Serorevalence of Neospora Caninum in Stray Dogs

Garedaghi Yagoob
Department of Parasitology, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract: Problem statement: To investigate anti-Neospora caninum antibodies in stray dogs living in Tabriz city, 100 blood samples were collected. Serum samples were screened for detection of anti-N. caninum IgG antibodies using Indirect Fluorescent Antibody Test (IFAT; ≥50). Antibodies were seen in 31 (31%) of 100 dogs. Approach: The IFAT antibody titers were as follows: 1:50 in 11 dogs, 1:100 in ten dogs, 1:200 in six dogs, 1:400 in one dog, 1:800 in two dogs and 1:1,600 in one dog. There were no significant differences in seroprevalence of Neospora infection between different genders (p>0.05). The seropositive results were increased with age and differences were statistically significant (p<0.05). Results: The results confirm the presence and exposure of stray dogs to N. caninum in Tabriz city and importance of this protozoon as a cause of disease in dogs of the region. Conclusion: Based on the present study, this is the first report on serorevalence of N. caninum in stray dogs of the Tabriz northwest of Iran. This finding confirms the presence of Neospora infection and the important role of dogs in the region.

Key words: Higher seroprevalence, Neospora caninum, blood samples, serum samples, statistically significant, buffered saline, fluorescent antibody test

INTRODUCTION

Neospora caninum is an apicomplexan protozoon which was described by Dubey et al. (1988a, 1988b). The agent can infect domestic dogs (Canis familiaris) (McAllister et al., 1998) as well as an ample variety of hosts including ruminants (Anderson et al., 1991). It has been regarded as the major cause of abortion with great economical impact in dairy cattle industry and neurologic signs in puppies and older dogs (Ruehlmann et al., 1995; Dubey and Lindsay 1996; Dubey, 2003). Although the parasite can be transmitted transplacentally in several hosts and the vertical route is the major mode of its transmission in cattle, the role of the definitive host in spreading the infection through shedding of oocyst is important. Carnivores can acquire infection by ingestion of infected tissues (McAllister et al., 1998; Dijkstra et al., 2001). As oocysts are rarely found in dog feces (Schares et al., 2005), serological surveys provide the main clue for estimating the prevalence of canine neosporosis (Bjorkman et al., 1994). The agent has a cosmopolitan distribution, with reports from various countries of Europe, USA, Canada, Australia, South Africa, Japan and Costa Rica (Dubey and Lindsay, 1996). There is also serological evidence of infection in equatorial Africa and South America (Barber et al., 1997a). Serorevalence of infection, not disease) varies from 0.5-17% in Europe (Bjorkman et al., 1994; Rasmussen and Jensen, 1996) and has been reported at 2% in the USA. At present, only limited information is available on the occurrence and prevalence of Neospora infections in dogs in Iran. N. caninum infection was first reported by Malmasi et al. (2007) in household dogs and dogs living in dairy and beef cattle farms. The presence of antibodies against N. caninum in aborted and healthy dairy cattle was detected and neosporosis importance in cases of cattle abortion is being increasingly demonstrated in Iran (Razmi et al., 2006; 2007; Sadrebazzaz et al., 2004; 2007; Habibi et al., 2005; Bonfitto et al., 2009; Saravanamurthy et al., 2010; Solhjoo et al., 2010). Nevertheless, no information on the prevalence of N. caninum infection in stray dogs is available in Iran. Because of this reason, the recent investigation was done to evaluate the serorevalence of Neospora infection in stray dogs of northwest Iran.

MATERIALS AND METHODS

Animals: A total of 100 sera from stray dogs of mixed breeds from districts of Tabriz (63 males, 37 females; <1->6 years of age) were randomly sampled. All of the dogs were examined after the drawing of blood samples. Information regarding access to bovines, clinical signs, gender and age of the animals was also obtained and were registered for retrospective correlation with the anti-N. caninum antibody titers in the positive animals.
Preparation of the serum samples: Blood samples were drawn from cephalic vein of each dog using venopuncture. The samples were centrifuged at 700×g for 15 min to obtain the serum, which was aliquoted and stored in microtubes and kept frozen at -20°C until analysis.

Indirect fluorescent antibody test: The sera were screened for IgG antibodies to *N. caninum* by commercial Indirect Fluorescent Antibody Test (IFAT; Mega Screen Fluoneospora, Horbranz, Austria). All sera were screened at dilutions of 1:50 in phosphate-buffered saline (pH7.2). Serum samples showing fluorescence at the dilution of 1:50 (cutoff value) were further tittered using twofold serial dilutions (Dubey *et al*., 1988a, 1988b). The entire surface fluorescence of tachyzoite was considered positive (Silva *et al*., 2007). On each slide, a negative and a positive control were included.

