The call of Rhinella festae (Peracca, 1904) (Anura: Bufonidae) from Morona Santiago, Ecuador

Diego Batallas a,b,c and Jorge Brito a,c

aDepartamento de Biodiversidad, Ecología Y Evolución de la Facultad de Ciencias Biológicas, Programa de Doctorado En Biología, Universidad Complutense de Madrid, Madrid, Spain; bLaboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas Y Ambientales COCIBA, Universidad San Francisco de Quito Usfq, Quito, Ecuador; cUnidad de Investigación Instituto Nacional de Biodiversidad, Quito, Ecuador

ABSTRACT
We describe for the first time the call of Rhinella festae (Peracca, 1904), recording it in captivity inside a plastic bag. The call is composed of 1 to 2 multi-pulsed notes (2–5 pulses), has an average duration of 0.72 s, and a dominant frequency of 1.40 kHz. This species is characterized by the absence of vocal slits and sacs, so the emission of this call would be considered unusual and uncommon. In addition to the purpose of improving the knowledge of species suggested as mutes, we have also compiled information from other anuran species that emit sounds with the absence of these anatomical structures.

Rhinella festae is a nocturnal species that is assigned to the Rhinella festae species group that inhabits the undergrowth of tropical and piedmont primary forests [1–3]. This species is distributed in middle and low elevations, up to 1700 m in the Cordillera de Kutuku and Cordillera del Cóndor in Ecuador and Peru [4,5].

One of the most conspicuous and important ethological features of anurans is their acoustic communication [6,7]. Anuran species have different types of calls, which express a wide variety of behaviours and are associated with a specific social context and function [8–11]. Anuran calls present specific characteristics for each species (i.e. spectral and temporal parameters), being used in the herpetology as an identification trait [6,12,13].

The call of Rhinella festae is a particularly unusual record because this species has no vocal slits and sacs [4], anatomical structures that are related to the sound production mechanism in anurans [7,14]. In this work, we present for the first time the call of Rhinella festae after remaining unknown more than 100 years later of its description as a new species.

Recordings were made on 26 November 2016 in the locality Rio Abanico (2° 13’ 25”S, 78° 14’ 45”W, datum WGS84, 1,570 m a.s.l.), at the province of Morona Santiago, Ecuador, at 18:00 h (16°C, 85% relative humidity). One male was unexpectedly recorded in captivity several hours after being collected while emitting calls from inside a plastic bag (ex situ) in a base camp. Calls were obtained using an Olympus WS-802 digital recorder about 1 m distance from the specimen. Calls were analyzed at a 44.1 kHz sampling rate and 16-bit resolution. The collected male was deposited at the División de Herpetología del Instituto Nacional de Biodiversidad, Quito, Ecuador (DHMECN 15830; SVL 34 mm). The recording was deposited at the Fonoteca Zoológica (www.fonozoocom) del Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain (FZ sound code 12,022).

For the analysis of the calls, we used Raven Pro version 1.4 [15]. In the settings, we applied a Hann window with 50% overlap and a DFT window width of 512 samples. Oscillogram and spectrogram images were obtained using R software version 3.6.3 [16], with the package Seewave version 2.1.5 [17] using a Hanning window type with 90% overlap, a fast Fourier transform (FFT) window width of 1024 samples, and a frequency limit of 4 kHz. Audio files in WAV format were imported with the tuneR package version 1.3.3 [18]. Definitions, terminology, and measurements in the description of the call follow Köhler et al. [11] and Sueur [19].

The call of Rhinella festae is composed of 1 to 2 multi-pulsed notes (2–5 pulses), with a mean dominant frequency of 1.40 kHz. The lowest dominant frequency values occur in the last pulses of the notes (Figure 1). We report the spectral and temporal parameters in Table 1. The analyzed calls were not assigned to a specific call type (see Toledo et al. 2015 [10]). They could tentatively be classified as advertisement calls, as these are most common in anurans [7,11]. Considering the low number of samples and the special condition of recording (i.e. calls emitted from inside a plastic bag), the calls of Rhinella festae analyzed in this report could not be considered like common of this species, because their calls in natural environments are not known.
The emissions of an individual in captivity may vary. Under this context, Batallas and Brito [20] described the advertisement call of Noblella lochites (Lynch, 1976) and mentioned that it is clearly different from calls recorded in captivity.

