Polar auxin transport together with local synthesis and turnover are crucial for establishing auxin gradients, which determine an array of plant developmental pathways. Transcription factor-mediated control of the genes involved in these processes is steadily receiving increased attention, including efforts to find regulators determining the expression of major auxin efflux carriers of the PIN family. Now, Kong et al. (2017) have provided evidence of a direct link between auxin metabolism and transport mediated by PINs that is controlled by the transcription factor WRINKLED1. In its major form as indole-3-acetic acid (IAA), the plant hormone auxin drives plant growth and development and controls fundamental cellular processes, such as division, expansion and differentiation. Hence, transport of auxin plays a pivotal role in nearly all aspects of plant development, and efflux carriers of the PIN-FORMED (PIN) family have been described as key components exerting this role. Numerous studies have shown that the polar localization of PINs is a critical vectorial feature of auxin flow in Arabidopsis (Zazimalova et al., 2014). Many older studies had shown hormonal and environmental cues to be major regulators of their expression (Vieten et al., 2005; see also review by Krecek et al., 2009). However, the identification of molecular components determining PIN expression levels turned out to be very difficult, and the first detailed molecular mechanisms and protein factors acting upstream of these genes have only been uncovered relatively recently. Even less is known about how PINs are co-regulated with other auxin-relevant targets.

Regulation of PINs

Among the first factors shown to regulate PIN expression was the MADS transcription factor XAANTAL2 (XAL2), also known as AGAMOUS-LIKE 14 (AGL14) (Box 1). It was shown that XAL2, which otherwise regulates meristem proliferation and flowering transition, is required for expression of PIN4 and PIN1 (Tapia-López et al., 2008; Garay-Arroyo et al., 2013). Meristem defects in the xal2 mutant resemble those seen in pin4 and/or pin1 knockouts or in their higher order mutant combination, and xal2 mutants also show reduced free IAA levels and polar auxin transport (Friml et al., 2002; Bilou et al., 2005; Garay-Arroyo et al., 2013).

Another transcription factor controlling PIN expression, PPP1 (PIN2 PROMOTER BINDING PROTEIN 1), is a...
Box 1. Summary of evidence for the direct regulation of PIN expression by different transcription factors

Transcriptional regulator	Promoter target	Method	Notes	Reference
XAL2 (AGL14)	PIN4, PIN1	ChIP-qPCR		Garay-Arroyo et al. (2013)
BRM	PIN1, PIN2, PIN3, PIN4 and PIN7	ChIP-qPCR	Mediates chromatin association with PIN loci	Yang et al. (2015)
PPP1	PIN2, PIN1	Y1H screen, EMSA		Benjamins et al. (2016)
CRF2, 3, 7	PIN7	Y1H screen, ChIP-qPCR, transient co-expression in vivo		Simaskova et al. (2015)
ARF7	PIN3	Y1H assay, ChIP-qPCR	Also binds FLP	Chen et al. (2015)
FLP (MYB124), MYB88	PIN3, PIN7	Y1H assay, ChIP-qPCR, EMSA	Also binds YUC5 and TAA1 loci for auxin synthesis	Wang et al. (2015)
IDD16	PIN1	ChIP-qPCR		Cui et al. (2013)
WRI1	PIN4, PIN5	EMSA	Also binds to GH3.3 (auxin conjugation)	Kong et al. (2017)

It has been known for a long time that PIN expression can be modulated rapidly by exogenously applied auxins (Vieten et al., 2005). Using the chromatin immunoprecipitation (ChIP) assay technique, both Chen et al. (2015) and Wang et al. (2015) found that the widely studied AUXIN RESPONSE FACTOR 7 (ARF7) in concert with the MYB transcription factor FOUR LIPS (FLP, MYB124), and partially with FLP parologue MYB88, directly regulates expression of closely related PIN3 and PIN7. Moreover, FLP is itself a direct target of ARF7. Accordingly, genetic and biochemical approaches, supported by mathematical modelling, revealed that both ARF7 and FLP are required for PIN3-mediated lateral root development (Chen et al., 2015; Wang et al., 2015).

