What about Gastric Schwannoma? A systematic review

CURRENT STATUS: UNDER REVIEW

Sara Lauricella
University Campus Bio Medico of Rome
Corresponding Author
ORCiD: 0000-0002-3295-6264

Sergio Valeri
Universita Campus Bio-Medico di Roma

Gianluca Masciana
Universita Campus Bio-Medico di Roma

Erica Mazzotta
Universita Campus Bio-Medico di Roma

Chiara Pagnoni
Universita Campus Bio-Medico di Roma

Costanza Saponaro
Universita Campus Bio-Medico di Roma

Lorenza Falcone
Universita Campus Bio-Medico di Roma

Domenico Benvenuto
Universita Campus Bio-Medico di Roma

Marco Caricato
Universita Campus Bio-Medico di Roma

Gabriella Teresa Capolupo
Universita Campus Bio-Medico di Roma

DOI: 10.21203/rs.2.16354/v1

SUBJECT AREAS
Gastroenterology & Hepatology

KEYWORDS
Schwannoma, neurinoma, gastric neurinoma, gastric schwannoma
Abstract

Background Gastric schwannomas (Gs) are rare mesenchymal neoplasms of the gastrointestinal tract. Diagnosis is commonly achieved by pathological examination of resected specimen. In most cases surgical resection of submucosal gastric lesions is performed with wide margins. New minimally invasive techniques are described in an increasing number of cases.

Methods A Pubmed, Cochrane and Embase systematic review of the literature has been performed. Original papers, review articles, case reports published between 1988 and 2019 were considered eligible. Only papers written in English with full text available have been included. Articles reporting a follow up period, the type of treatment of the primary tumor and the appearance of local or distant recurrence were compared and analysed. Statistical analysis of data has been performed using GraphPad Prism 7 software.

Results 328 articles were found and a total of 102 were included in the analysis. Fifty-three papers reported the follow-up information, ranging from 1-417 months across different studies. Among them, 31 patients underwent endoscopic removal of the gastric lesions, 140 patients local surgery, including wedge resection or partial gastrectomy and 148 patients underwent subtotal or total gastrectomy. The median follow-up was of 27-38-33 months respectively. No recurrence or distant metastasis were detected in endoscopic group. Among local surgery group, liver metastasis was reported in one case; in extended surgery group one patient died for multiple liver metastases.

Conclusions In comparison with endoscopic group, local or more extended surgery involved a larger cohort of patients and reported satisfactory long-term results. Surgical approach in absence of a definite pre-operative diagnosis is considered the gold standard treatment for resectable Gs due to the excellent long-term outcome. Further studies are warranted to define the role of endoscopic treatment.
Keywords: Schwannoma, neurinoma, gastric neurinoma, gastric schwannoma.

Background

Schwannomas, also known as neurilemmomas, are rare tumors arising from Schwann cells in the peripheral aspect of the nerve and are encapsulated by a fibrous band. Epidemiological data from literature indicate that Gastrointestinal schwannomas (GIs) are uncommon neoplasms representing 2–7% of mesenchymal gastrointestinal tumors and account for 0.2% of all gastric tumors. Usually detected during the fifth decade with a female predominance, Gs are considered benign tumors. In most cases patients show unspecific symptoms such as upper abdominal pain, dyspepsia, bleeding, abdominal mass, these symptoms are mostly related to the tumor size and location. Gs usually appear as submucosal or muscular masses, posing a difficult differential diagnosis with GastroIntestinal Stromal Tumors (GISTs), leiomyomas and leiomyosarcomas. Most cases undergo surgical treatment on the basis of a clinical and radiological diagnosis of gastric stromal mass, and the definitive diagnoses of Gs, based on the pathological examination on the surgical specimen, is made only postoperatively. Malignant transformation is uncommon and surgical resection of the primary tumor is recommended.

A systematic review of the literature regarding the incidence, clinical features and treatment options of Gs has also been performed. The association between treatment options, follow-up period and the appearance of local or distant recurrence has also been investigated.

Methods

In order to assess the long-term oncological outcomes of endoscopic resection in comparison with local or more extended surgery for resectable Gs, a systematic review of the literature using PUBMED, COCHRANE and EMBASE databases has been performed.
Keywords used for the research were: schwannoma, neurinoma, gastric neurinoma, gastric schwannoma. Original papers, case reports and review articles published between 1988 and 2019 were considered eligible for the review. Articles reporting a median follow-up were included and analyzed in our research. Only papers written in English with full text available have been included. Papers with repeated case series and incorrect citations were excluded. Factors including year of publication, number of patients for each suitable papers and tumor sizes were also recorded. The choice of treatment (endoscopic, partial or more extended surgery), the median follow-up and the appearance of local or distance recurrence were compared. Statistical analysis of data has been performed using GraphPad Prism 7 software.

Results

Three hundred twenty-eight (n = 328) original articles were found. Two hundred-twenty-six (n = 226) papers were removed because written in other language than English (n = 36), no complete articles or abstract (n = 29), off topic (n = 128) or because no gastric schwannoma (n = 33). Studies selection has been performed using PRISMA flow diagram (Fig.1). One hundred four (n = 102) original articles including ten (n = 10) systematic review of literature, were considered eligible for our search (Table 1). A large cohort of patients (n = 647 patients) with Gs was examined.

Fifty-three (n = 53) articles reported the follow-up information (Table 2). Only three (n = 3) papers reported disease recurrence in 4 patients: one (n = 1) patient with local recurrence and three (n = 3) with liver metastases. No distant or local recurrence during a mean 28-month follow-up period were observed in our two cases. The median follow-up time was 22.75 months (95% CI: 12–36), the median tumor size was 2.9 cm (95% CI: 2.17–4), the median number of cases was 1. Subtotal or total gastrectomy was performed in 46% of the patients, local surgery in 44% and 10% underwent endoscopic surgery. (Fig. 2)
Thirty-one (n = 31) patients underwent endoscopic removal of the gastric lesions and the median follow-up among this group was of 27 months; no recurrence or distant metastasis were detected. Local surgery, including wedge resection or partial gastrectomy were performed among one-hundred forty (n = 140) patients and the median follow-up among this group was of 38 months. Liver metastasis diagnosis 1 year after surgery was reported in 1 case. Despite aggressive chemotherapy the patient died few months later. Extended surgical approach, including subtotal or total gastrectomy, was performed among one hundred forty-eight (n = 148) patients. One patient died for multiple liver metastases despite a surgery with curative intent. The median follow-up among this group was of 33 months. One more local and one distant recurrence are reported but the type of treatment is not recorded for these patients (Table 2).

