Orthogonal and Symplectic Black Box Groups, Revisited
Alexandre V. Borovik
March 28, 2022

Abstract
We propose a simple one sided Monte-Carlo algorithm to distinguish, to any given degree of certainty, the symplectic group \(C_n(q) = \text{PSp}_{2n}(q) \) from the orthogonal group \(B_n(q) = \Omega_{2n+1}(q) \) where \(q > 3 \) is odd and \(n \) and \(q \) are given. The algorithm does not use an order oracle and works in polynomial, of \(n \log q \), time.

This paper corrects an error in the previously published version of the algorithm [1].
2000 Mathematics Subject Classification: 20P05.

1 Introduction
The aim of this paper is to correct an error in the previously published version [1] of a Monte-Carlo algorithm which distinguishes, to any given degree of certainty, the symplectic group \(C_n(q) = \text{PSp}_{2n}(q) \) from the orthogonal group \(B_n(q) = \Omega_{2n+1}(q) \) where \(q > 3 \) is odd and \(n \) and \(q \) are given. Namely we prove the following theorem.

Theorem 1.1 There is a polynomial time one sided Monte-Carlo algorithm which, when given a black box group \(G \) isomorphic to a simple classical group of type \(B_n \) or \(C_n \) defined over some field of given size \(q > 3 \) and odd characteristic, can decide whether \(G \) is isomorphic to \(C_n \) or not. If \(G \) is \(C_n \) then, with probability > 1/2, the algorithm produces a witness against isomorphism \(G \cong B_n(q) \).

The authors would like to thank Eamonn O'Brien and Gunter Malle who found an error in the original version of the algorithm (Lemma 2.4 of [1] was false). I am also grateful to Sukru Yalcinkaya who corrected a considerable number of typographic errors in the text.

We use the notation and results of [1].

1.1 Description of the algorithm: the easy case, \(n \) is odd.
Recall that \(\Omega_{2n+1}(q) \) denotes the kernel of the spinor norm
\[
\text{SO}_{2n+1}(q) \longrightarrow \{ \pm 1 \};
\]
it is a subgroup of index 2 in \(\text{SO}_{2n+1}(q) \) and coincides with the commutator of \(\text{SO}_{2n+1}(q) \) if \(n \geq 2 \) and \(q \geq 3 \) (for details see, for example, Artin [2]). It is well known that \(\text{PSp}_2(q) \cong \Omega_3(q) \cong \text{PSL}_2(q) \) and \(\text{PSp}_4(q) \cong \Omega_5(q) \). Hence it is obviously enough to give an algorithm for \(n \geq 3 \).

The easy case of the algorithm deals with the situation when \(n \) is odd, and the hard case is concerned with even \(n \).

If \(x \) is an element of even order, we use notation \(i(x) \) for the involution in the cyclic group \(\langle x \rangle \).

The structure of the algorithm in the easy case is the same as described in [1] and very simple.

*Research supported by the Royal Society and Leverhulme Trust.
INPUT: A black box group G isomorphic to $\text{PSp}_{2n}(q)$ or $\Omega_{2n+1}(q)$, $n \geq 3$ and $q > 3$ given, n is odd.

OUTPUT: If G is $\text{PSp}_{2n}(q)$ then, with probability $> 1/2$, the algorithm produces a witness against isomorphism $G \simeq \Omega_{2n+1}(q)$.

1. Find an element x of good order (the definition is given below). As it was discussed in [1], this can be done in polynomial time.

2. Compute the involution $i = i(x)$ in the cyclic group generated by x, this also can be done in polynomial time.

3. This step is vacuous in the easy case.

4. Compute $y := i^g i^b$ for random elements $g, h \in G$. If $o(y)$ divides $q(q + 1)$ or $q(q - 1)$ then go to Step 5. Otherwise return ‘G is $\text{PSp}_{2n}(q)$’, with the pair (i^g, i^b) being a witness against the isomorphism $G \simeq \Omega_{2n+1}(q)$.

5. Repeat Step 4 at least $20n$ times. If $o(y)$ always divides $q(q + 1)$ or $q(q - 1)$ then return ‘G is not $\text{PSp}_{2n}(q)$’. The error probability is $< 1/2$ in this case.

The number of necessary repetitions in Step 5 is a very crude estimate, which was sufficient for our theoretical purposes. In practice, if G is of type C_n and $q > 3$, then one does get an element $i^g \cdot i^b$ whose order does not divide $q(q + 1)$ or $q(q - 1)$ at the very first iteration.

1.2 Description of the algorithm: the hard case, n is even.

Let p be a prime number p, $q = p^k$ and $m \geq 2$. A prime dividing $q^m - 1$ but not $q^i - 1$ for $1 \leq i < m$ is called a primitive prime divisor of $q^m - 1$. It will be convenient to say that p is a primitive prime divisor of $q^m + 1$ if p is a primitive prime divisor of $q^m - 1$, see Lemma 2.2 for further discussion of primitive prime divisors. In our case primitive prime divisors always exist by Zsigmondy [1]. The primitive divisor rank $\text{pdrank}(g)$ is the maximal integer k such that $o(g)$ is divisible by a primitive prime divisor of $q^k - 1$.

INPUT: A black box group G isomorphic to $\text{PSp}_{2n}(q)$ or $\Omega_{2n+1}(q)$, $n \geq 3$ and q given, n is even (and hence $q^3 \equiv 1 \mod 4$).

OUTPUT: If G is $\text{PSp}_{2n}(q)$ then, with probability $> 1/2$, the algorithm constructs a witness against the isomorphism $G \simeq \Omega_{2n+1}(q)$.

1. Find an element x of good order as in the easy case.

2. Compute the involution $i = i(x)$ in the cyclic group generated by x.

3. Our next task is to make sure that i is an involution of type t_1, t_{n-1} or t_n. See Table 1 for the list of conjugacy classes of involutions and their centralisers (the details are mostly taken from [1]). For this purpose, construct (almost) uniformly distributed random elements of $C_G(i)$ as explained in [1] Section 3. The possibilities for $C_G(i)$ are given in Table 1. Notice that the groups $C_G(t_1)$, $C_G(t_{n-1})$ (in the group $G = \Omega_{2n+1}(q)$) and $C_G(t_n)$ have much bigger orders of semisimple elements than centralisers of involutions of other types. Namely, in these three cases we can find in $C_G(i)$, with probability $> O(1/n)$, a ‘big’ element, that is, an element of order divisible by a prime primitive divisor of $q^{n-1} \pm 1$. However ‘big’ elements are not present in the centralisers of involutions of other types. As soon as a ‘big’ element in $C_G(i)$ is found, we conclude that i is of type t_1, t_{n-1} (in the group $G = \Omega_{2n+1}(q)$) or t_n and move to Step 4. If we cannot find a ‘big’ element, we return to Step 1 and start our search for an involution of type t_1, t_{n-1} or t_n from the beginning.
| Involution $t_i \setminus$ Group G | $\text{PSp}_{2n}(q)$ | $\Omega_{2n+1}(q)$ |
|----------------------------------|------------------|------------------|
| t_1 | $\text{Sp}_2(q) \circ \text{Sp}_{2n-2}(q)$ | $\mathbb{Z}_{q^{\pm1}} \times \Omega_{2n-1}(q)$ |
| t_i | $\text{Sp}_{2i}(q) \circ \text{Sp}_{2n-2i}(q)$ | $\Omega_{2i}^+(q) \times \Omega_{2(n-i)+1}(q)$ |
| $2 \leq i \leq n/2$ (in $\text{PSp}_n(q)$) | | $(i \text{ even})$ |
| $2 \leq i < n-1$ (in $\Omega_{2n+1}(q)$) | | $\Omega_{2i}^-(q) \times \Omega_{2(n-i)+1}(q)$ |
| | | $(i \text{ odd and } q^i \equiv -1 \text{ mod } 4)$ |
| t_{n-1} (in $\Omega_{2n+1}(q)$) | | $\Omega_{2n-2}^+(q) \times \text{PSL}_3(q)$ |
| | | $(n \text{ is odd})$ |
| | | $\Omega_{2n-2}^-(q) \times \text{PSL}_3(q)$ |
| | | $(n \text{ is even and } q^{n-1} \equiv -1 \text{ mod } 4)$ |
| t_n | $\frac{1}{2}\text{GL}_n(q)$ | $\Omega_{2n}^+(q)$ |
| $q \equiv 1 \text{ mod } 4$ | | |
| t_n | $\frac{1}{2}\text{GU}_n(q^2)$ | $\Omega_{2n}^-(q)$ |
| $q \equiv -1 \text{ mod } 4$ | | |

