Effectiveness of manual therapy in the treatment of cervicogenic headache: A systematic review

Patricia Núñez-Cabaleiro PT1 | Raquel Leirós-Rodríguez PhD2

1Faculty of Physical Therapy, University of Vigo, Pontevedra, Spain
2SALBIS Research Group, Nursing and Physical Therapy Department, Faculty of Health Sciences, University of León, Ponferrada, Spain

Correspondence
Raquel Leirós-Rodríguez, SALBIS Research Group, Nursing and Physical Therapy Department, Faculty of Health Sciences, University of León, Astorga Ave. s/n, 24401 Ponferrada, Spain. Email: rleir@unileon.es

Abstract
Objective: The aim of this study was to identify the manual therapy (MT) methods and techniques that have been evaluated for the treatment of cervicogenic headache (CH) and their effectiveness.

Background: MT seems to be one of the options with the greatest potential for the treatment of CH, but the techniques to be applied are varied and there is no consensus on which are the most indicated.

Methods: A systematic search in Scopus, Medline, PubMed, Cinahl, PEDro, and Web of Science with the terms: secondary headache disorders, physical therapy modalities, musculoskeletal manipulations, cervicogenic headache, manual therapy, and physical therapy. We included articles published from 2015 to the present that studied interventions with MT techniques in patients with CH. Two reviewers independently screened 365 articles for demographic information, characteristics of study design, study-specific intervention, and results. The Oxford 2011 Levels of Evidence and the Jadad scale were used.

Results: Of a total of 14 articles selected, 11 were randomized control trials and three were quasi-experimental studies. The techniques studied were: spinal manipulative therapy, Mulligan’s Sustained Natural Apophyseal Glides, muscle techniques, and translatory vertebral mobilization. In the short-term, the Jones technique on the trapezius and ischemic compression on the sternocleidomastoid achieved immediate improvements, whereas adding spinal manipulative therapy to the treatment can maintain long-term results.

Conclusions: The manual therapy techniques could be effective in the treatment of patients with CH. The combined use of MT techniques improved the results compared with using them separately. This review has methodological limitations, such as the inclusion of quasi-experimental studies and studies with small sample sizes that reduced the generalizability of the results obtained.

Abbreviations: CCF, cranio-cervical flexion; CH, cervicogenic headache; CHISG, Cervicogenic Headache International Study Group; MeSH, Medical Subject Headings; MT, manual therapy; PICOS, population, intervention, comparison, outcome, and study design; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; ROM, range of motion; SMT, spinal manipulative therapy; SNAG, sustained natural apophyseal glides.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Headache: The Journal of Head and Face Pain published by Wiley Periodicals LLC on behalf of American Headache Society
INTRODUCTION

Cervicogenic headache (CH) is a secondary headache caused by a disorder of the cervical spine and its disc or bony and/or periaricular components and is often accompanied by neck pain. The diagnostic criteria for CH are: (1) clinical and/or imaging evidence of a disorder or lesion within the cervical spine or soft tissues of the neck, which is known to cause headache; and (2) evidence of causation demonstrated by at least two of the following: headache has developed in temporal relation to the onset of the cervical disorder or appearance of the lesion, headache has significantly improved or resolved in parallel with improvement in or resolution of the cervical disorder or lesion, cervical range of motion (ROM) is reduced and headache is made significantly worse by provocative maneuvers, and/or headache is abolished following diagnostic blockade of a cervical structure or its nerve supply. Such pain shows a marked topographic achar is abolished following diagnostic blockade of a cervical structure or its nerve supply. Such pain shows a marked topographic achar is abolished following diagnostic blockade of a cervical structure or its nerve supply. Such pain shows a marked topographic a.
publication year), characteristics of the sample (age, sex, inclusion and exclusion criteria, and number of participants), study-specific parameters (study type, duration of the intervention, and MT techniques applied), and results obtained (variables analyzed, instruments used, and time of follow-up). Tables were used to describe both the studies' characteristics and the extracted data. When possible, the results were gathered based on type of intervention applied. The Oxford 2011 Levels of Evidence and the Jadad scale were used to assess the quality of the studies.

Statistical analysis

The studies were analyzed in relation to pre- and post-test comparisons of each intervention group. In addition, intergroup comparisons (in those studies that included several sample subgroups) were also considered. Meta-analyses of the included studies were not included owing to variability in the assessment methods of the analyzed variables.

RESULTS

Of 446 search results, 365 studies were considered eligible for inclusion after removing duplicates. Among the 365 papers screened, 351 were excluded after abstract and title screening. After the first reading of all candidate full texts, kappa score of reviewers one and two was 0.19, indicating slight agreement. Of the 14 full-text articles assessed for eligibility, all were included in the final synthesis, as depicted by the PRISMA flowchart in Figure 1.