Statistical analysis: For the statistical analysis of the possible effects of the attributes of different gender and age groups range on the prevalence of anti-*N. caninum* antibodies, chi-squared test was used. Statistical significance was declared at p≤0.05. The analyses were performed by SPSS 12 statistics program for Windows.

RESULTS

Thirty-one out of 100 (31%) stray dogs were found seropositive. The IFAT antibody titers were as follows: 1:50 (n = 11), 1:100 (n = 10), 1:200 (n = 6), 1:400 (n = 1), 1:800 (n = 2) and 1:1,600 (n = 1; Table 1). Twenty-one of 63 (33%) male and 10 of 37 (27%) female stray dogs had Neospora infection (Table 2). The highest infection rate was observed in male dogs (29%). There were no significant differences in seropositivity between different genders (p>0.05). The infection in age group 2-3 years (20%) was higher than in older dogs (1%). There was a significant difference between the infection rate of Neospora among different age groups (p<0.05). The seropositive results were being increased in the age group of 1-3 years (27%) compared to the dogs of age group 4-10 years (4%).

DISCUSSION

Assessing seroprevalence and hence the exposure of dog population of *N. caninum*, is an important part of investigating the possible transmission routes of the parasite as well as identifying populations in which neosporosis may occur. The IFAT is a well-established test for detecting anti-*N. caninum* antibodies in dogs (Dubey *et al*., 1988a; 1988b). In Iran, the presence of antibodies against *N. caninum* in dairy cattle (Sadrebazzaz *et al*., 2004; Razmi *et al*., 2006), camels (Sadrebazzaz *et al*., 2006) and farm and household dogs (Haddadzadeh *et al*., 2007; Malmasi *et al*., 2007) were reported. Based on the present study, this is the first report on the seroprevalence of in stray dogs of the Tabriz northwest of Iran. This finding confirms the presence of Neospora infection and the important role of dogs in the region. The prevalence of 31% was lesser than the prevalence of 33 and 28% reported by Malmasi *et al*. (2007) and Haddadzadeh *et al*. (2007), respectively. This prevalence is similar to the reported prevalence of 22% in urban areas in Argentina (Basso *et al*., 2001). The higher seroprevalence have been reported in earlier studies on dogs conducted in several countries including USA and Canada (Cheadel *et al*., 1999), Belgium (Barber *et al*., 1997b), England (Trees *et al*., 1993), southern Italy, the Netherlands (Wouda *et al*., 1999) and Turkey (Coskun *et al*., 2000). Serologic investigations showed that dogs coming from dairy properties have a greater seroprevalence than those from urban areas, suggesting that farm dogs have a higher risk of exposure to the parasite (Sawada *et al*., 1998; Wouda *et al*., 1999; Sanchez *et al*., 2003).

Table 1: Seroprevalence of *Neospora* antibodies in different age groups of stray dogs

Age (years)	No. of infected dogs	≥50	100	200	400	800	1600	Total (%)
<1-1	7	2	2	3	0	2	0	7(7)
3-Feb	20	7	7	3	0	1	1	21(68)
5-Apr	3	2	1	0	0	1	0	3(3)
10-Jun	1	0	0	0	1	0	0	1(1)
Total	31	11	10	6	1	2	1	31(31)

Table 2: Prevalence of anti-*N. caninum* based on gender of stray dogs

Antibody titer	Infected animal (%)	1:50	1:100	1:200	1:400	1:800	1:1,600	Total (%)
Male	9(39)	7(22)	4(13)	1(3)	0	0	21(68)	
Female	2(13)	3(10)	2(6)	0	2(6)	1(3)	10(32)	

Table 1: Seroprevalence of *Neospora* antibodies in different age groups of stray dogs

