Supporting Information

Photoreforming of non-recyclable plastic waste over a carbon nitride/nickel phosphide catalyst

Taylor Uekert, Hatice Kasap, Erwin Reisner*

Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. *e-mail: reisner@ch.cam.ac.uk
List of abbreviations

CNx – cyanamide-functionalized carbon nitride
H₂N-CNₓ – unfunctionalized carbon nitride
EG – ethylene glycol
LA – lactic acid
Ni₂P – nickel phosphide
PE – polyethylene
PET – polyethylene terephthalate
PLA – polylactic acid
PP – polypropylene
PR – photoreforming
PS – polystyrene
PUR – polyurethane
Rubber – polystyrene-block-polybutadiene

Thermodynamic calculations

Gibbs free energies were obtained or calculated from data in the cited references:

PET hydrolysis: \(\text{C}_{10}\text{H}_8\text{O}_4 + 2 \text{H}_2\text{O} \xrightarrow{\text{KOH}} \text{C}_2\text{H}_6\text{O}_2 + \text{C}_6\text{H}_6\text{O}_4, \Delta G^\circ = 66 \text{ kJ mol}^{-1} \) \[S1\]¹

PR of EG: \(\text{C}_2\text{H}_6\text{O}_2 + 2 \text{H}_2\text{O} \xrightarrow{\text{hv}, \text{CNx}} 5 \text{H}_2 + 2 \text{CO}_2, \Delta G^\circ = 9.2 \text{ kJ mol}^{-1}, E^\circ_{\text{cell}} = -0.01 \text{ V} \) \[S2\]²

PLA hydrolysis: \(\text{C}_3\text{H}_4\text{O}_2 + \text{H}_2\text{O} \xrightarrow{\text{KOH}} \text{C}_3\text{H}_6\text{O}_3, \Delta G^\circ = 82 \text{ kJ mol}^{-1} \) \[S3\]³

PR of LA: \(\text{C}_3\text{H}_6\text{O}_3 + 3 \text{H}_2\text{O} \xrightarrow{\text{hv}, \text{CNx}} 6 \text{H}_2 + 3 \text{CO}_2, \Delta G^\circ = 27 \text{ kJ mol}^{-1}, E^\circ_{\text{cell}} = -0.02 \text{ V} \) \[S4\]⁴
Supplementary Tables

Table S1. Inductively coupled plasma optical emission spectrometry (ICP-OES) quantification of Ni and P content of several catalysts. Samples (typically ~ 3mg) were dissolved in 2 mL of 2:1 H$_2$O$_2$:H$_2$SO$_4$ overnight, diluted with H$_2$O and then submitted for measurement.

Catalyst	Ideal Ni content (mg\textsubscript{Ni} g\textsubscript{CNx}$^{-1}$)	Measured Ni content (mg\textsubscript{Ni} g\textsubscript{CNx}$^{-1}$)	Ideal P content (mg\textsubscript{P} g\textsubscript{CNx}$^{-1}$)	Measured P content (mg\textsubscript{P} g\textsubscript{CNx}$^{-1}$)	
CN\textsubscript{x}	Ni\textsubscript{2}P	15.9	15.3	4.2	52.2
CN\textsubscript{x}	Ni\textsubscript{2}P post-PR	15.9	15.1	4.2	8.8
solution post-PR[a]	0.00	0.14	n.m.	n.m.	
CN\textsubscript{x}-P[b]	--	--	5.0	40.3	
CN\textsubscript{x}-PO\textsubscript{x}[c]	--	--	4.9	35.4	
H$_2$N\textsubscript{CN}x-P[b]	--	--	5.0	14.0	

n.m. = not measured

[a] The photocatalyst was removed via centrifugation, and only the supernatant was submitted for ICP analysis.

[b] CN\textsubscript{x}-P and H$_2$N\textsubscript{CN}x-P were synthesized according to the CN\textsubscript{x}|Ni\textsubscript{2}P procedure, but without the addition of the Ni precursor.

[c] CN\textsubscript{x}-PO\textsubscript{x} was prepared by replacing NaH$_2$PO$_2$·H$_2$O with Na$_3$PO$_4$ in the above synthesis.
Table S2. X-ray photoelectron spectroscopy (XPS) survey quantification of CN₄, Ni₃P, CN₄[Ni₃P (2 wt%), post-catalysis CN₄[Ni₃P (2 wt%), and CN₄[P. All powders were dispersed in ethanol and drop-cast on FTO glass slides prior to characterization.

Sample	Atomic concentration (%)						
	O 1s	C 1s	N 1s	K 2s	Ni 2p 3/2	P 2p	
CN₄ area 1	12.54	34.33	41.38	5.89	--	--	
CN₄ area 2	23.37	27.85	30.89	5.08	--	--	
CN₄ area 3	17.75	33.63	34.79	5.24	--	--	
Average	17.89	31.94	35.69	5.40	--	--	
Ni₃P area 1	47.82	20.21	--	--	4.67	17.90	
Ni₃P area 2	41.26	30.02	--	--	4.18	16.74	
Ni₃P area 3	46.59	20.55	--	--	5.50	21.50	
Average	45.22	23.59	--	--	4.78	18.71	
CN₄Ni₃P area 1	13.09	35.18	39.17	3.80	0.37	1.93	
CN₄Ni₃P area 2	18.76	31.46	34.90	3.94	0.25	1.38	
CN₄Ni₃P area 3	14.73	33.74	38.48	4.01	0.30	1.75	
Average	15.53	33.46	37.52	3.92	0.31	1.69	
Post-PR CN₄Ni₃P area 1	29.07	26.06	24.81	1.15	0.19	--	
Post-PR CN₄Ni₃P area 2	27.65	27.36	25.90	1.84	0.18	--	
Post-PR CN₄Ni₃P area 3	23.95	29.01	29.89	1.62	0.28	--	
Average	26.89	27.48	26.87	1.54	0.22	--	
CN₄[P area 1	7.59	40.66	42.76	3.91	--	1.54	
CN₄[P area 2	6.71	41.10	43.48	4.20	--	1.88	
Average	7.15	40.88	43.12	4.05	--	1.71	

Table S3. Comparison of the synthesized CN₄Ni₃P catalyst to reported H₂N-CN₄Ni₃P catalysts for H₂ evolution with triethanolamine as hole scavenger. All cited samples were irradiated with 300 W Xe lamps with λ > 420 nm cutoff filters (no temperatures cited). Samples labelled as “this work” were irradiated with a 1000 W Xe lamp (AM 1.5G, 100 mW cm⁻², 25 °C) with a λ > 420 nm cutoff filter.

