Zurdo-Piñeiro et al., 2004) but it was not known that it nodulated *Acaciaella*.

In addition, species of *Agrobacterium* were also found in this study. Bala & Giller (2001) reported that the legumes *Acacia auriculiformis*, *L. leucocephala*, *Gliricidia sepium*, *P. vulgaris* and *Sesbania sesban* formed effective nodules with one or more isolates that resembled *A. tumefaciens*. *Agrobacterium* strains have been isolated previously from nodules of *Acacia mellifera*, *A. polycantha*, *Acacia nilotica* and *S. sesban* (Khubya et al., 1998; de Lajudie et al., 1999) and shrubs growing in the semi-arid and arid climates of northwestern China (Tan et al., 1999). Odee et al. (2002) indicated that agrobacteria were often found in association with root nodules as a co-occupant with rhizobia. The *Agrobacterium* strains described here were capable of forming nodules on *A. angustissima*, but the nitrogen fixation was very low. *Agrobacterium* sp. ITTG S2 (similar to *A. tumefaciens*) showed a low level of competitiveness when inoculated in competition assays. Recently, some *Agrobacterium* strains were found to be capable of forming tumors on plants as well as nodulating (Rivas et al., 2004). In additional experiments, we evaluated the pathogenicity of the strains ITTG S2, ITTG S6 and ITTG S10 (all similar to *A. tumefaciens*) on sunflower plants (*Helianthus annuus*) and found that these strains are not tumorigenic (not shown).

We showed that the phylogenies of the symbiotic genes were incongruent with the chromosomal genes as has been reported previously (Haukka et al., 1998; Wernegreen & Riley, 1999; Laguerre et al., 2001; Toledo et al., 2003; Lloret et al., 2007). Symbiotic genes on elements such as plasmids and symbiotic islands are prone to lateral gene transfer (Sullivan & Ronson, 1998; Ochman & Moran, 2001) and may be selected by hosts (Ueda et al., 1995; Haukka et al., 1998; Wernegreen & Riley, 1999), as observed here, because the two species *S. mexicanum* and *S. chiaipanecum* nodulating *Acaciaella* have the same *nod* genes. The three main groups described based on *nod* gene sequences (Haukka et al., 1998) corresponding to African and Latin–American sinorhizobia and some *Mesorhizobium* spp. were observed in the trees presented here with several more sequences included (Fig. 5). A large group was distinguished that corresponds to *nod* genes of symbionts with the capacity to nodulate many plants from the Mimosoideae subfamily of the *Leguminosae* (Fig. 5); it is worth noticing that within this group, *R. giardinii* and *R. gallicum* *nod* gene sequences were included.

Sinorhizobium sp. ITTG S8, a strain related to *S. americanum*, clustered in the *rpoB* tree with some American strains isolated from *L. leucocephala* in Mexico (Wang et al., 1999) and with strain BR816 (van Rhijn et al., 1994) from Brazil. This group constitutes a sister clade to *S. americanum* and could have been identified as belonging to the same species, but unpublished DNA–DNA hybridization results from our lab showed that BR816 was not a member of *S. americanum*. A new biovar has been proposed (mediterranense) (Mnasri et al., 2007) to account for sinorhizobia closely related to *Sinorhizobium fredii* and with specificity for *L. leucocephala* and *P. vulgaris*. This biovar includes strain BR816 and some other strains that, despite being closely related to *S. fredii*, do not form nodules on soybean. In
spite of the close relatedness of the symbiotic genes of bv. mediterraneum and S. americanum to those from S. mexicanum and S. chiapanecum, we consider that A. angustissima symbionts would not correspond to biovar mediterraneum because the isolates that we found to be closely related to biovar mediterraneum were not efficient to nodulate A. angustissima, comprised only 2.6% of the original isolates and were outcompeted by S. mexicanum or S. chiapanecum.

