Clinical features and outcome of pediatric acute lymphoblastic leukemia with low peripheral blood blast cell count at diagnosis

Qingkai Dai, MDa,b, Ge Zhang, MD, PhD,a,b Hui Yang, MD,a,b Yuefang Wang, MD,a,b Lei Ye, MD,a,b Luyun Peng, MD,a,b Rui Shi, MD, PhD,a,b Siqi Guo, MD,a,b Jiajing He, MD,a,b Yongmei Jiang, MD, PhD,a,b∗

Abstract
Peripheral blood (PB) blast cell count on day 8 of prednisone therapy has been considered one of the strongest predictors of outcome in children with acute lymphoblastic leukemia (ALL). However, little is known about the clinical features and prognostic impact of PB blast cell count at diagnosis in these patients. The aim of this study was to evaluate the relationship between initial PB blast cell count and clinical prognosis of pediatric ALL.

The study comprised 367 patients with ALL, aged 0 to 14 years, enrolled and treated using the Chinese Children’s Leukemia Group-ALL 2008 protocol between 2011 and 2015. The majority (91.6%) of patients were B-cell precursor ALL (BCP ALL), and 8.4% were T-cell ALL (T-ALL).

Patients with BCP ALL in the low PB blast cell count group (<1 × 10⁹/L) had significantly superior survival rates to those in the high count group (≥30 × 10⁹/L). In T-ALL, the low count group showed significantly inferior survival rates compared to both the intermediate count group (1–29.9 × 10⁹/L) and high count group. Multivariate analysis revealed that the initial white blood cell count and minimal residual disease at the end of induction therapy were independently predictive of BCP ALL outcome, while risk stratification was shown to be an independent prognostic factor for T-ALL outcome.

These results indicated that low blast cell count in PB at diagnosis was associated with different clinical outcomes in patients with BCP ALL and T-ALL, although it was not an independent outcome predictor by multivariate analysis.

Abbreviations: 6-MP = 6-mercaptopurine, ALL = acute lymphoblastic leukemia, BCP ALL = B-cell precursor acute lymphoblastic leukemia, BFM = Berlin–Frankfurt–Münster, CAM = cyclophosphamide, cytarabine and 6-mercaptopurine, CCLG = Chinese Childhood Leukemia Group, CNS = central nervous system, CR = complete remission, EFS = event-free survival, FAB = French-American-British, HR = high-risk, IR = intermediate-risk, MRD = minimal residual disease, MTX = methotrexate, OS = overall survival, PB = peripheral blood, SR = standard-risk, T-ALL = T-cell acute lymphoblastic leukemia, WBC = white blood cell.

Keywords: acute lymphoblastic leukemia, children, peripheral blood blast cell, prognostic factor

1. Introduction
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Based on multiagent chemotherapy regimens and risk-stratified antileukemic therapy, cure rates for children with ALL have improved from 10% to 90% over the past 5 decades. B-cell precursor ALL (BCP ALL) accounts for nearly 90% of childhood ALL while T-cell ALL (T-ALL) comprises the remaining cases. Previous studies have demonstrated that patients with T-ALL have an unfavorable prognosis compared to those with BCP ALL. Therefore, commonly utilized prognostic factors for BCP ALL may not necessarily be suitable for T-ALL due to differences in their biological and clinical features.

Clinical, biologic, genetic and response-based variables, such as age, gender, white blood cell (WBC) count, immunophenotypic, cytogenetic, and molecular characteristics are known to predict relapse in childhood ALL. Early response to treatment measured by minimal residual disease (MRD) is currently the single most powerful prognostic factor in childhood ALL. Even with identification of novel biomarkers, initial WBC count is still considered one of the strongest independent predictors of induction failure and risk of relapse in pediatric ALL. As shown in previous studies, both age, and initial WBC count were
independent prognostic factors in patients with BCP ALL, although they were significantly less predictive in T-ALL.[13,15] Additionally, T-ALL patients with either an initially low or high WBC count were found to have a significantly lower survival rate than those with an intermediate count.[16]

According to the Berlin–Frankfurt–Münster (BFM) group, prednisone response characterized by the peripheral blood (PB) blast cell count is considered one of the strongest prognostic factors.[17–19] The relationship between PB blast cell count at diagnosis and clinical prognosis of children with ALL remains uncertain. The objective of this study was to explore whether low blast cell count in PB at diagnosis was associated with an improved clinical outcome in childhood BCP ALL and/or T-ALL.

