Method of mechanical quadratures for solving singular integral equations of various types

A V Sahakyan* and H A Amirjanyan**

Institute of Mechanics of the National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia

E-mail: *avsaahakyan@gmail.com, **amirjanyan@gmail.com

Abstract. The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

Introduction
The rapid development of computer technologies in the second half of the last century revived the interest of researchers in computational methods and their effective use, in particular, in methods for solving singular integral equations with Cauchy kernel. The importance of “bringing to a number” the solutions of singular integral equations had been repeatedly emphasized by well-known mathematicians, such as N. I. Mukhelishvili, M. A. Lavrentiev, S. G. Mikhlin, H. Multhopp, I. N. Vekua.

The first important results in this direction were obtained by M. A. Lavrentiev [1]. Noting the importance of this work, Academician N. I. Muskhelishvili noted in all editions of his monograph [2]: “The further development of this and similar methods for solving singular integral equations approximately is, I believe, one of the most important problems in the theory of these equations.”

From the middle of the twentieth century, approximate methods for solving singular integral equations began to develop intensively. There are a huge number of papers pertaining to this problem, but the vast majority of them are related to the most widespread particular case, when the behavior of the singular integral density at the ends of the segment of integration is described by a root function. The number of papers devoted to approximate calculations of singular integrals whose densities contain the weight function of Jacobi polynomials with arbitrary admissible real exponents is much smaller. The works, where these exponents can be complex, are not known to the authors.

Of particular interest is the work of F. Erdogan, G. D. Gupta and T. S. Cook [3]. This work is important because of a wider range of the considered material and good presentation of the methods for investigating the behavior of solutions at singular points and for solving singular integral equations of various types. However, unfortunately, in this work, there is no...
single approach to the problem of reducing singular integral equations to a system of algebraic equations.

Despite such a large number of works devoted to approximate methods for solving singular integral equations, interest in this problem does not decrease and continues to be on the agenda. This is testified by a considerable number of publications in the recent years, for example, [4–11].

In this paper, we give a series of quadrature formulas for various integrals arising in singular integral or integro-differential equations of the first and second kind, and describe the method of mechanical quadratures for solving these equations.

1. Quadrature formulas

In this section, several quadrature formulas of Gauss type for calculating integrals containing the weight function of Jacobi polynomials are given. Some of them were obtained in [12–16].

Suppose we have a function \(\Phi(x) \) defined on the interval \((-1, 1)\) and representable in the form

\[
\Phi(x) = \varphi(x)(1-x)^\alpha(1+x)^\beta \quad (\text{Re} \alpha, \text{Re} \beta > -1)
\]

where \(\varphi(x) \) is a function that satisfies the Hölder condition on the interval \([-1, 1]\).

The application of these quadrature formulas for complex values of exponents \(\alpha \) and \(\beta \) is explained in detail in [17].

Replacing the function \(\varphi(x) \) by an interpolation polynomial

\[
\varphi_n(x) = \frac{2}{n + \alpha + \beta + 1} \sum_{j=1}^{n} \varphi(\xi_j)P_n^{(\alpha,\beta)}(x)
\]

we obtain the quadrature formulas

\[
\int_{-1}^{1} \Phi(x) \, dx \approx \sum_{j=1}^{n} w_j \varphi(\xi_j), \quad (2)
\]

\[
\int_{-1}^{1} \frac{\Phi(x)}{x - z} \, dx \approx \sum_{j=1}^{n} w_j \varphi(\xi_j) \left[1 - \frac{R_n^{(\alpha,\beta)}(z)}{R_n^{(\alpha,\beta)}(\xi_j)} \right],
\]

\[
\int_{-1}^{1} \frac{\Phi'(x)}{x - z} \, dx \approx \sum_{j=1}^{n} w_j \varphi(\xi_j) \left[2(n+1) \frac{R_{n+1}^{(\alpha,\beta-1)}(z)}{R_n^{(\alpha,\beta)}(\xi_j)} + \frac{R_n^{(\alpha,\beta)}(z) - R_n^{(\alpha,\beta)}(\xi_j)}{R_n^{(\alpha,\beta)}(\xi_j)(z-\xi_j)} \right], \quad (4)
\]

\[
\int_{-1}^{y} \frac{\Phi(x)}{x - z} \, dx \approx \sum_{i=1}^{n} w_i \varphi(\xi_i) \left[K_1(y, \xi_i) - \sum_{j=1}^{n} \frac{a_j(z)}{a_1(\xi_i)} K_j(y, z) - I_0(y, z) \right],
\]

\[
\int_{-1}^{1} \Phi(x) \, dx \approx \sum_{i=1}^{n} w_i \varphi(\xi_i) \left[\frac{B_{1+x}(\beta + 1, \alpha + 1)}{B(\beta + 1, \alpha + 1)} - \sum_{m=1}^{n-1} P_m^{(\alpha,\beta)}(\xi_i) S_m^{(\alpha,\beta)}(y) \right],
\]

