Microwave-assisted one pot three-component synthesis of some novel pyrazole scaffolds as potent anticancer agents

Sobhi M. Gomha1*, Mastoura M. Edrees2,3, Rasha A. M. Faty1, Zeinab A. Muhammad2 and Yahia N. Mabkhot4

Abstract

Background: Pyrazoles, thiazoles and 1,3,4-thiadiazoles have been reported to possess various pharmacological activities.

Results: An efficient and a novel approach for the synthesis of some novel pyrazole based-azoles are described via multi-component reaction under controlled microwave heating conditions. The structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, 1H NMR and mass spectral data. All the synthesized compounds were tested for in vitro activities against two antitumor cell lines, human lung cancer and human hepatocellular carcinoma compared with the employed standard antitumor drug (cisplatin).

Conclusions: All the newly synthesized compounds were evaluated for their anticancer activity against human lung cancer and human hepatocellular carcinoma cell lines using MTT assay. The results obtained exploring the high potency of six of the tested compounds compared with cisplatin.

Keywords: Acetylpyrazoles, Enaminones, Hydrazonoyl chlorides, Thiazoles, Thiadiazoles, Anticancer activity

Background

Multi-component reactions (MCR) are one-pot processes with at least three components to form a single product, which incorporates most or even all of the starting materials [1–6]. The huge interest for such multi-component reactions during the last years has been oriented towards developing combinatorial chemistry procedures, because of their high efficiency and convenience of these reactions in comparison with multistage procedures. Also, the utility of MCR under microwave irradiation in synthesis of heterocyclic compounds enhanced the reaction rates and improve the regioselectivity [7–12].

On the other hand, pyrazole and its derivatives have drawn considerable attention of the researchers in the past few decades owing to their high therapeutic values. Some of the drugs, possessing pyrazole as basic moiety, like celecoxib [13], deracoxib [14], etoricoxib and atorvastatin [15] are already booming in the market. Pyrazole derivatives possess an extensive range of pharmacological activities such as anti-inflammatory, antipyretic, analgesic, antimicrobial, sodium channel blocker, antitubercular, antiviral, antihypertensive, antiglaucoma, antioxidant, antidepressant, anxiolytic, neuroprotective and antidiabetic activity [16–23]. Furthermore, pyrazole prodrugs have also been reported to possess significant anticancer activities [24–30]. Keeping this in mind, and in continuation of our previous work on the synthesis of new anticancer agents [31–40], we herein present an efficient regioselective synthesis of novel 4-heteroaryl-pyrazoles, which have not been reported hitherto in a multicomponent synthesis under microwave irradiation and to assess their anticarcinogenic effects against hepatocellular carcinoma (HepG-2) and human lung cancer (A-549) cell lines.

*Correspondence: s.m.gomha@gmail.com
1 Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
Full list of author information is available at the end of the article

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Results and discussion

Chemistry

Multi-component reaction of acetyl pyrazole 1 [41], dimethylformamide dimethylacetal (DMF–DMA) 2 and nitrileimine 4a–d (generated in situ from 3a–d with triethylamine) in toluene under conventional heating for 10–15 h or under microwave irradiation at 150 °C for 4–10 min. afforded compound 6a–d rather than its isomeric structure 8a–d in 66–70 and 84–90%, respectively (Scheme 1; Table 1). The structure of 6a–d was confirmed by their spectral data (IR, MS and 1H-NMR) and elemental analyses. For example, the IR spectra of products 6 revealed in each case two absorption bands in the regions υ 1638–1676 and 1682–1724 cm⁻¹ due to the two carbonyl groups. The 1HNMR spectra showed, in addition to the expected signals for the aromatic protons, three singlet signals at δ ~2.34, 2.55 and 8.92 revealed to the two methyl groups and the pyrazole-H5, respectively. The mass spectra of products 6a–d revealed a molecular ion peak for each one which is consistent with the respective molecular weight. These data are much closer to those reported in literature on similar work [42–44].

Compound 6a was alternatively synthesized by reacting enamino 9 (prepared separately via condensation of acetyl pyrazole 1 with DMF–DMF) with 2-oxo-N-phenylpropanehydrazonoyl chloride (3a) in toluene containing catalytic amount of TEA under MWI. The obtained product was found to be identical with 6a in all respects (TLC, mp and IR spectrum) which affords further evidence to all structures 6a–d. The latter products were assumed to be formed via initial 1,3-dipolar cycloaddition of the nitrileimines 4a–d to the activated double bond in enamino 9 to afford the non-isolable cycloadducts 5 which underwent loss of dimethylamine yielding the final pyrazole derivatives 6a–d.

The results obtained Table 1 indicate that, unlike classical heating, microwave irradiation results in higher yields and shorter reaction times for all the carried reactions. Microwave irradiation facilitates the polarization of the molecules under irradiation causing rapid reaction to occur. This is consistent with the reaction mechanism, which involves a polar transition state [45].

By the same way reaction of acetyl pyrazole 1 with nitrile-oxide 11a, b (derived from reaction of hydroxymoiy chloride 10a, b with TEA) and DMF–DMA in toluene under microwave irradiation at 150 °C gave isoxazoles 13a, b (Scheme 2; Table 1). The 1H NMR spectrum of the product revealed a singlet signal at 9.67 ppm assigned for isoxazole-5H proton not isoxazole-4H proton [42–44, 46] which consistent with the isomeric structure 13 rather than the isomeric structure 15. Moreover, the mass spectrum of 13a and 13b revealed a molecular ion peaks at m/z = 506 and 446, respectively, which is consistent with their molecular weights.

