Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures: implications for Alzheimer disease-related pathology

Xia Cao, Zelan Wei, Geraldine G Gabriel, XinMin Li and Darrell D Mousseau*

Address: The Cell Signalling Laboratory, Neuropsychiatry Research Unit, University of Saskatchewan, 103 Wiggins Road, Saskatoon, SK S7N 5E4, Canada

Email: Xia Cao - caoxia25@hotmail.com; Zelan Wei - zew422@mail.usask.ca; Geraldine G Gabriel - ggg658@mail.usask.ca; XinMin Li - xin-min.li@usask.ca; Darrell D Mousseau* - darrell.mousseau@usask.ca

* Corresponding author

Abstract

Background: Calcium (Ca^{2+}) has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A), a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca^{2+} levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD).

Results: Incubation with Ca^{2+} selectively increases MAO-A enzymatic activity in protein extracts from mouse hippocampal HT-22 cell cultures. Treatment of HT-22 cultures with the Ca^{2+} ionophore A23187 also increases MAO-A activity, whereas overexpression of calbindin-D28K (CB-28K), a Ca^{2+}-binding protein in brain that is greatly reduced in AD, decreases MAO-A activity. The effects of A23187 and CB-28K are both independent of any change in MAO-A protein or gene expression. The toxicity (via production of peroxyradicals and/or chromatin condensation) associated with either A23187 or the AD-related β-amyloid peptide, which also increases free intracellular Ca^{2+}, is attenuated by MAO-A inhibition in HT-22 cells as well as in primary hippocampal cultures.

Conclusion: These data suggest that increases in intracellular Ca^{2+} availability could contribute to a MAO-A-mediated mechanism with a role in AD-related oxidative stress.

Background

MAO-A and MAO-B, two isoforms of monoamine oxidase (MAO), are expressed on the mitochondrial outer membrane. MAO-mediated neurodegeneration can result from the formation of hydrogen peroxide (H_{2}O_{2}) as a by-product of metabolism of aminergic neurotransmitters including serotonin and dopamine. If it is not detoxified by antioxidant systems such as glutathione peroxidase – one of the most abundant such systems in brain [1] – then H_{2}O_{2} can be converted by iron-mediated Fenton reactions to hydroxyl radicals that can initiate lipid peroxidation and cell death. This is exacerbated when antioxidant systems are compromised, such as during aging [2]. The reduction in the efficacy of these systems may simply be...
aggravated in chronic disease states such as Alzheimer disease (AD) [3].

It has been demonstrated that inhibitors of MAO-B, such as l-deprenyl and, more recently, rasagiline, are effective in the management of early symptoms of Parkinson’s disease in the clinic and in animal models [4-6] as well as in patients with mild AD-type dementia [4,7]. Both MAO-B-positive astrocytes [8] and reactive oxygen species (ROS) [9] have been found in the vicinity of β-amyloid (Aβ) plaques. L-Deprenyl and rasagiline, however, may exert some of their effects independently of MAO-B as the neuroprotection mediated by these drugs is often associated with concentrations of the drug that are well below those required for inhibition of the enzyme [6], and has been associated with activation of Bcl-2 family members, interactions with the mitochondrial pore complex, and modulation of amyloid precursor protein cleavage [4].

MAO-A also plays a role in neuropsychiatric and behavioral disorders. The importance of this isoform is suggested by the aggressive phenotype seen in male mice deficient in MAO-A [10] and in males in a Dutch kindred bearing a spontaneous mutation (resulting in a premature stop) in the mao-A gene [11]. Similarly, maltreated children, whose genotype confers low levels of MAO-A expression, more often develop conduct disorder, antisocial personality and adult violent crime than do children with a high-activity MAO-A genotype [12]. Relatively modest changes in MAO-A activity/function can have important neuropsychiatric consequences as demonstrated by the fact that [11C]-harmine-labeled MAO-A is elevated by only 34% throughout the brain of untreated depressed patients compared to controls, yet it appears to be the major contributor to monoamine metabolism in these same patients [13]. Depression not only may promote cognitive impairment, but also may be a risk factor for AD [14]. Not surprisingly, MAO-A, which is often targeted for the treatment of depression, is also a potential risk factor for late-onset AD [15-18]. In contrast to irreversible inhibitors of MAO-A such as clorgyline, reversible inhibitors such as moclobemide are better tolerated and have been particularly efficacious in treating depression [19,20] and cognitive disorders [21] in the elderly. In addition, they protect against apoptosis [22] and glutamate-induced excitotoxicity [23] in vivo. Inhibition of MAO-A activity protects against striatal damage produced by the mitochondrial poison malonate and appears to rely on attenuation of dopamine-derived ROS [24], while apoptosis following serum starvation is reduced in MAO-A deficient cortical brain cells [25].

