Development of 18F-AmBF$_3$ Tetrazine for Radiolabeling of Peptides: Preclinical Evaluation and PET Imaging of 18F-AmBF$_3$-PEG$_7$-Tyr$_3$-Octreotide in an AR42J Pancreatic Carcinoma Model

Sofia Otaru, Andreas Paulus, Surachat Imlimthan, Iida Kuurme, Helena Virtanen, Heidi Liljenbäck, Tuula Tolvanen, Tatsiana Auchynnikava, Anne Roivainen, Kerttuli Helariutta, Mirkka Sarparanta, and Anu J. Airaksinen*

ABSTRACT: Radiolabeled peptides have emerged as highly specific agents for targeting receptors expressed in tumors for therapeutic and diagnostic purposes. Peptides developed for positron emission tomography (PET) are typically radiolabeled using prosthetic groups or bifunctional chelators for fast “kit-like” incorporation of the radionuclide into the structure. A novel approach using prosthetic groups or bifunctional chelators for fast “kit-like” incorporation of the radionuclide into the structure. A novel approach using mild conditions using bioorthogonal chemistry.

Tetrahydrofuran (THF) and alkaline conditions, 18F-fluoride into a molecule often requires chemoselectively by isotopic exchange (IE) can be applied instead of the canonical nucleophilic substitution. Chemical modification of naturally occurring peptides can serve as an avenue toward biologically more stable peptide derivatives, for example, by extending their biological half-life in vivo.3 Additional functional groups can be included in the peptide structure, enabling chemoselective late-stage bioconjugation reactions.4 Due to the ideal physical half-life and imaging properties of the radioisotope ($t_{1/2} = 109.8$ min, positron range in a tissue maximum of 2.4 mm), 18F-labeled peptides are desirable alternatives for radiometallated analogues used for clinical somatostatin receptor (SSTR) positron emission tomography (PET) imaging, such as Tyr3-octreotide (TATE) and Tyr3-octreotide (TOC) derivatives. 68Ga-DOTA-TATE and 68Ga-DOTA-1-Nal3-octreotide (68Ga, $t_{1/2} = 68$ min, positron range 5.5 mm). However, the direct incorporation of nucleophilic 18F-fluoride into a molecule often requires leaving or protecting groups and generally harsher (e.g., alkaline) conditions, limiting its use on structures sensitive to alkalinity or heat, such as proteins.

Mild incorporation of 18F-fluoride into biomolecules chemoselectively by isotopic exchange (IE) can be applied instead of the canonical nucleophilic substitution. However,
some of the isotopic exchange reactions, such as the conventional silicon-fluoride (Si–F) exchange, require anhydrous conditions, adding a drying step crucial to the success of the radiolabeling.\(^9\) When applying the Si–F isotopic exchange to an SSTR2-targeting TATE derivative, a hydrophilic silicon–fluoride acceptor (SiFA)-derivatized \([^{18}F]F-SiFA\)-lin-TATE is developed, and it has successfully entered clinical trials for neuroendocrine tumor (NET) imaging,\(^10\)–\(^13\) revealing the true potential of isotopic exchange reactions for clinical radiopharmaceutical development.

Liu et al. developed the radiolabeling of an alkylammonio-methyltrifluoroborate (AmBF\(_3\))-based prosthetic group, \([^{18}F]AmBF_3\)-alkyne,\(^14\) utilizing IE radiofluorination that tolerates aqueous conditions, making it well compatible with water-soluble molecules. The method provided \([^{18}F]AmBF_3\)-TATE in one step using IE after click chemistry conjugation of the prosthetic group to the peptide,\(^15\)–\(^16\) and the radiosynthesis of \([^{18}F]AmBF_3\)-TATE was successfully modified into a cassette system, yielding up to 10 patient doses in a single run by Lau et al.\(^17\)

Here, leveraging the aqueous compatibility of the AmBF\(_3\) IE reaction in combination with the unsurpassed kinetics and selectivity of the IEDDA reaction, we report the development of a novel prosthetic group \([^{18}F]AmBF_3\)-tetrazine \((1^{[18]F}]AmBF_3-Tz)\) suitable for the chemoselective radiolabeling oftrans-cyclooctene (TCO)-modified biomolecules. As a model system, we radiolabeled two Tyr\(^3\)-octreotides (TOCs), analogues of somatostatin,\(^25\) in a proof-of-concept study.

Figure 1. (A) Synthesis of TCO-CHO (9). (B) Chemical structures of TCO compounds: TCO-CHO (9), TCO-PEG\(_3\)-CHO (10), TOC-PEG\(_4\)-ONH\(_2\) (11), TCO-PEG\(_4\)-TOC (12), and TCO-PEG\(_7\)-TOC (13).

\(^{18}\)–\(^{22}\) As an alternative modular strategy, Iddon et al. reported the development of 2-\(^{18}\)F-fluoroethyl azide fluorination reagents suitable for radiolabeling \(^{18}\)F-octreotides with reaction times as short as only 5 minutes at room temperature, using copper as a catalyst,\(^23\) a method specifically useful for sensitive biomolecules. However, compared to other click-based methodologies, the exquisite reaction rate, absence of catalyst, and the biocompatibility of the bioorthogonal inverse electron-demand Diels–Alder (IEDDA) reaction have made it the focal point of click chemistry-based development in biomolecule radiolabeling, especially for pretargeted PET imaging.\(^24\)

\(^{18}F\)AmBF\(_3\)-Tz (6); (i) Dichloromethane, Argon, Ambient Temperature, 1.5 h; (ii) Acetonitrile, Argon, Ambient Temperature, Overnight; and (iii) 3 M KHF\(_2\), 4 M HCl, Water, Dimethylformamide (DMF), 30 min at 70 °C.
evaluating the influence of the novel prosthetic group on the pharmacokinetics of the well-known peptide analogues in vivo.

RESULTS AND DISCUSSION

Synthesis of AmBF₃ Tetrazine Precursor (6) for Radiolabeling. The synthesis of the AmBF₃ tetrazine was designed in a stepwise manner to incorporate the boronic acid pinacol ester selectively into the tertiary amine, followed by acid-catalyzed fluorination of the pinacol ester to afford the pinacol ester, and the subsequent fluorination step required anhydrous conditions in the presence of a reducing agent, especially when heated. The tetrazine was readily reduced into "unreactive" dihydrotetrazine in the presence of a reducing agent, especially when heated. The synthesis of the trifluoroborate required anhydrous conditions for the nucleophilic substitution of the haloalkane in the pinacol ester, and the subsequent fluorination step required a corrosive-resistant reaction vessel, careful handling, and good ventilation due to the formation of corrosive and toxic HF (g), even if in small quantities. AmBF₃-Tz (6) was synthesized with an overall yield of ~36% (Scheme 1). The nuclear magnetic resonance (NMR) spectroscopy analysis revealed in the ¹H NMR a characteristic signal at the para-position of the Tz ring at 10 ppm (Supporting Figure S1), and the presence of the Tz ring was verified by high-performance liquid chromatography coupled to a diode-array detector (HPLC-DAD) at 534 nm, by the characteristic absorbance wavelength for Tz (>500 nm) (Supporting Figure S2). ¹⁹F NMR spectra of 6 displayed splitting of the signal due to coupling to the trifluoroborate boron, and the ¹¹B NMR spectra likewise revealed the boron-11 coupling to fluorine-19, detected as a split quartet signal (Supporting Figures S3–S5 for ¹¹B, ¹⁹F and ¹³C NMR).

Compound 6 eluted at tᵣ = 4.59 min, when analyzed by ultrahigh-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS), with a detected molecular ion peak corresponding to the protonated [M + H]⁺ ion (Supporting Figure S6).

