K₂CO₃-Mediated Synthesis of Functionalised 4-Substituted-2-amino-3-cyano-4H-chromenes via Michael-Cyclization Reactions

Yanyang He ¹†, Rong Hu ¹†, Rongsheng Tong ², Fengqiong Li ¹, Jianyou Shi ²,* and Mei Zhang ¹,*

¹ Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; E-Mails: heyanyang89@126.com (Y.H.); airinwalk@sohu.com (R.H.); l@lifq.cn (F.L.)
² Pharmaceutical Department of Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610072, China; E-Mail: tongrs@126.com

† These authors contributed equally to this work.
* Authors to whom correspondence should be addressed; E-Mails: yuyurai@126.com (J.S.); zhangmei63@126.com (M.Z.); Tel./Fax: +86-28-61800231 (M.Z.).

Abstract: An efficient approach for the synthesis of functionalized 4-substituted-2-amino-3-cyano-4H-chromenes moderate to high yields (up to 98%) has been achieved via a tandem K₂CO₃ catalyzed conjugate addition-cyclization reaction of malononitrile and a range of Knoevenagel adducts previously formed from oxindole, pyrazolone, nitromethane, N,N-dimethylbarbituric acid or indanedione. This methodology differs from the previous classical methods in its simplicity and ready availability of the catalyst.

Keywords: 2-amino-4H-chromenes; Michael-cyclization; malononitrile; K₂CO₃; Knoevenagel adducts; cascade reaction
1. Introduction

In recent years, the chromene ring moiety has emerged as a privileged scaffold for drug design and discovery because it exists in a myriad of biological natural products [1], pharmaceutical agents and drug candidates [2]. Chromene derivatives have attracted increasing attention from synthetic chemists due to their diverse biological activities, including antitumor [3], antibacterial [4], antiviral [5], antioxidative [6], antidepressant [7], antihypertensive [8], antidiabetic [9], fungicidal [10], and insecticidal properties [11]. In particular, among the various chromene derivatives, 2-amino-4H-chromenes have been reported to exhibit highly useful proapoptotic properties for the treatment of a wide range of cancer ailments [12,13]. In cancer chemotherapy, 2-amino-4H-chromene 1 (Figure 1) was marked for drug development due to its high inhibition of tumor-associated Bcl-2 proteins [14]. The further modified 4H-chromene structure 2 (Figure 1) was able to induce apoptosis (programmed cell death) in several cancer cell lines [15]. 4-Aryl-4H-chromene 3 was found to have potential ability in the enhancement of cognitive functions, thus it is used in the treatment of neurodegenerative diseases [16]. For diversity oriented synthesis, the structure of these bioactive molecules could provide opportunities for drug design in three important regions (the aromatic ring of the benzopyran, substitution at the C2-amine, and the substituted group at the C4 position).

Figure 1. Selected examples of pharmacologically active compounds based on 4H-chromene scaffolds.

As a result, considerable efforts have been made over the past decades for the synthesis of 2-amino-4H-chromenes [17–47], which is accomplished using various catalysts including diethylamine [26], ethylenediamine diacetate [27], I2 [28], PEG [29], β-cyclodextrin [30], InCl3 [31,42,43], guanidine [32], ammonium acetate [46], Al2O3 [47], Zr(KPO4)2 [44], molecular sieves [45], aminosilane-modified Fe3O4 nanoparticles [33] and silica-bonded 2-hydroxyethylammonium acetate (HEAA) [34]. In addition, some enantioselective synthesis methodologies for 2-amino-4H-chromenes were also documented in the literature [22,23,35–39]. However, these methods show varying degrees of success as well as limitations, such as requiring complex and expensive catalytic systems, prolonged reaction times and complicated operations. Therefore, it is still deemed worthwhile and important to explore the direct use of an inexpensive and readily available organic species as catalyst for the above synthesis. The most straightforward synthesis of this heterocyclic nucleus involves the MCR of salicylaldehyde, malononitrile and nucleophiles, which can be catalyzed by various Lewis acids [22,23,31,42–44,47] (Scheme 1, previous work). It is worth mentioning that iminochromone was first formed, and then
reacted with diverse C-, N-, S-, P-nucleophiles to give a wide range of substituted and fused chromenes. As part of our efforts toward the efficient synthesis of 2-amino-3-nitrile-4H-chromenes, we decided to seek a new class of readily available starting materials. A designed Michael addition triggered cascade reaction of malononitrile with Knoevenagel adducts generated from salicylaldehyde and nucleophiles was tested (Scheme 1, this work).

**Scheme 1.** Strategies for the synthesis of substituted 2-amino-3-nitrile-4H-chromenes.

Therefore, in continuation of our interest in synthetic strategies for the preparation of heterocyclic compounds, a new K$_2$CO$_3$-catalyzed methodology for the synthesis of diverse 4-substituted-2-amino-3-cyano-4H-chromenes bearing various substituent groups at the C4 position was developed. These substituents are the most intensively studied structural motifs, and crucial building blocks for the synthesis of biologically active compounds and natural products [23] as key synthons in planning the synthesis of therapeutic agents and exhibiting diverse pharmaceutical activities.

### 2. Results and Discussion

Initially, the reaction of 3-(2-hydroxybenzylidene)-indolin-2-one (4a) and malononitrile (5) in THF was tested with different bases under mild conditions. Most organic bases such as DBU, piperidine, DIPEA and Et$_3$N showed no activity within 2 h in this reaction (Scheme 1 and Table 1, entries 1–4). With the prolonged time, only a small amount of product was formed. Other organic bases such as DMAP and DABCO could promote the reaction and afforded the product 6a in low yield (31% and 13%, respectively, entries 5, 6). However, when the catalyst was replaced with an inorganic base, the reaction proceeded efficiently and was complete in less than 2 h at ambient temperature (Table 1, entries 7, 8). Encouraged by the above results, more efforts were made to optimize other reaction parameters including solvents and reaction temperatures. Thus, the reaction was studied in different solvents that included THF, CH$_3$OH, C$_2$H$_5$OH, CHCl$_3$, CH$_2$Cl$_2$, H$_2$O, toluene, dioxane, CH$_3$CN and DMF (Table 1, entries 8–16). It was found that THF gave comparable yields (Table 1, entry 8), but other polar solvents, such as DMF, DMSO and water could not promote the reaction (Table 1, entries 11, 13, 14). The temperature also influenced the rate of the reaction. Increasing the reaction
temperature resulted in a high reactivity (Table 1, entries 18–21), and conducting the reaction at 60 °C provided the best results. Notably, the two diastereoisomers of 6a could be easily isolated by silica gel chromatography and the diastereomer ratio was 1:1. Based on the comprehensive consideration of reaction temperature and yield, the optimal reaction conditions were established as shown in Table 1, entry 19. The ratio of two diastereomers remained the same in all the cases.

