C4 rice: Gateway to the second green revolution

Biswajit Lenka, Ankit Moharana, Nagiri Kishor Kumar, Manoranjan Senapati, Awnish Kumar and Nayee Sagarkumar Jitendrakumar

DOI: https://doi.org/10.22271/chemi.2020.v8.i6v.10975

Abstract

Rice is a staple food crop for more than 50% of world population. The demand for food grain is increasing day by day with the population growth across the globe. Production of cereals and other food grains accelerated with the onset of green revolution. By 2050 there would be a demand of 1310 million tonnes of rice and such a huge target could not be achieved with the first green revolution. So there is a call for increasing the production manifold which can be made possible through installing the C4 photosynthetic pathway into C3 crops like rice. C4 photosynthesis is much more efficient than the C3 system due to its carbon dioxide tunneling system and negligible photorespiration. Crops with an enhanced photosynthetic mechanism would better utilize the solar radiation that can be translated into yield. This review throws light on the basic biochemistry and physiology for which C4 differs from C3 and provides a summary of the several approaches for C4 rice engineering so that the pathway can be introduced successfully.

Keywords: Green revolution, carbon dioxide tunneling, photorespiration, photosynthesis, C3 and C4 system, C4 rice engineering

Introduction

Rice (Oryza sativa) a member of the grass family is the most important crop globally in terms of the number of people who depend upon it as the primary source of nutrition. It serves as the staple food source for people in East and South-East Asia. The green revolution started in 1960s led to rapid increase in rice grain production but it has been realized that the gain from the revolution have already exhausted. Like most crop species rice carries out C3 photosynthesis but the highest yielding crops are often those which carry out C4 photosynthesis such as corn, sorghum and sugarcane. A proposal was made to introduce C4 photosynthetic machinery into C3 plants such as rice, which could enhance the yield by 50-60%, with a simultaneous increase in nitrogen and water use efficiencies (Langdale, 2011; Hibberd et al., 2008) 6, 9-11, 26, 31, 43-44. Elevated partial pressure of carbon dioxide (CO2) at the site of ribulose bisphosphate carboxylase oxygenase (RuBisCO) in the bundle sheath cells is reported in the case of plants carrying out C4 pathway. C3 photosynthesis has evolved independently more than 60 times, providing one of the most effective solutions for overcoming the catalytic inefficiency of RuBisCO (Sage et al., 2012; Christin and Osborne, 2013) 13, 19, 33-35. By virtue of their superior nitrogen and water use efficiency, transfer of C4 photosynthetic traits has been proved to be an efficient strategy for improving C3 photosynthesis (Sage, 2004; Miyao et al., 2011) 19, 21-22, 33-35. Use of transformation technology paved the way for introducing C4 photosynthetic genes into C3 species (Hausler et al., 2002; Miyao, 2003) 7, 21, 22.

Fundamentals of C3 and C4 photosynthesis

In general C3 cycle the carbon dioxide combines with Ribulose 1, 5-Biphosphate (RuBP) in the presence of an enzyme RuBisCO and thus fixed into a three-carbon compound known as 3-phosphoglycerate (3PGA) which further yields a molecule of sugar accompanied by regeneration the RuBP (Bassham et al., 1956) 1. This is accomplished by a battery of enzymes which utilize the ATP and reducing equivalents (NADPH) generated earlier using sunlight. Under high temperature or high light intensity, RuBisCO develops more affinity towards oxygenase activity. This phenomenon of increased respiratory activity called photorespiration leads to loss of carbon which is the fundamental reason behind the lower photosynthetic efficiency in C3 plants.

Corresponding Author:
Biswajit Lenka
Ph.D. Scholar, Department of Genetics and Plant Breeding, Junagadh Agricultural University, Junagadh, Gujarat, India

© 2020 IJCS
Received: 14-08-2020
Accepted: 02-10-2020
C₃ plants carry out carbon fixation in two morphologically distinct cell types, namely the mesophyll cells (M cell) and bundle sheath cells (BS cell) (Figure 1). In C₃ plants phosphoenol pyruvate (PEP) is primary acceptor of CO₂ which upon fixation yields in a 4C organic acid oxalo acetic acid (OAA) catalyzed by PEP carboxylase (PEPC). OAA is then transferred to BS cell where it is decarboxylated to produce a 3C compound (pyruvate) and a molecule of carbon dioxide which is again fixed through the C₃ pathway. This process recurs to build up a high gradient of CO₂ near RuBisCO site in the bundle sheath cell and hence arresting oxygenase activity of the enzyme bringing photospiration to negligible levels. Though both cell types are arranged in a wreath like structure for better contact with each other, still C₄ system needs a set of complex transporters and high energy to carry out photosynthesis efficiently (Langdale, 2011) [6, 11, 26, 31, 43].

