Analytic calculation of nonadiabatic transition probabilities from monodromy of differential equations

T Kato† K Nakamura† and M Lakshmanan‡
† Department of Applied Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
‡ Centre for Nonlinear Dynamics and Department of Physics, Bharathidasan University, Tiruchirapalli - 620 024, India
E-mail: kato@phys.eng.osaka-cu.ac.jp, nakamura@phys.eng.osaka-cu.ac.jp and lakshman25@satyam.net.in

Abstract.
The nonadiabatic transition probabilities in the two-level systems are calculated analytically by using the monodromy matrix determining the global feature of the underlying differential equation. We study the time-dependent 2×2 Hamiltonian with the tanh-type plus sech-type energy difference and with constant off-diagonal elements as an example to show the efficiency of the monodromy approach. The application of this method to multi-level systems is also discussed.

1. Introduction

Analytic calculation of the time evolution in two-level systems has been studied by a number of authors for a long time since the beginning years of quantum mechanics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. These results have been applied to various areas of physics including quantum optics, laser spectroscopy, nuclear magnetic resonance and atomic collisions [15, 16, 17, 18]. The importance of the study of quantum time-evolution is still increasing even now; For example, much attention has been paid recently to the quantum manipulation of qubits [19] and magnetization process of magnetic molecules with large spin [20]. Recent rapid development of computers has enabled massive numerical simulation of quantum dynamics. Nevertheless, it remains to be important to study analytically solvable models for the following reasons: (1) in some ranges of physical parameters the numerical simulation becomes too difficult, and (2) analytic solutions give a clearer description about parameter dependence.

Analytic solutions of quantum dynamics can be classified into several classes. Some of them are obtained by using hypergeometric functions. This was first found by Rosen and Zener [3], which has then been generalized by several authors [7, 8, 9, 10, 11, 12]. In these studies, the time-variable t is generally transformed into another real variable
z = z(t), which varies from 0 to 1 monotonically. Then, the Schrödinger equation of
two-level systems can be reduced to the hypergeometric differential equation, and the
transition probability can be related to the connection problem between two pairs of
fundamental solutions around z = 0 and z = 1.

One exception is the approach by Carroll and Hioe [13]. They have studied two
solvable classes, and in one of them they have introduced a new variable z(t) changing
from −∞ to ∞ as t increases and have reduced the Schrödinger equation to the Riemann-
Papperitz equation. Recently, Ishkhanyan has pointed out that the Carroll-Hioe model
can be understood in terms of the hypergeometric functions by considering a complex-
valued path z(t) = (y(t) + i)/2i where y(t) is a real variable [14]. By this complex-valued
path, Ishkhanyan also found a new solvable class, but he did not obtain results for the
transition probability.

In this paper, we show that for the complex-valued path, the transition probability
can be calculated efficiently from the ‘monodromy’ matrices of the corresponding
differential equations. Monodromy is one of the global properties of differential
equations, and has attracted much attention by mathematicians, for example, through
the deep connection with the Painlevé equations [21]. Hence, we expect that the
monodromy approach is valuable not only because it enables one to calculate the
transition probability for various models but also because it establishes a connection
between physical phenomena and global features of differential equations.

In this paper, as a concrete example, we mainly consider the following time-
dependent two-level Schrödinger equation and obtain the transition probability using
the monodromy associated with the solution:

\[i \begin{pmatrix} a_{1t} \\ a_{2t} \end{pmatrix} = \begin{pmatrix} \varepsilon(t) & V(t) \\ V(t) & -\varepsilon(t) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \]

where the matrix elements are given by

\[\varepsilon(t) = E_0 \text{ sech}(t/T) + E_1 \text{ tanh}(t/T), \]
\[V(t) = V_0. \]

Here, the coefficients, E₀, E₁ and V₀, are assumed to be real constants. This is one of
the solvable class reported by Ishkhanyan [14]. However, the transition probability for
the model has not been obtained. It should be noted that this model is equivalent to
the Rosen-Zener model [3] in the case \(E_1 = 0 \) ‡, and that it also includes the special
case of the second Demkov-Kunike model [7] in the case \(E_0 = 0 \). Hence, this model can
give a smooth connection between the two known results.