2. Materials and methods

2.1. Patients

From May 2011 to May 2015, hospitalized children diagnosed with BCP ALL or T-ALL based on Chinese Children’s Leukemia Group-ALL 2008 (CCLG-ALL 2008) protocol at West China Second University Hospital in Southwest China were retrospectively included in this study. The diagnosis of ALL was based on evaluation of bone marrow smears according to morphologic and cytochemical criteria of French-American-British (FAB)[20] and immunophenotypic criteria. The recorded clinical variables included age, gender, fever or infection, pallor, bleeding tendency, splenomegaly, hepatomegaly, lymphadenopathy, infiltration of the central nervous system, WBC count and PB blast cell count at diagnosis, FAB morphology, risk stratification, cytogenetic abnormalities, prednisone response, and MRD on day 33. This study protocol was approved by the Ethical Review Board of Investigation in Human Beings of West China Second University Hospital (no.155/2020). Informed consents were obtained orally from the patients or guardians of each patient.

2.2. Risk stratification and treatment

According to CCLG-ALL 2008 protocol, children with ALL were categorized into standard risk (SR), intermediate risk (IR), and high risk (HR) based on age, WBC count at diagnosis, immunophenotype, cytogenetic features, early response treatment, and MRD level at the end of induction therapy. All patients were treated with the CCLG-ALL 2008 protocol as described previously.[21,22] Following 7 days of treatment with prednisone, the treatment regimen was divided into 5 phases:

1) remission induction [vincristine, daunorubicin, L-asparaginase, and dexamethasone];
2) early intensification [1 course of cyclophosphamide, cytarabine, and 6-mercaptopurine (6-MP) (CAM) for SR ALL, and 2 courses of CAM for IR/HR ALL];
3) consolidation [high-dose MTX+6-MP for SR ALL (2.0g/m² MTX) and IR ALL (5.0g/m² MTX), and 2 courses of BFM High Risk block-1’, BFM High Risk block-2’, and BFM High Risk block-3’ for HR ALL];
4) delay intensification ([vincristine, daunorubicin, L-asparaginase, and dexamethasone + CAM for SR/HR ALL, 1 course of 6-MP+MTX between 2 courses of delay intensification for IR ALL]; and
5) maintenance treatments [6-MP+MTX/vincristine+dexamethasone for SR/IR ALL, and 6-MP+MTX/cyclophosphamide+cytarabine/vincristine+dexamethasone for HR ALL].

2.3. WBC and differential count

Venous PB samples were collected with vacutainer tubes containing K2EDTA (Becton Dickinson, Franklin Lakes, NJ). Complete blood count was measured using an automated hematology analyzer Sysmex XE-2100 (Sysmex, Kobe, Japan). Manual WBC differential count of 200 cells was performed by trained technicians who had more than 10 years of experience in manual slide review. If blast cells were not found after manual counting by the technicians, the slides were reviewed by a third technician or a hematopathologist. If not enough cells were present on 1 slide, 2 or more slides were microscopically reviewed to assure that a minimum of 100 cells were counted.

2.4. Flow cytometric analyses

Bone marrow samples collected from all patients were processed for immunophenotyping at the time of diagnosis, and assessed for MRD at the end of induction chemotherapy (day 33). The staining procedure, protocol for immunophenotyping, and MRD detection by flow cytometry have been described in detail previously.[23–25] Flow cytometry data were recorded using a FACScalibur flow cytometer (Becton Dickinson, San Jose, CA) and analyzed on BD Cell-QuestTM Pro software (Becton Dickinson, San Jose, CA) within 24 hours after sample collection. The following monoclonal antibodies were used: CD2 PE (clone S5.2), CD3 FITC (clone SK7), CD5 FITC (clone L17F12), CD7 FITC (clone M-T701), CD10 FITC (clone H10a), CD13 PE (clone L138), CD19 PE (clone 4G7), CD20 PE (clone L27), CD22 PE (clone SJ10.1H11), CD33 FITC (clone P67.6), CD34 FITC (clone 8G12), CD45 PerCP (clone 2D1), CD117 PE (clone 104D2), CD79a PE (clone HM47), and HLA-DR PE (clone L243). All the monoclonal antibodies were obtained from BD Bioscience except CD22 which was obtained from Beckman Coulter. Cells were gated based on CD45 and side scatter parameters. The sample was considered positive for an antigen if it was expressed on 20% or more of leukemic cells.

2.5. Fusion transcript analysis

Bone marrow mononuclear cells were enriched by density gradient centrifugation with Ficoll solution. Total RNA was extracted using Trizol (Invitrogen Life Technologies, Carlsbad, CA) according to the manufacturer’s instructions. BCR-ABL, TEL-AML1, E2A-PBX1, and MLL-AF4 fusion genes were assessed by reverse transcriptase-polymerase chain reaction.