All the data necessary for analysis were obtained from all the studies analyzed. Of the 14 articles, three studied spinal manipulative
therapy (SMT).16-18 four studied the efficacy of Mulligan's Sustained Natural Apophyseal Glides (SNAGs),19-22 and four evaluated muscle techniques (ischemic compression of trigger points,23 stretching,24 suboccipital muscle relaxation,25 and Jones strain/counterstrain technique, which is a positional release technique26). In addition, one study evaluated translatory vertebral mobilization,27 one compared the self-acupressure pillow with a combination of MT techniques,28 and another study compared the efficacy of personalized versus non-personalized treatment with MT.29

Regarding the experimental designs of the investigations analyzed, 11 studies were randomized controlled trials,16,17,19,20,23-29 and the remaining three were quasi-experimental studies (a multi-center randomized clinical trial18 and 2 experimental noncontrolled studies21,22).

The methodological quality of the studies was three points or more on the Jadad scale in 42.9\% of the studies17-19,27-29 and was not zero in any case. The most common methodological shortcoming was the lack of information of withdrawals21,23-25,26 and the absence of blinding.16,19-22,24,25,27-29 At the same time, as can be seen in Table 2, the level of evidence provided was between I (78.6\%)16,17,19,20,23-29 and II (21.4\%).18,21,22

The SMT is thought to act on a manipulatable lesion (often called a functional spinal lesion or subluxation) that itself is conformable to specific forces and moments in such a way that the internal mechanical stresses that generate symptoms are reduced.30 Research examining the effects of SMT showed significant improvements in headache frequency after 18 sessions (maximum) of manual, high-speed, low-amplitude manipulation of the cervical and upper thoracic regions at the sites of joint dysfunction (joint restriction or pain)16-18 and also after 12 sessions of placebo SMT (nonspecific sham manipulation at low speed and low amplitude).17 However, this placebo treatment failed to improve either the intensity or duration of CH, whereas the SMT treatment did.17 Notably, Haas et al.16 found that improvements in the frequency and intensity of CH were achieved after 6 weeks of treatment three times a week and remained for up to 1 year after treatment. Pain intensity and perceived disability improved significantly more with SMT than with massage16 or with treatment with Maitland mobilization therapy and cranio-cervical flexion (CCF) exercises with a pressure sensor placed under the neck.18 In contrast, the number of days on medication and quality of life were unchanged in one case16 but SMT at the C1-C2 and T1-T2 joints bilaterally did achieve a significant reduction in days on medication compared with Maitland techniques and CCF exercises.18

In relation to treatment with SMT, it should be noted that one of the studies identified no adverse effects of any type,18 whereas, in another study, the adverse events were mild and transient (tenderness and fatigue in the SMT group and also in the placebo group).17 In the third case, 40\% of the patients who received SMT and 20\% of those treated with light massage reported adverse events after treatment (neck pain or stiffness, upper extremity pain or tingling, increased intensity of headache, nausea, or dizziness), all of which were short-term and transient.

Studies evaluating the efficacy of Mulligan's SNAGs (consisting of facilitating physiologically correct movement while bearing weight) obtained significant improvements in pain intensity and perceived disability.19-22 However, Veena et al.19 identified that

\begin{center}
FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram
\end{center}
TABLE 2: Methodological characteristics of the studies analyzed

Authors	Design	Sample size (women), N	Inclusion criteria	Exclusion criteria	Jadad scale
Chaibi et al. (2017)\(^{17}\)	RCT	12 (8)	Age between 18 and 70 years. Diagnosis of CH with at least 3 main CHISG criteria	Presence of contraindications for the application of spinal manipulative techniques, pregnancy, depression, and/or radiculopathy. History of treatment with spinal manipulative techniques in the previous month	2 2 1 5 I
Christian et al. (2017)\(^{20}\)	RCT	23 (11)	Age between 25 and 35 years. Diagnosis of CH according to International Headache Society criteria. Positive Flexion-Rotation test results. Reduced cervical range of motion	Presence of dizziness and/or symptoms of visual disturbances, primary headaches, congenital disturbances, inflammatory and/or infectious disturbances in the cervical spine, vertebra-basilar insufficiency, and/or cervical hypermobility. Consumption of steroids and/or analgesics	1 0 1 2 I
Dunning et al. (2016)\(^{18}\)	MRCT	110 (74)	Age between 18 and 65 years. Diagnosis of CH according to Cervicogenic Headache International Study Group criteria. At least seminal frequency of CH for at least 3 months. Minimum pain intensity of 2 points on the Numerical Rating Scale. Score of at least 10 points on the Neck Disability Index	Presence of primary headaches, bilateral headaches, and/or neurological signs. Diagnosis of cervical spinal stenosis. History of whiplash in the previous 6 weeks, cranio-cervical surgery, and/or physiotherapy treatment in the previous 3 months	2 1 1 4 II
Fereira and Satralkar (2017)\(^{26}\)	RCT	30 (not described)	Age between 20 and 65 years. Diagnosis of CH. Presence of myofascial trigger points in upper trapezius. Occipital nerve neurodynamic test with positive findings. Positive Flexion-Rotation Test results (reduction of more than 30°). Drug use	Diagnosis of disc pathology, rheumatoid arthritis, ankylosing spondylitis, and/or primary muscle diseases. Presence of primary headaches, migraine and/or tension-type headaches, and/or infectious conditions causing headache. History of tumor and/or cervical surgery	1 0 0 1 I
Haas et al. (2018)\(^{16}\)	RCT	256 (182)	Age older than 18 years. Diagnosis of CH according to diagnostic criteria of the International Headache Society. Minimum average pain intensity of 3 points on the Visual Analog Scale. Presence of restricted cervical movement	Presence of contraindications for the application of spinal manipulative techniques and/or pregnancy. History of treatment with physiotherapy in the previous 3 months or with drugs in the previous month, brain or spine surgery, cancer, spinal pathology, inflammatory arthropathy, anticoagulant conditions, autoimmune disorders, and/or neurodegenerative diseases	1 0 1 2 I