Three different biochemical subtypes of C₄ pathway have been identified based upon differences in subcellular localization, transported acids and C₄ acid decarboxylase used. All the three subtypes of the C₄ pathway yield OAA as the primary fixation product. In NADP-Malic enzyme (ME) type, OAA is converted to malate and the decarboxylase used is NADP-ME. The C₄ acid decarboxylase used in NADP-ME enzyme (ME) type is NAD-ME and PEP-CK in the PEP-CK type. This classification is not considered as a robust one as because PEP-CK activity has also been reported in crop like maize which is an example of NADP-ME type plant (Furbank, 2011) [5]. NADP-ME pathway has been considered for engineering C₄ rice (Figure 2).

What makes C₅ plants metabolically superior?
The higher photosynthetic efficiency of the C₅ plants could be attributed to their carbon dioxide concentrating mechanism which is based on arrangement of the mesophyll and the bundle sheath cells and the compartmentalization of enzymes into these two different cell types. Reduced photorespiration adds to the higher efficiency of these plants by reducing loss of carbon as well as energy. Biochemically this might be achieved either by phosphorylation of conserved serine residue in N-terminal of PEPC or by the PPDK regulatory protein (a kind of phosphatase) catalyzing ADP dependent inactivation of PPDK (Yokota and Shigeoka, 2008; Tiwari et al., 2005) [39, 40]. However it would be wrong if we say C₅ plants entirely eliminate photorespiration. Maize mutants deficient for glycylate oxidase (a key enzyme in photospiration) are seedling lethal at normal carbon dioxide concentration and are able to survive only at carbon dioxide levels that are inhibitory to photorespiration (Zelitch et al., 2009) [47]. This indicates that early stages of pathway are functional in mutant and buildup of glycylate is toxic.

Biochemical basis of C₅ photosynthesis
The major biochemical difference between C₃ and C₅ photosynthesis is the CO₂ concentrating mechanism found in the C₅ photosynthesis which increases the CO₂ concentration at the RuBisCO site. As a result of the CO₂ concentrating mechanism photorespiration is reduced and net CO₂ fixation rate increases. Photorespiration otherwise known as C₂ cycle is an ATP consuming process which usually operates in the C₃ plants relies upon the collaboration of two specialized cell types, i.e. the bundle sheath (BS) and the mesophyll (M) cells. The concentration of RubisCO is high in the bundle sheath cells; whereas in mesophyll cells, both the concentration of PEP carboxylase (PEPC) as well as PSII and PSI activities are maintained at high levels (Sage, 2004) [19, 24]. C₅ plants have also evolved an efficient metabolite transportation system between the two cell types (Leegood, 1999) [19, 24]. Furthermore, the cell wall of bundle sheath cells are thickened to form a Kranz structure popularly known as "Kranz anatomy" (Sage, 2004) [19, 33, 35] (Figure 3).
The monson family of models for C₄ evolution

The evidence from the many C₄ lineages consistently supports gradual models of C₄ origin, with a critical intermediate role for a glycine shuttle that concentrates photorespired CO₂ into a BS-like compartment (Monson and Rawsthorne, 2000; Sage et al., 2012; Williams et al., 2013). The glycine shuttle CCM was first proposed by Monson et al., (1984) to explain the photosynthetic physiology of the C₃-C₄ intermediate species known at that time (Rawsthorne et al., 1988; Rawsthorne, 1992). For easy understanding, the model is presented as a flow diagram that describes the transition from C₃ to C₄ through a series of intermediate phases which correspond to known physiological states in existing lineages. Three distinct intermediate phases are delineated named (i) proto-Kranz, (ii) C₂ photosynthesis or the photorespiratory glycine shuttle, and (iii) C₄-like photosynthesis (Figure 4).

