BMJ Medicine is committed to open peer review. As part of this commitment, we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Medicine is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjmedicine.bmj.com).

If you have any questions on BMJ Medicine’s open peer review process please email info.bmjmedicine@bmj.com.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Journal:	BMJ Medicine
Manuscript ID	bmjmed-2022-000184
Article Type:	Original research
Date Submitted by the Author:	28-Feb-2022
Complete List of Authors:	Shi, Xiaoting; Yale University School of Public Health, Department of Environmental Health Sciences Zhuo, Haoran; Yale School of Public Health, Department of Environmental Health Sciences Du, Yuxuan; Yale School of Public Health, Department of Health Policy and Management Nyhan, Kate; Yale University, Harvey Cushing/John Hay Whitney Medical Library; medical library Ioannidis, John; Stanford University, Stanford Prevention Research Center, Department of Medicine and Department of Health Research and Policy Wallach, Joshua D.; Yale University School of Public Health, Department of Environmental Health Sciences
Keywords:	Lymphoma, Epidemiology
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Xiaoting Shi, Haoran Zhuo, Yuxuan Du, Kate Nyhan, John P.A. Ioannidis, Joshua D. Wallach

Xiaoting Shi, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Haoran Zhuo, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Yuxuan Du, Graduate student
Department of Health Policy & Management, Yale School of Public Health, New Haven, Connecticut, USA

Kate Nyhan, Librarian
Harvey Cushing/John Hay Whitney Medical Library; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA

John P.A. Ioannidis, Professor
Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, California, USA

Joshua D Wallach, Assistant Professor
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Corresponding author:
Joshua D Wallach, MS, PhD
Assistant Professor
Department of Environmental Health Sciences
Abstract

Objectives: To summarize the range, strength, and validity of reported associations between environmental risk factors and non-Hodgkin lymphoma (NHL), and to evaluate the concordance between associations reported in meta-analyses (MAs) of summary level data and MAs of individual participant data (IPD).

Design: Umbrella review.

Data sources: MEDLINE, Embase, Scopus, Web of Science Core Collection, Cochrane Library, and Epistemonikos from inception to 23 July 2021.

Eligibility criteria: English language MAs of summary level data and MAs of IPD evaluating associations between environmental risk factors and incident NHL (overall and NHL subtypes).

Data extraction and synthesis: Summary effect estimates from MAs of summary level data were re-estimated using a random-effects model and classified as presenting non-significant, weak ($P<0.05$), suggestive ($P<10^{-3}$ and $>$1000 cases), highly suggestive ($P<10^{-6}$, $>$1000 cases, largest study reporting a significant association), or convincing ($P<10^{-6}$, $>$1000 cases, largest study reporting a significant association, $I^2 < 50\%$, 95\% prediction interval excluding the null value, and no evidence of small study effects and excess significance bias) evidence. When the same exposures, exposure contrast levels, and outcomes were evaluated in MAs of summary level data and MAs of IPD from the International Lymphoma Epidemiology (InterLymph) Consortium, concordance in terms of direction, level of significance, and overlap of 95\% confidence intervals (CI) was examined. We assessed the methodological quality of the MAs of summary level data using the A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2 tool.

Results: We identified 85 MAs of summary level data reporting 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. Most (225, 88\%) associations presented either non-significant or weak evidence. The 11 (4\%) associations presenting highly suggestive evidence were primarily for autoimmune or infectious disease-related risk factors. Only 1 association, history of celiac disease and risk of NHL, presented convincing evidence. Overall, 40 associations reported in MAs of summary level data were also evaluated in InterLymph MAs of IPD. Of these, 22 (55\%) pairs were in the same direction, had the same level of statistical significance, and had overlapping 95\% CIs. There were 28 (70\%) pairs where the summary effect sizes from the MAs of IPD were more conservative. Nearly all (79/85, 93\%) MAs of summary level data were classified as having critically low quality.
Conclusion: This umbrella review suggests that there is a mass production of low-quality MAs of summary level data, many of which report weak associations between environmental risk factors and NHL, and highlights the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

Systematic review registration PROSPERO CRD42020178010.
What is already known on this topic

- Observational studies have suggested that environmental risk factors, including clinical, occupational, and lifestyle exposures, may be associated with the risk of developing non-Hodgkin lymphoma.
- As a result of the large number of observational studies evaluating the impact of environmental risk factors on non-Hodgkin lymphoma, dozens of systematic reviews and meta-analyses of summary and individual participant level data have focused on synthesizing evidence and identifying potential risk factors.
- Little is known about: (1) the range, strength, and validity of associations between environmental risk factors and non-Hodgkin lymphoma reported in meta-analyses or (2) the concordance between meta-analyses of summary level data and meta-analyses of individual participant data evaluating the same associations.

What this study adds

- This umbrella review suggests that although a large range of environmental risk factors for non-Hodgkin lymphoma have been evaluated in meta-analyses, the vast majority of meta-analyses of summary level data are low quality and present either non-significant or weak associations.
- Overall, only half of the associations that were evaluated in both meta-analyses of summary level data and meta-analyses of individual participant data were in the same direction, had the same level of statistical significance, and had overlapping 95% confidence intervals.
- Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, this umbrella review highlights the need for improving not only primary studies but also evidence synthesis in the field of non-Hodgkin lymphoma etiology.
Introduction

Non-Hodgkin lymphoma (NHL), a lymphoid cancer that originates in white blood cells called lymphocytes, is the 9th leading cause of cancer death among both men and women. NHL accounts for nearly 90% of all lymphomas and is the most common hematologic malignancy in the world. Although NHL can be broadly categorized into two major groups (i.e., B-cell, T-cell/natural killer-cell lymphomas), it represents a diverse group of malignant disorders with dozens of subtypes. Evidence suggests that NHL is more common among older adults, men, and people with a first degree relative with NHL. However, despite substantial effort to identify NHL causes and risk factors over the past few decades, the exact etiology of NHL is unknown.

Epidemiological studies have suggested that environmental risk factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors, may be associated with the risk of developing NHL. In particular, several prominent potential risk factors proposed in the literature include viruses (e.g., Epstein-Barr virus infection), autoimmune diseases (e.g., Sjogren’s syndrome, celiac disease, and rheumatoid arthritis), and immune dysregulation (i.e., patients with a history of organ transplantation, acquired immunodeficiency syndromes (HIV/AIDS), or immunosuppressive medication treatment). However, given that these exposures and conditions are relatively rare, a broad range of additional environmental risk factors, including exposure to insecticides, red and processed meat consumption, and hair dye, have been evaluated and proposed as potential risk factors.

As a result of the large number of observational studies evaluating the impact of environmental risk factors on NHL, dozens of systematic reviews and meta-analyses (MAs) of summary level data have focused on synthesizing evidence and identifying the most promising risk factors. Moreover, the International Lymphoma Epidemiology (InterLymph) Consortium, a group of investigators who pool data from their completed or ongoing NHL case-control studies, have published multiple MAs of individual participant data (IPD) evaluating associations between various environmental risk factors and NHL. Although these MAs of IPD contain thousands of NHL cases and are strengthened by their ability to utilize raw data that are harmonized across multiple studies, they do not include evidence from case-control and cohort studies conducted by investigators outside of the InterLymph Consortium. Therefore, MAs of summary level data and MAs of IPD evaluating the same associations between environmental risk factors and NHL may sometimes lead to discordant results and conclusions.
To provide an overview of the range, strength, and validity of reported associations between environmental risk factors and NHL, we conducted an umbrella review of the evidence across published systematic reviews and MAs. In addition to summarizing the results, determining hints of biases, and assessing the quality of reviews, we evaluated the consistency between all associations reported in both MAs of summary level data and InterLymph MAs of IPD.

Methods

We conducted an umbrella review on the reported associations between environmental risk factors and the risk of NHL. Umbrella reviews are used to systematically identify and evaluate evidence reported in published systematic reviews and MAs. Our study protocol was pre-registered on the International prospective register of systematic reviews (CRD42020178010) and posted on Open Science Framework (https://osf.io/6g2ev/). We did not involve patients or members of the public when designing the question and study, interpreting the results, and/or drafting the manuscript.

Database searches

Working with an experienced medical librarian (KN), we developed and performed a comprehensive search of multiple databases: MEDLINE (Ovid), Embase (Ovid), Scopus, Web of Science Core Collection (as licensed at Yale University), Cochrane Library, and Epistemonikos from inception to July 24th 2020 (eTable 1 in Supplement 1). In each database, we used three concepts: NHL, risk factors, and the study designs of interest (MAs, systematic reviews, and pooled analyses). The search strategy for NHL was based on the search strategy used in a published review. The study design search strategy used elements from a published search filter. Database limits were used to exclude conference papers and meeting abstracts. No language limits were used. Records were deduplicated in EndNote, the Yale Reference Deduplicator, and Covidence. No citation chaining was conducted.

On July 24th 2020, searches were run in each database and 14,753 references were identified. After deduplication in EndNote and Covidence, 8025 unique records were uploaded for screening. On July 23th 2021, all searches were rerun and deduplicated and 969 additional unique records were added to Covidence for manual screening. In total, our search retrieved 8994 unique records across all databases.

Eligibility criteria
We included English language systematic reviews, MAs of summary level data (i.e., MAs using effect estimates reported in individual studies), and MAs of IPD of observational studies evaluating associations between environmental risk factors and incident NHL (overall or any subtypes, eTable 2 in Supplement 1). We considered all non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors. Systematic reviews and MAs were excluded if they primarily focused on genetic risk factors, evaluated risk factors for the treatment, relapse, remission, or prognosis of NHL patients, or examined NHL as a risk factor for other diseases (eText 1 in Supplement 1).

Two reviewers (XS and HZ) independently screened the titles and abstracts and then full-text versions of potentially eligible articles. Any disagreements or uncertainties were discussed with a third reviewer (JDW).

Data extraction

Data extraction was performed independently by two reviewers (XS and HZ), and a third reviewer (JDW) arbitrated all potential discrepancies. For each systematic review and MA, we recorded the first author, year of publication, article title, journal of publication, study design, population, examined exposures and their definitions, and examined outcomes and their definition (i.e., NHL or NHL subtypes). For all MAs of summary level data, we identified each unique exposure-outcome relationship and recorded the number of studies included, total sample size, number of cases, and study-specific adjusted relative risk estimates (e.g., relative risks, hazard ratios, or odds ratios) and corresponding 95% confidence intervals (CIs). For studies that considered multiple exposure contrast levels, control groups, and/or confounders, we prioritized the effect estimates comparing ever versus never exposure that were adjusted for the largest number of potential confounders. Whenever ever versus never exposures comparisons were not reported, we recorded the effect estimates comparing the highest versus lowest levels of exposures. When multiple MAs of summary level data were identified for the same environmental risk factor, we selected the effect estimates that were based on the largest number of component studies.

For systematic reviews with unique associations that were not investigated in MAs of summary level data, we recorded the number of studies identified, the reasons why MAs were not performed, and the main conclusions. Lastly, for all MAs of IPD, one author (JDW) identified the exposures, NHL subtypes, and number of NHL cases for: (1) all nominally statistically significant

(P<0.05) associations and (2) any associations that were also evaluated in MAs of summary level data.

Statistical analysis

First, we re-estimated all summary effect estimates and 95% CIs using a random-effects DerSimonian and Laird (DL) estimator. When summary effect estimates were reported without a corresponding P value, we used the 95% CIs to calculate the P value using a previously described method. Next, we categorized the strength of the reported associations across five levels (Table 1), following previously established methodology. All associations with P>0.05 were classified as non-significant. Associations with P<0.05 and fewer than 1000 cases were classified as weak. Associations with P<10^{-3} and at least 1000 cases were classified as suggestive. For associations with P<10^{-6}, at least 1000 cases, and P<0.05 for the largest component study, we sequentially evaluated 95% prediction intervals (PIs), presence of small study effects (Egger regression asymmetry test), and evidence of excess significance using the Ioannidis test. PIs provide a potential range of the true effect and incorporate the uncertainty of whether the observed effect will arise in future studies as well. P<0.1 for Egger’s test suggests the presence of small study effects (i.e. small studies are more prone to report larger or more significant results while larger studies tend to report more conservative results). The Ioannidis test estimates whether the observed number of studies with nominally statistically significant (P<0.05) results in a MA differs from the expected number of studies with nominally statistically significant studies. Associations with 95% PIs including the null, statistically significant Egger’s test (P<0.1), and/or evidence of excess significance were classified as highly suggestive. Associations with 95% prediction intervals excluding the null, non-statistically significant Egger’s test (P>0.1), and no evidence of excess significance were classified as convincing.

Statistical analysis was conducted using *metagen* package in R version 4.1.0. (eTable 3 in Supplement 1).

Concordance between MAs of summary level data and InterLymph MAs of IPD

When the same exposures, exposure contrast levels, and NHL subtypes were examined in MAs of summary level data and InterLymph MAs of IPD, two authors (XS and JDW) determined whether the effect estimates: (1) were in the same direction, (2) had overlapping 95% CIs, and/or (3) had the same level of statistical significance (P<0.05 or P≥0.05). Associations with all three criteria fulfilled were classified as fully concordant. Lastly, we determined how often MAs of summary
level data included at least one-third of the same component studies as the InterLymph MAs of IPD.

Quality Assessment

Four reviewers (XS, HZ, YD, and JDW) evaluated the quality of all MAs of summary level data using A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2. Any discrepancies were discussed and resolved by consensus. Based on the suggested rating scheme, the overall confidence in the results of the MAs of summary level data were classified as high, moderate, low, or critically low.

Results

Literature search

Among 16438 records identified through the literature search, 7444 were excluded as duplicates, leaving 8994 titles and abstracts for initial screening. 7970 records were excluded based on the title and abstract and 1024 were screened at the full text stage for inclusion. After excluding 904 records at the full text stage (Supplement 2), our searches identified 85 MAs of summary level data evaluating 134 unique environmental risk factors and 8 systematic reviews evaluating 8 unique risk factors (Figure 1, eText 2 in Supplement 1 and Supplement 3). In addition, we identified 27 MAs of IPD (Supplement 3), of which 24 (89%) were conducted by the InterLymph Consortium. More than one MA of summary level data was identified for 44 (44/134, 33%) risk factors (eTable 4 in Supplement 1). Among the MAs of summary level data selected based on the largest number of component studies, approximately half were also the most recently published (25/44, 57%) (eTable 4 in Supplement 1).

MAs of summary level data

Among the 257 associations reported in the MAs of summary level data, 124 and 133 evaluated the impact of environmental risk factors on the risk of NHL overall and NHL subtypes, respectively. NHL subtypes included follicular lymphoma (FL; 43, 17%), diffuse large B-cell lymphoma (DLBCL; 35, 14%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 31, 12%), T-cell lymphoma (TCL; 12, 5%), B-cell lymphoma (BCL; 4, 2%), marginal zone lymphoma (MZL; 2, 1%), endemic Burkitt Lymphoma (eBL; 1, 0.4%), Burkitt lymphoma (BL; 1, 0.4%), primary cutaneous lymphoma (PCL; 1, 0.4%). The most common exposure
categories were dietary factors (90, 35%), medical histories and comorbidities (54, 21%), chemicals and pesticides (42, 16%), lifestyle factors (29, 11%), drugs, vaccinations, and medical procedures (30, 12%), and occupational (12, 5%). The median number of component studies per MA of summary level data was 5 (IQR 4-10). The median number of NHL cases, among the 64 (75%) MAs reporting this information, was 1533 (IQR, 482-5872).

Credibility criteria

After re-estimating the 257 associations using a random-effects DL estimator and applying the credibility criteria, 145 (56%) were classified as presenting non-significant evidence (Table 3). There were 80 (31%) nominally statistically significant ($P<0.05$) associations that were classified as presenting weak evidence. There were 20 (8%) statistically significant associations ($P<10^{-3}$), based on analyses with at least 1000 NHL cases, that were classified as presenting suggestive evidence. Only 12 (5%) associations were classified as presenting highly suggestive or convincing evidence, with a $P<10^{-6}$, at least 1000 cases, and a $P<0.05$ for the largest component study. The 11 highly suggestive associations were for history of renal transplantation and risk of NHL, rheumatoid arthritis and risk of NHL, primary Sjogren's syndrome and risk of NHL, systemic lupus erythematosus and risk of NHL, celiac disease and risk of TCL, tuberculosis and risk of NHL, hepatitis B virus (HBV) and risk of NHL and BCL, hepatitis C virus (HCV) and risk of NHL and DLBCL, and teaching as an occupation and risk of NHL (Table 2).

There was one association, between history of celiac disease and risk of NHL (OR 2.61, 95% CI 2.04 to 3.33; 110, 245 NHL cases from 8 individual studies), that was classified as presenting convincing evidence. Although the association had $P<10^{-6}$, at least 1000 cases, a nominally significant result for the largest component study, low heterogeneity ($I^2 <50\%$), a 95% PI excluding the null, and no evidence of small study effects, we were unable to conduct the Ioannidis test due to the incomplete information reported about the component studies. Across all the 112 nominally statistically significant associations, 63 (56%) had relative risk values that were between 0.67 and 1.50.

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by MAs of summary level data (eText 2 in Supplement 1).

MAs of IPD
We identified 27 MAs of IPD, of which 24 were from the InterLymph Consortium. The 24 InterLymph MAs of IPD reported 715 nominally statistically significant ($P<0.05$) associations. Of these, 116 and 21 associations were based on analyses with at least 1000 NHL cases and had $P<10^{-3}$ and $P<10^{-6}$, respectively (Table 4 and eTable 5 in Supplement 1). Overall, the unique suggestive exposures categories were alcohol consumption on risk of DLBCL, MZL and NHL, history of Sjogren’s syndrome on risk of DLBCL, MZL and NHL, recreational sun exposure on risk of DLBCL, FL and NHL, and history of HCV on risk of DLBCL, MZL and NHL. Although the 3 non-InterLymph MAs of IPD examined 5 associations not reported in systematic reviews and/or MAs of the summary level data, including fish eaters and risk of NHL, vegetarians and vegans and risk of NHL, maternal age at the time of the child’s birth and risk of NHL, paternal age at the time of the child’s birth and risk of NHL, and leisure-time physical activity and risk of NHL, none were nominally statistically significant.

Consistency between MAs of summary level data and InterLymph MAs of IPD

There were 40 associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD (Table 5 and eFigure 1 in Supplement 1). While 22 (55%) evaluated the impact of environmental risk factors on the risk of NHL overall, the other half (18, 45%) focused on various NHL subtypes (CLL/SLL, 5 (13%); DLBCL, 5 (13%); FL, 4 (10%); TCL, 3 (8%); MZL, 1 (3%)).

Overall, 22 of 40 (55%) of the associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 10 (25%) pairs where the effect estimates were both statistically significantly increased, 3 (8%) where they were both statistically significantly decreased, 7 (18%) where they were both non-statistically significantly increased, and 2 (5%) where they were both non-statistically significantly decreased (Kappa=0.37, eTable 7 and eFigure 1 in Supplement 1). The 13 associations where the MAs of the summary level data and MAs of IPD effect estimates were both statistically significantly increased or decreased were for history of smoking and risk of TCL, history of drinking and risk of NHL, DLBCL, and FL, history of primary Sjogren's syndrome and risk of NHL, history of systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL, TCL and DLBCL, and history of HCV and risk of NHL, DLBCL, MZL and CLL/SLL. There were 28 (70%) pairs where the effect sizes...
from the MAs of IPD were more conservative than the effect sizes from the MAs of summary level data.

There were 4 suggestive associations reported in MAs of summary level data that were also evaluated in the InterLymph MAs of IPD. Of these, 3 associations from MAs of IPD had effect estimates in the same direction, had $P<10^{-3}$, and were based on analyses with at least 1000 NHL cases (i.e., history of psoriasis and risk of NHL, history of Herpes Zoster and risk of NHL, and history of farming as an occupation and risk of NHL). There were 8 highly suggestive associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD. Of these, 7 associations from the MAs of IPD had effect estimates in the same direction, had $P<10^{-6}$, and were based on analyses with at least 1000 NHL cases (i.e., history of rheumatoid arthritis and risk of NHL, history of primary Sjogren's syndrome and risk of NHL, history systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL and TCL, history of tuberculosis and risk of NHL, and history of HCV and risk of NHL).

There were 19 (48%) pairs where the MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD. There was no difference in terms of concordance (direction, statistical significance of summary effect estimates and overlapping 95% CIs) between MAs of summary level data that included at least one-third versus fewer than one-third of the same component studies as the MAs of IPD (12/19 (63%) vs 10/21 (48%), $P=0.32$).

Methodological quality

The vast majority of the 85 MAs of summary level data had overall confidence ratings of low (3, 4%) or critically low (79, 93%) according to the AMSTAR 2 tool. There were 2 (2%) where the overall confidence in the results was classified as moderate. Only 1 (1%), evaluating the association between tuberculosis and risk of NHL, had an overall confidence rating of high (eTable 6 in Supplement 1). The most common unfulfilled critical domains of the AMSTAR 2 tool were incomplete justification of excluded studies (74, 87%) and missing or no information about preregistered protocols (72, 85%).

Discussion

In this umbrella review, we evaluated the range, strength, and validity of reported associations between environmental risk factors and NHL across 85 MAs of published observational studies.
Overall, we identified 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. The vast majority of the associations, including those evaluating various dietary, clinical, lifestyle, chemical, and occupational exposures, were classified as having either non-significant or weak evidence. More than half of the nominally significant associations were only marginally significant. Only 5% of the associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence. When the same associations were evaluated in MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Overall, effect sizes from MAs of IPD were more conservative. This umbrella review suggests that there is a mass production of low-quality MAs of summary level data reporting weak associations between environmental risk factors and NHL. These findings highlight the need for improving not only primary studies but also evidence synthesis in this field. Moreover, given that many of the assessed risk factors are correlated, simultaneous consideration of multiple risk factors will be useful to understand which ones have the strongest, independent effects on NHL risk.

Although a wide range of environmental exposures have been evaluated and proposed as potential risk factors for NHL, our evaluation suggests that the only highly suggestive or convincing exposures proposed in MAs of summary level data and MAs of IPD are related to autoimmune and infectious diseases. In particular, the prominent autoimmune disease-related risk factors include history of celiac disease, rheumatoid arthritis, primary Sjogren's syndrome, and systemic lupus erythematosus. Although the exact mechanisms behind these associations remains unclear, many autoimmune disorders are characterized by chronic inflammation, which may intensify B cell or T cell activation and promote the development of lymphoma. Previous studies have also suggested that the dysfunction of some protein families, such as FAS and tumor necrosis factor, and the interplay between various immune cells, could be potential mechanisms. However, there is uncertainty when it comes to the temporality of these associations, with studies reporting that autoimmune diseases can occur during lymphoma.

Associations between viral and bacterial infections and NHL risk have been suggested for several decades. Different hypotheses for HCV-related lymphomagenesis have been proposed. For instance, chromosomal aberrations, including chromosome t(14;18) translocation, have been found to be associated with mixed cryoglobulinemia, a disorder most commonly caused by HCV infection and that can evolve into lymphoproliferative disorders. Furthermore, genetic
variations, including Interleukin-10 polymorphisms, have also been proposed as a potential pathway between HCV infection and NHL susceptibility and development. Similar to autoimmune disease-related risk factors, it remains unclear whether these associations are driven by disease status, medication use, or disease-medication interactions. Considering how rare many of these autoimmune and infectious disease-related exposures are, future efforts are necessary to determine the impact of multiple environmental as well as non-environmental risk factors simultaneously.

Among 40 associations evaluated by both MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Unlike MAs of summary level data, MAs of IPD tend to focus on studies with more homogeneous designs and patient populations. Furthermore, MAs of IPD can allow for better harmonization of data across studies, more advanced one-stage meta-analytical approaches, and analyses accounting for many exposure categories and potential confounders. Although the InterLymph MAs of IPD are particularly robust due to the large number of NHL cases and subtypes considered, MAs of IPD without systematic reviews may exclude evidence from high-quality case-control or cohort studies. For instance, the InterLymph analyses only included evidence from completed and ongoing case-control studies from consortium members. Furthermore, the InterLymph findings may be difficult to disentangle, with at least 700 nominally statistically significant associations among thousands of analyses conducted across different subtypes of NHL and exposure levels (e.g., different type/ dosages of alcohol consumption). In the future, it will be necessary to monitor the consistency between MAs of summary level data and MAs of IPD, especially since approximately half of the MAs of summary level data had at least one-third of the same component studies as the MAs of IPD. In addition, authors of MAs should carefully evaluate whether any external studies can and should be included in their syntheses. Of interest, we observed that more than two thirds of the effect sizes were more conservative in the InterLymph MAs of IPD than in the MAs of summary level data. This may be a reflection of greater selective reporting bias in the corpus of studies available in the literature as compared with a set of studies participating in a consortium.

Our study suggests that nearly all MAs of summary level data evaluating associations between environmental risk factors and risk of NHL could be classified as having critically low quality according to the AMSTAR 2 tool. Previous umbrella reviews focused on the associations...
between environmental risk factors and health outcomes have noted similar concerns. However, the proportion of low or critically low-quality NHL reviews is higher than what has been observed among umbrella reviews for inflammatory bowel diseases, attention-deficit/hyperactivity disorder, eating disorders, early childhood caries, physical activity for academic achievement, and physical therapy for tendinopathy. These findings may not be surprising considering recent concerns about the mass production of systematic reviews. In the future, authors planning systematic reviews and MAs of summary level data of the associations between environmental exposures and NHL should adhere to reporting guidelines and critically evaluate how their studies relate to existing MAs of IPD.

Limitations

Our umbrella review has several limitations. First, we did not identify potential environmental risk factors that were only examined in individual observational studies. Our objective was to identify and summarize the associations that were reported by the MAs of summary level data, which already covered a wide space of diverse associations. Second, we did not evaluate the quality of individual studies included in the MAs of summary level data, the impact that individual studies have on the overall heterogeneity, or the potential role that residual/unmeasured confounding could have on associations. Individual risk of bias evaluations are outside the scope of umbrella reviews, and it is the expectation that MAs have already conducted these quality assessments. Third, we considered MAs that included cohort and case-control studies, and our assessments did not prioritize reviews of certain study designs or address differences across different study designs. Considering that certain NHL subtypes are rare, case-control studies may often be the most realistic study design to evaluate exposure histories. Fourth, although umbrella reviews provide a comprehensive summary of the associations reported in MAs, the validity of the summary effect estimates is dependent on the quality of the individual MAs. Although we attempted to standardize associations using a random-effects DL estimator, we did not evaluate or re-conduct the literature searches for all potential exposure-outcome relationships. Fifth, we did not calculate or conduct I^2, 95% PIs, Egger’s test, and excess significance test for non-significant and nominally statistically significant associations. Given the large number of associations identified, we prioritized these calculations for associations where these values were necessary to determine the strength of associations using the previously established classification system. Sixth, when
summary effect estimates of multiple exposure contrast levels were reported, we focused on the risk estimates comparing ever versus never exposure (or comparing the highest versus lowest levels of exposures). Although we did not consider all potential contrast levels and dose-response relationships, our objective was to provide a universal overview of the relationships between examined risk factors and NHL. Specific dose-response relationships may nevertheless exist for certain associations, and they would need to be examined on a case-by-case basis. Seventh, we only identified the nominally statistically significant associations among the thousands of associations reported in InterLymph MAs of IPD. Eighth, by excluding non-English language reviews, we may have missed additional potential associations. However, we utilized the same approach as previous umbrella reviews that focused on risk factors for health outcome(s). Ninth, MAs of IPD and MAs of summary level data can have different strengths and limitations, and our evaluation did not focus on comparing the potential quality of these types of studies. Lastly, when multiple MAs of summary level data evaluated the same exposures and outcomes, we selected the association based on the largest number of included studies. Although this approach does not ensure that the highest quality MAs are selected, this methodology has been utilized by previous umbrella reviews.

Conclusion

In this large-scale umbrella review, we identified dozens of MAs evaluating associations between environmental risk factors and NHL. However, the vast majority of MAs of summary level data were low quality and presented either non-significant or weak evidence. When the same associations were evaluated in MAs of summary level data and MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, these findings highlight the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.
ACKNOWLEDGEMENTS

The authors would like to thank DP and VP of the Cushing/Whitney Medical Library at Yale for technical support. DP and VP are employees of Yale University and did not receive additional compensation for this work, nor do they have competing interest to disclose.

Contributors: XS and JDW originally conceived this study. XS, JPAI, and JDW designed this study. XS, HZ, YD, KN, and JDW acquired the data. XS and YD conducted the statistical analysis. XS and JDW and drafted the manuscript. XS, JPAI, and JDW participated in the interpretation of the data. All authors and critically revised the manuscript for important intellectual content. XS and JDW had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. JDW provided supervision. JDW is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: XS is supported by the China Scholarship Council. JDW is supported by the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under award K01AA028258.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: In the past 36 months, JDW received research support from the FDA. There are no other competing interests.

Patient consent: Not required

Ethical approval: Not required

Data sharing: The dataset will be made available via a publicly accessible repository on publication.
Transparency: The senior author (manuscripts guarantor) (JDW) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant registered) have been explained.

License: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide license to the Publishers and its licensees in perpetuity, in all forms, formats and median (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) license any third party to do any or all of the above. The default license, a CC BY NC license, is needed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

See: http://creativecommons.org/licenses/by-nc/4.0/.
Reference

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021;71(1):7-33.
2. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390(10091):298-310.
3. Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019;5(12):1749-1768.
4. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016;66(6):443-459.
5. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb. Perspect. Med. 2019.
6. Chiu BC, Hou N. Epidemiology and etiology of non-hodgkin lymphoma. Cancer Treat. Res. 2015;165:1-25.
7. Teras LR, Rollison DE, Pawlita M, et al. Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies. Int. J. Cancer. 2015;136(1):108-116.
8. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029-4038.
9. Elfström P, Granath F, Ekström Smedby K, et al. Risk of lymphoproliferative malignancy in relation to small intestinal histopathology among patients with celiac disease. J. Natl. Cancer Inst. 2011;103(5):436-444.
10. Klein A, Poliack A, Gafter-Gvili A. Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome. Hematol. Oncol. 2018;36(5):733-739.
11. Zhang Y, Dai Y, Zheng T, Ma S. Risk Factors of Non-Hodgkin Lymphoma. Expert Opin. Med. Diagn. 2011;5(6):539-550.
12. Pahwa M, Harris SA, Hohenadel K, et al. Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces. Int. J. Cancer. 2012;131(11):2650-2659.
13. Ollberding NJ, Aschebrook-Kilfoy B, Caces DB, et al. Phytanic acid and the risk of non-Hodgkin lymphoma. Carcinogenesis. 2013;34(1):170-175.
14. Cantor KP, Blair A, Everett G, et al. Hair dye use and risk of leukemia and lymphoma. Am. J. Public Health. 1988;78(5):570-571.
15. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):1-14.
16. Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):130-144.
17. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029-4038.
18. Mannetje A, De Roos AJ, Boffetta P, et al. Occupation and Risk of Non-Hodgkin Lymphoma and Its Subtypes: A Pooled Analysis from the InterLymph Consortium. *Environ. Health Perspect.* 2016;124(4):396-405.

19. Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne.* 2009;181(8):488-493.

20. Janiaud P, Agarwal A, Tzoulaki I, et al. Validity of observational evidence on putative risk and protective factors: appraisal of 3744 meta-analyses on 57 topics. *BMC Med.* 2021;19(1):157.

21. Greb A, Bohlius J, Schiefer D, Schwarzer G, Schulz H, Engert A. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of aggressive non-Hodgkin lymphoma (NHL) in adults. *Cochrane Database Syst. Rev.* 2008(1):CD004024.

22. Lee E, Dobbins M, Decorby K, McRae L, Tirilis D, Husson H. An optimal search filter for retrieving systematic reviews and meta-analyses. *BMC Med. Res. Methodol.* 2012;12:51.

23. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. *BMJ.* 2019;364:l265.

24. Altman DG, Bland JM. How to obtain the P value from a confidence interval. *BMJ.* 2011;343:d2304.

25. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki L. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. *Lancet Neurol.* 2015;14(3):263-273.

26. Kim JY, Son MJ, Son CY, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. *Lancet Psychiatry.* 2019;6(7):590-600.

27. Barbui C, Purgato M, Abdulmalik J, et al. Efficacy of psychosocial interventions for mental health outcomes in low-income and middle-income countries: an umbrella review. *Lancet Psychiatry.* 2020;7(2):162-172.

28. Tortella-Feliu M, Fullana MA, Perez-Vigil A, et al. Risk factors for posttraumatic stress disorder: An umbrella review of systematic reviews and meta-analyses. *Neurosci. Biobehav. Rev.* 2019;107:154-165.

29. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical research ed.).* 1997;315(7109):629-634.

30. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. *Clin. Trials.* 2007;4(3):245-253.

31. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. *J R Stat Soc Ser A Stat Soc.* 2009;172(1):137-159.

32. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. *BMJ.* 2011;342:d549.

33. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ.* 2017;358:j4008.

34. Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. *Am. J. Clin. Nutr.* 2014;100 Suppl 1(1):378S-385S.
35. Johnson KJ, Carozza SE, Chow EJ, et al. Parental age and risk of childhood cancer: a pooled analysis. *Epidemiology*. 2009;20(4):475-483.

36. Moore SC, Lee IM, Weiderpass E, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. *JAMA Intern Med.* 2016;176(6):816-825.

37. Karlstad O, Starup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies. *Curr Drug Saf.* 2013;8(5):333-348.

38. Salmon C, Conus F, Parent M, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. *Cancer Epidemiol.* 2020;65:101696.

39. Leung CY, Huang HL, Rahman MM, et al. Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates. *BMC Cancer.* 2020;20(1):412.

40. Yoosuf S, Makharia GK. Evolving Therapy for Celiac Disease. *Front Pediatr.* 2019;7:193.

41. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. *Int. J. Mol. Sci.* 2020;21(11).

42. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. *Nat Rev Dis Primers.* 2018;4:18001.

43. Din L, Sheikh M, Kosaraju N, et al. Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes. *Genet. Epidemiol.* 2019;43(7):844-863.

44. Baecklund E, Smedby KE, Sutton LA, Asking J, Rosenquist R. Lymphoma development in patients with autoimmune and inflammatory disorders--what are the driving forces? *Semin. Cancer Biol.* 2014;24:61-70.

45. Khanmohammadi S, Shabani M, Tabary M, Rayzan E, Rezaei N. Lymphoma in the setting of autoimmune diseases: A review of association and mechanisms. *Crit. Rev. Oncol. Hematol.* 2020;150:102945.

46. Hauswirth AW, Skrabs C, Schützing C, Gaiger A, Lechner K, Jäger U. Autoimmune hemolytic anemias, Evans' syndromes, and pure red cell aplasia in non-Hodgkin lymphomas. *Leuk. Lymphoma.* 2007;48(6):1139-1149.

47. Jardin F. Development of autoimmunity in lymphoma. *Expert Rev. Clin. Immunol.* 2008;4(2):247-266.

48. Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):52-65.

49. Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):15-25.

50. Ferri C. Mixed cryoglobulinemia. *Orphanet J. Rare Dis.* 2008;3:25-25.

51. Zignego AL, Giannelli F, Marrocchi ME, et al. T(14;18) translocation in chronic hepatitis C virus infection. *Hepatology.* 2000;31(2):474-479.

52. Khaled H, Abu-Taleb F, Haggag R. Hepatitis C virus and non-Hodgkin's lymphomas: A minireview. *J Adv Res.* 2017;8(2):131-137.

53. Persico M, Capasso M, Persico E, et al. Interleukin-10 - 1082 GG polymorphism influences the occurrence and the clinical characteristics of hepatitis C virus infection. *J. Hepatol.* 2006;45(6):779-785.

https://mc.manuscriptcentral.com/bmjmedicine
54. Hermine O, Lefrère F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. *N. Engl. J. Med.* 2002;347(2):89-94.

55. Mazzaro C, Franzin F, Tulissi P, et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon therapy. *Cancer.* 1996;77(12):2604-2613.

56. Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. *JAMA.* 2007;297(18):2010-2017.

57. Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. *Nanomedicine.* 2015;11(4):1003-1018.

58. Böhm M, Luger TA, Schneider M, Schwarz T, Kuhn A. New insight into immunosuppression and treatment of autoimmune diseases. *Clin. Exp. Rheumatol.* 2006;24(1 Suppl 40):S67-71.

59. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. *BMJ.* 2010;340:c221.

60. Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. *Stat. Med.* 2017;36(5):855-875.

61. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. *Gastroenterology.* 2019;157(3):647-659 e644.

62. Kim JH, Kim JY, Lee J, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. *Lancet Psychiatry.* 2020;7(11):955-970.

63. Solmi M, Radua J, Stubbs B, et al. Risk factors for eating disorders: an umbrella review of published meta-analyses. *Braz J Psychiatry.* 2021;43(3):314-323.

64. Thang Le VN, Kim JG, Yang YM, Lee DW. Risk Factors for Early Childhood Caries: An Umbrella Review. *Pediatr. Dent.* 2021;43(3):176-194.

65. Barbosa A, Whiting S, Simmonds P, Scortini Moreno R, Mendes R, Breda J. Physical Activity and Academic Achievement: An Umbrella Review. *Int. J. Environ. Res. Public Health.* 2020;17(16).

66. Girgis B, Duarte JA. Physical therapy for tendinopathy: An umbrella review of systematic reviews and meta-analyses. *Phys. Ther. Sport.* 2020;46:30-46.

67. Ioannidis JP. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. *Milbank Q.* 2016;94(3):485-514.

68. Wallach JD. Meta-analysis Metastasis. *JAMA Intern Med.* 2019.

69. Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. *J. Psychiatr. Res.* 2018;103:189-207.

70. Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. *Alzheimers Dement.* 2017;13(4):406-418.

71. Radua J, Ramella-Cravaro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. *World Psychiatry.* 2018;17(1):49-66.
Tables and figures:

Table 1. Grading criteria for evidence categories

Strength of association	Descriptiona
Convincing (class I)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Low/moderate between study heterogeneity ($I^2 < 50\%$)
	95% prediction interval excluding the null value
	Largest study reporting a nominally statistically significant ($P < 0.05$)
	No evidence of small-study effects
	No evidence of excess significance bias
Highly suggestive (class II)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Largest study reporting a nominally statistically significant ($P < 0.05$)
Suggestive (class III)	At least 1000 NHL cases
	Statistically significant association ($P < 10^{-3}$)
Weak (class IV)	Nominally statistically significant association ($P < 0.05$)
Non-significant	Non-statistically significant associations ($P > 0.05$)

*aP value for the association that calculated by random effects model.

NHL=non-Hodgkin lymphoma.
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author or year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random^a	Large study nominally significant (P<0.05)	I² (%)	95% PI	Sma ll study effect^b	Stren gth of reported association^c
Renal transplant	Renal transplant	Transplant recipients vs general population	NHL	SRMA	Wang 2018	6	770	SIR	10.66 (8.54, 13.31)	3.44E-86	Yes	80.2	NA	NA	II
Autoimmune diseases	Rheumatoid arthritis	Patients vs general population	NHL	SRMA	Simon 2015	16	1531	SIR	2.26 (1.82, 2.81)	8.42E-13	Yes	96	NA	NA	II
Primary Sjogren's syndrome	Patients vs general population	NHL	SRMA	Liang 2014	11	1232 5	RR	13.76 (8.53, 18.99)	1.62E-34	Yes	58.8	NA	NA	II	
Systemic lupus erythematosus	Patients vs general population	NHL	MA	Cao 2015	12	166	RR	5.4 (3.75, 7.77)	1.99E-18	Yes	74.3	NA	NA	II	
Celiac disease	Patients vs general population	NHL	SRMA	Tio 2012	8	1102 45	OR	2.61 (2.04, 3.33)	9.32E-14	Yes	23.4	(1.57 , 4.33)	No	I	
Celiac disease	Patients vs general population	TCL	SRMA	Tio 2012	5	3535 8	OR	15.84 (7.85, 31.94)	6.90E-14	Yes	55.5	NA	NA	II	
Infectious diseases	Tuberculosis	Patients vs general population	NHL	SRMA	Leung 2020	8	2390	RR	1.61 (1.34, 1.94)	6.76E-07	Yes	50.2	NA	NA	II
HBV	HBV infected vs non-infected	NHL	SRMA	Li 2018	58	5371 4	OR	2.50 (2.2, 2.83)	6.33E-42	Yes	77.9	NA	NA	II	
HBV	HBV infected vs non-infected	BCL	SRMA	Li 2018	20	>100 0	OR	2.46 (1.97, 3.07)	1.24E-14	Yes	62.9	NA	NA	II	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author/year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random^a	Large study nominally significant (P<0.05)	I² (%)	95% PI	Smallest study effect^b	Strength of reported association^c
-----------------------	----------------------------	---------------------	---------	------------	--------------	-----------------------	---------------	----------------	--	----------------	--	---------	--------	------------------------	-----------------------------
HCV	HCV infected vs non-infected	NHL	SRMA	Masaone 2019	27	3307	7	OR	3.36 (2.4, 4.72)	7.92E-12	Yes	88	NA	NA	II
HCV	Patients vs general population	DLBL CL	MA	DalMaso 2006	8	1020		RR	2.65 (1.88, 3.74)	4.98E-08	Yes	39	(1.46, 5.81)	No	II
Occupation	Teacher vs non-teachers	NHL	MA	Boffetta 2007	19	>100	0	RR	1.47 (1.34, 1.61)	1.60E-15	Yes	76	NA	NA	II

BCL=B cell lymphoma; CI=confidence interval; HBV=hepatitis B virus; HCV=hepatitis C virus; MA=meta-analysis; NA=not available; NHL=non-Hodgkin lymphoma; OR=odds ratio; PI=prediction interval; SIR=standardized incidence ratio; SRMA=systematic review and meta-analysis; RR=risk ratio; TCL=T-cell lymphoma.

^a P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.

^b P<0.1 for Egger’s test suggests the presence of small study effects.

