Hamstring muscle strain injuries: what can we learn from history?

Bruce Hamilton

Hamstring muscle strain injuries remain one of the most challenging issues facing sports medicine. Over the past 100 years, there has been a gradual evolution in our understanding and management of hamstring injuries, but the challenge of optimising the management of the acutely injured hamstring remains. In recent years, increasingly high-quality studies have addressed the aetiology, risk factors and management of hamstring strains. Paradoxically, many popular treatment options have little evidence and remain controversial. The history of hamstring injury management is characterised as a longstanding dissociation between popular clinical techniques and a limited evidence base. Taking a historical perspective on the management of hamstring muscle strains, this study aims to place the current management strategies in a temporal perspective.

“Those who cannot remember the past are condemned to repeat it”. George Santayana, Philosopher, 1863 to 1952

By the mid-18th century, the importance of exercise for health was established, and the physical demands of different forms of exercise were recognised, in a manner not dissimilar to descriptions 200 years later. By the start of the 20th century, the Olympics had been re-invented, sport and exercise were recognised as a means of developing character and maintaining health in a world experiencing an explosion in leisure time. Given the limitations of the training methodology of the time, it is possible that muscle strains were a common finding, but there is limited epidemiological literature available from the time.

“In football we find injuries occur in a poorly conditioned, a fatigued or dazed man, or in a team that is demoralised and receiving a severe beating. These individuals are slowing up, not coordinating, and are apt to be injured.”

Already in 1902, muscle injuries were recognised as occurring in sedentary individuals and those athletes lacking adequate preparation and warm-up. While these assertions appear to have stood the test of time, with modern, professional, well-trained athletes routinely having hamstring injuries, it is now recognised that this is a dramatic oversimplification of the aetiological processes. Muscle strains were recognised as occurring at either the musculo-tendinous or within the intramuscular components, and there has been a gradual refinement of this understanding over the past 100 years. In 1966, Bass distinguished between intramuscular (poor prognosis) and intermuscular (good prognosis) injuries. Fortye years on, this theme has been readdressed, with further evidence that it is the specific location and pathoanatomical nature of the muscle injury that will determine prognosis, rather than simply symptom severity and injury size. Also articulated in 1902 was the belief that “only a cursory examination is necessary” to diagnose a hamstring muscle strain and despite evidence to the contrary, this remains a common misconception. Clinical evaluation has consistently been shown to have a high false positive rate when compared with MRI, even in those injuries clinically diagnosed as grade II muscle strain. This clinical appearance of muscle strain injury, in the absence of confirmed local muscle pathology, remains a paradox today.

In 1906, management of muscle tears was typically conservative involving “holding the limb under a cold water tap as long as you can bear it, and as often as is possible”, plaster immobilisation “in the direction of the fibres of the muscle” (which remained popular until the 1950s), complete rest for 3 to 6 days, followed by “active work”, and the use of “embracions” (massage creams). Of note, even at this early stage in the understanding of the hamstring muscle injury, it was recognised that tearing of musculo-tendinous insertions from the bone requires a longer period of rehabilitation and that surgery may occasionally be indicated for complete ruptures. Over recent decades, the indications for surgical intervention have been further elucidated; surgical repair may provide superior outcomes for a completely ruptured proximal hamstring tendon. By contrast, intramuscular injuries are typically treated conservatively and rupture of the distal hamstring tendons, in particular the semi-membranosus and semitendinosus appear to be able to be satisfactorily managed conservatively.

By the 1930s, there was an increased interest in, and understanding of the histopathology of acute muscle injuries. Remarkable experiments compared physical, chemical, infective and pharmacological injury on rabbit skeletal muscle. These led to clear descriptions of the histological manifestations of acute muscle injury, initially described as “acute molecular degeneration”. Additional studies involving confused rabbit muscles further characterised the histological transitions associated with muscle injury into haemorrhage, degeneration, white cell infiltration and proliferation. There was infiltration of leucocytes and lymphocytes within 24 h, as well as the progressive damage after the initial insult. While not recognised at the time, these two processes appear related, as it has recently been illustrated that minimising the leucocyte activity at the site of acute muscle injury may limit muscle damage, and enhanced muscle regeneration. This principle of reducing the acute inflammatory...
phase of muscle injury is the basis for the use of simple anti-inflammatory tools such as ice, and the more controversial pharmaceutical anti-inflammatories. Fishaback also identified that "muscle proliferation is started by the muscle nuclei set free by the breaking up of severely traumatised fibres", likely reflecting the mobilisation of satellite cells, critical for the repair process and considered an index of muscle regeneration. This is a remarkable insight into the process of muscle regeneration, identified but not fully understood for over half a century.