Within the enlarged set of sequence data presented here, we observed that the nodA gene sequence from Rhizobium huautlense (not reported previously) forms a clade with other Sinorhizobium species nodulating Sesbania (Fig. 5), indicating the strong specificity for Sesbania nodulation and evidencing lateral transfer of symbiotic genes between Rhizobium and Sinorhizobium. The genetic coherence among symbiotic and chromosomal genes has been considered to be characteristic of rhizobia nodulating wild legumes (Wernegreen & Riley, 1999), but S. chiapanecum and S. mexicanum as well as R. huautlense and sinorhizobia from biovar sesbaniae, all from noncultivated hosts, do not follow this observation and show evidence of horizontal transfer of symbiotic genes.

Acknowledgements

We thank Posgrado de Ciencias Biologicas-UNAM and CONAcYT for a fellowship to R.R.-R. We also thank Aryana Chávez and Paola Espinosa for field work at the Sumidero Canyon National Park in Chiapas, Iovone Toledo, M.A. Rogel and J.C. Martínez-Romero for their excellent technical assistance or sampling field work at the Sierra de Huautla, Morelos. We thank W.X. Chen, P. de Lajudie, E.T. Wang and K. Lindström for providing bacterial strains. We also wish to thank Lourdes Rico for her valuable contribution in the reclassification of the Acaciella genus. We thank Michael Dunn for reading this manuscript. Financial support was from DGAPA IN201106-3.

Authors’ contribution

R.R.-R. and L.L. contributed equally to this work.

Statement

Reuse of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

References

Amarger N, Macheret V & Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov. from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47: 996–1006.

Bala A & Giller KE (2001) Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytol 149: 495–507.

Bala A, Murphy P & Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12: 917–929.

Bremner JM & Mulvaney CS (1982) Nitrogen-total: methods of soil and plant analysis. J Am Soc Agron 9: 595–624.

Chen H, Higgins J, Kondorosi E, Kondorosi A, Djordjevic MA, Weinman JJ & Rolfe BG (2000) Identification of nolR-regulated proteins in Sinorhizobium meliloti using proteome analysis. Electrophoresis 21: 3823–3832.

Chen H, Gao K, Kondorosi E, Kondorosi A & Rolfe BG (2005) Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. Mol Plant–Microbe Interact 18: 1340–1352.

Chen WM, James EK, Prescott AR, Klerans M & Sprent JI (2003) Nodulation of Mimoso spp. by the β-Proteobacterium Ralstonia taiwanensis. Mol Plant–Microbe Interact 16: 1051–1061.

De Lajudie P, Willems A, Nick G et al. (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48: 386–382.

De Lajudie P, Willems A, Nick G et al. (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22: 119–132.

Eckhardt T (1978) A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid 1: 584–585.

Elliott GN, Chen WM, Chou JH et al. (2007a) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimoso spp. and fixes nitrogen ex planta. New Phytol 173: 168–180.

Elliott GN, Chen WM, Bontemps C, Chou JH, Young JPW, Sprent JI & James EK (2007b) Nodulation of Cyclopiya spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100: 1403–1411.

Faheaeus G (1957) The infection of clover root hair by nodule bacteria studied by a single glass slide technique. J Gen Microbiol 16: 374–381.

Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA & Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51: 2037–2048.

Grillasca MMA (2007) Laca Chiapaneca: Ensayo de una singular aventura. Consejo Estatal para las Culturas y las Artes de Chiapas, 127 p. CONECULTA, Mexico.

Guindon S & Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

Hall TA (1999) Bioedit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.

Haukka K, Lindström K & Young JPW (1998) Tree phylogenetic groups of nodA and nifH genes in Sinorhizobium and
Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. *Appl Environ Microbiol* 64: 419–426.

Hungria MA, De O, Chueire LM, Coca RG & Megias M (2001) Preliminary characterization of fast growing rhizobial strains isolated from soybean nodules in Brazil. *Soil Biol Biochem* 33: 1349–1361.

Khbaya B, Neyra M, Normand P, Zerhari K & Filali-Matouf A (1998) Diversity of rhizobia isolated from a Tunisian oasis. *Int J Syst Bacteriol* 48: 750–3.

