Magnetic particle imaging (MPI) is a new tomographic technique developed in the early 2000s. In contrast to traditional imaging modalities such as MR imaging, sonography, x-ray, and CT, MPI is not a structural imaging technique. Instead, it is a tracer imaging technique similar to PET and SPECT. MPI allows tracking and quantification of tracer materials, specifically magnetic nanoparticles. It is a quantitative 3D imaging technique modeled by the Langevin theory, with the ability to track and quantify nanoparticle concentrations without tissue background noise. It is a promising new imaging technique for multiple applications, including vascular and perfusion imaging, oncology imaging, cell tracking, inflammation imaging, and trauma imaging. In particular, many neuroimaging applications may be enabled and enhanced with magnetic particle imaging. In this review, we will provide an overview of magnetic particle imaging principles and implementation, current applications, promising neuroimaging applications, and practical considerations.

SUMMARY: Magnetic particle imaging is an emerging tomographic technique with the potential for simultaneous high-resolution, high-sensitivity, and real-time imaging. Magnetic particle imaging is based on the unique behavior of superparamagnetic iron oxide nanoparticles modeled by the Langevin theory, with the ability to track and quantify nanoparticle concentrations without tissue background noise. It is a promising new imaging technique for multiple applications, including vascular and perfusion imaging, oncology imaging, cell tracking, inflammation imaging, and trauma imaging. In particular, many neuroimaging applications may be enabled and enhanced with magnetic particle imaging. In this review, we will provide an overview of magnetic particle imaging principles and implementation, current applications, promising neuroimaging applications, and practical considerations.

ABBREVIATIONS: FFL = field-free line; FFP = field-free point; FFR = field-free region; MPI = magnetic particle imaging; SPIO = superparamagnetic iron oxide; SPION = superparamagnetic iron oxide nanoparticle
Comparison of MPI with common clinical imaging modalities

Modality	Ultrasound	CT	MRI	PET	SPECT	MPI
Main clinical applications	Structural imaging	Structural imaging	Structural imaging	Tracer imaging	Tracer imaging	Tracer imaging
Spatial resolution	1 mm	<1 mm	1 mm	4 mm	3–10 mm	1 mm
Temporal resolution	<1 second	Microbubbles	Seconds to hours	Minutes	Minutes	<1 second to minutes
Contrast agents/tracers	Low	Low	Low	High	High	High
Sensitivity	Low	Low	Low	High	High	High
Patient risk	Low	Heating and caviation	Radiation	Heating and peripheral nerve stimulation	Radiation	Heating and peripheral nerve stimulation
Cost	Low	Medium	High	High	Medium	Medium

The contrast and signal to noise ratio is excellent with MPI because MPI sees only a tracer and does not see tissue. More specifically, MPI is not affected by the endogenous iron present in the body. It can see only injected SPIONs. This is similar to PET and SPECT, which also have no background signal from tissue. However, PET and SPECT, with imaging times on the order of minutes, are not suited for dynamic imaging applications. PET and SPECT tracers also have half-lives on the order of minutes to hours, while MPI tracers can last for days to weeks. MPI contrast shows the greatest benefits in techniques in which the high contrast can lead to higher accuracy, such as perfusion imaging and cell tracking. This benefit compares favorably with traditional structural imaging techniques such as MR imaging and CT, which can struggle to produce reliable perfusion imaging.

The sensitivity of the technique is because MPI directly detects the electronic magnetization of iron oxide nanoparticles, a magnetization that is large compared with the nuclear magnetization detected in MR imaging. This feature gives MPI a low detection limit, meaning that minute amounts of tracer material can be detected. For example, the iron detection limit was 1.1 ng (SNR = 3.9) in a voxel of tailored MPI tracers using a high-sensitivity FFL scanner with a 5.7-T/m gradient with a native resolution of 800-μm full width at half maximum. The system was also used to detect dilute tracer (550 pg Fe/μL), which could be seen with SNR = 4.9. As MPI systems begin to mature, their sensitivity should continue to improve. Current systems have limits as low as ~200 cells in a voxel, and theoretically, the MPI detection limit may be as little as 1–10 iron oxide cells in a voxel.

