First data on antimicrobial susceptibility patterns of *Moraxella catarrhalis* isolates in Lebanon

Abstract

Background: *Moraxella catarrhalis* is an important bacterial pathogen. However, no data regarding this human pathogen are currently available in Lebanon. This study aimed to determine for the first time the antimicrobial susceptibility profiles of *M. catarrhalis* isolates in Lebanon.

Methods: A total of 34 *M. catarrhalis* strains were isolated from clinical specimens during the period from November 2010 to March 2019. Bacterial identification was performed using MALDI-TOF MS. Antibiotic susceptibility of all isolates was interpreted according to EUCAST recommendations.

Results: A total of 34 non-duplicated *M. catarrhalis* strains were isolated from patients referred to Nini Hospital in Tripoli, Lebanon. Regarding antibiotic susceptibility rates, the percent susceptibility is 100% to the majority of antibiotics, except ampicillin (7.4%), trimethoprim-sulfamethoxazole (85.3%), nalidixic acid (85.3%), and ciprofloxacin (97.1%).

Conclusion: To our knowledge, this study is the first investigation regarding the antimicrobial susceptibility patterns of *M. catarrhalis* isolates in Lebanon. In addition to the high level of resistance to ampicillin, our findings showed the emergence of resistance to trimethoprim-sulfamethoxazole, nalidixic acid and ciprofloxacin. Even if this study provides useful information to develop effective empirical treatment, we recommend the implementation of reliable diagnostic tools to guide appropriate treatment.

Keywords

Moraxella catarrhalis; Antimicrobial Resistance; Epidemiology; Lebanon.
Introduction

Moraxella catarrhalis is an aerobic Gram-negative diplococcus, formerly known as *Branhamella catarrhalis*, that resides exclusively in humans, and commensally colonizes the mucosal surface of the upper respiratory tract, and occasionally the conjunctiva and genital tract [1]. The highest prevalence of colonization was detected among infants and children, which decreased in healthy adults [2]. The role of this bacterium as a disease-causing organism has long been questioned. *M. catarrhalis* was recognized to cause occasionally infections such as acute otitis media, sinusitis, acute bronchitis, pneumonia, and exacerbations of chronic obstructive pulmonary disease, and rarely bacteremia, meningitis, septic arthritis, osteomyelitis, endocarditis, and pericarditis, especially in immunocompromised persons [3]. In fact, the absence of vaccines for prevention and the low number of active antibiotics for treatment of *M. catarrhalis* infections, have considered this bacterium as an important human pathogen [4].

In addition, two major resistance mechanisms have been described in *M. catarrhalis*: the inactivation of antimicrobials by enzymes such as β-lactamases and the decrease in permeability of bacterial cell wall (reducing in the number of porins and/or enhancement of the active efflux system) [1]. The beta-lactamase-producing *M. catarrhalis* was firstly reported in 1976. Today, two distinct BRO-type β-lactamase enzymes (BRO-1 and BRO-2), have been reported worldwide [5]. Regrettably, BRO-positive *M. catarrhalis* strains have increased rapidly in recent years, and are now accounting for more than 90% globally [2]. The evidence of continuing misuse of antibiotics associated with a low level of antibiotic awareness is of global concern [6]. In Lebanon, as other developing countries, national investigations showed an increase in the levels of antimicrobial resistance in clinical and non-clinical settings [7-11]. For instance, a recent nationwide study conducted in 13 different hospitals located in different Lebanese governorates showed a trend of increasing antimicrobial resistance [12]. Even if the epidemiology of antimicrobial resistance is widely studied in Lebanon, there is a lack of studies on antimicrobial resistance in *M. catarrhalis* isolates in this country. Therefore, we decided to assess for the first time the antimicrobial resistance patterns in *M. catarrhalis* strains isolated in North Lebanon.

