TWISTINGS, CROSSED COPRODUCTS AND HOPF-GALOIS COEXTENSIONS

S. CAENEPEEL, DINGGUO WANG, AND YANXIN WANG

Abstract. Let H be a Hopf algebra. Ju and Cai introduced the notion of twisting of an H-module coalgebra. In this note, we study the relationship between twistings, crossed coproducts and Hopf-Galois coextensions. In particular, we show that a twisting of an H-Galois coextension remains H-Galois if the twisting is invertible.

Introduction

A fundamental result in Hopf-Galois theory is the Normal Basis Theorem, stating that, for a finitely generated cocommutative Hopf algebra H over a commutative ring k, the set of isomorphism classes of Galois H-objects that are isomorphic to H as an H-comodule is a group, and this group is isomorphic to the second Sweedler cohomology group $H^2(H, k)$ (see [16]). The Galois object corresponding to a 2-cocycle is then given by a crossed product construction. The crossed product construction can be generalized to arbitrary Hopf algebras, and plays a fundamental role in the theory of extensions of Hopf algebras, see [3] and [12]. Also in this more general situation, it turns out that there is a close relationship between crossed products on one side, and Hopf-Galois extensions and cleft extensions, cf. [3], [8], [12]. A survey can be found in [15]. An alternative way to deform the multiplication on an H-comodule algebra A has been proposed in [1], using a so-called twisting of A, and it was shown that the crossed product construction can be viewed as a special case of the twisting construction. The relation between twistings and H-Galois extensions was studied in [2]. Now there exists a coalgebra version of the Normal Basis Theorem (see [5]). In this situation, one tries to deform the comultiplication on a

1991 Mathematics Subject Classification. 16W30.
Key words and phrases. Hopf algebra, crossed coproduct, Hopf-Galois coextension, Harrison cocycle.

Research supported by the project G.0278.01 “Construction and applications of non-commutative geometry: from algebra to physics” from FWO Vlaanderen.
comutative Hopf algebra H, using this time a Harrison cocycle instead of a Sweedler cocycle. Crossed coproducts, cleft coextensions and Hopf-Galois coextensions have been introduced and studied in \[9\] and \[11\]. Ju and Cai \[13\] have introduced the notion twisting of an H-module coalgebra, which can be viewed as dual version of the twistings introduced in \[11\]. The aim of this paper is to study the relationship between twistings, crossed coproducts and Hopf-Galois coextensions. Our main result is the fact that the twisting of a Hopf-Galois coextension by an invertible twist map is again a Hopf-Galois coextension (and conversely).

Our paper is set up as follows: in Section 1.1, we recall the twistings introduced in \[13\], and in Section 1.2 the definition of a Harrison cocycle and the crossed coproduct construction from \[9\] and \[11\]. In Section 2, we introduce an alternative version of 2-cocycles, called twisted 2-cocycles, and discuss the relation with Harrison cocycles (Proposition 2.3). In Section 3, we introduce an equivalence relation on the set of twistings of an H-module coalgebra, and we show that a twisting in an equivalence class is invertible if and only if all the other twistings in this equivalence class are invertible (Theorem 3.4). Two twistings are equivalent if and only if their corresponding crossed coproducts are isomorphic (Proposition 1.1). In Section 4 the relationship between twistings and Hopf-Galois coextensions is investigated.

For the general theory of Hopf algebras, we refer to the literature, see for example \[10\], \[15\], \[17\].

1. Notation and preliminary results

We work over a field k. All maps are assumed to be k-linear. For the comultiplication on a k-coalgebra C, we use the Sweedler-Heineman notation

\[\Delta_C(c) = c_1 \otimes c_2\]

with the summation implicitly understood. We use a similar notation for a (right) coaction of a coalgebra on a comodule:

\[\rho(m) = m_0 \otimes m_1 \in M \otimes C\]

Let A be a k-algebra, then Hom(C, A) is also an algebra, with convolution product

\[(f \ast g)(c) = f(c_1)g(c_2)\]

Reg(C, A) will denote the set of convolution invertible elements in Hom(C, A). \mathcal{M}_C^R will be the category of modules with a right A-action and a right C-coaction, such that the C-coaction is A-linear.
1.1. **Twistings of a coalgebra.** We recall some definitions and results from [13]. Let \(H \) be a Hopf algebra over a field \(k \), with bijective antipode \(S \). The composition inverse of the antipode will be denoted by \(\bar{S} \).

Recall that a right \(H \)-module coalgebra is a coalgebra \(C \) which is also a right \(H \)-module such that

\[
\Delta(c \cdot h) = c_1 \cdot h_1 \otimes c_2 \cdot h_2 \quad \text{and} \quad \varepsilon_C(c \cdot h) = \varepsilon_C(c) \varepsilon_H(h)
\]

for all \(c \in C \) and \(h \in H \).

\(\mathcal{M}_C^H \) is the category whose objects are right \(H \)-modules and right \(C \)-comodules \(M \) such that the following compatibility relation is satisfied:

\[
\rho(m \cdot h) = m_0 \cdot h_1 \otimes m_1 \cdot h_2
\]

Recall from [13] that we have the following associative multiplication on \(\text{Hom}(C, H \otimes C) \):

\[
\tau \ast \lambda = (m_H \otimes \text{id}_C) \circ (\text{id}_H \otimes \lambda) \circ \tau
\]

for all \(\tau, \lambda \in \text{Hom}(C, H \otimes C) \). The unit of this multiplication is the map \(\sigma : C \rightarrow H \otimes C \), \(\sigma(c) = 1 \otimes c \).

Remark that we have an algebra isomorphism

\[
\alpha : \text{Hom}(C, H \otimes C) \rightarrow H \text{End}(H \otimes C)^{\text{op}}
\]

For \(\tau : C \rightarrow H \otimes C \), we define the corresponding \(\alpha(\tau) = f_\tau : H \otimes C \rightarrow H \otimes C \) by

\[
f_\tau(h \otimes c) = h \tau(c) = hc_{-1} \otimes c_0
\]

Assume that \(\tau \) satisfies the following normality conditions:

\[
(1) \quad (1 \otimes \varepsilon_C) \tau(c) = \varepsilon_C(c) 1_H, \quad (\varepsilon_H \otimes 1) \tau(c) = c
\]

If we write \(\tau(c) = c_{-1} \otimes c_0 \) (summation understood), then (1) takes the following form

\[
c_{-1} \varepsilon_C(c_0) = \varepsilon_C(c) 1_H, \quad \varepsilon_H(c_{-1}) c_0 = c
\]

We can then define a new (in general non-coassociative) comultiplication \(\Delta_\tau \) on \(C \) as follows:

\[
\Delta_\tau(c) = c_1 \cdot c_{2,-1} \otimes c_{2,0}, \quad \text{or} \quad \Delta_\tau = (m_H \otimes \text{id}) \circ (\text{id} \otimes \tau) \circ \Delta
\]

Let \(C^\tau \) be equal to \(C \) as a right \(H \)-module, with comultiplication \(\Delta_\tau(c) \).