The plan of the paper is as follows. We give the relation between the transition
probability and the monodromy of the hypergeometric function in §2 and the transition
probability is calculated explicitly in §3. The extension to the multi-level problems is

‡ In the original Rosen-Zener model, \(\varepsilon(t) \) is a constant, while \(V(t) \) has a sech-type pulse form. This
Hamiltonian, however, is reformed by a proper unitary transformation of the wave function to coincide
with the present model.
addressed in §4. Finally, the results are summarized in §5. In Appendix A, we describe the generalization of the present model and its relationship to the Carroll-Hioe’s model.

2. Hypergeometric function and monodromy

The diagonal elements in the model (1) are eliminated by the following change of variables:

\[c_1 = a_1 \exp \left(i \int_0^t \varepsilon dt \right), \]
\[c_2 = a_2 \exp \left(-i \int_0^t \varepsilon dt \right). \]

Then, the Schrödinger equation is expressed as

\[ic_{1t} = V \exp \left(2i \int_0^t \varepsilon dt \right) c_2, \]
\[ic_{2t} = V \exp \left(-2i \int_0^t \varepsilon dt \right) c_1. \]

By combining these two equations, we obtain the second-order differential equations for \(c_1 \) and \(c_2 \) respectively as

\[c_{1tt} + \left(-2i \varepsilon(t) - \frac{V}{V} \right) c_{1t} + V^2 c_1 = 0, \]
\[c_{2tt} + \left(2i \varepsilon(t) - \frac{V}{V} \right) c_{2t} + V^2 c_2 = 0. \]

It should be noted that the equation for \(c_2 \) is obtained by replacing \(\varepsilon(t) \) by \(-\varepsilon(t)\) in (8). Hence, once the solution of the equation for \(c_1 \) is obtained, the solution for \(c_2 \) is easily obtained by reversing the sign of the parameters in \(\varepsilon(t) \).

The above discussion is general. Now, we consider the specific model given by (2) and (3). By substituting these specific forms of \(\varepsilon(t) \) and \(V(t) \) into (8) and adopting the change of variable as

\[z(t) = \frac{\sinh(t/T) + i}{2i}, \]

equation (8) can be reduced to the differential equation of the hypergeometric function [22],

\[z(1 - z)c_{1zz} + (\gamma - (1 + \alpha + \beta)z)c_{1z} - \alpha \beta c_1 = 0. \]

Here, the parameters, \(\alpha, \beta \) and \(\gamma \), are determined as

\[\alpha = iT(-E_1 + \sqrt{E_1^2 + V_0^2}), \]
\[\beta = iT(-E_1 - \sqrt{E_1^2 + V_0^2}), \]
\[\gamma = \frac{1}{2} + E_0T - iE_1T. \]

In the same way, equation (9) is reduced to the hypergeometric differential equation with the parameters

\[\alpha' = iT(E_1 + \sqrt{E_1^2 + V_0^2}), \]
Analytic calculation of nonadiabatic transition probabilities

\[\beta' = iT(E_1 - \sqrt{E_1^2 + V_0^2}), \]

\[\gamma' = \frac{1}{2} - E_0T + iE_1T. \]

As already mentioned, these parameters are obtained by replacing \(E_0 \) and \(E_1 \) by \(-E_0\) and \(-E_1\) respectively in (12)-(14). In the following calculation, related to the calculation for \(c_2 \), the prime indicates that it is obtained by reversing the sign of \(E_0 \) and \(E_1 \) from the original quantity without the prime.

From (10), it can be easily seen that the variable \(|z| \rightarrow \infty\) as \(|t| \rightarrow \infty\). Hence, for discussion about the initial state it is convenient to consider the fundamental solutions around \(z = \infty \) as

\[c_1 = A_1 f_\infty(z; \alpha) + A_2 f_\infty(z; \beta), \]

\[c_2 = B_1 f_\infty(z; \alpha') + B_2 f_\infty(z; \beta'), \]

where \(f_\infty(z; \alpha) \) and \(f_\infty(z; \beta) \) are expressed in terms of the hypergeometric functions as

\[f_\infty(z; \alpha) = z^{-\alpha} F(\alpha, \alpha - \gamma + 1, \alpha - \beta + 1; 1/z), \]

\[f_\infty(z; \beta) = z^{-\beta} F(\beta - \gamma + 1, \beta, \beta - \alpha + 1; 1/z), \]

with similar definitions for \(f_\infty(z; \alpha') \) and \(f_\infty(z, \beta') \). Since \(\alpha \) and \(\beta \) are pure-imaginary in the present model, we have to choose \(\text{arg}(z) \) to determine the branch. In this paper, we choose

\[\arg(z) = \begin{cases} \pi/2 & (t \rightarrow -\infty) \\ -\pi/2 & (t \rightarrow +\infty) \end{cases}. \]

In order to decide the initial state, it is sufficient to study the limit \(|z| \rightarrow \infty\), in which case we obtain

\[c_1 \rightarrow A_1 z^{-\alpha} + A_2 z^{-\beta}, \]

\[c_2 \rightarrow B_1 z^{-\alpha'} + B_2 z^{-\beta'}. \]

From (10), (23) and (24), \(A_1 \)'s and \(B_1 \)'s are determined.

