Research Article

Qiaozhen Ma, Jing Wang, and Tingting Liu

Time-dependent attractor of wave equations with nonlinear damping and linear memory

https://doi.org/10.1515/math-2019-0008
Received June 8, 2018; accepted December 22, 2018

Abstract: In this article, we consider the long-time behavior of solutions for the wave equation with nonlinear damping and linear memory. Within the theory of process on time-dependent spaces, we verify the process is asymptotically compact by using the contractive functions method, and then obtain the existence of the time-dependent attractor in $H^1_0(\Omega) \times L^2(\Omega) \times L^2_\mu(\mathbb{R}^+; H^1_0(\Omega))$.

Keywords: wave equation; linear memory; contractive functions; time-dependent attractor

MSC: 35B25; 37L30; 45K05

1 Introduction

Let Ω be an open bounded set of \mathbb{R}^3 with smooth boundary $\partial \Omega$. For any $\tau \in \mathbb{R}$, we consider the following equations

$$
\begin{aligned}
&\epsilon(t)u_{tt} + a(x)g(u_t) - \Delta u - \int_0^\infty \mu(s)\Delta \eta(t) sds + f(u) = h(x), \quad \text{in } \Omega \times (\tau, \infty), \\
u(x, t) = 0, &\quad x \in \partial \Omega, \quad t \in \mathbb{R}, \\
u(x, t) = u_0(x, t), &\quad u_t(x, t) = \partial_t u_0(x, t), \quad x \in \Omega, \quad t \leq \tau,
\end{aligned}
$$

(1.1)

where $u = u(x, t) : \Omega \times [\tau, \infty) \to \mathbb{R}$ is an unknown function, and $u_0 : \Omega \times (-\infty, \tau] \to \mathbb{R}$ is a given past history of u, $h(\cdot) \in L^2(\Omega)$ is independent of time, μ is a sumifiable positive function. $\eta = \eta(t, s) := u(x, t) - u(x, t - s)$, $s \in \mathbb{R}^+$. $\epsilon \in C^1(\mathbb{R})$ is a decreasing bounded function and satisfies

$$
\lim_{t \to +\infty} \epsilon(t) = 0.
$$

(1.2)

In particular, there exists $L > 0$, such that

$$
\sup_{t \in \mathbb{R}} |\epsilon(t)| + |\epsilon'(t)| \leq L.
$$

(1.3)

The function $a(x)$ satisfies:

$$
a(x) \in L^\infty(\Omega), \quad a(x) \geq a_0 > 0 \quad \text{in } \Omega,
$$

(1.4)

where a_0 is a constant.
Like in [1,2], the nonlinear damping \(g \in C^1(\mathbb{R}) \), \(g(0) = 0 \), \(g \) is strictly increasing, and satisfies

\[
\lim \inf_{|s| \to \infty} g'(s) > 0, \tag{1.5}
\]

\[|g(s)| \leq C(1 + |s|^p), \quad 1 \leq p < 5. \tag{1.6}\]

The nonlinear term \(f \in C^1(\mathbb{R}) \), \(f(0) = 0 \), and for some \(C_0 > 0 \) satisfies

\[|f'(s)| \leq C_0(1 + |s|^2), \quad \forall s \in \mathbb{R}, \tag{1.7}\]

along with the dissipation condition

\[\lim \inf_{|s| \to \infty} \frac{f'(s)}{s} > -\lambda_1, \quad \forall s \in \mathbb{R}, \tag{1.8}\]

where \(\lambda_1 \) is the first eigenvalue of the strictly positive operator \(A = -\Delta \).

With respect to the memory component, as in [3 - 6], we assume that

\[\mu \in C^1(\mathbb{R}^+) \cap L^1(\mathbb{R}^+), \quad \int_0^\infty \mu(s)ds = m_0 < \infty, \tag{1.9}\]

\[\mu'(s) \leq -\rho \mu(s) < 0, \quad \forall s \geq 0, \tag{1.10}\]

where \(\rho \) is a positive constant.

The problem (1.1) can be viewed as a description of viscoelastic solids with fading memory and dissipation due to the viscous resistance of the surrounding medium, as well as of composite materials, phase-fields, and wave phenomena [7-9].

When \(\mu \) is a Dirac measure at some fixed time instant or when it vanishes, the equation (1.1) reduces to the nonlinear damped wave equation, which has been investigated extensively by many authors. For instance, in the case that \(\epsilon \) is a positive constant independent of time, the long-time behavior of the solution can be well characterized by using the concept of global attractors in the framework of semigroup. The existence and regular properties of the global attractor have been studied in [2,10-12]. When \(\epsilon \) is a positive constant independent of time and the forcing term \(h \) depends on time, the system is a non-autonomous wave equation, the long-time behavior of the solution can be understood in the framework of process. We refer the reader to [11,13-16] for some specific results involving the uniform attractor (or pullback attractors) about non-autonomous case.

When \(\epsilon \) is still a positive constant and the nonlinear damping \(a(x)g(t) \) is either linear damping \(au_t \) or strong damping \(\Delta u_t \), Conti and Pata ([17]), Bordin and Pata ([18]), Pata and Zucchi ([19]) investigated the existence of global attractors for (1.1). Sun, Cao and Duan ([20]) obtained the existence and asymptotic regularity of the uniform attractor about the non-autonomous system with strong damping, while the robust exponential attractors was scrutinized by Kolden, Real and Sun ([21]).

However, provided that \(\epsilon \) depends explicitly on time in (1.1), such as a positive decreasing function of time \(\epsilon(t) \) vanishing at infinity, leading to time-dependent terms at functional level, these problems become more complex and interesting, because the corresponding dynamical system is still understood within the non-autonomous framework even the forcing term is independent of time, and the classical theory generally fails to capture the dissipation mechanism of the system, as mentioned in [22,23].

To circumvent these issue, in [22], Conti, Pata and Temam presented a notion of time-dependent attractor by exploiting the minimality with respect to the pullback attraction property, and constructed a sufficient condition proving the existence of time-dependent attractor based on the theory established by Plinio, Duane and Temam([23]). Meanwhile, within the new framework, the authors studied the following weak damped wave equations with time-dependent speed of propagation

\[\epsilon(t)u_{tt} + au_t - \Delta u + f(u) = g(x). \tag{1.11}\]

Besides, they proved that the time-dependent global attractor of (1.11) converged in a suitable sense to the attractor of the parabolic equation \(au_t - \Delta u + f(u) = g(x) \) when \(\epsilon(t) \to 0 \) as \(t \to +\infty \) ([24]). Successively,
in [25], they continued to show the existence of an invariant time-dependent global attractor to the following specific one-dimensional wave equation $\varepsilon(t)u_{tt} - u_{xx} + [1 + \varepsilon f'(u)]u_t + f(u) = h$, which converges in suitable sense to the classical Fourier equation.

Recently, Meng et al. investigated the long-time behavior of the solution for the wave equation with nonlinear damping $g(u_t)$ on the time-dependent space, in which they found a new technical method verifying compactness of the process via defining the contractive functions, see [1]. In [26], Meng and Liu also showed the necessary and sufficient conditions of the existence of time-dependent global attractor borrowed from the ideas in [10]. Liu and Ma ([27]) studied the existence of the pullback attractors for the plate equation with time-dependent forcing term on the strong time-dependent Hilbert space. Successively, exploiting the methods and framework of [22,24], Liu and Ma obtained the existence and regularity of the time-dependent attractor for the plate equation with critical growth nonlinearity, as well as the asymptotic structure in [28].