Catalyst	[Catalyst] (mg mL⁻¹)	[Substrate] (mg mL⁻¹)	Reactor Volume (mL)	Time (h)	Yield ± σ (µmol g⁻¹ s⁻¹)	Activity ± σ (µmol g cat⁻¹ h⁻¹)	Ref
CN₄[Ni₃P 2%[a]	1.2	113	7.91	20	33.4 ± 1.7	118 ± 6.0	*
H₂N-CN₄[Ni₃P 2%	0.83	113	60	20	29.5	200	5
H₂N-CN₄[Ni₃P 2%	1.2	113	7.91	20	27.4 ± 1.4	96.7 ± 4.9	*
H₂N-CN₄[Ni₃P 3%	1.0	226	100	4	26.6	1503	6
H₂N-CN₄[Ni₃P 4%	1.0	113	80	20	14.6	82.5	7
H₂N-CN₄[Ni₃P 3.5%	0.45	103	250	4	8.39	474	8
H₂N-CN₄[Ni₃P 0.48%	1.0	113	37	2	10.2	575	9
H₂N-CN₄[Ni₃P 2%	0.5	170	100	3	1.12	127	10

[a] Percentages indicate wt%.

* This work.
Table S4. Optimisation of photoreforming conditions with CN$_x$|Ni$_2$P. Conditions (unless stated otherwise below): ultra-sonicated CN$_x$|Ni$_2$P 2 wt% (3.2 mg), pre-treated PET (50 mg), aqueous KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (20 h AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples, unless stated otherwise.

Description	Ni$_2$P loading (wt %)	Yield ± σ (µmol H$_2$ g$_{sub}$$^{-1}$)	Activity ± σ (µmol H$_2$ g$_{cat}$$^{-1}$ h$^{-1}$)
Ni$_2$P concentration optimisation	0.5	2.11 ± 0.13	1.59 ± 0.10
	2	27.6 ± 3.4	21.6 ± 2.7
	5	29.4 ± 1.5	23.0 ± 1.2

| Description | [CN$_x$|Ni$_2$P] (mg mL$^{-1}$) | Yield (µmol H$_2$ g$_{sub}$$^{-1}$) | Activity (µmol H$_2$ g$_{cat}$$^{-1}$ h$^{-1}$) |
|---------------------------------|-----------------------------|-----------------------------------|---|
| CN$_x$ concentration optimisation | 0.2$^{[a]}$ | 0.980 ± 0.300 | 6.12 ± 1.87 |
| | 0.5$^{[a]}$ | 1.45 ± 0.25 | 3.62 ± 0.62 |
| | 1$^{[a]}$ | 7.30 ± 0.36 | 9.12 ± 0.46 |
| | 1.6 | 27.6 ± 3.4 | 21.6 ± 2.7 |
| | 2$^{[a]}$ | 22.1 ± 1.1 | 13.8 ± 0.7 |

Description	[KOH] (M)	Yield (mmol H$_2$ g$_{sub}$$^{-1}$)	Activity (µmol H$_2$ g$_{cat}$$^{-1}$ h$^{-1}$)
KOH concentration optimisation	0	0.0 ± 0.0	0.0 ± 0.0
	0.5	0.800 ± 0.007	0.625 ± 0.005
	1	27.6 ± 3.4	21.6 ± 2.7
	5	83.8 ± 5.3	65.4 ± 2.2
	10	111 ± 8	86.5 ± 6.2

$^{[a]}$ σ calculated from 2 samples.

Table S5. Comparison of photoreforming with pre-treated versus non-treated PET. Conditions: ultra-sonicated CN$_x$|Ni$_2$P 2 wt% (3.2 mg), PET (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (µmol H$_2$ g$_{sub}$$^{-1}$)	Activity ± σ (µmol H$_2$ g$_{cat}$$^{-1}$ h$^{-1}$)
No pre-treatment	4	5.00 ± 0.34	19.5 ± 1.3
	20	17.1 ± 0.9	12.8 ± 0.6
	22	18.8 ± 1.7	12.8 ± 1.1

Description	4	5.06 ± 0.34	19.8 ± 1.3
	20	27.6 ± 3.4	21.6 ± 2.7
	22	30.6 ± 6.1	21.7 ± 4.3
Table S6. Quantification (by 1H-NMR spectroscopy) of polymer solubilization after pre-treatment (before photocatalysis).

Sample	Components	Ideal quantity of component (mg)	Measured quantity of component (mg)	% solubilization
PET	ethylene glycol	2.1	1.3	62
	terephthalate	5.7	2.9	51
PLA	lactate	6.0	4.3	72
PET bottle	ethylene glycol	1.2	0.7	58
	terephthalate	3.1	1.3	42
Polyester fiber	ethylene glycol	1.2	0.3	25
	terephthalate	3.1	0.8	26