Naturally, transcriptional regulators that, besides PINs, also regulate other genes involved in auxin-dependent processes are important. However, only one example of such regulation has been provided to date. INDETERMINATE DOMAIN (IDD) transcription factors belong to the plant-specific family of developmentally important transcriptional regulators (Cui et al., 2013; Long et al., 2015; Yang et al., 2015). IDD14, IDD15 and IDD16 are, among other processes, required for inflorescence and silique formation and their (ortho)gravitropic responses. It has been reported that IDD16 and possibly IDD14 bind to the promoters of PIN1 and of genes required for auxin synthesis, namely TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (YUC) 5 and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (YUC) 1. Consequently, idd multiple mutants show several auxin-related defects, including altered levels of free IAA and moderately reduced ability to transport auxin (Cui et al., 2013).
WRINKLED1 (WR1) regulation

IAA conjugation is a highly important auxin deactivation process and, in contrast to auxin synthesis, our knowledge of this pathway is relatively limited. It is known that most of the total plant IAA pools are present as low molecular weight IAA conjugates with sugars or amino acids (Ludwig-Müller, 2011). Several members of the GRETCHEN HAGEN 3 (GH3) gene family encode auxin-inducible acyl amido synthetases required for IAA conjugation with amino acids (Staswick et al., 2005). Free IAA can be released back from some of the IAA conjugates by the action of IAA-amido hydrolases. Although GH3 genes are classically associated with early auxin transcriptional responses (Hagen and Guilfoyle, 2002), no direct upstream regulator of their expression had been identified until now.

Kong and co-authors have now identified WRINKLED1 (WR1) as a possible upstream regulator, coupling both auxin conjugation and transport (Kong et al., 2017). This AP2 transcription factor (a class AP2 ANT) is required for controlling fatty acid and oil synthesis (Cernac and Benning, 2004). The present study reveals that WR1 binds to the promoter of GH3.3 in electrophoretic mobility shift assays (EMSAs). Among other GH3 transcripts, expression of GH3.3 genes is particularly elevated in the wri1-1 mutant. This is accompanied by higher content of the IAA-Asp conjugate, while the levels of free IAA remain unchanged. Interestingly, the authors also show that WRI1, besides a non-canonical WRI1-binding motif in the GH3.3 promoter, also binds to promoters of PIN4 and PIN5 (but not to PIN1 and PIN6 in their experimental setup). Consequently, the expression of several PIN genes (PIN1, PIN3, PIN5 and PIN6) is reduced in the wri1-1 background. In agreement with these data, sensitivity to exogenously applied auxin and polar auxin transport are also affected in the wri1-1 mutant (Kong et al., 2017).

Several auxin transport facilitators, including the subclass of so-called short PINs (PIN5, 6 and 8), reside at the endoplasmic reticulum (ER) (Mravec et al., 2009; Barbez et al., 2012). Overexpression of PIN5 in BY-2 cells leads to increased levels of IAA-Asp and IAA-Glu (products of irreversible conjugation; Östing et al., 1998; Kowalczyk and Sandberg, 2001) at the expense of free IAA. It was proposed that PIN5 may enhance the transport of IAA from the cytoplasm to the ER, which might impede intercellular IAA transport by ER-located auxin degradation (Mravec et al., 2009; Simon et al., 2016). Importantly, Kong et al. observed up-regulation of GH3.3 expression but a drop in PIN5 expression in wri1-1 mutants. This suggests a possible link between the activity of GH3.3 and (PIN-mediated) intracellular auxin compartmentalization. In line with this, several IAA-amino acid hydrolases were recently shown to localize to the ER (Sanchez Carranza et al., 2016). The shared transcriptional dependency of both PIN5 and PIN6 with GH3.3 (Kong et al., 2017) leads to speculation as to whether conveying auxin into the ER might enhance the rapidity of specific, irreversible auxin deactivation in this regulatory pathway in a WRI1-dependent manner. Moreover, although the role of fatty acid synthesis has been proposed to interfere with auxin transport, this largely concerned polarity and subcellular trafficking dynamics of PINs (Roudier et al., 2010; Markham et al., 2011). Thus, the link between transcriptional regulation of PIN expression and fatty acid synthesis would be an interesting topic for future research.

Acknowledgements

Supported by the Czech Science Foundation (P501/12/0934 and GA16-26428S, to K.R.) and the Ministry of Education, Youth and Sports of the Czech Republic (the National Program for Sustainability, NPUII-LQ1601).

