Sphincter of Oddi laxity: An important factor in hepatolithiasis

Ting-Bo Liang, Yu Liu, Xue-Li Bai, Jun Yu, Wei Chen

Ting-Bo Liang, Yu Liu, Xue-Li Bai, Jun Yu, Wei Chen, Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Multi-Organ Transplantation of Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China

Support by grants from National Natural Science Funds for Distinguished Young Scholars, No. 30925033; Science and Technology Planning Project of Zhejiang Province, China, No. 2007C24001

Correspondence to: Ting-Bo Liang, PhD, Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Multi-Organ Transplantation of Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang Province, China. liangtingbo@zju.edu.cn

INTRODUCTION

Hepatolithiasis (HL) is prevalent in East Asia, especially in China[1-3]. While this condition results from multiple etiological factors, obstructive cholangitis is usually the main cause[2]. In our clinical practice, we have found few cases with obstruction of the common bile duct or sphincter of Oddi (SO); to the contrary, almost half of our clinical cases showed sphincter of Oddi laxity (SOL). We have also found that patients with SOL had a tendency for recurrence and always needed reoperation. The goal of this study was to determine the effect of SOL on recurrence and reoperation frequencies among patients with HL in order to recommend the most suitable therapy for this condition.

AIM: To evaluate the importance of sphincter of Oddi laxity (SOL) in hepatolithiasis (HL).

METHODS: Subjects included 98 patients diagnosed with HL between 2002 and 2007. Detailed histories were taken and the subjects were monitored until July 2008. HL patients were divided into two groups: Group I included 45 patients with SOL, and Group II included 53 patients without. Recurrence and reoperation indices of both groups were calculated and compared.

RESULTS: The recurrence index was 0.135 in Group I and 0.018 in Group II (P < 0.001). The reoperation index was 0.070 in Group I and 0.010 in Group II (P < 0.001). The mean frequency of biliary operation was 2.07 in Group I and 1.21 in Group II (P = 0.001). Differences between the two groups are significant.

CONCLUSION: HL patients with SOL tend to have a higher risk of recurrence and a larger demand for reoperation than those without this condition.

Key words: Sphincter of Oddi laxity; Hepatolithiasis; Recurrence index; Reoperation index; Choledochojejunostomy

Peer reviewer: Beata Jolanta Jabłońska, MD, PhD, Department of Digestive Tract Surgery, University Hospital of Medical University of Silesia, Medyków 14 St. 40-752 Katowice, Poland

Liang TB, Liu Y, Bai XL, Yu J, Chen W. Sphincter of Oddi laxity: An important factor in hepatolithiasis. World J Gastroenterol 2010; 16(8): 1014-1018 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i8/1014.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i8.1014
The SO is made up of the bile duct, pancreatic duct and ampulla sphincters. Regular contraction and relaxation maintain the normal pressure differences between the bile duct, pancreatic duct and the SO. The diameter of the duodenal papilla orifice is very small, no more than 2-3 mm even when the SO is completely relaxed with drugs. Normally, the SO can regulate the discharge of bile and pancreatic juice, and also prevent duodenum juice reflux. In patients with SOL, a larger diameter (≥10 mm) of the biliary tract orifice facilitates the entry of bile juice into the duodenum without resistance, appearing as SO absence.

MATERIALS AND METHODS

Case selection
We considered 121 patients with HL who were admitted to the First Affiliated Hospital of the Medical College of Zhejiang University between April 2002 and March 2007. Seven cases were excluded due to histories of choledochojejunostomy discovered during surgery, and ten cases were eliminated due to extensive complexity, resulting in a total of 104 selected cases. During the follow-up period of almost 6 years (until July 2008), six patients were lost. Thus, the study included 98 patients: 29 with simple intra-hepatolithiasis (IHL) and 69 with both IHL and choledocholithiasis.

