Д. Дупланчич, М. Цезарич, Н. К. Поляк, М. Радман, В. Ковачич, Ж. Радич, В. Рогозич

ВЛИЯНИЕ СЕЛЕКТИВНОГО АКТИВАТОРА РЕЦЕПТОРА ВИТАМИНА D ПАРИКАЛЬЦИТОЛА НА СЕРДЕЧНО-СОСУДИСТУЮ СИСТЕМУ И КАРДИОРЕНАЛЬНУЮ ПРОТЕКЦИЮ

THE INFLUENCE OF SELECTIVE VITAMIN D RECEPTOR ACTIVATOR PARICALCITOL ON CARDIOVASCULAR SYSTEM AND CARDIORENAL PROTECTION

© Д. Дупланчич, М. Цезарич, Н. К. Поляк, М. Радман, В. Ковачич, Ж. Радич, В. Рогозич, 2014

УДК [616.1+616.61]-08.857.061.2

Д. Дупланчич1, М. Цезарич2, Н. К. Поляк3, М. Радман4, В. Ковачич5, Ж. Радич5, В. Рогозич6

ВО ВВЕДЕНИЕ

Витамин D играет важную роль в физиологических процессах и, прежде всего, вовлечен в гомеостаз кальция и фосфора, и метаболизм костной ткани [1]. Активная форма витамина D, или 1α,25-дигидроксивитамин D3 (кальцитриол), связывается со своим рецептором витамина D (ВДР), разновидностью ядерных рецепторов и активирует ВДР для взаимодействия с ретиноидным X-рецептором (РXР) для образования ВДР /РXР/ кофакторного комплекса, который связывается с витамин D-чувствительными элементами в промоторной области генов-мишеней.

В связи с повсеместным распространением ВДР в организме человека (включая кишечник, почки, кости, паращитовидные железы, клетки иммунной системы, гладкие мышцы и миокард), его активация оказывает плейотропные эффекты на сердечно-сосудистую систему, вовлечен в процессы системного воспаления, оксидативного стресса и иммунной регуляции [3]. Витамин D оказывает также множественные эффекты на иммунную систему, в том числе противовоспалительный эффект [4].

Во многих эпидемиологических исследованиях недостаточность витамина D была определена как фактор риска для заболеваний, традиционно не ассоциированных с метаболизмом витамина D и

Vedran Kovacic Department of Nephrology, University Hospital Split and School of Medicine in Split, Soltanska 1, 21000 Split, Croatia. Tel: +385 2155 7203, E-mail: vedkovac@inet.hr
минеральным обменом, таких как рак, сердечно-сосудистые заболевания, гипертония и сахарный диабет [5]. В мета-анализе обсервационных исследований самая высокая концентрация 25(OH) витамина D в сыворотке была ассоциирована с уменьшением кардиометаболических расстройств в 43% по сравнению с более низкими концентрациями. Согласно выводам мета-анализа, более высокие уровни витамина D в популяции людей среднего и пожилого возраста ассоциировались с существенным снижением сердечно-сосудистых заболеваний, сахарного диабета типа 2, и метаболического синдрома [6].
Также отмечена ассоциация концентрации 25(OH) витамина D с уровнем артериального давления, где каждое последующее увеличение концентрации 25(OH) витамина D на 10 нмоль/л коррелировало с уменьшением систолического артериального давления примерно на 0,2 мм рт. ст. [7]. Есть данные об обратной зависимости между уровнем витамина D и висцеральным ожирением [8].

Механизмы воздействия витамина D на сердечно-сосудистую систему.
Механизмы наблюдаемых взаимосвязей остаются неясными. Одним из предполагаемых механизмов является более высокая распространенность факторов риска атеросклероза при состояниях, ассоциированных с недостаточностью витамина D, таких как сахарный диабет и артериальная гипертензия. К тому же, могут иметь значение некоторые прямые эффекты витамина D на сердечно-сосудистую систему. У нокаутных по ВДР мышей обнаруживают гипертрофию и фиброз миокарда, а также увеличение массы сердца [16]. Будет также показан защитный эффект агонистов ВДР в отношении гипертрофии миокарда и сердечного фиброза, возможно за счет уменьшения оксидативного стресса [17]. В некоторых экспериментальных моделях терапия витамином D также уменьшает повреждение, вызванное оксидативным стрессом [18]. Витамин D in vitro уменьшает образование интерлейкина-6 (IL-6) и активность NF-κB, а также предотвращает ингибицию продукции эндотелиальной NO-сигнализации конечными продуктами гликозилирования [18].

