Nutrição e saúde: o papel do ultraprocessamento de alimentos

Maria Laura da Costa Louzada

Tese apresentada ao Programa de Pós-graduação em Nutrição e Saúde Pública da Universidade de São Paulo como requisito parcial para obtenção do título de Doutor em Ciências.

Área de concentração: Nutrição em Saúde Pública

Orientador: Prof. Carlos Augusto Monteiro

São Paulo, 2015.
Nutrição e saúde: o papel do ultraprocessamento de alimentos

Maria Laura da Costa Louzada

Tese apresentada ao Programa de Pós-graduação em Nutrição e Saúde Pública da Universidade de São Paulo como requisito parcial para obtenção do título de Doutor em Ciências.

Área de concentração: Nutrição em Saúde Pública.

Orientador: Prof. Carlos Augusto Monteiro

São Paulo, 2015.
É expressamente proibida a comercialização deste documento, tanto na sua forma impressa como eletrônica. Sua reprodução total ou parcial é permitida exclusivamente para fins acadêmicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano da tese/dissertação.
Para Abigail, José Antônio e Martin, mesmo longe, sempre presentes.
AGRADECIMENTOS

Ao meu orientador, Prof. Carlos, profunda admiração e agradecimento pela paciência, confiança, dedicação, entusiasmo e incentivo;

À Renata, meu grande exemplo de profissional;

À Ana Paula, pelo acolhimento, aprendizado e conforto;

À Regina, pela competência e parceria;

Às professoras Patrícia, Rosely e Sônia e ao professor Aluísio, pela participação valiosa na comissão avaliadora desta tese;

À Fundação de Amparo à Pesquisa do Estado de São Paulo, pela bolsa de estudos;

À Prof. Rosely e a sua equipe da Universidade do Estado do Rio de Janeiro, pela disponibilidade para me ensinar sobre os dados da Pesquisa de Orçamentos Familiares;

Ao Prof. Dariush Mozafarian e a sua equipe, pela experiência proporcionada durante o estágio no exterior;

Ao Dr. Carlo Cafiero, pela colaboração em um dos manuscritos desta tese;

Às (os) colegas e amigas (os) Gi, Pri, Camilinha, Lari, Carla, Leandro e Rafa pelos momentos de aprendizado, ajuda e celebração;

A todos e todas que passaram pelo Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde nesses últimos quatro anos, pelos intensos momentos de trabalho e aprendizado;

Às inúmeras colegas (os), professoras (es), e funcionárias (os) que conheci na Faculdade de Saúde Pública, por todo o suporte e trocas acadêmicas;
Às amigas de muito longa data, Esther, Amara, Camila e Lúcia, pelo companheirismo de sempre;

Às mulheres maravilhosas que conheci em São Paulo, Eva, Van, Fabi, Deia, Nati, Soufis, Juju e Quel, por fazerem toda a diferença na minha vida;

Ao Albertinho, um companheiro sensacional nesta reta final do doutorado.

Muito obrigada!
RESUMO

LOUZADA, M.L.C. Nutrição e saúde: o papel o ultraprocessamento de alimentos. [Tese de doutorado]. São Paulo: Faculdade de Saúde Pública da USP, 2015.

Introdução: A prevalência de obesidade e doenças crônicas não transmissíveis tem aumentado em todo o mundo, enquanto as deficiências de micronutrientes continuam sendo um grave problema de saúde pública. Este cenário tem sido impulsionado, entre outros fatores, por transformações recentes no sistema alimentar global, caracterizadas principalmente pela substituição dos hábitos alimentares tradicionais pelo consumo de alimentos ultraprocessados. Objetivos: Os objetivos deste estudo são analisar o consumo de alimentos ultraprocessados no Brasil e sua influência sobre a qualidade nutricional da alimentação e indicadores de obesidade e avaliar o uso de dados de aquisição domiciliar de alimentos para estimar o consumo de alimentos ultraprocessados. Métodos: Foram produzidos quatro manuscritos baseados em dados da Pesquisa de Orçamentos Familiares 2008-2009. Os três primeiros utilizaram dados do módulo de consumo alimentar individual, que avaliou 34.003 adolescentes e adultos brasileiros. Todos os alimentos consumidos foram classificados de acordo com as características do processamento industrial. Alimentos ultraprocessados foram definidos como formulações industriais feitas predominantemente de substâncias extraídas diretamente de alimentos (óleos, gorduras, açúcar), derivadas de constituíntes de alimentos (gorduras hidrogenadas, amido modificado) ou sintetizadas em laboratório a partir de matérias orgânicas (corantes, aromatizantes, realçadores de sabor). Exemplos incluem balas, chocolates, sorvete e guloseimas em geral, bolachas doces, salgadas, salgadinhos, refrigerantes e refrescos, hambúrgueres e outras refeições fast food. Modelos de regressão foram empregados para descrever a associação entre quintos do consumo de alimentos ultraprocessados (% do total de energia), o perfil nutricional da alimentação (artigos 1 e 2) e indicadores de obesidade (artigo 3). No artigo 4, compararam-se as estimativas de consumo de alimentos ultraprocessados obtidas por dados do módulo de aquisição domiciliar de alimentos e do módulo de consumo alimentar individual. Resultados: Os alimentos ultraprocessados apresentaram maior densidade energética, maior conteúdo em açúcar livre e gorduras totais, saturadas e trans e menor teor de fibras, proteínas e de vários micronutrientes, em comparação ao
conjunto dos outros alimentos. Maior consumo de alimentos ultraprocessados determinou generalizada deterioração no perfil nutricional da alimentação. O perfil nutricional da alimentação dos brasileiros que menos consumiram alimentos ultraprocessados aproximam este estrato da população das recomendações internacionais para prevenção da obesidade e doenças crônicas. Os indivíduos no quintil superior de consumo de alimentos ultraprocessados apresentaram maior índice de massa corporal (0,94 kg/m²; IC 95% 0,42;1,47) e maiores chances de serem obesos (OR=1,98; IC 95%; 1,26;3,12) em comparação àsqueles no quintil inferior. Observou-se uma concordância razoável entre as estimativas de consumo de alimentos ultraprocessados obtidas a partir de dados de aquisição familiar de alimentos e de consumo alimentar individual. Conclusões: Os resultados indicam prejuízos à saúde decorrentes da substituição de refeições tradicionais baseadas em alimentos in natura ou minimamente processados por alimentos ultraprocessados e apoiam a recomendação para ser evitado o consumo desses alimentos. Além disso, os achados reforçam a utilização de dados de aquisição familiar de alimentos, que são coletados sistematicamente no Brasil desde os anos 70, como um proxy do consumo real de alimentos ultraprocessados. Na ausência de pesquisas de consumo alimentar individual com representatividade nacional, pesquisas domiciliares podem ser uma ferramenta valiosa para monitorar os padrões alimentares da população.

Palavras-chave: Consumo de Alimentos. Alimentos Industrializados. Valor Nutritivo. Qualidade dos Alimentos. Epidemiologia Nutricional. Obesidade.
ABSTRACT

LOUZADA, M.L.C. Nutrition and health: the role of the ultra-processed foods. [Thesis]. São Paulo: Faculdade de Saúde Pública da USP, 2015.

Introduction: Rates of obesity and other chronic diseases have increased worldwide while micronutrient deficiencies remain a serious public health problem. This transition is paralleled with recent transformations in the globalizing food system, mainly characterized by the replacement of traditional food habits by the consumption of ultra-processed foods. Objectives: The objectives of this study were to assess the consumption of ultra-processed foods in Brazil and its influence on the nutritional dietary quality and on obesity indicators, and to evaluate the use of household food acquisition data to estimate actual consumption of ultra-processed foods. Methods: Four manuscripts were produced based on data from the Brazilian Household Budget Survey 2008-2009. The first three manuscripts were based on the module of individual food consumption, which evaluated 34,003 Brazilian adolescents and adults. All food items were classified according to characteristics of food processing. Ultra-processed foods were defined as industrial formulations that are predominantly made from substances that are extracted from food (oils, fats, sugar), derived from food constituents (hydrogenated fats, modified starch) or synthesized in a laboratory from organic materials (colorants, flavorings, flavor enhancers). Examples included candies, chocolates, ice cream and confectionary in general, cookies, crackers, chips, sugar-sweetened beverages, hamburgers and other “fast food” dishes. Regression models were fitted to evaluate the association of quintiles of consumption of ultra-processed foods (% of energy intake) with the nutrient intake profile (manuscripts 1 and 2) and obesity indicators (manuscript 3). In the fourth manuscript, estimates of the consumption of ultra-processed food obtained from the module of household food acquisition and from the module of individual food intake were compared. Results: The nutrient profile of ultra-processed foods, compared to the rest of the diet, revealed higher energy density, higher content in added sugar and in total, saturated, and trans fats, and lower in fiber, protein and many micronutrients. Higher contribution of ultra-processed foods to the total diet was associated with an overall deterioration of the nutrition profile of the diet.
The 20% lowest consumers of ultra-processed foods were anywhere near reaching international nutrient goals for the prevention of obesity and chronic non-communicable diseases. Individuals in the highest quintile of consumption of ultra-processed foods had significantly higher body-mass-index (0.94 kg/m²; 95% CI: 0.42, 1.47) and higher odds of being obese (OR=1.98; 95% CI: 1.26, 3.12) compared with those in the lowest quintile of consumption. Comparative analyses showed a reasonable agreement between the estimates of ultra-processed foods consumption obtained from household acquisition and individual food intake inside home data. Conclusions: The results from this study highlight the damage to health that is arising based on the observed trend of replacing traditional meals, based on natural or minimally processed foods, with ultra-processed foods. These results also support the recommendation of avoiding the consumption of these foods. In addition, our findings strengthen the use of household acquisition data, which is collected systematically in Brazil since the 70s, as a proxy of the actual intake of ultra-processed foods. In the absence of nationally representative dietary intake surveys, household data is a valuable tool to monitor national food and nutrition security.

Key-words: Food consumption. Industrialized Food. Nutrition Value. Food Quality. Nutrition Epidemiology. Obesity.
SUMÁRIO

APRESENTAÇÃO ... 11

1 PRINCÍPIOS E EVIDÊNCIAS QUE MOTIVARAM A PESQUISA
.. 14
 1.1 SAÚDE E ALIMENTAÇÃO: DOIS CONCEITOS AMPLIADOS 14
 1.2 BRASIL: UM PAÍS EM TRANSIÇÃO .. 21
 1.3 AVALIAÇÃO DOS PADRÕES DE CONSUMO ALIMENTAR DAS
 POPULAÇÕES: O DESAFIO DE SE CONSIDERAR O PROCESSAMENTO DE
 ALIMENTOS .. 25
 1.4 REFERÊNCIAS .. 44
 1.5 MATERIAL SUPLEMENTAR .. 51

2 OBJETIVOS DO TRABALHO .. 53

3 ALIMENTOS ULTRAPROCESSADOS E INDICADORES DO
 PERFIL NUTRICIONAL DA DIETA ASSOCIADOS A OBESIDADE
 E DOENÇAS CRÔNICAS NÃO TRANSMISSÍVEIS 54
 3.1 RESUMO/ABSTRACT ... 55
 3.2 INTRODUÇÃO .. 57
 3.3 MÉTODOS ... 58
 3.4 RESULTADOS .. 62
 3.5 DISCUSSÃO .. 70
 3.6 REFERÊNCIAS .. 73
 3.7 MATERIAL SUPLEMENTAR .. 75

4 ALIMENTOS ULTRAPROCESSADOS E PERFIL DE
 MICRONUTRIENTES DA ALIMENTAÇÃO 77
 4.1 RESUMO/ABSTRACT ... 78
 4.2 INTRODUÇÃO .. 80
 4.3 MÉTODOS ... 81
 4.4 RESULTADOS .. 83
 4.5 DISCUSSÃO .. 93
 4.6 REFERÊNCIAS .. 96

5 ALIMENTOS ULTRAPROCESSADOS E OBESIDADE EM
 ADOLESCENTES E ADULTOS BRASILEIROS 99
 5.1 ABSTRACT .. 100
 5.2 INTRODUCTION ... 101
 5.3 METHODS ... 101
 5.4 RESULTS ... 105
“A questão não é tanto os nutrientes, nem mesmo os alimentos, mas aquilo que é feito aos alimentos antes do seu consumo” (MONTEIRO et al., 2010). Com essa premissa, a equipe do Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde (NUPENS), liderada pelo Professor Carlos Monteiro, iniciou uma trajetória pioneira de pesquisa sobre os efeitos do processamento industrial de alimentos na saúde da população. Os primeiros trabalhos propuseram uma nova classificação de alimentos que dá grande importância à extensão e ao propósito do processamento industrial empregado antes da aquisição e do consumo dos alimentos pelos indivíduos e identificaram o grupo de alimentos ultraprocessados como potencial fator de risco para obesidade e doenças crônicas não transmissíveis. A seguir, a classificação foi aplicada a dados de pesquisas de aquisição domiciliar de alimentos para avaliar tendências de consumo alimentar e o potencial impacto dos alimentos ultraprocessados na qualidade nutricional da alimentação e na ocorrência de obesidade no Brasil. Em 2011, o NUPENS aceitou o desafio do Ministério da Saúde de incluir essa nova abordagem na segunda edição do Guia Alimentar da População Brasileira.

Esta tese é fruto de um projeto de pesquisa iniciado em 2012, com o meu ingresso no curso de doutorado, e elaborado com ampla articulação com os demais projetos do NUPENS. Sendo assim, este trabalho forjou-se, por um lado, articulado com a evolução da pesquisa sobre os efeitos do processamento de alimentos, e, por outro, com os pés fincados na realidade, procurando extrair elementos que embasassem a nova edição do Guia Alimentar da População Brasileira.

O percurso desta tese começa com a apresentação, no primeiro capítulo, dos princípios e evidências que me motivaram à sua condução. Incialmente, eu apresento os conceitos ampliados de saúde e alimentação e um breve apanhado das condições de saúde no Brasil e do cenário atual em relação aos métodos de avaliação da qualidade da alimentação. A seguir, apresento uma síntese das evidências sobre o efeito do processamento de alimentos na saúde produzidas previamente à publicação deste trabalho. O capítulo 2 explicita os objetivos do estudo.
A concretização desses objetivos está apresentada em quatro manuscritos elaborados, majoritariamente, a partir da análise de dados de consumo alimentar individual coletados na Pesquisa de Orçamentos Familiares (POF) 2008-2009. O capítulo 3 consiste no manuscrito “Alimentos ultraprocessados e perfil nutricional da dieta no Brasil (2008-2009).”, que documenta a associação entre a ingestão de alimentos ultraprocessados e indicadores do perfil nutricional da dieta associados a obesidade e doenças crônicas não transmissíveis relevantes para a carga de doenças que afeta a população brasileira. O capítulo 4 consiste no manuscrito “Alimentos ultraprocessados e o teor de micronutrientes na dieta brasileira (2008-2009).”, que possui objetivo correlato e metodologia semelhante ao do manuscrito anterior e descreve o impacto largamente negativo do consumo de alimentos ultraprocessados sobre o teor de micronutrientes da alimentação. Juntos, portanto, estes dois estudos documentam o perfil nutricional desfavorável dos alimentos ultraprocessados e o seu impacto negativo na qualidade nutricional da alimentação da população brasileira. É particularmente importante destacar que seus resultados constituíram parte substancial das evidências utilizadas na elaboração da segunda edição do Guia Alimentar para a População Brasileira, lançado em novembro de 2014. Os dois manuscritos estão publicados na Revista de Saúde Pública.

O capítulo 5 consiste no manuscrito “Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults.” (em inglês). Esse trabalho é produto do estágio em pesquisa no exterior realizado durante o primeiro semestre de 2014 no Departamento de Epidemiologia da Universidade de Harvard sob a supervisão do Prof. Dariush Mozaffarian. O estudo demonstrou a relação direta entre o consumo de alimentos ultraprocessados e indicadores de obesidade em adolescentes e adultos brasileiros. O manuscrito foi publicado no periódico Preventive Medicine e tem a coautoria do Prof. Dariush Mozaffarian.

O capítulo 6 consiste no manuscrito “Monitoring population dietary patterns: the share of ultra-processed foods as a summary indicator of diet quality and its estimation from household budget surveys.” (em inglês). Este manuscrito apresenta uma síntese das evidências sobre os efeitos dos alimentos ultraprocessados para a qualidade nutricional da dieta e para a saúde, propõe o uso do indicador proporção do consumo alimentar proveniente de alimentos ultraprocessados como um indicador-síntese para monitorar padrões alimentares e valida o inquérito de aquisição domiciliar de alimentos como
fonte de dados para estimar este indicador na ausência de dados sobre o consumo efetivo de alimentos pela população. O trabalho foi desenvolvido em colaboração com o Dr. Carlo Cafiero, responsável pela Divisão de Estatística na Organização das Nações Unidas para a Alimentação e a Agricultura (FAO), e resultou de uma apresentação que realizei em uma oficina de métodos para avaliação do consumo alimentar promovida pela FAO em Roma. O manuscrito será submetido para apreciação do corpo editorial da Seção Temática “Improving the relevance and reliability of food data from household consumption and expenditure surveys” do periódico Food Policy.

No último capítulo, discuto as potenciais implicações dos resultados do trabalho para a pesquisa em nutrição e para o desenvolvimento de políticas públicas para promoção da saúde e da segurança alimentar e nutricional. A lista de referências e os documentos suplementares estão colocados no final de cada capítulo.
1 PRINCÍPIOS E EVIDÊNCIAS QUE MOTIVARAM A PESQUISA

1.1 SAÚDE E ALIMENTAÇÃO: DOIS CONCEITOS AMPLIADOS

Ampliar o conceito de saúde para além do campo biológico é uma necessidade histórica. Apesar de ter alcançado certo consenso nos dias de hoje, essa ideia moldou-se ao longo das gerações com a influência da conjuntura social, econômica, política e cultural de cada período. A definição exata de saúde ainda hoje está em disputa.

Do início das civilizações à Idade Moderna

Na Antiguidade, os homens tinham os fenômenos sobrenaturais como explicação para tudo que lhes acontecia e a saúde tendia a ser vista como recompensa por bons comportamentos (LOURENÇO et al., 2012).

A cientificidade do conceito de saúde surge somente com a civilização grega, que procura uma explicação racional para as doenças através da observação empírica e não por elementos mágicos e sobrenaturais (LOURENÇO et al., 2012). Neste contexto, surge Hipócrates, o “pai da medicina ocidental”. Os escritos a ele atribuídos traduzem uma visão racional da saúde. O texto “A doença sagrada” traz a seguinte afirmação: “A doença chamada sagrada não é, em minha opinião, mais divina ou mais sagrada que qualquer outra doença; tem uma causa natural e sua origem supostamente divina reflete a ignorância humana.” (SCLIAR, 2007).

Na Idade Média, considerada por muitos autores uma época de retrocesso, o entendimento da saúde e das doenças teve forte influência do cristianismo. A religião cristã reforçou a concepção da doença como resultado do “pecado” e a cura como questão de “fé”. O cuidado de doentes estava, em boa parte, entregue às ordens religiosas (LOURENÇO et al., 2012 e SCLIAR, 2007).

A Idade Moderna foi marcada, sobretudo, por um movimento de oposição ao acatamento incontesteável da autoridade magistral e do dogmatismo religioso do período
anterior. Nessa época, emerge o capitalismo, intensifica-se o ritmo produtivo e crescem a demanda por mão-de-obra e as periferias das cidades. O corpo, tomado como meio de produção, torna-se objeto de políticas, regulações e normas, que visam à saúde dos trabalhadores nas fábricas. A partir disso, surge a teoria miasmática, que relaciona as doenças infecciosas e os surtos epidêmicos às condições sanitárias ruins (LOURENÇO et al., 2012 e BUSS e FILHO, 2007).

Saúde e contemporaneidade

Na Idade Contemporânea, registraram-se muitos avanços na área da saúde. O microscópio, descoberto no século XVII, ganha importância e Louis Pasteur descobre a existência de micro-organismos causadores de doenças. Fatores etiológicos até então desconhecidos começaram a ser identificados, vacinas foram desenvolvidas e doenças prevenidas e curadas (SCLIAR, 2007). Nas últimas décadas do século XIX, com o extraordinário desenvolvimento da microbiologia e da fisiopatologia, consolidou-se o predomínio do paradigma biomédico, que priorizava a atuação curativa e hospitalocêntrica em detrimento dos enfoques sociopolíticos e ambientais. Esse paradigma orientou a maioria das pesquisas e da produção tecnológica em saúde dos anos seguintes e favoreceu o desenvolvimento da saúde como a busca acerca de um “estado biológico normal”. Caracterizado pela ênfone nos aspectos biológicos, individuais e pela abordagem mecanicista, esse modelo passa a fragmentar o corpo em sistemas, órgãos, tecidos e células, estruturando um conhecimento cada vez mais especializado sobre cada função orgânica (BUSS e FILHO, 2007). Nessa época, o estudo do surto de cólera em Londres realizado pelo médico inglês John Snow deu origem à epidemiologia, que agregou à saúde o olhar contábil da população e seus fenômenos (SCLIAR, 2007).

Apesar da hegemonia do modelo biomédico, a tensão acerca das diversas abordagens do processo saúde-doenças esteve presente ao longo de todo o século XX. Ao final da Segunda Guerra Mundial, a cooperação internacional de diversos países deu origem à criação, em 1948, da Organização Mundial da Saúde (OMS). Em seu documento de constituição, a saúde foi enunciada como “um completo estado de bem-estar físico, mental e social, e não apenas a ausência de doença ou enfermidade” (LOURENÇO et al., 2012). Esse conceito trouxe uma concepção pioneira, que ampliou a saúde para além de um enfoque centrado na doença. Apesar disso, o conceito acarretou críticas técnicas
(a saúde seria algo ideal, inatingível) e políticas (o conceito permitiria abusos por parte do Estado, que interviria na vida dos cidadãos) e hoje não é mais considerado satisfatório por alguns estudiosos (SEGRE e FERRAZ, 1997 e SCLIAR, 2007).

Saúde como direito e o conceito ampliado

Na segunda metade do século XX, destaca-se a evolução do conceito saúde e o aprofundamento da discussão sobre os determinantes sociais. Na Conferência Internacional sobre Cuidados Primários de Saúde, realizada em Alma-Ata em setembro de 1978, reconheceu-se, pela primeira vez, a saúde como um direito e a Atenção Primária como estratégia central para sua garantia (LOURENÇO et al., 2012).

Na VIII Conferência Nacional de Saúde, realizada em Brasília no ano de 1986, surgiu o conceito ampliado de saúde (MINISTÉRIO DA SAÚDE, 1986):

A saúde é a resultante das condições de alimentação, habitação, educação, renda, meio ambiente, trabalho, transporte, emprego, lazer, liberdade, acesso e posse da terra e acesso aos serviços de saúde, resultado das formas de organização social, de produção, as quais podem gerar grandes desigualdades nos níveis de vida (Ibid, p.4).

Com a criação do Sistema Único de Saúde (SUS) – fruto de intensa mobilização da sociedade civil - a saúde passa a ser reconhecida como um direito de cidadania e dever do Estado. Baseado nos princípios da universalidade, equidade e integralidade, o SUS reafirma a saúde como um valor e um direito humano fundamental, legitimado pela justiça social (SCLIAR, 2007, LOURENÇO et al., 2012 e BATISTELLA, 2007).

Alguns meses depois, a I Conferência Internacional sobre Promoção da Saúde, realizada em Ottawa, Canadá, enfatizou que a saúde é um reflexo não unicamente de aspectos físicos ou genéticos, mas da conjuntura social, econômica, política e cultural das populações e, consequentemente, possui estreita relação com as condições de habitação, educação e alimentação, a renda, a paz, a justiça social e a equidade (MINISTÉRIO DA SAÚDE, 2013). Ao longo dos quase 30 anos seguintes, a Organização Mundial da Saúde continuou a promover diversas conferências internacionais para reflexão sobre a evolução da teoria e da prática em saúde. Na III Conferência Internacional de Promoção da Saúde, em Sundsvall, na Suécia, em 1991, pautou-se a ideia de que a promoção da
saúde estaria estritamente vinculada à conservação dos recursos naturais e, assim, o “ambientalismo” foi definitivamente colocado na agenda da saúde. A partir da Conferência Internacional de Jacarta, realizada na Indonésia no final da década de 80, reconheceu-se a influência cabal do avanço neoliberal, da globalização da economia e do desenvolvimento tecnológico nas condições de vida e trabalho e a importância de considera-los temas transversais a qualquer debate sobre promoção da saúde (MINISTÉRIO DA SAÚDE, 2013).

Dessa forma, concebe-se de forma definitiva a saúde como produção social, que extrapola o setor saúde e aponta para uma articulação intersetorial. Dessa postura deriva a proposta da “saúde em todas as políticas”, tema da VIII Conferência Internacional de Promoção da Saúde, ocorrida em 2013, em Helsinque, Finlândia, que visou a contribuir para a implementação de ações conjuntas e articuladas que ampliassem o desenvolvimento humano (MINISTÉRIO DA SAÚDE, 2013). No Brasil, a Política Nacional de Promoção da Saúde reconhece a impossibilidade do setor saúde de responder sozinho à complexidade dos determinantes da saúde e aponta o desafio da construção de estratégias que propiciem uma articulação das responsabilidades dos distintos setores (MINISTÉRIO DA SAÚDE, 2014a).

Outras abordagens

O reconhecimento dos determinantes sociais do processo saúde-doença reavivou o interesse pelo termo “qualidade de vida”. O termo abrange muitos significados, que refletem conhecimentos, experiências e valores de indivíduos e coletividades em variados tempos e espaços, sendo, portanto, uma construção social com a marca da relatividade cultural (MINAYO et al., 2000).

A partir do início da década de 90, intensificaram-se os estudos sobre qualidade de vida e consolidou-se um consenso quanto a dois aspectos do seu conceito: subjetividade e multidimensionalidade. No que concerne à subjetividade, trata-se de considerar a percepção da pessoa sobre o seu estado de saúde e sobre os aspectos não-médicos do seu contexto de vida. Ou seja, como o próprio indivíduo avalia a sua situação em cada uma das dimensões relacionadas à qualidade de vida. O consenso quanto à multidimensionalidade refere-se ao reconhecimento de que a qualidade de vida é composta por diferentes dimensões, que incluem: a condição física, afetiva e cognitiva,
os relacionamentos e os papéis sociais e os aspectos relacionados ao ambiente ao redor (SEIDL e ZANNON, 2004).

Em meados da década de 90, a OMS constituiu um Grupo de Qualidade de Vida (Grupo WHOQOL) com a finalidade de conduzir estudos de avaliação da qualidade de vida em uma perspectiva transcultural. A qualidade de vida foi então definida como “a percepção do indivíduo sobre a sua posição na vida, no contexto da cultura e dos sistemas de valores nos quais ele vive, e em relação a seus objetivos, expectativas, padrões e preocupações.”. No âmbito da saúde, a qualidade de vida é, muitas vezes, considerada a percepção de uma pessoa sobre o impacto dos problemas de saúde na sua vida diária e na sua capacidade física, psicológica e social e ganhou maior relevância com o aumento da ocorrência de doenças crônicas (FLECK, 2000).

O Butão foi o primeiro país no mundo a definir a felicidade como uma política de Estado. Seu conceito de felicidade, no entanto, é mais abrangente do que aquele comumente adotado. A filosofia da “felicidade interna bruta” tem várias dimensões: é holística, reconhecendo necessidades espirituais, materiais, físicas e sociais dos indivíduos, valoriza o progresso equilibrado, enxerga a felicidade como um fenômeno coletivo e é, simultaneamente, ecologicamente sustentável, ao buscar bem-estar para as gerações atuais e futuras, e equitativa, ao almejar uma distribuição justa dos elementos que levam ao bem-estar. A saúde é reconhecida como um pré-requisito para o desenvolvimento econômico e espiritual e como um meio para alcançar a “felicidade nacional bruta”. Por causa disso, essa ideia influenciou significativamente o sistema de saúde do país; sua Constituição afirma que "o Estado deve fornecer acesso gratuito aos serviços básicos de saúde pública." (SITHEY et al., 2015). Em julho de 2011, a Assembleia Geral da Organização das Nações Unidas (ONU) aprovou uma resolução histórica: os países membros foram convidados para medirem a felicidade de seu povo e usarem o resultado na orientação das políticas públicas. Em abril de 2012, ocorreu a primeira reunião de cúpula da ONU sobre felicidade e bem-estar, que culminou com a publicação do World Happiness Report 2013 (ONU, 2013).

Alimentação e saúde: determinação social e causa direta

Hipócrates, há vinte e cinco séculos, já reconhecia a relação entre os alimentos e a saúde. Sua frase “Deixe a comida ser o remédio e o remédio ser a comida” pode ser
considerada um grande lema da medicina. Foi somente no século XVIII, no entanto, que o francês Antoine Lavoisier, considerado um dos criadores da Nutrição, estabeleceu os fundamentos da Química e desenvolveu os primeiros estudos sobre a relação do processo de respiração com o metabolismo dos alimentos. Durante o século XIX, intensificaram-se os estudos das proteínas, que culminaram, no início do século XX, no descobrimento das vitaminas. Até o fim do século XX, quarenta e cinco substâncias, entre vitaminas, minerais, aminoácidos e ácidos graxos, já haviam sido isoladas e identificadas como nutrientes essenciais. A descoberta dos tratamentos para pelagra, beribéri, escorbuto, raquitismo e xeroftalmia são exemplos da importante repercussão dessas descobertas (CARPENTER, 2003a; b; c; d).

Os alimentos, por muito tempo, foram considerados simples sistemas de transferência de nutrientes. Alguns estudos, no entanto, começaram a mostrar que nutrientes isolados não eram suficientes para explicar toda a relação empírica entre alimentação e saúde (SCRINIS, 2013). Os benefícios do leite materno, por exemplo, não foram mimetizados em fórmulas que buscavam reproduzir sua composição nutricional. O efeito protetor de frutas, legumes e verduras contra doenças coronarianas também não foi obtido com intervenções baseadas na ingestão de suplementos de nutrientes presentes na matriz daqueles alimentos (OMENN et al., 1996; JACOBS et al., 2000; CASTILHO e BARROS FILHO, 2010). Além disso, a obesidade e as doenças crônicas relacionadas à alimentação começaram a aumentar rapidamente sem que nutrientes individuais fossem consistentemente relacionados a esses problemas de saúde (ALPERS et al., 2014).

A partir disso, ganhou força a ideia de que os componentes dos alimentos agem sinergicamente no organismo. A partir disso, assume-se que o alimento é uma combinação complexa e não aleatória de compostos desenvolvida sob intenso controle biológico e evolutivo e que seu efeito sobre a saúde não é apenas o resultado da soma das funções dos seus nutrientes, mas um produto da interação dos nutrientes entre si e com outros componentes não nutrientes (MESSINA et al., 2001; JACOBS e STEFFEN, 2003; JACOBS, GROSS E TAPSELL, 2009; JACOBS E TAPSELL, 2013; JACOBS E ORLICH, 2014; HUHN et al., 2015).

Outros estudos sugeriram que a combinação dos alimentos entre si também não ocorre ao acaso e que os padrões tradicionais de consumo alimentar são resultantes de experiências evolutivas e culturais (JACOBS e TAPSELL, 2013). Sendo assim, os
efeitos sobre a saúde de padrões alimentares - como a alimentação tradicional mediterrânea ou japonesa - seriam atribuídos não aos alimentos individuais, mas à forma pela qual esses alimentos são combinados, preparados e consumidos (TRICHOPOULOU e LAGIOU, 1997; LEE et al., 2002). Por causa disso, alguns autores propõem a análise de padrões alimentares identificados “a posteriori” a partir de dados empíricos. Dessa forma, considera-se a colinearidade como uma característica natural do comportamento alimentar e analisa-se o efeito da forma com que alimentos e nutrientes são combinados “no mundo real” (HU, 2002). Ainda mais recentemente, alguns estudos mostraram que as circunstâncias que envolvem o ato de comer - o local, o estresse, a interação social - são importantes determinantes da quantidade e da qualidade dos alimentos consumidos (COHEN e FARLEY, 2008).

A evolução do conceito de saúde, naturalmente, impulsionou a visão da nutrição para além do campo biológico. A ciência começou a reconhecer que os valores simbólico, emocional e histórico dos alimentos e das suas preparações culinárias também possuem importância para a saúde (MINTZ e DU BOIS, 2002).

Além disso, os alimentos são produzidos, processados e abastecidos dentro de sistemas alimentares cujas características afetam a saúde da população também através do seu impacto na sociedade e no meio ambiente. Sistemas alimentares podem ser social e ambientalmente sustentáveis, promovendo a justiça e a proteção da vida e do meio ambiente, ou podem ser causadores de desigualdade e impactos desnecessários nos recursos naturais e na biodiversidade (FAO, 2010).

Dessa forma, reconhece-se o caráter intersetorial da promoção da alimentação saudável e seu papel de intersecção entre os campos da saúde e da segurança alimentar e nutricional. No Brasil, a alimentação foi reconhecida como direito humano em 2006 a partir de um conceito ampliado de alimentação saudável (CONSEA, 2007):

A alimentação adequada e saudável é a realização de um direito humano básico, com a garantia ao acesso permanente e regular, de forma socialmente justa, a uma prática alimentar adequada aos aspectos biológicos e sociais dos indivíduos, de acordo com o ciclo da vida e as necessidades alimentares especiais, pautada no referencial tradicional local. Deve atender aos princípios da variedade, equilíbrio, moderação, prazer (sabor), às dimensões de gênero e etnia, e às formas de produção ambientalmente sustentáveis, livres de contaminantes físicos, químicos,
biológicos e de organismos geneticamente modificados (Ibid, p.31).

Em 2015, a ONU apresentou aos seus Estados-membros a proposta dos Objetivos do Desenvolvimento Sustentável (ODS), que guiarão o desenvolvimento global a partir do fim do prazo para o cumprimento dos Objetivos de Desenvolvimento do Milênio (ODM). Enquanto os ODM davam prioridade para o combate à desnutrição, os ODS enfatizam a necessidade de se acabar com todas as formas de má nutrição e a importância de se investir na melhoria do sistema alimentar. A meta 2 consiste em: “Acabar com a fome, alcançar a segurança alimentar e promover a agricultura sustentável.” (HAWKES e POPKIN, 2015).

1.2 BRASIL: UM PAÍS EM TRANSIÇÃO

“O Brasil não é para principiantes”, teria dito Tom Jobim. Como lembrado por Victora e col., em 2011, nada é mais verdadeiro quando o assunto é a saúde pública. O compromisso com o desenvolvimento e a melhora das condições de vida dos brasileiros requer sensibilidade e aprofundamento para com as complexas questões sociais, culturais, políticas e econômicas de um país de tamanho continental, cheio de contradições, desigualdades e em constante transição.

A transição demográfica é um dos fenômenos estruturais que contribui com a complexidade que caracteriza a saúde pública no Brasil. A queda da mortalidade e, em seguida, a redução da fecundidade, observadas desde a segunda metade do último século, implicou alterações significativas na estrutura etária da população brasileira: de um país predominante jovem em um passado nem tão distante, passamos para um país onde o contingente de pessoas com 60 anos ou mais de idade já alcança 10,8% da população e tendendo a crescer cada vez mais (VASCONCELOS e GOMES, 2012).

Concomitantemente, observam-se mudanças significativas no perfil de morbimortalidade, destacando-se a redução acentuada da mortalidade por doenças infeciosas e parasitárias e a emergência das doenças crônicas não transmissíveis (DCNT) e dos acidentes e violências como prioridade de saúde pública no Brasil. Em 2007, 72% das mortes no Brasil foram atribuídas as DCNT e somente 10% às doenças
infecciosas. Essa distribuição contrasta com a de 1930, quando as doenças infecciosas respondiam por 46% das mortes nas capitais brasileiras (SCHMIDT et al., 2011). Os acidentes e violências foram a causa de 9,3% das mortes em 1990, subindo para 12,8% em 1995, quando começou a apresentar variações discretas (PERES et al., 2015).

Mudanças recentes nos determinantes sociais do estado de saúde, que incluem o aumento da renda familiar, a redução das disparidades econômicas, a crescente urbanização, o maior acesso ao saneamento básico e ao ensino básico, além de um vigoroso movimento de reforma no setor de saúde repercutiram consideravelmente nas condições de saúde e nas desigualdades da população (VICTORA et al., 2011a).

O Relatório de Insegurança Alimentar no Mundo de 2014, publicado pela FAO, revela que o Brasil reduziu de forma muito expressiva a fome e a desnutrição nos últimos anos, atingindo o primeiro Objetivo do Desenvolvimento do Milênio (FAO, 2014). Da mesma forma, os indicadores de mortalidade infantil e neonatal melhoraram significativamente. A mortalidade infantil caiu de 47,1 por 1.000 nascidos vivos em 1990 para 20,0 em 2007, o que corresponde a uma redução anual média de 5,1%. Em 2009, a taxa brasileira foi para 16,0/1.000 habitantes (FRIAS e al., 2013) e projeção do Instituto Brasileiro de Geografia e Estatística indica um valor de 13,8/1.000 habitantes em 2015 (IBGE, 2013). Diferenças regionais e entre classes de renda referentes à mortalidade de crianças foram igualmente reduzidas (VICTORA et al., 2011b).

De 1974 a 2007, a prevalência de desnutrição em crianças menos de 5 anos passou de 37,1% para 7,1%. Ademais, as inequidades socioeconômicas reduziram significativamente: a prevalência de desnutrição caiu de 59,0% para 11,2% no quintil mais pobre da população e de 12,1% para 3,3% entre o quintil mais rico. O declínio foi particularmente acentuado nos últimos 10 anos do período (MONTEIRO et al., 2010).

A partir de 1996, observou-se uma queda da mortalidade por DCNT sobretudo devido a reduções em doenças cardiovasculares e respiratórias crônicas. O mesmo não foi observado para a mortalidade por diabetes e alguns tipos de câncer. Ainda assim, as DCNT são a principal causa de morte do país, implicam grande redução da qualidade de vida das pessoas e em custos sociais e para o sistema de saúde. Além disso, obesidade, hipertensão e diabetes estão se tornando questões de saúde pública cada vez mais graves (SCHMIDT et al., 2011).
Análises de inquéritos domiciliares realizados pelo Instituto Brasileiro de Geografia e Estatística (IBGE) nas últimas três décadas evidenciam aumentos contínuos e expressivos na frequência da obesidade e do excesso de peso em todas as classes de renda e faixas etárias a partir dos cinco anos de idade (IBGE, 2010). Em consonância com os dados de base domiciliar, o inquérito de Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico (Vigitel) estimou, através de dados autorreferidos de adultos das 26 capitais dos estados brasileiros e do Distrito Federal (DF), que a prevalência do excesso de peso e da obesidade aumentou em quase um ponto percentual ao ano no período de 2006-2013 (MINISTÉRIO DA SAÚDE, 2014b). Em 2013, a Pesquisa Nacional de Saúde (PNS) avaliou adultos brasileiros de todo o país e estimou, em homens, prevalência de excesso de peso de 57,3% e de obesidade de 17,5%. No caso das mulheres, 59,8% apresentaram excesso de peso e 25,2% obesidade (MINISTÉRIO DA SAÚDE, 2015a).

A PNS 2013 estimou que 6,2% da população de 18 anos ou mais de idade referiram ter recebido o diagnóstico médico de diabetes, o equivalente a um contingente de 9,1 milhões de pessoas (MINISTÉRIO DA SAÚDE, 2015b). Nas capitais e no DF, a frequência de adultos que referiram o diagnóstico médico de diabetes aumentou em média em 0,2 pontos percentuais ao ano de 2006 a 2013 (MINISTÉRIO DA SAÚDE, 2014b). Com aferição direta, a PNS 2013 estimou 22,3% dos adultos com a pressão arterial elevada: 19,5% entre as mulheres e 25,3% entre os homens (MINISTÉRIO DA SAÚDE, 2015a). O Vigitel estimou que 24,1% da população adulta referiu ter recebido diagnóstico de hipertensão em 2013 e mostrou variações discretas no período 2006-2013 (MINISTÉRIO DA SAÚDE, 2014b).

Em relação aos determinantes imediatos das condições de saúde da população, o Brasil apresenta uma mistura de avanços e retrocessos.

As práticas de aleitamento materno melhoraram expressivamente nas últimas décadas. Pesquisas nacionais descreveram aumento significativo na mediana de duração da amamentação de 2,5 meses em 1974 para 14,0 meses em 2006-2007 (VENANCIO et al., 2013). Entrevistas com amostras probablisticas de mães que acompanharam seus filhos em dias nacionais de imunização em 1999 e 2008 nas 26 capitais e no DF corroboraram esses dados. A prevalência do aleitamento materno exclusivo em bebês de
zero a quatro meses aumentou de 35,5% em 1999 para 51,2% em 2008. Aproximadamente 40% dos bebês de nove a doze meses receberam leite materno em 1999, em comparação a 58,7% em 2008. A mediana da duração da amamentação aumentou de 10,0 para 11,2 meses de 1999 a 2008 (MINISTÉRIO DA SAÚDE, 2009).

