Retrospective Cohort Study

Association between anesthesia technique and complications after hip surgery in the elderly population

Ling-Song Guo, Li-Nan Wang, Jian-Bing Xiao, Min Zhong, Gao-Feng Zhao

Specialty type: Anesthesiology
Provenance and peer review: Unsolicited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Amornyotin S, El-Gendy HA
Received: October 10, 2021
Peer-review started: October 10, 2021
First decision: December 10, 2021
Revised: December 24, 2021
Accepted: February 12, 2022
Article in press: February 12, 2022
Published online: March 26, 2022

Abstract

BACKGROUND
Spinal anesthesia is superior to general anesthesia for postoperative recovery in older patients (≥ 65 age). However, evidence for this is lacking.

AIM
To evaluate the effect of anesthesia on postoperative complications in older patients undergoing hip surgery.

METHODS
This is a retrospective, propensity score-matched, cohort study. Patients ≥ 65-years-old who underwent hip surgery at the Traditional Chinese Medicine of Guangdong Provincial Hospital in China from October 2016 to June 2020 were included. The operative methods were femoral fracture’s internal fixation and hip replacement. The orthopedic doctors in different hospitals of our group have varied requirements for patients’ out-of-bed time after surgery. Therefore, spinal anesthesia or general anesthesia was selected according to the requirements of the orthopedic doctors. The primary outcome of this study was complications during the hospitalization of the postoperative patient. The length of hospital stay, postoperative blood transfusion, routine blood analysis, renal function, coagulation function, and inflammatory correlations were secondary outcomes. Propensity score matching (PSM) was performed utilizing logistic regression.

RESULTS
Among the 864 patients identified from the electronic medical record data database, we screened out those with incomplete medical record data. After PSM
of the baseline values of the two groups of patients, data of 309 patients (206 patients in spinal anesthesia group and 103 patients in general anesthesia) were utilized in this study. 67/309 patients had complications, including postoperative limb dysfunction, pulmonary infection, delirium, lower extremity venous thrombosis, and shock. The incidence of complications was not related to anesthesia methods ($P > 0.05$), but the levels of D-Dimer ($P = 0.017$), fibrinogen ($P = 0.005$), and high-sensitivity C-reactive protein (hsCRP) ($P = 0.002$) in the spinal anesthesia group were significantly higher than those in the general anesthesia group.

CONCLUSION

Anesthesia technology is not a risk factor for postoperative complications of hip surgery. The levels of D-Dimer and hsCRP were higher in the spinal anesthesia group.

Key Words: Spinal anesthesia; General anesthesia; Hip surgery; Older population; Complications

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This is a retrospective cohort study. We used the propensity score matching to compare the preoperative data of retrospectively selected patients between groups. A total of 309 patients were selected to evaluate whether different anesthesia methods affect the incidence of postoperative complications of hip surgery in elderly patients. The current results showed no difference in postoperative complications between elderly patients undergoing hip surgery under spinal anesthesia and general anesthesia.

Citation: Guo LS, Wang LN, Xiao JB, Zhong M, Zhao GF. Association between anesthesia technique and complications after hip surgery in the elderly population. World J Clin Cases 2022; 10(9): 2721-2732
URL: https://www.wjgnet.com/2307-8960/full/v10/i9/2721.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i9.2721

INTRODUCTION

Globally, the population is aging rapidly, increasing the demand for hip surgery, especially in older patients susceptible to bone mass loss. Successful surgery and postoperative functional recovery in the older population are yet challenging. The latter has a long-term effect on the quality-of-life post-discharge. Some potential serious complications during the perioperative period are observed in older patients, although advances in anesthesia and surgical nursing have recently minimized these events. Nonetheless, common complications are critical factors affecting the quality of life of older patients. Therefore, addressing and avoiding these complications is crucial in the older population undergoing hip surgery[1].

Several studies have posited that spinal anesthesia (SA) is superior to general anesthesia (GA) in surgery for older individuals. Among these studies, we observed that GA increases the risk of death, prolongs hospitalization, and increases the possibility of readmission and the risk of pulmonary complications[2,3]. However, evidence regarding whether the selected anesthesia affects post-hip surgery complications in older patients is lacking[4]. Large-scale studies have found that SA is independently associated with better outcomes[5]. In contrast, Kehlet et all[6] demonstrated that GA reduces the incidence of postoperative bladder dysfunction and severe neurological complications. Further evidence is needed to verify the effects of the choice of anesthesia for hip surgery in older patients. Thus, this propensity score-matched (PSM)-pair cohort study was designed to assess whether the type of anesthesia effectuated the complications after hip surgery. Subsequently, the postoperative outcomes, including length of hospitalization, postoperative pain, blood transfusion, routine blood analysis, renal function, coagulation function, and inflammatory reactions, were assessed.

