Structural Approaches to Control Interlayer Interactions in 2D Covalent Organic Frameworks

Marta Martínez-Abadía and Aurelio Mateo-Alonso*

The ability to design and synthesize monomers can affect fundamental aspects in 2D covalent organic frameworks, such as dimensionality, topology, and pore size. Besides this, the structure of the monomers can also affect interlayer interactions, which provide an additional means to influence crystallinity, layer arrangement, interlayer distances, and exfoliability. Herein, some of the effects that the structure of monomers can have on the interlayer interactions in 2D covalent organic frameworks and related materials are illustrated.

1. Introduction

In 2005, the first crystalline framework constituted by covalently bonded organic components was reported by Yaghi and co-workers.[1] Since then, such covalent organic frameworks (COFs) have received a lot of attention from different perspectives including synthetic, structural, mechanistic, supramolecular, fundamental properties, and materials development.[2–6] Among these, 2D COF, constituted by periodically stacked 2D polymer sheets, have shown a great potential for gas separation and storage, liquid filtration and purification, heterogeneous catalysis, sensing, electronics, and energy conversion and storage applications.[4,7] 2D COFs offers several advantages in comparison to other materials:

- 2D COFs are obtained from organic monomers that act as nodes and linkers and that can be designed at will. Therefore, by controlling the monomer structure, geometry, and stoichiometry, 2D COFs with different but predictable lattices in terms of topology, dimensionality, and pore size can be obtained.
- 2D COFs are crystalline as they are obtained under dynamic covalent chemistry conditions. This implies that, during COF synthesis, the covalent bonds between the monomers can be formed and broken and any defect in the framework can be repaired under thermodynamic control, providing crystalline materials.
- 2D COFs are porous. Piling-up holey 2D polymers in a periodic fashion gives rise to porous channels, whose structure will depend on both the lattice and the packing.
- A high degree of crystallinity is an essential aspect in 2D COFs as many properties, such as porosity, homogeneity, and electronic and excitonic transport, depend strongly on long-range order. Furthermore, a high degree of crystallinity improves the ease of not only the screening and optimization of reaction conditions but also the ability to establish the structure of the resulting 2D COFs. Yet, most 2D COFs exhibit moderate crystallinity because they are produced as microcrystalline powders with small domain size and crystal defects. Different approaches have been explored to increase the crystallinity of 2D COFs. Nevertheless, it should be noted that these approaches cannot be considered as individual strategies independent from each other, but rather as factors that altogether regulate the crystallinity of 2D COFs during synthesis. These include:
 - Condition-dependent approaches, which rely on controlling experimental parameters that affect the crystallinity (solvents, solvent ratio, temperature, pressure, catalysts, modulators, monomer exchange, and monomer feeding rate).
 - Reactivity-dependent approaches, which depend on the use of different linkages[3,6] (boroxine, boronate ester, imine, hydrazone, azine, stilbene, etc.) that allow finding an optimal balance between crystallinity and stability. In general, more reversible reactions lead to more crystalline materials but they are often accompanied by a lower chemical stability. Other reactivity-dependent approaches involve the combination of reversible and irreversible steps (β-ketoenamines), or the postsynthetic modification of the linkages.[5,8] In a few cases, COFs have also been produced from irreversible reactions.[8]
 - Structural-dependent approaches, which exploit structural features of the monomers that induce self-assembly. Examples of these are the introduction of molecular recognition motifs in the monomers (hydrogen bonding, donor-acceptor interactions, π–π stacking, etc.) or self-complementary monomers (or stackable monomers), which guide the stacking of COF layers during the polymerization and growth processes.

One of the advantages of structural-dependent approaches is our ability to design and synthesize monomers. This is because certain properties can be encoded in the monomers that afterwards are translated and even maximized in the resulting 2D
COFs. Interlayer interactions, which play a key role in a broad range of properties such as crystallinity, stability, packing mode, and exfoliability of 2D COFs, are dominated by the structure of the monomers. For instance, strongly interacting monomers generally provide 2D COFs with strongly interacting layers that favor long-range order, while weakly interacting monomers generally provide 2D COFs with weakly interacting layers that are more sensitive to solvents, vapors and mechanical friction, and also prone to exfoliation. Furthermore, by controlling the structure of the monomers it is also possible to influence the topology and to produce changes in the stacking modes of the different layers, which affect the porosity and consequently the functionality of the material.

Here, we will cover some representative examples that illustrate how interlayer interactions in 2D COFs and related materials can be enhanced or disrupted by the structure of the monomers. For this purpose, this Report is organized in sections that encompass different structural approaches (Figure 1) that influence interlayer interactions, including monomer and layer planarization, shape-persistent monomers, and monomers encoded with attracting and disrupting interactions, illustrating how monomer design can influence the properties of 2D COFs.

2. Planarization of Monomers and Layers

The incorporation of monomers with a large π-surface area in 2D COFs is known to favor interlayer π–π stacking.[9] However, the presence of substituents in such aromatic monomers can interfere with π–π stacking. There are several examples that illustrate the positive relationship between planarization and 2D COF crystallinity.

A report from Zhao and co-workers[10] has described the synthesis of three isoreticular 2D imine-linked COFs (N-COF, P-COF, and T-COF) that were obtained by the condensation of 1,3,5-benzenetricarbaldehyde with three different triamine monomers, which exhibit different planarity and flexibility (TAPA, TAPB, and TAPT, Figure 2a). TAPA is nonplanar because of the steric interactions between the hydrogens of the different benzene residues, while this steric interaction is reduced in TAPB leading to a slightly planarized monomer. TAPT is virtually planar because central benzene ring has been exchanged by a triazine, eliminating the steric interactions between adjacent hydrogens. As a result, T-COF with planar TAPT nodes showed sharper powder X-ray diffraction (PXRD) peaks and a closer stacking distance (3.49 Å) than those containing non-planar building blocks (4.00 and 3.62 Å, respectively for N-COF and P-COF). Also, higher BET surface areas of 1149 m² g⁻¹ were observed for T-COF (692 and 435 m² g⁻¹, respectively for N-COF and P-COF). Furthermore, the role of the monomer planarity affected also the gas uptake and separation performance of the resulting COFs. Specifically, T-COF showed the highest hydrocarbon uptake (CH₄ and C₂H₆) while N-COF, with the smallest pore size, showed the highest C₂H₆/C₄H₁₀ separation.

Lotsch and co-workers have reported a series of azine-linked COFs (Nₓ–COF, x = 0, 1, 2, and 3) from hydrazine and triphenylamine aldehydes with the central aryl ring containing different number of nitrogen atoms (Figure 2b).[11] The introduction of nitrogen atoms decreased the dihedral angle along the series, ranging from nonplanar to planar geometries (Nₓ–COF). The results demonstrated that both monomer planarity and symmetry (related with the number of nitrogen atoms) affected the crystallinity and porosity of the final 2D COFs. From N₀–COF to N₃–COF the PXRD peaks became sharper and BET surface areas of 702, 326, 1046, and 1537 m² g⁻¹ were observed for N₀–, N₁–, N₂–, and N₃–COF, respectively. When one nitrogen atom was incorporated in each peripheral aryl rings of the monomer (phenyl tripyridine core), a poorly crystalline COF was observed (PTP–COF) with a low number of reflections on the PXRD and a BET surface area of 84.21 m² g⁻¹, which was attributed to the lower symmetry and planarity of this system compared to the isoelectronic N₁–COF with three nitrogen atoms in the central phenyl ring. This trend has also been observed in other triphenylamine 2D COFs[14] (TPA–COF-1, TPA–COF-2 and TPA–COF-3) and carbazole-based COFs[15] (Car–TPA, Car–TPTP, and Car–TPT), where the increasing planarity and symmetry of the monomers increased the crystallinity and decreased the interlayer distance.

