Research Article

A Research Study to Measure the Efficacy of Terminating Cervical Cancer via Customized Optimum Pathway

Xianyu Zhang, Huan Ma, Xiurong Lu, and Zhilin Zhang

Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China

Correspondence should be addressed to Zhilin Zhang; zhangxy@hebeinu.edu.cn

Received 13 January 2022; Revised 27 January 2022; Accepted 2 February 2022; Published 15 March 2022

Academic Editor: Liaqat Ali

Copyright © 2022 Xianyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. To develop a precise prognostic model of overall survival in patients with terminating cervical cancer based on surveillance, epidemiology, and end results (SEER) program.

Methods. The patients were retrieved from SEER data who are diagnosed with terminating cervical cancer from 2004 to 2016. The data were performed using univariate and multivariate analyses and constructed nomograms for predicting survival. Use C-index to validate the model accuracy.

Results. Totally 15839 patients diagnosed with cervical cancer were independently allocated into the training set (n = 11088) and validation set (n = 4751). The multivariate analysis results indicated that age, race, stage_T, stage_M, and stage_N were confirmed as independent risk predictors, and those factors are applied to construct this clinical model. The C-index of overall survival in the training set was 0.6816 (95% confidence interval (CI), 0.694–0.763) and that in the validation set was 0.6931 (95% CI, 0.613–0.779). All calibration curves of various factors were consistent with predicted and actual survival.

Conclusion. The nomogram provides a novel method for predicting the survival of patients with terminating cervical cancer, assisting in accurate therapeutic methods for patients with primary terminating cervical cancer.

1. Introduction

Cervical cancer is the most common malignancy in female genital tract [1]. The incidence rate of cervical cancer is second in women and even in some underdeveloped countries and regions [2, 3]. The latest data show that there are about 500,000 new cases of cervical cancer worldwide every year, of which more than 80% are in developing countries [4]. More than 260,000 women die of cervical cancer every year, mainly in low and middle-income countries [5]. In China, the incidence rate of cervical cancer accounts for 11.9% of the total worldwide, and the death rate accounts for 11.1% [6]. The age of onset is younger. At present, gene expression microarray has been widely used to study gene expression profile [7]. Gene expression microarray is a credible and high-efficiency way to identify target genes. These microarray spectra not only provide a new method for studying various disease-related genes but also provide a good prospect for molecular prediction, drug-based molecular targeting, and molecular therapy [8, 9]. With the wide application of gene expression chip technology, a large number of data are published on the public database platform [10]. Using these databases can further study the molecular mechanisms related to diseases [11].

Nomograms have been applied on various disorders [12–16], and surveillance, epidemiology, and SEER data served as an all-around database to search cancers. By using all-around SEER database to assess different factors, the nomograms could predict survival prognosis [17]. Nomogram is a mathematical model based on multivariate regression analysis. Through this model, a variety of independent prognostic factors can be gathered together to make the predictive value more individualized and intuitive [18, 19].

In our study, we develop a precise prognostic model of overall survival in patients with terminating cervical cancer based on surveillance, epidemiology, and end results (SEER) program, which aimed to help clinical patients to relieve their disease.
2. Materials and Methods

2.1. Patients and Ethnic. The patients were retrieved from the SEER data, which included information related to cancer prevalence, incidence, race, histological types, pathological types, survival time, and treatment at 18 registries in the USA. All the participants were diagnosed with cervical cancer by histopathological examination. The experiments were approved by the clinical research ethics committee hospital. All patients wrote the informed consent, in accordance with the provisions of the Helsinki Declaration of 1975.

Inclusive standard: patients were diagnosed with cervical cancer by histopathological means, age ≥18 years old, and patient’s clinical information is complete.

Exclusion criteria: patients were with more primary carcinomas or secondary tumor and data about survival time or other clinical characteristics were missing.

2.2. Study Variables. The basic patient data were collected. The survival time (1 year, 3 years and 5 years) is related to invasive depth of tumor (T stage) (1 = T0, 2 = T1, 3 = T2, 4 = T3 and T3a and T3b, 5 = T4 and T4a and T4b, and 6 = TX), the number of involved lymph node (N stage) (1 = N0, 2 = N1, 3 = N2, 4 = N3, and 5 = Nx), and distant metastasis (M stage) (1 = M0, 2 = M1).

2.3. Construction and Validation of the Nomogram. All statistical data were conducted using R software 3.3.0 (R Foundation for Statistical Computing, Vienna, Austria, www.r-project.org). Second, we constructed a nomogram used the multivariate Cox regression-the area under the curve (AUC) by R software to confirm the factors; furthermore, we used concordance index and calibration curves to assess the accuracy. The Kaplan–Meier method is applied to verify the accuracy of survival curves [20]. The prognostic value of the factors was confirmed by Cox regression analyses [21]. Value of $P < 0.05$ was considered statistically significant.

