Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish

Nadja R. Brun1,2*, Patrick van Hage1, Ellard R. Hunting3, Anna-Pavlina G. Haramis4, Suzanne C. Vink1, Martina G. Vijver1, Marcel J.M. Schaaf4 & Christian Tudorache4

Plastic nanoparticles originating from weathering plastic waste are emerging contaminants in aquatic environments, with unknown modes of action in aquatic organisms. Recent studies suggest that internalised nanoplastics may disrupt processes related to energy metabolism. Such disruption can be crucial for organisms during development and may ultimately lead to changes in behaviour. Here, we investigated the link between polystyrene nanoplastic (PSNP)-induced signalling events and behavioural changes. Larval zebrafish exhibited PSNP accumulation in the pancreas, which coincided with a decreased glucose level. By using hyperglycemic and glucocorticoid receptor (Gr) mutant larvae, we demonstrate that the PSNP-induced disruption in glucose homeostasis coincided with increased cortisol secretion and hyperactivity in challenge phases. Our work sheds new light on a potential mechanism underlying nanoplastics toxicity in fish, suggesting that the adverse effect of PSNPs are at least in part mediated by Gr activation in response to disrupted glucose homeostasis, ultimately leading to aberrant locomotor activity.
The global increase in plastic production and disposal has resulted in vast amounts of plastic debris in aquatic environments that pose both a burden and responsibility for the coming generations. Assessing risk of plastic debris to the environment becomes progressively more complicated since plastic debris is broken down to micro- and ultimately nano-size scales through physical or digestive fragmentation. Like plastic debris, the majority of the nano-sized particles accumulate in the gastrointestinal tract or on the outer epithelium. However, nanoparticles have the potential to cross epithelial barriers of vertebrates and have been reported to accumulate in the heart and brain of fish. There remain considerable knowledge gaps in the mode of action of nanoparticles and the potential consequences at higher functional and organisational biological levels. Such knowledge is essential to ultimately allow for monitoring and predicting the consequences of the anticipated buildup of nanoparticles for the environment.

At the molecular level, nanoparticles can initiate stress response pathways such as oxidative stress, dysregulation of lipid and energy metabolism, and inflammation. An inflammatory response of the innate immune system after exposure to polystyrene nanoparticles (PSNPs) is indicated by increased transcription of a key mediator in the neuromasts of zebrafish (Danio rerio) larvae, and increased necrosis, infiltration, and vacuolation in hepatocytes of adult zebrafish and dark chub (Zacco temminckii). Additionally, at the cellular level, fathead minnow show activation of neutrophil function in the plasma when exposed to polystyrene and polycarbonate nanoparticles. To date, however, at a higher level of biological organisation (e.g., organism or population level), it remains speculative if fish in nanoplastic-contaminated environments have a reduced host defence during a disease challenge. Also, nanoparticles can interact with lipid membranes and disrupt metabolic processes in fish.

For example, dietary exposure to nanoparticles can lead to changes in metabolic profiles of liver and muscles of adult crucian carp (Carassius carassius) and liver of adult zebrafish, while elevated cholesterol levels are found in the plasma of dark chub and crucian carp, and the liver of zebrafish, indicating shifts in energy utilisation.

Recent studies have only started to unravel potential behavioural changes, a sensitive indicator of effects at the organism, population, or community level. Nanoplastic exposure in adult fish is associated with longer feeding time, lower activity, a stronger preference for staying close to conspecifics (shoaling behaviour), and reduced exploration of space. Similarly, PSNPs exposure throughout zebrafish development leads to hypoactivity in larvae. The mechanistic underpinning of these PSNP-induced behavioural changes in fish remains to a large extent elusive, but can potentially be tied to neurological or metabolic effects. For example, the shoaling behaviour is thought to be mediated by neurotransmitters, specifically the dopaminergic system. Changes in metabolic rate are widely accepted as a proxy for stress response, and are correlated with behavioural endpoints such as exploration or swimming activity. Furthermore, coping with stress results in different patterns in both serotonergic activity and cortisol as part of a complex set of feedback interactions between the hypothalamus, the pituitary gland, and interrenal tissues.

Cortisol is the main endogenous glucocorticoid in teleosts and most mammals, and seems to play a key role in a wide variety of processes including innate immune responses, intermediary metabolism, and behaviour. Elevated cortisol secretion is a major hallmark of stress response. Under stressful conditions, cortisol mainly acts through the intracellular glucocorticoid receptor (zebrafish protein: Gr, zebrafish gene: gr), whereas under basal condition, its effects are mainly mediated by the mineralocorticoid receptor. Increased cortisol levels have been observed to coincide with alterations in behaviour, particularly locomotion. In this context, zebrafish larvae are increasingly used as a model organism to study the molecular aspects of behavioural changes in fish, in part because zebrafish harbour only one gr gene (in contrast to most other fish species that contain two). In zebrafish larvae, cortisol levels have been observed to increase in response to a physical stressor (swirling) as early as 4 days post fertilisation. Moreover, elevated cortisol levels induced by stress, starvation, or glucocorticoids can stimulate gluconeogenesis and thereby increase blood glucose levels. A hallmark gene of gluconeogenesis is phosphoenolpyruvate carboxykinase 1 (pck1), which encodes the rate-limiting enzyme in this process. Cortisol and gluconeogenesis may be reciprocally regulated, as hyperglycaemic zebrafish embryos exhibit increased cortisol levels. Hence, for fish and many other vertebrates, this suggests a complex interplay between cortisol, gluconeogenesis, and behaviour that is likely prone to environmental contaminants such as PSNPs.

