Minimal subdynamics and minimal flows without characteristic measures

Joshua Frisch\(^1\), Brandon Seward\(^2\) and Andy Zucker\(^3\)

\(^1\)Dept. of Mathematics, University of California San Diego 9500 Gilman Dr, La Jolla, CA 92093, United States; E-mail: jfrisch@ucsd.edu.
\(^2\)Dept. of Mathematics, University of California San Diego 9500 Gilman Dr, La Jolla, CA 92093, United States; E-mail: bseward@ucsd.edu.
\(^3\)Dept. of Pure Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON N2L3G1, Canada; E-mail: a3zucker@uwaterloo.ca (corresponding author).

Received: 21 April 2023; Revised: 20 March 2024; Accepted: 6 April 2024

2020 Mathematics Subject Classification: Primary – 37B05; Secondary – 37B10

Abstract

Given a countable group \(G\) and a \(G\)-flow \(X\), a probability measure \(\mu\) on \(X\) is called characteristic if it is Aut\((X, G)\) invariant. Frisch and Tamuz asked about the existence of a minimal \(G\)-flow, for any group \(G\), which does not admit a characteristic measure. We construct for every countable group \(G\) such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group \(G\) and a collection of infinite subgroups \(\{\Delta_i : i \in I\}\), when is there a faithful \(G\)-flow for which every \(\Delta_i\) acts minimally?

Contents

1 Background 2
2 UFOs and minimal subdynamics 3
3 Variants of strong irreducibility 6
4 The construction 8

Given a countable group \(G\) and a faithful \(G\)-flow \(X\), we write Aut\((X, G)\) for the group of homeomorphisms of \(X\) which commute with the \(G\)-action. When \(G\) is abelian, Aut\((X, G)\) contains a natural copy of \(G\) resulting from the \(G\)-action, but in general this need not be the case. Much is unknown about how the properties of \(X\) restrict the complexity of Aut\((X, G)\); for instance, Cyr and Kra [1] conjecture that when \(G = \mathbb{Z}\) and \(X \subseteq 2^\mathbb{Z}\) is a minimal, 0-entropy subshift, then Aut\((X, \mathbb{Z})\) must be amenable. In fact, no counterexample is known even when restricting to any of the three properties ‘minimal’, ‘0-entropy’ or ‘subshift’. In an effort to shed light on this question, Frisch and Tamuz [3] define a probability measure \(\mu\) on \(X\) to be characteristic if it is Aut\((X, G)\)-invariant. They show that 0-entropy subshifts always admit characteristic measures. More recently, Cyr and Kra [2] provide several examples of flows which admit characteristic measures for nontrivial reasons, even in cases where Aut\((X, G)\) is nonamenable. Frisch and Tamuz asked (Question 1.5, [3]) whether there exists, for any countable group \(G\), some minimal \(G\)-flow without a characteristic measure. We give a strong affirmative answer.

Theorem 0.1. For any countably infinite group \(G\), there is a free minimal \(G\)-flow \(X\) so that \(X\) does not admit a characteristic measure. More precisely, there is a free \((G \times F_2)\)-flow \(X\) which is minimal as a \(G\)-flow and with no \(F_2\)-invariant measure.
We remark that the X we construct will not in general be a subshift.

Over the course of proving Theorem 0.1, there are two main difficulties to overcome. The first difficulty is a collection of dynamical problems we refer to as \textit{minimal subdynamics}. The general template of these questions is as follows.

Question 0.2. Given a countably infinite group Γ and a collection $\{\Delta_i : i \in I\}$ of infinite subgroups of Γ, when is there a faithful (or essentially free, or free) minimal Γ-flow for which the action of each Δ_i is also minimal? Is there a natural space of actions in which such flows are generic?

In [8], the author showed that this was possible in the case $\Gamma = G \times H$ and $\Delta = G$ for any countably infinite groups G and H. We manage to strengthen this result considerably.

Theorem 0.3. For any countably infinite group Γ and any collection $\{\Delta_n : n \in \mathbb{N}\}$ of infinite normal subgroups of Γ, there is a free Γ-flow which is minimal as a Δ_n-flow for every $n \in \mathbb{N}$.

In fact, what we show when proving Theorem 0.3 is considerably stronger. Recall that given a countably infinite group Γ, a subshift $X \subseteq 2^\Gamma$ is \textit{strongly irreducible} if there is some finite symmetric $D \subseteq \Gamma$ so that whenever $S_0, S_1 \subseteq \Gamma$ satisfy $DS_0 \cap S_1 = \emptyset$ (i.e., S_0 and S_1 are D-apart), then for any $x_0, x_1 \in X$, there is $y \in X$ with $y|S_i = x_i|S_i$ for each $i < 2$. Write S for the set of strongly irreducible subshifts, and write \overline{S} for its Vietoris closure. Frisch, Tamuz and Vahidi-Ferdowsi [5] show that in \overline{S}, the minimal subshifts form a dense G_δ subset. In our proof of Theorem 0.3, we show that the shifts in \overline{S} which are Δ_n-minimal for each $n \in \mathbb{N}$ also form a dense G_δ subset.

This brings us to the second main difficulty in the proof of Theorem 0.1. Using this stronger form of Theorem 0.3, one could easily prove Theorem 0.1 by finding a strongly irreducible F_2-subshift which does not admit an invariant measure. This would imply the existence of a strongly irreducible $(G \times F_2)$-subshift without an F_2-invariant measure. As not admitting an F_2-invariant measure is a Vietoris-open condition, the genericity of G-minimal subshifts would then be enough to obtain the desired result. Unfortunately, whether such a strongly irreducible subshift can exist (for any nonamenable group) is an open question. To overcome this, we introduce a flexible weakening of the notion of a strongly irreducible shift.

The paper is organized as follows. Section 1 is a very brief background section on subsets of groups, subshifts and strong irreducibility. Section 2 introduces the notion of a UFO, a useful combinatorial gadget for constructing shifts where subgroups act minimally; Theorem 0.3 answers Question 3.6 from [8]. Section 3 introduces the notion of B-irreducibility for any group H, where $B \subseteq P_f (H)$ is a right-invariant collection of finite subsets of H. When $H = F_2$, we will be interested in the case when B is the collection of finite subsets of F_2 which are connected in the standard left Cayley graph. Section 4 gives the proof of Theorem 0.1.