A similar construction applies to \(M \in \mathcal{M}_C^H \): \(F_\tau(M) = M^\tau \) as a right \(H \)-comodule, with

\[
\rho^\tau(m) = m_0 \cdot m_{1,-1} \otimes m_{1,0}
\]

\(\tau \) is called a twisting if and only if \(C^\tau \) is a right \(H \)-module coalgebra, and \(M^\tau \in \mathcal{M}_C^C \) for all \(M \in \mathcal{M}_C^H \). It is shown in [13, Theorem 1.1]
that $\tau : C \to H \otimes C$ satisfying (1) is a twisting if and only if for all $h \in H$ and $c \in C$,

\[(2) \quad c_{-1} h_1 \otimes c_0 \cdot h_2 = h_1 (c \cdot h_2)_{-1} \otimes (c \cdot h_2)_0\]

and

\[(3) \quad c_{-1} \otimes c_{0,1} \cdot c_{0,2,1} \otimes c_{0,2,0} = c_{1,-1} c_{2,-1,1} \otimes c_{1,0} \cdot c_{2,-1,2} \otimes c_{2,0}\]

(4) is equivalent to

\[(4) \quad S(h_1) c_{-1} h_2 \otimes c_0 \cdot h_3 = (c \cdot h)_{-1} \otimes (c \cdot h)_0\]

If τ has an inverse λ, then the functor F is an equivalence of categories. Left hand twistings are defined in a similar way. Consider the vector space isomorphism

$$\text{Hom}(C, C \otimes H) \cong \text{End}_H(C \otimes H^{\text{op}}, C \otimes H^{\text{op}})$$

The composition on the right hand side is transported into the following associative multiplication on $\text{Hom}(C, C \otimes H)$:

$$\tau \times \lambda = T \circ (T \circ \lambda \ast T \circ \tau)$$

Here T is the usual twist map. The unit σ' on $\text{Hom}(C, C \otimes H)$ is given by $\sigma'(c) = c \otimes 1$. If $\lambda \in \text{Hom}(C, C \otimes H)$ satisfies the normalizing conditions

\[(5) \quad (1 \otimes \varepsilon_H) \lambda(c) = c, \quad (\varepsilon_C \otimes 1) \lambda(c) = \varepsilon_C(c) 1_H\]

then we can twist the comultiplication on C as follows: write $\lambda(c) = c_0 \otimes c_1$, and define $\lambda \Delta$ by

$$\lambda \Delta(c) = c_{1,0} \otimes c_2 \cdot c_{1,1}$$

λC will be C as a right H-module, with the comultiplication $\lambda \Delta$. The C-coaction $M \in C \mathcal{M}_H$ can also be twisted:

$$\lambda \rho(m) = m_{-1,0} \otimes m_0 m_{-1,1}$$

λ is called a left hand twisting if λC is an H-module coalgebra, and $\lambda M \in \lambda C \mathcal{M}_H$ for every $M \in C \mathcal{M}_H$. $\lambda : C \to C \otimes H$ satisfying (5) is a left hand twisting if and only if for all $h \in H$ and $c \in C$,

\[(6) \quad c_0 \cdot h_1 \otimes c_1 h_2 = (c \cdot h_1)_0 \otimes h_2 (c \cdot h_1)_1\]

and

\[(7) \quad c_{0,1,0} \otimes c_{0,2} \cdot c_{0,1,1} \otimes c_1 = c_{1,0} \otimes c_{2,0} \cdot c_{1,1,1} \otimes c_{2,1} c_{1,1,2}\]

(8) is equivalent to

\[(8) \quad c_0 \cdot h_1 \otimes S(h_3) c_1 h_2 = \sum (c \cdot h)_0 \otimes (c \cdot h)_1\]
For \(\tau \in \text{Hom}(C, H \otimes C) \) with inverse \(\lambda \), we write
\[
(9) \quad \tau(c) = c_{-1} \otimes c_0, \quad \lambda(c) = c_{(-1)} \otimes c_{(0)}
\]
We then have
\[
(10) \quad c_{-1}c_{0,(-1)} \otimes c_{0,(0)} = c_{(-1)}c_{(0),(-1)} \otimes c_{(0),0} = 1 \otimes c
\]
For \(\gamma \in \text{Hom}(C, C \otimes H) \) with inverse \(\mu \), we write
\[
\gamma(c) = c_0 \otimes c_1, \quad \mu(c) = c_{(0)} \otimes c_{(1)}
\]
Let \(\mathcal{T}(C) \) and \(\mathcal{L}(C) \) be the sets of respectively twistings and left hand twistings of \(C \), and \(U(\mathcal{T}(C)), U(\mathcal{L}(C)) \) the sets of invertible twistings and left hand twistings.

Proposition 1.1. Take \(\tau \in U(\mathcal{T}(C)) \) with inverse \(\lambda \). Define \(\ell(\tau) : C \rightarrow C \otimes H \) by
\[
\ell(\tau)(c) = c_{0,(0)} \cdot \bar{S}(c_{0,(-1)}) \bar{S}(c_{-1}) \otimes \bar{S}(c_{-1})_2
\]
Take \(\gamma \in U(\mathcal{L}(C)) \), with inverse \(\mu \). Define \(r(\gamma) : C \rightarrow H \otimes C \) by
\[
r(\gamma)(c) = S(c_1)_1 \otimes c_{0,(0)} \cdot S(c_{0,(1)}) S(c_1)_2
\]
Then \(\ell : U(\mathcal{T}(C)) \rightarrow U(\mathcal{L}(C)) \) is a bijection with inverse \(r \). Furthermore \(\ell(\sigma) = \sigma' \) and \(r(\sigma') = \sigma \).

Proof. It is shown in \([13]\) that \(\ell(\tau) \in U(\mathcal{L}(C)) \) with inverse given by
\[
\ell(\tau')(c) = c_{0,(0)} \cdot \bar{S}(c_{0,(-1)}) \bar{S}(c_{-1})_1 \otimes \bar{S}(c_{-1})_2 \bar{S}(c_{-1})_2
\]
Set \(g = \bar{S}(c_{0,(-1)}) \), \(h = \bar{S}(c_{-1}) \). Then \(\ell(\tau)(c) = c_{0,(0)} \cdot gh_1 \otimes h_2 \), so
\[
r(\ell(\tau))(c) = S(h_2)_1 \otimes (c_{0,(0)} \cdot gh_1)_{0,(0)} \cdot \bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_1
\]
\[
\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_1 S(\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)}))_3
\]
\[
\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_2 \bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_2 S(h_2)_2
\]
\[
= S(h_2)_1 \otimes (c_{0,(0)} \cdot gh_1)_{0,(0)} \bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_1
\]
\[
\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_1 S(\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)}))_2
\]
\[
\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_2 \bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)}))_3 S(h_2)_2
\]
\[
= S(h_2)_1 \otimes (c_{0,(0)} \cdot gh_1)_{0,(0)}
\]
\[
\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)})_1 S(\bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)}))_2 S(h_2)_2
\]
\[
= S(h_2)_1 \otimes (c_{0,(0)} \cdot gh_1)_{0,(-1)} \bar{S}((c_{0,(0)} \cdot gh_1)_{0,(-1)}))_2 S(h_2)_2
\]
\[
= S(h_3) \otimes c_{0,(0),0} \cdot \bar{S}(c_{0,(-1)}) gh_1 S(h_2)
\]
\[
= S(h) \otimes c_{0,(0),0} \cdot \bar{S}(c_{0,(-1)}) gh_1 S(h_2)
\]
In [13], it is also shown that the *-inverse of \(r(\gamma) \) is given by
\[
\gamma(1) = S(S(c_1)_1)S(c_0)_1c_1_2 \otimes c_0_0 \cdot S(c_0)_2S(c_1)_3
\]
A routine verification similar to the one above then shows that
\[
\ell(r(\gamma))(c) = \gamma(c)
\]
for all \(c \in C \). It is easy to show that \(\ell(\sigma) = \sigma' \) and \(r(\sigma') = \sigma \).