The combination of planarity and electronic complementarity can also influence the stacking of 2D COFs. Two imine-linked COFs, TBI–COF and TTI–COF (Figure 2c),[12] were obtained from the planar 2,4,6-tris(4-phormylphenyl)triazines with two amine monomers of different planarity; the nonplanar 1,3,5-tris(4-aminophenyl)benzene and the planar 2,4,6-tris(4-aminophenyl)triazine, respectively. The flat monomers in TTI–COF allowed an antiparallel arrangement that enabled a donor–acceptor self-complementary stacking with a uniform direction of the layer offset in each subsequent layer by alternation of the different monomers, which was not observed in TBI–COF. This resulted in a higher crystallinity with narrower PXRD peaks when compared with TBI–COF and in significantly larger domain sizes (50–200 nm for TTI–COF vs 30–80 nm for TBI–COF) as observed by transmission electron microscopy (TEM).

The intralayer hydrogen bond interactions between imines and adjacent –OH functionalities in imine-based 2D-COFs suppress the imine’s torsion angle, giving rise to planarized segments and in turn to more crystalline systems. Furthermore,
Figure 2. (a) Synthesis of three isoreticular 2D COFs from 1,3,5-benzenetricarbaldehyde with various amine monomers. Adapted with permission.10 Copyright 2017, The Royal Society of Chemistry. (b) Synthesis of Nx-COFs from Nx-aldehydes and hydrazine and representation of a triphenylarene platform. Adapted under the terms of the CC-BY Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0).11 Copyright 2015, The Authors, published by Springer Nature. (c) Synthesis of TTI–COF and TBI–COF and the antiparallel stacking of TTI–COF. Adapted with permission.12 Copyright 2017, The Royal Society of Chemistry.
these hydrogen bond interactions can also protect the imine from hydrolysis, increasing the chemical stability of 2D COFs. Banerjee and co-workers have shown how intralayer hydrogen bonding in a porphyrin containing imine-linked 2D COF (DhaTph) increased the crystallinity and porosity compared to the analog COF with methoxy groups (DmaTph) ([Figure 3a]).[16] DhaTph exhibited a sharper PXRD pattern and higher BET surface area (1305 m2 g$^{-1}$) when compared to DmaTph (431 m2 g$^{-1}$). When hydroxyl groups were incorporated in the 2,3-positions of terephthalaldehyde (2,3-DhaTph) again an increase in the crystallinity and porosity was observed compared to the linker with methoxy groups in the same positions (2,3-DmaTph).[17] The same effect was found by Jiang and co-workers in a series of tetragonal 2D porphyrin COFs from 5,10,15,20-tetrakis(4'-tetraphenylanilino)porphyrin derivatives (M = H$_2$, Cu, and Ni) and a mixture of 2,5-dihydroxystyrylaldehyde and terephthalaldehyde at different molar ratios (100/0, 75/25, 50/50, and 25/75).[18] The results suggested that increasing the number of hydrogen bonds (molar ratio 100/0) was beneficial for the COF crystallinity and this implied better properties of the material such as light-harvesting capability, reducing the bandgap, and enhancing their photocatalytic activity toward the generation of singlet oxygen.

The combination of planar triazine nodes with intralayer hydrogen bonding has also proved to be an excellent strategy for producing highly crystalline 2D COFs. For instance, the condensation of 2,5-dihydroxystyrylaldehyde gave rise to highly crystalline imine-linked COFs (2,3-DhaTab) in which the hydrogen bonding locked the phenyl rings in one plane ([Figure 3b]). Again, the high crystallinity was attributed to the presence of strong intramolecular hydrogen bonds that increased the interlayer stacking. 2,3-DhaTta with a planar triazine node showed a higher crystallinity and BET surface area than 2,3-Dha-Tab with a nonplanar node (S_{BET} = 1700 and 413 m2 g$^{-1}$, respectively for 2,3-DhaTta and 2,3-Dha-Tab). Yan and co-workers also synthesized a highly crystalline COF (TzDa) by combining a planar triazine node and intralayer hydrogen bonds.[20]

Planarization by intralayer H-bonding has also shown to be a powerful approach for preparing crystalline imine-linked COFs with flexible monomers, which is quite challenging. Crystalline 2D COFs containing flexible 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine monomers (TP–DHBD–COF, [Figure 3c]) have been obtained by introducing 3,3'‐dihydroxybenzidine residues that promote the planarization by intralayer hydrogen bonding.[21] In fact, higher crystallinity and BET surface areas were observed in TP–DHBD–COF when compared with TP–BD–COF ([Figure 3c]), namely the parent COF with benzidine residues lacking intralayer hydrogen bonds. Even the combinatorial copolymerization with a mixture of benzidine and 3,3'-dihydroxybenzidine at different molar ratios (TP–DHBD$_x$ COFs, x = 25, 50, 75) resulted in an improvement of crystallinity by increasing the proportion of dihydroxybenzidine.

The planarization of azine-linked COFs has also been achieved by intralayer hydrogen bonding. Esteves and co-workers reported the effect of a systematic increase of hydroxyl groups (from one to three) in three azine-linked COFs (RIO-11, RIO-12, and RIO-13).[22] The study revealed that the increase of the number of hydrogen bonds enhanced crystallinity with an increasing number of hydroxyl groups, achieving sharper PXRD peaks along the series and BET surface areas of 242, 1008, and 1205 m2 g$^{-1}$ for RIO-11, RIO-12, and RIO-13, respectively. Also Liu and co-workers have reported COF–JLU3 obtained from hydrazine and 1,3,5-tris(3'-tert-butyl-4'-hydroxy-5'-formylphenyl)benzene, where the presence hydrogen groups not only improved the crystallinity but also were able to act as cation receptors with a high sensitivity and selectivity to Cu$^{2+}$.

The planarization by intralayer hydrogen bonds has also been observed in benzobisthiazole-linked COFs.[24] The presence of hydroxyl groups in PG–BBT planarized the structure by intralayer hydrogen bonds with the nitrogens of the benzobisthiazole units, increasing its crystallinity and stability in comparison to BZ–BBT, which show the equivalent structure but without hydrogen bond donating hydroxyl groups.

3. Shape-Persistent Monomers

Shape-persistent monomers can also be used to increase 2D COF crystallinity. In this context, the structural self-complementarity of monomers with different shapes, such as bowl, propeller, and arm-chair, guides the stacking of COF layers during the nucleation and growth processes.

