Towards Bin Packing (preliminary problem survey, models with multiset estimates) *

Mark Sh. Levin

Inst. for Information Transmission Problems, Russian Academy of Sciences
19 Bolshoj Karetny Lane, Moscow 127994, Russia
E-mail: mslevin@acm.org

The paper described a generalized integrated glance to bin packing problems including a brief literature survey and some new problem formulations for the cases of multiset estimates of items. A new systemic viewpoint to bin packing problems is suggested: (a) basic element sets (item set, bin set, item subset assigned to bin), (b) binary relation over the sets: relation over item set as compatibility, precedence, dominance; relation over items and bins (i.e., correspondence of items to bins). A special attention is targeted to the following versions of bin packing problems: (a) problem with multiset estimates of items, (b) problem with colored items (and some close problems). Applied examples of bin packing problems are considered: (i) planning in paper industry (framework of combinatorial problems), (ii) selection of information messages, (iii) packing of messages/information packages in WiMAX communication system (brief description).

Keywords: combinatorial optimization, bin-packing problems, solving frameworks, heuristics, multiset estimates, application

Contents

1 Introduction

2 Preliminary information

2.1 Basic problem formulations
2.2 Maximizing the number of packed items (inverse problems)
2.3 Interval multiset estimates
2.4 Support model: morphological design with ordinal and interval multiset estimates

3 Problems with multiset estimates

3.1 Some combinatorial optimization problems with multiset estimates
3.1.1 Knapsack problem with multiset estimates
3.1.2 Multiple choice problem with interval multiset estimates
3.1.3 Multiple knapsack problem with multiset estimates
3.1.4 Assignment and generalized assignment problems with multiset estimates
3.2 Inverse bin packing problem with multiset estimates
3.3 Bin packing with conflicts

4 Colored bin packing

4.1 Basic colored bin packing
4.2 Two auxiliary graph coloring problems
4.2.1 Auxiliary vertex graph coloring problem with ordinal color proximity
4.2.2 Partition coloring problem

*The work is partially supported by The Russian Foundation for Basic Research, Grant No. 16-07-00092.
5 Some applications
 5.1 Composite planning framework in paper production system
 5.2 Planning in communication system
 5.2.1 Selection of messages/information packages
 5.2.2 Two-dimensional packing in WiMAX system

6 Conclusion
1. Introduction

Bin-packing problem is one of the well-known basic combinatorial optimization problems (e.g., 40,70,120,203). The problem is a special case of one-dimensional “cutting-stock” problem 123,261 and the “assembly-line balancing” problem 69. Fig. 1 illustrates the relationship of one-dimensional bin-packing problems and some other combinatorial optimization problems.

The bin packing problem can be described as follows (Fig. 2). Initial information involves the following: (i) a set of items \(A = \{a_1, ..., a_i, ..., a_n\} \), each item \(a_i \) has a weight \(w_i \in (0, 1] \); (ii) a set of bins (or one-dimensional containers, blocks) \(B = \{B_1, ..., B_\kappa, ..., B_m\} \), capacity of each bin \(B_\kappa \) equals 1. The basic (classical) bin packing problem is (e.g., 150,151,152,259):

Find a partition of the items such that: (a) each part of the item set is packed into the same bin while taking into account the bin capacity constraint (i.e., the sum of packed items in each bin \(\leq 1 \)), (b) the total number of used bins is minimized.

This problem is one of basic NP-hard combinatorial optimization problems (e.g., 120,157). Fig. 2 illustrates the classic bin packing (i.e., packing the items into the minimal number of bins): 6 items are packed into 3 bins.

Note the following basic types of items are examined (e.g., 19,24,25,30,67,89,90,115,117,120,193,196,203,261,227,243,265): rectangular items, 2D items, irregular shape items, variable sizes items, composite 2D items (including items with common components), 3D items, multidimensional items, items as cylinders, items as circles, etc. A generalized illustration for bin packing problem is depicted in Fig. 3.
Further, it is necessary to point out binary relations:

I. Binary relations over initial items and bins (items $A = \{a_1, a_2, ..., a_n\}$, bins $B = \{B_1, ..., B_k, ..., B_m\}$):

1.1. correspondence of items to bins or preference (for each item) as binary relation (or weighted binary relation): $R_{A \times B}$.

II. Binary relation over items:

2.1. conflicts as a binary relations for item pairs that can not be assigned into the same bin: $R^{conf|}_{A \times A}$ (this can be considered as a part of the next relation),

2.2. compatibility (e.g., by type/color) as binary relation for items which are compatible (e.g., for assignment to the same bin, to be neighbor in the same bin): $R^{compt}_{L \times L}$, here a weighted binary relation can be useful (e.g., for colors, including non-symmetric binary relation for neighborhood),

2.3. compatibility (e.g., by common components, for multi-component items), close to previous case (this may be crucial for “intersection” of items): $R^{compt-\neg \text{cons}}_{A \times A}$,

2.4. precedence over items (this is important in the case of ordering of items which are assigned into the same bin): $R^{prec|}_{A \times A}$.

2.5. importance (dominance, preference) of items from the viewpoint of the first assignment to bins, as a linear ordering or poset-like structure over items: $G(A, E^{\text{dom}})$ (the poset-like structure may be based on multicriteria estimates or multiset estimates of items).

III. Binary relations over bins:

3.1. importance of bins from the viewpoint of the first usage, as a linear ordering or poset-like structure) over bins: $G(B, E^{\text{imp}})$ (the poset-like structure may be based on multicriteria estimates or multiset estimates of bins).

Numerical examples of the above-mentioned relations are present as follows (on the basis of example from Fig. 2: six items and four bins): (i) correspondence of items to bins $R_{A \times B}$ (Table 1), (ii) relation of item conflict $R^{conf|}_{A \times A}$ (Table 2), (iii) relation of item compatibility $R^{compt}_{A \times A}$ (e.g., by type/color) (Table 3), (iv) precedence relation over items $R^{prec|}_{A \times A}$ (Fig. 4), (v) (relation of dominance over items $G(A, E^{\text{dom}})$ (Fig. 5), and (vi) relation of importance over bins $G(B, E^{\text{imp}})$ (Fig. 6).

Further, the solution of the bin packing problem can be examined as the following (i.e., assignment of items into bins, a Boolean matrix): $S = \{A^1, ..., A^\kappa, ..., A^k, ..., A^m\}$ where $|A^\kappa \cap A^{\kappa+1}| = 0 \ \forall \kappa_1, \kappa_2 = 1, m$ (i.e., the intersection is empty), $A = \bigcup_{\kappa=1}^{m} A^\kappa$.

For classic bin packing problem (i.e., minimization of used bins), $|A^\kappa| = 0 \ \forall \kappa = k + 1, m$ (the first k bins are used) and $A = \bigcup_{\kappa=1}^{m} A^\kappa$.

In inverse bin packing problem (maximization of assigned items into the limited number of bins), a part of the most important items are assigned into m bins: $\bigcup_{\kappa=1}^{m} A^\kappa \subseteq A$.

Additional requirements to packing solutions are the following (i.e., fulfillment of the constraints):

1. **Correspondence of item to bin.** The following has to be satisfied: $a_i \in A_{\kappa}$ if $(a_i, B_{\kappa}) \in R_{A \times B}$.

2. **Importance/dominate of items.** This corresponds to inverse problem: If $(a_i, a_j) \in R^{\text{dom}}_{A \times A}$ (i.e., $a_i \ge a_j$) Then three cases are correct: (a) both a_i and a_j are assigned to bin(s), (b) both a_i and a_j are not assigned to bin(s), (c) a_i is assigned to bin and a_j is not assigned to bin.

3. **Item precedence.** In the case of precedence constraint(s) according the above-mentioned precedence relations over items $R^{\text{prec}}_{A \times A}$, the items have to be linear ordered in each bin (for each bin, i.e., $\forall \kappa$):
If \((a_{i_1}, a_{i_2}) \in R_{A \times A}^{\text{prec}}\) and \(a_{i_1}, a_{i_2} \in A\), then \(a_{i_1} \rightarrow a_{i_2}\).

4. **Item conflicts.** In the case of conflict constraints, the following has to be satisfied:
\[a_{i_1}, a_{i_2} \in A\] If \((a_{i_1}, a_{i_2}) \in R_{A \times A}^{\text{conf}}\).

5. **Item compatibility.** In the case of compatibility constraints, the following has to be satisfied:
\[a_{i_1}, a_{i_2} \in A\] If \((a_{i_1}, a_{i_2}) \in R_{A \times A}^{\text{comp}}\).

In general, it is possible to use some penalty functions in the cases when the constraints are not satisfied.

Table 1. Correspondence of items to bins \(R_{L \times B}^{L \times B}\)

Item \(a_i\)	Bin \(B_1\)	Bin \(B_2\)	Bin \(B_3\)	Bin \(B_4\)
\(a_1\)	3	2	1	0
\(a_2\)	3	1	0	0
\(a_3\)	1	3	2	0
\(a_4\)	3	2	2	0
\(a_5\)	1	3	1	1
\(a_6\)	2	3	3	1

Table 2. Relation on item conflict \(R_{A \times A}^{\text{conf}}\)

Item \(a_i\) \(\lor\) Item \(a_j\)	\(a_1\)	\(a_2\)	\(a_3\)	\(a_4\)	\(a_5\)	\(a_6\)
\(a_1\)	\(*\)	1	1	1	0	0
\(a_2\)	1	\(*\)	1	1	1	0
\(a_3\)	1	3	\(*\)	4	1	0
\(a_4\)	1	1	1	\(*\)	1	0
\(a_5\)	1	1	1	1	\(*\)	0
\(a_6\)	1	0	0	0	0	\(*\)

Table 3. Relation on item compatibility \(R_{A \times A}^{\text{comp}}\)

Item \(a_i\) \(\lor\) Item \(a_j\)	\(a_1\)	\(a_2\)	\(a_3\)	\(a_4\)	\(a_5\)	\(a_6\)
\(a_1\)	\(*\)	1	1	1	0	0
\(a_2\)	1	\(*\)	1	1	1	0
\(a_3\)	1	3	\(*\)	4	1	0
\(a_4\)	1	1	1	\(*\)	1	0
\(a_5\)	1	1	1	1	\(*\)	0
\(a_6\)	1	0	0	0	0	\(*\)

Numerous publications have already addressed and analyzed various versions of static and dynamic bin packing problems. Many surveys on BPPs have been published (e.g., \([23,64,65,66,67,68,81,116,120,195,203,252]\)). The basic taxonomies/typologies of bin packing problems have been examined in \([67,89,90,193,265]\).

Some basic versions of bin packing problems (BPPs) are listed in Table 4 and special classes of bin packing problems (e.g., with relations among items) are pointed out in Table 5. Table 6 contains a list of main applications of bin packing problems.
Many surveys on algorithms for bin packing problems have been published (e.g., \[23,63,66,68,81,101,114,138,150,203,231,255\]). Basic algorithmic approaches are listed in Table 7, Table 8, and Table 9.

Table 4. Main bin packing problem formulations

No.	Problem	Some source(s)
I.	Basic bin packing problems:	
1.1	Classic one-dimensional bin-packing	\[150,151,152,259\]
1.2	Bin-packing with discrete item sizes	62,64
1.3	Linear programming formulation	261
1.4	Variable sized bin packing	\[37,72,111,115,155,215,241,243\]
1.5	Maximum resource bin packing problem	36
1.6	Bin packing with cardinality (maximization, constraints)	\[81,172,221\]
1.7	Unrestricted black and white bin packing	14
1.8	Bin packing with rejection (including variable sized)	21,78,96
1.9	Bin packing with item fragmentation	45
1.10	Bin packing games	160,170
II.	Multidimensional bin packing problems:	
2.1	2D bin-packing	\[5,47,77,81,120,139,140\]
2.2	Oriented 2D bin packing	192,193
2.3	Orthogonal 2D bin packing	111,178
2.4	2D bin-packing with variable sizes (and costs)	54,157,227
2.5	2D bin packing with due dates	26
2.6	2D bin-packing with guillotine constraints	47,131,134
2.7	2D irregular shape bin packing	151,131
2.8	3D bin packing	\[79,86,201,204,205,254\]
2.9	Multi-dimensional bin-packing (vector packing)	\[18,19,74,117,196\]
III.	Online and dynamic bin packing problems:	
3.1	Online bin packing	\[15,65,95,118,212,243,264\]
3.2	Online bin packing with two item sizes	97,129
3.3	Online bin packing with advise	38
3.4	Online variable-sized bin packing	\[72,102,270\]
3.5	On-line bin-packing with cardinality constraints	8
3.6	Dynamic bin packing problems	61
3.7	Bin packing with controllable item sizes	71
3.8	Batched bin packing	128

IV.	Dual/inverse bin packing problems:	
4.1	Inverse problem (maximizing the number of packed items, maximum cardinality bin packing)	\[73,115,58,52,171,172,221\]
4.2	Dual bin packing with items of random sizes	232
4.3	On-line dual bin packing	35,73
4.4	On-line variable-sized dual problem	94
4.5	“Maximization” of total preference estimate for packed items (preference relation over item set)	115
4.6	Inverse bin packing with multiset estimates	This paper

V.	Multi-stage bin packing problems:	
5.1	Three-stage two-dimensional bin packing	229
5.2	Multi-stage bin packing	

VI.	Bin packing problems in game theory perspective:	
6.1	Bin-packing of selfish items	\[29,100,102,132,163,212,274\]
6.2	Generalized selfish bin-packing	82
Table 5. Bin packing problems with multi-component items, with binary relations

No.	Problem	Some source(s)
I.	Problems with multi-component items/items fragmentation:	
1.1	Bin packing with multi-component items	115
1.2	Packing with item fragmentation	215
1.3	Packet scheduling with fragmentation	216
II.	Colored bin packing:	
2.1	Offline black and white bin packing	14
2.2	Online black and white bin packing	15
2.3	Colored bin packing	51, 257
2.4	Offline colored bin packing	257
2.5	Online colored bin packing	31, 257
2.6	Online bin coloring (packing with minimum colors)	167
2.7	Composite planning framework in paper production system	This paper
III.	Multicriteria/multobjective bin packing, relations over items:	
3.1	Bin packing with conflicts	121, 98, 107, 149, 237
3.2	Bin packing with multicriteria items	115
3.3	Multi-objective bin packing	189, 217
3.4	Multi-objective bin packing with rotations	108
3.5	Problems with preference over items	115
3.6	Problems with precedence among items	80, 239, 222

A general classification scheme for bin packing problems has been suggested in [67]:

arena	objective function	algorithm class	results	constraints

where the scheme components are as follows: (a) arena describes types of bins (e.g., sizes, etc), (b) objective function describes types of problem (i.e., minimum of bin, minimum of “makespan”, etc.), (c) algorithm class describes types of algorithm (e.g., offline, online, complexity estimate, greedy-type, etc.), (d) constraints describes quality of solution, e.g., asymptotic worst case ratios, absolute worst case, average case, etc., (e) constraints describes bounds on item sizes, bound on the number of items which can be packed in a bin, binary relation over item set (e.g., items a_1 and a_2 can not be put into the same bin), etc.

Fig. 7 illustrates the basic trends in modifications of bin packing problems: (1) multicriteria (multi-objective) bin packing, (2) bin packing problems under uncertainty (e.g., fuzzy set usage of estimates), (3) examination of additional relations over items and over bins, (4) dynamic bin packing.