O combate ao tabagismo também apresenta uma trajetória de sucesso no Brasil. Nas últimas décadas, observou-se uma queda acentuada na prevalência de fumantes adultos - a qual foi de 34,8% em 1989 para 22,4% em 2003 (MONTEIRO et al., 2007). Estimativas para as capitais dos 26 estados brasileiros e para o DF mostram tendências similares entre 2006 e 2013, em ambos os sexos e em todas as faixas de idade e escolaridade (MINISTÉRIO DA SAÚDE, 2014b). A PNS 2013 estimou a prevalência de usuários de tabaco no Brasil em 15,0% (21,9 milhões de pessoas) (MINISTÉRIO DA SAÚDE, 2015a).

Em 2013, quase um terço da população adulta brasileira deslocava-se de forma ativa¹ (31,9%) e menos de um quarto era ativa no tempo livre² (22,5%). A proporção de adultos classificados na condição de insuficientemente ativos foi de 46,0% e 28,9% declararam ter assistido televisão por 3 ou mais horas diárias (MINISTÉRIO DA SAÚDE, 2015a). Entre 2009 e 2013, o Vigitel estimou que a proporção de adultos que eram ativos no tempo livre aumentou em 2,2 pontos percentuais para os homens e em 5,3 pontos percentuais para as mulheres enquanto a proporção de ativos no deslocamento diminuiu 5,4 pontos percentuais nos homens e 4,6 pontos percentuais nas mulheres (MINISTÉRIO DA SAÚDE, 2014b).

A PNS 2013 estimou frequência do consumo abusivo de bebidas alcoólicas³, nos últimos 30 dias em 13,7%, sendo três vezes maior em homens (21,6%) do que em mulheres (6,6%) (MINISTÉRIO DA SAÚDE, 2015a). Segundo dados do Vigitel, a frequência do consumo abusivo de bebidas alcoólicas manteve-se estável nos últimos oito anos, mas o ato de dirigir após o consumo de álcool teve redução significativa (MINISTÉRIO DA SAÚDE, 2014b).

¹ Deslocamento para atividades habituais, como o trabalho, ou escola, ou curso, ou para levar alguém para estes lugares de bicicleta ou caminhando e que despendem pelo menos 30 minutos diários no percurso de ida e volta.
² 150 minutos semanais de atividade física de intensidade leve ou moderada ou de, pelo menos, 75 minutos de atividade física de intensidade vigorosa.
³ Ingestão de quatro ou mais doses, no caso de mulher, ou cinco ou mais doses, no caso de homem, em uma mesma ocasião, dentro dos últimos 30 dias.
Particularmente relevantes para esta tese, são as evidências de mudanças negativas nos padrões de consumo alimentar da população. De forma geral, observamos uma progressiva e rápida substituição dos alimentos *in natura* ou minimamente processados e de ingredientes culinários por alimentos ultraprocessados. Estatísticas de vendas de alimentos mostram que, desde a década de 90, as vendas de alimentos ultraprocessados vêm se expandindo intensamente no Brasil e, de modo geral, em todos os países de renda média (MONTEIRO et al., 2013). Pesquisas nacionais de aquisição de gêneros alimentícios para consumo domiciliar mostram que a participação de alimentos ultraprocessados no total de calorias adquiridas aumentou de 20,0%, em 2002-2003, para 25,4%, em 2008-2009. (MARTINS et al., 2013).

Pesquisas de aquisição domiciliar de alimentos realizadas nas regiões metropolitanas do país mostram tendência semelhante de crescimento: a participação relativa dos alimentos ultraprocessados no total de calorias adquiridas aumentou de 18,7% em 1987-1988 para 29,6% em 2008-2009. Dentre os alimentos ultraprocessados com maior crescimento, destacaram-se as salsichas e outras carnes processadas, os doces industrializados e os refrigerantes e refrescos. Os alimentos *in natura* ou minimamente processados que mais deixaram de ser comprados foram o arroz, o feijão e o leite. Dentre os ingredientes culinários, houve uma queda importante da compra do açúcar e dos óleos vegetais (MARTINS et al., 2013).

1.3 AVALIAÇÃO DOS PADRÕES DE CONSUMO ALIMENTAR DAS POPULAÇÕES: O DESAFIO DE SE CONSIDERAR O PROCESSAMENTO DE ALIMENTOS

O monitoramento de padrões de consumo alimentar é essencial para embasar a formulação oportuna de políticas de alimentação e nutrição. Não obstante, este monitoramento se vê dificultado seja pela natural dificuldade em se avaliar com precisão os alimentos que são consumidos pelas pessoas quanto pela complexidade em se analisar as múltiplas características da alimentação que são relevantes para a saúde humana.
A avaliação do impacto do consumo alimentar na saúde depende de sistemas de classificação utilizados para caracterizar os alimentos. Classificações convencionais agrupam os alimentos de acordo com seu perfil de nutrientes. Por exemplo, pertencem à mesma categoria carnes frescas e produtos processados à base de carne e adicionados de sal por serem ambos fontes de proteínas. Da mesma forma, por serem fonte de carboidratos, ficam no mesmo grupo grãos de arroz ou de trigo, farinhas de cereais, pães, “cereais matinais”, “barras de cereais” e outros produtos adicionados de açúcar, gorduras e aditivos. Essas classificações foram de fundamental importância em um período em que a maior parte das doenças relacionadas à alimentação era causada por deficiências de energia e nutrientes, mas em um cenário epidemiológico dominado por doenças crônicas, estão se tornando obsoletas (MONTEIRO et al., 2012). As razões para isso incluem o rápido desenvolvimento da ciência e da tecnologia de alimentos, o aumento do acesso e da variedade de produtos alimentícios disponíveis para consumo, a penetração de grandes transnacionais nos sistemas alimentares tradicionais e a mudança do perfil epidemiológico da população (MONTEIRO et al. 2012; LUDWIG, 2011).

Embora haja consenso de que o processamento industrial de alimentos é determinante para explicar a relação entre a ingestão de alimentos e as condições de saúde da população, a ausência de uma definição clara e a escassez de avaliações dos seus efeitos limitam nossa capacidade de avaliar a sua relação com a ascensão da obesidade e das DCNT no mundo (FAO, 2015).

A divisão dos alimentos apenas em “não processados” e “processados” não possui grande utilidade, uma vez que a imensa maioria dos alimentos é processada de alguma forma. Além disso, muitos tipos de processamento são inofensivos, benéficos ou mesmo essenciais e desempenham um papel central na evolução humana. Para uma correta avaliação dos efeitos do processamento de alimentos na saúde, é necessário que se identifiquem a extensão e os objetivos de cada tipo de processamento.

Algumas classificações categorizam os alimentos em relação às características do processamento industrial (SARTORI, 2013; MOUBARAC et al., 2014; POTI et al., 2015). Apesar do grande potencial de aplicação, essas classificações apresentam limitações que incluem a falta de definição precisa do que é processamento industrial, a imprecisão do conceito de cada categoria, a distinção incompleta entre processamento
doméstico e industrial e sua incipiente aplicação em estudos epidemiológicos (MOUBARAC et al., 2014).

A classificação de alimentos NOVA

Uma equipe de investigadores do Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde da USP propôs que todos os itens de consumo alimentar fossem classificados segundo a extensão e o propósito do processamento empregado antes de sua aquisição e consumo pelos indivíduos. O processamento de alimentos, tal como entendido por esta classificação, denominada NOVA, envolve processos físicos, biológicos e químicos que ocorrem após a colheita do alimento ou, de modo mais geral, após a separação do alimento da natureza e antes que ele seja submetido à preparação culinária ou antes do seu consumo, quando se tratar de alimentos prontos para consumo. Portanto, os procedimentos empregados na preparação culinária de alimentos, que ocorrem nas cozinhas das casas ou em restaurantes comerciais ou institucionais, incluídos descarte de partes não comestíveis, fracionamento, cozimento, tempero e combinação do alimento com outros alimentos, não são levados em conta pela classificação NOVA.

A fundamentação teórica e a caracterização dos grupos de alimentos definidos nessa classificação foram descritas pela primeira vez em 2010 (MONTEIRO et al., 2010). Desde então, a classificação vem sendo detalhada e aprimorada (MONTEIRO et al., 2014; MINISTÉRIO DA SAÚDE, 2014c; MONTEIRO et al., 2012). Por causa disso, os quatro manuscritos que compõem esta tese apresentam pequenas variações na definição e na nomenclatura dos grupos da NOVA. O Quadro 1.1 fornece exemplos detalhados de cada um dos quatro grupos de alimentos definidos nessa classificação:

- Grupo 1 - Alimentos in natura ou minimamente processados;
- Grupo 2 – Ingredientes culinários processados;
- Grupo 3 - Alimentos processados;
- Grupo 4 - Alimentos ultraprocessados.

Grupo 1 - Alimentos in natura ou minimamente processados

Alimentos in natura são aqueles obtidos diretamente de plantas ou animais (como folhas e frutos ou ovos e leite) e adquiridos para consumo sem que tenham sofrido
qualquer alteração após deixarem a natureza. A aquisição de alimentos *in natura* é limitada a algumas variedades, como frutas, legumes, verduras, raízes, tubérculos e ovos. E, ainda assim, é comum que mesmo esses alimentos sofram alguma alteração antes de serem adquiridos, como limpeza e refrigeração.

Alimentos minimamente processados são alimentos *in natura* submetidos a processos como remoção de partes não comestíveis ou não desejadas dos alimentos, secagem, desidratação, trituração ou moagem, fracionamento, torra, cocção apenas com água, pasteurização, refrigeração ou congelamento, acondicionamento em embalagens, empacotamento a vácuo, e fermentação não alcoólica.

A maior parte dos processos praticados no processamento mínimo objetiva aumentar a duração dos alimentos *in natura*, permitindo a sua estocagem por mais tempo. Outros propósitos incluem facilitar ou diversificar a preparação culinária dos alimentos (remoção de partes não comestíveis, fracionamento e trituração ou moagem dos alimentos) ou modificar o seu sabor (torra de grãos de café ou de folhas de chá e fermentação do leite para produção de iogurtes).

São também classificados no Grupo 1 itens de consumo alimentar compostos por dois ou mais alimentos deste grupo (como granola de cereais, nozes e frutas secas, desde que não adicionada de açúcar, mel, óleo, gorduras ou qualquer outra substância) e alimentos deste grupo enriquecidos com vitaminas e minerais, em geral com o propósito de repor nutrientes perdidos durante o processamento do alimento *in natura* (como a farinha de trigo ou de milho enriquecida com ferro e ácido fólico).

Embora pouco frequentes, alimentos do Grupo 1 quando adicionados de aditivos que preservam as propriedades originais do alimento, como antioxidantes usados em frutas desidratadas ou legumes cozidos e embalados a vácuo, e estabilizantes usados em leite ultrapasteurizado permanecem classificados no Grupo 1.

Grupo 2 – Ingredientes culinários processados

Este grupo inclui substâncias extraídas diretamente de alimentos do Grupo 1 ou da natureza e usualmente consumidas como itens de preparações culinárias. Os processos
envolvidos com a extração dessas substâncias incluem prensagem, trituração, moagem, pulverização, secagem e refino.

O propósito do processamento é a fabricação de produtos utilizados para temperar e cozinar alimentos *in natura* ou minimamente processados e, de modo geral, para confeccionar preparações culinárias baseadas nesses alimentos. São exemplos de substâncias do Grupo 2: sal, açúcar, óleos e gorduras.

São também classificados no Grupo 2 produtos compostos por duas substâncias pertencentes ao grupo (como manteiga com sal) e produtos compostos por substâncias deste grupo adicionadas de vitaminas ou minerais (como o sal iodado). Vinagres obtidos pela fermentação acética do álcool de vinhos e de outras bebidas alcoólicas também são classificados no Grupo 2, neste caso, pela semelhança de uso com outras substâncias pertencentes ao grupo.

Produtos do Grupo 2, quando adicionados de aditivos para preservar suas propriedades originais, como antioxidantes usados em óleos vegetais e antiumectantes usados no sal de cozinha ou de aditivos que evitam a proliferação de micro-organismos, como conservantes usados no vinagre, permanecem classificados no Grupo 2.

Grupo 3 - Alimentos processados

Este grupo inclui produtos fabricados com a adição de sal ou açúcar e eventualmente óleos, gorduras, vinagre ou outra substância do Grupo 2 a um alimento do Grupo 1, sendo em sua maioria produtos com dois ou no máximo três ingredientes. Os processos envolvidos com a fabricação desses produtos podem envolver vários métodos de cocção e, no caso de caso de queijos e de pães, a fermentação não alcoólica.

O propósito do processamento subjacente à fabricação de alimentos processados é aumentar a duração de alimentos *in natura* ou minimamente processados ou modificar seu sabor, portanto semelhante ao propósito do processamento empregado na fabricação de alimentos do Grupo 1. São exemplos de alimentos processados: conservas de hortaliças, de cereais ou de leguminosas, carnes salgadas, peixe conservado em óleo ou água e sal, frutas em calda, queijos e pães.
Produtos do Grupo 3, quando adicionados de aditivos para preservar suas propriedades originais, como antioxidantes usados em geleias, ou para evitar a proliferação de micro-organismos, como conservantes usados em carnes desidratadas, permanecem classificados no Grupo 3.

Grupo 4 - Alimentos ultraprocessados

Este grupo inclui produtos fabricados com vários ingredientes envolvendo, além de substâncias do Grupo 2 (como sal, açúcar, óleos e gorduras), substâncias também extraídas diretamente de alimentos do Grupo 1, mas não habitualmente utilizadas em preparações culinárias (como caseína, soro de leite, isolado proteico de soja e de outros alimentos e hidrolisado de proteínas), substâncias sintetizadas a partir de constituintes de alimentos (como óleos hidrogenados ou interesterificados, amidos modificados e outras substâncias não naturalmente presentes nos alimentos) e aditivos usados tanto com função preservante ou conservante quanto para modificar cor, odor, sabor ou textura do produto final. Alimentos do Grupo 1 representam proporção reduzida ou sequer estão presentes na lista de ingredientes dos produtos do Grupo 4. Embora a fabricação de produtos ultraprocessados envolva comumente vários tipos de substâncias e de aditivos, o que faz com que tenham frequentemente cinco, dez, vinte ou mais ingredientes, a característica básica que os distingue é a presença de pelo menos uma substância ou um aditivo não presentes em produtos processados. Ou seja, a característica básica de alimentos ultraprocessados é conter entre seus ingredientes substâncias extraídas de alimentos do Grupo 1, mas usadas apenas com fim industrial ou substâncias sintetizadas a partir de constituintes de alimentos ou ainda aditivos usados para modificar as características organolépticas dos produtos. Várias técnicas industriais são usadas na fabricação de produtos ultraprocessados, incluindo extrusão, moldagem e pré-processamento por fritura.

São exemplos de produtos do Grupo 4: biscoitos, sorvetes, balas e guloseimas em geral, “cereais matinais”, bolos e misturas para bolo, barras de cereal, sopas, macarrão e temperos “instantâneos”, molhos, “salgadinhos de pacote”, refrescos e refrigerantes, iogurtes e bebidas lácteas, “bebidas energéticas”, produtos congelados e prontos para aquecimento como pratos de massas, pizzas, hambúrgueres e extratos de carne de frango ou peixe empanados do tipo nuggets, salsichas e outros embutidos, “pães de forma”, pães para hambúrguer ou hot dog, pães doces e produtos panificados desde de
que contenham um dos ingredientes que caracterizam o grupo (substâncias extraídas diretamente de alimentos mas não habitualmente usadas em preparações culinárias, substâncias sintetizadas e aditivos usados para modificar as propriedades organolépticas dos produtos como corantes, aromatizantes, flavorizantes, adoçantes e agentes de massa).

Embora pouco frequentes, são também classificados no Grupo 4 produtos compostos apenas por alimentos do Grupo 1 quando esses alimentos tiverem sido adicionados de aditivos com função de modificar cor, odor, sabor ou textura do produto final como iogurtes com edulcorantes, aromatizantes ou corantes. Produtos compostos por alimentos processados do Grupo 3, quando adicionados desses mesmos aditivos, como pães fabricados com emulsificantes, igualmente são classificados no Grupo 4.

Classes de aditivos e substâncias restritas a produtos do Grupo 4 da classificação NOVA: adoçantes, agentes de carbonatação, agentes de firmeza, agentes de massa, antiaglomerantes, antiespumantes, aromatizantes, carreadores, corantes, espumantes, estabilizante de cor, flavorizantes, glaceantes, realçadores de sabor, sequestrantes, umectantes, açúcar invertido, amido de milho modificado, caseína, colágeno hidrolisado, extrato de malte, fibra alimentar, glúten, hidrolisado de proteínas, inulina, isolado proteico de soja e de outros alimentos, lactose, maltodextrina, manteiga de cacau, óleos hidrogenados, óleos interesterificados, ovo albumina, soro de leite, xarope de milho com alto teor de frutose.
Grupo	Características	Exemplos
Alimentos in natura ou minimamente processados	Alimentos *in natura* são aqueles obtidos diretamente de plantas ou de animais (como folhas e frutos ou ovos e leite) e adquiridos para consumo sem que tenham sofrido qualquer alteração após deixarem a natureza. Alimentos minimamente processados são alimentos *in natura* que, antes de sua aquisição, foram submetidos a alterações mínimas que não adicionam substâncias ao alimento. Limpeza, remoção de partes não comestíveis, fracionamento, embalagem, fermentação, pasteurização, resfriamento, congelação, moagem e refinamento são exemplos de processos que transformam os alimentos *in natura*.	Legumes, verduras, frutas, batata, mandioca e outras raízes e tubérculos *in natura* ou embalados, fracionados, refrigerados ou congelados; arroz branco, integral ou parboilizado, a granel ou embalado; milho em grão ou na espiga, grãos de trigo e de outros cereais; feijão de todas as cores, lentilhas, grão de bico e outras leguminosas; cogumelos frescos ou secos; frutas secas, sucos de frutas e sucos de frutas pasteurizados e sem adição de açúcar ou outras substâncias ou aditivos; castanhas, nozes, amendoim e outras oleaginosas sem sal ou açúcar; cravo, canela, especiarias em geral e ervas frescas ou secas; farinhas de mandioca, de milho ou de trigo e macarrão ou massas frescas ou secas feitas com essas farinhas e água; carnes de boi, de porco e de aves e pescados frescos, resfiados ou congelados; leite pasteurizado ou em pó, iogurte (sem adição de açúcar); ovos; chá, café, e água potável.
Ingredientes culinários processados	Este grupo inclui substâncias extraídas diretamente de alimentos ou da natureza e usualmente consumidas como itens de preparações culinárias.	Sal de cozinha extraído de minas ou da água do mar, açúcar extraído da cana de açúcar ou da beterraba, óleos e gorduras extraídos de alimentos de origem vegetal ou animal (como o óleo de soja ou de oliva e a manteiga ou a banha), amido extraído do milho ou de outra planta.
Alimentos processados	Alimentos processados são fabricados pela indústria com a adição de sal ou açúcar ou outra substância de comum uso culinário a alimentos *in natura* ou minimamente processados para torná-los duráveis e mais agradáveis ao paladar. São produtos derivados diretamente de alimentos e muitas vezes reconhecidos como versões dos alimentos originais.	Conservas de hortaliças, milho ou ervilhas, frutas em frutas em calda ou cristalizadas, carnes salgadas, peixes enlatados e preservados em óleo, queijos feitos de leite e sal e pães feitos de farinha de trigo, água, leveduras e sal (sem adição de outras substâncias como gordura hidrogenada, corantes e flavorizantes).
Alimentos ultraprocessados	Alimentos ultraprocessados são formulações industriais feitas inteiramente ou majoritariamente de substâncias extraídas de alimentos (óleos, gorduras, açúcar, amido, proteínas), derivadas de constituintes de alimentos (gorduras hidrogenadas, amido modificado) ou sintetizadas em laboratório com base em matérias orgânicas como petróleo e carvão (corantes, aromatizantes, realçadores de sabor). Técnicas de manufatura incluem extrusão, moldagem e pré-processamento por fritura ou cozimento.	Pães de forma, pães para hambúrguer ou *hot dog*, pães doces e produtos panificados cujos ingredientes incluem substâncias como gordura vegetal hidrogenada, açúcar, amido, soro de leite, emulsificantes e outros aditivos, bolachas doces e salgadas, salgadinhos tipo *chips*, doces industrializados e guloseimas em geral (balas, sorvetes, chocolates), refrigerantes, sucos artificiais, bebidas lácteas adoçadas e aromatizadas, bebidas energéticas, molhos industrializados, margarina, embutidos, pratos industrializados prontos para aquecer, hambúrgueres, cachorro-quente, *nuggets* de frango ou de peixe, barras de cereal.

Adaptado do Guia Alimentar da População Brasileira (MINISTÉRIO DA SAÚDE, 2014c).
Em inquéritos de consumo alimentar individual, ingredientes culinários processados (açúcar, óleos, gorduras, etc.) geralmente não são relatados como itens isolados. Seu consumo aparece como parte de preparações culinárias cujas receitas incluem ingredientes culinários processados e, eventualmente, alimentos processados ou, excepcionalmente, ultraprocessados.

Nesses casos, a classificação NOVA é aplicada aos componentes individuais das preparações, após a sua desagregação feita com base nas receitas. Alternativamente, as preparações culinárias podem ser classificadas com base nos alimentos in natura ou minimamente processados que tenham maior presença na receita, reduzindo-se o número de grupos de quatro para três. Nesta situação, a classificação NOVA compreenderia os grupos: alimentos in natura ou minimamente processados e suas preparações culinárias, alimentos processados e alimentos ultraprocessados. O primeiro grupo incluiria alimentos in natura ou minimamente processados consumidos isoladamente de outros alimentos, como uma fruta ou um copo de leite, e alimentos in natura ou minimamente processados consumidos combinados a outros alimentos, como hortaliças refogadas com azeite, sal e temperos e macarrão com molho de tomate e queijo ralado.

A Figura 1 apresenta uma árvore de decisão para a classificação dos itens de consumo relatados em inquéritos alimentares em: Grupo 1 - alimentos in natura ou minimamente processados e preparações culinárias à base desses alimentos, Grupo 2 – alimentos processados e Grupo 3 – alimentos ultraprocessados.
O trecho em destaque do texto é uma Figura 1. Árvore de decisão para a classificação dos itens alimentares com base nas características do processamento de alimentos.
Ultraprocessamento de alimentos, qualidade da alimentação e obesidade: uma nova hipótese

Inúmeras características relacionadas à composição, à forma de apresentação e aos modos de consumo dos alimentos ultraprocessados são problemáticas e contribuem para que sejam potenciais fatores de risco para obesidade, diabetes e outras doenças crônicas não transmissíveis.

O Quadro 1.2 apresenta uma síntese de documentos publicados na literatura que utilizaram a classificação NOVA na categorização dos alimentos. Estudos populacionais que tenham avaliado o consumo de alimentos ultraprocessados como um todo são poucos em face da recente definição dessa categoria de alimentos. Entretanto, estudos realizados em diversos países já avaliaram o impacto do consumo de alimentos ultraprocessados sobre a qualidade nutricional da alimentação (MONTEIRO et al., 2011; MOUBARAC et al., 2013; BARCELOS et al., 2014; CROVETTO et al., 2014; BIELEMANN et al., 2015; LUITEN et al., 2015) e desfechos em saúde (TAVARES et al., 2012; CANELLA et al., 2014; MOREIRA et al., 2015; OPAS, 2015; RAUBER et al., 2015). Além disso, a classificação de alimentos foi utilizada em estudos de caracterização e monitoramento do consumo alimentar (MONTEIRO et al., 2010; MONTEIRO et al., 2011; MARTINS et al., 2013; MONTEIRO et al., 2013; MOUBARAC et al., 2013; BAKER et al., 2014; JULL e HEMMINGSSON, 2015, MOUBARAC et al., 2014), na avaliação das vendas de estabelecimentos comerciais (LEITE et al., 2012; COSTA et al., 2013) e em estudos sobre custos dos alimentos (MOUBARAC et al., 2013).
| Quadro 1.2. Descrição dos estudos que utilizaram o conceito de “alimento ultraprocessado” na categorização dos alimentos |
|---|--|---|--|
| **Autor** | **Sujeitos em estudo** | **Objetivo do estudo** | **Principais conclusões** |
| Monteiro et al. 2011 | 13.848 domicílios de 11 áreas metropolitanas no Brasil | Explorar o impacto dos alimentos ultraprocessados sobre a qualidade global da dieta no Brasil em 2002-3. | Os ultraprocessados apresentaram mais densidade energética, açúcar de adição, gordura saturada e sódio e menos fibra em relação aos outros alimentos. |
| Moubarac et al. 2012 | 5.643 domicílios canadenses | Avaliar a associação entre a aquisição domiciliar de alimentos ultraprocessados no Canadá em 2001 e a qualidade da alimentação. | Os ultraprocessados apresentaram mais densidade energética, gorduras, açúcar livre e sódio do que todos os outros alimentos. |
| Barcelos et al. 2014 | 307 crianças de 7-8 anos de São Leopoldo, Brasil. | Avaliar a influência dos alimentos ultraprocessados na ingestão de energia e nutrientes. | O consumo de ultraprocessados foi associado com maior ingestão de energia, gorduras e sódio e menor ingestão de proteínas e fibras. |
| Bielemann et al. 2015 | 4.202 adultos jovens de Pelotas, Brasil. | Avaliar a influência dos alimentos ultraprocessados na ingestão de nutrientes. | O consumo de ultraprocessados foi diretamente associado ao consumo de gorduras, colesterol, sódio, ferro, cálcio e calorias e negativamente associado ao consumo de carboidratos, proteínas e fibras. |
| Luiten et al. 2015 | Grandes supermercados de Auckland, Nova Zelândia. | Avaliar o perfil nutricional de produtos de supermercados de acordo com o tipo de processamento industrial. | Alimentos ultraprocessados foram 84% dos produtos disponíveis nos supermercados em 2011 e 83% em 2013 e apresentaram pior perfil nutricional em comparação aos outros alimentos. |
| Tavares et al. 2011 | 210 adolescentes de Niterói, Brasil. | Avaliar a associação entre o consumo de alimentos ultraprocessados e síndrome metabólica. | O consumo de ultraprocessados foi associado com a ocorrência de síndrome metabólica. |
| Canella et al. 2014 | 190.159 brasileiros | Analisar a associação entre a disponibilidade domiciliar de alimentos ultraprocessados e a prevalência de obesidade no Brasil em 2008-9. | A disponibilidade domiciliar de ultraprocessados foi diretamente associada com a prevalência de excesso de peso e obesidade. |
| Moreira et al. 2015 | 6.000 domicílios do Reino Unido | Analisar a potencial redução da mortalidade associada à redução do consumo de alimentos ultraprocessados no Reino Unido. | Reduzir pela metade a ingestão de ultraprocessados poderia resultar em cerca de 20 mortes associadas a doenças cardiovasculares a menos no ano de 2030. |
| Rauber et al. 2015 | 345 crianças de 3-4 anos de São Leopoldo, Brasil. | Analisar a associação entre o consumo de alimentos ultraprocessados aos 3-4 anos e o aumento dos lípidos séricos até os 7-8 anos. | O consumo de ultraprocessados aos 3-4 anos foi associado ao aumento dos níveis de colesterol total e LDL até os 7-8 anos de idade. |
| OPAS 2015 | 13 países latinoamericanos | Avaliar a associação entre indicadores de obesidade e as vendas de alimentos ultraprocessados entre 2000 e 2013. | O aumento nas vendas de ultraprocessados foi diretamente associado ao aumento na média do Índice de massa corporal da população adulta. |
| Monteiro et al. 2010 | 48.470 domicílios brasileiros | Apresentar uma nova classificação de alimentos aplicada ao inquérito de disponibilidade de alimentos do Brasil de 2002-3. | Os ultraprocessados representaram 20% das calorias adquiridas em 2002-3. A participação desses alimentos aumentou com a renda, representando 30% das calorias nos domicílios mais ricos. |
| Monteiro et al. 2011 | 13.611 domicílios de áreas metropolitanas do Brasil em 1987-8, 16.014 em 1995-6 e 13.848 em 2002-3. | Analisar tendências do consumo de alimentos ultraprocessados no Brasil de 1987-8 a 2002-3. | Nas últimas décadas, alimentos in natura ou minimamente processados e ingredientes culinários têm sido substituídos pelos alimentos ultraprocessados nos domicílios brasileiros. |

(continua)
Quadro 1.2 (continuação). Descrição dos estudos que utilizaram o conceito de “alimento ultraprocessado” na categorização dos alimentos

Autor e Ano	Detalhes do Estudo	Descrição	Resultado
Martins et al. 2013	13.611 domicílios das áreas metropolitanas do Brasil em 1987-8; 16.014 em 1995-6; 13.848 em 2002-3 e 15.399 em 2008-9.	Estimar tendências da aquisição domiciliar de alimentos no Brasil de 1987-8 a 2008-9.	Observou-se aumento da participação de alimentos ultraprocessados e diminuição dos in natura ou minimamente processados e de ingredientes culinários nas compras domiciliares.
Monteiro et al. 2013	79 países de alta e média renda	Examinar as tendências na aquisição domiciliar no Canadá, entre 1938 e 2001, e no Brasil, entre 1987 e 2003, e mudanças nas vendas de alimentos em 79 países entre 1998 e 2012.	A disponibilidade domiciliar de ultraprocessados aumenta no Brasil e no Canadá. Estatísticas de vendas indicam que os ultraprocessados dominam o mercado de países de alta renda, mas que seu consumo cresce de forma mais acelerada nos países de renda média.
Moubarac et al. 2014	1.569 domicílios canadenses em 1938/9, 4.437 em 1953, 10.022 em 1969, 5.542 em 1984, 5.643 em 2001 e 17.873 em 2011.	Avaliar mudanças na disponibilidade domiciliar de alimentos no Canadá entre 1938 e 2011.	A disponibilidade domiciliar de alimentos in natura ou minimamente processados e de ingredientes culinários caiu, enquanto o oposto foi observado para os ultraprocessados.
Baker et al. 2014	14 países asiáticos	Descrever a carga das doenças crônicas não transmissíveis nos países asiáticos e tendências no consumo de tabaco, álcool e alimentos ultraprocessados.	O consumo de ultraprocessados aumentou de forma expressiva nos países asiáticos.
Juul e Hemmingsson et al. 2015	Adultos suecos	Investigar mudanças no consumo de alimentos ultraprocessados e na prevalência de obesidade entre 1960 e 2010.	O consumo de ultraprocessados aumentou 142% de 1960 a 2010. A prevalência de obesidade entre os adultos aumentou de 5% em 1980 para mais de 11% em 2010.
OPAS 2015	13 países latinoamericanos	Investigar mudanças temporais nas vendas de alimentos ultraprocessados entre 2000 e 2013.	Vendas de ultraprocessados no varejo e em redes de alimentação fast food aumentaram de forma constante entre 2000 e 2013 em todos os países, com exceção da Argentina e da Venezuela.

Fatores associados e potenciais determinantes do consumo de alimentos ultraprocessados

Autor e Ano	Detalhes do Estudo	Descrição	Resultado
Leite et al. 2012	82 estabelecimentos comerciais de alimentos em Santos, Brasil.	Avaliar a disponibilidade de alimentos e os tipos de comércios existentes nos perímetros de escolas de ensino fundamental.	Pontos de vendas que ofertavam majoritariamente alimentos ultraprocessados estavam mais próximos das escolas do que aqueles que ofertavam majoritariamente outros tipos de alimentos.
Costa et al. 2013	48.470 domicílios brasileiros em 2002-2003	Descrever a contribuição de diferentes lugares de compras de alimentos para a dieta das famílias brasileiras.	Supermercados foram responsáveis por 37,3% das calorias adquiridas de alimentos ultraprocessados. Padarias, mercearias e açougues representaram, respectivamente, 21,4%, 12,6% e 9,2%.
Mallarino et al. 2013	-	Discutir a influência da publicidade no desenvolvimento de padrões alimentares pouco saudáveis.	A publicidade tem grande influência nas preferências alimentares das crianças, o que as torna alvo preferencial da indústria de ultraprocessados.
Mourabac et al. 2013	5.638 domicílios do Reino Unido e 55.970 domicílios brasileiros	Testar a hipótese de que um fator determinante da disponibilidade domiciliar de alimentos ultraprocessados é o seu custo	A participação calórica dos ultraprocessados no Reino Unido (63,4%) foi maior do que a observada no Brasil (27,7%), mas seu custo em relação ao resto da dieta foi 43% inferior. O custo relativo de alimentos ultraprocessados foi inversamente associado à sua participação na alimentação.

(continua)
Quadro 1.2 (continuação). Descrição dos estudos que utilizaram o conceito de “alimento ultraprocessado” na categorização dos alimentos

Autor et al.	Localização	Descrição do estudo	Resultados principais
Baker et al. 2014	14 países asiáticos	Avaliar a contribuição da abertura do mercado para mudanças no consumo de tabaco, álcool e alimentos ultraprocessados.	A abertura do mercado pode facilitar o consumo de tabaco, álcool e alimentos ultraprocessados. A globalização permitiu a penetração acelerada das corporações transnacionais que distribuem esses produtos nos mercados asiáticos.
Sparrenberger et al. 2015	204 crianças de 2 a 10 anos de idade de Porto Alegre, Brasil.	Avaliar a contribuição de alimentos ultraprocessados para o consumo alimentar das crianças e seus fatores associados.	A escolaridade materna e a idade da criança foram diretamente associadas com o percentual de ultraprocessados na dieta.
Luiten et al. 2015	Grandes supermercados de Auckland, Nova Zelândia	Avaliar preço de produtos nos supermercados de acordo com o tipo de processamento industrial.	Não houve diferenças significativas nos preços dos alimentos ultraprocessados e não ultraprocessados.
Bielemann e et al. 2015	4.202 adultos jovens de Pelotas, Brasil.	Avaliar o consumo de alimentos ultraprocessados e fatores associados	A ingestão de ultraprocessados foi maior entre indivíduos do sexo feminino, de maior escolaridade, que nunca foram pobres e eutróficos.
Vedovato et al. 2015	538 mães de crianças com idade ≤ 10 anos de Santos, Brasil.	Examinar a associação entre o ambiente alimentar local e a aquisição de alimentos ultraprocessados.	A aquisição de ultraprocessados foi diretamente associada com a utilização de táxis como principal meio de transporte para compras de alimentos e negativamente associada com a variedade de alimentos frescos disponíveis em supermercados e a percepção da disponibilidade de frutas e legumes no entorno da sua moradia.
Franco et al. 2015	44 mulheres com excesso de peso no Rio de Janeiro, Brasil.	Examinar o impacto da orientação de uma dieta hipoenergética no consumo de alimentos ultraprocessados.	Encontrou-se redução significativa do consumo de ultraprocessados após a intervenção.

Outros

Autor et al.	Localização	Descrição do estudo	Resultados principais
Moodie et al. 2013	-	Discutir o papel das empresas transnacionais na epidemiologia das doenças crônicas não transmissíveis.	As empresas transnacionais são os principais motores da epidemia de doenças crônicas não transmissíveis e lucraram com o aumento do consumo de tabaco, álcool e alimentos ultraprocessados.
Vandevijvere et al. 2013	-	Apresentar uma visão geral das fontes de dados dietéticos disponíveis e uma revisão de índices de avaliação da qualidade global da dieta.	A participação de ultraprocessados é uma medida síntese para indicar dietas pobres em nutrientes e densas em energia com potencial uso em inquéritos de compras de alimentos e de consumo alimentar individual.
FAO, 2015	-	Apresentar orientações sobre a coleta de informações sobre o processamento de alimentos em pesquisas de consumo alimentar.	A classificação dos alimentos em: alimentos *in natura* ou minimamente processados, ingredientes culinários, alimentos processados e ultraprocessados é um dos métodos adequados para avaliar o efeito do processamento de alimentos na saúde.

Ver material suplementar para detalhes da estratégia de busca dos estudos.

OPAS: Organização Panamericana de Saúde

FAO: Food and Agriculture Organization (Organização das Nações Unidas para Alimentação e Agricultura)
Os alimentos ultraprocessados apresentam um perfil nutricional desfavorável e impactam negativamente na qualidade nutricional da alimentação. De forma geral, os alimentos ultraprocessados apresentam mais densidade energética, açúcar livre, gordura total, saturada e \textit{trans} e menos fibras do que o conjunto dos outros alimentos. Isso foi documentado em estudos de diferentes países utilizando dados de pesquisas de compras de alimentos (CROVETTO et al., 2014; MONTEIRO et al., 2011; MOUBARAC et al., 2013), inquéritos de consumo alimentar individual (BARCELOS et al., 2014; BIELEMANN et al., 2015) e análises de produtos disponíveis em supermercados (LUITEN et al., 2015).

Apesar da falta de registros de trabalhos que tenham avaliado a associação entre consumo do conjunto de alimentos ultraprocessados e teor de micronutrientes na alimentação, evidências de que este consumo poderia diluir a concentração de micronutrientes foram documentadas por estudos que focalizaram o consumo de refrigerantes (YAMADA et al., 2008; FIORITO et al., 2010; LYONS et al., 2015) ou de refeições do tipo \textit{fast food} (PAERATAKUL et al., 2003).

Por possuírem pouca quantidade de água e fibras e grandes quantidades de gordura e açúcar, alimentos ultraprocessados apresentam alta densidade energética e elevada carga glicêmica. Na forma sólida, sua densidade energética pode ir de 2,5 kcal por grama de alimento, no caso de alguns pães, até cerca de 5 kcal por grama, no caso da maioria das bolachas e dos salgadinhos tipo \textit{chips}. Isso é particularmente relevante ao considerarmos que os indivíduos regulam o consumo de alimentos mais por meio do volume de comida do que pelo total de calorias ingeridas e que a densidade de energia é inversamente proporcional à qualidade nutricional da alimentação e diretamente associada à ingestão de energia e ganho de peso (ROLLS, 2009). Do mesmo modo, a elevada carga glicêmica desses alimentos aumenta a secreção de insulina, que pode induzir intolerância à glicose, resistência insulínica, disfunções celulares e inflamação, aumentando o risco de desenvolvimento de síndrome metabólica e diabetes (SCHULZE et al., 2004). Apesar da ausência de consenso na literatura (PI SUNYER, 2002; SCHWINGSHACKL et al., 2015), alguns estudos apontam que o aumento da secreção da insulina poderia promover o ganho de peso pelo desvio de nutrientes da oxidação no
músculo esquelético para o armazenamento em forma de gordura (LUDWIG, 2002; BRAND-MILLER et al., 2002).

Alimentos ultraprocessados e desfechos em saúde

Estudos já realizados no Brasil indicam associações significativas do consumo de alimentos ultraprocessados com a síndrome metabólica em adolescentes (TAVARES et al., 2012) e com dislipidemias em crianças (RAUBER et al., 2015) e a sua aquisição domiciliar com a prevalência de obesidade em todas as idades (CANELLA et al., 2014).

Nos EUA, resultados de três estudos de coorte demonstraram uma associação entre o ganho de peso e o consumo de vários alimentos ultraprocessados, tais como batatas fritas, bolachas doces, chips, bebidas açucaradas e embutidos (MOZAFFARIAN et al., 2011). Além disso, um estudo de 15 anos de seguimento mostrou que a frequência do consumo de fast food entre os jovens adultos foi diretamente associada a alterações no peso corporal e na resistência à insulina (PEREIRA et al., 2005). Com relação às bebidas açucaradas, evidências consistentes descrevem o seu papel na etiologia da obesidade e de outras DCNT (HU e MALIK, 2010; WOODWARD-LOPEZ, KAO e RITCHIE, 2011; IMAMURA et al., 2015; SINGH et al., 2015).

Estudo realizado a partir de dados de aquisição domiciliar de alimentos no Reino Unido explorou o potencial impacto da redução do consumo de alimentos ultraprocessados na mortalidade por doenças cardiovasculares no país. Em um cenário em que todo consumo de ultraprocessados é substituído por alimentos in natura ou minimamente processados, ingredientes culinários e alimentos processados, a mortalidade por doenças cardiovasculares seria 10% menor do que o esperado e cerca de 20 mil mortes seriam evitadas até 2030 (MOREIRA et al., 2015).