Table 1: Involution in groups $\text{PSp}_{2n}(q)$ and $\Omega_{2n}(q)$, n even. The second and the third column show the generalised Fitting subgroup $F^*\left(C_G(t_i) \right)$ of $C_G(t_i)$ in the groups $\text{PSp}_{2n}(q)$ and $\Omega_{2n+1}(q)$, correspondingly. In all cases $C_G(t_i)/F^*\left(C_G(t_i) \right)$ is an elementary abelian group of order ≤ 4.
(4) Now we want to make sure that we found an involution of type \(t_n \). For that we compute \(\text{pdrank}(ii^g) \) for \(20n \) random elements \(g \). We know from Lemmata 2.10 and 2.12 that if \(i \) is not of type \(t_n \), or if \(i \) is of type \(t_n \) and \(G = \Omega_{2n+1}(q) \) then \(\text{pdrank}(ii^g) \leq 6 \). Hence if we found \(g \in G \) such that \(\text{pdrank}(ii^g) > 6 \) then we have a definite witness against \(G \) being the orthogonal group. In this case we return \('G \) is \(\text{Sp}_{2n}(q) \).

If we have not found an element \(g \) with \(\text{pdrank}(ii^g) > 6 \), we can return to the search from Step 1.

(4bis) Shortcuts. However, there are some shortcuts which give a quicker, although not one-sided solution.

(4i) It follows from Lemma 2.12 that if \(\text{pdrank}(ii^g) \leq 6 \) for \(O(n) \) random elements \(g \in G \) and, for some \(g \), \(\text{pdrank}(ii^g) > 4 \) then \(i \) is likely to be an involution of type \(t_{n-1} \) in the orthogonal group \(\Omega_{2n+1}(q) \).

(4ii) It follows from Lemmata 2.10 and 2.12 that if \(\text{pdrank}(ii^g) \leq 4 \) for \(O(n) \) random elements \(g \in G \) and, for some \(g \), \(\text{pdrank}(ii^g) > 2 \) then \(i \) is likely to be an involution of type \(t_1 \) in the orthogonal group \(\Omega_{2n+1}(q) \).

(4iii) It follows from Lemmata 2.10 and 2.12 that if \(\text{pdrank}(ii^g) \leq 2 \) for \(O(n) \) random elements \(g \in G \), then \(i \) is likely to be an involution of type \(t_1 \) in \(\text{Sp}_{2n}(q) \) or of type \(t_n \) in \(\Omega_{2n+1}(q) \). Since the centralisers of these involutions have very different structure (see Table 1), a further distinction between the two cases can be made by running a black box for \(C = C_G(i) \). The following steps allow to detect a normal subgroup \(\text{SL}_2(q) \) in \(C = C_{\text{Sp}_{2n}(q)}(t_1) \).

* Choose \(\varepsilon = \pm 1 \) so that \(q^{n-1} - \varepsilon \equiv 2 \) mod 4. Randomly search in \(C \) for an element \(x \) of order divisible by 4 and by a primitive prime divisor of \(q^{n-1} - \varepsilon \). If such an element cannot be found after \(O(n) \) attempts, \(i \) is likely to be an involution of type \(t_n \) in \(\Omega_{2n+1}(q) \).

* Once the element \(x \) is found, compute an element \(y \) of order 4 in \((x) \).

* Compute \(O(n) \) elements \(yy^c \) for random \(c \in C \). If, for all of them, \(o(yy^c) \mid q(q+1) \) then \(i \) is likely to be an involution of type \(t_1 \) in \(\text{PSp}_{2n}(q) \) (and \(y \) belongs to the \(\text{SL}_2(q) \)-component of \(C_G(i) \)).

* If, however, \(o(yy^c) \nmid q(q+1) \) for some \(c \in C \) then \(i \) is likely to be an involution of type \(t_n \) in \(\Omega_{2n+1}(q) \).

(5) If we returned to Step 1 more than \(20n \) times and have not found a witness against the isomorphism \(G \cong \Omega_{2n+1}(q) \), we conclude that \(G \cong \Omega_{2n+1}(q) \).

2 Tori and semisimple elements in groups \(B_n \) and \(C_n \)

Definitions and notation used in the paper are standard and borrowed from Carter [1, 2] and Gorenstein, Lyons and Solomon [3]. We retain the notation and use the results of [3]. We use the description of maximal tori in groups \(B_n \) and \(C_n \) as given in [1, Section 2.1].

2.1 Tori of order \(\frac{1}{2}(q^n \pm 1) \).

The crucial steps of our algorithm are aimed at finding involutions belonging to tori \(\frac{1}{2}T_{q^n \pm 1} \) twisted by an element of the cycle type \(\pm n \). We have to distinguish the following cases:

(i) \(q^n \equiv -1 \) mod 4, i.e. \(n \) odd and \(q \equiv -1 \) mod 4.

(ii) \(q^n \equiv 1 \) mod 4, i.e. \(n \) even or \(q \equiv 1 \) mod 4.
In the first case the maximal tori of order $\frac{1}{2}(q^n + 1)$ contain involutions, in the second case the maximal tori of order $\frac{1}{2}(q^n - 1)$ contain involutions.

We call tori $\frac{1}{2}T_{q^n\pm 1}$ maximal twisted tori.

We are looking for involutions belonging to maximal twisted tori. For that purpose, we introduce the concept of 2-height. Let X be a group and $x \in X$ such that $o(x) = 2^km$ where m is odd. Then k is called the 2-height of x. The 2-height of X is the maximum of heights of elements in X.

Lemma 2.1 If T is a torus of type $\frac{1}{2}T_{q^n\pm 1}$ then

$$|N_G(T) : T| = 2n.$$

Proof. See [1, Lemma 2.3].

2.2 Primitive prime divisors.

Let p be a prime number p and $m \geq 2$. A prime dividing $p^m - 1$ but not $p^i - 1$ for $1 \leq i < m$ is called a primitive prime divisor of $p^m - 1$. In our case primitive prime divisors always exist by Zsigmondy [2]. Furthermore an integer j is called a $\text{ppd}(p; m)$ if $j \mid q^n - 1$ and j is divisible by a primitive prime divisor of $p^m - 1$. Let $q = p^r$. A primitive prime divisor or $p^e - 1$ will be called, for brevity, a $\text{ppd}(q, m)$. An element of G of order dividing a $\text{ppd}(q, n)$ is called a primitive prime divisor element.

