Positive Cooperativity Induced by Interstrand Interactions in Silver(I) Complexes with \(\alpha,\alpha' \)-Diimine Ligands

Davood Zare\(^{[a]} \), Claude Piguet\(^{[b]} \), Alessandro Prescimone\(^{[a]} \), Catherine E. Housecroft\(^{[a]} \), and Edwin C. Constable\(^{[a]} \)

Abstract: The allosteric positive cooperativity accompanying the formation of compact \([\text{Cu}(\alpha,\alpha',\alpha'-\text{diimine}))^3\] building blocks contributed to the historically efficient synthesis of metal-containing catenates and knotted assemblies. However, its limited magnitude can easily be overcome by the negative chelate cooperativity that controls the overall formation of related polymetallic multistranded helicates and grids. Despite the more abundant use of analogous dioxygen-resistant \([\text{Ag}(\alpha,\alpha',\alpha'-\text{diimine}))^3\] units in modern entangled metallo-supramolecular assemblies, a related thermodynamic justification was absent. Solid-state structural characterizations show the successive formation of \([\text{Ag}(\alpha,\alpha',\alpha'-\text{diimine})(\text{CH}_3\text{CN})][X]\) and \([\text{Ag}(\alpha,\alpha',\alpha'-\text{diimine})][X]\) upon the stepwise reactions of \(\alpha,\alpha',\alpha'-\text{diimine} = 2,2'-\text{bipyridine (bpy)}\) or 1,10-phenanthroline (phen) derivatives with \(\text{AgX} (X = \text{BF}_4^-, \text{ClO}_4^-, \text{PF}_6^-)\). In room-temperature, 5–10 mM acetonitrile solutions, these cationic complexes exist as mixtures in fast exchange on the NMR timescale. Spectrophotometric titrations using the unsubstituted bpy and phen ligands point to the statistical (= non-cooperative) binding of two successive bidentate ligands around \(\text{Ag}^+\), a mechanism probably driven by the formation of hydrophobic belts, that overcomes the unfavorable decrease in the positive charge borne by the metallic cation. Surprisingly, the addition of methyl groups adjacent to the nitrogen donors (6,6’ positions in dmbpy; 2,9 positions in dmphen) induces positive cooperativity for the formation of \([\text{Ag}(\text{dmbpy})]^3\) and \([\text{Ag}(\text{dmphen})]^3\), a trend assigned to additional stabilizing interligand interactions. Adding rigid and polarizable phenyl side arms in \([\text{Ag}(\text{Brdmppy})]^3\) further reinforces the positively cooperative process, while limiting the overall decrease in metal–ligand affinity.

Introduction

The systematic exploitation of metal–ligand coordination bonds for preparing sophisticated (supra)molecular architectures under thermodynamic control such as cages, grids and clusters\(^{[1–4]} \), nanostructures\(^{[5–8]} \), or entangled rotaxanes, catenates and knots\(^{[9–12]} \) during the last three decades finds its origin in the seminal report of the spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I)\(^{[13]} \) or silver(I)\(^{[14]} \) cations by Lehn and co-workers (Figure 1).

The diamagnetic character of these closed-shell \(d^{10}\) cations greatly helped in the original characterization of their complexes in solution by NMR spectroscopic techniques, whereas their preferences for soft bidentate chelating ligands make them ideal for working as crucial partners in the design of multi-diimine helicates\(^{[16–18]} \), grids, catenates and knots.\(^{[12,19–21]} \) With the extension of the binding possibilities provided by d-block or f-block cations with variable stereochemical preferences, the original Cu\(^{+}\) and Ag\(^{+}\)-based double-stranded helicates were rapidly complemented with metal-containing architectures possessing increased complexities; a part of...
supramolecular chemistry referred to as metallo-supramolecular chemistry. The sudden burst, during the early 1990s, of elaborate metallo-supramolecular assemblies obtained by the straightforward mixing of segmental ligands with metal cations pointed to some unexpected and/or novel driving forces outside the standard concepts of coordination chemistry. The claim for positive cooperativity accompanying these self-assembly processes, as supported by some tentative building of thermodynamic Scatchard plots limited to intermolecular interactions, brought confidence that some favorable conditions helped in the formation of the desired polynuclear assemblies through the principle of “maximum site occupancy”, a phenomenon rarely invoked in standard coordination chemistry, but frequent in biology. In their seminal work investigating the mechanism of formation \([Cu(BP_{2}COEt)]^{3+} \) (a soluble derivative of \([Cu(BP)_{3}]^{3-}\)), Albrecht-Gary and co-workers cast some reasonable doubts on the use of tools strictly limited to intermolecular interactions, in order to establish global thermodynamic cooperativity. The highly welcome reminder by Ercolani in 2003 that intra- and intermolecular connection processes must be considered separately, restored a satisfying and pertinent claim for positive cooperativity accompanying these self-assemblies from statistical behavior produced by the allosteric interactions, leading to the oxidatively-robust \([Ag(dap)]^{+} \) assigned to improved intramolecular interligand face-to-face \(\pi-\pi \) stacking interactions produced by the compact orthogonal organization of the two ligands around the small \(Cu^{+} \) center. Surprisingly, the latter comprehensive thermodynamic analysis was strictly limited to the binding of the oxidation-sensitive \(Cu^{+} \) to \(\alpha,\alpha'-\)dimine ligands, whereas the larger 4d analogue, \(Ag^{+} \), escaped such a detailed and rational analysis. Only partial energy changes and driving forces have been discussed for silver helicates, cages, catenates, and grids despite the extensive use of Ag partners for preparing complicated metal-peptide strands and self-assembled aggregates with catalytic, optical and biomedical applications.