Esses resultados são corroborados por análises de estatísticas de vendas de alimentos ultraprocessados e sua relação com a ocorrência de obesidade na América Latina. Estudo realizado pela Organização Panamericana de Saúde (OPAS) demonstrou forte associação entre o volume de vendas de alimentos ultraprocessados por habitante e a
prevaleência de obesidade entre os adultos. Além disso, o aumento nas vendas de alimentos ultraprocessados entre os anos de 2000 e 2009 foi diretamente associado ao aumento na média do índice de massa corporal (IMC) da população adulta no mesmo período. Países como Bolívia e Peru, onde as vendas de alimentos ultraprocessados são pequenas e a alimentação tradicional ainda é predominante, apresentam as menores médias de IMC. México e Chile, onde as vendas de alimentos ultraprocessados são elevadas, apresentam os maiores valores de IMC (OPAS, 2015).

Alimentos ultraprocessados são convenientes, práticos e portáteis. Geralmente, eles são desenvolvidos para que possam ser consumidos em qualquer lugar – diante da televisão, no ambiente de trabalho ou nos meios de transporte – e dispensam o uso de pratos e talheres. Na maioria das vezes, são vendidos como lanches, bebidas ou pratos prontos ou semiprontos para consumo e podem facilmente substituir refeições feitas na hora, baseadas em alimentos *in natura* ou minimamente processados. Além disso, as técnicas de processamento, as altas quantidades de açúcares, sal e gorduras e o uso de aditivos, como realçadores de sabor e agentes texturizantes, fazem deles hiperpalatáveis. Dessa forma, podem danificar os processos endógenos que sinalizam a saciedade e controlam o apetite e provocar o consumo excessivo e “desapercebido” de calorias (*mindless eating*) (LUDWIG, 2011; OGDEN et al., 2013).

Aditivos alimentares com função cosmética, como emulsificantes, espessantes e corantes, são amplamente utilizados na produção de alimentos ultraprocessados. Embora seu uso seja permitido por lei, são crescentes as evidências de que esses aditivos estão longe de poderem ser considerados inofensivos. Revisão recente sugere que o aumento do consumo de substâncias como emulsificantes, surfactantes, solventes orgânicos, transglutaminase microbiana e nanopartículas pode estar associado ao aumento da prevalência de doenças autoimunes durante as últimas décadas. A hipótese se baseia no fato de que essas substâncias danificam mecanismos de proteção intestinal contra antígenos externos e, dessa forma, aumentariam o risco de doenças imunológicas (LERNER e MATTHIAS, 2015). Estudo experimental demonstrou que camundongos que receberam baixas concentrações de emulsionantes comumente utilizados pela indústria – carboximetilcelulose e polissorbato 80 – apresentaram alterações da microbiota intestinal que levaram à inflamação, ao ganho de peso e à síndrome metabólica (CHASSAING et al., 2015). Adoçantes artificiais não calóricos,
inicialmente desenvolvidos com o objetivo de redução da ingestão de calorias e da glicemia, também estão associados a danos na microbiota intestinal e ao aumento da intolerância à glicose em camundongos e em humanos (SUEZ et al., 2014).

As bebidas ultraprocessadas, tais como refrigerantes e sucos artificiais, apresentam características peculiares. Seu consumo está associado ao ganho de peso devido à redução compensatória incompleta no consumo de energia nas refeições subsequentes à ingestão de líquidos (DIMEGLIO e MATTES, 2000). Alguns compostos presentes em sua formulação, tais como os produtos finais da glicação avançada gerados no processo de caramelização das bebidas do tipo cola, também podem afetar vias fisiopatológicas relacionadas ao diabetes do tipo 2 e à síndrome metabólica (URIBARRI et al., 2007).

Outra característica que pode associar o consumo de alimentos ultraprocessados com a obesidade é o tamanho da porção. O tamanho da porção de muitos alimentos ultraprocessados aumentou significativamente nas últimas décadas (NIELSEN e POPKIN, 2003; PIERNAS e POPKIN, 2011). Frequentemente, esses produtos são vendidos em “porções gigantes” e muitos estudos têm mostrado uma associação direta entre o tamanho da porção, o consumo total de energia e o ganho de peso (DILIBERTI et al., 2004; STEENHUIS e VERMEER, 2009; ALBAR et al., 2014). Nos EUA, o aumento do tamanho das porções foi responsável por grande parte do aumento do consumo de energia pela população nos últimos 30 anos (DUFFEY e POPKIN, 2011).

O conjunto das características desfavoráveis dos alimentos ultraprocessados é amplificado por um marketing agressivo e sofisticado, que modifica as normas sociais, especialmente entre os consumidores vulneráveis, como as crianças (MALLARINO et al., 2013). Muitas estratégias de marketing desses produtos se apoiam em alegações de saúde sem fundamento. Nos países de renda média e baixa, o marketing direto e específico para comunidades de renda mais baixa é bastante frequente, o que tem ajudado as indústrias de alimentos ultraprocessados, em sua maioria, empresas transnacionais, a penetrarem rapidamente nos mercados emergentes.

Fontes de dados para avaliar o consumo de alimentos segundo características do processamento industrial
Em países de baixa e média renda, inquéritos dietéticos, a fonte mais acurada de informações para avaliar o consumo alimentar individual, são escassos e dificilmente possuem representatividade nacional. Nesses países, fontes de dados alternativas são comumente utilizadas para se estimar o padrão de consumo das populações. Apesar disso, alguns métodos amplamente utilizados, como a Folha de Balanço de Alimentos da FAO, apresentam informações sobre o processamento industrial para um número muito limitado de itens de consumo, como açúcar, óleo e farinhas. Além disso, não fornecem informações sobre a cadeia de produção industrial desses itens: o açúcar, por exemplo, poderá ser destinado para a preparação culinária de alimentos em domicílios ou restaurantes ou para a produção industrial de algum alimento ultraprocessado. Dessa forma, esses dados apresentam baixo potencial de fornecer informações sobre as características do processamento dos alimentos efetivamente consumidos pelos indivíduos (FAO, 2015; VANDEVIJVERE et al., 2013).

Nesses casos, as pesquisas de orçamentos familiares, realizados para monitorar o custo de vida a nível nacional, são uma alternativa interessante para preencher a lacuna de informação entre as Folhas de Balanço de Alimentos e os inquéritos dietéticos (FAO, 2015; VANDEVIJVERE et al., 2013). Apesar da ausência de dados sobre desperdício, distribuição intrafamiliar de alimentos e refeições realizadas fora do domicílio, esses inquéritos possuem boa cobertura global, com disponibilidade em mais de 100 países tanto de alta quanto de baixa renda e são realizados em intervalos regulares. Essa metodologia, portanto, é importante para análise das tendências temporais e comparações internacionais de disponibilidade de alimentos, mas a acurácia da estimativa do consumo de alimentos ultraprocessados dependerá do nível de agregação dos grupos de alimentos (VANDEVIJVERE et al., 2013).

Tradicionalmente, as tendências do consumo alimentar no Brasil vêm sendo avaliadas por pesquisas de orçamentos familiares, em que são coletados dados sobre aquisição domiciliar de gêneros alimentícios. Como descrito acima, esses dados já foram utilizados para mostrar a tendência do crescimento das compras dos alimentos ultraprocessados (MARTINS et al., 2013), seu potencial impacto na qualidade da alimentação (MONTEIRO et al., 2011) e na obesidade (CANELLA et al., 2014).
Inquéritos de orçamentos familiares no Canadá, Chile e Suécia e análises de estatísticas de vendas de alimentos ultraprocessados em 79 países também foram utilizados para documentar aumentos expressivos no consumo de alimentos ultraprocessados (CROVETTO e UAUY, 2012; JULL e HEMMINGSSON, 2015; MOUBARAC et al., 2014b; MONTEIRO et al., 2013).

Os estudos disponíveis sobre alimentos ultraprocessados são, portanto, consistentes com a hipótese de que a participação desses produtos na alimentação poderia comprometer sua qualidade nutricional e aumentar o risco do excesso de peso e da obesidade. Nota-se, entretanto, que a maioria dos estudos foi realizada com base em dados gerados por inquéritos de compras ou vendas de alimentos e não em inquéritos sobre consumo efetivo de alimentos.

A recente disponibilidade de inquérito – Pesquisa de Orçamentos Familiares 2008-2009 que coletou simultaneamente dados sobre o consumo efetivo de alimentos e medidas de peso e altura em uma amostra probabilística da população brasileira permite testar de modo direto e inédito a hipótese de que a participação de alimentos ultraprocessados na alimentação compromete sua qualidade nutricional e aumenta o risco do excesso de peso e da obesidade. Este é o propósito central desta tese. Além disso, a disponibilidade tanto de informações de consumo individual de alimentos quando de compras domiciliares de alimentos no Brasil oportuniza uma comparação inédita entre estimativas do consumo de alimentos ultraprocessados geradas por essas duas fontes de dados.

1.4 REFERÊNCIAS

ALBAR, S. A. et al. Is there an association between food portion size and BMI among British adolescents? Br J Nutr, v. 112, n. 5, p. 1-11, 2014.

ALPERS, D. H. et al. History and impact of nutritional epidemiology. Adv Nutr, v. 5, n. 5, p. 534-36, 2014.

BAKER, P.; KAY, A.; WALLS, H. Trade and investment liberalization and Asia's noncommunicable disease epidemic: a synthesis of data and existing literature. Global Health, v. 10, n. 66, p.1-20, 2014.
BARCELOS, G. T.; RAUBER, F.; VITOLO, M. R. Produtos processados e ultraprocessados e ingestão de nutrientes em crianças. Revista Ciência & Saúde, v. 7, n. 3, p. 155-161, 2014.

BATISTELLA, C. Abordagens contemporâneas do conceito de saúde. In: FONSECA, A. F. e CORBO, A. D. A. (Ed.). O território e o processo saúde-doença. Rio de Janeiro: EPSJV/Fiocruz, 2007.

BIELEMANN, R. M. et al. Consumption of ultra-processed foods and their impact on the diet of young adults. Rev Saude Publica, v. 49, n. 28, p.1-10, 2015.

BUSS, P. M.; FILHO, A. P. A saúde e seus determinantes sociais. PHYSIS: Rev. Saúde Coletiva, v. 17, n. 1, p. 77-93, 2007.

BRAND-MILLER, J.C. et al. Glycemic index and obesity. Am J Clin Nutr, v.76, n.1, p.281s-285s, 2002.

CANELLA, D. S. et al. Ultra-processed food products and obesity in Brazilian households (2008-2009). PLoS One, v. 9, n. 3, p. e92752, 2014.

CARPENTER, K. J. A short history of nutritional science: part 1 (1785-1885). J Nutr, v. 133, n. 3, p. 638-45, 2003a.

_______. A short history of nutritional science: part 2 (1885-1912). J Nutr, v. 133, n. 4, p. 975-84, 2003b.

_______. A short history of nutritional science: part 3 (1912-1944). J Nutr, v. 133, n. 10, p. 3023-32, 2003c.

_______. A short history of nutritional science: part 4 (1945-1985). J Nutr, v. 133, n. 11, p. 3331-42, 2003d.

CASTILHO, S. D.; BARROS FILHO, A. A. The history of infant nutrition. J Pediatr (Rio J), v. 86, n. 3, p. 179-88, 2010.

CHASSAING, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, v. 519, n. 7541, p. 92-6, 2015.

COHEN, D.; FARLEY, T. A. Eating as an automatic behavior. Prev Chronic Dis, v. 5, n. 1, p. A23, 2008.

CONSEFA. III Conferência Nacional de Segurança Alimentar e Nutricional – por um desenvolvimento sustentável com soberania e segurança alimentar e nutricional. Relatório final. Fortaleza: Conselho Nacional de Segurança Alimentar e Nutricional, 2007.

CROVETTO, M.; UAUY, R. Evolución del gasto en alimentos procesados en la población del Gran Santiago en los últimos 20 años Rev Med Chil, v. 140, n. 3, p. 305-12, 2012.

CROVETTO, M. M. et al. Disponibilidad de productos alimentarios listos para el consumo en los hogares de Chile y su impacto sobre la calidad de la dieta (2006-2007). Rev Med Chil, v. 142, n. 7, p. 850-8, 2014.
DILIBERTI, N. et al. Increased portion size leads to increased energy intake in a restaurant meal. *Obes Res*, v. 12, n. 3, p. 562-8, 2004.

DIMEGLIO, D. P.; MATTES, R. D. Liquid versus solid carbohydrate: effects on food intake and body weight. *Int J Obes Relat Metab Disord*, v. 24, n. 6, p. 794-800, 2000.

DUFFEY, K. J.; POPKIN, B. M. Energy density, portion size, and eating occasions: contributions to increased energy intake in the United States, 1977-2006. *PLoS Med*, v. 8, n. 6, p. e1001050, 2011.

FAO. *Sustainable diets and biodiversity directions and solutions for policy, research and action. Biodiversity and sustainable diets united against hunger*. Rome: Food and Agricultural Organization, 2010.

_____ *O estado da segurança alimentar e nutricional No Brasil: um retrato multidimensional*. Roma: Organização das Nações Unidas para Alimentação e Agricultura, 2014.

_____ *Guidelines on the collection of information on food processing through food consumption surveys*. Roma: Organização das Nações Unidas para Alimentação e Agricultura, 2015.

FIORITO, L. M. et al. Girls’ early sweetened carbonated beverage intake predicts different patterns of beverage and nutrient intake across childhood and adolescence. *J Am Diet Assoc*, v. 110, n. 4, p. 543-50, 2010.

FLECK, M. P. D. A. O instrumento de avaliação de qualidade de vida da Organização Mundial da Saúde (WHOQOL-100): características e perspectivas. *Ciência & Saúde Coletiva*, v. 5, n. 1, p. 33-38, 2000.

FRANCO, E. D. P. et al. Assessment of the quality of hypoenergetic diet in overweight women. *Int J Cardiovase Sci*, v. 28, n. 3, p. 244-250, 2015.

FRIAS, P. G. et al. Correção de informações vitais: estimação da mortalidade infantil, Brasil, 2000-2009 *Rev Saúde Pública*, v. 47, n. 6, p. 1048-1058, 2013.

HAWKES, C.; POPKIN, B. M. Can the sustainable development goals reduce the burden of nutrition-related non-communicable diseases without truly addressing major food system reforms? *BMC Med*, v. 13, n. 143, p.2-3, 2015.

HU, F. B. Dietary pattern analysis: a new direction in nutritional epidemiology. *Curr Opin Lipidol*, v. 13, n. 1, p.3-9, 2002.

HU, F. B.; MALIK, V. S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. *Physiol Behav*, v. 100, n. 1, p. 47-54, 2010.

HUHN, S. et al. Components of a Mediterranean diet and their impact on cognitive functions in aging. *Front Aging Neurosci*, v. 7, n. 132, p.1-10 2015.

IBGE. *Antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil*. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2010.
IMAMURA, F. et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ, v. 351, p. h3576, 2015.

JACOBS, D. R., JR.; GROSS, M. D.; TAPSELL, L. C. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr, v. 89, n. 5, p. 1543s-1548s, 2009.

JACOBS, D. R., JR.; ORLICH, M. J. Diet pattern and longevity: do simple rules suffice? A commentary. Am J Clin Nutr, v. 100, p. 313s-9s, 2014.

JACOBS, D. R., JR.; STEFFEN, L. M. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr, v. 78, n. 3., p. 508s-513s, 2003.

JACOBS, D. R. et al. Fiber from whole grains, but not refined grains, is inversely associated with all-cause mortality in older women: the Iowa women's health study. J Am Coll Nutr, v. 19, n. 3, p. 326s-330s, 2000.

JACOBS, D. R.; TAPSELL, L. C. Food synergy: the key to a healthy diet. Proc Nutr Soc, England, v. 72, n. 2, p. 200-6, 2013.

JUUL, F.; HEMMINGSSON, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr, v. 25, p. 1-12, 2015.

LEE, M. J.; POPKIN, B. M.; KIM, S. The unique aspects of the nutrition transition in South Korea: the retention of healthful elements in their traditional diet. Public Health Nutr, v. 5, n. 1A, p. 197-203, 2002.

LEITE, F. H. et al. Availability of processed foods in the perimeter of public schools in urban areas. J Pediatr (Rio J), v. 88, n. 4, p. 328-34, 2012.

LERNER, A.; MATTHIAS, T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev, v. 14, n. 6, p. 479-89, 9 2015.

LOURENÇO, L. D. et al. A historicidade filosófica do conceito de saúde. História da enfermagem, v. 3, n. 1, p. 17-35, 2012.

LUDWIG, D. S. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, v. 287, n. 18, p. 2414-23, 8 2002.

LUIJTEN, C. M. et al. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets. Public Health Nutr, v. 29, p. 1-9, 29 2015.

LYONS, J.; WALTON, J.; FLYNN, A. Food portion sizes and dietary quality in Irish children and adolescents. Public Health Nutr, v. 18, n. 8, p. 1444-52, 2015.
MALLARINO, C. et al. Advertising of ultra-processed foods and beverages: children as a vulnerable population. *Rev Saude Publica*, v. 47, n. 5, p. 1006-10, 2013.

MARTINS, A. P. et al. Increased contribution of ultra-processed food products in the Brazilian diet (1987-2009). *Rev Saude Publica*, v. 47, n. 4, p. 656-65, 2013.

MESSINA, M. et al. Reductionism and the narrowing nutrition perspective: time for reevaluation and emphasis on food synergy. *J Am Diet Assoc*, v. 101, n. 12, p. 1416-9, 2001.

MINAYO, M. C. D. S.; HARTZ, Z. M. D. A.; BUSS, P. M. Qualidade de vida e saúde: um debate necessário. *Ciência & Saúde Coletiva*, v. 5, n. 1, p. 7-18, 2000.

MINISTÉRIO DA SAÚDE. VIII Conferência Nacional de Saúde: relatório final. Brasília: Ministério da Saúde, 1986.

______. *As carta de promoção da saúde*. Brasília: Ministério da Saúde, 2002.

______. *II Pesquisa de Prevalência de Aleitamento Materno nas Capitais Brasileiras e Distrito Federal*. Brasília: Ministério da Saúde, 2009.

______. *Política Nacional de Promoção da Saúde*. Brasília: Ministério da Saúde, 2014a.

______. VIGITEL. Brasil 2013: Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico. Brasília: Ministério da Saúde, 2014c.

______. *Guia alimentar para a população brasileira*. Brasília: Ministério da Saúde 2014c.

______. *Pesquisa Nacional de Saúde 2013: Ciclos de vida*. Brasília: Ministério da Saúde, 2015a.

______. *Pesquisa Nacional de Saúde 2013: Percepção do estado de saúde, estilos de vida e doenças crônicas*. Brasília: Ministério da Saúde, 2015b.

MINTZ, S.; DU BOIS, C. The anthropology of food and eating. *Annual review of anthropology* v. 31, p. 99-119, 2002.

MONTEIRO, C. A. et al. Narrowing socioeconomic inequality in child stunting: the Brazilian experience, 1974-2007. *Bull World Health Organ*, v. 88, n. 4, p. 305-11, 2010.

______. The Food System. Ultra-processing. The big issue for nutrition, disease, health, well-being. [Commentary]. *World Nutrition*, v. 3, n. 12, p. 527-69, 2012.

______. Ultra-processing and a new classification of foods. In: NEFF, R. (Ed.). *Introduction to U.S. Food System. Public Health, Environment, and Equity*. São Francisco: Jossey-Bass A Wiley Brand, 2014.

______. Population-based evidence of a strong decline in the prevalence of smokers in Brazil (1989-2003). *Bull World Health Organ*, v. 85, n. 7, p. 527-34, 2007.

______. A new classification of foods based on the extent and purpose of their processing. *Cad Saude Publica*, Brazil, v. 26, n. 11, p. 2039-49, 2010.

______. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. *Public Health Nutr*, v. 14, n. 1, p. 5-13, 2011.
Ultra-processed products are becoming dominant in the global food system. Obes Rev, v. 14 2, p. 21s-8s, 2013.

MOODIE, R. et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet, v. 381, n. 9867, p. 670-9, 2013.

MOREIRA, P. V. et al. Comparing different policy scenarios to reduce the consumption of ultra-processed foods in UK: impact on cardiovascular disease mortality using a modelling approach. PLoS One, v. 10, n. 2, p. e0118353, 2015.

MOUBARAC, J. C. et al. International differences in cost and consumption of ready-to-consume food and drink products: United Kingdom and Brazil, 2008-2009. Glob Public Health, v. 8, n. 7, p. 845-56, 2013.

MOUBARAC, J. C. et al. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr, v. 16, n. 12, p. 2240-8, 2013.

MOUBARAC, J. C. et al. Food classification systems based on food processing: significance and implications for policies and actions. A systematic literature review and assessment. Current Obesity Reports, v. 3, n. 2, p. 256-72, 2014.

MOUBARAC, J. C. et al. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011. Can J Diet Pract Res, v. 75, p.15-21, 2014.

MOZAFFARIAN, D. et al. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med, v. 364, n. 25, p. 2392-404, 2011.

NIELSEN, S. J.; POPKIN, B. M. Patterns and trends in food portion sizes, 1977-1998. JAMA, v. 289, n. 4, p. 450-3, 2003.

OGDEN, J. et al. Distraction, the desire to eat and food intake. Towards an expanded model of mindless eating. Appetite, v. 62, p. 119-26, 2013.

OMENN, G. S. et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med, v. 334, n. 18, p. 1150-5, 1996.

ONU. World Happiness Report 2013. Nova Iorque: Organização das Nações Unidas, 2013.

OPAS. Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications. Washington D.C.: Organização Panamericana de Saúde, 2015.

PAERATAKUL, S. et al. Fast-food consumption among US adults and children: dietary and nutrient intake profile. J Am Diet Assoc, v. 103, n. 10, p. 1332-8, 2003.

PEREIRA, M. A. et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet, v. 365, n. 9453, p. 36-42, 2005.

PERES, M. F. T. Violência e homicídios: emergência, crescimento e consolidação de um problema de saúde de dimensão coletiva. In: MONTEIRO, C. A. e LEVY, R. B. (Org). Velhos e novos males da saúde no Brasil. São Paulo: Editora Hucitec/Nupens, 2015. 2 ed.

PI SUNYER, F.X. Glycemic index and disease. Am J Clin Nutr, v.76, n.1, p.290s-298s, 2002.
PIERNAS, C.; POPKIN, B. M. Food portion patterns and trends among U.S. children and the relationship total eating occasion size, 1977-2006. J Nutr, v. 141, n. 6, p. 1159-64, 2011.

POTI, J. M. et al. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am J Clin Nutr, v. 101, n. 6, p. 1251-62, 2015.

RAUBER, F. et al. Consumption of ultra-processed food products and its effects on children's lipid profiles: a longitudinal study. Nutr Metab Cardiovasc Dis, v. 25, n. 1, p. 116-22, 2015.

ROLLS, B. J. The relationship between dietary energy density and energy intake. Physiol Behav, v. 97, n. 5, p. 609-15, 2009.

SARTORI, A. G. D. O. Consumo alimentar de beneficiários do Programa Bolsa Família. 2013. 138 p. (tese de Doutorado). Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.

SCHMIDT, M. I. et al. Chronic non-communicable diseases in Brazil: burden and current challenges. Lancet, v. 377, n. 9781, p. 1949-61, 2011.

SCHULZE, M. B. et al. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr, v. 80, n. 2, p. 348-56, 2004.

SCHWINGSHACKL, L.; HOBL, L.P.; HOFFMANN, G. Effects of low glycaemic index/low glycaemic load vs. high glycaemic index/high glycaemic load diets on overweight/obesity and associated risk factors in children and adolescents: a systematic review and meta-analysis. Nutr J, v. 14, n1, p. 87, 2015.

SCLIAR, M. A história do conceito de saúde. PHYSIS: Rev. Saúde Coletiva, v. 17, n. 1, p. 29-41, 2007.

SCRINIS, G. Nutritionism: the science and politics of dietary advice New York: Columbia University Press, 2013.

SEGRE, M.; FERRAZ, F. C. O conceito de saúde. Rev Saude Publica, v. 31, n. 5, p. 538-42, 1997.

SEIDL, E. M.; ZANNON, C. M. Qualidade de vida e saúde: aspectos conceituais e metodológicos. Cad Saude Publica, v. 20, n. 2, p. 580-8, 2004.

SINGH, G. M. et al. Estimated global, regional, and national disease burdens related to sugar-sweetened beverage consumption in 2010. Circulation, v. 132, n. 8, p. 639-66, 2015.

SITHEY, G.; THOWB, A.-M.; LIA, M. Gross national happiness and health: lessons from Bhutan. Bull World Health Organ, v. 93, p. 514, 2015.

SPARRENBERGER, K. et al. Ultra-processed food consumption in children from a Basic Health Unit. J Pediatr (Rio J), 2015. pii: S0021-7557(15)00077-7.

STEENHUIS, I. H.; VERMEER, W. M. Portion size: review and framework for interventions. Int J Behav Nutr Phys Act, v. 21, p. 6-58, 2009.

SUEZ, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, v. 514, n. 7521, p. 181-6, 2014.
TAVARES, L. F. et al. Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. *Public Health Nutr*, v. 15, n. 1, p. 82-7, 2012.

TRICHOPOULOU, A.; LAGIOU, P. Healthy traditional Mediterranean diet: an expression of culture, history, and lifestyle. *Nutr Rev*, v. 55, n. 11, p. 383-9, 1997.

URIBARRI, J. et al. Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. *Diabetes Care*, v. 30, n. 10, p. 2579-82, 2007.

VANDEVIJVERE, S. et al. Monitoring and benchmarking population diet quality globally: a step-wise approach. *Obes Rev*, v. 14, p. 135s-49s, 2013.

VASCONCELOS, A. M. N.; GOMES, M. M. F. Transição demográfica: a experiência brasileira. *Epidemiol. Serv. Saúde*, v. 21, n. 4, p. 539-548, 2012.

VEDOVATO, G. M. et al. Degree of food processing of household acquisition patterns in a Brazilian urban area is related to food buying preferences and perceived food environment. *Appetite*, v. 87, p. 296-302, 2015.

VENANCIO, S. I.; SALDIVA, S. R.; MONTEIRO, C. A. Tendência secular da amamentação no Brasil. *Rev Saude Publica*, v. 47, n. 6, p. 1205-8, 2013.

VICTORA, C. G. et al. Health conditions and health-policy innovations in Brazil: the way forward. *Lancet*, v. 377, n. 9782, p. 2042-53, 2011a.

______. Maternal and child health in Brazil: progress and challenges. *Lancet*, v. 377, n. 9780, p. 1863-76, 2011b.

WOODWARD-LOPEZ, G.; KAO, J.; RITCHIE, L. To what extent have sweetened beverages contributed to the obesity epidemic? *Public Health Nutr*, v. 14, n. 3, p. 499-509, 2011.

YAMADA, M. et al. Soft drink intake is associated with diet quality even among young Japanese women with low soft drink intake. *J Am Diet Assoc*, v. 108, n. 12, p. 1997-2004, 2008.

1.5 MATERIAL SUPLEMENTAR

Estratégia de busca de documentos publicados na literatura que utilizaram a classificação NOVA na categorização dos alimentos.

Buscaram-se artigos científicos que utilizaram o conceito de “alimento ultraprocessado” na categorização/classificação dos alimentos, publicados até junho de 2015 e nos idiomas inglês, português ou espanhol. A busca foi conduzida nas bases de dados:
Medline, Scopus, Web of Science e Lilacs. Além disso, utilizou-se a ferramenta de busca Google Scholar.

Os termos de busca foram: ((ultra-processed AND foods) OR (ultra-processed AND products)). No Lilacs e no Google Scholar, buscaram-se também os termos em português: ((alimentos AND ultraprocessados) OR (produtos AND ultraprocessados)).

A estratégia resultou em 55 publicações não duplicadas. Após a leitura dos resumos, 31 publicações foram excluídas. Essas publicações caracterizavam-se por: resumos de congressos, comentários de artigos e trabalhos que apenas citaram os alimentos ultraprocessados na introdução e/ou na discussão.

Uma publicação oficial da FAO e uma da OPAS foram acrescentadas à revisão, o que resultou em 26 documentos.

Os documentos foram categorizados em:

- Avaliação do impacto dos alimentos ultraprocessados na qualidade da nutricional alimentação;
- Avaliação do impacto dos alimentos ultraprocessados na em desfechos de saúde;
- Caracterização do consumo alimentar: estudos de prevalência e tendência;
- Fatores associados e potenciais determinantes do consumo de alimentos ultraprocessados;
- Outros.
2 OBJETIVOS DO TRABALHO

Os objetivos deste estudo, desenvolvidos em quatro manuscritos, são:

- Caracterizar o padrão populacional de consumo de alimentos segundo característica do processamento industrial;
- Analisar a influência independente do consumo de alimentos ultraprocessados sobre indicadores nutricionais de qualidade da alimentação;
- Analisar a influência independente do consumo de alimentos ultraprocessados sobre a ocorrência de obesidade;
- Avaliar o uso de dados de aquisição domiciliar de alimentos para estimar o consumo real de alimentos ultraprocessados.
3 ALIMENTOS ULTRAPROCESSADOS E INDICADORES DO PERFIL NUTRICIONAL DA DIETA ASSOCIADOS A OBESIDADE E DOENÇAS CRÔNICAS NÃO TRANSMISSÍVEIS

Este capítulo apresenta o artigo “Alimentos ultraprocessados e perfil nutricional da dieta no Brasil”, de autoria de Maria Laura da Costa Louzada, Ana Paula Bortoletto Martins, Daniela Silva Canella, Larissa Galastri Baraldi, Renata Bertazzi Levy, Rafael Moreira Claro, Jean-Claude Moubarac, Geoffrey Cannon e Carlos Augusto Monteiro e publicado originalmente na Revista de Saúde Pública (2015;49:38).
3.1 RESUMO/ABSTRACT

Resumo
Objetivo: Avaliar o impacto do consumo de alimentos ultraprocessados sobre o perfil nutricional da dieta.
Métodos: Estudo transversal com dados obtidos do módulo sobre consumo alimentar de indivíduos da Pesquisa de Orçamentos Familiares 2008-2009. A amostra, representativa da população brasileira de 10 ou mais anos de idade, envolveu 32.898 indivíduos. O consumo alimentar foi avaliado por meio de dois registros alimentares de 24h. Os alimentos consumidos foram classificados em três grupos: *in natura* ou minimamente processados, incluindo preparações culinárias à base desses alimentos; processados; e ultraprocessados.
Resultados: O consumo médio diário de energia *per capita* foi de 1.866 kcal, sendo 69,5% proveniente de alimentos: *in natura* ou minimamente processados, 9,0% de alimentos processados e 21,5% de alimentos ultraprocessados. O perfil nutricional da fração do consumo relativo a alimentos ultraprocessados mostrou maior densidade energética, maior teor de gorduras em geral, de gordura saturada, de gordura trans e de açúcar livre e menor teor de fibras, de proteínas, de sódio e de potássio, quando comparado à fração do consumo relativa a alimentos *in natura* ou minimamente processados. Alimentos ultraprocessados apresentaram, no geral, características desfavoráveis quando comparados aos alimentos processados. Maior participação de alimentos ultraprocessados na dieta determinou generalizada deterioração no perfil nutricional da alimentação. Os indicadores do perfil nutricional da dieta dos brasileiros que menos consumiram alimentos ultraprocessados, com exceção do sódio, aproximam este estrato da população das recomendações internacionais para uma alimentação saudável.
Conclusões: Os resultados indicam prejuízos à saúde decorrentes da tendência observada no Brasil de substituir refeições tradicionais baseadas em alimentos *in natura* ou minimamente processados por alimentos ultraprocessados e apoiam a recomendação para ser evitado o consumo desses alimentos.
Descritores: Consumo de Alimentos. Alimentos Industrializados. Valor Nutritivo. Qualidade dos Alimentos. Epidemiologia Nutricional.
Abstract

Objective: To assess the impact of consuming ultra-processed foods on the nutritional dietary profile in Brazil.

Methods: Cross-sectional study conducted with data from the module on individual food consumption from the 2008-2009 Pesquisa de Orçamentos Familiares (POF – Brazilian Family Budgets Survey). The sample, which represented the section of the Brazilian population aged 10 years or over, involved 32,898 individuals. Food consumption was evaluated by two 24-hour food records. The consumed food items were classified into three groups: natural or minimally processed, including culinary preparations with these foods used as a base; processed; and ultra-processed.

Results: The average daily energy consumption per capita was 1,866 kcal, with 69.5% being provided by natural or minimally processed foods, 9.0% by processed foods and 21.5% by ultra-processed food. The nutritional profile of the fraction of ultra-processed food consumption showed higher energy density, higher overall fat content, higher saturated and trans fat, higher levels of free sugar and less fiber, protein, sodium and potassium, when compared to the fraction of consumption related to natural or minimally processed foods. Ultra-processed foods presented generally unfavorable characteristics when compared to processed foods. Greater inclusion of ultra-processed foods in the diet resulted in a general deterioration in the dietary nutritional profile. The indicators of the nutritional dietary profile of Brazilians who consumed less ultra-processed foods, with the exception of sodium, are the stratum of the population closer to international recommendations for a healthy diet.

Conclusions: The results from this study highlight the damage to health that is arising based on the observed trend in Brazil of replacing traditional meals, based on natural or minimally processed foods, with ultra-processed foods. These results also support the recommendation of avoiding the consumption of these kinds of foods.

Descriptors: Food Consumption. Industrialized Foods. Nutritive Value. Food Quality. Nutritional Epidemiology.
3.2 INTRODUÇÃO

Alimentos ultraprocessados são formulações industriais prontas para consumo e feitas inteiramente ou majoritariamente de substâncias extraídas de alimentos (óleos, gorduras, açúcar, proteínas), derivadas de constituintes de alimentos (gorduras hidrogenadas, amido modificado) ou sintetizadas em laboratório com base em matérias orgânicas (corantes, aromatizantes, realçadores de sabor e outros aditivos usados para alterar propriedades sensoriais) (MONTEIRO et al., 2010; MOODIE et al., 2013; MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014).

Análises de pesquisas de orçamentos familiares em três países (CROVETTO e UAUY, 2012; MARTINS et al., 2013; MOUBARAC et al., 2014) e de séries temporais de estatísticas de vendas de alimentos em 79 países (MONTEIRO et al., 2014) indicam tendência generalizada de aumento do consumo de alimentos ultraprocessados, com maior intensidade em países de renda média, como o Brasil.

Estudos sobre aquisição domiciliar de alimentos utilizando dados de pesquisas de orçamentos familiares, realizadas no Brasil, Canadá e Chile, mostram que, em média, alimentos ultraprocessados possuem maior densidade energética, maior teor de açúcar livre e menor teor de fibra que alimentos in natura ou minimamente processados, mesmo quando se considera a combinação desses alimentos com ingredientes culinários como sal, açúcar e gorduras. (MONTEIRO et al., 2011; MOUBARAC et al., 2013; CROVETTO et al., 2014). Não há registro de estudos que tenham relacionado alimentos ultraprocessados à qualidade nutricional da dieta efetivamente consumida por indivíduos.

O objetivo deste estudo foi avaliar o impacto que o consumo de alimentos ultraprocessados exerce sobre o perfil nutricional da dieta no Brasil.
3.3 MÉTODOS

Os dados analisados neste estudo procedem da Pesquisa de Orçamentos Familiares (POF) realizada pelo Instituto Brasileiro de Geografia e Estatística entre maio de 2008 e maio de 2009 (IBGE, 2010; 2011a).

A amostra de domicílios da POF foi extraída adotando-se plano de amostragem por conglomerados com sorteio dos setores censitários, em primeiro estágio, e de domicílios, em segundo. Os setores censitários foram agrupados previamente ao sorteio em estratos com suficiente homogeneidade geográfica e socioeconômica. O sorteio de setores dentro de cada estrato foi feito com probabilidade proporcional ao número de domicílios em cada setor. No segundo estágio, dentro de cada setor, domicílios foram selecionados por amostragem aleatória simples, sem reposição. A amostra foi de 55.970 domicílios (IBGE, 2010).

O módulo da pesquisa relativo ao consumo alimentar individual foi aplicado em uma subamostra aleatória de 13.569 domicílios (24,3% do total de domicílios estudados). Todos os moradores com 10 anos ou mais de idade que residiam nesses domicílios foram selecionados. A subamostra estudada envolveu 34.003 indivíduos.

O consumo alimentar foi avaliado utilizando-se dois registros alimentares de 24h, em dias não consecutivos, nos quais os indivíduos registraram as quantidades, em medidas caseiras, e a forma de preparação de cada alimento consumido. Eventualmente, os registros eram preenchidos com auxílio de outro morador do domicílio ou complementados mediante entrevistas em que o agente de pesquisa revisava o preenchimento realizado pelo informante. O agente realizava a transcrição das informações para o sistema eletrônico de entrada de dados.

Os dados como data de nascimento do entrevistado, sexo e renda familiar *per capita* foram obtidos utilizando-se questionários padronizados. Os dados incluem ainda a situação urbana ou rural do domicílio e sua inserção em uma das cinco macrorregiões do País (Norte, Nordeste, Centro-Oeste, Sudeste e Sul).
A quantidade de cada alimento foi transformada em gramas ou mililitros com base na tabela de medidas referidas para os alimentos consumidos no Brasil (IBGE, 2011b), construída a partir da compilação de tabelas de medidas caseiras e de outras fontes de informação. Quantidades consideradas improváveis ou não informadas foram imputadas com base em matriz de similaridades formadas por variáveis correlacionadas com a variável quantidade consumida (sexo do informante, faixa etária, unidade da federação, macrorregião e unidade de medida informada) utilizando-se a técnica **hot deck** (IBGE, 2011b).

Essas quantidades de alimentos foram convertidas em quilocalorias de energia e em gramas ou miligramas de nutrientes com base na tabela de composição nutricional dos alimentos consumidos no Brasil (IBGE, 2011c). Esta tabela foi construída a partir dos dados da Tabela Brasileira de Composição de Alimentos e da tabela do Departamento de Agricultura dos Estados Unidos, além de referências de receitas regionais e de rótulos de alimentos (IBGE, 2011c).

Conforme orientação do IBGE, foi padronizado o conteúdo de açúcar adicionado em sucos de fruta, café e chá em quantidade equivalente a: 10,0% do volume consumido, no caso do indivíduo informar que costumava adicionar apenas açúcar às bebidas; e em 5,0% do volume adicionava açúcar e adoçantes artificiais. Foi considerada bebida sem açúcar adicionado quando o indivíduo relatou que não costumava adicionar açúcar às bebidas (IBGE, 2011c).

Os 1.120 itens de consumo relatados foram classificados em três grupos: alimentos **in natura** ou minimamente processados, alimentos processados e alimentos ultraprocessados (MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014).

O primeiro grupo inclui alimentos obtidos diretamente de plantas ou de animais (como folhas, frutos, ovos e leite) e adquiridos para consumo sem que tenham sofrido qualquer alteração após deixarem a natureza (alimentos **in natura**) e alimentos **in natura** que, antes de sua aquisição, foram submetidos à limpeza, remoção de partes não comestíveis ou não desejadas, secagem, embalagem, pasteurização, congelamento, refinamento, fermentação e outros processos que não incluíssem a adição de substâncias ao alimento...
original (alimentos minimamente processados). Preparações culinárias baseadas em um ou mais alimentos *in natura* ou minimamente processados foram incluídas neste primeiro grupo. Essas preparações incluem o alimento usado como item principal da receita e todos os demais ingredientes, incluindo eventuais outros alimentos e substâncias alimentícias de uso culinário como sal, açúcar, vinagre e óleos (MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014).

No segundo grupo, constam produtos industrializados feitos essencialmente com a adição de sal ou açúcar (e eventualmente óleo ou vinagre) a um alimento *in natura* ou minimamente processado, incluindo conservas de legumes, frutas em calda, queijos e pães feitos com farinha de trigo, água e sal (e leveduras usadas para fermentar a farinha) (MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014).

Já o terceiro grupo é composto por formulações industriais feitas inteiramente ou majoritariamente de substâncias extraídas de alimentos (óleos, gorduras, açúcar, proteínas), derivadas de constituintes de alimentos (gorduras hidrogenadas, amido modificado) ou sintetizadas em laboratório com base em matérias orgânicas (corantes, aromatizantes, realçadores de sabor e outros aditivos usados para dotar os produtos de propriedades sensoriais atraentes) (MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014). Alimentos ultraprocessados incluem biscoitos doces e salgados, salgadinhos tipo *chips*, barras de cereal, guloseimas em geral, lanches do tipo *fast food*, macarrão “instantâneo”, vários tipos de pratos prontos ou semiprontos e refrigerantes. As principais características de cada grupo de alimentos e uma lista detalhada de exemplos estão apresentadas no Anexo.

Todas as análises foram realizadas com os indivíduos que preencheram os registros relativos a dois dias de consumo alimentar, o que ocorreu para 96,8% do total de indivíduos que participaram do módulo da pesquisa relativo ao consumo alimentar individual.
O padrão da alimentação da população foi descrito distribuindo-se o total de calorias consumidas pelos indivíduos segundo os três grupos de alimentos considerados neste estudo e, internamente a esses grupos, segundo subgrupos selecionados.

