Exploring bioactive pigments from marine bacterial isolate from the Indonesian seas

T H P Brotosudarmo
Ma Chung Research Center for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Indonesia
E-mail: tatas.brotosudarmo@machung.ac.id

Abstract. Marine microbes offer a significant source for biodiscovery due to their rich biodiversity and genetic capacity. Particularly, microbial pigments of marine origin are getting more attention in current research due to their widely perceived application as natural food colorants, antioxidant, antimicrobial, and many more. In the past five years, our research group has successfully characterised various bioactive pigments isolated from marine bacteria, including *Erythrobacter flavus* strain KJ5 that produces unique sulphur-containing carotenoids *Pseudoalteromonas rubra* strain PS1 and SB14 that contain antimicrobial prodiginine, and *Seonamhaeicola algicola* strain CCI for high content of zeaxanthin. This paper describes the challenges we encountered in conducting research in exploring bioactive pigments especially with focus on carotenoid research, reviewed critically on strategy we developed for isolation of isolate as well as identification and elucidation of the pigments, and consideration for future research.

Keywords: bioactive pigments, carotenoid, mass spectrometry, UV-vis spectrum

1. Introduction
Bioactive pigments isolated from marine microbes are currently being explored for clinical and industrial applications because they demonstrated various activity such as antioxidant, anticancer, antimicrobial, as well as acting in stimulating immunity [1]. Bioactive pigments, such as violacein (purple), quinone (bright yellow), phenazines (yellow crystalline), prodiginines (red), and carotenoids (yellow to red) can be easily detected by naked eye from the gram-positive and gram-negative bacteria after incubation on common microbial cultures media containing seawater-rich [2]. A current review on the recent exploration of bioactive pigments from marine bacteria reported that there was an increasing number of articles reporting on bacterial pigments from only 8 article in 2002 to 84 articles by 2015, moreover in the past five years at least 17 new species have been successfully isolated from their native habitat [3].

A common marine environment to discover novel bacterial isolate producing bioactive pigments is symbiosis or “the living together” interaction between marine invertebrate, especially the sessile ones as hosts and microorganisms as symbionts [4]. Microbial symbionts have been witnessed to produce a variety of tailored biochemical traits, due to co-evolution with their specific host, making them a rich source of secondary metabolites with properties of medically and commercially attractive bioactivities[5-7]. Carotenoid has been considered as a bioactive compound of the highest market demand, because of their biotechnological application and their potential beneficial uses in human
healthcare, food processing, pharmaceuticals, and cosmetics [7]. Carotenoids are a family of yellow to orange-red pigments with the structure composed of mainly C40 lipophilic isoprenoids. Carotenoids have important biological roles in all living systems. In addition to their function to promote photosynthesis process, another relevant function of carotenoid is associated with their properties as antioxidant, scavenger of free radicals and protection against blue light radiation, which also correspond to their molecular structure [8]. There are more than 250 naturally occurring carotenoids of marine origin had been reported as of 2017 [9]. The different compositions that are present in the marine organisms has promoted the use of carotenoids as a chemical signature for rapid chemotaxonomic profiling [10-12]. Carotenoid producing bacterial isolate that are associated to marine invertebrate reported from 1994 to 2019 is presented in Table 1, in which at least four species had been discovered from the Indonesian seas.

Table 1. Carotenoid producing marine bacterial isolates that are associated to coral and sponges as hosts, reported from 1994 to 2019 searched through Science Direct and Pubmed.

