Doppler cooling and trapping on forbidden transitions

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke
Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany

T. E. Mehlstäubler, E. M. Rasel, W. Ertmer
Institut für Quantenoptik, Universität Hannover, 30167 Hannover, Germany

October 27, 2018

Ultrasound atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of 40Ca atoms has been cooled and trapped to a temperature as low as 6 μK by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments.

32.80.Pj, 42.50.Vk

The preparation of ultracold atoms with temperatures far below the millikelvin regime is essential for the progress in many fields such as metrology, atom optics and the study of collective effects like Bose-Einstein-Condensation (BEC). Up to now the available techniques are restricted to a limited number of species, mainly those that can be cooled below the Doppler limit e.g. by efficient polarization gradient cooling, by velocity selective coherent population trapping (VSCPT) or by Raman cooling. In general, these techniques are only applicable to atoms with magnetic or hyperfine sub-structure in the ground state. Atoms with a single ground state, like the alkaline earths, often exhibit forbidden transitions with unique properties e.g. for optical frequency standards, atom interferometry, the study of cold collisions and possibly for achieving BEC by all optical means. Doppler cooling on such forbidden transitions can lead to temperatures much lower than the recoil limit. In strontium Doppler cooling has recently led to phase space densities close to quantum degeneracy. Up to now, this method failed to work for neutral atoms with ultra-narrow (forbidden) lines since in this case the light forces might be comparable or even smaller than the gravitational force which makes magneto-optical trapping of atoms difficult or impossible.

In this letter we present a novel method for effective Doppler cooling and trapping of pre-cooled atoms on extremely narrow transitions in three dimensions. The loss scattering rate associated with the narrow line width is artificially enhanced by a repumping or ‘quenching’ laser which de-excites the atoms via an intermediate level. In this case the atoms can be considered as effective two-level systems with tunable linewidths that can be tailored during the cooling process for optimum efficiency of the procedure. Similar schemes were performed to more rapidly cool trapped ions and for the efficient deflection of a beam of metastable helium. Whereas in the case of metastable helium cycling on the second transition was simply used to increase the radiation pressure, our scheme preserves the velocity selectivity of the narrow transition. Our calculations for magnesium and calcium showed that this ‘quench cooling’ can efficiently trap atoms released from a broad-line magneto-optical trap (MOT) and cool them to temperatures close to the recoil limit. We utilize this scheme for the first time to capture and cool free atoms in three dimensions.

The temperature that can be achieved in Doppler cooling on broad lines is determined by a balance between damping forces and the heating due to spontaneous recoil momenta. Here, broad lines are characterized by the linewidth of the transition Γ being large compared to the change in the Doppler shift due to one photon recoil, i.e. $h\vec{k}\cdot\vec{p}\ll \Gamma$ where m denotes the atomic mass and k the wavevector of the exciting light. On a two-level system this finally leads to a Doppler temperature $T_D = \frac{\hbar \Gamma}{2k_B}$ with the Boltzmann’s constant k_B. For monochromatic excitation on narrow lines, the Doppler cooling limit was calculated to be approximately half the recoil temperature given by $k_B T_{rec} = \frac{\hbar \vec{k} \cdot \vec{p}}{2m}$. A multichromatic excitation was proposed which would allow to reach a temperature even below that temperature. However, narrow-line cooling is hampered by the small force $F_{max} = \frac{\hbar \vec{k} \cdot \vec{p}}{2m}$. For cooling of calcium on the intercombination line $^1S_0 - ^3P_1$ (see fig. 1, $\Gamma_1 = 2000$ s$^{-1}$) F_{max} is only 1.5 times the gravitational force. To increase the force, we have reduced the lifetime of the upper level through excitation to the $4s4p^2P_1$ state (see fig. 1, $\Gamma_1 = 2000$ s$^{-1}$) from where the atoms decay rapidly via the $4s4p^2P_1$ state to the ground state. In a different picture, the 3P_1 level acquires an admixture of the 1D_2 level (natural decay rate $\Gamma_2 = 1.4 \times 10^7$ s$^{-1}$) through the coupling by the
quench laser. Hence, for low saturation the width of the triplet state increases proportional to the quench laser intensity. Another possibility for quenching was demonstrated by the NIST group where coupling to the 1S_0 state by a 553 nm laser was used to achieve cooling of Ca in one dimension.

