An In vitro Study of Guidewire-Related Color Doppler Twinkling Artifacts in Echocardiography

Shu-Ping Wu1,2, Yi-Jui Huang1,2, Teng-Fu Tsao1,2, Yeu-Sheng Tyan1,2, Chun-Hung Su3*
1Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan, 2Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung City, Taiwan, 3Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan

Abstract

Purpose: This study sought to determine the association between twinkling artifacts on color Doppler ultrasound and different types of guidewires. Materials and Methods: Twenty-two commonly used guidewires were classified into three groups according to decreasing diameter (Group 1, 0.035”; Group 2, 0.018”; and Group 3, 0.014”) and tested in vitro. Severity of twinkling was visually graded into four categories (0–3, from weak to strong). Results: The percentages (tips/shafts) of twinkling artifacts were 100%/100% for Group 1; 0%/33.3% for Group 2; and 18.8%/31% for Group 3. The mean scores (tips/shafts) were 2.3/2.7 for Group 1; 0/0.3 for Group 2; and 0.3/0.4 for Group 3. Among them, both two guidewires with strong twinkling artifacts (score = 3) exhibited extensive rough surfaces on microscopic pictures. Conclusion: The twinkling artifacts were more likely to present in guidewires with larger diameters (from 0.014” to 0.035”) in our study settings. The surface roughness may be the contribution to the twinkling artifact. Internal heterogeneities, such as types of material, types of coating, tip loading, and spring coil length, do not show influence on the twinkling artifact.

Keywords: Doppler, guidewire, intervention, twinkling artifact

Introduction

First mentioned by Rahmouni et al., the twinkling artifact is a color Doppler phenomenon which appears as a rapid alternating mixture of red-and-blue color Doppler signals behind highly reflective objects. Although the underlying mechanism is not fully understood, previous studies have reported that twinkling artifacts are related to rough surfaces with multiple reflectors.[1] Others have suggested that twinkling artifacts could be caused by internal machine noise[2] or are associated with machine settings.[2-4] This artifact has also been described behind calcifications in various extracardiac tissues including prostate, testis, kidney, bladder, liver, gallbladder, breast,[11] ureter,[2] orbit,[6] and pancreas,[7] as well as calcified cardiac valves during echocardiography.[8]

Ultrasound-guided procedures are widely used currently in cardiac interventions and they can be applied via transthoracic or transesophageal echocardiography or intravascular ultrasound.[9] In a recent study, Bennett et al. reported intracardiac device-related twinkling artifacts when a patient received interatrial septal puncture for placement of a left atrial ablation catheter in transesophageal echocardiography. Twinkling artifacts were intermittently identified behind a superstiff 0.032” guidewire close to the interatrial septum and might be misinterpreted as a patent foramen ovale with a high-velocity, left-to-right shunt flow in transesophageal echocardiography.[10] The authors indicated that twinkling artifacts occurred in situations with well-demonstrated color figures; however, the association between the twinkling artifacts and the type of guidewire was not completely evaluated.[10]

The hypothesis underlying this study was that the various diameters and/or bondable coatings that make up the different

Received: 11-09-2017 Accepted: 29-01-2018 Available Online: 05-07-2018

Copyright and License Information

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Wu SP, Huang YJ, Tsao TF, Tyan YS, Su CH. An in vitro study of guidewire-related color Doppler twinkling artifacts in echocardiography. J Med Ultrasound 2018;26:200-4.
types of guidewires might influence the presence or strength of the twinkling artifact. An in vitro study was conducted to systemically evaluate device-related twinkling artifacts using the various types of guidewires commonly used in cardiac intervention.