MATERIALS AND METHODS

Study design and subjects

This is a retrospective, PSM cohort study. The inclusion criteria were as follows: patients ≥ 65-years-old who had a history of hip surgery, including internal fixation of femoral fractures and hip replacement, at the Traditional Chinese Medicine of Guangdong Provincial Hospital in China between October 2016 and June 2020. The exclusion criteria included patients who underwent any other lower limb surgery, those who had anesthesia other than GA or SA, and whose medical records could not be located. The
ethics approval for this study (Ethics approval number: ZE2020-288-01) was obtained from the Ethics Committee of Guangdong Provincial Chinese Hospital, Guangzhou, China (Chairperson Prof J. Liu) on November 11, 2020 prior to data collection. Informed consent was waived due to the retrospective design.

Anesthesia and surgery
The independent variable examined in this study was the anesthesia technique (GA or SA) utilized during hip surgery. GA included propofol and sufentanil venous administration, rocuronium relaxant, and tracheal intubation. Sevoflurane inhalers were used for maintenance. SA involved the administration of 1% ropivacaine. Dexmedetomidine was used when necessary during surgery. Perioperative antibiotics were routinely administered to prevent infection. If patient-controlled analgesia post-surgery was insufficient, then multimodal administration was administered.

Data collection
Data were extracted from the electronic Surgery Anesthesia Database System. General patient information, laboratory data, and clinical medical records were collected, and a comprehensive history was classified according to the disease system. Demographic data, including age, sex, and classification by the American Society of Anaesthesiologists (ASA) grade, were collected. Baseline data, such as Charlson comorbidity index (CCI), surgery site, duration, anesthesia time, intraoperative blood loss, hematocrit level, National nosocomial infection surveillance risk index, systematically recorded medical history, and preoperative renal function tests, were extracted[7,8].

The primary outcome of this study was the occurrence of complications during the hospitalization of the postoperative patient. These patients received our call-back visit 90 days after discharge from the hospital. Thus, two physicians manually reviewed medical records of patients diagnosed with postoperative complications, such as postoperative limb dysfunction, lung infection, delirium, deep venous thrombosis, and shock. The multiple complication classification system of Clavien-Dindo was adopted for severity grading of the reported complications. Data were collected to assess the secondary outcomes, including the length of hospital stay, postoperative blood transfusion, routine blood analysis, renal function, coagulation function, and inflammatory reactions[9].

Statistical analysis
The statistical methods of this study were reviewed by Lingnsong Guo from Guangdong Hospital of Traditional Chinese Medicine. Shapiro–Wilk test was used to evaluate the normality of variable distribution. Continuous variables were described as means ± SD, while categorical variables were described as frequency (%). If continuous variables were nonparametric, data were presented using median and range, quartiles, or confidence intervals. Mann-Whitney U, Pearson’s chi-square test, and Fisher’s exact tests were used to compare the baseline characteristics. Spearman’s correlation analysis was used to analyze the correlation between high-sensitivity C-reactive protein (hsCRP) and pulmonary infection.

To address the possible confounders, PSM was utilized to verify the basic principles and methods in large observational studies[10]. For PSM, demographic and baseline clinical data were included that could influence the incidence rate of complications. The ratio of the GA group to the SA group was 1:2. Specifically, age, position type, anesthesia time, ASA grade, blood loss, anesthesia level, inflammation level, and CCI score were matched between the groups.

A multivariate logistic regression model was established to estimate the individual propensity score of the GA group. Variables with significant standardization differences were included in the model a priori. In each iteration, standardized differences were used to assess the balance between queues, and unbalanced variables were included in the subsequent model. All baseline variables were balanced between the two queues by repeating the above steps.

\(P < 0.05 \) indicated a statistically significant difference. All analyses were performed using SPSS 20.0 (IBM, Armonk, NY, United States) and Stata 13.0 (Stata Corporation, College Station, TX, United States).

RESULTS

Baseline characteristics
A total of 864 patients were identified in the medical record system; among them, 718 patients fulfilled the inclusion/exclusion criteria for selection. According to baseline data, PSM identified 309 cases. A flowchart of the study participant selection process is shown in Figure 1.

