Impact of *Schistosoma mansoni* on Malaria Transmission in Sub-Saharan Africa

Martial L. Ndeffo Mbah¹*, Laura Skrip¹, Scott Greenhalgh¹, Peter Hotez², Alison P. Galvani¹

¹ School of Public Health, Yale University, New Haven, Connecticut, United States of America, ² National School of Tropical Medicine, and Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America

Abstract

Background: Sub-Saharan Africa harbors the majority of the global burden of malaria and schistosomiasis infections. The co-endemicity of these two tropical diseases has prompted investigation into the mechanisms of co-infection, particularly the competing immunological responses associated with each disease. Epidemiological studies have shown that infection with *Schistosoma mansoni* is associated with a greater malaria incidence among school-age children.

Methodology: We developed a co-epidemic model of malaria and *S. mansoni* transmission dynamics which takes into account key epidemiological interaction between the two diseases in terms of elevated malaria incidence among individuals with *S. mansoni* high egg output. The model was parameterized for *S. mansoni* high-risk endemic communities, using epidemiological and clinical data of the interaction between *S. mansoni* and malaria among children in sub-Saharan Africa. We evaluated the potential impact of the *S. mansoni*-malaria interaction and mass treatment of schistosomiasis on malaria prevalence in co-endemic communities.

Principal Findings: Our results suggest that in the absence of mass drug administration of praziquantel, the interaction between *S. mansoni* and malaria may reduce the effectiveness of malaria treatment for curtailing malaria transmission, in *S. mansoni* high-risk endemic communities. However, when malaria treatment is used in combination with praziquantel, mass praziquantel administration may increase the effectiveness of malaria control intervention strategy for reducing malaria prevalence in *S. mansoni*-co-endemic communities.

Conclusions/Significance: Schistosomiasis treatment and control programmes in regions where *S. mansoni* and malaria are highly prevalent may have indirect benefits on reducing malaria transmission as a result of disease interactions. In particular, mass praziquantel administration may not only have the direct benefit of reducing schistosomiasis infection, it may also reduce malaria transmission and disease burden.

Citation: Ndeffo Mbah ML, Skrip L, Greenhalgh S, Hotez P, Galvani AP (2014) Impact of Schistosoma mansoni on Malaria Transmission in Sub-Saharan Africa. PLoS Negl Trop Dis 8(10): e3234. doi:10.1371/journal.pntd.0003234

Editor: Judd L. Walson, University of Washington, United States of America

Received January 7, 2014; Accepted September 2, 2014; Published October 16, 2014

Copyright: © 2014 Ndeffo Mbah et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Notsew Orm Sands Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: Martial.Ndeffo-Mbah@yale.edu

Introduction

Malaria is highly endemic throughout sub-Saharan Africa in which 85% of global malaria cases and 90% of malaria deaths occur [1]. *Schistosoma mansoni* (the causative agent of intestinal schistosomiasis) is likewise prevalent in many sub-Saharan African countries [2,3], accounting for approximately one-third of the total cases of schistosomiasis in the region [4]. Both malaria and intestinal schistosomiasis share similar epidemiological distributions and present challenges to public health and socio-economic development throughout these regions [5]. Due to their coendemicity, there has been increased investigation into the interactive pathology between malaria and *S. mansoni* [6–9]. Heavy *S. mansoni* infections have been found to be associated with a significant increase in the incidence of malaria among school-age children [6]. While the mechanism responsible for the exacerbation of malaria in individuals infected with *S. mansoni* is not yet fully understood [7,9], the interactions between the two diseases are possibly driven by counteracting effects the parasites have on immunological cytokines [10,11]; that is, *S. mansoni* may alter the balance between Th1 and Th2 type immune responses [12–14] which reduces immunological control of malaria, although other mechanisms are possible.

