THE RATIONAL HOMOLOGY OF THE OUTER AUTOMORPHISM GROUP OF F_7

LAURENT BARTHOLODI

Abstract. We compute the homology groups $H_*(\text{Out}(F_7); \mathbb{Q})$ of the outer automorphism group of the free group of rank 7.

We produce in this manner the first rational homology classes of $\text{Out}(F_n)$ that are neither constant ($\ast = 0$) nor Morita classes ($\ast = 2n - 4$).

1. Introduction

The homology groups $H_k(\text{Out}(F_n); \mathbb{Q})$ are intriguing objects. On the one hand, they are known to “stably vanish”, i.e. for all $n \in \mathbb{N}$ we have $H_k(\text{Out}(F_n); \mathbb{Q}) = 0$ as soon as k is large enough [3]. Hatcher and Vogtmann prove that the natural maps $H_k(\text{Out}(F_n); \mathbb{Q}) \to H_k(\text{Aut}(F_n); \mathbb{Q})$ and $H_k(\text{Aut}(F_n); \mathbb{Q}) \to H_k(\text{Aut}(F_{n+1}); \mathbb{Q})$ are isomorphisms for $n \geq 2k + 2$ respectively $n \geq 2k + 4$, see [4, 5]. On the other hand, $H_k(\text{Out}(F_n); \mathbb{Q}) = 0$ for $k > 2n - 3$, since $\text{Out}(F_n)$ acts geometrically on a contractible space (the “spine of outer space”, see [2]) of dimension $2n - 3$. Combining these results, the only $k \geq 1$ for which $H_k(\text{Out}(F_n); \mathbb{Q})$ could possibly be non-zero are in the range $\frac{n}{2} - 2 < k \leq 2n - 3$. Morita conjectures in [9, page 390] that $H_{2n-3}(\text{Out}(F_n); \mathbb{Q})$ always vanishes; this would improve the upper bound to $k = 2n - 4$, and $H_{2n-4}(\text{Out}(F_n); \mathbb{Q})$ is also conjectured to be non-trivial.

We shall see that the first conjecture does not hold. Indeed, the first few values of $H_k(\text{Out}(F_n); \mathbb{Q})$ may be computed by a combination of human and computer work, and yield

n	k	0	1	2	3	4	5	6	7	8	9	10	11
2	1	0											
3	1	0	0	0									
4	1	0	0	0	1	0							
5	1	0	0	0	0	0	0						
6	1	0	0	0	0	0	0	1	0				
7	1	0	0	0	0	0	0	1	0	1			

The values for $n \leq 6$ were computed by Ohashi in [12]. They reveal that, for $n \leq 6$, only the constant class ($k = 0$) and the Morita classes $k = 2n - 4$ yield non-trivial homology. The values for $n = 7$ are the object of this Note, and reveal that the picture changes radically:

Theorem. The non-trivial homology groups $H_k(\text{Out}(F_7); \mathbb{Q})$ occur for $k \in \{0, 8, 11\}$ and are all 1-dimensional.

Previously, only the rational Euler characteristic $\chi_\mathbb{Q}(\text{Out}(F_7)) = \sum (-1)^k \dim H_k(\text{Out}(F_7); \mathbb{Q})$ was known [10], and shown to be 1. These authors computed in fact the rational Euler characteristics up to $n = 11$ in that paper and the sequel [11].

2. Methods

We make fundamental use of a construction of Kontsevich [10], explained in [1]. We follow the simplified description from [12].

Let F_n denote the free group of rank n. This parameter n is fixed once and for all, and will in fact be omitted from the notation as often as possible. An admissible graph of rank n is a
graph G that is 2-connected (G remains connected even after an arbitrary edge is removed), without loops, with fundamental group isomorphic to F_n, and without vertex of valency ≤ 2. Its degree is $\deg(G) := \sum_{v \in V(G)} (\deg(v) - 3)$. In particular, G has $2n - 2 - \deg(G)$ vertices and $3n - 3 - \deg(G)$ edges, and is trivalent if and only if $\deg(G) = 0$. If Φ is a collection of edges in a graph G, we denote by G/Φ the graph quotient, obtained by contracting all edges in Φ to points.

A forested graph is a pair (G, Φ) with Φ an oriented forest in G, namely an ordered collection of edges that do not form any cycle. We note that the symmetric group $\text{Sym}(k)$ acts on the set of forested graphs whose forest contains k edges, by permuting the forest’s edges.

