Interactive Effects Between Temperature and PM$_{2.5}$ on Mortality: A Study of Varying Coefficient Distributed Lag Model — Guangzhou, Guangdong Province, China, 2013–2020

Sujuan Chen1, Hang Dong2, Mengmeng Li3, Lin Huang1, Guozhen Lin2, Qiyong Liu4, Boguang Wang1, Jun Yang5

ABSTRACT

Introduction: There is a large body of epidemiological evidence showing significantly increased mortality risks from air pollution and temperature. However, findings on the modification of the association between air pollution and mortality by temperature are mixed.

Methods: We used a varying coefficient distributed lag model to assess the complex interplay between air temperature and PM$_{2.5}$ on daily mortality in Guangzhou City from 2013 to 2020, with the aim of establishing the PM$_{2.5}$-mortality association at different temperatures and exploring synergistic mortality risks from PM$_{2.5}$ and temperature on vulnerable populations.

Results: We observed near-linear concentration-response associations between PM$_{2.5}$ and mortality across different temperature levels. Each 10 μg/m3 increase of PM$_{2.5}$ in low, medium, and high temperature strata was associated with increments of 0.73% (95% confidence interval (CI): 0.38%, 1.09%), 0.12% (95% CI: -0.27%, 0.52%), and 0.46% (95% CI: 0.11%, 0.81%) in non-accidental mortality, with a statistically significant difference between low and medium temperatures ($P=0.02$). There were significant modification effects of PM$_{2.5}$ by low temperature for cardiovascular mortality and among individuals 75 years or older.

Conclusions: Low temperatures may exacerbate physiological responses to short-term PM$_{2.5}$ exposure in Guangzhou, China.

INTRODUCTION

Ambient air pollution and temperature are leading environmental challenges to global public health. In 2019, PM$_{2.5}$ was responsible for an estimated 4.14 million deaths and 118 million disability-adjusted life years (DALYs) (1). Temperature is an important predictor of many diseases and has been perceived as a key environmental factor in climate change scenarios (2). Air pollution was identified as the fourth leading risk factor for death worldwide (3). Short-term exposure to PM$_{2.5}$ can increase the risk of death from chronic diseases (4).

In the context of climate change, health risk assessment of the joint effect of air pollution and temperature has attracted growing public concern (5). In Chengdu, China for example, stronger associations between air pollution and hospital admission for chronic obstructive pulmonary disease (COPD) were found at low-temperatures than at moderate temperatures (6). However, other studies have failed to identify synergistic health effects of air pollution and temperature. For example, Jhun and co-authors found that the interaction between ozone and temperature was not statistically significant in 97 US cities (7). In addition, potential variations of exposure-response patterns under various temperature levels have been less well documented. As an extension of distributed lag models, the varying-coefficient distributed lag model has been flexibly applied to explore interactive and time-lagged effects between different exposure hazards (8).

We aimed to establish the exposure-response association between PM$_{2.5}$ and mortality at different temperature strata using the varying coefficient distributed lag model in Guangzhou, China, and to explore synergistic mortality risks from PM$_{2.5}$ and temperature on vulnerable populations.

METHODS

The study period was 2013–2020. We obtained daily mortality data in Guangzhou from Guangzhou Center for Disease Control and Prevention. Causes of death were classified according to International
Classification of Diseases, Tenth Revision: non-accidental causes (A00–R99), cardiovascular disease (I00–I99), ischemic heart disease (IHD, I20–I25), stroke (I60–I69), respiratory disease (J00–J98), and COPD (J40–J47). Daily counts of non-accidental deaths were stratified by age (<75 and ≥75 years), gender, and educational level (<9 and >9 years). We obtained daily concentrations of air pollutants (O₃, PM₂.₅, PM₁₀, NO₂, SO₂, and CO) from Guangzhou monitoring stations and daily meteorological data from basic weather stations in Guangzhou from the China Meteorological Data Service Center (http://data.cma.cn/).