An early example by Zheng and colleagues has demonstrated how the introduction of cyclotriveratrylene (CTV), a bowl-shaped macrocycle, provides crystalline 2D COFs. CTV nodes were incorporated in a boronate ester-linked COF using 1,4-phenylenediboronic acid as linker, leading to an undulated 2D lattice (CTC–COF, [Figure 4][25]) with sharp PXRD peaks and high surface areas (S_{BET} = 1710 m2 g$^{-1}$). The high crystallinity was attributed to the ability of the bowls to stack in the 2D COF. CTVs have also been introduced in imine-linked COFs from the triformaly–CTV and triamine–CTV derivatives, leading to COFs with moderate crystallinity.

Bein and co-workers have shown that the propeller structure of tetrphenylethylene derivatives can be beneficial to increase crystallinity in 2D COFs ([Figure 5a]).[28] The phenyl groups of tetrphenylethylene can adopt several conformations but once in the 2D lattice, it adopts a propeller conformation, defining a fixed docking site for the attachment of adjacent layers, where only propellers with the same conformation can stack on top of each other. Therefore, propellers must synchronize conformationally during 2D COF synthesis. Through this approach, highly crystalline imine-linked COFs were obtained from the condensation of 4,4',4'',4'''-(ethylene-1,1,2,2-tetrayl)tetraaniline (ETTA) with four aromatic dialedehyde monomers with different symmetry and flexibility (terephthalaldehyde, biphenyl-4,4''-dicarboxaldehyde, p-terphenyl-4,4''-dicarboxaldehyde and thiene[3,2-b]thiophene-2,5-dicarboxaldehyde). The materials showed intense and sharp PXRD patterns, BET surface areas ranging from 1000 to 2140 m2 g$^{-1}$ and crystalline domains sizes from 50 to 100 nm. Besides the positive effect in crystallinity, the advantage of ETFA monomers is that they can be used to prepare 2D COFs for several applications, such as light-driven water reduction,[29] catalysis,[30] adsorption of heavy metals,[11] optoelectronic applications,[12] lithium–sulfur batteries,[13] iodine capture,[34] gas sorption and storage,[35] and fluorescent probes.[36]
Figure 3. Chemical structure of: a) DmaTph and DhaTph; b) 2,3-DhaTab and 2,3-DhaTta; and c) TPT–BD COF and TPT–DHBD COF.
Figure 4. Synthesis of a CTV-based boronate ester-linked COF (CTC–COF).

This approach can be generalized to other monomers with several well-defined conformations, including tris(4-aminophenyl)amine and 1,3,5-tris(4-aminophenyl)benzene that show a trigonal propeller-shaped structure, and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (Py) that show a rectangular geometry. In particular, 1,3,6,8-tetrakis(4-aminophenyl)pyrene can adopt both a propeller and an armchair conformation (Figure 5b). The armchair configuration leads to a smaller offset stacking compared to the propeller configuration, producing a closer interlayer stacking distance that defines the direction of the offset between two 2D layers. Thus, Py-IP COF crystallized in an armchair configuration, showing sharp PXRD reflections and very large domains up to 500 nm. The high degree of crystallinity derived from this geometric interlocking has also been used for obtaining oriented thin films with solvatochromic response upon exposure to polar and nonpolar vapors. The best response was observed in Py–TT COF, which was obtained by condensation of 1,3,6,8-tetrakis(4-aminophenyl)pyrene with thieno-[3,2-b]thiophene-2,5-dicarbaldehyde. In addition, the close and good packing of 1,3,6,8-tetrakis(4-aminophenyl)pyrene has also enabled the introduction of other functional linkers to produce highly crystalline COFs with aligned open docking sites, catalytic activity, near-infrared-absorbing properties, CO2 sorption properties, electronic properties, and with high performance in Li–S batteries, among others.

The above-mentioned monomers showed a high degree of conformational freedom that required conformational synchronization during COF formation. To avoid this, Mateo-Alonso and colleagues have introduced core-twisted polycyclic aromatic hydrocarbons as rigid nonplanar nodes, namely 2,3,10,11,18,19-hexahydroxy-cata-hexabenzocoronene (HBC), in which there is no need for synchronization (Figure 6). In fact, HBC adopts a contorted and rigid structure that is conformationally locked as the result of steric congestion between the hydrogens in the peripheral benzene rings and thus, the hexabenzocoronene core does not undergo any conformational change at temperatures necessary for COF synthesis. The introduction of three catechol groups in alternated positions of the contorted-HBC produced a rigid and stable double-bowl structure with the catechol groups locked above the coronene plane (Figure 6). The condensation of HBC with pyrene-2,7-diboronic acid generated a 2D covalent organic framework with a wavy honeycomb (chairlike) lattice (Marta-COF-1), with sharp PXRD reflections and BET surface area (1300 m^2 g^-1) close to its theoretical value (1570 m^2 g^-1). The concave–convex self-complementarity of the wavy lattice of Marta-COF-1 lined up the chairlike mesopores of the individual layers into open channels, which could be imaged by high-resolution transmission electron microscopy (HR-TEM) and transmission electron tomography. Furthermore, the waviness of Marta-COF-1 did not interfere with interlayer π–π stacking (3.4 Å at the pyrene linkers and 3.7 Å at the HBC nodes), exhibiting charge transport properties similar to the most efficient π-stacked 2D COFs.

Chen and co-workers have explored D_{2h}-symmetric dibenzo[3,4][chrysene (DBC) monomers in imine-linked COFs (DBC–TIM, Figure 7). DBC is a fused analog of the propeller-shaped ETTA monomer, which is slightly twisted as the result of steric congestion of its cove edges. The transamination reaction of DBC–TIM and 4,4′-biphenyl dicarbaldehyde produced a highly crystalline imine-linked COF (DBC-2P) with excellent stability in strong base and acid, which was attributed to the tight packing (3.6 Å). The introduction of polyethylene glycol (PEG) and PEG–LiBF4 salt into the COF channels of DBC-2P produced a hybrid material with high ionic conductivity. Bein and co-workers have also reported the synthesis of DBC-based 2D COFs through the direct condensation of dibenzo[3,4][chrysene-2,7,10,15-tetraamine (DBCTA, Figure 7). Its condensation with linear dialdehydes, such as terephthaldehyde, 4,4′-biphenyl dicarbaldehyde, and thieno[3,2-b]thiophene-2,5-dicarboxaldehyde, led to highly crystalline imine-linked COFs (DBC–COFs) with hexagonally faceted single crystals ranging from 50 to 150 nm. The reduced torsion of the dibenzo[3,4][chrysene monomer produced an interlayer stacking distance of ≈3.6 Å, which was ≈1 Å shorter than in 2D COFs derived from ETTA. The shorter interlayer distance translated into longer photoluminescence lifetimes in DBC–COFs when compared to the ETTA-based COF analogs.

4. Monomers Encoded with Attractive Interactions

Our ability to design monomers also allows the introduction of self-recognition patterns based on directing noncovalent interactions. Upon 2D COF formation such interactions can enhance interlayer interactions and lock the conformation between adjacent layers, increasing long range order and improving the stability in many cases.