Table 1. Optimization for the synthesis of 2-amino-4-(2-oxoindolin-3-yl)-4H-chromene 6a.

| Entry | Solvent | Base    | Temp. | Time | Yield of 6a b,c |
|-------|---------|---------|-------|------|-----------------|
| 1     | THF     | DBU     | r.t.  | 2 h  | 0               |
| 2     | THF     | Piperidine | r.t. | 2 h  | 0               |
| 3     | THF     | DIPEA   | r.t.  | 2 h  | 0               |
| 4     | THF     | Et3N    | r.t.  | 2 h  | 0               |
| 5     | THF     | DMAP    | r.t.  | 2 h  | 31%             |
| 6     | THF     | DABCO   | r.t.  | 2 h  | 13%             |
| 7     | THF     | Na2CO3  | r.t.  | 2 h  | 61%             |
| 8     | THF     | K2CO3   | r.t.  | 2 h  | 95%             |
| 9     | CH3OH   | K2CO3   | r.t.  | 2 h  | 45%             |
| 10    | C2H5OH  | K2CO3   | r.t.  | 2 h  | 44%             |
| 11    | CH3Cl   | K2CO3   | r.t.  | 2 h  | 34%             |
| 12    | CH2Cl2  | K2CO3   | r.t.  | 2 h  | 35%             |
| 13    | H2O     | K2CO3   | r.t.  | 2 h  | 0               |
| 14    | Toluene | K2CO3   | r.t.  | 2 h  | 40%             |
| 15    | Dioxane | K2CO3   | r.t.  | 2 h  | 0               |
| 16    | DMF     | K2CO3   | r.t.  | 2 h  | 0               |
| 17    | CH3CN   | K2CO3   | r.t.  | 2 h  | 66%             |
| 18    | THF     | K2CO3   | 40 °C | 50 min | 95%         |
| 19    | THF     | K2CO3   | 60 °C | 10 min | 98%         |
| 20    | CH3CN   | K2CO3   | 40 °C | 35 min | 91%         |
| 21    | CH3CN   | K2CO3   | 60 °C | 7 min  | 98%         |

*Reaction conditions: 4a (0.1 mmol), 5 (0.1 mmol), Base (0.1 mmol) in solvent (0.5 mL). b Isolated yield after silica gel chromatography. c dr = 1:1 calculated from the isolated isomers.

After having established the optimal conditions for the synthesis of 2-amino-4-(2-oxoindolin-3-yl)-4H-chromene, the scope of reaction were explored with various Knoevenagel adducts derived from oxindole (Table 2). For the substrates bearing electron-donating (-Me) and electron-withdrawing groups (-Cl, -F) on the indole ring, the reactions proceeded smoothly to give the corresponding substituted 4H-chromenes 6 in 83%–98% yields. However, the Knoevenagel adducts with o-, m-substituents gave lower activity than those with p-substituents. In addition, the 3-F group (Table 2, entry 6) substrate gave a complex reaction mixture at 60 °C. Lowering the reaction temperature to
room temperature, 6f was obtained in 85% yield by prolonging the reaction time. The diastereoselectivity of almost all of these reactions (except entry 13) was 1:1 and the two diastereoisomers could be isolated by silica gel chromatography. Thus, equivalent diastereoisomers were easily obtained in one step. This transformation was also suitable for ethyl cyanoacetate, furnishing compound 6l in 67% yields with higher diastereoselectivity (10:1).

Table 2. Synthesis of new 2-amino-4-(2-oxoindolin-3-yl)-4\textit{H}-chromene 6a–m\textsuperscript{a}.

| Entry | R\textsubscript{1} | R\textsubscript{2} | R\textsubscript{3} | R\textsubscript{4} | Product 6 | Time | Yield\textsuperscript{b,c} |
|-------|-----------------|-----------------|-----------------|-----------------|-----------|------|-----------------|
| 1     | H               | H               | H               | CN              | 6a        | 10 min | 98%             |
| 2     | H               | 5-CH\textsubscript{3} | H               | CN              | 6b        | 8 min  | 90%             |
| 3     | H               | 5-Cl            | H               | CN              | 6c        | 8 min  | 95%             |
| 4     | 6-Cl            | H               | H               | CN              | 6d        | 6 min  | 93%             |
| 5     | H               | 5-Br            | H               | CN              | 6e        | 6 min  | 91%             |
| 6\textsuperscript{d} | H               | 3-F             | H               | CN              | 6f        | 15 h   | 85%             |
Table 2. Cont.

| Entry | R₁ | R₂  | R₃  | R₄  | Product 6 | Time  | Yield  |
|-------|----|-----|-----|-----|-----------|-------|--------|
| 7     | H  | 4-F | H   | CN  | ![Image](image1) | 2 h   | 83%    |
| 8     | H  | 5-F | H   | CN  | ![Image](image2) | 10 min| 91%    |
| 9     | 5-F| H   | H   | CN  | ![Image](image3) | 9 min | 89%    |
| 10    | H  | H   | -ph | CN  | ![Image](image4) | 5 min | 90%    |
| 11    | H  | H   | -CH₃| CN  | ![Image](image5) | 10 min| 87%    |
| 12    | H  | H   | H   | -COOEt | ![Image](image6) | 3 h   | 67%    |
| 13    | ![Image](image7) | ![Image](image8) | 70 min | 70%    |

* All reactions were performed using 4 (0.1 mmol), 5 (0.1 mmol) in THF (0.5 mL). The products were characterized by ^1^H-NMR, ^13^C-NMR and MS.  
  b Isolated yield after silica chromatography.  
  c Diastereoisomer ratios (syn/anti = 1:1) calculated from the isolated isomers.  
  d This reaction was performed in room temperature.  
  e dr = 10:1.  
  f Single isomer was obtained.