Materials and Methods

Guidewires

Twenty-two different types of guidewires, commonly used in cardiac intervention at our institution, were evaluated. Guidewire diameters included 0.035\" (Group 1, \(n = 3\)), 0.018\" (Group 2, \(n = 3\)), and 0.014\" (Group 3, \(n = 16\)). In cardiac intervention, 0.035\" guidewires are used for peripheral arteries, while both 0.014\" and 0.018\" guidewires are used for coronary arteries. Among them, 13 of 22 (59\%) guidewires used platinum and stainless steel coil as material, 2 (9\%) used superelastic nickel-titanium (Ni-Ti) coil, 2 (9\%) used Selenatun™ stainless steel coil, 2 (9\%) used platinum coil tip and Ni-Ti shaft, and the other 3 (14\%) were of unknown material. Regarding the coating, 9 (41\%) of the guidewires had hydrophilic (HY) coating; another 6 (27\%) were of polymer sleeve and HY coating and 4 (18\%) had silicon coating. There were two guidewires (9\%) with different coatings on the tip versus the shaft: one had HY coating on the tip and polytetrafluoroethylene (PTFE) on the shaft; another had silicon coating on the tip and PTFE on the shaft. The other guidewire (5\%) had an unknown coating.

Table 1 summarizes the characteristics of the guidewires including their diameters, materials, coatings, tip loadings, and spring coil lengths.

Color Doppler ultrasound

The color Doppler images of the twinkling artifacts produced by guidewires were acquired using an Acuson Sequoia 512 sonography machine (Siemens Medical Solutions, Mountain View, CA, USA) using an adult cardiac curved transducer (4V1c, 2–4 MHz; Siemens Medical Solutions). With a fixed probe in a water bath [Figure 1], all the images were obtained by a cardiologist (J. H. S) and a radiologist (T. F. T) with 14 and 12 years of experience, respectively, in ultrasonography. For prevention of air bubble contamination,[11,12] all guidewires were shaken manually in another water bath to release surface-trapped microbubbles.

Images were separately focused on the shafts and tips of each guidewire. The frequency and dynamic range of gray-scale images were 4.0 MHz and 72 dB, respectively. Native tissue equalization technology was used to automatically optimize gray-scale gain and depth gain compensation across the two-dimensional images. The distances between the probe and the guidewires were also fixed.

For color Doppler images, a red-and-blue color map was used. The color window size was set in a constant area which entirely covered the guidewires, as well as the twinkling artifacts behind the guidewires. The Doppler frequency and velocity were set at 4.0 MHz and 32 cm/s, respectively. The color gain was set at 11 to maximally enhance twinkling artifacts and eliminate background noise in the in vitro system. Other parameters for the images included depth of the field of view (image depth), 60 mm; number of transmit zones (number of focus points), 2; focal distance (length), 3.0 and 6.0 cm; distance between the transducer and the guidewire, 3.0 ± 1.0 cm; frame rate, 16 Hz; persistence number, 0; edge factor (sharper/smooth color distinction), −2; postprocessing map, 4; size factor of color gate, 1; and filter setting, 2.

Analysis of twinkling artifacts

To assess the strength of the twinkling artifacts, color Doppler images were organized in a randomized fashion and reviewed in consensus by two observers (Y. J. H and S. P. W) with experience in assessing the artifacts. Observers were aware that artifacts were associated with guidewires but unaware of the types of guidewires used in each study. For scaling twinkling artifact within the color window, images were assigned the following scores: 0, if there was no artifact; 1, if artifacts were present weakly behind or superimposed on only a small part of the guidewire; 2, if they were present immediately behind or superimposed on some part of the guidewire; and 3, if they were present strongly behind or superimposed on the entire guidewire. The score of the color Doppler twinkling artifact from each guidewire was recorded.

Results

The results are summarized in Table 2 and Figure 1. The percentages of tips/shafts with twinkling artifacts showed large variations between groups. In Group 1 (0.035\"), all the 3 (100\%) guidewires had twinkling artifacts at both tips and shafts. In Group 2 (0.018\"), none of the 3 (0\%) guidewires had the twinkling artifacts at its tip; one of the 3 (33.3\%) guidewires had the twinkling at its shaft. In Group 3 (0.014\"), three of the 16 (18.8\%) guidewires had twinkling artifacts at their tips; five of the 16 (31.3\%) guidewires had twinkling artifacts at their shafts.