1.2. The crossed coproduct. We recall the following definitions from [8] and [11].

Definition 1.2. Let \(C \) be a coalgebra and \(H \) a Hopf algebra. We say that \(H \) coacts weakly on \(C \) if there is a \(k \)-linear map \(\rho: C \rightarrow H \otimes C; \rho(c) = c_{[-1]} \otimes c_{[0]} \) satisfying the following conditions, for all \(c \in C \):

\[
\begin{align*}
(11) & \quad c_{[-1]} \otimes c_{[0]}1 \otimes c_{[0]2} = c_{1[-1]}c_{2[-1]} \otimes c_{1[0]} \otimes c_{2[0]} \\
(12) & \quad \varepsilon_C(c_{[0]})c_{[-1]} = \varepsilon(c)1_H \\
(13) & \quad \varepsilon_H(c_{[-1]})c_{[0]} = c
\end{align*}
\]

Assume that \(H \) coacts weakly on \(C \), and let \(\alpha: C \rightarrow H \otimes H; \alpha(c) = \alpha_1(c) \otimes \alpha_2(c) \) be a linear map. Let \(C \bowtie_{\alpha} H \) be the coalgebra whose underlying vector space is \(C \otimes H \), with comultiplication and counit given by
\[
\begin{align*}
\Delta_{\alpha}(c \bowtie h) &= (c_1 \bowtie c_{[-1]} \alpha_1(c_3)h_1) \otimes (c_{2[0]} \bowtie \alpha_2(c_3)h_2) \\
\varepsilon_{\alpha}(c \bowtie h) &= \varepsilon_C(c)\varepsilon_H(h)
\end{align*}
\]
It was pointed out in [11] that \(\varepsilon_{\alpha}(c \bowtie h) \) satisfies the counit property if and only if
\[
\varepsilon_H \otimes id)\alpha(c) = (id \otimes \varepsilon_H)\alpha(c) = \varepsilon_C(c)1_H
\]
\(\Delta_{\alpha} \) is coassociative if and only if \(\alpha \) satisfies
\[
\begin{align*}
(14) & \quad \Delta_{\alpha}(c \bowtie h) = (c_1 \bowtie c_{[-1]} \alpha_1(c_3)h_1) \otimes (c_{2[0]} \bowtie \alpha_2(c_3)h_2) \\
& \quad \varepsilon_{\alpha}(c \bowtie h) = \varepsilon_C(c)\varepsilon_H(h)
\end{align*}
\]
In [11], (15) is called the cocycle condition, and (16) is called the twisted comodule condition. Following [7], we call α satisfying (14-16), a Har rison 2-cocycle.

Now consider two weak H-coactions $\rho, \rho' : C \rightarrow H \otimes C$, and write
\[\rho(c) = c_{[-1]} \otimes c_{[0]} \quad \text{and} \quad \rho'(c) = c_{<1>} \otimes c_{<0>} \]
Also consider two 2-cocycles $\alpha, \alpha' : C \rightarrow H \otimes H$ corresponding respectively to ρ and ρ', and write
\[\alpha(c) = \alpha_1(c) \otimes \alpha_2(c) \quad \text{and} \quad \alpha'(c) = \alpha'_1(c) \otimes \alpha'_2(c) \]
Then we can consider the crossed coproducts $C \rhd \alpha H$ and $C \rhd \alpha' H$.

In the next Lemma, we discuss when these are isomorphic.

Lemma 1.3. Consider a convolution invertible map $u : C \rightarrow H$ satisfying the conditions
\[c_{<1>} \otimes c_{<0>} = u^{-1}(c_1)c_{2[-1]}u(c_3) \otimes c_{2[0]} \quad \text{(17)} \]
\[\alpha'(c) = u^{-1}(c_1)c_{2[-1]}\alpha_1(c_3)u(c_4)_1 \otimes u^{-1}(c_{2[0]})\alpha_2(c_3)u(c_4)_2 \quad \text{(18)} \]
for all $c \in C$. Then the map
\[\phi : C \rhd \alpha' H \rightarrow C \rhd \alpha H ; \quad \phi(c \rhd h) = c_{1} \rhd u(c_2)h \quad \text{(19)} \]
is a left C-colinear, right H-linear coalgebra isomorphism. Every left C-colinear, right H-linear coalgebra isomorphism between $C \rhd \alpha H$ and $C \rhd \alpha' H$ is of this type.

Proof. The proof is a dual version of a similar statement for crossed products, see [14].

It was shown in [13] that the crossed coproduct construction can be viewed as a special case of the twisting construction from Section 1.1.

Let H be a Hopf algebra, and C a right H-module coalgebra, and view $C \otimes H$ as a right H-module coalgebra, with the right H-action is induced by the multiplication in H. It was proved in [13] that there is a bijective correspondence between crossed coproduct structures on $C \otimes H$ and twistings of $C \otimes H$. Let us recall the description of this bijection.

Consider a weak coaction ρ and a 2-cocycle α giving rise to the crossed coproduct $C \rhd \alpha H$, and write
\[\rho(c) = c_{[-1]} \otimes c_{[0]} ; \quad \alpha(c) = \alpha_1(c) \otimes \alpha_2(c) \]
The corresponding twisting $\tau : C \otimes H \rightarrow H \otimes C \otimes H$ is defined by
\[\tau(c \otimes h) = S(h_1)c_{1[-1]}\alpha_1(c_2)h_2 \otimes c_{1[0]} \otimes \alpha_2(c_2)h_3 \quad \text{(20)} \]
Conversely, if \(\tau \) is a twisting of \(C \otimes H \), then \((C \otimes H)^\tau = C \bowtie_{\alpha} H \), with weak coaction \(\rho \) and 2-cocycle \(\alpha \) given by

\[
\begin{align*}
\rho(c) &= (id \otimes id \otimes \varepsilon_H)\tau(c \otimes 1) \\
\alpha(c) &= (id \otimes \varepsilon_C \otimes id)\tau(c \otimes 1)
\end{align*}
\]

2. Twisted 2-cocycles

Let \(H \) be a Hopf algebra with bijective antipode \(S \); let \(\bar{S} \) be the composition inverse of \(S \). Take an \(H \)-module coalgebra \(C \), and let \(B = C/CH^+ \).

Definition 2.1. A map \(\alpha : C \rightarrow H \otimes H \), \(\alpha(c) = \alpha_1(c) \otimes \alpha_2(c) \) is called a twisted 2-cocycle if the following conditions are satisfied, for all \(h \in H \) and \(c \in C \):

\[
\begin{align*}
(id_H \otimes \varepsilon_H)\alpha(c) &= (\varepsilon_H \otimes id_H)\alpha(c) = \varepsilon_C(c)1_H \\
\alpha(c \cdot h) &= S(h_1)\alpha_1(c)h_2 \otimes S(h_4)\alpha_2(c)h_3 \\
\alpha_1(c_1)\alpha_1(c_3)_1 \otimes c_2 \cdot \alpha_2(c_1)\alpha_1(c_3)_2 \otimes \alpha_2(c_3) &= \alpha_1(c_1) \otimes c_2 \cdot \alpha_1(c_3)\alpha_2(c_1)_1 \otimes \alpha_2(c_3)\alpha_2(c_1)_2 \\
&= S(h_1)\alpha_1(c_1)h_2 \otimes c_2 \cdot \alpha_2(c_3)h_3 \\
&= S(h_1)c_{-1}h_2 \otimes c_0 \cdot h_3
\end{align*}
\]

Our first result is the fact that twisted 2-cocycles can be used to define twistings on \(C \).

Proposition 2.2. With notation as above, if \(\alpha : C \rightarrow H \otimes H \) is a twisted 2-cocycle, then the map \(\tau_\alpha : C \rightarrow H \otimes C ; \tau_\alpha(c) = \alpha_1(c_1) \otimes c_2 \cdot \alpha_2(c_1) \) is a twisting of \(C \).

