An overview of the Dactylosomatidae (Apicomplexa: Adeleorina: Dactylosomatidae), with the description of Dactylosoma kermiti n. sp. parasitising Ptychadena anchietae and Sclerophrys gutturalis from South Africa

Edward C. Netherlandsa,b,c,*, Courtney A. Cooka, Louis H. Du Preezb,d, Maarten P.M. Vanhovee,f,g,h, Luc Brendoncka,c, Nico J. Smita

a Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
b African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
c Animal Ecology, Global Change and Sustainable Development, University of Leuven, Charles Debériotstraat 32, B-3000, Leuven, Belgium
d South African Institute for Aquatic Biodiversity, Somerset Street, Grahamstown, 6140, South Africa
e Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxology, Agoralaan Gebouw D, B-3590, Diepenbeek, Belgium
f Zoology Unit, Finnish Museum of Natural History, P.O.Box 17, FI-00014, University of Helsinki, Helsinki, Finland
g Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
h Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Debériotstraat 32, B-3000, Leuven, Belgium

\begin{abstract}
Haemogregarine (Apicomplexa: Adeleorina) blood parasites are commonly reported from anuran hosts. Dactylosomatidae (Jakowska and Nigrelli, 1955) is a group of haemogregarines comprising Dactylosoma Labbé, 1894 and Babesiosoma Jakowska and Nigrelli, 1956. Currently Dactylosoma and Babesiosoma contain five recognised species each. In the current study, a total of 643 anurans, comprising 38 species, 20 genera, and 13 families were collected from South Africa (n = 618) and Belgium (n = 25), and their blood screened for the presence of dactylosomatid parasites. Three anuran species were found infected namely, Ptychadena anchietae (Bocage, 1868) and Sclerophrys gutturalis (Power, 1927) from South Africa, and Pelophylax lessonae (Cameroan, 1882) from Belgium. Based on morphological characteristics, morphometrics, and molecular results a new dactylosomatid, Dactylosoma kermiti n. sp. is described from Pty. anchietae and Scl. gutturalis. The species of Dactylosoma isolated from Pel. lessonae could not be identified at species level. Phylogenetic analysis shows species of Dactylosoma infecting anurans as a monophyletic group separate from the other haemogregarine groups. Additionally, the mosquitoes Uranotaenia (Pseudoficalbia) moshonensis Theobald, 1901 and U. (Pfc.) montana Ingram and De Meillon, 1927 were observed feeding on Scl. gutturalis in situ and possible dividing stages of this new parasite were observed in the mosquitoes. This study is the first to describe a dactylosomatid parasite based on morphological and molecular data from Africa as well as observe potential stages in possible dipteran vectors.

1. Introduction

Intracellular haemogregarine blood parasites are a diverse group of adelorinid coccidia (Apicomplexa: Adeleorina). These blood parasites are currently distributed among four families, namely Dactylosomatidae Jakowska and Nigrelli, 1955, Haemogregarinidae Léger, 1911, Hepatozoidae Miller, 1908, and Karyolysidae Labbé, 1894. The discovery of the first intraerythrocytic blood parasite was by Chaussat (1850) who reported on an unidentified parasite in the blood of frogs from Europe. Later Vulpius (1854) and Lankester (1871) provided information on similar frog blood parasites. These findings, together with the discovery of malarial parasites by Laveran (1881), are considered to have laid the foundation of our understanding of Apicomplexa today (see Jakowska and Nigrelli, 1955; Levine, 1971; Barta, 1991). The Dactylosomatidae is a small group of apicomplexan haemogregarines that currently comprises Dactylosoma Labbé 1894 and Babesiosoma Jakowska and Nigrelli, 1956. The family was initially named Dactylosomidae, but Becker (1970) later amended the name to

\end{abstract}
Dactylosomatidae. According to Barta (1991), the taxonomic affinities of members of this family have been uncertain since their original discovery. They were often placed within genera now considered *in certae sedis* (Barta, 1991). This uncertain taxonomic placement may be the reason why, until recently, information on the biology of these parasites, beyond light microscopic observations in the vertebrate host, was non-existent (Boulard et al., 1982; Barta and Desser, 1986; Barta, 1989, 1991). To date, the life cycles and transmission mechanisms of only two species have been elucidated, namely, *Babesiosoma mariae* (Hoare, 1930) from a fish host and leech vector (Negm-Eldin, 1998), and *Babesiosoma stableri* Schmittner and McGhee, 1961 from a frog host and leech vector (Barta and Desser, 1989). Light microscopy constitutes the majority of observations on dactylosomatids and still plays an important role in documenting the development and parasitaemia of the parasite in its host. Members of this family have to date been recorded only in organisms with prolonged water contact, namely amphibian or fish hosts and leech vectors. This study aims to review our current knowledge of dactylosomatid parasites and provide a foundation for future taxonomic work. This will be achieved through the following objectives: (1) detailed literature review on current knowledge of this group; (2) determining the species diversity and phylogenetic relationships of the dactylosomatid parasites observed in anurans from South Africa and Belgium; and (3) describe a new species using morphological and molecular data.

1.1. Morphological and ultrastructural classification

Before ultrastructural studies (Boulard et al., 1982; Barta and Desser, 1986; Barta, 1991), dactylosomatids were considered closely related to Haemoporida and Piroplasmodia (Levine, 1971, 1984). Similarly, the piroplasm *Anthemosoma garnhami* Landau, Boulard and Houzin, 1969 was first considered a member of the Dactylosomatidae (see Landau et al., 1969; Vivier and Petitprez, 1969; Levine, 1971; Boulard et al., 1982; Chavatte et al., 2018). Levine (1971) also included *Haemohormidium* Henry, 1910 and *Saproplasma* Du Toit, 1937 in this group. However, an ultrastructural study on *Dactylosoma ranarum* (Kruse, 1890) demonstrated typical apicomplexan structures, including a complete conoid, separating the genus *Dactylosoma* from the piroplasms and haemopors (Boulard et al., 1982). Dactylosomatids instead fit within Coccidia and were subsequently moved to the order Eucoccidiorida (syn. Eucoccidiida) by Boulard et al. (1982), where they have remained (Barta, 1991). However, *Babesiosoma* was still considered as a junior synonym of *Haemohormidium* (see Levine, 1971), and was later transferred to Haemohorimidiae Levine, 1884, a family erected by Levine (1884) for the “piroplasm-like” parasites *Haemohormidium* and *Saproplasma*. Later, Barta and Desser (1986) showed *B. stableri* to have ultrastructural features similar to *D. ranarum* as reported by Boulard et al. (1982), such as a parasitophorous vacuole, complete apical complex and a trilaminate pellicle. The shape of the merozoites with a large Golgi body associated with the nucleus and lipid inclusions with their conoid shape, size, distribution of the micronemes and rhoptries are also similar to *D. ranarum*, with the main difference being the number of merozoites produced (see Barta and Desser, 1986). Based on these observations *Babesiosoma* was resurrected and transferred back from Haemohorimidiae to Dactylosomatidae (see Barta and Desser, 1986; Barta, 1991).

1.2. Phylogenetic placement

Barta (1989) completed a phylogenetic analysis of the class *Sporozoaa* using phenotypic characters to infer evolutionary relationships. That study showed the piroplasms and adeleorinid or adeleid coccidia to form a monophyletic group, separate from the eimerid coccidia and haemoporsidia. These findings showed that members of the Dactylosomatidae exhibit characteristics similar between some adelid blood parasites and piroplasms, such as similar development and replication within intestinal epithelial cells of the definitive invertebrate vector instead of in the haemocoele (Barta, 1989). Furthermore, certain characters of dactylosomatids seem to be shared between various distantly and closely related blood inhabiting apicomplexan parasites. For example, intraerythrocytic development or asexual reproduction (exo-genic merogony and binary fission) is a feature shared with various highly derived haemogregarines (*Haemogregarina* Danilewsky, 1885 (sensu lato) and Cyrillia Lainson, 1981), some piroplasms and all species of Haemoporia (see Smith et al., 2000). These findings were supported by related studies focused on phenotypic characters of haemogregarines (Siddall, 1995; Smith and Desser, 1997; Smith et al., 2000). The analysis of these characters grouped species that shared definitive hosts, implying that the definitive hosts of apicomplexan parasites may be an informative character as initially suggested by Barta (1989). O’Donoghue (2017) proposed that the environment in which the hosts occur could also play a role in these patterns, e.g. the parasites of terrestrial versus aquatic hosts and vectors forming monophyletic clades.

Although most molecular phylogenetic studies tend to support relationships inferred from morphological or life history data, the evolutionary relationships of apicomplexan parasites are far from straightforward (O’Donoghue, 2017). A recent molecular phylogenetic study by Barta et al. (2012) on adelorinid coccidia using 18S rDNA sequences, showed that monoxenous adenleinid coccidia and heteroxenous haemogregarines (Hepatozoidae, Karyolysidae, Haemogregarinidae, and Dactylosomatidae) form a highly supported monophyletic group, separate from Haemosporidia and Piroplasmida. However, Piroplasmodia appear to have closer affinities with the adenleinid coccidia (and haemogregarines) than with the eimerid coccidia, based on morphological or life history data, such as the shared developmental feature of syzygy (pairing of gamonts) in the definitive host (O’Donoghue, 2017). On the other hand, species from Haemogregarinidae and Dactylosomatidae that undergo sporogonic development within their definitive host or vector without the formation of a resistant oocyst structure were shown to cluster together (Barta et al., 2012). These groups may have lost the need for such resistant oocysts as they are transmitted via the bite of their vectors (Hayes et al., 2006; Barta et al., 2012), whereas parasites in the other haemogregarine families are transmitted via ingestion of the definitive host. It is clear that additional taxon sampling, life cycle elucidation and molecular phylogenetic analysis, using multiple or faster-evolving markers may provide better support for these scenarios.