4.1. Dipole Interactions

Jiang and co-workers have shown how the introduction of fluorinated and unsubstituted phenylene linkers in porphyrin containing imine-linked COFs improved the crystallinity and...
porosity as the result of the aromatic electrostatic interaction between the fluorinated and nonfluorinated aromatic residues, which led to alternating face-to-face stacks. Five newly COFs synthesized from mixtures of 2,3,5,6-tetrafluoroterephthalaldehyde and terephthalaldehyde as linkers, at different molar ratios (100/0, 75/25, 50/50, 25/75, and 0/100), with copper 5,10,15,20-tetrakis(p-tetraphenylamino)porphyrin as nodes were investigated (Figure 8a). The mixture 50/50 showed the most intense PXRD pattern and the highest BET surface area (1389 m² g⁻¹), which was consistent with the fact the electrostatic interactions between aromatics residues were maximized in a 50/50 molar ratio. Johnson and co-workers have reached similar conclusions when comparing two fluorinated imine-linked COFs, one of them partially fluorinated (FASt-COF) and the other fully fluorinated (F-COF).[51] The results showed narrower PXRD peaks and a higher BET surface area for the partially fluorinated FASt-COF (1389 m² g⁻¹) in comparison to the fully fluorinated F-COF (1275 m² g⁻¹), which was also ascribed to the maximized stacking interactions in the presence of equal ratios of fluorinated and nonfluorinated aromatic residues.

Smaldone and co-workers investigated the effect of electron-withdrawing substituents on the properties of azine-linked COFs (Figure 8b).[52] The nonplanar building block 1,3,5-tris(4-phormylphenyl)benzene was partially substituted with fluorine atoms at the outer phenyl rings or at the core, producing 2D COFs (TF-COF 1 and TF-COF 2, respectively) with dramatically improved crystallinity, pore size and BET surface areas (1820 and 2044 m² g⁻¹, respectively) compared to the COF without fluorine substitution (760 m² g⁻¹ for NF-COF). The result was attributed to stronger cofacial interactions caused by the electron-withdrawing fluorine atoms. This approach was further studied by exploring azine-linked COFs with different molar ratios of 1,3,5-tris(4-phormylphenyl)benzene and its fluorinated counterpart in the outer phenyl rings analog 1,3,5-tris(3-fluoro-4-phormylphenyl)benzene (100/0, 75/25, 50/50, 25/75, and 0/100).[53] In this case, increasing the ratio of fluorinated to nonfluorinated monomers gave rise to an improvement in crystallinity and porosity. The BET surface areas of the mixed-linker COFs (75/25, 50/50, 25/75) showed a linear increment from 710 to 1064 m² g⁻¹, while the 100/0 monomer mixture displayed a BET surface area of 1802 m² g⁻¹. Quantum mechanical computational studies suggested this could be ascribed to the substantial energetic stabilization in the face-to-face stacking...
interaction of the electron poor fluorinated precursors in contrast to the electron rich nonfluorinated ones or even to the mixed linkers.

Salonen et al. have reported how the use of highly polarized aromatic monomers can have a positive effect on 2D COF crystallinity.\cite{54} 2,7-(pyrene-4,5-dione)diboronic acid was allowed to react with 2,3,6,7,10,11-hexahydroxytriphenylene, giving rise to a highly crystalline boronate ester-linked COF (Dione–COF, Figure 8c) with a BET surface area of 1510 m2 g$^{-1}$, which is almost twice the value for the analog TP–COF with pyrene units instead of pyrene-4,5-dione units. The authors attributed the high order and large surface area to the antiparallel alignment of the pyrene-4,5-dione moiety that cancels out the net dipole moment.

Another representative method to increase interlayer interactions and consequently COF crystallinity has been based on the incorporation of methoxy groups into the pore walls of imine-linked COFs (TPD–DMTP–COF, Figure 8d).\cite{55} In this case, the methoxy groups were introduced as substituents in the 2,5-positions of the terephthalaldehyde linker, which was condensed with 1,3,5-tris(4-aminophenyl)benzene. These methoxy groups were able to delocalize the two lone pairs from the oxygen atoms over the aromatic phenyl linker, reinforcing the interlayer interaction and consequently increasing the crystallinity, BET surface area (2105 m2 g$^{-1}$) and chemical stability of the material. Although this strategy has provided excellent results, it cannot be considered to be general. For instance, Banerjee and co-workers showed that the introduction of methoxy groups led to amorphous samples.\cite{56}

4.2. Ionic Interactions

In some cases, the introduction of asymmetric ionic monomers has demonstrated to enhance COF order by inducing an alternating antiparallel monomer alignment to minimize charge repulsion. Jiang and colleagues combined a neutral node (4,4',4''-tetraakis(pyrene-1,3,6,8-tetrayl)tetraamine) with a cationic linker (5,6-bis(4-formylbenzyl)-1,3-dimethylbenzimidazolium) to produce a highly crystalline 2D COF (PyTTA–BFBIm–iCOF, Figure 9a).\cite{42} According to structural simulations, the high crystallinity, chemical stability, and porosity (BET surface area of 1532 m2 g$^{-1}$) were attributed to the cationic benzimidazolium moiety that was alternately oriented to each side of the pore walls. In addition, because of the presence of electrical dipoles on both sides, the uptake of CO$_2$ was enhanced by threefold compared to the neutral analog.

Alternatively, strong electrostatic interactions produced by combining opposite charges have been recently proved to increase COF crystallinity, and even to modulate the stacking and porosity. Zhao and co-workers mixed intrinsically charged cationic and anionic covalent organic nanosheets (Figure 9b), which assembled in a staggered packing with a dense structure as consequence of the strong electrostatic interactions.\cite{57} The layer-by-layer assembly gave rise to an ultrathin membrane with reduced aperture sizes that was suitable for H$_2$/CO$_2$ separation.
4.3. Hydrogen Bonding Interactions

Intralayer hydrogen bonding has also demonstrated a positive effect in locking adjacent layers, which can increase the stability and crystallinity of COFs. Banerjee and co-workers have focused on a hydrogen bonded imine-linked COF (TpOMe–DAQ, Figure 10a) constructed from 2,4,6-trimethoxy-1,3,5-benzenetricarbaldehyde and 2,6-diaminoanthraquinone, which exhibited ultrahigh chemical stability in drastic conditions: H₂SO₄ (18 m), HCl (12 m), and NaOH (9 m). This strong stability was ascribed to the presence of C–H···N hydrogen bonding between the methoxy C–H and the imine of the adjacent layers, which protected the imine bond from being hydrolyzed. A similar approach led to COFs with high chemical stability for their potential application for sulfuric acid recovery. A series of imine-linked 2D COFs were obtained by condensing 2,4,6-trimethoxy-1,3,5-benzenetricarbaldehyde with a set of six different amines, which allowed a comparison between 2D COFs that can undergo interlayer hydrogen bonding. The high stability was attributed again to the presence of C–H···N hydrogen bonding between the methoxy C–H and the imine of the adjacent layers, which protected the imine bond from being hydrolyzed. A similar approach led to COFs with high chemical stability for their potential application for sulfuric acid recovery.

Besides methoxy groups, interlayer C–H···N hydrogen bonding within 2D COFs has been also observed with piperazine monomers. Yang and co-workers described an imine-linked COF (PDC–MA–COF, Figure 10b) obtained by reacting 1,4-piperazinedicarboxaldehyde and melamine, in which interlayer hydrogen bonding locked the adjacent layers and ensured a capacitive behavior with an excellent cyclic stability.

