Abstract

In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

Background

Surgery, chemotherapy and radiotherapy are the main conventional cancer treatment often supplemented by other complementary and alternative therapies in China [1]. While chemotherapy is one of the most extensively studied methods in anti-cancer therapies, its efficacy and safety remain a primary concern as toxicity and other side effects of chemotherapy are severe. Moreover, multi-drug resistant cancer is even a bigger challenge. Medicinal herbs are main sources of new drugs. Newman et al. reported that more than half of the new chemicals approved between 1982 and 2002 were derived directly or indirectly from natural products [2]. Some active compounds have been isolated from Chinese medicinal herbs and tested for anti-cancer effects. For example, β-elemene, a compound isolated from Curcuma wenyujin Y. H. Chen et C. Ling (Wenyujin), is used as an anti-cancer drug in China. For this study, we searched three databases, namely PubMed, Scopus and Web of Science, using keywords “cancer”, “tumor”, “neoplastic” and “Chinese herbs” or “Chinese medicine”. Publications including research and review papers covered in this review were dated between 1987 and 2011, the majority of which were published between 2007 and 2011. Chinese herb-derived ingredients, including flavonoids, alkaloids, terpenes, quinones and saponins, were found.

Gambogic acid (GA)

GA (Figure 1A) is the principal active ingredient of gamboges which is the resin from various Garcinia species including Garcinia hanburyi Hook.f. (Tenghuang) [3]. GA has various biological effects, such as anti-inflammatory, analgesic and anti-pyretic [3] as well as anti-cancer activities [4,5]. In vitro and in vivo studies have demonstrated its potential as an excellent cytotoxicity against a variety of malignant tumors, including glioblastoma, as well as cancers of the breast, lung and liver. GA is currently investigated in clinical trials in China [6-8].

GA induces apoptosis in various cancer cell types and the action mechanisms of GA remain unclear. Transferrin receptor (TfR) significantly over-expressed in a variety of cancers cells may be the primary target of GA [4]. The binding of GA to TfR in a manner independent of the transferrin binding site, leading to the rapid apoptosis of tumor cells [4]. Proteomics analysis suggests that stathmin may be another molecular target of GA [9]. The importance of the role of p53 in GA-induced apoptosis remains controversial [5,10]. Furthermore, GA antagonizes the anti-apoptotic B-cell lymphoma 2
(Bcl-2) family of proteins and inhibits all six human Bcl-2 proteins to various extents, most potently inhibiting myeloid cell leukemia sequence 1 (Mcl-1) and Bcl-B, as evidenced by a half maximal inhibitory concentration (IC50) lower than 1 μM [11]. Moreover, GA also influences other anti-cancer targets, such as nuclear factor-kappa B (NF-κB) [12] and topoisomerase IIα [13].

GA causes a dose-dependent suppression of cell invasion and inhibits lung metastases of MDA-MB-435 cells in vivo through protein kinase C (PKC)-mediated matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibition [8]. GA also exhibits significant anti-metastatic activities on B16-F10 melanoma cancer cells partially through the inhibition of the cell surface expression of integrin α4 in C57BL/6 mice [14].

Notably, the combination of GA with other compounds enhances their anti-cancer activities [15-17]. For example, He et al. [15] reports that proliferative inhibition and apoptosis induction are much more visibly increased when Tca8113 cells are treated with combined GA and celastrol, indicating that the combination of GA and celastrol can be a promising modality for treating oral squamous cell carcinoma. Another study showed that GA in combined use with 5-fluorouracil (5-FU) induced considerably higher apoptosis rates in BGC-823 human gastric cells and inhibited tumor growth in human xenografts [16]. Furthermore, low concentrations of GA were found to cause a dramatic increase in docetaxel-induced cytotoxicity in docetaxel-resistant BGC-823/Doc cells [17]. Magnetic nanoparticles of Fe3O4 (MNPs-Fe3O4) were reported to enhance GA-induced cytotoxicity and apoptosis in K562 human leukemia cells [18].

Curcumin

Curcumin (Figure 1B) is the main active flavonoid derived from the rhizome of *Curcuma longa (Jianghuang)*, with its dry herb weight consisting of up to 3.08% curcumin [19]. Curcumin has been used to treat cardiovascular disease, inflammation and arthritis [20].

Figure 1 Chemical structures of the compounds. (A) gambogic acid; (B) curcumin; (C) wogonin; (D) silibinin; (E) berberine; (F) artemisinin; (G) artemesunate; (H) β-elemene; (I) oridonin; (J) triptolide; (K) ursolic acid; (L) shikonin; (M) emodin; (N) ginsenoside Rg3.
Epidemiological studies have found that incidence of several cancers is low in India where curcumin is widely consumed, suggesting that curcumin intake plays a role in cancer prevention [21]. Other studies have also indicated that curcumin inhibits cell proliferation and survival in breast cancer, colon cancer, prostate cancer, gastric cancer, and lymphoma and melanoma [20]. Curcumin induces cell apoptosis through complex intrinsic and extrinsic pathways. Curcumin binds to more than 30 different protein targets, including transcript factors (NF-κB and activator protein-1), growth factor receptors [epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2)], kinases [mitogen-activated protein kinase (MAPK), PKC and protein kinase A (PKA)], inflammatory cytokines [tumor necrosis factor (TNF) and interleukins], cell cycle-related proteins (p53 and p21), matrix metalloproteinases (MMPs) and urokinase plasminogen activators (u-PA) [20,22,23]. Daily oral administration of curcumin suppresses metastasis in breast, colon, lung and medulloblastoma cancers. The suppression involves the regulation of metastatic proteins, such as vascular endothelial growth factor (VEGF), MMP-2, MMP-9 and intercellular adhesion molecules [24,25].

Curcumin induces non-apoptotic cell death, such as autophagic cell death, which involves the degradation of the cell's own components through lysosomal machinery [23]. In vitro and in vivo studies have demonstrated that curcumin induces autophagic cell death, as evidenced by the immunoreactivity of microtubule-associated protein light chain 3 (LC3) in myeloid leukemia cells. The action mechanism is attributed to the inhibition of the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activation of extracellular signal-regulated kinase 1/2 by curcumin in malignant glioma cells [26,27]. In addition, autophagic inhibitor bafilomycin A1 suppresses curcumin-induced cell death [28]. Another type of non-apoptotic cell death induced by curcumin is paraptosis which is observed in malignant breast cancer cells but not in normal breast cells. Curcumin induces paraptotic events (eg the promotion of vacuolation accompanied with mitochondrial and/or endoplasmic reticulum swelling and fusion) and decreases the level of paraptotic inhibitor protein AIP-1/Alix [29]. These paraptotic events are attributed to superoxide anion and proteasomal dysfunction [29].

Curcumin reduces toxicity induced by anti-cancer agents [30], sensitizes chemo-resistant cancer cells and demonstrates synergic effects with different chemotherapeutic agents such as doxorubicin, 5-FU, paclitaxel, vincristine, melphalan, butyrate, cisplatin, celecoxib, vinorelbine, gemcitabine, oxaliplatin, etoposide, sulfonamide, thalidomide, suberoylanilide hydroxamic acid, dasatinib and bortezomib [30]. Prior administration of curcumin reduces the DNA damage and oxidative stress induced by cyclophosphamide (CXC) [31], improves uroprotective efficacy in the CXC hemorrhagic cystitis model [32] and suppresses early lung damage in CXC-treated rats [33]. Curcumin alleviates the side effects of mitomycin C, as evidenced by decreased lipid peroxidation and DNA damage [34]. Furthermore, curcumin reduces weight loss and improves kidney function and bone marrow suppression in animal studies [35]. When combined with oxaliplatin, curcumin decreases the proliferative capacity of oxaliplatin-resistant cell lines and enhances the cytotoxicity of oxaliplatin in an in vitro oxaliplatin-resistant model [36]. Additionally, curcumin protects healthy cells against radiation and sensitizes tumor cells to radiation therapy [37,38].