Discussion

Gastric Submucosal tumors (SMTs) are classified into three groups: myogenic tumors (leiomyomas or leiomyosarcomas), neurogenic tumors (schwannomas, granular cell tumors, and neurofibromas), and GastroIntestinal Stromal Tumors (GISTs). Leiomyomas and schwannomas are usually classified as benign tumors, while GISTs are considered potentially malignant and leiomyosarcomas are considered malignant. Schwannoma is a subtype of neurogenic tumors arising from Schwann cells which form the sheath around the axons of the peripheral nerve, and can develop anywhere along the peripheral course of the nerve2. Gastrointestinal Schwannomas (Gs) are uncommon neoplasms representing 2–7% of mesenchymal gastrointestinal tumors and account for 0.2% of all gastric tumors and 4% of all benign tumors of the stomach1. First described by Daimaru et al. in 1988, Gs are generally slow-growing and asymptomatic, and the prognosis is excellent. Voltaggio et al. estimated that the ratio of gastric GIST to Gs is approximately 45 to 1.
Gs are usually observed in the fifth and sixth decade of life with a female predominance\(^6\), the most common site is the gastric body, followed by gastric antrum and fundus. Clinical detection of these tumors is difficult and patients usually present unspecific symptoms like epigastric discomfort, epigastric pain, gastrointestinal bleeding or palpable mass. Patients may be asymptomatic and the tumor can be discovered incidentally\(^4\).

The preoperative differential diagnosis is still challenging, and the main problem is the differentiation of Gs from GIST and smooth muscle tumors. Compared to GIST on CT examination, schwannomas appear as a mass developing inside the gastric lumen with an exophytic or mixed growth pattern, and do not usually show signs of haemorrhage, necrosis, cystic changes or calcification\(^7\). However smaller GISTs can present as small hypervascular masses with marked enhancement on CT examination, making differentiation from GSs difficult\(^8\). Gastric leiomyomas usually appear as homogeneous hypoattenuating masses with an endoluminal growth pattern on plain CT, and show mild to moderate enhancement on contrast CT. Another typical feature of leiomyomas is involvement of gastric cardia and the esophagogastric junction. Choi et al calculated the growth rate based on computed tomography (CT) images of patients with a series of follow-up: tumor volume doubling times for Gs were significantly longer than those of GISTs (\(p = 0.004\)).

Endoscopy usually reveals a submucosal elevated lesion with a smooth overlying normal mucosa, a central ulcer can be seen in 25–50% of cases, due to ischemic changes in the covering mucosa \(^8\). However, it may be difficult to achieve the correct histological diagnosis with only a standard endoscopic biopsy, because the surface of a gastric SMT is covered with normal epithelium and superficial endoscopic biopsy usually shows normal mucosa. EUS features may be helpful for differentiating gastric schwannomas from other
mesenchymal tumors, especially GISTs. Although endoscopic ultrasonography (EUS) is a useful tool for diagnosing gastric SMTs, it is not always possible to differentiate a schwannoma from a GIST or a leiomyoma by EUS, as the tumor originates from the muscularis propria layer. Endoscopic ultrasonography scans (EUS) can be used to delineate the full depth of the tumor and to direct needle biopsy. Histological diagnosis by an EUS-fine-needle aspiration biopsy (FNAB) represents a reliable, useful and suitable method for the histological evaluation of gastric submucosal tumors (SMTs) including Gs. The overall diagnostic rate for SMT by an EUS-FNAB has been reported to be relatively high (83.9) combining both diagnostic and suspicious results. However, the accuracy diagnostic rate may be influenced by the tumor lesion’s size and only a limited number of patients perform this procedure.

Schwannomas grow as a nodular, well-circumscribed, encapsulated mass on the periphery of a nerve. Histologically are spindle cell neoplasms that typically have two components: compact spindle cell Schwann cell components (Antoni A areas), showing occasional palisading (Verocay Bodies) alternating with and looser hypocellular areas (Antoni B areas). Focal nuclear atypia and mitotic activity may be present. Thick-walled, hyalinized blood vessels are commonly present. By immunohistochemistry, tumor cells are strongly and uniformly positive for S100 protein and usually positive for glial fibrillary acid protein (GFAP); EMA-positivity may be encountered in subcapsular areas. As Schwannomas are negative for CD117, DOG1, CD34, SMA and desmin, they can be easily distinguished from GISTs which are positive for CD117 and DOG-1 or from leiomyoma as they are typically positive for SMA and desmin.

According to literature surgical approach in absence of a definite pre-operative diagnosis is considered the gold standard treatment for respectable Gs due to the excellent long-term outcome².
The disease recurrence was not related to the type of surgery performed. Out of the 4 cases of disease recurrence, one patient underwent to local resection, one patient to more extended surgery and in two cases the type of surgery was not reported. The literature analysis showed that one-hundred forty (n = 140) patients performed a local resection with a median follow-up of thirty-eight (n = 38) months. Extended surgery, including subtotal or total gastrectomy was performed among one hundred forty-eight (n = 148) patients, mean follow up was 33 months. Both groups reported satisfactory long-term results but a significant statistically difference was not observed. Although only few articles regarding the endoscopic resection of Gs reporting a follow-up period have been described in literature, it seems to be a new valid non-invasive alternative treatment due to the benign clinical behaviour of these tumors. The literature analysis showed that only 31 patients underwent to endoscopic removal of the gastric lesions and the median follow-up among this group was of 27 months with no recurrence. A cohort of 14 patients with Gs who received endoscopic resection of the gastric lesions previously detected by EUS, were retrospectively reviewed by Hu J et al. The preoperative diagnosis was based only on imaging and EUS-FNA was not performed in order to minimize the risk of tumor rupture and spread. Ten patients (n = 10) received endoscopic full-thickness resection (EFTR); (n = 3) patients were treated by endoscopic submucosal dissection (ESD) and ligation-assisted endoscopic enucleation (EE-L) was performed for 1 patient. No recurrence or metastases were found during the follow up period (28 months) and mortality rates were not observed. These experiences confirm that currently available advanced endoscopic resection techniques can treat most Gs with a minimally invasive approach. The limited number of patients and a short follow-up (27 vs 35.5) cannot allow to make definitive comparison of prognosis between endoscopic and surgical groups. Nevertheless, endoscopic treatment represents a very appealing option when deemed suitable. US and
CT diagnostic features are not fully reliable, and gastric GIST could present a very high risk of local and distant recurrence when resected with an incomplete surgical margin. Thus, preoperative pathological diagnosis seems to be mandatory in order to perform minimally invasive treatment. EUS-FNAB is safe, reliable and recommended when gastric stromal lesions are detected in order to define the risk features of GIST and select cases with indication to neoadjuvant treatment24. A further benefit of such approach is to identify the cases of Gs that can be treated with a minimally invasive approach. Nowadays surgical resection is currently considered the gold standard treatment: the groups involving a partial or more extended surgery included a larger cohort of patients and reported satisfactory long-term results. However, a statistically significant difference was not observed comparing the groups.

Mortality and recurrence were not observed in endoscopic group, which includes a smaller number of cases. Further studies encouraging the use of endoscopic resection for Gs and reporting a follow-up period are needed.

