Multifactorial Modes of Action of Arsenic Trioxide in Cancer Cells as Analyzed by Classical and Network Pharmacology

Mona Dawood, Sami Hamdoun and Thomas Efferth*

Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany

Arsenic trioxide is a traditional remedy in Chinese Medicine since ages. Nowadays, it is clinically used to treat acute promyelocytic leukemia (APL) by targeting PML/RARA. However, the drug’s activity is broader and the mechanisms of action in other tumor types remain unclear. In this study, we investigated molecular modes of action by classical and network pharmacological approaches. CEM/ADR5000 resistance leukemic cells were similar sensitive to As$_2$O$_3$ as their wild-type counterpart CCRF-CEM (resistance ratio: 1.88). Drug-resistant U87.MG ΔEGFR glioblastoma cells harboring mutated epidermal growth factor receptor were even more sensitive (collateral sensitive) than wild-type U87.MG cells (resistance ratio: 0.33). HCT-116 colon carcinoma p53$^{-/-}$ knockout cells were 7.16-fold resistant toward As$_2$O$_3$ compared to wild-type cells. Forty genes determining cellular responsiveness to As$_2$O$_3$ were identified by microarray and COMPARE analyses in 58 cell lines of the NCI panel. Hierarchical cluster analysis-based heat mapping revealed significant differences between As$_2$O$_3$ sensitive cell lines and resistant cell lines with p-value: 1.86×10^{-5}. The genes were subjected to Galaxy Cistrome gene promoter transcription factor analysis to predict the binding of transcription factors. We have exemplarily chosen NF-κB and AP-1, and indeed As$_2$O$_3$ dose-dependently inhibited the promoter activity of these two transcription factors in reporter cell lines. Furthermore, the genes identified here and those published in the literature were assembled and subjected to Ingenuity Pathway Analysis for comprehensive network pharmacological approaches that included all known factors of resistance of tumor cells to As$_2$O$_3$. In addition to pathways related to the anticancer effects of As$_2$O$_3$, several neurological pathways were identified. As arsenic is well-known to exert neurotoxicity, these pathways might account for neurological side effects. In conclusion, the activity of As$_2$O$_3$ is not restricted to acute promyelocytic leukemia. In addition to PML/RARA, numerous other genes belonging to diverse functional classes may also contribute to its cytotoxicity. Network pharmacology is suited to unravel the multifactorial modes of action of As$_2$O$_3$.

Keywords: arsenic trioxide, drug resistance, pharmacogenomics, AP-1, NF-κB
INTRODUCTION

Cancer represents a major cause of mortality. It accounted for about 7 Mio deaths in 2000 (Guilbert, 2001) and 8.2 million deaths in 2012 worldwide (Ferlay et al., 2015). In 2008, 12.7 Mio new cancer cases were estimated (Jemal et al., 2010). Recently, 1,688,780 new cancer cases and about 600,920 cancer deaths were estimated to occur in the United States (Siegel et al., 2017). Although, significant progress has been made in cancer therapy during the past years, treatment outcome is still largely hampered by drug resistance and severe side effects (Wiencz et al., 2012). Various mechanisms of anticancer drug resistance have been described, e.g., point mutations in drug targets, drug efflux pumps, xenobiotic detoxification mechanisms, resistance to apoptosis, repair DNA damage, alteration of cell proliferation features and others (Cree and Charlton, 2017). For this reason, novel compounds are urgently required for the improvement of treatment outcomes and survival prognosis of patients (Wiencz et al., 2012).

Arsenic is a semimetal naturally existing in earth, water and air. It is found in many chemical forms such as yellow arsenic (As₂S₃), red arsenic (As₂S₂), white arsenic (As₂O₃) etc. (Miller et al., 2002). Since ages, As₂O₃ is used in traditional Chinese medicine. In the 1970s, Chinese scientists tested the potential of As₂O₃ to treat acute PML (Rao et al., 2013). Today, As₂O₃ is clinically used worldwide to treat APL and multiple myeloma (Soignet et al., 1998; Breccia and Lo-Coco, 2012; Iland et al., 2014). A major driver of tumorigenesis of APL is the PML/RARA oncogene. Interestingly, As₂O₃ targets this oncogene, which explains its strong activity in this tumor entity. In combination with retinoic acid, As₂O₃ can cure up to 90% of APL patients (Lallemand-Breitenbach et al., 2012). After binding of As₂O₃ to PML/RARA, sumoylation and ubiquitination takes place. Further events included in As₂O₃’s modes of action include reactive oxygen species generation, inducing apoptosis and cell cycle arrest, activating caspases 8 and 9, down-regulating VEGF thus suppress the angiogenesis as well as inhibition of tumor invasion and metastasis (Zhao et al., 1997; Huang et al., 1999; Perkins et al., 2000; Roboz et al., 2000; Anderson et al., 2002; Hayashi et al., 2002; Liu et al., 2003).

Independent from the activity of As₂O₃ in APL, other tumor types may also be affected via other mechanisms, e.g., the hedgehog signaling pathway in medulloblastoma (Beauchamp and Uren, 2012; Klinger et al., 2017), indicating that the full range of mechanisms of As₂O₃ has not been elucidated yet.

Recently, network pharmacology becomes an important bioinformatics tools for identifying the mechanism of action of traditional Chinese medicine (TCM). Several methodologies including proteomics, metabolomics, genomics and serum pharmacokinetics are used to identify molecular target and mechanisms of TCM formulas. Applying this methods will lead to a shift from one drug- one target model to network target-multi-components models (Liang et al., 2014). In addition, applying network analysis (protein–protein interaction) may identify drug-target-related proteins (Li and Zhang, 2013).

In an endeavor to study the cytotoxic activity of As₂O₃ in cell lines of other tumor types than APL and to identify possible novel modes of action, we undertook the present project. The aims of this study were firstly to investigate whether classical drug resistance mechanisms such as P-glycoprotein, the tumor suppressor p53 and the EGFR may decrease cellular responsiveness to As₂O₃. The anti-proliferation activity of As₂O₃ and predominantly its effects against colon carcinoma resistant cell lines HCT116 (p53⁻/⁻), U87MG. ΔEGFR glioblastoma mutiforme cancer cells is reported here for the first time. Furthermore, we performed COMPARE and hierarchical cluster analyses for 58 cell lines of the National Cancer Institute (NCI, United States) from nine different tumor types1. Then, we run bioinformatical gene promoter binding motif analyses for those genes obtained by COMPARE and hierarchical cluster analyses. Since AP-1 and NF-κB binding sites were predominant in the gene promoter sequences subjected to binding motif analyses, we used reporter cell lines for these two transcription factors and indeed observed that As₂O₃ inhibited promoter binding of these two transcription factors. Finally, we performed interactome network analysis using IPA software to identify cellular pathways that might be affected upon As₂O₃ treatment.

MATERIALS AND METHODS

Cell lines and Reagents

We tested cell lines expressing different modes of drug resistance and their corresponding parental, drug sensitive cell lines. These included the leukemia CCRF-CEM (drug sensitive), and the drug resistant CEM/ADR5000 (multidrug resistant), the human glioblastoma U87.MG (wild type) and U87.MG ΔEGFR (mutated type), and the colon carcinoma HCT-116 (p53⁺/⁺) and HCT-116 (p53⁻/⁻) cell lines. The details about the cell lines were described previously by our group (Saeed et al., 2014). Glioblastoma were provided from Dr. W. K. Cavenee (Ludwig Institute for Cancer Research, San Diego, CA, United States). While, colon cancer cell lines were provided by Dr. B. Vogelstein and H. Heremeking (Howard Hughes Medical Institute, Baltimore, MD, United States).

Tumor cell lines were routinely cultured in proper medium (Sigma—Aldrich, Taufkirchen, Germany) with 10% FBS (Sigma—Aldrich, Taufkirchen, Germany), 1% penicillin/streptomycin (Sigma—Aldrich) (Bunz et al., 1998; Efferth et al., 2003). Moreover, doxorubicin (5000 ng/mL) was used to maintain the resistance of CEM/ADR5000 cells (Kimmig et al., 1990). While U87.MG ΔEGFR and HCT-116 (p53⁻/⁻) was treated with genetin to maintain expression of the transcript. Cells were incubated at 37°C under 5% CO2 in a humidified atmosphere. As₂O₃ and genetin were purchased from Sigma—Aldrich, Germany. Doxorubicin was kindly provided by the University Medical Center, Johannes Gutenberg University (Mainz, Germany).

Abbreviation: APL, acute promyelocytic leukemia; AP-1, activator protein 1; As₂O₃, arsenic trioxide; EGFR, epidermal growth factor receptor; NF-κB, nuclear factor-kappa in B cells; PMA, phorbol 12-myristate 13-acetate; PML, promyelocytic leukemia; RARA, retinoic acid receptor alpha; SEAP, secreted embryonic alkaline phosphatase; TNE, tumor necrosis factor.

1http://dtp.nci.nih.gov
Cytotoxicity Assays

The cytotoxicity of As$_2$O$_3$ was assessed using the resazurin reduction assay method as previously described (Kuete et al., 2016, 2017). Cells were treated with different concentrations of As$_2$O$_3$, ranging from 0.003 to 500 µM. The assay principle is that resazurin (Sigma–Aldrich) is reduced by viable cells to the highly fluorescent resorufin (O’Brien et al., 2000). Dead cells have no capability to convert resazurin to resorufin which lack the fluorescence property. Infinite M2000 proplate reader (Tecan, Germany) detected the fluorescent signal that emitted by the viable cells. Experiments were done three times, with six replicates for each concentration. The viability of the cells treated with As$_2$O$_3$ was calculated as percentage in compared with untreated control cells. The obtained cell viability was plotted against As$_2$O$_3$ concentration using Microsoft Excel 2016. Dose response curve was used to calculate the IC$_{50}$ values of every cell line.

