Converting Nondeterministic Automata and Context-Free Grammars into Parikh Equivalent Deterministic Automata

Giovanna J. Lavado1 Giovanni Pighizzini1 Shinnosuke Seki2

1Dipartimento di Informatica Università degli Studi di Milano, Italy

2Department of Information and Computer Science Aalto University, Finland

DLT 2012
台北、台湾
August 14–17, 2012
NFAs vs DFAs

Subset construction: [Rabin & Scott ’59]

\[
\text{NFA} \quad n \text{ states} \quad \longrightarrow \quad \text{DFA} \quad 2^n \text{ states}
\]

The state bound cannot be reduced

[Lupanov ’63, Meyer & Fischer ’71, Moore ’71]

What happens if we do not care of the order of symbols in the strings?

This problem is related to the concept of Parikh Equivalence
Parikh Equivalence

- \(\Sigma = \{a_1, \ldots, a_m\} \) alphabet of \(m \) symbols

- Parikh’s map \(\psi : \Sigma^* \rightarrow \mathbb{N}^m \):
 \[
 \psi(w) = (|w|_{a_1}, |w|_{a_2}, \ldots, |w|_{a_m})
 \]
 for each string \(w \in \Sigma^* \)

- Parikh’s image of a language \(L \subseteq \Sigma^* \):
 \[
 \psi(L) = \{ \psi(w) \mid w \in L \}
 \]

- \(w' =_{\pi} w'' \) iff \(\psi(w') = \psi(w'') \)

- \(L' =_{\pi} L'' \) iff \(\psi(L') = \psi(L'') \)
Parikh’s Theorem

Theorem ([Parikh ‘66])

The Parikh image of a context-free language is a semilinear set, i.e., each context-free language is Parikh equivalent to a regular language.

Example:

- $L = \{a^n b^n \mid n \geq 0\}$
- $R = (ab)^*$

$\psi(L) = \psi(R) = \{(n, n) \mid n \geq 0\}$

Different proofs after the original one of Parikh, e.g.

- [Goldstine ‘77]: a simplified proof
- [Aceto&Ésik&Ingólfsdóttir ‘02]: an equational proof
- ...
- [Esparza&Ganty&Kiefer&Luttenberger ‘11]: complexity aspects
Our Goal

We want to convert nondeterministic automata and context-free grammars into *small Parikh equivalent* deterministic automata.

Problem (NFAs to DFAs)
NFA
n states

Problem (CFGs to DFAs)
CFG
size n
Why?

▶ Interesting theoretical properties:
 wrt Parikh equivalence regular and context-free languages are indistinguishable [Parikh ’66]

▶ Connections of with:
 - Semilinear sets
 - Presburger Arithmetics [Ginsburg&Spanier ’66]
 - Petri Nets [Esparza ’97]
 - Logical formulas [Verma&Seidl&Schwentick ’05]
 - Formal verification [Dang&Ibarra&Bultan&Kemmerer&Su’00, Göller&Mayr&Tö’09]
 - ...

▶ Unary case:
 size costs of the simulations of CFGs and PDAs by DFAs [Pighizzini&Shallit&Wang ’02]
Converting NFAs

Problem (NFAs to DFAs)

NFA		DFA
n states	\Rightarrow_{π}	how many states?

- Upper bound: 2^n (subset construction)
- Lower bound: $e^{\sqrt{n \ln n}}$

This bound derives from the unary case: the state cost of the conversion of unary n-state NFAs into equivalent DFAs is $e^{\Theta(\sqrt{n \ln n})}$ [Chrobak '86]
Converting NFAs: General Idea

A n-state NFA over $\Sigma = \{a_1, \ldots, a_m\}$

unary

$L(A_i) = L(A) \cap a_i^*$, $i \geq 1$

nonunary

$L(A_0) = L - \bigcup_{i=0}^{m} L(A_i)$

Chrobak conversion:

$e^{O(\sqrt{n \ln n})}$ states

Parikh equivalent DFAs

DFA Parikh equivalent to A

How much it costs the conversion of NFAs accepting only nonunary strings into Parikh equivalent DFAs?
Problem (NFAs to DFAs, restricted)

NFA s.t. each accepted string is nonunary	DFA
n states	how many states?