1. Background

Let Γ be a countably infinite group. Given $U, S \subseteq \Gamma$ with U finite, then we call S a (one-sided) U-\textit{spaced} set if for every $g \neq h \in S$ we have $h \notin Ug$, and we call S a U-\textit{syndetic} set if $US = \Gamma$. A maximal U-\textit{spaced} set is simply a U-spaced set which is maximal under inclusion. We remark that if S is a maximal U-spaced set, then S is $(U \cup U^{-1})$-syndetic. We say that sets $S, T \subseteq \Gamma$ are (one-sided) U-\textit{apart} if $US \cap T = \emptyset$ and $S \cap UT = \emptyset$. Notice that much of this discussion simplifies when U is symmetric, so we will often assume this. Also, notice that the properties of being U-spaced, maximal U-spaced, U-syndetic and U-apart are all right invariant.

If A is a finite set or \textit{alphabet}, then Γ acts on A^Γ by \textit{right shift}, where given $x \in A^\Gamma$ and $g, h \in \Gamma$, we have $(gx)(h) = x(hg)$. A \textit{subshift} of A^Γ is a nonempty, closed, Γ-invariant subset. Let $\text{Sub}(A^\Gamma)$ denote the space of subshifts of A^Γ endowed with the Vietoris topology. This topology can be described as follows. Given $X \subseteq A^\Gamma$ and a finite $U \subseteq \Gamma$, the set of U-\textit{patterns} of X is the set $P_U (X) = \{x|_U : x \in X\} \subseteq A^U$. Then the typical basic open neighborhood of $X \in \text{Sub}(A^\Gamma)$ is the set $N_U (X) := \{Y \in \text{Sub}(A^\Gamma) : P_U (Y) = P_U (X)\}$, where U ranges over finite subsets of Γ.

https://doi.org/10.1017/fms.2024.41 Published online by Cambridge University Press
A subshift $X \subseteq A^\Gamma$ is U-irreducible if for any $x_0, x_1 \in X$ and any $S_0, S_1 \subseteq \Gamma$ which are U-apart, there is $y \in X$ with $y|_{S_i} = x_i|_{S_i}$ for each $i < 2$. If X is U-irreducible and $V \supseteq U$ is finite, then X is also V-irreducible. We call X strongly irreducible if there is some finite $U \subseteq \Gamma$ with X U-irreducible. By enlarging U if needed, we can always assume U is symmetric. Let $S(A^\Gamma) \subseteq \text{Sub}(A^\Gamma)$ denote the set of strongly irreducible subshifts of A^Γ, and let $\overline{S}(A^\Gamma)$ denote the closure of this set in the Vietoris topology.

More generally, if 2^M denotes Cantor space, then Γ acts on $(2^M)\Gamma$ by right shift exactly as above. If $k < \omega$, we let $\pi_k : (2^M) \rightarrow (2^k)\Gamma$ denote the restriction to the first k entries. This induces a factor map $\overline{\pi}_k : (2^M)\Gamma \rightarrow (2^k)\Gamma$ given by $\overline{\pi}_k(x)(g) = \pi_k(x(g))$; we also obtain a map $\overline{\pi}_k : \text{Sub}(2^M)\Gamma \rightarrow \text{Sub}(2^k)\Gamma$ (where 2^k is viewed as a finite alphabet) given by $\overline{\pi}_k(X) = \overline{\pi}_k[X]$. The Vietoris topology on $\text{Sub}(2^M)\Gamma$ is the coarsest topology making every such $\overline{\pi}_k$ continuous. We call a subflow $X \subseteq (2^M)\Gamma$ strongly irreducible if for every $k < \omega$, the subshift $\overline{\pi}_k(X) \subseteq (2^k)\Gamma$ is strongly irreducible in the ordinary sense. We let $\overline{S}((2^M)\Gamma) \subseteq \text{Sub}(2^M)\Gamma$ denote the set of strongly irreducible subflows of $(2^M)\Gamma$, and we let $\overline{\mathcal{S}}((2^M)\Gamma)$ denote its Vietoris closure.

The idea of considering the closure of the strongly irreducible shifts has its roots in [4]. This is made more explicit in [5], where it is shown that in $\overline{\mathcal{S}}(A^\Gamma)$, the minimal subflows form a dense G_δ subset. More or less the same argument shows that the same holds in $\overline{S}((2^M)\Gamma)$ (see [6]). Recall that a Γ-flow X is free if for every $g \in \Gamma \setminus \{1_\Gamma\}$ and every $x \in X$, we have $gx \neq x$. The main reason for considering a Cantor space alphabet is the following result, which need not be true for finite alphabets.

Proposition 1.1. In $\overline{\mathcal{S}}((2^M)\Gamma)$, the free flows form a dense G_δ subset.

Proof. Fixing $g \in \Gamma$, the set $\{X \in \text{Sub}((2^M)\Gamma) : \forall x \in X \,(gx \neq x)\}$ is open; indeed, if $X_n \rightarrow X$ is a convergent sequence in $\text{Sub}((2^M)\Gamma)$ and $x_n \in X_n$ is a point fixed by g, then passing to a subsequence, we may suppose $x_n \rightarrow x \in X$, and we have $gx = x$. Intersecting over all $g \in \Gamma \setminus \{1_\Gamma\}$, we see that freeness is a G_δ condition.

Thus, it remains to show that freeness is dense in $\overline{\mathcal{S}}((2^M)\Gamma)$. To that end, we fix $g \in \Gamma \setminus \{1_\Gamma\}$ and show that the set of shifts in $\mathcal{S}((2^M)\Gamma)$ where g acts freely is dense. Fix $X \in \mathcal{S}((2^M)\Gamma)$, $k < \omega$ and a finite $U \subseteq \Gamma$; so a typical open set in $\mathcal{S}((2^M)\Gamma)$ has the form $\{X' \in \mathcal{S}((2^M)\Gamma) : P_U(\overline{\pi}_k(X')) = P_U(\overline{\pi}_k(X))\}$. We want to produce $Y \in \text{Sub}((2^M)\Gamma)$ which is strongly irreducible, g-free and with $P_U(\overline{\pi}_k(Y)) = P_U(\overline{\pi}_k(X))$. In fact, we will produce such a Y with $\overline{\pi}_k(Y) = \overline{\pi}_k(X)$.