NF-κB Reporter Assay

HEK-Blue-Null1 cells were obtained from Invivogen (San Diego, CA, United States). It is derived from embryonic kidney-293 (HEK-293) cell line. HEK-Blue-Null1 cells culture conditions were previously described (Kadioglu et al., 2016b; Seo et al., 2016; Hamdoun and Efferth, 2017). Briefly, HEK-Blue-Null1 cells constantly transcribe the SEAP protein under control of the NF-κB promoter. Cells were treated with varying concentrations of As$_2$O$_3$. NF-κB pathway was activated using 100 ng/mL of TNF and inducted for 24 h. Then, detection using pre-warmed Quanti-Blue reagent (Invivogen) was performed according to the manufacturer’s protocol. SEAP was measured spectrophotometrically at 630 nm to detect NF-κB activity. The fold change was calculated in compare with untreated control cells. The NF-κB inhibitor triptolide (1 µM, Invivogen) was used as positive control. The experiments were repeated three times.

AP-1 Reporter Assay

HEK293 cells were trypsinized and evenly distributed into 96 well plate polystyrene U96. The cells were then transfected with AP-1 luciferase reporter construct (CCS-011L, Qiagen, Germantown, MD, United States) using Attractene transfection reagent (Promega, Germany and Efferth, 2017). After 24 h of the transfection process, cells were incubated with different doses of As$_2$O$_3$. After 18 h of incubation time with As$_2$O$_3$, AP-1 activation was induced by of 50 ng/ml phorbol 12-myristate 13-acetate PMA (Sigma–Aldrich) for 24 h. AP-1 promoter activity was measured by Dual-Luciferase Reporter Assay System (Promega, Madison, WI, United States) following the manufacturer’s recommendations. Both firefly and Renilla luciferase luminescences were measured using Infinite M2000 Pro plate reader (Tecan). The firefly luciferase luminescence ratio to Renilla luciferase luminescence for each sample was calculated to obtain the relative luciferase. Normalization of AP-1 activity was done using the following equation: relative luciferase of sample over the relative luciferase of the untreated control cells (Kadioglu et al., 2016a). AP-1 luciferase assay experiments were repeated twice.

Bioinformatical Methods

In the present manuscript, we applied several methods of systems biology. While conventional medicine prefers a reductionist approach with one (or few) targets for an investigational drug, traditional medicine always emphasized the multi-specific nature of natural products (Efferth and Koch, 2011). The advent of genome-wide expression profiling techniques was estimated as specifically promising for natural product research, as complex cascades, pathways, and gross gene alteration patterns can be measured in a single experiment (Kadioglu and Efferth, 2014; Quan et al., 2014; Dos Santos et al., 2016; Fang et al., 2017). Molecular pharmacology with the investigation of single pathways has been enlarged by the new field of network pharmacology (Poornima et al., 2016; Schmidt and Efferth, 2016; Efferth et al., 2017). As myriads of data points are collected with genome-wide methods, the data evaluation requires the application of bioinformatics to uncover relevant biological mechanisms of drugs. The “-omics” technology in conjunction with bioinformatical methods allow the generation of hypothetical predictions that could be tested and verified in experimental and clinical settings.

COMPARE Analysis

A panel of 58 cell lines from National Cancer Institute (NCI), United States were used to perform COMPARE and hierarchical cluster analyses. Logarithmic IC$_{50}$ values (log$_{10}$(IC$_{50}$)) of As$_2$O$_3$ have been deposited at the NCI database. The mRNA expression values of NCI cell lines were determined via microarray analyses were deposited at the NCI website as well. These data were used to generate rank ordered lists of genes expressed in the NCI cell lines panel using COMPARE analyses (Paull et al., 1989). To extract the most meaningful results from a non-relevant “background noise” of transcriptome-wide microarray-based mRNA hybridizations, we applied the COMPARE analysis, which has been developed by Paull et al. (1989) from the NCI (United States). During the past decades, NCI has investigated more than 300,000 compounds for their cytotoxic capability against a panel of 60 cell lines from different tumor origin. The still growing NCI drug repository does not contain only synthetic compounds but also natural products. Paull and his team observed that drugs with similar molecular modes of action reveal similar patterns of growth inhibition based on their log$_{10}$IC$_{50}$. This correlation was used to develop an automated algorithm based on the Pearson correlation rank test. The details of the COMPARE methodology have been described (Paull et al., 1989, 1995; Zaharevitz et al., 2002). The use of the COMPARE algorithm to analyze data from the NCI human tumor cell line screen emerged more and more as a standard tool in drug discovery.

COMPARE analysis can be applied to identify inhibitors for a given mechanism of interest (e.g., inhibitors of EGFR, tubulins, DNA topoisoerases and others) (Wosikowski et al., 1997; Pfister et al., 2009). Vice versa, COMPARE analyses can also be used to suggest possible modes of action and/or determinants of resistance for compounds of interest (e.g., P-glycoprotein, p53

2http://dtp.cancer.gov/databases_tools/default.htm
or Ras) (Lee et al., 1994; Alvarez et al., 1995; Koo et al., 1996; O’Connor et al., 1997).

COMPARE analyses were performed with software implemented into the web site of the NCI. COMPARE analyses yielded rank-ordered lists of compounds. To obtain COMPARE rankings, a scale index of similarity between \(\log_{10}\text{IC}_{50} \) values of \(\text{As}_2\text{O}_3 \) and the transcriptome-based mRNA-based gene for the NCI panel of cell lines has been generated. The mRNA microarray hybridization of the NCI cell lines has been reported and deposited at the NCI Web site\(^4\) (Scherf et al., 2000; Amundson et al., 2008).

COMPARE analyses were performed to produce rank-ordered lists of genes expressed in the NCI cell lines. The results are sorted by the correlation coefficient (R-values). The methodology has been described previously in detail as a tool to identify candidate genes for drug resistance and sensitivity (Evans et al., 2008; Fagan et al., 2012; Luzina and Popov, 2012). Greater mRNA expression correlated with enhanced drug resistance in the standard COMPARE approach, whereas greater mRNA expression in cell lines indicated drug sensitivity in reverse COMPARE analyses. Pearson’s correlation test was used to calculate significance values and rank correlation coefficients as a relative measure for the linear dependency of two variables.

Hierarchical Cluster Analyses

Another widely used methodology to extract relevant results from transcriptomic data sets are cluster analyses, which represent distance/proximity-based approaches to unravel structures in large data sets. In systems biology, cluster analyses are valuable to define profiles of genes (“gene signatures”), whose expression is linked to biological phenomena, i.e., histological subtypes of tumors, resistance or sensitivity of tumors toward anticancer treatments, survival chances of cancer patients etc. Among the numerous clustering methods (e.g., topological interaction models, influence maps, physical regulatory maps, self-organizing maps, principal component analysis etc.), supervised, hierarchical and aggregative techniques provide advantages for pharmacological questions in cancer biology and pharmacology, because of their flexibility, possibility to include biological knowledge with different weighting, and detection of higher-order relationships between clusters of profiles (Mocellin et al., 2005). Aggregative hierarchical clustering represents a frequently method to investigate gene expression signatures (Eisen et al., 1998; Perou et al., 2000; Ross et al., 2000).

In the present study, we performed hierarchical cluster Analysis to group heterogeneous objects into clusters of homogeneous objects. All objects are assembled into a cluster tree (dendrogram). Thus, objects with tightly related features appear together, whereas the separation in the cluster tree increases with progressive dissimilarity. The merging of objects with similar features leads to formation of a cluster, the shortest the distance of the branch the closest degree of relatedness (Kadioglu and Efferth, 2015). Hierarchical clustering and heat map analysis were conducted using clustered image map (CIM).

TABLE 1 | IC\(_{50}\) values of \(\text{As}_2\text{O}_3 \) toward various tumor cell lines.

Cell lines	\(\text{As}_2\text{O}_3 \) IC\(_{50}\) (\(\mu \text{M} \))	Degree of resistance
CCRF-CEM	0.48 ± 0.22	1.88
CEM/ADR5000	0.90 ± 0.38	0.33
U87.MG	47.82 ± 1.25	7.16
U87.MG ΔEGFR	15.60 ± 0.93	0.83
HCT116 (p53\(^{+/+}\))	12.68 ± 0.74	0.83
HCT116 (p53\(^{-/-}\))	90.83 ± 0.74	0.83

The data is shown as mean values ± SD of three independent experiments with each six parallel measurements. Degrees of resistance were calculated by dividing the IC\(_{50}\) value of resistant cell line over the IC\(_{50}\) value of sensitive cell line.

\(^4\)http://dtp.nci.nih.gov

dawood et al. Cytotoxicity of Arsenic Trioxide

\(^3\)http://dtp.nci.nih.gov

\(^4\)https://discover.nci.nih.gov/cimminer/oneMatrix.do
TABLE 2 | Correlation coefficients of mRNA expression to log_{10} IC_{50} values identified by COMPARE analyses for 58 NCI tumor cell lines and functions of the identified genes.

