Introduction

Although its incidence has decreased, gastric cancer remains the fifth most common malignancy and a leading cause of cancer-related death worldwide (1). The incidence of gastric cancer varies among countries, being lower in Western countries than in nations of East Asia, such as Japan and China (2). *Helicobacter pylori* is the most important risk factor for gastric cancer; the others include smoking and dietary habits (3,4). The survival rate of patients with early-stage gastric cancer is high; however, most patients are diagnosed at a late stage and have a poor overall survival rate. The survival of patients with gastric cancer is enhanced by early detection, and thus surveillance of patients at high risk for gastric cancer is important.

Gastric cancer is a multifactorial disease and is closely associated with *H. pylori* infection (5). *H. pylori* infection can lead to chronic non-atrophic gastritis, followed by gastric atrophy and intestinal metaplasia, dysplasia, and ultimately gastric cancer (5,6). Gastric atrophy typically begins at the antrum and expands to the corpus (7), and may be associated with the development of gastric cancer. In addition, atrophic gastritis diagnosed by serological examination can be used to identify patients at high risk for gastric cancer. We investigated the association between the risk for gastric cancer and gastric atrophy.

Methods: We performed a comprehensive literature search in the PubMed and Embase databases and extracted relevant data from eligible studies. A fixed- or random-effects model was applied to pool study-specific risk according to heterogeneity across studies.

Results: Thirteen cohort or nested case-control studies with 655,937 participants and 2,794 patients with gastric cancer were analyzed. The pooled results suggested that gastric atrophy was associated with an elevated risk for gastric cancer [pooled risk ratio (RR) = 2.91, 95% confidence interval (CI): 2.58–3.27]. The pooled RR (3.10, 95% CI: 2.58–3.73) of studies that used serum levels of pepsinogen for diagnosis of gastric atrophy was similar to that of those that used (pooled RR = 2.79, 95% CI: 2.37–3.27) (for endoscopy). Gastric atrophy was positively associated with the risk for gastric cancer in both prospective and retrospective studies. Moreover, the pooled RRs did not significantly vary by country of origin (Asia and Europe) or gastric cancer subtype (cardia and non-cardia).

Conclusions: Gastric atrophy is associated with an elevated risk for gastric cancer, and endoscopy and serum levels of pepsinogens can be used to predict the risk.

Keywords: Gastric cancer; gastric atrophy; risk; meta-analysis

Submitted Oct 13, 2019. Accepted for publication Jan 10, 2020.
doi: 10.21037/tcr.2020.01.54
View this article at: http://dx.doi.org/10.21037/tcr.2020.01.54
risk for gastric cancer (8-12). However, the association between gastric atrophy and gastric cancer is unclear. Therefore, we systematically evaluated this association.

Methods

Data sources and study selection

Systematic searches for eligible publications were performed in the PubMed and Embase databases up to November 2017. The following key words were used: (“stomach” OR “gastric”) AND (“cancer” OR “adenocarcinoma” OR “carcinoma” OR “tumor” OR “malignancy”) AND (“atrophy” or “atrophic gastritis”). We also searched the reference lists of relevant articles and reviews for eligible works. The retrieved articles were carefully assessed to exclude overlapping data or duplicate studies. The titles and abstracts of citations were screened, and full reports were reviewed if necessary. The eligibility of studies for inclusion was assessed by two investigators independently based on the following criteria: cohort or nested case-control study, association between the risk for gastric cancer and atrophy investigated, and estimated hazard ratio (HR) or risk ratio (RR) with 95% confidence intervals (CIs) provided or could be calculated. Only articles in English were included. The review was conducted according to the PRISMA statement (13).

Data extraction

Data extraction was performed independently by two reviewers, and any disagreement was resolved by discussion or by the decision of a third reviewer. For each study, the following variables were extracted: last name of the first author, year of publication, country of origin, study design, sample size, number of gastric cancer patients, gastric atrophy diagnostic method, and HR or RR with corresponding 95% CIs. The HRs (RRs) that reflected the greatest degree of control for potential confounders were used in this meta-analysis.