Let $D \subseteq \Gamma$ be a finite symmetric set containing g and 1_Γ. Setting $m = |D|$, consider the subshift $\text{Color}(D, m) \subseteq m^\Gamma$ defined by

$$\text{Color}(D, m) := \{x \in m^\Gamma : \forall i < m \,[x^{-1}(\{i\}) \text{ is } D\text{-spaced}]\}.$$

A greedy coloring argument shows that $\text{Color}(D, m)$ is nonempty and D-irreducible. Moreover, g acts freely on $\text{Color}(D, m)$. Inject m into $2^{(k, \ldots, \ell-1)}$ for some $\ell > k$ and identify $\text{Color}(D, m)$ as a subflow of $(2^{(k, \ldots, \ell-1)})\Gamma$. Then $Y := \overline{\pi}_k(X) \times \text{Color}(D, m) \subseteq (2^\ell)\Gamma \subseteq (2^M)\Gamma$, where the last inclusion can be formed by adding strings of zeros to the end. Then Y is strongly irreducible, g-free and $\overline{\pi}_k(Y) = \overline{\pi}_k(X)$. \qed

2. UFOs and minimal subdynamics

Much of the construction will require us to reason about the product group $G \times F_2$. So for the time being, fix countably infinite groups $\Delta \subseteq \Gamma$. For our purposes, Γ will be $G \times F_2$, and Δ will be G, where we identify G with a subgroup of $G \times F_2$ in the obvious way. However, for this subsection, we will reason more generally.

Definition 2.1. Let $\Delta \subseteq \Gamma$ be countably infinite groups. A finite subset $U \subseteq \Gamma$ is called a (Γ, Δ)-UFO if for any maximal U-spaced set $S \subseteq \Gamma$, we have that S meets every right coset of Δ in Γ.

We say that the inclusion of groups $\Delta \subseteq \Gamma$ admits UFOs if for every finite $U \subseteq \Gamma$, there is a finite $V \subseteq \Gamma$ with $V \supseteq U$ which is a (Γ, Δ)-UFO.

As a word of caution, we note that the property of being a (Γ, Δ)-UFO is not upwards closed.
The terminology comes from considering the case of a product group, that is, $\Gamma = \mathbb{Z} \times \mathbb{Z}$ and $\Delta = \mathbb{Z} \times \{0\}$. Figure 1 depicts a typical UFO subset of $\mathbb{Z} \times \mathbb{Z}$.

Proposition 2.2. Let Δ be a subgroup of Γ. If $|\bigcap_{u \in U} u\Delta u^{-1}|$ is infinite for every finite set $U \subseteq \Gamma$, then $\Delta \subseteq \Gamma$ admits UFOs. In particular, if Δ contains an infinite subgroup that is normal in Γ, then $\Delta \subseteq \Gamma$ admits UFOs.

Proof. We prove the contrapositive. So assume that $\Delta \not\subseteq \Gamma$ does not admit UFOs. Let $U \subseteq \Gamma$ be a finite symmetric set such that no finite $V \subseteq \Gamma$ containing U is a (Γ, Δ)-UFO. Let $D \subseteq \Delta$ be finite, symmetric and contain the identity. It will suffice to show that $C = \bigcap_{u \in U} uDu^{-1}$ satisfies $|C| \leq |U|$.

Set $V = U \cup D^2$. Since V is not a (Γ, Δ)-UFO, there is a maximal V-spaced set $S \subseteq \Gamma$ and $g \in \Gamma$ with $S \cap \Delta g = \emptyset$. Since S is V-spaced and $u^{-1}C^2u \subseteq D^2 \subseteq V$, the set $C_u = (uS) \cap (Cg)$ is C^2-spaced for every $u \in U$. Of course, any C^2-spaced subset of Cg is empty or a singleton, so $|C_u| \leq 1$ for each $u \in U$. On the other hand, since S is maximal we have $VS = \Gamma$, and since $S \cap \Delta g = \emptyset$ we must have $Cg \subseteq US$. Therefore, $|C| = |Cg| = \sum_{u \in U} |C_u| \leq |U|$. □

In the spaces $\overline{S}(k^\Gamma)$ and $\overline{S}((2^\mathbb{N})^\Gamma)$, the minimal flows form a dense G_δ. However, when $\Delta \subseteq \Gamma$ is a subgroup, we can ask about the properties of members of $\overline{S}(k^\Gamma)$ and $\overline{S}((2^\mathbb{N})^\Gamma)$ viewed as Δ-flows.

Definition 2.3. Given a subshift $X \subseteq k^\Gamma$ and a finite $E \subseteq \Gamma$, we say that X is (Δ, E)-minimal if for every $x \in X$ and every $p \in P_E(X)$, there is $g \in \Delta$ with $(gx)|_E = p$. Given a subflow $X \subseteq (2^\mathbb{N})^\Gamma$ and $n \in \mathbb{N}$, we say that X is (Δ, E, n)-minimal if $\overline{p_n}(X) \subseteq (2^n)^\Gamma$ is (Δ, E)-minimal. When $\Delta = \Gamma$, we simply say that X is E-minimal or (E, n)-minimal.

The set of (Δ, E)-minimal flows is open in $\text{Sub}(k^\Gamma)$, and $X \subseteq k^\Gamma$ is minimal as a Δ-flow iff it is (Δ, E)-minimal for every finite $E \subseteq \Gamma$. Similarly, the set of (Δ, E, n)-minimal flows is open in $\text{Sub}((2^\mathbb{N})^\Gamma)$, and $X \subseteq (2^\mathbb{N})^\Gamma$ is minimal as a Δ-flow iff it is (Δ, E, n) minimal for every finite $E \subseteq \Gamma$ and every $n \in \mathbb{N}$.

In the proof of Proposition 2.4, it will be helpful to extend conventions about the shift action to subsets of Γ. If $U \subseteq \Gamma$, $g \in G$ and $p \in k^U$, we write $g \cdot p \in k^{Ug^{-1}}$ for the function where given $h \in Ug^{-1}$, we have $(g \cdot p)(h) = p(hg)$.

Proposition 2.4. Suppose $\Delta \subseteq \Gamma$ are countably infinite groups and that $\Delta \subseteq \Gamma$ admits UFOs. Then $\{X \in \overline{S}(k^\Gamma) : X \text{ is minimal as a } \Delta \text{-flow}\}$ is a dense G_δ subset. Similarly, $\{X \in \overline{S}((2^\mathbb{N})^\Gamma) : X \text{ is minimal as a } \Delta \text{-flow}\}$ is a dense G_δ subset.

Proof. We give the arguments for k^Γ, as those for $(2^\mathbb{N})^\Gamma$ are very similar.

It suffices to show for a given finite $E \subseteq \Gamma$ that the collection of (Δ, E)-minimal flows is dense in $\overline{S}(k^\Gamma)$. By enlarging E if needed, we can assume that E is symmetric.

