Thrombocidin, Microbicidal Proteins from Human Blood Platelets, Are C-terminal Deletion Products of CXC Chemokines*

Received for publication, August 27, 1999, and in revised form, March 29, 2000

Jeroen Krijgsveid‡‡, Sebastian A. J. Zaat‡, Jan Meeldijk‡, Peter A. van Veelen**, Gang Fang††, Bert Poolman‡‡, Ernst Brandt§§§, Jan E. Ehrlert¶¶¶, Alma J. Kuijpers§§§, Gerard H. M. Engbers¶¶¶, Jan Feijen||, and Jacob Dankert†

From the ‡Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands, the **Department of Immunohematology and Blood Bank, Leiden University Medical Center, 2333 AA Leiden, The Netherlands, the §§Department of Microbiology, University of Groningen, 97-51 AA Haren, The Netherlands, the §§§Department of Immunology and Cell Biology, Forschungszentrum Borstel, D-23845 Borstel, Germany, and the ||Department of Chemical Technology, Institute of Biomedical Technology, University of Twente, 7500 AE Enschede, The Netherlands

Antibacterial proteins are components of the innate immune system found in many organisms and produced by a variety of cell types. Human blood platelets contain a number of antibacterial proteins in their α-granules that are released upon thrombin activation. The present study was designed to purify these proteins obtained from human platelets and to characterize them chemically and biologically. Two antibacterial proteins were purified from platelet granules in a two-step protocol using cation exchange chromatography and continuous acid urea polyacrylamide gel electrophoresis and were designated thrombocidin (TC)-1 and TC-2. Characterization of these proteins using mass spectrometry and N-terminal sequencing revealed that TC-1 and TC-2 are variants of the CXC chemokines neutrophil-activating peptide-2 and connective tissue-activating peptide-III, respectively. TC-1 and TC-2 differ from these chemokines by a C-terminal truncation of 2 amino acids. Both TCs, but not neutrophil-activating peptide-2 and connective tissue-activating peptide-III, were bactericidal for Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Lactococcus lactis and fungicidal for Cryptococcus neoformans. Killing of B. subtilis by either TC appeared to be very rapid. Because TCs were unable to disperse the membrane potential of L. lactis, the mechanism of TC-mediated killing most probably does not involve pore formation.

During the last decade, antibacterial proteins have been recognized as effector molecules in the innate immune system of widely divergent animal species (1–5). The cationic nature of the vast majority of these proteins is thought to be crucial to target and disrupt microbial membranes (6). Based on their primary structure, antibacterial proteins are classified in four groups. The largest group found thus far is formed by the β-stranded proteins, containing 4–6 conserved cysteines interlinked by disulfide bridges. Defensins are probably the best studied members of this group. Other classes consist of amphipathic α-helical proteins, proline-rich coiled proteins, and looped or cyclic proteins (6, 7).

The antibacterial proteins found in man are distributed over a variety of tissues and cell types. They have been found in leukocytes, most abundantly in polymorphonucleated neutrophils, where they are thought to be involved in the killing of engulfed bacteria (8). More recently, cationic antibacterial peptides have also been found in various epithelial tissues (9). Enteric defensins are produced and secreted by human (10, 11) and mouse (12, 13) Paneth cells. β-Defensins, first isolated from bovine neutrophils (14) and epithelial tissue of tongue and trachea (15–17), have recently been identified in human airway (18, 19) and urogenital epithelial tissue (20), as well as in plasma (21) and skin epithelial cells (22). Expression of some of the epithelial proteins was found to be elevated after injury or contact with lipopolysaccharide or bacteria (22–26), which indicates their functionality in nonspecific host defense.