Conclusion

Surgical approach in absence of a definite pre-operative diagnosis is considered the gold standard treatment for resectable Gs due to the excellent long-term outcome. Further studies are warranted in order to define the role of endoscopic treatment.

Abbreviations

Gs: Gastric schwannomas

GIs: GastroIntestinal schwannomas

GISTs: GastroIntestinal Stromal Tumors

SMTs: Submucosal tumors

EGD: Esophagogastroduodenoscopy
EUS: Endoscopic ultrasonography
CECT: Contrast-enhanced computed tomography
CT: Computed tomography
SMA: Smooth muscle actin
FNAB: EUS-fine-needle aspiration biopsy
GFAP: Glial fibrillary acid protein
EFTR: Full-thickness resection
ESD: Endoscopic submucosal dissection
EE-L: Ligation-assisted endoscopic enucleation

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
None.

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable.

Authors’ contributions
Wrote the first draft of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
None
Author details

1General Surgery Unit, Campus Bio-Medico University, Via Alvaro del Portillo, 200 00128, Rome, Italy. s.lauricella@unicampus.it.

2General Surgery Unit, Campus Bio-Medico University, Via Alvaro del Portillo, 200 00128, Rome, Italy.

3MD Program, School of Medicine, Campus Bio-Medico University, Via Alvaro del Portillo, 200 00128, Rome, Italy.

4Pathology Unit, Campus Bio-Medico University, Via Alvaro del Portillo, 200 00128, Rome, Italy.

5MD Program, Unit of Medical Statistic and Epidemiology, Department of Medicine, Campus Bio-Medico University, Via Alvaro del Portillo, 200 00128, Rome, Italy.

References

Drago J, Fuente I, Cavadas D, Beskow A, Wright F (2019) Gastric Schwannoma. J Gastrointest Surg. 23(2):381-383.

Paramythiotis D, Karakatsanis A, Pagkou D, Bangeas P, Mantha N, Lypiridou S, Michalopoulos A (2018) Gastric schwannoma: report of two cases and review of the literature. Int J Surg Case Rep. 53:495-499.

Moher, D, Liberati, A., Tetzlaff, J, Altman, D. G. (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.

Zheng L, Wu X, Kreis ME, Yu Z, Feng L, Chen C, Xu B, Bu Z, Li Z, Ji J (2014) Clinicopathological and immunohistochemical characterisation of gastric schwannomas in 29 cases. Gastroenterol Res Pract. 2014:202960.

Nishida T, Hirota S (2000) Biological and clinical review of stromal tumors in the
gastrointestinal tract. Histology and Histopathology. 15(4):1293–1301. PMID: 11005253.
Daimaru Y, Kido H, Hashimoto H, Enjoji M (1988) Benign schwannoma of the gastrointestinal tract: a clinicopathologic and immunohistochemical study. Hum Pathol. 19(3):257–64.
Voltaggio L, Murray R, Lasota J, Miettinen M (2012) Gastric schwannoma: a clinicopathologic study of 51 cases and critical review of the literature. Hum Pathol. 43(5): 650–9.
Tao K, Chang W, Zhao E, Deng R, Gao J, Cai K, Wang G, Zhang P (2015) Clinicopathologic Features of Gastric Schwannoma: 8-Year Experience at a Single Institution in China Medicine (Baltimore). 94(45):1970. PMID: 26559271.
Wang W, Cao K, Han Y, Zhu X, Ding J, Peng W (2019) Computed tomographic characteristics of gastric schwannoma, J Int Med Res. 47(5):1975–1986.
Singh A, Mittal A, Garg B, Sood N (2016) Schwannoma of the stomach: a case report. J Med Case Rep.15;10:4.
Williamson JM, Wadley MS, Shepherd NA, Dwerryhouse S (2012) Gastric schwannoma: a benign tumor often mistaken clinically, radiologically and histopathologically for a gastrointestinal stromal tumor-a case series. Ann R Coll Surg Engl. 94(4):245–9.
Takemura M, Yoshida K, Takii M, Sakurai K, Kanazawa A (2012) Gastric malignant schwannoma presenting with upper gastrointestinal bleeding: a case report. J Med Case Rep. 25;6:37. PMID: 22277785.
Choi JW, Choi D, Kim KM, Sohn TS, Lee JH, Kim HJ, Lee SJ (2012) Small Submucosal Tumors of the Stomach: Differentiation of Gastric Schwannoma from Gastrointestinal Stromal Tumor with CT Korean J Radiol. 13(4): 425–433.
Yoon MJ, Kim GH, Park DY, Shin NR, Ahn S, Park CH, Lee JS, Lee KJ, Lee BE, Song GA (2016) Endosonographic Features of Gastric Schwannoma: A Single Center Experience Clin
Endosc. 49(6): 548-554.

Ikehara H, Li Z, Watari J, Taki M, Ogawa T, Yamasaki T, Kondo T, Toyoshima F, Kono T, Tozawa K, Ohda Y, Tomita T, Oshima T, Fukui H, Matsuda I, Hirota S, Miwa H (2015) Histological diagnosis of gastric submucosal tumors: A pilot study of endoscopic ultrasonography-guided fine-needle aspiration biopsy vs mucosal cutting biopsy. World J Gastrointest Endosc. 7(14): 1142-1149.

Matsui M, Goto H, Niwa Y, Arisawa T, Hirooka Y, Hayakawa T (1998) Preliminary results of fine needle aspiration biopsy histology in upper gastrointestinal submucosal tumors. Endoscopy. 30(9):750-5.

Hoda KM1, Rodriguez SA, Faigel DO (2009) EUS-guided sampling of suspected GI stromal tumors. 69(7):1218-23.

Wang G, Chen P, Zong L, Shi L, Zhao W (2014) Cellular schwannoma arising from the gastric wall misdiagnosed as a gastric stromal tumor: A case report. Oncol Lett. 7(2): 415-418.

Yang JH, Zhang M, Zhao ZH, Shu Y, Hong J, and Cao YJ (2015) Gastroduodenal intussusception due to gastric schwannoma treated by billroth II distal gastrectomy: One case report. World J Gastroenterol. 21(7): 2225-2228.

Cai MY, Xu JX, Zhou PH, Xu MD, Chen SY, Hou J, Zhong YS, Zhang YQ, Ma LL (2016) Endoscopic resection for gastric schwannoma with long-term outcomes. Surg Endosc. 30(9):3994-4000.

Li B, Liang T, Wei L, Ma M, Huang Y, Xu H, Shi X, Qin C (2014) Endoscopic interventional treatment for gastric schwannoma: a single-center experience. Int J Clin Exp Pathol. 7(10):6616-25. PMID: 25400740.

Hu J, Liu X, Ge N, Wang S, Guo J, Wang G, Sun S (2017) Role of endoscopic ultrasound and endoscopic resection for the treatment of gastric schwannoma. Medicine (Baltimore).
Arolfo S, Teggia PM, Nano M (2011) Gastrointestinal stromal tumors: thirty years experience of an institution. World J Gastroenterol. 17:1836-9.