Coefficient	Symbol	Name	Function
0.568	PRKACA	Protein kinase, cAMP-dependent, catalytic, α	Affects cell cycle progression and proliferation by downregulation of CDKN1B.
0.507	ARHGAP19	Rho GTPase activating protein 19	Involved in cell migration, proliferation, actin remodeling, differentiation, and G1 cell cycle progression.
0.487	CAMK4	Calcium/calmodulin-dependent protein kinase IV	Role in spermatogenesis by phosphorylating protamines.
0.485	BTN2A1	Butyrophilin, subfamily 2, member A	Involved in cell proliferation and development.
0.483	SEPT6	Septin 6	Involved in cytokinesis.
0.475	ITGA4	Integrin, α 4 (antigen CD49D, α 4 subunit of VLA-4 receptor)	Cell surface adhesion receptor mediating cell-adhesion to extracellular matrix or to other cells.
0.475	CNTRL	Centrosomal protein 110 kDa	Involved in cell cycle progression and cytokinesis.
0.471	DNAJC8	Platelet-activating factor receptor	Tumor metastasis suppressor.
0.47	SPDEF	SAM pointed domain containing ets transcription factor	Unknown
0.47	RYR3	Ryanodine receptor 3	Calcium release from intracellular storage.
0.469	IKZF1	Ikaros family zinc finger 1 (Ikaros)	Implicated in the control of lymphoid development.
0.467	ACTR2	ARF2 actin-related protein 2 homolog (yeast)	Role for cell shape and motility.
0.463	PTPRC	Protein tyrosine phosphatase, receptor type	Structural constituents of cytoskeleton, involved in cell organization/biogenesis.
0.459	PRIM2	Primase, DNA, polypeptide 2 (58 kDa)	DNA primase subunit, key enzyme in DNA replication.
0.457	RBBP4	Retinoblastoma binding protein	Inhibitor of TGFβ1 activity, plays a role in oncogenesis.
0.454	PRR3	Proline rich 3	Nucleic acid binding activity.
0.452	CDKN2D	Cyclin-dependent kinase inhibitor 2D (p19)	Cell growth regulator controlling G1 cell cycle progression.
0.452	ARHGEF6	Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6	Activator of Ras-like family of Rho proteins by exchanging bound GDP for GTP.
0.45	NDC80	NDC80 homolog, kinetochore complex component (S. cerevisiae)	Component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity.
0.448	VCY	Variable charge, Y-linked	May mediate spermatogenesis processes or may contribute to sex ratio distortion.
0.435	IRF2	Interferon regulatory factor 2	Repressor of IRF1, transcriptional activator of histone H4, regulates NFκB activity.
−0.71	PFAP2C	Phosphatidic acid phosphatase type 2C	Converts phosphatidic acid to diacylglycerol, function in de novo synthesis of glycerolipids phospholipase D-mediated signal transduction.
−0.566	ALDH3A2	Aldehyde dehydrogenase 3 family, member A	Catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids.
−0.542	ME1	Malic enzyme 1, NADP+ -dependent, cytosolic	Mitochondrial NAD-dependent malic enzyme, catalyzing the oxidative decarboxylation of malate to pyruvate.
−0.539	COASY	CoA synthase	Coenzyme A (CoA) is a carrier of acetyl and acyl groups in cells and is crucial for numerous metabolic pathways.
−0.533	PKP3	Pkakophilin 3	Mediating protein-protein interactions. Playing a role in junctional plaques.
−0.531	ID1	Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein	Implicated in regulating a variety of cellular processes, including cellular growth, senescence, differentiation, apoptosis, angiogenesis, and neoplastic transformation.
−0.517	GPRCSA	G protein-coupled receptor, family C, group 5, member A	Functions as a tumor suppressor in lung cancer. May play a role in the proliferation of breast cancer cells.
−0.513	TST	Thiosulfate sulfurtransferase (rhodanese)	May contribute to cyanide detoxification.
−0.496	ABLM1	Actin binding LIM protein 1	Putatively bridging the actin-based cytoskeleton with LIM protein-binding partners.
−0.493	CPO	Carboxypeptidase D	Carboxypeptidase, involved in secretory pathways.
−0.487	CHMP1A	Chromatin modifying protein 1A	Role in nuclear gene silencing, tumor suppressor, regulates tumor growth by the TP53 signaling pathway.
−0.486	GFPT1	Glutamine–fructose-6-phosphate transaminase 1	Involved in regulating the availability of precursors for N and O-linked glycosylation of proteins.
0.483	EPB41L1	Erythrocyte membrane protein band 4.1-ike 1	Critical for the membrane-associated cytoskeleton structure of erythrocytes.
of candidate genes for drug resistance and sensitivity and for understanding molecular biology of cancer (Efferth et al., 1997; Scherf et al., 2000).

Interactome Network Analysis

The biomedical literature has been flooded with genomic and transcriptomic data, which urgently need to be organized in bioregulatory networks comparable to electronic circuit programs. The rationale to generate regulatory network models is that pathophysiological processes may be associated with unexpected traits that are not amenable to standard statistical techniques. Building reliable regulatory networks from large-scale genomic and transcriptomic will considerably improve the identification of novel signaling routes and therapeutic targets, since both may differ in healthy and diseased cells (Lefebvre et al., 2012). Hence network approaches will be indispensable for patient-tailored precision medicine to predict drug response and overcome drug resistance (Ganter and Giroux, 2008).

Therefore, a number of software programs have been developed to address this problem, including programs developed at academia such as network molecular interaction maps (MIMs) (Kohn, 1999, 2001; Kohn et al., 2006a, b; Luna et al., 2011), Cytoscape, (Ideker et al., 2001), CellDesigner (Funahashi et al., 2003), TranscriptomeBrowser (Lopez et al., 2008; Lepoivre et al., 2012), PathVisio-Validator (Chandan et al., 2012), Systems Biology Graphical Notation (Ma et al., 2014) as well as commercial products, e.g., Biocarta, Ingenuity Pathway analysis, Pathway Studio, MetaCore and many others. All these programs reveal advantages and disadvantages (Thomas and Bonchev, 2010; Wang et al., 2013).

In the present investigation, genes described in the literature as factors determining cellular responsiveness to As$_2$O$_3$ (Table 5) plus the genes identified via compare analysis of our present and previous investigations on As$_2$O$_3$ (Efferth and Kaina, 2004) were chosen to perform network analyses using Ingenuity Pathway Analysis (IPA) (Qiagen Bioinformatics, Redwood City, CA, United States), as IPA is one of the most used programs to generate bioregulatory networks. We performed network analysis using two different approaches: manually curated pathways and software-based analyses. Published information from literature was used to generate the network and to cluster the genes. IPA Pathway Designer was used to construct the network and the pathways where our genes contributed to.

Gene Promoter Transcription Factor Motif Analysis

Forty genes from the COMPARE analyses results significantly associated with log$_{10}$IC$_{50}$ values of As$_2$O$_3$ for the 58 cell lines. UCSC Genome Browser Gene5 was used to analyze the 40 genes to obtain gene’s promoter sequences up to 50 kilobases upstream of the transcription start site. The results were saved on BED (Browser Extensible Data) files for further use (Seo et al., 2016).

The bed file was uploaded on Galaxy, Cistrome software (Liu et al., 2011) to detect the possible transcription factor binding motifs for the selected genes. The software is available at http://cistrome.dfci.harvard.edu/ap/root. Integrative analysis using SeqPos tool was applied to screen the motif binding site on the uploaded genes promoter sequences. Both, UCSC Genome Browser and Galaxy, Cistrome are free softwares. SeqPos tool scans all the motifs that are available on the following databases Transfac, JASPAR, UniPROBE (pbm), hPDI database. The result of the screening was ordered by $-\log_{10}$ (P-value).

Statistical Analysis

Pearson’s correlation test was applied to calculate significance correlation in COMPARE and hierarchical cluster analyses. The chi-squared test was performed to investigate the linear dependency between the resistance and the sensitivity of the cell lines panel. Student’s t-test (Microsoft Excel 2016) was applied to determine the statistical significance of As$_2$O$_3$ effect on AP-1 and NF-κB transcription factors. A level of $P < 0.05$ was revealed as statistically significant. All data were shown as mean values ± SD.

RESULTS

Cytotoxicity

The cytotoxic effect of As$_2$O$_3$ was determined using resazurin reduction assay. As$_2$O$_3$ was applied on three different resistance

5http://genome.ucsc.edu
mechanisms (P-glycoprotein overexpression, mutant EGFR, knockout p53). The IC$_{50}$ values for CCRF-CEM cells and CEM/ADR5000 cells were 0.48 ± 0.22 µM and 0.90 ± 0.38 µM, respectively. For CEM/ADR5000 the degrees of resistance was 1.88. Additionally, As$_2$O$_3$ was tested against HCT116 p53 knockout cells (p53$^{-/-}$) and their wild-type cells, HCT116 (p53$^{+/+}$). The HCT116 (p53$^{-/-}$) cells exhibited resistance toward As$_2$O$_3$ with an IC$_{50}$ value of 90.83 ± 0.83 µM, which was higher than the IC$_{50}$ value of wild-type HCT116 (p53$^{+/+}$) cells (12.68 ± 0.78 µM). Interestingly, glioblastoma cell line (U87.MG) were even more sensitive to As$_2$O$_3$ than U87.MG wild-type cells with IC$_{50}$ values of 15.60 ± 0.93 and 47.82 ± 1.25 µM, respectively. The degree of resistance was 0.33. The Dose response curves and IC$_{50}$ values for the above-mentioned cell lines are shown in Figure 1 and Table 1.
Cluster 4 5 0
Cluster 3 18 5
Cluster 2 0 7
Cluster 1 6 17

Critical role in the cancer therapy.

Transcription factors that possibly bind to the promoters with

Cluster analyses for As$_2$O$_3$.

Partition (log$_{10}$IC$_{50}$) <-5.45 M >-5.45 M
Cluster 1 6 17
Cluster 2 0 7
Cluster 3 18 5
Cluster 4 5 0

χ^2 Test $P = 1.86 \times 10^{-5}$

The median log$_{10}$IC$_{50}$ value (M) for As$_2$O$_3$ was used as a cut-off to separate cancer cell lines as being "sensitive" or "resistant."

COMPARE and Hierarchical Cluster Analyses

The transcriptome-wide mRNA expression of the 58 NCI cell lines were subjected to COMPARE analyses based on Pearson's rank correlation tests. In this test, the microarray expression data were correlated with the log$_{10}$IC$_{50}$ values of As$_2$O$_3$ for the 58 cell lines. This bioinformatics approach permitted the identification of molecular factors that liked to cellular response to As$_2$O$_3$. The top 20 genes with positive correlation coefficients and top 20 genes with negative correlation coefficients are shown in Table 2. These 40 genes were used to conduct hierarchical cluster analysis (cluster image mapping) to predict, whether these genes may play a role in sensitivity or resistance of the cells to As$_2$O$_3$. The resulting dendrogram with the 58 cell lines applied on the left of the heat-map, while distribution of the 40 genes are shown on the top of the heat-map (Figure 2). The dendrogram can be divided into four major clusters for As$_2$O$_3$. Based on chi-square test we looked whether the clustering of cell was associated with cellular responsiveness of the cell lines to As$_2$O$_3$. Indeed, the branching of sensitive or resistant cell lines was statistically significant (Table 3). The genes identified via this approach belong to diverse groups such as cell cycle progression and proliferation genes including (PRKACA, ARHGAP19, CDKN2D etc.), tumor suppressor related genes (RBBP4, CHMP1A, and GPRCSA), cytoskeleton related genes (PTPRC, ABI2, EPB41L1 and PLSI), metabolic pathway genes (MEI, COASY, and ALDH3A2), signal transduction genes (PPAP2C and PFKP) and apoptosis-regulating gene (ID1).