Statistical analyses

Heterogeneity across individual studies was evaluated using chi-square and I² tests, and significant heterogeneity was defined as a P value ≤0.05 and/or an I² value >50% (14). Summary risk estimates (HRs or RRs) and 95% CIs were calculated using a random-effects model when the heterogeneity was significant, and a fixed-effects model otherwise. Subgroup analyses were performed to identify the sources of heterogeneity and to assess the effect modification of cancer subtype, geographic region, study design, and gastric atrophy diagnostic method. To assess the risk for publication bias, a Begg funnel plot was generated and an Egger test was conducted. Stata software (v. 11.0; StataCorp, College Station, TX) was used for statistical analyses, and a value of P<0.05 was taken to indicate statistical significance.

Results

Study characteristics

The systematic literature search identified eligible 2,047 articles, of which 37 were reviewed for inclusion. Ultimately, 13 articles were included in the meta-analysis (7-12,15-21). Studies were excluded from the meta-analysis for the following reasons: inappropriate topic or design (n=14), not an original article (n=6), and insufficient data (n=4).

Among the 13 included studies, 4 were performed in Europe and the others were conducted in Asia (Table 1). Ten were prospective studies and three were retrospective. The sample size ranged from 594 to 360,000, and the number of patients with gastric cancer ranged from 12 to 1,452. One study enrolled only male participants, and the others enrolled both male and female participants. Seven studies used the circulating pepsinogen level for diagnosis of gastric atrophy, five used endoscopy, and one study used a database.

Association between gastric atrophy and gastric cancer risk

Thirteen studies assessed the association between gastric
Table 1 Characteristics of the included studies

Author/Year	Design	Country	Sample size	No. of patients with GC	Age (years) (mean or median)	Gender	Years of follow up	Atrophy diagnostic method	Adjusted factors
Shichijo/2016	Retrospective	Japan	748	21	58.4	M/F	6.2	Endoscopy	Age, gender, intestinal metaplasia
Sekikawa/2016	Retrospective	Japan	1,823	29	17.7% patients ≥65 years	M/F	5.3	Endoscopy	Age, gender, gastric xanthelasma
Mori/2016	Prospective	Japan	594	79	66	M/F	4.5	Endoscopy	Gender, smoking, location and number of initial gastric cancer
Chen/2016	Prospective	German	9,506	27	50-75	M/F	10.6	PGI <70 ng/mL and PGI/II ratio <3	Age, gender, education level, smoking status and alcohol consumption
Song/2015	Prospective	Sweden	14,285	12	60.3	M/F	10.1	Register database	None
Mizuno/2010	Prospective	Japan	2,859	61	Nr	M/F	9.3	PGI ≤70 ng/mL and PGI/II ratio ≤3	Age, gender
Ren/2009	Prospective	China	29,584	1452	40-69	M/F	15	PGI/II ratio ≤4	Age, sex, cigarette smoking, alcohol consumption, body mass index, and H. pylori seropositivity
Take/2007	Prospective	Japan	1,342	13	50	M/F	3.9	Endoscopy	None
Palli/2007	Prospective	Europe	360,000	233	Nr	M/F	6.1	PGA <22 ng/mL	Age, gender, education, smoking history, weight, total vegetables, fruit, red and preserved meat
Hansen/2007	Retrospective	UK	101,601	173	45.6	M/F	11.9	PGI/II ratio <2.5	None
Sasazuki/2006	Prospective	Japan	123,567	511	40-69	M/F	9	PGI ≤70 ng/mL and PGI/II ratio ≤3	Age, gender, resident area, blood donation date, and fasting times at blood donation, smoking, consumption of fish, gut, green and yellow vegetables, other vegetables, fruit, green tea, body mass index, and family history of gastric cancer
Ohata/2004	Prospective	Japan	4,655	45	49.5	M	7.7	PGI ≤70 ng/mL and PGI/II ratio ≤3	Age
Inoue/2000	Prospective	Japan	5,373	117	Male: 50.7; Female: 49.9	M/F	10	Endoscopy	Age, gender and family history of gastric cancer

Nr, not reported; M, male; F, female.
atrophy and the risk for gastric cancer. Those studies had 655,937 participants, among whom 2794 developed gastric cancer. The pooled RR was 2.91 (95% CI: 2.58–3.27) with no significant heterogeneity ($I^2=7.2\%$, $P=0.374$) (Figure 2), suggesting that gastric atrophy was associated with a high risk for gastric cancer. No publication bias was detected based on a Begg funnel plot and Egger test ($P_{\text{Begg's test}}=0.161$, $P_{\text{Egger's test}}=0.151$).

