Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Risk of infection, hospitalisation, and death up to 9 months after a second dose of COVID-19 vaccine: a retrospective, total population cohort study in Sweden

Peter Nordström, Marcel Ballin, Anna Nordström

Summary

Background Vaccine effectiveness against COVID-19 beyond 6 months remains incompletely understood. We aimed to investigate the effectiveness of COVID-19 vaccination against the risk of infection, hospitalisation, and death during the first 9 months after vaccination for the total population of Sweden.

Methods This retrospective, total population cohort study was done using data from Swedish nationwide registers. The cohort comprised all individuals vaccinated with two doses of ChAdOx1 nCoV-19, mRNA-1273, or BNT162b2, and matched unvaccinated individuals, with data on vaccinations and infections updated until Oct 4, 2021. Two outcomes were evaluated. The first was SARS-CoV-2 infection of any severity from Jan 12 to Oct 4, 2021. The second was severe COVID-19, defined as hospitalisation for COVID-19 or all-cause 30-day mortality after confirmed infection, from March 15 to Sept 28, 2021.

Findings Between Dec 28, 2020, and Oct 4, 2021, 842 974 individuals were fully vaccinated (two doses), and were matched (1:1) to an equal number of unvaccinated individuals (total study cohort n=1 685 948). For the outcome SARS-CoV-2 infection of any severity, the vaccine effectiveness of BNT162b2 waned progressively over time, from 92% (95% CI 92 to 93; p<0.001) at 15–30 days, to 47% (39 to 55; p<0.001) at 121–180 days, and to 23% (–2 to 41; p=0.07) from day 211 onwards. Waning was slightly slower for mRNA-1273, with a vaccine effectiveness of 96% (94 to 97; p<0.001) at 15–30 days and 59% (18 to 79; p=0.012) from day 181 onwards. Waning was also slightly slower for heterologous ChAdOx1 nCoV-19 plus an mRNA vaccine, for which vaccine effectiveness was 89% (79 to 94; p<0.001) at 15–30 days and 66% (41 to 80; p<0.001) from day 121 onwards. By contrast, vaccine effectiveness for homologous ChAdOx1 nCoV-19 vaccine was 68% (52 to 79; p<0.001) at 15–30 days, with no detectable effectiveness from day 121 onwards (–19% to 98 to 28; p=0.49). For the outcome of severe COVID-19, vaccine effectiveness waned from 89% (82 to 93; p<0.001) at 15–30 days to 64% (44 to 77; p<0.001) from day 121 onwards. Overall, there was some evidence for lower vaccine effectiveness in men than in women and in older individuals than in younger individuals.

Interpretation We found progressively waning vaccine effectiveness against SARS-CoV-2 infection of any severity across all subgroups, but the rate of waning differed according to vaccine type. With respect to severe COVID-19, vaccine effectiveness seemed to be better maintained, although some waning became evident after 4 months. The results strengthen the evidence-based rationale for administration of a third vaccine dose as a booster.

Funding None.

Copyright © 2022 Elsevier Ltd. All rights reserved.

Introduction Randomised clinical trials have shown a high efficacy of the BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and ChAdOx1 nCoV-19 (Oxford-AstraZeneca) COVID-19 vaccines, and observational studies have estimated a high real-world effectiveness. However, reports on breakthrough infections and waning immunity have raised concerns regarding the duration of protection. With respect to severe COVID-19 outcomes such as hospitalisation or death, follow-ups of clinical trials showed that after 4 months the efficacy of BNT162b2 was about 84% and the efficacy of mRNA-1273 was about 92%, with similar results reported by the US Centers for Disease Control and Prevention. Observational studies from the USA and Qatar also showed that the effectiveness of BNT162b2 against hospitalisation and death persisted up to 6 months, whereas preliminary data from the UK indicate a slight waning, especially in older adults and of ChAdOx1 nCoV-19 compared with BNT162b2. In terms of ChAdOx1 nCoV-19, another observational study reported waning effectiveness against hospitalisation and death within 3 months in Brazil and Scotland. Altogether, although evidence suggests that vaccine effectiveness against severe COVID-19 is relatively well maintained, the data are inconsistent. Similarly, the duration of protection against SARS-CoV-2 infection of any severity is unclear. After 4–5 months of follow-up, the effectiveness of BNT162b2 has been estimated as greater than 80% in one study, around 50% in two
Articles

Research in context

Evidence before this study
We did not conduct a formal literature search; however, we searched standard databases such as PubMed for published studies and used Google to identify relevant preprint articles. Randomised clinical trials have shown high efficacy of COVID-19 vaccines against infection and severe illness. However, reports on breakthrough infections and waning immunity have raised concerns regarding the duration of vaccine protection, and whether additional doses are warranted. There is some evidence to suggest waning vaccine effectiveness against infection up to 6 months after vaccination, whereas protection against severe illness seems to be better maintained. However, the evidence is limited and inconsistent, in part due to evaluations of vaccines that might have different long-lasting effects, different age of study participants, and varying follow-up times.