The year 1936 saw the clear articulation of the principle of approximating the torn ends of the muscle injury to enhance the healing process, and also the notion that premature disruption of this approximation may increase scarring. Intramuscular scarring is now considered to be a poor prognostic indicator.

"If the damaged area is subjected to repeated assault by muscular effort or other movement, stretching and tearing of the newly formed repair tissue take place and create a subacute or chronic process by producing a small plexus of fibrous tissue."

At the same time as the risks of re-injury from premature return were being articulated, Hitchcock highlighted that pressures were being imposed upon athletes by coaches and others to return to sport prematurely, thereby increasing re-injury risk. Return to play decisions following hamstring injuries continue to vex physicians.

It is true that coach and trainer still attempt to exert their influence by calling men yellow at times who claim to have been injured, or try to bring undue influence on the athletic physician to permit an excellent player to return to competition before he should.

Despite being recognised at the time as both lacking consistent efficacy and potentially having a negative impact on muscle regeneration, corticosteroid injections for acute muscle injury were popular through the 1950s and 1960s. In vitro studies have confirmed the negative long-term consequences of cortisone on muscle injury repair, and as such, despite case series appearing to support its clinical efficacy, this technique remains controversial.

"(cortisone will)… defer the onset and retarding the rate of muscle regeneration after a simple crushing injury, (but) does not change the course or eventual outcome…"

The year that Dr Roger Bannister broke the 4 min mile saw a paradigm shift in the management of muscle injury, characterised by an increased emphasis on the specific pathological processes involved determining the nature of the treatment.

"Proper treatment of the actual injury must be predicated on a sound appreciation of the pathological changes that develop as a result of the injury."

Remarkably, by 1954, many of the principles and practices used in the management of muscle injuries today were already articulated (table 1).

"…treatment must be designed to minimise the haemorrhage and inflammatory reaction so that there will be as little granulation (scar) tissue formed as possible…"

The imperative of controlling haemorrhage and inflammation to minimise scar tissue remains unchanged 60 years on. The theme of scar tissue minimisation has been resurrected in recent years, with the identification of numerous medications that may potentially assist in this task.

utility remains to be delineated, 57 years on, this remains an exciting area of research.

In contrast to these underlying principles which have generally withstood the test of time, Delarue also recommended the use of combined intralesional hyaluronidase/local anaesthetic injections, in the management of acute muscle injuries. This modality appears well recognised at the time but by the 1970s had lost popularity. Hyaluronidase is an enzyme involved in the breakdown and inactivation of hyaluronic acid and was believed to be of benefit when used in the initial phase of muscle injury.

Intriguingly, the in vivo function of hyaluronic acid has recently been elucidated, with its synthesis up-regulated in areas of acute soft tissue injury and functioning to promote and modulate inflammation, as well as potentially minimising scar tissue development. Thus, at least theoretically, minimising any hyaluronic acid excesses in the early phase of an acute soft tissue injury (thereby reducing inflammation) may be of some benefit, although paradoxically hyaluronic acid itself has been advocated for use in soft tissue injuries, with apparently good results.

While core stability is now recognised as a critical component of hamstring rehabilitation and athletic performance, the concept was first recognised as early as 1958. Writing after the VI British Empire and Commonwealth Games held in Cardiff the same year, Lloyd recognised that hamstrings strains were one of the most common injuries observed, but also that the risk for all sports injuries may be minimised by an ‘alerted posture’.

"Alerted posture’ means alerting the prime fixer muscles so that quick movements can be carried out by activators and synergists acting on a frame already made firm by the prime fixers.

By the late 1960s, the use of ‘enzymatic preparations’ including trypsin, chymotrypsin, streptokinase and streptodornase had replaced hyaluronidase injections. The use of oral enzyme preparations in the management of muscle injuries remains popular with some practitioners, despite limited scientific evidence of any benefit. Other medications such as Hirudoid (a heparinoid) and muscle relaxants were also popular at the time.

