THE AVERAGING METHOD FOR MULTIVALUED SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS

WEI MAO1,2
1. College of Information Sciences and Technology
 Donghua University, Shanghai, 201620, China
2. School of mathematics and information technology
 Jiangsu Second Normal University, Nanjing 210013, China

LIANGJIAN HU3*
3. Department of Applied Mathematics
 Donghua University, Shanghai 201620, China

SUREONG YOU3
3. Department of Applied Mathematics
 Donghua University, Shanghai 201620, China

XUERONG MAO4
4. Department of Mathematics and Statistics
 University of Strathclyde, Glasgow G1 1XH, U.K

(Communicated by)

ABSTRACT. In this paper, we study the averaging principle for multivalued SDEs with jumps and non-Lipschitz coefficients. By the Bihari’s inequality and the properties of the concave function, we prove that the solution of averaged multivalued SDE with jumps converges to that of the standard one in the sense of mean square and also in probability. Finally, two examples are presented to illustrate our theory.

1. Introduction. In this paper, we are concerned with the averaging principle of the following equation:

\[
dx(t) + A(x(t))dt \ni f(t, x(t))dt + g(t, x(t))dw(t) + \int_{Z} h(t, x(t^\cdot), v)N(dt, dv),
\]

where \(A\) is a multi-valued maximal monotone operator defined on \(\mathbb{R}^n\) and \(w(t)\) is an \(m\) dimensional Brownian motion, \(N\) is the counting measure of a stationary Poisson point process with characteristic measure \(\pi\) on some measurable space \((Z, \mathcal{B}(Z))\).

2010 Mathematics Subject Classification. Primary: 60H10, 34C29.
Key words and phrases. Averaging principle, Multivalued SDE, Poisson random measure, Non-Lipschitz coefficients.

The research of W.Mao was supported by the National Natural Science Foundation of China (11401261) and "333 High-level Project” of Jiangsu Province. The research of L.Hu was supported by the National Natural Science Foundation of China (11471071). The research of S.You was supported by the Natural Science Foundation of Shanghai (17ZR1401300). The research of X.Mao was supported by the Leverhulme Trust (RF-2015-385), the Royal Society (WM160014, Royal Society Wolfson Research Merit Award), the Royal Society and the Newton Fund (NA160317, Royal Society-Newton Advanced Fellowship), the EPSRC (EP/K503174/1).

* Corresponding author: Liangjian Hu.
As a matter of fact, Eq. (1) is called the multivalued SDEs with jumps. When $h \equiv 0$, it becomes an multivalued SDEs driven by continuous Brownian motion

$$dx(t) + A(x(t))dt \ni f(t, x(t))dt + g(t, x(t))dw(t).$$

(2)

Such multivalued SDEs was firstly introduced by Křeč [1] and the existence and uniqueness of the solution has been discussed by Cépa [2]. After that, the theory of multivalued SDEs (2) has drawn increasing attention and it was studied subsequently by many authors. For example, Cépa [3], Lépingle and Marois [4], Bernardin [5], X. Zhang [6], J. Ren [7], Y. Ren [8], H. Zhang [9]. On the other hand, some scholars also studied the multivalued SDEs with jumps which is discontinuous in time and obtained a number of interesting results [10, 11, 12, 13, 14, 15].

As we all know, the averaging principles is an important method which a more complicated time varying system can be approximated by an autonomous differential system. Since Krylov and Bogolyubov [16] put forward the averaging principles for dynamical systems, the averaging principles have received a lot of attention. For example, the averaging principles for determined differential equations can be found in [17, 18, 19, 20, 21]. For the averaging principles of stochastic differential equations (SDEs), we refer to [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. While the theory of averaging for SDEs is well developed, the literature involving averaging principles for multivalued SDEs is scarce. Recently, Ngoran and Modeste [32] studied the averaging principle of multivalued SDEs and proved the solution of the averaged multivalued SDEs converges to that of the original multivalued SDEs. Later, Xu and Liu [33] removed the integrability condition about A in [32] and showed the convergence of the averaged multivalued SDEs and the original one. Guo and Pei [34] extended the averaging principle [33] to the case of multivalued SDEs with compensated Poisson random measures and proved that the averaged solution converges to the original solution.

However, to the best of our knowledge, there are few literature about using the averaging methods to obtain the approximate solutions to multivalued SDEs with jumps (1). In order to fill the gap, we will study the averaging principle of Eq. (1). Different from above works mentioned, the assumption given in this paper is not the classical Lipschitz condition. In fact, the global Lipschitz condition imposed on [32, 33, 34] is seemed to be considerably strong when one discusses variable applications in real world. For example, let us consider the multivalued SDEs with pure jumps

$$dx(t) + A(x(t))dt \ni f(t, x(t))dt + \int_Z vh(t, x(t))N(dt, dv),$$

(3)

where $f(t, x) = h(t, x) = \sin(t)k(x)$ and

$$k(x) = \begin{cases} x\sqrt{\ln x - 1}, & \text{if } x \leq e^{-1}, \\ \frac{1}{2}(x + e^{-1}), & \text{if } x > e^{-1}. \end{cases}$$

(4)

It is obviously that $k(x)$ is a concave nondecreasing continuous function on \mathbb{R}^+ and the coefficients f and h do not satisfy the global Lipschitz condition. In this case, the averaging principle obtained in [32, 33, 34] can not be applied to Eq. (3). Therefore, it is very important for us to establish the averaging principle of the multivalued SDEs with jumps (1) under some weaker conditions. In this paper, we assume that the coefficients of Eq. (1) satisfy the non-Lipschitz condition and use this condition to study the averaging principle of Eq. (1). By the Bihari’s inequality...
and our proposed conditions, we prove that the solution of the averaged equation converges to that of the standard equation in the mean square sense. On the other hand, by lemma 3.10 and the properties of the concave function, we further give the order of the convergence for Eq.(1) in finite time interval and show the convergence in probability of the standard solution and the averaged solution. It should be pointed out that our results are also hold for multivalued SDEs without jumps (2) under non-Lipschitz conditions.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries and establish the existence and uniqueness of the solution to Eq.(1). In Section 3, we establish the averaging principle of Eq.(1). By the Bihari’s inequality and some useful lemmas, we prove that the solution of the averaged equation will converge to that of the standard equation in the sense of the mean square and probability. Finally, two illustrative examples will be given in Section 4.

2. Preliminaries and multivalued SDEs with jumps. Let \((\Omega, \mathcal{F}, P)\) be a complete probability space equipped with some filtration \((\mathcal{F}_t)_{t \geq 0}\) satisfying the usual conditions. Here \(\nu(t)\) is an \(m\)-dimensional \(\mathcal{F}_t\)-adapted Brownian motion. Let \(\mathcal{D}([0, T]; \mathbb{R}^n)\) denote the family of all right-continuous functions with left-hand limits \(\varphi\) equipped with the norm \(\|\varphi\| = \sup_{0 \leq t \leq T} |\varphi(t)|\). Let \((\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))\) be a measurable space and \(\pi(du)\) a \(\sigma\)-finite measure on it. Let \(\{\tilde{\nu} = \tilde{\nu}(t), t \geq 0\}\) be a stationary \(\mathcal{F}_t\)-adapted and \(\mathbb{R}^n\)-valued Poisson point process. Then, for \(Z \in \mathcal{B}(\mathbb{R}^n \setminus \{0\})\), here \(0 \notin A\), we define the Poisson counting measure \(N\) associated with \(\tilde{\nu}\) by \(N((0, t] \times Z) := \# \{0 < s \leq t, \tilde{\nu}(s) \in Z\}\), where \# denotes the cardinality of set \(\{\}\). For simplicity, we denote \(N(t, Z) := N((0, t] \times Z)\). Moreover, by the Doob-Meyer’s decomposition theorem, we have \(N(t, Z) = \check{N}(t, Z) + \bar{N}(t, Z)\), where \(\check{N}(t, Z)\) is the compensated Poisson random measure and \(\bar{N}(t, Z) = \pi(Z)t\) is the compensator.

Now, we will give the definition and proposition about the multivalued maximal monotone operator. For more details, we refer to Cépa [2, 3].

Denote by \(2^{\mathbb{R}^n}\) for the set of all subset of \(\mathbb{R}^n\). Let \(A : \mathbb{R}^n \to 2^{\mathbb{R}^n}\) be a set-valued operator. Define the domain of \(A\) by

\[D(A) = \{x \in \mathbb{R}^n : Ax \neq \emptyset\}. \]

and

\[Gr(A) = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x \in \mathbb{R}^n, y \in Ax\}. \]

Definition 2.1. [35]

1. A multivalued operator \(A\) on \(\mathbb{R}^n\) is called monotone if \((x_1 - y_1, x_2 - y_2) \geq 0\), for all \((x_1, y_1), (x_2, y_2) \in Gr(A)\).

