Data Article

Data on factors characterizing the eLearning experience of secondary school teachers and university undergraduate students in Jordan

Ahmad Hamza Obidata,*, Mahmoud Alquraanb, Malak Hamza Obeidatb

a Al-Hussein Bin Talal University, Jordan
b Yarmouk University, Jordan

\textbf{A B S T R A C T}

Two datasets were obtained to develop an understanding of factors characterizing the eLearning experience of secondary school teachers and university undergraduate students in Jordan. Both datasets were collected via electronic questionnaires. The secondary school teachers’ dataset was collected toward the end of the second semester of the 2019/2020 academic year, and the university undergraduate students’ dataset was collected during the summer semester of the same year. Six hundred and sixty-six participants responded to the secondary school teachers’ questionnaire, and one thousand participants responded to the university undergraduate students’ questionnaire. A structural equation modelling approach was utilized to analyze the data. Future research might extend the two data models by collecting data about other factors and examine their impact on the eLearning experience of secondary school teachers and university undergraduate students in Jordan and other countries. Moreover, the datasets can be compared with other data from different developing and developed countries.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

* Corresponding author.
\textit{E-mail address: obidat.ahmad@gmail.com} (A.H. Obidat).

https://doi.org/10.1016/j.dib.2020.106402

2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Education
Specific subject area	Educational technology
Type of data	Table
How data were acquired	Surveys: two electronic questionnaires were put out seeking responses from secondary school teachers and university undergraduate students in Jordan about their eLearning experience
Data format	Raw
Parameters for data collection	Two datasets were obtained to get an understanding of factors characterizing the eLearning experience of secondary school teachers and university undergraduate students in Jordan. The secondary school teachers’ dataset was collected toward the end of the second semester of the 2019/2020 academic year, and the university undergraduate students’ dataset was collected during the summer semester of the same year. For secondary school teachers, a questionnaire was distributed targeting teachers who teach from eighth grade to twelfth grade, those teachers used Microsoft Teams to deliver instruction as mandated by the Jordanian Ministry of Education during COVID-19 lockdown in Jordan. For university undergraduate students, a questionnaire was put out seeking responses from university undergraduate students during that summer semester, where the Jordanian Ministry of Higher Education mandated that all courses for undergraduate students to be taught online to prevent the diffusion of COVID-19 disease
Description of data collection	Hosted on Google forms, both datasets were collected via two different electronic questionnaires. The invitation letters to participate, in the questionnaires, were distributed via social networks of secondary school teachers and public and private university undergraduate students in Jordan. Six hundred and sixty-six participants responded to the school teachers’ questionnaire, and one thousand responded to the university undergraduate students’ questionnaire
Data source location	Secondary schools and public and private universities in Jordan
Data accessibility	Both datasets are with the article

Value of the Data

- The datasets are important because they capture data about factors characterizing the eLearning experience of secondary school teachers and university undergraduate students in Jordan, which is useful in formulating an eLearning strategy in Jordan and other countries.
- Online course developers, university instructors, school teachers, administrators, educational policy makers, and learning management system vendors can utilize the datasets in support of their decision-making processes.
- Future research might extend the two data models by collecting data about other factors and examine their impact on the eLearning experience of secondary school teachers and university undergraduate students in Jordan and other countries. Moreover, the datasets can be compared with other data from different developing and developed countries.

1. Data Description

The data for secondary school teachers, (Appendix A), was collected toward the end of the second semester of the 2019/2020 schools academic year in Jordan. Such that, a questionnaire (Appendix B) was distributed targeting secondary school teachers – teachers who teach from eighth grade to twelfth grade. Those teachers used Microsoft Teams to deliver instruction as mandated by the Jordanian Ministry of Education, during COVID-19 lockdown in Jordan. The
Table 1.
Demographic characteristics of secondary school teacher participants.