^c Strength of association using the criteria listed in Table 1.
Table 3. Environmental risk factors for NHL reported in MPL with suggestive (Class III), weak (Class IV) and non-significant evidence

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
Dietary factors												
Meat	Red meat	Highest vs lowest	NHL	MA	Yang 2015	18	12579	RR	1.32 (1.12, 1.55)	8.52E-04	III	
	Processed meat	Highest vs lowest	NHL	MA	Yang 2015	18	14112	RR	1.17 (1.07, 1.29)	1.04E-03	IV	
	Red meat	Highest vs lowest	DLBCL	MA	Yang 2015	5	NA	RR	1.34 (0.97, 1.86)	7.80E-02	NS	
	Processed meat	Highest vs lowest	DLBCL	MA	Yang 2015	5	NA	RR	1.23 (1.03, 1.48)	2.50E-02	IV	
	Processed meat	Highest vs lowest	FL	MA	Yang 2015	5	NA	RR	1.21 (0.98, 1.48)	7.00E-02	NS	
	Red meat	Highest vs lowest	CLL/SL	MA	Yang 2015	5	NA	RR	1.01 (0.84, 1.21)	9.22E-01	NS	
	Processed meat	Highest vs lowest	CLL/SL	MA	Yang 2015	5	NA	RR	1.06 (0.85, 1.33)	6.22E-01	NS	
	White meat/poultry	Highest vs lowest	NHL	MA	Dong 2017	10	10671	RR	1.04 (0.86, 1.27)	7.06E-01	NS	
	White meat/poultry	Highest vs lowest	DLBCL	SRMA	Caini 2016	3	1134	RR	0.96 (0.63, 1.48)	8.62E-01	NS	
	White meat/poultry	Highest vs lowest	FL	SRMA	Caini 2016	3	858	RR	1.09 (0.51, 2.31)	8.34E-01	NS	
	White meat/poultry	Highest vs lowest	CLL/SL	SRMA	Caini 2016	3	1337	RR	1.05 (0.71, 1.54)	8.17E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	---------------	--	----------	-------------------------------	
Fish	Fish	Highest vs lowest	NHL	SRMA	Caini 2016	11	8839	RR	0.93 (0.72, 1.19)	5.83E-01	NS	
Fish	Highest vs lowest	DLBCL	SRMA	Caini 2016	4	1228	RR	0.86 (0.48, 1.56)	6.29E-01	NS		
Fish	Highest vs lowest	FL	SRMA	Caini 2016	4	970	RR	0.86 (0.48, 1.56)	6.29E-01	NS		
Fish	Highest vs lowest	CLL/SL	SRMA	Caini 2016	5	1703	RR	0.90 (0.72, 1.14)	3.75E-01	NS		
Fruits and vegetables	Fruit and vegetables	Highest vs lowest	NHL	MA	Chen 2013	4	1747	RR	0.78 (0.66, 0.92)	3.00E-03	IV	
Fruit	Highest vs lowest	NHL	MA	Chen 2013	13	8476	RR	0.97 (0.87, 1.08)	5.93E-01	NS		
Vegetable	Highest vs lowest	NHL	MA	Chen 2013	13	8332	RR	0.81 (0.71, 0.92)	1.00E-03	IV		
Fruit	Highest vs lowest	DLBCL	MA	Chen 2013	8	NA	RR	0.94 (0.79, 1.13)	5.08E-01	NS		
Vegetable	Highest vs lowest	DLBCL	MA	Chen 2013	7	NA	RR	0.70 (0.54, 0.91)	7.00E-03	IV		
Fruit	Highest vs lowest	FL	MA	Chen 2013	8	NA	RR	0.96 (0.72, 1.28)	7.93E-01	NS		
Vegetable	Highest vs lowest	FL	MA	Chen 2013	7	NA	RR	0.70 (0.53, 0.92)	1.10E-02	IV		
Eggs and dairy	Eggs	Highest vs lowest	NHL	SRMA	Caini 2016	10	5775	RR	1.17 (0.86, 1.60)	3.26E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	--------------------	---------	------------	--------------	------------------------	-------------	---------------	-----------------------------------	----------	-------------------------------------	
Total dairy	Highest vs lowest	NHL	MA	Wang 2016	7	4207	RR	1.20	(1.02, 1.42)	3.00E-02	IV	
Total dairy	Highest vs lowest	DLBCL	MA	Wang 2016	3	321	RR	1.73	(1.22, 2.45)	2.00E-03	IV	
Total dairy	Highest vs lowest	FL	MA	Wang 2016	3	355	RR	1.23	(0.88, 1.72)	2.28E-01	NS	
Total dairy	Highest vs lowest	CLL/SL	MA	Wang 2016	3	390	RR	1.35	(0.77, 2.39)	3.03E-01	NS	
Milk	Highest vs lowest	NHL	MA	Wang 2016	16	7109	RR	1.41	(1.08, 1.84)	1.10E-02	IV	
Milk	Highest vs lowest	DLBCL	MA	Wang 2016	3	352	RR	1.49	(1.08, 2.06)	1.50E-02	IV	
Milk	Highest vs lowest	FL	MA	Wang 2016	3	390	RR	0.99	(0.47, 2.07)	9.81E-01	NS	
Milk	Highest vs lowest	CLL/SL	MA	Wang 2016	3	477	RR	1.04	(0.69, 1.55)	8.60E-01	NS	
Cheese	Highest vs lowest	NHL	MA	Wang 2016	10	5519	RR	1.14	(0.96, 1.34)	1.24E-01	NS	
Cheese	Highest vs lowest	DLBCL	MA	Wang 2016	3	352	RR	0.93	(0.63, 1.37)	7.27E-01	NS	
Cheese	Highest vs lowest	FL	MA	Wang 2016	3	390	RR	1.04	(0.74, 1.46)	8.32E-01	NS	
Cheese	Highest vs lowest	CLL/SL	MA	Wang 2016	3	477	RR	1.28	(0.91, 1.81)	1.60E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	P strength	
-----------------------	----------------------------	---------------------	---------	------------	--------------	------------------------	-------------	--------------	--	-----------	-----------	
Yogurt	Highest vs lowest	NHL	MA	Wang 2016	4	2372	RR	0.78 (0.54, 1.12)	1.83E-01	NS		
Yogurt	Highest vs lowest	DLBCL	MA	Wang 2016	3	352	RR	0.90 (0.67, 1.21)	4.95E-01	NS		
Yogurt	Highest vs lowest	FL	MA	Wang 2016	3	390	RR	0.89 (0.63, 1.25)	5.15E-01	NS		
Yogurt	Highest vs lowest	CLL/SL	MA	Wang 2016	3	477	RR	0.97 (0.76, 1.23)	8.16E-01	NS		
Butter	Highest vs lowest	NHL	MA	Wang 2016	4	1534	RR	1.31 (1.04, 1.65)	2.20E-02	IV		
Ice-cream	Highest vs lowest	NHL	MA	Wang 2016	4	1598	RR	1.57 (1.11, 2.20)	1.00E-02	IV		
Coffee and tea	Coffee	Highest vs lowest	NHL	SRMA	Mirtavoos-Mahyari 2019	11	4418	RR	1.21 (0.97, 1.50)	8.60E-02	NS	
Black tea	Highest vs lowest	NHL	SRMA	Mirtavoos-Mahyari 2019	5	1600	RR	1.01 (0.82, 1.24)	9.40E-01	NS		
Green tea	Highest vs lowest	NHL	SRMA	Mirtavoos-Mahyari 2019	3	637	RR	0.61 (0.38, 0.99)	4.30E-02	IV		
Carotenoids	Alpha-carotene	Highest vs lowest	NHL	SRMA	Chen 2017	8	2926	RR	0.87 (0.78, 0.97)	1.20E-02	IV	
Carotenoids	Alpha-carotene	Highest vs lowest	DLBCL	SRMA	Chen 2017	3	NA	RR	0.75 (0.59, 0.97)	2.30E-02	IV	
Carotenoids	Alpha-carotene	Highest vs lowest	FL	SRMA	Chen 2017	4	NA	RR	0.84 (0.60, 1.16)	3.04E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random a	Strength of reported association b	
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	--------------	---------------	---	------------	-------------------------------	
Alpha-carotene	Highest vs lowest	CLL/SL	SRMA	Chen 2017	2	NA	2	RR	1.41 (0.80, 2.50)	2.40E-01	NS	
Beta-carotene	Highest vs lowest	NHL	SRMA	Chen 2017	10	3946	RR	0.80 (0.68, 0.94)	7.00E-03	IV		
Beta-carotene	Highest vs lowest	DLBCL	SRMA	Chen 2017	5	NA	RR	0.65 (0.46, 0.91)	1.30E-02	IV		
Beta-carotene	Highest vs lowest	FL	SRMA	Chen 2017	6	NA	RR	0.80 (0.55, 1.16)	2.44E-01	NS		
Beta-carotene	Highest vs lowest	CLL/SL	SRMA	Chen 2017	4	NA	RR	0.98 (0.76, 1.25)	8.83E-01	NS		
Beta-cryptoxanthin	Highest vs lowest	NHL	SRMA	Chen 2017	7	2325	RR	0.87 (0.75, 1.01)	6.60E-02	NS		
Beta-cryptoxanthin	Highest vs lowest	DLBCL	SRMA	Chen 2017	4	NA	RR	0.84 (0.67, 1.05)	1.28E-01	NS		
Beta-cryptoxanthin	Highest vs lowest	FL	SRMA	Chen 2017	4	NA	RR	0.75 (0.50, 1.13)	1.67E-01	NS		
Beta-cryptoxanthin	Highest vs lowest	CLL/SL	SRMA	Chen 2017	3	NA	RR	0.51 (0.15, 1.72)	2.83E-01	NS		
Lycopene	Highest vs lowest	NHL	SRMA	Chen 2017	7	2325	RR	0.99 (0.88, 1.12)	8.80E-01	NS		
Lycopene	Highest vs lowest	DLBCL	SRMA	Chen 2017	3	NA	RR	1.04 (0.69, 1.57)	8.62E-01	NS		
Lycopene	Highest vs lowest	FL	SRMA	Chen 2017	3	NA	RR	0.90 (0.54, 1.49)	6.97E-01	NS		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measurement	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	--------------------	---------	------------	--------------	------------------------	-------------	-------------------	--	----------	---------------------------------	
	Lycopene	Highest vs lowest	CLL/SL	SRMA	Chen 2017	2	NA	RR	0.80 (0.60, 1.07)	1.31E-01	NS	
	Andlutein/zeaxanthin	Highest vs lowest	NHL	SRMA	Chen 2017	7	2325	RR	0.82 (0.69, 0.97)	2.20E-02	IV	
	Andlutein/zeaxanthin	Highest vs lowest	DLBCL	SRMA	Chen 2017	3	NA	RR	0.87 (0.54, 1.40)	5.78E-01	NS	
	Andlutein/zeaxanthin	Highest vs lowest	FL	SRMA	Chen 2017	3	NA	RR	0.70 (0.48, 1.02)	6.30E-02	NS	
	Andlutein/zeaxanthin	Highest vs lowest	CLL/SL	SRMA	Chen 2017	2	NA	RR	0.93 (0.70, 1.23)	6.26E-01	NS	
Micronutrient intake/	Vitamin A (retinol)	Highest vs lowest	NHL	SRMA	Psaltopoulou 2018	3	3314	RR	0.92 (0.80, 1.07)	2.64E-01	NS	
supplements	Vitamin C	Highest vs lowest	NHL	SRMA	Psaltopoulou 2018	5	3879	RR	1.00 (0.90, 1.12)	1.00E+00	NS	
	Vitamin D	Highest vs lowest	NHL	MA	Lu 2014	6	4400	OR	1.07 (0.82, 1.40)	6.33E-01	NS	
	Vitamin D	Highest vs lowest	DLBCL	MA	Lu 2014	5	NA	OR	1.05 (0.73, 1.52)	8.06E-01	NS	
	Vitamin D	Highest vs lowest	FL	MA	Lu 2014	5	NA	OR	1.00 (0.63, 1.58)	1.00E+00	NS	
	Vitamin D	Highest vs lowest	CLL/SL	MA	Lu 2014	4	NA	OR	1.10 (0.56, 2.14)	7.93E-01	NS	
	Vitamin D	Highest vs lowest	TCL	MA	Lu 2014	3	NA	OR	1.69 (0.68, 4.20)	2.62E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	---------------	--	-----------	-------------------------------	
Vitamin E	Highest vs lowest	NHL	SRMA	Psaltopoulou 2018	5	3879	RR	0.98 (0.88, 1.10)	7.36E-01	NS		
Dietary fat	Total fat	Highest vs lowest	NHL	MA	Han 2017	10	5042	RR	1.26 (1.12, 1.42)	1.51E-04	III	
Total fat	Highest vs lowest	DLBCL	MA	Han 2017	5	NA	RR	1.41 (1.08, 1.84)	1.10E-02	IV		
Total fat	Highest vs lowest	FL	MA	Han 2017	5	NA	RR	1.21 (0.97, 1.52)	9.60E-02	NS		
Total fat	Highest vs lowest	CLL/SL	MA	Han 2017	4	NA	RR	0.91 (0.68, 1.23)	5.44E-01	NS		
Total fat	Highest vs lowest	TCL	MA	Han 2017	4	NA	RR	1.12 (0.60, 2.09)	7.35E-01	NS		
Animal fat	Highest vs lowest	NHL	MA	Han 2017	5	1432	RR	1.31 (1.08, 1.58)	5.00E-03	IV		
Vegetable fat	Highest vs lowest	NHL	MA	Han 2017	5	1432	RR	1.00 (0.84, 1.20)	1.00E+00	NS		
Dietary trans-fatty acid intake	Highest vs lowest	NHL	SRMA	Michels 2021	4	4701	OR	1.32 (0.99, 1.76)	5.80E-02	NS		
Dietary nitrate and nitrite intake	Highest vs lowest	NHL	SRMA	Xie 2016	7	1703	RR	0.85 (0.68, 1.06)	1.57E-01	NS		
Dietary nitrate	Highest vs lowest	NHL	SRMA	Xie 2016	5	1547	RR	1.54 (0.98, 2.41)	6.00E-02	NS		
Alcohol	Ever vs never	NHL	SRMA	Tramacere 2012	29	18759	RR	0.85 (0.79, 0.91)	8.50E-06	III		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------------	-----------------------------	---------------------	---------	------------	--------------	----------------------	--------------	--------------	--	----------	------------------------------	
Ever drinking	Ever vs never	TCL	SRMA	Tramacere	2012	8	NA	RR	0.78 (0.58, 1.05)	1.00E-01	NS	
Ever drinking	Ever vs never	BCL	SRMA	Tramacere	2012	15	NA	RR	0.86 (0.76, 0.97)	1.50E-02	IV	
Ever drinking	Ever vs never	DLBCL	SRMA	Tramacere	2012	14	NA	RR	0.79 (0.68, 0.91)	1.60E-03	IV	
Ever drinking	Ever vs never	FL	SRMA	Tramacere	2012	14	NA	RR	0.80 (0.69, 0.92)	2.40E-03	IV	
Ever drinking	Ever vs never	CLL/SL	SRMA	Tramacere	2012	12	NA	RR	1.00 (0.80, 1.26)	1.00E+00	NS	
Heavy drinking	Heavy vs never	NHL	SRMA	Tramacere	2012	6	1181	RR	0.84 (0.70, 1.00)	5.50E-02	NS	
Breastfeeding	Breastfeeding	Ever vs never	childhood NHL	SRMA	Martin 2005	7	477	OR	1.00 (0.58, 1.73)	1.00E+00	NS	

Drugs, vaccinations and procedures

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
Non-steroidal anti-inflammatory drugs	Aspirin	Users vs non-users	NHL	SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS	
Aspirin	Users vs non-users	DLBCL	SRMA	Ye 2015	3	NA	OR	1.06 (0.85, 1.33)	6.22E-01	NS		
Aspirin	Users vs non-users	FL	SRMA	Ye 2015	3	NA	OR	1.15 (0.83, 1.59)	4.07E-01	NS		
Aspirin	Users vs non-users	CLL/SL	SRMA	Ye 2015	4	NA	OR	0.70 (0.54, 0.91)	7.00E-03	IV		
NA-NSAIDS	Users vs non-users	NHL	SRMA	Ye 2015	8	5427	OR	1.33 (1.11, 1.60)	2.00E-03	IV		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	--------------	--	----------	-------------------------------	
NA-NSAIDS	Users vs non-users	CLL/SL	SRMA	Ye 2015	3	NA	OR	1.26	(0.86, 1.85)	2.39E-01	NS	
NSAIDS	Users vs non-users	NHL	SRMA	Ye 2015	13	9896	OR	1.05	(0.90, 1.22)	5.41E-01	NS	
NSAIDS	Users vs non-users	DLBCL	SRMA	Ye 2015	3	NA	OR	0.99	(0.81, 1.21)	9.28E-01	NS	
NSAIDS	Users vs non-users	FL	SRMA	Ye 2015	3	NA	OR	1.07	(0.69, 1.68)	7.78E-01	NS	
NSAIDS	Users vs non-users	CLL/SL	SRMA	Ye 2015	4	NA	OR	0.77	(0.51, 1.15)	2.09E-01	NS	
NSAIDS	Users vs non-users	TCL	SRMA	Ye 2015	3	NA	OR	1.04	(0.52, 2.07)	9.19E-01	NS	
NSAIDS	Users vs non-users	BCL	SRMA	Ye 2015	5	NA	OR	1.01	(0.75, 1.36)	9.52E-01	NS	
Corticosteroids	Corticosteroids	NHL	MA	Bernatsky 2007	8	6897	OR	1.13	(0.99, 1.29)	7.00E-02	NS	
Statin use	Statin	Users vs non-users	NHL	SRMA	Ye 2017	9	7825	OR	0.82	(0.69, 0.99)	3.10E-02	IV
Statin	Users vs non-users	DLBCL	SRMA	Ye 2017	4	897	OR	0.78	(0.55, 1.11)	1.66E-01	NS	
Statin	Users vs non-users	FL	SRMA	Ye 2017	4	495	OR	0.89	(0.62, 1.27)	5.35E-01	NS	
Statin	Users vs non-users	MZL	SRMA	Ye 2017	3	215	OR	0.54	(0.31, 0.94)	2.90E-02	IV	

[https://mc.manuscriptcentral.com/bmjmedicine]
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
	Statin	Users vs non-users	TCL	SRMA	Ye 2017	4	227	OR	0.70 (0.41, 1.19)	1.91E-01	NS
	Paracetamol	Users vs non-users	NHL	SRMA	Preg-Dominguez 2021	3	3022	RR	1.20 (0.96, 1.51)	1.10E-01	NS
	Bacillus calmette-guerin vaccination	Yes vs no	NHL	SRMA	Salmon 2020	11	4350	RR	1.20 (1.01, 1.43)	4.00E-02	IV
	Insulin	Yes vs no	NHL	SRMA	Karlstad 2013	4	NA	RR	1.16 (0.83, 1.62)	3.91E-01	NS
	Inflammatory bowel disease treatment	Yes vs no	NHL	SRMA	Yang 2018	3	35	RR	1.34 (0.62, 2.89)	4.70E-01	NS
	Azathioprine and 6-mercaptopurine	Patients vs general population	NHL	MA	Kandiel 2005	3	9	SIR	3.92 (1.78, 7.47)	2.10E-04	IV
	HAART among patients with HIV/AIDS	Pre vs post-HAART eras	NHL	SRMA	Cobucci 2015	6	7701	SIR	0.42 (0.26, 0.67)	3.00E-04	III
	Red blood cell transfusions	Yes vs no	NHL	MA	Castillo 2010	14	5904	RR	1.2 (1.07, 1.35)	2.00E-03	IV
	Red blood cell transfusion	Yes vs no	Cll/sl	MA	Castillo 2010	5	3450	RR	1.66 (1.08, 2.56)	2.10E-02	IV
	Red blood cell transfusion	Yes vs no	FL	MA	Castillo 2010	6	NA	RR	1.02 (0.67, 1.55)	9.32E-01	NS
	Red blood cell transfusion	Yes vs no	Dlbcl	MA	Castillo 2010	5	NA	RR	1.06 (0.86, 1.3)	5.92E-01	NS

Non-dietary lifestyle factors

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
Physical activity	Physical activity	Highest vs lowest	NHL	SRMA	Davies 2020	17	13425	RR	0.92 (0.84, 1.00)	6.00E-02	NS
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	--------------	---------------	---	---------	-------------------------------
Physical activity	Highest vs lowest	DLBCL	SRMA	Davies 2020	10	1957	RR	0.95	(0.83, 1.09)	4.70E-01	NS
Physical activity	Highest vs lowest	FL	SRMA	Davies 2020	10	1467	RR	0.95	(0.80, 1.12)	5.60E-01	NS
Physical activity	Highest vs lowest	CLL/SL	SRMA	Davies 2020	8	1452	RR	0.95	(0.76, 1.20)	6.70E-01	NS
Hair dye	Highest vs lowest	NHL	MA	Qin 2019	16	10967	OR	1.14	(1.01, 1.29)	3.60E-02	IV
Hair dye	User before 1980 vs never user	FL	SRMA	Odotula 2020	4	439	OR	1.66	(1.22, 2.25)	1.20E-03	IV
Night shift work	Shift workers vs non shift workers	NHL	SRMA	Dun 2020	5	>1000	OR	1.05	(0.99, 1.10)	6.91E-01	NS
Indoor tanning	Ever vs never	NHL	SRMA	O'Sullivan 2018	10	14018	RR	0.95	(0.83, 1.08)	4.54E-01	NS
Indoor tanning	Ever vs never	BCL	SRMA	O'Sullivan 2018	4	NA	RR	0.82	(0.70, 0.95)	1.10E-02	IV
Indoor tanning	Ever vs never	TCL	SRMA	O'Sullivan 2018	3	NA	RR	1.23	(0.95, 1.59)	1.15E-01	NS
Residential exposure to petrochemical activity	Living near vs far	NHL	SRMA	Jephcote 2020	9	1078	RR	1.06	(0.97, 1.17)	2.25E-01	NS
Smoking	Ever vs never childhoo d NHL	MA	Boffetta 2000	4	204	RR	2.08	(1.08, 3.98)	2.80E-02	IV	
Maternal smoking	Ever vs never childhoo d NHL	MA	Antonopoulos 2011	7	1072	OR	1.22	(1.02, 1.46)	2.57E-02	IV	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	----------------------------	---------------------	---------	------------	--------------	------------------------	-------------	--------------	--	----------	-----------------------------
Ever smoking	Ever vs never	NHL	MA	Sergentanis	2013	33	25891	RR	1.05 (1.00, 1.09)	2.60E-02	IV
Ever smoking	Ever vs never	DLBCL	MA	Sergentanis	2013	12	NA	RR	1.01 (0.95, 1.07)	7.60E-01	NS
Ever smoking	Ever vs never	FL	MA	Sergentanis	2013	11	NA	RR	1.05 (0.88, 1.25)	6.00E-01	NS
Ever smoking	Ever vs never	CLL/SL	MA	Sergentanis	2013	9	NA	RR	0.96 (0.89, 1.04)	3.10E-01	NS
Sun exposure	Personal sunlight exposure	Highest vs lowest	NHL	MA	Kim 2021	15	11272	OR	0.81 (0.71, 0.92)	1.50E-02	IV
Sun exposure	Personal sunlight exposure	Highest vs lowest	CLL/SL	MA	Kim 2021	4	1564	OR	0.80 (0.63, 1.00)	5.80E-02	NS
Sun exposure	Personal sunlight exposure	Highest vs lowest	DLBCL	MA	Kim 2021	5	1843	OR	0.76 (0.66, 0.87)	1.10E-04	III
Sun exposure	Personal sunlight exposure	Highest vs lowest	FL	MA	Kim 2021	5	1348	OR	0.81 (0.67, 0.99)	3.40E-02	IV
Sun exposure	Personal sunlight exposure	Highest vs lowest	TCL	MA	Kim 2021	4	413	OR	1.00 (0.68, 1.46)	1.00E+00	NS
Ambient sunlight exposure during lifetime	Highest vs lowest	NHL	MA	Kim 2021	7	196272	OR	0.84 (0.73, 0.96)	1.30E-02	IV	
Ambient sunlight exposure during lifetime	Highest vs lowest	CLL/SL	MA	Kim 2021	4	NA	OR	0.93 (0.73, 1.19)	5.70E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	----------------	--	----------	-------------------------------
	Ambient sunlight exposure during lifetime	Highest vs lowest	DLBCL	MA	Kim 2021	4	NA	OR	0.80 (0.69, 0.92)	2.40E-03	IV
	Ambient sunlight exposure during lifetime	Highest vs lowest	FL	MA	Kim 2021	4	NA	OR	0.82 (0.72, 0.93)	2.40E-03	IV
	Occupational ultraviolet exposure	Occupation vs general population	NHL	MA	Lu 2017	11	8829	OR	1.15 (0.99, 1.32)	5.60E-02	NS
	Occupational ultraviolet exposure	Occupation vs general population	TCL	MA	Lu 2017	4	NA	OR	1.16 (0.90, 1.50)	2.60E-01	NS
Medical history and comorbid diseases	B-cell activating diseases										
Autoimmune diseases	Pernicious anemia	Patients vs general population	NHL	SRMA	Lahner 2018	3	70	RR	1.16 (0.79, 1.71)	4.60E-01	NS
T-cell activating diseases											
Psoriasis	Patients vs general population	NHL	SRMA	Vaengebjerg 2020	8	7626	RR	1.48 (1.30, 1.69)	9.49E-09	III	
Type 1 diabetes	Patients vs general population	NHL	MA	Wang 2020	3	1155	RR	1.55 (1.15, 2.08)	4.00E-03	IV	
celiac disease	Patients vs general population	DLBCL	MA	Tio 2012	3	13990	RR	2.25 (1.32, 3.85)	3.03E-03	IV	
celiac disease	Patients vs general population	CLL	MA	Tio 2012	3	51984	RR	0.80 (0.46, 1.38)	4.34E-01	NS	
Dermatitis herpetiformis	Patients vs general population	NHL	MA	Kane 2011	6	<1000	RR	6.48 (2.32, 18.1)	3.91E-04	IV	
Systemic sclerosis	Patients vs general population	NHL	SRMA	Zhang 2013	4	23	SIR	2.75 (1.42, 5.33)	2.60E-03	IV	

Medical history and comorbid diseases
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	P random	Strength of reported association
Behcet's disease	Patients vs general population	NHL	SRMA	Wang 2019	3	4	RR	7.79 (3.76, 16.11)	3.16E-08	IV		
Ankylosing spondylitis	Patients vs general population	NHL	SRMA	Deng 2016	5	>1000	RR	1.03 (0.83, 1.28)	8.00E-01	NS		
Inflammatory bowel disease	Crohn's disease	Patients vs general population	NHL	SRMA	Lo 2021	6	30	IRR	1.81 (0.94, 3.49)	7.60E-02	NS	
Ulcerative colitis	Patients vs general population	NHL	SRMA	Lo 2021	8	79	IRR	1.34 (0.95, 1.88)	9.30E-02	NS		
Allergy/Atopic diseases	Asthma	Patients vs general population	NHL	SRMA	Yang 2017	15	36903	OR	0.92 (0.86, 0.99)	3.00E-02	IV	
Hay fever	Patients vs general population	NHL	SRMA	Yang 2017	8	4528	OR	0.73 (0.62, 0.84)	5.67E-05	III		
Food allergy	Patients vs general population	NHL	SRMA	Yang 2017	6	6191	OR	0.71 (0.51, 0.98)	3.90E-02	IV		
Eczema	Patients vs general population	NHL	SRMA	Yang 2017	15	NA	OR	0.99 (0.81, 1.21)	9.28E-01	NS		
Type 2 diabetes	Type 2 diabetes	Patients vs general population	NHL	SRMA	Castillo 2012	21	17282	OR/RR, Not specified	1.22 (1.07, 1.39)	2.94E-03	IV	
Parkinson's disease	Parkinson's disease	Patients vs general population	NHL	SRMA	Zhang 2019	5	620	OR/RR, Not specified	0.80 (0.74, 0.87)	1.10E-07	IV	
Sarcoidosis	Sarcoidosis	Patients vs general population	NHL	SRMA	Bonifazi 2015	8	150	RR	1.43 (1.03, 1.99)	3.30E-02	IV	
Biliary cirrhosis	Biliary cirrhosis	Patients vs general population	NHL	SRMA	Liang 2012	3	2860	SIR	1.15 (0.36, 1.94)	7.58E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure (95% CI)	P random	Strength of reported association		
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	--------------------------	---------	---------------------------------		
Overweight and obesity	Overweight	Overweight vs normal weight	NHL	SRMA	Larsson 2007	16	21720	RR	1.07 (1.01, 1.14)	2.80E-02	IV	
Overweight	Overweight vs normal weight	DLBCL	MA	Castillo 2014	16	7349	RR	1.14 (1.04, 1.24)	3.50E-03	IV		
Overweight	Overweight vs normal weight	CLL	MA	Castillo 2012	9	2142	RR	1.10 (1.03, 1.17)	3.40E-03	IV		
Overweight	Overweight vs normal weight	FL	SRMA	Odutola 2020	14	1798	RR	0.99 (0.92, 1.07)	8.10E-01	NS		
Obesity	Obesity vs normal weight	NHL	SRMA	Larsson 2007	16	21720	RR	1.20 (1.07, 1.34)	1.50E-03	IV		
Obesity	Obesity vs normal weight	DLBCL	MA	Castillo 2014	16	7349	RR	1.29 (1.16, 1.43)	2.50E-06	III		
Obesity	Obesity vs normal weight	CLL	MA	Castillo 2012	10	912	RR	1.17 (1.08, 1.27)	1.60E-04	IV		
Obesity	Obesity vs normal weight	FL	SRMA	Odutola 2020	13	903	RR	1.08 (0.99, 1.17)	7.10E-02	NS		
Infection	Herpes zoster	Yes vs no	NHL	SRMA	Schmidt 2017	7	52134	RR	1.72 (1.27, 2.32)	4.49E-04	III	
Herpes zoster	Yes vs no	CLL	SRMA	Schmidt 2017	4	>1000	RR	1.65 (1.20, 2.25)	2.00E-03	IV		
HPgV	Yes vs no	DLBCL	SRMA	Fama 2019	3	54	OR	3.29 (1.63, 6.62)	1.00E-03	IV		
HPgV	Yes vs no	FL	SRMA	Fama 2019	3	75	OR	3.01 (1.95, 4.63)	8.64E-07	IV		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	-----------	--------------	-----------------------	-------------	---------------	---	----------	-------------------------------	
Epstein–Barr virus	Early antigen	High (75th percentile) vs low (<25th percentile)	NHL	MA	Teras 2015	8	1421	RR	1.52 (1.16, 1.99)	2.40E-03	IV	
Epstein–Barr virus	Viral capsid antigen	High (75th percentile) vs low (<25th percentile)	NHL	MA	Teras 2015	9	1764	RR	1.20 (1.00, 1.44)	5.00E-02	NS	
Borrelia burgdorferi	Yes vs no	PCL	SRMA	Travaglino 2020	10	410	OR	10.88 (3.84, 30.81)	8.98E-06	IV		
Borrelia burgdorferi	Yes vs no	DLBCL	SRMA	Travaglino 2020	3	53	OR	8.15 (1.25, 53.06)	2.80E-02	IV		
HBV	Yes vs no	TCL	SRMA	Li 2018	12	NA	OR	1.59 (1.11, 2.26)	1.07E-02	IV		
HBV	Yes vs no	DLBCL	SRMA	Li 2018	10	11943	OR	2.06 (1.48, 2.88)	2.53E-05	III		
HBV	Yes vs no	FL	SRMA	Li 2018	9	5124	OR	1.60 (1.24, 2.07)	3.50E-04	III		
HBV	Yes vs no	CLL/SL	SRMA	Li 2018	8	10738	OR	1.87 (1.34, 2.61)	2.60E-04	III		
HBV	Yes vs no	BL	SRMA	Li 2018	3	264	OR	2.12 (0.97, 4.65)	6.00E-02	NS		
HCV	Patients vs general	FL	MA	DalMaso 2006	7	193	RR	2.73 (2.20, 3.38)	9.12E-19	IV		
HCV	Patients vs general	MZL	MA	DalMaso 2006	5	134	RR	3.41 (2.39, 4.87)	4.48E-11	IV		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	----------------------------	---------------------	---------	------------	--------------	------------------------	-------------	---------------	--	----------	-------------------------------	
HCV	Patients vs general population	TCL/MA DalMa No. of primary studies = 4	122	RR 1.52 (1.13, 2.05) 5.90E-03 IV								
HCV	Patients vs general population	MA DalMa No. of primary studies = 5	88	RR 1.65 (1.35, 2.02) 1.57E-06 IV								
Malaria infection	Yes vs no eBL SRMa Kotepui No. of primary studies = 5	6055	OR 0.87 (0.54, 1.39) 5.80E-01 NS									
Chemicals and pesticides	Solvent	Formaldehyde Ever vs never FL SRMa Odutola 21 No. of primary studies = 3	292	RR 1.03 (0.83, 1.28) 8.00E-01 NS								
Chlorinated solvents	Ever vs never FL SRMa Odutola 21 No. of primary studies = 3	143	RR 1.35 (1.09, 1.68) 6.60E-03 IV									
Any solvent	Ever vs never FL SRMa Odutola 21 No. of primary studies = 3	669	IRR 1.16 (1.00, 1.34) 4.60E-02 IV									
Aromatic hydrocarbons	Styrene Highest vs lowest NHL SRMa Collins 2018 No. of primary studies = 16	553	RR 1.14 (0.91, 1.43) 2.59E-01 NS									
Benzene	Ever vs never NHL SRMa Kane 2010 No. of primary studies = 24	1420	OR/OR, Not specified 1.11 (0.94, 1.30) 2.10E-01 NS									
Benzene	Ever vs never FL SRMa Odutola 21 No. of primary studies = 3	333	OR 1.30 (0.86, 1.97) 2.20E-01 NS									
Aromatic hydrocarbons	Ever vs never FL SRMa Odutola 21 No. of primary studies = 3	7262	OR 1.24 (0.88, 1.75) 2.20E-01 NS									
Polychlorinated biphenyls	PCBs Highest vs lowest NHL SRMa Catalani 2019 No. of primary studies = 30	1439	RR 0.96 (0.85, 1.07) 4.97E-01 NS									
PCBs	Highest vs lowest DLBCL SRMa Catalani 2019 No. of primary studies = 6	NA	RR 0.68 (0.24, 1.12) 3.31E-01 NS									
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	--------------	--	----------	----------------------------------	
PCBs	Highest vs lowest FL	SRMA	Catalani 2019	5	NA	RR	1.21 (0.79, 1.64)	3.11E-01	NS			
PCBs	Highest vs lowest CLL	SRMA	Catalani 2019	4	573	RR	0.63 (0.39, 0.87)	2.40E-02	IV			
Dioxin	Highest vs lowest FL	SRMA	Xu 2016	4	4263	RR	1.09 (0.92, 1.30)	3.34E-01	NS			
Trichloroethylene	Highest vs lowest NHL	SRMA	Scott 2011	17	>1000	RR	1.23 (1.07, 1.42)	7.70E-03	IV			
Occupational exposure to methylene chloride	Highest vs lowest NHL MA	Liu 2013	6	3001	OR	1.28 (0.96, 1.70)	9.00E-02	NS				
Occupational exposure to gasoline	Highest vs lowest NHL MA	Kane 2010	35	1042	RR	1.02 (0.94, 1.12)	6.71E-01	NS				
Carbamate/thiocarbamate pesticides	Highest vs lowest NHL SRMA	Schinasi 2014	3	1621	RR	1.40 (1.10, 2.00)	2.70E-02	IV				
Carbamate insecticides	Highest vs lowest NHL SRMA	Schinasi 2014	3	1621	RR	1.70 (1.30, 2.30)	2.90E-04	III				
Organophosphate pesticides	Highest vs lowest NHL SRMA	Boffetta 2021	6	1297	RR	1.05 (0.90, 1.24)	5.60E-01	NS				
Glycosate	Highest vs lowest DLBCL	SRMA	Boffetta 2021	4	1285	RR	1.29 (1.02, 1.63)	3.30E-02	IV			
Glycosate	Ever vs never FL	SRMA	Odutola 2021	4	897	RR	0.90 (0.60, 1.34)	6.20E-01	NS			
Malathion	Yes vs no	NHL MA	Hu 2017	7	NA	OR	1.17 (0.82, 1.67)	3.94E-01	NS			
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	---------------	--	----------	-------------------------------	
Diazinon	Yes vs no	NHL	MA	Hu 2017	7	NA	OR	1.39 (1.11, 1.73)	4.00E-03 IV			
Terbufos	Yes vs no	NHL	MA	Hu 2017	5	NA	OR	1.07 (0.85, 1.36)	5.84E-01 NS			
Organophosphate pesticides	Yes vs no	NHL	MA	Hu 2017	10	NA	OR	1.22 (1.04, 1.43)	1.40E-02 IV			
Organophosphate pesticidesc	Ever vs never	FL	SRMA	Odutola 2021	3	545	OR	1.75 (0.46, 6.72)	4.20E-01 NS			
Organochlorine pesticides	Highest vs lowest	NHL	MA	Luo 2016	5	1010	OR	1.02 (0.81, 1.28)	8.73E-01 NS			
DDTc	Highest vs lowest	FL	SRMA	Odutola 2021	3	741	RR	1.25 (0.75, 2.07)	4.00E-01 NS			
DDEc	Highest vs lowest	NHL	MA	Luo 2016	11	1905	OR	1.38 (1.14, 1.66)	8.00E-04 III			
DDEc	Highest vs lowest	FL	SRMA	Odutola 2021	4	255	RR	1.51 (0.99, 2.31)	5.60E-02 NS			
HCH	Highest vs lowest	NHL	MA	Luo 2016	6	1184	OR	1.36 (0.95, 1.95)	9.18E-02 NS			
HCB	Highest vs lowest	NHL	MA	Luo 2016	7	1265	OR	1.54 (1.20, 1.99)	8.00E-04 III			
Chlordane	Highest vs lowest	NHL	MA	Luo 2016	8	1218	OR	1.89 (1.42, 2.50)	1.29E-05 III			
Organochlorine pesticides	Highest vs lowest	NHL	MA	Luo 2016	13	6582	OR	1.42 (1.27, 1.59)	2.16E-09 III			
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	--------------	---------------------------------	----------	----------------------------------	
Pentachlorophenol^c	Highest vs lowest	NHL	SRMA	Zheng 2015	5	419	OR	2.65 (1.33, 5.27)	6.00E-03	IV		
Phenoxy herbicides	2,4-D	Highest vs lowest	NHL	SRMA	Smith 2017	11	<1000	OR	1.82 (1.14, 2.92)	1.30E-02	IV	
MCPA	Highest vs lowest	NHL	SRMA	Schinasi 2014	5	3986	RR	1.50 (0.90, 2.50)	1.20E-01	NS		
Phenoxy herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	12	6493	RR	1.40 (1.20, 1.60)	6.00E-06	III		
Other pesticides	Amide herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1155	RR	1.30 (0.80, 1.90)	2.40E-01	NS	
Benzoic acid herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1155	RR	1.30 (0.90, 1.90)	1.70E-01	NS		
Triazine herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1155	RR	1.50 (1.00, 2.10)	3.20E-02	IV		
Trifluralin	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1346	RR	0.90 (0.60, 1.30)	6.10E-01	NS		
Pyrethroid/pyrethrin^c	Ever vs never	FL	SRMA	Odutola 2021	4	697	RR	1.45 (0.91, 2.32)	1.20E-01	NS		

Occupation

Occupation	Attendants vs general population										
Flight attendant	Female flight attendant^c	NHL	MA	Buja 2006	3	NA	SIR	1.19 (0.52, 2.15)	6.44E-01	NS	
Farmer	Farmer	NA	NHL	MA	Boffetta 2007	50	>1000	RR	1.11 (1.05, 1.17)	1.74E-04	III
Firefighter	Firefighter vs general population	NHL	SRMA	Jalilian 2019	14	NA	SIR	1.07 (0.96, 1.20)	2.37E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome Study type	Author, year	No. of primary studies	No. of cases	Effect measure (95% CI)	P random a	Random effects summary effect size (95% CI)	Strength of reported association b	
-----------------------	---------------------------	---------------------	-------------------	--------------	-----------------------	-------------	-------------------------	-----------	--	-------------------------------	
Firefighter	Ever vs never	FL SRMA	Odutola 2021	3 5	RR	1.16 (0.38, 3.52)	8.10E-01	NS			
Hairdresser	Hairdresser	NA	NHL MA	Takkouche 2009	13 22425	RR	1.11 (0.94, 1.32)	2.30E-01	NS		
Petroleum refinery worker	Petroleum refinery worker	Worker vs general population	NHL SRMA	Schnatter 2018	16 NA	RR	0.98 (0.89, 1.09)	7.09E-01	NS		
Meat worker	Meat worker	Worker vs general population	NHL MA	Boffetta 2007	9 NA	RR	0.99 (0.77, 1.29)	9.40E-01	NS		
Printer	Printer	Worker vs general population	NHL MA	Boffetta 2007	6 >1000	RR	1.86 (1.38, 2.50)	5.00E-05	III		
Wood worker	Wood worker	Worker vs general population	NHL MA	Boffetta 2007	11 NA	RR	1.04 (0.79, 1.37)	7.90E-01	NS		
Occupational exposure to polycyclic aromatic hydrocarbons	Aluminum plant workers	Worker vs general population	NHL SRMA	Alicandro 2016	8 167	RR	1.19 (0.98, 1.44)	7.60E-02	NS		
Iron and steel foundry workers	Worker vs general population	NHL SRMA	Alicandro 2016	8 57	RR	0.94 (0.73, 1.22)	6.50E-01	NS			

2,4-D=2,4-Dichlorophenoxyacetic acid; ALC=anaplastic large cell lymphoma; BL=Burkitt Lymphoma; CI=confidence interval; CLL/SLL=chronic lymphocytic leukemia/small lymphocytic lymphoma; DDE=dichlorodiphenyldichloroethylene; DDT=dichlorodiphenyltrichloroethane; DLBCL=diffuse large B-cell lymphoma; eBL=endemic Burkitt Lymphoma; FL=follicular lymphoma; HAART=Highly Active Antiretroviral Therapy; HBV=hepatitis B virus; HCB=hexachlorobenzene; HCH=hexachlorocyclohexane; HCV=hepatitis C virus; HIV/AIDS=human immunodeficiency virus, acquired immunodeficiency syndrome; HPgV=human Papillomavirus; IRR=incidence rate ratio; MA=meta-analysis; MZL=marginal zone lymphoma; MCPA=2-methyl-4-chlorophenoxyacetic acid; NA-NSAIDS=non-aspirin non-steroidal anti-inflammatory drugs; NSAIDS=non-steroidal anti-inflammatory drugs; NA=not available; NHL=non-Hodgkin lymphoma; OR=odds ratio; PCBs=polychlorinated biphenyls; PI=prediction interval; SIR=standardized incidence ratio; SRMA=systematic review and meta-analysis; RR=risk ratio; TCL=T-cell lymphoma.

a P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.
b Strength of association using the criteria listed in Table 1.
c These studies considered NHL incidence and mortality.
d Summary effect estimates were calculated using a fixed effect estimator.
e Not using inverse variance weighting. WHAT DOES THIS MEAN XS: They used Bayesian hierarchical models, i remember at some point Josh mentioned that we should make notes for this! but I'm okay with removing this footnote.
NHL subtype	At least 1000 cases and $P<10^{-3}$	At least 1000 cases and $P<10^{-6}$
CLL/SLL	Years since quitting cigarette smoking; printing pressmen	None
CLL/SLL/PLL/MCL	Adult infectious mononucleosis	None
DLBCL	Alcohol; Any atopic disorder; Allergy; B and T-cell activating autoimmune diseases; HCV; Hay fever; Recreational sun exposure; Socioeconomic status (high vs low); BMI as young adult (25-30 kg/m²); Rheumatoid arthritis; Blood transfusion; Weight	History of B-cell activating autoimmune disease; Sjogren’s syndrome; HCV; Young adult BMI (%25 kg/m²); Years since quit cigarette smoking; Age first alcohol consumption (20-29 years vs. nondrinker); Current alcohol consumption status as of ~2 years prior to diagnosis/interview.
FL	Blood transfusions; Young adult BMI (%25 kg/m²); Recreational sun exposure; History of cigarette smoking (females); Current cigarette smoking; University and higher education teachers; Male height (100% vs. 60%); Any atopic disorder	None
MZL	Systemic lupus erythematosus; HCV, Peptic ulcer; Wine	History of B-cell activating autoimmune disease; Sjogren’s syndrome
HCL	Current cigarette smoking	None
NHL	Hormone replacement therapy; Systemic lupus erythematosus; HCV; Allergy; Food allergy; Hay fever; Blood transfusion; Height; Alcohol exposures; Recreational hair dye use; Socioeconomic status (high vs low); Secondary Sjogren’s syndrome; Childhood measles	Sjogren’s syndrome; History of B-cell activating autoimmune disease; Hay fever; Young adult BMI (%25 kg/m²); Recreational sun exposure (%Q3-Q4 hours/week); Recreational hair dye use (%Q3-Q4 hours/week); Beer, wine, and liquor

BMI=body mass index; CI=confidence interval; CLL=chronic lymphocytic leukemia; DLBCL=diffuse large B-cell lymphoma; FL=follicular lymphoma; HCL=hairy cell leukemia; HCV=hepatitis C virus; MCL=mantle cell lymphoma; MZL=marginal zone lymphoma; NHL=non-Hodgkin lymphoma; SLL=small lymphocytic lymphoma; PLL=prolymphocytic leukemia.

* These were protective risk factors.
| Exposure [NHL subtype] | Effect estimate (95% CI) | Streng th of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Effect estimates in the same direction | Overlapping 95% confidence intervals | Same level of statistical significance (P<0.05) | At least one-third of studies overlapping evidence |
|------------------------|--------------------------|----------------------------------|------------------------|--------------------------|---------------------------------------|--------------------------------------|---|--|
| Red blood cell transfusion [NHL] | RR 1.20 (1.07, 1.35) | IV | History of blood transfusion [NHL] | OR 0.83 (0.77, 0.91) | No | No | Both | Yes |
| Red blood cell transfusion [CLL/SLL] | RR 1.66 (1.08, 2.56) | IV | History of blood transfusion [CLL/SLL] | OR 0.79 (0.66, 0.94) | No | No | Both | Yes |
| Red blood cell transfusion [FL] | RR 1.02 (0.67, 1.55) | NS | History of blood transfusion [FL] | OR 0.78 (0.68, 0.89) | No | Yes | MA of IPD only | Yes |
| Red blood cell transfusion [DLBCL] | RR 1.06 (0.86, 1.30) | NS | History of blood transfusion [DLBCL] | OR 0.84 (0.75, 0.95) | No | Yes | MA of IPD only | Yes |
| Ever smoking [NHL] | RR 1.05 (1.00, 1.09) | IV | Any smoking [NHL] | OR 1.02 (0.97, 1.07) | Yes | Yes | Neither | No |
| Ever smoking [DLBCL] | RR 1.01 (0.95, 1.07) | NS | Any smoking [DLBCL] | OR 1.01 (0.94, 1.08) | Yes | Yes | Neither | No |
| Ever smoking [FL] | RR 1.05 (0.88, 1.25) | NS | Any smoking [FL] | OR 1.09 (1.00, 1.18) | Yes | Yes | Neither | Yes |
| Ever smoking [CLL/SLL] | RR 0.96 (0.89, 1.04) | NS | Any smoking [CLL/SLL] | OR 0.90 (0.81, 0.99) | Yes | Yes | MA of IPD only | Yes |
| Ever smoking [TCL] | RR 1.23 (1.06, 1.43) | IV | Any smoking [TCL] | OR 1.32 (1.09, 1.59) | Yes | Yes | Both | No |
| Ever drinking [NHL] | RR 0.85 (0.79, 0.91) | III | Any alcohol [NHL] | OR 0.87 (0.81, 0.93) | Yes | Yes | Both | Yes |
| Ever drinking [TCL] | RR 0.78 (0.58, 1.05) | NS | Any alcohol [TCL] | OR 0.68 (0.53, 0.87) | Yes | Yes | MA of IPD only | Yes |
| Ever drinking [DLBCL] | RR 0.79 (0.68, 0.91) | IV | Any alcohol [DLBCL] | OR 0.81 (0.73, 0.89) | Yes | Yes | Both | Yes |
| Ever drinking [FL] | RR 0.80 (0.69, 0.92) | IV | Any alcohol [FL] | OR 0.86 (0.77, 0.96) | Yes | Yes | Both | Yes |
| Exposure [NHL subtype] | Effect estimate (95% CI) | Strength of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Effect estimates in the same direction | Overlapping 95% confidence intervals | Same level of statistical significance \((P<0.05) \) | At least one-third of studies overlapping |
|-----------------------|--------------------------|----------------------------------|------------------------|--------------------------|--|-------------------------------------|---|-------------------------------|
| Ever drinking [CLL/SLL] | RR 1.00 (0.80, 1.26) | NS | Any alcohol [CLL/SLL] | OR 1.04 (0.90, 1.19) | Yes | Yes | Neither | Yes |
| Pernicious anemia [NHL] | RR 1.16 (0.79, 1.71) | NS | Pernicious anemia [NHL] | OR 1.37 (0.62, 3.03) | Yes | Yes | Neither | No |
| Rheumatoid arthritis [NHL] | SIR 2.26 (1.82, 2.81) | II | Rheumatoid Arthritis [NHL] | OR 1.32 (0.99, 1.77) | Yes | No | MA of summary level data only | No |
| Primary Sjogren's syndrome [NHL] | RR 13.76 (8.53, 18.99) | II | Sjogren's syndrome [NHL] | OR 7.52 (3.68, 15.36) | Yes | Yes | Both | No |
| Systemic lupus erythematosus [NHL] | RR 5.40 (3.75, 7.77) | II | Systemic Lupus Erythematosus [NHL] | OR 2.83 (1.81, 4.11) | Yes | Yes | Both | No |
| Psoriasis [NHL] | RR 1.48 (1.3, 1.69) | III | Psoriasis [NHL] | OR 1.08 (0.90, 1.29) | Yes | No | MA of summary level data only | No |
| Type 1 diabetes [NHL] | RR 1.55 (1.15, 2.08) | IV | Type 1 diabetes [NHL] | OR 1.15 (0.80, 1.66) | Yes | Yes | MA of summary level data only | No |
| Celiac disease [NHL] | OR 2.61 (2.04, 3.33) | II | Celiac disease [NHL] | OR 1.77 (1.05, 2.99) | Yes | Yes | Both | Yes |
| Celiac disease [TCL] | OR 15.84 (7.85, 31.94) | II | Celiac disease [TCL] | OR 14.82 (7.27, 30.19) | Yes | Yes | Both | Yes |
| Celiac disease [DLBCL] | OR 2.25 (1.32, 3.85) | IV | Celiac disease [DLBCL] | OR 2.09 (1.04, 4.18) | Yes | Yes | Both | Yes |
| Celiac disease [CLL] | OR 0.80 (0.46, 1.38) | NS | Celiac disease [CLL/SLL] | OR 0.60 (0.14, 2.61) | Yes | Yes | Neither | Yes |
| Sarcoidosis [NHL] | RR 1.43 (1.03, 1.99) | IV | Sarcoidosis [NHL] | OR 0.71 (0.39, 1.29) | No | Yes | Neither | No |
| Exposure [NHL subtype] | Effect estimate (95% CI) | Strength of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Effect estimates in the same direction | Overlapping 95% confidence intervals | Same level of statistical significance (P<0.05) | At least one-third of studies overlapping |
|------------------------|--------------------------|---------------------------------|------------------------|--------------------------|--|--------------------------------------|---|---|
| Tuberculosis [NHL] | RR 1.61 (1.34, 1.94) | II | Adult Tuberculosis infection [NHL] | OR 1.16 (0.96, 1.39) | Yes | Yes | MA of summary level data only | No |
| Herpes Zoster [NHL] | RR 1.72 (1.27, 2.32) | III | Adult shingles [NHL] | OR 1.05 (0.93, 1.19) | Yes | No | MA of summary level data only | No |
| Hepatitis C virus [NHL]| OR 3.36 (2.40, 4.72) | II | Hepatitis C virus [NHL] | OR 1.81 (1.39, 2.37) | Yes | No | Both | No |
| Hepatitis C virus [DLBCL]| OR 2.65 (1.88, 3.74) | II | hepatitis C virus [DLBCL] | OR 2.33 (1.71, 3.19) | Yes | Yes | Both | Yes |
| Hepatitis C virus [FL] | OR 2.73 (2.20, 3.38) | IV | Hepatitis C virus [FL] | OR 0.57 (0.30, 1.10) | No | No | MA of summary level data only | Yes |
| Hepatitis C virus [MZL]| OR 3.41 (2.39, 4.87) | IV | Hepatitis C virus [MZL] | OR 3.04 (1.65, 5.60) | Yes | Yes | Both | Yes |
| Hepatitis C virus [CLL/SLL]| OR 1.65 (1.35, 2.02) | IV | Hepatitis C virus [CLL/SLL] | OR 2.08 (1.23, 3.49) | Yes | Yes | Both | Yes |
| Farmer [NHL] | RR 1.11 (1.05, 1.17) | III | Farmer [NHL] | OR 1.03 (0.95, 1.13) | Yes | Yes | Neither | No |
| Firefighter [NHL] | SIR 1.07 (0.96, 1.20) | NS | Firefighter [NHL] | OR 0.76 (0.53, 1.09) | No | Yes | Neither | No |
| Hairdresser [NHL] | RR 1.11 (0.94, 1.32) | NS | Hairdresser [NHL] | OR 1.21 (0.96, 1.52) | Yes | Yes | Both | No |
| Petroleum refinery worker [NHL] | RR 0.98 (0.89, 1.09) | NS | Petroleum workers [NHL] | OR 0.79 (0.38, 1.67) | Yes | Yes | Neither | No |
| Teacher [NHL] | RR 1.47 (1.34, 1.61) | II | Teacher [NHL] | OR 0.89 (0.81, 0.98) | No | No | Both | No |
| Meat worker [NHL] | RR 0.99 (0.77, 1.29) | NS | Meat worker [NHL] | OR 1.08 (0.81, 1.42) | No | Yes | Neither | No |
| Printer [NHL] | RR 1.86 (1.38, 2.50) | III | Printers [NHL] | OR 0.95 (0.78, 1.17) | No | No | MA of summary level data only | No |
| Exposure [NHL subtype] | Effect estimate (95% CI) | Strength of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Effect estimates in the same direction | Overlapping 95% confidence intervals | Same level of statistical significance ($P<0.05$) | At least one-third of studies overlapping |
|------------------------|--------------------------|---------------------------------|------------------------|--------------------------|--|--------------------------------------|--------------------------------|-------------------------------|
| Wood worker [NHL] | RR 1.04 (0.79, 1.37) | IV | Wood workers [NHL] | OR 1.04 (0.89, 1.22) | Yes | Yes | Neither | No |