The cohort of 718 older patients underwent hip surgery at our institution during the study period, of which 139 (19.4%) received GA and 579 (80.6%) received SA (Table 1). Statistically significant differences were observed in some baseline characteristics prior to matching (Table 1). Patients in the SA group were more likely to be older, have a higher ASA grade, shorter operative time, longer anesthesia time, more intraoperative blood loss, higher infection grade, and higher CCI scores than those in the GA group.
	Total (n = 718)	Spinal anaesthesia (n = 579)	General anaesthesia (n = 139)	Standardised difference	P value
Age (yr)	84.76 5.38	85.23 5.33	82.82 5.15	-0.529	< 0.001
Sex	-0.023	0.521			
Female	532 74.1	426 73.6	106 76.3	-0.322	< 0.001
Male	186 25.9	153 26.4	33 23.7		
ASA classification					
1	0 0 0	0 0 0		-0.322	< 0.001
2	85 11.8	56 9.7	29 20.97		
3	575 80.1	473 81.7	102 73.4		
4	55 7.7	47 8.1	8 5.8		
5	0 0 0	0 0 0			
Position type				-0.619	< 0.001
Lateral decubitus position	282 39.3	199 34.5	83 59.7		
Prone position	9 1.3	8 1.4	1 0.7		
Supine position	134 18.7	106 18.4	28 20.1		
Traction position	285 39.7	258 44.8	27 19.4		
Others	5 0.7	5 0.9	0 0		
Operation time (min)	69.80 35.34	67.10 31.47	80.98 46.7	0.322	0.001
Anaesthesia time (min)	117.48 45.84	113.13 42.50	135.54 54.22	0.458	< 0.001
Blood loss (mL)	68.85 82.86	60.71 61.96	102.55 134.55	0.402	< 0.001
NNIS				-0.292	< 0.001
0	214 29.8	155 26.8	59 42.4		
1	496 69.1	420 72.5	76 54.7		
2	8 1.1	4 0.7	4 2.9		
CCI	5.14 1.47	5.23 1.48	4.77 1.41	-0.368	0.001
Comorbidities					
Respiratory system	88 12.3	77 13.3	11 7.9	-0.265	0.085
Circulatory system	533 74.2	429 74.1	104 74.8	0.027	0.914
Digestive system	91 12.7	72 12.4	19 13.7	0.069	0.695
Urogenital system	67 9.3	56 9.7	11 7.9	-0.008	0.627
Blood system	20 2.8	14 2.4	6 4.3	0.098	0.248
Endocrine system	207 28.8	167 28.8	40 28.8	-0.000	1.000
Autoimmune system	7 1.2	5 0.9	2 1.4	-0.020	0.626
Nervous system	20 2.8	14 2.4	6 4.3	0.067	0.248
Cerebrovascular system	193 26.9	162 28	31 22.3	-0.108	0.201
Facial features	8 1.1	7 1.2	1 0.7	-0.020	1.000
Mental disorders	10 1.4	9 1.6	1 0.7	-0.073	0.696
Osteoporosis	13 1.8	10 1.7	3 2.2	0.031	0.724
Tumour	62 8.6	51 8.8	11 7.9	-0.001	0.744
Guo LS et al. Hip surgery complications and anesthesia

	Operation	Blood transfusion	Laboratory examination	
	272	26	7.71	Urea
	37.9	3.6	6.18	Creatinine
	216	20	7.78	90.13
	37.3	3.5	6.05	66.24
	56	6	7.43	91.95
	40.3	4.3	6.71	71.04
	0.035	0.015	-0.039	82.40
	0.559	0.801	0.581	39.20
				0.049
				0.075

1P < 0.05. ASA: American Society of Anaesthesiologists; CCI: Comprehensive complication index; eGFR: Estimated glomerular filtration rate; NNIS: National nosocomial infection surveillance.

Figure 1 Flow chart of the study participant selection.

Outcomes

In the GA group, 74.1% (n = 103) were matched with twice as many patients in the SA group (n = 206) (Table 2). None of the covariates were significantly different after matching (all P > 0.05). No significant differences were detected in the incidence of postoperative complications between the SA and GA groups (Table 3).

PSM was used for all patients. Thus, the present analysis included 718 patients, of which 579 received SA and 139 received GA. Subsequently, 67 patients experienced postoperative complications during hospitalization. The model adjusted for several complications and preoperative characteristics of patients, including age, sex, ASA grade, CCI score, operation position, operative time, anesthesia time, intraoperative blood loss, infection grade, and history of complications. Bivariate analysis after PSM analysis showed that the anesthesia technique was not related to the incidence of postoperative complications. The specific postoperative complications are listed in Table 3. Interestingly, although the two matched cohorts had a similar incidence rate of complications, the postoperative fibrinogen, D-Dimer, and hsCRP levels in the SA group were significantly higher than those in the GA group. Additionally, the GA group demonstrated higher brain natriuretic peptide levels than the SA group (Table 4).
Table 2 Baseline characteristics in propensity score-matched cohorts