Modification of Tyr³-Octreotide-PEG₂-ONH₂ with trans-Cyclooctene and IEDDA Cycloaddition. TCO-CHO (9) was synthesized at 21 ± 5% (n = 3) yield in one step, characterized by NMR and HPLC (Figures 1A and S7–S9 for ¹H and ¹³C NMR and HPLC chromatograms). TCO-aldehydes 9 (synthesized in-house) and 10 (commercially available) were conjugated to TOC (11, custom-synthesized, purchased from CSBio, Menlo Park, CA, USA, Figure 1B). TCO-TCOs 12 and 13 (TCO-modified in-house, purity ≥ 99%) were purified with HPLC (see the Supporting HPLC method A). Compound 13 eluted at tᵣ = 5.22 min as two protonated molecule ions: [M + 3H]³⁺ at 586.61316 m/z with Δ = −2.35545 ppm (calculated 586.61454 m/z for C₈₁H₁₂₃O₂₅N₁₃S₁³⁺) and [M + 2H]²⁺ at 879.41663 m/z with Δ = −1.75922 ppm (calculated 879.41817 m/z for C₈₁H₁₂₃O₂₅N₁₃S₁²⁺) when analyzed with UHPLC-HRMS. Compound 12 eluted at tᵣ = 12.8 min on liquid chromatography mass spectrometry (LC-MS) and was found as a protonated molecule ion corresponding to protonated [M + 2H]²⁺ (found m/z 784.7, calculated m/z 784.4 for C₈₁H₁₂₃O₂₅N₁₃S₁²⁺) when analyzed with UHPLC-HRMS.

Figure 2. Summary of in vitro, ex vivo, and in vivo evaluations of [¹⁸F]6. (A) Radiolabeling conditions and logDₐq of [¹⁸F]6. (B) Quality control (QC) of [¹⁸F]6 (radio-HPLC). (C) Hydrolytic stability of [¹⁸F]6 in 0.01 M phosphate-buffered saline (PBS). (D) Graphic depiction of PET/CT and ex vivo study of [¹⁸F]6. (E) PET/CT image of [¹⁸F]6 in male severe combined immunodeficient (SCID) mouse (left panel) and healthy female C57BL/6J(Rj) mouse (right panel) at 60 min post injection. (F) Ex vivo biodistribution of [¹⁸F]6 after PET/CT imaging (t = 270 min) in SCID (male) and C57BL/6J(Rj) (female) mice. (G.B., gallbladder; S.I., small intestines; L.I., large intestines). The data points present the mean ± standard deviation of the % ID/g values.
for the synthesized compounds are presented in the Supporting Information (Supporting Figures S1−S14).

18F**Fluorination of 6.** Prosthetic group 6 was radio-labeled with a protocol partly based on a methodology developed by Liu et al.14 The radiosynthesis of [18F]6 is presented in Figure 2. Modifications to the [18F]fluoride eluent and radiolabeling buffer were done to alter the conditions more suitable for our prosthetic group and setup, ensuring repeatable radiolabeling yields (20.8 ± 10.3%, n = 7) in microliter volumes. The optimal reaction volume in our conditions was a mere 10−20 μL. Decreasing the volume by 2.5 times increased the yield by 6 times at 85 °C (0.9% NaCl elution, 200 nmol of 6, Supporting Figure S15), and the radiochemical yield (RCY) decreased dramatically if the reaction mixture was evaporated to dryness or when the final volume exceeded 20 μL. However, for elution of reasonable amounts of [18F]fluoride out of the PS-HCO3 (Macherey-Nagel, Düren, Germany) solid-phase extraction (SPE) ion exchange cartridge, a minimum 20−30 μL of 0.9% NaCl was required. Therefore, we chose to substitute the commonly used aqueous 0.9% NaCl as the [18F]fluoride eluent altogether and opted for a pyridazine HCl eluent formulation, similarly as reported by Kwon et al.27 The pyridazine HCl buffer recipe was modified to best serve our setup, as a combination of pyridazine (9 v/v%)−acetonitrile (61 v/v%)−DMF (13 v/v%)−H2O (13 v/v%)−12 M HCl (4 v/v%), and the pH was adjusted to 2. With the modified buffer, the [18F]fluoride release efficiency from the cartridge remained high (93 ± 2%, n = 3), providing a suitable reaction medium for radiolabeling directly after rapid concentration (∼10 min), achieved by
decreasing the evaporation time from 45 min (100 μL of 0.9% NaCl as the eluent) to 10 min (100 μL of the modified pyridazine HCl buffer, pH 2.0) in our setup. The evaporation time was further cut in half by adding more DMF to the buffer (water quantity from ~38 to ~12% v/v), which made the control of the final volume easier, and improved the RCY ([18]F)6; 8–37% DCM), which reached the range of previously published [18]F-AmBf-3,2 (16–35%), 1,14,16,19,22 [18]F6 was obtained with molar activity (A)0 of 6–39.8 GBq/μmol from the concentrated [18]F-fluoride in 15 min at 85 °C. The radiochemical yield (RCY) and radiochemical purity (RCP) for [18]F6 were 20.8 ± 10.3% (n = 7, DCM) and ≥98%, respectively (Figures 2B for radio-HPLC and S16 for radio-TLC). Typically, 0.2–2.1 GBq of [18]F-AmBf-3,2 with molar activity of 15.4 ± 9.2 GBq/μmol was obtained starting with 2–12 GBq of [18]F-fluoride.

Radiolabeling of Tyr3-Octreotide Analogues 14 and 15. Trans-cyclooctene-modified TOCs 12 and 13 were radiolabeled with [18]F6 providing [18]F14 and [18]F15 (Scheme 2 and Figure 3). The total synthesis time was in an average of 85–102 min (Table 1). The radiochemical yields for [18]F14 and [18]F15 starting from the prosthetic group [18]F6 ranged from 8 to 34%. The decay-corrected RCYs of the radiolabeled TOCs, comprising the production of [18]F6 and of the subsequent IEDDA reaction (two steps), starting from [18]F-fluoride, ranged between approximately 2 and 8%, with the radioactivity obtained at 53–130 MBq for [18]F14 and 78–267 MBq for [18]F15, with RCPS of ≥ 99% (Supporting Figures S17 and S18), and molar activity range of 1.0–9.4 GBq/μmol. The RCYs were low, partly due to the compromise of using the prosthetic group [18]F6 (100 nmol) in a molar excess of minimum 2:1 to the TOC precursor 14 or 15 (50 nmol) during IEDDA in order to consume the TCO-modified peptide completely to avoid having unlabeled TOC–TOC as a competitor in the final formulation. [18]F6, [18]F14, and [18]F15 required only a SPE cartridge purification prior to administration, rendering the method suitable for a cassette-based radiolabeling system, similar to that reported by Allott et al.29 The loss of radioactivity could be decreased by altering the ratio of the TCO biomolecule to the radiolabeled tetrazine during IEDDA, but the biggest loss of radioactivity was attributed to [18]F-fluoride escaping likely as [18]FHF in the acidic conditions already during the concentration step. This could be hypothetically resolved by employing microfluidic trapping in lieu of heat-induced evaporation for the [18]F-fluoride concentration. The synthesis times for [18]F14 and [18]F15 were relatively long (85–102 min) when compared to the 60 minute synthesis time with the Trasis AllinOne module reported by Lau et al.17 and to the 25 min reported by Liu et al.,29 both for [18]F-AmBf-TATE. In the aforementioned studies, the molar activities of [18]F-AmBf-TATE (Liu et al., 435 ± 162 GBq/μmol; Liu et al., >111 GBq/μmol) were considerably higher than those in our study ([18]F14 = 2.8 ± 1.8 GBq/μmol; [18]F15 = 6.0 ± 3.4 GBq/μmol), likely as a result of the stepwise radiosynthesis of [18]F14 and [18]F15 (Scheme 2), resulting in a loss of radioactivity in each step, circumvented in the one-step radiofluorination of [18]F-AmBf-TATE. Furthermore, the molar ratio of [18]F6 to the TCO-peptide 12 or 13 was kept at least at 2:1, resulting in anticipated loss of radioactivity during the IEDDA.

In Vitro Stability and Lipophilicity. [18]F6 demonstrated favorably low lipophilicity (log D₇.₄ = −0.13 ± 0.06, n = 4) and good hydrolytic stability (≥ 99% intact at t = 3 h, 0.01 M PBS, pH 7.4) (Figure 2C). Log D₇.₄ values for [18]F14 and [18]F15 were −0.58 ± 0.06 and −0.73 ± 0.12 (n = 4), respectively, both demonstrating a lower lipophilicity than the prosthetic group alone and a decrease in log D₇.₄ with increasing PEG chain length, as expected (Figure 4B). [18]F15 had a higher lipophilicity (−0.7 ± 0.1, n = 4) than that reported for [18]F-SiAfin-TATE (−1.2 ± 0.1), which likely results from the IEDDA cycloaddition product. [18]F14 and [18]F15 were found stable in the formulated solution, 4% ethanol–0.01 M PBS (pH 7.4), when sampled at 9 h and at several time points up to 6 h, respectively (Supporting Figures S19 and S20). The enzymatic stability assay in 50% (v/v) human plasma–0.01 M PBS revealed that [18]F15 was stable up to at least 180 min (Figure 3A). [18]F14, on the other hand, demonstrated a lower enzymatic stability than expected, and a polar radiometabolite was detected in the HPLC chromatogram during the in vitro plasma stability study of [18]F14 (Figure 3B).