2.6. Definition

Complete remission (CR) was defined as less than 5% bone marrow blasts and no evidence of extramedullary leukemia. Relapse was defined as recurrence of ≥20% blasts in bone marrow or local leukemia infiltration after CR. Central nervous system (CNS) disease at diagnosis was defined as the presence of neurological symptoms and signs or an elevated number of mononuclear cells (≥5 × 10⁴/μL) in cerebrospinal fluid and leukemic blasts identified on a cytocentrifuge slide.
2.7. Statistical analysis

Statistical analysis was conducted using SPSS 13.0 (Statistical Package for Social Sciences, SPSS Inc., Chicago, IL). Categorical variables were compared with Chi-squared test or Fisher exact test when necessary. A linear regression model was performed to investigate the correlation between PB blast cell count and WBC count. Event-free survival (EFS) was defined as the time from diagnosis to the first adverse event (failure to induce remission, relapse, or death from any cause) or to the last follow-up date. Overall survival (OS) was measured from the date of diagnosis to the date of death or last follow-up. A censored observation was defined as the time from initial diagnosis to the date of last hospital visit, when the patient was subsequently lost to follow-up. EFS and OS were calculated using the method of Kaplan–Meier. Survival curves were compared using the log-rank test. Prognostic factors were assessed using a Cox proportional hazards regression model in univariate and multivariate analyses. The significant factors from the univariate analyses were simultaneously entered into the multivariate Cox proportional hazards model. Furthermore, variables that resulted in a P value > .05 but were thought to be clinically relevant were retained for multivariate analysis. Hazard ratio and 95% confidence intervals (95% CI) were reported. P < .05 was considered statistically significant.

3. Results

3.1. Patients

A total of 367 pediatric patients aged 0 to 14 years were enrolled in the present study according to CCLG-2008 protocol. Baseline characteristics of children with ALL were summarized in Table 1. CR was achieved in 341 cases (93.0%) after 1 course of remission induction therapy. Thirteen patients (3.5%) died during induction therapy, and 13 patients (3.5%) had resistant disease. The probabilities of EFS (pEFS) and OS (pOS) at 5 years were 75.6 ± 2.9% and 83.2 ± 2.2%, respectively. Low PB blast cell count (< 1 × 10^9/L) at diagnosis was present in 160 of 336 patients (47.6%) with BCP ALL, and 5 of 31 patients (16.1%) with T-ALL. No PB blasts were found in 75 of the 165 patients (45.5%) in the low PB blast cell count group.

3.2. Correlation between WBC and PB blast cell count

Linear regression analysis revealed a significant correlation between PB blast cell count and WBC count at diagnosis for both BCP and T-ALL patients (r = .987, P = .000; and r = .987, P = .000, respectively). In both BCP and T-ALL subgroups, PB blast cell count strongly correlated with WBC count in the high PB blast cell count group (≥ 30 × 10^9/L) (r = .996, P = .000; and r = .983, P = .000, respectively), but not in the low PB blast cell count group (r = .150, P = .058; and r = .387, P = .519; respectively).

3.3. Relation between PB blast cell count and clinical features

PB blast cell count at diagnosis was not significantly related to age, gender, fever/infection, pallor, CNS disease, FAB classification, MLL-AF4, or E2A-PBX1 (Table 2). Of the low PB blast cell count group, 160 (97.0%) were BCP ALL. Notably, low PB blast cell count was significantly associated with low WBC count, standard-risk ALL, TEL-AML1 positivity, BCR-ABL negativity, favorable prednisone treatment response, and MRD negativity. The percentages of patients who had bleeding tendency, hepatosplenomegaly and lymphadenopathy were significantly lower in the low PB blast cell count group than those in the other 2 groups.

3.4. Correlation between PB blast cell count and immunophenotypes

For the 336 patients with BCP ALL, a significantly higher percentage of CD10 was expressed in 98.1% of the low PB blast cell count group, whereas CD33 showed a lower percentage of expression in this group (Table 3). In T-ALL, a significantly higher percentage of CD13 and CD33 expression was observed in the low count group, whereas CD10 showed a higher percentage of expression in the intermediate count group (1–29.9 × 10^9/L). In both BCP ALL and T-ALL groups, a significantly higher percentage of CD45 expression was detected in the high count group.

3.5. EFS and OS

EFS and OS at 5 years in children with ALL according to patient variables were shown in Table 4. Low PB blast cell count group patients with BCP ALL had significantly superior 5-year EFS and OS compared to the high count group (Fig. 1). In contrast, the low PB blast cell count group with T-ALL had significantly worse EFS and OS than the other 2 groups (Fig. 2). BCP patients with either a low WBC count (< 4 × 10^9/L) or an intermediate count (4–99.9 × 10^9/L) had significantly longer EFS (P = .001 and P = .009, respectively) and OS (P = .000 and P = .004, respectively) than those with a high count (≥ 100 × 10^9/L). A small number of children with a low WBC count had poor 5-year EFS and OS, but not significantly worse than the T-ALL with either intermediate or high WBC count. The 5-year pEFS and pOS were better for the BCP patients with MRD < 0.01% than for those with MRD ≥ 0.01% (Table 4). In contrast, there was no significant difference in pEFS and pOS between subgroups similarly divided by the level of MRD at end of induction for T-ALL (Table 4).