Age (years)	No. of infected dogs	≥50	100	200	400	800	1600	Total (%)
<1-1	7	2	2	3	0	2	0	7(7)
3-Feb	20	7	7	3	0	1	1	21(68)
5-Apr	3	2	1	0	0	1	0	3(3)
10-Jun	1	0	0	0	1	0	0	1(1)
Total	31	11	10	6	1	2	1	31(31)
These higher seroprevalences can be due to the risk factors (consumption of placenta, materials of aborted fetuses, uterine discharge, hunting and close contact with potential intermediate hosts of the parasite (Dijkstra et al., 2002; Fernandes et al., 2004). The presence of anti-\(N.\) \textit{caninum} antibodies in city dogs could be associated with subclinical transplacental transmission through several generations as well. To a lesser extent, dogs could become infected by the horizontal route if they consume sporulated oocysts of \(N.\) \textit{caninum} (Yakhchali et al., 2010; McAllister et al., 1998; Dubey, 1999). For this reason, in this region, stray dogs should not be accessed to bovine placentas or uterine discharge around the farms or slaughterhouse. There was no significant difference in seropositivity between males (\(n = 21, 68\%\)) and females (\(n = 10, 32\%; p > 0.05\)), in agreement with the results of other surveys (Trees et al., 1993; Barber et al., 1997a; Sawada et al., 1998; Cheadel et al., 1999; Haddadzadeh et al., 2007; Malmasi et al., 2007). In this study, there is a tendency for elevated risk of pathogen contact with increasing age, suggesting postnatal exposure to \(N.\) \textit{caninum}. Similar reports from Brazil (Fernandes et al., 2004) and Iran (Haddadzadeh et al., 2007) confirm this finding. There was an association between seroprevalence and age. The youngest seropositive animal was 2-3 years of age and the oldest was 6-10 years. However, dogs of any age (18 months to 6 years old) may be affected by neosporosis (Knowler and Wheeler, 1995; Patitucci et al., 2002; Fernandes et al., 2007). The anti-\(N.\) \textit{caninum} titers encountered varied from 50-1600. Thirty (97%) of 31 seropositive dogs had the titers of 1:800 and lower. None of these cases had previous clinical symptoms of anti-\(N.\) \textit{Caninum} IFAT titer of 1:1, 600. This may indicate an acute infection (Barber and Trees, 1996). Clinical and subclinical infections with \(N.\) \textit{caninum} in dogs have been extensively reported worldwide with seroprevalence rates ranging from 0.2-54\% (Moore, 2005). The presence of infected stray dog could be a risk factor for the occurrence of \(N.\) \textit{caninum}-associated abortions in cattle. Further investigations could be useful to show the correlation between stray dog neosporosis and cattle abortion in this region.

CONCLUSION

Based on the present study, this is the first report on the seroprevalence of \(N.\) \textit{caninum} in stray dogs of the Tabriz northwest of Iran. This finding confirms the presence of Neospora infection and the important role of dogs in the region.

ACKNOWLEDGMENT

The researchers wish to thanks the Islamic Azad University, Tabriz Branch, Tabriz, Iran for the financial supports and all laboratory technicians for technical aids in this project.

REFERENCES

Anderson, M.L., P.C. Blanchard, B.C. Barr, J.P. Dubey and R.L. Hoffman, 1991. Neospora-like protozoan infection as a major cause of abortion in California dairy cattle. J. Am. Vet. Med. Assoc., 198: 241-244. PMID: 2004983

Barber, J.S. and A.J. Trees, 1996. Clinical aspects of \(N.\) \textit{caninum} infection in dogs from beef-cattle farms, dairy farms and from urban areas of Argentina. J. Parasitol., 82: 439-443. DOI: 10.1136/vr.139.18.439 PMID: 8931299

Barber, J.S., R.B. Gasser, J. Ellis, M.P. Reichel and D. McMillan et al., 1997a. Prevalence of antibodies to \(N.\) \textit{caninum} in different canid populations. J. Parasitol., 83: 1056-1058. PMID: 9406778

Barber, J.S., L.V. Ham, I. Polis and A.J. Trees, 1997b. Seroprevalence of antibodies to \(N.\) \textit{caninum} in belgian dogs. J. Small Anim. Pract., 38: 15-16. DOI: 10.1111/j.1748-5827.1997.tb02978.x PMID: 9121127

Basso, W., L. Venturini, M.C. Venturini, P. Moore and M. Rambeau, 2001. Prevalence of \(N.\) \textit{caninum} infection in dogs from beef-cattle farms, dairy farms and from urban areas of Argentina. J. Parasitol., 87: 906-907. DOI: 10.1111/j.1748-5827.1997.tb02978.x PMID: 9121127

Bjorkman, C., A. Lunden and A. Uggla, 1994. Prevalence of antibodies to \(N.\) \textit{caninum} and \(T.\) \textit{gondii} in swedish dogs. Acta Vet. Scand., 35: 445-447. PMID: 7676930

Bonnitto, N.L.B., A.C.F. Motta, R.B. Furini, M.C. Komesu and M.M.P.D. Nascimento et al., 2009. Determination of the salivary anti-phenolic glycolipid-1 antibody in leprosy patients as a tool to monitoring multidrugtherapy. Am. J. Infect. Dis., 5: 314-319. DOI: 10.3844/ajidsp.2009.314.319
Cheadel, M.A., D.S. Lindsay, S. Rowe, C.C. Dykstra and M.A. Williams, 1999. Prevalence of antibodies to Neospora caninum in dogs. Int. J. Parasitol., 29: 1537-1543. DOI: 10.1016/S0020-7519(99)00140-X

