KIRSZBRAUN-TYPE THEOREMS FOR GRAPHS

NISHANT CHANDGOTIA, IGOR PAK, AND MARTIN TASSY

ABSTRACT. A well-known theorem by Kirszbraun implies that all 1-Lipschitz functions \(f : A \subset \mathbb{R}^n \to \mathbb{R}^n \) with the Euclidean metric have a 1-Lipschitz extension to \(\mathbb{R}^n \). For metric spaces \(X, Y \) we say that \(Y \) is \(X \)-Kirszbraun if all 1-Lipschitz functions \(f : A \subset X \to Y \) have a 1-Lipschitz extension to \(X \). In this paper we focus on \(X \) and \(Y \) being graphs with the usual path metric; in particular, we characterize \(\mathbb{Z}^d \)-Kirszbraun graphs using some curious Helly-type properties.

1. Introduction

Let \(l_2 \) denote the usual Euclidean metric on \(\mathbb{R}^n \) for all \(n \). Given a metric space \(X \) and a subset \(A \) we will write \(A \subset X \) to mean the subset \(A \) endowed with the restricted metric from \(X \). Our story begins with two well-known theorems by Kirszbraun and Helly. Kirszbraun proved in [6] that for all Lipschitz functions \(f : A \subset (\mathbb{R}^n, l_2) \to (\mathbb{R}^n, l_2) \) there is an extension to a Lipschitz function on \(\mathbb{R}^n \) with the same Lipschitz constant. One of the ways to prove the Kirszbraun theorem (as in [11]) uses the result by Helly [5, 3]: Given a collection of convex sets \(B_1, B_2, \ldots, B_k \) if every \(n+1 \) subcollection has a non-empty intersection then \(\bigcap_{i=1}^k B_i \neq \emptyset \). The relationship between these two theorems is well-known; in this paper we bring it forth in the context of graphs.

Given metric spaces \(X \) and \(Y \), we say that \(Y \) is \(X \)-Kirszbraun if all 1-Lipschitz maps \(f : A \subset X \to Y \) have a 1-Lipschitz extension to \(X \). The Kirszbraun theorem says that \(\mathbb{R}^n \) is \(\mathbb{R}^n \)-Kirszbraun.

For \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \cup \{ \infty \}; n > m \), a metric space \(X \) has the \((n, m)\)-Helly property if for a collection of closed balls \(B_1, B_2, \ldots, B_n \) (if \(n \neq \infty \) and any finite collection otherwise) of radius bigger than or equal to one we have that every subcollection of cardinality \(m \) has a non-empty intersection, then \(\bigcap_{i=1}^m B_i \neq \emptyset \). Since balls in \(\mathbb{R}^n \) with the Euclidean metric are convex, Helly’s theorem can be restated to say that \(\mathbb{R}^n \) is \((\infty, n + 1)\)-Helly.

Given a graph \(H \), we endow the set of vertices (also denoted by \(H \)) with the path metric. By \(\mathbb{Z}^d \) we will mean the Cayley graph of the group \(\mathbb{Z}^d \) with respect to standard generators. All graphs in this paper are non-empty, connected and undirected without multiple edges and self-loops. The following is the main theorem of this paper.

Theorem 1.1. A graph is \(\mathbb{Z}^d \)-Kirszbraun if and only if it is \((2d, 2)\)-Helly.

Let \(K_n \) denote the complete graph on \(n \)-vertices. \(K_n \) is \(G \)-Kirszbraun for all graphs \(G \) since all maps \(f : G \to K_n \) are 1-Lipschitz. On the other hand, \(\mathbb{Z}^2 \) is not \(\mathbb{Z}^2 \)-Kirszbraun: Let \(A := (0, 1), (0, -1), (1, 0), (-1, 0) \) and \(f : A \subset \mathbb{Z}^2 \to \mathbb{Z}^2 \) be given by

\[
\begin{align*}
f(0, 1) & := (0, 0), f(0, -1) := (0, 1), f(1, 0) := (1, 1), f(-1, 0) := (1, 0);
\end{align*}
\]

though \(f \) is 1-Lipschitz, it does not have a 1-Lipschitz extension \(\tilde{f} : A \cup \{(0, 0)\} \to \mathbb{Z}^2 \). This example can be modified to satisfy a certain extendability property; look at Corollary 4.3 and the example there after. It is well-known that trees are \(G \)-Kirszbraun for all graphs \(G \) [1, Section 3]. On