Added value of this study
The findings from this study show there was a progressive waning vaccine effectiveness of BNT162b2 against SARS-CoV-2 infection of any severity, with no vaccine effectiveness detected from 7 months onwards. The vaccine effectiveness of mRNA-1273 and homologous ChAdOx1 nCoV-19 plus an mRNA vaccination waned slightly more slowly, whereas vaccine effectiveness of homologous ChAdOx1 nCoV-19 vaccination waned faster. For the outcome of COVID-19 hospitalisation or death, vaccine effectiveness was better maintained, although waned from 4 months onwards. Generally, there was some evidence for lower vaccine effectiveness in men than in women and in older individuals than in younger individuals.

Implications of all the available evidence
Our results suggest that vaccine protection against SARS-CoV-2 infections of any severity wanes progressively over time across all subgroups, but the rate of waning seems to be influenced by the type of vaccine. The protection against COVID-19 hospitalisation or death seems to be better maintained, although with some waning more than 4 months after vaccination. The results strengthen the evidence-based rationale for administration of a third vaccine dose as a booster to specific high-risk populations.

Other studies and preprints have found that vaccine effectiveness against COVID-19 has waned over time, with the rate of waning varying by age, sex, and type of vaccine.15,16,22–24 Other studies have shown that vaccine effectiveness against COVID-19 may wane more quickly than against other infections.25,26

Methods
Study design and participants
This retrospective, total population cohort study was done in Sweden. We included all individuals (n=3 640 421) vaccinated with at least one dose of any COVID-19 vaccine (ChAdOx1 nCoV-19, BNT162b2, or mRNA-1273) in Sweden until May 26, 2021, and all individuals with a documented SARS-CoV-2 infection until May 24, 2021 (n=1 331 989). Each individual was then matched (1:1) by Statistics Sweden, the national agency for statistics, to one randomly sampled individual from the total population of Sweden on birth year, sex, and municipality. In total, the cohort (vaccinated, those with documented infection, and matches) consisted of 5 833 003 individuals. This cohort was updated with respect to data on vaccinations and documented infections until Oct 4, 2021. From this cohort, each individual who was vaccinated with two doses, with no documented SARS-CoV-2 infection and alive within 14 days of vaccination, was matched (1:1) to one randomly sampled individual from the rest of the cohort on birth year and sex. Baseline for both individuals in each matched pair was set to the date of the second dose of vaccine in the vaccinated individual. Matched individuals were excluded if they received a first dose of vaccine, had a documented previous SARS-CoV-2 infection, or died within 14 days of baseline, whereby a new individual was searched from the remaining total cohort. This procedure was repeated five times. Data on individuals vaccinated against COVID-19 and data on documented SARS-CoV-2 infections were collected from the Swedish Vaccination Register and the SmiNet register, respectively, both of which are managed by the Public Health Agency of Sweden.25,26 All health-care providers in Sweden are obliged to report to these registers according to Swedish law, with 100% coverage of the total population.

In the main cohort, cases of SARS-CoV-2 infections of any severity were recorded from Jan 12 to Oct 4, 2021, and cases of severe COVID-19 were recorded from March 15 to Sept 28, 2021. From the main cohort, we also formed four subcohorts according to specific vaccine types...
Drug Register using Anatomic Therapeutic Chemical 2018 and later were obtained from the Prescribed and National Outpatient Register for specialist care, tasks. From the Swedish National Inpatient Register with shopping, cleaning, meal preparation, and similar domestic services provided to individuals (primarily older individuals) who live at home but need help. homemaker services were obtained from national registers managed by the Swedish National Board of Health and Welfare. Homemaker services include domestic services provided to individuals (primarily older individuals) who live at home but need help with shopping, cleaning, meal preparation, and similar tasks. From the Swedish National Inpatient Register and National Outpatient Register for specialist care, diagnoses from 1998 and 2001 and later were obtained using ICD-10 codes. Prescription medications from 2018 and later were obtained from the Prescribed Drug Register using Anatomic Therapeutic Chemical classification system codes. These three registers are complete for all specialist care and medications prescribed in Sweden for the years selected. The diagnoses and medications selected as covariates for this study were selected a priori based on the results from a previous nationwide study. Definitions of comorbidities are shown in the appendix (p 2).