By univariate analysis, the significant prognostic factors for inferior OS were WBC count ≥ 100 × 10^9/L, PB blast count ≥ 30 × 10^9/L, MRD ≥ 0.01%, BCR-ABL positivity, HR ALL, and poor prednisone response for BCP ALL. In T-ALL, both low PB blast cell count and HR ALL were found to predict worse OS outcomes in the univariate analysis. Multivariate Cox regression analysis showed that the initial WBC count and MRD at the end of induction were significant independent risk factors for BCP ALL, while risk stratification was found to be an independent prognostic factor for outcome in T-ALL (Table 5).

4. Discussion

Clinical features, biological and genetic factors, and early response to therapy are known to predict relapse in children with ALL. PB blast cell count on day 8 of prednisone therapy has previously been demonstrated as an independent prognostic factor in predicting treatment outcome in children with ALL. However, little has been known about the impact on prognosis of PB blast cell count at diagnosis in childhood ALL. To our knowledge, this is the first study to reveal the relationship...
between initial PB blast cell count and clinical prognosis of children with ALL. To this end, clinical aspects, biological features, response to therapy, and prognostic factors of childhood ALL were investigated.

The current study confirmed our previous conclusion that WBC count at diagnosis was a significant independent risk factor for BCP ALL.[13] Several prior studies have reported the significant association of high WBC count with worse long-term survival in patients with BCP ALL, but a less favorable impact on survival in patients with T-ALL.[14–16] Yanada et al studied the prognostic factors for survival of adult T-ALL with a median follow-up of 7.5 years. They found that not only the low-WBC group, but also the high-WBC group showed a significantly worse OS than the intermediate-WBC group. Although our results failed to confirm that patients with a low WBC count had a significantly worse survival compared to those with intermediate or high count for T-ALL, there were only a small number of these cases in the present study.

To date, few studies have reported the relationship between PB blast cell count at diagnosis and survival in patients with ALL. Low PB blast cell count was statistically associated with a longer survival in adult patients with ALL according to the Finish Leukemia Group.[29] However, Felice et al reported that initial peripheral blast count in pediatric ALL with a good prednisone treatment response was not correlated with treatment outcome.[10] Lauten et al evaluated 1935 children showing good response to initial prednisone treatment in the ALL-BFM 90 study.[31] Their results indicated that prednisone good-responders with <1000 blasts/μL at diagnosis showed a significantly
Table 3
Correlation of peripheral blood blast cell count at diagnosis and immunophenotypes in B-cell precursor acute lymphoblastic leukemia and T-cell acute lymphoblastic leukemia.

Antigen	PB blasts count at diagnosis (<10^9/L)			P-value
	<1	1–29.9	≥30	
BCP ALL				
CD10				
Positive	157 (98.1%)	121 (92.4%)	42 (93.3%)	.039
Negative	3 (1.9%)	10 (7.6%)	3 (6.7%)	
CD13				
Positive	73 (45.6%)	43 (32.8%)	18 (40.0%)	.085
Negative	87 (54.4%)	88 (67.2%)	27 (60.0%)	
CD19				
Positive	160 (100.0%)	131 (100.0%)	45 (100.0%)	.148
Negative	0 (0.0%)	0 (0.0%)	0 (0.0%)	
CD20				
Positive	89 (55.6%)	72 (55.0%)	23 (51.1%)	.864
Negative	71 (44.4%)	59 (45.0%)	22 (48.9%)	
CD22				
Positive	158 (98.8%)	131 (100.0%)	45 (100.0%)	.628
Negative	2 (1.3%)	0 (0.0%)	0 (0.0%)	
CD33				
Positive	9 (5.6%)	8 (6.1%)	8 (20.0%)	.041
Negative	151 (94.4%)	123 (93.9%)	32 (80.0%)	
CD34				
Positive	123 (76.9%)	104 (79.4%)	34 (75.6%)	.016
Negative	37 (23.1%)	27 (20.6%)	11 (24.4%)	
CD45				
Positive	65 (40.6%)	64 (48.9%)	29 (64.4%)	.106
Negative	95 (59.4%)	67 (51.1%)	16 (35.6%)	
CD117				
Positive	9 (5.6%)	2 (1.5%)	0 (0.0%)	
Negative	151 (94.4%)	129 (98.5%)	45 (100.0%)	
HLA-DR				
Positive	158 (98.8%)	128 (97.7%)	45 (100.0%)	.457
Negative	2 (1.2%)	3 (2.3%)	0 (0.0%)	
cCD79a				
Positive	153 (95.5%)	125 (95.4%)	45 (100.0%)	.484
Negative	7 (4.4%)	6 (4.6%)	0 (0.0%)	
T-ALL				
CD3				
Positive	5 (0.0%)	9 (90.0%)	16 (100.0%)	.549
Negative	0 (0.0%)	1 (10.0%)	0 (0.0%)	
CD5				
Positive	2 (40.0%)	7 (70.0%)	10 (82.5%)	.055
Negative	3 (60.0%)	3 (30.0%)	2 (17.5%)	
CD7				
Positive	5 (100.0%)	10 (100.0%)	16 (100.0%)	.000
Negative	0 (0.0%)	0 (0.0%)	0 (0.0%)	
CD10				
Positive	5 (0.0%)	7 (70.0%)	0 (0.0%)	.000
Negative	5 (0.0%)	3 (30.0%)	16 (100.0%)	
CD13				
Positive	2 (40.0%)	3 (60.0%)	10 (100.0%)	.003
Negative	3 (60.0%)	1 (10.0%)	0 (0.0%)	
CD17				
Positive	3 (60.0%)	4 (40.0%)	3 (18.8%)	.022
Negative	2 (40.0%)	6 (80.0%)	13 (81.2%)	
CD45				
Positive	3 (60.0%)	9 (90.0%)	16 (100.0%)	.024
Negative	2 (40.0%)	1 (10.0%)	0 (0.0%)	
CD117				
Positive	0 (0.0%)	1 (10.0%)	0 (0.0%)	.484
Negative	5 (100.0%)	9 (90.0%)	16 (100.0%)	
HLA-DR				
Positive	3 (60.0%)	3 (30.0%)	3 (18.8%)	.213
Negative	2 (40.0%)	7 (70.0%)	13 (81.2%)	
cCD3				
Positive	5 (0.0%)	10 (100.0%)	16 (100.0%)	.382
Negative	0 (0.0%)	0 (0.0%)	0 (0.0%)	