This paper addresses the bin packing problem survey and some new formulations of bin packing problems: (a) with relations over item set, (b) with multiset estimates of items.
Table 6. Some applications of bin packing problems

No.	Domain(s)/Problem(s)	Some source(s)
I.	Basic applications:	
1.1	Table formatting	152
1.2	Prepaging	152
1.3	File allocation, storage allocation	60, 152, 259
1.4	Processor allocation	60, 149
1.5	Multi-processor scheduling	59, 60, 69, 143, 264
1.6	Examination timetabling	174
II.	Industrial applications:	
2.1	Packing systems in industry	139, 267
2.2	Liquid loading problem	50
2.3	Assembly line balancing	222
2.4	Filling up containers	120
2.5	Loading tracks with weights capacity constraints	120
2.6	Vehicle container loading problem	91, 130, 149
2.7	Loading of tractor trailer trucks	189
2.8	Loading of cargo airplanes	189
2.9	Loading of containers into ships	125, 136, 161, 189
2.10	Packing in design automation	79, 254
2.11	Delivery problem	203
2.12	Configuration of support tools for satellite mission	115
III.	Applications in distributed computing:	
3.1	Assignment of processes to processors	149
3.2	Allocating jobs in distributed computing systems (grids, etc.)	257
3.3	Data placement on parallel discs	124, 1156
3.4	Dynamic resource allocation in cloud data centers	270
3.5	Periodic task scheduling in real-time distributional control systems	277
	(e.g., automobile electronic control system, satellite control system,	
	medical equipment’s electronic control system)	
IV.	Applications in networking:	
4.1	Routing and wavelength assignment in optical networks	250
4.2	Bandwidth allocation (e.g., channel assignment)	71
4.3	Video-on-demand systems	271
4.4	Creating file backups in media	120
4.5	Allocating files in P2P networks	257
4.6	Packet scheduling with fragmentation	216
4.7	Selection of messages/packages in communication system	This paper
4.8	2D packing for mobile WiMAX (e.g., data location in IEEE 802.16/OFDMA)	55, 66, 57, 197, 206
4.9	Resource allocation in multispot MFTDMA satellite networks	4
V.	Some contemporary applications:	
5.1	Configuration of maintenance devices for satellite mission	115
5.2	Balanced combinatorial cooperative games	103, 104, 1268
5.3	Technology mapping in field-programmable gate array	120
5.4	Production scheduling	203, 139
Table 7. Main algorithmic approaches, part I: basic methods

No.	Solving approach	Some source(s)
I.	Fitting algorithms (i.e., classical ones) and their combinations:	
1.1	Next Fit (NF) algorithm	63, 67, 68, 120
1.2	Next-fit (NFD) decreasing algorithm	277
1.3	First-Fit (FF) (on-line)	12, 84
1.4	First-Fit decreasing (FFD) (off-line)	12, 83, 248
1.5	Best-Fit (BF) (on-line)	26, 84, 277
1.6	Best-Fit decreasing (BFD) algorithm (off-line)	248, 277
1.7	Worst Fit (WF) algorithm (makespan context)	67
1.8	Worst Fit decreasing (makespan context)	67
1.9	Shelf algorithms (for 2D bin packing problems)	13, 75

II.	Exact enumerative methods:	
2.1	Surveys	81
2.2	Branch-and-bound algorithms	91, 171, 214, 222, 240, 260
2.3	Branch-and-price algorithms	221, 262, 263
2.4	Exact column generation and branch-and-bound method	260, 263
2.5	Bin completion algorithm (bin-oriented branch-and-bound strategy)	114

III.	Basic approximation algorithms:	
3.1	Surveys	63, 68, 81, 1234
3.2	Near-optimal algorithms for bin packing	150, 224
3.3	Fast algorithms for bin packing	151
3.4	Linear-time approximation algorithms for bin packing	276
3.5	Efficient approximation scheme	156
3.6	Efficient approximation scheme for variable sized bin packing	215
3.7	Asymptotic Polynomial Time Approximation Scheme (APTAS)	14, 21, 106, 257
3.8	Asymptotic Fully Polynomial Time Approximation Scheme (AFPTAS)	14, 156
3.9	Augmented asymptotic PTAS	71
3.10	Robust APTAS (for classical bin packing)	99
3.11	Approximation schemes for multidimensional problems	181, 19

Using relations:
- (a) compatibility
- (b) precedence
- (c) preference

Usage of multiset estimates (e.g., [134, 137])

Design of solution trajectory (restructuring) (e.g., [181, 186])

- **Multicriteria** (multiobjective) problems
- **Problems with relations over items / bins**
- **Problems under uncertainty**
- **Dynamical (real-time) problems**

Basic multicontainer packing problems:
- (a) bin packing problem,
- (b) multiple knapsack problem,
- (c) bin covering problem (basic dual bin packing),
- (d) min-cost covering problem (multiprocessor or makespan scheduling)

Fig. 7. Examined extension trends in bin packing problems
Table 8. Main algorithmic approaches, part II: heuristics

No.	Solving approach	Some source(s)
IV.	Heuristics:	
4.1	Surveys and heuristics comparison	65,86,133
4.2	Basic heuristics	79,121,122,140,193,199
4.3	Local search algorithms	187,220
4.4	Greedy procedures	51
4.5	Variable neighborhood search procedures	63,109
4.6	Dynamic programming based heuristics	222
4.7	Simulated annealing based algorithms	221,154,254
4.8	Tabu search algorithms	61,196,240
4.9	GRASP algorithms	175
4.10	Ant colony algorithms	187
4.11	Average-weight-controlled bin-oriented heuristics	110
4.12	Set-covering-based heuristics	19,213
4.13	Bottom-left bin packing heuristic (for 2D problem)	45
4.14	Heuristic for 2D and 3D large bin packing	201
V.	Hybrid approaches, metaheuristics and hyper-heuristics:	
5.1	Hybrid approach, metaheuristics for 2D bin packing	77,137,140,141,193
5.2	Hyper-heuristics, generalized hyper-heuristics	247,255
5.3	Unified hyper-heuristic framework	200
5.4	Combinations of evolutionary algorithms and hyper-heuristics	42,198,236
5.5	Combination of Lagrangian relaxation and column generation	92

Table 9. Main algorithmic approaches, part III: online and evolutionary methods

No.	Solving approach	Some source(s)
VI.	Online and dynamic algorithms for bin packing:	
6.1	Survey of online algorithms for bin packing	101
6.2	Fully dynamic algorithms for bin packing	147
6.3	Simple on-line bin-packing algorithm	177
6.4	Online algorithms for variable sized bin packing	72,241,269
6.5	On-line algorithms for dual version of bin packing	73
6.6	On-line algorithm for multidimensional bin packing	74
VII.	Evolutionary approaches:	
7.1	Genetic algorithms/evolutionary based heuristics	20,28,42,139,166,251
7.2	Genetic algorithms in 2D packing problems	148
7.2	Mixed simulated annealing-genetic algorithm	178
	for 2D orthogonal packing	
7.3	Evolutionary particle swam optimization	189
	for multiobjective bin packing	
7.4	Hybrid genetic algorithms	231
7.5	Grouping genetic algorithms	238
7.6	Grouping genetical algorithm with controlled gene transmission	230
7.7	Hybrid grouping genetic algorithms	105
7.8	Nature inspired genetic algorithms	233
7.9	Histogram-matching approach to the evolution of	228
	bin-packing strategies for discrete sizes of item/bins	
7.10	Combinations of evolutionary algorithms and hyper-heuristics	42,198,236
2. Preliminary information

2.1. Basic problem formulations

The classical formal statement of BPP is the following (e.g., [150,151,152,259]). Given a bin \(S \) of size \(V \) and a list of \(n \) items with sizes \(a_1, \ldots, a_n \) to pack.

Find an integer number of bins \(B \) and a \(B \)-partition \(S_1 \cup \ldots \cup S_B \) of set \(\{1, \ldots, n\} \) such that \(\sum_{i \in S_k} a_i \leq V \) for all \(k = 1, \ldots, B \).

A solution is optimal if it has minimal \(B \). The \(B \)-value for an optimal solution is denoted \(\text{OPT} \) below.

A possible integer linear formulation of the problem is [203]:

\[
\min B = \sum_{i=1}^{n} y_i \\
\text{s.t. } B \geq 1, \quad \sum_{j=1}^{n} a_j x_{ij} \leq V y_i, \quad \forall i \in \{1, \ldots, n\} \quad \sum_{i=1}^{n} x_{ij} = 1, \quad \forall j \in \{1, \ldots, n\} \\
y_i \in \{0,1\}, \quad \forall i \in \{1, \ldots, n\} \quad x_{ij} \in \{0,1\}, \quad \forall i \in \{1, \ldots, n\}, \quad \forall j \in \{1, \ldots, n\}
\]

where \(y_i = 1 \) if bin \(i \) is used and \(x_{ij} = 1 \) if item \(j \) is put into bin \(i \).

2.2. Maximizing the number of packed items (inverse problems)

The inverse bin packing problem is targeted to maximization of the number of packed items. Here, two basic kinds of the problems have been considered:

(i) maximization of the number of packed items (the number of bins is fixed) (e.g., [58]);

(ii) “maximization” of the total preference estimate for packed items (the number of bins is fixed, (preference relation over item set) (e.g., [115]).

The description of inverse bin packing problem will be examined in further section.

2.3. Interval multiset estimates

Interval multiset estimates have been suggested by M.Sh. Levin in [183]. A brief description of interval multiset estimates is the following [183,185]. The approach consists in assignment of elements \((1, 2, 3, \ldots)\) into an ordinal scale \([1, 2, \ldots, l]\). As a result, a multi-set based estimate is obtained, where a basis set involves all levels of the ordinal scale: \(\Omega = \{1, 2, \ldots, l\} \) (the levels are linear ordered: \(1 > 2 > 3 > \ldots \)) and the assessment problem (for each alternative) consists in selection of a multiset over set \(\Omega \) while taking into account two conditions:

1. cardinality of the selected multiset equals a specified number of elements \(\eta = 1, 2, 3, \ldots \) (i.e., multisets of cardinality \(\eta \) are considered);

2. “configuration” of the multiset is the following: the selected elements of \(\Omega \) cover an interval over scale \([1, l]\) (i.e., “interval multiset estimate”).

Thus, an estimate \(e \) for an alternative \(A \) is (scale \([1, l]\), position-based form or form format): \(e(A) = (\eta_1, \eta_2, \ldots, \eta_l) \), where \(\eta_i \) corresponds to the number of elements at the level \(i \) (i.e. \(i = 1, \ldots, l \)), or \(e(A) = \{1, 2, \ldots, l\} \). The number of multisets of cardinality \(\eta \) with elements taken from a finite set of cardinality \(l \), is called the “multiset coefficient” or “multiset number” ([164,272]): \(\mu_l,\eta = \frac{l(l+1)(l+2)\ldots(l+\eta-1)}{\eta!} \). This number corresponds to possible estimates (without taking into account interval condition 2). In the case of condition 2, the number of estimates is decreased. Generally, assessment problems based on interval multiset estimates can be denoted as follows: \(P^l,\eta \).

A poset-like scale of interval multiset estimates for assessment problem \(P^{3,3} \) is presented in Fig. 8.
Fig. 8 illustrates the scale-poset and estimates for problem $P_{3,3}$ (assessment over scale $[1, 3]$ with three elements, estimates $(2, 0, 2)$ and $(1, 0, 2)$ are not used). For evaluation of multi-component system, multi-component poset-like scale composed from several poset-like scale may be used. Fig. 8b depicts the integrated poset-like scale for tree-component system (ordinal scale for system component compatibility is $[0, 1, 2, 3]$).

The following operations over multiset estimates are used as well: integration, vector-like proximity, aggregation, and alignment.

Integration of estimates (mainly, for composite systems) is based on summarization of the estimates by components (i.e., positions). Let us consider n estimates (position form): $e^i = (\eta^1_1, ..., \eta^i_1, ..., \eta^i_n)$, \ldots, estimate $e^n = (\eta^n_1, ..., \eta^n_1, ..., \eta^n_n)$. Then, the integrated estimate is: $e^I = (\eta^I_1, ..., \eta^I_1, ..., \eta^I_n)$, where $\eta^I = \sum_{\kappa=1}^{\kappa} \eta^\kappa \forall \kappa = 1, 7$. In fact, the operation $\{\}$ is used for multiset estimates: $e^I = e^1 \{ \ldots \} e^n$.

Further, vector-like proximity is described. Let A_1 and A_2 be two alternatives with corresponding interval multiset estimates $e(A_1)$, $e(A_2)$. Vector-like proximity for the alternatives above is: $\delta(e(A_1), e(A_2)) = (\delta^-(A_1, A_2), \delta^+(A_1, A_2))$, where vector components are: (i) δ^- is the number of one-step changes: element of quality $\kappa + 1$ into element of quality $\kappa + 1$ (this corresponds to “improvement”); (ii) δ^+ is the number of one-step changes: element of quality κ into element of quality $\kappa + 1$ (this corresponds to “degradation”). It is assumed: $|\delta(e(A_1), e(A_2))| = |\delta^-(A_1, A_2)| + |\delta^+(A_1, A_2)|$.

Now let us consider median estimates (aggregation) for the specified set of initial estimates (traditional approach). Let $E = \{e_1, ..., e_n\}$ be the set of specified estimates (or a corresponding set of specified alternatives), let \overline{D} be the set of all possible estimates (or a corresponding set of possible alternatives) ($E \subseteq \overline{D}$). Thus, the median estimates (“generalized median” M^g and “set median” M^*) are: $M^g = \arg\min_{M \in \overline{D}} \sum_{\kappa=1}^{\kappa} |\delta(M, e_\kappa)|; \ M^* = \arg\min_{M \in E} \sum_{\kappa=1}^{\kappa} |\delta(M, e_\kappa)|$.

In recent decade, the significance of multiset studies and applications has been increased. Some recent studies in multisets and their applications are pointed out in Table 9.
Table 9. Studies in multisets and their applications

No.	Research direction(s)	Source(s)
I.	Formal models, definitions:	
1.1	Basic definitions, development of multiset theory	32, 33, 164, 249, 272
1.2	Mathematics of multisets (axiomatic view, operations between multisets)	27, 85, 253
1.3	Multiset automata (Chomsky-like hierarchy of multiset grammars in terms of multiset automata)	76
1.4	High-level framework for the definition of visual languages (constraint multiset grammars)	202
1.5	Fuzzy multisets, their generalization, soft multisets theory	8, 20, 209, 211
1.6	Tolerance multisets	207
1.7	Multiset metric spaces	145, 225
1.8	Framework for multiset merging	39
1.9	Interval multiset estimates, operations over multisets (e.g., proximity, summarization, aggregation)	183, 185
1.10	Perturbation of multisets (measure of remoteness between multisets)	165
1.11	Multiset processing (general)	43
I.	Some applications:	
2.1	Multisets in database systems	173
2.2	Neural network processing of multiset data	208
2.3	Programs as multiset transformations	10, 17
2.4	Multiset rewriting systems	2, 88
2.5	Proving termination with multiset ordering	87, 136
2.6	Automatic construction of user interfaces	244
2.7	Clustering	210, 223, 225
2.8	Classification (e.g., classification of credit cardholders)	224
2.9	Applications in decision making (e.g., multicriteria ranking/sorting)	20, 223, 225
2.10	Processing of data streams	91, 126, 127
2.11	Evaluation of composite system(s)/alternative(s)	179, 180, 183, 185
2.12	Knapsack problem	183, 185
2.13	Multiple choice knapsack problem	183, 185
2.14	Combinatorial synthesis (morphological system design)	179, 180, 183, 185

2.4. Support model: morphological design with ordinal and interval multiset estimates

A brief description of combinatorial synthesis (Hierarchical Morphological Multicriteria Design - HMMD) with ordinal estimates of design alternatives is the following ([179, 180, 183, 185]). An examined composite (modular, decomposable) system consists of components and their interconnection or compatibility (IC). Basic assumptions of HMMD are the following: (a) a tree-like structure of the system; (b) a composite estimate for system quality that integrates components (subsystems, parts) qualities and qualities of IC (compatibility) across subsystems; (c) monotonic criteria for the system and its components; (d) quality of system components and IC are evaluated on the basis of coordinated ordinal scales. The designations are: (1) design alternatives (DAs) for leaf nodes of the model; (2) priorities of DAs ($i = 1, \ldots, l$; l corresponds to the best one); (3) ordinal compatibility for each pair of DAs ($w = 1, \ldots, v$ corresponds to the best one). Let S be a system consisting of m parts (components): $R(1), \ldots, R(i), \ldots, R(m)$. A set of design alternatives is generated for each system part above. The problem is:

Find a composite design alternative $S = S(1) \ast \ldots \ast S(i) \ast \ldots \ast S(m)$ of DAs (one representative design alternative $S(i)$ for each system component/part $R(i), i = 1, \ldots, m$) with non-zero compatibility between design alternatives.