Jeong Seop Moon (2012) Endoscopic Ultrasound-Guided Fine Needle Aspiration in Submucosal Lesion. Clin Endosc. 2012 Jun; 45(2): 117-123. PMID: 22866250.

Yagihashi N, Kaimori M, Katayama Y, Yagihashi S (1997) Crystalloid formation in gastrointestinal schwannoma. Hum Pathol. 28:304-308.

Wang J, Zhang W2, Zhou X, Xu J, Hu HJ (2019) Simple Analysis of the Computed Tomography Features of Gastric Schwannoma. Can Assoc Radiol J. 0846-5371(18)30145-1. PMID: 30871392.

Nose Y, Takeno A, Masuzawa T, Toya K, Yukawa Y, Mori R, Kawai K, Sakamoto T, Murakami K, Naito A, Katsura Y, Ohmura Y, Kagawa Y, Takeda Y, Murata K (2018) A Case of Gastric Schwannoma with Regional Lymphadenopathy. Gan To Kagaku Ryoho. 45(13):1952-1954. PMID: 30692408.

Pesenti C, Bories E, Caillol F, Ratone JP, Godat S, Monges G, Poizat F, Raoul JL, Ries P, Giovannini M (2019) Characterization of subepithelial lesions of the stomach and esophagus by contrast-enhanced EUS: A retrospective study. Endosc Ultrasound.8(1):43–49.

Mekras A, Krenn V, Perrakis A, Croner RS, Kalles V, Atamer C, Grützmann R, Vassos N (2018) Gastrointestinal schwannomas: a rare but important differential diagnosis of mesenchymal tumors of gastrointestinal tract. BMC Surg. 25;18(1):47. PMID: 30045739.

Sanei B, Kefayat A, Samadi M, Goli P, Sanei MH, Khodadustan M (2018) Gastric Schwannoma: A Case Report and Review of the Literature for Gastric Submucosal Masses Distinction. Case Rep Med. 10;2018:1230285.

Sunkara T, Then EO, Reddy M, Gaduputi V (2018) Gastric schwannoma-a rare benign mimic
of gastrointestinal stromal tumor. Oxf Med Case Reports. 12;2018(3). PMID: 29564143.

Bae H, Van Vrancken M, Kang TW, Park HY, Chu J, Park HK, Ha SY, Choi D, Kim KM (2018)
Peritumoral lymphoid cuff correlates well with lymph node enlargement in gastrointestinal schwannomas. Oncotarget. 9;9(16):12591-12598. PMID: 29560092.

Shawgi M, Ali T, Scott M, Petrides G (2018) 99m-Technetium Sestamibi Uptake in a Gastric Schwannoma. World J Nucl Med. 17(1):49-51.

Lyros O, Schickel S, Schierle K, Hoffmeister A, Gockel I (2017) Gastric schwannoma: rare differenzial diagnosis of acute upper gastrointestinal (GI) bleeding. Z Gastroenterol. 55(8):761-765. PMID: 28799152.

Takasumi M, Hikichi T, Takagi T, Suzuki R, Watanabe K, Nakamura J, Sugimoto M, Kikuchi H, Konno N, Waragai Y, Asama H, Obara K, Ohira H (2017) Efficacy of endoscopic ultrasound-guided fine-needle aspiration for schwannoma: six cases of a retrospective study. Fukushima J Med Sci. 9;63(2):75-80. PMID:28680005.

Choi KW, Joo M, Kim HS, Lee WY (2017) Synchronous triple occurrence of MALT lymphoma, schwannoma, and adenocarcinoma of the stomach. Gastroenterol. 14;23(22):4127-4131. PMID: 28652666.

Hu BG, Wu FJ, Zhu J, Li XM, Li YM, Feng Y, Li HS (2017) Gastric Schwannoma: A Tumor Must Be Included in Differential Diagnoses of Gastric Submucosal Tumors. Case Rep Gastrointest Med. 2017:9615359.

Liu J, Chai Y, Zhou J, Dong C, Zhang W, Liu B (2017) Spectral Computed Tomography Imaging of Gastric Schwannoma and Gastric Stromal Tumor. J Comput Assist Tomogr.;41(3):417-421.

Shimizu S, Saito H, Kono Y, Murakami Y, Kuroda H, Matsunaga T, Fukumoto Y, Osaki T, Fujiwara Y (2017) Enlargement of the Regional Lymph Nodes Resected Using Laparoscopic Distal Gastrectomy: Report of a Patient. Yonago Acta Med. 9;60(1):59-63.
Choi CW, Kang DH, Kim HW, Park SB, Kim SJ, Hwang SH, Lee SH (2017) Choi CW, Kang DH, Kim HW et al; Direct endoscopic biopsy for subepithelial tumor larger than 20 mm after removal of overlying mucosa. Scand J Gastroenterol. 52(6-7):779-783.

Kamata K, Takenaka M, Kitano M, Omoto S, Miyata T, Minaga K, Yamao K, Imai H, Sakurai T, Watanabe T, Nishida N, Chikugo T, Chiba Y, Imamoto H, Yasuda T, Lisotti A, Fusaroli P, Kudo M (2017) Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of submucosal tumors of the upper gastrointestinal tract. J Gastroenterol Hepatol. 32(10):1686-1692.

Romdhane H, Cheikh M, Mzoughi Z, Slama SB, Ennaifer R, Belhadj N (2016) Gastric Schwannoma: A Case Report. Clin Pract. 30;6(4):849. PMID: 28028429.

Koizumi S, Kida M, Yamauchi H, Okuwaki K, Iwai T, Miyazawa S, Takezawa M, Imaizumi H, Koizumi W (2016) Clinical implications of doubling time of gastrointestinal submucosal tumors. World J Gastroenterol. 22(45):10015-10023.

Álvarez Higueras FJ, Pereñíguez López A, Estrella Díez E, Muñoz Torrero M, Egea Valenzuela J, Bas Bernal Á, Garre Sánchez C, Vargas Acosta Á, Sánchez Velasco E, Carballo Álvarez LF (2016) Gastric schwannoma presenting as a casual ultrasonographic findings. Rev Esp Enferm Dig. 108(12):808-809. PMID: 27931106.

Vargas Flores E, Bevia Pérez F, Ramirez Mendoza P, Velázquez García JA, Ortega Román OA (2016) Laparoscopic resection of a gastric schwannoma: A case report. Int J Surg Case Rep. 28:335-339.

Kudose S, Kyriakos M, Awad MM (2016) Gastric plexiform schwannoma in association with neurofibromatosis type 2. Clin J Gastroenterol. 9(6):352-357.