Gene Promoter Analysis for Transcription Factor Binding Motifs

Using the computational method of Galaxy Cistrome analysis, we investigated DNA promoter sequences of deregulated genes found in NCI microarray data. Forty genes were uploaded to Galaxy Cistrome for SeqPos motif scan. These genes are contribute in cell cycle progression and proliferation, cytokinesis, metabolic pathways, cell shape, apoptosis and signal transduction. The top 20 pronounced motifs are illustrated in Table 4. Interestingly, AP-1 and NF-kB were among the top transcription factors that possibly bind to the promoters with z-scores of -5.456 and -5.268, respectively. Both factors play critical role in the cancer therapy.

Clusters	Factor	z-score	$-10^\log(p$-value)
1	YY1	-7.388	302.304
2	Zfp42	-6.184	218.837
3	PIF3	-6.798	259.645
4	Tye7	-3.945	101.291
5	JUND	-6.447	235.883
6	AP-1	-5.456	175.291
7	AP-1	-5.034	152.444
8	AP-1	-4.834	142.187
9	AP-1	-4.286	116.074
10	GCN4	-4.208	112.612
11	BACH2	-3.219	73.482
12	Hic1	-5.884	200.294
13	EBF1	-5.841	197.699
14	MYB	-5.793	194.848
15	Myb	-3.468	82.468
16	REB1	-5.788	194.519
17	STAT1	-5.636	185.601
18	Ets1	-5.585	182.653
19	Ets1	-4.274	115.545
20	Ets1	-4.047	105.592
21	Ets1	-3.344	77.908
22	Ets1	-3.298	76.284
23	Ets1	-3.135	70.602
24	TAF-1	-5.508	178.251
25	HBP-1a	-4.112	108.405
26	TAF-1	-3.659	89.741
27	CPRF1	-3.21	73.169
28	LTF	-5.483	176.81
29	NEUROD1	-5.445	174.695
30	NF-kB	-3.482	82.983
31	NF-kB	-3.482	82.983
32	NF-kB	-5.319	167.711
33	Tcf2l2a	-5.29	166.101
34	AREB6j	-4.582	129.833
35	ZEB1	-5.268	164.89
36	NEUROD1	-5.456	174.695
37	ATOH1	-3.199	72.778
38	NRx	-5.268	164.89
39	P50:50	-3.365	78.671
40	MZF1	5-19	160.702
41	Churchl	-3.25	74.581
42	UBPl	-5.046	153.04
43	S8l	-5.034	152.432
44	Mox2	-4.391	120.844
45	Glx2	-3.887	98.882
46	Mox2	-3.79	94.95
47	HOXD1	-3.298	76.274
48	Barx-2	-3.192	72.547
49	Prx2	-3.191	72.514
50	SP3	-5.015	151.433
51	TIMELESS	-5.014	151.355
52	Egr1	-4.994	150.332

The binding motifs have been identified using Galaxy Cistrome.
AP-1 Reporter Assay
Based on this finding, we assume that As$_2$O$_3$ may affect AP-1. To verify this hypothesis, we generated an AP-1 reporter cell line. The transfected HEK293 was incubated with five different concentrations of As$_2$O$_3$ to find out, whether AP-1 promoter activity was inhibited. Treatment of transfected cells with As$_2$O$_3$ significantly inhibited the PMA-mediated AP-1 activity in a dose-dependent manner as shown in Figure 3.

NF-κB Reporter Assay
Interestingly, the capability of As$_2$O$_3$ to affect NF-κB is debatable point in the literature. As$_2$O$_3$ can act as activator or inhibitor NF-κB (Woo et al., 2004; Han et al., 2005). From our motif analysis, we obtained NF-κB among the top 20 transcription factors. Therefore, we investigated whether As$_2$O$_3$ is able to inhibit NF-κB signaling. To achieve this, we performed a SEAP-driven NF-κB reporter cell line. Indeed, As$_2$O$_3$ inhibit NF-κB in a comparable manner as the NF-κB inhibitor, triptolide. The fold change was statistically significant for three As$_2$O$_3$ concentrations (10, 15, and 50 µM) as demonstrated in Figure 4.

Interactome Network Analysis
For network analysis, we subjected the transcriptomic data of our present and previous investigations on As$_2$O$_3$ (Efferth and Kaina, 2004) as well as of factors determining cellular responsiveness to As$_2$O$_3$, which are known from the literature. In addition to the well-known target of As$_2$O$_3$ in APL, the PML-RARα fusion protein (Goto et al., 2011; Tomita et al., 2013; Chendamarai et al., 2015; Lou et al., 2015; Liu J. et al., 2016), numerous other determinants of resistance have been described in the literature (Table 5). Firstly, we performed a manually curated analysis of the genes by visual inspection of the genes and assigning then to their specific functions. The main functional groups were oxidative stress response, DNA repair, regulation of cell cycle/proliferation, signal transduction, drug transporter, cytoskeletal elements, tumor suppressors/oncogenes, metabolic pathways, and apoptosis. Based on this analysis, a presumable integrative interaction network was constructed (Figure 5).

As a second step, we subjected the assembled genes to Ingenuity Pathway Analysis. The interactome map obtained was rather complex (Figure 6). Therefore, we refined the analysis by analyzing the canonical pathways. The identified pathways belonged to signal transduction (phospholipase C signaling, protein kinase A signaling, signaling by Rho family GTPases, actin cytoskeleton signaling), molecular mechanisms of cancer, neurological pathways (axonal guidance signaling, neuroregulin signaling, agrin interactions with neuromuscular junctions), PXR/RXR activation, IL-7 signaling pathway and androgen signaling (Figure 7). The significance of this pathway are presented as –log (p-value) in Figure 8.

In addition, cell death and survival, cell cycle, cell morphology, cellular movement, cellular development were identified by IPA as biological functions from our selected genes (Figure 9). A network of 36 selected genes that involve in the cell death (apoptosis) as the top biological function is shown in Figure 8. While the importance of signaling processes was obvious by both visually and IPA-guided analyses, both approaches revealed additional functional groups complementing each other and highlighting the complexity of mechanisms contributing to the cytotoxicity of As$_2$O$_3$.

DISCUSSION
In the current study, we investigated the potential of As$_2$O$_3$ to treat drug-resistant tumor cells. Tumors frequently develop resistance to a broad spectrum of anti-cancer drugs (Efferth et al., 2008). Therefore, drug resistance represents an important obstacle to defeat cancer. In this study, we showed that As$_2$O$_3$ revealed profound cytotoxicity toward various cancer cell lines.

Our results showed that multidrug-resistant CEM/ADR5000 cells which overexpress P-glycoprotein did not reveal
TABLE 5 | Compilation of determinants of cellular responsiveness of cancer cells toward As$_2$O$_3$.

### Genes/Proteins	Reference
Oxidative stress response:
GSH | Present investigation; Yang et al., 1999; Davison et al., 2003; Hour et al., 2004; Lee et al., 2006; Han et al., 2008; Matulis et al., 2009; Matulis et al., 2012
SOD (Cu/Zn) | Hour et al., 2004
NXN, TXNRD1 | Efferth and Kaina, 2004
BACH2 | Zhou et al., 2005
γ-glutamyltransferase | Giommarelli et al., 2009
HO-1 | Zhou et al., 2005
HIF-1α | Tung et al., 2011; Liu H. et al., 2016
GST-π | Zhao et al., 2011
Drug transport:
ABCC1 (MRP1); ABCC2 (MRP2); ABCC4 (MRP4) | Seo et al., 2007; Chen et al., 2009; Yuan et al., 2016
ASAN1 | Chen et al., 2009
DNA repair:
SMC2L1 | Efferth and Kaina, 2004
hMSH2 | Hour et al., 2004
Cell cycle/proliferation:
ARHGAPAP19, CDKN2D, PRKACA | Present investigation
TFDP2, ZNF151 | Efferth and Kaina, 2004
p21WAF1/CIP1 | Hour et al., 2004
BTRD2, IGFBP1 | Zhou et al., 2005
CCND1 | Roszak et al., 2013
AURKB | Yih et al., 2013
Tumor suppressors/oncogenes:
RBBP4, CHMP1A, GPRCSA | Present investigation
PML/RARα | Present investigation
p53 | Yan et al., 2011; Zhang et al., 2013; Zheng et al., 2014
EGFR | Zhang et al., 2012
MYC | Hour et al., 2004
Signal transduction:
CAMK4, PPAP2C, PKB3 | Present investigation
AP-1 (Fos/Jun) | Present investigation
DDEF2, SDC1, SH2BP3, STN1, TOP1 | Present investigation
PI3K, PKC, AKT | Present investigation
NFκB1 | Present investigation
Metabolic pathways:
ME1, COAS4, ALDH3A2 | Present investigation
ALDH3A2 | Present investigation
ALDH3A1 | Present investigation
Cytoskeleton:
PTPRC, ABLIM1, EPB41L1, PLS1 | Present investigation

(Continued)

TABLE 5 | Continued

### Genes/Proteins	Reference
ACAA2, ARHGEF7, KRT8, MYL3 | Present investigation
ID1 | Present investigation
GRB7, PIGPC1 | Present investigation
Bcl2, Noxa | Hour et al., 2004; Matulis et al., 2012
Mcl-1 | Amigo-Jimenez et al., 2015

cross-resistance to As$_2$O$_3$. Therefore, P-glycoprotein did not play an important role for resistance cellular responsiveness to As$_2$O$_3$. Our results are in accordance with those of (Hu et al., 2003), who also did not find cross-resistance of multidrug-resistant P-glycoprotein-expressing cell lines toward As$_2$O$_3$. This finding is also corroborated by data generated by Sertel et al. (2012). As$_2$O$_3$ counteracted multidrug resistance by interference with drug resistance genes. The expression of DNA topoisomerase 2 was increased and of glutathione S-transferase-π and Bcl-2 decreased upon treatment with As$_2$O$_3$ (Zhao et al., 2011). Other ATP-binding cassette (ABC) transporters than P-glycoprotein might be more important for As$_2$O$_3$. Treatment with As$_2$O$_3$ lead to the induction of ABCG1, but not P-glycoprotein (Seo et al., 2007) and As$_2$O$_3$-resistant cell lines overexpressed P-glycoprotein but also ABCC1, ABCB2, and ABCG4 (Chen et al., 2009, 2016; Yuan et al., 2016). ABCG1-overexpressing tumor cells accumulated less As$_2$O$_3$ than wild-type cells (Salerno and Garnier-Suillerot, 2003).