Интервенционные исследования влияния заместительной терапии витамином D на сердечно-сосудистую систему.
Несмотря на обсервационные и эпидемиологические данные, из результатов интервенционных исследований не вполне ясно, как витамин D влияет на сердечно-сосудистый риск. В исследовании «Инициатива по охране здоровья женщин» («Women’s Health Initiative») [19] не выявлено эффекта комбинации кальция с низкими дозами (10 мкг/день) витамина D на коронарный или церебро-васкулярный риск у 36282 женщин в постменопаузе в течение 7 лет наблюдения [19]. В исследовании Zittermann и соавт. [20] у субъектов с избыточной массой тела с выраженным дефицитом витамина D (<30 нмоль/л) после получения витамина D в суточной дозе 83 мкг в течение 1 года наблюдалось значительное улучшение показателей, являющихся маркерами риска (триглицеридов и фактора некроза опухоли-α). Не так давно Elamin и соавт. [21] провели систематический обзор и мета-анализ для подтверждения влияния витамина D на факторы риска сердечно-сосудистых событий. Авторы обобщили данные рандомизированных исследований применения витамина D (в интервенционной режиме), однако не смогли продемонстрировать существенное влияние витамина D на частоту смерти, инсульт, инфаркта миокарда, на липидные фракции, артериальное давление или на уровень глюкозы в крови. Необходимо отметить, что анализировались результаты рандомизированных исследований, в которые включались участники без тяжелого дефицита витамина D. В то же время, в предыдущем мета-анализе [22] рандомизированных контролируемых исследований было показано, что прием витамина D ассоциируется с уменьшением общей смертности.
Витамин D и хроническая болезнь почек.
Кросс-секционные исследования показали обратную зависимость между уровнем витамина D и сердечно-сосудистыми заболеваниями как в общей популяции [23], так и среди больных с ХБП [24]. Кроме того, существует более высокая распространенность дефицита витамина D в популяции ХБП [25]. При почечной недостаточности наблюдается нарушение минерального гомеостаза с изменением концентрации фосфора, кальция, ПТГ, 25-гидроксивитамина D, 1,25-дигидроксивитамина D и фактора роста фибробластов-23. Почки не в состоянии выделять фосфор, что приводит к гиперфосфатемии и затем к повышению ПТГ и снижению в сыворотке крови уровня 1,25-дигидроксивитамина D [26]. Эти расстройства называются костно-минеральными нарушениями при хронической болезни почек (МКН ХБП) и являются сложным клиническим синдромом, включающим нарушения минерального обмена, патологию костей и изменения сердечно-сосудистой системы (кальцификация сосудов и клапанов сердца) [27].

Более низкие уровни 1,25 (ОН) 2 витамина D также ассоциируются с усилением коронарного кальциноза [28], предполагая независимую от уровня ПТГ связь между уровнем витамина D и выживаемостью.

Teng и соавт. [29] в ретроспективном когортном исследовании, проведенном у 51,037 пациентов на хроническом гемодиализе, показали, что группа пациентов, получавших витамин D, имела статистически значимо лучшую двулетнюю выживаемость по сравнению с пациентами, не получавшими витамин D.

Селективная активация рецептора витамина D.
Из-за нарушения у пациентов с ХБП процесса 1-альфа гидроксилирования в почках для лечения вторичного гиперпаратиреоза традиционно используется 1,25-дигидроксирозерокальциферол (кальцитриол) [30]. Вторичный гиперпаратиреоз является основным клиническим признаком МКН ХБП и характеризуется аномально повышенной концентрацией в сыворотке крови ПТГ и изменением сывороточной концентрации кальция, фосфора и витамина D. Это может приводить к ряду клинических осложнений, таких как переломы костей и кальцификация сосудов. Сосудистая кальцификация и следующее за ней увеличение жесткости артерий может приводить к повышению пульсового давления, гипертрофии левого желудочка [31], аритмии и, в конце концов, к смерти. Действительно, кальцификация артерий коррелирует с сердечно-сосудистой смертностью, гипертрофии левого желудочка и наличием ишемической болезни сердца [32]. Атеросклеротическое поражение сосудов и сердца является наиболее распространенной причиной смерти в популяции диализных больных [33]. Смертность от сердечно-сосудистых заболеваний у пациентов с терминальной стадией почечной недостаточности колеблется между 40 и 50% [34, 35].

Витамин D часто назначают пациентам с ХБП для уменьшения степени поражения костей и нарушений минерального обмена, хотя это лечение имеет ограничения, связанные с повышением уровня кальция и фосфора в сыворотке крови. Основное действие витамина D при лечении МКН ХБП состоит в подавлении повышенной продукции ПТГ в главных клетках паращитовидных желез и в контроле вторичного гиперпаратиреоза. Витамина D может снизить уровень ПТГ и предотвратить поражение костей. Синтетический 1,25-дигидроксивитамин D (кальцитриол) более избирательно связывается с ВДР по сравнению с витамином D или 25-гидроксивитамином D. У больных с ХБП кальцитриол эффективно подавляет продукцию ПТГ и улучшает гистологические изменения костей [36]. Терапевтическое использование кальцитриола в основном направлено на повышение всасывания кальция в кишечнике с целью защиты костей от остеомаляции и на контроль функции паращитовидных желез.