Table S7. Comparison of photoreforming with ultra-sonicated versus un-sonicated CN$_x$|Ni$_z$P. Conditions: CN$_x$|Ni$_z$P 2 wt% (3.2 mg), pre-treated PET (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (μmol H$_2$ g$_{sub}^{-1}$)	Activity ± σ (μmol H$_2$ g$_{cat}^{-1}$ h$^{-1}$)
No sonication	4	3.86 ± 0.19	15.1 ± 0.7
	20	6.34 ± 0.44	4.95 ± 0.35
With ultra-sonication	4	5.06 ± 0.34	19.8 ± 1.3
	20	27.6 ± 3.4	21.6 ± 2.7
Table S8. Control experiments for photoreforming of polymers over CN₃|Ni₂P. Conditions (unless stated otherwise below): ultra-sonicated CN₃|Ni₂P 2 wt% (3.2 mg), pre-treated polymer (50 mg), aqueous KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (µmol H₂)	Activity (µmol H₂ g⁻¹ cat⁻¹ h⁻¹)
No substrate	2	0.049 ± 0.021	7.66 ± 3.28
	4	0.053 ± 0.044	4.14 ± 3.44
	20	0.132 ± 0.065	2.06 ± 1.01
	25	0.134 ± 0.011	1.67 ± 0.14
	27	0.145 ± 0.013	1.68 ± 0.15
	44	0.171 ± 0.016	1.21 ± 0.11
	46	0.175 ± 0.016	1.19 ± 0.11
	50	0.180 ± 0.017	1.12 ± 0.11
	24	0.071 ± 0.003	0.924 ± 0.046
	48	0.074 ± 0.011	0.482 ± 0.072
	72	0.140 ± 0.010	0.608 ± 0.043
	96	0.208 ± 0.023	0.677 ± 0.075
	120	0.269 ± 0.059	0.700 ± 0.153

Description	Substrate	Time (h)	Yield (µmol H₂ g⁻¹ sub)	Activity (µmol H₂ g⁻¹ cat⁻¹ h⁻¹)
No light	PET	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0	
	PLA	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0	
No catalyst	PET	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0	
	PLA	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0	
No co-catalyst	PET	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.687 ± 0.034	0.537 ± 0.027	
	PLA	4	0.0 ± 0.0	0.0 ± 0.0
	20	1.24 ± 0.22	0.969 ± 0.172	
No light-absorber	PET	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0	
	PLA	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0	
Irradiated with λ > 420 nm filter	PET	4	3.96 ± 0.54	15.5 ± 2.1
	20	5.52 ± 0.74	4.31 ± 0.58	
	PLA	4	4.76 ± 0.24	18.6 ± 0.9
	20	10.9 ± 0.7	8.54 ± 0.56	

[a] Different samples were used for the 2-50 h and 24-120 h timescales.
[b] The high initial activity is likely due to remnant NaH₂PO₄ from Ni₂P co-catalyst synthesis.
Table S9. Screening of noble-metal-free co-catalysts with CN₉ for photoreforming of PET. Conditions: ultra-sonicated CN₉ (3.2 mg), co-catalyst, pre-treated PET (50 mg), aq. KOH (1 M, 2 mL), sealed photo-reactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields are cumulative values. σ is the standard deviation calculated from 3 samples.

Co-catalyst	Time (h)	Yield ± σ (µmol H₂ g⁻¹)	Activity ± σ (µmol H₂ g⁻¹ h⁻¹)
Ni, 5 wt% (Ni(NO₃)₂·6H₂O)	4	0.0 ± 0.0	0.0 ± 0.0
Ni, 5 wt% (Ni(BF₄)₂·6H₂O)	20	11.8 ± 2.5	9.19 ± 1.96
Ni, 2 wt% (Ni(acac)₃)	20	9.44 ± 0.49	7.37 ± 0.38
NiO, 5 wt%	4	0.0 ± 0.0	0.0 ± 0.0
NiO NPs, 5 wt%	20	0.0 ± 0.0	0.0 ± 0.0
Ni(OH)₂, 5 wt%	4	0.0 ± 0.0	0.0 ± 0.0
Ni₂P, 2 wt%	20	16.5 ± 2.3	12.9 ± 1.80
Fe, 5 wt% (Fe(NO₃)₃·9H₂O)	4	5.06 ± 0.34	19.8 ± 1.3
Fe, 5 wt% (Fe(BF₄)₂·6H₂O)	20	27.6 ± 3.4	21.6 ± 2.7
Fe₂O₃, 5 wt%	4	0.0 ± 0.0	0.0 ± 0.0
Fe₃O₄ NPs, 5 wt%	20	1.76	1.37
CuO NPs, 5 wt%	4	0.933 ± 0.144	0.729 ± 0.112
Co, 5 wt% (Co(BF₄)₂·6H₂O)	4	0.0 ± 0.0	0.0 ± 0.0
Co, 5 wt% (Co(BF₄)₂·6H₂O)	20	4.54	2.95

[a] Metal salts were simply dissolved in H₂O and added to CN₉.
[b] Single run measurements.
[c] CN₉Ni was synthesized as previously reported.⁵ Ni(II) acetylacetone (11 mg) and CN₉ (150 mg) were mixed in a minimum of water and stirred and sonicated for 1 h each. After drying under vacuum at 60 °C, the powder was heated for 1 h at 200 °C under Ar (ramp rate 5 °C min⁻¹). The solid was cooled, washed with water (3×) and ethanol (3×), and dried under vacuum.
[d] Metal oxides were ground with CN₉ with a pestle and mortar.
[e] A literature procedure was modified slightly.¹¹ CN₉ (40 mg), Ni(NO₃)₂·6H₂O (5 mg) and 0.05 M NaOH (10 mL) were combined and stirred for 20 h. The mixture was centrifuged at 7000 rpm for 5 min. The precipitate was then washed with water (3×) and ethanol (3×), and dried under vacuum.
[f] The Ni₂P synthesis procedure was adapted to produce CN₉|Fe₃P. FeCl₃·6H₂O (10 mg), NaH₂PO₂·H₂O (50 mg), and CN₉ (150 mg) were mixed in a minimum of water, stirred for 1 h and sonicated for 1 h. The mixture was dried under vacuum at 60 °C and heated for 1 h at 200 °C under Ar (ramp rate 5 °C min⁻¹). After cooling, the powder was washed with water (3×) and ethanol (3×), and dried under vacuum.

S8
Table S10. Photoreforming of a variety of substrates with CN$_x$Ni$_2$P. Conditions: ultra-sonicated CN$_x$Ni$_2$P 2 wt% (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. Single measurements only.