To the best of our knowledge, the anti-proliferative activities of As$_2$O$_3$ and particularly its effect against p53 knockout HCT116 (p53$^−/−$) colon carcinoma and EGRF mutant U87.MG ΔEGRF glioblastoma multiforme cell lines are being tested for the first time.
TP53 maintains cellular integrity by regulating cell cycle arrest, DNA repair and apoptosis. Functional loss by TP53 mutations lead not only to carcinogenesis, but to drug and radio resistance too (Hientz et al., 2017). In our investigation, HCT116 (p53−/−) knockout cells exhibited resistance toward As₂O₃. Our data are in agreement with other investigations with isogenic cell lines (Yan et al., 2011; Zhang et al., 2013), but not with cell lines with different p53 status and different genomic background (Liu et al., 2003; Zhao et al., 2008). This indicates that the p53 mutational status in correlation studies with different cell lines may be overruled by other mechanisms of resistance to As₂O₃. Therefore, the targeted loss of p53 function by knockout was more suitable to undoubtedly elucidate the role of p53 as resistance factor for As₂O₃. A role of p53 mutations can also be deduced from cells resistant to As₂O₃, which acquired p53 mutations and which were re-sensitized to As₂O₃ by a small molecule inhibitor specifically targeting mutant p53, nutlin-3 (Zheng et al., 2014).

Furthermore, we found that U87.MG cells showed collateral sensitivity to As₂O₃. EGFR plays a significant role in cancer progression, not only by transducing growth signals into cancer cells, but also by triggering invasion and metastasis (Baselga, 2002; Lui and Grandis, 2002). Inhibition of EGFR leads to the induction of apoptosis. This may explain, how As₂O₃ suppresses EGFR-expressing tumor cells (Efferth and Kaina, 2004). The phenomenon of collateral sensitivity (hypersensitivity) offers an attractive strategy to overcome drug resistance (Pluchino et al., 2012). Moreover, collateral sensitivity may open the chance for combination therapy of known anticancer drugs with As₂O₃ to efficiently kill drug-resistant tumors with EGFR over expression. The reason for the collateral sensitivity is not yet known, but a direct interaction of As₂O₃ with EGFR could be suggested, since it has been reported that As₂O₃ down-regulated EGFR expression in a dose-dependent manner (Zhang et al., 2012).

We further evaluated the molecular factors of sensitivity and resistance of cancer cell lines toward As₂O₃. We correlated the log₁₀IC₅₀-values with the microarray-based mRNA expression profiles of 58 tumor cell lines by COMPARE analysis. Genes from diverse functional groups have been identified. Previously, the effect of As₂O₃ on mRNA expression profile of NCI cell line panel have been reported (Efferth and Kaina, 2004; Sertel et al., 2012). Here, we focused on the Novartis microarray platform. In all studies the chi-square test reveal a significant clustering of the cell lines based on their sensitivity or resistance toward As₂O₃. Moreover, several biological functions of the genes, e.g., cell cycle progression, and proliferation related genes, signal transduction and apoptosis-regulating gene were common in the previous and the present investigations.

Interestingly, the transcription factors binding motif analysis revealed two transcription factors (NF-κB and AP-1) which are closely connected not only to carcinogenesis but also with drug resistance (Boeckx et al., 2015). Therefore, we evaluated the potential of As₂O₃ to inhibit the activity of both AP-1 and...
NF-κB. NF-κB and AP-1 regulate numerous important cellular processes. NF-κB activity is regulated by IkB kinase, which phosphorylates the NF-κB inhibitor IkB. Fos is key constituent of AP-1 and is regulated by serum responsive factors (SRFs) as well as ternary complex factors (TCFs). AP-1 regulates cellular growth, differentiation, program cell death, transformation and invasion (McDonnell et al., 1990; Szabo et al., 1991; Brown et al., 1993). AP-1 complexes, particularly those that contain c-Jun, achieve their growth promoting function via repression of tumor suppressor genes, such as p53, p21cip1/waf1 and p16 (Shaulian and Karin, 2001). Although NF-κB and AP-1 are two distinct regulatory mechanisms, they may modulate each other (Fujioka et al., 2004).

Our results that As$_2$O$_3$ inhibited the DNA-binding activity in a reporter cell model are in accordance with other reports demonstrating that As$_2$O$_3$ inhibited NF-κB activity (Han et al., 2005; Wei et al., 2005; Mathieu and Besançon, 2006; Ghaffari et al., 2016). The ectopic expression of NF-κB p65 protected cells from As$_2$O$_3$ induced apoptosis (Ghaffari et al., 2016), indicating that the NF-κB pathway mediates resistance to As$_2$O$_3$.

Activator protein 1 (AP-1) is a transcription factor belongs to the group of trans-acting elements that consist of several proteins, including JUN, FOS, ATF (activating transcription factor) and MAF (musculoaponeurotic fibrosarcoma). AP-1 forms homodimers or heterodimers via its leucine-zipper domains, different dimerization ultimately allow that AP-1 recognizes different sequences in the promoters and enhancers of target genes (Eferl and Wagner, 2003). The AP-1 activity was causatively linked to cell transformation and it assumed to be a significant factor for tumorigenesis (Kharman-Biz et al., 2013). Therefore, AP-1 might provide opportunities for the development of novel targeted cancer treatment strategies (Angel and Karin, 1991; Milde-Langosch et al., 2004; Kharman-Biz et al., 2013). Interestingly, AP-1 drives not only carcinogenesis, but also increases the expression of multidrug resistance-conferring MDR1 gene (Daschner et al., 1999). Therefore, c-Jun is a potential drug target to combat MDR (Passegue and Wagner, 2000).

Using an AP-1-specific reporter cell line, we found that As$_2$O$_3$ inhibited AP-1 activity. This result fits to data of
(Yedjou and Tchounwou, 2009), who observed that the As_2O_3-induced cell cycle arrest was correlated with repression of c-Fos (as component of the AP-1 heterodimeric complex). In another study, As_2O_3 treatment also downregulated c-Fos expression (Walker et al., 2016). The second partner of AP-1, c-Jun, was more phosphorylated in As_2O_3-resistant cells and hypophosphorylated in As_2O_3-sensitive cells upon As_2O_3 treatment (Roszak et al., 2013).

Nuclear factor (NF-κB) is another transcription factor responsible for expression regulation of genes involve in apoptosis, drug resistance, innate and adaptive immune responses, proliferation and metastasis (Guttridge et al., 1999). It exists as inactive form in the cytoplasm by interacting with inhibitory proteins (IκB). Phosphorylation of IκB by IκB kinase (IKK) activates NF-κB. Then, NF-κB is translocated to the nucleus, where it binds to specific gene promoters to
trans-activate the expression of target genes (Baud and Karin, 2009). NF-κB is constitutively active in hematologic malignancies and various types of solid tumors (Bharti et al., 2003). Besides, cancer cells become resistant to antitumor drugs and irradiations by NF-κB activation (Baud and Karin, 2009). Furthermore, decreased expression of anti-apoptotic genes is correlated with inhibition of NF-κB (Lin et al., 2010). Taken together the inhibition of NF-κB represents a promising target for cancer prevention and therapy (Nakanishi and Toi, 2005; Lin et al., 2010).

Several studies described that As$_2$O$_3$ exerts its anti-tumor activity by inhibiting AP-1 (Um et al., 2002; Brown et al., 2007). However, other studies showed that As$_2$O$_3$ stimulated AP-1 activity in cultured human fibroblasts and APL (Burnichon et al., 2003; Jang et al., 2012). This contradiction points to the fact that many arsenic compounds reveal both anti-cancer and pro-cancer activates. In this study, we used HEK293 cell lines transfected with AP-1 luciferase reporter construct to detect the activity of AP-1 after As$_2$O$_3$ treatment. We showed that As$_2$O$_3$ inhibit AP-1 in dose-dependent manner and this in line with previous study in HeLa, CaSki, and C33A cells (Wang et al., 2014).

On the other hand, many suggestions have been put forth on the mechanisms, by which As$_2$O$_3$ cause apoptosis. One of
the proposed explanations is that As$_2$O$_3$ inhibits the NF-κB activity. It induces genes involve in cell survival, tumor growth, blocking apoptosis and metastasis (Berman et al., 2002). NF-κB up-regulates both intracellular adhesion molecules and vascular cell adhesion, and inhibits IL-6 secretion resulting from adhesion of multiple myeloma cells to bone marrow stroma (Miller et al., 2002).

Our results from NF-κB reporter assays are in line with other studies demonstrating that As$_2$O$_3$ significantly inhibits NF-κB activity in a dose- dependent manner. In HL-60 cells, As$_2$O$_3$ suppressed the DNA-binding activity of the NF-κB heterodimer (p65/p50) through inhibiting the degradation of IκBα and then preventing nuclear translocation of p65 and the binding of NF-κB with their target gene consensus sequences (Han et al., 2005).

