Institutional strategies as a mechanism to rationalize the negative effects of judicialization of access to medicine in Brazil

Virginia Oliveira Chagas
virginiafarm@gmail.com
Universidade Federal de Goias Faculdade de Medicina
Corresponding Author

Mércia Pandolfo Provin
Universidade Federal de Goias

Pedro Augusto Prado Mota
Universidade Federal de Goias

Rafael Alves Guimarães
Universidade Federal de Goias

Rita Goreti Amaral
Universidade Federal de Goias

DOI: 10.21203/rs.2.13037/v1

SUBJECT AREAS
Health Policy Health Economics & Outcomes Research

KEYWORDS
Judicialization of health, Pharmaceutical services, Right to health, Judicial decisions, Health systems
Abstract

Recently, the Executive Branch and Judiciary in Brazil increased spending due to larger numbers of lawsuits that forced the State to provide health goods and services. This phenomenon, known as health judicialization, is related to flaws in policies and to insufficient funds available for the State to meet every demand, and it has created challenges. These challenges required the Executive Branch and Judiciary to create institutional strategies such as technical chambers and departments to reduce the social, economic and political distortions caused by this phenomenon. This study aims to evaluate the effects of two institutional strategies deployed by a Brazilian municipality in order to cope with the economic, social and political distortions caused by the phenomenon of health judicialization regarding access to medicines. A longitudinal study was carried out in a capital in the Central-West Region of Brazil. A sample of 511 lawsuits was analyzed. The variables were placed into three groups: the sociodemographic characteristics and the plaintiffs’ disease, the characteristics of the claimed medical products and the institutional strategies. To analyze the effect of the interventions on the total cost of the medicines in the lawsuits, bivariate and multivariate linear regressions with variance were performed. For the categorical outcomes, Poisson regressions were performed with robust variance, using a significance level of 5%. A reduction in the costs of medicines in the lawsuits and of the requests for medicines within the SUS formulary was verified after the deployment of the Department of Assessment of Non-Standardized Medicines (DAMNP) and the Technical Chamber of Health Assessment (CATS); an increase in processed prescriptions from the Brazilian Universal Health System was observed after the deployment of the CATS; and an
increase in medicines outside the SUS formulary without a therapeutic alternative was verified after the CATS. The institutional strategies deployed were important tools to reduce the high costs of the medicines in the lawsuits. In addition, they represented a step forward for the State, provided a benefit to society and indicated a potential path for the health and justice systems of other countries that also face problems caused by the judicialization of health.

Background

In Brazil, the integral right to health is an obligation of the State, written in the Federal Constitution, and it depends on the creation and implementation of public health policies. However, since the 1990s, Brazilian citizens have resorted to the judicial system in order to have access to medications and other health goods and services. This phenomenon is called health judicialization, and drugs are the most requested good [2,3,4]. The flaws in health policies and insufficient funds for the State to meet the growing demands in health care are the attributed causes of this phenomenon [5].

To guarantee the effectiveness of the right to health, the Brazilian justice system established the proceeding of state and non-state institutions. The former is organized into three branches: Judiciary, Executive and Legislative; and the latter is composed of the other institutions, one of which is the Public Prosecutor’s Office. The Public Prosecutor’s Office is an entity that is not within these powers. It has the role of inspecting and protecting the fundamental principles and interests of society and filing lawsuits when such interests are not at hand; it is essential to justice [6].

In healthcare, the Executive Branch is responsible for managing the Brazilian public health system—Sistema Único de Saúde (SUS)—which also guarantees access to
essential medicines, guided by the National Medicines Policy [7] and by other laws and policies that define the medicines within the SUS formulary (belonging to the official lists of medications of SUS). However, the SUS cannot meet the unlimited demands of Brazilians. When the State faces difficulties in offering health services and adequate universal well-being to all citizens, many people seek these rights through the Judiciary [9].

The lawsuits are used by citizens to overcome the inaccessibility of medicines, caused either by the lack of financial resources to acquire them, by their unavailability in public health services or by the high cost of treatment, especially for the treatment of genetic diseases and neoplastic drugs outside the pharmaceutical care policy and represent an important part of the problem [5,10].

In the Brazilian democratic context, the health judicialization can express legitimate claims and ways of acting citizens. On the other hand, it bolsters an imbalance in rights by giving the privilege of obtaining these rights to groups of people who have the knowledge about the lawsuits and financial resources to appeal to the justice system [11].

Some studies show that users who use the Judiciary to request a medicine usually have better socioeconomic conditions because they can pay the procedural expenses generated by the judicialization. Thus, this phenomenon privileges certain social segments, favoring those who have greater access to the justice system and aggravates the inequities in access to health of a system already marked by inequalities [12].

The search for a guarantee of one’s right to health services and goods using the courts in the legal system is not a case isolated to Brazil and occurs in other countries such as Colombia, Costa Rica and Chile [13,14,15]. What stands out in the
Brazilian case is the high rate of the lawsuits deferred by the judge, which has sparked discussions between professionals and managers of the health sector, as health judicialization not only can provide a useful mechanism for society to force the State to implement public policies but also can cause negative economic, social and political distortions [4].

In economic terms, judicialization creates costly unscheduled expenses for the Executive Branch and Judiciary. For the Executive, the spending in the federal sphere on such judicial demands has increased 1,000% (in the requested items) between 2008 and 2015, increasing from approximately US$32,928,388.75 to US$351,662,404.09, which has displaced the budget for other sectors of the Ministry of Health, such as the supply of drugs to primary care and the treatment of patients with STIs/AIDS; in addition, the Ministry of Health budgets showed a limited variation in this time period, which made planning and managing the public budget difficult [16].

For the judiciary, it was observed that the spending on cases increased to approximately US$11,319,112,008 on lawsuits (administrative cost of appeals), which corresponded to 1.2% of the gross national product and was equivalent of handling an overall procedural burden of approximately 86.6 million cases [17]. In 2011, there were 240,980 lawsuits in the health area, and they were primarily for requests of medications [18].

With regard to social distortions, studies have revealed that lawsuits can deepen the inequity of access to care in a health system already characterized by socioeconomic inequality, when individuals with better socioeconomic conditions, who are not participants of the SUS and are financially able to afford the lawsuits, are therefore favored. By favoring a few individuals, lawsuits interfere negatively
with the principles of the SUS (universality and equity) because these demands shift the resources that should serve the majority (especially those who need it the most) in order to serve a few with smaller necessities [3,5,19].

The political distortions, lawsuits can interfere and cause distortions in the national medicines policy and force the government to provide medicines outside the SUS formulary, with little evidence of their efficacy and safety and which have higher costs. When the Executive Branch inserts a medicine in the official lists of SUS, it considers studies of scientific evidences that prove the safety and the effectiveness. The justice system does not consider these studies and ends up ordering the supply of medicines recently launched on the market, often without sanitary registration and off-label.