As we know, in the study of the long-time behavior, especially for attractors, obtaining certain asymptotic compactness of the solution operator is a key step. However, if the equation contains the history memory, for instance, just for our problem (1.1), it makes impossible to utilize $(I - P_m)u$ as the test function to capture the asymptotic compactness of the solution process, that is to say, the methods introduced in [10,26] is out of action to our problem. On the other hand, because of the critical nonlinear damping, the technique of operator decomposition in [22] is not suitable to deal with (1.1) anymore. Thus, for our problem, we need to make a priori estimates to solution on a new triple solution space, and then verify the compactness of the solution process by exploiting the method of contractive function.

It is worth mentioning that we use the more weaker dissipative condition (1.8) than [1,22]; indeed, for simplicity, in which the authors made use of the dissipative condition like $\liminf_{|s| \to \infty} f'(s) > -\lambda_1$.

For convenience, hereafter, C (or c) denotes an arbitrary positive constant which may be different from line to line even in the same line.

The rest of this article consists of two Sections. In the next Section, we define some functions sets and iterate some useful lemmas. In Section 3, the existence of the time-dependent global attractor is obtained.

2 Preliminaries

As in Borini, Pata [18], Pata, Zucchi [19] and Dafermos [4], we introduce the past history of u, i.e. $\eta = \eta^t(x, s)$, as a new variable of the system, which will be ruled by a supplementary equation: denoting

$$\eta_t = \frac{\partial}{\partial t} \eta, \quad \eta_s = \frac{\partial}{\partial s} \eta,$$

then we can rewrite (1.1) as

$$\begin{cases}
\varepsilon(t)u_{tt} + a(x)g(u_t) - \Delta u - \int_0^\infty \mu(s)\Delta \eta^t(s)ds + f(u) = h(x), \\
\eta^t_t = -\eta^t_s + u_t,
\end{cases}$$

with initial boundary conditions

$$\begin{aligned}
&\left\{ \begin{array}{l}
u(x, t) = 0, \\
\eta^t(x, s) = 0,
\end{array} \right. \quad (x, s) \in \partial \Omega \times \mathbb{R}^+, \\
&\left\{ \begin{array}{l}
u(x, \tau) = u_0(x), \\
\eta^t(x, \tau) = \eta^t_1(x),
\end{array} \right. \quad x \in \Omega,
\end{aligned}$$

where

$$\begin{aligned}
&\left\{ \begin{array}{l}
u_0(x) = u_0(x, \tau), \\
\eta^t_1(x) = \eta^t_0(x, \tau) - u_0(x, \tau - s).
\end{array} \right.
\end{aligned}$$

Without loss of generality, set $H = L^2(\Omega)$ with the inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, respectively. For $s \in \mathbb{R}^+$, we define the hierarchy of (compactly) nested Hilbert spaces

$$H^s = D(A^s), \quad \langle w, v \rangle_s = \langle A^s w, A^s v \rangle, \quad \| w \|_s = \| A^s w \|;$$
especially, we have the embeddings $H^{s+1} \hookrightarrow H^s$.

For $s \in \mathbb{R}^+$, let $L^2_\mu(\mathbb{R}^+; H^s)$ be the family of Hilbert spaces of functions $\varphi : \mathbb{R}^+ \to H^s$, equipped with the inner product and norm, respectively,

$$
\langle \varphi_1, \varphi_2 \rangle_{\mu,s} = \langle \varphi_1, \varphi_2 \rangle_{\mu,H^s} = \int_0^\infty \mu(s)\langle \varphi_1(s), \varphi_2(s)\rangle_{H^s} \, ds,
$$

$$
\|\varphi\|_{\mu,s}^2 = \|\varphi\|_{\mu,H^s}^2 = \int_0^\infty \mu(s)\|\varphi(s)\|_{H^s}^2 \, ds.
$$

Now, for $t \in \mathbb{R}$ and $s \in \mathbb{R}^+$, we have the following time-dependent spaces

$$
H^s_t = H^{s+1} \times H^s \times L^2_\mu(\mathbb{R}^+; H^{s+1}),
$$

with the norm

$$
\|z\|_{H^s_t}^2 = \|(u, u_t, \eta^t)\|_{H^s_t}^2 = \|u\|_{s+1}^2 + \varepsilon(t)\|u_t\|_s^2 + \|\eta^t\|_{\mu,s+1}^2.
$$

Especially, denote $A = -\Delta$ with domain $D(A) = H^2(\Omega) \cap H^1_0(\Omega)$, we have

$$
H^s_t = H^2 \times H^1 \times (L^2_\mu(\mathbb{R}^+; H^s) \cap H^1_0(\mathbb{R}^+; H^s)) = D(A) \times H^1_0(\Omega) \times (L^2_\mu(\mathbb{R}^+; D(A)) \cap H^1_0(\mathbb{R}^+; H^s_0(\Omega))).
$$

Here

$$
H^s_0(\mathbb{R}^+; H^s) = \{ \varphi : \varphi(t), \partial_t \varphi(t) \in L^2_\mu(\mathbb{R}^+; H^s) \}.
$$

For every $t \in \mathbb{R}$, let X_t be a family of normed spaces, we introduce the R–ball of X_t

$$
\mathbb{B}_R(X_t) = \{ z \in X_t : \|z\|_{X_t} \leq R \}.
$$

We denote the Hausdorff semi-distance of two (nonempty) sets $B, C \subset X_t$ by:

$$
\delta_t(B, C) = \sup_{x \in B} \inf_{y \in C} \|x - y\|_{X_t},
$$

For any given $\epsilon > 0$, the ϵ–neighbourhood of a set $B \subset X_t$ is defined as

$$
\mathcal{O}_t^\epsilon(B) = \bigcup_{x \in B} \{ y \in X_t : \|y - x\|_{X_t} < \epsilon \} = \bigcup_{x \in B} \{ x + B_t(\epsilon) \}.
$$

Finally, given any set $B \subset X_t$, the symbol \overline{B} stands for the closure of B in X_t.

Now we iterate some basic notations and abstract results, which are necessary for getting our main results.

Definition 2.1.[22] Let X_t be a family of normed spaces. A process is a two-parameter family of mappings $\{U(t, \tau) : X_t \to X_t, \ t \geq \tau \in \mathbb{R}\}$ with properties

(i) $U(\tau, \tau) = Id$ is the identity on X_t, $\tau \in \mathbb{R}$;

(ii) $U(t, s)U(s, \tau) = U(t, \tau)$, $\forall t \geq s \geq \tau$.

Definition 2.2.[22] A family $\mathcal{C} = \{C_t\}_{t \in \mathbb{R}}$ of bounded sets $C_t \subset X_t$ is called uniformly bounded if there exist a constant $R > 0$ such that $C_t \subset \mathbb{B}_R(\mathbb{R})$, $\forall t \in \mathbb{R}$.

Definition 2.3.[22] A time-dependent absorbing set for the process $U(t, \tau)$ is a uniformly bounded family $\mathcal{B} = \{B_t\}_{t \in \mathbb{R}}$ with the following property: for every $R > 0$ there exists a t_0 such that

$$
\tau \leq t - t_0 \Rightarrow U(t, \tau)\mathbb{B}_R(\mathbb{R}) \subset B_t.
$$

Definition 4.[22] A (uniformly bounded) family $\mathcal{A} = \{K_t\}_{t \in \mathbb{R}}$ is called pullback attracting if for all $\epsilon > 0$, the family $\{\mathcal{O}_t^\epsilon(K_t)\}_{t \in \mathbb{R}}$ is pullback absorbing.