Detailed histories were obtained from the patients, including age of first onset, frequency of recurrence, and previous biliary tract operation. The mean age of the patients was 52.8 ± 12.2 years (range: 17-80 years), and mean age of the first onset was 45.1 ± 16.1 years (range: 8-78 years) (Table 1). All patients were diagnosed by pre-operative magnetic resonance cholangiopancreatography (MRCP) and B-ultrasound, and diagnoses were confirmed in operation. The absence of residual stones was confirmed by routine choledochoscope (OLYMPUS CHF P20, external diameter 4.9 mm) examination during operation. The following parameters were set for biliary tract operation: (1) simple cholecystectomy was removed from consideration; and (2) operation was defined as all procedures for clearing stones from the intrahepatic and extrahepatic bile ducts, including hepatectomy, endoscopic stone extraction, calculus removal from the T tube, and choledochojejunostomy. Simple choledocholithotomy and T-tube drainage were performed on 35 patients, simple hepatectomy on 20 patients, choledocholithotomy and T-tube drainage with hepatectomy on 35 patients, simple choledochojejunostomy on 5 patients, and choledochojejunostomy with hepatectomy on 3 patients. BUS was routinely performed every 2 mo after operation, and abnormalities were confirmed with MRCP. Patients showing the symptoms related to HL were immediately examined with BUS and MRCP.

SOL and patient groups
SOL, related to HL formation, may be primary or secondary. Patients without a history of choledochojejunostomy or choledochooduodenostomy may be diagnosed with SOL according to either of the following criteria: (1) contrast media may be found in the common bile duct during duodenography; or (2) a Bake’s dilator with a diameter of 10 mm is able to reach the duodenum via the SO without pre-dilatation during surgery. Patients without a history of any sphincterotomy, including endoscopic sphincterotomy, can be defined as having primary SOL, while those with a history of sphincterotomy can be diagnosed with secondary SOL.

The patients were divided into two groups: HL patients with SOL (Group I) and those without (Group II). Group I included 45 patients (39 with primary SOL, 6 with secondary SOL) and Group II included 53 patients. The mean age of the patients, the mean age of the first onset, and operative procedures are presented in Table 2. Group I was divided into 2 subgroups according to the operative procedures: 6 patients who underwent choledochojejunostomy (end-to-side anastomosis with common bile duct and jejunum) were placed in Group I A and 39 patients who did not undergo choledochojejunostomy were placed in Group I B. The patients in Group I A had no operative histories before this hospitalization. Biliary visualization was undertaken with duodenography (hypeaque meglumine 60%) in 19 (42.2%) patients of Group I and none in the patients of (0%) Group II.

Recurrence and reoperation indices
Recurrence rate is a frequently used index in the study of lithiasis. As a traditional index, recurrence rate is al-

Characteristics	Characteristic Value
Male/female	35/63
Mean age (yr)	52.8
Mean age of first onset (yr)	45.1
Mean follow-up period (mo)	42.1
Follow-up prevalence	100%
Simple IHL/IHL with choledocholith	38/60
Recurrence rate of this operation	16.3%
Mean number of operations	1.60
Number of patients with 1 operation	67
Number of patients with 2 operations	19
Number of patients with 3 operations	7
Number of patients with 4 operations	1
Number of patients with 5 operations	1
Number of patients with 6 operations	2
Number of patients with 11 operations	1
Number of patients with simple choledocholithotomy and T-tube drainage	35
Number of patients with simple hepatectomy	20
Number of patients with choledocholithotomy, T-tube drainage and hepatectomy	35
Number of patients with simple choledochojejunostomy	5
Number of patients with choledochojejunostomy and hepatectomy	3
Recurrence index	0.072
Reoperation index	0.037

IHL: Intra-hepatolithiasis.
Due to the frequent recurrence of HL, however, it is inappropriate to use only a single operation to evaluate the prognosis of this disease. To accurately describe and compare the whole history (from first onset to July 2008) of HL in each patient, we thus used the recurrence and reoperation indices concurrently. This allowed consideration of every recurrence or operation, and the intervals between two recurrences or two operations.

To determine the recurrence index, we recorded intervals (months) between each recurrence for a patient, calculated the reciprocal of each interval, and used the mean reciprocal as the recurrence index for that patient. If no recurrence occurred in the final operation, the corresponding reciprocal was designated as 0. A larger reciprocal value suggested a higher risk of recurrence. For example, the record of one patient showed that: 10 mo after the first operation, a recurrence occurred; the second one. For this patient, the reoperation index is: (1/10 + 1/5 + 0)/3 = 0.1.

RESULTS

Patient data

The patients were monitored for a period ranging between 14 and 75 mo (median 42.1 ± 17.1 mo). During this follow-up period, stones reappeared in the bile ducts of 16 of 98 patients (with a recurrence rate of 16.3%), including 2 cases of stones in the common bile duct, 4 cases in the intrahepatic bile duct, and 10 cases in both ducts. Seven of these patients received a reoperation, and the disease recurred again in 4 of them. The number of operations performed from the first onset to July 2008 are shown in Table 1; the mean number of operations was 1.60 ± 1.38 (range: 1-11). The mean recurrence index was 0.0717 ± 0.193 and the mean reoperation index was 0.0373 ± 0.127 (Table 1).

