Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis

Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno Lapeyre3,4,12, Pim Bongaerts5,6, Ira Cooke4, Manuel Aranda7, David G. Bourne2,8, Sylvain Forêt3,9, David J. Miller3,4, Madeleine J.H. van Oppen2,10, Christian R. Voolstra7, Mark A. Ragan1 & Cheong Xin Chan1,11

Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis.
Coral reefs provide habitats for one-quarter to one-third of all marine species. Although typically surrounded by nutrient-poor waters, coral reefs show high rates of primary productivity, with the fixed carbon supporting not only the biomass of reef organisms but also commercial and recreational fisheries. Reef-building corals rely on the symbiosis between the coral animal and photosynthetic dinoflagellates of the genus *Symbiodinium*. This symbiosis is based on mutual nutrient exploitation, with corals providing shelter and inorganic nutrients to their algal partners, while *Symbiodinium* supply their coral hosts with photosynthates that can meet up to 95% of the corals’ energy requirements.

The relationship between *Symbiodinium* and their host determines not only the rate of coral-reef growth (calcium carbonate deposition), but also how the system responds to environmental stress. Many studies have shown that coral-*Symbiodinium* mutualism is susceptible to environmental factors including temperature, light and salinity. Exposure to ultraviolet radiation, thermal stress or a combination of both can initiate photoinhibition, decoupling of carbon flow between symbiont and host, oxidative damage and breakdown of the symbiosis, a phenomenon known as coral bleaching. Unless the symbiosis is soon re-established the coral host is at risk of starvation, disease and eventual death. In recent decades, coral bleaching has led to large-scale mortality on coral reefs around the world, with the most recent global coral bleaching event (2014–2017) now confirmed as the longest and most severe on record.

Despite the critical importance of this coral-dinoflagellate symbiosis, little is known about the underlying molecular mechanisms (apart from photosynthesis and carbon exchange), largely due to the lack of comprehensive understanding of what molecules, pathways and functions *Symbiodinium* can contribute. Genomes of dinoflagellates are known for their idiosyncratic features including non-canonical splice sites, extensive methylation and large sizes, up to 250 Gbp. Their plastid genomes occur as plasmid-like minicircles; their mitochondrial genomes harbour only three protein-coding genes and lack stop codons, and both mitochondrial and nuclear transcripts are extensively edited.

Symbiodinium are classified into nine clades, with members of Clades A, B, C and D responsible for the vast majority of associations with scleractinian corals. Draft genomes have been published for representatives of Clades A, B, C and F, with sequence comparisons demonstrating *Symbiodinium* isolates (and clades) to be highly divergent. With the exception of a recently published draft genome of the foraminifera-associated *Symbiodinium* sp. Y103, genome sequences are still lacking for recently published draft genome of the foraminifera-associated *Symbiodinium* clades C and F, and published genome sequences in the more-basal Clades A and B.

Adopting a comparative approach using both genome and transcriptome data, we systematically investigated genes and functions that are specific to *Symbiodinium* in relation to other dinoflagellates, and their association with the establishment and maintenance of symbiosis. We computationally identify genes and functions for which there is evidence of adaptive selection in *Symbiodinium*. We also identify extensive sets of genes for meiosis and response to light stress. Our results indicate adaptive selection in *Symbiodinium* gene functions that are related to establishment of cnidian-dinoflagellate symbiosis, and provide compelling genotypic evidence (based on gene repertoire) that *Symbiodinium* is, or has recently been, capable of meiosis. To our knowledge, this is the most comprehensive comparative analysis so far of *Symbiodinium* genomes, and the first to include a prominent endosymbiont of corals of Indo-Pacific and Caribbean reefs.

Results

Genomes of *S. goreau and *S. kawagut**. We sequenced and generated two draft *Symbiodinium* genome assemblies de novo, for *S. goreau* (Clade C, 1.03 Gbp) and for *S. kawagut** (Clade F, 1.05 Gbp). Details of data generation and assembly statistics are shown in Supplementary Tables 1 and 2, respectively. Our *S. goreau* assembly consists of 41,289 scaffolds (N50 length 98,034 bp). For *S. kawaguti**, we first verified that our data (from isolate CS-156) and the published data (from the synonym isolate CCMP2468) are indeed from the same culture of origin (see Methods and Supplementary Fig. 1). Compared to the published assembly by Lin et al., independent mapping of their ten fosmid sequences onto our preliminary CS-156 assembly yielded up to 43-fold and 37-fold fewer gaps and mismatches, respectively (Supplementary Fig. 2). We later combined both datasets in a single de novo assembly, yielding 16,959 scaffolds (N50 length 268,823 bp). Genome-size estimates based on k-mer coverage are 1.19 Gbp for *S. goreau* and 1.07 Gbp for *S. kawagut** (Supplementary Table 3), comparable to those for other sequenced *Symbiodinium* genomes. We also recovered sequences putatively derived from their plastid genomes (Supplementary Tables 4, 5 and 6), including their distinct core conserved regions (Supplementary Table 7), and from their mitochondrial genomes; see Supplementary Note 1 for details.

The repeat content of the assembled genomes ranged from 16.0% (*S. kawagutii*) to 27.9% (*Symbiodinium microadriaticum*); a large peak in transposable element (TE) abundance observed at high divergence (Kimura distance 22) was widespread in all genomes (Supplementary Fig. 3) suggests that most extant TEs are remnants of an ancient burst of TE activity that had occurred before the diversification of *Symbiodinium*. In all genomes, the proportion of long interspersed nuclear elements is larger than that of long terminal repeats. TE activity has been broadly linked to genome size in plants, so reduced TE activity may be connected with the relative compactness of *Symbiodinium* genomes in comparison to those of other dinoflagellates. However, as these genomes are still in draft, the impact of assembly completeness on the patterns of repeat divergence cannot be dismissed.
Using a stringent threshold to remove genome scaffolds of potential bacterial or viral origin (Methods), we predict 35,913 and 26,609 high-quality gene models for *S. goreaui* and *S. kawagutii*, respectively (Supplementary Table 8). Usage profiles of codons and amino acids are shown in Supplementary Figs 4 and 5, respectively, and non-canonical splice sites in Supplementary Table 9 and Supplementary Fig. 6. Although we report fewer genes than in the published *Symbiodinium* genomes[^12][^13][^14], most (67.0% and 64.4% for *S. goreaui* and *S. kawagutii*, respectively) have transcriptome support; and we generally recovered more (Supplementary Fig. 7) of the 458 conserved core eukaryote genes (e.g. 436 in *S. goreaui* compared to 410 in the published *S. microadriaticum*[^12] based on TBLASTX, Supplementary Fig. 7C). Of these, 371 are common to all four *Symbiodinium* based on the predicted gene models (Fig. 1; Supplementary Data 1); similar results are observed for the corresponding genome sequences (Supplementary Fig. 7). About 94% of the predicted genes have introns, similar to *S. microadriaticum* (98.2%) and *Symbiodinium minutum* (95.3%); the earlier *S. kawagutii* genome assembly[^13] may have underestimated the proportion of intron-containing genes (Supplementary Table 8), due to a less-stringent approach to gene prediction. All coding sequences have higher G+C content (56.7% in *S. goreaui* and 55.0% in *S. kawagutii*) than does the genome overall, comparable to coding sequences from other *Symbiodinium* (57.7% in *S. microadriaticum* and 52.7% in *S. minutum*).

