ON THE STRUCTURE OF FACTOR LIE ALGEBRAS

HOMAYOON ARABYANI, FARHAD PANBEHKAR, AND HESAM SAFA

Abstract. The Lie algebra analogue of Schur’s result which is proved by Moneyhun in 1994, states that if L is a Lie algebra such that dim$L/Z(L) = n$, then dim$L/Z_2(L) = \frac{1}{2}n(n-1) - s$ for some non-negative integer s. In the present paper, we determine the structure of central factor (for $s = 0$) and the factor Lie algebra $L/Z_2(L)$ (for all $s \geq 0$) of a finite dimensional nilpotent Lie algebra L, with n-dimensional central factor. Furthermore, by using the concept of n-isoclinism, we discuss an upper bound for the dimension of $L/Z_n(L)$ in terms of dim$L/(n+1)$, when the factor Lie algebra $L/Z_n(L)$ is finitely generated and $n \geq 1$.

1. Introduction

In 1904, Schur [14] proved that if the center of a group G has finite index, then the derived subgroup G' is also finite. Also, Wiegold [16] showed that if the order of central factor group of G is p^n, then G' is a p-group of order at most $p^{\frac{1}{2}n(n-1)}$. The structure of a group and its central factor, with regards to the order of derived subgroup, has been already studied by many authors (see [9, 12, 16]). Berkovich [4] studied the structure of $G/Z(G)$, where G is a p-group such that $|G/Z(G)| = p^n$ and $|G'| = p^{\frac{1}{2}n(n-1)}$. Later in 2004, Kim [10] characterized the structure of a p-group G such that $|G/Z(G)| = p^n$ and $|G'| = p^{\frac{1}{2}n(n-1)-1}$. Also, Hekster [8] showed that if G is a finitely generated group and $n \geq 1$, then $G/Z_n(G)$ is finite if and only if $\gamma_{n+1}(G)$ is finite, where $Z_n(G)$ and $\gamma_{n+1}(G)$ are n-th and $(n+1)$-st terms of the upper and lower central series of G, respectively.

Throughout of this paper, all Lie algebras are over a fixed field F and $Z_n(L)$ denotes the n-th term of the upper central series of a Lie algebra L defined inductively by $Z_1(L) = Z(L)$ and $Z_n(L)/Z_{n-1}(L) = Z(L/Z_{n-1}(L))$ for $n \geq 2$. Also, $L_{(1)} = L$ and $L_{(n)} = [L_{(n-1)}, L]$ for $n \geq 2$, where $[,]$ denotes the Lie bracket. Moreover, $A(n)$ denotes the n-dimensional abelian Lie algebra and the Heisenberg Lie algebra $H(m)$ is the $2m + 1$ dimensional real Lie algebra...
with the basis \{a_1, \ldots, a_m, b_1, \ldots, b_m, c\} and the Lie brackets defined by
\[
[a_i, a_j] = [b_i, b_j] = [a_i, c] = [b_i, c] = [c, c] = 0 \quad \text{and} \quad [a_i, b_j] = c \delta_{ij},
\]
where \(\delta_{ij}\) is the Kronecker delta (see [7] for more details).

Nilpotent Lie algebras have played an important role in mathematics over the last 30 years in the classification theory of Lie algebras. Furthermore, the characterization of \(L/Z_n(L)\) \((n \in \mathbb{N})\) has always been one of the most popular problems among Lie algebra experts. The Lie algebra analog of Schur's was proved by Moneyhun [11]: if \(L\) is a Lie algebra such that \(\dim L/Z(L) = n\), then \(\dim L(2) = \frac{1}{2}n(n-1) - s\) for some non-negative integer \(s\). Moreover, Batten et al. [3] proved that if \(L\) is a finite dimensional nilpotent Lie algebra and \(\dim L/Z(L) = n\), then \(\dim L(2) = \frac{1}{2}n(n-1) - s\) and \(\dim (L/Z(L))(2) \leq 1 + s\) for some non-negative integer \(s\). In the present paper, we determine the structure of \(L/Z_2(L)\), where \(L\) is a finite dimensional nilpotent Lie algebra such that \(\dim L/Z(L) = n\) and \(\dim L(2) = \frac{1}{2}n(n-1) - s\) for all non-negative integers \(s\). In particular, we characterize the structure of central factor of \(L\), when \(s = 0\). We show that \(L/Z_2(L)\) must be a nilpotent Lie algebra of dimension not equal to 1. Nilpotent Lie algebras of dimension less than 6, over a field of any characteristic, are classified in [5, 6]. Also, the nilpotent Lie algebras of dimension greater than 7, under the special conditions are characterized in [1, 15].