Loh and co-workers have shown that, by modulating both intralayer and interlayer hydrogen bonding, it is possible to produce emissive hydrazone-linked 2D COFs. This series of 2D COFs, with a N–NH hydrogen bond donor and methoxy hydrogen bond acceptor in close proximity, allowed both intralayer and interlayer C–O···HN hydrogen bonding that enhanced the solid-state photoluminescence of 2D COFs. In addition, the color of the emission could be changed from blue to yellow and even white by introducing different side-chains. Loh and co-workers have also shown how the combination of interlayer and intralayer hydrogen bonding in 2D acylhydrazone COFs resulted in a rapid and gram-scale method for the synthesis of 2D COFs. Condensations of 1,3,5-triformylbenzene and 2,5-dialkoxytriphenylethyldiazide derivatives with different side-chain functionalities afforded highly homogeneous and crystalline 2D COFs under open and stirring conditions in about 30 min, as confirmed by intense PXRD peaks. DFT calculations attributed this high crystallinity to the restriction of bond rotation by intramolecular hydrogen bonding, which enabled interlayer hydrogen bonding and dipole–dipole interactions, giving rise to antiparallel stacked configuration.
Recently, Smaldone and co-workers[63] have developed a new class of 2D COFs, called COFamides, where amide hydrogen bonds reinforced interlayer interactions between layers. Two 2D COFs containing azine and imine (COFamide-1 and COFamide-2, Figure 10d) were synthesized by condensation of hydrazine or 1,4-phenylenediamine, respectively, with a triphenylarene aldehyde monomer containing secondary amides at the 1,3,5-positions of the central phenyl ring. As

Figure 8. a) Structure of CuP–TFPh COF and CuP–TFPhx COFs. b) Schematic representation of the azine-linked COFs NF–COF, TF–COF 1, and TF–COF 2. c) Structure of Dione–COF with the columnar stacking of pyrene-4,5-dione favored by antiparallel alignment of dipole moments. d) Structure of TPD–DMTP–COF with the resonance effect of the oxygen lone pairs that weaken the polarization of the C=N bonds and soften the interlayer repulsion in the COF.
consequence of the nonplanarity of the triphenylarene aldehyde platform, the amides were forced to be out of plane, giving rise to strong interlayer N–H⋯O hydrogen bonding between the amide carbonyl oxygen of one layer and the amide hydrogen (NH) in the adjacent layer. As a result, COFamide-1 and COFamide-2 showed sharp PXRD peaks and high BET surface areas (1271 and 1128 m² g⁻¹, respectively), which are more than the double than those obtained for the same monomers but without secondary amide groups.

5. Monomers Encoded with Disruptive Interactions

The incorporation of monomers in 2D COFs with sterically demanding substituents or with charges of the same sign can disrupt the interactions between layers, affecting crystallinity, layer arrangement, topology, interlayer distances, or even producing self-exfoliation.

5.1. Steric Interactions between Monomers

5.1.1. Effects in Crystallinity

Generally, longer chain lengths produce a decrease in crystallinity. In an early study, Lavigne and co-workers reported a series of alkyl-functionalized boronate-ester-linked COFs (16, 14, and 11 Å, Figure 11a) by condensation of benzene-1,3,5-tri-boronic acid with 2,6-dialkylated-1,2,4,5-tetrahydroxybenzene (methyl, ethyl and propyl). Although the incorporation of those alkyl chains into the pore channels produced in all cases crystalline materials, the elongation of the chains gave rise to a decrease in crystallinity. On the contrary, the introduction of these hydrophobic alkyl groups increased the chemical stability, decreasing the hydrolysis rate of the boronate esters compared to the COF without substituents (18 Å, Figure 11a). Likewise, Uribe-Romo and co-workers have described a family of β-ketoenamine-linked COFs functionalized with oligo- (ethylene oxide) chains with different lengths (TfTP-R COFs,
Figure 10. a) Structure of TpOMe–DAQ with the interlayer C–H···N H-bonding in TpOMe–DAQ based on distances (H to N atom; Å) shown with dotted line and angles (C–H···N) in degree (layers spaced out for clear representation). Adapted with permission. [58] Copyright 2018, American Chemical Society. b) Structure of PDC–MA–COF with its interlayer H-bonding structure. Adapted with permission. [60] Copyright 2019, American Chemical Society. c) Structure of Tf-DHzOR COFs where the intramolecular hydrogen bonding restricts bond rotation, inducing an antiparallel stacking in which the intermolecular hydrogen bond further limits the random sliding of each of the COF layers. Adapted with permission. [62] Copyright 2019, American Chemical Society. d) Chemical structure of COFamide-1 and COFamide-2 with the view of the simulated structures of the eclipsed COFs along the a-axis. Adapted with permission. [63] Copyright 2020, American Chemical Society.
Figure 11. Structure of notable COFs with different sterically demanding substituents: a) COF-18 Å, COF-16 Å, COF-14 Å and COF-11 Å; b) TfpTP-R COFs; c) BDT-OEt COF; d) FLT–COF-1, FLT–COP-2, and FLT–COP-3; and e) Py-a4T COF.
Figure 11b), showing the same gradual attenuation of crystallinity upon increasing the length of the side chains.

Similarly, ethoxy side chains attached to benzodithiophene units gave rise to a highly crystalline COF by the condensation of 4,8-diethoxybenzo[1,2-\textit{b}:4,5-\textit{b}′]dithiophene-2,6-diyl dibronic acid with hexahydroxytriphenylene (BDT-OEt COF, Figure 11c).\[67] In this case, the impact of the ethoxy chains was studied by developing a series of COFs containing mixtures of diethoxy substituted benzodithiophene units and the nonsubstituted one (100/0, 75/25, 50/50, 25/75, and 0/100). The PXRD patterns broadened and smaller crystalline domains were observed upon the gradual incorporation of the diethoxy substituted monomer, while the layer arrangement and the interlayer distance were retained.

Smaldone and co-workers\[68] have observed how an increasing number of phenyl substituents in the 8,9-positions of the 7,10-diphenylfluoranthene affects the crystallinity of the resulting 2D COFs (Figure 11d). The planar fluoranthene monomer produced a crystalline 2D COF (FLT–COF-1) with strong diffraction and surface areas of 1180 m2 g−1, while the introduction of monomers with one or two phenyl rings in the fluoranthene core produced 2D covalent organic polymers (2D COPs) (FLT–COP-2 and FLT–COP-3, respectively) with little diffraction and lower surface areas (555 and 515 m2 g−1, respectively). The differences in crystallinity and surface area were justified in terms of the additional out-of-plane phenyl substituents that hindered nucleation and crystallization of the 2D COF structures.

Bein and co-workers\[44] have reported an example where the position of the alkyl chain in the same monomers can either disrupt completely the crystallinity leading to amorphous materials or provide crystalline 2D COFs. When dibutyl-quaterthiophene with two butyl chains located in symmetric positions (symmetric 4T) was allowed to react with Py, amorphous materials were obtained. However, when dibutyl-quaterthiophene with two butyl chains located in asymmetric positions (asymmetric 4T) was allowed to react with Py, a crystalline 2D COF was obtained (Py-a4T COF, Figure 11e). Density functional theory simulations allowed concluding that symmetric linker would have the alkyl chains of adjacent layers very close, causing a considerable steric repulsion. On the other hand, the asymmetric unit would pack with the alkyl chains alternating on both sides, exhibiting a higher degree of long-range order.