Clinical trials have been or are currently being conducted to evaluate the tolerance, safety, pharmacokinetics and efficiency of curcumin as well as its combination therapy with current anti-cancer drugs [39]. A phase I clinical trial found no dose-limiting toxicity in patients treated with an oral-dose of up to 8g/day of curcumin. The recommendation is seven consecutive doses (6g/day) of curcumin every three weeks in combination with a standard dose of docetaxel [40]. Improvements in biological and clinical responses were observed in most treated patients [40]. A phase II trial of gemcitabine-resistant pancreatic cancer found chemotherapeutic drugs in combined use with curcumin to be sufficiently safe, feasible and efficient. While the bioavailability of curcumin is relatively poor, two out of 21 patients in the phase II trial showed clinical biological responses; one patient exhibited marked tumor regression coupled with a significant increase in serum cytokine levels [41,42].

Wogonin
Wogonin (Figure 1C) is one of the flavonoids isolated from Scutellaria baicalensis Georgi (Huangqin), with its dry herb weight consisting of up to 0.39 mg/100 mg of wogonin [43]. Wogonin has been widely used in the treatment of various inflammatory diseases owing to its inhibition of nitric oxide (NO), prostaglandin E2 and pro-inflammatory cytokines production, as well as its reduction of cyclooxygenase-2 (COX-2). In vitro studies [44-48] have shown wogonin to possess cytostatic and cytotoxic activities against several human tumor cell lines.

Wogonin induces apoptosis through the mediation of Ca2+ and/or inhibition of NF-κB, shifting O2− to H2O2 to some extent; H2O2, in turn, serves as a signaling molecule that activates phospholipase Cγ, Ca2+ efflux from the endoplasmic reticulum is then regulated, leading to the activation of Bcl-2-associated agonist of cell death [44]. Wogonin may also directly activate the
mitochondrial Ca\(^{2+}\) channel uniporter and enhance Ca\(^{2+}\) uptake, resulting in Ca\(^{2+}\) overload and mitochondrial damage [44]. Furthermore, wogonin induces cell type-dependent cell cycle inhibitions in cancer cells, such as those observed in human cervical carcinoma HeLa cells at the G\(_1\) phase [48] and in THP-1 cells at the G\(_2\)/M phase [46] respectively. Unlike the inhibitory effect of baicalein and baicalin on normal human fetal lung diploid TIG-1 cells [46], wogonin imposes minor or almost no toxicity on normal peripheral T cells [44], TIG-1 cells [46] and human prostate epithelial cells [47]. This selective inhibition of wogonin is due to a high expression of L-type voltage dependent Ca\(^{2+}\) channels in cancer cells [44]. In addition, wogonin suppresses VEGF-stimulated migration and tube formation in HUVEC by inhibiting VEGF receptor 2 (VEGFR2) instead of VEGFR1 phosphorylation [49].

The synergistic effect of wogonin on chemotherapy drugs, such as etoposide, has also been investigated. Wogonin significantly improves etoposide-induced apoptosis in cancer cells in a similar capacity as the typical P-glycoprotein (P-gp) inhibitors verapamil and cyclosporine A [50-52]. However, other P-gp substrates, such as doxorubicin and vinblastine, do not show any synergistic effect [52]. Similar effect was also found when combination treatment with 5-FU in human gastric MGC-803 cells and in MGC-803 transplanted nude mice [53]. The underlying mechanisms might be due to its pro-apoptotic effect and inhibition of NF-κB nuclear translocation activity [53].

Anti-inflammatory and anti-viral activities of wogonin may also contribute to tumor prevention [54]. Wogonin is a good anti-cancer candidate due to its broad toxicities to various types of tumor cell lines and the low toxicities to normal tissues, as well as the synergistic effects.

Silibinin

Silibinin (Figure 1D), a mixture of flavonoids derived from *Silybum marianum* (*Shuifeiji*), is therapeutically used for the treatment of hepatic diseases in China, Germany and Japan. Silibinin has effects on many cancers, such as prostate, colon, bladder and lung cancers [55,56], particularly the migration, invasion and metastasis of cancer cells [57]. In a transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model, silibinin inhibits tumor growth, progression, local invasion and distant metastasis [56]. Silibinin induces both death receptor-mediated and mitochondrial-mediated apoptosis in human breast cancer MCF-7 cells [58]. Silibinin also reduces hepatocellular carcinoma xenograft growth through the inhibition of cell proliferation, cell cycle progression, as well as phosphatase and tensin homolog/ P-Akt and extracellular signal-regulated kinase (ERK) signaling. These effects induce apoptosis and increase histone acetylation and superoxide dismutase-1 (SOD-1) expression on human hepatocellular carcinoma xenografts [59]. Not only does silibinin inhibit primary prostatic tumor progression but also protects against angiogenesis and late-stage metastasis. Therefore, silibinin may have a potential for improving survival and reducing morbidity in prostate cancer patients [60].

Silibinin exerts anti-cancer activity mainly by blocking cell cycle progression and induces G1 cell cycle arrest in a dose- and time-dependent manner in large cell carcinoma H1299 and H460 cells and bronchioalveolar carcinoma H322 cells [61]. Silibinin modulates the protein levels of cyclin-dependent kinases (CDKs; 4, 6 and 2), cyclins (D1, D3 and E), and CDK inhibitors (p18/INK4C, p21/Waf1 and p27/Kip1) in a differential manner in the above-mentioned cell lines [61]. Silibinin also regulates multiple cellular proliferative pathways in cancer cells, including receptor tyrosine kinases (RTKs), androgen receptors, signal transducers and activators of transcription (STATs), NF-κB [62]. Moreover, silibinin inhibits the constitutive activation of STAT3 and causes caspase activation and apoptotic cell death in human prostate carcinoma DU145 cells [63].

The combined use of silibinin with 1,25-dihydroxyvitamin D3 promotes the expression of both differentiation-promoting and -inhibiting genes in acute myelogenous leukemia cells and the latter can be neutralized by a highly specific pharmacological inhibitor, suggesting the therapeutic potential of silibinin [64].

Berberine

Berberine (Figure 1E) is an isoquinoline alkaloid isolated from *Coptis Rhizoma* (*Huanglian*), which is a Chinese medicinal herb for heat dissipation and detoxification, with its dry herb weight consisting of up to 7.1 mg/100 mg of berberine [65]. Berberine has diverse pharmacological activities [66-70] and is especially used as an antibacterial and anti-inflammatory gastrointestinal remedy in China [71]. Berberine has anti-proliferative effects on cancer cells has been documented [72-78]. Multiple targets of berberine have been identified, including mitochondria, DNA or RNA, DNA topoisomerases, estrogen receptors, MMPs, p53 and NF-κB [74,79,82]. Berberine exerts cytotoxicity and inhibits telomerase and topoisomerase in cancer cells by specifically binding to oligonucleotides or polymorphic nucleic acid and by stabilizing DNA triplexes or G-quadruplexes [81,83,84]; the electrostatic interactions may be quantified in terms of the Hill model of cooperative interactions [85].

Cell cycle regulation is a common target mechanism in anti-cancer therapies. A low-dose (12.5-50 μM) berberine treatment induces G1 phase arrest whereas doses higher than 50 μM induce G2 phase arrest in mouse melanoma K1735-M2 and human melanoma WM793
Berberine enhances chemo- and radio-sensitivity, implying its potential as an adjuvant in cancer therapy. Combined with chemotherapy drugs such as cisplatin or \(\text{As}_2\text{O}_3 \), berberine exhibits significant cytotoxicity in HeLa and SH-SY5Y cells compared with monotherapy [96,97]. When combined with \(\gamma \) radiation, the apoptotic effect is significantly enhanced in HepG2 cells [98]. Berberine also alleviates chemo-resistance by down-regulating overexpressed transformed mouse 3T3 cell double minute-2 and activating p53 in acute lymphoblastic leukemia cells [99]. Berberine's poor bioavailability makes it less likely to be an independent anti-tumor agent [100-102]. Berberine is nevertheless a potential natural compound for alternative cancer therapy.