Definition 5.[22] We call a time-dependent global attractor is the smallest element of \mathcal{K}, i.e. the family $\mathcal{A} = \{A_t\}_{t \in \mathbb{R}} \subset \mathcal{K}$ such that $A_t \subset K_t$, $\forall t \in \mathbb{R}$, for any element $\mathcal{R} = \{K_t\}_{t \in \mathbb{R}} \in \mathcal{K}$.

Definition 2.6[22,24] We say $\mathcal{A} = \{A_t\}_{t \in \mathbb{R}}$ is invariant if

$$U(t, \tau)A_t = A_t, \forall t \geq \tau.$$

Theorem 2.7[22] (1) If $U(t, \tau)$ is asymptotically compact, then there exists a unique time-dependent attractor $\mathcal{A} = \{A_t\}_{t \in \mathbb{R}}$.

(2) If $U(t, \tau)$ is a T-closed process for some $T > 0$, which possesses a time-dependent global attractor $\mathcal{A} = \{A_t\}_{t \in \mathbb{R}}$, then \mathcal{A} is invariant.

Lemma 2.8[1,29] Let $g(\cdot)$ satisfy condition (1.5). Then for any $\delta > 0$, there exists a positive constant C_δ, such that $|u - v|^2 \leq \delta + C_\delta(g(u) - g(v))(u - v)$ for all $u, v \in \mathbb{R}$.

Theorem 2.9[1] Let $U(\cdot, \cdot)$ be a process in a family of Banach space $\{X_t\}_{t \in \mathbb{R}}$. Then $U(\cdot, \cdot)$ has a time-dependent global attractor $\mathcal{U}^* = \{A^*_t\}_{t \in \mathbb{R}}$ satisfying

$$A^*_t = \bigcap_{s \geq t} \bigcup_{\tau \leq s} U(t, \tau)B_t,$$

if and only if

(i) $U(\cdot, \cdot)$ has a pullback absorbing family $\mathcal{B} = \{B_t\}_{t \in \mathbb{R}}$;

(ii) $U(\cdot, \cdot)$ is pullback asymptotically compact.

Theorem 2.10[1] Let $U(\cdot, \cdot)$ be a process on $\{X_t\}_{t \in \mathbb{R}}$ and has a pullback absorbing family $\mathcal{B} = \{B_t\}_{t \in \mathbb{R}}$. Moreover, assume that for any $\varepsilon > 0$ there exist $T(\varepsilon) \leq t$, $\phi_t^\varepsilon \in \mathcal{C}(B_T)$, such that

$$\|U(t, T)x - U(t, T)y\| \leq \varepsilon + \phi_t^\varepsilon(x, y), \forall x, y \in B_T,$$

for any fixed $t \in \mathbb{R}$. Then $U(\cdot, \cdot)$ is pullback asymptotically compact, where $\mathcal{C}(B_T)$ denotes the set of all contractive function on $B_T \times B_T$.

For nonlinear function g, by condition (1.6) we have

$$|g(s)|^\frac{p-1}{2} = |g(s)|^{\frac{1}{2}} \cdot |g(s)| \leq C(1 + |s|)|g(s)| \leq C' + C'g(s) \cdot s,$$

(2.4)

furthermore, there holds

$$|g(s)| \leq C + C(g(s)s)^{\frac{1}{p-1}}.$$

(2.5)

Lemma 2.11[20] Let $F(u) = \int_0^u f(y)dy$. From (1.8), we can get for $0 < \nu < 1$ and $c_i > 0$ ($i = 1, 2$), there hold

$$-2(F(u), 1) \geq -(1 - \nu)\|u\|^2 - c_1,$$

(2.6)

$$F(u), u) \geq -(1 - \nu)\|u\|_{H^1}^2 - c_2, \quad \forall u \in H^1.$$

(2.7)

3 Existence of the time-dependent global attractor

3.1 Well-posedness and time-dependent absorbing set

Now we state the results about the well-posedness of system (2.2)-(2.3) which can be found in [19,20]. In fact, the existence of solution $(u(t), u_t(t), \eta^t(s))$ to (2.2)-(2.3) is obtained by using the standard Galerkin approximation method, which is based on Lemma 3.2 below.

Lemma 3.1. Under the assumptions (1.2)-(1.10), for every initial data $z_\tau = (u_0, u_1, \eta^0) \in \mathcal{H}_\tau$, there exists a unique solution $z(t) = (u(t), u_t(t), \eta^t(s))$ of problem (2.2)-(2.3) in space \mathcal{H}_τ, and for any $\tau \in \mathbb{R}$, $t \geq \tau$, it satisfies

$$u \in C([\tau, t]; H^1), \quad u_t \in C([\tau, t]; H), \quad \eta^t \in C([\tau, t]; L^2(\mathbb{R}^+; H^1)).$$
Furthermore, let \(z_1(t) \in \mathcal{H}_r \) be the initial data such that \(\|z_1(t)\|_{\mathcal{H}_r} \leq R \) \((i = 1, 2)\), and \(z_i(t) \) be the solution of problem (2.2)-(2.3). Then there exists \(C = C(R) > 0 \), such that
\[
\|z_1(t) - z_2(t)\|_{\mathcal{H}_r} \leq e^{C(t-r)}\|z_1(r) - z_2(r)\|_{\mathcal{H}_r}, \quad \forall \ t \geq r. \tag{3.1}
\]
Thus, the system (2.2)-(2.3) generates a strongly continuous process \(U(t, r) \), where
\[
U(t, r) : \mathcal{H}_r \rightarrow \mathcal{H}_r
\]
with the initial data \(z_r = z(\tau) = \{u_0, u_1, \eta^0\} \in \mathcal{H}_r \).

To prove Lemma 3.1, we first need the following estimate:

Lemma 3.2. Under the assumptions (1.2)-(1.10), for any initial data \(z(\tau) \in \mathcal{B}_r(R) \subset \mathcal{H}_r \), there exists \(R_0 > 0 \), such that
\[
\|U(t, \tau)z(\tau)\|_{\mathcal{H}_r} \leq R_0, \quad \forall \ \tau \leq t.
\]