Applications of MPI and Perspectives on Neuroimaging

Vascular Imaging. Currently the standard of care for cerebral blood perfusion imaging is CT perfusion, which poses ionizing radiation risks. MPI is well-suited for measuring perfusion. A study demonstrated imaging of cerebral blood flow in living mice using MPI. This was followed by a demonstration of MPI perfusion in mice for imaging stroke. In our work, we recently measured CBV and CBF in a rat. In addition, we performed in vivo cerebral blood perfusion in stroke mice with MPI (Fig 1), in which an intravenous bolus of iron nanoparticles was administered to mice. Tomographic 3D-MPI was performed using a MOMENTUM MPI system (Magnetic Insight). We
For example, we in
In addition, it
MPI may
in which a transgenic mouse model with bleeding in-
By means of a human glioblastoma mouse model, fluo-
In an-
the impacted animals compared with the controls over a 2-week
brain injury, animals were monitored longitudinally to study ce-
scans for 80 minutes. In another study in a rat model of traumatic
duced in the gut using heparin was imaged with 21 repeat MPI
showed that lower MPI signal (a measure of CBV) is observed
the side of the brain with the stroke lesion.
Another promising application of MPI is to image vasculature.
MPI provides 3D information, and the signal is directly related to
blood volume in a vessel. This is an improvement over 2D tech-
niques such as x-ray or DSA. CT or MR angiography, while pro-
viding 3D images, has background noise from the surrounding
tissue and calcium, which is not a concern for MPI. In MPI, 3D
angiography can be performed using bolus tracking or blood pool
agents. An MPI-specific long circulating nanoparticle can repeat-
edly measure the blood pool with 1 single injection, enabling
tracking of changes from minutes to hours. For example, we
recently demonstrated use of a long circulating tracer to detect gut
bleed, in which a transgenic mouse model with bleeding in-
duced in the gut using heparin was imaged with 21 repeat MPI
scans for 80 minutes. In another study in a rat model of traumatic
brain injury, animals were monitored longitudinally to study ce-
rebral bleeding caused by the impact. We showed differences in
the nanoparticle clearance rate in different regions of the brain in
the impacted animals compared with the controls over a 2-week
period.

MPI is also capable of very fast imaging, similar to x-ray and
DSA, enabling tracking of fast blood flow dynamics. Previously, 1
study demonstrated 3D in vivo imaging of a beating mouse heart
using a clinically approved concentration (<40 μmol [Fe]¹⁻) of
Resovist (ferucarbotran; Bayer Schering Pharma, Berlin, Ger-
many), with a temporal resolution of 21.5 ms, FOV of 1–2 cm, and
resolution sufficient to resolve heart chambers. In addition, it
has been shown that catheters and guidewires can be tracked with
MPI, enabling image-guided interventions.

Oncology. A promising application for MPI is in oncology. MPI
could be used to image tumor vascularization, which may be im-
portant in indicating tumor stage and
treatment efficacy. We recently dem-
strated MPI visualization in a breast can-
cer xenograft model and showed that
MPI can see both the early dynamic con-
trast-enhanced effect of nanoparticles
flowing into a tumor, followed by the
enhanced permeability and retention ef-
fect during the following 48 hours.

In neuro-oncology, conventional MR
imaging and CT lack reliability in assess-
ing the size and location of brain tu-
mors, and they are often not specific
enough to differentiate tumor prog-
ression from other treatment-related
changes. While traditional PET for
glucose metabolism is often used in pe-
ripheral tumor imaging, it cannot pro-
vide good contrast for brain tumors due
to the high levels of glucose metabolism
inherent in the brain, and novel tracers
such as radio-labeled amino acids are re-
quired for better contrast. MPI may
provide a promising alternative, espe-
cially as brain-specific MPI tracers are
developed to improve specificity, enhance retention times, and
reduce potential harm to the patient.