Furthermore, alternative synthesis of compound 13a was achieved via reaction enamino 9 with N-hydroxy-2-naphthimidoyl chloride (10a) under the same reaction condition to yield authentic product 13a (Scheme 2).

Next, our study was extended to investigate the reactivity of compound 1 towards thiosemicarbazide and various hydrazonoyl halides aiming to synthesize new pyrazole based—1,3-thiazoles and 1,3,4-thiadiazoles. Thus, acetyl pyrrole 1, thiosemicarbazide 2 and α-keto hydrazonoyl halides 3a, b, e were allowed to react in a one-pot three-component reaction in dioxane containing catalytic amount of TEA under MWI to afford the aryloxothiazole derivatives 18a–c, respectively (Scheme 3; Table 1). The reaction goes in parallel to literature [32, 35–37].

The structure of the products 18a–c was assigned based on the spectral data and elemental analyses. For example mass spectrum of compound 18a revealed molecular ion peak at m/z 542 and its 1H NMR spectrum exhibited four characteristic singlet signals at 2.32, 2.36, 2.48 and 10.47 assignable to three CH₃ groups and NH protons, respectively, in addition to an aromatic multiplet in the region 6.99–7.93 ppm equivalent to 12 protons. Its IR spectra showed one NH group band at 3396 cm⁻¹.

The structure of products 18 was further confirmed by an alternative method. Thus, reaction of acetylpyrazole 1 with thiosemicarbazide 16 under MWI in ethanol containing drops of concentrated HCl led to the formation of product 19. Compound 19 was then react with 2-oxo-N-phenylpropanehydrazonoyl chloride (3a) in dioxane containing catalytic amount of TEA under MWI to give a product identical in all respects (IR, mp and mixed mp.) with 18a (Scheme 3).

In a similar manner, when acetyl pyrazole 1 was allowed to react with thiosemicarbazide 2 and ethyl (N-arylhydrazono)-chloroacetates 3c, f in dioxane in the presence of triethylamine under MWI, it afforded in each case a single isolable product, namely, 2-(2-(1-(5-methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl) ethylidene) hydrazinyl)-5-(2-arylhydrazono) thiazol-4(5H)-one 21a, b (Scheme 4; Table 1). Structure 21 was confirmed by elemental analysis, spectral data (IR, 1H NMR, and mass), and alternative synthesis route. Thus, thiosemicarbazone 19 was reacted with ethyl-1-2-chloro-2-(2-phenylhydrazono)acetate (3c) in dioxane in the presence of TEA under MWI afforded a product identical in all aspects (mp, mixed mp, and spectra) with 21a (Scheme 4).

Finally, the reactivity of acetylpyrazole 1 towards hydrazonoyl halides, be bereft of a-keto group, was
examined. In the present study, we have established that reaction of acetylpyrazole 1 with N-thiosemicarbazide 16 and aryl carbohydrazonoyl chlorides 3d, g gave the respective 1,3,4-thiadiazoles 23a, b as the end products (Scheme 5; Table 1). The structures of compounds 23a, b were confirmed on the bases of spectral data and elemental analyses (see Experimental part). The reaction proceeded via S-alkylation, with removal of hydrogen chloride, to give S-alkylated intermediates 22 followed by intramolecular Michael type addition under
the employed reaction conditions, followed by elimination of ammonia, afforded the final product 23 [36, 47] (Scheme 5).

Cytotoxic activity

The in vitro growth inhibitory activity of the synthesized compounds 6a–d, 9, 13a, b, 18a–c, 19, 21a, b and 23a, b was investigated against two carcinoma cell lines: human lung cancer (A-549) and human hepatocellular carcinoma (HepG-2) in comparison with the well-known anticancer standard drug (cisplatin) under the same conditions using colorimetric MTT assay. Data generated were used to plot a dose response curve of which the concentration of test compounds required to kill 50% of cell population (IC50) was determined. The results revealed that all the tested compounds showed inhibitory activity to the tumor cell lines in a concentration dependent manner. Interestingly, the results represented in Table 2 and Fig. 1 showed that compounds 13a, b and 21a were the most active compounds (IC50 value of 4.47 ± 0.3, 3.46 ± 0.6, 3.10 ± 0.8 μg/mL, respectively) against the lung carcinoma cell line (A549), compared with cisplatin reference drug with IC50 value of 0.95 ± 0.23 μg/mL. Moreover, the order of activity against A549 cell line was 18c > 18b > 19 > 9 > 6a > 6c > 23b > 6d > 18a > 21b > 6b.