Sequence divergence and synteny. Despite the seemingly high number of protein-coding genes, an earlier analysis of syntenic blocks[^12] found only several hundred blocks conserved in a pairwise manner among three published *Symbiodinium* genomes. Here we included our two new genome sequences in this analysis, and focused further on syntenic collinear blocks, requiring each block to contain the same genes in the same order and orientation with no gene losses (Methods). The *S. goreaui* and *S. kawagutii* genomes share the most collinear blocks with 889 blocks, implicating 8621 genes; 62 of these blocks are of size >15, with the largest containing 76 genes (Supplementary Table 10). Thus, substantial proportions of genes in these two genomes occur in clusters: for cluster size ≥2, 32.4 and 24.0% of *S. kawagutii* and *S. goreaui* genes, respectively. These are likely to be underestimates, as the assemblies remain fragmentary. At the other end of the spectrum, the genomes of *S. microadriaticum* and *S. goreaui* share only 86 collinear blocks of size ≥5, with maximum size 12 and implicating 588 genes in total (Table 1; Supplementary Table 10). These results suggest that although Clades C and F are divergent, they are the most-closely related among the four *Symbiodinium* genomes (in line with their phylogenetic relationship). They also suggest that C and F are more divergent from Clade A than from Clade B (in line with their phylogenetic relationship). Therefore, gene synteny supports and extends earlier conclusions, based on common marker sequences, about phylogenetic relationships among *Symbiodinium* clades[^10][^11]. The remarkable sequence divergence among *Symbiodinium* lineages (with <20% genome-sequence reads of *S. goreaui* and *S. kawagutii*, respectively, mapped to a genome of a different clade; Supplementary Fig. 1A) lends support to earlier observations[^12][^13].

Genome duplication and evolution. To assess the extent of genome-fragment duplication in the *Symbiodinium* genomes, we further assessed the syntenic collinear blocks within each of the four *Symbiodinium* genomes (as opposed to those shared between two genomes; above); these blocks likely imply duplication of genome fragments. We recovered 3289 blocks implicating 5498 genes in the genome of *S. goreaui*, compared to 472 blocks (2833 genes) in *S. microadriaticum*, 121 blocks (497 genes) in *S. kawagutii*, and only 1 block (12 genes) in *S. minutum* (Fig. 2a); most of these blocks in *S. goreaui* and *S. kawagutii* contain genes annotated with metabolic functions (Supplementary Data 2). The draft genome of *S. minutum* covers only 616 Mbp of the estimated 1.5 Gbp genome[^14], thus the scarcity of collinear blocks within this genome is not surprising. While these results do not relate directly to whole-genome duplication, the genome of *S. goreaui* has the highest extent of genome-fragment duplication among the four, involving 15.31% (5498 of 35,913) of the predicted genes (Fig. 2a). This percentage compares to 5.77 and 1.87% in *S. microadriaticum* and *S. kawagutii*, respectively.

To assess the extent of adaptive selection of these duplicated genes within a genome, we further assessed the ratio (ω) of substitution rates in non-synonymous (dN) to synonymous (dS) sites[^24] between each pair of homologous genes located in the collinear blocks within a genome (Fig. 2b). Excluding *S. minutum* due to incomplete genome data, we observed the highest average ω in *S. goreaui* (2.04; based on 23,499 pairwise comparisons), followed by *S. kawagutii* (1.90; 745 comparisons), and *S. microadriaticum* (1.75; 1688 comparisons). Our mean/median results suggest that most of the duplicated genes have undergone positive selection (mean ω > 1; Fig. 2b), potentially leading to diversification of metabolic functions.

Gene and protein functions. All annotated genes from *S. goreaui* and *S. kawagutii* genomes are listed in Supplementary Data 3 and 4, respectively. Of the 35,913 proteins predicted in *S. goreaui*,

Table 1: Number of syntenic collinear blocks in Symbiodinium genomes

	S. microadriaticum, Clade A	*S. minutum*, Clade B	*S. goreaui*, Clade C
S. minutum, Clade B	370 (2816)	—	—
S. goreaui, Clade C	86 (588)	155 (1125)	—
S. kawagutii, Clade F	121 (893)	173 (1323)	889 (8621)

The number of identified syntenic collinear blocks for each pair of genomes (excluding self-comparisons) is shown, with the corresponding number of implicated genes in parentheses.
31,646 (88.1%) show similarity (BLASTP, \(E \leq 10^{-5} \)) to sequences in UniProt; among these, 29,198 (81.3% of 35,913) and 19,718 (54.9%) are annotated with Gene Ontology (GO) terms or Pfam domains (Supplementary Table 11 and Supplementary Data 3). For S. kawagutii, 21,947 of 26,609 proteins (82.5%) find a match in UniProt (Supplementary Table 11 and Supplementary Data 4). Protein kinase (Pfam PF00069), reverse transcriptase (PF07727), ion transport protein (PF00520) and ankyrin repeats (PF12796) are among the most-abundant domains in Symbiodinium, appearing among the ten most-abundant for each of the four genomes (Supplementary Table 12). Ankyrin repeat motifs are important in the recognition of surface proteins, and more generally in protein–protein interactions and have been implicated in mediating host–symbiont interactions across a variety of endosymbiotic associations. Thus, proteins potentially involved in host–symbiont interaction (with phosphorylation, ion transport and protein recognition/interaction domains) are well represented in the predicted Symbiodinium proteomes. When these proteins were compared against those from S. microadriaticum and S. minutum, 35.1% of the identified homologous protein sets were recovered in all four genomes (Supplementary Fig. 7E).