Although it is well known that natural products act rather in a multi-specific manner than mono-specifically against one single target (Efferth and Koch, 2011), it turns out more and more that synthetic drugs and even targeted small molecules affect multiple targets and pathways in diseased cells (Geromichalos et al., 2016). Therefore, network pharmacological approaches have been suggested to provide a more comprising picture of what is happening in cell upon drug treatment (Poornima et al., 2016). Hence, network pharmacology represents a valuable tool to investigate the mode of action of both synthetic and natural compounds. A conclusion that can be drawn from our network analysis of As$_2$O$_3$ is that rather entire gene clusters belonging to specific pathways and functional groups than single genes were involved in drug action. Given the individual differences of organisms and the biological flexibility to adapt to xenobiotic exposures, it is reasonable from an evolutionary point of view to assume cellular and molecular reactions of high flexibility and plasticity. The concept of the past (“one drug – one target”) obviously needs to be revisited and enlarged by a “one drug – multiple pathway” hypothesis.

The international sequencing projects (e.g., Cancer Genome Atlas,) unraveled a huge diversity of mutational profiles and gene expression patterns in individual tumors (Chin and Gray, 2008). Hence, it is reasonable that each patient’s tumor might react in a different manner to chemotherapy. In the case of As$_2$O$_3$, we found several major functional groups using manual curated network analysis to be involved in cellular responsiveness to the drug, i.e., oxidative stress response, DNA repair, regulation of cell cycle/proliferation, signal transduction, drug transporter, cytoskeletal elements, tumor suppressors/oncogenes, metabolic pathways, and apoptosis. On the other hand, we found many other important pathways using IPA network analysis, e.g., molecular mechanisms of cancer, axonal guidance signaling, signaling by Rho family GTPases, protein kinase A signaling, phospholipase signaling, actin cytoskeleton signaling etc. The manually curated and the IPA approaches revealed comparable findings for three types of pathways: signal transduction, metabolic pathways and cytoskeletal elements. Moreover, axonal guidance signaling, neuroregulin signaling and agrin interaction at neuromuscular junction pathways may demonstrate the neurotoxicity of As$_2$O$_3$. This is an interesting finding, since neurotoxicity is a known toxicity of arsenic (Vahidnia et al., 2007). Our IPA analysis identified three canonical pathways that might explain neurotoxic effects of As$_2$O$_3$. Furthermore, neurotoxic effects of arsenic may lead to cytoskeletal framework disorganization which is a suggested mechanism of arsenic-induced neurotoxicity (Vahidnia et al., 2007).

Interestingly, IPA network analysis also revealed several pathways which are directly connected with the cytoskeleton in addition to glioma signaling. It deserves further investigations, whether these pathways are also involved in the collateral sensitivity of the U87.MG. ΔEGFR glioblastoma cells to As$_2$O$_3$. Not surprisingly, IPA showed cell death and survival as top biological functions of the inserted genes with a p-value of 4.28E-09 and with 43 genes that contribute to this function.

Having the inter- and intra-tumor heterogeneity in mind, it is reasonable to assume that different tumors activate different genes belonging to the same main pathways and functional groups. The complexity of this process can be manage by network modeling, and corresponding bioinformatical tools are becoming more and more indispensable for pharmacology of both synthetic and natural drugs.

In conclusion, As$_2$O$_3$ was active against tumor cell lines. It showed collateral sensitivity toward U87.MG ΔEGFR. In addition to that, it inhibited AP-1 and NF-κB activity in a dose- dependent manner. COMPARE and cluster analyses using gene expression profiling of 58 NCI cell lines predicted the sensitivity or resistance of cancer cells to As$_2$O$_3$. Using a network pharmacological approach, we identified functional clusters of genes involved in the mechanisms of action in cancer cells.

AUTHOR CONTRIBUTIONS

MD performed the cytotoxicity, COMPARE and hierarchical cluster analyses, promoter binding motif analysis. NF-KB and AP-1 reporter assays, Interactome network analysis, and drafted the paper. SH performed the cytotoxicity and drafted the paper. TE supervised the project and corrected the paper.

ACKNOWLEDGMENTS

We are thankful to the Ph.D. stipend provided to MD by the Ministry of Higher Education and Scientific Research as well as the Al-Neelain University, Khartoum, Sudan.

REFERENCES

Alvarez, M., Paull, K., Monks, A., Hose, C., Lee, J.-S., Weinstein, J., et al. (1995). Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the national cancer institute anticancer drug screen. *J. Clin. Invest.* 95, 2205–2214. doi: 10.1172/JCI117910

Amigo-Jimenez, I., Bailon, E., Aguilera-Montilla, N., Terol, M. J., Garcia-Marco, J. A., and Garcia-Pardo, A. (2015). Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kdelta or PKCbeta signaling pathways. *Oncotarget* 6, 44832–44848. doi: 10.18632/oncotarget.6265
Amundson, S. A., Do, K. T., Vinikoor, L. C., Lee, R. A., Koch-Patia, C. A., Ahn, J., et al. (2008). Integrating global gene expression and radiation survival parameters across the 60 cell lines of the national cancer institute anticancer drug screen. *Cancer Res.* 68, 415–424. doi: 10.1158/0008-5472.CAN-07-2120

Anderson, K. C., Boise, L. H., Louie, R., and Waxman, S. (2002). Arsenic trioxide in multiple myeloma: rationale and future directions. *Cancer J.* 8, 12–25. doi: 10.1097/01304004-200201000-00003

Angel, P., and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. *Biochim. Biophys. Acta* 1072, 129–157. doi: 10.1016/0304-4149(91)90011-9

Baselga, J. (2002). Why the epidermal growth factor receptor? The rationale for cancer therapy. *Oncologist* 7(Suppl. 4), 2–8. doi: 10.1634/theoncologist.7-suppl-4-2

Baud, V., and Karin, M. (2009). IS NF-κB a good target for cancer therapy? Hopes and pitfalls. *Nat. Rev. Drug Discov.* 8, 33–40. doi: 10.1038/nrd2781

Beauchamp, E. M., and Uren, A. (2012). A new era for an ancient drug: arsenic trioxide and hedgehog signaling. *Vitamin. Horm.* 88, 333–354. doi: 10.1016/B978-0-12-394622-5.00015-8

Berman, K. S., Verma, U. N., Harburg, G., Minna, J. D., Cobb, M. H., and Brown, J. P., et al. (1993). Suppression of oncogene-induced transformation by a deletion mutant of c-jun. *Blood* 81, 155–162. doi: 10.1182/blood-1993-04-0130

Beauchamp, E. M., and Uren, A. (2012). A new era for an ancient drug: arsenic trioxide and hedgehog signaling. *Vitamin. Horm.* 88, 333–354. doi: 10.1016/B978-0-12-394622-5.00015-8

Berman, K. S., Verma, U. N., Harburg, G., Minna, J. D., Cobb, M. H., and Brown, J. P., et al. (1993). Suppression of oncogene-induced transformation by a deletion mutant of c-jun. *Blood* 81, 155–162. doi: 10.1182/blood-1993-04-0130

Breccia, M., and Lo-Coco, F. (2012). Arsenic trioxide for management of acute promyelocytic leukemia: current evidence on its role in front-line therapy and recurrent disease. *Expert Opin. Pharmacother.* 13, 1031–1043. doi: 10.1517/1465693X.2012.677436

Browne, M., Bellon, M., and Nicot, C. (2007). Emodin and DHA potently increase arsenic trioxide interferon-alpha-mediated apoptosis of lung cancer cell lines by inhibition of nuclear factor-κB. *Clin. Cancer Res.* 8, 354–360.

Bharti, A. C., Donato, N., Singh, S., and Aggarwal, B. B. (2003). Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IkappaBeta kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. *Blood* 101, 1055–1062. doi: 10.1182/blood-2002-05-1305

Boeckx, C., Blockx, L., De Beeck, K. O., Limame, R., Camp, G. V., Peeters, M., et al. (2015). Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor. *Am. J. Cancer Res.* 5, 1921–1938.

Breccia, M., and Lo-Coco, F. (2012). Arsenic trioxide for management of acute promyelocytic leukemia: current evidence on its role in front-line therapy and recurrent disease. *Expert Opin. Pharmacother.* 13, 1031–1043. doi: 10.1517/1465693X.2012.677436

Brown, M., Bellon, M., and Nicot, C. (2007). Emodin and DHA potently increase arsenic trioxide interferon-alpha-induced cell death of HTLV-1-transformed cells by generation of reactive oxygen species and inhibition of AKT and AP-1. *Blood* 109, 1653–1659. doi: 10.1182/blood-2006-04-015537

Brown, P. H., Alani, R., Preis, L. H., Szabo, E., and Birrer, M. J. (1993). Suppression of oncogene-induced transformation by a deletion mutant of c-jun. *Oncogene* 8, 877–886.

Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. *Proc. Natl. Acad. Sci. U.S.A.* 95, 14683–14688. doi: 10.1073/pnas.95.25.14863

Evans, A., Bates, V., Troy, H., Hewitt, S., Holbeck, S., Chung, Y.-L., et al. (2008). Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COMPAR e analysis and metabolomic studies. *Cancer Chemother. Pharmacol.* 61, 377–393. doi: 10.1007/s00280-007-0480-1

Fagan, V., Bonham, S., Carty, M. P., Saenz-Mendez, P., Eriksson, L. A., and Alldabbagh, F. (2012). COMPAR e analysis of the toxicity of an iminoquinone derivative of the imidazo [5, 4-f] benzimidazole molecules with NAD (P) H: quinone oxidoreductase 1 (Nqo1) activity and computational docking of quinones as Nqo1 substrates. *Bioorg. Med. Chem.* 20, 3223–3232. doi: 10.1016/j.bmc.2012.03.063

Fang, J., Liu, C., Wang, Q., Lin, P., and Cheng, F. (2017). In silico polypharmacology of natural products. *Brief Bioinform.* 101, 1003–1011. doi: 10.1093/bib/bbx045

Geromichalos, G. D., Alifieris, C. E., Geromichalou, E. G., and Trafalis, D. T. (2016). Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery. *Part I.* J. BUON 21, 764–779.