\[
\int_{-1}^{1} \text{sign}(x-y) \Phi(x) \, dx \approx \sum_{i=1}^{n} w_i \varphi(\xi_i) \left[1 - \frac{2B(1+y)/(\beta + 1, \alpha + 1)}{B(\beta + 1, \alpha + 1)} + \sum_{m=1}^{n-1} P_m^{(\alpha,\beta)}(\xi_i) S_m^{(\alpha,\beta)}(y) \right],
\]

\[
\int_{-1}^{1} \ln \left| \frac{1}{x-y} \right| \Phi(x) \, dx \approx \sum_{i=1}^{n} w_i \varphi(\xi_i) \left[L_0^{(\alpha,\beta)}(y) + \sum_{m=1}^{n-1} P_m^{(\alpha,\beta)}(\xi_i) L_m^{(\alpha,\beta)}(y) \right].
\]

Here the points \(\xi_i \) \((i = 1, n)\) are the roots of the Jacobi polynomial \(P_n^{(\alpha,\beta)}(x) \), \(z \) can be any point of the complex plane except for the points \(\pm 1 \), and \(y \) is a point in the interval \((-1, 1)\).
The weighting factors \(w_i (i = 1, n) \) are defined as

\[
w_i = \frac{2}{n + \alpha + \beta + 1} \frac{R_n^{(\alpha,\beta)}(\xi_i)}{P_{n-1}^{(\alpha+1,\beta+1)}(\xi_i)} = \frac{2^{\alpha+\beta+1} \Gamma(n+\alpha+1)\Gamma(\beta+n+1)}{1 - \xi_i^2} \left(\frac{1}{\Gamma(n+1)\Gamma(\alpha+\beta+n+1)} \right)^2, \quad (8)
\]

\(B(\alpha, \beta), B_y(\alpha, \beta) \) are complete and incomplete beta functions, \(F[a, b; c; x], \) \(\text{F}_2[a, b; c; d; e; x] \) are hypergeometric and generalized hypergeometric functions, \(\Gamma(x) \) is the Euler gamma function, \(\psi(x) = \Gamma'(x)/\Gamma(x) \) is the digamma function,

\[
R_n^{(\alpha,\beta)}(z) = -\left(\frac{2}{z - 1} \right)^{n+1} 2^{\alpha+\beta} B(n+\alpha+1, n+\beta+1) F \left[n+1, n+\alpha+1; 2n+\alpha+\beta+2; \frac{2}{1-z} \right],
\]

\[
k_{m}^{(\alpha,\beta)} = \frac{2^{\alpha+\beta+1} \Gamma(m+\alpha+1)\Gamma(m+\beta+1)}{(2m+\alpha+\beta+1)\Gamma(m+1)\Gamma(m+\alpha+\beta+1)},
\]

\[
k_{m}^{(\alpha,\beta)} = \frac{\Gamma(2m+\alpha+\beta+1)}{2^{2m} \Gamma(m+\alpha+\beta+1)\Gamma(m+1)},
\]

\[
a_j(z) = \frac{k_{m}^{(\alpha,\beta)}k_{m-j}^{(\alpha,\beta)}P_{m}^{(\alpha,\beta)}(z)}{k_{m-j}^{(\alpha,\beta)}P_{m-j}^{(\alpha,\beta)}(z)},
\]

\[
K_{j}(y, z) = \frac{B_{(1+y)2}(1+\beta, 1+\alpha)}{B(1+\alpha, 1+\beta)} - \sum_{m=1}^{n-j} P_{m}^{(\alpha,\beta)}(z)S_{m}^{(\alpha,\beta)}(y),
\]

\[
S_{m}^{(\alpha,\beta)}(y) = (1 - y)^{\alpha+1}(1 + y)^{\beta+1} \frac{1}{2m^{\alpha+\beta+1}} P_{m-1}^{(\alpha+1,\beta+1)}(y) \quad (m \geq 1),
\]

\[
L_{0}^{(\alpha,\beta)}(y) = -\frac{B_{(1-y)2}(1+\alpha, 1+\beta)}{B(1+\beta, 1+\alpha)} \pi \cot(\pi\alpha) - \ln 2 - \psi(\alpha + 1) + \psi(\alpha + \beta + 2) + \frac{1 - y}{2\alpha} F_2 \left[1, 1, -\alpha - \beta; 2, 1 - \alpha; \frac{1 - y}{2} \right],
\]

\[
L_{m}^{(\alpha,\beta)}(z) = \left(\frac{2}{z - 1} \right)^{m} m^{2\alpha+\beta+1} B(m+\alpha+1, m+\beta+1) F \left[m+\alpha+1, m, 2m+\alpha+\beta+2; \frac{2}{1-z} \right].
\]

Note that the functions \(R_n^{(\alpha,\beta)}(z) \) and \(L_{m}^{(\alpha,\beta)}(z) \) are uniquely determined in the complex plane which is cut respectively along the segment \([-1, 1]\) and the ray \([-1, \infty]\), when for the cut points, the half-sum of the values from above \((y + i0)\) and below \((y - i0)\) is used.