Поскольку витамин D может способствовать повышению уровня кальция и фосфора в сыворотке крови, необходимо учитывать возможные побочные эффекты препарата витамина D. Показано, что гиперфосфатемия и гиперкальциемия способствуют кальцификации сосудистой стенки, миокарда и сердечных клапанов. Нежелательные эффекты витамина D, такие как увеличение кальция и фосфата, могут способствовать развитию кальцификации сосудов. Кальцификация сосудов и меди артериол является основным патофизиологическим аспектом сердечно-сосудистых заболеваний в популяции пациентов с ХБП. Кальцификация сосудов в настоящее время рассматривается как активно регулируемый процесс, аналогичный процессу формирования кости, сопровождающийся изменением фенотипа гладкомышечных клеток сосудов с образованием остеобласто-подобных клеток, которые продуцируют протеины, регулирующие процесс кальцификации [37]. Вас и соавт. [38] показали, что высокие дозы кальцитриола, вводимые крысам с уремией, приводили к кальцификации артерий; эти изменения подвергались частичному регрессу через несколько недель после отмены кальцитриола. Этот процесс кальцификации сосудов коррелировал не только с уровнем
витамина D. В действительности, у животных избыток витамина D не вызывает кальцификации, при условии контроля за уровнем фосфата сыворотки крови, и, по всей видимости, именно фосфор играет ключевую роль в прогрессировании сосудистой кальцификации при назначении витамина D [39]. Предполагается, что современные аналоги витамина D должны в меньшей степени влиять на содержание кальция крови, чем кальцитриол [40].

К настоящему времени для лечения вторичного гиперпаратиреоза разработано несколько новых аналогов витамина D со сниженным риском гиперкальциемии и гиперфосфатемии. Третье поколение аналогов витамина D включает в себя группу соединений на основе 1- и 25-гидроксилированного витамина D2 или парикальцитол, с меньшим гиперкальциемическим и гиперфосфатемическим эффектами по сравнению с кальцитриолом [41]. Аналоги витамина D воздействуют на ядерные ВДР иначе, чем кальцитриол, и реализуют своё действие через иные чувствительные элементы в структуре генов-мишеней. В экспериментальных работах продемонстрировано, что при схожих сывороточных концентрациях кальция и фосфата парикальцитол вызывает менее выраженную кальцификацию сосудов по сравнению с кальцитриолом, что предполагает иной его эффект на клеточном уровне [42]. Такие новые аналоги витамина D заслуживают особого внимания в области лечения остеопороза, а также в предотвращении кальцификации сосудов, связанной с сердечно-сосудистыми заболеваниями.

Парикальцитол и кардиоренальная защита. Парикальцитол относится к третьему поколению аналогов витамина D и является селективным активатором ВДР, используемым при лечении вторичного гиперпаратиреоза [44]. По сравнению с кальцитриолом парикальцитол снижает уровень ПТГ на 10-25% и оказывает положительное влияние на клиническое течение гиперпаратиреоза [45]. У крыс с уремией, получавших диету с высоким содержанием фосфата, кальцитриол повышал всасывание кальция в кишечнике вследствие того, что кальцитриол способствует экспрессии кальцининии, в то время как парикальцитол такого эффекта не имеет [47]. Кроме того, имеются данные о более низкой степени абсорбции кальция и фосфора у больных, получающих парикальцитол, по сравнению с кальцитриолом [48, 49].