Artemisinin and its derivatives (ARTs)

Artemisinin (Figure 1F) is an active terpene of the Chinese medicinal herb *Artemisia annua* L. (Huanghuahao) used in China to treat malaria and fever. ARTs, such as dihydroartemisinin (DHA) and artesunate (Figure 1G), exhibit anti-cancer activities *in vitro* and *in vivo* [103-106]. DHA is one of the main metabolites of ARTs and artesunate is a semi-synthesized derivative of ARTs; both compounds exhibit anti-cancer potentials.

The anti-cancer potential of ARTs has been demonstrated in various cancer cells including those of leukemia and other cancer cells of breast, ovary, liver, lung, pancreas and colon [104,105]. The selective anti-cancer potential of ARTs was related with the expression of different molecules such as c-MYC, cdc25A, EGFR, \(\gamma \)-glutamycysteine synthetase (GLCLR) [105,106]. ARTs also exert anti-cancer effects *in vivo* in multiple cancer types [103,107,108]. For example, either DHA or artesunate has anti-cancer activity against pancreatic cancer xenografts [107,109].

The anti-cancer mechanism of ARTs is likely to be related to the cleavage of the iron- or heme-mediated peroxide bridge, followed by the generation of reactive oxygen species (ROS) [110-112]. According to Efferth *et al.* [113], CCRF-CEM and U373 cells are sensitive to a combined treatment of ARTs and iron (II)-glycine sulphate or holotransferring. Pretreatment with deferoxamine mesylate salt (an iron chelator) visibly reduces DHA-induced apoptosis in HL-60 leukemia cells [104]. The anti-cancer potential of ARTs is possibly connected to the expression of TFR. The synergism of artesunate and iron (II)-glycine sulphate co-treatment is unsuitable for all types of tumor cells [114]. Endoplasmic reticulum stress is partially involved in some cases of ARTs-mediated anti-proliferation [115,116].

ARTs induce cell cycle arrest in various cell types [103,115,117]. For example, DHA and artesunate effectively mediate G1 phase arrest in HepG2 and Hep3B cells [103]. DHA reduces cell number in the S phase in...
HCT116 colon cancer cells [115]. Interestingly, DHA also arrests the G2 phase in OVCA-420 ovarian cancer cells [117]. Thus, ART-mediated cell cycle arrest is possibly cell type dependent. ARTs also induce apoptotic cell death in a number of cell types, in which the mitochondrial-mediated apoptotic pathway plays a decisive role [104,106]. For instance, DHA enhances Bax and reduces Bcl-2 expression in cancer cells [103,107]. DHA-induced apoptosis is abrogated by the loss of Bak and is largely reduced in cells with siRNA-mediated downregulation of Bak or NOXA [118]. However, DHA activates caspase-8, which is related to the death receptor-mediated apoptotic pathway in HL-60 cells [104]. DHA enhances Fas expression and activates caspase-8 in ovarian cancer cells [119]. DHA also enhances death receptor 5 and activates both mitochondrial- and death receptor-mediated apoptotic pathways in prostate cancer cells [120]. ARTs-induced apoptosis in cancer cells may involve p38 MAPK rather than p53 [103,104].

ARTs inhibit angiogenesis, which is a vital process in metastasis [121-124]. DHA inhibits chorioallantoic membrane angiogenesis at low concentrations and decreases the levels of two major VEGF receptors on HUVEC [122]. Conditioned media from K562 cells pre-treated with DHA inhibits VEGF expression and secretion in chronic myeloid leukemia K562 cells, leading to angiogenenic activity decrease [121,124]. Artemisinin inhibits cell migration and concomitantly decreases the expression of MMP2 and the αvβ3 integrins in human melanoma cells [125]. ARTs also regulate the levels of α-PA, MMP2, MMP7 and MMP9 all of which are related to metastasis [126].

ARTs exert synergistic effects with other compounds. Combination of DHA and caboplatin significantly reduces the development of ovarian cancer as compared with DHA only [119]. Combined use of DHA or artesunate with gencitabine inhibits the growth of HepG2 and Hep3B transplanted tumors [103]. Supra-additive inhibition of cell growth in some glioblastoma multiforme cells is observable when artesunate is in combined use with EGFR inhibitor OSI-774 [127]. DHA not only up-regulates death receptor 5 expression but also cooperates with TNF-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in human prostate cancer cells [120]. Therefore, either used alone or in combination with other compounds, ARTs are promising compounds for chemotherapy.

β-elemene

Elemene (Figure 1H) is a sesquiterpene mixture isolated from more than 50 Chinese herbs and plants, such as Curcuma wenyujin Y. H. Chen et C. Ling (Wenyujin) [128]. Elemene is mainly composed of β- and δ- and γ-elemene, with β-elemene accounting for 60%-72% of all three isoforms. β-elemene exerts anti-cancer potential in brain, laryngeal, lung, breast, prostate, cervical, colon and ovarian carcinomas [128-130]. Elemene shows synergistic effects in combination with other chemotherapeutic drugs [131], leading to the blockade of cell cycle progression by modulating the G2 cell cycle checkpoint and inducing G2/M arrest in human non-small cell lung cancer (NSCLC) and ovarian carcinoma cells while inducing G0/G1 phase arrest in glioblastoma cell lines through phosphorylation of p38 MAPK [129,130,132]. In NSCLC cells, β-elemene induces cell arrest at the G2/M phase by increasing phospho-Cdc2 (Tyr15) and p27/Kip1, and by decreasing phospho-Cdc2 (Thr161) and cyclin B1. Moreover, elemene reduces the expression of Cdc25C, activates Cdc2 and increases Chk2 [129]. β-elemene combined with cisplatin also mediates G2/M cell cycle arrest in chemoresistant ovarian carcinoma cells through down-regulation of cyclin B1 and Cdc2 by elevating the levels of phosphorylation of Cdc2, Cdc25C, p53, p21/Waf1, p27/Kip1 and GADD45 [130]. β-elemene also induces mitochondrial-mediated apoptosis in prostate cancer and NSCLC cells [128,129]. Combining β-elemene with cisplatin, docetaxel and taxanes significantly increases its inhibitory effect in androgen-independent prostate carcinoma DU145 and PC-3 cells, as well as in NSCLC H460 and A549 cells [131]. β-elemene enhances cellular uptake of taxanes due to the alteration of cell membrane permeability may partly account for its synergistic effects with taxanes [131]. Elemene inhibits the growth of human epidermoid and thyroid cancer cells in vivo [133], and passes through the blood-brain barrier [134], suggesting its potential for treating cerebral malignancy.

β-elemene has been approved by China’s State Food and Drug Administration as a second class innovative drug and is prescribed as an adjuvant drug for some tumor therapies in China.

Oridonin

Oridonin (Figure 1I) is a diterpenoid isolated from Rabdosia rubescens (Hems.) Hara (Donglingcao), with its dry raw herb consisting of up to 0.35% of oridonin [135]. *Rabdosia rubescens* (Hems.) Hara has long been used to treat sore throat, tonsillitis, and esophageal cancer by native residents of Henan Province. Oridonin was included in the Chinese Pharmacopoeia in 1977. Main chemical constituents of Rabdosia rubescens (Hems.) Hara are ent-Kaurene diterpenoids, which have multiple biological activities, such as anti-inflammatory, anti-bacterial and anti-tumor effects.