Artemisinin-based combination therapies (ACT) are increasingly used as first-line treatment against malaria in sub-Saharan Africa [13,16]. ACT is an efficacious drug regimen that reduces the risk of malaria-induced morbidity and mortality as well as malaria transmission from humans to vectors [17,18]. For the control of schistosomiasis, current World Health Organization (WHO) guidelines recommend frequent mass administration of praziquantel, a highly effective and relatively inexpensive anti-schistosomal agent [19], to school-age children or to entire communities depending on schistosomiasis prevalence and available resources [20]. However, the adoption of mass praziquantel administration remains suboptimal in sub-Saharan Africa mainly due to limited drug availability, even as the schistosomiasis disease...
Malaria and *Schistosoma mansoni* are co-endemic in many regions of sub-Saharan Africa. Evidence from clinical and epidemiological studies support the hypothesis that concurrent infection with *S. mansoni* is associated with greater malaria incidence among school-age children. We use mathematical modeling to evaluate the epidemiological impact of *S. mansoni* infection on malaria transmission in sub-Saharan Africa. Using epidemiological data on the increased risk of malaria incidence in *S. mansoni* endemic communities from Senegal, we developed a co-endemic model of malaria and *S. mansoni* transmission dynamics to address key epidemiological interactions between the two diseases. Parameterizing our model for *S. mansoni* high-risk endemic communities, we show that the interaction between *S. mansoni* and malaria may reduce the effectiveness of malaria treatment for curtailing malaria transmission. Moreover, we show that in addition to reducing schistosomiasis health burden, mass praziquantel administration will generate indirect benefit in terms of reducing malaria transmission and disease burden in *S. mansoni–malaria* co-endemic communities. Our findings indicate the possible benefit of scaling up schistosomiasis control efforts in sub-Saharan Africa, and especially in areas were *S. mansoni* and malaria are highly prevalent.

The burden continues to rise [21]. Mass praziquantel treatment coverage and compliance may vary substantially from one schistosomiasis endemic area to another.

We evaluated how *S. mansoni* infection and mass praziquantel administration may affect the dynamics and control of malaria in co-endemic communities. In the absence of field studies that directly measure the effect of schistosomiasis control on malaria transmission and progression [6,22–25], we address this question by using epidemiological and clinical findings that estimate the elevation in relative risk of malaria attributable to *S. mansoni* infection [6] to develop a mathematical model of the joint dynamics of malaria and *S. mansoni* among children. We use this model to evaluate the inter-dependent impact of *S. mansoni* on malaria infection and the potential impact of schistosomiasis and malaria treatment for reducing malaria transmission.

Methods

To quantify the potential impact of *S. mansoni* infection and mass praziquantel administration on malaria transmission, we developed a compartmental deterministic model for co-endemic communities in sub-Saharan Africa. Specifically, our model describes the joint dynamics of malaria and *S. mansoni* transmission among children younger than 15 years old. This age group is the most at risk for both malaria and schistosomiasis transmission in sub-Saharan Africa [22].

Model

We developed a mathematical model of the interplay between malaria and *S. mansoni*. Malaria transmission was modeled as follows [26]: At each point in time people can be in one of six infectious states – susceptible (*S*), treated symptomatic disease (*T*), untreated symptomatic disease (*D*), asymptomatic patent infection (*A*), asymptomatic sub-patent infection (*U*) and protected by a period of prophylaxis from treatment (*P*). We assumed that individuals entered the model susceptible and become infected at a rate determined by the force of infection in the population given by $\lambda_M = (amI_M)b$, where *a* represents the biting rate on humans by a female mosquito, *m* is the density of mosquitoes per human, *b* is the probability of successful human inoculation upon an infectious bite, and I_M the proportion of infectious mosquitoes in the vector population. Upon infection, individuals either develop symptomatic disease (with a probability Φ) or develop patent asymptomatic infection ($I−\Phi$). Those who develop symptomatic disease have a fixed probability (f_D) of being treated successfully with an ACT (*T*), in which case they clear infection at a rate r_T and enter a period of prophylactic protection (*P*) before returning (r_D) to being susceptible to new infection. Those who fail treatment ($I−f_DI$) are assumed to eventually clear disease (*D*) and become patent asymptomatic (*A*) at rate r_D. From patent asymptomatic infection, individuals will move to a sub-patent stage (*U*) at a rate r_A and then clear infection at rate r_D and individuals return to being susceptible. The force of infection of malaria on the mosquito population, Λ_M^v, was given by the product of host biting rate per mosquito, probability of mosquito infection upon biting an infectious human ($C_D C_U C_A$), and the proportion of infected individuals at each infectious stage (D, A, U). The intensity of malaria transmission is represented as the annual entomological inoculation rate (AEIR), defined as the product of the human biting rate of mosquitoes and the proportion of mosquitoes that are infectious. AEIR is measured in the number of infective bites per person per year (ibpy). Here malaria prevalence refers to any level of parasitaemia rather than symptomatic disease alone.