Consider a nonempty open $Q \subseteq \overline{S}(k^\Gamma)$. By shrinking Q and/or enlarging E if needed, we can assume that for some $X \in S(k^\Gamma)$, we have $Q = N_E(X) \cap \overline{S}(k^\Gamma)$. We will build a (Δ, E)-minimal shift Y with $Y \in N_E(X) \cap S(k^\Gamma)$. Fix a finite symmetric $D \subseteq \Gamma$ so that X is D-irreducible. Then fix a finite $U \subseteq \Gamma$ which is large enough to contain an EDE-spaced set $Q \subseteq U \cap \Delta$ of cardinality $|P_E(X)|$, and enlarging U if needed, choose such a Q with $EQ \subseteq U$. Fix a bijection $Q \to P_E(X)$ by writing $P_E(X) = \{p_g : g \in Q\}$. Because X is D-irreducible, we can find $\alpha \in P_U(X)$ so that $(gq)|_E = p_g$ for every $g \in Q$. By Proposition 2.2, fix a finite $V \subseteq \Gamma$ with $V \supseteq UDU$ which is a
(Γ, Δ)-UFO. We now form the shift
\[Y = \{ y \in X : \exists \text{ a max. } V\text{-spaced set } T \text{ such that } \forall g \in T \ (g \cdot y)|_U = \alpha \}. \]

Because \(V = UDU \) and \(X \) is \(D \)-irreducible, we have that \(Y \neq \emptyset \). In particular, for any maximal \(V \)-spaced set \(T \subseteq \Gamma \), we can find \(y \in Y \) so that \((g \cdot y)|_U = \alpha \) for every \(g \in T \). We also note that \(Y \in N_E(X) \) by our construction of \(\alpha \).

To see that \(Y \) is \((\Delta, E)\)-minimal, fix \(y \in Y \) and \(p \in P_E(Y) \). Suppose this is witnessed by the maximal \(V \)-spaced set \(T \subseteq \Gamma \). Because \(V \) is a \((\Gamma, \Delta) \)-UFO, find \(h \in \Delta \cap T \). So \((hy)|_U = \alpha \). Now, suppose \(g \in Q \) is such that \(p = p_g \). We have \((ghy)|_E = (g \cdot ((hy)|_U)|_E = p_g \).

To see that \(Y \in S(k^\Gamma) \), we will show that \(Y \) is \(DUVUD \)-irreducible. Suppose \(y_0, y_1 \in Y \) and \(S_0, S_1 \subseteq \Gamma \) are \(DUVUD \)-apart. For each \(i < 2 \), fix \(T_i \subseteq \Gamma \) a maximal \(V \)-spaced set which witnesses that \(y_i \) is in \(Y \). Set \(B_i = \{ g \in T_i : DUG \cap S_i \neq \emptyset \} \). Notice that \(B_i \subseteq UDS_i \). It follows that \(B_0 \cup B_1 \) is \(V \)-spaced, so extend to a maximal \(V \)-spaced set \(B \). It also follows that \(S_i \cup UB_i \subseteq U^2 DS_i \). Since \(V \subseteq UDU \) and by the definition of \(B_i \), the collection of sets \(\{ S_i \cup UB_i : i < 2 \} \cup \{ Ug : g \in B \setminus (B_0 \cup B_1) \} \) is pairwise \(D \)- apart. By the \(D \)-irreducibility of \(X \), we can find \(y \in X \) with \(y|_{S_i \cup UB_i} = y_i|_{S_i \cup UB_i} \) for each \(i < 2 \) and with \((g \cdot y)|_U = \alpha \) for each \(g \in B \setminus (B_0 \cup B_1) \). Since \(B_i \subseteq T_i \), we actually have \((g \cdot y)|_U = \alpha \) for each \(g \in B \). So \(y \in Y \) and \(y|_{S_i} = y_i|_{S_i} \) as desired.

Proof of Theorem 0.3. By Proposition 2.4, the generic member of \(\overline{S}((\mathbb{Z}^N)^\Gamma) \) is minimal as a \(\Delta_n \)-flow for each \(n \in \mathbb{N} \), and by Proposition 1.1, the generic member of \(\overline{S}((\mathbb{N}^N)^\Gamma) \) is free.

In contrast to Theorem 0.1, the next example shows that Question 0.2 is nontrivial to answer in full generality.

Theorem 2.5. Let \(G = \sum_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z}) \), and let \(X \) be a \(G \) flow with infinite underlying space. Then there exists an infinite subgroup \(H \) such that \(X \) is not minimal as an \(H \) flow.

Proof. We may assume that \(X \) is a minimal \(G \)-flow, as otherwise we may take \(H = G \). We construct a sequence \(X \supseteq K_0 \supseteq K_1 \supseteq \cdots \) of proper, nonempty, closed subsets of \(X \) and a sequence of group elements \(\{ g_n : n \in \mathbb{N} \} \) so that by setting \(K = \bigcap_{n} K_n \) and \(H = \langle g_n : n \in \mathbb{N} \rangle \), then \(K \) will be a minimal \(H \)-flow. Start by fixing a closed, proper subset \(K_0 \subseteq X \) with nonempty interior. Suppose \(K_n \) has been created and is \(\langle g_0, \ldots, g_{n-1} \rangle \)-invariant. As \(X \) is a minimal \(G \)-flow, the set \(S_n := \{ g \in G : \text{Int}(gK_n \cap K_n) \neq \emptyset \} \) is infinite. Pick any \(g_n \in S_n \setminus \{ 1_G \} \), and set \(K_{n+1} = g_n K_n \cap K_n \). As \(g_n^2 = 1_G \), we see that \(K_{n+1} \) is \(g_n \)-invariant, and as \(G \) is abelian, we see that \(K_{n+1} \) is also \(g_i \)-invariant for each \(i < n \). It follows that \(K \) will be \(H \)-invariant as desired.

Before moving on, we give a conditional proof of Theorem 0.1, which works as long as some nonamenable group admits a strongly irreducible shift without an invariant measure. It is the inspiration for our overall construction.

Proposition 2.6. Let \(G \) and \(H \) be countably infinite groups, and suppose that for some \(k < \omega \) and some strongly irreducible flow \(Y \subseteq k^H \) that \(Y \) does not admit an \(H \)-invariant measure. Then there is a minimal \(G \)-flow which does not admit a characteristic measure.

Proof. Viewing \(Z = k^G \times Y \) as a subshift of \(k^{G \times H} \), then \(Z \) is strongly irreducible and does not admit an \(H \)-invariant probability measure. The property of not possessing an \(H \)-invariant measure is an open condition in \(\text{Sub}(k^{G \times H}) \); indeed, if \(X_n \rightarrow X \) is a convergent sequence in \(\text{Sub}(k^{G \times H}) \) and \(\mu_n \) is an \(H \)-invariant probability measure supported on \(X_n \), then by passing to a subsequence, we may suppose that the \(\mu_n \) weak∗-converge to some \(H \)-invariant probability measure \(\mu \) supported on \(X \). By Proposition 2.4, we can therefore find \(X \subseteq k^{G \times H} \) which is minimal as a \(G \)-flow and which does not admit an \(H \)-invariant measure. As \(H \) acts by \(G \)-flow automorphisms on \(X \), we see that \(X \) does not admit a characteristic measure. \(\square \)
3. Variants of strong irreducibility

In this section, we investigate a weakening of strong irreducibility that one can define given any right-invariant collection \mathcal{B} of finite subsets of a given countable group. For our overall construction, we will consider F_2 and $G \times F_2$, but we give the definitions for any countably infinite group Γ. Write $\mathcal{P}_f(\Gamma)$ for the collection of finite subsets of Γ.