CI=confidence interval; CLL/SLL=chronic lymphocytic leukemia/small lymphocytic lymphoma; DLBCL=diffuse large B-cell lymphoma; NA=not available; NHL= non-Hodgkin lymphoma; OR=odds ratio; SIR=standardized incidence ratio; RR=risk ratio; TCL=T-cell lymphoma.
Identification of studies in six electronic databases

Records identified from:
- MEDLINE (n = 5543)
- Embase (n = 4336)
- Scopus (n = 3173)
- Web of Science Core Collection* (n = 2417)
- Cochrane Library (n = 167)
- Epistemonikos (n = 802)
- Total (n = 16438)

Records removed before screening: Duplicate records removed (n = 7444)

Records screened (n = 8994)

Records excluded (n = 7970)

Full-text reports assessed for eligibility (n = 1024)

Reports excluded (n = 904)**:
- Non-English (n = 20)
- Duplicate (n = 8)
- Wrong study design (n = 240)
- Wrong topic (n = 442)
- Wrong exposure (n = 22)
- Wrong study focus (n = 14)
- Wrong component study design (n = 10)
- Insufficient data for analyses (n = 40)
- Overlapping review (n = 102)
- inability to retrieve full text (n = 6)

Studies included (n = 120)

MAAs of summary level data (n = 85)
MAAs of IPD (n = 27)
Systematic reviews (n = 8)

Figure 1: Study selection flowchart

* Web of Science Core Collection as licensed at Yale: Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

** Wrong study design: the examined study was not a systematic review, meta-analysis or pooled analysis
Wrong topic: the examined review did not examine non-Hodgkin lymphoma or its subtypes as an outcome OR the study did not examine the impact of an environmental exposure on the risk of non-Hodgkin lymphoma development
Wrong exposure: the examined risk factor does not meet the definition of environmental risk factor in our study
Wrong study focus: the review did not examine the impact of an exposure on the risk of developing NHL
Wrong component study design: the review did not synthesize observational study data
Insufficient data for analyses: the review included fewer than 3 component studies
Overlapping review: a larger review was identified for the same association
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 1: Search strategy...2
eTable 2: NHL subtypes ...6
eTable 3: R code ..8
eTable 4: Overlapping meta-analyses of summary level data..9
eTable 5: Nominally significant associations from meta-analysis of individual participant data...11
eTable 6: AMSTAR 2 evaluation ..59
eTable 7: Consistency between meta-analyses of summary level data and meta-analyses of individual participant data ...77
eFigure 1...81
eText 1: eligibility criteria ..82
eText 2..84
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 1: Search strategy

Database searches, 2021-07-23
Searches on the Ovid platform can be rerun at https://tools.ovid.com/ovidtools/launcher.html

Ovid MEDLIN E(R) ALL <1946 to July 22, 2021>	
1 [Xiaoting Shi]	0
2 [concept two: SRs]	0
3 (systematic adj4 review).ti.	1604
4 systematic review.pt.	1621
5 Cochrane Database of Systematic Reviews.jn. and review.pt.	1365
6 [approach c: based on Lee 2012]	8
7 medline.tw. or systematic review.ti. or meta-analysis.pt. or pubmed.tw.	3574
8 [from our previous searches]	0
9 (pooled analysis or pooled analyses).mp.	1173
10 (metaanalysis or meta-analysis).af.	2201
11 [NHL concept]	0
12 neoplasms/ or lymphoma/ or exp lymphoma, non-hodgkin/	5895
13 [alternative based on https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004024.pub2/appendices#CD004024-sec1-0011]	0
14 *Lymphoma/	3602
15 *hematologic neoplasms/	1082
16 lymphom*.mp.	2585
17 non-hodgkin*.mp.	5802
18 nonhodgkin*.mp.	136
19 (non adj1 hodgkin*).mp.	5802
20 nhl.mp.	1393
21 (hemato* adj1 malign*).mp.	2696
22 (haemato* adj1 malign*).mp.	5497
23 (hemato* adj1 neoplas*).mp.	1661
24 (haemato* adj1 neoplas*).mp.	415
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

25	11	7217
26	94	9999
27	716	2899
28	716	2899
29	79	4231
30	79	5543

Embase

1	0	7217
2	31	6726
3	1	4582
4	5	3598
5	80	3504
6	8	6054
7	7	6219
8	1	6055
9	0	2544
10	5	6301
11	5	9491
12	84	4590
13	584	689
14	14	8218
15	5	2714
16	584	4327
17	125	4368
18	0	0
19	26	1918
20	7	1124
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

21	medline.tw. or systematic review.ti. or pubmed.tw.
22	(pooled analysis or pooled analyses).mp.
23	(metaanalysis or meta-analysis).af.
24	or/19-23
25	14 and 17
26	limit 25 to meta analysis
27	limit 25 to systematic review
28	25 and 24
29	26 or 27 or 28
30	limit 29 to conference abstract status
31	29 not 30

Scopus

TS=(lymphom* OR non-hodgkin* OR (non NEAR/1 hodgkin*) OR nhl OR ((hemato* OR haemato*) NEAR/1 (malign* OR neoplas*))) AND (TITLE-ABS-KEY (risk* OR protective-factor*)) AND (TITLE-ABS-KEY ((systematic W/4 review) OR medline OR pubmed OR "pooled analysis" OR "pooled analyses" OR metaanalysis OR meta-analysis)) AND (EXCLUDE (DOCTYPE, "cp"))

Web of Science Core Collection

TS=(lymphom* OR non-hodgkin* OR (non NEAR/1 hodgkin*) OR nhl OR ((hemato* OR haemato*) NEAR/1 (malign* OR neoplas*))) AND (TITLE-ABS-KEY ((systematic W/4 review) OR medline OR pubmed OR "pooled analysis" OR "pooled analyses" OR metaanalysis OR meta-analysis)) AND (EXCLUDE (DOCTYPE, "cp"))

Refined by excluding the Web of Science document types proceedings papers and meeting abstracts

Cochrane Library

#1 ((systematic NEAR/4 review):ti OR (systematic review):pt OR (medline or pubmed or "pooled analysis" OR "pooled analyses" OR metaanalysis OR meta-analysis):ti,ab,kw (Word variations have been searched) 2939 6

#2 MeSH descriptor: [Neoplasms] this term only 6376

#3 MeSH descriptor: [Lymphoma] this term only 1369

#4 MeSH descriptor: [Lymphoma, Non-Hodgkin] explode all trees 2056

#5 MeSH descriptor: [Hematologic Neoplasms] this term only 466

#6 (lymphom* or non-hodgkin* or nonhodgkin* or (non NEAR/1 hodgkin*) or nhl or (hemato* NEAR/1 malign*) or (haemato* NEAR/1 malign*) or (hemato* NEAR/1 neoplas*) or (haemato* NEAR/1 neoplas*)):ti,ab,kw 1414 4

#7 2019 2

#8 (risk* or (protective NEAR/1 factor*)):ti,ab,kw 2539 10

#9 MeSH descriptor: [Risk] this term only 3322

#10 MeSH descriptor: [Protective Factors] this term only 135
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

		MeSH descriptor: [Risk Factors] this term only	
#11		2495	5
#12		#8 or #9 or #10 or #11	2539
#13		#1 and #7 and #12	10
		Limited to reviews (not trials)	273

Epistemionkos

Filter Type	Query	
SR filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective))	736
Broad synthesis filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective))	24
No filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective)) AND (title:"pooled analysis" OR "pooled analyses") OR abstract:("pooled analysis" OR "pooled analyses")	42
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 2: NHL subtypes

Category	Subtypes	Eligibility as NHL
Chronic lymphocytic leukemia/small lymphocytic lymphoma	Yes	
Monoclonal B-cell lymphocytosis*	No	
B-cell prolymphocytic leukemia	Yes	
Splenic marginal zone lymphoma	Yes	
Hairy cell leukemia	Yes	
Splenic B-cell lymphoma/leukemia, unclassifiable	Yes	
Splenic diffuse red pulp small B-cell lymphoma	Yes	
Hairy cell leukemia-variant	Yes	
Lymphoplasmacytic lymphoma	Yes	
Waldenström macroglobulinemia	Yes	
Monoclonal gammopathy of undetermined significance (MGUS), IgM*	No	
μ heavy-chain disease	No	
γ heavy-chain disease	No	
α heavy-chain disease	No	
Monoclonal gammopathy of undetermined significance (MGUS), IgG/A*	No	
Plasma cell myeloma	No	
Solitary plasmacytoma of bone	No	
Extrasosseous plasmacytoma	No	
Monoclonal immunoglobulin deposition diseases*	No	
Extrannodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma)	Yes	
Nodal marginal zone lymphoma	Yes	
Pediatric nodal marginal zone lymphoma	Yes	
Follicular lymphoma	Yes	
In situ follicular neoplasia*	Yes	
Duodenal-type follicular lymphoma*	Yes	
Pediatric-type follicular lymphoma*	Yes	
Large B-cell lymphoma with IRF4 rearrangement*	Yes	
Primary cutaneous follicle center lymphoma	Yes	
Mantle cell lymphoma	Yes	
In situ mantle cell neoplasia*	Yes	
Diffuse large B-cell lymphoma (DLBCL), NOS	Yes	
Germinal center B-cell type*	Yes	
Activated B-cell type*	Yes	
T-cell/histiocyte-rich large B-cell lymphoma	Yes	
Primary DLBCL of the central nervous system (CNS)	Yes	
Primary cutaneous DLBCL, leg type	Yes	
EBV+ DLBCL, NOS*	Yes	
EBV+mucocutaneous ulcer*	No	
DLBCL associated with chronic inflammation	Yes	
Lymphomatoïd granulomatosis	Yes	
Primary mediastinal (thymic) large B-cell lymphoma	Yes	
Intravascular large B-cell lymphoma	Yes	
ALK+ large B-cell lymphoma	Yes	
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL
	Plasmablastic lymphoma	Yes
	Primary effusion lymphoma	Yes
	HHV8+DLBCL, NOS*	Yes
	Burkitt lymphoma	Yes
	Burkitt-like lymphoma with 11q aberration*	Yes
	High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements*	Yes
	High-grade B-cell lymphoma, NOS*	Yes
	B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classical Hodgkin lymphoma	Yes
	Double hit/triple hit lymphoma	Yes
	T-cell prolymphocytic leukemia	Yes
	T-cell large granular lymphocytic leukemia	Yes
	Chronic lymphoproliferative disorder of NK cells	Yes
	Aggressive NK-cell leukemia	Yes
	Systemic EBV+ T-cell lymphoma of childhood*	Yes
	Hydroa vacciniforme–like lymphoproliferative disorder*	Yes
	Adult T-cell leukemia/lymphoma	Yes
	Extranodal NK-/T-cell lymphoma, nasal type	Yes
	Enteropathy-associated T-cell lymphoma	Yes
	Monomorphic epitheliotropic intestinal T-cell lymphoma*	Yes
	Indolent T-cell lymphoproliferative disorder of the GI tract*	No
	Hepatosplenic T-cell lymphoma	Yes
	Subcutaneous panniculitis-like T-cell lymphoma	Yes
	Mycosis fungoides	Yes
	Sézary syndrome	Yes
	Primary cutaneous CD30+ T-cell lymphoproliferative disorders	Yes
	Lymphomatoid papulosi	No
	Primary cutaneous anaplastic large cell lymphoma	Yes
	Primary cutaneous γδ T-cell lymphoma	Yes
	Primary cutaneous CD8+aggressive epidermotropic cytotoxic T-cell lymphoma	Yes
	Primary cutaneous acral CD8+T-cell lymphoma*	Yes
	Primary cutaneous CD4+small/medium T-cell lymphoproliferative disorder*	No
	Peripheral T-cell lymphoma, NOS	Yes
	Angioimmunoblastic T-cell lymphoma	Yes
	Follicular T-cell lymphoma*	Yes
	Nodal peripheral T-cell lymphoma with TFH phenotype*	Yes
	Anaplastic large-cell lymphoma, ALK+	Yes
	Anaplastic large-cell lymphoma, ALK−*	Yes
	Breast implant–associated anaplastic large-cell lymphoma*	Yes
	Acute lymphoblastic leukaemia (ALL)	No

https://mc.manuscriptcentral.com/bmjmedicine
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL

Footnotes:
* Changes from the 2008 classification.
NOS: not otherwise specified
Information source: 2016 WHO classification of mature lymphoid neoplasms (https://pubmed.ncbi.nlm.nih.gov/26980727/)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 3: R code

Below is the R code example for the association between Behcet disease and NHL
read in data_Behcet Disease
meta1 = read_excel("RR_effect_sizes_Behcet Disease #4206.xlsx")
head(meta1)
conduct main analysis
meta2<-metagen(meta1$LNRR,meta1$SE,
sm="R",studlab=paste(lastname,publication_year)
,data=meta1,method.bias="Egger",prediction = TRUE,
level.predict =0.95)
summary(meta2)
create forest plot, funnel plot
forest(meta2)
funnel(meta2)
meta2$pval.random
conduct egger's test
metabias(meta2,method.bias="Egger",plotit=TRUE, correct= TRUE, k=3)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 4: Overlapping meta-analyses of summary level data

Environmental risk factors	Largest review (First author, year)	Number of overlapping meta-analyses	Number of primary studies in the largest meta-analyses	Most recent (Y/N)	Highest impact factor one (Y/N)
Dietary factors					
Red meat	Yang 2015	4	18	N	N
Processed meat	Yang 2015	4	18	N	N
White meat/poultry	Dong 2017	3	10	N	N
Fish	Cai 2016	3	11	N	N
Fruit and vegetable	Chen 2013	2	4	N	Y
Fruit	Chen 2013	2	13	N	Y
Vegetable	Chen 2013	2	13	N	Y
Eggs	Cai 2016	2	10	N	N
Total dairy products	Wang 2016	2	7	Y	Y
Milk	Wang 2016	3	16	N	Y
Cheese	Wang 2016	2	10	Y	Y
Vitamin D	Lu 2014	2	6	N	N
Drugs, vaccinations and procedures					
Aspirin	Ye 2015	2	10	Y	Y
Non-steroidal anti-inflammatory drugs	Ye 2015	2	13	Y	N
Statin	Ye 2017	3	9	Y	Y
Non-dietary lifestyle factors					
Physical activity	Davies 2020	3	17	Y	Y
Hair dye	Qin 2019	2	16	Y	N
Petrochemical exposure	Jephcote 2020	2	9	Y	Y
Maternal smoking	Antonopoulos 2011	2	7	N	Y
Ever smoking	Sergentanis 2013	2	33	Y	N
Ever drinking	Tramacere 2012	3	29	N	Y
Heavy drinking	Tramacere 2012	2	6	N	Y
Medical history and comorbid diseases					
Rheumatoid arthritis	Simon 2015	2	17	Y	N
Primary Sjogren's syndrome	Liang 2014	2	11	Y	Y
Systemic lupus erythematosus	Cao 2015	3	12	N	N
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Environmental risk factors	Largest review (First author, year)	Number of overlapping meta-analyses	Number of primary studies in the largest meta-analyses	Most recent (Y/N)	Highest impact factor one (Y/N)
Psoriasis	Vaengebjerg 2020	3	8	Y	Y
Type 1 diabetes	Wang 2020	2	3	Y	N
Celiac disease	Tio 2012	2	8	Y	Y
Systemic sclerosis	Zhang 2013	2	4	Y	N
Asthma	Yang 2017	2	15	Y	Y
Type 2 diabetes	Castillo 2012	8	21	N	N
Overweight	Larsson 2007	11	16	N	Y
Obesity	Larsson 2007	11	16	N	Y
Hepatitis B virus	Li 2018	5	58	N	N
Hepatitis C virus	Masarone 2019	4	27	Y	Y
Chemicals and pesticides					
Benzene	Kane 2010	4	24	Y	N
Polychlorinated biphenyls	Catalani 2019	3	30	Y	N
Trichloroethylene	Scott 2011	3	17	N	N
Glyphosate	Boffetta 2021	4	6	Y	N
2,4-Dichlorophenoxyacetic acid	Smith 2017	3	11	Y	Y
Occupation					
Female flight attendant	Buja 2006	4	3	Y	N
Farmer	Boffetta 2007	4	50	Y	N
Firefighter	Jalilian 2019	3	14	Y	Y
Petroleum refinery worker	Schnatter 2018	2	16	Y	N

Y=Yes; N=No.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 5: Nominally significant associations from meta-analysis of individual participant data