Oridonin significantly inhibits tumor cell proliferation, induces cell cycle arrest and promotes cell death. In anti-proliferation tests, different cell lines exhibited similar sensitivity to oridonin with an IC50 of about 40-80...
μM after 24 hours of treatment [136-141]. Oridonin induces G2/M cell cycle arrest by up-regulation of heat shock 70 kDa protein 1, serine-threonine kinase receptor-associated protein, translationally controlled tumor protein, stress-induced phosphoprotein 1, trifunctional purine biosynthetic protein adenosine-3 and inorganic pyrophosphatase as well as down-regulation of poly(rC)-binding protein 1 [142] in a p53-independent and p21/Waf1-dependent manner [143]. Induction of apoptosis contributes to oridonin-induced cell death, mainly through mitochondrial-mediated pathways. The up-regulation of Fas, Fas ligand (FasL) and Fas (TNFRSF6)-associated via death domain (FADD) expression, as well as the down-regulation of pro-caspase-8 expression suggests that the activation of the Fas/FasL pathway may also be partially involved in oridonin-induced apoptosis [144]. Possible downstream responses include the induction of loss of mitochondrial transmembrane potential [145], the activation of several caspases [136,146], the down-regulation of Bcl-2, the up-regulation of Bax and Bid [136,147] as well as the promotion of cytochrome c release [147] and PARP cleavage [148]. However, the regulation of Bcl-XL and participation of caspase-3/9 remain controversial [136,143,146-150]. Oridonin-induced intracellular ROS formation may be an initiator of this process [143,151]. Other proteins may also be involved in oridonin-induced cell cycle arrest and apoptosis; these proteins include ERK [144,152], p38MAPK [149], insulin-like growth factor 1 receptor [153], EGFR [154], NF-κB [155], as well as p16, p21/Waf1, p27/Kip1 and c-MYC [156]. Oridonin induce cell death by affecting the balance of apoptosis and necrosis. In A375-S2 cells, low concentrations (34.3 μM) of oridonin induce p53 and ERK-dependent apoptosis whereas high concentrations (137.4 μM) induce necrosis [146]. In L929 cells, oridonin induces a caspase-independent and mitochondria- or MAPK-dependent cell death through both apoptosis and necrosis [139,149]. Similar results are also observed in A431 cells [154]. Oridonin also induces simultaneous autophagy and apoptosis in MCF-7 [157] and HeLa cells [138]. This autophagy may be attributed to the inactivation of Ras, changes in mitochondrial membrane potential [158], activation of PKC, Raf-1 or c-Jun N-terminal kinase (JNK) signaling [141] and even NF-κB signaling pathways [159]. Inhibition of autophagy is attributed to apoptotic up-regulation because oridonin-induced apoptosis augmentation is accompanied by reduced autophagy [138] whereas oridonin-induced autophagy inhibits ROS-mediated apoptosis by activating the p38 MAPK-NF-κB survival pathways in L929 cells [160]. Oridonin inhibits DNA, RNA, and protein syntheses [161], decrease telomerase, as well as down-regulate human telomerase reverse transcriptase mRNA expression [162]. The in vivo anti-tumor activities of oridonin have been demonstrated in different tumors such as Ehrlich ascites carcinoma, sarcoma-180 solid tumors and in leukemic mice models [163,164].

Triptolide

Triptolide (Figure 1J) is a diterpenoid triepoxide and the principal active ingredient of *Tripterygium wilfordii Hook. f.* (*Leigongteng*) used in Chinese medicine to treat inflammation and autoimmune diseases [165]. Triptolide exhibits potent anti-inflammatory, immunomodulation and anti-tumor activities [166-170]. Triptolide exerts multiple effects on apoptosis, angiogenesis, metastasis and drug-resistance [166-170].

Triptolide is active in pro-apoptosis in diverse tumor cell types including ovarian cancer [166], myeloma [167], myeloid leukemia [168], thyroid carcinoma [169] and pancreatic tumor cells [170]. Many in vitro and in vivo studies have tried to elucidate the potential mechanism of triptolide; however, conclusions have been inconsistent. Triptolide seems to induce apoptosis via different pathways in various cell lines. For example, triptolide induces apoptosis by the overexpression of cytomembrane death receptor in a caspase-8-dependent manner in pancreatic tumor [170] and cholangiocarcinoma cells [171]. Triptolide also promotes apoptosis in leukemic and hepatocarcinoma cells by the mitochondrial-mediated pathway [172,173].

Triptolide is a potent inhibitor of tumor angiogenesis in a zebrafish embryo model and demonstrates potent activities against vessel formation by nearly 50% at 1.2 μM [165]. In a xenograft model, triptolide (0.75 mg/kg/day) blocks tumor angiogenesis and progression in a murine tumorigenesis assay possibly correlated with the down-regulation of proangiogenic Tie2 and VEGFR-2 expression [174]. In vitro studies have shown that triptolide inhibits the proliferation of HUVEC. A chick embryo chorioallantoic membrane test shows that triptolide inhibits angiogenesis as well. Triptolide impairs VEGF expression in thyroid carcinoma TA-K cells and down-regulates NF-κB pathway activity; the target genes of triptolide are associated with endothelial cell mobilization in HUVEC [165]. The down-regulation of NF-κB signaling [175], in combination with the inhibition of VEGF expression [176], may be the anti-angiogenesis action of triptolide.

Furthermore, triptolide inhibits tumor metastasis, reducing basal and stimulated colon cancer cell migration through collagen by 65% to 80% and decreasing the expression of VEGF and COX-2 [174]. Triptolide inhibits the expression of multiple cytokine receptors potentially involved in cell migration and cancer metastasis, including the thrombin receptor, CXCR4, TNF receptors and TGF-β receptors [174]. Triptolide also inhibits interferon-γ-induced programmed death-1-ligand 1
isolated from the roots of Shikonin (Figure 1L) is a natural anthraquinone derivative in HeLa, SKOV3 and BGC-823 C-11, and C-28 of UA show cytotoxicity to some degree novel UA derivatives with substitutions at positions C-3, cell cycle progression and induces necrosis in a clonal human hepatoma R-HepG2 cells [185,186]. UA disrupts ovarian cancer CAOV3 cells and doxorubicin-resistant UA (Figure 1K) is a ubiquitous pentacyclic triterpenoid Ursolic acid (UA)

UA (Figure 1K) is a ubiquitous pentacyclic triterpenoid compound from many plants such as Ligustrum lucidum Ait. (Nuzhen). UA exerts proliferation inhibition in human ovarian cancer CAOV3 cells and doxorubicin-resistant human hepatoma R-HepG2 cells [185,186]. UA disrupts cell cycle progression and induces necrosis in a clonal MMTV-Wnt-1 mammary tumor cell line [187]. Eight novel UA derivatives with substitutions at positions C-3, C-11, and C-28 of UA show cytotoxicity to some degree in HeLa, SKOV3 and BGC-823 in vitro; only one derivative exhibits more potent cytotoxicity than UA [188].

UA induces apoptosis via both extrinsic and intrinsic signaling pathways in cancer cells [189]. In PC-3 cells, UA inhibits proliferation by activating caspase-9 and JNK as well as FasL activation and Akt inhibition [190]. A significant proliferation inhibition and invasion suppression in both a dose- and time-dependent manner is observed in highly metastatic breast cancer MDA-MB-231 cells; this inhibition is related to the down-regulation of MMP2 and u-PA expression [191]. Moreover, UA reduces IL-1β- or TNF-α-induced rat C6 glioma cell invasion and inhibits the interaction of ZIP/p62 and PKC-ζ [192]. Nontoxic UA concentrations inhibit vessel growth in rat aortic ring and down-regulate matrix MMPs such as MMP2 and MMP9 [193]. In other cancer cell lines, such as Hep3B, Huh7 and HA22T cells, UA exerts a potential anti-angiogenic effect by decreasing HIF-1α, VEGF and IL-8 gene expression [194].