Definition 3.1. Fix a right-invariant subset $\mathcal{B} \subseteq \mathcal{P}_f(\Gamma)$. Given $k \in \mathbb{N}$, we say that a subshift $X \subseteq k^\Gamma$ is \mathcal{B}-irreducible if there is a finite $D \subseteq \Gamma$ so that for any $m < \omega$, any $B_0, \ldots, B_{m-1} \in \mathcal{B}$, and any $x_0, \ldots, x_{m-1} \in X$, if the sets $\{B_0, \ldots, B_{m-1}\}$ are pairwise D-apart, then there is $y \in X$ with $y|_{B_i} = x_i|_{B_i}$ for each $i < m$. We call D the witness to \mathcal{B}-irreducibility. If we have D in mind, we can say that X is \mathcal{B}-D-irreducible.

We say that a subflow $X \subseteq (2^\mathbb{N})^\Gamma$ is \mathcal{B}-irreducible if for each $k \in \mathbb{N}$, the subshift $\pi_k(X) \subseteq (2^k)^\Gamma$ is \mathcal{B}-irreducible.

We write $S_{\mathcal{B}}(k^\Gamma)$ or $S_{\mathcal{B}}((2^\mathbb{N})^\Gamma)$ for the set of \mathcal{B}-irreducible subflows of k^Γ or $(2^\mathbb{N})^\Gamma$, respectively, and we write $\overline{S}_{\mathcal{B}}(k^\Gamma)$ or $\overline{S}_{\mathcal{B}}((2^\mathbb{N})^\Gamma)$ for the Vietoris closures.

Remark.

1. If \mathcal{B} is closed under unions, it is enough to consider $m = 2$. However, this will often not be the case.
2. By compactness, if $X \subseteq k^\Gamma$ is \mathcal{B}-D-irreducible, $\{B_n : n < \omega\} \subseteq \mathcal{B}$ is pairwise D-apart, and $\{x_n : n < \omega\} \subseteq X$, then there is $y \in X$ with $y|_{B_i} = x_i|_{B_i}$.
3. If $\mathcal{B} \subseteq \mathcal{B}'$, then $S_{\mathcal{B}'}(k^\Gamma) \subseteq S_{\mathcal{B}}(k^\Gamma)$ and $S_{\mathcal{B}'}((2^\mathbb{N})^\Gamma) \subseteq S_{\mathcal{B}}((2^\mathbb{N})^\Gamma)$.

When \mathcal{B} is the collection of all finite subsets of H, then we recover the notion of a strongly irreducible shift. Again, we consider Cantor space alphabets to obtain freeness.

Proposition 3.2. For any right-invariant collection $\mathcal{B} \subseteq \mathcal{P}_f(\Gamma)$, the generic member of $\overline{S}_{\mathcal{B}}((2^\mathbb{N})^\Gamma)$ is free.

Proof. Analyzing the proof of Proposition 1.1, we see that the only properties that we need of the collections $S_{\mathcal{B}}(k^\Gamma)$ and $S_{\mathcal{B}}((2^\mathbb{N})^\Gamma)$ for the proof to generalize are that they are closed under products and contain the flows $\text{Color}(D, m)$. If $k, \ell \in \mathbb{N}$ an $X \subseteq k^\Gamma$ and $Y \subseteq \ell^\Gamma$ are \mathcal{B}-D-irreducible and \mathcal{B}-E-irreducible for some finite $D, E \subseteq \Gamma$, then $X \times Y \subseteq (k \times \ell)^\Gamma$ will be \mathcal{B}-$(D \cup E)$-irreducible. And as $\text{Color}(D, m)$ is strongly irreducible, it is \mathcal{B}-irreducible. \hfill \Box

Now, we consider the group F_2. We consider the left Cayley graph of F_2 with respect to the standard generating set $A := \{a, b, a^{-1}, b^{-1}\}$. We let $d : F_2 \times F_2 \to \omega$ denote the graph metric. Write $D_n = \{s \in F_2 : d(s, 1_{F_2}) \leq n\}$.

Definition 3.3. Given n with $1 \leq n < \omega$, we set

$$B_n = \{D \in \mathcal{P}_f(F_2) : \text{connected components of } D \text{ are pairwise } D_n\text{-apart}\}.$$

Write B_ω for the collection of finite, connected subsets of F_2.

Proposition 3.4. Suppose $X \subseteq k^{F_2}$ is B_ω-irreducible. Then there is some $n < \omega$ for which X is B_n-irreducible.
Proof. Suppose X is B_ω-D_n-irreducible. We claim X is B_n-D_n-irreducible. Suppose $m < \omega$, $B_0, \ldots, B_{m-1} \in B_n$ are pairwise D_n-apart, and $x_0, \ldots, x_{m-1} \in X$. For each $i < m$, we suppose B_i has n_i-many connected components, and we write $\{C_{i,j} : j < n_i\}$ for these components. Then the collection of connected sets $\bigcup_{i < m} \{C_{i,j} : j < n_i\}$ is pairwise D_n-apart. As X is B_ω-D_n-irreducible, we can find $y \in X$ so that for each $i < m$ and $j < n_i$, we have $y|_{C_{i,j}} = x_i|_{C_{i,j}}$. Hence, $y|_{B_i} = x_i|_{B_i}$, showing that X is B_n-D_n-irreducible.

We now construct a B_ω-irreducible subshift with no F_2-invariant measure. We consider the alphabet A^2 and write $\pi_0, \pi_1 : A^2 \to A$ for the projections. We set

$$X_{padox} = \{x \in (A^2)^2 : \forall g \in F_2 \forall i, j < 2 (i, g) \neq (j, h) \Rightarrow \pi_i(x(g)) \cdot g \neq \pi_j(x(h)) \cdot h\}.$$

More informally, the flow X_{padox} is the space of ‘2-to-1 paradoxical decompositions’ of F_2 using A. We remark that here, our decomposition need not be a partition of F_2; we just ask for disjoint $S_0, S_1 \subseteq F_2$ such that for every $g \in G$ and $i < 2$, we have $Ag \cap S_i \neq \emptyset$. This is in some sense the prototypical example of an F_2-shift with no F_2-invariant measure.