Study	Outcome	Exposure	Numb er of cases	Effect estimate (95% CI)	Classification of evidence	Model
Kane 2013	NHL	Hormone therapy (ever vs. never)	2094	0.79 (0.69-0.90)	Suggestive	NA
Kane 2013	NHL	Hormone therapy age first used (50-54 years vs. never used)	1987	0.74 (0.61-0.91)	Weak	NA
Kane 2013	NHL	Hormone therapy age first used (55+ years vs. never used)	1987	0.78 (0.62-0.98)	Weak	NA
Kane 2013	NHL	Hormone therapy years used (<2 years vs. never used)	2094	0.78 (0.62-0.98)	Weak	NA
Kane 2013	NHL	Hormone therapy years used (5 to <10 years vs. never used)	2094	0.72 (0.57-0.91)	Weak	NA
Kane 2013	NHL	Hormone therapy years since last used (current vs. never used)	2035	0.70 (0.54-0.90)	Weak	NA
Kane 2013	DLBCL	Hormone therapy (ever vs. never)	675	0.66 (0.54-0.80)	Weak	NA
Kane 2013	DLBCL	Hormone therapy age first used (50-54 years vs. never used)	637	0.58 (0.42-0.80)	Weak	NA
Kane 2013	DLBCL	Hormone therapy years used (5 to <10 years vs. never used)	675	0.59 (0.40-0.86)	Weak	NA
Kane 2013	DLBCL	Hormone therapy years since last used (current vs. never used)	552	0.57 (0.44-0.74)	Weak	NA
Kane 2013	FL	Hormone therapy years since last used (current vs. never used)	418	0.76 (0.58-0.99)	Weak	NA
Cocco 2013	DLBCL	Duration trichloroethylene exposure (30-39)	1251	0.4 (0.2-1.0)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Numb. of cases	Effect estimate (95% CI)	Classificat. of evidence	Model
Cocco 2013	DLBCL	Frequency trichloroethylene exposure (<=5% work time vs. unexposed)	1251	0.6 (0.4-1.0)	Weak	NA
Cocco 2013	FL	Frequency trichloroethylene exposure (31%+ work time vs. unexposed)	639	1.8 (1.1-2.9)	Weak	NA
Cocco 2013	FL	Intensity of trichloroethylene exposure (>150 ppm vs. unexposed)	639	2.2 (1.1-4.2)	Weak	NA
Willet 2008	NHL	Male height (100% vs. 60%)	5731	1.19 (1.06-1.34)	Weak	NA
Willet 2008	FL	Male height (100% vs. 60%)	1047	1.47 (1.18-1.84)	Weak	NA
Willet 2008	CLL/SLL	Female height (20% vs. 60%)	625	0.72 (0.56-0.93)	Weak	NA
Willet 2008	Other BCL	Male height (100% vs. 60%)	228	1.71 (1.14-2.58)	Weak	NA
Willet 2008	Other BCL	Female height (80% vs. 60%)	174	1.87 (1.14-3.05)	Weak	NA
Willet 2008	DLBCL	Weight (Grade 3 obese vs. normal weight)	6285	1.80 (1.23-2.62)	Weak	NA
Willet 2008	BL	Weight (Underweight vs. normal weight)	90	3.13 (1.19-8.25)	Weak	NA
Slager 2014	CLL/SLL	Any atopic disease (yes vs. no)	2345	0.86 (0.78-0.95)	Weak	Basic
Slager 2014	CLL/SLL	Allergy (yes vs. no)	2182	0.87 (0.77-0.98)	Weak	Basic
Slager 2014	CLL/SLL	Blood transfusion (yes vs. no)	1168	0.79 (0.66-0.94)	Weak	Basic
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Slager 2014	CLL/SLL	Total number of transfusions (1 vs none)	1168	0.81 (0.66-0.99)	Weak	Basic
Slager 2014	CLL/SLL	Number of years from first transfusion to date of diagnosis (<20 years vs. no transfusion)	1168	0.71 (0.55-0.92)	Weak	Basic
Slager 2014	CLL/SLL	Transfusion before 1990 (Transfusion 1990+ vs. No transfusion)	1168	0.68 (0.49-0.94)	Weak	Basic
Slager 2014	CLL/SLL	Adult height (Q4 vs Q1)	1794	1.23 (1.05-1.44)	Weak	Basic
Slager 2014	CLL/SLL	Adult height (continuous, 10 cm)	1794	1.10 (1.02-1.19)	Weak	Basic
Slager 2014	CLL/SLL	HCV	994	1.99 (1.16-3.41)	Weak	Full
Slager 2014	CLL/SLL	Ever lived or worked on a farm (yes vs. no)	1595	1.21 (1.07-1.36)	Weak	Basic
Slager 2014	CLL/SLL	Farmer (yes vs. no)	1042	1.20 (1.06-1.35)	Weak	Full
Slager 2014	CLL/SLL	Animal farmer (yes vs. no)	1042	0.64 (0.43-0.96)	Weak	Basic
Slager 2014	CLL/SLL	Mixed animal and crop farmer (yes vs. no)	1013	1.32 (1.08-1.61)	Weak	Basic
Slager 2014	CLL/SLL	Hairdresser (yes vs. no)	1042	1.77 (1.05-3.01)	Weak	Basic
Slager 2014	CLL/SLL	Total sun exposure (quartile 4 (high) vs. 1 (low))	685	0.75 (0.59-0.96)	Weak	Basic
Slager 2014	CLL/SLL	Recreational sun exposure (Quartile 4 (high) vs 1 (low))	1301	0.80 (0.69-0.94)	Weak	Basic
Slager 2014	CLL/SLL	Recreational sun exposure (Quartile 2 vs. 1)	1301	0.81 (0.68-0.96)	Weak	Basic
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Slager 2014	CLL/SLL	History of cigarette smoking (yes vs. no)	2191	0.90 (0.81-0.99)	Weak	Basic
Slager 2014	CLL/SLL	Smoking status as of ~1 year before diagnosis/interview (current vs.nonsmoker)	2191	0.82 (0.71-0.94)	Weak	Basic
Slager 2014	CLL/SLL	Age started smoking cigarettes (14-<18 years)	2191	0.87 (0.76-0.99)	Weak	Basic
Slager 2014	CLL/SLL	Age started smoking cigarettes (18-<20 years)	2191	0.83 (0.71-0.98)	Weak	Basic
Slager 2014	CLL/SLL	Frequency of cigarette smoking (30+ cigarettes/day vs. nonsmoker)	2191	0.72 (0.57-0.90)	Weak	Basic
Slager 2014	CLL/SLL	Duration of cigarette smoking (30-39 years vs. nonsmoker)	2191	0.82 (0.71-0.96)	Weak	Basic
Slager 2014	CLL/SLL	Years since quitting cigarette smoking (former smoker unknown when quit vs.nonsmoker)	1714	2.54 (1.53-4.21)	Suggestive	Basic
Slager 2014	CLL/SLL	Lifetime cigarette exposure (>20-35 plack-years vs. nonsmoker)	2191	0.84 (0.72-0.98)	Weak	Basic
Slager 2014	CLL/SLL	Lifetime cigarette exposure (>35 plack-years vs. nonsmoker)	2191	0.82 (0.70-0.95)	Weak	Basic
Slager 2014	CLL/SLL	Frequency of hair dye use (12+ times/year vs. never hair dye)	404	1.51 (1.09-2.10)	Weak	Basic
Morton 2014	NHL	History of B-cell activating autoimmune disease (any vs. none)	17471	1.96 (1.60-2.40)	Highly suggestive	NA
Morton 2014	MZL	History of B-cell activating autoimmune disease (any vs. none)	1052	5.46 (3.81-7.83)	Highly suggestive	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	LPL/WM	History of B-cell activating autoimmune disease (any vs. none)	374	2.61 (1.34-5.08)	Weak	NA
Morton 2014	DLBCL	History of B-cell activating autoimmune disease (any vs. none)	4667	2.45 (1.91-3.16)	Highly suggestive	NA
Morton 2014	NHL	Hemolytic anemia (any vs. non)	17471	2.24 (1.03-4.87)	Weak	NA
Morton 2014	DLBCL	Hemolytic anemia (any vs. non)	4667	2.72 (1.13-6.57)	Weak	NA
Morton 2014	MZL	Pernicious anemia	1052	3.45 (1.07-11.15)	Weak	NA
Morton 2014	DLBCL	Rheumatoid arthritis (any vs. none)	4667	1.94 (1.35-2.79)	Suggestive	NA
Morton 2014	NHL	Sjogren's syndrome (any vs. none)	17471	7.52 (3.68-15.36)	Highly suggestive	NA
Morton 2014	MZL	Sjogren's syndrome (any vs. none)	1052	38.07 (16.94-85.55)	Highly suggestive	NA
Morton 2014	LPL/WM	Sjogren's syndrome (any vs. none)	374	12.14 (3.16-46.58)	Weak	NA
Morton 2014	DLBCL	Sjogren's syndrome (any vs. none)	4667	8.77 (3.94-19.54)	Highly suggestive	NA
Morton 2014	FL	Sjogren's syndrome (any vs. none)	3530	3.23 (1.19-8.80)	Weak	NA
Morton 2014	NHL	Systemic lupus erythematous (any vs. none)	17471	2.83 (1.82-4.41)	Suggestive	NA
Morton 2014	MF/SS	Systemic lupus erythematous (any vs. none)	324	5.03 (1.16-21.57)	Weak	NA
Morton 2014	PTCL	Systemic lupus erythematous (any vs. none)	584	3.90 (1.24-12.30)	Weak	NA
Morton 2014	MZL	Systemic lupus erythematous (any vs. none)	1052	6.54 (3.10-13.82)	Suggestive	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	LPL/WM	Systemic lupus erythematosus (any vs. none)	374	8.41 (2.81-25.20)	Weak	NA
Morton 2014	DLBCL	Systemic lupus erythematosus (any vs. none)	4667	2.49 (1.42-4.37)	Weak	NA
Morton 2014	MF/SS	History of T-cell activating autoimmune disease	324	1.66 (1.00-2.75)	Weak	NA
Morton 2014	PTCL	History of T-cell activating autoimmune disease	584	1.95 (1.37-2.77)	Weak	NA
Morton 2014	NHL	Celiac disease (any vs. none)	17471	1.77 (1.05-2.99)	Weak	NA
Morton 2014	PTCL	Celiac disease (any vs. none)	584	14.82 (7.27-30.19)	Weak	NA
Morton 2014	DLBCL	Celiac disease (any vs. none)	4667	2.09 (1.04-4.18)	Weak	NA
Morton 2014	PTCL	Psoriasis (any vs. none)	584	2.05 (1.23-3.42)	Weak	NA
Morton 2014	MF/SS	Systemic sclerosis/scleroderma	324	8.87 (1.11-71.25)	Weak	NA
Morton 2014	HCL	Systemic sclerosis/scleroderma	154	12.74 (1.49-108.84)	Weak	NA
Morton 2014	NHL	Hepatitis C virus seropositivity	17471	1.81 (1.39-2.37)	Suggestive	NA
Morton 2014	MZL	Hepatitis C virus seropositivity	1052	3.04 (1.65-5.60)	Suggestive	NA
Morton 2014	LPL/WM	HCV	374	2.70 (1.11-6.56)	Weak	NA
Morton 2014	DLBCL	HCV	4667	2.33 (1.71-3.19)	Highly suggestive	NA
Morton 2014	CLL/SLL	HCV	2440	2.08 (1.23-3.49)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	MZL	Peptic ulcer	1052	1.56 (1.21-2.03)	Suggestive	NA
Morton 2014	NHL	Allergy	17471	0.86 (0.81-0.92)	Suggestive	NA
Morton 2014	DLBCL	Allergy	4667	0.82 (0.74-0.90)	Suggestive	NA
Morton 2014	CLL/SLL	Allergy	2440	0.87 (0.77-0.98)	Weak	NA
Morton 2014	FL	Allergy	3530	0.88 (0.79-0.98)	Weak	NA
Morton 2014	MCL	Hay fever	557	0.63 (0.48-0.82)	Weak	NA
Morton 2014	MCL	Allergy	557	0.79 (0.63-0.98)	Weak	NA
Morton 2014	NHL	Food allergy	17471	0.83 (0.74-0.92)	Suggestive	NA
Morton 2014	DLBCL	Asthma	4667	0.87 (0.77-0.98)	Weak	NA
Morton 2014	DLBCL	Food allergy	4667	0.77 (0.65-0.91)	Weak	NA
Morton 2014	FL	Food allergy	3530	0.79 (0.67-0.94)	Weak	NA
Morton 2014	NHL	Hay fever	17471	0.82 (0.77-0.88)	Suggestive	NA
Morton 2014	BL	Systemic	295	20.16 (2.44-166.28)	Weak	NA
Morton 2014	BL	Hay fever	295	0.64 (0.44-0.95)	Weak	NA
Morton 2014	LPL/WM	Hay fever	374	0.70 (0.52-0.96)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	DLBCL	Hay fever	4667	0.78 (0.70-0.86)	Suggestive	NA
Morton 2014	FL	Asthma	3530	0.85 (0.74-0.97)	Weak	NA
Morton 2014	FL	Hay fever	3530	0.82 (0.73-0.91)	Weak	NA
Morton 2014	NHL	History of blood transfusion (any vs. none)	17471	0.83 (0.77-0.91)	Suggestive	NA
Morton 2014	DLBCL	History of blood transfusion (any vs. none)	4667	0.84 (0.75-0.95)	Weak	NA
Morton 2014	CLL/SLL	History of blood transfusion (any vs. none)	2440	0.79 (0.66-0.94)	Weak	NA
Morton 2014	FL	History of blood transfusion (any vs. none)	3530	0.78 (0.68-0.89)	Weak	NA
Morton 2014	HCL	History of blood transfusion (any vs. none)	154	0.21 (0.05-0.86)	Weak	NA
Morton 2014	NHL	Age at least transfusion (%>40 years)	17471	0.80 (0.71-0.90)	Suggestive	NA
Morton 2014	DLBCL	Age at least transfusion (%>40 years)	4667	0.83 (0.70-0.97)	Weak	NA
Morton 2014	CLL/SLL	Age at least transfusion (%>40 years)	2440	0.73 (0.56-0.96)	Weak	NA
Morton 2014	FL	Age at least transfusion (%>40 years)	3530	0.76 (0.63-0.92)	Weak	NA
Morton 2014	HCL	Age at least transfusion (%>40 years)	154	0.10 (0.01-0.93)	Weak	NA
Morton 2014	NHL	No. transfusions (% 2+)	17471	0.72 (0.61-0.85)	Suggestive	NA
Morton 2014	DLBCL	No. transfusions (% 2+)	4667	0.70 (0.56-0.88)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	CLL/SLL	No. transfusions (% 2+)	2440	0.64 (0.45-0.92)	Weak	NA
Morton 2014	FL	No. transfusions (% 2+)	3530	0.61 (0.47-0.79)	Suggestive	NA
Morton 2014	NHL	Blood transfusion <1990	17471	0.76 (0.67-0.87)	Suggestive	NA
Morton 2014	DLBCL	Blood transfusion <1991	4667	0.78 (0.65-0.94)	Weak	NA
Morton 2014	CLL/SLL	Blood transfusion <1992	2440	0.68 (0.52-0.88)	Weak	NA
Morton 2014	FL	Blood transfusion <1993	3530	0.66 (0.52-0.82)	Suggestive	NA
Morton 2014	HCL	Blood transfusion <1994	154	0.06 (0.00-0.82)	Weak	NA
Morton 2014	DLBCL	Year first Ocs use (%<1970)	4667	0.74 (0.59-0.93)	Weak	NA
Morton 2014	DLBCL	Ever used HRT	4667	0.78 (0.65-0.94)	Weak	NA
Morton 2014	MF/SS	Usual adult BMI (% 25 kg/m^2+)	324	1.95 (1.10-3.46)	Weak	NA
Morton 2014	LPL/WM	Usual adult BMI (% 25 kg/m^2+)	374	0.40 (0.23-0.69)	Weak	NA
Morton 2014	DLBCL	Usual adult BMI (% 25 kg/m^2+)	4667	1.32 (1.11-1.57)	Weak	NA
Morton 2014	DLBCL	Young adult BMI (% 25 kg/m^2+)	4667	3.02 (2.13-4.37)	Highly suggestive	NA
Morton 2014	FL	Young adult BMI (% 25 kg/m^2+)	3530	2.13 (1.44-3.14)	Suggestive	NA
Morton 2014	BL	Height (% Q3-Q4)	295	2.43 (1.37-4.31)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	DLBCL	Height (% Q3-Q4)	4667	1.16	(1.01-1.33)	Weak
					NA	
Morton 2014	CLL/SLL	Physical activity (%>=moderate)	2440	0.80	(0.65-0.99)	Weak
					NA	
Morton 2014	CLL/SLL	Height (% Q3-Q4)	2440	1.29	(1.06-1.57)	Weak
					NA	
Morton 2014	FL	Height (% Q3-Q4)	3530	1.20	(1.02-1.40)	Weak
					NA	
Morton 2014	HCL	Height (% Q3-Q4)	154	3.46	(1.62-7.39)	Weak
					NA	
Morton 2014	MF/SS	Physical activity (%>=moderate)	324	0.53	(0.30-0.93)	Weak
					NA	
Morton 2014	MF/SS	Weight (% Q3-Q4)	324	1.68	(1.06-2.67)	Weak
					NA	
Morton 2014	MZL	Weight (% Q3-Q4)	1052	0.74	(0.58-0.95)	Weak
					NA	
Morton 2014	LPL/WM	Weight (% Q3-Q4)	374	0.55	(0.36-0.82)	Weak
					NA	
Morton 2014	DLBCL	Weight (% Q3-Q4)	4667	1.26	(1.10-1.44)	Suggestive
					NA	
Morton 2014	MCL	Physical activity (%>=moderate)	557	2.09	(1.24-3.51)	Weak
					NA	
Morton 2014	NHL	Ever used HRT	17471	0.84	(0.73-0.96)	Weak
					NA	
Morton 2014	NHL	Young adult BMI (% 25 kg/m^2+)	17471	1.95	(1.51-2.53)	Highly suggestive
					NA	
Morton 2014	NHL	Height (% Q3-Q4)	17471	1.20	(1.08-1.32)	Suggestive
					NA	
Morton 2014	NHL	Any alcohol	17471	0.87	(0.81-0.93)	Suggestive
					NA	
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	PTCL	Any alcohol	584	0.68 (0.53-0.87)	Weak	NA
Morton 2014	MZL	Any alcohol	1052	0.75 (0.62-0.91)	Weak	NA
Morton 2014	DLBCL	Any alcohol	4667	0.81 (0.73-0.89)	Suggestive	NA
Morton 2014	FL	Any alcohol	3530	0.86 (0.77-0.96)	Weak	NA
Morton 2014	NHL	Status (% current)	17471	0.86 (0.78-0.94)	Weak	NA
Morton 2014	MZL	Status (% current)	1052	0.73 (0.55-0.98)	Weak	NA
Morton 2014	BL	Any alcohol	295	0.64 (0.48-0.87)	Weak	NA
Morton 2014	BL	Status (% current) alcohol	295	0.53 (0.31-0.91)	Weak	NA
Morton 2014	DLBCL	Status (% current) alcohol	4667	0.70 (0.62-0.80)	Suggestive	NA
Morton 2014	NHL	Age at initiation (% <20 years)	17471	0.85 (0.75-0.97)	Weak	NA
Morton 2014	BL	Age at initiation (% <20 years) alcohol	295	0.44 (0.21-0.92)	Weak	NA
Morton 2014	DLBCL	Age at initiation (% <20 years)	4667	0.73 (0.62-0.86)	Suggestive	NA
Morton 2014	NHL	Frequency (%>14 servings/week) alcohol	17471	0.82 (0.75-0.91)	Suggestive	NA
Morton 2014	MZL	Frequency (%>14 servings/week)	1052	0.61 (0.45-0.84)	Weak	NA
Morton 2014	BL	Frequency (%>14 servings/week) alcohol	295	0.49 (0.31-0.76)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	DLBCL	Frequency (%>14 servings/week) alcohol	4667	0.73 (0.64-0.83)	Suggestive	NA
Morton 2014	FL	Frequency (%>14 servings/week) alcohol	3530	0.82 (0.69-0.96)	Weak	NA
Morton 2014	BL	Duration (%>30 years) alcohol	295	0.44 (0.21-0.93)	Weak	NA
Morton 2014	DLBCL	Duration (%>30 years) alcohol	4667	0.73 (0.62-0.86)	Suggestive	NA
Morton 2014	BL	Lifetime (%>200 kg) alcohol	295	0.28 (0.12-0.70)	Weak	NA
Morton 2014	DLBCL	Lifetime (%>200 kg) alcohol	4667	0.64 (0.52-0.79)	Suggestive	NA
Morton 2014	NHL	Any beer	17471	0.90 (0.84-0.97)	Weak	NA
Morton 2014	PTCL	Any beer	584	0.61 (0.46-0.80)	Weak	NA
Morton 2014	DLBCL	Any beer	4667	0.84 (0.76-0.93)	Weak	NA
Morton 2014	NHL	Frequency (%>14 servings/week) beer	17471	0.83 (0.71-0.96)	Weak	NA
Morton 2014	PTCL	Frequency (%>14 servings/week) beer	584	0.49 (0.27-0.88)	Weak	NA
Morton 2014	DLBCL	Lifetime (%>200 kg) beer	4667	0.64 (0.46-0.87)	Weak	NA
Morton 2014	DLBCL	Frequency (%>14 servings/week) beer	4667	0.67 (0.55-0.83)	Suggestive	NA
Morton 2014	FL	Frequency (%>14 servings/week) beer	3530	0.78 (0.61-0.99)	Weak	NA
Morton 2014	NHL	Lifetime (%>200 kg) beer	17471	0.74 (0.58-0.94)	Suggestive	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	NHL	Any liquor	17471	0.84 (0.78-0.91)	Suggestive	NA
Morton 2014	MF/SS	Eczema	324	2.31 (1.68-3.17)	Weak	NA
Morton 2014	MF/SS	Any liquor	324	0.66 (0.47-0.92)	Weak	NA
Morton 2014	MZL	Any liquor	1052	0.71 (0.58-0.88)	Weak	NA
Morton 2014	DLBCL	Any liquor	4667	0.81 (0.73-0.90)	Suggestive	NA
Morton 2014	FL	Any liquor	3530	0.86 (0.76-0.97)	Weak	NA
Morton 2014	NHL	Frequency (%>=14 servings/week) any liquor	17471	0.77 (0.64-0.93)	Weak	NA
Morton 2014	MZL	Frequency (%>=14 servings/week) any liquor	1052	0.37 (0.19-0.70)	Weak	NA
Morton 2014	BL	Frequency (%>=14 servings/week) any liquor	295	0.33 (0.15-0.74)	Weak	NA
Morton 2014	DLBCL	Frequency (%>=14 servings/week) any liquor	4667	0.65 (0.50-0.84)	Weak	NA
Morton 2014	FL	Frequency (%>=23 servings/week) any liquor	3530	1.70 (1.15-2.52)	Weak	NA
Morton 2014	BL	Lifetime (%>200 kg) any liquor	295	0.15 (0.03-0.84)	Weak	NA
Morton 2014	DLBCL	Lifetime (%>200 kg) any liquor	4667	0.57 (0.41-0.79)	Suggestive	NA
Morton 2014	NHL	Any wine	17471	0.85 (0.79-0.91)	Suggestive	NA
Morton 2014	PTCL	Any wine	584	0.67 (0.52-0.86)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	MZL	Any wine	1052	0.64 (0.53-0.78)	Suggestive	NA
Morton 2014	BL	Any wine	295	0.69 (0.51-0.95)	Weak	NA
Morton 2014	DLBCL	Any wine	4667	0.81 (0.73-0.89)	Suggestive	NA
Morton 2014	FL	Any wine	3530	0.85 (0.76-0.95)	Weak	NA
Morton 2014	NHL	Frequency (%>=14 servings/week) wine	17471	0.81 (0.72-0.92)	Suggestive	NA
Morton 2014	PTCL	Frequency (%>=14 servings/week) wine	584	0.61 (0.39-0.95)	Weak	NA
Morton 2014	MZL	Frequency (%>=14 servings/week) wine	1052	0.45 (0.30-0.69)	Suggestive	NA
Morton 2014	BL	Frequency (%>=14 servings/week) wine	295	0.41 (0.23-0.73)	Weak	NA
Morton 2014	DLBCL	Frequency (%>=14 servings/week) wine	4667	0.67 (0.57-0.80)	Suggestive	NA
Morton 2014	BL	Lifetime (%>200 kg) any wine	295	0.17 (0.05-0.65)	Weak	NA
Morton 2014	DLBCL	Lifetime (%>200 kg) any wine	4667	0.52 (0.39-0.70)	Suggestive	NA
Morton 2014	PTCL	History of cigarette smoking (any vs. none)	584	1.32 (1.09-1.59)	Weak	NA
Morton 2014	CLL/SLL	History of cigarette smoking (any vs. none)	2440	0.90 (0.81-0.99)	Weak	NA
Morton 2014	FL	History of cigarette smoking (any vs. none)	3530	1.09 (1.00-1.18)	Weak	NA
Morton 2014	HCL	History of cigarette smoking (any vs. none)	154	0.51 (0.37-0.71)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	PTCL	Status (% current) cigarette smoking	584	1.46 (1.16-1.84)	Weak	NA
Morton 2014	CLL/SLL	Status (% current) cigarette smoking	2440	0.83 (0.73-0.94)	Weak	NA
Morton 2014	FL	Status (% current) cigarette smoking	3530	1.18 (1.06-1.31)	Weak	NA
Morton 2014	HCL	Years since quitting (%>15 years) cigarette smoking	154	0.40 (0.26-0.61)	Weak	NA
Morton 2014	HCL	Age at initiation (%<20 years) cigarette smoking	154	0.49 (0.30-0.81)	Weak	NA
Morton 2014	HCL	Frequency (%>20 years) cigarette smoking	154	0.23 (0.12-0.44)	Weak	NA
Morton 2014	HCL	Duration (%>=20 years) cigarette smoking	154	0.37 (0.22-0.62)	Weak	NA
Morton 2014	HCL	Packyears (%>20) cigarette smoking	154	0.30 (0.18-0.51)	Weak	NA
Morton 2014	HCL	Status (% current) cigarette smoking	154	0.37 (0.23-0.57)	Weak	NA
Morton 2014	PTCL	Years since quitting (%>15 years)	584	1.54 (1.23-1.94)	Weak	NA
Morton 2014	LPL/WM	Years since quitting (%>15 years) cigarette smoking	374	1.37 (1.01-1.85)	Weak	NA
Morton 2014	CLL/SLL	Years since quitting (%>15 years)	2440	0.82 (0.72-0.94)	Weak	NA
Morton 2014	FL	Years since quitting (%>15 years)	3530	1.17 (1.06-1.29)	Weak	NA
Morton 2014	PTCL	Age since initiation (% <20 years) cigarette smoking	584	1.29 (1.00-1.66)	Weak	NA
Morton 2014	LPL/WM	Age since initiation (% <20 years) cigarette smoking	374	1.38 (1.02-1.86)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Numb of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	FL	Age since initiation (% <20 years) cigarette smoking	3530	1.13 (1.02-1.26)	Weak	NA
Morton 2014	PTCL	Frequencey (%>20) cigarette smoking	584	1.60 (1.16-2.19)	Weak	NA
Morton 2014	CLL/SLL	Frequencey (%>20) cigarette smoking	2440	0.78 (0.66-0.93)	Weak	NA
Morton 2014	PTCL	Duration (%>=20 years) cigarette smoking	584	1.75 (1.33-2.30)	Weak	NA
Morton 2014	MZL	Duration (%>=20 years) cigarette smoking	1052	1.27 (1.03-1.57)	Weak	NA
Morton 2014	LPL/WM	Forestry worker	374	3.17 (1.08-9.31)	Weak	NA
Morton 2014	LPL/WM	Duration (%>=20 years) cigarette smoking	374	1.50 (1.10-2.04)	Weak	NA
Morton 2014	CLL/SLL	Duration (%>=20 years) cigarette smoking	2440	0.84 (0.74-0.96)	Weak	NA
Morton 2014	FL	Duration (%>=20 years) cigarette smoking	3530	1.19 (1.06-1.33)	Weak	NA
Morton 2014	PTCL	Packyears (%>20) cigarette smoking	584	1.67 (1.28-2.18)	Weak	NA
Morton 2014	CLL/SLL	Packyears (%>20) cigarette smoking	2440	0.80 (0.70-0.91)	Weak	NA
Morton 2014	FL	Packyears (%>20) cigarette smoking	3530	1.13 (1.01-1.27)	Weak	NA
Morton 2014	NHL	Frequency (%->12 times/year) personal hairdye use	17471	1.16 (1.00-1.35)	Weak	NA
Morton 2014	MZL	Frequency (%->12 times/year) personal hairdye use	1052	1.55 (1.05-2.29)	Weak	NA
Morton 2014	NHL	Duration of hairdye use (%>=20 years)	17471	1.18 (1.02-1.35)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	NHL	Any hairdye use <1980	17471	1.23 (1.06-1.42)	Weak	NA
Morton 2014	FL	Any hairdye use <1980	3530	1.32 (1.05-1.65)	Weak	NA
Morton 2014	NHL	Recreational hairdye use (%Q3-Q4 hours/week)	17471	0.74 (0.66-0.83)	Suggestive	NA
Morton 2014	NHL	Sun exposure (%Q3-Q4 hours/week)	17471	0.79 (0.68-0.91)	Weak	NA
Morton 2014	DLBCL	Sun exposure (%Q3-Q4 hours/week)	4667	0.79 (0.64-0.98)	Weak	NA
Morton 2014	NHL	Recreational sun exposure (%Q3-Q4 hours/week)	17471	0.74 (0.66-0.83)	Highly suggestive	NA
Morton 2014	DLBCL	Recreational sun exposure (%Q3-Q4 hours/week)	4667	0.75 (0.64-0.88)	Suggestive	NA
Morton 2014	FL	General unspecified laborer	3530	1.28 (1.06-1.55)	Weak	NA
Morton 2014	FL	Baker/miller	3530	0.51 (0.28-0.93)	Weak	NA
Morton 2014	FL	Recreational sun exposure (%Q3-Q4 hours/week)	3530	0.70 (0.58-0.84)	Suggestive	NA
Morton 2014	NHL	Socioeconomic status (% low)	17471	0.88 (0.83-0.93)	Suggestive	NA
Morton 2014	DLBCL	Socioeconomic status (% low)	4667	0.82 (0.76-0.90)	Suggestive	NA
Morton 2014	HCL	Socioeconomic status (% low)	154	1.72 (1.13-2.63)	Weak	NA
Morton 2014	PTCL	History of living or working on a farm	584	0.73 (0.55-0.95)	Weak	NA
Morton 2014	CLL/SLL	History of living or working on a farm	2440	1.21 (1.07-1.36)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	HCL	History of living or working on a farm	154	1.68 (1.04-2.71)	Weak	NA
Morton 2014	MCL	Ever lived on a farm	557	1.40 (1.03-1.90)	Weak	NA
Morton 2014	PTCL	Mixed/unspecified farmer	584	0.56 (0.31-0.98)	Weak	NA
Morton 2014	PTCL	Ever worked on a farm	584	0.68 (0.47-0.99)	Weak	NA
Morton 2014	MCL	Electonical/electronics worker	557	1.63 (1.09-2.44)	Weak	NA
Morton 2014	CLL/SLL	Farmer any type	2440	1.23 (1.04-1.45)	Weak	NA
Morton 2014	NHL	Animal farmer	17471	0.77 (0.63-0.94)	Weak	NA
Morton 2014	NHL	Field crop/vegetable farmer	17471	1.32 (1.06-1.61)	Weak	NA
Morton 2014	MF/SS	Lifetime liquor (>200 kg)	324	3.18 (1.44-7.05)	Weak	NA
Morton 2014	MF/SS	Field crop/vegetable farmer	324	2.80 (1.38-5.68)	Weak	NA
Morton 2014	DLBCL	Field crop/vegetable farmer	4667	1.48 (1.14-1.93)	Weak	NA
Morton 2014	CLL/SLL	Mixed/unspecified farmer	2440	1.31 (1.07-1.60)	Weak	NA
Morton 2014	HCL	Mixed/unspecified farmer	154	2.34 (1.36-4.01)	Weak	NA
Morton 2014	NHL	General farmer worked	17471	1.28 (1.10-1.50)	Weak	NA
Morton 2014	MF/SS	General farmer worked	324	2.07 (1.06-4.07)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2014	CLL/SLL	General farm worker	2440	1.46 (1.15-1.85)	Weak	NA
Morton 2014	NHL	Hairdresser	17471	1.34 (1.05-1.72)	Weak	NA
Morton 2014	DLBCL	Hairdresser	4667	1.49 (1.10-2.03)	Weak	NA
Morton 2014	CLL/SLL	Hairdresser	2440	1.77 (1.05-2.98)	Weak	NA
Morton 2014	NHL	Women’s hairdresser	17471	1.42 (1.07-1.89)	Weak	NA
Morton 2014	DLBCL	Women’s hairdresser	4667	1.63 (1.15-2.31)	Weak	NA
Morton 2014	CLL/SLL	Women’s hairdresser	2440	2.46 (1.31-4.62)	Weak	NA
Morton 2014	ALL	Leather worker	152	3.89 (1.34-11.33)	Weak	NA
Morton 2014	MF/SS	Painter	324	3.42 (1.81-6.47)	Weak	NA
Morton 2014	PTCL	Textile worker	584	1.55 (1.03-2.33)	Weak	NA
Morton 2014	DLBCL	Textile worker	4667	1.20 (1.02-1.41)	Weak	NA
Morton 2014	DLBCL	Welder/flamecutter	4667	1.33 (1.00-1.77)	Weak	NA
Morton 2005	NHL	Wine and beer	6492	0.85 (0.75-0.96)	Weak	NA
Morton 2005	NHL	Ever drinker vs. never drinker	6492	0.83 (0.76-0.89)	Suggestive	NA
Morton 2005	NHL	Wine and liquor	6492	0.79 (0.70-0.90)	Suggestive	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2005	NHL	Beer, wine, and liquor	6492	0.76 (0.68-0.84)	Highly suggestive	NA
Morton 2005	NHL	Frequency (1-6 servings per week vs. none) alcohol	6492	0.81 (0.74-0.88)	Suggestive	NA
Morton 2005	NHL	Frequency (7-13 servings per week vs. none) alcohol	6492	0.83 (0.74-0.92)	Suggestive	NA
Morton 2005	NHL	Frequency (14-27 servings per week vs. none)	6492	0.85 (0.76-0.95)	Weak	NA
Morton 2005	NHL	Frequency (>=28 servings per week vs. none)	6492	0.87 (0.76-0.99)	Weak	NA
Morton 2005	NHL	Beer	6492	0.85 (0.76-0.95)	Weak	NA
Morton 2005	NHL	Wine	6492	0.85 (0.74-0.99)	Weak	NA
Morton 2005	BL	Ever vs. non-drinker	111	0.51 (0.33-0.77)	Weak	NA
Morton 2005	BL	Current vs. non-drinker	111	0.29 (0.13-0.64)	Weak	NA
Morton 2005	DLBCL	Ever vs. non-drinker	2126	0.75 (0.66-0.84)	Suggestive	NA
Morton 2005	DLBCL	Current vs. non-drinker	2126	0.64 (0.53-0.77)	Suggestive	NA
Morton 2005	FL	Ever vs. non-drinker	1307	0.84 (0.73-0.97)	Weak	NA
Morton 2005	Other T-cell NHL	Ever vs. non-drinker	148	0.66 (0.45-0.98)	Weak	NA
Morton 2005	BL	Frequency (1-6 servings per week vs. none)	111	0.60 (0.37-0.96)	Weak	NA
Morton 2005	BL	Frequency (7-13 servings per week vs. none)	111	0.42 (0.21-0.85)	Weak	NA
Study	Outcome	Exposure	Numb of cases	Effect estimate (95% CI)	Classification of evidence	Model
---------------	---------	--	---------------	--------------------------	----------------------------	-------
Morton 2005	BL	Frequency (14-27 servings per week vs. none) drinking	111	0.41 (0.19-0.92)	Weak	NA
Morton 2005	BL	Frequency (>=28 servings per week vs. none) drinking	111	0.36 (0.14-0.89)	Weak	NA
Morton 2005	CLL/SLL	Frequency (1-6 servings per week vs. none) drinking	991	0.80 (0.65-0.99)	Weak	NA
Morton 2005	DLBCL	Frequency (1-6 servings per week vs. none) drinking	2126	0.76 (0.67-0.87)	Suggestive	NA
Morton 2005	DLBCL	Frequency (7-13 servings per week vs. none) drinking	2126	0.73 (0.62-0.85)	Suggestive	NA
Morton 2005	DLBCL	Frequency (14-27 servings per week vs. none) drinking	2126	0.73 (0.61-0.86)	Suggestive	NA
Morton 2005	DLBCL	Frequency (>=28 servings per week vs. none) drinking	2126	0.73 (0.60-0.90)	Weak	NA
Morton 2005	FL	Frequency (1-6 servings per week vs. none) drinking	1307	0.82 (0.70-0.96)	Weak	NA
Morton 2005	FL	Frequency (7-13 servings per week vs. none) drinking	1307	0.80 (0.65-0.98)	Weak	NA
Morton 2005	BL	Duration (21-30 years) drinking	111	0.24 (0.08-0.76)	Weak	NA
Morton 2005	BL	Duration (31-40 years) drinking	111	0.27 (0.07-0.99)	Weak	NA
Morton 2005	DLBCL	Duration (1-20 years) drinking	2126	0.72 (0.56-0.92)	Weak	NA
Morton 2005	DLBCL	Duration (21-30 years) drinking	2126	0.74 (0.57-0.94)	Weak	NA
Morton 2005	DLBCL	Duration (31-40 years) drinking	2126	0.72 (0.57-0.93)	Weak	NA
Morton 2005	DLBCL	Duration (>=41 years) drinking	2126	0.67 (0.53-0.85)	Suggestive	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2005	NHL	Hemolytic anemia (any vs. non)	12091	2.69 (1.68-4.30)	Weak	NA
Ekstrom 2008	NHL	Systemic lupus erythematosus (any vs. none)	3263	2.57 (1.27-5.21)	Weak	NA
Ekstrom 2008	NHL	Hemolytic anemia (any vs. non)	8230	6.56 (3.10-13.9)	Suggestive	NA
Ekstrom 2008	NHL	Primary sjogren's syndrom	8199	4.75 (1.79-12.6)	Weak	NA
Ekstrom 2008	NHL	Secondary sjogren's syndrome	8207	9.57 (2.90-31.6)	Suggestive	NA
Ekstrom 2008	DLBCL	Hemolytic anemia (any vs. non)	3364	2.74 (1.47-5.11)	Weak	NA
Ekstrom 2008	DLBCL	Systemic lupus erythematosus (any vs. none)	3364	2.74 (1.47-5.11)	Weak	NA
Ekstrom 2008	DLBCL	Sjogren's syndrome (any vs. none)	2368	8.92 (3.82-20.7)	Highly suggestive	NA
Ekstrom 2008	DLBCL	Primary sjogren's syndrom	2356	6.57 (2.12-20.3)	Weak	NA
Ekstrom 2008	DLBCL	Secondary sjogren's syndrome	2360	6.57 (2.12-20.3)	Weak	NA
Ekstrom 2008	FL	Sjogren's syndrome (any vs. none)	1801	3.91 (1.39-11.0)	Weak	NA
Ekstrom 2008	FL	Secondary sjogren's syndrome	1799	7.55 (1.75-32.7)	Weak	NA
Ekstrom 2008	CLL/SLL/PLL/MCL	Type 1 diabetes	1813	1.97 (1.00-3.88)	Weak	NA
Ekstrom 2008	MZL	Sjogren's syndrome (any vs. none)	411	30.6 (12.3-76.1)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Ekstrom 2008	MZL	Systemic lupus erythematosus (any vs. none)	593	7.52 (3.39-16.7)	Weak	NA
Ekstrom 2008	MZL	Primary sjorgen’s syndrome	404	23.1 (7.16-74.5)	Weak	NA
Ekstrom 2008	MZL	Secondary sjorgen’s syndrome	403	44.6 (10.6-187)	Weak	NA
Cerhan 2019	NHL	History of blood transfusion (any vs. none) white men	4599	0.74 (0.65-0.83)	Suggestive	NA
Cerhan 2019	NHL	Number of blood transfusions (One vs none) white men	4571	0.70 (0.60-0.81)	Suggestive	NA
Cerhan 2019	NHL	Age of 1st transfusion (21-30 years vs. none) white men	4599	0.61 (0.45-0.82)	Weak	NA
Cerhan 2019	NHL	Age of 1st transfusion (31-40 years vs. none) white men	4599	0.71 (0.51-0.97)	Weak	NA
Cerhan 2019	NHL	Age of 1st transfusion (41-50 years vs. none) white men	4599	0.68 (0.50-0.92)	Weak	NA
Cerhan 2019	NHL	Era first transfusion (<1970) white men	4501	0.77 (0.61-0.98)	Weak	NA
Cerhan 2019	NHL	Era first transfusion (1970s) white men	4501	0.58 (0.42-0.79)	Suggestive	NA
Cerhan 2019	NHL	Era first transfusion (1990+) white men	4501	0.66 (0.52-0.84)	Suggestive	NA
Cerhan 2019	NHL	Number of blood transfusions (two vs none) white women	4047	0.76 (0.63-0.92)	Weak	NA
Cerhan 2019	NHL	Age of 1st transfusion (31-40 years vs. none) white women	4061	0.78 (0.63-0.97)	Weak	NA
Cerhan 2019	NHL	Age of 1st transfusion (51-60 years vs. none) white women	4061	0.70 (0.50-0.97)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan 2019	FL	History of blood transfusion (any vs. none) white men	987	0.70 (0.56-0.88)	Weak	NA
Cerhan 2019	DLBCL	History of blood transfusion (any vs. none) white men	1395	0.72 (0.59-0.87)	Weak	NA
Cerhan 2019	CLL/SLL	History of blood transfusion (any vs. none) white men	684	0.67 (0.52-0.87)	Weak	NA
Cerhan 2019	FL	History of blood transfusion (any vs. none) white women	1094	0.77 (0.64-0.92)	Weak	NA
Morton 2005 (Cigarette smoking)	NHL	Status (% current) cigarette smoking	10351	1.10 (1.00-1.20)	Weak	NA
Morton 2005 (Cigarette smoking)	NHL	Intensity (11-20 cigarettes/d)	6393	1.12 (1.02-1.22)	Weak	NA
Morton 2005 (Cigarette smoking)	NHL	Intensity (21-30 cigarettes/d)	6393	1.19 (1.04-1.36)	Weak	NA
Morton 2005 (Cigarette smoking)	NHL	Duration (21-35 years) cigarette smoking	6570	1.12 (1.02-1.23)	Weak	NA
Morton 2005 (Cigarette smoking)	NHL	Duration (>=36 years) cigarette smoking	6570	1.16 (1.05-1.28)	Weak	NA
Morton 2005 (Cigarette smoking)	NHL	Pack-years (21-35) cigarette smoking	6373	1.14 (1.02-1.27)	Weak	NA
Morton 2005 (Cigarette smoking)	NHL	Pack-years (>=36) cigarette smoking	6373	1.21 (1.09-1.34)	Weak	NA
Morton 2005 (Cigarette smoking)	FL	Ever vs. never smoker	1452	1.15 (1.12-1.52)	Weak	NA
Morton 2005	FL	Status (% current) cigarette smoking	1452	1.31 (1.12-1.52)	Suggestive	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
(Cigarette smoking)						
Morton 2005 (Cigarette smoking)	FL	Age at initiation (% >-20 years) cigarette smoking	1452	1.24 (1.05-1.46)	Weak	NA
Morton 2005 (Cigarette smoking)	DLBCL	Intensity (21-30 cigarettes/d)	2211	1.27 (1.05-1.53)	Weak	NA
Morton 2005 (Cigarette smoking)	DLBCL	Pack-years (>=36) cigarette smoking	2211	1.24 (1.06-1.44)	Weak	NA
Morton 2005 (Cigarette smoking)	PTCL	Age at initiation (18-19 years vs. nonsmoker)	89	0.34 (0.12-0.96)	Weak	NA
Morton 2005 (Cigarette smoking)	PTCL	Pack-years (>=36) cigarette smoking	89	0.38 (0.15-0.97)	Weak	NA
Morton 2005 (Cigarette smoking)	MCL	Intensity (11-20 cigarettes/d)	185	0.63 (0.40-0.98)	Weak	NA
Morton 2005 (Cigarette smoking)	Other T-cell NHL	Years since quit cigarette smoking (>=31 vs. nonsmoker)	163	2.04 (1.14-3.65)	Weak	NA
Morton 2005 (Cigarette smoking)	FL	Intensity (11-20 cigarettes/d)	1452	1.25 (1.08-1.46)	Weak	NA
Morton 2005 (Cigarette smoking)	FL	Intensity (21-30 cigarettes/d)	1452	1.33 (1.06-1.67)	Weak	NA
Morton 2005 (Cigarette smoking)	FL	Duration (21-35 years) cigarette smoking	1452	1.21 (1.03-1.42)	Weak	NA
Morton 2005 (Cigarette smoking)	FL	Duration (>=36 years) cigarette smoking	1452	1.28 (1.08-1.53)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Morton 2005 (Cigarette smoking)	FL	Pack-years (>=36) cigarette smoking	1452	1.30 (1.08-1.56)	Weak	NA
De Sanjose 2008	NHL	HCV	4784	1.78 (1.40-2.25)	Suggestive	NA
De Sanjose 2008	DLBCL	HCV	1494	2.24 (1.68-2.99)	Highly suggestive	NA
De Sanjose 2008	LPL	HCV	144	2.57 (1.14-5.79)	Weak	NA
De Sanjose 2008	MZL	HCV	383	2.47 (1.44-4.23)	Weak	NA
De Sanjose 2008	Other B-cell lymphoma (small B-lymphocytic NOS, mediastinal large B-cell lymphoma, large B-cell immunoblastic, B-cell NOS, precursor B NHL, other B NHL, precursor B-lymphoblastic leukemia or lymphoma, hairy cell leukemia, and lymphoblastic lymphoma)	HCV	244	2.36 (1.11-5.01)	Weak	NA
Becker 2012	NHL	Childhood measles	5486	0.84 (0.76-0.93)	Suggestive	NA
Becker 2012	MZL	Childhood whooping cough/pertussis	4131	0.85 (0.78-0.93)	Suggestive	NA
Becker 2012	NHL	Adult infectious mononucleosis	12585	1.26 (1.01-1.57)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Becker 2012	CLL/SLL/PLL/MCL	Adult infectious mononucleosis	2142	1.71 (1.30-2.25)	Suggestive	NA
Becker 2012	T-cell	Adult infectious mononucleosis	703	1.41 (1.01-1.97)	Weak	NA
Becker 2012	PTCL	Adult infectious mononucleosis	361	1.72 (1.14-2.59)	Weak	NA
Mbulaiteye 2014	BL	Asthma (<50 years age)	113	0.35 (0.13-0.95)	Weak	Basic
Mbulaiteye 2014	BL	Number of blood transfusions (>=3 vs. no transfusion), <50 years age	79	6.46 (1.75-23.81)	Weak	Basic
Mbulaiteye 2014	BL	Lifetime alcohol consumed (>400 kg vs. nondrinker), >=50 years age	130	0.22 (0.06-0.86)	Weak	Basic
Mbulaiteye 2014	BL	Lifetime alcohol consumed (drinker, consumption unknown), >=50 years age	130	0.63 (0.40-0.98)	Weak	Basic
Mbulaiteye 2014	BL	Duration of employment as cleaner (1-10 years vs. never)	64	3.27 (1.24-8.60)	Weak	Basic
Mbulaiteye 2014	BL	Eczema with no other atopic conditions (<50 years age)	103	2.54 (1.20-5.40)	Weak	Final
Mbulaiteye 2014	BL	Usual adult height (Q4 vs. Q1, <50 years age)	94	2.17 (1.08-4.36)	Weak	Final
Mbulaiteye 2014	BL	Charworker cleaner or related work (<50 years age)	64	3.49 (1.13-10.7)	Weak	Final
Mbulaiteye 2014	BL	HCV (>=50 years)	31	4.19 (1.05-16.61)	Weak	Final
Mbulaiteye 2014	BL	Usual adult body mass index (25<30 Kg/m^2) (>=50 years age)	94	0.27 (0.08-0.98)	Weak	Final
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Mbulaiteye 2014	BL	Drinker (at least 1 drink per month vs. non-drinker)	94	0.63 (0.40-0.98)	Weak	Final
Wang 2014	PTCL	Celiac disease (any vs. none)	398	17.80 (8.61-36.79)	Weak	Full
Wang 2014	PTCL	Allergy	495	0.69 (0.54-0.87)	Weak	Full
Wang 2014	PTCL	Eczema	537	1.41 (1.07-1.85)	Weak	Full
Wang 2014	PTCL	Psoriasis (any vs. none)	301	1.97 (1.17-3.32)	Weak	Full
Wang 2014	PTCL	Duration of cigarette smoking (40+ years)	505	1.92 (1.41-2.62)	Weak	Full
Wang 2014	PTCL	Smoker, duration unknown	505	4.44 (2.14-9.25)	Weak	Full
Wang 2014	PTCL	Drinker (at least 1 drink per month vs. non-drinker)	368	0.64 (0.49-0.82)	Weak	Full
Wang 2014	PTCL	Electrical fitters	334	2.89 (1.41-5.95)	Weak	Full
Wang 2014	PTCL	Textile worker	328	1.58 (1.05-2.38)	Weak	Full
Wang 2014	PTCL	Ever lived or worked on a farm	363	0.72 (0.55-0.95)	Weak	Full
Wang 2014	PTCL-NOS	Celiac disease (any vs. none)	161	8.66 (1.97-38.1)	Weak	Full
Wang 2014	PTCL-NOS	Allergy	194	0.67 (0.46-0.98)	Weak	Full
Wang 2014	PTCL-NOS	Psoriasis (any vs. none)	139	2.41 (1.15-5.04)	Weak	Full
Wang 2014	PTCL-NOS	Duration of cigarette smoking (40+ years)	205	1.76 (1.14-2.72)	Weak	Full
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Wang 2014	PTCL-NOS	Smoker, duration unknown	205	3.61 (1.26-10.4)	Weak	Full
Wang 2014	PTCL-NOS	Drinker (at least 1 drink per month vs. non-drinker)	161	0.65 (0.45-0.93)	Weak	Full
Wang 2014	ALCL	Celiac disease (any vs. none)	110	16.59 (3.27-84.3)	Weak	Full
Wang 2014	ALCL	Duration of cigarette smoking (40+ years)	149	2.46 (1.30-4.65)	Weak	Full
Wang 2014	ALCL	Smoker, duration unknown	149	5.26 (1.31-21.1)	Weak	Full
Wang 2014	ALCL	Recreation sun exposure (Q4 (high) vs. Q1)	107	0.48 (0.26-0.88)	Weak	Full
Wang 2014	ALCL	Electrical fitters	68	4.08 (1.36-12.2)	Weak	Full
Wang 2014	ALCL	Textile worker	82	2.60 (1.21-5.58)	Weak	Full
Wang 2014	Angioimmunoblastic lymphoma	Electrical fitters	49	5.45 (1.20-24.7)	Weak	Full
Wang 2014	Primary cutaneous ALCL	Hay fever	29	6.38 (1.77-23.0)	Weak	Full
Wang 2014	Primary cutaneous ALCL	Celiac disease (any vs. none)	28	39.91 (3.15-506.4)	Weak	Full
Wang 2014	Primary cutaneous ALCL	Duration of cigarette smoking (1-19 years)	33	3.62 (1.13-11.55)	Weak	Full
Wang 2014	Primary cutaneous ALCL	Duration of cigarette smoking (40+ years)	33	5.82 (1.63-20.80)	Weak	Full
Wang 2014	Primary cutaneous ALCL	Smoker, duration unknown	33	16.37 (1.49-183.4)	Weak	Full
Wang 2014	PTCL-Cutaneous NOS	Asthma with allergy, hay fever, and/or eczema	17	10.2 (2.90-35.5)	Weak	Full
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Wang 2014	PTCL-Cutaneous NOS	Fire fighter	22	15.2 (2.69-85.7)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Duration (> =40 years) cigarette smoking	324	1.55 (1.04-2.31)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Usual adult body mass index (30-50 kg/m^2)	324	1.57 (1.03-2.40)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	B and T-cell activation	324	9.45 (1.80-49.60)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	History of eczema	324	2.38 (1.73-3.29)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Multiple myeloma	324	6.17 (2.39-15.91)	Weak	Basic
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Crop and vegetable farm workers	324	2.37 (1.14-4.92)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Painter	324	3.71 (1.94-7.07)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Woodworkers	324	2.20 (1.18-4.08)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	General carpenter	324	4.07 (1.54-10.75)	Weak	Full
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Physical activity (%>=vigorous)	324	0.50 (0.28-0.90)	Weak	Basic
Aschebrook-Kilfoy 2014	Mycosis fungoides and Sézary syndrome	Physical activity (%>=moderate)	324	0.46 (0.22-0.97)	Weak	Full
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Bracci 2014	MZL	Sjogren's syndrome (any vs. none)	606	38.38 (17.04-86.48)	Weak	NA
Bracci 2014	MZL	Systemic lupus erythematosus (any vs. none)	884	6.57 (3.11-13.86)	Weak	NA
Bracci 2014	MZL	B-cell activation	1017	5.74 (3.97-8.33)	Highly suggestive	NA
Bracci 2014	MZL	HCV	368	3.04 (1.65-5.60)	Weak	NA
Bracci 2014	MZL	Ulcer	810	1.56 (1.21-2.03)	Weak	NA
Bracci 2014	MZL	Asthma with out other atopy	852	1.42 (1.03-1.97)	Weak	NA
Bracci 2014	MZL	Recreational sun exposure (Q2 vs Q1 hours/week)	627	0.66 (0.52-0.84)	Weak	NA
Bracci 2014	MZL	Recreational sun exposure (Q3 vs Q1 hours/week)	627	0.78 (0.62-0.97)	Weak	NA
Bracci 2014	MZL	Recreational sun exposure (Q4 vs Q1 hours/week)	627	0.68 (0.54-0.85)	Weak	NA
Bracci 2014	MZL	Years since quit cigarette smoking (Former <5 years vs. nonsmoker)	863	1.62 (1.17-2.24)	Weak	NA
Bracci 2014	MZL	Years since quit cigarette smoking (Former unknown years)	863	3.24 (1.49-7.05)	Weak	NA
Bracci 2014	MZL	Any type of alcohol (Q1 vs nondrinker g/wk)	669	0.76 (0.59-0.98)	Weak	NA
Bracci 2014	MZL	Any type of alcohol (Q3 vs nondrinker g/wk)	669	0.60 (0.44-0.82)	Weak	NA
Bracci 2014	MZL	Any type of alcohol (Q4 vs nondrinker g/wk)	669	0.61 (0.42-0.88)	Weak	NA
Bracci 2014	MZL	Wine (Q2 vs. nondrinker g/wk)	669	0.62 (0.46-0.84)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Bracci 2014	MZL	Wine (Q3 vs. nondrinker g/wk)	669	0.60 (0.44-0.80)	Weak	NA
Bracci 2014	MZL	Wine (Q4 vs. nondrinker g/wk)	669	0.59 (0.37-0.95)	Weak	NA
Bracci 2014	MZL	Teacher	639	0.50 (0.35-0.70)	Weak	NA
Bracci 2014	MZL	General carpenter	599	2.34 (1.23-4.45)	Weak	NA
Bracci 2014	EMZL	Sjogren's syndrome (any vs. none)	377	40.25 (17.5-92.6)	Weak	NA
Bracci 2014	EMZL	Systemic lupus erythematosus (any vs. none)	553	8.44 (3.58-19.91)	Weak	NA
Bracci 2014	EMZL	B-cell activation	633	6.40 (4.24-9.68)	Weak	NA
Bracci 2014	EMZL	HCV	221	5.29 (2.48-11.28)	Weak	NA
Bracci 2014	EMZL	Ulcer	473	1.83 (1.35-2.49)	Weak	NA
Bracci 2014	EMZL	Years since quit cigarette smoking (Former <5 years vs. nonsmoker)	507	1.55 (1.03-2.33)	Weak	NA
Bracci 2014	EMZL	Years since quit cigarette smoking (Former unknown years)	507	3.58 (1.65-7.78)	Weak	NA
Bracci 2014	EMZL	Any type of alcohol (Q3 vs nondrinker g/wk)	379	0.55 (0.36-0.84)	Weak	NA
Bracci 2014	EMZL	Any type of alcohol (Q4 vs nondrinker g/wk)	379	0.48 (0.28-0.82)	Weak	NA
Bracci 2014	EMZL	Wine (Q2 vs. nondrinker g/wk)	344	0.61 (0.41-0.92)	Weak	NA
Bracci 2014	NMZL	Wine (Q3 vs. nondrinker g/wk)	89	0.65 (0.43-0.98)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Numb of cases	Effect estimate (95% CI)	Classification of evidence	Model
Bracci 2014	NMZL	Any type of alcohol (Q1 vs nondrinker g/wk)	104	0.50 (0.29-0.88)	Weak	NA
Bracci 2014	NMZL	Any type of alcohol (Q2 vs nondrinker g/wk)	104	0.41 (0.21-0.83)	Weak	NA
Bracci 2014	NMZL	Wine (Q1 vs. nondrinker g/wk)	89	0.38 (0.20-0.72)	Weak	NA
Bracci 2014	NMZL	Wine (Q2 vs. nondrinker g/wk)	89	0.37 (0.17-0.78)	Weak	NA
Bracci 2014	NMZL	Wine (Q3 vs. nondrinker g/wk)	89	0.45 (0.22-0.90)	Weak	NA
Bracci 2014	NMZL	Sjogren's syndrome (any vs. none)	89	141 (25.01-800)	Weak	NA
Bracci 2014	NMZL	Systemic lupus erythematosus (any vs. none)	65	9.24 (1.95-43.74)	Weak	NA
Bracci 2014	NMZL	B and T-cell activation	157	11.67 (1.33-103)	Weak	NA
Bracci 2014	NMZL	Metal worker	80	3.56 (1.67-7.58)	Weak	NA
Bracci 2014	SMZL	B-cell activation	140	4.25 (1.49-12.14)	Weak	NA
Bracci 2014	SMZL	Asthma no other atopy	130	2.28 (1.23-4.23)	Weak	NA
Bracci 2014	SMZL	General unspecified laborer	116	2.10 (1.15-3.84)	Weak	NA
Bracci 2014	SMZL	Teacher	116	0.33 (0.12-0.91)	Weak	NA
Bracci 2014	SMZL	Use hair dyes before 1980	32	14.85 (1.94-114)	Weak	NA
Bracci 2014	SMZL	Color of hairdye used (women only; light vs. never)	32	9.69 (2.12-44.34)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Bracci 2014	SMZL	Color of hairdye used (women only; dark vs. never)	32	5.30 (1.19-23.66)	Weak	NA
Bracci 2014	SMZL	Type of hairdye used (women only; permanent vs. never)	32	6.59 (1.54-28.17)	Weak	NA
Bracci 2014	SMZL	Physical activity (%>=vigor)	56	0.44 (0.22-0.90)	Weak	NA
Bracci 2014	SMZL	Ever used hairdye	32	6.54 (1.53-27.85)	Weak	NA
Smedby 2014	MCL	Any atopic disorder	540	0.74 (0.61-0.89)	Weak	NA
Smedby 2014	MCL	Allergy	486	0.79 (0.63-0.98)	Weak	NA
Smedby 2014	MCL	Allergy and asthma, hay fever, or eczema	486	0.68 (0.52-0.88)	Weak	NA
Smedby 2014	MCL	Hay fever	431	0.63 (0.48-0.82)	Weak	NA
Smedby 2014	MCL	Hay fever but no other atopic conditions	431	0.55 (0.33-0.93)	Weak	NA
Smedby 2014	MCL	Hay fever and asthma, allergy, or eczema	431	0.66 (0.49-0.89)	Weak	NA
Smedby 2014	MCL	Ever lived on a farm	201	1.40 (1.03-1.90)	Weak	NA
Smedby 2014	MCL	Divers: material handling equipment operators	286	3.05 (1.47-6.31)	Weak	NA
Smedby 2014	MCL	Electrical and electronics workers	286	1.63 (1.09-2.44)	Weak	NA
Vajdic 2014	LPL/WM	Sjogren's syndrome (any vs. none)	177	14.0 (3.60-54.5)	Weak	Full
Vajdic 2014	LPL/WM	Systemic lupus erythematous (any vs. none)	274	8.23 (2.69-25.2)	Weak	Full
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Vajdic 2014	LPL/WM	HCV	207	2.51 (1.03-6.17)	Weak	Full
Vajdic 2014	LPL/WM	B-cell activation	374	2.78 (1.43-5.43)	Weak	Basic
Vajdic 2014	LPL/WM	Hay fever	282	0.73 (0.44-0.99)	Weak	Full
Vajdic 2014	LPL/WM	Usual adult weight (Q2 vs Q1)	324	0.71 (0.51-0.99)	Weak	Full
Vajdic 2014	LPL/WM	Usual adult weight (Q3 vs Q1)	324	0.72 (0.53-0.98)	Weak	Full
Vajdic 2014	LPL/WM	Usual adult weight (Q4 vs Q1)	324	0.61 (0.44-0.85)	Weak	Full
Vajdic 2014	LPL/WM	Duration (>=40 years) cigarette smoking	306	1.46 (1.04-2.05)	Weak	Full
Vajdic 2014	LPL/WM	Age started smoking cigarettes (>=20 years vs. nonsmoker)	306	1.45 (1.05-2.00)	Weak	Basic
Vajdic 2014	LPL/WM	Medical doctor	183	5.54 (2.19-14.0)	Weak	Full
Linet 2014	FL	Sjogren's syndrome (any vs. none)	1494	3.37 (1.23-9.19)	Weak	NA
Linet 2014	FL	Any atopic disorder	3452	0.87 (0.80-0.94)	Suggestive	NA
Linet 2014	FL	Allergy	2493	0.88 (0.79-0.98)	Weak	NA
Linet 2014	FL	Food allergy	2351	0.79 (0.67-0.94)	Weak	NA
Linet 2014	FL	Astma	3154	0.85 (0.74-0.97)	Weak	NA
Linet 2014	FL	Hay fever	2607	0.82 (0.73-0.91)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Linet 2014	FL	Blood transfusion, Male	1097	0.74 (0.59-0.92)	Weak	NA
Linet 2014	FL	Blood transfusion, Female	1216	0.80 (0.68-0.95)	Weak	NA
Linet 2014	FL	BMI as young adult (kg/m^2) continuous, Female	1745	1.25 (1.09-1.44)	Weak	NA
Linet 2014	FL	Physical activity (Mild), Female	594	1.53 (1.02-2.30)	Weak	NA
Linet 2014	FL	Recreational sun exposure (Q2 vs Q1 hours/week), Male	825	0.77 (0.61-0.96)	Weak	NA
Linet 2014	FL	Recreational sun exposure (Q3 vs Q1 hours/week), Male	825	0.74 (0.58-0.93)	Weak	NA
Linet 2014	FL	Recreational sun exposure (Q4 vs Q1 hours/week), Male	825	0.77 (0.62-0.95)	Weak	NA
Linet 2014	FL	Spray-painter (except construction), Male	803	3.83 (1.87-7.84)	Weak	NA
Linet 2014	FL	University and higher education teachers, Male	972	0.53 (0.31-0.90)	Weak	NA
Linet 2014	FL	History of cigarettte smoking (any vs. none), Female	1506	1.22 (1.09-1.37)	Suggestive	NA
Linet 2014	FL	Drinker (at least 1 drink per month vs. non-drinker), Female	1034	0.79 (0.68-0.91)	Weak	NA
Linet 2014	FL	Recreational sun exposure (Q2 vs Q1 hours/week), Female	1016	0.77 (0.64-0.93)	Weak	NA
Linet 2014	FL	Recreational sun exposure (Q3 vs Q1 hours/week), Female	1016	0.78 (0.64-0.95)	Weak	NA
Linet 2014	FL	Recreational sun exposure (Q4 vs Q1 hours/week), Female	1016	0.70 (0.58-0.85)	Suggestive	NA
Linet 2014	FL	Blood transfusion	2313	0.78 (0.68-0.89)	Suggestive	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Linet 2014	FL	Blood transfusion 1 vs none	2313	0.83 (0.71-0.97)	Weak	NA
Linet 2014	FL	Blood transfusion 2 vs none	2313	0.63 (0.46-0.86)	Weak	NA
Linet 2014	FL	Number of years from 1st blood transfusion to date of diagnosis/interview (<20 years)	2313	0.77 (0.63-0.94)	Weak	NA
Linet 2014	FL	Number of years from 1st blood transfusion to date of diagnosis/interview (20-39 years)	2313	0.76 (0.62-0.93)	Weak	NA
Linet 2014	FL	Blood transfusion <1990	2313	0.83 (0.71-0.96)	Weak	NA
Linet 2014	FL	Blood transfusion after 1990	2313	0.62 (0.45-0.86)	Weak	NA
Linet 2014	FL	BMI as young adult (25-<30 kg/m^2)	929	1.49 (1.21-1.83)	Suggestive	NA
Linet 2014	FL	BMI as young adult (kg/m^2) continuous (5 kg/m^2 increase)	929	1.21 (1.09-1.35)	Weak	NA
Linet 2014	FL	Usual adult height (Q4 vs. Q1)	2662	1.15 (1.02-1.30)	Weak	NA
Linet 2014	FL	Physical activity (mild vs. no)	1026	1.41 (1.04-1.91)	Weak	NA
Linet 2014	FL	Status (% current) cigarette smoking	3013	1.19 (1.07-1.32)	Weak	NA
Linet 2014	FL	Age started smoking cigarettes regularly (14-17 years)	3013	1.12 (1.01-1.25)	Weak	NA
Linet 2014	FL	Frequency of cigarette smoking (11-20 per day)	3013	1.13 (1.02-1.25)	Weak	NA
Linet 2014	FL	Duration (>=40 years) cigarette smoking	3013	1.18 (1.04-1.35)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Linet 2014	FL	Pack-years (21-35) cigarette smoking	3013	1.18 (1.04-1.34)	Weak	NA
Linet 2014	FL	Drinker (at least 1 drink per month vs. non-drinker)	2106	0.86 (0.77-0.96)	Weak	NA
Linet 2014	FL	Alcohol consumption status (Drinker status unknown vs. nondrinker)	2106	0.81 (0.69-0.95)	Weak	NA
Linet 2014	FL	Duration of alcohol consumption (Drinker duration unknown vs. nondrinker)	2106	0.80 (0.69-0.93)	Weak	NA
Linet 2014	FL	Servings of alcohol per week as an adult (1-6 drinks/week vs. nondrinker)	2106	0.85 (0.75-0.97)	Weak	NA
Linet 2014	FL	Servings of alcohol per week as an adult (7-13 drinks/week vs. nondrinker)	2106	0.84 (0.72-0.99)	Weak	NA
Linet 2014	FL	Servings of alcohol per week as an adult (>=28 drinks/week vs. nondrinker)	2106	0.78 (0.64-0.96)	Weak	NA
Linet 2014	FL	Servings of alcohol per week as an adult (Drinker drinks/week unknown vs. nondrinker)	2106	3.00 (1.25-7.23)	Weak	NA
Linet 2014	FL	Grams of ethanol per week as adult (Q1 vs nondrinker)	2106	0.79 (0.68-0.92)	Weak	NA
Linet 2014	FL	Grams of ethanol per week as adult (Q2 vs nondrinker)	2106	0.83 (0.71-0.97)	Weak	NA
Linet 2014	FL	Grams of ethanol per week as adult (Q4 vs nondrinker)	2106	0.79 (0.66-0.94)	Weak	NA
Linet 2014	FL	Lifetime alcohol consumption (1-100 kg vs nondrinker)	2106	0.75 (0.60-0.93)	Weak	NA
Linet 2014	FL	Lifetime alcohol consumption (101-	2106	0.68 (0.51-0.91)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classificat ion of evidence	Model
Linet 2014	FL	200 kg vs nondrinker	1235	0.83 (0.69-0.99)	Weak	NA
Linet 2014	FL	Total sun exposure (Q2 vs Q1 hours/week)	1235	0.82 (0.69-0.99)	Weak	NA
Linet 2014	FL	Total sun exposure (Q4 vs Q1 hours/week)	1841	0.77 (0.67-0.90)	Suggestive	NA
Linet 2014	FL	Total sun exposure (Q3 vs Q1 hours/week)	1841	0.74 (0.65-0.89)	Suggestive	NA
Linet 2014	FL	Recreational sun exposure (Q2 vs Q1 hours/week)	1841	0.77 (0.66-0.89)	Suggestive	NA
Linet 2014	FL	Recreational sun exposure (Q4 vs Q1 hours/week)	1841	0.74 (0.65-0.86)	Suggestive	NA
Linet 2014	FL	Recreational sun exposure (Q3 vs Q1 hours/week)	1841	0.74 (0.65-0.89)	Suggestive	NA
Linet 2014	FL	Bakers and millers	2144	0.51 (0.28-0.93)	Weak	NA
Linet 2014	FL	Spray-painter (except construction)	1790	2.66 (1.36-5.34)	Weak	NA
Linet 2014	FL	University and higher education teachers	2141	0.58 (0.41-0.83)	Suggestive	NA
Cerhan 2014	DLBCL	Sjogren's syndrome (any vs. none)	2299	9.35 (4.20-20.86)	Highly suggestive	Basic
Cerhan 2014	DLBCL	Systemic lupus erythematosus (any vs. none)	3905	2.53 (1.44-4.43)	Weak	Basic
Cerhan 2014	DLBCL	Hemolytic anemia (any vs. non)	1390	2.72 (1.13-6.57)	Weak	Basic
Cerhan 2014	DLBCL	Celiac disease (any vs. none)	2331	2.14 (1.07-4.28)	Weak	Basic
Cerhan 2014	DLBCL	Rheumatoid arthritis (any vs. none)	2642	1.94 (1.35-2.79)	Suggestive	Basic
Cerhan 2014	DLBCL	Allergy	3215	0.82 (0.74-0.90)	Suggestive	Basic
Cerhan 2014	DLBCL	Asthma	4224	0.87 (0.77-0.98)	Weak	Basic
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan	DLBCL	Hay fever	3355	0.78 (0.70-0.86)	Suggestive	Basic
Cerhan	DLBCL	Age at first blood transfusion	3065	0.69 (0.54-0.88)	Weak	Basic
Cerhan	DLBCL	Total number of blood transfusions (2+ vs none)	3065	0.70 (0.53-0.92)	Weak	Basic
Cerhan	DLBCL	Total number of blood transfusions unknown	3065	0.44 (0.20-0.96)	Weak	Basic
Cerhan	DLBCL	Number of years from 1st blood transfusion to date of diagnosis/interview (<20 years)	3065	0.83 (0.70-0.98)	Weak	Basic
Cerhan	DLBCL	Transfusions before 1990	3065	0.87 (0.76-0.99)	Weak	Basic
Cerhan	DLBCL	Usual adult height (Q4 vs Q1)	3509	1.12 (1.01-1.25)	Weak	Basic
Cerhan	DLBCL	Usual adult weight (Q4 vs Q1)	3509	1.20 (1.07-1.33)	Weak	Basic
Cerhan	DLBCL	Usual adult body mass index (15-<18.5 vs. 18.5-<22.5)	3509	0.60 (0.41-0.88)	Weak	Basic
Cerhan	DLBCL	Usual adult body mass index (35-50 vs. 18.5-<22.5)	3509	1.26 (1.04-1.53)	Weak	Basic
Cerhan	DLBCL	Smoking status as of ~1 year before diagnosis/interview (status unknown vs. nonsmoker)	4139	1.26 (1.01-1.57)	Weak	Basic
Cerhan	DLBCL	Frequency of cigarette smoking (21-30 cigarettes/day vs. nonsmoker)	4139	1.17 (1.01-1.35)	Weak	Basic
Cerhan	DLBCL	Smoker, duration unknown	4139	1.42 (1.04-1.95)	Weak	Basic
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan 2014	DLBCL	Years since quit cigarette smoking (Former unknown years)	3993	2.20 (1.65-2.95)	Highly suggestive	Basic
Cerhan 2014	DLBCL	History of alcohol consumption (>=1 drink/month v. nondrinker)	3034	0.81 (0.73-0.89)	Suggestive	Basic
Cerhan 2014	DLBCL	Alcohol consumption status as of ~2 years prior to diagnosis/interview (current drinker vs. nondrinker)	3034	0.71 (0.63-0.80)	Highly suggestive	Basic
Cerhan 2014	DLBCL	Age first alcohol consumption (20-29 years vs. nondrinker)	3034	0.71 (0.62-0.82)	Highly suggestive	Basic
Cerhan 2014	DLBCL	Duration of alcohol consumption (1-20 years vs. nondrinker)	3034	0.79 (0.65-0.95)	Weak	Basic
Cerhan 2014	DLBCL	Duration of alcohol consumption (21-30 years vs. nondrinker)	3034	0.60 (0.60-0.91)	Weak	Basic
Cerhan 2014	DLBCL	Duration of alcohol consumption (30-39 years vs. nondrinker)	3034	0.82 (0.68-0.99)	Weak	Basic
Cerhan 2014	DLBCL	Duration of alcohol consumption (40+ years vs. nondrinker)	3034	0.71 (0.60-0.85)	Suggestive	Basic
Cerhan 2014	DLBCL	Duration of alcohol consumption (Drinker duration unknown vs. nondrinker)	3034	0.86 (0.75-0.98)	Weak	Basic
Cerhan 2014	DLBCL	Servings of alcohol per week as an adult (1-6 drinks/week vs. nondrinker)	3034	0.81 (0.73-0.91)	Weak	Basic
Cerhan 2014	DLBCL	Servings of alcohol per week as an adult (7-13 drinks/week vs. nondrinker)	3034	0.76 (0.67-0.87)	Suggestive	Basic
Cerhan 2014	DLBCL	Servings of alcohol per week as an adult (14-27 drinks/week vs. nondrinker)	3034	0.77 (0.67-0.89)	Suggestive	Basic
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan 2014	DLBCL	Servings of alcohol per week as an adult (>=28 drinks/week vs. nondrinker)	3034	0.77 (0.66-0.90)	Suggestive	Basic
Cerhan 2014	DLBCL	Servings of beer per week as an adult (<1 drinks/week vs. nondrinker)	3034	0.80 (0.69-0.92)	Weak	Basic
Cerhan 2014	DLBCL	Servings of beer per week as an adult (1-6 drinks/week vs. nondrinker)	3034	0.82 (0.72-0.94)	Weak	Basic
Cerhan 2014	DLBCL	Servings of beer per week as an adult (7-13 drinks/week vs. nondrinker)	3034	0.75 (0.62-0.92)	Weak	Basic
Cerhan 2014	DLBCL	Servings of liquor per week as an adult (<1 drinks/week vs. nondrinker)	3034	0.71 (0.62-0.82)	Suggestive	Basic
Cerhan 2014	DLBCL	Servings of liquor per week as an adult (1-6 drinks/week vs. nondrinker)	3034	0.78 (0.67-0.90)	Weak	Basic
Cerhan 2014	DLBCL	Servings of wine per week as an adult (1-6 drinks/week vs. nondrinker)	3034	0.75 (0.66-0.85)	Suggestive	Basic
Cerhan 2014	DLBCL	Servings of wine per week as an adult (7-13 drinks/week vs. nondrinker)	3034	0.70 (0.58-0.83)	Suggestive	Basic
Cerhan 2014	DLBCL	Servings of wine per week as an adult (14-27 drinks/week vs. nondrinker)	3034	0.78 (0.65-0.93)	Weak	Basic
Cerhan 2014	DLBCL	Servings of wine per week as an adult (>=28 drinks/week vs. nondrinker)	3034	0.75 (0.61-0.92)	Weak	Basic
Cerhan 2014	DLBCL	Grams of ethanol per week as adult (Q1 vs nondrinker)	3034	0.84 (0.75-0.96)	Weak	Basic
Cerhan 2014	DLBCL	Grams of ethanol per week as adult (Q2 vs nondrinker)	3034	0.79 (0.70-0.90)	Suggestive	Basic
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan 2014	DLBCL	Grams of ethanol per week as adult (Q3 vs nondrinker)	3034	0.77 (0.68-0.88)	Suggestive	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult (Q4 vs nondrinker)	3034	0.78 (0.67-0.90)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult , Beer (Q1 vs nondrinker)	3034	0.80 (0.69-0.92)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, beer (Q2 vs nondrinker)	3034	0.78 (0.66-0.91)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, beer (Q4 vs nondrinker)	3034	0.75 (0.63-0.88)	Weak	Basi c
Cerhan 2014	DLBCL	Drinker, wine & liquor (no beer)	3034	0.81 (0.72-0.91)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult , wine (Q1 vs nondrinker)	3034	0.78 (0.68-0.90)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, wine (Q2 vs nondrinker)	3034	0.78 (0.68-0.90)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, wine (Q3 vs nondrinker)	3034	0.75 (0.65-0.86)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, wine (Q4 vs nondrinker)	3034	0.78 (0.66-0.91)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, liquoe (Q1 vs nondrinker)	3034	0.70 (0.59-0.83)	Suggestive	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, liquor (Q2 vs nondrinker)	3034	0.79 (0.67-0.93)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, liquor (Q3 vs nondrinker)	3034	0.74 (0.62-0.89)	Weak	Basi c
Cerhan 2014	DLBCL	Grams of ethanol per week as adult, liquor (Q4 vs nondrinker)	3034	0.81 (0.68-0.98)	Weak	Basi c
Cerhan 2014	DLBCL	Drinker, wine & beer (no liquor)	3034	0.84 (0.76-0.94)	Weak	Basi c
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan 2014	DLBCL	Lifetime beer consumption (1-100 kg vs. nondrinker)	3034	0.78 (0.66-0.92)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime wine consumption (201-400 kg vs. nondrinker)	3034	0.63 (0.44-0.91)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime wine consumption (unknown vs. nondrinker)	3034	0.82 (0.72-0.93)	Weak	Basic
Cerhan 2014	DLBCL	Drinker, wine, & liquor (no beer)	3034	0.81 (0.72-0.93)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime liquor consumption (1-100 kg vs. nondrinker)	3034	0.74 (0.62-0.89)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime liquor consumption (201-400 kg vs. nondrinker)	3034	0.67 (0.47-0.94)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime liquor consumption (unknown vs. nondrinker)	3034	0.79 (0.69-0.89)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime wine consumption (1-100 kg vs. nondrinker)	3034	0.74 (0.53-0.86)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime wine consumption (101-200 kg vs. nondrinker)	3034	0.70 (0.53-0.92)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime wine consumption (201-400 kg vs. nondrinker)	3034	0.71 (0.52-0.98)	Weak	Basic
Cerhan 2014	DLBCL	Lifetime wine consumption (400+ kg vs. nondrinker)	3034	0.56 (0.40-0.79)	Suggestive	Basic
Cerhan 2014	DLBCL	Lifetime wine consumption (unknown vs. nondrinker)	3034	0.83 (0.74-0.94)	Weak	Basic
Cerhan 2014	DLBCL	Color of hair dye used (unknown vs. never)	1155	1.41 (1.07-1.87)	Weak	Basic
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan 2014	DLBCL	Drivers: material handling equipment	3064	1.56 (1.03-2.37)	Weak	Basic
Cerhan 2014	DLBCL	Cleaners and related workers	3064	1.27 (1.03-1.57)	Weak	Basic
Cerhan 2014	DLBCL	Hairdresser	3066	1.49 (1.10-2.03)	Weak	Basic
Cerhan 2014	DLBCL	Textile worker	3066	1.20 (1.02-1.41)	Weak	Basic
Cerhan 2014	DLBCL	Fiber preparers	1645	2.21 (1.21-4.03)	Weak	Basic
Cerhan 2014	DLBCL	Socioeconomic status (medium vs. low)	4667	0.88 (0.81-0.95)	Weak	Final
Cerhan 2014	DLBCL	Socioeconomic status (high vs. low)	4667	0.86 (0.79-0.94)	Suggestive	Final
Cerhan 2014	DLBCL	B-cell activation	4546	2.36 (1.80-3.09)	Highly suggestive	Final
Cerhan 2014	DLBCL	B and T-cell activation	4546	4.86 (2.31-10.25)	Suggestive	Final
Cerhan 2014	DLBCL	Any atopic disorder	4577	0.82 (0.76-0.89)	Suggestive	Final
Cerhan 2014	DLBCL	HCV	2382	2.02 (1.47-2.76)	Suggestive	Final
Cerhan 2014	DLBCL	Blood transfusion	3264	0.81 (0.72-0.91)	Suggestive	Final
Cerhan 2014	DLBCL	BMI as young adult (25-<30 kg/m^2)	3645	1.47 (1.22-1.77)	Suggestive	Final
Cerhan 2014	DLBCL	BMI as young adult (30-50 kg/m^2)	3645	1.58 (1.12-2.23)	Weak	Final
Cerhan 2014	DLBCL	Lifetime alcohol consumption (1-100 kg vs nondrinker)	4124	0.80 (0.68-0.95)	Weak	Final
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Cerhan 2014	DLBCL	Lifetime alcohol consumption (101-200 kg vs nondrinker)	4124	0.79 (0.63-0.98)	Weak	Final
Cerhan 2014	DLBCL	Lifetime alcohol consumption (201-400 kg vs nondrinker)	4124	0.66 (0.53-0.83)	Suggestive	Final
Cerhan 2014	DLBCL	Lifetime alcohol consumption (unknown)	4124	0.87 (0.77-0.97)	Weak	Final
Cerhan 2014	DLBCL	Recreational sun exposure (Q3 vs Q1 hours/week)	2863	0.79 (0.69-0.90)	Suggestive	Final
Cerhan 2014	DLBCL	Recreational sun exposure (Q4 vs Q1 hours/week)	2863	0.78 (0.69-0.89)	Suggestive	Final
Cerhan 2014	DLBCL	Field crop/vegetable farmer	2765	1.49 (1.14-1.95)	Weak	Final
Cerhan 2014	DLBCL	Sewer and embroiderer	3086	1.43 (1.10-1.87)	Weak	Final
Cerhan 2014	DLBCL	Women's hairdresser	2983	1.61 (1.13-2.31)	Weak	Final
Monnere au 2014	HCL	Lifetime cigarette exposure (11-20 pack-years vs. nonsmoker)	120	0.56 (0.34-0.95)	Weak	Final
Monnere au 2014	HCL	Lifetime cigarette exposure (21-35 pack-years vs. nonsmoker)	120	0.48 (0.28-0.83)	Weak	Final
Monnere au 2014	HCL	Lifetime cigarette exposure (>35 pack-years)	120	0.29 (0.14-0.58)	Weak	Final
Monnere au 2014	HCL	Ever lived on a farm	46	1.70 (1.02-2.82)	Weak	Final
Monnere au 2014	HCL	Height (Q3 vs. Q1)	110	2.40 (1.23-4.70)	Weak	Final
Monnere au 2014	HCL	Height (Q4 vs. Q1)	110	2.59 (1.32-5.07)	Weak	Final
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
Monnere au 2014	HCL	History of cigarette smoking (any vs. none)	154	0.51 (0.37-0.71)	Weak	Basic
Monnere au 2014	HCL	Status (% current) cigarette smoking	154	0.34 (0.21-0.55)	Weak	Basic
Monnere au 2014	HCL	Age started smoking cigarettes regularly (14-17 years)	148	0.46 (0.30-0.72)	Weak	Basic
Monnere au 2014	HCL	Age started smoking cigarettes regularly (18-19 years)	148	0.48 (0.25-0.91)	Weak	Basic
Monnere au 2014	HCL	Frequency of cigarette smoking (11-20 per day)	154	0.49 (0.32-0.75)	Weak	Basic
Monnere au 2014	HCL	Frequency of cigarette smoking (21-30 per day)	154	0.34 (0.13-0.85)	Weak	Basic
Monnere au 2014	HCL	Frequency of cigarette smoking (>30 per day)	154	0.22 (0.07-0.71)	Weak	Basic
Monnere au 2014	HCL	Duration of cigarette smoking (21-30 years)	154	0.39 (0.22-0.69)	Weak	Basic
Monnere au 2014	HCL	Duration of cigarette smoking (30-39 years)	154	0.44 (0.25-0.78)	Weak	Basic
Monnere au 2014	HCL	Duration of cigarette smoking (40+ years)	154	0.49 (0.27-0.91)	Weak	Basic
Monnere au 2014	HCL	Lifetime cigarette exposure (continuous)	154	0.98 (0.96-0.99)	Weak	Basic
Monnere au 2014	HCL	Ever worked as a mixed animal and crop farmer	91	2.34 (1.36-4.01)	Weak	Basic
Monnere au 2014	HCL	Duration as mixed animal and crop farmer (10 years+ vs. never)	91	2.98 (1.50-5.93)	Weak	Basic
Kane 2012	FL	Years since last child (<10 years)	4901	1.87 (1.02-3.40)	Weak	NA
Kane 2012	FL	Contraception among women born in 1925 or later	5138	1.30 (1.04-1.63)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
tMannetje 2016	NHL	Charworkers, cleaners and related	10046	1.17 (1.01-1.36)	Weak	NA
tMannetje 2016	NHL	Railway-engine drivers and firemen	10046	0.45 (0.22-0.94)	Weak	NA
tMannetje 2016	NHL	Vehicle electrician	10046	2.58 (1.20-5.55)	Weak	NA
tMannetje 2016	NHL	Other motor-vehicle drivers	10046	0.65 (0.46-0.92)	Weak	NA
tMannetje 2016	NHL	Field crop/vegetable farmer	10046	1.26 (1.05-1.51)	Weak	NA
tMannetje 2016	NHL	Field crop farm worker general	10046	1.38 (1.07-1.77)	Weak	NA
tMannetje 2016	NHL	General farmer worked	10046	1.19 (1.03-1.37)	Weak	NA
tMannetje 2016	NHL	Women’s hairdresser	10046	1.34 (1.02-1.74)	Weak	NA
tMannetje 2016	NHL	Medical assistants	10046	0.69 (0.50-0.95)	Weak	NA
tMannetje 2016	NHL	Spray-painter (except construction)	10046	2.07 (1.30-3.29)	Weak	NA
tMannetje 2016	NHL	Teachers	10046	0.89 (0.81-0.98)	Weak	NA
tMannetje 2016	NHL	University and higher education teachers	10046	0.75 (0.61-0.90)	Weak	NA
tMannetje 2016	NHL	Secondary education teachers	10046	0.82 (0.69-0.98)	Weak	NA
tMannetje 2016	NHL	Head teacher	10046	2.16 (1.15-4.06)	Weak	NA
tMannetje 2016	NHL	Other teachers	10046	0.63 (0.40-0.98)	Weak	NA
Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
---------------	---------	---	-----------------	--------------------------	----------------------------	-------
tMannetje 2016	NHL	Milliners and hatmakers	10046	2.46 (1.28-4.74)	Weak	NA
tMannetje 2016	NHL	Carpenter, general	10046	1.42 (1.04-1.93)	Weak	NA
tMannetje 2016	DLBCL	Charworkers, cleaners and related		1.27 (1.03-1.58)	Weak	NA
tMannetje 2016	DLBCL	Field crop/vegetable farmer		1.50 (1.15-1.97)	Weak	NA
tMannetje 2016	DLBCL	Field crop farm worker general		1.48 (1.01-2.17)	Weak	NA
tMannetje 2016	DLBCL	Hairdresser		1.47 (1.08-2.00)	Weak	NA
tMannetje 2016	DLBCL	Women's hairdresser		1.60 (1.13-2.27)	Weak	NA
tMannetje 2016	DLBCL	Medical workers		0.85 (0.72-0.99)	Weak	NA
tMannetje 2016	DLBCL	Metal melters and reheaters		2.31 (1.01-5.26)	Weak	NA
tMannetje 2016	DLBCL	Special education teachers		1.94 (1.01-3.71)	Weak	NA
tMannetje 2016	DLBCL	Textile worker		1.19 (1.01-1.41)	Weak	NA
tMannetje 2016	DLBCL	Milliners and hatmakers		2.90 (1.30-6.45)	Weak	NA
tMannetje 2016	DLBCL	Sewer and embroiderer		1.51 (1.16-1.96)	Weak	NA
tMannetje 2016	FL	Bakers and millers	2140	0.54 (0.30-0.99)	Weak	NA
tMannetje 2016	FL	Spray-painter (except construction)	2140	2.67 (1.36-5.25)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
tMannetje 2016	FL	University and higher education teachers	2140	0.62 (0.44-0.89)	Weak	NA
tMannetje 2016	CLL/SLL	Farmer-animal	1014	0.63 (0.42-0.96)	Weak	NA
tMannetje 2016	CLL/SLL	Farmers-mix and unspecified	1014	1.30 (1.06-1.60)	Weak	NA
tMannetje 2016	CLL/SLL	General farm worker	1014	1.44 (1.13-1.84)	Weak	NA
tMannetje 2016	CLL/SLL	Hairdresser	1014	1.79 (1.06-3.03)	Weak	NA
tMannetje 2016	CLL/SLL	Women's hairdresser	1014	2.69 (1.43-5.06)	Weak	NA
tMannetje 2016	CLL/SLL	Printing pressmen	1014	6.52 (2.79-15.21)	Suggestive	NA
tMannetje 2016	CLL/SLL	Preprimary education teachers	1014	2.00 (1.04-3.87)	Weak	NA
tMannetje 2016	CLL/SLL	Carpenter, general	1014	2.10 (1.08-4.09)	Weak	NA
tMannetje 2016	PTCL	Electric fitters	652	2.02 (1.03-3.97)	Weak	NA
tMannetje 2016	PTCL	Metal workers	652	0.66 (0.45-0.99)	Weak	NA
tMannetje 2016	PTCL	Painters	652	1.80 (1.14-2.84)	Weak	NA
tMannetje 2016	PTCL	Textile worker	652	1.60 (1.18-2.17)	Weak	NA
tMannetje 2016	PTCL	Spinners, weavers, knitters, dyers, and related workers	652	1.85 (1.21-2.83)	Weak	NA
tMannetje 2016	PTCL	Wood workers	652	1.54 (1.04-2.27)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Study	Outcome	Exposure	Number of cases	Effect estimate (95% CI)	Classification of evidence	Model
tMannetje 2016	PTCL	Cabinetmakers	652	2.41 (1.22-4.74)	Weak	NA
Kricker 2008	NHL	Recreational sun exposure (Q4 vs Q1 hours/week)	7284	0.76 (0.63-0.91)	Weak	NA
Kricker 2008	FL	Recreational sun exposure (Q2 vs Q1 hours/week)	1642	0.83 (0.71-0.96)	Weak	NA
Kricker 2008	FL	Recreational sun exposure (Q4 vs Q1 hours/week)	1642	0.73 (0.62-0.86)	Suggestive	NA
Kricker 2008	DLBCL	Recreational sun exposure (Q3 vs Q1 hours/week)	2176	0.75 (0.61-0.93)	Weak	NA
Kricker 2008	DLBCL	Recreational sun exposure (Q4 vs Q1 hours/week)	2176	0.69 (0.55-0.87)	Weak	NA
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 6: AMSTAR 2 evaluation