Exposures and outcomes

The exposure variable was vaccination status (vaccinated with two doses vs unvaccinated). Vaccination status was defined according to each specific vaccine schedule, as well as a composite variable (any vaccine). There were two outcomes of the study. The first was SARS-CoV-2 infection of any severity until Oct 4, 2021. In 94.4% of cases, infections were confirmed using PCR and in 4.8% by sequencing, according to the SmiNet register. The second outcome was a composite endpoint of severe COVID-19, defined as inpatient hospitalisation with COVID-19 as the main diagnosis, and all-cause mortality within 30 days after confirmed SARS-CoV-2 infection. This outcome was collected until Sept 28, 2021. Data on patients admitted to hospital were collected from the Swedish National Inpatient Register using the International Classification of Diseases version 10 (ICD-10), code U07.1, and Statistics Sweden provided data on mortality. All outcomes were collected from more than 14 days after baseline.

Covariates

From Statistics Sweden, we obtained information on whether individuals were born in Sweden or not, birth year, birth month, and sex for all individuals. From Statistics Sweden, we also obtained individual-level data on highest education during 2019. Individual-level data regarding diagnoses, prescription medications, and homemaker services were obtained from national registers managed by the Swedish National Board of Health and Welfare. Homemaker services include domestic services provided to individuals (primarily older individuals) who live at home but need help with shopping, cleaning, meal preparation, and similar tasks. From the Swedish National Inpatient Register and National Outpatient Register for specialist care, diagnoses from 1998 and 2001 and later were obtained using ICD-10 codes. Prescription medications from 2018 and later were obtained from the Prescribed Drug Register using Anatomic Therapeutic Chemical classification system codes. These three registers are complete for all specialist care and medications prescribed in Sweden for the years selected. The diagnoses and medications selected as covariates for this study were selected a priori based on the results from a previous nationwide study. Definitions of comorbidities are shown in the appendix (p 2).

Statistical analysis

Hazards over time for the outcome SARS-CoV-2 infection of any severity, based on exposure status (vaccinated vs unvaccinated), are shown using proportional hazards models with 95% CIs and restricted cubic splines. To compare the risk of the outcomes based on exposure status (vaccinated vs unvaccinated), Cox regression was used to calculate hazard ratios (HRs). To adjust for the matched samples, 95% CIs were estimated using robust SEs by the variance-covariance matrix of the estimators procedure and robust option in Stata. Given that the test indicated that the proportional hazard assumption was violated (χ² = 3184.25; p<0.001) in the main analyses, the associations were evaluated in time intervals. The first model was adjusted for age and baseline date (date of second dose of vaccine) to adjust for variations in infection pressure during follow-up. The second model included the additional covariates sex, homemaker service (yes or no), education (six categories), whether the individual was born in Sweden or not, and eight diagnoses at baseline (yes or no). The HR was used to calculate vaccine effectiveness using the following formula: vaccine effectiveness=(1−HR)×100%. To investigate whether vaccine effectiveness was influenced by the prespecified covariates, interaction analyses were done, using product terms created by multiplying the variable coding for vaccination status at baseline (vaccinated vs unvaccinated) by each respective covariate, which were added to the fully adjusted Cox model. Given that the interaction terms were highly significant (p<0.001) for age, sex, homemaker service, and all diagnoses at baseline except asthma, vaccine effectiveness was also estimated in subgroups according to these covariates. Follow-up time in days was counted until date of confirmed outcome, date of first vaccination after baseline among unvaccinated individuals, death, or end of possible follow-up time (described earlier), whichever occurred first. All analyses were done in SPSS (version 27.0 for Mac), and Stata (version 16.1 for Mac). A two-tailed p value less than 0.05 or HR with 95% CIs not crossing one were considered significant.

Role of the funding source

There was no funding source for this study.

For the Swedish National Board of Health and Welfare see https://www.socialstyrelsen.se
Results
Between Dec 28, 2020, and Oct 4, 2021, 842 974 individuals were fully vaccinated (two doses), and were matched (1:1) to an equal number of unvaccinated individuals. Thus, the total study cohort comprised 842 974 pairs (n=1685 948; figure 1). The mean date for the second dose of vaccine in the vaccinated group according to each vaccine schedule is shown in table 1, together with baseline characteristics. Compared with unvaccinated individuals, vaccinated individuals more often had homemaker service, were more often born in Sweden, had more comorbidities, and had a higher level of education at baseline (p<0·001 for all; table 1). Similar differences were evident between vaccinated and unvaccinated individuals in the different vaccine subcohorts. SARS-CoV-2 variants sequenced in Sweden during the study period are shown in the appendix (p 2).