2010 Mathematics Subject Classification. 05C60, 54C20.

Key words and phrases. Lipschitz maps, graph homomorphisms, extension problems, Helly graphs, Kirszbraun theorem.
We draw our motivation from two very distinct sources: the respective vertices; let Hom Helly graphs can be found in the survey k v then $|A|$ For example, let d proving that it is $(2-k)$ K thus it is not $(2-d,2)$-Helly. An easy deduction (for instance following the discussion in k, G Hel. A graph is called H d G A passes through a vertex in k goes back to the original paper by Kirszbraun d, G important properties is an old one and goes back to the original paper by Kirszbraun $d,2)$-Helly: Among graphs, research has focused mostly on a certain universality: A graph is called Helly if it is $(\infty,2)$-Helly. An easy deduction (for instance following the discussion in d_H denote the path metric on the graph H. A walk in the graph H of length k is a sequence of $k+1$ vertices $p=(v_0,v_1,\ldots,v_k)$ such that $d_H(v_i,v_{i+1}) \leq 1$ for all $0 \leq i \leq k-1$; we say that p starts at v_0 and ends at v_k. A geodesic from vertex v to w in a graph G is a walk from v to w of the shortest length. Given a graph H, a subset $A \subseteq G$ and $b \in G \setminus A$, the geodesic culling of A with respect to b is $Cull(A,b) := \{a \in A : \text{there is no geodesic from } a \text{ to } b \text{ which passes through a vertex in } A \setminus \{a\}\}$ For example, let $A \subseteq \mathbb{Z}^2 \setminus \{(0,0)\}$. If $(i,j), (k,l) \in Cull(A,b)$ are elements of the same quadrant, then $|i| > |k|$ if and only if $|j| < |l|$.
Remark 3.1. Let $A \subset \mathbb{Z}^d$ be contained in the coordinate axes. Then $|\text{Cull}(A, \vec{0})| \leq 2d$.

Geodesic culling helps prove that certain 1-Lipschitz maps extend:

Proposition 3.2. Given a 1-Lipschitz map $f : A \subset G \rightarrow H$ and $b \in G \setminus A$, f has a 1-Lipschitz extension to $A \cup \{b\}$ if and only if $f|_{\text{Cull}(A,b)}$ has a 1-Lipschitz extension to $\text{Cull}(A,b) \cup \{b\}$.

Proof. The forward direction of the proof is immediate because $\text{Cull}(A,b) \subset A$. For the backwards direction let $\tilde{f} : \text{Cull}(A,b) \cup \{b\} \subset G \rightarrow H$ be a 1-Lipschitz extension of $f|_{\text{Cull}(A,b)}$ and consider the map $\hat{f} : A \cup \{b\} \subset G \rightarrow H$ given by

$$\hat{f}(a) = \begin{cases} f(a) & \text{if } a \in A \\ \tilde{f}(b) & \text{if } a = b. \end{cases}$$

To prove that \hat{f} is 1-Lipschitz we need to verify that for all $a \in A$, $d_H(\hat{f}(a), \tilde{f}(b)) \leq d_G(a, b)$. From the hypothesis it follows for $a \in \text{Cull}(A,b)$. Now suppose $a \in A \setminus \text{Cull}(A,b)$. Then there exists $a' \in \text{Cull}(A,b)$ such that there exists a geodesic from a to b passing through a'. This implies that $d_G(a, b) = d_G(a, a') + d_G(a', b)$. But

$$d_G(a, a') \geq d_H(\hat{f}(a), \tilde{f}(a')) = d_H(f(a), f(a'))$$

because f is 1-Lipschitz

$$d_G(a', b) \geq d_H(\tilde{f}(a'), \tilde{f}(b)) = d_H(\tilde{f}(a'), \tilde{f}(b))$$

because \tilde{f} is 1-Lipschitz.