In this work, we aim at filling the gap between the well-known thermodynamics for the formation of the pseudo-tetrahedral \([Cu(N\text{N})_{3}]^{+} \) building blocks and the mainly ignored processes leading to the oxidatively-robust \([Ag(N\text{N})_{3}]^{+} \) analogues where \(N\text{N} \) is a bidentate \(\alpha,\alpha'-\)dimine ligand.

Results and Discussions

Synthesis and crystal structures of \([AgL_{2}]X \) complexes with \(L=bpy, \) dmppy, Brdmbpy, phen, dmphen \((X=\text{ClO}_{4}^{-}, BF_{4}^{-}, PF_{6}^{-}) \)

Among the bidentate \(\alpha,\alpha'-\)dimine ligands investigated for their thermodynamic stabilities with \(Cu^{+} \) in organic solvents (Scheme S1), commercially available bpy, dmppy, phen and dmphen have been selected for analogous studies with Ag in order to explore the effects of i) rigid preorganization (bpy vs. phen or dmppy vs. dmphen) and ii) interligand interactions (bpy vs. dmppy or phen vs. dmphen) on the structures and stability constants of the pseudo-tetrahedral \([AgL_{2}]^{+} \) complexes (Scheme 1).

Additionally, the extended ligand Brdmbpy ligand was prepared (Scheme S2) for testing potential effects of electronic delocalization accompanying the connection of rigid aromatic groups for the linking of \([AgL_{2}]^{+} \) building blocks to polymeric backbones or surfaces. A rational control of this effect is crucial for further applications, since it has been recognized as the vector which limits the affinity of binding sites in metallopolymers made of analogous terdentate binding units connected by phenyl rings. Stoichiometric reactions of the bidentate bpy, phen or dmppy ligands with silver(I) salts in polar organic solvents have been shown to give 1:1 \([AgL][X] \) and 1:2 \([AgL_{2}][X] \) complexes (\(X=\text{ClO}_{4}^{-}, BF_{4}^{-}, PF_{6}^{-} \)), the reported crystal structures of which are shown in Figure 2a–c together with pertinent geometrical parameters in Table 1 (entries 1–4). Repeating here the same process for \(L=dmphen \) and Brdmbpy with AgPF\(_{6}\) in acetonitrile provided \([Ag-
Within the series of tetracoordinate $[\text{Ag} \cdot \text{diimine})]^+$ cations considered in Figure 2, the change in interligand dihedral angles is the only striking geometrical variation. For the cations observed in the crystal structures of a) $[\text{Ag(bpy)}_2]^+$, b) $[\text{Ag(bpy)}_2][\text{BF}_4]^-$, c) $[\text{Ag(bpy)}_2][\text{ClO}_4]^-$, d) $[\text{Ag(dmbpy)}_2][\text{PF}_6]^-$, and e) $[\text{Ag(Brdmbpy)}_2][\text{PF}_6]^-$, Color code: C = gray, N = blue, Ag = green, Br = orange.

Stabilities, speciations and structures of $[\text{AgL}_2]^+$ complexes in acetonitrile solution ($L = \text{bpy, dmbpy, Brdmbpy, phen, dmphen}$)

The transformations of the UV absorption spectrum, produced by the structural reorganization and the changes in polarization accompanying the complexation of bidentate α,α'-diimine units to metallic cations,$^{65-67}$ have been used to extract thermodynamic data with Cu^+ salts (Table 2, entries 6–9) by principal component analyses of the spectrophotometric titration data.$^{68-73}$ As it is well established that Cu^+ and Ag^+ cations react similarly with α,α'-diimine units according to Equilibria (1) and (2),70,74 pertinent thermodynamic stability constants could be obtained by using the same model applied to the

Table 1. Average bond lengths, bite angles and total distortion from octahedral geometry Σ observed in the crystal structures of $[\text{AgL}_2][\text{ClO}_4]^-$,
$[\text{Ag(bpy)}_2][\text{BF}_4]^-$, $[\text{Ag(dmphen)}][\text{PF}_6]^-$ and $[\text{Ag(Brdmbpy)}][\text{PF}_6]^-$.