Rating	Title	Author year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16	
Criticall y low	Benzene and the risk of non-Hodgkin lymphoma: a review and meta-analysis of the literature.	Kane 2010	No	No	NA	No	No	No	Yes	No	No	No	No	No	No	Yes	No	Yes	
Criticall y low	Maternal smoking during pregnancy and childhood lymphoma: a meta-analysis.	Antonopoulous 2011	Yes	No	NA	Yes	No	Yes	Partial Yes	No	No	Yes	No	Yes	No	Yes	Yes	Yes	
Criticall y low	Lifestyle and risk of follicular lymphoma: a systematic review and meta-analysis of observational studies	Odutola 2020	No	Partial Yes	NA	No	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	
Criticall y low	Dietary trans-fatty acid intake in relation to cancer risk: a systematic review and meta-analysis	Michels 2021	Yes	Partial Yes	NA	Partial Yes	Yes	No	No	Partial Yes	Yes	No	Yes	No	No	No	No	Yes	Yes
Criticall y low	Sunlight exposure in association with risk of lymphoid malignancy: a meta-analysis of	Kim 2021	Yes	No	NA	Partial Yes	No	Yes	No	Partial Yes	Yes	No	Yes	No	Yes	No	No	Yes	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

| Rating | Title | Author year | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Item 8 | Item 9 | Item 10 | Item 11 | Item 12 | Item 13 | Item 14 | Item 15 | Item 16 |
|-----------|---|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Low | Observational studies | | | | | | | | | | | | | | | | | |
| Low | Non-Hodgkin lymphoma and gluten-sensitive enteropathy: estimate of risk using meta-analyses. | Kane 2011 | Yes | No | NA | No | Yes | Yes | Yes |
| Low | Trichloroethylene and cancer: systematic and quantitative review of epidemiologic evidence for identifying hazards. | Scott 2011 | No | No | NA | Partial Yes | No | Yes | Yes | Yes |
| Low | The relationship between physical activity and lymphoma: a systematic review and meta analysis | Davies 2020 | Yes | Partial Yes | No | Partial Yes | Yes | No | No | No | No | Yes | No | No | No | Yes | Yes | Yes |
| Low | Association between red blood cell transfusions and development of non-Hodgkin lymphoma: a meta-analysis of | Castillo 2010 | No | No | NA | No | Yes | Ye s | No | No | Yes | No | No | No | No | No | No | Yes |

https://mc.manuscriptcentral.com/bmjmedicine
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Criticall	A systematic review and meta-analysis of occupational exposures and risk of follicular lymphoma	Odutola 2021	No	Parial	NA	No	Ye	Ye	No	Yes	Yes	No	Ye	Ye	Ye	Ye	Yes	Ye
low																		
Criticall	Malaria Infection and Risk for Endemic Burkitt Lymphoma: A Systematic Review and Meta-Analysis	Kotepui 2021	Yes	No	NA	Parial	Yes	Ye	No	Parial	Yes	No	No	No	No	Yes	No	Yes
low																		
Criticall	Meta-analysis: coeliac disease and the risk of all-cause mortality, any malignancy and lymphoid malignancy.	Tio 2012	No	No	NA	Parial	No	No	No	Parial	No	No	Ye	No	No	Ye	Yes	Yes
low																		
Criticall	The Risk of Extraintestinal Cancer in Inflammatory Bowel Disease: A Systematic Review and Meta-analysis of Population-based Cohort Studies	Lo 2021	Yes	Parial	NA	Parial	Yes	No	No	Ye	Yes	No	No	No	No	No	No	Yes
low																		
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Primary biliary cirrhosis and cancer risk: a systematic review and meta-analysis.	Liang 2012	Yes	No	NA	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	
Low	Paracetamol Intake and Hematologic Malignancies: A Meta-Analysis of Observational Studies	Pregoz Dominguez 2021	Yes	Partial Yes	No	Partial Yes	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes		
Critically low	Non-Hodgkin's lymphoma--meta-analyses of the effects of corticosteroids and non-steroidal anti-inflammatories.	Bernatsky 2007	No	No	No	No	No	Yes	No	No	No	Yes	No	Yes	No	Yes	Ye	
Critically low	Cigarette smoking and risk of lymphoma in adults: a comprehensive meta-analysis on Hodgkin and non-Hodgkin disease.	Sergentani 2013	No	No	NA	Partial Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Ye		
Critically low	Exposure to glyphosate and risk of non-Hodgkin	Boffetta 2021	No	No	NA	No	Yes	No	No	No	No	Yes	No	No	Yes	Ye	Yes	
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
	Fruits and vegetables consumption and risk of non-Hodgkin's lymphoma: a meta-analysis of observational studies.	Chen 2013	No	No	NA	No	No	Yes	No	No	No	Yes	No	No	No	No	Yes	Yes
	Occupation and the risk of non-Hodgkin lymphoma.	Boffetta 2007	No	Yes	No	No	No	No	Yes	No								
	Breast-feeding and childhood cancer: A systematic review with metanalysis.	Martin 2005	Yes	No	NA	No	No	No	No	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes
	The risk of cancer development in systemic sclerosis: a meta-analysis.	Zhang 2013	No	No	NA	No	No	Yes	No	No	No	Yes	No	No	No	Yes	No	No
	Occupational exposure to methylene chloride and risk of cancer: a meta-analysis.	Liu 2013	No	No	NA	Partial Yes	No	No	No	Yes	No	Yes	No	No	No	Yes	No	No

https://mc.manuscriptcentral.com/bmjmmedicine
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Primary Sjogren’s syndrome and malignancy risk: a systematic review and meta-analysis.	Liang 2014	Yes	No	NA	No	Ye	No	Ye	No	Yes	No	No	Yes	No	Yes	Yes	
Critically low	Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine.	Kandiel 2005	Yes	No	No	No	Ye	No	No	Yes	No	No	Yes	No	Yes	Yes		
Critically low	Occupational exposure to pentachlorophenol causing lymphoma and hematopoietic malignancy for two generations.	Zheng 2015	No	No	NA	No	Ye	No	No	Partial Yes	No	No	Yes	No	Yes	Yes		
Critically low	Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies.	Teras 2015	No	No	NA	No	Yes	No	Yes	Yes								
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author Year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Assessing the impact of HAART on the incidence of defining and non-defining AIDS cancers among patients with HIV/AIDS: a systematic review.	Cobucci 2015	Yes	No	NA	Partial	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes
Critically low	Use of non-steroidal anti-inflammatory drugs and risk of non-Hodgkin lymphoma: a systematic review and meta-analysis.	Ye 2015	Yes	No	Yes	Yes	Yes	Yes	Partial	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes
Critically low	Incidence of malignancy in adult patients with rheumatoid arthritis: a meta-analysis.	Simon 2015	Yes	No	NA	No	Yes	Yes	Yes	Yes	Yes							
Critically low	Vitamin D status and risk of non-Hodgkin lymphoma: a meta-analysis.	Lu 2014	No	No	No	Partial	Yes	No	No	No	No	Yes	No	No	Yes	Yes	No	No
Critically low	Red and Processed Meat Consumption	Yang 2015	No	No	NA	No	Yes	Yes	No	Yes	No	Yes						
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Low	Increases Risk for Non-Hodgkin Lymphoma: A PRISMA-Compliant Meta-Analysis of Observational Studies. Catalani 2019	Yes	No	NA	Partial Yes	Yes	Yes	No	No	No	No	No	No	Yes	Yes	Yes	
Critically low	Allergic conditions are not associated with the risk of non-Hodgkin's lymphoma or Hodgkin's lymphoma: a systematic review and meta-analysis. Yang 2017	No	No	NA	Partial Yes	Yes	Yes	No	No	No	No	No	No	Yes	Yes	Yes	
Critically low	Occupational ultraviolet exposure and risk of non-Hodgkin's lymphomas: a meta-analysis. Lu 2017	No	No	NA	Partial Yes	No	Yes	No	No	No	No	Yes	No	Yes	Yes	Yes	
Critically low	Cancer risks in recipients of renal transplants: a meta-analysis of cohort studies. Wang 2017	Yes	No	NA	Partial Yes	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	Yes	
Low	Occupational and environmental exposure to... Catalani 2019	Yes	Partial Yes	NA	Partial Yes	Yes	No	No	Partial Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	polychlorinated biphenyls and risk of non-Hodgkin lymphoma: a systematic review and meta-analysis of epidemiology studies.	Masarone 2019	Yes	No	NA	Partial Yes	Yes	No	Partial Yes	Partial Yes	No	No	Yes	No	No	No	Yes	Ye s
Critically low	Hepatitis C virus infection and non-hepatocellular malignancies in the DAA era: A systematic review and meta-analysis.	Mirtavos-Mahyari 2019	Yes	No	NA	No	Yes	No	Yes	No	Yes	No	Yes	No	No	Yes	Yes	
Critically low	Effects of Coffee, Black Tea and Green Tea Consumption on the Risk of Non-Hodgkin's Lymphoma: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies.	Mirtavos-Mahyari 2019	Yes	No	NA	No	Yes	No	Yes	No	Yes	No	Yes	No	No	Yes	Yes	
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Systemic lupus erythematous and malignancy risk: a meta-analysis.	Cao 2015	Yes	No	NA	Partial Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes		
Critically low	Food of animal origin and risk of non-Hodgkin lymphoma and multiple myeloma: A review of the literature and meta-analysis.	Caini 2016	No	No	No	Partial Yes	Yes	No	Yes	Yes								
Critically low	Dairy Product Consumption and Risk of Non-Hodgkin Lymphoma: A Meta-Analysis.	Wang 2016	No	No	NA	No	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes	
Critically low	Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis of observational studies.	Luo 2016	No	No	NA	Partial Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	
Critically low	Association between dietary nitrate and nitrite intake and sitespecific	Xie 2016	No	No	NA	No	Yes	Yes	Yes	Yes								
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Low	Association between dioxin and cancer incidence and mortality: a meta-analysis.	Xu 2016	Yes	No	NA	No	No	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Low	Associations between statin use and non-Hodgkin lymphoma (NHL) risk and survival: a meta-analysis.	Ye 2017	No	No	Ye	No	Ye	Yes	No	No	No	No	Yes	No	Yes	Yes	Yes	Yes
Low	Lack of association of poultry and eggs intake with risk of non-Hodgkin lymphoma: a meta-analysis of observational studies.	Dong 2017	No	No	NA	Partial Yes	Yes	Yes	No	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Low	Herpes zoster as a marker of occult cancer: A systematic review and meta-analysis.	Schmidt 2017	Yes	Yes	NA	No	Ye	Yes	No	Ye								
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Carotenoid intake and risk of non-Hodgkin lymphoma: a systematic review and dose-response meta-analysis of observational studies.	Chen 2017	No	No	NA	Partial Yes	No	Yes	No	No	No	Yes	No	No	Yes	No	Yes	Yes
Critically low	Dietary Fat Consumption and Non-Hodgkin's Lymphoma Risk: A Meta-analysis.	Han 2017	No	No	No	No	Yes	Yes	No	No	No	Yes	No	No	Yes	No	Yes	Yes
Critically low	Occupational exposure to polycyclic aromatic hydrocarbons and lymphatic and hematopoietic neoplasms: a systematic review and meta-analysis of cohort studies.	Alicandro 2016	Yes	No	NA	Partial Yes	No	No	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	
Critically low	Risk of malignancy in ankylosing spondylitis: a systematic review	Deng 2016	Yes	No	No	No	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Criticall y low	The association between non-Hodgkin lymphoma and organophosphate pesticides exposure: A meta-analysis.	Hu 2017	No	No	NA	No	No	Ye	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Criticall y low	Incidence of cancer (other than gastric cancer) in pernicious anaemia: A systematic review with meta-analysis.	Lahner 2018	No	No	NA	Partial Yes	Yes	Yes	No	Yes	Yes	No	No	No	No	No	No	Yes
Criticall y low	2,4-dichlorophenoxy acetic acid (2,4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels.	Smith 2017	No	No	NA	Partial Yes	No	No	No	Partial Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes
Criticall y low	Systematic Review and Meta-Analysis of Selected Cancers in Petroleum	Schnatter 2018	Ye	No	Ye	Partial Yes	Ye	No	No	No	No	Ye	Yes	No	No	Yes	Yes	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Low	Indoor tanning and the risk of developing non-cutaneous cancers: a systematic review and meta-analysis.	O'Sullivan 2018	No	No	No	No	Yes	Yes	No	No	No	No	Yes	No	No	Yes	Yes	
Low	Micronutrient Intake and Risk of Hematological Malignancies in Adults: A Systematic Review and Meta-analysis of Cohort Studies.	Psaltopoulou 2018	Yes	Partial Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	No	No	No	Yes	Yes
Low	Risk of childhood cancer and adult lung cancer after childhood exposure to passive smoke: A meta-analysis.	Boffetta 2000	No	No	NA	No	No	No	Yes	No	No	Yes	No	No	No	Yes	No	No
Low	Hepatitis B virus and risk of non-Hodgkin lymphoma: An updated meta-analysis of 58 studies.	Li 2018	Yes	No	NA	No	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	A systematic review of epidemiologic studies of styrene and cancer.	Collins 2018	Yes	No	NA	No	Yes	Ye	No	Parti	Yes	No	No	No	No	Ye	Yes	Ye
Critically low	Risk of malignancy in Behcet disease: A meta-analysis with systematic review.	Wang 2019	Yes	No	NA	Ye	Ye	No	Ye	No	Yes	No	No	No	No	Ye	Yes	Ye
Critically low	Alcohol drinking and non-Hodgkin lymphoma risk: a systematic review and a meta-analysis.	Tramacere 2012	No	No	NA	Ye	Ye	No	Ye	No	Yes	No	No	No	No	Yes	Yes	Ye
Critically low	Cancer incidence and mortality among firefighters.	Jalilian 2019	Yes	No	NA	Ye	Ye	No	Ye	No	Yes	No	No	No	No	Yes	Yes	No
Critically low	Risk of Lymphoma in Patients With Inflammatory Bowel Disease Treated With Anti-tumour Necrosis Factor Alpha Agents: A Systematic Review and Meta-analysis.	Yang 2018	Yes	No	Ye	Ye	Ye	Yes	No	Yes	No	No	No	No	No	Ye	Yes	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

| Rating | Title | Author year | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Item 8 | Item 9 | Item 10 | Item 11 | Item 12 | Item 13 | Item 14 | Item 15 | Item 16 |
|-----------------|---|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Critically low | A Meta-Analysis on the Relationship Between Hair Dye and the Incidence of Non-Hodgkin's Lymphoma. | Qin 2019 | No | No | NA | Partial Yes | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes |
| Critically low | Association between Parkinson's Disease and Risk of Cancer: A PRISMA-compliant Meta-analysis. | Zhang 2019 | Yes | No | NA | Partial Yes | No | No | No | Partial Yes | No | No | Yes | No | Yes | Yes | Yes | Yes |
| Critically low | Association between type 1 and type 2 diabetes and risk of non-Hodgkin's lymphoma: A meta-analysis of cohort studies. | Wang 2020 | No | No | NA | No | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes |
| Moderate | Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. | Salmon 2020 | No | Partial Yes | Ye s | Partial Yes | No | Ye s | Yes | Yes |
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Prevalence, Incidence, and Risk of Cancer in Patients With Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-analysis.	Vaengebjerg 2020	Yes	Partial Yes	NA	No	Yes	No	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	
Critically low	Human Pegivirus Infection and Lymphoma Risk: A Systematic Review and Meta-analysis.	Fama 2020	Yes	No	NA	No	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	
Critically low	Sarcoidosis and Cancer Risk Systematic Review and Meta-analysis of Observational Studies	Bonifazi 2015	No	No	NA	No	Yes	No	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	
High	Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates	Leung 2020	Yes	Partial Yes	NA	Partial Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	
Critically low	Non-hodgkin lymphoma and occupational exposure to	Schinasi 2014	No	No	NA	No	No	No	Yes	No	No	No	Yes	No	No	Yes	No	Yes

https://mc.manuscriptcentral.com/bmjmedicine
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Agricultural pesticide chemical groups and active ingredients: A systematic review and meta-analysis	Buja 2006	No	No	No	Partial Yes	No	No	No	No	No	No	Yes	No	No	Yes	No	No
Low	Cancer incidence among female flight attendants: a meta-analysis of published data.	Jephcote 2020	Yes	Partial Yes	NA	Partial Yes	Yes	Yes	No	Partial Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
Critically low	Association Between Night-Shift Work and Cancer Risk: Updated Systematic Review and Meta-Analysis	Dun 2020	Yes	No	NA	No	Yes	Yes	No	No	No	Yes						
Critically low	Risk of cancer among hairdressers and	Takkouche 2009	Yes	No	NA	Yes	Yes	No	No	No	Yes	No	Yes					
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Occupational exposure to gasoline and the risk of non-Hodgkin lymphoma: a review and meta-analysis	Kane 2010	Yes	No	NA	No	Yes	Yes	Yes	Yes	Yes								
Critically low	Borrelia burgdorferi in primary cutaneous lymphomas: a systematic review and meta-analysis	Travaglino 2020	No	No	NA	Partial	Yes	No	Yes	Partial	Yes	Yes	No	Yes	No	Yes	No	Yes	
Moderate	Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies	Karlstad 2013	Yes	Partial	Yes	Partial	Yes	Yes	Partial	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	
Critically low	Obesity and risk of non-Hodgkin's lymphoma: a meta-analysis	Larsson 2007	Yes	No	NA	No	No	No	Partial	Yes	Partial	Yes	No	No	Yes	No	Yes	No	No
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Obesity is associated with increased relative risk of diffuse large B-cell lymphoma: a meta-analysis of observational studies	Castillo 2014	Yes	No	NA	Partial Yes	No	No	No	Yes	No	Yes	No	No	No	Yes	Yes	
Critically low	Obesity but not overweight increases the incidence and mortality of leukemia in adults: A meta-analysis of prospective cohort studies	Castillo 2012	Yes	No	NA	Partial Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	
Critically low	Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies	Castillo 2012	Yes	No	NA	Partial Yes	No	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Rating	Title	Author	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
Critically low	Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies	DalMaso 2006	Yes	No	NA	No	No	No	No	Partial Yes	No	Yes	No	No	Yes	No	No	No

Note:
Question 2, 4, 7, 9, 11, 13, 15 are critical domains as suggested in the guidance document of AMSTAR 2
eTable 7: Consistency between meta-analyses of summary level data and meta-analyses of individual participant data

Exposure [NHL subtype]	Effect estimate (95% CI)	Exposure [NHL subtype] in pooled analyses	Pooled analysis effect estimates (95% CI)	Same direction	Overlapping confidence interval	Level of statistical significance (P<0.05)	Class of association	At least one-third of studies overlapping across both meta-analyses
Red blood cell transfusion [NHL]	RR 1.2 (1.07, 1.35)	History of blood transfusion [NHL]	OR 0.83 (0.77, 0.91)	No	No	Both	IV	Yes
Red blood cell transfusion [CLL/SLL]	RR 1.66 (1.08, 2.56)	History of blood transfusion [CLL/SLL]	OR 0.79 (0.66, 0.94)	No	No	Both	IV	Yes
Red blood cell transfusion [FL]	RR 1.02 (0.67, 1.55)	History of blood transfusion [FL]	OR 0.79 (0.66, 0.94)	No	Yes	Pooled analysis only	NS	Yes
Red blood cell transfusion [DLBCL]	RR 1.06 (0.86, 1.3)	History of blood transfusion [DLBCL]	OR 0.84 (0.75, 0.95)	No	Yes	Pooled analysis only	NS	Yes
Ever smoking [NHL]	RR 1.05 (1.00, 1.09)	Any smoking [NHL]	OR 1.02 (0.97, 1.07)	Yes	Yes	Neither	IV	No
Ever smoking [DLBCL]	RR 1.01 (0.95, 1.07)	Any smoking [DLBCL]	OR 1.01 (0.94, 1.08)	Yes	Yes	Neither	NS	No
Ever smoking [FL]	RR 1.05 (0.88, 1.25)	Any smoking [FL]	OR 1.09 (1.00, 1.18)	Yes	Yes	Neither	NS	Yes
Ever smoking [CLL/SLL]	RR 0.96 (0.89, 1.04)	Any smoking [CLL/SLL]	OR 0.9 (0.81, 0.99)	Yes	Yes	Pooled analysis only	NS	Yes
Ever smoking [TCL]	RR 1.23 (1.06, 1.43)	Any smoking [TCL]	OR 1.32 (1.09, 1.59)	Yes	Yes	Both	IV	No
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Exposure [NHL subtype]	Effect estimate (95% CI)	Exposure [NHL subtype] in pooled analyses	Pooled analysis effect estimates (95% CI)	Concordance	Class of association	At least one-third of studies overlapping across both meta-analyses
Ever drinking [NHL]	RR 0.85 (0.79, 0.91)	Any alcohol [NHL]	OR 0.87 (0.81, 0.93)	Yes	Both	Yes
Ever drinking [TCL]	RR 0.78 (0.58, 1.05)	Any alcohol [TCL]	OR 0.68 (0.53, 0.87)	Yes	Pooled analysis only	Yes
Ever drinking [DLBCL]	RR 0.79 (0.68, 0.91)	Any alcohol [DLBCL]	OR 0.81 (0.73, 0.89)	Yes	Both	IV
Ever drinking [FL]	RR 0.8 (0.69, 0.92)	Any alcohol [FL]	OR 0.86 (0.77, 0.96)	Yes	Both	IV
Ever drinking [CLL/SLL]	RR 1 (0.8, 1.26)	Any alcohol [CLL/SLL]	OR 1.04 (0.9, 1.19)	Yes	Neither	NS
Pernicious Anaemia [NHL]	RR 1.16 (0.79, 1.71)	Pernicious anaemia [NHL]	OR 1.37 (0.62, 3.03)	Yes	Neither	NS
Rheumatoid Arthritis [NHL]	SIR 2.26 (1.82, 2.81)	Rheumatoid Arthritis [NHL]	OR 1.32 (0.99, 1.77)	Yes	Meta-analysis only	II
Primary Sjogren's Syndrome [NHL]	RR 13.76 (8.53, 18.99)	Sjogren's syndrome [NHL]	OR 7.52 (3.68, 15.36)	Yes	Both	II
Systemic Lupus Erythematosus [NHL]	RR 5.4 (3.75, 7.77)	Systemic Lupus Erythematosus [NHL]	OR 2.83 (1.81, 4.11)	Yes	Both	II
Psoriasis [NHL]	RR 1.48 (1.3, 1.69)	Psoriasis [NHL]	OR 1.08 (0.9, 1.29)	Yes	Meta-analysis only	III

Note: The table continues with similar entries for other exposures.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Exposure [NHL subtype]	Effect estimate (95% CI)	Exposure [NHL subtype] in pooled analyses	Pooled analysis effect estimates (95% CI)	Concordance	Overlapping confidence interval	Level of statistical significance (P<0.05)	Class of association	At least one-third of studies overlapping across both meta-analyses
Type 1 diabetes [NHL]	RR 1.55 (1.15, 2.08)	Type 1 diabetes [NHL]	OR 1.15 (0.8, 1.66)	Yes	Yes	Meta-analysis only	IV	No
Celiac disease [NHL]	OR 2.61 (2.04, 3.33)	Celiac disease [NHL]	OR 1.77 (1.05, 2.99)	Yes	Yes	Both	II	Yes
Celiac disease [TCL]	OR 15.84 (7.85, 31.94)	Celiac disease [TCL]	OR 14.82 (7.27, 30.19)	Yes	Yes	Both	II	Yes
Celiac disease [DLBCL]	OR 2.25 (1.32, 3.85)	Celiac disease [DLBCL]	OR 2.09 (1.04, 4.18)	Yes	Yes	Both	IV	Yes
Celiac Disease [CLL]	OR 0.80 (0.46, 1.38)	Celiac disease [CLL/SLL]	OR 0.6 (0.14, 2.61)	Yes	Yes	Neither	NS	Yes
Sarcoidosis [NHL]	RR 1.43 (1.03, 1.99)	Sarcoidosis [NHL]	OR 0.71 (0.39, 1.29)	No	Yes	Neither	IV	No
Tuberculosis [NHL]	RR 1.61 (1.34, 1.94)	Adult Tuberculosis infection [NHL]	OR 1.16 (0.96, 1.39)	Yes	Yes	Meta-analysis only	II	No
Herpes Zoster [NHL]	RR 1.72 (1.27, 2.32)	Adult shingles [NHL]	OR 1.05 (0.93, 1.19)	Yes	No	Meta-analysis only	III	No
Hepatitis C virus [NHL]	OR 3.36 (2.4, 4.72)	Hepatitis C virus [NHL]	OR 1.81 (1.39, 2.37)	Yes	No	Both	II	No
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Exposure [NHL subtype]	Effect estimate (95% CI)	Exposure [NHL subtype] in pooled analyses	Pooled analysis effect estimates (95% CI)	Same direction	Overlapping confidence interval	Level of statistical significance (P<0.05)	Class of association	At least one-third of studies overlapping across both meta-analyses
Hepatitis C virus [DLBCL]	OR 2.65 (1.88, 3.74)	hepatitis C virus [DLBCL]	OR 2.33 (1.71, 3.19)	Yes	Yes	Both	IV	Yes
Hepatitis C virus [FL]	OR 2.73 (2.2, 3.38)	Hepatitis C virus [FL]	OR 0.57 (0.3, 1.1)	No	No	Metanalysis only	IV	Yes
Hepatitis C virus [MZL]	OR 3.41 (2.39, 4.87)	Hepatitis C virus [MZL]	OR 3.04 (1.65, 5.6)	Yes	Yes	Both	IV	Yes
Hepatitis C virus [CLL/SLL]	OR 1.65 (1.35, 2.02)	Hepatitis C virus [CLL/SLL]	OR 2.08 (1.23, 3.49)	Yes	Yes	Both	IV	Yes
Farmer [NHL]	RR 1.11 (1.05, 1.17)	Farmer [NHL]	OR 1.03 (0.95, 1.13)	Yes	Yes	Neither	III	No
Firefighter [NHL]	SIR 1.07 (0.96, 1.20)	Firefighter [NHL]	OR 0.76 (0.53, 1.09)	No	Yes	Neither	NS	No
Hairdresser [NHL]	RR 1.11 (0.94, 1.32)	Hairdressers [NHL]	OR 1.21 (0.96, 1.52)	Yes	Yes	Both	NS	No
Petroleum Refinery Worker [NHL]	RR 0.98 (0.89, 1.09)	Petroleum workers [NHL]	OR 0.79 (0.38, 1.67)	Yes	Yes	Neither	NS	No
Teacher [NHL]	RR 1.47 (1.34, 1.61)	Teacher [NHL]	OR 0.89 (0.81, 0.98)	No	No	Both	II	No
Meat worker [NHL]	RR 0.99 (0.77, 1.29)	Meat worker [NHL]	OR 1.08 (0.81, 1.42)	No	Yes	Neither	NS	No
Printer [NHL]	RR 1.86 (1.38, 2.50)	Printers [NHL]	OR 0.95 (0.78, 1.17)	No	No	Metanalysis only	III	No
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Exposure [NHL subtype]	Effect estimate (95% CI)	Exposure [NHL subtype] in pooled analyses	Pooled analysis effect estimates (95% CI)	Same direction	Overlapping confidence interval	Level of statistical significance (P<0.05)	Class of association	At least one-third of studies overlapping across both meta-analyses
Wood worker [NHL]	RR 1.04 (0.79, 1.37)	Wood workers [NHL]	OR 1.04 (0.89, 1.22)	Yes	Yes	Neither	IV	No
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eFigure 1

Supplement Figure 1: Scatterplot of summary effect estimates in meta-analyses of summary level data and meta-analyses of IPD (pooled analyses) reporting the same associations between environmental risk factors and non-Hodgkin lymphoma

CI=confidence interval.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eText 1: eligibility criteria
Supplements of Eligibility criteria for systematic reviews and (or) meta-analyses

General inclusion criteria

Language: English only.

Study types: Systematic review and (or) meta-analysis (referred as ‘Review studies’ in the following contents).

Study designs included in review studies: Observational epidemiological studies¹.

Study subjects: Human only².

General exclusion criteria

Review studies that:

1. Focus on **genetic risk factors**³ for non-Hodgkin lymphoma (NHL)
2. Focus on **biomarkers**⁴ for NHL
3. Focus on risk factors for **treatment, relapse, remission, or prognosis** on NHL patients
4. Examine NHL as a risk factor for other diseases
5. Focus on cancer, hematological cancers, lymphoma, or any broader spectrum of diseases, but fail to provide specific data for NHL⁵
6. Only include experimental studies
7. Focus on NHL as a **metastasis/secondary cancer** of other primary cancers
8. Focus on NHL in a particular population but fail to provide detailed information on environmental risk factors⁶
9. Investigate the prevalence/incidence of NHL

Besides the aforementioned eligibility criteria, based on our definition of environmental risk factors, personal medical history and comorbidities (excluding metastasis of tumors) will be considered eligible in our study. In addition to the 8th General exclusion criteria,³⁹

¹ Cohort studies or case control studies only
² Review studies mixed with human and animal subjects will be checked in details at full text screening stage
³ Including genetic polymorphisms, family history/familial aggregation
⁴ Any substance, structure, or process that can be measured in the body or its products that can influence or predict the incidence of outcome or disease. Ref: http://www.inchem.org/documents/ehc/ehc/ehc222.htm (accessed 24th April, 2020)
⁵ This may be unclear at the title-abstract screening, therefore when in doubt, two researchers will send it on to the full text screening
⁶ For example, NHL in indigenous population, or men who have sex with men (MSM)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

studies focus on NHL on a particular occupational population would be included since occupation can act as proxy for certain environmental exposures.

Study types, exposures and outcome definition

Systematic reviews and (or) Meta-analyses of summary level data and individual participant data:

The eligible study types in our study are systematic reviews (SRs), meta-analyses (MAs), systematic reviews and meta-analyses (SRMAs) or pooled analyses. To be eligible, SRs and SRMAs must have performed a systematic search in at least one bibliographic database. SRs, MAs and SRMAs should clearly define themselves as systematic reviews and/or meta-analyses. For SRs in particular, we will only include exposure-outcome relationships (i.e., associations) that have not been investigated in MAs or SRMAs.

In terms of pooled analyses, the primary goal for including pooled analyses in our study is to incorporate the valuable pooled information of individual level data from scientific institutes on NHL and its subtypes, such as The International Lymphoma Epidemiology Consortium (InterLymph) and to add to the evidence for meta-analyses on certain risk factors.

Environmental risk factors:

We define environmental risk factors as a broad concept of non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors.

Outcome of interest:

Our study outcome is non-Hodgkin lymphoma, including its subtypes (eTable 2 in Supplement 1). The classification of NHL subtypes was consulted and confirmed by an epidemiologist on NHL from InterLymph consortia.

We will identify with the definition/diagnostic criteria of NHL from the original review studies.

References

1. Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev. 2017;6(1):245.

2. Faggion CM, Jr., Diaz KT. Overview authors rarely defined systematic reviews that are included in their overviews. J. Clin. Epidemiol. 2019;109:70-79.

3. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):1-14.

An open scientific forum for epidemiologic research in non-Hodgkin's lymphoma and a group of international investigators who have completed or have ongoing case-control studies and who discuss and undertake research projects that pool data across studies or otherwise undertake collaborative research. Ref: https://epi.grants.cancer.gov/interlymph/ (accessed 24th April, 2020)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

4. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. *BMJ*. 2019;364:l265.

eText 2

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by meta-analyses of the published literature (Supplement). Among them, 6 (75.0%) concluded that there were weak or non-statistically significant associations between the examined risk factors (Omega-3 fatty acids, sugar intake, artificial sweetener consumption, hazardous waste, preterm birth, and prenatal/postnatal Diagnostic X-rays and childhood) and NHL risk. Two (25%) additional systematic reviews suggested possible associations between Gaucher disease and NHL risk and breast implants and anaplastic large cell lymphoma risk. Half (4, 50.0%) of the systematic reviews outlined that quantitative analyses were not conducted due to high levels of heterogeneity and/or a small number of eligible studies. The remaining 4 (50.0%) systematic reviews did not provide any reasons for not conducting quantitative analyses.

Exclusion reasons

Among the 1024 records screened at the full text level, 904 were excluded, mostly because they were for the wrong topic (442, 48.9%), they had the wrong study design (240, 26.5%), or they were not the largest meta-analysis of the published literature for a specific association (102, 11.3%).

References

1. MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lin YW, Traina SB, Hilton L, Garland R, Morton SC. Effects of omega-3 fatty acids on cancer risk: a systematic review. *JAMA*. 2006 Jan 25;295(4):403-15.

2. Makarem N, Bandera EV, Nicholson JM, Parekh N. Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: a systematic review of longitudinal studies. *Annual review of nutrition*. 2018 Aug 21;38:17-39.

3. Mishra A, Ahmed K, Froghi S, Dasgupta P. Systematic review of the relationship between artificial sweetener consumption and cancer in humans: analysis of 599,741 participants. *International journal of clinical practice*. 2015 Dec;69(12):1418-26.

4. Fazzo L, Minichilli F, Santoro M, Ceccarini A, Della Seta M, Bianchi F, Comba P, Martuzzi M. Hazardous waste and health impact: a systematic review of the scientific literature. *Environmental Health*. 2017 Dec;16(1):1-1.

5. Paquette K, Coltin H, Boivin A, Amre D, Nuyt AM, Luu TM. Cancer risk in children and young adults born preterm: A systematic review and meta-analysis. *PloS one*. 2019 Jan 4;14(1):e0210366.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

6. Schulze-Rath R, Hammer GP, Blettner M. Are pre-or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiation and environmental biophysics. 2008 Jul;47(3):301-12.

7. Arends M, van Dussen L, Biegstraaten M, Hollak CE. Malignancies and monoclonal gammopathy in Gaucher disease; a systematic review of the literature. British journal of haematology. 2013 Jun;161(6):832-42.

