SUBGROUP OF INTERVAL EXCHANGES
GENERATED BY TORSION ELEMENTS
AND ROTATIONS

MICHAEL BOSHERNITZAN

Abstract. Denote by G the group of interval exchange transformations (IETs) on the unit interval. Let $G_{\text{per}} \subset G$ be the subgroup generated by torsion elements in G (periodic IETs), and let $G_{\text{rot}} \subset G$ be the subset of 2-IETs (rotations).

The elements of the subgroup $G_1 = (G_{\text{per}}, G_{\text{rot}}) \subset G$ (generated by the sets G_{per} and G_{rot}) are characterized constructively in terms of their Sah-Arnoux-Fathi (SAF) invariant. The characterization implies that a non-rotation type 3-IET lies in G_1 if and only if the lengths of its exchanged intervals are linearly dependent over \mathbb{Q}. In particular, $G_1 \subsetneq G$.

The main tools used in the paper are the SAF invariant and a recent result by Y. Vorobets that G_{per} coincides with the commutator subgroup of G.

1. A GROUP OF IETs

Denote by \mathbb{R}, \mathbb{Q}, \mathbb{N} the sets of real, rational and natural numbers. By a standard interval we mean a finite interval of the form $X = [a, b) \subset \mathbb{R}$ (left closed - right open). We write $|X| = b - a$ for its length.

By an IET (interval exchange transformation) we mean a pair (X, f) where $X = [a, b)$ is a standard interval and f is a right continuous bijection $f: X \to X$ with a finite set D of discontinuities and such that the translation function $\gamma(x) = f(x) - x$ is piecewise constant.

The map f itself is often referred to as IET, and then $X = \text{domain}(f)$ and $D = \text{disc}(f)$ denote the domain (also the range) of f and the discontinuity set of f, respectively.

Given an IET $f: X \to X$, the set $\text{disc}(f)$ partitions X into a finite number of subintervals X_k in such a way that f restricted to each X_k is a translation

$$f|_{X_k}: x \to x + \gamma_k,$$

so that the action of f reduces to a rearrangement of the intervals X_k. The number r of exchanged intervals X_k can be specified by calling f an r-IET.

Denote by \mathcal{G} the set of IETs. Then

$$\mathcal{G} = \bigcup_{r \geq 1} \mathcal{G}_r,$$

where \mathcal{G}_r stands for the set of r-IETs:

$$\mathcal{G}_r = \{ f \in \mathcal{G} | \text{card}(\text{disc}(f)) = r - 1 \}.$$
For a standard interval $X = [a, b)$, the subset
\begin{equation}
G(X) = \{ f \in \mathcal{G} \mid \text{domain}(f) = X \}
\end{equation}
forms a group under composition (of bijections of X). Its identity is $\mathbf{1}_{G(X)} \in \mathcal{G}_1$, the identity map on X. Given two standard intervals X and Y, there is a canonical isomorphism
\begin{equation}
\phi_{X,Y} : G(X) \to G(Y)
\end{equation}
defined by the formula
\begin{equation}
\phi_{X,Y}(f) = l \circ f \circ l^{-1} \in G(Y), \quad \text{for } f \in G(X),
\end{equation}
where $l = l_{X,Y}$ stands for the unique affine order preserving bijection $X \to Y$.

By the group of IETs we mean the group $G := G([0, 1))$. (It is isomorphic to $G(X)$, for any standard interval X).

The interval exchange transformations have been a popular subject of study in ergodic theory. (We refer the reader to the book [12] by Marcelo Viana which may serve a nice introduction and survey reference in the subject). Most papers on IETs study these as dynamical systems; they concern specific dynamical properties (like minimality, ergodicity, mixing properties etc.) the IETs may satisfy.

The focus of the present paper is different; we address certain questions on the group-theoretical structure of the group G of IETs. (For recent results on this general area see [13] and [7]). In particular, we discuss possible generator subsets of the group G.

It was known for a while that the subgroup G_{per} generated by periodic IETs forms a proper subgroup of G; in particular, G_{per} contains no irrational rotations. (The SAF invariant introduced in the next section vanishes on G_{per} but has non-zero value on irrational rotations). On the other hand, the set G_{per} contains some uniquely ergodic, even pseudo-Anosov (self-similar) IETs (see [2]).

