Clinical characteristics and outcome of influenza virus infection among adults hospitalized with severe COVID-19: a retrospective cohort study from Wuhan, China

Xunliang Tong†, Xiaomao Xu†, Guoyue Lv‡, He Wang†, Anqi Cheng³,4,5,6, Dingyi Wang⁷,8, Guohui Fan⁷,8, Yue Zhang† and Yanming Li†

Abstract

Background: Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that rapidly spreads worldwide and co-infection of COVID-19 and influenza may occur in some cases. We aimed to describe clinical features and outcomes of severe COVID-19 patients with co-infection of influenza virus.

Methods: Retrospective cohort study was performed and a total of 140 patients with severe COVID-19 were enrolled in designated wards of Sino-French New City Branch of Tongji Hospital between Feb 8th and March 15th in Wuhan city, Hubei province, China. The demographic, clinical features, laboratory indices, treatment and outcomes of these patients were collected.

(Continued on next page)
Results: Of 140 severe COVID-19 hospitalized patients, including 73 patients (52.14%) with median age 62 years were influenza virus IgM-positive and 67 patients (47.86%) with median age 66 years were influenza virus IgM-negative. 76 (54.4%) of severe COVID-19 patients were males. Chronic comorbidities consisting mainly of hypertension (45.3%), diabetes (15.8%), chronic respiratory disease (7.2%), cardiovascular disease (5.8%), malignancy (4.3%) and chronic kidney disease (2.2%). Clinical features, including fever (≥38°C), chill, cough, chest pain, dyspnea, diarrhea and fatigue or myalgia were collected. Fatigue or myalgia was less found in COVID-19 patients with IgM-positive (33.3% vs 50/7%, P = 0.0375). Higher proportion of prolonged activated partial thromboplastin time (APTT) > 42 s was observed in COVID-19 patients with influenza virus IgM-negative (43.8% vs 23.6%, P = 0.0127). Severe COVID-19 Patients with influenza virus IgM positive have a higher cumulative survivor rate than that of patients with influenza virus IgM negative (Log-rank P = 0.0308). Considering age is a potential confounding variable, difference in age was adjusted between different influenza virus IgM status groups, the HR was 0.29 (95% CI, 0.081–1.100). Similarly, difference in gender was adjusted as above, the HR was 0.262 (95% CI, 0.072–0.952) in the COX regression model.

Conclusions: Influenza virus IgM positive may be associated with decreasing in-hospital death.

Keywords: COVID-19, Influenza virus IgM, SARS-CoV-2
virus-specific antibody IgM which responses following influenza infection and detected by indirect immunofluorescence assay (Respiratory tract 8 joint detection kit; EUROIMMUN, Inc., Germany) [11, 15, 16].

Statistical analysis
Descriptive analyses of the variables were expressed as median (interquartile range [IQR]) or number (%) and compared using Mann-Whitney test. Categorical data were compared using X^2 test or the Fisher exact test, where appropriate. The patients’ characteristics of deaths verses discharged and death/discharge & influenza IgM positive/negative were also described and shown in Supplementary Table 1 and 2. Kaplan-Meier curve was portrayed by influenza virus IgM positive/negative to describe the cumulative survival rate of COVID-19 patients. COX regression model was fitted to investigate the association between influenza virus IgM positive and the in-hospital death. To avoid overfitting, at most two covariates were allowed to the model and we adjusted for age and gender respectively in the model. Adjusted hazard ratios (aHRs) and 95% confidence intervals (95% CIs) were then estimated. All tests were 2-sides, and a P value less than .05 was considered statistically significant. All analyses were performed with SPSS, version 23.0 (IBM inc.).

