МЕТОДИЧЕСКИЕ ЗАМЕТКИ

Сжимаемые вихревые структуры и их роль в зарождении гидродинамической турбулентности

Д.С. Агафонцев, Е.А. Кузнецов, А.А. Майлбаев, Е.В. Серещенко

Представлены результаты исследований зарождения квазидвумерных (в виде тонких блинов) вихревых структур в трёхмерных течениях и сужающихся квазидвумерных структур в двумерной гидродинамике при больших числах Рейнольдса, когда в главном порядке развитие этих структур может быть соответственно описано трёхмерными и двумерными уравнениями Эйлера идеальной несжимаемой гидродинамики. Численно и аналитически показано, что сжатие этих структур и соответственно увеличение их амплитуда обусловлено сжимаемостью вмороженных полей: поля непрерывно распределённых вихревых линий в случае трёхмерной гидродинамики и поля линий ротора завихренности (di-vorticity) для двумерных течений. Выяснено, что возрастание завихренности и ротора завихренности можно рассматривать как процесс опрокидывания соответствующих векторных полей; при больших интенсивностях этот процесс имеет сейсмический характер колмогоровского типа, связанный с максимальной амплитудой и соответствующие толщины/ширины структур. Проанализирована возможная связь этих когерентных структур в формировании колмогоровского спектра турбулентности и спектра Крежчина, соответствующего постстационарному потоку экстраполя в случае двумерной турбулентности.

Ключевые слова: вихревые линии, завихренность, опрокидывание, турбулентность, вмороженные поля

PACS numbers: 47.10. – g, 47.27. – i, 47.32. – y

DOI: https://doi.org/10.3367/UFNr.2020.11.038875

1. Введение (205).
2. Инварианты Коппи и представление вихревых линий (209).
3. Сжимаемость представления вихревых линий и автоматизированный закон 2/3 (211).
 3.1. Сингулярные собственные значения. 3.2. Сейсмик 2/3.
4. Статистика зарождающейся трёхмерной турбулентности (214).

Д.С. Агафонцев (1, 2, a), Е.А. Кузнецов (2, 3, 4, b), А.А. Майлбаев (5, c), Е.В. Серещенко (6, d)

1 Институт океанологии им. П.П. Ширшова РАН,
 Нахимовский просп. 36, 117997 Москва, Российская Федерация
2 Сколковский институт науки и технологий,
 Территория инновационного центра Сколково,
 Большой бульвар 30, стр. 1, 121205 Сколково, Москва, Российская Федерация
3 Физический институт им. П.Н. Лебедева РАН,
 Ленинский просп. 53, 119991 Москва, Российская Федерация
4 Институт теоретической физики им. Л.Д. Ландau РАН,
 ул. Косыгина 2, 119334 Москва, Российская Федерация
5 Институто de Matemático Pura e Aplicada, Estrada Dona Castorina 110,
 Rio de Janeiro, CEP 22460-320, Brasil
6 Институт теоретической и прикладной механики
 им. С.А. Христиановича СО РАН,
 ул. Институтская 4/1, 630090 Новосибирск,
 Российская Федерация
E-mail: a dmitrij@itp.ac.ru, b kuznetso@itp.ac.ru,
 c alexei@impa.br, d s_evgeniy@yahoo.com

Статья поступила 31 августа 2020 г.

4.1. Численная схема для статистических характеристик трёхмерной турбулентности. 4.2. Результаты численных экспериментов.
5. Двумерная турбулентность: от опрокидывания к спектру Крежчина (219).
 5.1. Основные уравнения и численная схема. 5.2. Формирование складок. 5.3. Статистические особенности двумерной турбулентности.
6. Заключение (223).

Список литературы (224).

1. Введение

Несмотря на то что со времени классических работ Л.Ф. Ричардсона [1], А.Н. Колмогорова [2] и А.М. Обухова [3] по гидродинамической турбулентности при больших числах Рейнольдса, Re > 1, прошло уже около 80 лет и достигнуто значительное понимание её природы, проблема развитой гидродинамической турбулентности всё ещё остаётся до конца нерешённой. Главная причина состоит в том, что развитая гидродинамическая турбулентность в каком варианте не может быть изучена с помощью теории возмущений, в отличие, например, от волновой турбулентности [4].

В волновой турбулентности есть два основополагающих фактора, определяющих динамику волновой системы: линейная дисперсия волн и нелинейность. Если дисперсионные эффекты превалируют над нелинейными, то в этом случае каждая волна с частотой Ω и волновым вектором k свободно движется в течение длительного
времени и только на больших расстояниях $L \gg k^{-1}$ начинает испытывать влияние других волн за счёт нелинейности. Это является основанием для применения к такому ансамблю волн статистического описания на основе теории волнения. В результате мы приходим к теории слабой (вольновой) турбулентности, описывающей поведение ансамбля волн на уровне кинетических уравнений для волнообразования, представляющего собой классический предел чисел заполнения. На этом пути удаётся продвинуться достаточно далеко, в частности найти спектры турбулентности как точные решения кинетических уравнений, получившие название спектров Колмогорова—Захарова (см., например, [4]).

Эти решения характеризуются постоянным потоком энергии, числа частот и т.д. Существенно, что данные решения не могут быть рассмотрены как термодинамически равновесные — они, как и спектр Колмогорова — Обухова для развитой гидродинамической турбулентности, реализуются в инерционном интервале — промежуточной области между накачкой и затуханием — и характеризуются конечным значением потока того или иного интеграла движения. С возрастанием амплитуды (т.е. с усилением нелинейности) главную роль начинают играть когерентные структуры в виде солитонов, бризеров, вихрей, для которых нелинейность компенсирует дисперсионными эффектами. Такие объекты иногда оказываются устойчивыми, чаще для интегрируемых моделей типа уравнений Кортевега—де Вриза или нелинейного уравнения Шрёдингера (НУШ). При этом турбулентность в интегрируемых моделях, получившая название интегрируемой [5], обладает рядом особенностей (см., например, [6, 7], а также недавние работы [8—12]). В случае неустойчивости когерентных структур типичным сценарием их нелинейного развития является коллапс — образование особенности за конечное время (см. обзор [13] и цитированную там литературу). Классические примеры коллапса — самофокусировка света в средах с керровской нелинейностью и опрокидывание волн волнового типа.

Если говорить о гидродинамике Эйлера, то она с хорошей точностью описывает турбулентность при больших числах Рейнольдс, $Re > 1$, в инерционном интервале масштабов — промежуточной области между длинноволновой накачкой и вязким затуханием. Важно, что гидродинамика Эйлера ни в каком пределе не может быть изучена поршневато. Её гамильтониан, совпадающий с полной кинетической энергией жидкости, представляет собой гамильтониан взаимодействия (см., например, [14]). Таким образом, гидродинамика Эйлера описывает систему с предельно сильным нелинейным взаимодействием. Поэтому следует ожидать, что для развитой гидродинамической турбулентности когерентные структуры должны играть более существенную, а возможно определяющую, роль, чем для волновой турбулентности. Надо отметить, что проблема взаимодействия когерентных структур и хоатических компонент есть одна из центральных, до сих пор до конца не решённых проблем современной теории турбулентности.

Известно, что теория Колмогорова—Обухова [2, 3] описывает развитую гидродинамическую турбулентность в инерционном интервале масштабов. Размер этой области — отношение энергосодержащего масштаба L к взаимному k_0 — возрастает пропорционально $Re^{3/4}$ (см., например, [15]). В основе теории Колмогорова—Обухова лежат два важных предположения:

— турбулентность в инерционном интервале однородна и изотропна;
— нелинейное взаимодействие между флюктуациями является локальным.

Последнее означает, что в инерционном интервале взаимодействие между масштабами одного порядка пре- восходит взаимодействие между флюктуациями с сильно различающимися масштабами. В случае стационарной турбулентности поведение системы определяется потоком (постоянным) энергии e из области накачки в область затухания (по сути, основано на свойстве локальности). Поведение спектра турбулентности — так называемого кольцогоровского спектра — универсально — оно определяется единичной величиной e. По этой причине с точностью до константы C_M (константы Колмогорова) спектр $E(k)$ может быть получен исходя из соображений размерности. По размерности спектр $E(k)$ представляет собой плотность энергии в фазовом пространстве, поп- множенную на $4\pi^2$:

$$E(k) = 4\pi \rho \frac{k^2}{K_0} \hat{F}(\frac{e}{\rho c^2 k^4}),$$

где ρ — плотность (в дальнейшем полагаемая равной единице), c — скорость света (введена из соображений удобства), F — функция от безразмерного параметра $e/(\rho c^2 k^4)$. Очевидно, что спектр $E(k)$ не должен зависеть от скорости света, отсюда $F(\xi) = C_2 \xi^{3/2}$. В результате мы приходим к колмогоровскому спектру

$$E(k) = C_k \xi^{3} \sim \xi^{3/2} k^{-5/3}, C_k = 4\pi C.$$

Данный вывод, принадлежащий Р.З. Сагдееву, основывается только на соображениях размерности. Из этих же соображений следует, что время перекачки энергии из энергосодержащих масштабов L в область диссипации конечно и оно определяется только L и e: $T \sim L^{2/3} e^{-1/3}$. Флюктуации скорости и завихренности $\omega = V \times V$ масштаба ℓ даются соответственно следующими соотношениями:

$$\langle \delta v \rangle \sim \xi^{1/3} \ell^{1/3}, \quad \langle \delta w \rangle \sim \xi^{1/3} \ell^{-2/3}.$$

Таким образом, для флюктуаций ω мы имеем особенность при $\ell \rightarrow 0$. Вместе с конечным временем перекачки энергии на малые масштабы T это указывает на возмож- ность формирования коллапса, который в инерционном интервале масштабов может быть изучен в рамках гидродинамики Эйлера. Именно эти соображения были ведущими, когда мы начали наши исследования, в которых особенно полезным оказалось прямой численный эксперимент, значительно изменявший наше представление о механизмах перехода к развитой гидродинамической турбулентности.

Как впервые было отмечено В.И. Арнольдом [16], гидродинамика Эйлера следует рассматривать как геометрическую теорию. Уравнения Эйлера для идеальных жидкостей имеют ряд общих черт с уравнениями Эйлера для свободного вращения твёрдого тела. Если движение твёрдого тела в трёхмерном пространстве задаётся группой $SO(3)$, то динамика течения идеальной (несжимаемой) жидкости определяется бесконечномерной группой — группой диффероморфизмов, сохраняющих объём (или площадь в двумерном случае). В обоих случаях уравнения движения могут быть записаны в гамильтоновом виде посредством скобок Пуассона. Скобы Пуассо-
сона для обеих систем определяют соответствующие алгебры Ли: в случае твёрдого тела это so(3), а для жидкосей имеем алгебру бездивергентных векторных полей (см., например, [14]). Однако в обоих случаях скобки Пуассона описываются выражениями. Выражение для случая твёрдого тела хорошо известно — оно связано с сохранением квадрата момента импульса (представляющего собой калориметр). Для жидкостей факт выражения скобки (неканонической) Пуассона впервые был установлен Кузнецовым и Михайловым [17]: простейшим калориметром, найденным в [17], оказалась спиральность \textit{v} = \textit{div} \textit{v}. Этот инвариант имеет топологическое значение [18, 19]; с точностью до постоянного множителя спиральность совпадает с инвариантом Холла — числом зацеплений двух любых вихревых линий.

Хотелось бы подчеркнуть ещё раз, что уравнения Эйлера гидродинамики идеальной несжимаемой жидкости, будучи гамильтоновыми [14, 16, 17, 20], являются чисто нелинейными — в них отсутствует какая-либо линейная часть, т.е. сами уравнения Эйлера относятся к системам с предельно сильными нелинейными взаимодействиями. По этому следует ожидать, что для гидродинамической турбулентности при больших числах Рейнольдса, в инерционном интервале масштабов хорошо описываемой гидродинамикой Эйлера, когерентные структуры играют существенную, а возможно, и определяющую роль. При этом одним из вариантов эволюции когерентных структур представляется коллапс — возникновение особенности за конечное время.

Необходимо также отметить, что уравнения Эйлера при любой размерности обладают бесконечно большим числом интегралов движения. Это так называемые инварианты Коши, которые представляют собой лагранжевы векторные бездивергентные инварианты, переносимые вместе с жидкостью. Существование этих инвариантов представляет собой локальную формулировку теоремы Кельвина о сохранении циркуляции, доказанную Кельвином только в 1869 г. Однако Коши нашёл инварианты в 1815 г. как результат частичного интегрирования уравнений Эйлера, записанных в лагранжевой форме. Теорема, получившая имя Кельвина, в действительности впервые была доказана Ханкеlem в 1861 г. на основе работ Коши. Этот вопрос был полно дважды решён лишь в конце XX — начале XXI вв. (см. работы [14, 21, 22], а также научно-историческое эссе [23], в котором отражена история данного вопроса).

Наличие инвариантов Коши существенно осложняет изучение развитой гидродинамической турбулентности. Эти инварианты относительно так называемой неканонической скобки Пуассона, введённой в работе [17], представляют собой, как показано в [24] (см. также [25]), калориметры. То есть инварианты Коши как связи, задаваемые в каждой точке, существенным образом ограничивают вихревые течения жидкости.

В настоящей статье обсуждается роль когерентных структур в зарождении развитой гидродинамической турбулентности, когда в главном порядке развитие этих структур может быть описано уравнениями Эйлера для идеальной несжимаемой жидкости. Показано, что для трёхмерных течений происходит формирование вихревых структур повышенной завихренности в виде утончающихся блинов, а для двумерных течений — сужающихся квазидиомерных (интегральных) структур в виде квазишок завихренности. Ключевую роль в наших исследованиях играет впервые введённое в 1998 г. в работе Кузнецова и Рубана [24] так называемое представление вихревых линий (ПВЛ), которое выражается посредством частичного интегрирования уравнений Эйлера относительно сохранения инвариантов Коши. С помощью ПВЛ мы покаём, что появление когерентных структур ближнего и интенсивного типов обусловлено сжимаемостью, также так называемых вмороженных полей: поля не прерывно распределённых вихревых линий для трёхмерной гидродинамики и поля линий ротора завихренности (curl div — вихрь — в двумерной геометрии. Благодаря сжимаемости появляются большие градиенты соответствующих бездивергентных полей, что в свою очередь оказывает существенное влияние на формирование спектров турбулентности.