Next, we performed subgroup analyses according to cancer subtype, geographic region, study design, and gastric atrophy diagnostic method (Table 2). The pooled results indicated that gastric atrophy was positively associated with the risk for both non-cardia gastric cancer (pooled RR =3.12, 95% CI: 2.17–4.49) and gastric cardia cancer (pooled

Table 2 Subgroup analyses of gastric atrophy and risk of gastric cancer

Factor	No. of Studies	Pooled OR (95% CI)	Heterogeneity	
			I^2 (%)	P
Gastric cancer subtype				
GCC	4	2.84 (1.52–5.31)	55.4	0.081
GNCC	3	3.12 (2.17–4.49)	34.6	0.217
Design				
Prospective	10	2.86 (2.54–3.23)	0	0.474
Retrospective	3	3.90 (2.67–5.70)	33.0	0.201
Country of Origin				
East Asia	9	2.89 (2.38–3.51)	14.7	0.300
Western countries	4	3.17 (2.47–4.08)	32.2	0.207
Diagnostic method				
Endoscopy or database	6	2.79 (2.37–3.27)	13.6	0.326
Pepsinogen level	7	3.10 (2.58–3.73)	18.7	0.271

GCC, gastric cardia cancer; GNCC, gastric non-cardia cancer.
Gastric atrophy is positively associated with the risk for gastric cancer. In this meta-analysis, both histologically diagnosed (pooled RR =2.79, 95% CI: 2.37–3.27) for histologically diagnosed and pepsinogen-diagnosed (RR =3.10, 95% CI: 2.58–3.73) atrophy were associated with an elevated risk for gastric cancer. This suggests that the serum levels of pepsinogens can be used for gastric cancer screening.

Gastric cancer is classified anatomically as gastric cardia or non-cardia cancer; in this study, gastric atrophy was associated with the risk for both types. The risk factors for those two types of gastric cancer are not necessarily similar. For example, H. pylori plays an important role in the development of non-cardia gastric cancer, but its association with cardia cancer is less clear (27). The association between atrophy and gastric non-cardia cancer is supported by strong evidence, while the role of atrophy in the development of gastric cardia cancer is unclear. It has been hypothesized that gastric cardia cancer has two etiologies: one associated with H. pylori atrophic gastritis, and another that resembles esophageal adenocarcinoma and against which gastric atrophy does not have a protective effect (10). Further studies of this issue are warranted.

We systematically analyzed the risk for gastric cancer in patients with gastric atrophy and the findings supported the effects of gastric atrophy gastric cancer surveillance. The included studies were of cohort or nested case-control design, and most were prospective, reducing the risk of bias and increasing the reliability of the pooled results. However, this systematic review and meta-analysis had several limitations. First, the small number of included studies, particularly for some subgroup analyses, may have reduced the accuracy of the estimates. Second, control of confounders was inadequate, and so the risks might be over- or underestimated. For example, H. pylori infection and intestinal metaplasia are risk factors for gastric cancer, but we were unable to evaluate the joint effects of these factors and atrophy on the risk for gastric cancer due to the sparsity of the data. Similarly, there were insufficient data to examine the effects of grade of atrophy and peptic ulcer on the association between atrophy and the risk for gastric cancer. Third, the studies that used serum levels of pepsinogen to diagnose gastric atrophy applied nonuniform diagnostic criteria. Most of the studies used a PGI level <70 ng/mL and a PGI/II ratio <3 to diagnose gastric atrophy, while others used different criteria. In addition, the follow-up time, which may be important in cohort studies,
varied among the included works. Moreover, the included studies were performed in East Asia or Europe; therefore, caution is required when generalizing the findings to other populations.

In conclusion, gastric atrophy was associated with an elevated risk for gastric cancer. The evidence suggests that gastric atrophy diagnosed by endoscopy or serum levels of pepsinogen can be used for surveillance of gastric cancer.

Acknowledgments

Funding: The work was funded by Natural Science Foundation of Zhejiang Province (LY17H160022, LY16H160031).