Gender	Frequency	Percentage
Male	236	35.4%
Female	430	64.6%
Total	666	100%
Age		
20–29	70	10.5%
30–39	196	29.4%
40–49	322	48.3%
50–59	76	11.5%
60–70	2	0.3%
Total	666	100%
Education		
Community college	34	5%
Bachelor	403	61%
Postgraduate diploma	121	18%
Master	77	11.5%
Doctorate	31	4.5%
Total	666	100%

Table 2.
Demographic characteristics of university undergraduate student participants.

Gender	Frequency	Percentage
Male	490	49%
Female	510	51%
Total	1000	100%
Age		
18–20	391	39.1%
21–23	456	45.6%
24–26	96	9.6%
27–29	57	5.7%
Total	1000	100%
Academic level		
First year	230	23%
Second year	218	21.8%
Third year	253	25.3%
Fourth year	234	23.4%
Fifth year	47	4.7%
Sixth year	18	1.8%
Total	1000	100%

A questionnaire was hosted on a Google form. The invitation to participate in the electronic questionnaire was distributed via social networks of secondary school teachers in Jordan. Six hundred and sixty-six teachers filled-in the questionnaire. Table 1 presents the demographic characteristics of secondary school teacher participants.

The data for university undergraduate students, (Appendix C), was collected during the summer semester of 2019/2020 academic year in Jordan. Hosted on a Google form, a questionnaire (Appendix D) was put out seeking responses from public and private university undergraduate students in Jordan about their eLearning experience. The invitation letter to participate in the electronic questionnaire was sent via social networks of public and private university undergraduate students in Jordan. One thousand responses to the questionnaire were obtained. Table 2 presents the demographic characteristics of university undergraduate student participants.
Table 3.
Constructs for the first and second datasets.

Construct	Number of items	Resource	Teachers’ dataset	Students’ dataset
Perceived ease of use	4	[1]	✓	✓
Perceived usefulness	4	[1]	✓	✓
Intention to continuous use	2	[1]	✓	✓
Attitude toward use	4	[2]	✓	✓
Subjective norms	2	[2]	✓	
Facilitating conditions	5	[3]	✓	
Computer self-efficacy	10	[4]	✓	
Computer anxiety	4	[5]	✓	
User satisfaction	4	[6]	✓	✓
Complexity	4	[7]	✓	
Outcome expectations	7	[8]	✓	
Compatibility	3	[9]	✓	
Technical support	3	[10]	✓	
Learning community	3	[11]	✓	
Learning content	4	[11]	✓	
Learning personalization	4	[11]	✓	

For both datasets, all constructs were operationalized using validated items from prior research. Table 3 presents the constructs for both datasets, their associated number of items, and the resources they were obtained from.

To establish convergent validity for each measurement model, four criteria were assessed: (1) standardized Factor Loading (FL) for each item which must be greater than 0.5, (2) composite reliability (CR) for each construct which must be greater than 0.7, (3) Cronbach’s alpha for each construct which must be greater than 0.7, and (4) the average variance extracted (AVE) for each construct which must be above 0.5 [12]. With respect to secondary school teachers’ measurement model, the absolute value of FL for the fifth item measuring the facilitating conditions construct (FC5), which is reverse coded, was below the specified threshold. As such, the item was removed from the model. By examining Table 4, it can be concluded that convergent validity of secondary school teachers’ measurement model has been established after removing FC5. Also, by examining Table 5, it can be concluded that convergent validity of university undergraduate students’ measurement model has been established as well.

The discriminant validity for each model was assessed by the heterotrait–monotrait (HTMT) ratio of correlations as it is the most rigorous approach for achieving that goal [13]. The criterion in this approach is that the HTMT for each pair of constructs must be below 0.9 [13]. As presented in Tables 6 and 7, in both models, the HTMT for each pair of constructs is below 0.9. As such, the discriminant validity for each measurement model has been established.

To confirm the goodness-of-fit for each model, five criteria were used: (1) Comparative Fit Index (CFI) [14], (2) Tucker-Lewis Index (TLI) [15], (3) Relative Non-Centrality Index (RNI) [15], (4) Root Mean Square Error of Approximation (RMSEA) [16], and (5) Standardized Root Mean Square Residual (SRMR) [17]. Each model met the thresholds of all criteria as shown in Table 8.