This event may occur due to the members of the judiciary and the Public Prosecutor’s Office lacking the technical knowledge to interpret these policies. In lawsuits, there is no trial with competing experts and the judge decides based solely on the information provided in the plaintiff’s request. In this case, the Government has not given an opportunity to answer the plaintiff’s demand. The government has to comply with the judicial decision within the deadline stipulated by the judge. Such distortions can compromise the rational use of medicines [20].

Therefore, health judicialization has created tensions and motivated discussions about its legitimacy and the technical and/or legal and institutional competence of the judiciary system to decide about the content and the implementation issues of the state provision as implemented by the Executive Branch. In addition, it has caused an increasing number of individual demands for medications that increase public spending [2,3].

To rationalize these distortions, Brazil and other Latin American and Caribbean
countries such as Chile, Costa Rica, Mexico, Peru, Uruguay and Argentina have proposed strategies, such as the creation of spaces for discussion between the actors in the health and judicial systems that help in the decision-making process according to the necessities of the population. For that, technical and scientific consultation committees were created to aid operatives of the law before filing a health-related lawsuit. Such strategies have helped in rationalizing the finite health resources, creating interinstitutional dialog between the actors of the Executive Branch and Judiciary and reducing new judicial demands [21,22,23].

In Brazil, the creation of the Department of Assessment of Non-Standardized Medicines (Departamento de Avaliação de Medicamentos Não Padronizados - DAMNP) and the Technical Chamber of Health Assessment (Câmara de Avaliação Técnica em Saúde - CATS) were strategies deployed by a Brazilian state. The DAMNP was a department created by the Executive Branch in 2006 to exclusively analyze the technical and scientific rationality of medicines solicited by the users of the public health system by using an administrative case that has a prescription and a medical report. The technical analysis is performed by the pharmacists who evaluate the demands according to the norms of policies and the national legislation in force. When the solicited medicine outside the SUS formulary, the pharmacists suggest its replacement by one that belongs to the official lists of SUS. This strategy is responsible for establishing access protocols to medications in the Executive Branch and, when necessary, for the inclusion or exclusion of medicines on the official lists of the SUS medicines [24].

The CATS was created in 2009 by the Public Prosecutor’s Office of the same Brazilian state in order to offer technical support to public prosecutors about medicines solicited by the users of the public and private health systems. The
opinions are from medical experts and pharmacists who analyze the content of the medical prescriptions and the report based on medical and scientific criteria and on pharmaceutical policies in force and, when possible, therapeutic alternatives made available by the SUS are suggested. This strategy helps prosecutors who lack the technical knowledge necessary to evaluate the demands become informed before filing a lawsuit against the State. Beyond that, it has contributed to perfecting access protocols for medicines in the Executive Branch, suggesting medicines to be incorporated into the policies. The medical experts and pharmacists can suggest the medicine outside the SUS formulary most requested by the lawsuits to be incorporated into the policies. Based on this suggestion, it does not mean that the medicine will be incorporated into the official SUS lists, since another commission is responsible for analyzing the scientific evidence of efficacy and safety of the medicine before being incorporated into the official SUS lists. That is, a medicine to be incorporated in the SUS lists, goes through an evaluation of a technical team [25].

The purview of the CATS was reaffirmed in 2010 when a technical cooperation agreement was signed between the Executive Branch and the Public Prosecutor’s Office. This agreement decreed that all demands for medicines not available under the official SUS lists would be resolved through the creation of an administrative case in the Executive Branch; institutionalizing the administrative case was viewed as a way to reduce the number of lawsuits [26].

It was noted that these strategies were adopted by jurists and health managers in many Brazilian states and conveyed respect for constitutional principles, such as the right to health as an aspect of human dignity and an access to justice [27,28,29]. However, little is known about the effects of these strategies regarding
the negative repercussions caused by the judicialization of the health system. This gap in knowledge motivates the question: Do institutional strategies reduce social, economic and political distortions that the judicialization of medicine access brings to public administration?

In this context, the objective of this study was to evaluate the effects of two institutional strategies adopted by a Brazilian municipality in order to face economic, social and political distortions that involved the judicialization of access to medicine phenomenon.

Methods

Data source and study setting

This was a longitudinal study whose objective was to assess the lawsuits that sued for the requests of medicine from the Executive Branch before and after the deployment of two institutional strategies in a state capital in the Central-West Region of Brazil. These were deployed in order to contend with the distortions caused by the judicialization of access to medicine.

To analyze these lawsuits, a period from 2003 to 2015 was chosen. The data were collected in July of 2016 in the Pharmacy of Health-related Products and Special Medications, a unit responsible for archiving and attending to such demands. Lawsuits that solicited at least one medicine were included in the study.

In total of 3,335 lawsuits that requested health goods or services from January 2003 to December 2015 were identified; of these, 2,557 solicited at least one medication. The random simple type of calculation for the sample was used that was stratified by the year of the lawsuit, using a statistical power of 80 ($\beta = 20\%$), a confidence interval of 95% ($\alpha = 0.05$) and an accuracy level of 5%. A total of 568 lawsuits were
selected, of which 31 were excluded due to incomplete information and 26 were excluded for non-retrieval of the solicited medication, yielding a total sample size of 511 lawsuits during the analyzed time period (Figure 1).

Variables

The lawsuit data were collected using a form standardized by the researchers after reviewing variables that were investigated in a prior study done in Brazil [30], which included the following: (i) sociodemographic characteristics and the disease(s) of the plaintiffs; (ii) characteristics of the medications solicited in the lawsuits; and (iii) the institutional strategies.

(i) Sociodemographic characteristics and the disease(s) of the plaintiffs

The sociodemographic characteristics and the disease of the plaintiffs included age (years), sex (male/female), the prescription’s origin (were prescribed by a SUS clinician or private system clinician), and income (mean monthly income of the head of the household, expressed in U.S. dollars) estimated according to the 63 Territorial Planning Units (Unidade Territorial de Planejamento-UTP) of the capital and acquired from the 2010 census data [31]; disease(s) were classified according to the International Statistical Classification of Diseases and Related Health Problems (ICD) [32] and reported in the medical report included within the lawsuit.

(ii) Characteristics of the medications solicited in the lawsuits

The characteristics of the requested medicines in the lawsuits were as follows: the amount of medication(s) requested; the classification of the medications according to the Anatomical Therapeutic Chemical Classification (ATC) [33]; and the total cost of the medicines in the lawsuit (relative only to the sum of the costs of the
medicines requested based on the price of the Bank of Health Prices of the Ministry of Health) [34]. Medications were also classified according to their position with regard to the official lists (it is on the medicines list and is provided free of charge). The categories included: (1) within the SUS formulary (belonging to the official lists of medications of SUS); (2) outside the SUS formulary (per the official SUS lists of medications) but with a therapeutic alternative available from SUS through the third level of the ATC classification (No or Yes) [32]; or (3) outside the SUS formulary and without a therapeutic alternative available from SUS (No or Yes) [8].