Complex	Ag^-N distance [Å]	Chelate $\text{N}^-\text{Ag}^-\text{N}$ angle [°]	Interligand dihedral angle [°]	Σ [°]	Ref.
$[\text{Ag(bpy)}_2]^+$	2.33(1)	71.46(5)	26.37	189.4	[57]
$[\text{Ag(bpy)}_2][\text{BF}_4]^-$	2.34(8)	71.76(5)	32.85	183.8	[57]
$[\text{Ag(bpy)}_2][\text{ClO}_4]^-$	2.33(5)	72.20(4)	29.37	185.8	[57]
$[\text{Ag(dmphen)}][\text{PF}_6]^-$	2.30(1)	72.48(5)	75.32	158.4	[58]
$[\text{Ag(Brdmbpy)}_2]^+$	2.33(7)	72.31(1)	75.10	161.1	this work
$[\text{Ag(Brdmbpy)}][\text{PF}_6]^-$	2.31(3)	72.33(3)	84.13	157.6	this work

Σ is calculated with the formula $\Sigma = \frac{1}{6} \sum_{i=1}^{6} |\theta_i - 120|$, where θ_i are the 6 bond angles around the Ag^+ metal. (b) The values given between parentheses correspond to the standard deviation when several distances or bond angles are considered.
spectrophotometric titrations of L with AgPF$_6$ or CuBF$_4$, at 298 K.

Table 2. Thermodynamic formation constants, associated microscopic parameters $\Delta G_{\text{ML}}^{0,i}$ and $\Delta E_{\text{aff}}^{\alpha,i}$ and computed speciations obtained for the spectrophotometric titrations of L with AgPF$_6$ or CuBF$_4$, at 298 K.

Ligand	Metal	$\log(\beta_{\text{ML}}^{0,i})$	$\log(\beta_{\text{ML}}^{\alpha,i})$	$\Delta G_{\text{ML}}^{0,i}$	$\Delta E_{\text{aff}}^{\alpha,i}$	Solvent	Speciation$^{(c)}$	Ref.			
bpym	Ag$^+$	5.94(5)	10.74(5)	$-27.7(1)$	0.3(1)	MeCN	$\frac{[\text{M}]_{\text{i}}}{[\text{L}]_{\text{i}}}=1$	$\%$			
dmbrdp	Ag$^+$	4.71(5)	9.12(5)	$-20.7(1)$	$-4.4(1)$	MeCN	65	35	3	95	this work
Brdmbrdp	Ag$^+$	4.44(5)	8.73(6)	$-19.2(1)$	$-5.3(1)$	MeCN	41	58	4	92	this work
phen	Ag$^+$	6.11(5)	11.11(5)	$-28.7(1)$	0.3(1)	MeCN	64	36	2	96	this work
dmphen	Ag$^+$	5.83(5)	11.31(5)	$-27.1(1)$	$-4.3(1)$	MeCN	43	57	1	98	this work
bpy	Cu$^+$	3.69(8)	6.5(1)	$-14.9(3)$	$-1.1(1)$	MeCN	57	34	18	58	[34]
dmbrdp	Cu$^+$	5.4(2)	10.2(3)	$-24(1)$	$-3.0(2)$	MeCN	50	50	3	95	[34]
phen	Cu$^+$	5.2(1)	9.7(1)	$-23.5(4)$	$-2.2(5)$	MeCN	47	53	4	92	[42]
dmphen	Cu$^+$	6.6(2)	12.3(3)	$-31.5(6)$	$-1.0(1)$	MeCN	41	58	1	98	[42]

[a] The site binding model used $\beta_{\text{ML}}^{0,i}=12f_{\text{u}}^i$ and $\beta_{\text{ML}}^{\alpha,i}=12(f_{\text{u}}^i)^{1/2}f_{\text{a}}^{1/2}$ for all ligands. [b] $\Delta G_{\text{ML}}^{0,i}=-RT\ln(f_{\text{u}}^i)$ and $\Delta E_{\text{aff}}^{\alpha,i}=-RT\ln(f_{\text{a}}^{1/2})$. [c] Ligand speciation computed with Equilibria (1) and (2) for $[\text{Ag}]_{\text{i}}=5 \times 10^{-4}$ M in acetonitrile.