The role of primitive prime divisors becomes apparent from the following simple lemma.

Lemma 2.2

(i) Let r be a $\text{ppd}(q, n)$. If $r \mid q^n + 1$ for $m < n$, then n is even and $m = n/2$.

(ii) Let r be a $\text{ppd}(q, 2n)$. Then $r \nmid q^n - 1$ for all $m < n$ and $r \nmid q^n - 1$.

Proof. (i) Assume that $r \mid q^n + 1$ for some $m < n$. This means that $r \mid q^{2n} - 1$ and the Galois field $\mathbb{F}_{q^{2m}}$ has a multiplicative subgroup R of order R. But the Galois field \mathbb{F}_{q^n} also contains a multiplicative subgroup of order r. Since the algebraic closure $\overline{\mathbb{F}}_q$ contains a unique field of every give order, the intersection $\mathbb{F}_{q^{2m}} \cap \mathbb{F}_{q^n}$ is well defined. The inclusion $\mathbb{F}_{q^n} < \mathbb{F}_{q^{2m}}$ because this would mean $n \nmid 2m$, contradicting our assumption $m < n$. The equality $\mathbb{F}_{q^{2m}} = \mathbb{F}_{q^n}$ leads to the desired conclusion $m = n/2$. Finally, we are left with the case when $\mathbb{F}_{q^m} = \mathbb{F}_{q^{2m}} \cap \mathbb{F}_{q^n}$ is a proper subfield of \mathbb{F}_{q^n}. But then the multiplicative group of \mathbb{F}_{q^m} contains R, an unique subgroup of order r in the both $\mathbb{F}_{q^{2m}}$ and \mathbb{F}_{q^n}, and therefore $r \nmid q^k - 1$, a contradiction.

(ii) follows from (i); we need only notice that r is odd, and, since $q^n - 1$ and $q^n + 1$ have no odd divisors in common, $r \nmid q^n - 1$.

2.3 Good elements.

Let P be a maximal twisted torus of even order and let $|P| = 2^km$ where k and m are natural numbers and m is odd. We say that an element $g \in P$ is of maximal 2-height, if the 2-height of g is k. Since P is cyclic, elements of maximal 2-height exists. Furthermore half of the elements of P have maximal 2-height as the cyclic group generated by a 2-element x of maximal 2-height contains 2^{k-1} elements of maximal 2-height, namely x^s for s an odd integer.

In the following we are looking for elements of maximal 2-height in a maximal twisted torus. We call g good if it satisfies the following conditions:

- pdrank(g) = 2n when $q^n \equiv -1 \mod 4$ and pdrank(g) = n when $q^n \equiv 1 \mod 4$.
- g has maximal 2-height.

We shall call good elements belonging to maximal twisted tori in G good twisted elements.

Lemma 2.3 The number of good twisted elements in G is at least $\frac{1}{m}|G|$.
Proof. Let T be a maximal twisted torus in G. By Lemma 2.1 $|N_G(T)/T| = 2n$. Therefore there are $\frac{|G|}{2n|T|}$ tori conjugate to T. Let r be a $ppd(q,n)$ or $ppd(q,2n)$, depending on whether T is of type $\frac{1}{2}T_{q^n-1}$ or $\frac{1}{2}T_{q^n+1}$, and denote by T^{2r} the unique subgroup of index $2r$ in T. Then any element whose image in T/T^{2r} generate T/T^{2r} is a good element. It is easy to see that the number of such elements in T is $\frac{r-1}{2r}|T|$. Also, it follows from Lemma 2.2 that a good element does not belong to a proper subtorus of T and thus does not belong to a unique twisted torus. Now we can estimate the total number of good elements in all twisted tori as at least
\[
\frac{|G|}{2n|T|} \cdot \frac{r-1}{2r}|T| = \frac{1}{4n} \cdot \frac{r-1}{r} |G| \geq \frac{1}{5n}|G|,
\]since, obviously, $r \geq 5$.

2.4 Regular twisted elements.

A regular element in a torus of type $\frac{1}{2}T_{q^n \pm 1}$ or will be called a regular twisted element. Notice that good elements in these tori are regular twisted elements.

Lemma 2.4 The number of regular twisted elements in G conjugate to an element in a torus T of the given type $\frac{1}{2}T_{q^n-1}$ or $\frac{1}{2}T_{q^n+1}$ is at least $\frac{1}{4n}|G|$.

Proof: See [1, Lemma 2.5].

2.5 Involutions of type t_n in $\operatorname{PSp}_{2n}(q)$.

For the following compare the description of conjugacy classes of involutions in $\operatorname{PSp}_{2n}(k)$ and $\operatorname{SO}_{2n+1}(k)$ as given in Theorems 11.52 and 11.53 of Taylor [3] and Section 4.5 of [4].

The group $\operatorname{PSp}_{2n}(q)$ has $(\frac{q}{2})+1$ conjugacy classes of involutions. Let $s \in \operatorname{Sp}_{2n}(q)$ represent an element of order 2 in $\operatorname{PSp}_{2n}(q)$. Then either $s^2 = -I$ or $s^2 = I$. All involutions which are represented by an element s such that $s^2 = -I$ form one conjugacy class of involutions of type t_n. Furthermore for every even number $2 \leq m \leq n$ there is one conjugacy class of involutions of type $t_m/2$. If s is an involution of type $t_m/2$, then the eigenvalues of s on the underlying natural module are -1 with multiplicity m and 1 with multiplicity $2n-m$.

Lemma 2.5 Let $G := \operatorname{PSp}_{2n}(q)$ and $i \in G$ an involution of type t_n. If H is a torus of G then there exists an involution $j \in i^G$ such that H is inverted by j.

Proof. See [1, Lemma 2.6].

Lemma 2.6 Let $G := \operatorname{PSp}_{2n}(q)$ and $i \in G$ be an involution of type t_n. Then $i^g i^h$ is a regular twisted element of odd order with probability $p \geq \frac{1}{20m}$ for random $g, h \in G$.

Proof. See [1, Lemma 2.7].

As an immediate corollary we have the following lemma.

Lemma 2.7 If i is an involution of type t_n in $G = \operatorname{PSp}_{2n}(q)$ then the share of elements $g \in G$ such that the element ii^g is of odd order is at least $\frac{1}{20m}$.

Proof. See [1, Lemma 2.8].
2.6 Involutions of type t_n in $\Omega_{2n+1}(q)$.

The group $\Omega_{2n+1}(q)$ has n conjugacy classes of involutions. There is one conjugacy class of involutions of type $t_m/2$ for each even number $2 \leq m \leq 2n$. An involution s is of type t_m if the eigenvalues of s on the underlying natural module are -1 with multiplicity m and 1 with multiplicity $2n+1-m$.

Lemma 2.8 Let $G := \Omega_{2n+1}(q)$ and $i \in G$ an involution of type t_n. Then the element $i^g \cdot i^h$ acts trivially on a subspace of codimension 2 in the natural module for G. In particular, $o(i^g i^h) \mid q(q+1)$ or $o(i^g i^h) \mid q(q-1)$ for all $g, h \in G$.