Cell Uptake Studies. The cell uptake of [18]F14 and [18]F15 was studied in STT2R-expressing rat pancreatic adenocarcinoma AR42J cells, where [18]F14 showed a significant difference (p < 0.05) in the cell uptake in baseline versus blocking conditions (baseline = 1.0 ± 0.2% at 120 min, n = 3, vs blocking = 0.5 ± 0.1% at 120 min, n = 3, p = 0.001) from 60 min onward (Supporting Figure S21). [18]F15 demonstrated an overall higher cell uptake in vitro, which was effectively blocked by an excess of native TOC (baseline = 6.1 ± 0.6% at 120 min, n = 3, vs blocking = 0.7 ± 0.1% at 120 min, n = 3, p < 0.005, Supporting Figure S22), corroborating that the uptake was specific and receptor-mediated.

PET/CT and Ex Vivo Biodistribution of [18]F6. The prosthetic group [18]F6 was studied as a standalone tracer for evaluating the stability of its radiolabel (B[18]F) in vivo. Moreover, [18]F6 was hypothesized to have beneficial properties, if stable in vivo, as a pretargeting tool. [18]F6 in 10% (v/v) ethanol–0.01 M PBS, 11 nmol, 150 μL, was administered intravenously to male SCID (11.0 ± 0.5 MBq) and female C57BL/6JRj (11.3 ± 0.3 MBq) mice (n = 4 per strain) (Figure 2D). Five minutes post injection, [18]F6 demonstrated low uptake in major organs and fast clearance from the blood, as illustrated by the time–activity curve (TAC) for the heart (left ventricle, Supporting Figure S23). An elevated liver uptake, possibly due to the tetrazine moiety, which decreased steadily throughout the 50 min dynamic image acquisition, was also visible. The elimination of radioactivity from the tissues during the PET/CT image acquisition, presented as TACs, indicated that the prosthetic group eliminates quickly, mainly through the kidneys (Supporting Figure S23). PET/CT was followed by ex vivo biodistribution 270 min post injection, which confirmed the

| Table 1. Radiolabeling Results of TOC Tracers [18]F14 and [18]F15* |
|---|---|
| [18]F14 | [18]F15 |
| synthesis time (min) | 85 ± 8 (n = 3) | 102 ± 29 (n = 17) |
| RCY (%) from [18]F6 | 19.3 ± 11.6 (n = 3) | 21.4 ± 13.5 (n = 4) |
| overall RCY (%) from [18]F6 | 3.3 ± 1.7 (n = 3) | 5.1 ± 3.4 (n = 5) |
| RCP (%) | ≥99 | ≥99 |
| A0 (GBq/μmol) | 2.8 ± 1.8 (n = 3) | 6.0 ± 3.4 (n = 13) |

*Yields are decay-corrected to the start of synthesis.

https://doi.org/10.1021/acs.bioconjchem.2c00231

Bioconjugate Chem. 2022, 33, 1393–1404
optimal pharmacokinetics and high in vivo stability of the radiolabel in $[^{18}F]$6, indicated by the fast clearance of radioactivity from the major organs and the low bone uptake in the tibia (0.4 ± 0.1% ID/g for C57BL/6JRj, 0.3 ± 0.1% ID/g for SCID; Figure 2F). Pronounced elimination into the gallbladder (6.4 ± 2.5% ID/g for C57BL/6JRj, 3.5 ± 2.4% ID/g for SCID) was also seen, but the major elimination pathway was renal clearance. The radiolabel stability and the beneficial pharmacokinetic characteristics of $[^{18}F]$6 prompted its use for peptide radiolabeling and revealed its potential as a pretargeting radiotracer, currently under investigation by our group.

Ex Vivo Biodistribution of $[^{18}F]14$ and $[^{18}F]15$. After intravenous administration *ex vivo*, the tumor uptake of $[^{18}F]14$ and $[^{18}F]15$ in AR42J xenografts was partly blocked by octreotide ($[^{18}F]14$ baseline = 3.1 ± 0.7, vs blocked = 2.2 ± 0.6, $p = 0.0120$; and $[^{18}F]15$ baseline = 4.5 ± 1.0 vs blocked = 3.1 ± 0.5, $p = 0.0143$). In comparison to the other SSTR2-targeting radiotracers, $[^{18}F]14$ and $[^{18}F]15$ demonstrated tumor uptakes in the range of other reported TOCs and TATEs with similar molar activities ($[^{18}F]$-FETE-P EG-TOCA, A_m = 5.9 GBq/μmol and 5.14% ID/g in tumor; $[^{18}F]$-FET/βAG[W-c-K] A_m = 3.9 GBq/μmol and 8.23% ID/g in tumor; $[^{18}F]$-FET/βAG-TOCA in tumors) in AR42J tumor-bearing mice, likely arising from the moderate molar activities in this study (Table 2). The bulky molecular size of the cycloadducts in $[^{18}F]14$ and $[^{18}F]15$, including the linker as well as the structural modifications might also have led to alteration of the performance and the somewhat inferior pharmacokinetics.

Table 2. A_m and Ex Vivo Results for TOC Tracers $[^{18}F]14$ and $[^{18}F]15$ of Selected Organs at 60 min Post Injection

Tracer	$[^{18}F]14$	$[^{18}F]15$
tracer A_m (GBq/μmol)	2.8 ± 1.8	6.0 ± 3.4
tumor (baseline, % ID/g)	3.1 ± 0.7	4.5 ± 1.0
tumor (blocked, % ID/g)	2.2 ± 0.6	3.1 ± 0.5
T/blood ratio (baseline)	0.30	0.5
T/blood ratio (blocked)	0.30	0.4
urine (baseline, % ID/g)	84.9 ± 58.6	174.2 ± 73.4
urine (blocked, % ID/g)	41.9 ± 15.7	303.4 ± 145.8
liver (baseline, % ID/g)	30.0 ± 9.4	19.0 ± 5.4
bone (baseline, % ID/g)	1.3 ± 0.6	1.1 ± 0.4

A_m The numerical values represent the mean ± standard deviation of the % ID/g values. $n \geq 3$.

The prolonged blood pool retention made the radiotracers readily available for an extended period of time, enabling the increase of nonspecific tracer accumulation in the tumor. Higher uptakes in AR42J tumors were obtained for both $[^{18}F]$AmBF$_3$-TATE (10.1 ± 1.7% ID/g) and $[^{18}F]$SiFAInTATE (18.5 ± 4.9% ID/g), with significantly higher molar activities of >111 and 44–63 GBq/μmol, respectively, respectively.