2. A monotone operator \(A\) is called maximal monotone if and only if

\[(x_1, y_1) \in Gr(A) \iff (x_1 - y_1, x_2 - y_2) \geq 0, \forall (x_2, y_2) \in Gr(A). \]

Lemma 2.2. [3]

Let \(A\) be a maximal monotone operator on \(\mathbb{R}^n\), then, for each \(x \in D(A), A(x)\) is a closed and convex subset of \(\mathbb{R}^n\). Let \(A^c(x) := proj_{A(x)}(0)\) be the minimal section of \(A\), where \(proj_D\) is designated as the projection on every closed and convex subset \(D\) on \(\mathbb{R}^n\) and \(proj_D(0) = \infty\). Then

\[x \in D(A) \iff |A^c(x)| < \infty. \]

Definition 2.3. [35]

For every \(T > 0\), a pair of \(\mathcal{F}_t\)-adapted random processes \((x(t), K(t))\) is called a solution of Eq.(1) if
Under Assumption 2.2, there exist two positive constants k, ρ and value x.

Remark 2.8. Let us consider the following assumptions.

In this paper, we consider the multivalued SDEs with Poisson random measure

$$\begin{align*}
 dx(t) + A(x(t))dt &\ni f(t, x(t))dt + g(t, x(t))dw(t) + \int_Z h(t, x(t), v)N(dt, dv),
\end{align*}$$

where $f : [0, T] \times D([0, T]; R^n) \to R^n$, $g : [0, T] \times D([0, T]; R^n) \to R^{n \times m}$ and $h : [0, T] \times D([0, T]; R^n) \times Z \to R^n$ are both Borel-measurable functions. The initial value $x(0) = x_0$ is an \mathcal{F}_0-measurable R^n-valued random variable and $E|x_0|^2 < \infty$.

Let us consider the following assumptions.

Assumption 2.5. For any $x, y \in R^n$ and $t \in [0, T]$, there exist two functions $k(\cdot)$ and $\rho(\cdot)$ such that

$$
|f(t, x) - f(t, y)| + ||g(t, x) - g(t, y)|| \leq \lambda(t)k(|x - y|),
$$

$$
\left[\int_Z |h(t, x, v) - h(t, y, v)|^2 \pi(dv) \right]^{\frac{1}{2}} \leq \lambda(t)\rho(|x - y|),
$$

where $\lambda(t) \in L^2([0, T]; R)$, k, ρ are two concave nondecreasing functions such that $k(0) = \rho(0) = 0$ and

$$
\int_{0^+} \frac{u}{k^2(u) + \rho^2(u) + u^2}du = \infty.
$$

Assumption 2.6. There exist two positive constants L_1, L_2 such that

$$
|f(t, x)|^2 + ||g(t, x)||^2 + \int_Z |h(t, x, v)|^2 \pi(dv) \leq L_1(1 + |x|^2),
$$

$$
\int_Z |h(t, x, v)|^4 \pi(dv) \leq L_2(1 + |x|^4).
$$

Assumption 2.7. A is a maximal monotone operator with $D(A) = R^n$.

Remark 2.8. Under Assumption 2.5, we can deduce that

$$
\int_{0^+} \frac{1}{k^2(u)}du = \infty \quad \text{and} \quad \int_{0^+} \frac{1}{\rho^2(u)}du = \infty.
$$
Remark 2.9. Let $L > 0$ and $\delta \in (0, 1/e)$ be sufficiently small. Define $k_1(u) = \rho_1(u) = Lu$, $u \geq 0$,
\[
k_2(u) = \rho_2(u) = \begin{cases} u \sqrt{\log \left(\frac{1}{u} \right)}, & u \in [0, \delta], \\ \delta \left(\frac{1}{\delta} \right) + k_2'(\delta)(u - \delta), & u \in [\delta, +\infty], \end{cases}
\]
and
\[
k_3(u) = \rho_3(u) = \begin{cases} u \sqrt{\log \left(\frac{1}{u} \right)}, & u \in [0, \delta], \\ \delta \left(\frac{1}{\delta} \right) + k_3'(\delta)(u - \delta), & u \in [\delta, +\infty], \end{cases}
\]
where $k'(\rho')$ denotes the derivative of function $k(\rho)$. They are all concave nondecreasing functions satisfying $\int_{0^+}^{\infty} \frac{u}{k_i(u)+\rho_i(u)+u^2} du = +\infty$ ($i = 1, 2, 3$).

In particular, we see that the Lipschitz condition is a special case of our proposed condition. In other words, we obtain a more general result than that of [32, 33, 34].

Similar to the proof of [12, 36, 37], we have the following existence result.

Theorem 2.10. If Assumptions 2.5-2.7 hold. Then, there exists a unique solution $x(t)$ to Eq.(5) with initial data $x(0) = x_0 \in L_{F_0}^2(\Omega; R^n)$.

3. Stochastic averaging principle. In this section, we shall study the averaging principle for multi-valued SDEs with jumps. Let us consider the standard form of Eq.(5)
\[
x_\varepsilon(t) = x_0 + \varepsilon \int_0^t f(s, x_\varepsilon(s)) ds + \sqrt{\varepsilon} \int_0^t g(s, x_\varepsilon(s)) dw(s) + \varepsilon K(s),
\]
with the initial value $x_\varepsilon(0) = x_0$. Here the coefficients f, g and h have the same conditions as in Assumptions 2.5, 2.6 and $\varepsilon \in [0, \varepsilon_0]$ is a positive small parameter with ε_0 is a fixed number.

Let $\tilde{f}(x) : D([0, T]; R^n) \rightarrow R^n$, $\tilde{g}(x) : D([0, T]; R^n) \rightarrow R^{n \times m}$ and $\tilde{h}(x, v) : D([0, T]; R^n) \times Z \rightarrow R^n$ be measurable functions, satisfying Assumptions 2.5 and 2.6. We also assume that the following condition is satisfied.

Assumption 3.1. For any $x \in R^n$ and $T_1 > 0$, there exist three positive bounded functions $\psi_i(T_1), i = 1, 2, 3$, such that
\[
\frac{1}{T_1} \int_0^{T_1} |f(t, x) - \tilde{f}(x)|^2 dt \leq \psi_1(T_1)(1 + |x|^2), \\
\frac{1}{T_1} \int_0^{T_1} |g(t, x) - \tilde{g}(x)|^2 dt \leq \psi_2(T_1)(1 + |x|^2), \\
\frac{1}{T_1} \int_0^{T_1} \int_Z |h(t, x, v) - \tilde{h}(x, v)|^2 \pi(dv) dt \leq \psi_3(T_1)(1 + |x|^2),
\]
where $\lim_{T_1 \rightarrow \infty} \psi_i(T_1) = 0$.
Then we have the averaging form of the multi-valued SDEs with jumps
\[y_\varepsilon(t) = x_0 + \varepsilon \int_0^t \tilde{f}(y_\varepsilon(s)) \, ds + \sqrt{\varepsilon} \int_0^t \tilde{g}(y_\varepsilon(s)) \, dw(s) + \varepsilon \tilde{K}(t), \] (7)
with the initial value \(y_\varepsilon(0) = x_0 \).

Obviously, under Assumptions 2.5-2.7, the standard multi-valued SDEs with jumps (6) and the averaged one (7) have a unique solution, respectively.

In order to prove our main result, we need to introduce some lemmas.

Lemma 3.2. Let \(\phi : R_+ \times Z \to R^n \) and assume that \(E \int_0^t \int_Z |\phi(s,v)|^2 \pi(dv)ds < \infty \), then
\[E \int_0^t \int_Z |\phi(s,v)|^2 N(ds, dv) = E \int_0^t \int_Z |\phi(s,v)|^2 \pi(dv)ds. \] (8)
Moreover, there exists a positive constant \(C \) such that
\[E \sup_{0 \leq t \leq T} \left| \int_0^t \int_Z \phi(s,v) \tilde{N}(ds, dv) \right| \leq CE \left[\int_0^T \int_Z |\phi(s,v)|^2 N(ds, dv) \right]^{\frac{1}{2}}. \] (9)

Proof. Obviously, by Theorem 38 in [38], we can easily obtain the equality (8). By Theorem 48 in [38], we have
\[E \sup_{0 \leq t \leq T} \left| \int_0^t \int_Z \phi(s,v) \tilde{N}(ds, dv) \right| \leq CE[M_t, M_t]^{\frac{1}{2}} \]
where \(M_t = \int_0^t \int_Z \phi(s,v) N(ds, dv) \) is a \(\mathcal{F}_t \)-adapted martingale. \(\square \)

Lemma 3.3. [39] Let \(k : R^+ \to R^+ \) be a continuous, non-decreasing function satisfying \(k(0) = 0 \) and \(\int_0^+ \frac{ds}{k(s)} = +\infty \). Let \(q(.) \) be a Borel measurable bounded non-negative function defined on \([0, T] \) satisfying \(q(t) \leq q_0 + \int_0^t v(s) k(q(s))ds \), \(t \in [0, T] \) where \(q_0 > 0 \) and \(v(.) \) is a non-negative integrable function on \([0, T] \). Then we have \(q(t) \leq G^{-1}(G(q_0) + \int_0^t v(s)ds) \), where \(G(t) = \int_0^t \frac{ds}{k(s)} \) is well defined for some \(t_0 > 0 \), and \(G^{-1} \) is the inverse function of \(G \). In particularly, if \(q_0 = 0 \), then \(q(t) = 0 \) for all \(t \in [0, T] \).