Table 1 Comparative data of conventional (A) and MW (B) methods for the synthesis of compounds 6a–d, 13a, b, 18a–c, 21a, b and 23a, b

Compound no.	Conventional method (A)	Microwave method (B)		
	Time (h)	Yield (%)	Time (min)	Yield (%)
6a	12	66	4	84
6b	15	68	10	85
6c	10	70	8	88
6d	8	69	5	90
13a	12	67	6	82
13b	10	70	6	89
18a	8	66	7	90
18b	6	68	10	88
18c	4	67	7	90
21a	6	69	8	86
21b	5	64	6	92
23a	8	72	10	81
23b	8	67	9	83

On the other hand, compounds 6a, 9, 13b, 23b were the most active compounds (IC50 value of 5.60 ± 0.8, 5.67 ± 1.2, 4.47 ± 0.9 and 5.67 ± 1.2 μg/mL, respectively) against liver carcinoma cell line (HepG2) cell line while the rest compounds have moderate activities.

Experimental

Chemistry

General

Melting points were measured on an Electrothermal IA 9000 series digital melting point apparatus (Bibby Sci. Lim. Stone, Staffordshire, UK). IR spectra were measured on PyeUnicam SP 3300 and Shimadzu FTIR 8101 PC infrared spectrophotometers (Shimadzu, Tokyo, Japan) in potassium bromide discs. NMR spectra were measured on a Varian Mercury VX-300 NMR spectrometer (Varian, Inc., Karlsruhe, Germany) operating at 300 MHz (1H-NMR) and run in deuterated dimethyl-sulfoxide (DMSO-d6). Chemical shifts were related to that of the solvent. Mass spectra were recorded on a Shimadzu GCMS-QP1000 EX mass spectrometer (Tokyo, Japan) at 70 eV. Elemental analyses were measured by using a German made Elementarvario LIII CHNS analyzer. Antitumor activity of the products was measured at the Regional Center for Mycology and Biotechnology at Al-Azhar University, Cairo, Egypt. Hydrazonoyl halides 3a–g were prepared following literature method [41, 48].

Synthetic procedures

Synthesis of trisubstituted pyrazoles 6a–d and isoxazoles 13a,b

Method A To a stirred solution of acetyl pyrazole 1 (0.327 g, 1 mmol), dimethylformamide dimethylacetal 2 (1 mmol) and the appropriate hydrazonoyl halides 3a–d or hyroximoyl chlorides 10a, b (1 mmol) in dry toluene (15 mL), an equivalent amount of triethylamine (0.5 mL) was added. The reaction mixture was heated under reflux for 10–15 h (monitored through TLC). The precipitated triethylamine hydrochloride was filtered off, and the filtrate was evaporated under reduced pressure. The residue was triturated with MeOH. The solid product, so formed in each case, was collected by filtration, washed with water, dried, and crystallized from the proper solvent to afford the corresponding pyrazole 6a–d and isoxazole derivatives 13a, b, respectively.

Method B Repetition of the same reactions of method A with heating in microwave oven at 500 W and 150 °C for 4–10 min., gave products identical in all respects with those separated from method A. The products 6a–d and 13a, b together with their physical constants are listed below.

1-(4-(5-Methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazole-4-carbonyl)-1-phenyl-1H-pyrazol-3-yl)ethanone (6a) Brown solid, mp 208–210 °C; IR (KBr) νmax 1599 (C=N), 1670, 1682 (2C=O), 2924, 3105 (C–H) cm⁻¹; 1H NMR (DMSO-d6) δ 2.34 (s, 3H, CH₃), 2.55 (s, 3H, CH₃), 6.98–8.39 (m, 12H, Ar–H), 8.92 (s, 1H, pyrazole-H5); MS m/z (%) 497 (M⁺, 9), 342 (25), 252 (22), 174 (11), 145 (22),
115 (26), 103 (40), 76 (100), 63 (13), 50 (19). Anal. Calcd. for C\textsubscript{26}H\textsubscript{19}N\textsubscript{5}O\textsubscript{4}S (497.53): C, 62.77; H, 3.85; N, 14.08. Found: C, 63.08; H, 3.55; N, 13.70%.

1-(4-(5-Methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazole-4-carbonyl)-1-(p-tolyl)-1H-pyrazol-3-yl)ethane (6b) Yellow solid, mp 222–224 °C; IR (KBr) \(\nu \) max 1597 (C=N), 1676, 1688 (2C=O), 2919, 3118 (C–H) cm\(^{-1}\); \(^{1}\)H NMR (DMSO-\(d_6 \)) \(\delta \) 2.24 (s, 3H, CH\(_3\)), 2.34 (s, 3H, CH\(_3\)), 2.56 (s, 3H, CH\(_3\)), 7.12 (t, \(J = 1.2 \) Hz, 1H, thiophene-H), 7.31 (d, \(J = 1.2 \) Hz, 1H, thiophene-H), 7.33 (d, \(J = 1.2 \) Hz, 1H, thiophene-H), 7.55 (d, \(J = 4.4 \) Hz, 2H, Ar–H), 7.63 (d, \(J = 4.4 \) Hz, 2H, Ar–H), 7.88 (d, \(J = 8.8 \) Hz, 2H, Ar–H), 8.39 (d, \(J = 8.8 \) Hz, 2H, Ar–H), 10.58 (s, 1H, pyrazole-H5); \(^{13}\)C-NMR (DMSO-\(d_6 \)) \(\delta \) 13.3, 20.8, 25.7 (CH\(_3\)), 115.3, 117.6, 118.9, 121.37, 122.7, 125.2, 126.7, 128.1, 129.4, 130.1, 132.2, 133.8, 138.1, 140.6, 143.43, 144.4, 146.8, 147.2 (Ar–C and C=N), 188.2, 194.9 (C=O); MS m/z (%) 511 (M\(^+\)), 2, 406 (10), 266 (6), 219 (11), 168 (7), 147 (7), 125 (11), 104 (25), 98 (17), 83 (93), 79 (44), 69 (35), 54 (53), 44 (100). Anal. Calcd. for C\textsubscript{27}H\textsubscript{21}N\textsubscript{5}O\textsubscript{4}S (511.55): C, 63.58; H, 4.14; N, 13.69. Found: C, 63.78; H, 4.05; N, 13.29%.