In addition to the cell types mentioned above, human and rabbit blood platelets are known to store antibacterial proteins (27–33). These antibacterial proteins are released from platelet α-granules in vitro after activation with thrombin (27) and were designated thrombocidins (34). In vivo, direct contact of platelets with bacteria causes aggregation and activation of platelets (35). The subsequently released antibacterial proteins most likely are involved in the elimination of adherent bacteria (36). Dankert et al. (27, 36) showed that antibacterial proteins released from thrombin-activated platelets were involved in the clearance of viridans streptococci from cardiac vegetations in the rabbit experimental infective endocarditis (IE) model. Viridans streptococci with low susceptibility to these proteins persisted in vegetations, whereas highly susceptible bacteria were rapidly eliminated (36). Similarly, strains of Staphylococcus aureus and Candida albicans insensitive to rabbit platelet microbicidal proteins (PMPs) caused more severe experimental IE than did PMP-susceptible strains (37, 38). Furthermore,
thrombocytopenic rabbits (39) or rabbits with antibodies neutralizing their platelet bactericidal proteins (40) were more susceptible to streptococcal IE than control rabbits. The present study was undertaken to gain insight into the structure, activity, and mechanism of action of antimicrobial proteins present in human platelets.

EXPERIMENTAL PROCEDURES

Isolation of Human Blood Platelets—Citrated human blood from healthy subjects was obtained from the Central Laboratory for Blood Transfusion (Amsterdam, The Netherlands). Platelets were concentrated from the buffy coat and isolated using a method adapted from Fukumi (42) and Kaplan et al. (43). Buffy coats were pooled and lyophilized. Proteins were further purified using CAU-assays (see below). Fractions containing antibacterial proteins were removed by centrifugation (5,000 g, 20 minutes) and washed twice with 5% acetic acid. Cationic antibacterial proteins were detected using acid phosphate buffer. Fractions of 4 ml were collected and dialyzed against 5% acetic acid with methyl green as the tracking dye and electrophorized at 40 mA until the current was constant (5,000 g, 20 minutes). The supernatant was collected and centrifuged at 12,000 × g for 20 minutes to pellet the granules. The pellet was resuspended in 5% acetic acid and sonicated for 30 seconds on ice to disrupt the granules, using a Branson model B15 sonifier (Branson, Soest, The Netherlands). The supernate containing the extracted proteins was dialyzed against 5% acetic acid using 3,500-kDa cut-off dialysis tubing (Spectrum, Breda, The Netherlands). Protein concentration was determined using a BCA protein assay kit (Pierce).

Purification of Thrombocidins from Platelet Granule Sonicate—Platelet granule sonicate was kept on ice and was cavituated three times for 15 minutes under nitrogen at 60 atmosphere in a cavitation chamber (Parr Instrument Co, Moline, IL). Cavitation was followed in siliconized polypropylene tubes (Becton-Dickinson, Leiden, The Netherlands). Cavitation resulted in 90% homogenization of the platelets as determined with a Coulter counter. Intact and disrupted platelets were removed and a nutrient-rich agar (6% (w/v) TSB, 1% (w/v) agar noble; type I agarose; Sigma) was applied to the column. This suspension was poured into a square 12 cm × 12 cm dish (Hospidea, Nieuwkoop, The Netherlands). Immediately after electrophoresis, acid urea slab gels were washed three times for 12 minutes in phosphate buffer (10 mM, pH 7.4) and placed on top of the bacterial agarose bottom. After incubation at 37 °C for 3 hours, the gels were removed and a nutrient-rich agar (6% (w/v) TSB, 1% (w/v) agar noble; type I agarose; Sigma) was poured over the layer of bacterial agarose and a nutrient agar layer. Clear zones were removed after overnight incubation at 37°C indicating the presence of antibacterial proteins.

Microbial Assay—Microbial activity of purified thrombicin and of NAP-2, CAT-III, and PF-4 was quantified in a liquid microbical assay. Suspensions of logarithmically growing test bacteria (B. subtilis ATCC6633, E. coli ML53, or S. aureus 42D) were pre-