Location of Discovery	Host	Type of Carotenoid	Characterization Technique	Ref.	
Gaetbulimicrobium sp. strain 04OKA-17-12	Kerama Islands, Japan	Acropora nobilis	Zeaxanthin	UV vis, HPLC, MS, NMR	[13]
Virgibacillus salarius CBSCP 1-1	Karimun Jawa Island, Indonesia	Sarcophyton sp.	β-carotene	UV-Vis HPLC	[14]
Pseudoalteromonas shioyasakensis CBSCP 2-2	Karimun Jawa Island, Indonesia	Sarcophyton sp.	β-carotene	UV-Vis HPLC	[14]
Erythrobacter flavus strain KJ5	Karimun Jawa Island, Indonesia	Acropora nasuta	Nostoxanthin sulfate, Caloxanthin sulfate, Zeaxanthin sulfate, Nostoxanthin, Caloxanthin, Zeaxanthin, B-cryptoxanthin, β-carotene	UV-Vis HPLC, FT-IR, MS	[15]
Micrococcus yunnanensis	Akajima Island, Japan	Unidentified hard coral	Sarcinaxanthin, Sarcinaxanthin monoglucoside, Sarcinaxanthin diglucoside	UV-Vis HPLC, MS, NMR	[16]
Vibrio owensii TNKJ.CR.24-7	Karimun Jawa Island, Indonesia	Unidentified coral	β-carotene	UV-Vis, TLC	[17]
Flexibacter sp. strains DK30213	Sagami Bay, Japan	Raniera japonica	Zeaxanthin	TLC, UV-Vis HPLC, MS	[18]
Pseudomonas sp. strain KK10206C	Suruga Bay, Japan	Halichondria okadaï	Okadaxanthin	UV-Vis, CD, MS, NMR	[19]
Rubritalea spongiae strain YM21-132T	Natsudomari Peninsula, Japan	Unidentified sponge	Unspecified carotenoid	HPLC, MS	[20]
Flavobacterium sp.	Palau	Homaxinella sp.	Myxol	UV Vis, HPLC, MS, NMR	[21]
Location of Discovery	Host	Type of Carotenoid	Characterization Technique	Ref.	
-----------------------	------	-------------------	--------------------------	------	
Rubritalea squalenifaciens	Miura peninsula, Japan	Halichondria okdai	Diapolycedopenioic acid xylosyl ester A, Diapolycedopenioic acid xylosyl ester B, Diapolycedopenioic acid xylosyl ester C	[22, 23]	
Sphingomonas sp. KODA19-6	Kood Island, Thailand	Tethya seychellensis	Zeaxanthin	[24]	
Algoriphagus sp. KK10202C	Numazu, Japan	Halichondria okdai	Flexixanthin, Deoxyflexixanthin	[25]	
Aquimarina spongiae	Jeju Island, South Korea	Halichondria oshoro	Unspecified carotenoid	[26]	
Psychrobacter celer strain CBSP5	Karimunjawa Island, Indonesia	Callyspongia vaginalis	Unspecified carotenoid	[27]	
Streptomyces strain AQBWWS1	Kovalam Coast, India	Callyspongia diffusa	Lycopene	[28]	
Salegentibacter agarivorans	Onecotan Island	Artemisina sp	Unspecified carotenoid	[29]	
Formosa spongicola	Jeju Island, South Korea	Hymeniacidon flavia	Unspecified carotenoid	[30]	
Algoriphagus sp. strain KK10202C	Numazu, Japan	Halichondria okdai	lycopene, 3, 4-dehydrodorhopin, deoxyflexixanthin, flexixanthin	[25]	

2. Methodology

2.1. Challenges and strategy in getting the isolate

It is extremely challenging to get microbes from the seawater sample that can readily cultured and sustainably grow under laboratory condition. Although rapid progress in development of cultivation technique has been demonstrated and reported to result in the successful isolation of high number of novel microorganisms [31]. In most cases we frequently encountered situations where we have an insufficient knowledge of the microbes themselves, and the organic substrates that they use in the sea. This is dilemmatic and there is a circularity. It is a kind of serendipity to design targeted research to obtain promising isolate that produce bioactive compounds. An advantage of working with pigment-producing marine bacteria is that we can easily distinguish the different colony by its first sight (Figure 1). When using spot spectrophotometer such as USB4000 spectrophotometer from ocean optics, the typical spectra of the pigments each colony can be recorded.