It is known that quadrature formula (2) is the formula of the highest algebraic accuracy, i.e., it is satisfied exactly if the function \(\varphi(x) \) is a polynomial up to order \(2n - 1\). In the general case, i.e., at an arbitrary value \(z \), formula (3) is not a formula of the highest algebraic accuracy, but it becomes so if \(z \) coincides with the roots of the function \(R_n^{(\alpha,\beta)}(z) \). The remaining formulas are exact only in the case when the function \(\varphi(x) \) is a polynomial of order less than \(n \).

The main advantage of quadrature formulas (2)–(7) is that they are all expressed in terms of the same quantities \(\varphi(\xi) \), which are the unknowns in the integral equations. This allows one to reduce an integral equation containing arbitrary combinations of the integrals shown above to a system of linear algebraic equations with respect to the unknowns \(\varphi(\xi) \).

2. Method of mechanical quadratures

Below we step by step describe the basic procedures required to apply the method of mechanical quadratures for solving the singular integral equations.
Suppose we have an equation that, in addition to the singular integral (3), also contains integrals of some type from (2)–(7). We note that, in the integral equation, formula (2) appears in the form
\[
\int_{-1}^{1} R(x,y) \Phi(x) \, dx \approx \sum_{j=1}^{n} w_j R(\xi_j, y) \varphi(\xi_j),
\]
where \(R(x,y) \) is a regular function in both variables.

It is obvious that, in the case of an arbitrary interval of integration, the equation can be reduced to the interval \((-1,1)\) by a simple linear transformation. Further, the solution of the equation is sought in the form (1) with unknown coefficients \(\alpha \) and \(\beta \).

Step 1. We assume that the solution of the given equation has representation (1), where the unknown function \(\varphi(x) \) is sufficiently smooth and bounded on the closed interval \([-1,1]\). We will call it the regular part of the solution of the given equation.

Using the results of N. I. Mukhelishvili on the behavior of the Cauchy-type integral at the ends of the line of integration [2], we write the principal terms of the asymptotics of the behavior of each of the integrals in the equation, and of the right-hand side, the known part of the equation in a neighborhood of each of the ends of the interval of integration. Equating the coefficients of the corresponding terms of the asymptotics to each other, we obtain equations for determining the exponents \(\alpha \) and \(\beta \). Usually, these roots are in the interval \((-1,1)\). In the case when the equations obtained have two roots in \((-1,1)\), usually of opposite signs, the choice of the necessary root is dictated by the statement of the problem.

Step 2. Having found the exponents \(\alpha \) and \(\beta \) and choosing a certain order of approximation \(n \), we can replace each of the integrals of the equation, according to formulas (2)–(7), by a quadrature sum. As a result, we obtain a functional equation that is linear with respect to unknown coefficients, which are the values of the regular part of the solution of the integral equation in the roots of the Jacobi polynomial corresponding to the found exponents.

Step 3. To determine the unknown coefficients, it is necessary to equate the right- and left-hand sides of the obtained functional equation at a certain number of points, called collocation points. The effective choice of these points is dictated by the following considerations.

Suppose we have a singular integral equation of the first kind, which contains only the singular integral (3) and the regular integral (9). As was mentioned above, because, at the roots of the function \(R^{(a,b)}_n(z) \), the quadrature formulas for both integrals are quadrature formulas of the highest algebraic accuracy, it is obvious that these roots should be chosen as collocation points. This also fixes the number of collocation points necessary to obtain a closed system of linear algebraic equations. In the case under consideration, when the regular kernel and the right-hand side of the equation do not have singularities at the ends of the interval of integration, the exponents \(\alpha \) and \(\beta \) can take the values \(\alpha = \pm \beta = \pm 0.5 \). As was indicated above, the choice of adequate values is dictated by the formulation of the problem. For clarity, we illustrate this with an example of the classical problem of indenting a rigid stamp into an elastic half-plane.

Let us have an elastic strip or an inhomogeneous half-plane into which a rigid stamp of a certain shape is pressed under the action of a force \(P \) (figure 1). It is assumed that there is a smooth contact and only normal stresses appear in the contact zone.

After reducing the contact zone intervals \((-a, a)\), \((-c, a)\), and \((-c, b)\) to the interval \((-1,1)\) in all three cases, the problem reduces to solving the equation
\[
\int_{-1}^{1} \frac{\Phi(\xi)}{\xi - \eta} \, d\xi + \int_{-1}^{1} K(\xi, \eta) \Phi(\xi) \, d\xi = f(\eta) \quad (-1 < \eta < 1)
\]
under the condition of the stamp equilibrium
\[\int_{-1}^{1} \Phi(\xi) \, d\xi = P_* . \] (11)

Here \(\Phi(\xi) = p(x(\xi))/\mu \) is the dimensionless contact pressure, \(f(\eta) \) is a known dimensionless function determined by the shape of the base of the stamp, \(\mu \) is the modulus of shear of the material of the base, and \(P_* = P/(a\mu) \) is the dimensionless value of the pressing force.