Proof. It follows easily from (23) that \(\tau_\alpha \) satisfies the normalizing condition (1). Next we compute that

\[
(c \cdot h)_{-1} \otimes (c \cdot h)_0 = \alpha_1((c \cdot h)_1) \otimes (c \cdot h)_2 \cdot \alpha_2((c \cdot h)_1)
\]

\[
= \alpha_1(c_1 \cdot h_1) \otimes c_2 \cdot h_2\alpha_2(c_1 \cdot h_1)
\]

\[
= S(h_1)\alpha_1(c_1)h_2 \otimes c_2 \cdot h_5S(h_4)\alpha_2(c_1)h_3
\]

\[
= S(h_1)\alpha_1(c_1)h_2 \otimes c_2 \cdot \alpha_2(c_1)h_3
\]

\[
= S(h_1)c_{-1}h_2 \otimes c_0 \cdot h_3
\]
and (2) follows easily. Finally we compute the left and right hand side of (3)

\[
c_{-1} \otimes c_{0.1} \cdot c_{0.2,-1} \otimes c_{0.2.0} = (1 \otimes \Delta_{\tau}) \tau_{\alpha}(c)
\]

\[
= \alpha_1(c_1) \otimes (c_2 \cdot \alpha_2(c_1))_1 \cdot \alpha_1(((c_2 \cdot \alpha_2(c_1))_2)_1)
\]

\[
\otimes ((c_2 \cdot \alpha_2(c_1))_2) \cdot \alpha_2(((c_2 \cdot \alpha_2(c_1))_2)_1)
\]

\[
= \alpha_1(c_1) \cdot c_2 \cdot \alpha_2(c_1)_1 \cdot c_3 \cdot \alpha_2(c_1)_2
\]

\[
\otimes (c_4 \cdot \alpha_2(c_1)_3) \cdot \alpha_2(c_3 \cdot \alpha_2(c_1)_2)
\]

\[
= \alpha_1(c_1) \otimes c_2 \cdot \alpha_2(c_1)_1 \cdot S(\alpha_2(c_1)_2) \cdot \alpha_1(c_3) \cdot \alpha_2(c_1)_3
\]

\[
\otimes c_4 \cdot \alpha_2(c_1)_6 \cdot \alpha_1(c_3) \cdot \alpha_2(c_3 \cdot \alpha_2(c_1)_4
\]

\[
= \alpha_1(c_1) \otimes c_2 \cdot \alpha_1(c_3) \otimes c_4 \cdot \alpha_2(c_3 \cdot \alpha_2(c_1)_2
\]

and

\[
c_{1,-1} \cdot c_{2,-1.1} \otimes c_{1.0} \cdot c_{2,-1.2} \otimes c_{2.0}
\]

\[
= \sum \alpha_1(c_{11}) \cdot \alpha_1(c_{21})_1 \otimes c_{12} \cdot \alpha_2(c_{11}) \cdot \alpha_1(c_{21})_2 \otimes c_{22} \cdot \alpha_2(c_{21})
\]

\[
= \alpha_1(c_1) \cdot \alpha_1(c_3)_1 \otimes c_2 \cdot \alpha_2(c_1)_1 \cdot \alpha_1(c_3)_2 \otimes c_4 \cdot \alpha_2(c_3)
\]

\[
= \alpha_1(c_1) \otimes c_2 \cdot \alpha_1(c_3) \cdot \alpha_2(c_1)_1 \otimes c_4 \cdot \alpha_2(c_3) \cdot \alpha_2(c_1)_2
\]

(3) follows, and \(\tau_{\alpha} \) is a twisting. \(\square \)

There is also a relation between twisted 2-cocycles and Harrison 2-cocycles. Let \(C \) be a right \(H \)-module coalgebra. Consider the trivial weak coaction \(\rho(c) = 1 \otimes c \), and \(\alpha : C \rightarrow H \otimes H \). The cocycle condition (13) and the twisted comodule condition (16) of Definition 1.2 then take the following form:

(26) \[
\alpha_1(c_2) \otimes \alpha_1(c_1) \alpha_2(c_2)_1 \otimes \alpha_2(c_1) \alpha_2(c_2)_2
\]

\[
= \alpha_1(c_1) \alpha_1(c_2)_1 \otimes \alpha_2(c_1) \alpha_1(c_2)_2 \otimes \alpha_2(c_2)
\]

(27) \[
\alpha_1(c_2) \otimes \alpha_2(c_2) \otimes c_1 = \alpha_1(c_1) \otimes \alpha_2(c_1) \otimes c_2
\]

The set of Harrison 2-cocycles corresponding to the trivial weak coaction is denoted by \(Z^2_{\text{Harr}}(H, C) \). Thus \(Z^2_{\text{Harr}}(H, C) \) consists of maps satisfying (14), (26) and (27). The set of twisted 2-cocycles \(\alpha^{\prime} : C \otimes H \rightarrow H \otimes H \) in the sense of Definition 2.1 will be denoted by \(Z^2_{\text{tw}}(H, C \otimes H) \).

Proposition 2.3. Let \(C \) be a right \(H \)-module coalgebra. We have a bijection between \(Z^2_{\text{Harr}}(H, C) \) and \(Z^2_{\text{tw}}(H, C \otimes H) \).

Proof. Take \(\alpha^{\prime} \in Z^2_{\text{tw}}(H, C \otimes H) \), and write

\[
\alpha^{\prime}(c \otimes h) = \sum \alpha_1^{\prime}(c \otimes h) \otimes \alpha_2^{\prime}(c \otimes h)
\]
For all \(c \in C \) and \(h \in H \), we have

\[
\alpha_1^t(c_1 \otimes h_1)\alpha_1^t(c_2 \otimes h_2)_1 \otimes \alpha_2^t(c_1 \otimes h_1)\alpha_1^t(c_2 \otimes h_2)_2 \otimes \\
\alpha_2^t(c_2 \otimes h_2) = \alpha_1^t(c_1 \otimes h_1) \otimes \alpha_1^t(c_2 \otimes h_2)\alpha_2^t(c_1 \otimes h_1)_1 \\
\otimes \alpha_2^t(c_2 \otimes h_2)\alpha_2^t(c_1 \otimes h_1)_2
\]

Now define \(\alpha : C \to H \otimes H \) by \(\alpha(c) = \alpha^t(c \otimes 1) \). It is easy to see that \(\alpha \) satisfies (14) and (27). Using (28), we compute

\[
\alpha_1(c_2) \otimes \alpha_1(c_1)\alpha_2(c_2)_1 \otimes \alpha_2(c_1)\alpha_2(c_2)_2 \\
= \alpha_1(c_1) \otimes \alpha_1(c_2)\alpha_2(c_1)_1 \otimes \alpha_2(c_2)\alpha_2(c_1)_2 \\
= \alpha_1^t(c_1 \otimes 1) \otimes \alpha_1^t(c_2 \otimes 1)\alpha_2^t(c_1 \otimes 1)_1 \otimes \alpha_2^t(c_2 \otimes 1)\alpha_2^t(c_1 \otimes 1)_2 \\
= \alpha_1^t(c_1 \otimes 1)\alpha_1^t(c_2 \otimes 1)_1 \otimes \alpha_2^t(c_1 \otimes 1)\alpha_1^t(c_2 \otimes 1)_2 \otimes \alpha_2^t(c_2 \otimes 1) \\
= \alpha_1(c_1)\alpha_1(c_2)_1 \otimes \alpha_2(c_1)\alpha_1(c_2)_2 \otimes \alpha_2(c_2)
\]

and it follows that \(\alpha \) also satisfies (24).

Conversely, let \(\alpha \in Z^2_{\text{Harr}}(H, C) \), and define \(\alpha^t : C \otimes H \to H \otimes H \) by

\[
\alpha^t(c \otimes h) = S(h_1)\alpha_1(c)h_2 \otimes \bar{S}(h_4)\alpha_2(c)h_3
\]

We can easily show that \(\alpha^t \) satisfies conditions (23) and (24) of Definition 2.1. A straightforward computation shows that (25) is also satisfied:

\[
\alpha_1^t(c_1 \otimes h_1)\alpha_1^t(c_3 \otimes h_3)_1 \otimes c_2 \otimes h_2\alpha_2^t(c_1 \otimes h_1)\alpha_1^t(c_3 \otimes h_3)_2 \\
\otimes \alpha_2^t(c_3 \otimes h_3)
\]

so it follows that \(\alpha^t \) is a twisted 2-cocycle. We leave it to the reader to show that the maps between \(Z^2_{\text{Harr}}(H, C) \) and \(Z^2_{\text{tw}}(H, C \otimes H) \) defined above are inverses to each other. \(\square \)
3. Equivalence of twistings

In this Section, we will define an equivalence relation on the set of twistings of an H-module coalgebra C. If a twisting is invertible, then all other twistings in the same equivalence class are also invertible.