In a preliminary experiment in 1-D with sequential excitation to the 3P_1 state and subsequent quenching we have found a quenching rate of $r_{12} \approx 1.4 \times 10^4 \text{ s}^{-1}$. This is more than one order less than is calculated from the atomic data of the quenching transition. We assume the difference to be in part due to the uncertainty in the theoretical A-coefficient. From our preliminary measurement we estimate a quenching rate $r_{12} \approx 3 \times 10^4 \text{ s}^{-1}$ for our 3-D MOT configuration, corresponding to an average broadening factor of 15 limited by the laser power available.

In the MOT configuration, excitation to the 3P_1 level and quenching is performed simultaneously. Solving the optical Bloch equations we arrive at an effective two level and quenching is performed simultaneously. Solving the optical Bloch equations we arrive at an effective two level system with an effective linewidth of the metastable level system with an effective linewidth of the metastable state by a 553 nm laser was used to achieve cooling of Ca in one dimension.

In the absence of a magnetic field, two cooling regimes can be distinguished: In the Doppler regime which is effective at larger velocities, the Doppler shift brings the atom into resonance with a counterpropagating laser beam. This leads to a constant damping force towards zero velocity and a typical cooling time of $t_D \approx \sqrt{\frac{m \nu_0}{\hbar k_0 S}} = 5.6 \text{ ms}$ using an initial velocity $v_0 = 1 \text{ m/s}$ and k_0 being the wave vector of the 657 nm laser. Because this time has to be small enough to prevent atoms from escaping the laser beams before being stopped, we have increased the force by using the same circular polarization for the cooling 657 nm beams and the quenching 453 nm laser. Absorption of the quenching photon from the same direction as the initial photon is favored by 6 to 1 as a result of the ratio of the Clebsch-Gordan coefficients involved.

The second regime occurs at lower temperatures when slow atoms are not excited by any laser and accumulate near zero-velocity. Compared to VSCPT there is still a small off-resonant excitation probability. Therefore this regime can be referred to as 'velocity-selective gray-state trapping'. The limit of this cooling method depends on the detuning Δ and can be as low as a fraction of the recoil velocity. The relevant timescale is much longer than in the Doppler regime mentioned above as the cooling relies on random jumps to the gray state.

The situation changes with the magnetic quadrupole field present in the MOT configuration. Here, atoms that are in the gray state at the MOT center will eventually move to a point where they come into resonance with one laser by the Zeeman shift. There they will be pumped out of the gray state and accelerated towards the trap center until the atoms are just Doppler shifted off resonance. Therefore the average atomic velocity will be of the order of a few recoils independent of the detuning Δ. The detuning however determines the size of the cold atomic cloud.

The recoil that determines the achievable velocity width is due to the fluorescence photons at 733 nm and 423 nm from the decay of the 1D_2 level (fig. 1) and the quench photon at 453 nm that are involved in the final cycle before the atom gets off resonance. The effective recoil velocity is given by the quadratic sum of the three photon momenta and amounts to $v_{\text{rec}} \approx 3.5 \text{ cm/s}$, if we neglect polarization effects, i.e. assuming also a random direction of the absorbed quench photon.

We realized this novel cooling scheme in an experiment, where we started with a broad-line MOT on the cooling transition $^1S_0 - ^1P_1$ made of three retroreflected laser beams with $\lambda = 423$ nm. With a total power of 30 mW approximately 10^7 atoms were cooled and trapped directly from a thermal beam. The narrow-line MOT at 657 nm was realized by three circular polarized beams (power approx. 7 mW per beam with a diameter of 5 mm), that were parallel to the 423 nm MOT beams. Dichroitic retroreflectors were used to combine

FIG. 1. Excerpt from the Ca level scheme with wavelengths and transition rates of the relevant transitions. The $^1S_0 - ^1P_1$ transition is used for pre-cooling atoms in a standard broad-line MOT. The intercombination transition $^1S_0 - ^1P_1$, quenched by the transition $^3P_1 - ^3D_2$ forms the second stage MOT.
the beams. The quench laser beams at 453 nm were coupled into the vacuum chamber under an angle of 22.5° to the other cooling beams in the horizontal plane and nearly parallel in the vertical direction. To make efficient use of the available power ($P \approx 20$ mW) a single beam of diameter ≈ 3 mm was fed through the setup three times and finally retroreflected, similar to a MOT configuration. Due to the limitations of our vacuum chamber which was designed for an optical Ca frequency standard it was not possible to completely match the sizes and directions of the quench and MOT laser beams. We expect this to limit the possible transfer efficiency in our setup.

