Variable formation plasticity matrices of a three-dimensional body when implementing a step loading procedure

Yu V Klochkov¹, A P Nikolaev¹, O V Vakhnina¹, T A Sobolevskaya¹ and M Yu Klochkov²
¹Volgograd State Agrarian University, 26, Universitetskii Ave., Volgograd, 400002, Russia
²Lomonosov Moscow state University, 1, GSP-1, Leninskie Gory, Moscow, 119991, Russia

E-mail: Klotchkov@bk.ru

Abstract. Nowadays, the task of creating and improving computational algorithms for determining the stress-strain state (SSS) of technosphere objects and systems, taking into account the physically non-linear stage of operation of the material of structures and their elements, is quite relevant. A variational approach to the formation of a plasticity matrix at the loading step for a three-dimensional body is presented on the deformation theory of plasticity. A variant of obtaining the plasticity matrix using the operations of differentiating the covariant components of the stress tensor with respect to the covariant components of the strain tensor is considered. As an alternative to it, an option has been developed for the formation of a plasticity matrix at the loading step, based on the hypothesis of proportionality of the components of the deviator of stress increments to the components of the deviator of strain increments for three-dimensional bodies. The use of such option of forming a plasticity matrix at the loading step in software systems can significantly simplify the programming process and make it more understandable to potential users of computing systems in the design and reconstruction of technosphere objects and systems.

1. Introduction
When designing modern technosphere objects and systems, including the agro-industrial complex, the requirements for reducing the material intensity of their structural elements and the most complete use of the strength resources of the material used come to the fore. In connection with this circumstance, the task of creating and improving computational algorithms for determining the SSS of technosphere objects and systems does not lose its relevance, taking into account the physically non-linear stage of operation of the material of structures and their elements. The assumption of a limited development of plastic deformations allows us to increase the values of the payloads transferred to the designed technosphere objects, contributing to the most rational use of structural materials and their elements.

The modern development of computer technology and the computer technologies are created on the basis of its application provide the unconditional priority of numerical methods for analyzing the SSS of technosphere objects and systems, the leading position among which is the finite element method (FEM) [1-11].
Using numerical methods to study the processes of deformation of technosphere objects in a physically nonlinear formulation implement a step-by-step method of loading structures and their objects [12-20]. In this case, it becomes necessary to form a plasticity matrix at the loading step, establishing a connection between the components of the stress increment tensor and the components of the strain increment tensor.

In this article, which is based on the deformation theory of plasticity, a variational approach to the formation of a plasticity matrix at the loading step for a three-dimensional body is presented.

2. Materials and methods

2.1. The plasticity matrix of a three-dimensional body at the loading step, which is based on the calculation of the partial derivatives of the covariant components of the stress tensor with respect to the covariant components of the strain tensor

The increment of the covariant components of the stress tensor for a three-dimensional body can be expressed through the increments of the covariant components of the strain tensor by the following dependencies

\[
\Delta \sigma_{mn} = \frac{\partial \sigma_{mn}}{\partial \varepsilon_{11}} \Delta \varepsilon_{11} + \frac{\partial \sigma_{mn}}{\partial \varepsilon_{12}} \Delta \varepsilon_{12} + \frac{\partial \sigma_{mn}}{\partial \varepsilon_{13}} \Delta \varepsilon_{13} + \frac{\partial \sigma_{mn}}{\partial \varepsilon_{22}} \Delta \varepsilon_{22} + \frac{\partial \sigma_{mn}}{\partial \varepsilon_{23}} \Delta \varepsilon_{23} + \frac{\partial \sigma_{mn}}{\partial \varepsilon_{33}} \Delta \varepsilon_{33},
\]

where the indices \(m\) and \(n\) successively take the values 1–3.

To calculate the partial derivatives \(\frac{\partial \sigma_{mn}}{\partial \varepsilon_{11}}\) included in (1), it is necessary to first obtain the expressions for the covariant components of the strain tensor. Based on the second hypothesis of the theory of small elastoplastic deformations [21, 22], it is possible to establish the relationships between the covariant components of the deviators stress \(S_{mn}\) and strain \(E_{mn}\)

\[
S_{mn} = \frac{2}{3} \sigma_i E_{mn},
\]

where \(\sigma_i = \left(1.5 S_{mn} S_{mn} \right)^{1/2}\) and \(E_{mn} = \left(2/3 E_{mn} E_{mn} \right)^{1/2}\) are the intensities of stresses and strains.