We compared functions of proteins predicted from these four Symbiodinium genomes to a set of 27 eukaryotes (scoped more narrowly): 17 alveolates (ten other dinoflagellates, four ciliates, two apicomplexans and Perkinsus marinus), stramenopiles (two diatoms) and Archaeplastida (four rhodophytes, three chlorophytes and Arabidopsis). This 31-taxon set (1,136,347 proteins; Supplementary Tables 13 and 14) represents lineages in which one or more endosymbioses are implicated in plastid origin; these proteins were clustered (based on sequence similarity) into 56,530 groups of size two or greater (Supplementary Table 14; see Methods). Using this 31-taxon dataset as background, we assessed the over-representation or under-representation of protein domains within our various groups of Symbiodinium proteins. We found 270 domains (Supplementary Data 5) to be significantly overrepresented (hypercentrometric test, Benjamini-Hochberg adjusted \(p \leq 0.05 \)) in Symbiodinium. Interestingly, many domains e.g. C-5 cytosine-specific DNA methylase (PF00145), planctomycete cytochrome c (PF07635) and sigma-70 region 2 (PF04542) of RNA polymerase are also overrepresented in the four Symbiodinium genomes in a similar comparison against 880,909 proteins in a 15-taxon set that includes ten other dinoflagellates and the immediate outgroup Perkinsus marinus (Supplementary Data 6). Therefore, compared to related eukaryotes and to other dinoflagellates, Symbiodinium is enriched in functions involved in methylation of cytosine, (photosynthetic) energy production and RNA polymerisation. Hydroxymethylation of uracil is common (12–70%) in dinoflagellate genomes; while cytosine methylation has been described in Symbiodinium, our findings suggest that cytosine methylation is more prominent in Symbiodinium than in these other dinoflagellates.

Activation of some retrotransposons is part of the stress-response mechanism in diatoms, plants and other eukaryotes. The reverse transcriptase domain (PF07727) is enriched in Symbiodinium compared to both the 31-taxon and 15-taxon sets, suggesting that retrotransposition could be a prominent mechanism of stress response in Symbiodinium and dinoflagellates. Although we set a stringent threshold for removing putative bacterial or viral sequences (see Methods), 40 (\(\sim 0.1\% \)) of the final 41,289 genome scaffolds of S. goreaui have significant hits (BLASTP \(E \leq 10^{-20} \)) to the virus genomes isolated from the same S. goreaui (type C1) strain, with 16 identical regions (76–609 bp) distributed in nine scaffolds of lengths ranging from 1092 to 7,338,656 bp. Whether this indicates introgression of viral sequences remains to be determined.

Positive selection of Symbiodinium genes. Using a branch-site model based on the ratio of \(dN/dS \) (Methods and Supplementary Fig. 8) and a reference species tree, we identified Symbiodinium genes showing evidence of positive selection in comparison to ten other dinoflagellates, with P. marinus as the outgroup (15 taxa: Supplementary Tables 13 and 14). The reference species tree (Fig. 3a) was computed following Price and Bhattacharya, based on a concatenated protein alignment with partition-specific maximum-likelihood model testing (see Methods). We then based our analysis of adaptive evolution on all orthologous sets plus those homologous sets for which the protein tree is topologically congruent with our reference tree.

The 880,969 proteins from the 15-taxon set were first clustered into 310,617 homologous sets. We then adopted a stringent set of criteria (Supplementary Fig. 8) to filter these sets to yield the final 5675 sets: 1656 single-copy (orthologous) sets, and 4019 multi-copy sets for which the genus-level tree topology of each set, with Symbiodinium in an exclusive monophyletic clade, is congruent to the reference species phylogeny. Of the 5675 homologous sets, 2460 containing 7987 Symbiodinium proteins (5.0% of all 158,645 Symbiodinium proteins) show evidence of positive selection in one or more Symbiodinium lineages; 1069 of these sets are annotated.
with GO terms (Supplementary Data 7). Figure 3b shows the terms (level 3) in the three GO hierarchies that are shared by ≥5% of these 1069 sets. In the Biological Process hierarchy, metabolic processes are highly represented (primary metabolic process [292] and macromolecule compound metabolic process [243] are among the four most-frequent terms), followed by oxidation reduction [96] and transport (establishment of localization [90], transport [90], and transmembrane transport [80]). Highly represented terms in the Molecular Function hierarchy indicate binding of diverse molecules and ions, e.g. protein binding [173] and metabolism (hydrolase [390], transferase [344]). In Cellular Component, cell part [113], membrane [86] and membrane part [59] are the most frequent. Thus in Symbiodinium as represented by these four assemblies, broad aspects of metabolism, and transport including across membranes, show evidence of positive selection, in line with their recognised importance in cnidarian-dinoflagellate symbioses.

We further assessed the enrichment of annotated GO terms among these 7987 Symbiodinium genes against all annotated terms in the four Symbiodinium genomes (Supplementary Data 8) in this study. Based on the enriched Biological Process terms, we observe four emergent themes among positively selected functions in Symbiodinium genes. The first theme is that functions associated with photosynthetic light reactions are enriched among the positively selected Symbiodinium genes; photosynthesis, light reaction and photosystem II assembly are significantly over-represented (Benjamini-Hochberg adjusted p ≤ 0.05), as are Cellular Component terms related to plastid functions e.g. thylakoid, photosynthetic membrane, intracellular membrane-bound organelle (Supplementary Data 8). Coral bleaching has been associated with the loss of light-harvesting proteins and the subsequent inactivation of photosystem II (PSII) in Symbiodinium under combined light and temperature stress. These earlier results suggest that coral bleaching associated with algal photobleaching can be ameliorated, at least in part, by thermal acclimation of Symbiodinium to improve the thermal tolerance of PSII. Therefore, these genes may have been selected to increase thermal resilience. Alternatively, this may reflect the adaptation of Symbiodinium to specific light and nutrient regimes imposed by symbiosis.

The second emergent theme involves the transport of ions and metabolites across membranes. Intracellular transport, cytosolic transport, transition metal ion transport and copper ion transport as well as terms related to transmembrane transport of amino acids, organic acids and carboxylic acids are significantly enriched (hypergeometric test, Benjamini-Hochberg adjusted p ≤ 0.05; Supplementary Data 8); these functions underpin multiple physiological processes, including but not limited to pH regulation, calcification and photosynthetic carbon fixation. Symbiodinium investigated to date are enriched in bicarbonate and ammonium transporters compared with other dinoflagellates. These biological processes are especially relevant to the maintenance and regulation of coral-dinoflagellate symbiosis, possibly including its sensitivity and/or response to environmental stress.