The NMDA-subtype of glutamate receptor has been linked to massive increases in mitochondrial Ca2+ accumulation [26]. It is interesting that activation of this same receptor has been linked to Ca2+-dependent processes and pathology in [hepatic] encephalopathic brains [27] that correlates with a selective increase in MAO-A activity [28]. The selectivity of Ca2+ for MAO-A is demonstrated ex vivo using brains from monkey [29], mouse [30] and rat [31], and is supported by the ability of the Ca2+-channel antagonist nimodipine to block the selective increase in MAO-A activity observed in senescence-accelerated mouse brain [32]. Additional cations able to influence MAO-A function include Zn2+, which inhibits MAO-A activity [29], and Al3+ (another ion often linked to AD-like pathology), which activates it [33].

These combined observations, in addition to the fact that cytoplasmic free Ca2+ is elevated in aged neurons and even more so during neurodegeneration, such as that encountered during in AD [15,34-36], certainly argue for examination of the relation between Ca2+ and MAO.

Methods
Antibodies and reagents
5-Hydroxytryptamine (5-HT), β-phenylethylamine (PEA), the β-actin antibody and protease inhibitor cocktail were bought from Sigma-Aldrich Co. [14C]-5-HT (NEC-225) and [14C]-PEA (NEC-502) were purchased from PerkinElmer Life Sciences. The MAO-A and CB-28K antibodies were purchased from Santa Cruz Biotechnology. IgG-HRP conjugates were obtained from Cedarlane Laboratories. All other reagents were purchased commercially.

Immortalized hippocampal cell cultures
The immortalized mouse hippocampal HT-22 cell line [20] was kindly provided by Dr. P. Maher (The Scripps Research Institute, La Jolla, CA, USA). Cells were cultured (5% CO2 at 37°C) in DMEM/low glucose medium containing 10% fetal bovine serum, 100 IU/mL penicillin G sodium salt and 0.03% glutamine.

Monoamine oxidase (MAO) activity
MAOA and -B activities (nmol/hr/mg protein) in HT-22 cell cultures were estimated radiochemically [37]. Briefly, samples were homogenized in 80 volumes of oxygenated potassium phosphate buffer (0.2 M, pH 7.8) and incubated (100 µg/100 µl) for 10 min at 37°C with either 250 µM [14C]-5-HT (for MAO-A activity) or 50 µM [14C]-β-PEA (for MAO-B activity). The incubation was terminated by acidification and the labeled metabolites were extracted into ethyl acetate/toluene (1:1 vol/vol, water-saturated), an aliquot of which was subjected to scintillation spectrometry to determine radioactive content. MAO-A substrate kinetics was determined using protein (100 µg per reaction) from HT-22 cells pre-incubated in the absence or presence of Ca2+ (1 mM; 20 min, room temperature) and subsequently incubated with increasing concentra-
transfections of [14C]-5-HT [15 µM-4 mM]. Incubation in oxygenated potassium phosphate buffer (0.2 M, pH 7.8) and extraction of labeled metabolites proceeded as described above. Data were analyzed for estimates of K_m and V_{max} using the Prism v3.01 software.

Transient overexpression of CB-28K
The pREP-CB-28K (calbindin-D28K) plasmid expression vector was kindly provided by Dr. A. Pollock (University of California, San Francisco, CA). HT-22 cells were seeded in log phase and transfected with plasmid DNA (1–2 µg/well on a 24-well plate; seeded at 5 × 10^5 cells/well) using ExGen™500 (Fermentas) according to the manufacturer’s directions. Expression of eGFP fluorescent protein revealed a transfection efficiency of approximately 50% using this technique. Cells were routinely harvested 24 h post-transfection.

Immunodetection of target proteins
Treated HT-22 cells were washed twice with ice-cold PBS and proteins were extracted in ice-cold lysis buffer (1% Triton X-100, 10% glycerol, 1 mM EDTA, 20 mM Tris, pH 7.5), containing protease inhibitor cocktail and 1 mM orthovanadate. Standard denaturing (SDS-PAGE) conditions were used to resolve proteins, which were then transferred to nitrocellulose. Protein expression in total cell lysates (20–30 µg/lane, precleared; 5000 × g, 10 min, 4°C) was visualized by enhanced chemiluminescence. Depicted immunoblots are representative of two-three independent experiments.

