Estimation of Cancer Burden Attributable to Infection in Asia

He Huang1,2, Xiao-Feng Hu3, Fang-Hui Zhao1, Suzanne M. Garland4, Neerja Bhatla5, and You-Lin Qiao1

1Department of Cancer Epidemiology, Cancer Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
2Department of Prevention and Control of Communicable Disease, Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, China
3Shijingshan District Center for Disease Control and Prevention, Beijing, China
4The Microbiology and Infectious Diseases Department, Royal Women’s Hospital, and the Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Australia
5Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India

ABSTRACT

Background: Some infectious agents have been shown to be human carcinogens. The current study focused on estimation of cancer burden attributable to infection in different regions of Asia.

Methods: By systematically reviewing previous studies of the infection prevalence data of 13 countries in Asia and relative risks of specific cancers, we calculated the population attributable fraction of carcinogenic infections. Using data from GLOBOCAN 2012, the overall country-specific and gender-specific number of new cancer cases and deaths resulting from infection were estimated.

Results: Across 13 principal Asian countries, the average prevalence and range was 6.6% (0.5% in Japanese women to 15.0% in Vietnamese men) for hepatitis B virus (HBV), 2.6% (0.3% in Iran to 5.1% in Saudi Arabia) for hepatitis C virus (HCV), 7.9% (2.8% in Pakistan to 17.7% in China) for human papillomavirus (HPV), and 61.8% (12.8% in Indonesia to 91.7% in Bangladesh) for Helicobacter pylori (HP). The estimated total number of cancer cases and deaths caused by infection in these 13 countries were 1,212,026 (19.6% of all new cancer cases) and 908,549 (22.0% of all deaths from cancer). The fractions of cancer incidence attributable to infection were 19.7% and 19.5% in men and women, respectively. The percentages of cancer deaths attributable to infection were 21.9% and 22.1% in men and women, respectively. Among the main infectious agents, HP was responsible for 31.5% of infection-related cancer cases and 32.8% of infection-related cancer deaths, followed by HBV (28.6% of new cases and 23.8% of deaths), HPV (22.0% of new cases and 27.3% of deaths), and HCV (12.2% of new cases and 10.6% of deaths).

Conclusions: Approximately one quarter of all cancer cases and deaths were infection-associated in Asia, which could be effectively prevented if appropriate long-term controls of infectious agents were applied.

Key words: cancer burden; infection; population attributable fraction; Asia

INTRODUCTION

Chronic infection with potentially carcinogenic agents is recognized as a major risk factor of human cancer1,2 and was estimated to be responsible for around 2 million new cancer cases worldwide in 2008. The overall population attributable fraction (PAF) for infectious agents was 16.1% worldwide,3 indicating that 16.1% of new cancer cases could be prevented by elimination of such infectious agents. This fraction is higher in developing countries (22.9%) than in developed countries (7.4%).

Asia, which contains over 60% of the world’s population, plays an increasingly important role in international economics and trade. As a part of global analysis, the burden of infection-associated cancer in Asia has been estimated.3,4 While the diversity of environment, culture, and economics in different countries contributes to the variety of infectious agents and their prevalence in the general population, the effects of those factors have not been revealed in previous studies.

The aim of the current study is to assess the cancer burden attributable to infection in 13 Asian countries based on review
of nation-specific prevalence of carcinogenic infectious agents and comparison of risk estimates between exposure and infection-associated cancer.

METHODS

Geographical areas
As residential environment, social-economic status, habits, and culture vary in different places among different groups of people, we chose countries and regions with the largest population sizes to obtain reliable and stable estimates, while also taking population representativeness into consideration. With the population data of almost all Asian countries and regions available in GLOBOCAN 2012, we chose a cut-off point of 30 million. As a consequence, 13 countries were included and divided into four areas: East Asia (Korea, China, and Japan), Southeast Asia (Indonesia, the Philippines, Thailand, and Vietnam), Middle South Asia (Bangladesh, India, Iran, and Pakistan), and West Asia (Turkey and Saudi-Arabia), following the geographical definition of the 2012 revision of the United Nations’ World Population Prospects. Although Iraq was on the list of 13 countries, few studies of infection prevalence in Iraq were available. Subsequently, we substituted Saudi Arabia, a smaller West Asian country with a population of 27 million, for Iraq because more information on infection prevalence was available for Saudi Arabia.

Definition of exposure
Infectious agents with sufficient evidence for their carcinogenicity were defined in an IARC monograph series. The infectious agents and related cancers used in the current study are listed in Table 1. Other carcinogenetic infectious agents, such as *Schistosoma haematobium* and human T-cell lymphotropic virus type 1 (HTLV-1), were not included in the current analysis because the prevalence of the infectious agents in Asia or the data of cancer incidence and/or mortality were not available in published studies or were only available in low quality studies (eg, studies with small sample sizes or poor study designs).

Prevalence of infectious agents and relative risk of cancers and infectious agents
Searches were conducted in Pubmed, Google Scholar, and Chinese National Knowledge Infrastructure (CNKI) for all published studies in Chinese and English. The keywords of prevalence-oriented searching were “prevalence”, the names of infectious agents, and the country names. Prevalence data published between 1997 and 1999 were collected, fixing the exposure time of infectious factors around 1997. The intervals from exposure to the infectious agents to diagnosis of related cancer were all assumed to be 15 years in the current study. If the data from 1997–1999 for some countries were not available, we expanded our search to data published between 1995 and 2000. We included case-control studies with large sample sizes only if population-based cross-sectional studies were not available. As a consequence, prevalence data is based on the general population without adjustment for age. In the search for relative risks (RRs), we included keywords of “meta-analysis”, “cohort study”, “case-control study”, and the names of infectious agents and relevant cancers. The priority for data selection was (1) meta-analysis or pooled analysis in Asia; (2) large-scale case-control study in an Asian country; and (3) multinational meta-analysis or meta-analysis from non-Asian countries. For instance, we included (2) only if (1) was not available. The biomarkers of infectious agents were human papillomavirus (HPV) DNA, HPV L1 antibody, serum-antibody against *Helicobacter pylori* (HP), anti-HIV antibody, anti-hepatitis C virus (HCV) antibody, and hepatitis B surface antigen (HBsAg), which are considered to be relatively sensitive and accurate measurements of prevalence in the general population. RRs in these studies are calculated by comparing the probability of developing cancer in an exposed population to that in a non-exposed population (cohort study) or estimated with odds ratios (ORs) in case-control studies. We prioritized results from the latest published studies over older studies because the time effect and newly discovered confounding biases are more likely to be taken into consideration in more recent studies. We assumed that RRs were constant in different countries and adopted generally accepted RRs, which were abstracted from international studies or meta-analysis of worldwide prevalences. Similarly, if the sex-stratified prevalence was not accessible, it was assumed that both sexes were exposed equally to infectious factors, and sex-stratified prevalence was replaced

Table 1. List of group 1 carcinogetic biological agents and related cancers

Infection-associated cancers	Group 1 agents
Oral cavity	HPV
Oropharynx	HPV
Nasopharynx	EBV
Noncardia gastric cancer	*Helicobacter pylori*
cardia gastric cancer	*Helicobacter pylori*
Anus	HPV
Liver	
Hepatocellular carcinoma	HBV, HCV
Cholangiocarcinoma	*Clonorchis sinensis*, HBV, HCV, *Opisthorchis viverrini*
Vulva	HPV
Vagina	HPV
Cervix uteri	HPV
Penis	HPV
Hodgkin’s lymphoma	EBV
Non-Hodgkin’s lymphoma	HIF-1, HCV
Burkitt’s lymphoma	EBV
Kaposis’s sarcoma	KSHV/HIV-1

Opisthorchis viverrini is only prevalent in Thailand.