The solution of equation (10) is sought in the form (1). According to step 1, we find that the exponents \(\alpha \) and \(\beta \) can take the values \(\alpha = \beta = \pm 0.5 \).

In case a) in figure 1, at the ends of the contact zone, the contact pressure has a singularity and, therefore, the values \(\alpha = \beta = -0.5 \) should be selected. The function \(R_{n}^{-0.5,-0.5}(y) \) becomes the Chebyshev polynomial of the second kind \(U_{n-1}(y) \) which has \(n - 1 \) roots, and therefore the number of collocation points is \(n - 1 \). This is in complete agreement with the well-known fact that equation (10) does not have a unique solution and is determined up to the summand \(A(1 - \xi^2)^{-0.5} \) whose coefficient \(A \) must be found from the condition (11).

Thus, by combining the \(n - 1 \) collocation equations (10) and condition (11), which is discretized, according to (2), for determining \(n \) unknown coefficients \(\varphi(\xi_j) \) we obtain a closed system of linear algebraic equations
\[\sum_{j=1}^{n} w_j \varphi(\xi_j) + \sum_{j=1}^{n} w_j K(\xi_j, \zeta_k) \varphi(\xi_j) = f(\zeta_k) \quad (k = 1, 2, \ldots, n - 1), \]
\[\sum_{j=1}^{n} w_j \varphi(\xi_j) = P_* . \] (12)

In case b) in figure 1, at the left end of the contact zone, due to continuity, the contact pressure must go to zero and, therefore, the values \(\alpha = -0.5 \), \(\beta = 0.5 \) should be selected. The function \(R_{n}^{-0.5,0.5}(y) \) is the Jacobi polynomial \(P_{n}^{0.5,-0.5}(y) \) and the number of collocation points is \(n \). Therefore, the resulting system of linear algebraic equations will contain \(n + 1 \) equations. However, it should be noted that in addition to unknown coefficients \(\varphi(\xi_j) \), in this case the location of the left end of the contact zone \(c/a \) is also unknown. Since \(P_* \) appears only in condition (11), it is more expedient to solve the inverse problem, i.e., to set the value \(c/a \), find the coefficients \(\varphi(\xi_j) \) from the system of collocation equations, and, further, from equilibrium condition (11), to determine for what \(P_* \) this is the case. The system of linear algebraic equations in this case becomes
\[\sum_{j=1}^{n} w_j \varphi(\xi_j) + \sum_{j=1}^{n} w_j K(\xi_j, t_k) \varphi(\xi_j) = f(t_k) \quad (k = 1, 2, \ldots, n), \]
\[\sum_{j=1}^{n} w_j \varphi(\xi_j) = P_* . \] (13)
In case c) in figure 1, the contact pressure is zero at both ends of the contact zone. The function $R_n^{(0,5,0.5)}(y)$ is a Chebyshev polynomial of the first kind $T_{n+1}(y)$, which has $n+1$ roots, that is, the number of collocation points is $n+1$. It is known that, in this class of functions, equation (10) has a solution only if the following condition is satisfied:

$$\int_{-1}^{1} \left[\int_{-1}^{1} \frac{\Phi(\xi)}{\xi - \eta} \, d\eta \right] \frac{d\eta}{\sqrt{1 - \eta^2}} = 0. \quad (14)$$

Since, unlike the preceding case, the location of the right end of the contact zone b/a is also unknown here, condition (14) is necessary for its determination.

In [18] it is shown that if an additional unknown γ_0, with a unit coefficient, is introduced into the resulting system of linear algebraic equations, then $\lim_{n \to \infty} \gamma_0 = 0$ if and only if condition (14) is satisfied.

The unknown γ_0 is called the regularizing factor, and its behavior serves as a convenient indicator of the existence of the solution. As in the preceding case, it is convenient here to solve the inverse problem, i.e., to set, for example, the value c/a, then select a value b/a so that when the collocation system is solved, then the regularizing factor γ_0 is close to zero. Then the corresponding value P_* is determined from condition (11).

It is worth to note that, in this case, the unknown γ_0 can be interpreted as the angle of rotation of the stamp. Really, if both values c/a and b/a are set, and the value P_* is found, then γ_0 means the angle of the stamp rotation needed for the contact zone to coincide with the interval $(-c/a, b/a)$. When $\gamma_0 = 0$, the stamp is pressed vertically into the half-plane.

In this case, the system of linear algebraic equations has the form

$$\gamma_0 + \sum_{j=1}^{n} w_j \phi(\xi_j) + \sum_{j=1}^{n} w_j K(\xi_j, t_k) \phi(\xi_j) = f(t_k) (k = 1, 2, \ldots, n + 1), \quad (15)$$

$$\sum_{j=1}^{n} w_j \phi(\xi_j) = P_*.$$

Unlike the equations of the first kind, other singular integral equations contain at least one term for which the approximation formula is exact only for polynomials of order at most $n - 1$. Although the above justification for choosing the roots of $R_n^{(\alpha,\beta)}(z)$ as collocation points is not valid here, nevertheless, the experience shows that it is also acceptable in this case. Indeed, the number of roots of the function $R_n^{(\alpha,\beta)}(z)$, if any, coincides with the necessary number of collocation points. The choice of collocation points themselves can be arbitrary, since there are no restrictions on the external variable in formulas (2)–(7).