For *S. mansoni* transmission, we assumed that at each point in time people can be in one of three states – susceptible (*S*), infected with low egg output (*I_L*), and infected with high egg output (*I_H*) [27]. Likelihood of schistosomiasis transmission from humans to snails depends on worm burden and mean egg production per worm. For the sake of simplicity, egg production was not explicitly modeled. However consistent with previous schistosomiasis modeling studies, we used transmission rates that implicitly account for egg production rate per worm, contact with infested waters, and probability of worm establishment per contact [27,28]. We assumed that individuals entered the model susceptible and become infected with an initially low egg output at a transmission rate β_L. Individuals with low egg output may then transition to high egg output at a transmission rate $\beta_H = om \beta_L$, where om determines the rate of transition to a high egg output from a low egg output relative to β_L. We assumed the individuals infected with low egg output infect susceptible snails at a transmission rate β_S, and individuals with high egg output infect snails at a transmission rate $om \beta_S$, where om is the relative increase of transmission rate to snails for high egg output individuals relative to low egg output individuals. Because rates of schistosomiasis reinfection are very high in endemic areas, we assumed that there is no natural recovery for *S. mansoni* infected individuals, and that without treatment infected individuals with a high egg output will not transition to a low egg output. We incorporated annual praziquantel treatment into the model by assuming that treatment has an efficacy of 70% [29,30]. We assumed that upon treatment, 70% of individuals with low egg output will recover from infection, and 70% of individuals with high egg output will either recover from infection or have their egg output reduced to a low level, such that 40% of treated high egg output will recover from infection, while 30% will have their egg output reduced to a low level [29,30]. We evaluated the potential impact of deworming through mass drug administration with praziquantel on malaria prevalence by considering different levels of treatment coverage ranging from 30–80%.

Individuals can be infected with malaria only, *S. mansoni* only, or dually infected with malaria and *S. mansoni*. The model
Table 1. Parameter definitions of our Schistosoma mansoni-malaria co-infection model.

Parameter	Definition	Value (95%CI)	Ref
β_d	Natural death rate of host	0.05 yr$^{-1}$	—
a	Biting rate on humans by a female mosquito	0.67 Day$^{-1}$	[71]
b	Probability of successful human inoculation upon an infectious bite	0.25	[38]
m	Density of mosquitoes per human	varied1	—
ϕ	Probability of becoming symptomatic case upon infection (susceptibility)	0.72	[72]
r_{O}^{-1}	Duration of symptomatic malaria	5 Days	[73]
r_{A}^{-1}	Duration of asymptomatic malaria	180 Days	[26]
r_{U}^{-1}	Duration of sub-patent malaria	180 Days	[74]
r_{T}^{-1}	Duration of clinical malaria upon chemotherapy	5 Days	[75]
r_{D}^{-1}	Duration of prophylaxis from malaria treatment	20 Days	[75,76]
f_M	Mosquito natural mortality rate	1/8 Day$^{-1}$	[26]
f_{incub}	Mosquito incubation period	10 Days	[26]
C_D	Probability of mosquito inoculation upon biting a human in state untreated clinical disease	0.3	[79]
C_M	Probability of mosquito inoculation upon biting a human in state Asymptomatic patent infection	0.1	[79]
C_T	Probability of mosquito inoculation upon biting a human in state Asymptomatic patent infection	0.05	[79]
C_M	Enhancement of malaria susceptibility due to high worm burden	1.85 (1.16–2.74)	[6]
β_L	Human low worm burden to snails transmission	0.02 (0.01–1.88) yr$^{-1}$	estimated*
β_S	Snail to human transmission from no infection to low worm burden	7.08 (0.2–9.84) yr$^{-1}$	estimated*
ω_H	Human high worm burden to snails transmission relative to β_S	1.91 (1.0–18.3)	estimated*
ω_S	Snail to human transmission from low to high worm burden relative to β_S	0.77 (0.04–0.97)	estimated*
δ_s	Snail natural mortality rate	0.17 yr$^{-1}$	[80]
C_T	Mass praziquantel treatment coverage	30–80%	—

*Parameters were estimated using a Bayesian Melding procedure [81,82] to fit the S. mansoni dynamic model to prevalence data for high-risk endemic communities. In high-risk communities, the overall S. mansoni prevalence was varied from 40–80% and the high worm burden prevalence was varied from 15–60% [6,17,83,84]. High worm burden was defined as having a S. mansoni load exceeding 1000 eggs/g of stool [6].

1Density of mosquitoes per human was varied so as to account for different values of the annual entomological inoculation rate.

doi:10.1371/journal.pntd.0003234.t001

captures the epidemiological interaction between the two diseases in terms of S. mansoni enhancing susceptibility to malaria denoted as C_M and parameterized from epidemiological field data [6] (Table 1). We focused on communities in which malaria and S. mansoni are co-endemic, and considered variation in malaria transmission intensity by varying the AEIR from 1 ibpy to 500 ibpy [31]. We present results obtained at endemic equilibrium. A detailed description of the model is given in the Supplement Material and an overview of parameters and values used to generate the model outcomes are given in Table 1.