Lemma 3.5. X_{padox} has no F_2-invariant measure.

Proof. For $u \in A^2$ set $Y_u = \{x \in X_{padox} : x(1_G) = u\}$. Notice that if $y \in Y_u, i < 2$ and $x = \pi_i(u)y$, then $x(\pi_i(u)^{-1}) = y(1_G) = u$. Consequently, if $u, v \in A^2, x \in \pi_i(u)Y_u \cap \pi_j(v)Y_v$ then, since $x \in X_{padox}$ and

$$\pi_i(x(\pi_i(u)^{-1}))\pi_i(u)^{-1} = 1_G = \pi_j(x(\pi_j(v)^{-1}))\pi_j(v)^{-1},$$

we must have that $(i, \pi_i(u)) = (j, \pi_j(v))$, and hence also

$$\pi_{1-i}(u) = \pi_{1-i}(x(\pi_i(u)^{-1})) = \pi_{1-j}(x(\pi_j(v)^{-1})) = \pi_{1-j}(v).$$

Therefore, $\pi_i(u)Y_u \cap \pi_j(v)Y_v = \emptyset$ whenever $(i, u) \neq (j, v)$.

If μ were an invariant Borel probability measure on X_{padox}, then we would have

$$2\mu(X_{padox}) = 2 \sum_{u \in A^2} \mu(Y_u) = \sum_{i < 2} \sum_{u \in A^2} \mu(\pi_i(u)Y_u) \leq \mu(X)$$

which is a contradiction.

When proving that X_{padox} is B_ω-irreducible, note that $D_1 = A \cup \{1_F\}$.

Proposition 3.6. X_{padox} is B_ω-D_4-irreducible.

Proof. The proof will use a 2-to-1 instance of Hall’s matching criterion [7] which we briefly describe. Fix a bipartite graph $G = (V, E)$ with partition $V = V_0 \cup V_1$. Given $S \subseteq V_0$, write $N_G(S) = \{v \in V_1 : \exists u \in S(u, v) \in E\}$. Then the matching condition we need states that if for every finite $S \subseteq V_0$, we have $|N_G(S)| \geq 2S$, then there is $E' \subseteq E$ so that in the graph $G' := (V, E')$, $d_G(u) = 2$ for every $u \in V_0$.

Let $B_0, \ldots, B_{k-1} \in B_\omega$ be pairwise D_4-apart. Let $x_0, \ldots, x_{k-1} \in X_{padox}$. To construct $y \in X_{padox}$ with $y|_{B_i} = x_i|_{B_i}$ for each $i < k$, we need to verify a 2-to-1 Hall’s matching criterion on every finite subset of $F_2 \setminus \bigcup_{i < k} B_i$. Call $s \in F_2$ matched if for some $i < k$, some $g \in B_i$ and some $j < 2$, we have $s = \pi_j(x_i(g)) \cdot g$. So we need for every finite $E \subseteq \mathcal{P}_f(F_2 \setminus \bigcup_{i < k} B_i)$ that AE contains at least $2|E|$-many unmatched elements. Towards a contradiction, let $E \subseteq \mathcal{P}_f(F_2 \setminus \bigcup_{i < k} B_i)$ be a minimal failure of the Hall condition.

In the left Cayley graph of F_2, given a reduced word w in alphabet $A = \{a, b, a^{-1}, b^{-1}\}$, write N_w for the set of reduced words which end with w. Now, find $t \in E$ (let us assume the leftmost character of t is a) so that all of $E \cap N_{at}, E \cap N_{bt}$ and $E \cap N_{b^{-1}t}$ are empty. If any two of at, bt and $b^{-1}t$ is an unmatched point in AE, then $E \setminus \{t\}$ is a smaller failure of Hall’s criterion. So there must be
some $i < k$, some $g \in B_i$ and some $j < 2$, we have $\pi_j(x_i(g)) \cdot g \in \{at, bt, b^{-1}t\}$. Let us suppose $\pi_j(x_i(g)) \cdot g = at$. Note that since $g \notin E$, we must have $g \in \{bat, a^2t, b^{-1}at\}$. But then since B_i is connected, we have $D_1B_i \cap \{bt, b^{-1}t\} = \emptyset$, and since the other B_q are at least distance 5 from B_i, we have $D_1B_q \cap \{bt, b^{-1}t\} = \emptyset$ for every $q \in k \setminus \{i\}$. In particular, bt and $b^{-1}t$ are unmatched points in AE, a contradiction. \qed

We remark that X_{p_dox} is not D_n-irreducible for any $n \in \mathbb{N}$. See Figure 2.

4. The construction

Our goal for the rest of the paper is to use X_{p_dox} to build a subflow of $(2^{|I|})^{G \times F_2}$ which is free, G-minimal and with no F_2-invariant measure. In what follows, given an F_2-coset $\{g\} \times F_2$, we endow this coset with the left Cayley graph for F_2 using the generating set A exactly as above. We extend the definition of B_n to refer to finite subsets of any given F_2-coset.

Definition 4.1. Given n with $1 \leq n \leq \omega$, we set

$$B_n^* = \{D \in \mathcal{P}_f (G \times F_2) : \text{ for each } F_2 \text{- coset } C, D \cap C \in B_n\}.$$

Given $y \in k^{G \times F_2}$ and $g \in G$, we define $y_g \in k^{F_2}$ where given $s \in F_2$, we set $y_g(s) = y(g, s)$. If $X \subseteq k^{F_2}$ is B_n^*-irreducible, then the subshift $X^G \subseteq k^{G \times F_2}$ is in $S_{B_n^*}$, where we view X^G as the set $\{y \in k^{G \times F_2} : \forall g \in G (y_g \in X)\}$. In particular, $(X_{p_dox})^G$ is B_n^*-irreducible. By encoding $(X_{p_dox})^G$ as a subshift of $(2^{|I|})^{G \times F_2}$ for some $m \in \mathbb{N}$ and considering $\tilde{\pi}_m^{-1}((X_{p_dox})^G) \subseteq (2^{|I|})^{G \times F_2}$, we see that there is a B_n^*-irreducible subflow of $(2^{|I|})^{G \times F_2}$ for which the F_2-action doesn’t fix a measure. It follows that such subflows constitute a nonempty open subset of $\Phi := \bigcup_n S_{B_n^*}((2^{|I|})^{G \times F_2})$. Combining the next result with Proposition 3.2, we will complete the proof of Theorem 0.1.

Proposition 4.2. With Φ as above, the G-minimal flows are dense G_δ in Φ.