5.1.2. Effects in the Arrangement between Layers

Steric interactions can also influence the arrangement between layers in 2D COFs. In this regard, Yin and co-workers\[69] have reported two imine-linked COFs prepared with 2,4,6-triformaldehyde and 2,7-diaminofluorene or 9,9-dibutyl-2,7-diamino-fluorene (COF–O–OH and COF–4–OH, respectively) that showed how the n-butyl groups changed the layer arrangement from an eclipsed AA to a staggered AB stacking mode (Figure 12a).

Cui and co-workers have demonstrated that introduction of either six ethyl or six isopropyl substituents in the nonplanar C\textsubscript{3}-monomer 1,3,5-tris(4-aminophenyl)benzene produced 2D COFs with different packings.\[70] Condensation of triamine...
monomers (with and without ethyl or isopropyl substituents) with di- or tri-aldehydes resulted in a family 2D COFs with AA, AB, or ABC arrangements as an effect of the different interlayer steric hindrance (Figure 12b).

Zhao and co-workers\cite{71} have incorporated six methyl groups in a truxene-based building block (3,8,11-tri(4-formylphenyl)-5,5,10,10,15,15-hexamethyltruxene), generating a system where the methyl groups were out of the plane due to the tetrahedral configuration of the sp3 carbon. The condensation of this core with 1,4-diaminobenzene or benzidine led to the formation of imine-linked COFs (SIOC–COF-8 and SIOC–COF-9, respectively) with an inclined arrangement instead of the usual AA stacking (Figure 12c).

Zamora and co-workers\cite{72} have described a series of imine-based 2D COFs (IMDEA–COF-1 and IMDEA–COF-2, Figure 12d) that showed how the steric repulsion between precursors in the nodes can lead to different packing modes. IMDEA–COF-1 obtained by condensation between 1,6-diaminopyrene (DAP) and 1,3,5-benzene-tricarbaldehyde (BTCA) showed an AB stacking. Meanwhile, IMDEA–COF-2 produced by condensation between 1,6-diaminopyrene (DAP) and 2,4,6-triformylphloroglucinol (TP) exhibited an AA stacking. The authors justified these differences in terms of the steric repulsions between the pyrene and the hydroxyl group in TP that stabilized planar conformations, which led to the AA packing.

5.1.3. Effects on Topology

Steric hindrance can also induce topology changes in COFs. Zhao and co-workers\cite{73} showed that when ETTA was condensed with 2,5-dihydroxyterephthalaldehyde (DHTA) a 2D COF with a kagome dual pore lattice (COF–DHTA, Figure 13a) was obtained. Oppositely, when reactions were carried out using 2,5-dialkoxy-terephathaldehyde (ethoxy or butoxy) 2D COFs with a rhombus-like topology were obtained (COF–DETA and COF–DBTA, Figure 13a) as a consequence of the steric

![Figure 13](image_url). a) Synthesis of a single-pore COF (COF–DHTA) and dual-pore COFs (COF–DETA and COF–DBTA) from ETTA and dialdehyde with different substituents. b) Schematic Representation of the Synthesis of 2D-BPTA–COF and 3D-BMTA–COF. b) Reproduced with permission.\cite{74} Copyright 2020, American Chemical Society. c) Synthesis of TD–COF-5 and space-filling models showing solid-state (AA) stacking: top-view and side-view. Adapted with permission.\cite{76} Copyright 2013, The Royal Society of Chemistry.
repulsion of the alkoxy chains in the triangular pore of the kagome lattice.

Wang and co-workers have reported the synthesis of COFs using biphenyl precursors with different substitution, showing how different degrees of rotation in the monomers can lead to COFs with different topologies.[74] When 3,3′,5,5′-tetra(p-aminophenyl)-biphenyl (BPTA), in which rotation along its longitudinal axis is permitted, was condensed with 1,2,4,5-tetrais(4-formylphenyl)-benzene (TPBH), a 2D COF (2D-BPTA–COF, Figure 13b) was obtained. On the contrary, when the condensation was carried out with 3,3′,5,5′-tetra(p-aminophenyl)-bimesitylene (BMTA), in which the methyl substituents locked a tetragonal conformation, a 3D COF (3D-BMTA–COF, Figure 13b) was produced.

5.1.4. Effects on the Interlayer Distance

Sterically demanding substituents can diminish interlayer interactions. In this regard, Wang and co-workers prepared flexible films from alkoxy functionalized imine-linked COFs via interfacial polymerization by reacting 1,3,5-tris(4-aminophenyl) benzene with 2,5-dialkoxy-terephthalaldehyde (methoxy, butoxy, heptyl, and octyloxy), producing crystalline materials.[75] Longer alkoxy chains led to longer interlayer distances as consequence of a less compact packing of the polymeric layers. Nevertheless, increasing the length of the alkoxy chains increased the resistance to humidity, which was ascribed to the hydrophobicity of the chains. The same effect was demonstrated in the aforementioned COF–O−OH and COF–4–OH, (see Section 5.1.2, Figure 12a), showing an increase in the layer stacking distance of 1.76 Å with n-butyl substituents (interlayer distance of 3.77 and 5.53 Å for COF–O–OH and COF–4–OH, respectively). When n-octyl groups were introduced (COF–8–OH) even higher interlayer distances were observed (6.42 Å).[109]

The introduction of triptycene nodes that sit perpendicular to the 2D COF plane disrupts completely interlayer π−π stacking. El-Kaderi and co-workers[76] have reported the synthesis of TD–COF-5 (Figure 13c), which was obtained by the condensation along its longitudinal axis is permitted, was condensed with 1,2,4,5-tetrais(4-formylphenyl)-benzene (TPBH), a 2D COF (2D-BPTA–COF, Figure 13b) was obtained. On the contrary, when the condensation was carried out with 3,3′,5,5′-tetra(p-aminophenyl)-bimesitylene (BMTA), in which the methyl substituents locked a tetragonal conformation, a 3D COF (3D-BMTA–COF, Figure 13b) was produced.

5.2. Charged Monomers

Generally, ionic monomers of the same sign make difficult π−π stacking as consequence of charge repulsion, producing a decrease in crystallinity and chemical stability and allowing self-exfoliation and an easier processing. The introduction of charges in the framework can be also attained by protonation,[78,81] however as this is not an inherent property of the monomers but rather of the media, and therefore it will not be discussed here.

Banerjee and co-workers[82] have reported the introduction of positively charged guanidinium units, which provided TPG, COFs [Figure 15a] with different counter anions (Cl−, Br−, and I−). The presence of the loosely bound anions that disturbed π−π stacking and the positive charges on the framework resulted in self-exfoliation into 2D COF layered aggregates consisting of 3–6 layers. Pal and co-workers[83] have also exploited this approach to produce self-exfoliating guanidinium-based 2D COFs by sonication.