BPC ALL = B-cell precursor acute lymphoblastic leukemia, PB = peripheral blood, T-ALL = T-cell acute lymphoblastic leukemia.

(Continued)
WBC count at diagnosis

Table 4 (continued).

Characteristics	No. patients (%)	EFS (%)	P-value	OS (%)	P-value
Fever/infection					
No	16 (51.6%)	74.5±11.0	.009	73.3±11.4	.440
Yes	15 (48.4%)	84.6±10.0	.388	84.6±10.0	.409
Palor					
No	24 (77.4%)	82.1±8.1	.888	81.8±8.2	.837
Yes	7 (22.6%)	71.4±17.1	.888	68.6±18.6	.873
Bleeding tendency					
No	21 (67.7%)	80.4±8.8	.888	80.2±8.9	.873
Yes	10 (32.3%)	77.1±14.4	.888	75.0±15.3	.873
Splenomegaly					
No	15 (48.4%)	72.0±12.0	.455	69.6±12.7	.456
Yes	16 (51.6%)	86.7±8.8	.455	86.7±8.8	.456
Hepatomegaly					
No	17 (54.8%)	75.5±10.7	.164	73.7±11.3	.164
Yes	14 (45.2%)	84.6±10.0	.164	84.6±10.0	.164
Lymphadenopathy					
No	7 (22.6%)	100.0±0.0	.100	100.0±0.0	.100
Yes	24 (77.4%)	73.7±9.3	.100	73.0±9.4	.100
WBC count at diagnosis (×10⁹/L)					
<<4	2 (6.5%)	50.0±35.4	.347	50.0±35.4	.347
4–99.9	16 (51.6%)	80.0±10.0	.347	80.0±10.3	.347
≥100	13 (41.9%)	81.8±11.6	.347	81.8±11.6	.347
PB blasts count at diagnosis (×10⁹/L)					
<1	5 (16.1%)	40.0±21.9	.026	40.0±21.9	.026
1–9.9	10 (32.3%)	90.0±9.5	.026	90.0±9.5	.026
≥10	16 (51.6%)	84.6±10.0	.026	84.6±10.0	.026
FAB					
L1	16 (51.6%)	80.0±10.0	.812	80.0±10.3	.812
L2	15 (48.4%)	77.8±11.4	.812	77.4±11.5	.812
Risk stratification					
Standard risk		.008	.005		
Intermediate risk		.008	.005		
High risk	22 (71.0%)	90.7±6.3	.459	90.7±6.3	.459
Prednisone response		.386	.459		
Good	27 (87.1%)	77.3±8.2	.459	77.0±8.2	.459
Poor	4 (12.9%)	100.0±0.0	.099	100.0±0.0	.099
MRD on d 33		.105	.099		
<0.01%	8 (25.8%)	100.0±0.0	.099	100.0±0.0	.099
≥0.01%	23 (74.2%)	70.3±12.0	.099	70.3±12.0	.099

BCP ALL = B-cell precursor acute lymphoblastic leukemia; CNS = central nervous system; EFS = event-free survival; FAB = French-American-British; MRD = minimal residual disease; OS = overall survival; PB = peripheral blood; T-ALL = T-cell acute lymphoblastic leukemia; WBC = white blood cell.