We show that the subgroup $G_1 = \langle G_{\text{per}}, G_{\text{rot}} \rangle$ generated by G_{per} and the set of rotations $G_{\text{rot}} \subset G$ is still a proper subgroup of G. On the other hand, G_1 is large enough to contain all rank 2 IETs (see Section 4), in particular the IETs over quadratic number fields.

We present a constructive criterion (in terms of the SAF invariant) for a given IET to lie in G_1. It follows from this criterion that a 3-IET lies in G_1 if and only if the lengths of its exchanged subintervals are linearly independent. Note that 3-IETs generate the whole group of IETs. (More precisely, $\mathcal{G}_3 \cap G$ is a generating set for the group G).

2. The SAF invariant and subgroups of $G(X)$

Throughout the paper (whenever vector spaces or linear dependence/independence are discussed) the implied field (if not specified) is always meant to be \mathbb{Q}, the field of rationals.

Denote by \mathbb{T} the tensor product of two copies of reals viewed as vector spaces (over \mathbb{Q}). Denote by \mathbb{K} the skew symmetric tensor product of two copies of reals:
\begin{align*}
\mathbb{T} & := \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}; \\
\mathbb{K} & := \mathbb{R} \wedge_{\mathbb{Q}} \mathbb{R} \subset \mathbb{T}.
\end{align*}
Recall that \mathbb{K} is the vector subspace of \mathbb{T} spanned by the wedge products
\[u \wedge v := u \otimes v - v \otimes u, \quad u, v \in \mathbb{R}. \]
The **Sah-Arnoux-Fathi (SAF) invariant** (sometimes also called the **scissors congruence invariant**) of $f \in G_r$ is defined by the formula

$$SAF(f) := \sum_{k=1}^{r} \lambda_k \otimes \gamma_k \in \mathbb{T},$$

where the vectors $\vec{\lambda} = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, $\vec{\gamma} = (\gamma_1, \gamma_2, \ldots, \gamma_r) \in \mathbb{R}^r$ encode the lengths $\lambda_k = |X_k|$ of exchanged intervals X_k and the corresponding translation constants γ_k, respectively (see (1.1)).

The SAF invariant was introduced independently by Sah [9] and Arnoux and Fathi [1]. The following lemma makes this invariant a useful tool in the study of IETs.

Lemma 1. Let X be a standard interval. Then

(a) $SAF: G(X) \to \mathbb{T}$ is a group homomorphism;

(b) $SAF(G(X)) = K \subset \mathbb{T}$;

(c) $SAF: G(X) \to K$ is a surjective group homomorphism.

(This summarizes (a) and (b)).

2.1. **Subgroups of $G(X)$**. Let X be a standard interval. An IET $f \in G(X)$ is called periodic if f is an element of finite order in the group $G(X)$ (defined in (1.4)). Set

$$G_r(X) := G_r \cap G(X), \quad r \geq 1,$$

(see notation (1.2)). Note that $G_1(X) = \{1_{G(X)}\}$ is a singleton.

Consider the following subgroups of $G(X)$:

- $G'(X) = [G(X), G(X)]$ is the commutator subgroup of G (generated by the commutators $f^{-1}g^{-1}fg$, with $f, g \in G(X)$);

- $G_{\text{per}}(X)$ is the subgroup of $G(X)$ generated by periodic IETs $f \in G(X)$;

- $G_0(X) = \{f \in G(X) \mid SAF(f) = 0\}$ (see (2.1));

- $G_{\text{rot}}(X) = G_1(X) \cup G_2(X) = G_2(X) \cup \{1_{G(X)}\}$ is the group of rotations on X.

(It contains all IETs $f \in G(X)$ with at most one discontinuity).

Observe that (a) in Lemma 1 implies immediately the inclusions

$$G'(X) \subset G_0(X); \quad G_{\text{per}}(X) \subset G_0(X),$$

as well as the fact that the set $G_0(X)$ forms a subgroup of $G(X)$.