Proof. Denote
\[
E_0(t) = \frac{1}{2} \|U(t, \tau)z\|_{\mathcal{H}_r}^2 + \int_\Omega F(u)dx - \int_\Omega h \cdot u dx.
\]
Multiplying (2.2) with \(u_i \) in \(L^2 \) and exploiting (2.2)_2, we achieve
\[
\frac{d}{dt}E_0(t) + \int_\Omega a(x)g(u_i) \cdot u_i dx + \langle \eta^i(s), \eta^i(s) \rangle_{\mu,1} - \frac{\varepsilon(t)}{2} \|u_i\|^2 = 0. \tag{3.2}
\]
By Hölder, Young inequalities, and combining with (1.10) we obtain
\[
\langle \eta^i, \eta^i \rangle_{\mu,1} = \frac{1}{2} \int_0^\infty \mu(s) \frac{d}{ds} \|\eta^i(s)\|^2 ds \geq \frac{1}{2} \mu(s) \|\eta^i(s)\|^2 ds \geq \frac{\mu_1}{2} \|\eta^i(s)\|^2_{\mu,1}.
\]
Using that \(g \) is strictly increasing, \(\varepsilon(t) \) is decreasing, and (3.3), we have
\[
\int_\Omega a(x)g(u_i) \cdot u_i dx - \frac{\varepsilon(t)}{2} \|u_i\|^2 + \langle \eta^i(s), \eta^i(s) \rangle_{\mu,1} \geq a_0 \int_\Omega g(u_i) \cdot u_i dx - \frac{\varepsilon(t)}{2} \|u_i\|^2 + \frac{\mu_1}{2} \|\eta^i(s)\|^2_{\mu,1} > 0.
\]
Integrating (3.2) over \([\tau, t] \) we get
\[
E_0(t) \leq E_0(\tau), \quad \forall \ t \geq \tau. \tag{3.4}
\]
From (2.6) and Sobolev’s embeddings we deduce
\[
E_0(t) \geq \frac{1}{2} \varepsilon(t) \|u_i\|^2 + \frac{\alpha}{2} \|u_i\|^2 + \frac{1}{2} \|\eta^i\|^2_{\mu,1} - \frac{\mu}{2} \|u_i\|^2 - \frac{1}{\lambda_1 V} \|h\|^2 - C_1 \tag{3.5}
\]
\[
\geq \frac{\alpha}{4} \varepsilon(t) \|u_i\|^2 + \|u_i\|^2 + \|\eta^i\|^2_{\mu,1} - \frac{1}{\lambda_1 V} \|h\|^2 + C_1 \]
\[
\geq - \frac{1}{\lambda_1 V} \|h\|^2 + C_1.
\]
Consequently, there exist some proper positive constant \(C_1, C_2 \) and \(C_3 \), such that
\[
C_1 \|U(t, r)z\|_{\mathcal{H}_r}^2 - C_2 \leq E_0(t) \leq C_3 \|U(t, r)z\|_{\mathcal{H}_r}^2.
\]
And from (3.4),(3.5) yields
\[
\int_\tau^t \int_\Omega a(x)g(u_i) \cdot u_i dx - \frac{1}{2} \int_\tau^t \varepsilon(s) \|u_i(s)\|^2 ds + \frac{\mu}{2} \int_\tau^t \|\eta^i(s)\|^2_{\mu,1} ds \leq E_0(\tau) - E_0(t) \leq E_0(\tau) + \frac{1}{\lambda_1 V} \|h\|^2 + C_1. \tag{3.6}
\]
On the other hand, (1.6), (2.5) along with the Hölder and Young inequality imply

\[
\| \int a(x)g(u_t) \cdot u dx \| \leq C \int a(x)|u|dx + C \int a(x)(g(u_t) \cdot u_t)^{\alpha_{\text{fr}}} |u|dx \\
\leq C \int a(x)|u|dx + C(\int a(x)g(u_t) \cdot u_tdx)^{\frac{\alpha_{\text{fr}}}{\alpha_{\text{fr}} + \rho}} (\int a(x)|u|^{\rho + 1})^{\frac{\alpha_{\text{fr}}}{\rho}} \\
\leq C \int a(x)|u|dx + \eta \| u \|^2 + C_{\eta} \| u \|_1^{\frac{\alpha_{\text{fr}}}{\rho}} \int a(x)g(u_t) \cdot u_tdx,
\]

where \(\eta > 0 \) is a small enough constant, which will be determined later.

Multiplying (2.2) by \(u_t + \delta u \) and integrating over \(\Omega \), we get

\[
\frac{d}{dt} E(t) + I(t) = 0,
\]

where

\[
E(t) = E_0(t) + \delta \varepsilon(t) |u_t|, \\
I(t) = \delta |u|^2 - \frac{\delta^2}{2}(|u_t|^2 + \langle \eta'(s), \eta''(s) \rangle_{\mu,1} - \delta \varepsilon(t) |u_t| + \delta \int_0^\infty \mu(s) \nabla \eta'(s) \cdot \nabla u(t) ds \\
+ \delta (f(u), u) - \delta (h, u) + \int a(x)g(u_t) \cdot (u_t + \delta u)dx,
\]

therefore, we get

\[
E(t) = E(\tau) - \int_\tau^t I(s)ds.
\]

Together with Hölder, Young, Poincaré inequalities, it follows that

\[
E(t) \geq \frac{1}{2} \varepsilon(t) |u_t|^2 + \frac{\nu}{4} \| u_t \|^2 + \frac{1}{2} \| \eta'(s) \|_{\mu,1}^2 - \delta \varepsilon(t) |u_t| \cdot \| u \| \\
\geq \left(\frac{\nu}{4} - \frac{\delta^2 L_1}{\lambda_1} \right) |u_t|^2 + \frac{1}{4} \varepsilon(t) |u_t|^2 + \frac{1}{2} \| \eta'(s) \|_{\mu,1}^2 - \left(\frac{1}{\lambda_1} \| h \|^2 + \frac{c_1}{2} \right) \\
\geq \frac{\nu}{8} |u_t|^2 + \varepsilon(t) |u_t|^2 + \| \eta'(s) \|_{\mu,1}^2 - \left(\frac{1}{\lambda_1} \| h \|^2 + \frac{c_1}{2} \right),
\]

here we use \(\frac{\nu}{4} - \frac{\delta^2 L_1}{\lambda_1} > \frac{\nu}{8} \) for \(\delta < \nu \) small enough.

Thanks to (1.5)-(1.6), for any \(\delta > 0 \), there exist \(C_{\delta} > 0 \) such that

\[
\int a(x)g(u_t) \cdot u_t dx \geq 2\delta |u_t|^2 - C_{\delta} |\Omega|;
\]

moreover,

\[
\delta \int_0^\infty \mu(s) \nabla \eta'(s) \cdot \nabla u(t) ds \leq \delta \int_0^\infty \mu(s) \nabla \eta'(s) \cdot \nabla u(t) ds \\
\leq \frac{\rho}{4} \| \eta'(s) \|^2_{\mu,1} + \frac{\delta^2 m_0}{\rho} |u|^2.
\]
Collecting all the above estimates and due to (2.7), Hölder, Young inequalities, it leads to

\[
I(t) \geq 2\delta \|u_r(t)\| - C_0|\Omega| - \delta|C| \int_{\Omega} a(x)\|u_r(t)\| + \|\eta(t)\|_2^2 + C_\eta\|u_r(t)\|_2 \int_{\Omega} a(x)g(\mu_1)\cdot u_r(t) dx + \frac{\rho}{4}\|\eta(t)\|_2^2
\]

\[
+ \frac{1}{2}\epsilon'(t)\|u_r(t)\|^2 - \frac{1}{2}\epsilon'(t)\|u_r(t)\|^2 - \frac{\delta^2L}{2\lambda_1}\|u_r(t)\|^2 + \delta v\|u_r(t)\|^2 - \frac{\delta^2m_0}{\rho}\|u_r(t)\|^2
\]

\[
\geq (2\delta - \delta \epsilon(t))\|u_r(t)\|^2 + (\frac{\delta v}{2} + \delta \epsilon(t))\|u_r(t)\|^2 - \frac{\delta^2L}{2\lambda_1}\|u_r(t)\|^2 + \delta c_2 - \delta \|h\| - \|u_r(t)\| - \frac{\delta^2m_0}{\rho}\|u_r(t)\|^2
\]

\[
\geq C_\delta|\Omega| - \frac{\delta}{2\nu}\|h\|^2 - (C\|a\|_{L^\infty})^2
\]