Coral reefs are excellent sources for finding bacterial isolate with potential novel carotenoid with novel properties. In the case of corals and sponges, the associated diversity of microbial is known to be influenced by host interaction, production of antimicrobial compounds, and environmental conditions [33]. Interestingly, Symbionidium dinoflagellates, members of the coral holobiont that do photosynthesis, also influence microbial community structure by releasing complex carbon-containing exudates including dimethylsulfiniopropionate (DMSP) [34]. DMSP is a stable organosulfur compound derived from sulfur-containing amino acid and DMSP a key compound in the global sulfur cycle. It can be degraded to dimethylsulphide (DMS), which is very important in climate regulation owing to its role in cloud formation [34]. However, some coral such as Acropora spp. also produces DMSP even in the
absence of Symbiodiniaceae symbionts [34]. In addition to DMSP, isoprene is also known emitted by endosymbiont of reef-building corals [35]. Isoprene is produced from dimethylallyl diphosphate (DMAPP), a precursor molecule for many building blocks of cells, including sterols, quinones, hormones, chlorophylls, and carotenoids. Coral-associated bacteria have potential roles in carbon, nitrogen, and sulfur, and give protection to host [36], therefore it is interesting to find new bacterial isolate that demonstrate such capacity, for example bacteria that can synthesis sulfated natural product compounds, particularly carotenoid pigments. In the past five year, we succeeded to discover from Acropora nasuta a yellowish marine bacterium Erythrobacter flavus strain KJ5, which capable to metabolize sulfate into the carotenoid structure [15, 37].

![Figure 1](image-url)

Figure 1. Bacterial colonies first appearing on Zobell agar medium appear to produce an array of pigments: (a) Seawater sample collected from Sebanjar Beach, Alor Island, (b) Seawater sample collected from Kondang Merak Beach, South Malang, East Java, (c) Pure colonies of Pseudoalteromonas rubra that produces antibacterial red pigment prodigiosin [32], (d) Pure colonies of Seonamhaeicola algicola strain CC1 that produce high concentration of zeaxanthin carotenoid. Note: not all isolated colony was survived for long period of purification and for a sustainable culture in the laboratory condition.

2.2. **Screening strategy of carotenoid-producing bacteria**

The first step to identify whether the coloured colonies containing carotenoid is by measuring their UV-vis spectrum of the pigments. This can be done either by direct measurement on the colony using a portable spectrophotometer or by extraction of pigment using organic solvent and then measure the UV-vis spectrum of the crude extract. A typical UV-vis absorption spectrum of carotenoid is characterised by a strong broad band with peaks or shoulders between 400 to 550 nm. Some carotenoid even shows prominent three characteristic absorption peaks when dissolved in non-polar solvents. In the second step involves sequancing of 16S rRNA genes of the potential candidates. Sequencing and phylogenetic analysis of the potential carotenoid producing bacterial isolates are needed to find the closest species with known carotenoid composition from the carotenoid database (http://carotenoiddb.jp/). In many cases, unique carotenoids are not available commercially. Therefore, it is very important to have a selection of bacteria whose carotenoid types can be used as a reference in the next stage of analysis.

NCBI BLAST is the most used sequence similarity search tool. If the determined sequence of an unknown isolate exhibits high similarity, between 97% to 100% with the reference sequenced of an approved species, then the unknown isolate may be assigned to this species. Deep literature research then needs to be carried out to find out whether any pigments analysis has been conducted. In our case, we succeeded to find the gap in the reported information about Pseudoalteromonas rubra and we prove that it produces antibacterial prodigiosin pigment [32]. When the similarity of sequence is between 97% and 95%, the unknown species can be assigned to the corresponding genus with possibility of claiming a novel species. In this case, based on our experience it is worth to conduct pigment analysis thoroughly because the unknown species might contain other type of carotenoid although it has the same biosynthetic pathway as it is reported. In the case of Erythrobacter flavus strain KJ5, for example, we
even conducted a whole genome sequencing prior to build a hypothesis of the possibility to find a new type of sulphate containing carotenoid [37]. To analysis the carotenoid composition, we used high-performance liquid chromatography (HPLC) coupled with diode array detector (DAD) and triple quadrupole mass spectrometry (MS/MS), because we already have identified the carotenoids from the approved species as reference compounds. When the similarity is less than 95%, the unknown isolate can be assigned to a family with possibility of claiming a novel genus and with a high chance to find novel carotenoids. In the later case, one might need a high-resolution mass spectrometry and a nuclear magnetic resonance (NMR) in addition to optical spectroscopy for the elucidation of the carotenoid structure.