Determination of target mRNA by semi-quantitative reverse transcriptase-PCR (RT-PCR)
Total RNA from treated HT-22 cells was prepared with TRIZOL reagent according to the manufacturer's protocol and digested with RNase-free DNase to clear residual genomic DNA. First strand cDNA was reverse-transcribed from 2 µg of total RNA using oligo-(dT) (SuperScript™III First-Strand Synthesis System, Invitrogen). The cDNA was amplified using *Taq* polymerase and primer pairs (mao-A: forward: 5’-GAA GCT GAG CTC TCC TGC TGT TAC-3'; reverse: 5’-ACA AAG CAG AGA AGA GCC AC-3'; mao-B: forward: 5’-GCT GAA GAG TGG GAC TAC ATG AC-3'; reverse: 5’-GGA ATG AAC AAG AGG AGG TG-3'); β-actin: forward: 5’-TAG AAG CAT TTT CGG TGC ACG-3'; reverse: 5’-TTC CCA TCT ATG AGG GTT ACG-3'). The resultant semi-quantitative PCR products were electrophoresed on agarose gel and visualized using ethidium bromide staining.

Fluorescence determination of free intracellular Ca^{2+}
HT-22 cells were loaded with the fluorescent dye Fluo3-acetoxymethyl ester (Fluo-3-AM; Molecular Probes) at 4 µM for 30 min at 37°C [36]. Fluorescence was visualized at an excitation wavelength of 488 nm and an emission wavelength of 550 nm on an Olympus FV300 Confocal Laser Scanning Biological Microscope.

Visualization of cytoplasmic peroxide radicals
2',7'-Dihydrodichlorofluorescein diacetate (DCFH2-DA) [37] permeates the cell membrane and is hydrolyzed to DCFH2, a nonfluorescent compound that remains trapped within the cell, but which yields a fluorescent product upon oxidation by H2O2. The cells were seeded on coverslips. After treatment, the cells were rinsed twice with PBS and incubated with DCFH2-DA (5 µM, 30 min at 37°C) or DMSO, vehicle. The cells were washed in prewarmed HBSS-buffered (20 mM) HBSS (pH 7.0) containing 5 mM glucose, and prepared for DCF fluorescence (excitation: 488 nm; emission: 530 ± 15 nm).

Rat primary hippocampal culture
Animal care followed protocols and guidelines approved by University of Saskatchewan Animal Care Committee and the Canadian Council on Animal Care. Rat hippocampal cultures were prepared from E18 fetuses (time-pregnant Sprague-Dawley rats; Charles River Canada, Montreal, PQ, Canada) as described before with some modifications [38]. In brief, the hippocampus was dissected in Ca^{2+}- and Mg^{2+}-free Hank’s balanced salt solution (HBSS) supplemented with 15 mM HEPES and penicillin (100 U/ml)-streptomycin (100 µg/ml) (Gibco). Collected tissues were digested at 37°C with 0.25% trypsin-EDTA 15 min. The reaction was quenched with fetal bovine serum (FBS, 10%) and tissues were rinsed 3–4 times with HBSS to remove FBS. Following centrifugation at 800 × g for 10 min, the medium was removed and cells were resuspended in a chemically defined serum-free NeuroBasal medium supplemented with 1% N_{2}, 2% B27, 50 µM L-glutamine, 15 mM HEPES, 10 U/ml penicillin and 10 µg/ml streptomycin. Neurons were then plated on coverslips (coated with 25 µg/ml poly-D-lysine), and grown at 37°C with 5% CO_{2}-humidified atmosphere. The medium was replaced 24 h later with fresh Neurobasal medium, and antibiotics. Medium was replaced after 4–5 days in vitro (DIV). Neurons were treated on DIV 7, following which they were fixed with 4% paraformaldehyde in 0.01 M PBS for 20 min at room temperature, washed several times with PBS, and stained with Hoechst 33258 (500 ng/ml, 10 min) for microscopic visualization of chromatin condensation (a characteristic of apoptotic cell death).

Statistical analyses
Significance (set at $P < 0.05$) was assessed by unpaired t-tests or by one-way ANOVA with post hoc analyses relying on Bonferroni’s Multiple Comparison Test (GraphPad Prism v3.01). Data are represented as mean ± standard deviation (SD).
Results
Low millimolar concentrations of Ca²⁺ increase MAO-A activity in HT-22 cells
MAO-A activity in HT-22 cell extracts incubated with Ca²⁺ (range: 0.1–10 mM) was increased, with a peak (~20% above baseline) around 0.5–1 mM Ca²⁺ (Fig. 1A). Ca²⁺ did not exert any effect on MAO-B activity (Fig. 1B). Mg²⁺ on its own did not exert any effect on MAO-A activity, but it did inhibit the effect of Ca²⁺ (Fig. 1C).