(3.12)

where for \(\delta < \min\{\nu, \rho\}\) small enough. Then, from (3.9)-(3.12), (3.6) yields

\[
\frac{\nu}{8}\|u(t)\|_2^2 + \epsilon(t)\|u_r(t)\|_2^2 + \|\eta(t)\|_2^2 - m_1
\]

\[
\leq - \delta\int_{t_0}^t (\frac{\delta v}{4} + \delta \epsilon(t))\|u_r(t)\|_2^2 + \|\eta(t)\|_2^2 - m_2 dt + E(t),
\]

where

\[
m_1 = \frac{1}{\nu}|h|^2 + \frac{a_0}{2} + C_\delta E_0(t)(E_0(t) + \frac{1}{\nu}|h|^2 + \frac{a_0}{2}), \quad m_2 = C_\delta(|\Omega| + |h|^2) + \delta c_2 + (C\|a\|_{L^\infty})^2.
\]

So, for any \(K_0 > \frac{m_1}{\delta^2}\), there exists \(t_0 > \tau\) such that

\[
\|u(t_0)\|_2^2 + \epsilon(t_0)\|u_r(t_0)\|_2^2 + \|\eta(t_0)\|_2^2 \leq K_0.
\]

As a result, let \(B_t = \bigcup_{t_0 \leq \tau} U(t, \tau)B_0\), where

\[
B_0 = \{ (u_0, u_1, \eta) \in \mathcal{H} : \|u_0\|^2 + \epsilon(t)\|u_1\|^2 + \|\eta(t)\|_2^2 \leq K_0 \},
\]

then \(B_t\) is a bounded absorbing set for process \(U(t, \tau)\).

In addition, from the above discussion, there exists a positive constant \(R_0\) such that

\[
\|u(t)\|_2^2 + \epsilon(t)\|u_r(t)\|_2^2 + \|\eta(t)\|_2^2 \leq R_0, \quad \forall \ t \geq t_0 > \tau.
\]

The proof for Lemma 3.1. Let \(z_1(\tau), z_2(\tau) \in \mathcal{H}_\tau\) such that \(\|z_i(\tau)\|_{\mathcal{H}_\tau} \leq R, \ i = 1, 2, \) and denote by \(C\) a generic positive constant depending on \(R\) but independent of \(z_i\). We first observe that the energy estimates in Lemma 3.2 above ensure:

\[
\|U(t, \tau)z_i(\tau)\|_{\mathcal{H}_\tau} \leq C. \quad (3.13)
\]

We set \(\{u_i(t), \partial_t u_i(t), \eta_i(t)\} = U(t, \tau)z_i(\tau)\) and denote \(2(t) = \{u(t), u_i(t), \eta_i(t)\} = U(t, \tau)z_1(\tau) - U(t, \tau)z_2(\tau)\).

Then the difference between the two solutions with initial data \(2(t) = z_1(\tau) - z_2(\tau)\) fulfills

\[
\epsilon(t)\ddot{u} - \Delta \dot{u} + a(x)(g(u_{11}) - g(u_{22})) - \int_0^\infty \mu(s)\Delta \eta_i(s) ds + f(u_1) - f(u_2) = 0.
\]

Multiplying the above equation with \(2\ddot{u}\) and integrating over \(\Omega\), we obtain

\[
\frac{d}{dt} \big\|\dot{u}\big\|^2 = \epsilon(t)\big\|\dot{u}\big\|^2 + 2 \int_\Omega a(x)(g(u_{11}) - g(u_{22}))\ddot{u}\dot{u} dx + 2\big(\dot{\eta}_i(s), \dot{\eta}_i(s)\big)_{\mu,1} = -2(f(u_1) - f(u_2), \ddot{u}_i).
\]

From (1.4) and the strict increase of \(g\), we have

\[
2 \int_\Omega a(x)(g(u_{11}) - g(u_{22}))\ddot{u}_i dx \geq 0.
\]
By exploiting (1.7), (3.13), and Hölder, Young inequality, and the embedding \(H^1 \hookrightarrow L^6 \), it yields
\[
-2(f(u_1) - f(u_2), \ddot{u}_t) \leq \mathcal{C} \int_{\Omega} (1 + |u_1|^2 + |u_2|^2) \cdot |\ddot{u}_t| dx
\]
\[
\leq \mathcal{C}[1 + \|u_1\|_L^2 + \|u_2\|_L^2] \cdot \|\ddot{u}_t\|_L^2
\]
\[
\leq \mathcal{C}[1 + \|u_1\|_L^2 + \|u_2\|_L^2] \cdot \|\ddot{u}_t\|_L^2
\]
\[
\leq 2\|\ddot{u}_t\|^2 + C\|\ddot{u}\|^2_1,
\]
from (3.3) yields
\[
\langle \eta^t, \eta^t \rangle_{\mu,1} \geq \frac{\rho}{2} \|\eta^t\|^2_{\mu,1}.
\]
Consequently, we end up with the differential inequality
\[
\frac{d}{dt}\|z(t)\|^2_{\mathcal{H}_L} \leq C(L + 1) \frac{1}{\varepsilon(t)} \|z(t)\|^2_{\mathcal{H}_L},
\]
then applying the Gronwall’s Lemma on \([r, t]\), we obtain
\[
\|z(t)\|^2_{\mathcal{H}_L} \leq e^{C(L+1) \int_r^t \frac{1}{\varepsilon(s)} ds} \|z(r)\|^2_{\mathcal{H}_L}.
\]

3.2 A priori estimates

The main purpose of this part is to establish (3.25)-(3.27), which will be used to obtain the asymptotic compactness of the process.

Let \((u_i(t), u_i(t), \eta_i(t)) (i = 1, 2)\) be the corresponding solution of (2.2)-(2.3) with initial datum \((u_0(r), v_0(r), \eta_0) \in \{B_r\}_{r \in \mathbb{R}}.\) For convenience, we introduce notations
\[
g_i(t) = g(u_i(t)), \quad f_i(t) = f(u_i(t)), \quad i = 1, 2,
\]
and
\[
w = u_1(t) - u_2(t), \quad \zeta^t = \eta_1^t - \eta_2^t,
\]
then \(w(t)\) satisfies
\[
\begin{cases}
\varepsilon w_{tt} - \Delta w + a(x)(g_1(t) - g_2(t)) - \int_0^\infty \mu(s)\Delta \xi^t(s) ds + f_1(t) - f_2(t) = 0, \quad t > T, \\
w(x, T) = u_0^T(T) - u_0^T(T), \quad w_t(x, T) = v_0^T(T) - v_0^T(T), \quad \zeta^T = \eta_1^T - \eta_2^T, \\
w|_{\partial \Omega} = \zeta^t|_{\partial \Omega} = 0.
\end{cases}
\]

Denote
\[
\mathcal{E}_w(t) = \frac{1}{2} (\|w\|_0^2 + \varepsilon(t)\|w_t\|^2 + \|\zeta^t\|_{\mu,1}^2).
\]
Taking the inner product (3.14)1 with \(w_t\) in \(L^2(\Omega)\), and by (3.14)2, we find
\[
\frac{d}{dt}\mathcal{E}_w(t) + \langle a(x)(g_1(t) - g_2(t)), w_t \rangle - \frac{\varepsilon(t)}{2} \|w_t\|^2 + \langle \zeta^t, \zeta^t \rangle_{\mu,1} + (f_1 - f_2, w_t(\xi)) = 0.
\]

Integrating (3.15) over \([s, t]\), we have
\[
\mathcal{E}_w(t) - \mathcal{E}_w(s) + \int_s^t \langle a(x)(g_1(\xi) - g_2(\xi)), w_t(\xi) \rangle \, d\xi - \frac{1}{2} \int_s^t \varepsilon(\xi)\|w_t(\xi)\|^2 \, d\xi
\]
\[
+ \frac{\rho}{2} \int_s^t \|\zeta^t(\xi)\|_{\mu,1}^2 d\xi + \int_s^t (f_1 - f_2, w_t(\xi)) \, d\xi \leq 0,
\]