By considering an unappreciated set of responses at molecular signalling and behavioural levels, we suggest here the involvement of disrupted energy and cortisol metabolism in inducing an adverse behavioural effect in fish larvae after exposure to PSNPs. Taking advantage of the zebrafish as an emerging model organism in metabolic disease and behavioural research, we have used a gr mutant and a pck1 transgenic bioluminescence reporter...
zebrafish line to disentangle the consecutive events elicited by PSNPs. We present evidence that PSNPs induce changes in both glucose and cortisol levels, as well as in gluconeogenesis activity in zebrafish larvae. Given the direct involvement of cortisol in increased activity\(^{30}\), we have subsequently examined behavioural changes by measuring distance moved during alternating light–dark cycles as a common behavioural trigger in fish using wild-type, hyperglycemic, and gr mutant larvae exposed to PSNPs. We confirmed that glucose homeostasis, as well as the Gr, are likely mediating the observed changes in behaviour.

Results

Biodistribution and physiological response. To determine target organs, zebrafish larvae were imaged after exposure to fluorescently labelled PSNPs. PSNPs accumulated in the intestine, exocrine pancreas, and gallbladder of exposed larvae (Fig. 1). The highest PSNP concentration tested (20 mg L\(^{-1}\)) did not significantly affect the growth of zebrafish larvae at 120 hours post fertilisation (hpf) \((F(2, 25) = 1.65, p = 0.2151)\), although a slight reduction in the mean length of PSNP-exposed larvae was observed (Supplementary Fig. 1a). By contrast, swim bladder development was significantly affected \((F(14,87) = 33.65, p < 0.0001)\), with 50.1% of treated wild-type larvae having inflated swim bladders, compared to 91.4% of the controls (Supplementary Fig. 1b). Interestingly, the larvae with an inflated swim bladder did not show any reduction in swim bladder size following exposure to PSNP (Supplementary Fig. 1c), suggesting that once inflation was initiated, the process was not further affected.

Effects on cortisol levels. To investigate the involvement of cortisol in the response to PSNP exposure, cortisol levels in whole larvae were measured. Cortisol was significantly increased in the wild-type strain AB/TL after exposure to PSNP \((F(3, 20) = 14.86, p < 0.0001)\). The mean cortisol level for 2 mg L\(^{-1}\) PSNPs \((M = 98.39, SD = 16.58)\) and 20 mg L\(^{-1}\) PSNPs \((M = 100.2, SD = 10.06)\), but not for 0.2 mg L\(^{-1}\) PSNPs, was significantly higher in comparison to the control \((M = 57.39, SD = 9.46; \text{Fig. 2a})\). Similar results were found for the wild-type strain \((gr^{+/+})\) used to create \(gr^{--/--}\), \(t(8) = 3.58, p = 0.0072\). When co-exposed to glucose (Fig. 2b) and in the \(gr^{--/--}\) larvae (Fig. 2c), exposure to PSNP did not alter cortisol levels, indicating the involvement of both glucose and activation of Gr in response to PSNP exposure.