Examination of the kinetics of MAO-A activity in the presence of Ca²⁺ revealed a decrease in K_m (µM) [97.6 ± 6.9 vs. 125.8 ± 21.02 without Ca²⁺; n = 3, P = 0.0462, t = 2.203, df = 4], indicating that Ca²⁺ facilitates the enzymatic reaction. V_max (nmol/h/mg protein) remained unchanged [74.4 ± 2.9 with Ca²⁺, vs. 72.4 ± 1.2 without Ca²⁺; n = 3, P = 0.1672, t = 1.051, df = 4], suggesting that Ca²⁺ was acting via an allosteric mechanism (Fig. 2A,B). This was more evident on a double-reciprocal plot of the data: the slope ([e.g. K_m/V_max]) was changed [0.0441 ± 0.0009 (without Ca²⁺) vs. 0.0328 ± 0.0007 (with Ca²⁺); r² = 0.9967], whereas the y-intercept ([e.g. 1/V_max]) was not [3.13 ± 0.21e-4 (without Ca²⁺) vs. 3.20 ± 0.18e-4 (with Ca²⁺)] (Fig. 2C).

The Ca²⁺ ionophore A23187 increases MAO-A activity
HT-22 cells were treated with the Ca²⁺ ionophore A23187 (5 µM; 30 min) so as to examine the effect of increasing Ca²⁺ availability on MAO-A activity in living cells. Fluorescence microscopy (Fig. 3A) confirmed a significant increase in free Ca²⁺ as well as a selective 43% increase in MAO-A activity (control: 55.3 ± 9.4 nmol/h/mg protein versus A23187: 79.1 ± 15.5 nmol/h/mg protein; n = 3, P = 0.0424, t = 2.270, df = 4) (Fig. 3B). MAO-A protein expression was unchanged compared to control levels (Fig. 3C).

The expression of mao-A gene (expressed as a ratio to GAPDH) was also not affected by A23187 treatment [control: 100.0% ± 11.2; A23187: 102.0% ± 2.1; n = 3, P = 0.7760, t = 0.3044, df = 4] (Fig. 3D, E). Neither MAO-B activity [control: 18.92 ± 2.11 nmol/h/mg protein versus A23187: 18.33 ± 1.74 nmol/h/mg protein; n = 3, P = 0.5914, t = 0.5826, df = 4] nor gene expression [control: 100.0% ± 4.5; with A23187: 92.0% ± 8.2; n = 3, P = 0.2127, t = 1.481, df = 4] was affected by A23187. An increase in cytoplasmic reactive oxygen species (ROS) was observed, which was partly blocked by pretreatment with the MAO-A inhibitor clorgyline (100 µM; 1 hour) (Fig. 3F).

Reduction of free intracellular Ca²⁺ by overexpression of CB-28K reduces MAO-A activity
HT-22 cells were transfected with either the vector control (pREP) or the pREP-CB-28K expression plasmid (Fig. 4). Overexpression of CB-28K (24 h) reduced the level of intracellular free Ca²⁺ and decreased constitutive ROS levels (Fig. 4A). Overexpressed CB-28K induced a decrease (36%) in basal MAO-A activity [pREP: 69.4 ± 16.4 nmol/h/mg protein versus pREP-CB-28K: 44.4 ± 10.2 nmol/h/mg protein; n = 4, P = 0.0440, t = 2.246, df = 4] (Fig. 4B). CB-28K overexpression was confirmed by western blot (Fig. 4C) and it did not affect the expression of either mao-A gene (expressed as a ratio to β-actin) [with pREP: 100.0% ± 9.8; with pREP-CB-28K: 113.0% ± 9.9; n = 3, P = 0.1116, t = 1.864, df = 4] or protein (Fig. 4D, E). Neither MAO-B activity [pREP: 8.4 ± 0.47 nmol/h/mg protein versus pREP-CB-28K: 7.0 ± 3.22 nmol/h/mg protein; n = 4, P = 0.4226, t = 0.8604, df = 6] nor gene expression [with pREP: 100.0% ± 16.1; with pREP-CB-28K: 104.0% ± 17.3; n = 3, P = 0.7841, t = 0.2930, df = 4] was affected by CB-28K overexpression.
Immortalized and primary hippocampal toxicity associated with the Alzheimer disease-related peptide, Aβ, relies partly on a MAO-A sensitive mechanism

HT-22 cells treated with the AD-related Aβ(1–40) peptide (30 µM; 48 h) had significantly more free Ca²⁺ (Fig. 5A, top panels) and a corresponding increase in ROS production (Fig. 5A, middle panels) that was decreased by pre-treatment with the MAO-A inhibitor clorgyline (100 µM, 1 h) (Fig. 5A, bottom panels). Hoechst staining, which labels all cell nuclei including those that have chromatin condensation (a sign of apoptotic processing), revealed a significant increase in apoptotic primary hippocampal neurons in cultures treated with Aβ(1–42) (10 µM, 24 h) (Fig. 5B) [F(4,11) = 69.16, P < 0.0001]. Post-hoc analysis revealed that the effect of Aβ(1–42) [P < 0.001] was greatly attenuated by pre-treatment with the MAO-A inhibitor clorgyline (100 µM; 1 h) [P < 0.01] (Fig. 5C).