The varying coefficient distributed lag model, based on generalized linear models with a quasi-Poisson family (9), was used to estimate the modifying effect of temperature on the association between PM₂.₅ and mortality. We incorporated several covariates in the model: a natural cubic spline with 7 degrees of freedom (df) per year for a time variable; a natural cubic spline with 3 df for relative humidity, air pressure, and moving average temperature (with time lags of 0–10 days); and holidays and day of the week as indicator variables. The cross-product of categorical temperature levels [low (<25th percentile), medium (25th–75th), and high (>75th percentile)] and PM₂.₅ was used to examine the interaction between air pollution and temperature. In addition, stratified analyses were conducted by gender, age group, and education.

Relative differences of RRs across strata [relative risk ratios (RRR)] were calculated to detect potential effect modifications by temperature. To verify the robustness of our results, we performed a series of sensitivity analyses. Details of the model are provided in the Supplementary Material (available in https://weekly.chinacdc.cn/). All statistical analyses were conducted in the R language environment (R Core Team 2021, Vienna, Austria) using the “dlnm”, “mgcv”, and “splines” packages.

RESULTS

Table 1 depicts summary statistics on daily air pollution, weather conditions, and mortality. The average PM₂.₅ value was 35.1 μg/m³ during 2013–2020. During the study period, there were 403,492 deaths registered in Guangzhou, among which cardiovascular diseases, IHD, stroke, respiratory disease, and COPD accounted for 39.5%, 16.7%, 10.3%, 14.4%, and 6.1%, respectively.

Supplementary Figure S1 (available in https://weekly.chinacdc.cn/) shows Spearman’s correlations between air pollution and weather conditions. There were negative correlations between temperature and relative humidity and air pollutants (except for O₃) and positive correlations among air pollutants.

Figure 1 shows lag patterns of PM₂.₅ on cause-specific mortality at different temperature levels. Effect

Variable	Mean	Minimum	Percentiles	Maximum		
			25th	50th	75th	
Temperature (°C)	22.2	3.4	17.4	23.3	27.3	32.0
Low (<25th)	13.6	4.6	11.8	14.0	15.8	17.7
Medium (25th–75th)	23.1	17.8	20.7	23.3	25.7	27.3
High (>75th)	28.9	27.4	27.9	28.8	29.6	31.9
Mean humidity (%)	80.4	31.0	75.0	81.5	88.0	100.0
Mean pressure (hPa)	1,007.1	985.7	1,000.3	1,005.4	1,010.8	3,276.6
PM₂.₅ (μg/m³)	35.1	3.5	20.0	30.0	45.0	150.0
Cause (Number of deaths per day)						
Non-accidental	131	79	115	128	143	238
Cardiovascular disease	55	21	45	53	62	115
Ischemic heart disease	23	6	18	22	27	51
Stroke	14	0	11	14	17	34
Respiratory disease	20	6	15	19	24	48
COPD	8	0	6	8	11	30

Abbreviation: COPD=chronic obstructive pulmonary disease.
of PM$_{2.5}$ on the daily death toll of different diseases had consistent and evident trends in which mortality risks reached maximum within 1–2 lag days of exposure, then leveled off, and disappeared within 4–5 days.

Figure 2 shows the estimates of exposure-response relationships between PM$_{2.5}$ and mortality at different temperature levels. We found approximately linear associations between PM$_{2.5}$ and mortality. The highest effect estimates of PM$_{2.5}$ on mortality were consistently observed at the lower temperatures, while lower effect estimates were seen at the higher temperatures. Each 10 μg/m3 increase of PM$_{2.5}$ in low, medium, and high temperature strata was associated with respective increments of 0.73% [95% confidence interval (CI): 0.38%, 1.09%], 0.12% (95% CI: −0.27%, 0.52%), and 0.46% (95% CI: 0.11%, 0.81%) in non-accidental mortality (Table 2). There was an RRR of 1.01 (95% CI: 1.00, 1.01) between low and medium temperatures ($P=0.02$) (Supplementary Table S1, available in https://weekly.chinacdc.cn/). For cause-specific mortality, statistically significant differences between the risk of PM$_{2.5}$ across temperature levels were only observed for cardiovascular mortality, with effect estimates of 0.88% (95% CI: 0.37%, 1.39%), 0.04% (95% CI: −0.52%, 0.60%) and 0.50% (95% CI: 0.00%, 0.99%) at low, medium and high temperature levels (Table 2),
and an RRR of 1.01 (95% CI: 1.00, 1.02) between low temperature and medium temperature (P=0.03). The highest effect of PM$_{2.5}$ was found in respiratory mortality at low temperatures, with an effect estimate of 1.57% (95% CI: 0.75%, 2.39%); however, difference by temperature was not statistically significant.