Although the ionic radius of tetra-coordinate Ag$^+$ is 0.4 Å larger than Cu$^{2+}$ their affinities for the selected bidentate α,α'-diimine ligands, as estimated by $\log(\beta_{\text{ML}}^{0,i})$, are comparable (Table 2) with even a slightly greater affinity for Ag$^+$, assuming that the addition of the inert electrolyte NEt$_4$ClO$_4$ (Table 2, entries 6–9) has limited influence on the complexation of neutral ligands to the weakly charged cationic centers. Taking for granted that solvated 1 : 1 [AgL]$^+$ complexes exist in solution as planar three-coordinate [AgL(CH$_3$CN)]$^+$ units, as found in the

Figure 3. a) Variation of experimental absorption spectra and b) corresponding variation of molar extinction at different wavelengths observed for the spectrophotometric titration of Brdmbrdp with AgPF$_6$ (total ligand concentration: 2.3×10^{-4} M in acetonitrile, 298 K, titration increment $[\text{Ag}]_{\text{i}}=5 \times 10^{-4}$ M, $[\text{Brdmbrdp}]_{\text{i}}=0.05$). c) Evolving factor analysis$^{[80,81]}$ using three absorbing eigenvectors, each normalized to a maximum concentration of 1.0$^{[78]}$ and d) reconstructed individual electronic absorption spectra.
crystal structure of [Ag(Brdmbpy)(CH₃CN)][PF₆] (Figure S3), the computed statistical factors $\omega_{\text{Ag}^{[i]}}=12$ and $\omega_{\text{Ag}^{[i]}}=12$ (Appendix 3) match those found for four-coordinate [CuL(CH₃CN)]$^{[i]+}$ (Appendix 2). Within the context of the site binding model, Equations (3) and (4) are thus pertinent for extracting metal-ligand affinities $\Delta G_{\text{aff}}^{[i]} = -RT \ln(f_{\text{L}})$ (Table 2, column 5) together with interligand interactions $\Delta E_{\text{IL}}^{[1]} = -RT \ln(f_{\text{IL}}^{[1]})$ (Table 2, column 6) for both Cu$^{[i]}$ and Ag$^{[i]}$.

\[
\begin{align*}
\Delta G_{\text{aff}}^{[i]} & = 12 \Delta G_{\text{impl}}^{[i]} \\
\Delta G_{\text{impl}}^{[i]} & = \Delta G_{\text{impl}}^{[i]} = 12 \Delta G_{\text{impl}}^{[i]}
\end{align*}
\]

Firstly, the metal–ligand affinities $-28.7 \leq \Delta G_{\text{aff}}^{[i]} \leq -19.2$ kJ·mol$^{-1}$ (Table 2, entries 1–5) compare well with those of Cu$^{[i]}$ with the same ligands ($-31.5 \leq \Delta G_{\text{aff}}^{[i]} \leq -14.9$ kJ·mol$^{-1}$, Table 2, entries 6–9) because the larger covalency between the extended metal-centered 5s and 5p orbitals with the ligand-based orbitals compensates for the larger Cu$^{[i]}$ ionic radius and the decrease of the electrostatic contribution.$^{[60,63,77]}$ Secondly, the expected ligand-based preorganization effect is confirmed with i) $\Delta G_{\text{impl}}^{[i]}$ being less favorable than $\Delta G_{\text{impl}}^{[i]}$ and ii) $\Delta G_{\text{impl}}^{[i]}$ being less favorable than $\Delta G_{\text{impl}}^{[i]}$. One notes that the latter trend seems less pronounced with Ag$^{[i]}$, probably because the preference of this large cation for five-membered rings (instead of the preference of small Cu$^{[i]}$ cations for six-membered rings)$^{[78,79]}$ does not require specific structural constraints in the final chelate rings with $\alpha\beta\gamma$-diimine units, which makes Ag$^{[i]}$ less sensitive to preorganization.

Thirdly, the attachment of methyl groups close to the metallic center in dmbpy (6,6'-positions) and dmphen (2,9'-positions) reinforces the affinity for the entering bidentate $\alpha\beta\gamma$-diimine unit around the smallest Cu$^{[i]}$ cation with (\Delta G_{\text{aff}}^{[i]} - \Delta G_{\text{aff}}^{[i]}) = 8$ to 10 kJ·mol$^{-1}$, which can be rationalized by favorable inductive or charge transfer effects.$^{[80]}$ The reverse situation occurs with the larger Ag$^{[i]}$ center with (\Delta G_{\text{aff}}^{[i]} - \Delta G_{\text{aff}}^{[i]}) = \approx -7$ kJ·mol$^{-1}$; a trend tentatively assigned to steric hindrance for the entering metal compensating for the increased methyl-based inductive effects. Finally, the connection of extra electro-deficient phenyl rings to the polyaromatic diimine unit in [Ag(Brdmbpy)$_j$]$^{[i]}$ has only minor effects of the Ag–ligand affinity, which is reduced by 5% compared with [Ag(dmbpy)$_j$]$^{[i]}$, a value still compatible with the use of this building block for the design of metallopolymers.$^{[54–56]}$