Moreover, Salemkar and Mirzaei [13] proved a Lie algebra version of the Hekster's result and showed that if \(L\) is a finitely generated Lie algebra, then \(L/Z_n(L)\) is finite dimensional if and only if \(L_{(n+1)}\) is finite dimensional. In the last section, we give an upper bound for the dimension of \(L/Z_n(L)\), when \(L_{(n+1)}\) is finite dimensional and \(L/Z_n(L)\) is finitely generated. We show that
\[
\dim L/Z_n(L) \leq d^n \cdot \dim L_{(n+1)},
\]
where \(d\) is the minimal number of generators of \(L/Z_n(L)\) and \(n \geq 1\). Note that the first author and Saeedi proved the above result for \(n = 1\) in [2]. Here, we use the idea of \(n\)-isoclinism discussed in [13], which gives us a different method from the technique applied in [2].

2. Preliminary results

In this section, we discuss some preliminary results, which will be used in the proof of the main theorems.

Lemma 2.1 ([3, 11]). Let \(L\) be a Lie algebra such that \(\dim L/Z(L) = n\). Then \(\dim L(2) \leq \frac{1}{2}n(n-1) - s\) for some non-negative integer \(s\). Moreover, if \(L\) is a finite dimensional nilpotent Lie algebra, then \(\dim (L/Z(L))(2) \leq 1 + s\).

Definition 2.2. A Lie algebra \(L\) is called capable, if there exists a Lie algebra \(H\) such that \(L \cong H/Z(H)\).
The following result for capable Lie algebras is proved by the first author and Saeedi in [2], which has an important role in the proof of Theorems 3.1 and 3.2.

Theorem 2.3 ([2]). Let L be a capable Lie algebra such that $\dim L_{(2)} = m$. Then $\dim L/Z(L) \leq 2m^2$.

All nilpotent Lie algebras of dimension at most 5 are classified over an arbitrary field F.

Theorem 2.4 ([6]). Let L be a finite dimensional nilpotent Lie algebra. Then

(a) L is 1-dimensional if and only if $L \cong A(1)$.
(b) L is 2-dimensional if and only if $L \cong A(2)$.
(c) L is 3-dimensional if and only if $L \cong A(3)$ or $H(1)$.
(d) L is 4-dimensional if and only if $L \cong A(4), H(1) \oplus A(1)$ or
text continues...
and note that \(\dim Z(L/Z(L)) = n - 2m \), from Equation (1). If \(D < 2 \), then this implies that \(m < 1 \), which contradicts \(\dim K = 1 \). Hence we must have \(D = 2 \) and \(m = 1 \).

Theorem 3.2. Let \(L \) be a finite dimensional nilpotent Lie algebra such that \(\dim L/Z(L) = n \) and \(\dim L^{(2)} = \frac{4}{9}n(n - 1) - s \) for some integer \(s \geq 1 \). Then one of the following holds:

(a) \(L/Z(L) \) is an \(n \)-dimensional abelian Lie algebra.

(b) \(L/Z(L) \cong H(1) \oplus A(n - 3) \).

(c) \(L/Z(L^2) \) is an \(i \)-dimensional nilpotent Lie algebra, where \(2 \leq i \leq 2 \left(1 + \frac{s}{2}\right)^2 \), and \(\dim Z(L) = n - i \).

Proof. By Lemma 2.1, we have \(\dim(L/Z(L))^{(2)} \leq 1 + s \). If \(\dim(L/Z(L))^{(2)} \leq 1 \), then \(L/Z(L) \) is abelian or by Theorem 3.1, \(L/Z(L) \) is isomorphic to \(H(1) \oplus A(n - 3) \). Now fix \(m := \dim(L/Z(L))^{(2)} \). Then by Theorem 2.3

\[
\dim \frac{L}{Z(L)} = \dim \frac{L/Z(L)}{Z(L)/Z(L)} = \dim \frac{L/Z(L)}{Z(L/Z(L))} \leq 2m^2.
\]

Now from Equation (2), we get

\[
\dim L/Z(L) - \dim Z(L)/Z(L) = \dim L/Z(L) = i,
\]

where \(2 \leq i \leq 2m^2 \). Thus, we have \(\dim Z(L)/Z(L) = n - i \).