Ethyl 4-(5-methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazole-4-carbonyl)-1-phenyl-1H-pyrazole-3-carboxylate (6c) Yellow solid, mp 207–209 °C; IR (KBr) \(\nu \) max 15984 (C=N), 1660, 1724 (2C=O), 2931, 2974 (C–H) cm\(^{-1}\); \(^{1}\)H NMR (DMSO-\(d_6 \)) \(\delta \) 2.24 (t, \(J = 7.6 \) Hz, 2H, CH\(_2\)CH\(_3\)), 2.34 (s, 3H, CH\(_3\)), 2.47 (q, \(J = 7.1 \) Hz, 2H, CH\(_2\)CH\(_3\)), 6.96–8.43 (m, 12H, Ar–H), 8.99 (s, 1H, pyrazole-H5); MS m/z (%) 527 (M\(^+\)), 6, 484 (22), 366 (26), 328 (33), 268 (50), 226 (35), 210 (37), 151 (49), 124 (78), 115 (61), 75 (100), 42 (45). Anal. Calcd. for C\textsubscript{27}H\textsubscript{21}N\textsubscript{5}O\textsubscript{5}S (527.55): C, 61.47; H, 4.01; N, 13.28. Found: C, 61.77; H, 3.75; N, 12.94%.
(5-Methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)(1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)methanone (6d) Orange solid, mp 219–220 °C; IR (KBr) νmax 1595 (C=N), 1638 (C=O), 2924, 3105 (C–H) cm⁻¹; ¹H NMR (DMSO-d₆) δ 2.34 (s, 3H, CH₃), 6.98–8.52 (m, 14H, Ar–H), 9.28 (s, 1H, pyrazole-H5); ¹³C-NMR (DMSO-d₆): δ 26.9 (CH₃), 113.1, 113.3, 115.0, 115.6, 122.5, 122.6, 123.1, 123.6, 126.5, 126.7, 128.4, 131.1, 131.7, 132.1,
Scheme 5 Synthesis of thiadiazoles 23a,b

Table 2 The in vitro inhibitory activity of tested compounds against tumor cell lines expressed as IC50 values (μg/mL) ± standard deviation from three replicates

Tested compounds	R	Ar′	A-549 IC50 ± SD	HepG2 IC50 ± SD
6a	COCH₃	Ph	22.9 ± 0.9	5.60 ± 0.8
6b	COCH₃	4-MeC₆H₄	38.5 ± 1.2	44.4 ± 1.3
6c	COOEt	Ph	23.3 ± 0.9	22.4 ± 0.9
6d	2-Thienyl	4-NO₂C₆H₄	30.6 ± 1.1	35.9 ± 1.4
9	–	–	22.6 ± 0.8	5.67 ± 1.2
13a	–	2-Naphthyl	4.47 ± 0.3	8.03 ± 1.1
13b	–	2-Furyl	3.46 ± 0.6	4.67 ± 0.9
18a	–	Ph	32.7 ± 1.2	22.4 ± 1.1
18b	–	4-MeC₆H₄	19.1 ± 1.1	6.67 ± 1.3
18c	–	4-ClC₆H₄	18.2 ± 0.9	21.8 ± 0.9
19	–	–	21.3 ± 0.8	23.1 ± 1.1
21a	–	Ph	3.10 ± 0.8	23.9 ± 1.1
21b	–	4-MeC₆H₄	33.6 ± 0.9	43.4 ± 0.8
23a	2-Thienyl	4-NO₂C₆H₄	27.9 ± 1.1	34.4 ± 0.9
23b	Ph	Ph	23.4 ± 1.2	5.67 ± 1.7
Cisplatin	–	–	0.95 ± 0.23	1.4 ± 0.37
132.3, 136.5, 137.1, 141.5, 141.6, 142.4, 142.6, 142.8 (Ar–C and C=N), 197.2 (C=O); MS m/z (%) 582 (M+, 6), 532 (12), 383 (16), 286 (11), 219 (21), 135 (49), 79 (16), 83 (27), 76 (67), 60 (28), 45 (100). Anal. Calcd. for C28H18N6O5S2 (582.61): C, 57.72; H, 3.11; N, 14.42. Found: C, 57.99; H, 2.80; N, 14.12%.

Synthesis of 3-(dimethylamino)-1-(5-methyl-1-(4-nitroph enyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)prop-2-en-1-one (9).