Substrate	Time (h)	Yield (µmol H$_2$ g$_{sub}$$^{-1}$)	Activity (µmol H$_2$ g$_{cat}$$^{-1}$ h$^{-1}$)
PE	4	1.76	6.87
	20	6.88	5.37
PET	4	3.62	14.1
	20	39.9	31.2
PLA	4	4.22	16.5
	20	42.1	32.9
PP	4	1.74	6.80
	20	7.72	6.03
PS	4	2.32	9.06
	20	6.14	4.80
PUR	4	1.22	4.76
	20	7.74	6.05
Rubber	4	1.54	6.01
	20	5.56	4.34

Table S11. Photoreforming of PET and PLA with CN$_x$Ni$_2$P. Conditions: ultra-sonicated CN$_x$Ni$_2$P 2 wt% (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (µmol H$_2$ g$_{sub}$$^{-1}$)	Activity ± σ (µmol H$_2$ g$_{cat}$$^{-1}$ h$^{-1}$)
Long-term photoreforming of	2	3.90 ± 0.19	30.5 ± 1.5
pre-treated PET	4	6.52 ± 0.33	25.5 ± 1.3
	20	33.1 ± 1.7	25.8 ± 1.3
	25	42.1 ± 3.4	26.3 ± 2.1
	27	45.4 ± 2.3	26.3 ± 1.3
	44	72.0 ± 6.9	25.6 ± 2.5
	46	73.5 ± 7.5	25.0 ± 2.5
	50	82.5 ± 7.3	25.7 ± 2.3
Long-term photoreforming of	2	5.50 ± 0.27	43.0 ± 2.1
pre-treated PLA	4	9.92 ± 0.50	38.7 ± 1.9
	20	59.7 ± 6.0	46.6 ± 4.7
	25	77.8 ± 6.8	48.6 ± 4.3
	27	86.4 ± 6.4	50.0 ± 3.7
	44	156 ± 12	55.4 ± 4.2
	46	164 ± 15	55.8 ± 5.1
	50	178 ± 12	55.7 ± 3.7
Table S12. External quantum yield (EQY) measurements from photoreforming of polymers. Conditions: ultra-sonicated CN$_x$Ni$_2$P 2 wt% (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), all in a sealed quartz cuvette (path length 1 cm, internal volume 3.83 mL) under anaerobic conditions. Samples were irradiated with monochromatic light ($\lambda = 430$ nm, full-width at half maximum: 5, intensity taken as the average of the intensities measured at the beginning and end of the experiments) over an area of 0.28 cm2. σ is the standard deviation calculated from the 3 listed samples.

Substrate	Substrate Conditions	Time (h)	Light Intensity (mW cm$^{-2}$)	H_2 (µmol)	EQY (%)	Average ± σ EQY (%)
PLA	25 mg mL$^{-1}$, pre-treated	24	0.64 ± 0.10	0.022	0.078	0.101 ± 0.018
			0.95 ± 0.07	0.043	0.097	
			0.90 ± 0.01	0.052	0.128	
PET	25 mg mL$^{-1}$, pre-treated	24	0.50 ± 0.08	0.009	0.041	0.035 ± 0.005
			0.75 ± 011	0.009	0.028	
			0.90 ± 0.01	0.014	0.036	

Table S13. Stoichiometric H_2 conversion calculations. Conditions: ultra-sonicated CN$_x$Ni$_2$P 2 wt% (3.2 mg), polymer (5 mg), aq. KOH (1 M or 10 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Substrate	$N_{\text{H}_2}^\text{100%}$ (molH_2 molsub^{-1})	Time (h)	$N_{\text{H}_2}^\text{field} ± \sigma$ (molH_2 molsub^{-1})	Conversion $± \sigma$ (%)
H_2 Conversion in 1 M KOH	PET, 26.0 µmol	5.0$^[a]$	72	0.027 ± 0.003	0.54 ± 0.06
			96	0.040 ± 0.004	0.80 ± 0.08
			144	0.121 ± 0.015	2.42 ± 0.30
			192	0.219 ± 0.029	4.38 ± 0.58
	PLA, 69.4 µmol	6.0	72	0.016 ± 0.002	0.27 ± 0.03
			96	0.026 ± 0.004	0.43 ± 0.07
			144	0.061 ± 0.012	1.02 ± 0.20
			192	0.097 ± 0.015	1.62 ± 0.25
H_2 Conversion in 10 M KOH	PET, 26.0 µmol	5.0$^[a]$	72	0.284 ± 0.014	5.68 ± 0.28
			96	0.385 ± 0.037	7.70 ± 0.74
			144	0.932 ± 0.114	18.6 ± 2.3
			192	1.23 ± 0.16	24.5 ± 3.3
	PLA, 69.4 µmol	6.0	72	0.079 ± 0.005	1.32 ± 0.08
			96	0.135 ± 0.012	2.25 ± 0.20
			144	0.295 ± 0.033	4.92 ± 0.55
			192	0.401 ± 0.048	6.68 ± 0.80