The structures of compounds 6a–m were confirmed by ^1^H-NMR, ^13^C-NMR and MS applied to all the diastereoisomers. In the ^1^H-NMR spectrum of compound 6a, the two key adjacent hydrogens were observed as two doublets at δ 3.67 ppm and 4.32 ppm. In the ^13^C-NMR spectrum, the characteristic meso methylene carbon resonated at δ 34.3 ppm (C-1) and 49.7 ppm (C-2), providing further evidence for the formation of the product. The NMR spectra of the other compounds 6b–m were consistent with previous reports.

To explore the scope and limitations of this reaction, we further extended the substrates to a variety of other substituents and heterocycles for the preparation of structurally diverse and functionalized
4-substituted-4H-chromenes. When Knoevenagel adducts derived from pyrazolone, nitromethane, N,N-dimethylbarbituric acid or indanedione were employed, we were pleased to find that the reactions proceeded smoothly in THF (0.5 mL) at 60 °C in 10 min to provide products 6n–q in good yield (75%–90%) (Table 3).

Table 3. Synthesis of more substituted 4H-chromenes 6n–q a,b.

| Reaction | Product | Yield (%) |
|----------|---------|-----------|
| 4n-q + 5a | 6n-q | 90% |
| 6n (90%) | 6o (95%) | 75% |
| 6p (75%) | 6q (80%) | 10% |

a All reactions were performed using 4 (0.1 mmol), 5 (0.1 mmol) in THF (0.5 mL) at 60 °C in 5, 12, 40, 10 min, respectively. The products were characterized by 1H-NMR, 13C-NMR and MS. b Isolated yield after silica gel chromatography.

3. Experimental Section

3.1. General Information

All chemicals were obtained from commercial sources and used without further purification. Column chromatography was carried out on silica gel (300–400 mesh, Qingdao Marine Chemical Ltd., Qingdao, China). Thin layer chromatography (TLC) was performed on TLC silica gel 60 F254 plates. 1H-NMR spectra were recorded on a Bruker AVII-400 or AVII-600 MHz NMR spectrometer. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. 13C-NMR data were collected at 100 MHz with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. MS spectra were obtained on a Waters Quattro Premier XETM triple quadrupole mass spectrometer and methanol was used to dissolve the sample. Melting points were recorded on a SGW X-4 melting point instrument (Shanghai Precision & Scientific Instrument Co., Ltd, Shanghai, China).
3.2. Experimental Procedures

A mixture of 1,3-dihydro-3-[(2-hydroxyphenyl)methylene]-2H-indol-2-one (4a, 0.1 mmol), malononitrile (5a, 0.1 mmol) and K₂CO₃ (0.1 mmol) was stirred in THF (0.5 mL) for 10 min at 60 °C. After completion of the reaction (TLC), the solvent was removed under vacuum. The crude product was subjected to column chromatography on silica gel using petroleum ether/ethyl acetate = 1:1 as the eluent to give 6a. Compounds 6b–q were synthesized by a similar procedure as described for compound 6a. For the separation of these compounds, the silica gel column chromatography eluent consisted of appropriate mixtures of petroleum ether and ethyl acetate.

2-Amino-4-(2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6a). Isomer 6aa: White solid; m.p. 192–194 °C; ¹H-NMR (400 MHz, TMS, DMSO): δ 3.67 (d, J = 2.8 Hz, 1H), 4.32 (d, J = 2.8 Hz, 1H), 6.45 (d, J = 7.2 Hz, 1H), 6.71 (s, 2H), 6.76–6.81 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H), 7.11–7.16 (m, 2H), 7.23–7.25 (m, 1H), 7.30–7.34 (m, 1H), 10.41 (s, 1H); ¹³C-NMR (100 MHz, DMSO): δ 36.6, 50.5, 53.1, 109.2, 115.8, 120.0, 120.9, 121.5, 123.5, 124.6, 126.8, 128.0, 128.2, 128.6, 143.5, 149.7, 162.1, 176.0; MS: m/z = 326 [M+Na]⁺. Isomer 6ab: White solid; m.p. 191–193 °C; ¹H-NMR (400 MHz, TMS, DMSO): δ 3.63 (d, J = 2.8 Hz, 1H), 4.25 (d, J = 2.8 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.84 (t, J = 8.0 Hz, 1H), 6.98–7.07 (m, 2H), 7.09–7.19 (m, 5H), 10.43 (s, 1H); ¹³C-NMR (100 MHz, DMSO): δ 37.2, 52.4, 52.7, 109.1, 115.6, 119.7, 120.2, 121.1, 123.6, 124.2, 126.6, 127.6, 128.0, 128.4, 142.9, 149.3, 161.9, 176.7; MS: m/z = 326 [M+Na]⁺.

2-Amino-6-methyl-4-(2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6b). Isomer 6ba: White solid; m.p. 209–211 °C; ¹H-NMR (400 MHz, TMS, DMSO): δ 2.16 (s, 3H), 3.62 (d, J = 3.2 Hz, 1H), 4.19 (d, J = 3.2 Hz, 1H), 6.62 (d, J = 7.6 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.82–6.86 (m, 1H), 6.90–6.93 (m, 1H), 6.96 (s, 1H), 7.03–7.07 (m, 3H), 7.17 (d, J = 7.6 Hz, 1H), 10.45 (s, 1H); ¹³C-NMR (100 MHz, DMSO): δ 20.3, 37.2, 52.2, 52.7, 109.1, 115.3, 119.4, 120.3, 121.1, 123.7, 126.7, 128.0, 128.9, 133.0, 143.0, 147.3, 162.1, 176.7; MS: m/z = 340 [M+Na]⁺. Isomer 6bb: White solid; m.p. 136–139 °C; ¹H-NMR (400 MHz, TMS, CDCl₃): δ 2.29 (s, 3H), 3.68 (d, J = 3.2 Hz, 1H), 4.43 (d, J = 3.2 Hz, 1H), 4.65 (s, 2H), 4.67 (d, J = 7.2 Hz, 1H), 6.83–6.89 (m, 3H), 6.98 (s, 1H), 7.06–7.08 (m, 1H), 7.16–7.20 (m, 1H), 8.79 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 20.8, 37.4, 53.5, 53.7, 110.1, 116.1, 120.1, 120.6, 122.0, 124.2, 126.4, 128.3, 128.5, 129.4, 135.0, 142.6, 147.9, 162.1, 177.4; MS: m/z = 340 [M+Na]⁺.