An unpublished theorem of Sah [9] (mentioned by Veech in [11]) contains Lemma 1 and the equality $G'(X) = G_0(X)$. This equality has been recently extended by Vorobets [13] to also include $G_{\text{per}}(X)$ as an additional set:

$$G'(X) = G_0(X) = G_{\text{per}}(X).$$

(2.3)

We refer to Vorobets’s paper [13] for a nice self-contained introduction to the SAF invariant. In particular, the paper contains the proof of Lemma 1 and of the equality (2.3).

The results of the present paper concern the subgroup

$$G_1(X) = \langle G_{\text{per}}(X), G_{\text{rot}}(X) \rangle \subset G(X),$$

(2.4)
generated by periodic IETs and the rotations in \(G(X) \). The elements of \(G_1(X) \) are classified in terms of their SAF invariant, see Theorem 2. It is shown that “most” 3-IETs do not lie in \(G_1(X) \) (Lemma 3 and Theorem 4). In particular, it follows that \(G_1(X) \neq G(X) \).

3. Subgroup \(G_1 \) and its SAF invariant characterization.

For \(u \in \mathbb{R} \), denote
\[
\mathbb{K}(u) = \{ u \wedge v \mid v \in \mathbb{R} \} \subset \mathbb{K} = \mathbb{R} \wedge \mathbb{Q} \mathbb{R}.
\]
\(\mathbb{K}(u) \) forms a vector subspace of \(\mathbb{K} \). If \(u \neq 0 \), \(\mathbb{K}(u) \) is isomorphic to \(\mathbb{R}/\mathbb{Q} \).

In the next lemma we compute the SAF invariant for 2-IETs. This is known and follows immediately from the definition (2.1), but is included for completeness.

Recall that \(G_r(X) = G_r \cap G(X) \) stands for the set of \(r \)-IETs on \(X \).

Lemma 2. Let \(X \) be a standard interval. Assume that \(f \in G_2(X) \) exchanges two subintervals of lengths \(\lambda_1 \) and \(\lambda_2 \) with \(\lambda_1 + \lambda_2 = |X| \). Then
\[
\text{SAF}(f) = |X| \wedge \lambda_1 \in \mathbb{K}(|X|).
\]

Proof. For such \(f \) the translation constants are \(\gamma_1 = -\lambda_2 \) and \(\gamma_2 = -\lambda_2 + 1 = \lambda_1 \) (see (1.1)). It follows that
\[
\text{SAF}(f) = \lambda_1 \otimes \gamma_1 + \lambda_2 \otimes \gamma_2 = \lambda_1 \otimes (-\lambda_2) + \lambda_2 \otimes \lambda_1 = \\
= \lambda_2 \wedge \lambda_1 = (\lambda_2 + \lambda_1) \wedge \lambda_1 = |X| \wedge \lambda_1.
\]

\[\square\]

Lemma 3. Let \(X \) be a standard interval. Let \(\beta \in \mathbb{K}(|X|) \). Then there exists \(f \in G_2(X) \) such that \(\text{SAF}(f) = \beta \).

Proof. Let \(\beta = |X| \wedge t \). Select a rational \(r \in \mathbb{Q} \) such that \(0 < r|X| + t < |X| \). Set \(\lambda_1 = r|X| + t \) and \(\lambda_2 = |X| - \lambda_1 \). Take \(f \in G_2(X) \) which exchanges two intervals of lengths \(\lambda_1 \) and \(\lambda_2 \). Then, by Lemma 2
\[
\text{SAF}(f) = |X| \wedge \lambda_1 = |X| \wedge (r|X| + t) = |X| \wedge t,
\]
completing the proof. \[\square\]

Corollary 1. Let \(X \) be a standard interval. Then
\[
\text{SAF}(G_{\text{rot}}(X)) = \text{SAF}(G_2(X)) = \mathbb{K}(|X|).
\]

Proof. Follows from Lemmas 2 and 3. \[\square\]

Theorem 1. Let \(X \) be a standard interval and let \(f \in G(X) \). Assume that \(\text{SAF}(f) \in \mathbb{K}(|X|) \). Then there exists a rotation \(g \in G_2(X) \) and \(h_1, h_2 \in G_{\text{per}}(X) \) such that
\[
f = g \circ h_2 = h_1 \circ g.
\]

Note that in the above theorem \(G_{\text{per}}(X) \) can be replaced by \(G'(X) \) or \(G_0(X) \) (see (2.3)).