The third theme is the enrichment of functions related to the biosynthesis and modification of amino acids and glycoproteins (Supplementary Data 8) e.g. protein phosphorylation, peptide biosynthesis process, protein ADP-ribosylation, protein glycosylation, D-amino acid metabolic process and glycoprotein biosynthetic process. Corals lack the capacity to synthesise a number of amino acids (e.g. cysteine in Acropora digitifera), thus selection acting on the synthesis of amino acids may indicate the critical role of Symbiodinium in supplying amino acids both for self-preservation and for the coral host. Glycoprotein molecules are often surface-localised and in microbes form the basis of microbe-associated molecular patterns (MAMPs) which, in conjunction with a host-associated pattern recognition receptor, mediate recognition by a host. Both in culture and in hospite, Symbiodinium exude glycoconjugates. Where investigated, cell-surface glycan profiles are stable over time within a Symbiodinium culture, but can differ between clades within a host. N-acetyl and mannol residues are prominent constituents of Symbiodinium cell-surface glycans, making them candidates for MAMPs that could participate in the establishment of symbiosis. Lin et al. reported a S. kawagutii glycan biosynthesis pathway distinct from that of S. minutum, again pointing to a possible role of glycans in specificity of host recognition. Neubauer et al. demonstrated that the thrombospondin type 1 repeat (TSR) from the sea anemone Aiptasia pallida contains binding sites for glycosaminoglycan, and that blocking TSR led to decreased colonisation by S. minutum. Our results offer, to our knowledge, the first evidence of positive
selection of functions underlying the biosynthesis and modification of amino acids and glycoproteins, suggesting that these functions are critical in the establishment of cnidarian-dinoflagellate symbioses.

Our fourth emergent theme relates to stress response. Enriched terms annotated for the positively selected genes include *cell redox homeostasis, translation initiation* and 22 terms describing the negative regulation of gene expression, transcription, RNA biosynthesis and cellular biosynthetic and metabolic processes (Supplementary Data 8). Environmental stressors can disrupt the cellular redox homeostasis and break down the coral-dinoflagellate symbiosis. Negative regulation of transcription may represent a stress response that safeguards the genome from accumulating DNA damage; a similar stress response has been observed in coral. Other enriched functions that may be related to stress response include *mitotic nuclear division, translation, and* various processes of nucleotide biosynthesis and modification e.g. RNA methylation, rRNA methylation, DNA replication, RNA processing, and deoxyribonucleotide biosynthetic process. Our results thus provide evidence that stress response is under positive selection in *Symbiodinium*, presumably (given their lifestyle) in relation to the establishment and/or maintenance of symbiosis.

Do *Symbiodinium* have sex? *Symbiodinium* have been hypothesized to reproduce sexually and to have a diploid life stage, but definitive evidence for sex, e.g. karyogamy and meiosis, has yet to be observed. The ability to reproduce sexually offers increased efficiency of selection and adaptation. So far, the strongest evidence supporting meiotic potential in *Symbiodinium* comes from patterns of population-genetic variation revealed in allozymes, randomly amplified polymorphic DNA and other molecular markers. Indeed, for some markers a higher degree of genetic variation has been observed in certain *Symbiodinium* clades than in dinoflagellates known to reproduce sexually. More recently, differential gene expression analysis using a heterologous culture from which our sequenced *S. goreaui* was derived revealed an enrichment of genes related to meiosis under thermal stress, suggesting a switch from mitosis to meiosis under stress conditions.

Schurko and Logsdon described a meiosis detection toolkit, a set of 51 genes specific or related to meiosis that collectively point to a capacity for meiosis even in divergent or specialised eukaryotic genome. Incomplete genome coverage or assembly, sequence divergence, paralogy, patterns of overlapping function and evolutionary specialisation means that not all 51 need to be present or detectable for a lineage to be assessed as probably sexual, or only recently asexual. Thirty-one of these genes were earlier identified in *Symbiodinium* Clades A and B. Here, BLASTP search (*E* ≤ 10−5) of predicted proteins in these four *Symbiodinium* genomes recovered matches corresponding to 48 of the 51 toolkit genes in *S. microadriaticum*, 47 in *S. minutum* and in *S. goreaui*, and 46 in *S. kawagutii* (Fig. 4a; Supplementary Data 9). Eight of the 11 meiosis-specific proteins were detected in all four *Symbiodinium*. REC114, SAD1 and XRS2 found weaker matches (*E* ≥ 10−14) in one to two genomes, although confirmatory UniProt domains were usually present (Supplementary Data 9). RAD17 is the Schizosaccharomyces pombe homolog of *S. cerevisiae* RAD24, for which we find highly significant matches (*E* ≤ 10−127) in all four *Symbiodinium*. Moreover, 15 of the 51 genes show evidence of positive selection in *Symbiodinium* against other dinoflagellates (Supplementary Data 9). Our data imply that these four *Symbiodinium* are, or until recently have been, capable of meiosis.

Response to light stress. Mycosporine-like amino acids (MAAs) are ultraviolet (UV)-protective compounds that, in corals and other marine organisms, also act as antioxidants scavenging reactive oxygen species. Up to five MAAs have been reported in *Symbiodinium* (Clades A, B and C) isolated from cnidarian hosts. The MAA biosynthetic pathway involves dehydroquinase synthase (DHQS), O-methyltransferase (O-MT), an ATP-grasp and non-ribosomal peptide synthetase (NRPS). In cyanobacteria, a short-chain dehydrogenase may play a role in converting shinorine to palythine-serine. Genes encoding these four MAA-biosynthetic enzymes were reported absent from the *S. kawagutii* genome. Here, using known proteins in bacteria, fungi and cnidarians as queries, we recovered all five enzymes including the short-chain dehydrogenase from the *S. microadriaticum*, *S. goreaui* and *S. kawagutii* genomes (Supplementary Table 15); ATP-grasp was not found in *S. minutum*. These enzymes were earlier reported absent from *S. kawagutii*, and it was proposed that their absence can be compensated via coral-*Symbiodinium* co-evolution; this hypothesis remains to be investigated, but we note that this *S. kawagutii* isolate has not been observed in association with an animal host.

Sycotonemin is a UV-blocker first reported in terrestrial cyanobacteria, and in contrast to MAAs was thought to be synthesised exclusively by cyanobacteria. The genome of the cyanobacterium *Nostoc punctiforme* contains a UV-inducible 18-gene operon that specifies proteins of sycotonemin biosynthesis and regulation, including proteins for the synthesis of aromatic amino-acid precursors such as chorismate. Homologs of six of these 18 genes have been described in the coral *Acropora digitifera*, and were considered putative instances of lateral genetic transfer. We find 12 of these 18 genes in the genomes of *S. goreaui* and in *S. kawagutii*, 11 in *S. microadriaticum* and ten in *S. minutum* (Fig. 4b; Supplementary Table 16).

Genes responsible for biosynthesis of the aromatic amino acid tryptophan (*trpA, trpB, trpC, trpD* and *trpE*) and the two key enzymes of chorismate biosynthesis, *aroG* and *aroB* (dehydroquinase synthase, also important for MAA biosynthesis), are found in all *Symbiodinium* genomes, albeit so far in different scaffolds; these genes are also present in *Arabidopsis thaliana*, although not in corals or *Hydra* which, like most other animals, are unable to synthesise tryptophan. The recovery of more of these 18 genes in *Symbiodinium* than in corals or other animals (Fig. 4b) could reflect the impact of endosymbiotic association of ancestral cyanobacteria during the course of plastid evolution in photosynthetic eukaryotes. The presence of multiple gene copies (Supplementary Table 16) also implicates genetic duplication. Our findings suggest that *Symbiodinium* has the capacity to produce sycotonemin.