For $k \in \mathbb{N}$, let C_k denote the \mathbb{Q}-vector space spanned by isomorphism classes of forested graphs of rank n with a forest of size k, subject to the relation

$$(G, \pi \Phi) = (-1)^\pi(G, \Phi) \quad \text{for all } \pi \in \text{Sym}(k).$$

Note, in particular, that if $(G, \Phi) \sim (G, \pi \Phi)$ for an odd permutation π then $(G, \Phi) = 0$ in C_k. These spaces (C_*) form a chain complex for the differential $\partial = \partial_C - \partial_R$, defined respectively on $(G, \Phi) = (G, \{e_1, \ldots, e_p\})$ by

$$\partial_C(G, \Phi) = \sum_{i=1}^p (-1)^i (G/e_i, \Phi \setminus \{e_i\}),$$

$$\partial_R(G, \Phi) = \sum_{i=1}^p (-1)^i (G, \Phi \setminus \{e_i\}),$$

and the homology of (C_*, ∂) is $H_*(\text{Out}(F_n); \mathbb{Q})$.

The spaces C_k may be filtered by degree: let $F_p C_k$ denote the subspace spanned by forested graphs (G, Φ) with $\deg(G/\Phi) \leq p$. The differentials satisfy respectively

$$\partial_C(F_p C_k) \subseteq F_p C_{k-1}, \quad \partial_R(F_p C_k) \subseteq F_{p-1} C_{k-1}.$$

A spectral sequence argument gives

$$H_p(\text{Out}(F_n); \mathbb{Q}) = E^2_{p,0} = \frac{\ker(\partial_C|_{F_p C_p}) \cap \ker(\partial_R|_{F_p C_p})}{\partial_R(\ker(\partial_C|_{F_{p+1} C_{p+1}}))}. \quad (1)$$

Note that if $(G, \Phi) \in F_p C_p$ then G is trivalent. We compute explicitly bases for the vector spaces $F_p C_p$, and matrices for the differentials ∂_C, ∂_R, to prove the theorem.

3. Implementation

We follow for $n = 7$ the procedure sketched in [12]. Using the software program nauty [8], we enumerate all trivalent graphs of rank n and vertex valencies ≥ 3. The libraries in nauty produce a canonical ordering of a graph, and compute generators for its automorphism group. We then weed out the non-2-connected ones.

For given $p \in \mathbb{N}$, we then enumerate all p-element oriented forests in these graphs, and weed out those that admit an odd symmetry. These are stored as a basis for $F_p C_p$. Let a_p denote the dimension of $F_p C_p$.

For (G, Φ) a basis vector in $F_p C_p$, the forested graphs that appear as summands in $\partial_C(G, \Phi)$ and $\partial_R(G, \Phi)$ are numbered and stored in a hash table as they occur, and the matrices ∂_C and ∂_R are computed as sparse matrices with a_p columns.

The nullspace $\ker(\partial_C|_{F_p C_p})$ is then computed: let b_p denote its dimension; then the nullspace is stored as a sparse $(a_p \times b_p)$-matrix N_p. The computation is greatly aided by the fact that ∂_C is a block matrix, whose row and column blocks are spanned by $\{(G, \Phi) : G/\Phi = G_0\}$ for all choices of the fully contracted graph G_0. The matrices N_p are computed using the linear algebra library linbox [7], which provides exact linear algebra over \mathbb{Q} and finite fields.

Finally, the rank c_p of $\partial_R \cap N_p$ is computed, again using linbox. By (1), we have

$$\dim H_p(\text{Out}(F_n); \mathbb{Q}) = b_p - c_p - c_{p+1}.$$
The rational homology of the outer automorphism group of F_7

For memory reasons (the computational requirements reached 200GB of RAM at its peak), some of these ranks were computed modulo a large prime (65521 and 65519 were used in two independent runs).

Computing modulo a prime can only reduce the rank; so that the values c_p we obtained are underestimates of the actual ranks of $\partial_N \circ N_p$. However, we also know a priori that $b_p - c_p - c_{p+1} \geq 0$ since it is the dimension of a vector space; and none of the c_p we computed can be increased without at the same time causing a homology dimension to become negative, so our reduction modulo a prime is legal.

For information, the parameters a_p, b_p, c_p for $n = 7$ are as follows:

p	a_p	b_p	c_p
0	365	364	364
1	3712	1784	5642
2	23227	14766	5642
3	854k	30326	4222
4	1.6m	38113	1054
5	2.3m	28588	1054
6	2.6m	16741	1054
7	1.2m	6931	1054
8	376k	1682	1054
9	179	179	1054
10	179	179	1054
11	179	179	1054

The largest single matrix operations that had to be performed were computing the nullspace of a 2038511×536647 matrix (16 CPU hours) and the rank modulo 65519 of a (less sparse) 1355531×16741 matrix (10 CPU hours).