Effects on glucose metabolism. Several endpoints indicative of activation of metabolic processes to support energy-demanding activities were assessed in control and PSNP-exposed larvae. A two-way analysis of variance showed that the effect of PSNP on glucose levels was significant \((F(3, 63) = 21.89, p < 0.0001)\), as well as the zebrafish strain factor, \((F(3, 63) = 180.5, p < 0.0001; \text{Fig. 3a})\). Post-hoc analysis using Bonferroni adjusted alpha levels of 0.05 indicated that PSNPs significantly reduced the whole-body glucose level in 5 dpf AB/TL larvae at the highest dose \((M = 0.09598, SD = 0.01169)\) in comparison to the control \((M = 0.1493, SD = 0.006285)\), adj. \(p < 0.0001\). After Bonferroni correction, the highest dose group did have significantly lower glucose levels \((M = 0.08926, SD = 0.01588)\), adj. \(p = 0.0003\). Larvae missing the gr \((gr^{--/--})\) or wild-type larvae with pharmacologically reduced gr activity (mifepristone) did not appear to have affected glucose levels after PSNP exposure. Insulin staining, marking the pancreatic islet, showed that PSNP exposure leads to a significant reduction of the size of the insulin expression domain (Fig. 2b, Supplementary Fig. 2; \(t(12) = 2.65, p = 0.0212\)). These findings suggest that bioaccumulated PSNPs may affect glucose metabolism. The activity of the promoter driving the expression of a gene encoding a key enzyme for gluconeogenesis, pck1, was significantly increased with increasing PSNP concentration \((F(8, 32) = 53.85, p < 0.0001)\), likely to counteract the reduced glucose level (Fig. 3c). Post-hoc comparison indicated that the mean score of pck1 activity for the highest PSNP dose \((M = 13,270, SD = 3020)\) was significantly higher in comparison to the control \((M = 1428, SD = 670.7)\). Blocking Gr using the receptor antagonist mifepristone partially inhibited the increase in promoter activity in PSNP-exposed larvae \((M = 7679, SD = 1611, p < 0.0008; \text{Fig. 3c})\), suggesting that increased gluconeogenesis due to PSNP exposure is at least partially mediated through Gr activation. Despite the decreased activity in comparison to PSNP treatment only, co-exposure to mifepristone still led to a dose-dependent increase in pck1 activity. Furthermore, upon PSNP exposure,
glucose-6-phosphatase a (g6pca) expression was significantly upregulated (t(7) = 4.042, adj. *p* < 0.0294) and **fibroblast growth factor 21** (fgf21) expression (t(8) = 4.864, adj. *p* < 0.0072) as well as **lactate dehydrogenase a** (ldha) expression (t(8) = 7.581, adj. *p* < 0.0001) were downregulated, and also the transcript of the **solute carrier family 6 member 4** (slc6a4) encoding for a membrane protein that transports the neurotransmitter serotonin from synaptic spaces into presynaptic neurons was significantly downregulated (t(8) = 3.562, adj. *p* = 0.0444; Supplementary Fig. 3). Both pck1 and g6pca are rate-limiting enzymes in gluconeogenesis and glycogenolysis, respectively, while ldha catalyses the final step of anaerobic glycolysis and fgf21 plays an important role in regulating hepatic lipid and glucose homeostasis. In summary, exposure to the highest PSNP concentration significantly decreased glucose levels, despite the simultaneous increase in glycolytic and gluconeogenic activity, which is dependent on Gr activation.

The gr mutant zebrafish larvae had a lower glucose level (M = 0.02953, SD = 0.007925) than wild-type zebrafish under basal conditions (M = 0.1493, SD = 0.006285), with no additional effect when exposed to PSNPs (Fig. 3a). Congruently, exposure to 1 µM mifepristone reduced the glucose concentration in larval zebrafish (M = 0.06979, SD = 0.01139) in comparison to the solvent control (M = 0.1141, SD = 0.01129) and no additional effect of exposure to PSNPs was observed (Fig. 3a). These results indicate that inactivation of Gr results in decreased glucose levels under basal conditions and that these levels are not further aggravated upon PSNP exposure.

Behavioural response. An increase in activity can be triggered by a variety of mechanisms, including modulation of neuronal activity and rapid elevation of plasma cortisol.19,20 Moreover, stress-induced increases in cortisol levels can fuel modulation of neuronal activity.19,35–37 Here, we tested the effect of PSNP exposure and different zebrafish strains on the distance moved during the dark challenge phase. PSNP exposure induced a significant alteration in locomotion during the dark challenge phase of the behaviour assessment (F(1, 759) = 46.02, *p* < 0.0001) and the effect of zebrafish strains yielded an F ratio of F(4, 759) = 9.543, *p* < 0.0001. PSNP exposed wild-type larvae...
exhibited a distinct hyperactivity ($M = 2129, SD = 560.1$) in comparison to the control ($M = 1701, SD = 486.3$), adj. $p < 0.0001$ (Fig. 4a and b). A similar response is shown for the wild-type strain $gr^{+/+}$ (Fig. 4b) used to create the $gr^{-/-}$, where the mean difference of the PSNP-exposed larvae was significantly higher ($M = 1944, SD = 462.4$) than in the $gr^{+/+}$ control group ($M = 1463, SD = 411.4$), adj. $p < 0.0001$. This hyperactivity in the dark phase was suppressed in $gr^{-/-}$ larvae with no significant difference between control and exposed group (Fig. 4b), and similar results were observed when co-exposing wild-type larvae to the Gr antagonist mifepristone (Fig. 4b), indicating that the observed changes in behavioural responses to the dark challenge induced by PSNP exposure were mediated by cortisol-activated Gr. In addition, when offering excess amounts of glucose in the medium, exposure to PSNPs does not evoke hyperactivity during the dark challenge, suggesting that the distorted energy metabolism is fuelling the behavioural change. The particle control group (TiO$_2$) showed no difference in activity in comparison to the control (Supplementary Fig. 4), implying that the effect observed here is rather a plastic compound than a nanoparticle effect. During the light recovery phases, no effect of PSNP exposure on the larval behaviour was observed (Supplementary Fig. 5).