Material and Methods

This study was conducted in the clinical microbiology laboratory of Nini Hospital during the period from November 2010 to March 2019. The isolation of *M. catarrhalis* strains was performed according to standard protocols proposed by the Référentielen Microbiologie Médicale (REMIC) using a calibrated loop (10 µl) and a blood agar (Bio-Rad®, France) after an incubation for 18 to 24 hours at 35°C in air enriched with 5% CO₂. Bacterial identification was carried out through the use of API-NH (bioMérieux, Marcy l’Etoile, France). All isolates were transferred to the Laboratoire Microbiologie Santé et Environnement (LMSE) at the Lebanese University for identification confirmation or exclusion using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) (bioMérieux, Marcy l’Etoile, France). The antibiotic susceptibility testing was performed for *M. catarrhalis* isolates by the disk diffusion method on Mueller Hinton supplemented with 5% blood and 20 mg/l β-NAD (MH-F) according to the recommendations of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). The antibiotics tested were ampicillin (AMP; 2 µg), amoxicillin - clavulanic acid (AMC; 2-1 µg), cefotaxime (CTX; 5 µg), cefixime (CFM; 5 µg), tetracycline (TET; 30 µg), minocycline (MNO; 30 µg), erythromycin (E; 15 µg), chloramphenicol (C; 30 µg), nalidixic acid (NA; 30 µg), ciprofloxacin (CIP; 5 µg) and trimethoprim-sulfamethoxazole (SXT; 1.25-23.75 µg).
Results
This study was conducted in the North governorate of Lebanon. A total of 34 non-duplicated M. catarrhalis isolates were recovered from patients referred to Nini Hospital. Overall, M. catarrhalis strains were isolated from nose (n=19), ear (n=7), sputum (n=5), blood (n=1), eye (n=1), and throat (n=1) of 34 patients (23 males and 11 females, ranging in age from 2 weeks to 77 years, with a mean age of 11.9 years) presenting respiratory like symptoms. Regarding antibiotic susceptibility rates, the percent susceptibility is 100% to the majority of antibiotics, such as amoxicillin-clavulanic acid, cefotaxime, cefixime, tetracycline, minocycline, erythromycin, and chloramphenicol (Table 1). Higher antibiotic resistance rates were observed to ampicillin (92.6%), trimethoprim-sulfamethoxazole (14.7%), nalidixic acid (14.7%), and ciprofloxacin (2.9%) (Figure 1).

Discussion
The global increase in the prevalence of M. catarrhalis in recent years has drawn the attention to the clinical importance of this bacterium, particularly as an important cause of respiratory tract infections [13]. The present surveillance study in North Lebanon aimed to evaluate the susceptibility patterns of M. catarrhalis clinical isolates to several commonly used antibiotic agents in the hopes of helping physicians and infectious diseases specialists in developing effective empirical antibiotic treatment for M. catarrhalis infections. These bacteria are almost universally capable of producing one of two chromosomally encoded BRO β-lactamases, with previous investigations showing production in more than 90% of clinical isolates [2, 14-16]. As expected, the present finding (92.6% of isolates are ampicillin resistant) is compatible with previous investigations (Table 2). This dramatic increase in the prevalence of ampicillin resistant M. catarrhalis strains could be regarded as the fastest dissemination of β-lactamase genes within the genus. The BRO genes appear to be chromosomally located but are readily transferred by conjugation within the Moraxella species. Besides the high level of resistance to penicillin, the combination of penicillin with a β-lactamase inhibitor used as a treatment of M. catarrhalis infections is still active against 100% of our isolates in almost all countries. However, unfortunately, recent studies found the emergence of M. catarrhalis strains resis-

Table 1. Distribution of Moraxella catarrhalis isolates according to clinical specimens, and their antibiotic resistance patterns.