Mohanty SK, Jena K, Mahapatra T, Dash JR, Meher D, John A, Nayak M, Bano S (2016) Gastric GIST or gastric schwannoma-A diagnostic dilemma in a young female. Int J Surg Case Rep.
Lee SJ, Hwang CS, Kim A, Kim K, Choi KU (2016) Gastrointestinal tract spindle cell tumors with interstitial cells of Cajal: Prevalence excluding gastrointestinal stromal tumors. Oncol Lett. 12(2):1287–1292. Epub 2016 Jun 22.

Oh SJ, Suh BJ, Park JK (2016) Gastric Schwannoma Mimicking Malignant Gastrointestinal Stromal Tumor Exhibiting Increased Fluorodeoxyglucose Uptake. Case Rep Oncol. 9(1):228–34.

Lavy DS, Paulin ET, Parker MI, Zhang B, Parker GS, Schwartz MR, (2016) H. Pylori in a gastric schwannoma: a case report. Ann Transl Med. 4(7): 137.

Tatangelo F, Cantile M, Collina F, Belli A, DE Franciscis S, Bianco F, Botti G (2016) Gastric schwannoma misdiagnosed as GIST: A case report with immunohistochemical and molecular study. Oncol Lett. 11(4): 2497–2501.

Kinsey-Trotman S, Balalis G, Gupta A (2016) Gastric Schwannoma Journal of Gastrointestinal Surgery. 20(9): 1666–1668.

Meng FS, Zhang ZH, Shan GD, Chen YP, Ji F (2015) Endoscopic submucosal dissection for the treatment of large gastric submucosal tumors originating from the muscularis propria layer: a single center study. Z Gastroenterol. 53(7):655-9.

Shah AS, Rathi PM, Somani VS, Mulani AM (2015) Gastric Schwannoma: A Benign Tumor Often Misdiagnosed as Gastrointestinal Stromal Tumor. Clin Pract. 5(3):775.

Crouthamel MR, Kaufman JA, Billing JP Billing PS, Landerholm RW (2015) Incidental gastric mesenchymal tumors identified during laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2015 11(5):1025–8.

Sreevathsa MR, Pipara G (2015) Gastric Schwannoma: A Case Report and Review of Literature. Indian J Surg Oncol. 6(2):123–6.

Manji M, Ismail A, Komba E (2015) Gastric Schwannoma: Case report from Tanzania and
brief review of literature. Clin Case Rep. 3(7):562–5.

Özyörük D, Demir HA, Emir S, Koyuncu D, Tunç B (2015) Gastric Schwannoma Without Neurofibromatosis in a 16-Year-Old Adolescent. Journal of Pediatric Hematology/Oncology. 37(7):570–571.

Enshaei A, Hajipour B, Abbasi F Doost PR, Rezaei S (2015) Schwannoma of stomach. J Pak Med Assoc. 65(6):672-4. PMID:26060170.

Hong X, Wu W, Wang M Liao Q, Zhao Y (2015) Benign gastric schwannoma: how long should we follow up to monitor the recurrence? A case report and comprehensive review of literature of 137 cases. Int Surg. 100(4):744-7.

Zhang Y, Li B, Cai L, Hou X, Shi H, Hou J (2015) Gastric Schwannoma mimicking malignant gastrointestinal stromal tumor and misdiagnosed by 18F-FDG PET/CT. Hell J Nucl Med. 18(1):74-6. PMID:27194983.

Sousa D, Allen M, Pinto A, Ferreira A, Cruz A, Marinho D, Cusati P, Martins JA (2015) Two Synchronous Colonic Adenocarcinomas, a Gastric Schwannoma and a Mucinous Neoplasm of the Appendix: a Case Report. J Gastrointest Cancer. 46(3):304-9.

Yang LH, Wang JO, Ma S, Zhu Z, Sun JX, Ding SL, Li G, Xu HT, Wang L, Dai SD, Liu Y, Miao Y, Jiang GY, Fan CF, Wang EH (2015) Synchronous of gastric adenocarcinoma and schwannoma: report of a case and review of literatures. Int J Clin Exp Pathol. 8(1):1041-5. eCollection 2015.

Yang JH, Zhang M, Zhao ZH, Shu Y, Hong J, Cao YJ (2015) Gastroduodenal intussusception due to gastric schwannoma treated by Billroth II distal gastrectomy: one case report. World J Gastroenterol.;21(7):2225-8.

Park HC, Son DJ1, Oh HH, Oak CY, Kim MY, Chung CY, Myung DS, Kim JS, Cho SB, Lee WS, Joo YE (2015) Endoscopic ultrasonographic characteristics of gastric schwannoma distinguished from gastrointestinal stromal tumor. Korean J Gastroenterol. 65(1):21-6.
Ji JS, Lu CY, Mao WB, Wang ZF, Xu M (2015) Gastric schwannoma: CT findings and clinicopathologic correlation. Abdom Imaging. 40(5):1164-9.

Huang LY, Cui J, Wu CR, Zhang B, Jiang LX, Xian XS, Lin SJ, Xu N, Cao XL, Wang ZH (2014) Endoscopic full-thickness resection and laparoscopic surgery for treatment of gastric stromal tumors. World J Gastroenterol. 20(25):8253-8259.

Rodriguez E, Tellschow S, Steinberg DM, Montgomery E (2014) Cytologic findings of gastric schwannoma: a case report. Diagn Cytopathology. 42(2):177-80.

Lee SS, Kim IH (2013) Unconvincing diagnosis of a rare subtype of primary gastric lymphoma with incongruent endoscopic presentation: a case of gastric schwannoma. Korean J Gastroenterol. 62(6):359-64.

Di Cataldo A, Trombatore C, Cocuzza A, Latino R, Li Destri G, Petrillo G (2013) Synchronous occurrence of colon adenocarcinoma and gastric schwannoma: case report and review of the literature. Ann Ital Chir. 84(6):687-91. PMID:24225491.

Juan F, Alvare, Ben-David K (2013) Gastric Schwannoma: A Rare Find. J Gastrointest Surg. 17(12):2179-81.

Atmatzidis S, Chatzimavroudis G, Dragoumis D, Tsiaousis P, Patsas A, Atmatzidis K (2012) Gastric schwannoma: a case report and literature review. Hippokratia. 16(3):280-2. PMID:23935300.

Hong SW, Cho WY, Kim JO, Chun CG, Shim KY, Bok GH, Um WH, Lee JE (2013) Gastric schwannoma diagnosed by endoscopic ultrasonography-guided trucut biopsy. Clin Endosc. 46(3):284-7.

Zhong DD, Wang CH, Xu JH, Chen MY, Cai JT (2012) Endoscopic ultrasound features of gastric schwannomas with radiological correlation: A case series report. World J Gastroenterol. 18(48):7397-7401.

Jai Hyang Go (2012) Collision of Adenocarcinoma and Schwannoma of the Stomach: A Case
Yoon W, Paulson K, Mazzara P, Nagori S, Barawi M, Berri R (2012) Gastric schwannoma: a rare but important differential diagnosis of a gastric submucosal mass. Case Rep Surg. 2012: 280982.