1.3. The genus Dactylosoma

Members of the genus Dactylosoma have undergone a fair number of taxonomic disputes, with *D. ranarum* being the first described species of the genus. Although Lankester (1871) is often given credit for the discovery of *D. ranarum* (see Saunders, 1966; Levine, 1971; Barta et al., 1987; Barta, 1991; Davies and Johnston, 2000), it is clear from the original descriptions (Lankester, 1871, 1882) that he was working with a species of *Lankesterella* Labbé 1899 initially known as “Drepanidium” erected by Lankester (1871, 1882) however, this name had already been used by Ehrenberg (1861) for a ciliate). Nöller (1913) clarified that the first description of *D. ranarum* was by Kruse (1890) who believed he was describing additional developmental stages of the “Drepanidium” parasite that was *Lankesterella minima* (Chaussat, 1850). Kruse (1890) suggested that the parasite should be grouped with the haemogregarines, proposing the name *Haemogregarina ranarum* (Kruse, 1890) if the generic name “Drepanidium” was to fall away. Celi and San Felice (1891) also regarded it as *H. ranarum*, and Grassi and Feletti (1892) as a malarial parasite, due to its resemblance to human malaria. However, Labbé (1894) recognised differences between these genera, subsequently erecting *Dactylosoma* based on: (1) different elongated and amoeboid body forms; (2) areolar structure, vesicular nucleus and hyaline appearance of the protoplasm; (3) lack of pigment, but presence of retractile granules; (4) minimal effect on the host cell and nucleus;
and (5) merogony (“sporulation”) that gives rise to between 5 and 12 merozoites (“sporozoites”) grouped in a rosette- or fan-like appearance. Labbé (1894) named the species he placed in this newly erected genus, Dactylosoma splendens Labbé 1894, however, according to Wenyon (1926) who supported the designation of Nöller (1913), Kruse (1890) Labbé (1894) named the species he placed in this newly erected genus, Dactylosoma splendens Labbé 1894, however, according to Wenyon (1926) who supported the designation of Nöller (1913), Kruse (1890) Labbé (1894) named the species he placed in this newly erected genus, Dactylosoma splendens Labbé 1894, however, according to Wenyon (1926) who supported the designation of Nöller (1913), Kruse (1890). Dactylosoma ranarum (Kruse, 1890) syn. Dactylosoma splendens Labbé 1894. Dactylosoma ranarum (Kruse, 1890) was first used the species name “ranarum” for this parasite, thus Dactylosoma splendens was renamed Dactylosoma ranarum (Kruse, 1890).

Currently there are five recognised species of Dactylosoma, two of which infect fish hosts, namely Dactylosoma itharinorum Saunders, 1960, and Dactylosoma salvelini Fantamh, Porter and Richardson, 1942 (see Table 1). The remaining three species were described from anuran hosts. The first, Dactylosoma ranarum, is the most common and a cosmopolitan species reported from several anuran species. According to Barta (1991), this species has been recorded from Pelophylax kl. esculentus (Linnaeus, 1758) in France (Laveran, 1899), the Caucasus (Finkelstein, 1908), and Corsica (Boulard et al., 1982) and other European countries (France, 1908; Nöller, 1913). Furthermore, this species has also been recorded from Central and South America in Rhinella marina (Linnaeus, 1758) (see Walton, 1946) and in an unidentified toad from Pará, Brazil (Durham, 1902). Additionally, there have been reports in Africa from Pel. kl. esculentus collected in Constantine, Algeria (Billet, 1904), Pelophylax saharicus (Bouleguer in Hartert, 1913) from Morocco (Seabra-Babo et al., 2015), and Pelophylax ridibundus (Pallas, 1771) (syn. Rana ridibunda) from North Africa (Walton, 1947, 1949), all included within the Palearctic realm. From the Ethiopian realm, hosts include Hyperolius sp. (syn. Rappia marmorata), Amnirana galmensis (Dumeril and Bibron, 1841) (syn. Hylarana galmensis, Rana galmensis), Ptychadena oxyrhynchus (Smith, 1849) (syn. Rana oxyrhynchus), Ptychadena submascarenicaensis (Guibé and Lamotte, 1953) (syn. R. mascarenicaensis) and Sclerophrys regularis (Reuss, 1833) (syn. Amietophrynus regularis, Bufo regularis) from the Gambia (Dutton et al., 1907). It is clear from the illustrations provided that the latter hosts were infected with several different blood parasites, all grouped as “Drepanidita” (Dutton et al., 1907; Walton, 1948). Amnirana albolarbis (Hallowell, 1856) (syn. Hylarana albolarbis, Rana albolarbis) is reported as a host for D. ranarum from the Democratic Republic of the Congo (Schwet, 1930; Walton, 1947) in Central Africa, and Sci. gatturalis (syn. Sci. regularis) in South Africa (Fantham et al., 1942). The giant bullfrog, Pyxicephalus adiperous Tschudi, 1838 is also reported to be infected with D. ranarum from an unspecified location possibly in sub-Saharan Africa (Walton, 1947). Lastly, there are also reports from Sylvirana guentheri (Boulenger, 1882) from Tonkin, northern Vietnam (Mathis and Léger, 1911) and Yung Foh Lee, Yang Ming Shan, Taiwan (Manwell, 1964). The type host and type locality for D. ranarum is Pel. kl. esculentus and probably Naples, Italy, respectively (Kruse, 1890). The second species, Dactylosoma sylvatica Fantamh, Porter and Richardson, 1942 was described from the wood frog Lithobates sylvaticus (Le Conte, 1825) (syn. Rana sylvatica) collected in the Province of Quebec, Canada. The third species is Dactylosoma taiwanensis Manwell, 1964, described from the Alpine cricket frog, Fejervarya limnocharis (Gravenhorst, 1829) (syn. Rana limnocharis) in Hualien, Hua Lien Hsien, Taiwan (see Table 1). In addition to the summary of reported species of Dactylosoma mentioned above, Netherlands et al. (2015) reported on an unidentified species of Dactylosoma in Ptychadena anchietae (Bocage, 1868) from northern KwaZulu-Natal, South Africa.

Species previously regarded as members of Dactylosoma are Babesiosoma mariae (Hoare, 1930) and Babesiosoma jahni (Nigrelli, 1929). Two enigmatic species previously assigned to Dactylosoma, Dactylosoma tritonis (Fantham, 1905) and D. amaniae (Awerinzew, 1914) are more likely inclusions of rickettsial organisms according to Levine (1988) and Barta (1991). Dactylosoma clariae (Haiba, 1962) (syn. Cytauxzoon clariae and Haemohoridium clariae) and Dactylosoma tilapiae Imam, Marzouk, Hassan, Derhall and Itman, 1985 were considered by Negm-Eldin (1998) to not contain sufficient proof to document the validity of these species (Smit et al., 2003). Species of Dactylosoma are characterised by similar merogonic development as for species of Babesiosoma, except for the morphologically distinct primary and secondary meronts and a varying number of merozoites produced in these cycles. In summary, D. ranarum undergoes primary merogony when a merozoite enters the host frogs’ erythrocytes. Within erythrocytes, merozoites undergo simultaneous peripheral budding, transforming into a large multinucleate meront producing up to 16 merozoites arranged in the characteristic rosette- or hand-like nature for which the genus was named (see Labbé, 1894; Nöller, 1913; Barta, 1991; Lainson, 2007). Merozoites then separate and penetrate other erythrocytes, either repeating the cycle of primary merogony or

