Towards Better Translation Performance on Spoken Language

Chao Bei and Hao Zong
{beichao,zonghao}@gtcom.com.cn
1 Task description

Table 1 Number of sentences summary for in-domain training and development data for bilingual task in small data condition

NMT direction	training data	development data	monolingual data (target)
	231K	1,372 1,297 1,205	520K
en-zh	231K	1,372 1,297 1,205	234K
zh-en			
1 Task description

Table 2 Number of sentences summary for in-domain training and development data for zero-shot multilingual task

language	de-en	de-it	de-ro	en-it	en-nl	en-ro	it-nl	nl-ro
training data	204K	203K	200K	230K	236K	219K	232K	205K
development set	1,138	1,133	1,121	1,147	1,181	1,129	1,183	1,123
Contents

1 Task description
2 Bilingual task
3 Multilingual task
4 Summary
5 Q&A
2 Bilingual task
Data Preprocessing

- For English:
 - Tokenizer and Truecase (Moses)

- For Chinese:
 - Apply Jieba segmentation without recognizing new words.

- BPE for English and Chinese respectively:
 - \(N_{operation} = \text{number of words(\text{word frequency} > 10)} \)
2 Bilingual task

Model architecture

Encoder Decoder with Attention
Table 3 Model configuration for bilingual task in small data condition

Type	value
English vocabulary size	19623
Chinese vocabulary size	25377
word embedding	512
hidden units	1024
embedding dropout	0.2
hidden dropout	0.2
source dropout	0.1
target dropout	0.1
layer normalization	True
maximum sentence length	100
2 Bilingual task

Result Analysis

Table 4 Case-insensitive BLEU score in development set of Chinese-to-English in small data condition. WN means weight normalization and SD means synthetic data.

	tst2013	tst2014	tst2015	average
2 layers	20.32	18.07	21.48	20.03
+ annealing Adam	20.85	18.39	22.04	20.47
4 layers	20.89	17.91	21.87	20.33
+ annealing Adam	20.81	17.91	22.24	20.33
4 layers with WN	20.95	17.99	21.98	20.43
+ annealing Adam	21.24	18.1	21.81	20.48
4 layers with SD	21.05	18.4	21.94	20.49
+ annealing Adam	20.94	18.57	22.41	20.65
4 layers with SD and WN	21.34	18.72	22.5	20.91
+ annealing Adam	21.53	18.72	22.46	20.98
Deep transition	20.68	17.56	21.49	19.97
+ annealing Adam	21.11	17.66	21.64	20.28
Deep transition with WN	20.71	17.98	21.96	20.78
+ annealing Adam	21.40	18.33	22.30	20.80
Deep transition with SD	21.49	18.1	22.40	20.73
+ annealing Adam	21.75	18.83	22.77	21.16
Deep transition with SD and WN	21.31	18.78	22.07	20.78
+ annealing Adam	21.86	18.64	22.23	20.97
ensemble	22.83	19.72	23.73	22.13
+ r2l reranking	23.02	19.94	24.26	22.43
Table 5 Case-insensitive BLEU score in development set of English-to-Chinese in small data condition. WN means weight normalization and SD means synthetic data.

Method	tst2013	tst2014	tst2015	average
2 layers	23.71	21.03	26.80	23.83
+ annealing Adam	24.3	21.45	26.69	24.14
4 layers	23.94	21.63	27.34	24.30
+ annealing Adam	24.05	21.90	27.26	24.37
4 layers with WN	24.27	21.61	27.64	24.54
+ annealing Adam	24.46	21.8	27.42	24.54
4 layers with SD	24.43	21.89	28.00	24.74
+ annealing Adam	24.73	21.73	28.14	24.85
4 layers with SD and WN	24.39	21.47	27.61	24.47
+ annealing Adam	24.69	21.69	28.04	24.79
Deep transition	23.83	21.51	27.15	24.13
+ annealing Adam	23.75	21.37	27.06	24.03
Deep transition with WN	23.85	21.77	27.66	23.74
+ annealing Adam	24.21	21.92	27.43	24.49
Deep transition with SD	24.04	21.53	27.43	24.31
+ annealing Adam	24.47	22.1	27.98	24.82
Deep transition with SD and WN	23.7	21.7	26.5	23.74
+ annealing Adam	24.41	21.64	27.65	24.55
ensemble	25.86	23.21	29.41	26.13
+ r21 reranking	26.21	23.61	30.35	26.68
2 Bilingual task