Proof of Theorem 1 By Lemma 3 there exists \(g \in G_2(X) \) such that \(\text{SAF}(g) = \text{SAF}(f) \in \mathbb{K}(|X|) \). Take \(h_1 = f \circ g^{-1} \), \(h_2 = g^{-1} \circ f \). Then \(h_1, h_2 \in G_0(X) = G_{\text{per}}(X) \) in view of Lemma 1. \[\square\]
Theorem 2. Let X be a standard interval and let $f \in G(X)$. Then

$$f \in G_1(X) \iff \text{SAF}(f) \in \mathbb{K}(|X|).$$

Proof. Direction \Rightarrow. In view of (2.4), it is enough to show the following two inclusions:

$$S_1 = \text{SAF}(G_{rot}(X)) \in \mathbb{K}(|X|); \quad S_2 = \text{SAF}(G_0(X)) \in \mathbb{K}(|X|).$$

Both are immediate: $S_1 = \mathbb{K}(|X|)$ by Corollary 1 and $S_2 = 0$.

Direction \Leftarrow. Follows from Theorem 1. \square

4. Rank 2 IETs lie in G_1

By the span of a subset $A \subset \mathbb{R}$ (notation: $\text{span}(A)$) we mean the minimal vector subspace of \mathbb{R} (over \mathbb{Q}) containing A.

By the rank of an IET f (notation $\text{rank}(f)$) we mean the dimension of the span of the set the lengths of the intervals exchanged by f:

$$\text{rank}(f) := \dim_{\mathbb{Q}}(L(f)),$$

where

$$L(f) := \text{span}(\{\lambda_1, \lambda_2, \ldots, \lambda_r\}) \quad (\text{if } f \in G_r).$$

The following implication is immediate: $\text{rank}(f) = 1 \implies f \in G_{\text{per}} = G_0$.

Theorem 3. For $f \in G(X)$, the following implication holds:

$$\text{rank}(f) \leq 2 \implies f \in G_1(X).$$

Proof. We may assume that $\text{rank}(f) = \dim(L(f)) = 2$. Since all $\lambda_k \in L(f)$, it follows that $|X| = \sum_{k=1}^r \lambda_k \in L(F)$. Let $B = \{|X|, u\}$ be a basis in $L(F)$. Then

$$\text{SAF}(f) \in L(f) \wedge_{\mathbb{Q}} L(f) = \{q |X| \wedge u \mid q \in \mathbb{Q}\} =$$

$$= \{|X| \wedge qu \mid q \in \mathbb{Q}\} \subset \mathbb{K}(|X|),$$

whence $f \in G_1(X)$, in view of Theorem 2. \square

5. Criterion for 3 IETs to lie in G_1

Let $f \in G_3(X)$. Then f has 2 discontinuities, and f acts by reversing the order of three subintervals, X_1, X_2 and X_3. Set $\lambda_i = |X_i|$. Then $X = \text{domain}(f) = [a, a + \lambda_1 + \lambda_1 + \lambda_3]$, with some $a \in \mathbb{R}$. Set for convenience $a = 0$ so that $X = [0, \lambda_1 + \lambda_1 + \lambda_3]$.

The corresponding translation constants are easily computed:

$$\gamma_1 = f(0) - 0 = \lambda_2 + \lambda_3 = |X| - \lambda_1;$$
$$\gamma_2 = f(\lambda_1) - \lambda_1 = \lambda_3 - \lambda_1;$$
$$\gamma_3 = f(\lambda_1 + \lambda_2) - (\lambda_1 + \lambda_2) = 0 - (\lambda_1 + \lambda_2) = \lambda_3 - |X|.$$
Since $\lambda_2 = |X| - \lambda_1 - \lambda_3$, we can compute $\text{SAF}(X)$ in terms of linear combinations of the wedge products involving only X, λ_1 and λ_3:

\begin{equation}
\text{SAF}(X) = \sum_{k=1}^{3} \lambda_k \otimes \gamma_k = |X| \wedge (\lambda_1 - \lambda_3) - \lambda_1 \wedge \lambda_3.
\end{equation}

We need the following known basic fact (see e.g. [13, Lemma 3.1]).

