Supplement of

Characteristics of VOCs and their potentials for O₃ and SOA formation in a medium-sized city in eastern China

Peilin Chen¹, Xinye Zhao¹, Ou Wang¹, Min Shao², Xinxin Xiao¹, Shanshan Wang¹, Qin’geng Wang¹,³*

¹State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
²School of Environment, Nanjing Normal University, Nanjing 210046, China
³Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China

*Corresponding author. E-mail address: wangqg@nju.edu.cn (Qin’geng Wang)
Table S1. Species of VOCs measured in this study

Categories (a)	Species
Alkanes (29 species)	Ethane; Propane; N-butane; Isobutane; N-pentane; 1-Pentene; N-octane; N-
	nonane; N-decane; N-undecane; N-dodecane; Isopentane; Cyclopentane; N-
	hexane; Cyclohexane; Heptane; 2-Methylheptane; Methylcyclohexane; 3-
	Methylheptane; 2-Methylhexane; 3-Methylhexane; 2,2-Dimethylbutane; 2,3-
	Dimethylbutane; 2-Methyl pentane; 3-Methyl pentane; 2,3-Dimethylpentane;
	2,2,4-Trimethylpentane; 2,3,4-Trimethylpentane; 2,4-Dimethylpentane
Alkenes (12 species)	Ethylene; Propylene; 1-Butene; Cis-2-butene; Trans-2-butene; 1,3-Butadiene;
	Methylcyclopentane; Cis-2-pentene; Trans-2-pentene; Isoprene; 1-Hexene;
	Acetylene
Aromatic hydrocarbons (17 species)	Benzene; Toluene; O-xylene; M/p-xylene; N-propylbenzene; Cumene;
	Styrene; Naphthalene; Ethylbenzene; 2-Ethyltoluene; 3-Ethyltoluene; 4-
	Ethyltoluene; 1,3-Diethylbenzene; 1,4-Diethylbenzene; 1,2,3-
	Trimethylbenzene; 1,2,4-Trimethylbenzene; 1,3,5-Trimethylbenzene
Halohydrocarbons (35 species)	Freon 11; Freon 12; Freon 113; Freon 114; Methyl bromide;
	Dichloromethane; Chlorobenzene; Tetrachloroethylene; Trichloroethylene;
	Benzyl chloride; Chloroform; Chloroethane; Bromoform; Methyl chloride;
	1,2-Dichloroethane; 1,2-Dibromoethane; 1,1-Dichloroethane; Vinyl chloride;
	1,2-Dichloropropane; Dichlorodibromomethane; 1,1,1-Trichloroethane;
	1,1,2,2-Tetrachloroethane; Dichlorobromomethane; 1,2,4-Trichlorobenzene;
	1,4-Dichlorobenzene; 1,3-Dichlorobenzene; 1,1-Dichloroethylene; Cis-1,2-
	dichloroethylene; Trans-1,2-dichloroethylene; O-dichlorobenzene; 1,1,2-
	Trichloroethane; Trans-1,3-dichloro-1-propene; Cis-1,3-dichloropropene;
	Carbon tetrachloride; Hexachloro-1,3-butadiene
OVOCs (13 species)	Ethanol; Acrolein; Acetone; Isopropanol; 1,4-Dioxane; Ethyl acetate;
	Vinyl acetate; 2-Butanone; Tetrahydrofuran; 4-Methyl-2-pentanone; Methyl tert
	butyl ether; Methyl methacrylate; Methyl n-butyl ketone

Notes: (a) the automatic measurements include all the 106 species of VOCs, and the manual measurements include the 56 PAMS species of NMHCs (alkanes, alkenes and aromatic hydrocarbons); (b) acetylene was included here.
Table S2. Top ten species of the NMHCs-56 along with their concentrations (Conc, ppbv) and proportions (Prop, %) at the three sites based on manual measurements.

Rank	HMS	Species	Conc/Prop	CMS	Species	Conc/Prop	HNU	Species	Conc/Prop
		Species	Conc/Prop		Species	Conc/Prop		Species	Conc/Prop
1		Propane	2.89 / 19.38		Propane	6.17 / 27.60		Propane	3.16 / 13.09
2		Ethane	2.23 / 14.96		Ethane	2.46 / 11.02		Toluene	2.70 / 11.18
3		Acetylene	1.53 / 10.26		Toluene	2.24 / 10.04		Ethane	2.63 / 10.89
4		N-butane	1.31 / 8.76		Ethylene	1.86 / 8.32		M/p-xylene	2.25 / 9.32
5		Isobutane	1.28 / 8.56		Isobutane	1.60 / 7.16		Isobutane	1.99 / 8.27
6		Ethylene	1.05 / 7.04		Acetylene	1.43 / 6.38		Ethylene	1.99 / 8.25
7		N-hexane	1.01 / 6.80		N-butane	1.06 / 4.74		Acetylene	1.85 / 7.66
8		Toluene	0.82 / 5.51		M/p-xylene	1.05 / 4.68		1-Butene	1.38 / 5.70
9		M/p-xylene	0.50 / 3.32		N-hexane	0.72 / 3.21		N-hexane	1.06 / 4.41
10		Benzene	0.36 / 2.41		1-Butene	0.66 / 2.94		N-butane	1.01 / 4.21
SUM		--	12.97 / 87.00		--	19.25 / 86.08		--	20.01 / 82.98
Fig. S1. Comparison on total concentration of the NHMCs between manual and automatic measurements with standard deviations.
Fig. S2. Factor profiles obtained by the PMF model at the three sites of (a) HMS, (b) CMS, and (c) HNU.