In brain tumor studies, SPION size can be optimized to pas-
ively target and accumulate in a brain tumor because the tumor is
hypervascularized with leaky vessels while the blood-brain barrier
blocks access to healthy brain tissue. Active tumor targeting
can also be achieved via surface chemistry modifications or the
use of magnetic fields. For example, it was shown that lactoferrin-
conjugated nanoparticles can be used to target brain glioma cells
in MPI. By means of a human glioblastoma mouse model, fluo-
rescent magnetic nanoparticles could be magnetically retained in
the neovasculature as well as tissue of the tumor, using a magnetic
micromesh.

MPI can also be used for sentinel lymph node imaging and
hyperthermia treatment. The current state of the art is to use
radioactive colloid tracers, which could be replaced with MPI
tracers. This was demonstrated in a mouse cancer model, in
which magnetic tracer material was seen depositing in tumor tis-
ue and/or sentinel lymph nodes near tumors. In hyperthermia
treatment, magnetic particles injected into tumors can locally
heat the tissue around the FFR. It was demonstrated that the MPI-
measured magnetic particle concentration correlated well with
tumor volume decrease after magnetic hyperthermia. In another
study, it was shown that magnetic nanofibers loaded with
magnetic nanoparticles could be visualized using MPI and used
for magnetic hyperthermia.

Cell Labeling and Tracking. MPI is promising for cell tracking
because the technique is independent of depth in tissue with mil-
limeter-scale resolution, robust linear quantification, and high
sensitivity. We evaluated MPI for tracking of systemically admin-
istered mesenchymal stem cells. Mesenchymal stem cells are of