(3.16)
where \(T < s \leq t \). Thanks to \(\epsilon'(t) < 0 \), then from (3.16) yields

\[
\int_s^t (a(x)(g_1(\xi) - g_2(\xi)), w_t(\xi)) \, d\xi + \frac{p}{2} \int_s^t \|\zeta'(\xi)\|_{\mu,1}^2 \, d\xi \leq \epsilon_w(s) - \int_s^t (f_1 - f_2, w_t(\xi)) \, d\xi,
\]

thus, for \(a(x) \geq a_0 > 0 \), there holds

\[
\int_s^t \|\zeta'(\xi)\|_{\mu,1}^2 \, d\xi \leq \frac{2}{p} \epsilon_w(s) - \frac{2}{p} \int_s^t (f_1 - f_2, w_t(\xi)) \, d\xi.
\]

Combining with (1.3) and Lemma 2.8 we get that, for any \(\delta > 0 \), there exists \(C_\delta > 0 \), such that

\[
\epsilon(\xi)|w_t|^2 \leq L|w_t|^2 \leq \delta L + LC_\delta(g_1(\xi) - g_2(\xi))w_t(\xi),
\]

namely

\[
\int_T^t \epsilon(\xi)|w_t(\xi)|^2 \, d\xi \leq \delta L|\Omega| (t - T) + \frac{C_\delta L}{a_0} \epsilon_w(T) - \frac{LC_\delta}{a_0} \int_T^t (f_1 - f_2, w_t(\xi)) \, ds.
\]

Multiplying (3.14)\textsubscript{1} by \(w \), and integrating over \(\Omega \times [T, t] \), we obtain

\[
\int_T^t \|w(s)\|^2 \, ds + \epsilon(t)\langle w_t(t), w(t)\rangle
\]

\[
= \epsilon(T)w_t(T), w(T) + \int_T^t \epsilon'(s)\langle w_t(s), w(s)\rangle \, ds + \int_T^t \epsilon(s)\|w_t(s)\|^2 \, ds - \int_T^t \int_0^\infty \mu(s)\langle \nabla \zeta'(s), \nabla w(t)\rangle \, ds
\]

\[
- \int_T^t (f_1 - f_2, w(s)) \, ds - \int_T^t (a(x)(g_1 - g_2), w(s)) \, ds.
\]

Then, using the following inequality

\[
\int_0^\infty \mu(s)\langle \nabla \zeta'(s), \nabla w(t)\rangle \, ds \leq \frac{1}{2\sigma} \|\zeta'(s)\|^2_{\mu,1} + \frac{a m_0}{2} \|w\|^2_1,
\]

yields

\[
(1 - \frac{a m_0}{2}) \int_T^t \|w(s)\|^2_1 \, ds + \epsilon(t)\langle w_t(t), w(t)\rangle
\]

\[
\leq \epsilon(T)w_t(T), w(T) + \int_T^t \epsilon'(s)\langle w_t(s), w(s)\rangle \, ds + \int_T^t \epsilon(s)\|w_t(s)\|^2 \, ds + \frac{1}{2\sigma} \int_T^t \|\zeta'(s)\|^2_{\mu,1} \, ds
\]

\[
- \int_T^t (f_1 - f_2, w(s)) \, ds - \int_T^t (a(x)(g_1 - g_2), w(s)) \, ds.
\]
Therefore, let $0 < \sigma < \frac{2}{m_0}$, from (3.17)-(3.18), (3.20) yields

$$2 \int_{T}^{t} \dot{E}_w(s) ds$$

$$\leq \left[(1 + \frac{2}{2 - \sigma m_0}) \frac{L C_{\delta}}{a_0} + \frac{2}{a(2 - \sigma m_0)} \rho + \frac{1}{2} \right] E_w(T) + (1 + \frac{2}{2 - \sigma m_0}) \delta L |\Omega| (t - T)$$

$$- \left[(1 + \frac{2}{2 - \sigma m_0}) \frac{L C_{\delta}}{a_0} + \frac{2}{a(2 - \sigma m_0)} \rho + \frac{1}{2} \right] \int_{T}^{t} (f_1 - f_2, w_i(s)) ds + \frac{2}{2 - \sigma m_0} \int_{T}^{t} \dot{\varepsilon}'(s) \langle w_i(s), w(s) \rangle ds$$

(3.21)

$$- \frac{2}{2 - \sigma m_0} \varepsilon(t) \langle w_i(t), w(t) \rangle + \frac{2}{2 - \sigma m_0} \varepsilon(T) \langle w_i(T), w(T) \rangle - \frac{2}{2 - \sigma m_0} \int_{T}^{t} \langle a(x) (g_1 - g_2), w(s) \rangle ds$$

$$- \frac{2}{2 - \sigma m_0} \int_{T}^{t} (f_1 - f_2, w(s)) ds.$$

Integrating (3.16) over $[T, t]$, we have

$$\int_{T}^{t} (t - T) \dot{E}_w(t) + \int_{T}^{t} \int_{s}^{t} a(x) \langle g_1(\xi) - g_2(\xi), w_i(\xi) \rangle d\xi ds - \frac{1}{2} \int_{T}^{t} \int_{s}^{t} \dot{\varepsilon}'(\xi) \| w_i(\xi) \|^2 d\xi ds$$

$$+ \frac{\rho}{2} \int_{T}^{t} \int_{s}^{t} \| \xi'^2 \|^2_{\mu,1} d\xi ds \leq - \int_{T}^{t} \int_{s}^{t} \langle f_1(\xi) - f_2(\xi), w_i(\xi) \rangle d\xi ds + \int_{T}^{t} E_w(s) ds.$$ (3.22)

Since $\langle g_1(\xi) - g_2(\xi), w_i(\xi) \rangle - \frac{1}{2} \dot{\varepsilon}'(\xi) \| w_i \|^2 + \| \xi'^2 \|^2_{\mu,2} > 0$, together with (3.21)-(3.22), there holds

$$(t - T) \dot{E}_w(t)$$

$$\leq \left[(1 + \frac{1}{2 - \sigma m_0}) \frac{L C_{\delta}}{a_0} + \frac{1}{a(2 - \sigma m_0)} \rho + \frac{1}{2} \right] E_w(T) + (1 + \frac{1}{2 - \sigma m_0}) \delta L |\Omega| (t - T)$$

$$+ \frac{1}{2 - \sigma m_0} \varepsilon(T) \langle w_i(T), w(T) \rangle - \frac{1}{2 - \sigma m_0} \varepsilon(t) \langle w_i(t), w(t) \rangle + \frac{1}{2 - \sigma m_0} \int_{T}^{t} \dot{\varepsilon}'(s) \langle w_i(s), w(s) \rangle ds$$

$$- \frac{1}{2 - \sigma m_0} \int_{T}^{t} (f_1(s) - f_2(s), w(s)) ds - \frac{1}{2 - \sigma m_0} \int_{T}^{t} a(x) \langle (g_1(s) - g_2(s)), w(s) \rangle ds$$

$$- \left[(1 + \frac{1}{2 - \sigma m_0}) \frac{L C_{\delta}}{a_0} + \frac{1}{a(2 - \sigma m_0)} \rho + \frac{1}{2} \right] \int_{T}^{t} (f_1 - f_2, w_i(s)) ds - \int_{T}^{t} (f_1 - f_2, w_i(\xi)) d\xi ds.$$ (3.23)

Next, we will deal with $\int_{T}^{t} \int_{\partial} a(x) (g_1(s) - g_2(s)) w(s) dx ds$.