Парикальцитол также непосредственно влияет на процесс сосудистой кальцификации при ХБП. Было показано, что активация ВДР тормозит кальцификацию сосудов, являющуюся основной чертой поражения сердечно-сосудистой системы при ХБП, либо посредством подавления индукторов кальцификации, таких как коллаген I типа, костный силикон, интерлейкин-1β и фактор некроза опухоли-α, либо через активацию супрессоров кальцификации, такие как матриксный Gla-белок, остеопонтин и остеокальцин [50]. Ли и соавт. [51] продемонстрировали прямую защиту от кальцификации сосудов посредством парикальцитола, устанавливая, что парикальцитол может воздействовать на белки, участвующие во всех этапах развития кальцификации сосудов, включая стимуляцию транскрипции ренина, антипролиферативные и антифибротические эффекты [52]. Существуют данные в пользу возможной роли селективной активации ВДР в предотвращении развития атеросклероза в условиях ХБП. Активация ВДР также оказывает влияние на сердечно-сосудистую систему, подавляя активацию ренин-ангиотензин-альдостероновой системы. Существует свидетельство обратной зависимости между уровнем витамина
Исследование, в котором протестировали эффект склерозом [62]. Kong и соавт. [63] провели интересное исследование уровня маркеров воспалительного и оксидативного повреждения аорты у мышей с атеросклерозом. Сочетание парикальцитола с эналаприлом вызывало дополнительное протективное действие при этом эффекте [61]. Сочетание парикальцитола с эналаприлом оказалось дополнительное протективное действие при исследовании уровня маркеров воспалительного и оксидативного повреждения аорты у мышей с атеросклерозом [62]. Kong и соавт. [63] провели интересное исследование, в котором протестировали эффект парикальцитола, доксеркальциферола, комбинации лозартана и парикальцитола и комбинации лозартана и доксеркальциферола на развитие гипертрофии левого желудочка у крыс со спонтанной гипертензией. Данные эхокардиографии показали снижение толщины стенки левого желудочка на 65–80% в группе монотерапии лозартаном, парикальцитолом или доксеркальциферолом и почти полное предотвращение гипертрофии левого желудочка в группах с комбинированной терапией. Экспрессия ренина в почках и сердце была значительно повышена у животных, получавших лозартан, и практически нормализовалась при комбинированной терапии. Эти данные показывают, что аналоги витамина D обладают выраженным антигипертрофическим свойством, частично за счет подавления ренина в почках и сердце. Парикальцитол также замедляет прогрессирование гипертрофии левого желудочка, развитие миокардиальной и периваскулярной фиброза и повышение плотности артериальных сосудов миокарда у крыс с уремией путем активации ВДР [64]. Fraga и соавт. [65] продемонстрировали, что парикальцитол предотвращает снижение экспрессии ВДР в миокарде. Поскольку ВДР экспрессированы в кардиомиоцитах, эффект парикальцитола может иметь клиническое значение при уремической кардиомиопатии, являющейся частым осложнением у пациентов с ХБП и характеризующейся кардиальным фиброзом, гипертрофиею миокарда и диастолической дисфункцией. Wu-Wong и соавт. [66] показали, что в модели гентамицин-индуцированного повреждения почек у крыс парикальцитол предотвращает снижение экспрессии фактора некроза опухоли α, интерлейкина-1β, NF-кВ, фосфорилированных в экспериментальной модели контрастной нефропатии на крысах активация ВДР парикальцитолом улучшала эндотелиальную функцию, оцениваемую по эндотелий-зависимой вазорелаксации, при чем этот эффект был не связан с подавлением ПТГ. Поскольку сосудистая кальцификация тесно связана с сердечно-сосудистой заболеваемостью у больных с ХБП, представляют интерес возможные эффекты витамина D на уровень кальция и фосфора, а следовательно, на процесс кальцификации сосудов. Mizobuchi и соавт. [67] показали, что парикальцитол, в отличие от кальцитриола и доксеркальциферола, не оказывает влияния на содержание в сыворотке фосфатов и кальция, а следовательно, на процесс кальцификации сосудов. Изменения в экспрессии гена донорского эндотелиального фактора роста (VEGF) в модели хронической почечной недостаточности у крыс [54]. В модели гентамицин-индуцированного повреждения почек у крыс парикальцитол предотвращал повышение экспрессии воспалительных цитокинов (фактор некроза опухоли α, интерлейкин-1β, γ-интерферон), NF-кВ, фосфорилированной в неклеточно регулируемой киназе 1/2 (ERK1/2) и молекул адгезии (MCP-1, ICAM-1, VCAM-1), что привело к обратному развитию TGF-β1-индуцированного миокардиального и периваскулярного фиброза. Эти данные показывают, что аналоги витамина D обладают выраженными противовоспалительными свойствами, частично за счет подавления ренина в почках и сердце. Парикальцитол также замедляет прогрессирование гипертрофии левого желудочка, развитие миокардиальной и периваскулярной фиброза и повышение плотности артериальных сосудов миокарда у крыс с уремией путем активации ВДР [64]. Fraga и соавт. [65] продемонстрировали, что парикальцитол предотвращает снижение экспрессии ВДР в миокарде. Поскольку ВДР экспрессированы в кардиомиоцитах, эффект парикальцитола может иметь клиническое значение при уремической кардиомиопатии, являющейся частым осложнением у пациентов с ХБП и характеризующейся кардиальным фиброзом, гипертрофиею миокарда и диастолической дисфункцией. Wu-Wong и соавт. [66] показали, что в модели гентамицин-индуцированного повреждения почек у крыс парикальцитол предотвращает снижение экспрессии фактора некроза опухоли α, интерлейкина-1β, NF-кВ, фосфорилированных в экспериментальной модели контрастной нефропатии на крысах