In what follows, \(C > 0 \) is a constant which can change its value from line to line.

Lemma 3.4. Let Assumptions 2.5-2.7 hold. Then for any \(T \geq 0 \),
\[E[y_\varepsilon(t)^2] \leq C, \quad \forall \ t \in [0, T]. \] (10)

Proof. By the Itô formula, we have
\[|y_\varepsilon(t)|^2 = |x_0|^2 + \int_0^t 2\langle y_\varepsilon(s), \varepsilon \tilde{f}(y_\varepsilon(s)) \rangle ds - \int_0^t 2\langle y_\varepsilon(s), \varepsilon d\tilde{K}(s) \rangle \]
\[+ \int_0^t 2\langle y_\varepsilon(s), \sqrt{\varepsilon} \tilde{g}(y_\varepsilon(s)) \rangle dw(s) + \int_0^t \varepsilon \| \tilde{g}(y_\varepsilon(s)) \|^2 ds + \int_0^t \int_Z \left(|y_\varepsilon(s) + \sqrt{\varepsilon} \tilde{h}(y_\varepsilon(s), v)|^2 - |y_\varepsilon(s)|^2 \right) N(ds, dv). \] (11)
As we stated above, we can obtain that Eq. (7) has a unique solution \((y_ε(t), \bar{K}(t))\).
Choose \(\alpha = 0\) and \(\beta = A^a(0)\), then we have
\[
\langle y_ε(t) - 0, d\bar{K}(t) - A^a(0)dt \rangle \geq 0
\]
for any \(t \in [0, T]\). So
\[
-2 \int_0^t \langle y_ε(s), \varepsilon d\bar{K}(s) \rangle = -2\varepsilon \int_0^t \langle y_ε(s) - 0, d\bar{K}(s) - A^a(0)ds \rangle - 2\varepsilon \int_0^t \langle y_ε(s), A^a(0)ds \rangle
\]
\[
\leq 2\varepsilon |A^a(0)| \int_0^t |y_ε(s)|ds \leq \varepsilon \int_0^t (|y_ε(s)|^2 + |A^a(0)|^2)|ds. \tag{12}
\]
For any \(t_1 \in [0, T]\), inserting (12) into (11) and taking the expectation, one gets
\[
E \sup_{0 \leq t \leq t_1} |y_ε(t)|^2
\leq |y(0)|^2 + \varepsilon_0 |A^a(0)|^2T + E \int_0^{t_1} 2\langle y_ε(s), \varepsilon \bar{f}(y_ε(s))\rangle ds + E \int_0^{t_1} |y_ε(s)|^2 ds +
\]
\[
\varepsilon E \sup_{0 \leq t \leq t_1} \int_0^t 2\langle y_ε(s), \sqrt{\varepsilon}\bar{g}(y_ε(s))\rangle dw(s) + E \int_0^{t_1} \varepsilon ||\bar{g}(y_ε(s))||^2 ds
\]
\[
+ E \sup_{0 \leq t \leq t_1} \int_0^t \int_Z (2\sqrt{\varepsilon}||y_ε(s)||\bar{h}(y_ε(s), v) + \varepsilon ||\bar{h}(y_ε(s), v)||^2)N(ds, dv). \tag{13}
\]
Using the basic inequality \(2ab \leq a^2 + b^2\) and Assumption 2.6, we have
\[
E \int_0^{t_1} 2\langle y_ε(s), \varepsilon \bar{f}(y_ε(s))\rangle ds
\leq 2\varepsilon E \int_0^{t_1} |y_ε(s)||\bar{f}(y_ε(s))|ds
\leq \varepsilon E \int_0^{t_1} |y_ε(s)|^2 ds + \varepsilon E \int_0^{t_1} ||\bar{f}(y_ε(s))||^2 ds
\leq \varepsilon E \int_0^{t_1} |y_ε(s)|^2 ds + \varepsilon L_1 E \int_0^{t_1} (1 + |y_ε(s)|^2)ds. \tag{14}
\]
By the Burkholder-Davis-Gundy’s inequality, the Young inequality and Assumption 2.6, we obtain
\[
E \sup_{0 \leq t \leq t_1} \int_0^t 2\langle y_ε(s), \sqrt{\varepsilon}\bar{g}(y_ε(s))\rangle dw(s)
\leq 8\sqrt{\varepsilon} E \left[\int_0^{t_1} |y_ε(s)||\bar{g}(y_ε(s))||^2 ds \right]^{\frac{1}{2}}
\leq 8\sqrt{\varepsilon} E \left[\sup_{0 \leq s \leq t_1} |y_ε(s)||\bar{g}(y_ε(s))|| \int_0^{t_1} ||\bar{g}(y_ε(s))||^2 ds \right]^{\frac{1}{2}}
\leq 8\sqrt{\varepsilon} E \sup_{0 \leq s \leq t_1} |y_ε(s)|^2 \int_0^{t_1} ||\bar{g}(y_ε(s))||^2 ds \right]^{\frac{1}{2}}
\leq \frac{1}{4} E \sup_{0 \leq s \leq t_1} (1 + |y_ε(s)|^2) + C\sqrt{\varepsilon}L_1 E \int_0^{t_1} (1 + |y_ε(s)|^2)ds. \tag{15}
\]
Now, we give the estimation for the last term of (13). Since \(N(dt, dv) = \tilde{N}(dt, dv) + \pi(dv)dt \),

\[
E \sup_{0 \leq t \leq t_1} \int_0^t \int_Z \left(2\sqrt{\varepsilon} |y_\varepsilon(s)||\tilde{h}(y_\varepsilon(s), v)| + \varepsilon |\tilde{h}(y_\varepsilon(s), v)|^2 \right) N(ds, dv)
\leq E \int_0^{t_1} \int_Z \left(2\sqrt{\varepsilon} |y_\varepsilon(s)||\tilde{h}(y_\varepsilon(s), v)| + \varepsilon |\tilde{h}(y_\varepsilon(s), v)|^2 \right) \pi(dv)ds
+ E \sup_{0 \leq t \leq t_1} \int_0^t \int_Z \left(2\sqrt{\varepsilon} |y_\varepsilon(s)||\tilde{h}(y_\varepsilon(s), v)| + \varepsilon |\tilde{h}(y_\varepsilon(s), v)|^2 \right) \tilde{N}(ds, dv). \tag{16}
\]

Similar to (14), we have

\[
E \int_0^{t_1} \int_Z \left(2\sqrt{\varepsilon} |y_\varepsilon(s)||\tilde{h}(y_\varepsilon(s), v)| + \varepsilon |\tilde{h}(y_\varepsilon(s), v)|^2 \right) \pi(dv)ds
\leq \pi(Z)\sqrt{\varepsilon}E \int_0^{t_1} |y_\varepsilon|^2 ds + (\sqrt{\varepsilon} + \varepsilon)L_1 E \int_0^{t_1} (1 + |y_\varepsilon(s)|^2) ds. \tag{17}
\]

Let us estimate the second term of (16). By lemma 3.2 and the basic inequality, it follows that

\[
E \sup_{0 \leq t \leq t_1} \int_0^t \int_Z \left(2\sqrt{\varepsilon} |y_\varepsilon(s)||\tilde{h}(y_\varepsilon(s), v)| + \varepsilon |\tilde{h}(y_\varepsilon(s), v)|^2 \right) \tilde{N}(ds, dv)
\leq CE \left[\int_0^{t_1} \int_Z \left(2\sqrt{\varepsilon} |y_\varepsilon(s)||\tilde{h}(y_\varepsilon(s), v)| + \varepsilon |\tilde{h}(y_\varepsilon(s), v)|^2 \right)^2 N(ds, dv) \right]^{\frac{1}{2}}
\leq CE \left[\int_0^{t_1} \int_Z \left(8\varepsilon |y_\varepsilon(s)|^2 |\tilde{h}(y_\varepsilon(s), v)|^2 + 2\varepsilon^2 |\tilde{h}(y_\varepsilon(s), v)|^4 \right) N(ds, dv) \right]^{\frac{1}{2}}. \tag{18}
\]