Discussion

Symbiodinium can form associations with a wide range of cnidarian hosts (as well as some other marine invertebrates and protists) across broad geographic and temporal scales. The symbiosis between corals and *Symbiodinium* relies on compatible host-symbiont recognition and sustainable nutrient exchange, both of which are vulnerable to external environmental factors including temperature and light. A sustainable coral-*Symbiodinium* association requires an adaptive capacity in the face of environmental extremes.

In this study, we generated the first draft genome of *S. goreaui* (Clade C), a much-improved draft genome of *S. kawagutii* (Clade F) and high-quality gene models for both. Comparative analysis revealed high divergence among the genomes of *Symbiodinium* from four clades, consistent with previous single-gene phylogenetic relationships. We found that many gene families related to the establishment and/or maintenance of symbiosis appear to be under positive selection in *Symbiodinium*, including genes related...
to photosynthesis, host-symbiont interactions and nutrient exchange.

In the absence of data from population genetics, the dN/dS ratio remains a valuable and widely used indicator of adaptive selection, including in host-symbiont relationships Ref32. Artefacts and dS saturation may arise due to e.g. population size or structure, demographic history, gene flow, recombination or linkage, particularly when the ratio is computed within a population (or genome, as we do here); some of these artefacts can be avoided by use of branch-site models Ref33. Moreover, Symbiodinium genomes may represent a favourable use case. Coral reef ecosystems have existed for ~240 M years Ref54, individual reefs can be transported over long distances in ocean currents Ref55, potentially removed quickly. Over much of its life history Ref56, so deleterious alleles will be ported over long distances in ocean currents Ref55, potentially removed quickly.

We also identified complete, or near-complete, sets of genes indicative of the presence of meiosis and several mechanisms of stress tolerance, functions that have until now been considered absent from S. goreaui and S. kawagutii. S. goreaui (type C1) belongs to one of the most globally dominant clades (Clade C) on coral reefs; and analysis of its draft genome has provided important new insights into coral-algal symbiosis. This genomic resource is already demonstrating utility in the identification of symbiont fractions in de novo sequencing of coral tissues Ref57, and will provide a foundation for targeted studies into the molecular biology and physiology of this crucial symbiosis and its adaptation to a changing environment.

Methods

Biological materials and DNA extractions. Symbiodinium goreaui (Clade C, type C1; AIMS-aten-C1-M-cfu-B2, now AIMS culture collection SCP055-01) is a single-cell monoclonal culture first isolated from the coral Acropora digitifera, sea anemone Nematostella vectensis, hydra (Hydra magnipapillata) and the green plant Arabidopsis thaliana. Genomic DNA was extracted from these isolates using the Qiagen DNeasy Plant Mini Kit following the manufacturer’s protocol.

Symbiodinium kawagutii CS-156 (also known as CCMP2468) was first acquired from the Australian National Algae Culture Collection (ANACC). Unique cells were first selected under the microscope and grown in 24-well plates, from which unique cells were transferred onto agar plates. Their growth was monitored under the microscope to ensure colony formation before a colony was selected for further culturing in liquid medium. Throughout the experiment, the cells were cultured in f/2 medium containing ampicillin (100 μg mL−1), kanamycin (50 μg mL−1) and streptomycin (50 μg mL−1). PCR amplification using generic bacterial primers Ref39 was performed regularly to identify potential bacterial contamination. High molecular-weight genomic DNA was extracted following the CTAB method described in Shoguchi et al Ref14.

Generation and processing of sequencing data. For each isolate, sequence data (2 × 150 bp reads) were generated using multiple paired-end and mate-pair libraries on the Illumina HiSeq 2500 platform at the Australian Genome Research Facility, Melbourne. Details of insert length for each paired-end and mate-pair
libraries are shown in Supplementary Table 1. Specifically, one of the paired-end libraries (of insert length 250 bp) was designed such that the read-pairs of 2 × 150 bp overlap at a total. We generated 116.0 Gb (61.46 million reads) of 92.2 Gb (774.1 million reads) of sequence data for S. goreaui (type C1) and S. kawagutii (Clade F), respectively. Compared to S. goreaui, we generated fewer sequence data for S. kawagutii because some genome data of the same isolate13 are publicly available (see next section).

Adapter sequences were removed from the raw sequence data using Trimmomatic60, and erroneous bases were corrected using Quake61. For reads generated from the paired-end libraries, pairs with overlapping reads were merged into longer, single-end reads using BBMerge (http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide): we treated the boms as bona fide mate-pair reads. Due to the high standard deviation of estimated insert-lengths among the reads in (a), we treated both (a) and (b) as single-end details. All processed reads are shown in Supplementary Table 1.

Comparative analysis of S. kawagutii genome sequence data. To ensure that the sequence data we generated for S. kawagutii CS-156 (=CCMP2468) were indeed from the same source as the published data13, we compared the sequence reads between the two data sources by mapping our reads onto the assembled genome of S. kawagutii. Conversely the assembled S. kawagutii genome assembly (see De novo genome assembly below), using CLC Genomics Workbench v7.5.1 (Qiagen), as shown in Supplementary Fig. 1A, about 89% of our reads mapped at high quality (MAPQ score ≥ 30) to the published genome assembly from Lin et al.13. In comparison, 96.0 and 87.2% of the reads respectively from S. goreaui (type C1) and S. goreaui (type C2) mapped (MAPQ score ≥ 30) to the published genome assembly. We recovered identical sequences of the phylogenetic marker genes (18S ribosomal RNA and internal transcribed spacer region) from both reads as bona fide mate-pair reads. All reads generated from the mate-pair libraries were processed and classified using NXtrim62 based on read-orientation information (as observed based on the presence of adapter sequences in Nextera mate-pair libraries) into (a) paired-end, (b) single-end and (c) bona fide mate-pair reads. Due to the high standard deviation of estimated insert-lengths among the reads in (a), we treated both (a) and (b) as single-end details. All processed reads are shown in Supplementary Table 1.

De novo genome assembly. For each isolate we adopted a novel, integrative approach using multiple methods to assemble the genome de novo. First, to minimise assembly errors, we systematically assessed the distances between read-pairs in all sequencing libraries. To do this, we first assembled all processed (single, paired-end and mate-pair) reads using CLC Genomics Workbench v7.5.1 (Qiagen) to generate an initial assembly; at this step, the insert-length information for each sequencing library was based on the estimate given by the sequencing provider. We then manually assessed the assembled contigs to obtain an estimate of read-pair distances (i.e. via size of insert-length) for each sequencing library using CollectInsertSizeMetrics tool in Picard (https://broadinstitute.github.io/picard/).