The incidence of Kaposis’s sarcoma is low in Asians.

EBV, Epstein-Barr virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV-1, human immunodeficiency virus type 1; HPV, human papillomavirus; KSHV, Kaposis’s sarcoma herpes virus (also known as Human herpes virus type 8).
by overall prevalence. The prevalence among patients was adopted when the general prevalence was not available. To account for the differences between general population and patient prevalences, Formula B (which we discuss in the Methods section), was used in PAF calculation.

As 85%–95% of the general population had positive serology tests (IgG) for Epstein-Barr virus (EBV) infection when young,\(^7^,^8\) it was not necessary to match the prevalence of EBV in calculation of cancer burden. As a result, the PAFs of EBV-related cancers, which were calculated from case-series prevalence, were applied.\(^1^\)

Incidence and mortality data of infection-related cancer

The cancer-specific sex-stratified incidence and mortality in each country were obtained from GLOBOCAN 2012 and a cancer register project (cancer incidence of Japan).\(^9^\) The numbers of new cases of cancer and cancer-related deaths that were attributable to infection were estimated by multiplying the overall numbers of new cases of cancer and cancer-related deaths with the corresponding PAF. The data of anal cancer, penile cancer, vulvar cancer, and vaginal cancer were included in the category of others and unspecified cancers in the GLOBOCAN project. Therefore, we referred to *Cancer Incidence in Five Continents Vol. X* (CI5X),\(^10^\) which recorded cancer-sorted incidence data worldwide from 2003 to 2007, to estimate the proportions of these cancers. For countries which were not listed in the CI5X (Bangladesh, Indonesia, Vietnam, Iran, and Saudi Arabia), we assumed geographic similarity of cancer incidence patterns in the same area of Asia. For example, Bangladesh is located in Middle South Asia, so the cancer incidence data was assumed to be consistent with that of Pakistan.

Specific data on incidence and mortality related to noncardia and cardia gastric cancer, hepatocellular carcinoma, and cholangiocarcinoma in Korea was obtained in an original article\(^11^\) because the national registry was of high quality with broader categories than those of GLOBOCAN 2012.

It was assumed that Burkitt’s lymphoma accounted for 2.6% of the total non-Hodgkin’s lymphoma (NHL) cases in East/Southeast Asia (however, the proportion in Japan is assumed to be <0.1%) and 14.8% in West Asia. In developing areas of Asia, noncardia gastric cancer constituted 80.0% and 87.0% of gastric cancers in men and women, respectively, while in developed areas, the respective proportions were 87.0% of gastric cancers in men and women, respectively, and 80.0% and 88.0%.\(^4^\) We assumed the proportions of hepatocellular carcinoma and cholangiocarcinoma in liver cancer to be 80% and 15%, respectively. The assumed incidence of cholangiocarcinoma was higher than the world average due to a markedly high prevalence of liver flukes in the study areas.\(^12^\)

By applying these findings to Levin’s formula \(AF = \frac{P \times (RR - 1)}{P \times (RR - 1) + 1}\) (Formula A) or \(AF = \frac{RR - 1}{RR}\) Pc (Formula B)\(^13^\) (where P is the prevalence of infectious agent in general population, Pc is the prevalence among patients, and RR is the RR of cancer among infectious agents exposed population), PAFs were calculated. Combining the data of cancer incidence and mortality in each country from GLOBOCAN 2012, the overall and specific numbers of new cancer cases and cancer-related mortality caused by infection were estimated. We hypothesized that infection had no effect on survival.

RESULTS

Table 2 shows the data source of RRs applied in the current study, the biomarkers of each infectious agent, the study design, and the target population of each study. The RRs of human papillomavirus (HPV)-related anal cancer, vulvar cancer, vaginal cancer, and penile cancer were replaced with corresponding generally accepted PAFs because no data for RRs were available.\(^14^\) Oncogenic HPV is the etiological agent of cervical cancer, while EBV and Kaposi’s sarcoma-associated herpes virus/human immunodeficiency virus (KSHV/HIV-1) play vital roles in nasopharynx cancer (100.0% of nasopharynx cancers were assumed to be EBV-related in medium- and high-risk areas, and 90.0% elsewhere)\(^6^\) and Kaposi’s sarcoma (the RRs were 97.5 in men and 202.7 in women, respectively).\(^15^\) Therefore, the PAFs of these cancers were assumed to be 100. Information about the prevalence of etiologic agents in the general population of the study countries and the RRs of corresponding cancers, as well as gender-specific prevalence of infection by carcinogenic infectious agents, are shown in Table 3. Table 4 specifies PAFs of infectious agents and cancer sites in different countries among men and women. Table 5 shows total estimated new cases and deaths caused by infection.

Overview

Among six principle infectious agents, the most new cancer cases were attributed to HP (31.5%), followed by HBV (28.6%), and HPV (22.0%). This trend was slightly different for deaths; 32.8% of deaths from cancer attributed to major infectious agents were attributed to HP, while 27.3% of such deaths were attributed to HPV and 23.8% to HBV. Overall, the principle infectious agents caused 19.6% of new cancer cases and 22.0% of cancer deaths in the study areas. Figure illustrates different patterns of cancer incidence and death caused by infectious agents in both sexes.

Human papillomavirus

The high-risk genotypes (mainly types 16 and 18) of human papillomavirus are causative agents of up to 100% of cervical cancers, around 50% of penile cancers, 70% of vaginal cancers, 43% of vulvar cancers, 88% of anal cancers, 25% of oral cancers, and 35% of oropharyngeal cancers (especially lingual tonsillar cancers). Therefore, the PAFs of cervical cancer, anal cancer, penile cancer, vaginal cancer, and vulvar...
cancer were set at 100, 88, 50, 70, and 43, respectively. When it comes to oral cavity and oropharyngeal cancers, the correlations are less remarkable (HPV is positively detected in 20%–40% of cases), and PAFs varied with prevalence of high-risk genotypes of HPV in different countries. HPV contributed to 29,324 and 275,429 new cancer cases and 26,613 and 141,612 deaths in men and women, respectively.

Table 6 illustrates the new cancer cases and deaths due to HPV infection.