3. Results and discussion

3.1. HPLC-ESI-MS/MS for the analysis of carotenoids

In comparison to the thin layer chromatography (TLC), nowadays, HPLC has been used on daily bases for separation and identification of carotenoids because of many reasons, including large selection on the separating columns, ease modification of mobile phase composition, possibility to alter the peak separation by tuning the column oven temperature, and lots of choices for the type of detectors. Gas chromatography (GC) is not suitable because carotenoids have low volatility and thermostability [38]. HPLC can be coupled with DAD to provide data consists of the separation profile and the UV-vis absorption spectra of each separated components. HPLC can be also coupled with MS system to provide additional data about the molecular weight of the carotenoid.

In our screening approach, we usually use the following HPLC method. A reversed phase (RP) C$_8$ column with two eluents as mobile phase. Eluent A is composed of methanol, acetonitrile, and pyridine solution with pH is maintained at pH 5. Eluent B is composed of methanol, acetonitrile, and acetone. We use flow rate 1 mL/min and let the detection time finished after 40 minutes. It is quite a slow method, however, our method has been succeeded to resolve the separation of unique carotenoids that usually overlapping with other components [15, 39]. To confirm the result obtained using the C$_8$ column, we usually carry out experiment with a YMC Carotenoid column, which is powerful to give high resolution with a clear separation of xanthophyll cycle carotenoids [40]. For the method using a YMC Carotenoid column, we use a gradient elution program with the eluent composes of water, methanol, and methyl tert-butyl ether (MTBE).

In most successful cases for carotenoid studies, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) are well compatible ionization techniques with LC-MS. Carotenes and xanthophylls form molecular ions or protonated molecules during positive ion electrospray, however the hydrocarbon carotenes do not ionize when using the negative mode. When using APCI, abundant positively or negatively charged molecular ions or protonated and deprotonated molecules are formed for both carotenes and xanthophylls [41]. However, it depends on the purpose of structural elucidation and the availability of the ionization module. In our laboratory, unfortunately we only have ESI. In this case, we don’t care much on the hydrocarbon carotenes. We are interested more in the end groups which carotenoids have a lot of variation (see and compare different carotenoid structures that are available in the carotenoid database, http://carotenoiddb.jp/). For this purpose, it is important to activate the ESI in the positive and negative mode. For example, the detection of nostoxanthin sulfate from E. flavus strain KJ5 was effectively observed in the negative mode (Figure 2).

Nostoxanthin (C$_{50}$H$_{56}$O$_{10}$), has the exact mass of 600.42 u, shows a molecular ion at m/z 600.5 [M] with a product ion at m/z 508.6 [M – 92], which corresponds to a loss of toluene [15]. However, nostoxanthin sulfate cannot be detected in the positive mode of Q1 scan (Figure 2). When detected in the negative mode of Q1 scan, the molecular ion appears at m/z 679.3 [M-H-Na] with high signal intensity. The product ion scan of nostoxanthin sulfate in the negative mode consistently produces a product ion at m/z 97.3, which indicate sulfate ion [HSO$_4$] well recorded by electrospray ionization. The intensity of m/z 679.3 also shows consistent decrease proportionally with the increase of the intensity of m/z 97.3 at higher collision energy.
Figure 2. ESI-MS/MS analysis of the nostoxanthin sulfate in *E. flavus* strain KJ5, full Q1 scan at the positive and negative mode, and product ion scans (right) spectra using collision energy (CE) at 15 and 30 V. Adapted from Setiyono et al. 2019 [15].