Proof. Let V be the natural module for G. Since i is of type t_n, the dimension of the eigenspace V_- of i for the eigenvalue -1 is $2n$, while the eigenspace V_+ for the eigenvalue $+1$ is 1-dimensional. Therefore $i^g i^h$ belongs to $C = C_{\text{SL}(V)}(V_+ g \cap V_- h)$ and $W = V_- g \cap V_- h$ has codimension ≤ 2 in V. Notice that $C/O_q(C)$ is a subgroup of $\text{SL}_2(q)$ (here $p = \text{char} F_q$). Notice also that the element $i^g i^h$ leaves invariant the subspace $V_+ g + V_+ h$. The result now easily follows. □

Lemma 2.9 Let $G := \Omega_{2n+1}(q)$ and $i \in G$ an involution of type t_n. Then the share of elements $g \in G$ such that the element ii^g is of odd order is at least

$$\frac{1}{4(1 + 2/q + o(1/q))}. \quad (7)$$

Proof: We use notation of the previous lemma with $W = V_- \cap V_- g$ and $U = V_+ + V_+ g$. Let $q \equiv 1 \mod 4$. Then a direct computation with the help of information about finite orthogonal geometries contained in Section III.6 of Artin [2] shows that, with probability

$$\rho > \frac{1}{4(1 + 2/q + o(1/q))},$$

the subspace U is nondegenerate and has index 0. Hence the group $\langle i, i^g \rangle$ is isomorphically imbedded into $O(U) \cong Z_{q+1} \rtimes Z_2$ and half of the elements ii^g have odd order, yielding the desired estimate. The case $q \equiv -1 \mod 4$ can be treated analogously. □

2.7 Involutions of type t_1 in $\text{PSp}_{2n}(q)$

Lemma 2.10 If i is an involution of type t_1 in $\text{PSp}_{2n}(q)$ then

$$o(i^g i^h) \mid q(q \pm 1).$$

Proof: Similarly to the previous section, a preimage in $G = \text{Sp}_{2n}(q)$ of the involution i (which we denote by the same symbol i) is a ‘low dimensional’ involution, that is, the eigenspace V_- has dimension 2 or $n - 2$. Assume that dim $V_- = 2$, the other case is similar. Then, for random $g, h \in G$, the group $\langle i^g, i^h \rangle$ leaves the subspaces $V_- g + V_- h$ and $V_+ g \cap V_+ h$ invariant and $V = (V_- g + V_- h) \oplus (V_+ g \cap V_+ h)$. Denote $W = V_- g + V_- h$. Notice that $\langle i^g, i^h \rangle < \text{Sp}(W)$.

We have three possibilities: dim $W = 2$, 3 or 4. If dim $W = 2$ the $i^g = i^h$. If the restriction of the symplectic form to W is degenerate (this automatically holds when dim $W = 3$) then $\text{Sp}(W)/O_p(\text{Sp}(W)) \simeq \text{Sp}_2(q) = \text{SL}_2(q)$, and the lemma follows. If dim $W = 4$ and the restriction of the symplectic form to W is non-degenerate then $\text{Sp}(W) = \text{Sp}_4(q)$ and i^g and i^h are involutions of type t_1 in $\text{Sp}(W)$. Now the result follows from an easy computation in $\text{Sp}_4(q)$. □

Moreover, the same analysis yields the following result.

Lemma 2.11 If i is an involution of type t_1 in $\text{PSp}_{2n}(q)$ then the share of elements in G such that ii^g is of odd order is at least $1/4$.

2.8 Involutions of type t_1 and t_{n-1} in $\Omega_{2n+1}(q)$

Lemma 2.12 Let i be an involution of type t_1 or t_{n-1} in $G = \Omega_{2n+1}(q)$ and g is a random element in G.

(i) If i is of type t_1 then $\text{pdrank}(i^g) \leq 4$. Moreover, $\text{pdrank}(i^g) > 2$ with probability bounded from below by a constant.

(ii) If i is of type t_{n-1} then $\text{pdrank}(i^g) \leq 6$. Moreover, $\text{pdrank}(i^g) > 2$ with probability bounded from below by a constant.

(iii) If i is of type t_1 or t_{n-1} then the element i^g has odd order with probability bounded from below by a constant.

The experimental evidence suggests that the constants in (i) and (ii) are $1/8$ for t_1 and $1/4$ for t_{n-1}.

Proof. The proof is similar to the previous result. \(\square\)

2.9 Involutions produced by good elements.

Lemma 2.13 Let i be the involution in a maximal twisted torus $T < G$. Then i is of type t_n.

Proof. See [1, Lemma 2.13(1)]. \(\square\)

We shall use the following corollary from this result and Lemma 2.3.

Lemma 2.14 Let g be a random element in G. Then the involution i produced by g has type t_n with probability at least $1/5n$.

Finally,

3 Detailed description of the algorithm

3.1 Step 1: search for a good element x.

The algorithm spends most of its timing testing if elements are good. This is done exactly as described in [1, Section 4].

It easily follows from Lemma 2.3 that a sample of N random elements of G contains a good element with probability

$$1 - \left(1 - \frac{1}{5n}\right)^N > 1 - e^{-\frac{N}{8n}}.$$

Therefore if we are given fixed margin of error ϵ, $0 < \epsilon < 1$, and take a sample of size $O(n \log(1/\epsilon))$, then we can be satisfied that it contains a good element with probability $1 - \epsilon$. As proven in [1], production of a random element and testing it for goodness require polynomial time.

3.2 Step 2: involution $i = i(x)$.

As soon as we have a good element x and know that it is an element of maximal 2-height in a cyclic group of order $\frac{1}{2}(q^n \pm 1)$, the involution $x = i(x)$ can be obtained by raising x to the power $\frac{1}{4}(q^n \pm 1)$. As discussed in [1], this requires polynomial time. Lemma 2.13 asserts that i is of type t_n.
3.3 Step 3: involution of type t_n.

Notice that if n is odd then the involution i is of type t_n.

However, if n is even then i can happen to be of different type.

We can check whether i is of type t_n or not by constructing uniformly distributed random elements $\zeta_1(x)$ of $C_G(i)$ as described in Section 3. If i is of type t_1, t_{n-1} (in $\Omega_{2n}^+(q)$) or t_n then, in view of Lemmata 2.11, 2.12 and 2.3, this method produces (in polynomial of $n \log q$ time) random and uniformly distributed elements of $C_G(i)$. Let $L = F \ast (C_G(i))$. Depending on whether i is one of the t_1, t_{n-1} (in $\Omega_{2n}^+(q)$) or t_n, L contains ‘big’ elements, that is, elements of order divisible by a primitive prime divisor of $q^n - 1$, $q^{n-1} + 1$, $q^{n-1} + 1$ (compare Table 2 and Table 3). It can be observed directly from the formulae for orders in Table 2 that centralisers of involutions of other types do not contain ‘big’ elements.