Non-steroidal anti-inflammatory drugs (NSAIDs) were first mentioned in the routine management of muscle strain injuries in the late 1960s and their use has persisted in sports medicine. While they may have a role in limited situations (eg, reducing the incidence of myositis ossificans following muscle contusion injuries), increasing in vitro evidence suggests that NSAIDs may impede regeneration and increase

Table 1: Management of acute muscle injuries: 1954

Stage one: haemorrhage control
Rest/protection
Compression (24 h)
Water immersion or ice bags 30 to 60 min
Elevation
Re-evaluate at 24 h

Stage two: absorption of blood and exudate (following haemorrhage control)
Local heat (whirlpool bath, shortwave diathermy)
Massage (avoid stimulation of further bleeding)
Avoiding damaged area in the first 48 h
Never vigorous or painful, as this will prolong injury
Graduated exercises
Reduce swelling
Maintain tone and strength of the muscles
Maintenance of general fitness important

Table 1

Management of acute muscle injuries: 1954
Stage one: haemorrhage control
Rest/protection
Compression (24 h)
Water immersion or ice bags 30 to 60 min
Elevation
Re-evaluate at 24 h

Stage two: absorption of blood and exudate (following haemorrhage control)
Local heat (whirlpool bath, shortwave diathermy)
Massage (avoid stimulation of further bleeding)
Avoiding damaged area in the first 48 h
Never vigorous or painful, as this will prolong injury
Graduated exercises
Reduce swelling
Maintain tone and strength of the muscles
Maintenance of general fitness important

Re-evaluate at 24 h

Table 1

Management of acute muscle injuries: 1954
Stage one: haemorrhage control
Rest/protection
Compression (24 h)
Water immersion or ice bags 30 to 60 min
Elevation
Re-evaluate at 24 h

Stage two: absorption of blood and exudate (following haemorrhage control)
Local heat (whirlpool bath, shortwave diathermy)
Massage (avoid stimulation of further bleeding)
Avoiding damaged area in the first 48 h
Never vigorous or painful, as this will prolong injury
Graduated exercises
Reduce swelling
Maintain tone and strength of the muscles
Maintenance of general fitness important

Re-evaluate at 24 h
fibrosis during muscle healing, and hence should be considered relatively contraindicated in muscle strain injuries. 35 68–70

The 1970s and 1980s saw increasing attention being paid to physiotherapeutic means of rehabilitation. There remained a focus on minimising bleeding and inflammation while maximising regeneration, by the increasingly novel use of cooling, electrotherapy (which was clinically already being used in the latter 19th century), 71 manipulative techniques 72 and specific strengthening programmes. 39 73–74 Sports medicine had started to identify the role that muscular trigger points may play in muscle-related pain (recognised in muscles since the 1930s) 75 perhaps contributing to the false positive (MRI negative) 24 25 muscle injuries. 74 The use of invasive injection techniques such as Traumeel and Actovegin in the management of acute muscle injuries has been promoted in Europe for at least three decades, 63 but their use remains controversial and not established in mainstream sports medicine literature 76– predominately due to a lack of scientific evidence. 8 Their clinical use has, however, persisted and despite a lack of substantial evidence, has in recent years expanded beyond Western Europe.

The last two decades have seen an explosion in literature regarding the hamstring muscle strain, with increased understanding of the epidemiology, aetiology and pathophysiology. 2–6 Subtle refinement of techniques for minimising inflammation and maximising regeneration has evolved, 77 78 but many of the underlying principles of treatment have remained unchanged from the mid-20th century. Novel approaches to prevention and treatment continue to appear, but often lack an evidence base. 79 Blood injections have been recognised as potentially therapeutic in sports medicine for over 60 years, 80 and refinement of this in the form of autologous plasma preparations (platelet-rich plasma) has recently been popularised for muscle strain injuries. Currently, the evidence to support this remains limited from the basic science and clinical perspective 36 81–87 – in fact to date the published evidence is only suggestive plasma preparations (platelet-rich plasma) has recently been applied to the treatment of hamstring muscle strain, with increased understanding, has in recent years expanded beyond Western Europe.