активация ВДР парикальцитолом улучшала эндотелиальную функцию, оцениваемую по эндотелий-зависимой вазорелаксации, при чем этот эффект был не связан с подавлением ПТГ. Поскольку сосудистая кальцификация тесно связана с сердечно-сосудистой заболеваемостью у больных с ХБП, представляют интерес возможные эффекты витамина D на уровень кальция и фосфора, а следовательно, на процесс кальцификации сосудов. Mizobuchi и соавт. [67] показали, что парикальцитол, в отличие от кальцитриола и доксеркальциферола, не оказывает влияния на содержание в сыворотке фосфатов и кальция, а следовательно, на процесс кальцификации сосудов. Изменения в экспрессии гена донорского эндотелиального фактора роста (VEGF) в модели хронической почечной недостаточности у крыс [54]. В модели гентамицин-индуцированного повреждения почек у крыс парикальцитол предотвращал повышение экспрессии воспалительных цитокинов (фактор некроза опухоли α, интерлейкин-1β, γ-интерферон), NF-кВ, фосфорилированной в неклеточно регулируемой киназе 1/2 (ERK1/2) и молекул адгезии (MCP-1, ICAM-1, VCAM-1), что привело к обратному развитию TGF-β1-индуцированного миокардиального и периваскулярного фиброза. Эти данные показывают, что аналоги витамина D обладают выраженными противовоспалительными свойствами, частично за счет подавления ренина в почках и сердце. Парикальцитол также замедляет прогрессирование гипертрофии левого желудочка, развитие миокардиальной и периваскулярной фиброза и повышение плотности артериальных сосудов миокарда у крыс с уремией путем активации ВДР [64]. Fraga и соавт. [65] продемонстрировали, что парикальцитол предотвращает снижение экспрессии ВДР в миокарде. Поскольку ВДР экспрессированы в кардиомиоцитах, эффект парикальцитола может иметь клиническое значение при уремической кардиомиопатии, являющейся частым осложнением у пациентов с ХБП и характеризующейся кардиальным фиброзом, гипертрофиею миокарда и диастолической дисфункцией. Wu-Wong и соавт. [66] показали, что в модели гентамицин-индуцированного повреждения почек у крыс парикальцитол предотвращает снижение экспрессии фактора некроза опухоли α, интерлейкина-1β, NF-кВ, фосфорилированных в экспериментальной модели контрастной нефропатии на крысах активация ВДР парикальцитолом улучшала эндотелиальную функцию, оцениваемую по эндотелий-зависимой вазорелаксации, при чем этот эффект был не связан с подавлением ПТГ. Поскольку сосудистая кальцификация тесно связана с сердечно-сосудистой заболеваемостью у больных с ХБП, представляют интерес возможные эффекты витамина D на уровень кальция и фосфора, а следовательно, на процесс кальцификации сосудов. Mizobuchi и соавт. [67] показали, что парикальцитол, в отличие от кальцитриола и доксеркальциферола, не оказывает влияния на содержание в сыворотке фосфатов и кальция, а также на содержание кальция в аорте у крыс с уремией. Более высокие дозы парикальцитола также не давали подобный эффект, при этом снижение уровня доксеркальциферола также не увеличивало фосфорно-кальциевый продукт, но сопровождалось удлинением содержания кальция в аорте. Это предполагает существование независимых, опосредованных парикальцитолом, механизмов защиты от сосудистой кальцификации. Cardus и соавт. [68] оценивали эффекты кальцитриола и...
Парикальцитол на кальцификацию гладкомышечных клеток сосудов в экспериментальной модели терминальной почечной недостаточности и пришли к выводу, что кальцитриол, но не парикальцитол, усиливал кальцификацию гладкомышечных клеток сосудов независимо от уровней кальция и фосфата. Помимо этих экспериментальных данных, обсервационные исследования пациентов, находящихся на гемодиализе, демонстрируют улучшение сердечно-сосудистой и общей выживаемости среди получающих терапию селективными агонистами ВДР. Селективный активатор ВДР парикальцитол ассоциировался с лучшей выживаемостью, чем неселективные ВДР активаторы, в частности, кальцитриол. Действительно, одно обсервационное исследование продемонстрировало лучшую 36-месячную выживаемость пациентов на диализе, получавших парикальцитол, по сравнению с кальцитриолом [69]. Возможным объяснением различий эффектов парикальцитола и кальцитриола на выживаемость является их влияние на минеральный обмен. Кальцитриол, вероятно, вызывает большую абсорбцию кальция и фосфора в желудочно-кишечном тракте, чем парикальцитол, что может быть причиной более значительной сосудистой кальцификации и смертности от сердечно-сосудистых причин у пациентов, получающих кальцитриол. Другое обсервационное исследование 7731 пациента на гемодиализе также продемонстрировало лучшую выживаемость у пациентов, получающих доксеркальциферол и парикальцитол по сравнению с получающими кальцитриол [70]. Недавнее обсервационное исследование [71] также показало, что прием парикальцитола ассоциировался с улучшением двухлетней выживаемости у пациентов, получающих ингибиторы ангиотензинпревращающего фермента или блокаторами рецепторов ангиотензина. Описанный антипротеинурический эффект был более выражен при более высоком потреблении натрия. Этот защитный в отношении почек эффект, по всей видимости, связан с подавлением транскрипции ренина, наряду с антифибротическим и антипролиферативным действием, и, возможно, с более низким уровнем артериального давления в группе парикальцитола. Описанный антипротеинурический эффект коррелировал с приемом парикальцитола и исчезал после его отмены. Поскольку альбуминурия является суррогатной конечной точкой, необходимы дальнейшие клинические исследования для установления возможных эффектов селективной активации ВДР на маркеры жестких конечных точек при ХБП.