Lemma 4. If v_1, v_2, \ldots, v_n are $n \geq 2$ linearly independent real numbers, then the $\frac{n(n-1)}{2}$ wedge products $v_i \wedge v_j$, $1 \leq i < j \leq n$, are linearly independent.

Corollary 2. Let $v_1, v_2, v_3 \in \mathbb{R}$ be linearly independent. Then $v_1 \wedge v_2 \neq v_3 \wedge u$ for all $u \in \mathbb{R}$.

Proof. Assume to the contrary that

$$v_1 \wedge v_2 = v_3 \wedge u$$

for some $u \in \mathbb{R}$. If $u \notin \text{span} \{v_1, v_2, v_3\}$, then the set $\{u, v_1, v_2, v_3\}$ is linearly independent, contradicting Corollary 2.

And if $u \in \text{span} \{v_1, v_2, v_3\}$, then $u = q_1 v_1 + q_2 v_2 + q_3 v_3$ with some $q_i \in \mathbb{Q}$ whence

$$v_1 \wedge v_2 = q_1 v_3 \wedge v_1 + q_2 v_3 \wedge v_2,$$

a contradiction with Lemma 5 again. \square

Lemma 5. Let $f : X \to X$ be a 3-IET and assume that $\text{rank}(f) = 3$. (Equivalently, the set $\{\lambda_1, \lambda_1, \lambda_3\}$ is linearly independent). Then $f \notin G_1(X)$.

Proof. Assume to the contrary that $f \in G_1(X)$. Then, by Theorem 2, $\text{SAF}(f) \in \mathbb{K}(|X|)$. It follows from (5.1) that $\lambda_1 \wedge \lambda_3 \in \mathbb{K}(|X|)$, i.e. that

\begin{equation}
\lambda_1 \wedge \lambda_3 = |X| \wedge u,
\end{equation}

for some $u \in \mathbb{R}$. Since the numbers λ_1, λ_3 and $|X| = \lambda_1 + \lambda_2 + \lambda_3$ are linearly independent, (5.2) contradicts Corollary 2. \square

Theorem 4 (Criterion for a 3-IET to lie in G_1). Let $f : X \to X$ be a 3-IET. Then

$$f \in G_1(X) \iff \text{rank}(f) \leq 2.$$

Proof. The direction \Rightarrow is a contrapositive restatement of Lemma 5. The direction \Leftarrow is given by Theorem 3. \square

6. **Validation of the membership in classes $G_0(X)$ and $G_1(X)$**

Given $f \in G(X)$, we describe constructive procedures to decide whether $f \in G_{\text{per}}(X)$ and whether $f \in G_1(X)$.

6.1. **Does the inclusion** \(f \in G_{\text{per}}(X) \) **hold?** Since \(G_{\text{per}}(X) = G_0(X) \) (see (2.3)), one only has to test the equality

\[
\text{SAF}(f) := \sum_{k=1}^{r} \lambda_k \otimes \gamma_k = 0.
\]

We assume that the linear structure of \(f \) is known. By the linear structure of \(f \) we mean:

(a) a basis \(B = \{v_1, v_2, \ldots, v_n\} \) of the finite dimensional space

\[
L(f) := \text{span}(\{\lambda_1, \lambda_2, \ldots, \lambda_r\})
\]

(b) the (unique) linear representations \(\lambda_k = \sum_{i=1}^{n} q_{k,i} v_i, \) \(1 \leq k \leq r, \) with all \(q_{k,i} \in \mathbb{Q} \).