By the basic inequality \(|a + b|^{\frac{1}{2}} \leq |a|^{\frac{1}{2}} + |b|^{\frac{1}{2}}\), we get

\[
E \sup_{0 \leq t \leq t_1} \int_0^t \int_Z \left(2\sqrt{\varepsilon} |y_\varepsilon(s)||\tilde{h}(y_\varepsilon(s), v)| + \varepsilon |\tilde{h}(y_\varepsilon(s), v)|^2 \right) \tilde{N}(ds, dv)
\leq C\sqrt{\varepsilon}E \left[\int_0^{t_1} \int_Z |y_\varepsilon(s)|^2 |\tilde{h}(y_\varepsilon(s), v)|^2 N(ds, dv) \right]^{\frac{1}{2}}
+ C\varepsilon E \left[\int_0^{t_1} \int_Z |\tilde{h}(y_\varepsilon(s), v)|^4 N(ds, dv) \right]^{\frac{1}{2}}
\leq C\sqrt{\varepsilon}E \left[\sup_{0 \leq s \leq t_1} |y_\varepsilon(s)|^2 \int_0^{t_1} \int_Z |\tilde{h}(y_\varepsilon(s), v)|^2 N(ds, dv) \right]^{\frac{1}{2}}
+ C\varepsilon E \left[\sup_{0 \leq s \leq t_1} (1 + |y_\varepsilon(s)|^2) \int_0^{t_1} \int_Z |\tilde{h}(y_\varepsilon(s), v)|^4 (1 + |y_\varepsilon(s)|^2)^2 N(ds, dv) \right]^{\frac{1}{2}}. \tag{19}
\]
Then, the Young inequality and Assumption 2.6 imply that
\[
E \sup_{0 \leq t \leq t_1} \int_0^t \int_Z \left(2\sqrt{\varepsilon}|y_\varepsilon(s)||\bar{h}(y_\varepsilon(s), v)| + \varepsilon|\bar{h}(y_\varepsilon(s), v)|^2\right) \bar{N}(ds, dv)
\]
\[
\leq \frac{1}{4} E \sup_{0 \leq s \leq t_1} |y_\varepsilon(s)|^2 + C\sqrt{\varepsilon} E \int_0^{t_1} \int_Z |\bar{h}(y_\varepsilon(s), v)|^2 N(ds, dv)
\]
\[
+ \frac{1}{8} E \sup_{0 \leq s \leq t_1} (1 + |y_\varepsilon(s)|)^2 + C\varepsilon E \int_0^{t_1} \int_Z (1 + |y_\varepsilon(s)|)^2 N(ds, dv)
\]
\[
\leq \frac{1}{2} E \sup_{0 \leq s \leq t} (1 + |y_\varepsilon(s)|^2) + C\varepsilon L_2 E \int_0^{t_1} (1 + |y_\varepsilon(s)|^2) ds
\]
\[
+ C\varepsilon L_2 \int_0^{t_1} (1 + |y_\varepsilon(s)|^2) ds.
\] \(\text{(20)} \)

Consequently,
\[
E \sup_{0 \leq t \leq t_1} (1 + |y_\varepsilon(t)|^2)
\]
\[
\leq 4(1 + |x_0|^2 + \varepsilon_0 |A^0(0)|^2 T) + C(\sqrt{\varepsilon} + \varepsilon) E \int_0^{t_1} (1 + |y_\varepsilon(s)|^2) ds
\]
\[
\leq 4(1 + |x_0|^2 + \varepsilon_0 |A^0(0)|^2 T) + C(\sqrt{\varepsilon} + \varepsilon) E \sup_{0 \leq s \leq t} (1 + |y_\varepsilon(s)|^2) dt,
\]
where \(C \) is a positive constant dependent on \(L_1 \) and \(L_2 \).

Set \(r(t) = 4(1 + |x_0|^2 + \varepsilon_0 |A^0(0)|^2 T) e^{C(\sqrt{\varepsilon} + \varepsilon) t} \), then \(r(.) \) is the solution of the following ordinary differential equation
\[
r(t) = 4(1 + |x_0|^2 + \varepsilon_0 |A^0(0)|^2 T) + C(\sqrt{\varepsilon} + \varepsilon) \int_0^t r(s) ds.
\]

By recurrence, it is easy to verify that
\[
E \sup_{0 \leq t \leq t_1} (1 + |y_\varepsilon(t)|^2) \leq r(t_1).
\]

Since \(r(t) \) is continuous and bounded on \([0, T]\), we have
\[
E \sup_{0 \leq t \leq T} (1 + |y_\varepsilon(t)|^2) \leq r(T) < +\infty,
\]
where \(r(T) = 4(1 + |x_0|^2 + \varepsilon_0 |A^0(0)|^2 T) e^{C(\sqrt{\varepsilon} + \varepsilon) T} \). The proof is therefore complete.

Remark 3.5. By lemma 3.4, we show that if the initial value \(x_0 \) are in \(L^2 \), then the solution of multivalued SDE with jumps will be in \(L^2 \).

Now, we present our main results which are used for revealing the relationship between the processes \(x_\varepsilon(t) \) and \(y_\varepsilon(t) \).

Theorem 3.6. Let Assumptions 2.5-2.7 and 3.1 hold. Then, for any \(T > 0 \),
\[
\lim_{\varepsilon \to 0} E \sup_{0 \leq t \leq T} |x_\varepsilon(t) - y_\varepsilon(t)|^2 = 0.
\] \(\text{(21)} \)
Proof. From (6) and (7), we have
\[x_\varepsilon(t) - y_\varepsilon(t) = \varepsilon \int_0^t [f(s, x_\varepsilon(s)) - \tilde{f}(y_\varepsilon(s))]ds - \varepsilon[K(t) - \tilde{K}(t)] + \sqrt{\varepsilon} \int_0^t [g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s))]dw(s) + \sqrt{\varepsilon} \int_0^t [h(s, x_\varepsilon(s^-), v) - \tilde{h}(y_\varepsilon(s^-), v)]N(ds, dv). \]

By the Itô formula, we have
\[
|x_\varepsilon(t) - y_\varepsilon(t)|^2 = \int_0^t 2\varepsilon(x_\varepsilon(s) - y_\varepsilon(s), f(s, x_\varepsilon(s)) - \tilde{f}(y_\varepsilon(s)))ds
- \int_0^t 2\varepsilon(x_\varepsilon(s) - y_\varepsilon(s), dK(s) - d\tilde{K}(s))
+ \int_0^t 2\sqrt{\varepsilon}(x_\varepsilon(s) - y_\varepsilon(s), g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s)))dw(s)
+ \int_0^t \varepsilon||g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s))||^2ds
+ \int_0^t \int_Z \left(|x_\varepsilon(s) - y_\varepsilon(s) + \sqrt{\varepsilon}h(s, x_\varepsilon(s^-), v) - \tilde{h}(y_\varepsilon(s), v)|^2 - |x_\varepsilon(s) - y_\varepsilon(s)|^2\right)N(ds, dv).
\]
\[(22) \]

Obviously, Lemma 2.2 implies that
\[\int_0^t 2\varepsilon(x_\varepsilon(s) - y_\varepsilon(s), dK(s) - d\tilde{K}(s)) \geq 0. \]

Taking the expectation on both sides of (22), it follows that for any \(u \in [0, T] \)
\[
E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2
\leq 2\varepsilon E \int_0^u |x_\varepsilon(s) - y_\varepsilon(s)||f(s, x_\varepsilon(s)) - \tilde{f}(y_\varepsilon(s))|ds
+ E \int_0^u \varepsilon||g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s))||^2ds
+ E \int_0^u \int_Z \left(2\sqrt{\varepsilon}|x_\varepsilon(s) - y_\varepsilon(s)||h(s, x_\varepsilon(s^-), v) - \tilde{h}(y_\varepsilon(s), v)|\right)\pi(dv)ds
+ 2\sqrt{\varepsilon} E \sup_{0 \leq t \leq u} \int_0^t (x_\varepsilon(s) - y_\varepsilon(s), g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s)))dw(s)
+ E \sup_{0 \leq t \leq u} \int_0^t \int_Z \left(2\sqrt{\varepsilon}|x_\varepsilon(s) - y_\varepsilon(s)||h(s, x_\varepsilon(s^-), v) - \tilde{h}(y_\varepsilon(s), v)|\right)\tilde{N}(ds, dv)
+ E \sup_{0 \leq t \leq u} \int_0^t \varepsilon|h(s, x_\varepsilon(s^-), v) - \tilde{h}(y_\varepsilon(s), v)|^2N(ds, dv)
= \sum_{i=1}^6 Q_i. \]
\[(23) \]
By the basic inequality \(|a + b|^2 \leq 2|a|^2 + 2|b|^2\), we can obtain

\[
Q_1 \leq \varepsilon E \int_0^u |x_\varepsilon(s) - y_\varepsilon(s)|^2 ds + \varepsilon E \int_0^u |f(s, x_\varepsilon(s)) - \tilde{f}(y_\varepsilon(s))|^2 ds
\]

\[
\leq \varepsilon E \int_0^u |x_\varepsilon(s) - y_\varepsilon(s)|^2 ds + 2\varepsilon E \int_0^u |f(s, x_\varepsilon(s)) - f(s, y_\varepsilon(s))|^2 ds
\]

\[
+ 2\varepsilon E \int_0^u |f(s, y_\varepsilon(s)) - \tilde{f}(y_\varepsilon(s))|^2 ds.
\]