Fujiwara S, Nakajima K, Nishida T, Takahashi T, Kurokawa Y, Yamasaki M, Miyata H, Takiguchi S, Mori M, Doki Y (2013) Gastric schwannomas revisited: has precise preoperative diagnosis become feasible? Gastric Cancer. 16(3):318–23.

Euanorasetr C, Suwanthanma W (2011) Gastric schwannoma presenting with perforation and abscess formation: a case report and literature review. J Med Assoc Thai. 94(11):1399–404. PMID: 22256284.

Fukuchi M, Naitoh H, Shoji H, Yamagishi J, Suzuki M, Yanoma T, Kiriyama S, Kuwano H (2012) Schwannoma of the stomach with elevated preoperative serum carbohydrate antigen 19–9: report of a case. Surg Today. 42(8):788–92.

Watanabe A, Ojima H, Suzuki S, Mochida Y, Hirayama I, Hosouchi Y, Nishida Y, Kashiwabara K, Ohno T, Mochiki E, Kuwano (2011) An individual with gastric schwannoma with pathologically malignant potential surviving two years after laparoscopy-assisted partial gastrectomy. Case Rep Gastroenterol. 5(2):502–7. PMID: 21960956.

Cho H, Watanabe T, Aoyama T, Hayashi T, Yamada T, Ogata T, Yoshikawa T, Tsuburaya A, Sekiguchi H, Nakamura Y, Sakuma Y, Kameda Y, Miyagi Y (2012) Small bud of probable gastrointestinal stromal tumor within a laparoscopically-resected gastric schwannoma. Int J Clin Oncol. 17(3):294–8.

Ohno T, Ogata K, Kogure N, Ando H, Aihara R, Mochiki E, Zai H, Sano A, Kato T, Sakurai S, Oyama T, Asao T, Kuwano H (2011) Gastric schwannomas show an obviously increased fluorodeoxyglucose uptake in positron emission tomography: report of two cases. Surg Today. 41(8):1133–7.
Raber MH, Ziedses des Plantes CM, Vink R, Klaase JM (2010) Gastric Schwannoma Presenting as an Incidentaloma on CT-Scan and MRI. Gastroenterology Res. 3(6):276-280. PMID: 27942308.

Tahir TM, Anwar S, Naseem N, Mansoor-Ul-Haq H, Saqib M (2010) Gastric schwannoma in a female patient with pulmonary tuberculosis - a clinicopathological assessment and diagnosis. Malays J Med Sci. 17(2):45-50. PMID: 22135537.

Agaimy A, Märkl B, Kitz J, Wünsch PH, Arnholdt H, Füzesi L, Hartmann A, Chetty R (2010) Peripheral nerve sheath tumors of the gastrointestinal tract: a multicenter study of 58 patients including NF1-associated gastric schwannoma and unusual morphologic variants. Virchows Arch. 456(4):411-22.

Komatsu D, Koide N, Hiraga R, Furuya N, Akamatsu T, Uehara T, Miyagawa S (2009) Gastric schwannoma exhibiting increased fluorodeoxyglucose uptake. Gastric Cancer. 12(4):225-8.

Ogasawara N, Sasaki M, Ishiguro H, Itoh Y, Nojiri S, Kubota E, Wada T, Kataoka H, Kuwabara Y, Joh T (2009) Gastric schwannoma with adjacent external progression harbored aberrant NF2 gene. Dig Endosc. 21(3):192-5.

Yoon HY, Kim CB, Lee YH, Kim HG (2008) Gastric schwannoma. 49(6):1052-4. PMID: 19108033.

Hong HS, Ha HK, Won HJ, Byun JH, Shin YM, Kim AY, Kim PN, Lee MG, Lee GH, Kim MJ (2008) Gastric schwannomas: radiological features with endoscopic and pathological correlation. Clin Radiol. 63(5):536-42.

Tozbikian G, Shen R, Suster S (2008) Signet ring cell gastric schwannoma: report of a new distinctive morphological variant. Ann Diagn Pathol. 12(2):146-52.

Jung MK, Jeon SW, Cho CM, Tak WY, Kweon YO, Kim SK, Choi YH, Bae HI (2008) Gastric schwannomas: endosonographic characteristics. Abdom Imaging. 33(4):388-90.
Chen YY, Yen HH, Soon MS (2007) Solitary gastric melanotic schwannoma: sonographic findings. J Clin Ultrasound. 35(1):52-4

Khan AA, Schizas AM, Cresswell AB, Khan MK, Khawaja HT (2006) Digestive tract schwannoma. Dig Surg. 23(4):265-9.

Lin CS, Hsu HS, Tsai CH, Li WY, Huang MH (2004) Gastric schwannoma. J Chin Med Assoc. 67(11):583-6.

Fujii Y, Nobuyuki T, Yoshinori H, Yoshizawa K, Yasuda Y, Nagai H, Itoh K (2004) Gastric schwannoma: sonographic findings. J Ultrasound Med. 23:1527-1530.

Uchikoshi F, Ito T, Nishida T, Kitagawa T, Endo S, Matsuda H (2004) Laparoscopic intragastric resection of gastric stromal tumor located at the esophago-cardiac junction. Surg Laparosc Endosc Percutan Tech. 14(1):1-4.

Iwamoto CA, Garcia CF, Razzak M (2003) Pathologic quiz case: A 23-year-old woman with a polypoid gastric mass. Arch Pathol Lab Med. 127(1):e43-4. PMID: 12562296.

Janowitz P, Meier F, Reisig J (2002) Gastric schwannoma as a rare differential diagnosis of pleural effusion. Z Gastroenterol. 40(11):925-8.

Karabolut N, Martin DR, Yang M (2002) Case report: gastric schwannoma: MRI findings. Br J Radiol. 75(895):624-6.

Chandra M, Mehrotra P, Mitra MK (2002) Gastric schwannoma presenting as gastric polyp with gastrointestinal bleeding. Indian J Gastroenterol. 21(1):31. PMID: 11871834.

Povoski SP, Chang WW (2001) Gastric schwannoma found incidentally 19 years after a horizontal gastroplasty for morbid obesity. Dec; 11(6):762-5.

Rymarczyk G, Hartleb M, Bołdys H, Kajor M, Wodołazski A (2000) Neurogenic tumors of the digestive tract: report of two cases. Med Sci Monit. 6(2) 383-5. PMID: 11208343.

Otani Y, Ohgami M, Igarashi N, Kimata M, Kubota T, Kumai K, Kitajima M, Mukai M (2000) Laparoscopic wedge resection of gastric submucosal tumors. Surg Laparosc Endosc
Percutan Tech. 10(1):19–23.