The call of *R. festae* is the first known and described call for the *Rhinella festae* species group. The unusual emission with the absence of vocal slits and sacs is not a characteristic and unique trait of *R. festae*, and it also occurs in other species of anurans (Table 2). One example to be noted is the case of Chiasmocleis antenori (Walker, 1973), in which Duellman [21] suggested that it must be a mute species due to the absence of these anatomical structures. However, the genus Chiasmocleis have been described the calls of this and several species that are characterized by the absence of vocal slits and sacs (Table 2).

Rhinella festae is an uncommon species in Ecuador, and the current state of its population is unknown [4,22]. Describing the call of this species will not only generate an identification trait, but it will allow with passive acoustic methods (knowing beforehand that it emits sounds and is not mute) to monitor and expand the knowledge of this species.

Table 1. Descriptive statistics of call parameters of one individual of *Rhinella festae*.

Parameters	Range (Mean ± SD)
Dominant frequency (kHz)	1.21–1.55 (1.40 ± 0.10)
Call duration (s)	0.18–0.98 (0.72 ± 0.29)
Interval between calls (s)	1.87–29.45 (6.55 ± 7.95)
Call rate (calls/min)	1.98–27.60 (14.29 ± 7.91)
Notes per call	1–2 (1.75 ± 0.45)
Note duration (s)	0.14–0.29 (0.22 ± 0.04)
Interval between notes (s)	12–26 (18.75 ± 3.37)
Note rate (notes/s)	1.20–1.58 (1.47 ± 0.12)
Pulses per note	2–5 (3.86 ± 0.79)
Pulse duration (s)	0.011–0.058 (0.024 ± 0.01)
Interval between notes (s)	0.022–0.061 (0.041 ± 0.001)
Pulse rate (pulses/s)	11.63–19.61 (14.91 ± 1.81)

Table 2. Studies that report call descriptions with absence of vocal slits or sacs in anurans.

Species	Vocal slits	Vocal sac	Type	Reference
Chiasmocleis antenori	Absent	Absent	Quantitative*	[23]
Chiasmocleis carvalhoi	Absent	Absent	Quantitative	[24]
Chiasmocleis mantiqueira	Absent	Absent	Quantitative	[25]
Chiasmocleis parkeri	Present	Absent	Quantitative	[26]
Craugastor aff.	Absent	Absent	Quantitative	[27]
Persimilis	Absent	Absent	Quantitative	[28]
Craugastor gabbi	Absent	Absent	Quantitative	[27]
Craugastor galacticornatus	Absent	Absent	Quantitative	[28]
Craugastor golmeri	Absent	Absent	Quantitative	[29]
Craugastor noblesi	Absent	Absent	Quantitative	[30]
Craugastor stejnegerianus	Absent	Absent	Quantitative	[31]
Craugastor stejnegerianus	Absent	Absent	Quantitative	[27]
Craugastor underwoodi	Absent	Absent	Quantitative	[27]
Craugastor yucatanensis	Absent	Absent	Quantitative	[27]
Gastrotheca cornuta	Absent	Absent	Quantitative	[33]
Megaelosia goeldii	Absent	Absent	Quantitative	[34]
Pristimantis dorado	Absent	Absent	Quantitative	[35]
Pristimantis nelsonangolai	Absent	Absent	Quantitative	[36]
Pristimantis paquishae	Absent –	Absent	Quantitative	[37]
Pristimantis trachybaphus	Absent	Absent	Qualitative	[38]
Rhinella festae	Absent	Absent	Quantitative	[This study]
Stefania Evanisi	Absent	Absent	Quantitative	[33,39]
Stefania rivieri	Absent	Absent	Quantitative	[33,39]
Tripon spinosus	Absent –	Absent	Quantitative	[40,41]

*Based on the analysis of the spectral and temporal parameters of calls. **Based on comments about onomatopoeia of sounds.
Acknowledgments

We thank Cecilia Ortega (Ecotono) for the facilities provided during fieldwork. We are very grateful to Claudia Koch, who generously revised and provided suggestions on an early version of this manuscript. We thank three anonymous reviewers for their valuable and constructive comments that helped improve the manuscript. We thank Ministerio del Ambiente de Morona Santiago for research permit N°. 11–16–IC-FLO-FAU-B–DAPMS/MAE.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Diego Batallas http://orcid.org/0000-0002-0068-8146
Jorge Brito http://orcid.org/0000-0002-3410-6669

References

[1] Chaparro JC, Proum JB, GluesenKamp AG. A new species of arboreal Rhinella (Anura: Bufonidae) from cloud forest of southeastern Peru. Herpetologica. 2007;63(2):203–212.