Coskun, S.Z., L. Aydyn and C. Bauer, 2000. Seroprevalence of Neospora caninum infection in domestic dogs in Turkey. Vet. Rec., 146: 649-649. PMID: 10872789

Dijkstra, T., M. Eysker, G. Schares, F.J. Conraths and H.W. Barkema, 2002. Natural transmission routes of Neospora caninum between farm dogs and cattle. Vet. Parasitol., 105: 99-104. DOI: 10.1016/S0304-4017(02)00010-9 PMID: 11900923

Dubey, J.P., D.S. Lindsay, 1996. A review of neospora caninum and neosporosis. Vet. Parasitol., 67: 1-59. PMID: 9011014

Dubey, J.P., 1999. Neosporosis in cattle: Biology and economic impact. J. Am. Vet. Med. Assoc., 214: 1160-1163. PMID: 10212674

Dubey, J.P., 2003. Review of Neospora caninum and neosporosis in animals. Korean J. Parasitol., 41: 1-16. PMID: 12666725

Dubey, J.P., J.L. Carpenter, C.A. Speer, M.J. Topper and A. Uggl, 1988a. Newly recognized fatal protozoan disease of dogs. J. Am. Vet. Med. Assoc., 192: 1269-1285. PMID: 3391851

Dubey, J.P., A.L. Hattel, D.S. Lindsay and M.J. Topper, 1988b. Neonatal neospora caninum infection in dogs: Isolation of the causative agent and experimental transmission. J. Am. Vet. Med. Assoc., 193: 1259-1263. PMID: 3144521

Fernandes, B.C.T.M., S.M. Gennari, S.L.P. Souza, J.M. Carvalho and W.G. Oliveira et al., 2004. Prevalence of anti-neospora caninum antibodies in dogs from urban, periurban and rural areas of the city of uberlândia, Minas Gerais-Brazil. Vet. Parasitol., 123: 33-40. DOI: 10.1016/j.vetpar.2004.05.016

Habibi, G.R., R. Hashemi-Fesharaki, A. Sadrebazzaz, S. Bozorgi and N. Bordbar, 2005. Seminested PCR for diagnosis of Neospora caninum infection in cattle. Arch. Raz. Inst., 59: 55-64.

Haddadzadeh, H.R., A. Sadrebazzaz, A. Malmasi, H.T. Ardakani and P.K. Nia et al., 2007. Seroprevalence of neospora caninum infection in dogs from rural and urban environments in Tehran, Iran. Parasitol. Res., 101: 1563-1565. DOI: 10.1007/s00436-007-0678-5 PMID: 17687566

Knowler, C. and S.J. Wheeler, 1995. Neospora caninum infection in three dogs. J. Small Anim. Pract., 36: 172-177. DOI: 10.1111/j.1748-5827.1995.tb02875.x PMID: 7603059

Malmasi, A., M. Hosseininejad, H. Haddadzadeh, A. Badii and A. Bahonar, 2007. Serologic study of anti-Neospora caninum antibodies in household dogs and dogs living in dairy and beef cattle farms in Tehran, Iran. Parasitol. Res., 100: 1143-1145. DOI: 10.1007/s00436-006-0385-7 PMID: 17120042

McAllister, M.M., J.P. Dubey, D.S. Lindsay, W.R. Jolley and R.A. Wills et al., 1998. Rapid communication: Dogs are definitive hosts of Neospora caninum. Int. J. Parasitol., 28: 1473-1479. DOI: 10.1016/S0020-7519(98)00138-6

Moore, D.P., 2005. Neosporosis in South America. Vet. Parasitol., 127: 87-97. DOI: 10.1016/j.vetpar.2004.10.001 PMID: 15631900

Pattucci, A.N., M.R. Alley, B.B. Jones and W.A. Charleston, 1997. Protozoal encephalomyelitis of dogs involving Neospora caninum and toxoplasma gondii in New Zealand. N.Z. Vet. J., 45: 231-235. PMID: 16031995

Rasmussen, K. and A.L. Jensen, 1996. Some epidemiologic features of canine neosporosis in Denmark. Vet. Parasitol., 62: 345-349. DOI: 10.1016/0304-4017(95)00867-5 PMID: 8686180

