The complete chloroplast genome sequence of Anemarrhena asphodeloides Bunge

Fang Li, Chan Li, Enwei Tian, Aimin Chen, Haoting Ye, Yuqi Shu and Zhi Chao

Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China; Department of Pharmacy, 3rd Affiliated Hospital Southern Medical University, Guangzhou, People’s Republic of China

ABSTRACT

Anemarrhena asphodeloides represents the only species in monotypic genus *Anemarrhena*. Its rhizome is called Zhi Mu and has been used in traditional medicine in China for more than 2000 years. We sequenced the complete chloroplast (CP) genome of this plant. The CP genome of *A. asphodeloides* is 157,734 bp in length, containing a pair of 53,313 bp inverted repeat regions (IRs) separated by one large and one small single copy region (LSC and SSC) of 85,851 and 18,570 bp, respectively. The overall AT content of the CP genome is 62.15%. The phylogenetic analysis strongly supported that *A. asphodeloides* comprises a monophyly, and it is affiliated to Subfam. Agavoideae (Asparagaceae). The results will be useful for conservation, phylogenetics, and identification of this species.

Anemarrhena asphodeloides Bunge is one of the important medicinal plants, which has been used for over 2000 years in China. It has the effects of clearing away heat and reducing fire, nourishing yin, and moistening dryness (Han and Park 1997; Chinese Pharmacopoeia Commission 2015). Presently, the wild *A. asphodeloides* has become quite rare in China as a result of over-exploitation and the deterioration of natural conditions (Sun et al. 2008). *A. asphodeloides* is the only species in genus *Anemarrhena*, a taxonomically controversial group, whose phylogenetic position has frequently changed during the past 40 years (Delectis Florae Reipublicae Popularis Sinecae 1980; APG 2016). In this study, we sequenced the complete chloroplast genome of *A. asphodeloides*, in order to give a phylogenomic insight to systematic position of the genus *Anemarrhena* and provide genetic information for conservation of this species.

Fresh leaves of *A. asphodeloides* were collected from Pingshan County, Hebei Province in China (Latitude: 38°13′0.09″N, Longitude: 114°6′13.69″E). The voucher specimen (Chao Zhi 147311) was identified by Prof. Zhi Chao and deposited in the herbarium of the School of Traditional Chinese Medicine, Southern Medical University. The genomic DNA was extracted from 100 mg of fresh leaves with the modified CTAB method (Yang et al. 2014). Sequencing was performed on an Illumina HiSeq 4000 in high output mode with 2 × 125 bp paired-end reads at Beijing Genomics Institute (BGI, Shenzhen, China). The CP genome of *A. asphodeloides* was assembled by SOAPendv02.04 (Luo et al. 2012) with *Agave attenuata* as a reference (Accession No. NC032696). The Dual Organellar Genome Annotator (DOGMA) software (Wyman et al. 2004) was used for genome annotation. The annotated sequence had been deposited in GenBank (Accession No. MH669277).

The complete CP genome of *A. asphodeloides* was a double-stranded circular DNA of 157,734 bp in length. Its quadripartite structure was composed of two inverted repeated regions (IRa and IRb) of 53,313 bp, separated by a large single-copy (LSC) region of 85,851 bp and a small single-copy (SSC) region of 18,570 bp. The complete CP genome contains a total of 112 genes, including 88 protein-coding genes, 20 tRNA genes, and 4 rRNA genes. Eighteen genes were duplicated in the IR regions. Fifteen genes contain one intron, while three genes have two introns. The over-all A-T content of the chloroplast genome is 62.15%.

A phylogenetic analysis was performed based on 19 complete CP genome, to reveal the phylogenetic position of genus *Anemarrhena*. All the CP genome sequences were aligned with MAFFT (Kato and Standley 2013). The maximum likelihood (ML) tree was inferred in MEGA 6.0 based on GTR + R + I model using 1000 bootstrap replicates (Tamura et al. 2013). The reconstructed phylogenetic tree showed that genus *Anemarrhena* was closely related to genus *Agave* and was affiliated to Subfam. Agavoideae (Asparagaceae), which is consistent with the APG IV. (Angiosperm Phylogeny Group 2016) (Figure 1).

Disclosure statement

No potential conflict of interest was reported by the authors.

CONTACT Zhi Chao chaozhi@smu.edu.cn; Enwei Tian tianenwei@126.com School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This work was supported by the National Natural Science Foundation of China (Grant Nos. 81373905; 81603226), Guangdong Natural Science Foundation (Grant No. 2014A030313321) and Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014A020221010; 2016A020226029).

References

Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 181:1–20.

Chinese Pharmacopoeia Commission. 2015. Pharmacopoeia of the People’s Republic of China, 2015 Edition. Beijing: China Medical Science and Technology Press. p. 212.

Delectis Florae Reipublicae Popularis Sinicae. 1980. Flora Reipublicae Popularis Sinicae, Tomus 14. Beijing, China: Science Press. p. 40.

Han SH, Park SI. 1997. Classification of Korean native Anemarrhena asphodeloides Bunge by cluster analysis. Korean J Med Crop Sci. 5:266–275.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 1:18–23.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780.

Sun XM, Chen QL, Wang WQ, Ma CH, Zhang Y. 2008. Investigation of Anemarrhena asphodeloides Bge. wild resources and its germplasm analysis. Lishizhen Med Mater Med Res. 19:2091–2092.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30:2725–2729.

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 20:3252–3253.

Yang JB, Li DZ, Li HT. 2014. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Res. 14:1024–1031.

Figure 1. Maximum-likelihood (ML) tree based on the chloroplast genome of 19 taxa, including Anemarrhena asphodeloides and two outgroup taxa (Stemona mairei and S. japonica). The bootstrap support values are indicated at the nodes.