Shikonin

Shikonin (Figure 1L) is a natural anthraquinone derivative isolated from the roots of Lithospermum erythrorhizon (Zicao) and exerts anti-tumor effects mainly by inhibiting cell growth and inducing apoptosis. The underlying molecular mechanisms vary with cell types and treatment methods. Shikonin induces apoptosis in a classic caspase-dependent pathway in cervical, bladder and melanoma cancer cells [195-198]. Shikonin induces necroptosis regardless of the drug concentration in caspase-3-negative MCF-7 cells [199]. Different concentrations of shikonin induce either apoptosis or necroptosis, and necroptosis converts to apoptosis in the presence of Nec-1 in HL-60 and K562 cells [200]. The growth inhibition and apoptosis induced by shikonin in some cancer cells may be attributed to the inactivation of NF-κB activity or increasing Annexin V signal and CD95 (Fas/APO) expression [201,202]. Shikonin also induces apoptosis via ROS production in osteosarcoma and Bcr/Abl-positive CML cells [203,204].

Several different mechanisms contribute to the anti-cancer activities of shikonin. For example, shikonin suppresses proteasomal activities thereby inhibiting tumor growth in both H22 allografts and PC-3 xenografts [205]. Shikonin also inhibits topoisomerase II [206] and down-regulates ER2 and activates NFE2-related factor 2 as an anti-estrogen agent in human breast cancer [207,208]. Shikonin modulates an estrogen enzyme by down-regulating the expression of steroid sulfatase which is important for estrogen biosynthesis [205]. Shikonin inhibits tumor invasion via the NF-κB signaling pathway in human high-metastatic adenoid cystic carcinoma cells [209]. Therefore, shikonin may directly or indirectly inhibit or modulate disease-related cellular targets in cancer.

Emodin

Emodin (Figure 1M) is a natural anthraquinone derivative isolated from Rheum palmatum L. (Zhaoyeda-huang), with its dry raw herb consisting of up to 0.20 mg/100 mg of emodin [210]. Emodin exerts anti-tumor activity against various human cancers [211]. Emodin induces cell cycle arrest and apoptosis in cancer cells [212-214] and the oxidative injury acts upstream of anti-proliferation. Emodin inhibits IL-6-induced Janus-activated kinase 2/STAT3 pathways and induces apoptosis in myeloma cells via the down-regulation of Mcl-1 [213]. Emodin down-regulates androgen receptors and inhibits prostate cancer cell growth [215]. Moreover, emodin stabilizes topoisomerase II-DNA cleavage complexes, thereby inducing DNA double-strand breaks [216]. The suppression of excision repair cross complementation 1 (ERCC1) and Rad51 expression through ERK1/2 inactivation is vital in emodin-induced cytotoxicity in human NSCLC cells [217].

Emodin inhibits basic fibroblast growth factor (bFGF)-induced proliferation and migration in HUVEC and
VEGF-A-induced tube formation [218]. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway [219]. The disruption of the membrane lipid raft-associated integrin signaling pathway by emodin may inhibit cell adhesion and spreading [220].

Emodin sensitizes chemotherapy associated with ROS production [221,222]. In combined use with cisplatin, emodin elevates ROS generation and enhances chemosensitivity in DU-145 cells, accompanied by the down-regulation of MDR1 expression and suppression of HIF-1α transactivation [223]. Emodin enhances the sensitivity of gallbladder cancer SGC996 cells to platinum drugs via glutathione depletion and multidrug resistance-related protein 1 down-regulation [224]. The mechanisms of the synergistic effects of emodin with cisplatin or gencitabin may be attributed to the emodin-induced down-regulation of ERCC1 and Rad51 expression, respectively [225,226]. These results suggest that emodin may be used as an adjuvant to enhance the anti-cancer effects of chemotherapeutic agents.

Ginsenoside Rg3

Extracted from Panax ginseng C.A. Mey. (Renshen) and Panax quinquefolius L., Araliaceae (Xiyangshen), ginsenoside Rg3 (Figure 1N) is a biologically active component with both in vitro and in vivo anti-cancer activities [227,228]. The anti-proliferative mechanism of ginsenoside Rg3 is associated with the inactivation of NF-κB [229,230], modulation of MAPKs [231] and the down-regulation of Wnt/β-catenin signaling [232]. Ginsenoside Rg3 affects the ephrin receptor pathway in HCT-116 human colorectal cancer cells [233]. The anti-proliferative mechanism of ginsenoside Rg3 is also associated with the molecules of mitotic inhibition, DNA replication, repair, and growth factor signaling [234].

Ginsenoside Rg3 inhibits the proliferation of HUVEC and suppresses the capillary tube formation of HUVEC on a matrigel at nanomole scales in the presence or absence of VEGF. Ginsenoside Rg3 attenuates VEGF-induced chemo-invasion of HUVEC and ex vivo microvascular sprouting in rat aortic ring. bFGF-induced angiogenesis may be abolished by ginsenoside Rg3 [227]. In lung metastasis models of ovarian cancer, ginsenoside Rg3 decreases the number of tumor colonies in the lung and vessels oriented toward the tumor mass [235]. This effect may be partially due to the inhibition of angiogenesis and the decrease in MMP9 expression [235].

Ginsenoside Rg3 increases the efficacy of cancer chemotherapy. Combined treatments with ginsenoside Rg3 enhance the susceptibility of colon cancer cells to doxetaxel, paclitaxel, cisplatin and doxorubicin; the mechanism of such an enhancement is related to the inhibition of the constitutively activated NF-κB [229]. A similar phenomenon has been observed in prostate cancer cells, in which the combination of ginsenoside Rg3 and doxetaxel more effectively induces apoptosis and G1 cell cycle arrest, accompanied by the inhibition of NF-κB activity [230]. Low-dose administration of cyclophosphamide (CTX) with ginsenoside Rg3 increases the efficacy of targeting the tumor microvasculature and the two-drug combination treatment results demonstrate the longest patient survival rates [236]. Ginsenoside Rg3 combined with gencitabin not only enhances the efficacy of tumor growth suppression and survival prolongation, but also decreases VEGF expression and microvessel density in tumors [228].

Conclusion

Natural products such as GA, curcumin, β-elemene et al, derived from Chinese medicinal herbs are potential candidates for anti-cancer therapeutic drugs.

Abbreviations

5-FU: 5-Fluouracil; AIF: apoptosis inducing factor; AP-1: activator protein-1; ARTs: artemisinin and its derivatives; ATRA: all-trans retinoic acid; bFGF: basic fibroblast growth factor; CDKs: cyclin-dependent kinases; CTX: cyclophosphamide; DHAP: dihydroartemisinin; DPH: dihydroartemisinin peroxide; EGFR: epidermal growth factor receptor; ERK1/2: extracellular signal-regulated kinase 1/2; FaS: Fas ligand; GA: gambogic acid; HDMEC: human dermal microvascular endothelial cells; HUVEC: human umbilical vascular endothelial cells; ICAM-1: intercellular adhesion molecule-1; IL-1β: interleukin-1β; LC3: light chain 3; MMP2: matrix metalloproteinase-2; MMP9: matrix metalloproteinase-9; MRP1: multidrug resistance-associated protein 1; NF-κB: nuclear factor-kappa B; P-gp: P-glycoprotein; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; STAT: signal transducer and activator of transcription; STS: steroid sulfatase; TPA: 12-O-tetradecanoylphorbol-13-acetate; TRAMP: transgenic adenocarcinoma of the mouse prostate; UA: usoric acid; u-P: uronate; VEGFR1: vascular endothelial growth factor receptor 1; VEGFR2: vascular endothelial growth factor receptor 2.

Acknowledgements

The work was supported by the grant (829/2007/A2) from the Science and Technology Development Fund of Macau Special Administrative Region, China and supported in part by the National Natural Science of China (No. 81001450) awarded to J.JL.

Author details

1State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Tomás Pereira S.J., Taipa, Macao SAR, China. Institute of Chinese Medical Sciences, University of Macau, Av. Padre Tomás Pereira S.J., Taipa, Macao SAR, China. 2Institute of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China. 3Institute of Medicine, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China.