Donadieu et al found that PB blast cell count correlated significantly with WBC count in childhood ALL. In accordance with our study, to further investigate the relationship between PB blast cell count and WBC count at diagnosis, we found that PB blast cell count correlated strongly with WBC count in the high PB blast cell count group, but not with the low count group in both BCP and T-ALL.

The tyrosine phosphatase CD45 is encoded by the PTPRC (protein-tyrosine phosphatase, receptor-type, C) gene and is selectively expressed on the surface of all nucleated hematopoietic cells. It is important for regulating antigen-receptor signaling in B and T cells by dephosphorylation of Src kinases and suppressing JAK kinases that negatively regulate cytokine receptor signaling. Previous studies have shown that a bright CD45 expression on leukeimic blasts was not only associated with an inferior outcome in BCP ALL, but also with worse prognosis in T-ALL. This is in concordance with our observation of a significantly higher percentage of CD45 expression in the high PB blast cell count group for BCP ALL. However, on the basis of CD45 expression, it was difficult to explain the inferior survival in T-ALL patients with low blast cell count. In addition, the clinical significance of myeloid antigen expression in childhood ALL has remained controversial. For example, Uckun et al reported that children with myeloid antigen positive (My+) ALL have similar treatment outcomes as My- ALL patients in both BCP ALL and T-ALL. Wiersma et al reported that myeloid antigen (CD13, CD33, and CD44) expression was detected in 45 of 185 children with BCP ALL and 8 of 41 patients with T-ALL. However, they found that a poor response to chemotherapy was associated with myeloid antigen expression in childhood ALL. Similarly, in the current study, patients with
BCP ALL in the high PB blast cell count group showed a higher frequency of CD33 expression than patients in the other 2 groups, and an inferior survival. In T-ALL, patients with low blast cell count had a higher percentage of myeloid antigens (CD13 and CD33) than those with intermediate and high count, and a significantly shorter survival. Our results, therefore, were consistent with the previous studies that myeloid antigen expression was correlated with poor outcome for BCP ALL and T-ALL.[40,41,45]

Assessment of MRD, commonly measured by flow cytometry or polymerase chain reaction analysis, has replaced conventional morphologic assessment in risk stratification.[46–49] Many previous studies have provided solid basis that the level of MRD at the completion of induction is a strong prognostic factor for the risk of relapse in BCP ALL,[14,50,51] yet there are few studies focused on MRD in T-ALL.[52–54] Parekh et al found that 32 of 33 T-ALL patients remained in continuous CR at a median follow up of 4 years despite more than 50% of patients who were MRD positive at the end of induction.[52] They concluded that MRD status at the end of induction was not strongly predictive of treatment outcome in childhood T-ALL patients, which concurs with our study. Because slower clearance of leukemic blast cells was found in T-ALL compared to BCP patients, MRD detection at a later time point (day 78 or week 12) for T-ALL patients would be more appropriate to determine risk stratification than an early evaluation.[53,54]

There were several limitations in this study. First, the age of patients was confined to 0 to 14 years because our hospital plays an important role in medical services for women and children in Southwest China. Patients older than 14 years may not be able to complete the entire chemotherapy regimen as intended. Second, the small number of patients with T-ALL limited statistical determination of factors predictive of relapse. Further large-scale multicenter studies are needed to confirm the findings in the present study.

In conclusion, the results of this study suggested that lower PB blast cell count is significantly associated with better long-term survival in children with BCP ALL, whereas it was negatively correlated with clinical outcome in T-ALL patients. PB blast cell

Table 5

	Multivariate Analysis	95% CI	P-value
BCP ALL			
WBC count at diagnosis (<10^9/L)			
<4	1.000		.051
4–9.9	2.368	.996–5.631	.002
≥100	5.726	1.912–17.144	.002
PB blasts count at diagnosis (<10^9/L)			
<1	1.000		.051
1–29.9	1.757	.906–3.408	.510
≥30	2.949	1.380–6.301	.852
Risk stratification			
Standard risk	1.000		
Intermediate risk	1.140	.592–2.193	.093
High risk	3.921	1.901–8.086	.022
BCR-ABL			
Negative	1.000		
Positive	2.678	.961–7.459	.724
Prednisone response			
Good	1.000		.116
Poor	3.067	1.303–7.218	.216
MRD on d 33			
<0.01%	1.000		.000
≥0.01%	2.933	1.611–5.338	.000
T-ALL			
PB blasts count at diagnosis (<10^9/L)			
<1	1.000		
1–29.9	0.131	.012–1.456	.622
≥30	0.293	.049–1.763	.803
Risk stratification			
Standard risk	1.000		
Intermediate risk	7.912	1.421–44.042	.018

BCP ALL = B-cell precursor acute lymphoblastic leukemia, CI = confidence interval, MRD = minimal residual disease, PB = peripheral blood, T-ALL = T-cell acute lymphoblastic leukemia, WBC = white blood cell.
count is a straightforward and readily accessible test that may provide prognostic information although it was not identified as a significant independent predictor by multivariate analysis. Ideally, the combination of classical and novel parameters as prognostic factors should further improve the outcome of childhood ALL.