A mixture of acetyl pyrazole 1 (3.27 g, 10 mmol) and dimethylformamide–dimethylacetal (DMF–DMA) (10 mmol) in dry toluene (20 mL) was refluxed in micro-wave oven at 500 W and 150 °C for 5 min., then left to cool to room temperature. The precipitated product was filtered off, washed with light petroleum (40–60 °C), and dried. Recrystallization from benzene afforded enaminone 1 as orange solid, mp 250–252 °C; IR (KBr) ν max 1597 (C=N), 1660 (C=O), 2976, 3117 (C–H) cm−1; 1H NMR (DMSO-d6) δ 2.31 (s, 3H, CH3), 7.13–8.45 (m, 14H, Ar–H), 9.67 (s, 1H, isoxazole-H5); 13C-NMR (DMSO-d6): δ 26.9 (CH3), 110.0, 113.3, 115.0, 115.1, 115.5, 122.5, 123.3, 124.5, 125.0, 126.5, 126.7, 128.4, 130.8, 133.6, 135.4, 136.9, 137.0, 141.5, 141.6, 142.6, 148.8, 152.4, 160.0 (Ar–C and C=N), 188.3 (C=O); MS m/z (%) 506 (M+, 2), 435 (9), 412 (14), 379 (45), 214 (12), 142 (10), 105 (26), 93 (21), 77 (51), 65 (62), 60 (52), 43 (100). Anal. Calcd. for C28H18N4O4S (506.53): C, 66.39; H, 3.58; N, 11.06. Found: C, 66.04; H, 3.21; N, 10.86%.

(5-Methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)(3-(naphthalen-2-yl)isoxazol-4-yl)methanone (13a) Yellow solid, mp 203–205 °C; IR (KBr) ν max 1597 (C=N), 1660 (C=O), 2976, 3117 (C–H) cm−1; 1H NMR (DMSO-d6) δ 2.31 (s, 3H, CH3), 7.13–8.45 (m, 14H, Ar–H), 9.67 (s, 1H, isoxazole-H5); 13C-NMR (DMSO-d6): δ 26.9 (CH3), 110.0, 113.3, 115.0, 115.1, 115.5, 122.5, 123.3, 124.5, 125.0, 126.5, 126.7, 128.4, 130.8, 133.6, 135.4, 136.9, 137.0, 141.5, 141.6, 142.6, 148.8, 152.4, 160.0 (Ar–C and C=N), 188.3 (C=O); MS m/z (%) 506 (M+, 2), 435 (9), 412 (14), 379 (45), 214 (12), 142 (10), 105 (26), 93 (21), 77 (51), 65 (62), 60 (52), 43 (100). Anal. Calcd. for C28H18N4O4S (506.53): C, 66.39; H, 3.58; N, 11.06. Found: C, 66.04; H, 3.21; N, 10.86%.

(3-(Furan-3-yl)isoxazol-4-yl)(5-methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)methanone (13b) Orange solid, mp 209–211 °C; IR (KBr) ν max 1598
(C=3N), 1664 (C=O), 2925, 3107 (C–H) cm$^{-1}$; 1H NMR (DMSO-d_6) δ 2.34 (s, 3H, CH$_3$), 7.13–8.61 (m, 10H, Ar–H), 9.23 (s, 1H, pyrazole-H5); MS m/z (%) 446 (M$^+$, 2), 392 (100), 349 (43), 317 (23), 285 (11), 234 (16), 191 (16), 172 (20), 130 (26), 77 (69). Anal. Calcd. for C$_{22}$H$_{14}$N$_8$O$_2$S$_2$ (446.44): C, 59.19; H, 3.16; N, 12.55. Found: C, 59.50; H, 2.80; N, 12.17%.

Alternate synthesis of 6a and 13a Equimolar amounts of enamnine 9 (0.382 g, 1 mmol) and hydrazonoyl halide 3a or hyroximoyl chloride 10a (1 mmol) in dry toluene (15 mL) containing an equivalent amount of triethylamine (0.5 mL) was refluxed in microwave oven at 500 W and 150 °C for 6 min., gave products identical in all respects (mp, mixed mp and IR spectra) with compounds 6a and 13a, respectively.

Synthesis of thiazoles 18a-c and 21a, b and thiadiazoles 23a, b *Method A* To a stirred solution of acetyl pyrazole 1 (0.327 g, 1 mmol), thiosemicarbazide 16 (0.091 g, 1 mmol) and the appropriate hydrazonoyl halides 3a, b, e or 3c, f for 3d, g (1 mmol) in dioxane (15 mL), an equivalent amount of triethylamine (0.5 mL) was added. The reaction mixture was heated under reflux for 4–8 h (monitored through TLC). Excess of solvent was removed under reduced pressure and the reaction mixture was triturated with MeOH. The product separated was filtered, washed with MeOH, dried and recrystallized from the proper solvent to give thiazoles 18a–c and 21a, b and thiadiazoles 23a, b, respectively.

Method B Repetition of the same reactions of method A with heating in microwave oven at 500 W and 150 °C for 4–10 min., gave products identical in all respects with those separated from method A. The products 18a–c, 21a, b and 23a, b together with their physical constants are listed below.