2-Amino-6-chloro-4-(2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6c). Isomer 6ca: White solid; m.p. 183–184 °C; ¹H-NMR (400 MHz, TMS, DMSO): δ 3.67 (d, J = 3.2 Hz, 1H), 4.26 (d, J = 3.2 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 6.83–6.89 (m, 2H), 7.07–7.23 (m, 6H), 10.53 (s, 1H); ¹³C-NMR (100 MHz, DMSO): δ 37.5, 52.1, 53.2, 109.7, 118.0, 120.3, 121.8, 122.6, 124.4, 126.9, 127.8, 128.1, 128.7, 128.8, 143.4, 148.8, 162.3, 177.1; MS: m/z = 360 [M+Na]⁺. Isomer 6cb: White solid; m.p. 170–172 °C; ¹H-NMR (400 MHz, TMS, DMSO): δ 3.72 (d, J = 3.2 Hz, 1H), 4.33 (d, J = 3.2 Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H), 6.76–6.85 (m, 4H), 7.05 (d, J = 8.4 Hz, 1H), 7.16 (t, J = 8.0 Hz, 1H), 7.24–7.25 (m, 1H), 7.34–7.37 (m, 1H), 10.40 (s, 1H); ¹³C-NMR (100 MHz, DMSO): δ 37.0, 50.6, 53.2, 109.7, 118.2, 120.4, 121.5, 123.9, 124.1, 127.1, 128.4, 128.6, 128.7, 129.0, 144.0, 149.0, 162.4, 176.4; MS: m/z = 360 [M+Na]⁺.
2-Amino-4-(6-chloro-2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6d). Isomer 6da: White solid; m.p. 184–186 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.67 (d, J = 3.2 Hz, 1H), 4.26 (d, J = 3.2 Hz, 1H), 6.63–6.64 (m, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.93 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.01–7.20 (m, 6H), 10.57 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 37.2, 51.9, 52.5, 109.1, 115.7, 119.7, 120.1, 120.8, 124.3, 125.1, 125.8, 127.6, 128.6, 132.3, 144.5, 149.3, 162.0, 176.6; MS: m/z = 360 [M+Na]^+. Isomer 6db: White solid; m.p. 179–182 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.69 (d, J = 2.8 Hz, 1H), 4.32 (d, J = 2.8 Hz, 1H), 6.40 (d, J = 8.0 Hz, 1H), 6.73 (s, 2H), 6.78 (d, J = 2.0 Hz, 1H), 6.85 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.27–7.35 (m, 2H), 10.56 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 36.6, 49.9, 52.8, 109.2, 115.9, 120.0, 120.6, 121.2, 124.8, 124.9, 125.8, 128.3, 132.4, 145.1, 149.6, 162.1, 176.1; MS: m/z = 360 [M+Na]^+.

2-Amino-6-bromo-4-(2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6e). Isomer 6ea: White solid; m.p. 118–120 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.66 (d, J = 2.8 Hz, 1H), 4.25 (d, J = 2.8 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 6.78 (t, J = 8.0 Hz, 1H), 6.87 (t, J = 8.0 Hz, 1H), 7.08 (t, J = 8.0 Hz, 1H), 7.14 (s, 2H), 7.20 (d, J = 8.0 Hz, 1H), 7.30 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.37 (d, J = 2.0 Hz, 1H), 10.53 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 36.9, 51.7, 52.7, 109.2, 115.6, 117.9, 119.8, 121.3, 122.6, 123.9, 126.4, 128.2, 130.2, 131.2, 142.9, 148.8, 161.7, 176.5; MS: m/z = 382 [M+H]^+.

Isomer 6eb: White solid; m.p. 172–175 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.71 (d, J = 3.2 Hz, 1H), 4.33 (d, J = 3.2 Hz, 1H), 6.57 (d, J = 7.6 Hz, 1H), 6.76–6.85 (m, 4H), 6.98 (d, J = 8.0 Hz, 1H), 7.16 (t, J = 8.0 Hz, 1H), 7.34–7.35 (m, 1H), 7.47 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H), 10.39 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 36.4, 50.2, 52.7, 109.2, 116.0, 118.0, 119.9, 121.1, 123.6, 123.8, 126.6, 128.2, 130.8, 131.4, 143.5, 148.9, 161.8, 175.9; MS: m/z = 380 [M+H]^+.

2-Amino-8-fluoro-4-(2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6f). Isomer 6fa: White solid; m.p. 197–199 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.66 (d, J = 3.2 Hz, 1H), 4.29 (d, J = 3.2 Hz, 1H), 4.63 (d, J = 8.0 Hz, 1H), 6.87 (t, J = 7.2 Hz, 1H), 6.97–7.11 (m, 4H), 7.19–7.24 (m, 3H), 10.43 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 37.0, 52.3, 52.7, 109.1, 115.1 (d, J = 7 Hz), 119.7, 121.2, 122.7, 122.9 (d, J = 3 Hz), 123.7, 124.2 (d, J = 7 Hz), 126.4, 128.2, 137.5 (d, J = 11 Hz), 143.0, 149.1 (d, J = 245 Hz), 161.3, 176.5; MS: m/z = 344 [M+Na]^+. Isomer 6fb: White solid; m.p. 133–135 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.68 (d, J = 2.8 Hz, 1H), 4.36 (d, J = 2.8 Hz, 1H), 4.56 (d, J = 7.2 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.82–6.89 (m, 3H), 6.98 (d, J = 8.0 Hz, 1H), 7.09–7.18 (m, 2H), 7.24–7.29 (m, 1H), 10.39 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 36.5, 50.6, 52.8, 109.3, 115.2 (d, J = 17Hz), 119.8, 121.1, 123.4 (d, J = 3 Hz), 123.5, 124.0, 124.5 (d, J = 7 Hz), 126.6, 128.2, 137.8 (d, J = 11Hz), 143.5, 149.3 (d, J = 245Hz), 161.4, 175.9; MS: m/z = 344 [M+Na]^+.