When solving the singular integral equations of the second kind, it is more convenient to use a slightly different representation of quadrature formula (3).

The function $R_n^{(\alpha,\beta)}(z)$ for the points of the interval of integration can be written as

$$R_n^{(\alpha,\beta)}(y) = \pi \cot(\alpha \pi) (1 - y)^{\alpha} (1 + y)^{\beta} P_n^{(\alpha,\beta)}(y) - 2^{\alpha+\beta} B(\alpha, n+\beta+1) F \left[n+1, -n-\alpha-\beta; 1-\alpha; \frac{1-y}{2} \right].$$

Since, in the case of a singular integral equation of the second kind, the index of the equation κ is equal to $\kappa = \alpha + \beta = \{-1, 0, 1\}$, the last expression becomes

$$R_n^{(\alpha,\beta)}(y) = \pi \cot(\alpha \pi) (1 - y)^{\alpha} (1 + y)^{\beta} P_n^{(\alpha,\beta)}(y) - \frac{2^\kappa \pi}{\sin(\alpha \pi)} P_n^{(-\alpha, -\beta)}(y). \quad (16)$$
Substituting (16) into formula (3), after simple transformations, we obtain the quadrature formula
\[
\int_{-1}^{1} \Phi(x) \frac{dx}{x-y} - \pi \cot(\alpha\pi) \Phi(y) \approx \sum_{j=1}^{n} w_j \varphi(\xi_j) \left[1 - \frac{P_{n+\kappa}^{(-\alpha,-\beta)}(y)}{P_{n+\kappa}^{(-\alpha,-\beta)}(\xi_j)} \right].
\] (17)

Suppose we have a singular integral equation of the second kind
\[
\int_{-1}^{1} \Phi(x) \frac{dx}{x-y} + \pi \lambda \Phi(y) + \int_{-1}^{1} K(x,y) \Phi(x) \, dx = f(y) \quad (-1 < y < 1)
\] (18)

Under the assumption that the regular kernel and the right-hand side of the equation have no singularity at the ends of the integration interval, the exponents \(\alpha\) and \(\beta\) are determined from the equations
\[
\cot(\alpha\pi) - \lambda = 0, \quad \cot(\beta\pi) + \lambda = 0.
\]

Here, depending on the value of the index \(\kappa\), all three cases mentioned above can occur.

We note that, using the quadrature formula (17) and choosing the zeros of the polynomial \(P_{n+\kappa}^{(-\alpha,-\beta)}(y)\) as collocation points, equation (18) reduces to a system of linear algebraic equations of the form (12), (13) or (15).

A similar approach can be used for more complex singular integral equations as well.

3. Approbation of the method

The method of mechanical quadratures in application to singular integral equations of the first kind is well known, and there are many works using it. Below we cite the works where the method of mechanical quadratures is used to solve singular equations of other types. Note that in many of these papers, the method is called the method of discrete singularities.

In [19, 20], contact problems of theory of elasticity are solved in the case where the defining equations are singular integral equations of the first kind with a right-hand side containing a logarithmic singularity at the ends of the interval of integration.

The contact problems for moving stamps, which reduce to solving singular integral equations of the second kind with real coefficient of the free term and, consequently, real exponents of the Jacobi weight function, were solved in [21–26]. The problem of indenting a stamp into an elastic massive body with allowance for the bonding zone in the middle part of the contact zone and slip zones at its ends [27–29], as well as the mixed problems for a piecewise homogeneous plane with interphase cracks or rigid inclusions, considered in the formulation of the antiplane problem of the theory of elasticity [30], can also be reduced to a system of such equations.

A large number of papers are devoted to problems which can be reduced to systems of singular integral equations of the second kind with imaginary coefficient of the free term and, consequently, with complex exponents of the Jacobi weight function. In [31–35], problems for homogeneous massive bodies containing thin rigid inclusions are solved, when, on one side, the inclusion is connected to a massive body, and on the other side, a crack is formed. In [36–38], problems for piecewise-homogeneous massive bodies with cracks and thin rigid inclusions on the material separation line are solved.

In [39–48], problems of the theory of elasticity in plane and antiplane formulations for massive bodies containing stress concentrators of the types indicated above are solved, which reduce to solving systems of singular integral equations with a generalized Cauchy kernel. These equations are also known as equations with a fixed singularity. This type of singularities often appears when an end of a stress concentrator reaches the boundary of the homogeneous body or the line of separation of materials of the piecewise homogeneous body or another concentrator.

Contact problems for massive bodies, reinforced by thin elastic plates or containing thin elastic inclusions, reduce to solving singular integro-differential equations. In [49–55], such
problems were solved by the method of mechanical quadratures. In [53] the solution of the Prandtl equation is presented in two ways using the method of mechanical quadratures.