Structural equation modeling approach, in R language version 4.0.1, was applied to analyze the data for each model. Appendix E and Appendix F have the R code for analyzing secondary school teachers and university undergraduate students’ datasets, respectively. Table 9 presents the analysis results of the university undergraduate students’ structural model, and Table 10 presents the analysis results of the secondary school teachers’ structural model.
Table 4. Secondary school teachers’ measurement model assessment.

Construct	Item	Cronbach’s α Before item removal	CR	AVE	FL	Cronbach’s α After item removal	CR	AVE	FL
Perceived ease of use	PE1	0.89	0.89	0.68	0.81				
	PE2								
	PE3								
	PE4								
Perceived usefulness	PU1	0.94	0.94	0.80	0.86				
	PU2								
	PU3								
	PU4								
User satisfaction	US1	0.95	0.93	0.82	0.89				
	US2								
	US3								
	US4								
Subjective norms	SN1	0.87	0.87	0.77	0.85				
	SN2								
Attitude toward use	AT1	0.92	0.86	0.70	0.79				
	AT2								
	AT3								
	AT4								
Intention to continuous use	IC1	0.93	0.93	0.87	0.93				
	IC2								
Computer self-efficacy	CS1	0.94	0.93	0.62	0.60				
	CS2								
	CS3								
	CS4								
	CS5								
	CS6								
	CS7								
	CS8								
	CS9								
	CS10								
Outcome expectations	OE1	0.91	0.87	0.57	0.85				
	OE2								
	OE3								
	OE4								
	OE5								
	OE6								
	OE7								
Computer anxiety	CA1	0.88	0.88	0.65	0.75				
	CA2								
	CA3								
	CA4								
Complexity	CX1	0.84	0.85	0.58	0.72				
	CX2								
	CX3								
	CX4								
Compatibility	CT1	0.91	0.91	0.78	0.85				
	CT2								
	CT3								

Construct	Item	Cronbach’s α Before item removal	CR	AVE	FL	Cronbach’s α After item removal	CR	AVE	FL
Technical support	TS1	0.80	0.82	0.61	0.57				
	TS2								
	TS3								
Facilitating conditions	FC1	0.75	0.82	0.55	0.83		0.87	0.88	0.65
	FC2								
	FC3								
	FC4								
	FC5								

* Item removed.
Table 5.
University undergraduate students’ measurement model assessment.

Constructs	Items	Cronbach’s α	CR	AVE	FL
Perceived ease of use	PE1	0.88	0.88	0.66	0.80
	PE2				
	PE3				0.82
	PE4				
Perceived usefulness	PU1	0.93	0.93	0.77	0.87
	PU2				
	PU3			0.87	0.89
	PU4				
Subjective norms	SN1	0.85	0.85	0.74	0.83
	SN2				
Intention to continuous use	IC1	0.91	0.91	0.83	0.91
	IC2				
Learning community	LM1	0.87	0.88	0.65	0.74
	LM2				0.71
	LM3				0.85
	LM4				
Learning content	LN1	0.87	0.87	0.70	0.78
	LN2				0.89
	LN3				0.83
Learning personalization	LP1	0.89	0.89	0.67	0.81
	LP2				
	LP3				0.80
	LP4				0.84
User satisfaction	US1	0.95	0.95	0.83	0.90
	US2				
	US3				0.91
	US4				0.92

Table 6.
HTMT matrix for secondary school teachers’ measurement model.