To progress, we must encourage communication among (I) the proponents of published evidence-based, clinical guidelines, (II) those practitioners overtly working outside the recognised scientific evidence base and applying novel therapies based on their personal experience and (III) those researchers able to test novel hypotheses. Typically, these groups have not interacted, likely to the detriment of the profession and patients. We are at the start of the specialist era in Sports and Exercise Medicine, and maintaining status quo is unacceptable. For the credibility of all clinicians in the field of sports injury management, it is vital to accumulate appropriate evidence to progress from the scientific baseline established by our forbearers in the mid-20th century.

Acknowledgements The author would like to acknowledge the support of Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, in the preparation of this document, in particular the ongoing support of Dr Hakim Chalabi.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

1. Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading in the right direction? Br J Sports Med 2012;46:81–5.
2. Verrall GM, Slavotinék JP, Barnes PG, et al. Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br J Sports Med 2001;35:435–9; discussion 440.
3. Arnason A, Andersen TE, Holme I, et al. Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sports 2008;18:40–8.
4. Arnason A, Sigurðsson SB, Gudmundsson A, et al. Risk factors for injuries in football. Am J Sports Med 2004;32:55–63.
5. Witvrouw E, Danneels L, Asselman F, et al. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. Am J Sports Med 2003;31:41–6.
6. Bennett K, Wajswelner H, Lew P, et al. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br J Sports Med 1998;32:309–14.
7. Orchard J, Best T, Hunter G, et al. Response to McCorry et al. ‘Sports and exercise medicine – new specialists or snake oil salesmen?’ Br J Sports Med Published Online First: 8 November 2011 doi:10.1136/bjsports-2011-090470.
8. Orchard JW, Best TM, Mueller-Wohlhart HW, et al. The early management of muscle strains in the elite athlete: best practice in a world with a limited evidence basis. Br J Sports Med 2008;42:158–9.
9. Franklin-Miller A, Etherington J, McCorry P. Sports and exercise medicine—specialists or snake oil salesmen? Br J Sports Med 2011;45:83–4.
10. Cook J. Funky treatments in elite sports people; do they just buy rehabilitation time? Br J Sports Med 2010;44:221.
11. Pugh J. A Treatise on Muscular Action, 1794. A W Lumsden, Loanhead, Midlothian, Scotland.
12. Mitchell JH, Haskell WL, Raven PB. Classification of sports. Med Sci Sports Exerc 1994;26:526–5.
13. Wilbur RL. Personal experiences with football injuries. Cal State J Med 1906;4:170–2.
14. Mitchell JK, editor. Mechanotherapy, Physical Education, Massage and Exercise. First edition. London: Rebman Limited 1904.
15. Roth M. Gymnastics. Second edition. London: Thomas Harrild 1854.
16. Sadow E. Life is Movement. Portsmouth: Gale and Polden 1900.
17. Andrews H. Training for Athletics and General Health. First edition. London: C Arthur Pearson Limited 1904.
18. Hitchcock HH. Athletic injuries: discussion. California and Western Medicine 1938;45:262–3.
19. Crowley DD. Suturing of muscles and tendons. Cal State J Med 1902;1:48–54.
20. Bass AL. Rehabilitation after soft tissue injury. Br J Sports Med 1986;162–72.
21. Asking CM, Tengvar M, Saartok T, et al. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med 2007;35:197–206.
22. Asking C, Tengvar M, Saartok T, et al. Sports related hamstring strains—two cases with different etiologies and injury sites. Scand J Med Sci Sports 2000;10:304–7.
Occasional piece

23. Asking C, Saatok T, Thorstensson A. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med 2006;40:40–4.

24. Verrall GM, Slavotinek JP, Barnes PG, et al. Assessment of physical examination and magnetic resonance imaging findings of hamstring injury as predictors for recurrent injury. J Orthop Sports Phys Ther 2006;36:215–24.

25. Schneider-Kolsky ME, Hoving JL, Warren P, et al. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med 2006;34:1008–15.

26. Delarue NC. The treatment of athletic injuries. Can Med Assoc J 1964;89:108–16.

27. Cross MJ, Vandersluis R, Wood D, et al. Surgical repair of chronic complete hamstring tendon rupture in the adult patient. Am J Sports Med 1998;26:785–8.