3.2. Consideration for future research

Many organisms tend to accumulate carotenoid under prolong biotic and abiotic stresses through upregulation of carotenoid biosynthetic pathways in response to avoid degradation [42, 43]. During thermal stress, photodamage, photoinhibition and increasing of cellular respiration in *Symbiodinium*, for example, result in the production of reactive oxygen species (ROS) at the chloroplast, mitochondria and microbody [44]. The accumulation of carotenoid is a perfect scenario to overcome the excess of ROS in the cell. Therefore, the search of bioactive pigments, especially carotenoids and other similar antioxidant compounds, that is also related to the local environmental changes of these marine bacterial isolates [3] might be interesting to be considered and evaluated for the future research.

4. Conclusion

Research in the exploration of bioactive pigments has gain an increasing interest despite challenges in cultivation of microbes from the seawater sample in a sustainable manner under laboratory condition. A strategy to obtain unique bioactive pigments includes exploring of microbial community in the coral reefs. The screening strategy for determination of novel carotenoids in marine microbes includes UV-vis spectrum analysis of the pigment crude extract, genome analysis and subsequently HPLC-MS/MS analysis. The results of genomic analysis that have been compared with the database will produce references to nearby species that have similar carotenoid compositions. The use of HPLC-MS/MS analysis can provide a reference regarding the exact composition and content of carotenoids.

Acknowledgments

THPB thanks to Edi Setiyono and other laboratory members who had involved in the pigment research from marine bacterial isolate. The writing of this paper and the conference participation were supported by funding under World Class Research scheme grant number 001/MACHUNG/LPPM/SP2H-LIT-MONO/IV/2021.

References

[1] Joye S and Kostka J E 2020 *Microbial genomics of the global ocean system* (Washington DC:
[2] Ramesh C, Vinithkumar N V and Kirubagararan R 2019 Marine pigmented bacteria: a prospective source of antibacterial compounds J. Nat. Sci. Biol. Med. 10 104–13

[3] Brotosudarmo T H P, Limantara L and Pringgenies D 2021 Recent exploration of bioactive pigments from marine bacteria ScienceAsia 47 265–70

[4] Kaltenpoth M, Fl I V, Biedermann P H W, Engl T and Kaltenpoth M 2015 Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms Nat. Prod. Rep. 32 879–1156

[5] Blockley A and Elliott D R 2017 Symbiotic microbes from marine invertebrates: driving a new era of natural product drug discovery Diversity 9 1–13

[6] Zhang X, Wei W and Tan R 2015 Symbionts, a promising source of bioactive natural products Sci. China 58 1–13

[7] Torregrosa-crespo J, Montero Z, Fuentes J L, Reig M, Carlos V and Martinez-Espinosa R M 2018 Exploring the valuable carotenoids for the large-scale production by marine microorganisms Mar. Drugs 15 1–25

[8] Sandmann G 2019 Antioxidant protection from UV-and light-stress related to carotenoid structures Antioxidants 8 1–13

[9] Galasso C, Corinaldesi C and Sansone C 2017 Carotenoids from marine organisms: biological functions and industrial applications Antioxidants (Basel) 6 1–33

[10] Zapata M, Jeffrey S W, Wright S W, Rodriguez F, Garrido J and Clementson L 2004 Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy Mar. Ecol. Prog. Ser. 270 83–102

[11] Mc Gee D, Archer L, Paskuliakova A, Mc Coy G R, Fleming G T A, Gillespie E and Touzet N 2017 Rapid chemotaxonomic profiling for the identification of high-value carotenoids in microalgae J. Appl. Phycol. 30 385–99