After pre-cooling the atoms in the broad-line MOT to $v_{\text{rms}} \approx 0.7$ m/s, the 423 nm laser was switched off and the magnetic field gradient was lowered within 100 μs from 60×10^{-4} T/cm to 0.3×10^{-4} T/cm and the 657 nm cooling laser and the quench laser were switched on. The small gradient accounts for the much smaller acceleration that can be reached by cooling on the narrow line, even with quenching. After the cooling time the 657 nm laser was switched off while the quench laser remained on to repump most of the atoms to the ground state. To reduce the background from fluorescence of decaying atoms that have not been repumped, we waited for 0.5 ms to 1 ms before measuring the velocity distribution.

![FIG. 2. Velocity distribution measured by the excitation spectrum of the Doppler broadened intercombination transition. The distribution after cooling in a usual broad-line MOT (a) shows an rms velocity of 71 cm/s ($T = 2.4$ mK) which is reduced to 4.3 cm/s ($T = 9$ μK) after 25 ms of second stage cooling (b). Comparing the areas of the two distributions gives a transfer efficiency of 12%.](image)

The velocity distribution of the atomic ensemble was obtained by measuring the Doppler broadening of the intercombination transition. Using long excitation pulses the corresponding interaction-time broadening could be neglected. To avoid Zeeman broadening of the transition the magnetic field was changed from a quadrupole to a homogeneous field. Fig. 2 shows a typical velocity distribution detected from the fluorescent decay of the 3P_1 state before and after the cooling on the quenched intercombination line. To determine the efficiency of the cooling process we compare the areas of the two curves giving a transfer efficiency of $\eta = 12\%$ in the case of fig. 3. Due to the integration over all transverse velocities the increase in count rate by a factor of 2 shown in fig. 2 does not reflect the increase in the number of atoms N with $v \approx 0$. This increase is calculated from $\eta = \eta_N(v_{\text{rms}}, 423/v_{\text{rms}}, 657)^3$ as $\eta = 500$.

The temperature as a function of the cooling time (fig. 3) shows an exponential decay with a time constant of 1.4 ms until the rms velocity is reduced to a few times the effective recoil velocity v_{rec}. For longer cooling times a further slow reduction of the velocity width is observed. A temperature of (5.6 ± 0.4) μK after 100 ms of cooling has been observed, which corresponds to an rms velocity of 3.4 cm/s that is close to the calculated effective v_{rec}.

![FIG. 3. Atom numbers (triangles) and root-mean-square velocities v_{rms} (squares) in units of the effective recoil velocity $v_{\text{rec}} = 3.5$ cm/s after second stage cooling versus the cooling time. The crosses connected by lines show the results of Monte-Carlo simulations using the experimental parameters. The simulated atom number is scaled to fit the measurement.](image)

The time dependence of the total number of atoms as deduced from the area of the measured Doppler curves (fig. 3) shows first a fast loss due to atoms that could not be captured by the narrow-line MOT and then an almost linear decrease in atom number with cooling time. From absorption images of the ultracold atomic cloud after a cooling time of 15 to 20 ms we obtain rms radii of 0.8 mm and 0.4 mm in the horizontal and vertical directions, respectively.

In our present setup significant variations of the final temperature and the transfer efficiency occur over the day as can be seen from the different scales of fig. 3 and fig. 4. We attribute this to slight changes in the alignment and the detuning of the quench laser.

We have modelled the cooling and trapping by a semi-classical 3-D Monte-Carlo simulation. The temporal dependence of the temperature is in good agreement with the experimental results also showing a fast reduction and a further slow decrease of the rms velocity approach-
ing the recoil velocity for long times. The calculated transfer efficiency typically amounts to 60%, far above the experimentally observed 12%, probably due to limitations of our setup as mentioned above. The slow loss of atoms also shows up in the Monte-Carlo simulations, where it was identified as caused by atoms moving out of the intersection region of the laser beams. Similar temperatures near the recoil limit have been obtained with simulations for the narrow-line cooling of magnesium on the intercombination transition \(3s^2 \, ^1S_0 - 3s^3p \, ^3P_1\) and quenching using the \(3s3p \, ^3P_1 - 3s4s \, ^1S_0\) transition.

The presented results open the way to a wide variety of experiments including the formation of quantum degenerate ensembles by all-optical means. This might prove particularly useful in the case of Ca where calculations indicate a positive scattering length.

In conclusion, we have presented a cooling method applicable to atoms with narrow or forbidden transitions. We have demonstrated this method by cooling a \(^{40}\)Ca atomic ensemble in three dimensions to a residual rms-velocity close to one effective recoil. Our scheme is applicable to arbitrarily narrow atomic transitions that can be artificially broadened and, hence, does not suffer from the associated small forces.