A discrete “space” of the system excellence (a poset) on the basis of the following vector is used: $N(S) = (w(S); e(S))$, where $w(S)$ is the minimum of pairwise compatibility between DAs which correspond to different system components (i.e., $\forall R_{j_1}$ and R_{j_2}, $1 \leq j_1 \neq j_2 \leq m$) in S, $e(S) = (\eta_1, \ldots, \eta_l)$, where η_i is the number of DAs of the ith quality in S. Further, the problem is described...
as follows:

$$\max e(S), \max w(S), \quad s.t. \ w(S) \geq 1.$$

As a result, we search for composite solutions which are nondominated by $N(S)$ (i.e., Pareto-efficient). “Maximization” of $e(S)$ is based on the corresponding poset. The considered combinatorial problem is NP-hard and an enumerative solving scheme is used.

Here, combinatorial synthesis is based on usage of multiset estimates of design alternatives for system parts. For the resultant system $S = S(1) \ast \ldots \ast S(i) \ast \ldots \ast S(m)$ the same type of the multiset estimate is examined: an aggregated estimate (“generalized median”) of corresponding multiset estimates of its components (i.e., selected DAs). Thus, $N(S) = (w(S); e(S))$, where $e(S)$ is the “generalized median” of estimates of the solution components. Finally, the modified problem is:

$$\max e(S) = M^g = \arg \min_{M \in \mathcal{M}} \sum_{i=1}^{m} |\delta(M, e(S_i))|, \quad \max w(S), \quad s.t. \ w(S) \geq 1.$$

Enumeration methods or heuristics can be used (179,180,183,185).
3. Problems with multiset estimates

3.1. Some combinatorial optimization problems with multiset estimates

3.1.1. Knapsack problem with multiset estimates

The basic knapsack problem (i.e., “0−1 knapsack problem”) is (e.g., [120,159,203]): (i) given item set $A = \{1, \ldots, i, \ldots, m\}$ with parameters $\forall i \in A$: profit (or utility) γ_i, resource requirement (e.g., weight) a_i; (ii) given a resource (capacity) of knapsack b. Thus, the model is as follows:

$$\text{max} \sum_{i=1}^{m} \gamma_i x_i \quad \text{s.t.} \sum_{i=1}^{m} a_i x_i \leq b, \ x_i \in \{0,1\}, \ i = 1, m$$

where $x_i = 1$ if item i is selected, and $x_i = 0$ otherwise. Often nonnegative coefficients are assumed.

In the case of multiset estimates of item “utility” e_i, $i \in \{1, \ldots, i, \ldots, n\}$ (instead of γ_i), the following aggregated multiset estimate can be used for the objective function (“maximization”) (e.g., [183,185]):

(a) an aggregated multiset estimate as the “generalized median”, (b) an aggregated multiset estimate as the “set median”, and (c) an integrated multiset estimate. Knapsack problem with multiset estimates and the integrated estimate for the solution is (solution $S = \{i| x_i = 1\}$):

$$\text{max} e(S) = \bigcup_{i \in S} e_i, \quad \text{s.t.} \sum_{i=1}^{m} a_i x_i \leq b, \ x_i \in \{0,1\}.$$

In the case of objective function based on median estimate for solution, the problem is:

$$\text{max} e(S) = \max M = \arg \min_{M \in D} \bigcup_{i \in S} \delta(M, e_i) \quad \text{s.t.} \sum_{i=1}^{m} a_i x_i \leq b, \ x_i \in \{0,1\}.$$

In addition, it is reasonable to consider a new problem formulation while taking into account the number of the selected items (i.e. a special two-objective knapsack problem with multiset estimates) (solution $S = \{i| x_i = 1\}$):

$$\text{max} e(S) = \max M = \arg \min_{M \in D} \bigcup_{i \in S} \delta(M, e_i) \quad \max \sum_{i=1}^{n} x_i$$

$$\text{s.t.} \sum_{i=1}^{m} a_i x_i \leq b, \ x_i \in \{0,1\}.$$

Fig. 9 depicts the corresponding “two”-dimensional space of solution quality.

3.1.2. Multiple choice problem with interval multiset estimates

In multiple choice problem, items are divided into groups (without intersection) and items are selected in each group under total resource constraint (e.g., [120,159,203]). Here, one item is selected in each group. This version of multiple choice problem is (Boolean variable $x_{i,j}$ equals 1 if item (i, j) is selected):

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n_i} \gamma_{ij} x_{ij} \quad \text{s.t.} \sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{ij} x_{ij} \leq b, \ \sum_{j=1}^{n_i} x_{ij} = 1, \ i = 1, m, \ x_{ij} \in \{0,1\}.$$
A special case of multiple choice problem is considered \cite{183,185}: (1) multiset estimates of item “utility” \(e_{ij} \) (\(i = \overline{1,m}, \quad j = \overline{1,q_i}, \quad \forall i \)) (instead of \(c_{ij} \)); (2) an aggregated multiset estimate as the “generalized median” (or “set median”) is used for the objective function (“maximization”). The item set is: \(A = \bigcup_{i=1}^{m} A_i, \quad A_i = \{(i,1), (i,2), ..., (i,q_i)\} \). The solution is a subset of the initial item set: \(S = \{(i,j)|x_{ij} = 1\} \).

Formally,

\[
\max e(S) = \max M = \arg \min_{M \in \mathcal{D}} \sum_{(i,j) \in S \cap \{(i,j)|x_{ij} = 1\}} |\delta(M, e_{ij})|
\]

s.t.
\[
\sum_{i=1}^{m} \sum_{j=1}^{q_i} a_{ij}x_{ij} \leq b, \quad \sum_{j=1}^{q_i} x_{ij} = 1, \quad x_{ij} \in \{0,1\}.
\]

Evidently, this problem is similar to the above-mentioned combinatorial synthesis problem without compatibility of the selected items (objects, alternatives) \cite{183,185}.

3.1.3. Multiple knapsack problem with multiset estimates

The basic multiple knapsack problem is the following (e.g., \cite{19,20,141,159,203,226}): (i) item set \(A = \{1, ..., i, ..., m\} \); (ii) knapsack set \(B = \{B_1, ..., B_j, ..., B_k\} \) (\(k \leq m \)); (iii) parameters \(\forall i \in A: \) profit \(c_i \), resource requirement (e.g., weight) \(a_i \); and (iv) resource (capacity) of knapsack \(B_j \in B: b_j \). This problem is a special case of generalized assignment problem (multiple knapsack problem contains bin packing problem as special case). The model (i.e., “0 – 1 multiple knapsack problem”) is:

\[
\max \sum_{j=1}^{k} \sum_{i=1}^{m} a_{ij}x_{ij} \quad s.t. \quad \sum_{i=1}^{m} a_{ij}x_{ij} \leq b_j, \quad \forall j = \overline{1,k}, \quad \sum_{j=1}^{k} x_{ij} \leq 1, \quad \forall i = \overline{1,m}, \quad x_{ij} \in \{0,1\}, \quad i = \overline{1,m}, \quad j = \overline{1,k},
\]

where \(x_{ij} = 1 \) if item \(i \) is selected for knapsack \(B_j \), and \(x_{ij} = 0 \) otherwise.

In the case of multiset estimates, item “utility” \(e_i, i = \overline{1,m} \) (instead of \(c_i \)) is considered. Multiple knapsack problem with multiset estimates and the integrated estimate for the solution is (solution \(S = \{(i,j)|x_{ij} = 1\} \)):

\[
\max e(S) = \bigcup_{(i,j) \in S \cap \{(i,j)|x_{ij} = 1\}} e_i,
\]

s.t.
\[
\sum_{i=1}^{m} a_{ij}x_{ij} \leq b_j, \quad \forall j = \overline{1,k}, \quad \sum_{j=1}^{k} x_{ij} \leq 1, \quad \forall i = \overline{1,m}, \quad x_{ij} \in \{0,1\}, \quad i = \overline{1,m}, \quad j = \overline{1,k}.
\]

In the case of objective function based on median estimate for solution, the problem is:

\[
\max e(S) = \max M = \arg \min_{M \in \mathcal{D}} \bigcup_{(i,j) \in S \cap \{(i,j)|x_{ij} = 1\}} |\delta(M, e_i)|
\]

s.t.
\[
\sum_{i=1}^{m} a_{ij}x_{ij} \leq b_j, \quad \forall j = \overline{1,k}, \quad \sum_{j=1}^{k} x_{ij} \leq 1, \quad \forall i = \overline{1,m}, \quad x_{ij} \in \{0,1\}, \quad i = \overline{1,m}, \quad j = \overline{1,k}.
\]

In addition, it is reasonable to consider a new problem formulation while taking into account the number of the selected items (i.e., a special two-objective knapsack problem with multiset estimates) (solution \(S = \{(i,j)|x_{ij} = 1\} \)):

\[
\max e(S) = \max M = \arg \min_{M \in \mathcal{D}} \bigcup_{(i,j) \in S \cap \{(i,j)|x_{ij} = 1\}} |\delta(M, e_i)|
\]

\[
\max \sum_{i=1}^{n} x_{i,j}
\]

s.t.
\[
\sum_{i=1}^{n} a_{ij}x_{ij} \leq b_j, \quad \forall j = \overline{1,k}, \quad \sum_{j=1}^{k} x_{ij} \leq 1, \quad \forall i = \overline{1,m}, \quad x_{ij} \in \{0,1\}, \quad i = \overline{1,m}, \quad j = \overline{1,k}.
\]

Here, “two”-dimensional space of solution quality (Fig. 9) can be considered as well.
3.1.4. Assignment and generalized assignment problems with multiset estimates

The basic assignment problem is the following (e.g., [120, 246]). Simple assignment problem involves nonnegative correspondence matrix \(Y = [\gamma_{ij}] \) \((i = 1, m, j = 1, m)\) where \(c_{ij} \) is a profit (‘utility’) to assign element \(i \) to position \(j \). The problem is (e.g., [120]):

\[
\text{Find the assignment } \pi = (\pi(1), ..., \pi(m)) \text{ of elements } i (i = 1, m) \text{ to positions } \pi(i) \text{ which corresponds to a total effectiveness: } \sum_{i=1}^{m} \gamma_{i\pi(i)} \to \text{max}.
\]

The simplest algebraic problem formulation is:

\[
\max \sum_{i=1}^{m} \sum_{j=1}^{m} \gamma_{ij} x_{ij} \quad \text{s.t.} \quad \sum_{i=1}^{m} x_{ij} \leq 1, \, j = 1, m; \quad \sum_{j=1}^{m} x_{ij} = 1, \, i = 1, m; \quad x_{ij} \in \{0, 1\}, \, i = 1, m, \, j = 1, m.
\]

Here \(x_{ij} = 1 \) if element \(i \) is assigned into position \(j \), \(c_{ij} \) is a profit (‘utility’) of this assignment. The problem can be solved efficiently, for example, on the basis of Hungarian method (e.g., [169]). Note this problem is the matching problem for a bipartite graph (e.g., [120]).

In the generalized assignment problem, each item \(i (i = 1, m) \) can be assigned to \(k (k \leq m) \) positions (knapsacks, bins) and a capacity is considered for each position \(j (j = 1, k) \) (with corresponding capacity constraint \(\leq b_j \)) (Fig. 10).

![Fig. 10. Generalized assignment problem](image)

Formally,

\[
\max \sum_{i=1}^{m} \sum_{j=1}^{m} \gamma_{ij} x_{ij} \quad \text{s.t.} \quad \sum_{i=1}^{m} x_{ij} \leq 1, \, j = 1, k; \quad \sum_{j=1}^{k} x_{ij} \geq 1, \, i = 1, m; \quad x_{ij} \in \{0, 1\}, \, i = 1, m, \, j = 1, k.
\]

In the case of multiset estimates, item “utility” \(e_{ij} \) \((i = 1, m \quad j = 1, k)\) instead of \(c_{ij} \) is considered.

The generalized assignment problem with multiset estimates and the integrated estimate for the solution is (solution \(S = \{(i, j)|x_{ij} = 1\}\)):

\[
\max \sum_{(i,j)\in S} e_{ij}, \quad \text{s.t.} \quad \sum_{i=1}^{m} a_i x_{ij} \leq b_j, \, \forall j = 1, k; \quad \sum_{j=1}^{k} x_{ij} = 1, \, \forall i = 1, m; \quad x_{ij} \in \{0, 1\}, \, i = 1, m, \, j = 1, k.
\]

In the case of objective function based on median estimate for solution, the problem is:

\[
\max \sum_{(i,j)\in S} e_{ij}, \quad \text{s.t.} \quad \sum_{i=1}^{m} a_i x_{ij} \leq b_j, \, \forall j = 1, k; \quad \sum_{j=1}^{k} x_{ij} = 1, \, \forall i = 1, m; \quad x_{ij} \in \{0, 1\}, \, i = 1, m, \, j = 1, k.
\]
In addition, it is reasonable to consider a new problem formulation while taking into account the number of the selected items (i.e., a special two-objective generalized assignment problem with multiset estimates) (solution $S = \{(i, j)|x_{ij} = 1\}$):

$$\max e(S) = \max M = \arg \min_{M \in D} \left\{ \bigcup_{(i, j) \in S = \{(i, j)|x_{ij} = 1\}} \delta(M, e_i) \right\} \max \sum_{i=1}^{n} x_{i,j}$$

s.t. $\sum_{i=1}^{m} a_i x_{ij} \leq b_j, \forall j = 1, k, \sum_{j=1}^{k} x_{ij} = 1, \forall i = 1, m, x_{ij} \in \{0, 1\}, i = 1, m, j = 1, k.$

Here, “two”-dimensional space of solution quality (Fig. 9) can be considered as well.

3.2. Inverse bin packing problem with multiset estimates

Generally, the inverse bin packing problem can be formulated as multiple knapsack problem with equal knapsack (i.e., bins).