Figure 2
Effect of Ca²⁺ on MAO-A substrate kinetics in HT-22 hippocampal cell line. (A) HT-22 cell lysates (100 µg/100 µL; n = 3) were incubated with increasing concentrations of substrate, e.g. [¹⁴C]-5-HT in the absence (○) or presence (●) of Ca²⁺ (1 mM). The individual curves represent data pooled from three independent experiments. Data are presented as mean ± SD. (B) The highlighted part of the curves in (A) is expanded to demonstrate the change in Kₘ. (C) Data presented on a double-reciprocal plot clearly demonstrate a change in slope (e.g. Kᵣ/Vₘₐₓ) with no change in y-intercept (e.g. 1/Vₘₐₓ).

Figure 3
The Ca²⁺ ionophore A23187 increases MAO-A activity. (A) Levels of free intracellular Ca²⁺, [Ca²⁺]ᵢ, in HT-22 cells treated with A23187 (5 µM; 30 min) were determined using the Ca²⁺-binding Fluo-3 AM fluorescent dye. (B) MAO-A and MAO-B activities were assessed radioenzymatically in A23187-treated cell cultures (P < 0.05 versus control levels). (C) MAO-A protein expression was determined in SDS-PAGE resolved total cell lysates. Levels of β-actin demonstrate equal protein loading. (D) Densitometry graph representing mao-A gene expression (as a ratio to GAPDH expression) determined using semi-quantitative RT-PCR amplification of mRNA extracted from A23187-treated cell cultures. (E) Representative RT-PCR amplification fragments. (F) In similarly-treated cells, the production of ROS was assessed using the H₂O₂-binding DCF fluorogen. A parallel series of cell cultures were pre-treated with the specific MAO-A inhibitor, clorgyline (CLG; 100 µM; 1 h). Data represent mean ± SD.
Discussion

H_2O_2 is a natural by-product of MAO-A-mediated degradation of amines [38]. The normal aging process and various neurodegenerative processes such as Parkinson’s disease [39] and Alzheimer’s disease [40,41] could well be affected by oxidative stress associated with enhanced MAO-generated levels of H_2O_2.

We demonstrate that the selective response of MAO-A to Ca$^{2+}$ (and its sensitivity to Mg$^{2+}$, a physiologic Ca$^{2+}$ antagonist [42]) occurs in immortalized HT-22 hippocampal cells and confirms observations using brain extracts from monkey [29], mouse [30], rat [31] and human (DDM: unpublished data). The effect of Ca$^{2+}$ on MAO-A activity in our cultures appears modest; however, Meyer et al [13] have recently demonstrated that untreated depressed patients have levels of MAO-A density that are only 34% higher than that found in controls. Yet these same authors propose that this modest change could account for most of the change in biogenic amine levels observed in these patients. Obviously, small changes in MAO-A can significantly impact brain function.

While low millimolar levels of Ca$^{2+}$ are necessary to reveal this effect, the fact that MAO-B activity remains unaffected clearly supports differences in MAO-A and MAO-B regulation. The need for millimolar concentrations also suggests pathological relevance. Interestingly, the mitochondria can modulate cytoplasmic Ca$^{2+}$ homeostasis by accumulating Ca$^{2+}$ into the very high micromolar range [43]. Furthermore, elevated Ca$^{2+}$ concentrations localized to microdomains may also represent unique means of modulating localized mitochondrial membrane and/or matrix function [44], including the activation of dehydrogenases [45]. In neurons and chromaffin cells, mitochondria rapidly and reversibly buffer Ca$^{2+}$ during cell stimulation to help clear large Ca$^{2+}$ loads [46-48]. The ensuing overloading of mitochondria with Ca$^{2+}$ may be involved in several pathological conditions, including ischemia-reperfusion lesions, neurotoxicity and neurodegenerative diseases, where ATP depletion, overproduction of ROS and release of apoptotic factors lead to cell damage [49].