4-Methyl-2-{2-(1-(5-methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)ethylidene) hydrazinyl]-5-(phenyldiazenyl)thiazole (18a) Orange solid, mp 219–220 °C; IR (KBr) ν_{max} 1509 (C=CN), 2974 (C–H), 3396 (NH) cm$^{-1}$; 1H NMR (DMSO-d_6) δ 2.32 (s, 3H, CH$_3$), 2.36 (s, 3H, CH$_3$), 2.48 (s, 3H, CH$_3$), 6.99–7.93 (m, 12H, Ar–H), 10.65 (s, 1H, NH); 13C-NMR (DMSO-d_6): δ 9.2, 12.5, 24.6 (CH$_3$), 114.5, 121.4, 123.1, 125.2, 126.3, 127.0, 127.9, 128.1, 128.5, 128.9, 135.3, 140.4, 140.9, 143.1, 144.1, 145.3, 145.79, 153.3, 163.4 (Ar–C and C–N); MS m/z (%) 542 (M$^+$, 6), 432 (16), 253 (13), 138 (11), 106 (69), 90 (12), 78 (100), 64 (11), 51 (34). Anal. Calcd. for C$_{26}$H$_{22}$N$_8$O$_2$S$_2$ (542.64): C, 57.55; H, 4.09; N, 19.80%.

5-((4-Chlorophenyl)diazenyl)-4-methyl-2-(2-(1-(5-methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)ethylidene)hydrazinyl)thiazole (18b) Orange solid, mp 226–228 °C; IR (KBr) ν_{max} 1600 (C=CN), 2924 (C–H), 3438 (NH) cm$^{-1}$; 1H NMR (DMSO-d_6) δ 2.17 (s, 3H, CH$_3$), 2.32 (s, 3H, CH$_3$), 2.36 (s, 3H, CH$_3$), 2.47 (s, 3H, CH$_3$), 6.99–7.89 (m, 11H, Ar–H), 10.65 (s, 1H, NH); 13C-NMR (DMSO-d_6): δ 12.0, 14.3, 15.7, 26.8 (CH$_3$), 105.3, 111.5, 114.9, 116.3, 117.9, 119.8, 120.8, 122.2, 126.4, 126.6, 127.9, 128.1, 131.9, 132.6, 137.6, 141.7, 142.1, 142.3, 170.2 (Ar–C and C–N); MS m/z (%) 556 (M$^+$, 18), 431 (18), 314 (25), 251 (43), 193 (32), 166 (29), 152 (43), 136 (20), 119 (45), 104 (67), 90 (68), 75 (100), 62 (55), 52 (28), 41 (41). Anal. Calcd. for C$_{27}$H$_{23}$N$_8$O$_2$S$_2$ (556.66): C, 58.26; H, 4.35; N, 20.13. Found: C, 58.58; H, 4.05; N, 19.80%.

Synthesis of 2-(1-(5-methyl-1-(4-nitrophenyl)-3-(thiophen-2-yl)-1H-pyrazol-4-yl)ethylidene)hydrazinocarbothioamide (19) Amixture of acetyl pyrazole 1 (3.27 g, 10 mmol) and thiosemicarbazide 16 (0.91 g, 10 mmol) in ethanol (20 mL) containing catalytic amounts of concentrated HCl was refluxed in microwave oven at 500 W and 150 °C for 6 min., then left to cool to room temperature. The precipitated product was filtered off, washed with ethanol, and dried. Recrystallization from acetic acid afforded thiosemicarbazone 19 as yellow solid, (78% yield), mp 212–215 °C; IR (KBr) ν_{max} 1596 (C=CN), 2926 (C–H), 3157, 3241, 3388 (NH and NH$_2$) cm$^{-1}$; 1H NMR (DMSO-d_6) δ 2.17 (s, 3H, CH$_3$), 2.34 (s, 3H, CH$_3$), 7.10 (t, J = 1.2 Hz, 1H, thiophene-H), 7.23 (d, J = 1.2 Hz, 1H, thiophene-H), 7.56 (d, J = 1.2 Hz, 1H, thiophene-H), 7.86 (d, J = 8.8 Hz, 2H, Ar–H), 8.20 (s, 2H, NH$_2$), 8.38 (d, J = 8.8 Hz, 2H, Ar–H), 10.28 (s, 1H, NH); MS m/z (%) 400 (M$^+$, 8), 322 (21), 284 (30), 211 (18), 176 (24), 150 (26), 130 (25), 112 (29), 105 (71), 97 (40), 83 (45), 69 (63), 57 (62), 43 (100). Anal. Calcd. for C$_{17}$H$_{16}$N$_8$O$_2$S$_2$ (400.48): C, 50.98; H, 4.03; N, 20.98. Found: C, 51.30; H, 3.73; N, 20.65%.
Alternate synthesis of thiazole 18a and 21a. Equimolar amounts of thiosemicarbazone 19 (0.400 g, 1 mmol) and hydrazonoyl chloride 3a or 3c (1 mmol) in dioxane (15 mL) containing an equivalent amount of triethylamine (0.05 mL) was refluxed in microwave oven at 500 W and 150 °C for 3 min., gave product identical in all respects (mp, mixed mp and IR spectra) with compounds 18a and 21a, respectively.

Biological activity
Anticancer activity
The cytotoxic evaluation of the synthesized compounds was carried out at the Regional Center for Mycology and Biotechnology at Al-Azhar University, Cairo, Egypt according to the reported method [49].

Conclusion
In our present work, we herein present an efficient regioselective synthesis of novel 4-heteroaryl-pyrazoles, which have not been reported hitherto.