Os indivíduos foram classificados em cinco estratos conforme a contribuição de alimentos ultraprocessados para o valor calórico total da sua dieta. Esses estratos corresponderam a quintis da distribuição da contribuição calórica dos alimentos ultraprocessados no conjunto da população brasileira. O padrão de alimentação de cada um desses estratos foi descrito de forma semelhante à efetuada para o conjunto da população.

O impacto do consumo de alimentos ultraprocessados sobre a qualidade da dieta levou em conta indicadores para os quais a Organização Mundial da Saúde estabeleceu recomendações para consumo, válidas para o conjunto da população e independentes de sexo, idade e estado fisiológico: proteína, carboidratos, açúcar livre, fibra, gorduras totais, gordura saturada, gordura trans, fibra, sódio e potássio (WHO 2003; 2013). Os indicadores relativos à ingestão de fibra, sódio e potássio foram expressos por 1.000 kcal, enquanto os demais nutrientes foram expressos em percentual do total de calorias ingeridas. Adicionalmente, incluiu-se o indicador densidade energética da fração sólida da dieta, calculado com a divisão da soma das calorias provenientes da ingestão de alimentos sólidos pela quantidade em gramas desses alimentos. As recomendações utilizadas para este indicador foram as propostas pelo *World Research Cancer Fund* (WCRF, 2012).

Os indicadores nutricionais foram utilizados para avaliar a qualidade da dieta média brasileira. As médias dos indicadores nutricionais da fração da dieta composta exclusivamente pelos alimentos ultraprocessados foram comparadas à fração da dieta composta somente de itens de consumo do grupo de alimentos *in natura* ou minimamente processados e com a fração da dieta restrita ao grupo de alimentos processados. Para essas comparações, utilizou-se o teste *t de Student*.

Os indicadores foram usados para avaliar a qualidade da dieta de estratos da população brasileira correspondentes a quintis da contribuição dos alimentos ultraprocessados para o total de calorias. Análises de regressão linear foram empregadas para identificação da
direção e do significado estatístico da associação entre quintis da distribuição de contribuição calórica de alimentos ultraprocessados e indicadores nutricionais, sem e com ajuste para variáveis de confusão (renda familiar, residência urbana ou rural, macrorregião, idade e sexo).

Todas as análises foram realizadas no software Stata 13.0, considerando-se o delineamento complexo da amostra.

Este estudo foi aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo (Protocolo 128.958, de 19/10/2012).

3.4 RESULTADOS

O consumo médio diário de energia dos brasileiros com dez ou mais anos de idade foi de 1.866 kcal, sendo 69,5% proveniente de alimentos in natura ou minimamente processados, 9,0% de alimentos processados e 21,5% de alimentos ultraprocessados (Tabela 3.1).
Grupo de alimentos e itens de consumo	Kcal/dia	% da ingestão total de energia
Alimentos in natura ou minimamente processados (inclui as preparações culinárias à base desses alimentos)		
Arroz	226,0	12,6
Feijão	189,6	10,3
Carne de boi ou de porco	188,7	10,0
Frutas	132,7	7,0
Outros cereais	110,6	6,0
Leite	96,1	5,4
Carne de ave	88,1	4,9
Raízes e tubérculos	78,0	3,9
Café e chás	47,7	2,9
Peixes	33,2	1,7
Verdurás e legumes	21,7	1,4
Ovos	24,4	1,4
Outros alimentos in natura ou minimamente processados	38,6	2,0
Alimentos processados	167,1	9,0
Pão francês	126,3	6,9
Queijos	21,4	1,1
Carnes processadas	17,7	0,9
Conservas de frutas e hortaliças	1,8	0,1
Alimentos ultraprocessados	423,4	21,5
Bolos, tortas e biscoitos doces	62,4	3,0
Lanches do tipo fast food	55,9	2,9
Refrigerantes e sucos de frutas industrializados	51,5	2,6
Pães de forma, de hamburguer, de hot dog e similares	42,2	2,4
Guloseimas	47,8	2,2
Bolachas salgadas e salgadinhos tipo chips	39,9	2,0
Embutidos	27,7	1,5
Pratos prontos ou semiprontos	55,9	1,7
Bebidas lácteas adoçadas	31,7	1,6
Outros alimentos ultraprocessados	29,2	1,5
Total	1866,0	100

a Incluem sucos espremidos das frutas.

b Milho, aveia e trigo e suas farinhas e preparações como cuscuz e pratos de macarrão

c Nozes e sementes, iogurte natural, preparações à base de lentilha, ervilha, soja, frutos do mar e preparações feitas com misturas de vários alimentos.

d Hambúrguer e cheeseburguer, hot dog, salgados fritos e assados e semelhantes.

e Balas, confeitos, chocolates, gelatina, pudins e sorvetes.

f Pizzas, pratos de massa ou de carne congelados, macarrão “instantâneo” e sopes em pó.

g Margarina, molhos industrializados e “cereais matinais”.
Juntos, arroz e feijão são responsáveis por mais de um quinto (22,9%) da energia consumida ao longo do dia. Outros alimentos *in natura* ou minimamente processados, relevantes na alimentação brasileira, são carnes vermelhas, frutas, outros cereais que não o arroz e leite, cada um deles contribuindo com pelo menos 5,0% do total diário de energia. Com menor contribuição energética, aparecem carnes de ave, raízes e tubérculos, café e chá, peixes, verduras e legumes e ovos.

Dentre os alimentos processados, o de maior contribuição para o aporte total de energia foi o pão francês (6,9% das calorias diárias), seguido de queijos, carnes processadas e conservas de frutas e hortaliças.

Dentre os alimentos ultraprocessados, destacam-se bolos, tortas e biscoitos doces (3,0% das calorias diárias), lanches do tipo *fast food* (2,9%), refrigerantes e refrescos (2,6%), pães de forma, de hambúrguer e de *hot dog* (2,4%) e guloseimas (2,2%). Segundo contribuição energética, aparecem bolachas salgadas e salgadinhos tipo *chips*, embutidos, pratos prontos ou semiprontos e bebidas lácteas adoçadas.

A contribuição média dos alimentos ultraprocessados para o total de energia consumida variou de menos de 2,0% no primeiro quintil para quase 50,0% no último quintil. A contribuição de todas as categorias de alimentos ultraprocessados aumenta significativamente do primeiro para o último quintil. Tendência inversa é observada para todos os alimentos *in natura* ou minimamente processados, exceto frutas e verduras e legumes, os quais não variaram significativamente. Alimentos processados apresentaram variações significativas, mas não uniformes: queijos e conservas de frutas e hortaliças contribuem com aumento do consumo de ultraprocessados, enquanto o oposto é observado para o pão francês e para as carnes processadas. Evidencia-se, assim, a natureza mista do grupo de alimentos processados acompanhando, parte o padrão de variação dos alimentos *in natura* ou minimamente processados, e parte o padrão de variação dos alimentos ultraprocessados (Tabela 3.2).
Tabela 3.2. Distribuição (%) da ingestão total de energia segundo grupos de alimentos e itens de consumo em estratos da população brasileira com 10 ou mais anos de idade correspondentes a quintis do consumo de alimentos ultraprocessados (2008-2009).

Grupo de alimentos e itens de consumo	Quintil de consumo de alimentos ultraprocessados (% do total de energia)				
	Q1	Q2	Q3	Q4	Q5
Alimentos in natura ou minimamente processados e preparações culinárias à base desses alimentos					
Arroz	17,1	14,6	13,0	10,8	7,8*
Feijão	14,7	12,0	10,8	8,7	5,7*
Carne de boi ou de porco	12,1	11,2	10,6	9,2	6,7*
Frutas	6,2	7,4	7,7	7,5	6,2
Outros cereais	7,5	7,0	6,0	5,5	4,0*
Leite	5,4	5,9	5,9	5,6	4,1*
Carne de ave	5,5	5,8	5,1	4,7	3,3*
Raízes e tubérculos	5,8	4,6	3,7	3,2	2,3*
Café e chás	4,2	3,5	2,8	2,4	1,4*
Peixes	3,2	2,3	1,6	1,0	0,5*
Verduras e legumes	1,4	1,5	1,6	1,4	1,0
Ovos	2,0	1,7	1,4	1,2	0,7*
Outros alimentos e suas preparações e preparações mistas	2,7	2,3	2,1	1,7	1,2*
Alimentos processados					
Pão francês	10,4	10,5	9,7	8,5	5,8*
Queijo	8,1	8,4	7,6	6,4	4,2*
Carnes processadas	0,8	1,0	1,2	1,4	1,1*
Conservas de frutas e hortaliças	1,4	1,0	0,8	0,7	0,5*
Alimentos ultraprocessados					
Bolos, tortas e biscoitos doces	0,2	1,2	2,1	3,9	7,5*
Lanches do tipo *fast food*	0,1	0,7	1,9	3,8	8,0*
Refrigerantes e sucos de frutas industrializados	0,4	1,5	2,7	3,7	5,0*
Pães de forma, de hamburguer, *hot dog* e outros pães industrializados	0,1	1,2	2,6	3,7	4,3*
Guloseimas					
Bolachas salgadas e salgadinhos tipo *chips*	0,3	1,4	2,1	2,4	4,0*
Embutidos	0,4	0,9	1,6	2,1	2,5*
Pratos prontos e semi-prontos	0,0	0,1	0,6	1,9	6,1*
Bebidas lácteas adoçadas	0,1	0,4	1,2	2,3	4,2*
Outros produtos	0,4	1,6	2,0	2,0	1,7*
Total	100	100	100	100	100

a *p < 0.001* para tendência linear da variação da contribuição do item segundo quintis do consumo de ultraprocessados

b,c,d,e,f,g,h Ver Tabela 3.1.
A Tabela 3.3 apresenta a avaliação da dieta brasileira (conjunto dos alimentos ingeridos) e das frações do consumo alimentar relativas, respectivamente, a alimentos *in natura* ou minimamente processados, alimentos processados e alimentos ultraprocessados.
Tabela 3.3 Médias de indicadores nutricionais do consumo alimentar da população brasileira com 10 ou mais anos de idade e da fração deste consumo referente aos grupos de alimentos *in natura* ou minimamente processados, alimentos processados e alimentos ultraprocessados (2008-2009).

Indicador	Consumo alimentar total	Alimentos *in natura* ou minimamente processados	Alimentos processados	Alimentos ultraprocessados	Valores recomendados para os indicadores
Total de energia (kcal/d)	1866,0	1275,5	167,1	423,4^a	–
Contribuição percentual para o total de energia de:					
Proteína	17,2	19,5	15,7	8,6^a	10-15^c
Carboidratos	56,2	55,6	63,7	54,4^a	55-75^c
Açúcar livre	15,4	13,5	0,6	29,2^b	< 10^e
Gorduras	26,9	24,8	20,6	37,0^p	15-30ⁱ
Gordura saturada	9,4	8,4	9,5	12,0^p	< 10^e
Gordura trans	1,4	0,6	1,2	5,0ⁱ	< 1ⁱ
Densidade energética (kcal/g)^a	1,7	1,4	2,9	3,7^a	1,25-1,45^d
Densidade de fibras (g/1.000 kcal)	11,1	13,4	6,5	4,5^a	> 12,5^{b,e}
Densidade de sódio (g/1.000 kcal)	1,7	1,7	2,5	1,4^e	< 1^f
Densidade de potássio (mg/1.000 kcal)	1275,4	1583,7	584,1	604,6^a	≥ 1.755^f

^a Valor significativamente diferente (p < 0,05) do valor estimado para alimentos *in natura* ou minimamente processados e para alimentos processados.

^b Densidade energética calculada apenas para a fração sólida da dieta, correspondendo à soma das calorias provenientes dos alimentos sólidos divididos pela quantidade em gramas desses alimentos.

^c WHO. Diet, nutrition and the prevention of chronic diseases. Genebra: Organização Mundial da Saúde; 2003.

^d WCRF. Energy density: finding the balance for cancer prevention. Londres: World Cancer Research Foundation; 2012.

^e O valor da recomendação considera uma dieta de 2.000 kcal.

^f WHO. World Health Organization issues new guidance on dietary salt and potassium. Genebra: Organização Mundial da Saúde 2013. O valor da recomendação considera uma dieta de 2.000 kcal.
A dieta da população brasileira excede as recomendações de consumo para densidade energética, proteína, açúcar livre, gordura *trans* e sódio e apresenta teores insuficientes de fibras e potássio.

Comparada à fração da dieta relativa a alimentos *in natura* ou minimamente processados, a fração relativa a alimentos ultraprocessados tem 2,5 vezes mais energia por grama, duas vezes mais açúcar livre, 1,5 vezes mais gorduras em geral e gorduras saturadas e oito vezes mais gorduras *trans*, além de apresentar teores inferiores de fibras (três vezes menos), de proteínas (duas vezes menos) e de potássio (2,5 vezes menos). Em comparação a alimentos processados, os ultraprocessados possuem também maior densidade energética, maior teor de açúcar livre, de gorduras em geral, de gorduras saturadas e de gorduras *trans* e menor teor de proteínas e de fibras. O teor de potássio é semelhante em alimentos processados e ultraprocessados. O teor de sódio é particularmente elevado em alimentos processados: 2,5 g por 1.000 kcal contra 1,4 nos ultraprocessados e 1,7 nos alimentos minimamente processados e suas preparações culinárias.

A Tabela 3.4 apresenta indicadores do perfil nutricional da dieta para os cinco estratos da população correspondentes a quintis crescentes da contribuição energética dos alimentos ultraprocessados.
Tabela 3.4 Médias de indicadores nutricionais do consumo alimentar de estratos da população brasileira, com 10 ou mais anos de idade, correspondentes a quintis do consumo de alimentos ultraprocessados (2008-2009).

Indicador	Quintil de consumo de alimentos ultraprocessados (% do total de energia)				
	Q1	Q2	Q3	Q4	Q5
Total de energia (kcal/d)	1707,9	1794,4	1841,0	1920,4	2066,8b
Densidade energética (kcal/g)\(^a\)	1,5	1,5	1,6	1,7	1,9b
Contribuição percentual para o total de energia de:					
Proteína	19,3	18,2	17,3	16,3	14,8b
Carboidrato	56,7	56,5	56,2	56,1	55,6b
Açúcar livre	10,9	13,1	15,0	17,6	20,2b
Gordura total	23,8	25,4	26,8	28,1	30,4b
Gordura saturada	7,9	8,5	9,1	10,0	11,5b
Ácidos graxos *trans*	0,8	1,3	1,5	1,7	1,9b
Densidade de nutrientes:					
Fibra (g/1.000 kcal)	13,0	11,9	11,3	10,3	8,9b
Sódio (g/1.000 kcal)	1,9	1,8	1,7	1,7	1,6b
Potássio (mg/1.000 kcal)	1414,2	1347,8	1309,7	1230,6	1074,6b

\(^a\) Ver Tabela 3.3

\(^b\) p < 0,05 para tendência linear da variação do indicador conforme quintis do consumo de alimentos ultraprocessados.
A densidade energética da dieta e o teor relativo de açúcar livre, de gorduras em geral, de gorduras saturadas e de gorduras \(\text{trans}\) aumentam significativamente com o aumento da contribuição de alimentos ultraprocessados, enquanto o oposto ocorre para o teor de proteínas, de fibras, de potássio e de sódio. O controle das variáveis renda familiar, residência urbana ou rural, região do País, idade e sexo não modifica esses resultados.

Contrastando com a dieta média da população brasileira, a dieta do quintil dos indivíduos com menor consumo relativo de alimentos ultraprocessados mostrou-se adequada às recomendações para fibras e gordura \(\text{trans}\) e próxima da adequação para densidade energética, açúcar livre e potássio (Tabela 3.4). A dieta do quintil dos indivíduos com menor consumo relativo de alimentos ultraprocessados mostrou-se adequada também para o consumo de gorduras totais e gorduras saturadas, nutrientes consumidos excessivamente pelo quintil com maior consumo relativo de alimentos ultraprocessados. O teor de sódio na dieta excedeu a recomendação de consumo (< 1 g/1.000 kcal) em todos os estratos da população.

3.5 DISCUSSÃO

Os resultados deste estudo confirmam o perfil nutricional desfavorável dos alimentos ultraprocessados e documentam o seu impacto largamente negativo na qualidade da alimentação da população brasileira, em particular aumentando a densidade energética da dieta e os teores de açúcar, de gordura saturada e de gordura \(\text{trans}\) e, ainda, diminuindo os teores de fibras e de potássio.

Dietas com alta densidade energética comprometem a capacidade de o organismo humano regular o balanço energético, aumentando o risco de ganho excessivo de peso (ROLLS, 2009). A participação excessiva de açúcar livre na dieta também aumenta o risco de ganho excessivo de peso e da obesidade (TE MORENGA, 2013), além de aumentar a incidência de cárie dental (MOYNIHAN e KELLY, 2014). Conteúdos excessivos de gorduras saturadas e de gorduras \(\text{trans}\) aumentam a morbimortalidade por doenças cardiovasculares (MOZAFFARIAN, 2009; WHO, 2009). Por outro lado, a
ingestão insuficiente de fibras aumenta o risco de obesidade, diabetes, doenças cardiovasculares e vários tipos de câncer, como de cólon e reto e de mama (WHO, 2003; PEREIRA et al., 2004; MOYNIHAN e KELLY, 2014), enquanto a ingestão insuficiente de potássio aumenta o risco de hipertensão arterial (WHO, 2012).

Estudos populacionais que tenham avaliado a associação entre consumo de alimentos ultraprocessados e morbimortalidade ainda são poucos devido à recente definição dessa categoria de alimentos (MONTEIRO et al., 2013; MOODIE et al., 2013; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014). Entretanto, estudos já realizados no Brasil indicam associações significativas do consumo de alimentos ultraprocessados com a síndrome metabólica em adolescentes (TAVARES et al., 2012), com dislipidemias em crianças (RAUBER et al., 2015) e com a obesidade em todas as idades (CANELLA et al, 2014).

Estudos com base na aquisição domiciliar de alimentos realizados no Brasil (MONTEIRO et al., 2011) e em outros países (MOUBARAC et al., 2013; CROVETTO et al., 2014) constataram a inferioridade da qualidade nutricional do conjunto dos alimentos ultraprocessados quando comparados ao conjunto dos demais alimentos.

A estratificação da população brasileira, segundo a participação dos alimentos ultraprocessados na dieta, indica que a alimentação dos 20,0% dos brasileiros que menos consomem alimentos ultraprocessados atende ou se aproxima das recomendações internacionais com relação a todos os indicadores nutricionais da dieta considerados neste estudo, com exceção do sódio. Por outro lado, a alimentação dos 20,0% dos brasileiros que mais consomem alimentos ultraprocessados tem conteúdo excessivo em gorduras totais, gordura saturada, gordura trans, açúcar livre e sódio, e conteúdo insuficiente em fibras e potássio. Este achado indica que a redução no consumo de alimentos ultraprocessados no Brasil é um caminho natural para a promoção da alimentação saudável. O elevado teor de sódio encontrado nas três frações da dieta, consideradas neste estudo, indica que a solução para o consumo excessivo de sódio no Brasil requer tanto a redução no teor de sódio adicionado pela indústria a alimentos processados ou ultraprocessados quanto a redução na adição de sal a preparações culinárias.
O teor médio de proteína da dieta brasileira (17,2% das calorias) excede a faixa de recomendação para este nutriente (10,0%-15,0%) (WHO, 2003) devido ao elevado teor de proteína observado em alimentos in natura ou minimamente processados (19,5%), causado pela grande participação de feijões e de carne na alimentação dos brasileiros. De qualquer forma, os efeitos negativos para a saúde decorrentes da ingestão elevada de proteína não são claros e aparentemente só ocorrem, como no caso de prejuízos à função renal, com valores de ingestão que excedam em mais de duas vezes o limite superior da recomendação (WHO, 2007). Por outro lado, estudos recentes indicam que o aumento no teor de proteína entre 10,0% e 20,0% aumenta o poder de saciedade da dieta e previne o consumo excessivo de calorias (SIMPSON e RAUBENHEIMER, 2005; GOSBY et al., 2014).

Dentre os pontos fortes deste estudo, destacam-se: o caráter rigorosamente probabilístico da amostra estudada e a representatividade nacional, assegurada com o estudo de mais de 30 mil pessoas residentes nas áreas urbanas e rurais das várias regiões do País; a realização de dois registros alimentares de 24h; e o emprego de um novo sistema de classificação de alimentos, que agrupa os itens de consumo segundo o processamento industrial envolvido em sua produção.

Este estudo apresenta limitações oriundas de vieses potenciais inerentes ao uso de registros alimentares: subestimação do consumo alimentar, modificação do consumo habitual nos dias do estudo, diferenças entre as receitas culinárias reais e as receitas padronizadas e diferenças entre a composição nutricional real dos alimentos consumidos e a composição indicada pela tabela de composição nutricional utilizada. Para minimizar parte desses vieses, o instrumento de coleta foi pré-testado e validado, procedimentos de controle de qualidade foram realizados durante a coleta de dados e registros inconsistentes foram excluídos e substituídos com valores imputados (IBGE, 2011a). Além disso, a tabela de composição nutricional de alimentos utilizada foi construída especificamente para este estudo, incluindo receitas mais próximas dos hábitos dos brasileiros. Como o instrumento para registro do consumo de alimentos não foi concebido para avaliar os alimentos de acordo com o processamento industrial a que foram submetidos, alguns itens de consumo podem ter sido classificados incorretamente. Erros de classificação são mais prováveis no caso de itens como pizzas, doces e sucos de frutas, que tanto podem ser preparações culinárias do primeiro grupo
quanto produtos industrializados do terceiro grupo. No caso de ausência de informações nos registros que permitissem a distinção entre preparações culinárias e produtos industrializados, como detalhes sobre a receita ou a marca do produto, optou-se pela alternativa mais comum nos casos em que havia informação. Finalmente, o estudo não incluiu pessoas com menos de 10 anos, o que determina que seus resultados rigorosamente se apliquem apenas à população brasileira de adolescentes e de adultos.

A importância da comprovação dos efeitos negativos do consumo de alimentos ultraprocessados para a qualidade nutricional da dieta brasileira ganha importância quando se observa que, desde a década de 1990, as vendas de alimentos ultraprocessados vêm se expandindo intensamente no Brasil e, de modo geral, em todos os países de renda média (STUCKLER et al., 2012; MONTEIRO et al., 2013). Além disso, pesquisas de aquisição de gêneros alimentícios, para consumo domiciliar, realizadas nas áreas metropolitanas brasileiras entre 1987-1988 e 2008-2009, indicam aumentos sistemáticos na participação de alimentos ultraprocessados e redução concomitante dos alimentos in natura ou minimamente processados e de ingredientes culinários como óleos e açúcar (MARTINS et al., 2013).

Os resultados deste estudo deram suporte à recomendação central da nova edição do Guia Alimentar para a População Brasileira (MINISTÉRIO DA SAÚDE, 2014): “Prefira sempre alimentos in natura ou minimamente processados e preparações culinárias a alimentos ultraprocessados”.

3.6 REFERÊNCIAS

CANELLA, D. S. et al. Ultra-processed food products and obesity in Brazilian households (2008-2009). PLoS One, v. 9, n. 3, p. e92752, 2014.

CROVETTO, M.; UAUY, R. Evolución del gasto en alimentos procesados en la población del Gran Santiago en los últimos 20 años Rev Med Chil, v. 140, n. 3, p. 305-12, 2012.

CROVETTO, M. M. et al. Disponibilidad de productos alimentarios listos para el consumo en los hogares de Chile y su impacto sobre la calidad de la dieta (2006-2007). Rev Med Chil, v. 142, n. 7, p. 850-8, 2014.

GOSBY, A. K. et al. Protein leverage and energy intake. Obes Rev, v. 15, n. 3, p. 183-91, 2014.
IBGE. Avaliação nutricional da disponibilidade de alimentos no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2010.

_____. Análise do consumo alimentar pessoal no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011a.

_____. Tabela de Medidas Referidas para os Alimentos Consumidos no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011b.

_____. Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011c.

MARTINS, A. P. et al. Increased contribution of ultra-processed food products in the Brazilian diet (1987-2009). Rev Saude Publica, v. 47, n. 4, p. 656-65, 2013.

MINISTÉRIO DA SAÚDE. Guia alimentar para a população brasileira. Brasília: Ministério da Saúde, 2014.

MONTEIRO et al. Ultra-processing and a new classification of foods. In: NEFF, R. (Ed.). Introduction to U.S. Food System. Public Health, Environment, and Equity. São Francisco: Jossey-Bass A Wiley Brand, 2014.

_____. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr, v. 14, n. 1, p. 5-13, 2011.

_____. ______. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr, v. 14, n. 1, p. 5-13, 2011.

MOODIE, R. et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet, v. 381, n. 9867, p. 670-9, 2013.

MOUBARAC, J. C. et al. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011. Can J Diet Pract Res, v. 75, n. 1, p. 15-21, 2014.

_____. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr, v. 16, n. 12, p. 2240-8, 2013.

_____. Food classification systems based on food processing: significance and implications for policies and actions. A systematic literature review and assessment. Current Obesity Reports, v. 3, n. 2, p. 256-72, 2014.

MOYNIHAN, P. J.; KELLY, S. A. Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J Dent Res, v. 93, n. 1, p. 8-18, 2014.

MOZAFFARIAN, D. et al. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med, v. 364, n. 25, p. 2392-404, 2011.

PEREIRA, M. A. et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet, v. 365, n. 9453, p. 36-42, 2005.

RAUBER, F. et al. Consumption of ultra-processed food products and its effects on children's lipid profiles: a longitudinal study. Nutr Metab Cardiovasc Dis, v. 25, n. 1, p. 116-22, 2015.

ROLLS, B. J. The relationship between dietary energy density and energy intake. Physiol Behav, v. 97, n. 5, p. 609-15, 2009.
SIMPSON, S. J.; RAUBENHEIMER, D. Obesity: the protein leverage hypothesis. *Obes Rev*, v. 6, n. 2, p. 133-42, 2005.

STUCKLER, D. et al. Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. *PLoS Med*, v. 9, n. 6, p. e1001235, 2012.

TAVARES, L. F. et al. Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. *Public Health Nutr*, v. 15, n. 1, p. 82-7, 2012.

TE MORENGA, L.; MALLARD, S.; MANN, J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. *BMJ*, v. 346, p. e7492, 2013.

WCRF. *Energy density: finding the balance for cancer prevention*. Londres: World Cancer Research Foundation; 2012.

WHO. *Diet, nutrition and the prevention of chronic diseases*. Genebra: Organização Mundial da Saúde. 2003

_____. *Protein and amino acid requirements in human nutrition*. Genebra Organização Mundial da Saúde. 2007

_____. *Fats and Fatty Acids in Human Nutrition*. Genebra Organização Mundial da Saúde. 2009

_____. *Effect of increased potassium intake on cardiovascular disease, coronary heart disease and stroke*. Genebra Organização Mundial da Saúde. 2012.

_____. *WHO issues new guidance on dietary salt and potassium*. Genebra Organização Mundial da Saúde. 2013

3.7 MATERIAL SUPLEMENTAR

Anexo - Classificação de alimentos com base no processamento industrial a que foram submetidos antes de sua aquisição.
Grupo	Definição e características	Exemplos
Alimentos in natura ou minimamente processados e preparações culinárias à base desses alimentos	Alimentos in natura são aqueles obtidos diretamente de plantas ou de animais (como folhas e frutos ou ovos e leite) e adquiridos para consumo sem que tenham sofrido qualquer alteração após deixarem a natureza. Alimentos minimamente processados são alimentos in natura que, antes de sua aquisição, foram submetidos a alterações mínimas que não adicionam substâncias ao alimento. Limpeza, remoção de partes não comestíveis, fracionamento, secagem, embalagem, fermentação, pasteurização, resfriamento, congelação, moagem e refinamento são exemplos de processos que transformam os alimentos in natura. As preparações culinárias baseadas nesses alimentos incluem o alimento in natura ou minimamente processado usado como item principal da receita e todos os demais ingredientes, incluindo ingredientes culinários como óleos, gorduras, açúcar e sal, outros alimentos in natura ou minimamente processados (como alho e cebola) e mesmo alimentos processados ou ultraprocessados (como queijos e embutidos) quando são incluídos como itens secundários das preparações culinárias. Essas preparações são feitas em cozinhas domésticas ou de restaurantes tradicionais ou em locais assemelhados.	Legumes, verduras, frutas, batata, mandioca e outras raízes e tubérculos in natura ou embalados, fracionados, refrigerados ou congelados, arroz branco, integral ou parboilizado, a gema ou ovo, milho em grão ou em pó, grãos de trigo e de outros cereais, feijão de todas as cores, lentilhas, grão de bico e outras leguminosas, cogumelos frescos ou secos, frutas secas, sucos de frutas e sucos de frutas pasteurizados e sem adição de açúcar ou de outras substâncias, castanhas, nozes, amendoim e outras oleaginosas sem sal ou açúcar, cravo, canela, especiarias em geral e ervas frescas ou secas, farinhas de mandioqueira, de milho ou de trigo e macarrão ou macarrão em pó, iogurte (sem adição de açúcar, adoçantes ou corantes), ovos, chá, café e água potável.
Alimentos processados	Alimentos processados são fabricados pela indústria com a adição de sal ou açúcar ou outra substância de comum uso culinário a alimentos in natura ou minimamente processados para torná-los duráveis e mais agradáveis ao paladar. São produtos derivados diretamente de alimentos e são reconhecidos como versões dos alimentos originais. As técnicas de processamento desses produtos se assemelham a técnicas culinárias, podendo incluir cozimento, secagem, fermentação, acondicionamento dos alimentos em latas ou vidros ou uso de métodos de preservação como salga, salmoura, cura e defumação.	Conservas de hortaliças, milho ou ervilhas, frutas em calda ou cristalizadas, cremes salgados, peixes em merengue e preservados em óleo, queijos feitos de leite e sal e pães feitos de farinha de trigo, azeitona, levedura e sal (sem adição de outras substâncias como gordura hidrogenada e aditivos).
Alimentos ultraprocessados	Alimentos ultraprocessados são formulações industriais feitas inteiramente ou majoritariamente de substâncias extraídas de alimentos (óleos, gorduras, açúcar, amido, proteínas), derivadas de constituintes de alimentos (gorduras hidrogenadas, amido modificado) ou sintetizadas em laboratório com base em matérias orgânicas como petróleo e carvão (corantes, aromatizantes, realçadores de sabor e outras aditivos usados para dotar os produtos de propriedades sensoriais atraentes). Técnicas de manufatura incluem extrusão, moldagem e pré-processamento por frição ou cozimento.	Pães de forma, pães para hambúrguer ou hot dog, pães doces e produtos panificados cujos ingredientes incluem substâncias como gordura vegetal hidrogenada, açúcar, amido, soro de leite, emulsificantes e outros aditivos, bolachas doces e salgadas, salgadinhos tipo chips, doces industrializados e guloseimas em geral (balas, sorvetes, chocolates), refrigerantes, sucos artificiais, bebidas lácteas adoçadas e aromatizadas, bebidas energéticas, molhos industrializados, margarina, embutidos, pratos industrializados prontos para aquecer, hambúrgueres, hot dog, nuggets de frango ou de peixe, barras de cereal.

Adaptado do Guia Alimentar para a População Brasileira (MINISTERIO DA SAÚDE, 2014)
Este capítulo apresenta o artigo “Impacto de alimentos ultraprocessados sobre o teor de micronutrientes da dieta no Brasil”, de autoria de Maria Laura da Costa Louzada, Ana Paula Bortoletto Martins, Daniela Silva Canella, Larissa Galastri Baraldi, Renata Bertazzi Levy, Rafael Moreira Claro, Jean-Claude Moubarac, Geoffrey Cannon e Carlos Augusto Monteiro e publicado originalmente na Revista de Saúde Pública (2015;49:45).
4.1 RESUMO/ABSTRACT

Resumo
Objetivo: Avaliar o impacto da ingestão de alimentos ultraprocessados sobre o teor de micronutrientes na alimentação da população brasileira.

Métodos: Estudo transversal realizado com dados do módulo sobre consumo alimentar individual da Pesquisa de Orçamentos Familiares 2008-2009, aplicado a uma amostra representativa da população brasileira com dez ou mais anos de idade (n = 32.898). Informações sobre o consumo alimentar foram obtidas por dois registros diários da alimentação. Análises de regressão linear foram empregadas para descrever a direção e o significado estatístico da associação entre quintos do consumo relativo de alimentos ultraprocessados e o teor de micronutrientes na dieta, sem e com ajuste para renda familiar.

Resultados: O consumo médio diário per capita de energia foi de 1.866 kcal, sendo 69,5% proveniente de alimentos in natura ou minimamente processados (incluídas as preparações culinárias feitas com base nesses alimentos), 9,0% de alimentos processados e 21,5% de alimentos ultraprocessados. Para 16 dos 17 micronutrientes estudados, o teor médio encontrado na fração do consumo alimentar relativa aos alimentos ultraprocessados foi inferior ao da fração relativa aos alimentos in natura ou minimamente processados. O teor de 10 micronutrientes presentes nos alimentos ultraprocessados não chegou à metade do observado nos alimentos in natura ou minimamente processados. O aumento da participação dos alimentos ultraprocessados na dieta mostrou-se inversa e significativamente associado ao teor de vitaminas B12, D, E, niacina e piridoxina e de cobre, ferro, fósforo, magnésio, selênio e zinco. Situação oposta foi observada apenas para cálcio, tiamina e riboflavina.

Conclusões: Os achados deste estudo mostram que a redução no consumo de alimentos ultraprocessados é um caminho natural para a promoção da alimentação saudável no Brasil e, portanto, apoiam a recomendação do Guia Alimentar para a População Brasileira quanto a se evitar o consumo desses alimentos.

Descritores: Alimentos Industrializados. Composição de Alimentos. Micronutrientes. Qualidade dos Alimentos. Consumo de Alimentos.
Abstract

Objective: To evaluate the impact of the consumption of ultra-processed foods on the overall dietary content in micronutrients in Brazil.

Methods: This study comprised the analysis of data from a dietary survey carried out in Brazil along with the 2008-2009 National Household Budget Survey. A representative sample of 32,898 individuals aged ≥ 10 years was evaluated. Food consumption data were collected through two 24-hour food records. Linear regression models were used to assess the association between the nutrient content of the diet and the quintiles of consumption of ultra-processed foods – crude and adjusted for family income per capita.

Results: Mean daily energy intake was 1866 kcal, of which 69.5% came from natural or minimally processed foods, 9.0% from processed foods and 21.5% from ultra-processed foods. The content of sixteen out of the seventeen nutrients evaluated was lower in the fraction of the diet composed of ultra-processed foods, in comparison with the fraction of the diet composed of natural or minimally processed foods. For ten nutrients, the nutrient content of ultra-processed foods did not reach half the level observed in the natural or minimally processed foods. Higher contribution of ultra-processed foods to the total diet was inversely associated with the content of vitamin B12, vitamin D, vitamin E, niacin, pyridoxine, copper, iron, phosphorus, magnesium, selenium and zinc. The opposite situation was observed only for calcium, thiamin and riboflavin.

Conclusions: Our findings highlight that the reduction of the consumption of ultra-processed foods is a natural pathway to promote healthy diets and, therefore, support the recommendation to avoid these foods.

Descriptors: Industrialized Foods. Food Composition. Micronutrients. Food Quality. Food Consumption.
4.2 INTRODUÇÃO

Deficiências de micronutrientes estão entre vinte fatores de risco mais importantes para a carga global de doenças, afetando cerca de dois bilhões de pessoas em todo o mundo (LOPEZ et al., 2006). Pelo menos metade da população mundial de crianças entre seis meses e cinco anos, a maioria delas vivendo em países em desenvolvimento, sofre de uma ou mais deficiências de micronutrientes (UNICEF, 2009).

Embora deficiências de micronutrientes possam ser causadas por fatores não relacionados à dieta, como deficiência de ferro causada por parasitoses intestinais, estas são causadas principalmente pela presença insuficiente dos micronutrientes na alimentação (ROSENFELD, 1997). Estudos com base em inquérito sobre consumo alimentar realizado de 2008 a 2009, em uma amostra representativa da população brasileira de adolescentes, adultos e idosos, documentaram altas prevalências de inadequação dietética em diversas vitaminas e minerais (ARAUJO et al., 2013; FISBERG et al., 2013; VEIGA et al., 2013). Estudos regionais, restritos à população infantil, igualmente indicam inadequação na ingestão de micronutrientes no Brasil (DA SILVA et al., 2010; GARCIA et al., 2011; BUENO et al., 2013).

Com base no inquérito sobre consumo alimentar de 2008 a 2009, os autores do presente estudo avaliaram previamente o impacto da ingestão de alimentos ultraprocessados (MONTEIRO et al., 2010; MOODIE et al., 2013; MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014) sobre indicadores nutricionais da dieta associados a doenças crônicas não transmissíveis (LOUZADA et al., 2015). A participação de alimentos ultraprocessados no consumo alimentar mostrou-se diretamente associada à densidade energética da dieta e a seu teor de gorduras saturadas, gorduras trans e açúcar livre e inversamente associada ao teor de fibras e proteínas, mostrando o potencial daqueles alimentos para aumentar o risco de obesidade, diabetes, doenças cardiovasculares e alguns tipos de câncer. O objetivo deste estudo foi avaliar o impacto da ingestão de alimentos ultraprocessados sobre o teor de micronutrientes na alimentação da população brasileira.
4.3 MÉTODOS

Os dados analisados neste estudo procedem do módulo de consumo individual de alimentos da Pesquisa de Orçamentos Familiares (POF), realizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE) entre maio de 2008 e maio de 2009 (IBGE, 2011a).

Este módulo da POF foi aplicado a todos os moradores com 10 ou mais anos de idade, de uma amostra probabilística de 13.569 domicílios brasileiros, totalizando 34.003 indivíduos. Os domicílios foram selecionados por amostragem por conglomerados com sorteio dos setores censitários, em primeiro estágio, e de domicílios, em segundo. Os setores censitários foram agrupados previamente ao sorteio em estratos com suficiente homogeneidade geográfica e socioeconômica. Os domicílios sorteados em cada estrato foram uniformemente distribuídos para estudo ao longo dos quatro trimestres do ano (IBGE, 2010).

A POF 2008-2009 obteve dados sobre o consumo alimentar de cada indivíduo por meio de dois registros alimentares de 24h. Os indivíduos foram solicitados a registrar todos os alimentos e bebidas que consumiram em um período de 24h, durante dois dias não consecutivos, indicando as quantidades consumidas em medidas caseiras e a forma de preparação. A quantidade de cada alimento ou bebida foi transformada em gramas ou mililitros utilizando-se a tabela de medidas referidas para os alimentos consumidos no Brasil (IBGE, 2011b). A seguir, essas quantidades foram convertidas em quilocalorias (kcal) de energia e em gramas ou miligramas de nutrientes com base na Tabela de Composição Nutricional dos Alimentos Consumidos no Brasil (IBGE, 2011c).

Os 1.120 itens de consumo que constam no banco de dados da POF 2008-2009 foram divididos em três grandes grupos de acordo com características do processamento industrial a que foram submetidos: alimentos in natura ou minimamente processados (incluindo as preparações culinárias à base desses alimentos), alimentos processados e alimentos ultraprocessados (MOODIE et al., 2013; MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014).
Alimentos *in natura* ou minimamente processados incluem: alimentos obtidos diretamente de plantas ou de animais (como folhas, frutos, ovos e leite) e adquiridos para consumo sem que tenham sofrido qualquer alteração após deixarem a natureza; e alimentos que, antes de sua aquisição, foram submetidos à limpeza, remoção de partes não comestíveis ou não desejadas, secagem, embalagem, pasteurização, congelação, refinoamento, fermentação e outros processos que não incluam a adição de substâncias ao alimento original. Nesse grupo de alimentos constam preparações culinárias baseadas em um ou mais alimentos *in natura* ou minimamente processados, as quais podem incluir o alimento usado como item principal da receita e outros ingredientes, incluindo eventuais outros alimentos e substâncias alimentícias de uso culinário como sal, açúcar, vinagre e óleos (MOODIE et al., 2013; MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014).

Alimentos processados são produtos industrializados feitos essencialmente com a adição de sal ou açúcar (e eventualmente óleo, vinagre ou outra substância de uso culinário) a um alimento *in natura* ou minimamente processado (MOODIE et al., 2013; MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014).

Alimentos ultraprocessados, por sua vez, são formulações industriais feitas inteiramente ou predominantemente de substâncias provenientes de alimentos (óleos, gorduras, açúcar, proteínas), derivadas de constituintes de alimentos (gorduras hidrogenadas, amido modificado) ou sintetizadas em laboratório a partir de matérias orgânicas (corantes, aromatizantes, realçadores de sabor e vários aditivos usados para dotar os produtos de propriedades sensoriais atraentes) (MOODIE et al., 2013; MONTEIRO et al., 2014; MOUBARAC et al., 2014; MINISTÉRIO DA SAÚDE, 2014). Lista detalhada de alimentos pertencentes a cada um dos três grupos é apresentada em publicação anterior (LOUZADA et al., 2015).