By the triangle inequality, the proof is complete. \hfill \square

Given a graph H, a vertex $v \in H$ and $n \in \mathbb{N}$ denote by $B^H_n(v)$, the ball of radius n in H centered at v. We will now interpret the $(n, 2)$-Helly property in a different light.

Proposition 3.3. Let H be a graph satisfying the $(n, 2)$-Helly property. For all 1-Lipschitz maps $f : A \subset G \rightarrow H$ and $b \in G \setminus A$ such that $|\text{Cull}(A,b)| \leq n$, there exists a 1-Lipschitz extension of f to $A \cup \{b\}$.

Proof. Consider the extension of f to $A \cup \{b\}$, \tilde{f} where $\tilde{f}(b)$ is any vertex in

$$\bigcap_{b' \in \text{Cull}(A,b)} B^H_{d_G(a,b')}(\tilde{f}(b'));$$

the intersection is non-empty because $|\text{Cull}(A,b)| \leq n$ and for all $a, a' \in \text{Cull}(A,b)$,

$$d_H(f(a), f(a')) \leq d_G(a, a') \leq d_G(a, b) + d_G(b, a') \text{ implying } B^H_{d_G(a,b)}(f(a)) \cap B^H_{d_G(b,a')}(f(a')) \neq \emptyset.$$

The function $\tilde{f}|_{\text{Cull}(A,b) \cup \{b\}}$ is 1-Lipschitz; Proposition 3.2 completes the proof. \hfill \square

Let C_n and P_n denote the cycle graph and the path graph with n vertices respectively.

Corollary 3.4. All graphs are P_n, C_n and \mathbb{Z}-Kirszbraun.

In the case where $G = P_n, C_n$ or \mathbb{Z} we have for all $A \subset G$ and $b \in G \setminus A$, $|\text{Cull}(A,b)| \leq 2$; the corollary follows from Proposition 3.3 and the fact that all graphs are $(2, 2)$-Helly.

Given $r_1, r_2, \ldots, r_n \in \mathbb{N}$, denote by $T_{(r_1, r_2, \ldots, r_n)}$ the star-shaped tree with a central vertex and n disjoint walks of lengths $(r_i)_{1 \leq i \leq n}$ emanating from it.

Corollary 3.5. A graph H has the $(n, 2)$-Helly’s property if and only if it is $T_{(r_1, r_2, r_3, \ldots, r_n)}$-Kirszbraun for all r_1, r_2, \ldots, r_n.

This follows from the fact that for all $A \subset T_{(r_1, r_2, r_3, \ldots, r_n)}$ and $b \in T_{(r_1, r_2, r_3, \ldots, r_n)} \setminus \{A\}$, $|\text{Cull}(A,b)| \leq n$. Now we are prepared to prove the main theorem of the paper.
Proof of Theorem 1.1. We will first prove the forward direction. Let \(H \) be a graph which is \(\mathbb{Z}^d \)-Kirszbraun. For all \(r \in \mathbb{N}^d \) there is an isometry from \(T_r \) to \(\mathbb{Z}^d \) mapping the walks emanating from the central vertex to the coordinate axes. Hence \(H \) is \(T_r \)-Kirszbraun for all \(r \in \mathbb{N}^d \). By Corollary 3.5, we have proved the \((2d,2)\)-Helly’s property for \(H \).

Now let us prove the backward direction. Let \(H \) have the \((2d,2)\)-Helly’s property. We want to prove that for all 1-Lipschitz maps \(f : A \subset \mathbb{Z}^d \rightarrow H \), there is a 1-Lipschitz extension. It is sufficient to prove this for finite subsets \(A \). We will proceed by induction on \(|A| \), viz., we will prove \(St(n) \):

Let \(f : A \subset \mathbb{Z}^d \rightarrow H \) be 1-Lipschitz with \(|A| = n \). Let \(b \in \mathbb{Z}^d \setminus A \). The function \(f \) has a 1-Lipschitz extension to \(A \cup \{b\} \).