Acknowledgments

We thank the patients and their parents or guardians for participating in this study. We also thank all the staff of Department of Pediatrics and Laboratory Medicine for their efforts. The authors would like to thank EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Author contributions

Data curation: Yuefang Wang. Methodology: Lei Ye, Luyun Peng, Rui Shi, Jiajing He. Software: Siqi Guo. Validation: Yongmei Jiang.

Writing – original draft: Qingkai Dai.

Writing – review & editing: Qingkai Dai, Ge Zhang, Yongmei Jiang.

References

[1] Pui CH, Yang JJ, Bhakta N, et al. Global efforts toward the cure of childhood acute lymphoblastic leukemia. Lancet Child Adolesc Health 2018;2:440–54.

[2] Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med 2015;373:1541–52.

[3] Lustosa de Sousa DW, de Almeida Ferreira FV, Cavalcante Félix FH, et al. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival. Rev Bras Hematol Hemoter 2015;37:223–9.

[4] Arico M, Basso G, Mandelli F, et al. Good steroid response in vivo predicts a favorable outcome in children with T-cell acute lymphoblastic leukemia. The Associazione Italiana Ematologia Oncologia Pediatrca (AIEOP). Cancer 1995;75:1684–93.

[5] Pui CH, Behm FG, Crist WM. Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 1993;82:643–52.

[6] Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996;14:18–24.

[7] Schneider NR, Carroll AJ, Shuster JJ, et al. New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group Report of 434 cases. Blood 2000;96:2543–9.

[8] Uckun FM, Sensel MG, Sun L, et al. Biological and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood 1998;91:735–46.

[9] Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133–43.

[10] Costant-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002;100:52–8.

[11] Irving J, Jesson J, Virgo P, et al. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica 2009;94:870–4.

[12] Nyvold G, Madsen HO, Ryder LP, et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 2002;99:1253–8.

[13] Ripei R, Basso G, Dworzak M, et al. Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: predictive impact of early blast reduction on the remission status after induction. Leukemia 2009;23:528–34.

[14] Schulze KR, Pullen DJ, Sather PN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 2007;109:926–35.

[15] Pullen J, Shuster JJ, Link M, et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia 1999;13:1696–707.

[16] Yanada M, Jinnai I, Takeuchi J, et al. Clinical features and outcome of T-lineage acute lymphoblastic leukemia in adults: a low initial white blood cell count, as well as a high count predict decreased survival rates. Leuk Res 2007;31:907–14.

[17] Reiter A, Schrappe M, Ludwig WD, et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM86. Blood 1994;84:3122–33.

[18] Ruehm H, Gadner H, Henze G, et al. Results and significance of six randomized trials in four consecutive ALL-BFM studies. Hematol Blood Transfus 1990;33:439–50.

[19] Sackmann-Muriel F, Felice M, Zubizarreta P, et al. Treatment results in childhood acute lymphoblastic leukemia with a modified ALL-BFM'90 protocol: lack of improvement in high-risk group. Leuk Res 1999;23:331–40.

[20] Bennett JM, Catovsky D, Daniel MT, et al. The morphological classification of acute lymphoblastic leukemia: concordance among observers and clinical correlation. Br J Haematol 1981;47:533–61.

[21] Hu YX, Lu J, He HL, et al. A prospective evaluation of minimal residual disease as risk stratification for CCLG-ALL-2008 treatment protocol in pediatric B precursor acute lymphoblastic leukemia. Eur Rev Med Pharmacol Sci 2016;20:1680–90.

[22] Hu Y, He H, Lu J, et al. E2A-PBX1 exhibiting a promising prognosis in pediatric acute lymphoblastic leukemia treated with the CCLG-ALL-2008 protocol. Onco Targets Ther 2016;9:7219–25.

[23] Lucio P, Gaipa G, van Lochem EG, et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-I concerted action investigation of minimal residual disease in acute leukemia: International Standardization and Clinical Evaluation. Leukemia 2001;15:1185–92.

[24] Wang Y, Peng L, Dai Q, et al. Clinical value to quantitate hematogones in Chinese childhood acute lymphoblastic leukemia by flow cytometry analysis. Int J Lab Hematol 2016;38:246–55.

[25] Dai Q, Liu X, Yang H, et al. No prognostic significance of immunophenotypic changes at the end of remission induction therapy in children with B-lineage acute lymphoblastic leukemia. Leuk Res 2018;68:57–61.