(iii) Institutional strategies

The group of institutional strategies considered by the Department of Assessment of Non-Standardized Medicines (Departamento de Avaliação de Medicamentos Não Padronizados-DAMNP) and the Technical Chamber of Health Assessment (Câmara de Avaliação Técnica em Saúde-CATS).

The variables related to the interventions were used according to previously published studies [35,36]. Two dummy variables were created in a dichotomized fashion: (0) pre-intervention period and (1) post-intervention period. In this manner, the lawsuits were coded with “0” if they were filed before the deployment of each intervention and with “1” if they were filed after the deployment of the interventions. The lawsuits that occurred in the year of the intervention deployment (the transitional period) were removed from the analysis in order to avoid potential bias (Figure 2). The coding was done by a specialist researcher. The coding of the variables analyzed in the study is shown in Table 1.

Statistical Analysis

The data were analyzed using the SATA software, version 14.0. The Shapiro-Wilk (SW) test was used to verify the normality of the quantitative variables [37]. An
initial descriptive analysis of the lawsuits included in the sample was performed, and the qualitative variables were represented as absolute and relative frequencies and the quantitative variables as the mean, standard deviation (SD), median and interquartile range (IQR) [38].

To verify the effect of the three institutional strategies on the economic and political characteristics of the lawsuits, the following were considered dependent variables: (i) total cost of medications in the lawsuit; (ii) lawsuits with medicines within the SUS formulary; (iii) lawsuits with medicines outside the SUS formulary but with a therapeutic alternative available from SUS; and (iv) lawsuits with medicines outside the SUS formulary and without a therapeutic alternative available from SUS.

For the statistical analysis, the deployment of the strategy was entered as a variable. This variable was further categorized by period of occurrence as a pre-deployment or a post-deployment strategy. To prevent potential bias, the lawsuits that occurred during the year of the deployment of the policy (a transitional period) were removed from the analysis.

To analyze the effects of the interventions and the determinants of the total cost of the medications, bivariate and multiple linear regressions with robust variance were performed [39,40]. The following were considered determinants in the cost of the process: prescription’s origin, quantity of medicines and disease. Variables with \(p < 0.20 \) in the bivariate analysis were included in the multiple regression model. Characteristics of the plaintiffs (age, sex and income) were also included in the adjustment of the regression model. Due to the asymmetrical nature of the date related to the costs, bootstrapped standard errors (based on 1,000 replications) were calculated to obtain 95% confidence intervals to adjust the regression coefficient [41,42] beyond the logarithmic transformation of the data [38]. The
models were analyzed for multicollinearity using the variance inflation factor (VIF) test [43], for the distribution of residues using the SW test [37] and for homoscedasticity using the White test [44].

To verify the effect of interventions on categorical outcomes, Poisson regressions with robust variance were performed [45,46]. The models were adjusted by the following variables: prescription’s origin and interventions. In all analyses, values of p<0.05 were considered statistically significant.

Results

In the 511 processes analyzed, 1501 medicines were requested. The mean age of the plaintiffs was 42.8 years (SD+24.7), and the median age was 43.0 years (20.0–64.00); the mean income was US$1409.6 (SD±1101.8), and the median was US$1036.9 (680.5–1506.5); the mean cost of medications of the lawsuits was US$1.483.3 (SD+4.345.7), and the median was US$406.2 (143.9–1198.6); and the mean quantity of medications requested was 2.9 per lawsuit (SD±2.4), and the median was 2.0 (1.0–4.0) (Table 2).

Regarding the origins of the prescriptions, a greater proportion of prescriptions in administrative cases were prescribed by a SUS clinician (71.8%). The most frequent diseases were of the genitourinary system (27.2%), the circulatory system (21.3%) and the nervous system (16.4%) (Table 2).

In relation to the classification of the medicines requested in the lawsuits, a majority of medicines outside the SUS formulary was observed (54.6%) as follows: 27.7% for the digestive tract and metabolism, 27.6% for the cardiovascular system and 20.9% for the nervous system (Table 3).

The table 4 and 5 show the number of medicines requested in lawsuits by
Anatomical Therapeutic Chemical Classification by year (2003–2015).

The costs of medicines requested were less after the deployment of the DAMNP (p<0.005) and the CATS (p<0.001); there was a reduction in the frequency of medicines within the SUS formulary after the deployment of the DAMNP (p = 0.039) and of the CATS (p = 0.020); there was an increase in the requests for medicines outside the SUS formulary with a therapeutic alternative after the deployment of the DAMNP (p = 0.028) and the CATS (p<0.001); and there was an increase in lawsuits with prescriptions prescribed by a SUS clinician after the deployment of the CATS (p<0.002) (Table 6).

Table 7 shows the bivariate and multivariate regression of the effects of the strategies and the other determinants of the total medicine cost in the lawsuits. The effects of the strategies and the determinants on the total cost of the medications in the lawsuits are shown in Table 7. The final model explained 14.0% of the variability of the costs of the medications in the lawsuits (R2:14.0). A reduction in the costs was noted after the deployment of the DAMNP (β:−0.20; p<0.001) and of the CATS (β:−0.25; p<0.001) (Table 7). The income of the plaintiff and the quantity of the medications were positively and independently associated with the cost.

Table 8 shows an 19% reduction in the prevalence of medicines within the SUS formulary (APR:0.81; p = 0.032) and an increase in the prevalence of medicines outside the SUS formulary with a therapeutic alternative (APR:1.38; p = 0.011) after the deployment of the CATS. The effect of the two interventions was not verified in the proportion of lawsuits with medicines outside the SUS formulary and without a therapeutic alternative.

Discussion
It was observed that institutional strategies that work in an interinstitutional manner are effective in mitigating some of the side effects of the judicialization of the right to health, specifically for the access to medicines, such as in the reduction in the filing of new lawsuits. A similar reduction was also observed in a previous study in Brazil [30].

For the justice system, the reduction in the procedural burden involving the requests for medicines can contribute to a reduction in the administrative cost of lawsuits, such as: employee expenses, consumables, paper and etc. Although these costs are hard to measure, the Institute of Applied Economic Research (Instituto de Pesquisa Econômica Aplicada - IPEA) determined that the cost of a first-degree process of tax enforcement is US$2,143.56, and this serves as a parameter for the cost of a lawsuit in the health area [47]. Therefore, the reduction of these costs allows for the allocation of the resources of the Judiciary to cases that are not related to health care.

However, the reduction in the costs of the medicines in the lawsuits does not necessarily imply a reduction in the spending by the secretaries of health for medicines outside of the paths that are institutionalized by public policy. In this case, although the Executive is able to reduce the purchase of medicines by lawsuits, the expenses still remain. What happens is a management and better control of what is being requested. CATS can manage better because it can modify the prescription order and replace it with some medicines within the SUS formulary, while in court this does not happen anymore, the judge orders the supply of the medicine, without the option to check if there is an available and cheaper alternative for the Executive.

In addition, if the insufficiency of the State to promote the access to these items
remains uncorrected, the necessities of the citizens will still remain, and the needs of the citizens may motivate a shift of requests for medicines from the lawsuits to the administrative cases.