2.4. Statistical Analyses. The data were compiled using SPSS 19.0 statistical software. Values are presented as means ± SEM. The results were compared using Student’s t-test. Kaplan–Meier survival analyses were used to analyze the clinicopathologic features. All experiments were performed in triplicate and a P value.

3. Results

3.1. Clinicopathological Characteristics of the Training and Validation Sets. Totally, 15839 qualified subjects were independently allocated into the training group ($n = 11088$) and validation group ($n = 4751$). As given in Table 1, there was no statistical significance between two groups in race, age, stage_T, stage_N, and stage_M ($P > 0.05$).

3.2. Survival Analysis in the Training Set. As shown in Figure 1, age, stage_T, stage_N, and stage_M were significantly associated with overall survival (OS) in Kaplan–Meier mean.

3.3. Prognostic Factors in the Training Set. Univariate analysis and multivariate analysis are given in Table 2. The results showed that factors such as age, race, invasive depth of tumor (T stage), the number of involved lymph node (N stage), and distant metastasis (M stage) were related to survival time. Mostly, stage_T, stage_N, and stage_M were important factors. Furthermore, we did further analyze binary logistic regression analysis to identify factors potentially predict cervical cancer development. Race, stage_T, stage_N, and stage_M were confirmed as independent predictors for individual with cervical cancer.

3.4. Construction of the Nomogram. The nomogram was constructed by collecting all independent predictors for OS in the training cohort [22]. The model indicated that age ≥70 years old was most associated with survival for individual with cervical cancer, followed by TX stage and distant metastasis. Race and NX had moderate impacts on survival outcomes (Figure 2).

3.5. The Internal Validation of Nomogram. The nomogram had an exact prediction in cervical cancer development, and the unadjusted concordance index in the training set showed
and that in the validation set was 0.6931 (95% CI, 0.613–0.779). It indicated that the nomogram precisely predicts OS. Area under the curves (AUCs) are used to predict overall survival at 3 years and 5 years using the internal validation cohort (Figure 3). The 3 years and 5 years of AUCs were, respectively, 0.758, 0.788, and 0.792. This indicated that this nomogram model had a good predictive performance.

3.6. The External Validation of Nomogram. The external validation set result demonstrated that the model was exact. As shown in Figures 4 and 5, the proper consistency is between the predicted and observed OS for 3 and 5 years.

4. Discussion
Cervical cancer is one of the three most common gynecological tumors and has become the fourth leading cause of cancer-related death in women all over the world. Early screening and prevention of cervical cancer are of great importance in reducing the incidence rate and mortality of cervical cancer in China. Therefore, it is still worth to explore the pathological mechanism and find the genes related to the development of cervical cancer.

In our study, 15839 subjects were retrieved from the SEER data and construct the survival prognosis model. Age, race, stage_T, stage_N, and stage_M were confirmed as the inde-
The nomogram displays a comparably higher C-index value and calibration, which indicated that it had a better appraise survival prediction performance. When the nomogram model contains more prediction factors, so that it has higher prediction accuracy than the traditional staging model [23]. In our study, a nomogram was developed with 15839 patients which is based on the SEER database, and we predicted that the overall survival time relied on the independently factors: age, race, stage_M, stage_N, and stage_T.

This research has some limitations. First, the nomogram model is based on the SEER database. Although the database covers 28% of the population in the United States and collects clinical data from multiple medical centers in the United States, it lacks some information, for example, treatment details and so on. Second, this study confirmed that the prognosis of cervical cancer patients is related with metastasis sites, but the SEER database only contains four specific distant metastasis sites. However, adrenal