Foram analisados os indivíduos que preencheram os registros relativos a dois dias de consumo alimentar (96,8% do total de indivíduos estudados no módulo de consumo individual da POF). O consumo de alimentos e de nutrientes foi estimado pela média dos valores obtidos nos dois dias.
Os micronutrientes avaliados foram as vitaminas A, B12, C, D e E, niacina, piridoxina, riboflavina e tiamina e os minerais cálcio, cobre, ferro, fósforo, magnésio, manganês, selênio e zinco. O teor de cada nutriente na dieta foi expresso em mg ou μg por 1.000 kcal.

Primeiramente, estimou-se o teor médio de cada micronutriente na dieta total da população brasileira. O teor médio de cada nutriente na fração da dieta composta apenas por alimentos ultraprocessados foi comparado à fração da dieta restrita a alimentos in natura ou minimamente processados e com a fração restrita a alimentos processados. O significado estatístico das diferenças encontradas nas comparações foi avaliado por meio de teste t de Student.

Os indivíduos foram classificados em cinco estratos conforme o consumo de alimentos ultraprocessados. Esses estratos corresponderam a quintos da distribuição populacional da contribuição dos alimentos ultraprocessados para o valor calórico total da dieta. A seguir, avaliou-se o teor de micronutrientes da dieta desses estratos. Análises de regressão linear foram usadas para se descrever a direção e o significado estatístico da associação entre quintos do consumo relativo de alimentos ultraprocessados e teor de micronutrientes da dieta, sem e com ajuste para renda familiar mensal per capita. Características de local da residência (urbana ou rural), região do País (Centro-Oeste, Norte, Nordeste, Sudeste e Sul), idade e sexo não modificaram as estimativas do modelo de regressão e, portanto, não foram incluídas no ajuste.

As análises deste estudo, realizadas no software Stata versão 13.0, levaram em conta o delineamento amostral complexo da POF 2008-2009 e seus fatores de ponderação. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Saúde Pública da Universidade de São Paulo (Protocolo 128.958, de 19/10/2012).

4.4 RESULTADOS
O consumo médio diário de energia dos brasileiros foi de 1.866 kcal, do qual 69,5% era proveniente de alimentos *in natura* ou minimamente processados, 9,0% de alimentos processados e 21,5% de alimentos ultraprocessados (Tabela 4.1).
Tabela 4.1 Médias do consumo absoluto e relativo de alimentos *in natura* ou minimamente processados, de alimentos processados e de alimentos ultraprocessados na população brasileira com 10 ou mais anos de idade (2008-2009).

Grupo	Kcal/dia	% da ingestão total de energia
Alimentos in natura ou minimamente processados^a	1275,5	69,5
Alimentos processados^b	167,1	9,0
Alimentos ultraprocessados^c	423,4	21,5
Total	1866,0	100

^a Inclui arroz e outros cereais, feijão e outras leguminosas, carnes de boi, de porco e de aves, frutas, leite, raízes e tubérculos, café e chás, peixes e outros frutos do mar, verduras e legumes, ovos, castanhas e outras sementes.

^b Inclui pão francês, queijos, conservas de verduras e legumes e carnes secas e salgadas.

^c Inclui bolos, tortas e biscoitos doces, lanches do tipo *fast food*, refrigerantes, refrescos, bebidas lácteas, pães de forma, de hambúrguer, *de hot dog* e similares, guloseimas, bolachas salgadas e salgadinhos tipo *chips*, embutidos e pratos prontos ou semiprontos.
A Tabela 4.2 apresenta o teor de micronutrientes na dieta brasileira e nas frações desta dieta relativas, respectivamente, a alimentos *in natura* ou minimamente processados, alimentos processados e alimentos ultraprocessados.
Micronutriente	Fração do consumo alimentar	Consumo alimentar total	Alimentos in natura ou minimamente processados	Alimentos processados	Alimentos ultraprocessados
Vitaminas					
Vitamina A (µg/1.000 kcal)	286,7	340,5	118,7	239,1*	
Vitamina B12 (µg/1.000 kcal)	2,8	3,5	1,2	1,0*	
Vitamina C (mg/1.000 kcal)	87,4	121,2	1,9	23,8*	
Vitamina D (µg/1.000 kcal)	1,7	2,1	0,6	0,9*	
Vitamina E (mg/1.000 kcal)	2,2	2,7	0,4	1,4*	
Niacina (mg/1.000 kcal)	14,1	17,1	4,7	7,3*	
Píridoxina (mg/1.000 kcal)	0,8	0,8	1,6	0,4*	
Riboflavina (mg/1.000 kcal)	0,9	0,8	1,9	0,7*	
Tiamina (mg/1.000 kcal)	0,6	0,5	1,1	0,7*	
Minerais					
Cálcio (mg/1.000 kcal)	278,7	265,8	312,3	243,1*	
Cobre (mg/1.000 kcal)	0,7	0,9	0,4	0,4*	
Ferro (mg/1.000 kcal)	6,2	7,0	3,5	4,1*	
Fósforo (mg/1.000 kcal)	522,4	548,6	578,4	356,3*	
Magnésio (mg/1.000 kcal)	129,2	150,2	91,9	66,4*	
Manganês (mg/1.000 kcal)	6,5	9,6	1,3	0,7*	
Selênio (µg/1.000 kcal)	46,6	28,6	18,9	24,6*	
Zinco (mg/1.000 kcal)	6,0	7,0	4,3	3,0*	

* Valor significativamente diferente (p < 0,05) do valor estimado para alimentos in natura ou minimamente processados e para alimentos processados.
Para 16 dos 17 micronutrientes estudados, o teor encontrado na fração correspondente a alimentos ultraprocessados foi inferior ao teor encontrado na fração correspondente a alimentos in natura ou minimamente processados. Os teores de vitamina B12, vitamina C, vitamina D, vitamina E, niacina, piridoxina, cobre, magnésio, manganês e zinco encontrados em alimentos ultraprocessados foram pelo menos duas vezes menores do que os teores encontrados em alimentos in natura ou minimamente processados. Particularmente evidentes foram as diferenças observadas para vitamina B12, vitamina C e magnésio, cujos teores foram, respectivamente, quatro, cinco e 13 vezes menores nos alimentos ultraprocessados. Nos casos da vitamina A, do ferro e do fósforo, o teor encontrado nos alimentos ultraprocessados representou entre 60,0% e 70,0% do encontrado nos alimentos in natura ou minimamente processados. Desvantagens menos intensas para os alimentos ultraprocessados foram encontradas para riboflavina, cálcio e selênio. Tiamina foi o único micronutriente cujo teor na fração de alimentos ultraprocessados ultrapassou o encontrado na fração de alimentos in natura ou minimamente processados e, ainda assim, apenas ligeiramente.

A comparação entre alimentos ultraprocessados e alimentos processados mostra contrastes menos evidentes com relação ao teor de micronutrientes. De modo geral, a comparação tende novamente a desfavorecer os alimentos ultraprocessados, como no caso do teor de vitamina B12, piridoxina, riboflavina, tiamina, cálcio, fósforo, magnésio, manganês e zinco. A comparação é desvantajosa para alimentos processados no caso de vitamina A, vitamina C, vitamina D, vitamina E e niacina. Alimentos processados e alimentos ultraprocessados apresentaram teores semelhantes de cobre, ferro e selênio.

A Tabela 4.3 descreve análises brutas da associação entre quintos do consumo relativo de alimentos ultraprocessados e teor da dieta em micronutrientes. A participação média de alimentos ultraprocessados no valor calórico total da dieta variou entre 1,8%, no quinto inferior, e 49,2%, no quinto superior. Associação significativa e negativa entre consumo relativo de alimentos ultraprocessados e teor de micronutrientes na dieta foi encontrada para 11 dos 17 micronutrientes estudados: vitamina B12, vitamina D, vitamina E, niacina, piridoxina, cobre, ferro, fósforo, magnésio, selênio e zinco. Três micronutrientes – vitamina A, vitamina C e manganês – não apresentaram associação significativa entre participação de alimentos ultraprocessados e teor do nutriente na
dieta. Diminuição significativa no teor da dieta em micronutrientes com o aumento na participação de alimentos ultraprocessados foi encontrada apenas para cálcio, tiamina e riboflavina, e, ainda assim, alcançando magnitude muito pequena nos dois últimos casos.
Tabela 4.3. Médias do teor de micronutrientes na dieta de estratos correspondentes a quintos da participação de alimentos ultraprocessados no consumo total de energia. População brasileira com 10 ou mais anos de idade (2008-2009).

Micronutriente	Quintos de consumo de alimentos ultraprocessados	Coeficiente de regressão bruto*	p				
	Q2	Q3	Q4	Q5			
Vitaminas							
Vitamina A (μg/1.000 kcal)	254,6	290,5	339,3	300,0	249,3	-0,12	0,974
Vitamina B12 (μg/1.000 kcal)	3,2	3,0	3,1	2,7	2,2	-0,23	< 0,001
Vitamina C (mg/1.000 kcal)	74,1	98,5	106,2	87,6	71,0	-1,71	0,147
Vitamina D (μg/1.000 kcal)	2,1	1,9	1,7	1,6	1,5	-0,14	< 0,001
Vitamina E (mg/1.000 kcal)	2,4	2,3	2,3	2,1	1,9	-0,10	< 0,001
Vitamina B6 (mg/1.000 kcal)	14,7	14,6	14,3	13,9	13,1	-0,41	< 0,001
Piridoxina (mg/1.000 kcal)	0,8	0,8	0,8	0,8	0,7	-0,02	< 0,001
Riboflavina (mg/1.000 kcal)	0,8	0,9	0,9	0,9	0,9	0,01	< 0,001
Tiamina (mg/1.000 kcal)	0,6	0,6	0,6	0,6	0,7	0,03	< 0,001
Minerais							
Cálculo (mg/1.000 kcal)	248,9	254,5	271,0	291,5	327,9	19,50	< 0,001
Cobre (mg/1.000 kcal)	0,7	0,7	0,8	0,7	0,6	-0,03	< 0,001
Ferro (mg/1.000 kcal)	6,7	6,3	6,2	6,0	5,7	-0,22	< 0,001
Fósforo (mg/1.000 kcal)	543,9	528,7	522,2	512,5	504,7	-9,47	< 0,001
Magnésio (mg/1.000 kcal)	147,2	136,8	130,8	121,5	109,7	-9,02	< 0,001
Manganês (mg/1.000 kcal)	6,2	6,3	7,0	7,3	5,9	0,02	0,913
Selênio (μg/1.000 kcal)	52,4	49,0	46,3	43,9	41,7	-2,66	< 0,001
Zinco (mg/1.000 kcal)	6,6	6,2	6,1	5,8	5,3	-0,9	< 0,001

*Coeficiente da regressão do teor do micronutriente na dieta sobre a percentagem do valor calórico total da dieta proveniente de alimentos ultraprocessados.
A Tabela 4.4 descreve análises da associação entre consumo relativo de alimentos ultraprocessados e teor da dieta em micronutrientes que foram ajustadas para a renda familiar *per capita*. O ajuste para a renda não altera substancialmente os resultados da associação. Merecem destaque apenas a diminuição da magnitude da associação positiva entre consumo relativo de alimentos ultraprocessados e teor de cálcio na dieta e a associação negativa entre o consumo relativo daqueles alimentos e o teor de vitamina C na dieta, que fica próxima da significância estatística.
As Tabelas 4.4 apresentam o teor de micronutrientes na dieta de estratos correspondentes a quintos da participação de alimentos ultraprocessados no consumo total de energia ajustado para renda familiar per capita. População brasileira com 10 ou mais anos de idade (2008-2009).

Indicador	Q1	Q2	Q3	Q4	Q5	Coeficiente de regressão ajustado*	p
Vitaminas							
Vitamin A (μg/1.000 kcal)	290,2	286,8	283,4	280,1	276,7	-4,00	0,437
Vitamin B12 (μg/1.000 kcal)	3,3	3,1	2,8	2,6	2,4	-0,22	<0,001
Vitamin C (mg/1.000 kcal)	92,4	89,2	85,9	82,6	79,3	-3,27	0,066
Vitamin D (μg/1.000 kcal)	2,0	1,9	1,8	1,6	1,5	-0,13	<0,001
Vitamin E (mg/1.000 kcal)	2,4	2,3	2,2	2,1	2,0	-0,11	<0,001
Niacina (mg/1.000 kcal)	15,1	14,5	13,9	13,4	12,8	-0,56	<0,001
Piridoxina (mg/1.000 kcal)	0,8	0,8	0,8	0,7	0,7	-0,01	<0,001
Riboflavina (mg/1.000 kcal)	0,9	0,9	0,9	0,9	0,9	0,01	<0,001
Tiamina (mg/1.000 kcal)	0,6	0,6	0,6	0,7	0,7	0,02	<0,001
Minerais							
Cálcio (mg/1000 kcal)	245,2	259,2	273,2	287,2	301,2	14,00	<0,001
Cobre (mg/1000 kcal)	0,7	0,7	0,7	0,7	0,7	-0,02	<0,001
Ferro (mg/1000 kcal)	6,6	6,4	6,2	5,9	5,7	-0,23	<0,001
Fósforo (mg/1000 kcal)	545,7	531,8	517,9	504,0	490,1	-13,9	<0,001
Magnésio (mg/1000 kcal)	147,4	138,2	129,1	119,9	110,8	-9,15	<0,001
Manganês (mg/1000 kcal)	6,6	6,5	6,4	6,3	6,3	-0,08	0,746
Selênio (μg/1000 kcal)	52,0	49,3	46,6	43,9	41,2	-2,71	<0,001
Zinco (mg/1000 kcal)	6,6	6,3	6,0	5,6	5,3	-0,33	<0,001

*Coeficiente da regressão do teor do micronutriente na dieta sobre a percentagem do valor calórico total da dieta proveniente de alimentos ultraprocessados após ajuste para renda mensal familiar per capita.
4.5 DISCUSSÃO

Os resultados deste estudo, representativos da dieta brasileira, mostram que o teor de micronutrientes em alimentos ultraprocessados tende a ser inferior ao mesmo teor existente em outros alimentos. A inferioridade dos alimentos ultraprocessados fica ainda mais evidente quando a comparação é feita com alimentos *in natura* ou minimamente processados. Para 16 dos 17 micronutrientes estudados, o teor médio encontrado no conjunto dos alimentos ultraprocessados consumidos pelos brasileiros foi inferior ao teor médio encontrado nos alimentos *in natura* ou minimamente processados. O teor de 10 micronutrientes (vitamina B12, C, D, E niacina, piridoxina, cobre, magnésio, manganês e zinco) presente nos alimentos ultraprocessados não chegou à metade do teor observado nos alimentos *in natura* ou minimamente processados. Análises brutas e ajustadas pela renda familiar indicam que o teor da dieta em 11 dos 17 micronutrientes estudados diminui significativamente com o aumento do consumo relativo de alimentos ultraprocessados. Situação inversa foi encontrada apenas para três micronutrientes: cálcio, tiamina e riboflavina, sendo de muito pequena magnitude a associação encontrada no caso da tiamina e riboflavina.

A associação positiva entre o consumo relativo de alimentos ultraprocessados e o teor de cálcio na dieta não era esperada, visto que o teor desse mineral nesses alimentos é menor que em alimentos *in natura* ou minimamente processados. Análises detalhadas (não mostradas neste artigo) da variação da composição dos itens de consumo ultraprocessados nas dietas conforme os quintos do consumo relativo daqueles alimentos mostram aumento expressivo na participação de itens de consumo ultraprocessados particularmente ricos em cálcio, como pratos prontos e semiprontos e refeições do tipo *fast food* (ambos frequentemente contendo queijo entre seus ingredientes) e bebidas lácteas adicionadas de açúcar.

Apesar da falta de registros de outros trabalhos que tenham avaliado a associação entre consumo do conjunto de alimentos ultraprocessados e teor de micronutrientes na dieta,
evidências de que este consumo poderia diluir a concentração de micronutrientes foram documentadas por estudos que focalizaram o consumo de refrigerantes (YAMADA et al., 2008; FIORITO et al., 2010; LYONS et al., 2015) ou de refeições do tipo fast food (Paeratakul et al., 2003).

O impacto negativo dos alimentos ultraprocessados para o teor de micronutrientes na dieta, observado neste estudo, assume grande importância quando se considera que vitaminas e minerais desempenham papéis críticos na sinalização celular, na produção de hormônios, nas respostas imunológicas e no desenvolvimento e na manutenção das funções vitais (WHO, 2004). Embora nem sempre a deficiência de micronutrientes se manifeste clinicamente, deficiências subclínicas podem causar prejuízos à saúde (WHO, 2004).

Deficiências de ferro, zinco e vitamina A, nutrientes presentes em menor quantidade em alimentos ultraprocessados quando comparados a alimentos in natura ou minimamente processados, estão entre os problemas nutricionais de maior magnitude no mundo, afetando principalmente crianças, gestantes e populações de países em desenvolvimento (LOPEZ et al., 2006). Suas consequências, de extrema relevância na saúde pública, incluem retardo do crescimento e do desenvolvimento infantis e aumento da mortalidade fetal e materna (LOPEZ et al., 2006).

Ferro, zinco e vitamina A, assim como vitamina B12, vitamina C, riboflavina e selênio, possuem funções de imunomodulação e influenciam a susceptibilidade a doenças infecciosas e sua gravidade (GUERRANT et al., 2000) WHO, 2004). A ingestão adequada de vitamina D, cálcio, magnésio e fósforo, por sua vez, é importante para o desenvolvimento e conservação da massa óssea (PALACIOS, 2006), enquanto as vitaminas do complexo B (tiamina, riboflavina, niacina e piridoxina) estão envolvidas na manutenção de funções cognitivas (HUSKISSON et al., 2007). Em conclusão, os micronutrientes com funções antioxidantes como as vitaminas C e E e os minerais selênio e zinco possuem papéis-chave na etiologia e no prognóstico de doenças crônicas (CHERUBINI et al., 2005; KALIORA, DEDOUSSIS e SCHMIDT, 2006).
A documentação dos efeitos negativos do consumo de alimentos ultraprocessados sobre o teor de micronutrientes na dieta ganha ainda mais importância diante do rápido aumento nas vendas desses alimentos no Brasil e, de modo geral, em países de renda média (STUCKLER et al., 2012; MONTEIRO et al., 2013). Pesquisas de compras domiciliares de alimentos realizadas nas áreas metropolitanas brasileiras de 1987 a 1988 e de 2008 a 2009 confirmam o aumento no consumo de alimentos ultraprocessados e redução concomitante no consumo de alimentos in natura ou minimamente processados e de ingredientes culinários como óleos, gorduras e açúcar (MARTINS et al., 2013).

São pontos fortes do presente estudo o caráter rigorosamente probabilístico da amostra estudada, o estudo de mais de 30 mil pessoas residentes nas áreas urbanas e rurais de todas as regiões do país e a realização de dois registros alimentares de 24h do consumo alimentar em 96,8% das pessoas estudadas no módulo de consumo individual da POF. Dentre as limitações, destacam-se as imprecisões na quantificação do consumo de alimentos e nutrientes que são inerentes ao uso de registros alimentares e de tabelas de composição nutricional de alimentos. Para minimizar essas imprecisões, foram realizados diversos procedimentos de controle de qualidade e utilizada a tabela de composição nutricional de alimentos construída especificamente para essa pesquisa (IBGE, 2011a). Além disso, o inquérito realizado de 2008 a 2009 (IBGE, 2011a) não incluiu pessoas com menos de 10 anos, o que determina que seus resultados não necessariamente se apliquem à alimentação de lactentes e pré-escolares.

Os resultados relativos ao impacto desfavorável do consumo de alimentos ultraprocessados sobre o teor da dieta em micronutrientes, somados aos resultados que documentam o impacto também desfavorável quanto a macronutrientes – aumento na densidade energética e no teor em gorduras saturadas, gorduras trans e açúcar livre e diminuição no teor em fibras e proteínas (LOUZADA et al., 2015) – evidenciam que a redução no consumo de alimentos ultraprocessados é um caminho natural para a promoção da alimentação saudável no Brasil.
Os resultados deste estudo, somados aos do estudo sobre o teor de macronutrientes (LOUZADA et al., 2015) na dieta brasileira, deram suporte às recomendações da nova edição do Guia Alimentar para a População Brasileira, em particular quanto a basear a dieta em alimentos *in natura* ou minimamente processados, a moderar o consumo de alimentos processados e a evitar alimentos ultraprocessados (MINISTÉRIO DA SAÚDE, 2014).

4.6 REFERÊNCIAS

ARAUJO, M. C. et al. Consumo de macronutrientes e ingestão inadequada de micronutrientes em adultos. *Revista de Saúde Pública*, v. 47, n. 1S, p. 12, 2013.

BUENO, M. B. et al. Nutritional risk among Brazilian children 2 to 6 years old: a multicenter study. *Nutrition*, v. 29, n. 2, p. 405-10, 2013.

CHERUBINI, A. et al. Role of antioxidants in atherosclerosis: epidemiological and clinical update. *Curr Pharm Des*, v. 11, n. 16, p. 2017-32, 2005.

DA SILVA, J. V. et al. [Food consumption of children and adolescents living in an area of invasion in Maceio, Alagoas, Brazil]. *Rev Bras Epidemiol*, v. 13, n. 1, p. 83-93, 2010.

FIORITO, L. M. et al. Girls' early sweetened carbonated beverage intake predicts different patterns of beverage and nutrient intake across childhood and adolescence. *J Am Diet Assoc*, v. 110, n. 4, p. 543-50, 2010.

FISBERG, R. M. et al. Inadequação do consumo de nutrientes entre adolescentes brasileiros: National Dietary Survey 2008-2009. *Rev Saude Publica*, v. 47, p. 222s-30s, 2013.

GARCIA, M. T.; GRANADO, F. S.; CARDOSO, M. A. A Complementary feeding and nutritional status of 6-24-month-old children in Acrelandia, Acre State, Western Brazilian Amazon. *Cad Saude Publica*, v. 27, n. 2, p. 305-16, 2011.

GUERRANT, R. L.; LIMA, A. A.; DAVIDSON, F. Micronutrients and infection: interactions and implications with enteric and other infections and future priorities. *J Infect Dis*, v. 182, p. 134s-8s, 2000.

HUSKISSON, E.; MAGGINI, S.; RUF, M. The influence of micronutrients on cognitive function and performance. *J Int Med Res*, v. 35, n. 1, p. 1-19, 2007.

IBGE. *Avaliação nutricional da disponibilidade de alimentos no Brasil*. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2010.

______. *Análise do consumo alimentar pessoal no Brasil*. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011ª.
________. Tabela de Medidas Referidas para os Alimentos Consumidos no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011b.

________. Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011c.

KALIORA, A. C.; DEDOUSSIS, G. V.; SCHMIDT, H. Dietary antioxidants in preventing atherogenesis. *Atherosclerosis*, v. 187, n. 1, p. 1-17, 2006.

LOPEZ, A. et al. *Global Burden of Disease and Risk Factors*. Washington DC.: Banco Mundial, 2006

LOUZADA, M. L. et al. Alimentos ultraprocessados e perfil nutricional da dieta no Brasil. *Rev Saude Publica*, v. 49, n. 38, p.1-11, 2015.

LYONS, J.; WALTON, J.; FLYNN, A. Food portion sizes and dietary quality in Irish children and adolescents. *Public Health Nutr*, v. 18, n. 8, p. 1444-52, 2015.

MARTINS, A. P. et al. Increased contribution of ultra-processed food products in the Brazilian diet (1987-2009). *Rev Saude Publica*, v. 47, n. 4, p. 656-65, 2013.

MINISTÉRIO DA SAÚDE. *Guia alimentar para a população brasileira*. Brasília: Ministério da Saúde 2014.

MONTEIRO, C. A. et al. Ultra-processing and a new classification of foods. In: NEFF, R. (Ed.). *Introduction to U.S. Food System. Public Health, Environment, and Equity*. São Francisco: Jossey-Bass A Wiley Brand, 2014.

________. Ultra-processed products are becoming dominant in the global food system. *Obes Rev*, v. 14 2, p. 21s-8s, 2013.

________. A new classification of foods based on the extent and purpose of their processing. *Cad Saude Publica*, Brazil, v. 26, n. 11, p. 2039-49, 2010.

MOODIE, R. et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. *Lancet*, v. 381, n. 9867, p. 670-9, 2013.

MOUBARAC, J. C. et al. Food classification systems based on food processing: significance and implications for policies and actions. A systematic literature review and assessment. *Current Obesity Reports*, v. 3, n. 2, p. 256-272, 2014.

PAERATAKUL, S. et al. Fast-food consumption among US adults and children: dietary and nutrient intake profile. *J Am Diet Assoc*, v. 103, n. 10, p. 1332-8, 2003.

PALACIOS, C. The role of nutrients in bone health, from A to Z. *Crit Rev Food Sci Nutr*, v. 46, n. 8, p. 621-8, 2006.

ROSENFELD, L. Vitamine--vitamin. The early years of discovery. *Clin Chem*, v. 43, n. 4, p. 680-5, 1997.
STUCKLER, D. et al. Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. *PLoS Med.*, United States, v. 9, n. 6, p. e1001235, 2012.

UNICEF. The Micronutrient Initiative. Investing in the Future: A United Call to Action on Vitamin and Mineral Deficiencies. *Global Report*. Washington DC: Fundo das Nações Unidas para a Infância, 2009.

VEIGA, G. V. et al. Inadequação do consumo de nutrientes entre adolescentes brasileiros. *Rev Saude Publica*, v. 47, p. 212-215, 2013.

WHO. *Vitamin and mineral requirements in human nutrition*. Genebra: Organização Mundial da Saúde, 2004.

YAMADA, M. et al. Soft drink intake is associated with diet quality even among young Japanese women with low soft drink intake. *J Am Diet Assoc*, v. 108, n. 12, p. 1997-2004, 2008.
Este capítulo apresenta o artigo “Consumption of Ultra-processed Foods and Obesity in Brazilian Adolescents and Adults” (em inglês), de autoria de Maria Laura da Costa Louzada, Larissa Galastri Baraldi, Euridice Martinez Steele, Ana Paula Bortoletto Martins, Daniela Silva Canella, Jean Claude-Moubarac, Renata Bertazzi Levy, Geoffrey Cannon, Ashkan Afshin, Fumiaki Imamura, Dariush Mozaffarian e Carlos Augusto Monteiro e publicado no periódico *Preventive Medicine* (2015;81;9-15). Esse artigo foi desenvolvido, majoritariamente, durante o estágio em pesquisa no exterior, o qual realizei durante o primeiro semestre de 2014 no Departamento de Epidemiologia da Universidade de Harvard e sob supervisão do Professor Dariush Mozaffarian.
5.1 ABSTRACT

Objectives: The aim of this study was to evaluate the relationship between the consumption of ultra-processed foods and obesity indicators among Brazilian adults and adolescents.

Methods: We used cross-sectional data on 30,243 individuals aged ≥10 years from the 2008–2009 Brazilian Dietary Survey. Food consumption data were collected through 24-h food records. We classified food items according to characteristics of food processing. Ultra-processed foods were defined as formulations made by the food industry mostly from substances extracted from foods or obtained with the further processing of constituents of foods or through chemical synthesis, with little if any whole food. Examples included candies, cookies, sugar-sweetened beverages, and ready-to-eat dishes. Regression models were fitted to evaluate the association of the consumption of ultra-processed foods (% of energy intake) with body-mass-index, excess weight, and obesity status, controlling for socio-demographic characteristics, smoking, and physical activity.

Results: Ultra-processed foods represented 30% of the total energy intake. Those in the highest quintile of consumption of ultra-processed foods had significantly higher body-mass-index (0.94 kg/m²; 95% CI: 0.42,1.47) and higher odds of being obese (OR=1.98; 95% CI: 1.26,3.12) and excess weight (OR=1.26; 95% CI: 0.95,1.69) compared with those in the lowest quintile of consumption.

Conclusion: Our findings support the role of ultra-processed foods in the obesity epidemic in Brazil.

Key-words: Food; Nutrition; Risk factor; Obesity; Prevention
5.2 INTRODUCTION

Ultra-processed foods are formulations made by the food industry mostly from substances extracted from foods or obtained from the further processing of constituents of foods or through chemical synthesis, with little if any whole foods (MONTEIRO et al., 2012; MOODIE et al., 2013). Compared to the rest of the diet, these formulations have less fiber and protein, more added sugar, and, when solid, higher energy density (MONTEIRO et al., 2011; MOUBARAC et al., 2013). They are also extremely palatable and habit-forming, convenient, sold in large portion sizes, and aggressively advertised and marketed (MONTEIRO et al., 2012; MOODIE et al., 2013; LUDWIG, 2011). Sales of ultra-processed foods have increased in parallel with the rates of obesity worldwide, particularly in middle-income countries (MONTEIRO et al., 2013).

One analysis in Brazil showed that household purchase of ultra-processed foods was associated with greater prevalence of obesity (CANELLA et al., 2014). However, this study had only used purchase data rather than individual-level consumption data. To our knowledge, no evidence in a developing country is available for how much people consume ultra-processed foods across different demographic groups and how it is related to obesity.

The objective of the present study was to evaluate the association of the intake of ultra-processed foods with obesity indicators in a nationally representative sample of Brazilian adolescents and adults.

5.3 METHODS

Design and population

We performed a cross-sectional analysis based on individual-level dietary data from 34,003 individuals aged ≥10 years in Brazil, collected as part of the 2008–2009 National Household Budget Survey (IBGE, 2011a). These individuals represented a randomly selected subsample of
25% of the 55,970 total households randomly selected for the budget survey. The survey employed a complex clustered sampling procedure, first selecting census tracts and then selecting households within those tracts. The selection of census tracts was preceded by an examination of the tracts of the Master Sample of Household Surveys or Common Sample (containing the pool of the 12,800 tracts of the country) to obtain strata of households with high geographic and socioeconomic homogeneity. The geographic locations of tracts (region, state, capital city or other, urban or rural) and the years of schooling of the heads of households in the sector were considered, and 550 strata of households that were geographically and socioeconomically homogeneous were selected. For this study, we excluded pregnant women and individuals with diabetes, hypertension or cancer, each defined by self-reported medication (n=3,760).

The project was approved by the Ethics Committee of the University of São Paulo.

Food consumption

Individuals completed two non-consecutive 24-h food records days spanning 1 week (IBGE, 2011a). Nutrient intakes were estimated based on a Brazilian food composition table (IBGE, 2011b).

Food items were divided into three main groups (Supplementary Figure 1). The first was composed of *unprocessed, minimally, or moderately processed foods*. Unprocessed foods were defined as having not undergone any kind of industrial processing, minimally processed foods as processed in ways that did not add substances or subtract edible parts, and moderately processed foods as those that had an edible part subtracted, but no substance added. This category also included handmade dishes made from these foods and culinary ingredients such as oils, salt, and sugar. The second category was *processed foods*, and the third, *ultra-processed foods*. Processed and ultra-processed foods were defined as products made by the food industry with at least two ingredients. We characterized processed foods as those manufactured by adding salt, sugar, or oil to unprocessed, minimally processed or moderately processed foods; and ultra-processed foods as those formulations mostly made from substances extracted from foods or obtained with the further processing of constituents of foods or through chemical synthesis, such as oils,
hydrogenated fats, starches, sugars, protein isolates, amino acids, and additives like flavors and colors (MONTEIRO et al., 2012; MOODIE et al., 2013; LUDWIG, 2011; MONTEIRO and CANNON, 2012). Examples of ultra-processed foods include: ice-creams, soft drinks, industrialized baked products, and sausages.

For each category, we computed the relative contribution of foods in that category to each person’s total energy intake. We evaluated intake as the percentage to total energy intake in order to reduce variation due to body size, physical activity, and metabolic efficiency (each major determinants of total energy intake).

Obesity indicators

Weight and height were measured by researchers with standard techniques and recorded in specific questionnaires (IBGE, 2010). In individuals aged ≥20 years old, excess weight and obesity were defined as BMI ≥25 kg/m² and 30 kg/m², respectively (WHO, 1995). Excess weight and obesity of 10 to 19 year-old individuals were defined as BMI-for-age z-scores from the World Health Organization references ≥+1 and +2, respectively (DE ONIS et al., 2007). Excess weight includes excess weight and obesity.

Covariates

Information on age, sex, race, education, and income were obtained via standardized interviews. Annual household income per person was calculated using a purchasing power parity basis (PPP 2009: US$ 1.00=R$ 1.63) (WORLD BANK, 2015). Geographic region and urban status of the household were also used as covariates.

Smoking was assessed based on data from each individual’s purchases, with current smokers defined as those having purchased any type of cigarettes during the previous 7 days. Because physical activity was not assessed in the household survey, we predicted physical activity levels by evaluating data from the VIGITEL Survey (MINISTÉRIO DA SAÚDE, 2010) for adults and from the PENSE Survey (MINISTÉRIO DA SAÚDE, 2009) for adolescents. Using these
datasets, we modeled a regression equation predicting the likely leisure-time and transportation physical activity (minutes/week) by age, sex, race, years of education, and smoking status used as the predictors. Using two regression equations, we obtained predicted leisure-time and transportation physical activity duration for individuals in the dataset of the current study.

Statistical analyses

Analyses were performed with Stata 13.0 (Texas, US) with two-tailed alpha=0.05. Analyses accounted for sample weights and the design effect of the survey.

Linear regression models were used to assess differences in BMI across quintiles of consumption of ultra-processed foods (% of total energy).

Logistic regression models were fitted in order to evaluate the odds ratio (OR) for being excess weight or obese according to quintiles of consumption of ultra-processed foods (% of total energy).

Multivariate models were fitted to adjust for age, sex, race, region, urban status, education, income, smoking status, and physical activity levels. We further adjusted for each person’s consumption of fruits, vegetables, and beans to evaluate if the association was independent of these other components of the diet. Total energy intake was not included as a covariate because it may plausibility mediate (i.e., be in the causal pathway of) the effects of ultra-processed foods on BMI and obesity. We performed sensitivity analyses using the energy intake of ultra-processed foods (and not the percentage of total energy intake of the diet) as the explanatory variable.

We explored potential effect modification by sex, age, household income and food consumption outside home. For any significant interactions, subgroup analyses were conducted.

Lastly, we examined whether the association remained significant after adjustment, one at a time, for dietary intakes of saturated fatty acids (g/day), *trans* fatty acids (g/day), added sugars (% of total energy), fiber (g/1,000 kcal), and total energy (kcal/day). We calculated the percent change
in the regression coefficient for a linear relationship of the association between the consumption of ultra-processed foods and BMI before and after adjustment for each of the selected factors, by using an ordinal variable for quintile categories of consumption of ultra-processed foods (% of total energy).

5.4 RESULTS

A total of 30,243 Brazilian adults were evaluated (Table 5.1). Consistent with the national population, the great majority resided in urban areas, 51% were women and 52% African-descent. Forty-one percent of the participants were excess weight and 12% obese.
Table 5.1 Characteristics of a nationally representative sample of 30,243 adolescents and adults (≥ 10 years old). Brazil 2008-2009.

Characteristics	Percentage
Age, %	
10 to 19 years	24.2
20 to 39 years	41.3
40 to 59 years	26.0
60 years or more	8.5
Sex, %	
Men	49.8
Women	50.2
Race, %	
White	47.3
African-descent	51.3
Other	1.4
Urbanity, %	
Rural	16.8
Urban	83.2
Weight status, %	
Underweight^b	2.8
Normal weight^c	43.7
Excess weight^d	40.9
Obese^e	11.7
Smoking status, %	
Current smoker^f	8.2
Years of education, %	
≤ 4 years	30.8
5 to 8 years	27.6
9 to 12 years	31.1
> 12 years	10.5
Annual household income per person in US$^g, %	
≤2,200 (R$ 3,600)	31.7
2,201 to 4,400 (R$ 3,600 to 7,200)	27.7
>4,400 (R$ > 7,200)	40.6
Leisure-time and transportation physical activity in min/week^h, %	
< 150	32.7
≥ 150	67.3
Energy intake in kcal, mean	
Total	1908.1
Inside home	1598.7
Outside home	383.8
Food consumption (% of total energy)ⁱ, mean	
Unprocessed, minimally and moderately processed foods	68.6
Processed foods	1.8
Ultra-processed foods

| 29.6 |

*All statistics accounted for sample weights from the national survey

*BMI-for-age z-scores < -2 for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI $< 18.5 \text{ kg/m}^2$ for ≥ 20 year old individuals (WHO, 1995).

*BMI-for-age z-scores ≥ -2 and $< +1$ for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI $\geq 18.5 \text{ kg/m}^2$ and $< 25 \text{ kg/m}^2$ for ≥ 20 year old individuals (WHO, 1995).

*BMI-for-age z-scores $\geq +1$ for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI $\geq 25 \text{ kg/m}^2$ for ≥ 20 year old individuals (WHO, 1995).

*BMI-for-age z-scores $\geq +2$ for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI $\geq 30 \text{ kg/m}^2$ for ≥ 20 year old individuals (WHO, 1995).

*The number of smokers was estimated based on the number of individuals that purchased cigarettes (budget survey data). Former smoker data was not available.

*Annual household income per person was calculated using a purchasing power parity basis (PPP 2009: US$ 1.00 = RS 1.63), multiplying by 12 months, and dividing by the number of residents in the household.

*Physical activity was estimated with a linear regression model fitted with original data from previous Brazilian population-based surveys with age, sex, race, years of education and smoking status as the predictors.

*Details are given in Supplementary Materials. Unprocessed foods have not undergone any kind of industrial processing, minimally processed foods were processed in ways that did not add substances or subtract edible parts, and moderately processed foods had an edible part subtracted, but no substance added. This category includes all handmade dishes made from these foods and culinary ingredients such as fats, oils, salt, and sugar. Processed foods are manufactured by adding salt, sugar, oils or fats to unprocessed, minimally processed or moderately processed foods and ultra-processed foods are formulations mostly or entirely made from substances extracted from foods, such as oils, fats, starches, sugar, and substances obtained with the further processing of constituents of foods or through chemical synthesis, such as hydrogenated fats, modified starches, and additives used to provide the products with attractive taste, flavor, color, and texture.
Mean reported energy intake was 1,908 kcal. Nationally, more than two thirds (68.6%) of these calories came from unprocessed, minimally, or moderately processed foods, while 29.6% came from ultra-processed foods.

On average, rice and beans represented about 25% of the energy consumed throughout the day (Supplementary Table 5.1). Other major foods in the Brazilian diet were red meat (9.3% of total energy), fruits (6.9%) and cereals other than rice (5.9%). Among ultra-processed foods, the categories with the highest energy contribution were industrialized breads (9.2% of total energy intake), pizzas, hamburgers and sandwiches (4.7%), and cakes and cookies (3.0%).

The consumption of ultra-processed foods ranged from an average of 6.0% of total energy intake in the lowest quintile to 56.0% in the highest quintile of consumption of ultra-processed foods (% of total energy). In crude (unadjusted) analyses, the percent energy from ultra-processed foods was higher among woman, those with urban residency, non-smokers, and those with higher levels of physical activity, education, and income (Supplementary Table 5.2). Total energy intake ranged from 1,784 kcal in the bottom quintile to 2,060 kcal in the top quintile of ultra-processed foods.

Ultra-processed foods and obesity

After adjustment for sociodemographics, smoking, and physical activity, the consumption of ultra-processed foods was associated with higher BMI and greater prevalence of both excess weight and obesity (Table 5.2). Compared to those in the first quintile of consumption of ultra-processed foods, mean BMI was 0.94 kg/m2 higher among those in the top quintile (95% CI=0.42,1.47). The adjusted odds ratio (OR) of being obese or excess weight were, respectively, 1.98 (95% CI=1.23,3.12) and 1.26 (95% CI=0.95,1.69) in the top quintile of ultra-processed foods intake. Further adjustment for consumption of fruits, vegetables, and beans had little effect on these risk estimates (Table 5.2).
Table 5.2. Association of the consumption of ultra-processed foods (% of total energy) with BMI and the prevalence of obesity and excess weight among 30,243 individuals aged ≥ 10 years old. Brazil 2008-2009.