Focusing our attention on the interligand interactions, $\Delta E_{\text{IL}}^{[1]}$ for L = bpy, dmbpy, phen, dmphen reveals a rather constant and weak (\$\Delta E_{\text{IL}}^{[1]} \approx 2.5$ kJ·mol$^{-1}$) positive cooperativity for the fixation of the second ligand to Cu$^{[i]}$ to give [CuL$_j$]$^{[i]}$ (\$\Delta E_{\text{IL}}^{[1]} \approx 3.0$ kJ·mol$^{-1}$, Table 2 column 6). Again, the situation changes with the larger Ag$^{[i]}$ metallic cation since the parent bpy and phen ligands follow statistical binding behavior (\$\Delta E_{\text{IL}}^{[1]} \approx 0$ kJ·mol$^{-1}$), while the more constrained dmbpy and dmphen ligands exhibit noticeable positively cooperative mechanisms (\$-4.4 \leq \Delta E_{\text{IL}}^{[1]} \leq -4.1$ kJ·mol$^{-1}$, Table 2 column 6) with a maximum drift for the most polarizable Brdmbpy ligand (\$\Delta E_{\text{IL}}^{[1]} = -5.3$ kJ·mol$^{-1}$). A careful look at the molecular structures of

\[\text{[Ag(dmbpy)$_j$]$^{[i]}$}^+, \text{[Ag(dmphen)$_j$]$^{[i]}$}^-, \text{[Ag(Brdmbpy)$_j$]$^{[i]}$}^+\] with 6,6'-dimethyl substituted ligands suggests some extra stabilization through van der Waals interactions involving the methyl groups of one ligand, which are located close to the polyaromatic rings of the second bound ligand (Figure 4).

However, the deviations from statistical binding still remain limited for both Cu$^{[i]}$ and Ag$^{[i]}$ complexes with $\alpha\beta\gamma$-dimine ligands and the computed speciation accompanying the spectrophotometric data recorded at [L]$^{[i]}_{\text{tot}} = 2 \times 10^{-4}$ M points to significant mixtures of L, [AgL]$^{[i]}$ and [AgL$_j$]$^{[i]}$ for the target stoichiometric [Ag]/[L]$_{\text{tot}}$ = 1 and [Ag]/[L]$_{\text{tot}}$ = 0.5 ratios (Figure 5). It is useful to stress here that the latter stoichiometric ratios correspond to the mixtures obtained when solid state [AgL][PF$_6$] and [AgL$_j$][PF$_6$] complexes are dissolved in acetonitrile (Figure 5). According to the law of mass action (Le Chatelier’s principle), a global increase in [L]$_{\text{tot}}$ narrows the distributions of the various species in solution, but straightforward calculations still predict that, for [Ag]/[L]$_{\text{tot}}$ = [L]$_{\text{tot}}$ = 5 x 10^{-3} M (≈ 5 mM) used for the NMR spectroscopic studies performed in CD$_3$CN, more than one third (i.e., 33%) of the ligand distribution exists as [AgL]$^{[i]}$, whereas [AgL]$^{[i]}$ counts for
less than two thirds (Table 2, column 8). On the contrary, a close-to-quantitative formation of the target \([\text{AgL}_2]^+\) complex is expected for \(\frac{\text{Ag}}{\text{L}} = 0.5\) and \(\text{L} = 1 \times 10^{-2} \text{M} (= 10 \text{ mM}; \text{Table 2, column 9})\).

The \(^1\text{H}\) NMR titrations of L with \(\text{AgPF}_6\) in CD$_3$CN recorded for \(\text{L} = 5 \times 10^{-3} \text{M}\) at room temperature display dynamically-averaged spectra, which are diagnostic for fast exchange processes operating between the ligand and its silver complexes on the NMR timescale (Figures 6, 7, S8, and S9). Combined with the speciation collected in Table 2 (columns 8 and 9), the \(^1\text{H}\) NMR spectra pertinent to \([\text{AgL}_2]^+\) are indeed found for \(\frac{\text{Ag}}{\text{L}} = 0.5\) and \(\text{L} = 1 \times 10^{-2} \text{M}\) (= 10 mM, Table 2, column 9).

The computed speciations computed for the spectrophotometric titrations of a) bpy (\(\text{L} = 2.81 \times 10^{-4} \text{M}\)), b) dmbpy (\(\text{L} = 2.09 \times 10^{-4} \text{M}\)), c) phen (\(\text{L} = 2.52 \times 10^{-4} \text{M}\)), d) dmphen (\(\text{L} = 2.51 \times 10^{-4} \text{M}\)) and e) Brdmbpy (\(\text{L} = 2.30 \times 10^{-4} \text{M}\)) with a solution of AgPF$_6$ in acetonitrile.

Finally, The \(^1\text{H}\) NMR signal of the methyl groups attached to the 6,6'-positions of the bipyridine skeleton in dmbpy is initially downshifted due to polarization effects accompanying the complexation of the bpy or dmbpy units to \(\text{Ag}^+\). The subsequent orthogonal fixation of the second ligand in \([\text{Ag(dmbpy)}_2]^+\) induces a...
stepwise upfield shift (Figure 7), which results from the location of the methyl groups of one ligand above the shielding cone of the polyaromatic bipyridine unit of the second ligand (Figure 4a). Very similar behaviors are observed for the related phen/dmphen ligand pair (Figures S8 and S9).