Proposition 3.1. Take $\tau, \lambda \in T(C)$, and use notation (3). Consider $v \in \text{Hom}(C, H)$ satisfying the following identities, for all $h \in H$, $c \in C$:

\begin{align*}
\varepsilon_H \circ v = \varepsilon_C ; v(c \cdot h) = S(h_1)v(c)h_2 \\
c_{1,-1}v(c_1) \otimes c_{1,0} \cdot v(c_2) = v(c_1)c_{2,-1} \otimes c_{2,0} \cdot v(c_{2,0})
\end{align*}

Then $\psi : C^\tau \rightarrow C^\lambda$, $\psi(c) = c_1 \cdot v(c_2)$ is a left B-colinear right H-linear coalgebra map inducing the identity map on B. If $v \in \text{Reg}(C, H)$, then ψ is an isomorphism.

Proof. Using the second identity in (29) and $B = C/CH^+$, we can easily prove that ψ is left B-colinear and right H-linear. Using the first identity in (29), we obtain that ψ induces a well-defined map $B \rightarrow B$, which is the identity. In order to prove that ψ is a coalgebra map, we need to check that

$$
\psi(c_1 \cdot c_{2,-1}) \otimes \psi(c_{2,0}) = \psi(c_1)\psi(c_{2,-1} \otimes \psi(c_{2,0})
$$

Again, we compute the left and right hand side, and see that they are equal:

\begin{align*}
\psi(c_1)\psi(c_{2,-1} \otimes \psi(c_{2,0}) &= (c_1 \cdot v(c_2))_1(c_1 \cdot v(c_2))_{2,-1} \otimes (c_1 \cdot v(c_2))_{2,0}) \\
&= c_1 \cdot v(c_3)_1(c_2 \cdot v(c_3)_2)_{-1} \otimes (c_2 \cdot v(c_3)_2)_0) \\
&= c_1 \cdot v(c_3)_1S(v(c_3)_2)c_{2,-1}v(c_3)_3 \otimes c_2(0) \cdot v(c_3)_4 \\
&= c_1 \cdot c_{2,-1}v(c_3)_1 \otimes c_2(0) \cdot v(c_3)_2 \\
&= c_1 \cdot v(c_2)c_{3,-1} \otimes c_{3,0} \cdot v(c_{3,0})
\end{align*}

$$
\psi(c_1 \cdot c_{2,-1}) \otimes \psi(c_{2,0}) = (c_1 \cdot c_{2,-1})_1 \cdot v((c_1 \cdot c_{2,-1})_2 \otimes (c_{2,0})_1 \cdot v((c_{2,0})_2) \\
= c_1 \cdot (c_{3,-1})_1v(c_2 \cdot (c_{3,-1})_2 \otimes (c_{3,0})_1 \cdot v((c_{3,0})_2) \\
= c_1 \cdot c_{3,-1,1}S(c_{3,-1,2})v(c_2)c_{3,-1,3} \otimes c_{3,0} \cdot v(c_{3,0}) \\
= c_1 \cdot v(c_2)c_{3,-1} \otimes c_{3,0} \cdot v(c_{3,0})
$$

If $v \in \text{Reg}(C, H)$, then its inverse w also satisfies (29), and $\varphi : C^\lambda \rightarrow C^\tau$ defined by

$$
\varphi(c) = c_1 \cdot w(c_2)
$$

is the inverse of ψ. \qed
Definition 3.2. We call $\tau, \lambda \in \mathcal{T}(C)$ equivalent if there exists $v \in \text{Reg}(C, H)$ satisfying the conditions of Proposition 3.1. We then write $\tau \sim \lambda$.

Lemma 3.3. \sim is an equivalence relation on $\mathcal{T}(C)$.

Proof. $\tau \sim \tau$ through $v(c) = \varepsilon(c)_{1H}$.

Next assume that $\tau \sim \lambda$, and take $v \in \text{Reg}(C, H)$ satisfying (29, 30). (30) is equivalent to

$$c_{(-1)} \otimes c_{(0)} = v(c_1)c_{2,-1}v^{-1}(c_3)_1 \otimes c_{2,0.1} \cdot v(c_{2,0.2})v^{-1}(c_3)_2$$

The inverse u of v satisfies (29). It also satisfies (28) since

$$u(c_1)c_{2,(-1)} \otimes c_{2,(0)_1} \cdot u(c_{2,(0)_2})$$

$$= u(c_1)v(c_2)c_{3,-1}v^{-1}(c_4)_1 \otimes c_{3,0.1} \cdot v(c_{3,0.3})v^{-1}(c_4)_2$$

$$S(v^{-1}(c_4)_3)S(v(c_{3,0.3})_2)u(c_{3,0.2})v(c_{3,0.3})_3v^{-1}(c_4)_4$$

$$= c_{1,-1}v^{-1}(c_2)_1 \otimes c_{1,0.1} \cdot u(c_{1,0.2})v(c_{1,0.3})v^{-1}(c_2)_2$$

$$= c_{1,-1}u(c_2)_1 \otimes c_{1,0.1} \cdot u(c_2)_2$$

and it follows that $\lambda \sim \tau$.

Now assume that $\tau \sim \lambda$, $\lambda \sim \gamma$, and take the corresponding maps v, $u \in \text{Reg}(C, H)$. Set $w = u \ast v$, and write

$$\tau(c) = c_{\sim 1} \otimes c_0 \ ; \ \lambda(c) = c_{(-1)} \otimes c_{(0)} \ ; \ \gamma(c) = c_{[-1]} \otimes c_{[0]}$$

It is easily shown that w satisfies (29). v satisfies (31), and u satisfies

$$c_{[-1]} \otimes c_{[0]} = u(c_1)c_{2,(-1)}u^{-1}(c_3)_1 \otimes c_{2,(0)_1} \cdot u(c_{2,(0)_2})u^{-1}(c_3)_2$$

We compute that

$$c_{[-1]} \otimes c_{[0]} = u(c_1)v(c_2)c_{3,-1}v^{-1}(c_4)_1u^{-1}(c_5)_1 \otimes c_{3,0.1} \cdot$$

$$v(c_{3,0.3})_1v^{-1}(c_4)_2S(v^{-1}(c_4)_3)S(v(c_{3,0.3})_2)u(c_{3,0.2})v(c_{3,0.3})_3v^{-1}(c_4)_4u^{-1}(c_5)_2$$

$$= u(c_1)v(c_2)c_{3,-1}v^{-1}(c_4)_1u^{-1}(c_5)_1 \otimes$$

$$c_{3,0.1} \cdot u(c_{3,0.2})v(c_{3,0.3})v^{-1}(c_4)_2u^{-1}(c_5)_2$$

$$= (u \ast v)(c_1)c_{2,-1}(u \ast v)^{-1}(c_3)_1 \otimes$$

$$c_{2,0.1} \cdot (u \ast v)(c_{2,0.2})(u \ast v)^{-1}(c_3)_2$$

and this proves that $\tau \sim \gamma$. \qed

Theorem 3.4. Take $\tau \sim \lambda \in \mathcal{T}(C)$. If τ is invertible, then λ is also invertible.
Proof. Take \(v \in \text{Reg}(C, H) \) satisfying the conditions in Proposition 3.1, and let \(\psi : C^\tau \rightarrow C^\lambda \) be the coalgebra isomorphism given by

\[
\psi(c) = c_1 \cdot v(c_2)
\]

Let \(\tau^{-1} \) be the inverse to \(\tau \), and write

\[
\tau^{-1}(c) = c_{<1>} \otimes c_{<0>} ; \quad \tau(c) = c_{-1} \otimes c_0 ; \quad \lambda(c) = c_{(-1)} \otimes c_{(0)}
\]

define \(\mu : C \rightarrow H \otimes C \) by

\[
\mu(c) = c_{[-1]} \otimes c_{[0]} = \psi^{-1}(c)_{<1>} v^{-1}(\psi^{-1}(c)_{<0>1}) v(\psi^{-1}(c)_{<0>3})_1 \\
\otimes \psi^{-1}(c)_{<0>2} \cdot v(\psi^{-1}(c)_{<0>3})_2
\]