The uptake of radioactivity after administration of $[^{18}F]14$ and $[^{18}F]15$ in the pancreas was lower in comparison to the uptake of $[^{18}F]$AmBF$_3$-TATE in the pancreas published by Lau et al. ($[^{18}F]14$: baseline = 1.1 ± 0.2% ID/g, blocked = 0.8 ± 0.5% ID/g; $p = 0.0087$ vs $[^{18}F]15$: baseline = 1.6 ± 0.5% ID/g, blocked = 0.9 ± 0.5% ID/g, $p = 0.1655$ vs $[^{18}F]$AmBF$_3$-TATE: baseline 14.3 ± 1.6% ID/g, blocked = 0.2 ± 0.1% ID/g).
g). This apparent nonspecificity likely also arises from high RBC binding of the tracer \(^{[18]F}\)14 that cannot be blocked in the organs with a large blood pool, together with the low molar activity of the tracer, which might be increased by preconjugation of 6 to the TOC analogues prior to radiolabeling. However, the pancreatic uptake was of similar magnitude reported earlier for \(^{[18]F}\)AmBF-TATE by Liu et al. (pancreas; baseline = 2.8 ± 1.5% ID/g, blocked = 0.2 ± 0.1% ID/g). Furthermore, the obtained molar activities in this study influenced the receptor uptake and the blocking efficiency of the radiotracers, which is challenging to address when using isotopic exchange as the radiolabeling strategy. The elimination was predominantly by renal clearance at 60 min post injection (\(^{[18]F}\)14: baseline ~85% ID/g; \(^{[18]F}\)15: baseline ~174% ID/g), accompanied by a high accumulation into the gallbladder for both tracers \(^{[18]F}\)14 (baseline = 17.8 ± 5.2% ID/g, blocked = 10.7 ± 6.3% ID/g) and \(^{[18]F}\)15 (baseline = 9.1 ± 7.0% ID/g, blocked = 18.8 ± 10.3% ID/g), a phenomenon typically present when IEDDA is used as the radiolabeling strategy. Based on the pronounced renal clearance, \(^{[18]F}\)15 resembled \(^{[18]F}\)AmBF-TATE and \(^{[18]F}\)F-SiFAlm-TATE and would likely provide lower kidney reabsorption rates than the radiometalated SSTR targeting peptides currently in clinical use. The higher accumulation of radioactivity in the abdominal region with \(^{[18]F}\)15, which can be partly attributed to the PEG chain prolonging residence in circulation, will likely result in lower tumor-to-background ratios than those reported for \(^{[18]F}\)AmBF-TATE and \(^{[18]F}\)F-SiFAlm-TATE.\(^{29,31}\) The good hydrolytic stability, revealed by the low bone uptake of the tracers \(^{[18]F}\)14 and \(^{[18]F}\)15 at 60 min post injection, is at an equal level as for the previously published \(^{[18]F}\)AmBF-TATE (femur = 1.5–1.7% ID/g at 30 min) by Lau et al.\(^{17}\) (\(^{[18]F}\)14: tibia, baseline = 1.3 ± 0.6% ID/g, blocked = 1.0 ± 0.6% ID/g, vs \(^{[18]F}\)15: tibia, baseline = 1.1 ± 0.4% ID/g, blocked = 0.8 ± 0.2% ID/g). Notably, tracers \(^{[18]F}\)14 and \(^{[18]F}\)15 were sampled at a later time point than \(^{[18]F}\)AmBF-TATE,\(^{37}\) indicative of at least comparable stability of the radiotracers in \(\text{in vivo}\). Interestingly, the radioactivity in bone increased from 60 to 120 min post injection only for \(^{18}F\)14 (tibia: 2.9 ± 1.4% ID/g; occipital: 1.7 ± 0.1% ID/g) but not for \(^{18}F\)15 (tibia: 0.6 ± 0.4% ID/g; occipital: 0.6 ± 0.1% ID/g). The \(\text{ex vivo}\) radiometabolite analysis by radio-TLC indicated that \(^{[18]F}\)14 was metabolized and two radiometabolites were detected in blood at 5 and 30 min post injection (radio-TLC; Supporting Figure S26), in accordance with the \(\text{in vitro}\) enzymatic stability assay results (Figure 3B). A sample taken at 60 min post-injection revealed the same polar metabolite in blood, while in urine a less-retained, less-polar metabolite in trace amounts was seen, leaving approximately 99% of the radiotracer intact in both urine and blood. The prolonged blood residence of the TOC derivatives persisting at 60 min warrants further evaluation. After administration of \(^{[18]F}\)14, blood samples were taken, and the radioactivity in separated blood components was analyzed. The free fraction of the tracer was 72.9 ± 5.1% at 5 min and remained high until 60 min post injection (68.5 ± 5.3%). This indicates that the tracer was readily available at a steady rate throughout the study. Radioactivities of 22 and 25%, respectively, at 5 and 60 min, were bound to red blood cells (RBCs) (Supporting Table S1). In blocking conditions at 60 min, the free fraction seemed to decrease (55.7 ± 11.4%), and the RBC-bound fraction grew (29.7 ± 2.9%). The binding to RBCs slightly grew from 5 to 60 min post injection. This could have contributed to the long circulation time and high background radioactivity levels in organs with a large blood reservoir, such as the liver, and a slight rise in bone uptake detected for both \(^{[18]F}\)14 and \(^{[18]F}\)15 at 60 min in the tibia containing the bone marrow. A minor degree of defluorination could not be ruled out for the compound \(^{[18]F}\)14, but with \(^{[18]F}\)15, there was no indication of defluorination. Based on the overall superior performance over \(^{[18]F}\)14, tracer \(^{[18]F}\)15 was chosen as the lead compound for further evaluation with PET/CT.

PET/CT Imaging of \(^{[18]F}\)15. Based on the higher tumor uptake, more efficient blocking, better stability, and superior pharmacokinetics \(\text{ex vivo}\), peptide \(^{[18]F}\)15 was selected over \(^{[18]F}\)14 for further evaluation by PET/CT imaging. After intravenous administration of \(^{[18]F}\)15 \((0.2 \text{ nmol})\), the radioactivity in the subcutaneous AR42J tumor increased slowly and peaked at 20–30 min, as demonstrated by the TACs (Figure 4D). The tumor was well visualized, as seen in the maximum intensity projection (MIP) PET/CT image (Figure 4C.i). The tumor uptake was partly blocked (Figure 4C.ii) with the coadministration of octreotide \((45 \mu g, 44 \text{ nmol})\). The maximum intensity projection (MIP) images of \(^{[18]F}\)15 at 20–80 min post injection in AR42J tumor-bearing mice (Figure 4C) showed good and single slice PET images (Supporting Figures S37, S38, and S39) moderate tumor-to-background contrast. The prolonged availability of the radiotracers in the blood pool likely contributed to the observed plateau in tumor uptake seen in baseline conditions (Figure 4D upper panel), with no significant difference observed at 90 min post injection in the baseline and blocked conditions \((baseline = 0.82 ± 0.14 \text{ SUV}, n = 2, vs blocking = 0.76 ± 0.03 \text{ SUV}, n = 2)\). As a possible contributor, close to 25% radioactivity in blood 60 min after administration of the other peptide analogue \(^{[18]F}\)14 was shown to be bound in RBCs \(\text{ex vivo}\), contributing to the uptake in both tumor and nontarget tissues, such as the pancreas. This phenomenon, even when not studied for the more stable peptide \(^{[18]F}\)15, possibly accounted for the low efficiency seen in the PET/CT study. Furthermore, due to the highly similar biological behaviors and relatively small differences of the TOC analogues 14 and 15, the investigation of a non-PEGylated version would be warranted to assess the true benefit of adding a PEG chain to the structure.

Dosimetry of \(^{[18]F}\)15. The \(\text{ex vivo}\) biodistribution of \(^{[18]F}\)15 suggested certain organs were subject to elevated radiation burden. Regions of interest from the dynamic PET scans of \(^{[18]F}\)15 were used to estimate absorbed doses in selected organs, which were extrapolated to adult humans. Kidneys and the liver received the highest absorbed dose \((\text{kidney} = 0.0366 ± 0.0016 \text{ mGy/MBq}; \text{ liver} = 0.0334 ± 0.0050 \text{ mGy/MBq})\) in baseline conditions, with negligible difference in the absorbed dose in blocking conditions \((\text{kidney} = 0.0337 ± 0.0043 \text{ mGy/MBq}; \text{liver} = 0.0313 ± 0.0040 \text{ mGy/MBq})\), as well as for all other organs. The second highest dose was in the adrenal glands \((\text{baseline} = 0.0190 ± 0.0008 \text{ mGy/MBq}; \text{blocked} = 0.0185 ± 0.0001 \text{ mGy/MBq})\) and the gallbladder wall \((\text{baseline} = 0.0194 ± 0.0011 \text{ mGy/MBq}; \text{blocked} = 0.0190 ± 0.0011 \text{ mGy/MBq})\) (Supporting Table S3 and Figure S32). The urinary bladder \((\text{baseline} = 0.0134 ± 0.0003 \text{ mGy/MBq}; \text{blocked} = 0.0135 ± 0.0000 \text{ mGy/MBq})\) and pancreas \((\text{baseline} = 0.0156 ± 0.0002 \text{ mGy/MBq}; \text{blocked} = 0.0154 ± 0.0001 \text{ mGy/MBq})\) received lower absorbed doses than those reported for the closest analogue \(^{[18]F}\)AmBF-TATE, for which the bladder received 0.027–0.030 mGy/
MBq and the pancreas received 0.018–0.028 mGy/MBq. The dose in the lungs (0.006–0.013 mGy/MBq) for 18F]AmBF$_3$-TATE reached near equal levels as to 18F]15 (baseline = 0.0109 mGy/MBq), but the kidneys received a notably higher dose after administration of 18F]AmBF$_3$-TATE (female, 1.24 mGy/MBq; male, 1.13 mGy/MBq) than after 18F]15 (0.0334 mGy/MBq). All organs after administration of 18F]15 received below 0.04 mGy/MBq dose, and apart from the kidneys and liver responsible for eliminating the radiotracer, all other organs received a dose of 0.02 mGy/MBq or below. The dosimetry calculation results indicate that the use of 18F]15 as an imaging agent does not pose a greater radiation safety concern than that associated with other 18F-labeled SSTR radiotracers.