Comparison of Groups I and II

The patients were followed up for 16-73 mo (mean 39.9 ± 15.6 mo) in Group I and for 14-75 mo (mean 43.9 ± 18.1 mo) in Group II (P = 0.145). Recurrence was observed in 10 Group I patients (a recurrence rate of 22.2%) and 6 Group II patients (a recurrence rate of 11.3%). The mean number of operations from first onset to July 2008 was 2.07 ± 1.83 (range: 1-11) in Group I, being significantly higher than that of Group II (1.21 ± 0.63; range: 1-5). The mean recurrence index was 0.135 ± 0.256 for Group I, which was significantly higher than that of Group II (0.018 ± 0.086) (P < 0.001). The mean reoperation index was 0.070 ± 0.171 for Group I, being also significantly higher than that of Group II (0.010 ± 0.060) (P < 0.001) (Tables 2 and 3).

Comparison of Groups A and I B

To evaluate the effect of choledochojejunostomy on the third and final operations were performed 5 mo after the second one. For this patient, the reoperation index is: (1/10 + 1/5 + 0)/3 = 0.1.

Statistical analysis

All data are expressed as mean ± SD. The t test was used to compare the differences of parameter mean values between groups. All P values were two-sided. A P value of < 0.05 indicated a statistically significant difference. All calculations were done using SPSS (version 11.5) software.
SOL patients, we compared the recurrence and reoperation indices of Groups A and B. The follow-up period was between 18 and 61 mo (mean 42.5 ± 16.9 mo) in Group A, and between 18 and 73 mo (mean 39.5 ± 15.6 mo) in Group B (P = 0.905). We found no recurrence among patients in Group A (a recurrence rate of 0%), whereas recurrence occurred in 10 of 39 patients in Group B (a recurrence rate of 25.6%). The mean recurrence indices were thus 0 for Group A and 0.156 ± 0.270 for Group B. The mean reoperation indices were 0 for Group A and 0.081 ± 0.182 for Group B. The differences in both the recurrence index and reoperation index values were statistically significant between groups (Table 4).

DISCUSSION

HL is prevalent in the Asian countries of Japan, Korea and China [1-3], and also occasionally occurs in Europe and America [4-9]. The disease is characterized by its intractable nature and frequent recurrence. Because of complications, potential carcinogenesis and even fatality [6-11], most HL patients receive multiple operations. This study examined the role of SOL in the course of HL, and found that the frequencies of recurrence and reoperation were significantly higher in patients with SOL.

The obviously larger diameter of the papilla orifice in SOL patients indicates the injury to the SO muscle fibre and the absence of regular SO contraction. These conditions lead to duodenum juice reflux, similar to that seen in choledochoduodenostomy. During surgery on SOL patients, a Bake CBD dilator (CE-125-10-G, diameter = 10 mm) and choledochoscope (OLYMPUS CHF P20, external diameter = 4.9 mm) passed smoothly through the SO; even in some patients, a forefinger could enter the duodenum via the SO without any resistance, and food debris could be seen in the CBD. It results in *Escherichia coli* (*E. coli*) infection and decrease in biliary pH. *E. coli* can generate β-glucuronidase, which hydrolyzes direct bilirubin (water-soluble) into indirect bilirubin (water-insoluble) and may lead to the formation of stones in the biliary tract. Thus, HL tends to recur in SOL patients.

The specific causes of SOL, however, remain unknown. Congenital abnormality, mechanical injury by stones, chemical injury by bacteria, or iatrogenic injury are all possible etiological factors. Congenital maldevelopment of the smooth muscle and deficiency of some neurotransmitter receptors can also contribute to SOL. Under inflammatory conditions where large amounts of inflammation mediators are generated over time [12], the SO response to nitrergic neurotransmission is impaired, which may induce abnormal SO relaxation. Dilation of the common bile duct due to obstruction by stones may result in excessive dilation of the common bile duct sphincter and SOL development. In this study, absence of congenital abnormality in family histories and similarity among the mean age of the first onset (P > 0.05) did not support congenital abnormality as a primary etiological factor of SOL.