Table 1

Species	Host(s)	Distribution	Morphometrics (given in μm). * Measurements obtained from figure scale bar.	References
Dactylosoma kermiti n. sp.	Pschadema anchietae (Plain grass frog) and Sclerophrys gatturalis (Guttural toad)	KwaZulu-Natal, South Africa	Trophozoites: 5.3–7.7 × 2.6–4.4. Meronts: 8.3–12.2 × 5.1–8.0. Merozoites: 5.0–6.6 × 1.8–3.2. Meronts: 8.0 × 10.5. Merozoites: 1.9 × 2.4.	Current study
Dactylosoma Itharinorum Saunders, 1960	Lebthinus nebulosus (Spangled emperor), and L. lenjan (Pink ear emperor).	Waters of the Red Sea near Al Ghuraba, Egypt	Trophozoites: 3.0–4.0 × 1.5–2.0. Meronts: 10–15 × 2.0–3.0. Merozoites: 2.8 × 0.7. Meronts: 7.3 × 4.3. Merozoites: 4.3 × 1.3.	Saunders (1960)
Dactylosoma ranarum (Kruse, 1890) syn. Dactylosoma splendens Labbé 1894	Pelophylax kl. esculentus		Trophozoites: 7.0–8.5 × 6.3–7.6. Meronts: 7.4–11.5 × 7.0–9.3.	Kruse (1890); Barta et al. (1942)
Dactylosoma salvellini Fantamh, Porter and Richardson, 1942	Salvelinus fontinalis (Brook trout)	Province of Quebec, Canada	Trophozoites: 7.0 × 3.4.	Fantamh et al. (1942)
Dactylosoma sylvatica Fantamh, Porter and Richardson, 1942	Lithobates sylvatica (Wood frog).	Province of Quebec, Canada	Trophozoites: 4.4–7.8 × 1.5–3.0. Merozoites: 5.2 × 4.0.	Fantamh et al. (1942)
Dactylosoma taiwanensis Manwell, 1964	Fejervarya limnocharis (Alpine cricket frog)	Hualien, Hua Lien Hsien, Taiwan	Trophozoites: 3.9 × 7.3. * Merozoites: 6.9–7.9 × 5.6–7.3. * Gamonts: 11.8–13.6 × 2.1–2.9.	Manwell (1964)
initiating secondary merogony. The cycle is repeated in secondary merogony with meronts producing up to eight merozoites that either repeat secondary merogony or mature into gamonts (see Nöller, 1913; Barta et al., 1987). To date, no complete cycles for any species of Dactylosoma have been elucidated. However, Barta (1991) used frogs captured on the island of Corsica, France, to experimentally infect the North American glossiphoniid leech Deserodobella picta (Verrill, 1872), the natural vector of B. stableri (see below) with D. ranarum. In his study, although no observations on the development of gametes or zygote formation were made, D. ranarum was found to undergo sporogonic development within the intestinal epithelium of this experimentally infected leech host. The oocysts observed appear to be poly-sporoblastic producing 30 or more sporozoites by a process of exogenous budding directly into the cytoplasm of the epithelial cell (Barta, 1991). Other haematophagous invertebrates have also been considered as potential vectors. Nöller (1913) was the first to experimentally attempt transmission of D. ranarum using the glossiphoniid leech Hemiclipsis margmata (Müller, 1774), however, this was unsuccessful despite repeated attempts. Boulard et al. (1982) also tested the mosquito Culicoides nubeculosus (Meigen, 1830) as the potential vector of D. ranarum, but the experiments yielded no results. Although phlebotomine sand flies are the known vectors for different blood parasites of anurans (Feng and Chung, 1940; Desportes, 1942), none thus far have been tested as potential vectors for any species of Dactylosoma.

1.4. The genus Babesiosoma

More than 60 years after the naming of the genus Dactylosoma, the genus Babesiosoma was erected to incorporate the species that: (1) contain less granular but more vacuolated cytoplasm; (2) have a nucleus similar to species of Babesia, without a definite karyosome; (3) reproduce by schizogony or binary fission; and (4) do not produce more than four merozoites. Barta (1991) pointed out that certain of these characters, that, together, define Babesiosoma, are in general hard to unambiguously recognise. For example, (1) the less granular, more vacuolated cytoplasm indicates more amylopectin inclusions; (2) ultrastructurally a definite karyosome is present in the nuclei; and (3) the multiplication through binary fusion is dubious as this was probably confused with mature paired merozoites after merogonic duplication. However, the separation of the two genera is still considered justified as species of Babesiosoma produce only four merozoites during each merogonic cycle and double that number of sporozoites (eight) within oocysts in the definitive host (Barta, 1991) compared to species of Dactylosoma that produce up to 16 merozoites and double the number of sporozoites within their oocyst (Barta and Desser, 1986; Barta, 1991).

There are currently five recognised species of Babesiosoma (see Table 2), three described from fish hosts (Smit et al., 2003), namely Babesiosoma bettencourtii (França, 1908), Babesiosoma mariae (syn. Dactylosoma mariae; B. harnesi Paperna, 1981) and Babesiosoma tetragonis Becker and Katz, 1965. The remaining two species are described from North American amphibian hosts. Babesiosoma jahni (syn. Dactylosoma jahni) is the type species of the genus, described from the eastern newt Notophthalmus viridescens (Rafinesque, 1820). Babesiosoma stableri was described from the northern leopard frog Rana pipiens Schreber 1782 and was experimentally transmitted to Anaxyrus americanus Holbrook, 1836, A. woodhousei (Girard, 1854), A. terrestris (Bonnaterre, 1789), and Rana catesbeiana (Shaw, 1802). The latter ranid frog, R. septentrionalis (Baird, 1854), and R. clamitans (Laurenti, 1801) have all been found infected naturally in Ontario, Canada (Barta and Desser, 1984; see Table 2.

Species previously regarded as belonging to Babesiosoma, but formally transferred to other genera are Haemohorhamdiu allopili (Mackerras and Mackerras, 1925), Haemohorhamdiu phlikephali (Misra et al., 1969) (syn. Babesiosoma harenii, Babesiosoma batrachi,
Table 2
Recognised Babesiosoma species, host records, distribution, and morphometrics.

Species	Synonym (s)	Host(s)	Distribution	Morphometrics (given in μm)	References
Babesiosoma bettencourti (França, 1908)	Haemogregarina bettencourti França 1908; Desseria bettencourti Siddall 1995	Anguilla anguilla (European eel)	In the Ancora, Este, Felbos and Olivas river systems near Alcobaça, Portugal	Single meronts: 2.0–6.0 × 0.8–4.0. Meronts: 4.0–6.0 × 0.5–2.0 (Cruciform). Merozoits: 2.0–3.0 × 0.8–1.5. Gamonts: 3–10 × 1–4.	Cruz and Davies (1998)
Babesiosoma mariae (Hoare, 1930)	Dactylosoma mariae Hoare (1930); Babesiosoma hannesi Paperna 1981	Hoplochromis nubilus (Blue Victoria mouthbrooder), H. cinerus, H. serranus and H. sp. (Pisces: Teleostei); Oreochromis aequilus (Singida tilapia); Serranochromis angusticeps (Thinface largemouth tilapia); Mugil cephalus (Flathead grey mullet), Chelon richardsonii (South African mullet), and C. dameri (Grooved mullet)	Victoria Nyanza, near Entebbe, Uganda. Swartkops estuary, Port Elizabeth, South Africa	Merozoites: 2.8 × 0.9. Trophozoites: 3.8–5.7 × 1.9–5.0. Gamonts: 6.6–8.5 × 1.9–3.5 (Crescent); 5.7–6.6 × 3.8–5.7 (Rounded).	Hoare (1930); Paperna (1981)
Babesiosoma tetragonis Becker and Katz, 1965 (Holotype US National Museum, No. 60066)	Haemohormidium tetragonis (Becker and Katz, 1965) Laird and Bullock, 1969	Catostomus sp.	Shasta River, Montague, California, USA.		
Babesiosoma jahni (Nigrelli, 1929)	Haemohormidium jahni (Nigrelli, 1929) Laird and Bullock, 1969, D. John Nigrelli, 1929	Notophthalmus viridescens (Eastern newt)	Pennsylvania, USA		Nigrelli (1929); Jakowska and Nigrelli (1955)
Babesiosoma stableri Schmittner and McGhee, 1961	Haemohormidium stableri (Schmittner and McGhee, 1961) Laird and Bullock, 1969	Lithobates pipiens and experimental infection to Lithobates catesbeianus, Lithobates septentrionalis Lithobates clamitans, Bufo americanus, Bufo woodhousei, and Bufo terrestis	Purchased from Steinilhiber and Co. Inc., Wisconsin, North America.	Trophozoites: 6.6 × 2.3. Immature binucleate stage: 7.0 × 2.3. Meronts: 7.6 × 2.4 (Binucleate). Meronts: 6.8 × 2.4–3.8 (Tetranucleate). Merozoites: 3.6 × 1.7. Gamonts: 6.1–10.3 × 2.0–2.7.	Schmittner and McGhee (1961)
have undergone specialised training in ethical handling of aquatic ectotherms (NWU Ectothermic Vertebrates Handling and Ethics).

2.2. Light microscopy screening

Blood was collected and processed following standard methods (Netherlands et al., 2015, 2018). Stained blood smears were screened at 1000× using a Nikon Eclipse E100 compound microscope and images of parasite stages captured and measured using the imaging software NIS Elements Ver. 4.60. Trophozoites, primary meronts and merozoites, and secondary meronts, merozoites and gamonts were measured for the dactylosomatid species. Measurements comprised the parasite’s length and width. Measurements are in micrometres (µm), with the average, standard deviation and range given (in this order). Parasitaemia was calculated per 100 erythrocytes, with ~10^4 erythrocytes examined per blood smear.

2.3. DNA extraction, PCR amplification and phylogenetic analyses

Eleven (n = 11) ethanol-preserved blood samples from Ptychadena anchietae (n = 6), Sclerophrys gutturalis (n = 4), and Pel. lessonae (n = 1) parasitised with dactylosomatids were used for molecular work. Samples were selected based on a high intensity of dactylosomatid infection without other haemogregarine blood parasites present (i.e. Hepatozoon sp.) assessed using light microscopy screening. Genomic DNA extraction, polymerase chain reaction (PCR) amplification and sequencing of PCR products were all completed following the methods detailed in Netherlands et al. (2018). The software package Geneious R11 (http://www.geneious.com (Kearse et al., 2012)) was used to assemble and edit resultant sequence fragments. Species identity was verified against previously published sequences using the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990). Sequences obtained were deposited in the NCBI GenBank database under the following accession numbers [GenBank: MN879389 – MN879399].