[2] Cusi JC, Moravec J, Lehr E, et al. A new species of semiarboreal toad of the Rhinella festae group (Anura, Bufonidae) from the Cordillera Azul National Park, Peru. ZooKeys. 2017;673:21–47.

[3] Pereyra MO, Blotto BL, Baldo D, et al. Evolution in the Genus Rhinella: a total evidence phylogenetic analysis of neotropical true toads (Anura:Bufonidae). Bull Am Mus Nat Hist. 2021;447:1–156.

[4] Frenkel C Rhinella festae. In: Ron SR, Merino–Viteri A, Ortiz DA. editors. Anfibios del Ecuador [Internet]. Version 2019.0. Museo de Zoología, Pontificia Universidad Católica del Ecuador; 2019 cited 2021 Aug 10. Available from 2021 Aug 10. http://bioweb.bio/fau naweb/amphibiaweb/FichaEspecie/Rhinella%20festae .

[5] Frost DR. Amphibian species of the world: an online reference [Internet]. Version 6.1. New York: American Museum of Natural History; 2021 cited 2021 Jul 13. Available from 2021 Jul 13: https://amphibiansofthe world.amnh.org/index.php .

[6] Angulo A. Fundamentos de bioacústica y aspectos prácticos de grabaciones y análisis de cantos. In: En: Angulo A, Rueda–Almonacid JV, Rodríguez–Mahecha JV, et al, editores. Técnicas de inventario y monitoreo para los anfibios de la Región Tropical Andina. Bogotá: Conservación Internacional, 2006: 93–134.

[7] Wells KD. The ecology and behavior of Amphibians. Chicago: University of Chicago Press; 2007.

[8] Gerhardt HC. The evolution of vocalization in frogs and toads. Annu Rev Ecol Syst. 1994;25:293–324.

[9] Wells KD, Schwartz JJ. The behavioral ecology of anuran communication. In: PM N, Feng AS, Fay RR, et al, editors. Hearing and sound communication in amphibians. New York: Springer; 2007. p. 44–86.

[10] Toledo LF, Martins IA, Bruschi DP, et al. The anuran calling repertoire in the light of social context. Acta Ethol. 2015;18:87–99.

[11] Köhler J, Jansen M, Rodríguez A, et al. The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa. 2017;4251(1):1–124.

[12] Duellman WE, Trueb L. Biology of amphibians. Baltimore, Maryland: The John Hopkins University Press; 1994.

[13] Escalona Sibaran MD, Ivo Simões P, Gonzalez–Voyer A, et al. Neotropical frogs and mating songs: the evolution of advertisement calls in glassfrogs. J Evol Biol. 2019;32(2):163–176.

[14] Colafrancesco KC, and Gridi–Papp M. Vocal sound production and acoustic communication in amphibians and reptiles. In: Suthers RA, Fitch WT, Fay RR et al., editors. Vertebrate sound production and acoustic communication. Springer International Publishing; 2016. p. 51–82.

[15] Bioacoustics Research Program. Raven Pro: interactive sound analysis software (version 1.4). Ithaca (NY): The Cornell Lab of Ornithology. 2011. Available from: http://www.birds.cornell.edu/raven .

[16] R Development Core Team. R: a language and environment for statistical computing (version 3.6.3). Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: http://www.R-project.org .

[17] Suej J, Aubin T, Simonis C. Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics. 2008;18:213–226.

[18] Lligges U, Krey S, Mersmann O, et al. tuneR: analysis of music. R package. 2018. Available from: https://CRAN. R-project.org/package=tuneR .

[19] Suej J Sound Analysis and Synthesis with R, UseR Cham. Switzerland: Springer International Publishing; 2018.

[20] Batallas D, Brito J. Descripción del llamado de advertencia de Noblella lochites (Anura: Craugastoridae). Anav Cien Ing. 2014;6(1):B6–B8.

[21] Duellman WE. The biology of an equatorial herpetofauna in Amazonian Ecuador. Misc publ Univ Kans Mus Nat Hist. 1978:65:1–352.

[22] IUCN. The IUCN red list of threatened species. [Internet]. Version 2021–1; 2021 cited 2021 Aug 12. Available from 2021 Aug 12: https://www.iucn redlist.org .

[23] Morales VR, Vargas P. Vocalization and diet of Syncope antenori (Amphibia: microhylidae). Herpetol Rev. 2003;34(3):203–206.