It is not difficult to diagnose SOL. Duodenography is still considered to be a good method for describing the modality, despite its relatively low sensitivity (42.2%, Table 2). SO manometry is the best method of evaluating patients for sphincter dysfunction [13], and it may be a feasible diagnostic method. The confidence of SO manometry, however, is suspected due to multiple factors (abdominal pressure, dynamic changes caused by the manometry, drug reactions). The invasive nature of manometry, the complexity of the operation, and the potential complication of pancreatitis restrict the use of SO manometry as a routine diagnostic method [14,15]. Due to the existence of intestinal juice reflux, simple calculus removal or hepatectomy are not sufficient for SOL patients, while choledochojejunostomy with an anti-reflux ansa intestinalis may be suitable for these patients [16]. The outcomes of six patients in Group A showed the advantage of choledochojejunostomy, although the sample size is small. Further research on the effectiveness of this method should be conducted with a larger number of patients.

Endoscopic sphincterotomy may destroy the muscle fibres of the SO and cause iatrogenesis. The risks of cholangitis and cholangiocarcinoma have also been shown to markedly increase if the postoperative follow-up period is long enough [17]. This method should therefore be restricted to patients without SOL. Endoscopic balloon dilation is an effective alternative to endoscopic sphincterotomy [18-20], which has been shown to result in complete recovery of sphincter function 21 d after operation [21]. An appropriate balloon size can preserve the SO and avoid undesirable effects due to an incompetent sphincter [22,23].

SOL commonly arises in HL. HL patients with SOL tend to have a higher risk of recurrence and a larger demand for reoperation compared to those without SOL. Choledochojejunostomy with an anti-reflux ansa intestinalis may be the most promising therapy.

COMMENTS

Background

Hepatolithiasis (HL) is prevalent in East Asia, especially in China and obstructive cholangitis is usually considered the main cause. The authors found that almost half of the cases showed sphincter of Oddi laxity (SOL) in their clinical experience and the patients with SOL had a tendency for recurrence and always needed reoperation.
Research frontiers
The obstructive cholangitis is usually considered as the main cause of HL. No report has put forward the conception of SOL up to date. The phenomenon and significance of SOL is still rarely known.

Innovations and breakthroughs
The study has proposed the conception of SOL for the first time and considered SOL as a significant cause of occurrence or recurrence of HL. The authors of the study also put forward the recurrence and reoperation indices for the first time instead of recurrence rate, and suggested the choledochojejunostomy should be used as the surgical approach to the patients with SOL.

Applications
By understanding SOL, this study may represent a new strategy in the treatment of HL patients with SOL.

Terminology
SOL: an obviously large diameter of the papilla orifice makes the choledochojejunostomy of HL patients with SOL.

Peer review
The study revealed that SOL is an important factor associated with a higher risk of HL recurrence and reoperation frequency in the HL patients.