[12] Serive B, Nicolau E, Berard J B, Kaas R, Pasquet V, Picot L and Cadoret J P 2017 Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups PLoS One 12 e0171872

[13] Shindo K, Kikuta K, Suzuki A, Katsuta A, Kasai H, Yasumoto-Hirose M, Matsuou Y, Misawa N and Takaichi S 2007 Rare carotenoids, (3R)-saproxanthin and (3R,2’S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities Appl Microbiol Biotechnol 74 1350–57

[14] Kusmita L, Mutiara E V, Nuryadi H, Pratama P A, Wiguna A S and Radjasa O K 2017 Characterization of carotenoid pigments from bacterial symbionts of soft-coral Sarcophyton sp. from North Java Sea Int. Aquat. Res. 9 61–9

[15] Setiyono E, Heryanto, Pringgenies D, Shioi Y, Kanesaki Y, Awai K and Brotosudarmo T H P 2019 Sulfur-containing carotenoids from a marine coral symbiont Erythrobacter flavus strain KJ5 Mar. Drugs 17 1–16

[16] Osawa A, Ishii Y, Sasamura N, Morita M, Kasai H, Maoka T and Shindo K 2010 Characterization and antioxidative activities of rare C50 carotenoids-sarcinaxanthin, sarcinaxanthin monoglucoside, and sarcinaxanthin diglucoside- obtained from Micrococcus yunnanensis J. Oleo Sci. 59 653–59

[17] Sibero M T, Bachtiiarini T U, Trianto A, Lupita A H, Sari D P, Igarashi Y, Harunari E, Sharma A R, Radjasa O K and Sabdono A 2019 Characterization of a yellow pigmented coral-associated bacterium exhibiting anti-bacterial activity against multidrug resistant (MDR) organism Egypt. J. Aquat. Res. 45 81–7

[18] Miki W, Otaki N, Yokoyama A and Kusumi T 1996 Possible origin of zeaxanthin in the marine sponge, Reniera japonica Experiencea 52 93–6

[19] Miki W, Otaki N, Yokoyama A, Izumida H and Shimizu N 1994 Okadaxanthin, a novel C50-carotenoid from a bacterium, Pseudomonas sp. KK10206C associated with marine sponge, Halichondria okadai Experiencea 50 684–86

[20] Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H and Yokota A 2007 Rubritalea spongiae sp.
nov. and Rubritalea tangerina sp. nov., two carotenoid- and squalene-producing marine bacteria of the family `Verrucomicrobiaceae within the phylum Verrucomicrobia’, isolated from marine animals Int. J. Syst. Evol. Microbiol. 57 2337–43

[21] Yokoyama A and Miki W 1995 Isolation of myxol from associated a marine bacterium Flavobacterium with a marine sponge Fish Sci. 61 684–86

[22] Shindo K, Asagi E, Sano A, Hotta E, Minemura N, Mikami K, Tamesada E, Misawa N and Maoka T 2008 Diapolyycopenedioid acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoid acids produced by a new marine bacterium Rubritalea Squalenificiens J. Antibiot. (Tokyo) 61 185–91

[23] Shindo K and Misawa N 2014 New and rare carotenoids isolated from marine bacteria and their antioxidant activities Mar Drugs 12 1690–98

[24] Thawornwiriyanun P, Tanasupawat S, Dechsakulwatana C, Techkarnjanaruk S and Suntornsuk W 2012 Identification of newly zeaxanthin-producing bacteria isolated from sponges in the gulf of thailand and their zeaxanthin production Appl. Biochem. Biotechnol. 167 2357–68

[25] Tao L, Yao H, Kasai H, Misawa N and Cheng Q 2006 A carotenoid synthesis gene cluster from Algoriphagus sp. KK10202C with a novel fusion-type lycopene β-cyclase gene Mol. Genet. Genomics 276 79–86

[26] Yoon B J, You H S, Lee D H and Oh D C 2011 Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro Int. J. Syst. Evol. Microbiol. 61 417–21