To obtain the transition probability, we assume that the initial state is the ground state of the Hamiltonian in the limit \(t \rightarrow -\infty \),

\[H = \begin{pmatrix} -E_1 & V_0 \\ V_0 & E_1 \end{pmatrix}. \]

It may be noted that the off-diagonal elements in (25) do not vanish. Consequently the ground state wavefunction does not correspond to \(|a_1| = 1 \) and \(a_2 = 0 \) as it appears in the usual models. The time-evolution of the ground-state wave function is obtained generally as

\[\begin{pmatrix} a_1(t) \\ a_2(t) \end{pmatrix} = \begin{pmatrix} A \\ -A' \end{pmatrix} e^{-i(-\sqrt{E_1^2 + V_0^2})t + i\varphi}, \]

where

\[A = \sqrt{\frac{E_1 + \sqrt{E_1^2 + V_0^2}}{2\sqrt{E_1^2 + V_0^2}}}, \quad A' = \sqrt{\frac{-E_1 + \sqrt{E_1^2 + V_0^2}}{2\sqrt{E_1^2 + V_0^2}}}. \]
The solution (26) includes an arbitrary phase factor φ, which is chosen zero in this paper. From (26), the time-evolutions of c_1 and c_2 in the limit $t \to -\infty$ can be easily evaluated as

$$c_1(t) = a_1(t) \exp \left(i \int_0^t \varepsilon dt \right) \to Ae^{-i \left(E_1 - \sqrt{E_1^2 + V_0^2} \right) t - i \phi_0 - i \phi_1},$$

$$c_2(t) = a_2(t) \exp \left(-i \int_0^t \varepsilon dt \right) \to -A'e^{-i \left(-E_1 - \sqrt{E_1^2 + V_0^2} \right) t + i \phi_0 + i \phi_1},$$

where the phase factors are given as

$$\phi_0 = TE_0 \frac{\pi}{2}, \quad \phi_1 = TE_1 \log 2.$$

(30)

By using (10) and by comparing (28)-(29) with (23)-(24), the constants, A_i's and B_i's are determined as

$$A_1 = Ae^{i \pi \alpha / 2 - i \phi_1 - i \phi_0 - i \varphi_1}, \quad A_2 = 0,$$

$$B_1 = -A'e^{i \pi \alpha'/2 + i \phi_0 + i \phi_1}, \quad B_2 = 0,$$

(31)

(32)

where the phase factors, φ_1 and φ'_1, are given as

$$i \varphi_1 = 2 \alpha \log 2, \quad i \varphi'_1 = 2 \alpha' \log 2,$$

(33)

though these are not relevant to the calculation of the transition probability.

By the choice of the initial condition, the time-evolution has been described only by the fundamental solution $f_\infty(z; \alpha)$ around $z = \infty$. To be more accurate, around $z = i \infty + 1/2$ (corresponding to $t \to -\infty$) denoted by the point P in Fig. I (a), the solution is given by

$$c_1(z) = A_1 f_\infty(z; \alpha),$$

$$c_2(z) = B_1 f_\infty(z; \alpha').$$

(34)

(35)

On the other hand, the final state is given by the solution of the hypergeometric differential equation around $z = -i \infty + 1/2$ (corresponding to $t \to \infty$) denoted by the point Q in Fig. I (a). The path $z(t)$ in the complex plane is also drawn in Fig. I. Then, the solution around the point Q analytically continued from the point P does not equal to (34) and (35); The solution is expressed as linear combinations of the fundamental solutions around $z = \infty$. This is crucial to the calculation of the transition probability.