8. Kim B, Roth C, Chung KC, Young VL, van Busum K, Schnyer C, Mattke S. Anaplastic large cell lymphoma and breast implants: a systematic review. Plastic and reconstructive surgery. 2011 Jun 1;127(6):2141-50.
| Title | Authors | Published Year | Journal | Volume | Issue | Pages |
|--|--|----------------|--|--------|-------|-------------|
| Body mass inuncio, Kai; Li, Fe | | 2017 | European journal | 26 | 1 | 94-105 |
| Do polychlorirZani, Claudia; | | 2017 | Chemosphere | 183 | b4d | 0320657 97-106 |
| CARING (CAncStarup-Linde); | | 2013 | Current drug issues | 8 | | 296-332 |
| Effect of hepaMatsoo, Keita; | | 2004 | Cancer science | 95 | | 745-52 |
| Diabetes and iMitr, Joanna; | | 2008 | Diabetes care | 31 | | 12 2391-7 |
| A meta-analyseSmitten, Allic; | | 2008 | Arthritis resea | 10 | | 2 R45 |
| Consumption Sergenanis, T | | 2018 | Leukemia & ly | 59 | | 2 434-447 |
| Alcohol consuPsaltopoulou, | | 2018 | International j | 143 | | 3 486-495 |
| Association beYi, Hai-zhen; C | | 2014 | Medical oncol | 31 | | 8 84 |
| Agricultural us:Baris, D; Zahm | | 1998 | Occupational : | 55 | | 8 522-7 |
| Cigarette smoCastillo, J. J.; I; | | 2012 | Leukemia & ly | 53 | | 10 1911-1919 |
| Cancers attribVolesky, Karei | | 2019 | Preventive Mr | 122 | | 109-117 |
| Hepatitis C virZhu, Xiaofeng, | | 2019 | Medicine | 98 | | 11 e14755 |
| Alcohol consuBagnardi, V; R | | 2015 | British journal | 112 | | 3 580-93 |
| Cancer health Bassil, K. L.; Vi; | | 2007 | Canadian Fam | 53 | | 10 1705-1711 |
| Cancer indicatorBuja, Alessano | | 2005 | Toxicology an | 21 | | 10 273-82 |
| Glyphosate usPahwa, Manis | | 2019 | Scandinavian . | 45 | | 6 600-609 |
| Glyphosate erAcquavella, J.; | | 2016 | Critical Review | 46 | | 28-43 |
| Cancer InciderSotiriaed, El | | 2019 | Asian Pacific j | 20 | | 11 3221-3231 |
| Association ofZhou, Min-Hai | | 2015 | Molecular anc | 3 | | 4 859-864 |
| Incidence of nMachado, Ron | | 2014 | Revista brasile | 54 | | 2 131-9 |
| A meta-analyseKeller-Byrne, J | | 1997 | American j | 31 | | 4 442-4 |
| Cancer risk anLeMasters, Gr | | 2006 | Journal of occ | 48 | | 11 1189-202 |
| Cancer inciderOnishi, Akira; | | 2013 | Arthritis and r | 65 | | 7 1913-21 |
| Incidence of c.Tokumaru, O.; | | 2006 | Journal of Tra | 13 | | 3 127-132 |
| Is prevention van der Rhee, | | 2013 | European jour | 49 | | 6 1422-36 |
| Hepatitis B infrDalia, Samir; C | | 2013 | Leukemia resea | 37 | | 9 1107-15 |
| 2,4-DichloropPlGoodman, J. E | | 2017 | Annals of Epid | 27 | | 4 290 |
| Animal farminEl-Zaemey, So | | 2019 | Occupational : | 76 | | 11 827-837 |
| Coffee and thiHan, Tianje; L | | 2016 | Iranian journal | 45 | | 9 1126-1135 |
| A Systematic Ivon Stackelbe | | 2013 | Journal of toxicology | 52 | | 2 169-89 |
| Benzene expoAlexander, Do | | 2010 | Journal of occ | 52 | | 2 169-89 |
| Association ofQ, Zhenjia; W | | 2015 | International j | 8 | | 12 22167-74 |
| Association ofXu, Jian; Wan | | 2019 | Hematology / | 24 | | 1 527-532 |
| Exposure to glZhang, Luopin | | 2019 | Mutation rese | 781 | | nna, 0400763 186-206 |
| HematopoietiWu, Y; Shi, X; | | 2020 | Medicina oral, | 25 | | 1 e21-e28 |
| 2,4-DichloropPlGoodman, Jul | | 2015 | Annals of epid | 25 | | 8 626-636.e4 |
| Risk of cancer Ling, Suping; E | | 2021 | Nutrition, met | 31 | | 1 14-22 |
| Risk of MalignQiang, Judy K; | | 2017 | Journal of cut | 21 | | 2 131-136 |
| Occupational Merhi, M; Ray | | 2007 | Cancer causes | 18 | | 10 1209-26 |
| Occupational Moura, Luiza | | 2020 | Exposicao ocu | 23 | | e200022 |
| Passive enviroRoingeard, Ca | | 2021 | Environmental science and pollution research internatio |
| Title | Journal, Year, Page Numbers |
|--|-----------------------------|
| Phenoxy herbicide exposure and breast cancer risk: A case-control study | British Medical Bulletin, 2015, 114:75-94 |
| Body size and Abar, L; Sobie, J | 2019 Annals of Oncology, 30:4528-541 |
| Anthropometric Psaltopoulou, E; J; D | 2019 International Journal of Epidemiology, 145:347-359 |
| Anthropometric height and cancer risk: A systematic review and meta-analysis | Critical Review in Oncology/Hematology, 2018, 129:113-123 |
| Body fatness and cancer risk: A meta-analysis | 2018 Obesity Reviews, 19:1385-1394 |
| Quantitative aFang, Xuexian; J | 2018 International Journal of Occupational Health, 143:7159-1603 |
| Body mass in Larsson, Susar; J | 2011 European Journal of Cancer, 47:162422-30 |
| Body mass in Renehan, And; J | 2008 Lancet (London), 371:569-78 |
| Fish consumption, Li; Shi, V | 2020 Hematology (Am Soc Hematol), 25:194-202 |
| Possible aFiorino, Sirio, M; J | 2015 World Journal of Gastroenterology, 45:12896-953 |
| The risks of caSong, Lebin; V | 2018 Arthritis Research & Therapy, 20:270 |
| Sedentary behavior, Shen, Dong; M | 2014 PloS One, 9:8105-709 |
| Use of statins Bonovas, Stefano; J | 2007 British Journal of Clinical Pharmacology, 64:3255-62 |
| Risk of Cancer Komaki, Yuga; J | 2021 The Journal of Cancer, 119:102-117.e36 |
| Lack of associAmoori, Neda; J | 2015 Asian Pacific Journal of Clinical Oncology, 16:2787-92 |
| Meta-analysis Steinmaus, C; J | 2008 Occupational and Environmental Medicine, 65:6371-8 |
| Meat intake aSolimini, Ange; J | 2016 Cancer Causes and Control, 27:595-606 |
| Statin use is aYi, Xiao; Jia, W | 2014 PloS One, 9:187019 |
| The Associative Yip, Cynthia S; J | 2019 Journal of the American Medical Association, 119:3464-481 |
| Type 2 diabetes Chao, Chun; P | 2008 American Journal of Epidemiology, 168:5471-80 |
| A critical review Wang, O; Raal; J | 2000 Regulatory Toxicology and Pharmacology, 32:178-98 |
| Risk of cancer Pouplard, C.; J | 2013 Journal of the American Medical Association, 27:36-46 |
| Sex difference Ohkuma, Toshiki; J | 2018 Diabetologia, 61:102140-2154 |
| Occupational exposure Vlaanderen, J; J | 2011 Environmetrics, 119:2159-67 |
| Occupational exposure Mandel, J; H; K | 2006 Occupational and Environmental Medicine, 63:9597-607 |
| The risk of lynZintzaras, Elia; J | 2005 Archives of Internal Medicine, 165:202337-44 |
| Red meat intake Fallahzadeh, H | 2014 Asian Pacific Journal of Clinical Oncology, 15:2310421-5 |
| Physical activity Vermae, Ne; J | 2013 Cancer Epidemiology, 22:71173-84 |
| Pesticide use Leon, Maria E; J | 2019 International Journal of Public Health, 48:51519-1535 |
| Statins use an Pradelli, Danit; J | 2015 Cancer Medicine, 4:5270-80 |
| Physical activity Jochem, Carmen; J | 2014 Cancer Epidemiology, 23:5433-46 |
| Polychlorinated Zani, C; J; Tonin | 2013 Journal of Environmental Science and Health, 31:299-144 |
| Systemic lupus Apor, Emmanu; J | 2014 Leukemia Research, 38:91067-71 |
| Risk of cancer Hansen, John; J | 2013 Journal of the European Academy of Dermatology, 105:12869-77 |
| Meat, fish, daSergentanis, T; J | 2019 Leukemia & Blood Disease, 60:81978-1990 |
| Physical Activism Kiernan, Ar; J | 2019 Medicine and Science in Sports and Exercise, 51:61252-1261 |
| Exposure to glucorticosteroids | 2020 La Medicina del Lavoro, 111:130-73 |
| Publication Title | Year | Volume | Issue | Pages |
|--|---------|--------|-------|-------|
| Cancer among Acquavella, J; | 1998 | Annals of Epidemiology | 8 | 1 64-74 |
| Cancer incidence Ballard, T; Lag | 2000 | Aviation, spac | 71 | 3 216-24 |
| Does sunlight van der Rhee, | 2006 | European jour | 42 | 14 2222-32 |
| Systematic review Porta, Daniela | 2009 | Environmenta | 8 | 101147645 60 |
| Frequency of Hill, C L; Zhanh | 2001 | Lancet (Londo) | 357 | 9250 96-100 |
| Vitamin d and Kelly, J. L.; Friet | 2009 | Cancer Investi | 27 | 9 942-951 |
| Both chronic IZhou, Xi; Pan, | 2019 | BMC cancer | 19 | 1 477 |
| Non-Hodgkin Lamm, S. H.; E | 2005 | Chemico-Biolc 153-154 | 231-237 |
| Personal hair Rollison, Dana | 2006 | Journal of toxii | 9 | 5 413-39 |
| Primary immuHerber, Mathi | 2020 | Leukemia & ly | 61 | 2 274-284 |
| Is there an ass Girardi, J. D.; t | 2019 | Vigilancia Sani | 7 | 4 85-95 |
| Agricultural exZheng, T; Zahr | 2001 | Journal of occ | 43 | 7 641-9 |
| Exposure to bKhalade, Abdul | 2010 | Environmenta | 9 | 101147645 31 |
| Maternal SmoRumrich, Isab | 2016 | PloS one | 11 | 11 e0165040 |
| Insecticide usKachuri, Linda | 2020 | International Journal of Cancer | |
| Meta-analyse:Khuder, S A; S | 1998 | Scandinavian j | 24 | 4 255-61 |
| Sunlight, vitanvan der Rhee, | 2009 | European jour | 18 | 6 458-75 |
| Cancer InciderOnyije, Felix N | 2021 | International j | 18 | 8 |
| Cancer risks o Casjens, Swaa | 2020 | International i | 93 | 7 839-852 |
| Association of Ling, Suping; E | 2020 | Diabetes care | 43 | 9 2313-2322 |
| Risk of cancer Pouplard, C; B | 2013 | Journal of the 27 Suppl 3 | c2r | 9216037 36-46 |
| Fish consumpYang, Li; Shi, V | 2014 | Hematology (Amsterdam, N | 9708388 |
| Human PegiviFama, Angelo; | 2020 | Clinical infecti | 71 | 5 1221-1228 |
| Selenium for Vinceti, Marco | 2018 | The Cochrane | 1 | 100909747 CD005195 |
| Vitamin D statPark, Hye Yin | 2019 | PloS one | 14 | 4 e0216284 |
| Pre-eclampsia Bellamy, Lean | 2007 | BMJ (Clinical r | 335 | 7627 974 |
| Vitamin D witChung, Mei; L | 2011 | Annals of inter | 155 | 12 827-38 |
| Green tea (CaBoehm, Katja; | 2009 | The Cochrane database of s | 3 | CD005004 |
| Benefits of vit Grant, W. B. | 2010 | Journal of the | 8 | 3 81-88 |
| Some risk factPersson, B; Fri | 1999 | International j | 12 | 2 135-42 |
| Hair dye use n Anonymous | 2005 | South African | 47 | 7 12 |
| Lin, Jennifer S | 2011 | | | |
| Body mass incHu, C. R.; War | 2012 | Chinese Journ | 12 | 1 55-60 |
| Autoimmune zarnavalou, C. | 2016 | Review of Clin | 30 | 1 23-29 |
| Listeria peruca Findlater, Aidi | 2020 | JAMMI | 5 | 3 182-186 |
| Frequency of iWallace, T M; | 2001 | Canadian jour | 15 | 1 21-8 |
| What is the EvRamos-Gallarci | 2020 | Aesthetic Plas | 44 | 2 286-294 |
| Anterior ischeSouas, David C | 2016 | Canadian jour | 51 | 6 459-466 |
| European evicAnnese, V.; Be | 2015 | Journal of Cro | 9 | 11 945-965 |
| Allograft involzadi, M.; Tah | 2011 | Progress in Tri | 21 | 4 353-359 |
| Biological therPereira, Vane | 2017 | Revista brasilie | 57 | 2 174-181 |
| Breast Implan Ramos-Gallarci | 2017 | Journal of inv | 30 | 1 56-65 |
| An integrated Grinyo, J.; Cha | 2010 | Transplantatic | 90 | 12 1521-1527 |
| https://mc.manuscriptcentral.com/bmjmedicine | | | | |
| Title | Year | Journal | Volume | Pages |
|--|------------|--|--------|-------------|
| The morbidity | 2009 | Deutsches Arzteblatt | 106 | 40 641-648 |
| Estimation of Xiang, W.; Shi | 2011 | Cancer Causes | 22 | 8 1153-1161 |
| Cancer and mBoehmer, Ulrich | 2012 | The Lancet | 13 | 12 e545-53 |
| Alu MethylationYe, Ding; Jian | 2014 | International j | 111 | 2 298-302 |
| Nicotinic receptor antagonents in the treatment of renal failure | 2015 | Cancer causes | 24 | 1 125-34 |
| Non-Hodgkin
Lee, Won Jin; Is birth weight Papadopoulos | 2012 | International j | 130 | 1 179-89 |
| Birth weight aYang, T O; Reh | 2014 | Annals of oncology | 25 | 9 1836-43 |
| Birth order an Von Behren, J | 2011 | International j | 128 | 11 2709-16 |
| Height and caGreen, Jane; C | 2011 | The Lancet | 12 | 8 785-94 |
| Smoking, varicGibson, Todd | 2011 | Cancer causes | 24 | 1 125-34 |
| Non-Hodgkin
Kane, Eleanor | 2015 | Cancer epiden | 24 | 7 1061-70 |
| An association Lens, M B; Ne | 2005 | Annals of oncology | 16 | 3 460-5 |
| Birth order an Grulich, Andre | 2010 | American journal | 172 | 6 621-30 |
| Burkitt and BuSaleh, K.; Micl | 2020 | Current Oncol | 22 | 4 |
| Dose-responsili, Dongyang | 2018 | The American | 107 | 3 371-388 |
| Height, leg IerGunnell, D; Ol | 2001 | Epidemiologic | 23 | 2 313-42 |
| Infectious moWade, N. B.; C | 2020 | Cancer Causes | 31 | 5 451-462 |
| Juvenile derm Stubgen, J. P. | 2017 | Journal of the | 377 | 19-24 |
| Serologic marBassig, B. A.
\m | 2018 | International j | 143 | 3 570-579 |
| Dietary Inflamayedi, Ahmac | 2018 | Advances in n | 9 | 4 388-403 |
| Identification Nishishinya, N | 2015 | Rheumatologj | 35 | 1 17-26 |
| Number of pa Guo, Peng; Hl | 2017 | Hematology (j) | 22 | 5 274-285 |
| Metabolic risk Stocks, Tanja; | 2015 | International j | 44 | 4 1353-63 |
| Ethylene oxidiMarsh, Gary N | 2019 | International j | 92 | 7 919-939 |
| The associatioZhang, Yaoyac | 2020 | European jour | 138 | 133-148 |
| Yogurt, culturSavaiano, Den | 2021 | Nutrition revie | 79 | 5 599-614 |
| Thyroid dysfuiTran, Thi-Van- | 2020 | Endocrine-reli | 27 | 4 245-259 |
| The potential Muir, Amande | 2020 | Clinical and ex | 50 | 2 147-159 |
| Systematic reChupin, Antoii | 2020 | Alimentary ph | 52 | 8 1289-1297 |
| Systematic rePiovani, Danie | 2020 | Alimentary ph | 51 | 9 820-830 |
| Risk scores for Mulder, Frits I | 2020 | Journal of thr | 18 | 10 2622-2628|
| Potential risk
Ma, Haozhen; | 2020 | International j | 17 | 16 2531-2543|
| Meta-analysis Zhang, Dai; Dc | 2020 | Aging | 12 | 11 10772-10794|
| Maternal diabYan, Pengfei; ' | 2021 | Acta diabetolc | 58 | 2 153-168 |
| Long-Term VitShurrab, Moh | 2019 | American jour | 42 | 9 717-724 |
| Dried Fruit IntMossine, Vale | 2020 | Advances in n | 11 | 2 237-250 |
| Does heart faizHanging, Hanlai; | 2020 | Heart failure r | 25 | 6 949-955 |
| Evaluation of Ichong, Zhi Xic | 2020 | Asian Pacific j | 21 | 4 881-895 |
| Consumption Li, Yuting; Guc | 2021 | Journal of Can | 12 | 10 3077-3088|
| Combined lifeZhang, Yan-Bc | 2020 | British journal | 122 | 7 1085-1093 |
| Donor-TransnEccher, Albinc | 2021 | Liver transplnat | 27 | 1 55-66 |
| Effects of BariZhang, Kui; Lu | 2020 | Obesity surgery | 30 | 4 1265-1272 |
| Risk of CancerMicic, Dejan; I | 2019 | Journal of clin | 53 | 1 e1-e11 |

https://mc.manuscriptcentral.com/bmjmedicine
Title	Journal	Year	Volume	Issue	Pages
Does insomnia: Shi, Tingting;	Journal of sleep disorders	2020	29	e12876	
Risk of cancer: Ghajarzadeh;	Autoimmunity	2020	19	102650	
Prevalence of Yin, Tingxuan;	BMC infectious diseases	2021	21	200	
Subclinical hygGomez-Izquie	BMC endocrinology	2020	20	83	
Hypnotics and Peng, Tzu-Ror	Medicina (Kau)	2020	56	10	
Mediterranea Sanchez-Sancl	Maturitas	2020	136	25-37	
Inhalation of tReddam, Aale	Environment international	2021	149	106402	
Risk of cancer: Amella, Gera	Neuroscience	2021	126	529-541	
Risk of malignHaber, Roger;	Journal of the	2020	83	661-663	
The risk of maLotfi-Foroush:	Clinical and Tr	2020	22	1825-1837	
Risk of MalignKarmacharya,	Rheumatic Dis	2020	46	463-511	
Donor-transmEccher, Albinc	Journal of Neq	2020	33	1321-1332	
Domestic radClu, Yan; Liu, Li	Journal of B.U	2020	25	1035-1041	
N-6 PolyunsatKim, Youngyo;	Nutrients	2020	12	9	
Whole Grains, Gaesser, Glen	Nutrients	2020	12	12	
Risk of malignBiardeau, Xavi	Neurourology and Urodynamics	2015	23	635-642	
Cigarette SmoChang, Joanne	Nicotine & tot	2021	26	1021-1035	
Eating disordeMichels, Nath	Eating and we	2021	15	840-859	
TNF Inhibitors Muller, Marie	Journal of Cro	2021	88	70-74	
Cancer occurrZhang, Zheyu;	Journal of clin	2021	93	10-Jan	
Cancer in glasLehnert, Mart	International	2020	123	1570-1581	
Bisphosphonali, Yuan-Yuan;	British journal	2020	28	e3117	
Benefits of QiToneti, Bruna	Revista latino	2020	12	793-808	
Association of Naghshi, Sina;	Advances in n	2021	148	104440	
Association BeKalentari, Nari;	Microbial path	2020	157	549-558	
Association BeLam, Megan;	JAMA dermat	2021	148	1372-1382	
Aspirin and thSantucci, Clau	International	2021	64	186-190	
ANalysis of adParvova, I.; Hr	Revmatologia	2019	27	17-Mar	
Alcohol and cSinghavi, Hite:	Indian journal	2020	132	623-634	
Anesthesia anChang, Chun-\	Anesthesia an	2021	9	8565	
Association beSeretis, Ariste	Scientific repo	2019	3	2025515	
Association BeSpina-Romei	JAMA network	2020	59	930-939	
A meta-analysis Xie, Wenhui;	Rheumatology	2020	136	2912-22	
Dietary acrylaPelucchi, Clau	International	2015	66	774-90	
Dietary acrylaVirk-Baker, M	Nutrition and	2014	30	85-96	
Whole-grain iJacobs, D R Jr;	Nutrition and	1998	52	205-213	
The ProtectiveWan Iismai, W	Journal of pre	2019	18	148-56	
Cancer risk for Bosetti, Cristir	The oncologis	2013	140	513-525	
Use of benzodKim, Hong-Ba	International	2017	144	2390-2400	
Work stress ayYang, Tingting	International	2019	64	21-32	
Observational Solomon, D. H	Arthritis and F	2012	156	158-171	
NoncutaneousWang, L.; Bier	Jama Dermat	2020	12	2035-9	
Occupational - Huss, Anke; Št; 2018 Environmenta 164 ei2, 0147621 467-474					
In utero exposSchuz, Joachir 2017 British journal 116 1 126-133					
ComplicationsSousa, P.; Alle 2015 Current Opini 31 4 296-302					
Selenium for ŴVinceti, M.; Fi 2018 Cochrane Date 2018 1 CD005195					
Risks and benSiigel, Corey A 2006 Clinical gastro 4 8 1017-976					
Patterns of ReVernooij, Robi 2019 Annals of Inte 171 10 732-741					
Selenium for ŴVinceti, Marc; 2014 The Cochrane database 3 CD005195					
Sleep durationZhao, Hao; Yir 2013 Asian Pacific j 14 12 7509-15					
Tea consumptZhang, Yu-Fei; 2015 European jour 24 4 353-62					
Vitamin D statSchwartz, G. C 2007 Current Opini 10 1 11-Jun					
Maternal and Victora, C. G.; 2008 The Lancet 371 9609 340-357					
EpidemiologicParbery, G.; Ti 2012 JBI Database c 10 Supplement 5 S259-S272					
Diet and cancWoo, Hae Dor 2014 Asian Pacific j 15 19 8509-19					
Comparison oSlusky, D. A.; Mezei, G.; Met Cancer Epidemiology 125-133					
Worldwide InWheat, Chelle 2016 Gastroenterol 2016 101475557 1632439					
Vitamin D andZeeb, H. 2012 Current Nutrit 1 1 24-29					
Vitamin D supKeum, N; Gio 2014 British journal 111 5 976-80					
Vitamin D statShin, Y. H.; Sh 2013 Korean Journ 56 10 417-423					
Vitamin B6 anMocellin, Sim 2017 Journal of the 109 3 9-Jan					
Very high risk Giardiello, F N 2000 Gastroenterol 119 6 1447-53					
Venous thromlodice, S; Gan 2008 Journal of thr 6 5 781-8					
Vegetarian, veDinu, Monica; 2017 Critical review 57 17 3640-3649					
Type 1 diabetSona, Mukete 2018 Japanese jour 48 5 426-433					
Tumor risk in IRump, P; Zee 2005 American jour 136 1 95-104					
The impact of Lacombe, Jasc 2019 BMC public he 19 1 900					
The impact of Park, M H; Fal 2012 Obesity review 13 11 985-1000					
The health beTwohig-Benn 2018 Environmenta 166 ei2, 0147621 628-637					
Soft drinks, as Aune, D. 2012 American Jour 96 6 1249-1251					
The mediterraKontou, Niki; I 2011 Journal of me 14 10 1065-78					
The relationshChiang, Vic Sh 2017 Critical review 57 6 1153-1173					
The role of vitZeeb, Hajo; Gi 2010 Deutsches Arz 107 37 638-43					
The role of priTroisi, R.; Bjor 2018 Journal of Inte 283 5 430-445					
The role of MrTyrovolas, Ste 2010 Maturitas 65 2 122-30					
The risk of maPatel, S.; Pate 2016 International J 55 5 487-493					
The incidence Li, Hailong; Li 2018 Schizophrenia 195 ayx, 8804207 519-528					
Smoking, menJones, Mirand 2013 PloS one 8 10 e77941					
The burden ofBoffetta, Paol 2006 International j 119 4 884-7					
The effect on LLee, Peter N 2013 Regulatory to 66 1 5-Jan					
The effect of ŴXiao, Li; Zhan 2020 Medicine 99 15 e19698					
Systematic revFenton, Tanis 2016 BMJ open 6 6 e010438					
The AssociativKuo, Chin-Chi; 2017 Environmenta 125 8 87001					
The accuracy ŴNewell, S A; G 1999 American jour 17 3 211-29					
Systematic revJanghorbani, I 2012 Hormones & c 3 4 137-46					
Title	Year	Journal	DOI	Page	
--	------------	--	----------------	------	
Sulfonylurea cHendriks, Ann	2019	European jour	861 en6, 1254354	172598	
Substantially iNoto, Hiroshi;	2010	Journal of dial	24	5 345-53	
Statins and risBrowning, Dar	2007	International j	120	4 833-43	
Statins and caKuoppala, Jaan	2008	European jour	44	15 2122-32	
Smokeless totSiha, DhirenD	2016	International j	138	6 1368-79	
Sex differenceWang, Yafeng	2019	BMC medicine	17	1 136	
Sleep durationChen, Yuheng	2018	BMC cancer	18	1 1149	
Risk of malign Lopez-Olivo, M	2012	JAMA	308	9 898-908	
Risk of cancer Olin, Jacquelin	2011	American jour	68	22 2139-46	
Sedentary BeKatMarzynk, P	2019	Medicine and	51	6 1227-1241	
Selenium ExpCaici, Xianlei; W	2016	Scientific repo	6 101563288	19213	
Sediment BeLynch, Brigid F	2010	Cancer epiden	19	11 2691-709	
Salmon calcitOverman, Ro	2013	The Annals of	47	12 1675-84	
Safety of syntLepriano, Alex	2020	Annals of the i	79	6 760-770	
Safety of secu Blauvelt, A	2016	Expert Opinion	15	10 1413-1420	
Risks and benHooper, Lee; †	2006	BMJ (Clinical r	332	7544 752-60	
Risk of malign Ungprasert, P.	2014	Seminars in ar	44	3 366-70	
Risk of cancer Peleva, E; Extc	2018	The British j	178	1 103-113	
Risk of CancerSaerens, Anto	2019	International j	16	22	
Prenatal multiGoh, Y; Bolla	2007	Clinical pharm	81	5 685-91	
Prediabetes aiHuang, Yi; Cai,	2014	Diabetologia	57	11 2261-9	
Pre-eclampsiaBellamy, L.; C;	2008	Hipertension	25	2 87-88	
Potential heal Wolk, A	2017	Journal of inte	281	2 106-122	
Organic food :Glibowski, Paw	2020	Roczniki Panst	71	2 131-136	
Psoriasis and iTakeshita, J.; C;	2017	Journal of the	76	3 377-390	
Radon and carDarby, S C; WI	1995	Journal of the	87	5 378-84	
Review of the Ahlbom, I C; C	2001	Environmenata 109 Suppl 6	ei0, 0330411	911-33	
Risk of cancer Ahn, Hee Kyur	2016	Psycho-oncolc	25	12 1393-1399	
Reduction of fHan, Mi Ah; Zl	2019	Annals of Inte	171	10 711-720	
Protective EffWang, A.; Wal	2016	Current Ather	18	12 72	
Oral contraceBassuk, S. S.; †	2015	Annals of Epid	25	3 193-200	
Oral contraceLa Vecchia, C;	2001	Drug safety	24	10 741-54	
Occupational .Ghafari, Mahi	2017	Epidemiology	39	101519472 e2017027	
Olive oil and hLipworth, L; N	1997	Preventive me	26	2 181-90	
Risk of lymphfLegendre, Lau	2015	Journal of the	72	6 992-1002	
Magnetic fieldFeychting, M.;	1995	European Jou	31	12 2035-2039	
The epidemiolSteinbeck, G; G	1993	European jour	2	4 293-300	
What diseases:Reid, I. R.	2016	Archives of Di	101	2 185-189	
Whole grain cAune, Dagfinn	2016	BMJ (Clinical r	353 8900488, bmj i2716		
Waterpipe smMontazeri, Za	2017	Tobacco contr	26	1 92-97	
Tobacco smokGandini, Sara;	2008	International j	122	1 155-64	
PharmacologiuWu, Lang; Zhu	2015	Scientific repo	5	101563288 10147	
Oral bisphospiDeng, Yingfan	2018	Archives of os	14	1	
The natural hi Duricova, D.; I 2017 European Journ... 29 2 125-134					
Risk of malign Le Blay, P.; Mt 2012 Clinical and Ex... 30 5 756-764					
The effect of c Balter, Katarir 2012 Current opinic... 24 1 90-102					
The efficacy aHuang, Han-Y. 2006 Annals of inte... 145 5 372-85					
Tobacco smokSasco, A J; Sec 2004 Lung cancer (/4 Suppl 2 b3u, 8800805 S3-9					
Ultrasound duSalvesen, K A; 1999 Ultrasound in... 25 7 1025-31					
Vitamin and nFortsman, Ste 2013 Annals of inte... 159 12 824-34					
Obesity and d Gallagher, E. J 2015 Physiological f... 95 3 727-748					
Occupational i Bosetti, C; La 1 2003 European jour... 12 5 427-30					
Non-AIDS-defi Nguyen, M. L. 2010 Current Infect... 12 1 46-55					
Non-cardiova:Desai, Chintar 2014 BMJ (Clinical r... 349 8900488, bmj.g3743					
No evidence oDejaard, A; L 2009 Diabetologia 52 12 2507-12					
Monotherapy Mekuria, Abra 2019 Journal of dial... 2019 7676909					
Metformin an Gandini, Sara; 2014 Cancer prever... 7 9 867-85					
Mediterranea Grosso, Giuse 2013 BMC surgery 13 Suppl 2 100968567 S14					
Association be Tong, Gui-Xiar 2014 Asian Pacific j... 15 10 4265-9					
An update on Tzavara, V.; Pi... 2013 Clinical Investi... 3 3 281-293					
Malignancies i Nieminen, Ur 1 2015 Scandinavian j... 50 1 81-9					
ImmunosupprDasari, B. V. M 2012 Diseases of th... 55 9 1008-1011					
Exam 1: Risks Anonymous 2014 Clinical Gastro... 12 9 e87-e89					
Exam 1: Risk c Anonymous 2015 Clinical Gastro... 13 5 e48-e50					
Epidemiology Zhang, J.; Ma, 2014 Medical oncol... 31 7 32					
Does the risk t Nocturne, G.; 2017 Annals of the i 76 2 2					
Does a MediteSchwingshack 2016 Current Nutrit... 5 1 17-Sep					
Light alcohol c Bagnardi, V; R 2013 Annals of onc... 24 2 301-8					
Kefir and canc Rafie, N.; Har 2015 Archives of Ira... 18 12 852-857					
Hormone ther Weinand, J. D 2015 Journal of Clin... 2 2 55-60					
Ovulation indi Brinton, Louis 2005 Fertility and st... 83 2 261-6					
Possible role c Grosso, Giuse 2017 Nutrition revi... 75 6 405-419					
Omega-3 fatty Gerber, Marie 2012 The British jou... 107 Suppl 2 az4, 0372547 S228-39					
Omalizumab abusse, William 2012 The Journal of... 129 4 983-9.e6					
Oils and canc Tolbert, P E 1997 Cancer causes 8 3 386-405					
Occupational van Uffelen, J.; 2010 American jour... 39 4 379-88					
Obstructive sli Zhang, Xiao-Bi 2017 European jour... 26 2					
Selenium for r Dennert, Gabi 2011 The Cochrane database of s... 5 CD005195					
Tumor NecroArentz-Hansei 2007 NIPH Systematic Reviews: Executive Summaries					
Olive oil intaPsaltopoulou, 2011 Lipids in heal... 10 101147696 127					
Opium use: ar Kamangar, Fai 2014 The Lancet. Oi... 15 2 e69-77					
Obesity and c Shanmugaling 2014 BMC cancer 14 100967800 712					
Nut consumptAune, Dagfinn 2016 BMC medicine 14 1 207					
Nut consumptWu, Lang; Wa 2015 Nutrition revi... 73 7 409-25					
Health risks re Lee, P. N. 2014 Regulatory To... 69 1 125-134					
Title	Journal	Volume	Year	Pages	
--	----------------------------------	--------	------	---------------	
Green tea (CaFilippini, T.; M	2020 Cochrane Database of Sysyte	15	2020	2099-2108	
Ginseng consJin, X.; Che, D.	2016 Journal of Gin	40	2016	269-277	
Genotoxic riskBolognesi, C.; Moretto, A.	Toxicology Letters	4	2016		
Fermented daZhang, K.; Dai,	2019 International J	144	2019	7 1487-99	
Exposure to nZaki, A. M; Ra	2020 Middle East Jc	11	2020	1 11-Jan	
Exposure to arPelucchi, C; La	2011 Annals of onc	22	2011	7 1487-99	
Differences in Bella, Frances	2017 International j	68	2017	4 402-410	
Dietary phytoKotecha, R.; T.	2016 Oncotarget	7	2016	32 52517-52529	
Dietary magnKo, H. J.; Youn	2014 Nutrition and	66	2014	6 915-923	
Diabetes mellisasazuki, Shizi	2013 Cancer scienci	104	2013	11 1499-507	
Diabetes, Insude Miguel-Yar	2011 Current Cardi	5	2011	1 70-78	
DermatomyosAussy, A.; Boy	2017 Frontiers in Ir	8 AUG	2017	992	
Depression anWang, Y. H.; L	2020 Molecular Psy	25	2020	7 1487-1499	
Connections bCalvillo-Argue	2019 JAMA Cardiolc	4	2019	4 380-387	
ComprehensiHaussmann, I	2016 Critical Review	46	2016	8 701-734	
Comparative fDesai, R. J.; Th	2016 Arthritis Care	68	2016	8 1078-1088	
Collection andGossec, L.; Bai	2016 Jt. Bone Spine	83	2016	5 501-509	
Coffee consunYu, Xiaofeng; l	2011 BMC cancer	11	2011	100967800	
Co-morbiditieGullick, N. J.; S	2011 Best Practice ;	25	2011	4 469-483	
Cancers attrib Parkin, D. M.	2011 British Journal	105 SUPPL. 2	2011	514-518	
Cancer Risk AsMundt, Kenne	2018 Journal of occ	60	2018	1 e6-e54	
Cancer risk asMerrill, Ray M	2005 Gynecologic o	96	2005	3 583-93	
Cancer risk anWang, Tingtin	2019 International j	144	2019	12 3001-3013	
Cancer risk afhHieu, Trinh Tr	2012 Endocrine-rel	19	2012	5 645-55	
Cancer InciderDal, Jakob; Lei	2018 The Journal of	103	2018	6 2182-2188	
Cancer Event !Kotronias, Raf	2017 Drug safety	40	2017	3 229-240	
Cancer and ocFu, H; Boffett;	1995 Occupational :	52	1995	2 73-81	
Cancer after tOnega, Tracy;	2006 Cancer epiden	15	2006	8 1532-7	
Breast-feedingMartineMartin, Richard	2005 Journal of the	97	2005	19 1446-57	
Impact of StatVallakati, A.; F	2016 Circulation: Ht	9	2016	10 e003265	
Impact of matHan, Mi Ah; St	2020 PloS one	15	2020	3 e0230721	
Impact of conGanesan, Kum	2019 Critical review	59	2019	3 488-505	
Hyperuricemiixie, Yuxiu; Xu,	2019 Journal of Cell	234	2019	8 14364-14376	
Effect of the aSchwab, U.; L	2014 Food and Nutri	58	2014	25145	
Does use ofmBo, S.; Benso,	2012 Journal of End	35	2012	2 231-235	
Does salmon twells, G.; Che	2016 Osteoporosis	27	2016	1 13-19	
Does dietary ikuria, Angelic;	2020 Critical review	60	2020	4 684-694	
EpidemiologicBukowski, J. A	2009 Risk Analysis	29	2009	9 1203-1216	
Efficacy of greSturgeon, Jeni	2009 Nursing & hea	11	2009	4 436-46	
Effects of reguAlgra, Annemi	2012 The Lancet. Oi	13	2012	5 518-27	
A meta-analyseBagnardi, V; B	2001 British journal	85	2001	11 1700-5	
Black tea--helGardner, E J; F	2007 European jour	61	2007	1 18-Mar	
Birthweight arPaltiel, Ora; Ti	2015 Paediatric and	29	2015	4 335-45	

https://mc.manuscriptcentral.com/bmjmedicine
Association of Nawrot, Tim S 2015 Cancer causes & control: CCC 26 9 1281-8
Association of Zhang, Pengpi 2013 Cancer epidemiology 37 3 207-18
Association of Catala-Lopez, 2019 JAMA network 2 6 e195313
Association Belu, Yan; Tian, 2013 PloS one 8 9 e74723
Association BePalamaner Su 2015 Sleep medicine 16 10 1289-94
Association BeVeronese, Nic 2018 Journal of the 19 11 981-988.e7
Association beMalhotra, Jyo 2017 Cancer preventive research (Philadelphia, Pa.) 10 12 704-709
Association beGuo, Zhen-Lar 2017 Medicine 96 39 e8177
Association beLucariello, Ric 2018 The Australasi 59 4 253-260
Association beLi, Ying; Yang, 2011 PloS one 6 4 e18776
Assisted reprodGilboa, Daniel 2019 Cancer Epidemiology 63 101613
Arsenic exposEngel, Arnold; 2008 Journal of environmental health 71 3 6-Dec
Are infant sizeFisher, David; 2006 International j 35 5 1196-210
Antipsychotic Fond, G; Macq 2012 Medical hypoti 79 1 38-42
Alcohol consuBagnardi, V; B 2001 Alcohol resear 25 4 263-70
Adherence to Jankovic, Nico 2017 Cancer epidemiology 26 1 136-144
Adherence to Schwingshackl 2015 Cancer medici 4 12 1933-47
Adherence to Schwingshackl 2014 International j 135 8 1884-97
A Systematic fFroes Asmus, 2016 Annals of Glob 82 1 132-148
A meta-analysCorrao, G.; Ba 2004 Preventive Me 38 5 613-619
A comprehen:Bazyar, Jafar; 2019 Environmenta 26 13 12648-12661
Risk factors for Castles, Simor 2016 Australian jou 22 3 190-197
Risk of Lymph Nogahori, M.; 2015 Frontiers of G. 34 143-146
Significantly irNoto, Hiroshi; 2011 Endocrine pra 17 4 616-28
Association of Omidvar, S.; P 2013 World Heart J 5 1 47-68
The associatioPapageorgakc 2017 Hellenic journ 20 Suppl 101257471 45-57
Olive oil and cPelucchi, Clau 2011 Current pharn 17 8 805-12
Adverse effectSicomic, I.; Reine 2015 Current Pharn 21 9 1220-1226
Cancer risk in Di Rollo, D; At 2014 Giornale italia 149 5 525-37
The effects of Akii, Elie A; Ga 2010 International j 39 3 834-57
A systematic rAlexander, Do 2013 Journal of the 32 5 339-54
Parkinson’s di:Bajaj, Archna; 2010 Cancer causes 21 5 697-707
HeterogeneityBenmarhnia, T 2018 International j 15 5
A systematic rBirks, S; Peete 2012 Obesity review 13 10 868-91
Young Adult CBerger, Natha 2018 Obesity (Silver 26 4 641-650
The role of dieWilliams, Mar 2005 Nutrition in cli 20 4 451-9
The risk of carvon Roon, Ale 2007 Diseases of th 50 6 839-55
Residential prWashburn, E f 1994 Cancer causes 5 4 299-309
Vitamin K and Roman, E; Fea 2002 British journal 86 1 63-9
Exposure to eSchuz, Joachir 2011 Progress in bioc 107 3 339-42
Meta-analysis Boniol, Mathi 2017 International j 46 6 1940-1947
The carcinogeChen, Ling-Xia 2015 PloS one 10 4 e0123080
Apple intake aFabiani, Robe 2016 Public health r 19 14 2603-17
Processed me Rohrmann, Sa 2016 The Proceedin 75 3 233-41
Smoking cess Saito, Eiko; Ini 2017 Cancer epiden 51 101508793 98-108
A Systematic l€l&ands, Rache 2016 PloS one 11 9 e0158003
Accruing evidSofi, Francesco 2010 The American 92 5 1189-96
Adult weight §Keum, NaNa; 2015 Journal of the 107 2
Alzheimer dis Shi, Hai-bin; T 2015 Journal of can 114 3 485-94
Association bKalantari, Nar; 2020 Parasitology ir 74 dya, 9708549 101979
Cancer risk in Noto, Hiroshi; 2012 PloS one 7 3 e33411
Cancer risk in Mammani, Rav 2017 International j 62 1 73-83
Cancer risk of Chen, Yuehon 2017 Journal of dial 9 5 482-494
Cancer risks aCalvert, G M; ' 1998 American jour 33 3 282-92
Cardiovascula Huang, Tao; Y 2012 Annals of nutr 60 4 233-40
Childhood obeLlewellyn, A; 2016 Obesity revi 17 1 56-67
Chlorination, dMorris, R D; A 1992 American jour 82 7 955-63
Choline and bSun, Shanwen 2016 Scientific repo 6 101563288 35547
Chronic kidneWong, Germa 2016 BMC cancer 16 100967800 488
Circulating solHe, Lan; Bao, l 2014 Tumour biolo 35 9 8749-55
Clinical and mConzatti, Adri 2014 Nutricion hos 31 2 559-69
Comparison oFreisling, Hein 2017 British journal 116 11 1486-1497
Comparison oSamkange-Ze 2010 Journal of clin 28 7 e123-5
Critical reviewWong, O; Raal 1989 American jour 15 3 283-310
Cumulative exGarcia-Doval, 2018 The British jou 179 4 863-871
Depression anlia, Y; Li, F; Liu 2017 Public health 149 qi7, 0376507 138-148
Diet and canBaena Ruiz, R; 2014 Maturitas 77 3 202-8
Diet Quality aiPotter, Jennifer 2016 International j 17 7
Diet Quality aSchwingshack 2018 Journal of the 118 1 74-100.e11
Dietary cadmiCho, Young Ae 2013 PloS one 8 9 e75087
Dietary flavonWoo, Hae Dor 2013 PloS one 8 9 e75604
Dietary intakeAune, Dagfinn 2018 The American 108 5 1069-1091
Does pravastaBonovas, Stef 2007 CMAJ : Canadi 176 5 649-54
Effect of Long Wu, Jennifer \ 2016 Diabetes care 39 3 486-94
Effect of vitanAutier, Philipp 2017 The lancet. Di 5 12 986-1004
Effects of BariZhou, Xu; Yu, . 2016 Obesity surgeri 26 11 2590-2601
Effects on HeBloomfield, Hl 2016 Annals of inte 165 7 491-500
Efficacy of antBardia, Aditya 2008 Mayo Clinic pr 83 1 23-34
ElectromagneFeychting, M; 1995 Cancer causes 6 3 275-9
EpidemiologicRiboli, Elio; Nc 2003 The American 78 3 Suppl 5595-5695
Epidemiology Ceschi, Miche 2007 Swiss medical 137 4-Mar 50-6
Evaluation baInoue, Manan 2005 Japanese jouri 35 7 404-11
Factors predicLiu, Xia; Yang, 2014 PloS one 9 4 e94128
Flavan-3-ols cLei, Lei; Yang, 2016 Oncotarget 7 45 73573-73592
Fruit and vegeTakachi, Ribe 2017 Journal of epic 27 4 152-162
Fruit, vegetab Block, G; Patt 1992 Nutrition and 18 1 29-Jan
Title	Year	Journal	Volume	Pages	
Garlic intake aKim, Ji Yeon; k	2009	The American	89	1 257-64	
Glycemic indeGnagnarella, F	2008	The American	87	6 1793-801	
Glycemic IndeTurati, Federik	2019	Nutrients	11	10	
Health effectsCritchley, J A;	2003	Thorax	58	5 435-43	
Household airJosyula, Sown	2015	Environmenta	14	101147645	24
Household phShi, Yun; Li, Ti	2015	Scientific repo	5	101563288	14901
Incidence of cCasagrande, C	2014	Obesity surgery	24	9 1499-509	
Incidence of CShang, Weifer	2015	PloS one	10	5 e0126016	
Increased RiskWang, Weijie;	2015	Mediators of i	2015	c2m, 9209001	680853
Insulin glarginTang, Xulei; Yi	2012	PloS one	7	12 e51814	
Insulin glarginDu, Xinli; Zhar	2012	The Internatio	27	3 e241-6	
Intensified lovSun, Haixia; Yi	2015	Lipids in health	14	101147696	140
Iron and canceFonseca-Nune	2014	Cancer epiden	23	1 31-Dec	
Is There a RiskFerraro, Sara;	2019	Frontiers in pt	10	101548923	247
Is there an incMirghani, Hait	2017	Oral oncology	67	cu5, 9709118	138-145
Late onset poKhedmat, Hos	2009	Annals of tran	14	4 80-5	
Leisure time pLiu, Li; Shi, Yui	2016	British journal	50	6 372-8	
Light Alcohol ICChoi, Yoon-Jui	2018	Cancer resean	50	2 474-487	
Linoleic acid irZock, P L; Katz	1998	The American	68	1 142-53	
Literature revisImming, Adar	2007	Occupational	64	7 432-8	
Long term horFarquhar, Cine	2009	The Cochrane database of s	2	CD004143	
Mediterranea La Vecchia, Ca	2004	Public health	7	7 965-8	
Mediterranea D'Alessandro,	2016	International j	67	6 593-605	
Mediterranea Sofi, Francesco	2014	Public health	17	12 2769-82	
Meta-analysisMeinert, R; M	1996	Radiation and	35	1 8-Nov	
Meta-analysis2Zhang, Yemao	2016	Environment i	88	du1, 7807270	36-43
Meta-analysis Masunaga, Yu	2007	The Annals of	41	1 21-8	
Meta-analysis Wang, J; Guo	2013	The British j	169	4 838-47	
Meta-analysis Li, Li; Zhou	2013	International j	23	1 16-24	
Metabolic synEsposito, Kath	2012	Diabetes care	35	11 2402-11	
Metformin anDecensi, Andr	2010	Cancer prerer	3	11 1451-61	
Metformin thFranciosi, Moi	2013	PloS one	8	8 e71583	
Multiple sclerHandel, Adam	2010	Journal of neu	81	12 1413-4	
Obesity and cSvatetz, C. A. l	2015	Medicina Clv±	145	1 24-30	
The safety of iAshking, J.; Dix	2008	Current Opini	20	2 138-144	
Ten years inciBeiranvand, S.	2018	Clinical Epider	6	2 94-102	
Obesity and cvUcencik, I.; St.	2012	Ann. New Yor	1271	37-43	
Malignancy ar Ashking, J.	2007	Current Rheur	9	5 421-426	
Exercise: FriDangardt, F. J.	2013	Nature Review	10	9 495-507	
Estimating theMicha, R.; Kali	2011	European Journal of Clinical Nutrition			
Dietary fortifiMohapatra, P.	2013	American Jour	126	2 e13	
60Hz EMF heaAlbert Bren, S.	1995	IEEE Engineeri	14	4 370-374	
Adverse eventde Fraga, R. S.	2020	Journal of Gas	55	5 496-514	