Result Analysis

Annealing Adam:

Halving learning rate after early stop and trained from the previous best model.

Result:

0 to 0.81 BLEU score improvement.

M. J. Denkowski and G. Neubig. Stronger baselines for trustable results in neural machine translation.
2 Bilingual task

Result Analysis

Back translation:

Monolingual data was translated by a shallow model trained with parallel data from target to source. And training with a mix of parallel and synthetic data.

Result:

0 to 0.88 BLEU score improvement.

-R. Sennrich, B. Haddow, and A. Birch. Improving neural machine translation models with monolingual data.
2 Bilingual task

Result Analysis

Weight normalization:

A reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction.

Result:

A fluctuation of -0.57 to 0.81 BLEU score.
2 Bilingual task

Result Analysis

Ensemble decoding:

Ensembling of the independent left-to-right models:

Result:

0.97 to 1.28 BLEU score improvement.
2 Bilingual task

Result Analysis

Right-to-left reranking:

Training right-to-left models and re-scoring the n-best lists that are produced by the left-to-right models.

Result:

0.97 to 1.28 BLEU score improvement.

R. Sennrich, B. Haddow, and A. Birch. Edinburgh neural machine translation systems for WMT 16.
2 Bilingual task

Result Analysis

Table 6 Results on Official Test Sets for bilingual task

direction	tst2016	tst2017
en-zh	28.13	28.30
zh-en	21.35	22.16
Contents

1. Task description
2. Bilingual task
3. Multilingual task
4. Summary
5. Q&A
3 Multilingual task

Data Preprocessing

- Tokenizer and Truecase (Moses).
- Joint BPE for all corpus.
- Add a label at the start of each source sentence
 - consists of source language label and target language label
3 Multilingual task

Model architecture

Encoder Decoder with Attention
3 Multilingual task

Model configuration

Table 7 Model configuration for multilingual task in zero-shot condition

Type	value
Source vocabulary size	40000
target vocabulary size	40000
word embedding	512
hidden units	1024
embedding dropout	0.2
hidden dropout	0.2
source dropout	0.1
target dropout	0.1
layer normalization	True
maximum sentence length	80
3 Multilingual task

Result Analysis

Table 8 Case-insensitive BLEU score in development set of the zero-shot condition. WN means weight normalization.

	en-de	en-nl	en-it	en-ro	de-en	de-it	de-ro	nl-en	nl-it
shallow model	28.29	32.22	29.67	27.56	34.43	20.60	19.47	38.01	22.42
+ annealing Adam	28.79	32.70	30.13	28.03	34.46	20.9	19.76	38.27	22.43
shallow model with WN	27.68	32.63	29.82	27.32	34.15	20.50	19.36	37.78	21.90
+ annealing Adam	27.79	32.56	30.15	27.72	34.42	20.82	19.81	38.03	22.05
deep transition	29.43	32.79	30.86	28.96	35.33	21.93	20.54	39.45	23.48
+ annealing Adam	29.9	32.85	31.56	28.78	35.72	22.18	20.91	39.79	23.67
deep transition with WN	28.85	33.19	30.98	28.37	34.83	22.07	20.28	38.96	23.06
ensemble	29.82	34.22	31.98	29.39	36.50	22.8	21.32	40.31	23.84
+ r21 reranking	29.60	32.70	31.58	28.77	35.76	22.48	21.45	39.50	24.22