We know \(St(n) \) for \(n \leq 2d \) by the \((2d,2)\)-Helly’s property. Let us assume \(St(n) \) for some \(n \geq 2d \); we want to prove \(St(n+1) \). Let \(f : A \subset \mathbb{Z}^d \rightarrow H \) be 1-Lipschitz with \(|A| = n+1 \) and \(b \in \mathbb{Z}^d \setminus A \).

Without loss of generality assume that \(b = \bar{0} \). Also assume that \(\text{Cull}(A, \bar{0}) = A \); otherwise we can use the induction hypothesis and Proposition 3.2 to obtain the required extension to \(A \cup \{\bar{0}\} \).

We will prove that there exists a set \(\bar{A} \subset \mathbb{Z}^d \) and a 1-Lipschitz function \(\bar{f} : \bar{A} \rightarrow H \) such that

1. If \(\bar{f} \) has an extension to \(\bar{A} \cup \{\bar{0}\} \) then \(f \) has an extension to \(A \cup \{\bar{0}\} \).
2. Either the set \(\bar{A} \) is contained in the coordinate axes of \(\mathbb{Z}^d \) or \(|\bar{A}| \leq 2d \).

By Remark 3.1 and the \((2d,2)\)-Helly’s property for \(H \) this is sufficient to complete the proof.

Since \(|A| \geq n + 1 > 2d \), there exists \(i, j \in A \) and a coordinate \(1 \leq k \leq d \) such that \(i_k, j_k \) are non-zero and have the same sign. Suppose \(i_k \leq j_k \). There is a geodesic from \(j \) to \(i - i_k \bar{e}_k \) which passes through \(i \). Since \(A = \text{Cull}(A, \bar{0}) \) we have that

\[
i - i_k \bar{e}_k \notin \{\bar{0}\} \cup A.
\]

Thus \(j \notin \text{Cull}(A, i - i_k \bar{e}_k) \) and hence \(|\text{Cull}(A, i - i_k \bar{e}_k)| \leq n \). By \(St(n) \) there exists a 1-Lipschitz extension of \(f|_{\text{Cull}(A, i - i_k \bar{e}_k)} \) to \(\text{Cull}(A, i - i_k \bar{e}_k) \cup \{i - i_k \bar{e}_k\} \). By Proposition 3.2 there is a 1-Lipschitz extension of \(f \) to \(f' : A \cup \{i - i_k \bar{e}_k\} \rightarrow H \). But there is a geodesic from \(i \) to \(\bar{0} \) which passes through \(i - i_k \bar{e}_k \). Thus

\[
\text{Cull}(A \cup \{i - i_k \bar{e}_k\}, \bar{0}) \subset (A \setminus \{i\}) \cup \{i - i_k \bar{e}_k\}.
\]

Set \(A' := (A \setminus \{i\}) \cup \{i - i_k \bar{e}_k\} \). By Proposition 3.2, \(f' \) has a 1-Lipschitz extension to \(A' \cup \{i - i_k \bar{e}_k\} \cup \{\bar{0}\} \) if and only if \(f''|_{A'} \) has a 1-Lipschitz extension to \(A' \cup \{\bar{0}\} \).

Thus we have obtained a set \(A' \) and a 1-Lipschitz map \(f' : A' \subset \mathbb{Z}^d \rightarrow H \) for which

1. If \(f' \) has an extension to \(A' \cup \{\bar{0}\} \) then \(f \) has an extension to \(A \cup \{\bar{0}\} \).
2. The sum of the number of non-zero coordinates of elements of \(A' \) is less than the sum of the number of non-zero coordinates of elements of \(A \).