During a median follow-up of 108 days (IQR 69–145), a SARS-CoV-2 infection was confirmed in 27 918 individuals, of whom 6147 were vaccinated (4·9 infections per 100 000 person-days) and 21 771 were unvaccinated (3·1 infections per 100 000 person-days). The vaccine effectiveness associated with two doses of any vaccine peaked at 15–30 days (92% [95% CI 91 to 93]; p<0·001) and declined marginally at 31–60 days (89% [88 to 89]; p<0·001; table 2, figure 2). From thereon, the waning became more pronounced, and from day 211 onwards there was no remaining detectable vaccine effectiveness (23% [–2 to 41]; p=0·07).

The estimated vaccine effectiveness was influenced significantly by vaccine type, age, sex, homemaker service, and all diagnoses at baseline (pinteraction<0·001 for all), except asthma (pinteraction=0·86). At 61–120 days, vaccine effectiveness declined to 50% (95% CI 30 to 64; p<0·001) in individuals aged 80 years or older, and to 61% (47–72; p<0·001) in individuals with homemaker service (table 3). With respect to sex, there was no detectable vaccine effectiveness in men (17% [95% CI –13 to 40]; p=0·23) from day 181 onwards, whereas it remained in women (34% [22 to 45]; p<0·001).

With respect to vaccine type, vaccine effectiveness waned progressively for all vaccines during follow-up, but at different speeds (table 2). The vaccine effectiveness of BNT162b2 was 92% (95% CI 92 to 93; p<0·001) at 15–30 days, 47% (39 to 55; p<0·001) at 121–180 days, and 23% (–2 to 41; p=0·07) from day 211 onwards. Waning was slightly slower for mRNA-1273, with a vaccine effectiveness of 96% (94 to 97; p<0·001) at 15–30 days and 59% (18 to 79; p=0·012) from day 181 onwards. Waning was also slightly slower for heterologous ChAdOx1 nCoV-19 plus mRNA vaccine schedules, with a vaccine effectiveness of 89% (79 to 94; p<0·001) at 15–30 days and 66% (41 to 80; p<0·001) from day 121 onwards. By contrast, vaccine effectiveness for homologous ChAdOx1 nCoV-19 was 68% (52 to 79; p<0·001) at 15–30 days, with no detectable effectiveness from day 121 onwards (–19% [95% CI –98 to 28]; p=0·49).

During a median follow-up of 124 days (IQR 98–208), there were 277 cases of COVID-19 hospitalisation or death among vaccinated individuals (0·23 hospitalisations or deaths per 100 000 person-days) and 825 cases among unvaccinated individuals (1·20 hospitalisations or deaths per 100 000 person-days; appendix pp 3, 7). The vaccine effectiveness associated with two doses of any vaccine was 89% (95% CI 83 to 93; p<0·001) at 15–30 days, which declined to 64% (44 to 77; p<0·001) from day 121 onwards (appendix p 3).