Epstein-Barr virus

The PAF of nasopharyngeal carcinoma caused by EBV was 90 in most Asian regions. In Southern China, an area with a high nasopharyngeal carcinoma burden, the fraction was

Table 3. Gender-specific prevalence of infectious agents in the general population and data source, by country

| Country | HPV Female % | HPV Male % | *Helicobacter pylori* Female % | *Helicobacter pylori* Male % | HIV-1 Female % | HIV-1 Male % | HCV Female % | HCV Male % | HPV Female % | HPV Male % | Source |
|-----------------|--------------|------------|-------------------------------|----------------------------|----------------|--------------|--------------|------------|------------|------------|----------|--------|
| Korea | 8.5 | 47.2 | 45.9 | | 0.03% | 0.03% | 1.7 | 2.2 | 9.1 | 7.1 | [29][30][12][31][12] |
| China | 17.7 | 56.2% | 56.2% | | 0.04% | 0.01 | 3.1 | 3.3 | 11.3 | 8.2 | [32][33][34][35] |
| Japan | 11.0 | 65.1% | 65.1% | | <0.1% | <0.1% | 0.9% | 0.9% | 0.7 | 0.7 | [36][37][38][39][40] |
| Indonesia | 11.4 | 12.8% | 12.8% | | <0.1% | <0.1% | 2.1% | 2.1% | 5.5% | 5.5% | [41][42][43][44][38][45] |
| Philippines | 4.4 | 71.9% | 71.9% | | <0.1% | <0.1% | 0.4% | 0.4% | 13.3% | 13.3% | [46][47][38][49] |
| Thailand | 6.3 | 53.7% | 53.7% | | 2.0% | 2.0% | 1.7% | 1.7% | 10.0 | 8.0 | [50][51][38][52][53] |
| Vietnam | 8.6 | 72.0 | 72.0 | | <0.1% | <0.1% | 2.9% | 2.9% | 15.0 | 10.7 | [54][55][38][56][57] |
| Bangladesh | 14.1 | 91.7% | 91.7% | | <0.1% | <0.1% | 0.5% | 0.5% | 6.7 | 5.9 | [58][38][59][60] |
| India | 7.0 | 75.8% | 75.8% | | 0.4% | 0.4% | 1.5% | 1.5% | 4.0% | 4.0% | [61][62][38][63][64] |
| Iraq | 6.8 | 59.5% | 47.7 | | <0.1% | <0.1% | 0.3% | 0.3% | 1.9 | 1.5 | [65][66][67][68] |
| Pakistan | 3.8 | 73.5% | 75.4 | | <0.1% | <0.1% | 4.7% | 4.7% | 5.0% | 5.0% | [69][70][38][71][72] |
| Turkey | 4.2 | 51.8% | 51.8% | | <0.1% | <0.1% | 1.2 | 1.8 | 6.5% | 6.5% | [73][74][38][75][76] |
| Saudi-Arabia | 5.6 | 75.8% | 75.8% | | <0.1% | <0.1% | 5.1% | 5.1% | 2.6% | 2.6% | [77][78][38][79][80] |

Table 2. Summary of applied relative risks and data sources

Cancer site	Infectious agent	Relative risk	Biomarker	Data source	Study population
Oral cavity	HPV	2.0 (1.2–3.4)	HPV L1 antibody or HPV-DNA (tumor tissue)	Meta-analysis	International [16]
Oropharynx	HPV	12.3 (5.4–26.4)	HPV-DNA (tumor tissue)	Case-control study	USA [17]
Nasopharynx	EBV	PAF 90%	EBV-DNA (tumor tissue)	Review	International [4]
Noncardiac stomach	HP	5.9 (3.4–10.3)	Anti-HP antibody (blood)	Meta-analysis	International [18]
Cardia stomach	HP	1.6 (1.0–2.5)	Anti-HP antibody (blood)	Meta-analysis	International [19]
Anus	HPV	PAF 98%	HPV DNA (tumor tissue)	Meta-analysis	International [20]
Hepatocellular cancer	HBV	18.1 (10.7–28.8)	HBsAg (blood)	Meta-analysis	China [21]
Cholangiocarcinoma	HCV	13.1 (5.3–27.0)	Anti-HCV antibody (blood)	Meta-analysis	China [21]
	Clonorchis sinensis	4.7 (2.2–9.8)	Fluke egg (stool)	Meta-analysis	International [4]
	HCV	2.7 (2.0–3.6)	HBsAg (blood)	Meta-analysis	China [21]
	HPV	5.2 (2.1–12.8)	Anti-HCV antibody or HCV RNA (blood)	Case-control study	USA [24]
	Opisthorchis viverrini	14.1	Fluke egg (feces)	Cross-section study	Thailand [25]
	Vulpes	5.0%	HPV DNA (tumor tissue)	Meta-analysis	International [20]
	Vaginitis	70%	HPV DNA (tumor tissue)	Meta-analysis	International [20]
	Cervix uteri	50%	HPV DNA (tumor tissue)	Meta-analysis	International [20]
	Persis	50%	HPV DNA (tumor tissue)	Meta-analysis	International [20]
	Hodgkin's lymphoma	46%	EBV-DNA (tumor tissue)	Review	International [4]
	Non-Hodgkin's lymphoma	46%	Not informed	Case-control study	USA [26]
	HCV	2.5 (2.1–3.0)	Anti-HCV antibody and/or HCV RNA (blood)	Meta-analysis	International [27]
	HPV	PAF 100	Not informed	Review	International [15]

EBV, Epstein-Barr virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV-1, human immunodeficiency virus type 1; HPV, human papillomavirus; KSHV, Kaposis sarcoma herpes virus (also known as Human herpes virus type 8).

#References#

[1] Huang H, et al. J Epidemiol 2015;25(10):626-638
Table 4. The PAFs of infectious agents and cancer sites in 13 Asian countries, by gender

Cancer sites	Infectious agents	Male	Female
Oral cavity	HPV	0%–15%	0%–15%
Oropharynx	HPV	1%–37%	1%–37%
Nasopharynx	EBV	90%–100%	90%–100%
Noncardia gastric cancer	Helicobacter pylori	11%–82%	11%–82%
Cardia gastric cancer	Helicobacter pylori	7%–33%	7%–35%
Anus	HPV	88%–90%	88%–90%
Hepatocellular carcinoma	HBV	11%–72%	8%–69%
Cholangiocarcinoma	Clonorchis sinensis	1%–70%	1%–70%
	HBV	1%–18%	1%–18%
	HCV	1%–18%	1%–18%
Penis	HPV	50%	
Vulva	HPV	43%	
Vagina	HPV	70%	
Cervix ulcer	HPV	100%	
Hodgkin’s lymphoma	EBV	46%	
	HIV	1%–42%	0%–52%
Non-Hodgkin’s lymphoma	HIV-1	1%–42%	0%–52%
	HCV	0%–7%	0%–7%
Burkitt’s lymphoma	EBV	20%	
Kaposi’s sarcoma	KSHV/HIV	100%	

EBV, Epstein-Barr virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV-1, human immunodeficiency virus type 1; HPV, human papillomavirus; KSHV, Kaposi’s sarcoma herpes virus (also known as Human herpes virus type 8).