Acknowledgements
The authors extend their sincere appreciation to the Deanship of Scientific Research at the King Saud University for its funding this Prolific Research group (PRG-1437-29).
References

1. Murata T, Murai M, Ikeda Y, Miki K, Ohe K (2012) Pd- and Cu-catalyzed one-pot multicomponent synthesis of hetero alpha, alpha'-dimers of heterocycles. Org Lett 14:2296–2299

2. Lalli C, Bouna MJ, Bonne O, Masson G, Zhu J (2011) Exploiting the divergent reactivity of alpha-isocyanocacetate: multicomponent synthesis of 5-alkoxycarbazoles and related heterocycles. Chemistry 17:880–889

3. Zhang S, Zhang WX, Xi Z (2010) Efficient one-pot synthesis of N-containing heterocycles by multicomponent coupling of silicon-tethered dyes, nitriles, and isocyanides through intramolecular cyclization of iminoacyl-Z intermediates. Chemistry 16:8419–8426

4. Lopez C, Zougagh M, Algarra M, Rodriguez-Castellon E, Campos BB, Estreus da Silva JC, Jimenez-Jimenez J, Rios A (2015) Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. Talanta 132:845–850

5. Agudelo Mesa LB, Padro JM, Reta M (2013) Analysis of non-polar heterocyclic amines in beefburgers by using microwave-assisted extraction and dispersive liquid–liquid microextraction. Food Chem 141:1694–1701

6. Paweleczyk A, Zapurko L (2009) Microwave assisted synthesis of unsaturated jamose heterocyclic analogues as new fragrant substances. Eur J Med Chem 44:3032–3039

7. Jeselnik M, Varma RS, Polanc S, Kocevar M (2001) Catalyst-free reactions under solvent-free conditions: microwave-assisted synthesis of heterocyclic hydrazones below the melting points of neat reactants. Chemical Commun 18:1716–1717

8. Al-Qalaf F, Mandani F, Abdelkhalik MM, Alshawi AB, Dutra J, Rafka RJ, Koss DA, Kabcenell A, Lombaert SD (2010) Substituted pyrazoles as novel sEH antagonist: investigation of key binding interactions within the catalytic domain. Bioorg Med Chem Lett 26:6379–6383

9. Kasimogullari R, Bulbul M, Arslan BS, Golke B (2010) Synthesis, characterization and antitumor activity of some novel pyrazole derivatives. Synth Commun 40:941–949

10. Gomha SM, Kheder NA, AAbdelhamid AO, Mabkhot YN (2016) One-pot multicomponent synthesis of hetero alpha, alpha'-dimers of heterocycles. Acta Histochem 62:32–43

11. Dutt P, Sarkar AK (1993) Alterations in rat intestinal sucrase and alkaline phosphatase activities in alloxan induced experimental diabetes. Indian J Clin Biochem 18:1716–1717

12. Tyagarajan S, Chakravarty PK, Zhou B, Taylor B, Eid R, Fisher MH, Parsons WH, Wyvatt MJ, Lyons KA, Kott T, Li X, Kumar S, Williams B, Felix J, Priest BT, Brochu RM, Warren V, Smith M, Garcia M, Kaczorowski GJ (2010) Discovery of a novel class of biphenyl pyrazole sodium channel blockers for treatment of neuropathic pain. Bioorg Med Chem Lett 20:7479–7482

13. Pattan SR, Rabara PA, Pattan JS, Bukiagati AA, Wakale VS, Munsme DS (2009) Synthesis and evaluation of some novel substituted 1,3,4-oxadiazole and pyrazole derivatives for antitubercular activity. Indian J Chem 48B:1453–1456

14. Shih SR, Chu TY, Reddy G, Tseng SN, Chen HL, Tang WF, Wu MS, Yeh YJ, Chao YS, Hsu J, Hsieh HP, Hwang JT (2010) Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J Biochem Sci 17:13

15. Richardson SK, Young DV, Zemetseva IS (2004) Synthesis and selective DNA gyrase inhibitors: 5-[(E)-2-arylvinyl]pyrazoles. Bioorg Med Chem Lett 15:4299–4303

16. Xia Y, Dong ZW, Zhao BX, Ge X, Meng N, Shin DS, Miao JY (2007) Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles. Eur J Med Chem 42:2512–2519

17. Tyagarajan S, Chakravarty PK, Zhou B, Eid R, Fisher MH, Parsons WH, Wyvatt MJ, Lyons KA, Kott T, Li X, Kumar S, Williams B, Felix J, Priest BT, Brochu RM, Warren V, Smith M, Garcia M, Kaczorowski GJ (2010) Discovery of a novel class of biphenyl pyrazole sodium channel blockers for treatment of neuropathic pain. Bioorg Med Chem Lett 20:7479–7482

18. Pattan SR, Rabara PA, Pattan JS, Bukiagati AA, Wakale VS, Munsme DS (2009) Synthesis and evaluation of some novel substituted 1,3,4-oxadiazole and pyrazole derivatives for antitubercular activity. Indian J Chem 48B:1453–1456

19. Shih SR, Chu TY, Reddy G, Tseng SN, Chen HL, Tang WF, Wu MS, Yeh YJ, Chao YS, Hsu J, Hsieh HP, Hwang JT (2010) Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J Biochem Sci 17:13