Discussion

Nanoplastics are an emerging, yet poorly understood environmental contaminant of global concern. Identifying molecular modes of action is therefore essential to characterise the toxic potential of nanoplastics and will, if linked to the organismal level of response, advance our abilities to assess the risk they pose to the environment. Here, we identify a set of interdependent events for a nanoplastics-induced stress response (Fig. 5) and show that a disruption in glucose homoeostasis and increase in cortisol secretion coincide with behavioural changes in zebrafish larvae.

The localisation of a contaminant in target tissues can support the identification of toxic mechanisms. At the time of exposure (72–120 hpf), PSNPs accumulate in neuromasts6 and the jaw movement of the zebrafish larvae is already developed, thereby facilitating ingestion of particulate matter from the surrounding medium. As reported earlier, the gastrointestinal tract is thus an important organ of accumulation from where the particles can spread through the circulatory system from which they are cleared by receptor-specific endocytosis in fish38 and can accumulate in various organs exhibiting a particularly slow depuration from the intestine and pancreas38,813. Similarly, in our study, PSNPs concentrated in the gastrointestinal tract as well as the gallbladder and the exocrine pancreas. In developing zebrafish at
5 dpf, the exocrine and endocrine pancreas are likely not as well separated in their function as in later stages\(^{39}\). It is thus conceivable that PSNPs aggregating in the exocrine pancreas could affect the endocrine pancreas, resulting in lowered glucose level, which is signalled to the brain where the HPI-axis is activated leading to cortisol secretion. Cortisol then activates Grs, which are distributed heterogeneously in various tissues throughout zebrafish development\(^{40}\).

We explored the potential effects of PSNP exposure on glucose homeostasis and cortisol secretion and observed that both processes are affected in PSNP-exposed wild-type zebrafish larvae. Specifically, whole-body glucose levels, as well as insulin expression, were decreased. This likely resulted in an increase in cortisol production, which in turn activates \(g6pc\) and \(pck1\) gene expression, two genes involved in glycolysis and gluconeogenesis. Despite the increased gluconeogenic activity, the glucose stores were depleted. The state of low glucose level can elicit a stress response, thereby increasing cortisol secretion through the Gr\(^{41}\). The well-known direct effects of cortisol on gluconeogenesis\(^{42}\) indicate that cortisol is fuelling the \(pck1\) activity. Here, we interpret that increased cortisol secretion in response to decreased glucose levels mediates the effect of PSNP (Fig. 5). This is supported by the compensatory effect of glucose on increased cortisol levels (Fig. 2b). At a later stage of development of larval zebrafish (6 dpf), stress-induced elevated cortisol levels are linked with reduced feeding, further aggravating low glucose levels, and generating a negative feedback mechanism\(^{43}\). Ultimately, exposure to excessive cortisol during early life stages can be translated to effects in adulthood including permanent epigenetic modification of the glucocorticoid receptor and direct elevated basal cortisol levels, defective tailfin regeneration, and immunoregulation\(^{44,45}\).

Increased levels of cortisol during a stress event are known to result in the reallocation of energy away from investment activities such as growth and reproduction towards short-term activities such as locomotion and tissue repair\(^{19}\). Although a reduced growth rate is commonly observed during toxicant exposure and periods of elevated cortisol\(^{19}\), the PSNP-exposed larvae were of similar size as the control larvae (Supplementary Fig. 1a). The exposure period of 2 days used in this study might be too short to capture this reallocation of energy resources at the level of growth, yet it is conceivable that PSNP exposure could result in impaired growth rates if longer exposure times are considered.

We observed PSNP-induced alterations of glucose and cortisol levels to coincide with an altered behavioural response of the zebrafish larvae, visible as hyperactivity upon sudden darkness. Chronic PSNP exposure throughout development has also been observed to cause hypoactivity, potentially due to distortion of neural development and function\(^{7,16}\). In the present study, larval fish were exposed between 3 and 5 dpf and our results indicate that PSNP-induced changes in cortisol levels have the potential to modulate how fish respond to a challenge (darkness), since wild-type larvae exposed to PSNP exhibited hyperactivity in the dark challenge and PSNP exposure did not affect the behaviour of \(gr\) mutant larvae. Increased hyperactivity in the dark phase at 4 dpf has been observed previously after cortisol exposure between 1 and 48 hpf\(^{40}\), and in another study, hyperactivity was observed in the light phase at 4 dpf upon injection of cortisol at the 1-cell stage\(^{46}\). In addition to differences in methodological approaches between different studies (e.g. exposure, duration), these studies collectively seem to suggest that PSNPs- or cortisol-induced behavioural responses can differ depending on context and stage of development.