Proof. We show the result for $\Phi_k := \bigcup_n S_{B_n^*}(k^{G \times F_2})$ to simplify notation; the proof in full generality is almost identical.

*Figure 2. A pair of outgoing edges, drawn in solid red, is chosen at each of v_{00}, v_{01}, v_{10} and v_{11}. Edges which must consequently be oriented in a particular direction are indicated with dashed red arrows. Most importantly, v_\varnothing is forced to direct an edge to u_\varnothing. By considering the generalization of this picture for any length of binary string, we see that X_{p_dox} cannot be D_n-irreducible for any $n \in \mathbb{N}$.***
We only need to show density. To that end, fix a finite symmetric \(E \subseteq G \times F_2 \) which is connected in each \(F_2 \)-coset. It is enough to show that the \((G, E)\)-minimal subshifts are dense in \(\Phi_k \). Fix some nonempty open \(O \subseteq \Phi_k \). By enlarging \(E \) and/or shrinking \(O \), we may assume that for some \(n < \omega \) and

\[X \in S_{B_n^*}(k^{G \times F_2}) \text{ so that } O = \{ X' \in \Phi_k : P_E(X') = P_E(X) \}. \]

We will build a \((G, E)\)-minimal subshift \(Y \subseteq k^{G \times F_2} \) so that \(P_E(Y) = P_E(X) \) and so that for some \(N < \omega \), we have \(Y \in S_{B_n^*}(k^{G \times F_2}) \).

Recall that \(D_n \subseteq F_2 \) denotes the ball of radius \(n \). Fix a finite, symmetric \(D \subseteq G \times F_2 \) so that

\[\{1_G\} \times D_{2n} \subseteq D \text{ and } X \in B_{n}^*-D\text{-irreducible.} \]

Find a finite symmetric \(U_0 \subseteq G \) with \(1_G \subseteq U_0 \) and \(r < \omega \) so that upon setting \(U = U_0 \times D_r \subseteq G \times F_2 \), then \(U \) is large enough to contain an \(EDE \)-spaced set \(Q \subseteq G \) with \(EQ \subseteq U \). As \(X \) is \(B_{n}^*-D\text{-irreducible, there is a pattern } \alpha \in P_U(X) \) so that

\[\{(ga)_E : g \in Q\} = P_E(X). \]

Let \(V \supseteq UD^2U \) be a \((G \times F_2, G)\)-UFO. We remark that for most of the remainder of the proof, it would be enough to have \(V \supseteq UDU \); we only use the stronger assumption \(V \supseteq UD^2U \) in the proof of the final claim. Consider the following subshift:

\[Y = \{ y \in X : \exists \text{ a max. } V\text{-spaced set } T \text{ so that } \forall g \in T (gy)|_{V} = \alpha \}. \]

The proof that \(Y \) is nonempty and \((G, E)\)-minimal is exactly the same as the analogous proof from Proposition 2.4. Note that by construction, we have \(P_E(Y) = P_E(X) \).

We now show that \(Y \in S_{B_n^*}(k^{G \times F_2}) \) for \(N = 4r + 3n \). Set \(W = DUVUD \). We show that \(Y \) is \(B_{N}^*\text{-W}\text{-irreducible.} \)

Suppose \(m < \omega \), \(y_0, \ldots, y_{m-1} \in Y \) and \(S_0, \ldots, S_{m-1} \in B_{n}^* \) are pairwise \(\mathcal{V}\text{-apart.} \)

Suppose for each \(i < m \) that \(T_i \subseteq G \times F_2 \) is a maximal \(\mathcal{V}\text{-spaced set which witness that } v_i \in Y \). Set

\[B_i = \{ g \in T_i : \text{ DU}g \cap S_i \neq \emptyset \}. \]

Then \(\bigcup_{i < m} B_i \) is \(\mathcal{V}\text{-spaced, so enlarge to a maximal } \mathcal{V}\text{-spaced set } B \subseteq G \times F_2. \)

For each \(i < m \), we enlarge \(S_i \cup UB_i \) to \(J_i \in B_{n}^* \) as follows. Suppose \(C \subseteq G \times F_2 \) is an \(F_2\)-coset. Each set of the form \(C \cap Ug \) is connected. Since \(S_i \in B_{n}^* \), it follows that given \(g \in B_i \), there is at most one connected component \(\Theta_{C,g} \) of \(S_i \cap C \) with \(Ug \cap \Theta_{C,g} = \emptyset \), but \(Ug \cap D_n \Theta_{C,g} \neq \emptyset \). We add the line segment in \(C \) connecting \(\Theta_{C,g} \) and \(Ug \). Upon doing this for each \(g \in B_i \) and each \(F_2\)-coset \(C \), this completes the construction of \(J_i \). Observe that \(J_i \subseteq D_{n-1} S_i \cap UB_i \).

Claim. Let \(C \) be an \(F_2\)-coset, and suppose \(Y_0 \) is a connected component of \(S_i \cap C \). Let \(Y \) be the connected component of \(J_i \cap C \) with \(Y_0 \subseteq Y \). Then \(Y \subseteq D_{2r+n}Y_0 \). In particular, if \(Y_0 \neq \emptyset \) are two connected components of \(S_i \cap C \), then \(Y_0 \) and \(Z_0 \) do not belong to the same component of \(J_i \cap C \).

Proof. Let \(L = \{ x_j : j < \omega \} \subseteq C \) be a ray with \(x_0 \in Y_0 \) and \(x_j \notin Y_0 \) for any \(j \geq 1 \). Then \(\{ j < \omega : x_j \in J_i \cap C \} \) is some finite initial segment of \(\omega \). We want to argue that for some \(j \leq 2r + n + 1 \), we have \(x_j \notin J_i \cap C \). First, we argue that if \(x_n \in J_i \cap C \), then \(x_n \notin UB_i \). Otherwise, we must have \(x_n \in D_{n-1} S_i \). But since \(x_n \notin D_{n-1} Y_0 \), there must be another component \(Y_1 \) of \(S_i \cap C \) with \(x_n \in D_n Y_1 \). But this implies that \(Y_0 \) and \(Y_1 \) are not \(D_{2n-1}\text{-apart, a contradiction since } 2n - 1 \leq 4r - 3n = N \).

Fix \(g \in B_i \) with \(x_n \in Ug \). Let \(q < \omega \) be least with \(q > n \) and \(x_q \notin U_g \). We must have \(q \leq 2r + n + 1 \).

