ПОРІВНЯННЯ СПОСОБІВ ОБІГРІВУ РОТОРНО-ПЛІВКОВОГО АПАРАТУ ДЛЯ ВИРОБНИЦТВА РОСЛИННИХ КОНЦЕНТРАТІВ

Загорулько О. Є., Загорулько А. М., Ляшенко Б. В., Гордіенко І.О.

СРАВНЕНИЕ СПОСОБОВ ОБОГРЕВА РОТОРНО-ПЛЕНОЧНОГО АППАРАТА ДЛЯ ПРОИЗВОДСТВА РАСТИТЕЛЬНЫХ КОНЦЕНТРАТОВ

Загорулько А. Е., Загорулько А. Н., Ляшенко Б. В., Гордиенко И.А.

COMPARISON OF METHODS OF HEATING A ROTARY-FILM APPARATUS FOR THE PRODUCTION OF VEGETABLE CONCENTRATES

Zagorulko A., Zahorulko A., Liashenko B., Gordienko I.

Об'єктом дослідження є температурне поле робочої поверхні роторно-плівкового апарату (РПА) при нагріві ніхромовою спіраллю з різним шаром теплоносія або із застосуванням гнучкого плівкового резистивного електронагрівача випромінювального типу (ГПРЕНВТ). Це пов’язано з тим, що концентрування рослинних тюре з застосуванням РПА є перспективним рішенням, за рахунок суттєвого зменшення тривалості обробки та високої якості отриманих виробів. Сьогодні більшість РПА використовують електронагрів ніхромовими спіралями з проміжними теплоносіями, для забезпечення рівномірного теплового потоку, який визначається дослідним шляхом для товщини шару теплоносія в залежності від витрати сировини, що обробляється. Такі способи дозволяють отримувати якісні показники рівномірності температурного поля, але проблемою є збільшення металоємності апаратів через наявність насосів для руху теплоносіїв, що в цілому призводить до ускладнення експлуатаційних умов. Тому важливим є удосконалення системи обігріву РПА із застосуванням ГПРЕНВТ, який одночасно є теплоізольованою поверхнею з рівномірним розподілом температурного поля по всій площині випромінювання. В ході дослідження визначали рівномірність розподілу температури у модельному зразку РПА при різних способах обігріву (ніхромовий дріт з проміжним теплоносієм, кремнійорганічна рідина ПФМС-4 або ГПРЕНВТ).

Отримане порівняння способів тепловідведення дозволило встановити, що обігрів ніхромовою спіраллю є оптимальним при товщині шару теплоносія 4 мм з перепадом температур 1,2...2,4 °C. В умовах використання ГПРЕНВТ забезпечується перепад температур: 0,5...0,7 °C. Це підтверджує
перспективність використання ГПРЭнВТ в системі обігріву РПА за умов зміни витрат сировини 0,5…1,5·10³ кг/с.

Завдяки використанню ГПРЭнВТ для обігріву РПА забезпечиться поліпшення умов експлуатації шляхом спрощення конструкційних властивостей, зниження ресурсовитрат в порівнянні з обігрівом греючою оболонкою з теплоносієм та оптимальним значенням перепаду температури на робочій поверхні апарата.

Ключові слова: виробництво рослинних напівфабрикатів, концентрування пюре, гнучкий плівковий резистивний електронагрівач випромінювального типу, роторний плівковий апарат.

Об’єктом вивчення є температурне поле робочої поверхні роторно-плівчого апарата (РПА) при нагrzев енаномові спіраллю з різними складами теплоносіїв або за допомогою гибкого плівкового резистивного електронагрівача злучаючого типу (ГПРЭнИТ). Це відноситься до того, що концентрування растительних пюре з РПА є перспективним рішенням, за суттєвим зниженням тривалості обробки і високим якістю отриманих продуктів.

Сьогодні більшість РПА використовують електронагрів енаномовими спіраллями з проміжним теплоносієм, щоб забезпечити однорідний тепловий потік, який визначається експериментальним шляхом залежно від товщини теплоносія в залежності від швидкості технологічного потoku. Такі способи дозволяють отримувати якісні показники однорідності температурного поля, але проблемою є збільшення металоемності апаратів через постачання насосів для руху теплоносіїв, що у загальних умовах призводить до зміни експлуатаційних умов. Отже, важливим є скорочення системи обогріву РПА за допомогою ГПРЭнИТ, який одночасно виступає як теплоізоляційна поверхня з однорідним розподілом температурного поля по всій плоскості залучення.

У ході вивчення визначали однорідність розподілу температури в модельному образці РПА при усіх способах обогріву (енаномова проволока з проміжним теплоносієм, кременорганічна рідина ПФМС-4 або ГПРЭнИТ).

Отримані результати показали, що обогрів енаномовою спіраллю є оптимальним при товщині ярусу теплоносія 4 мм з перепадом температури 1,2…2,4 °С. В умовах використання ГПРЭнИТ забезпечується перепад температур: 0,5…0,7 °С. Це підтверджує перспективність використання ГПРЭнИТ в системі обогріву РПА за умовами зміни расходу сировини 0,5…1,5·10³ кг/с.