The text above is a direct transcription of the natural text, suitable for human reading, without any annotations or corrections.
pared as described for the overlay assay. Two fungi, Candida glabrata and Cryptococcus neoformans (both clinical isolates) were maintained on Isosensitest agar plates (Oxoid, Unipath, Basingstoke, Hampshire, UK) and cultured for 48 h at 30 °C in 0.7% (w/v) yeast nitrogen base (YNB; Difco), supplemented with 0.15% (w/v) L-asparagine (Merck) and 1% (w/v) glucose (Merck). Bacteria and fungi were diluted to 1–2 × 10^5 colony-forming units/ml in 10 mM phosphate buffer (pH 7.0) + 0.06% (w/v) TSB. 2-fold serial dilutions of the protein to be tested were prepared in 0.01% acetic acid, and 5-μl aliquots were transferred to a low protein binding polypropylene microtiter plate (Costar, Cambridge). To each of the wells, 45 μl of the bacterial suspension was added. The plate was incubated on a rotary shaker (300 rpm) at 37 °C. After 2 h, aliquots of 0.5 and 10 μl were plated on blood agar plates (bacteria) or isosensitest agar plates (fungi) and incubated at 37 °C. Alternatively, 10-μl aliquots were spotted in duplicate on plates that had been dried for 1 h at 37 °C. In some cases, 150 μl of TSB was added to the remainder of the incubations, and the microtiter plate was incubated at 37 °C. Microbicidal activity was assessed the next day (bacteria) or after 48 h (fungi) after counting colonies on the agar plates and by visual inspection of growth in the microtiter plates. MBC and MFC were defined as the concentration of protein at which growth in the microtiter plates. MBC and MFC were defined as the concentration of protein at which

![Image](image-url)
Molecular masses of TC-1 and TC-2 were determined by electrospray and MALDI-time of flight mass spectrometry. Trypsin-treated TCs were analyzed by electrospray mass spectrometry, and sequences of selected fragments were determined in MS/MS mode. Theoretical molecular masses of TCs are based on average masses, and those of tryptic fragments are based on mono-isotopic masses.

Table I
Characterization of thrombocidins

Component	Experimental molecular masses	Internal sequence of PBP matching experimental molecular masses	Theoretical molecular masses
Thrombicidin-1	7436.3	Ala^{25}-Ser^{92}	7437.5
Electro spray	7435.9	Ala^{25}-Ser^{92}	7437.5
Proteins in MALDI spectrum	7600.6	Tyr^{24}-Ser^{92}	7600.7
TC-1	7219.3	Ala^{20}-Asp^{90}	7220.9
TC-1a	7106.2	Ala^{25}-Gly^{89}	7105.8
TC-1b	839.5	Thr^{24}-Lys^{41}	839.5
Tryptic fragments	590.3	Leu^{87}-Ser^{92}	590.3
Thrombicidin-2	9100.5	Asn^{10}-Ser^{92}	9101.5
Electro spray	9106	Asn^{10}-Ser^{92}	9101.5
Proteins in MALDI spectrum	10081	Ser^{1}-Ser^{97}	10075.6
TC-2	839.5	Thr^{24}-Lys^{41}	839.5
TC-2a	590.3	Leu^{87}-Ser^{92}	590.3
Tryptic fragments	1091.5	Gly^{14}-Leu^{23}	1091.5

* a Amino acid numbering of PBP as in Fig. 3.
* b Minor component.

Effectively separated, with TC-1 collected in fractions 35–41 and TC-2 in 45–51 (Fig. 1C). In the AU gels, TC-1 and TC-2 migrate at positions identical to the main antibacterial activities in crude platelet sonicate (Fig. 1, C and D). TC-1 and TC-2 thus can be considered to be major antibacterial compounds in platelet granules. Processing of 10^{13} platelets (from 10 liters of blood) yielded approximately 750 μg of pure TC-1 and TC-2.