Напомним, что в сжимаемой гидродинамике — газодинамике — появление особенности за конечное время (коллапс) обусловлено опрокидыванием — явлением, открытым в газодинамике знаменитым Риманом (см. [15]). В этом случае одна "жидкая" частица догоняет другую частицу, в результате происходит формирование бесконечных градиентов для характеристик газа — плотности и скорости — так называемая градиентная катастрофа (см., например, [26]). Главная причина опрокидывания связана со сжимаемостью газа. С математической точки зрения этот процесс представляет собой формирование складки, которое может быть описано на языке отображений, в данном случае отвечающих переходу от эйлера описывающей лагранжеву. Особенность возникает в точке обращения в нуль якобиана данного отображения. В несжимаемой гидродинамике — гидродинамике Эйлера, казалось бы, нет причин для опрокидывания, поскольку якобиан преобразования от эйлера описывающая к лагранжеву вследствие несжимаемости тождественно равен единице. Тем не менее в несжимаемой гидродинамике есть сжимаемые объекты — это непрерывно распределённые вихревые линии, что следует из простого наблюдения.

Рассмотрим уравнения движения завихренности $\omega = \text{div} v$ в идеальной жидкости, так называемые уравнения Гельмгольца, которые получаются из уравнений Эйлера применением к ним оператора ротора:

$$
\frac{\partial \omega}{\partial t} = \text{rot} [v \times \omega], \quad \text{div} v = 0.
$$

(1)

Как видно из этого уравнения, в силу векторного произведения только компонента скорости, нормальная к вихревой линии, v_n, может изменить ω. При этом в общем случае $\text{div} v_n \neq 0$, что является причиной сжимаемости непрерывно распределённых вихревых линий [21, 24]. Таким образом, несмотря на несжимаемость жидкости, в гидродинамике Эйлера есть сжимаемый объект — непрерывно распределённые вихревые линии. Компонента скорости, параллельная завихренности, v, в силу (1) не меняет завихренности, обеспечивая несжимаемость для полной скорости, $\text{div} v = 0$.

Отметим, что уравнение (1) часто называют уравнением вмороженности. На самом деле вмороженность — это свойство уравнения (1), которое состоит в том, что всякая жидкая частица прикреплена к своей вихревой линии, двигаясь вместе с ней. У частицы, таким образом, имеется только одна "свобода" — движение вдоль вихревой линии, которое не меняет завихренности, что очевидно из уравнения (1). Поэтому v_n — скорость самой
вихревой линии. Это утверждение имеет простое геометрическое объяснение. Очевидно, что любые деформации вдоль произвольной линии не изменяют самой линии — только поперечные деформации приводят к её перемещению. Поэтому движение вихревой линии определяется скоростью \(\mathbf{v}_a \); положение вихревой линии находится из решения системы обыкновенных дифференциальных уравнений для "новых" лагранжевых траекторий:

\[
\frac{d\mathbf{r}}{dt} = \mathbf{v}_a(\mathbf{r}, t), \quad \text{при} \quad |\mathbf{r}| = a.
\]

Решение уравнений (2) задаёт сжимаемое отображение \(\mathbf{r} = \mathbf{r}(a, t) \). Последнее непосредственно следует из формулы Лиувилля, применимой к этому уравнению,

\[
\frac{d\mathbf{J}}{dt} = \text{div} \, \mathbf{v}_a \, \mathbf{J},
\]

где \(\mathbf{J} = \text{det} \frac{\partial \mathbf{r}}{\partial \mathbf{a}} \) — я kobан в отображения. В силу того что \(\text{div} \, \mathbf{v}_a \neq 0 \), на величину \(\mathbf{J} \) не оказывается никаких дополнительных ограничений. Якобиан может принимать произвольные, в том числе нулевые, значения. Важно, что уравнение (1) в терминах этого отображения допускает интегрирование:

\[
\omega(\mathbf{r}, t) = \left(\frac{\omega_0(\mathbf{a}) \mathbf{V}_a}{f} \right) \mathbf{r},
\]

где \(\omega_0(\mathbf{a}) \) — начальное значение завихренности, которое имеет смысл инварианта Коши (см., например, [14, 27]). Уравнения (2)–(4) вместе с условием нежёмы: \(\text{div} \, \mathbf{v} = 0 \) образуют замкнутую систему представления вихревых линий (ПВЛ), впервые введённой Кузнечовым и Рубаном [24] (см. также [21, 28]).

Позднее стало ясно, что существование сжимаемых распределений для безвихревых полей присуще всем вмороженным полям. Прочем это утверждение справедливо для произвольного вмороженного в жидкость поля \(\mathbf{B} \), уравнение движения которого записывается в том же виде, что и (1):

\[
\frac{\partial \mathbf{B}}{\partial t} = \text{rot} \left[\mathbf{v} \times \mathbf{B} \right], \quad \text{div} \, \mathbf{v} = 0.
\]

В магнитной гидродинамике (МГД) \(\mathbf{B} \) представляет собой магнитное поле (при бесконечно больших магнитных чисел Рейнольдсса). Менее известно, что в двумерных течениях идеальной жидкости ротор завихренности (di-vorticity), \(B_3 = \partial_1 \omega, \quad B_1 = -\partial_2 \omega, \) также подчиняется уравнению (5) [29] (см. также [30, 31]).

Поскольку завихренность в (4) содержит \(J \) в знаменателе, который может принимать произвольные значения, вероятный сценарий коллапса может возникнуть за счёт обращения якоря \(J \) в нуль, что в ситуации общего положения должно вначале пройти в одной отдельной точке. Такой сценарий оказался возможным для трёхмерной интегрируемой гидродинамики [24, 25]. Трёхмерная интегрируемая гидродинамика может быть получена из идеальной гидродинамики Эйлера при приближении локальной индукции. Уравнения трёхмерной интегрируемой гидродинамики допускают применение к ним ПВЛ. В результате оказывается, что каждая вихревая нить представляет собой автономный объект, не взаимодействующий со всеми другими, но со своей нелнейной динамикой, которая описывается с помощью интегрируемого уравнения Ландау–Лифшица, калибровочно-эквивалентного одномерному НУШ [32, 33]. Являясь свободной, каждая вихревая линия может догонять другую линию, т.е. происходит опрокидывание вихревых линий. Как результат, в некоторой точке за конечное время происходит обращение якоря ПВЛ в нуль, что приводит к появлению особенности для завихренности. Опрокидывание вихревых линий в трёхмерной интегрируемой гидродинамике происходит благодаря сжимаемости вихревых линий, несмотря на несжимаемость самого потока [25].

Отметим, что до сих пор вопрос относительно коллапса для гидродинамики Эйлера остаётся дискуссионным, несмотря на большое количество численных и точных аналитических результатов (см. обзоры [34, 35] и цитируемую там литературу). От решения проблемы: есть коллапс или его нет — зависит наше понимание природы развитой гидродинамической турбулентности.

Основной вывод, который можно сделать исходя из сказанного, состоит в том, что в гидродинамике Эйлера несжимаемой жидкости существуют сжимаемые объекты — это поле завихренности для трёхмерных течений и поле ротора завихренности — (di-vorticity) — в двумерной геометрии. Интуитивно ясно, что сжимаемость непрерывно распределённых вихревых линий должна обеспечивать появление структур типа ударных волн, которые в газовой динамике вначале возникают вследствие опрокидывания в одной отдельной точке, а затем область опрокидывания расширяется, приводя к формированию кавитации. Именно такие структуры — структуры ближнего типа — наблюдаются в наших численных экспериментах [36–38]. Впервые структуры такого типа были обнаружены в численных экспериментах М. Браше с соавторами (M. Brachet et al.) [39] (1992 г.). Впоследствии в работах [36–38] было показано, что формирование близкообразных структур аналогично процессу опрокидывания в газовой динамике, т.е. градиентной катастрофе. Появление особенности происходит не за конечное, а за бесконечное время — с экспоненциальным во времени ростом.

Принципиальное значение для понимания физической природы опрокидывания вихревых линий имеет введённое Кузнечовым и Рубаном [24] представление вихревых линий, учитывающее как наличие бесконечно-числа инвариантов Коши, так и сжимаемость непрерывно распределённых вихревых линий. В настоящей статье основное внимание уделено результатам численного интегрирования уравнений Эйлера, демонстрирующих сжимаемость как трёхмерных структур ближнего типа [36], так и сужающихся квазициклов завихренности для двумерных течений, и их роли в формировании спектров развитой (Re ≳ 1) турбулентности колмогоровского типа [40]. Мы уверены, что возникновение сжимающихся структур такого типа является свойством всех вмороженных в жидкость векторных полей, в частности присущим идеальной магнитной гидродинамике. В работах [36, 37] по изучению структур повышенной завихренности ближнего типа в трёхмерной геометрии численно установлено, что их эволюция имеет скейлинговый характер и с высокой точностью описывается с помощью найденных точных решений трёхмерных уравнений Эйлера [38]. Скейлинг между максимальной завихренностью блина и его толщиной \(\ell \),

\[
\sigma_{\text{max}} \sim \ell^{-2/3},
\]
впервые был найден на основе прямого численного интегрирования трёхмерных уравнений Эйлера в [36], а затем проверен для более чем 30 начальных условий [37]. Это дало основание утверждать об универсальности данного скейлинга как соотношения кольмогоровского типа. В численных экспериментах было выяснено, что возрастающая завихренность и сужение структур ближнего типа зависит от времени экспоненциально, без какой-либо тенденции к взрывному поведению. Мы приведём как аналитические, так и численные аргументы в пользу существования данного скейлинга. В основе нашего рассмотрения лежит представление вихревых линий [24] и его аналоги [40, 41]. Для описания трёхмерных течений идеальной несжимаемой жидкости мы будем следовать формулировке ПВЛ, данной в [21, 42]. Мы обсудим гамильтонову структуру представления вихревых линий, которая опирается на существование бесконечного числа локальных лагранжевых инвариантов Коши и сжимаемости отображения ПВЛ. Важно, что введение инвариантов Коши в ПВЛ позволяет решить задачу об определении всех калибров для неканонической собоки Пуассона [17].

Соотношение (4), являющееся центральным в ПВЛ, показывает, что увеличение завихренности возможно за счёт уменьшения якоря J, т.е. связано со сжимаемостью поля завихренности. Такая ситуация, как известно, впервые была осознана для сжимаемой гидродинамики ещё Риманом при построении точного решения в виде так называемой простой волны Римана, демонстрирующей явление опрокидывания, когда одна лагранжева частица догоняет другую. В этом случае в профиле решения за конечное время возникают бесконечные произвольные (происходит так называемая градиентная катастрофа [26]). Чтобы описать это явление в трёхмерном случае, надо перейти в уравнениях газовой динамики от эйлера описания к лагранжеву. Опрокидывание впервые возникает в точке обращения соответствующего якоря в нуль. Очевидно, что при приближении к точке опрокидывания необходимо учитывать диссипацию вследствие вязкости, теплопроводности и т.д. Однако в этой области процесс опрокидывания будет продолжаться, что и приводит к формированию каустик — квазидвумерных структур ближнего типа (см., например, [43, 44]).

В настоящей статье будут рассмотрены, по сути, два вопроса: во-первых, мы покажем, используя геометрические особенности отображения ПВЛ для трёхмерных уравнений Эйлера, что скейлинг (6) можно рассматривать как результат опрокидывания вихревых линий. Подчеркнём, что в данном случае речь идёт об опрокидывании векторного бездивергентного поля — завихренности, в то время как в сжимаемой гидродинамике под опрокидыванием подразумевается возникновение градиентной катастрофы для скалярной величины — плотности. В разделах 2–4 мы обсудим также, как появление структур ближнего типа влияет на турбулентные характеристики при зарождении турбулентности, в частности на её спектр. Будет показано, что, несмотря на сильную анизотропию турбулентности, её спектр в инерциональном интервале близок к кольмогоровскому. Анизотропия существенно влияет на старшие структурные функции скорости. При этом, однако, структурные функции третьего порядка имеют ту же степенную зависимость от \(R = \| r \| - r \| \geq 0 \) [40], что и в изотропной турбулентности [2] (см. также [15]).

Второй вопрос, который мы рассмотрим, относится к формированию спектра Крейчната для двумерной гидродинамической турбулентности — спектра для прямого каскада с постоянным потоком энтропии в коротковолновую область — и роли опрокидывания векторного поля di-vorticity в этом процессе.

Прежде чем перейти к изложению основных положений обзора, надо сказать несколько слов относительно численного моделирования в случае трёхмерной геометрии как при прямом интегрировании уравнений Эйлера, так и в представлении вихревых линий. Численная схема и все необходимые детали численных экспериментов представлены в работах [36–38].

Главным моментом в численном моделировании уравнений ПВЛ являлось нахождение не прямого отображения \(r = r(a, \tau) \), а обратного отображения \(a = a(r, \tau) \), что позволило представить уравнения ПВЛ в эйлеровских переменных \(r \) и \(\tau \). Особенно эффективным это оказалась при обращении оператора ротора. Подчеркнём, что мы всюду использовали периодические граничные условия по всем трём координатам.

Для двумерных расчётов мы использовали примерно те же самые численные алгоритмы и периодические граничные условия для квадратной области. Результаты численного моделирования приведены в работах [31, 45–47].