20. Richardson SK, Young DV, Zemetseva IS (2004) Synthesis and selective DNA gyrase inhibitors: 5-[(E)-2-arylvinyl]pyrazoles. Bioorg Med Chem Lett 15:4299–4303

21. Xia Y, Dong ZW, Zhao BX, Ge X, Meng N, Shin DS, Miao JY (2007) Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles. Eur J Med Chem 42:2512–2519

22. Fanghaly AR (2010) Synthesis of some new indole derivatives containing pyrazole and isoxazole as potent anti-inflammatory agents. Tetrahedron 66:137–150

23. Fanghaly AR (2010) Synthesis of some new indole derivatives containing pyrazole and isoxazole as potent anti-inflammatory agents. Tetrahedron 66:137–150

24. Fanghaly AR (2010) Synthesis of some new indole derivatives containing pyrazole and isoxazole as potent anti-inflammatory agents. Tetrahedron 66:137–150

25. Fanghaly AR (2010) Synthesis of some new indole derivatives containing pyrazole and isoxazole as potent anti-inflammatory agents. Tetrahedron 66:137–150

26. Fanghaly AR (2010) Synthesis of some new indole derivatives containing pyrazole and isoxazole as potent anti-inflammatory agents. Tetrahedron 66:137–150

27. Fanghaly AR (2010) Synthesis of some new indole derivatives containing pyrazole and isoxazole as potent anti-inflammatory agents. Tetrahedron 66:137–150
34. Gomha SM, Ahmed SA, Abdelhamid AO (2015) Synthesis and cytotoxicity evaluation of some novel thiazoles, thiadiazoles, and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one incorporating triazole moiety. Molecules 20:1357–1376
35. Gomha SM, Khalil KD (2012) A convenient ultrasound-promoted synthesis and cytotoxic activity of some new thiazole derivatives bearing a coumarin nucleus. Molecules 17:9335–9347
36. Gomha SM, Riyadh SM, Mahmoud EA, Elaasser MM (2015) Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem Heterocycl Compd 51:1030–1038
37. Gomha SM, Riyadh SM, Abbas IM, Bauomi MA (2013) Synthetic utility of ethylidenethio-semicarbazide: synthesis and anticancer activity of 1,3-thiazines and thiazoles with imidazole moiety. Heterocycles 87:341–356
38. Gomha SM, Abdel-aziz HM (2015) Synthesis and antitumor activity of 1,3,4-thiadiazole derivatives bearing coumarin ring. Heterocycles 91:583–592
39. Abbas IM, Gomha SM, Elaasser MM, Bauomi MA (2015) Synthesis and biological evaluation of new pyridines containing imidazole moiety as antimicrobial and anticancer agents. Turk J Chem 39:334–346
40. Gomha SM, Salah TA, Abdelhamid AO (2015) Synthesis, characterization and pharmacological evaluation of some novel thiazolines and thiazoles incorporating pyrazole moiety as potent anticancer agents. Monatsh Chem 146:149–158
41. Hassaneen HM, Mousa AH, Abeed NM, Shawali AS (1988) Chemistry of C-Heteroaryldrazidoyl Halides. Synthesis and reactions of N-(p-Nitrophenyl)-C-(2-thienyl)-formohydrazidoyl Halides. Heterocycles 27:695–706
42. Al-Bogam AS, Mekky AEM (2016) Microwave-assisted regioselective synthesis of novel bis(azoles) and bis(azolozazines). J Heterocycl Chem 53:1554–1562
43. Zaki YH, Sayed AR, Elroby SA (2016) Regioselectivity of 1,3-dipolar cycloadditions and antimicrobial activity of isoxazole, pyrrole[3,4-d]isoxazole-4,6-diones, pyrazolo[3,4-d]pyrimidazines and pyrazolo[1,5-a]pyrimidines. Chem Central J. 10:17(1–13)
44. Eldebbs TMA, Gomha SM, Abdulla MM, Arafa RK (2015) Novel pyrrole derivatives as selective CHK1 inhibitors: design, regioselective synthesis and molecular modeling. Med Chem Commun 6:852–859
45. Gaber HM, Bagley MC, Muhammad ZA, Gomha SM (2017) Recent developments in chemical reactivity of N,N-dimethylenamino ketones as synths for various heterocycles. RSC Adv 7:14562–14610
46. Gomha SM, Shawali AS, Abdelhamid AO (2014) Convenient method for synthesis of various fused heterocycles via utility of 4-acetyl-5-methyl-1-phenyl-pyrazole as precursor. Turk J Chem 38:865–879
47. Gomha SM, Abdelrazek FM, Abdelrahman AH, Metz P (2016) Synthesis of some novel thiazole, thiazolide and 1,4-phenylene-bis-thiazole derivatives as potent antitumor agents. Heterocycles 92:954–967
48. Shawali S, Gomha SM (2000) A new entry for short and regioselective synthesis of [1,2,4]triazolo[4,3-b][1,2,4]-triazin-7(1H)-one. Adv Synth Catal 342:599–604
49. Gomha SM, Riyadh SM, Mahmoud EA, Elaasser MM (2015) Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazolidine using chitosan-grafted-poly(vinylpyridine) as basic catalyst. Heterocycles 91:1227–1243