	Total (n = 309)	Spinal anaesthesia (n = 206)	General anaesthesia (n = 103)	Standardised difference	P value
Age (yr)	84.23 ± 5.12	84.33 ± 5.21	84.04 ± 4.95	-0.128	0.644
Sex				-0.021	0.401
Female	239 (77.3%)	158 (76.7%)	81 (78.6%)		
Male	70 (22.7%)	48 (23.3%)	22 (21.4%)		
ASA classification				-0.117	0.873
1	0 (0%)	0 (0%)	0 (0%)		
2	33 (10.7%)	20 (9.7%)	13 (12.6%)		
3	260 (84.1%)	178 (86.4%)	82 (79.6%)		
4	16 (5.2%)	8 (3.9%)	8 (7.8%)		
5	0 (0%)	0 (0%)	0 (0%)		
Position type				-0.114	0.261
Lateral decubitus position	150 (48.5%)	95 (46.1%)	55 (53.4%)		
Prone position	5 (1.6%)	4 (1.9%)	1 (1.0%)		
Supine position	56 (18.1%)	34 (16.5%)	22 (21.4%)		
Traction position	97 (31.4%)	72 (35%)	25 (24.3%)		
Others	1 (0.3%)	1 (0.5%)	0 (0%)		
Operation time (min)	76.10 ± 33.1	77.23 ± 31.90	73.81 ± 35.50	-0.033	0.391
Anaesthesia time (min)	125.05 ± 39.8	124.31 ± 38.44	126.41 ± 41.94	-0.034	0.672
Blood loss (mL)	75.71 ± 67.0	72.48 ± 62.96	82.18 ± 74.22	-0.032	0.230
NNIS				0.050	0.635
0	40 (12.9%)	6 (29.6%)	34 (33%)		
1	213 (68.9%)	143 (69.4%)	67 (65%)		
2	4 (1.3%)	2 (1.0%)	2 (1.9%)		
CCI	5.05 ± 1.4	5.09 ± 1.39	4.97 ± 1.39	0.033	0.470
Comorbidities					
Respiratory system	37 (12.0%)	28 (13.6%)	9 (8.7%)	0.062	0.266
Circulatory system	232 (70.1%)	153 (74.3%)	79 (76.7%)	0.026	0.678
Digestive system	40 (12.9%)	24 (11.7)	16 (15.5)	-0.046	0.370
Urogenital system	26 (8.4%)	18 (8.7)	8 (7.8%)	0.055	0.832
Blood system	10 (3.2%)	6 (2.9)	3.9 (3.9)	-0.025	0.736
Endocrine system	83 (26.9%)	55 (26.7)	28 (27.2)	-0.025	1.000
Autoimmune system	3 (1.0%)	2 (1.0)	1 (1.0)	0.024	1.000
Nervous system	9 (2.9%)	5 (2.4)	4 (3.9)	0.014	0.488
Cerebrovascular system	80 (25.9%)	55 (26.7)	25 (24.3)	0.079	0.681
Facial features	4 (1.3%)	3 (1.5)	1 (1.0)	0.047	1.000
Mental disorders	3 (1.0%)	2 (1.0)	1 (1.0)	0.062	1.000
Osteoporosis	8 (2.6%)	6 (2.9)	2 (1.9)	0.076	0.723
Tumour	23 (7.4%)	14 (6.8)	9 (8.7)	0.008	0.646
Guo LS et al. Hip surgery complications and anesthesia

Table 3 Types of complications

	Spinal anaesthesia (n = 206)	General anaesthesia (n = 103)	P value		
	n	%	n	%	
Hip joint dysfunction	14	6.8	3	2.9	0.159
Deep vein thrombosis	3	1.5	0	0.0	0.219
Delirium	9	4.4	3	2.9	0.532
Pneumonia	25	12.1	7	6.8	0.147
Shock	2	1.0	1	1.0	1.000

ASA: American Society of Anaesthesiologists; CCI: Comprehensive complication index; e-GFR: Estimated glomerular filtration rate. NNIS: National nosocomial infection surveillance.