| Table 2: Risk factors for OS according to the Cox proportional hazards regression model. |
|---------------------------------|--------------|---------------|----------------|----------------|--------------|---------------|
| | | Univariate analysis | | Multivariate analysis | | |
| | | HR | 95% CI | P value | HR | 95% CI | P value |
| Age (years) | | | | | | | |
| <50 | Reference | 1.3174 | 1.1744–1.4778 | <0.001 | 1.2767 | 1.1593–1.4060 | <0.001 |
| 50–69 | | 1.7925 | 1.5980–2.0108 | <0.001 | 1.7058 | 1.5491–1.8784 | <0.001 |
| ≥70 | | 1.7911 | 0.9266–1.0537 | <0.001 | 0.9952 | 0.9435–1.0497 | <0.001 |
| Others | | 0.7181 | 0.7178–0.8719 | 0.7142 | 0.8000 | 0.7375–0.8677 | 0.85994 |
| Race | | | | | | | |
| Black | Reference | 1.7911 | 0.9266–1.0537 | <0.001 | 0.9952 | 0.9435–1.0497 | <0.001 |
| White | | 0.9881 | 0.7178–0.8719 | 0.7142 | 0.8000 | 0.7375–0.8677 | 0.85994 |
| Others | | 2.4121 | 2.3003–2.5293 | <0.001 | 2.3545 | 2.2632–2.4495 | <0.001 |
| Stage_T | | | | | | | |
| T0 | Reference | 0.9497 | 0.5843–0.9619 | 0.0235 | 0.7225 | 0.5844–0.8932 | 0.00266 |
| T1 | | 1.0924 | 0.8552–1.3953 | 0.0193 | 1.0626 | 0.8627–1.3087 | 0.00323 |
| T2 | | 1.2169 | 0.9528–1.5542 | 0.1158 | 1.1750 | 0.9539–1.4474 | 0.12949 |
| T3 | | 1.2521 | 0.9810–1.5981 | 0.0710 | 1.2163 | 0.9880–1.4973 | 0.06487 |
| T4 | | 1.3546 | 1.0580–1.7344 | 0.0161 | 1.3164 | 1.0664–1.6249 | 0.01052 |
| Stage_M | | | | | | | |
| M0 | Reference | 2.4121 | 2.3003–2.5293 | <0.001 | 2.3545 | 2.2632–2.4495 | <0.001 |
| M1 | | 1.2549 | 1.1513–1.3678 | <0.001 | 1.2307 | 1.1448–1.3231 | <0.001 |
| N1 | | 1.3563 | 1.2851–1.4314 | <0.001 | 1.3810 | 1.3199–1.4449 | <0.001 |
| N2 | | 1.3033 | 1.2172–1.3954 | <0.001 | 1.3537 | 1.2779–1.4341 | <0.001 |
| N3 | | 1.3443 | 1.2324–1.4663 | <0.001 | 1.3919 | 1.2932–1.4981 | <0.001 |

P < 0.05, significant difference. HR, hazard ratio.

Figure 2: Area under the curves to predict overall survival at 3 years (a) and 5 years (b) using the internal validation cohort.
Figure 3: (a) Te calibration curves for predictions of overall survival in the training set at 3 years and (b) 5 years after diagnosis. Te dashed line represents perfect agreement between the nomogram-predicted probability (x-axis) and the actual probability, calculated from a Kaplan–Meier analysis (y-axis).

Figure 4: (a) Te calibration curves for predictions of overall survival in the validation set at 3 years and (b) 5 years after diagnosis. Te dashed line represents perfect agreement between the nomogram-predicted probability (x-axis) and the actual probability, calculated from a Kaplan–Meier analysis (y-axis).

Figure 5: Nomogram predicting 3 and 5-year overall survival for patients with cervical cancer.
metastasis is also one of the common metastasis sites of cervical cancer, and this part of data is lacked in the database, which will affect the result of prognosis. Third, the nomogram model is based on the SEER database, which mainly collects clinical information of Western patients; the number of patients in the validation cohort is small. Therefore, a larger sample size of external data is needed for further validation to verify the credibility and universality of the nomogram model.

5. Conclusion
The nomogram provide a novel method for predicting the survival of patients with terminating cervical cancer, assisting in accurate therapeutic methods for patients with primary terminating cervical cancer.