Characterization of TC-1—Several attempts to determine the N-terminal sequence of TC-1 by Edman degradation were not successful. Mass spectrometrical techniques were used to elucidate the structure of TC-1. Analysis by MALDI spectrometry revealed that the purified TC-1 preparation contained a 7,435.9-Da protein, together with minor amounts of proteins of similar size (Table I). Electrospray spectrometry revealed a mass of 7,436.3 Da, confirming the mass of the major protein in the preparation, identified by MALDI. This component will further be referred to as TC-1. Sequence data were obtained by trypsin digestion of TC-1 followed by mass spectrometrical analyses in MS/MS mode of the resulting fragments. The sequences of two fragments, of 839.5 and 590.3 Da, were TTSGIHPK and LAGDES, respectively. These sequences were identical to internal sequences of platelet basic protein (PBP), a 10,262-Da platelet protein (Table I and Fig. 2). The mass of undigested TC-1 was less than that of PBP and even smaller than the smallest known degradation product of PBP, NAP-2 (7,623 Da). The difference of 186 Da can be explained by the absence of the two C-terminal amino acids (Ala-Asp) present in CTAP-III. The calculated mass of this molecule (9101.5 Da) is in accordance with the mass found experimentally for TC-2. Analysis of tryptic fragments of TC-2 revealed the presence of a 590.3-Da fragment with the sequence LAGDES, confirming the C-terminal truncation as in TC-1 (Table I). Of TC-2, two other fragments were identified, TTSGIHPK (839.5 Da) and GKEESLDSL (1091.5 Da), the latter of which is absent in TC-1, as expected (Table I and Fig. 2). The MALDI spectrum of TC-2 one minor peak was detected (TC-2a; Table I) with a molecular mass of 10,081 Da. This value corresponds to the mass of PBP, truncated C-terminally by two amino acids (Ala-Asp). This molecule could be a precursor of TC-2.

Bactericidal Activity of Thrombocidins—Bactericidal activity of purified TC-1 and TC-2 was investigated by determination of their MBC values for *S. aureus* 42D, *B. subtilis* ATCC6633, and *E. coli* ML35 (Fig. 3). *B. subtilis* was the most susceptible organism with MBCs of 0.4 and 0.7 μg for TC-1 and TC-2, respectively. *E. coli* ML35 was somewhat less susceptible, with MBC values of 3.4 and 2.7 μg for TC-1 and TC-2, respectively. MBCs for TC-1 and TC-2 for *S. aureus* 42D were 6.8 and 11 μg, respectively (Fig. 3). Incubations from which no bacteria could be recovered after 2 h of incubation never showed visible growth after addition of growth medium and overnight incubation (not shown).

Kinetics of bactericidal activity was investigated by exposure
of *B. subtilis* to 3 μM of TC (Fig. 4). Killing by TC-1 appeared to be very rapid, causing a 3-log fold reduction of the inoculum within 1 min, and a 5-log fold reduction within 5 min. At 3 μM, killing by TC-2 was slower, reaching 3-log and 5-log fold reduction after 25 and 30 min, respectively (Fig. 4).

Fungicidal Activity of Thrombocidins—Fungicidal activity of thrombocidins was tested using the same experimental set up as for the bactericidal activity testing. Both TC-1 and TC-2 appeared to be inactive against *C. glabrata* up to 30 μM (Table II). *C. neoformans*, however, was highly susceptible to TC-1 with an MFC of 1.9 μM (Table II). TC-2 was less active (MFC of 30 μM) but still capable of killing this organism.

Antibacterial Activity of NAP-2, CTAP-III, and PF-4—To investigate whether antibacterial activity is a general characteristic of platelet CXC chemokines, purified NAP-2, CTAP-III, and PF-4 were tested in a bactericidal assay. Each chemokine was tested up to a concentration of 30 μM against *B. subtilis*, *E. coli*, *S. aureus*, and *C. neoformans*. None of the proteins was bactericidal for these organisms, although PF-4 had some activity against *B. subtilis*, reducing the viable count by approximately 90% at 30 μM (not shown).

Membrane Activity of TCs—*L. lactis* IL1403 was highly susceptible to TC-1 and had an MBC of 0.5 μM. Because many antimicrobial peptides have been shown to act via Δφ-dissipating processes (54–56), the Δφ-sensitive fluorescent dye diS-C₃(5) was used to assess the effects of TC-1 and TC-2 on the membrane potential generated by glycolyzing or L-malate-metabolizing cells of *L. lactis* IL1403. The degree of fluorescence quenching of diS-C₃(5) is directly proportional to the membrane potential across the cytoplasmic membrane of the cells. In glycolyzing cells of *L. lactis*, the membrane potential is generated by proton extrusion via the F₀F₁-ATPase after sugar breakdown in the Embden-Meyerhof pathway, whereas in L-malate-metabolizing cells the membrane potential results from the electrogenic exchange of L-malate for L-lactate (57). The latter pathway, which is malolactic fermentation, only involves one enzyme, i.e., malolactic enzyme, in addition to the L-malate/L-lactate exchanger. If the TC-induced killing results from the dissipation of the ion gradients across the membrane, e.g., as a result of pore formation, a lowering of the membrane potential should be observed both in glycolyzing and L-malate-metabolizing bacteria. These pathways generate the membrane poten-