Quintiles of consumption of ultra-processed foods (% of total energy)	1 (≤ 13%)	2 (14 to 22%)	3 (23 to 31%)	4 (32 to 43%)	5 (≥ 44%)	P for trend
Mean difference (95% CI) in BMI, kg/m²						
Crude	0.0 (Reference)	0.28 (0.03,0.52)	0.19 (-0.07,0.44)	0.12 (-0.14,0.38)	-0.53 (-0.79,-0.27)	<0.001
Multivariate b	0.0 (Reference)	0.33 (0.10,0.56)	0.51 (0.25,0.76)	0.69 (0.37,1.00)	0.94 (0.42,1.47)	<0.001
Multivariate + other components of the diet c	0.0 (Reference)	0.33 (0.10,0.56)	0.51 (0.25,0.77)	0.69 (0.38,1.00)	0.95 (0.43,1.48)	<0.001
Odds ratio (95% CI) for being obese d						
Crude	1.0 (Reference)	1.27 (1.08,1.50)	1.27 (1.06,1.52)	1.26 (1.05,1.49)	1.16 (0.97,1.40)	0.18
Multivariate b	1.0 (Reference)	1.3 (1.09,1.54)	1.43 (1.17,1.76)	1.58 (1.22,2.05)	1.98 (1.26,3.12)	<0.001
Multivariate + other components of the diet c	1.0 (Reference)	1.29 (1.09,1.54)	1.43 (1.16,1.75)	1.57 (1.22,2.03)	1.97 (1.26,3.09)	<0.001
Odds ratio (95% CI) for being excess weight e						
Crude	1.0 (Reference)	1.1 (0.98,1.22)	1.1 (0.98,1.23)	1.07 (0.95,1.20)	0.93 (0.82,1.05)	0.2
Multivariate b	1.0 (Reference)	1.1 (0.98,1.24)	1.17 (1.02,1.35)	1.21 (1.02,1.43)	1.26 (0.95,1.69)	0.02
Multivariate + other components of the diet c	1.0 (Reference)	1.1 (0.98,1.24)	1.17 (1.02,1.35)	1.21 (1.02,1.43)	1.27 (0.95,1.69)	0.02

BMI: body mass index
CI: confidence interval

*aAll statistics accounted for sample weights from the national survey
*bAdjusted for age (natural logged), sex (men/women), race (white, African-descent and other), region (north, northeast, south, southeast, and midwest), urbanity (urban/rural), smoking (yes/no), physical activity (min/week), quintiles of years of education (age- and sex-specific), per capita household income (natural logged) and the interaction between sex and income.
*cCovariates in the multivariate model and consumption of fruits, vegetables and beans (each in % of total energy intake from non-ultra-processed food)

BMI-for-age z-scores ≥ +2 for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI ≥ 30 kg/m² for ≥ 20 year old individuals (WHO, 1995).

BMI-for-age z-scores ≥ +1 for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI ≥ 25 kg/m² for ≥ 20 year old individuals (WHO, 1995).
Analysis of interaction

We observed a significant effect modification in the relationship between consumption of ultra-processed foods and BMI by both age and sex ($P<0.001$ each), but neither by income nor by food consumption outside home ($P>0.05$). No effect modification in the relationship between the consumption of ultra-processed foods and obesity was observed ($P>0.05$). Subgroup analyses showed that the trend toward positive associations for both BMI and obesity remained in all age groups (Table 5.3).
Table 5.3 Association of the consumption of ultra-processed foods (% of total energy) with BMI and the prevalence of obesity and excess weight among 30,243 individuals aged ≥ 10 years old by age groups. Brazil 2008-2009.

Quintiles of consumption of ultra-processed foods (% of total energy)	1	2	3	4	5	P for trend^c	
Mean difference (95% CI) in BMI, kg/m²	≤ 17%	18 to 28%	29 to 39%	40 to 52%	≥ 52%	0.08	
10 to 19 years (n = 7,534^f)	0.0 (Reference)	0.01 (-0.33, 0.31)	0.34 (-0.12, 0.81)	0.40 (-0.17, 0.97)	0.84 (-0.16, 1.85)	0.15	
20 to 39 y (n = 12,586)	≤ 13%	14 to 23%	24 to 32%	32 to 44%	≥ 45%	0.05	
40 to 59 years (n = 7,534)	0.0 (Reference)	0.02 (-0.30, 0.35)	0.02 (-0.37, 0.41)	0.36 (-0.17, 0.90)	0.47 (-0.42, 1.36)	0.08	
60 years or more (n = 2,589)	≤ 10%	11 to 18%	19 to 25%	26 to 36%	≥ 37%	0.08	
Odds Ratio (95% CI) for being obese^{d,e}	≤ 17%	18 to 28%	29 to 39%	40 to 52%	≥ 52%	0.05	
10 to 19 years (n = 7,534, 5% obese)	1.0 (Reference)	0.96 (0.55, 1.68)	1.74 (0.82, 3.37)	1.90 (0.88, 4.09)	2.74 (0.78, 9.60)	0.08	
20 to 39 y (n = 12,586, 11% obese)	≤ 13%	14 to 23%	24 to 32%	32 to 44%	≥ 45%	0.08	
40 to 59 years (n = 7,534, 18% obese)	1.0 (Reference)	1.27 (0.96, 1.68)	1.31 (0.95, 1.79)	1.48 (0.99, 2.20)	1.53 (0.76, 3.06)	0.05	
60 years or more (n = 2,589, 16% obese)	≤ 10%	11 to 18%	19 to 25%	26 to 36%	≥ 37%	0.08	
Odds Ratio (95% CI) for excess weight^{d,f}	≤ 17%	18 to 28%	29 to 39%	40 to 52%	≥ 52%	0.05	
10 to 19 years (n = 7,534, 22% excess weight)	1.0 (Reference)	1.05 (0.78, 1.41)	1.12 (0.77, 1.61)	1.15 (0.74, 1.77)	1.52 (0.75, 3.07)	0.25	
20 to 39 y (n = 12,586, 41% excess weight)	≤ 13%	14 to 23%	24 to 32%	32 to 44%	≥ 45%	0.05	
	≤ 11%	12 to 19%	20 to 28%	29 to 38%	≥ 39%		
------------------	-------	-----------	-----------	-----------	-------		
40 to 59 years	1.00	1.01	1.14	1.35	0.14		
(n= 7,534, 55% excess weight)	(Reference)	(Reference)	(0.81,1.25)	(0.81,1.25)	(0.86,1.51)	(0.83,2.18)	
60 years or more	1.06	1.10	1.21	1.19	0.25		
(n= 2,589, 53% excess weight)	(0.86,1.31)	(0.88,1.38)	(0.95,1.53)	(0.92,1.55)			
	0.87	1.24	1.23	1.55	0.02		
(Reference)	(0.59,1.28)	(0.83,1.85)	(0.74,2.03)	(0.58,4.12)			

BMI: body mass index
CI: confidence interval
*All statistics accounted for sample weights from the national survey
bThe quintiles of consumption (% of total energy) of ultra-processed foods are specific for each subgroup

P for the interaction term on the linear regression <0.001
dAdjusted for age (ln), sex (men/women), race (white, African-descent and other), region (north, northeast, south, southeast, and midwest), urban status (yes/no), smoking (yes/no), physical activity (min/week), quintiles of years of education (age- and sex-specific) per capita household income (ln), consumption of fruits, vegetables and beans (each in % of total energy intake from non-ultra-processed food) and the interaction between sex and income.

BMI-for-age z-scores ≥ +2 for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI ≥ 30 kg/m² for ≥ 20 year old individuals (WHO, 1995).
A strong association between the consumption of ultra-processed foods and both BMI, excess weight and obesity was observed among women, but not among men (Table 5.4). The mean difference in BMI was 1.13 kg/m² comparing women in the top to the bottom quintile groups of ultra-processed food consumption (95% CI=0.38,1.87). The OR of being obese was 1.96 in women with the highest consumption of ultra-processed foods (95% CI=1.09,3.56).
Table 5.4 Association of the consumption of ultra-processed foods (% of total energy) with BMI and the prevalence of obesity and excess weight among 30243 individuals aged ≥ 10 years old by sex\(^a\). Brazil 2008-2009.

Quintiles of consumption of ultra-processed foods (% of total energy)\(^b\)	1	2	3	4	5	\(P\) for trend\(^c\)
\(P\) for trend\(^c\)	0.21	0.06	0.18	0.32	<0.001	
Mean difference (95% CI) in BMI, kg/m\(^2\)	≤ 11%	12 to 20%	21 to 30%	30 to 42%	≥ 43%	
Men (n= 14 396)	0.0 (Reference)	0.21 (-0.05,0.48)	0.16 (-0.17,0.48)	0.30 (-0.10,0.71)	0.32 (-0.36,1.01)	
Women (n=15 847)	≤ 14%	15 to 23%	24 to 33%	34 to 45%	≥ 46%	
0.0 (Reference)	0.54 (0.17,0.90)	0.67 (0.26,1.08)	0.86 (0.39-1.32)	1.13 (0.38,1.87)	<0.001	

Odds ratio (95% CI) for being obese\(^d,e\)

Odds ratio (95% CI) for being obese\(^d,e\)	1	2	3	4	5	\(P\) for trend\(^c\)
Men (n= 14 396, 10% obese)	≤ 11%	12 to 20%	21 to 30%	30 to 42%	≥ 43%	
1.0 (Reference)	1.36 (1.04,1.78)	1.15 (0.84,1.55)	1.30 (0.89,1.89)	1.06 (0.55,2.04)	0.28	
Women (n=15 847, 13% obese)	≤ 14%	15 to 23%	24 to 33%	34 to 45%	≥ 46%	
1.0 (Reference)	1.29 (1.03,1.61)	1.49 (1.13,1.97)	1.53 (1.09,2.14)	1.96 (1.09,3.53)	<0.001	

Odds ratio (95% CI) for excess weight (overweight+obese)\(^d,e\)

Odds ratio (95% CI) for excess weight (overweight+obese)\(^d,e\)	1	2	3	4	5	\(P\) for trend\(^c\)
Men (n= 14 396, 42% excess weight)	≤ 11%	12 to 20%	21 to 30%	30 to 42%	≥ 43%	
1.0 (Reference)	1.14 (0.96,1.34)	1.06 (0.87,1.29)	1.12 (0.87,1.43)	1.17 (0.78,1.76)	0.37	
Women (n=15 847, 40% excess weight)	≤ 14%	15 to 23%	24 to 33%	34 to 45%	≥ 46%	
1.0 (Reference)	1.22 (1.03,1.44)	1.34 (1.10,1.62)	1.42 (1.11,1.80)	1.69 (1.12,2.54)	<0.001	

BMI: body mass index
CI: confidence interval
\(^a\)All statistics accounted for sample weights from the national survey
\(^b\)The quintiles of consumption (% of total energy) of ultra-processed foods are specific for each subgroup
\(^c\)\(P\) for the interaction term on the linear regression <0.001
\(^d\)Adjusted for age (ln), race (white, African-descent and other), region (north, northeast, south, southeast, and midwest), urban status (yes/no), smoking (yes/no), physical activity (min/week), quintiles of years of education (age- and sex-specific) per capita household income (ln), consumption of fruits, vegetables and beans (each in % of total energy intake from non-ultra-processed food) and the interaction between sex and income.
\(^e\)BMI-for-age z-scores ≥ +2 for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI ≥ 30 kg/m\(^2\) for ≥ 20 year old individuals (WHO, 1995).
\(^f\)BMI-for-age z-scores ≥ +1 for 10 to 19 year-old individuals (de Onis et al., 2007) and BMI ≥ 25 kg/m\(^2\) for ≥ 20 year old individuals (WHO, 1995).
Additional analyses

Additional adjustment for saturated fat, trans fat, and added sugar had little effect on the magnitude of the associations. For example, after adjustment for fiber, the association of consuming ultra-processed foods with BMI was attenuated by only 7%. Adjustment for total energy intake, a key potential mediator of the association, attenuated the association with BMI by 50%, although the association remained statistically significant (P=0.001). The adjustment for total energy reduced the magnitude of the linear relationship from 0.22 kg/m² (95% CI=0.12 to 0.32) to 0.10 kg/m² (0.04, 0.17) per quintile category of ultra-processed foods.

The results were similar when we evaluated the quintiles of energy intake of ultra-processed foods rather than the percentage of total energy intake of the diet as the explanatory variable (data not shown). Compared to those in the bottom group, adjusted mean BMI was 0.78 kg/m² higher among those in the last quintile group (95% CI=0.0.49,1.08; P for trend=0.001). The adjusted OR of being obese and excess weight were, respectively, 1.53 (95% CI=1.21,1.94; ; P for trend=0.001) and 1.33 (95% CI=1.13,1.57; P for trend =0.01).

5.5 DISCUSSION

We found a cross-sectional association between the intake of ultra-processed foods and excess weight and obesity among Brazilian adolescents and adults. Although there was heterogeneity by sex and age, our finding supports that, on average, there are potential detrimental effects of consuming ultra-processed foods.

We suggest that this association is, at least partially, explained by intrinsic characteristics of ultra-processed foods that promote overconsumption. This is particularly important when we attempt to the fact that the consumption of these foods has widely increased worldwide, in
parallel with the global increase in obesity (MONTEIRO et al., 2013; FINUCANE et al., 2011; MARTINS et al., 2013).

Our study showed that almost one third of the energy consumed in Brazil came from ultra-processed foods. This may be partly related to their convenience, portability, and perceived time-saving compared with less processed foods. Typically, ultra-processed foods are designed to be consumed anywhere and often, without implements. These foods are usually sold in the form of snacks, drinks, or ready-to-consume dishes and can readily displace handmade meals. Also, the processing techniques and the cosmetic additives make ultra-processed foods hyper-palatable. They are therefore liable to cause “mindless eating” and to damage the processes that control satiety and appetite (LUDWIG, 2011; OGDEN et al., 2013). SSBs are a particular case. Their consumption can lead to weight gain by an incomplete compensatory reduction in energy intake at subsequent meals following intake of liquids (DIMEGLIO and MATTES, 2000). Another possible link between the consumption of ultra-processed foods with obesity is the portion size. Portion sizes of many ultra-processed foods significantly increased in past decades (PIERNAS and POPKIN, 2011; NIELSEN and POPKIN, 2003) and several studies have linked their increases to increased total energy intake (ALBAR et al., 2014; STEENHUIS and VERMEER, 2009; DILIBERTI et al., 2004) All these characteristics are amplified by aggressive marketing, which makes these products attractive and ubiquitous, and modifies social norms (MALLARINO et al., 2013).

Due to the lack of water and the type of carbohydrates, ultra-processed foods have high glycemic loads and, when solid, high energy density (MONTEIRO et al., 2011; LUDWIG, 2011). This is particularly relevant since individuals regulate food consumption by volume more so than calories and energy density is inversely related to diet quality and directly associated to energy intake (ROLLS, 2009). Likewise, high glycemic loads can cause an increased insulin response, which might promote weight gain by directing nutrients away from oxidation in muscle and towards storage in fat (LUDWIG, 2002; BRAND-MILLER et al., 2009).

Ultra-processed foods are nutritionally unbalanced (MONTEIRO et al., 2011; MOUBARAC et al., 2013); they have poor quality fat and low contents of fiber, micronutrients, and
phytochemicals. Still, we couldn’t show a significant importance of the contents of saturated fat, *trans* fat, added sugar, and fiber to explain the results. Nevertheless, food composition table can have imprecise information, biasing the results to null. Further studies, thus, should explore the impact of the consumption of ultra-processed foods and the effects of their entire nutrient profile on health outcomes.

We observed a strong effect modification related to sex. We hypothesized that unmeasured confounders or confounders measured with error may partly explain the absence of effect among men. Previous Brazilian studies described higher levels of physical activity and smoking among men (MALTA et al., 2011). Since it is well established that both characteristics are inversely correlated to BMI, the lack of an appropriate control may be biasing the results to null. Growing evidence suggests that women are more predisposed to adverse metabolic effects of rapidly digested, carbohydrate-rich foods than men, which might explain larger effects of ultra-processed foods on adiposity in women (MIRRAHIMI et al., 2014). Different stress coping mechanisms between both sexes could also be considered as a possible cause of the different findings between men and women. For instance, perceived stress has been an important predictor of both diet quality and adiposity, and women are particularly susceptible to perceived stress (DE VRIENDT et al., 2012; ISASI et al., 2015; NASTASKIN et al., 2015). In addition, a population-based study showed different socioeconomic determination of obesity in men and women, increasing the complexity of modeling these variables (MONTEIRO et al., 2001). Our study brings novel evidence on sex-specific associations even though the reasons behind these results remain unknown and should be further explored.

On the other hand, other subgroup analyses confirmed that the association is consistent across age, socioeconomic status groups, and different patterns of outside home consumption, increasing the confidence in the results.

Our findings are consistent with studies from high-income countries that have assessed the influence on obesity of foods that could be classified as ultra-processed. In the US, positive associations have been seen between consumption of potato chips, SSBs, and processed meat and long-term weight gain; with protective associations of unprocessed or minimally processed foods
such as fruits, vegetables, nuts, and yogurt (MOZAFFARIAN et al., 2011). Also, a 15-year prospective study showed that “fast food” consumption among young adults was directly associated with changes in body weight and insulin resistance (PEREIRA et al., 2005). Regarding SSBs, strong epidemiological evidence describes their role in the etiology of obesity and other cardiovascular diseases (WOODWARD-LOPEZ et al., 2010; HU and MALIK, 2010).

Our study has several strengths. We analyzed contemporary data on more than 30,000 people on the first nationally representative individual dietary survey from Brazil. Availability of socioeconomic and demographic variables allowed adjustment for many important covariates, as well as evaluation of consistency among population subgroups. We believe that the food classification used in this study is advantageous compared to previous classifications. In prior studies, foods were usually grouped according to their nutrient profile. For example, unprocessed and processed meats were frequently classified in the same category because of their protein content, and grains and flour-based products were grouped together because they are both sources of carbohydrates (MONTEIRO et al., 2012). These classifications could be important when most of the nutrition-related diseases were caused by deficiencies of nutrients (MONTEIRO et al., 2012). However, the classifications based solely on nutrient composition have been shown to be unable to explain the entire influence of food consumption on obesity. We strongly believe that considering industrial food processing in the assessment of food consumption can bring novel evidence for the elucidation of the framework of the obesity epidemic.

There are several limitations to the interpretation of our findings as well. First, this study is cross-sectional. Our results are susceptible to reverse causation and provide little causal information. Although we attempted to control for potential confounders for the association between the consumption of ultra-processed foods and obesity, residual confounding could remain because of unmeasured confounders and inaccuracy in measurement of smoking and physical activity. Smoking was assessed based on purchase of cigarettes, which may have underestimated smoking exposure, particularly in adolescents. Physical activity was also estimated indirectly by using a predictive model based on socioeconomic characteristics. Since it is well established that both smoking and physical activity are inversely correlated to BMI, the lack of an appropriate control may be biasing the results to null.
Despite this, effect sizes were large and the results are biologically plausible and consistent with the previous literature. Also, the study might have some bias related to inherent limitations of food records. To minimize these problems, food records were evaluated against gold standard methods, the questionnaire was validated, and quality control procedures were carried out (IBGE, 2011a). The dietary survey was not designed specifically to classify foods according to characteristics of industrial processing, which would further increase misclassification and limit ability to detect associations.

5.6 CONCLUSION

In conclusion, our findings support the role of ultra-processed foods consumption in the obesity epidemic in Brazil. While cross-sectional, the size and generalizability of our study provide evidence that may support the role of ultra-processed foods in the obesity epidemic. These results demonstrate a need for interventional studies, including policy interventions, to test the effects of reducing ultra-processed foods on obesity.

5.7 REFERENCES

ALBAR, S. A. et al. Is there an association between food portion size and BMI among British adolescents? Br J Nutr, v. 112, n. 5, p. 1-11, 2014.

BRAND-MILLER, J. et al. Dietary glycemic index: health implications. J Am Coll Nutr, v. 28, p. 446s-449s, 2009.

IBGE. Análise do consumo alimentar pessoal no Brasil. Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, 2011.

IBGE. Antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil. Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, 2010.

IBGE. Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil. Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, 2011.
MINISTÉRIO DA SAÚDE. Pesquisa Nacional de Saúde do Escolar 2009. Brasília: Ministério da Saúde, 2009.

MINISTÉRIO DA SAÚDE. Vigitel Brasil 2009: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico. Brasília: Ministério da Saúde, 2010.

CANELLA, D. S. et al. Ultra-processed food products and obesity in Brazilian households (2008-2009). PLoS One, v. 9, n. 3, p. e92752, 2014.

DE ONIS, M. et al. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ, v.85, n.9, p.660-667, 2007.

DE VRIENDT, T. et al. European adolescents' level of perceived stress and its relationship with body adiposity--the HELENA Study. Eur J Public Health, v. 22, n.4, p.519-24, 2012.

DILIBERTI, N. et al. Increased portion size leads to increased energy intake in a restaurant meal. Obes Res, v. 12, n. 3, p. 562-8, 2004.

DIMEGLIO, D. P.; MATTES, R. D. Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord, v. 24, n. 6, p. 794-800, 2000.

FINUCANE, M.M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet, v.377, n.9765, p.557-567, 2011.

HU, F. B.; MALIK, V. S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav, v. 100, n. 1, p. 47-54, 2010.

ISASI, C.R. et al. Psychosocial stress is associated with obesity and diet quality in Hispanic/Latino adults. Ann Epidemiol, v.25, n.2, p.84-89, 2015.

LUDWIG, D. S. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, v. 287, n. 18, p. 2414-23, 8 2002.

______. Technology, diet, and the burden of chronic disease. JAMA, v. 305, n. 13, p. 1352-3, 2011.

MALLARINO, C. et al. Advertising of ultra-processed foods and beverages: children as a vulnerable population. Rev Saude Publica, v. 47, n. 5, p. 1006-10, 2013.

MALTA, D.C., MOURA, E.C., DE MORAIS NETO, O.L. Gender and schooling inequalities in risk and protective factors for chronic diseases among Brazilian adults, through telephone survey. Rev Bras Epidemiol, v.14, p.125s-135s, 2011.

MARTINS, A. P. et al. Increased contribution of ultra-processed food products in the Brazilian diet (1987-2009). Rev Saude Publica, v. 47, n. 4, p. 656-65, 2013.

MIRRAHIMI, A. et al. The role of glycemic index and glycemic load in cardiovascular disease and its risk factors: a review of the recent literature. Curr Atheroscler Rep, v.16, n.1, p.381, 2014.
MONTEIRO, C.A. e CANNON, G. The impact of transnational ‘‘Big Food’’ companies on the south: a view from Brazil. Plos Med, v.9, n.7, p. e1001252, 2012.

MONTEIRO CA, CONDE WL, POPKIN BM. Independent effects of income and education on the risk of obesity in the Brazilian adult population. J Nutr. 2001;131(3):881-886.

MONTEIRO, C.A. et al. The Food System. Ultra-processing. The big issue for nutrition, disease, health, well-being. [Commentary]. World Nutrition, v. 3, n. 12, p. 527-69, 2012.

______. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr, v. 14, n. 1, p. 5-13, 2011.

______. Ultra-processed products are becoming dominant in the global food system. Obes Rev, v. 14 2, p. 21s-8s, 2013.

MOODIE, R. et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet, v. 381, n. 9867, p. 670-9, 2013.

MOUBARAC, J. C. et al. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr, v. 16, n. 12, p. 2240-8, 2013.

MOZAFFARIAN, D. et al. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med, v. 364, n. 25, p. 2392-404, 2011.

NASTASKIN, R.S., FIOCCO, A.J. A survey of diet self-efficacy and food intake in students with high and low perceived stress. Nutr, v.14, n.1, p.42, 2015.

NIELSEN, S. J.; POPKIN, B. M. Patterns and trends in food portion sizes, 1977-1998. JAMA, v. 289, n. 4, p. 450-3, 2003.

OGDEN, J. et al. Distraction, the desire to eat and food intake. Towards an expanded model of mindless eating. Appetite, v. 62, p. 119-26, 2013.

PEREIRA, M. A. et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet, v. 365, n. 9453, p. 36-42, 2005.

PIERNAS, C.; POPKIN, B. M. Food portion patterns and trends among U.S. children and the relationship total eating occasion size, 1977-2006. J Nutr, v. 141, n. 6, p. 1159-64, 2011.

STEENHUIS, I. H.; VERMEER, W. M. Portion size: review and framework for interventions. Int J Behav Nutr Phys Act, v. 21, p. 6-58, 2009.

WOODWARD-LOPEZ, G.; KAO, J.; RITCHIE, L. To what extent have sweetened beverages contributed to the obesity epidemic? Public Health Nutr, v. 14, n. 3, p. 499-509, 2011.

WORLD BANK. PPP conversion factor. Website. http://data.worldbank.org/indicator/PA.NUS.PPP, 2015 (accessed in April 2015).

WHO. Physical status: the use and interpretation of anthropometry. Geneva: World Health Organization: Geneva, 1995.
5.8 SUPPLEMENTARY MATERIALS

Supplementary Figure 1. Decision tree for the classification of the food items based on characteristics of food processing and examples.
Foods that have not undergone any kind of industrial processing
- E.g.: raw fruits and vegetables, raw unsalted and non-sugared nuts and seeds

Foods that were processed in ways that did not add substances or subtract edible parts
- E.g.: 100% fruit and vegetable juice, infusion of coffee, raw, pasteurized or sterilized whole milk, plain yogurt

Foods that had an edible part subtracted but no substance added
- E.g.: flour, pasta, milk with fat removal

Handmade preparation/combo in which the main component is a food that have not undergone any kind of industrial processing
- E.g.: mix of vegetables, fruit-salad

Handmade preparation/combo in which the main component is a food that had an edible part subtracted, but no substance added
- E.g.: handmade risottos, pasta, corn and manioc flour-based dishes, artisanal breads, cakes and similar items

Handmade preparation/combo in which the main component is a food that was processed in ways that did not add substances or subtract substances
- E.g.: 100% fruit and vegetable juice, infusion of coffee, raw, pasteurized or sterilized whole milk, plain yogurt

Handmade preparation/combo in which the main component is a formulation made by the food industry
- E.g.: handmade cheese-based sauce, tuna fish handmade dishes, handmade sandwiches from industrialized breads made without additives or synthetic substances

Formulations made by the food industry mostly from substances extracted from foods, such as oils, fats, starches, and sugar, and substances obtained with the further processing of foods’ constituents or through chemical synthesis, such as hydrogenated fats, and additives.
- E.g.: confectionary, instant noodles, carbonated and sugared drinks, cookies

Unprocessed, minimally, or moderately processed foods or handmade dishes based on these foods.

Processed foods

Ultra-processed foods

*The main component is that one that is essential for the characterization of this dish/preparation. For example, the main ingredient of a risotto is the rice (regardless the inclusion of vegetables, meat, etc.), of a pasta dish is the pasta (regardless the inclusion of sauces) and of a sandwich is the bread (regardless of what it is filled with).
Supplementary Table 5.1. Characteristics of the food consumption (%) of total energy) of nationally representative adolescents (10 to 19 year-old) and adults (≥ 20 years old)\(^a\), Brazil 2008-2009.

Food category\(^b\)	Total (n=30 243)	Inside home\(^c\) (n=29 984)	Outside home\(^d\) (n=14 229)
Unprocessed, minimally and moderately processed foods			
Rice	68.6	69.4	53.2
Beans	12.5	12.6	7.7
Red meat	10.2	10.2	5.9
Fruits and 100% fruit juices	6.9	6.7	9.9
Corn, oatmeal, wheat (including pasta)	5.9	6	4.5
Milk	5.3	6	2.5
Poultry	5.3	5.1	3.9
Roots and tubers	3.6	3.5	2.8
Coffee and tea	2.9	3.1	4.2
Fish	1.7	1.7	1
Vegetables	1.6	1.6	1.9
Eggs	1.4	1.6	0.4
Other foods\(^e\)	2	2.1	1.5
Processed foods	1.8	1.9	1
Salted meat and fish	0.7	0.7	0.4
Cheese	1	1.2	0.5
Vegetables in brine or oil and fruits in syrup	0.1	0.1	0.1
Ultra-processed foods	29.6	28.7	45.8
Industrialized bread	9.2	10.3	5.6
Pizzas, hamburgers, sandwiches	4.7	3.7	12.8
Cakes, pies and cookies	3	2.8	4.6
Sugar-sweetened beverages	2.7	2.3	7
Candies, chocolates, gelatin, flan and ice cream	2.2	1.8	6.7
Crackers and chips	2	1.9	3.5
Reconstituted meat products	1.7	1.8	1
Flavored or sweetened yogurts or milk beverages	1.7	2	1.2
Alcoholic beverages	0.8	0.5	2.7
Other products\(^f\)	1.5	1.7	0.8

\(^a\)All statistics accounted for sample weights from the national survey

\(^b\)Unprocessed foods have not undergone any kind of industrial processing, minimally processed foods were processed in ways that did not add substances or subtract edible parts, and moderately processed foods had an edible part subtracted, but no substance added. This category includes all handmade dishes made from these foods and culinary ingredients such as fats, oils, salt, and sugar. Processed foods are manufactured by adding salt, sugar, oils or fats to unprocessed, minimally processed or moderately processed foods and ultra-processed foods are formulations mostly or entirely made from substances extracted from foods, such as oils, fats, starches, sugar, and substances obtained with the further processing of constituents of foods or through chemical synthesis, such as hydrogenated fats, modified starches, and additives used to provide the products with attractive taste, flavor, color, and texture.

\(^c\)Consumption of food groups (% of total energy intake consumed inside the home) of the 29 984 individuals that reported consumption inside home.

\(^d\)Consumption of food groups (% of total energy intake consumed inside the home) of the 14 229 individuals that reported consumption inside home.

\(^e\)Nuts and seed, lentil, peas and soy, plain yogurt, shellfish and other mixed dishes

\(^f\)Margarine, ready-to-eat sauces and breakfast cereals
Supplementary Table 5.2 Characteristics of the 30,243 individuals aged ≥ 10 years old across quintiles of consumption of ultra-processed foods (% of total energy)\(^a\). Brazil 2008-2009.

Quintiles of ultra-processed foods (% of total energy)	1 (≤ 13%)	2 (14 to 22%)	3 (23 to 31%)	4 (32 to 43%)	5\(^b\) (≥ 44%)
Total energy intake in kcal, mean (SD)	1784 (770)	1849 (701)	1884 (697)	1964 (726)	2060 (823)
% of food consumption outside home, mean (SD)	12 (23)	17 (25)	19 (25)	23 (26)	26 (27)
Age					
10 to 19 y, %	16	19	26	35	38
20 to 39 y, %	38	41	43	44	41
40 to 59 y, %	32	30	27	24	17
60 y or more, %	14	11	8	6	4
Sex					
Men, %	59	50	49	47	45
Women, %	41	50	51	53	55
Race					
White, %	34	43	49	54	57
African-descent, %	64	56	50	45	41
Other, %	2	1	1	1	1
Urbanity					
Rural, %	37	20	12	9	6
Urban, %	63	80	88	91	94
Smoking status					
Current smokers\(^c\), %	12	8	7	8	5
Leisure-time and transportation physical activity in min/week\(^d\)					
< 150, %	45	40	32	27	20
Years of education	55	60	68	73	80
-------------------	-----	-----	-----	-----	-----
≥ 150, %					
≤ 4, %	53	37	27	20	17
5 to 8, %	27	28	26	29	29
9 to 12, %	17	28	35	38	38
> 12, %	4	8	12	13	16

Annual household income per person in US$, %
≤2200
2201 to 4400
>4400
49
27
23

a All statistics accounted for sample weights from the national survey

b All the characteristics were significantly associated with the consumption of ultra-processed foods (*P*<0.001)

c The number of smokers was estimated based on the number of individuals that purchased cigarettes (budget survey data). Former smoker data not available.

d Physical activity was estimated with a linear regression model fitted with original data from previous Brazilian population-based surveys with age, sex, race, years of education and smoking status as the predictors.

e Annual household income per person was calculated using a purchasing power parity basis (PPP 2009: US$ 1.00 = RS 1.63), multiplying by 12 months, and dividing by the number of residents in the household.
6 O CONSUMO DE ALIMENTOS ULTRAPROCESSADOS COMO UM INDICADOR SÍNTESE DE QUALIDADE DA ALIMENTAÇÃO E SUA ESTIMATIVA A PARTIR DE PESQUISAS DE ORÇAMENTO FAMILIAR

Este capítulo apresenta o manuscrito “Monitoring population dietary patterns: the share of ultra-processed foods as a summary indicator of diet quality and its estimation from household budget surveys” (em inglês), de autoria de Maria Laura da Costa Louzada, Renata Bertazzi Levy, Ana Paula Bortoletto Martins, Rafael Moreira Claro, Euridice Martinez Steele, Eliseu Verly Junior, Carlo Cafiero e Carlos Augusto Monteiro. O trabalho foi desenvolvido em parceria com o Dr. Carlo Cafiero, após a apresentação dos resultados preliminares em uma oficina sobre métodos para avaliação do consumo alimentar promovida pela Organização das Nações Unidas para a Alimentação e a Agricultura (FAO) em Roma. O manuscrito será submetido para apreciação do corpo editorial da Seção Temática “Improving the relevance and reliability of food data from household consumption and expenditure surveys” do periódico Food Policy devendo conter entre 6 e 10 mil palavras.
6.1 ABSTRACT

Monitoring food consumption is essential to support the formulation of nutrition policies. However, our ability to research dietary changes over time and their effects on health is limited by the challenges which exist in how to accurately define a summary score of population diet quality and in how to accurately measure food consumption. The objectives of this study were to: (1) summarize the evidence regarding the effects of the consumption of ultra-processed foods and its use as a new summary indicator for monitoring dietary patterns and (2) evaluate how well household acquisition data reflect actual intake of these foods using data from the 2008-2009 Brazilian Household Budget Survey. Ultra-processed foods were defined as formulations made by the food industry mostly or entirely from substances extracted from foods or obtained with the further processing of constituents of foods or through chemical synthesis, with little if any whole food. Examples included candies, cookies, chips, sugar-sweetened beverages, and ready-to-eat dishes. Our study shows that, although the effects of the consumption of ultra-processed foods have not been thoroughly tested yet, increasing evidence supports its use as an indicator of diet quality, a predictor of health outcomes and a marker of changes in food systems. In addition, our results showed a reasonable agreement between the estimates of ultra-processed foods consumption obtained from household acquisition and individual food intake inside home data, supporting the use of household budget surveys to monitor national food and nutrition security.

Key words: Food consumption; Ultra-processed food; Indicators; Surveys
6.2 INTRODUCTION

Rates of obesity, diabetes, and other diet-related chronic diseases have increased worldwide with concomitant declines in the prevalence of undernutrition, particularly in low- and middle-income countries (FINUCANE et al., 2011; GDB, 2015). This nutrition transition occurred in parallel with recent transformations in the globalizing food system, mainly characterized by reductions in the consumption of traditional meals based on fresh and minimally processed foods and increases in the acquisition of industrial food products (MONTEIRO and CANNON, 2012; MOODIE et al., 2013; STUCKLER et al., 2012).

Against this background, monitoring food consumption becomes essential, since it could contribute to an early warning system for the formulation of nutrition policies. However, our ability to research dietary changes over time and their effects on health is limited by the challenges which exist in how to accurately define a summary score of population diet quality and in how to accurately measure food consumption.

The objectives of this study were to: (1) summarize the evidence regarding the effects of the consumption of ultra-processed foods and its use as a new summary indicator for monitoring dietary patterns and (2) evaluate how well household acquisition data reflect actual intake of these foods.

6.3 MONITORING POPULATION DIETARY PATTERNS: THE SHARE OF ULTRA-PROCESSED FOODS AS A NEW SUMMARY INDICATOR OF DIET QUALITY

The idea that food constituents act synergistically on health is increasingly recognized and supported by researches (HUHN et al., 2015; JACOBS et al., 2009; JACOBS and ORLICH, 2014; JACOBS and STEFFEN, 2003; JACOBS and TAPSELL, 2013; MESSINA et al., 2001). The evaluation of dietary patterns, rather than single components, thus, is leading to major advances in the nutrition science. Two approaches
to evaluate dietary patterns have been used: “a priori” hypothesis-driven dietary patterns and “a posteriori” data-driven dietary patterns. While the empirically derived dietary patterns may be very variable between countries and over time, some pre-defined patterns – such as the traditional Mediterranean and Japanese diets – are culturally specific and may not apply to all populations.

A growing body of studies supports the use of the dietary share of ultra-processed foods, expressed as a percentage of total calories, as a reliable summary indicator of diet quality and a predictor of health conditions (CROVETTO et al., 2014; LOUZADA et al., 2015a; LOUZADA et al., 2015b; LOUZADA et al., 2015c; MONTEIRO et al., 2010; MONTEIRO et al., 2011; MOUBARAC et al., 2013; RAUBER et al., 2015). This indicator is independent of differences in total energy intake, can be estimated from different dietary data sources and allows flexibility for the evaluation of culturally specific foods. In addition, it gives an idea to what extent traditional food systems and dietary patterns are being displaced. Consequently, it may be an interesting alternative to monitor dietary patterns across the world.

6.3.1 What are ultra-processed products?

Although food processing is increasingly considered the centerpiece of the global food system and the key factor to explain the relationship between food intake and health conditions, dietary assessments usually ignore it, limiting our ability to monitor changes in dietary patterns across the world (FAO, 2015).

It makes no sense to divide food into “unprocessed” or “processed”, since practically all food consumed today is processed in some way. In addition, many types of processing are harmless, beneficial, or even essential and play a central role in human evolution. The correct assessment of the effects of the industrial food processing on health requires a proper understanding of the extent and purpose of each type of processing and of how they affect food’s uses.

Food classification according to the extent and purpose of industrial food processing
With this objective, a group of researchers proposed NOVA, a new classification of foods that gives primary importance to the characteristics of food processing.

Food processing, as understood by NOVA classification, involves physical, biological and chemical processes that occur after the separation of the food from the nature and before it is prepared to be eaten. Therefore, the procedures used in culinary preparation, taking place in the houses’ kitchens or in commercial or institutional restaurants, including disposal of non-edible parts, fractioning, cooking, seasoning and mixing with other foods, are not taken into account by the NOVA classification.

The rationale and the food groups contemplated by the new classification were first described in 2010 (MONTEIRO et al., 2010) and further developed in the following years (MINISTÉRIO DA SAÚDE, 2014; MONTEIRO et al., 2012; MONTEIRO et al., 2014; MOUBARAC et al., 2014).

Table 6.1 provides a detailed list of examples of the four NOVA food groups:

- Unprocessed or minimally processed foods;
- Processed culinary ingredients;
- Processed foods;
- Ultra-processed foods.

Group 1. Unprocessed or minimally processed foods

Unprocessed foods are edible parts of plants (seeds, fruits, leaves, stems, roots) and animals (muscles, viscera, eggs, milk) as well as mushrooms, algae and water after its separation from nature. Minimally processed foods are perishable foods submitted to processes that do not add new substances to the foods such as drying, dehydration, milling, fractioning, roasting, pasteurization, refrigeration or freezing, vacuum packaging, and non-alcoholic fermentation.
Most of the processes involved in minimal processing aim to extend the life of unprocessed food allowing its storage for longer use. Other purposes include facilitating or diversifying the preparation of cooked food (removal of inedible parts, fractioning and grinding or milling of food) or modifying its flavor (roasting coffee beans or tealeaves and fermentation of milk to produce yoghurt).

Typical examples of Group 1 foods are: fruits, vegetables, cereals, beans, legumes, roots and tubers, flour, meat, poultry, fish, milk (raw, pasteurized or powdered) and plain yogurt, unsalted and non-sugared nuts and seeds, eggs, herbs, coffee, tea, flour, pasta.

Items composed of two or more foods of this group (such as granola cereal with fruit and dried fruit and no added sugar, honey, oil, fat or any other substance) and foods fortified with vitamins and minerals (such as wheat or corn flour enriched with iron and folic acid) are also classified in Group 1.

Although infrequent, foods that present additives which preserve the original properties of food, such as anti-oxidants used in dehydrated fruits or cooked and vacuum-packed vegetables, and stabilizers used in ultra-pasteurized milk remain classified in this group.

Group 2. Processed culinary ingredients

This group includes substances extracted directly from the Group 1 foods or from the nature and usually consumed as items of culinary preparations. The processes involved in the extraction of these substances include pressing, grinding, milling, spray drying and refining.

These processes aim the manufacture of products used for seasoning and cooking unprocessed or minimally processed foods and, in general, to make culinary preparations based on these foods. In food intake surveys, the culinary ingredients are rarely recorded as isolated items, but they appear as part of dishes and preparations of unprocessed or minimally processed foods.
Examples of Group substances 2 are: sugar, plant oils (soy, corn, sunflower, olive), animal fats such as butter and lard, vinegar, salt.

Products consisting of two substances belonging to this group (such as salted butter) and products composed of substances of this group added with vitamins or minerals (such as iodized salt) are also classified in Group 2.

Vinegars obtained by acetic fermentation of alcohol in wine and other alcoholic beverages are also classified in Group 2, in this case because of the similarity of use with other substances belonging to the group.

Culinary ingredients that present additives to preserve the original properties such as anti-oxidants used in vegetable oils, anti-wetting used in salt, or additives that prevent the proliferation of micro-organisms such as preservatives used in vinegar, remain classified in this group.