$	GL_k(q)	$	$q^{(k-1)/2}(q-1)(q^2-1)\cdots(q^k-1)$		
$	PSp_{2k}(q)	=	\Omega_{2k+1}(q)	$	$(2,q-1)^{1/2}q^{k^2}(q^2-1)(q^4-1)\cdots(q^{2k}-1)$
$	PO_{2k}^+(q)	$	$\frac{1}{(4,q^2-1)}q^{(k-1)}(q^2-1)(q^4-1)\cdots(q^{2k-2}-1)(q^k-1)$		
$	PO_{2k}(q)	$	$\frac{1}{(4,q^2+1)}q^{(k-1)}(q^2-1)(q^4-1)\cdots(q^{2k-2}-1)(q^k+1)$		
$	GU_k(q^2)	$	$q^{(k-1)/2}(q+1)(q^2-1)(q^3+1)(q^4-1)\cdots(q^k-(-1)^k)$		

Table 2: Orders of some classical groups, [3] pp. 2–8.

It is easy to see that ‘big’ elements are regular elements in maximal tori of orders $\frac{1}{2}(q \pm 1)(q^{n-1} \pm 1)$ or $\frac{1}{2}(q^n \pm 1)$. Using the same technique as in Sections 2.1–2.3, we can see that the probability of a random element to be ‘big’ is $O(1/n)$ and hence one of them has to pop up from the black box for $C_G(i)$ after $O(n)$ iterations. As soon as we have found a ‘big’ element, we know that i is of type t_1, t_{n-1} (in $\Omega_{2n+1}(q)$) or t_n and can go to Step 4.

If a ‘big’ element cannot be found after $O(n)$ tests of elements from $C_G(i)$, then to Step 1 and start the search for an involution of type t_1 or t_n from the beginning.

3.4 Step 4.

Now we want to make sure that we found an involution of type t_n in $PSp_{2n}(q)$. For that we compute $\text{pdrank}(ii^g)$ for $20n$ random elements g. We know from Lemma 2.6 that if i is of type t_n in $PSp_{2n}(q)$, then, with probability $> 1 - e^{-1}$, the primitive divisor rank of one of the elements ii^g is at least $2n$. We know from Lemmata 2.8, 2.10 and 2.12 that if i is not of type t_n, then $G = \Omega_{2n+1}(q)$ then $\text{pdrank}(ii^g) \leq 6$. Hence if we found $g \in G$ such that $\text{pdrank}(ii^g) > 6$ then we have a definite witness against G being the orthogonal group. In this case we return ‘G is $Sp_{2n}(q)$’.

If we have not found an element g with $\text{pdrank}(ii^g) > 6$, we can return to the search from Step 1.

The estimate of the number of elements ii^g needed in this step is, of course, very crude; an experimental evidence suggests that, instead of $20n$ elements ii^g, 8 elements suffice.

SHORTCUTS in Step 4 are mostly self-explanatory.
3.5 Step 5.

The involution i of type t_n behaves very differently in $\text{PSp}_{2n}(q)$ and $\Omega_{2n+1}(q)$. Namely, in $\text{PSp}_{2n}(q)$ an element $i^g i^h$ for random $g, h \in G$ is a regular twisted element with probability $\geq \frac{1}{20n}$ (Lemma 2.6), while in $\Omega_{2n+1}(q)$ we always have $o(i^g i^h) \mid q(q \pm 1)$ (Lemma 2.8). Obviously, a regular twisted element cannot have order dividing $q(q \pm 1)$. As soon as we have that $o(i^g i^h)$ does not divide $q(q \pm 1)$, the pair (i^g, i^h) is a witness against the isomorphism $G \simeq \Omega_{2n+1}(q)$ and in that case $G \simeq \text{PSp}_{2n}(q)$.

On the other hand, if in $20n$ tests we had the same result $o(i^g i^h) \mid q(q \pm 1)$, then $G \simeq \Omega_{2n+1}(q)$ with probability $\geq 1 - e^{-1}$. Timing estimate here is very crude and can be considerably improved. In practice, if $G \simeq \text{PSp}_{2n}(q)$ then $o(i^g i^h) \mid q(q \pm 1)$ at the very first attempt.

4 The GAP code.

The algorithm was tested in GAP\footnote{The software package GAP is available, for variety of platforms, from\url{http://aldebaran.math.rwth-aachen.de/~GAP/}}. The Appendix contains a (very primitive) GAP source code Bn-v-Cn.g, which generates (at random) a group $G = \text{Sp}_{2n}(q)$ or $\text{SO}_{2n+1}(q)$ and initiates the functions $\text{Test}(G)$ and $\text{PlainTest}(G)$ which determine the type of the group G with the help of the algorithm described in this paper, with ($\text{Test}(G)$) or without ($\text{PlainTest}(G)$) shortcuts in Step 4.

The functions $\text{PlainTest}(G)$ and $\text{Test}(G)$ return the list of 4 integers. Of these,

- The first position is 0 or 1, according to the answer symplectic or *orthogonal given by the algorithm.
- The second position is the rule number used in this decision (used for the debugging of the algorithm).
- The third position is the dimension of the eigenspace for the eigenvalue -1 of the involution used in the identification of the group this information is used only for the debugging of the algorithm).
- The fourth number is the numbers of re-runs of the test if the first run was inconclusive.

I wish to emphasise that this GAP code was written only for checking the algorithm and is not designed for the practical use. In particular, it works with the groups $\text{Sp}_{2n}(q)$ and $\text{SO}_{2n+1}(q)$ instead of $\text{PSp}_{2n}(q)$ and $\Omega_{2n+1}(q)$, although all computations are done in the way which makes sense in the factor group modulo the scalars and in the commutator group; in particular, it works, instead of involutions, with pseudoinvolutions, that is, elements of order 2 or 4 whose images modulo the scalars are involutions.

To see how the code works, enter at the GAP command prompt:

```
gap> Read("Bn-v-Cn.g"); test:=Test(G); Interpret(test);
```

or

```
gap> Read("Bn-v-Cn.g"); test:=PlainTest(G); Interpret(test);
```

To check the answer, enter

```
gap> G;
```

I have to warn, however, that $\text{PlainTest}(G)$ takes considerable time to produce the answer if G is the orthogonal group.

So far more than 2000 experiments with the function $\text{Test}(G)$ have not yield a single wrong answer, while $\text{PlainTest}(G)$ erred once in 600 experiments.

This was my first ever attempt to write in GAP, and I bravely ignored the good programming practice; in particular, the global variables q, n, type (0 or 1 for symplectic or orthogonal) for generation of a black box group can be changed only in the file Bn-v-Cn.g, which after that has to be read again to generate all the required functions.
Also, I am using the function $\text{Order}(\text{element})$, to make the code simpler; this is not necessary, of course, and it can be replaced by raising the element in the appropriate powers as discussed in [1]. This would make it possible to work in "large" groups.

Structurally, I was not concerned with the optimal branching in the program. I intentionally wanted all branches being regularly visited, although, in many cases, this could be avoided.

References

[1] C. Altseimer and A. Borovik, ‘Probabilistic recognition of orthogonal and symplectic groups’, Groups and Computations III, (eds W. M. Kantor and A. Seress), de Gruyter, Berlin and New York, 2001, pp. 1–20.

[2] E. Artin, Geometric Algebra, Interscience Publishers, New York, 1957.

[3] R. W. Carter, Simple Groups of Lie Type (John Wiley and Sons, London a.o., 1972).

[4] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, 1985.

[5] D. Gorenstein, R. Lyons and R. Solomon, ‘The classification of the finite simple groups 3’, Mathematical Surveys and Monographs 40, AMS, Providence, 1998.