The formulas for the covariant and contravariant components of the strain and stress deviators for a three-dimensional body have the following form [23]

\[
E_{mn} = \varepsilon_{mn} - (1/3) I_1(\varepsilon) g_{mn}, \quad E^{mn} = \varepsilon^{mn} - (1/3) I_1(\varepsilon) g^{mn},
\]

\[
S_{mn} = \sigma_{mn} - (1/3) I_1(\sigma) g_{mn}, \quad S^{mn} = \sigma^{mn} - (1/3) I_1(\sigma) g^{mn},
\]

where \(g_{mn}, g^{mn}\) is the co- and contravariant components of the metric tensor; \(I_1(\varepsilon) = g_{mn} \varepsilon_{mn} = g_{mn} \varepsilon^{mn}\), \(I_1(\sigma) = g_{mn} \sigma_{mn} = g_{mn} \sigma^{mn}\) are the first invariants of strain and stress tensors.

Taking into account the first hypothesis of the theory of small elastoplastic deformations and taking into account (3), from relations (2) we can obtain the following expressions for the covariant components of the stress tensor

\[
\sigma_{mn} = \frac{2}{3} \varepsilon_i \varepsilon_{mn} - \frac{1}{3} I_1(\varepsilon) g_{mn} \left(\frac{2}{3} \varepsilon_i - K \right),
\]

where \(K = E/(1-2\nu)\) [21, 22].

Applying to (4) the operation of differentiation with respect to the covariant components of the strain tensor [21, 22], we can write the following relation
\[
\frac{\partial \sigma_{mn}}{\partial e_{nn}} = \frac{2}{3} \left(\frac{\partial (\sigma_{i}/e_i)}{\partial e_{nn}}, e_{nn} + \frac{\sigma_{i}}{e_i} \right) - \frac{1}{3} \left(\frac{\partial (I_1(\varepsilon)g_{mn})}{\partial e_{nn}} \left(\frac{2}{3} \frac{\sigma_{i}}{e_i} - K \right) + I_1(\varepsilon)g_{mn} \right) \frac{2}{3} \frac{\partial (\sigma_{i}/e_i)}{\partial e_{mm}}. \tag{5}
\]

We obtain the partial derivatives \(\partial (\sigma_{i}/e_i)/\partial e_{nn}\) and \(\partial (I_1(\varepsilon)g_{mn})/\partial e_{mm}\) included in (5). The first of these partial derivatives can be represented as

\[
\frac{\partial (\sigma_{i}/e_i)}{\partial e_{nn}} = \frac{\partial (\sigma_{i}/e_i)}{\partial e_{i}} \frac{\partial e_{i}}{\partial e_{nn}} = \left(\frac{\partial \sigma_{i}}{\partial e_{i}} - \frac{\sigma_{i}}{e_i} \right) e_{i} e_{nn} = (E_K - E_s) \frac{1}{e_i} \frac{\partial e_{i}}{\partial e_{nn}}, \tag{6}
\]

where \(E_K = \partial \sigma_i/\partial e_i\); \(E_s = \sigma_i/e_i\) is the tangent and secant modulus of the deformation diagram.

The partial derivative \(\partial e_i/\partial e_{nn}\) included in (6) with allowance for (2) can be obtained from the following expression

\[
\frac{\partial e_i}{\partial e_{nn}} = \frac{E_{nn}}{3} (at \ m = n); \quad \frac{\partial e_i}{\partial e_{mm}} = \frac{2E_{mm}}{3} (at \ m \neq n); \quad \frac{\partial e_i}{\partial e_{mm}} = \frac{E_{mm}}{3} (at \ m = n); \quad \frac{\partial e_i}{\partial e_{mm}} = \frac{2E_{mm}}{3} (at \ m \neq n).
\]

We consider the calculation of the partial derivatives of \(\partial E_{mn}/\partial e_{mm}\) by the example of the partial derivative of \(\partial E_{11}/\partial e_{11}\)

\[
\partial E_{11}/\partial e_{11} = \left(e_{11} - \frac{1}{3} I_1(\varepsilon)g_{11} \right) / \partial e_{11} =
\]

\[
= \left(g_{11}g_{11}e_{11} + 2g_{11}g_{12}e_{12} + 2g_{11}g_{13}e_{13} + g_{12}g_{12}e_{12} + 2g_{12}g_{13}e_{23} + g_{13}g_{13}e_{23} - \frac{1}{3} I_1(\varepsilon)g_{11} \right) / \partial e_{11} =
\]

\[
= g_{11}g_{11} + 2g_{11}g_{12} \left(\frac{\partial g_{11}}{\partial e_{11}} \cdot g_{12} \cdot g_{11} + 2 \frac{\partial g_{11}}{\partial e_{11}} \cdot g_{12} \right) + 2g_{12} \left(\frac{\partial g_{11}}{\partial e_{11}} \cdot g_{11} + \frac{\partial g_{12}}{\partial e_{11}} \cdot g_{11} \right) +
\]