https://mc.manuscriptcentral.com/bmjmedicine
Alcohol drinkiiRota, M.; Port 2014 Cancer Epidem 38 4 339-345
ComorbiditiesMolto, A.; Døi 2018 Best Practice i 32 3 390-400
Platelet transfKumar, A.; Mh 2015 Transfusion 55 5 1116-1127
Risk of skin caHuang, S. Z.; L 2019 Journal of Gas 34 3 507-516
A review of diBrandes, D. W 2009 Current Medic 25 1 77-92
Adalimumab iLapadula, G.; l 2014 International J 27 33-48
Aggressive staLiao, Joshua; f 2013 Current atheri 15 4 316
Adverse eventFellermann, K 2014 Digestive Dise 31 4-Mar 374-378
All for statinsAgouridis, A. f 2016 Current Pharn 22 1 18-27
Aspirin and caBothet, C; Ros 2012 Annals of onc 23 6 1403-15
Association beLi, Bei; Tan, Bi 2014 Journal of evi 7 2 79-83
BioavailabilityRodriguez-Ma 2014 Archives of To 88 10 1803-1853
Cancer risk in OlaOzagasti, Je 2015 American j 16 2 89-98
Current perspSchottenfeld, 2013 Annual Review 34 97-117
EpidemiologicLee, Peter N; 2016 Regulatory too 80 rbh, 8214983 134-63
Exposure to pKim, K. H.; Ka 2017 Science of the 575 525-535
Fertility treaHargreave, M. 2013 Fertility and st 100 1 150-61
Exposure to pVinson, Flore 2011 Occupational 68 9 694-702
Hormonal conCibuła, D; Gorn 2010 Human reproc 16 6 631-50
Insulin use anColmers, I N; l 2012 Diabetes & m 38 6 485-506
Medical histoKibola, Christ 2014 Journal of the 2014 48 125-9
Use of AntibioPetrell, Faust- 2019 Cancers 11 8
Are health carDranitsaris, Gi 2005 Journal of onc 11 2 69-78
Association beNamazi, N; Lai 2018 Public health 164 qi7, 0376507 148-156
Alcohol drinkiManan 2007 Japanese jouri 37 9 692-700
Cancer risk in Tennis, Patrici 2005 Annals of aller 95 4 354-60
Association ofWu, Yili; Wan 2017 Journal of the 18 6 551.e17-551.e
Dietary flavoNeuhouser, IV 2004 Nutrition and 50 1 7-Jan
Glycaemic indChoi, Yuni; Gi 2012 The british jou 108 11 1934-47
Human papillMoore, T O; N 2001 Journal of cuti 5 4 323-8
Is personality Jokela, M; Bat 2014 British journal 110 7 1820-4
Literature revReigstad, Mar 2017 Acta paediatri 106 5 698-709
Meta-analysis Crump, Kenny 2003 Environmenta 111 5 681-7
Metal-on-metWagner, Philip 2012 Acta orthopae 83 6 553-8
Low-dose asPaterno, Carlc 2013 European hea 34 44 3403-11
LymphomatoiWieser, Iris; V 2016 American jou 17 4 319-27
Meat and milkJoun, Shin-you 2016 The Proceedin 75 3 374-84
MediterraneanSofi, Francesco 2013 BioFactors (O 39 4 335-42
Men's informSaab, Moham 2018 Psycho-oncolc 27 2 410-419
Population-atPari, Sohee; k 2014 PloS one 9 4 e90871
Potato consuDaroooghegi M 2020 Critical review 60 7 1063-1076
Statins and caThompson, Jo 2010 American jou 17 4 e100-4
Oral alendronChiang, Chia-l 2012 Journal of bon 27 9 1951-8
Title	Journal	Year	Page Range
Coffee and caiAlicandro, Gia	2017 European jour		424-432
Overweight duArnold, Melin	2016 European jour		893-904
A meta-analyShiels, Meredi	2009 Journal of acq		611-22
A systematic rBara, Tivadar	2017 Romanian jou		41-44
ABO blood grzZhang, Bai-Lin	2015 Asian Pacific j		4643-50
Elevated homZhang, D.; We	2010 PLoS ONE		e0123423
Malignancies iSimon, T. A.; iS	2009 Annals of the i		1819-1826
More benign IKhedmat, H.; i	2010 Progress in Tri		158-164
The Canadian Ramasubbu, F	2010 Annals of Clin i		91-109
The Role of ArAlDabbagh, M	2017 American Jour		12
Abatacept for Maxwell, L.; Si	2008 Cochrane Database of Syste		CD007277
A systematic INewland, A.; I	2019 Hematology (I)		679-719
A review of thAlibhai, M. H.; i	2015 Journal of Sur		279-283
Atypical featuGantz, M.; Bu1	2017 Journal of the		952-957.e951
CharacteristicIanotto, J. C.; i	2019 Haematologic		1580-1588
Malignancy arAardoom, Ma	2018 Inflammatory		732-741
Adherence to Schwinshack	2017 Nutrients		10
Association beSchierhout, Gi	2020 The Lancet. In		133-143
Atopic DermaHalling-Overg;	2019 Journal of the		e81-e82
Health Risks Alawin, Herve;	2018 International j		9
Mortality and Donato, Franc	2016 International j		1155-1168
Periodontal DiMichaud, Don	2017 Epidemiologic		49-58
TNF-alpha bloSilva, F.; Cistei	2012 Current Rheur		501-508
Venous thromRodrigues, Ce	2010 Journal of thr		67-78
Serious Adver-Hansen, R. A.; i	2007 Clinical Gastro		729-735.e721
Skin diseases iPatterson, An	2016 Journal of the		143-70
Single- VersusWang, Li; Gu	2019 Transfusion m		51-60
Alcohol consude Menezes, f	2013 Asian Pacific j		4965-72
Rituximab ancFederico, Mas	2018 The Lancet. H		e359-e367
Vitamin D supBjelakovic, G.;	2008 Cochrane Database of Syste		CD007469
Sedentary timBiswas, Aviroc	2015 Annals of inte		123-32
Pediatric cancJohnson, Kimt	2017 PloS one		e0181246
Relationship bGupta, Sanjay	2018 The Indian jou		56-76
Cardiac glycosOsman, Moha	2017 PloS one		178611
Green tea andAbe, Sarah Kri	2021 European Jou		865-876
Diffuse large EBonesteele, G.	2020 Molecular ger		100663
Cancer InciderLaroche, Elena	2021 International j		5
A critical revieChang, E. T.; B	2015 Annals of Epid		275-292
Association beSomigliana, E;	2006 Gynecologic o		331-41
Atopy and SpCui, Yubao; Hi	2016 Clinical review		338-352
Atopic dermatWang, H; Dier	2006 The British jou		205-10
Allergies and balk Merrill, R. M.	2008 Otorinolaring		61-82
Assessing the Ayrignac, X.; B	2019 Expert Review		695-706

https://mc.manuscriptcentral.com/bmjmedicine
Title	Year	Journal	Volume	Issue	Pages	
Human healthChiu, W. A.; Ji	2013	Environmenta	121		3 303-311	
The overall anZantas, D; Zhou	1994	The Journal of	21		10 1855-9	
The risk of HCGarozzo, A.; F.	2017	Molecular Me	15		5 3336-3339	
Type 2 diabetesYang, W. S.; Li	2016	European Journ	25		2 149-154	
Occupational and Descatha, A.; Lo	2005	Cancer causes	16		8 939-53	
Inflammatory Sultan, K.; Sha	2012	Practical Gastro	36		8 13-18	
Cancer risks allThet, Z.; Lam,	2020	Clinical Rheumatology				
The Dark Side Versini, M.; St	2017	Israel Medical	19		6 380-381	
NON-HODGKIN Farmanfarma	2020	World Cancer	7		6	
Non-Hodgkin\'Wong, O; Raai	2000	Journal of onc	42		5 554-68	
Is there an inclakatos, P L;		2010	Current drug t	11		2 179-86
Vitamin D for Hossein-Nezhf	2013	Mayo Clinic Pr	88		7 720-755	
The relations\Yu, Mengxia; I	2020	Scientific repo	10		1 551	
TNF antagonisNasir, A.; Gree	2007	Bulletin of the	65		3 178-181	
Smoking and I Morton, L. M.	2012	Leukemia & L	53		10 1853-1854	
Risk of lymphcAng, Y. S.; Fari	2006	Gut	55		4 580-581	
Sarcoidosis anCohen, P. R.; I	2007	Clinics in Dern	25		3 326-333	
Risks and benMcGovern, D.	2005	Gut	54		8 1055	
Richter SynDrVitale, C.; Ferr	2016	Current Hema	11		1 43-51	
Rheumatoid aKlein, A.; Polli	2018	Hematologica	36		5 733-739	
RESIDENTIAL IWarnschun, E.	1994	Cancer Causes	5		5 487-487	
Residential exPedersen, Car	2015	British journal	113		9 1370-4	
Polyphenols: tRothwell, Jose	2017	Current opinic	20		6 512-521	
Risk of MycosiGiovanni, B.; C	2019	Journal of the	34		6 1186-1195	
Meta-analysisSwaen, G M H	2010	Occupational	67		4 286-287	
Adverse react\Weber, R. W.	2004	Current Opini	4		4 277-283	
Long-term safYazici, Y.	2010	Clinical and Ex	28	SUPPL.6	565-567	
Insights from aCooper, G. S.;	2011	International	8		8 3380-3398	
Transfusion arCerhan, J. R.	2010	Blood	116		16 2863-2864	
Tobacco smokKhani, Y.; Pou	2018	Biomedical Re	5		4 2142-2159	
The relation bGeissler, E. K.;	2004	Current Opini	9		4 394-399	
Risk of malignMannion, M. I	2014	Current Opini	26		5 538-542	
Risk of cancer Garg, S. K.; Lo	2016	Current Opini	32		4 274-281	
Systemic lupuMao, Song; Sh	2016	Journal of can	142		1 253-62	
The epidemiolGruIlch, Andre	2005	Pathology	37		6 409-19	
Themes in LiteRasht, S. L.	2019	Cancer Nursin	42		1 E28-E35	
Occupational -Gangemi, S.; M	2016	Mol. Med. Req	14		5 4475-4488	
Occupational -Marant Micall	2018	Occupational	75		8 604-614	
Occupational -Brown, Terry;	2012	British journal	107		541-548	
Occupational -Brown, T.; Rus	2012	British Journal	107		541-548	
Nightshift worKolstad, Henri	2008	Scandinavian j	34		1 22-May	
New insights iChihara, Dai; I	2015	Expert review	15		5 531-44	
Malignancy RiCush, J. J.; Da 2012 Rheumatic Dis 38 4 761+-						
Malignancy in Egiziano, G.; C 2016 Current Treat 2 1 13-20						
Malignancy as Turesson, C.; I 2013 Rheumatolog 52 1 14-May						
Meta-analysis Casjens, Swaa 2019 International J 145 6 1701						
Exposure to Pjurewicz, Joan 2006 International J 19 3 152-69						
Comparison o Bassig, B. A.; Z 2016 Carcinogenesi 37 7 692-700						
Malignancies i Goobie, G. C.; 2015 Current Opini 27 5 454-460						
Lymphoma, r Mood Mariette, X. 2010 Joint, Bone, S 77 3 195-197						
Male Infertility Rogers, M. J.; 2017 Seminars in Rt 35 3 298-303						
Integrating unGlass, Samant 2016 Discovery met 21 115 181-8						
Is there truly ¿ Dommasch, E. 2009 Dermatologic 22 5 418-430						
Inestinal and Garg, S. K.; Ve 2017 Gastroenterol 46 3 515+						
Insulin resistance and cancer risk 2010 Nutrition and 62 7 878-82						
Insufficient E v Peyrin-Biroule 2009 Clinical Gastro 7 10 1139-1139						
Human immuEngels, E. A.; C 2005 Journal of the 97 6 407-409						
Obesity and t lichtman, Mai 2010 The oncologis 15 10 1083-101						
Sun exposure, Negri, Eva 2010 Nutrition and 62 7 878-82						
Obesity and ci Key, T. J.; Spet 2010 Proceedings o 69 1 86-90						
Hepatitis C vir Anderson, L. A 2008 International J 122 8 X-XII						
Do inflammatory Mason, Mysh 2013 Inflammatory 19 6 1306-21						
Diabetes, gest Chodick, G.; Zi 2011 Women's Hea 7 2 227-237						
Diabetes and w Wang, T.; Nin 2013 Journal of Dial 5 4 378-390						
Current status Kramer, Shira; 2012 Environmenta 120 8 1067-75						
Combination ¿ Borges, A. H. 2017 Current Opini 12 1 19-Dec						
Clinical picture Pa papageorgiou 2015 Autoimmunity 14 7 641-649						
Chemical exp Blair, A.; Purd 2007 British Journal 139 5 753-761						
Carcinogenicit Baan, R.; Strai 2007 Lancet Oncolo 8 4 292-293						
Cancer risks in Gibbs, G. W.; l 2014 Journal of Occ 56 5 540-559						
Cancer in adol Bohlius, J.; Fo 2018 Current Opini 13 3 196-203						
Cancer and m De Fijter, J. W 2017 Transplantatic 101 1 45-55						
Hepatitis C as Peveling-Ober 2013 Journal of Hec 59 1 169-177						
Hepatitis C vir Jadali, Zohreh 2012 Hepatitis mon 12 2 85-91						
Hepatitis B an Kwok, R. M.; T 2016 Clinics in Liver 20 4 693+						
ImmunomoduPonce, R. 2018 Current Opini 10 98-110						
Epidemiology Wang, Sihe 2009 Nutrition rese 22 2 188-203						
Epidemiology Nair, R.; Arora 2016 Oncology (Swi 91 1 Supplement 18-25						
Epidemiology Skrabek, P.; Ti 2013 Transfusion ar 49 2 133-138						
Epidemiology Mbulaiyeye, S 2003 Hematology/C 17 3 673-696						
Epidemiology Boffetta, P. 2011 Annals of Onc 22 27-31						
does simian viEngels, E. A. 2005 Cancer Investi 23 6 529-536						
Epidemiology: Turner, M. C. 2012 Cancer Immur 61 9 1493-1510						
Epidemiologic La Vecchia, C., 2003 European Jour 12 1 14-May						
EpidemiologicBoffetta, P.; A 2009 Journal of Occ 51 11 1275-1287						
Title	Author	Year	Page	Volume		
--	--	------	------	--------		
The Individual and Combined Effects of Obesity and Type 2 Diabetes on Cancer Predisposition and Survival	Hanna, S.; Zip, C.; Shear, N. H.	2015	97	39-44		
Tobacco and non-Hodgkin’s lymphoma: Combined analysis of three case-control studies (United States)	Melenotte, Clea; Million, Matthieu; Raoult, Didier	2020	146	1-6		
Meta-analysis says low LDL cholesterol may be associated with greater risk of cancer.	Kempen, John H; Gangaputra, Sapna; Daniel, Ebenezer; Levy-Clarke, Grace A; Nussenblatt, Robert B; Rosenbaum, James T; Suhler, Eric B; Thorne, Jennifer E; Foster, C Stephen; Jabs, Douglas A; Helzlsouer, Kathy J	2008	186	495-501		
Health risks for the population living near petrochemical industrial complexes. 1. Cancer risks: A review of the scientific literature.	Davis, D L; Blair, A; Hoel, D G	1993	100	9-162		
Effects of phytoestrogens in women with breast implants: analysis of 173 cases	Rupani, Asha; Frame, James D; Kamel, Dia	2015	17	62-70		
Anti-Tumor Necrosis Factor Therapy and Cancer Risk in Patients With Autoimmune Disorders	Meurman, J H; Bascones-Martinez, A	2011	30	222-228		
Are oral and dMeurman, J H anti-inflammatory drugs effective in the treatment of inflammatory bowel disease?	Raaschou-Nielsen, O.; Hvidtfeldt, U. A.; Roswall, N.; Hertel, O.; Poulsen, A. H.; Sorensen, M.	2020	14	500-501		
The Association of Sjogren Syndrome and Autoimmune Thyroid Disorders.	Vettori, Serena; Staibano, Stefania; Mascolo, Massimo; Ilardi, Gennaro; Valentini, Gabriele	2017	9	1-121		
Obesity and cUngefroren, H	Rupani, Asha; Frame, James D; Kamel, Dia	2015	10	62-70		
The Individual and Combined Effects of Obesity and Type 2 Diabetes on Cancer Predisposition and Survival	Vettori, Serena; Staibano, Stefania; Mascolo, Massimo; Ilardi, Gennaro; Valentini, Gabriele	2015	11	62-70		
Breast Implant-Associated Lymphoma.	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Is there a benefit from the concomitant use of immunosuppression with anti-TNF in Crohn’s disease; heads or tails?	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Epidemiologic studies of glyphosate and cancer: A review	Spitzer, W O; Lawrence, V; Dales, R; Hill, G; Archer, M C; Clark, P; Abenhaim, L; Hardy, J; Sampalis, J; Pinfold, S P	2012	100	1-162		
Alcohol and cancer	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Links between smoking and cancer risk.	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Alcohol consuConnor, Jenni	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Invasive diseaYeung, C K	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Trichloroethylene Scott, Cheryl S	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Non-Hodgkin’s lymphoma	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Breast Implant-Kricheldorff, J	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Lymphomas ARupani, Asha;	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Agricultural exDavis, D L; Bla	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Alcohol consuConnor, Jenni	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Effects of phytoestrogens in women with breast implants: analysis of 173 cases	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Emergent hunVilchez, Regis	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Health risks foDomingo, Jose	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Long-term riskKempen, John	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Meta-analysis Tanne, Janice	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
New insights iMelenotte, Cl	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Cancer EpiderSalim, E. I.; Mi	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Current underBassig, B. A.; l	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Cancer Guidotti, T. L.	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
What Is the RHanna, S.; Zip,	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
Tobacco and rZahm, S. H.; W	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		
The Individual McLean, R. C.;	Davis, D L; Blair, A; Hoel, D G	2012	100	1-162		

https://mc.manuscriptcentral.com/bmjmedicine
Alcoholic beveLatino-Martel, 2016 Critical review 99 ago, 8916049 308-23
Body mass incChoi, E K; Park 2018 Annals of onc 29 3 749-757
EndometriosiskVaskoff, Mar 2015 Human reproc 21 4 500-16
Cancer risks alHortlund, M.; 2017 International J 140 5 1091-1101
Epidemiology Smedby, K. E.; 2011 Seminars in C 21 5 293-298
Metabolic facNagel, G.; Stoi 2012 Annals of Her 91 10 1519-1531
Plasma levels Freeman, Mic 2012 Journal of env 2012 101516361 258981
Ranking occRieutort, D.; A 2016 American Jour 59 7 561-574
Risk of cancer Youakim, S. 2006 Archives of En 61 5 223-231
ABO blood grclodice, Simon 2010 European jour 46 18 3345-50
The challenge Sasco, Annie J 2010 PloS one 5 1 e8621
Risk of lymphLargent, J.; Oe 2012 European Jour 21 3 274-280
Anti-TNF therFiorino, G.; Da 2010 Clinical Updat 26 95-107
A critical reviewChang, E. T.; A 2014 Critical Review 44 S1 Jan-81
Reproductive Costas, Laura; 2014 Critical review 92 3 181-93
Statin use is aPonvilawan, B 2020 J. Clin. Oncol. 38 15
Occupational-Catalanil, Simc 2019 BMC cancer 19 1 1245
Tooth loss ancShi, J.; Leng, V 2018 Oncotarget 9 19 15090-15100
The risk of devCaini, Saverio; 2014 Journal of der 75 1 9-Mar
Health effectsZhivin, S.; Laur 2014 International J 90 11 1104-1113
Inflammatory Stubgen, J. P. 2016 Journal of the 369 377-389
THE INCIDENCFOuladseresht 2019 World Cancer 6 7
Is Banning TexDanilla, Stefar 2020 Aesthetic Surg 40 7 721-731
A Systematic fKotlyar, D. S.; 2011 Clinical Gastro 9 1 36-U75
Ethylene oxidoShore, R E; Ga 1993 British journal 50 11 971-97
HLA-haploidenMeybodi, M. & 2019 Blood Advanc 3 17 2581-2585
Weight loss asNicholson, Bri 2018 The British jou 68 670 e311-e322
Obesity and OYang, Lin; Dral 2016 Journal of clin 34 35 4231-4237
Adherence to Sofi, Francesco 2008 BMJ (Clinical r 337 8900488, bmj a1344
Acrylonitrile aCole, Philip; N 2008 Regulatory to 52 3 342-51
Adherence to Kohler, Lindsa 2016 Cancer epiden 25 7 1018-28
Active CommDinu, Monica; 2019 Sports medici 49 3 437-452
PentachloropiCooper, Glind 2008 Environmenta 116 8 1001-8
Comparison oDe Ridder, Jos 2016 Cancer causes 27 3 291-300
Associations bQiao, Yan; Yar 2018 BMC cancer 18 1 288
Nut Consumplong, Jieyl; Ji, 2020 Cancer epiden 29 3 565-573
Relationship bFernandez-Ma 2020 Environmenta 188 109787
Maternal expMavoungou, S 2020 Cancer epiden 68 101797
Muscle-strengNascimento, \ 2021 The internatio 18 1 69
Consumption Lhaha, Fjord; 2021 Nutrients 13 2
Cellular PhoneChoi, Yoon-Jui 2020 International j 17 21
Exposure to pBoffetta, Paolo 2018 Critical review 48 6 433-442
Author(s)	Title	Journal	Year	Page	DOI
Boaventura, C. S.; Guimaraes, A. N.; Soares, G. R.; Fraga, A. M. B. F.; Neves, F. B. C. S.; Ponde, M. P.	Risk of cancer associated with the use of antidepressants	PloS one	2018	13	e0195683
Lasfargues, G.	Non-Hodgkin's lymphoma and pesticides	Nutrition review	2016	74	6 353-73
ThiazolidinediColmers, I N; I	ThiazolidinediColmers, I N; I	Diabetes & m;	2012	38	6 475-84
Siegel, Corey i	Risk of lymph	Clinical gastro	2009	7	8 874-81
Gartlehner, G.	The comparat	Journal of Rhe	2006	33	12 2398-2408
Partington, R; i	Comorbidities	Arthritis research	2018	20	1 258
Aparohan, Moh	Dietary total a	Critical review	2019	138	70-86 8916049
Cohen, Sarah	A review and s	Occupational	2014	71	11 796-802
Bonifazi, Mart	Systemic scler	Rheumatology	2013	52	1 143-54
Liu, Wen; Zho	Sex Difference	Disease marks	2018	8604127	7925219
Tsai, Huei-Ting	Dietary factor	Cancer epidemi	2010	19	10 2680-4
Hardell, Lenn	Exposure to p	Leukemia & ly	2002	43	5 1043-9
Boyle, Peter; I	Sweetened ca	European jour	2014	23	5 481-90
Kotlyar, David	Risk of lymph	Clinical gastro	2015	13	5 847-50
Inf khoury, Tawfi	Hepatitis C	World journal	2014	20	43 16197-202
Ghasemiesfe, Association B	Association B	JAMA network	2019	2	11 1916318
FcWiggins, Tom; i	Cancer Risk Fc	Obesity surgery	2019	29	3 1031-1039
Tee, May C; C	Effect of baria	Surgical endos	2013	27	12 4449-56
SiKim, A-Sol; Ko	Exposure to Si	International j	2018	15	9
Song, Hyun Jir	The associatio	European Journal of Clinical Pharmacology	2020		
Bertrand, Kim	Dietary fat int	The American	2017	106	2 650-656
Partanen, T; B	Cancer risk in Partanen, T; B	American jour	1994	26	6 721-40
Glass, D C; Sc	Exposure to bGlass, D C; Sc	Journal of occ	2017	14	11 863-872
Myung, Seung	Mobile phone	Journal of clin	2009	27	33 5565-72
Bertrand, Kim	Proximity to A	Cancer prever	2013	6	8 864-73
Lefranc, A.	Proximity to p	Environ. Risques	2020	19	6
Agne:	Proximity to pLefranc, Agne:	Environnemer	2020	19	6
fContreras Gar	Influence of fContreras Gar	Influencia de I	2020	37	1 169-192
Zaroushani, V.	Risk of cancer	Iran Occup. H	2019	16	4 46-58
Wang, L.; Xie	Meta-analysis	Journal of Pr	2010	25	4 477-480
Schmidmayr, l	Pills and cancSc	Gynakologisch	2014	12	3 138-143
Magnani, C.; M	Documented dMagnani, C.; M	Epidemiologia	2016	40	5 16-Oct
Vanderbeken, 2014	Does the baris	Obesite	2014	9	3 214-220
Anzivino-Viric:	Domestic was	Environnemer	2012	11	5 360-377
Ferris, I. torta	Parental tobaf	Revista Espa	2004	60	3 225-236
QI, G.; Feng, L	Research progQI	Chinese Journ	2018	25	22 1611-1614
Wang, Y.; Wang	Correlation beSe	Chinese Journ	2019	26	18 1394-1400
Zhurbier, M.; J	Environmenta	Environnemer	2007	6	1 43-56
Nicolle-Mir, L.	Pesticide expc	Environnemer	2012	11	3 191-192
Milovanova, S	HCV-associate	Terapeutiches	2018	90	6 112-120
Lopez Duenas, 2012	Childhood can	Revista Espa	2012	68	1 59-64
Lasfargues, G.	Non-Hodgkin'\Lasfargues, G.	Bulletin De L A	2017	201	9-Jul 1161-1173
Boaventura, C	Risk of cancer	Revista de Psi	2007	29	1 63-69
Overweight, Ancellin, R.; Bessette, D. 2013 Oncologie 15 4-Mar 193-201					
Depression, Lemogne, C.; I. 2010 Psycho-Oncologie 4 1 22-27					
DOI	Study	Notes			
---------------------	----------------	--			
Xue 2017	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Zani 2017	Exclusion reason: *Overlapping studies;			
Starup-Linde	Exclusion reason: *Overlapping studies;				
Matsuo 2004	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Mitri 2008	Exclusion reason: *Overlapping studies;			
Smitten 2008	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Sergentanis 2018	Exclusion reason: *Overlapping studies;			
Psaltopoulou	Exclusion reason: *Overlapping studies;				
Soteriades 2018	Exclusion reason: *Overlapping studies;				
Zhu 2015	Exclusion reason: *Overlapping studies;				
Bassil 2007	Exclusion reason: *Overlapping studies;				
Buja 2005	Exclusion reason: *Overlapping studies;				
Pahwa 2019	Exclusion reason: *Overlapping studies;				
10.3109/1042Castillo2012	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Volesky 2019	Exclusion reason: *Overlapping studies;			
Zhu 2019	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Bagnardini 2015	Exclusion reason: *Overlapping studies;			
Bassil 2007	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Soteriades 2018	Exclusion reason: *Overlapping studies;			
Zhou 2015	Exclusion reason: *Overlapping studies;				
Machado 2011	Exclusion reason: *Overlapping studies;				
Keller-Byrne 2016	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Onishi 2013	Exclusion reason: *Overlapping studies;			
Tokumaru 2013	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	vanderRhee 2016	Exclusion reason: *Overlapping studies;			
Dalia 2013	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Goodman 2017	Exclusion reason: *Overlapping studies;			
El-Zaemey 2017	Exclusion reason: *Overlapping studies;				
Han 2016	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	vonStackelberg	Exclusion reason: *Overlapping studies;			
Alexander 2017	Exclusion reason: *Overlapping studies;				
Qi 2015	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Xu 2019	Exclusion reason: *Overlapping studies;			
Zhang 2019	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Wu 2020	Exclusion reason: *Overlapping studies;			
Goodman 2017	Exclusion reason: *Overlapping studies;				
Ling 2021	Exclusion reason: *Overlapping studies;				
Qiang 2017	Exclusion reason: *Overlapping studies;				
Merhi 2007	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Moura 2020	Exclusion reason: *Overlapping studies;			
Roingeard 2021	Exclusion reason: *Overlapping studies;				
Goodmman 2015	Exclusion reason: *Overlapping studies;				
LeMasters 2017	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Merhi 2007	Exclusion reason: *Overlapping studies;			
Wu 2020	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Zhang 2019	Exclusion reason: *Overlapping studies;			
Qi 2015	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Xu 2019	Exclusion reason: *Overlapping studies;			
Zhang 2019	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Wu 2020	Exclusion reason: *Overlapping studies;			
Goodman 2017	Exclusion reason: *Overlapping studies;				
Ling 2021	Exclusion reason: *Overlapping studies;				
Qiang 2017	Exclusion reason: *Overlapping studies;				
Merhi 2007	Exclusion reason: *Overlapping studies;				
https://dx.doi.org	Moura 2020	Exclusion reason: *Overlapping studies;			
Roingeard 2021	Exclusion reason: *Overlapping studies;				
Acquavella 1998 Exclusion reason: *Overlapping studies;
Ballard 2000 Exclusion reason: *Overlapping studies;
vanderRhee 2 Exclusion reason: *Overlapping studies;
https://dx.doi.org Porta 2009 Exclusion reason: *Overlapping studies;
Hill 2001 Exclusion reason: *Overlapping studies;
http://dx.doi.org.Kelly 2009 Exclusion reason: *Overlapping studies;
https://dx.doi.org Zhou 2019 Exclusion reason: *Overlapping studies;
http://dx.doi.org.Lamm 2005 Exclusion reason: *Overlapping studies;
Rollison 2006 Exclusion reason: *Overlapping studies;
https://dx.doi.org Herber 2020 Exclusion reason: *Overlapping studies;
10.22239/231 Girardi 2019 Exclusion reason: *Overlapping studies;
Zheng 2001 Exclusion reason: *Overlapping studies;
https://dx.doi.org Khalade 2010 Exclusion reason: *Overlapping studies;
https://dx.doi.org Rumrich 2016 Exclusion reason: *Overlapping studies;
https://dx.doi.org Kachuri 2020 Exclusion reason: *Overlapping studies;
Khuder 1998 Exclusion reason: *Overlapping studies;
https://dx.doi.org.vanderRhee 2 Exclusion reason: *Overlapping studies;
https://dx.doi.org Onyijie 2021 Exclusion reason: *Overlapping studies;
https://dx.doi.org Casjens 2020 Exclusion reason: *Overlapping studies;
https://dx.doi.org Ling 2020 Exclusion reason: *Overlapping studies;
https://dx.doi.org Pouplard 201: Exclusion reason: Duplicate;
Yang 2014 Exclusion reason: Duplicate;
https://dx.doi.org Fama 2020 Exclusion reason: Duplicate;
https://dx.doi.org Vinceti 2018 Exclusion reason: Duplicate;
https://dx.doi.org Park 2019 Exclusion reason: Duplicate;
Bellamy 2007 Exclusion reason: Duplicate;
https://dx.doi.org Chung 2011 Exclusion reason: Duplicate;
https://dx.doi.org Boehm 2009 Exclusion reason: Duplicate;
http://dx.doi.org Grant 2010 Exclusion reason: inability to identify full text;
Persson 1999 Exclusion reason: inability to identify full text;
Anonymous 2 Exclusion reason: inability to identify full text;
Lin 2011 Exclusion reason: inability to identify full text;
Hu 2012 Exclusion reason: inability to identify full text;
Zarnaavalou 201 Exclusion reason: inability to identify full text;
http://dx.doi.org Findlater 202 Exclusion reason: Incorrect component study design;
Wallace 2001 Exclusion reason: Incorrect component study design;
http://dx.doi.org Ramos-Gallar Exclusion reason: Incorrect component study design;
https://dx.doi.org Sousa 2016 Exclusion reason: Incorrect component study design;
http://dx.doi.org Annese 2015 Exclusion reason: Incorrect component study design;
10.7182/prtr.1 Izadi 2011 Exclusion reason: Incorrect component study design;
https://dx.doi.org Pereira 2017 Exclusion reason: Incorrect component study design;
https://dx.doi.org Ramos-Gallar Exclusion reason: Incorrect component study design;
http://dx.doi.org.Grinyo 2010 Exclusion reason: Incorrect component study design;
https://dx.doi.org/Huss 2018 Exclusion reason: Incorrect indication ;
https://dx.doi.org/Schuz 2017 Exclusion reason: Incorrect indication ;
10.1097/mog. Sousa 2015 Exclusion reason: Incorrect indication ;
http://dx.doi. Vinceti 2018 Exclusion reason: Incorrect indication ;
Siegel 2006 Exclusion reason: Incorrect indication ;
https://dx.doi/Vernooij 2019 Exclusion reason: Incorrect indication ;
https://dx.doi Vinceti 2014 Exclusion reason: Incorrect indication ;
Zhao 2013 Exclusion reason: Incorrect indication ;
https://dx.doi Zhang 2015 Exclusion reason: Incorrect indication ;
http://dx.doi.i.Schwartz 2000 Exclusion reason: Incorrect indication ;
http://dx.doi.i.Victora 2008 Exclusion reason: Incorrect indication ;
Parbery 2012 Exclusion reason: Incorrect indication ;
Woo 2014 Exclusion reason: Incorrect indication ;
http://dx.doi.org/10.1016/j. Exclusion reason: Incorrect indication ;
https://dx.doi Wheat 2016 Exclusion reason: Incorrect indication ;
http://dx.doi.i.Zeeb 2012 Exclusion reason: Incorrect indication ;
https://dx.doi Keum 2014 Exclusion reason: Incorrect indication ;
http://dx.doi.i.Shin 2013 Exclusion reason: Incorrect indication ;
https://dx.doi Mocellin 2017 Exclusion reason: Incorrect indication ;
Giardiello 2000 Exclusion reason: Incorrect indication ;
https://dx.doi Iodice 2008 Exclusion reason: Incorrect indication ;
https://dx.doi Dinu 2017 Exclusion reason: Incorrect indication ;
https://dx.doi Sona 2018 Exclusion reason: Incorrect indication ;
Rump 2005 Exclusion reason: Incorrect indication ;
https://dx.doi Lacombe 2011 Exclusion reason: Incorrect indication ;
https://dx.doi Park 2012 Exclusion reason: Incorrect indication ;
https://dx.doi.Twohig-Benne Exclusion reason: Incorrect indication ;
http://dx.doi.i.Aune 2012 Exclusion reason: Incorrect indication ;
https://dx.doi Kontou 2011 Exclusion reason: Incorrect indication ;
https://dx.doi Chiang 2017 Exclusion reason: Incorrect indication ;
https://dx.doi Zeeb 2010 Exclusion reason: Incorrect indication ;
http://dx.doi.i.Troisi 2018 Exclusion reason: Incorrect indication ;
https://dx.doi Tyrovolas 201 Exclusion reason: Incorrect indication ;
10.1111/ijd. Patel 2016 Exclusion reason: Incorrect indication ;
https://dx.doi Li 2018 Exclusion reason: Incorrect indication ;
https://dx.doi Jones 2013 Exclusion reason: Incorrect indication ;
Boffetta 2006 Exclusion reason: Incorrect indication ;
https://dx.doi Lee 2013 Exclusion reason: Incorrect indication ;
https://dx.doi Xiao 2020 Exclusion reason: Incorrect indication ;
https://dx.doi Fenton 2016 Exclusion reason: Incorrect indication ;
https://dx.doi Kuo 2017 Exclusion reason: Incorrect indication ;
Newell 1999 Exclusion reason: Incorrect indication ;
https://dx.doi.Janghorbani 2 Exclusion reason: Incorrect indication ;
Exclusion reason: Incorrect indication;
10.1016/j.can- Rota 2014 Exclusion reason: Incorrect indication;
10.1016/j.berlMolto 2018 Exclusion reason: Incorrect indication;
http://dx.doi.i.Kumar 2015 Exclusion reason: Incorrect indication;
10.1111/jgh.1 Huang 2019 Exclusion reason: Incorrect indication;
http://dx.doi.i.Brandes 2009 Exclusion reason: Incorrect indication;
10.1177/0394Lapadula 2014 Exclusion reason: Incorrect indication;
https://dx.doi Liu 2013 Exclusion reason: Incorrect indication;
http://dx.doi.Fellermann 2013 Exclusion reason: Incorrect indication;
Agouridis 2011 Exclusion reason: Incorrect indication;
https://dx.doi Bosetti 2012 Exclusion reason: Incorrect indication;
https://dx.doi Li 2014 Exclusion reason: Incorrect indication;
http://dx.doi.Rodriguez-Ma 2014 Exclusion reason: Incorrect indication;
https://dx.doi.Olazagasti 2014 Exclusion reason: Incorrect indication;
http://dx.doi.Schottenfeld 2015 Exclusion reason: Incorrect indication;
https://dx.doi.Kim 2017 Exclusion reason: Incorrect indication;
https://dx.doi.Hargreave 2017 Exclusion reason: Incorrect indication;
https://dx.doi.Vinson 2011 Exclusion reason: Incorrect indication;
https://dx.doi.Cibula 2010 Exclusion reason: Incorrect indication;
https://dx.doi.Colmers 2012 Exclusion reason: Incorrect indication;
https://dx.doi.Skibola 2014 Exclusion reason: Incorrect indication;
https://dx.doi.Petrelli 2019 Exclusion reason: Incorrect indication;
Dranitsaris 2018 Exclusion reason: Incorrect indication;
https://dx.doi Namazi 2018 Exclusion reason: Incorrect indication;
Inoue 2007 Exclusion reason: Incorrect indication;
Tennis 2005 Exclusion reason: Incorrect indication;
https://dx.doi Wu 2017 Exclusion reason: Incorrect indication;
Neuhouser 2010 Exclusion reason: Incorrect indication;
https://dx.doi.Namazi 2018 Exclusion reason: Incorrect indication;
Moore 2001 Exclusion reason: Incorrect indication;
https://dx.doi.Jokela 2014 Exclusion reason: Incorrect indication;
https://dx.doi.Reigstad 2017 Exclusion reason: Incorrect indication;
Crump 2003 Exclusion reason: Incorrect indication;
https://dx.doi.Wagner 2012 Exclusion reason: Incorrect indication;
https://dx.doi.Patrono 2013 Exclusion reason: Incorrect indication;
https://dx.doi.Wieser 2016 Exclusion reason: Incorrect indication;
https://dx.doi.16-Jun Exclusion reason: Incorrect indication;
https://dx.doi.Sofi 2013 Exclusion reason: Incorrect indication;
https://dx.doi.Saab 2018 Exclusion reason: Incorrect indication;
https://dx.doi.Park 2014 Exclusion reason: Incorrect indication;
https://dx.doi.DarooghegiMofrad 2020 Exclusion reason: Incorrect indication;
https://dx.doi.Thompson 2014 Exclusion reason: Incorrect indication;
https://dx.doi.Chiang 2012 Exclusion reason: Incorrect indication;
Alicandro 2017 Exclusion reason: Incorrect indication;
Arnold 2016 Exclusion reason: Incorrect indication;
Shiels 2009 Exclusion reason: Incorrect indication;
Bara 2017 Exclusion reason: Incorrect indication;
Zhang 2014 Exclusion reason: Incorrect indication;
Zhang 2015 Exclusion reason: Incorrect indication;
Simon 2009 Exclusion reason: Incorrect indication;
Khedmat 2013 Exclusion reason: Incorrect indication;
Ramasubbu 2012 Exclusion reason: Incorrect indication;
AlDabbagh 2017 Exclusion reason: Incorrect indication;
Maxwell 2008 Exclusion reason: Incorrect indication;
Newland 2019 Exclusion reason: Incorrect indication;
Alibhai 2015 Exclusion reason: Incorrect indication;
Gantz 2017 Exclusion reason: Incorrect indication;
Ianotto 2019 Exclusion reason: Incorrect indication;
Aardoom 2018 Exclusion reason: Incorrect indication;
Schwingshack 2017 Exclusion reason: Incorrect indication;
Schierhout 2020 Exclusion reason: Incorrect indication;
Halling-Overgaard 2019 Exclusion reason: Incorrect indication;
Lawin 2018 Exclusion reason: Incorrect indication;
Donato 2016 Exclusion reason: Incorrect indication;
Michaud 2017 Exclusion reason: Incorrect indication;
Silva 2012 Exclusion reason: Incorrect indication;
Rodrigues 2010 Exclusion reason: Incorrect indication;
Hansen 2007 Exclusion reason: Incorrect indication;
Patterson 2016 Exclusion reason: Incorrect indication;
Wang 2019 Exclusion reason: Incorrect indication;
deMenezes 2013 Exclusion reason: Incorrect indication;
Federico 2018 Exclusion reason: Incorrect indication;
Bjelakovic 2008 Exclusion reason: Incorrect indication;
Biswas 2015 Exclusion reason: Incorrect indication;
Johnson 2017 Exclusion reason: Incorrect indication;
Gupta 2018 Exclusion reason: Incorrect indication;
Osman 2017 Exclusion reason: Incorrect indication;
Abe 2021 Exclusion reason: Incorrect study design;
Bonesteele 2020 Exclusion reason: Incorrect study design;
Gupta 2018 Exclusion reason: Incorrect study design;
http://dx.doi.org/Chiu 2013 Exclusion reason: Incorrect study design ;
Zantos 1994 Exclusion reason: Incorrect study design ;
10.3892/mmr Garozzo 2017 Exclusion reason: Incorrect study design ;
10.1097/cej.O Yang 2016 Exclusion reason: Incorrect study design ;
Descatha 200! Exclusion reason: Incorrect study design ;
Sultan 2012 Exclusion reason: Incorrect study design ;
http://dx.doi.i Thet 2020 Exclusion reason: Incorrect study design ;
Versini 2017 Exclusion reason: Incorrect study design ;
Farmanfarma Exclusion reason: Incorrect study design ;
Wong 2000 Exclusion reason: Incorrect study design ;
Lakatos 2010 Exclusion reason: Incorrect study design ;
http://dx.doi.i Hossein-Nezh. Exclusion reason: Incorrect study design ;
Hossein-Nezhad 2013 Exclusion reason: Incorrect study design ;
https://dx.doi.org/ Yu 2020 Exclusion reason: Incorrect study design ;
Nasir 2007 Exclusion reason: Incorrect study design ;
10.3109/10428194.2012.680454 Morton 2012 Exclusion reason: Incorrect study design ;
10.1097/01.mot.0000136757.58818.10 Ang 2006 Exclusion reason: Incorrect study design ;
http://dx.doi.org/Clindermatol.2007.03.010 Cohen 2007 Exclusion reason: Incorrect study design ;
http://dx.doi.org/ Garg 2016 Exclusion reason: Incorrect study design ;
http://dx.doi.org/ Weber 2004 Exclusion reason: Incorrect study design ;
Giovanni 2015 Exclusion reason: Incorrect study design ;
10.1111/jdv.1 Richard 2013 Exclusion reason: Incorrect study design ;
http://dx.doi.org/ Swaen 2010 Exclusion reason: Incorrect study design ;
10.3892/mmrr Gangemi 2011 Exclusion reason: Incorrect study design ;
10.1136/oem.MaranntMicallef 2011 Exclusion reason: Incorrect study design ;
https://dx.doi.org/ Brown 2012 Exclusion reason: Incorrect study design ;
10.1038/bjc.2 Brown 2012 Exclusion reason: Incorrect study design ;
Kolstad 2008 Exclusion reason: Incorrect study design ;
https://dx.doi.org/ Chihara 2015 Exclusion reason: Incorrect study design ;
10.1038/nrgastro.2018.172 Exclusion reason: Incorrect study design;
http://dx.doi.org/10.1136/oemed-2014-102230
Fritschi 2014 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1007/s13668-018-0237-y
Pieroth 2018 Exclusion reason: Incorrect study design;
DeAngelis 2012 Exclusion reason: Incorrect study design;
http://dx.doi.org/10.1017/S0007114515000148
Turati 2015 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.3389/fonc.2019.01539
Moore 2019 Exclusion reason: Incorrect study design;
Franchini 2004 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1177/1203475416668161
Sotoodian 2017 Exclusion reason: Incorrect study design;
Appleby 2000 Exclusion reason: Incorrect study design;
10.1016/S1578-2190(12)70829-6
Daudén 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.2174/1574887115666200628143015
Caprio 2020 Exclusion reason: Incorrect study design;
10.1111/j.1398-9995.2005.00813.x
Wang 2005 Exclusion reason: Incorrect study design;
http://dx.doi.org/10.1111/tmi.13278
Eusebio-Ponce 2019 Exclusion reason: Incorrect study design;
10.1016/j.1827.2190
Daudén 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.2174/1574887115666200628143015
Caprio 2020 Exclusion reason: Incorrect study design;
10.1111/j.1398-9995.2005.00813.x
Wang 2005 Exclusion reason: Incorrect study design;
http://dx.doi.org/10.1111/tmi.13278
Eusebio-Ponce 2019 Exclusion reason: Incorrect study design;
10.1016/j.1827.2190
Daudén 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.2174/1574887115666200628143015
Caprio 2020 Exclusion reason: Incorrect study design;
https://dx.doi.org/Latino-Martel 2016 Exclusion reason: Incorrect study design;
https://dx.doi.org/Choi 2018 Exclusion reason: Incorrect study design;
https://dx.doi.org/Kvaskoff 2015 Exclusion reason: Incorrect study design;
10.1002/jic.3CHortlund 2017 Exclusion reason: Incorrect study design;
10.1016/j.serSmedby 2011 Exclusion reason: Incorrect study design;
10.1007/s002 Nagel 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/Hortlund 2017 Exclusion reason: Incorrect study design;
10.1016/j.semcancer.2011.09.010 Smedby 2011 Exclusion reason: Incorrect study design;
10.1002/ijc.30531 Hortlund 2017 Exclusion reason: Incorrect study design;
10.1093/humupd/dmv013 Kvaskoff 2015 Exclusion reason: Incorrect study design;
10.1093/annonc/mdx819 Choi 2018 Exclusion reason: Incorrect study design;
10.1002/ajim.22604 Rieutort 2016 Exclusion reason: Incorrect study design;
10.3200/aeohYouakim 2006 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1007/s00277-012-1489-z Nagel 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1155/2012/258981 Freeman 2012 Exclusion reason: Incorrect study design;
10.1155/2010/Iodice 2010 Exclusion reason: Incorrect study design;
10.1016/j.ejca.2010.08.009 Iodice 2010 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1371/journal.pone.0008621 Sasco 2010 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1186/s12885-019-6445-z Catalani 2019 Exclusion reason: Incorrect study design;
10.1200/JCO.22604 Rieutort 2016 Exclusion reason: Incorrect study design;
10.3200/aeohYouakim 2006 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.jdermsci.2014.02.007 Caini 2014 Exclusion reason: Incorrect study focus;
http://dx.doi.org/10.3109/09440503.2014.943849 Zhivin 2014 Exclusion reason: Incorrect study focus;
http://dx.doi.org/10.1159/000258285 Fiorino 2010 Exclusion reason: Incorrect study focus;
http://dx.doi.org/10.3109/10408444.2014.905767 Chang 2014 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1016/j.critrevonc.2014.07.004 Costas 2014 Exclusion reason: Incorrect study focus;
10.18632/oncotarget.23850 Shi 2018 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1016/j.jns.2016.08.060 Stubgen 2016 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1177/1352458514564489 Marrie 2015 Exclusion reason: Incorrect study focus;
http://dx.doi.org/10.18298/bmjadv.2019000614 Meybodi 2019 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1182/bmjadv.2019000614 Meybodi 2019 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1093/asj/sjz343 Danilla 2020 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1016/j.cgh.2010.09.016 Kotlyar 2011 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1016/j.critrevonc.2014.07.004 Costas 2014 Exclusion reason: Incorrect study focus;
10.1200/JCO.22604 Rieutort 2016 Exclusion reason: Incorrect study focus;
10.1182/bloodadvances.2019000614 Meybodi 2019 Exclusion reason: Incorrect study focus;
10.1155/2012/258981 Freeman 2012 Exclusion reason: Incorrect study focus;
10.1186/s12885-019-6445-z Catalani 2019 Exclusion reason: Incorrect study focus;
10.1007/s40279-018-1023-0 Dinu 2019 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1007/s10552-015-0709-y DeRidder 2016 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1016/j.cgh.2010.09.016 Kotlyar 2011 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1016/j.critrevonc.2014.07.004 Costas 2014 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1080/10408444.2018.1439449 Boffetta 2018 Exclusion reason: Incorrect study focus;
https://dx.doi.org/10.1136/bmj.a1344 Sofi 2008 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1158/1055-9965.EPI-16-0121 Kohler 2016 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1007/s40279-018-1023-0 Dinu 2019 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.envres.2020.109787 Qiao 2018 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.3390/nu13020516 Mavoungou 2020 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1186/s12966-021-01142-7 Nascimento 2021 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.3390/ijerph17218079 Choi 2020 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.canep.2020.101797 Mavoungou 2020 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.3390/nu13020516 Mavoungou 2020 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.envres.2020.109787 Qiao 2018 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.canep.2020.101797 Mavoungou 2020 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.envres.2020.109787 Qiao 2018 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1186/s12966-021-01142-7 Nascimento 2021 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.3390/ijerph17218079 Choi 2020 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1080/10408444.2018.1439449 Boffetta 2018 Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1371/journal.pone.0195683
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.critrevonc.2019.04.003
Parohan 2019
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1136/oemed-2014-102193
Cohen 2014
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1093/rheumatology/kes303
Bonifazi 2013
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1155/2018/7925219
Liu 2018
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1158/1055-9965.EPI-10-0585
Tsai 2010
Exclusion reason: Insufficient data for analysis;
Hardell 2002
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1097/CEJ.0000000000000015
Boyle 2014
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1016/j.cgh.2014.05.015
Kotlyar 2015
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.3748/wjg.v20.i43.16197
Khoury 2014
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1001/jamanetworkopen.2019.16318
Ghasemiesfe 2019
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1007/s11695-018-3501-8
Wiggins 2019
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1007/s00464-013-3127-9
Tee 2013
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.3390/ijerph15091981
Kim 2018
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1007/s00228-020-02927-8
Song 2020
Exclusion reason: Insufficient data for analysis;
https://dx.doi.org/10.1684/ERS.2020.1495
Lefranc 2020
Exclusion reason: Non-English;
http://dx.doi.org/10.1684/ERS.2020.1495
Lefranc 2020
Exclusion reason: Non-English;
https://dx.doi.org/10.20960/nh.02588
ContrerasGarcia 2020
Exclusion reason: Non-English;
Zaroushani 2019
Exclusion reason: Non-English;
Wang 2010
Exclusion reason: Non-English;
http://dx.doi.org/10.1007/s10304-013-0623-x
Schmidmayr 2014
Exclusion reason: Non-English;
http://dx.doi.org/10.1200/JCO.2008.21.6366
Myung 2009
Exclusion reason: Non-English;
https://dx.doi.org/10.1158/1940-6207.CAPR-13-0132
Bertrand 2013
Exclusion reason: Non-English;
http://dx.doi.org/10.1684/ers.2012.0559
Anzivino-Viricel 2012
Exclusion reason: Non-English;
Ferris 2004
Exclusion reason: Non-English;
QI 2018
Exclusion reason: Non-English;
http://dx.doi.org/10.1016/s0001-4079(19)30406-6
Lepre 2019
Exclusion reason: Non-English;
10.1684/ERS.2020.1495
Lefranc 2020
Exclusion reason: Non-English;
10.1007/s10269-013-2261-2 Ancellin 2013 Exclusion reason: Non-English;
http://dx.doi.org/Lemogne 2011 Exclusion reason: Non-English;
Title
Postmenopausal hormone therapy and non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Occupational exposure to trichloroethylene and the risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Non-Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, and occupational risk factors for hepatocellular carcinoma:

Hepatitis C and non-Hodgkin lymphoma among 4784 cases: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Menstrual and reproductive factors, and hormonal contraceptives and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Self-reported history of infections and the risk of non-Hodgkin lymphoma:

Personal sun exposure and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Occupation and Risk of Non-Hodgkin Lymphoma and Its Subtypes: A Pooled Analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for mantle cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sézary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for peripheral T-cell lymphomas: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for sporadic Burkitt lymphoma/leukemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Occupation and Risk of Non-Hodgkin Lymphoma and Its Subtypes: A Pooled Analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Personal sun exposure and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Self-reported history of infections and the risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Menstrual and reproductive factors, and hormonal contraceptives and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Hepatitis C and non-Hodgkin lymphoma among 4784 cases: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for mantle cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sézary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for peripheral T-cell lymphomas: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Medical history, lifestyle, family history, and occupational risk factors for sporadic Burkitt lymphoma/leukemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Occupational exposure to trichloroethylene and risk of non-Hodgkin lymphoma and its major subtypes: a pooled InterLymph analysis.