Отметим также, что в настоящей статье обсуждаются в основном результаты, полученные авторами за последние годы; обзор написан на основе прочитанных Е.А. Кузнецов лекций на Нижегородских научных школах "Нелинейные волны" в 2016 и 2018 гг. [48, 49].

2. Инварианты Коши и представление вихревых линий

Как известно (см., например, обзоры [14, 20]), уравнения Эйлера для несжимаемой жидкости

\[
\frac{\partial \mathbf{v}}{\partial t} + \nabla \mathbf{v} = -\nabla p, \quad \text{div} \mathbf{v} = 0,
\]
(7)

как для двумерных, так и для трёхмерных течений обладают бесконечно большим числом интегралов движения — лагранжевых инвариантов Коши. Наиболее просто выражение для инварианта Коши можно получить исходя из теоремы Кельвина о сохранении циркуляции скорости,

\[
\Gamma = \int \mathbf{v} \, d\mathbf{l},
\]
(8)

где контур интегрирования \(C(r(\tau)) \) движется вместе с жидкостью. Если в выражении (8) перейти от эйлеровых координат \(\mathbf{r} \) к лагранжевым \(\mathbf{a} \), то оно примет вид

\[
\Gamma = \int \dot{x}_i \frac{\partial x_i}{\partial a_k} \, da_k,
\]
где контур \(C[\mathbf{a}] \) уже будет неподвижным.

Ввиду произвольности контура \(C[\mathbf{a}] \) и благодаря формуле Стокса отсюда немедленно следует, что величина

\[
\mathbf{I} = \text{rot} \mathbf{a} \left(\frac{\partial x_i}{\partial a_k} \right)
\]
(9)

сохраняется в каждой точке \(\mathbf{a} \). Это и есть лагранжев инвариант Коши.
Сохранение лагранжевых инвариантов, как впервые было показано Салмоном [50], обусловлено специальной симметрией — бесконечной симметрией относительно переобозначения лагранжевых маркеров (relabelling symmetry), оставляющей инвариантным действие. Если лагранжевые координаты в (9) совпадают с начальными положениями жёлтых частиц, то инвариант И совпадает с начальной завершейностью \(\theta_0(a) \). Сохранение лагранжевых инвариантов является следствием вмёрзких вихревых линий в жидкость. Согласно этому свойству, жёлтые (лагранжевые) частицы не могут покинуть собственную вихревую линию, на которой они находились в начальный момент. Для лагранжевых частиц остаётся только одна незамороженная степень свободы — движение вдоль вихревой линии, которое в силу (1) не изменяет значения \(\phi \). С этой точки зрения вихревая линия является инвариантным объектом, следовательно, естественно перейти к такому описанию, в котором данная инвариантность выделяется из самого начала. Такое описание и есть представление вихревых линий [24, 26]. Для его получения разложим скорость \(v \) на две компоненты, \(v_n \) и \(v_t \), нормальную и тангенциальную по отношению к вектору \(\omega \).

Уравнение движения для поперечной скорости \(v_t \), которое следует непосредственно из уравнения (7), имеет вид уравнения движения частицы в электромагнитном поле:

\[
\frac{\partial v_t}{\partial t} + (v_n \nabla) v_t = E + v_n \times H, \tag{10}
\]

где эффективные поля — электрическое и магнитное — даются выражениями:

\[
E = -\nabla \left(p + \frac{v_t^2}{2} \right) - \frac{\partial v_t}{\partial t}, \tag{11}
\]

\[
H = \rot v_t. \tag{12}
\]

Отметим, что введённые таким образом электрическое и магнитное поля выражаются через скалярный \(\phi \) и векторный \(\mathbf{A} \) потенциалы стандартным образом, принятым в электродинамике:

\[
\phi = p + \frac{v_t^2}{2}, \quad \mathbf{A} = v_t, \tag{13}
\]

так что два уравнения Максвелла,

\[
\text{div} \mathbf{H} = 0, \quad \frac{\partial \mathbf{H}}{\partial t} = -\rot \mathbf{E},
\]

автоматически удовлетворяются. При этом на векторный потенциал \(\mathbf{A} \) наложена калибровка

\[
\mathrm{div} \mathbf{A} = -\text{div} v_n,
\]

которая эквивалентна условию \(\text{div} v = 0 \).

Базовым здесь является само уравнение движения (10) для нормальной компоненты скорости, которое представляет собой уравнение движения нерелятивистской частицы с зарядом и массой, равными единице, скорость света при этом также равна единице.

Уравнение движения (10) записано в эйлеровом представлении. Чтобы перейти к его лагранжевой формулировке, надо рассмотреть уравнения для "траекторий", которые определяются скоростью \(v_n \):

\[
\frac{dr}{dt} = v_n(r, t), \tag{14}
\]

с начальными условиями \(r|_{t=0} = a \).

Решение уравнения (14) задаёт отображение

\[
r = r(a, t), \tag{15}
\]

определяющее переход от эйлерова описания к новому лагранжеву.

Уравнения движения в новых переменных представляют собой уравнения Гамильтона:

\[
\mathbf{P} = -\frac{\partial H}{\partial r}, \quad \dot{r} = \frac{\partial H}{\partial \mathbf{P}}, \tag{16}
\]

где точка означает дифференцирование по времени при фиксированном значении \(a \), \(\mathbf{P} = v_n + \mathbf{A} \equiv v \) — обобщённый импульс, а гамильтониан частицы \(h \), являясь функцией импульса \(\mathbf{P} \) и координаты \(r \), выражается стандартным образом:

\[
h = \frac{1}{2} (\mathbf{P} - \mathbf{A})^2 + \phi = p + \frac{v_t^2}{2}. \]

Первое уравнение системы (16) — это уравнение движения (10), записанное в переменных \(a \) и \(r \), а второе уравнение совпадает с (14). Для "новой" гидродинамики (10) или её гамильтоновой формулировки (16) справедлива теорема Кельвина (она же теорема Лизувиля):

\[
\Gamma = \int \mathbf{P} \, dr, \tag{17}
\]

где интегрирование ведётся по замкнутому, движущемуся вместе с "жидкостью" контуру. Относительно так же, как это было сделано выше при выводе (9), получим выражение для "нового" инварианта Коши:

\[
\mathbf{I} = \rot_{a} \left(P_i \frac{\partial x_i}{\partial a} \right). \tag{18}
\]

Отличие последнего от оригинального инварианта Коши (9) состоит в том, что в уравнении движения (14) скорость \(v \) заменена её нормальной компонентой \(v_n \). Как следствие, "новая" гидродинамика является сжимаемой: \(\text{div} v_n \neq 0 \). Поэтому на якобиан \(J \) преобразования (15) не накладывается никаких ограничений.

Из формулы (18) можно легко получить выражение для завихренности \(\omega \):

\[
\omega(r, t) = \left(\frac{\partial x_2}{\partial x_1} \right) \frac{\partial u_2}{\partial a_1} - \left(\frac{\partial x_1}{\partial x_2} \right) \frac{\partial u_1}{\partial a_2}, \tag{19}
\]

где \(J \) — якобиан преобразования (15),

\[
J = \frac{\partial (x_1, x_2, x_3)}{\partial (a_1, a_2, a_3)}.\]

Здесь мы учили, что обобщённый импульс \(\mathbf{P} \) совпадает со скоростью \(v \), включая момент времени \(t = 0 \): \(P_i(a) \equiv \equiv v_i(a) \). Вектор \(\omega_0(a) \) в этом соотношении — новый инвариант Коши (совпадающий с начальной завихренностью), имеющий нулевую дивергенцию, \(\text{div} \omega_0(a) = 0 \). Как отмечалось ранее, соотношение (19) может быть получено непосредственно интегрированием уравнения (1), оно совпадает с (4). Из приведённого выше вывода становится ясным смысл вектора \(\omega_0(a) \), стоящего в (4), как инварианта Коши.

Введение ПВЛ (4) решает также ещё одну важную задачу — определение всех касмиртов для гамильтонова
описания уравнения движения завихренности (1) путём
введения пуассоновой структуры. Как показано в [17],
uравнения (1) могут быть представлены в гамильтонов-
ном виде с помощью неканонической скобки Пуассона:
\[\frac{\partial \omega}{\partial t} = \text{rot} \left(\frac{\partial H}{\partial \omega} \times \omega \right) = \{ \omega, H \}, \]
(20)
где скобка Пуассона даётся выражением:
\[\{ F, G \} = \left(\int \left(\frac{\partial F}{\partial x} \times \frac{\partial G}{\partial x} \right) \right) dx. \]
(21)
Здесь вектор \(\text{rot} (\partial H/\partial \omega) \) имеет смысл обобщённой
скорости. В случае уравнения Эйлера гамильтониан \(H \)
совпадает с полной кинетической энергией:
\[H = \frac{1}{2} \int v^2 \rightarrow \, dx. \]
Для трёхмерной интегрируемой гидродинамики \(H = \int |v| \rightarrow \, dx [24, 25]. \)
Как впервые было показано в [17], скобка Пуассона
(21) оказывается выраженной. Простейшим её калибром
оказалась сферичность \(\int |v| \rightarrow \, dx. \) Этот инвариант имеет
tопологическое происхождение \(\int \left(\frac{\partial F}{\partial x} \times \frac{\partial G}{\partial x} \right) \rightarrow \, dx \); с точностью до
постоянного множителя скобка совпадает с инвариантом
Хопфа — числом зацеплений двух любых вихрь-
левых линий.

Калибры представляют собой связь, которые задан-
y в конфигурационном пространстве, в данном случае в
пространстве бездивергентных векторных полей \(\omega \). На-
личие калибров не позволяет обратить в уравнении (20)
символический оператор, задающий скобку Пуассона.
Как известно, фиксация всех калибров задаёт симплек-
tический лист. Согласно общей теории (см., например,
обзор [14]), введение координат на этом листе позволяет
установить полновесную гамильтонову динамику, в
частности записать вариационный принцип. Как показано
в работах [24, 51], уравнения движения вихревых
линий, т.е. в представлении вихревых линий, могут быть
получены исходя из вариационного принципа. При этом
удаётся также показать, что все калибры для скобки
(21) — инварианты Коши. Последний факт был установ-
лен вычислением скобки Пуассона (21), выраженной
в терминах \(r(a) \) и инварианта Коши \(\omega_0(a) \) с использо-
ваньем ПВЛ (4) в качестве соответствующей замены.
Вычисления показали, что скобка не содержит вариацион-
ных производных \(\omega_0(a) \), т.е. \(\omega_0(a) \) служат в качестве
калибров для скобки (21).

Следует также отметить, что уравнения движения (14)
вместе с уравнением (19) представляют собой результ-
ат частичного интегрирования уравнения Эйлера (7).
Эти уравнения разрешены относительно инвариантов
Коши — бесконечно большого числа интегралов движе-
ния, что принципиально важно при численном интегри-
ровании (см., например, [38]). Для этой системы инва-
рианты Коши сохраняются автоматически, в то время
как при прямом интегрировании уравнений Эйлера не
обходямо следить, в какой степени инварианты Коши
являются сохраняющимися величинами. По-видимому,
данный факт — одно из главных ограничений, опреде-
ляющих точность дискретных численных схем при не-
посредственном интегрировании уравнений Эйлера.

Другим важным свойством ПВЛ является отсутствие
каких-либо ограничений на величину якорбана \(J \), кото-
рые, например, имеют место при переходе от эйлера-
описания к лагранжеву, когда якорбан равен единице.
При этом \(1/J \) имеет смысл плотности \(n \) вихревых линий.
Эта величина в силу уравнения (14) как функция \(r \) и \(t \)
подчиняется уравнению непрерывности:
\[\frac{\partial n}{\partial t} + \text{div}_n (nv_n) = 0. \]
(22)
В уравнении (22) \(\text{div}_n v_n \neq 0 \), поскольку только полная
скорость \(v \) имеет нулевую дивергенцию.

3. Сжимаемость представления вихревых
линий и автомодельный закон 2/3
Рассмотрим особенности ПВЛ и его геометрические
характеристики, основываясь на точном решении уравнений
Эйлера [38]. Это решение, как отмечалось ранее, хорошо
согласуется с результатами численного моделиро-
вания вихревых структур ближнего типа.
Пусть \(\omega_{\text{max}} \) — максимальное по пространству значе-
ние модули завихренности, которое является функцией
времени \(t \). Очевидно, что в точке максимума \(x = x_{\text{max}}(t) \)
\(\omega_{\text{max}}(t) \neq 0 \). Представляя \(\omega = ot \), где \(t \) — единичный вектор
\(t^2 = 1 \), из (1) легко получить уравнение для \(\omega_{\text{max}}: \)
\[\frac{d\omega_{\text{max}}}{dt} = \tau_j \frac{\partial \omega_{\text{max}}}{\partial x_j}. \]
(23)
Здесь производная \(\partial \omega_{\text{max}}/\partial x_j \) берётся в точке \(x = x_{\text{max}}(t) \). В
случае, когда поле завихренности симметрично относи-
tельно этой точки, выражение, стоящее в правой части
(23), может быть записано как
\[\tau_j \frac{\partial \omega_{\text{max}}}{\partial x_j} = \text{div} v. \]
(24)
Рассмотрим теперь уравнение (3). В этом уравнении
производная \(\partial J/\partial t \) берётся при постоянном значении \(a \).
Поэтому в переменных \(r \) и \(t \) (т.е. эйлера переменных) уравнение (3)
проблема следующих вид:
\[\frac{\partial J}{\partial t} + (v_n \times) J = -\text{div} v_n J + -\text{div} v J. \]
Отсюда видно, что в точке минимума якорбана
\(x = x_{\text{min}}(t) \)
\[\frac{dJ_{\text{min}}}{dt} = \text{div} v_n J_{\text{min}}. \]
(25)
Если предположить, что точка максимума завихренно-
сти совпадает с точкой минимума якорбана, \(x_{\text{max}}(t) = x_{\text{min}}(t) \), то тогда в соответствии с (23) — (25) мы прихо-
d к соотношению
\[\omega_{\text{max}} J_{\text{min}} = \text{const}. \]
(26)
На рисунке 1 представлены результаты интегрирования
уравнений ПВЛ [52] для изоповерхностей завихренности
\(\omega_{\text{max}} = 0,8 \omega_{\text{max}} \) и якорбана \(J = 1,25 J_{\text{min}} \) при \(t = 7,5 \), кото-
рый практически совпадают. Такое совпадение свиде-
tельствует о том, что \(\omega \) и \(J \) вблизи своих экстремаль-
ных точек (максимума и минимума) имеют одну и туже
пространственную зависимость — определяются только
одной функцией координат. При этом расстояние между точкой максимума завишиенности и точкой минимума якобиана в численном эксперименте было порядка толщины блини.