Conclusions

As previously established for Cu complexes with \(\pi\)-diimine ligands, the successive binding of these bidentate units to Ag gives \([Ag_L]^{\pm}\) with negligible-to-weak positive cooperativity. This trend contrasts with standard coordination chemistry in which the successive binding of electron-neutral ligands to a cationic metallic center is usually accompanied by negative allosteric cooperativity.\(^{[29,76,82]}\) For unsubstituted 2,2′-bipyridine and 1,10-phenanthroline backbones, as found in bpy and phen, the easy attachment of the second ligand in [ML\(_2\)]\(^+\) (M = Cu, Ag) can be traced back to a favorable driving force produced by the formation of a hydrophobic belt in polar solvents,\(^{[83–86]}\) a phenomenon responsible for the entropic stabilization of hydrophobic complexes in water.\(^{[86,87]}\) Although less impressive than the \(\pi-\pi\) intramolecular interligand stacking interactions previously demonstrated to be responsible for the positive cooperativity that occurs in [Cu(dap)\(_2\)]\(^+\) \((\Delta\Delta G^{\pm}_{\text{co}} \leq -10 \text{ kJ} \cdot \text{mol}^{-1}\); Table S1),\(^{[42]}\) extension of the diimine skeletons with methyl groups produces interstrand methyl–aromatic interactions in \([Ag_L]^{\pm}\) (L = dmbpy, dmphen, Brdmbpy) that are not negligible \((\Delta\Delta G^{\pm}_{\text{co}} \leq -5 \text{ kJ} \cdot \text{mol}^{-1}\), Table 2) and contribute to the successful use of \([Ag(N'N)_2]^{\pm}\) as a building block in coordination and metallo-supramolecular chemistry. A retrospective look at the formation of double-stranded [Cu(BP)\(_3\)]\(^{3+}\) and [Ag(BP)\(_3\)]\(^{3+}\) helicates confirms that the choice of the compact and constrained pseudo-tetrahedral \([M(N'N)_2]^{\pm}\) building blocks (M = Cu, Ag) provides positive allosteric cooperativity for their formation, even if concomitant negative chelate cooperativity overcomes this initial favorable thermodynamic driving force.

Experimental Section

The ligands bpy, phen, dmbpy, dmphen and chemicals were purchased from Sigma-Aldrich and were used without further purification unless otherwise stated. Brdmbpy was synthesized following a slightly modified version of the original procedure.\(^{[25]}\) The complexes \([Ag(bpy)],[ClO_4], [Ag(phen)],[ClO_4], [Ag(dmmbpy)],[BF_4]^{[19]}\) and [Ag(dmbpy)][BF_4] were prepared according to literature procedures.

CAUTION! Dry perchlorates can explode and should be handled in small quantities and with the necessary precautions.\(^{[28,88]}\)

Preparation of \((E)-3-(4-bromophenyl)-1-(6-methylpyridin-2-yl)prop-2-ene-1-one\(^{[23]}\) 4-Bromobenzaldehyde (3.35 g, 18.1 mmol, 1.0 equiv.) and 6-methyl-2-acetylpyridine (2.47 g, 18.1 mmol, 1.0 equiv.) were dissolved in methanol (81.0 mL). Sodium hydroxide (17.0 mL, aqueous 2%wt) was added, whereupon the solution turned green. The reaction mixture was left to stir at room temperature for 4 h. The white precipitate that formed was collected by filtration and washed carefully with water and methanol (3 x 20 mL). The resulting light green solid was dried in a desiccator for 12 h to give \((E)-3-(4-bromophenyl)-1-(6-methylpyridin-2-yl)prop-2-ene-1-one\) (4.7 g, 15.5 mmol, 85%). \(^{1}H\) NMR (CDCl\(_3\), 500 MHz): \(\delta = 8.33\) (dd, \(J = 16.2, 1.4\) Hz, 1H), 8.00 (d, \(J = 7.7\) Hz, 1H), 7.86 (dd, \(J = 16.0, 1.3\) Hz, 1H).
Preparation of 1-(2-oxopropyl)pyridinium chloride:28 Pyridine (7.85 g, 80.2 ml, 99.2 mmol, 1.0 equiv.) was dissolved in THF (20 ml). Chloroacetaldehyde (11.0 g, 94.8 ml, 119 mmol, 1.2 equiv.) was added to the solution, which was then stirred for 48 h at room temperature. The resulting white precipitate was filtered, washed with THF and dried under high vacuum to give 1-(2-oxopropyl)pyridinium chloride (6.6 g, 48.9 mmol, 49 %) as a creamy white powder. The crude material was used without purification for the following reaction. 1H NMR (D2DMSO, 500 MHz): \(\delta = 9.07 \) (dd, \(J = 6.6, 1.3 \) Hz, 2H), 8.66 (tt, \(J = 7.8, 1.4 \) Hz, 1H), 8.19–8.26 (m, 2H), 6.03 (s, 2H), 2.29 ppm (s, 3H).