[6] D. E. Taylor, The Geometry of the Classical Groups (Heldermann, Berlin, 1992).

[7] K. Zsigmondy, ‘Zur Theorie der Potenzreste’, Montash. für Math. u. Phys. (3) (1892) 265–284.
Appendix: GAP code

Bn-v-Cn.g

A. V. Borovik, April 2001

The algorithm tests involutions in orthogonal and symplectic groups thus distinguishing between the two. Given a linear group \(G = \text{PSp}(2n,q) \) or \(\Omega(2n+1, q) \), with known \(q \) and \(n \), the algorithm determines whether \(G \) is symplectic or orthogonal. The algorithm implemented here contains a fix for a bug in the original theoretic version, C. Altseimer and A. Borovik, "Probabilistic recognition of orthogonal and symplectic groups", Groups and Computations III, (eds W. M. Kantor and A. Seress), de Gruyter, Berlin and New York, 2001, pp. 1-20. This code was not designed for the practical use, but just for checking the theoretical algorithm. In particular, since I had no means for generation of black boxes for \(\text{PSp}(2n,q) \) for large \(n \) and \(q \), the algorithm actually works with \(\text{Sp}(2n,q) \) instead of \(\text{PSp}(2n,q) \), but make only those group calculations which make sense in its factor group \(\text{PSp}(2n,q) \). In particular, it works with "pseudoinvolutions", elements of order 2 or 4 which have order 2 in \(G/Z(G) \).

Recommended use:

```gap
gap> Read("Bn-v-Cn.g"); test:=Test(G); Interpret(test);
```

or

```gap
gap> Read("Bn-v-Cn.g"); test:=PlainTest(G); Interpret(test);
```

To check the answer, enter

```gap
gap> G;
```

Global constants: \(q \), \(n \), type, \(G \), effort

```gap
q:= Random([5,7,9,11,13,17,19,23,25,27,31]);
```

```gap
if q >19 then
  n:= Random([3..6]);
fi;
if q > 10 and q < 20 then
  n:= Random([3..12]);
fi;
if q < 10 then
  n:= Random([3..20]);
fi;
```
type:= Random([0,1]);
type = 0 means symplectic
type = 1 means orthogonal

if type = 1 then
 G:=SO(2*n+1,q);
Generation of the group G, type =1
else
 G:=Sp(2*n,q);
Generation of the group G, type = 0
fi;

effort := 2;
This parameter determines how hard
we are looking for the witness
elements. Most searches make
effort * n attempts to find a
"big" element
Effort =4 corresponds to the theoretical threshold:
in the group Sp(2n,q) or Omega(2n+1,q),
a random element is a regular element
in a maximal twisted torus of order
q'^n -1 or q'^n+1 with probability > 1/4n.

###
Functions
###

OddPart := function(nn)
Odd part of the integer nn
 local m;
 m :=nn;
 while m mod 2 = 0 do
 m := m/2;
 od;
 return m;
end;

EvenPart := function(nn);
Even part of the integer nn
 return nn/OddPart(nn);
end;

PrimitiveDivisor := function(qq,nn)
Finds the largest divisor of the number qq'^nn -1
which has no non-trivial divisors in common with
any of the numbers qq'^l - 1 for l < nn.
 local pd,ll,gcd,ii;
 pd := qq'^nn-1;
 for ii in [1..nn-1] do
 ll := qq'^ii -1;
 gcd := Gcd(pd,ll);
 while gcd > 1 do
 pd := pd/gcd;
 break;
 end;
 end;
gcd:= Gcd(pd,gcd);
 od;
 od;
 return pd;
end;

PseudoInvolution := function(g)
 ### Finds an element in the cyclic group <g>
 ### which is an involution in G/Z(G)
 ### The function uses the standard GAP function Order(g)
 ### which uses prime factorisation and does not work in big
 ### groups. However, it is easy to eliminate calls to Order
 ### and replace them by exponentiation.
 local order, i, rank;
 order := Order(g);
 if order mod 2 = 1 then
 return g^0;
 else
 i := g^(order/2);
 fi;
 rank := Rank(i+i^2);
 if (rank = 0 and type = 0) then
 if order mod 4 <> 0 then
 return g^0;
 else i := g^(order/4);
 fi;
 fi;
 return i;
end;

InCentraliser := function(j)
 ### Returns an element from the centraliser C_G(j)
 ### Most of the elements produced by this function are
 ### involutions; their distribution in C_G(j) is
 ### invariant under action of C_G(j) by conjugation
 ### Some (relatively small) portion of elements is
 ### produced by a different algorithm ζ_1 in
 ### notation of our paper; these elements are distributed
 ### uniformly in the group C_G(j).
 local gg,y,o,z,c;
 gg := PseudoRandom(G);
 y := j * j^gg;
 o := Order(y);
 if j^4 <> j^2 then
 if (o = 1 or o = 2 or o = 4) then
 z := y;
 fi;
 fi;
 if o mod 4 = 0 then
 if y^(o/2) = j^2 then
 \text{...}
\[
\begin{align*}
\text{z} & := y^{(o/4)}; \\
\text{else} & \\
\text{z} & := y^{(o/2)}; \\
\text{fi}; \\
\text{fi}; \\
\text{if } o \mod 4 = 2 & \text{ then} \\
\text{if } y^{(o/2)} = j^2 & \text{ then} \\
\text{z} & := gg*y^{(((o/2)-1)/2)}; \\
\text{else} & \\
\text{z} & := j; \\
\text{fi}; \\
\text{fi}; \\
\text{if } o \mod 2 = 1 & \text{ then} \\
\text{z} & := gg*y^{((o-1)/2)}; \\
\text{fi}; \\
\text{else} & \\
\text{if } o \mod 2 = 0 & \text{ then} \\
\text{z} & := y^{(o/2)}; \\
\text{else} & \\
\text{z} & := gg*y^{((o-1)/2)}; \\
\text{fi}; \\
\text{fi}; \\
\text{return } z; \\
\end{align*}
\]

\text{OccurrencesOfPrimitiveDivisors} := \text{function}(m) \\
Finds all integers } k \text{ such that } m \text{ is divisible by } \text{a primitive prime divisor of } q^k-1. \\
\text{local tuple, k; } \\
\text{tuple} := 0*[1..2*n]; \\
\text{for } k \text{ in } [1..2*n] \text{ do} \\
\text{if } \text{Gcd(PrimitiveDivisor}(q,k),m) > 1 \text{ then} \\
\text{tuple}[k] := k; \\
\text{fi}; \\
\text{od}; \\
\text{return tuple;} \\
\text{end;} \\

\text{PrimitiveDivisorRankOfElement} := \text{function}(g) \\
Finds the maximal integer } k <= 2*n \text{ such that } \\
\text{the order of the element } g \text{ is divisible} \\
\text{by a primitive prime divisor of } q^n-1 \\
\text{(remember, } q \text{ and } n \text{ are global constants).} \\
\text{Again, calls to } \text{Order}(g) \text{ can be eliminated} \\
\text{return Maximum(OccurrencesOfPrimitiveDivisors(Order}(g))); \\
\text{end;} \\