\[
+ 2g_{12} \left(\frac{\partial g_{11}}{\partial e_{11}} \cdot g_{12} + \frac{\partial g_{12}}{\partial e_{11}} \cdot g_{12} \right) + 2g_{13} \left(\frac{\partial g_{13}}{\partial e_{11}} \cdot g_{13} + \frac{\partial g_{13}}{\partial e_{11}} \cdot g_{12} \right) +
\]

\[
+ 2g_{13} \left(\frac{\partial g_{13}}{\partial e_{11}} \cdot g_{13} + \frac{\partial g_{13}}{\partial e_{11}} \cdot g_{12} \right)
\]

\[
\frac{\partial I_1(\varepsilon)}{\partial e_{11}} = g_{11} + e_{11} \frac{\partial g_{11}}{\partial e_{11}} + 2e_{12} \frac{\partial g_{12}}{\partial e_{11}} + 2e_{13} \frac{\partial g_{13}}{\partial e_{11}} + e_{22} \frac{\partial g_{22}}{\partial e_{11}} + 2e_{23} \frac{\partial g_{23}}{\partial e_{11}} + e_{33} \frac{\partial g_{33}}{\partial e_{11}}.
\tag{9}
\]

To obtain the partial derivatives of \(\partial g_{mn}/\partial e_{11}\), it is necessary to first perform the operations of transition from the contravariant components of the metric tensor to its covariant components [24]

\[
g_{mn} = G^{mn}/G,
\tag{10}
\]

where \(G^{mn}\) is the algebraic complement of the element \(g_{mn}\); \(G\) is the determinant of the metric tensor.

In view of (10), we can write the following expressions
\[
\frac{\partial g^{11}}{\partial \varepsilon_{11}} = \left(-\frac{1}{G} \right) 2G^{11}; \quad \frac{\partial g^{12}}{\partial \varepsilon_{11}} = \left(-\frac{1}{G} \right) 2G^{11}G^{12}; \quad \frac{\partial g^{13}}{\partial \varepsilon_{11}} = \left(-\frac{1}{G} \right) 2G^{11}G^{13}; \quad (11)
\]

\[
\frac{\partial g^{22}}{\partial \varepsilon_{11}} = \frac{2}{G} g^{33} - \frac{2}{G^2} G^{11} G^{22}; \quad \frac{\partial g^{23}}{\partial \varepsilon_{11}} = \frac{2}{G} g^{32} - \frac{2}{G^2} G^{11} G^{23}; \quad \frac{\partial g^{33}}{\partial \varepsilon_{11}} = \frac{2}{G} g^{22} - \frac{2}{G^2} G^{11} G^{33}.
\]

The partial derivatives \(\frac{\partial (I_1(\varepsilon) g_{mn})}{\partial \varepsilon_{mn}} \) included in (5) are calculated taking into account (9), for example

\[
\frac{\partial (I_1(\varepsilon) g_{11})}{\partial \varepsilon_{11}} = \frac{\partial (I_1(\varepsilon) g_{11})}{\partial \varepsilon_{11}} + I_1(\varepsilon) \frac{\partial g_{11}}{\partial \varepsilon_{11}} = \frac{\partial I_1(\varepsilon)}{\partial \varepsilon_{11}} + 2I_1(\varepsilon). \quad (12)
\]

Performing mathematical transformations similar to calculations (7–12), one can obtain all necessary partial derivatives included in (5). Thus, we can assume that all partial derivatives of \(\frac{\partial \sigma_{mn}}{\partial \varepsilon_{mn}} \) for (1) are defined. Relations (1) can be represented in matrix form

\[
\left\{ \Delta \sigma_{mn} \right\} = \left[C_I \right] \left\{ \Delta \varepsilon_{mn} \right\}, \quad (13)
\]

where \(\left\{ \Delta \sigma_{16} \right\} = \left\{ \Delta \sigma_{11} \Delta \sigma_{12} \Delta \sigma_{13} \Delta \sigma_{12} \Delta \sigma_{13} \Delta \sigma_{33} \right\}; \quad \left\{ \Delta \varepsilon_{16} \right\} = \left\{ \Delta \varepsilon_{11} 2\Delta \varepsilon_{12} 2\Delta \varepsilon_{13} \Delta \varepsilon_{22} 2\Delta \varepsilon_{23} \Delta \varepsilon_{33} \right\}; \quad \left[C_I \right] \) is the plasticity matrix at the loading step.