First, the basic inverse bin packing problem (with maximization of packed items), i.e., maximum cardinality bin packing problem, is considered as follows (e.g., [7,11,15,52,94,171,172,221]). Problem components are: (i) item set $A = \{1, ..., i, ..., m\}$; (ii) set of equal bins $B = \{B_1, ..., B_j, ..., B_k\}$ (usually, $k \leq m$); (iii) parameters $\forall i \in A$: profit γ_i, resource requirement (e.g., weight) a_i; and (iv) equal resource capacity of each bin $B_j \in B$: b. The model is:

$$\max \sum_{j=1}^{k} \sum_{i=1}^{m} \gamma_i x_{ij} \quad \text{s.t.} \quad \sum_{i=1}^{m} a_i x_{ij} \leq b, \forall j = 1, k, \sum_{j=1}^{k} x_{ij} \leq 1, \forall i = 1, m, x_{ij} \in \{0, 1\}, i = 1, m, j = 1, k,$$

where $x_{ij} = 1$ if item i is selected for knapsack B_j, and $x_{ij} = 0$ otherwise.

In the case of multiset estimates, item “utility” $e_i, i = 1, m$ (instead of c_i) is considered. The inverse bin packing problem with multiset estimates and the integrated estimate for the solution is (solution $S = \{(i, j)|x_{ij} = 1\}$):

$$\max e(S) = \bigcup_{(i, j) \in S = \{(i, j)|x_{ij} = 1\}} e_i,$$

s.t. $\sum_{i=1}^{m} a_i x_{ij} \leq b, \forall j = 1, k, \sum_{j=1}^{k} x_{ij} \leq 1, \forall i = 1, m, x_{ij} \in \{0, 1\}, i = 1, m, j = 1, k.$

In the case of objective function based on median estimate for solution, the problem is:

$$\max e(S) = \max M = \arg \min_{M \in D} \left\{ \bigcup_{(i, j) \in S = \{(i, j)|x_{ij} = 1\}} \delta(M, e_i) \right\}$$

s.t. $\sum_{i=1}^{m} a_i x_{ij} \leq b, \forall j = 1, k, \sum_{j=1}^{k} x_{ij} \leq 1, \forall i = 1, m, x_{ij} \in \{0, 1\}, i = 1, m, j = 1, k.$

The problem formulation while taking into account the number of the selected items (i.e., a special two-objective inverse bin packing problem with multiset estimates) (solution $S = \{(i, j)|x_{ij} = 1\}$) is:

$$\max e(S) = \max M = \arg \min_{M \in D} \left\{ \bigcup_{(i, j) \in S = \{(i, j)|x_{ij} = 1\}} \delta(M, e_i) \right\} \max \sum_{i=1}^{n} x_{i,j}$$

s.t. $\sum_{i=1}^{m} a_i x_{ij} \leq b, \forall j = 1, k, \sum_{j=1}^{k} x_{ij} \leq 1, \forall i = 1, m, x_{ij} \in \{0, 1\}, i = 1, m, j = 1, k.$

Here, “two”-dimensional space of solution quality (Fig. 9) can be considered as well.
3.3. Bin packing with conflicts

The bin packing problem with conflict consists in packing items into the minimum number of bins subject to incompatibility constraints. (e.g., [98,107,121,149,237]). The description of the problem is the following. Given a set of \(n \) items \(A \), corresponding their weights \(w_1, w_2, \ldots, w_n \), and a set of identical bins \((k = 1, 2, \ldots)\) with capacity \(b \). It can be assumed: \(w_1 \geq w_2 \geq \ldots \geq w_n \). Given conflict relation over items as conflict graph \(G = (A, E) \), where an edge \((\iota_1, \iota_2) \in E\) exists if and only if items \(\iota_1, \iota_2 \in A \) conflict or \(w_{\iota_1} + w_{\iota_2} \geq b \). Let \(y_k \) be a binary variable: \(y_k = 1 \) if bin \(k \) is used, and \(x_{\iota k} \) be a binary variable: \(x_{\iota k} = 1 \) if item \(\iota \) is assigned to bin \(k \). Formally,

\[
\min z = \sum_{i=1}^{n} y_k
\]

\[
\text{s.t.} \sum_{i=1}^{n} w_{i} x_{i k} \leq b y_k \forall k = 1, n; \quad \sum_{i=1}^{n} x_{i k} = 1 \forall \iota = 1, n; \quad x_{i_1 k} + x_{i_2 k} \leq 1 \forall (\iota_1, \iota_2) \in E, \forall k = 1, n;
\]

\(y_k \in \{0, 1\} \forall k = 1, n; \quad x_{i k} \in \{0, 1\} \forall \iota = 1, n, \forall k = 1, n. \)

Evidently, the problem generalizes the classic bin packing problem and is HP-hard (e.g., [203]).

In inverse bin packing problem (maximization of the number of packed items subject to fixed set of bins), the problem is as follows. Let \(\gamma_\iota \) be an importance (utility, profit) of packing item \(\iota \in A \). Formally,

\[
\max \sum_{i=1}^{n} \sum_{k=1}^{q} \gamma_\iota x_{i k}
\]

\[
\text{s.t.} \sum_{i=1}^{n} w_{i} x_{i k} \leq b \forall k = 1, n; \quad \sum_{i=1}^{n} x_{i k} \leq 1 \forall \iota = 1, n; \quad x_{i_1 k} + x_{i_2 k} \leq 1 \forall (\iota_1, \iota_2) \in E, \forall k = 1, n;
\]

\(x_{i k} \in \{0, 1\} \forall \iota = 1, n, \forall k = 1, n. \)

Let \(e_\iota \) be an importance multiset estimate (utility, profit) of packing item \(\iota \in A \). The inverse bin packing problem with multiset estimates and the integrated estimate for the solution is (solution \(S = \{(\iota, k)|x_{i k} = 1\} \)):

\[
\max e(S) = \bigcup_{(\iota, k) \in S = \{(\iota, k)|x_{i k} = 1\}} e_\iota,
\]

\[
\text{s.t.} \sum_{i=1}^{n} \sum_{k=1}^{q} w_{i, k} x_{i k} \leq b \forall k = 1, n; \quad \sum_{i=1}^{n} x_{i k} \leq 1 \forall \iota = 1, n; \quad x_{i_1 k} + x_{i_2 k} \leq 1 \forall (\iota_1, \iota_2) \in E, \forall k = 1, n;
\]

\(x_{i k} \in \{0, 1\} \forall \iota = 1, n, \forall k = 1, n. \)

In addition, objective function can be examine:

\[
\max \sum_{i=1}^{n} \sum_{k=1}^{q} x_{i k} \forall \iota = 1, n, \forall k = 1, n.
\]
4. Colored bin packing

4.1. Basic colored bin packing

Now consider the basic colored bin packing problem (e.g., [51,257]). A set of items \(A = \{a_1, ..., a_n\} \) of different sizes (e.g., \(w_i \in (0,1) \forall i = 1, n \)) is given. It is necessary to pack the items above into bins of equal size so that a few bins is used in total (at most \(\alpha \) times optimal), and that the items of each color span few bins (at most \(\beta \) times optimal). The obtained allocations are called \(\alpha, \beta \)-approximate.

The colored bin packing problem corresponds to many significant applications, for example (e.g., [257]): (1) allocating files in P2P networks, (2) allocating related jobs (i.e., related jobs are of the same color) to processors, (3) allocating related items in a distributed cache, and (4) allocating jobs in a grid computing system. Fig. 11 illustrates the colored bin packing problem: eleven items, three colors (\(\lambda, \mu, \theta \)). The illustrative solution is: (i) color \(\lambda \) for bin 1, bin 2; (ii) color \(\mu \) for bin 3; and (iii) color \(\theta \) for bin 4, bin 5.

![Initial items](image1)

![Bins (blocks, containers, knapsacks)](image2)

Fig. 11. Illustration for colored bin-packing

Recently, some versions of colored bin packing problem have been examined: (1) basic colored bin packing [51,257], (2) offline colored bin packing [257], (3) online colored bin packing [257], and (4) online bin coloring (packing with minimum colors) [167].

4.2. Two auxiliary graph coloring problems

4.2.1. Auxiliary vertex graph coloring problem with ordinal color proximity

First, the vertex coloring problem is considered as a basic one. The problem can be described as the following (e.g., [44,93,120,134,135,168,218,266]). Given undirected graph \(G = (A,E) \) (a node/vertices set \(A \) and an edge set \(E \), \(|A| = n \)). There is a set of colors (labels, numbers) \(X = \{x_1, ..., x_l\} \). Let \(C(G) = \{C(a_1), ..., C(a_i), ..., C(a_n)\} \) \((C_{a_i} \in X) \) (or \(< C(a_1) \ast ... \ast C(a_i) \ast ... \ast C(a_n) > \)) be a color configuration (i.e., assignment of a color for each vertex). The problem is:

\[
\text{Assign for each vertex } \forall a_i \in A \text{ label or color (i.e., } C(a_i) \text{) such that no edge connects two identical colored vertices, i.e., } \forall a_i, a_j \in A \text{ if } (a_i, a_j) \in E \text{ (i.e., adjacent vertices) then } C(a_i) \neq C(a_j).
\]

Thus, color configuration (e.g., \(C(G) = \{C(a_1), ..., C(a_i), ..., C(a_n)\} \)) for a given graph \(G = (A,E) \) is searched for. Clearly, \(|C(G)| \) equals the number of used colors (labels). (The minimal number of required colors for a graph \(G \) is called chromatic number of the graph \(\chi(G) \)). Note, other coloring problems can be transformed into the vertex version. Fig. 12 illustrates the vertex coloring problem: \(G = (A,E), A = \{p, q, u, v, w\}, E = \{(p, q), (p, u), (q, v), (u,v), (w, p)(w, q)(w, u)(w, v)\} \) and three colors \(\{x_1, x_2, x_3\} \) (i.e., corresponding indices for colors of vertices).
The resultant color configuration (solution) is: $C(G) = \{P_2, W_1, V_3, Q_3, U_3\}$. The number of possible resultant color configurations (three colors) equals 6:

1. $C^1(G) = \{P_1, W_2, V_1, Q_3, U_3\}$,
2. $C^2(G) = \{P_1, W_3, V_1, Q_2, U_2\}$,
3. $C^3(G) = \{P_3, W_2, V_3, Q_1, U_1\}$,
4. $C^4(G) = \{P_3, W_1, V_3, Q_2, U_2\}$,
5. $C^5(G) = \{P_2, W_1, V_2, Q_3, U_3\}$,
6. $C^6(G) = \{P_2, W_3, V_2, Q_1, U_1\}$.

In addition, an aggregated weight (e.g., additive aggregation function) of used colors (each color has its nonnegative weight $w(x_i) \forall x_i \in X$, $l = 1, k$) can be considered as well. As a result, the following minimization problem formulation can be examined:

$$\begin{align*}
\min_{\{C(G)\}} & \quad |C^* (G = (A, E))| \\
\text{s.t.} & \quad C^*(a_i) \neq C^*(a_j) \forall (a_i, a_j) \in E, \ i \neq j.
\end{align*}$$

This problem is NP-hard (e.g., [93][120][153][266]). Let $C^*(G) = \{c^*_y\}$ be the set of used colors (i.e., $C^*(G) \subseteq C^*(G)$). In the case of weighted colors (and additive aggregation function), the following model can be considered:

$$\begin{align*}
\min & \quad \sum_{c^*_y \in C^*(G)} w(c^*_y) \\
\text{s.t.} & \quad C^*(a_i) \neq C^*(a_j) \forall (a_i, a_j) \in E, \ i \neq j.
\end{align*}$$

Clearly, if $w(x_i) = 1 \forall x_i \in X$ this problem formulation is equivalent to the previous one. In the case of vector-like color weight

$$(w^1(c_y), ..., w^\mu(c_y), ..., w^\lambda(c_y)) \quad \forall c_y \in C$$

and additive aggregation functions, the objective vector function is:

$$(\sum_{c^*_y \in C^*(G)} w^1(c^*_y), ..., \sum_{c^*_y \in C^*(G)} w^\mu(c^*_y), ..., \sum_{c^*_y \in C^*(G)} w^\lambda(c^*_y))$$

and Pareto-efficient solutions by the vector function are searched for.

Generally, it may be prospective to consider a set of objective functions (criteria) as follows (e.g., [179][185]): (i) number of used colors, (ii) an aggregated weight of used colors, (iii) correspondence of colors to vertices (e.g., the worst correspondence, average correspondence) (e.g., [179]); (iv) quality of compatibility of colors, which were assigned to the neighbor (i.e., adjacent) vertices (e.g., the worst case, average case) (e.g., [179]); and (v) conditions at a distance that equals three, four, etc.

The author’s version of graph (vertex) coloring problem (while taking into account color compatibility and correspondence of colors to vertices) is described in [179] (numerical example, Fig. 13). Here, the solving approach is based on morphological clique problem (i.e., HMMD). Six colors are used: $x_1, x_2, x_3, x_4, x_5,$ and x_6. Estimates of correspondence of colors to vertices are shown in parentheses in Fig. 13 (1 corresponds to the best level). Table 10 contains compatibility estimates for colors (4 corresponds to the best level).
If the edge between vertices is absent the corresponding compatibility estimates of colors equal to the best level (i.e., 4 for vertex pair \((p, v)\)). Two examples of color combinations (color compositions) and their quality vectors are the following (Fig. 14):

(a) \(C^{*1}(G) = P_2 \ast Q_3 \ast V_3 \ast W_5 \), \(N(C^{*1}(G)) = (4; 1, 3, 0)\);
(b) \(C^{*2}(G) = P_3 \ast Q_5 \ast V_2 \ast W_4 \), \(N(C^{*2}(G)) = (2; 3, 1, 0)\);
(c) \(C^{*3}(G) = P_2 \ast Q_5 \ast V_2 \ast W_5 \), \(N(C^{*2}(G)) = (2; 3, 1, 0)\).

Table 10. Compatibility estimates of colors

	\(Q_1\)	\(Q_2\)	\(Q_3\)	\(Q_4\)	\(Q_5\)	\(V_1\)	\(V_2\)	\(V_3\)	\(V_4\)	\(V_5\)	\(W_1\)	\(W_2\)	\(W_3\)	\(W_4\)	\(W_5\)	
\(P_1\)	0	1	2	3	4	4	4	4	4	4	4	0	1	2	3	3
\(P_2\)	1	0	4	2	3	4	4	4	4	4	4	1	0	1	2	4
\(P_3\)	2	4	0	1	2	4	4	4	4	4	2	1	0	2	4	
\(P_4\)	3	2	1	0	3	4	4	4	4	4	4	3	2	1	0	2
\(P_5\)	4	3	2	3	0	4	4	4	4	4	4	3	2	3	2	
\(Q_1\)	0	1	2	3	4	0	1	2	3	3						
\(Q_2\)	1	0	4	2	3	1	0	1	2	4						
\(Q_3\)	4	1	4	1	2	2	1	0	1	4						
\(Q_4\)	3	2	1	0	3	2	1	0	2							
\(Q_5\)	4	3	2	3	0	4	3	2	3	3						
\(V_1\)	0	1	2	3	3											
\(V_2\)	1	0	1	2	4											
\(V_3\)	2	1	0	1	4											
\(V_4\)	3	2	1	0	2											
\(V_5\)	4	3	2	3	2											

Fig. 14. Poset-like scale for color configuration
4.2.2. Partition coloring problem

Here the partition coloring problem (i.e., selective graph clustering over clustered graph) is considered as a close auxiliary problem [113, 142, 188, 219]. The problem formulation is as follows. Given a non-directed graph \(G = (V, E) \), where \(V \) is the set of vertices (nodes) and \(E \) is the set of edges. Let \(\{V_1, V_2, ..., V_q\} \) be a partition of \(V \) into \(q \) subsets with \(V = \bigcup_{\iota=1}^{q} V_\iota \) and \(|V_\iota \cap V_{\iota+1}| = 0 \) \(\forall \iota_1, \iota_2 = 1, 2, ..., q \) with \(\iota_1 \neq \iota_2 \). Clearly, \(V_\iota \ (\forall \iota = 1, q) \) is a graph part or a graph component. The partition coloring problem is:

Find a subset \(V' \subseteq V \) such that \(|V' \cap V_\iota| = 1 \) \(\forall \iota = 1, q \) (i.e., \(V' \) contains one vertex from each component \(V_\iota \)), and the chromatic number of the graph induced in \(G \) by \(V' \) is minimum.