Prévot S, Bienvenu L, Vaillant JC, de Saint-Maur PP (1999) Benign schwannoma of the digestive tract: a clinicopathologic and immunohistochemical study of five cases, including a case of esophageal tumor. Am J Surg Pathol. 23(4):431–6.

Bees NR, Ng CS, Dicks-Mireaux C, Kiely EM (1997) Gastric malignant schwannoma in a child. Br J Radiol. 70(837):952–5.

Silecchia G, Materia A, Fantini A, Spaziani E, Picconi T, Trentino P, Faticanti Scucchi L, Basso N (1997) Laparoscopic resection of solitary gastric schwannoma. J Laparoendosc Adv Surg Tech A. 7(4):257–63.

Sarlomo-Rikala M, Miettinen M (1995) Gastric schwannoma-a clinicopathological analysis of six cases. Histopathology. 27(4):355–60.

Melvin WS, Wilkinson MG (1993) Gastric schwannoma. Clinical and pathologic considerations. Am Surg. 59(5):293–6. PMID: 8489097.

Bandoh T, Isoyama T, Toyoshima H (1993) Submucosal tumors of the stomach: a study of 100 operative cases. Surgery. 113(5):498–506. PMID: 8488466.

Genova G, Maiorana AM, Agnello G, Marrazzo A, Sorce M, Li Volsi F, Fiorentino E, Bazan P (1989) Gastric schwannoma after Nissen fundoplication. A rare complication? Am Surg. 55(8):495–7. PMID: 2764395.

Nussinson E, Vigder L, Kaveh Z, Gutman H, Trougouboff P, Tzur N (1988) Exogastric neurilemmoma presenting as acute abdomen: role of computed tomography in diagnosis. Gastrointest Radiol. 13(4):306–8.

Gennatas CS, Exarhakos G, Kondi-Pafiti A, Kannas D, Athanassas G, Politi HD (1988) Malignant schwannoma of the stomach in a patient with neurofibromatosis. Eur J Surg Oncol. 14(3):261–4. PMID: 3131156.

Tables
Author	Year of Publication	Number of cases	Treatment
Wang W et al (9)	2019	19	Surgical treatment
Wang J et al (26)	2019	38	Not reported
Paramythiotis D et al (2)	2018	2	Open surgical treatment
Pesenti C et al (28)	2019	1	Not reported
Drago J et al (1)	2019	1	Laparoscopic resection
Mekras A et al (29)	2018	4	(n=2) laparoscopic resection; (n=2) open gastric wedge
Sanei B et al (30)	2018	1	Open surgery, subtotal gastrect gastrectejunost
Sunkara T et al (31)	2018	1	Open surgery, subtotal gastrect gastrectejunost
Bae H et al (32)	2018	85	Partial gastrect
Shawgi M et al (33)	2018	1	
Lyros O et al (34)	2017	1	"rendez-vous" endoscopic-laparoscopic resection
Takasumi M et al (35)	2017	3	Follow-up
Choi KW et al (36)	2017	1	Open subtotal gastrectomy with Roux-en-Y gastrojejunost
Hu J et al (22)	2017	14	Endoscopic resection
Hu BG et al (37)	2017	1	Laparoscopy converted to laparotomy for resection of the
Liu J et al (38)	2017	12	Surgery
Shimizu S et al (39)	2017	1	Laparoscopic distal gastrectomy dissection
Choi CW et al (40)	2017	2	Not reported
Kamata K et al (41)	2017	5	Surgical resection
Romdhane H et al (42)	2016	1	Laparoscopic partial gastrect
Koizumi S et al (43)	2016	3	2 patients: surgical 1 patient: follow-up
Álvarez Higuera FJ et al (44)	2016	1	Conservative management
Vargas Flores E et al (45)	2016	1	Surgical laparoscopic subtotal gastrect
Kudose S et al (46)	2016	1	Distal gastrect
Mohanty SK et al (47)	2016	1	Open surgery
Lee Sj et al (48)	2016	27	Not reported
Oh Sj et al (49)	2016	1	Subtotal gastrectomy with D-2 lymph node dissection
Lavy Ds et al (50)	2016	1	Laparoscopic partial wedge
Tatangelo F. et al (51)	2016	1	Subtotal omento-gastrrect
Yoon JM et al (14)	2016	27	Surgical excision
Stephen Kinsey-Trotma et al (52)	2016	1	Subtotal omento-gastrrect
Singh A et al (10)	2016	1	No surgical intervention. Regular follow-up
Cai MY et al (20)	2016	14	Endoscopic en bloc resection. In one case, endoscopy suspended. In one case the patient underwent laparoscopic surgery.
Authors	Year	Patients	Procedure
-----------------------------	------	----------	--
Meng FS et al (53)	2016	1	Endoscopic submucosa
Shah AS et al (54)	2015	1	Exploratory laparotomy with gastric resection
Crouthamel MR et al (55)	2015	2	Laparoscopic sleeve gastrectomy
Tao K et al (8)	2015	30	Laparoscopic surgical resection
Ikehara H. et al (15)	2015	2	Surgical resection
Sreevathsa MR et al (56)	2015	1	Minilaparotomy and sleeve resection
Manji M et al (57)	2015	1	Gastroscopy with resection
Enshaei A et al (59)	2015	1	Surgical resection
Hong X et al (60)	2015	1	Laparoscopic partial resection
Zhang Y et al (61)	2015	1	Laparoscopic subtotal resection
Sousa D et al (62)	2015	1	Surgical resection
Yang LH et al (63)	2015	1	Total gastrectomy
Yang JH et al (19)	2015	1	Conventional laparotomy with gastrectomy
Park HC et al (65)	2015	31	Not reported
Li B et al (21)	2014	6	Endoscopic intervention
Ji JS et al (66)	2015	8	Not reported
Liu-Ye Huang et al (67)	2014	1	Not found
Zheng L et al (4)	2014	29	All patients were treated by surgery including:
			- gastrectomy (n = 13), gastric wedge resection (n = 8), subtotal gastrectomy (n = 7), and total gastrectomy (n = 1).
Rodriguez E. et al (68)	2014	1	Not reported
Wang G et al (18)	2014	1	Surgical treatment. Abdominal
Lee SS et al (69)	2013	1	Surgical treatment
Di Cataldo A et al (70)	2013	1	Wedge resection
Juan F. Alvarez et al (71)	2013	1	Laparoscopic resection
Atmatzidis S et al (72)	2012	1	Surgical treatment: partial gastric resection
Choi J W et al (13)	2012	16	Surgical treatment
Hong SW et al (73)	2012	1	Laparoscopic gastric wedge resection
Zhong DD et al (74)	2012	4	(n=2) laparotomy and resection of gastrectomy
Jai Hyang Go et al (75)	2012	1	Total Gastrectomy
Yoon W et al (76)	2012	1	Laparoscopic partial gastrectomy
Fujiwara S et al (77)	2013	14	Laparoscopic partial gastrectomy
Williamson JM et al (11)	2012	3	Surgical: tumours were resected or wedge gastric resection
Takemura M et al (12)	2012	1	Distal gastrectomy with lymph node dissection
Euanorasetr C et al (78)	2011	1	Hemigastrectomy with Billroth II
Fukuchi M et al (79)	2012	1	Laparoscopy-assisted distal gastrectomy
Voltaggio L et al (7)	2012	51	Surgical treatment
References	Case Number	Tumor size (cm)	Treatment	Follow up time median month (range)
Paramythiotis D et al (2)	2	(n=1) 2.8×1.5×1.8 (n=1) 5	Local lpt* resection	(n=1) 1 (n=1) NA
Mekras A et al (29)	4	1.5 ± 2.5	Local lps* resection (n=2) Lpt gastric wedge resection(n=2)	102.5 (20-185)