2-Amino-7-fluoro-4-(2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6g). Isomer 6ga: White solid; m.p. 167–169 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.62 (d, J = 2.8 Hz, 1H), 4.23 (d, J = 2.8 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.68–6.71 (m, 1H), 6.84–6.93 (m, 2H), 7.07 (t, J = 8.0 Hz, 1H), 7.16–7.20 (m, 4H), 10.44 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 36.8, 52.4, 52.7, 103.1 (d, J = 25 Hz), 109.1, 111.3 (d, J = 22 Hz), 116.1, 119.9, 121.2, 123.7, 126.5, 128.1, 129.1 (d, J = 10 Hz), 142.9, 150.0 (d, J = 12 Hz), 161.1 (d, J = 243 Hz), 161.5, 176.6; MS: m/z = 344 [M+Na]^+. Isomer 6gb: White solid; m.p. 165–169 °C; 1H-NMR (400 MHz, TMS, DMSO): δ3.66 (d, J = 2.8 Hz, 1H), 4.31 (d, J = 2.8 Hz,
2-Amino-6-fluoro-(2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6h). Isomer 6ha: White solid; m.p. 212–217 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.66 (d, J = 2.8 Hz, 1H), 4.25 (d, J = 2.8 Hz, 1H), 6.64 (d, J = 7.6 Hz, 1H), 6.82–6.88 (m, 2H), 6.93–7.01 (m, 2H), 7.05–7.11 (m, 3H), 7.18–7.20 (m, 1H), 10.49 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 37.3, 51.5, 52.6, 109.1, 113.7 (d, J = 24 Hz), 115.2 (d, J = 24 Hz), 117.3 (d, J = 8 Hz), 120.0, 121.3, 121.7 (d, J = 8 Hz), 123.8, 126.4, 128.1, 142.9, 145.7, 157.8 (d, J = 238 Hz), 161.9, 176.6; MS: m/z = 344 [M+Na]+. Isomer 6hb: White solid; m.p. 202–203 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.72 (d, J = 2.8 Hz, 1H), 4.33 (d, J = 2.8 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 6.72 (s, 2H), 6.76–6.83 (m, 2H), 7.04–7.10 (m, 2H), 7.14–7.18 (m, 2H), 10.40 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 36.7, 49.7, 52.7, 109.3, 114.4 (d, J = 24 Hz), 115.5 (d, J = 24 Hz), 117.4, 117.5, 119.9, 121.0, 123.2, 123.3, 123.5, 126.6, 128.1, 144.8 (d, J = 249 Hz), 162.1, 175.9; MS: m/z = 344 [M+Na]+.

2-Amino-4-(5-fluoro-2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6i). Isomer 6ia: White solid; m.p. 183–185 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.68 (d, J = 2.8 Hz, 1H), 4.26 (d, J = 2.8 Hz, 1H), 6.58–6.61 (m, 1H), 6.82–6.84 (m, 1H), 6.87–6.93 (m, 1H), 6.99–7.05 (m, 2H), 7.12–7.19 (m, 4H), 10.43 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 37.1, 50.7, 54.0, 110.2, 110.3, 111.7 (d, J = 25 Hz), 114.8 (d, J = 23 Hz), 116.1, 120.5, 121.6, 124.8, 128.2, 128.8, 140.3, 150.2, 157.9 (d, J = 234 Hz), 162.7, 176.4; MS: m/z = 344 [M+Na]+. Isomer 6ib: White solid; m.p. 130–134 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.71 (d, J = 2.8 Hz, 1H), 4.34 (d, J = 2.8 Hz, 1H), 6.73–6.77 (m, 3H), 6.96–7.05 (m, 2H), 7.12–7.17 (m, 2H), 7.24–7.25 (m, 1H), 7.32–7.36 (m, 1H), 10.43 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 37.1, 50.7, 54.0, 110.2, 110.3, 111.7 (d, J = 24 Hz), 114.8 (d, J = 24 Hz), 116.3, 120.5, 121.6, 125.3, 128.8, 129.3, 140.3, 150.2, 157.8 (d, J = 235 Hz), 162.7, 176.4; MS: m/z = 344 [M+Na]+.

2-Amino-4-(2-oxo-1-phenylindolin-3-yl)-4H-chromene-3-carbonitrile (6j). Isomer 6ja: White solid; m.p. 186–187 °C; 1H-NMR (400 MHz, TMS, CDCl3): δ 3.95 (d, J = 3.2 Hz, 1H), 4.55 (d, J = 3.2 Hz, 1H), 4.92 (s, 2H), 6.50 (d, J = 8.0 Hz, 1H), 6.74 (t, J = 8.0 Hz, 1H), 6.97–7.00 (m, 2H), 7.05–7.12 (m, 2H), 7.20–7.24 (m, 3H), 7.36 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.47–7.51 (m, 2H); 13C-NMR (100 MHz, DMSO): δ 29.7, 38.2, 52.6, 109.1, 116.0, 118.8, 119.4, 122.9, 124.4, 124.6, 125.5, 126.5, 128.1, 128.2, 128.3, 128.7, 129.6, 134.2, 144.6, 149.5, 161.6, 174.8; MS: m/z = 402 [M+Na]+. Isomer 6jb: White solid; m.p. 192–194 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.97 (d, J = 2.8 Hz, 1H), 4.45 (d, J = 2.8 Hz, 1H), 6.55 (d, J = 7.6 Hz, 1H), 6.65 (d, J = 7.6 Hz, 1H), 6.79 (s, 2H), 6.92 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 7.30 (d, J = 7.2 Hz, 1H), 7.35–7.40 (m, 3H), 7.45 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 7.6 Hz, 2H); MS: m/z = 402 [M+Na]+.