We thank J. Keupp and S. Baluchev for technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft under SFB 407 and by the European Commission through the Human Potential Programme (Cold Atoms and Ultra-precise Atomic Clocks; CAUAC).

\[\text{FIG. 4. Root-mean-square velocity and transfer efficiency after 25 ms of second stage cooling versus the detuning of the 657 nm MOT laser. The bars indicate the statistical uncertainty of } v_{\text{rms}} \text{ from the fits to the measured velocity distributions.}\]

The detuning dependence of the final temperature is shown in fig. 4. The velocity reaches a minimum around 270 kHz and is nearly constant for larger detunings, as discussed above. The increase at lower detunings is probably due to excitation in the wings of the excitation profile. The transfer efficiency shows a maximum at approximately the same detuning, as for smaller detunings the capturing probability is reduced. For larger detunings the loss increases because the trap becomes larger than the intersection region of the laser beams.

This quench cooling scheme has the distinct advantage that the scattering rate can be tailored for different purposes by adjusting the power of the quench laser, e.g. using a high scattering rate for efficient capturing and then lowering the rate to reach the lowest temperatures. For use in an atomic frequency standard ultracold atoms at moderate density are desired. This can be reached by completely switching off the magnetic field and finally cooling the atoms in an optical molasses to reach even sub-recoil temperatures. On the other hand, to enable efficient filling of an optical dipole trap one would increase the magnetic field gradient after a few milliseconds to reach a high phase-space density.

The presented results open the way to a wide variety of experiments including the formation of quantum degenerate ensembles by all-optical means. This might prove particularly useful in the case of Ca where calculations indicate a positive scattering length.

In conclusion, we have presented a cooling method applicable to atoms with narrow or forbidden transitions. We have demonstrated this method by cooling a \(^{40}\)Ca atomic ensemble in three dimensions to a residual rms-velocity close to one effective recoil. Our scheme is applicable to arbitrarily narrow atomic transitions that can be artificially broadened and, hence, does not suffer from the associated small forces.

We thank J. Keupp and S. Baluchev for technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft under SFB 407 and by the European Commission through the Human Potential Programme (Cold Atoms and Ultra-precise Atomic Clocks; CAUAC).

\[\text{[1] S. Chu et al., Phys. Rev. Lett. 55, 48 (1985).}\]
\[\text{[2] P. D. Lett et al., Phys. Rev. Lett. 61, 169 (1988).}\]
\[\text{[3] A. Aspect et al., Phys. Rev. Lett. 61, 826 (1988).}\]
\[\text{[4] M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).}\]
\[\text{[5] F. Ruschewitz et al., Phys. Rev. Lett. 80, 3173 (1998).}\]
\[\text{[6] C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, Eur. Phys. J. D 7, 449 (1999).}\]
\[\text{[7] F. Riehle et al., IEEE Trans. Instrum. Meas. IM 48, 613 (1999).}\]
\[\text{[8] See e.g. Atom interferometry, edited by P. R. Berman (Academic Press, San Diego, 1997).}\]
\[\text{[9] T. P. Dinneen et al., Phys. Rev. A 59, 1216 (1999).}\]
\[\text{[10] G. Zinner, T. Binnewies, F. Riehle, and E. Tiemann, Phys. Rev. Lett. 85, 2292 (2000).}\]
\[\text{[11] Y. Castin, J. I. Cirac, and M. Lewenstein, Phys. Rev. Lett. 80, 5305 (1998).}\]
\[\text{[12] M. Machholm, P. S. Julienne, and K.-A. Suominen, (2001), arXiv:physics/0103053 March 2001.}\]
\[\text{[13] H. Wallis and W. Ertmer, J. Opt. Soc. Am. B 6, 2211 (1989).}\]
\[\text{[14] T. Ido, Y. Isoya, and H. Katori, Phys. Rev. A 61, 061403 (2000).}\]
\[\text{[15] F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 62, 403 (1989).}\]
\[\text{[16] W. Rooijakkers, W. Hogervorst, and W. Vassen, Phys. Rev. Lett. 74, 3348 (1995).}\]
\[\text{[17] Y. Castin, H. Wallis, and J. Dalibard, J. Opt. Soc. Am. B 6, 2046 (1989).}\]
\[\text{[18] E. A. Curtis, C. W. Oates, and L. Hollberg, (2001), arXiv:physics/0104061 April 2001.}\]
\[\text{[19] R. L. Kurucz, Trans. IAU XXB, 168 (1988).}\]
\[\text{[20] H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 1116 (1999).}\]