Multiplying (2.2) by u_i, and integrating over Ω, we achieve

$$\frac{1}{2} \frac{d}{dt} \left[\varepsilon(t) \| u_i \|^2 + \| u_i \|^2_{1\mu,2} + 2 \int_{\partial} F(u_i) dx - \int_{\partial} h(x) u_i dx \right] + \langle \eta^i, \eta^i \rangle_{\mu,1} + \langle a(x) g_i u_i, u_i \rangle = 0,$$

which combines with (3.4)-(3.6) and the existence of time-dependent absorbing set, means that

$$\int_{T}^{t} \langle a(x) g_i u_i, u_i \rangle dx \leq E_0(T) - E_0(t) \leq C_T,$$
where the constant C_T depends on T. Then, similar to the computation in [1, 16] it follows that

$$
\left| \int_{\Omega} \int_{T} a(x)g(u_i)w(x, s)dxds \right| \leq \left(\int_{\Omega} \int_{T} a(x)|g(u_i)|^{\frac{q+1}{q'}} dxds \right)^{\frac{q'}{q+1}} \left(\int_{\Omega} \int_{T} a(x)|w(x, s)|^{q+1} dxds \right)^{\frac{1}{q+1}}
$$

(3.24)

$$
\leq \left[C'|\Omega||a||_{L^\infty(t-T)} + C'C_T \right]^{\frac{1}{2}} \left(\int_{\Omega} \int_{T} a(x)|w(x, s)|^{q+1} dxds \right)^{\frac{1}{q+1}}
$$

$$
\leq \left[(C'|\Omega||a||_{L^\infty(t-T)})^{\frac{1}{2}} + (C'C_T)^{\frac{1}{2}} \right] \left(\int_{\Omega} \int_{T} a(x)|w(x, s)|^{q+1} dxds \right)^{\frac{1}{q+1}}.
$$

Now, combining with (3.23), (3.24) we have

$$
(t - T)\varepsilon_w(t) \leq \left[\left(\frac{1}{2} + \frac{1}{2 - \sigma m_0} \right) \frac{LC_\delta}{a_0} + \frac{1}{\sigma(2 - \sigma m_0)\rho} + \frac{1}{2} \right] \varepsilon_w(T) + \left(\frac{1}{2} + \frac{1}{2 - \sigma m_0} \right) \delta L|\Omega|(t - T)
$$

$$
+ \frac{1}{2 - \sigma m_0} \langle \varepsilon(T)w_{t}(T), w(T) \rangle - \frac{1}{2} \varepsilon(t)w_{t}(t), w(t) \rangle + \frac{1}{2 - \sigma m_0} \int_{T} \varepsilon'(s)w_{t}(s), w(t) ds
$$

$$
- \int_{T} \int_{s} (f_1 - f_2, w_t(\xi)) d\xi ds - \left[\left(\frac{1}{2} + \frac{1}{2 - \sigma m_0} \right) \frac{LC_\delta}{a_0} + \frac{1}{\sigma(2 - \sigma m_0)\rho} + \frac{1}{2} \right] \int_{T} (f_1 - f_2, w_t(s)) ds
$$

$$
+ \left[(C'|\Omega||a||_{L^\infty(t-T)})^{\frac{1}{2}} + (C'C_T)^{\frac{1}{2}} \right] \left(\int_{\Omega} \int_{T} a(x)|w(x, s)|^{q+1} dxds \right)^{\frac{1}{q+1}}
$$

$$
- \frac{1}{2 - \sigma m_0} \int_{T} (f_1(s) - f_2(s), w(s)) ds.
$$
Set
\[\phi_f^T((u_0^0(T), v_0^0(T)), (u_0^T(T), v_0^T(T))) = -\frac{1}{(T-t)(2-\beta_0)} \langle \epsilon(t)w_t, w \rangle + \frac{1}{(T-t)(2-\beta_0)} \int_0^T \langle \epsilon'(s)w_t(s), w(s) \rangle ds \]
\[-\frac{1}{(T-t)(2-\beta_0)} \int_0^T (f_1(s) - f_2(s), w(s)) ds - \frac{1}{(T-t)} \int_0^T (f_1 - f_2, w_t(\xi)) d\xi ds \]
\[+ \left[\frac{C' |\Omega|}{\epsilon^\alpha} \| a \|_{L^\infty} (T-t) (2-\beta_0) \right] \left(\int_0^T a(x) w(x, s) |p+1| dx ds \right)^{\frac{1}{p+1}} \]
\[- \left[\frac{1}{2} + \frac{1}{(2-\beta_0)} \right] \frac{L_{C_0}}{\alpha_0} + \frac{1}{(2-\beta_0)\| p \|^2} \int_0^T (f_1 - f_2, w_t(\xi)) ds, \]
and
\[C_M = \left[\frac{1}{2} + \frac{1}{(2-\beta_0)} \right] \frac{L_{C_0}}{\alpha_0} + \frac{1}{(2-\beta_0)\| p \|^2} \int_0^T (f_1 - f_2, w_t(\xi)) ds, \]
and
\[\epsilon(t) \leq \frac{C_M}{T-t} + \phi_f^T((u_0^0(T), v_0^0(T)), (u_0^T(T), v_0^T(T))). \]

3.3. Asymptotically compact

Theorem 3.1. Under the assumption (1.2)-(1.10), for any fixed \(t \in \mathbb{R} \), bounded sequence \(\{x_n\}_{n=1}^\infty \subseteq X_\tau \), and any \(\{\tau_n\}_{n=1}^\infty \subseteq \mathbb{R}^d \), with \(\tau_n \to -\infty \) as \(n \to \infty \), sequence \(\{U(t, \tau_n)x_n\}_{n=1}^\infty \) has a convergent subsequence.

Proof. For any fixed \(\varepsilon > 0 \), we first choose some proper \(\delta \) such that \(\left(\frac{1}{2} + \frac{1}{(2-\beta_0)} \right) \delta \| \Omega \| \leq \frac{\varepsilon}{n} \), then for some fixed \(t \), let \(T < t \) such that \(T - t \) so large that
\[\frac{C_M}{T-t} \leq \frac{\varepsilon}{2}. \]
Hence, thanks to Theorem 2.10, we only need to verify that \(\phi_f^T \in \mathcal{C}(B_T) \), for each fixed \(T \).

Let \((u_n, u_n, \eta_n) \) be the solution corresponding to initial data \((u_0^0, v_0^0, \eta_0^0) \in B_T \) for the problem (2.2). From (3.4), \(\| u_n \|_2 + \| \epsilon(\xi) \| u_n \|_p + \| \eta_n \|_L^2 \| \) is bounded, where the bound depends on the \(T \), furthermore, \(\| u_n \|_1 \) is bounded. Moreover, by (1.2), (1.3), for fixed \(T \), \(\xi \in [T, t] \), \(\epsilon(\xi) \) is bounded, hence \(\| u_n \|_2 \) is bounded.

According to Alaoglu Theorem, without loss of generality, we assume that (at most by passing to subsequence)
(i) \(u_n \to u \) *-weakly in \(L^\infty (T, t; H_0^1(\Omega)) \);
(ii) \(u_n \to u_t \) *-weakly in \(L^\infty (T, t; L^2(\Omega)) \);
(iii) \(u_n \to u \) strongly in \(L^{p+1} (T, t; L^{p+1}(\Omega)) \);
(iv) \(u_n(T) = u(T) \) and \(u_n(t) = u(t) \) strongly in \(L^2(\Omega) \).