In order to make the situation clearer, let us deform the path of z as shown in Fig. I (b). In this deformed path, the analytic continuation of the solution is divided into two parts, C_1 and C_2. Here, the path C_1 denotes a round trip to the singular point at $z = 1$, while the path C_2 is a half round trip around $z = \infty$ in the clockwise direction. The analytic continuation along the path C_2 is easily performed, and determined only by the fundamental solutions around $z = \infty$. On the other hand, the analytic continuation along the path C_1 is nontrivial, and determined by the global character of the differential equation called the 'monodromy'. The monodromy is expressed by the monodromy

\[\text{null} \]
matrices as
\[
\gamma(C_1) (f_\infty(z;\alpha), f_\infty(z;\beta)) = (f_\infty(z;\alpha), f_\infty(z;\beta)) R,
\]
where \(\gamma(C_1)\) denotes the analytic continuation along the path \(C_1\). Denoting the matrix elements of \(Q\) and \(Q'\) as
\[
R = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad R' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix},
\]
the solutions around the point \(Q\) can be expressed by
\[
\gamma(C_1) (c_1(z)) = \gamma(C_1) (A_1 f_\infty(z;\alpha)) \\
= A_1 a f_\infty(z;\alpha) + A_1 c f_\infty(z;\beta),
\]
where
\[
\gamma(C_1) (c_2(z)) = \gamma(C_1) (B_1 f_\infty(z;\alpha')) \\
= B_1 a' f_\infty(z;\alpha') + B_1 c' f_\infty(z;\beta').
\]
Here, as shown below, the first (second) term in the final entries of (39) and (40) corresponds to the excited (ground) state in the limit \(t \to \infty\). Hence, in the calculation of the transition probability, only the element \(a (a')\) is relevant. This matrix element is calculated explicitly in the next section.

Let us end this section by deriving the formula for the transition probability, using the monodromy matrix elements. In the limit \(t \to \infty\), the equations, (39) and (40), are evaluated as
\[
c_1(t) \to a A_1 e^{i \varphi + i \pi \alpha / 2} e^{-i \left(E_1 + \sqrt{E_1^2 + V_0^2} \right) t} + \ldots,
\]
\[
c_2(t) \to a B_1 e^{i \varphi' + i \pi \alpha' / 2} e^{-i \left(-E_1 + \sqrt{E_1^2 + V_0^2} \right) t} + \ldots.
\]
Here, we have suppressed the second term corresponding to the ground state. From these equations, the components of the wave function \(\Psi(t) = (a_1(t), a_2(t))^T\) is obtained in the limit \(t \to \infty\) as
\[
a_1(t) = c_1(t) \exp \left\{ -i \int_0^t \varepsilon(t) dt \right\}
\]
Analytic calculation of nonadiabatic transition probabilities

\[a_2(t) = c_2(t) \exp \left\{ +i \int_0^t \varepsilon(t) dt \right\} \]

\[\rightarrow a' B_1 e^{i \omega' + i \pi \alpha' - i \phi_1 + i \phi_0} e^{-i \sqrt{E_1^2 + V_0^2} t} + \ldots. \]

By substituting (31) and (32), the wave function \(\Psi(t) \) is evaluated as

\[\Psi(t) \rightarrow \left(a A e^{-2i \phi_0 + i \pi \alpha} - a' A' e^{2i \phi_0 + i \pi \alpha'} \right) e^{-i \sqrt{E_1^2 + V_0^2} t} + \ldots. \]

On the other hand, the Hamiltonian and the wave function of the excited state \(\Psi_{E.S.} \) in the limit \(t \to \infty \) are given as

\[H = \begin{pmatrix} E_1 & V_0 \\ V_0 & -E_1 \end{pmatrix}, \quad \Psi_{E.S.} = \begin{pmatrix} A \\ A' \end{pmatrix}, \]

where \(A \) and \(A' \) are given by (27). Then, the transition probability is calculated as

\[P = |\Psi(t \to \infty) \cdot \Psi_{E.S.}|^2 \]

\[= \left| a A^2 e^{i \pi \alpha - 2i \phi_0} - a' A'^2 e^{i \pi \alpha' + 2i \phi_0} \right|^2 \]

\[= \left| \frac{\varepsilon_1}{2 \sqrt{\varepsilon_1^2 + v^2}} \left(a e^{\varepsilon_1 - \sqrt{\varepsilon_1^2 + v^2} e^{-i \varepsilon_0}} + a' e^{-\varepsilon_1 - \sqrt{\varepsilon_1^2 + v^2} e^{i \varepsilon_0}} \right) \right|^2, \]

where in the final equation we have introduced new variables,

\[\varepsilon_0 = \pi T E_0, \quad \varepsilon_1 = \pi T E_1, \quad v = \pi T V_0. \]

The last equation (47) can be used for the practical evaluation of the transition probability. The remaining task is to calculate the elements of the monodromy matrices.