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

References
[1] R. Chao, J. Sun, Y. Qu, and N. Long, "Clinical value of MRI, serum SCCA, and CA125 levels in the diagnosis of lymph node metastasis and para-uterine infiltration in cervical cancer," World Journal Surgical Oncology, vol. 19, p. 343, 2021.
[2] W. Li, F. He, P. Liu et al., "Uterine corpus invasion in cervical cancer: a multicenter retrospective case-control study," Archives of Gynecology and Obstetrics, vol. 303, no. 3, pp. 777–785, 2021.
[3] S. Shigeta, M. Shida, S. Nagase et al., "Epidemiological guideline influence on the therapeutic trend and patient outcome of uterine cervical cancer in Japan: Japan society of gynecologic oncology guideline evaluation committee project," Gynecologic Oncology, vol. 159, pp. 248–255, 2020.
[4] Y. Matsumoto, S. Mabuchi, F. Isohashi, N. Komura, K. Ogawa, and T. Kimura, "Impact of a reduction in follow-up frequency on life expectancy in uterine cervical cancer patients," International Journal of Clinical Oncology, vol. 25, no. 6, pp. 1170–1177, 2020.
[5] S. Meng, Z. Li, L. Chen et al., "Laparoscopic radical hysterectomy for cervical cancer by pulling the round ligament without a uterine manipulator," European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 264, pp. 31–35, 2021.
[6] H. Kim, K. K. Lee, M. H. Heo, and J. Y. Kim, "The prognostic factors influencing overall survival in uterine cervical cancer with brain metastasis," The Korean Journal of Internal Medicine, vol. 34, no. 6, pp. 1324–1332, 2019.
[7] T. Taner, G. K. Comert, B. Gokhan et al., "What is the impact of corpus uterine invasion on oncologic outcomes in surgically treated cervical cancer?" Journal of Obstetrics and Gynaecology Research, vol. 10, 2021.
[8] K. Papatla, K. L. Houck, E. Hernandez, C. Chu, and S Rubín, "Second primary uterine malignancies after radiation therapy for cervical cancer," Archives of Gynecology and Obstetrics, vol. 300, pp. 389–394, 2019.
[9] Y.-H. Sun, Y.-H. Chou, C.-H. Wang et al., "Impact of pentraxin 3 genetic variants on uterine cervical cancer clinicopathologic characteristics," International Journal of Medical Sciences, vol. 18, no. 11, pp. 2339–2346, 2021.
[10] J. Y. Kim, D. W. Lee, M. J. Kim, J. E. Shin, Y. J. Shin, and H. N. Lee, "Secondhand smoke exposure, diabetes, and high BMI are risk factors for uterine cervical cancer: a cross-sectional study from the Korea national health and nutrition examination survey (2010-2018)," BMC Cancer, vol. 21, no. 1, p. 880, 2021.
[11] X. Han, S. Liu, G. Yang et al., "Prognostic value of systemic hemato-immunological indices in uterine cervical cancer: a systemic review, meta-analysis, and meta-regression of observational studies," Gynecologic Oncology, vol. 160, no. 1, pp. 351–360, 2021.
[12] Z.-Y. Zhang, Q.-F. Luo, X.-W. Yin, Z.-L. Dai, S. Basnet, and H.-Y. Ge, "Nomograms to predict survival after colorectal cancer resection without preoperative therapy," BMC Cancer, vol. 16, no. 1, p. 658, 2016.
[13] G. Hou, Y. Zheng, and D. Wei, X. A. Li, F. Wang, J. Tian et al., "Development and validation of a SEER-based prognostic nomogram for patients with bone metastatic prostate cancer," Medicine, vol. 98, no. 39, Article ID e17197, 2019.
[14] F. Gao, X. Li, G. Wan et al., "Development and external validation of a prognostic nomogram for acute decompensation of chronic hepatitis B cirrhosis," BMC Gastroenterology, vol. 18, no. 1, p. 179, 2018.
[15] J. Ju, J. Wang, C. Ma et al., "Nomograms predicting long-term overall survival and cancer-specific survival in head and neck squamous cell carcinoma patients," Oncotarget, vol. 7, no. 32, Article ID 51059, 2016.
[16] Y. Yang, M. Yao, S. Long, C. Xu, L. Li, and Y. Li, "Prognostic nomograms for primary high-grade glioma patients in adult: a retrospective study based on the SEER database," BioMed Research International, vol. 19, Article ID 1346340, 2020.
[17] F. E. Harrell, K. L. Lee, and D. B. Mark, "Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors," Statistics in Medicine, vol. 15, no. 4, pp. 361–387, 1996.
[18] Y. Feng, Y. Wang, Y. Xie, S. Wu, Y. Li, and M. Li, "Nomograms predicting the overall survival and cancer-specific survival of patients with stage IIIIC1 cervical cancer," BMC Cancer, vol. 21, no. 1, p. 450, 2021.
[19] Y. Zhang, H. Lu, J. Zhang, and S. Wang, "Utility of a metabolic-associated nomogram to predict the recurrence-free survival of stage I cervical cancer," Future Oncology, vol. 17, no. 11, pp. 1325–1337, 2021.
[20] F.-D. Huiztil-Melendez, M. Caparu, E. M. O’Reilly et al., "Advanced hepatocellular carcinoma: which staging systems best predict prognosis?" Journal of Clinical Oncology, vol. 28, no. 17, pp. 2889–2895, 2010.
[21] J. D. Diao, L. X. Ma, M. Y. Sun et al., "Construction and validation of a nomogram to predict overall survival in patients with inflammatory breast cancer," Cancer Medicine, vol. 8, no. 12, pp. 5600–5608, 2019.
[22] B. G. Campling, Z. Ye, Y. Lai et al., "Disparity in age at lung cancer diagnosis between current and former smokers," Journal of Cancer Research and Clinical Oncology, vol. 145, no. 5, pp. 1243–1251, 2019.
[23] X. Tang, C. Guo, S. Liu, J. Guo, K. Hua, and J. Qiu, "A novel prognostic nomogram utilizing the 2018 FIGO staging system for cervical cancer: a multicenter study," International Journal of Gynecology Obstetrics, vol. 155, 2021.