На рисунке 2 показано изменение во времени ω_{max} и J_{min} для всех наблюдаемых блинов. Численный эксперимент демонстрирует экспоненциальное возрастание максимальной завишиенности для каждого из блинов и соответственно экспоненциальное уменьшение минимального якобиана, так что их произведение $\omega_{\text{max}}J_{\text{min}} \approx \text{const}$.

Соотношение (26), таким образом, показывает, что завишиенность в блине возрастает за счёт уменьшения якобиана. При этом числитель слабо изменяется — особенно на больших временах, когда отчётливо наблюдается экспоненциальное возрастание. Объяснение последнего связано, как показано ниже, со структурой точного решения [38] трёхмерного уравнения Эйлера, которое с хорошей точностью моделирует эволюцию блина на экспоненциальной стадии его роста.

Точное решение в декартовой системе $\mathbf{x} = x_1\mathbf{n}_1 + x_2\mathbf{n}_2 + x_3\mathbf{n}_3$ для завишиенности, зависящей только от x_1 и имеющей только одну компоненту, параллельную оси \mathbf{n}_2, имеет вид

$$v(x, t) = -\omega_{\text{max}}(t) \ell_1(t) f \left(\frac{x_1}{\ell_1(t)} \right) \mathbf{n}_2 + \begin{pmatrix} -\beta_1 x_1 \\ \beta_2 x_2 \\ \beta_3 x_3 \end{pmatrix}, \quad (27)$$

$$\omega(x, t) = \omega_{\text{max}}(t) f \left(\frac{x_1}{\ell_1(t)} \right) \mathbf{n}_2, \quad (28)$$

где β_1, β_2 и β_3 — произвольные константы, связанные между собой соотношением $-\beta_1 + \beta_2 + \beta_3 = 0$. Здесь $\omega_{\text{max}}(t) = \omega_0\exp(\beta_3 t)$ и $\ell_1(t) = \ell_0 \exp(-\beta_1 t)$ — зависимости от времени максимума завишиенности и толщины блини, ω_0 и ℓ_0 — начальные (положительные) значения, $f(\xi) = \text{произвольная функция с } \max f^'(\xi) = 1$.

Скорость в этом решении представляет собой суперпозицию сдвигового течения и асимметричного потенциального растягивающего течения $(-\beta_1 x_1, \beta_2 x_2, \beta_3 x_3)$.

Для данного точного решения легко строится представление вихревых линий:

$$x_1 = a_1 \exp(-\beta_1 t), \quad x_2 = a_2,$$

$$x_3 = a_3 \exp(\beta_3 t) - w_0 b_0 \frac{a_1}{b_0} \sinh(\beta_1 t) \frac{\sinh(\beta_3 t)}{\beta_3}, \quad (29)$$

с матрицей Якоби вида

$$\hat{J}(\mathbf{a}, t) = \begin{pmatrix} \exp(-\beta_1 t) & 0 & 0 \\ 0 & 1 & 0 \\ -w_0 f'(\frac{a_1}{b_0}) \frac{\sinh(\beta_1 t)}{\beta_3} & 0 & \exp(\beta_3 t) \end{pmatrix},$$

$$\hat{J}(\mathbf{a}, t) = \det \hat{J} = \exp[(\beta_3 - \beta_1) t] = \exp(-\beta_2 t). \quad (30)$$

Отсюда следует, что максимальная завишиенность обратно пропорциональна якобиану: $\omega_{\text{max}} \sim J^{-1}$, в полном соответствии с нашим предыдущим заключением. Правда, для этого решения якобиан J не зависит от координат. Координатная зависимость возникает в численном эксперименте вследствие трёхмерности структуры (см. рис. 1). При движении вдоль поверхности блина численное решение уравнений локально (вплоть до расстояний порядка десяти толщин) хорошо согласуется с точным решением (27), (28). Другим важным обстоятельством ПВЛ для (27), (28) является то, что одно собственное значение — первое — матрицы Якоби экспоненциально возрастает со временем, второе остаётся неизменным.

Рис. 1. (В цвете онлайн.) Изоповерхности завишиенности $|\omega| = 0.8\omega_{\text{max}}$ (красный цвет) и якобиана $J = 1.25 J_{\text{min}}$ (синий цвет) при $t = 7.5$; симуляция ПВЛ [52].

Рис. 2. (В цвете онлайн.) (а) Эволюция локальных максимумов завишиенности (логарифмическая шкала). Зелёная кривая соответствует глобальному максимуму, пунктирная красная линия — огибающей $\times \exp(t/T_a)$ с $T_a = 2$. (б) Экспоненциальное убывание J_{max} как функции времени (логарифмическая шкала) для различных блинов, пунктирная красная линия — огибающая.
ся независимо равным единице, а третью экспоненционально убывает. В то же время якобиан уменьшается экспоненционально, обратно пропорционально \(\sigma_{\text{max}} \). Причём зависимость направлена вдоль второй оси, соответствующей второму собственному значению. Это свойство, как мы видим в численном эксперименте, сохраняется в полной мере, и оно соответствует тому, что числитель в выражении (4), как отмечалось ранее, благодаря (3) практически не изменяется по величине в точке максимума зависимости, но может изменяться по направлению, что и наблюдается в численном эксперименте.

3.1. Сингулярные собственные значения

Матрица Якоби для точного решения содержит один недиагональный элемент — \(J_3 \), возрастающий со временем экспоненционально, \(\sim \exp(\beta_3 t) \). Наличие этого элемента в существенном смысле означает, как мы увидим далее, на направлении зависимости, а также на зависимости якобиана от толщины блины, что наблюдается в численном эксперименте. Второе очень важное обстоятельство, следующее из уравнения, состоит в том, что собственные значения матрицы Якоби не представляют собой относительные растяжения вдоль ненаправленности самой матрицы. Для того чтобы правильно ввести относительные растяжения, надо обратиться к задаче на сингулярные собственные значения для матрицы \(J = [\partial x_i / \partial a_j] \) в точке \(J_{\text{min}} \). Эта задача сводится к нахождению двух матриц поворота, \(U \) и \(V \), и диагональной матрицы \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \sigma_3) \), содержащей неотрицательные элементы \(0 < \sigma_1 < \sigma_2 < \sigma_3 \), называемые сингулярными собственными значениями. При этом матрица Якоби представима в виде \(J = U \Sigma V^T \), где \(T \) означает транспонирование. Матрицы вращения \(U \) и \(V \) строятся из собственных векторов задачи на собственные значения для двух симметричных матриц, \(J J^T \) и \(J^T J \) соответственно, в то время как вертикальный тензор в \(a \)-пространстве,

\[
G_{ij}^{(a)} = \frac{\partial x_i}{\partial a_j} \frac{\partial x_j}{\partial a_k} \quad dx^2 = G_{ij}^{(a)} da_i da_j,
\]

(31) в то время как \(G^{(x)} = [J J^T]^{-1} \) — метрический тензор в \(x \)-пространстве,

\[
G_{ij}^{(x)} = \frac{\partial x_i}{\partial x_j} \quad dx^2 = G_{ij}^{(x)} dx_i dx_j.
\]

(32)

Для точного решения матрица Якоби имеет следующие сингулярные собственные значения:

\[
\sigma_1^2 = g - \sqrt{g^2 - \exp(-2\beta_3 t)} \quad \sigma_2^2 = 1, \quad \sigma_3^2 = g + \sqrt{g^2 - \exp(-2\beta_3 t)}.
\]

(33)

где

\[
g = \frac{1}{2} \left(\exp(-2\beta_3 t) + \exp(2\beta_3 t) + \left[w_0 f' \left(\frac{d_1}{h_0} \right) \sinh \left(\frac{\beta_3 t}{\beta_3} \right) \right]^2 \right).
\]

(34)

При \(t \to \infty \)

\[
\sigma_1 \sim \exp(-\beta_3 t), \quad \sigma_2 = 1, \quad \sigma_3 \sim \exp(\beta_3 t),
\]

(35) что согласуется с численными результатами.

Таким образом, вблизи минимума якобиана вдоль первого направления имеется сильное сжатие: \(\sigma_1 \sim \exp(-\beta_3 t) \sim \ell_1 \), в результате всего лагранжевы маркеры при \(t \to \infty \) должны скатиться в точку; в третьем направлении возникает сильное растяжение \(\sigma_3 \sim \exp(\beta_3 t) \sim \sigma_{\text{max}} \ell_1 \); в промежуточном направлении \(\sigma_2 \) близко к единице и со временем изменяется незначительно.

В этом пределе для точного решения матрицы поворота \(U = \{n_1^{(3)}, n_2^{(3)}, n_3^{(3)}\} \) и \(V = \{n_1^{(0)}, n_2^{(0)}, n_3^{(0)}\} \) в \(x \)- и \(a \)-пространствах имеют вид

\[
U \approx 1, \quad V \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1 + q^2} & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

где

\[
q = -\frac{w_0}{2\beta_3} f' \left(\frac{n_1}{h_0} \right).
\]

(36)

При больших временах, как показывает численный эксперимент, матрица \(U \) близка к единичной, а матрица \(V \) — к антидиагональной с элементами \(V_{13} \approx V_{22} \approx \approx V_{12} \approx 1 \). Таким образом, в (30) можно считать большой величиной.

3.2. Сейлинг 2/3

Обратимся теперь к вопросу о том, откуда возникает сейлинг (6) между максимальной зависимостью и толщиной блины. Сделаем одно замечание. Как отмечалось, численное решение хорошо аппроксимируется точным решением. Поэтому для нахождения сейлинга (6) точное решение будет рассматриваться как базовое приближение. Прежде всего это касается перехода от лагранжевых переменных к эталонным в (4), а именно якобиана.

Толщину структуры определим исходя из разложения \(\omega \) в окрестности максимальной точки \(\omega_{\text{max}} \):

\[
|\omega| = \omega_{\text{max}} - \frac{1}{2} \Gamma_{ij}^{(o)} x_i x_j,
\]

(37) где \(\chi = x - x_{\text{max}} \). В этом случае собственные значения \(\lambda_{ij}^{(o)} \) матрицы вторых производных \(\Gamma_{ij}^{(o)} = -\partial \partial_0 |\omega| \), вычисленных в локальном максимуме зависимости, будут определять размеры структуры в трёх ортогональных направлениях: \(\epsilon_{\alpha} = (2\omega_{\text{max}} / \lambda_{\alpha}^{(o)})^{1/2} \). Максимальное собственное значение \(\lambda_{ij}^{(o)} \) задаёт толщину блины, а собственный вектор, соответствующий этому собственному значению, — направление нормали к структуре типа блины. В собственных осях \(\Gamma_{ij}^{(o)} \) разложение (37) выражается в виде

\[
|\omega| = \omega_{\text{max}} \left(1 - \sum_{n=1,2,3} \frac{\chi_n^2}{\Gamma_n^{(o)}} \right).
\]

(37)

При этом, согласно нашему численному моделированию [37, 38], только первый характерный размер блины — его
толщина — убывает со временем, а остальные два размера изменяются слабо и остаются по величине порядка единицы,
\[\ell_1 \propto \exp(-\beta_1 t), \quad \ell_2 \propto 1, \quad \ell_3 \propto 1. \]
(38)

Геометрия области пониженного значения якобиана вблизи минимума \(J_{\text{min}} \) может быть описана таким же образом:
\[J = J_{\text{min}} - \frac{1}{2} \Gamma^{(ij)} \delta x_i \delta x_j, \]
(39)
где \(\delta x = x - x_{\text{min}} \) и собственные значения \(\lambda^{(ij)} \) матрицы вторых производных \(\Gamma^{(ij)} = \partial^2 J / \partial x_i \partial x_j \) вычисленные в локальном минимуме якобиана, определяют размеры структуры, \(\ell = (2J_{\text{min}} \lambda^{(ij)})^{1/2} \). Области высокой завищенности и пониженного значения якобиана в значительной степени пересекаются между собой (см. рис. 1), и характерные размеры второй области \(\ell_2 \) ведут себя во времени так же, как и характерные размеры первой [52]:
\[\ell_1 \propto \exp(-\beta_1 t), \quad \ell_2 \propto 1, \quad \ell_3 \propto 1. \]
(40)

При этом максимум завищенности и минимум якобиана ведут себя как \(o_{\text{max}} \propto J_{\text{min}}^{-1} \), и \(\beta / \beta_1 \approx 2/3 \), т.е. вихревая структура эволюционирует согласно закону 2/3 (см. (6)).