Using the Ca$^{2+}$ ionophore A23187, we now confirm that increasing free intracellular Ca$^{2+}$ well above normal levels...
selectively increases MAO-A activity in living hippocampal HT-22 cells. The associated increase in peroxyradicals is moderately decreased by MAO-A inhibition, supporting a contribution by the enzyme to A23187-associated toxicity. Intracellular Ca$^{2+}$ levels can also be quenched by specific proteins including calbindin-28K (CB-28K), the predominant Ca$^{2+}$-binding protein in brain [50]. Overexpression of CB-28K in HT-22 cells significantly decreased free Ca$^{2+}$ levels and significantly decreased MAO-A activity. Again MAO-B activity was spared. The effects of both A23187 and CB-28K occurred independent of any change in the expression level of MAO-A protein (or mao-A gene), which, in combination with our demonstration of affinity changes of the MAO-A enzyme in the presence of Ca$^{2+}$, suggests a functional modification of the MAO-A protein itself. These combined data implicate a CB-28K-dependent, Ca$^{2+}$-sensitive component to MAO-A function, which could be exacerbated when CB-28K expression levels are compromised, such as in normal aging or, more importantly, during neurodegenerative processes [16,34,51]. In support of this, an age-related loss of CB-28K immunoreactive basal forebrain cholinergic neurons in cortical regions and in the dentate gyrus (hippocampus) has been shown in several species including dog, mouse and rat [34] and references therein. Furthermore, in AD-related pathology, a substantially greater loss of CB-28K immunoreactivity is observed, with the diminished capacity of the cell to buffer intracellular Ca$^{2+}$ being considered as a core factor in the pathogenesis of AD [51-54]. This is corroborated by the ability of ectopic CB-28K to protect cell cultures against apoptosis, including that induced by the AD-related peptide β-amyloid [55-58] and by the fact that alterations in Ca$^{2+}$ signalling can occur early in AD, well before any obvious extracellular Aβ deposition [59]. Furthermore, dihydropyridine Ca$^{2+}$ channel blockers, which are known to block the selective increase in MAO-A in the senescence-accelerated mouse model [32], may improve learning and performance in animals [60] and may improve age-associated and AD-related memory impairment in humans [61,62]. As CB-28K and MAO-A immuno-
noreactivities are often co-localized and cells immunoreactive for both proteins are reduced during AD [54,63], it is not unreasonable to suppose that a loss of CB-28K could facilitate MAO-A-mediated H2O2 production in an increasingly toxic Aβ environment, leading to localized cell death. Treatment with Aβ(1–40) increases intracellular levels of Ca2+ [64] [present study], possibly through its effect on the ryanodine receptor [65]. A pathological contribution by MAO-A in AD is further suggested by the accumulation of toxic metabolites of MAO-mediated deamination in AD patients [66] as well as by the ability of MAO-A inhibition to reduce the ROS production associated with treatment of HT-22 cells with the AD-related Aβ(1–40) peptide (present study). Primary hippocampal neuronal cultures are also particularly sensitive to Aβ peptide [67] and Aβ-induced toxicity in these cells is also sensitive to MAO-A inhibition (present study). Experimentation based on in vivo assessment of the effect of Ca2+/CB-28K on MAO-A as well as a closer examination of the relation between Ca2+/CB-28K and MAO-A in AD tissues is warranted.

MAO-A is a risk factor in AD and changes in MAO-A activity parallel changes in the production of ROS, e.g. H2O2. Given the neuroprotective role of CB-28K in human pathologies such as AD (and in models of AD), in addition to our demonstration that the toxicity of the AD-related peptide, Aβ, is sensitive to MAO-A inhibition, we suggest that part of the oxidative stress associated with AD may rely on a Ca2+/CB-28K-sensitive, MAO-A-mediated mechanism.

Conclusion
The availability of free intracellular Ca2+ is positively correlated with the activity of MAO-A, a mitochondrial H2O2-generating enzyme. The influence of Ca2+ on MAO-A function could potentially impact AD-related pathology, which is often associated with altered Ca2+ homeostasis, mitochondrial dysfunction and oxidative stress.

Competing interests
The author(s) declares that there are no competing interests.

Authors’ contributions
XC carried out the majority of the work, ZW purified and cultured the primary hippocampal cells. GGG participated in the FLUO-3AM microscopy studies. XC, XL and DDM drafted the manuscript. DDM conceived and designed the study, and coordinated data collection and analysis. All authors read, edited and approved the final manuscript.

Acknowledgements
This work was funded, in part, by the Canadian Institutes of Health Research and by the Saskatchewan Health Research Foundation (DDM) and, in part, by the Aruna and Kripa Thakur award (XC), Department of Psychiatry, University of Saskatchewan. ZW is a recipient of a CIHR/Rx&D Research Program & AstraZeneca/Alzheimer Society of Canada Fellowship.