Second, we assembled all processed reads using the more-accurate estimate of read-pair distances above, independently using (a) CLC Genomics Workbench v7.5.1 (Qiagen), (b) SPAdes63 and (c) ALLPATHS-LG64. For CLC and SPAdes, the contigs were further joined into longer scaffolds using mate-pair reads with SPSPACE65; ALLPATHS-LG yielded genome scaffolds directly. Gaps within scaffolds were further filled using GapFiller66 at the default setting, thereby yielding three separate assemblies: the (a) CLC, (b) SPAdes and (c) ALLPATHS-LG assemblies (Supplementary Table 17). In addition to assembly statistics, we further assessed the quality of each assembly based on (a) full-length recovery of phylogenetic markers (18S ribosomal RNA and internal transcribed spacer region ITS2), (b) full-length recovery of coding sequences of known organellar genes, and (c) genome completeness based on conserved core eukaryote genes using CEGMA (eukaryote) genes (S. goreaui: 93.37%; S. kawagutii: 74.89%; Supplementary Table 17). Like the CLC assemblies, these assemblies were highly fragmented (percentage of genome in scaffolds > 50 kb: 46.86% in S. goreaui, 74.89% in S. kawagutii). In comparison, we recovered a similarly high extent of CEGMA (eukaryote) genes (S. goreaui: 76.20%, S. kawagutii: 83.19%) [the highest Supplementary Table 17] in the CLC assemblies that are more contiguous (percentage of genome in scaffolds > 50 kb: 73.64% in S. goreaui, 70.66% in S. kawagutii). The ALLPATHS-LG assemblies yielded the least number of scaffolds (thus higher contiguity; Supplementary Table 17), but many conserved genes and phylogenetic markers were misassembled (in fragments at multiple regions rather than in full-length). We therefore used the CLC assembly as the master assembly for each genome.

Third, we refined these master assemblies using UMMmers in GMCloser68 by filling the gaps and merging scaffolds using contigs from the SPAdes and ALLPATHS-LG assemblies, followed by another step of gap-filling using GapFiller66. This gave us the refined master assemblies.

Identification and removal of bacterial and viral sequences. To identify putative bacterial and viral sequences in the genome scaffolds of S. goreaui and S. kawagutii, we followed the approach of Aranda et al.12 with some modifications. In brief, we first searched the scaffolds (BLASTN) against a database of bacterial and viral genes (see "Methods"), and identified those with hits at bit score >1000 and E ≤ 10−5; we considered these as significant hits. We then examined the sequence coverage of these regions in each scaffold, and identified the percentage (in length) contributed by these regions relative to the scaffold’s full length. Aranda et al.12 used a threshold of 50% sequence cover as indication of putative bacterial or viral contaminant, and thus removed scaffolds containing >50% of putative bacterial or viral regions. Here, we systematically assessed the number of implicated genome scaffolds across the different thresholds of percentage cover of putative bacterial or viral regions, and the corresponding gene models in these scaffolds (Supplementary Fig. 9). At the most-stringent threshold (0% sequence cover), any scaffold with any significant bacterial or viral hits is considered a contaminant, here 333 and 90 scaffolds in S. goreaui and S. kawagutii, respectively (Supplementary Table 8). The assembled master assembly that represent <1% (Supplementary Table 8) of total reads (reads filtered for adapters and low-quality reads) available from MMETSP136, and the published transcripts (generated using the 454 platform) from Lin et al.13. For RNA-Seq data, we assembled transcripts using Trinity69 independently in “de novo” mode and “genome-guided” mode, after which vector sequences were trimmed using Sox (https://sourceforge.net/projects/soxseq-family). We derived a set of putative bacterial and viral regions, and the corresponding gene models in these scaffolds based on the presence of adapter sequences in Nextera mate-pair libraries) into (a) paired-end, (b) single-end and (c) bona fide mate-pair reads. Due to the high standard deviation of estimated insert-lengths among the reads in (a), we treated both (a) and (b) as single-end details. All processed reads are shown in Supplementary Table 1.

Genome annotation and gene prediction. We adopted a comprehensive ab initio approach for gene prediction using all available dinoflagellate proteins, as well as all Symbiodinium genes and transcriptomes, as guiding evidence. For each genome assembly, a de novo repeat library was first derived using RepeatModeler (http://www.repeatmasker.org/RepeatModeler/); all repeats (including known repeats in RepeatMasker database release 20130807) were masked using RepeatMasker (http://www.repeatmasker.org/).

We used transcriptome data to guide functional annotation of assembled genomes. For S. goreaui, we used the published transcriptome data (NCBI accession GSE72763) from Levin et al.13. For S. kawagutii, we used the transcriptomes of CCMP2468 (MMETSP0132; RNA-Seq reads after filtering for adapters and low-quality reads) available from MMETSP136, and the published transcripts (generated using the 454 platform) from Lin et al.13. For RNA-Seq data, we assembled transcripts using Trinity69 independently in “de novo” mode and “genome-guided” mode, after which vector sequences were trimmed using Sox (https://sourceforge.net/projects/soxseq-family). We derived a set of putative bacterial and viral regions, and the corresponding gene models in these scaffolds based on the presence of adapter sequences in Nextera mate-pair libraries) into (a) paired-end, (b) single-end and (c) bona fide mate-pair reads. Due to the high standard deviation of estimated insert-lengths among the reads in (a), we treated both (a) and (b) as single-end details. All processed reads are shown in Supplementary Table 1.
repeats (using custom repeat library), into a single set of evidence-based predictions. The weightings used for the package were: PASA 10, Maker protein 8, AUGUSTUS 6, SNAP 2 and GeneMark-ES 2. The final genome assemblies, predicted gene models and proteins are available at http://refuge2020.reefgenomics.org/.

We adopted multiple approaches to assess genome completeness. Established methods including CEGMA10 and BUSCO95,96 are based on conserved genes in a limited set of eukaryotic model organisms that are distantly related to dinoflagellates. The use of these methods resulted in relatively low recovery of conserved eukaryote genes in Symbiodinium (e.g. 33–42% of BUSCO genes; Supplementary Fig. 7B) when run at default settings. We further assessed completeness using BLAST based on predicted proteins from the gene models and the assembled genomes. For each genome, we searched (BLASTP, \(E \leq 10^{-5}\)) against the predicted proteins using the 458 CEGMA proteins.97 We also searched against the CEGMA proteins using the genome scaffolds (BLASTX \(E \leq 10^{-5}\)), against scaffold genomes using the 458 CEGMA proteins (TBLASTN, \(E \leq 10^{-5}\)), and against scaffold genomes using the 458 CEGMA transcripts (TBLASTX, \(E \leq 10^{-5}\)) (Supplementary Data 1 and Supplementary Fig. 7).