2-Amino-4-(1-methyl-2-oxoindolin-3-yl)-4H-chromene-3-carbonitrile (6k). Isomer 6ka: White solid; m.p. 208–211 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.02 (s, 3H), 3.68 (d, J = 3.2 Hz, 1H), 4.26 (d, J = 3.2 Hz, 1H), 6.73–6.76 (m, 2H), 6.90–7.02 (m, 3H), 7.06–7.16 (m, 4H), 7.21 (d, J = 7.2Hz,
Molecules 2014, 19 19263

1H); 13C-NMR (100 MHz, DMSO): δ 25.8, 37.7, 52.1, 52.3, 108.0, 115.6, 119.2, 120.2, 121.8, 123.4, 124.0, 125.7, 127.2, 128.1, 128.5, 144.4, 149.2, 161.9, 174.7; MS: m/z = 340 [M+Na]+. Isomer 6kb: White solid; m.p. 202–205 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.07 (s, 3H), 3.75 (d, J = 2.8 Hz, 1H), 6.35 (d, J = 7.2 Hz, 1H), 6.64 (s, 2H), 6.85 (t, J = 7.2 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 7.16–7.22 (m, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.32–7.39 (m, 2H); 13C-NMR (100 MHz, DMSO): δ 26.0, 37.0, 49.5, 52.6, 108.2, 115.8, 119.7, 121.2, 121.6, 123.1, 124.8, 125.9, 128.2, 128.4, 128.7, 145.0, 149.5, 161.9, 174.3; MS: m/z = 340 [M+Na]+.

ethyl 2-Amino-4-(2-oxoindolin-3-yl)-4H-chromene-3-carboxylate (6l). White solid; m.p. 93–96 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 1.38 (t, J = 7.2 Hz, 3H), 3.87 (d, J = 3.2 Hz, 1H), 4.30–4.36 (m, 2H), 4.77 (d, J = 3.2 Hz, 1H), 6.60–6.66 (m, 2H), 6.84–6.90 (m, 2H), 6.97–7.06 (m, 2H), 7.23–7.28 (m, 2H), 8.32 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 14.7, 36.7, 53.2, 59.8, 75.5, 109.1, 115.3, 122.1, 124.1, 124.6, 127.3, 127.8, 127.9, 128.4, 141.6, 149.9, 162.1, 169.1, 178.7; MS: m/z = 373 [M+Na]+.

2-Amino-4-(2-oxoindolin-3-yl)-4H-benzo[g]chromene-3-carboxonitrile (6m). White solid; m.p. 201–205 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.69 (d, J = 2.8 Hz, 1H), 4.90 (d, J = 2.8 Hz, 1H), 6.24 (d, J = 7.2 Hz, 1H), 6.72–6.76 (m, 3H), 6.82 (d, J = 7.6 Hz, 1H), 7.11–7.15 (m, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.55–7.59 (m, 1H), 7.71–7.75 (m, 1H), 8.00–8.05 (m, 2H), 8.13 (d, J = 8.4 Hz, 1H), 10.62 (s, 1H); 13C-NMR (100 MHz, DMSO): δ 34.3, 49.7, 51.5, 109.4, 114.6, 116.6, 119.9, 121.0, 122.0, 123.4, 125.3, 126.5, 127.9, 128.0, 129.1, 129.2, 129.8, 130.9, 143.8, 147.6, 162.1, 176.5; MS: m/z = 376 [M+Na]+.

2-Amino-4-(nitromethyl)-4H-chromene-3-carbonitrile (6n). White solid; m.p. 144–146 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 4.32 (t, J = 5.2 Hz, 1H), 4.67 (dd, J = 12.0 Hz, J = 5.2 Hz, 1H), 4.80 (dd, J = 12.0 Hz, J = 5.2 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 7.17–7.21 (m, 3H), 7.31–7.36 (m, 2H); 13C-NMR (100 MHz, DMSO): δ 34.6, 49.9, 80.7, 116.1, 119.4, 119.7, 124.7, 128.3, 129.1, 149.4, 162.1; MS: m/z = 254 [M+Na]+.

2-Amino-4-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile (6o). White solid; m.p. 150–152 °C; 1H-NMR (600 MHz, TMS, DMSO): δ 1.83 (s, 3H), 4.93 (s, 1H), 6.65 (s, 2H), 6.94–7.05 (m, 2H), 7.15–7.20 (m, 3H), 7.26–7.29 (m, 4H), 7.40–7.45 (m, 2H), 7.87–7.92 (m, 4H); MS: m/z = 383 [M+K]+.

2-Amino-4-(1,3-dioxo-2,3-dihydro-1H-inden-2-yl)-4H-chromene-3-carbonitrile (6p). White solid; m.p. 85–88 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.61 (d, J = 2.8 Hz, 1H), 4.35 (d, J = 2.8 Hz, 1H), 6.94–7.11 (m, 3H), 7.19–7.23 (m, 1H), 7.87–7.92 (m, 4H); MS: m/z = 315 [M–H]+.

2-Amino-4-(1,3-dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-4H-chromene-3-carbonitrile (6q). White solid; m.p. 195–198 °C; 1H-NMR (400 MHz, TMS, DMSO): δ 3.01 (s, 3H), 3.07 (s, 3H), 3.67 (d, J = 2.8 Hz, 1H), 4.37 (d, J = 2.8 Hz, 1H), 6.98–7.00 (m, 1H), 7.16–7.20 (m, 2H), 7.30–7.32 (m, 1H); MS: m/z = 325 [M–H]−.
4. Conclusions

In conclusion, we have demonstrated an efficient approach for the synthesis of functionalised 4-substituted-2-amino-3-cyano-4H-chromenes via a tandem conjugate addition-cyclization reaction of malononitrile and a range of Knoevenagel adducts using K2CO3 as catalyst. A range of 4-substituted-2-amino-3-cyano-4H-chromenes were thus obtained in moderate to high yields (up to 98%). This synthetic method offers several advantages, including milder reaction conditions, an economical catalyst system, shorter time for completion and simple process, all which make it an efficient route for the synthesis of 2-amino-4H-chromenes. Moreover, for 4-indolylchromenes, the two isomers formed could be isolated one step silica gel chromatography. Further study on the antibacterial and antitumor activities of these compounds is underway.