Group 3. Processed foods

This group includes products made with the addition of salt or sugar and sometimes oils, fats, vinegar or other Group 2 substances to Group 1 foods. They usually have two or at most three ingredients. The processes used in the manufacturing of these products include salting, sugaring, smoking/curing, canning and bottling, pickling, jellying, coagulation, and fermentation, in the case of bread and cheese.

The underlying purpose of the manufacture of processed foods is to increase the duration of unprocessed or minimally processed food or to modify its palatability, similar to the purpose of processes used to make Group 1 foods. Processed foods are directly derived from food and are usually recognized as versions of the original foods.

Examples of processed foods are: canned vegetables, cereal or legumes, salted meats, fish preserved in oil or water and salt, fruit in syrup, fruit juices containing added sugar, cheeses and breads.
Products that contain additives to preserve their original properties such as anti-oxidants used in jellies, or to prevent proliferation of micro-organisms such as preservatives used in dehydrated meats, remain classified in this group.

Group 4. Ultra-processed foods

Ultra-processed foods are industrial products that are made entirely or mostly of substances that have been extracted from foods or nature and used as common culinary ingredients (oils, fats, sugar, and salt), derived from food constituents (hydrogenated fats, modified starches) or synthesized in a laboratory based on organic materials such as oil and coal (colorants, flavorings, flavor enhancers and other additives used to give the products attractive sensory properties). Manufacturing techniques include extruding, moulding and preprocessing by deep frying or baking. They are completely different from other foods, and mostly contain little or no whole food. A high number of ingredients (usually five or more) and the presence of ingredients that are not used in culinary preparations (hydrogenated fat, interesterified oils, fructose syrup, protein isolates, bulking agents, thickeners, emulsifiers, colorants, flavor enhancers, and several other types of additives) identify ultra-processed foods.

Substances and classes of additives restricted to the ultra-processed foods group are: sweeteners, carbonating agents, firming agents, bulking agents, anti-caking agents, antifoaming agents, flavorings, carriers, colors, foaming agent, color stabilizer, flavoring, glazing agents, flavor enhancers, sequestrants, humectants, inverted sugar, modified corn starch, casein, hydrolyzed collagen, malt extract, gluten, protein hydrolysates, inulin, soy protein and other foods isolates, lactose, maltodextrin, cacao butter, hydrogenated oils, interesterified oils, egg albumin, whey, corn syrup with high fructose.

Examples include: sugar-sweetened beverages, industrial sauces and spreads, biscuits, processed sweets and treats in general (candies, ice creams, and chocolates), sausages, frozen/ready-to-eat dishes, and cereal bars. Sliced, hamburger or hot dog bread, sweet breads and baked products whose ingredients include not only flour, yeast and salt but
substances such as hydrogenated vegetable fat, sugar, starch, whey, emulsifiers or other additives, are also ultra-processed.
Food category	Characteristics	Food items assigned to this group
Unprocessed or minimally processed food	Unprocessed foods are obtained directly from plants or animals (such as leaves and fruit or eggs and milk) and are purchased ready for consumption without having undergone any alteration after leaving the natural source. Minimally processed foods are unprocessed foods that, prior to their acquisition, underwent minor changes that do not involve adding substances to the food.	Raw or packaged, fractionated, chilled or frozen vegetables, fruits, potatoes, cassava and other roots and tubers; bulk or packed white, brown or parboiled rice; corn grain, wheat grain and other cereals; beans, lentils, chickpeas and other legumes; fresh or dried mushrooms; dried fruits, fruit juices and pasteurized fruit juices without added sugar, sweeteners, or other substances; chestnuts, walnuts, peanuts and other seeds without salt or sugar; spices in general and fresh or dried herbs; cassava, corn or wheat flour or fresh or dried pasta made with these flours and water; beef, pork and poultry, fresh, chilled or frozen fish; pasteurized or powdered milk, yogurt (no added sugars, sweeteners, or other substances); eggs; tea, coffee, and water.
Culinary ingredients	Culinary ingredients are constituents of foods, such as fats and oils, and sugar, or else obtained from nature, such as salt. They are usually used for seasoning and cooking food.	Salt extracted from mines or sea water, sugar extracted from sugar cane or beet, animal fats and vegetable oils (such as soya oil or olive and butter or lard), starch extracted from maize or other plants.
Processed foods	Unprocessed or minimally processed food manufactured by adding salt, oil or sugar. These products are directly derived from food and usually recognized as versions of the original foods.	Vegetables, cereals, legumes, meat or fish preserved in oil or brine, salted meat or fish, fruits preserved in syrup or sugared, cheeses made from milk and salt and bread made from wheat flour, water, yeast and salt (but not containing other substances such as hydrogenated fat and additives such as colors and flavor enhancers).
Ultra-processed foods	Ultra-processed foods are industrial products that are made entirely or mostly of substances that have been extracted from foods or nature and used as common culinary ingredients (oils, fats, sugar, and salt), derived from food constituents (hydrogenated fats, modified starches) or synthesized in a laboratory based on organic materials such as oil and coal (colorants, flavorings, flavor enhancers and other additives used to give the products attractive sensory properties).	Margarine, mayonnaise and sauces like ketchup and salad dressings, sugar-sweetened beverages, artificially flavored or sugared yogurt and other milk-based beverages, sweets like chocolates, candies, flans, gelatins, ice cream, cakes, breakfast cereals and cereal bars, cookies and crackers, savory baked and deep-fried snacks, fast food dishes (cheeseburgers, pizzas, hot dogs), sausages, nuggets, sliced bread, hamburger or hot dog processed bread, sweet breads and baked products whose ingredients include substances such as hydrogenated vegetable fat, sugar, starch, whey, emulsifiers or other additives, instant noodles, ready-to-eat lasagna and other pasta dishes, ready-to-eat instant soups and sandwiches.

Adapted from the Dietary guidelines for the Brazilian population (MINISTÉRIO DA SAÚDE, 2014)
6.3.2 Ultra-processed foods and diet quality

Ultra-processed foods have an unfavorable nutrient profile and impact negatively on diet quality. This has been documented in several countries by studies using data collected by household food purchases surveys (CROVETTO et al., 2014; MONTEIRO et al., 2011; MOUBARAC et al., 2013), individual food intake surveys (BARCELOS et al., 2014; BIELEMANN et al., 2015; LOUZADA et al., 2015b; LOUZADA et al., 2015c), and analyses of supermarket products (LUITEN et al., 2015). Analyses of 24-hour food records from a representative sample of Brazilian adolescents and adults showed that the part of the diet composed only by ultra-processed foods had higher energy density, higher overall, saturated and trans fat contents, higher levels of free sugar and less fiber, protein, sodium and potassium, when compared to the rest of the diet. The energy density of the diet and the relative content of free sugar, total fats, saturated fats and trans fats increase significantly with the increase in the consumption of ultra-processed foods (% of total energy), while the opposite occurs for protein, fiber, and potassium. The 20% lowest consumers of ultra-processed foods were anywhere near reaching all nutrient goals for the prevention of obesity and chronic non-communicable diseases (LOUZADA et al., 2015b).

The inferiority of ultra-processed foods was also evident in the assessment of micronutrient content in the Brazilian diet. The consumption of ultra-processed foods (% of total energy) was inversely and significantly associated with the content of vitamins B12, vitamin D, vitamin E, niacin, pyridoxine, copper, iron, phosphorus, magnesium, selenium and zinc. The opposite situation was observed only for calcium, thiamin and riboflavin (LOUZADA et al., 2015c).

Due to the lack of water and the type of carbohydrates, many ultra-processed foods tend to have high energy density and high glycemic loads. When solid, their energy density can range from around 2.5 kilocalories per gram in some types of bread to around 5 kilocalories per gram as in many biscuits and chips. Analysis of the 2008-2009 Brazilian dietary survey showed that the part of the diet composed only by ultra-processed foods had 2.5 times more energy per gram than the set of all other foods (LOUZADA et al., 2015b). This is particularly relevant since individuals regulate food
consumption by volume more so than calories and energy density is directly associated to energy intake and weight gain (ROLLS, 2009). Despite the lack of consensus in the literature (PI SUNYER, 2002; SCHWINGSACKL et al., 2015), some studies point that high glycemic loads cause an increased insulin response, what might promote weight gain by preferentially directing nutrients away from oxidation in muscle and towards storage in fat (LUDWIG, 2002; BRAND-MILLER et al., 2002).

6.3.3 Ultra-processed foods and health outcomes

Many characteristics related to ultra-processed foods composition, presentation and consumption patterns make them potential risk factors for obesity, diabetes and other diet-related chronic diseases (LUDWIG, 2011; MONTEIRO et al., 2012; MOODIE et al., 2013).

As the ultra-processed foods category has only recently been defined, few population studies have evaluated the association between their consumption and morbidity and mortality outcomes. However, studies carried out in Brazil indicate the existence of significant associations between ultra-processed foods consumption and metabolic syndrome in adolescents (TAVARES et al., 2012), dyslipidemia in children (RAUBER et al., 2015) and obesity in all age groups (CANELLA et al., 2014). A cross-sectional analysis based on individual-level dietary data from a representative sample of 34,003 Brazilians aged ≥10 years showed that individuals in the highest quintile of consumption of ultra-processed foods (% of total energy) had significantly higher body-mass-index and higher odds of being obese compared with those in the lowest quintile of consumption (LOUZADA et al., 2015a).

These findings are consistent with studies from high-income countries that have assessed the influence of items that could be classified as ultra-processed foods on obesity. In the US, compiled data from three cohorts have reported an association between 4-year weight gain and the consumption of potato chips, sugar-sweetened beverages, and processed meat (MOZAFFARIAN et al., 2011). Also, a 15-year prospective study showed that the frequency of fast food consumption among young adults was directly associated with changes in body weight and insulin resistance.
Regarding sugar-sweetened beverages, strong epidemiological evidence describes their role in the etiology of obesity and other cardiovascular diseases (HU and MALIK, 2010; IMAMURA et al., 2015; SINGH et al., 2015; WOODWARD-LOPEZ et al., 2011).

Analyses of household food acquisition data in the United Kingdom explored the potential mortality reduction associated with future policies for reducing ultra-processed foods intake. Halving the intake of ultra-processed foods could result in approximately 22,055 fewer deaths related to cardiovascular diseases in 2030, comprising almost 13% mortality reduction (MOREIRA et al., 2015). In Sweden, the consumption of ultra-processed foods increased dramatically from 1960 to 2010, which closely tracked the increased prevalence of obesity (JUUL and HEMMINGSSON, 2015).

Analyses of sales of ultra-processed foods and its relation to the occurrence of obesity in Latin America corroborate these results. There is a positive, strong, significant association between the prevalence of adult obesity and per capita sales of ultra-processed foods in 2013. In addition, changes in sales of ultra-processed foods between the years of 2000 and 2009 were direct and significantly associated with changes in the mean body-mass-index of the adult population in the same period. Each 20-unit increase in annual sales of ultra-processed foods per capita was associated with an increase of 0.28 kg/m² in age-standardized body mass index. Countries like Bolivia and Peru, where sales of ultra-processed food are lower and where traditional habits are still prevalent, had lower body-mass-indexes. Mexico and Chile, where sales of these foods are higher, had higher body-mass-indexes (PAHO, 2015).

Ultra-processed foods are convenient, portable, and time-saving. Typically, they are designed to be consumed anywhere - while watching television, working, or walking - and often, without plates or implements. They are usually sold in the form of snacks, drinks, desserts, or ready-to-consume dishes and can readily displace fresh and handmade meals. Also, the processing techniques and the addition of flavor enhancers and texture modifiers make ultra-processed foods hyper-palatable and sometimes habit-forming. They are therefore liable to cause “mindless eating” and to damage the
endogenous processes that signal satiety and control appetite (LUDDWIG, 2011; OGDEN et al., 2013).

Food additives such as emulsifiers, thickening agents and colors are extensively used in the production of ultra-processed foods. However, a growing body of evidence shows that these additives are far from being harmless. A recent review study suggests that increased consumption of substances such as emulsifiers, surfactants, organic solvents, microbial transglutaminase and nanoparticles may be associated with rises in the prevalence of autoimmune diseases in recent decades. This hypothesis is based on the fact that these substances abrogate human epithelial barrier functions and thus increase the risk of autoimmune diseases (LERNER and MATTHIAS, 2015). An experimental study showed that mice that received relatively low concentrations of two commonly used emulsifiers - carboxymethylcellulose and polysorbate-80 – presented alterations in their microbiota and, afterward, higher risk of inflammation, weight gain and metabolic syndrome (CHASSAING et al., 2015). Artificial non-caloric sweeteners, originally developed to reduce caloric intake and blood glucose, are also associated with induction of compositional and functional alterations of the intestinal microbiota and glucose intolerance in mice and in humans (SUEZ et al., 2014).

Sugar-sweetened beverages – like soft drinks and artificial juices – may impact negatively on health by particular mechanisms. Their consumption can also lead to positive energy balance and weight gain by an incomplete compensatory reduction in energy intake at subsequent meals following intake of liquids (DIMEGLIO and MATTES, 2000). Some substances such as advanced glycation end products generated in the process of caramelization of the cola beverages acutely impair endothelial function and can affect pathophysiological pathways related to type 2 diabetes and metabolic syndrome (Uribarri et al., 2007).

Another characteristic that may link the consumption of ultra-processed foods with obesity is the portion size. Portion sizes of many ultra-processed foods significantly increased in past decades (Nielsen and Popkin, 2003; Piernas and Popkin, 2011). Often, these products are sold in “supersize” portions. This evidence is extremely important since many studies have linked portion size increases to increased total energy intake
and weight gain (ALBAR et al., 2014; DILIBERTI et al., 2004; STEENHUIS and VERMEER, 2009). In the US population, their increments accounted for a large portion of the 30-y increases in total energy intake (DUFFEY and POPKIN, 2011).

All these characteristics are amplified by aggressive marketing and sophisticated advertising, which make these products attractive and ubiquitous, and modify social norms, especially among vulnerable consumers such as children (MALLARINO et al., 2013). Many marketing strategies also focus on assumed "health claims" of these products. In middle- and low-income countries, the direct and specific marketing of branded products to impoverished communities is quite significant.

6.3.4 Ultra-processed foods and changes in the food system

The increased production and dissemination of ultra-processed foods displace the consumption of handmade dishes based on fresh and minimally processed foods (MONTEIRO and CANNON, 2012). Changes in the consumption of ultra-processed foods over time, thus, may be also a marker of changes in local food systems.

Household budget surveys in Brazil, Canada, Chile and Sweden documented marked increases in the purchase of all types of ultra-processed foods and reductions in the acquisition of fresh food and culinary ingredients (Crovetto and Uauy, 2012; Juul and Hemmingsson, 2015; MARTINS et al., 2013; J. C. MOUBARAC et al., 2014). Time series food sales statistics in 79 countries also indicate a general trend of increasing ultra-processed food consumption, particularly in middle-income countries (MONTEIRO et al., 2013).

6.3.5 Implications

Although the impacts of the consumption of ultra-processed foods have not been thoroughly tested yet, its implications on both the design of information systems to
monitor national food and nutrition security and the development of public health policies is increasingly recognized. Some international organizations such as the International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) and the Food Agriculture Organization (FAO) support the dietary share of ultra-processed foods as an indicator of energy-dense, nutrient-poor diets using both household budget and food intake surveys (FAO, 2015; VANDEVIJVERE et al., 2013).

The new official national Brazilian Dietary Guidelines (MINISTÉRIO DA SAÚDE, 2014), issued in November 2014, are an example of how national surveys can strongly support the development of actions to promote healthy eating (MONTEIRO et al., 2015). The main recommendations were based on evidences from both household budget and individual dietary intake data that pointed out to the negative impacts of the consumption of ultra-processed foods in Brazil. The main recommendation is:

Always prefer natural or minimally processed foods and freshly made dishes and meals to ultra-processed products. Opt for water, milk and fruits instead of soft drinks, dairy drinks and biscuits. Do not replace freshly prepared dishes (broth, soups, salads, sauces, rice and beans, pasta, steamed vegetables, pies) with products that do not require culinary preparation (packaged snacks and soups, instant noodles, pre-prepared frozen dishes, sandwiches, cold cuts and sausages, industrialized sauces, ready-mixes for cakes) and stick to homemade desserts, avoiding industrialized ones (Ibid, p. 47).

6.4 MONITORING POPULATION DIETARY PATTERNS: THE IMPORTANCE OF THE HOUSEHOLD BUDGET SURVEYS

In low- and middle-income countries, dietary surveys, the more accurate source of information to assess individual food intake, are scarce and hardly national representative. In these countries, household budget surveys, periodically conducted to monitor the cost of living at national level, are an interesting alternative to assess food consumption (FAO, 2008). Still, several limitations have constrained their usefulness for assessing dietary consumption. Household-based surveys do not provide information on food actually eaten by the household members and on the intra-family distribution of food consumption. In addition, food acquisition surveys do not account for waste from cooking, spoilage, or leftover, and meals not eaten at home. Analyses of a limited
number of countries and food groups suggested that household budget surveys estimates can significantly differ from individual dietary consumption (BECKER, 2001; CLARO et al., 2010; NASKA et al., 2001; SEKULA et al., 2005).

In Brazil, national trends of food consumption have been regularly evaluated since mid-1970 using data collected by national household budget surveys. In 2008-2009, the Brazilian Institute of Geography and Statistics included in the national household budget survey one module to assess individual food intake in a subsample of the studied households. This has enabled the evaluation of how well household acquisition data reflect actual intake.

6.4.1 Comparative analyses of household and individual food consumption data: evidence from the Brazilian Household Budget Survey 2008-2009

We have analyzed household food acquisition and individual food intake data collected by the Brazilian Household Budget Survey. This survey was carried out by the Brazilian Institute for Geography and Statistics from May 2008 to May 2009 (IBGE, 2010b). Table 6.2 provides a summary of the two data sources.
Table 6.2 Characteristics of the household food acquisition and the individual food intake data
Household food acquisition data
Data source
Agency responsible
Year
Sampling frame
Sampling unit
Net sample
Sampling method
Type of data
Survey method
Duration
Foods outside home
The sample of households was selected by a two stage complex cluster sampling design, with the census tracts as primary sampling units, and households as secondary sampling units. All census tracts existing in the country were initially grouped into 550 geographic and socioeconomic homogenous household strata. Census tracts were selected from each of the 550 strata by systematic sampling with probability proportional to the number of households in the strata. Households were selected from each census tract by simple random sampling. The interviews in each stratum were uniformly distributed over a twelve months period.

The food acquisition module investigated all households selected for the survey (n=55,970) and a sub-sample corresponding to 25% of the households (n=13,569) was randomly selected for the individual food intake module, which was applied to all individuals aged 10 years or older (n=34,003).

Individual Food Intake

All individuals aged 10 years or older living in the samples households were asked to complete two non-consecutive 24-hour food records on pre-determined days spanning one week. They were asked to record all foods and beverages consumed and to include information on time, amount, and place of consumption (inside or outside home). Additionally, information on the consumption of sugar and/or artificial sweetener in beverages was collected in a separated question. Food intake outside home included foods and drinks purchased and consumed away from home. Interviewers critically reviewed the food records and performed the electronic data storage during home visits (IBGE, 2011a).

Reported food amounts were converted into daily grams or milliliters based on a food portion table (IBGE, 2011b). Energy intake was estimated based on a food composition table provided by the Brazilian Institute for Geography and Statistics with information regarding food consumption in Brazil (IBGE, 2011c). Individual food intake was estimated through the average of the food records registered in the two days, when both were available (96.7% of the individuals), or through a single food record (3.3% of the individuals).
Household food acquisition

The survey recorded detailed information on all expenses made with the acquisition of foods and beverages for household consumption during a period of seven consecutive days (including the exact amount acquired of each food item). The same information regarding non-monetary acquisitions (such as donations and self-production) was also recorded and converted into monetary values (IBGE, 2010a). As the information originally reported by the survey refers to the gross quantity of each food acquisition, correction factors were applied to exclude the non-edible parts (IBGE, 1996).

Foods eaten by the household members outside home were not recorded in sufficient detail and therefore were not included in the analyses.

All food items acquired by households were converted into energy using a food composition table provided by the Brazilian Institute for Geography and Statistics with information regarding food consumption in Brazil (IBGE, 2011c) and complemented with data from the Brazilian food composition table (NEPA/UNICAMP, 2004) and the US official nutrient database for standard reference (USDA, 2010).

Food classification

All food items reported in both the food acquisition and the food intake survey modules were classified according to NOVA groups (MINISTÉRIO DA SAÚDE, 2014; MONTEIRO et al., 2014; MONTEIRO et al., 2010; MOODIE et al., 2013; MOUBARAC et al., 2014): unprocessed or minimally processed foods, processed culinary ingredients, processed foods, or ultra-processed foods. Details and examples of each food group were previously described in item 6.3.1 and in Table 6.1.

Comparative analyses

The analyses were carried out only with the households that were evaluated in both the acquisition and the individual intake modules of the survey (n= 13,569). Estimates of
the households' clusters (550 strata created in the survey sample design) were used as study units.

We estimated the mean total energy intake (kcal), the absolute (kcal) and the relative (\% of total energy) consumption of ultra-processed and non-ultra-processed foods through the assessment of both household food acquisition and individual food intake inside and outside home data. Comparisons between mean estimates of household food acquisition and individual food intake inside home were performed with the t-test.

Lin’s correlation–concordance coefficient (CCC) (LIAO and LEWIS, 2000; LIN, 1989) was used to evaluate the agreement between estimates of the absolute (kcal) and the relative consumption (\% of total energy) of ultra-processed foods obtained from individual intake inside home and household acquisition data. The CCC determines how far the observed data deviate from the line of perfect concordance, that is, the line at 45° on a square scatterplot. For interpretation of the coefficients, we considered: 0.00–0.20, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial agreement; 0.81–1.00, almost perfect agreement; and 1, perfect agreement. For the analyses of agreement, the variables were log-transformed (natural logged) in order to improve normality. In addition, we evaluated the correlation between the difference between estimates (acquisition – intake inside home) and their average in order to evaluate if the difference varies according to different levels of consumption of ultra-processed foods.

Comparative analyses were stratified by tertiles of household income per capita. All the analyses were performed with Stata 13.0 (Texas, US) at a two-tailed alpha level of 0.05.

6.4.2 How well household acquisition data reflect actual intake of ultra-processed foods?

The analyses showed that there were no significant differences between purchased and inside home eaten amounts of ultra-processed foods. Mean daily individual ultra-processed foods intake was 403.9 kcal, of which 305.0 kcal were consumed inside and
99.0 outside home. These foods represented 22.1% of the individual total energy intake, 19.9% of the energy intake inside and 34.3% of the energy intake outside home. The mean household daily energy acquisition of ultra-processed foods amounted to 317.3 kcal per person, representing 19.2% of the total energy acquisition. On the other hand, the absolute amount (but not the relative) of non-ultra-processed foods (kcal), was slightly overestimated by the household data ($P<0.05$) (Table 6.3).
Table 6.3. Absolute (kcal) and relative (% of total energy) consumption of ultra-processed and non-ultra-processeda foods from household food acquisition (7-day diaries) and individual food intake survey modules (2-day records). Brazil 2008-2009.

	Household food acquisition	Individual food intake	Difference between household food acquisition and individual food intake inside home (%)b			
	Mean	Total	Inside home	Outside home		
Ultra-processed foods	kcal/day	Mean	Mean	Mean	%	
	317.3	403.9	305.0	99.0	4.0	
	% of total energy	Mean	Mean	Mean	%	
	19.2	22.1	19.9	34.3	-3.2	
Non ultra-processed foods	kcal/day	1332.9	1420.0	1230.5	189.9	8.3*
	% of total energy	Mean	Mean	Mean	%	
	80.8	77.9	80.1	65.7	0.8	
All foods	kcal/day	1650.2	1823.9	1535.5	288.9	7.5*

a See Table 6.1 for details

bDifference = [(acquisition - intake)*100]/intake

*P < 0.05 for the t-test
Concordance correlation coefficient showed a moderate agreement between the estimates of the absolute consumption of ultra-processed foods (kcal) obtained from the household acquisition and the individual intake inside home data (CCC=0.58 CI 95% 0.53-0.64) (Figure 1a). However, the analyses regarding the relative consumption of ultra-processed foods (% of total energy) showed a substantial agreement between the two data sources (CCC=0.68 CI 95% 0.64-0.72) (Figure 1b). Correlation between the difference between the estimates (acquisition – intake inside home) and their average was 0.23 (95% CI 0.15, 0.30 $P<0.001$), suggesting that the difference increases with the levels of the consumption of ultra-processed foods (Figure 2).
Figure 1a. Agreement between the estimates of the consumption (kcal) of ultra-processed foods obtained from household food acquisition and individual food intake inside home data. Brazil 2008-2009. Concordance correlation coefficient=0.58 (CI 95% 0.53; 0.64). Variables were log-transformed.

Figure 1b. Agreement between the estimates of the consumption (% of total energy) of ultra-processed foods obtained from household food acquisition and individual food intake data. Brazil 2008-2009. Concordance correlation coefficient=0.68 (CI 95% 0.64; 0.72). Variables were log-transformed.
Figure 2. Plot of the difference between the estimates of the consumption of ultra-processed foods (acquisition – intake inside home) (% of total energy) against the average of these estimates. Brazil 2008-2009. Correlation between the difference of the estimates (acquisition – intake inside home) and their average was 0.23 (95% CI 0.15, 0.30 P<0.001), suggesting that the difference increases with the levels of the consumption of ultra-processed foods.
In stratified analysis, we observed no significant differences between the estimates obtained from the household acquisition and the individual intake inside home data among those in the first and second tertiles of household income per capita. However, the absolute (but not the relative) consumption of both ultra-processed and non-ultra-processed foods (kcal) was significantly overestimated by the household data among those in the highest tertile of household income per capita ($P<0.05$) (Table 6.4).
Table 6.4 Absolute (kcal) and relative (% of total energy) consumption of ultra-processed and non-ultra-processed foodsa from household food acquisition (7-day diaries) and individual food intake survey modules (2-day records) by tertiles of household income per capita. Brazil 2008-2009.

Tertile 1	Household food acquisition	Individual food intake	Difference between household food acquisition and individual food intake (\%)b			
	Food groupsa	Mean kcal/day	Total Mean kcal/day	Inside home Mean kcal/day	Outside home Mean kcal/day	%
	Ultra-processed foods	224.2	288.8	221.1	67.8	1.4
	% of total energy	13.4	15.7	13.7	29.5	-2.4
	kcal/day	1448.5	1551.3	1389.2	189.9	4.3
	Non ultra-processed foods	86.6	84.3	86.3	70.5	0.4
	% of total energy					
	kcal/day	1672.7	1840.1	1610.3	230.2	3.9
	All foods	292.4	408.2	309.3	99.0	-5.5
	% of total energy	19.1	22.4	20.2	34.2	-5.3
	kcal/day	1238.2	1414.2	1223.3	189.9	1.2
	Non ultra-processed foods	80.9	77.6	79.8	65.8	1.4
	% of total energy					
	kcal/day	1530.6	1822.4	1532.6	289.8	-0.1
	All foods	435.8	515.8	385.4	130.4	13.1*
	% of total energy	25.0	28.5	26.3	37.5	-5.3
	kcal/day	1310.6	1293.2	1077.7	189.9	21.6*
	Non ultra-processed foods	75.0	71.5	73.7	62.5	1.9
	% of total energy					
	kcal/day	1746.4	1809	1463.1	347.3	19.4*
	All foods	224.2	288.8	221.1	67.8	1.4
	% of total energy	13.4	15.7	13.7	29.5	-2.4
	kcal/day	1448.5	1551.3	1389.2	189.9	4.3
	Non ultra-processed foods	86.6	84.3	86.3	70.5	0.4
	% of total energy					
	kcal/day	1672.7	1840.1	1610.3	230.2	3.9

a See Table 6.1 for details

b Difference = [(acquisition - intake)*100]/intake

\(* P < 0.05 for the t-test*
6.4.3 Summary and implications

The comparisons between estimates of ultra-processed foods consumption obtained from household acquisitions and individual food intakes inside home showed a reasonable agreement between these two data sources, particularly for the relative (% of total energy) consumption of these foods.

Heterogeneity in the methods to analyze discrepancies between data sources limits the comparison with previous studies. Still, our findings are consistent with some studies from high-income countries. A Swedish study that compared household acquisition (excluding outside home consumption) and individual food intake showed reasonable agreement (±20% of discrepancy) for many major foods including cereal products, milk, cheese, meat and meat products, fish, fruit and vegetables. The acquisition data slightly underestimated the consumption of some ultra-processed foods such as sweet bakery products and soft drinks, while the opposite was observed for oils, fats, cream and sugar (BECKER, 2001). The comparison between national household budget and individual nutrition surveys in four European countries showed good correlations between data sources for almost all food groups (NASKA et al., 2001). A study from Poland, on the other hand, found different results, showing discrepancies between data sources for many food groups (SEKULA et al., 2005).

Some level of disagreement between data sources was expected, as food acquisition data are designed to reflect availability patterns in household levels, rather than actual dietary intake. Household data refer to the raw or processed food entering the household, and any loss due to preparation, wastage of spoiled food, leftover food, transfers to other households or people, food used to feed animals, and the sharing with visitors or workers is not accounted for. Differences in the level of wastage between ultra-processed and non-ultra-processed foods may partially explain our results. Ultra-processed foods, in general, are ready-to-eat and can be stored for long periods. Consequently, they have relatively small wasted fractions and the absolute amounts acquired and actually consumed are expected to be more similar. On the other hand, unprocessed or minimally processed foods such as fruits, vegetables, roots and meats, and culinary ingredients such as vegetable oils, are more likely to be overestimated by the purchase data. A previous study comparing household acquisition and individual intake in
Brazil found that purchasing surveys tend to overestimate the consumption of fruit and vegetables by about 60% (CLARO et al., 2010).

The differences between income groups are consistent with previous studies (FAO, 2008). Food wastage, transfer and the sharing with visitors or workers may be higher in high-income households. As a result, the use of food acquisition data is more likely to overestimate food intake in households of high-income levels and show an apparent distribution of food that is more unequal than it really is.

Individual food intake data showed that the relative consumption of ultra-processed foods is more than 50% higher outside home than inside home. A previous study also showed that, in Brazil, the highest percentage of away-from-home energy sources was for items that could be classified as ultra-processed, such as baked and deep-fried snacks, pizza, soft drinks, sandwiches, and sweets and desserts (BEZERRA et al., 2013). We can infer, therefore, that household data underestimate the contribution of ultra-processed foods to the overall diet. At present, this should not be a major limitation as the largest part of food consumption in Brazil is still done in the household (near 85% of total energy intake). The increasing frequency of eating out, however, may affect the capacity of household purchasing to assess time trends regarding the intake of ultra-processed foods. For certain population groups who eat out frequently, such as urban residents and men, the underestimation may be substantial. A recent study showed that expenditure with food consumption outside home increased 25% from 2002-2003 to 2008-2009 in Brazil and the economic growth can further contribute to these trends (CLARO et al., 2014).

One limitation of this comparison is the fact that the population age distributions in the two data sources are not identical since the acquisition module comprises the entire population while individual food intake module only considers individuals aged 10 years old or older. Even so, it is unlikely that this is the major source of the differences since results of the agreement analyses were similar when households that presented at least one resident aged less than 10 years old were excluded (data not shown).

It is important to highlight that individual food intake data are also imperfect. For instance, intake data may be biased by underreporting or modification of intake on the reported day -
which is particularly important among obese people. To minimize these problems, food records were evaluated against gold standard methods, the questionnaire was tested and validated, and quality control procedures such as imputation of missing data were carried out (IBGE, 2011a). As the food record tool employed in the dietary survey was not designed specifically to classify foods according to characteristics of industrial processing, the study is also subject to potential misclassification bias. This bias is more likely for a few food items, which are commonly consumed in Brazil either as culinary preparations or as manufactured products, such as cakes and pizzas. When the report of these items was followed by additional information on recipes the item was considered a culinary preparation and classified in the group of minimally processed foods and culinary preparations. When a name of a brand was reported, the item was considered a processed or ultra-processed food. In the cases where no additional information was available, the most frequent option (culinary preparation or manufactured product) among the cases with additional information was chosen.

Our work has some strengths. First, the individual intake survey is nested in the household survey, guarantying the same population base and data collection period. The comparison between acquisition and individual food intake is rare and usually limited to the evaluation of energy and nutrients intake. This study is one of the few that compared consumption vs acquisition approaches for deriving information on dietary risk factors for obesity and other chronic diseases.

6.5 CONCLUSION AND RECOMMENDATIONS

Although the effects of the consumption of ultra-processed foods have not been thoroughly tested yet, increasing evidence supports its use as an indicator of the nutritional quality of the diet, a predictor of health conditions and a marker of changes in food systems.

In addition, our findings strengthen the use of household acquisition data, which is collected systematically in Brazil since the 70s, as a proxy of the actual intake of ultra-processed foods inside home. In the absence of nationally representative dietary intake surveys, household data is a valuable tool to monitor national food and nutrition security. The trends toward
increasing consumption of food away from home in Brazil and in other low- and middle-income countries require further studies to improve the estimation of these data also by household budget surveys.

6.6 REFERENCES

ALBAR, S. A. et al. Is there an association between food portion size and BMI among British adolescents? Br J Nutr, v. 112, n. 5, p. 1-11, 2014.

BARCELOS, G. T.; RAUBER, F.; VITOLO, M. R. Produtos processados e ultraprocessados e ingestão de nutrientes em crianças. Revista Ciência & Saúde, v. 7, n. 3, p. 155-161, 2014.

BECKER, W. Comparability of household and individual food consumption data-evidence from Sweden. Public Health Nutr v.4, n.5B, p.1177-82, 2001.

BEZERRA, I.N. ey al. Consumption of foods away from home in Brazil. Rev Saude Publica, v.47, n1:200s-11s, 2013.

BIELEMANN, R. M. et al. Consumption of ultra-processed foods and their impact on the diet of young adults. Rev Saude Publica, v. 49, n. 28, p.1-10, 2015.

BRAND-MILLER, J.C. et al. Glycemic index and obesity. Am J Clin Nutr, v.76, n.1, p.281s-285s, 2002.

CANELLA, D. S. et al. Ultra-processed food products and obesity in Brazilian households (2008-2009). PLoS One, v. 9, n. 3, p. e92752, 2014.

CHASSAING, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, v. 519, n. 7541, p. 92-6, 2015.

CLARO, R.M. et al. Trends in spending on eating away from home in Brazil, 2002-2003 to 2008-2009. Cad Saude Publica, v.30, p.1418-26, 2014.

CLARO, R.M. et al. Discrepancies among ecological, household, and individual data on fruits and vegetables consumption in Brazil. Cad Saude Publica, v.26, p.2168-76, 2010.

CROVETTO, M.; UAUY, R. Evolución del gasto en alimentos procesados en la población del Gran Santiago en los últimos 20 años Rev Med Chil, v. 140, n. 3, p. 305-12, 2012.

CROVETTO, M. M. et al. Disponibilidad de productos alimentarios listos para el consumo en los hogares de Chile y su impacto sobre la calidad de la dieta (2006-2007). Rev Med Chil, v. 142, n. 7, p. 850-8, 2014.

DILIBERTI, N. et al. Increased portion size leads to increased energy intake in a restaurant meal. Obes Res, v. 12, n. 3, p. 562-8, 2004.

DIMEGLIO, D. P.; MATTES, R. D. Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord, v. 24, n. 6, p. 794-800, 2000.
DUFFEY, K. J.; POPKIN, B. M. Energy density, portion size, and eating occasions: contributions to increased energy intake in the United States, 1977-2006. *PLoS Med*, v. 8, n. 6, p. e1001050, 2011.

FAO. *Deriving food security information from national household budget surveys*. Rome: Food and Agriculture Organization, 2008.

FAO. *Guidelines on the collection of information on food processing through food consumption surveys*. Roma: Food and Agriculture Organization, 2015.

FINUCANE, M.M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. *Lancet*, v.377, n.9765, p.557-567, 2011.

GBD 2013 Collaborators, 2015. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study. *Lancet*, v.386, p.743-800, 2013.

HU, F. B.; MALIK, V. S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. *Physiol Behav*, v. 100, n. 1, p. 47-54, 2010.

HUHN, S. et al. Components of a Mediterranean diet and their impact on cognitive functions in aging. *Front Aging Neurosci*, v. 7, n. 132, p.1-10, 2015.

IBGE. *Tabela de composição de alimentos, 4 ed.* Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 1996.

IBGE. *Avaliação nutricional da disponibilidade de alimentos no Brasil*. IBGE, Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2010a.

IBGE. *Pesquisa de Orçamentos Familiares 2008-2009*. IBGE, Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2010b.

IBGE. *Análise do consumo alimentar pessoal no Brasil*. IBGE, Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011a.

IBGE. *Tabela de Medidas Referidas para os Alimentos Consumidos no Brasil*. IBGE, Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011b.

IBGE. *Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil*. IBGE, Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 2011c.

IMAMURA, F. et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. *BMJ*, v. 351, p. h3576, 2015.

JACOBS, D. R., JR.; GROSS, M. D.; TAPSELL, L. C. Food synergy: an operational concept for understanding nutrition. *Am J Clin Nutr*, v. 89, n. 5, p. 1543s-1548s, 2009.

JACOBS, D. R., JR.; ORLICH, M. J. Diet pattern and longevity: do simple rules suffice? A commentary. *Am J Clin Nutr*, v. 100, p. 313s-9s, 2014.
JACOBS, D. R., JR.; STEFFEN, L. M. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr, v. 78, n. 3., p. 508s-513s, 2003.

JACOBS, D. R.; TAPSELL, L. C. Food synergy: the key to a healthy diet. Proc Nutr Soc, v. 72, n. 2, p. 200-6, 2013.

JUUL, F.; HEMMINGSSON, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr, v. 25, p. 1-12, 2015.

LERNER, A.; MATTHIAS, T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev, v. 14, n. 6, p. 479-89, 9 2015.

LIAO, J.J. e LEWIS, J.W. A note on concordance correlation coefficient. PDA J Pharm Sci Technol, v.54, p.23-6, 2000.

LIN, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics, v.45, p.255-68, 1989.

LOUZADA, M.L. et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med, v.81, p.9-15, 2015a.

LOUZADA, M.L. et al. Ultra-processed foods and the nutritional dietary profile in Brazil. Rev Saude Publica, v. 49, n. 38, p.1-11, 2015b.

LOUZADA, M.L. et al. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica Rev Saude Publica, v. 49, n. 45, p.1-8, 2015c.

LUDWIG, D. S. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, v. 287, n. 18, p. 2414-23, 8 2002.

LUITEN, C. M. et al. Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets. Public Health Nutr, v. 29, p. 1-9, 29 2015.

MALLARINO, C. et al. Advertising of ultra-processed foods and beverages: children as a vulnerable population. Rev Saude Publica, v. 47, n. 5, p. 1006-10, 2013.

MARTINS, A. P. et al. Increased contribution of ultra-processed food products in the Brazilian diet (1987-2009). Rev Saude Publica, v. 47, n. 4, p. 656-65, 2013.

MESSINA, M. et al. Reductionism and the narrowing nutrition perspective: time for reevaluation and emphasis on food synergy. J Am Diet Assoc, v. 101, n. 12, p. 1416-9, 2001.

MINISTÉRIO DA SAÚDE. Dietary guidelines for the Brazilian population., Brasília: Ministério da Saúde, 2014.

MONTEIRO, C.A. e CANNON, G. The impact of transnational “Big Food” companies on the south: a view from Brazil. Plos Med, v.9, n.7, p. e1001252, 2012.
MONTEIRO, C.A. et al. The Food System. Ultra-processing. The big issue for nutrition, disease, health, well-being. [Commentary]. World Nutrition, v. 3, n. 12, p. 527-69, 2012.

______. Ultra-processing and a new classification of foods. In: NEFF, R. (Ed.). Introduction to U.S. Food System. Public Health, Environment, and Equity. São Francisco: Jossey-Bass A Wiley Brand, 2014.

MONTEIRO, C.A. et al. Dietary guidelines to nourish humanity and the planet in the twenty-first century. A blueprint from Brazil. Public Health Nutr, v.24, p.1-12, 2015.

______. A new classification of foods based on the extent and purpose of their processing. Cad Saude Publica, Brazil, v. 26, n. 11, p. 2039-49, 2010.

______. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr, v. 14, n. 1, p. 5-13, 2011.

______. Ultra-processed products are becoming dominant in the global food system. Obes Rev, v. 14 2, p. 21s-8s, 2013.

MOODIE, R. et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet, v. 381, n. 9867, p. 670-9, 2013.