Results

By comparing malaria prevalence in the presence and absence of S. mansoni co-endemicity, we showed that the impact of schistosomiasis co-infection on increasing malaria prevalence was higher in areas of low malaria transmission than areas of high malaria transmission (Figures 1 & S1). For example, disease interaction was shown to increase malaria prevalence by 3.0–4.5% for an AEIR of 10 ibpy and by 0.6–1.5% for an AEIR of 100 ibpy, depending on malaria treatment coverage, ranging from 30–90% (Figure 1). The effect of S. mansoni co-infection on malaria prevalence plateaued from 100 ibpy upwards (Figure 1).

We also found that the interaction between malaria and S. mansoni may reduce the effectiveness of malaria treatment for decreasing malaria prevalence (Figure 2). For an AEIR of 100 ibpy, S. mansoni co-infection was shown to decrease the proportional reduction of malaria prevalence due to treatment by 1.3% for 90% treatment coverage, 1% for 60% treatment coverage, and 0.5% for 30% treatment coverage (Figure 2A). For 90% malaria treatment coverage, S. mansoni co-infection increases symptomatic malaria episodes by 29 episodes per 100 people annually, by 45 episodes per 100 people annually for 60% treatment coverage, and 93 episodes per 100 people annually for 30% treatment coverage (Figure 2B).

For an AEIR of 10 ibpy, disease interaction was shown to decrease the proportional reduction of malaria prevalence due to treatment by 2.5% for 90% treatment coverage, 1.4% for 60% treatment coverage, and by 0.6% for 30% treatment coverage (Figure 2A). For 90% malaria treatment coverage, S. mansoni co-infection increases symptomatic malaria episodes by 11 episodes per 100 people annually, by 16 episodes per 100 people annually for 60% treatment coverage, and 21 episodes per 100 people annually for 30% treatment coverage (Figure 2B).

When ACT is used in combination with annual mass praziquantel administration, we showed that the intervention
was more effective in reducing malaria prevalence and that this effectiveness increases both with the coverage of praziquantel and with the increased susceptibility to malaria infection due to \(S. \text{mansoni} \) (Figure 3). This increase in effectiveness was more pronounced in areas of low malaria transmission intensity (Figure 3A) than in areas of high transmission intensity (Figure 3B). The interaction between \(S. \text{mansoni} \) and malaria generated an additional indirect benefit for mass praziquantel administration by reducing malaria prevalence (Figure 3).

Discussion

We developed a co-epidemic model of malaria and \(S. \text{mansoni} \) transmission dynamics to take into account elevated susceptibility to malaria mediated by \(S. \text{mansoni} \) infection. We used this model to investigate the potential effect of malaria-\(S. \text{mansoni} \) interaction on the effectiveness of ACT and mass praziquantel administration for schistosomiasis for reducing malaria prevalence in co-endemic communities. Our results suggested that co-infection with schistosomiasis in low malaria transmission settings increases malaria prevalence. We further showed that in the absence of mass praziquantel administration, the interaction between \(S. \text{mansoni} \) and malaria may have contributed to reductions in population-level effectiveness of malaria treatment in areas of stable malaria transmission. In regions of low malaria treatment coverage, co-infection with schistosomiasis led to the greatest increase in per person malaria episodes, independent of whether malaria transmission was high or low. Our finding is consistent with epidemiological observations and laboratory studies that have suggested that presence of \(S. \text{mansoni} \) infections may affect the efficacy of malaria control measures, including a potential vaccine in co-endemic communities [9,32]. The interaction between the two diseases may increase the health benefits of mass praziquantel administration by generating the additional indirect benefit of reducing malaria transmission in co-endemic communities. Our results indicated that this benefit was particularly strong in low malaria transmission regions that experienced increased malaria infection due to schistosomiasis co-infection. Malaria is associated with a Th1 immune response [12], while \(S. \text{mansoni} \) infection is associated with a Th2 response and had been demonstrated to impair immune responses to malaria [11,13]. By reducing \(S. \text{mansoni} \) worm burden of infected individuals, praziquantel treatment may reduce the Th2 immune response associated with \(S. \text{mansoni} \) infection which may in turn result in a shift in the Th1/Th2 immune balance [14,33] towards the Th1 response that protects against malaria parasite. Though our study focused on \(P. \text{falciparum} \), our results may be applicable to other forms of malaria such as \(P. \text{ovale} \) and \(P. \text{vivax} \), which may also interact with \(S. \text{mansoni} \). We further showed that in the absence of mass praziquantel administration by reducing malaria prevalence (Figure 3).