References
1. Sies H: Strategies of antioxidant defense. European journal of biochemistry / FEBS 1993, 215(2):213-219.
2. Zhu Y, Carvey PM, Ling Z: Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain research 2006, 1090(1):35-44.
3. Crack PJ, Cimmins K, Ali U, Hertzog PJ, Iannello RC: Lack of glutathione peroxidase-1 exacerbates Aβeta-mediated neurotoxicity in cortical neurons. J Neural Transm 2006, 113(5):645-657.
4. Youdim MB, Edmondson D, Tipton KF: The therapeutic potential of monoamine oxidase inhibitors. Nature reviews 2006, 7(4):295-309.
5. Czuraj K, Pafi M, Tabi T, Kalisz H, Szaende B, Szoko E: Pharmacological aspects of (-)-deprenyl. Current medicinal chemistry 2004, 11(15):2017-2031.
6. Magyar K, Szaende B: (1-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotoxicology 2004, 25(1-2):233-243.
7. Riederer P, Lachenmayer L, Laux G: Clinical applications of MAO-inhibitors. Current medicinal chemistry 2004, 11(15):2033-2043.
8. Saura J, Luque JM, Cesura AM, De Prada M, Chan-Palay V, Huber G, Loffer J, Richards JG: Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 1994, 62(1):15-30.
9. McEllan ME, Kajdasz ST, Hyman BT, Baccak B: In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci 2003, 23(6):2212-2217.
10. Shih JC, Chen K, Ridd MJ: Monoamine oxidase: genes to behavior. Annual review of neuroscience 1999, 22:197-217.
11. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA: Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science (New York, NY 1993, 262(5133):578-580.
12. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R: Role of genotype in the cycle of violence in maltreated children. Science (New York, NY 2002, 297(5582):851-854.
13. Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, Young T, Fraschak-Riedner N, Wilson AA, Houle S: Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Archives of general psychiatry 2006, 63(11):1209-1216.
14. Thorpe L, Groulx B: Depressive syndromes in dementia. The Canadian journal of neurological sciences 2001, 28 Suppl 1:S83-95.
15. Nishimura AL, Guindalini C, Oliveira JR, Nitrini R, Bahia VS, de Brito-Marquess PR, Otto PA, Zazz M: Monoamine oxidase a polymorphism in Brazilian patients: risk factor for late-onset Alzheimer’s disease? J Mol Neurosci 2005, 27(2):213-217.
16. Wu CK, Mesulam MM, Geula C: Age-related loss of calbindin from human basal forebrain cholinergic neurons. Neureport 1997, 8(9-10):2209-2213.
17. Emlisson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE: Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neuroscience letters 2002, 326(1):56-60.
18. Takehashi M, Tanaka S, Masliah E, Ueda K: Association of monoamine oxidase A gene polymorphism with Alzheimer’s disease and Lewy body variant. Neuroscience letters 2002, 327(2):79-82.
19. Amrein R, Martin JR, Cameron AM: Moclomobide in patients with dementia and depression. Advances in neurology 1999, 80:509-519.
20. Gareri P, Falcioni U, De Fazio P, De Sarro G: Conventional and new antidepressant drugs in the elderly. Progress in neurobiology 2000, 61(4):353-396.
21. Rosenzweig P, Patat A, Zienielski I, Cimmaros I, Allain H, Gandon JM: Cognitive performance in elderly subjects after a single dose of bethoxatone, a new reversible selective monoamine oxi-
dase A inhibitor. Clinical pharmacology and therapeutics 1998, 64(2):211-222.
22. Malorni W, Giannamarioli AM, Mazarese P, Pietrangelo P, Agostinelli E, Cacciò A, Grasselli E, Mondovi B: Protection against apoptosis by monoamine oxidase A inhibitors. FEBS letters 1998, 426(1):153-159.
23. Maher P, Davis JB: The role of monoamine metabolism in oxidative glutamate toxicity. J. Neurosci. 1996, 16(20):6394-6401.
24. Maragos WF, Young KL, Alman CS, Pacernich CB, Drake J, Butterfield DA, Seif I, Holschneider DP, Chen K, Shi J: Striatal damage and oxidative stress induced by the mitochondrial toxin malonate are reduced in clorglyrine-treated rats and MAO-A deficient mice. Neurochemical research 2004, 29(4):741-746.
25. Ou XM, Chen K, Shih JC: Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(29):10923-10928.
26. Page 9 of 10
27. Malorni W, Giannamarioli AM, Mazarese P, Pietrangelo P, Agostinelli E, Cacciò A, Grasselli E, Mondovi B: Protection against apoptosis by monoamine oxidase A inhibitors. FEBS letters 1998, 426(1):153-159.
28. Mousseau DD, Baker GB, Butterworth RF: Catalytic sites and expression of brain monoamine oxidase A inhibitor. FEBS letters 1998, 426(1):57-61.