In analyses stratified by personal characteristics, we found consistently higher effects of PM$_{2.5}$ at low temperatures compared with medium temperatures, but the only statistically significant difference was among individuals of 75 years or older. Each 10 μg/m3 increase of PM$_{2.5}$ in the low, medium, and high temperature strata was associated with increments of 1.22% (95% CI: 0.76%, 1.68%), 0.29% (95% CI: −0.22%, 0.79%), and 0.83% (95% CI: 0.38%, 1.28%) in mortality of the elderly, respectively, with RRR of 1.01 (95% CI: 1.00, 1.02) between low and medium temperature strata (P=0.01). The elderly were more susceptible to PM$_{2.5}$ compared with younger age groups under both low and high temperature conditions.

Using different degrees of freedom for time trend analyses adjusting for co-pollutants changed the effect estimates only slightly (Supplementary Tables S2–S3, available in https://weekly.chinacdc.cn/), indicating
instance, Li and coauthors found that each 10 μg/m³ increase of PM$_{2.5}$ during the lowest temperature range was associated with a 1.27% (95% CI: 0.38%, 2.17%) increase in cardiovascular mortality, compared with 0.59% (95% CI: 0.22%, 1.16%) across the whole temperature range (10). Likewise, the association between PM$_{2.5}$ and mortality in Hong Kong was stronger at low temperatures than at higher temperatures, with corresponding effect estimates of 0.94% (95% CI: 0.65%, 1.24%) and 0.47% (95% CI: 0.65%, 1.24%) for each 10 μg/m³ increment in PM$_{2.5}$ (11). The reduced beat frequency of nose and trachea cilia on cold days, which affects the clearance rate of particulate matter and makes people more susceptible to PM$_{2.5}$, is suspected as an underlying mechanism for the greater effect of PM$_{2.5}$ on mortality at low temperatures in Guangzhou (12). Some studies found that people living in warm regions probably experience a higher mortality risk during cold weather than do people living in cold regions (13). In addition, low temperatures may exacerbate airway inflammation and increase the burden on respiratory functions (14).

We also found relatively higher effect estimates of PM$_{2.5}$ on mortality in high temperatures compared to moderate temperatures, although the difference was not statistically significant, consistent with previous studies (6,10). However, another study reported a statistically significant higher health effect of PM$_{2.5}$ in

Variable	Low temperature	Medium temperature	High temperature		
ER%	95% CI	ER%	95% CI	ER%	95% CI
Non-accidental mortality	0.73* (0.38, 1.09)*	0.12 (−0.27, 0.52)	0.46* (0.11, 0.81)*		
Cardiovascular mortality	0.88* (0.37, 1.39)*	0.04 (−0.52, 0.60)	0.50* (0.00, 0.99)*		
Stroke mortality	1.35* (0.43, 2.29)*	0.64 (−0.38, 1.67)	1.10* (0.20, 2.02)*		
Ischemic heart mortality	0.50 (−0.25, 1.25)	−0.52 (−1.33, 0.31)	−0.02 (−0.64, 0.77)		
Respiratory mortality	1.57* (0.75, 2.39)*	0.85 (−0.04, 1.76)	1.24* (0.45, 2.05)*		
COPD mortality	1.34* (0.10, 2.59)*	0.69 (−0.67, 2.07)	0.95 (−0.26, 2.17)		

Gender

- Female 0.87* (0.37, 1.37)* 0.04 (−0.51, 0.60) 0.50* (0.01, 1.00)*
- Male 0.63* (0.19, 1.07)* 0.18 (−0.30, 0.67) 0.43* (0.00, 0.86)*