Construct	PE	PU	US	SN	AT	IC	CS	OE	CA	CX	CT	TS	FC
PE	1.00												
PU	0.72	1.00											
US	0.68	0.70	1.00										
SN	0.54	0.71	0.61	1.00									
AT	0.65	0.70	0.73	0.60	1.00								
IC	0.65	0.74	0.77	0.61	0.82	1.00							
CS	0.58	0.68	0.63	0.64	0.65	0.71	1.00						
OE	0.56	0.81	0.78	0.69	0.71	0.79	0.69	1.00					
CA	0.32	0.12	0.18	0.05	0.24	0.18	0.10	0.11	1.00				
CX	0.49	0.34	0.40	0.25	0.38	0.37	0.17	0.31	0.60	1.00			
CT	0.60	0.75	0.80	0.68	0.70	0.78	0.63	0.88	0.12	0.39	1.00		
TS	0.57	0.61	0.71	0.55	0.57	0.61	0.56	0.69	0.16	0.29	0.69	1.00	
FC	0.82	0.66	0.77	0.58	0.64	0.70	0.69	0.63	0.32	0.44	0.68	0.74	1.00

Note. PE: Perceived ease of use, PU: Perceived usefulness, US: User satisfaction, SN: Subjective norms, AT: Attitude toward use, IC: Intention to continuous use, CS: Computer self-efficacy, OE: Outcome expectations, CA: Computer anxiety, CX: Complexity, CT: Compatibility, TS: Technical support, FC: Facilitating conditions.

2. Experimental Design, Materials and Methods

Two datasets were obtained to get an understanding of factors characterizing the eLearning experience of secondary school teachers and university undergraduate students in Jordan. The first dataset is concerned with secondary school teachers, and the second dataset is concerned with university undergraduate students. The first and second datasets were collected via two different questionnaires. Since the language of all prospected respondents is Arabic, both
Table 7.
HTMT matrix for university undergraduate students' model.

Constructs	PE	PU	SN	IC	LM	LN	LP	US
PE	1.00							
PU	0.74	1.00						
SN	0.69	0.74	1.00					
IC	0.72	0.85	0.70	1.00				
LM	0.74	0.71	0.65	0.71	1.00			
LN	0.71	0.68	0.60	0.85	0.84	1.00		
LP	0.76	0.80	0.69	0.77	0.83	0.72	0.80	1.00
US	0.75	0.80	0.65	0.83	0.75	0.72	0.80	1.00

Note. PE: Perceived ease of use, PU: Perceived usefulness, SN: Subjective norms, IC: Intention to continuous use, LM: Learning community, LN: Learning content, LP: Learning personalization, US: User satisfaction.

Table 8.
Fit indices of secondary school teachers and university undergraduate students' structural models.

Fit indices	Teachers' model	Students' model	Criteria
CFI	0.928	0.959	>0.9
TLI	0.921	0.953	>0.9
RNI	0.928	0.959	>0.9
RMSEA	0.052	0.058	<.08
SRMR	0.074	0.037	<.08

Table 9.
University undergraduate students' structural model analysis results.

| Path | Coefficient | z-value | \(P(>|z|) \) | Decision |
|-----------------------------------|-------------|---------|---------------|----------|
| Subjective norms→ Perceived usefulness | 0.340 | 7.966 | 0.000 | Significant |
| Learning content→ Perceived usefulness | −0.046 | −0.747 | 0.455 | Insignificant |
| Learning community→ Perceived usefulness | 0.072 | 1.262 | 0.207 | Insignificant |
| Learning personalization→ Perceived usefulness | 0.499 | 7.596 | 0.000 | Significant |
| Perceived ease of use→ Perceived usefulness | 0.189 | 4.168 | 0.000 | Significant |
| Subjective norms→ Perceived ease of use | 0.296 | 7.161 | 0.000 | Significant |
| Learning community→ Perceived ease of use | 0.174 | 2.951 | 0.003 | Significant |
| Learning content→ Perceived ease of use | 0.133 | 2.099 | 0.036 | Significant |
| Learning personalization→ Perceived ease of use | 0.341 | 5.303 | 0.000 | Significant |
| Subjective norms→ Intention to continuous use | 0.114 | 2.490 | 0.013 | Significant |
| Perceived usefulness→ Intention to continuous use | 0.517 | 10.609 | 0.000 | Significant |
| Perceived ease of use→ Intention to continuous use | 0.072 | 1.588 | 0.112 | Insignificant |
| User satisfaction→ Intention to continuous use | 0.365 | 8.982 | 0.000 | Significant |
| Subjective norms→ User satisfaction | 0.006 | 0.123 | 0.902 | Insignificant |
| Perceived usefulness→ User satisfaction | 0.588 | 13.647 | 0.000 | Significant |
| Perceived ease of use→ User satisfaction | 0.423 | 9.676 | 0.000 | Significant |