The early 1990s saw the initial proliferation of human immunodeficiency virus type 1 (HIV-1) in Asia, and the seroprevalence of HIV in Asian countries was consequently low (<0.1%). Cases were sporadic, except for several countries and sites, such as Thailand and India, which experienced a relatively high burden of HIV (0.22%–2%). In 2012, 8089 NHL cases and 929 Kaposi’s sarcoma cases were attributed to HIV infection, with 5227 and 494 respective deaths. In India, there were 3417 new NHL cases and 19 new Kaposi’s sarcoma cases, making India the country with the highest HIV-related cancer burden in Asia. Although the HIV prevalence rate in the general population was highest in Thailand, there was less overall burden (39 new Kaposi’s sarcoma cases and 1832 new NHL cases) because of its small total population. Although most cases of anal cancer were related to high-risk type HPV, HIV also contributed to the anal cancer burden, due to immune suppression caused by the HIV infection.

Hepatitis B virus and hepatitis C virus

Asia has a heavy disease burden from hepatitis B virus (HBV) and hepatitis C virus (HCV), both of which contribute to hepatocellular carcinoma and cholangiocarcinoma. Moreover, HCV is related to NHL. Table 7 lists the numbers of new cases and deaths from cancers resulting from HCV and HBV infection in the target countries.

Helicobacter pylori

The cases and deaths of gastric cancer caused by HP are shown in Table 8.

DISCUSSION

The present study is the first to assess the burden of potentially oncogenic infections and their related cancers in Asia. Based
Figure. Proportion of estimated new cancer cases and deaths attributable to different infectious agents in men and women.

Table 6. Estimated new cancer cases and deaths attributed to HPV in 2012, by country

Country	New cases	Deaths
Korea	2054	1108
China	2007	1312
Japan	1300	184
Indonesia	119	73
Philippines	1171	642
Thailand	1300	72
Vietnam	1301	57
Bangladesh	1300	57
India	1300	57
Iran	1300	57
Pakistan	1300	57
Turkey	1300	57
Saudi Arabia	1300	57

*The proportion of HPV-induced new cancer cases/deaths in all corresponding new cases/deaths.

Huang H, et al. J Epidemiol 2015;25(10):626-638
on the methods of previous studies in China85 and Korea,11 the nation-specific data of prevalence of infections by oncogenic agents and the general population RRs of infection-related cancers were collected for PAF calculation. Additionally, we estimated the cancer burden attributable to infection in 13 Asian countries using the numbers of new cancer cases and deaths provided in GLOBOCAN2012. Overall, we estimated that 1,212,026 new cancer cases (19.6% of all cancers) and 908,549 deaths (22.0% of all cancer-related deaths) were caused by infection in 2012. Parkin’s study in 20024 estimated that infectious agents were responsible for 17.8% of cancer cases worldwide (26.3% of cases in developing countries and...

Table 7. Estimated new cancer cases and death caused by HBV and HCV in 2012, by country

Country	Hepatocellular carcinoma	Cholangiocarcinoma						
	HBV-related	HCV-related						
	Male	Female	Male	Female	Male	Female	Male	Female
Korea	6670	2428	355	90	1481	654	38	16
Deaths	3824	1330	461	120	849	358	50	21
China	154,616	47,390	6965	1829	64,048	23,174	5069	1852
Deaths	148,545	47,366	6692	1828	61,533	23,162	4870	1852
Japan	2461	975	12	5	2163	1145	37	20
Deaths	2178	828	11	4	1914	972	33	17
Indonesia	5174	1841	168	60	2168	771	162	58
Deaths	4899	1750	159	57	2052	733	154	55
Philippines	3021	1273	148	62	211	89	14	6
Thailand	3902	1385	121	39	1077	418	582	226
Deaths	3705	1320	1156	370	1023	398	553	215
Vietnam	9671	2678	503	117	3496	1077	274	84
Deaths	9199	2545	478	111	3326	1024	260	80
Bangladesh	781	475	27	16	84	54	6	4
Deaths	741	455	26	15	80	52	5	3
India	5591	3302	161	95	2108	1245	152	90
Deaths	5435	3246	156	93	2049	1224	148	88
Iran	174	110	4	2	21	16	1	1
Deaths	166	105	4	2	20	15	1	1
Pakistan	1040	552	32	17	819	435	70	37
Deaths	987	528	31	16	778	416	66	35
Turkey	646	290	22	10	156	99	11	7
Deaths	613	277	21	10	148	94	10	7
Saudi Arabia	126	50	5	3	157	63	14	5
Deaths	118	48	3	1	148	60	13	5

HBV, hepatitis B virus; HCV, hepatitis C virus.

bThe proportion of HBV- and HCV-induced new cancer cases/deaths in all these cancers cases/deaths.

Table 8. Estimated new cases and deaths of HP-related gastric cancer in 2012, by country

Country	Noncardia gastric cancer	Cardia gastric cancer						
	Male	Female	Male	Female	Male	Female	Male	Female
Korea	13,705	6,880	4,439	2,657	1,404	367	455	142
China	166,389	78,450	129,994	66,944	14,122	3632	11,033	3099
Japan	45,048	22,728	19,613	11,337	4,104	1129	1,787	563
Indonesia	324	203	292	183	54	20	48	18
Philippines	673	523	571	441	75	35	64	29
Thailand	933	776	751	625	77	39	249	31
Vietnam	5863	3295	5355	2981	561	194	512	176
Bangladesh	2653	1799	2497	1675	286	115	268	107
India	27,346	13,511	25,666	12,557	2681	792	2517	736
Iran	3955	1840	3374	1573	345	86	294	74
Pakistan	1508	980	1408	913	146	57	136	53
Turkey	3408	2610	2918	2232	278	127	238	109
Saudi Arabia	212	134	172	110	21	8	17	6

bThe proportion of HP-related gastric cancer cases/deaths in all gastric cancer cases/deaths.

J Epidemiol 2015;25(10):626-638
7.7% of cases in developed countries). Our results were somewhat different from previous nation-specific PAF calculations11,18,21 because most of the RRs in our study were summarized from international studies that were generalizable to different Asian countries; for example, we chose the RR of 18.8 for HBV, which was taken from a study with a large sample size,21 rather than the RRs in Shin’s study11 (24.45 in men and 33.73 in women), which were taken from a meta-analysis of Korean data and only represented the Korean population. Moreover, we estimated the number of cancers based on GLOBOCAN2012, while previous studies used Korean data from 2007. This earlier data found lower prevalence than those of GLOBOCAN2012, and the proportion of infection-related cancers in all cancers was consequently lower. However, our results are consistent with Parkin’s estimates for developing countries because the majority of countries in our study are developing countries (except for Japan and Korea). Specifically, 20.5% of new cancer cases were related to infection in the 11 developing Asian countries, and 14.5% of new cancer cases were related to infection in Korea and Japan. Because the background prevalence of infectious agents in Korea and Japan differed from other developed areas (mainly Europe and North America), the proportion of infection-related cancers in developed countries was doubled in our study.