Authors’ contributions

WT, JI, MQH, YBL, MWC, GSW, JG, ZFZ, ZTX, YTD and XPC wrote the manuscript (WT wrote berberine; JI wrote GA and ARTs; MQH wrote emodin and ginsenoside Rg3; YBL wrote cucurmin; MWC wrote silibinin; GSW wrote shikonin; JG wrote wogonin; ZFZ wrote β-elemene; ZTX wrote triptolide; YTD wrote UA; XPC wrote oridonin). JG drew the chemical structures in Figure 1. WT, JI and XPC revised the manuscript. YTW designed and supervised this work. All authors read and approved the final version of the manuscript.
Gambogic acid inhibits the catalytic activity of human topoisomerase IIalpha by involved factor-kappaB signaling pathway. Gambogic acid, a novel ligand for transferrin receptor, is an antagonist of antiapoptotic Bcl-2 family proteins. Involvement of matrix metalloproteinase 2 and 9 in gambogic acid-induced suppression of MDA-MB-435 human breast carcinoma cell lung metastasis. J Mol Med 2008, 86:1367-1377.

Wang, X., Chen, Y., Han, Q.B., Chan, C.Y., Wang, H., Liu, Z., Cheng, C.H., Yew, D.T., Lin, M.C., He, M.L., Xu, X.H., Sung, J.J., Kung, H.F.: Proteomic identification of molecular targets of gambogic acid: role of stathmin in hepatocellular carcinoma. Proteomics 2009, 9:242-253.

Rong J.J., Hu R., Qi Q., Gu H.Y., Zhao Q., Wang J., Mu R., You Q.O., Guo Q.L.: Gambogic acid down-regulates MDM2 oncogene and induces p21 (Waf1/CIP1) expression independent of p53. Cancer Lett 2009, 284:102-112.

Zhai, D., Jin, C., Shiau CW, Kitada S, Satterthwait AC, Reed JC: Identification of Curcumin as a novel modulator of the Akt/mTOR/4E-BP1 signaling pathway in human colon cancer cells. Cell Mol Life Sci 2010, 62:111-129.

Siddique YH, Ara G, Beg T, Gupta J, Afzal M: Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 2008, 57:1509-1517.

Shirouoji Y., Koyomata Y., Kondo Y.: Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 2007, 3:635-637.

Aoki H., Takada Y., Kondo S., Sawaya R, Aggarwal BB, Kondo Y.: Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Med 2007, 72:29-39.

Jia Y.L., Li, J., Qin Z.H., Liang Q.Z.: Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res 2009, 11:916-928.

Kondo M., Kim E.H., Lim J.H., Kwon T., Choi K.S.: Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraproteins of malignant breast cancer cells. Free Radic Biol Med 2009, 48:713-726.

Nautiyal J., Banerjee S., Kanwar SS, Yu Y., Patel BB, Sarkar FH, Majumdar AP: Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int J Cancer 2011, 128:951-961.

Ishihama MA, Elbeihary AM, Ghoneim MA, Amer HA: Protective effect of curcumin and chlorophyllin against DNA mutation induced by cyclophosphamide or benzo[a]pyrene. Natuforschas C 2007, 62:215-222.

Arafa HM: Uproprotective effects of curcumin in cyclophosphamide-induced haemorrhagic cystitis paradigm. Basic Clin Pharmacol Toxicol 2009, 104:393-399.

Venkataram N, Chandrasakaran G: Modulation of cyclophosphamide-induced early lung injury by curcumin, an anti-inflammatory antioxidant. Mol Cell Biochem 1995, 142:79-87.

Siddique Y.H., Ara G., Beg T., Gupta J., Afzal M.: Assessment of cell viability, lipid peroxidation and quantification of DNA fragmentation after the treatment of anticancerous drug mitomycin C and curcumin in cultured human blood lymphocytes. Exp Toxic Pathol 2010, 62:307-318.

Zhou Q.M., Zhang H., Liu Y.Y., Wang, X.F., Su S.D.: Curcumin reduced the side effects of mitomycin C by inhibiting GRP58-mediated DNA cross-linking in MCF-7 breast cancer xenografts. Cancer Sci 2009, 100:2040-2045.

Howells LM, Sale S, Sriramareddy SN, Irving GR, Jones DJ, Ottley CJ, Pearson DG, Mann CD, Manon MN, Berry DP, Gescher A, Steward WP, Brown K: Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo. Int J Cancer 2010.

Goel A, Aggarwal BB: Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemotherapeutic and radioprotector for normal organs. Nutr Cancer 2010, 62:919-930.

Yallapu MM, Maher DM, Sundram V, Bell MC, Jagg M, CHauhan SC: Curcumin induces chemoradio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010, 3:11.

Hatcher S, Planalp R, Cho I, Torti FM, Torti SV: Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 2008, 65:1631-1652.

Bayet-Robert M, Krwiatkowska F, Leheurteur M, Gachon F, Planchat E, Abril C, Mouret-Reynier MA, Durando X, Barthomeux C, Chollat P: Phase
dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 2009, 9:8-14.
41. Kanai M, Yoshikuma K, Atada M, Imaizumi A, Suzuki C, Matsumoto S, Nishimura T, Mori Y, Masui T, Kawaguchi Y, Yanagihara K, Yazumi S, Chiba T, Guha S, Aggarwal BB. A phase III study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 2011, 68:157-164.

42. Dhillon N, Aggarwal BB, Newman RA, Wolff RK, Kunnunmakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008, 14:4401-4409.

43. Li C, Zhou L, Lin G, Zuo Z: Contents of major bioactive flavones in proprietary traditional Chinese medicine products and reference herb of radix Scutellariae. J Pharm Biomed Anal 2009, 50:298-306.

44. Baumann S, Fas SC, Giaisi M, Müller WW, Merling A, Gülow K, Edler L, Krammer PH, Li-Weber M: Inhibition of Cot1/Tlp2 oncogene in AML cells reduces ERK activation and up-regulates p27Kip1 concomitant with enhancement of differentiation and cell cycle arrest induced by silibinin and 1,25-dihydroxyvitamin D3(C). Cell Cycle 2010, 9:4542-4551.

45. Wang X, Goeck E, Novik H, Harrison JS, Danzinger KS. Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBP1c, LXIpalpha and PAIPalpha transcriptional programs. Endocr J 2010, 57:881-893.

46. Zhou J, Zhao Y. Berberine regulates peroxisome proliferator-activated receptors and positive transcription elongation factor b expression in diabetic adipocytes. Eur J Pharmacol 2010, 649:390-397.

47. Wu M, Wang J, Liu LT. Advance of studies on anti-atherosclerosis mechanism of berberine. Chin J Integr Med 2010, 16:188-192.

48. Zhao L, Li W, Han F, Hou L, Ballarleon JP, Kuang H, Wang Y, Wu X: Berberine reduces insulin resistance induced by dexamethasone in thica cells in vitro. Fertil Steril 2011, 95:461-463.

49. Remppis A, Bea F, Getten HU, Butler A, Wang H, Zhou Q, Preusach MR, Ehn R, Ehehalt R, Katus H, Blessing E: Berberine modifies cysteine 179 of IkappaBalpha kinase, and NFkappaB-dependent pathway. Mol Carcinog 2006, 45:88-97.

50. Choi MS, Yik DY, Oh JH, Jung HY, Han SB, Moon DC, Hong JT: Berberine inhibits human neuroblastoma cell growth through induction of p53-dependent apoptosis. Anticancer Res 2008, 28:3777-3784.

51. Ho YT, Lu CC, Yang JS, Chang JH, Li TC, Ip SW, Hsia TC, Liao CL, Lin JG, Wood WG, Chung JG: Berberine induced apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer Res 2009, 29:4063-4070.

52. Hsu WH, Hsieh YS, Kuo HC, Tseng CY, Huang H, Wang CJ, Yang SF, Liou YS, Kuo WH: Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and Fasl. Arch Toxicol 2007, 81:719-728.