We claim that \(x_q \notin J_i \cap C \). Towards a contradiction, suppose \(x_q \in J_i \cap C \). We cannot have \(x_q \in UB_i \), so we must have \(x_q \in D_{n-1} S_i \). But now there must be some component \(Y_1 \) of \(S_i \cap C \) with \(x_q \in D_n Y_1 \). But then \(D_{2r+2n} Y_0 \cap Y_1 \neq \emptyset \), a contradiction as \(Y_0 \) and \(Y_1 \) are \(D_n\text{-apart.} \) This concludes the proof that \(Y \subseteq D_{2r+n}Y_0 \).

Now, suppose \(Y_0 \neq \emptyset \) are two connected components of \(S_i \cap C \). Then \(Y_0 \) and \(Z_0 \) are \(N\text{-apart.} \) In particular, \(Z_0 \notin D_{2r+n} Y_0 \), so they do not belong to the same connected component of \(J_i \cap C \) as \(Y_0 \).

Claim. \(J_i \in B_{n}^* \).

Proof. Fix an \(F_2\)-coset \(C \) and two connected components \(Y \neq Z \) of \(J_i \cap C \). By the previous claim, each of \(Y \) and \(Z \) can only contain at most one nonempty component of \(S_i \cap C \). The claim will be proven after considering three cases.

1. First, suppose each of \(Y \) and \(Z \) contain a nonempty component of \(S_i \cap C \), say \(Y_0 \subseteq Y \) and \(Z_0 \subseteq Z \).

Then since \(Y_0 \) and \(Z_0 \) are \(D_{4r+3n}\text{-apart, the previous claim implies that } Y \) and \(Z \) are \(D_{n}\text{-apart.} \)

https://doi.org/10.1017/fms.2024.41 Published online by Cambridge University Press
2. Now, suppose Y contains a nonempty component Y_0 of $S_i \cap C$ and that Z does not. Then for some $g \in B_i$, we have $Z = Ug \cap C$. Towards a contradiction, suppose $D_n Y \cap Ug \neq \emptyset$. Let $L = \{x_j : j \leq M\}$ be the line segment connecting Y and Ug with $L \cap Y = \{x_0\}$ and $L \cap Ug = \{x_M\}$. We must have $M \leq n$. We cannot have $x_0 \in UB_i$, so we must have $x_0 \in D_{n-1}S_i$. This implies that $x_0 \in D_{n-1}Y_0$. We cannot have $x_0 \in Y_0$, as otherwise, we would have connected Y_0 and $Ug \cap C$ when constructing J_i. It follows that for some $h \in B_i$, we have that x_0 is on the line segment $L' = \{x'_j : j \leq M'\}$ connecting Y_0 and $Uh \cap C$, and we have $M' \leq n$. But this implies that $Ug \cap D_{2n}Uh \neq \emptyset$, a contradiction since $V \supseteq UDU$ and $D \supseteq D_{2n}$.

3. If neither Y nor Z contain a component of $S_i \cap C$, then there are $g \neq h \in B_i$ with $Y = Uh \cap C$ and $Z = Ug \cap C$. It follows that Y and Z are D_n-apart.

Claim. Suppose $i \neq j < m$. Then J_i and J_j are D-apart.

Proof. We have that $J_i \subseteq D_{n-1}S_i \cup UB_i$, and likewise for j. As $UB_i \subseteq U^2DS_i$ and as $D \supseteq D_{2n}$, we have $J_i \subseteq U^2DS_i$, and likewise for j. As S_i and S_j are W-apart and as $V \supseteq UDU$, we see that J_i and J_j are D-apart.

Claim. Suppose $g \in B \setminus \bigcup_{i \leq n} B_i$. Then Ug and J_i are D-apart for any $i < m$.

Proof. As $g \notin B_i$, we have Ug and S_i are D-apart. Also, for any $h \in B$ with $g \neq h$, we have that Ug and Uh are D-apart. Now, suppose $DUg \cap J_i \neq \emptyset$. If $x \in DUg \cap J_i$, then on the coset $C = F_2\chi$, x must belong on the line between a component of $S_i \cap C$ and Uh for some $h \in B_i$. Furthermore, we have $x \in D_{n-1}Uh$. But since $D_{2n} \subseteq D$, this contradicts that Ug and Uh are D^2-apart (using the full assumption $V \supseteq UDU$).

We can now finish the proof of Proposition 4.2. The collection $\{J_i : i < m\} \cup \{Ug : g \in B \setminus \bigcup_{i < m} B_i\}$ is a pairwise D-apart collection of members of B_n^*. As X is B_n^*-irreducible, we can find $y \in X$ with $y|J_i = y_i|J_i$ for each $i < m$ and with $(gy)|_U = \alpha$ for each $g \in B \setminus \bigcup_{i < m} B_i$. As $J_i \supseteq UB_i$ and since $B_i \subseteq T_i$, we actually have $(gy)|_U = \alpha$ for each $g \in B$. As B is a maximal V-spaced set, it follows that $y \in Y$ and $y|S_i = y_i|S_i$ as desired.

Competing interest. The authors have no competing interest to declare.

Funding statement. J.F. was supported by NSF Grant DMS-2102838. B.S. was supported by NSF Grant DMS-1955090 and Sloan Grant FG-2021-16246. A.Z. was supported by NSF Grant DMS-2054302 and NSERC Grants RGPIN-2023-03269 and DGECR-2023-00412.

References

[1] V. Cyr and B. Kra, ‘The automorphism group of a minimal shift of stretched exponential growth’, *J. Mod. Dyn.* **10** (2016), 483–495.

[2] V. Cyr and B. Kra, ‘Characteristic measures for language stable subshifts’, *Monatshefte fur Mathematik* **201**(3) (2023), 659–701.

[3] J. Frisch and O. Tamuz, ‘Characteristic measures of symbolic dynamical systems’, *Ergodic Theory Dyn. Sys.* **42**(5) (2022), 1655–1661.

[4] J. Frisch and O. Tamuz, ‘Symbolic dynamics on amenable groups: the entropy of generic shifts’, *Ergodic Theory Dyn. Sys.* **37**(4) (2017), 1187–1210.

[5] J. Frisch, O. Tamuz, and P. Vahidi Ferdowsi, ‘Strong amenability and the infinite conjugacy class property’, *Inventiones Mathematicae* **218** (2019), 833–851.

[6] E. Glasner, T. Tsankov, B. Weiss, and A. Zucker, ‘Bernoulli disjointness’, *Duke Mathematical Journal* **170**(4) (2021), 615–651.

[7] P. Hall, ‘On representatives of subsets’, *J. London Math. Soc.* **10** (1) (1935), 26–30.

[8] A. Zucker, ‘Minimal flows with arbitrary centralizer’, *Ergodic Theory Dyn. Sys.* **42**(1) (2022), 310–320.