MOREIRA, P. V. et al. Comparing different policy scenarios to reduce the consumption of ultra-processed foods in UK: impact on cardiovascular disease mortality using a modelling approach. PLoS One, v. 10, n. 2, p. e0118353, 2015.

MOUBARAC, J.C. et al. Food classification systems based on food processing: significance and implications for policies and actions. A systematic literature review and assessment. Current Obesity Reports, v. 3, n. 2, p. 256-72, 2014.

______. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011. Can J Diet Pract Res, v.75, p.15-21, 2014.

______. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr, v. 16, n. 12, p. 2240-8, 2013.

MOZAFFARIAN, D. et al. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med, v. 364, n. 25, p. 2392-404, 2011.

NASKA, A., VASDEKIS, V.G., TRICHOPOULOU, A. A preliminary assessment of the use of household budget survey data for the prediction of individual food consumption. Public Health Nutr, v.4, p.1159-65, 2011.

NEPA/UNICAMP. Tabela Brasileira de Composição de Alimentos – TACO. Campinas: Universidade Estadual de Campinas, 2004.

NIELSEN, S. J.; POPKIN, B. M. Patterns and trends in food portion sizes, 1977-1998. JAMA, v. 289, n. 4, p. 450-3, 2003.

OGDEN, J. et al. Distraction, the desire to eat and food intake. Towards an expanded model of mindless eating. Appetite, v. 62, p. 119-26, 2013.
PAHO. Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications. Washington D.C.: Panamerican Health Organization, 2015.

PEREIRA, M. A. et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. *Lancet*, v. 365, n. 9453, p. 36-42, 2005.

PI SUNYER, F.X. Glycemic index and disease. *Am J Clin Nutr*, v.76, n.1, p.290s-298s, 2002.

PIERNAS, C.; POPKIN, B. M. Food portion patterns and trends among U.S. children and the relationship total eating occasion size, 1977-2006. *J Nutr*, v. 141, n. 6, p. 1159-64, 2011.

RAUBER, F. et al. Consumption of ultra-processed food products and its effects on children's lipid profiles: a longitudinal study. *Nutr Metab Cardiovasc Dis*, v. 25, n. 1, p. 116-22, 2015.

ROLLS, B. J. The relationship between dietary energy density and energy intake. *Physiol Behav*, v. 97, n. 5, p. 609-15, 2009.

SEKULA, W. et al. Comparison between household budget survey and 24-hour recall data in a nationally representative sample of Polish households. *Public Health Nutr*, v.8, p.430-9, 2005.

SINGH, G. M. et al. Estimated global, regional, and national disease burdens related to sugar-sweetened beverage consumption in 2010. *Circulation*, v. 132, n. 8, p. 639-66, 2015.

STEEHUIS, I. H.; VERMEER, W. M. Portion size: review and framework for interventions. *Int J Behav Nutr Phys Act*, v. 21, p. 6-58, 2009.

STUCKLER, D. et al. Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. *PLoS Med*, v. 9, n. 6, p. e1001235, 2012.

SUEZ, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. *Nature*, v. 514, n. 7521, p. 181-6, 2014.

SCHWINGSACKL, L.; HOBL, L.P.; HOFFMANN, G. Effects of low glycaemic index/low glycaemic load vs. high glycaemic index/ high glycaemic load diets on overweight/obesity and associated risk factors in children and adolescents: a systematic review and meta-analysis. *Nutr J*, v. 14, n1, p.87, 2015.

TAVARES, L. F. et al. Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. *Public Health Nutr*, v. 15, n. 1, p. 82-7, 2012.

URIBARRI, J. et al. Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. *Diabetes Care*, v. 30, n. 10, p. 2579-82, 2007.

USDA. USDA National Nutrient Database for Standard Reference, 23 ed. Washington, D.C.: United States Department of Agriculture, 2010.

VANDEVIJVERE, S. et al. Monitoring and benchmarking population diet quality globally: a step-wise approach. *Obes Rev*, v. 14, p. 135s-49s, 2013.
WOODWARD-LOPEZ, G.; KAO, J.; RITCHIE, L. To what extent have sweetened beverages contributed to the obesity epidemic? Public Health Nutr, v. 14, n. 3, p. 499-509, 2011.
7 CONCLUSÕES

“Triunfa o lixo disfarçado de comida: esta indústria está a conquistar os paladares do mundo e a deixar em farrapos as tradições da cozinha local. Os costumes do bom comer, que veem de longe, têm, em alguns países, milhares de anos de refinamento e diversidade, são um patrimônio coletivo que de algum modo está nos fogões de todos e não só na mesa dos ricos. Essas tradições, esses sinais de identidade cultural, essas festas da vida, estão a ser espezinhadas, de modo fulminante, pela imposição do saber químico e único: a globalização do hambúrguer, a ditadura do fast food. A plastificação da comida à escala mundial, obra da McDonald’s, Burger King e outras fábricas, viola com êxito o direito à autodeterminação da cozinha: direito sagrado, porque na boca a alma tem uma das suas portas.”

Eduardo Galeano

Em conjunto, os manuscritos apresentados documentam o impacto largamente negativo do consumo de alimentos ultraprocessados na qualidade nutricional da alimentação e na ocorrência de obesidade no Brasil e formam um corpo de evidências para apoiar as estratégias que visem ao controle do seu consumo. Além disso, os achados reforçam a utilização de dados de aquisição familiar de alimentos, que são coletados sistematicamente no Brasil desde os anos 70, como um proxy do consumo real de alimentos ultraprocessados.

7.1 IMPLICAÇÕES PARA A PESQUISA EM NUTRIÇÃO E SAÚDE

Ainda temos trabalho pela frente. Continuamos desafiando nossa hipótese em pesquisas com dados de consumo alimentar de diferentes países do mundo. As disparidades regionais, econômicas, sociais e de gênero e a relação do consumo de ultraprocessados com as condições ambientais precisam ser melhor compreendidas. O impacto do consumo de alimentos ultraprocessados em outros desfechos de saúde precisa ser testado. Além disso, análises longitudinais são importantes para estabelecimento da relação causal entre o consumo de alimentos ultraprocessados e o risco de doenças.
Estudos que formulem e avaliem intervenções para reduzir o consumo de alimentos ultraprocessados são de fundamental importância para a aplicação dos resultados na prática em saúde. Abordagens qualitativas podem ajudar na compreensão dos obstáculos e desafios de se evitar o consumo desses alimentos.

7.2 IMPLICAÇÕES PARA POLÍTICAS PÚBLICAS

Embora mais estudos sejam necessários, as evidências apresentadas já reclamam ações que busquem impedir a substituição de alimentos in natura ou minimamente processados e suas preparações culinárias por alimentos ultraprocessados. Ainda que as pessoas tenham obviamente grande responsabilidade pelas suas escolhas alimentares, é fundamental reconhecer que o ambiente alimentar condiciona aquelas escolhas, podendo dificultar a adoção de uma alimentação saudável. Sendo assim, reconhece-se a importância de políticas intersetoriais e contínuas, direcionadas à melhora dos determinantes sociais e que englobem tanto as ações de informação e educação dos indivíduos quanto a regulação e a promoção de ambientes saudáveis.

O sucesso das políticas públicas que visam à promoção da alimentação saudável passa necessariamente pelo reconhecimento do conflito de interesses inerente à relação entre as corporações de alimentos e os órgãos de saúde pública (STUCKLER e NESTLE, 2012). Ressalta-se, no entanto, que a indústria alimentícia é heterogênea. Grande parte é essencial, bem-vinda e favorece a alimentação saudável. O enfrentamento diz respeito a um setor específico que produz e lucra a partir da venda de alimentos ultraprocessados, a despeito da saúde dos cidadãos, da sustentabilidade das economias nacionais, da preservação ambiental e da soberania dos povos. Nesse sentido, a promoção da alimentação saudável começa pelo fortalecimento do Estado e pela institucionalização das suas ações. No Brasil, a promoção da alimentação saudável é uma diretriz da Política Nacional de Alimentação e Nutrição (MINISTÉRIO DA SAÚDE, 2012) e apresenta inserção em diversas outras políticas, entre elas a Política Nacional de Promoção da Saúde, a Política Nacional de Segurança Alimentar e Nutricional, a Política Nacional de Atenção Básica, a Política Nacional da Agricultura.
Guias alimentares

Guias alimentares são documentos de referência no campo da alimentação e nutrição e, como tais, importantes instrumentos de comunicação e educação. Mais do que isso, os guias alimentares possuem potenciais repercussões sobre as políticas de saúde, segurança alimentar e nutricional, meio ambiente, produção e abastecimento de alimentos, na organização dos serviços de saúde e da atenção nutricional, na oferta de alimentos por equipamentos públicos, na regulação dos alimentos, na formação e qualificação da força de trabalho e na vigilância alimentar e nutricional.

Atualmente, a maioria dos guias alimentares apresenta recomendações que visam exclusivamente à adequação do consumo de nutrientes e que desconsideram outras características do consumo alimentar que influenciam as condições de saúde da população. A promoção da saúde e da segurança alimentar e nutricional exige uma mudança de paradigma sobre o que é uma alimentação saudável e a reformulação dos guias alimentares locais.

Um exemplo claro da repercussão das evidências deste estudo está na recente publicação do Ministério da Saúde da nova edição do Guia Alimentar para a População Brasileira (MINISTERIO DA SAÚDE, 2014). As recomendações básicas do guia incluem o estímulo ao consumo regular de uma grande variedade de alimentos in natura ou minimamente processados, ao uso moderado de ingredientes culinários para o preparo das refeições e à limitação do consumo de alimentos processados. O guia ressalta ainda a importância de se evitar o consumo de alimentos ultraprocessados. A regra de ouro é simples:

Prefira alimentos in natura ou minimamente processados e preparações culinárias a alimentos ultraprocessados. Ou seja: opte por água, leite e frutas no lugar de refrigerantes, bebidas lácteas e biscoitos recheados; não troque comida feita na hora (caldos, sopas, saladas, molhos, arroz e feijão, macarronada, refogados de legumes e verduras, farofas, tortas) por produtos que dispensam preparação culinária (sopas “de pacote”, macarrão “instantâneo”, pratos congelados prontos para aquecer, sanduíches, fritos e embutidos, maioneses e molhos industrializados, misturas prontas
para tortas) e fique com as sobremesas caseiras, dispensando as industrializadas (Ibid., p. 47).

O guia oferece ainda modelos de refeições para o café da manhã, almoço e jantar derivados de refeições reais selecionadas dentre aquelas praticadas por brasileiros pertencentes ao quinto da população que menos consome alimentos ultraprocessados, incluindo homens e mulheres, adolescentes e adultos e pessoas residentes nas áreas urbanas ou rurais das várias regiões brasileiras.

Educação Alimentar e Nutricional

A educação alimentar e nutricional integra o elenco de estratégias na saúde direcionadas à promoção da alimentação saudável e, portanto, suas práticas devem ser pensadas também com o propósito de barrar a tendência de substituição de alimentos _in natura_ ou minimamente processados e suas preparações culinárias por alimentos ultraprocessados. Desde 2012, o Brasil possui o Marco de Referência de Educação Alimentar e Nutricional para as Políticas Públicas, um documento interministerial que apoia o trabalho dos diferentes setores governamentais dentro de seus contextos, mandatos e jurisdições. Dentre seus princípios estruturantes estão a valorização da cultura alimentar local e da culinária, a sustentabilidade social e ambiental e, principalmente, o entendimento de que os alimentos são mais do que os seus nutrientes e incluem combinações, cheiros, cores, temperaturas, texturas, sabores e seus valores simbólicos. Explica-se também que a educação alimentar e nutricional deve ter como alvo todas as fases do sistema alimentar, incluindo o acesso à terra, as formas de processamento e distribuição, as escolhas individuais e a destinação dos resíduos, sendo portanto, intrinsecamente intersetorial (MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME, 2012).

A atenção primária à saúde, organizada primordialmente por meio da Estratégia de Saúde da Família, é um espaço privilegiado para práticas de educação alimentar e nutricional e disseminação do Guia Alimentar da População Brasileira. A equipe multidisciplinar, o foco nas ações de prevenção de doenças e promoção da saúde, a abordagem dos ciclos da vida, a inserção no território e a possibilidade da realização de atividades em grupos comunitários e nos domicílios favorecem o desenvolvimento de atividades problematizadores, dialogadas,
integras ao ambiente e que entendam os determinantes e respeitem as escolhas alimentares. Para isso, a abordagem da alimentação e nutrição nas atividades de formação e educação continuada para os profissionais, o apoio matricial e a integração das diferentes redes de atenção são fundamentais.

Produção, distribuição, comércio e promoção de alimentos

A promoção da alimentação saudável vincula-se fortemente à promoção de sistemas de produção e distribuição de alimentos social e ambientalmente sustentáveis, ou seja, que conservem os recursos naturais e a biodiversidade, que valorizem os pequenos agricultores e os povos e comunidades tradicionais e que visem à distribuição justa das terras (MINISTÉRIO DA SAÚDE, 2014). Nesse sentido, políticas de preços, subsídios fiscais, ampliação de financiamentos e o incentivo de compras de alimentos por equipamentos públicos podem fortalecer a produção de alimentos *in natura* ou minimamente processados e, consequentemente, facilitar seu acesso pelos consumidores. No Brasil, estratégias como o Programa Nacional de Fortalecimento da Agricultura Familiar, o Programa de Aquisição de Alimentos e o Programa de Fomento às Atividades Produtivas Rurais estimulam a geração de trabalho e renda no campo, fortalecem circuitos locais e regionais e as redes de comercialização e valorizam a biodiversidade e a produção orgânica e agroecológica de alimentos (HESPAHOL, 2013; SOUSA et al., 2015).

O acesso facilitado a locais que comercializem variedades de alimentos *in natura* ou minimamente processados também é um importante determinante da alimentação saudável (MINISTÉRIO DA SAÚDE, 2014). Nesse sentido, destaca-se a feira livre, uma modalidade de mercado varejista, com periodicidade semanal, que geralmente ocorre em espaços abertos e que se destina, majoritariamente à venda de alimentos *in natura* ou minimamente processados de origem agropecuária. Programas de fortalecimento e a qualificação das feiras livres pelas prefeituras municipais podem proporcionar oportunidades de mercado com retorno rápido e de fácil acesso aos agricultores familiares, bem como aumentar o acesso da população aos alimentos produzidos na região (SATO, 2007).

Alguns estudos indicam que a taxação de alimentos não saudáveis como refrigerantes e lanches de alta densidade energética é uma estratégia efetiva e sustentável para promover a
qualidade da alimentação e diminuir o risco de obesidade e doenças cardiovasculares (EYLES et al., 2012; THOW et al., 2014; MOZAFFARIAN et al., 2014). No Brasil, estudo demonstrou que o aumento de 1% no preço das bebidas açucaradas provocaria uma diminuição de 0,85% no consumo de calorias provenientes dessas bebidas (CLARO et al., 2012).

Apesar disso, a criação de políticas de tributação com vistas ao aumento do custo de alimentos ultraprocessados no Brasil e em toda a América Latina esbarra em políticas que favorecem a abertura descontrolada do mercado para as transnacionais de alimentos, o incentivo ao agrobusiness e o lobby das indústrias de alimentos. O governo do México iniciou, em 2014, um projeto de taxação sobre refrigerantes e outras bebidas açucaradas e as comidas chatarras (alimentos com alta concentração de calorias e baixa densidade nutricional). Os primeiros resultados foram divulgados pelo Instituto Nacional de Saúde Pública do México e são bastante animadores: as compras de refrigerantes e outras bebidas açucaradas caíram, em média, 6% durante o ano de 2014 (STERN et al., 2014).

Outro fator que pode dificultar a adoção de uma alimentação saudável é a exposição à publicidade de alimentos não saudáveis. Comerciais em televisão e rádio, anúncios em jornais e revistas, matérias na internet, amostras grátis de produtos, ofertas de brindes, descontos e promoções, colocação de produtos em locais estratégicos dentro dos supermercados e embalagens atraentes são alguns dos exemplos mais frequentes dos mecanismos adotados pelas indústrias de alimentos na divulgação dos seus produtos (MINISTÉRIO DA SAÚDE, 2014). Evidências abundantes mostram que as crianças e os adolescentes são especialmente vulneráveis à publicidade de alimentos (JAMES, 2011) e, por causa disso, são os alvos preferenciais da indústria de alimentos ultraprocessados. Entidades internacionais como a Organização Mundial da Saúde e a Organização Pan-Americana da Saúde recomendam fortemente que as iniciativas para reduzir o consumo de alimentos ultraprocessados passem, necessariamente, pela regulação da publicidade de alimentos.

No Brasil, o Estatuto da Criança e do Adolescente e o Estatuto de Defesa do Consumidor, ambos de 1990, dispõem sobre o caráter abusivo da publicidade para o público infantil. Em 2006, a Agência Nacional de Vigilância Sanitária publicou uma proposta de regulamentação da publicidade de alimentos ricos em açúcar, sódio, gordura saturada e gordura trans.
documento foi elaborado com ampla participação da sociedade, e o texto final foi publicado em 15 de junho de 2012. A resolução, no entanto, foi contestada judicialmente por diferentes setores e associações (a maioria relacionada com a indústria de alimentos) e foi suspensa pelo Ministério Público Federal (JAIME et al., 2013).

Em março de 2014, o Conselho Nacional dos Direitos da Criança e do Adolescente aprovou a Resolução nº 163, que considera abusiva a publicidade e comunicação mercadológica dirigidas às crianças de até 12 anos. A norma dispõe que é abusiva a prática do direcionamento de publicidade e comunicação mercadológica à criança com a intenção de persuadi-la para o consumo de qualquer produto ou serviço. As implicações práticas da legislação vigente, no entanto, requerem maior esforço do governo para o seu cumprimento.

A rotulagem nutricional dos alimentos constitui instrumento central para garantia do direito à informação, fortalecendo a capacidade de análise e decisão do consumidor (MINISTÉRIO DA SAÚDE, 2012). Apesar disso, estudos recentes sinalizam que a rotulagem nutricional é inadequada e falha em seu propósito de fornecer informações úteis (LIMA, 2014). No Brasil, as normas para rotulagem de alimentos em vigor favorecem a visão dos alimentos simplesmente a partir no seu conteúdo de nutrientes e ignoram outras dimensões da saúde. Além disso, permitem o uso excessivo de linguagem técnica e que os efeitos da comunicação nas embalagens sejam modulados pelas indústrias através de recursos gráficos competitivos capazes de reduzir ou anular os efeitos das informações obrigatórias. A abordagem ampliada da alimentação saudável, a simplificação das mensagens, o foco nos ingredientes dos produtos (e não nos nutrientes) e recursos de comunicação como os diagramas de cores da sinaleira para indicar os teores de determinados nutrientes são potenciais estratégias para aumentar a efetividade do rótulo como instrumento de promoção da saúde (LIMA, 2014).

Recentemente, o Chile aprovou uma regulamentação inovadora para a lei sobre rotulagem de alimentos. Entre suas estratégias, está a obrigatoriedade de etiquetas visíveis alertando o público em relação a alimentos considerados não saudáveis pelo Ministério da Saúde. Mensagens como “alto em açúcar” ou “alto em sal” deverão ser colocadas na parte frontal dos rótulos (CORVALÁN et al., 2013).
Ações de promoção, proteção e apoio ao aleitamento materno e à alimentação complementar saudável

As práticas alimentares nos primeiros anos de vida são determinantes dos hábitos alimentares e condições de saúde da vida adulta. Assim, ações que incentivem a prática de aleitamento materno e a introdução de alimentação complementar baseada em alimentos in natura ou minimamente processados e que desestimulem o uso de alimentos ultraprocessados – incluindo as “papinhas” industrializadas – são extremamente relevantes.

Na década de 70, iniciou-se um movimento global para incentivo do aleitamento materno. O Brasil obteve sucesso na expansão dessa prática, particularmente devido às políticas governamentais, que combinaram estratégias como campanhas em massa para estímulo ao aleitamento materno, a proibição do marketing de fórmulas infantis e a regulação da publicidade de outros produtos destinados às crianças, legislação sobre licença-maternidade e amamentação no local de trabalho e a Iniciativa Hospital Amigo da Criança (VENÂNÇIO et al., 2013). A Norma Brasileira para Comercialização de Alimentos para Lactentes foi conquistada por meio de intensa mobilização da sociedade e, apesar dos desafios para o seu cumprimento, é um instrumento particularmente importante na proteção contra as estratégias de marketing da indústria de alimentos e de bicos, chupetas e mamadeiras (MONTEIRO, 2006). Por outro lado, pesquisas nacionais recentes apontam um consumo muito elevado de alimentos ultraprocessados como refrigerantes, bolachas e doces já antes dos dois anos de idade (MINISTÉRIO DA SAÚDE, 2015), sugerindo a necessidade de ações semelhantes que foquem também na promoção da alimentação complementar saudável.

No Brasil, o Guia Alimentar para Crianças Menores de Dois Anos ainda apresenta uma abordagem mais tradicional sobre a alimentação, mas também estimula o consumo de alimentos in natura ou minimamente processados e alerta para o consumo de alguns alimentos ultraprocessados. Entre suas recomendações, está o estímulo ao aleitamento materno exclusivo até os seis meses e, após essa idade, ao consumo de diferentes preparações culinárias baseadas em alimentos básicos regionais. O Guia recomenda ainda que se evitem açúcar, café, enlatados, frituras, refrigerantes, balas, salgadinhos e outras guloseimas nos primeiros anos de vida (MINISTÉRIO DA SAÚDE, 2013). Particularmente promissora é a estratégia de divulgação do seu conteúdo: a Estratégia Amamenta e Alimenta Brasil capacita...
profissionais da atenção básica de todo o Brasil quanto ao conteúdo do Guia com o objetivo de melhorar a promoção da alimentação saudável para crianças no Sistema Único de Saúde (SILVA et al, 2013). Em 2015, o Ministério da Saúde iniciou o processo de revisão do Guia Alimentar para Crianças Menores de Dois Anos com vistas à atualização do material de acordo com o Guia Alimentar para a População Brasileira e com as evidências científicas mais recentes sobre o assunto⁴.

Promoção da alimentação saudável no ambiente institucional

Evidências concretas demonstram a efetividade de intervenções na escola para a promoção da alimentação saudável e da atividade física (LOBELO et al., 2013). Ações que garantam o acesso das crianças a refeições baseadas em alimentos in natura ou minimamente processados e que restrinjam a oferta de alimentos ultraprocessados possuem potencial efeito protetor contra as doenças crônicas não transmissíveis. Dentre essas ações, destacam-se o estabelecimento de diretrizes para os programas nacionais de alimentação escolar, a regulamentação dos alimentos vendidos nas escolas, a proibição do marketing de alimentos no ambiente escolar e a realização de ações de educação alimentar e nutricional.

O programa nacional de alimentação escolar brasileiro avançou muito nesse sentido e hoje suas diretrizes estimulam a realização de ações de educação alimentar e nutricional, proíbem a compra de refrigerantes e outras bebidas açucaradas, limitam a compra de alimentos processados e exigem que pelo menos 30% do orçamento escolar seja usado para comprar alimentos provenientes da agricultura familiar (JAIME et al, 2013).

Outra ação importante dirigida às crianças é o Programa de Saúde na Escola (PSE), iniciativa conjunta dos Ministérios da Saúde e da Educação com o objetivo de prestar assistência integral (prevenção, promoção e atenção) à saúde dos estudantes das escolas públicas (JAIME et al., 2013). O PSE prevê atividades conjuntas entre profissionais das Equipes de Saúde da Família e profissionais da educação e configura-se como uma excelente oportunidade para a promoção da alimentação saudável.

⁴ LESSA, M. (Coordenadora geral de alimentação e nutrição do Ministério da Saúde – comunicação proferida dia 4 de agosto de 2015 na Oficina de escuta sobre o Guia Alimentar para Crianças Menores de Dois Anos)
A elaboração ou a reformulação de estratégias para a promoção da alimentação saudável em outros ambientes institucionais como as escolas de educação infantil, os centros de detenção, os abrigos, as instituições de longa permanência para idosos, os locais de trabalho, os hospitais e os restaurantes comunitários também pode ser importante para redução do consumo de alimentos ultraprocessados por esses grupos populacionais.

“Convenção-quadro para a alimentação saudável”?

Assume-se que os impactos negativos dos alimentos ultraprocessados são globais e interconectados. Iniciativas isoladas possuem alcance menor, além de serem mais suscetíveis ao lobby, a ações judiciais e a embargos comerciais. Por causa disso, alguns estudiosos propõem, a exemplo dos grandes avanços obtidos com o controle do tabagismo, um pacto internacional no setor da saúde pública para promoção da alimentação saudável.

As estratégias usadas para prevenir diferentes fatores de risco para doenças crônicas não transmissíveis, como álcool, tabaco e alimentos ultraprocessados, possuem muitos traços em comum, dirigindo-se, por exemplo, às características dos próprios produtos (composição, embalagem, rotulagem ou tamanho), a seus preços, aos locais em que são vendidos ou consumidos, à maneira como são promovidos e a seu impacto econômico (SILVER, 2015).

Em 2014, a organização não governamental Consumers International lançou uma campanha para pressionar a Organização Mundial da Saúde a aprovar a criação de um Tratado Global para Promoção e Proteção da Alimentação Saudável e publicou um projeto com as possíveis diretrizes. A discussão da proposta, certamente, acarretará em um avanço para a saúde global (CONSUMERS INTERNATIONAL, 2014).

7.3 UM OLHAR PARA O FUTURO

5 SILVER, L. (pesquisadora sênior no Instituto de Saúde Pública da Califórnia – palestra proferida em 10 de setembro de 2015 no II Seminário Internacional do Observatório Internacional de Capacidades Humanas, Desenvolvimento e Políticas Públicas)
A ciência deve estar profundamente comprometida com a responsabilidade social. A importância da produção de evidências técnico-científicas é inegável e existem inúmeros exemplos de como a ciência já impulsionou grandes avanços na área de saúde pública. Entretanto, os desafios em publicizar os efeitos nocivos dos alimentos ultraprocessados confrontam os interesses comerciais de operadores econômicos poderosos e seu enfrentamento ocorre em contexto de profunda assimetria de poderes.

Sendo assim, assumo o papel de “pesquisadora-ativista” por acreditar que as perspectivas de enfrentamento dos interesses econômicos em jogo estão profundamente relacionadas à ampliação do debate público sobre o tema, à produção e difusão de informações críticas e contextualizadas – o que envolve também a democratização dos meios de comunicação –, no sentido de construir uma força pública capaz de redirecionar a atuação do Estado. O desafio também é político.

7.4 REFERÊNCIAS

CLARO, R. M. et al. Sugar-sweetened beverage taxes in Brazil. American Journal of Public Health, v. 102, n. 1, p. 178-83, 2012.

CORVALÁN, C. et al. Structural responses to the obesity and non-communicable diseases epidemic: the Chilean Law of Food Labeling and Advertising. Obes Rev, v.14, n.2, p.79-87, 2013.

CONSUMERS INTERNATIONAL. Recommendations towards a Global Convention to protect and promote healthy diets. London: Consumers International, 2014.

EYLES, H. et al. Food pricing strategies, population diets, and non-communicable disease: a systematic review of simulation studies. PLoS Med, v. 9, n. 12, p. e1001353, 2012.

HESPANHOL, R. A. M. Programa de Aquisição de Alimentos: limites e potencialidades de políticas de segurança alimentar para a agricultura familiar. Soc. nat., v.25, n.3, p.469-483, 2013.

JAIME, P. C. et al. Brazilian obesity prevention and control initiatives. Obes Rev, v. 2, p.88-95, 2013.

JAMES, P. Up to the summit: inglorious paths. World Nutrition, v. 2, n. 8, p. 352-399, 2011.

LIMA, F. Comunicação na promoção da alimentação saudável via rótulos: uma análise dos discursos. 2014. 227 p. (disseratação de Mestrado). Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo.
LOBELO, F. et al. School-based programs aimed at the prevention and treatment of obesity: evidence-based interventions for youth in Latin America. *Journal of School Health*, v. 83, n. 9, p. 668-77, 2013.

MINISTÉRIO DA SAÚDE. *Guia alimentar para crianças menores de dois anos*. Brasília: Ministério da Saúde, 2013.

______. *Guia alimentar para a população brasileira*. Brasília: Ministério da Saúde, 2014.

______. *Pesquisa Nacional de Saúde 2013: Percepção do estado de saúde, estilos de vida e doenças crônicas*. Brasília: Ministério da Saúde, 2015.

______. *Política Nacional de Alimentação e Nutrição*. Brasília: Ministério da Saúde, 2012.

MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME. *Marco de referência de educação alimentar e nutricional para as políticas públicas*. Brasília: Ministério do Desenvolvimento Social e Combate à Fome, 2012.

MONTEIRO, R. Norma brasileira de comercialização de alimentos para lactentes e crianças de primeira infância: histórico, limitações e perspectivas *Rev Panam Salud Publica*, v.19, n.5, p. 354-362, 2006.

MOZAFFARIAN, D.; ROGOFF, K. S.; LUDWIG, D. S. The real cost of food: can taxes and subsidies improve public health? *JAMA*, v. 312, n. 9, p. 889-890, 2014.

SATO, L. Processos cotidianos de organização do trabalho na feira livre. *Psicol Soc*, v.19, p. 95-102, 2007.

SILVA, A.C.F; BORTOLINI, G.A.; JAIME, P.C. Brazil’s national programs targeting childhood obesity prevention. *Int J Obes Suppl*, v.3, p.s9-s11, 2013.

SILVER, L. Regulação de fatores de risco para doenças crônicas: experiências dos Estados Unidos. In: NOGUEIRA, R.P. et al (Org.). *Observatório Internacional de Capacidades Humanas, Desenvolvimento e Políticas Públicas : estudos e análises 2*. Brasília: UnB/ObservaRH/Nesp - Fiocruz/Nethis, 2015.

SOUZA, P. M.; NEY, M. G.; PONCIANO, N.J. Análise da distribuição dos financiamentos rurais entre os estabelecimentos agropecuários brasileiros. *Rev Econ Sociol Rural*, v.53, n.2, p.251-270, 2015.

STERN, D. et al. Caloric beverages were major sources of energy among children and adults in Mexico, 1999-2012. *J Nutr*, v.144, n.6, p.949-56, 2014.

STUCKLER, D.; NESTLE, M. Big food, food systems, and global health. *PLoS Med*, v. 9, n. 6, p. e1001242, 2012.

THOW, A. M.; DOWNS, S.; JAN, S. A systematic review of the effectiveness of food taxes and subsidies to improve diets: understanding the recent evidence. *Nutrition Reviews*, v. 72, n. 9, p. 551-565, 2014.

VENANCIO, S. I.; SALDIVA, S. R.; MONTEIRO, C. A. Tendência secular da amamentação no Brasil. *Rev Saude Publica*, v. 47, n. 6, p. 1205-8, 2013.
ANEXOS

I – Parecer do Comitê de Ética em Pesquisa

FACULDADE DE SAÚDE PÚBLICA DA UNIVERSIDADE DE SÃO PAULO

PARECER CONSUBSTANTIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: CONSUMO DE PRODUTOS ALIMENTÍCIOS ULTRAPROCESSADOS NO BRASIL E SUA INFLUÊNCIA SOBRE A QUALIDADE DA DIETA E O ESTADO NUTRICIONAL DA POPULAÇÃO

Pesquisador: Maria Laura da Costa Louzada
Área Temática:
Versão: 1
CAAE: 06356712.6.0000.5421
Instituição Proponente: Faculdade de Saúde Pública da Universidade de São Paulo - FSP/USP

DADOS DO PARECER

Número do Parecer: 128.958
Data da Relatoria: 19/10/2012

Apresentação do Projeto:
Conforme análise do projeto o mesmo será realizado a partir de dados secundários, logo, não envolverá diretamente os seres humanos, não necessitando em tese de submissão ao COEP. Há que se ressaltar que a coleta de dados, foi realizada no período de 2006-2009, pelo Instituto Brasileiro de Geografia e Estatística - Pesquisa de Orçamentos Familiares.

Objetivo da Pesquisa:
Não se aplica

Avaliação dos Riscos e Benefícios:
Não se aplica

Comentários e Considerações sobre a Pesquisa:
Não se aplica

Considerações sobre os Termos de apresentação obrigatória:
Não se aplica

Recomendações:
Não se aplica

Conclusões ou Pendências e Lista de Inadimplementos:
Não há pendências e a documentação está em ordem.

Endereço: Av. Doutor Arnaldo, 715
Estado: São Paulo
CEP: 01246-904
UP: SP
Município: São Paulo
Telefone: (11)3081-7779
Fax: (11)3081-7742
E-mail: coop@fsp.usp.br
Situação do Parecer:
Aprovado

Necessita Apreciação da CONEP:
Não

Considerações Finais a critério do CEP:

SAO PAULO, 23 de Outubro de 2012

Assinador por:
Claudio Leone
(Coordenador)
II – Currículo lattes da aluna

Maria Laura da Costa Louzada

Endereço para acessar este CV: http://lattes.cnpq.br/490298607127099
Última atualização do currículo em 12/09/2013

Aluno do curso de Doutorado em Nutrição e Saúde Pública da Universidade de São Paulo (USP). Mestre em Ciências da Saúde pela Universidade Federal de Ciências da Saúde Porto Alegre (UFSCRA). Possui graduação em Nutrição pela Universidade Federal de Ciências da Saúde Porto Alegre (2009). (Texto informado pelo autor)

Identificação

 Nome: Maria Laura da Costa Louzada
 Nome em citações bibliográficas: LOUZADA, M. L. C.; Louzada, Maria Laura da Costa; COSTA, M. L. C.; Louzada, Maria Laura da Costa Louzada, M. L.; Louzada, Maria Laura Louzada, MARIA LAURA

Endereço

Endereço Profissional: Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde,
Av. Dr. Arnaldo 730/42
Caixa Postal
01285-904 - São Paulo, SP - Brasil
Telefone: (11) 3063-7906

Formação acadêmica/título

2012 Doutorado em Endodôntia em Nutrição e Saúde Pública,
Universidade de São Paulo, USP, Brasil.
Título: Consumo de produtos alimentares ultraprocessados no Brasil e sua influência sobre a qualidade do eleito e o estado nutricional da população.
Orientador: Carla Aguiar Monteiro.
Boletim de aprovação: 21.

2010 - 2011 Mestrado em Ciências da Saúde,
Universidade Federal de Ciências da Saúde de Porto Alegre.
Título: Impacto da adesão alimentar realizada no primeiro ano da vida no consumo alimentar, estado nutricional e perfil apicográfico de crianças até a idade ocular. Ano de entrega: 2011.
Orientador: Mônica Regina Vital.
Boletim de aprovação: 21.

2006 - 2009 Graduação em Nutrição,
Universidade Federal de Ciências da Saúde do Porto Alegre.
Título: Índice de Alimentação Sazonal do sudeste do Brasil e sua associação com fatores socioeconômicos, comportamento e características de saúde.
Orientador: Maria Teodora Arantes.
Boletim de aprovação: 21.
III – Currículo lattes do orientador

Carlos Augusto Monteiro

Bolsista de Produtividade em Pesquisa do CNPq – Nível 1A – CA 5M – Saúde Coletiva e Nutrição

Endereço para se conectar: Orcid: http://orcid.org/0000-0002-5246-6680
Última atualização do currículo em: 04/06/2013

A formação acadêmica do Professor Monteiro inclui graduação em Medicina, Residência e Mestrado em Medicina Preventiva, Doutorado em Saúde Pública, todos cursados na USP, e pós-doutorado no Instituto de Nutrição Humana da Columbia University. Sua carreira de pesquisador e orientador (já formou 12 mestres e 17 doutores) foi feita no Depto de Nutrição da Faculdade de Saúde Pública da Universidade de São Paulo (USP), onde é Professor Titular desde 1989. Entre 1990 e 1992, trabalhou na Unidade de Nutrição da OMS em Genebra e foi professor visitante das universidades de Bonn e de Genebra. É coordenador científico do Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde do USP (NUPENS/USP) desde 1992. De dezenas de projetos de pesquisa realizados na área da Nutrição em Saúde Pública, resultaram vários livros e monografias e mais de 150 publicações indexadas com mais de 5 mil citações no JCR (H=30) e mais de 20 mil no Google Scholar (H=72). É bolsista de produtividade científica do CNPq desde 1981 e pesquisador nível 1A desde 1989. São destapadas de sua produção científica voltada para o Brasil e artigos sobre inquéritos populacionais em saúde e nutrição infantil realizados em São Paulo nas décadas de 70, 80 e 90, cujos resultados foram essenciais para redefinir o enfoque e o conteúdo dos programas nutricionais nas unidades básicas de saúde de São Paulo e, posteriormente, de todo o país. Ponto temático interdisciplinar EAPESP de resgate e interpretação das tendências temporais das condições de saúde e nutrição da população brasileira na segunda metade do século XX, do qual resultou livro ganhador do prêmio JABE de melhor livro do ano na categoria Ciências Naturais e Medicina; análises das Pesquisas de Orçamentos Familiares do IBGE, que trouxeram nova e crítica visão para o problema da segurança alimentar no país; projeto de desenvolvimento e validação de sistema nacional de monitoramento de fatores de risco para doenças crônicas baseado em entrevistas telefônicas, ganhador do Prêmio de Incentivo em Ciência e Tecnologia para o SUS de 2005 e inspirador do sistema VITTEL implantado desde 2006 pelo Ministério da Saúde nas 29 capitais do estados brasileiros e Distrito Federal e estudos sobre padrões de alimentação e saúde no Brasil, que orientaram a elaboração do Guia Alimentar para a População Brasileira 2014. Como parte de sua produção científica de impacto internacional (publicada em revistas como Lancet, BMJ, WHO Bull, PLoS Medicine, Am J Pub Health, Am J Clin Nutr, Eur J Clin Nutr, Int J Obes, Obesity Reviews, Trans R Soc Trop Med Hyg, Am Hum Biol, entre outras) destacam-se estudos publicados no final dos anos 80 sobre determinantes da tendência secular do aletamento materno e da mortalidade infantil em países em desenvolvimento; contribuições metodológicas para a criação de novos indicadores para a avaliação antropométrica do estado nutricional de populações publicadas entre 1991 e 1997; e 3 dezenas de artigos sobre o fenômeno da transição alimentar e nutricional nos países em desenvolvimento publicados entre 1995 e 2014 e que já receberam mais de 3 mil citações computadas pelo JCR. Foi co-chairman do comitê sobre transição nutricional da International Union for Nutritional Sciences (IUNS) e Editor Científico da Revista de Saúde Pública e membro do Conselho Editorial da Public Health Nutrition, Integra, ainda, o comitê NUGAC (Nutrition Guidance Expert Advisory Group) de expertos em Nutrição da OMS e a recém criada WHO Ending Child Obesity Commission e faz parte da equipe da equipe da Organização Panamericana de Saúde (OPS) para eliminação das gorduras trans e para redução do consumo de sódio nas Américas. Em 2010, foi o terceiro brasileiro a ganhar o prêmio Abraham Horwitz de Liderança Científica em Saúde nas Américas outorgado pela OPS todos os anos ao pesquisador latinoamericano que mais se destacou no campo. É membro da Academia Brasileira de Ciências desde 2007. (Texto informado pelo autor)

Identificação

Nome: Carlos Augusto Monteiro

Nome em citações bibliográficas: Monteiro CA ou Monteiro C A; Monteiro, Carlos Augusto; Monteiro, Carlos A; Monteiro, Carlos A; Monteiro, Carlos; Monteiro, Carlos; Monteiro, Carlos; Monteiro, Carlos; Monteiro, Carlos

Endereço

Endereço Profissional

Universidade de São Paulo, Faculdade de Saúde Pública,
Av. Dr. Arnolds, 715
Cerqueira Cesar
05508-090 – São Paulo, SP – Brasil
Telefone: (11) 20967701
Fax: (11) 20967703

Formação acadêmica/bibliografia

1978 - 1979

Doutorado em Saúde Pública (Concurso CAPES 6), Universidade de São Paulo, USP, Brasil,
Título: O peso ao nascer no município de São Paulo e impacto sobre o nível de mortalidade na infância, Ano de obtenção: 1979,
Orientador: Ivan Ribeiro Guimarães,
Palavras-chave: Infantil, Mortalidade,
Setores de atuação: Nutrição e Alimentação

1975 - 1977

Mestrado em Medicina (Medicina Preventiva) (Concurso CAPES 7), Universidade de São Paulo, USP, Brasil,
Título: A EPIDEMIOLOGIA DA DESNUTRIÇÃO PROTEICO CALÓRICA EM NÚCLEOS RURAIS DO VALÃO DO RIBEIRÃO (Contraceção);
Orientador: Valdo Ribeiro Gandra,
Setores de atuação: Nutrição e Alimentação

1976 - 1976

Especialização em Saúde Pública, Universidade de São Paulo, USP, Brasil,

1967 - 1972

Graduação em Medicina, Universidade de São Paulo, USP, Brasil,