3. Calculation of the transition probability

One may identify several ways to calculate the monodromy matrices of the hypergeometric differential equations [27]. Here, we briefly explain the simplest way.

To determine the monodromy matrix, it is crucial to use the integral representation of the hypergeometric function. By defining the integral

\[F_{pq}(z) = \int_0^q dt \ t^{\alpha-\gamma}(1-t)^{\gamma-\beta-1}(z-t)^{-\alpha}, \]

the following relations hold:

\[F_{1\infty} = c_{1\infty} f_0(z; 0), \quad F_{0z} = c_{0z} f_0(z; 1 - \gamma), \]

\[F_{\infty 0} = c_{\infty 0} f_1(z; 0), \quad F_{1z} = c_{1z} f_1(z; \gamma - \alpha - \beta), \]

\[F_{01} = c_{01} f_{\infty}(z; \alpha), \quad F_{z\infty} = c_{z\infty} f_{\infty}(z; \beta), \]

where \(f_0, f_1 \) and \(f_{\infty} \) denote the fundamental solutions of the hypergeometric differential equations around \(z = 0, 1, \infty \), respectively. Here, the constants, \(c_{pq} \)'s, depend only on
Analytic calculation of nonadiabatic transition probabilities

α, β and γ, and their explicit expressions are irrelevant to the present calculation. By applying the Cauchy’s theorem to the integral in eq. (19), the following linear relations may be identified:

$$F_{01} + F_{1\infty} + F_{\infty0} = 0,$$

(53)

$$F_{01} - F_{0z} + F_{1z} = 0,$$

(54)

$$e(\beta - \gamma + 1)F_{1\infty} - F_{1z} - e(-\alpha)F_{z\infty} = 0,$$

(55)

$$e(\alpha - \gamma)F_{\infty0} + F_{0z} + F_{z\infty} = 0,$$

(56)

where $e(\cdot) = \exp(2\pi i \cdot)$. By eliminating $F_{1\infty}$ and F_{0z}, we obtain

$$(F_{01}, F_{z\infty}) = (F_{\infty0}, F_{1z}) S,$$

(57)

$$S = \frac{e(-\alpha) - e(\beta - \gamma)}{e(-\beta - e(\gamma)} \cdot \left(\begin{array}{cc}
e(\beta - \gamma) - e(-\gamma) & e(\alpha + \beta - 2\gamma) - e(\beta - \gamma) \\
1 - e(-\alpha) & e(\beta - \gamma) - 1 \end{array} \right).$$

(58)

On the other hand, since the solution pair $(F_{\infty0}, F_{1z})$ is related to the fundamental solutions around $z = 1$, the monodromy matrix for this pair is easily obtained as

$$\gamma(C_1)(F_{\infty0}, F_{1z}) = (F_{\infty0}, F_{1z}) \Gamma, \quad \Gamma = \left(\begin{array}{cc}1 & 0 \\
0 & e(\gamma - \alpha - \beta) \end{array} \right).$$

(59)

Combining (58) and (59), the monodromy matrix for $(F_{\infty0}, F_{1z})$ is given as

$$\gamma(C_1)(F_{01}, F_{z\infty}) = (F_{01}, F_{z\infty}) \tilde{R}$$

(60)

$$\tilde{R} = \left(\begin{array}{cc}\tilde{a} & \tilde{b} \\
\tilde{c} & \tilde{d} \end{array} \right) = S^{-1} \Gamma S.$$

(61)

This result is easily related to the fundamental solutions, $f_{\infty}(z; \alpha)$ and $f_{\infty}(z; \beta)$, by (52) as

$$\gamma(C_1) \begin{pmatrix} f_{\infty}(z, \alpha), c_{\infty} \\
c_{01} \end{pmatrix} = \begin{pmatrix} f_{\infty}(z, \alpha), c_{\infty} \end{pmatrix} \tilde{R}. $$

(62)