Fig 3: Diagrams of classical forms of C₄ Kranz anatomy drawn from (A) C₄ grass (Panicum capillare) and (B) C₄ eudicot Atriplex rosea (Source: Sage et al., 2014) [19, 33-35]

Fig 4: A diagram illustrating the evolutionary progression from C₃ to C₄ photosynthesis via three distinct phases termed proto-Kranz, C₂ photosynthesis (C₂), and C₄-like photosynthesis (Source: Sage et al., 2014) [19, 33-35]
Engineering C₄ machinery into C₃ crops is feasible

C₄ enzymes have their counterparts in C₃ plants. Roots of C₄ plants show significant thickening and suberisation of cell walls in the endodermis which resembles the cell wall in bundle sheath cells (Hibberd, 2007) [6, 8-11, 26, 31, 43-44]. Production of four carbon compounds and allied carbon fixation reactions observed in C₄ plants are already used within guard cells (Tallman, 2004) [37]. Thus practically C₃ plants possess the basic biochemical and anatomical elements required to construct the C₄ photosynthetic machinery. Characteristics of C₄ photosynthesis was reported in cells around the vascular tissues in tobacco plant (Brown et al., 2010; Hibberd and Quick, 2002) [6, 8-11, 26, 31, 43-44, 47]. The most convincing evidence supporting feasibility of C₄ rice engineering is the transition between C₃ and C₄ photosynthesis reported in Eleocharis vivipara in different environmental conditions (Ueno, 1996; Ueno et al., 1988) [40, 41]. Eleocharis vivipara develops C₄ anatomy in submerged leaves and C₃ anatomy in aerial leaves. Transition of Eleocharis vivipara into C₄ can be induced by the use of ABA. Flavaria brownii plants grown in higher light intensities are more C₄ like than those grown in lower light intensities (Monson et al., 1987) [19, 22-25]. Vicentini et al., (2008) [42] found a cluster of C₃ origin in the Mid-Miocene was associated with an increase in temperature, suggesting the relative ease of the C₃ to C₄ transition once this type of photosynthesis conferred competitive advantage over the C₃ type. C₃ system of photosynthesis operates as a default system prior to appearance of mature Kranz anatomy (Miranda et al., 1981; Dengler and Dengler, 1990) [4, 20]. All these above cited evidences suggest that understanding basic mechanisms regulating expression of key genes involved in C₄ photosynthesis is a critical step towards C₄ rice engineering. By linking biological processes at different scales, facilitating the study of development of C₄ photosynthesis, and helping design the future C₄ rice ideal-type, systems biology will play a critical role to bridge scientists from diverse disciplines (Zhu et al., 2010) [38, 48].

Engineering C₄ rice

Several approaches such as mutagenesis, OMICS approach and epigenetic approaches are employed for engineering C₄ rice. Mutagenesis and rice DNA activation tagging together account for both loss of function and gain of function mutants. Loss of function mutations are induced in order to randomly manipulate some of the C₄ traits and then the underlying genetic factors are analyzed. C₄ plants like Sorghum bicolor and Setaria viridis are the plants of choice for such studies. Gain of function mutants for C₄ rice is being created through DNA activation tagging which facilitates identification of gene location and the phenotype of the mutant reveals function of gene. Retrotransposons Tos 17 (Hirochika, 2001) [12a], maize Ac/Ds elements (Kolesnik et al., 2004; Qu et al., 2008) [16] and full length cDNA over expressor gene (FOX) hunting systems have been exploited to generate a number of rice mutant resources. Gene expression profiling is required to unravel the next level of correlation between the gene and associated phenotype. Comparative transcriptome analysis can reveal the exact number of genes differentially expressing between C₃ and C₄ plants. Putative regulatory genes and conserved cis elements that cause cell specific expression of C₄ proteins may be identified by overlaying metabolic profiles with gene expression pattern along developing leaf gradient (Wang et al., 2016) [43, 48]. Along with cis acting DNA elements, chromatin configuration also has command over C₄ differentiation and associated gene regulation. In maize, expression of PEP carboxylase has been linked to histone modification, epigenetic control and chromatin remodeling. miRNAs (micro RNAs) also reported to play an important role in vascular differentiation (Janes-Rhoades et al., 2006; Rubio-Somoza and Weigel, 2011) [13, 32]. On this basis potential role of miRNAs in Kranz anatomy development is being explored (Thakur et al., 2011) [30, 38].