$^[a]$ This number assumes that only the ethylene glycol component of PET is oxidized.
Table S14. Photoreforming with other photocatalysts. CN$_2$|Ni$_2$P is included for ease of comparison. Conditions: catalyst (3.2 mg), pre-treated polymer (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Catalyst	Substrate	Time (h)	Yield ± σ (µmol H$_2$ g$_{sub}$⁻¹)	Activity ± σ (µmol H$_2$ g$_{cat}$⁻¹ h⁻¹)	
CN$_2$	Ni$_2$P, 2 wt%	PET	4	6.52 ± 0.33	25.5 ± 1.3	
	PET	20	33.1 ± 1.7	25.8 ± 1.3		
	PET	25	42.1 ± 3.4	26.3 ± 2.1		
	PET	44	72.0 ± 6.9	25.6 ± 2.5		
	PLA	4	9.92 ± 0.50	38.7 ± 1.9		
	PLA	20	59.7 ± 6.0	46.6 ± 4.7		
	PLA	25	77.8 ± 6.8	48.6 ± 4.3		
	PLA	44	156 ± 12	55.4 ± 4.2		
2 wt% Ni$_2$P powder + CN$_x$	PET	4	0.24 ± 0.013	0.937 ± 0.051		
	PET	20	10.5 ± 0.7	8.22 ± 0.55		
	PET	20	10.5 ± 2.1	41.1 ± 8.2		
	PET	25	34.3 ± 3.1	26.8 ± 2.4		
	PET	25	39.5 ± 3.2	24.7 ± 2.0		
	PET	44	42.5 ± 5.5	15.1 ± 2.0		
	PLA	4	211 ± 2.8	82.5 ± 10.9		
	PLA	20	81.2 ± 6.1	63.4 ± 4.7		
	PLA	25	98.6 ± 7.8	61.6 ± 4.8		
	PLA	44	141 ± 18	50.2 ± 6.4		
H$_2$N-CN$_x$	Ni$_2$P, 2 wt%	PET	4	0.900 ± 0.105	3.52 ± 0.41	
	PET	20	13.8 ± 2.4	10.8 ± 1.9		
	PLA	4	8.46 ± 5.12	33.1 ± 20.0		
	PLA	20	54.1 ± 9.4	42.3 ± 7.4		
TiO$_2$	Ni$_2$P, 2 wt%	PET	4	29.7 ± 6.1	116 ± 24	
	PET	20	96.2 ± 4.8	75.2 ± 3.7		
	PLA	4	20.0 ± 1.3	156 ± 10		
	PLA	20	180 ± 17	281 ± 26		
CN$_2$	Pt, 2 wt%	PET	4	16.5 ± 0.8	64.5 ± 3.2	
	PET	20	92.6 ± 11.5	72.4 ± 9.0		
CN$_2$	P	Pt, 2 wt%	PET	4	0.0 ± 0.0	0.0 ± 0.0
	PET	20	0.0 ± 0.0	0.0 ± 0.0		
	PLA	4	0.0 ± 0.0	0.0 ± 0.0		
	PLA	20	0.0 ± 0.0	0.0 ± 0.0		
H$_2$N-CN$_x$	Ni$_2$P, 2 wt%	PET	4	0.0 ± 0.0	0.0 ± 0.0	
	PET	20	0.0 ± 0.0	0.0 ± 0.0		
	PLA	4	0.0 ± 0.0	0.0 ± 0.0		
	PLA	20	0.0 ± 0.0	0.0 ± 0.0		
Table S15. Comparison of the current work to other reported catalysts for polymer photoreforming. Samples referenced as [12] were irradiated with a 500 W Xe lamp. Samples referenced as * or [13] were irradiated with a 1000 W Xe lamp (AM 1.5G, 100 mW cm$^{-2}$, 25 °C).

Catalyst	Substratea	[base]b	Time (h)	Yield ± σ (µmol H$_2$ g$_{sub}$⁻¹)	Activity ± σ (µmol H$_2$ g$_{cat}$⁻¹ h⁻¹)	Ref	
TiO$_2$	Pt, 5%$^{[c,d]}$	PE	5 M	10	620	31.0	12
TiO$_2$	Pt, 5%	PVC	5 M	10	300	28.7	12
TiO$_2$	Pt, 5%	PET	10 M	20	1220 ± 110	153 ± 14	13
CdS/CdO$_x$	PET	10 M	20	119 ± 8	93.0 ± 6.6	*	
CN$_i$	Ni$_2$P, 2%	PET	10 M	20	111 ± 8	83.2 ± 6.0	*
CN$_i$	Ni$_2$P, 2%	PET	10 M	20	104 ± 4	81.1 ± 3.4	*
CdS/CdO$_x$	PET	1 M	20	132 ± 6	2210 ± 110	13	
CN$_i$	Pt, 2%	PET	1 M	20	96.2 ± 4.8	75.2 ± 3.7	*
CN$_i$	Ni$_2$P, 2%	PET	1 M	20	34.3 ± 3.1	26.8 ± 2.4	*
TiO$_2$	Ni$_2$P, 2%	PET	1 M	20	33.1 ± 1.7	25.8 ± 1.3	*
CdS/CdO$_x$	PET	1 M	20	13.8 ± 2.4	10.8 ± 1.9	*	
CN$_i$	Ni$_2$P, 2%	PET	1 M	20	427 ± 21	333 ± 17	*
CdS/CdO$_x$	PLA	10 M	20	358 ± 53	89 ± 13	13	
CN$_i$	Pt, 2%	PLA	10 M	20	314 ± 16	491 ± 24	*
TiO$_2$	Ni$_2$P, 2%	PLA	10 M	20	220 ± 28	173 ± 22	*
CN$_i$	Ni$_2$P, 2%	PLA	10 M	20	211 ± 10	165 ± 8	*
CdS/CdO$_x$	PLA	1 M	20	180 ± 17	281 ± 26	*	
CN$_i$	Ni$_2$P, 2%	PLA	1 M	20	81.2 ± 6.1	63.4 ± 4.8	*
CN$_i$	Ni$_2$P, 2%	PLA	1 M	20	59.7 ± 6.0	46.6 ± 4.7	*
CdS/CdO$_x$	PLA	1 M	20	56.6 ± 8.9	839 ± 132	13	
TiO$_2$	Ni$_2$P, 2%	PLA	1 M	20	54.1 ± 9.4	42.3 ± 7.4	*

[a] All polymer substrates except for PE and PVC were pre-treated prior to use (25 mg mL$^{-1}$).
[b] PE and PVC were run in 30 mL of base, whereas all other samples were run in 2 mL of base.
[c] Percentages indicate wt% of the co-catalyst.
[d] 300 mg TiO$_2$|Pt used per sample.
[e] 1 nmol CdS/CdO$_x$ used per sample.
[f] 3.2 mg H$_2$N$_i$Ni$_2$P, CN$_i$Ni$_2$P, CN$_i$|Pt or TiO$_2$|Ni$_2$P used per sample.
* This work.
Table S16. Photoreforming of oxidation intermediates with CN$_x$Ni$_2$P. Conditions: CN$_x$Ni$_2$P 2 wt% (3.2 mg), substrate (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples, unless stated otherwise.