TC-1	KGTHCNQVEV₆₀IAITLKDGRKI₇₀CLDPADAPIRK₈₀KIVQKgLADG₉₀ES
TC-2	KGTHCNQVEV₆₀IAITLKDGRKI₇₀CLDPADAPIRK₈₀KIVQKgLADG₉₀ESAD
CTAP-III	KGTHCNQVEV₆₀IAITLKDGRKI₇₀CLDPADAPIRK₈₀KIVQKgLADG₉₀ESAD
PBP	SSTKGQTKRN₃₀LAALKGKESLD₂₀SDLYAEIRCN₃₀CIKTSIGHF₄₀KNIQSGEVIG₅₀

Fig. 2. Sequence alignment of thrombocidins and related chemokines.
tial via completely different mechanisms with no common steps involved (58). A decrease in the membrane potential in both systems would thus provide a very strong argument for pore formation in the membrane (52).

Fig. 5

Fig. 5A shows that TC-1 and TC-2, at a final concentration of 2 mM, do not affect the membrane potential in glycolyzing cells of *L. lactis* IL1403. As a control, the depolarization of the membrane potential by the lantibiotic nisin is shown. Similarly, in cells metabolizing l-malate at high rate, the addition of TC-1 (Fig. 5B) or TC-2 (not shown) had no effect.

Because the net effect on the membrane potential will be the resultant of putative pore formation and the capacity to generate a membrane potential, we also determined the effect of TC-1 and TC-2 under conditions that membrane potential generation is limited. For this, *L. lactis* IL1403 cells metabolizing l-malate were incubated at pH 5.0 in the presence of the ionophore nigericin. Nigericin dissipates the pH gradient across the membrane, and under these conditions the membrane potential is the only component of the proton motive force. Importantly, the internal pH is now similar to the external one, which is 5.0, and malolactic fermentation is highly compromised. This results in limited capacity to generate a membrane potential. Under these conditions a small depolarizing effect of TC-1 and TC-2 on the membrane potential was observed (Fig. 5C). The nature of this depolarizing effect is unknown but is unlikely to be relevant with respect to the observed cidal effect. The depolarization of the membrane potential by the lantibiotic nisin is again shown as a control; the further addition of the potassium ionophore valinomycin indicates that nisin nearly completely dissipated the membrane potential at the concentration tested.

These data are in agreement with initial experiments using liposomes prepared from *E. coli* phospholipids in 50 mM potassium phosphate. A diffusion membrane potential was generated by incubating these liposomes in 50 mM sodium phosphate and was monitored by the addition of diS-C3(5). TC-1 or TC-2 did not dissipate the membrane potential because quenching of diS-C3(5) could not be relieved by either protein (not shown).

In summary, under conditions similar to those that kill *L. lactis* IL1403, no significant effect of TC-1 or TC-2 was observed on its membrane potential nor on the membrane potential of *E. coli* liposomes. We thus conclude that there is no direct evidence for pore formation in the *L. lactis* cytoplasmic membrane or the liposomes by either TC-1 or TC-2 and that it is

Table II

Table II lists the fungicidal activity of thrombocidins.