Systems biology research for C₄ rice engineering

Identifying the key regulatory elements such as transcription factors and mi RNAs, controlling C₄ photosynthesis is one of the challenging tasks in C₄ rice research. Though many cis-regulatory elements in the promoter regions of C₄ photosynthesis genes have been identified (Sheen, 1999; Hibberd and Covshoff, 2010) [6, 8-11, 26, 31, 43-44], but only a limited number of the transcription factors binding to these cis-regulatory elements were identified. Few identified transcription factors are GLK1 and GLK2 genes in the MYB family (Hall et al., 1998; Rossini et al., 2001) [6, 31]. The most newly identified transcription factors or mi RNAs need to be tested through transgenic experiment to finally confirm their biological function. Developing and using system models of photosynthesis can help identify desired design models for C₄ rice. From the success of the photosynthetic bypass in enhancing photosynthetic efficiency it was concluded that higher rate of photosynthesis can be gained by implementation of new pathways into existing metabolism (Kebeish et al., 2007) [19]. Following Nelson and Langdale (1992) [6, 11, 26, 31, 43] potential mechanisms controlling C₄ development are shown in a diagram as shown in Figure 5B. In brief, under light, an unidentified signal molecule diffuses from veins into BS and M cells creating a concentration gradient. Some unknown mechanisms are possibly behind the scene which lead to the differential expression of genes controlling C₄ photosynthesis (Figure 5A). In the present scenario of C₄ rice research, there is an urgent demand for elucidation of the molecular mechanisms causing the cascade of events leading to differential expression of C₄ genes.
Conclusion
Engineering the C₄ photosynthetic pathway into C₃ plants has the potential to dramatically increase the yields of major C₃ crops and thus plays a pivotal role in ensuring global food security in future. The C₄ photosynthetic pathway has evolved more than 66 times in several species, indicating that C₃ plants may be in some way preconditioned to C₄ photosynthesis. With a detailed genome sequencing data and large amounts of physiological, genetic and genomic knowledge, rice may be considered as an ideal crop to practice C₄ engineering. C₄ rice research will not only enrich rice functional genomics but also develop many biotechnological approaches like engineering multiple genes into acceptor plants. Therefore, the C₄ rice project will have far-reaching impact on the twenty first century agriculture.

References
1. Bassham JA, Barker SA, Calvin M, Quarck UC. Intermediates in the photosynthetic cycle. Biochim Biophys Acta 1956:21:376-377.
2. Brown NJ, et al. C₄ acid decarboxylases required for C₄ photosynthesis are active in the mid-vein of the C₃ species Arabidopsis thaliana, and are important in sugar and amino acid metabolism. Plant J 2010:61:122-133.
3. Christin PA, Osborne CP. The recurrent assembly of C₄ photosynthesis, an evolutionary tale. Photosynth Res 2013:1-13.
4. Dengler RE, Dengler NG. Leaf vascular architecture in the atypical C₄ NADP Malic enzyme grass Arundinella Hirtat. Can J Bot 1990:68:1208-1221.
5. Furbank RT. Evolution of the C(4) photosynthetic mechanism: Are there really three C(4) acid decarboxylation types? J Exp Bot 2011:62:3103-3108.
6. Hall LN, Rossini L, Cribb L, Langdale JA. Golden 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 1998:10:925-936.
7. Hausler RE, Hirsch HJ, Kreuzaler F, Peterhansel C. Overexpression of C₄-cycle enzymes in transgenic C₃ plants: a biotechnological approach to improve C₃-photosynthesis [Review]. J Exp Bot 2002:53:591-607.
8. Hibberd JM. The regulation of genes in C₃ plants that have been co-opted into C₄ photosynthesis and implications for making a C₄ rice. In: Sheehy JE, Mitchell PL, Hardy B, eds. Charting New Pathways to C₄ Rice. Los Banos (Philippines): International Rice Research Institute 2007, P217-231.
9. Hibberd JM, Quick WP. Characteristics of C₄ photosynthesis in stems and petioles of C-3 flowering plants. Nature 2002:415:451-454.
10. Hibberd JM, Covshoff S. The regulation of gene expression required for C₄ photosynthesis. Ann Rev Plant Biol 2010:61:181-207.
11. Hibberd JM, Sheehy JE, Langdale JA. Using C₄ photosynthesis to increase the yield of rice - rationale and feasibility. Curr Opin Plant Biol 2008;11:228-231.
12. Hirochika H. Contribution to the Tos17retrotransposon to rice functional genomics. Curr Opin Plant Biol 2001:4:118-122.
13. Janes-Rhoades MW, Barteland DP, Bartel B. Micro RNAs and their regulatory roles in plants. Annu Rev Plant Biol 2006:57:19-53.
14. Karki S, Rizal G, Quick WP. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C₄ pathway. Rice 2013:6:28.
15. Kebeish R, Niessen M, Thiruvendhi K, Bari R, Hirsch H-J, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C. Chloroplastic photosynthetic bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotech 2007:25:593-599.
16. Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S et al. Establishing an efficient AciDs tagging system in rice: Large-scale analysis of Ds flanking sequences. Plant J 2004:37:301-314.
17. Langdale JA. C₄ cycles: Past, present, and future research on C₄ photosynthesis. Plant Cell 2011;23:3879-3892.
18. Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao HY, Lee I, Deng X. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 2007:19:731-749.
19. Leegood RC. The regulation of C₄ pathway. In: Sage RF, Monson RK, eds. C₄ Plant Biology. San Diego, Academic Press 1999, P89-131.
20. Miranda V, Baker NR, Long SP. Limitations of photosynthesis in different regions of the Zea mays leaf. New Phytol 1981:89:179-190.
21. Miyao M. Molecular evolution and genetic engineering of C₄ photosynthetic enzymes. J Exp Bot 2003:54:179-189.
22. Miyao M, Masumoto C, Miyazawa SI, Fukayama H. Lessons from engineering a single-cell C₄ photosynthetic pathway into rice. J Exp Bot 2011:62:3021-3029.
23. Monson RK, Edwards GE, Ku MSB. C₃–C₄ intermediate photosynthesis in plants. Bioscience 1984;34:563-571.
24. Monson RK, Rawsthorne S. Carbon dioxide assimilation in C3–C4 intermediate plants. In: Leegood R, Sharkey T, Von Caemmerer S, eds. Photosynthesis: physiology and metabolism. Advances in Photosynthesis. Dordrecht: Kluwer Academic Press 2000;9:533-550.