Substrate	Time (h)	Yield ± σ (µmol H$_2$ g$_{sub}$⁻¹)	Activity ± σ (µmol H$_2$ g$_{cat}$⁻¹ h$^{-1}$)
Acetate$^{[a]}$	4	1.12 ± 0.14	4.37 ± 0.56
	20	3.22 ± 0.40	2.51 ± 0.31
Ethylene glycol	4	12.9 ± 0.6	50.5 ± 2.5
	20	58.9 ± 7.1	46.0 ± 5.6
Formate$^{[a]}$	4	4.30 ± 1.80	16.8 ± 7.0
	20	17.7 ± 1.3	13.8 ± 1.0
Glycolate$^{[a]}$	4	3.58 ± 0.85	14.0 ± 3.32
	20	14.6 ± 2.1	11.4 ± 1.7
Glyoxal$^{[a]}$	4	10.6 ± 0.5	41.3 ± 2.1
	20	50.2 ± 6.2	39.2 ± 4.9
Lactate	4	6.20 ± 0.77	24.2 ± 3.0
	20	40.4 ± 3.4	31.6 ± 2.7
Terephthalate	4	0.0 ± 0.0	0.0 ± 0.0
	20	0.0 ± 0.0	0.0 ± 0.0

$^{[a]}$ σ obtained from two samples.

Table S17. Re-use of CN$_x$Ni$_2$P for photoreforming of PET. Conditions: previously used CN$_x$Ni$_2$P 2 wt% after centrifugation, washing and drying (3.2 mg), pre-treated PET (50 mg), aq. KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Time (h)	Yield ± σ (µmol H$_2$ g$_{sub}$⁻¹)	Activity ± σ (µmol H$_2$ g$_{cat}$⁻¹ h$^{-1}$)
4	0.60 ± 0.03	2.34 ± 0.12
20	14.6 ± 0.7	11.4 ± 0.6

Table S18. Quantification of the organic oxidation products formed from glyoxal and formate after 24 h of photoreforming. Maleic acid in D$_2$O was used as an internal standard.

Organic compound	Quantity (nmol)
Photoreforming of glyoxal	
Acetate	260
Formate	1640
Glycolate	6550
Photoreforming of formate	
Acetate	115
Table S19. Photoreforming of different quantities of polyester microfibers. Conditions: CN₆|Ni₂P 2 wt% (3.2 mg), pre-treated fibers, aqueous KOH (1 M, 2 mL), sealed photoreactor (internal volume 7.91 mL) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. Single measurements only.

Substrate Concentration (mg mL⁻¹)	Time (h)	Yield (µmol H₂ g⁻¹ sub⁻¹)	Activity (µmol H₂ g⁻¹ cat⁻¹ h⁻¹)
2.5	4	0.0	0.0
	20	0.0	0.0
0.5	4	0.0	0.0
	20	0.0	0.0
0.25	4	0.0	0.0
	20	0.0	0.0

Table S20. Long-term photoreforming of real-world waste at small and large scales. Conditions: CN₆|Ni₂P 2 wt% (3.2 mg for small scale, or 170 mg for up-scaled), pre-treated polymer (5 mg mL⁻¹ microfibers, 25 mg mL⁻¹ bottle, 5 mg mL⁻¹ oil), aq. KOH (1 M, 2 mL for small scale, or 120 mL for up-scaled), sealed photoreactor (internal volume 7.91 mL for small scale, 190 mL for up-scaled) under anaerobic conditions, simulated solar light (AM 1.5G, 100 mW cm⁻², 25 °C). Yields and activities are cumulative values. σ is the standard deviation calculated from 3 samples.

Description	Time (h)	Yield ± σ (µmol H₂ g⁻¹ sub⁻¹)	Activity ± σ (µmol H₂ g⁻¹ cat⁻¹ h⁻¹)
Long-term photoreforming of pre-treated microfibers	24	17.6 ± 2.3	2.29 ± 0.30
	48	31.2 ± 3.5	2.03 ± 0.23
	72	43.4 ± 2.9	1.88 ± 0.12
	96	63.3 ± 4.4	2.06 ± 0.14
	120	104 ± 10	2.67 ± 0.25
Long-term photoreforming of pre-treated bottle	24	4.38 ± 0.54	2.85 ± 0.35
	48	8.64 ± 0.43	2.81 ± 0.14
	72	11.6 ± 0.5	2.52 ± 0.12
	96	16.1 ± 1.0	2.61 ± 0.17
	120	22.0 ± 1.3	2.87 ± 0.16
Long-term photoreforming of pre-treated bottle + oil	24	2.40 ± 0.16	1.87 ± 0.12
	48	5.23 ± 1.08	2.04 ± 0.42
	72	6.47 ± 0.32	1.68 ± 0.08
	96	8.27 ± 0.55	1.61 ± 0.11
	120	11.4 ± 1.2	1.78 ± 0.19
Up-scaled photoreforming of pre-treated microfibers[a]	24	18.3	2.69
	48	28.5	2.09
	72	37.7	1.85
	96	46.1	1.69
	120	53.5	1.57

[a] Values from a single experiment.
Supplementary Figures

Figure S1. X-ray photoelectron spectroscopy (XPS) spectra of the (a) C1s, (b) N1s, and (c) P2p edges of CNx-P. CNx-P was produced according to the same synthesis procedure utilized for CNx|Ni2P, but without the addition of the Ni precursor. These data (along with ICP results in Table S1), suggest that excess P content in the CNx|Ni2P photocatalyst can be attributed to residual POx from the co-catalyst synthesis that adheres to the CNx surface.

Figure S2. X-ray photoelectron spectroscopy (XPS) spectra of the (a) N1s edge of CNx and CNx|Ni2P (2 wt%), and (b) P2p edge of Ni2P and CNx|Ni2P (2 wt%).
Figure S3. Powder X-ray diffraction (XRD) patterns of (a) CN\textsubscript{x} and CN\textsubscript{x}\mid Ni\textsubscript{2}P (2 wt\%) and (b) Ni\textsubscript{2}P.
Figure S4. Scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDX) spectra of (a-c) CNx, (d-f) Ni2P, (g-i) CNx|Ni2P (2 wt%), and (j-l) CNx|Ni2P (2 wt%) after photoreforming. Samples were sputtered with 10 nm of Cr prior to imaging. Photoreforming conditions: CNx|Ni2P (3.2 mg), PLA (50 mg), 1 M aqueous KOH (2 mL), simulated solar irradiation (AM 1.5G, 100 mW cm⁻², 25 °C, 50 h).
Figure S5. Particle size analysis of Ni$_2$P nanoparticles annealed with CN$_x$, as measured from transmission electron microscopy (TEM) images.