Парикальцитол в клинических исследованиях.
Помимо экспериментальных моделей на животных и небольших исследований с участием людей, имеются лишь несколько рандомизированных клинических исследований, которые могли бы прояснить влияние селективной активации ВДР на сердечно-сосудистую систему у пациентов с хронической почечной и/или сердечной недостаточностью. По всей видимости, парикальцитол блокирует ренин-ангиотензин-альдостероновую систему и, возможно, влияет на протеинурию через подавление β-катенинопосредованной транскрипции генов и предотвращение дисфункции подоцитов [72]. В небольшом исследовании диабетической и недиабетической нефропатии парикальцитол уменьшал протеинурию преимущественно у пациентов с диабетической нефропатией [73]. В другом исследовании на примере 220 больных с ХБП продемонстрировано, что снижение протеинурии при лечении парикальцитолом не зависит от одновременного приема каких-либо препаратов с целью блокады ренин-ангиотензин-альдостероновой системы [74].

В рандомизированном клиническом исследовании «ВИТамин D и ОмерА-3» (VITAL) [75] парикальцитол оказал дополнительное действие снижения альбуминурии у пациентов с диабетической нефропатией. Включенные в исследование пациенты (281 человек) получали лечение ингибиторами ангиотензинпревращающего фермента или блокаторами рецепторов ангиотензина. Антипротеинурический эффект был более выражен при более высоком потреблении натрия. Этот защитный в отношении почек эффект, по всей видимости, связан с подавлением транскрипции ренина, наряду с антифибротическим и антипролиферативным действием, и, возможно, с более низким уровнем артериального давления в группе парикальцитола. Описанный антипротеинурический эффект коррелировал с приемом парикальцитола и исчезал после его отмены. Поскольку альбуминурия является суррогатной конечной точкой, необходимы дальнейшие клинические исследования для установления возможных эффектов селективной активации ВДР на маркеры жестких конечных точек при ХБП.

Несмотря на значительное количество данных об ассоциации витамина D со снижением сердечно-сосудистой заболеваемости и смертности, в рандомизированном контролируемом исследовании PRIMO (Paricalcitol Capsule Benefits in Renal Failure-Induced Cardiac Morbidity) [76] у 227 пациентов с ХБП и гипертрофией левого желудочка от легкой до умеренной выраженности и сохранной фракцией выброса не удалось продемонстрировать эффект 48-недельной терапии парикальцитолом на индекс массы левого желудочка или степень диастолической дисфункции по данным допплерографии.

ЗАКЛЮЧЕНИЕ
Противовоспалительные и антиоксидантные свойства парикальцитола могут оказывать влияние на клинические исходы и приводить к улучшению сердечно-сосудистых и воспалительных показателей у пациентов с хронической сердечной недостаточностью, у пациентов с ХБП и пациентов с уремией на заместительной почечной терапии. Влияние се-
лективной активации ВДР на сердечно-сосудистую систему, воспаление и оксидативный стресс до конца не изучено. Хотя в одном исследовании [76] и изучалось влияние парикальцитола на функцию сердца, участниками этого исследования были больные с ХБП, не получавшие заметительной почечной терапии, несмотря на то, что уремическая кардиомиопатия является наиболее распространенным осложнением среди пациентов на гемодиализе.

Будущие исследования следует ориентировать на изучение влияния пероральной или внутрисосудистой терапии парикальцитолом на функцию миокарда, функцию эндотелия (поток-опосредованная дилятация), сосудистую морфологию (образование бляшек и толщина комплекса интима-медиа), а также на маркеры воспаления и оксидативного стресса у пациентов с хронической почечной и сердечной недостаточностью. Парикальцитол должен обеспечить дополнительные кардиопротективный и нефропротективный эффекты со значительной клинической выгодой у пациентов с хронической почечной недостаточностью и хронической сердечной недостаточностью, особенно при сочетанной дисфункции сердца и почек, что является частой клинической ситуацией и на данный момент общепринято как кардиоренальный синдром. Парикальцитол возможно окажет значительный клинический эффект, превосходящий стандартные способы лечения кардиоренального синдрома.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Webb RA. Who, what, where and when – influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol 2006;92:17–25
2. Appuswamy K, Brown AJ, Slupsky E. Vitamin D. Am J Physiol Renal Physiol 2005;289:8–28
3. Grant WB, Holick MF. Benefits and requirements of vitamin D for optimal health: A review. Altern Med Rev 2005;10:94–111
4. Lappe JM, Travers-Gustafson D, Davies KM, et al. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 2007;85:1586–1591
5. Gouni-Berthold I, Berthold HK. Vitamin D and cardiovascular disease. Curr Drug Metab 2005;6:414–422
6. Parker J, Hashmi O, Dutton D, et al. Levels of vitamin D and cardiovascular disease. Curr Vasc Pharmacol 2009;7:414–422
7. Parker J, Hashmi O, Dutton D, et al. Levels of vitamin D and cardiometabolic disorders: systemic review and meta-analysis. Maturitas 2010;65:225–236
8. Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, ethnicity, and blood pressure in the Third National Health and Nutrition Examination Survey. Am J Hypertens 2007;20:713–719
9. Freedman BI, Wagenknecht LE, Hairston KG, et al. Vitamin D, adiposity, and calcified atherosclerotic plaque in African-Americans. J Clin Endocrinol Metab 2010;95:1076–1083
10. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004;80(Suppl 6):S1689–S1696
11. Mitsuhashi T, Morris RC Jr, Ives HE. 1,25-dihydroxyvitamin D3 modulates growth of vascular smooth muscle cells. J Clin Invest 1991;87:1889–1895
12. Michos ED, Melamed ML. Vitamin D and cardiovascular disease risk. Curr Opin Clin Nutr Metab Care 2008;11:7–12
13. Bellows CG, Reimers SM, Heersche JN. Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res 1999;297:249–259
14. Drissi H, Pouliot A, Kooloos C, et al. I.,1,-((OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 2002;274:323–333
15. Aihara K, Azuma H, Akaike M, et al. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J Biol Chem 2004;279:35798–35802
16. Simpson RU, Hershey SH, Nibbelink KA. Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse. J Steroid Biochem Mol Biol 2007;103:521–524
17. Meems LM, van der Harst P, van Gilst WH, de Boer RA. Vitamin D biology in heart failure: molecular mechanisms and systematic review. Curr Drug Targets 2011;12:29–41
18. Talmor Y, Golan E, Bencherit S, et al. Calcitriol blunts the deleterious impact of advanced glycation end products on endothelial cells. Am J Physiol Renal Physiol 2008;294:1059–1064
19. Hsia J, Heiss G, Ren H, et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation 2007;115:846–854
20. Zittermann A, Frisch S, Berthold HK, et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr 2009;89:1321–1327
21. Elamin MB, Abu Elnour NO, Elamin KB, et al. Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab 2011;96:1931–1942
22. Aulker P, Gardini S. Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med 2007;167(16):1730–1737
23. Dobnig H, Pilz S, Scharnagl H, Renner W, et al. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med 2008;168:1340–1349
24. Inaguma D, Nagaya H, Hara K, et al. Relationship between serum 1,25-dihydroxyvitamin D and mortality in patients with predialysis chronic kidney disease. Clin Exp Nephrol 2008;12:126–131
25. Baker LR, Abrams L, Roe CJ, et al. 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int 1989;35:651–669
26. Moe SM, Drieye TB, Block GA, et al. KDIGO clinical practice guidelines for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 2009;113:S1–S130
27. Moe S, Drieye T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69:1945–1953
28. Watson KE, Abrolat ML, Malone LL, et al. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 1997;96:1755–1760
29. Teng M, Wolf M, Ofsthun MN, et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol 2005;16:1115–1125
30. Bianchi ML, Colantonio G, Campanini F, et al. Calcitriol and calcium carbonate therapy in early chronic renal failure. Nephrol Dial Transplant 1994;9:1595–1599
31. Yldiz A, Memisoglu E, Oflaz H, et al. Atherosclerosis and vascular calcification are independent predictors of left ventricular hypertrophy in chronic haemodialysis patients. Nephrol Dial Transplant 2005;20:760–767
32. London GM. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol 2003;9(Suppl 4):S305–S309
33. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 1998;32:5112–5119
34. [No authors listed]. VI. Causes of death in ESRD. Am J Kidney Dis 1999;34(Suppl 2):S87–S94
35. [No authors listed]. V. Patient mortality and survival in ESRD. Am J Kidney Dis 1999;34(2 Suppl 1):S74–S86
36. Goodman WG, Coburn JW. The use of 1,25-dihydroxyvitamin D3 in early renal failure. Annu Rev Med 1992;43:227–237
37. Demer LL, TIntut’V. Vascular calcification: pathobiology of multifaceted disease. *Circulation* 2008;117:2938–2948