25. Monson RK, Schuster WS, Ku MSB. Photosynthesis in Flaveria brownii A.M. Powell: A C4-like C3-C4 intermediate. Plant Physiol 1987;85:1063-1067.

26. Nelson T, Langdale JA. Developmental genetics of C4 photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 1992;43:25-47.

27. Qu S, Desai A, Wing R, Sundaresan V. A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol 2008;146:189-199.

28. Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW. Photosynthetic metabolism and immunogold localization of photosynthetic enzymes in leaves of C3 and C3–C4 intermediate species of Moricandia. Planta 1988;173:298-308.

29. Rawsthorne S. C3–C4 intermediate photosynthesis: linking physiology to gene expression. Plant Journal 1992;2:267-274.

30. Rizal G, Karki S, Thakur V, Chatterjee J, Coe RA, Wanchana S, Quick WP. Towards C4 rice. Asian Journal of Cell Biology 2012;13:12-31.

31. Rossini L, Cribb L, Martin DJ, Langdale JA. The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 2001;13:1231-1244.

32. Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 2011;16:258-264.

33. Sage RF, Khosh ravesh R, Sage TL. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. Journal of Experimental Botany 2014;65(13):P3341-3356.

34. Sage RF. The evolution of C4 photosynthesis. New Phytol 2004;161:341-370.

35. Sage RF, Sage TL, Kocacin C, A. Photosynthetic growth and the evolution of C4 photosynthesis. Ann Rev Plant Biol 2012;63:19-47.

36. Sheen J. C-4 gene expression. Ann Rev Plant Physiol Plant Mol Biol 1999;50:187-217.

37. Tallman G. Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J Exp Bot 2004;55:1963-1976.

38. Thakur V, Wanchana S, Xu M, Bruskiewich R, Quick WP, Mosig A, Zhu XG. Characterization of statistical features for plant microRNA prediction. BMC Genomics 2011;12:108.

39. Tiwari A, Kumar P, Singh S, Ansari S. Carbonic anhydrase in relation to higher plants. Photosynthetica 2005;43;1-11.

40. Ueno O. Structural characterization of photosynthetic cells in an amphibious sedge, Eleocharis vivipira, in relation to C3 and C4 metabolism. Planta 1996;199:382-393.

41. Ueno O, Samejima M, Muto S, Miyachi S. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: Expression of C(4) and C(3) modes in contrasting environments. Proc Natl Acad Sci USA 1988;85:6733-6737.

42. Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA. The age of the grasses and clusters of origins of C-4 photosynthesis. Global Change Biol 2008;14:2963-2977.

43. Wang P, Vlad D, Langdale JA. Finding the genes to build C4 rice. Current opinion in Plant Biology 2016;31:44-50.

44. Williams BP, Johnston IG, Covshoff S, Hibberd JM. Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. eLife 2013;2:e00961.

45. Yanagisawa S, Sheen J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 1998;10:75-89.

46. Yokota A, Shigeoka S. Engineering Photosynthetic Pathways. In: Advances in Plant Biochemistry and Molecular Biology Bioengineering and Molecular Biology of Plant Pathways. Hans JB ed. Pergamon 2008, P81-105.

47. Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 2009;149:195-204.

48. Zhu X, Shan L, Wang Y, Quick WP. C4 Rice – an Ideal Arena for Systems Biology Research. Journal of Integrative Plant Biology 2010;52(8):762-770.