Figure S6. (a-b) TEM images of Ni$_2$P nanoparticles. (c) Particle size analysis of the Ni$_2$P nanoparticles.
Figure S7. 1H-NMR quantification of polymer solubilisation after pre-treatment. (a) PET, (b) PLA, (c) PET bottle and (d) polyester microfiber in 1 M NaOD in D$_2$O with maleic acid as a standard.
Figure S8. Liquid chromatography-mass spectrometry (LC-MS, negative ion mode) of solubilized (a) PET and (b) PLA components after pre-treatment. Samples were hydrolysed in 1 M aq. KOH and then diluted with methanol to 0.01 M KOH for analysis, with measurements recorded up to 1000 m/z. In (a), the peak at 165 m/z corresponds to terephthalate and the peak at 121 m/z is a fragment of terephthalate (benzoate); no peaks are observed for common PET hydrolysis products such as mono(2-hydroxyethyl) terephthalate (MHET, 210 g mol$^{-1}$) or bis(2-hydroxyethyl) terephthalate (BHET, 254 g mol$^{-1}$), but peaks at 121, 353, 451, etc. m/z may be from oligomer fragments. In (b), the peak at 89 m/z corresponds to lactate, while the peaks at 129 and 173 m/z are likely oligomer fragments.
Figure S9. Mass spectra of the gas evolved after photoreforming (AM 1.5G, 100 mW cm\(^{-2}\), 72 h) of PET (25 mg mL\(^{-1}\)) over CN\(_x\)Ni\(_2\)P (3.2 mg) in (a) 1 M aq. KOH and (b) 1 M aq. KOH or 1 M NaOD in D\(_2\)O (2 mL).

Figure S10. \(^{13}\)C-NMR spectrum of (a) \(^{13}\)C-labelled ethylene glycol (100 mg) and (b) PLA (3 mg) after photoreforming (AM 1.5G, 100 mW cm\(^{-2}\), 25 °C, 5 days) over CN\(_x\)Ni\(_2\)P 2 wt\% (3.2 mg) in 1 M NaOD in D\(_2\)O (2 mL). The labels are attributed as follows: (i) formate, (ii) glyoxal, (iii) glycolate, (iv) acetate, (v) glyoxylate, (vi) glycoaldehyde, (vii) ethanol.
Figure S11. Long-term photoreforming of (a) PET (3 mg) and (b) ethylene glycol (1 mg) over CN$_x$|Ni$_2$P (1.6 mg mL$^{-1}$). Conditions: 5 M aq. KOH or 5 M NaOD in D$_2$O (2 mL), simulated sunlight (AM 1.5G, 100 mW cm$^{-2}$, 25 °C). Aqueous products were analyzed using 1H-NMR with maleic acid as an internal standard. Insets show a zoomed-in view of the formate and acetate curves. The observed mass imbalance is due to unidentified oxidation products.

Figure S12. Comparison of the diffuse reflectance UV-Vis spectra of CN$_x$ and 1H13CN$_x$.
Figure S13. Comparison of photoreforming of (a) PET and (b) PLA over CN₅|Ni₂P and H₂N-CN₅|Ni₂P. Conditions: photocatalyst (3.2 mg), pre-treated polymer (25 mg mL⁻¹), aqueous KOH (1 M, 2 mL), irradiation (AM 1.5G, 100 mW cm⁻², 25 °C).
Figure S14. Post-photoreforming characterization of the CN$_x$|Ni$_2$P (2 wt%) photocatalyst. (a) UV-Vis, (b) emission (λ_{ex} = 360 nm, λ_{em} = 450 nm), and (c) FTIR spectra. (d) TEM image. Photoreforming conditions: CN$_x$|Ni$_2$P (3.2 mg), PLA (50 mg), 1 M aqueous KOH (2 mL), simulated solar irradiation (AM 1.5G, 100 mW cm$^{-2}$, 25 °C, 50 h).
Figure S15. XPS spectra of the (a) C\textsubscript{1s}, (b) N\textsubscript{1s}, (c) Ni\textsubscript{2p}, and (d) P\textsubscript{2p} edges of used CN\textsubscript{x}Ni\textsubscript{2}P (2 wt\%\textsubscript{c}) after photoreforming. Photoreforming conditions: CN\textsubscript{x}Ni\textsubscript{2}P (3.2 mg), PLA (50 mg), 1 M aqueous KOH (2 mL), simulated solar irradiation (AM 1.5G, 100 mW cm-2, 25 °C, 50 h).
Figure S16. 1H-NMR spectra of (a) acetate, (b) ethylene glycol, (c) formate, (d) glycolate, (e) glyoxal, (f) lactate, (g) maleate (used as a standard), (h) PET, (i) PLA, and (j) terephthalate in 1 M NaOD in D$_2$O. PET and PLA were pre-treated in 1 M NaOD in D$_2$O for 24 h before data collection.
Figure S17. 1H-NMR spectra of (a) ethylene glycol, (b) terephthalate, and (c) lactate after 5 days simulated solar light irradiation. 1H-NMR spectra of (d) acetate, (e) formate and (f) glyoxal after 24 h simulated solar light irradiation. Maleic acid was used as an internal standard. Photoreforming conditions: CN$_x$Ni$_y$P 2 wt% (3.2 mg), NaOD (1 M) in D$_2$O (2 mL), substrate (25 mg mL$^{-1}$), irradiation (AM 1.5G, 100 mW cm$^{-2}$, 25 ºC).
Figure S18. Proposed reaction scheme for the photo-oxidation of (a) ethylene glycol and (b) lactate. The mechanism is adapted from [14] and based on 1H-NMR analysis and comparison to literature.15–19

Figure S19. Emission spectra (λ_{ex} = 315 nm, λ_{em} = 430 nm) of pure 2-hydroxyterephthalic acid in 1 M aqueous KOH and terephthalic acid (50 mg) after photoreforming (AM 1.5G, 100 mW cm^{-2}, 25 °C, 20 h) with CN_{6}NiP (3.2 mg) in 1 M aqueous KOH (2 mL). Terephthalic acid does not exhibit the characteristic λ_{em} = 430 nm of the OH scavenger 2-hydroxyterephthalic acid, indicating that OH does not play a major role in the photoreforming mechanism.
Figure S20. SEM images of a polyester microfiber (a-b) before photoreforming and (c-d) after photoreforming. Photoreforming conditions: CN$_2$Ni$_2$P (3.2 mg), 1 M KOH (2 mL), microfibers (10 mg), simulated solar irradiation (AM 1.5G, 100 mW cm$^{-2}$, 25 °C, 24 h). Reformed microfibers were washed with H$_2$O and dried under a stream of N$_2$. Both samples were sputter-coated with Pt (10 nm) prior to imaging.