Sequences for species of Hemolivia Petitm, Landau, Baccam and Lainson, 1990, Hepatozoon Miller, 1908, Karyolysus Labbé, 1894, Haemogregarina, and Dactylosoma (parasitising amphibian, avian, reptilian and mammalian hosts) were downloaded from GenBank and aligned to the sequences generated in this study. As in previous studies on haemogregarines, Adelina dimidiate Schneider, 1875, Adelina gyrdli Butaeva, 1996 [GenBank: DQ996835 – DQ996836] and Klossia helicina Schneider, 1875 [GenBank: HQ224955], from the suborder Adeleorina were selected as outgroup. Sequences were aligned using the Clustal W 2.1 alignment tool (Larkin et al., 2007) implemented within Geneious R11. GBlocks was used to remove any alignment gaps and ambiguities (Castresana, 2000; Talavera and Castresana, 2007). The final alignment contained 44 sequences at a length of 1637 nt. A model test was performed to determine the most suitable nucleotide substitution model, according to the Bayesian information criterion (BIC), using jModelTest 2.1.7 (Guindon and Gascuel, 2003; Darriba et al., 2012). The model with the best BIC score was the General Time Reversible (Tavaré, 1986) model, with a proportion of invariable sites (0.5100), and discrete gamma distribution (gamma shape 0.7840) (GTR + I + Γ). This optimal model of molecular evolution was used for all analyses. Phylogenetic relationships were inferred via Bayesian inference (BI) using MrBayes 3.2.2 (Huelsenbeck and Ronquist, 2001), and Maximum likelihood (ML) analysis using RAxML 7.2.8. (Stamatakis, 2014), implemented in Geneious R11. For the BI analysis, the Markov Chain Monte Carlo (MCMC) algorithm was run for 1 million generations, sampling every 100 generations. The first 25% of the trees were discarded as ‘burn-in’ with no ‘burn-in’ samples being retained. The Tracer tool (implemented from within Geneious R11) was used to assess convergence and the ‘burn-in’ period (Rambaut et al., 2018). For the ML analysis, nodal support was assessed using 1000 rapid bootstrap replicates. Furthermore, model-corrected (GTR + I + Γ) genetic distances for all sequences used in the phylogenetic analysis were also calculated in PAUP* version 4.0a152 (Swoford, 2002).

2.4. Vector and life history evaluation

During anuran sampling, care was taken to search for potential haematophagous invertebrate vectors. When possible, following sampling, screening and releasing of collected individuals, sites that were identified to harbour larger numbers of infected individuals were revisited. The behaviour of anurans from these localities was documented in situ, via sedentary observations with infrared light (not to disturb the host or vectors). Macro-photography was also used to capture images of any possible haematophagous invertebrates feeding on the anurans. Haematophagous invertebrates observed feeding were collected using an aspirator. Specimens were either fixed in 70% alcohol to be identified later or dissected (to separate relevant organs and body parts) and smeared on a glass slide to screen for possible blood parasite development. When possible, the individual anurans the haematophagous invertebrates were feeding on were also collected. In November 2017 and January 2018, while collecting Scl. gutturalis (Supplementary data S1) for a separate study on microfilarid nematodes (Netherlands et al., 2020) in Sodwana Bay, site SB-1 (S27.488591°; E32.664259°), mosquitoes were observed feeding on calling Scl. gutturalis and collected using an aspirator. Collected mosquitoes housed in plastic jars (350 ml) with moist cotton wool were transported back to the NWU lab, to keep humidity levels up and provide mosquitoes with a source of water when necessary. Mosquitoes were euthanised between 1 and 7 days post-infection (dpi) with carbon dioxide (CO2), identified using Jupp (1996) and dissected under a stereomicroscope using modified entomology pins. The mosquito’s intestines and fat bodies were subsequently smeared on a glass slide using the same methods as for the blood smear preparation.

3. Results

Based on the reviewed literature it is clear that biological information on this group of haemogregarines is lacking. As a result 643 anurans were screened during the present study for dactylosomatids, 71 were found parasitised with haemogregarines conforming morphologically to species of Dactylosoma. The diagnosis was initially based on the hyaline appearance of the different elongated and amoeboid forms occurring in erythrocytes. Overall, three host species were found to be infected based on morphological and molecular data: Pty. anchietae (61/160) and Scl. gutturalis (9/73) from South Africa; and, Pel. lessonae (1/14) from Belgium. This study shows the efficacy of combining traditional morphological and modern molecular techniques in gathering data for biologically complex parasite groups hoping to promote an increase of future work on dactylosomatids.

3.1. Species descriptions

Phylum: Apicomplexa Levine, 1970
Class: Conoidasida Levine, 1988
Subclass: Coccidiodia Leuckart, 1879
Order: Eucoccidiordia Léger, 1911
Suborder: Adeleorina Léger, 1911
Family: Dactylosomatidae (Jakowska and Nigrelli, 1955)
Genus: Dactylosoma Labbé, 1894

3.1.1. Dactylosoma kermiti Netherlands, Cook and Smit n. sp.
Type-host: Ptychadena anchietae (Bocage, 1868) (Anura: Ptychadenidae).
Other host: Sclerophrys gutturalis (Power, 1927) (Anura: Bufonidae).
Site in host: Peripheral blood.
Definitive host and vector: Unconfirmed. Observed possible vectors (see below).
Type-locality (P. anchietae): N’dumo Game Reserve, KZN, South
Africa (S26.926179°, E32.664259°).

Other localities (*Scl. gutturalis*): Sodwana, KZN, South Africa (S27.488591°, E32.664259°).

Type-material: Hapantotype, 1 × blood smear with a parasitaemia of 5.7% from *Pty. anchietae* deposited in the protozoan collection of the National Museum, Bloemfontein, South Africa, under accession number [NMB P 534]. Parahapantotype, 1 × blood smear: *Pty. anchietae*, parasitaemia of 2.0%, deposited in the protozoan collection of the National Museum, Bloemfontein, South Africa, under accession number [NMB P 535].

Additional material: 2 × blood smears: *Scl. gutturalis* with a parasitaemia of 0.2%, respectively, deposited in the Protozoan Collection of the National Museum, Bloemfontein, South Africa, under accession number [NMB P 536 - 537].

Representative DNA sequences: The sequence data specifically associated with *D. kermiti* (upon which the present biological description is based) have been submitted to GenBank and are as follows: Nuclear 18S rDNA (nu 18S) partial sequence: MN879389 – MN879398.

ZooBank registration: The Life Science Identifier (LSID) of the article is urn:lsid:zoobank.org:pub:F5CBE7E7-D57F-4854-A98B-A6D6ED6FD342. The LSID for *Dactylosoma kermiti* n. sp. is urn:lsid:zoobank.org:act:0D6D6A74-4136-4A9D-AE15-73FDFE12EBD3.

Etymology: The epithet is constructed in a positive form of a personal name. As the type host for this species is a frog, the species is named after the Muppet character, Kermit the Frog. Gender is male.

3.1.1.1. Description.

Two distinct stages of merogony present in erythrocytes and occasionally in thrombocytes and monocytes of both infected type host *Pty. anchietae* (*Fig. 1 A–L*) and other host *Scl. gutturalis* (*Fig. 2 A–L*). The first stage characterised by large meronts producing up to approximately 12 merozoites. The second stage meront, seemingly smaller, produces up to six merozoites. The general appearance of the cytoplasm is hyaline. Parasitaemia of infected individuals (n = 70) given in percentage (%) was 0.4 ± 1.2 (0.1–5.7). The distribution range in the type host *Pty. anchietae* was larger with infected individuals collected from various localities and habitats, as compared to *Scl. gutturalis* that were only found infected at Sodwana Bay (Supplementary data S1).

Primary merogony: young trophozoites (*Figs. 1 A, 2 A*), rare, observed within erythrocytes, ovoid crescent shape, largely non-stained except peripherally. Nuclei not clearly defined, located at blunt end (broader end of the parasite). Condensed chromatin staining deep magenta (*Fig. 1 A* arrowhead). Measuring 4.2 ± 0.6 (3.6–4.9) long × 2.9 ± 0.8 (1.8–3.7) wide (n = 4).

Trophozoites (*Fig. 1 B–D, 2 B*) elongated to oval, usually tapering towards one end, distinct vacuoles frequently present (*Fig. 1 B–D, 2 B* arrow). Small round dense nuclei located at blunt end, chromatin staining deep magenta (*Fig. 1 B–D*). Trophozoites measure 6.7 ± 2.2 (5.3–7.7) long × 3.5 ± 1.2 (2.6–4.4) wide (n = 20).

Young primary meronts (*Figs. 1E and 2C*) large ovoid to round shape, causing slight displacement of the host cell nucleus, distinct vacuoles frequently present (*Fig. 1 E* arrow). Multinucleate, nuclei division located peripherally, chromatin staining bright deep magenta (*Fig. 1 E* arrowhead). Young meronts measure 7.8 ± 0.9 (6.3–9.5) long × 5.7 ± 1.3 (4.0–8.3) wide (n = 20).