(Continues)
Authors	Design	Sample size (women), N	Inclusion criteria	Exclusion criteria	Jadad scale
Jafari et al. (2017)	RCT	19 (not described)	Diagnosis of CH according to the International Headache Society, Presence of myofascial trigger points in sternocleidomastoid	Presence of other types of headaches, more than 1 active myofascial trigger point in the sternocleidomastoid, rheumatic diseases, phasic, and/or psychiatric limitations. History of treatment with physiotherapy during the previous year and/or neck or shoulder surgery	1 1 0 2 I
Malo-Urriés et al. (2017)	RCT	82 (62)	Age older than 18 years. Diagnosis of CH according to the CHISG	History of treatment of CH during the previous month. Presence of neurological signs and/or contraindications for manual therapy	2 0 1 3 I
Mohamed et al. (2019)	ENCS	48 (20)	Presence of headaches for at least 3 months, unilateral neck pain and stiffness, limited range of motion of more than 10 degrees in the Flexion-Rotation Test, and dizziness caused by headaches and/or cervical extension	Presence of primary headaches, congenital spinal conditions, herniated discs, and/or fractures; contraindications for mobilization techniques; vertebra-basilar insufficiency; and/or vestibular dysfunction	1 0 0 1 II
Park et al. (2017)	RCT	30 (9)	Diagnosis of CH according to International Headache Society criteria. Presence of CH for a minimum of 4 months and a maximum of 2 years	Not described	1 0 0 1 I
Patra et al. (2018)	ENCS	114 (77)	Age between 20 and 50 years. Diagnosis of CH according to the main International Headache Society criteria	History of surgery and/or cervical trauma, vertebral neoplasm. Presence of congenital spinal deformity, cervical radiculopathy, dizziness, vertebra-basilar insufficiency, bone infection, fracture. Consumption of anti-inflammatory or muscle relaxants	1 0 1 2 II
Svedmark et al. (2016)	RCT	120 (120)	Presence of cervico-brachial pain for at least 6 weeks. Neck Disability Index score between 10 and 68. Impairment of work productivity owing to pain	History of trauma, cancer, surgery, and/or spinal fracture. Diagnosis of cervical radiculopathy, vestibular dysfunction, type 1 diabetes, rheumatic disease, anxiety, depression. Presence of concurrent low back pain, temporomandibular disorders, severely restricted range of motion and/or cervical flexion, catastrophic thoughts, low expectations for physical therapy treatment	2 0 1 3 I
Veena et al. (2018)	RCT	30 (24)	Diagnosis of CH	Not described	2 0 1 3 I
such improvements were statistically superior with the application of Muscle Energy Techniques of the suboccipital muscles. However, Christian20 found that cervical ROM improved more with Mulligan's SNAGs than with the application of Maitland's anterior-posterior glides (both techniques were applied on C2). Comparison of this technique with dry needling of the suboccipital, paraspinal, and trapezius muscles revealed that Mulligan's SNAGs did not result in improvement of painful pressure thresholds in the C5-C6 paraspinous and trapezius muscles and that the improvements achieved were significantly greater if both interventions were combined.22 Mohamed et al.21 analyzed the effectiveness of different applications of SNAGs: at C2, at C1-C2 in rotation, and the combination of both. They obtained significant improvements in all the variables analyzed (pain intensity, quality of life, perceived disability, and ROM) but the quality of life in the SNAGs group in C1-C2 obtained a significantly greater improvement than the application at C2 and the combination of both techniques. However, the group that received both techniques obtained a significantly greater improvement in pain intensity, perceived disability, and ROM (Table 3).

The randomized clinical trials evaluating muscle MT techniques identified significant improvements in pain intensity and frequency, perceived disability, and cervical ROM with both the application of the Jones technique on the trapezius and neural mobilization therapy of the occipital nerve.26 In the Jones technique for the trapezius, the physical therapist applies pressure on the tender point and flexes the patient's head laterally to the side of the tender point, followed by a shoulder abduction of approximately 90 degrees. The physical therapist holds this position for 90 s and then passively returns the patient to the initial position. This should be repeated three times in each session.31 The Jones technique on the trapezius muscle achieved results statistically superior than the neural mobilization therapy of the occipital nerve.