CONCLUSIONS

We aimed to design a small tetrazine radiotracer that would harbor the beneficial characteristics of the zwitterionic trifluoroborate, including the excellent in vivo stability of fluorine-18 in the trifluoroborate moiety and the ease of IE radiolabeling. A novel AmBF$_3$ tetrazine 18F]6 was developed as a prosthetic group for radiolabeling biomolecules in mild conditions. Using two TCO-modified TOC derivatives as model peptides, we demonstrated that TCO-functionalized peptides can be radiolabeled using this method. While the development of novel SSTR2 radiotracers was not the goal of this investigation, the preconjugation of 6 with the TCO-modified peptide followed by radiolabeling might provide a radiophosphate of higher molar activity and hence potentially better performance. Nevertheless, the universal potential of 18F]6 for the radiolabeling of biomolecule-based PET tracers by IEDDA bioorthogonal chemistry was corroborated. Future efforts should be aimed at radiolabeling a variety of biomolecules with 18F]6, especially those of higher molecular weight and more tolerant of the added hydrophobicity from the IEDDA cycloaddition product, for fully exploiting the benefits of this method. However, due to the optimal pharmacokinetics and radiolabel stability of 18F]6 as a standalone tracer, the investigation of 18F]6 in pretargeted PET imaging is warranted.

EXPERIMENTAL PROCEDURES

Reagents and Equipment.

Tetrazine NHS ester (BroadPharm, San Diego, CA), iodomethylboronic acid pinacol ester (Enamine, Riga, Latvia), TCO-pharmacophore (Pharm, San Diego, CA), iodomethylboronic acid pinacol ester (Enamine, Riga, Latvia), TCO-pharmacophore (Pharm, San Diego, CA) were used as received. Custom-synthesized aminooxy-functionalized Tyr-aldehyde (Conju-Probe, San Diego, CA) were used as received. Custom-synthesized aminooxy-functionalized Tyr-aldehyde (Conju-Probe, San Diego, CA) were used as received.

Synthesis of AmBF$_3$-Tz (6).

2-[(1,2,4,5-Tetrazin-3-yl)phenyl]-N-[2-(dimethylamino)ethyl]acetamide (3). N,N-Dimethylhydrazine 2 (13 μL, 0.12 mmol) was dissolved in 2 mL of DCM under argon and Tz NHS ester 1 (25 mg, 0.08 mmol) in 3 mL of DCM (added dropwise) were stirred at room temperature overnight and evaporated to dryness. The resulting residue was washed with diethyl ether twice, yielding 58 μg (31% yield) of compound 5. 1H NMR (300 MHz, acetone-d$_6$) δ 10.26 (s, 1H), 8.50 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 3.60 (s, 2H), 3.26 (s, 2H), 2.40 (s, 2H), 2.21 (s, 6H).

2-[(1,2,4,5-Tetrazin-3-yl)phenyl]acetamide-N,N-dimethylimine-[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl]ethan-1-aminium (5). Compound 3 (11.5 mg, 0.04 mmol) in 1 mL of dry acetone under argon and 2-iodomethyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4 (10.8 mg, 0.04 mmol) in 300 μL of dry acetone were stirred at room temperature overnight and evaporated to dryness. Diethyl ether (2 mL) was added, and the flask was vortexed (30 s). The diethyl ether phase was discarded, and the residue was washed with diethyl ether twice, yielding 58 ± 31% (n = 3) (11.5 mg, 0.04 mmol) of compound 5. 1H NMR (300 MHz, acetone-d$_6$) δ 10.28 (s, 1H), 8.52 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 3.68 (s, 2H), 3.58 (s, 2H), 3.48 (s, 2H), 3.13 (s, 6H), 2.14 (s, 2H). 12H.

$$[(2-[4-(1,2,4,5-Tetrazin-3-yl)phenyl]acetamido)ethylimine(dimethylamino)methyl]-trifluoroborate (AmBF$_3$-Tz, 6).$$ Compound 5 (18 mg, 0.043 mmol) in approximately 100 μL of acetone was evaporated to dryness with argon gas flow. The resulting solids were washed with diethyl ether twice, yielding 58 ± 31% (n = 3) (11.5 mg, 0.04 mmol) of compound 5. 1H NMR (300 MHz, acetone-d$_6$) δ 10.30 (s, 1H), 8.54 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.6 Hz, 2H), 3.68–3.56 (m, 4H), 3.34 (s, J = 6.7 Hz, 2H), 3.01 (s, 6H), 2.38 (s, 2H). 13B NMR (128 MHz, CD$_3$CN) δ 2.19, 1.80.
1.43, 1.03. 19F NMR (376 MHz, CD3CN) δ −138.77, −138.89, −139.04, −139.17. 13C NMR (101 MHz, CD3CN) δ 171.47, 167.25, 158.98, 141.95, 131.82, 131.42, 129.05, 118.30, 65.43, 54.32, 43.42, 34.75, 1.32. HRMS calculated for C13H12F3B12N2O10 [M + H]+ 369.1865 m/z, found C13H12F3B12N2O10 [M + H]+ 369.1834 m/z (mass error −0.85 ppm).

Synthesis of TCO-CHO. Synthesis of (E)-Cyclooct-4-en-1-yl (4-formylphenyl)carbamate(trans-cyclooctene aldehyde, 9). 4-Aminobenzaldehyde (7, 15.6 mg, 91 nmol, 1.5 equiv) was dissolved in THF (500 μL) and DMSO (150 μL) under argon. Pyridine (9.7 mg, 122 nmol, 2.0 equiv) in THF (100 μL) was added to the solution of compound 7 and stirred for 10 min. (E)-cyclooct-4-enyl-2,5-dioxo-1-pyrrolidinyl carbonate (trans-cyclooctene-NHS ester, 8, 16.3 mg, 61 nmol, 1.0 equiv) was dissolved in acetonitrile and the solution was stirred overnight (room temperature). The reaction was monitored with TLC (normal-phase TLC, ethylacetate/cyclohexane, 1:1; KMnO4 stain; Rf (pyridine) = 0.00; Rf (benzaldehyde), 7 = 0.00; Rf (TCO-NHS ester, 8) = 0.90; Rf (TCO-CHO, 9) = 0.80. Fractionation: Sep-Pak SPE-Si cartridge (preconditioning: 50 mL of water). The mixture was pressed through an SPE-Si cartridge (fraction 1) and eluted with 1 mL of DCM (fraction 2), and the fractions were purified by semipreparative HPLC (Method B) yielding 21% ± 5% (n = 3). 9 eluted at tf = 6 min on HPLC (Method B), on TLC (1:1 ethylacetate/cyclohexane, Sil-TLC + KMnO4 stain), at RF = 0.8. LC-MS (+ m/z) (%) = 288.15942 m/z calculated for C10H11N2O3 and found 288.36 (27) [M + H]+, 310.14136 m/z calculated for C12H13N3NaO4 and found 310.30 (19) [M + Na]+ at tf = 9.3 min. 1H NMR (400 MHz, CDCl3) δ ppm, 10.00, 7.86, 7.84, 7.45, 7.43, 5.53, 4.99, 4.41, 2.35, 1.97, 1.75, 1.57, 1.27, 1.26. 13C NMR (101 MHz, CDCl3) δ ppm, 191.81, 145.79, 135.64, 134.89, 133.01, 130.13, 127.77, 81.14, 44.70, 41.14, 38.67, 34.27, 32.50, 30.96.

