Efflorescence on calcareous objects in museums: Crystallisation, phase characterisation and crystal structures of calcium acetate formate phases

Sebastian Bettea,c,*, Michael X. Müllerb, Gerhard Eggertc, Thomas Schleidb, Robert E. Dinnebiera

aMax Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
bInstitut für Anorganische Chemie, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
cState Academy of Art and Design, Am Weißenhof 1, 70191 Stuttgart, Germany
E-Mail: S.Bette@fkf.mpg.de

Additional Tables and Figures

Table S 1. Crystallographic and Rietveld refinement data of Ca(CH\textsubscript{3}COO)(HCOO)\cdot1H\textsubscript{2}O and Ca\textsubscript{3}(CH\textsubscript{3}COO)\textsubscript{4}(HCOO)\cdot4H\textsubscript{2}O at ambient conditions.

Property	Ca(CH\textsubscript{3}COO)(HCOO)\cdot1H\textsubscript{2}O	Ca\textsubscript{3}(CH\textsubscript{3}COO)\textsubscript{4}(HCOO)\cdot4H\textsubscript{2}O
molecular formula	Ca(CH\textsubscript{3}COO)(HCOO)\cdot1H\textsubscript{2}O	Ca\textsubscript{3}(CH\textsubscript{3}COO)\textsubscript{4}(HCOO)\cdot4H\textsubscript{2}O
sum formula	C\textsubscript{7}H\textsubscript{6}CaO\textsubscript{5}	C\textsubscript{10}H\textsubscript{22}Ca\textsubscript{3}O\textsubscript{16}
molecular weight (g/mol)	162.15	518.49
space group	\textit{P}2\textsubscript{1}/c (14)	\textit{P}4\textsubscript{1}2\textsubscript{1}2\textsubscript{1} (92)
\(Z\)	4	4
\(a /\text{Å}\)	9.2729(1)	6.8655(1)
\(b /\text{Å}\)	6.8002(1)	6.8655(1)
\(c /\text{Å}\)	11.2219(2)	45.5454(6)
\(\alpha /^\circ\)	90	90
\(\beta /^\circ\)	121.232(1)	90
\(\gamma /^\circ\)	90	90
\(V /\text{Å}^3\)	605.08(1)	2144.77(4)
\(\rho_{\text{calc}} /\text{g} \cdot \text{cm}^{-3}\)	1.78	1.61
Wavelength / \(\text{Å}\)	1.5406	1.5406
\(R-p /\% \)*	1.24	4.74
\(R-wp /\% \)*	1.58	6.34
\(R-F^2 /\% \)*	0.85	3.39
starting angle (\(^{\circ} 2\theta\))	10	5
final angle (\(^{\circ} 2\theta\))	110	105
step width (\(^{\circ} 2\theta\))	0.01	0.01
time/scan (h)	20	20
no. of variables	68	62

* \(R-p, R-wp, \text{and } R-F^2\) as defined in TOPAS (Bruker AXS)
Table S 2. Atomic coordinates of Ca(CH$_3$COO)(HCOO)$_2$·H$_2$O and Ca$_3$(CH$_3$COO)$_4$(HCOO)$_2$·4H$_2$O at ambient conditions.

Atom	Wyck.	Site	S.O.F.	x/a	y/b	z/c	B /Å2
Ca(1)	4e	1	1	0.090(1)	0.469(1)	0.873(2)	0.49(8)
O(1)	4e	1	1	0.713(1)	0.900(1)	0.702(1)	2.87(1)
C(1a)	4e	1	1	0.691(2)	0.044(8)	0.331(2)	2.70(1)*
C(2a)	4e	1	1	0.565(5)	0.103(14)	0.178(3)	2.70(1)*
O(1a)	4e	1	1	0.841(1)	0.995(1)	0.376(1)	2.70(1)*
O(2a)	4e	1	1	0.621(4)	0.052(12)	0.406(3)	2.70(1)*
C(1b)	4e	1	1	0.881(8)	0.040(2)	0.055(3)	2.70(1)*
O(1b)	4e	1	1	0.896(1)	0.864(1)	0.095(1)	2.70(1)*
O(2b)	4e	1	1	0.916(13)	0.193(3)	0.135(5)	2.70(1)*
H(1b)	4e	1	1	0.840(10)	0.079(4)	0.957(3)	2.70(1)*

Table S 3. Selected bond lengths and angles of Ca(CH$_3$COO)(HCOO)$_2$·H$_2$O and Ca$_3$(CH$_3$COO)$_4$(HCOO)$_2$·4H$_2$O at ambient conditions.