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/12/19253/s1.

Acknowledgments

We appreciate the financial support of National Natural Science Foundation of China (No. 81302643), China Postdoctoral Science Foundation (No. 2014M552374), and Sichuan Provincial Health Department Research Project (No. 120077). We are also grateful to Xiaoyan Wang (Sichuan University Analytical & Testing Center) for the NMR analysis.

Author Contributions

Jianyou Shi and Mei Zhang designed research; Yanyang He, Rong Hu, Rongsheng Tong and Fengqiong Li performed research. All authors read and approved the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Kjer, J.; Wray, V.; Edrada-Ebel, R.; Ebel, R.; Pretsch, A.; Lin, W.; Proksch, P. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. Isolated from the mangrove plant Sonneratia alba. J. Nat. Prod. 2006, 72, 2053–2057.
2. Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part II. Curr. Med. Chem. 2012, 19, 2176–2228.
3. Raj, T.; Bhatia, R.K.; Kapur, A.; Sharma, M.; Saxena, A.K.; Ishaq, M.P. Cytoxic activity of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides. Eur. J. Med. Chem. 2010, 45, 790–794.
4. Mungra, D.C.; Patel, M.P.; Rajani, D.P.; Patel, R.G. Synthesis and identification of β-aryloxyquinolines and their pyran[3,3-c]chromene derivatives as a new class of antimicrobial and antituberculosis agents. *Eur. J. Med. Chem.* 2011, 46, 4192–4200.

5. Conti, C.; Proietti Monaco, L.; Desideri, N. Synthesis and anti-rhinovirus activity of novel 3-[2-(pyridinyl)vinyl]substituted-2H-chromenes and 4H-chromen-4-ones. *Bioorg. Med. Chem.* 2014, 22, 1201–1207.

6. Mori, J.; Iwashima, M.; Takeuchi, M.; Saito, H. A synthetic study on antiviral and antioxidative chromene derivative. *Chem. Pharm. Bull.* 2006, 54, 391–396.

7. He, Y.; Chen, Y.Y.; Shi, J.B.; Tang, W.J.; Pan, Z.X.; Dong, Z.Q.; Song, B.A.; Li, J.; Liu, X.H. New coumarin derivatives: Design, synthesis and use as inhibitors of hMAO. *Bioorg. Med. Chem.* 2014, 22, 3732–3738.

8. Charles, J.; Michael, S.V.; Gabriel, S.W.; Amir, H.H. Zr-Catalyzed Kinetic Resolution of Allylic Ethers and Mo-Catalyzed Chromene Formation in Synthesis. Enantioselective Total Synthesis of the Antihypertensive Agent (S,R,R,R)-Nebivolol. *J. Am. Chem. Soc.* 1998, 120, 8340–8347.

9. Rapposelli, S.; da Settimo, F.; Digiacomo, M.; Ia Motta, C.; Lapucci, A.; Sartini, S.; Vanni, M. Synthesis and biological evaluation of 2'-oxo-2,3-dihydro-3'H-spiro [chromene-4,5'-[1,3]oxazolidin]-3'y]acetis acid derivatives as aldose reductase inhibitors. *Arch. Pharm. (weinheim)* 2011, 344, 372–385.

10. Meepagala, K.M.; Schrader, K.K.; Burandt, C.L.; Wedge, D.E.; Duke, S.O. New class of algicidal compounds and fungicidal activities derived from a chromene amide of *Amyris texana*. *J. Agric. Food Chem.* 2010, 58, 9476–9482.

11. Smetanina, O.F.; Yurchenko, A.N.; Afiyatullov, S.S.; Kalinovsky, A.L.; Pushilin, M.A.; Khudyakova, Y.V.; Slinkina, N.N.; Ermakova, S.P.; Yurchenko, E.A. Oxirapentyns B–D produced by a marine sediment-derived fungus *Isaria felina* (DC.) Fr. *Phytochem. Lett.* 2012, 5, 165–169.

12. Kumar, A.; Sharma, S.; Maurya, R.A.; Sarkar, J. Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. *J. Comb. Chem.* 2010, 12, 20–24.

13. Zhang, G.; Zhang, Y.; Yan, J.; Chen, R.; Wang, S.; Ma, Y.; Wang, R. One-pot enantioselective synthesis of functionalized pyranoCoumarins and 2-amino-4H-chromens: Discovery of a type of potent antibacterial agent. *J. Org. Chem.* 2012, 77, 878–888.

14. Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8-positions. *J. Med. Chem.* 2007, 50, 2858–2864.

15. Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Crogan-Grundy, C.; Labreque, D.; Bubenick, M.; Attardo, G.; Denis, R.; Lamothe, S.; et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions. *J. Med. Chem.* 2008, 51, 417–423.
16. Albiston, A.L.; DiWakarla, S.; Fernando, R.N.; Mountford, S.J.; Yeatman, H.R.; Morgan, B.; Pham, V.; Holien, J.K.; Parker, M.W.; Thompson, P.E.; et al. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. *Br. J. Pharmacol.* 2011, 164, 37–47.

17. Gao, S.J.; Tsai, C.H.; Tseng, C.; Yao, C.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. *Tetrahedron* 2008, 64, 9143–9149.

18. Kandhasamy, K.; Gnanasambandam, V. Four-component catalyst-free reaction in water: Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. *Green Chem.* 2009, 11, 1945–1947.

19. Shaabani, A.; Ghadari, R.; Sarvary, A.; Rezavan, A.H. Synthesis of highly functionalized bis(4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component reaction. *J. Org. Chem.* 2009, 74, 4372–4374.

20. Thelagathoti, H.B.; Paramasivan, T. A simple Method for the Synthesis of Functionalised Chromenes via Vinylogous Michael Addition of α,α-Dicyanoalkenes on iminocoumarin Derivatives. *Synlett* 2011, 341–344.