In parallel, ischemic compression is one of the techniques frequently used in the management of myofascial trigger points, which means applying pressure to myofascial trigger points up to the maximum tolerable level.32 Ischemic compression of the trigger points of the sternocleidomastoid muscles also significantly reduced the intensity, frequency, and duration of patients' CH.23 The area of the trigger points decreased and their painful threshold to pressure increased significantly. However, the authors found no association between these variables and the intensity, frequency, and duration of CH.23 Park et al.24 applied trapezius muscle stretching and CCF exercises and concluded that muscle tone and cervical stiffness improved. However, the cranio-cervical angle to postural analysis improved significantly more with the application of MT. Yang and Da25 evaluated the relaxation of the suboccipital musculature compared with performing active CCF exercises and obtained statistically superior improvements with active intervention in pain intensity and trapezius muscle fatigue. For the application of suboccipital relaxation, the therapist should be positioned cranial to the subject’s head, place fingertips under the subject’s subocciput, and rest the subject’s occiput on the palms of the hands for 20 min, releasing the subocciput.23
Authors	Intervention	Time of intervention (no. of sessions)	Follow-up	Within group improvements statistically identified with manual therapy interventions
Chaibi et al. (2017)17	Group 1: SMT	13 weeks (12)	12 months	Reduction of Headache Index and headache frequency
	Group 2: Placebo SMT			
Christian et al. (2017)20	Group 1: Active exercise and Mulligan’s SNAGs	1 week (6)	None	In the 2 groups: Increased range of motion. Reduction of Neck Disability Index and of the headaches’ frequency and intensity
	Group 2: Active exercise and MMT			
Dunning et al. (2016)18	Group 1: SMT	4 weeks (6-8)	3 months	In the 2 groups: Reduction in headache intensity, frequency, duration, Neck Disability Index, and medication intake. Increased self-perceived improvement
	Group 2: Cranio-cervical flexion exercises and MMT			
Fereira and Sattralkar (2017)26	Group 1: Active exercises and SMT	2 weeks (4-10)	None	In the 2 groups: Increased cervical range of motion. Reduction of Neck Disability Index and pain intensity
	Group 2: Active exercises and Jones technique			
Haas et al. (2018)16	Group 1: 6 sessions of SMT	6 weeks (6-18)	12 months	In the 4 groups: Reduced frequency, intensity of headaches and Neck Disability Index. In the 12- and 18-sessions groups: Increased self-perceived improvement.
	Group 2: 12 sessions of SMT			
	Group 3: 18 sessions of SMT			
	Group 4: Massage			
Jafari et al. (2017)23	Ischemic compression	1 week (4)	2 weeks	Increased pain threshold to pressure. Reduced intensity, frequency, duration of headaches, and myofascial trigger point area
Malo-Urriés et al. (2017)27	Vertebral translatory mobilization	1 day (1)	None	Increased range of motion in extension, rotations, lateral tilt, and total cervical range of motion. Reduction of headache intensity
Mohamed et al. (2019)21	Group 1: C2 Mulligan’s SNAGs	4 weeks (12)	None	In the 3 groups: Increased quality of life and cervical range of motion. Reduction of Neck Disability Index
	Group 2: C1-C2 rotation Mulligan’s SNAGs			
	Group 3: C2 and C1-C2 rotation Mulligan’s SNAGs			
Park et al. (2017)24	Group 1: Stretching and cranio-cervical flexion exercises	3 weeks (not described)	None	In the 2 groups: Reduced tone and stiffness of the suboccipital and upper trapezius muscles
	Group 2: Stretching			
Authors	Intervention	Time of intervention (no. of sessions)	Follow-up	Within group improvements statistically identified with manual therapy interventions
---------	-------------	--	-----------	---
Patra et al. (2018)22	Group 1: Dry needling Group 2: Mulligan's SNAGs Group 3: Dry needling and Mulligan's SNAGs	6 weeks (not described)	None	Groups 1 and 3: Increased pain threshold to pressure. In the 3 groups: Reduction of Neck Disability Index
Svedmark et al. (2016)29	Group 1: Personalized manual therapy Group 2: Non-personalized manual therapy Group 3: Free manual therapy treatment	11 weeks (22-33)	15 months	In the 3 groups: Increase in self-perceived improvement and pressure pain threshold. Reduction of Neck Disability Index, cervical and headache pain intensity, headache frequency, and pain impact on work
Veena et al. (2018)18	Group 1: Active exercises and Mulligan's SNAGs Group 2: Active exercises and muscle energy techniques	4 weeks (20)	None	In the 2 groups: Increased cervical extension. Reduction of Neck Disability Index and pain intensity
Vernon et al. (2015)28	SMT, mobilizations, trigger point compression, massage, and self-acupressure pillow SMT, mobilizations, trigger point compression, and massage	4-5 weeks (6)	None	In the intervention group: Reduction of headache frequency
Yang and Da (2017)25	Group 1: Exercises of cranio-cervical flexion Group 2: Relaxation of the suboccipital musculature	4 weeks (20)	1 month	In the 2 groups: Reduction of pain intensity and muscle fatigue

Note: Dashes indicate not applicable.