It is evident that a reduction in the costs of medicines in the lawsuits benefits society, which is responsible for the financing of the health and justice systems in Brazil through social contributions and the payment of taxes. In this way, the deployment of institutional strategies favors the collective well-being and guarantees access to medicines within the SUS formulary and at a more acceptable cost to society.

The observed reduction in the medicines within the SUS formulary is related to the creation and deployment of institutional strategies adopted by the municipality; the necessities of the users were evaluated by a technical team that was knowledgeable about public health policies, had the ability to comprehend and assess the individual needs of the plaintiffs, and could provide feedback to instruct users about the SUS formulary for the requested medication, making litigation unnecessary in the justice branch. The two strategies prioritized the requests of citizens through the institutionalized or the administrative cases; therefore, the requests for medicines that were not included on the official lists were addressed using the legal route, as demonstrated by other studies [2,3,48].

However, the deployment of the CATS strategies increased the prevalence of requests for medicines outside the SUS formulary but with a therapeutic alternative. It was assumed that these institutional strategies would lower these requests because in their feedback they proposed options for treatment with medications that had the same efficacy and were available through the SUS. This finding is likely a result of prescribing medicines in an acritical manner, often without scientific
evidence, or because of pressure from the pharmaceutical industry or the prescribers' non-adherence to the SUS formulary [49]. These situations indicate how pharmacological and economic irrationalities could be avoided if magistrates took advantage of the technical opinions of the CATS before filing a lawsuit, as recommended by the National Council of Justice [28].

The prevalence of requests for medicines outside the SUS formulary without a therapeutic alternative was not influenced by institutional strategies, proving the need to update policies and incorporate new technologies by the SUS. Legal demands for medicines are justified when the provision that is provided for in the policies is not guaranteed or when the request involves medicines whose treatment is not covered by the policies and those that do not have a therapeutic alternative, reflecting gaps in care [4].

It is known that the process of incorporating new technologies is a determining factor in the increase in spending on health systems in many countries [50]. Accordingly, Brazil has passed law number 12,401/2011 [51] and the decree number 7,508/2011 [52], which introduce modifications and additions to the law number 8,080 of 1990 [53], referring to therapeutic assistance and the incorporation of technologies in the SUS. However, political and market pressure is still observed in favor of incorporating the medicines that are most requested in the lawsuits on the SUS formulary [54].

In relation to another political aspect of health judicialization, the increase in cases with prescriptions prescribed by a SUS clinician after the deployment of the CATS that was observed in this study demonstrated two possible situations. The first indicates that an improvement in access to medical appointments in the public system by the plaintiffs is responsible; the second entails the use of the SUS by
users of the private system only to obtain a transcription of the prescription by a professional accredited to the SUS. This last situation has been a recurrent practice in which users seek to overcome the lack of coverage of medications in the private system and exhibit a private-public mix, that is, they seek medical assistance that is guaranteed by the private system and access to medications provided by the public system [55].

With regard to the social aspects, it was observed that the profile of the plaintiffs filing the lawsuits did not change after the deployment of the strategies; the population was still characterized by a higher income, and they were privileged by their ability to afford doctor appointments in the private system and the expenses related to the lawsuits. Other studies have also suggested that health judicialization benefits those citizens with better economic status, and therefore, it worsens the inequities in the access to health care [19, 56].

It is well known that health judicialization is a multidimensional problem, but the larger concern is the actual effectiveness of the pharmaceutical care provided by the health system. The management of the pharmaceutical service must reorient its actions and guarantee access to essential medications that are established in the pharmaceutical policy according to the principles of the SUS. The justice system should only be used when this access is not guaranteed.

As a matter of fact, health judicialization brought changes in the social and institutional relationships to guarantee the integrity of health care in the face of the social demands and deficiencies of the public health system. In addition, it created formal spaces for dialog between the justice and health systems, which is fundamental for ensuring effective public policy, such as the DAMNP and CATS strategies. These strategies did not eliminate lawsuits, but they rationalized some
economic and political distortions and normalized access to medicines outside the
SUS formulary and took into consideration the alternatives made available by the
SUS and other clinical protocols in force.

The benefits generated by the deployment of institutional strategies should not be
analyzed only from the perspective of the health system. The clinical rationality and
the right to health benefits, physical integrity and well-being aspect of human
dignity of the population should be considered. The Brazilian citizens who pay taxes
and finance the public health system expect that resources destined to health
treatment are used in an adequate manner that benefits their own health and that
of their families. Thus, it is important to assess at what point the economic interests
of the State to reduce spending with health judicialization overcomes the real
necessities of the user.

Hopefully, the results of this study can serve as a model for many health and justice
systems in other countries where health judicialization is practiced, and these
findings can contribute to restructured and enhanced policies, guaranteed access to
essential medicines in an equanimous manner and special attention to the needs of
the people who depend on the health systems for their therapeutic treatment.

Limitations

The limitations of this study that require consideration in the interpretation of the
results include the unavailability of data in a few of the analyzed lawsuits, such as
age, the plaintiff’'s income, the origin of the prescription, the information on the
health care provider and the clinical history of the plaintiff. The lawsuits with
incomplete data that were not analyzed may have influenced the results of the
analyses. The inability to determine the social conditions of the plaintiffs also
limited providing a deeper discussion on the equity and the social aspects that are involved in the judicialization phenomenon.

Conclusions

The DAMNP and CATS deployed by the Executive Branch and Public Prosecutor’s Office were important tools in the reduction of the elevated costs of medications in the lawsuits, representing progress for the State and a benefit to society. The results show that adopting these institutional strategies can be an effective path for other health and justice systems in Brazil and in other countries. On the basis of this premise, new studies are needed to evaluate the effects of institutional strategies on the inequalities caused by health judicialization, with the objective of guaranteeing access to health care for people in an equanimous way.

Abbreviations

ATC: Anatomical Therapeutic Chemical; APR: Adjusted Prevalence Ratio; CI: Confidence Interval; ICD: International Statistical Classification of Diseases and Related Health Problems; CATS: Technical Chamber of Health Assessment; DAMNP: Department of Assessment of Non-Standardized Medicines; IQR: Interquartile Range; PR: Prevalence Ratio; SD: Standard Deviation; SUS: Brazilian Universal Health System; UTP: Territorial Planning Units.

Declarations

Ethics approval and consent to participate

Administrative permission to use the raw data was provided by the Municipal Secretary of Health after the author registered the above research for approval by
the Research Ethics Committee of the Federal University of Goiás (Comitê de Ética em Pesquisa da Universidade Federal de Goiás) (Protocol nº 713.754/2014). Access was given on three conditions. First was that the data is used only by the author and only for the purpose of the registered research or study. Secondly, the should be treated as confidential, and no effort should be made to identify any granted cases. Thirdly, the author is required to submit a copy of any reports/publications resulting from using the granted cases. The institutional review board waived the informed consent because used secondary data.