The source files used for the computations are available as supplemental material. Compilation requires \texttt{g++} version 4.7 or later, a functional \texttt{linbox} library, available from the site \url{http://www.linalg.org}, as well as the \texttt{nauty} program suite, available from the site \url{http://pallini.di.uniroma1.it}. It may also be directly downloaded and installed by typing \texttt{make nauty25r9} in the directory in which the sources were downloaded. Beware that the calculations required for $n = 7$ are prohibitive for most desktop computers.

Conclusion

Computing the dimensions of the homology groups is only the first step in understanding them; much more interesting would be to know visually, or graph-theoretically, where these non-trivial classes come from.

It seems almost hopeless to describe, via computer experiments, the non-trivial class in degree 8. It may be possible, however, to arrive at a reasonable understanding of the non-trivial class in degree 11.

This class may be interpreted as a linear combination w of trivalent graphs on 12 vertices, each marked with an oriented spanning forest. There are 376365 such forested graphs that do not admit an odd symmetry. The class $w \in \mathbb{Q}^{376365}$ is an \mathbb{Z}-linear combination of 70398 different forested graphs, with coefficients in \{±1, ... , ±16\}. For example, eleven graphs occur with coefficient ±13; four of them have indices 25273, 53069, 53239, 53610 respectively, and are, with the spanning tree in bold,
The coefficients of w, and corresponding graphs, are distributed as ancillary material in the file w_{cycle}, in format ‘coefficient [edge1 edge2 ...]’, where each edge is ‘x–y’ or ‘x+y’ to indicate whether the edge is absent or present in the forest. Edges always satisfy $x \leq y$, and the forest is oriented so that its edges are lexicographically ordered. Edges are numbered from 0 while graphs are numbered from 1. There are no multiple edges.

ACKNOWLEDGMENTS

I am grateful to Alexander Berglund and Nathalie Wahl for having organized a wonderful and stimulating workshop on automorphisms of free groups in Copenhagen in October 2015, when this work began; to Masaaki Suzuki, Andy Putman and Karen Vogtmann for very helpful conversations that took place during this workshop; and to Jim Conant for having checked the cycle w (after finding a mistake in its original signs) with an independent program.

REFERENCES

[1] James Conant and Karen Vogtmann, On a theorem of Kontsevich, Algebr. Geom. Topol. 3 (2003), 1167–1224, DOI 10.2140/agt.2003.3.1167. MR2026331 (2004m:18006)
[2] Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91–119, DOI 10.1007/BF01388734. MR830040 (87f:20048)
[3] Søren Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. (2) 173 (2011), no. 2, 705–768, DOI 10.4007/annals.2011.173.2.3. MR2784914 (2012c:20149)
[4] Allen Hatcher and Karen Vogtmann, Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004), 1253–1272, DOI 10.2140/agt.2004.4.1253. MR2113904 (2005j:20038)
[5] Allen Hatcher, Karen Vogtmann, and Nathalie Wahl, Erratum to: “Homology stability for outer automorphism groups of free groups [Algebr. Geom. Topol. 4 (2004), 1253–1272 (electronic); MR 2113904] by Hatcher and Vogtmann, Algebr. Geom. Topol. 6 (2006), 573–579 (electronic), DOI 10.4007/annals.2003.m1404. MR2220689 (2006k:20069)
[6] Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel’fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173–187. MR1247289 (94i:58212)
[7] LinBox — Exact Linear Algebra over the Integers and Finite Rings, Version 1.1.6, The LinBox Group, 2008.
[8] Brendan D. McKay and Adolfo Piperno, Practical graph isomorphism, II, J, Symbolic Comput. 60 (2014), 94–112, DOI 10.1016/j.jsc.2013.09.003, available at arXiv:1301.1493. MR3131381
[9] Shigeyuki Morita, Structure of the mapping class groups of surfaces: a survey and a prospect, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 349–406 (electronic), DOI 10.2140/gtm.1999.2.349, (to appear in print). MR1724418 (2000j:57039)
[10] Shigeyuki Morita, Takuya Sakasai, and Masaaki Suzuki, Computations in formal symplectic geometry and characteristic classes of moduli spaces, Quantum Topol. 6 (2015), no. 1, 139–182, DOI 10.4171/QT/61. MR3335007
[11] Shigeyuki Morita, Integral Euler characteristic of OutF_{11}, Exp. Math. 24 (2015), no. 1, 93–97, DOI 10.1080/10586458.2014.956373. MR3305042
[12] Ryo Ohashi, The rational homology group of OutF_n for $n \leq 6$, Experiment. Math. 17 (2008), no. 2, 167–179. MR2433883 (2009k:20118)

École Normale Supérieure, Paris and Georg-August-Universität zu Göttingen
E-mail address: laurent.bartholdi@gmail.com