By repeating this procedure (formally this is another induction) we get the required set \(\bar{A} \subset \mathbb{Z}^d \) and 1-Lipschitz map \(\bar{f} : \bar{A} \rightarrow H \). This completes the proof. \(\square \)

4. Extensions of Theorem 1.1

There are two immediate extensions of the theorem; the proofs of these extensions are very similar and are left to the reader. The first extension deals with other Lipschitz constants; since we are interested in Lipschitz maps between graphs we restrict our attention to integral Lipschitz constants.

Corollary 4.1. Let \(t \in \mathbb{N} \) and \(H \) be a connected graph. Every \(t \)-Lipschitz map \(f : A \subset \mathbb{Z}^d \rightarrow H \) has a \(t \)-Lipschitz extension to \(\mathbb{Z}^d \) if and only if

for all balls \(B_1, B_2, \ldots B_{2d} \) of radii multiples of \(t \) mutually intersect \(\implies \cap B_i \neq \emptyset \).
In particular, if H is a \mathbb{Z}^d-Kirszbraun graph then all t-Lipschitz maps $f : A \subset \mathbb{Z}^d \to H$ have a t-Lipschitz extension. However it is easy to construct graphs G and H for which G is H-Kirszbraun but there exists a 2-Lipschitz map $f : A \subset G \to H$ which does not have a 2-Lipschitz extension. But before we state the example we need the following simple proposition.

Proposition 4.2. Let G be a finite graph with diameter n and H be a connected graph such that $B_n^H(v)$ is G-Kirszbraun for all $v \in H$. Then H is a G-Kirszbraun graph.

Proof. Let $f : A \subset G \to H$ be 1-Lipschitz and pick $a \in A$. Then $\text{Image}(f) \subset B_n^H(f(a))$. Since $B_n^H(f(a))$ is G-Kirszbraun the result follows. \square

Since trees are Helly graphs, we have as an immediate application of the above that C_n is G-Kirszbraun if diameter$(G) \leq n - 1$. For instance C_6 is $T(1,1,1,1,1,1)$-Kirszbraun. Label the leaves of $T(1,1,1,1,1,1)$ as $a_i; 1 \leq i \leq 6$ respectively and consider the map

$$f : \{a_1, a_2, a_3, a_4, a_5, a_6\} \subset T(1,1,1,1,1,1) \to C_6$$

given by $f(a_i) := i$.

The function f is 2-Lipschitz but it has no 2-Lipschitz extension to $T(1,1,1,1,1,1)$.

In the study of Helly graphs it is well-known (look for instance at [1, Section 3.2]) that results which are true with regard to 1-Lipschitz extensions usually carry forward to graph homomorphisms in the bipartite case after some small technical modifications. This is also true in our case.

A bipartite graph H is called bipartite (n,m)-Helly if for balls $B_1, B_2, B_3, \ldots, B_n$ (if $n \neq \infty$ and any finite collection otherwise) and a partite class H_1, we have that any subcollection of size m among $B_1 \cap H_1, B_2 \cap H_1, \ldots, B_n \cap H_1$ has a non-empty intersection implies

$$\bigcap_{i=1}^{n} B_i \cap H_1 \neq \emptyset.$$

Let G, H be bipartite graphs with partite classes G_1, G_2 and H_1, H_2 respectively. The graph H is called bipartite G-Kirszbraun if for all 1-Lipschitz maps $f : A \subset G \to H$ for which $f(A \cap G_1) \subset H_1$ and $f(A \cap G_2) \subset H_2$ there exists $\tilde{f} \in \text{Hom}(G, H)$ extending it.

Corollary 4.3. A graph is bipartite \mathbb{Z}^d-Kirszbraun if and only if it is bipartite $(2d,2)$-Helly.