Footnote

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/tcr.2020.01.54). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol 2013;107:230-6.
2. Sant M, Allemanni C, Santaquilani M, et al. EUROCare-4. Survival of cancer patients diagnosed in 1995-1999. Results and commentary. Eur J Cancer 2009;45:931-91.
3. Vingeliene S, Chan DSM, Aune D, et al. An update of the WCRF/AICR systematic literature review on esophageal and gastric cancers and citrus fruits intake. Cancer Causes Control 2016;27:837-51.
4. Song H, Michel A, Nyren O, et al. A CagA-independent cluster of antigens related to the risk of noncardia gastric cancer: associations between Helicobacter pylori antibodies and gastric adenocarcinoma explored by multiplex serology. Int J Cancer 2014;134:2942-50.
5. Kapadia CR. Gastric atrophy, metaplasia, and dysplasia: a clinical perspective. J Clin Gastroenterol 2003;36:S29-36; discussion S61-2.
6. Malfertheiner P, Megraud F, O’Morain CA, et al. Management of Helicobacter pylori infection--the Maastricht IV/ Florence Consensus Report. Gut 2012;61:646-64.
7. Shichijo S, Hirata Y, Niikura R, et al. Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori eradication. Gastrointest Endosc 2016;84:618-24.
8. Mizuno S, Miki I, Ishida T, et al. Prescreening of a high-risk group for gastric cancer by serologically determined Helicobacter pylori infection and atrophic gastritis. Dig Dis Sci 2010;55:1312-7.
9. Ren JS, Kamangar F, Qiao YL, et al. Serum pepsinogens and risk of gastric and oesophageal cancers in the General Population Nutrition Intervention Trial cohort. Gut 2009;58:636-42.
10. Hansen S, Vollset SE, Derakhshan MH, et al. Two distinct aetiologies of cardia cancer; evidence from premorbid serological markers of gastric atrophy and Helicobacter pylori status. Gut 2007;56:918-25.
11. Sasazuki S, Inoue M, Iwasaki M, et al. Effect of Helicobacter pylori infection combined with CagA and pepsinogen status on gastric cancer development among Japanese men and women: a nested case-control study. Cancer Epidemiol Biomarkers Prev 2006;15:1341-7.
12. Ohata H, Kitauchi S, Yoshimura N, et al. Progression of chronic atrophic gastritis associated with Helicobacter pylori infection increases risk of gastric cancer. Int J Cancer 2004;109:138-43.
13. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
14. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539-58.
15. Sekikawa A, Fukui H, Sada R, et al. Gastric atrophy and xanthelasma are markers for predicting the development of early gastric cancer. J Gastroenterol 2016;51:35-42.
16. Mori G, Nakajima T, Asada K, et al. Incidence of and risk factors for metachronous gastric cancer after endoscopic
resection and successful Helicobacter pylori eradication: results of a large-scale, multicenter cohort study in Japan. Gastric Cancer 2016;19:911-8.

17. Chen XZ, Schottker B, Castro FA, et al. Association of helicobacter pylori infection and chronic atrophic gastritis with risk of colonic, pancreatic and gastric cancer: A ten-year follow-up of the ESTHER cohort study. Oncotarget 2016;7:17182-93.

18. Song H, Ekheden IG, Zheng Z, et al. Incidence of gastric cancer among patients with gastric precancerous lesions: observational cohort study in a low risk Western population. BMJ 2015;351:h3867.

19. Take S, Mizuno M, Ishiki K, et al. Baseline gastric mucosal atrophy is a risk factor associated with the development of gastric cancer after Helicobacter pylori eradication therapy in patients with peptic ulcer diseases. J Gastroenterol 2007;42 Suppl 17:21-7.

20. Palli D, Masala G, Del Giudice G, et al. CagA+ Helicobacter pylori infection and gastric cancer risk in the EPIC-EURGAST study. Int J Cancer 2007;120:859-67.

21. Inoue M, Tajima K, Matsuura A, et al. Severity of chronic atrophic gastritis and subsequent gastric cancer occurrence: a 10-year prospective cohort study in Japan. Cancer Lett 2000;161:105-12.

22. Hamashima C, Shibuya D, Yamazaki H, et al. The Japanese guidelines for gastric cancer screening. Jpn J Clin Oncol 2008;38:259-67.

23. Graham DY, Asaka M. Eradication of gastric cancer and more efficient gastric cancer surveillance in Japan: two peas in a pod. J Gastroenterol 2010;45:1-8.

24. Dinis-Ribeiro M, Areia M, de Vries AC, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy 2012;44:74-94.

25. Samloff IM, Taggart RT. Pepsinogens, pepsins, and peptic ulcer. Clin Invest Med 1987;10:215-21.

26. Ley C, Mohar A, Guarner J, et al. Screening markers for chronic atrophic gastritis in Chiapas, Mexico. Cancer Epidemiol Biomarkers Prev 2001;10:107-12.

27. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 2001;49:347-53.