Results
Baseline characteristics
A total of 140 adult patients confirmed with COVID-19 from designated hospital was enrolled in this study, with 73 patients (52.14%) were identified as influenza virus IgM-positive. 76 (54.4%) of the COVID-19 patients were males. The median age of patients with influenza virus IgM-negative was 66 years (IQR, 55 to 70 years), older than patients with influenza virus IgM-positive (median age 62, IQR, 47 to 70 years, $P = 0.1118$). Chronic comorbidities consisting mainly of hypertension (45.3%), diabetes (15.8%), chronic respiratory disease (7.2%), cardiovascular disease (5.8%), malignancy (4.3%) and chronic kidney disease (2.2%). Clinical features, including fever ($\geq 38^\circ C$), chill, cough, chest pain, dyspnea, diarrhea and fatigue or myalgia were collected. Fatigue or myalgia was less found in COVID-19 patients with IgM-positive (33.3% vs 50/7%, $P = 0.0375$). (Table 1).

Laboratory findings
Higher proportion of prolonged activated partial thromboplastin time (APTT) > 42s was observed in COVID-19 patients with influenza virus IgM-negative (43.8% vs 23.6%, $P = 0.0127$). (Table 1) Counts of lymphocytes and platelets were significantly lower, while aspartate aminotransferase (AST), creatinine, lactate dehydrogenase (LDH), troponin, NT-proBNP, C-reactive protein (CRP), interleukin-6 (IL-6), ferritin, prothrombin time (PT), APTT and D-Dimer were significantly higher in dead cases (all $P < 0.05$). (Supplementary Table 1).

Treatment and outcomes
43.6% of the patients received nasal cannula, 2.1% oxygen mask, 49.3% non-invasive mechanical ventilation (NMV)/high-flow nasal cannula (HFNC) and 8.6% invasive mechanical ventilation (IMV)/extracorporeal membrane oxygenation (ECMO). Compound Methoxamine capsule were used in more patients with influenza IgM positive than the other group (23.3% vs 9.0%, $P = 0.0222$). (Table 2) higher levels of respiratory support were more seen in dead patients, especially those with influenza IgM positive. (supplementary Table 1 and supplementary Table 2)

According to the score of CURB-65, more COVID-19 patients with influenza IgM positive group were in low
Table 1 Clinical Characteristics of COVID-19 Patients with and Without Influenza IgM positive