Consent to publish

Not applicable

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available due to the data belong to the Pharmacy of Health-related Products and Special Medications that is a public institution where data of granted cases are kept. According to the regulations of the entity, data cannot be disseminated or shared but are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study is supported by the Foundation for Research Support of the State of Goiás (Fundação de Amparo à Pesquisa do Estado de Goiás) (FAPEG), Process nº 201410267000327. The Foundation had no role in the design or data collection, analysis, and interpretation.

Authors’ Contributions

All of the authors participated in writing the manuscript. Data analysis was
performed by RAG; data collection was performed by VOC and PAPM; study design, ethical oversight, interpretation and critical revision of results was provided by VOC, MPP, PAPM, RAG and RGA. All authors read and approved the final manuscript.

Acknowledgements

Not applicable

References

1. Instituto de Pesquisa Econômica Aplicada. Políticas Sociais: acompanhamento e análise, n. 14, 2007.
 http://www.ipea.gov.br/portal/images/stories/PDFs/politicas_sociais/bps14_completo.pdf. Accessed 21 Jan 2017.

2. Reveiz L, Chapman E, Torres R, Fitzgerald JF, Mendoza A, Bolis M, Salgado O. Right-to-health litigation in three Latin American countries: a systematic literature review. Revista Panamericana de Salud Publica. 2013; 33(3):213-222.

3. Vargas-Peláez CM, Rover MR, Leite SN, Rossi Buenaventura F, Farias MR. Right to health, essential medicines, and lawsuits for access to medicines - A scoping study. Soc Sci Med. 2014; 121c:48-55.

4. Pandolfo M, Delduque MC, Amaral RG. Aspectos jurídicos e sanitários condicionantes para o uso da via judicial no acesso aos medicamentos no Brasil. Salud Pública. 2012;14(2):340-349.

5. Wang DWL, Vasconcelos NP, Oliveira VE, Terrazas FV. Os impactos da judicialização da saúde no município de São Paulo: gasto público e organização federativa. Rev. Adm. Pública. 2014;48(5):1191-1206.

6. Constituição da República Federativa do Brasil de 1988. Diário Oficial da
União, Brasília, 5 out. 1988. Seção I.

7. Portaria nº 3.916, de 30 de outubro de 1998. Dispõe sobre a aprovação da Política Nacional de Medicamentos.

http://www.saude.gov.br/doc/portariagm3916/gm.htm. Accessed 20 Jan 2016.

8. Brasil. Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Assistência Farmacêutica e Insumos Estratégicos. Relação Nacional de Medicamentos Essenciais: Rename 2017. Brasília: Ministério da Saúde; 2017. 210 p.

9. Bertoldi AD, Helfer AP, Camargo AL, Tavares NUL, Kanavos P. Is the Brazilian pharmaceutical policy ensuring population access to essential medicines? Global Health. 2012; 8:

10. Diniz D, Medeiros M, Schwartz IVD. Consequências da judicialização das políticas de saúde: custos de medicamentos para as mucopolissacaridoses. Cad. Saúde Pública. 2012; 28(3):479-489.

11. Barroso LR. Judicialização, Ativismo Judicial e Legitimidade Democrática]. (Syn)Thesis 2012; 5: 23–32.

12. Boing AC, Bertoldi AD, Boing AF, Bastos JL, Peres KG. Acesso a medicamentos no setor público: análise de usuários do Sistema Único de Saúde no Brasil. Cad. Saúde Pública. 2013; 29(4):691-701.

13. Abadia CE, Oviedo DG. Bureaucratic itineraries in Colombia: a theoretical and methodological tool to assess managed-care health care system. Soc Sci Med. 2009(68):1153-1160.

14. Norheim F, Wilson BM. Health Rights Litigation and Access to Medicines: Priority Classification of Successful Cases from Costa Rica’s Constitutional Chamber of the Supreme Court. Health Hum Rights. 2014;16(2):47-61.
15. Zuniga FA. When constitutional justice has the last word on health care: the case of Chile. Int J Health Serv. 2014;44(2):373-381.

16. David G, Andrelino A, Beghin N. Direito a medicamentos: Avaliação das despesas com medicamentos no âmbito federal do Sistema Único de Saúde entre 2008 e 2015. Brasília: Inesc; 2016.

17. Conselho Nacional de Justiça. Justiça em números 2010. http://cnj.jus.br/images/programas/justica-em-numeros/rel_sintetico_jn2009.pdf/ Accessed 21 Jan 2017.

18. Conselho Nacional de Justiça. Justiça em números 2011. http://cnj.jus.br/images/programas/justica-em-numeros/2010/rel_justica_numeros_2010.pdf/Accessed 21 Jan 2017.

19. Machado MAA, Acurcio FA, Brandão CMR, Faleiro DR, Guerra AA Jr, Cherchiglia ML, Andrade ALG. Judicialização de acesso a medicamentos no Estado de Minas Gerais Brasil. Rev de Saúde Pública. 2011;45(3):590-598.

20. Vieira FS, Zucchi, P. Distorções causadas pelas ações judiciais à política de medicamentos no Brasil. de Saúde Pública. 2007;41(2):214-222.

21. Pinzón-Flórez CE, Chapman E, Cubillos L, Reveiz L. Prioritization of strategies to approach the judicialization of health in Latin America and the Caribbean. Rev Saúde Pública. 2016;50:56.

22. Santos L, Terrazas F. Judicialização da saúde no Brasil. In: Assis G. Mediação sanitária: direito, saúde e cidadania. Campinas: Saberes Editora, 2014. p. 197-220.

23. Asensi F, Pinheiro R. Judicialização da saúde e diálogo institucional: a experiência de Lages (SC). Rev de Direito Sanitário. 2016;17(2):48-65.

24. Goiânia. Decreto nº 4051, de 02 de setembro de 2013. Aprova o Regimento
Interno da Secretaria Municipal de Saúde, e dá outras providências.

http://www.goiania.go.gov.br/Download/legislacao/diariooficial/2013/do_20130905_00001.pdf
Accessed 15 July 2015.

25. Ministério Público do Estado de Goiás. Ato PGJ nº 01/2014. Institui no âmbito do Ministério Público do Estado de Goiás, a Câmera de Avaliação Técnica em Saúde (CATS), órgão auxiliar do Centro de Apoio Operacional para emissão de parecer técnico acerca do fornecimento de medicamentos.

http://www.mpgo.mp.br/portal/arquivos/2015/02/25/10_01_12_26_Ato_PGJ_n._01_2014_in
Accessed 20 May 2015.

26. Ministério Público do Estado de Goiás. Termo de Cooperação nº 044/2010 MPGO. Termo de Cooperação Técnica que entre si celebram o Ministério Público do Estado de Goiás e a Secretaria Municipal de Saúde de Goiânia, visando regular o procedimento para a dispensação de medicamentos, insumos e correlatos dos pacientes que obtiverem parecer favorável da Câmera de Avaliação Técnica de Saúde.

http://www.mpgo.mp.br/portal/arquivos/2014/12/15/14_38_41_58_TAC_CATS.pdf/
Accessed 20 May 2015.