Razmi, G.R., G.R. Mohammadi, T. Garossi, N. Farzaneh and A.H. Fallah, 2007. First report of Neospora caninum-associated bovine abortion in Mashhad area, Iran. Vet. Parasitol., 135: 187-189. DOI: 10.1016/j.vetpar.2005.09.004

Razmi, G.R., M. Maleki, N. Farzaneh, M.T. Garoussi and A.H. Fallah, 2007. First report of Neospora caninum-associated bovine abortion in Mashhad area, Iran. Parasitol. Res., 100: 755-757. DOI: 10.1007/s00436-006-0325-6

Ruehlmann, D., M. Podell, M. Oglesbee and J.P. Dubey, 1995. Canine neosporosis: A case report and literature review. J. Am. Anim. Hosp. Assoc., 31: 174-183. PMID: 7773765

Sadrebazzaz, A., H. Haddadzadeh, K. Esmailnia, G. Habibi and M. Vojgani et al., 2004. Serological prevalence of Neospora caninum in healthy and aborted dairy cattle in Mashhad, Iran. Vet. Parasitol., 124: 201-204. DOI: 10.1016/j.vetpar.2004.06.027
American J. Animal & Vet. Sci., 6 (3): 100-104, 2011

Sadrebazzaz, A., H. Haddadzadeh and P. Shayan, 2006. Seroprevalence of *Neospora caninum* and *Toxoplasma gondii* in camels (Camelus dromedarius) in Mashhad, Iran. Parasitol. Res., 98: 600-601. DOI: 10.1007/s00436-005-0118-3

Sadrebazzaz, A., G. Habibi, H. Haddadzadeh and J. Ashrafi, 2007. Evaluation of bovine abortion associated with *neospora caninum* by different diagnostic techniques in Mashhad, Iran. Parasitol. Res., 100: 1257-1260. DOI: 10.1007/s00436-006-0417-3

Sanchez, G.F., S.E. Morales, M.J. Martinez and J.F. Trigo, 2003. Determination and correlation of anti-*Neospora caninum* antibodies in dogs and cattle from Mexico. Can. J. Vet. Res., 67: 142-145. PMID: 12760481

Saravanamurthy, P.S., P. Rajendran, P.M. Miranda, G. Ashok and S.S. Raghavan et al., 2010. A cross-sectional study of sexual practices, sexually transmitted infections and human immunodeficiency virus among male-to-female transgender people. Am. Med. J., 1: 113-119. DOI: 10.3844/amjpsp.2010.113.119

Sawada, M., C.H. Park, H. Kondo, T. Morita and A. Shimada et al., 1998. Serological survey of antibody to *Neospora caninum* in Japanese dogs. J. Vet. Med. Sci., 60: 853-854. DOI: 10.1292/jvms.60.853 PMID: 9713815

Schares, G., N. Pantchev, D. Barutzki, A.O. Heydorn and C. Bauer et al., 2005. Oocysts of *Neospora caninum, Hammondia heydorni, Toxoplasma gondii* and *Hammondia hammondi* in faeces collected from dogs in Germany. Int. J. Parasitol., 35: 1525-1537. DOI: 10.1016/j.ijpara.2005.08.008 PMID: 16197949

Silva, D.A.O., J. Lobato, T.W.P. Mineo and J.R. Mineo, 2007. Evaluation of serological tests for the diagnosis of *Neospora caninum* infection in dogs: Optimization of cut off titers and inhibition studies of cross-reactivity with *Toxoplasma gondii*. Vet. Parasitol., 143: 234-244. DOI: 10.1016/j.vetpar.2006.08.028

Solhjoo, K., A.S. Jahromi and A. Parnian-Rad, 2010. Anti-*Toxoplasma gondii* antibodies in haemodialysis patients. Am. J. Infect. Dis., 6: 13-17. DOI: 10.3844/ajidsp.2010.13.17

Trees, A.J., F. Guy, B.J. Tennant, A.H. Balfour and J.P. Dubey, 1993. Prevalence of antibodies to *Neospora caninum* in a population of urban dogs in England. Vet. Rec., 132: 125-126. DOI: 10.1136/vr.132.6.125 PMID: 8447050

Wouda, W., T. Dijkstra, A.M.H. Kramer, C.V. Maanen and J.M.A. Brinkhof, 1999. Seroepidemiological evidence for a relationship between *Neospora caninum* infections in dogs and cattle. Int. J. Parasitol., 29: 1677-1682. DOI: 10.1016/S0020-7519(99)00105-8

Yakhchali, M., S. Javadi and A. Morshedi, 2010. Prevalence of antibodies to *Neospora caninum* in stray dogs of urmia, Iran. Parasitol. Res., 106: 1455-1458. DOI: 10.1007/s00436-010-1824-z