Organism	TC-1	TC-2
C. neoformans	1.9	30
C. glabrata	>30	>30

Fig. 5

Effect of thrombocidins on the Δψ of glycolyzing and malate-metabolizing *L. lactis* IL 1403 cells. A, *L. lactis* cells were resuspended to a final protein concentration of 20 μg of protein/ml in 50 mM potassium phosphate (pH 6.5) containing 3 μM diS-C3(5). At time 0 (not depicted), glucose was added to a final concentration of 25 mM, which resulted in the generation of a membrane potential (observed as a decrease in fluorescence). After about 4 min, TC-1 (2 μM), TC-2 (2 μM), or nisin (1 μM) was added. Further details are described under "Experimental Procedures." B, experimental conditions were the same as those described for A, except that the pH was 5.0, and 25 mM l-malate was used to energize the cells. After about 2 min, TC-1 (1 μM) or nisin (0.5 μM) was added. C, experimental conditions were the same as described for B, except that nigericin was present at 0.5 μM. The additions of TC-1 (1 μM), TC-2 (1 μM), solvent control, nisin (0.5 μM), and valinomycin (0.5 μM) are indicated.
Microbicidal Proteins from Human Blood Platelets

unlikely that such a mechanism is the primary cause for the cidal activity of these compounds.

DISCUSSION

Although the presence of antibacterial proteins in human and rabbit platelets has been recognized for over 30 years (31, 32), their identity has never been elucidated. We now show that the two major bactericidal proteins, TC-1 and TC-2 (thrombocidins, for thrombocyte microbicidal proteins), are truncated forms of NAP-2 and CTAP-III, respectively, differing from these CXC chemokines by the absence of the 2 C-terminal amino acids. TC-1 and TC-2 were bactericidal for the Gram-positive B. subtilis and S. aureus as well as for the Gram-negative E. coli test strain, with MBCs ranging from 0.4 μM (TC-1, B. subtilis) to 11 μM (TC-2, S. aureus).

TC-1 was highly and TC-2 was moderately active against the fungus C. neoformans, whereas neither TC was active against Candida species. Preparations from rabbit platelets containing PMPs were more active against Candida species than against C. neoformans (59), indicating that the antimicrobial spectra of the human TCs and rabbit PMPs are different.

The MBC of TC-2 for E. coli was 2.7 μM, but at 5.5 and 11 μM some bacteria were reproducibly recovered (Fig. 3), indicating an optimum concentration for activity. A similar phenomenon has been observed for the killing of certain staphylococcal and streptococcal strains by β-lactam antibiotics and was termed the “paradoxical” response (60) or tolerance (61). Whether tolerance for TC-2 or other cationic antibacterial peptides exists in E. coli requires further investigation.

TC-1 only differs from NAP-2 and TC-2 only differs from CTAP-III by the absence of two C-terminal amino acids. This truncation is essential for bactericidal activity, because purified NAP-2 and CTAP-III at concentrations up to 30 μM did not kill B. subtilis, E. coli, and S. aureus. This difference in activity may indicate that the C-terminal part of TCs is involved in the cidal mechanism. The C termini of all CXC chemokines extend as an α-helix (62, 63). Antibacterial α-helical proteins like the cecropins are thought to insert into the membrane, thereby killing the bacteria (6). If thrombocidins also interact with membranes by their α-helical domain, the structural requirements for the C-terminal helix apparently are very strict. The two C-terminal amino acids present in NAP-2 and CTAP-III may block antibacterial activity possibly by influencing charge distribution (64), because the C-terminal residue in NAP-2 and CTAP-III is the acidic aspartic acid.

At present, it is unclear how PBP is processed to finally yield TCs. The N terminus of TC-1 and NAP-2 are identical. NAP-2 is thought to be formed extracellularly from released PBP and CTAP-III, by neutrophil (65) or monocyte proteases (66) like cathepsin G (45, 66, 67). Because we have isolated TC-1 directly from platelet granules, at least some cathepsin G-like protease activity must be present inside the platelets. Because TC-1 and TC-2 are C-terminally truncated NAP-2 and CTAP-III, respectively, the platelets (platelet granules) must also contain carboxypeptidase activity. Interestingly, we have identified a protein with the molecular mass of PBP with a C-terminal truncation of two residues (TC-2a; Table I) that may be a precursor for TC-1 and TC-2.