Kumar S, Tamura K & Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. *Brief Bioinform* 5: 150–163.

Laugueur G, Nour SM, Macheret V, Sanjuan J, Drouin P & Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among *Phaseolus vulgaris* symbionts. *Microbiology* 147: 981–993.

Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernandez MA & Martínez-Romero E (2007) *Ensifer mexicanus* sp. nov. a new species nodulating *Acacia angustissima* (Mill.) Kuntze in Mexico. *Syst Appl Microbiol* 30: 280–290.

Martínez-Romero E (2003) Diversity of *Rhizobium-Phaseolus* symbiosis: overview and perspectives. *Plant Soil* 252: 11–23.

Martínez-Romero E & Rosenblueth M (1990) Increased bean root-nodule symbiosis with the aquatic legume *Nelumbo nucifera*. *J Am Stat Assoc* 85: 1271–1275.

Matas S (2006) *Bradyrhizobium betae* sp. nov., isolated from roots of *Beta vulgaris* affected by tumour-like deformations. *Int J Syst Evol Microbiol* 56: 2384–2388.

Martínez-Romero E & Jarvis BDW (1993) International committee on systematic bacteriology, subcommittee of the taxonomy of *Agrobacterium* and *Rhizobium*. *Int J Syst Bacteriol* 43: 622.

Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P & Pardo MA (1991) *Rhizobium tropici*, a novel species nodulating *Phaseolus vulgaris* L. beans and *Leucaena* sp. trees. *Int J Syst Bacteriol* 41: 417–426.

Mnarsi B, Mrabet M, Laugueur G, Aouani ME & Mhamdi R (2007) Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N₂-fixation with *Phaseolus vulgaris* constitute a novel biovar (bv. *mediterranea*) of *Sinorhizobium meliloti*. *Arch Microbiol* 187: 79–85.

Mohamed SH, Smouni A, Neyra M, Kharchaf D & Filali-Maltouf A (2000) Phenotypic characteristics of root-nodulating bacteria isolated from *Acacia* spp. grown in Libya. *Plant Soil* 224: 171–183.

Moreira FMS, Haukka K & Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. *Mol Ecol* 7: 889–895.

Ochman H & Moran N (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. *Science* 292: 1096–1098.

Odee DW, Haukka K, McInroy SG, Sprent JI, Sutherland JM & Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. *Soil Biol Biochem* 34: 801–811.

Ormeño-Orrillo E, Vinuesa P, Zúñiga-Dávila D & Martínez-Romero E (2006) Molecular diversity of native bradyrhizobia isolated from lima bean (*Phaseolus lunatus* L.) in Peru. *Syst Appl Microbiol* 29: 253–262.

Posada D & Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of AIC and Bayesian approaches over likelihood ratio tests. *Syst Biol* 53: 793–808.

Räsänen AL, Sprent JI & Lindström K (2001) Symbiotic properties of sinorhizobia isolated from *Acacia* and *Prosepis* nodules in Sudan and Senegal. *Plant Soil* 235: 193–210.

Rico Arce ML & Baechen S (2006) A taxonomic revision of *Acacia* (Leguminosae, Mimosoideae). *Anales del Jardín Botánico de Madrid* 63: 189–244.

Rincón-Rosales R & Gutiérrez-Miceli FA (2008) Características biológicas de *Acacia angustissima* (Müll.) Britton, Rose, en su hábitat natural y evaluación de su potencial cortical en Chiapas, México. *Agrociencia* 42: 129–137.

Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB & Martínez-Molina E (2002) A new species of *Devosia* that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume *Neptunia natans* (L.f.) Druce. *Appl Environ Microb* 68: 5217–5222.

Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF, Martínez-Molina E, Gillis M & Velázquez E (2004) *Bradyrhizobium betae* sp. nov., isolated from roots of *Beta vulgaris* affected by tumour-like deformations. *Int J Syst Evol Microbiol* 54: 1271–1275.