In addition to increasing malaria incidence, clinical studies have shown that malaria-\(S. \text{mansoni} \) co-infection may exacerbate clinical manifestations of both diseases [14,33,37]. These additional impacts were not factored into our model, making our predictions of the effectiveness of joint programs of ACT and praziquantel conservative. Our model also did not account for malaria age-dependent immunity [26,38]. Age-dependent malaria immunity is less important among children than adults, however, and it is even less relevant in areas of low malaria transmission [26,38,39]. We anticipate that accounting for age-dependent malaria immunity would only have a marginal quantitative effect on our results, such that the findings would remain qualitatively unchanged. Malaria and \(S. \text{mansoni} \) may differ in their distribution of disease intensity, prevalence, and morbidity, with some portion of the population being at higher risk than others [33]. Therefore, the magnitude of the interaction between malaria and \(S. \text{mansoni} \) on malaria transmission dynamics may vary from one risk group to another. Given that data on risk group specific interaction between malaria and \(S. \text{mansoni} \) are not available, our model only accounted for elevated malaria susceptibility from \(S. \text{mansoni} \) high egg output. Future studies could account for heterogeneity in malaria intensity and prevalence.

Currently, there is debate surrounding the extent and direction of the effects of malaria and co-infection with different helminth species on human hosts [7,33,40]. Apparent contradictions arising from clinical and epidemiological studies may be resolved by the possibility of species-specific effects of helminth infections on malaria [7,40,41]. As well as qualitatively different interactions for different worm burdens. For example, \(A. \text{lambricus} \) has been associated with protection from severe malaria complications [7]. Conversely, epidemiological studies have suggested that hookworm elevates malaria prevalence [42] and exacerbates malaria-induced anaemia [22,43]. Similarly, \(S. \text{mansoni} \) has been shown to be associated with increased malaria incidence [6] and exacerbation of hepatosplenomegaly [37,44] and anemia [45] in individuals co-infected with malaria. It has also been reported that children with low (but not high) \(S. \text{haematobium} \) infection intensity co-infected with malaria have significantly lower \(P. \text{falciparum} \) parasitemia than worm-free individuals [46]. This observation implies that the interaction between \(P. \text{falciparum} \) and \(S. \text{haematobium} \) may have contributed to lower malaria prevalence in \(S. \text{haematobium} \) low risk endemic communities, but that the reverse could be the case in \(S. \text{haematobium} \) high risk communities. Additionally, malaria-schistosomiasis co-infection may have opposite effect on malaria transmission in \(S. \text{haematobium} \) compared to \(S. \text{mansoni} \) endemic communities. Therefore, in \(S. \text{mansoni} \) - \(S. \text{haematobium} \) co-infection between a range of malaria transmission settings. The prevalence attributable to \(S. \text{mansoni} \) is the difference between the equilibrium malaria prevalence in the presence of interaction and that in the absence of interaction between \(S. \text{mansoni} \) and malaria. \(S. \text{mansoni} \) high worm burden was assumed to increase the risk of malaria infection by 85\% \((C_M = 1.85)\), consistent with epidemiological studies [6].

Figure 1. Malaria prevalence attributable to \(S. \text{mansoni} \) in a range of malaria transmission settings. The prevalence attributable to \(S. \text{mansoni} \) is the difference between the equilibrium malaria prevalence in the presence of interaction and that in the absence of interaction between \(S. \text{mansoni} \) and malaria. \(S. \text{mansoni} \) high worm burden was assumed to increase the risk of malaria infection by 85\% \((C_M = 1.85)\), consistent with epidemiological studies [6].

doi:10.1371/journal.pntd.0003234.g001
endemic communities [47,48], schistosomiasis control may have a very complex impact on malaria transmission. Further studies are needed on the interaction of *S. mansoni* and *S. haematobium* and their potential impact on malaria transmission. Future transmission models on this topic could also account for worm mating probability and density dependent effects on egg output per worm, which can affect schistosomiasis transmission [49,50].

Polyparasite helminth infections and malaria co-infection are widespread throughout sub-Saharan Africa [22,51,52]. Therefore, studies investigating how co-infection affects the course of each infection, as well as immune responses, are fundamental to understand the potential additional benefits or perverse effects of mass drug administration and control programmes for tropical diseases. There are myriad examples of parasitic co-endemicity and co-infections affecting health outcomes in sub-Saharan Africa. For example malaria and hookworm co-infections [22,53] as well as and *S. mansoni* and hookworm co-infections [54] can lead to severe anemia. A new modeling study on the interaction between lymphatic filariasis and malaria that takes into account increase in vector mortality due to lymphatic filariasis prevalence in mosquito and antagonistic Th1/Th2 immune response in co-infected host has shown that control strategies that reduce lymphatic filariasis transmission could potentially increase malaria prevalence [55]. Similarly, some studies have indicated that antimalarial bednets may reduce transmission from lymphatic filariasis transmitted by anopheles mosquitoes [56,57]. In addition, *S. haematobium* is interacting with HIV by increasing susceptibility to HIV infection through lesions and inflammation of genital track and immunomodulation effects [58]. Two large studies in Zimbabwe and Tanzania found that women with genital schistosomiasis have a 3–4 fold increased odds of having HIV compared to women without genital schistosomiasis [59,60]. Subsequent models have shown that female genital schistosomiasis (caused by *S. haematobium*) control strategies could reduce HIV transmission [61,62], in co-endemic communities. One of the limitations of our study was that we did not examine the relationship between *S. haematobium* and malaria. Future studies could investigate the interaction between malaria and *S. haematobium*, as well as other helminths including hookworm. Such studies could also investigate low risk schistosomiasis communities where, because of the low rate of schistosomiasis reinfection, the sequential order of infection between malaria and schistosomiasis may impact the co-infections of schistosomiasis on malaria transmission.