Analysis of genome synteny and collinearity. Using all predicted genes and their associated genomic positions, we assessed the number of syntenic collinear blocks (i.e., regions with the same genes coded in the same order, free from rearrangement or loss) shared pairwise among genomes of *S. microadriaticum* (Clade A)14, *S. minutum* (B)5, *S. goreaui* (C) and *S. kawagutii* (F). We used BLASTP (\(E \leq 10^{-5}\)) to search for similar regions between each pairwise genomes for inter-genome comparisons, and to search for similar proteins within each genome for self-genome (within-genome) comparisons. Next we used MScanc58 with parameter \(-s 5\) to sort the BLASTP matches (alignments) based on genomic positions; to minimise the number of collinear gene pairs arising from tandem repeats, we report only collinear blocks that consist of five or more genes.

Analysis of plastid genomes. Plastid genomes of dinoflagellates occur as mini-circles. Here we focused on our ALLPATHS-LG genome assemblies. To identify putative plastid genome fragments in our genome data, we used plastid gene sequences identified in *Symbiodinium* type C49, *Symbiodinium minutum*92 and *Heterocapsa triquetra* as queries in BLASTN searches against our genome assemblies. To identify the conserved core regions in the putative plastid genome sequences, we set a high mismatch penalty (match score = 1, mismatch scores = –4, gap opening cost = 5, and gap extension cost = 2, \(E \leq 10\)) in reciprocal BLASTN searches. The identified core region was then used to identify other genome scaffolds that were not previously identified by alignment with known plastid-encoded genes. These scaffolds were searched against the NCBI’s non-redundant nucleotide database (BLASTN at default parameters) to assess if they align to any known genes. All scaffolds identified as being of plastid origin, both those encoding known plastid genes and those encoding only core regions, were checked for circularisation using pairwise BLAST (\(E \leq 10^{-5}\)). Artemis93 and Artemis Comparison Tool (ACT)94 were used to annotate the isolated scaffolds. The putative plastid genome sequences and their annotation are available at http://refuge2020.reefgenomics.org/.

Analysis of mitochondrial genomes. Mitochondrial genes from the dinoflagellates *Alexandrium catenella* and *Karliodinium mikurae* were used as queries to identify putative mitochondrial genome fragments within our ALLPATHS-LG assemblies (\(E \leq 10^{-5}\)). Nucleotide sequences of the control region (cox3 (cytochrome oxidase subunits 1 and 3 of complex IV) and cob (cytochrome b of complex III) genes and fragments of the large subunit rRNA (LSU rRNA) and the small subunit rRNA (SSU rRNA) were retrieved from the NCBI non-redundant nucleotide database. Scaffolds with Cox1, Cox3 and Cob hits were considered putative mitochondrial genome fragments, and were assessed for evidence of circularisation using pairwise BLASTN. The putative mitochondrial genome sequences and their annotation are available at http://refuge2020.reefgenomics.org/.

Functional annotation of gene models. We adopted a similar approach to Aranda et al.14 to annotate gene models based on sequence similarity searches against known protein sequences. Protein sequences predicted using the standard genetic code were used as query (BLASTP, \(E \leq 10^{-5}\)) first against Swiss-Prot, and those with no Swiss-Prot hits subsequently against TREMBL (both databases from UniProt release 2016_10). GO (http://geneontology.org/) terms associated with Swiss-Prot and TREMBL hits were obtained using the UniProt-GOA mapping (release 2016_10).

Identification of homologous protein sets and gene families. Our workflow for delineation of sets of putatively homologous proteins, multiple sequence alignment, generation of protein-family and reference trees, and analysis of selection is shown in Supplementary Fig. 8. Protein sequences were generated computationally, using the standard genetic code, from genome and/or transcriptome sequences of 31 organisms including *Symbiodinium* (Supplementary Table 13; 31-taxon set). Similar to 13-taxon dinoflagellates and angiosperm *Perkinsius marinus* was established. Sequences of length \(<30\) amino acids were removed, and sets of putatively homologous proteins were generated using OrthoFinder85,87 that contain \(\geq 4\) proteins, including at least one from a *Symbiodinium*, were taken forward. We assumed that all proteins within each set (and thus the corresponding coding genes) share a common ancestor. We considered sequence orthology in single-copy sets (i.e. those in which each gene is representative of no more than once) to be orthologous. Those in multi-copy sets may include co-orthologs and/or paralogs. We refer to sets that contain proteins only from *Symbiodinium*, plus the *Symbiodinium* singletons, as *Symbiodinium*-specific. For enrichment analysis of annotated features (e.g. GO terms or Pfam domains), we compared the features with the *Symbiodinium*-specific set against those in each background set (i.e. the 31-taxon set and, separately, the 15-taxon set below) using a hypergeometric test; features with Benjamini-Hochberg adjusted \(p \leq 0.05\) were considered significant.

Analysis of positive selection in *Symbiodinium* genes. For this analysis, we focused on homologous protein sets from the 15-taxon dataset. For the 15-taxon set we sorted the 310,617 protein sets into 1656 single-copy (ortholog) and 16,301 multi-copy sets. We compared the multi-copy protein alignments concatenated prior to ML inference of the species phylogeny using IQTREE88; each alignment represents a partition for which the best evolutionary model was determined independently. Support for each node was assessed using 2000 rapid bootstraps. The species tree so generated (Fig. 3a) is similar to that of Price and Bhattacharyya41, with very strong support (996% bootstrap replicates) for all internal nodes; the *Symbiodinium* and Suesiellas (*Symbiodinium + Polarella glacialis*) clades received 100% bootstrap support. Of all trimmed protein alignments, those with \(\geq 20\) aligned positions and \(\geq 4\) sequences were used in subsequent analysis. A total of 1656 single-copy protein sets satisfied these criteria. For multi-copy protein sets, we imposed further filtering criteria. We first inferred individual ML trees for the multi-copy sets using IQ-TREE, and each resulting protein tree was compared with the reference species tree. Those congruent with the reference species tree at genus level, and in which all *Symbiodinium* are resolved as an exclusive monophyletic clade, were judged putatively orthologous, and used in subsequent analyses. Among the 16,301 multi-copy sets of the 15-taxon analysis, 1656 (10.2%) resolve all *Symbiodinium* sequences into an exclusive monophyletic clade and are topologically congruent at genus level with the reference species tree (i.e. contain co-ortholog but not paralog) and were retained, while the remaining 14,645 failed one or more of these filtering criteria (i.e. contain presumed paralogs) and were not analysed further (Supplementary Fig. 8). The percentages of missing data and parsimony-informative sites in all 5867 filtered protein alignments for the 15-taxon set are detailed in Supplementary Data 10. For each filtered alignment, we used the corresponding coding-sequence alignment (codon alignment) generated using PAL2NAL89 in the BSM analysis. Some predicted protein sequences in MMETSP90 do not match their corresponding CDS, sometimes due to problematic translation and other times due to a frame shift. For these, we used MACSE90 to derive the codon alignments.