Study Population	With Influenza IgM positive (n = 73)	Without Influenza IgM positive (n = 67)	Total (n = 140)	P value
Demographic				
Gender, Male	39 (53.4)	37 (55.2)	76 (54.3)	0.8310
Age, media (IQR), yrs	62.0 (47.0, 70.0)	66.0 (55.0, 70.0)	65.0 (48.5, 70.0)	0.1118
Comorbidities				
Hypertension	32/70 (45.7)	30/67 (44.8)	62/137 (45.3)	0.9122
Diabetes	12/72 (16.7)	10/67 (14.9)	22/139 (15.8)	0.7787
Chronic respiratory disease	5/72 (6.9)	5/67 (7.5)	10/139 (7.2)	0.9060
Cardiovascular disease	5/72 (6.9)	3/67 (4.5)	8/139 (5.8)	0.5301
Malignancy	3/72 (4.2)	3/67 (4.5)	6/139 (4.3)	0.9282
Chronic kidney disease	2/72 (2.8)	1/67 (1.5)	3/139 (2.2)	0.5983
Signs and symptoms				
Fever	55 (75.3)	53 (79.1)	108 (77.1)	0.5964
Highest temperature, °C	38.5 (38.0, 39.0)	38.7 (38.2, 39.0)	38.5 (38.0, 39.0)	0.1274
Chills	13 (17.8)	19 (28.4)	32 (22.9)	0.1375
Cough	41/72 (56.9)	44/67 (65.7)	85/139 (61.2)	0.2915
Productive cough	20/72 (27.8)	25/67 (37.3)	45/139 (32.4)	0.2299
Chest pain/Chest congestion	19/72 (26.4)	13/67 (19.4)	32/139 (23.0)	0.3283
Dyspnea	21/72 (29.2)	29/67 (43.3)	50/139 (36.0)	0.0831
Diarrhea	18 (24.7)	25 (37.3)	43 (30.7)	0.1049
Fatigue or myalgia	24/72 (33.3)	34/67 (50.7)	58/139 (41.7)	0.0375
Laboratory findings, median (IQR)				
White blood cells, × 10^9/mL	5.7 (4.2, 6.8)	5.7 (4.6, 7.9)	5.7 (4.4, 7.2)	0.3226
Neutrophils, × 10^9/mL	3.9 (2.5, 4.8)	4.0 (2.6, 5.9)	3.9 (2.5, 5.3)	0.3600
Lymphocytes, ×10^9/mL	1.2 (0.9, 1.6)	1.1 (0.8, 1.5)	1.1 (0.8, 1.5)	0.3826
Lymphocytes< 0.8 × 10^9/mL	18/73 (24.7)	18/66 (27.3)	36/139 (25.9)	0.7252
Red blood cells, ×10^{12}/mL	4.1 (3.6, 4.6)	4.0 (3.7, 4.4)	4.0 (3.7, 4.5)	0.4502
Platelets, ×10^9/mL	230.0 (173.0, 292.0)	253.0 (169.0, 340.0)	235.0 (169.0, 312.0)	0.3622
Platelets< 100 ×10^9/mL	5/73 (6.8)	6/66 (9.1)	11/139 (7.9)	0.6249
Hemoglobin, g/L	122.0 (114.0, 137.0)	125.5 (113.0, 137.0)	123.0 (113.0, 137.0)	0.9143
ALT, U/L	23.0 (17.0, 40.0)	22.5 (15.0, 41.0)	23.0 (16.0, 41.0)	0.7373
AST, U/L	26.0 (19.0, 37.0)	30.0 (19.0, 41.0)	28.0 (19.0, 39.0)	0.3370
Albumin, g/L	36.1 (32.2, 38.3)	35.0 (31.4, 37.1)	35.2 (31.7, 38.1)	0.2945
Creatinine, μmol/L	70.0 (60.0, 89.5)	70.0 (59.0, 87.0)	70.0 (59.0, 89.0)	0.8596
LDH, U/L	268.5 (204.0, 329.5)	287.0 (235.0, 351.0)	281.0 (212.0, 334.0)	0.2419
LDH > 245 U/L	44/72 (61.1)	47/65 (72.3)	91/137 (66.4)	0.1658
Troponin> 15.6 pg/ml, No (%)	7/51 (13.7)	12/56 (21.4)	19/107 (17.8)	0.2977
NT-proBNP, pg/mL	140.0 (60.0, 334.0)	157.0 (640.0, 459.0)	151.0 (630.0, 411.0)	0.2883
NT-proBNP≥247 pg/ml, No (%)	29/57 (50.9)	35/58 (60.3)	64/115 (55.7)	0.3069
CRP, mg/L	21.3 (4.1, 49.2)	34.7 (9.1, 73.4)	27.2 (6.1, 69.8)	0.1281
CRP ≥ 1 mg/L, No (%)	57/61 (93.4)	47/49 (95.9)	104/110 (94.5)	0.5551
IL-6, pg/mL	9.8 (4.2, 21.1)	6.8 (3.6, 23.2)	9.4 (3.9, 23.2)	0.5603
IL-6 ≥ 7 pg/mL, No (%)	25/42 (59.5)	15/35 (42.9)	40/77 (51.9)	0.1450
Ferritin, μg/L	522.1 (320.5, 729.0)	630.5 (310.2, 1519.9)	562.6 (320.5, 986.5)	0.0964
Ferritin> 150 μg/L, No (%)	39/43 (90.7)	33/35 (94.3)	72/78 (92.3)	0.5495
to moderate risk level \((P = 0.0397)\). No differences were observed in the duration of viral shedding, the length of hospital stay and time from illness onset to discharge between groups. 9.3% of the patients died in hospital and the rate of death was significantly lower in patients with IgM positive than those with IgM negative \((4.1\% \text{ vs } 14.9\%, P = 0.0276)\). (Table 2).