DISCUSSION

Hip arthroplasty is common among geriatric patients. Most of these patients have multiple comorbidities with high rates of postoperative complications and mortality. We used a 25-G pen-point SA needle (diameter 0.5 mm) to address the risk of postoperative complications in older patients. Compared to conventional needles, the use of this 25-G needle in older people results in fewer injuries and reduces the risk of lower back pain and headaches[11]. Previous studies have shown that SA is more favorable than GA for postoperative recovery. A retrospective study of 2591 patients who had undergone hip surgery showed that the use of SA improved the postoperative outcomes by reducing the number of pulmonary embolisms, bleeding, and length of hospital stay[12]. A large-scale study relying on a large national database of patients from approximately 400 hospitals determined that SA had a more positive effect on the outcomes in primary hip arthroplasty than GA[5]. However, a large sample retrospective study of 16695 patients reported no difference in the risk of complications, including hospitalization, readmission, deep vein thrombosis, pulmonary embolism, myocardial infarction, and pneumonia, between the two anesthesia techniques[2]. Additionally, a 2016 retrospective Cochrane study demonstrated that the anesthesia technique had an effect only on the incidence of deep vein thrombosis but not on other key outcome indicators, including mortality, pneumonia, myocardial infarction, cerebrovascular accidents, acute psychiatric disorders, and discharge, which are consistent with the current findings[13].

Similarly, a prospective study, which included patients > 65-years-old undergoing hip surgery randomly assigned to GA or SA, suggested that the choice of anesthesia did not affect postoperative cognitive dysfunction[14]. Another retrospective study of 196 older patients who underwent hip arthroplasty found that the use of GA or SA did not affect postoperative recovery[15].

In the present study, our results suggested that the choice of anesthesia technique is not associated with the risk of complications after hip surgery in older patients. Notably, no significant difference was detected in the Clavien–Dindo score or common postoperative complications between the groups. Moreover, no significant difference was observed in the length of stay and 90-day readmission rates. Thus, our results suggested that the anesthesia technique is not the key factor affecting the postoperative rehabilitation in older patients undergoing hip surgery.

Differences were noted in laboratory indices, renal function, routine blood analysis, coagulation function, and inflammatory markers (including hscRP) recorded before and after surgery after removing the confounding effects of covariates by PSM. Fibrinogen, D-Dimer, and hscRP remained higher in the SA group, while the brain natriuretic peptide level was higher in the GA group after surgery. Although the incidence of common complications was not significant in either group, the incidence of common complications in the SA group was higher than that in the GA group.
Table 4 Primary and secondary outcomes

	Spinal anaesthesia (n = 206)	General anaesthesia (n = 103)	P value				
	n/mean	%/SD	n/mean	%/SD	n/mean	%/SD	
Length of hospital stay (d)	12.54	4.58	13.31	5.05			0.212
90-d readmission	20	9.7	11	10.7			0.789
Clavien-Dindo score							0.583
1	126	61.2	65	63.1			
2	69	33.5	30	29.1			
3	1	0.5	0	0			
4	10	4.9	8	7.8			
5	0	0	0	0			
Renal function							
GLU (mmol. l⁻¹)	8.06	2.77	7.40	2.36			0.006
Urea (mmol. l⁻¹)	7.34	3.27	7.46	3.73			0.943
Cr (μmol. l⁻¹)	92.43	59.39	83.47	36.25			0.822
eGFR (mL. min⁻¹/1.73 m²)	63.87	21.54	65.67	20.54			0.656
ALB (g)	31.28	3.28	32.01	3.92			0.148
Routine blood							
WBC (10⁹ l⁻¹)	10.76	3.16	10.00	2.77			0.033
NEUT (%)	82.41	6.08	81.38	6.16			0.170
RBC (10¹³ l⁻¹)	3.31	0.55	3.84	5.57			0.753
Hb (g l⁻¹)	95.07	15.17	95.98	15.41			0.624
HCT (%)	29.15	4.84	29.60	4.71			0.437
PLT (10⁹ l⁻¹)	234.14	110.26	225.33	88.61			0.486
PCT (%)	0.33	0.40	0.19	0.15			0.187
Coagulation							
PT (s)	14.02	2.20	14.48	1.99			0.233
PT% (%)	88.54	11.54	85.59	16.74			0.170
INR (R)	1.09	0.09	1.13	0.20			0.420
FIB (g l⁻¹)	5.10	1.11	4.70	1.26			0.029
APTT (s)	40.04	5.34	40.04	5.86			0.925
DDi (ng l⁻¹ FEL)	5.9	4.07	4.25	3.98			0.003
Others							
TnT (μg l⁻¹)	28.08	280.69	2.54	2.94			0.521
BNP (pg m l⁻¹)	187.98	286.26	340.96	457.10			0.009
NTProBNP (pg m l⁻¹)	1250.66	1361.23	1067.31	1920.33			0.233
hsCRP (mg l⁻¹)	84.71	46.71	60.39	40.72			0.002
ESR (mm h⁻¹)	52.78	29.49	51.21	69.59			0.214