28. Klingele KE, Salay P. Surgical repair of complete proximal hamstring tendon rupture. Am J Sports Med 2002;30:742–7.

29. Adejuwon A, McCourt P, Hamilton B, et al. Distal semitendinosus tendon rupture: is there any benefit of surgical intervention? Clin J Sport Med 2009;19:502–4.

30. Berg GO. Athletic injuries: discussion. California and Western Medicine 1936;45:263.

31. Fishback DF, Fishback HR. Studies of experimental muscle degeneration: II. standard method of causation of degeneration, and repair of the injured muscle. Am J Pathol 1932;1:1–18.

32. Fishback DF, Fishback HR. Studies of experimental muscle degeneration: i. factors in the production of muscle degeneration. Am J Pathol 1932;1:193–210.

33. Touni H, Best TM. The inflammatory response: friend or enemy for muscle injury? Br J Sports Med 2003;37:284–6.

34. Touni H, Fyguer S, Best TM. The role of neutrophils in injury and repair following muscle stretch. J Anat 2006;209:459–70.

35. Paoloni JA, Milne C, Orchard J, et al. Non-steroidal anti-inflammatory drugs in sports medicine: guidelines for practical but sensible use. Br J Sports Med 2009;43:863–5.

36. Hammond JW, Hinton CY, Curl LA, et al. Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med 2009;37:1355–42.

37. Thurber P. Athletic injuries. Cal West Med 1936;45:261–3.

38. Silber A, Heiderscheidt BM, et al. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol 2008;37:1101–9.

39. Matheson GO, Shultz R, Bido J, et al. Return-to-play decisions: are they the team physician’s responsibility? Clin J Sport Med 2011;21:25–30.

40. Orchard J, Best TM, Verral GM. Return to play following muscle strains. Clin J Sport Med 2005;15:436–41.

41. Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recurrence. Clin J Sport Med 2002;12:3–5.

42. Lloyd K. Some hazards of athletic exercise. Proc R Soc Med 1959;52:151–7.

43. Sissons HA, Hadfield GJ. The effect of cortisone on the regeneration of skeletal muscle after injury. J Bone Joint Surg Br 1953;35-B:125–30.

44. Phillips N. Rehabilitation at a Professional Football Club. Br J Sports Med 1998;32:197–203.

45. Beiner JM, Jokl P, Chowlewicki J, et al. The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 1999;27:2–9.

46. Levine WN, Bergfeld JA, Tesslerdorw W, et al. Intramuscular corticosteroid injection for hamstring injuries. A 13-year experience in the National Football League. Am J Sports Med 2000;28:297–300.

47. Stevens KJ. Crian JM, Akizuki KH, et al. Imaging and ultrasound-guided steroid injection of internal oblique muscle strains in baseball pitchers. Am J Sports Med 2010;38:581–5.

48. Bedair HS, Karthikeyan T, Quintero A, et al. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med 2008;36:1548–54.

49. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 2002;84-A:822–32.

50. Chan YS, Li Y, Foster W, et al. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am J Sports Med 2005;33:43–51.

51. Chan YS, Li Y, Foster W, et al. Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol 2003;95:771–80.

52. Negishi S, Li Y, Usas A, et al. The effect of relaxin treatment on skeletal muscle injuries. Am J Sports Med 2005;33:1816–24.

53. Fukushima K, Badalani N, Usas A, et al. The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 2001;29:394–402.

54. Gartland JJ, MacAusland WR. Use of hyaluronidase in soft tissue injury and its influence on experimental bone repair. Arch Surg 1954;68:303–14.

55. Merry PH. The physio-therapeutic aramentarium in the treatment of sports injuries. Br J Sports Med 1970;5:100–5.

56. Chen WY, Abatanego G. Functions of hyaluronan in wound repair. Wound Repair Regen 1999;7:79–89.
Hamilton B. Hamstring muscle strain injuries: what can we learn from history? (Br J Sports Med 2012;46:900–3). The sentence ‘It is true that coach and trainer still attempt to exert their influence by calling men yellow at times who claim to have been injured, or try to bring undue influence on the athletic physician to permit an excellent player to return to competition before he should.’ was a direct quote from reference 18, and should have been in italic and in quote marks.

Br J Sports Med 2012;46:1023. doi:10.1136/bjsports-2012-090931corr1