REFERENCES
1. Noda A. Intrahepatic biliary lithiasis. Trop Gastroenterol 1991; 12: 3-14
2. Mori T, Sugiyama M, Atomi Y. Gallstone disease: Management of intrahepatic stones. Best Pract Res Clin Gastroenterol 2006; 20: 1117-1137
3. Kim MH, Lee SS. [Current status of intrahepatic stones in Korea] Korean J Gastroenterol 2003; 42: 89-95
4. Vetrone G, Ercolani G, Grazia GL, Ramacciato G, Ravaio M, Cescon M, Varotti G, Del Gaudio M, Quintini C, Pinna AD. Surgical therapy for hepatolithiasis: a Western experience. J Am Coll Surg 2006; 202: 306-312
5. Catena M, Aldrighetti L, Finazzi R, Arzu G, Arru M, Pilitanò C, Ferla G. Treatment of non-endemic hepatolithiasis. Best Pract Res Clin Gastroenterol 2006; 20: 306-312
6. Shoda J, Tanaka N, Ouga T. Hepatolithiasis—epidemiology and pathogenesis update. Front Biosci 2003; 8: e398-e409
7. Huang MH, Chen CH, Yang JC, Yang CC, Yeh YH, Chou DA, Mo LR, Yueh SK, Nien CK. Long-term outcome of percutaneous transhepatic cholangioscopic lithotomy for hepatolithiasis. Am J Gastroenterol 2003; 98: 2655-2662
8. Manzanera M, Hidalgo M, Hernández D, Jiménez C, Rico P, Gimeno A, Moreno González E. [Surgical treatment of hepatolithiasis. Presentation of a case] Rev Esp Enferm Dig 1998; 90: 51-52
9. Lazaridis C, Papazogias B, Alexandrakis A, Galanis I, Ar- giriadou H, Papazogias T. Intrahepatic lithiasis as a late complication of hepatocirrhosis. Surg Endosc 2003; 17: 661
10. Chen MF, Jan YY, Wang CS, Hwang TL, Jeng LB, Chen SC, Chao TC. Role of hepatic resection in surgery for bilateral intrahepatic stones. Br J Surg 1997; 84: 1229-1232
11. Cheung MT. Postoperative choledochojejunostomy of intrahepatic stones via a T tube tract. Br J Surg 1997; 84: 1224-1228
12. Sari R, Szilvássy Z, Jakab I, Nagy I, Lonovics J. Cross tolerance between nitroglycerin and neural relaxation of the rabbit sphincter of Oddi. Pharmacol Rev 1998; 37: 505-512
13. Kher K, Guerud M. Normal sphincter of oddi motor function. Curr Gastroenterol Rep 2004; 6: 163-168
14. Fogel EL, Eversman D, Jamidar P, Sherman S, Lehman GA. Sphincter of Oddi dysfunction: pancreaticobiliary sphincterotomy with pancreatic stent placement has a lower rate of pancreatitis than biliary sphincterotomy alone. Endoscopy 2002; 34: 280-285
15. Steinberg WM. Controversies in clinical pancreatology: should the sphincter of Oddi be measured in patients with idiopathic recurrent acute pancreatitis, and should sphincterotomy be performed if the pressure is high? Pancreas 2003; 27: 118-121
16. Tocchi A, Mazzoni G, Liotta G, Lepre L, Cassini D, Miccini M. Late development of bile duct cancer in patients who had biliary-enteric drainage for benign disease: a follow-up study of more than 1,000 patients. Ann Surg 2003; 234: 210-214
17. Hakamada K, Sasaki M, Endoh M, Itoh T, Morita T, Konn M. Late development of bile duct cancer after sphincteroplasty: a ten- to twenty-two-year follow-up study. Surgery 1997; 121: 488-492
18. Weinberg BM. Shindy W, Lo S. Endoscopic balloon sphincter dilation (spincterotomy) versus sphincterotomy for common bile duct stones. Cochrane Database Syst Rev 2006; CD004890
19. Vlavianos P, Chopra K, Mandalia S, Anderson M, Thompson J, Westaby D. Endoscopic balloon dilation versus endoscopic sphincterotomy for the removal of bile duct stones: a prospective randomised trial. Gut 2003; 52: 1165-1169
20. Mugica F, Urdapilleta G, Castilla A, Berbiela A, Alzate F, Zapata E, Zubiaurre L, Lopez P, Arenas J]. Selective sphincteroplasty of the papilla in cases at risk due to atypical anatomy. World J Gastroenterol 2007; 13: 3106-3111
21. Laguna-Sastre JM, García-Calvo R, Esrig-Soo J, Salvador-Sanchis JL, Cisneros-Reig I. [Functional recovery of Oddi’s sphincter after balloon dilation of the papilla of Vater. An experimental study in rabbits] Cir Esp 2007; 82: 278-284
22. Espinel J, Muñoz F, Vivas S, Domínguez A, Linares P,Jorquera F, Herrera A, Olcoz JL. [Dilatation of the papilla of Vater in the treatment of choledocholithiasis in selected patients] Gastroenterol Hepatol 2004; 27: 6-10
23. Yasuda I, Tomita E, Enya M, Kato T, Moriwaki H. Can endoscopic papillary balloon dilation really preserve sphincter of Oddi function? Gut 2001; 49: 686-691
24. Sato H, Kodama T, Takaaki J, Tatsumi Y, Maeda T, Fujita S, Fukui Y, Ogasawara H, Mitsufuji S. Endoscopic papillary balloon dilatation may preserve sphincter of Oddi function after common bile duct stone management: evaluation from the viewpoint of endoscopic manometry. Gut 1997; 41: 541-544
25. Mac Mathuna P, Siegenberg D, Gibbons D, Gorin D, O’Brien M, Afdhal NA, Chuttani R. The acute and long-term effect of balloon sphincteroplasty on papillary structure in pigs. Gastrointest Endosc 2006; 63: 543-549
26. Kawabe T, Komatsu Y, Isayama H, Takemura T, Toda N, Tada M, Imai Y, Shiratori Y, Onuma M. Histological analysis of the papilla after endoscopic papillary balloon dilation. Hepatogastroenterology 2003; 50: 919-923

S- Editor Wang YR L- Editor Ma JY E- Editor Zheng XM