Atoms	Distance	Atoms	Distance	Atoms	Angle
Ca(1)-O(1)	2.44(1) Å	Ca(1)-O(1b)	2.29(1) Å	O(1b)-C(1b)-O(2b)	125(2)*
Ca(1)-O(1a)	2.33(1) Å	Ca(1)-O(1b)	2.92(1) Å	O(1a)-C(1a)-O(2a)	125(1)*
Ca(1)-O(2a)	2.53(1) Å	Ca(1)-O(2b)	2.30(2) Å		
	2.60(3) Å		2.56(5) Å		

Atoms	Distance	Atoms	Distance	Atoms	Angle
Ca(1)-O(1a)	2.57(1) Å	Ca(2)-O(1)	2.34(1) Å	O(1a)-C(1a)-O(2a)	125(5)*
Ca(1)-O(2a)	2.50(1) Å	Ca(2)-O(1a)	2.46(1) Å	O(1b)-C(1b)-O(2b)	110(3)*
Ca(1)-O(1b)	2.50(1) Å	Ca(2)-O(2a)	2.35(2) Å		
	2.38(4) Å	Ca(2)-O(1b)	2.63(4) Å		
	2.38(4) Å	Ca(2)-O(2b)	2.38(2) Å		
Ca(1)-O(2b)	2.47(4) Å	Ca(2)-O(1c)	2.54(1) Å		
	2.47(4) Å				
Figure S 1. Scattered X-ray intensities of (a) Ca(CH_3COO)(HCOO)·H_2O and (b) Ca_3(CH_3COO)_4(HCOO)_2·4H_2O at ambient conditions as a function of the diffraction angle 2θ. The observed pattern (circles) measured in Debye-Scherrer geometry, the best Rietveld fit profiles (line) and the difference curve between the observed and the calculated profiles (below) are shown. The high angle part starting at 40.0° and 45.0° in 2θ is enlarged for clarity.
Table S 4 Comparison of the peak positions in the diffraction pattern of Ca(CH$_3$COO)(HCOO)·H$_2$O given by Tennent and Baird with the calculated diffraction pattern.

Tennent and Baird$^{[1]}$	This study	relative intensity
d/ Å	d/ Å	
7.97*	7.93	100
5.54*	5.55	44
	5.36	2
4.35*	4.36	31
3.79	3.81	9
3.39*	3.40	39
	3.40	10
3.22	3.20	22
	3.12	3
3.05	3.09	31
2.89	2.89	23
	2.81	3
2.80	2.79	13
	2.72	2
2.70	2.72	6
	2.68	2
2.46	2.49	15
	2.40	18
2.38*	2.38	11
2.29	2.30	13
	2.29	3
2.20	2.21	11
	2.19	3
	2.18	5

*strongest lines
Figure S 2. IR (black line) and Raman spectrum (green line) of Ca(CH$_3$COO)(HCOO)·H$_2$O.

Figure S 3. IR (black line) and Raman spectrum (green line) of Ca$_3$(CH$_3$COO)$_4$(HCOO)$_2$·4H$_2$O.
Figure S 4. Temperature dependent in situ XRPD patterns taken during the thermal decomposition of Ca(CH$_3$COO)(HCOO)·H$_2$O. The cell parameters of the anhydrous phase obtained during the decomposition were obtained by LSI indexing2 and a subsequent Pawley refinement3. The reference data for the identification of β-Ca(CH$_3$COO)$_2$ were taken from Walter-Levy and Laniepce4 and refer to room temperature studies.

References

[1] N. H. Tennent, T. Baird, Studies in Conservation 1985, 30, 73-85.
[2] A. A. Coelho, Journal of Applied Crystallography 2003, 36, 86-95.
[3] G. S. Pawley, J. Appl. Crystallogr. 1981, 14, 357-361.
[4] L. Walter-Levy, J. Laniepce, Compt. rend. 1960, 250, 3320-3322.