38. Bas A, Lopez I, Perez J, Rodriguez M, Aguillera-Tejero E. Reversibility of calcitriol-induced medial arterial calcification in rats with intact renal function. *J Bone Miner Res* 2006;21:484–490

39. NW, SP, JR, Liu S, Tang W, et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. *J Am Soc Nephrol* 2007;18:2116–2124

40. Cuzzolino M, Brancaccio D, Gallieni M, Slapolsky E. Pathogenesis of vascular calcification in chronic kidney disease. *Kidney Int* 2005;68:429–436

41. Brown AJ, Finch J, Takahashi F, Slapolsky E. Calcemic activity of 19-Nor-1,25(OH)(2)D2(2) decreases with duration of treatment. *J Am Soc Nephrol* 2000;11:2088–2094

42. Mizobuchi M, Ogata H, Kiowa F, Kinugasa E, Akizawa T. Vitamin D and vascular calcification in chronic kidney disease. *Bone* 2009;45 Suppl 1:S26–S29

43. Andress D. Nonclassical aspects of differential vitamin D receptor activation: implications for survival in patients with chronic kidney disease. *Drugs* 2007;67:1999–2012

44. Cheng J, Zhang W, Zhang X, Li X, Chen J. Efficacy and safety of paricalcitol for chronic kidney disease: a meta-analysis. *Kidney Int* 2002;63:1483–1490

45. Sprague SM, Llach F, Amdahl M, Taccetta C, Battile D. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. *Kidney Int* 2003;63:1483–1490

46. Brown JA, Finch J, Slapolsky E. Differential effects of 19-nor-1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 on intestinal calcium and phosphate transport. *J Lab Clin Med* 2002;139:279–284

47. Nakane M, Ma J, Rose AE, et al. Differential effects of vitamin D analogs on calcium transport. *J Steroid Biochem Mol Biol* 2007;103:84–89

48. Sprague SM, Lerma E, McCormick D, et al. Suppression of parathyroid hormone secretion in hemodialysis patients: comparison of paricalcitol with calcitriol. *Am J Kidney Dis* 2001;38:S51–S56

49. Takahashi F, Finch JL, Denda M, Dusso AS, Brown AJ, Slapolsky E. A new analog of 1,25-(OH)(2)D3, 19-NOR-1,25-(OH)2D2, suppresses serum PTH and parathyroid gland growth in uremic rats without elevation of intestinal vitamin D receptor content. *Am J Kidney Dis* 1997;30:105–112