¹P < 0.05. GLU: Glucose; CRE: Creatinine; eGFR: Estimated glomerular filtration rate; ALB: Albumin; WBC: White blood cell; NEUT: Neutrophil; RBC: Red blood cell; Hb: Haemoglobin; HCT: Haematocrit; PLT: Platelet; PT: Prothrombin time; INR: International Normalised Ratio; FIB: Fibrinogen; APTT: Activated partial thromboplastin time; DDi: D-Dimer; TnT: Troponin T; BNP: Brain natriuretic peptide; NTProBNP: N-terminal pro brain natriuretic peptide; hsCRP: Highly sensitive C-reactive protein; ESR: Erythrocyte sedimentation rate; PCT: Procalcitonin.
Choice selection bias is one of the most obvious limitations of observational studies, and the results could be unreliable if this effect is not reduced appropriately. The two common statistical methods employed to reduce selection bias are multivariate logistic regression and PSM[16]. PSM is a method of data processing used for the control of confounding factors in observational and retrospective studies and commonly used in orthopedic research[17]. In the current study, we collected the information of 816 cases, and finally, 718 patients were obtained according to the inclusion and exclusion criteria. However, the general conditions of these patients, such as age, gender, course of the disease, and history, are different in the two groups. Among the 309 patients screened out after PSM, the differences in general information and preoperative conditions between the two groups were not statistically significant.

Another study comparing 52044 Taiwanese participants using a PSM sample found that the anesthesia technique had no significant effect on the incidence rates of 30-day mortality, pneumonia, acute myocardial infarction, delirium, or renal failure[18]. However, this study focused on the incidence of severe complications after hip arthroplasty and did not consider common complications that affect the quality of life after discharge. The study also emphasized that the findings could be more reliable if the definition of the outcome indicators were standardized and reported that some patients wanted to die at home, which is a local custom, and thus early discharge was listed as a cause of death[19]. Nonetheless, in the current study, some patients were prematurely discharged for financial reasons, leading to delayed complications that may not have been recorded and could have affected the analysis. Therefore, future studies could be improved by standardizing the definition of observation indicators.

Although our results showed that the anesthesia technique had no significant effect on complications, D-Dimer, fibrinogen, white blood cell count, glucose, brain natriuretic peptide, and hsCRP were significantly increased in the SA group. D-Dimer is the product of fibrinogen lysis after activation and is used to reflect the blood coagulation function. Although previous studies have suggested that D-Dimer is a predictor of postoperative deep vein thrombosis[20], receiver operating characteristic curve analysis revealed that levels above a threshold of 1.75 mg/L for D-Dimers are independently associated with deep vein thrombosis[21]. Therefore, in the present study, the difference between GA and SA was not considered significant, as the D-Dimer levels in both groups were > 1.75 mg/L. Another study in Japan also showed that compared to GA, SA is associated with a significant increase in the risk of deep vein thrombosis, at about 48%. The study recorded patients with deep vein thrombosis, symptomatic or asymptomatic, by venous color Doppler ultrasound examination 10 days after the operation[22]. In the current study, we recorded symptomatic patients with deep vein thrombosis after surgery. A large deviation was noted in the occurrence of deep vein thrombosis. Therefore, even our results showed that different anesthesia methods are not effective for elderly hip surgery. However, according to the changes in D-Dimer and fibrinogen levels, the high-risk surgery patients, such as those with a hypercoagulable state, perennial bedridden, and malignant tumors, avoided SA.

The differences in white blood cell count and glucose levels between the two groups were not clinically significant. Unfortunately, brain natriuretic peptide data were missing for many patients (n = 148), and the residual range was large (13.3-2397.19 ng/L) for meaningful comparison.

The SA group showed significantly higher levels of hsCRP after surgery than the GA group, while no statistically significant difference was observed in the diagnosis of lung infections in this study. The changes in hsCRP reflected postoperative recovery and postoperative stress levels related to surgical injury[23]. Due to the increase in oxidative stress reaction after the operation, the risk of postoperative complications increases, and the recovery time of patients after the operation is prolonged[24]. In the current study, SA patients were conscious during surgery, and GA patients were not, and changes in the psychological status of SA patients during the surgery might have led to differences in surgical stress between the two groups, resulting in differences in postoperative hsCRP, white blood cell counts, and glucose levels. Thus, reducing the stress response during surgery may be beneficial to the prevention of postoperative cognitive dysfunction in elderly patients[25]. We speculated that in elderly hip surgery patients who have to receive SA, drugs could be administered during the operation to reduce the degree of stress response caused by the operation and the environment.