Age (years)

- 0–74 0.01 (−0.48, 0.50) −0.13 (−0.68, 0.41) −0.09 (−0.57, 0.39)
- ≥75 1.22* (0.76, 1.68)* 0.29 (−0.22, 0.79) 0.83* (0.38, 1.28)*

Education

- Low education 0.69* (0.23, 1.15)* −0.04 (−0.56, 0.48) 0.40 (−0.05, 0.86)
- High education 0.55 (−0.24, 1.35) 0.32 (−0.56, 1.22) 0.32 (−0.43, 1.14)

Abbreviations: ER=excess risk; CI=confidence interval; COPD=chronic obstructive pulmonary disease.
* indicates statistically significant results.
high temperature strata (15). The discrepant results may be explained by differences in population structure and air pollution exposure patterns.

In this study, we observed a significant modification of the effect of PM$_{2.5}$ on cardiovascular mortality by low temperatures. As ambient temperature decreases, cold receptors in the skin are stimulated, the sympathetic nervous system increases catecholamine levels, blood vessels near the skin constrict to reduce heat loss, and blood pressure suddenly increases (10). High blood pressure can lead to oxygen deficiency, myocardial ischemia, or arrhythmia, and become a risk factor for vascular spasms and ruptures of atherosclerotic plaque that cause thromboses (12). Such marked changes make people more susceptible to adverse cardiovascular outcomes caused by PM$_{2.5}$. The findings are important from a public health perspective, as 39.5% of all non-accidental deaths in Guangzhou were cardiovascular deaths.

Our analysis also found significant interaction effects of PM$_{2.5}$ and low temperature among the elderly but not among young people, which is consistent with a previous study (6). The body’s homeostasis and thermoregulatory functions, and the capacity to eliminate chemicals from the body decrease with age (16), which may contribute to the combined health hazards of PM$_{2.5}$ and temperature change. The elderly also suffer from higher rates of comorbidities, which may further enhance their vulnerability to environmental exposure.

The study was subject to some limitations. First, we substituted measured air pollution and air temperature at fixed outdoor monitoring stations for personal exposures, which will lead to some exposure measurement errors. Second, only adverse associations of PM$_{2.5}$ were examined in this study, leaving confounding by other factors unexplored. Last, our results may not generalize to areas with different population structures and air pollution compositions.

In summary, we observed an interaction between PM$_{2.5}$ and low temperature on mortality, especially for non-accidental and cardiovascular mortality and among the elderly. Considering the synergetic health risks of air pollution and temperature, cooperation from multiple sectors with the aim of protecting vulnerable populations may mitigate health challenges from climate change and air pollution.

Funding: Supported by the National Natural Science Foundation of China (No. 82003552), and the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011161, 2021A1515110625, 2020A1414010168).

doi: 10.46234/ccdcw2022.124

* Corresponding authors: Jun Yang, yangjun@gzhmu.edu.cn; Guozhen Lin, xwkcdc@126.com.

1. Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong Province, China; 2. Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong Province, China; 3. Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China; 4. National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, China; 5. School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China.

* Joint first authors.