By comparing the above with the original monodromy matrix (36) along with (38), we finally obtain $a = \tilde{a}$ ($d = \tilde{d}$). So, as far as a is concerned, we only need to calculate \tilde{R}. This can be performed by straightforward but slightly lengthy calculation. As a result, we obtain the matrix element a as

$$a = \frac{e(\beta - \gamma) - e(-\gamma) + e(\alpha) - 1}{e(\beta - \gamma) - e(\alpha - \gamma)}. $$

(63)

The matrix element a' for the solution c_2 is easily obtained by reversing the sign of E_0 and E_1 in the result (33). From the result for a and a', the transition probability P is obtained from (47) as

$$P = \frac{\sinh^2(\pi T E_1) \cos^2(\pi T E_0)}{\sinh^2(\pi T \sqrt{E_1^2 + V_0^2})} + \frac{\cosh^2(\pi T E_1) \sin^2(\pi T E_0)}{\cosh^2(\pi T \sqrt{E_1^2 + V_0^2})}. $$

(64)
Let us discuss the nature of this result. The transition probability oscillates as the sech-form pulse area, $\pi T E_0$, changes; the transition probability has minimum and maximum values as a function of E_0 as

\begin{align}
P_{\text{min}} &= \frac{\sinh^2(\pi T E_1)}{\sinh^2(\pi T \sqrt{E_1^2 + V_0^2})}, \quad \text{for } \pi T E_0 = n\pi, \\
P_{\text{max}} &= \frac{\cosh^2(\pi T E_1)}{\cosh^2(\pi T \sqrt{E_1^2 + V_0^2})}, \quad \text{for } \pi T E_0 = (n + 1/2)\pi,
\end{align}

where n is an integer. The oscillation behavior of P for E_0 is drawn in Fig. 2 (a).

The amplitude of this oscillation becomes small as E_1 increases. This feature is shown in Fig. 2 (b). In the case $E_1 T \gg \max(V_0 T, 1)$, we obtain the ordinary Landau-Zener formula

\[P = e^{-\sqrt{V_0^2/2E_1}} \]

independent of E_0.

Finally, we show that the results in the limiting cases coincide with the known results. In the limit $E_1 \to 0$, the transition probability is given as

\[P = \frac{\sin^2(\pi T E_0)}{\cosh^2(\pi TV_0)}, \]

which corresponds to the Rosen-Zener formula [3]. In the limit $E_0 \to 0$, the transition probability is given as

\[P = \frac{\sinh^2(\pi T E_1)}{\sinh^2(\pi T \sqrt{E_1^2 + V_0^2})}. \]
In this case, the present model is related to the second model in Demkov and Kunike’s paper \cite{7}, which corresponds to the form
\[\varepsilon(t) = a + b \tanh(t/T), \]
\[V(t) = c. \] (69)
Their result for $a = 0$ corresponds to the result (68).

4. Application of monodromy to multi-level problems

The application of the monodromy matrix to the transition probability is not restricted to the hypergeometric functions. The monodromy approach is also applicable to the differential equations whose monodromy is known. To show such an example, we consider the multi-level problem. We expect that more solvable classes can be found by using the present approach.

In this section, we treat the following time-dependent Hamiltonian:
\[H_{ij} = \begin{cases}
\varepsilon(t) & (i = j = 1) \\
V_j & (i = 1 \text{ and } 2 \leq j \leq N) \\
V_i & (j = 1 \text{ and } 2 \leq i \leq N) \\
0 & (\text{otherwise})
\end{cases}, \] (71)
where the time-dependent part $\varepsilon(t)$ is given as
\[\varepsilon(t) = E_1 \tanh(t/T), \] (72)
and V_j’s (2 $\leq j \leq N$) are constants. It should be noted that in the limit $E_1 T \to \infty$, this model is reduced to the extended Landau-Zener model studied by several authors \cite{23, 24, 25, 26}. To eliminate the diagonal element of the Hamiltonian the wave function denoted by $\Psi(t) = (a_1, a_2, \cdots, a_N)^T$ is transformed into new variables as
\[c_i = \begin{cases}
a_1 \exp \left(i \int_0^t \varepsilon dt \right) & (i = 1) \\
a_i & (2 \leq i \leq N)
\end{cases}, \] (73)
The integral in the exponent is then calculated as
\[i \int_0^t \varepsilon dt = i E_1 T \log(\cosh t/T). \] (74)
Thus, the Schrödinger equation is obtained as
\[Tc_{i,t} = \begin{cases}
\sum_{j=2}^{N} v_j (\cosh t/T)^{2\varepsilon_1} c_j & (i = 1) \\
v_i (\cosh t/T)^{-2\varepsilon_1} c_1 & (2 \leq i \leq N)
\end{cases}, \] (75)
where
\[\varepsilon_1 = i E_1 T/2, \quad v_j = -i V_j T. \] (76)
By changing the time variable as $z = \sinh(t/T)$, the equations are modified as
\[\frac{dc_i}{dz} = \begin{cases}
\sum_{j=2}^{N} v_j (1 + z^2)^{\varepsilon_1 - 1/2} c_j & (i = 1) \\
v_i (1 + z^2)^{-\varepsilon_1 - 1/2} c_1 & (2 \leq i \leq N)
\end{cases}. \] (77)
We make a further change of variables as