Ghaffari, S. H., Yousefi, M., Dizaji, M. Z., Momeny, M., Bashash, D., Zekri, A., et al. (2016). Arsenic trioxide induces apoptosis and incapacitates proliferation mechanisms of resistance. *Breast Cancer Res. Treat.* 153, 229–240. doi: 10.1007/s10549-016-3883-2

Cytotoxicity of Arsenic Trioxide

Dawood et al.
and invasive properties of U87MG glioblastoma cells through a possible NF-κB-mediated mechanism. *Asian Pac. J. Cancer Prev.* 17, 1553–1564. doi: 10.7314/APJCP.2016.17.15.1553

Giommarelli, C., Corti, A., Supino, R., Favini, E., Paolicchi, A., Pompella, A., et al. (2009). gamma-Glutamyltransferase-dependent resistance to arsenic trioxide in melanoma cells and cellular sensitization by ascorbic acid. *Free Radic. Biol. Med.* 46, 1516–1526. doi: 10.1016/j.freeradbiomed.2009.03.006

Goto, E., Tomita, A., Hayakawa, F., Atsumi, A., Kiyoi, H., and Naoe, T. (2011). Ginkgolic acids inhibit migration in breast cancer cells. *Asian Pac. J. Cancer Prev.* 32, 1316–1319. doi: 10.7314/APJCP.2011.12.4.1316

Kadioglu, O., and Efferth, T. (2014). Contributions from emerging transcriptomics technologies and computational strategies for drug discovery. *Invest. New Drugs* 32, 1316–1319. doi: 10.1007/s10637-014-0081-x

Kadioglu, O., and Efferth, T. (2015). Pharmacogenomic characterization of cytoxic compounds from *Salvia officinalis* in cancer cells. *J. Natl. Prod.* 78, 762–775. doi: 10.1021/np501007n

Kadioglu, O., Fu, Y., Wiench, B., Zu, Y., and Efferth, T. (2016a). Synthetic cajanin stilbene acid derivatives inhibit c-MYC in breast cancer cells. *Arch. Toxicol.* 90, 575–588. doi: 10.1007/s00204-015-1480-2

Kadioglu, O., Jacob, S., Bohnert, S., Nass, J., Saeed, M. E., Khalid, H., et al. (2016b). Evaluating ancient Egyptian prescriptions today: ANt-inflammatory activity of *Ziziphus spinus-christi*. *Phytomedicine* 23, 293–306. doi: 10.1016/j.phymed.2016.01.004

Kharman-Biz, A., Gao, H., Ghasivand, R., Zhao, C., Zendehdel, K., and Dahlman-Wright, K. (2013). Expression of activator protein-1 (AP-1) family members in breast cancer. *BMC Cancer* 13:441. doi: 10.1186/1471-2407-13-441

Kimmig, A., Gekeler, V., Neumann, M., Frese, G., Handregtert, R., Kardos, G., et al. (1990). Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin-2 activated killer cells. *Cancer Res.* 50, 6793–6799.

Klinger, P. H., Andrade, A. F., Delsin, L. E., Queiroz, R. G., Scriddel, C. A., Tone, L. G., et al. (2017). Inhibition of Shh pathway mechanisms by arsenic trioxide in pediatric medulloblastoma: a comprehensive literature review. *Genet. Mol. Res.* 16, 1–15. doi: 10.15172/kgrn1609142

Kohn, K. W. (1999). Molecular interaction map of the mammalian cell cycle control and DNA repair systems. *Mol. Biol. Cell* 10, 2703–2734. doi: 10.1091/mbc.10.8.2703

Kohn, K. W. (2001). Molecular interaction maps as information organizers and simulation guides. *Chaos* 11, 84–97. doi: 10.1063/1.1338126

Kohn, K. W., Aladjem, M. I., Kim, S., Weinstein, J. N., and Pommier, Y. (2006a). Depicting combinatorial complexity with the molecular interaction map notation. *Mol. Syst. Biol.* 2:51. doi: 10.1038/msb4100057

Kohn, K. W., Aladjem, M. I., Weinstein, J. N., and Pommier, Y. (2006b). Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. *Mol. Biol. Cell* 17, 1–13.

Koo, H.-M., Monks, A., Mikheev, A., Rubinstein, L. V., Gray-Goodrich, M., Mcwilliams, M. J., et al. (1996). Enhanced sensitivity to 1β-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. *Cancer Res.* 56, 5211–5216.

Kuete, V., Mbaveng, A. T., Nono, E. C., Simo, C. C., Zeino, M., Nkengfack, A. E., et al. (2016). Cytotoxicity of seven naturally occurring phenolic compounds towards multi-drug-resistant cancer cells. *Phytomedicine* 23, 856–863. doi: 10.1016/j.phymed.2016.04.007

Kuete, V., Mbaveng, A. T., Sanjo, L. P., Zeino, M., and Efferth, T. (2017). Cytotoxicity and mode of action of a naturally occurring naphthoquinone, 2-acetyl-7-methoxynaphtho[2,3-b]fur-an-4,9-quinone towards multi-drug-resistant cancer cells. *Phytomedicine* 33, 62–68. doi: 10.1016/j.phymed.2017.07.010

Lallemand-Breitenbach, V., Zhu, J., Chen, Z., and De The, H. (2012). Curing APL through PML/RARA degradation by As2O3. *Trends Mol. Med.* 18, 36–42. doi: 10.1016/j.molmed.2011.10.001

Lee, C. C., Lin, Y. Y., Huang, M. J., Lin, C. P., Liu, C. R., Chow, J., et al. (2006). Increased cellular glutathione and protection by bone marrow stromal cells account for the resistance of non-acute promyelocytic leukemia acute myeloid leukemia cells to arsenic trioxide in vivo. *Leuk. Lymphoma* 47, 521–529. doi: 10.1080/10428190500350851

Lee, J.-S., Paull, K., Alvarez, M., Hose, C., Monks, A., Grever, M., et al. (1994). Expression of activator protein-1 (AP-1) family members in human acute myeloid leukemia, HL-60. *J. Nat. Prod.* 57, 35103-35115 doi: 10.18632/oncotarget.16626

Lee, J.-S., Paull, K., Alvarez, M., Hose, C., Monks, A., Grever, M., et al. (1994). Expression of activator protein-1 (AP-1) family members in human acute myeloid leukemia, HL-60. *J. Nat. Prod.* 57, 35103-35115 doi: 10.18632/oncotarget.16626

Lefebvre, C., Rieckhof, G., and Califano, A. (2012). Reverse-engineering human interaction maps as information organizers and simulation guides. *Chaos* 11, 84–97. doi: 10.1063/1.1338126

Li, C. C., Lin, Y. Y., Huang, M. J., Lin, C. P., Liu, C. R., Chow, J., et al. (2006). Increased cellular glutathione and protection by bone marrow stromal cells account for the resistance of non-acute promyelocytic leukemia acute myeloid leukemia cells to arsenic trioxide in vivo. *Leuk. Lymphoma* 47, 521–529. doi: 10.1080/10428190500350851

Li, J.-S., Paull, K., Alvarez, M., Hose, C., Monks, A., Grever, M., et al. (1994). Rhodamine efflux patterns predict P-glycoprotein substrates in the national cancer institute drug screen. *Mol. Pharmacol.* 46, 627–638.

Lefebvre, C., Rieckhof, G., and Califano, A. (2012). Reverse-engineering human regulatory networks. *Wiley Interdiscip. Rev. Syst. Biol. Med.* 4, 311–325. doi: 10.1002/wsbm.1159

Lepoiivre, C., Bergon, A., Lopez, F., Perumal, N. B., Nguyen, C., Imbert, J., et al. (2012). TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks. *BMC Bioinformatics* 13:19. doi: 10.1186/1471-2105-13-19

Li, S., and Zhang, B. (2013). Traditional Chinese medicine network pharmacology: theory, methodology and application. *Chin. J. Nat. Med.* 11, 110–120. doi: 10.3724/SP.J.1009.2013.00110

Li, X., Li, H., and Li, S. (2014). A novel network pharmacology approach to analyse traditio-Lbient herbal formulase the Liu-Wei-Di-Huang pill as a case study. *Mol. Biostat.* 10, 1014–1022. doi: 10.1007/s00100-015-0967-b

Lin, Y., Bai, L., Chen, W., and Xu, S. (2010). The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. *Expert Opin. Ther. Targets* 14, 45–55. doi: 10.1517/14728220903431069
Liu, H., Zhang, Z., Chi, X., Zhao, Z., Huang, D., Jin, J., et al. (2016). Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells. *Sci. Rep.* 6:31009. doi: 10.1038/srep31009

Liu, J., Zhu, H. H., Jiang, H., Jiang, Q., and Huang, X. J. (2016). Varying responses of PML-RARA with different genetic mutations to arsenic trioxide. *Blood* 127, 243–250. doi: 10.1182/blood-2015-04-637678

Liu, Q., Hilsenbeck, S., and Gazitt, Y. (2003). Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with AP2/TRAII. *Blood* 101, 4078–4087. doi: 10.1182/blood-2002-10-3231

Liu, T., Ortiz, J. A., Taing, L., Meyer, C. A., Lee, B., Zhang, Y., et al. (2011). Cistrome: a powerful and flexible toolbox to explore productively the transcriptional landscape of the Gene Expression Omnibus database. *PLoS One* 6:e24001. doi: 10.1371/journal.pone.0024001

Lou, Y., Ma, Y., Sun, J., Ye, X., Pan, H., Wang, Y., et al. (2015). Evaluating frequency of PML-RARA mutations and conferring resistance to arsenic trioxide-based therapy in relapsed acute promyelocytic leukemia patients. *Ann. Hematol.* 94, 1829–1837. doi: 10.1007/s00277-015-2477-x

Lui, W. V., and Grandis, J. R. (2002). EGF-activated cell cycle regulation. *Anticancer Res.* 22, 1–11.