As noted at the end of Section 1, as a consequence of Theorem 1.1, the graph \mathbb{Z}^2 is not $(4,2)$-Helly. However it is bipartite $(\infty,2)$-Helly; this will follow from the discussion after Proposition 4.4. Given a graph H we say that $v \sim_H w$ to mean that (v, w) form an edge in the graph. Let H_1, H_2 be graphs with vertex sets V_1, V_2 respectively, we denote:

1. Their **strong product** by $H_1 \boxtimes H_2$. It is the graph with the vertex set $V_1 \times V_2$ and edges given by

$$(v_1, v_2) \sim_{H_1 \boxtimes H_2} (w_1, w_2) \text{ if } v_1 = w_1, v_2 \sim_{H_2} w_2 \text{ or } v_1 \sim_{H_1} w_1, v_2 = w_2 \text{ or } v_1 \sim_{H_1} w_1, v_2 \sim_{H_2} w_2.$$

2. Their **tensor product** by $H_1 \times H_2$. It is the graph with the vertex set $V_1 \times V_2$ and edges given by

$$(v_1, v_2) \sim_{H_1 \times H_2} (w_1, w_2) \text{ if } v_1 \sim_{H_1} w_1 \text{ and } v_2 \sim_{H_2} w_2.$$

Proposition 4.4. If for a graph G, graphs H_1 and H_2 are G-Kirszbraun then $H_1 \boxtimes H_2$ is G-Kirszbraun. If for a bipartite graph G, bipartite graphs H'_1 and H'_2 are bipartite G-Kirszbraun then the connected components of $H'_1 \times H'_2$ are bipartite G-Kirszbraun.

Proof. We will prove this in the non-bipartite case; the bipartite case follows similarly. Let $f := (f_1, f_2) : A \subset G \to H_1 \boxtimes H_2$ be 1-Lipschitz. It follows that the functions f_1 and f_2 are 1-Lipschitz as well; hence they have 1-Lipschitz extensions $\tilde{f}_1 : G \to H_1$ and $\tilde{f}_2 : G \to H_2$. Thus $(\tilde{f}_1, \tilde{f}_2) : G \to H_1 \boxtimes H_2$ is 1-Lipschitz and extends f. \square
Trees are Helly graphs; thus it follows that \mathbb{Z} is bipartite $(\infty, 2)$-Helly. By Proposition 4.4 so are the connected components of $\mathbb{Z} \times \mathbb{Z}$ which are graph isomorphic to \mathbb{Z}^2.

5. The recognition and the hole filling problem

In this section we will give a polynomial time algorithm to decide whether a given graph is \mathbb{Z}^d-Kirszhbraun and give a simple application. In the following by being given a graph we mean that we are given the adjacency matrix of the graph.

Proposition 5.1. There is a polynomial time algorithm for the recognition problem of (n, m)-Helly graphs and bipartite (n, m)-Helly graphs where $n, m \in \mathbb{N}$.

The case for $n = \infty, m = 2$ this has been proven in [2].

Proof. Let us seek the algorithm in the case of (n, m)-Helly graphs; as always, the bipartite case is similar. In the following, for a function $\theta : \mathbb{R} \rightarrow \mathbb{R}$ by $t = O(\theta(|H|))$ we mean $t \leq k\theta(|H|)$ where k is independent of $|H|$ but might depend on m, n.

1. Determine the distance between the vertices of the graph. This takes time $O(|H|^2)$.
2. Now make a list of all the collections of balls; each collection being of cardinality n. Since the diameter of the graph H is bounded by $|H|$; listing the centers and the radii of the balls takes time $O(|H|^{2n})$.
3. Find the collections for which all the subcollections of cardinality m intersect. For each collection, this step takes time $O(|H|)$.
4. Check if the intersection of the balls in the collections found in the previous step is non-empty. This step again takes time $O(|H|)$.

The total time taken is $O(|H|^{2n+2})$. □

We will end this section with a simple application (also look at the motivations mentioned in Section 2). Fix $d \geq 2$. By a box B_n in \mathbb{Z}^d we mean a subgraph $\{0, 1, \ldots, n\}^d$ and by the boundary ∂_n we mean the internal vertex boundary of B_n, that is, vertices of B_n where at least one of the coordinates is either 0 or n. The hole-filling problem asks: Given a graph H and a graph homomorphism $f \in Hom(\partial_n, H)$, does it extend to a graph homomorphism $\tilde{f} \in Hom(B_n, H)$?