\[
d_i = \begin{cases}
(1 + z^2)^{-\frac{\varepsilon_1}{2}} \epsilon_1^{-1/2} c_1 & (i = 1) \\
v_i c_i - \lambda_i \left(\frac{\varepsilon_1 + \frac{1}{2}}{z + i} \right) \frac{z - i}{z + i} d_1 & (2 \leq i \leq N)
\end{cases},
\]

(78)

where \(\lambda_j \)'s are arbitrary constants satisfying

\[
\sum_{j=2}^{N} \lambda_j = 1.
\]

(79)

Consequently, we finally obtain

\[
(z - i) \frac{d d_1}{dz} = - \left(\varepsilon_1 + \frac{1}{2} \right) d_1 + \sum_{j=2}^{N} d_j,
\]

(80)

and for \(2 \leq i \leq N \)

\[
(z + i) \frac{d d_i}{dz} = \lambda_i \left(\varepsilon_1^2 + v_i^2 - \frac{1}{4} \right) d_1 - d_i - \lambda_i \left(\varepsilon_1 + \frac{1}{2} \right) \sum_{j=2}^{N} d_j.
\]

(81)

This is the Okubo equation expressed by

\[
(z I - C) \frac{d \vec{d}}{dz} = A \vec{d},
\]

(82)

where \(I \) is the identity operator, \(C \) is a diagonal matrix, and \(A \) is a general matrix. This equation has been studied by Okubo in detail [27], and it is known that this form of equation is convenient to study the monodromy.

Thus, it has been shown that at least one specific model of multi-level systems can be reduced to the differential equation whose monodromy is known. Actual calculation of the transition probability needs explicit treatment of the monodromy matrices, and remains as a future problem. The present discussion for multi-level systems is preliminary, and more detailed study will be needed to clarify the efficiency of the monodromy approach.

5. Summary

We have calculated the transition probability for the Hamiltonian including the tanh-type plus sech-type energy difference with constant off-diagonal elements. The obtained result gives the natural connection between the known results, the Rosen-Zener model and the second Demkov-Kunike model. This model also includes the Landau-Zener formula in the limit of the large amplitude of the tanh-type energy difference.

In our calculation, the monodromy of the hypergeometric functions is essential. We have shown that the monodromy approach is also applicable to the multi-level problems. We expect that the use of the monodromy in the calculation of the transition probability does not only help in finding more solvable models but also connects global properties of the differential equation with the physical phenomena. Details of calculation especially for the multi-level problem remain as future problems.
Acknowledgments

We thank H. Nakamura for helpful comments on the model Hamiltonian. M.L. expresses many thanks to DST(India) and JSPS(Japan) for a JSPS Invitation Fellowship which enabled him to visit Osaka City University during October-November 2002. His work is also supported by the Department of Science and Technology(DST), Government of India. K.N. and T.K. are also grateful to JSPS for the financial support of the Fundamental Research, C-2, No. 13640391, entitled ”Quantum Transport in Quantum Chaotic Systems.”