[26] Golubetu N, Hoelzer D. Recent approaches in acute lymphoblastic leukemia in adults. Rev Clin Exp Hematol 2002;6:114–41.

[27] Teachey DT, Hunger SP. Predicting relapse risk in childhood acute lymphoblastic leukemia. Br J Haematol 2013;162:606–20.

[28] Vainiková-Civáňová G, Forestier E, Halleckostad M, et al. High white blood cell count at diagnosis of childhood acute lymphoblastic leukemia: biological background and prognostic impact. Results from the NOPHO ALL-92 and ALL-2000 studies, Eur J Haematol 2011;86:38–46.

[29] Nyström NA. Long-term survival in acute lymphoblastic leukaemia in adults: a prospective study of 51 patients. Finnish Leukaemia Group. Eur J Haematol 1992;48:75–82.

[30] Felice MS, Zubizarreta PA, Alfaro EM, et al. Childhood acute lymphoblastic leukemia: prognostic value of initial peripheral blast count in good responders to prednisone. J Pediatr Hematol Oncol 2001;23:411–5.

[31] Lauten M, Stanulla M, Zimmermann M, et al. Clinical outcome of patients with childhood acute lymphoblastic, leukaemia and an initial
leukaemic blood blast count of less than 1000 per microlitre. Klin Pädiatr 2001;213:169–74.

32. Donadieu J, Auclerc MF, Baruchel A, et al. Prognostic study of continuous variables (white blood cell count, peripheral blast cell count, haemoglobin level, platelet count and age) in childhood acute lymphoblastic leukaemia: analysis of a population of 1545 children treated by the French Acute Lymphoblastic Leukaemia Group (FRALLE). Br J Cancer 2000;83:1617–22.

33. Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 2003;21:107–37.

34. Irie-Sasaki J, Sasaki T, Matsumoto W, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001;409:349–54.

35. Penninger JM, Irie-Sasaki J, Sasaki T, et al. CD45: new jobs for an old acquaintance. Nat Immunol 2001;2:389–96.

36. Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Sigil 2010;22:339–48.

37. Borowitz MJ, Shuster J, Carroll AJ, et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor acute lymphoblastic leukemia. a Pediatric Oncology Group study. Blood 1999;89:3960–6.

38. Cario G, Rhein P, Mitlöchner R, et al. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 2014;99:103–10.

39. Porcu M, Kleppe M, Gianfelici V, et al. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Cell Sigil 2010;22:339–48.

40. Ludwig WD, Harbott J, Bartram CR, et al. Incidence and prognostic significance of immunophenotypic subgroups in childhood acute lymphoblastic leukaemia: experience of the BFM study 86. Recent Results Cancer Res 1993;131:269–82.

41. Fink FM, Koller U, Mayer H, et al. Prognostic significance of myeloid-associated antigen expression on blast cells in children with acute lymphoblastic leukemia. Med Pediatr Oncol 1993;21:340–6.

42. Uckun FM, Sather HN, Gaynon PS, et al. Clinical features and treatment outcome of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 1997;90:28–35.

43. Wiersma SR, Ortega J, Sobel E, et al. Clinical importance of myeloid-antigen expression in acute lymphoblastic leukemia of childhood. N Engl J Med 1991;324:300–8.

44. Campana D, Neale GA, Coustan-Smith E, et al. Detection of minimal residual disease in acute lymphoblastic leukemia: the St Jude experience. Leukemia 2001;15:278–9.

45. Campana D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr Opin Hematol 2012;19:313–8.

46. Pui CH, Pei D, Coustan-Smith E, et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukemia: a prospective study. Lancet Oncol 2015;16:465–74.

47. Weir EG, Cowan K, LeBeau P, et al. A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia 1999;13:558–67.

48. Brüggemann M, Raff T, Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL. Blood 2012;120:4470–81.

49. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 2008;111:5477–85.

50. Parekh C, Gaynon PS, Abdel-Azim H. End of induction minimal residual disease alone is not a useful determinant for risk stratified therapy in pediatric T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2015;62:2040–3.

51. Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118:2077–84.

52. Wei W, Chen X, Zou Y, et al. Prediction of outcomes by early treatment responses in childhood T-cell acute lymphoblastic leukemia: a retrospective study in China. BMC Pediatr 2015;15:80. https://pubmed.ncbi.nlm.nih.gov/26174476/.

53. Campana D, Neale GA, Coustan-Smith E, et al. Detection of minimal residual disease in acute lymphoblastic leukemia: the St Jude experience. Leukemia 2001;15:278–9.

54. Campana D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr Opin Hematol 2012;19:313–8.

55. Pui CH, Pei D, Coustan-Smith E, et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukemia: a prospective study. Lancet Oncol 2015;16:465–74.

56. Weir EG, Cowan K, LeBeau P, et al. A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia 1999;13:558–67.