В лагранжевых переменных \(\dot{x} \) (входя далее мы опускаем знак тильды) разложение якобиана вблизи минимума записывается как
\[J = J_{\text{min}} + \frac{1}{2} \Gamma^{(ij)} \dot{x}_i \dot{x}_j, \]
(41)
где \(\Gamma^{(ij)} = \partial^2 J / \partial x_i \partial x_j \) — положительно определённая матрица. Матрицы \(\Gamma^{(ij)} \) и \(\Gamma^{(ij)}_{\text{min}} \) (далее для удобства последнюю обозначим как \(\Gamma^{(ij)}_{\text{min}} \)) связаны согласно правилу цепи,
\[\Gamma^{(ij)} = \dot{J} \Gamma^{(ij)}_{\text{min}} \cdot \dot{J} = V \gamma V^T, \]
(42)
где мы выделили матрицу
\[\gamma = \Sigma U^T \Gamma^{(ij)} U \Sigma. \]

В собственных осях \(\Gamma^{(ij)} \) матрица \(\gamma \) близка к диагональной, так как \(U \) стремится к единице, \(\Gamma^{(ij)}_{\text{min}} = \operatorname{diag} \{ \gamma_1, \gamma_2, \gamma_3 \} \), и \(\gamma \) оказывается произведением трёх диагональных и двух почти диагональных матриц. Отсюда, так как \(\gamma^{(ij)}_{\text{min}} = 2J_{\text{min}} / \ell_2^2 \) для диагональных элементов \(\gamma \) приближённо имеем:
\[\gamma_{ij} \approx 2 \gamma_{\ell_1} \gamma_{\ell_2} \gamma_{\ell_3}. \]

Учитывая, что \(\gamma_1 \propto \ell_1 \propto \exp(-\beta_1 t), \gamma_2 \propto \ell_2 \propto 1, \gamma_3 \propto \exp(\beta_3 t) \) и \(\ell_3 \propto 1 \), получаем
\[\gamma_{\ell_1} \propto J_{\text{min}}, \quad \gamma_{\ell_2} \propto J_{\text{min}}, \quad \gamma_{\ell_3} \propto J_{\text{min}} \gamma_{\ell_2}^2. \]

Согласно этой оценке, первые два диагональных элемента должны убывать со временем как \(J_{\text{min}} \). Численный эксперимент действительно демонстрирует убывание \(\gamma_{\ell_1} \) и \(\gamma_{\ell_2} \), хотя они и не следуют экспоненциальной зависимости точно, что может быть связано с небольшим отличием матрицы \(U \) от диагональной, которое мы наблюдаем в экспериментах. Недиагональные элементы \(\gamma \) также оказываются малыми, и только компонента \(\gamma_{\ell_3} \) остаётся порядка единицы, слабо изменяясь со временем.

Учитывая, что третья сингулярное собственное значение выражается через максимум завищенности и толщину ближ завищенности как \(\sigma_3 \propto o_{\text{max}}^{-1/3} \ell_1^{-1}, \) и \(J_{\text{min}} \propto o_{\text{max}}^{-1} \), находим
\[\gamma_{\ell_3} \propto o_{\text{max}}^{3/2} \ell_1^{-2/3}; \]
что приводит к соотношению (6), наблюдаемому в численном эксперименте (см. рис. 3):
\[o_{\text{max}} \propto \gamma_{\ell_3}^{-1/3} \ell_1^{-2/3}. \]

В заключение следует сказать, что если к матрице \(\gamma \) применить поворот \(V \), то в результате самым большим элементом окажется компонента \((1, 1) \), которая практически совпадает с \(\gamma_{\ell_3} \). Таким образом, якобиан и соответственно завищенность в основном зависят от координат \(x_1 \), а влияние других координат оказывается экспоненциально слабым. Это ещё раз подчёркивает, что данная структура — квазидиодерная, однако возникновение скейлинга (6) представляет собой субгубо трёхмерное явление, которое своим существованием обязано скейлингу непрерывно распределённых вихревых линий.

4. Статистика зарождающейся трёхмерной турбулентности

В этом разделе мы обсудим статистические свойства зарождающейся турбулентности, ограничившись рассмотрением режима, в котором число появляющихся структур ближнего типа достаточно велико и к ним может быть применён статистический анализ. С самого начала ясно, что в данном случае турбулентность сильно анизотропна. Каждая структура ближнего типа порождает в \(k \)-пространстве сильно анизотропные распределения джетового типа, вытянутые в перпендикулярном направлении к плоскости близа с характерной толщиной \(\sim \ell_1^{-1} \) \(\ll \ell_1^{-1} \). Именно взаимодействие между джетами (фактически между структурами ближнего типа), как будет показано далее, определяет поведение структурных функций поля скорости.
В наших численных экспериментах мы наблюдаем формирование структур ближнего типа для всех рассматриваемых начальных условий (более 30) [36–38]. В то же время в экспериментах с более высокой степенью, в той или иной степени, происходит упорядочение колмогоровского типа $\omega_{\max}(t) \sim \varepsilon^{-2/3}(t)$. В первом приближении (рис. 4) было показано, что блины в к-пространстве порождают анизотропные распределения в сторону продольной длины, а ветвях в направлениях, перпендикулярных блиным (рис. 4). Поскольку при увеличении блинов относительно ℓ / ℓ_s, где ℓ_s — характерный продольный размер блины, уменьшается, а рост анизотропии носится по мере уменьшения, в результате гиперплоского спектра анизотропности оказывается сильно израинованным и анизотропным. При этом число структур ближнего типа увеличивается и анизотропия джетов по мере уменьшения, а ветвях в направлениях, перпендикулярных блиным (рис. 4). Когда таких перекрытий становится достаточно много, в этих областях происходит формирование колмогоровского спектра $E(k) \sim k^{-5/3}$. Отметим, что для начальных условий IC_1 из [37], не содержащих никакой начальной анизотропии, после упорядочения по углу колмогоровского спектр не наблюдается (рис. 5a). Начальные условия IC_2 и IC_3 представляют собой суперпозицию двумерного (вырожденного) пакета Арнольда – Бейтмана и изотропного пакета. Анизотропия, порождаемая изотропным пакетом, обусловливает появление джетов с сильно уменьшенным перекрытием, благодаря чему формируется колмогоровский спектр (рис. 5b, в). Следует подчеркнуть, что не упорядоченный по углу спектр оказывается сильно анизотропным. Таким образом, несмотря на наличие колмогоровского поведения спектра, анизотропность в условиях инерционного интервала далека от изотропной и однородной, по крайней мере, для длинных численных экспериментов.

Напомним, что в случае изотропной турбулентности одним из основных результатов теории Колмогорова является так называемый закон 4/5 [2, 15, 53]. В инерционном интервале масштабов r этот закон записывается как

$$\langle d\gamma(r) \rangle = \frac{4}{5} \varepsilon r,$$

где δr — продольное приращение скорости (проекция на направление вектора $r = r_1 - r_2$), ε и r_J означают усреднение по статистическому ансамблю. Отсюда исходят из соображений размерностей следует соотношение для инерционных функций второго порядка, $\langle \delta \gamma(r) \rangle \propto \varepsilon^{2/3} r^{2/3}$, и сам колмогоровский спектр: $E(k) \propto k^{-5/3}$. Подчеркнем, что ключевым в данном случае является предположение о локальности нелинейного взаимодействия на масштабах инерционного интервала. Тогда при больших числах Рейнольдса, $Re > 1$, динамику на этих масштабах можно описать уравнениями Эйлера, а появлению колмогоровских соотношений можно ожидать до возбуждения вязких масштабов, о чём свидетельствуют многие численные эксперименты [54–57].

Отметим, что в наших численных экспериментах [36, 37] степенной спектр энергии со скейлингом, близкий к колмогоровскому, наблюдается в полностью невязком потоке, динамика которого определяется главным образом блиновобразными структурами, скейлинг которых израинованный и анизотропен. При этом число структур ближнего типа увеличивается и анизотропия джетов по мере уменьшения, а ветвях в направлениях, перпендикулярных блиным (рис. 4). Когда таких перекрытий становится достаточно много, в этих областях происходит формирование колмогоровского спектра $E(k) \sim k^{-5/3}$. Отметим, что для начальных условий IC_1 из [37], не содержащих никакой начальной анизотропии, после упорядочения по углу колмогоровского спектр не наблюдается (рис. 5a). Начальные условия IC_2 и IC_3 представляют собой суперпозицию двумерного (вырожденного) пакета Арнольда – Бейтмана и изотропного пакета. Анизотропия, порождаемая изотропным пакетом, обусловливает появление джетов с сильно уменьшенным перекрытием, благодаря чему формируется колмогоровский спектр (рис. 5b, в). Следует подчеркнуть, что не упорядоченный по углу спектр оказывается сильно анизотропным. Таким образом, несмотря на наличие колмогоровского поведения спектра, анизотропность в условиях инерционного интервала далека от изотропной и однородной, по крайней мере, для длинных численных экспериментов.

В численных экспериментах [40] также было изучено поведение двухточенных структурных функций (моментов) скорости в режиме зарождающейся турбулентности. В частности, выявлено, каким образом формируется степенной скейлинг $M^{(n)}(r) \propto r^{-1} \varepsilon^{-n}$ для продольных и поперечных моментов в том же интервале.

![Рис. 4](https://example.com/image4.png)

Рис. 4. (В цвете онлайн.) Изоповерхности модуля фурье-амплитуды в зависимости от максимального значения $|\tilde{u}(k)| = 0.2$ в к-пространстве при t_{max}. Сплошные линии показывают максимальные к-векторы (нормированные на ℓ_s для всех джетов) [36].

![Рис. 5](https://example.com/image5.png)

Рис. 5. (В цвете онлайн.) Спектр энергии $E_k(t)$ в разные моменты времени для начальных условий [37] (a) IC$_1$ (тип I), (b) IC$_2$ (тип II) и (в) IC$_3$ (тип III) [37].
масштабов, что и для спектра энергии E_k. Как показал численный эксперимент, показатели степени ξ_2 и ζ_2 демонстрируют те же ключевые свойства, что и в случае развитой (стандартной) турбулентности: они уменьшаются с уменьшением порядка момента n, что указывает на перемежаемость и аномальный скейлинг. При этом продольные показатели оказываются несколько больше, чем поперечные. В частности, для структурных функций скорости третьего порядка выполняется примерное соотношение $\xi_2 \approx 2/5$.

Численные результаты показали, что, несмотря на сильную анизотропию продольных и поперечных структурных функций третьего порядка, наблюдается степенная зависимость от r практически для всех направлений r/r с показателем степени, близким к единице, как в кольмогоровском законе 4/5 (44). Таким образом, когда степень спектра энергии близка к кольмогоровской, продольный момент третьего порядка в зависимости от расстояния показывает близкий к линейному скейлинг, со-вместимый с законом (44). При этом распределение за-вищенности характеризуется сильно нерегулярной формой за счет перемежаемости, а степенной хвост этого распределения указывает на нетривиальную геометрию блинообразных структurre высокой завищенности.

4.1. Численная схема для статистических характеристик трёхмерной турбулентности

Прежде чем представить результаты численных экспериментов для несимметричных трёхмерных уравнений Эйлера (1) (в терминах завищенности), следует сказать несколько слов относительно численией схемы, используемой в работах [36–38].

Численное интегрирование уравнений Эйлера (1) проводилось в периодическом ящике $r = (x, y, z) \in [-\pi, \pi]^3$ с помощью псевдоспектрального метода Рунге–Кутты четвёртого порядка точности. Для всех начальных условий течение выбиралось в виде суперпозиции сдвигового потока:

$$\omega_{ab}(r) = (\sin z, \cos z, 0), \quad |\omega_{ab}(r)| = 1, \quad (45)$$

представляющего собой стационарное решение уравне-ний Эйлера, и случайного периодического возмущения. Открытый оператор ротора и все пространственные про-изводные вычислялись в фурье-пространстве. Использо-валась адаптивная анизотропная прямоугольная сетка, равномерная для каждого направления. Адаптация сетки осуществлялась независимо по каждой из трёх коорди-нат на основе анализа фурье-спектра завищенности. Шаг по времени выбирался с помощью критерия устойчи-вости Куранта – Фридриха – Леви с числом Куранта 0.5. Начальный размер кубической решётки 128 в процессе адаптации увеличивался до тех пор, пока общее число узлов не достигло 20483 (10243 для некоторых численных расчётов). Адаптация решётки осуществлялась сле-дующим образом. С помощью трёх функций:

$$S_k(k) = \int |\sigma(p)|^2 \delta(p_j - k) \, d^3 p, \quad j = x, y, z,$$

которые представляют собой спектр завищенности, про-интегрированный в плоскости, перпендикулярной каждой из трёх осей, отслеживался точка перелома между энергосодержащей областью и областью численного коротковолнового шума по каждому направлению. Как только по какому-либо из направлений j точка перелома приближалась к $2K_{\max}^{(j)}/3$, решётка в этом направлении уплотнялась. Здесь $K_{\max} = N_j/2$ — максимальные волновые числа, N_j — размеры решётки по направлению j, а коэффициент 2/3 учитывает эффект алиасинга. Переход от одной решётки к другой выполнялся с помощью фурье-интерполяции. После достижения максимального числа узлов численное моделирование продолжалось уже на фиксированной решётке, т.е. без дальнейшего её изменения. Полная остановка счёта производилась, если по какому-либо направлению фурье-спектр завищенности при $2K_{\max}^{(j)}/3$ превышал 10^{-13} от своего максимального значения, $S_j(2K_{\max}^{(j)}/3) \geq 10^{-13} \max_k (S_k(k))$ (см. детали в [36, 37]).

Более подробная информация о моделировании урав-нений Эйлера в представлении вихревых линий приве-дена в статьях [36, 37, 32], где показано, что точность на временном интервале моделирования в ПВЛ очень вы-сока — она позволяет получить точно такое же поле за-вищенности, как и при прямом интегрировании.

В некоторых численных экспериментах наблюдалось последовательное формирование стабильного скейлинга в спектре энергии $E_k \propto k^{-2}$ на малых и средних волновых числах начиная с $k \geq 2$. Первая гармоника $k = 1$, в ко-торой сконцентрированы начальные условия, содержит большую часть полной энергии (до 97% в конечно-время) и не принадлежит этому интервалу. Чтобы ис-ключить её влияние на структурные функции скорости, вычислялись моменты для модифицированной скорости \bar{v}, полученной из исходной посредством удаления девяти гармоник $k = (k_x, k_y, k_z)$ с $k_x, y, z = -1, 0, 1$.