questionnaires were translated into their native Arabic language. Attitude toward use in the first dataset, and user satisfaction in both datasets were operationalized using a 5-point semantic differential scale from 1 to 5, with higher numbers reflecting more positive evaluations. The rest of the constructs, in both datasets, were operationalized using a 5-point Likert scale from 1 ("strongly disagree") to 5 ("strongly agree"). Structural equation modeling approach, in R language version 4.0.1, was applied to analyze the data for each model.
Table 10. Secondary school teachers' structural model analysis results.

| Path | Coefficient | z-value | \(P(>|z|) \) | Decision |
|---|-------------|---------|---------------|----------|
| Subjective norms → Perceived usefulness | 0.367 | 8.943 | 0.000 | Significant |
| Computer self-efficacy → Perceived usefulness | 0.231 | 4.639 | 0.000 | Significant |
| Technical support → Perceived usefulness | 0.161 | 3.391 | 0.001 | Significant |
| Complexity → Perceived usefulness | -0.019 | -0.545 | 0.585 | Insignificant |
| Perceived ease of use → Perceived usefulness | 0.375 | 9.458 | 0.000 | Significant |
| Subjective norms → Perceived ease of use | 0.085 | 1.407 | 0.159 | Insignificant |
| Computer self-efficacy → Perceived ease of use | 0.344 | 5.302 | 0.000 | Significant |
| Technical support → Perceived ease of use | 0.599 | 4.441 | 0.000 | Significant |
| Complexity → Perceived ease of use | -0.342 | -7.360 | 0.000 | Significant |
| Perceived usefulness → User satisfaction | -0.075 | -1.057 | 0.291 | Insignificant |
| Perceived ease of use → User satisfaction | 0.100 | 1.674 | 0.094 | Insignificant |
| Facilitating conditions → User satisfaction | 0.361 | 6.218 | 0.000 | Significant |
| Compatibility → User satisfaction | 0.355 | 4.956 | 0.000 | Significant |
| Outcome expectations → User satisfaction | 0.341 | 3.967 | 0.000 | Significant |
| Computer anxiety → User satisfaction | -0.003 | -0.104 | 0.917 | Insignificant |
| Subjective norms → User satisfaction | 0.001 | 0.020 | 0.984 | Insignificant |
| Perceived usefulness → Attitude toward use | -0.064 | -0.616 | 0.538 | Insignificant |
| Perceived ease of use → Attitude toward use | 0.337 | 3.831 | 0.000 | Significant |
| Facilitating conditions → Attitude toward use | -0.010 | -0.122 | 0.903 | Insignificant |
| Compatibility → Attitude toward use | 0.079 | 0.773 | 0.439 | Insignificant |
| Outcome expectations → Attitude toward use | 0.746 | 5.860 | 0.000 | Significant |
| Computer anxiety → Attitude toward use | -0.180 | -4.399 | 0.000 | Significant |
| Subjective norms → Attitude toward use | 0.152 | 2.041 | 0.041 | Significant |
| Perceived usefulness → Intention to continuous use | 0.223 | 4.018 | 0.000 | Significant |
| Perceived ease of use → Intention to continuous use | -0.032 | -0.653 | 0.513 | Insignificant |
| Attitude toward use → Intention to continuous use | 0.477 | 11.589 | 0.000 | Significant |
| User satisfaction → Intention to continuous use | 0.274 | 6.703 | 0.000 | Significant |
| Subjective norms → Intention to continuous use | 0.009 | 0.178 | 0.859 | Insignificant |