Then, by Assumptions 2.5 and 3.1, we have

\[
Q_1 \leq \varepsilon E \int_0^u |x_\varepsilon(s) - y_\varepsilon(s)|^2 ds + \varepsilon E \int_0^u |f(s, x_\varepsilon(s)) - \tilde{f}(y_\varepsilon(s))|^2 ds
\]

\[
\leq \varepsilon E \int_0^u |x_\varepsilon(s) - y_\varepsilon(s)|^2 ds + 2\varepsilon E \int_0^u \lambda^2(s) k^2(|x_\varepsilon(s) - y_\varepsilon(s)|) ds
\]

\[
+ 2\varepsilon u\psi_1(u) \left(1 + E|y_\varepsilon(s)|^2\right).
\]

(24)

Similarly, we can deduce that

\[
Q_2 \leq 2\varepsilon E \int_0^u \lambda^2(s) k^2(|x_\varepsilon(s) - y_\varepsilon(s)|) ds + 2\varepsilon u\psi_2(u) \left(1 + E|y_\varepsilon(s)|^2\right)
\]

(25)

and

\[
Q_3 \leq \sqrt{\pi} \varepsilon E \int_0^u |x_\varepsilon(s) - y_\varepsilon(s)|^2 ds + 2\sqrt{\varepsilon} E \int_0^u \lambda^2(s) \rho^2(|x_\varepsilon(s) - y_\varepsilon(s)|) ds
\]

\[
+ 2\sqrt{\varepsilon} u\psi_3(u) \left(1 + E|y_\varepsilon(s)|^2\right).
\]

(26)

Now, we estimate the term \(Q_4\). By Assumptions 2.5, 3.1, the Burkholder-Davis-Gundy’s inequality and the Young inequality, it follows that

\[
Q_4 \leq 8\sqrt{\varepsilon} E \left[\int_0^u |x_\varepsilon(s) - y_\varepsilon(s)||g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s))||^2 ds\right]^{\frac{1}{2}}
\]

\[
\leq 8\sqrt{\varepsilon} E \left[\sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 \int_0^u \|g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s))\| ds\right]^{\frac{1}{2}}
\]

\[
\leq \frac{1}{4} E \left[\sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 + C\varepsilon E \int_0^u \|g(s, x_\varepsilon(s)) - \tilde{g}(y_\varepsilon(s))\|^2 ds\right]
\]

\[
\leq \frac{1}{4} E \left[\sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 + C\sqrt{\varepsilon} u\psi_2(u) \left(1 + E|y_\varepsilon(s)|^2\right)\right]
\]

\[
+ C\sqrt{\varepsilon} E \int_0^u \lambda^2(s) k^2(|x_\varepsilon(s) - y_\varepsilon(s)|) ds.
\]

(27)
By the Jensen inequality, this implies that
\[
Q_5 \leq C \sqrt{\mathbb{E}} \left[\int_0^u \int_Z \left(|x_\varepsilon(s) - y_\varepsilon(s)|^2 |h(s, x_\varepsilon(s), v) - h(y_\varepsilon(s), v)|^2 \right) N(ds, dv) \right]^{\frac{1}{2}}
\]
\[
\leq C \sqrt{\mathbb{E}} \left[\sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 \int_0^u \int_Z |h(s, x_\varepsilon(s), v) - h(y_\varepsilon(s), v)|^2 N(ds, dv) \right]^{\frac{1}{2}}
\]
\[
= \frac{1}{4} E \sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 + C \sqrt{\mathbb{E}} \int_0^u \int_Z |h(s, x_\varepsilon(s), v)|^2 \pi(dv)ds
\]
\[
\leq \frac{1}{4} E \sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 + C \sqrt{\mathbb{E}}^2 \psi_3(u) \left(1 + E |y_\varepsilon(s)|^2 \right)
\]
\[
+ C \sqrt{\mathbb{E}} \int_0^u \lambda^2(s) \rho^2(|x_\varepsilon(s) - y_\varepsilon(s)|) ds.
\]

It is worth noting that \(\varepsilon |h(s, x_\varepsilon(s), v) - h(y_\varepsilon(s), v)|^2 \geq 0 \), therefore by Assumption 2.5 and Lemma 3.2, we derive that
\[
Q_6 \leq \frac{1}{4} E \sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 \mathbb{E} + \varepsilon E \int_0^u \int_Z |h(s, x_\varepsilon(s), v) - h(y_\varepsilon(s), v)|^2 N(ds, dv)
\]
\[
= \frac{1}{4} E \sup_{0 \leq s \leq u} |x_\varepsilon(s) - y_\varepsilon(s)|^2 + C \sqrt{\mathbb{E}} \psi_3(u) \left(1 + E |y_\varepsilon(s)|^2 \right). \tag{29}
\]

Combining with (23)-(29) together, we obtain
\[
E \sup_{0 \leq s \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq \sqrt{\mathbb{E}}(\pi(Z) + \sqrt{\mathbb{E}}) E \int_0^u |x_\varepsilon(s) - y_\varepsilon(s)|^2 ds
\]
\[
+ (C \sqrt{\mathbb{E}} + 4\varepsilon) E \int_0^u \lambda^2(s) k^2(|x_\varepsilon(s) - y_\varepsilon(s)|) ds
\]
\[
+ \left((C + 2) \sqrt{\mathbb{E}} + 2\varepsilon \right) E \int_0^u \lambda^2(s) \rho^2(|x_\varepsilon(s) - y_\varepsilon(s)|) ds
\]
\[
+ C(\varepsilon + \sqrt{\mathbb{E}}) u \sum_{i=1}^3 \psi_i(u)(1 + E \sup_{0 \leq s \leq u} \psi_i(u)). \tag{30}
\]

By the Jensen inequality, this implies that
\[
E \sup_{0 \leq s \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq C(\sqrt{\mathbb{E}} + \varepsilon) \int_0^u \left\{ \left[E |x_\varepsilon(s) - y_\varepsilon(s)|^2 \right]^{\frac{1}{2}} \right\}^2
\]
\[
+ \lambda^2(s) k^2(E |x_\varepsilon(s) - y_\varepsilon(s)|^2)^{\frac{1}{2}} + \lambda^2(s) \rho^2(E |x_\varepsilon(s) - y_\varepsilon(s)|^2)^{\frac{1}{2}} \right\} ds
\]
\[
+ C(\varepsilon + \sqrt{\mathbb{E}}) u \sum_{i=1}^3 \psi_i(u)(1 + E \sup_{0 \leq s \leq u} \psi_i(u)). \tag{31}
\]
Letting \(\gamma(x) = k^2(x^\frac{1}{2}) + \rho^2(x^\frac{1}{2}) + x \),
\[
E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2
\leq C(\sqrt{\varepsilon} + \varepsilon) \int_0^u \left\{ \left[1 + \lambda^2(s) \right] \left[(E|x_\varepsilon(s) - y_\varepsilon(s)|^2)^{\frac{1}{2}} \right]^2 + \left[1 + \lambda^2(s) \right] \rho^2((E|x_\varepsilon(s) - y_\varepsilon(s)|^2)^{\frac{1}{2}}) \right\} ds
+ C(\varepsilon + \sqrt{\varepsilon}) u \sum_{i=1}^{3} \psi_i(u) \left(1 + E \sup_{0 \leq s \leq u} |y_\varepsilon(s)|^2 \right)
\leq C(\sqrt{\varepsilon} + \varepsilon) \int_0^u [1 + \lambda^2(s)]\gamma(E|x_\varepsilon(s) - y_\varepsilon(s)|^2) ds
+ C(\varepsilon + \sqrt{\varepsilon}) u \sum_{i=1}^{3} \psi_i(u) \left(1 + E \sup_{0 \leq s \leq u} |y_\varepsilon(s)|^2 \right). \tag{32}
\]

By lemma 3.4 and the boundedness of \(\psi_i(u) \), \(i = 1, 2, 3 \), we have
\[
E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq C(\sqrt{\varepsilon} + \varepsilon) \int_0^u [1 + \lambda^2(s)]\gamma(E|x_\varepsilon(s) - y_\varepsilon(s)|^2) ds
+ C(1 + C) M(\varepsilon + \sqrt{\varepsilon}) u. \tag{33}
\]