2.2. The plasticity matrix of a three-dimensional body at the loading step, which is based on the hypothesis of proportionality of the components of the deviator of stress increments to the components of the deviator of strain increments

Analyzing (7–12), it can be noted that the layout of the plasticity matrix at the loading step in the presented version is rather laborious, which undoubtedly complicates the programming procedure. Therefore, this article proposes an alternative option for the formation of a plasticity matrix at the loading step, based on the hypothesis of proportionality of the components of the deviator of stress increments to the components of the deviator of strain increments.

The increments of the covariant components of the strain tensor in this case can be expressed through the increments of the covariant components of the stress tensor as follows

\[
\Delta \varepsilon_{mn} = \frac{1.5}{E_K} \Delta \sigma_{mn} + P(\Delta \sigma) g_{mn} \Delta D,
\]

where \(P(\Delta \sigma) = \Delta \sigma_{mn} g^{mn} = \Delta \sigma_{11} g^{11} + 2\Delta \sigma_{12} g^{12} + 2\Delta \sigma_{13} g^{13} + \Delta \sigma_{22} g^{22} + 2\Delta \sigma_{23} g^{23} + \Delta \sigma_{33} g^{33}; \quad D = \left(\frac{1 - 2 \upsilon}{3E - \frac{4}{3} E_K} \right); \quad E_K = \frac{\Delta \sigma_{ij}}{\Delta \varepsilon_{ij}} \) is the tangent module of the deformation diagram.

In expanded form, relations (14) take the form

\[
\Delta \varepsilon_{11} = \left(\frac{1.5}{E_K} + g^{11} g_{11} D \right) \Delta \sigma_{11} + 2g^{12} g_{11} D \Delta \sigma_{12} + 2g^{13} g_{11} D \Delta \sigma_{13} + g^{22} g_{11} D \Delta \sigma_{22} + 2g^{23} g_{11} D \Delta \sigma_{23} +

+ g^{33} g_{11} D \Delta \sigma_{33};
\]

\[
\Delta \varepsilon_{12} = g_{12} g^{11} D \Delta \sigma_{11} + \left(\frac{1.5}{E_K} + 2g_{12} g^{12} D \right) \Delta \sigma_{12} + 2g_{12} g^{13} D \Delta \sigma_{13} + g_{12} g^{22} D \Delta \sigma_{22} + 2g_{12} g^{23} D \Delta \sigma_{23} +

+ g_{12} g^{33} D \Delta \sigma_{33};
\]

\[
\Delta \varepsilon_{13} = g_{13} g^{11} D \Delta \sigma_{11} + \left(\frac{1.5}{E_K} + 2g_{13} g^{13} D \right) \Delta \sigma_{13} + 2g_{13} g^{22} D \Delta \sigma_{22} + 2g_{13} g^{23} D \Delta \sigma_{23} +

+ g_{13} g^{33} D \Delta \sigma_{33};
\]
\[
\Delta \varepsilon_{33} = g_{333}^{11} \Delta \sigma_{11} + 2g_{333}^{12} \Delta \sigma_{12} + 2g_{333}^{13} \Delta \sigma_{13} + g_{333}^{22} \Delta \sigma_{22} + 2g_{333}^{23} \Delta \sigma_{23} + \\
+ \left(\frac{1.5}{E_k} + g_{333}^{33} D \right) \Delta \sigma_{33}.
\]

Dependencies (15) can be represented in matrix form

\[
\{ \Delta \varepsilon_{mn} \} = [B] \{ \Delta \sigma_{mn} \}.
\]

Performing the inversion operation (16), we can obtain the desired version of the plasticity matrix at the loading step

\[
\{ \Delta \sigma_{mn} \} = [C]^{-1} \{ \Delta \varepsilon_{mn} \},
\]

where \([C^{-1}] = [B]^{-1}\).

3. Discussion
Performing a comparative analysis of the obtained options for the plasticity matrix at the loading step, we can note their fundamental difference between themselves. A variant based on the application of the aforementioned hypothesis (14–17) is distinguished by its compactness and a significant simplification of the formation compared to option (1–13), based on a multi-stage procedure for calculating partial derivatives.

4. Conclusions
The use of the option of forming a plasticity matrix at the loading step \([C_I] \), based on the use of the hypothesis of proportionality of the components of the deviator of the stress increment to the components of the deviator of the strain increment, in computational algorithms, can significantly simplify the programming procedure and make it clear to potential users of software products when solving real engineering problems.