Вычисление моментов для зарождающейся турбу-лентности (нестационарной) требует гораздо большей вычислительных ресурсов, чем аналогичная задача для развитой (стандартной) турбулентности с использован-ием усреднения по времени (см., например, [59]). Расчёт вычислялся следующим образом. Во-первых, для задан-ного радиуса r определяется достаточное количество точек r, равномерно распределённых на сфере $|r| = r$. Затем для каждого r вычисляется приращение скорости $\bar{\delta} = \bar{v}(x, y, z) = \bar{v}(x, y, z)$ в каждом узле решётки x с использованием интерполяции по ближайшем соседям для "единичной" скорости $\bar{v}(x, y, z)$. Наконец, продольный и поперечный моменты порядка n вычисляются как соот-ветствующие интегральные суммы по всем точкам на сфере r и всем узлам x.

$$M_{n}^{(r)}(r) = \frac{1}{4\pi^2} \int_{|r| = r} \bar{\delta}(r)^n \, d^3 r \left(\frac{d^3 r}{(2\pi)^3} \right) \delta(x, y, z), \quad (46)$$

$$M_{n}^{(r)}(r) = \frac{1}{4\pi^2} \int_{|r| = r} \bar{\delta}(r)^n \, d^3 r \left(\frac{d^3 r}{(2\pi)^3} \right) \delta(x, y, z), \quad (47)$$

где $\mathbf{m}_r = r/r$ — единичный вектор.

4.2. Результаты численных экспериментов

Приведём результаты численного моделирования для начальных данных I_1 из [36] на решётке с общим числом узлов 20488. Подчеркнём, что для этих данных финальная расчётная сетка представляла собой прямоугольный параллелепипед 972 × 2048 × 4096 для времени $t_f = 7.75$. Максимум завищенности ω_{\max}, равный 1.5 в начальный момент, при t_f достигал величины 18.4. Время остановки счёта t_f определялось из условия, чтобы разрешение наиболее тонкой области высокой завищенности не пре-
вышло 10 углов решётки на уровне половины максимума завихренности.

Эволюция спектра энергии для этого моделирования показана на рис. 6. На больших волновых числах \(k \) спектр убывает экспоненциально, как показано на вставке рисунка. На малых и средних \(k \) отчётливо наблюдается поступенное формирование степенного интервала со сжиманием, близким к кольмогоровскому \(E_k \propto k^{-5/3} \). Степенной интервал характеризуется "замороженным" спектром, тогда как на больших волновых числах спектр сильно изменяется. К концу моделирования этот интервал составил немного более одной декады: \(2 \leq k \leq 30 \). Необходимо отметить, что данный интервал содержит только малую долю энергии: даже в финальное время 97,2 % энергии всё ещё содержатся в первой гармонике \(k = 1 \), тогда как волновые числа \(2 \leq k \leq 30 \) и \(k > 30 \) получают только 2,8 % и менее чем 0,1 % энергии соответственно.

Эволюция моментов третьего порядка показана на рис. 7а (на рис. 7б показаны моменты в финальное время с большим масштабом). Степенной интервал со сжиманием, близким к линейному \(M_k^{(3)} \propto r \), формируется со временем поступенно как для продольного, так и для поперечных моментов на достаточно больших масштабах, расширяясь до 0,2 \(r \leq 1 \) в финальное время. Этим масштабам соответствуют волновые числа \(6 \leq k \leq 30 \), принадлежащие степенному интервалу в спектре энергии на рис. 6.

Показатели степени \(\xi_n \) и \(\eta_n \) для продольных и поперечных моментов \(M_k^{(n)} \) в финальное время \(\xi_n \) уменьшаются с порядком \(n \), указывая на перемежаемость и аномальный скейлинг (рис. 7б). Первые четыре продольных показателя имеют следующие значения: \(\xi_1 = 0.60 \pm 0.06 \), \(\xi_2 = 0.48 \pm 0.04 \), \(\xi_3 = 0.39 \pm 0.03 \) и \(\xi_4 = 0.32 \pm 0.03 \). Соответствующие поперечные показатели: \(\eta_1 = 0.55 \pm 0.07 \), \(\eta_2 = 0.42 \pm 0.06 \), \(\eta_3 = 0.33 \pm 0.05 \), \(\eta_4 = 0.26 \pm 0.04 \) — несколько меньше, \(\xi_n > \eta_n \), но остаются в пределах стандартных отклонений. Необходимо отметить, что для развитой турбулентности поперечные экспоненты также оказываются несколькими меньше, чем продольные (см., например, [60, 61]).

На основании поведения моментов скорости по направлениям можно судить об анизотропии распределения скорости, например продольного момента третьего порядка,

\[
M_{k,m}^{(3)}(r) = \int \frac{d^3 \nu}{(2\pi)^3} (\delta \nu m)^3,
\]

(48)

![Image of the graph showing energy spectrum and moment evolution](image1)

![Image of the graph showing moment evolution](image2)
где \(r = \mathbf{m} \cdot \mathbf{r} \), а \(\mathbf{m} \) — единичный вектор, задающий направление. На рисунке 7в показано поведение моментов по направлению \(M^{(3)}_{\perp} \) относительно усреднённого по углам момента \(M^{(3)} \) для 144 направлений, равномерно распределённых по сферическому координатам. На масштабах степенного интервала изменение моментов \(M^{(3)}_{\perp} \) со сменой направления достигает одного порядка их величины. При этом для некоторых направлений моменты \(M^{(3)}_{\perp} \) возрастают существенно быстрее (медленнее) с увеличением расстояния \(r \) по сравнению с усреднённым по углам моментом \(M^{(3)} \). Отметим, однако, что для большинства направлений моменты \(M^{(3)}_{\perp} \) изменяются с расстоянием практически так же, как и \(M^{(3)} \). Подобное поведение, как показано в разделе 5, впервые было обнаружено для двумерной гидродинамической турбулентности в режиме прямого хакаса [45], когда спектр Крёйчика появляется вследствие формирования квазишоков завихренности [31, 47], аналогичных блинообразным структурам завихренности в трёхмерном случае.

Для того чтобы более детально исследовать связь между спектром энергии и моментами поля скорости, было выполнено дополнительно 30 численных расчётов на решётках с общим числом узлов 1024 для 30 начальных течений, взятых как суперпозиция сдвигового потока (45) и случайного периодического возмущения

\[
\omega_p(r) = \sum_{\mathbf{h}} \left[A_0 \cos(\mathbf{h} \cdot \mathbf{r}) + B_0 \sin(\mathbf{h} \cdot \mathbf{r}) \right].
\]

(49)

Здесь \(\mathbf{h} = (h_x, h_y, h_z) \) — вектор с целыми компонентами \(|h_i| \leq 2 \), \(j = x, y, z \), а \(A_0 \) и \(B_0 \) действительных случайных коэффициентов с нулевым средним и статистическим отклонением \(\sigma_h \sim \exp(|\mathbf{h}|) \) удовлетворяют условиям ортогональности \(h_A = h_B = 0 \), необходимым для самосогласования. Начальные условия выбираются как смесь течений (45) и (49):

\[
\omega_0(r) = (1 - p) \omega_{ad}(r) + p R \omega_p(r),
\]

(50)

где \(p \) — коэффициент смешивания, \(R = \sqrt{4\pi^2/E_p} \) — коэффициент перенормировки. Здесь \(4\pi^2 \) и \(E_p \) — энергия сдвигового потока (45) и возмущения (49) в ящике интегрирования \([-\pi, \pi]^3 \), так что коэффициент \(R \) перенормирует возмущение к той же энергии, что и у сдвигового потока. Были выполнены три группы экспериментов: \(p = 1 \) (случайные периодические течения), \(p = 0.1 \) и \(p = 0.02 \) — для 10 случайных реализаций начальных течений для каждой группы.

Для первой группы экспериментов со случайными периодическими потоками ни одна из десяти симуляций не показала степенного интервала для спектра энергии или для моментов скорости. Для второй группы \(p = 0.1 \) все десять симуляций демонстрируют степенной интервал для спектра энергии, и в шести из десяти симуляций для моментов скорости возникает степенной интервал; интервалы достигают \(2 \leq k \leq 20 \) для спектра и \(0.3 \leq r \leq 0.8 \) для моментов. Третья группа с \(p = 0.02 \) показывает степенные интервалы как для спектра, так и для моментов для всех десяти симуляций; интервалы достигают \(2 \leq k \leq 40 \) и \(0.15 \leq r \leq 0.8 \) соответственно. Для всех симуляций нижняя граница \(r \) степенной области \(r_{\min} \) \(\leq r \leq r_{\max} \) для моментов (если эта область существует) связана с верхней границей \(k_{\min} \) степенной области \(k_{\min} \leq k \leq k_{\max} \) для спектра так \(k_{\min} = 2\pi/k_{\max} \). Верхняя граница \(k_{\max} \) примерно соответствует волновому числу \(2\pi/r_{\min} \).

Рис. 8. (В цвете онлайн) Показатели \(\zeta_1 \) (синий) и \(\zeta_1 \) (красный) для степенной схемы прозодных и поперечных моментов третьего порядка в зависимости от показателя \(x \) схемы спектра энергии; 10 симуляций из третьей группы экспериментов с \(p = 0.02 \). Горизонтальными и вертикальными отрезками показаны стандартные отклонения, пунктирная чёрная линия показывает соотношение \(\zeta_3 = \zeta_1/x/5 \).

Для третьей группы экспериментов наблюдалась степенная схема \(E_k \propto k^{-2} \) для спектра энергии с показателем \(x \) между 0.9 и 1.8; для большинства симуляций показатель \(x \) близок к 1.6. Показатели \(\zeta_1 \) и \(\zeta_3 \), описывающие степенной схемы моментов скорости \([M^{(3)}(r)]^{1/3} \propto r^\zeta_1 \) и \([M^{(3)}(r)]^{1/3} \propto r^\zeta_3 \), принимают значения \(0.2 \leq \zeta_1 \leq 0.45 \) и \(0.13 \leq \zeta_3 \leq 0.35 \). Продольные показатели оказываются несколько большими, чем поперечные, \(\zeta_3 \geq \zeta_1 \), и большинство из десяти моделей демонстрирует \(\zeta_3 \) вблизи 0.35 и \(\zeta_3 \) вблизи 0.25. Как видно из рис. 8, симуляции, имеющие больший показатель \(x \), показывают большие показатели \(\zeta_1 \) и \(\zeta_3 \), и наоборот, с приближённым соотношением для продольного показателя

\[
\zeta_3 = \frac{\zeta_1}{3}.
\]

(51)

Отметим, что такое соотношение не может быть получено из фурье-анализа. Действительно, приращение скорости, удовлетворяющее \(E_k \propto k^{-2} \) в физическом пространстве, имеет схему \(\delta_{0\delta} \propto k^{-2-1} \) в фурье-пространстве, что приводит к спектру энергии \(E_k \propto k^{-2\frac{1}{2}} \). Соотношение \(\zeta = x/5 \) и \(\zeta = (x - 1)/2 \) пересекаются только в одной точке: \(x = 5/3, \zeta = 1/3 \).

Одной из главных функций, указывающих на переплетение, является распределение \(P(\sigma) \) абсолютного значения завихренности. Эволюция этой функции для начальных данных \(I_1 \) показана на рис. 9. Распределение при увеличении максимальной завихренности со временем имеет сильно нерегулярную форму с так называемым тяжёлым хвостом, распространяющимся на большие значения завихренности. Значение второго локального максимума завихренности (показано на рис. 9 пунктирной вертикальной линией) оказывается значительно меньше первого, что позволяет изучить распределение завихренности внутри изолированной блинообразной области, соответствующей глобальному максимуму завихренности. В локальном ортогонализованном базисе \(x = x_m + a_1w_1 + a_2w_2 + a_3w_3 \) блина модуль завихренности может быть описан с помощью квадратичного
приближения [36],
\[
\frac{[o(x)]}{\bar{a}_{\text{max}}} = 1 - \sum_{j=1}^{5} \left(\frac{a_j}{\ell_j} \right)^2 + o\left(\left| x - x_m \right|^2 \right),
\]
где \(x_m \) — позиция локального максимума, \(\ell_j = (2\bar{a}_{\text{max}}/|\lambda_j|)^{1/2} \) — характерные размеры блини, \(\lambda_j \leq \lambda_1 \leq \lambda_3 < 0 \) и \(w_j \) являются собственными значениями и собственными единичными векторами матрицы (симметричной) \(\bar{C} \) в \(x_m \). Используя это приближение, получаем
\[
\mathcal{P}(f) \propto \left| \frac{dV}{df} \right| (\ell_1 \ell_2 \ell_3)(1-f)^{3/2}, \quad f = \frac{\omega}{\bar{a}_{\text{max}}},
\]
где \(V = (4\pi/3)\ell_1 \ell_2 \ell_3 (1-f)^{3/2} \) — объём эллипсоида (52). В [36] показано, что только толщина блини \(\ell_1 \) существенно изменяется со временем, тогда как два других размера, \(\ell_2, \ell_3 \), остаются порядка единицы. Это позволяет исключить \(\ell_2, \ell_3 \) из соотношения выше, что даёт
\[
\mathcal{P}(\omega) \propto \left(\frac{\ell_1}{\bar{a}_{\text{max}}} \right) \left(1 - \frac{\omega}{\bar{a}_{\text{max}}} \right)^{\beta}, \quad \beta = \frac{1}{2},
\]
Отмечим, что результаты рассматриваемых симуляций находятся в хорошем согласии со схеингошем (53).