27. Conselho Nacional de Justiça. Institui o Fórum Nacional do Judiciário para monitoramento e resolução das demandas de assistência à saúde. Resolução nº 107 de 6 de abril de 2010. http://www.cnj.jus.br/busca-atos-adm?documento=283. Accessed 08 May 2016.

28. Conselho Nacional de Justiça. Recomendação nº 31 de 30 de março de 2010. http://www.cnj.jus.br/atos-administrativos/atos-da-presidencia/322-recomendacoes-do-conselho/12113-recomendacao-no-31-de-30-de-marco-de-2010. Accessed 21 Jan 2017.
29. Asensi FD. Judicialização ou juridicização? As instituições jurídicas e suas estratégias na saúde. Physis. 2010; 20(1):33-55.

30. Provin MP, Leite SN, Amaral RG. Social inequalities in lawsuits for drugs. Braz. J. Pharm. Sci. 2013; 49(3):465-474.

31. Instituto Brasileiro de Geografia e Estatística. Censo demográfico 2010. http://www.cidades.ibge.gov.br/xtras/temas.php?lang=&codmun=520870&idtema=108&search=goias|goiania|censo-demografico-2010:-resultados-da-amostra-rendimento--. Accessed 16 May 2016.

32. Centers for Disease Control and Prevention. International Classification of Diseases, Tenth Revision (ICD-10). www.cdc.gov/nchs/icd/icd10.htm. Accessed 16 May 2015.

33. WHO Collaboration Center for Drug Statistics Methodology. Anatomical Therapeutic Chemical Classification. http://www.whocc.no/atc_ddd_index. Accessed 17 May 2015.

34. Ministério da Saúde. Banco de Preços em Saúde. 2016. http://portalsaude.saude.gov.br/index.php/cidadao/principal/banco-de-precos-em-saude?layout=edit&id=8665. Accessed 10 May 2016.

35. Warriner et al. Effect of Self-Referral on Bone Mineral Density Testing and Osteoporosis Treatment. Med Care. 2014; 52(8): 743–750.

36. Arija et al. Effectiveness of a physical activity program on cardiovascular disease risk in adult primary health-care users: the “Pas-a-Pas” community intervention trial. BMC Public Health. 2017; 17:576.

37. Razali NM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and
38. Diringer MN, Edwards DF, Mattson DT, Akins PT, Sheedy CW, Hsu CY, et al. Predictors of acute hospital costs for treatment of ischemic stroke in an academic center. Stroke. 1999;30(4):724-728.

39. Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107(44):776-782.

40. McGee CE, Trigwell J, Fairclough SJ, Murphy RC, Porcellato L, Ussher M, et al. Effect of a sport-for-health intervention (SmokeFree Sports) on smoking-related intentions and cognitions among 9-10 year old primary school children: a controlled trial. BMC Public Health. 2016;16:445.

41. Desgagné A, Castilloux AM, Angers JF, LeLorier J. The use of the bootstrap statistical method for the pharmacoeconomic cost analysis of skewed data. Pharmacoeconomics. 1998;13:487-497.

42. Efron B, Tibshirani T. Introduction to the bootstrap. London: Chapman and Hall; 1993.

43. Robinson C, Schumacker RE. Interaction Effects: Centering, Variance Inflation Factor, and Interpretation Issues. Multiple Linear Regression Viewpoint. 2009;35(1):6-11.

44. White H. A heteroskedasticity- consistent covariancematrix estimator and a direct test for heteroskedasticity. Econometrica. 1980; 48(4):817-838.

45. Coutinho LMS, Scazufca M, Menezes PR. Methods for estimating prevalence ratios in cross-sectional studies. Rev Saúde Pública. 2008;42(6):992-998.

46. Barreto ML, Genser B, Strina A, Teixeira MG, Assis AMO, Rego RF, Teles CA, Prado MS, Matos S, Alcântara-Neves NM, Cairncross S. Impact of a Citywide
Sanitation Program in Northeast Brazil on Intestinal Parasites Infection in Young Children. Environ Health Perspect. 2010;118(11):1637-42.

47. Instituto de Pesquisa Econômica Aplicada. Mapa da Defensoria 2013. http://www.ipea.gov.br/sites/mapadefensoria/desafios/Accessed 27 May 2016.

48. Leite SN, Pereira SM, Silva P, Nascimento Júnior JM, Cordeiro BC, Veber AP. Ações judiciais e demandas administrativas na garantia do direito de acesso a medicamentos em Florianópolis-SC. Revista de Direito Sanitário. 2009; 10:13-28.

49. Pepe VLE, Figueiredo TA, Simas L, Osorio-de-Castro CG, Ventura M. Health litigation and new challenges in the management of pharmaceutical services. Ciência & Saúde Coletiva. 2010;15(5):2405-2414.

50. Nandakumar AK, Farag ME. International encyclopedia of public health. Determinants of national health expenditure. 2008;(2):136-145.

51. Lei n.º12.401. Altera a Lei no 8.080 para dispor sobre a assistência terapêutica e a incorporação de tecnologia em saúde no âmbito do Sistema Único de Saúde-SUS. Diário Oficial da União, 2011; 29 April.

52. Brasil. Decreto nº 7.508. Regulamenta a Lei nº 8.080, de 19 de setembro de 1990, para dispor sobre a organização do Sistema único de Saúde – SUS, o planejamento da saúde, a assistência à saúde e a articulação interfederativa, e dá outras providências. Diário Oficial da União, 2011; 29 June.

53. Lei n.º8.080. Dispõe sobre as condições para promoção, proteção e recuperação da saúde, a organização e o funcionamento dos serviços correspondentes e dá outras providências. Diário Oficial da União, 1990; 20 Sept.

54. Santos-Pinto CDB, Ventura M, Pepe VLE, Osorio-de-Castro CGS. Novos
delineamentos da Assistência Farmacêutica frente à regulamentação da Lei Orgânica da Saúde. Cad. Saúde Pública. 2013; 29(6):1056-1058.

55. Leite SN, Mafra AC. Que direito? Trajetórias e percepções dos usuários no processo de acesso a medicamentos por mandados judiciais em Santa Catarina. Ciênc. Saúde Coletiva. 2010;15(Suppl 1):1665-1672.

56. Chieffi AL, Barata RB. Judicialização da política pública de assistência farmacêutica e equidade. Cad. Saúde Pública. 2009; 25(8):1839–1849.