Notes:

(1) Vehicle emission refers to the emissions of motor vehicles fueled by diesel, gasoline, and LPG, which mainly emit alkanes with carbon atom number less than 6, such as ethane, propane, ethylene, and isopentane, as well as some aromatics and alkenes (Liu et al., 2016; Marinello et al., 2020).
(2) Solvent usage usually refers to solvent application in printing, spraying and industrial process, which mainly emit aromatic hydrocarbons, such as toluene, xylene, ethylbenzene, styrene, trimethylbenzene, n-propyl benzene, and ethyltoluene (He et al., 2019; Song et al., 2019).

(3) Industrial process includes many kinds of industrial activities such as oil refining, chemical manufacturing, and food manufacturing. The emissions usually include a variety of alkanes, alkenes, and aromatics (Wei et al., 2018; Hui et al., 2020).

(4) Gas evaporation refers to the volatilization and leakage of diesel, gasoline, and LPG during storage and transportation, which mainly emits isopentane, n-pentane, ethane and propane (Liu et al., 2016; Ma et al., 2019).

(5) Biomass burning refers to straw and firewood combustion, and the main VOC species of emissions include methyl chloride, acetonitrile, ethylene, and propylene (Yang et al., 2021).

(6) Fossil fuel combustion refers to the combustion of fossil fuels such as coal and natural gas, and its typical species of VOCs are mainly acetylene and a small amount of alkanes and aromatics (Zhou et al., 2019; Sha et al., 2021).

(7) Biogenic emission refers to emissions of plants, and the typical species of VOCs are isoprene and terpenes (Sha et al., 2021).
Fig. S3. Monthly OFPs and proportions (marked on the bars) of different VOC categories at the three sites.

REFERENCES

He, Z.R., Wang, X.M., Ling, Z.H., Zhao, J., Guo, H., Shao, M., Wang, Z. (2019). Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmospheric Chemistry and Physics 19, 8801-8816. https://doi.org/10.5194/acp-19-8801-2019

Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., Zhang, Y., Deng, Y., Zhai, R., Wang, Z. (2020). VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmospheric Environment 224.
Liu, B.S., Liang, D.N., Yang, J.M., Dai, Q.L., Bi, X.H., Feng, Y.C., Yuan, J., Xiao, Z.M., Zhang, Y.F., Xu, H. (2016). Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environmental Pollution 218, 757-769. https://doi.org/10.1016/j.envpol.2016.07.072

Ma, Z., Liu, C., Zhang, C., Liu, P., Ye, C., Xue, C., Zhao, D., Sun, J., Du, Y., Chai, F., Mu, Y. (2019). The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China. Journal of Environmental Sciences 79, 121-134. https://doi.org/10.1016/j.jes.2018.11.015

Marinello, S., Lolli, F., Gamberini, R. (2020). Roadway tunnels: A critical review of air pollutant concentrations and vehicular emissions. Transportation Research Part D-Transport and Environment 86. https://doi.org/10.1016/j.trd.2020.102478

Sha, Q.e., Zhu, M., Huang, H., Wang, Y., Huang, Z., Zhang, X., Tang, M., Lu, M., Chen, C., Shi, B., Chen, Z., Wu, L., Zhong, Z., Li, C., Xu, Y., Yu, F., Jia, G., Liao, S., Cui, X., Liu, J., Zheng, J. (2021). A newly integrated dataset of volatile organic compounds (VOCs) source profiles and implications for the future development of VOCs profiles in China. Science of the Total Environment 793. https://doi.org/10.1016/j.scitotenv.2021.148348

Song, C., Liu, B., Dai, Q., Li, H., Mao, H. (2019). Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the north China plain. Atmospheric Environment 207, 167-181. https://doi.org/10.1016/j.atmosenv.2019.03.030
Wei, W., Wang, Y., Yang, G., Yue, L., Cheng, S. (2018). Speciated VOCs emission estimate for a typical petrochemical manufacturing plant in China using inverse-dispersion calculation method. Environmental Monitoring and Assessment 190. https://doi.org/10.1007/s10661-018-6834-9

Yang, S., Li, X., Song, M., Liu, Y., Yu, X., Chen, S., Lu, S., Wang, W., Yang, Y., Zeng, L., Zhang, Y. (2021). Characteristics and sources of volatile organic compounds during pollution episodes and clean periods in the Beijing-Tianjin-Hebei region. Science of the Total Environment 799. https://doi.org/10.1016/j.scitotenv.2021.149491

Zhou, X., Li, Z., Zhang, T., Wang, F., Wang, F., Tao, Y., Zhang, X., Wang, F., Huang, J. (2019). Volatile organic compounds in a typical petrochemical industrialized valley city of northwest China based on high-resolution PTR-MS measurements: Characterization, sources and chemical effects. Science of the Total Environment 671, 883-896. https://doi.org/10.1016/j.scitotenv.2019.03.283