50. Rodriguez M, Martinez-Moreno JM, Rodriguez-Ortiz ME, Muñoz-Castañeda JR, Almaden Y. Vitamin D and vascular calcification in chronic kidney disease. *Kidney Blood Press Res* 2011;34:261–268

51. Li X, Speer MF, Yang H, Bergen J, Giachelli CM. Vitamin D receptor activators induce an anticalcific paracrine program in macrophages: requirement of osteopontin. *Arterioscler Thromb Vasc Biol* 2010;30:321–326

52. Sanchez-Nito MD, Bozic M, Córdoba-Lanus E, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. *Am J Physiol Renal Physiol* 2012;302:647–657

53. Resnick LM, Muller FB, Laragh JH. Calcium-regulating hormones in essential hypertension. Relation to plasma renin activity and sodium metabolism. *Ann Intern Med* 1986;105:649–654

54. Freundlich M, Quirko Y, Zhang Z, et al. Suppression of renin-angiotensin gene expression in the kidney by paricalcitol. *Kidney Int* 2008;74:1394–1402

55. Park JW, Bae EH, Kim IJ, et al. Renoprotective effects of paricalcitol on gentamicin-induced kidney injury in rats. *Am J Physiol Renal Physiol* 2010;298:S301–S313

56. Sochorová K, Budinský V, Rozkůvá D, et al. Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. *Clin Immunol* 2009;133:69–77

57. Ari E, Kedrah AE, Alahdab Y, et al. Antioxidant and renoprotective effects of paricalcitol on experimental contrast-induced nephropathy model. *Br J Radiol* 2012;85:1038–1043

58. Meems LM, Cannon MV, Mahmud H, et al. The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload. *J Steroid Biochem Mol Biol* 2012;132:282–289

59. Husain K, Ferder L, Mizobuchi M, Finch J, Slapolsky E. Combination therapy with paricalcitol and enalapril ameliorates cardiac oxidative injury in uremic rats. *Am J Nephrol* 2009;29:465–472

60. Park JW, Cho JW, Joo SY, et al. Paricalcitol prevents cisplatin-induced renal injury by suppressing apoptosis and proliferation. *Eur J Pharmacol* 2012;683:301–309

61. Mizobuchi M, Morigessy J, Finch JL, et al. Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats. *J Am Soc Nephrol* 2007;18:1796–1806

62. Husain K, Suarez E, Isidro A, Ferder L. Effects of paricalcitol and enalapril on atherosclerotic injury in mouse aortas. *Am J Nephrol* 2010;32:296–304

63. Kong J, Kim GH, Wei M, et al. Therapeutic effects of vitamin D analogs on cardiac hypertrophy in spontaneously hypertensive rats. *Am J Pathol* 2010;177:622–631

64. Mizobuchi M, Nakamura H, Tokumoto M, et al. Myocardial effects of VDR activators in renal failure. *J Steroid Biochem Mol Biol* 2010;121:188–192

65. Fraga C, Blanco M, Vigo E, et al. Autogenesis of the vitamin D receptor in the rat heart. *Histochem Cell Biol* 2002;117:547–550

66. Wu-Weng JR, Noonan W, Nakane M, et al. Vitamin D receptor activation mitigates the impact of uremia on endothelial function in the 5/6 nephrectomized rats. *Int J Endocrinol* 10 February 2010

67. Mizobuchi M, Finch JL, Martin DR, Slapolsky E. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. *Kidney Int* 2007;72:709–715

68. Cardús A, Panizo S, Parisi E, Fernandez E, Valdivielso JM. Differential effects of vitamin D analogs on vascular calcification. *J Bone Miner Res* 2007;22:860–866

69. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. *Engl J Med* 2003;349:446–456

70. Tenfori F, Hunt WC, Stidley CA, et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. *Kidney Int* 2006;70:1858–1865

71. Cuzzolino M, Brancaccio D, Cannella G, et al. VDRA therapy is associated with improved survival in dialysis patients with serum intact PTH < = 150 pg/mL: results of the Italian FARO Survey. *J Am Soc Nephrol* 2012;23:3524–3531

72. He W, Kang YS, Dai C, Liu Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. *Am J Nephrol* 2011;22:90–103

73. Aperis G, Paliouras C, Zeros A, Arvanitis A, Alivanis P. The role of paricalcitol on proteinuria. *J Ren Care* 2011;37:80–84

74. Agarwal D, Acharya M, Tian J, et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. *Kidney Int* 2005;68:2823–2828

75. de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. *Lancet* 2010;376:1543–1551

76. Thadhani R, Appelbaum E, Pritchett Y. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. *JAMA* 2012;307:674–684

Статья переведена на русский язык и публикуется из журнала Clinical Interventions in Aging 2013;8: 149–156 doi: 10.2147/CI A.S33494 с разрешения авторов и согласно условиям льненскогого соглашения «Creative Commons attribution-noncommerical license».

Перевод: Лепкин К.В.
Редакция перевода: Трофименко И.И.

Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию: 04.01.2014 г.
Принята в печать: 25.03.2014 г.