29. Neves SM, Nogueira CV, Carvalho JL, Bragança A: Selective age-related loss of calbindin-D28k from rat forebrain cholinergic neurons. In: Aging human cholinergic basal forebrain: relation to plaques and tangles. Neurochemical research 2002, 29(4):73-76.
30. Ou XM, Chen K, Shih JC: Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(29):10923-10928.
31. Page 9 of 10
32. Kabuto H, Yokoi I, Mori A, Murakami M, Sawada S: Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenergic chromaffin cells. Neuron 1996, 16(1):219-228.
33. Xu T, Naraghi M, Kang H, Neher E: Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Neuron 1996, 16(1):219-228.
34. Duchêne MR: Contributions of mitochondria to animal physiology: from homoeostatic sensor to calcium signalling and cell death. The Journal of physiology 1999, 516(1 Pt 1):1-17.
35. Baimbridge KG, Celio MR, Rogers JH: Calcium-binding proteins in the nervous system. Trends in neurosciences 1992, 15(8):303-308.
36. Wu CK, Nagykery N, Hersh LB, Scinto LF, Geula C: Selective age-related loss of calbindin-D28k from basal forebrain cholinergic neurons in the common marmoset (Callithrix jacchus). J Neurochemistry 1999, 72(3):542-546.
37. Palop JJ, Jones B, Kekonius L, Chin J, Yu QQ, Raber J, Masliah E, Mucke L: Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(16):9572-9577.
38. Thibaut O, Porter NM, Chen KC, Blalock EM, Kaminker PG, Clodfelter GV, Brewer LD, Landfield PW: Calcium dysregulation in neuronal aging and Alzheimer’s disease: history and new directions. Cell calcium 1998, 24(5-6):417-433.
39. Chan-Palay V, Hochli M, Savaskan E, Hungecker G, Calbindin D-28k and monoamine oxidase A immunoreactive neurons in the nucleus basalis of Meynert in senile dementia of the Alzheimer type and Parkinson’s disease. Dementia (Basel, Switzerland) 1993, 4(1):1-15.
40. Yenari MA, Minami M, Sun GH, Meier TJ, Kunis DM, McLaughlin JR, Ho DY, Sapolsky RM, Steinberg GK: Calbindin D28k overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke; a journal of cerebral circulation 2001, 32(4):1028-1035.
41. Phillips RG, Meier TJ, Giuli LC, McLaughlin JR, Ho DY, Sapolsky RM: Calbindin D28k gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. Journal of neurochemistry 1999, 73(3):1200-1205.
42. Wernyj RP, Mattson MP, Christakos S: Expression of calbindin-D28k in C6 glial cells stabilizes intracellular calcium levels and protects against apoptosis induced by calcium ionophore and amyloid beta-peptide. Brain research 1999, 64(1):69-79.
43. Mattson MP, Rychlik B, Chu C, Christakos S: Evidence for calcium-reducing and excitoto-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuroreport 1991, 1(4):41-45.
44. Brionne JB, Bödor S, Ipama T, Marcuccilli CJ, Chisholm J, Miller RJ: The Ca2+ influx induced by beta-amyloid peptide 25-35 in cultured hippocampal neurons results from network excitation. Journal of neurobiology 1995, 26(3):325-338.
45. Quevedo J, Vianna M, Daroit D, Born AG, Roesler R, Quillfeldt JA: L-type voltage-dependent calcium channel blocker nifedipine enhances memory retention when infused into the hippocampus. Neurobiology of learning and memory 1998, 69(3):320-325.
46. Hendrich A, Roessler M, Riederer P: Pharmacotherapy of Alzheimer dementia: therapy of cognitive symptoms–new results of clinical studies]. Fortschritte der Neurologie-Psychiatrie 1997, 65(3):108-121.
47. Yamada M, Itoh Y, Suematsu N, Otomo E, Matsushita M: Apolipoprotein E genotype in elderly nondemented subjects without
senile changes in the brain. *Annals of neurology* 1996, 40(2):243-245.

63. Yew DT, Chan WY: Early appearance of acetylcholinergic, serotoninergic, and peptidergic neurons and fibers in the developing human central nervous system. *Microscopy research and technique* 1999, 45(6):389-400.

64. Smith IF, Green KN, LaFerla FM: Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. *Cell calcium* 2005, 38(3-4):427-437.

65. Supnet C, Grant J, Kong H, Westaway D, Mayne M: Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. *The Journal of biological chemistry* 2006, 281(50):38440-38447.

66. Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, Lampe P, Kumar VB, Franko M, Williams EA, Zahm DS: Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. *Neurotoxicology* 2004, 25(1-2):101-115.

67. Liu Y, Piasecki D: A cell-based method for the detection of nanomolar concentrations of bioactive amyloid. *Analytical biochemistry* 2001, 289(2):130-136.