Abbreviations: MMT, Maitland mobilization therapy; SMT, spinal manipulative therapy; SNAGs, Mulligan’s sustained natural apophyseal glides.
Translatory vertebral mobilization is defined as a system of manual techniques using straight-line forces delivered in a parallel or perpendicular direction to an individual vertebral joint or motion segment.34 Malo-Urriés et al.27 evaluated the efficacy of a single session of MT with translatory vertebral mobilization at C1 and identified immediate significant improvements in pain intensity, cervical ROM, and painful threshold to pressure in the trapezius, C2-C3 zygapophyseal joint, and suboccipital muscles.

Comparison of the self-acupressure pillow with a combination of MT techniques, including cervical and upper thoracic SMT, mobilizations, trigger point compression, and massage, revealed statistically superior improvements in the frequency of CH in patients treated with MT.28 However, neither intervention resulted in significant changes in pain intensity or perceived disability. Similarly, the comparison between customized and noncustomized MT treatment showed no differences between the two intervention modalities in these two variables or in the frequency of CH.29 However, both customized and noncustomized treatments achieved significantly greater improvements than MT treatment based on patient preference. Pain threshold to trapezius pressure was the only variable that improved more with personalized treatment.

DISCUSSION

The aim of this work was to identify the MT methods and techniques that are being evaluated for the treatment of CH and, among them, to determine those that have demonstrated the greatest efficacy for this purpose. Considering the results obtained, it can be considered that SMT, Mulligan’s SNAGs, ischemic compression of trigger points, relaxation of the suboccipital musculature, Jones technique, and translatory vertebral mobilization improve the symptoms caused by CH.

When the samples’ ages are computed, the overall mean is 35.8 years. This figure is close to the 33 years of age identified as the mean age of onset of CH.34 Some studies established age ranges as inclusion criteria17,18,20,22,26 but did not perform different treatments according to this characteristic. In the results analyzed, no relationship was found between the effect of the interventions and the age range of the patients, although two of the studies that applied Mulligan’s SNAGs20,22 included younger patients than the rest (younger than 50 years). Cervical osteoarthritis, common in many older patients, may be associated with headache and cervical muscle dysfunction.10 This phenomenon may point to differences to be considered in the approach to treatment of adults and children.

All the interventions managed to reduce the intensity of headaches,16–18,23,25–27,29 except the self-acupressure pillow with a combination of MT (cervical and upper thoracic SMT, mobilizations, trigger point compression, and massage).28 Applying translatory vertebral mobilization achieved immediate improvement after a single session,27 possibly because the mechanical stimulus of this technique could activate the pain inhibitory systems causing immediate hypalgesic effects. Both with the Jones technique26 and with ischemic compression,23 significant improvements were obtained after four sessions. This is probably because both techniques act by changing local blood flow, improving ischemia, hypoxia, and increasing the presence of analgesic substances.6 In addition, MT techniques involving gradual pressures (such as those mentioned previously) allow the fascia to reorganize focal adhesions and macromolecule complexes (such as hyaluronic acid) to return to their healthy states.35–37

Interventions with SMT16–18 managed to reduce the intensity of CH to less than two points of 10 when applying between 10 and 18 sessions16,17 up to 1 year after treatment. Jull et al.38 after 1 year of follow-up, demonstrated that SMT and specific exercise are effective in reducing pain intensity but that their combination does not lead to additional improvements. The studies that achieved a greater reduction in pain intensity18,38 used fewer sessions (between 6 and 8) than the others.16,17 These data indicate that a greater number of SMT sessions is not necessarily better for reducing CH.

Headaches can disable a person from carrying out daily activities, which is why many of the investigations analyzed studied the degree of disability.16,19–22,26,28 All the interventions reduced this variable except the one that included a combination of SMT, mobilizations, trigger point compression, and massage.28 Although they used a treatment similar to the rest, they may not have found significant changes because both groups received MT but only one used the self-acupressure pillow. Another option is that it was owing to the characteristics of the sample: it was the only article that included patients with a diagnosis of both CH and tension-type headache, and this lack of specificity in the choice of the sample could have caused the difference in the results obtained. Finally, it could also be owing to the assessment instruments: this study was the only one that used the Headache Activities of Daily Living Index, a variation of the Neck Disability Index that is less widely used than the Headache Impact Test16,21 or the Headache Disability Index.19,20,22,26

Among the articles that studied the frequency of headaches,16–18,23,28,29 those that carried out a follow-up of more than 40 weeks stand out: SMT was applied in two of them16,17 and another study implemented a personalized treatment with cervical mobilizations, exercises for cervical and oculomotor ROM, and CCF and postural correction.29 Other studies achieved improvements with ischemic compression of the sternocleidomastoid in only four sessions25 and with neural mobilization of the occipital nerve26 after only 1 week. In the study by Vernon et al.,28 the frequency of CH was reduced more in the group that did not use the self-acupressure pillow, so it was not an effective device for CH. Therefore, ischemic compression and occipital nerve mobilization combined with stretching and exercise reduces CH almost immediately, and SMT appears to reduce the number of CH days in the long term.