We consider two mechanisms that are most likely underlying these cortisol-driven behavioural alterations. First, cortisol can interfere with the electrical activity of brain cells to alter the level of important molecules, including neurotransmitters, enzymes, or receptors. Glucocorticoid effects on the brain are highly complex and 30,\(^{38}\)–44.47. Recently such interferences with the neural system have been observed for fish like trout, medaka, and zebrafish\(^{47–49}\), and it could potentially lead to aberrant stress-coping mechanisms (e.g. stress recovery patterns and anxiety-related behaviours). In support of this, we observed that neurotransmitter activity might indeed be affected as the gene transcoding the membrane protein that transports the neurotransmitter serotonin (\(slc6a4\)) is downregulated (Supplementary Fig. 3). Second, altered glucose levels can fuel cortisol secretion with inherent changes to energy metabolism and availability to sustain activity. In addition to the contribution of Gr activation to the observed heightened locomotor activity during the dark challenge, we explored the contribution of a dysregulated metabolic rate. The addition of 40 mM glucose as known reducer of \(pck1\) expression in larval zebrafish\(^{50}\) coincided with diminished cortisol levels (Fig. 2b) and hyperactivity in larvae exposed to PSNP (Fig. 4b), providing strong support for distorted energy metabolism as mechanism fuelling the behavioural responses in this study. While future research should uncover whether the elevated cortisol increased locomotor activity observed in this study results from interference with the neural system, increased mobilisation of glucose to sustain the movement\(^{18}\), or a combination thereof, our results thus point towards a bottom-up driven chain of events where decreased glucose levels fuel cortisol secretion and an aberrant behavioural response (conceptually depicted in Fig. 5).

Uncertainties that remain call for a better understanding of events that are uncharted in this study. Here, the plastic component of the nanosized particle was the most likely source of behavioural alterations as we did not observe behavioural effects
in our control-particle experiment (TiO₂, Supplementary Fig. 4). Similarly, one of the most widely applied plasticising compound (bisphenol A) has been associated with altered zebrafish larval locomotion31. However, in natural systems, it is conceivable that behavioural effects are ultimately dependent on developmental stage and the result of a combination of a particle and plastic effect. For instance, foreign nanoparticles (e.g. plastic, gold) can disrupt the epithelial layers, accumulate in the circulatory system, and induce inflammatory responses6 in larval zebrafish, potentially hinting a disruption of the HPI-axis. Likewise, nanoparticles can increase plasma cortisol levels in adult fish22–25, respectively, from single self-crossings. Fertilised eggs were selected within the 2- to 8-cell stage of the cleavage period and incubated in aerated egg water (60 µg mL⁻¹, Instant Ocean Sea Salt; Sera GmbH, Heinsberg, Germany) at 28.5 ± 0.5 °C with a 10:14-h dark:light cycle until sampling at 120 hpf. The daily upkeep included rinsing every 24 h with aerated egg water, and the removal of chorions by dyspoia up to the start of the exposure at 27 hpf.

The exposure concentration of 20 mg L⁻¹ PSNPs was derived from an initial dose-response analysis representing a no-effect concentration for mortality (Supplementary Fig. 7). Mortality was assessed by following the protocol of the Fish Bryant Acute Toxicity Test (FBATT) and adjusted to an exposure window from 72 to 120 hpf. Hatched larvae were exposed in 24-well plates (1 larva per well filled with 2 mL of solution). Ten exposure concentrations between 10 and 100 mg L⁻¹ and a control solution consisting of egg water were tested (four replicates, ten larvae per replicate). For some of the assays, concentrations of 2 and 0.2 mg L⁻¹ were tested additionally. The particle control experiment was performed using TiO₂ nanoparticles (15.5 nm) at a concentration of 38,603 mg L⁻¹ to match the particle number of PSNPs (25 nm) at a concentration of 20 mg L⁻¹. All exposures were started after hatching, at 72 hpf, as the chorion can represent a physical barrier for nanoparticles26–28, and lasted until 120 hpf with one medium exchange at 96 hpf. Co-exposure to 1 µM methylprednisolone or 40 mM glucose and respective solvent controls (methylprednisolone, glucose, or solvent control only) were performed where appropriate.

Physiological response and PSNP biodistribution. After 2 days of exposure to 20 mg L⁻¹ PSNP, at 120 hpf, ten larvae per dose group were anaesthetised in 0.02% tricaine (MS222, Sigma Aldrich) and imaged from a lateral and ventral perspective using a Leica DM1000 Leica fluorescence stereomicroscope equipped with a digital camera (DFC420). The lateral bright-field images were scored for swim bladder development (presence or absence) as well as swim bladder surface area and larval length, which were measured using ImageJ. Biodistribution of PSNPs was detected using the green fluorescence laser filter while imaging both lateral and ventral sides. All measurements were repeated three times with larvae from separate breeding events (n = 10 per group and breeding event).

Larval cortisol measurement. Cortisol concentration of control larvae and three exposure concentrations (0.2, 2, 20 mg L⁻¹) were measured after 2 days of exposure at 120 hpf according to a protocol previously described by Tudorache et al.29. Briefly, 15 larvae per replicate were pooled and 6 replicates per group sampled. The larvae were snap-frozen in liquid nitrogen and then homogenised in 500 µL of phosphate-buffered saline (PBS) using a bullet blender. Cortisol was extracted with two volumes of diethyl ether overnight, the cortisol was redissolved in 0.2% bovine serum albumin (BSA) in PBS. Larval cortisol measurements were carried out using a cortisol ELISA kit (Abnova KA1885) according to the manufacturer’s instructions and absorbance read at 450 nm using a plate reader (Tecan Infinite M1000 PRO).