Guidewires with larger diameters exhibited stronger twinkling artifacts than those with smaller diameters. Strong twinkling artifacts (score = 3) from two guidewires were exhibited by Group 1 only and both the two guidewires showed extensive rough surfaces on microscopic pictures. The average scores (tips/shafts) were 2.3/2.7 for Group 1; 0/0.3 for Group 2; and 0.3/0.4 for Group 3. Other parameters, such as type of material, type of coating, tip loading, and spring coil length, did not show any influence on the artifact.

Discussion

The twinkling artifact presents as a dynamic color mosaic on the surface of hard objects on a color Doppler ultrasound display. In addition to machine settings,[2-4] previous studies have reported that twinkling artifacts are related to rough surfaces with multiple reflectors that are usually associated with calcifications.[11]

Device-related twinkling artifacts have also been previously reported. Examples have included biopsy needle and drainage tips,[13,14] encrusted indwelling ureteral stents,[15] nephrostomy
Guidewire-related color Doppler twinkling artifact

Using the Doppler technique, echocardiography can provide flow information in real-time during the above-mentioned procedures in spite of the potential impact of the twinkling artifacts. In the present study, we proposed that twinkling artifact should not be mistaken for intracardiac flow but rather indicates the guidewire’s position.

According to the design of the manufacturer, the distal part of the guidewire is usually composed of spring coils on its surface for maintaining torqueability. We suppose that this spring coil, regardless of material (superelastic Ni-Ti, platinum and stainless coil, Scitanum™, and stainless coil), may offer some degree of surface roughness and induce the twinkling artifact. This hypothesis is thought to be supported with microscopic pictures. Guidewires with strong twinkling artifacts (score = 3) exhibit rough surfaces with scalloped contours whereas those with no or weak twinkling artifacts (score = 0 or 1) present smooth surfaces [Figure 2]. However, we do not quantitate the surface roughness based on microscopic pictures and this limit any more advanced explanation.

Based on our study, the diameter from 0.014” to 0.035” of a guidewire was also an important factor in generating twinkling artifacts, as well as the guidewire-related twinkling artifacts seen during interatrial septal puncture in a recent case-limited report by Bennett et al. In cardiology, echocardiography-assisted guidance during cardiac intervention has been used widely, such as in atrial septostomy, blade atrial septectomy, balloon dilation, atrial septal defect closure, ventricular septal defect closure, patent ductus arteriosus closure, and pericardiocentesis. Using the Doppler technique, echocardiography can provide flow information in real-time during the above-mentioned procedures in spite of the potential impact of the twinkling artifacts. In the present study, we proposed that twinkling artifact should not be mistaken for intracardiac flow but rather indicates the guidewire’s position.

Group 1 (diameter: 0.035”)	Product name	Material	Coating	Tip loading (g)	Spring coil length (cm)
Angiography Guide Wire	Superelastic Ni-Ti coil	Hydrophilic	7/10		
Fixed-core-J-curve	Platinum and stainless coil	Silicon			
Amplatz Super	Platinum and stainless coil				
Stiff - Straight Tip					
Group 2 (diameter: 0.018”)	Angiography Guide Wire V-18 short taper	Superelastic Ni-Ti coil	Hydrophilic	7.6	8
V-18 short taper	Platinum and stainless coil	Polymer sleeve and hydrophilic	12/18/25/30	3	
Group 3 (diameter: 0.014”)	Victory-18	Platinum and stainless coil	Polymer sleeve and hydrophilic	0.8	11
Fielder FC	Platinum and stainless coil	Polymer sleeve and hydrophilic	0.7	28	
Sion	Platinum and stainless coil	Hydrophilic	1.7	15	
Gaia First	Platinum and stainless coil	Hydrophilic	3.5	15	
Gaia Second	Platinum and stainless coil	Hydrophilic	1	25	
Runthrough Floppy	Platinum coil tip and Ni-Ti shaft	Tip HY coat shaft PTFE coat	3.1	25	
Runthrough Intermediate	Platinum coil tip and Ni-Ti shaft	Tip silicon coat shaft PTFE coat	3	11	
ULTI MEBros3	Platinum and stainless coil	Hydrophilic	3	11	
Miracle 3	Platinum and stainless coil	Silicon	3	11	
Miracle 6	Platinum and stainless coil	Silicon	6	11	
Miracle 12	Platinum and stainless coil	Silicon	12	11	
Conquest Pro	Platinum and stainless coil	Hydrophilic	9	20	
Conquest Pro 12	Platinum and stainless coil	Hydrophilic	12	20	
PT2 LS	Platinum and stainless coil	Polymer sleeve and hydrophilic	6	8	
PT2 MS	Platinum and stainless coil	Polymer sleeve and hydrophilic	6	8	
Choice PT	Platinum and stainless coil	Hydrophilic	6	8	