It has been reported that patients with CH have weaker deep neck flexor muscles than patients with other types of headaches39 that are compensated for by tension in the sternocleidomastoid muscles.10 These two investigations may explain the beneficial effects of ischemic compression on this muscle.23 Most studies included some pattern of active CCF exercise, based on the aforementioned alteration of muscle activation in these patients and on the fact that
these exercises increase the activity of the deep muscles of the neck and shoulders, reducing fatigue and the tone of the superficial muscles. In addition, the increase in endorphins that occurs after training and better neuromuscular control can reduce pain and the frequency of CH. Owing to the efficacy that therapeutic exercise has been shown to have, strengthening through CCF as an adjunct to MT treatment may be key to achieving the best benefits for these patients; however, this has not been the subject of study in the present review.

Neck pain is a common symptom in CH, and with only four sessions of the Jones technique on the trapezius, a greater reduction in neck pain was achieved than with 10 sessions of neural mobilization of the occipital nerve; however, its frequency and intensity was also reduced with long-term SMT. Disability caused by neck pain improved with both SMT and Maitland mobilizations and exercise, although more so with SMT. It has been suggested that manipulation may also stimulate receptors in the deep paraspinal musculature, and it is likely that mobilization stimulates receptors in superficial muscles, which may explain the results of this study. Svedmark et al., with customized treatment, achieved a significant short- and long-term reduction in the disability caused by neck pain. Therefore, it appears that the Jones technique and the combination of various MT techniques (muscle energy techniques, SMT, stretching, Mulligan's SNAGs, and mobilizations) with exercise improves neck pain associated with CH. Consistent with these findings, Javaid et al. stated that conventional physiotherapy (according to the Chartered Society of Physiotherapy) with the Jones technique is more effective in reducing pain and disability and improving ROM in the cervical region than pharmacological treatment. Quality of life was evaluated in only two studies and in different ways: in one using the European Quality of Life-5 Dimensions, no improvement was achieved after 18 sessions of SMT, and in another using the Dizziness Handicap Inventory, improvement occurred after the application of Mulligan's SNAGs.

Medication intake was analyzed on only two occasions. In the study by Haas et al., there was no change; and in the study by Dunning et al., a decrease in drug intake was identified. It is possible that the difference between these two studies that applied SMT is because they used different diagnostic criteria for CH; some studies that were analyzed used the criteria of the Cervicogenic Headache International Study Group (CHISG) and others used those of the International Headache Society. According to previous research, diagnostic accuracy is greater with the CHISG criteria, because their criteria guide clinical practice more adequately. However, this deduction does not correspond to the choice of most of the articles analyzed (the majority of whom chose the criteria of the International Headache Society). Given the previous facts, it seems that there is no consensus as to the most appropriate diagnostic criterion, but it could explain why two interventions that applied SMT did not obtain similar results.

Therefore, for the treatment of CH with MT, the most effective interventions are those that combined different Muscle energy techniques, SMT in C1-C2-C3, and Mulligan's SNAGs in C1-C2. To achieve immediate relief of symptoms, the most effective techniques were the Jones technique on the trapezius and ischemic compression on the sternocleidomastoid. For such relief to last over time, SMT should be added at C1-C2 and/or C3 and, if possible, combined with strengthening exercises of the deep neck flexors. All these indications are the result of research findings with level I of evidence according to the Oxford scale and more than four points on the Jadad scale. Particularly, it seems that more treatment sessions do not result in greater improvements; the most beneficial pattern was that of one to two sessions per week for 6 weeks. In addition, if the patient presents signs and symptoms in the cervical region, the inclusion of mobilization techniques, strengthening exercises, and stretching of the neck musculature is of special interest.

This review has certain methodological limitations that should be recognized, such as the inclusion of studies published only in the last 5 years, quasi-experimental studies, studies with small sample sizes that reduce the generalizability of the results obtained, and the small number of studies that analyze long-term results and obtaining a low kappa concordance index between both authors after the first stage of full-text selection. For all these reasons, and with a view to the development of future research, it would be necessary to objectively define, by means of trials of sufficient methodological quality, the diagnostic criteria for CH and to compare more MT techniques and the efficacy of different combinations of these techniques in patients with acute and chronic diagnosis and in populations of different age ranges, and to clarify whether the behavior of CH symptoms and the effect of MT techniques is different in both sexes. At the same time, this review provides relevant data by considering among its results a great diversity of MT techniques and a multitude of variables related to the symptoms of CH, beyond the frequency and intensity of the headaches themselves. In addition, future research should evaluate the usefulness of the MT therapeutic approach in the treatment of other types of headaches with myofascial components, such as migraine without aura.

CONCLUSIONS

The MT techniques could be effective in the treatment of patients with CH. The techniques evaluated included SMT, Mulligan's SNAGs, ischemic trigger point compression, suboccipital musculature relaxation, Jones technique, and vertebral translatory mobilization, and all of them improve symptoms caused by CH.