In vivo luciferase reporter assay. To assess the effect of PSNPs on gluconeogenesis, Tg(fpk1;Luc2) larvae were exposed to 0, 0.2, 2, and 20 mg L⁻¹ PSNPs in 48-well plates with 1 mL exposure volume per well. Co-exposure to 40 mM glucose and 1 µM mifepristone was performed as well (1 larva per well). In the Tg(fpk1;Luc2, M1000 PRO).
Quantitative polymerase chain reaction. Gene expression changes of transcripts related to glucose metabolism (fgf21, g6pc1a, slc2a2, ldha), serotonin transport (slc6a4), and oxidative stress (cat) were analysed as described previously28 and primer sequences are listed in Supplementary Table 1. Briefly, 15 wild-type larvae per replicate (n = 5) were snap-frozen at 120 hpf after 48 h of exposure to egg water or 20 ml of L indicator solutions. RNA was isolated using an RNeasy Mini kit (Qiagen) and RNA quantified on a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc., U.S.) while quality was visually confirmed on an agarose gel. RNA was reverse transcribed using the Omniscript™RT Reverse Transcriptase kit (Qiagen, The Netherlands), Oligo-dT primers (Qiagen), and RNase inhibitor (Promega). The samples were denatured for 5 min at 95°C and then amplified using 40 cycles of 15 s at 95°C and 45 s at 60°C followed by quantitation using a melting curve analysis post-run. Amplification and quantification were done with the CFX96 Bioreactor system. Fold induction was calculated by normalising Ct values of the target gene to the Ct value of the housekeeping gene β-actin (±ΔCt) and then normalised to the untreated control (ΔCt untreated − ΔCt treated).

Larval behaviour. For the behavioural assessment, AB/TI, gr+/−, and gr−/− larvae of 48 hpf in age were distributed to a polystyrene 48-well plate (Corning Costar, Corning) one in each well. At 72 hpf, the controls (n = 24) received 1 mL of fresh egg water while two independent treatment groups (n = 24) received either 20 mL of L indicator solutions or 38.603 mg L−1 TiO2 nanoparticles in egg water. In the case of co-treatment with mifepristone, as solvent control was included with a replicate size of 16 per treatment group and experiment. Treatment groups were randomly distributed and all larvae kept in the well plate until 120 hpf, with a medium replacement after 24 h. At 120 hpf, larvae without swim bladder were removed and then the individual distance moved in an alternating light/dark test was quantified as an indication of stress using the DanioVision™ observation chamber (Noldus Inc.39). Observations started after 3 h after onset of light when larval activity is at a stable level for several hours40. During observation period larvae were exposed to the following stressor sequence: after an acclimation period of 30 min in the illuminated chamber, a light baseline of 4 min was tracked before the stressor sequence started with a dark challenge (4 min) and a light recovery (4 min). The stressor sequence was repeated three times in total. The experiment was repeated three times with cohorts from separate breeding events. Video data were recorded with 30 frames per second via a high-speed infrared camera. Obtained data were analysed with the supplied software EthoVision XT 11 (Noldus Inc.).

Statistics and reproducibility. All statistical analyses were conducted using Graph Pad Prism 8.0. The data of all assays (cortisol, luciferase assay, glucose assay, quantitative polymerase chain reaction (qPCR), and larval locomotor activity) were tested for deviation from the Gaussian ideal using the Shapiro-Wilk normality test. Assays comprising different numbers of treatments per zebrafish strain. All ANOVA comparisons were followed by multiple comparisons using the Bonferroni correction to adjust the critical values. For all other assays with one or two-tailed t-test (with a Satterthwaite approximation for unequal sample sizes), and in case of a multiple gene factor (qPCR) p-values adjusted by multiplication with the total number of genes tested. A p-value < 0.05 (t-test) or a Bonferroni-corrected p-value < 0.05 (ANOVA) was considered statistically significant. Replicates consisted of a pool of larvae (3−15, depending on the assay) except for morphological, in situ hybridisation, and locomotion analysis where one replicate represents one larva. The data are presented as mean ± SD with single data points (replicates) superimposed on the graph.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. All source data underlying the graphs presented in the main figures are reported in Supplementary Data 1. All data and materials produced by this study are available from the corresponding author upon request.