	nl-ro	it-de	it-en	it-nl	ro-de	ro-en	ro-nl	average
shallow model	20.79	20.75	34.22	22.1	22.05	35.81	23.15	27.28
+ annealing Adam	21.31	20.85	34.61	22.22	22.26	36.06	23.34	27.56
shallow model with WN	21.15	20.64	34.25	21.87	22.09	35.62	22.58	27.3
+ annealing Adam	20.78	20.29	33.71	22.04	21.63	35.31	22.48	27.05
deep transition	22.13	21.51	35.25	22.99	22.84	37.06	23.29	28.3
+ annealing Adam	22.16	22.20	35.99	23.29	23.16	37.71	23.53	28.66
deep transition with WN	21.83	21.55	35.13	22.86	22.73	37.09	23.63	28.17
ensemble	22.93	22.56	36.15	23.93	23.35	38.05	24.49	29.21
+ r21 reranking	22.74	24.41	35.74	23.76	23.68	37.47	24.61	28.99
3 Multilingual task

Result Analysis

Annealing Adam:

Halving learning rate after early stop and trained from the previous best model.

Result:

0.28 to 0.36 BLEU score improvement.

M. J. Denkowski and G. Neubig. Stronger baselines for trustworthy results in neural machine translation.
3 Multilingual task

Result Analysis

Weight normalization:

A reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction.

Result:

Get worse performance.

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural networks.
3 Multilingual task

Result Analysis

Ensemble decoding:

Ensembling of the independent left-to-right models.

Result:

1.93 BLEU score improvement comparing shallow model.
3 Multilingual task

Result Analysis

Right-to-left reranking:

Training right-to-left models and re-scoring the n-best lists produced by the left-to-right models.

Result:

right-to-left re-ranking didn’t improve the performance of model.

R. Sennrich, B. Haddow, and A. Birch. Edinburgh neural machine translation systems for WMT 16.
3 Multilingual task

Result Analysis

Table 9: Results on Official Test Sets for multilingual task.

direction	en-de	en-nl	en-it	en-ro	de-en	de-it	de-ro	de-nl	nl-en	nl-it
BLEU	23.08	29.08	32.84	23.89	28.04	18.56	16.23	19.59	32.78	21.21
Nist	5.86	6.81	7.22	5.91	6.85	5.36	4.69	5.57	7.42	5.72
Ter	60.63	51.46	47.63	58.81	51.41	63.43	69.04	61.26	47.34	60.83

direction	nl-ro	nl-de	it-de	it-en	it-nl	it-ro	ro-de	ro-en	ro-nl	ro-it
BLEU	18.11	17.95	18.09	37.84	21.80	18.62	17.95	31.79	20.02	20.39
Nist	4.97	5.06	5.09	8.10	5.78	5.03	5.06	5.59	5.59	5.57
Ter	66.55	67.02	67.28	41.05	60.09	65.53	67.02	41.22	67.81	61.11
Contents

1. Task description
2. Bilingual task
3. Multilingual task
4. Summary
5. Q&A
4 Summary

- Annealing Adam training trick
- Deep model
- Weight normalization
- Right-to-left re-ranking
 - For multilingual task
 - For bilingual task
4 Summary

Team	System on 4 languages	BLEU
KYOTO	ML ZS	21.13
GTCOM	ML ZS	19.40
FBK	ML ZS	17.26
UDSDEFKI	ML ZS	17.10

Team	System on other 16 languages	BLEU
GTCOM	ML ZS	24.46
KYOTO	ML ZS	24.10
FBK	ML ZS	21.89
UDSDEFKI	ML ZS	21.63
4 Summary

- Transformer > RNN
- Using RNN ML SD > ML ZS
- Using transformer ML ZS ≈ ML SD
Cooperation:

• Neural machine translation
• Our system is available on http://translateport.yeekit.com:4305/index.html
• Other language pair contribution
• Corpus
• Speech recognition
Opportunity:
• Internship
• Full time job on machine translation

GTCOM:
Shijingshan district, Beijing, China.
Thank you!