Observe that all translation constants \(\gamma_k \) also lie in \(L(f) \), and their linear representation in terms of basis \(B \) can be computed. This way one can get presentation

\[
(6.1) \quad \text{SAF}(f) = \sum_{1 \leq i < j \leq n} p_{i,j} v_i \wedge v_j,
\]

with known \(p_{i,j} \in \mathbb{Q} \). By Lemma 4, \(\text{SAF}(f) = 0 \) if and only if all the constants \(p_{i,j} \) vanish.

6.2. **Does the inclusion** \(f \in G_1(X) \) **hold?** Again we assume that the linear structure of \(f \) is known. To answer the question, we proceed as follows.

First, we modify the basis \(B \) of \(L(f) \) to make \(v_1 = |X| \). Then we proceed just as before and get (6.1) with known \(p_{i,j} \in \mathbb{Q} \). By Theorem 2 and Lemma 4

\[
f \in G_1(X) \iff \text{SAF}(f) \in \mathbb{K}(|X|) \iff p_{i,j} = 0, \text{ for } 2 \leq i < j \leq n.
\]

7. **Class \(G_1 \) is not preserved under induction**

An IET \((X, f)\) is called minimal if its every orbit is dense in \(X \). For a sufficient condition for an IET to be minimal see [5].

Let \((X, f)\) be an \(r \)-IET and assume that \(Y \subset X \) is a standard subinterval. It is well known (see e.g. [4] or [5]) that the (first return) map \(f_Y : Y \to Y \) induced by \(f \) on \(Y \) is also an IETs (exchanging at most \(r+1 \) subintervals). It is known that, under the minimality assumption, the SAF invariant is preserved under induction.

Proposition 1. ([1], Part II, Proposition 2.13) Let \((X, f)\) be a minimal IET and assume that \(Y \subset X \) is a standard subinterval. Then

\[
\text{SAF}(f) = \text{SAF}(f_Y).
\]

Corollary 3. Let \((X, f)\) be a minimal IET and assume that \(Y \subset X \) is a standard subinterval. Then

\[
f \in G_{\text{per}}(X) \iff f_Y \in G_{\text{per}}(X)
\]

Proof. Follows from Proposition 1 and the fact that \(G_{\text{per}}(X) = G_0(X) \).

Corollary 4. Let \((X, f)\) be a minimal IET and assume that \(Y \subset X \) is a standard subinterval such that \(\frac{|Y|}{|X|} \in \mathbb{Q} \). Then

\[
f \in G_1(X) \iff f_Y \in G_1(X).
\]
Proof. Follows from Proposition 1 because \(K(\|X\|) = K(\|Y\|) \) assuming that \(\frac{\|Y\|}{\|X\|} \in \mathbb{Q} \). \(\square \)

Theorem 5. Let \((X, f)\) be a minimal IET. Then the following two assertions are equivalent:

(a) There exists a standard subinterval \(Y \subset X \) such that \(f_Y \in G_1(Y) \);

(b) \(\text{SAF}(X) = u \wedge v \), for some \(u, v \in \mathbb{R} \).

One can show that if (b) of the above theorem holds and \(\text{SAF}(X) \neq 0 \) then \(u, v \in L(f) \).

Proof. (a)\(\Rightarrow \) (b). \(\text{SAF}(X) = \text{SAF}(Y) \in K([Y]) \) whence \(\text{SAF}(X) = |Y| \wedge v \), for some \(v \in \mathbb{R} \).

(b)\(\Rightarrow \) (a). Let \(\text{SAF}(X) = u \wedge v \), for some \(u, v \in \mathbb{R} \). Without loss of generality, both \(u, v \) can be selected positive (using the identities \(u \wedge v = (-v) \wedge u \) and \(1 \wedge 1 = 0 \)). Select \(q \in \mathbb{Q} \) so that \(0 < qu < |X| \). Select any standard subinterval \(Y \subset X \) of length \(|Y| = qu \). Then \(\text{SAF}(f_Y) = u \wedge v = |Y| \wedge (q^{-1}v) \in \text{SAF}(|Y|) \), and hence \(f_Y \in G_1(Y) \). \(\square \)

Let \(K \subset \mathbb{R} \) be a subfield of reals. An IET \(f \) is said to be over \(K \) if \(L(f) \subset K \) (see (4.1)), i.e. if all (lengths of exchanged intervals) \(\lambda_k \) lie in \(K \).