53. James MA, Fu H, Liu Y, Chen DR, You M: Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis. Mol Carcinog 2011, 50:1-7.

54. Pati JB, Kim J, Jayaprakash GA: Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur J Pharmacol 2010, 645:70-78.

55. Auyeung KK, Ko JK: Coptis chinensis inhibits hepatic cellular carcinoma cell growth through nonsteroidal anti-inflammatory drug-activated gene activation. Int J Mol Med 2009, 24:571-577.

56. Yu FS, Yang JS, Lin HL, Yu CS, Tan TW, Lin YT, Lin CC, Lu HF, Chung JG: Coptis chinensis induces apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells. Anticancer Res 2009, 29:4063-4070.
suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Res 2008, 68:5370-5379.
81. Qin Y, Pang JY, Chen WH, Zhao ZZ, Liu L, Jiang ZH: Inhibition of DNA topoisomerase I by natural and synthetic mono- and dimeric protoberberine alkaloids. Chem Biodivers 2007, 4:481-487.
82. Katyari SK, Meenan SM, Katyari N, Akhtar S: p53 Cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol Carcinog 2009, 48:24-37.
83. Math M, Kumar GS: Polymeric nucleic Acid binding of bioactive isoquinoline alkaloids and their role in cancer. J Nuclear. Acids 2010, 10.
84. Bhadra K, Kumar GS: Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Med Res Rev 2010.
85. Tian X, Song Y, Dong H, Ye B: Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode. Bioelectrochemistry 2008, 73:16-22.
86. Serafim TL, Oliveira PA, Sardao VA, Perkins E, Parke D, Holy J: Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemother Pharmacol 2008, 61:1007-1018.
87. Kim JB, Yu JH, Ko E, Lee KW, Song AK, Park SY, Shin I, Han W, Nohl DY: The alkaloid Berberine inhibits the growth of Anisakis-resistant MCF-7 and MDA-MB-231 breast cancer cells by inducing cell cycle arrest. Phytomedicine 2010, 17:436-440.
88. Eom KS, Hong JM, Youn MJ, So HS, Park R, Kim JM, Kim TY: Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspase pathways. Biol Pharm Bull 2008, 31:559-562.
89. Pereira CV, Machado NG, Oliveira PJ: Mechanisms of berberine (natural yellow 18)-induced mitochondrial dysfunction: interaction with the adenine nucleotide translocator. Toxicol Sci 2008, 105:408-417.
90. Wang N, Feng Y, Zhu M, Tsang CM, Man K, Tong Y, Tsao SW: Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. J Cell Biochem 2010, 111:1426-1436.
91. Peng PL, Kuo WH, Tseng HC, Chou FP: Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death. Int J Radiat Oncol Biol Phys 2008, 70:529-542.
92. Singh T, Vaid M, Katyari N, Sharma S, Katyari SK: Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cycloxygenase-2, prostaglandin E and prostaglandin E receptors. Carcinogenesis 2011, 32:862-9.
93. Tsang CM, Lau EP, Di K, Cheung PY, Hau PM, ChingYP, Wong YC, Cheung AL, Wan TS, Tong Y, Tsao SW, Feng Y: Berberine inhibits Rho GTPases and cell migration at low doses but induces G2 arrest and apoptosis at high doses in human cancer cells. Int J Mol Med 2009, 24:131-138.
94. Tang F, Wang D, Duan C, Huang D, Wu Y, Chen Y, Wang W, Xie C, Meng J, Wang L, Wu B, Liu S, Tian D, Zhu F, He Z, Deng F, Cao Y: Berberine inhibits metastasis of nasopharyngeal carcinoma 5-BF cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567. J Biol Chem 2009, 284:27456-27466.
95. Lin TH, Kuo HC, Chou FP, Lu FJ: Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsine trioxide. BMC Cancer 2008, 8:58.
96. Kim DW, Ahan SH, Kim TY: Enhancement of Arsenic Trioxide (As2O3)(3): Mediated Apoptosis Using Berberine in Human Neuroblastoma SH-SY5Y Cells. J Koreen Neurosus 2007, 42:399-399.
97. Youn MJ, So HS, Cho HJ, Kim HI, Kim Y, Lee JH, Sohn JS, Kim YK, Chung SY, Park R: Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells. Biol Pharm Bull 2008, 31:789-795.
98. Hur JM, Hyun MS, Lim SY, Lee WY, Kim D: The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and DNA damage generation in human hepatoma cells. J Cell Biochem 2009, 107:955-964.
99. Zhang X, Gu L, Li J, Shah N, He J, Yang I, Liu H, Zhou M: Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells. Cancer Res 2010, 70:9895-9904.
and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 2010, 9:819-824.
121. Zhou HJ, Wang WQ, Wu GD, Lee J, Xu A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol 2007, 47:131-138.
122. Chen HH, Zhou HJ, Wang WQ, Wu GD. Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother Pharmacol 2004, 53:423-432.
123. Anfosso L, Efferth T, Albini A, Pfeffer U. Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. Pharmacogenomics J 2006, 6:269-278.
124. Lee J, Zhou HJ, Wu XH. Dihydroartemisinin downregulates vascular endothelial growth factor expression and induces apoptosis in chronic myeloid leukemia K562 cells. Cancer Chemother Pharmacol 2006, 57:213-220.
125. Buommino E, Baroni A, Canovo N, Petruzziello M, Nicoletti R, Rozza A, Tufano MR. Artemisinin reduces human melanoma cell migration by down-regulating alpha V beta 3 integrin and reducing metalloproteinase 2 production. Invest New Drugs 2009, 27:412-418.
126. Rasheed SA, Efferth T, Asangani IA, Allgayer H. In vitro combination characterization of the new anticancer phase. Cancer Biol Ther 2010, 10:1475-1485.
127. Efferth T, Ramirez T, Gebhart E, Halatsch ME. G2/M arrest and apoptosis by targeting essential extracellular proteases. J Int Med Res 2005, 33:423-432.
128. Li QQ, Wang GD, Huang FR, Banda M, Reed E. Antiproliferation effects of oridonin on HPB-ALL cells and its mechanism against apoptosis. Cell Mol Life Sci 2006, 63:1689-1700.
129. Li QQ, Wang GD, Huang FR, Banda M, Reed E. Antiangiogenic peptide from euglobals A with high affinity and selectivity for the KDR/Flk-1 receptor. J Nat Prod 2005, 68:159-165.
130. Wang H, Ye Y, Pan SY, Zou H, Liu Y, Wu NY, Fong DW, Yu ZL. Proteomic identification of proteins involved in the anticancer activities of oridonin in HepG2 cells. Phytomedicine 2011, 18:163-169.
131. Kang N, Zhang J, Qi F, Tashiro S, Onodera S, Ikekima T. Inactivation of ras and changes of mitochondrial membrane potential contribute to oridonin-induced apoptosis in A543 cells. J Pharmacol Sci 2007, 105:22-33.
132. Zhang Y, Wu Y, Wu D, Tashiro S, Onodera S, Ikekima T. NF-kappab facilitates oridonin-induced apoptosis and autophagy in HT1080 cells through a p38-mediated pathway. Arch Biochem Biophys 2009, 489:25-33.
160. Cheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

161. Liu JJ, Wu XY, Peng J, Pan XL, Lu HL. Antiproliferation effects of oridonin on HL-60 cells. Ann Hematol 2004, 83:691-695.

162. Lou H, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitu and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

163. Lou H, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

164. Zhou GB, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

165. Zheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

166. Zhou GB, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

167. Lou H, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

168. Zhou GB, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

169. Zheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

170. Zhou GB, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

171. Zheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

172. Zhou GB, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

173. Zheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

174. Cheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

175. Zheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

176. Zhou GB, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

177. Zheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.

178. Zhou GB, Zhang X, Gao L, Feng F, Wang J, Wei X, Yu Z, Zhang D, Zhang Q. In vitro and in vivo antitumor activity of oridonin nanosuspension. Int J Pharm 2009, 379:181-186.