Primary meronts (*Fig. 1 F, G*) varying in form, round to crescent shape, causing slight distortion or displacement of the host cell or nucleus, cytoplasm staining whitish-purple. Multinucleate, normally showing more than 10 nuclei located peripherally (*Fig. 1 F, G* arrowhead), chromatin staining deep magenta. Meronts measure 9.9 ± 1.2 (8.3–12.2) long × 6.9 ± 0.8 (5.1–8.0) wide (n = 10).

Primary merozoites (*Fig. 1 H*) elongate to ovoid, hyaline cytoplasm staining pinkish-purple. Small round dense nuclei located at blunt end, chromatin staining deep magenta (*Fig. 1 H*, arrowhead). Merozoites measure 5.6 ± 0.5 (5.0–6.6) long × 2.7 ± 0.4 (1.8–3.2) wide (n = 16).

Secondary merozoites (*Fig. 2 F–G, L* arrowhead) elongate to ovoid, hyaline cytoplasm staining purple. Small round dense nuclei located closer to the centre, chromatin staining deep magenta (*Fig. 2 F–G, L* arrowhead). Secondary merozoites measure 4.8 ± 0.5 (4.2–5.5) long × 2.3 ± 0.5 (1.8–3.5) wide (n = 11).

Gamonts (*Fig. 1 J–L, 2 H–K*) elongate and slender, often tapering to one end. In some cases slight displacement of the host cell nucleus is visible. Immature forms largely non-staining, except peripherally - staining dark purple (*Fig. 1 J*). Intracellular mature gamont forms have a hyaline appearance, although nuclei not clearly defined, nucleoplasm conglomeration visible off centre closer to blunt side (*Fig. 1 K*). Extracellular forms often elongate with a slight curvature, nuclei visible...
Dactylosoma kermiti n. sp. from the guttural toad Sclerophrys gutturalis. (A–D) Primary merogony. (A) Young trophozoite. (B) Trophozoites. (C) Young meront. (D–L) Secondary merogony. (D) Young secondary meront. (E) Secondary meront. (F–G) Secondary merozoites. (H–I) Gamont. (K) Extracellular gamont. (L) Secondary meront in leukocyte. Arrowheads show condensed chromatin (D–H, L); arrows show vacuoles (B) and merozoites (F–G). All images captured from the deposited slides [NMB P 536 – 537]. Scale bar 10 μm.

3.1.1.2. Remarks. Dactylosoma kermiti n. sp. can be characterised by its slender trophozoite and small merozoite stages; the number of primary (up to 14) and secondary (up to six) merozoites produced by meronts; and the vacuolated trophozoite stages. This species can be distinguished from all currently recognised species of Dactylosoma from anuran hosts, namely D. ranarum, D. sylvatica, and D. taiwanensis, based on several morphometric and developmental characteristics. Morphologically this parasite conforms closest to D. sylvatica with measurements overlapping across trophozoite, meront, merozoite and gamont stages. However, only a single, most probably the secondary merogonic cycle is reported, with meronts only producing up to eight merozoites. In comparison the number of merozoites produced by D. kermiti n. sp. differs in primary and secondary merogony with up to 14 or six merozoites observed in the primary and secondary meronts, respectively. Although measurements do overlap, D. kermiti n. sp. seems to possess generally more slender trophozoite stages and smaller merozoite stages. Also, D. sylvatica is reported from the wood frog Lithobates sylvatica from Canada. Dactylosoma ranarum is apparently a cosmopolitan species recorded from several hosts across Europe, Central and South America, Africa, and Asia. Based on morphometric data from the original description of D. ranarum, as well as from a more recent ultrastructural study of this species’ morphology, several stages differ in size when compared to D. kermiti n. sp. (see Table 1). The most notable differences as compared to the relatively smooth to finely vacuolated cytoplasm of D. sylvatica and D. ranarum are the largely vacuolated trophozoite stages seen in D. kermiti n. sp. (Fig. 1 B, D–E; 2 B arrow). The third species, D. taiwanensis, described from the Alpine cricket frog Fejervarya limnocharis from Taiwan, is similar to D. kermiti n. sp. in that the trophozoite stages of both species contain vacuoles, the cytoplasm appears to be relatively coarse, and several measurements seem to overlap based on the scale provided. However, D. taiwanensis, similar to D. sylvatica, has meronts producing up to eight merozoites only. Likewise, the merozoites produced by D. taiwanensis are morphologically different from those of D. kermiti n. sp.: the nuclei seem to be larger and more prominent in comparison to the rest of the merozoites.

From the comparison of D. kermiti n. sp. to the currently recognised congeners infecting anurans, it is clear that these parasite species share close or overlapping morphology. Hence, since dactylosomatids possess several life stages in the vertebrate host, species can easily be mis-identified. For example, gamont stages between the different species have largely comparable morphology and morphometrics. However, after careful review, screening a large number of infected hosts, comparing the stages observed in different individuals from different sites and seasons, we propose D. kermiti n. sp. as a new species.

3.1.2. Dactylosoma sp. from Belgium

Host: Pelophylax lessonae (Camerano, 1882) (Anura: Ranidae).

Site in host: Peripheral blood.

Vector: Unknown.

Localities: Haacht, Belgium (N50.979434°, E4.659686°).

Voucher material – 1 × blood smear with a parasitaemia of 0.3% from Pel. kl. esculentus deposited in the protozoan collection of the National Museum, Leiden, The Netherlands, under accession number [NMB P 528].

Representative DNA sequences: The sequence data specifically associated with Dactylosoma sp. ex Pel. lessonae have been submitted to GenBank and are as follows: Nuclear 18S rDNA (nu 18S) partial sequence: MN879399.

3.1.2.1. Description. Two distinct stages of merogony present in erythrocytes of Pel. lessonae (Fig. 3 A–L). The first stage characterised by large dactylate meronts producing up to approximately 14 clear merozoites. The second stage meronts seemingly smaller, although no clear merozoites were observed. The cytoplasm has a hyaline appearance. Parasitaemia of infected individual (n = 1) was 0.3%.

Primary merogony: trophozoites (Fig. 3 A) elongated to oval, usually tapering towards one end, vacuoles in some cases present (Fig. 3 A arrow). Small round dense nuclei located at blunt end (Fig. 3 A arrowhead), chromatin staining bright pink to dark purple (Fig. 3 B arrowhead). Young primary meronts measure 9.4 ± 1.1 (8.0–10.9) long × 8.0 ± 0.5 (7.0–8.6) wide (n = 10).

Young primary meronts (Fig. 3 B) round to ovoid causing slight displacement of the host cell nucleus. Multinucleate, nuclear division located peripherally, chromatin staining bright pink to dark purple (Fig. 3 B arrowhead). Young meronts measure 9.4 ± 1.1 (8.0–10.9) long × 8.0 ± 0.5 (7.0–8.6) wide (n = 7).

Primary meronts (Fig. 3 C–G) vary in form, round to pear shape, in some cases causing slight distortion or displacement of the host cell or nucleus, cytoplasm staining whitish-purple. Mature forms have dactylate appearance (Fig. 3 F–G). Multinucleate, normally showing more than 10 nuclei (Fig. 3 C–F arrowhead), staining deep magenta. Meronts measure 11.3 ± 2.8 (8.4–16.5) long × 9.1 ± 1.9 (7.1–12.6) wide (n = 10).

Primary merozoites (Fig. 3 F–H) elongate to ovoid, hyaline cytoplasm staining white to bluish-purple. Dense nuclei chromatin centrally located, staining deep magenta (Fig. 3 F–H, arrowhead). Merozoites measure 4.0 ± 0.6 (3.1–5.0) long × 1.9 ± 0.6
3.1.2.2. Remarks

The species of *Dactylosoma* under study possesses several phenotypic characteristics mentioned in the original description of *Dactylosoma splendens*, later synonymised with *D. ranarum*, such as the round shape of the meronts and the number of primary and secondary merozoites produced (ranging approximately between 12 and five). However, this synonymisation happened over 100 years ago when knowledge of the close resemblance between different species was unknown. Unfortunately, no precise measurement data are available from the original description of *D. splendens*, which was described from *Pel. kl. esculentus* in Paris, France (Labbé, 1894). However, based on the information of this species of *Dactylosoma* provided above, the parasite cannot, based on the data collected in the current study, be identified to species level.

Furthermore, this species of *Dactylosoma* can be characterised by its round young meront stages, the dactylate appearance of the mature meront stages, and the hyaline appearance of the cytoplasm. Although the trophozoite and gamont stages of *Dactylosoma kermiti* n. sp. are superficially similar in morphology and morphometrics, primary and secondary meront stages are wider (primary meront: 5.1–8.0 vs 7.1–12.6; secondary meront: 4.4–6.9 vs 5.8–8.5) and secondary merozoites stages slightly shorter (4.2–5.5 vs 4.1) in the species of *Dactylosoma* from *Pel. lessonae*. This species also conforms closely to *D. sylvatica*, however, the species from the current study produces more than eight merozoites in primary merogony and less than eight in secondary merogony as compared to *D. sylvatica*. Also the secondary meront stages are wider as compared to *D. sylvatica* (secondary meront: 5.9–8.9 × 5.8–8.5 vs 5.2–4.0).