[24] Rojas–Padilla O, Gagliardi–Urrutia G, Simões P, et al. The advertisement call of Chiasmocleis (Syncope) carvalhoi (Nelson, 1975) (Anura: microhylidae), with taxonomic remarks based on new morphological observations of specimens from Peruvian Amazonia. Zootaxa. 2020;4869:121–130.

[25] Santana DJ, Motta AP, Pirani RM, et al. Advertisement call and tadpole of Chiasmocleis mantiqueira Cruz, Feio and Cassini, 2007 (Anura, Microhylidae). J Herpetol. 2012;46(1):14–18.

[26] Almendáriz AC, Brito JM, Batallas D, et al. Una especie nueva de rana del género Chiasmocleis (Microhylidae: gastraphryninae) de la Cordillera del Cóndor, Ecuador. Pap Avulsos Zool. 2017;57(10):119–136.

[27] Cossel JO, Twining JE, Di Stefano KL, et al. Vocalizations of five species of frogs in the Craugastor podiciperis species group (Anura: craugastoridae) from Costa Rica. Herpetol Conserv Biol. 2019;14(1):235–249.

[28] Canseco–Márquez L, Smith EN. A diminutive species of Eleutherodactylus (Anura: leptodactylidae), of the alfredi group, from the Sierra Negra of Puebla, Mexico. Herpetologica. 2004;60:358–363.

[29] Ibáñez R, Jaramillo C, Solís F. Description of the advertisement call of a species without vocal sac: craugastor gollmeri (Amphibia: craugastoridae). Zootaxa. 2012;3184:67–68.
[30] Ibáñez R, Jaramillo C, Solís F. Advertisement call of *Craugastor noblei*: another calling species of the *Craugastor gollmeri* Group (Anura: Craugastoridae). *Phyllomedusa*. 2014;13:67–70.

[31] Twining JE, Cossel JO. Temporal and spectral analysis of the advertisement call of *Craugastor stejnegerianus* (Anura: Craugastoridae) in Costa Rica. *Mesoam Herpetol*. 2017;4:129–136.

[32] Carbajal–Márquez RA, Díaz–Gamboa LF, Ramírez–Valverde T, et al. Description of the male of *Craugastor yucatanensis* (Lynch, 1965) (Anura, Craugastoridae), its advertisement call, and additional data on females. *ZooKeys*. 2019;900:129–139.

[33] Duellman WE. Marsupial frogs: *gastrotheca* & allied genera Marsupial frogs. Baltimore, Maryland: The John Hopkins University Press; 2015.

[34] Muscat E, Stuginski D, Moroti MT, et al. An unidentified call emission by *Megaelosia boticariana*. *Herpetol Notes*. 2020;13:805–808.

[35] Rivera-Correa M, Lamadrid-Feris F, Crawford AJ. A new small golden frog of the genus *Pristimantis* (Anura: Craugastoridae) from an Andean cloud forest of Colombia. *Amphibia–Reptilia*. 2016;37(2):153–166.

[36] Valencia JH, Valladares-Suntasig F, Tipantiza-Tuguminago L, et al. A new species of terrestrial-breeding frog of the genus *Pristimantis* (Anura: terrarana: craugastoridae) from the eastern Andean slopes of the southern Ecuador. *Zootaxa*. 2019;4658:509–525.

[37] Brito J, Batallas D, Velalcázar D. Nueva especie de rana terrestre del género *Pristimantis* (Amphibia: craugastoridae), meseta de la Cordillera del Cóndor. *Pap Avulsos Zool*. 2014;54(30):435–466.

[38] Lynch JD, Duellman WE. The *Eleutherodactylus* of the Amazonian slopes of the Ecuadorian Andes (Anura: leptodactylidae). The University of Kansas, Misc publ Univ Kans Mus Nat Hist. 1980; 69:1–86.

[39] Sinsch U, Juraske N. Advertisement calls of hemi-phantine marsupial frogs: IV. *Stefania* spp. In: Vences M, Kohler J, Ziegler T, et al., editors. *Herpetologia Bonnensis* II. Proceedings of the 13th Ordinary General Meeting of the Societas Europaea Herpetologica. Bonn: 2006. pp. 159–162.

[40] Jungfer KH. Reproduction and parental care of the crowned treefrog, *Anotheca spinosa* (Anura: Hylidae). *Herpetologica*. 1996;52:25–32.

[41] Jungfer KH. Reproductive behavior of *Anotheca spinosa* (Anura: Hylidae) under natural conditions in Costa Rica. *Herpetol Rev*. 2013;44(1):54–56.