Trans-Cyclooctene (TCO) Modification of Tyr-Octreotide (TOC) and IEDDA. The peptide (1.4 mg, 1.08 μmol, 1 equiv) in 600 μL of 0.3 M anilinium acetate buffer (pH 4.6) was mixed with trans-cyclooctene-PEG2-aldehyde (10, 1.62 μmol, 1.5 equiv) or TCO-CHO (11, 1.64 μmol, 1.5 equiv) in ~140 μL of chloroform and added dropwise. The reaction was monitored with HPLC (PDA detector at 280 nm). After 10 min, the peptide was purified with HPLC (method A). ACN was evaporated, and the residual water-containing fraction was frozen in a freezer (−80 °C) or with a liquid nitrogen bath. The frozen fraction was lyophilized and stored in a freezer (∼20 °C). The fractions, which were used as such, were mixed with 6 immediately as a diluted aqueous solution (diluted to ≥95% H2O). AmBF3-Tz (6, ∼200 nmol) in ACN (20 μL) was mixed at room temperature with TCO-PEG5-TCO (12, ∼200 nmol) or TCO-PEG1-TCO (13, ∼200 nmol) in water to constitute a solution ≥95% water. The resulting product, compound 14 or 15, was purified by HPLC. The non-radionabeled reference compounds 14 and 15 were analyzed by HPLC (method A) and MS (LC-MS or UHPLC-HRMS, methods C2 and D).

Radiosynthesis of [18F]AmBF3 Tetrazine ([18F]F6). Precursor 6 (∼37–74 μg, 100–200 nmol) in ACN (∼5 μL) and pyridazine HCl buffer pH 2.0 (10 μL) were pipetted into a 5 mL polypropylene tube fitted with a septum. Separate needles for transporting [18F]fluoride in to the tube and for venting the system through an ascrite cartridge and decay coil were connected to valves on the synthesis unit. [18F]Fluoride was transported to the hot cell and trapped with a PS-HCO3-cartridge (preconditioning sequence: 3 mL of water + 3 mL of brine + 3 mL of water). The precursor in the polypropylene tube was placed in a preheated (85 °C) theromixer, and the [18F]fluoride was eluted with 100 μL of pyridazine HCl buffer pH 2.0. After heating (∼8 min) under an argon flow, the solution reached 10–20 μL reaction volume. The reaction mixture was quenched after 15 min at 85 °C with water (600 μL), diluted with water (8 mL), and purified, if not used as such, with a Sep-Pak C18 SPE cartridge. The cartridge was washed with water (40 mL) to remove [18F]fluoride. Air (10 mL) was pushed through the cartridge, and [18F]F6 was eluted out with ethanol (200 μL) and 0.9% NaCl (1 mL) or 0.01 M PBS (1 mL). The final product was analyzed with HPLC method A.

Radiosynthesis of [18F]AmBF3-Octreotides ([18F]F14 and [18F]F15). The crude radiolabeled mixture of [18F]AmBF3-Tz ([18F]F6) was used for the radiolabeling of TCO-octreotides 12 and 13 without cartridge purification. Trans-cyclooctene functionalized peptide 12 or 13 (25–50 nmol, 500 μL of water) was added into the radiolabeling reaction mixture (∼10–20 μL) of [18F]F6 (100–200 nmol) and heated at 60 °C (95±5 H2O:ACN). After 20 min, the reaction mixture was diluted with water (8 mL) and purified with two SPE C18 cartridges [protocol: water (40 mL), 20% ethanol (3 mL), elution with 400 μL of ethanol and 400 μL of 10 × PBS]. The purified peptide solution was diluted with water to a 0.1 M PBS concentration and further with 1 × PBS to constitute ≤5% ethanol. The product was analyzed with HPLC method A.

Lipophilicity, Hydrolytic Stability, and Enzymatic Stability. Lipophilicity was determined with the shake-flask method as a distribution coefficient between 0.01 M PBS and octanol. Purified radiotracer [18F]F6 (10 μL, ∼200 kBq, 1.5 nmol), [18F]F14 (20 μL, ≤260 kBq, 125 pmol), or [18F]F15 (20 μL, 144 kBq, 67 pmol) in a polypropylene tube containing 1500–2000 μL of each in a 1:1 mixture (1-octanol, 0.02 M PBS, pH 7.4) was shaken mechanically (500 rpm, 10 min) and centrifuged (1000g, 5 min), and samples from each layer (400 μL, n = 4) were measured with a γ-counter. The log D7.4 was calculated as a distribution between the two layers at pH 7.4. [18F]F6 (10 MBq, 40 nmol) diluted with 0.01 M PBS at pH 7.4 (<1% ethanol, 5300 μL) was incubated for 180 min. At selected time points (5, 30, 60, 90, 120, 150, and 180 min), a sample (100 μL) was injected to radio-HPLC. [18F]F14 and [18F]F15 (29 MBq, 10 nmol) diluted in 2000 μL of 0.01 M PBS (<1% ethanol) were left to incubate. A sample of [18F]F14 (100 μL) after 9 hours and [18F]F15 at selected time points between 30 and 335 min were injected into HPLC (method A). [18F]F15 (0.6 MBq, 0.134 nmol, 200 μL) formulated in ≤5% EtOH-1 × PBS was added and incubated in 2000 μL of PBS-50% human plasma at 37 °C. A 100 μL sample (at 60, 120, 180, and 240 min, n = 2) was diluted with 200 μL of cold acetonitrile and centrifuged (10,000g, 5 min). After centrifugation, a 100 μL sample of the supernatant was injected for radio-HPLC analysis.

Cell Uptake Assay. AR42J cells were grown to >90% confluence. One million cells/well were seeded overnight on 6-well plates. The growth media was removed, and the reaction media (1 mL) containing [18F]F14 (11 kBq, 10 pmol per well) or [18F]F15 (97 kBq, 40 pmol per well) was added. Additionally, cells were coincubated with 2.4 nmol per well
of nonmodified octreotide for blocking of radiotracer uptake. Radioactivity in the free, membrane-bound, and internalized fractions was determined at designated time points (15, 30, 60, and 120 min) by treating the cells in a sequence of (1) ice-cold 0.01 M PBS, (2) glycine buffer, and (3) 1 M NaOH, respectively. The fractions were collected and measured with a γ-counter. The detailed protocol is given in the Supporting Information.

Animal Experimentation. The animal experiments were conducted under a project license approved by the National Board of Animal Experimentation in Finland (Helsinki; license number ESAVI/12132/04.10.07/2017). The animals were group-housed in polycarbonate cages using aspen bedding in HEPA-filtered housing units (UniProtect, Emmendingen, Germany) with food (Envigo Teklad Global Diet 2016) and tap water available ad libitum. Conditions were maintained at 21 ± 1 °C and 55 ± 15% relative humidity with a 12:12 lighting cycle.

Biological Evaluation. [18F]14 and [18F]15 in ≤4% ethanol–0.01 M PBS were administered intravenously (1.2 ± 0.0 and 2.0 ± 0.1 MBq, respectively, 0.2 nmol, 150 μL) to AR42J tumor-bearing Rj:NMRI-Foxn1nu/nu mice. At predetermined time points (t = 30, 60, 120, and 240 min), animals were euthanized with CO2 asphyxiation and cervical dislocation, and then the organs were harvested, washed with water, and blotted dry, following with weighing and γ counting from which the % ID/g in tissues was determined.

Mouse Plasma Stability of [18F]AmBF2-PEG-TOC (18F]15) during Ex Vivo Studies. After tracer injection, CO2 asphyxiation, and cervical dislocation, blood was collected from a cardiac puncture into a tube containing 2 μL of 1% heparin (diluted from 100 U/mL) in 0.9% NaCl (aq). The sample was centrifuged (1000g, 10 min) to separate the plasma from the blood cells. Cold acetonitrile (2 × vol of plasma) was added and centrifuged (10,000g for 5 min) to precipitate the proteins. A sample (100 μL) of the supernatant was injected into HPLC for radio-HPLC analysis. For the tracer [18F]14, the supernatant was sampled also on TLC for digital autoradiography analysis.

Distribution of Radioactivity in Blood Components after Intravenous Administration of [18F]14. Whole blood from mice was extracted during ex vivo studies, using cardiac puncture. The sample was applied in a microtube containing 1% heparin solution in 0.9% NaCl in 0.2 μL; the sample was centrifuged (1000g, 10 min), the total radioactivity in the sample was measured with a γ counter, the supernatant was separated from the pellet (RBC containing fraction), and cold ACN (500 μL) was added. The sample was centrifuged (10,000g, 5 min) to remove the free fraction from the precipitated protein-containing pellet. The pellet (protein-bound fraction) and the supernatant (free fraction) were measured with a γ counter, and a sample (100 μL) was injected into HPLC and spotted (4 μL) on a TLC plate (radio-TLC, TLC silica gel 60 F254 ACN/water 80:20).