179. Zheng Y, Qu F, Ye YC, Guo ZM, Tashiro S, Onodera S, Keijima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38

nuclear factor-κB. Cell Death Differ 2008, 15:692-700.
203. Chang IC, Huang YJ, Chiang T, Yeh CW, Hsu LS: Shikonin Induces Apoptosis through Reactive Oxygen Species/Extracellular Signal-Regulated Kinase Pathway in Osteosarcoma Cells. Bio Pharm Bull 2010, 33:816-824.

204. Mao X, Yu CR, Li WH, Li WX: Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/AbI-positive chronic myelogenous leukemia (CML) cells. Cell Res. 2008, 18:879-888.

205. Yang H, Zhou P, Huang H, Chen D, Ma N, Cui QC, Shen S, Dong W, Zhang X, Lian W, Wang X, Dou QP, Liu J: Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 2009, 124:3450-3459.

206. Yang F, Chen Y, Duan W, Zhang C, Zhu H, Ding J, SH-T, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor. Int J Cancer 2006, 119:1184-1193.

207. Yao Y, Zhou Q: A novel antitumor agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells. Breast Cancer Res Tr 2010, 124:239-246.

208. Yao YB, Brodie AMH, Davidson NE, Kensler TW, Zhou Q: Inhibition of estrogen signaling activates the NR2F2 pathway in breast cancer. Breast Cancer Res Tr 2010, 124:585-591.

209. Min R, Zun Z, Min Y, Wenhui D, Wenjun Y, Chengping Z: Shikonin inhibits tumor invasion via down-regulation of NF-kappaB-mediated MMP-9 expression in human ACC-M cells. Oral Dis 2011, 17:362-369.

210. Wang L, Li X, Xiao B, You J, Wang Z, Shi Y, Zhang H: Ultrasonic extraction and separation of anthraquinones from Rheum palmatum L. Ultrason Sonochem 2008, 15:738-746.

211. Srinivas G, Babykutty S, Sathiadevan PP, Srinivas P: Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev 2007, 27:591-608.

212. Chun-Guang W, Jun-Qing Y, Bei-Zhong L, Dan-Ting J, Chong W, Liang Z, Dan Z, Yan W: Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Eur J Pharmacol 2010, 627:33-41.

213. Muto A, Horii M, Sasaki Y, Asoita T, Yasuda I, Mekawa T, Uchida T, Asakura K, Nakazato T, Kaida T, Kizaki M, Neda Y, Yoshida T, Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther 2007, 6:987-994.

214. Su YT, Chang HL, Shyu SK, Hsu SL: Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem Pharmacol 2005, 70:229-241.

215. Cha TL, Qin L, Chen CT, Wen Y, Hung MC: Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res 2005, 65:2287-2295.

216. Li Y, Luan Y, Qi X, Li M, Gong L, Xue X, Wu X, Wu Y, Chen M, Xing G, Yao J, Ren J: Emodin triggers DNA double-strand breaks by stabilizing topoisomerase II DNA cleavage complexes and by inhibiting ATP hydrolysis of topoisomerase II. Tissue Sci 2010, 11:645-443.

217. Kuo JC, Su YJ, Lin ST, Jhan JY, Cui SC, Cheng CM, Lin YW: Suppression of ERCC1 and Rad51 expression through ERK1/2 inactivation is essential in emodin-mediated cytotoxicity in human non-small cell lung cancer cells. Biochem Pharmacol 2010, 79:655-664.

218. Kwak HJ, Park MJ, Park CM, Moon SJ, Yoo DH, Lee HC, Lee SH, Kim MS, Lee HW, Shin WS, Park K, Rhee CH, Hong SI: Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int J Cancer 2006, 118:2771-2772.

219. Huang Q, Shen HM, Ong CN: Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell Mol Life Sci 2005, 62:1167-1176.

220. Huang Q, Shen HM, Shui G, Wenk MR, Ong CN: Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated integrin signaling pathway. Cancer Res 2006, 66:5807-5815.

221. Wang XJ, Yang J, Cang H, Zou YJ, Yi J: Gene expression alteration during redox-dependent enhancement of arsenic cytotoxicity by emodin in HeLa cells. Cell Res 2005, 15:511-522.

222. Cai J, Niu X, Chen Y, Hu Q, Shi G, Wu H, Wang J, Yi J: Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anolys. Neoplasia 2008, 10:41-51.

223. Huang XZ, Wang J, Huang C, Chen YJ, Shi GY, Hu QS, Yi J: Emodin enhances cytotoxicity of chemotherapeutic drugs in prostate cancer cells: the mechanisms involve ROS-mediated suppression of multidrug resistance and hypoxia inducible factor-1. Cancer Biol Ther 2008, 7:468-475.

224. Wang W, Sun YP, Huang XZ, He M, Chen YY, Shi GY, Li H, Yi J, Wang J: Emodin enhances sensitivity of gallbladder cancer cells to platinum drugs via glutathione depletion and MRP1 downregulation. Biochem Pharmacol 2010, 79:1134-1140.

225. Chen RS, Jhan JY, Su YJ, Lee WT, Cheng CM, Cui SC, Lin ST, Chuang SM, Ko JC, Lin YW: Emodin enhances gefitinib-induced cytotoxicity via Rad51 downregulation and ERK1/2 inactivation. Exp Cell Res 2009, 315:2658-2672.

226. Ko JC, Su YJ, Lin ST, Jhan JY, Cui SC, Cheng CM, Chiu YF, Kuo YH, Tsai MS, Lin YW: Emodin enhances cisplatin-induced cytotoxicity via down-regulation of ERCC1 and inactivation of ERK1/2. Lung Cancer 2010, 69:155-164.

227. Yue PY, Wong DY, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang ZH, Fan TP, Wong RN: The angiosuppressive effects of 20Ri-ginsenoside Rg3. Biochem Pharmacol 2006, 72:437-445.

228. Liu TG, Huang Y, Cui DD, Huang XB, Mao SH, Ji LL, Song HB, Yi C: Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice. BMC Cancer 2009, 9:250.

229. Kim SM, Lee SY, Yoo DY, Moon DC, Choi SS, Kim Y, Han SB, Oh KW, Hong JT: Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res 2009, 32:755-765.

230. Kim SM, Lee SY, Cho JS, Son SM, Choi SS, Yoon YP, Yoo HS, Yoon do Y, Oh KW, Han SB, Hong JT: Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol 2010, 631:1-9.

231. Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS: Effects of ginsenosides Rg2 and Rh2 on the proliferation of prostate cancer cells. Arch Pharm Res 2004, 27:429-432.

232. He BC, Gao JL, Luo X, Luo J, Shen J, Wang L, Zhou Q, Wang YT, Luo HH, Hayden RC, Wang CZ, Du W, Yuan CS, He TC, Zhang BQ: Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/B-catenin signaling. Int J Oncol 2011, 38:437-444.

233. Luo X, Wang CZ, Chen J, Song WA, Luo J, Tang N, He BC, Kang Q, Wang Y, Du W, He TC, Yuan CS: Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells. Int J Oncol 2009, 34:975-983.

234. Lee SY, Kim GT, Roh SH, Song JS, Kim HJ, Hong SS, Kwon SW, Park JH: Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines. Biosci Biotechnol Biochem 2009, 73:811-816.

235. Xu TM, Cui MH, Xin Y, Gu LP, Jiang X, Xu MM, Wang DD, Wang WJ: Inhibitory effect of ginsenoside Rg3 on ovarian cancer metastasis. Chin Med J (Engl) 2008, 121:1394-1397.

236. Zhang Q, Kang X, Zhao W: Antiangiogenic effect of low-dose cyclophosphamide combined with ginsenoside Rg3 on Lewis lung carcinoma. Biochem Biophys Res Commun 2008, 362:324-328.