Luna, A., Karac, E. I., Sunshine, M., Chang, L., Nussinov, R., Aladjem, M. I., et al. (2011). A formal MIM specification and tools for the common exchange of MIM diagrams: an XML-Based format, an API, and a validation method. *BMC Bioinformatics* 12:167. doi: 10.1186/1471-2105-12-16-17

Luzina, E. L., and Popov, A. V. (2012). Synthesis, evaluation of anticancer activity and COMPARE analysis of N-bis(trifluoromethyl) alkyl-N′-substituted ureas with pharmacophoric moieties. *Eur. J. Med. Chem.* 53, 364–373. doi: 10.1016/j.ejmech.2012.03.026

Ma, H., Groth, R. D., Cohen, S. M., Emery, J. F., Li, B., Hoedt, E., et al. (2014). γCaMKII shuts off Ca2+/CAM to the nucleus to trigger CREB phosphorylation and gene expression. *Cell* 159, 281–294. doi: 10.1016/j.cell.2014.09.019

Matthij, J., and Besançon, F. O. (2006). Clinically tolerable concentrations of arsenic trioxide induce p53-independent cell death and repress NF-κB activation in Ewing sarcoma cells. *Int. J. Cancer* 119, 1723–1727. doi: 10.1002/ijc.21970

Matulis, S. M., Morales, A. A., Yehiayan, L., Cutch, C., Gutman, D., Cai, Y., and Boise, L. H. (2002). Mechanisms of action of arsenic trioxide. *Eur. J. Biochem.* 290, 298–302. doi: 10.1016/j.ejbiol.2014.07.011

Melle-Langosch, K., Roder, H., Andritzky, B., Aslan, B., Hemminger, G., Liu, J., Zhu, H. H., Jiang, H., Jiang, Q., and Huang, X. J. (2016). Varying responses of PML-RARA with different genetic mutations to arsenic trioxide. *Blood* 127, 243–250. doi: 10.1182/blood-2015-04-637678

Mathieu, J., and Besançon, F. O. (2006). Clinically tolerable concentrations of arsenic trioxide induce p53-independent cell death and repress NF-κB activation in Ewing sarcoma cells. *Eur. J. Med. Chem.* 53, 364–373. doi: 10.1016/j.ejmech.2012.03.026

Miller, W. H. Jr., Schipper, H. M., Lee, J. S., Singer, J., and Waxman, S. (2002). DNA array-based gene profiling: from surgical specimen to the molecular portrait of cancer. *Ann. Surg.* 241, 16–26.

Nakanishi, C., and Toi, M. (2005). Nuclear factor-κB activation of stromelysin mRNA in rat fibroblasts requires induction of inducible nitric oxide synthase. *Biochem. Biophys. Res. Commun.* 336, 36–42. doi: 10.1016/j.bbrc.2004.09.238

Napolitano, A., Kuete, V., Tran, T. H., Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., et al. (2004). Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indeno[1,2-b]quinoxaline sensitivity. *Mol. Cancer Ther.* 8, 1878–1884. doi: 10.1158/1535-7163.MCT-09-0016

Perkins, C., Kim, C. N., Fang, G., and Bhalia, K. N. (2000). Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRp, Bcl-2, or Bcl-x(L). *Blood* 95, 1014–1022.

Pepin, S. E., Callahan, B., Gottesman, M. M. (2012). Collateral sensitivity as a strategy against cancer multidrug resistance. *Drug Resist. Updat.* 15, 98–105. doi: 10.1016/j.drup.2012.03.002

Poonima, P., Kumar, J. D., Zhao, Q., Blunder, M., and Efferth, T. (2016). Network pharmacology of cancer: From understanding of complex interactions to the design of multi-target specific therapeutics from nature. *Pharmacol. Res.* 111, 290–302. doi: 10.1016/j.phrs.2016.06.018

Quan, Y., Wang, Z. Y., Xiong, M., Xiao, Z. T., and Zhang, H. Y. (2014). Dissecting traditional Chinese medicines by omics and bioinformatics. *Nat. Prod. Commun.* 9, 1391–1396.

Rao, Y., Li, R., and Zhang, D. (2013). A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered. *Sci. China Life Sci.* 56, 495–502. doi: 10.1007/s11427-013-4487-z

Roboz, G. J., Dias, S., Lam, G., Lane, W. J., Soignet, S. L., Warrell, R. P., et al. (2000). Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. *Blood* 96, 1525–1530.

Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. *Nat. Genet.* 24, 227–235. doi: 10.1038/74342

Rozsak, J., Smok-Pieniazek, A., Nocun, M., and Stepniz, M. (2013). Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on P38/JAK signaling pathway. *Chem. Biol. Interact.* 205, 198–211. doi: 10.1016/j.cbi.2013.07.011

Saeed, M., Kuete, V., Kadioglu, O., Bortzler, J., Khalid, H., Greten, H. J., et al. (2014). Molecules 19, 227–244. doi: 10.3390/molecules1901023

Salerno, M., and Garnier-Suillerot, A. (2003). Resistance to arsenic- and antimony-based drugs. *Bioinorg. Chem. Prod. Commun.* 1, 189–198. doi: 10.1155/S1565363303000153

Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., et al. (2000). A gene expression database for the molecular pharmacology of cancer. *Nat. Genet.* 24, 227–235. doi: 10.1038/74342

Schmidt, F., and Efferth, T. (2016). Tumor heterogeneity, single-cell sequencing, and drug resistance. *Pharmaceuticals* 9:33. doi: 10.3390/plt0090033

Seo, E. J., Saeed, M., Law, B. Y., Wu, A. G., Kadioglu, O., Greten, H. J., et al. (2016). Pharmacogenomics of scopoletin in tumor cells. *Molecules* 21:496. doi: 10.3390/molecules2104496

Seo, T., Urasaki, Y., and Udca, T. (2007). Establishment of an arsenic trioxide-resistant human leukemia cell line that shows multidrug resistance. *Int. J. Hematol.* 85, 26–31. doi: 10.1532/IJH97.05142
in arsenic-mediated growth suppression. J. Biol. Chem. 286, 17478–17486.
doi: 10.1074/jbc.M111.231639

Yang, C. H., Kuo, M. L., Chen, J. C., and Chen, Y. C. (1999). Arsenic trioxide sensitivity is associated with low level of glutathione in cancer cells. Br. J. Cancer 81, 796–799. doi: 10.1038/sj.bjc.6600766

Yedjou, C. G., and Tchounwou, P. B. (2009). Modulation of p53, c-fos, RARE, cyclin A, and cyclin D1 expression in human leukemia (HL-60) cells exposed to arsenic trioxide. Mol. Cell. Biochem. 331, 207–214. doi: 10.1007/s11010-009-0160-z

Yih, L. H., Hsu, N. C., Wu, Y. C., Yen, W. Y., and Kuo, H. H. (2013). Inhibition of AKT enhances mitotic cell apoptosis induced by arsenic trioxide. Toxicol. Appl. Pharmacol. 267, 228–237. doi: 10.1016/j.taap.2013.01.011

Yuan, B., Yoshino, Y., Fukushima, H., Markova, S., Takagi, N., Toyoda, H., et al. (2016). Multidrug resistance-associated protein 4 is a determinant of arsenite resistance. Oncol. Rep. 35, 147–154. doi: 10.3892/or.2015.4334

Zaharevitz, D. W., Holbeck, S. L., Bowerman, C., and Sveik, P. A. (2002). Compare: a web accessible tool for investigating mechanisms of cell growth inhibition. J. Mol. Graph. Model. 20, 297–303. doi: 10.1016/S1093-3263(01)00126-7

Zhang, L., Wang, K., Zhao, F., Hu, W., Chen, J., Lanza, G. M., et al. (2012). Near infrared imaging of EGF-R of oral squamous cell carcinoma in mice administered arsenic trioxide. PLoS One 7:e46255. doi: 10.1371/journal.pone.0046255

Zhang, X., Yang, X. R., Sun, C., Hu, B., Sun, Y. F., Huang, X. W., et al. (2013). Promyelocytic leukemia protein induces arsenic trioxide resistance through regulation of aldehyde dehydrogenase 3 family member A1 in hepatocellular carcinoma. Cancer Lett. 366, 112–122. doi: 10.1016/j.canlet.2015.06.014

Zhang, X. H., Feng, R., Lv, M., Jiang, Q., Zhu, H. H., Qing, Y. Z., et al. (2013). Arsenic trioxide induces apoptosis in B-cell chronic lymphocytic leukemia cells through down-regulation of survivin via the p53-dependent signaling pathway. Leuk. Res. 37, 1719–1725. doi: 10.1016/j.leukres.2013.09.019

Zhao, C. Q., Young, M. R., Diwan, B. A., Coogan, T. P., and Waalkes, M. P. (1997). Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc. Natl. Acad. Sci. U.S.A. 94, 10907–10912. doi: 10.1073/pnas.94.20.10907

Zhao, D., Jiang, Y., Dong, X., Liu, Z., Qu, B., Zhang, Y., et al. (2011). Arsenic trioxide reduces drug resistance to adriamycin in leukemia K562/A02 cells via multiple mechanisms. Biomed. Pharmacother. 65, 354–358. doi: 10.1016/j.biopha.2011.04.016

Zhao, S., Zhang, J., Zhang, X., Dong, X., and Sun, X. (2008). Arsenic trioxide induces different gene expression profiles of genes related to growth and apoptosis in glioma cells dependent on the p53 status. Mol. Biol. Rep. 35, 421–429. doi: 10.1007/s11033-007-9102-6

Zheng, T., Yin, D., Lu, Z., Wang, J., Li, Y., Chen, X., et al. (2014). Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in hepatocellular carcinoma. Mol. Cancer 13:133. doi: 10.1186/1476-4598-13-13

Zhou, P., Kalakonda, N., and Comenzo, R. L. (2005). Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br. J. Haematol. 128, 636–644. doi: 10.1111/j.1365-2457.2005.05369.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.