FIG 1. Perfusion, structural, and histology images from a mouse injected with the nanoparticles.
The parameters were the following: FOV = 4 cm, 35 projections, best image quality, Lodespin
scan mode. A 70- to 100-L intravenous bolus of iron nanoparticles (0.949 mg Fe/mL; core diam-
eter, 27.6 nm) donated by Dr Kannan Krishnan, University of Washington, was administered to
C57Bl/6 stroke mice through tail veins. The mice were sacrificed within 30 minutes postinjection,
and 3D-MPI was performed using a MOMENTUM MPI system. Anatomic images were collected
on the eXplore CT-120 microCT (GE Healthcare, Milwaukee, Wisconsin) and a 7T MR imaging
scanner. Anatomic images were collected on the eXplore CT-120 microCT (GE Healthcare, Milwaukee, Wisconsin) and a 7T MR imaging
scanner. In vivo iron oxide quantification was performed by imaging fiducials containing a known concentration of tracer positioned beside the animal. A. In the 2D coregistered image from CT and
MPI, the MPI signal (red if high, yellow if intermediate, blue if low) from the left hemisphere is less than that from the contralateral side (red spots
indicate vascular structures with high blood volume). B. The high T2 signal (stroke lesion, arrow-
heads) in the left basal ganglia and thalamus. C. The histology image of a perfusion-fixed whole
brain shows the stroke lesion on the left (L). R indicates right.
Intravenous injections are sometimes used to de-
51,52
58-61
or by
to serve as potential contrast agents for MPI.
The authors demonstrated a detec-
Our proof-of-concept study confirmed that
As mentioned previously,
There are a number of commercial SPIO agents that
Blood cell tracking is another
48 hours and reduced with time.
particular therapeutic interest because they can control inflam-
and modify the proliferation and cytokine production of immune cells.41 Intravenous injections are sometimes used to de-
river mesenchymal stem cells in both animal models and clinical
Our proof-of-concept study confirmed that >80% of
In a different study, it was shown that rat and human adult stem cells can uptake SPIIONS
and they localize in the cytoplasm.64 Blood cell tracking is another application for MPI as a method for increasing circulation time.65 Using red blood cells as the carrier also has the advantage of being able to increase circulation time from minutes to hours.2,46,47 Additionally, there is ongoing work on the development of MPI-tailored nanoparticles, which can be functionalized for efficient targeting and cell labeling. We recently demonstrated that Janus nanoparticles made by encapsulating iron oxide nanoparticles in semiconducting polymers allowed efficient cell labeling and were sensitive enough to track 250 labeled HeLa cells after implantation in mice.9
These cell-labeling and tracking methods may also be applied to neuroimaging. In one study, it was shown that neural grafts could be monitored in rats. This study implanted neural progenitor cells into the forebrain of rats and measured nonsignificant signal decay during 87 days.18 The authors demonstrated a detect-
sensitivity of <1000 cells in a voxel. As commercial development continues, we estimate that the theoretic detection limit may approach as little as 1–10 cells in a voxel. For comparison, these numbers compare favorably with MR imaging, in which the
first clinical cell-tracking detection limit was 15,000 cells.48 In a preliminary experiment, we administered SPION-la-
ble mouse macrophages to stroke
mice to test the localization and reten-
tion of signals for stroke monitoring (Fig
We showed that while the accumula-
tion of iron-labeled cells was highest at
48 hours, there was still detectable MPI signal at 96 hours postinjection.
Inflammation Tracking. Inflammation is involved in many disease processes, in-
cluding immune disorders, neurologic/neuropsychological disorders, and cancer.
Detection and tracking of inflammation could help with diagnosis and monitor
treatment outcomes. Unfortunately, cur-
rent practices in tracking inflammation often involve biopsies or imaging methods
that have low specificity and quantifiabil-
ity. MPI may be a promising quantitative imaging alternative. Previous studies have
already shown the use of SPIO tracers to target inflammation. SPIOs may be in-
jected intravenously and may be taken up
at inflammation sites, such as by macro-
phages at active phagocytic sites49,50 or by atherosclerotic plaques.51,52 Previous studies have used MR imaging to detect
the SPIOns for inflammation tracking.49,50,53,54 However, with high magnetic susceptibility, SPIOs cause a decrease in signal intensity, which could often be confused with signal voids from bone, air bub-
bles, susceptibility blowouts, and imaging artifacts. With the use of
MPI, SPIOns can be more specifically detected with a higher signal-
to-noise ratio.
Contrast Agent. SPIO contrast agents have previously been developed for MR imaging contrast enhancement. SPIOs are relatively safe for the patient and are biodegradable through the reticuloendothelial system.55 As mentioned previously,
SPIO agents can achieve long retention times in the body up to
hours or days when loaded into cells. In PET or SPECT, the
radioactive tracers have shorter half-lives in the body, espe-
cially for the high-energy probes required in PET. In addition,
due to the short half-life of PET tracers, PET requires a cyclo-
tron on site. In comparison, the SPIOs used in MPI are much more stable and have longer shelf lives with lower production cost.56 There are a number of commercial SPIO agents that
have either received FDA approval or are in a clinical trial phase57 to serve as potential contrast agents for MPI.58-61 SPIOns have historically been used in humans as MR imaging contrast agents, and 2 tracers, ferucarbotran (Resovist) and ferumoxytol, remain on the market in the European Union/ Asia Pacific and the United States/European Union/Asia Pa-
cific, respectively. These agents have been approved for con-
trast-enhanced MR imaging of the liver/spleen.62,63 MR imaging contrast agents can also be used for MPI. Additionally,
development and synthesis of MPI-tailored contrast agents are an emerging and important field of research.

MPI performance is affected by particle size, size distribution, relaxation properties, surface chemistry, and the environment.51,64-66 MPI tracer development has so far been dominated by optimizing for particle core size and size distribution. This is especially important for MPI because particle size directly affects image resolution. We have shown that single-core tracers with core diameters of 26–27 nm provide excellent performance for MPI, and modeling studies predict 25–30 nm as the optimal diameter for iron oxide magnetic nanoparticles, with improved performance for uniform size and optimized magnetic properties.67,68 Early research also shows that there is an optimal core size for each operating frequency that is driven by transition of the dominant relaxation effect from Neél to Brownian.67,68 Additionally, for in vivo applications, further considerations need to be made for circulation time, biodistribution, and cellular uptake. Thus, new contrast agents more specifically targeted for MPI applications are being actively developed. These new particles are optimized for size and size distributions,68,69 quality of crystal structure,9 mass sensitivity,67 high stability,70 rich harmonic spectrum,71 and surface chemistry.72-74