Table 2 (n=53) articles reported the follow-up information.
Study Reference	Sample Size	Dimension	Procedure	Follow-up	
Sanei B et al (30)	1	5 × 6	Local lpt resection	NA	
Sunkara T et al (31)	1	3.2 × 3.7 × 4.1	Local lpt resection	2	
Bae H et al (32)	85	NA	Surgery	72 (19–125)	
Takasumi M et al (35)	3	NA	(n=2) Follow-up (n=1) local lpt resection	93 (83-103)	
Choi KW et al (36)	1	3.2 × 2.5	Lpt subtotal gastrectomy	24	
Hu J et al (22)	14	0.5 ± 2.5	Complete endoscopic resection	28.5 (4–53)	
Hu BG et al (37)	1	4 × 3	Lpt complete resection of the tumor	12	
Shimizu S et al (39)	1	6.5 × 4.5 × 3.5	Lps distal gastrectomy	5	
Romdhane H et al (42)	1	2.5	Lps partial gastrectomy	12	
Koizumi S et al (43)	3	NA	Surgical resection (n=2) Follow up (n=1)	48 (24.3-71.7)	
Vargas Flores E et al (45)	1	1.6 × 1.3	Lps tumor resection	NA	
Kudose S et al (46)	1	NA	Distal gastrectomy	12	
Mohanty SK et al (47)	1	7 × 6.2 × 8	Lpt subtotal gastrectomy	3	
Cai MY et al (20)	14	1.73±1.10	(n=12) endoscopic en bloc resection; (n=1) endoscopic was suspended; (n=1) lps surgery	47 (17-77)	
Shah AS et al (54)	1	4-5	Exploratory lpt with gastric resection	1	
Crouthamel MR et al (55)	2	NA	Lps sleeve gastrectomy	Regular fup	
Tao K et al (8)	30	1.3±8	(n=11) lps wedge resection; (n=4) lpt wedge resection; (n=2) lps partial gastrectomy; (n=3) lpt partial gastrectomy; (n=7) lpt subtotal gastrectomy; (n=3) lpt total gastrectomy	50 (12-97)	
Manji M et al (57)	1	5x6	Lpt gastrotomy with resection of the mass	6	
Li B et al (21)	5	0.8±2.05	2/5 EFR***, 2/5 ESE, 1/5 STER	5.9 (4.4-7.4)	
Zheng et al (4)	29	2.1±7.9	(n=13) Partial gastrectomy; (n=8) gastric wedge resection; (n=7) subtotal gastrectomy; (n=1) total gastrectomy	47 (6-157)	
Wang G et al (18)	1	5.6x5.3x4	Lpt surgical resection	12	
Atmatzidis S et al (72)	1	5x3x2.5	Partial gastrectomy	12	
Study	Cases	Tumor Size	Procedure	Tumor Excision	Notes
-------------------------------	-------	------------	----------------------------------	----------------	-------
Zhong DD et al (74)	4	3.3±8.1	(n=2) Lps wedge resection; (n=2) Subtotal gastrectomy	21,5 (4-39)	
Fujiwara et al (77)	14	2±7.5	Lps partial gastrectomy		55 (25-243)
Takemura M et al (12)	1	6x5	Distal gastrectomy		3
Fukuchi M et al (79)	1	3.2x3x2.3	Lps subtotal gastrectomy		36
Voltaggio et al (7)	51	1±10.5	(n=21) Partial gastrectomy; (n=18) Local excision or wedge resection; (n=2) biopsy; (n=2) NA	214.5 (12-417)	
Watanabe A et al (80)	1	1.9x1.8	Lps partial gastrectomy		24
Ohno T et al (82)	2	-4.7x3.4x4.5 -2.2x1.8x1.7	Lps wedge resection		15 (6-24)
Komatsu D et al (86)	1	2.5x2.5x1.5	LPS partial gastrectomy		10
Agaimy A et al (85)	58	0.7±15.5	NA		39.5 (2-77)
Ogasawara N et al (87)	1	5	Surgical resection		6
Hong HS et al (89)	16	1.2 ± 8	NA		NA
Yoon HY et al (88)	1	6 × 5.5 × 4	Subtotal gastrectomy		36
Tozbikian G et al (90)	1 (two lesions)	-3.8 x 3 x 3 -1.2 x 1 x 0.6	Subtotal gastrectomy		13
Chen YY et al (92)	1	5	Wedge resection		36
Khan AA (93)	1	4x2.5	Lpt Wedge resection		12
Fujii Y et al (95)	1	4.3 x 4.2 x 3.6	Partial resection		5
Uchikoshi F et al (96)	1	2.7±7.5	Lps intragastric enucleation/resection		NA
Iwamoto CA et al (97)	1	3	Surgical resection		NA
Povoski CA et al (101)	1	5	Lpt Subtotal gastrectomy		30
Janowitz P. et al (98)	1	4.5x3	Fundectomy		36
Rymarczyk G et al (102)	1	2±10	Tumor excision		8
Otani Y et al (103)	3	0.8±6	Lps wedge resection		60
Prévot et al (104)	3	2±11	Surgical removal		90.5 (1-180)
Melvin WS et al (108)	3	NA	Tumor excision		NA
Silecchia G et al (106)	1	2.5	Lps resection of the gastric wall under endoscopic guidance	13	
Sarlomo-Rikala M et al (107)	6	2±9	NA		162 (36-288)
Bandoh T et al (109)	11	NA	Tumor enucleation		60
Gennatas CS et al (112)	1	NA	Tumor excision + chemotherapy		12
** Figures **

| Daimaru Y et al (6) | 23 | 2.8 (0.5-7) | Surgical resection | 112.5 (4-221) |

* lps = laparoscopy; lpt = laparotomy
** NA = not available
*** EFR: endoscopic full-thickness resection, ESE: endoscopic submucosal excavation; STER: submucosal tunelling endoscopic resection.

Figure 1

PRISMA Flow Diagram for studies selection.
Figure 2

a) Tumor size in centimeters; b) Number of patients; c) Months of follow-up d) Type of treatment.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

PRISMA_update_protocol_20180214.pdf