Clinical studies have shown that ACT used in combination with praziquantel may reduce both the malaria and the schistosomiasis health burden in co-infected individuals [63–66], and that artemisinin-based therapy may have indirect benefits for reducing schistosomiasis health burden [63].

Figure 2. The impact of the interaction between *S. mansoni* and malaria on the effectiveness of ACT for reducing malaria prevalence and symptomatic malaria episodes. We compared (A) the proportional reduction of malaria prevalence with and without interaction and (B) the increase in symptomatic episodes of malaria due to elevated susceptibility to malaria mediated by *S. mansoni* infection. *S. mansoni* high worm burden was assumed to increase the risk of malaria infection by 85% ($C_M = 1.85$), consistent with epidemiological studies [6].

doi:10.1371/journal.pntd.0003234.g002
Additional drug interaction studies may be required if ACT and praziquantel are combined for purposes of mass drug administration. In an experimental rat model of clonorchiasis, combinations of praziquantel and artemisinins produced both synergistic and antagonistic effects depending on the doses administered [67]. In humans infected with *S. japonicum* in China, it was noted that the combination of artemether and praziquantel chemotherapy did not improve treatment efficacy relative to praziquantel alone [68], while in Africa (Cote d’Ivoire) the addition of mefloquine-artesunate did not increase the efficacy of praziquantel against *S. haematobium* infection [69].

Integrating mass screening and treatment for malaria using ACT with mass drug administration of praziquantel could contribute to reducing both malaria and schistosomiasis transmission in co-endemic communities. Immunological studies have suggested that praziquantel treatment in malaria-schistosomiasis co-endemic communities may alter the immune response of treated individuals, making them less susceptible to malaria infection [70]. However, more studies are needed to confirm this impact of praziquantel treatment.

Our results suggest that in *S. mansoni* endemic areas, mass treatment of schistosomiasis may not only have a direct benefit of reducing schistosomiasis infection, it may also reduce malaria prevalence and disease burden. This reduction of malaria prevalence was higher in areas of low malaria transmission intensity, but less pronounced in areas of high transmission intensity (AEIR greater than 100 ibpy). Additional epidemiological and clinical data on malaria–*S. mansoni* co-infection to determine influence on immune responses and duration of malaria infection are needed to fully evaluate the potential effects of *S. mansoni* and schistosomiasis control strategies on malaria.
Supporting Information

Figure S1 Difference in malaria prevalence attributable to S. mansoni at different level of malaria treatment coverage for a wide range of malaria and Schistosoma mansoni transmission settings. Malaria transmission settings were obtained by varying the AEIR, whereas S. mansoni transmission settings were obtained by sampling schistosomiasis transmission parameters over the ranges of values given in Table 1. S. mansoni high worm burden is assumed to increase the risk of malaria infection by 85% (CM = 1.85). Interaction between malaria and S. mansoni and the effect on (A) the difference in malaria prevalence attributable to S. mansoni for 70% malaria treatment coverage versus 50% treatment coverage, and (B) the difference 90% malaria treatment coverage versus 70% coverage.

(TIF)

Text S1 Supplementary Material for Epidemiological impact of Schistosoma mansoni on Malaria transmission in sub-Saharan Africa.

(DOC)

Author Contributions

Conceived and designed the experiments: MLNM PH APG. Performed the experiments: MLNM. Analyzed the data: MLNM. Contributed reagents/materials/analysis tools: LS SG. Wrote the paper: MLNM LS PH APG.
44. Booth M, Vennervald BJ, Kenty L, Butterworth AE, Kariuki HC, et al. (2004) Schoolchild exposure to Plasmodium falciparum: geometric variation in exposure to malaria and helminth infection. Trans R Soc Trop Med Hyg 98: 72–79. Available: http://www.ncbi.nlm.nih.gov/pubmed/15086533. Accessed 13 April 2013.