Specimen	N	AMP	AMC	CTX	CFM	E	TET	MNO	C	NA	CIP	SXT
Nose	19	84.2	0	0	0	0	0	0	0	15.8	0	15.8
Ear	7	100	0	0	0	0	0	0	0	14.3	0	28.6
Sputum	5	100	0	0	0	0	0	0	0	20	20	0
Blood	1	100	0	0	0	0	0	0	0	0	0	0
Eye	1	100	0	0	0	0	0	0	0	0	0	0
Throat	1	100	0	0	0	0	0	0	0	0	0	0

Ampicillin (AMP); Amoxicillin - clavulanic acid (AMC); Cefotaxime (CTX); Cefixime (CFM); Erythromycin (E); tetracycline (TET); Minocycline (MNO); Chloramphenicol (C); Nalidixic acid (NA); Ciprofloxacin (CIP); Trimethoprim-sulfamethoxazole (SXT).
tant to amoxicillin-clavulanic acid and third generation cephalosporins [17].

Other antimicrobial agents, such as tetracycline, erythromycin, ciprofloxacin, and trimethoprim-sulfamethoxazole have also been empirically used to treat *M. catarrhalis* infections worldwide with apparent success. All clinical isolates collected in this study showed 100% susceptibility to tetracycline and erythromycin which is consistent with the most current international research [18]. Nevertheless, the antimicrobial resistance threat must keep the clinical community vigilant. Regrettably, tetracycline resistance has emerged in numerous developing and developed countries. The higher levels of resistance were reported in China [19], Taiwan [2] and Ethiopia [20]. Furthermore, several studies realized in developing countries indicated unexpected levels of antimicrobial resistance to erythromycin in *M. ca-

Antibiotic agents										
AMP	AMC	CTX	E	TET	CIP	SXT	Ref.			
Australia	2010	63.6	0	0	0	1.1	0	13.8	22	
United States	2012	96.4	0	0.2	0.5	0.2	0	2.5	33	
United States	2009	95.2	4.8	3.2	ND	ND	ND	ND	17	
Canada	2014	ND	0	0	ND	0	0	0	18	
Canada	2000	ND	0	0	ND	0.7	0	15.7	23	
Portugal	2001	81.6	0	0	ND	0	0	ND	34	
Greece	2014	47.8	0	0	ND	1.5	0	28.4	24	
Ethiopia	2018	94.6	ND	ND	86.6	37.8	16.2	78.4	20	
Tunisia	2008	95	0	0	3.8	1.25	0	12.5	21	
Iran	2012	0	0	0	ND	0	0	100	25	
Taiwan	2012	97.8	0	0	ND	19.8	0	18.5	2	
China	2018	74.2	0	0	70.8	6.8	3.4	28.1	19	
Thailand	2016	97	0	0	ND	ND	ND	ND	16	
Pakistan	2015	63	4	0	59.1	ND	59	59	13	
Lebanon	2019	92.6	0	0	0	0	0	2.9	14.7	This study

Ampicillin (AMP); Amoxicillin - clavulanic acid (AMC); Cefotaxime (CTX); Erythromycin (E); Tetracycline (TET); Ciprofloxacin (CIP); Trimethoprim-sulfamethoxazole (SXT); Not determined (ND).
M. catarrhalis isolates in Lebanon, with a higher rate than that reported in the majority of countries. Surprisingly, two studies conducted in Ethiopia and Pakistan showed high level of resistance to ciprofloxacin, with 16.2% and 59% respectively [13, 20].

Indeed, our generated data are in accordance with recent national studies reporting an increased level of antimicrobial resistance among infectious bacterial agents, a striking low level of antibiotic awareness among Lebanese population, a spread of counterfeit medicines, and a misuse of antibiotics in Lebanon [6-11, 26-32]. Even if this study provides useful information for physicians to develop effective empirical antibiotic treatment for M. catarrhalis infections, we advise to pay attention to this prominent issue and we recommend the implementation of reliable identification and antibiotic susceptibility testing in routine laboratory diagnostics to guide appropriate treatment.