Received: 13 November 2018; Accepted: 23 September 2019; Published online: 18 October 2019

References
1. Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).
2. Skjolding, L. M. et al. Assessment of the importance of exposure route for uptake and internal localization of fluorescent nanoparticles in zebrafish (Danio rerio) using light sheet microscopy. Nanotoxicology 11, 351–359 (2017).
3. Mattsson, K. et al. Brain damage and behavioural disorders in fish induced by nanoplastics nanoparticles delivered through the food chain. Sci. Rep. 7, 11452 (2017).
4. Mattsson, K. et al. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 49, 553–561 (2014).
5. Greven, A. C. et al. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 35, 3093–3106 (2016).
6. Cedervall, T., Hansson, L. A., Lard, M., Frohnm, B. & Linse, S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 7, 1–6 (2012).
7. Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).
8. Chae, Y., Kim, D., Kim, S. W. & An, Y. J. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci. Rep. 8, 1–11 (2018).
9. Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5, 241–246 (2014).
10. Chen, Q. et al. Quantitative investigation of the mechanisms of microplastics and nanoparticles toward the zebrafish larval locomotor activity. Sci. Total Environ. 584–585, 1022–1031 (2017).
11. Geralt, R. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J. Neurosci. Methods 234, 59–65 (2014).
12. Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol. Evol. 25, 653–659 (2010).
13. Wendelaar Bonga, S. E. The stress response in fish. Physiol. Rev. 77, 591–625 (1997).
14. Winberg, S. & Thörnqvist, P. O. Role of brain serotonin in modulating fish behavior. Curr. Zool. 62, 317–326 (2016).
15. Tudorache, C., ter Braake, A., Tromp, M., Slabbeekorn, H. & Schaaf, M. J. M. Behavioral and physiological indicators of stress coping styles in larval zebrafish. Stress 18, 121–128 (2015).
16. Gross, K. L. & Cidlowski, J. A. Tissue-specific glucocorticoid action: a family affair. Trends Endocrinol. Metab. 19, 331–398 (2008).
17. Faccinelli, N. et al. Nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor. Sci. Rep. 7, 1–13 (2017).
18. Griffiths, B. B. et al. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front. Behav. Neurosci. 6, 1–10 (2012).
19. van den Bos, R. et al. Further characterisation of differences between TL and AB Zebrafish (Danio rerio): gene expression, physiology and behaviour at day 5 of the larval stage. PLoS ONE 12, 1–15 (2017).
20. Chatzopoulou, A. et al. Transcriptional and metabolic effects of glucocorticoid receptor α and β signaling in zebrafish. Endocrinology 156, 1757–1769 (2015).
21. Faught, E. & Vijayan, M. M. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Sci. Rep. 8, 1–11 (2018).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0629-6 | www.nature.com/commsbio
28. de Kloet, E. R., Meijer, O. C., de Nicola, A. F., de Rijk, R. H. & Joëls, M. Importance of the brain corticosteroid receptor balance in metacognitive, cognitive performance and neuro-inflammation. Front. Neuroendocrinol. 49, 124–145 (2018).

29. Best, C., Kurrasch, D. M. & Vijayan, M. M. Maternal cortisol stimulates neurogenesis and affects larval behaviour in zebrafish. Sci. Rep. 7, 40905 (2017).

30. Strother-Hagen, P. J., Bardine, N. & Sharif, F. Kinetics of glucocorticoid exposure in developing zebrafish: a tracer study. Chemosphere 183, 147–155 (2017).

31. de Marco, R. J., Groneberg, A. H., Yeh, C.-M., Castillo Ramirez, L. A. & Ryu, S. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish. Front. Neural Circuits 8, 82 (2012).

32. Alos, D. & Vijayan, M. M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R711–R719 (2008).

33. Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9–19 (2011).

34. Powers, J. W., Mazilu, J. K., Lin, S. & McCabe, E. R. B. The effects of hyperglycemia on adrenal cortex function and steroidogenesis in the zebrafish. Mol. Genet. Metab. 101, 421–422 (2010).

35. de Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

36. Joëls, M., Angela Sarabdjitsingh, R. & Karst, H. Unraveling the time domains of corticosteroid hormone influences on brain activity: Rapid, slow, and chronic modes. Pharmacol. Rev. 64, 901–938 (2012).

37. Joëls, M. Corticosteroids and the brain. J. Endocrinol. 238, R121–R130 (2018).

38. Powell, J. W., Mazilu, J. K., Lin, S. & McCabe, E. R. B. The effects of hyperglycemia on adrenal cortex function and steroidogenesis in the zebrafish. Mol. Genet. Metab. 101, 421–422 (2010).

39. Hartig, E. I., Zhu, S., King, B. L. & Coffman, J. A. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol. Open 4, 747–753 (2015).

40. Emran, F., Rihel, J. & Dowling, J. E. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J. Vis. Exp. 20, e923 (2008).

41. Hendriksen, M., Best, C., Rihel, J. & Dowling, J. E. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J. Vis. Exp. 20, e923 (2008).

42. Anand, D. A transgenic zebrafish model for monitoring glucocorticoid receptor activity. Genes Brain Behav. 13, 478–487 (2014).

43. Blom, S., Andersson, T. & Forlín, L. Effects of food deprivation and handling stress on head kidney 17α-hydroxylase activity, plasma cortisol and the activities of liver detoxification enzymes in rainbow trout. Aquat. Toxicol. 48, 265–274 (2000).

44. van der Boon, J., van den Thillart, G. E. J. E. & Addink, A. D. The effects of cortisol administration on intermediary metabolism in teleost fish. Comp. Biochem. Physiol. A Physiol. 100, 47–53 (1991).