5. References
[1] Nguyen N and Waas A 2016 Nonlinear, finite deformation, finite element analysis ZAMP. Z. Angew. Math. And Phys. 67 (9) 35/1-35/24.
[2] Hanslo P, Larson M G., Larson F 2015 Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem Comput. Mech. 56 (1) pp 87–95
[3] Sultanov L U 2016 Analysis of finite elasto-plastic strains. Medium kinematics and constitutive equations Lobachevskii Journal of Mathematics 37(6) pp 787–793
[4] Kayumov R A 2017 Postbuckling behavior of compressed rods in an elastic medium Mechanics of Solids 52(5) pp 575–580
[5] Belostotsky A M, Penkovoy S B, Scherbina S V, Akimov P A and Kaytukov T B 2016 Correct numerical methods of analysis of structural strength and stability of high-rise panel buildings. Part 1: Theoretical foundations of modelling Key Engineering Materials 685 pp 217–220
[6] Lalin V, Rybakov V and Sergey A 2014 The finite elements for design of frame of thin-walled beams Applied Mechanics and Materials 578-579 pp 858–863
[7] Zheleznov L P, Kabanov V V and Boiko D V 2018 Nonlinear deformation and stability of discrete-reinforced elliptical cylindrical composite shells under torsion and internal pressure Russian Aeronautics 61 (2) pp 175–182
[8] Klochkov Y V, Nikolaev A P, Vakhnina O V 2016 Calculation of rotation shells using finite triangular elements with Lagrange multipliers in variative approximation of displacements Journal of Machinery Manufacture And Reliability 45 (1) pp 51–58
[9] Yamashita H, Valkeapaa A I., Jayakumar P, Syqiyama H 2015 Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation Trans. ASME. J. Comput. and Nonlinear Dyn. 10(5) pp 051012/1-051012/9.

[10] Klochkov Yu V, Nikolaev A P, Fomin S D, Vakhnina O V, Klochkov M Yu 2019 Application of volume final elements in strength calculations of engineering objects of agricultural complex Proc. of the Lower Volga Agro University Comp. 4 (56) pp 227–237

[11] Solodovnikov A S and Sheshenin S V 2017 Numerical study of strength properties for a composite material with short reinforcing fibers Moscow University Mechanics Bulletin 72(4) pp 94–100

[12] Storozhuk E A, Chernyshenko I S, Yatsura A V 2018 Stress–strain state near a hole in a shear-compliant composite cylindrical shell with elliptical cross-section International Applied Mechanic 54(5) pp 559–567

[13] Hairullin F S, Mingaliev D D 2017 Calculation of thin shells with the use of approximating functions of different order Vestnik Kazanskogo tehnologicheskogo universiteta 20(14) pp 102–104

[14] Paimushin V N, Kholmogorov S A 2018 Physical-mechanical properties of a fiber-reinforced composite based on an elur-p carbon tape and XT-118 binder Mechanics of Composite Materials 54(1) pp 2–12

[15] Levin V A, Manuylovich I S and Markov V V 2016 Numerical simulation of spinning detonation in circular section channels Computational Mathematics and Mathematical Physics 56(6) pp 1102–1117

[16] Badriev I B and Paimushin V N 2017 Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations Lobachevskii Journal of Mathematics 38(5) pp 779–793

[17] Kirichevsky R V, Skrynnykova A V 2019 The effect of approximating functions in the construction of the stiffness matrix of the finite element on the convergence rate of the finite element method Tomsk State University Journal of Mathematics and Mechanics 57 pp 26–37

[18] Mamieva I A 2019 Influence of the geometrical researches of ruled surfaces on design of unique structures Construction mechanics of engineering structures and structures 15(4) pp 299–307

[19] Shlyannikov V N, Zakharov A P, Tumanov A V 2018 Nonlinear fracture resistance parameters for elements of aviation structures under biaxial loading Russian Aeronautics. 61(3) pp 340–346

[20] Evdokimov A P, Shikhnabieva T S 2017 Stress–strain behavior and specific friction of toric rubber-cord casings of flexible couplings Journal of Machinery Manufacture and Reliability 46(2) pp 199–203

[21] Malinin N N 2019 Applied theory of plasticity and creep. Textbook for undergraduate and graduate courses (Moscow: Yurait) p 402

[22] Trusov P V, Shveikin A I 2011 Theory of plasticity (Perm: Izd. PNIPU) p 419

[23] Sedov L I 1976 Continuum mechanics (Moscow: Science) p 536

[24] Borisenko A I, Tarapov I E 1966 Vector analysis and the beginnings of tensor calculus (Moscow: Higher School) p 252

Acknowledgements

The study was carried out with the financial support of the Russian Foundation for Basic Research and the Administration of the Volgograd Region in the framework of the research project No. 19-41-340005 r_a.