Safety Considerations. The current consensus is that MPI is safe to scale to human sizes. The primary concerns for MPI are the safety of the SPIONs and the safety of the time-varying magnetic fields. SPIONs are considered a low risk to patients and are well-tolerated, with some exceptions. First, large concentrations can lead to decreased cell proliferation.75 Second, there have been some cases of moderate-to-severe allergic reactions to injections of SPIONs.76-78

There is comparatively less risk in the magnetic fields used by MPI, which is governed by the same limits to peripheral nerve stimulation and specific absorption rate that are seen in MR imaging. In a human subject study, it was found that the safe limit for peripheral nerve stimulation and the specific absorption rate in the chest is about 7 mT, between 25 and 50 kHz.79 Cardiac stimulation and peripheral nerve stimulation will not be a limitation for clinical MPI systems.79-81 In addition, for applications in which guidewires and catheters are used, heating of the equipment is also a potential concern.82

Practical Considerations. The hardware complexity of MPI is comparable with that of MR imaging. One of the difficult engineering tasks is while MR imaging requires a parts-per-million accurate main magnetic field, MPI requires a parts-per-million accurate sinusoidal drive field.83 Both techniques require real-time control of magnetic fields and involve pulse sequences and reconstruction algorithms. In contrast to MR imaging, however, MPI scanning and imaging are straightforward, and we have not found that specialized training is required to acquire or interpret MPI. MPI contrast agents are widely available, easy to handle, and less expensive than commonly used radioactive probes. Like nuclear medicine, it can be helpful to have structural information with which to overlay MPI, and we frequently coregister MPI with CT and MR imaging. Thus, construction of hybrid systems to ease coregistration with anatomic images may be desirable in the future.

CONCLUSIONS

MPI is a novel, promising imaging technique for sensitive, quantitative, and high-resolution in vivo imaging. Preliminary animal studies have shown promising applications, including vascular imaging, oncology imaging, cell tracking, and inflammation imaging. Much development work is being done to further improve imaging design, tracer design, and imaging protocols. With these improvements and the upcoming development of human-sized scanners, MPI has the potential to become a widely adopted clinical tool for neuroimaging.

ACKNOWLEDGMENTS

We would like to thank Anna Christensen, Patrick Goodwill, Jeff Gaudet, and Prachi Pandit from Magnetic Insight (https://www.magneticinsight.com/) and Daniel Smerin for their support in conducting our experiments.