\text{IsGood} := \text{function}(g) \\
Tests whether the element } g \text{ is good or not.
if \((q^n - 1) \mod 4 = 0\) then
 return \((\text{PrimitiveDivisorRankOfElement}(g) = n \text{ and } \text{EvenPart}(\text{Order}(g)) = (\text{EvenPart}(q^n-1)/(2^{\text{type}})))\); fi;
if \((q^n + 1) \mod 4 = 0\) then
 return \((\text{PrimitiveDivisorRankOfElement}(g) = 2n \text{ and } \text{EvenPart}(\text{Order}(g)) = (\text{EvenPart}(q^n+1)/(2^{\text{type}})))\); fi;
end;

GoodElement := function(G)
 ### Finds a good element in the group G,
 ### of course, under the assumption that
 ### G = Sp(2n,q) or S0(0,2n+1,q);
 ### in the latter case, the good element
 ### is actually found in the commutator group
 ### Omega(2n+1,q) of S0(0,2n+1,q).
 local g1, g2, g;
 if type = 1 then
 g1:=PseudoRandom(G);
 g2:=PseudoRandom(G);
 g :=g1^-1*g2^-1*g1*g2;
 while IsGood(g) = false do
 g1:=PseudoRandom(G);
 g2:=PseudoRandom(G);
 g :=g1^-1*g2^-1*g1*g2;
 od;
 else
 g:=PseudoRandom(G);
 while IsGood(g) = false do
 g:=PseudoRandom(G);
 od;
 fi;
 return g;
end;

TypeOfCentraliser := function(j)
 ### Returns one of the lists \([1], [1], [2], \text{ and } [1,2],\)
 ### depending on whether an element of order dividing
 ### a primitive prime divisor of \(q^{(n-1)-1}\) or a
 ### primitive prime divisor of \(q^{(n-1)+1}\) is found in \(C_G(j)\)
 ### (this adds 1 or 2 to the list, correspondingly).
 ### The procedure is pretty slow; it can be made faster
 ### by a better way of generating random elements in \(C_G(j)\)
 ### (for example, the use of the Product Replacement Algorithm
 ### should considerably speed it up).
 local x, maxppd, typeOfC, counter;
 x := InCentraliser(j);
 maxppd :=0;
typeOfC := Set([]);
counter := 0;
while typeOfC <> Set([1,2]) and counter < effort*n do
 x := x * InCentraliser(j);
 maxppd := PrimitiveDivisorRankOfElement(x);
 if maxppd = n-1 then
 Add(typeOfC, 1);
 fi;
 if maxppd = 2*(n-1) then
 Add(typeOfC, 2);
 fi;
 counter := counter +1;
od;
return Set(typeOfC);
end;

ProductsOfConjugates := function(j)
Determines how big is the primitive divisor rank
of the product j * j^x of the element j and
its random conjugate j^x.

local x, x2, y, maxppd, counter;
maxppd := 0;
counter := 0;
if type = 0 then
 while (maxppd < 8 and counter < effort*n) do
 x := PseudoRandom(G);
 y := j * j^x;
 maxppd := Maximum([maxppd, PrimitiveDivisorRankOfElement(y)]);
 counter := counter +1;
 od;
else
 while (maxppd < 8 and counter < effort*n) do
 x := PseudoRandom(G);
 x2 := PseudoRandom(G);
 x := x^-1 * x2^-1 * x * x2;
 y := j * j^x;
 maxppd := Maximum([maxppd, PrimitiveDivisorRankOfElement(y)]);
 counter := counter +1;
 od;
fi;
return maxppd;
end;

CriticalInvolution := function(G)
Finds an involution j in the cyclic group generated by a good element,
with the extra property that the centraliser C_G(j) has an element
whose order is divisible by a primitive prime divisor of q^(n-1)-1
or q^(n-1)+1.

local x, j, typeOfC;
typeOfC := [];
x := GoodElement(G);
j := PseudoInvolution(x);
while (typeOfC = Set([]) or j*j^2) do
x := GoodElement(G);
j := PseudoInvolution(x);
typeOfC := TypeOfCentraliser(j);
od;
return j;
end;

PreTest := function(G)
Tests the group G for being symplectic or orthogonal
The result may be inconclusive, in which case
the test has to be repeated.
local g, j, typeOfC, conj, conj2, x, y, z, minus, plus, maxppd, evenpart, counter, maxppd2, counter2;

The case when n =3
if n = 3 then
 g := GoodElement(G);
j := PseudoInvolution(g);
conj := ProductsOfConjugates(j);
 counter := 0;
 while conj < 3 and counter < effort * n do
 conj2 := ProductsOfConjugates(j);
 conj := Maximum([conj, conj2]);
 counter := counter + 1;
 od;
 if conj < 3 then
 return [1, 13, Rank(j-j^2)/2];
 else
 return [0, 13, Rank(j-j^2)/2];
 fi;
fi;

The general case
j := CriticalInvolution(G);
conj := ProductsOfConjugates(j);
if conj > 7 then
 return [0, 1, Rank(j-j^2)/2];
fi;
typeOfC := TypeOfCentraliser(j);
if typeOfC = [1, 2] and conj = 4 then
 return [1, 2, Rank(j-j^2)/2];
fi;
if n mod 4 = 2 and q mod 4 = 1 and typeOfC = [1] and conj = 6 then
 return [1, 3, Rank(j-j^2)/2];
fi;
if n mod 4 = 2 and q mod 4 = 3 and typeOfC = [2] and conj = 6 then
 return [1, 4, Rank(j-j^2)/2];
fi;
if n mod 4 = 0 and typeOfC = [1, 2] and conj < 3 then
 return [1, 5, Rank(j-j^2)/2];
fi;
if n mod 2 = 1 and typeOfC = [1,2] and conj < 3 then
 return [1,6, \text{Rank}(j-j^2)/2];
fi;

if n mod 2 = 0 and typeOfC = [1,2] and conj < 3 then
 minus := (\text{EvenPart}(q^{(n-1)-1}) \mod 4 \neq 0);
 plus := (\text{EvenPart}(q^{(n-1)+1}) \mod 4 \neq 0);
 x := \text{InCentraliser}(j);

 if minus then
 maxppd := 0;
 evenpart := 1;
 counter := 0;
 while (maxppd \neq n-1 or evenpart < 4) and counter < 3*effort*n do
 x := x * \text{InCentraliser}(j);
 maxppd := \text{PrimitiveDivisorRankOfElement}(x);
 evenpart := \text{EvenPart}(\text{Order}(x));
 counter := counter +1;
 od;
 if (maxppd \neq n-1 or evenpart < 4) then
 return [1,7, \text{Rank}(j-j^2)/2];
 fi;
 fi;

 if plus then
 maxppd := 0;
 evenpart := 1;
 counter := 0;
 while (maxppd \neq 2*(n-1) or evenpart < 4) and counter < 3*effort*n do
 x := x * \text{InCentraliser}(j);
 maxppd := \text{PrimitiveDivisorRankOfElement}(x);
 evenpart := \text{EvenPart}(\text{Order}(x));
 counter := counter +1;
 od;
 if (maxppd \neq 2*(n-1) or evenpart < 4) then
 return [1,8, \text{Rank}(j-j^2)/2];
 fi;
 fi;

 y := x^{\text{Order}(x)/\text{evenpart}};
 counter2 := 0;
 maxppd2 := 0;
 while (maxppd2 < 3 and counter2 < effort*n) do
 x := x * \text{InCentraliser}(j);
 z := y * y^x;
 maxppd2 := \text{Maximum}([maxppd2, \text{PrimitiveDivisorRankOfElement}(z)]);
 counter2 := counter2 +1;
 od;

 if maxppd2 < 3 then
 return [0,9, \text{Rank}(j-j^2)/2];
 fi;
 if maxppd2 > 2 then
 return [1,10, \text{Rank}(j-j^2)/2];
 fi;
fi;