Here we use the compact embedding \(H_0^1 \to L^{p+1}(p < 5) \).

Now, we will deal with each term in (3.25) one by one.

Firstly, from Lemma 3.2, (i)-(iv) we get
\[\lim_{n \to \infty} \lim_{m \to \infty} \int_\Omega \epsilon(t)(u_n(t) - u_m(t))(u_n(t) - u_m(t)) dx = 0, \]
\[\lim_{n \to \infty} \lim_{m \to \infty} \int_\Omega L(u_n(s) - u_m(s))(u_n(s) - u_m(s)) dx ds = 0. \]
\[
\lim_{n \to \infty} \lim_{m \to \infty} C \left(\int_{T}^{t} a(x)|u_n(s) - u_m(s)|^{p+1} dw \right)^{\frac{1}{p+1}} = 0, \quad (3.30)
\]

where \(C = \frac{(C_{1}||a||_{L^{\infty}(\Omega,T)})^{\frac{p}{p+1}} + (C_{2})^{\frac{p}{p+1}}}{(T-T)^{2-q}} \), and

\[
\lim_{n \to \infty} \lim_{m \to \infty} \int_{T}^{t} \int_{\Omega} (f(u_n) - f(u_m))(u_n(s) - u_m(s)) dw \, ds = 0. \quad (3.31)
\]

Similar to the proof of the Theorem 5.4 in [1], we have

\[
\lim_{n \to \infty} \lim_{m \to \infty} \int_{T}^{t} \int_{\Omega} (f(u_n) - f(u_m))(u_n(s) - u_m(s)) dw \, ds = 0. \quad (3.32)
\]

At the same time, for each fixed \(t \), \(\int_{T}^{t} \int_{\Omega} (u_n(\xi) - u_m(\xi))(f(u_n(\xi) - f(u_m(\xi)))dx d\xi) \) is bounded, then by the Lebesgue dominated convergence theorem we have

\[
\lim_{n \to \infty} \lim_{m \to \infty} \int_{T}^{t} \int_{\Omega} (u_n(\xi) - u_m(\xi))(f(u_n(\xi) - f(u_m(\xi)))dx d\xi ds
\]

\[
= \int_{T}^{t} \left(\lim_{n \to \infty} \lim_{m \to \infty} \int_{\Omega} (u_n(\xi) - u_m(\xi))(f(u_n(\xi) - f(u_m(\xi)))dx d\xi \right) ds
\]

\[
= 0. \quad (3.33)
\]

Hence, collecting all (3.28)-(3.33), we get that \(\phi_{T}^{t} \in C(B_{T}) \), so the proof is completed. \(\square \)

3.3 Existence of the time-dependent global attractor

Theorem 3.2. Under the conditions (1.2)-(1.10), the process \(U(t, \tau) : \mathcal{H}_{\tau} \to \mathcal{H} \), generated by problem (1.1), has an invariant time-dependent global attractor \(\mathcal{U} = \{A_{t}\}_{t \in \mathbb{R}} \).

Proof. From Lemma 3.2, Theorem 3.1 and Theorem 2.9, we know that there exists a unique time-dependent global attractor \(\mathcal{U} = \{A_{t}\}_{t \in \mathbb{R}} \). Furthermore, by virtue of the strong continuity of the process stated in Lemma 3.1, we can obtain that \(\mathcal{U} \) is invariant. \(\square \)

Acknowledgement: This work was partly supported by the NSFC (11561064,11761062), and partly supported by NWNU-LKQN-14-6.

References

1. Meng F. J., Yang M. H., Zhong C. K., Attractors for wave equations with nonlinear damping on time-dependent space, Discrete Contin. Dyn. Syst. Ser. B, 2016, 1, 205-225.
2. Sun C. Y., Yang M. H., Zhong C. K., Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 2006, 227, 427-423.
3. Giorgi C., Pata V., Asymptotic behavior of a nonlinear hyperbolic heat equation with memory, NoDEA Nonlinear Differential Equations Appl., 2001, 8, 157-171.
4. Dafermos C. M., Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 1970, 37, 297-308.
5. Giorgi C., Pata V., Marzocchi A., Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differential Equations Appl., 1998, 5, 333-354.
[6] Chepyzhov V. V., Miranville A., On trajectory and global attractors for semilinear heat equations with fading memory, Indiana Univ. Math. J., 2006, 55, 119-167.
[7] Fabrizio M., Lazzari B., On the existence and asymptotic stability of solutions for linear viscoelastic solids, Arch. Ration. Mech. Anal., 1991, 116, 139-152.
[8] Grasselli M., Pata V., Long-time behavior of a homogenized model in viscoelasto dynamics, Discrete Contin. Dyn. Syst., 1998, 4, 339-358.
[9] Marchenko V. A., Khruslov E. Y, Homogenization of partial differential equations, Birkhauser Boston, 2006.
[10] Ma Q. F., Wang S. H., Zhong C. K., Necessary and sufficient conditions for the existence of global attractor for semigroups and applications, Indiana Univ. Math. J., 2002, 51, 1541-1559.
[11] Sell G. S., You Y., Dynamics of Evolution Equations, Springer-Verlag, New York, 2002.
[12] Yang M. H., Sun C. Y., Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, Trans. Amer. Math. Soc., 2009, 361, 1069-1101.
[13] Babin A. V., Vishik M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[14] Zelik S. V., Asymptotic regularity of solutions of a non-autonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 2004, 3, 921-934.
[15] Sun C. Y., Cao D. M., Duan J. Q., Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 2006, 19, 2645-2665.
[16] Sell G. S., You Y., Dynamics of Evolution Equations, Springer-Verlag, New York, 2002.
[17] Conti M., Pata V., Squassion M., Singular limit of dissipative hyperbolic equations with memory, Discrete Contin. Dyn. Syst., 2005, 200-208.
[18] Borini S., Pata V., Uniform attractors for a strongly damped wave equations with linear memory, Asymptot. Anal., 1999, 21, 263-277.
[19] Pata V., Zucchi A., Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 2001, 11, 505-529.
[20] Sun C. Y., Cao D. M., Duan J. Q., Non-autonomous wave dynamics with memory asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. Ser. B., 2008, 9, 743-761.
[21] Kloeden P. E., Real J., Sun C. Y., Robust exponential attractors for non-autonomous equations with memory, Commun. Pure Appl. Anal., 2011, 10, 885-915.
[22] Conti M., Pata V., Temam R., Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differential Equations, 2013, 255, 1254-1277.
[23] Di Plinio F., Duane G. S., Temam R., Time-Dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 2011, 29, 161-167.
[24] Conti M., Pata V., Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 2014, 19, 1-10.
[25] Conti M., Pata V., On the time-dependent Cattaneo law in space dimension one, Appl. Math. Comput., 2015, 259, 32-44.
[26] Meng F. J., Liu C. C., Necessary and sufficient conditions for the existence of time-dependent global attractor and application, J. Math. Phys., 2017, 58, 1-9.
[27] Liu T. T., Ma Q. Z., The existence of time-dependent strong pullback attractors for non-autonomous plate equations, Chinese Ann. Math. Ser. A, 2017, 38, 125-144; Chinese J. Contemp. Math., 2017, 2, 101-118.
[28] Liu T. T., Ma Q. Z., Time-dependent asymptotic behavior of the solution for plate equations with linear memory, Discrete Contin. Dyn. Syst. Ser. B, 2018, in press.
[29] Feireisl E., Global attractors for damped wave equations with supercritical exponent, J. Differential Equations, 1995, 116, 431-447.