Severe COVID-19 Patients with influenza virus IgM positive have a higher cumulative survivor rate than that of patients with influenza virus IgM negative \((\text{Log-rank } P = 0.0308)\). Considering age is a potential confounding variable, difference in age was adjusted between different influenza virus IgM status groups, the HR was 0.29 (95% CI, 0.081–1.100). Similarly, difference in gender was adjusted as above, the HR was 0.262 (95% CI, 0.072–0.952) in the COX regression model. (Fig. 2).

Discussion

In this retrospective cohort study, we described the clinical features and outcomes of hospitalized COVID-19 patients. Clinical characteristics and outcomes of patients infected with influenza virus IgM positive and negative are presented in Tables 1 and 2, respectively. The differences in clinical presentation and outcomes between the two groups were analyzed using appropriate statistical tests. The results indicate that patients with influenza virus IgM positive had a higher cumulative survivor rate compared to those with IgM negative. Age and gender were found to be potential confounding variables, and their effects were adjusted in the analyses. The findings suggest that influenza coinfection may have a significant impact on the clinical course and outcomes of COVID-19 patients.
patients with different influenza virus IgM status. We found that influenza virus IgM positive may be associated with decreasing in-hospital death. Fatigue and myalgia were less presented in COVID-19 patients with influenza virus IgM positive. It is the first time for influenza virus IgM to be a prognostic factor of COVID-19.

Previous studies reported cases with co-infection of SARS-CoV-2 and influenza showed the implications of co-infection during the pandemic area [17–20]. It was necessary to assess the effect of the SARS-CoV-2 and influenza co-infection in clinical outcomes. Previous studies demonstrated that influenza virus-specific IgM antibody responses follow primary influenza virus infection in adults [11, 21]. Serological confirmation of a clinical diagnosis is by demonstration of greater rise in functional strain specific antibody titer. Specific neutralizing antibody can be detected from about 10 to 14 days post infection, reaches a plateau at around 28 days and decreased to normal level around a month and a half. This test uses nucleocapsid antigens that are type-specific and can distinguish A from B and C infections. Due to the huge task of rapid tests for SARS-CoV-2 and the absence of widely available testing methods, thousands of patients were diagnosed of COVID-19 without identification of co-infection pathogens at the initial period. During the epidemic of seasonal influenza and other respiratory illness, our concern is on the possibility of the co-infection of virus. Therefore, influenza virus IgM antibody may help us review these cases. The outbreak of COVID-19 may occur during influenza season, which brings difficulty in prevention, diagnosis and treatment. Increasing number of literatures has been demonstrating that influenza virus infection may trigger non-neutralizing antibodies responses which also binds to pathogens as diverse as HIV-1, herpes simplex virus and Ebola [22–28]. Some other researches showed that influenza vaccination could reduce cardiovascular morbidity and mortality in patients with COVID-19 [29]. Therefore, some potential mechanisms including active immunity or passive immunity may involve in the virus immunity for exhibition its protective effects. In this study, influenza virus IgM positive showed as a protective effector in severe COVID-19 patients associated with better prognosis and higher cumulative survivor rate. Considering the potential confounding variables, age and gender were adjusted between different influenza virus IgM status groups, respectively. After that, the potential protective effects influenza virus IgM positive in severe COVID-19 patients were observed if patients are suspected ILI, especially suffering from virus infection, a prompt test, like a one-time diagnostic panel for the respiratory virus nucleic acid, antigen or serological...

Fig. 2 Kaplan-Meier curve for portraying the cumulative survival rate of COVID-19 patients
detection of virus specific IgM/ IgG, should be the first step with an expanded detectable range towards confirming diagnosis, which help in making early and effective prevention and treatment strategy.

The strengths of this study include adults hospitalized with diagnosis of COVID-19, the retrospective cohort design, standardized patient screening in the participating, and centralized confirmation of respiratory viruses and other laboratory indices. Our study has several limitations. Firstly, a large number of patients were continually being admitted to hospital, but the sample size of our study is still limited. Secondly, our study was conducted in a local hospital in Wuhan, which may result in biases. Especially consideration of influenza season, it may become epidemic of different type in different regions. Thirdly, this cohort study did not last for a long time. Missing information of death status at discharge and initial influenza virus IgM status may influence the demographics and available clinical characteristics between included and excluded patients. Thus, the results may partly help us recognize co-infection of influenza and SARS-CoV-2. Further studies focused on the co-infectious pathogens, the treatment and prevention will be needed.