Mateo-Alonso and co-workers have introduced a novel approach to exfoliate conjugated 2D polymers by introducing highly twisted hexaazatrinaphtylene nodes in the aromatic framework.[79] This approach was based on the introduction of rigid acetylene moieties with triisopropylsilyl (TIPS) groups at the nodes of the framework, where the close proximity of the TIPS groups forced the aromatic framework to deviate from planarity, as there was not sufficient space to accommodate all the substituents in the same plane (TIPS–CMP, Figure 14a). Therefore, half of the TIPS groups were pushed above the plane of the framework and the other half below. The highly distorted aromatic framework with alternating out-of-plane substituents resulted in diminished interlayer interactions, thus favoring the exfoliation and dispersion of individual layers in organic media and leading to stable dispersions that could be processed into thin films.

A report from Beuerle and co-workers[79] has described a 2D COF constituted of diketopyrrolopyrrole precursors with two 2-ethylhexyl groups and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin that produced microtubular structures (Figure 14b). The proposed mechanism involved the formation of small crystallites that evolved into larger sheet aggregates, which instead of crystallizing because of the branched alkyl chains, spontaneously scollied into tubular structures.

Cui and co-workers[80] combined ETTA with the chiral binaphthyl linker BINOL (6,6′-dichloro-2,2′-diethoxy-1,1′-binaphthyl-4,4′-dialdehyde) to produce CCOF7, a rhombus-shaped 2D COF with an slipped AA packing (Figure 14c). CCOF7 was easily exfoliated into 2D nanosheets through solvent-assisted liquid sonication, which was ascribed to the arrangement of the chiral BINOL with the twisted ETFA node that prevented effective layer packing. In fact, CCOF8 with the same BINOL monomer but a different trigonal node (1,3,5-tris(4-amino-3,5-diisopropylphenyl)benzene) led to a honeycomb lattice that could not be exfoliated, since the larger lattice and the ABC packing could accommodate the BINOL group in the structure without disturbing the interlayer packing.

5.1.5. Self-Exfoliation

In the previous sections, we have described how the effect of the bulky substituents can disturb the interlayer distances. If the steric interactions are sufficiently large, 2D COFs can spontaneously self-exfoliate into covalent organic nanosheets (CONs).

Zhao and co-workers[77] have reported triptycene nodes with two axial methyl groups in the 9,10-positions that were able to suppress interlayer interactions, yielding 2D COF monolayers in solution. Such self-exfoliating 2D COFs (2D polymer-1 and 2D polymer-2) were obtained by condensation of triptycene tri-catechol with either 1,4-benzenedicarboxylic acid or 4,4′-biphenyldiboric acid, respectively. The resulting 2D COF monolayers were found to collapse in the formation of COF spheres.
polymers were exfoliated by mechanical exfoliation, by stirring in γ-butyrolactone and by sonication with sodium cholate, maintaining in the first two cases an optimal degree of crystallinity, while in the case of sonication in the presence of the surfactant a loss of crystallinity was observed.85 2D-P-1 could be transformed into a neutral pyridinic parent polymer.

Figure 14. a) Chemical structure of TIPS-CMP, PM6-DH2 calculated structure of a closed pore of TIPS-CMP (top and side views) and dispersion of TIPS-CMP in TFA. Hydrogen atoms have been omitted from all structures for clarity. Adapted with permission.78 Copyright 2017, Wiley-VCH. b) Chemical structure of DPP–TAPP–COF and the proposed self-assembly into microtubes. Adapted with permission.79 Copyright 2018, Wiley-VCH. c) Structure of CCOF 7, view of the refined 2D crystal structure and schematic diagram for the exfoliation of CCOF 7 to ultrathin 2D nanosheets. Adapted with permission.80 Copyright 2019, American Chemical Society.
(2D-P-2, Figure 15b) by exposure to gaseous ammonia, which could be exfoliated by sonication with sodium cholate with similar results in terms of quantity and quality to graphene.

Trabolsi and co-workers [86] have described how the copolymerization of a viologen derivative with two different pyrene derivatives produced two viologen-based covalent organic polymers. When using a tetraniline pyrene derivative few-layer covalent organic nanosheets were spontaneously formed. Meanwhile, in the case of a tetraaminoacetylene pyrene derivative the layers collapsed into tubular structures. Ma and co-workers [45] have reported a viologen-based COF (PyVg–COF, Figure 15c) obtained by imine formation, which packed in an AB fashion. Remarkably, PyVg–COF could be exfoliated in solution into monolayers and multilayers in polar solvents with retention of crystallinity. These dispersions could be used to prepare high-quality, large area thin films.
Another type of self-exfoliating covalent organic nanosheets are those reported by Ajayaghosh and co-workers,[87] which were obtained from ethidium bromide precursors (EB–TFP–iCONs). These systems were exfoliated spontaneously in deionized water into bilayers due to the repulsive electrostatic interactions between layers. Ajayaghosh and co-workers[88] have also described the synthesis of the parent propidium based 2D COFs with two positive charges per building block (PI–TFP–iCONs, Figure 16a), which led to a similar degree of self-exfoliation. Nevertheless thanks to the additional quaternary salts, PI–TFP–iCONs could be complexed with CB[7], which allowed the exfoliation and the restacking due to the reversible nature of such host–guest interaction.

Bai and co-workers[89] have reported 2D COFs with piperazine substituents (Figure 16b) that are able to self-exfoliate into few layered ionic covalent organic nanosheets (iCONs) in polar organic solvents by coordination with BF$_3$, which introduced ion pairs in the framework. Different morphologies, namely 2D sheets, multilayered aggregation, or capsules were obtained in different polar solvents.

Xiang and co-workers[90] have described a 2D COF constituted of fused iron quasi-phthalocyanine (COF$_{BTC}$, Figure 16c), prepared by the polymerization of benzene-1,2,4,5-tetracarbonitrile in the presence of FeCl$_3$. COF$_{BTC}$ was exfoliated in basic media as the OH$^-$ could penetrate between the layers, interacting with the Fe centers. As the dispersion becomes acidic, COF$_{BTC}$ would precipitate but it was able to re-disperse again as soon as the pH was alkaline again.

6. Conclusions

We have brought up several examples that illustrate how the monomer structure can influence the interlayer interactions in 2D COF. For instance, the planarization of the monomers and layers—achieved by introducing planar monomers or intra-layer hydrogen bonding motifs—has proven to be a very useful approach to increase interlayer π–π stacking. Stackable monomers with persistent shapes have shown to be able to guide the stacking of COF layers during nucleation and growth, leading...
to an enhancement of crystallinity. The introduction of monomers with encoded attractive interactions—dipole, ionic and hydrogen bonding interactions—has also proven to increase the interlayer interactions, providing crystalline 2D COFs. Finally, the introduction of monomers with encoded disruptive interactions—steric and ionic interactions—can dramatically influence crystallinity, layer arrangement, topology, interlayer distances, and exfoliability of the resulting 2D COF.

Nevertheless, despite the extraordinary progress, the work in this area is not so extensive and more studies are necessary for developing general design rules that allow controlling the interactions between 2D COF layers. Our ability to design and synthesize virtually any monomer will continue to be a fundamental asset to influence and understand interlayer interactions. In addition, the exploration of other types of linkages beyond the most studied boronate esters and imines will provide an additional knob to turn, since linkages can be directly synthesized virtually any monomer will continue to be a fundamental asset to influence and understand interlayer interactions. Beyond the most studied boronate esters and imines will provide an additional knob to turn, since linkages can be directly involved in the interactions between 2D COF layers. The optimization of reaction conditions and the development of general methods for the synthesis 2D COFs, although beyond the scope here, will also allow faster progress, since 2D COF synthesis is still a process of trial and error.