We applied the BSM implemented in the codeml program in PAML 4.93 to detect positive selection signal unique to the *Symbiodinium* lineage. BSMs allow the dN/dS ratio (\(\omega\)) to vary among both sites and branches, making it possible to infer selection at both. We computed two models: a null model with fixed \(\omega = 1\), and an alternative model that estimates \(\omega\) in our defined foreground branches (here, the node leading to all *Symbiodinium* lineages). We then compared the likelihoods of these two models to determine the better fit. To reduce false positives we applied \(q\)-value for false discovery rate control, as implemented in R package *qvalue* to adjust \(p\) values. Instances with an adjusted \(p \leq 0.05\) were considered significant.

We also performed gain-and-loss analysis on the gene sets corresponding to the protein sets under a Dollo parsimony model92, using dollop as implemented in PHYLIP 3.69 (http://evolution.genetics.washington.edu/phylip/). Here we focused on the *Symbiodinium* subtree (i.e. lineages for which genome data are available) with the immediate outgroup of *Polarella glacialis*. To assess the impact of Markov clustering granularity in OrthoFinder on our results, we assessed gene gain and gene loss using homologous protein sets that were generated independently using the inflation parameter \(I = 1.0, 1.5\) and 2.0 (see Supplementary Note 1 and Supplementary Fig. 10).

Data availability. All sequence data generated from this study are available at the NCBI Short Read Archive (SRA) BioProject accession PRJEB20399, with SRA accessions ERS1940397 (for *S. goreaui*), and ERS1940392, ERS1940393, ERS1940394, ERS1940395 and ERS1940396 (for *S. kawagutii*).组装ed genomes, predicted gene models and proteins are available at http://refuge2020.reefgenomics.org/.

Code availability. The customised scripts for AUGUSTUS and PASA used in this study were previously published in Aranda et al.12; they are available at http://smic. reefgenomics.org/download/.
56. Santos, S. R. & Coffroth, M. A. Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenreich are haploid. Biol. Bull. 204, 10–20 (2003).
57. Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).
58. Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).
59. Marchesi, J. R. et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64, 795–799 (1998).
60. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flex Trimmingo for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
61. Kelley, D. R., Schatz, M. C. & Salzberg, S. L. Quake: quality-aware detection and correction of sequencing errors. Genome Res. 23, R116 (2013).
62. O’Connell, J. et al. NcTrim: optimized trimming of illumina mate pair reads. Bioinformatics 31, 2035–2037 (2015).
63. Bankievich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
64. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513–1518 (2011).
65. Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SPSPACE. Bioinformatics 27, 578–579 (2011).
66. Nadalin, F., Venezi, F. & Polidori, A. GapFiller: a de novo assembly approach to fill in filtered reads. BMC Bioinformatics 13(Suppl 14), S8 (2012).
67. Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).
68. Kosugi, S., Hirakawa, H. & Tabata, S. GNCloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 31, 3733–3741 (2015).
69. Keeling, P. J. et al. The marine microalga eukaryote transcription sequence project (MOMETSP): illuminating the fundamental diversity of eukaryotic life in the oceans through transcription sequence sequencing. PLoS Biol. 12, e1001889 (2014).
70. Grubherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
71. Haas, B. J. et al. Automated annotation of the ribosomal genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 39, 5634–5666 (2013).
72. Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by hhm-hmm alignment. Nat. Methods 9, 173–175 (2011).
73. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
74. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
75. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
76. Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).
77. Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome database management tool for second-generation genome projects. BMC Bioinformatics 12, 491 (2011).
78. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EvidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
79. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
80. Wang, Y. et al. MGCscanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e99 (2012).
81. Barbrook, A. C., Voolstra, C. R. & Howe, C. J. The chloroplast genome of a symbiotic dinoflagellate Protoperidinium sp. Câder Clise isolate. Protist 165, 1–13 (2014).
82. Munggalkilde, S. et al. Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol. Evol. 6, 1408–1422 (2014).
83. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000).
84. Carver, T. et al. ACT: the Artemis Comparison Tool. Bioinformatics 21, 3422–3423 (2005).
85. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
86. Kato, M., Kuma, K.-i., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).
87. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
88. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
89. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W699–612 (2006).
90. Ranwez, V., Harispe, S., Delucis, F. & Douzery, E. J. MACSE: Multiple Alignment of Coding Sequences accounting for frameshifts and stop codons. PLoS ONE 6, e22594 (2011).
91. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
92. Farris, J. S. Phylogenetic analysis under Dollo’s law. Syst. Zool. 26, 77–88 (1977).

Acknowledgements
We thank Todd Lajeunesse for information on the original isolation of S. kawagutii. H.L. was supported by an Australian Research Council grant (DPI) 10101875) awarded to M.A.R. and C.X.C. T.G.S. is supported by an Australian Government Research Training Program Scholarship. R.A.G.-P. is supported by an International Postgraduate Research Scholarship and a University of Queensland Centenary Scholarship. This project was supported by the computational resources of the Australian National Computational Infrastructure (NCI) National Facility systems through the NCI Merit Allocation Scheme (Project 485) awarded to M.A.R. and C.X.C. The data used in this project were funded by the Great Barrier Reef Foundation’s Resilient Coral Reefs Successfully Adapting to Climate Change research and development program in collaboration with the Australian Government Biodiversity Trusts through the National Collaborative Research Infrastructure Strategy (NCRIS), Rio Tinto and a family foundation. The authors also acknowledge the work done by the Reef Future Genomics (ReefGenes) 2020 Consortium. Access to data generated by the consortium can be accessed via reefgenomics.org. In memory of S.F., our friend and colleague who is sorely missed.

Author contributions
H.L., M.A.R. and C.X.C. conceived the study and designed the experiments. H.L., T.G.S., R.A.G.-P. and C.X.C. conducted all computational analyses. V.H.B. and B.L. established the algal cultures and extracted the DNA. H.L., T.G.S., R.A.G.-P., I.C., M.A.R. and C.X.C. analysed and interpreted the results. H.L. and C.X.C. prepared all figures, tables, and the first draft of this manuscript. M.A., S.F. and C.R.V. provided analytical tools and scripts. H.L., T.G.S., M.A.R. and C.X.C. wrote the manuscript. P.B., I.C., M.A., D.G.B., D.J.M., M.H.iv.O. and C.R.V. assisted in experimental design and writing of the manuscript. All authors reviewed, commented on and approved the final manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s42003-018-0098-3.

Competing interests: The authors declare no competing interests.

Reprints and permissions information is available online at http://npj.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0098-3 | www.nature.com/commsbio