In a number of works, the rate of convergence of the approximate solution to the exact one, depending on the order of approximation, is investigated by numerical analysis. The practice shows that, with the correct choice of the exponents of the singularity α and β and the corresponding quadrature formulas, at $n = 10 \sim 12$, it is already possible to obtain solutions with accuracy higher than four significant digits.

Conclusions
The paper presents the development of the method of mechanical quadratures, which is well known for solving singular integral equations of the first kind. The quadrature formulas given in the paper, which are written with respect to the same coefficients (values of the unknown functions at the same points), allow us considerably to expand the scope of the method. This is tested by a large number of problems solved by this method whose defining equations qualitatively differ from each other.

References
[1] Lavrent'ev M A 1932 On the construction of a stream flowing around an arc of a given form Trudi TsAGI 118 pp 3-56
[2] Muskhelishvili N I 1968 Singular Integral Equations (Moscow: Nauka) [in Russian]
[3] Erdogan F, Gupta G D, and Cook T S 1973 The numerical solutions of singular integral equations. Methods of Analysis an Solution of Crack Problems (Leyden: Noordhoff Intern. Publ.) pp 368–425
[4] Andreev A V 2005 Direct numerical method for solving singular integral equations of the first kind with generalized kernels Mech. Solids 40 (1) 104–19
[5] Okecha G E 2007 Solution of Cauchy-type singular integral equations of the first kind with zeros of Jacobi polynomials as interpolation nodes Int. J. Math. Math. Sci. 2007 10957 doi: http://dx.doi.org/10.1155/2007/10957
[6] Capobianco M R, Criscuolo G, and Junghanns P 2008 On the numerical solution of a hypersingular integral equation with fixed singularities In Recent Advances in Operator Theory and Applications pp 95–116
[7] Concetta Laurita 2012 A quadrature method for Cauchy singular integral equations with index -1 IMA J. Num. Anal. 32 (3) 1071–95 doi: https://doi.org/10.1093/imanum/drr032
[8] Setia A 2014 Numerical solution of various cases of Cauchy type singular integral equation Appl. Math. Comput. 230 200–7
[9] Criscuolo G 2014 Numerical evaluation of certain strongly singular integrals IMA J. Num. Anal. 34 (2) 651–74 doi: https://doi.org/10.1093/imanum/drt017
[10] Huang C and Stynes M 2017 Spectral Galerkin methods for a weakly singular Volterra integral equation of the second kind IMA J. Num. Anal. 37 (3) 1411–36 doi: https://doi.org/10.1093/imanum/drw034
[11] Setia A, Sharma V and Liu Y 2017 Numerical method to solve Cauchy type singular integral equation with error bounds AIP Conf. Proc. 1798 doi: http://dx.doi.org/10.1063/1.4972733
[12] Sahakyan A V 2002 Gauss type quadrature formulae for singular integrals In Problems of Mechanics of Thin Deformable Bodies, Coll. of Scientific Papers Dedicated to 80-th Anniversary of Acad. S. A. Ambartsumian (Yerevan: Gitutyun) pp 259–66 [in Russian]
[13] Sahakyan A V 2010 Quadrature formula for calculation of the integral with a variable upper limit In Topical Problems of Continuum Mechanics: Proc. of II Int. Conf. 4–8 October 2010, Dilijan, Armenia vol 2 (Yerevan: EGUAS) 107–11 [in Russian]
[14] Sahakyan A V 2012 Quadrature formulae for Cauchy type integral with variable integration limit In Problems of Mechanics of Thin Deformable Bodies, Coll. of Scientific Papers Dedicated to 80-th Anniversary of Acad. S. A. Ambartsumian (Yerevan: Gitutyun) pp 240–4 [in Russian]
[15] Amirjanyan H A and Hakobyan L V 2010 Uniform movement of an absolutely rigid die over the inner surface of an infinite hollow cylinder In Topical Problems of Continuum Mechanics: Proc. of II Int. Conf. 4–8 October 2010, Dilijan, Armenia vol 1 (Yerevan: EGUAS) 81–5 [in Russian]
[16] Sahakyan A V 2011 Method of discrete singularities for solution of singular integral and integro-differential equations Proc. of A. Razmadze Math. Inst. 156 101–11
[17] Saakyan A V 2012 Quadrature formulas of maximum algebraic accuracy for Cauchy type integrals with complex exponents of the Jacobi weight function Mech. Solids 47 (6) 695–9
[18] Lifanov I K 1980 On the ill-posedness and regularization of numerical solutions of a singular integral equation of the first kind Dokl. Akad. Nauk SSSR 255 (5) 1046–50

[19] Amirjanyan H A and Sahakyan A V 2012 About the indentation of a rigid punch with concave base into half plane, taking into account the influence of filler in cavity Izv. Nats. Akad. Nauk Armenii. Mekh. 65 (1) 7–16

[20] Amirjanyan A A and Sahakyan A V 2017 Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side Comput. Math. Phys. 57 1285–93 doi: https://doi.org/10.1134/S0965542517080036