Rzedowsky J (1978) *La vegetación de México*. Editorial Limusa, México, 432 p.

Saitou N & Nei M (1987) The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* 4: 406–425.

SAS Institute Inc. (1989) *SAS/STAT User’s Guide*. Version 6.04, 4th edn. SAS Institute Inc., Cary, NC.

Segovia L, Young JPW & Martínez-Romero E (1993) Reclassification of American *Rhzobium leguminosarum* biovar phaseoli type I strains as *Rhzobia etli* sp. nov. *Int J System Bacteriol* 43: 374–377.

Silva C, Vinuesa P, Eguiarte LE, Souza V & Martínez-Romero E (2005) Evolutionary genetics and biogeographic structure of *Rhzobium gallicum sensu lato*, a widely distributed bacterial symbiont of diverse legumes. *Mol Ecol* 14: 4033–4050.

Sprent JI (2001) Nodulation in Legumes. *Royal Botanic Gardens, Kew, London, UK.*

Stackebrandt E, Frederiksen W, Garrity GM et al. (2002) Report of the ad hoc committee for the re-evaluation of the species...
Sinorhizobium chiaianum and rhizobia in Acaciella nodules

117

definition in bacteriology. Int J Syst Evol Microbiol 52: 1043–1047.
Sullivan JT & Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci 95: 8985–8989.
Sy A, Giraud E, Jourand P et al. (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183: 214–220.
Tan ZY, Wang ET, Peng GX, Zhu ME, Martinez-Romero E & Chen WX (1999) Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int J Syst Bacteriol 49: 1457–1469.
Thompson JD, Higgins DG & Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
Toledo I, Lloret L & Martinez-Romero E (2003) Sinorhizobium americanum sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26: 54–64.
Ueda T, Suga Y, Yahiro N & Matsuguchi T (1995) Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol 177: 468–472.
Vandamme P & Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54: 2285–2289.
Van Rhijn P, Desair J, Vlassak K & Vanderleyden J (1994) The NodD proteins of Rhizobium sp. strain BR816 differ in their interactions with coinducers and in their activities for nodulation of different host plants. Appl Environ Microbiol 60: 3615–3623.
Versalovic J, Schneider M, Brujin JF & Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5: 25–40.
Vincent JM (1970) A Manual for the Practical Study of Root Nodule Bacteria. Blackwell Scientific, Oxford.
Vinuesa P, Leon-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Perez-Galdona R, Werner D & Martinez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55: 569–575.
Wang ET, Martinez-Romero JM & Martinez-Romero E (1999) Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol Ecol 8: 711–724.
Werngreen JJ & Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16: 98–113.
Williams ML & MacVean CM (1995) Ethnococcidology: use of the giant margarodid, Llaveia spp. (Homoptera: Coccoidea: Margaridae), by indigenous peoples of Mesoamerica in their culture, medicine and arts. Isr J Entomol 29: 147–148.
Wolke-Meskel E, Terefework Z, Lindström K & Frostegård A (2004) Rhizobia nodulating African Acacia spp. and Sesbania sesban trees in Southern Ethiopian soils are metabolically and genomically diverse. Soil Biol Biochem 36: 2013–2025.
Xia X & Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92: 371–373.
Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination “Sinorhizobium adhaerens” (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53: 2107–2110.
Young JWP & Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133: 87–94.
Zurdo-Piñeiro JL, Velázquez E, Lorite MJ, Brelles-Mariño G, Schröder EC, Bedmar EJ, Mateos PF & Martínez-Molina E (2004) Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst Appl Microbiol 4: 469–477.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Map of Mexico showing the location of field collection sites in Chiapas and Morelos.
Table S1. Phenotypic characteristics of Sinorhizobium chiaianum strain ITTG S70 and related reference strains.
Table S2. Levels of total DNA-DNA relatedness as percent of hybridization of Sinorhizobium chiaianum strain ITTG S70 isolated of A. angustissima with the S. mexicanum and S. terangae strains.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.