Another study in 20083 revealed that 16.1% of new cancer cases were attributed to infection worldwide, and the proportion was higher in less developed countries (22.9%) than in more developed countries (7.4%). While both Parkin’s and Martel’s studies focused on global infection-related cancer burden, our study is designed in a region-specific way, in which we analyzed the data from 13 Asian countries to illustrate the infection background of cancer cases and deaths in Asia in 2012. The findings of our study provide comparable data for different Asian countries, which enable us to gain insight into the regional status of infectious agents that are linked to cancer incidence. The potential burden of disease (BOD) described in the Asian region could be significantly ameliorated with intervention measures, such as prophylactic vaccinations for HBV and HPV. In addition, this description of the BOD offers a baseline reference for governments seeking to address the public health issues of infectious disease and cancer. Combining the outcomes of the current study with the data of medical expenses and living expenditures of corresponding countries, the economic burden caused by infection could be calculated. These economic burden calculations can illustrate to policymakers the importance of taking immediate action on infection control for these agents, which may improve the living standard of the public, reduce unnecessary loss of lives, and reduce financial burden.

The gender-specific patterns of incidence and mortality caused by different infectious agents (shown in Figure) are of practical consequence when designing preventive interventions and treatment for targeted population. For men, HP and HBV are the main causative factors of gastric cancer and liver cancer, respectively, together comprising over three quarters of infection-related cancer cases and deaths. HBV infection contributes to twice the liver cancer burden in men as in women, and much work remains to reduce the high prevalence of HBV in Southeast/East Asia. In women, HPV and HP were associated with heavy burden of cervical and gastric cancers, respectively. These findings indicate that more attention should be paid to prevention of HPV in women, and both prevention and treatment of HP play vital roles in reducing cancer burden in Asia for both genders.

HIV
Although infection with HIV alone will not cause many common HIV-associated cancers, it has been recognized as a major contributing factor to some specific cancers because cancer incidence rises significantly with combined infection of HIV and strong cancer-causing infectious agents. The carcinogenic mechanisms of HIV are immune deficiency and suppression, which lead to the failure of immunological surveillance of tumor cells and susceptibility to carcinogenic factors. The contribution of HIV to the development of many cancers is complicated; for example, HIV can increase the risk of anal cancer, which is caused by HPV. To avoid over-counting for these co-infections, we only estimated cases and deaths of Kaposi’s carcinoma and NHL, in which HIV plays a main role, though in comparison to European or North American countries, the prevalence of Kaposi’s carcinoma in Asia is quite low.15 The numbers of cancer cases and deaths related to HIV infection might be overestimated because we considered the estimated prevalence of HIV in low-prevalence areas as 0.1%, while UNAIDS38 reported prevalence below 0.1% in the general population. The current study estimates that HIV contributed to 9018 new cases and 5721 deaths from cancer in the study area. However, the rates of HIV infection started to rise after the low-prevalence stage of the early 1990s, increasing from 0.1% to 1.3% in 2009.80 The pattern of HIV spread in Asia has gradually changed, from sporadic new cases in the general population and epidemic in high-risk groups to a low-level epidemic in the general population. As a consequence, the numbers of HIV-associate cancer cases and deaths is expected to increase in a few years, especially in regions such as Thailand and India. The HIV prevalence of these areas is much higher than in the rest of the surveyed Asian countries, which is expected to cause health and social problems, including short lifespan and poverty. Fortunately, the utilization of antiretroviral therapy and behavioral interventions in Asian areas have had initial success in reducing costs of HIV control.81 However, much work is still required to control the spread of HIV in developing countries.

HP
There has been controversy over the direct evidence linking HP infection and gastric cancer in Asia,78 where there is some
doubt that the high infection rate of HP (eg, in Japan and Bangladesh) is a predictor of the high prevalence of gastric cancer. At an individual level, HP has been associated with the occurrence of gastric cancer, but some Asian countries have a low prevalence of gastric cancer despite a high HP prevalence. Alcohol and cigarette consumption in these areas may cause many of these gastric cancers. However, a Japanese study revealed that both groups testing strongly positive and weakly positive for HP antibody showed significantly higher incidence of gastric cancer compared to those testing negative. We adopted a combined analysis, which illustrated that the OR for non-cardia gastric cancer and HP was 5.9 (95% CI, 3.4–10.3) compared with those testing negative for HP, while the relationship was less significant between cardia gastric cancer and HP infection (RR1.6; 95% CI, 1.0–2.5). Consequently, we estimated that approximately 436,501 new cancer cases and 324,042 deaths were caused by HP in 2012. The use of regular and rational combinations of antibiotics is the optimal secondary prevention strategy against HP infection, but such use of antibiotics is the primary prevention method for gastric cancer. Using regular gastroscope screening tests, early lesions on the gastric epithelium can be detected before they progress to cancer.

HPV

In our study, new cancers in the oral cavity, oropharynx, cervix, vulva, and vagina that were associated with high-risk types of HPV totaled 278,403 cases, ranking HPV the highest among the principle infectious cancer-causing agents in women. HPV was also estimated to be responsible for 162,762 cancer deaths in Asia, making HPV the second-ranked infectious factor leading to cancer deaths. To estimate the burden of HPV-related vulvar, vaginal, penile, and anal cancers, we applied a geographic similarity method in cases where country-level data was not available in C15X. Namely, neighboring countries’ data were used to substitute for the corresponding incidence or mortality of the country with missing data. Admittedly, this method has some limitations, because the incidence and mortality of cancers vary by country. However, it is likely to be a more accurate way of estimating the sub-category cancer burden with the present database than by assuming the same incidence and mortality across Asia without considering geographic factors.

Since the currently licensed prophylactic HPV vaccines (Gardasil for type 6, 11, 16, and 18 and Cervarix for type 16 and 18) marketed in North America, Europe, Australia, and some parts of Asia became available, the expectation is that HPV-related cancers maybe largely prevented if these vaccines are adopted with high coverage. Both vaccines have been shown to be effective, immunogenic, and safe. However, the vaccines have not been approved to market in most areas of Asia. Where they are approved, such as Hong Kong and Korea, they are high-priced and less likely to be listed in social medical insurance, therefore largely only available to those who can afford them. Where governments have endorsed and paid for vaccines, such as in Australia, reductions in rates of HPV-related infections and high-grade lesions (ie, lesions coded as cervical intraepithelial neoplasia of grade 2 or worse or adenocarcinoma in situ) have already been seen. The vaccines are currently accessible through school-based government-funded programs only in a few regions, such as Malaysia, Bhutan, and Japan. The predicted outcome is that the HPV-related cancer burden will decline if the primary prevention measure of HPV vaccines is applied in the general population by governments. In addition, screening with cytology tests, visual inspection, or HPV-DNA detection are practical secondary prevention methods that can be employed against cervical cancer in low-resource countries and areas.