3.2. Phylogenetic analysis

Sequence fragments between 1677 and 1744 nt long were isolated from the dactylosomatids collected from *Ptychadena anchietae* (n = 7), *Sclerophrys gutturalis* (n = 3) and *Pelophylax lessonae* (n = 1). Species of *Dactylosoma* formed a highly supported clade branching basally among the ingroup taxa that was sister to a large clade of species of *Haemogregarina*, *Hemolivia*, *Hepatozoon* and *Karyolysus*. *Dactylosoma* species isolates from European anurans (Palearctic realm) and identified as *D. ranarum* and *Dactylosoma* sp. ex *Pel. lessonae* formed a highly supported clade with *D. kermiti* n. sp. from African anurans (Ethiopian realm) as the sister taxon. The *Haemogregarina* clade branched next and formed a sister group to a large clade of *Hemolivia*, *Hepatozoon* and *Karyolysus* species. Intraleukocytic species of *Hepatozoon* (*Hepatozoon* clade A) and species of *Karyolysus* together formed a clade sister to a clade comprising species of *Hemolivia* and intraerythrocytic species of *Hepatozoon* (*Hepatozoon* clade B).

Based on 1637 nt sequence comparisons of the 18S rRNA gene (Supplementary data S2), the model-corrected genetic distance between the species of *Dactylosoma*, ranged between 0.2 and 0.5%. The interspecific divergence between *D. ranarum* and *D. kermiti* n. sp. was 0.5% (Supplementary data S2), and 0.2% between *D. ranarum* and *Dactylosoma* sp. ex *Pel. lessonae*. Several other haemogregarines also have an interspecific divergence below 1%, namely *Hepatozoon* cf. *clamatae* [GenBank: HQ224963] and *Hepatozoon* cf. *catesbiana* [GenBank: HQ224954] with 0.3%; *Hepatozoon chinensis* Han, Wu, Dong, Zhu, Li, Zhao, Wu, Pei, Wang, Huang, 2015 [GenBank: KF939620] and *Hepatozoon* ayorgbor [GenBank: Votýpka et Modrý, 2007 [GenBank: EF157822] with 0.3%; *Hemolivia parvula* [Dias, 1953] [GenBank: KR069083] and *Hemolivia mauritanica* (Sergent and Sergent, 1904) [GenBank: KP992698] with 0.7% (Table S2).

3.3. Vector and life history evaluation

In the current study only phlebotomine sand flies, identified as species of *Sergentomyia* were observed feeding on *Pty. anchietae* and *Scl. gutturalis*. Mosquitoes identified as *U. (Pfc.) mashonaensis* and *U. (Pfc.) montana* were observed feeding on *Scl. gutturalis in situ* (Fig. 5 A–D). Unfortunately, although species of *Sergentomyia* were collected from localities with infected *Pty. anchietae*, observations were rare, and none were collected from infected hosts. In contrast several *U. (Pfc.) mashonaensis* and *U. (Pfc.) montana* were collected from *Scl. gutturalis*...
parasitised with *D. kermiti* n. sp.

A total of 68 mosquitoes were collected, of which 15 fed on a parasitised *Scl. gutturalis in situ* (parasitaemia 0.2 ± 0.2 (0.1–0.5) %). Intraerythrocytic and extracellular stages of *D. kermiti* n. sp. were seen in smears made from *Uranotaenia* (Pfc.) *mashonensis* and *U. (Pfc.) montana* between 1 and 7 dpi. After one dpi, several stages were observed in the gut contents of *U. (Pfc.) mashonensis* and *U. (Pfc.) montana*. Probable intra- and extracellular meront stages of *D. kermiti* n. sp. were observed with undigested erythrocytes (Fig. 6 A–B). Stages were elongated to oval, and in most cases, vacuoles were present (Fig. 6 A-B arrow). Nuclei chromatin stained deep magenta (Fig. 6 B arrowhead).

Within one dpi, free gamonts coupled in syzygy in the gut contents of the mosquitoes (Fig. 6 C–D). Merging of gametes was visible, with nuclei fusing into a large nucleus staining light pink (Fig. 6 D arrow), with condensed chromatin, most likely from the different gametes, staining deep magenta (Fig. 6 D arrowhead). Cytoplasm vacuolated and staining dark purple. Immature ookinete measure 10.4 ± 0.2 (10.2–10.5) long × 7.9 ± 1.3 (7.0–8.9) wide (n = 2). Subsequently, round ookinetes were formed, with a vacuolated cytoplasm staining dark purple (Fig. 6 E). Nucleus staining light pink (Fig. 6 E arrow) with condensed chromatin staining deep magenta (Fig. 6 E arrowhead). Ookinetes measured 11.6 ± 2.9 (8.5–15.9) long × 9.5 ± 4.0 (7.6–12.4) wide (n = 7), and developed into slightly larger immature oocysts (Fig. 6 F). Immature oocysts with a vacuolated cytoplasm staining dark purple, clearly visible nucleus staining light pink (Fig. 6 F arrow). Immature oocysts measure 16.2 long × 15.9 wide (n = 1).

Sporogony leading to the formation of at least six sporozoites was observed in the gut or haemocoele of the mosquito smears from six dpi (Fig. 6 G). Several free sporozoites were also observed at six dpi (Fig. 6 G). Free sporozoites elongate and broad; cytoplasm staining light purple, more or less with a centrally placed nucleus staining deep magenta (Fig. 6 H). One or two distinct vacuoles occurring either anterior or posterior to the nucleus, as well as deep-staining granules of various sizes. These sporozoites measure 12.7 ± 1.3 (10.5–14.2) long × 1.6 ± 0.2 (1.4–2.0) wide (n = 9). Also observed in the mosquitoes’ gut or haemocoele was the remains of a probable meront producing roughly ten immature merozoites (Fig. 6 J). Similar in shape and size to the secondary merogonic merozoites that occur in the peripheral blood of the vertebrate anuran host. Merozoites (Fig. 6 J arrow) elongate to ovoid, hyaline cytoplasm staining purple. Small round dense nuclei located closer to the centre, chromatin staining dark purple (Fig. 6 J arrowhead). Merozoites measure 5.9 ± 0.2 (5.6–6.2) long × 1.5 ± 0.1 (1.4–1.8) wide (n = 5).

In the gut or haemocoele of the mosquitoes, we observed a probable meront, producing approximately ten long and slender mature merozoites (Fig. 6 K). Mature merozoites similar in shape and size to extracellular gamont forms that occur in the vertebrate host. These forms are elongate often with a slight curvature, cytoplasm granulated staining dark purple. Nucleus visible, slightly off centre, staining light pink (Fig. 6 K arrow), in some cases condensed visible chromatin staining deep magenta (Fig. 6 K arrowhead). Mature merozoites measure 8.7 ± 3.0 (5.7–12.7) long × 3.0 ± 0.5 (2.2–3.8) wide (n = 9).

4.1. Parasite prevalence and host association

Interestingly *D. kermiti* n. sp. had a prevalence of 38% and 12% in the frog and toad hosts, respectively *Pty. anchietae* and *Scl. gutturalis*. The distribution range of *D. kermiti* n. sp. in *Pty. anchietae* was also larger as compared to infected *Scl. gutturalis* that were found infected only from Sodwana Bay (Supplementary data S1). Frogs belonging to *Ptychadena*, are known to harbour a range of different parasites, which could be due to their ability to populate different habitat types successfully, and to their feeding habits and behaviour (Du Preez and Kok, 1992). A higher prevalence of different blood parasites is also reported from *Pty. anchietae* as compared to other species within the study area (Netherlands et al., 2015). In the present study, the prevalence of *Dactyllosoma* was considerably higher as compared to the results of the anuran blood parasite survey of the same locality by Netherlands et al. (2015) in which 16.7% (13/78) of the *Pty. anchietae* screened were reported infected. These findings could be due to the severe droughts experienced in South Africa between 2015 and 2017 (Archer et al., 2017), affecting potential water-borne invertebrate vector numbers.

Parasitaemia of representatives of genera such as *Dactyllosoma* may be maintained or even potentially increase within the host without re-infection (due to their development within the vertebrate host; that is the parasite’s ability to multiply asexually in the peripheral blood), thus out-competing representatives of other blood parasite genera such as *Hepatozoon*, for which some species may need re-infection. This may be a possible explanation for the differences compared to the observations made by Netherlands et al. (2015), in which species of *Hepatozoon* were found to be the most prevalent blood parasite at the time, parasitising 39.7% (31/78) of the *Pty. anchietae* screened. These findings were in contrast to a more recent survey by Netherlands (2019) in the same area and on the same host, with species of *Dactyllosoma* recorded to have a higher overall prevalence than species of *Hepatozoon*. Indeed, certain haemogregarines such as *Hepatozoon ixo xo* Netherlands et al. (2014), seem to be able to maintain a constant and high parasitaemia over long periods without re-infection (Netherlands et al., 2014). According to Conradie et al. (2017), this could be due to the dense capsule surrounding this species. Thus species of *Hepatozoon* which are not encapsulated, like the species parasitising *Pty. anchietae* and *Hepatozoon theleri* (Laveran, 1905), may not be as ‘dormant’ or ‘maintain stable infection levels’ as *H. ixo xo* (see Conradie et al., 2017). However, the longevity of representatives of an infrapopulation of blood parasites, without re-infection, needs to be tested experimentally before conclusions can be made with certainty.