Submitted: April 16, 2022; Accepted: June 17, 2022

REFERENCES

1. Institute for Health Metrics and Evaluation. Ambient particulate matter pollution — Level 4 risk. https://www.healthdata.org/results/gbd_summaries/2019/ambient-particulate-matter-pollution-level-4-risk. [2022-05-24]
2. Yang J, Zhou MG, Ren ZP, Li MM, Wang BG, Liu DL, et al. Projecting heat-related excess mortality under climate change scenarios in China. Nat Commun 2021;12(1):1039. http://dx.doi.org/10.1038/s41467-021-2305-1.
3. Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396(10258):1223 – 49. http://dx.doi.org/10.1016/S0140-6736(20)30752-2.
4. Cheng H, Zhu FR, Lei RQ, Shen CW, Liu J, Yang M, et al. Associations of ambient PM$_{2.5}$ and O$_3$ with cardiovascular mortality: a time-series study in Hefei, China. Int J Biometeorol 2019;63(10):1437 – 47. http://dx.doi.org/10.1007/s00484-019-01766-2.
5. Li J, Woodward A, Hou XY, Zhu T, Zhang JL, Brown H, et al. Modification of the effects of air pollutants on mortality by temperature: a systematic review and meta-analysis. Sci Total Environ 2017;575:1556 – 70. http://dx.doi.org/10.1016/j.scitotenv.2016.10.070.
6. Qiu H, Tan K, Long FY, Wang LY, Yu HY, Deng R, et al. The burden of COPD morbidity attributable to the interaction between ambient air pollution and temperature in Chengdu, China. Int J Environ ResPublic Health 2018;15(3):492. http://dx.doi.org/10.3390/ijerph15030492.
7. Jhun I, Fann N, Zanobetti A, Hubbell B. Effect modification of ozone-related mortality risks by temperature in 97 US cities. Environ Int 2014;73:128 – 34. http://dx.doi.org/10.1016/j.envint.2014.07.009.
8. Zhao X, Chen F, Feng ZJ, Li XS, Zhou XH. Characterizing the effect of temperature fluctuation on the incidence of malaria: an epidemiological study in south-west China using the varying coefficient distributed lag non-linear model. Malar J 2014;13:192. http://dx.doi.org/10.1186/1475-2875-13-192.
9. Gasparini A, Guo YM, Hashizume M, Kinney PL, Petkova EP, Lavigne E, et al. Temporal variation in heat-mortality associations: a multicountry study. Environ Health Perspect 2015;123(11):1200 – 7. http://dx.doi.org/10.1289/ehp.1409070.
10. Li Y, Ma ZQ, Zheng CJ, Shang Y. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM$_{2.5}$ in Beijing, China. Int J Biometeorol 2015;59(12):1761 – 70. http://dx.doi.org/10.1007/s00484-015-0984-z.
11. Sun SZ, Cao PH, Chan KP, Tsang H, Wong CM, Thach TQ. Temperature as a modifier of the effects of fine particulate matter on
12. Jiang YX, Chen RJ, Kan HD. The interaction of ambient temperature and air pollution in China. In: Lin HL, Ma WJ, Liu QY, editors. Ambient temperature and health. Singapore: Springer. 2019105 – 16. http://dx.doi.org/10.1007/978-981-13-2483-0_7.
13. Yang J, Yin P, Zhou MG, Ou CQ, Guo YM, Gasparini A, et al. Cardiovascular mortality risk attributable to ambient temperature in China. Heart 2015;101(24):1966 – 72. http://dx.doi.org/10.1136/heartjnl-2015-308062.
14. Deng LJ, Ma P, Wu Y, Ma YS, Yang X, Li YG, et al. High and low temperatures aggravate airway inflammation of asthma: evidence in a mouse model. Environ Pollut 2020;256:113433. http://dx.doi.org/10.1016/j.envpol.2019.113433.
15. Qian ZM, He QC, Lin HM, Kong LL, Bentley CM, Liu WS, et al. High temperatures enhanced acute mortality effects of ambient particle pollution in the "oven" city of Wuhan, China. Environ Health Perspect 2008;116(9):1172 – 8. http://dx.doi.org/10.1289/ehp.10847.
16. Simoni M, Baldacci S, Maio S, Cerrai S, Sarno G, Viegi G. Adverse effects of outdoor pollution in the elderly. J Thorac Dis 2015;7(1):34 – 45. http://dx.doi.org/10.3978/j.issn.2072-1459.2014.12.10.
SUPPLEMENTARY MATERIAL

Model Construction

The varying coefficient distributed lag model:

$$
\log[E(Y_t)] = \alpha + \beta_1 \text{Hum}_t + \beta_2 \text{Press}_t + \beta_3 \text{Temp}_t + \beta_4 \text{Time}_t + v \text{Holiday}_t + \text{cb} (\text{PM}_{2.5}) + T_i \times \text{cb} (\text{PM}_{2.5})
$$