45. Ajanga A, Lwambo NJS, Blair L, Nyandindi U, Fenwick A, et al. (2006) Schistosoma mansoni infection in pregnancy and associations with anaemia in northwest Schistosoma mansoni infection and re-infection in Mayuge District, Uganda. Trans R Soc Trop Med Hyg 100: 107–110. Available: http://www.ncbi.nlm.nih.gov/pubmed/16725457. Accessed 5 May 2014.

46. Briand V, Watier L, LE Hesran J-Y, Garcia A, Cot M (2005) Coinfection with Schistosoma mansoni and S. haematobium: protective effect of schistosomiasis against urinary schistosomiasis and Schistosoma mansoni transmission in irrigated agricultural villages. J R Soc Interface 2: 272–282. Available: http://rsif.royalsocietypublishing.org/content/2/6/272.full. Accessed 5 May 2014.

47. McCallough FS (1972) The distribution of Schistosoma mansoni and S. haematobium in Africa. Trop Geog Med 24: 199–207. Available: http://www.ncbi.nlm.nih.gov/pubmed/4673849. Accessed 23 April 2014.

48. Gryseels B, Polman K, Clerinx J, Kestens E (2006) Human schistosomiasis. Lancet 368: 1106–1118. Available: http://www.sciencedirect.com/science/article/pii/S0140673606669403. Accessed 1 May 2014.

49. Spear RC (2012) Internal versus external determinants of Schistosoma japonicum transmission in irrigated agricultural villages. J R Soc Interface 9: 272–282. Available: http://rsif.royalsocietypublishing.org/content/9/67/272.full. Accessed 5 May 2014.

50. Ofosu A, Dunkwawa DW (2012) Advances in our understanding of the epidemiology of Plasmodium and schistosome infection: informing conjecture studies.Curr Opin HIV AIDS 7: 225–230. Available: http://www.ncbi.nlm.nih.gov/pubmed/23237111. Accessed 11 July 2013.

51. Diethelm K, Byarugaba D, Tumwesigye D, Onyango BO, Tumwesigye D, et al. (2009) Early detection of malaria and coendemicity with Polyparasite helminth infections and their association to anaemia and undernutrition in Northern Uganda. PLoS Negl Trop Dis 3: e317. Available: http://dx.plos.org/10.1371/journal.pntd.0000317. Accessed 12 July 2013.

52. Mupfasoni D, Karibushu B, Konkoumasi A, Rubanzimba E, Kabertua T, et al. (2009) Polyparasite helminth infections and their association to anaemia and undernutrition in Northern Uganda. PLoS Negl Trop Dis 3: e317. Available: http://dx.plos.org/10.1371/journal.pntd.0000317. Accessed 12 July 2013.

53. Bhuiya A, Kiviat B, Gillespie P, Reeder J, et al. (2013) Expression at a 20L scale and purification of the extracellular domain of the Schistosoma mansoni TSP-2 recombinant protein: a vaccine candidate for human intestinal schistosomiasis. Hum Vaccin Immunother 9. Available: http://www.ncbi.nlm.nih.gov/pubmed/23596262. Accessed 6 July 2013.

54. Downs JA, van Dam GJ, Changalucha JM, Corstjens PLAM, Peck RN, et al. (2009) Polyparasite helminth infections and co-endemicity with Schistosoma mansoni and S. haematobium: protective effect of schistosomiasis against urinary schistosomiasis and Schistosoma mansoni transmission in irrigated agricultural villages. J R Soc Interface 2: 272–282. Available: http://rsif.royalsocietypublishing.org/content/9/67/272.full. Accessed 14 May 2014.

55. Munga L (2002) Vector-control synergies, between “roll back malaria” and the Global Programme to Eliminate Lymphatic Filariasis, in the African region. Ann Trop Med Parasitol 96 Suppl 2: S129–32. Available: http://www.ncbi.nlm.nih.gov/pubmed/12630409. Accessed 25 April 2015.

56. Prasittisuk C (2009) Polyparasite helminth infections and their association to anaemia and undernutrition in Northern Uganda. PLoS Negl Trop Dis 3: e317. Available: http://dx.plos.org/10.1371/journal.pntd.0000317. Accessed 12 July 2013.

57. Keiser J, Xiao S-H, Smith T, Utzinger J (2009) Combination chemotherapy for adults with schistosomiasis. Cochrane Database Syst Rev 7: CD006716. Available: http://www.ncbi.nlm.nih.gov/pubmed/19607207. Accessed 23 April 2014.
68. Hou X-Y, McManus D, Gray D, Balen J, Lao X-S, et al. (2008) A randomized, double-blind, placebo-controlled trial of safety and efficacy of combined praziquantel and artemether treatment for acute Schistosoma japonica in China. Bulletin of the World Health Organization 86: 780–785. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=23543904. Accessed 2 January 2013.