REFERENCES

1. Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005;435:1214–17 CrossRef Medline
2. Rahmer J, Gleich B, Weizenecker J, et al. 3D real-time magnetic particle imaging of cerebral blood flow in living mice. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 18, 2010
3. Ludewig P, Gdaniec N, Sedlack J, et al. Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 2017;11:10480–88 CrossRef Medline
4. Orendorff R, Keselman K, Connolly S. Quantitative cerebral blood flow and volume measurements by magnetic particle imaging. In: 13th European Molecular Imaging Meeting, March 20–23, 2018. San Sebastián, Spain
5. Tomita A, Arami H, Gandhi S, et al. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 2015;7:16890–98 CrossRef Medline
6. Fu A, Wilson RJ, Smith BR, et al. Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 2012;6:66862–69 CrossRef Medline
7. Finas D, Baumann K, Sydow L, et al. Lymphatic tissue and superparamagnetic nanoparticles: magnetic particle imaging for detection and distribution in a breast cancer model. Biomed Tech 2013 Sep 7. [Epub ahead of print] CrossRef Medline
8. Zheng B, von See MP, Yu E, et al. Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 2016;6:291–301 CrossRef Medline
9. Song G, Chen M, Zhang Y, et al. Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett 2018;18:182–89 CrossRef Medline
10. Goodwill PW, Lu K, Zheng B, et al. An x-space magnetic particle imaging scanner. Rev Sci Instrum 2012;83 CrossRef Medline
11. Rahmer J, Weizenecker J, Gleich B, et al. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 2009;9:4 CrossRef Medline
12. Goodwill PW, Conolly SM. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 2010; 29:1851–59 CrossRef Medline
13. Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging. IEEE Trans Med Imaging 2011;30:1581–90 CrossRef
14. Arami H, Teeman E, Troksa A, et al. Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nano letters 2017;9: 18723–30 CrossRef Medline
15. Knopp T, Biederer S, Sattel TF, et al. Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process. IEEE Trans Med Imaging 2011;30: 1284–92 CrossRef Medline
16. Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 2011;648(Supplement 1):S236–40 CrossRef Medline
17. Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54:83–89 CrossRef Medline
18. Zheng B, Varzin T, Goodwill PW, et al. Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep 2015;5:14055 CrossRef Medline
19. Wintersmark M, Sesay M, Barbir E, et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005;36:83–99 CrossRef Medline
20. Saritas EU, Goodwill PW, Croft LR, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 2013;229: 116–26 CrossRef Medline
21. Knopp T, Buzug TM. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Heidelberg: Springer-Verlag; 2012
22. Kherlopian AR, Song T, Duan Q, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271–84 CrossRef Medline
23. Beduneau A, Saulnier P, Benoît JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947–67 CrossRef Medline
24. Cheng Y, Morshed RA, Auffinger B, et al. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014;66:42–57 CrossRef Medline
25. Murase K, Aoki M, Banura N, et al. Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia. Open Journal of Medical Imaging 2015;5:85–99 CrossRef
26. Murase K, Mimura A, Banura N, et al. Visualization of magnetic nanofibers using magnetic particle imaging. Open Journal of Medical Imaging 2015;5:56–65 CrossRef
27. Eggenhofer E, Luk F, Dahlke MH, et al. The life and fate of mesenchymal stem cells. Front Immunol 2014;5:148 CrossRef Medline
28. Wu Y, Zhao RC. The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 2012;8:243–50 CrossRef Medline
29. Harting MT, Jimenez F, Xue H, et al. Intravascular mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 2009;110: 1189–97 CrossRef Medline
30. Lüdtke-Buzug K, Rapoport D. Characterization of iron-oxide loaded adult stem cells for magnetic particle imaging in targeted cancer therapy. AIP Conf Proc 2010;1311:244–48
31. Antonelli A, Sfara C, Rahmer J, et al. Red blood cells as carriers in magnetic particle imaging. Biomed Tech (Berl) 2013;58:517–25 CrossRef Medline
32. Markov DE, Boeve H, Gleich B, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 2010; 55:6461–73 CrossRef Medline
33. Haegele J, Duschka R, Graeser M, et al. Magnetic particle imaging: kinetics of the intravascular signal in vivo. Int J Nanomedicine 2014; 9:4203–09 CrossRef Medline
34. de Vries IJ, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005;23:1407–13 CrossRef Medline
35. Lefevre S, Ruimy D, Jehl F, et al. Septic arthritis: monitoring with USPIO-enhanced macrophage MR imaging. Radiology 2011;258: 722–28 CrossRef Medline