Conclusions
Influenza virus IgM positive may be associated with decreasing in-hospital death. The co-infection of SARS-CoV-2 and influenza virus may occur by causing a crisis and we need to improve our understanding for confronting it in the future.

Abbreviations
APTT: Activated partial thromboplastin time; CDC: Centers for disease control and prevention; COVID-19: Coronavirus disease 2019; ECMO: Extracorporeal membrane oxygenation; eGFR: Estimated glomerular filtration rate; ELISA: Enzyme-linked immunosorbent assay; FiO2: Fraction of inspired oxygen; HAI: Hemagglutinin inhibition; HFNCl: High-flow nasal cannula; IL: Influenza like illness; IQR: Interquartile range; LDH: Lactate dehydrogenase; MV: Mechanical ventilation; N:M: Noninvasive methods of mechanical ventilation; NT-proBNP: N-terminal pro brain natriuretic peptide; PaO2: Partial pressure of oxygen; PT: Prothrombin time; RT-PCR: Reverse-transcriptase–polymerase chain-reaction; SARS-CoV: Severe acute respiratory syndrome-coronavirus; SARS-CoV-2: Severe acute respiratory syndrome-coronavirus – 2; WHO: World Health Organization; ALT: Alanine transaminase; AST: Aspartate aminotransferase; CRP: C-reactive protein; IL-6: Interleukin-6; FIB: Fibrinogen; NMV: Non-invasive mechanical ventilation; IMV: Invasive mechanical ventilation

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12879-021-05975-2.

Additional file 1: Supplementary Table 1 Clinical Characteristics of COVID-19 Patients by death or discharge

Additional file 2: Supplementary Table 2 Clinical Characteristics, treatment and prognosis of COVID-19 Patients by death and influenza IgM+/-

Acknowledgments
The authors thank Academician Chen Wang for his guidance and assistance with this work.

Authors’ contributions
YL and XT contributed to the conception and design of the study and interpretation of the results and drafted the manuscript. XT, XX, GL and HW contributed to the acquisition of the data and revision of the manuscript for important intellectual content. AC, YZ, GF and DW performed the statistical analysis and revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Funding
This project was supported by project grant 81870013 from the National Natural Science Foundation of China; and grant 7202178 from the National Science Foundation of Beijing.

Availability of data and materials
The data used for the current study will be available based on a reasonable request from the lead author Dr. Yanning Li (lyynli@263.net).

Declarations

Ethics approval and consent to participate
The study was approved by Ethics Committee of Beijing Hospital (2020BYJYCC-046-01).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, the Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China. 2First Department of Hepatobiliary & Pancreas Surgery, The First Hospital, Jilin University, Jilin 130021, Changchun, China. Tobacco Medicine and Tobacco Cessation Center, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China. 3WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China. 4National Clinical Research Center for Respiratory Diseases, Beijing, China. 5Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China. 6Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China. 7Institute of Respiratory Medicine, Chineses Academy of Medical Sciences; National Clinical Research Center for Respiratory Disease, Beijing, China.