Proposition 5.2. Let H be a finite bipartite $(2d, 2)$-Helly graph. Then there is a polynomial (in the size of the box and $|H|$) time algorithm for the hole-filling problem.

The same holds true in the context of 1-Lipschitz maps for $(2d, 2)$-Helly graphs; the algorithm is similar. In general without the assumption that H is $(2d, 2)$-Helly the crude upper bound for the problem is exponential.

Proof. In the following, for a function $\theta : \mathbb{R}^2 \rightarrow \mathbb{R}$, by $t = O(\theta(|H|, n))$ we mean $t \leq k\theta(|H|, n)$ where k is independent of $|H|$ and n. Let $f \in Hom(\partial_n, H)$ be given. Since H is bipartite $(2d, 2)$-Helly graph, by Theorem 1.1, f extends to B_n if and only if f is 1-Lipschitz. Thus to decide the hole-filling problem we need to determine whether or not f is 1-Lipschitz. This can be decided in polynomial time:

1. Determine the distance between the vertices of the graph. This takes time $O(|H|^2)$.
2. For each pair of vertices in the graph ∂_n, determine the distance between the pair and their image under f and verify the Lipschitz condition. This takes $O(n^{2d-2})$.

The total time taken is $O(n^{2d-2} + |H|^2)$. □

For boxes in \mathbb{Z}^2 and $H = \mathbb{Z}$ this algorithm can be improved as in [9] to obtain the optimal complexity of $n \log n$.

6
6. FURTHER PROBLEMS

(1) In the view of our motivation, we focused on the \mathbb{Z}^d-Kirszbraun property. It will be interesting to find characterizations for other domain graphs like the triangular or the hexagonal lattice.

(2) Give a sharper time bound on the recognition problem as in Proposition 5.1.

7. ACKNOWLEDGEMENTS

The authors would like to thank the organisers of the thematic school “Transversal Aspects of Tiling” at Oléron, France in 2016 for inviting us and giving us an opportunity to meet and interact for the first time. The first author has been funded by ISF grant No. 1599/13 and ERC grant No. 678520. The second author was partially supported by the NSF grant.

REFERENCES

[1] H.-J. Bandelt and V. Chepoi. Metric graph theory and geometry: a survey. In Surveys on discrete and computational geometry, volume 453 of Contemp. Math., pages 49–86. Amer. Math. Soc., Providence, RI, 2008.
[2] H.-J. Bandelt and E. Pesch. Dismantling absolute retracts of reflexive graphs. European J. Combin., 10(3):211–220, 1989.
[3] L. Danzer, B. Grünbaum, and V. Klee. Helly’s theorem and its relatives. In Proc. Sympos. Pure Math., Vol. VII, pages 101–180. Amer. Math. Soc., Providence, R.I., 1963.
[4] H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
[5] E. Helly. Über mengen konvexer körper mit gemeinschaftlichen punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.
[6] M. Kirszbraun. Über die zusammenziehende und lipschitzsche transformationen. Fundamenta Mathematicae, 22(1):77–108, 1934.
[7] U. Lang and V. Schroeder. Kirszbraun’s theorem and metric spaces of bounded curvature. Geom. Funct. Anal., 7(3):535–560, 1997.
[8] G. Menz and M. Tassy. A variational principle for a non-integrable model. http://arxiv.org/abs/1610.08103, 2016.
[9] I. Pak, A. Sheffer, and M. Tassy. Fast domino tileability. Discrete Comput. Geom., 56(2):377–394, 2016.
[10] S. Sheffield. Random surfaces. Astérisque, (304):vi+175, 2005.
[11] F. A. Valentine. A Lipschitz condition preserving extension for a vector function. Amer. J. Math., 67:83–93, 1945.

School of Mathematical Sciences, Tel Aviv University, Israel
E-mail address: nishant.chandgotia@gmail.com

Mathematics Department, University of California, Los Angeles, United States of America
E-mail address: pak@math.ucla.edu

Mathematics Department, Dartmouth College, Hanover, United States of America
E-mail address: martintassy@gmail.com