4.2. Phylogenetic analysis

The 18S rRNA gene is a well-used marker for a variety of apicomplexan parasites with large datasets available for members of *Adeleorina*. This gene contains conserved regions for a wide range of organisms, with scattered variable regions providing sufficient evolutionary information to infer close and distant phylogenetic relationships (Medlin et al., 1988). Nonetheless, the 18S rRNA gene has been shown to possess limited resolution between closely related species within *Adeleorina*. This gene contains conserved regions for a wide range of organisms, with scattered variable regions providing sufficient evolutionary information to infer close and distant phylogenetic relationships (Medlin et al., 1988). Nonetheless, the 18S rRNA gene has been shown to possess limited resolution between closely related species within *Adeleorina* (Barta et al., 2012). Thus, while this gene provides sufficient information on the phylogenetic relationships between different genera, it is less informative for species differentiation. Although closely related haemogregarines such as *H. clamatae* and *H. catesbianae* that have an interspecific divergence below 0.5% based on the 18S rRNA gene were confirmed as separate species based on comparison of the internal transcribed spacer 1 (ITS-1) region (Boulianne et al., 2007). On the other hand, mitochondrial DNA has been shown to provide better resolution for species-level diagnostics and molecular phylogenetics of the intestinal eimeriid coccidia and would be a good alternative for future studies (Ogedengbe et al., 2011).

As expected the species of *Dactyllosoma* from the present study and *D. ranarum* [GenBank: HQ224957] formed a well-supported clade,
distinct from the other genera of which sequences were available (Fig. 4). These three species can be separated based on specific phenotypic characters and the conservative 18S rRNA marker. Model-corrected interspecific divergence ranges between 0.2 and 0.5% (Supplementary data S2). Although the interspecific divergence value within other haemogregarine genera (Haemogregarina, Karyolysus, Hemolivia, and Hepatozoon) is low (1% and below), based on the sequence comparisons of the conservative 18S rRNA gene, it seems as if interspecific divergence between anuran dactylosomatids is particularly low. Hence, increased sampling of species of Dactylosoma, especially from fish hosts, will be an interesting comparison, confirming if this trend of low interspecific divergence based on the 18S rRNA gene is consistent among all dactylosomatids or only those from anuran hosts. Also apparent from the phylogenetic analysis is the polyphyletic placement of different species of Hepatozoon. Apart from in Hepatozoon clade A and clade B, species of Hepatozoon were also observed in the Karyolysus clade. The latter species were most likely misidentified as belonging to Hepatozoon. A new genus Bartazoon Karadjian, Chavatte and Landau (2015), was proposed for species belonging to Hepatozoon clade B. The new genus was suggested for species transmitted solely by haematophagous insects and to resolve the polyphyletic placement of the genus Hepatozoon (Karadjian et al., 2015). However, as pointed out by Maia et al. (2016), the type species of the genus, Hepatozoon perniciosum Miller, 1908 may belong to the newly proposed genus Bartazoon, as other rodent haemogregarine species do. Thus until molecular data from the type species is available for comparison, it is suggested to rather continue to refer to species from Hepatozoon clade B as Hepatozoon as opposed to Bartazoon (see Maia et al., 2016).

4.3. Life history and vector identification

Prior to the availability of molecular data for haemogregarines,
microscopic observations of peripheral blood stages, ultrastructural studies of different stages, and life cycle data were the primary methods to classify and distinguish between different haemogregarines (Bouillard et al., 1982; Barta and Desser, 1986; Barta, 1989, 1991). Currently, life cycle elucidation via the natural vectors is limited to only two species, B. mariae and B. stableri (Barta and Desser, 1989; Negm-Eldin, 1998). The only attempt to elucidate the life cycle of a species of Dactylosoma was when Barta (1991) used the natural leech vector of B. stableri, Des. picta, to transmit D. ranarum from infected frogs from Corsica, France. Due to these observations and the life cycle data available for members of Dactylosomatidae, these parasites were considered to be transmitted to new hosts only through leech vectors (Barta, 1991; Negm-Eldin, 1998).

In southern Africa, three species of leeches are known to be haematophagous on amphibians, namely Oosthuizobdella stuhlmanni (Blanchard, 1897), Marsupiobdella africana Goddard & Malan, 1912 and Hirudo michaelisi Augener, 1936. Of these leeches, M. africana is the smallest (12 mm) and is reported to feed on species of Xenopus exclusively. However, this species also exhibits a phoretic interaction with freshwater crabs (Badets and Du Preez, 2014). Oosthuizobdella stuhlmanni is the second largest (33 mm) species, reported feeding on various anurans. The largest is H. michaelisi (65 mm), which is not host-specific and feeds on amphibians, but also on mammals and fish, with immature leeches feeding on freshwater snails. In the present study, anurans were examined for the presence of leeches, however no leeches were detected. Although it is likely that leech species haematophagous on amphibians are found in northern KZN, it would appear that they are not typical and do not act as the vector of anuran blood parasites from this area. Considering the proportion of infected anurans (from this area) parasitised with species of Dactylosoma and Trypanosoma Gruby, 1843 (Netherlands et al., 2015; Netherlands, 2019), which are commonly transmitted by leech vectors (Bardsley and Harmsen, 1973; Rhoden and Bolek, 2012), these findings support the role of other possible vectors, such as dipterans, in the transmission of these parasites.

Phlebotomine sand flies are other haematophagous invertebrates that are known to transmit blood parasites and have been reported as the vectors for species of Trypanosoma, Leishmania (Borovsky 1898) and even microfilarial worms (Feng and Chung, 1940; Desportes, 1942). In Africa, phlebotomines reported to feed on amphibian hosts are species of Sergentomyia (Franca and Parrot, 1920) and Grassomyia Theodor 1958 (see Krüger, 2015; Kvitfe and Wagner, 2017). Species of Sergentomyia are the most widespread and diverse group of Phlebotominae in Africa. Although they are considered to primarily feed on reptiles (Kvitfe and Wagner, 2017), in the present study, species of Sergentomyia were observed feeding on Pty. anchietae and Scl. gutturalis. Although none of the species of Sergentomyia collected took blood meals from infected hosts, the localities from where these sand flies were collected did have Pty. anchietae parasitised with Dactylosoma kermiti n. sp. Thus, even though no direct link was made between species of Sergentomyia collected in the current study and Dactylosoma kermiti n. sp., these dipterans remain a possible vector for this parasite.

Mosquitoes are known to be the vectors of amphibian haemogregarines, particularly for representatives of Hepatozoon Miller, 1908 (Desser et al., 1995; Smith, 1996). Even though no mosquitoes have been reported as potential vectors for representatives of Dactylosoma, the mosquito C. nubeculosus was experimentally tested by Bouillard et al. (1982) as the vector for D. ranarum without success. Uranotaenia Lynch Arribalzaga 1891 is relatively species-rich with approximately 256 species occurring in nearly all zoogeographical regions (Coetzee, 2017).
Several members of the genus are known to feed selectively on amphibians (Cupp et al., 2004), with some species reported being attracted by the calls of their host species (Borkent and Belton, 2006; Camp et al., 2018). In the current study several U. (Pfc.) mashaonensis and U. (Pfc.) montana were collected from a calling Scl. gutturalis parasitised with D. kermiti n. sp. in situ. To determine if these mosquito species could serve as potential vectors of this parasite, collected blood-fed mosquitoes were kept alive to be screened for any form of development of Dactylosoma kermiti n. sp.

In only one dpi, several stages of development, from gamonts coupled in syzygy to possible immature oocysts, were observed in the gut contents of the screened mosquitoes. At six dpi several possible sporozoites and merozoites stages, and even a probable meront were observed in mosquito gut smears. Although this was only a preliminary observation with minimal data, the fact that development of a haemogregarine, most likely Dactylosoma kermiti n. sp., was reported in these hosts also suggests that dactylosomatids may not solely be transmitted by leech vectors. Furthermore, it is interesting that stages of development were only found in the gut contents or haemocoel of infected mosquitoes. This possibly indicates that Dactylosoma kermiti n. sp. is transmitted through ingestion (new host consuming infected vector) rather than through bite by an infected vector. This is similar as for Haemogregarina bigemina Laveran and Mesnil, 1901, which is probably transmitted via the ingestion of infected gnatidiis by fishes, rather than through feeding of the gnatidi on fish hosts (Davies and Smit, 2001). If this is the case, then the hypothesis that the closely related families Haemogregarinidae and Dactylosomatidae evolved to be transmitted via the bite of their definitive vectors is challenged (see Barta et al., 2012). However, resistant and thick-walled oocysts that are present in species of Hepatozoon that are known to be transmitted through ingestion, were not observed in the examined mosquitoes. Thus, although these mosquitoes are most likely the vectors of this dactylosomatid parasite, based on the development of different stages and the lack of other haematophagous invertebrates found feeding on Scl. gutturalis from this locality, more data on the process and site of development is required before any definite conclusions can be made on the life history of Dactylosoma kermiti n. sp.

Also if mosquitoes are the vectors of Dactylosoma kermiti n. sp., then its phylogenetic placement with D. ranarum (possibly leech-transmitted) based on the 18S rRNA gene contradicts the hypothesis that these parasites adapted within their invertebrate hosts to become vector transmitted rather than evolving with the vertebrate host (see Barta et al., 2012; O’Donoghue, 2017).