Tables

Variables	Operational definition	Categories or unity
Sex	Plaintiff’s sex	0 - Male
		1 - Female
Age	Plaintiff’s age	Age in years
Income	Plaintiff’s income	Dollars
Cost of medicines	Total cost of medicines in the lawsuit	Dollars
Quantity of medicines	Total amount of medicines in the lawsuit	Number (n)
Prescription´s origin	Type of healthcare establishment in which the requested medicine was prescribed	0 – Prescribed by a SUS clinician
		1 - Prescribed by a private clinician
Diseases	Plaintiff’s disease according to ICD¹ [30]	0 - Certain infectious and parasitic diseases
		1- Neoplasms
		2 - Diseases of the blood and blood forming organs and certain disorder involving the immune mechanism
		3 - Endocrine, nutritional and metabolic diseases
		4 - Mental and behavioural disorders
		5 - Diseases of the nervous system
		6 - Diseases of the eye and adnex
		7 - Diseases of the circulatory system
		8 - Diseases of the respiratory system
		9 - Diseases of the digestive system
		10 - Diseases of the musculoskeletal system and connective tissue
		11 - Diseases of the genitourinary system

¹ICD - International Classification of Diseases.
Characteristics of the medicines

ATC Classification

Classification of the medicines according to the World Health Organization's classification [31]	1. Alimentary tract and metabolism	2. Blood and blood forming organs	3. Dermatological	4. Cardiovascular system	5. Genital and urinary system and hormones	6. Systemic hormonal preparations	7. Anti-infective for systemic use	8. Antineoplastic and immunomodulation agents	9. Muscular-skeletal system	10. Nervous system	11. Anti-parasitic products, insecticides and repellents	12. Sensory organs	13. Various

Classification of the medicines according to official lists of SUS³ [8]

Within the SUS formulary (belonging to the official lists of medications of SUS)	0 - No	1 - Yes
Outside the SUS formulary (per the official SUS lists of medications) but with a therapeutic alternative available from SUS	0 - No	1 - Yes
Outside the SUS formulary and without a therapeutic alternative available from SUS	0 - No	1 - Yes

Interventions

DAMNP	0 - Period before deployment (2005)	1 - Period after deployment (2015)
CATS	0 - Period before deployment (2008)	1 - Period after deployment (2015)

¹Diseases classified according to the chapter of International Statistical Classification of Diseases and Related Health Problems (ICD); ²Anatomical Therapeutic Chemical; ³Sistema Único de Saúde.

Table 2. Sociodemographic characteristics and diseases of plaintiffs requesting medicines from January 2003 to December 2015
Variables	n (%)
Sex	Male 292 (57.1), Female 219 (42.9)
Age (years)	Mean (SD)1 42.8 (24.7), Median (IQR)2 43.0 (20.0-64.0)
Income (US$)	Mean (SD)1 1409.6 (1101.8), Median (IQR)2 1036.9 (680.5-1506.5)
Total costs of medications in the lawsuit (US$)	Mean (SD)1 1.483.3 (4.345.7), Median (IQR)2 406.2 (143.9-1198.1)
Quantity of medications n (%)	Mean (SD)1 2.9 (2.4), Median (IQR)2 2.0 (1.0-4.0)
Prescription’s origin n (%)	Prescribed by a SUS clinician 77 (28.2), Prescribed by a private system clinician 196 (71.8)
Diseases3 n (%)	Certain infectious and parasitic diseases 5 (1.0), Neoplasms 7 (1.4), Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism 4 (0.8), Endocrine, nutritional and metabolic diseases 71 (13.9), Mental and behavioural disorders 77 (15.1), Diseases of the nervous system 84 (16.4), Diseases of the eye and adnexa 17 (3.3), Diseases of the circulatory system 109 (21.3), Diseases of the respiratory system 17 (3.3), Diseases of the digestive system 27 (5.3), Diseases of the musculoskeletal system and connective tissue 28 (5.5), Diseases of the genitourinary system 139 (27.2)

1Standard deviation; 2Interquartile range; 3Diseases were classified according to the chapters of International Statistical Classification of Diseases and Related Health Problems (ICD).

Table 3. Characteristics of medicines requested in lawsuits from January 2003 to December 2015 (n=1.501)

Variables	n (%)
ATC Classification1	Alimentary tract and metabolism 416 (27.7), Blood and blood forming organs
Cardiovascular system	75 (5.0), Dermatological 414 (27.6)
Dermatological	20 (1.3), Genital and urinary system and sex hormones 42 (2.8)
Genital and urinary system and sex hormones	Systemic hormonal preparations 15 (1.0), Anti-infective for systemic use 23 (1.5)
Systemic hormonal preparations	Antineoplastic and immunomodulation agents 13 (0.9), Muscular-skeletal system 63 (4.2)
Anti-infective for systemic use	Nervous system 314 (20.9)
Antineoplastic and immunomodulation agents	Muscular-skeletal system 63 (4.2)
Muscular-skeletal system	Various 5 (0.4)
Various	Classification of medicines
Classification of medicines	Within the SUS formulary 685 (45.7), Outside the SUS formulary with a therapeutic alternative 430 (28.6)
Within the SUS formulary	Outside the SUS formulary without a therapeutic alternative 386 (25.7)
Table 4. Number of medicines requested in lawsuits by Anatomical Therapeutic Chemical Classification by year (2003-2009)

Variables	2003	2004	2005	2006
ATC Classification	n (%)	n (%)	n (%)	n (%)
Alimentary tract and metabolism	6 (12.8)	16 (11.7)	80 (22.0)	110 (39.0)
Blood and blood forming organs	2 (4.3)	3 (2.2)	25 (6.9)	8 (2.8)
Cardiovascular system	11 (23.4)	41 (29.9)	146 (37.5)	62 (22.0)
Dermatological	1 (2.1)	-	3 (0.8)	3 (1.1)
Genital and urinary system and sex hormones	1 (2.1)	9 (6.6)	13 (3.6)	6 (2.1)
Systemic hormonal preparations	2 (4.3)	3 (2.2)	5 (1.4)	2 (0.7)
Anti-infective for systemic use	1 (2.1)	4 (2.9)	6 (1.7)	4 (1.4)
Antineoplastic and immunomodulation agents	-	-	2 (0.6)	5 (1.8)
Muscular-skeletal system	4 (8.5)	7 (5.1)	8 (2.2)	7 (2.5)
Nervous system	16 (34.0)	37 (27.0)	53 (14.6)	59 (20.9)
Anti-parasitic products, insecticides and repellents	-	1 (0.7)	5 (1.4)	5 (1.8)
Respiratory system	1 (2.1)	10 (7.3)	11 (3.0)	5 (1.8)
Sensory organs	2 (4.3)	6 (4.4)	16 (4.4)	6 (2.1)
Total	47 (100.0)	137(100.0)	363(100.0)	282(100.0)

Table 5. Number of medicines requested in lawsuits by Anatomical Therapeutic Chemical Classification by year (2010-2015)