Where $E(Y_t)$ denotes the daily expected number of deaths on day t; α is the intercept; ns is a natural cubic spline. 7 degrees of freedom (df) per year for time (Time_t) was used to control for long-term trends and seasonal variables of daily mortality (1). Holiday_t is an indicator variable of population dynamics due to holidays. T_i is a categorical variable indicating various temperature levels. To explore the possible effect modification by ambient temperature, we divided the ambient temperature into three levels: low (<25th percentile), medium (25th–75th), and high (>75th percentile), which was consistent with previous studies (2). ns (natural cubic splines) with three df was adapted for daily relative humidity and air pressure (3). And we applied the natural cubic spline (ns) to fit the moving average (lag 0–10 days) of temperature to control the confounding effects of temperature (Temp_t). In the basic model, we used a distributed lag model (DLM) to describe the association with PM$_{2.5}$. Lag effects were described by a cross-basis function (cb) in the distributed lag model (4). Specifically, we applied a cross-basis

SUPPLEMENTARY FIGURE S1. Correlations (Spearman correlation coefficient) among air pollution and weather conditions.

*: $P<0.05$;
**: $P<0.01$;
***: $P<0.001$.

Note: The table and figure illustrate the correlations among various air pollution and weather conditions. The significance levels are indicated by asterisks: *, **, and *** for P-values less than 0.05, 0.01, and 0.001, respectively.
SUPPLEMENTARY TABLE S1. RRR, 95% confidence intervals (CI), and P-values of significance test of effects of PM$_{2.5}$ (per 10 μg/m3) on mortality under different temperature levels.

Variable	Medium temperature	Low temperature	High temperature				
	RRR	95% CI	P	RRR	95% CI	P	
Cause							
Non-accidental mortality	Reference	1.006*	(1.001, 1.011)*	0.024*	1.003	(0.998, 1.009)	0.207
Cardiovascular mortality	Reference	1.008*	(1.001, 1.016)*	0.030*	1.005	(0.997, 1.012)	0.228
Stroke mortality	Reference	1.007	(0.993, 1.021)	0.315	1.005	(0.991, 1.018)	0.511
IHD mortality	Reference	1.010	(0.999, 1.022)	0.072	1.005	(0.994, 1.016)	0.365
Respiratory mortality	Reference	1.007	(0.995, 1.019)	0.247	1.004	(0.992, 1.016)	0.526
COPD mortality	Reference	1.006	(0.99, 1.023)	0.434	1.003	(0.987, 1.019)	0.751
Gender							
Female	Reference	1.005	(0.997, 1.012)	0.219	1.001	(0.994, 1.008)	0.793
Male	Reference	1.004	(0.998, 1.011)	0.178	1.002	(0.996, 1.009)	0.450
Age (years)							
0–74	Reference	1.001	(0.994, 1.009)	0.708	1.000	(0.993, 1.008)	0.914
≥75	Reference	1.009*	(1.002, 1.016)*	0.008*	1.005	(0.999, 1.012)	0.118
Education level							
Low education	Reference	1.007	(0.997, 1.017)	0.153	1.004	(0.997, 1.011)	0.212
High education	Reference	1.002	(0.991, 1.014)	0.698	1.000	(0.988, 1.012)	1.000

Abbreviations: RRR=relative risk ratios; IHD=ischemic heart disease; COPD=chronic obstructive pulmonary disease.
* indicate statistically significant results.

SUPPLEMENTARY TABLE S2. Sensitivity analysis of the modification by the temperature on the PM$_{2.5}$-mortality association using 5–8 degrees of freedom (df) per year for the time trend.

Degrees of freedom (df)	Low temperature	Medium temperature	High temperature
	ER 95% CI	ER 95% CI	ER 95% CI
df=6	0.73 (0.38, 1.09)	0.12 (–0.27, 0.52)	0.46 (0.11, 0.81)
df=5	0.81 (0.46, 1.16)	0.17 (–0.21, 0.54)	0.49 (0.15, 0.83)
df=7	0.68 (0.32, 1.04)	0.11 (–0.29, 0.51)	0.39 (0.03, 0.75)
df=8	0.74 (0.38, 1.10)	0.20 (–0.19, 0.60)	0.46 (0.11, 0.82)

Abbreviations: ER=excess risk; CI=confidence interval.