HCV and HBV

HCV and HBV were highly epidemic up to the early 1990s in many areas of Asia, resulting in a relatively high incidence of liver cancer decades later. However, the late 1990s saw the introduction of the HBV vaccine among all newborns, particularly babies of women who were chronically infected with HBV. Widespread HBV vaccination has been markedly effective in reducing the HBV epidemic in areas where good coverage has occurred. A Taiwanese study showed that universal HBV vaccination for newborns provided long-term protection for up to 20 years, which enabled prevention of the infection before adulthood; meanwhile, obligatory screening of blood and organ donations has significantly curbed HCV transmission. Together, HBV and HCV caused 431,086 new liver cancer cases and 406,779 deaths in 2012, representing 77.61% of liver cancer cases and 76.6% of deaths. In addition, liver flukes, such as Clonorchis sinensis and Opisthorchis viverrini, were also causal factors of liver cancer (responsible for 1701 new cholangiocarcinoma cases in our estimation). C. sinensis is still an endemic parasite in areas of river basins in East Asia, while O. viverrini remains epidemic in Thailand. In this case, improving public awareness of the risk of the consumption of raw or insufficiently cooked fish, management of fecal sewage, and the supervision of intermediate hosts in epidemic areas are of great importance in controlling fluke infection and preventing related liver cancers.

Inevitably, our study has some limitations. First, not all prevalence data of infectious agents in the target countries were available. For instance, the prevalence of EBV in most countries and the prevalence of HPV in Bangladesh were not readily available from the databases to which we had access. We used overall PAFs for the cancers caused by EBV in all target countries and PAFs of HPV in Bangladesh. Moreover, the RRs we adopted are not country-specific, except for some RRs taken from independent studies on infection-related cancer burden in Korea and China. Numbers of cancer deaths in Japan were taken from the data of Monitoring.
Cancer Incidence in Japan (MCIJ) Project. The mortality data reported in MCIJ were lower than those in GLOBOCAN 2012, and we recognized them as more reliable and valid due to the wider regions that the program covered and the high-quality systematic registration method the MCIJ Project employed. According to the proportion of cancer deaths, some cancer categories in the MCIJ report were split into the corresponding sub-categories, as in GLOBOCAN, to facilitate estimation. As we were focusing on estimated numbers of infection-related cancer cases and deaths rather than comparing cancer incidence and mortality among different countries, we did not do age or sex standardization when using two data sources. Age-standardized data were available in both the MCIJ and GLOBOCAN. Old research was used to extrapolate the prevalence within a defined period, which affected the results because older technology for detection of infectious agents was limited. In addition, the geographic similarity assumption was utilized to tackle the inaccessible proportions of other and unspecified cancers (eg, penile, vulvar, and anal cancer) of the countries not included in CI5X. The data of CI5X came from a different time period (1993–1997), and the rest of data were from 1997 to 1999. Some of the RRs were extracted from non-Asian studies if the data could not be obtained in reliable Asian studies. As a consequence, the estimations in our study ignored some geographic variation among these countries. There might be some systematic differences between larger and smaller countries in Asia. In addition, the sample sizes of some prevalence studies of infectious agents in some countries were small or contained severe bias because the subjects were blood donors or hospital-based populations rather than general populations, which makes it hard to extract valid prevalence. For example, the majority of studies of HBV and HCV prevalence in Japan were based on the registry system of blood donation,\(^39,40\) resulting in limited representativeness. As liver flukes are endemic in a limited area in Asia and accurate data were not available, rates of cholangiocarcinoma and urinary bladder cancer caused by liver flukes were not included in our study. The exclusions of cholangiocarcinoma and urinary bladder cancers in calculating the prevalence of cancers and deaths may have caused a slight underestimation of the deaths and new cases attributable to this infection.

In conclusion, infectious agents play a major role in the etiology and progression of various cancers, which contributes to about one quarter of all cancer cases and cancer-related deaths. Infection by these agents not only results in the loss of life, but also imposes heavy economic burden on families and societies, both directly and indirectly. Adopting long-term measures (including primary and secondary prevention) to prevent infection from the principal cancer-causing agents is an efficient way to reduce rates of infection-related cancers. Tools are available to prevent many of these diseases and should be utilized.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Dr. Sohee Park from Department of Biostatistics, Yonsei University Graduate School of Public Health in Korea, and Dr. Manami Inoue from Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center in Japan, for providing help on the data extraction; Drs. Edward Trimble, Brenda Kostelecky, and Ann Chao, from the Center for Global Health at National Cancer Institute, NIH, DHHS, US; and Dr. Allan Hildesheim, from Infections and Immunoepidemiology Branch Division of Cancer Epidemiology and Genetics at National Cancer Institute, US for their constructive comments on the manuscript.

Conflicts of interest: None declared.