Received: 7 January 2021 Accepted: 9 March 2021

Published online: 12 April 2021

References
1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen X, Wang X, Zheng XS, Zhao K, Chen QI, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7.
2. Kong WH, Li Y, Peng MW, Kong DG, Yang XB, Wang L, Liu MQ, SARS-CoV-2 detection in patients with influenza-like illness. Nat Microbiol. 2020;5(5):675–8. https://doi.org/10.1038/s41564-020-0713-1.
3. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, NY). 2020;367(6485):1444–8.
4. World Health Organization. Coronavirus disease (COVID-19) outbreak https://www.who.int. Date last accessed: April 14, 2020.
5. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet (London, England). 2020;395(10223):470–3.
6. Guan WJ, Ni ZY, Hu Y, Liang WJ, Li WM, Wei YX, Cao YR, Wang X, Xiong XY, Li XC, Luo YD, Gao GF, Wu YJ, Zhuang L, Zou X, Xie Y, Shen X, Wang W, Deng Y, Liu YJ, Liu MH, Liu ZR, Jin ZW, Xu Y, Guo Q, Xiao J, Gao YR, Liu YL, Xu X, Ren W, Zhao J, Zhao X, Zhang H, Zhang L, Zhou Y, Yang Z, Wang H, Hu H, Xia J, Ma B, Li G, Zhu J, Wang X, Chu X, Zhang X, Liu Y, Liu Q, Gao S, Wang X, Hu Y, Shi T, Zheng S, Wang X, Cai J, Liu W, Han Y, Meng N, Yu B, Guan W, Li G, Wu Y, Cao B, and Zhong NS, China Medical Treatment Expert Group for Covid-19, et al.
Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002322.

7. Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, Daniels RS, Gunasekaran CP, Hurt AC, Kelsev M, Klimov A, Lewis NS, Li X, McCauley JW, Oderigi T, Pudtov V, Rambaut A, Shu Y, Skepner E, Smith DJ, Suchard MA, Tashiro M, Wang D, Xu X, Lemey P, Russell CA, et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015; 523(7559):217–20. https://doi.org/10.1038/nature14460.

8. Yao Y, Zhigeng Z, Weng S, Ruiqing L, Dong Z, Kun X, Xiuying Z. Unreliable use of a single influenza virus IgM antibody assay in influenza-like illness: a retrospective study of the 2016-2018 flu epidemic. PLoS One. 2018;14(4): e0215514. https://doi.org/10.1371/journal.pone.0215514.

9. (CNIC) CNIC. China flu Weekly Report 2020. http://www.chinawx.cn/cnic/zywz/lgbz/202002/20200209_312403.htm.

10. Wu X, Cai Y, Huang X, Yu X, Zhao L, Wang F, Li Q, Gu S, Xu T, Li Y, et al. Co-infection with SARS-CoV-2 and Influenza A Virus in Patient with Pneumonia, China. Emerg Infect Dis. 2020;26:266.

11. Li ZN, Lin SC, Camey PJ, Li J, Liu F, Lu X, Liu M, Stevens J, Levine M, Katz JM, Hancik K, et al. IgM, IgG, and IgA antibody responses to influenza a(H1N1)pdm09 hemagglutinin in infected persons during the first wave of the 2009 pandemic in the United States. Clin Vaccine Immunol. 2021;48(1):1054–60. https://doi.org/10.1128/CVI.00129-19.

12. Liang WH, Guan WJ, Li CC, Li YM, Li WQ, Zhou H, Chen D, Zhao J, Yu X, Han Y, et al. Neu-net: a computational method for influenza a(H1N1)pdm09 hemagglutinin prediction: probable in vivo antibody-dependent cellular cytotoxicity. J Immunol. 2020;195(2):739–47. https://doi.org/10.4049/jimmunol.1901869.

13. National Health Commission of the People's Republic of China. Diagnosis and treatment of new coronavirus pneumonia (trial version 7). Accessed March 13, 2020. Available from: http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7df4ece880dc75f912bc9b198/files/ce63efa6483a2d465350ac1e646fe544.pdf

14. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang L, Yu T, Bai T, Xie Z, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qiu L, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zhou J, Li C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jiali T, Hayden FG, Horby PW, Zhang D, Wang C, et al. A trial of Lopinavir-Ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(18):1787–99. https://doi.org/10.1056/NEJMoa2012822.

15. Oladoño AK, Awoyelu EH, Oloke JK. Assessment of baseline antibodies to pandemic infection a(H1N1)2009 virus in Ogbomoso, Oyo state, Nigeria. Pathog Glob Health. 2018;112(12):227–31. https://doi.org/10.1177/2047772418804194.