Quite surprisingly, we can obtain a DFA with a number of states polynomial in n, i.e., this conversion is less expensive than the conversion in the unary case, which costs $e^{\Theta(\sqrt{n \ln n})}$.
The conversion uses a modification of the following result:

Theorem ([Kopczyński&To ’10])

Given $\Sigma = \{a_1, \ldots, a_m\}$, there is a polynomial p s.t. for each n-state NFA A over Σ,

$$\psi(L(A)) = \bigcup_{i \in I} Z_i$$

where:

- I is a set of at most $p(n)$ indices
- for $i \in I$, $Z_i \subseteq \mathbb{N}^m$ is a linear set of the form:

$$Z_i = \{\alpha_0 + n_1\alpha_1 + \cdots + n_k\alpha_k \mid n_1, \ldots, n_k \in \mathbb{N}\}$$

with

- $0 \leq k \leq m$
- the components of α_0 are bounded by $p(n)$
- $\alpha_1, \ldots, \alpha_k$ are linearly independent vectors from $\{0, 1, \ldots, n\}^m$
Converting NFAs Accepting Only Nonunary Strings

Outline: linear sets

Each above linear set

\[Z_i = \{ \alpha_0 + n_1 \alpha_1 + \cdots + n_k \alpha_k \mid n_1, \ldots, n_k \in \mathbb{N} \} \]

can be converted into a poly size DFA accepting a language

\[R_i = w_0(w_1 + \cdots + w_k)^* \]

s.t. \(\psi(w_j) = \alpha_j, j = 0, \ldots, k, \) and

\(w_1, \ldots, w_k \) begin with different letters

Example:

- \(\{(1, 1) + n_1(2, 1) + n_2(2, 0) \mid n_1, n_2 \geq 0\} \)
- \(ab(baa + aa)^* \)
For each n-state NFA accepting a language none of whose words are unary, there exists a Parikh equivalent DFA with a number of states polynomial in n.
Converting NFAs: Back to the General Case

Theorem

For each n-state NFA there exists a Parikh equivalent DFA with $e^{O(\sqrt{n \ln n})}$ states. Furthermore, this cost is tight.
Problem (CFGs to NFAs and DFAs)

| CFG size h | \mapsto_π | NFA/DFA how many states? |

- We consider CFGs in Chomsky Normal Form
- As a measure of size we consider the *number of variables*
 [Gruska ’73]
Converting CFGs into Parikh Equivalent Automata

Conversion into Nondeterministic Automata

Problem (CFGs to NFAs)

CFG	NFA
Chomsky normal form	how many states?
\(h \) variables	

\[\pi \]

Upper bound:
- \(2^{2^{O(h^2)}} \) implicit construction from classical proof of Parikh’s Th.
- \(O(4^h) \) \[Esparza\&Ganty\&Kiefer\&Luttenberger’11\]

Lower bound: \(\Omega(2^h) \) Folklore
Problem (CFGs to DFAs)

\[
\begin{array}{c}
\text{CFG} \\
\text{Chomsky normal form} \\
\text{h variables}
\end{array} \quad \overset{\pi}{\implies} \quad \begin{array}{c}
\text{DFA} \\
\text{how many states?}
\end{array}
\]

- Upper bound: \(2^{O(4^h)}\)
- Lower bound: \(2^{ch^2}\)

Subset construction

Tight bound for the unary case \(2^{\Theta(h^2)}\) [Pighizzini&Shallit&Wang '02]
Converting CFGs into Parikh Equivalent DFAs

For any CFG in Chomsky normal form with h variables, there exists a Parikh equivalent DFA with at most $2^{O(h^2)}$ states. Furthermore, this bound is tight.
Final considerations

We obtained the following tight conversions:

\[
\text{NFA} \quad \begin{array}{c}
\text{\(n\) states} \\
\implies_{\pi} \\
\text{DFA} \\
\text{\(e^{O(\sqrt{n \ln n})}\) states}
\end{array}
\]

\[
\text{CFG} \quad \begin{array}{c}
\text{Chomsky normal form} \\
\text{\(h\) variables} \\
\implies_{\pi} \\
\text{DFA} \\
\text{\(2^{O(h^2)}\) states}
\end{array}
\]

- In both cases the most expensive part is the unary one.
- It could be interesting to investigate if for other constructions related to regular and context-free languages similar phenomena happen (e.g., automata minimization, state complexity of operations, ...).
Thank you for your attention!