[27] Abfa I K, Radjasa O K, Susanto A B, Nuryadi H and Karwur F F 2017 Exploration, isolation, and identification of carotenoid from bacterial symbiont of sponge Callyspongia vaginalis Ilmu Kelaut. 22 49–58

[28] Dharmaraj S, Ashokkumar B and Dhevendran K 2009 Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa Food Res. Int. 42 487–92

[29] Nedashkovskaya O I, Kim S B, Vancanneyt M, Shin D S, Lysenko A M, Shevchenko L S, Krasokhin V B, Mikhailov V V., Swings J and Bae K S 2006 Salegentibacter agarivorans sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the sponge Artemisina sp. Int. J. Syst. Evol. Microbiol. 56 883–87

[30] Yoon B J and Oh D C 2011 Formosa spongicola sp. nov., isolated from the marine sponge Hymeniacidon flavia Int. J. Syst. Evol. Microbiol. 61 330–3

[31] Wang F, Li M, Huang L and Zhang X-H 2021 Cultivation of uncultured marine microorganisms Mar. Life Sci. Technol. 3 117–20

[32] Setiyono E, Alfasisurya M, Adhiwibawa S, Indrawati R, Nur M, Prihastyanti U, Shioi Y, Brotosudarmo T H P 2020 An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodigine pigments ACS Omega 5 4626–35

[33] Bourne D G, Dennis P G, Uthicke S, Soo R M, Tyson G W and Webster N 2013 Coral reef invertebrate microbiomes correlate with the presence of photosymbionts ISME J. 7 1452–8

[34] Raina J B, Dinsdale E A, Willis B L and Bourne D G 2010 Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol. 18 101–08

[35] Lawson C A, Possell M, Seymour J R, Raina J B and Suggett D J 2019 Coral endosymbionts (Symbiodiniaceae) emit species-specific volatiles that shift when exposed to thermal stress Sci. Rep. 9 1–11

[36] van Oppen M J H and Blackall L L 2019 Coral microbiome dynamics, functions and design in a changing world Nat. Rev. Microbiol. 17 557–67

[37] Kanesaki Y, Setiyono E, Pringgenies D, Moriiuchi R, Brotosudarmo T H P and Awai K 2019 Complete genome sequence of the marine bacterium Erythrobacter flavus strain KJ5 Microbiol. Resour. Announc. 8 e00140-19

[38] Taylor R F and Ikawa M 1980 Gas chromatography, gas chromatography—mass spectrometry, and high-pressure liquid chromatography of carotenoids and retinoids Methods Enzymol. 67 233–61

[39] Setiyono E, Brotosudarmo T H P, Pringgenies D, Heriyanto, Prihastyanti M N U and Shioi Y
2019 Analysis of β-cryptoxanthin from yellow pigmented marine bacterium *Erythrobacter* sp. kj5 *IOP Conf. Ser.: Earth Environ. Sci.* 246 012004

[40] Heriyanto, Gunawan I A, Fujii R, Maoka T, Shioi Y, Kameubun K M B, Limantara L and Brotosudarmo T H P 2021 Carotenoid composition in buah merah (Pandanus conoides Lam.), an indigenous red fruit of the Papua Islands *J. Food Compos. Anal.* 96 103722

[41] Rivera S M, Christou P and Canela-Garayoa R 2014 Identification of carotenoids using mass spectrometry *Mass Spectrom Rev* 33 353–72

[42] Ram S, Mitra M, Shah F, Tirkey S R and Mishra S 2020 Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges *J. Funct. Foods* 67 103867

[43] Minhas A K, Hodgson P, Barrow C J and Adholeya A 2016 A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids *Front. Microbiol.* 7 1–19

[44] Hillyer K E, Dias D A, Lutz A, Wilkinson S P, Roessner U and Davy S K 2017 Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral *Acropora aspera* *Coral Reefs* 36 105–18