HY: Hydrophilic, PTFE: Polytetrafluoroethylene

Figure 1: Photograph of the water bath used in our study. A 4V1c adult cardiac curved transducer (white arrow) is packaged by a latex examination glove and held by a clamp (black arrow). A blue 0.035” guidewire (arrowheads) under the water is visible.
artifacts, and we found that the larger the diameter, the stronger the twinkling artifact. On the other hand, other parameters, such as material, coating, tip loading, or spring coil length, did not show any association with the twinkling artifact. We believe that these internal heterogeneities do not affect the surface roughness and therefore, did not influence the twinkling artifact.

There were small differences between the twinkling artifacts observed at the tip versus those at the shaft of the guidewire in our study. The twinkling artifacts at the shafts were usually equal (and occasionally slightly stronger) than those at the tips. Since the tip of the guidewire was shaped in a curve, there was a larger angle deviation between the Doppler beam and the guidewire (the Doppler beam was not perpendicular to the object) in scans of the tip versus scans of the shaft. When the steeper angle occurred, the strength of the twinkling artifact behind the tip decreased. This phenomenon may explain the different results obtained between the tips and shafts in our study.

Our study had several limitations. Although we tested the most commonly used guidewires available at our institution, the sample size of the study was still small. In addition, different parameter settings were not tested in our study. This may have led to an underestimation (or overestimation) of the impact of the twinkling artifact on echocardiography. Finally, because our in vitro study was in a static environment, results may not be directly applicable to the clinical setting which involves cardiac motion during the scan.

Table 2: Color Doppler twinkling artifact scores with respect to tips versus shafts of guidewires

Product name	Scores (mean)*	Group
Angiography Guide Wire	1 2.3 2 2.7 1	Tip
Fixed-core-J-curve	3 3	Shaft
Amplatz Super Stiff-Straight Tip	3 3	
Angiography Guide Wire	0 0 0.3 2	
V-18 short taper	0 1 0	
Victory-18	0 0	
Fielder FC	0 0.3 0.4 3	
Sion	2 2	
Gaia First	1 1	
Gaia Second	0 1	
Runthrough Floppy	0 0	
Runthrough Intermediate	0 0	
ULTIMATEebros3	0 0	
Miracle 3	0 0	
Miracle 6	0 0	
Miracle 12	0 0	
Conquest Pro	1 2	
Conquest Pro 12	0 1	
PT2 LS	0 0	
PT2 MS	0 0	
Choice PT	0 0	
V-14 short taper	0 0	

*0: Absence of twinkling, 1: Weak twinkling, 2: Intermediate twinkling, 3: Strong twinkling
Conclusion