Using the temporary notation \(\psi^{-1}(c)_{<1>} = a \) and \(\psi^{-1}(c)_{<0>} = b \), it is not hard to prove that \(\mu \) is a left inverse of \(\lambda \). Indeed,

\[
(\mu * \lambda)(c) = (m \otimes \text{id})(\text{id} \otimes \lambda)\mu(c)
\]

\[
= av^{-1}(b_1) v(b_3)_{1} (b_2 \cdot v(b_3)_{2})_{(-1)} \otimes (b_2 \cdot v(b_3)_{0})
\]

\[
= av^{-1}(b_1) v(b_3)_{1} S(v(b_3)_{2}) b_2.(1) v(b_3)_{3} \otimes b_2.(0) \cdot v(b_3)_{4}
\]

\[
= av^{-1}(b_1) b_2.(1) v(b_3)_{1} \otimes b_2.(0) \cdot v(b_3)_{2}
\]

\[
= av^{-1}(b_1) v(b_2) b_{3,-1} \otimes b_{3,0,1} \cdot v(b_{3,0,2})
\]

\[
= ab_{-1} \otimes b_{0,1} \cdot v(b_{0,2})
\]

\[
= 1 \otimes \psi^{-1}(c)_{1} \cdot v(\psi^{-1}(c)_{2})
\]

\[
= 1 \otimes \psi(\psi^{-1}(c))
\]

\[
= 1 \otimes c = \sigma(c)
\]

The proof of the fact that \(\mu \) is also a right inverse of \(\lambda \) is much more technical. From the fact that \(v \) is invertible, and using (30), we obtain

\[
\lambda(c) = c_{(-1)} \otimes c_{(0)} = v(c_1) c_{2,-1} v^{-1}(c_3)_{1} \otimes c_{2,0,1} \cdot v(c_{2,0,2}) v^{-1}(c_3)_{2}
\]
Now set \(\psi^{-1}(c) = c_1 \cdot v^{-1}(c_2) \). We compute

\[
(\lambda * \mu)(c) = (m \otimes id)(id \otimes \mu)\lambda(c) \\
= v(c_1)c_{2, -1}v^{-1}(c_3)_1(c_{2, 0.1} \cdot v(c_{2, 0.2})v^{-1}(c_3)_2)_{[\cdot -1]} \\
\otimes(c_{2, 0.1} \cdot v(c_{2, 0.2})v^{-1}(c_3)_2)_{[0]}
\]

\[
= v(c_1)c_{2, -1}v^{-1}(c_3)_1S(v^{-1}(c_3)_2)S(v(c_{2, 0.2})_{[\cdot -1]})v(c_{2, 0.2})v^{-1}(c_3)_2 \otimes(c_{2, 0.1})_{[0]} \cdot v(c_{2, 0.2})v^{-1}(c_3)_4 \\
= v(c_1)c_{2, -1}S(v(c_{2, 0.2})_{[\cdot -1]})v(c_{2, 0.2})v^{-1}(c_3)_1 \\
\otimes(c_{2, 0.1})_{[0]} \cdot v(c_{2, 0.2})v^{-1}(c_3)_2 \\
= v(c_1)c_{2, -1}S(v(c_{2, 0.2})_{[\cdot -1]})v^{-1}(\psi^{-1}(c_{2, 0.1})_{<0, 1>} \cdot \psi^{-1}(c_{2, 0.1})_{<0, 2>}) \\
\cdot v(\psi^{-1}(c_{2, 0.1})_{<0, 1>} \cdot \psi^{-1}(c_{2, 0.1})_{<0, 2>})v(c_{2, 0.3})v^{-1}(c_3)_2 \\
= v(c_1)c_{2, -1}S(v(c_{2, 0.3})_{[\cdot -1]})v^{-1}(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2})) \\
v^{-1}(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2})_{<0, 1>} \cdot v^{-1}(c_{2, 0.2})_{<0, 2>} \cdot v(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2}))_{<0, 3>}) \\
\otimes(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2})_{<0, 1>} \cdot v^{-1}(c_{2, 0.2})_{<0, 2>)}v(c_{2, 0.3})v^{-1}(c_3)_2 \\
= v(c_1)c_{2, -1}S(v(c_{2, 0.3})_{[\cdot -1]})v^{-1}(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2})) \\
v^{-1}(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2})_{<0, 1>} \cdot v^{-1}(c_{2, 0.2})_{<0, 2>} \cdot v(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2}))_{<0, 3>}) \\
\otimes(c_{2, 0.1} \cdot v^{-1}(c_{2, 0.2})_{<0, 1>} \cdot v^{-1}(c_{2, 0.2})_{<0, 2>)}v(c_{2, 0.3})v^{-1}(c_3)_2
and it follows that λ is convolution invertible.

Theorem 3.5. Let C be a right H-comodule algebra, and consider $\tau, \lambda \in \mathcal{T}(C \otimes H)$. τ and λ are equivalent in the sense of Definition 3.2 if and only if there is a left C-colinear, right H-linear coalgebra isomorphism between the crossed coproducts $C \triangleright_{\alpha} H$, ρ and $C \triangleright'_{\alpha'} H$, ρ' corresponding to τ and λ.

Proof. Write

$$\rho(c) = c_{[-1]} \otimes c_{[0]} \ : \ \rho'(c) = c_{<-1>} \otimes c_{<0>}
$$

If $\tau \sim \lambda$, then there exists $v \in \text{Reg}(C \otimes H, H)$ satisfying (29-30). Define $u : C \rightarrow H \ ; \ u(c) = v^{-1}(c \otimes 1)$

If we can show that u satisfies (17) and (15), then one implication is proved, by Lemma 3.3. It follows from (31) that

$$\begin{align*}
(c_1 \otimes 1)_{(-1)}v(c_2 \otimes 1)_1 \otimes (c_1 \otimes 1)_{(0)} \cdot v(c_2 \otimes 1)_2
\end{align*}
$$

(32) $$v(c_1 \otimes 1)(c_2 \otimes 1)_{-1} \otimes (c_2 \otimes 1)_{0.1} \cdot v((c_2 \otimes 1)_{0.2})$$
applying $1 \otimes 1 \otimes \varepsilon$ to both sides, we find
\[
(c_1 \otimes 1)(-1)v(c_2 \otimes 1) \otimes (1 \otimes \varepsilon)(c_1 \otimes 1)_{(0)} = v(c_1 \otimes 1)(c_2 \otimes 1)_{-1} \otimes (1 \otimes \varepsilon)(c_2 \otimes 1)_0
\]
and using (21), we obtain
\[
c_{<0>} \otimes c_{<0>} = u^{-1}(c_1)c_{2[-1]}u(c_3) \otimes c_{2[0]}
\]
so u satisfies (17).