16. Qiu C, Tian D, Wan Y, Zhang W, Qiu C, Zhu Z, Ye R, Song Z, Zhou M, Yuan S, Shi B, Wu M, Liu Y, Gu S, Wei J, Zhou Z, Zhang Z, Hu Y, Yuan Z, Xu J, et al. Early adaptive humoral immune responses and virus clearance in humans recently infected with pandemic 2009 H1N1 influenza virus. PLoS One. 2011;6(8):e26503. https://doi.org/10.1371/journal.pone.0026503.

17. Wu X, Cai Y, Huang X, Yu X, Zhao L, Wang F, Li Q, Gu S, Xu T, Li Y, Bu R, Zhan Q, et al. Co-infection with SARS-CoV-2 and influenza virus in patients with pneumonia, China. Emerg Infect Dis. 2020;26(6):1234–6. https://doi.org/10.3201/eid2606.200209.

18. Wu D, Lu J, Ma X, Liu Q, Wang D, Gu Y, Li Y, He W. Coinfection of influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pediatr Infect Dis J. 2020;39(6):e179. https://doi.org/10.1097/INF.0000000000002688.

19. Weih G, Laible M, Rauchenzauner M. Co-infection of SARS-CoV-2 and influenza virus in a pediatric patient in Garmisch-Klinische Padiatr. 2020;202(2):217–8. https://doi.org/10.1007/s11611-020-00378-v.

20. Kondo Y, Miyazaki S, Yamashita R, Ikeeda T. Coinfection with SARS-CoV-2 and influenza A virus. BMJ Case Rep. 2020;13:7.

21. Burlington DB, Clements ML, Mekeljohgn G, Phelan M, Murphy BR. Hemaggulutinin-specific antibody responses in immunoglobulin G, A, and M isotypes as measured by enzyme-linked immunosorbent assay after primary or secondary infection of humans with influenza a virus. Infect Immun. 1983;41(2):540–5. https://doi.org/10.1128/IAI.41.2.540-5.1983.

22. Forthal DN, Lanuducci G, Daar ES. Antibody from patients with acute human immunodeficiency virus (HIV) infection inhibits primary strains of HIV type 1 in the presence of natural-killer effectors cells. J Virol. 2001;75(15):6953–61. https://doi.org/10.1128/JVI.75.15.6953-6961.2001.

23. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomas and GA, Alam SM, Evans DT, Montefiori DC, Karnasuta C, Suttenh R, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012;366(14):1275–85. https://doi.org/10.1056/NEJMoa1113425.

24. Kohl S, Loo LS, Pickering LK. Protection of neonatal mice against herpes simplex viral infection by human antibody and leukocytes from adult, but not neonatal humans. J Immunol (Baltimore, Md : 1950). 1990;141(7):2735–5.

25. Kohl S, Loo LS, Protection of neonatal mice against herpes simplex virus infection: probable in vivo antibody-dependent cellular cytotoxicity. J Immunol (Baltimore, Md : 1950). 1990;142(1):370–6.

26. Wang K, Tomas and GA, Jeggakanda S, Moody MA, Liao H-X, Goodman KN, Berman PW, Reiks-Ngarm S, Pitsutthitum P, Niyatapan S, et al. Monoclonal Antibodies. Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HIVV Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1. J Virol. 2017;91:191.

27. Gunn BM, Yu W-H, Karim MM, Brannn JM, Herbert AS, Wec AZ, Halfmann PJ, Fusco ML, Schendel SL, Gangavaparau K, et al. A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host Microbe. 2018;24:22.

28. Saphire EO, Schendel SL, Fusco ML, Gangavaparau K, Gunn BM, Wec AZ, Halfmann PJ, Brannn JM, Herbert AS, Qiu X, et al. Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell. 2018;174:4.

29. Behrouzi B, Araujo Campoverde MV, Liang K, Talbot HK, Bogoch II, McGeer A, Fröbert O, Loebo M, Vardeny O, Solomon SD, Udell JA, et al. Influenza vaccination to reduce cardiovascular morbidity and mortality in patients with COVID-19. JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(15):1777–94. https://doi.org/10.1016/j.jacc.2020.08.028.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M views per year

At BMC, research is always in progress.
Learn more: biomedcentral.com/submissions