Among the wide variety of methods and techniques that have been evaluated, upper cervical SMT appears to be the most effective. In the short term, the Jones technique on the trapezius and ischemic compression on the sternocleidomastoid achieve immediate improvements, whereas adding SMT to the treatment can maintain long-term results. In addition, the combination of different techniques, such as muscle energy techniques, SMT, and Mulligan's SNAGs, are interesting approaches for the treatment of CH. Strengthening of the deep neck flexors seems to play a fundamental role in the recovery of patients with this condition.
CONFLICT OF INTEREST
The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS
Study concept and design: Patricia Núñez-Cabaleiro, Raquel Leirós-Rodríguez. Acquisition of data: Patricia Núñez-Cabaleiro, Raquel Leirós-Rodríguez. Analysis and interpretation of data: Patricia Núñez-Cabaleiro, Raquel Leirós-Rodríguez. Drafting of the manuscript: Patricia Núñez-Cabaleiro, Raquel Leirós-Rodríguez. Revising it for intellectual content: Patricia Núñez-Cabaleiro, Raquel Leirós-Rodríguez. Final approval of the completed manuscript: Patricia Núñez-Cabaleiro, Raquel Leirós-Rodríguez.

CLINICAL TRIALS REGISTRATION NUMBER
PROSPERO registration number: CRD42021236153.

DATA AVAILABILITY STATEMENT
The data presented in this study are available on request from the corresponding author.

ORCID
Raquel Leirós-Rodríguez https://orcid.org/0000-0001-7502-7644

REFERENCES
1. Olesen J. International classification of headache disorders. Lancet Neurol. 2018;17(5):396-397.
2. Sjaastad O, Fredriksen TA, Pfaffenrath V. Cervicogenic headache: diagnostic criteria. Headache. 1990;30(11):725-726.
3. Headache Classification Commitee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1-211.
4. Sjaastad O, Bakkeiteig LS. Prevalence of cervicogenic headache: Vågå study of headache epidemiology. Acta Neurol Scand. 2008;117(3):173-180.
5. Knackstedt H, Bansevicius D, Asaeth K, Grande RB, Lundqvist C, Russell MB. Cervicogenic headache in the general population: the Akershus study of chronic headache. Cephalalgia. 2010;30:1468-1476.
6. Sedighi A, Ansari NN, Naghdi S. Comparison of acute effects of superficial and deep dry needling into trigger points of suboccipital and upper trapezius muscles in patients with cervicogenic headache. J Bodyw Mov Ther. 2017;21(4):810-814.
7. Garcia JD, Arnold S, Tetley K, Voight K, Frank RA. Mobilization and manipulation of the cervical spine in patients with cervicogenic headache: any scientific evidence? Front Neurol. 2016;7:40.
8. Bogduk N, Govind J. Cervicogenic headache: an assessment of the evidence on clinical diagnosis, invasive tests, and treatment. Lancet Neurol. 2009;8(10):959-968.
9. Knackstedt H, Bansevicius D, Asaeth K, Grande RB, Lundqvist C, Russell MB. Cervicogenic headache in the general population: the akershus study of chronic headache. Cephalalgia. 2010;30(12):1468-1476.
10. Page P. Cervicogenic headaches: an evidence-led approach to clinical management. Int J Sports Phys Ther. 2011;6(3):254-266.
11. Biondi DM. Cervicogenic headache: a review of diagnostic and treatment strategies. J Am Osteopath Assoc. 2005;105(suppl 4):165-225.
12. Herranz-Gómez A, García-Pascual I, Montero-Iniesta P, La Touche R, Paris-Alemany A. Effectiveness of exercise and manual therapy as treatment for patients with migraine, tension-type headache or cervicogenic headache: an umbrella and mapping review with meta-meta-analysis. Appl Sci. 2021;11(15):6856.
13. Fernandez M, Moore C, Tan J, et al. Spinal manipulation for the management of cervicogenic headache: a systematic review and meta-analysis. Eur J Pain. 2020;24(9):1687-1702.
14. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-e34.
15. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of interventions. Cochrane Database Syst Rev. 2019;10:ED000142.
16. Haas M, Bronfort G, Evans R, et al. Dose-response and efficacy of spinal manipulation for care of cervicogenic headache: a dual-center randomized controlled trial. Spine J. 2018;18(10):1741-1754.
17. Chaibi A, Knackstedt H, Tuchin PJ, Russell MB. Chiropractic spinal manipulative therapy for cervicogenic headache: a single-blinded, placebo, randomized controlled trial. BMC Res Notes. 2017;10(1):310-317.
18. Dunning JR, Butts R, Mourad F, et al. Upper cervical and upper thoracic manipulation versus mobilization and exercise in patients with cervicogenic headache: a multi-center randomized clinical trial. BMC Musculoskelet Disord. 2016;17(1):64-75.
19. Veena S, Padmanabhan K, Sudhakar S, Vijaya KM. Is Mulligan’s sustained natural apophyseal glides (snags) or muscle energy technique effective in the non-surgical management of cervicogenic headache? a two-group pretest-posttest randomized controlled trial. Asian J Pharm Clin Res. 2018;11(9):230-233.
20. Christian N. Comparative study to find the effect of mulligan’s snag technique (c1–c2) versus maitland’s technique (C1–C2) in cervicogenic headache among information technology professionals. Int J Physiother. 2017;4(3):178-183.
21. Mohamed AA, Shindy WS, Semary M, et al. Combined use of cervical headache snag and cervical snag half rotation techniques in the treatment of cervicogenic headache. J Phys Ther Sci. 2019;31(4):376-381.
22. Patra CP, Mohanty P, Gautam AP. Effectiveness of C1–C2 sustained natural apophyseal glide combined with dry needling on pressure point threshold and headache disability in cervicogenic headache. Asian J Pharm Clin Res. 2018;11(1):171-174.
23. Jafari M, Bahreyma F, Togha M. Effect of ischemic compression for cervicogenic headache and elastic behavior of active trigger point in the sternocleidomastoid muscle using ultrasound imaging. J Bodyw Mov Ther. 2017;21(4):933-939.
24. Park SK, Yang DJ, Kim JH, Kang DH, Park SH, Yoon JH. Effects of cervical stretching and cranio-cervical flexion exercises on cervical muscle characteristics and posture of patients with cervicogenic headache. J Phys Ther Sci. 2017;29(10):1836-1840.
25. Yang DJ, Da HK. Comparison of muscular fatigue and tone of neck according to craniocervical flexion exercise and suboccipital relaxation in cervicogenic headache patients. J Phys Ther Sci. 2017;29(5):869-873.
26. Fereira OA, Satralkár A. Effectiveness of strain counterstrain technique and neural tissue mobilisation on cervicogenic headache. Indian J Physiother Occup Ther. 2017;11:57-61.
27. Malo-Urríes M, Trícas-Moreno JM, Estébanez-de-Miguel E, Hidalgo-García C, Carrasco-Uribarren A, Cabanillas-Barea S. Immediate effects of upper cervical translatory mobilization on cervical mobility and pressure pain threshold in patients with cervicogenic headache: a randomized controlled trial. J Manipulative Physiol Ther. 2017;40(9):649-658.
28. Vernon H, Borody C, Harris G, Muir B, Goldin J, Dinulos M. A randomized pragmatic clinical trial of chiropractic care for headaches with and without a self-acupressure pillow. J Manipulative Physiol Ther. 2015;38(9):637-643.
29. Svedmark Å, Djupsjöbacka M, Häger C, Jull G, Björklund M. Is tailored treatment superior to non-tailored treatment for pain and disability in women with non-specific neck pain? A randomized controlled trial. BMC Musculoskeletal Disorder. 2016;17(1):408-421.