SUPPLEMENTARY TABLE S3. Sensitivity analysis of the modification by the temperature on the air pollution-mortality association with adjustments for different co-pollutants.

Co-pollutants	Low temperature	Medium temperature	High temperature
	ER 95% CI	ER 95% CI	ER 95% CI
Main model	0.73 (0.38, 1.09)	0.12 (–0.27, 0.52)	0.46 (0.11, 0.81)
PM$_{2.5}$ + SO$_2$	0.41 (–0.01, 0.84)	–0.19 (–0.65, 0.27)	0.14 (–0.28, 0.56)
PM$_{2.5}$ + NO$_2$	0.86 (0.42, 1.31)	0.24 (–0.23, 0.71)	0.53 (0.09, 0.97)
PM$_{2.5}$ + O$_3$	0.59 (0.21, 0.97)	–0.04 (–0.46, 0.38)	0.33 (–0.05, 0.71)

Abbreviations: ER=excess risk; CI=confidence interval.

composed of a linear function for exposure-response, and a natural cubic B-spline for the lag response with an intercept and two internal knots placed at equally spaced values in the log scale. We chose 4 days to examine the lag effect of PM$_{2.5}$.

In this study, we extended distributed lag model (DLM) to the varying coefficient DLM by including a linear interaction between temperature (T_l) and the cross-basis variables. We directly incorporated the principal and
interaction terms in the model during a special parameterization to satisfy the DLM software specifications. The interaction term, the cross-product of the categorical temperature variable and PM$_{2.5}$ were used to examine the interaction effects between air pollution and temperature. We can estimate the effects of air pollution at a specific temperature from the three-dimensional curve. For instance, to obtain the effect of temperature at the specific concentration of air pollution, we only need to provide 3 coefficients of unidimensional NS splines that modeled the overall cumulative exposure-response relationship. Further, with the temperature divided into three levels, the model specifications and interpretations were similar. We then used this varying coefficient DLM to predict the exposure-lag-response association for different temperature strata. To examine potentially vulnerable populations, we repeated statistical analyses by gender, age group, and education to examine the changes in effect estimates across subgroups.

In order to detect the potential effect modifications of temperature, we calculated the relative differences of RRs across strata [relative risk ratio (RRR)] with the following equation.

$$RRR = \exp \left[\frac{(E_1 - E_2)}{1.96\sqrt{SE_1^2 + SE_2^2}} \right]$$

where E_i and E_j denote the effect estimates [i.e. ln(RR)] of two subgroups; $SE(E_i)$ and $SE(E_j)$ are corresponding standard errors of E_i and E_j.

REFERENCES

1. Li L, Yang J, Guo C, Chen PY, Ou CQ, Guo YM. Particulate matter modifies the magnitude and time course of the non-linear temperature-mortality association. Environ Pollut 2015;196:423 – 30. http://dx.doi.org/10.1016/j.envpol.2014.11.005.
2. Chen K, Wolf K, Breitner S, Gasparrini A, Staafoggia M, Samoli E, et al. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas. Environ Int 2018;116:186 − 96. http://dx.doi.org/10.1016/j.envint.2018.04.021.
3. Yang Z, Yang J, Zhou MG, Yin P, Chen ZY, Zhao Q, et al. Hourly temperature variability and mortality in 31 major Chinese cities: effect modification by individual characteristics, season and temperature zone. Environ Int 2021;156:106746. http://dx.doi.org/10.1016/j.envint.2021.106746.
4. Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med 2014;33(5):881 − 99. http://dx.doi.org/10.1002/sim.5963.
5. Yang J, Yin P, Sun JM, Wang BG, Zhou MG, Li MM, et al. Heatwave and mortality in 31 major Chinese cities: definition, vulnerability and implications. Sci Total Environ 2019;649:695 − 702. http://dx.doi.org/10.1016/j.scitotenv.2018.08.332.