In a sensitivity analysis using less strict matching criteria, a second matched cohort (1983 315 matched pairs; n=3 996 630) more than twice the size of the original cohort was created. Mean age of vaccinated individuals was 5 years higher in the second cohort than in the main cohort, whereas all other characteristics were similar between the cohorts (appendix p 3). In this larger cohort, the waning vaccine effectiveness was confirmed with respect to a SARS-CoV-2 infection of any severity (appendix p 4), including the different rate of waning for different vaccine schedules (appendix p 5). In addition, it was confirmed that vaccine effectiveness was better maintained against the outcome of severe COVID-19 (appendix p 6), than against SARS-CoV-2 infection of any severity (appendix p 4).
Total study cohort (any vaccine)	IN162b2 subcohort	mRNA-1273 subcohort	ChAdOx1 nCoV-19 subcohort	ChAdOx1 nCoV-19 and an mRNA vaccine subcohort
Vaccinated				
(n=842 974)				
Age, years	52.7 (37.0–67.5)	52.7 (37.0–67.5)	54.8 (39.2–68.5)	54.8 (39.1–68.5)
Male	342.6 (40.7%)	342.6 (40.7%)	263.866 (41.4%)	263.866 (41.4%)
Female	500.297 (59.3%)	500.297 (59.3%)	373.241 (58.6%)	373.241 (58.6%)
Homemaker service	87.004 (10.3%)	36.800 (1.6%)	81.704 (12.8%)	25.718 (40.0%)
Born in Sweden	703.666 (83.5%)	578.647 (68.6%)	533.572 (83.8%)	442.799 (69.5%)
Education				
Elementary school, <9 years	61.022 (7.2%)	79.375 (9.4%)	51.598 (8.1%)	63.360 (9.9%)
Elementary school, 9 years	81.45 (9.7%)	97.948 (11.6%)	61.814 (9.7%)	73.709 (11.6%)
Secondary school, 2 years	180.672 (21.4%)	182.971 (21.7%)	143.917 (22.6%)	145.325 (22.8%)
Secondary school, >2 years	171.349 (20.3%)	168.922 (20.0%)	122.362 (19.2%)	15.848 (20.6%)
University education	324.660 (38.5%)	275.444 (32.7%)	23.7148 (37.2%)	20.466 (32.1%)
Unknown	238.16 (2.8%)	38.314 (4.6%)	17.040 (2.7%)	27.688 (4.4%)
Comorbidities				
Myocardial infarction	21.885 (2.6%)	18.530 (2.2%)	18.167 (2.9%)	15.190 (2.4%)
Stroke	29.493 (3.5%)	16.808 (2.0%)	26.037 (4.1%)	13.777 (2.2%)
Diabetes	91.203 (10.8%)	62.198 (8.4%)	74.361 (11.7%)	49.614 (7.8%)
Hypertension	262.659 (31.2%)	207.862 (24.7%)	212.647 (33.4%)	170.772 (26.8%)
Kidney failure	20.027 (2.4%)	10.137 (1.2%)	16.711 (2.6%)	8.481 (1.3%)
COPD	17.257 (2.1%)	13.335 (2.6%)	14.709 (2.3%)	17.086 (1.7%)
Asthma	50.341 (6.0%)	36.671 (4.4%)	38.234 (6.0%)	7.777 (4.4%)
Cancer	48.512 (5.8%)	37.922 (4.4%)	39.720 (6.2%)	30.696 (4.8%)
SARS-CoV-2 infection	0.000 (0.0%)	0.000 (0.0%)	0.000 (0.0%)	0.000 (0.0%)

Data are median (IQR) or n(%), unless otherwise specified. COPD=chronic obstructive pulmonary disease. *Either IN162b2 or mRNA-1273.

Table 1: Baseline characteristics of the cohort at second dose of vaccine, according to vaccine schedule and in total.
Discussion
This study showed a progressive waning vaccine effectiveness against SARS-CoV-2 infection of any severity during up to 9 months of follow-up. In the main cohort, the estimated vaccine effectiveness was more than 90% in the first month, with a progressive waning starting soon thereafter, ultimately resulting in a non-detectable vaccine effectiveness after 7 months. Vaccine effectiveness waned across all subgroups, although differently according to vaccine schedule and type. Vaccine effectiveness with respect to the risk of COVID-19 hospitalisation or death seemed to be better maintained than effectiveness against infection, although some waning became evident after 4 months. Overall, there was also some evidence suggesting lower vaccine effectiveness in men than in women and in older individuals than in younger individuals.

Waning vaccine effectiveness against SARS-CoV-2 infection has previously been reported in preliminary observational studies from the UK and in published observational studies from the USA and Qatar, whereas follow-up studies of clinical trials show high remaining
efficacy of both BNT162b2 after 4 months, and mRNA-1273 after more than 4 months. Our data add to these previous studies with a follow-up time of up to 9 months of follow-up; the association is shown using proportional hazards models with 95% CIs (shaded areas) and restricted cubic splines. The model was adjusted for age, baseline date, sex, homemaker service, place of birth, education, and comorbidities at baseline.

Figure 2: Vaccine effectiveness (any vaccine) against SARS-CoV-2 infection of any severity in 842 974 vaccinated individuals matched to an equal number of unvaccinated individuals for up to 9 months of follow-up. The association is shown using proportional hazards models with 95% CIs (shaded areas) and restricted cubic splines. The model was adjusted for age, baseline date, sex, homemaker service, place of birth, education, and comorbidities at baseline.