Preparation of [Ag(Brdmbpy)][PF\textsubscript{6}]: A solution of the silver(I) hexafluorophosphate (20.1 mg, 0.0795 mmol, 1 equiv.) in 5 ml of acetonitrile was added into a solution of the 4-(4-bromophenyl)-6,6-dimethyl-2,2'-bipyridine (Brdmbpy) 40 mg of the [Ag(Brdmbpy)][PF\textsubscript{6}] (0.075 mmol, 94.5 %). Slow diffusion of diethyl ether into the solution of the complex in acetonitrile resulted in single crystals of the complexes, which were suitable for X-ray diffraction studies (Table S4). 1H NMR (CD\textsubscript{3}CN, 500 MHz): \(\delta = 8.44 \) (d, \(J = 7.6, 1.3 \) Hz, 1H), 8.36 (d, \(J = 8.0, 1.3 \) Hz, 1H), 8.03 (t, \(J = 7.9, 1.3 \) Hz, 1H), 7.84–7.77 (m, 5H), 7.53 (d, \(J = 7.6, 1.3 \) Hz, 1H), 2.62 ppm (s, 3H), 2.58 ppm (s, 3H). MALDI-MS: \(m/z \) 784.80 ([M–PF\textsubscript{6}]+).

Spectroscopic and analytical measurements: 1H NMR and 13C [1H] NMR spectra were measured at 298 K on a Bruker Avance III-500 NMR spectrometer. 1H and 13C chemical shifts were referenced to residual solvent peaks with respect to di-TMS (0 ppm) for 1H and 13C [1H]. Solution absorption spectra were recorded on an Agilent Cary 5000 spectrophotometer. Infrared spectra were recorded on a Perkin Elmer UATR Two spectrometer. MALDI mass spectra were measured using a Shimadzu MALDI-8020 with \(\alpha \)-cyano-4-hydroxycinnamic acid (CHCA) solution as matrix for sample preparation. Spectrophotometric titrations were performed with a J&M diode array spectrometer (Tidas series) connected to an external computer. In a typical experiment, 20 cm\(^2\) of ligand in acetonitrile (2 \times 10\(^{-4}\) M) were titrated at 293 K with a solution of silver salt (10 \(\times 10^{-3} \) M) in acetonitrile under an inert atmosphere. After each addition of 0.1 ml, the absorbance was recorded using Hellma optodes (optical path length 0.1 cm) immersed in the thermostatted titration vessel and connected to the spectrometer. Mathematical treatment of the spectrophotometric titrations was performed with factor analysis28 and with the SPECFIT program.29,30

X-ray crystallography: Summary of crystal data, intensity measurements and structure refinements were collected in Tables S2, S5, and S8. Single crystal data were collected on a Bruker Apex-II diffractometer (Cu\textsubscript{K\textsubscript{a}} radiation) with data reduction, solution, and refinement using the programs APEX, SHEXt, Olex2, and ShelXL v. 2014/7, or using a STOE StadiVari diffractometer equipped with a Pilatus300 K detector and with a Metaljet D2 source (GKzr radiation) and solving the structure using Superflip, and Olex2. The structural model was refined with ShelXL v. 2014/7. Structure analysis used Mercury. Deposition Numbers 2150180 (for [Ag-Brdmbpy][PF\textsubscript{6}]), 2150181 (for [Ag(Brdmbpy)][PF\textsubscript{6}]), and 2150182 (for [Ag(Brdmbpy)CH\textsubscript{3}CN][PF\textsubscript{6}]) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Supporting Information
Site binding model and statistical factors (Appendices 1–3), detailed X-ray crystallographic data, spectrophotometric titrations and 1H NMR titrations are provided in the Supporting Information.

Acknowledgements
Financial support from the Swiss National Science Foundation is gratefully acknowledged. We also thank Dr. Homayoun Nozary at the University of Geneva for providing the requirements for
spectrophotometric titrations. Open access funding provided by Université de Genève.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the author upon reasonable request.