Благодаря використанню ГПРЭнИТ для обогріву РПА забезпечується удосконалення умов експлуатації шляхом зменшення конструкційних властивостей, зниження ресурсозатрат за умови обігріву греючою оболонкою з теплоносієм та оптимальним значенням перепаду температури на робочій поверхні апарата.
Ключове слово: производство растительных полуфабрикатов, концентрирование пюре, гибкий пленочный резистивный нагреватель излучающего типа, роторный пленочный аппарат.

1. Вступ

Однією з головних операцій при виробництві рослинних напівфабрикатів є концентрування пюре згідно технологічним вимогам до необхідного вмісту сухих речовин [1, 2]. Перспективним тепломасообмінним обладнанням в цьому випадку є роторно-плівкові апарати (РПА), які характеризуються суттєвим зменшенням тривалості обробки та високою якістю отриманих виробів [3–5]. А також можливістю безпосереднього розташування їх в лініях поблизу місць збирання сировини [6]. Це забезпечить зменшення транспортних витрат, а також збереження початкових властивостей сировини, які значною мірою залежать від режимних параметрів температури та рівномірності нагріву сировини, що обумовлює необхідність пошуку інноваційних рішень з удосконалення способів обігріву РПА. Сьогодні більшість РПА використовують електронагрів ніхромовими спіралями з проміжними теплоносіями, для забезпечення рівномірного теплового потоку, який визначається дослідним шляхом для товщины шару теплоносія в залежності від витрати обробляємої сировини [7]. Такі способи дозволяють отримати якісні показники рівномірності температурного поля, але характеризуються збільшення металосмісістю апаратів, наявністю насосів для руху теплоносіїв, що в цілому призводить до ускладнення експлуатаційних умов [8]. Тому актуальним є інженерне рішення з удосконалення системи обігріву РПА за допомогою застосування гнучкого плівкового резистивного електронагрівача випромінювального типу (ГПРЕнВТ), який одночасно є теплоізольованою теплою поверхнею з рівномірним розподілом температурного поля по всій площі випромінювання [9].

Таким чином, об’єктом дослідження є температурне поле робочної поверхні РПА при нагріві ніхромовою спіраллю з різним шаром теплоносія або ГПРЕнВТ. Мета роботи полягає у встановлені оптимального розподілу температури в РПА за умов порівнянь зазначених способів теплопідведення в залежності від витрати сировини.

2. Методика проведення досліджень

Дослідження рівномірності розподілу температури у модельному зразку РПА в залежності від способу обігріву здійснювалось розташуванням на його робочій поверхні термопар (рис. 1, a). РПА складається з теплоізольованого корпуса апарата 1, який нагріється ГПРЕнВТ або ніхромовою спіраллю з проміжним теплоносієм (кремнійорганічна рідина ПФМС-4, [10]). Верхня частина РПА має сепараційний простір 3 для відведення вторинної пари. Ось апарата являє собою обертальний ротор 4 із шарнірними елементами 5. На верхній частині ротора встановлено розподіловач 6 для плівкоутворення сировини перед концентруванням, що надходить крізь штуцер 7.
Рис. 1. Рotorно-плівковий апарат: а – модель; 1 – корпус; 2 – гнутий плівковий резистивний електронагрівач випромінювального типу або ніхромова спіраль з теплоносієм; 3 – сепаратор; 4 – ротор; 5 – плівкоутворюючі елементи; 6 – розподільне кільце; 7 – вхідний патрубок; 8 – вихідний патрубок; б – розташування термопар на робочій поверхні (9 – термопари)

Нижня частина РПА являє собою розвантажувальну зону готового концентрату з патрубком 8. Температура дослідної ділянки розміщенена на відстані 25 мм по висоті від верхнього краю завантажувального патрубка, і її довжина – 10 мм визначається розташованими ній хромель-копелевими термопарами 9. Отже, для дослідження рівномірності запропоновано три рівня термопар по три термопари в кожному (рис. 1, б).

3. Результати досліджень та обговорення

Експериментальне визначення рівномірності температури на поверхні нагрівання РПА в умовах порівняння обігріву за допомогою ніхромової спіралі з різним шаром проміжного теплоносія (ПФМС-4, δ_m: 0; 2; 4 мм) та ГПРЕнВТ. При використанні ніхромової спіралі з теплоносієм товщиною шару 4 мм встановлено перепад температур в межах – 1,2…2,4 °C. Товщина теплоносія 0 та 2 мм мають більш нерівномірний розподіл температур при зміні витрати сировини в межах 0,5…1,5·10^3 кг/с (рис. 2).
Аналіз кривих (Δt), наведених на рис. 2, підтверджує оптимальний рівень перепаду температур в межах 0,5…0,7 ºC на робочій поверхні апарата в умовах використання в схемі обігріву РПА – ГПРЕнВТ. Технічні властивості ГПРЕнВТ дозволяють зберігати рівномірний розподіл кількості теплоти практично в будь-якій ділянці робочої поверхні. Це призведе до поліпшення умов експлуатації РПА шляхом спрощення конструкційних властивостей, зниження ресурсовитрат в порівнянні з обігрівом гірючою оболонкою з теплоносієм.