Ethics Statement

Ethical approvals for collecting both datasets were obtained from Al-Hussein Bin Talal University in Jordan. In the first page of both electronic questionnaires, the objectives of the research were presented, stating clearly that participation was voluntary, and the answers would be kept confidential. Informed consent of all participants was obtained before participating in either questionnaire.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

We thank all participants who participated in either questionnaire.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi: 10.1016/j.dib.2020.106402.
References

[1] F.D. Davis, R.P. Bagozzi, P.R. Warshaw, User acceptance of computer technology: a comparison of two theoretical models, Manag. Sci. 35 (8) (1989) 982–1002. doi:10.1287/mnsc.35.8.982.

[2] S. Taylor, P. Todd, Understanding information technology usage: a test of competing models, Inf. Syst. Res. 6 (2) (1995) 144–176. doi:10.1287/isre.6.2.144.

[3] V. Venkatesh, M. Morris, G. Davis, F. Davis, User acceptance of information technology: toward a unified view, MIS Q. 27 (3) (2003) 425–478. doi:10.2307/30036540.

[4] D. Compeau, C. Higgins, Computer self-efficacy: development of a measure and initial test, MIS Q. 19 (2) (1995) 189–211. doi:10.2307/249688.

[5] R. Heinsen, C. Glass, L. Knight, Assessing computer anxiety: development and validation of the computer anxiety rating scale, Comput. Hum. Behav. 3 (1) (1987) 49–59. doi:10.1016/0747-5632(87)90010-0.

[6] A. Bhattacharjee, Understanding information systems continuance: an expectation-confirmation model, MIS Q. 25 (3) (2001) 351–370. doi:10.2307/3250921.

[7] R. Thompson, C. Higgins, J. Howell, Personal computing: toward a conceptual model of utilization, MIS Q. 15 (1) (1991) 125–143. doi:10.2307/249443.

[8] D. Compeau, C. Higgins, S. Huff, Social cognitive theory and individual reactions to computing technology: a longitudinal study, MIS Q. 23 (2) (1999) 145–158. doi:10.2307/249749.

[9] G. Moore, L. Benbasat, Development of an instrument to measure the perceptions of adopting an information technology innovation, Inf. Syst. Res. 2 (3) (1991) 192–222. doi:10.1287/isre.2.3.192.

[10] N. Schillewaert, M. Ahearn, R. Frambach, R. Moenaert, The adoption of information technology in the sales force, Ind. Market. Manag. 34 (4) (2005) 323–336. doi:10.1016/j.indmarman.2004.09.013.

[11] Y. Wang, Assessment of learner satisfaction with asynchronous electronic learning systems, Inf. Manag. 41 (1) (2003) 75–86. doi:10.1016/S0378-7206(03)00028-4.

[12] J. Hair, W. Black, B. Babin, R. Anderson, R. Tatham, Multivariate Data Analysis, sixth ed., Prentice Hall, New Jersey, 2006.

[13] J. Henseler, C. Ringle, M. Sarstedt, A new criterion for assessing discriminant validity in variance-based structural equation modeling, J. Acad. Market. Sci. 43 (1) (2015) 115.

[14] P. Bentler, Comparative fit indexes in structural models, Psychol. Bull. 107 (2) (1990) 238–246. doi:10.1037/0033-2909.107.2.238.

[15] P. Bentler, D. Bonett, Significance tests and goodness of fit in the analysis of covariance structures, Psychol. Bull. 88 (3) (1980) 588–606. doi:10.1037/0033-2909.88.3.588.

[16] M. Browne, R. Cudeck, Alternative ways of assessing model fit, Sociol. Methods Res. 21 (2) (1992) 230–258. doi:10.1177/0049124192021002005.

[17] L. Hu, M. Bentler, Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives, Struct. Equ. Model. 6 (1) (1999) 1–55. doi:10.1080/10705519909540118.