69. Miller MJ (1958) Observations on the natural history of malaria in the semi-resistant West African. Trans R Soc Trop Med Hyg 52: 152–168. Available: http://www.ncbi.nlm.nih.gov/pubmed/16760501. Accessed 6 July 2013.

70. Watkins WM, Mberu EK, Winnstanley PA, Plowe CV (1997) The efficacy of antifolate antimalarial combinations in Africa: a predictive model based on pharmacodynamic and pharmacokinetic analyses. Parasitol Today 13: 459–464. Available: http://www.ncbi.nlm.nih.gov/pubmed/12527512. Accessed 6 July 2013.

71. Keiser J, Sihle K, Adhiossan I, N’Guessan N, Mensan N, et al. (2014) Praziquantel, Mefloquine-Praziquantel, and Mefloquine-Artesunate-Praziquan- trel against Schistosoma haematobium: A Randomized, Exploratory, Open-Label Trial. PLoS Neglected Tropical Diseases 8: e2975. Available: http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0002975. Accessed 14 August 2014.

72. Le Port A, Cot M, Etard J-F, Gaye O, Migot-Nabias F, et al. (2008) Relation between Plasmodium falciparum and Schistosoma haematobium. Mem Inst Oswaldo Cruz 102: 405–409. Available: http://www.ncbi.nlm.nih.gov/pubmed/17568947. Accessed 21 April 2014.

73. Ruebush TK, Kern MK, Campbell CC, Olos JK (1995) Self-treatment of malaria in a rural area of western Kenya. Bull World Health Organ 73: 229–236. Available: http://www.pnumedcentral.nih.gov/articlerender.fcgi?artid=24186763&tool=pmcentrez&rendertype=abstract. Accessed 5 December 2013.

74. Esquiño F, Manderson L (2000) Treatment seeking for malaria in Morong, Bataan, The Philippines. Soc Sci Med 50: 1309–1316. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1114106. Accessed 6 July 2013.

75. Zwang J, Ashley EA, Killeen GF, et al. (2003) Low recovery rates stabilize malaria endemicity in areas of low transmission in coastal Kenya. Acta Trop 86: 71–81. Available: http://www.ncbi.nlm.nih.gov/pubmed/12711106. Accessed 6 July 2013.

76. Keiser J, Silue K, Adiossan L, N’Guessan N, Monsan N, et al. (2014) Schistosomiasis japonica praziquantel and artemether treatment for acute Schistosoma japonica. Bulletin of the World Health Organization 86: 788–795. Available: http://www.ncbi.nlm.nih.gov/pubmed/21352758. Accessed 4 December 2012.

77. Odiere MR, Rawago FO, Ombok M, Secor WE, Karanja DMS, et al. (2012) Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: a mechanistic model. PLoS One 3: e1438. Available: http://dx.plos.org/10.1371/journal.pone.0001438. Accessed 8 January 2013.

78. Hallett TB, Gregson S, Mugurungi O, Gonese E, Garnett GP (2009) Assessing strategies for Schistosoma japonica. Environ Health Perspect 117: 907–915. Available: http://www.pnumedcentral.nih.gov/articlerender.fcgi?artid=12409911&tool=pmcentrez&rendertype=abstract. Accessed 8 January 2013.

79. spear RG, Hubbard A, Liang S, Ssets (2002) Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosoma japonica. Environ Health Perspect 110: 907–915. Available: http://www.pnumedcentral.nih.gov/articlerender.fcgi?artid=3523971&tool=pmcentrez&rendertype=abstract. Accessed 27 July 2009.

80. Hallett TR, Gregson S, Mugurungi O, Genese E, Garnett GP (2009) Assessing evidence for behaviour change affecting the course of HIV epidemics: a new mathematical modelling approach and application to data from Zimbabwe. Epidemics 1: 108–117. Available: http://www.ncbi.nlm.nih.gov/pubmed/19139275. Accessed 4 December 2012.

81. Espino F, Manderson L (2000) Treatment seeking for malaria in Morong, Bataan, The Philippines. Soc Sci Med 50: 1309–1316. Available: http://www.ncbi.nlm.nih.gov/pubmed/12711106. Accessed 6 July 2013.

82. Hallett TR, Gregson S, Mugurungi O, Genese E, Garnett GP (2009) Assessing strategies for Schistosoma japonica. Environ Health Perspect 117: 907–915. Available: http://www.pnumedcentral.nih.gov/articlerender.fcgi?artid=12409911&tool=pmcentrez&rendertype=abstract. Accessed 8 January 2013.