4. An upper bound for the dimension of \(L/Z_n(L) \)**

First, we present the notion of \(n \)-isoclinism, which is the key part of our method in the proof of last main theorem. The \(n \)-isoclinism with respect to the variety of all nilpotent Lie algebras \(L \) for which \(L = Z_n(L) \).

Definition 4.1. Let \(L \) and \(H \) be Lie algebras. Then an \(n \)-isoclinism \((n \geq 1) \) between \(L \) and \(H \) is a pair of isomorphisms \((\alpha, \beta) \) with \(\alpha : L/Z_n(L) \rightarrow H/Z_n(H) \) and \(\beta : L^{(n+1)} \rightarrow H^{(n+1)} \) such that the following diagram commutes:

\[
\begin{array}{ccc}
L/Z_n(L) \oplus \cdots \oplus L/Z_n(L) & \xrightarrow{\alpha^{n+1}} & L^{(n+1)} \\
H/Z_n(H) \oplus \cdots \oplus H/Z_n(H) & \xrightarrow{\beta} & H^{(n+1)}
\end{array}
\]

where horizontal maps are defined by

\[
(\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_{n+1}) \rightarrow [\cdots [x_1, x_2], \ldots, x_{n+1}]
\]

such that \(\bar{x}_i = x_i + Z_n(L) \) and \(\bar{x}_i = x_i + Z_n(H) \) in the top and bottom horizontal maps, respectively (see [8, 13] for more details). If there exists such an \(n \)-isoclinism, we say that \(L \) is \(n \)-isoclinic to \(H \) and write \(L \sim_n H \).

Salemkar and Mirzaei investigated the \(n \)-isoclinism of Lie algebras in [13].
Lemma 4.2 ([13]). If L is a Lie algebra with a subalgebra H such that $L = H + Z_n(L)$, then $L \simeq_n H$. Conversely, if the factor Lie algebra $L/Z_n(L)$ is finite dimensional and $L \simeq_n H$, then $L = H + Z_n(L)$.

Proposition 4.3 ([13]). Let L be a finitely generated Lie algebra. Then the following statements are equivalent.

(i) $L/Z_n(L)$ is finite dimensional.
(ii) $L_{(n+1)}$ is finite dimensional.
(iii) $(L/Z(L))_{(n)}$ is finite dimensional.

Now, we prove the last theorem. Recall that in [2], the following result is proved for $n = 1$.

Theorem 4.4. Let L be a Lie algebra such that $L_{(n+1)}$ is finite dimensional and $L/Z_n(L)$ is finitely generated. Then

$$\dim L/Z_n(L) \leq d^n \cdot \dim L_{(n+1)},$$

where d is the minimal number of generators of $L/Z_n(L)$.

Proof. We proceed inductively. Suppose that $n = 1$. Fix $x_1, \ldots, x_d \in L$ such that $\{x_1 + Z(L), \ldots, x_d + Z(L)\}$ generates $L/Z(L)$. Let $H = \langle x_1, \ldots, x_d \rangle$, and so $L = H + Z(L)$. By Lemma 4.2, we have $L \simeq_1 H$, and hence $L/Z(L) \cong H/Z(H)$ and $L_{(2)} \cong H_{(2)}$. Therefore, we may replace L by H. Let $y \in H$ and define

$$f: \bigoplus_{i=1}^d C_H(x_i) \to H_{(2)} \oplus H_{(2)} \oplus \cdots \oplus H_{(2)},$$

where $C_H(x_i)$ is the centralizer of x_i in H. The definition of $\cap_{i=1}^d C_H(x_i)$ implies that f is well-defined and one may easily check that it is an injective linear transformation. Thus

$$\dim L/Z(L) = \dim H/Z(H) = \dim H/\cap_{i=1}^d C_H(x_i) \leq d \cdot \dim L_{(2)}.$$

Now, assume that the claim holds for $(n - 1)$, i.e., $\dim L/Z_{n-1}(L) \leq d^{n-1} \cdot \dim L_{(n)}$. Fix $x_1, \ldots, x_d \in L$ such that $\{x_1 + Z_n(L), \ldots, x_d + Z_n(L)\}$ generates $L/Z_n(L)$. Let $H = \langle x_1, \ldots, x_d \rangle$, and so $L = H + Z_n(L)$. Then Lemma 4.2 implies that H is n-isoclinic to L. Trivially, $H/Z(H)$ is finitely generated. It follows from Proposition 4.3 and finiteness of $\dim H_{(n+1)}$ that $\dim (H/Z(H))_{(n)}$ is finite. Therefore, $H/Z(H)$ satisfies the induction hypothesis. Hence

$$\dim H/Z_n(H) = \dim \frac{H/Z(H)}{Z_{n-1}(H/Z(H))} \leq d^{n-1} \cdot \dim (H/Z(H))_{(n)}.$$