Evidently, the problem is a generalization of the graph coloring problem and belongs to class of NP-hard problems (e.g., [188]). Several formal models for this problem have been proposed: (a) binary integer programming problem (e.g., [112, 113, 142]), (b) model based on the independent set problem [142], and (c) two integer programming formulations using representatives [10].

Fig. 15 depicts an instance of partition coloring problem (graph with ten vertices and four graph parts). Here, the resultant colorings are (two colors: \(c_1, c_2 \)):

\[
Q^1 = <2(c_1), 6(c_2), 9(c_1), 5(c_2)>, \quad Q^2 = <2(c_2), 6(c_1), 9(c_2), 5(c_1)>.
\]

Some solving approaches proposed for the partition coloring problem are listed in Table 11.

![Fig. 15. Instance of partition coloring problem](image)

Table 11. Algorithms for partition coloring problem

No.	Approach	Source(s)
1.	Branch-and-price approach	[10, 112, 113, 142]
2.	Tabu search heuristic	219
3.	Two-phase heuristic	219
4.	Engineering heuristics	[188, 191]

In real world, this problem corresponds to routing and wavelength assignment in all-optical networks (i.e., computation of alternative routes for the lightpaths, followed by the solution of a partition colorings problem in a conflict graph) (e.g., [188, 191, 219]).

In fact, the partition coloring problem is very close to representative problems (e.g., [10]). Generally, this kind of problems is based on selection of elements from graph parts (components) (e.g., vertices) while taking into account compatibility of the selected elements (i.e., construction of a clique or quasi-clique). In addition, it is possible to examine some preference relation(s) over elements for graph part. Thus, the problem can be considered as a morphological clique problem (i.e., hierarchical morphological design or combinatorial synthesis) [179, 180, 185].

In the future, it may be very interesting to examine a new multistage partition coloring problem with costs of changes of vertex colors as restructuring of partition coloring problem. (i.e., a version of dynamical partition coloring problem).
5. Some applications

5.1. Composite planning framework in paper production system

Here a composite planning framework is described that was prepared by the author for a seminar of Institute for Industrial Mathematics in May 1992 (Beer Sheva, Israel). Fig. 16 depicts an illustrative solution of the composite planning problem for three machines.

In the problem, there are a set of paper horizontal bar for each machine. It is necessary to cut it (by special knifes) to obtain a set of 2D items of the required sizes and colors (by coloring). Seven colors are considered: white (col_1), blue (col_2), red (col_3), green (col_4), magenta (col_5), brown (col_6), and yellow (col_7). Table 12 contains ordinal estimates of color change: $col_i \Rightarrow col_j$ ($i = 1, 7, j = 1, 7$). Item parameters are presented in Table 13: twenty five 2D items (required items of required sizes and colors) (the width of the paper horizontal bar equals 20).

Evidently, two objective functions are considered:
(i) minimizing the volume of non-used domain in bins,
(ii) minimizing the total cost of color changes (e.g., as a total sum of color change estimates in the solution) (this function can be transformed to non-used bin domains as well).

Table 12. Ordinal estimates of color change ($col_i \Rightarrow col_j$)

$col_i \backslash col_j$	col_1	col_2	col_3	col_4	col_5	col_6	col_7
col_1 (white)	0	0	0	0	0	0	0
col_2 (blue)	4	0	4	2	1	3	
col_3 (red)	4	0	4	3	0	3	
col_4 (green)	4	4	4	0	3	0	5
col_5 (magenta)	4	0	3	4	0	0	3
col_6 (brown)	4	4	4	4	0	4	
col_7 (yellow)	2	0	2	3	1	0	0

The following heuristic solving scheme is considered:

Stage 1. Grouping of initial items by colors.
Stage 2. For each color: forming the general items (combinations of items of the same color) as packed bins (bin size equals 20). For the items in the same bin, their heights/lengths are about close. Some initial items can be integrated (as items 3 and 4 in the example, Fig. 16). Here, bin packing problem can be used. As a result, a set of general items (the same color for each item) are obtained. In Fig. 16, the following 8 general items are depicted: (i) items 1, 2, and 3 (color \(\text{col}_1 \)); (ii) items 5, 6, and 7 (color \(\text{col}_2 \)); (iii) items 8, 9, 10, and 11 (color \(\text{col}_3 \)); (iv) items 12, 13, and 14 (color \(\text{col}_4 \)); (v) items 15, 16, and 17 (color \(\text{col}_5 \)); (vi) items 18 and 19 (color \(\text{col}_6 \)); (vii) items 20, 21, and 22 (color \(\text{col}_7 \)); and (viii) items 23, 24, and 25 (color \(\text{col}_7 \)).

Stage 3. Forming the bins for each machine and for one period (from the general items): bin size corresponds to time period). Here bin packing problem can be used.

Stage 4. For each obtained bin: linear ordering of the generalized items while taking into account color changes. Here the traveling salesman problem can be used (while taking into account the ordinal estimates of color change as element distance, Table 12).

Item	Width	Height/length	Color	General item	Machine	Time interval
1	8	43	\(\text{col}_1 \)	I	1	1
2	5	30	\(\text{col}_1 \)	I	1	1
3	6	21	\(\text{col}_1 \)	I	1	1
4	5	21	\(\text{col}_1 \)	I	1	1
5	5	36	\(\text{col}_1 \)	II	1	2
6	7	33	\(\text{col}_1 \)	II	1	2
7	7	28	\(\text{col}_1 \)	II	1	2
8	4	25	\(\text{col}_5 \)	III	2	1
9	5	24	\(\text{col}_5 \)	III	2	1
10	6	23	\(\text{col}_5 \)	III	2	1
11	5	22	\(\text{col}_5 \)	III	2	1
12	5	26	\(\text{col}_2 \)	IV	2	2
13	8	25	\(\text{col}_2 \)	IV	2	2
14	5	23	\(\text{col}_2 \)	IV	2	2
15	8	26	\(\text{col}_6 \)	V	2	3
16	6	25	\(\text{col}_6 \)	V	2	3
17	5	23	\(\text{col}_6 \)	V	2	3
18	10	24	\(\text{col}_3 \)	VI	3	1
19	9	23	\(\text{col}_3 \)	VI	3	1
20	6	24	\(\text{col}_3 \)	VII	3	2
21	5	23	\(\text{col}_3 \)	VII	3	2
22	7	22	\(\text{col}_3 \)	VII	3	2
23	6	30	\(\text{col}_7 \)	VIII	3	3
24	8	27	\(\text{col}_7 \)	VIII	3	3
25	6	25	\(\text{col}_7 \)	VIII	3	3

Note the considered composite planning framework can be extended/modified to use in communication systems (e.g., multiple channel systems).

5.2. Planning in communication system

The basic multi-processor scheduling problems based on bin packing have been described in [59,60,69,143]. Here, some combinatorial planning problems as 2D bin packing for communications (one-channel communications, telecommunication WiMAX systems). Note, close problems are used in resource allocation in multispot satellite networks (e.g., [4]).

5.2.1. Selection of messages/information packages

First, the basic simplified planning problem can be considered as the well-known secretary problem. Given a set of items \(n \) (e.g., messages) \(A = \{a_1, ..., a_i, ..., a_n\} \), each item \(a_i \) has a weight \(w_i \) (e.g., time for processing). The problem is (Fig. 17):
Find the schedule (i.e., ordering of items as permutation) of the items from set \(A \):
\[
S = s[1], ..., s[i], ..., s[n] > (s[i]) \text{ corresponds to an item } a_i \text{ that is processed at the } i\text{-th place in schedule } S \text{ such that average completion time for each item } a_i \in A \text{ (i.e., sum of waiting time and processing time) is minimal: }
\[
t(S) = \frac{1}{n} \sum_{i=1}^{n} \tau_s[i], \text{ where the waiting time is as follows } (\tau_s[i] = w_s[i], \
\tau = \frac{T}{n}).
\]

Evidently, the algorithm to obtain the optimal solution is based on ordering of the items by non-decreasing of weight \(w_i \) (i.e., the item with minimal weight has to be processed as the 1st, and so on) (complexity estimate of the algorithm is \(O(n \log n) \)). This is the algorithm: ‘smallest weight first’.

Note, the solution can be defined by Boolean variables: \(x_{a_i,s[i]} \in \{0, 1\} \), where \(x_{a_i,s[i]} = 1 \) if item \(a_i \) is assigned into place \(s[i] \) in the solution. Thus, the solution is defined by Boolean matrix:
\[
X = ||x_{a_i,s[i]}||, \ i = 1, n, \ t = 1, n.
\]

![Fig. 17. Illustration for secretary problem](image)

Usually the described secretary problem is used for planning in one-channel communication system. In this case, there is a time interval (i.e., planning period) \(T \) and the initial set of items \(A \) is ordered to send via the channel. If all messages can be send during period \(T \) (i.e., \(\sum_{i=1}^{n} w_i \leq T \)) the considered algorithm can be successfully used. Unfortunately, if period \(T \) is not sufficient to send all message (i.e., \(\sum_{i=1}^{n} w_i \geq T \)), a subset of items with highest weights have to wait the next period (i.e., a wait set). Here, the problem can be formulated as a knapsack model:

\[
\min t(S) = \frac{1}{n} \sum_{i=1}^{n} \tau_s[i] \ x_{a_i,s[i]}, \quad \max \sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]}
\]

\[
s.t. \sum_{i=1}^{n} x_{a_i,s[i]} w_i \leq T, \quad \sum_{i} x_{a_i,s[i]} \leq 1 \quad \forall i = 1, n, \quad x_{a_i,s[i]} \in \{0, 1\}.
\]

Here, the algorithm above leads to the optimal solution. Note, the first objective function requires linear ordering of items in the solution by non-decreasing of \(w_i \) (as in previous problem).

After using the algorithm the items which do not belong to the solution can be considered as a wait set. Thus, it is reasonable to examine an extension of the problem above. Let each item \(a_i \in A \) has two parameters: (i) the weight (i.e., processing time) \(w_i \) and (ii) the number of wait periods \(\gamma_i = 0, 1, ... \). The problem statement can be considered as two-criteria knapsack model:

\[
\min t(S) = \frac{1}{n} \sum_{i=1}^{n} \tau_s[i] \ x_{a_i,s[i]}, \quad \max \sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]}, \quad \max \sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]} \ \gamma_i
\]

\[
s.t. \sum_{i=1}^{n} x_{a_i,s[i]} w_i \leq T, \quad x_{a_i,s[i]} \in \{0, 1\}.
\]

This problem is NP-hard. The selection of items for sending (i.e., solution) can be based on detection of Pareto-efficient items by two parameters: (a) minimum weight \(w_i \) (rule: smallest weight first) and (b) maximum number \(\gamma_i \) (rule: longest wait first). The following heuristic algorithm can be considered:

1. **Stage 1.** Definition \(\hat{A} = A \).

2. **Stage 2.** Deletion of Pareto-efficient items in \(\hat{A} \) by two parameters weight \(w_i \) (minimum) and importance \(\gamma_i \) (maximum) to obtain the subset \(A' \subseteq \hat{A} \) (the current items layer by Pareto rule).
Stage 3. Assignment of items from A^P to bins.
Stage 4. Definition subset $\hat{A} = A \setminus A^P$. If $|\hat{A}| = 0$ that GO TO Stage 5 Otherwise GO TO Stage 2.
Stage 5. Stop.

Complexity estimates for the above-mentioned version hierarchical clustering algorithm (by stages) is presented in Table 14.

Stage	Description	Complexity estimate (running time)
Stage 1	Definition $\hat{A} = A$.	$O(1)$
Stage 2	Deletion of current Pareto-efficient items layer $A^P \subseteq \hat{A}$ in \hat{A} (by parameters w_i and γ_i)	$O(n^2)$
Stage 3	Assignment of items from A^P to bins.	$O(n)$
Stage 4	$\hat{A} = A \setminus A^P$. If all items are processed GO TO Stage 2. Otherwise GO TO Stage 5.	$O(n)$
Stage 5	Stopping	$O(1)$

Afterhere, the first objective function $\min t(S) = \frac{1}{n} \sum_{i=1}^{n} \tau_{s[i]} x_{a_i,s[i]}$ will not be considered because items of the solution can be ordered to take into account the objective function.

Evidently, each item (message) can have other parameters, for example, importance (it will leads to an additional objective function in the model above). In this case, the model is:

$$\max \sum_{i=1}^{n} \sum_{i=1}^{n} \beta_{a_i} x_{a_i,s[i]}, \quad \max \sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]}, \quad \max \sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]} \gamma_i$$

s.t. $\sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]} w_i \leq T, \quad x_{a_i,s[i]} \in \{0,1\},$

where β_{a_i} is importance parameter of the corresponding item i. Note the importance parameter may be dependent on scheduling place $s[i]: \beta_{a_i,s[i]}$.

In the case of multiset estimate of the importance parameter $e_{a_i,s[i]}$, the model is:

$$\max M = \arg \min_{M \in D} \left\{ \bigcup_{i \in \{i | x_{a_i,s[i]} = 1\}} \delta(M,e_i), \quad \max \sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]}, \quad \max \sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]} \gamma_i \right\}$$

s.t. $\sum_{i=1}^{n} \sum_{i=1}^{n} x_{a_i,s[i]} w_i \leq T, \quad x_{a_i,s[i]} \in \{0,1\},$

In addition, precedence binary relation over items can be examined as well. This leads to an additional logical constraint in the model above and corresponding algorithm scheme is based on linear ordering of the selected items while taking account the precedence constraint.

5.2.2. Two-dimensional packing in WiMAX system

In recent decade, two-dimensional packing problems have been used in contemporary telecommunication systems (IEEE 802.16/WiMAX standard). An illustrative structure of WiMAX system is depicted in Fig. 18.
A general description of the above-mentioned approach is presented in [206] as follows. Information transmission process is based on rectangular frames “down link zones”: time (width) × frequency (height). Thus, data packages correspond to 2D items (i.e., rectangular) which are stored in “down link zones” (i.e., bins). In [206], a general three phase solving scheme is examined:

Phase 1. Selection of information packages (messages) for the current transmission period.
Phase 2. Arranging the selected packets into rectangular regions (as general items).
Phase 3. Allocation of the resultant regions to the rectangular frame.

Note, the above-mentioned phase 1 can be based on model and solving approach from the previous section as selection of Pareto-efficient messages (information packages) for the current transmission period. The allocation problem above (i.e., phase 3) is studied in [55,56,57] (including problem statement, complexity, heuristic algorithms, computing experiments). In mobile broadband wireless access systems like IEEE 802.16/WiMAX, Orthogonal Frequency Division Multiple Access (OFDMA) is used in order to exploit frequency and multi-user diversity (i.e., improving the spectral efficiency). MAC (medium access control) frame extends in two dimensions, i.e., time and frequency. At the beginning of each frame, i.e., every 5 ms, the base station is responsible both for scheduling packets, based on the negotiated quality of service requirements, and for allocating them into the frame, according to the restrictions imposed by 802.16 OFDMA.

Here, a two-stage solving scheme for resource allocation is applied (e.g., [55,56,57]): (a) scheduling of packets in a given time frame, (b) allocation of packets across different subcarriers and time slots. The second stage above can be examined as a special 2D bin packing problem [55,56,57].