21. Neelakandan, V.L.; Selvarangam, E.; Kiruthika, T.; Paramasivan, T. A Rapid and Efficient Access to 4-Substituted 2-Amino-4H-chromenes Catalyzed by InCl3. *Synlett* 2011, 1389–1394.

22. Chen, W.; Cai, Y.; Fu, X.; Liu, X.; Lin, X.; Feng, X. Enantioselective one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromenes. *Org. Lett.* 2011, 13, 4910–4913.

23. Dong, A.H.; Liu, X.H.; Feng, J.H.; Wang, M.; Lin, L.L.; Feng, X.M. Efficient Asymmetric Synthesis of 4H-Chromene Derivatives through a Tandem Michael Addition-Cyclization Reaction Catalyzed by a Salen-Cobalt(II)complex. *Eur. J. Org. Chem.* 2011, 2011, 137–142.

24. Elinson, M.N.; Iiovaisky, A.I.; Merkulova, V.M.; Belyakov, P.A.; Chizhov, A.O.; Nikishin, G.I. Solvent-Free Cascade Reaction: Diect Multicomponent Assembling of 2-amino-4H-chromene Scaffold from Salicyaldehyde, Malononitrile or Cyanoacetate and Nitroalkanes. *Tetrahedron* 2010, 66, 4043–4048.

25. Rajasekhar, M.; Rao, K.U.M.; Sundar, C.S.; Reddy, N.B.; Nayak, S.K.; Reddy, C.S. Green Synthesis and Bioactivity of 2-Amino-4H-chromen-4-ylphosphonates. *Chem. Pharm. Bull.* 2012, 60, 854–858.
30. Murthy, S.N.; Madhav, B.; Reddy, V.P.; Nageswar, Y.V.D. One-pot synthesis of 2-amino-4H-chromen-4-yl phosphonate derivatives using β-cyclodextrin as reusable catalyst in water. *Tetrahedron Lett.* 2010, 51, 3649–3653.

31. Jayashree, P.; Shanthi, G.; Perumal, P.T. Indium Trichloride Catalyzed One-Pot Synthesis of New (2-Amino-3-cyano-4H-chromen-4-yl) Phosphonic Acid Diethyl Ester. *Synlett* 2009, 6, 917–920.

32. Kalla, R.M.N.; Byeon, S.J.; Heo, M.S.; Kim, I. Synthesis of 2-amino-3-cyano-4H-chromen-4-ylphosphonates and 2-amino-4H-chromenes catalyzed by tetramethylguanidine. *Tetrahedron* 2013, 69, 10544–10551.

33. Safari, J.; Zarnegar, Z. Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: A versatile integration of high catalytic activity and facile recovery. *J. Mol. Struct.* 2014, 1072, 53–60.

34. Sobhani, S.; Honarmand, M. Silica-Bonded 2-Hydroxyethylammonium Acetate as an Efficient and Recyclable Catalyst for the Synthesis of 2-Amino-4H-chromen-4-yl Phosphonates and β-Phosphonomalonates. *Catal. Lett.* 2013, 143, 476–485.

35. Gogoi, S.; Zhao, C.G. Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. *Tetrahedron Lett.* 2009, 50, 2252–2255.

36. Ding, D.; Zhao, C.G. Organocatalyzed synthesis of 2-amino-8-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles. *Tetrahedron Lett.* 2010, 51, 1322–1325.

37. Wang, X.S.; Yang, G.S.; Zhao, G. Enantioselective synthesis of naphthopyran derivatives catalyzed by bifunctional thiourea-tertiary amines. *Tetrahedron* 2008, 19, 709–714.

38. Li, W.J.; Huang, J.Y.; Wang, J. Organocatalytic conjugate addition promoted by multi-hydrogen-bond cooperation: Access to chiral 2-amino-3-nitrile-chromenes. *Org. Biomol. Chem.* 2013, 11, 400–406.

39. Gao, Y.G.; Du, D.M. Facile synthesis of chiral 2-amino-4-(indol-3-yl)-4H-chromene derivatives using thiourea as the catalyst. *Tetrahedron* 2013, 24, 1312–1317.

40. Rao, H.S.P.; Rao, A.V.B. Copper-Catalyzed C(sp3)-C(sp2) Cross-Coupling: Synthesis of 4-Aryl-2-alkylamino-3-nitro-4H-chromenes. *Eur. Org. Chem.* 2014, 17, 3646–3655.

41. Kidwai, M.; Saxena, S.; Khan, M.K.R.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and *in vitro* study as antibacterial agents. *Bioorg. Med. Chem. Lett.* 2005, 15, 4295–4298.

42. Shanthi, G.; Perumal, P.T. Indium-Mediated One-Pot Synthesis of New 4-Allyl-2-amino-4H-chromenes in Water. *Synlett* 2008, 2791–2794.

43. Yin, G.D.; Lai, T.T.; Yan, Z.S.; Chen, H.; Zheng, J.; Tao, Q. Catalyst-free C-S/C-O bond formation: Synthesis of novel 4-thio-substituted 2-aryl-4H-chromenes from easily available 2-hydroxychalcones. *Tetrahedron* 2013, 69, 2430–2435.

44. Massimo, C.; Francesco, E.; Stefano, C.; Francesca, M.; Morena, N.; Ornelio, R. Potassium exchanged layered zirconium phosphate as catalyst in the preparation of 4H-chromenes. *Tetrahedron Lett.* 2005, 46, 3497–3499.

45. Yu, N.F.; Aramini, J.M.; Germann, M.W.; Huang, Z.W. Reactions of salicylaldehydes with alkyl cyanoacetates on the surface of solid catalysts: Syntheses of 4H-chromene derivatives. *Tetrahedron Lett.* 2000, 41, 6993–6996.
46. Fujimoto, A.; Sakurai, A. A New Selective Preparation of 4H-Chromenes by Reaction of alkyl 
Cyanoacetate with 3,5-Dibromosalicylaldehyde in the Presence of Ammonium Acetate. *Synthesis* 
**1977**, *12*, 872–872.

47. Roudier, J.F.; Foucaud, A. A Convenient Synthesis of 4H-Chromenes. *Synthesis* **1984**, *1984*, 
159–160.

*Sample Availability*: Samples of the compounds are available from the authors.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/).