Keywords: bipyrainde · cooperativity · phenanthroline, silver · thermodynamics

[1] B. J. Holliday, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 2022–2043.
[2] M. D. Ward, Chem. Commun. 2009, 4487–4499.
[3] T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001–7045.
[4] J. K. Clegg, F. Li, L. F. Lindoy, Coord. Chem. Rev. 2022, 455, 214355.
[5] N. C. Gianneschi, M. S. Masar, C. A. Mirkin, Acc. Chem. Res. 2005, 38, 825–837.
[6] S. Datta, M. L. Saha, P. J. Stang, Acc. Chem. Res. 2018, 51, 2047–2063.
[7] T. Sawada, M. Fujita, Bull. Chem. Soc. Jpn. 2009, 94, 2342–2350.
[8] H. Takezawa, M. Fujita, Bull. Chem. Soc. Jpn. 2021, 94, 2351–2359.
[9] R. S. Forgan, J.-P. Sauvage, J.-F. Stoddart, Chem. Rev. 2011, 111, 5434–5464.
[10] J.-E. Beves, B. A. Lilt, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 2011, 50, 9206–9217.
[11] W. X. Gao, H. J. Feng, B. B. Guo, Y. Lu, G. X. Jin, Chem. Rev. 2020, 120, 6288–6325.
[12] J. M. Lenn, A. Rigual, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras, Proc. Natl. Acad. Sci. USA 1987, 84, 2565–2569.
[13] T. M. Garrett, U. Koert, J. M. Lenn, A. Rigual, D. Meyer, J. Fischer, J. Chem. Soc. Chem. Commun. 1990, 557–558.
[14] J.-M. Lenn, in Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.
[15] C. Piquet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997, 97, 2005–2062.
[16] M. Albrecht, Chem. Rev. 2001, 101, 3457–3497.
[17] M. H. J. van Lith, Supramol. Chem. 2004, 16, 72–22.
[18] J. P. Sauvage, Acc. Chem. Res. 1990, 23, 319–327.
[19] C. O. Dietrich-Bücheker, J. P. Sauvage, Chem. Rev. 1987, 87, 795–810.
[20] J.-P. Sauvage, Acc. Chem. Res. 1998, 31, 611–619.
[21] E. C. Constable, Chem. Ind. 1994, 56–59.
[22] E. C. Constable, Pure Appl. Chem. 1986, 68, 253–260.
[23] J. W. Steed, J. L. Atwood, in Supramolecular Chemistry, 2nd ed., Wiley, Chichester, 2009, pp. 105–222.
[24] Metallolodimers: Supramolecular Architectures from Helicates to Biomimetics (Eds.: G. Maayan, M. Albrecht), Wiley, Chichester, 2013.
[25] E. C. Constable, Adv. Inorg. Chem. 2018, 71, 79–134.
[26] T. M. Garrett, U. Koert, J. M. Lenn, J. Phys. Org. Chem. 1992, 5, 529–532.
[27] A. Pfeil, J.-M. Lenn, J. Chem. Soc. Chem. Commun. 1992, 838–839.
[28] J. H. Amate, M. Borkovec, C. Piquet, Chem. Eur. J. 2005, 11, 5217–5226.
[29] P. L. Kito, D. R. Bundle, J. Am. Chem. Soc. 2003, 125, 16271–16284.
[30] D. H. Williams, E. Stephens, D. P. O'Brien, M. Zhou, Angew. Chem. Int. Ed. 2004, 43, 6596–6616.
[31] A. S. Mahadevi, G. N. Sastry, Chem. Rev. 2016, 116, 2775–2825.
[32] F. Ricci, A. Vallee-Belisle, A. J. Simon, A. Porchetta, K. W. Plaxco, Acc. Chem. Res. 2016, 49, 1884–1892.
[33] N. Fatin-Rouge, S. Blanc, A. Pfeil, A. Rigual, A.-M. Albrecht-Gary, J.-M. Lenn, Helv. Chim. Acta 2001, 84, 1694–1711.
[34] G. Ercolani, J. Am. Chem. Soc. 2003, 125, 16097–16103.
[35] G. Ercolani, J. Phys. Chem. B 2003, 107, 5022–5027.
[36] J. Hamacek, C. Piquet, J. Phys. Chem. B 2006, 110, 7783–7792.
[37] P. E. Ryan, L. Guenée, C. Canard, F. Gumy, J.-C. G. Bünzli, C. Piquet, Inorg. Chem. 2009, 48, 2549–2560.
[82] C. Piguet, M. Borkovec, J. Hamacek, K. Zeckert, Coord. Chem. Rev. 2005, 249, 705–726.
[83] E. Fisicaro, C. Compari, A. Braibanti, Phys. Chem. Chem. Phys. 2004, 6, 4156–4166.
[84] H.-J. Schneider, Acc. Chem. Res. 2015, 48, 1815–1822.
[85] K. A. Sharp, Proc. Natl. Acad. Sci. USA 2015, 112, 7990–7995.
[86] M. P. Lowe, P. Caravan, S. J. Rettig, C. Orvig, Inorg. Chem. 1998, 37, 1637–1647.
[87] S. W. Magennis, S. Parsons, Z. Pikramenou, Chem. Eur. J. 2002, 8, 5761–5771.
[88] W. C. Wolsey, J. Chem. Educ. 1973, 50, A335–A337.
[89] J.-L. Pascal, F. Favier, Coord. Chem. Rev. 1998, 178–180, 865–902.

Manuscript received: March 23, 2022
Accepted manuscript online: May 31, 2022
Version of record online: June 21, 2022