The results of our study have important clinical implications, as they strengthen the evidence-based rationale for administration of a third vaccine dose as a booster, especially to specific high-risk populations. Recent preliminary phase 3 data from Pfizer-BioNTech show that a third dose of BNT162b2, administered a median of 11 months after the second dose, had 95.6% efficacy (95% CI 89.3–98.6) against symptomatic COVID-19 compared with those who had only received two primary doses, with consistent results irrespective of age, sex, and comorbidities. In addition, data from an Israeli observational study showed that individuals who received a third dose of BNT162b2 had a reduced rate of infections and hospitalisations compared with individuals given two doses. Currently, many countries are recommending a third vaccine dose as a booster to select populations at increased risk of severe COVID-19. The implication of the results from the present study and previous studies is that older individuals and individuals with known suboptimal or waning vaccine-elicited immunogenicity should be prioritised for booster doses, because these individuals also are at highest risk for severe COVID-19 manifestations if infected.

Other than the observational design, the present study has some limitations to consider. Although we adjusted our analyses for several potential confounders, the possibility of residual and unmeasured confounding remains, including a higher risk of selection bias in unvaccinated individuals with longer follow-up time. Moreover, although we excluded all individuals with a documented previous infection, some individuals with a previous asymptomatic infection are likely to have been included in the analyses. Furthermore, the SARS-CoV-2 infections registered in the SmiNet register included infections of any severity, and the definition of severe COVID-19 included death from any cause within 30 days.
after a confirmed infection. More strict definitions might have increased the estimates of vaccine effectiveness for both outcomes. However, it should be noted that vaccine effectiveness was greater than 90% early after vaccination. Finally, the follow-up in the present study was completed before the emergence of the recent omicron (B.1.1.529) variant of SARS-CoV-2. This study also has several important strengths. First, the results

Number of individuals	Vaccinated	Unvaccinated	Vaccine effectiveness (95% CI)				
	Number of events	Incidence per 100 000 person-days	Number of events	Incidence per 100 000 person-days	Adjusted for age and baseline date	Fully adjusted	
15–30 days							
Men	1685948	133	1.3	1687	17.1	93% (91 to 94)	93% (91 to 94)
Women	1000594	264	1.8	3032	21.1	92% (91 to 93)	92% (91 to 93)
Age <50 years	769391	191	1.7	3494	31.6	95% (95 to 96)	95% (94 to 95)
Age 50–64 years	431159	106	1.6	876	13.9	88% (86 to 90)	88% (86 to 90)
Age 65–79 years	327850	47	1.0	213	4.5	80% (72 to 85)	82% (75 to 88)
Age ≥80 years	157548	53	2.3	136	6.3	67% (55 to 76)	74% (63 to 82)
Any comorbidity	619248	184	1.8	897	11.7	85% (83 to 87)	86% (84 to 88)
Homemaker service	117684	72	2.8	68	7.9	76% (65 to 84)	76% (65 to 84)
31–60 days	1544246						
Men	629873	361	1.8	2900	17.9	90% (89 to 91)	90% (89 to 91)
Women	914453	893	3.0	6008	25.8	88% (87 to 89)	88% (87 to 89)
Age <50 years	704877	706	3.1	6683	37.2	91% (91 to 92)	91% (91 to 92)
Age 50–64 years	410305	303	2.3	1776	15.7	85% (83 to 87)	85% (83 to 87)
Age 65–79 years	298770	145	1.5	315	4.2	69% (62 to 74)	71% (64 to 76)
Age ≥80 years	130374	100	2.1	134	5.0	69% (60 to 76)	73% (65 to 79)
Any comorbidity	563605	439	2.1	1571	13.2	84% (83 to 86)	85% (83 to 86)
Homemaker service	108919	149	2.9	64	5.1	74% (59 to 79)	70% (59 to 79)
61–120 days	1361616						
Men	555636	721	2.0	2360	10.9	84% (82 to 85)	83% (82 to 85)
Women	804980	1755	3.1	5162	16.8	82% (81 to 83)	82% (81 to 83)
Age <50 years	618008	1531	3.7	5697	24.3	84% (83 to 84)	83% (82 to 84)
Age 50–64 years	380804	492	2.1	1510	9.5	81% (79 to 83)	81% (79 to 83)
Age 65–79 years	266405	227	1.2	255	2.6	66% (59 to 72)	65% (56 to 72)
Age ≥80 years	104399	186	2.0	60	2.0	48% (30 to 61)	50% (30 to 64)
Any comorbidity	4927270	852	2.2	1252	8.3	79% (77 to 81)	79% (77 to 80)
Homemaker service	101580	247	2.5	64	3.5	64% (51 to 73)	61% (47 to 72)
121–180 days	635402						
Men	220596	273	1.0	97	1.2	33% (15 to 47)	29% (9 to 45)
Women	414806	547	1.1	302	2.1	58% (52 to 64)	54% (46 to 61)
Age <50 years	269241	503	1.6	293	2.7	55% (48 to 61)	51% (43 to 58)
Age 50–64 years	115938	161	1.0	36	1.1	40% (14 to 58)	29% (5 to 52)
Age 65–79 years	156187	92	0.5	27	0.5	40% (3 to 63)	30% (16 to 58)
Age ≥80 years	94036	64	0.5	43	1.3	53% (33 to 68)	46% (35 to 66)
Any comorbidity	269919	273	0.7	97	1.4	58% (47 to 67)	55% (42 to 65)
Home maker service	90347	81	0.6	24	1.5	35% (14 to 63)	29% (9 to 59)
>180 days	327257						
Men	104220	351	1.7	51	2.1	25% (0 to 45)	17% (–13 to 40)
Women	223037	889	2.0	172	3.1	41% (30 to 50)	34% (22 to 45)
Age <50 years	260172	1005	1.9	204	3.3	40% (30 to 48)	33% (21 to 43)
Age ≥80 years	62085	235	1.8	19	1.0	4% (–50 to 39)	5% (–53 to 41)
Any comorbidity	160790	536	1.6	41	1.6	22% (–8 to 43)	15% (–17 to 38)