Note Added in Proof

While this article was in press, Simonini et al. (2017) revealed, using genome wide approaches, that also ARF3 protein, among others, directly regulates expression of PINs along with the genes required for auxin synthesis.

Key words: Arabidopsis, endoplasmatic reticulum, GH3, IAA conjugation, PIN expression, polar auxin transport, transcriptional regulation.

References

Aida M, Beis D, Heidstra R, Willemsen V, Bililou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120.

Barbez E, Kubeš M, Rolčík J, et al. 2012. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485, 119–122.

Benjamins R, Barbez E, Ortbauer M, et al. 2016. PPP1, a plant-specific regulator of transcription controls Arabidopsis development and PIN expression. Scientific Reports 6, 32196.

Bililou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44.

Cernac A, Benning C. 2004. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. The Plant Journal 40, 575–585.

Chen Q, Liu Y, Maere S, et al. 2015. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications 6, 8821.

Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, Hu Y. 2013. The arabioidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLOS Genetics 9, e1003759.

Friml J, Benková E, Bililou I, et al. 2002. APIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673.

Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, et al. 2013. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. The EMBO Journal 32, 2884–2895.

Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49, 373–385.

Kong Q, Ma W, Yang H, Ma G, Mantyla JJ, Benning C. 2017. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots. Journal of Experimental Botany 68, 4615–4622.

Kowalczyk M, Sandberg G. 2001. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiology 127, 1845–1853.

Krecek P, Škupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazímalová E. 2009. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology 10, 249.
Lezhneva L, Meurer J. 2004. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. The Plant Journal 36, 740–753.

Long Y, Smet W, Cruz-Ramírez A, et al. 2015. Arabidopsis BIRD Zinc Finger Proteins Jointly Stabilize Tissue Boundaries by Confining the Cell Fate Regulator SHORT-ROOT and Contributing to Fate Specification. The Plant Cell 27, 1185–1199.

Ludwig-Müller J. 2011. Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany 62, 1757–1773.

Manavski N, Torabi S, Lezhneva L, Arif MA, Frank W, Meurer J. 2015. HIGH CHLOROPHYLL FLUORESCENCE145 Binds to and Stabilizes the psaA 5’ UTR via a Newly Defined Repeat Motif in Embryophyta. The Plant Cell 27, 2600–2615.

Markham JE, Molino D, Gissot L, Bellec Y, Hématy K, Marion J, Belcram K, Palauqui JC, Satiat-Jeunemaitre B, Faure JD. 2011. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. The Plant Cell 23, 2362–2378.

Mravec J, Skůpa P, Bailly A, et al. 2009. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459, 1136–1140.

Ostin A, Kowalczyk M, Bhalerao RP, Sandberg G. 1998. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiology 118, 285–296.

Roudier F, Gissot L, Beaudoin F, et al. 2010. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. The Plant Cell 22, 364–375.

Sanchez Carranza AP, Singh A, Steinberger K, Panigrahi K, Palme K, Dovzhenko A, Dal Bosco C. 2016. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Scientific Reports 6, 24212.

Šimášková M, O’Brien JA, Khan M, et al. 2015. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications 6, 8717.

Simon S, Sůka P, Vienne T, et al. 2016. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. The New Phytologist 211, 65–74.

Simonini S, Bencivenga S, Trick M, Ostergaard L. 2017. Auxin-induced modulation of ETTIN activity orchestrates genes expression in Arabidopsis. The Plant Cell. doi:10.1105/tpc.17.00389

Stanwick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17, 616–627.

Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER. 2008. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiology 146, 1182–1192.

Vieten A, Vanneste S, Wisniewska J, Benková E, Benjamins R, Beeckman T, Luschnig C, Friml J. 2005. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132, 4521–4531.

Wang HZ, Yang KZ, Zou JJ, et al. 2015. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications 6, 8822.

Yang S, Li C, Zhao L, et al. 2015. The Arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to PINs and is required for root stem cell niche maintenance. The Plant Cell 27, 1670–1680.

Zazimalova E, Petrášek J, Benková E, eds. 2014. Auxin and its role in plant development. Vienna: Springer Vienna.