In summary, to our knowledge, this study is the first investigation regarding the antimicrobial susceptibility patterns of M. catarrhalis isolates in Lebanon. Overall, our isolates showed 100% susceptibility to the majority of tested antibiotics, except ampicillin, trimethoprim-sulfamethoxazole, nalidixic acid and ciprofloxacin. Due to the limited number of isolates analyzed in this investigations, the epidemiologic significance of these results remains to be confirmed. Therefore, additional long-term surveillance studies including a large number of isolates are required to assess the antimicrobial resistance of this important human pathogen.

References

1. Spaniol V, Bernhard S, Aebi C. Moraxella catarrhalis AcrAB-OprM efflux pump contributes to antimicrobial resistance and is enhanced during cold shock response. Antimicrob Agents Chemother. 2015; 59(4):1886-94.
2. Hsu SF, Lin YT, Chen TL, Siu JK, Hsieh PR, Huang ST, et al. Antimicrobial resistance of Moraxella catarrhalis isolates in Taiwan. J Microbiol Immunol Infect. 2012; 45(2):134-40.
3. Aebi C. Moraxella catarrhalis - pathogen or commensal? Adv Exp Med Biol. 2011; 697:107-16.
4. Gumerova NI, Al-Sayed E, Krivosudsky L, Cipcic-Paljetak H, Verbanac D, Rompel A. Antibacterial Activity of Polyoxometalates Against Moraxella catarrhalis. Front Chem. 2018; 6:336.
5. Khan MA, Northwood JB, Levy F, Verhaegh SJ, Farrell DJ, Van Belkum A, et al. bro (beta)-lactamase and antibiotic resistances in a global cross-sectional study of Moraxella catarrhalis from children and adults. J Antimicrob Chemother. 2010; 65(1):91-7.
6. Al Omari S, Al Mir H, Wrayde S, Merhabi S, Dhaybi I, Jamal S, et al. First Lebanese Antibiotic Awareness Week campaign: knowledge, attitudes and practices towards antibiotics. J Hosp Infect. 2019; 101(4):475-9.
7. Jamal S, Al Atrouni A, Rafei R, Dabboussi F, Hamze M. Osman M. Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon. J Glob Antimicrob Resist. 2018; 15:154-63.
8. El Moujaber G, Osman M, Rafei R, Dabboussi F, Hamze M. Molecular mechanisms and epidemiology of resistance in Streptococcus pneumoniae in the Middle East region. J Med Microbiol. 2017; 66(7):847-58.
9. Osman M, Al Mir H, Rafei R, Dabboussi F, Madec JY, Haenni M, et al. Epidemiology of Antibiotic Resistance in Lebanese Extra-Hospital Settings: an overview. J Glob Antimicrob Resist. 2018; 17:123-129
10. Hamze M, Osman M, Mallat H, Nasr S, BouRaad E, Achkar M. Epidemiology and antibiotic susceptibility patterns of carbapenem-resistant Gram-negative bacteria isolated from two tertiary care hospitals in North Lebanon. Int Arab J Antimicrob Agents. 2018; 8(2):3.
11. Osman M, Mallat H, Hamze M, Achkar M. Prevalence and antibiotic susceptibility patterns of bacteria causing urinary tract infections in Yousef Hospital Center: first report from Akkar governorate, North Lebanon. Int Arab J Antimicrob Agents. 2017; 7(1):2.
12. Moghnieh R, Araj GF, Awad L, Daoud Z, Mokhbat JE, Jisr T, et al. A compilation of antimicrobial susceptibility data from a network of 13 Lebanese hospitals reflecting the national situation during 2015-2016. Antimicrob Resist Infect Control. 2019; 8:41.
13. Shalik SB, Ahmed Z, Arsalan SA, Shafiq S. Prevalence and resistance pattern of Moraxella catarrhalis in community-acquired lower respiratory tract infections. Infect Drug Resist. 2015; 8:263-7.
14. Murphy TF, Parameswaran GJ. Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis. 2009; 49(1):124-31.
15. Doern GV, Jones RN, Pfaller MA, Kugler K. Haemophilus influenzae and Moraxella catarrhalis from patients with community-acquired respiratory tract infections: antimicrobial susceptibility patterns from the SENTRY antimicrobial Surveillance Program (United States and Canada, 1997). Antimicrob Agents Chemother. 1999; 43(2):385-9.
16. Srifuengfung S, Tribuddharat C, Phoomniyom S, Chuanphung S. Prevalence and antimicrobial susceptibility of Haemophilus influenzae and Moraxella catarrhalis isolated from patients in Bangkok, Thailand. J Glob Antimicrob Resist. 2016; 5:86-7.