PET/CT Imaging and Biodistribution after PET/CT of [18F]6 and [18F]15. [18F]6 in 10% ethanol–0.01 M PBS was administered intravenously to male Fox Chase SCID mice (CB.17 SCID) (11.0 ± 0.5 MBq, ~11 nmol, ~150 μL, n = 4) and healthy female C57BL/6JRj mice (11.3 ± 0.3 MBq, ~11 nmol, ~150 μL, n = 4) under 2% isoflurane anesthesia. The PET/CT image was acquired with Inveon PET/CT for 60 min followed by a 15 min static scan 4 h after injection of the tracer. The images of the dynamic scan were reconstructed to time frames 60 × 10, 10 × 60, 4 × 300, and 3 × 600 s. After the second PET imaging (t = 270 ± 1.9 min post injection, n = 4), the organs were harvested and the radioactivity in each tissue sample was measured with a γ-counter and reported as a percentage of injected dose per gram of tissue (% ID/g).

[18F]15 was formulated in 4% ethanol in 0.01 M PBS and administered intravenously (0.2 nmol, 0.8 ± 0.30 MBq; tracer: 150 μL; tracer + blocking dose: 200 μL) to AR42J tumor-bearing Rj:NMRI-Foxn1nu/nu mice (n = 4) under 2% isoflurane anesthesia. PET/CT images were acquired with Molecules PET (β-CUBE) coupled with a CT (X-CUBE) (MOLECUBES NV, Ghent, Belgium) with two mice being imaged at the same time under 2% isoflurane anesthesia. Images were reconstructed to time frames 30 × 10, 15 × 60, 4 × 300, and 5 × 600 s. Quantitative image analysis was done with Carimas software (v 2.10, Turku PET Centre, Turku, Finland). Spherical ROIs were hand-drawn based on anatomical CT data and PET signal for the desired organs. The results are presented as standardized uptake values (SUVEs).

Dosimetry. Dosimetry of [18F]15 was calculated from the acquired PET/CT imaging data with Molecules PET (β-CUBE) coupled with a CT (X-CUBE) (Ghent, Belgium). Regions of interest were drawn on source organs, namely, the heart, kidneys, liver, and lungs. Time–activity curves (TAC) were converted from mouse to human time–activity curves with the following equation

\[
\text{TAC}_{\text{organ,h}} = \text{TAC}_{\text{organ,m}} \times \left(\frac{m_{\text{organ,h}}/\text{WB}_h}{m_{\text{organ,m}}/\text{WB}_m} \right)
\]

where \(m_{\text{organ,h}}\) and \(\text{WB}_h\) are the organ and whole-body weights for human, respectively. Mass \(m_{\text{organ,m}}\) and \(\text{WB}_m\) are the organ weight and the whole-body weight for mouse, respectively. Time–activity curves were normalized to 1 MBq injection, and the physical decay correction was removed. After this, the TAC’s were extrapolated to 3000 min, which corresponds in practice to infinity. Numbers of disintegrations in source organs are defined by integrating TAC from time 0 to 3000 min, and this value is input for OLINDA/EXM (version 2.1, Vanderbilt University, 2012) dosimetry software, where ICRP 89 reference adult male (73 kg) and ICRP 103 radiation weighting factors were used. Absorbed doses to each target organ are given in units mGy/MBq, and the effective dose is in units mSv/MBq.

Statistical Analysis. The data were plotted and statistically analyzed with GraphPad Prism (version 9.1.1), and the results are presented as mean ± standard deviation (s.d.) with data points of \(n \geq 3\). The statistical analysis was done with the unpaired t-test with Welch’s correction, where \(p < 0.05\) was regarded as statistically significant. The significances (p-value) were \(*p < 0.05, **p < 0.01, \text{and } ***p < 0.001.\)

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.bioconjchem.2c00231.

LC analysis methods, cell uptake study protocol, characterization of compounds, metabolic stability profiles of compounds, ex vivo biodistribution studies, and additional PET/CT images (PDF)
AUTHOR INFORMATION

Corresponding Author

Anu J. Airaksinen — Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland; Turku PET Centre, University of Turku, FI-20520 Turku, Finland; Department of Chemistry, University of Turku, FI-20014 Turku, Finland; orcid.org/0000-0002-5943-3105; Email: anu.airaksinen@utu.fi

Authors

Sofia Otaru — Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland; orcid.org/0000-0002-6578-4227

Andreas Paulus — Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland; orcid.org/0000-0002-1646-3283

Surachat Imlimthan — Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland; Present Address: Inselspital University Hospital Bern, Nuclear Medicine, Freiburgstrasse 18 Bern, 3010, Switzerland; orcid.org/0000-0003-2520-2146

Iida Kuurne — Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland

Helena Virtanen — Turku PET Centre, University of Turku, FI-20520 Turku, Finland

Heidi Liljenbäck — Turku PET Centre, University of Turku, FI-20520 Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Tuula Tolvanen — Turku PET Centre, University of Turku, FI-20520 Turku, Finland; Department of Medical Physics, Turku University Hospital, FI-20521 Turku, Finland

Tatsiana Auchynnikava — Turku PET Centre, University of Turku, FI-20520 Turku, Finland; Department of Chemistry, University of Turku, FI-20014 Turku, Finland

Anne Roivainen — Turku PET Centre, University of Turku, FI-20520 Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland

Kerttu Helariutta — Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland; Present Address: Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland; orcid.org/0000-0002-4143-912X

Mirkka Sarparanta — Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland; orcid.org/0000-0002-2956-4366

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.bioconjchem.2c00231

Funding

This research was supported by the Academy of Finland with decision numbers 298481, 306239, 318422, and 320102, by Business Finland with decision number 5529/31/2018, the Finnish Cultural Foundation with grant no. 00190375, and by Jane and Aatos Erkko Foundation.

Notes

S.O., A.P., M.S., and A.A. have filed a patent application regarding the presented data.

The authors declare the following competing financial interest(s): Patent application pending regarding some structures presented in the manuscript.

The animal experiments were conducted under a project license approved by the National Board of Animal Experimentation in Finland (Helsinki; license number EsAVI/12132/04.10.07/2017).

ACKNOWLEDGMENTS

The authors would like to thank Aake Honkaniemi for technical assistance in the PET imaging experiments. Dr. Eero Hippeläinen is thanked for helpful discussions regarding the dosimetry data.

REFERENCES

(1) Jamous, M.; Haberkorn, U.; Mier, W. Synthesis of peptide radiopharmaceuticals for the therapy and diagnosis of tumor diseases. *Molecules* 2013, 18, 3379—409.

(2) Fani, M.; Maecke, H. R.; Okarvi, S. M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. *Theranostics* 2012, 2, 481—501.

(3) Kecissa, P.; Czamecka, K.; Królicki, L.; Mikiciuk-Olasik, E.; Szymański, P. Radiolabeled Peptides and Antibodies in Medicine. *Bioconjugate Chem.* 2021, 32, 25—42.

(4) Pauwels, E.; Cleeren, F.; Bornmans, G.; Deroose, C. M. Somatostatin receptor PET ligands - the next generation for clinical practice. *Am. J. Nucl. Med. Mol. Imaging* 2018, 8, 311—331.

(5) Kemerink, G. J.; Visser, M. G. W.; Franssen, R.; Beijer, E.; Zamburlini, M.; Halders, S. G. E. A.; Brans, B.; Mottaghy, F. M.; Teule, G. J. Effect of the positron range of 18F, 16Ga and 11I on PET/CT in lung-equivalent materials. *Eur. J. Nucl. Med. Mol. Imaging* 2011, 38, 940—948.

(6) Jacobson, O.; Kiesewetter, D. O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. *Bioconjugate Chem.* 2015, 26, 1—18.

(7) Brooks, A. F.; Topczewski, J. J.; Ichishi, N.; Sanford, M. S.; Scott, P. J. Late-stage 18F-Fluorination: New Solutions to Old Problems. *Chem. Sci.* 2014, 5, 4545—4553.

(8) Zeng, J. L.; Wang, J.; Ma, J. J. New strategies for rapid 18F-radiolabeling of biomolecules for radionuclide-based in vivo imaging. *Bioconjugate Chem.* 2015, 26, 1000—1003.