Evidently, integrated solving scheme for the two above-mentioned stages is a prospective research direction. In general, it is necessary to study the integrated approach for three-phase for planning in WiMAX system from [206]. In addition, it may be prospective to examine ordinal and/or multiset estimates for problem elements including lattice-based quality domain(s) for problem solutions.
6. Conclusion

In this paper, a generalized integrated glance to bin packing problems is suggested. The approach is based on a system structural problem description: (a) element sets (i.e., item set, bin set, item subset assigned to bin), (b) binary relation over the sets above: relation over item set(s) as compatibility, precedence, dominance; relation over items and bins (i.e., correspondence of items to bins). Here, the following objective functions can be examined: (1) traditional functions (i.e., minimizing the number of used bins, maximizing the number of assigned items), (2) weighted and vector versions of the functions above, and (3) the objective functions based on lattices. Some new problem statements with multiset estimates of items are presented. Two applied examples are considered: (i) planning in paper industry, (ii) planning in communication systems (selection of messages, packing of massages in WiMAX).

Generally, it is necessary to point out the following. In recent decades there exists a trend in applied combinatorial optimization (e.g., [182,184,185]):

“FROM basic combinatorial problem TO composite framework consisting of several interconnected combinatorial problems”.

A well-known example of the composite frame is the following: timetabling problem that is usually based a combination of basic combinatorial optimization problems (e.g., assignment, clustering, graph coloring, scheduling). From this viewpoint, bin packing problems and their extensions/modifications can be examined as a basis of various applied composite frameworks. Thus, our material may be useful to build the applied composite frameworks above.

In the future, it may be reasonable to investigate the following research directions:
1. further examination of bin packing problems with multiset estimates;
2. study of various versions of colored bin packing problems (e.g., various color proximities, various objective functions);
3. examination of multi-stage bin packing problems (i.e., models, methods, applications);
4. examination of new applied composite frameworks based on bin packing problems;
5. execution of computing experiments to compare many solving schemes for various bin packing problems with ordinal/multiset estimates;
6. examination of multi-period (or cyclic) multi-channel scheduling problems based on various bin packing models;
7. study of resource allocation in multispot satellite networks on the basis of various bin packing problems;
8. analysis of applied multicriteria bin packing problems and bin packing problems with multiset estimates; and
9. usage of our material in educational courses (e.g., applied mathematics, computer science, engineering, management).
REFERENCES

1. A. Albano, G. Sappuro, Optimal allocation of two-dimensional irregular shapes using heuristic search methods. IEEE Trans. SMC, 10, 242–248, 1980.

2. A. Alhazov, S. Verlan, Minimization strategies for maximally parallel multiset rewriting systems. Theor. Comp. Sci. 412(17), 1581–1591, 2011.

3. S. Alkhazaleh, A.R. Salleh, N. Hassan, Soft multisets theory. Appl. Math. Sci. 5(72), 3561–3573, 2011.

4. S. Alouf, E. Altman, J. Galtier, J.-F. Lalande, C. Touati, Quasi-optimal resource allocation in multispot MFTDMA satellite networks. In: M.X. Cheng, Y. Li, D.-Z. Du (eds), Combinatorial Optimization in Communication Networks. Springer, 325–365, 2006.

5. F. Alvelos, T. Chan, P. Vilica, E. Silva, J.M. Valerio de Carvallo, Sequence based heuristics for two-dimensional bin packing problems. Engineering Optimization 41, 773–791, 2009.

6. A.C.F. Alvim, C.C. Robeiro, F. Glover, D.J. Aloise, A hybrid improvement heuristic for the one-dimensional bin packing problem. J. of Heuristics, 10(2), 205–229, 2004.

7. S. Assmann, D. Johnson, D. Kleitman, J. Leung, On a dual version of the one-dimensional bin packing problem. J. of Algorithms, 5, 502-525, 1984.

8. L. Babel, B. Chen, H. Kellerer, V. Kotov, Algorithms for on-line bin-packing problems with cardinality constraints. Discrete Applied Mathematics, 143(1-3), 238–261, 2004.

9. B. Babcock, M. Datar, R. Motwani, L. O’Callaghan, Maintaining variance and k-medians over data stream windows. In: Proc. of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, ACM, 234–243, 2003.

10. L. Bahiense, Y. Frota, N. Maculan, T.F. Noronha, C.C. Ribeiro, A branch-and-cut algorithm for the equitable coloring problem using a formulation by representatives. Disc. Appl. Math. 164, 34-46, 2014.

11. B.S. Baker, E.G. Coffman Jr., R.L. Rivest, Orthogonal packing in two dimensions. SIAM J. on Computing, 9, 846–855, 1980.

12. B.S. Baker, A new proof for the First-Fit Decreasing bin-packing algorithm. J. Algorithms, 6, 49–70, 1985.

13. B.S. Baker, J.S. Schwarz, Shelf algorithms for two-dimensional packing problems. SIAM J. Comput. 12, 508–525, 1983.

14. J. Balogh, J. Bekesi, G. Dosa, L. Epstein, H. Kellerer, A. Levin, Z. Tuza, Offline black and white bin packing. Theor. Comput. Sci. 596, 92–101, 2015.

15. J. Balogh, J. Bekesi, G. Dosa, L. Epstein, H. Kellerer, Z. Tuza, Online results for black and white bin packing. Theor. Comput. Syst. 56(1), 137–155, 2015.

16. J.-P. Banatre, A. Coutant, D. Le Metayer, A parallel machine for multiset transformation and its programming style. Future Generation Computer Systems, 4, 133–144, 1988.

17. J.-P. Banatre, D. Le Metayer, Programming by multiset transformation. Communications of the ACM, 36(1), 98–111, 1993.

18. N. Bansal, J.R. Correa, C. Kenyon, M. Sviridenko, Bin packing in multiple dimensions: inapproximability results and approximaiton schemes. Mathematics in Operations Research 31, 31–49, 2006.

19. N. Bansal, A. Caprara, M. Sviridenko, A new approximation method for set covering problems with applications to multidimensional bin packing. SIAM J. Comput. 39, 4, 1256-1278, 2009.

20. B. Bedregal, G. Beliakov, H. Bustince, T. Calvo, R. Mesiar, D. Paternain, A class of fuzzy multisets with fixed number of membership. Information Sciences 189, 1–17, 2012.

21. W. Bein, J.R. Correa, X. Han, A fast asymptotic approximation scheme for bin packing with rejection. Theor. Comput. Sci. 393, 14–22, 2008.

22. B. Beisiegel, J. Kallrath, Y. Kochetov, A. Rudnev, Simulated annealing based algorithm for the 2D bin packing problem with impurities. In: Operations Research Proceedings 2005, Selected Papers of the Annual Int. Conf. of the German Operations Research Society (GOR), 309–314, 2005.

23. G. Belov, Problems, models and algorithms in one-and two-dimensional cutting. PhD thesis, Otto-von-Guericke Universitat Magdeburg, 2003.

24. J.A. Bennell, J.F. Oliveira, A tutorial in irregular shape packing problems. J. of the ORS, 60, S93–S105, 2009.

25. J.A. Bennell, X. Song, A beam search implementation for the irregular shape packing problem. J. of Heuristics, 16(2), 167–188, 2010.
26. J.A. Bennell, L.S. Lee, C.N. Potts, A genetic algorithm for two-dimensional bin packing with due dates. Int. J. of Production Research 145(2), 547–560, 2013.
27. K. Beyer, R. Gemulla, P.J. Haas, B. Reinwald, Y. Sismanis, Distinct-value synopses for multiset operations. Comm. of the ACM 52(10), 87–95, 2009.
28. A.K. Bhatia, S.K. Basu, Packing bins using multi-chromosomal genetic representation and better fit heuristic. In: Neural Information Processing, LNCS 3316, Springer, 181-186, 2004.
29. V. Bilo, On the packing of selfish items. In: Proc. of the 20th Int. Parallel and Distributed Processing Symp. IPDPS'06, IEEE, 2006.
30. E.G. Birgin, J.M. Martinez, D.P. Ronconi, Optimizing the packing of cylinders into a rectangular container: A nonlinear approach. EJOR 160(1), 19–33, 2005.
31. J. Blazewicz, P. Hawryluk, R. Walkowiak, Using a tabu search approach for solving the two-dimensional irregular cutting problem. Annals of Oper. Res. 41, 313–327, 1993.
32. W.D. Blizard, Multiset theory. Notre Dame J. of Formal Logic, 30(1), 36–66, 1988.
33. W.D. Blizard, The development of multiset theory. Modern Logic, 1, 319–352, 1991.
34. M. Bohm, J. Sigall, V. Vesely, Online colored bin packing. In: Proc. 12th Int. Workshop on Approximation and Online Algorithms WADA 2014, 35–46, 2014.
35. J. Boyar, L.M. Favrholdt, K.S. Larsen, M.N. Nielsen, The competitive ratio for on-line dual bin packing with restricted input sequences. Nordic Journal of Computing, 8(4), 463–472, 2001.
36. J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wohlk, The maximum resource bin packing problem. Theor. Comput. Sci. 362(1-3), 127–139, 2006.
37. J. Boyar, L.M. Favrholdt, A new variable-sized bin packing problem. J. Scheduling 15(3), 273–287, 2012.
38. J. Boyar, S. Lamali, K.S. Larsen, A. Lopez-Ortiz, Online bin packing with advice. Algorithmica 74(1), 507–527, 2016.
39. A. Bronselaer, D. Van Britsom, G. De Tre, A framework for multiset merging. Fuzzy Sets and Systems, 191, 1–20, 2012.
40. A.R. Brown, Optimal Packing and Depletion. American Elsevier, New York, 1971.
41. J.I. Bruno, P.J. Downey, Probabilistic bounds for dual bin packing. Acta Informatica, 22, 333–345, 1985.
42. E.K. Burke, M.R. Hyde, G. Kendall, Evolving bin packing heuristics with genetic programming. In: T.P. Runarsson et al. (Eds.), Proc. of Conf. PPSN IX, LNCS 4193, Springer, 860-869, 2006.
43. C.S. Calude, G. Paun, G. Rozenberg, A. Salomaa (eds), Multiset Processing. LNCS 2235, Springer, 2001.
44. M. Campelo, R. Correa, Y. Frota, Cliques, holes and the vertex coloring polytope. Information Proc. Lett. 89(4), 159–164, 2004.
45. M. Casazza, A. Ceselli, Mathematical programming algorithms for bin packing problems with item fragmentation. Computers and Operations Research, 46, 1-11, 2014.
46. D.G. Cattrisse, L.N. Van Wassenhove, A survey of algorithms for the generalized assignment problem. EJOR 60(3), 260–272, 1992.
47. C. Charalambous, K. Fleszar, A constructive bin-oriented heuristic for the two-dimensional bin packing problem with guillotine cuts. Comp. and Oper. Res. 38(10), 1443–1451, 2011.
48. B. Chazelle, The bottom-left bin packing heuristic: an efficient implementation. IEEE Trans. Comput. 32, 697–707, 1983.
49. C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. on Computing, 35(3), 713–728, 2005.
50. N. Christofides, A. Mingozzi, P. Toth, Loading problems. In: N. Christofides, A. Mingozzi, P. Toth, C. Sandi (eds.), Combinatorial Optimization. Wiley, Chichester, 1979.
51. F. Chung, R. Graham, R. Bhagwan, S. Savage, G.M. Voelker, Maximizing data locality in distributed systems. J. Comput. System Sci. 72(8), 1309–1316, 2006.
52. Y. Chung, Inverse bin-packing number problems: NP-hardness and approximation algorithms. Management Science and Financial Engineering 18(2), 19–22, 2012.
53. F. Chung, M. Garey, D. Johnson, On packing two-dimensional bins. SIAM J. Alg. Disc. Meth. 3(1), 66-70, 1982.
54. A.M. Chwatal, S. Pirkwieser, Solving the two-dimensional bin-packing problem with variable bin
sizes by greedy randomized adaptive search procedures and variable neighborhood search. In: Proc. 13th Int. Conf. Computer Aided System Theory - EUROCAST 2011, LNCS 6921, Springer, part I, 456–463, 2011.

55. C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, M. Monaci, Efficient two-dimensional data location in IEEE 802.16 OFDMA. In: Proc. of IEEE INFOCOM 2010, 2160–2168, 2010.

56. C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, M. Monaci, A fast and efficient algorithm to exploit multi-user diversity in IEEE 802.16 BandANMC. Comp. Netw. 55(16), 3680–3693, 2011.

57. C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, M. Monaci, Efficient two-dimensional data allocation in IEEE 802.16 OFDMA. IEEE/ACM Trans. Netw. 22(5), 1645–1658, 2014.

58. E.G. Coffman Jr., J. Y.-T. Leung, D.W. Ting, Bin packing: Maximizing the number of pieces packed. Acta Informatica 9, 263–271, 1978.

59. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, An application of bin-packing to multiprocessor scheduling. SIAM J. Comput., 7(1), 1–17, 1978.

60. E.G. Coffman Jr., J. Y.-T. Leung, Combinatorial analysis of an efficient algorithm for processor and storage allocation. SIAM J. Comput., 8(2), 202–217, 1979.

61. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Dynamic bin packing. SIAM J. Comput. 12(2), 227–258, 1983.

62. E.G. Coffman Jr., D.S. Johnson, P.W. Shor, R.R. Weber, Bin packing with discrete item sizes, part II: Tight bounds on First Fit. Random Structures and Algorithms 10, 69–101, 1997.

63. E.G. Coffman Jr., J. Csirik, G.J. Woeginger, S. Martello, D. Vigo, Bin packing approximation algorithms: combinatorial analysis. In: P.M. Pardalos, D.-Z. Du, R.L. Graham (eds), Handbook of Combinatorial Optimization, 2nd ed., Springer, 455–531, 2013.

64. Y.J. Darapuneni, A Survey of Classical and Recent Results in Bin Packing Problem. MS Thesis, Dept. of CS, Howard R. Hughes College of Engineering, University of Nevada, Las Vegas, 2012.