[21] Lifanov I K and Saakian A V 1982 Method of numerical solution of the problem of impressing a moving stamp into an elastic half-plane, taking heat generation into account J. Appl. Math. Mech. 46 (3) 388–94

[22] Sahakyan A V 1996 Ch. 12.3. On the indentation of a pair of uniformly moving punches into an elastic strip In Lifanov I K Singular Integral Equations and Discrete Vortices (Utrecht: VSP BVP)

[23] Hakobyan V N and Amirjanyan H A 2009 About indentation of the system of uniformly moving rigid punches in piecewise homogeneous half-plane Izv. Nats. Akad. Nauk Armenii. Mekh. 62 (3) 3–10

[24] Sahakyan A V 2009 The influence of friction heat generation on the contact stress distribution between uniformly moving punch and elastic half-plane In Proc. of the 8th Int. Congr. on Thermal Stresses. TS2009. 1–4 July, Univ. of Illinois at Urbana-Champaign. Illinois, USA vol 1 (Illinois) pp 117–20

[25] Amirjanyan H A and Hakobyan L V 2010 On uniform motion of absolutely rigid strips on inner surface of elastic infinite hollow cylinder In Topical Problems of Continuum Mechanics: Proc. of II Int. Conf. 4–8 October 2010, Dilijan, Armenia vol 1 (Yerevan: EGUAS) 81–5 [in Russian]

[26] Amirjanyan H A 2011 On uniform motion of a periodic system of absolutely rigid stamps, in the hollow cylinder Izv. Nats. Akad. Nauk Armenii. Mekh. 64(1) 5–10

[27] Sahakyan A V 2013 Solution of a contact problem with contact and adhesion regions (Galin’s problem) by the method of discrete singularities In Development of L. A. Galin’s Ideas in Mechanics. Collection of Research Papers (Moscow - Izhevsk) pp 103–20

[28] Hakobyan V N and Sahakyan A V 2014 Stress state of elastic plane with partially detached from matrix absolutely rigid inclusion within Galins’ model Proc. of VIII Int. Conf. “The Problems of Dynamics of Interaction of Deformable Media” September 22–26, Goris - Stepakert, Armenia, 2014 (Goris -Stepanakert: Inst. Mekh. NAN RA) pp 43–7 [in Russian]

[29] Amirjanyan A A and Sahakyan A V 2017 On indentation of a pair of rigid punches connected by an elastic beam into an elastic half-plane with regard to the friction and adhesion forces in the contact region Mech. Solids 52 (2) 161–71

[30] Hakobyan V N and Hakobyan L V 2016 Stress state of piece-wise homogeneous space with doubly-periodic system of interphase defects Izv. Nats. Akad. Nauk Armenii. Mekh. 69 (3) 3-15

[31] Akopyan V N and Saakyan A V 1999 The stress state of a homogeneous elastic plane with a star-shaped crack under mixed boundary conditions on the crack faces Mech. Solids 34 (3) 90–5

[32] Sahakyan A V 2005 The mixed boundary value problem for elastic wedge with thin rigid inclusion one side of which is separated from the matrix In Collection of Papers, Dedicated to the Memory of Professor P. S. Theocaris (Yerevan: Gitutyun NAN RA) pp 231–9

[33] Akopyan V N and Saakyan A V 1999 A mixed problem for an elastic wedge weakened by a crack Mech. Solids 34 (6) 56–65

[34] Hakobyan V N, Sahakyan A V, and Sargsyan A H 2014 The plane deformation state of elastic plane with finite rigid inclusion under harmonic loading In Proc. of V Int. Conf. “The Problems of Dynamics of Interaction of Deformable Media” October 1–7, Goris, Armenia, 2014 pp 56–60

[35] Hakobyan V N and Sahakyan A V 2014 On the pressing of two smooth punches into an elastic half-plane containing a rigid inclusion of finite length, one face of which is detached from the matrix In Proc. XVII Int. Conf. “Modern Problems of Continuum Mechanics” October 14–17, Rostov-on-Don, Russia, 2014 vol 1 pp 29–33 [in Russian]

[36] Sahakyan A V and Dashtoyian L L 2003 On one problem for compound plane with crack and inclusion with the existence of temperature field In Proc. of the 5th Int. Congress on Thermal Stresses and Related Topics, TS2003, 8-11 June 2003, Blacksburg, VA pp TM-4-1-1–4

[37] Hakobyan V and Dashtoyian L 2016 Doubly periodic problem for piecewise homogeneous plane with absolutely rigid inclusions In Proc. of the 8th Int. Conf. Contemporary Problems of Architecture and Construction, Yerevan (Yerevan) pp 125–8 [in Russian]

[38] Hakobyan V N 2016 Axisymmetric stress state of a piecewise homogeneous, layered space with parallel coin-like cracks In Proc. XVIII Int. Conf. “Modern Problems of Continuum Mechanics” 7–10 November 2016, Rostov-on-Don, Russia vol 1 35–9 [in Russian]