In a retrospective study, Nouvenne et al.[26] found that serum hsCRP levels > 61 mg/L were independently associated with a 3.59-fold increased risk of pneumonia, while other studies showed that the anesthesia technique had no obvious effect on CRP[27,28]. Thus, we evaluated the correlation between hsCRP and pulmonary infection and found a significant but weak correlation with the risk of pulmonary infection (r = 0.089, P = 0.179). Although no diagnostic difference was observed in the incidence of postoperative pulmonary infection between the two groups, and the incidence of postoperative pulmonary infection in the SA group (12.1%) was higher than that in the GA group (6.8%). These results suggested that older patients with severe coexisting pulmonary disease or those with risk factors, such as obesity, a history of chronic smoking, abuse of antibiotics, and long-term corticosteroid use, should be treated cautiously.

The current study has two distinct advantages. Firstly, we included 25 preoperative baseline indicators, utilized a propensity score model for balanced matching between groups, and included eight independent variables with significant differences between groups to reduce selection bias. Secondly, we incorporated the surgical location into the model to minimize potential confounding effects during
surgery. Nevertheless, the present study has some limitations. This was a single-center study, which restricts the generalizability of our findings to other institutions that may not be comprised of similar demographic and nursing processes. Also, we did not collect data on several variables that might affect the outcomes, including body mass index (BMI), drinking history, and the specific type of surgery. High BMI is associated with surgical site infection after total hip arthroplasty[29], and BMI classification is a predictor of early postoperative complications[30]. A history of alcohol consumption is an independent risk factor for blood transfusion after hip surgery[31]. Since our data were obtained from electronic medical records, it was not feasible to obtain these variables. Finally, other unknown factors, including inconsistent pre-recorded data, may have residual confounding effects. Also, the selection bias could not be ignored. Different surgical teams have varied requirements for anesthesia and surgical methods. Anesthesiologists have personal preferences for the choice of anesthesia methods, and the outcome indicators of adverse reactions after surgery are not uniform; these offsets cannot be calibrated by matching analysis. Therefore, to conclusively determine the preferred anesthesia for application in clinical hip arthroplasty practice, a multicenter, large-scale randomized trial is essential.

CONCLUSION

The anesthesia technique utilized in this study was not identified as a risk factor for common complications after hip surgery in the older population. The increase in hsCRP and D-Dimer levels was smaller in patients who underwent hip surgery under GA than SA, indicating the need for prudent selection of patients. This increase in hsCRP and D-Dimer requires further investigation in specific populations.

ARTICLE HIGHLIGHTS

Research background
Successful surgery and postoperative functional recovery in the elderly remain challenging. Some studies believe that spinal anesthesia is superior to general anesthesia in surgery in the older patients. However, there is a lack of evidence on whether the selected anesthesia affects the complications after hip surgery in elderly patients.

Research motivation
The present study aimed to evaluate the effect of anesthesia on postoperative complications in older patients undergoing hip surgery.

Research objectives
Anesthesia technique is not a risk factor for postoperative complications of hip surgery, but it should be carefully selected for some patients.

Research methods
Patients included patients over 65 years old who underwent hip surgery in Traditional Chinese Medicine of Guangdong Provincial Hospital in China from October 2016 to June 2020. The main outcome of this study was postoperative complications during hospitalization. Hospital stay, postoperative blood transfusion, blood routine analysis, renal function, coagulation function and inflammation were secondary results. Propensity score matching was performed by logistic regression.

Research results
67/309 patients had complications, including postoperative limb dysfunction, pulmonary infection, delirium, lower extremity venous thrombosis and shock. The incidence of complications was not related to anesthesia methods (P > 0.05), but the levels of D-Dimer (P = 0.017), fibrinogen (P = 0.005) and high-sensitivity C-reactive protein (P = 0.002) in spinal anesthesia group were significantly higher than those in general anesthesia group.

Research conclusions
Anesthesia technology is not a risk factor for postoperative complications of hip surgery. The levels of D-Dimer and hsCRP were higher in the spinal anesthesia group.

Research perspectives
To conclusively determine the preferred anesthesia for application in clinical hip arthroplasty practice, a multicenter, large-scale randomized trial is essential.
FOOTNOTES

Author contributions: Guo LS and Wang LN contributed equally to this work; Guo LS, Wang LN, Zhao GF, Xiao JB, Zhong M designed research; Guo LS, Wang LN, Zhao GF performed research; Guo LS, Zhao GF, Xiao JB contributed new analytic tools; Guo LS and Wang LN analyzed data; Guo LS and Zhong M wrote the paper.