Variables	2010	2011	2012	2013	2014	2015
ATC Classification	n (%)					
Alimentary tract and metabolism						
Blood and blood forming organs						
Cardiovascular system						
Dermatological						
Genital and urinary system and sex hormones						
Systemic hormonal preparations						
Anti-infective for systemic use						
Antineoplastic and immunomodulation agents						
Muscular-skeletal system						
Nervous system						
Anti-parasitic products, insecticides and repellents						
Respiratory system						
Sensory organs						
Total						
ATC Classification	2010 n (%)	2011 n (%)	2012 n (%)	2013 n (%)		
--	------------	------------	------------	------------		
Alimentary tract and metabolism						
Blood and blood forming organs	2 (2.9)	3 (5.3)	2 (3.4)	-		
Cardiovascular system	8 (11.8)	17 (29.8)	11 (19.0)	-		
Dermatological	1 (1.5)	-	-	-		
Genital and urinary system and sex hormones	1 (1.5)	-	2 (3.4)	-		
Systemic hormonal preparations	-	-	-	-		
Anti-infective for systemic use	-	1(1.8)	-	-		
Antineoplastic and immunomodulation agents	-	-	1 (1.7)	1 (14.3)		
Muscular-skeletal system	3 (4.4)	4 (7.0)	8 (13.8)	-		
Nervous system	11 (16.2)	5 (8.8)	14 (24.1)	4 (57.1)		
Anti-parasitic products, insecticides and repellents	-	-	-	-		
Respiratory system	1 (1.5)	2 (3.5)	-	-		
Sensory organs	4 (5.9)	-	1 (1.7)	-		
Various	1 (1.5)	-	2 (3.4)	-		
Total	68 (100.0)	57 (100.0)	58 (100.0)	7 (100.0)	38	

Table 6. Plaintiffs’ incomes, cost of medicines of the lawsuits, origin of the prescription and classification of medicines in the lawsuits in periods before and after the deployment of the Department of Assessment of Non-Standardized Medicines (DAMNP) and Technical Chamber of Health Assessment (CATS)
Variables	Before deployment (2003-2005)	After deployment (2007-2015)	p
Income of Plaintiffs			
Mean (SD)	1231.4 (858.7)	1458.2 (1182.8)	**0.009**
Median (IQR)	1004.5 (680.5-1263.8)	1137.8 (680.5-1263.8)	
Cost of medicines in the lawsuit			
Mean (SD)	1.661.1 (4.561.7)	779.2 (1.589.6)	**0.005**
Median (IQR)	659.7 (188.6-1622.1)	285.6 (101.0-195.8)	
Prescription’s origin, n (%)			
Prescribed by a SUS clinician	20 (25.6)	38 (31.4)	**0.382**
Prescribed by a private system clinician	58 (74.4)	83 (68.6)	
Classification of medicines, n (%)			
Within the SUS formulary	261 (47.7)	281 (41.8)	**0.039**
Outside the SUS formulary with a therapeutic alternative	145 (26.5)	217 (32.3)	**0.028**
Outside the SUS formulary without a therapeutic alternative	141 (25.8)	174 (25.9)	**0.963**

1 Standard deviation; 2 Interquartile range; 3 Mann-Whitney Test; 4 Pearson’s chi-squared test.

Table 7. Determinants and effects of institutional strategies on the costs of medications requested in lawsuits from January 2003 to December 2015.
Variables

Variables	Bivariate regression	Multivariable regression	
	β^1 (IC 95%)2	p	β^1 (IC 95%)2
Plaintiffs' characteristics			
Age (years)	0.05 (-0.10; 0.21)	0.517	0.41 (0.22-0.61)
Sex			
Male	1.00		
Female	-0.09 (-0.38; 0.18)	0.502	
Income (US$)	0.45 (0.23; 0.66)	< 0.001	0.17 (0.12-0.23)
Characteristics of the lawsuits			
Quantity of medicines	0.13 (0.07; 0.19)	< 0.001	
Origin of the prescriptions			
Prescribed by a SUS clinician	1.00		
Prescribed by a private system clinic	0.84 (0.42; 1.27)	< 0.001	
Diseases			
Certain infectious and parasitic diseases	-0.84 (-2.29; 0.60)	0.252	
Neoplasms	1.40 (0.18; 2.62)	0.024	
Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism	-1.84 (-3.45; -0.23)	0.025	
Endocrine, nutritional and metabolic diseases	-0.25 (-0.80; 0.01)	0.057	
Mental and behavioural disorders	0.07 (-0.33; 0.46)	0.740	
Diseases of the nervous system	-0.26 (-0.64; -0.12)	0.178	
Diseases of the eye and adnexa	-0.55 (1.34; 0.24)	0.172	
Diseases of the circulatory system	-0.21 (-0.56; 0.13)	0.220	
Diseases of the respiratory system	-0.04 (-0.83; 0.75)	0.917	
Diseases of the digestive system	0.19 (-0.43; 0.83)	0.543	
Diseases of the musculoskeletal system and connective tissue	-2.42 (-4.99; 0.15)	0.066	
Interventions			
DAMNP4	1.00		1.00
Before deployment	-0.36 (-0.51; -0.20)	< 0.001	-0.20 (-0.37; -0.10)
After deployment			
CATS5	1.00		1.00
Before deployment	-0.48 (-0.66; -0.31)	< 0.001	-0.25 (-0.30; -0.10)
After deployment			

1 Regression coefficient; 2 Confidence interval of 95%; 3 Model adjusted by sex, age, origin of the prescription, quantity of medicines, neoplastic diseases, blood diseases, endocrine diseases, diseases of the osteomuscular system and strategies (DAMNP e CATS); 4 Period before the deployment of DAMNP; 5 Period before deployment of CATS; Department of Assessment of Non-Standardized Medicines: 2003-2005/Period after the deployment of Department of Assessment of Non-Standardized Medicines: 2007-2015; Period before deployment of Technical Chamber of Health Assessment: 2003-2008/Period after deployment of Technical Chamber of Health Assessment: 2010-2015.
Table 8. Analysis of Poisson’s regression of the effects of the deployment of DAMNP and CATS on the prevalence of medicines that are within the SUS formulary, outside the SUS formulary with a therapeutic alternative and without therapeutic alternative available by the SUS

Variables	Medicines within the SUS formulary	Medicines outside the SUS formulary with a therapeutic alternative	Medicines outside the SUS formulary without therapeutic alternative		
	APR¹ (95.0% CI)¹	P	APR¹ (95.0% CI)¹	P	APR² (95.0% CI)²
DAMNP³					
Before	1.00	1.00	1.00		1.00
deployment					
After	1.07 (0.93-1.24)	0.307	1.38 (0.80-1.29)	0.867	0.83 (0.63-1.34)
deployment					
CATS⁵					
Before	1.00	1.00	1.00		1.00
deployment					
After	0.81 (0.67-0.98)	0.032	1.38 (1.07-1.78)	0.011	0.97 (0.7c-1.34)

¹Adjusted Prevalence ratio; ²Confidence interval of 95%; ³Model adjusted according to the origin of the prescription, DAMNP and CATS. ⁴Department of Assessment of Non-Standardized Medicines; ⁵Technical Chamber of Health Assessment.
Figure 1. Flow chart of the sample size

Figure 2. Flow chart of the sample size