(9) Schirmacher, R.; Bradtmöller, G.; Schirmacher, E.; Thews, O.; Tillmanns, J.; Siessmeier, T.; Buchholz, H. G.; Bartenstein, P.; Wangler, B.; Niemeyer, C. M.; Jurkschat, K. 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. *Angew. Chem., Int. Ed.* 2006, 45, 6047—6050.

(10) Ilhan, H.; Todica, A.; Lindner, S.; Boening, G.; Gosewisch, A.; Wagner, C.; Wangler, B.; Schirmacher, R.; Bartenstein, P.; First-in-human 18F-SiFAT- TATE PET/CT for NET imaging and theranostics. *Eur. J. Nucl. Med. Mol. Imaging* 2019, 46, 2400—2401.

(11) Lindner, S.; Simmet, M.; Gilddehaus, F. J.; Jurkschat, K.; Wangler, C.; Wangler, B.; Bartenstein, P.; Schirmacher, R.; Ilhan, H. Automated production of 18F-SiTATE on a Scintomics GRP platform for PET/CT imaging of neuroendocrine tumors. *Nucl. Med. Biol.* 2020, 88—89, 86—95.

(12) Ilhan, H.; Lindner, S.; Todica, A.; Cyran, C. C.; Tiling, R.; Auernhammer, C. J.; Spitzweg, C.; Boeck, S.; Unterrainer, M.; Gilddehaus, F. J.; Boning, G.; Jurkschat, K.; Wangler, C.; Wangler, B.; Schirmacher, R.; Bartenstein, P. Biodistribution and first clinical results of 18F-SiFAT-TATE PET: a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors. *Eur. J. Nucl. Med. Mol. Imaging* 2020, 47, 870—880.

(13) Niedermoser, S.; Chin, J.; Wangler, C.; Kostikov, A.; Bernard-Gauthier, V.; Vogler, N.; Soucy, J. P.; McEwan, A. J.; Schirmacher, R.; Wangler, B. In Vivo Evaluation of 18F-SiFAT-Modified TATE: A Potential Challenge for 68Ga-DOTATATE, the Clinical Gold Standard for Somatostatin Receptor Imaging with PET. *J. Nucl. Med.* 2015, 56, 1100—1105.

(14) Liu, Z.; Lin, K. S.; Benard, F.; Pourghiasi, M.; Kiesewetter, D. O.; Perrin, D. M.; Chen, X. One-step 18F labeling of biomolecules using organotrifluoroborates. *Nat. Protoc.* 2015, 10, 1423—1432.
(15) Liu, Z.; Pourghiasian, M.; Radtke, M. A.; Lau, J.; Pan, J.; Dias, G. M.; Yapp, D.; Lin, K. S.; Benard, F.; Perrin, D. M. An organotrifluoroborate for broadly applicable one-step 18F-labeling. Angew. Chem., Int. Ed. 2014, 53, 11876–11880.

(16) Lisova, K.; Sergeev, M.; Evans-Axelson, S.; Stuparu, A. D.; Beykan, S.; Collins, J.; Jones, J.; Lassmann, M.; Herrmann, K.; Perrin, D.; Lee, J. T.; Slavik, R.; van Dam, R. M. Microscale radiosynthesis, preclinical imaging and dosimetry study of [18F]AMBF3-TATE: A potential PET tracer for clinical imaging of somatostatin receptors. Nucl. Med. Biol. 2018, 61, 36–44.

(17) Lau, J.; Pan, J.; Rousseau, E.; Uribe, C. F.; Seelam, S. R.; Sutherland, B. W.; Perrin, D. M.; Lin, K. S.; Benard, F. Pharmacokinetics, radiation dosimetry, acute toxicity and automated synthesis of [18F]AmBF3-TATE. EJNMMI Res. 2020, 10, No. 25.

(18) Pourghiasian, M.; Liu, Z.; Pan, J.; Zhang, Z.; Colpo, N.; Lin, K. S.; Perrin, D. M.; Benard, F. 18F-AmBF3-M9j: a novel radiofluorinated bombesin derivative for prostate cancer imaging. Bioorg. Med. Chem. 2015, 23, 1500–1506.

(19) Roxin, A.; Zhang, C.; Huh, S.; Lepage, M.; Zhang, Z.; Lin, K. S.; Benard, F.; Perrin, D. M. A Metal-Free DOTA-Conjugated 18F-Labeled Radiotracer: [18F]DOTA-AMBF3-LLP2A for Imaging VLA-4 Over-Expression in Murine Melanoma with Improved Tumor Uptake and Greatly Enhanced Renal Clearance. Bioconjugate Chem. 2019, 30, 1210–1219.

(20) Roxin, A.; Zhang, C.; Huh, S.; Lepage, M. L.; Zhang, Z.; Lin, K. S.; Benard, F.; Perrin, D. M. Preliminary evaluation of 18F-labeled LLP2A-trifluoroborate conjugates as VLA-4 (alpha4beta1 integrin) specific radiotracers for PET imaging of melanoma. Nucl. Med. Biol. 2018, 61, 11–20.

(21) Zhang, C.; Zhang, Z.; Lin, K. S.; Lau, J.; Zeisler, J.; Colpo, N.; Perrin, D. M.; Benard, F. Melanoma Imaging Using 18F-Labeled alpha-Melanocyte-Stimulating Hormone Derivatives with Positron Emission Tomography. Mol. Pharmaceutics 2018, 15, 2116–2122.

(22) Zhang, C.; Zhang, Z.; Merkens, H.; Zeisler, J.; Colpo, N.; Hundal-Jabal, N.; Perrin, D. M.; Lin, K. S.; Benard, F. 18F-Labeled Cyclized alpha-Melanocyte-Stimulating Hormone Derivatives for Imaging Human Melanoma Xenograft with Positron Emission Tomography. Sci. Rep. 2019, 9, No. 13575.

(23) Iddon, L.; Leyton, J.; Indrevoll, B.; Glaser, M.; Robins, E. G.; George, A. J.; Cuthbertson, A.; Luthra, S. K.; Aboagye, E. O. Synthesis and in vitro evaluation of 18F-fluoroethyl triazole labelled [Tyr3]-octreotate analogues using click chemistry. Bioorg. Med. Chem. Lett. 2011, 21, 3122–3127.

(24) Oliveira, B. L.; Guo, Z.; Bernardes, G. J. L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46, 4895–4950.

(25) Battershill, P. E.; Clissold, S. P. Octreotide. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in conditions associated with excessive peptide secretion. Drugs 1989, 38, 658–702.

(26) Polezhhaev, A. V.; Maciulis, N. A.; Chen, C. H.; Pink, M.; Lord, R. L.; Caulton, K. G. Tetrazine Assists Reduction of Water by Phosphines: Application in the Mitsunobu Reaction. Chem. - Eur. J. 2016, 22, 13985–13998.

(27) Kwon, D.; Lozada, J.; Zhang, Z.; Zeisler, J.; Poon, R.; Zhang, C.; Roxin, A.; Lin, K. S.; Perrin, D.; Benard, F. High-Contrast CXCR4-Targeted 18F-PET Imaging Using a Potent and Selective Antagonist. Mol. Pharmaceutics 2021, 18, 187–197.

(28) Allott, L.; Amgeheib, A.; Barnes, C.; Braga, M.; Brickute, D.; Wang, N.; Fu, R.; Ghaem-Maghami, S.; Aboagye, E. O. Radiolabelling an 18F biologic via facile IEDDA “click” chemistry on the GE FASTLab platform. React. Chem. Eng. 2021, 6, 1070–1078.

(29) Liu, Z.; Pourghiasian, M.; Benard, F.; Pan, J.; Lin, K. S.; Perrin, D. M. Preclinical evaluation of a high-affinity 18F-trifluoroborate octreotide derivative for somatostatin receptor imaging. J. Nucl. Med. 2014, 55, 1499–505.

(30) Leyton, J.; Iddon, L.; Perumal, M.; Indrevoll, B.; Glaser, M.; Robins, E.; George, A. J.; Cuthbertson, A.; Luthra, S. K.; Aboagye, E. O. Targeting somatostatin receptors: preclinical evaluation of novel 18F-fluoroethyltriazole-Tyr3-octreotate analogs for PET. J. Nucl. Med. 2011, 52, 1441–1448.

(31) Harris, J. M.; Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discovery 2003, 2, 214–221.