45. de Marco, R. J., Groneberg, A. H., Yeh, C.-M., Treviño, M. & Ryu, S. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development. Front. Behav. Neurosci. 8, 1–12 (2014).

46. Wilkinson, P. O. & Goodyer, I. M. Childhood adversity and allostatic overload of the hypothalamic–pituitary–adrenal axis: a vulnerability model for depressive disorders. Dev. Psychopathol. 23, 1017–1037 (2011).

47. Hartig, E. I., Zhu, S., King, B. L. & Coffman, J. A. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol. Open 4, 747–753 (2015).

48. Carpenter, R. E. et al. Corticotropic releasing factor induces anxiogenic locomotion in trout and alters serotoninergic and dopaminergic activity. Horm. Behav. 52, 600–611 (2007).

49. Melyn-Lamont, N., Best, C., Gosto, M. & Vijayan, M. M. The antidepressant venlafaxine disrupts brain monoamine levels and neuroendocrine responses to stress in rainbow trout. Environ. Sci. Total Environ. 48, 13434–13442 (2014).

50. Sakamoto, T. & Sakamoto, H. ‘Central’ actions of corticosteroid signaling suggested by constitutive knockout of corticosteroid receptors in small fish. Nutrients 11, 1–9 (2019).

51. Elo, B., Villano, C. M., Govorko, D. & White, L. A. Larval zebrafish as a model for glucose metabolism: Expression of phosphoenolpyruvate carboxylase as a marker for exposure to anti-diabetic compounds. J. Mol. Endocrinol. 38, 433–440 (2007).

52. Strother-Hagen, P. J., Bardine, N. & Sharif, F. Kinetics of glucocorticoid exposure in developing zebrafish. Front. Genet. 10, 1–18 (2019).

53. van Pomerchen, M., Peijnenburg, W. J. G. M., Vlieg, R. C., van Noort, S. J. T. & Vijver, M. G. The biodistribution and immuno-responses of differently shaped nanoparticles in zebrafish embryos. Nanotoxicology 13, 558–571 (2019).

54. Tews, M., Soares, A. M. V. M., Tort, L., Guimarães, L. & Oliveira, M. Linking cortisol response with gene expression in fish exposed to gold nanoparticles. Sci. Total Environ. 584–585, 1004–1011 (2017).

55. Rundle, A. et al. Cerium oxide nanoparticles exhibit minimal cardiac and cytotoxicity in the freshwater fish Catostomus commersonsi. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 181–182, 19–26 (2016).

56. Murray, L., Rennie, M. D., Enders, E. C., Pleskach, K. & Martin, J. D. Effect of nanosilver on cortisol release and morphometrics in rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 36, 1606–1613 (2017).

57. Massarsky, A. et al. Acute embryonic exposure to nanosilver or silver ion does not disrupt the stress response in zebrafish (Danio rerio) larvae and adults. Sci. Total Environ. 478, 133–140 (2014).

58. Gutiérrez, D. et al. Whole-organism screening for glucocorticoid sensitivity identifies novel regulators of fasting metabolism. Nat. Chem. Biol. 9, 97–104 (2013).

59. Fent, K., Weisbrod, C. J., Wirth-Haller, A. & Pieles, U. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat. Toxicol. 100, 218–228 (2010).

60. Groneberg, A. H., de Marco, R. J., Yeh, C.-M., Treviño, M. & Ryu, S. The behavioral responses of larval zebrafish embryos to acute estrogenic exposure. Nat. Protoc. 3, 59–69 (2008).

61. Marin-Juez, R. et al. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish. J. Cereb. Blood Flow Metab. 35, 74–85 (2015).

62. Houlihan, L. M., Lezniak, M., Wehrli, B. & Fent, K. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and daphnia embryos: importance of zebrafish infection rate. J. Toxicol. Environ. Health A 78, 477–486 (2015).

63. Sakamoto, T. & Sakamoto, H. The biodistribution and immuno-responses of differently shaped nanoparticles in zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

Acknowledgements

We thank Natalia Novik and Laura Mains for technical assistance during glucose assay and in situ hybridisation, respectively, Ruben Marin-Juez for providing the in situ riboprobe, and John J. Stegeman for his helpful comments on the manuscript. The research described in this work was supported by the Dutch research council NWO (NGV; 864.13.010).

Author contributions

N.R.B. conceived the experiments and coordinated the study. N.R.B., M.J.M.S., A.-P.G.H., and C.T. participated in the design of the study. N.R.B., P.H., and S.C.V. performed the experiments. N.R.B. and P.H. analysed the data. N.R.B. wrote the manuscript, and M.J.M.S., E.R.H., and C.T. contributed significantly to earlier drafts of the manuscript. M.G.V. provided logistical support and resources. All authors contributed to scientific discussions and editing of the content of previous versions of the manuscript and approved submission of the final draft.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42003-019-0629-6.

Correspondence and requests for materials should be addressed to N.R.B.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.