###
fi;

if n > 3 then
 return [-1,11, \text{Rank}(j-j^2)/2];
fi;
end;

Test := function(G)
PreTest(G) is repeated until we get a conclusive answer

local pretest, counter;
pretest := PreTest(G);

if pretest[1] = 0 or pretest[1] = 1 then
 Add(pretest, 0);
 return pretest;
fi;

counter := 0;
while pretest[1] = -1 do
 pretest := PreTest(G);
 counter := counter + 1;
end;
Add(pretest, 0); Add(pretest, 0); Add(pretest, 0);
Add(pretest, counter);
return pretest;
end;

PlainPreTest := function(G)
Tests the group G for being
symplectic or orthogonal.
No shortcuts in the algorithm.
The result may be inconclusive,
in which case the test has to be repeated.

local g, j, typeOfC, conj;
g := GoodElement(G);
#g := PseudoRandom(G);
j := PseudoInvolution(g);
while j = j^0 do
 g := GoodElement(G);
 #g := PseudoRandom(G);
 j := PseudoInvolution(g);
end;
conj := ProductsOfConjugates(j);
typeOfC := TypeOfCentraliser(j);
if (conj > 7 and typeOfC <> []) or (conj > 2 and n = 3) then
 return [0, 14, \text{Rank}(j-j^2)/2];
else
PlainTest := function(G)

PlainPreTest(G) is repeated until we get a conclusive answer.

local pretest, counter;
pretest := PlainPreTest(G);

if pretest[1] = 0 or pretest[1] = 1 then
 Add(pretest,0);
 return pretest;
fi;

counter :=0;
while pretest[1] = -1 and counter < effort*n do
 pretest := PlainPreTest(G);
 counter := counter + 1;
 od;
 #Add(pretest, 0); Add(pretest, 0); Add(pretest, 0);
 Add(pretest, counter);
 if counter > effort*n-1 then
 pretest[1] := 1;
 fi;
 return pretest;
end;

Interpret := function(test)

Interpretation of the test result

local l;
l := Length(test);
if test[1] = 0 then
 Print(" The group is symplectic.\n");
fi;

if test[1] =1 then
 Print(" The group is orthogonal.\n");
fi;

if test[2] = 1 then
 Print(" This is the DEFINITE answer because the test has found an involution j \n");
 Print(" whose centraliser C_G(j) contains an element of\n");
 Print(" order divisible by a primitive prime divisor of q^(n-1)-1 \n");
 Print(" or q^(n-1)+1, and such that, in addition, there is a product\n");
 Print(" j*j^x of two involutions conjugate to j whose order is divisible\n");
 Print(" by a primitive prime divisor of q^k-1 for some k>6;\n");
 Print(" this is possible only for an involution of type t_n in the symplectic group.\n");
fi;

if test[2] = 2 then
 Print(" An involution j was found whose centraliser C_G(j) contains\n");
 Print(" elements of order divisible by primitive prime divisors of the both\n");
 Print(" q^(n-1)-1 or q^(n-1)+1, and with the maximum of the primitive prime\n");
Print(" divisor ranks of random products of conjugates j\^x * j\^y being \n");
Print(" equal 4. This almost certainly identifies this involution j \n");
Print(" as involution of type t_1 in SO(2n+1,q).\n");
Print(" To be on the safe side, repeat the test.\n");
fi;

if test[2] = 3 or test[2] = 4 then
Print(" In short, the test found an involution which behaves as an\n");
Print(" involution of type t_{n-1} in SO(2n+1,q).\n");
Print(" this is not a very conclusive answer; to be on the safe side,\n");
Print(" repeat the test.\n");
fi;

if test[2] = 5 or test[2] = 6 then
Print(" In short, the test found an involution which behaves as an\n");
Print(" involution of type t_n in SO(2n+1,q).\n");
Print(" This is not a very conclusive answer; to be on the safe side,\n");
Print(" repeat the test.\n");
fi;

if test[2] = 7 or test[2] = 8 or test[2] = 10 then
Print(" The test found an involution j which behaves either as an involution\n");
Print(" of type t_1 in PSp(2n,q), or as an involution of type t_n in\n");
Print(" Omega(2n+1,q); further distinction was made by not being able to find\n");
Print(" a 2-element from the component of type SL(2,q) which should be present\n");
Print(" in the centraliser C_G(j) in the symplectic case.\n");
Print(" To be on the safe side, repeat the test.\n");
fi;

if test[2] = 9 then
Print(" The test found an involution j which behaves either as an involution\n");
Print(" of type t_1 = t_{n-1} in PSp(2n,q), or as an involution of type t_n in\n");
Print(" Omega(2n+1,q); further distinction was made by being able to find\n");
Print(" a 2-element in C_G(j) which behaves as if it belongs to\n");
Print(" the component of type SL(2,q) which should be present\n");
Print(" in the centraliser C_G(j) in the symplectic case.\n");
Print(" To be on the safe side, repeat the test.\n");
fi;

if test[1] = 0 and test[2] = 13 then
Print(" Since n = 3, the test is much simpler: we found an involution j\n");
Print(" generated by a good element and such that the primitive prime divisor rank\n");
Print(" of some random product j\^x * j\^y of conjugates of j is at least 3. \n");
Print(" This DEFINITELY identifies the group as symplectic.\n");
fi;

if test[1] = 1 and test[2] = 13 then
Print(" Since n = 3, the test is much simpler: we found an involution j\n");
Print(" generated by a good element with the primitive prime divisor ranks\n");
Print(" of a random products of conjugates j\^x * j\^y at most 2. \n");
Print(" This almost definitely identifies the group as orthogonal.\n");
Print(" To be on the safe side, repeat the test.\n");
fi;

if test[1] = 0 and test[2] = 14 then
Print(" The programme found an involution which behaves as \n");
Print(" involution of type t_n in PSp(2n,q). \n");
Print(" This is a DEFINITE answer given by \n");
Print(" a plain (without shortcuts) version of the algorithm.\n");
fi;

if test[1] = 1 and test[2] = 14 then
 Print(" The algorithm has not found an involution which behaves as \n");
 Print(" involution of type t_n in PSp(2n,q). \n");
 Print(" This is NOT a definite answer, and it was given by \n");
 Print(" a plain without shortcuts) version of the algorithm.\n");
 Print(" To be on the safe side, repeat the test.\n");
fi;

if l > 4 then
 Print(" The first run of the test has not produced the conclusive result,\n");
 Print(" the test was repeated ", test[l], " times.\n");
 Print(" The above conclusion is generated at the last run of the test.\n");
fi;
Print("\n");
Print(" In the lists Test(G) and PlainTest(G), the first position is 0 or 1,\n");
Print(" according to the answer\n");
Print(" *symplectic* or *orthogonal* given by the test, the second position is\n");
Print(" the rule number used in this decision, the third position is the actual type\n");
Print(" of the involution used in the identification of the group; \n");
Print(" (the latter was only used for the debugging of the algorithm).\n");
Print(" The fourth number is the numbers of re-runs of the test\n");
Print(" when the first run was inconclusive.\n");
end;