We systemically evaluated guidewire-related twinkling artifacts in vitro. In our study settings, using the same scan parameters, twinkling artifacts were stronger and more likely present in guidewires with larger diameters. The surface roughness is considered the contribution to the twinkling artifact. Other parameters, such as material, coating, tip loading, and spring coil length, did not influence the phenomenon. The twinkling artifact, if occurs, should not be mistaken for intracardiac flow. On the contrary, it indicates the location of the guidewire during cardiac intervention.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Rahmouni A, Bargoin R, Herment A, Bargoin N, Vasile N. Color Doppler twinkling artifact in hyperechoic regions. Radiology 1996;199:269-71.
2. Kamaya A, Tuthill T, Rubin JM. Twinkling artifact on color Doppler sonography: Dependence on machine parameters and underlying cause. AJR Am J Roentgenol 2003;180:215-22.
3. Tchelepi H, Ralls PW. Color comet-tail artifact: Clinical applications. AJR Am J Roentgenol 2009;192:1-8.
4. Wang M, Li J, Xiao J, Shi D, Zhang K. Systematic analysis of factors related to display of the twinkling artifact by a phantom: An optimized investigation. J Ultrasound Med 2011;30:1449-57.
5. Lee JY, Kim SH, Cho JY, Han D. Color and power Doppler twinkling artifacts from urinary stones: Clinical observations and phantom studies. AJR Am J Roentgenol 2001;176:1441-5.
6. Ustymowicz A, Krejza J, Mariak Z. Twinkling artifact in color Doppler imaging of the orbit. J Ultrasound Med 2002;21:559-63.
7. Tsao TF, Kang RJ, Tyan YS, Gueng MK, Lee T, Lee SK, et al. Color Doppler twinkling artifact related to chronic pancreatitis with parenchymal calcification. Acta Radiol 2006;47:547-8.
8. Tsao TF, Wu YL, Yu JM, Kang RJ, Tseng YH, Huang HH, et al. Color Doppler twinkling artifact of calcified cardiac valves in vitro: A not well known phenomenon in echocardiography. Ultrasound Med Biol 2011;37:386-92.
9. Chou RH, Lai CH, Lu TM. Side-branch and coaxial intravascular ultrasound guided wire re-entry after failed retrograde approach of chronic total occlusion intervention. Acta Cardiol Sin 2016;32:363-6.
10. Bennett JM, Estrada JC, Shoemaker MB, Pretorius M. Twinkling artifact associated with guidewire placement. Anesth Analg 2015;121:69-71.
11. Khokhlova T, Li T, Sapochnikov O, Hwang JH. The use of twinkling artifact of Doppler imaging to monitor cavitation in tissue during high intensity focused ultrasound therapy. Proc Meet Acoust 2013;19. pii: 075034.
12. Lu W, Sapochnikov OA, Bailey MR, Kaczkowski PJ, Crum LA. Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging. Ultrasound Med Biol 2013;39:1026-38.
13. Bisceglia M, Matalon TA, Silver B. The pump maneuver: An atraumatic adjunct to enhance US needle tip localization. Radiology 1990;176:867-8.
14. Gorgunler M, Misirlioglu F, Polat P, Kaynar H, Saglam L, Mirici A, et al. Color Doppler sonographically guided transnasal endoscopic aspiration of nasal and mediastinal masses. J Ultrasound Med 2003;22:703-8.
15. Trillaud H, Pariente JL, Rabie A, Grenier N. Detection of encrusted indwelling ureteral stents using a twinkling artifact revealed on color Doppler sonography. AJR Am J Roentgenol 2001;176:1446-8.
16. Lin CW, Yen TH, Cheng CL, Huang HH, Kang RJ, Gueng MK, et al. In vivo and in vitro sonographic diagnosis of an encrusted nephrostomy catheter with color Doppler twinkling artifact. J Clin Ultrasound 2013;41:175-7.
17. Khan HG, Gailloud P, Martin JB, Khaw N, Spadola L, Rüfenacht DA, et al. Twinkling artifact on intracerebral color Doppler sonography. AJNR Am J Neuroradiol 1999;20:246-7.
18. Ludomirsky A. The use of echocardiography in pediatric interventional cardiac catheterization procedures. J Interv Cardiol 1995;8:569-78.
19. Tsao TF, Tyan YS, Kang RJ, Gueng MK, Lan HHC, Su YC, et al. Correlation study of the strength of the color Doppler twinkling artifact with the roughness of the reflecting surface and the Doppler angles. J Med Ultrasound 2004;12:119-24.