5. Двумерная турбулентность: от опрокидывания к спектру Крейчнана

В 1967 году Крейчнан [62] показал, что в развитой двумерной гидродинамической турбулентности могут существовать два колмогоровских спектра, порождаемых двумя интегралами движения: энергией \(E = (1/2) \int |v|^2 \, dt \) и экстенсивой \((1/2) \int \omega^2 \, dt \). Первый спектр соответствует постоянному потоку энергии \(\epsilon \), направленному в область малых волновых чисел (обратный каскад): этот спектр имеет ту же самую зависимость от \(k \), что и колмогоровский спектр [2] для трёхмерной гидродинамической турбулентности. Второй спектр — спектр Крейчнана [62] \[E(k) \sim \eta^{2/3}k^{-3}\]

соответствует постоянному потоку экстенсивы \(g \) в область малых масштабов (прямой каскад). Существование этих двух спектров подтверждено во многих численных экспериментах, моделирующих двумерную турбулентность при больших числах Рейнольдса (см., например, обзор [63] и приведённые там ссылки).

Вместе с тем после работы [62] в первых численных экспериментах [64] наблюдалось появление резких градиентов завихренности, соответствующих формированию скаков (квазиблоков) завихренности с толщиной, малой по сравнению с их длиной. Основываясь на таких численных наблюдениях, Саффман [65] предложил другой спектр \(E(k) \sim k^{-4} \), главный вклад в который вносят изотропно распределённые квазиблоки (в этом смысле спектр Саффмана аналогичен спектру Кадомцева — Петвиашвили [66] для звуковой турбулентности). С другой стороны, вычисление фурье-образа от скака завихренности \(\bar{a}_{\text{max}} \sim k^{-1} \) немедленно приводит к спектру крейчнановского типа \(E(k) \sim k^{-3} \). Однако распределение, обусловленное скаком, сильно антитопографично — имеет вид джета с малым угловым раствором порядка \((kL)^{-1} \), где \(L \) — характерная длина квазиблока. Подчеркнём, что для изотропных распределений скаков завихренности мы должны прийти к спектру Саффмана. Таким образом, спектры с крейчнановским поведением, порождаемые квазиблоками, обязаны быть антитопическими. Именно об этом свидетельствуют как аналитические аргументы, так и результаты численных экспериментов в случае вырождающейся двумерной турбулентности [31, 47, 67], когда в спектрах турбулентности антитопография обусловлена присутствием джетов. В указанных работах был выявлен физический механизм формирования квазиблоков благодаря тенденции к опрокидыванию (отметим, что такой процесс не происходит за конечное время в соответствии с строгими теоремами [68–70]). Данный механизм, как отмечалось в введении, связан со свойством упорядоченности в жидкость векторного поля ротора завихренности \(\mathbf{B} = \nabla \times \mathbf{a} \), что позволяет выразить \(\mathbf{B} \) в представлении, аналогично ПВЛ (4):
\[
\mathbf{B}(x, t) = \frac{\mathbf{B}_0(x) \, \mathbf{V}_t}{J} \, \mathbf{a}(x, t),
\]
где \(\mathbf{B}_0(x) \) — начальное значение поля \(\mathbf{B} \), \(J \) — якобиан преобразования \(\mathbf{r} = \mathbf{a}(x, t) \), уравнение для которого имеет тот же вид, что и (2). \(\mathbf{V}_t \) в этом случае — нормальная компонента по отношению к полю \(\mathbf{B} \). Как и в предыдущем случае трёхмерных уравнений Эйлера в ПВЛ (4), якобиан \(J \) может принимать произвольные значения.

Следует отметить, что в двумерной гидродинамике есть только тенденция к образованию резких градиентов завихренности в виде квазиблоков, что подтверждено в численных экспериментах для вырождающейся (свободной) турбулентности [31, 47, 71]. В частности, возрастание максимума величины \(B \) в этих экспериментах составляло 2–2.5 порядка (рис. 10), а пространственное распределение \(|\mathbf{B}| \) концентрировалось в окрестности линий (положений квазиблоков), между которыми величина \(|\mathbf{B}| \) была значительно меньше (см., например, рис. 11 в разделе 5.2).

На стадии формирования квазиблоков, как было выяснено в численных экспериментах [72] с высоким пространственным разрешением, максимальное значение ротора завихренности \(B_{\text{max}} \) экспоненциально возрастает во
времени, при этом толщина \(\ell(t) \) максимальной области в попечерном направлении к вектору \(\mathbf{V} \) сужается во времени (рис. 12а в разделе 5.2) также экспоненциально. Важно отметить, что этот процесс аналогичен формированию трёхмерных структур в динамике типа [52].

В спектре энергии каждому такому квазипериоду соответствовал свой джет [31, 47, 67]. Вдоль каждого джета распределение энергии убывало по кривейнскому закону \(E \sim k^{-3} \). Первоначальные результаты численных экспериментов по двумерной турбулентности прямого каскада, т.е. при наличии накачки и затухания, были представлены в [45]. Накачка, задаваемая инкретентом \(\Gamma(k) \), была сосредоточена в области малых \(k \) с сильным (синусоидным при \(k = 0 \)) затуханием, обеспечивающим появление большого джета. При больших волновых числах, в области с \(k = k_0 \sim (2/3)k_{\text{max}} \) вновь появлялось затухание вязкого типа, которое позволяло одновременно решить проблему алишинга. На малых временах развитию турбулентности в инерционном интервале соответствовало картина вырождающейся турбулентности с формированием квазициклов и соответственно джетов в спектре турбулентности. В этих экспериментах на начальном этапе происходит формирование кривейсковой зависимости спектра от \(k \) (\(E \sim k^{-3} \)) при всех \(\ell \), а также зависимости продольной структуры функции скорости третьего порядка \(S_3 = \langle |\nabla u|^3 \rangle \) от расстояния между точками \(r \) с сильной анизотропией, характерной для вырождающейся турбулентности. При этом упрощённый по углям спектр \(E(k) = C_k n^{2/3} k^{-3} \), где \(C_k \approx 1.3 \) — константа Крейчанна, совпадал со спектром, полученным ранее численно (см. [63]).

Важно подчеркнуть, что для структурной функции \(S_3 \) усреднение по углям давало результат, сильно отличающийся от изотропного значения. Анализ результатов свидетельствовал в пользу того, что причина такого различия кроется в недостаточно высоком пространственно-временном разрешении (наши первые эксперименты проводились на сетке \(4096 \times 4096 \) точек). В связи с этим пространственное разрешение нами было увеличено до \(16384 \times 16384 \) точек и примерно двое увеличено время счёта по сравнению с таковым в лучших экспериментах [45]. Основное отличие полученных результатов состоит в том, что на временах порядка \(10 L_{\text{max}}^{-1} (L_{\text{max}}^{-1} \text{— характерное время накачки, обратно пропорциональное максимальному инкретенту}) \) прямому каскаду происходит разрушение джетовой структуры спектров и турбулентность стремится к изотропной. В частности, на этих временах не наблюдается какой-либо заметной анизотропии угловых флуктуаций спектра энергии (при фиксированном \(k \)). В режиме изотропного распределения нами найдена функция распределения вероятности \(P \) как для турбулентности, так и для модуля di-vorticity \(B \). Структура \(P(\omega) \) соответствует предсказаниям изотропной теории [73].

5.1. Основные уравнения и численная схема

Кратко остановимся на уравнениях движения и численной схеме, которые полностью совпадают с приведёнными в [45]. Уравнение движения (1) для двумерных течений, зависящих только от координат \(x \), в плоскости течения, записываются только для одной \(z \)-компоненты \(\omega \):

\[
\frac{\partial \omega}{\partial t} + (\nabla \omega) \mathbf{v} = \mathcal{I} \omega + \gamma \omega.
\]

В правую часть этого уравнения введены два ответственных за накачку и затухание слагаемых, позволяющих моделировать турбулентность, в частности прямой каскад, который на начальном этапе формируется благодаря появлению квазициклов завихренности. В отсутствие правой части, ответственной за накачку и затухание, завихренность \(\omega \) представляет собой лагранжев инвариант, переносимый жидкостью со скоростью \(v \). Именно такая ситуация реализуется в режиме вырождающейся двумерной турбулентности.

Для моделирования прямого каскада двумерной гидродинамической турбулентности правая часть (55) содержит два оператора: оператор \(\mathcal{I} \) описывает накачку, а также диссипацию на больших масштабах, чтобы исключить обратный каскад, а оператор \(\gamma \) ответствен за диссипацию энтрофии при больших \(k \). Оба эти оператора задавались через фурье-образы (см. [45]):

\[
\Gamma_k = A \left(\frac{b^2 - k^2}{k^2} \right) \quad \text{при } 0 \leq k \leq b, \\
\gamma_k = 0 \quad \text{при } k > b, \\
\gamma_k = -\nu (k - k_c)^2 \quad \text{при } k > k_c.
\]

При численном интегрировании уравнения (55) для моделирования прямого каскада параметры \(a \) и \(b \) выбирались из условия наиболее быстрого выхода системы на стационарный режим в области малых \(k \). В разделах 5.2 и 5.3 приведены результаты интегрирования с \(A = 0.004, a = 3 \) и \(b = 6 \). Для затухания вязкого типа, обеспечивающего поглощение энтрофии, коэффициент вязкости \(\nu = 1.5, k_c = 0.6k_{\text{max}} \) максим \(= 8192 \), это вновь оказалось решающим для аллазинга. Начальные условия были теми же самыми, что и в работах [45, 47]. Максимальный размер сети составлял \(16384 \times 16384 \).

Численное моделирование уравнения (55) как для вырождающейся турбулентности, так и для прямого каскада осуществлялось в квадратном ящике с размером \(L = 1 \) с периодическими граничными условиями.
5.2. Формирование складок
Представим теперь результаты численного интегрирования двумерного уравнения Эйлера (при нулевой правой части (35)) для ротора завихренности, или di-vorticity:

\[B_x = \frac{\partial \omega}{\partial y}, \quad B_y = -\frac{\partial \omega}{\partial x}. \]

Вектор \(B \), как видно из его определения, направлен по касательной к изолинии \(\omega(x, y) = \) const. Отсюда следует, что возрастание \(B \) приводит к появлению скачка \(\omega(x, y) \) в направлении, перпендикулярном \(B \). Таким образом, формирование квазивихрей завихренности соответствует росту di-vorticity \(B \). Как уже говорилось выше, возрастание \(B \) в экспериментах [31, 47, 71] составляло 2–2,5 порядка. При этом \(B \) концентрировался в окрестности линий, т.е. происходило формирование квазидвумерных структур. Возрастание \(B \) обусловлено уменьшением якоряна \(J \), что обусловливает схематизацию непрерывно распределённых линий di-vorticity и соответственно тенденцию к опрокидыванию, в результате чего происходит формирование квазивихрей завихренности.

На рисунке 11, взятом из [72], приведена структура \(B \) при \(t = 12 \). В качестве начальных условий использовались два набора вихрей гауссовой формы с положительной и отрицательной завихренностью (равной по модулю 1) и нулевой общей завихренностью. Размер каждой пары выбирался случайным образом в диапазоне 0,2–0,6, расположение вихрей также было случайным. Для того чтобы более точно определить поле \(B \) и его геометрические характеристики (положения максимумов, продольные и поперечные размеры квазивихрей и т.д.), в [72] рассматривалось большее, чем в предыдущих работах [31, 47, 71], число вихрей, а именно восемь (четыре положительных и четыре отрицательных). Вставка на рис. 11 показывает, что между максимальными линиями ротора завихренности значения \(B \) существенно меньше максимальных. Для завихренности этому соответствуют террасы со ступеньками переменной высоты. Каждая из таких ступенек представляет собой квазиугловую волну завихренности.

На рисунке 12а показана зависимость максимального значения ротора завихренности от времени, которая показывает, что \(B_{\text{max}} \) возрастает экспоненциально. Ширина полосы области максимального \(B \) при этом сужается во времени также экспоненциально (рис. 12б). Две временные экспоненты дают степенную зависимость \(B_{\text{max}} \) от ширины полосы \(\ell_1 \): \(B_{\text{max}} = C \ell_1^{1/2} \) с показателем \(x = 0.16/(-0.25) = -0.64 \approx -2/3, C = \) — константа (рис. 13). Следует отметить, что эта зависимость \(B_{\text{max}} \) от \(\ell_1 \) в виде закона 2/3 была подтверждена также для других начальных условий (напомним, что положение вихрей и их размеры были случайными). Это дало основание считать, что указанное соотношение можно рассматривать как универсальное, соответствующее формированию складок.

5.3. Статистические особенности двумерной турбулентности
В случае вырождающейся турбулентности опрокидывание является доминирующим процессом, приводящим к сильной ангиотронной спектр турбулентности из-за наличия джетов, порождаемых квазивихрями [31, 47, 71]. Этот процесс оказывается самым быстрым для прямого
каскада даже при наличии накачки, в результате чего спектр турбулентности, как показывают численные эксперименты [46], приобретает практически с самого начала степенную зависимость от волнового числа k с крейч-нановским показателем: $E_k \sim k^{-3}$ (см. оригинальную работу Крейчана [62]). При этом формирование квази-шоков завихренности носит экспоненциальный характер; в соответствии с этим общая максимального ротора завихренности сужается в направлении, перпендикулярном линиям постоянной завихренности. Как показывает численный эксперимент [31, 45, 47, 71], для типичных начальных условий возрастание величины ротора завихренности составляет 2–2,5 порядка, а поперечный размер максимальных областей B существенно уменьшается. Объяснение этого роста связано с возможностью частичного интегрирования уравнения (5) в терминах отображения $r = r(a, t)$:

$$ B(r, t) = \frac{B_0(a) V_a}{f} r(a, t), $$

где $B_0(a)$ — начальное значение поля B, представляющее собой аналог инварианта Коши. Напомним, что анало-гичная формула для трёхмерного уравнения Эйлера является основой для ПВДЛ [24, 51]. Ключевым здесь для понимания является сжимаемость поля ротора завихренности — возможность обращения J в нуль. Как известно, опрокидывание в газовой динамике возникает за счёт сжимаемости газа. При подходе к точке опрокидывания происходит формирование квазидвумерных каустик (см., например, [43]). Аналогично формируются и квази-шоки завихренности.