17. Harrison CJ, Woods C, Stout G, Martin B, Selvarangan R. Susceptibilities of Haemophilus influenzae, Streptococcus pneumoniae, including serotype 19A, and Moraxella catarrhalis paediatric isolates from 2005 to 2007 to commonly used antibiotics. J Antimicrob Chemother. 2009; 63(3):511-9.

18. Bandet T, Whitehead S, Blondel-Hill E, Wagner K, Cheeptham N. Susceptibility of clinical Moraxella catarrhalis isolates in British Columbia to six empirically prescribed antibiotic agents. Can J Infect Dis Med Microbiol. 2014; 25(3):155-8.

19. Shi W, Wen D, Chen C, Yuan L, Gao W, Tang P, et al. beta-Lactamase production and antibiotic susceptibility pattern of Moraxella catarrhalis isolates collected from two county hospitals in China. BMC Microbiol. 2018; 18(1):77.

20. Mulu W, Yizengaw E, Alemu M, Mekonnen D, Hailu D, Ketemaw K, et al. Pharyngeal colonization and drug resistance profiles of Moraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae among HIV infected children attending ART Clinic of Felegehivot Referral Hospital, Ethiopia. PLoS One. 2018; 13(5):e0196722.

21. Khemiri H, Smaoui H, Kechrid A. [Antimicrobial susceptibility of 80 Moraxella catarrhalis strains isolated in the children’s hospital of Tunis]. Pathol Biol (Paris). 2008; 56(3):158-61.

22. Pingault NM, Bowman JM, Lehmann D, Riley TV. Antimicrobial susceptibility of Moraxella catarrhalis isolated from children in Kalgoorlie-Boulder, Western Australia. Pathology. 2010; 42(3):273-9.

23. Zhanel GG, Karlovsky JA, Low DE, Hoban DJ. Antibiotic resistance in respiratory tract isolates of Haemophilus influenzae and Moraxella catarrhalis collected from across Canada in 1997-1998. J Antimicrob Chemother. 2000; 45(5):655-62.

24. Maraki S, Papadakis IS. Antimicrobial resistance trends among community-acquired respiratory tract pathogens in Greece, 2009-2012. ScientificWorldJournal. 2014; 2014:941564.

25. Khoramrooz SS, Mirsalehian A, Emaneini M, Jabalameli F, Aligholi M, Saedi B, et al. Frequency of Alloicoccus otitidis, Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae in children with otitis media with effusion (OME) in Iranian patients. Auris Nasus Larynx. 2012; 39(4):369-73.

26. Hamze M, Osman M, Mallat H, Achkar M. Prevalence and antibiotic susceptibility of ear pathogens isolated from patients in Tripoli, north of Lebanon. Int Arab J Antimicrob Agents. 2017; 7(1):1.

27. Christofy R, Osman M, Mallat H, Achkar M, Ziedeh A, Moukaddem W, et al. Prevalence, antibiotic susceptibility and characterization of antibiotic resistant genes among carbapenem-resistant Gram-negative bacilli and yeast in intestinal flora of cancer patients in North Lebanon. J Infect Public Health. 2017; 10(6):716-20.