[39] Sahakyan A V 2000 Application of the method of discrete singularities for solving the singular integral equations with unmoved singularities Izv. Nats. Akad. Nauk Armenii. Mekh. 53 (3) 12–9
[40] Sahakyan A V 2004 The method of discrete singularities of solutions of singular integral equations with
unmoved singularity In *Topics in Analysis and its Applications. NATO Science Series, II. Mathematics,
Physics and Chemistry* vol 147 (The Netherlands, Kluwer Acad. Publ.) pp 327–32
[41] Aghayan K L, Amirjanyan H A, and Zakaryan V G 2016 Longitudinal shear of an elastic space containing
cracks and inclusions *Nauchn. Trudy NUACA* 1 (60) 35–44
[42] Aghayan K L, Amirjanyan H A, and Zakaryan V G 2016 Anti-plane contact problem for a compound elastic
half-space with a finite crack In *Proc. of the 8th Int. Conf. Contemporary Problems of Architecture and
Construction, Yerevan (Yerevan)* pp 50–3
[43] Sahakyan A V 2010 Method of discrete singularities in use to solution of the problems for regions with
boundary cracks *Proc. of the XIV Int. Conf. “Actual Problems of Mechanics of Solids,” 19–24 June, 2010,
Rostov-on-Don, Russia* pp 290–4 [in Russian]
[44] Sahakyan A V and Hakobyan V N 2007 On the stressed state of an elastic plane with a semi-infinite cut
which perpendicularly terminates at the rigid inclusion of finite length In *Problems of Mechanics of Thin
Deformable Bodies, Coll. of Scientific Papers Dedicated to 80-th Anniversary of acad. S. A. Ambartsumian
(Yerevan: Gitutyun)* pp 16–25 [in Russian]
[45] Sahakyan A V 2011 A method of discrete singularities in application to a mixed problem for an elastic
half-plane with boundary inclusion In *Proc. XV Int. Symp. “Method of Discrete Singularities in Problems
of Mathematical Physics” Kharkov-Kherson* pp 330–3 [in Russian]
[46] Hakobyan L V and Sahakyan A V 2015 A refined solution of the mixed problem for an elastic space with
a T-shaped crack at antiplane deformation In *Topical Problems of Continuum Mechanics: Proc. of IV
Int. Conf. 21–26 September 2015, Tsaghkadzor, Armenia (Yerevan: Nats. Univ. Arkh. Stroit. Armenii)* pp 38–42 [in Russian]
[47] Hakobyan V N, Dashtoyan L L, and Hakobyan L V 2012 On the stressed state of an elastic plane with
a semi-infinite cut which perpendicularly terminates at the rigid inclusion which is partially torn from
the matrix In *Proc. III Int. Conf. “Topical Problems of Mechanics of Solids” Dedicated to the Century
Anniversary of Acad. N. Kh. Arutyunyan, Tsaghkadzor, Armenia* vol 1 pp 57-61 [in Russian]
[48] Hakobyan V N and Amirjanyan H A 2015 Stress state of semi-infinite plane with absolutely rigid inclusion
and crack *Izv. Nats. Akad. Nauk Armenii. Mekh.* 68 (1) 25–36
[49] Sahakyan A V 2008 Method of discrete singularities in use to solution of a singular integro-differential
equations In *Proc. 6th Int. Conf. “The Problems of Dynamics of Interaction of Deformable Media,”
September 21–26, Goris - Stepanakert, 2008 (Goris - Stepanakert: Inst. Mekh. NAN RA)* pp 383–7 [in Russian]
[50] Hakobyan V N and Amirjanyan H A 2012 Load-transfer from deformable inclusions to infinite visco-elastic
plate with slits *Izv. Nats. Akad. Nauk Armenii. Mekh.* 65 (4) 6–21
[51] Hakobyan V N and Amirjanyan H A 2013 On the load transfer from elastic inclusions to an infinite elastic
orthotropic plane with cuts *Mech. Solids* 48 (6) 628–35
[52] Sahakyan A V 2011 Method of discrete singularities for solution of singular integral and integro-differential
equations *Proc. of A. Razmadze Math. Inst.* 156 101–11
[53] Sahakyan A V and Shavlakadze N N 2014 Two methods for direct numerical integration of the Prandtl
equation and comparative analysis between them *Comput. Math. Math. Phys.* 54 (8) 1244–50
[54] Sahakyan A V and Shavlakadze N N 2016 The contact problem for piecewise-homogeneous elastic plate
reinforced by finite elastic stringer of variable stiffness *Abstr. of the 40-th Solid Mechanics Conf, Warsaw
URL http://solmech2016.ippt.gov.pl/Abstracts/0109.pdf*
[55] Sahakyan A V and Shavlakadze N N 2016 Numerical analysis of the contact problem for an elastic stringer
of variable rigidity that extends to the material separation line of a composite elastic plane In *Proc. of
the XVIII Int. Conf. “Actual Problems of Mechanics of Solids,” 7–10 November, 2016, Rostov-on-Don,
Russia* pp 171–5 [in Russian]