Во всех численных экспериментах при моделировании как вырождающейся турбулентности, так и прямого каскада начальное распределение завихренности выби-валось в виде 10 положительных и 10 отрицательных вихрей гауссовой формы с одинаковым значением моду-ля максимальной завихренности, равным единице, и общей нулевой завихренностью. Положения и ширины вихрей были случайными. В режиме прямого каскада на начальном этапе для времён порядка обратного инкре-мента накачки Γ^{-1} турбулентность развивается примерно по тому же сценарию, что и в случае вырождающейся турбулентности [47]: формируются квазисингулярные распределения ротора завихренности, которым в k-пространстве соответствуют джеты, что приводит к сильной анизотропии турбулентности.

На рисунке 14 показано типичное распределение $|B|$, которое максимально сосредоточено на линиях (поло-жениях квази-шоков). Между этими линиями $|B|$ значи-тельно меньше. Соответственно в спектре наблюдаются джеты (с малым или большим перекрытием), как ре-зультат, спектр турбулентности имеет большую анизо-тропную составляющую.

На рисунке 15 представлено распределение в k-пространстве плотности энергии флуктуаций $\epsilon(k)$, норми-рованной на k^{-4}. На каждом луче в инерционном интервале величина $\epsilon(k)k^4$ в заданный момент времени по k сильно флуктуирует, а после усреднения в интервале $(k - \Delta k/2, k + \Delta k/2)$ является практически постоянной (см. рис. 3 в работе [46]).

Важно отметить, что формирование крейчановской зависимости от модуля k происходит на самой первой
стадии развития прямого каскада, когда перекачка энтропии достигает "вязкой" области. В соответствии с оценками [46] время этой стадии порядка обратного инкремента F_{max} (для численного эксперимента, представленного в этом разделе, — порядка 50). На данной стадии спектр энергий существенно зависит от угла. Удивительным оказывается то, что после усреднения по углам спектр $E(k)$, имея крейчановские зависимости как от k, так и от потока энтропии η, определяемого как $(1/2) \int \gamma |\omega_k|^2 dk$, даёт значение константы Крейчмана $C \equiv 1.3$, совпадающее с полученным ранее в численных экспериментах (см. [63]). На следующей стадии линии квазишоков становятся более запутанными (турбулентными) (рис. 146), расположение между ними сокращается и, как результат, антиротация в спектре уменьшается (рис. 156). Наконец, на временах порядка $10 F_{max}^{-1}$ джеты практически исчезают (рис. 14b и 15b) и турбулентность в прямом каскаде становится почти изотропной. Выясняется также, что на всех временах, начиная с появления джетов и кончая их исчезновением, поток энтропии во времени почти постоянен (рис. 16). Причём полная энергия достаточно быстро — уже на первой стадии — становится постоянной, чего нельзя сказать о полной энтропии. Последняя приближается к постоянному значению только на стадии изотропизации [46].

Другим свидетельством изотропизации турбулентности на временах порядка $10 F_{max}^{-1}$ является найденная нами функция распределения вероятности завихренности P (рис. 17), которая при больших аргументах имеет экспоненциальный хвост с показателем β, линейно зависящим от завихренности ω, в соответствии с предсказанием изотропной теории [73]. Согласно этим предсказаниям угол наклона показателя порядка ω_{rms}, где ω_{rms} — среднеквадратичное значение флуктуаций завихренности. Численный эксперимент (рис. 17a) даёт асимптотику $P = 0.0005 \exp(-2.3\omega)$ при $\omega_{rms} = 0.43$. Если вычислить поток энтропии как интеграл $\eta = (1/2) \int \gamma |\omega_k|^2 dk$, то $\omega_{rms} = 0.15$. Вычисление ω_{rms} с помощью найденной функции распределения даёт значение 0.2566. Таким образом, с точностью до величин порядка единицы значение ω_{rms} оказываются близкими друг к другу.

Соответствующая функция распределения P для значения B имеет также две характерные области (рис. 17b): в первой функция распределения близка к пуссоновской, $\sim B \exp(-B^2/B_0^2)$, во второй области, при больших значениях B, P имеет экспоненциальное поведение с более отчётливой линейной зависимостью показателя от B, чем аналогичная для завихренности. Для данного численного эксперимента B_{max} по наклону равно 88 (см. [46]). Если вычислить B_{rms} по функции распределения $P(B)$, то это значение равно 84.6.

6. Заключение

Основной вывод настоящей статьи состоит в том, что как в трёхмерной, так и в двумерной гидродинамике несжимаемой жидкости на стадии зарождения турбулентности при больших числах Рейнольдса главную роль играют когерентные вихревые структуры, эволюция которых обусловлена сжимаемостью соответствующих полей, несмотря на их бездивергентность. В трёхмерном случае это структуры ближнего типа со схейлингом кольмогоровского типа — соотношением между максимальной
завишенности и толщиной блина $\eta_{\text{max}} \sim t^{-2.5}$. Сечение подобных структур имеет экспоненциальный характер и может быть интерпретировано как процесс опрокидивания, ана логический формированию ударных волн в газодинамике благодаря сжимаемости газа.
Мы показали, используя комбинированный аналитико-численный подход, основанный на представлении вихревых линий, что скейлинг для структур блиниго типа возникает за счёт учёта трёхмерности этих структур. Скорость при этом демонстрирует гельферовское поведение, что используется некоторыми математиками для построения теории трёхмерной турбулентности.
Для двумерной турбулентности выявлено, что формирование прямого каскада — каскада Крейчаны с постоянным потоком энергии — обусловлено появлением вихровиков завишенности из-за сжимаемости поля ротора завишенности. Этот процесс оказывается самым быстрым, в результате чего спектр турбулентности прямого каскада приобретает практически с самого начала степенную зависимость от волнового числа k и крейчановским показателем. Но спектр турбулентности на данном этапе оказывается сильно антисимметричным за счётом джетов — фурье-образов вихровиков. На следующем, более медленном, этапе происходит усложнение (тurbulization) структуры линий вихровиков. Расстояние между ними сокращается, а спектр становится более изотропным. Важно отметить, что в изотропном состоянии у функции распределения вероятности завишенности при больших аргументах о формируется экспоненциальный хвост с показателем, который может быть экстраполирован в виде линейной зависимости от завишенности в соответствии с теоретическим предсказанием работы [73] для двумерной изотропной турбулентности.
В статье представлены также результаты по двуточечным структурным функциям (моментам) скорости. Несмотря на сильную антисимметрию, присущую (нестационарной) задаче на стадии заворожения трёхмерной гидродинамической турбулентности, происходит формирование степенного скейлинга как для продольных, так и для поперечных моментов в том же интервале масштабов, что и для спектра энергии. Показатели степени структурных функций обладают тем же ключевыми свойствами, что и для развитой (стандартной) турбулентности. В частности, показатели нетривиально зависят от порядка момента, указывая на переоформимость и аномальный скейлинг, а продольные показатели оказывались несколько большими, чем поперечные. На основе анализа результатов симуляции при различных начальных условиях найдена достаточно грубая оценка для $\xi \sim \sqrt{5}$, связывающая показатели скейлинга для продольного момента третьего порядка и спектра энергии. Таким образом, когда спектр энергии имеет степенной скейлинг, близкий к колмогоровскому, продольный момент третьего порядка показывает близкий к линейному скейлинг с расстоянием, совместимый с законом 4/5 Колмогорова (см. [44]).
Необходимо отметить, что перед усреднением по углам моменты третьего порядка демонстрируют сильно антисимметричное поведение, хотя линейный скейлинг, полученный после усреднения по углам, можно проследить для большинства направлений. Распределение завишенности характеризуется сильно неразветвлённой формой, что также указывает на перегибаемость. Степенной скейлинг (53) для хвоста этого распределения имеет показатель $\beta \geq 1.2$, что указывает на нетривиальную геометрию блинообразных структур завишенности. Отметим также, что структурные функции скорости третьего порядка для двумерной турбулентности, обладая большой анизотропией из-за вихровиков завишенности, имеют, тем не менее, такую же степенную зависимость от координат, что и в изотропном случае.
В заключение хотелось бы отметить, что растущие экспоненциально на стадии заворожения турбулентности квазиодномерные структуры своим возникновением обладают способностью воспринимать и появляться вихрь формованных полей. Классическим примером формованных полей является магнитное поле в МГД в отсутствие омической диссипации. Известный пример формирования магнитных филаментов в приближении кинематического динамо с заданным полем скорости при нулевой магнитной вязкости, рассмотренный впервые Перкером [74] в 1963 г. применимо к конвективной зоне Солнца, свидетельствует о том, что возрастание магнитного поля также носит экспоненциальный во времени характер. В случае кинематического приближения для уранения индукции возникновения филаментов происходит в областях с гиперболическим профилем скорости [75].
Работа Д.С.А. Е.А.К. и Е.В.С. поддержана Российским научным фондом (грант 17-01-00622). Численные эксперименты выполнялись в информационно-вычислительном центре Новосибирского государственного университета и дата-центре Института фундаментальной и прикладной математики (ИМПА, Рио-де-Жанейро). Д.С.А. благодарен за поддержку со стороны ИМПА во время визита в Бразилию. Авторы благодарят С.Н. Гурбатова за полезные замечания.

Список литературы
1. Richardson L F Proc. R. Soc. Lond. A 110 709 (1926)
2. Kolmogorov A N DAN SSSR 30 289 (1941); Пер. на англ. яз.: Kolmogorov A N Proc. R. Soc. Lond. A 434 9 (1991)
3. Obukhov A M DAN SSSR 22 91 (1940)
4. Zakharov V E, L’vov V S, Falkovich G Kolmogorov Spectra of Turbulence. I Wave Turbulence (Berlin: Springer, 1992)
5. Zakharov V E Stud. Appl. Math. 122 219 (2009)
6. Siret P, Picozzi A, Randoux S Opt. Exp. 19 17852 (2011)
7. Picozzi A et al. Phys. Rep. 542 1 (2014)
8. Walczak P, Randoux S, Siret P Phys. Rev. Lett. 114 144309 (2015)
9. Agafonov D S, Zakharov V E Nonlinearity 28 2791 (2015)
10. Agastonev D S, Zakharov V E Nonlinearity 29 3551 (2016)
11. Gelash A A, Agafonov D S Phys. Rev. E 98 042210 (2018)
12. Agafonov, D S, Randoux S, Siret P Phys. Rev. E 103 032209 (2021)
13. Захаров В Е, Кузнецов Е А УФН 182 569 (2012); Zakharov V E, Kuznetsov E A Phys. Uspekhi 55 535 (2012)
14. Захаров В Е, Кузнецов Е А УФН 167 1137 (1997); Zakharov V E, Kuznetsov E A Phys. Uspekhi 40 1087 (1997)
15. Landau L D, Lifshitz E M Fluid Mechanics (Oxford: Pergamon Press, 1987)
16. Арнольд В И Математические методы классической механики (М.: Наука, 1979); Пер. на англ. яз.: Arnold V I Mathematical Methods in Classical Mechanics (New York: Springer-Verlag, 1989)
17. Kuznetsov E A, Mikhailov A V Phys. Lett. A 77 37 (1980)
18. Moreau J C R. Hebdomadaires Sciences Acad. Sci. 252 2810 (1961)
19. Moffatt H K J. Fluid Mech. 35 117 (1969)
20. Арнольд В И УФН 24 223 (1969)
21. Кузнецов Е А Письма в ЖТФ 76 406 (2002); Kuznetsov E A JETP Lett. 76 346 (2002)
22. Yakubovich E I, Zenkovich D A, in Progress in Nonlinear Science: International Conference Dedicated to the 100th Anniversary of A.A. Andronov Vol. 2 (Ed. A G Litvak) (Nizhny Novgorod: Inst. of Applied Physics, Univ. of Nizhny Novgorod, 2002) p. 282; physics/0110004
23. Frisch U, Villone B Eur. Phys. J. H 39 325 (2014)
Compressible vortex structures and their role in the onset of hydrodynamic turbulence

D.S. Agafontsev, E.A. Kuznetsov, A.A. Mailybaev, E.V. Sereshchenko

We study the formation of quasi-two-dimensional (thin pancake) vortex structures in three-dimensional flows and of quasi-one-dimensional structures in two-dimensional hydrodynamics. These structures are formed at large Reynolds numbers, when their evolution is described in the leading order by the Euler equations for an ideal incompressible fluid. We show numerically and analytically that the compression of these structures and, as a consequence, the increase in their amplitudes are due to the compressibility of the frozen-in-fluid fields: the field of continuously distributed vortex lines in the three-dimensional case and the field of vorticity rotor lines (divorticity) for two-dimensional flows. We find that the growth of vorticity and divorticity can be considered to be a process of overturning the corresponding fields. At high intensities, this process demonstrates a Kolmogorov-type scaling relating the maximum amplitude to the corresponding thickness-to-width ratio of the structures. The possible role of these coherent structures in the formation of the Kolmogorov turbulent spectrum, as well as in the Kraichnan spectrum corresponding to a constant flux of enstrophy in the case of two-dimensional turbulence, is analyzed.

Keywords: vortex lines, divorticity, overturning, turbulence, frozen-in-fluid fields

Bibliography — 75 references

PACS numbers: 47.10. — q, 47.27. — l, 47.32. — y

Revised 31 August 2020

Physics – Uspekhi 65 (2) (2022)
DOI: https://doi.org/10.3367/UFNe.2020.11.038875

Received 31 August 2020

Physics – Uspekhi 65 (2) (2022)
DOI: https://doi.org/10.3367/UFNe.2020.11.038875