Overall, understanding interlayer interactions in 2D COFs will shine light on the chemistry beyond the single 2D COF layer. Also, controlling the arrangement between 2D COF layers will allow obtaining new properties from existing 2D COFs, preparing van der Waals heterostructures from mixed 2D COFs or even hybrid van der Waals heterostructures by combining 2D COFs with other 2D materials.

Acknowledgements

The authors acknowledge support of the Basque Science Foundation for Science (ikerbasque), POLYMAT, the University of the Basque Country (Grupo de Investigación GIU17/054), Diputación Foral de Guipúzcoa (OF215/2016(ES)), Gobierno Vasco (PIBA 2019-09 and BERC program), and Gobierno de España (Ministerio de Economía Competitividad CTQ2016-77970-R). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 722951).

Conflict of Interest

The authors declare no conflict of interest.

Keywords

2D polymers, covalent organic frameworks, interlayer interactions

Received: April 6, 2020
Revised: June 22, 2020
Published online: August 30, 2020

[1] A. P. Côté, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.
[2] a) O. M. Yaghi, M. J. Kalmutzki, C. S. Diercks, Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks, Wiley-VCH, Weinheim, Germany 2019; b) K. Sakaushi, M. Antonietti, Acc. Chem. Res. 2015, 48, 1591; c) N. Huang, P. Wang, D. Jiang, Nat. Rev Mater. 2016, 1, 16068; d) J. L. Segura, M. J. Manchego, F. Zamora, Chem. Soc. Rev. 2016, 45, 5635; e) J. Jiang, Y. Zhao, O. M. Yaghi, J. Am. Chem. Soc. 2016, 138, 3255; f) R. P. Bisbey, W. R. Dichtel, ACS Cent. Sci. 2017, 3, 533; g) Y. Jin, Y. Hu, W. Zhang, Nat. Rev. Chem. 2017, 1, 0056; h) J. Zhu, C. Yang, C. Lu, F. Zhang, Z. Yuan, X. Huang, Acc. Chem. Res. 2018, 51, 319; i) S. B. Alahakoon, S. D. Diwakara, C. M. Thompson, R. A. Smaldone, Chem. Soc. Rev. 2020, 49, 1344.
[3] a) X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010; b) J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453; c) S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548; d) P. J. Waller, F. Gandara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053; e) C. S. Diercks, O. M. Yaghi, Science 2017, 355, eaal1585; f) S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 2019, 141, 1807; g) K. Geng, T. He, R. Liu, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Soc. Rev. https://doi.org/10.1021/acs.chemrev.9b00550.
[4] a) S. M. J. Rogge, A. Bavykina, J. Hajeik, H. García, A. I. Olivos-Suarez, A. Sepúlveda-Escrivano, A. Vimont, G. Clet, P. Bazin, F. Kapteijn, M. Daturi, E. V. Ramos-Fernandez, F. X. Llabrés i Xamena, V. Van Speybroeck, J. Gascon, Chem. Soc. Rev. 2017, 46, 3134; b) F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 2017, 46, 8616; c) H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng, R. Xiao, Z. Tang, D. Huang, L. Tang, C. Lai, D. Jiang, Y. Liu, H. Yi, L. Qin, S. Ye, X. Ren, W. Tang, Chem. Soc. Rev. 2019, 48, 438; d) S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, B. Van der Bruggen, Chem. Soc. Rev. 2019, 48, 2665; e) D. Rodríguez-San-Miguel, F. Zamora, Chem. Soc. Rev. 2019, 48, 4375; f) X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen, Chem. Soc. Rev. 2019, 48, 5266; g) W. K. Haug, E. M. Moscarello, E. R. Wolfson, P. L. McGrier, Chem. Soc. Rev. 2020, 49, 839; h) Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Chem. Soc. Rev. 2020, 49, 708.
[5] J. L. Segura, S. Royuela, M. Mar Ramos, Chem. Soc. Rev. 2019, 48, 3903.
[6] S. J. Lyle, P. J. Waller, O. M. Yaghi, Trends Chem. 2019, 1, 172.
[7] a) S. Das, P. Heasman, T. Ben, S. Qiu, Chem. Rev. 2017, 117, 1515; b) J. Zhou, B. Wang, Chem. Soc. Rev. 2017, 46, 6927; c) J. Dong, X. Li, S. B. Peh, Y. D. Yuan, Y. Wang, D. Ji, S. Peng, G. Liu, S. Ying, D. Yuan, J. Jiang, S. Ramakrishna, D. Zhao, Chem. Mater. 2019, 31, 146; d) T. Ma, E. A. Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, D. Wang, W. Wang, J. Sun, O. M. Yaghi, Science 2018, 361, 48.
[8] a) J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, S. Seki, S. Irle, M. Hiramoto, J. Gao, D. Jiang, Nat. Commun. 2013, 4, 2736; b) B. Zhang, M. Wei, H. Mao, X. Pei, S. A. Alshimmi, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 12715; c) X. Guan, H. Li, Y. Ma, M. Xue, Q. Fang, Y. Yan, V. Valchov, S. Qiu, Nat. Chem. 2019, 11, 587.
[9] B. J. Smith, N. Hwang, A. D. Chavez, J. L. Novotney, W. R. Dichtel, Chem. Commun. 2015, 51, 7532.
[10] J. Dong, Y. Wang, G. Liu, Y. Cheng, D. Zhao, CrystEngComm 2017, 19, 4899.
[11] V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld, B. V. Lhotsch, Nat. Commun. 2015, 6, 8508.
[12] F. Haase, K. Gottschling, L. Stegbauer, L. S. Germann, R. Gutzler, V. Duppel, V. S. Vyas, K. Kern, R. E. Dinnebüel, B. V. Lhotsch, Mater. Chem. Front. 2017, 1, 1354.
[13] F. Haase, T. Banerjee, G. Savasci, C. Ochsenfeld, B. V. Lhotsch, Faraday Discuss. 2017, 201, 247.
Marta Martínez-Abadía received her B.S. degree from the University of Zaragoza, Spain in 2010. She obtained her Ph.D. degree in Chemistry with Prof. M. Blanca Ros and Dr. Raquel Giménez, where she worked in the area of luminescent bent-core liquid crystals. She joined Prof. Aurelio Mateo-Alonso’s group as a postdoctoral researcher at POLYMAT in 2016. Her current research interests are focused on the synthesis of covalent organic frameworks and supramolecular systems.

Aurelio Mateo-Alonso obtained his B.Sc. (1999) and M.Sc. (2000) degrees in Organic Chemistry from Universidad Autónoma de Madrid (Spain). In 2004, he completed his Ph.D. at Queen Mary, University of London (UK). Between 2004 and 2009, he was a postdoctoral researcher at Università di Trieste (Italy). In 2009, he joined the Freiburg Institute for Advanced Studies (Germany) as an independent Group Leader. Since 2012, he is an Ikerbasque Research Professor at POLYMAT and at the University of the Basque Country in San Sebastian (Spain). His research interests include organic materials synthesis, supramolecular chemistry, conjugated 2D polymers, and covalent organic frameworks.