4. Висновки
Порівняння способів тепловідведення в РПА дозволило встановити, що в умовах обігріву ніхромовою спіральною оптимальною товщиною шару теплоносія є 4 мм з перепадом температур від 1,2…2,4 ºC. А в умовах використання ГПРЕнВТ забезпечується перепад температур: 0,5…0,7 ºC. Це підтверджує перспективність використання ГПРЕнВТ в системі обігріву РПА в умовах зміни витрат сировини від 0,5….1,5·10³ кг/с.

Література
1. Butko, M. P., Yasko, A. H. (2010). Rozvytok kharchovoї promyslovosti v rehionalnykh hospodarskykh systemakh Ukrainy. Ahorsvit. Ekonomika APK, 9, 2–9.
2. Cherevko, O. I., Yefremov, Yu. I., Mykhailov, V. M. (2007). Pererobka dykorosloi priano-aromatychnoi roslynnoi syrovyny. Kharkiv: KhDUKhT, 230.
3. Gaiazova, A. O., Prokhasko, L. S., Popova, M. A., Lukinykh, S. V., Asenova, B. K. (2014). Ispolzovanie vtorichnogo i rastitelnogo syria v produktakh funktsionalnogo naznacheniia. Molodoi uchenii, 19, 189–191.
4. Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S. et. al. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318–339. doi:
http://doi.org/10.1016/j.foodres.2017.05.001
5. Bucher, T., van der Horst, K., Siegrist, M. (2013). Fruit for dessert. How people compose healthier meals. *Appetite, 60*, 74–80. doi: http://doi.org/10.1016/j.appet.2012.10.003
6. Telezhenko, L. N., Bezusov, A. T. (2004). *Biologicheski aktivnye veschestva frukтов i ovoschei: sokhranenie pri pererabotke*. Odessa: Optimum, 268.
7. Cherevko, O., Mykhaylov, V., Zagorulko, A., Zahorulko, A. (2018). Improvement of a rotor film device for the production of high-quality multicomponent natural pastes. *Eastern-European Journal of Enterprise Technologies, 2 (11 (92)),* 11–17. doi: http://doi.org/10.15587/1729-4061.2018.126400
8. Hladushniak, O. K. (2015). *Tekhnolohichne obладнання консервних заводів*. Kherson: Hrin D. S., 348.
9. Zahorulko, A. M., Zahorulko, O. Ye. (2016). Pat. No. 108041 UA. *Hnuchki plivkovyi rezystyvnyi elektronahrivach yprominiuchoho typu*. MPK G05D 23/19, B01D 1/22, H05B 3/36. No. u201600827; declared: 02.20.2016; published: 24.06.2016, Bul. No. 12, 4.
10. Kremniorhanichna ridyna PFMS-4. Available at: http://www.chemproduct.ru/shop/goods/598/

The object of research is the temperature field of the working surface of the rotor-film apparatus (RFA) when heated by a nichrome spiral with a different coolant layer or using a flexible film resistive radiating type electric heater (FFREHRT). Since the concentration of vegetable purees using RFA is a promising solution, due to a significant reduction in processing time and high quality of the resulting products. Today, most RFAs use electric heating of nichromes with spirals with intermediate coolants, to process a uniform heat flow, which is determined empirically for the thickness of the coolant layer depending on the flow of raw materials, it is processed. Such methods make it possible to obtain qualitative indicators of the uniformity of the temperature field, but the problem is an increase in the metal consumption of the apparatus due to the presence of pumps for the movement of coolants, which generally complicates the operating conditions. Therefore, it is important to improve the RFA heating system using FFREHRT, which is also a thermally insulated surface with a uniform distribution of the temperature field over the entire radiation plane. In the course of the study, the uniformity of the temperature distribution in the RFA model sample is determined for various heating methods (nichrome wire with an intermediate coolant, PFMS-4 organosilicon liquid or FFREHRT).

The obtained comparison of heat removal methods made it possible to establish that heating with a nichrome spiral is optimal when the thickness of the coolant layer is 4 mm with a temperature difference of 1.2...2.4 °C. Under conditions of using FFREHRT, a temperature difference of 0.5...0, 7 °C. This confirms the prospects of using FFREHRT in the RFA heating system in the conditions of a change in the feed rate of 0.5...1.5·10³ kg/s.

Thanks to the use of FFREHRT for RFA heating, operational conditions will be improved by simplifying the structural properties, reducing resource costs compared to heating with a heating shell with a coolant and the optimal temperature difference on the working surface of the apparatus.

Keywords: production of vegetable semi-finished products, concentration of mashed potatoes, flexible film resistive heater of the radiating type, rotary film apparatus.