We complete the paper by the following result.

Theorem 6. Let \(K \) be a real quadratic number field and let \((X, f)\) be a minimal IET over \(K \). Let \(Y \subset X \) be a standard subinterval. Then

\[f_Y \in G_1(Y) \iff |Y| \in K. \]

Proof. Since \(\text{rank}(f) = \dim(L(f)) \leq \dim(F) = 2 \), and \(\text{rank}(f) \neq 1 \) (because \(f \) is not periodic), we conclude that \(\text{rank}(f) = 2 \) and \(L(f) = K \).

Proof of the \(\Leftarrow \) implication. Select a basis \(B = \{|Y|, u\} \) in \(K \). Then

\[\text{SAF}(f_Y) = \text{SAF}(f) \in K \wedge K = \{q|Y| \wedge u \mid q \in \mathbb{Q}\} \subset K(|Y|). \]

By Theorem 2, \(f_Y \in G_1(Y) \).

Proof of the \(\Rightarrow \) implication. It has been proved in [3] that minimal rank 2 IETs must be uniquely ergodic. Thus \(f \) is uniquely ergodic. By McMullen theorem [6 Theorem 2.1], \(\text{SAF}(f) \neq 0 \). (McMullen uses the “Galois flux” invariant for the IETs over a quadratic number field which, in his setting, is equivalent to the SAF invariant).

Select a basis \(B = \{|X|, u\} \) in \(K \). Then

\[\text{SAF}(f_Y) = \text{SAF}(f) \in K \wedge K = \{q|X| \wedge u \mid q \in \mathbb{Q}\}. \]

Since \(\text{SAF}(f) \neq 0 \), \(\text{SAF}(f_Y) = q|X| \wedge u \), with some \(q \in \mathbb{Q}, q \neq 0 \).

By Theorem 2, \(f_Y \in G_1(Y) \) implies that \(q|X| \wedge u = |Y| \wedge v \), for some \(v \in \mathbb{R} \). This is incompatible with the assumption \(Y \notin K \) in view of Corollary 2, completing the proof. \(\square \)
References

[1] P. Arnoux, Échanges d’intervalles et flots sur les surfaces. Théorie Ergodique, 5–38. Monograph. Enseign. Math. 29, Univ. Genève, Geneva, 1981 (in French).

[2] P. Arnoux and J.-C. Yoccoz, Construction de diomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sr. I Math. 292, no.1 (1981), 75–78.

[3] M. Boshernitzan, Rank two interval exchange transformations, Erg. Theory Dynam. Systems 8 (1988), no. 3, 379–394.

[4] I. P. Cornfeld, S. Fomin, Ya. G. Sinai, Ergodic Theory, Grundlehren der Mathematisches Wissenschaften [Fundamental Principles of Mathematical Sciences], 245. Springer-Verlag, New York, 1982.

[5] M. Keane, Interval exchange transformations, Math. Z. 141, (1975), 25–31.

[6] C. T. McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191(2) (2003), 191–223.

[7] C. Novak, Discontinuity-growth of interval-exchange maps, J. Mod. Dyn. 3 (2009), 379–405.

[8] G. Rauzy, Échanges d’intervalles et transformations induites, Acta Arithmetica, 34 (1979), 315–328.

[9] Chin-Han Sah, Scissors congruences of the interval. Preprint, 1981.

[10] W. Veech, Interval exchange transformations. J. D’Analyse Math. 33 (1978), 222–272.

[11] W. Veech, The metric theory of interval exchange transformations III. The Sah-Arnoux-Fathi invariant. Amer. Journal of Math. 106 (6) (1984), 1389–1422.

[12] M. Viana, Ergodic theory of interval exchange maps, Rev. Mat. Complut. 19 (2006), no.1, 7–100.

[13] Y. Vorobets, Notes on the commutator group of the group of interval exchange transformations, arXiv:1109.1352v1 (2011)

Department of Mathematics, Rice University, Houston, TX 77005, USA

E-mail address: michael@rice.edu