Obviously, \(\gamma(x) \) is a nondecreasing function on \(R_+ \) and \(\gamma(0) = 0 \). Moreover, we can obtain
\[
\int_{0^+} \frac{ds}{\gamma(s)} = \int_{0^+} \frac{1}{k^2(s^{\frac{1}{2}}) + \rho^2(s^{\frac{1}{2}}) + s} ds = \int_{0^+} \frac{u}{k^2(u) + \rho^2(u) + u^2} du = \infty.
\]

For any \(t_0 > 0 \), setting \(G(t) = \int_{t_0}^t \frac{ds}{\gamma(s)} \), it follows from lemma 3.3 that
\[
E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq G^{-1} \left(G[C(1 + C) M(\varepsilon + \sqrt{\varepsilon}) u] \right)
+ C(\sqrt{\varepsilon} + \varepsilon)(T + \int_0^T \lambda^2(s) ds). \tag{34}
\]

Noting that \(C(1 + C) M(\varepsilon + \sqrt{\varepsilon}) u \to 0 \) as \(\varepsilon \to 0 \). Recalling the condition \(\int_{0^+} \frac{ds}{\gamma(s)} = \infty \), we can conclude that
\[
G[C(1 + C) M(\varepsilon + \sqrt{\varepsilon}) u] + C(\sqrt{\varepsilon} + \varepsilon)(T + \int_0^T \lambda^2(s) ds) \to -\infty.
\]

On the other hand, because \(G \) is a strictly increasing function, then we obtain that \(G \) has an inverse function which is strictly increasing, and \(G^{-1}(-\infty) = 0 \). That is,
\[
G^{-1} \left(G[C(1 + C) M(\varepsilon + \sqrt{\varepsilon}) u] + C(\sqrt{\varepsilon} + \varepsilon)(T + \int_0^T \lambda^2(s) ds) \right) \to 0.
\]

Consequently, we have
\[
\lim_{\varepsilon \to 0} E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq \lim_{\varepsilon \to 0} G^{-1} \left(G[C(1 + C) M(\varepsilon + \sqrt{\varepsilon}) u] + C(\sqrt{\varepsilon} + \varepsilon)(T + \int_0^T \lambda^2(s) ds) \right) = 0.
\]

Therefore we complete the proof.
Remark 3.7. From Theorem 3.6, we investigate the strong convergence (in moment-sense) of \(x_\varepsilon(t) \) to the averaging solution \(y_\varepsilon(t) \) defined by (7) under non-Lipschitz condition. In other words, as long as \(\varepsilon \) is sufficiently small, then \(y_\varepsilon(t) \) and \(x_\varepsilon(t) \) are close enough.

Remark 3.8. If jump term \(h = \bar{h} = 0 \), then equation (6) and (7) will become multi-valued SDEs which have been investigated by [2, 3, 6, 7, 8, 9, 32, 33]. Likewise, under our assumptions, we can show that the solution of the averaged multi-valued SDEs converges to that of the standard one. Moreover, even for the Wiener noise case, our result still seems to be new.

However, the order of convergence for Eq.(5) in finite time interval has not been provided by Theorem 3.6, we need to give another convergence result.

Theorem 3.9. Let Assumptions 2.5-2.7 and 3.1 hold. For a given arbitrary small number \(\delta_1 > 0 \), there exist \(L > 0, \varepsilon_1 \in (0, \varepsilon_0] \) and \(\beta \in (0, 1) \) such that

\[
E|x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq \delta_1, \quad \forall \ t \in [0, L\varepsilon^{\frac{1}{\beta}}],
\]

(35)

for all \(\varepsilon \in (0, \varepsilon_1] \).

In order to prove Theorem 3.9, we need the following lemma.

Lemma 3.10. Let \(k_i(x), i = 1, 2, 3 \) be three concave nondecreasing functions on \(R_+ \) such that \(k_i(0) = 0 \). Then \(\gamma(x) = \sum_{i=1}^{3} k_i^2(x^\frac{1}{2}) \) is a concave nondecreasing function on \(R_+ \).

Proof. Similar to lemma 2.2 in [40], we can obtain this lemma and omit its proof.

Proof of Theorem 3.9. Letting \(k_1(x) = k(x), k_2(x) = \rho(x), k_3(x) = x \). Then, by lemma 3.10, we can easily obtain that \(\gamma(x) \) is a concave function on \(R_+ \). Hence, by the properties of the concave function, we can find a pair of positive constants \(a \) and \(b \) such that

\[
\gamma(x) \leq a + bx, \quad \text{for any } x \geq 0.
\]

(36)

Therefore, (33) will become

\[
E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq Cb(\sqrt{\varepsilon} + \varepsilon) \int_{0}^{u} [1 + \lambda^2(s)] E \sup_{0 \leq s \leq t} |x_\varepsilon(s) - y_\varepsilon(s)|^2 dt + Ca(\varepsilon + \sqrt{\varepsilon})u.
\]

(37)

Let

\[
q(u) = E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2, \quad q_0 = Ca(\varepsilon + \sqrt{\varepsilon})u,
\]

and

\[
v(t) = 1 + \lambda^2(t), \quad k(t) = Cb(\sqrt{\varepsilon} + \varepsilon)t,
\]

then it follows from lemma 3.3 that

\[
E \sup_{0 \leq t \leq u} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq G^{-1}\left(G[Ca(\varepsilon + \sqrt{\varepsilon})u] + \int_{0}^{u} [1 + \lambda^2(s)] ds\right),
\]
where \(G(u) = \int_{u_0}^u \frac{1}{Cb(\sqrt{\varepsilon + x})} dt = \frac{1}{Cb(\sqrt{\varepsilon + x})} \ln\left(\frac{u}{u_0}\right) \), \(u_0 > 0 \). Obviously, \(G^{-1}(u) = u_0 e^{Cb(\sqrt{\varepsilon + x})u}, u > 0 \). Hence,

\[
E \sup_{0 \leq t \leq \varepsilon} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq u_0 e^{Cb(\sqrt{\varepsilon + x})}\left[\frac{1}{Cb(\sqrt{\varepsilon + x})} \ln\left(\frac{u}{u_0}\right) + \int_0^\varepsilon [1 + \lambda^2(s)] ds\right]
\]

\[
\leq [Ca(\varepsilon + \sqrt{\varepsilon})] e^{Cb(\varepsilon + \sqrt{\varepsilon})} \sup_{0 \leq t \leq \varepsilon} [1 + \lambda^2(s)] = \delta_1.
\]

Choose \(\beta \in (0, 1) \) and \(L > 0 \) such that for every \(t \in [0, L\varepsilon^{1-\beta}] \subseteq [0, T] \),

\[
E \sup_{0 \leq t \leq L\varepsilon^{1-\beta}} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq NL\varepsilon^{1-\beta},
\]

where \(N = Ca(1 + \sqrt{\varepsilon}) e^{Cb\sup_{0 \leq t \leq T} [1 + \lambda^2(s)] L(\varepsilon^{1-\beta} + \varepsilon^{1-\beta})} \). Consequently, given any number \(\delta_1 \), we can choose \(\varepsilon_1 \in [0, \varepsilon_0] \) such that for each \(\varepsilon \in [0, \varepsilon_1] \) and for \(t \in [0, L\varepsilon^{1-\beta}] \),

\[
E \sup_{0 \leq t \leq L\varepsilon^{1-\beta}} |x_\varepsilon(t) - y_\varepsilon(t)|^2 \leq \delta_1.
\]

The proof is therefore complete. \(\Box \)

Remark 3.11. By Theorem 3.9, we can obtain that the order of convergence for Eq.(5) is about \(\varepsilon^{1-\beta} \). Moreover, we will use this theorem to show the convergence in probability between the processes \(x_\varepsilon(t) \) and \(y_\varepsilon(t) \).

Corollary 3.12. Let Assumptions 2.5-2.7 and 3.1 hold. For a given arbitrary small number \(\delta_2 > 0 \), there exist \(\varepsilon_2 \in [0, \varepsilon_0] \) such that for all \(\varepsilon \in (0, \varepsilon_2] \), we have

\[
\lim_{\varepsilon \to 0} P\left(\sup_{0 < t \leq L\varepsilon^{1-\beta}} |x_\varepsilon(t) - y_\varepsilon(t)| > \delta_2\right) = 0,
\]

where \(L \) and \(\beta \) are defined by Theorem 3.9.