Figure S21. 1H-NMR spectra of (a) polyester microfibers and (b) a PET water bottle after photoreforming. Photoreforming conditions: CN$_2$Ni$_2$P (3.2 mg), 1 M NaOD in D$_2$O (2 mL), pre-treated polymer (10 mg microfibers or 50 mg PET bottle), simulated solar irradiation (AM 1.5G, 100 mW cm$^{-2}$, 25 °C, 24 h).
References

(1) Kawahara, Y.; Yoshioka, T.; Takarada, W.; Kikutani, T.; Tsuji, M. Alkaline Hydrolysis Kinetics of Poly(Ethylene Terephthalate) Fibers. J. Fiber Sci. Technol. 2016, 72, 9–16.

(2) NIST Chemistry WebBook. 1,2-Ethanediol https://webbook.nist.gov/cgi/cb

(3) Diane Sylvie Chauliac. Development of a Thermochemical Process for Hydrolysis of Polyactic Acid Polymers to L-Lactic Acid and Its Purification Using an Engineered Microbe, University of Florida, 2013.

(4) Emel’yanenko, V. N.; Verevkin, S. P.; Schick, C.; Stepurko, E. N.; Roganov, G. N.; Georgieva, M. K. The Thermodynamic Properties of S-Lactic Acid. Russ. J. Phys. Chem. A 2010, 84, 1491–1497.

(5) Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Boosting Visible-Light-Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide-Carbon Nitride System. Angew. Chem. Int. Ed. 2017, 56, 1653–1657.

(6) Lu, Z.; Li, C.; Han, J.; Wang, L.; Wang, S.; Ni, L.; Wang, Y. Construction 0D/2D Heterojunction by Highly Dispersed Ni3PS4 QDs Loaded on the Ultrathin g-C3N4 Surface towards Superhigh Photocatalytic and Photoelectric Performance. Appl. Catal. B Environ. 2018, 237, 919–926.

(7) Ye, P.; Liu, X.; Iocozzia, J.; Yuan, Y.; Gu, L.; Xu, G.; Lin, Z. A Highly Stable Non-Noble Metal Ni3P Co-Catalyst for Increased H2 Generation by g-C3N4 under Visible Light Irradiation. J. Mater. Chem. A 2017, 5, 8493–8498.

(8) Zeng, D.; Xu, W.; Ong, W.-J.; Xu, J.; Ren, H.; Chen, Y.; Zheng, H.; Peng, D.-L. Toward Noble-Metal-Free Visible-Light-Driven Photocatalytic Hydrogen Evolution: Monodisperse Sub–15 nm Ni3P Nanoparticles Anchored on Porous g-C3N4 Nanosheets to Engineer 0D–2D Heterojunction Interfaces. Appl. Catal. B Environ. 2018, 221, 47–55.

(9) Zhao, H.; Sun, S.; Jiang, P.; Xu, Z. J. Graphitic C3N4 Modified by Ni3P Co-Catalyst: An Efficient, Robust and Low Cost Photocatalyst for Visible-Light-Driven H2 Evolution from Water. Chem. Eng. J. 2017, 315, 296–303.

(10) Wen, J.; Xie, J.; Shen, R.; Li, X.; Luo, X.; Zhang, H.; Zhang, A.; Bi, G. Markedly Enhanced Visible-Light Photocatalytic H2 Generation over g-C3N4 Nanosheets Decorated by Robust Nickel Phosphide (Ni12P3) Cocatalysts. Dalton Trans. 2017, 46, 1794–1802.

(11) Yu, J.; Wang, S.; Cheng, B.; Lin, Z.; Huang, F. Noble Metal-Free Ni(OH)2–g-C3N4 Composite Photocatalyst with Enhanced Visible-Light Photocatalytic H2-Production Activity. Catal. Sci. Technol. 2013, 3, 1782.

(12) Kawai, T.; Sakata, T. Photocatalytic Hydrogen Production from Water by the Decomposition of Polyanilin chloride, Protein, Algae, Dead Insects, and Excrement. Chem. Lett. 1981, 81–84.

(13) Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic Waste as a Feedstock for Solar-Driven H2 Generation. Energy Environ. Sci. 2018, 11, 2853–2857.

(14) Puga, A. V. Photocatalytic Production of Hydrogen from Biomass-Derived Feedstocks. Coord. Chem. Rev. 2016, 315, 1–66.

(15) Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene Glycol: Properties, Synthesis, and Applications. Chem. Soc. Rev. Chem. Soc. Rev 2012, 41, 4089–4380.

(16) Rossiter, W. J.; Brown, P. W.; Godette, M. The Determination of Acidic Degradation Products in Aqueous Ethylene Glycol and Propylene Glycol Solutions Using Ion Chromatography. Sol. Energy Mater. 1983, 9, 267–279.

(17) Chauhan, N. L.; Dameeva, V.; Chowdhury, A.; Juvekar, V. A.; Sarkar, A. Electrochemical Oxidation of Ethylene Glycol in a Channel Flow Reactor. Catal. Today 2018, 309, 126–132.

(18) Lomate, S.; Katyriok, B.; Dumeignil, F.; Paul, S. High Yield Lactic Acid Selective Oxidation into Acetic Acid over a Mo–V–Nb Mixed Oxide Catalyst. Sustain. Chem. Process. 2015, 3, 5.

(19) Harada, H.; Sakata, T.; Ueda, T. Effect of Semiconductor on Photocatalytic Decomposition of Lactic Acid. J. Am. Chem. Soc. 1985, 107, 1773–1774.