4.4. Concluding remarks

This study highlights the importance of screening and comparing anurans from different genera and even families, to not only increase the known biodiversity of these parasites, but also the range of hosts that they infect. The importance of using different techniques in the description of new species or identification of already existing species is also emphasised. Only D. kermiti n. sp. was found parasitising anurans from South Africa, whereas an unidentified species of Dactylosoma sp. isolated from Pel. lessonae (from the current study) and D. ranarum were found parasitising European anurans.

Future work should include the use of faster evolving markers to help increase phylogenetic resolution within Dactylosoma. Furthermore, more rigorous life-history experimental work, testing the role of U. (Pfc.) mashaonensis and U. (Pfc.) montana in the transmission development of D. kermiti n. sp. to Scl. gutturalis, should be done. These studies may even be extended to determine the possibility of phlebotomine sand flies, specifically belonging to Sergentomyia, as potential vectors.

Declaration of competing interest

None.

Acknowledgements

We are grateful to Prof M. Coetzee and Dr G.M. Kjive for assisting in the identification of the dipteran species, W. Pretorius, J.E. Quinn, F.M. Phaka, J. Snoeks and S. Deneve for help in the field, P. and C. van Jaarsveld, for accommodation and site identification, and to Prof. T. Huys, Prof. J. Snoeks, Prof. T. Artois and, Prof. F. Volckaert for comments on a previous version of this manuscript. We are also grateful to the two reviewers for comments and suggestions that have contributed to the final version of this manuscript. Ezemvelo KZN Wildlife, South Africa and Agentschap voor Natuur en Bos, Belgium are thanked for research permits. This paper forms part of a VLIR-UOS TEAM funded project (ZEIN21013PR396), co-funded by the National Research Foundation of South Africa (NRF project CPR160429163437, grant 105979, NJ Smit, PI). The financial assistance of the NRF towards ECN supported by the DAAD-NRF doctoral scholarship (Grant UID: 108803), and the VLIR-OUS university scholarship (ID 0620854/Contract 000000076310), is acknowledged. Elsevier is thanked for the early career grant and its contribution to the open access publishing of this manuscript. Opinions expressed, and conclusions arrived at, are those of the authors and not necessarily those of the funding bodies. This is contribution number #362 of the North-West University (NWU) Water Research Group.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijppaw.2019.12.006.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

Archer, E.R.M., Landman, W.A., Tadross, M.A., Malherbe, J., Weepener, H., Maluleke, P., Marumbwa, F.M., 2017. Understanding the evolution of the 2014-2016 summer rainfall seasons in southern Africa: key lessons. Clim. Risk Manag. 16, 22–28.

Awerinzew, S.V., 1914. Beiträge zur Morphologie und Entwicklung geschichte der Protozoen von Deutsch-Ost-Afrika. J. Microbiol. 1, 1–10.

Badets, M., Du Preez, L., 2014. Phoretic interaction between the kangaroo leech Batracobdella picta (Hirudinea: Glossiphoniidae) and the cape river crab Potamonautes perlatus (Decapoda: Potamonautidae). Int. J. Parasitol. Parasites Wildl. 3, 6–11.

Bartke, C.D., 1970. Haematozoa of fishes, with emphasis on North American records. In: Babesiosoma stableri Barta, J.R., Desser, S.S., 1989. Development of Babesiosoma stableri (Apicomplexa, Dactylosomatidae) in frogs from Algonquin Park, Ontario. J. Wildl. Dis. 20, 180–189.

Barta, J.R., Boulard, V., Deser, S.S., 1987. Ultrastructural observations on secondary merogony and gametogony of Dactylosoma ranarum Labbe, 1894 (Eucoccidiid; Apicomplexa). J. Protozool. 33, 1019–1029.

Barta, J.R., Deser, S.S., 1989. Development of Babesiosoma stableri (Dactylosomatidae; Adeleida; Apicomplexa) in its leech vector (Batracobdella picta) and the relationship of the dactylosomatids to the pirolamids of higher vertebrates. J. Protozool. 36, 241–253.

Barta, J.R., Ogedengbe, J.D., Martin, D.S., Smith, T.G., 2012. Phylogenetic analysis of the class Sporozoea (phyllum Apicomplexa) in its leech vector (Batracobdella picta) and the relationship of the dactylosomatids to the pirolamids of higher vertebrates. J. Protozool. 36, 241–253.

Becker, C.D., 1970. Haematozoa of fishes, with emphasis on North American records. In: Snieszko, S.F. (Ed.), A Symposium on Diseases of Fishes and Shellfishes. American Fisheries Society, Washington, DC, pp. 82–100.

Becker, C.D., Katz, M., 1965. Babesiosoma tzagomiz n. sp. (Sporozoa: Dactylosomatidae) from a California teleost. J. Protozool. 12, 189–193.

Billot, A., 1904. Sur le Drepanidium in situ. J. Protozool. 35, 359–368.

Billet, A., 1904. Sur le Drepanidium in situ. J. Protozool. 35, 359–368.

Borkent, A., Belton, P., 2006. Attraction of female Uranotaenia lowi (Diptera: Culicidae)
Netherlands, E.C., Svitin, R., Cook, C.A., Smit, N.J., Brendonck, L., Vanboeke, M.P.M., Du Preez, L.H., 2020. *Neofoleyellides boerewors* n. gen. n. sp. (Nematoda: Onchocercidae) parasitising common toads and mosquito vectors: morphology, life history, experimental transmission and host-vector interaction in situ. Int. J. Parasitol. In press.

Nigrelli, R., 1929. *Dactylosoma jahni* sp. nov., a sporozoan parasite of the erythrocytes and erythroplastids of the newt (*Triturus viridescens*). J. Parasitol. 16, 102.

Nöller, W., 1913. Die Blutprotozoen des Wasserfrosches und ihre Übertragung. Arch. Protistenkd. 31, 169–240.

O'Donoghue, P., 2017. Haemoprotozoa: making biological sense of molecular phylogenies. Int. J. Parasitol. Parasites Wildl. 6, 241–256.

Ogedengbe, J.D., Hanner, R.H., Barta, J.R., 2011. DNA barcoding identifies *Eimeria* species and contributes to the phylogenetics of coccidian parasites (*Eimeriorina, Apicomplexa, Alveolata*). Int. J. Parasitol. 41, 565–585.

Paperna, I., 1981. *Dactylosoma hannesi* n. sp. (*Dactylosomatidae, Piroplasmia*) found in the blood of grey mullets (*Mugilidae*) from South Africa. J. Protozool. 28, 486–491.

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarisation in Bayesian phylogenetics using *Tracer 1.7*. Syst. Biol. 67, 901–904.

Rhoden, H.R., Bolek, M.G., 2012. Helminth and leech community structure in tadpoles and caudatan larvae of two amphibian species from western Nebraska. J. Parasitol. 98, 236–244.

Saunders, D.C., 1960. A survey of the blood parasites in the fishes of the Red Sea. Trans. Am. Microsc. Soc. 79, 239–252.

Schmitter, S.M., McGhee, R.B., 1961. The intra-erythrocytic development of *Babesiosoma stahlert* n. sp. in *Rana pipiens pipiens*. J. Protozool. 8, 381–386.

Schwetz, J., 1930. Notes protozoologiques les hématozoaires des grenouilles et des crapauds de Stanleyville (Congo Belge). Ann. Parasitol. Hum. Comp. 8, 122–134.

Seabra-Babo, J., Maia, J.P., James Harris, D., 2015. Scanning for apicomplexan parasites (Suborder Adeleorina) in five Holarctic anuran species. Herpetozoa 27, 168–172.

Smith, T.G., 1996. The genus *Hepatozoon* (Apicomplexa: Adeleina). J. Parasitol. 82, 565–585.

Smith, T.G., Dessur, S.S., 1994. Phylogenetic analysis of the genus *Hepatozoon* Miller, 1908 (Apicomplexa: Adeleorina). Syst. Parasitol. 36, 213–221.

Smith, T.G., Kim, B., Hong, H., Dessur, S.S., 2000. Intraerythrocytic development of species of Hepatozoon infecting rainy frogs: evidence for convergence of life cycle characteristics among apicomplexans. J. Parasitol. 86, 451–458.

Tavaré, S., 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17, 57–86.

Vivier, E., Petitprez, A., 1969. Observations ultrastructurales sur l’hématozoaire *Anthemosoma garnhami* et examen de critères morphologiques utilisables pour la taxonomie chez les sporozoaires. Protistologica 5, 363–379.

Vulpian, M., 1854. Note sur les Hématozoaires filiformes de la grenouille commune. C. R. Séances Mémories Soc. Biol. 6, 373–374.

Walton, A.C., 1946. Protozoon parasites of the Bufoninae (Amphibia). Trans. Ill. State Acad. Sci. 39, 143–147.

Walton, A.C., 1947. Parasites of the Ranidae (Amphibia). J. Parasitol No. 68.

Walton, A.C., 1948. Parasites of the Ranidae (Amphibia). Trans. Am. Microsc. Soc. 68, 49–54.

Wenyon, C.M., 1926. Protozology. A Manual for Medical Men, Veterinarians and Zoologists. Bailliere, Tindall & Cox, London,