Applying $1 \otimes \varepsilon \otimes 1$ to both sides of (22), we find
\[
\alpha'(c) = v(c_1 \otimes 1)(c_2 \otimes 1)_{-1}v^{-1}(c_3 \otimes 1)_1 \otimes \\
(\varepsilon \otimes 1)((c_2 \otimes 1)_{0,1} \cdot v((c_2 \otimes 1)_{0,2})v^{-1}(c_3 \otimes 1)_2)
\]
It follows from (20) that
\[
(c \otimes 1)_0 = c_{1[0]} \otimes \alpha_2(c_2)
\]
and
\[
(\varepsilon \otimes 1)((c_2 \otimes 1)_{0,1} \cdot v((c_2 \otimes 1)_{0,2})v^{-1}(c_3 \otimes 1)_2) = \\
(\varepsilon \otimes 1)(c_2,_{0,1} \otimes \alpha_2(c_3))v(c_2)_{0,2} \otimes \alpha_2(c_3)_2v^{-1}(c_4 \otimes 1)_2)
\]
\[
= \alpha_2(c_3)_{1}v(c_2)_{0,1} \otimes \alpha_2(c_3)_2v^{-1}(c_4 \otimes 1)_2
\]
\[
= v(c_2)_{0,1} \otimes \alpha_2(c_3)v^{-1}(c_4 \otimes 1)_2
\]
\[
= v((1 \otimes \varepsilon)(c_2 \otimes 1)_{0} \otimes 1)(\varepsilon \otimes 1)(c_3 \otimes 1)_0v^{-1}(c_4 \otimes 1)_2
\]
so
\[
\alpha'(c) = v(c_1 \otimes 1)(c_2 \otimes 1)_{-1}(c_3 \otimes 1)_{-1}v^{-1}(c_4 \otimes 1)_1 \\
\otimes v((1 \otimes \varepsilon)(c_2 \otimes 1)_0 \otimes 1)(\varepsilon \otimes 1)(c_3 \otimes 1)_0v^{-1}(c_4 \otimes 1)_2
\]
\[
= u^{-1}(c_1)c_{2[-1]}\alpha_1(c_3)u(c_4)_{1} \otimes u^{-1}(c_{2[0]}\alpha_2(c_3)u(c_4)_2
\]
and (18) follows.

Conversely, assume that the two crossed coproducts are isomorphic. By Lemma 1.3, there exists $u \in \text{Reg}(C, H)$ satisfying (17) and (18).

Define
\[
v : C \otimes H \longrightarrow H ; v(c \otimes h) = S(h_1)u^{-1}(c)h_2
\]
Then
\[
\varepsilon_H v(c \otimes h) = \varepsilon(S(h_1)u^{-1}(c)h_2) = \varepsilon(c)\varepsilon(h)
\]
and
\[
v((c \otimes h) \cdot g) = v(c \otimes hg) = S(hg)_{1}u^{-1}(c)(hg)_2 = \\
S(g_1)S(h_1)u^{-1}(c)h_2g_2 = S(g_1)v(c \otimes h)g_2
\]
so
\[
\lambda(c \otimes h) = (c \otimes h)_1 \otimes (c \otimes h)_0
\]
\[
= S(h_1)c_{1,-1}^{-1}S(c_2)h_2 \otimes c_{1,0}^{-1} \otimes \alpha'_2(c_2)h_3
\]
\[
= S(h_1)u^{-1}(c_1)c_{2,-1}^{-1}u(c_3)u^{-1}(c_4)c_{5,-1}^{-1}u(\alpha_1(c_6))u(c_7)h_2
\]
\[
\otimes c_{2,0}^{-1} \otimes \alpha'(c_5)u(c_7)h_3
\]
\[
= S(h_1)u^{-1}(c_1)c_{2,-1}^{-1}u(\alpha_1(c_6))u(c_4)h_2 \otimes c_{2,0}^{-1}
\]
\[
= S(h_1)u^{-1}(c_1)h_2S(h_3)c_{2,0}^{-1}u(\alpha_1(c_3))h_4S(h_7)u(c_4)_1h_8
\]
\[
\otimes c_{2,0}^{-1} \otimes u^{-1}(c_{2,0}^{-1}) \alpha_2(c_3)h_5S(h_6)u(c_4)_2h_9
\]
\[
= S(h_1)u^{-1}(c_1)h_2S(h_3)c_{2,0}^{-1}u(\alpha_1(c_3))h_4S(h_9)u(c_4)_1h_{10} \otimes c_{2,0}^{-1}
\]
\[
\otimes \alpha_2(c_3)_1h_5S(h_6)S(h_7)u(\alpha_2(c_3)_2)u^{-1}(c_{2,0}^{-1}) \alpha_2(c_3)_3h_7S(h_8)u(c_4)_2h_{11}
\]
\[
v(c_1 \otimes h_1)(c_2 \otimes h_2)_{-1}v^{-1}(c_3 \otimes h_3)_1 \otimes (c_2 \otimes h_2)_{0,1}
\]
\[
\cdot v((c_2 \otimes h_2)_{0,2})v^{-1}(c_3 \otimes h_3)_2
\]
This shows that $\tau \sim \lambda$. \hfill \Box

4. Twisting Hopf-Galois Coextensions

Let H be a Hopf algebra with bijective antipode S, and C a right H-module coalgebra. As before, we use the following notation

\[B = C/I ; \quad I = \{ c(h - \varepsilon(h)) \mid h \in H, \ c \in C \} \]

For $\tau \in T(C)$, we have that $C^\tau/I^\tau = C/I = B$.
Now assume that C/B is an H-Galois coextension (see \[\text{(3)}\]). This means that the canonical map

\[\beta : C \otimes H \rightarrow C \boxtimes B C ; \quad \beta(c \otimes h) = c_1 \otimes c_2 \cdot h \]

is a bijection.

Lemma 4.1. With notation as above, consider the map

\[\beta' : C \otimes H \rightarrow C \boxtimes B C ; \quad \beta'(c \otimes h) = c_1 \cdot h \otimes c_2 \]

If the antipode S is bijective, then β is bijective (resp. injective, surjective) if and only if β' is bijective (resp. injective, surjective).

Proof. The map

\[\phi : C \otimes H \rightarrow C \otimes H, \quad \phi(c \otimes h) = c \cdot h_1 \otimes S(h_2) \]

is a bijection with inverse

\[\phi^{-1}(c \otimes h) = c \cdot h_2 \otimes Sh_1 \]

The statement then follows from the fact that $\beta' = \beta \circ \phi$. \hfill \Box
Theorem 4.2. Take $\tau \in U(T(C))$. Then C^{τ}/B is an H-Galois coextension if and only if C/B is an H-Galois coextension.

Proof. Let λ be the inverse of τ. As before, we use the notation (3). Let β^τ be the canonical map corresponding to the coextension C^{τ}/B, that is,

$$\beta^\tau(c \otimes h) = c_1 \cdot c_{2,-1} h \otimes c_{2,0}$$

Consider the following diagram

$$
\begin{array}{ccc}
C \otimes H & \xrightarrow{\beta} & C \Box_B C \\
| & & | \\
\downarrow f & & \downarrow g \\
C \otimes H & \xrightarrow{\beta^\tau} & C \Box_B C
\end{array}
$$

(33)

where

$$f(c \otimes h) = c_0 \otimes \bar{S}(c_{-1}) h ; \quad g(c \otimes d) = c_0 \cdot \bar{S}(c_{-1}) \otimes d$$

f and g are bijections, with inverses given by

$$f^{-1}(c \otimes h) = c_{(0)} \otimes \bar{S}(c_{(-1)}) h ; \quad g^{-1}(c \otimes d) = c_{(0)} \cdot \bar{S}(c_{(-1)}) \otimes d$$

We can also compute that

$$\beta^\tau f(c \otimes h) = \beta^\tau(c_0 \otimes \bar{S}(c_{-1}) h)$$

$$= c_{0,1} \cdot c_{0,2,-1} \bar{S}(c_{-1}) h \otimes c_{0,2,0}$$

$$= c_{1,0} \cdot c_{2,-1,2} \bar{S}(c_{1,-1} c_{2,-1,1}) h \otimes c_{2,0}$$

$$= c_{1,0} \cdot c_{2,-1,2} \bar{S}(c_{2,1,1}) \bar{S}(c_{1,-1}) h \otimes c_{2,0}$$

$$= c_{1,0} \cdot \bar{S}(c_{1,-1}) h \otimes c_{2}$$

$$= c_{1,0} \cdot h_3 \bar{S}(h_2) \bar{S}(c_{1,-1}) h_1 \otimes c_{2}$$

$$= c_{1,0} \cdot h_3 \bar{S}(S(h_1) c_{1,-1} h_2) \otimes c_{2}$$

$$= (c_1 \cdot h)_{0} \cdot \bar{S}((c_1 \cdot h)_{-1}) \otimes c_{2}$$

$$= g(c_1 \cdot h \otimes c_2) = g\beta(c \otimes h)$$

This shows that (33) is commutative, and it follows that β is bijective if and only if β^τ is bijective. \qed

Theorem 4.3. Let C/B be an H-Galois coextension, and take $\tau, \lambda \in T(C)$. Every left B-colinear right H-linear coalgebra map

$$\psi: C^{\tau} \longrightarrow C^\lambda$$

is of the form

$$\psi(c) = c_1 \cdot v(c_2)$$
where \(v \in \text{Hom}(C, H) \) satisfies the conditions (29-30) of Proposition 3.1. If \(\psi \) is an isomorphism, then \(v \in \text{Reg}(C, H) \).