Institutional review board statement: The study was reviewed and approved by the [Ethics Committee of Guangdong Provincial Chinese Hospital, Guangzhou, China (Chairperson Prof J. Liu)] Institutional Review Board (Ethics approval number: ZE2020-288-01).

Informed consent statement: All study participants or their legal guardian provided informed written consent about personal and medical data collection prior to study enrolment.

Conflict-of-interest statement: All the Authors have no conflict of interest related to the manuscript.

Data sharing statement: Technical appendix, statistical code, and dataset available from the corresponding author at email address. Participants gave informed consent was not obtained but the presented data are anonymized and risk of identification is low for data sharing.

STROBE statement: The authors have read the STROBE Statement—checklist of items, and the manuscript was prepared and revised according to the STROBE Statement—checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Ling-Song Guo 0000-0002-2863-7818; Li-Nan Wang 0000-0001-5897-8595; Jian-Bing Xiao 0000-0002-8977-1658; Min Zhong 0000-0002-8759-7983; Gao-feng Zhao 0000-0002-7322-6604.

S-Editor: Ma YJ
L-Editor: A
P-Editor: Ma YJ

REFERENCES

1. McIsaac DI, MacDonald DB, Aucoin SD. Frailty for Perioperative Clinicians: A Narrative Review. *Anesth Analg* 2020; 130: 1450-1460 [PMID: 32384334 DOI: 10.1213/ANE.0000000000004602]
2. Desai V, Chan PH, Prentice HA, Zolman GL, Diekmann GR, Maletis GB, Fasig BH, Diaz D, Chung E, Qiu C. Is Anesthesia Technique Associated With a Higher Risk of Mortality or Complications Within 90 Days of Surgery for Geriatric Patients With Hip Fractures? *Clin Orthop Relat Res* 2018; 476: 1178-1188 [PMID: 29601378 DOI: 10.1007/s11999-0000000000000147]
3. Smith LM, Cozowicz C, Uda Y, Mentsoussis SG, Barrington MJ. Neuromuscular Combined Neuromuscular/General Anesthesia Compared to General Anesthesia for Major Truncal and Lower Limb Surgery: A Systematic Review and Meta-analysis. *Anesth Analg* 2017; 125: 1931-1945 [PMID: 28537970 DOI: 10.1213/ANE.0000000000002069]
4. Association of Anaesthetists of Great Britain and Ireland, Griffiths R, Alper J, Beckingsale A, Goldhill D, Heyburn G, Holloway J, Leaper E, Parker M, Ridgway S, White S, Wiese M, Wilson I. Management of proximal femoral fractures 2011: Association of Anaesthetists of Great Britain and Ireland. *Anaesthesia* 2012; 67: 85-98 [PMID: 22150501 DOI: 10.1111/j.1365-2044.2011.09597.x]
5. Mentsoussis SG, Sun X, Chiu YL, Stundner O, Liu SS, Banerjee S, Mazumdar M, Sharrock NE. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. *Anesthesiology* 2013; 118: 1046-1058 [PMID: 23612126 DOI: 10.1097/ALN.0b013e318286061d]
6. Kehlet H, Aasvang EK. Regional or general anesthesia for fast-track hip and knee replacement - what is the evidence? *F1000Res* 2015; 4 [PMID: 26918127 DOI: 10.12688/f1000research.7100.1]
7. Roffman CE, Buchanan J, Allison GT. Charlson Comorbidities Index. *J Physiother* 2016; 62: 171 [PMID: 27298055 DOI: 10.1016/j.jphysio.2016.05.008]
8. Emori TG, Culver DH, Horan TC, Jarvis WR, White JW, Olson DR, Banerjee S, Edwards JR, Martone WJ, Gaynes RP. National nosocomial infections surveillance system (NNIS): description of surveillance methods. *Am J Infect Control* 1991; 19: 19-35 [PMID: 18535852 DOI: 10.1016/0196-6553(91)90157-8]
9. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg* 2004; 240: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000133083.54934.az]
10. Schulte PJ, Mascha EJ. Propensity Score Methods: Theory and Practice for Anesthesia Research. *Anesth Analg* 2018; 127:
Influence Revision Rate of Total Hip Arthroplasty: American Society of Anesthesiologists Score and Body Mass Index

DOI: 10.1186/s13018-019-1449-6

Liu X, Dong Z, Li J, Feng Y, Cao G, Song X, Yang J. Factors affecting the incidence of surgical site infection after elective operation: a systematic review. J Orthop Surg Res 2019; 14: 382 [PMID: 31752900 DOI: 10.1186/s13018-019-1449-6]

Guo LS et al. Hip surgery complications and anaesthesia