Proof. By Theorem 3.9 and the Chebyshev inequality, for any given number \(\delta_2 > 0 \), we can obtain that

\[
P\left(\sup_{0 < t \leq L\varepsilon^{1-\beta}} |x_\varepsilon(t) - y_\varepsilon(t)| > \delta_2\right) \leq \frac{1}{\delta_2^2} E\left(\sup_{0 < t \leq L\varepsilon^{1-\beta}} |x_\varepsilon(t) - y_\varepsilon(t)|^2\right) \leq \frac{NL\varepsilon^{1-\beta}}{\delta_2^2}.
\]

Let \(\varepsilon \to 0 \), and the required result follows. \(\Box \)

4. **Examples.** In this section, we will discuss two examples to illustrate our theory.

Example 4.1. Consider the linear multi-valued SDEs with jumps

\[
dx_\varepsilon(t) + \varepsilon A(x_\varepsilon(t)) dt \geq \frac{1}{2} \varepsilon x_\varepsilon(t) dt + 4\sqrt{\varepsilon} \cos^2(t) x_\varepsilon(t) dw(t)
\]

\[
+ c\sqrt{\varepsilon} \int_Z v^2 x_\varepsilon(t) N(dt, dv),
\]

with initial data \(x_\varepsilon(0) = x_0 \). Here

\[
f(t, x_\varepsilon(t)) = \frac{1}{2} x_\varepsilon(t), \quad g(t, x_\varepsilon(t)) = 4\sqrt{\varepsilon} \cos^2(t) x_\varepsilon(t), \quad h(t, x_\varepsilon(t), v) = c\sqrt{\varepsilon} v^2 x_\varepsilon(t).
\]

Let

\[
\bar{f}(y_\varepsilon(t)) = \frac{1}{\pi} \int_0^\pi f(t, y_\varepsilon(t)) dt = \frac{1}{2} \varepsilon y_\varepsilon(t), \quad \bar{g}(y_\varepsilon(t)) = \frac{1}{\pi} \int_0^\pi g(t, y_\varepsilon(t)) dt = 2\sqrt{\varepsilon} y_\varepsilon(t).
\]
and
\[\bar{h}(y_\varepsilon(t), v) = \frac{1}{\pi} \int_0^\pi h(t, y_\varepsilon(t), v) dt = c\sqrt{\varepsilon}v^2 y_\varepsilon(t), \]
we obtain the corresponding averaged equation as follows
\[dy_\varepsilon(t) + \varepsilon \bar{A}(y_\varepsilon(t)) dt \ni \frac{1}{2} \varepsilon y_\varepsilon(t) + 2\sqrt{\varepsilon}y_\varepsilon(t) dw(t) + c\sqrt{\varepsilon} \int_Z v^2 y_\varepsilon(t) N(dt, dv). \quad (40) \]
Obviously, Eq.(40) is also a linear multi-valued SDEs with jumps and its solution can be given by
\[y_\varepsilon(t) = \Phi(t) \left(x_0 - \varepsilon \int_0^t \Phi^{-1}(s) d\bar{K}(s) \right), \quad (41) \]
where
\[\Phi(t) = \exp \left\{ -\frac{3}{2} \varepsilon t + 2\sqrt{\varepsilon}w(t) + \int_0^t \int_Z \ln(1 + c\sqrt{\varepsilon}v^2) N(ds, dv) \right\}. \]
It is easy to find that the conditions of Theorems 3.6, 3.9 and Corollary 3.12 are satisfied, then the solution of averaged multi-valued SDEs with jumps (41) will converge to that of the standard one (39) in the sense of mean square and in probability.

Example 4.2. Let us return to the multivalued SDEs with pure jumps (3). Consider the standard form of Eq.(3)
\[dx_\varepsilon(t) + \varepsilon A(x_\varepsilon(t)) dt \ni \varepsilon f(t, x_\varepsilon(t)) dt + \sqrt{\varepsilon} \int_Z vh(t, x_\varepsilon(t)) N(dt, dv), \quad (42) \]
with initial data \(x_\varepsilon(0) = x_0 \). Here \(f(t, x) = h(t, x) = \sin(t)k(x) \) and \(k(x) \) is defined as (4). Let
\[\bar{f}(y_\varepsilon(t)) = \frac{1}{\pi} \int_0^\pi f(t, y_\varepsilon(t)) dt = \frac{2}{\pi} k(y_\varepsilon(t)) \]
and
\[\bar{h}(y_\varepsilon(t)) = \frac{1}{\pi} \int_0^\pi h(t, y_\varepsilon(t)) dt = \frac{2}{\pi} k(y_\varepsilon(t)), \]
we have the corresponding averaged equation
\[dy_\varepsilon(t) + \varepsilon \bar{A}(y_\varepsilon(t)) dt \ni \varepsilon \frac{2}{\pi} k(y_\varepsilon(t)) dt + \sqrt{\varepsilon} \frac{2}{\pi} \int_Z v k(y_\varepsilon(t)) N(dt, dv). \quad (43) \]
Clearly, the coefficient \(k(.) \) do not satisfy the Lipschitz condition and it is a concave nondecreasing continuous function on \([0, \infty]\) with \(k(0) = 0 \). In fact, Eq.(43) is not a linear stochastic equation and we can not obtain its analytic solution as Eq.(40) did.

However, by Theorem 3.6 and 3.9, we can show that the solution of averaged equation (43) will converge to that of standard one (42) in the sense of mean square and in probability. Let us consider the function \(\gamma(x) \) of the inequality (32). By (4), we have that
\[\gamma(x) = \begin{cases} 2x\ln\frac{1}{\sqrt{x}} + x, & \text{if } x \leq e^{-2}, \\ 3e^{-1}\sqrt{x} + \frac{1}{2}e^{-2}, & \text{if } x > e^{-2}. \end{cases} \quad (44) \]
Obviously, $\gamma(x)$ is a nondecreasing continuous function on R_+ and $\gamma(0) = 0$. Moreover, for any sufficiently small positive constant $\bar{\varepsilon}$, we have
\[
\int_0^{\bar{\varepsilon}} \frac{ds}{\gamma(s)} = \int_0^{\bar{\varepsilon}} \frac{1}{2\ln \sqrt{s} + s} ds = \infty.
\]

Now, we will give the specific form of the function $G(t)$ in lemma 3.3. Choosing $t_0 = \frac{1}{2} e^{-1}$, we compute that
\[
G(t) = \int_{\frac{1}{2} e^{-1}}^{t} \frac{ds}{\gamma(s)} = \int_{\frac{1}{2} e^{-1}}^{t} \frac{1}{2\ln \sqrt{s} + s} ds = \ln \frac{1 + 2\ln 2}{1 - 2\ln \sqrt{t}} \quad \text{for} \quad 0 < t < e^{-2}. \tag{45}
\]

When $0 < t < e^{-2}$, $G'(t) = \frac{1}{(1 - 2\ln \sqrt{t})^2} > 0$, so we have that G is a strictly increasing function on $0 < t < e^{-2}$. Hence, we conclude that G has an inverse function
\[
G^{-1}(t) = e^{1-(2+2\ln 2)e^{-t}}, \quad t < \ln(1 + \frac{1}{2} \ln 2)
\]
which is strictly increasing, and $G^{-1}(-\infty) = 0$. By (34), it follows that
\[
E \sup_{0 \leq t \leq u} |x_e(t) - y_e(t)|^2 \
\leq G^{-1} \left(G\left((1+C)M(\varepsilon + \sqrt{\varepsilon})u + C(\sqrt{\varepsilon} + \varepsilon)(\pi/2 - \frac{1}{4} \sin^2 T) \right) \right) \
= e^{1-(1-2\ln\sqrt{(1+C)M(\varepsilon + \sqrt{\varepsilon})u} - C(\sqrt{\varepsilon} + \varepsilon)(\pi/2 - \frac{1}{4} \sin^2 T))},
\]

Note that as $\varepsilon \to 0$, $e^{1-(1-2\ln\sqrt{(1+C)M(\varepsilon + \sqrt{\varepsilon})u} - C(\sqrt{\varepsilon} + \varepsilon)(\pi/2 - \frac{1}{4} \sin^2 T))} \to 0$, we have
\[
\lim_{\varepsilon \to 0} E \sup_{0 \leq t \leq u} |x_e(t) - y_e(t)|^2 = 0.
\]

That is to say, we show that the solution of averaged equation (43) will converge to that of standard one (42) in the mean square sense. On the other hand, we may also give the order of the convergence in finite time interval. According to (44), we compute that
\[
\gamma''(x) = \begin{cases} \frac{1}{4} & \text{if } x \leq e^{-2}, \\ -\frac{1}{x} & \text{if } x > e^{-2}. \end{cases} \tag{46}
\]