REFERENCES

1. Pisani P, Parkin DM, Muñoz N, Ferlay J, Maxwell D. Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev. 1997;6(6):387–400.
2. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, ElGhissassi F, et al; WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens—Part B: biological agents. Lancet Oncol. 2009;10(4):321–2.
3. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.
4. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.
5. P. D. (2013). United Nations, Department of Economic and Social Affairs. World Population Prospects: The 2012 Revision, Highlights and Advance Tables. 2013.
6. International Agency for Research on Cancer. Attributable Causes of Cancer in France in the Year 2000. In: IARC Working Group Reports, Vol. 3. 2007.
7. Haque T, Iliaidou P, Hossain A, Crawford DH. Seroepidemiological study of Epstein-Barr virus infection in Bangladesh. J Med Virol. 1996;48(1):17–21.
8. Ozkan A, Kilic SS, Kalkan A, Ozden M, Demirdag K, Ozdarendeli A. Seropositivity of Epstein-Barr virus infection in Eastern Anatolian Region of Turkey. Asian Pac J Allergy Immunol. 2003;21(1):49–53.
9. cancer_incidence (1975–2008) [Online]. Available: http://ganjooho.jp/professional/statistics/statistics.html#01.
10. Curado M, Edwards B, Shin H, Storm H. Cancer incidence in five continents, vol. IX. 2008.
11. Shin A, Park S, Shin HR, Park EH, Park SK, Oh JK, et al. Population attributable fraction of infection-related cancers in Korea. Ann Oncol. 2011;22(6):1435–42.
12. Shin H-R, Oh J-K, Masuyer E, Curado M-P, Bouvard V, Fang Y-Y, et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci. 2010;101(3):579–85.
13. Chen F. Methods of Medical Multivariate Statistical Analysis, vol. 9, no. 3. China Statistical Publishing; 2007. p. 63–82.
14. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. *Vaccine*. 2012;30 Suppl 5:F12–23.
15. Boschoff C, Weiss R. AIDS-related malignancies. *Nat Rev Cancer*. 2002;2(5):373–82.
16. O’Rourke MA, Ellison MV, Murray LJ, Moran M, James J, Anderson LA. Human papillomavirus related head and neck cancer survival: a systematic review and meta-analysis. *Oral Oncol*. 2012;48(12):1191–201.
17. D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, et al. Case-control study of human papillomavirus and oropharyngeal cancer. *N Engl J Med*. 2007;356(19):1944–56.
18. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. *Gut*. 2001;49(3):347–53.
19. Cavaleiro-Pinto M, Peleteiro B, Lunet N, Barros H. Helicobacter pylori infection and gastric cardia cancer: systematic review and meta-analysis. *Cancer Causes Control*. 2011;22(3):375–87.
20. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. *Int J Cancer*. 2009;124(7):1626–36.
21. Xuyu Z, Jiqian F. The application of Gibbs sampling in meta-analysis for case-control studies of HBV, HCV and dual infection in primary hepatocellular carcinoma. *Acad J SUMS*. 2002;23:165–9.
22. Shin HR, Oh JK, Lim MK, Shin A, Kong HJ, Jung KW, et al. Descriptive epidemiology of cholangiocarcinoma and clonorchiasis in Korea. *J Korean Med Sci*. 2010;25(7):1011–6.
23. Li M, Li J, Li P, Li H, Su T, Zhu R, et al. Hepatitis B virus infection increases the risk of cholangiocarcinoma: a meta-analysis and systematic review. *J Gastroenterol Hepatol*. 2012;27(10):1561–8.
24. Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: A case-control study. *Gastroenterology*. 2005;128(3):620–6.
25. Haswell-Elkins MR, Mairiang E, Mairiang P, Chaiyakum J, Chamadol N, Loapaiboon V, et al. Cross-sectional study of Opisthorchis viverrini infection and cholangiocarcinoma in communities within a high-risk area in northeast Thailand. *Int J Cancer*. 1994;59(4):505–9.
26. Gallagher B, Wang Z, Schymura MJ, Kahn A, Fordyce EJ. Cancer incidence in New York State acquired immunodeficiency syndrome patients. *Am J Epidemiol*. 2001;154(6):544–56.
27. Dal Maso L, Franceschi S. Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies. *Cancer Epidemiol Biomarkers Prev*. 2006;15(11):2078–85.
28. Carpenter LM, Newton R, Casabonne D, Ziegler J, Mbulaiteye S, Mbsidde E, et al. Antibodies against malaria and Epstein-Barr virus in childhood Burkitt lymphoma: a case-control study in Uganda. *Int J Cancer*. 2008;122(6):1319–23.
29. Shin HR, Lee DH, Herrero R, Smith JS, Vaccarella S, Hong SH, et al. Prevalence of human papillomavirus infection in women in Busan, South Korea. *Int J Cancer*. 2003;103(3):413–21.
30. Kim JH, Kim HY, Kim NY, Kim SW, Kim JG, Kim JJ, et al. Seroepidemiological study of Helicobacter pylori infection in asymptomatic people in South Korea. *J Gastroenterol Hepatol*. 2001;16(9):969–75.
31. Shin HR, Hwang SY, Nam CM. The prevalence of hepatitis C virus infection in Korea: pooled analysis. *J Korean Med Sci*. 2005;20(6):985–8.
32. Zhao FH, Lewkowitz AK, Hu SY, Chen F, Li LY, Zhang QM, et al. Prevalence of human papillomavirus and cervical intraepithelial neoplasia in China: a pooled analysis of 17 population-based studies. *Int J Cancer*. 2012;131(12):2929–38.
33. Wandai Z, Falian H, Shudong X. Prevalence of Helicobacter pylori infection in China: The Team of Collaboration of Helicobacter pylori research in China. *Mod Dig Interv*. 2010;15(5):265–70.
34. Ministry of Health P. R. China & UNAIDS of task force in China. China’s AIDS prevention and control of joint assessment report in 2003. 2003.
35. Xia G, Liu C, Caoa H, Bp S, Zhan M, Sub C, et al. Prevalence of hepatitis B and C virus infections in the general Chinese population. Results from a nationwide cross-sectional seroepidemiologic study of hepatitis A, B, C, D, and E virus infections in China, 1992. *Int Hepatol Commun*. 1996;5(1):62–73.
36. Inoue M, Sakaguchi J, Sasagawa T, Tango M. The evaluation of human papillomavirus DNA testing in primary screening for cervical lesions in a large Japanese population. *Int J Gynecol Cancer*. 2006;16(3):1007–13.
37. Moriya T, Koyama T, Tanaka J, Mishiro S, Yoshizawa H. Epidemiology of hepatitis C virus in Japan. *Intervirology*. 1999;42(2–3):153–8.
38. UNAIDS Report on the Global AIDS Epidemic—2010 [Online]. Available: http://www.unaids.org/en/dataanalysis/knowyourepidemic/.
39. Yamaji Y, Mitsushima T, Ikuma H, Okamoto M, Yoshida H, Kawai T, et al. Weak response of helicobacter pylori antibody is high risk for gastric cancer: a cross-sectional study of 10 234 endoscoped Japanese. *Scand J Gastroenterol*. 2002;37(2):148–53.
40. Tanaka J, Kumagai J, Katayama K, Komiya Y, Mizui M, Yamana H, et al. Sex- and age-specific carriers of hepatitis B and C viruses in Japan estimated by the prevalence in the 3 485 648 first-time blood donors during 1995–2000. *Intervirology*. 2004;47(1):32–40.
41. Vet JDN, de Boer MA, van den Akker BE, Siregar B, Budiningsih S, Tyasmorowati D, et al. Prevalence of human papillomavirus in Indonesia: a population-based study in three regions. *Br J Cancer*. 2008;99(1):214–8.
42. Tokudome S, Sansuris Orsorito WD, Triningsih FX, Suzuki S, Hosono A, Triono T, et al. Helicobacter pylori infection appears essential for stomach carcinogenesis: observations in Semarang, Indonesia. *Cancer Sci*. 2005;96(12):873–5.
43. Tokudome S, Triningsih FX, Ananta I, Suzuki S, Kuriki K, Akasaka S, et al. Rare infection as a factor for the very low stomach cancer incidence in Yogyakarta, Indonesia. *Cancer Lett*. 2005;219(1):57–61.
44. Hospital CM, Control D, Sulaiman HA, Julitasari, Sie A, Rustam
54. Dong EJ, Noviani R, Noor MR, Ngelangel CA, Chien RN, et al. Chronic hepatitis B virus infection in Asia, Australia and Egypt. Liver Int. 2008;28(4):525.

55. Thu T, Hoang H, Bengtsson C, Phung DC,Navigation B, et al. Hepatitis C virus infection in the Philippines, Thailand and Vietnam. Vaccine. 2008;26 Suppl 12:M71–9.

56. Cortes MC, Yamakawa A, Casingal CR, Fajardo LS, Juan ML, De Guzman BB, et al. Diversity of the cagA gene of Helicobacter pylori strains from patients with gastroduodenal diseases in the Philippines. FEMS Immunol Med Microbiol. 2010;60(1):90–7.

57. Yanase Y, Ohida T, Kaneita Y, Agdamag DM, Leao PS, Gill CJ. The prevalence of HIV, HBV and HCV among Filipino blood donors and overseas work visa applicants. Bull World Health Organ. 2007;85(2):131–7.

58. Arguillas MO, Domingo EO, Tsuda F, Mayumi M, Suzuki H. Seroepidemiology of hepatitis C virus infection in the Philippines: a preliminary study and comparison with hepatitis B virus infection among blood donors, medical personnel, and patient groups in Davao, Philippines. Gastroenterol Jpn. 1991;26 Suppl 3:170–5.

59. Sukvirach S, Smith JS, Tunsakul S, Munoz N, Kesararat V, Arguillas MO, Domingo EO, Tsuda F, Mayumi M, Suzuki H. Seroepidemiology of hepatitis C virus infection in the Philippines, Thailand and Vietnam. J Gastroenterol Hepatol. 2000;15(12):1356–61.