TC-1 killed the entire B. subtilis inoculum within 5 and 30 min, respectively (Fig. 4). These fast kinetics are characteristic for various bactericidal proteins and are often associated with membrane disturbance (6). Dissipation of membrane potential by the formation of voltage-dependent channels has therefore been implicated as a general mechanism of peptide antibiotic-mediated killing activity (6). Under the experimental conditions used, however, TCs did not dissipate the $\Delta \psi$ of whole L. lactis bacteria nor of liposomes composed of E. coli lipids. Apparently, their target for microbial killing is located elsewhere, most likely intracellularly. Under conditions when L. lactis had limited capacity to generate a membrane potential, a small decline in $\Delta \psi$ was observed in the presence of TC-1 (Fig. 5C). This suggests that even though no dissipation of the membrane potential occurs, TCs do interact with the membrane. Whether TCs can passively cross the membrane and reach putative intracellular targets remains to be established.

Rabbit PMPs dissipated the $\Delta \psi$ of S. aureus cells (56, 68). The structures of these peptides have not been reported, but their amino acid composition (69) differs from those of TCs. Although test conditions were not identical, our studies indicate that human and rabbit microbicidal proteins not only differ structurally but also differ in their mode of action.

In this study we used sonicated granules of human platelets as the source for TC purification. An important question is whether the amount of TC in platelets would be sufficient for in vivo microbicidal activity. We could purify relatively low amounts of TC, but it is unclear whether the procedure is quantitative and thus how much is contained within platelets. Furthermore, the amount of TC released in vivo depends on strength of platelet activation, whereas local concentration of TC is influenced by blood flow and adhesion of TC to cellular components and blood proteins. A process possibly adding to the local concentration of TCs is the extracellular generation of these proteins by C-terminal truncation of platelet-secreted PBP, CTAP-III, and NAP-2 by proteases present in the (inflammatory) environment. From the issues discussed above, it may be expected that TCs act highly locally, possibly even requiring close contact of platelets with their targets. The fact that microorganisms can aggregate and activate platelets (35, 70) may be expected that TCs act highly locally, possibly even requiring close contact of platelets with their targets. The fact that microorganisms can aggregate and activate platelets (35, 70) may facilitate the microbicidal effect. Evidence for a role of TCs as effective antimicrobics in vivo was obtained in a separate study,2 where rabbits were vaccinated with human platelet sonicate to induce antibodies neutralizing the rabbit platelet microbicidal activity. These rabbits had an increased susceptibility to experimental IE. The sera of vaccinated rabbits, but not the control sera, neutralized microbicidal activity of platelet releasates in vitro and contained antibodies recognizing TCs in Western blots. These observations support the hypothesis that the enhanced susceptibility to IE of the vaccinated rabbits was due to the neutralization of the rabbit platelet microbicidal proteins.2

The thrombocidins are two novel CXC chemokine molecules with a function previously unknown to the large family of chemokines. Thus, platelet chemokines, liberated to enhance defense reactions by attracting and activating neutrophils and initiating wound healing by activating fibroblasts, may also be a rich local source for the generation of potent antimicrobials, underscoring the importance of platelets in innate host defense.

Acknowledgments—We thank Drs. H. Loos, D. de Korte, and H. Veltman (Central Laboratory for Blood Transfusion, Amsterdam) for assistance with isolation of blood platelets and Dr. P. S. Hiemstra (Leiden University Medical Center, Leiden) for human neutrophil protein (defensin) 1–3.

REFERENCES

1. Goode, J. (ed) (1994) Ciba Found. Symp. 186 1–272
2. Lehrer, R. I., Lichtenstein, A. K., and Ganz, T. (1993) Annu. Rev. Immunol. 11, 105–138
3. Nicolas, P., and Mor, A. (1995) Annu. Rev. Microbiol. 49, 277–304
4. Boman, H. G. (1995) Annu. Rev. Immunol. 13, 61–92
5. Ganz, T., and Weiss, J. (1997) Semin. Hematol. 34, 343–354
6. Hancock, R. E. W. (1997) Lancet 349, 418–422
7. Boman, H. G. (1998) Scand. J. Immunol. 48, 15–25

2 J. Dankert, J. Krijgsveeld, J. van der Werff, W. Joldersma, and S. A. J. Zaast, submitted for publication.