On the other hand, by the second isomorphism theorem, we have

$$(H/Z(H))_{(n)} \cong \frac{H_{(n)}}{H_{(n)} \cap Z(H)} \cong \frac{H_{(n)}}{\cap_{i=1}^d C_{H_{(n)}}(x_i)}.$$
The above isomorphisms and defining an analogous map to \(f \), imply that

\[
\dim(H/Z(H))_{(n)} = \frac{H_{(n)}}{\bigcap^{n}_{i=1} C_{H_{(n)}}(x_i)} \leq d \cdot \dim H_{(n+1)},
\]

and since \(L \sim_{n} H \), we have

\[
\dim L/Z_{n}(L) = \dim H/Z_{n}(H) \leq (d \cdot \dim H_{(n+1)}) \cdot d^{n-1} = d^{n} \cdot \dim H_{(n+1)} = d^{n} \cdot \dim L_{(n+1)},
\]

which completes the proof. \(\square \)

Acknowledgments. The authors would like to thank the referee for his/her valuable comments which helped to improve the article.

References

1. J. M. Ancochea-Bermúdez and M. Goze, *Classification des algèbres de Lie nilpotentes de dimension 7*, Arch. Math. 52 (1989), no. 2, 157–185.
2. H. Arabyani and F. Saeedi, *On dimensions of derived algebra and central factor of a Lie algebra*, Bull. Iranian Math. Soc. 41 (2015), no. 5, 1093–1102.
3. P. Batten, K. Moneyhun, and E. Stitzinger, *On characterizing nilpotent Lie algebras by their multipliers*, Comm. Algebra 24 (1996), no. 14, 4319–4330.
4. Ya. G. Berkovich, *On the order of the commutator subgroups and the Schur multiplier of a finite p-group*, J. Algebra 144 (1991), no. 2, 269–272.
5. S. Cicalo, W. A. de Graaf, and C. Schneider, *Six-dimensional nilpotent Lie algebras*, Linear Algebra Appl. 436 (2012), no. 1, 163–189.
6. J. Dixmier, *Sur les représentations unitaires des groupes de Lie nilpotents III*, Canad. J. Math. 10 (1958), 321–348.
7. K. Erdmann and M. J. Wildon, *Introduction to Lie Algebras*, Springer Undergraduate Mathematics Series, 2006.
8. N. S. Hekster, *On the structure of n-isoclinism classes of groups*, J. Pure Appl. Algebra 40 (1986), no. 1, 63–85.
9. I. M. Isaacs, *Derived subgroups and centers of capable groups*, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2853–2859.
10. S. O. Kim, *On some finite p-groups*, Bull. Korean Math. Soc. 41 (2004), no. 1, 147–151.
11. K. Moneyhun, *Isoclinism in Lie algebras*, Algebras Groups Geom. 11 (1994), no. 1, 9–22.
12. K. Podoski and B. Szegedy, *Bounds for the index of the centre in capable groups*, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3441–3445.
13. A. R. Salemkar and F. Mirzaei, *Characterizing n-isoclinism classes of Lie algebras*, Comm. Algebra 38 (2010), no. 9, 3392–3403.
14. I. Schur, *Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen*, J. Reine Angew. Math. 127 (1904), 20–50.
15. Gr. Tsagas and A. Kobotis, *Characteristic elements of a category of nilpotent Lie algebras of dimension eight*, Algebra Groups Geom. 9 (1992), no. 3, 137–256.
16. J. Wiegold, *Multiplicators and groups with finite central factor groups*, Math. Z. 89 (1965), 345–347.
HOMAYOON ARABANI
Department of Mathematics
Neyshabur Branch, Islamic Azad University
Neyshabur, Iran
E-mail address: arabyani.h@yahoo.com

FARHAD PANBEHKAR
Department of Mathematics
Neyshabur Branch, Islamic Azad University
Neyshabur, Iran
E-mail address: fpkari@gmail.com

HESAM SAFA
Department of Mathematics
Faculty of Basic Sciences
University of Bojnord
Bojnord, Iran
E-mail address: h.safa@ub.ac.ir