60. Rahman M, Sattar H, Rashid HA, Mollah AS. Seroprevalence of cervical human papilloma virus infection in a village. Bangladesh Medical Research Council Bulletin. 1997;23(2):38–41.

61. Sankaranarayanan R, Chatterji R, Shastri SS, Wesley RS, Basu P, Mahe C, et al. Accuracy of human papillomavirus testing in primary screening of cervical neoplasia: results from a multicenter study in India. Int J Cancer. 2004;112(2):341–7.

62. Graham DY, Adam E, Reddy GT, Agarwal JP, Agarwal R, Evans DJ Jr, et al. Seroepidemiology of Helicobacter pylori infection in India. Comparison of developing and developed countries. Dig Dis Sci. 1993;36(8):1084–8.

63. Nanu A, Sharma SP, Chatterjee K, Jyoti P. Markers for transfusion-transmissible infections in north Indian voluntary and replacement blood donors: prevalence and trends 1989–1996. Vox Sang. 1997;73(2):70–3.

64. Tandon BN, Acharya SK, Tandon A. Epidemiology of hepatitis B virus infection in India. Gut. 1996;38 Suppl 2:556–9.

65. Khorasanizadeh F, Hassanoj L, Khaksar N, Mohammad Taheri S, Marzaban M, Rashidi BH, et al. Epidemiology of cervical cancer and human papilloma virus infection among Iranian women—analyses of national data and systematic review of the literature. Gynecol Oncol. 2013;128(2):277–81.

66. Jafarzadeh A, Rezyati MT, Nemati M. Specific serum immunoglobulin G to H pylori and CagA in healthy children and adults (south-east of Iran). World J Gastroenterol. 2007;13(22):3117–21.

67. Merat S, Rezvan H, Nouria M, Jafari E, Abolghasemi H, Radmard AR, et al. Seroprevalence of hepatitis C virus: the first population-based study from Iran. Int J Infect Dis. 2010;14 Suppl 3:e113–6.

68. Zali MR, Mohammad K, Noorbala AA, Noorimayer B, Shahraz S. Rate of hepatitis B seropositivity following mass vaccination in the Islamic Republic of Iran. East Mediterr Health J. 2005;11(1–2):62–7.

69. Raza SA, Franceschi S, Pallardy S, Malik FR, Avan BI, Zafar A, et al. Human papillomavirus infection in women with and without cervical cancer in Karachi, Pakistan. Br J Cancer. 2010;102(11):1657–60.

70. Rasheed F, Ahmad T, Bilal R. Frequency of Helicobacter pylori infection using 13C-UBT in asymptomatic individuals of Karachi, Islamabad, Pakistan. J Coll Physicians Surg Pak. 2011;21(6):379–81.

71. Umair M, Bushra HT, Ahmad M, Data A, Ahmad M, Khurram M, et al. Hepatitis C in Pakistan: a review of available data. Hepat Mon. 2010;10(3):205–14.

72. Karachi, 5% of Pakistan population has hepatitis B. In: A seminar on hepatitis B, 2001.

73. Ozcan ES, Taskin S, Ortaç F. High-risk human papilloma virus prevalence and its relation with abnormal cervical cytology among Turkish women. J Obstet Gynaecol. 2011;31(7):656–8.

74. Us D, Hasçelik G. Seroprevalence of Helicobacter pylori infection in an Asymptomatic Turkish population. J Infect. 1998;37(2):148–50.

75. Thomas DL, Mahley RW, Badur S, Palaoglu E, Quinn TC. The epidemiology of hepatitis C in Turkey. Infection. 1994;22(6):
76. Kuru U, Senli S, Türel L, Kuru N, Başkent A, Ulucakli O. Age-specific seroprevalence of hepatitis B virus infection. Turk J Pediatr. 1995;37(4):331–8.
77. Bondagji NS, Gazzaz FS, Sait K, Abdullah L. Prevalence of high-risk human papillomavirus infections in healthy Saudi women attending gynecologic clinics in the western region of Saudi Arabia. Ann Saudi Med. 2013;33(1):13–7.
78. Lunet N, Barros H. Helicobacter pylori infection and gastric cancer: facing the enigmas. Int J Cancer. 2003;106(6):953–60.
79. Mahaba H, el-Tayeb A-K, Elbaz H. The prevalence of antibodies to hepatitis C virus in Hail region, Saudi Arabia. J Egypt Public Health Assoc. 1999;74(1–2):69–80.
80. Bashawri LA, Fawaz NA, Ahmad MS, Qadi AA, Almawi WY. Prevalence of seromarkers of HBV and HCV among blood donors in eastern Saudi Arabia, 1998–2001. Clin Lab Haematol. 2004;26(3):225–8.
81. Mammas IN, Sourvinos G, Zaravinos A, Spandidos DA. Vaccination against human papilloma virus (HPV): epidemiological evidence of HPV in non-genital cancers. Pathol Oncol Res. 2011;17(1):103–19.
82. GLOBOCAN 2008 [Online]. Available: http://globocan.iarc.fr/Default.aspx.
83. Miguel R, Vinita S, Ricardo I. HIV prevalence in the Asia Pacific Region: an ecological approach to inequalities. Heal Environ. 2012;1995:66–77.
84. Quinn TC. HIV series Global burden of the HIV pandemic. Lancet. 1996;348:99–106.
85. Xiang W, Shi JF, Li P, Wang JB, Xu LN, Wei WQ, et al. Estimation of cancer cases and deaths attributable to infection in China. Cancer Causes Control. 2011;22(8):1153–61.
86. Conteduca V, Sansonno D, Laulettas G, Russia S, Ingravallo G, Dammacco F. H. pylori infection and gastric cancer: state of the art (review). Int J Oncol. 2013;42(1):5–18.
87. Garland SM, Skinner SR, Brotherton JM. Adolescent and young adult HPV vaccination in Australia: achievements and challenges. Prev Med. 2011;53 Suppl 1:S29–35.
88. Lu B, Kumar A, Castellsague X, Giuliano AR. Efficacy and safety of prophylactic vaccines against cervical HPV infection and diseases among women: a systematic review & meta-analysis. BMC Infect Dis. 2011;11(1):13.
89. Tabrizi SN, Brotherton JM, Kaldor JM, Skinner SR, Cummins E, Liu B, et al. Fall in human papillomavirus prevalence following a national vaccination program. J Infect Dis. 2012;206(11):1645–51.
90. Brotherton JM, Fridman M, May CL, Chappell G, Saville AM, Gertig DM. Early effect of the HPV vaccination programme on cervical abnormalities in Victoria, Australia: an ecological study. Lancet. 2011;377(9783):2085–92.
91. Ni YH, Huang LM, Chang MH, Yen CJ, Lu CY, You SL, et al. Two decades of universal hepatitis B vaccination in taiwan: impact and implication for future strategies. Gastroenterology. 2007;132(4):1287–93.
92. Conlan JV, Sripa B, Attwood S, Newton PN. A review of parasitic zoonoses in a changing Southeast Asia. Vet Parasitol. 2011;182(1):22–40.