Proof. We use the notation (3). As in [5], we consider the map

\[\bar{\tau} = (\varepsilon \otimes 1)\beta^{-1} : C \square_B C \to H \]

Write \(\bar{\tau}(c \otimes d) = c \diamond d \), and recall that \(\bar{\tau} \) has the following properties:

\begin{align*}
\varepsilon_H(c \diamond d) &= \varepsilon_C(c)\varepsilon_C(d) \\
(c \diamond d)h &= c \diamond (d \cdot h) \\
(c \cdot h) \diamond d &= S(h)(c \diamond d) \\
c_1 \cdot (c_2 \diamond d) &= \varepsilon(c)d
\end{align*}

The map

\[v : C \to H ; \ v(c) = c_1 \diamond \psi(c_2) \]

satisfies the property

\[c_1 \cdot v(c_2) = c_1 \cdot (c_2 \diamond \psi(c_3)) = \psi(c) \]

Since \(\psi \) is a coalgebra,

\[\varepsilon_H v(c) = \varepsilon_H(c_1 \diamond \psi(c_2)) = \varepsilon(\psi(c)) = \varepsilon(c) \]

and it follows that \(\varepsilon_H \circ v = \varepsilon_C \).

It follows from (34-37) that

\[v(c \cdot h) = (c \cdot h)_1 \diamond \psi((c \cdot h)_2) = c_1 \cdot h_1 \diamond \psi(c_2 \cdot h_2) = S(h_1)(c_1 \diamond \psi(c_2))h_2 = S(h_1)v(c)h_2 \]

\(\psi \) is a coalgebra map, so

\[\psi(c_1 \cdot c_{2,-1}) \otimes \psi(c_{2,0}) = \psi(c_1)\psi(c)_{2,(-1)} \otimes \psi(c)_{2,(0)} \]

and

\[
\begin{align*}
c_1 \cdot v(c_2)c_{3,-1} \otimes c_{3,0,1} \cdot v(c_{3,0,2}) &= (c_1 \cdot v(c_2))_1(c_1 \cdot v(c_2))_{2,(-1)} \otimes (c_1 \cdot v(c_2))_{2,(0)} \\
&= c_1 \cdot v(c_3)_1(c_2 \cdot v(c_3))_{2,(-1)} \otimes (c_2 \cdot v(c_3))_{2,(0)} \\
&= c_1 \cdot c_{2,-1}v(c_3)_1 \otimes c_{2,(0)} \cdot v(c_3)_2 \\
&= c_1 \otimes c_2 \cdot v(c_3)c_{4,-1} \otimes c_{4,0,1} \cdot v(c_{4,0,2}) \\
&= c_1 \otimes c_2 \cdot c_{3,(-1)}v(c_4)_1 \otimes c_{3,(0)} \cdot v(c_4)_2
\end{align*}
\]

which is equivalent to

\[
\begin{align*}
c_1 \otimes c_2 \cdot v(c_3)c_{4,-1} \otimes c_{4,0,1} \cdot v(c_{4,0,2}) &= c_1 \otimes c_2 \cdot c_{3,(-1)}v(c_4)_1 \otimes c_{3,(0)} \cdot v(c_4)_2
\end{align*}
\]

After we apply \(\beta^{-1} \) to both sides, we obtain

\[
\begin{align*}
c_1 \otimes v(c_2)c_{3,-1} \otimes c_{3,0,1} \cdot v(c_{3,0,2}) &= c_1 \otimes c_2 \cdot c_{3,(-1)}v(c_3)_1 \otimes c_{2,(0)} \cdot v(c_3)_2
\end{align*}
\]
and
\[(38) \quad v(c_1)c_{2,-1} \otimes c_{2,0,1} \cdot v(c_{2,0,2}) = c_{1,(-1)}v(c_{2,1}) \otimes c_{1,0} \cdot v(c_{2,2})\]

If \(\psi \) is an isomorphism, then \(\psi^{-1} : C^\lambda \rightarrow C^\tau \) is a left \(B \)-colinear right \(H \)-linear coalgebra map. Then we have a map \(w : C \rightarrow H \) satisfying (29-30) such that
\[\psi^{-1}(c) = c_1 \cdot w(c_2)\]

For all \(c \in C \), we have that
\[c = c_1 \cdot v(c_2)w(c_3) = c_1 \cdot w(c_2)v(c_3)\]

Proceeding as in the proof of (38), we find that \(v \) is convolution invertible. \(\square \)

References

[1] M. Beattie, C.Y. Chen and J.J. Zhang, Twisted Hopf comodule algebras, Comm. Alg. 24(5) (1996), 1759–1775.
[2] M. Beattie and B. Torrecillas, Twistings and Hopf Galois extensions, J. Algebra 232(2) (2000), 673–696.
[3] R. Blattner, M. Cohen and S. Montgomery, Crossed products and Inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), 671–711.
[4] R. Blattner and S. Montgomery, Crossed products and Galois extensions of Hopf algebras, Pacific J. Math. 137 (1989), 37–54.
[5] T. Brzeziński and P.M. Hajac, Coalgebra extensions and algebra coextensions of Galois type, Comm. Algebra 27(3) (1999), 1347–1367.
[6] S. Caenepeel, Harrison cohomology and the group of Galois coobjects, in “Algèbre non commutative, groupes quantiques et invariants (Reims, 1995)”, 83–101, Sémin. Congr. 2, Soc. Math. France, Paris, 1997.
[7] S. Caenepeel, S. Dăscălescu, G. Militaru and F. Panaite, Coalgebra deformations of bialgebras by Harrison cocycles, copairings of Hopf algebras and double crosscoproducts, Bull. Belgian Math. Soc. Simon Stevin 4 (1997), 647-671.
[8] S. Chase and M. E. Sweedler, “Hopf algebras and Galois theory”, Lect. Notes in Math. 97, Springer Verlag, Berlin, 1969.
[9] S. Dăscălescu, G. Militaru and Ş. Raianu, Crossed coproducts and cleft coextensions, Comm. Algebra 24(4) (1996), 1229–1243.
[10] S. Dăscălescu, C. Năstăsescu and Ş. Raianu, “Hopf algebras: an Introduction”, Monographs Textbooks in Pure Appl. Math. 235 Marcel Dekker, New York, 2001.
[11] S. Dăscălescu, Ş. Raianu and Y.H. Zhang, Finite Hopf Galois coextensions, crossed coproducts and duality, J. Algebra 178 (1995), 400–413.
[12] Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801–817.
[13] T.X. Ju and C.R. Cai, Twisted Hopf Module Coalgebras, Comm. Algebra 28(1) (2000), 307–320.
[14] H.F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30 (1981), 675–691.
[15] S. Montgomery, “Hopf algebras and their actions on rings”, American Mathematical Society, Providence, 1993.
[16] M. E. Sweedler, Cohomology of algebras over Hopf Algebras, Trans. Amer. Math. Soc. 133 (1968), 205–239.
[17] M. E. Sweedler, “Hopf algebras”, Benjamin, New York, 1969.

Faculty of Applied Sciences, Vrije Universiteit Brussel, VUB, B-1050 Brussels, Belgium
E-mail address: scaenepe@vub.ac.be
URL: http://homepages.vub.ac.be/ scaenepe/

Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China
E-mail address: diwang@vub.ac.be

Department of Mathematics, Tsinghua University, Beijing 100084, China