Appendix A. Solvable classes

The model considered in the main part of this paper belongs to one solvable class called class 1 below. It can be given as

\[\varepsilon(t) = \frac{E_0 T + E_1 T y}{1 + y^2} dy/dt, \]
\[V(t) = \frac{V_0 T}{\sqrt{1 + y^2}} dy/dt, \]

where \(y(t) \) is an ‘arbitrary’ monotonically increasing function satisfying \(y(t) \to \pm \infty \) for \(t \to \pm \infty \). When we adopt \(y(t) = \sinh(t/T) \), we obtain (2) and (3). For this class, the Schrödinger equation can be reduced to the same hypergeometric differential equation (11) through the change of variable \(z(t) = (y(t) + i)/2i \) [14]. Hence, all models of this class give the same transition probability (64). In this class, however, we have to define the transition probability carefully. In the limit \(t \to -\infty \) \((y \to -\infty) \), the matrix elements become

\[\varepsilon(t) \to \frac{E_1 T}{y} \frac{dy}{dt}, \]
\[V(t) \to -\frac{V_0 T}{y} \frac{dy}{dt}. \]

Hence, the wave function of the ground state in this limit has mixed components as treated in §2. The initial state is taken as the ground state in this limiting Hamiltonian, and the transition probability is defined as square of modulus of the final amplitude of the excited states.

The application of the monodromy is not restricted to the class 1. As discussed by Ishkhanyan [14], as long as the complex path \(z(t) = (y(t) + i)/2i \) is used, the calculation by the monodromy is efficient. For example, the following solvable class can be considered:

\[\varepsilon(t) = \frac{E_0 T + E_1 T y}{1 + y^2} dy/dt, \]
\[V(t) = \frac{V_0 T}{1 + y^2} dy/dt. \]

This class, called here the class 2, has been first studied by Carroll and Hioe [13]. There, the transition probability has been calculated by solving the Riemann-Papperitz
equation without resorting to the monodromy. By following the Ishkhanyan’s discussion, however, our monodromy approach is also efficient for the class 2, and gives an alternative method.

References

[1] Landau L D 1932 Phys. Z. Sov. 2 46
[2] Zener C 1932 Proc. R. Soc. A 137 696
[3] Rosen N and Zener C 1932 Phys. Rev. 40 502
[4] Rabi I I 1937 Phys. Rev. 51 652
[5] Nikitin E E 1962 Opt. Spektrosk. 13 761 (Engl. transl. Opt. Spectrosc. 13 431)
[6] Demkov Yu N 1963 Zh. Eksp. Teor. Fiz. 45 195 (Sov. Phys.-JETP 18 138)
[7] Demkov Yu N and Kunike M 1969 Vestn. Leningr. Univ. Fis. Khim. 16 39; Suominen K-A and Garraway B M 1992 Phys. Rev. A 45 374
[8] Bambini A and Berman P R 1981 Phys. Rev. A 23 2496
[9] Bambini A and Lindberg M 1984 Phys. Rev. A 30 794
[10] Hioe F T 1984 Phys. Rev. A 30 2100
[11] Hioe F T and Carroll C E 1985 Phys. Rev. A 32 1541
[12] Hioe F T and Carroll C E 1985 J. Opt. Soc. Am. B 2 497
[13] Carroll C E and Hioe F T 1986 J. Phys. A: Math. Gen. 19 3579
[14] Ishkhanyan A M 2000 Opt. Commun. 176 155
[15] Allen L and Eberly J H 1975 Optical Resonance and Two-Level Atoms (New-York: Wiley)
[16] Nikitin E E and Umanskii S Ya 1984 Theory of Slow Atomic Collisions (Berlin: Springer Verlag)
[17] Stenholm S 1996 Simple quantum dynamics Quantum Dynamics of Simple Systems - The Forty Fourth Scottish Universities Summer School in Physics (Great Britain: The Scottish Universities Summer School in Physics) ed G.-L. Oppo et al
[18] Nakamura H 2002 Nonadiabatic Transition: Concepts, Basic Theories and Applications (Singapore: World Scientific)
[19] Nielsen N A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[20] Chudnovsky E M and J. Tejada 1998 Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge: Cambridge University Press)
[21] Iwasaki K, Kimura H, Shimomura S and Yoshida M 1991 From Gauss to Painlevé - A Modern Theory of Special Functions (Germany: Vieweg)
[22] Murphy G M 1960 Ordinary Differential Equations and Their Solutions (Princeton: D. Van Nostrand Campany) p. 327.
[23] Bohr A and Mottelson B R 1953 Mat. Fys. Medd. 27 1
[24] Fano U 1961 Phys. Rev. 124 1866
[25] Demkov Yu N and Osherov V L 1967 Zh. Eksp. Teor. Fiz. 53 1589 (Sov. Phys.-JETP 26 916)
[26] Bixon M and Jortner J 1968 J. Chem. Phys. 48 715
[27] Okubo K 1987 On the Group of Fuchsian Equations - Seminar Report (Tokyo: Junior College of Elector-communications)