It is easy to see from (46) that $\gamma''(x) < 0$ as $x > 0$, then $\gamma(x)$ is a concave function. Moreover, using the basic inequality $ab \leq \frac{1}{4}(a^2 + b^2)$ and $\ln x < x$ for any $x > 0$, we obtain that $\gamma(x) \leq 1 + 2x$ for $x \leq e^{-2}$ and $\gamma(x) \leq e^{-2} + 2x$ for $x > e^{-2}$. Then, combine these two cases, there exist two positive constants $a = 1$ and $b = 2$ such that
\[
\gamma(x) \leq 1 + 2x, \quad \text{for } x > 0.
\]

Consequently, the inequality (38) will become
\[
E \sup_{0 \leq t \leq u} |x_e(t) - y_e(t)|^2 \leq (C(\varepsilon + \sqrt{\varepsilon})u)^{2C(\varepsilon + \sqrt{\varepsilon})} \sup_{0 \leq t \leq \tau} [1 + \sin^2 t]^u \leq (C(\varepsilon + \sqrt{\varepsilon})u)^{4C(\varepsilon + \sqrt{\varepsilon})u}.
\]

If we choose $\beta = \frac{1}{4}$, $L = 1$, then the order of the convergence is $\varepsilon^{\frac{1}{4}}$. That is, for every $t \in [0, \varepsilon^{\frac{1}{4}}]$, we have
\[
E \sup_{0 \leq t \leq \tau} |x_e(t) - y_e(t)|^2 \leq N \varepsilon^{\frac{4}{5}},
\]
where \(N = C(1 + \sqrt{\varepsilon})e^{4C(\varepsilon^{\frac{1}{2}} + \varepsilon^{\frac{1}{4}})} \). Finally, by Corollary 3.12, we can obtain that for any given number \(\delta > 0 \),

\[
P\left(\sup_{0 < t \leq L\varepsilon^{\frac{1}{4}}} |x_{\varepsilon}(t) - y_{\varepsilon}(t)| > \delta \right) \leq \frac{N\varepsilon^{\frac{1}{4}}}{\delta^2}.
\]

Let \(\varepsilon \to 0 \), we have that the solution \(y_{\varepsilon}(t) \) will converge to \(x_{\varepsilon}(t) \) in probability.

Conclusions. In this paper, we discuss the averaging principle for the multivalued SDE with jumps under non-Lipschitz condition. By using the estimate for stochastic integral with respect to a Poisson random measure, the Bihari’s inequality and the properties of the concave function, we prove that the solution of averaged multivalued SDE with jumps converges to that of the standard one in the sense of mean square and probability. Meantime, we also provide the order of convergence in finite time interval.

Acknowledgments. The authors would like to thanks the editor and the referees for their suggestions and comments.

REFERENCES

[1] P. Krée, Diffusion for multivalued stochastic differential equations, *J. Funct. Anal.*, 49 (1982), 73–90.

[2] E. Cépa, Equations differentielles stochastiques multivoques, in: Séminaire de Probabilités, XXIX, *Lecture Notes in Mathematics, Springer, Berlin.*, 46 (1995), 86–107.

[3] E. Cépa, Probleme de Skorohod multivoque, *Ann. Probab.*, 26 (1998), 500–532.

[4] D. Lépingle, C. Marois, Equations differentielles stochastiques multivoques unidimensionnelles, *Séminaire de Probabilités XXI. Springer, Berlin, Heidelberg.*, (1987), 520–533.

[5] F. Bernardin, Multivalued stochastic differential equations: convergence of a numerical scheme, *Set-Valued Analysis.*, 11 (2003), 393–415.

[6] X. Zhang, Skorohod problem and multivalued stochastic evolution equations in Banach spaces, *Bulletin des sciences mathématiques.*, 131 (2007), 175–217.

[7] J. Ren, S. Xu, A transfer principle for multivalued stochastic differential equations, *Journal of Functional Analysis.*, 256 (2009), 2780–2814.

[8] Y. Ren, J. Wang, L. Hu, Multi-valued stochastic differential equations driven by G-Brownian motion and related stochastic control problems, *International Journal of Control.*, 90 (2017), 1132–1154.

[9] H. Zhang, Strong convergence rate for multivalued stochastic differential equations via stochastic theta method, *Stochastics.*, 90 (2018), 762–781.

[10] C. Marois, Equations differentielles stochastiques multivoques discontinues avec fronti`ere mobile, *Stochastics.*, 30 (1990), 105–121.

[11] J. Wu, Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, *Kyoto Journal of Mathematics.*, 51 (2011), 535–559.

[12] J. Ren and J. Wu, Multi-valued Stochastic Differential Equations Driven by Poisson Point Processes, *Stochastic Analysis with Financial Applications, Springer.*, 65 (2010).

[13] W. Liu, M. Stephan, Yosida approximations for multivalued stochastic partial differential equations driven by Lévy noise on a Gelfand triple, *Journal of Mathematical Analysis and Applications.*, 410 (2014), 158–178.

[14] A. Zalinescu, Stochastic variational inequalities with jumps, *Stochastic Processes and their Applications.*, 124 (2014), 785–811.

[15] L. Maticiuc, A. Rășcanu, L. Slominski, Multivalued monotone stochastic differential equations with jumps, *Stochastics and Dynamics.*, 17 (2017), 1–25.

[16] N. M. Krylov, N. N. Bogolyubov, Les proprietes ergodiques des suites des probabilites en chaine, *C. R. Math. Acad. Sci.*, 204 (1937), 1454–1546.

[17] J. K. Hale, Averaging methods for differential equations with retarded arguments with a small parameter, *J. Differential Equations.*, 2 (1996), 57–73.
[18] V. M. Volosov, Averaging in systems of ordinary differential equations, *Russian. Math. Surveys.*, 17 (1962), 1–126.

[19] K. Matthies, Time-averaging under fast periodic forcing of parabolic partial differential equations: exponential estimates, *J. Differ. Equ.*, 174 (2011), 133–180.

[20] D. D. Bainov, S. D. Milusheva, Justification of the averaging method for a system of functional differential equations with variable structure and impulses, *Appl. Math. and Optimization.*, 16 (1987), 19–36.

[21] M. Federson, J. G. Mesquita, Non-periodic averaging principles for measure functional differential equations and functional dynamic equations on time scales involving impulses, *Journal of Differential Equations.*, 255 (2013), 3098–3126.

[22] R. Z. Khasminskii, On the principle of averaging the Itô stochastic differential equations, *Kibernet.*, 4 (1968), 260–279.

[23] A. Y. Veretennikov, On the averaging principle for systems of stochastic differential equations, *Math. USSR-Sb.*, 69 (1991), 271–284.

[24] V. G. Kolomietz, A. I. Melnikov, Averaging of stochastic systems of integral-differential equations with Poisson noise, *Ukr. Math. J.*, 43 (1991), 242–246.

[25] J. Golec, G. Ladde, Averaging principle and systems of singularly perturbed stochastic differential equations, *J. Math. Phys.*, 31 (1990), 1395–1401.

[26] Y. Xu, J. Q. Duan, W. Xu, An averaging principle for stochastic dynamical systems with Lévy noise, *Physica D.*, 240 (2011), 1395–1401.

[27] Y. Xu, B. Pei, J. L. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, *Stochastics and Dynamics.*, 17 (2017), 1–16.

[28] Y. Xu, B. Pei, R. Guo, Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion, *Discrete Contin. Dyn. Syst., Ser. B.*, 20 (2015), 2257–2267.

[29] L. Ngoran, N. Z. Modeste, Averaging principle for multivalued stochastic differential equations, *Random Operators and Stochastic Equations.*, 9 (2001), 309–407.

[30] J. Xu, J. Liu, An averaging principle for multivalued stochastic differential equations, *Stoch. Anal. Appl.*, 32 (2014), 962–974.

[31] R. Guo, B. Pei, Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson Point Processes, *Stochastic Analysis and Applications.*, 36 (2018), 751–766.

[32] J. P. Aubin, A. Cellina, Differential Inclusions, *Springer, Berlin.*, (1984).

[33] Y. Xu, B. Pei, Y. Li, Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise, *Mathematical Methods in the Applied Sciences.*, 38 (2015), 2120–2131.

[34] Y. Xu, B. Pei, G. Guo, Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise, *Applied Mathematics and Computation.*, 263 (2015), 398–409.

[35] P. H. Protter, Stochastic Integration and Differential Equations, second ed., in: Applications of Mathematics, *Springer-Verlag, Berlin.*, (2004).

[36] I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations, *Acta Math. Acad. Sci. Hungar.*, 7 (1956), 71–94.

[37] Z. Liang, Existence and pathwise uniqueness of solutions for stochastic differential equations with respect to martingales in the plane, *Stochastic Processes and their Applications.*, 83 (1999), 303–317.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: jsjysxx365@126.com
E-mail address: ljhu@dhu.edu.cn
E-mail address: sryou@dhu.edu.cn
E-mail address: x.mao@strath.ac.uk