30. Triano J. The mechanics of spinal manipulation. In: Herzog H, ed. Clinical Biomechanics of Spinal Manipulation. Churchill Livingstone; 2000:92-190.

31. Jones LH, Kusunose RS, Goering EK. Strain Counter-Strain. Jones Strain-counterstrain Inc; 1995.

32. Cagnie B, Dewitte V, Coppieters I, Oosterwijck JV, Cools A, Danneels L. Effect of ischemic compression on trigger points in the neck and shoulder muscles in office workers: a cohort study. Manip Physiol Ther. 2013;36:482-489.

33. Lee JH, Kang DH, Kang JI. The effects of myofascial relaxation on blood flow velocity of the cranial artery and pain level in cervicogenic headache patients. J Kor Phys Ther. 2015;22:49-57.

34. Krauss JR, Evjenth O, Creighton D. Translocatoric Spinal Manipulation for Physical Therapist. Lakeview Media; 2006.

35. Adstrum S, Hedley G, Schleip R, Stecco C, Yucesoy CA. Defining the fascial system. J Bodyw Mov Ther. 2017;21:173-177.

36. Ingber DE. Tensegrity and mechanotransduction. J Bodyw Mov Ther. 2008;12:198-200.

37. Pratt RL. Hyaluronan and the fascial frontier. Int J Mol Sci. 2021;22(13):6845.

38. Jull G, Trott P, Potter H, et al. A randomized controlled trial of exercise and manipulative therapy for cervicogenic headache. Spine. 2002;27(17):1835-1843.

39. Jull G, Amiri M, Bullock-Saxton J, Darnell R, Lander C. Cervical musculoskeletal impairment in frequent intermittent headache. part 1: Subjects with single headaches. Cephalalgia. 2007;27(7):793-802.

40. Salwa F, Ahmed MM, Saweeres ES. Efficacy of biofeedback exercise of deep neck flexors on cervicogenic headache. Med J Cairo Univ. 2019;87(March):967-980.

41. Javaid HMW, Ahmad A, Ajmad F, Liaqat S, Tahir S. Effects of conventional physical therapy with or without strain counterstrain in patients with trigger points of upper trapezius; a randomized controlled clinical trial. Ann King Edward Med Univ. 2016;22(3):191-196.

42. Fredriksen TA, Antonaci F, Sjaastad O. Cervicogenic headache: too important to be left un-diagnosed. J Headache Pain. 2015;16(1):6-9.

How to cite this article: Núñez-Cabaleiro P, Leirós-Rodríguez R. Effectiveness of manual therapy in the treatment of cervicogenic headache: A systematic review. Headache. 2022;62:271-283. doi:10.1111/head.14278