65. Z. Dai, J. Cha, J. Yuan, An octree-based heuristic algorithm for 3-D packing. Advances in Design
Automation, 69(2), 125–133, 1994.
80. M. Dell’Amico, Jose Carlos Diaz Diaz, M. Iori, The bin packing problem with precedence constraints. Oper. Res., 60(6), 1491–1504, Dec. 2012.
81. M. Delorme, M. Iori, S. Martello, Bin Packing and Cutting Stock Problems: Mathematical Models and Exact Algorithms, Research Report OR-15-1 University of Bologna, 2015.
82. G. Dosa, L. Epstein, Generalized selfish bin packing. Electronic preprint. 43 p., Feb. 18, 2012. http://arxiv.org/abs/1202.4080 [cs.GT]
83. G. Dosa, R. Li, X. Han, Z. Tuza, Tight absolute bound for First Fit Decreasing bin-packing: $\text{FFD} (1) \leq \frac{11}{9} \text{opt} (1) – 6/9$. Theor. Comput. Sci. 510, 12–61, 2013.
84. G. Dosa, J. Szegedy, Optimal analysis of Best Fit bin packing. In: Automatica, Languages, and Programming, Springer, 429–441, 2014.
85. A. Dovier, E.G. Policriti, G. Rossi, A uniform axiomatic view of lists, multisets, and sets, and the relevant unification algorithms. Fundamenta Informaticae 36(2/3), 201–234, 1998.
86. W.B. Dowsland, Three-dimensional packing-solution approaches and heuristic development. Int. J. of Production Research 29, 1673–1685, 1991.
87. N. Drershowitz, Z. Manna, Proving termination with multiset ordering. Commun. of the ACM, 22(8), 465–476, 1979.
88. N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov, Multiset rewriting and the complexity of bounded security protocols. J. of Computer Security, 12(2), 247–311, 2004.
89. H. Dyckhoff, A typology of cutting and packing problems. EJOR 44(2), 145-159, 1990.
90. H. Dyckhoff, U. Finke, Cutting and Packing in Production and Distribution: a Typology and Bibliography. Springer, Berlin, 1992.
91. S. Eilon, N. Christofides, The loading problem. Management Science, 17(5), 259-268, 1971.
92. S. Elhedhli, F. Gzara, Characterizing the optimality gap and the optimal packings for the bin packing problem. Optimization Letters, 9(2), 209-223, 2015.
93. T.R. Ensen, B. Toft, Graph coloring problems. Wiley, New York, 1995.
94. L. Epstein, L.M. Favrholdt, On-line maximizing the number of items packed in variable-sized bins. Acta Cybern. 16(1), 57–66, 2013.
95. L. Epstein, Online bin packing with cardinality constraints. SIAM J. on Comput. 20(4), 1015–1030, 2006.
96. L. Epstein, Bin packing with rejection revised. In: Proc. of the 4th Workshop on Approximation and Online Algorithms WAOA 2006, 146–159, 2006.
97. L. Epstein, A. Levin, More on online bin packing with two item sizes. Disc. Optim. 5(4), 705–713, 2008.
98. L. Epstein, A. Levin, On bin packing with conflicts. SIAM J. on Optimization 19(3), 1270–1298, 2008.
99. L. Epstein, A. Levin, A robust APTAS for the classical bin packing problem. Math. Program. 119(1), 33–49, 2009.
100. L. Epstein, E. Kleinberg, Selfish bin packing. Algorithmica, 60(2), 368–394, 2011.
101. L. Epstein, L.M. Favrholdt, J.S. Kohrt, Comparing online algorithms for bin packing problems. J. of Scheduling 15(1), 13–21, 2012.
102. L. Epstein, Selfish bin packing problems. In: M.-Y. Kao (ed), Encyclopedia of Algorithms, 2nd ed., Springer, 1927–1930, 2016.
103. U. Faigle, W. Kern, On some approximately balanced combinatorial cooperative games. Methods and Models of Operations Research 38, 141–152, 1993.
104. U. Faigle, W. Kern, Approximate core allocation for bin packing games. SIAM J. on Discrete Mathematics 11, 387–399, 1998.
105. E. Falkenauer, A hybrid grouping genetic algorithm for bin packing. J. of Heuristics 2(1), 5–30, 1996.
106. W. Fernandez de la Vega, G.S. Lueker, Bin packing can be solved within $1 + \varepsilon$ in linear time. Combinatorica 1(4), 349–355, 1981.
107. A.E. Fernandez Muritiba, M. Iori, E. Malaguti, P. Toth, Algorithms for the bin packing problem with conflicts. INFORMS J. on Computing, 22(3), 401-415, 2010.
108. A. Fernandez, G. Consolacion, R. Banos, M.G. Montoya, A parallel multi-objective algorithm for two-dimensional bin packing with rotations and load balancing. ESwA 40(13), 5169-5180, 2013.
109. K. Fleszar and K.S. Hindi. New heuristics for one-dimensional bin-packing. Comp. and Oper. Res.,
110. K. Fleszar and C. Charalambous, Average-weight-controlled bin-oriented heuristics for the one-dimensional bin-packing problem. EJOR 210(2), 176-184, 2011.
111. D.K. Friesen, M.A. Langston, Variable sized bin packing. SIAM J. Comput. 15(1), 222–230, 1986.
112. Y. Frota, N. Maculan, T. Noronha, C. Ribeiro, A branch-and-cut algorithm for partition coloring. In: Proc. of the Int. Network Optimization Conf., Spa, Belgium, Apr. 2007.
113. Y. Frota, N. Maculan, T.F. Noronha, C. Ribeiro, A branch-and-cut algorithm for partition coloring. Networks, 55(3), 194–204, 2010.
114. A.S. Fukunaga, R.E. Korf, Bin completion algorithms for multicontainer packing, knapsack, and covering problems. J. of Artificial Intelligence Research 28, 393–429, 2007.
115. E.M. Furems, Packing Models in Multicriteria Decision Making Problems under Constrained Resources. Preprint, Inst. for System Analysis, Moscow, 1986 (in Russian).
116. E.M. Furems, Reverse bin packing problem with quality criteria - statement and survey of approaches. Artificial Intelligence and Decision Making, Issue 3, 2016 (in Russian) (in press).
117. G. Galambos, H. Kellerer, G.J. Woeginger, A lower bound for on-line vector packing algorithms. Acta Cybernetica, 11, 23–34, 1994.
118. G. Gambosi, A. Postiglione, M. Talamo, Algorithms for the relaxed bin-packing model. SIAM J. on Computing 30(5), 1532–1551, 2000.
119. M.R. Garey, R.L. Graham, D.S. Johnson, A.C.C. Yao, Resource constrained scheduling as generalized bin packing. J. of Combinatorial Theory (A), 21, 257–298, 1976.
120. M.R. Garey, D.S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.
121. M. Gendreau, G. Laporte, F. Semmet, Heuristics and lower bounds for the bin packing problem with conflicts. Comp. and Oper. Res. 31(3), 347–358, 2004.
122. I. Gent, Heuristic solution of open bin packing problems. J. of Heuristics 3, 299–304, 1998.
123. P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem II. Oper. Res. 11, 863–888, 1963.
124. L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, Z. Zhu, Approximation algorithms for data placement on parallel discs. In: Proc. of the Eleventh Annual ACM-SIAM Symp. on Discrete Algorithms SODA’00, SIAM, 223–232, 2000.
125. A.V. Goodchild, C.E. Daganzo, Double-cycling strategies for container ships and their effect on ship loading and unloading operations. Transportation Science 40(4), 473–483, 2006.
126. S. Guha, N. Mishra, R. Motwani, L. O’Callaghan, Clustering data streams. In: Proc. of the 41st Annual IEEE Symp. on Foundations of Computer Science (FOCS), 359–366, 2000.
127. S. Guha, N. Koudas, K. Shim, Data streams and histograms. In: Proc. ACM STOC, 471–475, 2001.
128. G. Gutin, T. Jensen, A. Yeo, Batched bin packing. Discrete Optim. 2(1), 71–82, 2005.
129. G. Gutin, T. Jensen, A. Yeo, On-line bin packing with two item sizes. Algorithmic Operations Research 1(2), 72–78, 2006.
130. R.W. Hall, Vehicle packing. Transportation Research Part B: Methodological, 23(2), 103–121, 1989.
131. W. Han, J.A. Bennell, X. Zhao, X. Song, Construction heuristics for two-dimensional irregular shape bin packing with guillotine constraints. EJOR 230(3), 495–504, 2013.
132. W. Han, G. Dosa, H.F. Ting, D. Ye, Y. Zhang, A note on a selfish bin packing problem. J. of Global Optimization, 56(4), 1457–1462, 2013.
133. M. Haouari, M. Serairi, Heuristics for the variable sized bin-packing problem. Comp. and Oper. Res. 36, 2877–2884, 2009.
134. F. Harary, Graphs theory. Addison Wesley, Readings, MA, 1969.
135. F. Harary, J. Maybee (eds), Graphs and Applications. Wiley, New York, 1985.
136. D. Hofbauer, Termination proofs by multiset path orderings imply primitive recursive derivation lengths. Theoretical Computer Science 105(1), 129–140, 1992.
137. S. Hong, D. Zhang, H.C. Lau, X. Zeng, Y.-W. Si, A hybrid heuristic algorithm for the 2D variable-sized bin packing problem. EJOR, 238(1), 95–103, 2014.
138. E. Hopper, B. Turton, Application of genetic algorithms to packing problems - a review. In: P.K. Chawdry, R. Roy, R.K. Kant (eds.), Proc. of the 2nd On-line World Conference on Soft Computing in Engineering Design and Manufacturing, Springer, 279-288, 1997.
139. E. Hopper, B.C.H. Turton, A genetic algorithm for a 2D industrial packing problem. Computers and Industrial Engineering 37(1-2), 375–378, 1999.

140. E. Hopper, B.C.H. Turton, An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. EJOR 128(1), 34–57, 2001.

141. E. Hopper, B.C.H. Turton, A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artif Intell. Rev. 16(4), 257–300, 2001.

142. E.A. Hoshino, Y.A. Frota, C.C. de Souza, A branch-and-price approach for the partition coloring problem. Oper. Res. Lett. 39(2), 132–137, 2011.

143. R. Hubscher, F. Glover, Applying tabu search with influential diversification to multiprocessor scheduling. Comp. and Oper. Research 21(8), 877–884, 1994.

144. M.S. Hung, J.C. Fisk, An algorithm for zero-one multiple knapsack problems. Naval Research Logistics Quarterly, 24, 571–579, 1978.

145. A.M. Ibrahim, D. Singh, J.N. Singh, Parametrized multiset metric spaces in a cardinality-bounded multiset universe. International Mathematical Forum, 7(59), 2943–2952, 2012.

146. A. Imai, E. Nishimura, S. Papadimitrious, The dynamic berth allocation problem for a container port. Trans. Res. Part B, 35, 401–417, 2001.

147. Z. Ivkovic, E.L. Lloyd, Fully dynamic algorithms for bin packing: Being (mostly) myopic helps. SIAM J. Comput. 28(2), 574–611, 1998.

148. S. Jain, G.H. Chang, Two dimensional packing problems using genetic algorithms. Engineering with Computers, 14(3), 206–213, 1998.

149. K. Jansen, An approximation scheme for bin packing with conflicts. J. of Combinatorial Optimization, 3, 363–377, 1999.

150. D.S. Johnson, Near-optimal bin-packing algorithm. Doctoral Thesis, Dept. of Mathematics, MIT, Cambridge, Mass., 1973.

151. D.S. Johnson, Fast algorithms for bin packing. J. of Comp. and Syst. Sci., 8(3), 272–314, 1974.

152. D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham, Worst-case performance bounds for simple one-dimensional packing algorithm. SIAM J. Optim. 3(4), 299–325, Dec. 1974.

153. D.S. Johnson, M.A. Trick (eds), Cliques, Coloring, and Satisfiability. DIMACS Ser. in Discrete Math. and Theoretical Comput. Sci., vol. 26, AMS, Providence, 1996.

154. T. Kampke, Simulated annealing: use of a new tool in bin packing. Annals of Operations Research, 16(1), 327–332, 1988.

155. J. Kang, S. Park, Algorithms for the variable sized bin packing problem. EJOR 147(2), 365–372, 2003.

156. N. Karmarkar, R.M. Karp, An efficient approximation scheme for the one-dimensional bin-packing problem. In: Proc. of the 23rd Annual Symp. on Foundations of Comp. Sci. FOCS’82, 312–320, 1982.

157. R.M. Karp, Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of Computer Computations. Plenum, pp. 85–103, 1972.

158. S. Kashyap, S. Khuller, Algorithms for non-uniform size data placement on parallel discs. J. Algorithms 60(2), 144–167, 2006.

159. H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.

160. W. Kern, X. Qiu, Integrality gap analysis for bin packing games. Oper. Res. Lett. 40(5), 360–363, 2012.

161. K.H. Kim, J.S. Kang, K.R. Ryu, A beam search algorithm for the load sequencing of outbound containers in port container terminals. Oper. Res. Spectrum, 26(10), 93–116, 2004.

162. N.G. Kinnerseley, M.A. Langston, Online variable-sized bin packing. Discrete Applied Mathematics 22(2), 143–148, 1988-1989.

163. E. Kleiman, Packing, Scheduling and Covering Problems in a Game-Theoretic Perspective. PhD Thesis, Dept. of Mathematics, Faculty of Natural Sciences, Univ. of Haifa, 2011.

164. Knuth D.E., The Art of Computer Programming. Vol. 2, Seminumerical Algorithms. Addison Wesley, Reading, 1998.

165. M. Krawczak, G. Szkatua, On perturbation of multisets. In: Proc. of 2015 IEEE Symp. on Computational Intelligence, 1583–1589, 2015.

166. B. Kroger, Guillotineable bin packing - a genetic approach. EJOR 84, 645–661, 1995.

167. S.O. Krumke, W. de Paepe, J. Rambau, L. Stougie, Online bin coloring. In: Proc. of the 9th Annual
Eur. Symp. on Algorithms ESA’01, Springer, London, 74–85, 2001.
168. M. Kubale, Graph Colorings. AMS, Providence, 2004.
169. H.W. Kuhn, The Hungarian method for the assignment problems. Nav. Res. Log., 1955, vol. 2, no. 1–2, pp. 83–97 (reprinted in Nav. Res. Log., 2005, vol. 52, no. 1, pp. 7–21).
170. J. Kuijpers, Bin packing games. Mathematical Methods and Operations Research 47, 499–510, 1998.
171. M. Labbe, G. Laporte, S. Martello, An exact algorithm for the dual bin packing problem. Operations Research Letters, 17(1), 9–18, 1995.
172. M. Labbe, G. Laporte, S. Martello, Upper bounds and algorithms for the maximum cardinality bin packing problem. EJOR 149(3), 490–498, 2003.
173. G. Lamperti, M. Melchiori, M. Zanella, On multisets in database systems. In: C.S. Calude, G. Paun, G. Rozenberg, A. Salomaa (eds) Multiset Processing. LNCS 2235, Springer, 147–216, 2001.
174. G. Laporte, S. Desroches, Examination timetabling by computer. Comp. and Oper. Res., 11, 351–360, 1984.
175. A. Layeb, S. Chenche, A novel GRASP algorithm for solving the bin packing problem. Int. J. Information Engineering and Electronic Business, 2, 8–14, 2012.
176. A. Layeb, S.R. Boussalia, A novel quantum inspired cuckoo search algorithm for bin packing problem. Int. J. Information Technology and Computer Science, 5, 58–67, 2012.
177. C.C. Lee, D.T. Lee, A simple on-line bin-packing algorithm. J. of the ACM, 32(3), 562–572, 1985.
178. T.W. Leung, C.H.A. Yung, M.D. Troutt, Applications of mixed simulated annealing-genetic algorithm for the two-dimensional orthogonal packing problem. Comput. & Ind. Eng., 40, 201–214, 2003.
179. M.Sh. Levin, Combinatorial Engineering of Decomposable Systems. Springer, 1998.
180. M.Sh. Levin, Composite Systems Decisions. Springer, London, 2006.
181. M.Sh. Levin, Restructuring in combinatorial optimization. Electronic preprint. 11 p., Febr. 8, 2011. [http://arxiv.org/abs/1102.1745 [cs.DS]]
182. M.Sh. Levin, Four-layer framework for combinatorial optimization problems domain. Advances in Engineering Software 42(12) (2011) 1089–1098.
183. M.Sh. Levin, Multiset estimates and combinatorial synthesis. Electronic preprint. 30 p., May 9, 2012. [http://arxiv.org/abs/1205.2040 [cs.SY]]
184. M.Sh. Levin, Towards decision support technology platform for modular systems. Electronic preprint. 10 p., Aug. 23, 2014. [http://arxiv.org/abs/1408.5492 [cs.SY]]
185. M.Sh. Levin, Modular System Design and Evaluation, Springer, 2015.
186. M.Sh. Levin, Towards integrated glance to restructuring in combinatorial optimization. Electronic preprint. 31 p., Dec. 20, 2015. [http://arxiv.org/abs/1512.06427 [cs.AI]]
187. J. Levine, F. Ducatelle, Ant colony optimization and local search for bin packing and cutting stock problems. J. of the ORS, 55(7), 705–716, 2004.
188. G. Li, R. Simha, The partition coloring problem and its application to wavelength routing and assignment. In: Proc. of the First Workshop on Optical Networks, CDROM, Dallas, 2000.
189. D.S. Liu, K.S. Tan, S.Y. Huang, C.K. Goh, W.K. Ho, On solving multiobjective bin packing problems using evolutionary particle swarm optimization. EJOR 190(2), 357–382, 2008.
190. Z. Liu, Complexity of core allocation for the bin packing game. Oper. Res. Lett. 37(4), 225–229, 2009.
191. Z. Liu, W. Guo, Q. Shi, W. Hu, M. Xia, Sliding scheduled lightpath provisioning by mixed partition coloring in WDM optical networks. Optical Switching and Networking 10(1), 44–53, 2013.
192. A. Lodi, S. Martello, D. Vigo, Approximation algorithms for the oriented two-dimensional bin packing problem. EJOR 112(1), 158–166, 1999.
193. A. Lodi, S. Martello, D. Vigo, Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems. INFORMS J. on Computing 11(4), 345–357, 1999.
194. A. Lodi, S. Martello, D. Vigo, Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics, 123(1-3), 379–396, 2002.
195. A. Lodi, S. Martello, M. Monaci, Two-dimensional bin packing problems: A survey. EJOR 141(2), 241–252, 2002.
196. A. Lodi, S. Martello, D. Vigo, TSpack: a unified tabu search code for multidimensional bin packing problems. Annals of Operations Research 131(1-4), 203–213, 2004.
197. A. Lodi, S. Martello, M. Monaci, C. Cicionetti, L. Lenzini, E. Mingozzi, C. Ekhlund, J. Moilanen, Efficient two-dimensional packing algorithms for mobile WiMAX. Man. Sci. 57, 2130–2144, 2011.
198. E. Lopez-Camacho, H. Terashima-Marn, P. Ross, A hyper-heuristic for solving one and two-dimensional bin packing problems. In: Proc. of the 13th annual conference companion on Genetic and Evolutionary Computation, 257-258, 2011.