36. Lutz AM, Weishaupt D, Persohn E, et al. Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics. Radiology 2005;234:765–75 CrossRef Medline
37. Ruehm SG, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001;103: 415–22 CrossRef Medline
38. Sigovan M, Bousell L, Sulaiman A, et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 2009;252:401–09 CrossRef Medline
39. Metz S, Beer AJ, Settles M, et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging 2011;27:901–12 CrossRef Medline
40. McIntee MA, Sibson NR, von Zarn Muhlen G, et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 2007;13:1233–58 CrossRef Medline
41. Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 2011;1:35–40 CrossRef Medline
42. Panagiotopoulos N, Duschka RL, Alhborg M, et al. Magnetic particle
imaging: current developments and future directions. Int J Nanomedicine 2015;10:3097–114 CrossRef Medline
57. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11:2319–31 CrossRef Medline
58. Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and applications—a review. J Drug Target 1998;6:167–74 CrossRef Medline
59. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252–65 CrossRef Medline
60. Pablico-Lansigan MH, Situ SF, Samia AC. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 2013;5:4040–55 CrossRef Medline
61. Bauer LM, Situ SF, Griswold MA, et al. Magnetic particle imaging tracers: state-of-the-art and future directions. J Phys Chem Lett 2015;6:2509–17 CrossRef Medline
62. Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998;12:1198–204 CrossRef Medline
63. Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver—properties, clinical development, and applications. Eur Radiol 2003;13:1266–76 CrossRef Medline
64. Eberbeck D, Wiekhorst F, Wagner S, et al. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett 2011;98:182502 CrossRef
65. Khandhar AP, Ferguson RM, Arami H, et al. Tuning surface coatings of optimized magnetite nanoparticle tracers for in vivo magnetic particle imaging. IEEE Trans Magn 2015;51:395–401 CrossRef
66. Arami H, Ferguson RM, Khandhar AP, et al. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. Med Phys 2013;40:071904 CrossRef Medline
67. Ferguson RM, Minard KR, Khandhar AP, et al. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 2011;38:1619–26 CrossRef Medline
68. Ferguson RM, Minard KR, Krishnan KM. Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater 2009;321:1548–51 CrossRef Medline
69. Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys 2012;107:B318 CrossRef
70. Arami H, Krishnan KM. Highly stable amine functionalized iron oxide nanoparticles designed for magnetic particle imaging (MPI). IEEE Trans Magn 2013;49:3500–03 CrossRef
71. Ludwig F, Wawrzik T, Yoshida T, et al. Optimization of magnetic nanoparticles for magnetic particle imaging. IEEE Trans Magn 2012;48:3780–83 CrossRef
72. Starmans LW, Burdinski D, Haex NP, et al. Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging. PLoS One 2013;8:e57335 CrossRef Medline
73. Starmans LW, Moonen RP, Aussems-Custers E, et al. Evaluation of iron oxide nanoparticle micelles for magnetic particle imaging (MPI) of thrombosis. PLoS One 2015;10:e0119257 CrossRef Medline
74. Ishihara Y, Honna T, Nohara S, et al. Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method. BMC Med Imaging 2013;13:15 CrossRef Medline
75. Lindemann A, Ludtke-Buzug K, Fraderich BM, et al. Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells. Int J Nanomedicine 2014;9:5025–40 CrossRef Medline
76. Kehagias DT, Gouliamos AD, Smyrniotis V, et al. Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J Magn Reson Imaging 2001;14:595–601 CrossRef Medline
77. Bernd H, De Kerviler E, Gaillard S, et al. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 2009;44:336–42 CrossRef Medline
78. Singh A, Patel T, Hertel J, et al. Safety of ferumoxytol in patients with anemia and CKD. Am J Kidney Dis 2008;52:907–15 CrossRef Medline
79. Saritas EU, Goodwill PW, Zhang GZ, et al. Magnetostimulation limits in magnetic particle imaging. IEEE Trans Med Imaging 2013;32:1600–10 CrossRef Medline
80. Saritas EU, Goodwill PW, Zhang GZ, et al. Safety limits for human-size magnetic particle imaging systems. In: Buzug TM, Knopp T, eds. Magnetic Particle Imaging. Berlin: Springer-Verlag; 2011:325–30
81. Schmale I, Gleich B, Rahmer J, et al. MRI safety in the view of MRI safety standards. IEEE Trans Magn 2015;51:1–4 CrossRef
82. Duschka RL, Wojtczyk H, Panagiotopoulos N, et al. Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI): first experiences. J Healthc Eng 2014;5:79–93 CrossRef Medline
83. Croft LR, Goodwill PW, Konkle JJ, et al. Low drive field amplitude for improved image resolution in magnetic particle imaging. Med Phys 2016;43:424 CrossRef Medline