*Adjusted for age, baseline date, sex, homemaker service, place of birth, education, and comorbidities at baseline.

Table 3: Vaccine effectiveness against SARS-CoV-2 infection of any severity up to 9 months after full vaccination with any vaccine (>14 days after the second dose) by number of days after the second dose, according to sex, age, homemaker service, and any comorbidity at baseline.
were confirmed in sensitivity analyses based on a second cohort where less strict matching criteria were used. Second, vaccinated individuals had received different types and combinations of vaccines, allowing us to investigate how this differentially affected vaccine effectiveness and duration of vaccine protection in a real-world setting. Third, all the registers used to obtain data on COVID-19 cases, vaccinations, hospitalisations, and deaths have a nationwide coverage and zero loss to follow-up. This reduces the risk of misclassification of unvaccinated individuals included in the analyses. Using these registers, we were also able to obtain covariates that have previously been identified as risk factors for COVID-19 in the Swedish population. Finally, the study cohort was based on the total population of Sweden, increasing the external validity of the findings to other countries with similar population structure.

In summary, our results suggest a substantial waning of vaccine protection against SARS-CoV-2 infection of any severity across all subgroups, but with variations related to vaccine types and schedules. By contrast, protection against severe COVID-19 was better maintained for up to 9 months of follow-up, although some waning became evident after more than 4 months. These findings might have implications for vaccination strategies and public health by strengthening the evidence-based rationale for administration of a third vaccine dose as a booster, where the priority should be specific populations who are at higher risk of severe consequences of COVID-19 due to weaker and more rapidly waning vaccine-elicited immunogenicity.

Contributors
All authors conceived and designed the study. PN acquired the data. PN did the statistical analyses. PN and MB accessed and verified the underlying data. All authors interpreted the data. PN and MB drafted the manuscript. All authors critically revised the manuscript for intellectual content. PN and AN supervised the work. All authors had full access to all the data and had final responsibility for the decision to submit for publication.

Declaration of interests
We declare no competing interests.

Data sharing
The data files used for the present study are publicly unavailable according to regulations under Swedish law. However, all data used for the present study can be applied for from the National Board of Health and Welfare, Statistics Sweden, and the Public Health Agency of Sweden.