199. E. Lopez-Camacho, G. Ochoa, H. Terashima-Martin, E.K. Burke, An effective heuristic for the two-dimensional irregular bin packing problem. Annals of Oper. Res., 206(1), 241–264, 2013.

200. E. Lopez-Camacho, H. Terashima-Marn, P. Ross, G. Ochoa, A unified hyper-heuristic framework for solving bin packing problems. ESWA 41(15), 6876–6889, 2014.

201. D. Mack, A. Bortfeldt, A heuristic for solving large bin packing problems in two and three dimensions. Central European J. of Operations Research, 20(2), 337–354, 2012.

202. K. Marriott, Constraint multiset grammars. In: Proc. of IEEE Symp. on Visual Languages, 118–125, 1994.

203. S. Martello, P. Toth, Knapsack Problems. Wiley, Chichester, 1990.

204. S. Martello, D. Pisinger, D. Vigo, The three-dimensional bin packing problem. Operations Research 48(2), 256–267, 2000.

205. S. Martello, D. Pisinger, D. Vigo, E. den Boef, J.H.M. Korst, Algorithm 864: General and robot-packable variants of the three-dimensional bin packing problem. ACM Trans. Mat. Softw. 33(1), art. 7, 2007.

206. S. Martello, Two-dimensional packing problems in telecommunications. Pesquisa Operacional, 34(1), 31–38, 2014.

207. S. Marcus, Tolerance multisets. In: C.S. Calude, G. Paun, G. Rozenberg, A. Salomaa (eds) Multiset Processing. LNCS 2235, Springer, 217–224, 2001.

208. S. McGregor, Neural network processing for multiset data. In: Proc. of Int. Conf. Artificial Neural Networks ICANN 2007, 460–470, 2007.

209. S. Miyamoto, Fuzzy multisets and their generalization. In: C.S. Calude, G. Paun, G. Rozenberg, A. Salomaa (eds), Multiset Processing, LNCS 2235, Springer, 225–236, 2001.

210. S. Miyamoto, Information clustering based on fuzzy multisets. Information and Management 39(2), 195–213, 2003.

211. S. Miyamoto, Remarks on basics of fuzzy sets and fuzzy multisets. Fuzzy Sets and Systems 156(3), 427–431, 2005.

212. F.K. Miyazawa, A.L. Vignatti, Convergence time to Nash equilibrium in selfish bin packing. Electron. Notes on Discret. Math. 35, 151–156, 2009.

213. M. Monaci, P. Toth, A set-covering-based heuristic approach for bin packing problem. INFORMS J. on Computing 18, 71–85, 2006.

214. E.A. Mukhacheva, G.N. Belov, V.M. Kartack, A.S. Mukhacheva, Linear one dimensional cutting-packing problems: numerical experiments with the sequential value correction method (SVC) and a modified branch-and-bound method (MBB). Pesquisa Operacional, 20(2), 153-168, 2000.

215. F.D. Murgolo, An efficient approximation scheme for variable-sized bin packing. SIAM J. Comput. 16(1), 149–161, 1987.

216. N. Al-Naaman, R. Rom, Packet scheduling with fragmentation. In: Proc. of INFOCOM’02, 824–831, 2002.

217. B. Nadiri, M. Yazdani, A real multi-objective bin packing problem: A case of study of an engine assembly line. Arabian J. for Science and Engineering 39(6), 5271–5277, 2014.

218. G. Nemhauser, L. Wolsey, Integer Combinatorial Optimization. Wiley, New York, 1988.

219. T.F. Noronha, C.C. Ribeiro, Routing and wavelength assignment by partition coloring. EJOR 171(3), 797–810, 2006.

220. T. Osogami, H. Okano, Local search algorithms for the bin packing problem and their relationships to various construction heuristics. J. of Heuristics, 9(1), 29-49, 2003.

221. M. Peeters, Z. Degraeve, Branch-and-price algorithms for dual bin packing and maximum cardinality bin packing problem. EJOR 170(2), 416–439, 2006.

222. J. Pereira, Procedures for the bin packing problem with precedence constraints. EJOR 250(3), 794–806, 2016.

223. A.B. Petrovsky, Structuring techniques in multisets. In: G. Fandel, T. Gal, (eds), Multiple Criteria Decision Making. Lecture Notes in Economics and Matheamtics, vol. 448, Springer, 174–184, 1997.

224. A.B. Petrovsky, Multi-attribute classification of credit cardholders: multiset approach. Int. J. of
Management and Decision Making, 7(2-3), 166–179, 2006.

225. A.B. Petrovsky, Clustering and sorting multi-attribute objects in multiset metric space. In: Proc. of 4th Int. Conf. Intelligent Systems IS 2008, 1144–1148, 2008.

226. D. Pisinger, An exact algorithm for large multiple knapsack problem. EJOR 114(3), 528–541, 1999.

227. D. Pisinger, M. Sigurd, The two-dimensional bin packing problem with variable sizes and costs. Discrete Optimization 2(2), 154–167, 2005.

228. R. Poli, J. Woodward, E.K. Burke, A histogram-matching approach to the evolution of bin-packing strategies. In: IEEE Congress on Evolutionary Computation CEC2007, 3100–3107, 2007.

229. J. Puchinger, G.R. Raidl, Models and algorithms for three-stage two-dimensional bin packing. EJOR 183(3), 1304–1327, 2007.

230. M. Quiroz-Castellanos, L. Cruz-Reyes, J. Torres-Jimenez, C. Gmez S., H.J. Fraire Huacuja, A.C.F. Alvim, A grouping genetical algorithm with controlled gene transmission for the bin packing problem. Comp. and Oper. Res. 55 52-64, 2015.

231. C. Reeves, Hybrid genetic algorithms for bin-packing and related problems. Annals of Oper. Res., 63(3), 371–396, 1996.

232. W.T. Rhee, M. Talagrand, Dual bin packing with items of random sizes. Mathematical Programming 58, 229–242, 1993.

233. R. Rohlfshagen, J.A. Bullinaria, Nature inspired genetic algorithms for hard packing problems. Annals of Oper. Res., 179(1), 393–419, 2010.

234. G.M. Roodman, Near optimal solutions to one-dimensional cutting stock problem. Comp. and Oper. Res. 13(6), 713–719, 1986.

235. G.T. Ross, R.M. Soland, A branch-and-bound algorithm for the generalied assignment problem. Math. Progr. 8, 91–103, 1975.

236. P. Ross, J.G. Marn-Blazquez, S. Schulenburg, E. Hart, Learning a procedure that can solve hard bin-packing problems: A new GA-based approach to hyper-heuristics. In: Proc. of the Genetic and Evolutionary Computation Conference GECCO 2003, part II, LNCS 2724, Springer, 1295-1306, 2003.

237. R. Sadykov, F. Vanderbeck, Bin packing with conflicts: a generic branch-and-price algorithm. INFORMS J. on Computing, 25(2), 244-255, 2013.

238. M. Savelsbergh, Branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45(6), 831–841, 1997.

239. P. Schaus, Solving Balancing and Bin-packing Problems with Constraint Programming. PhD Thesis, Dept. of Engineering Informatics, Catholic Univ. of Louvain, Belgium, Aug. 2009.

240. A. Scholl, R. Klein, C. Jurgens, A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Comp. and Oper. Res. 24(7), 627–645, 1997.

241. S.S. Seiden, An optimal online algorithm for bounded space variable-sized bin packing. SIAM J. on Discrete Mathematics, 14(4), 458–470, 2001.

242. S.S. Seiden, On the online bin packing problem. J. of the ACM, 49(5), 640–671, 2002.

243. S.S. Seiden, R. van Stee, L. Epstein, New bounds for variable sized online bin packing. SIAM J. on Computing, 32(2), 455–469, 2003.

244. S. Sen Chok, K. Marriott, Automatic construction of user interfaces from constraint multiset grammars. In: Proc. of 11th IEEE Int. Symp. on Visual Languages, 242–249, 1995.

245. H. Shachnai, T. Tamir, O. Yehezkel, Approximation schemes for packing with item fragmentation. Theory of Computing Systems, 43(1), 81–98, 2008.

246. D.B. Shmoys, E. Tardos, An approximation algorithm for the generalized assignment problem. Mathematical Programming A, 62, 461–474, 1993.

247. K. Sim, E. Hart, B. Paechter, A hyper-heuristic classifier for one dimensional bin packing problems: improving classification accuracy by attribute evolution. In: C.A. Coello Coello et al. (Eds.), Proc. Conf. PPSN 2012, Part II, LNCS 7492, Springer, 348-357, 2012.

248. D. Simchi-Levi, New worst-case results for the bin-packing problem. Naval Research Logistics, 41(4), 579–585, 1994.

249. D. Singh, A.M. Ibrahim, T. Yohanna, J.N. Singh, A systematization of fundamentals of multisets. Lecturas Matematicas 29, 33–48, 2008.

250. N. Skorin-Kapov, Routing and wavelength assignment in optical networks using bin packing based algorithms. EJOR 177(2), 1167–1179, 2007.
251. A. Stawowy, Evolutionary based heuristic for bin packing problem. Computer and Industrial Engineering, 55(2), 465–474, 2008.
252. P.E. Sweeney, E.R. Paternoster, Cutting and packing problems: a categorized, application-orientated research bibliography. J. of the ORS, 43(7), 691–706, 1992.
253. A. Syropoulos, Mathematics of multisets. In: C.S. Calude, G. Paun, G. Rozenberg, A. Salomaa (eds), Multiset Processing. LNCS 2235, Springer, 347–358, 2001.
254. S. Szykman, J. Cagan, A simulated annealing based approach to three dimensional component packing. Advances in Design Automation, 69(2), 299–308, 1994.
255. H. Terashima-Martin, P. Ross, C.J. Farias-Zarate, E. Lopez-Camacho, M. Valenzuela-Rendon, Generalized hyper-heuristics for solving 2D regular and irregular packing problems. Annals of Oper. Res, 179(1), 369–392, Sep. 2000.
256. M.A. Trick, A linear relaxation heuristic for the generalized assignment problem. Naval Research Logistics 39, 137–152, 1992.
257. A. Twing, E.C. Xavier, Locality-preserving allocations problems and coloring bin packing. Theor. Comput. Sci. 596, 12–22, 2015.
258. O. Ulker, E.E. Korkmaz, E. Ozcan, A grouping genetic algorithm using linear linkage encoding for bin packing. In Parallel Problem Solving from NaturePPSN X, 1140-1149, 2008.
259. J.D. Ullman, The performance of a memory allocation algorithm. Techn. Report 100, Princeton Univ., Princeton, NJ, 1971.
260. J.M. Valero de Carvalho, Exact solution of bin-packing problems using column generation and branch-and-bound. Annals of Oper. Res. 86, 629–659, 1999.
261. J.M. Valero de Carvalho, LP models for bin packing and cutting stock problems. EJOR 141(2), 253-273, 2002.
262. P.H. Vance, Branch-and-price algorithms for the one-dimensional cutting stock problem. Comput. Optim and Appl. 9, 211–228, 1998.
263. P.H. Vance, C. Barnhart, E.L. Johnson, G.L. Nemhauser, Solving binary cutting stock problems by column generation and branch-and-bound. Comput. Optim and Appl. 3(2), 111-130, 1994.
264. A. Van Vliet, Lower and upper bounds for online bin packing and scheduling heuristics. Ph.D. dissertation. Erasmus University, 1995.
265. G. Wascher, H. Haussner, H. Schumann, An improved typology of cutting and packing problems. EJOR 183(3), 1109-1130, 2007.
266. D.B. West, Introduction to Graph Theory. 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 2001.
267. P.F. Whelan, B.G. Barchelor, Automated packing systems: Review of industrial implementations. SPIE, Machine Vision Architectures, Integration and Applications, 2064, 358–369, 1993.
268. G.J. Woeginger, On the rate of taxation in a cooperative bin packing game. Methods and Models of Operations Research 42, 387–399, 1995.
269. G.J. Woeginger, G. Zhang, Optimal on-line algorithms for variable-sized bin covering. Operations Research Letters 25, 47–50, 1999.
270. A. Wolke, B. Tsend-Ayush, C. Pfeiffer, M. Bichler, More than bin packing: Dynamic resource allocation strategies in cloud data centers. Information Systems 52, 83–95, 2015.
271. E.C. Xavier, F.K. Miyazawa, The class constrained bin packing problem with applications to video-on-demand. Theoret. Comput. Sci. 393(1-3), 240–259, 2008.
272. R.R. Yager, On the theory of bags. Int. J. of General Systems 13(1), 23–37, 1986.
273. R.R. Yager, On ordered weighted averaging operators in multicriteria decision making. IEEE Trans. SMC 18(1), 183–190, 1988.
274. G. Yu, G. Zhang, Bin packing of selfish items. In: The 4th Int. Workshop on Internet and Network Economics WINE’08, 446–453, 2008.
275. G. Zhang, A new version of on-line variable-sized bin packing. Disc. Appl. Math. 72(3), 193–197, 1997.
276. G.C. Zhang, X.Q. Cai, C.K. Wong, Linear-time approximation algorithms for bin packing problem. Operations Research Letters, 26(5), 217–222, 2000.
277. Z. Zhu, J. Sue, L. Yang, Bin-packing algorithms for periodic task scheduling. Int. J. Pattern Recognition and Artificial Intelligence 25(7), 1147–1160, 2011.