References
1. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383: 2603–15.
2. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384: 403–16.
3. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397: 99–111.
4. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 2021; 397: 881–91.
5. Chermaitelly H, Yassine HM, Benslimane FM, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med 2021; 27: 1614–21.
6. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (delta) variant. N Engl J Med 2021; 385: 585–94.
7. Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet 2021; 397: 1819–29.
8. Chung H, He S, Narseen E, et al. Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe COVID-19 in Canada: test negative design study. BMJ 2021; 374: n1943.
9. Keelner J, Horton LE, Binkin NJ, et al. Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce. N Engl J Med 2021; 385: 1330–32.
10. Shrott M, Navaratnam AMD, Nguyen V, et al. Spike-antibody waning after second dose of BNT162b2 or ChAdOx1. Lancet 2021; 398: 885–87.
11. Naaber P, Tserel I, Kangro K, et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. Lancet Reg Health Eur 2021; 10: 100208.
12. Iacobucci G. COVID-19: protection from two doses of vaccine wanes within six months, data suggest. BMJ 2021; 374: n2113.
13. Levin EG, Lustig Y, Cohen C, et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N Engl J Med 2021; 385: e84.
14. Goldberg Y, Mandel M, Bar-On YM, et al. Waning immunity after the BNT162b2 vaccine in Israel. N Engl J Med 2021; 385: e85.
15. Thomas SJ, Moreira ED Jr, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med 2021; 385: 1761–73.
16. El Sahly HM, Baden LR, Essink B, et al. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N Engl J Med 2021; 385: 1774–85.
17. Self WH, Tenforde MW, Rhoads J, et al. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines against COVID-19 hospitalizations among adults without immunocompromising conditions—United States, March–August 2021. MMWR Morb Mortal Wkly Rep 2021; 70: 1337–43.
18. Chermaitelly H, Tang P, Hasan MR, et al. Waning of the mRNA-1273 SARS-CoV-2 vaccine after second dose: a nationwide study. Lancet 2021; 398: 1407–16.
19. Andrews A, Tessier E, Stowe J, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against COVID-19+in+the+UK.pdf/10dcd99c-0441-0403-dfd8-11ba2c6f5801 in a highly vaccinated population. BMJ 2021; 374: n2113.
20. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of BNT162b2 vaccine against SARS-CoV-2 infection in Qatar. N Engl J Med 2021; 385: e83.
21. Tartof SY, Slezak J, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet 2021; 398: 1407–16.
22. Andrews A, Tessier E, Stowe J, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK [preprint]. https://keithnet/documents/15993965/33897274/vaccine-effectiveness-and-duration-of-protection-of-covid-vaccines-against-mild-and-severe-COVID-19-in-the-UK.pdf/10dcd99c-0441-0403-dfd8-11ba2c6f5801 (accessed Sept 15, 2021).
23. Katikireddi SV, Cerqueira-Silva T, Vasileiou E, et al. Two-dose ChAdOx1 nCoV-19 vaccine protection against COVID-19 hospital admissions and deaths over time: a retrospective, population-based cohort study in Scotland and Brazil. Lancet 2022; 399: 25–35.
24. Fuleyo AR, Sobieszczuk ME, Hirsch J, et al. Phase 1 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine. N Engl J Med 2021; 385: 2348–60.
25. Public Health Agency of Sweden. https://www.folkhalsomyndigheten.se/smittskydd-beredskap/overvakning-och-rapportering/smimnet/ (accessed June 17, 2021).
26. Public Health Agency of Sweden. SmiNet. https://www.folkhalsomyndigheten.se/smimnet/ (accessed June 17, 2021).
25 Bergman J, Ballin M, Nordström A, Nordström P. Risk factors for COVID-19 diagnosis, hospitalization, and subsequent all-cause mortality in Sweden: a nationwide study. *Eur J Epidemiol* 2021; 36: 287–98.

26 Normark J, Vikström L, Gwon Y-D, et al. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. *N Engl J Med* 2021; 385: 1049–51.

27 Liu X, Shaw RH, Stuart ASV, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomized, non-inferiority trial. *Lancet* 2021; 398: 856–69.

28 Nordström P, Ballin M, Nordström A. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: a nationwide cohort study. *Lancet Reg Health Eur* 2021; 11: 100249.

29 Gram MA, Nielsen J, Schelde AB, et al. Vaccine effectiveness against SARS-CoV-2 infection, hospitalization, and death when combining a first dose ChAdOx1 vaccine with a subsequent mRNA vaccine in Denmark: a nationwide population-based cohort study. *PLoS Med* 2021; 18: e1003874.

30 Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. *Nat Rev Immunol* 2021; 21: 83–100.

31 Lustig Y, Sapir E, Regev-Yochay G, et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. *Lancet Respir Med* 2021; 9: 999–1009.

32 BioNTech. Pfizer and BioNTech announce phase 3 trial data showing high efficacy of a booster dose of their COVID-19 vaccine. Oct 21, 2021. https://investors.biontech.de/news-releases/news-release-details/pfizer-and-biontech-announce-phase-3-trial-data-showing-high (accessed Oct 22, 2021).

33 Bar-On YM, Goldberg Y, Mandel M, et al. Protection of BNT162b2 vaccine booster against COVID-19 in Israel. *N Engl J Med* 2021; 385: 1393–400.