Postmenopausal hormone therapy and non-Hodgkin lymphoma: an InterLymph pooled analysis.

Alcohol consumption and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Cancer in British vegetarians: updated analyses of 4998 incident cases in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans.

Parental age and risk of childhood cancer: a pooled analysis from the International Lymphoma Epidemiology Consortium (InterLymph).

Lifestyle and risk of follicular lymphoma: a systematic review.

Dietary trans-fatty acid intake in relation to cancer risk: a systematic review.

Sunlight exposure in association with risk of lymphoid malignancy: a meta-analysis of observational studies.

Dietary trans-fatty acid intake in relation to cancer risk: a systematic review.

Lifestyle and risk of follicular lymphoma: a systematic review.

Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Autoimmune disorders and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis.

Alcohol consumption and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Cancer in British vegetarians: updated analyses of 4998 incident cases in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans.

Parental age and risk of childhood cancer: a pooled analysis from the International Lymphoma Epidemiology Consortium (InterLymph).

Lifestyle and risk of follicular lymphoma: a systematic review.

Dietary trans-fatty acid intake in relation to cancer risk: a systematic review.

Sunlight exposure in association with risk of lymphoid malignancy: a meta-analysis of observational studies.

Dietary trans-fatty acid intake in relation to cancer risk: a systematic review.

Lifestyle and risk of follicular lymphoma: a systematic review.

Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Autoimmune disorders and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis.

Alcohol consumption and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Cancer in British vegetarians: updated analyses of 4998 incident cases in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans.

Parental age and risk of childhood cancer: a pooled analysis from the International Lymphoma Epidemiology Consortium (InterLymph).

Lifestyle and risk of follicular lymphoma: a systematic review.

Dietary trans-fatty acid intake in relation to cancer risk: a systematic review.

Sunlight exposure in association with risk of lymphoid malignancy: a meta-analysis of observational studies.

Dietary trans-fatty acid intake in relation to cancer risk: a systematic review.

Lifestyle and risk of follicular lymphoma: a systematic review.

Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Autoimmune disorders and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Non-Hodgkin Lymphoma Subtypes Project.

Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis.
Non-Hodgkin’s lymphoma—meta-analyses of the effects of cortisol on lymphoma risk among patients with inflammatory bowel disease.

Cigarette smoking and risk of lymphoma in adults: a comprehensive meta-analysis.

Exposure to glyphosate and risk of non-Hodgkin lymphoma: a meta-analysis.

Fruits and vegetables consumption and risk of non-Hodgkin lymphoma: a systematic review.

Occupation and the risk of non-Hodgkin lymphoma.

Breast-feeding and childhood cancer: A systematic review with meta-analysis.

The risk of cancer development in systemic sclerosis: a meta-analysis.

Occupational exposure to methylene chloride and risk of cancer: a systematic review.

Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine.

Occupational exposure to pentachlorophenol causing lymphoma and hematopoietic malignancy for two generations.

Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies.

Assessing the impact of HAART on the incidence of defining and non-defining AIDS cancers among patients with HIV/AIDS: a systematic review.

Use of non-steroidal anti-inflammatory drugs and risk of non-Hodgkin lymphoma: a systematic review and meta-analysis.

Incidence of malignancy in adult patients with rheumatoid arthritis: a meta-analysis.

Cancer risks in recipients of renal transplants: a meta-analysis of cohort studies.

Occupational and environmental exposure to polychlorinated biphenyls and risk of non-Hodgkin lymphoma: a systematic review and meta-analysis of epidemiology studies.

Hepatitis C virus infection and non-hepatocellular malignancies in the DAA era: A systematic review and meta-analysis.

Effects of Coffee, Black Tea and Green Tea Consumption on the Risk of Non-Hodgkin’s Lymphoma: A Systematic Review and Meta-Analysis of Observational Studies.

Systemic lupus erythematosus and malignancy risk: a meta-analysis.

Food of animal origin and risk of non-Hodgkin lymphoma: a systematic review.

Dairy Product Consumption and Risk of Non-Hodgkin Lymphoma: A Meta-Analysis.

Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis of observational studies.

Association between dietary nitrate and nitrite intake and site-specific cancer risk: evidence from observational studies.

Association between dioxin and cancer incidence and mortality: a meta-analysis.

Associations between statin use and non-Hodgkin lymphoma risk and survival: a meta-analysis.

Lack of association of poultry and eggs intake with risk of non-Hodgkin lymphoma: a meta-analysis.

Herpes zoster as a marker of occult cancer: A systematic review and meta-analysis.

Carotenoid intake and risk of non-Hodgkin lymphoma: a systematic review.

Dietary Fat Consumption and Non-Hodgkin’s Lymphoma Risk: A Meta-analysis.

Occupational exposure to polycyclic aromatic hydrocarbons and lymphatic and hematopoietic neoplasms: a systematic review and meta-analysis of cohort studies.

Risk of malignancy in ankylosing spondylitis: a systematic review.

The association between non-Hodgkin lymphoma and organophosphate pesticides exposure: A meta-analysis.

Incidence of cancer (other than gastric cancer) in pernicious anemia: A systematic review with meta-analysis.

2,4-dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels.

Systematic Review and Meta-Analysis of Selected Cancers in Petroleum Refinery Workers.

Indoor tanning and the risk of developing non-cutaneous cancers: a systematic review and meta-analysis.

Micronutrient Intake and Risk of Hematological Malignancies in Adults: A Systematic Review and Meta-analysis of Cohort Studies.
Risk of childhood cancer and adult lung cancer after childhood exposure to passive smoke: A meta-analysis.

Hepatitis B virus and risk of non-Hodgkin lymphoma: An updated meta-analysis of 58 studies.

A systematic review of epidemiologic studies of styrene and cancer.

Risk of malignancy in Behcet disease: A meta-analysis with systematic review.

Alcohol drinking and non-Hodgkin lymphoma risk: a systematic review.

Cancer incidence and mortality among firefighters.

Risk of Lymphoma in Patients With Inflammatory Bowel Disease Treated With Anti-tumor Necrosis Factor Alpha Agents: A Systematic Review and Meta-analysis.

A Meta-Analysis on the Relationship Between Hair Dye and the Incidence of Non-Hodgkin’s Lymphoma.

Association between Parkinson's Disease and Risk of Cancer: A PRISMA-compliant Meta-analysis.

Association between type 1 and type 2 diabetes and risk of lymphoma.

Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis.

Prevalence, Incidence, and Risk of Cancer in Patients With Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-analysis.

Human Pegivirus Infection and Lymphoma Risk: A Systematic Review and Meta-analysis.

Sarcoidosis and Cancer Risk Systematic Review and Meta-analysis.

Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates.

Non-hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: A systematic review and meta-analysis.

Cancer incidence among female flight attendants: a meta-analysis of published data.

A systematic review and meta-analysis of haematological malignancies in residents living near petrochemical facilities.

Association Between Night-Shift Work and Cancer Risk: Updated Systematic Review and Meta-Analysis.

Risk of cancer among hairdressers and related workers: a meta-analysis.

Occupational exposure to gasoline and the risk of non-Hodgkin lymphoma.

Borrelia burgdorferi in primary cutaneous lymphomas: a systematic review.

Use of insulin and insulin analogs and risk of cancer - systematic review.

Obesity and risk of non-Hodgkin's lymphoma: a meta-analysis.

Obesity is associated with increased relative risk of diffuse large B-cell lymphoma.

Obesity but not overweight increases the incidence and mortality of leukemia in adults: A meta-analysis of prospective cohort studies.

Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies.

Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies.

Hazardous waste and health impact: a systematic review of 259 articles.

Effects of omega-3 fatty acids on cancer risk: a systematic review.

Anaplastic Large Cell Lymphoma and Breast Implants: A Systematic Review.

Malignancies and monoclonal gammopathy in Gaucher disease: a systematic review of the literature.

Systematic review of the relationship between artificial sweetener consumption and cancer in humans: analysis of 599,741 participants.

Consumption of Sugars, Sugary Foods, and Sugary Beverages in Relation to Cancer Risk: A Systematic Review of Longitudinal Studies.

Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review.

Cancer risk in children and young adults born preterm: A systematic review.
Author and year
Kane 2013
Cocco 2013
Willet 2008
Slager 2014
Morton 2014
Monnereau 2014
de Sanjose 2008
Kane 2012
Becker 2012
Kricker 2008
t Mannetje 2016
Mbulaiteye 2014
Wang 2014
Aschebrook-Kilfoy 2014
Bracci 2014
Smedby 2014
Vajdic 2014
Linet 2014
Cerhan 2014
Morton 2005
Cerhan 2019
Ekstrom 2008
Vajdic 2009
Morton 2005
Key 2014
Johnson 2009
Moore 2016
Kane 2010
Antonopoulos 2011
Odutola 2020
Michels 2021
Kim 2021
Kane 2011
Scott 2011
Davies 2020
Castillo 2010
Odutola 2021
Kotei 2021
Tio 2012
Lo 2021
Liang 2012
Prego-Dominguez 2021
Year

2007
2013
2021
2013
2007
2005
2013
2013
2014
2005
2015
2015
2015
2015
2015
2014
2015
2017
2017
2017
2019
2019
2019
2015
2016
2016
2016
2016
2016
2017
2017
2017
2017
2017
2016
2016
2017
2018
2017
2018
2018
2018

https://mc.manuscriptcentral.com/bmjmedicine
meta-analysis of summary level data
systematic review
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Xiaoting Shi, Haoran Zhuo, Yuxuan Du, Kate Nyhan, John P.A. Ioannidis, Joshua D. Wallach

Xiaoting Shi, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Haoran Zhuo, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Yuxuan Du, Graduate student
Department of Health Policy & Management, Yale School of Public Health, New Haven, Connecticut, USA

Kate Nyhan, Librarian
Harvey Cushing/John Hay Whitney Medical Library; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA

John P.A. Ioannidis, Professor
Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, California, USA

Joshua D Wallach, Assistant Professor
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Corresponding author:
Joshua D Wallach, MS, PhD
Assistant Professor
Department of Environmental Health Sciences

https://mc.manuscriptcentral.com/bmjmedicine
Abstract

Objectives: To summarize the range, strength, and validity of reported associations between environmental risk factors and non-Hodgkin lymphoma (NHL), and to evaluate the concordance between associations reported in meta-analyses (MAs) of summary level data and MAs of individual participant data (IPD).

Design: Umbrella review.

Data sources: MEDLINE, Embase, Scopus, Web of Science Core Collection, Cochrane Library, and Epistemonikos from inception to 23 July 2021.

Eligibility criteria: English language MAs of summary level data and MAs of IPD evaluating associations between environmental risk factors and incident NHL (overall and NHL subtypes).

Data extraction and synthesis: Summary effect estimates from MAs of summary level data were re-estimated using a random-effects model and classified as presenting non-significant, weak ($P<0.05$), suggestive ($P<10^{-3}$ and >1000 cases), highly suggestive ($P<10^{-6}$, >1000 cases, largest study reporting a significant association), or convincing ($P<10^{-6}$, >1000 cases, largest study reporting a significant association, $P^2<50\%$, 95% prediction interval excluding the null value, and no evidence of small study effects and excess significance bias) evidence. When the same exposures, exposure contrast levels, and outcomes were evaluated in MAs of summary level data and MAs of IPD from the International Lymphoma Epidemiology (InterLymph) Consortium, concordance in terms of direction, level of significance, and overlap of 95% confidence intervals (CI) was examined. We assessed the methodological quality of the MAs of summary level data using the A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2 tool.

Results: We identified 85 MAs of summary level data reporting 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. Most (225, 88.7%) associations presented either non-significant or weak evidence. The 11 (4.3%) associations presenting highly suggestive evidence were primarily for autoimmune or infectious disease-related risk factors. Only 1 association, history of celiac disease and risk of NHL, presented convincing evidence. Overall, 40 associations reported in MAs of summary level data were also evaluated in InterLymph MAs of IPD. Of these, 22 (55.6%) pairs were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 28 (70.6%) pairs where the summary effect sizes from the MAs of IPD were more conservative. Nearly all (79/85, 92.9%) MAs of summary level data were classified as having critically low quality.
Conclusion: This umbrella review suggests that there is a mass production of low-quality MAs of summary level data, many of which report weak associations between environmental risk factors and NHL, and highlights the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

Systematic review registration PROSPERO CRD42020178010.
What is already known on this topic

- Observational studies have suggested that environmental risk factors, including clinical, occupational, and lifestyle exposures, may be associated with the risk of developing non-Hodgkin lymphoma.
- As a result of the large number of observational studies evaluating the impact of environmental risk factors on non-Hodgkin lymphoma, dozens of systematic reviews and meta-analyses of summary and individual participant level data have focused on synthesizing evidence and identifying potential risk factors.
- Little is known about: (1) the range, strength, and validity of associations between environmental risk factors and non-Hodgkin lymphoma reported in meta-analyses or (2) the concordance between meta-analyses of summary level data and meta-analyses of individual participant data evaluating the same associations.

What this study adds

- This umbrella review suggests that although a large range of environmental risk factors for non-Hodgkin lymphoma have been evaluated in meta-analyses, the vast majority of meta-analyses of summary level data are low quality and present either non-significant or weak associations.
- Overall, only half of the associations that were evaluated in both meta-analyses of summary level data and meta-analyses of individual participant data were in the same direction, had the same level of statistical significance, and had overlapping 95% confidence intervals.
- Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, this umbrella review highlights the need for improving not only primary studies but also evidence synthesis in the field of non-Hodgkin lymphoma etiology.
Introduction

Non-Hodgkin lymphoma (NHL), a lymphoid cancer that originates in white blood cells called lymphocytes, is the 9th leading cause of cancer death among both men and women.\(^1\) NHL accounts for nearly 90% of all lymphomas\(^2\) and is the most common hematologic malignancy in the world.\(^3\)

Although NHL can be broadly categorized into two major groups (i.e., B-cell, T-cell/natural killer-cell lymphomas), it represents a diverse group of malignant disorders with dozens of subtypes.\(^4\)

Evidence suggests that NHL is more common among older adults, men, and people with a first degree relative with NHL.\(^5,6\) However, despite substantial effort to identify NHL causes and risk factors over the past few decades, the exact etiology of NHL is unknown.\(^5\)

Epidemiological studies have suggested that environmental risk factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors, may be associated with the risk of developing NHL. In particular, several prominent potential risk factors proposed in the literature include viruses (e.g., Epstein-Barr virus infection),\(^7\) autoimmune diseases (e.g., Sjogren’s syndrome, celiac disease, and rheumatoid arthritis),\(^8-10\) and immune dysregulation (i.e., patients with a history of organ transplantation, acquired immunodeficiency syndromes (HIV/AIDS), or immunosuppressive medication treatment).\(^5,6,11\) However, given that these exposures and conditions are relatively rare,\(^11\) a broad range of additional environmental risk factors, including exposure to insecticides,\(^12\) red and processed meat consumption,\(^13\) and hair dye,\(^14\) have been evaluated and proposed as potential risk factors.

As a result of the large number of observational studies evaluating the impact of environmental risk factors on NHL, dozens of systematic reviews and meta-analyses (MAs) of summary level data have focused on synthesizing evidence and identifying the most promising risk factors. Moreover, the International Lymphoma Epidemiology (InterLymph) Consortium,\(^15\) a group of investigators who pool data from their completed or ongoing NHL case-control studies, have published multiple MAs of individual participant data (IPD) evaluating associations between various environmental risk factors and NHL.\(^16-18\) Although these MAs of IPD contain thousands of NHL cases and are strengthened by their ability to utilize raw data that are harmonized across multiple studies, they do not include evidence from case-control and cohort studies conducted by investigators outside of the InterLymph Consortium. Therefore, MAs of summary level data and MAs of IPD evaluating the same associations between environmental risk factors and NHL may sometimes lead to discordant results and conclusions.
To provide an overview of the range, strength, and validity of reported associations between environmental risk factors and NHL, we conducted an umbrella review of the evidence across published systematic reviews and MAs. In addition to summarizing the results, determining hints of biases, and assessing the quality of reviews, we evaluated the consistency between all associations reported in both MAs of summary level data and InterLymph MAs of IPD.

Methods

We conducted an umbrella review on the reported associations between environmental risk factors and the risk of NHL. Umbrella reviews are used to systematically identify and evaluate evidence reported in published systematic reviews and MAs.\(^\text{19,20}\) Our study protocol was pre-registered on the International prospective register of systematic reviews (CRD42020178010) and posted on Open Science Framework (https://osf.io/6g2ev/). We did not involve patients or members of the public when designing the question and study, interpreting the results, and/or drafting the manuscript.

Database searches

Working with an experienced medical librarian (KN), we developed and performed a comprehensive search of multiple databases: MEDLINE (Ovid), Embase (Ovid), Scopus, Web of Science Core Collection (as licensed at Yale University), Cochrane Library, and Epistemonikos from inception to July 24th, 2020 (eTable 1 in Supplement 1). In each database, we used three concepts: NHL, risk factors, and the study designs of interest (MAs, systematic reviews, and pooled analyses). The search strategy for NHL was based on the search strategy used in a published review.\(^\text{21}\) The study design search strategy used elements from a published search filter.\(^\text{22}\) Database limits were used to exclude conference papers and meeting abstracts. No language limits were used. Records were deduplicated in EndNote, the Yale Reference Deduplicator, and Covidence.

No citation chaining was conducted.

On July 24th, 2020, searches were run in each database and 14,753 references were identified. After deduplication in EndNote and Covidence, 8025 unique records were uploaded for screening. On July 23rd, 2021, all searches were rerun and deduplicated and 969 additional unique records were added to Covidence for manual screening. In total, our search retrieved 8994 unique records across all databases.

Eligibility criteria
We included English language systematic reviews, MAs of summary level data (i.e., MAs using effect estimates reported in individual studies), and MAs of IPD of observational studies evaluating associations between environmental risk factors and incident NHL (overall or any subtypes, eTable 2 in Supplement 1). We considered all non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors. Systematic reviews and MAs were excluded if they primarily focused on genetic risk factors, evaluated risk factors for the treatment, relapse, remission, or prognosis of NHL patients, or examined NHL as a risk factor for other diseases (eText Table 3 in Supplement 1).

Two reviewers (XS and HZ) independently screened the titles and abstracts and then full-text versions of potentially eligible articles. Any disagreements or uncertainties were discussed with a third reviewer (JDW).

Data extraction

Data extraction was performed independently by two reviewers (XS and HZ), and a third reviewer (JDW) arbitrated all potential discrepancies. For each systematic review and MA, we recorded the first author, year of publication, article title, journal of publication, study design, population, examined exposures and their definitions, and examined outcomes and their definition (i.e., NHL or NHL subtypes). For all MAs of summary level data, we identified each unique exposure-outcome relationship and recorded the number of studies included, total sample size, number of cases, and study-specific adjusted relative risk estimates (e.g., relative risks, hazard ratios, or odds ratios) and corresponding 95% confidence intervals (CIs). For studies that considered multiple exposure contrast levels, control groups, and/or confounders, we prioritized the effect estimates comparing ever versus never exposure that were adjusted for the largest number of potential confounders. Whenever ever versus never exposures comparisons were not reported, we recorded the effect estimates comparing the highest versus lowest levels of exposures. When multiple MAs of summary level data were identified for the same environmental risk factor, we selected the effect estimates that were based on the largest number of component studies.

For systematic reviews with unique associations that were not investigated in MAs of summary level data, we recorded the number of studies identified, the reasons why MAs were not performed, and the main conclusions. Lastly, for all MAs of IPD, one author (JDW) identified the exposures, NHL subtypes, and number of NHL cases for: (1) all nominally statistically significant
(P<0.05) associations and (2) any associations that were also evaluated in MAs of summary level data.

Statistical analysis

First, we re-estimated all summary effect estimates and 95% CIs using a random-effects DerSimonian and Laird (DL) estimator. When summary effect estimates were reported without a corresponding P value, we used the 95% CIs to calculate the P value using a previously described method. Next, we categorized the strength of the reported associations across five levels (Table 1), following previously established methodology. All associations with P>0.05 were classified as non-significant. Associations with P<0.05 and fewer than 1000 cases were classified as weak. Associations with P<10^{-3} and at least 1000 cases were classified as suggestive. For associations with P<10^{-6}, at least 1000 cases, and P<0.05 for the largest component study, we sequentially evaluated 95% prediction intervals (PIs), presence of small study effects (Egger regression asymmetry test), and evidence of excess significance using the Ioannidis test. PIs provide a potential range of the true effect and incorporate the uncertainty of whether the observed effect will arise in future studies as well. P<0.1 for Egger’s test suggests the presence of small study effects (i.e. small studies are more prone to report larger or more significant results while larger studies tend to report more conservative results). The Ioannidis test estimates whether the observed number of studies with nominally statistically significant (P<0.05) results in a MA differs from the expected number of studies with nominally statistically significant studies. Associations with 95% PIs including the null, statistically significant Egger’s test (P<0.1), and/or evidence of excess significance were classified as highly suggestive. Associations with 95% prediction intervals excluding the null, non-statistically significant Egger’s test (P>0.1), and no evidence of excess significance were classified as convincing.

Statistical analysis was conducted using metagen package in R version 4.1.0. (eTable 34 in Supplement 1).

Concordance between MAs of summary level data and InterLymph MAs of IPD

When the same exposures, exposure contrast levels, and NHL subtypes were examined in MAs of summary level data and InterLymph MAs of IPD, two authors (XS and JDW) determined whether the effect estimates: (1) were in the same direction, (2) had overlapping 95% CIs, and/or (3) had the same level of statistical significance (P<0.05 or P≥0.05). Associations with all three criteria fulfilled were classified as fully concordant. Lastly, we determined how often MAs of summary
level data included at least one-third of the same component studies as the InterLymph MAs of IPD.

Quality Assessment

Four reviewers (XS, HZ, YD, and JDW) evaluated the quality of all MAs of summary level data using A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2. Any discrepancies were discussed and resolved by consensus. Based on the suggested rating scheme, the overall confidence in the results of the MAs of summary level data were classified as high, moderate, low, or critically low.

Results

Literature search

Among 16438 records identified through the literature search, 7444 were excluded as duplicates, leaving 8994 titles and abstract for initial screening. 7970 records were excluded based on the title and abstract, and 1024 records were screened at full text stage for inclusion (Figure 1 and eText 1 in Supplement 1). Overall, our searches identified 85 MAs of summary level data evaluating 134 unique environmental risk factors and 8 systematic reviews evaluating 8 unique risk factors (Figure 1, eText 2 in Supplement 1 and Supplement 23). In addition, we identified 27 MAs of IPD (eXXXX in Supplement 23), of which 24 (89.2%) were conducted by the InterLymph Consortium. More than one MA of summary level data was identified for 44 (44/134, 33.2%) risk factors (eTable 45 in Supplement 1). Among the MAs of summary level data selected based on the largest number of component studies, approximately half were also the most recently published (25/44, 57.6%) (eTable 45 in Supplement 1).

MAs of summary level data

Among the 257 associations reported in the MAs of summary level data, 124 and 133 evaluated the impact of environmental risk factors on the risk of NHL overall and NHL subtypes, respectively. NHL subtypes included follicular lymphoma (FL; 43, 17.6%), diffuse large B-cell lymphoma (DLBCL; 35, 14.2%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 31, 12.4%), T-cell lymphoma (TCL; 12, 5.4%), B-cell lymphoma (BCL; 4, 24.6%), marginal zone lymphoma (MZL; 2, 10.8%), endemic Burkitt Lymphoma (eBL; 1, 0.4%), Burkitt
lymphoma (BL; 1, 0.4%), primary cutaneous lymphoma (PCL; 1, 0.4%). The most common
exposure categories were dietary factors (90, 35.0%), medical histories and comorbidities (54,
31.4%), chemicals and pesticides (42, 16.3%), lifestyle factors (29, 11.3%), drugs, vaccinations,
and medical procedures (30, 12.1%), and occupational (12, 5.4%). The median number of
component studies per MA of summary level data was 5 (IQR 4-10). The median number of NHL
cases, among the 64 (75.3%) MAs reporting this information, was 1533 (IQR, 482-5872).

Credibility criteria
After re-estimating the 257 associations using a random-effects DL estimator and applying the
credibility criteria, 145 (56.4%) were classified as presenting non-significant evidence (Table 3).
There were 80 (31.4%) nominally statistically significant ($P<0.05$) associations that were
classified as presenting weak evidence. There were 20 (7.8%) statistically significant associations
($P<10^{-3}$), based on analyses with at least 1000 NHL cases, that were classified as presenting
suggestive evidence. Only 12 (54.2%) associations were classified as presenting highly suggestive
or convincing evidence, with a $P<10^{-6}$, at least 1000 cases, and a $P<0.05$ for the largest component
study. The 11 highly suggestive associations were for history of renal transplantation and risk of
NHL, rheumatoid arthritis and risk of NHL, primary Sjogren's syndrome and risk of NHL,
systemic lupus erythematosus and risk of NHL, celiac disease and risk of TCL, tuberculosis and
risk of NHL, hepatitis B virus (HBV) and risk of NHL and BCL, hepatitis C virus (HCV) and risk
of NHL and DLBCL, and teaching as an occupation and risk of NHL (Table 2).

There was one association, between history of celiac disease and risk of NHL (OR 2.61,
95% CI 2.04 to 3.33; 110, 245 NHL cases from 8 individual studies), that was classified as
presenting convincing evidence. Although the association had $P<10^{-6}$, at least 1000 cases, a
nominally significant result for the largest component study, low heterogeneity ($I^2<50\%$), a 95%
PI excluding the null, and no evidence of small study effects, we were unable to conduct the
Ioannidis test due to the incomplete information reported about the component studies.

Among across all the 112 nominally statistically significant associations, we found 63 (56\%) of
them were marginally had relative risk values that were between 0.67 and 1.50 significant (e.g.,
$1<\text{effect estimate}<1.50$ or $0.67<\text{effect estimate}<1$).

Systematic reviews
We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by MAs of summary level data (eText 24 in Supplement 1).

MAs of IPD

We identified 27 MAs of IPD, of which 24 were from the InterLymph Consortium. The 24 InterLymph MAs of IPD reported 715 nominally statistically significant ($P<0.05$) associations. Of these, 116 and 21 associations were based on analyses with at least 1000 NHL cases and had $P<10^{-3}$ and $P<10^{-6}$, respectively (Table 4 and eTable 56 in Supplement 1). Overall, the unique suggestive exposures categories were alcohol consumption on risk of DLBCL, MZL and NHL, history of Sjogren’s syndrome on risk of DLBCL, MZL and NHL, recreational sun exposure on risk of DLBCL, FL and NHL, and history of HCV on risk of DLBCL, MZL and NHL. Although the 3 non-InterLymph MAs of IPD examined 5 associations not reported in systematic reviews and/or MAs of the summary level data, including fish eaters and risk of NHL, vegetarians and vegans and risk of NHL, maternal age at the time of the child’s birth and risk of NHL, paternal age at the time of the child’s birth and risk of NHL, and leisure-time physical activity and risk of NHL, none were nominally statistically significant.

Consistency between MAs of summary level data and InterLymph MAs of IPD

There were 40 associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD (Table 5 and eFigure 1 in Supplement 1). While 22 (55.0%) evaluated the impact of environmental risk factors on the risk of NHL overall, the other half (18, 45.0%) focused on various NHL subtypes (CLL/SLL, 5 (12.5%); DLBCL, 5 (12.5%); FL, 4 (10.0%); TCL, 3 (7.5%); MZL, 1 (2.5%)).

Overall, 22 of 40 (55.0%) of the associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 10 (25.0%) pairs where the effect estimates were both statistically significantly increased, 3 (7.5%) where they were both statistically significantly decreased, 7 (17.5%) where they were both non-statistically significantly increased, and 2 (5.0%) where they were both non-statistically significantly decreased (Kappa=0.37, eTable 87 and eFigure 1 in Supplement 1). The 13 associations where the MAs of the summary level data and MAs of IPD effect estimates were both statistically significantly increased or decreased were for history of smoking and risk of TCL, history of drinking and risk of NHL, DLBCL, and FL, history of primary Sjogren’s syndrome and risk of NHL, history of
systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL, TCL and DLBCL, and history of HCV and risk of NHL, DLBCL, MZL and CLL/SLL. There were 28 (70.0%) pairs where the effect sizes from the MAs of IPD were more conservative than the effect sizes from the MAs of summary level data.

There were 4 suggestive associations reported in MAs of summary level data that were also evaluated in the InterLymph MAs of IPD. Of these, 3 associations from MAs of IPD had effect estimates in the same direction, had \(P < 10^{-3} \), and were based on analyses with at least 1000 NHL cases (i.e., history of psoriasis and risk of NHL, history of Herpes Zoster and risk of NHL, and history of farming as an occupation and risk of NHL). There were 8 highly suggestive associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD. Of these, 7 associations from the MAs of IPD had effect estimates in the same direction, had \(P < 10^{-6} \), and were based on analyses with at least 1000 NHL cases (i.e., history of rheumatoid arthritis and risk of NHL, history of primary Sjogren's syndrome and risk of NHL, history systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL and TCL, history of tuberculosis and risk of NHL, and history of HCV and risk of NHL).

There were 19 (48.7%) pairs where the MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD. There was no difference in terms of concordance (direction, statistical significance of summary effect estimates and overlapping 95% CIs) between MAs of summary level data that included at least one-third versus fewer than one-third of the same component studies as the MAs of IPD (12/19 (63.2%) vs 10/21 (48.7%), \(P = 0.32 \)).

Methodological quality

The vast majority of the 85 MAs of summary level data had overall confidence ratings of low (3, 43.5%) or critically low (79, 93.2%) according to the AMSTAR 2 tool. There were 2 (2.4%) where the overall confidence in the results was classified as moderate. Only 1 (1.2%), evaluating the association between tuberculosis and risk of NHL, had an overall confidence rating of high (eTable 62 in Supplement 1). The most common unfulfilled critical domains of the AMSTAR 2 tool were incomplete justification of excluded studies (74, 87.4%) and missing or no information about preregistered protocols (72, 84.4%).

Discussion
In this umbrella review, we evaluated the range, strength, and validity of reported associations between environmental risk factors and NHL across 85 MAs of published observational studies. Overall, we identified 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. The vast majority of the associations, including those evaluating various dietary, clinical, lifestyle, chemical, and occupational exposures, were classified as having either non-significant or weak evidence. **More than half of the nominally significant associations were only marginally significant.** Only 5% of the associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence. When the same associations were evaluated in MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Overall, effect sizes from MAs of IPD were more conservative. This umbrella review suggests that there is a mass production of low-quality MAs of summary level data reporting weak associations between environmental risk factors and NHL. These findings highlight the need for improving not only primary studies but also evidence synthesis in this field. Moreover, given that many of the assessed risk factors are correlated, simultaneous consideration of multiple risk factors will be useful to understand which ones have the strongest, independent effects on NHL risk.

Although a wide range of environmental exposures have been evaluated and proposed as potential risk factors for NHL, our evaluation suggests that the only highly suggestive or convincing exposures proposed in MAs of summary level data and MAs of IPD are related to autoimmune and infectious diseases. In particular, the prominent autoimmune disease-related risk factors include history of celiac disease, rheumatoid arthritis, primary Sjogren's syndrome, and systemic lupus erythematosus. Although the exact mechanisms behind these associations remains unclear, many autoimmune disorders are characterized by chronic inflammation, which may intensify B cell or T cell activation and promote the development of lymphoma. Previous studies have also suggested that the dysfunction of some protein families, such as FAS and tumor necrosis factor, and the interplay between various immune cells, could be potential mechanisms. However, there is uncertainty when it comes to the temporality of these associations, with studies reporting that autoimmune diseases can occur during lymphoma.

Associations between viral and bacterial infections and NHL risk have been suggested for several decades. Different hypotheses for HCV-related lymphomagenesis have been proposed. For instance, chromosomal aberrations, including chromosome t(14;18) translocation,
have been found to be associated with mixed cryoglobulinemia, a disorder most commonly caused by HCV infection and that can evolve into lymphoproliferative disorders.50-52 Furthermore, genetic variations, including Interleukin-10 polymorphisms, have also been proposed as a potential pathway between HCV infection and NHL susceptibility and development.53 Similar to autoimmune disease-related risk factors, it remains unclear whether these associations are driven by disease status, medication use, or disease-medication interactions.54-58 Considering how rare many of these autoimmune and infectious disease-related exposures are, future efforts are necessary to determine the impact of multiple environmental as well as non-environmental risk factors simultaneously.5,6

Among 40 associations evaluated by both MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Unlike MAs of summary level data, MAs of IPD tend to focus on studies with more homogeneous designs and patient populations. Furthermore, MAs of IPD can allow for better harmonization of data across studies, more advanced one-stage meta-analytical approaches, and analyses accounting for many exposure categories and potential confounders.59,60 Although the InterLymph MAs of IPD are particularly robust due to the large number of NHL cases and subtypes considered, MAs of IPD without systematic reviews may exclude evidence from high-quality case-control or cohort studies. For instance, the InterLymph analyses only included evidence from completed and ongoing case-control studies from consortium members. Furthermore, the InterLymph findings may be difficult to disentangle, with at least 700 nominally statistically significant associations among thousands of analyses conducted across different subtypes of NHL, and different levels of exposures, and exposure levels (e.g., different type/dosage of alcohol consumption). In the future, it will be necessary to monitor the consistency between MAs of summary level data and MAs of IPD, especially since approximately half of the MAs of summary level data had at least one-third of the same component studies as the MAs of IPD. In addition, authors of MAs should carefully evaluate whether any external studies can and should be included in their syntheses. Of interest, we observed that more than two thirds of the effect sizes were more conservative in the InterLymph MAs of IPD than in the MAs of summary level data. This may be a reflection of greater selective reporting bias in the corpus of studies available in the literature as compared with a set of studies participating in a consortium.
Our study suggests that nearly all MAs of summary level data evaluating associations between environmental risk factors and risk of NHL could be classified as having critically low quality according to the AMSTAR 2 tool. Previous umbrella reviews focused on the associations between environmental risk factors and health outcomes have noted similar concerns. However, the proportion of low or critically low-quality NHL reviews is higher than what has been observed among umbrella reviews for inflammatory bowel diseases, attention-deficit/hyperactivity disorder, eating disorders, early childhood caries, physical activity for academic achievement, and physical therapy for tendinopathy. These findings may not be surprising considering recent concerns about the mass production of systematic reviews. In the future, authors planning systematic reviews and MAs of summary level data of the associations between environmental exposures and NHL should adhere to reporting guidelines and critically evaluate how their studies relate to existing MAs of IPD.

Limitations

Our umbrella review has several limitations. First, we did not identify potential environmental risk factors that were only examined in individual observational studies. Our objective was to identify and summarize the associations that were reported by the MAs of summary level data, which already covered a wide space of diverse associations. Furthermore, we did not evaluate the quality of individual studies included in the MAs of summary level data, the impact that individual studies have on the overall heterogeneity, or the potential role that residual/unmeasured confounding could have on associations. Individual risk of bias evaluations are outside the scope of umbrella reviews, and it is the expectation that MAs have already conducted these quality assessments. Second, we considered included reviews MAs of both cohort and case-control studies, and our assessments did not prioritize reviews of certain study designs or address differences across different study designs. Considering the fact that NHL subtypes are rare, case-control studies may often be the most realistic study design to evaluate exposure histories, and a group of chronic diseases, including reviews of different study designs are of importance to better understand its etiology. Third, although umbrella reviews provide a comprehensive summary of the associations reported in MAs, the validity of the summary effect estimates is dependent on the quality of the individual MAs. Although we attempted to standardize associations using a random-effects DL
estimator, we did not evaluate or re-conduct the literature searches for all potential exposure-outcome relationships. Fifth, we did not calculate or conduct I^2, 95% PIs, Egger’s test, and excess significance test for non-significant and nominally statistically significant associations. Given the large number of associations identified, we prioritized these calculations for associations where these values were necessary to determine the strength of associations using the previously established classification system. Sixth, as in previous umbrella reviews, when summary effect estimates of multiple exposure contrast levels were reported, we focused on the risk estimates comparing ever versus never exposure (or comparing the highest versus lowest levels of exposures). Although we did not consider all potential contrast levels and dose-response relationships, our objective was to provide a universal overview of the relationships between examined risk factors and NHL. Specific dose-response relationships may nevertheless exist for certain associations, and they would need to be examined on a case-by-case basis. Seventh, we only identified the nominally statistically significant associations among the thousands of associations reported in InterLymph MAs of IPD. Eighth, we only focused on systematic reviews written in English by excluding non-English language reviews, we may have missed additional potential associations. However, we utilized the same approach as previous umbrella reviews that focused on risk factors for health outcome(s). Ninth, MAs of IPD and MAs of summary level data can have different strengths and limitations, and our evaluation did not focus on comparing the potential quality of these types of studies. Lastly, when multiple MAs of summary level data evaluated the same exposures and outcomes, we selected the association based on the largest number of included studies. Although this approach does not ensure that the highest quality MAs are selected, this methodology has been utilized by previous umbrella reviews.

Conclusion

In this large-scale umbrella review, we identified dozens of MAs evaluating associations between environmental risk factors and NHL. However, the vast majority of MAs of summary level data were low quality and presented either non-significant or weak evidence. When the same associations were evaluated in MAs of summary level data and MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Although several associations, primarily those for autoimmune and infectious disease-related risk
factors, presented either highly suggestive or convincing evidence, these findings highlight the
need for improving not only primary studies but also evidence synthesis in the field of NHL
etiology.

ACKNOWLEDGEMENTS

The authors would like to thank DP and VP of the Cushing/Whitney Medical Library at Yale for
technical support. DP and VP are employees of Yale University and did not receive additional
compensation for this work, nor do they have competing interest to disclose.

Contributors: XS and JDW originally conceived this study. XS, JPAI, and JDW designed
this study. XS, HZ, YD, KN, and JDW acquired the data. XS and YD conducted the statistical
analysis. XS and JDW and drafted the manuscript. XS, JPAI, and JDW participated in the
interpretation of the data. All authors and critically revised the manuscript for important
intellectual content. XS and JDW had full access to all the data in the study and take
responsibility for the integrity of the data and the accuracy of the data analysis. JDW provided
supervision. JDW is the guarantor. The corresponding author attests that all listed authors meet
authorship criteria and that no others meeting the criteria have been omitted.

Funding: XS is supported by the China Scholarship Council. JDW is supported by the National
Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under award
K01AA028258.

Competing interests: All authors have completed the ICMJE uniform disclosure form
at www.icmje.org/coi_disclosure.pdf and declare: In the past 36 months, JDW received research
support from the FDA. There are no other competing interests.

Patient consent: Not required

Ethical approval: Not required

Data sharing: The dataset will be made available via a publicly accessible repository on
publication.

Transparency: The senior author (manuscripts guarantor) (JDW) affirms that the manuscript is
an honest, accurate, and transparent account of the study being reported; that no important
aspects of the study have been omitted; and that any discrepancies from the study as planned
(and, if relevant registered) have been explained.

License: The Corresponding Author has the right to grant on behalf of all authors and does grant
on behalf of all authors, a worldwide license to the Publishers and its licensees in perpetuity, in
all forms, formats and median (whether known now or created in the future), to i) publish,
reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other
languages, create adaptations, reprints, include within collections and create summaries, extracts
and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the
Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic
links from the Contribution to third party material where-ever it may be located; and, vi) license
any third party to do any or all of the above. The default license, a CC BY NC license, is needed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution
Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt,
build upon this work non-commercially, and license their derivative works on different terms,
provided the original work is properly cited and the use is non-commercial.

See: http://creativecommons.org/licenses/by-nc/4.0/.

Reference

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021;71(1):7-33.
2. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390(10091):298-310.
3. Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019;5(12):1749-1768.
4. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016;66(6):443-459.
| 1 | Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb. Perspect. Med. 2019. |
| 2 | |
| 3 | Chiu BC, Hou N. Epidemiology and etiology of non-hodgkin lymphoma. Cancer Treat. Res. 2015;165:1-25. |
| 4 | |
| 5 | Teras LR, Rollison DE, Pawlita M, et al. Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies. Int. J. Cancer. 2015;136(1):108-116. |
| 6 | |
| 7 | Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029-4038. |
| 8 | |
| 9 | Elfström P, Granath F, Ekström Smedby K, et al. Risk of lymphoproliferative malignancy in relation to small intestinal histopathology among patients with celiac disease. J. Natl. Cancer Inst. 2011;103(5):436-444. |
| 10 | |
| 11 | Klein A, Polliack A, Gafter-Gvili A. Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome. Hematol. Oncol. 2018;36(5):733-739. |
| 12 | |
| 13 | Zhang Y, Dai Y, Zheng T, Ma S. Risk Factors of Non-Hodgkin Lymphoma. Expert Opin. Med. Diagn. 2011;5(6):539-550. |
| 14 | |
| 15 | Pahwa M, Harris SA, Hohenadel K, et al. Pesticide use, immunologic conditions, and risk of Non-Hodgkin lymphoma in Canadian men in six provinces. Int. J. Cancer. 2012;131(11):2650-2659. |
| 16 | |
| 17 | t Mannetje A, De Roos AJ, Boffetta P, et al. Phytanic acid and the risk of non-Hodgkin lymphoma. Carcinogenesis. 2013;34(1):170-175. |
| 18 | |
| 19 | Cantor KP, Blair A, Everett G, et al. Hair dye use and risk of leukemia and lymphoma. Am. J. Public Health. 1988;78(5):570-571. |
| 20 | |
| 21 | Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):1-14. |
| 22 | |
| 23 | Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):130-144. |
| 24 | |
| 25 | Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029-4038. |
| 26 | |
| 27 | Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2009;181(8):488-493. |
| 28 | |
| 29 | Janiaud P, Agarwal A, Tzoulaki I, et al. Validity of observational evidence on putative risk and protective factors: appraisal of 3744 meta-analyses on 57 topics. BMC Med. 2021;19(1):157. |
| 30 | |
| 31 | Greb A, Bohlhus J, Schiefer D, Schwarzer G, Schulz H, Engert A. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of aggressive non-Hodgkin lymphoma (NHL) in adults. Cochrane Database Syst. Rev. 2008(1):CD004024. |
22. Lee E, Dobbins M, Decorby K, McRae L, Tirilis D, Husson H. An optimal search filter for retrieving systematic reviews and meta-analyses. BMC Med. Res. Methodol. 2012;12:51.

23. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. BMJ. 2019;364:k265.

24. Altman DG, Bland JM. How to obtain the P value from a confidence interval. BMJ. 2011;343:d2304.

25. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki L. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263-273.

26. Kim JY, Son MJ, Son CY, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry. 2019;6(7):590-600.

27. Barbui C, Purgato M, Abdulmalik J, et al. Efficacy of psychosocial interventions for mental health outcomes in low-income and middle-income countries: an umbrella review. Lancet Psychiatry. 2020;7(2):162-172.

28. Tortella-Feliu M, Fullana MA, Perez-Vigil A, et al. Risk factors for posttraumatic stress disorder: An umbrella review of systematic reviews and meta-analyses. Neurosci. Biobehav. Rev. 2019;107:154-165.

29. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed.). 1997;315(7109):629-634.

30. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. Clin. Trials. 2007;4(3):245-253.

31. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;172(1):137-159.

32. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549.

33. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.

34. Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am. J. Clin. Nutr. 2014;100 Suppl 1(1):378S-385S.

35. Johnson KJ, Carozza SE, Chow EJ, et al. Parental age and risk of childhood cancer: a pooled analysis. Epidemiology. 2009;20(4):475-483.

36. Moore SC, Lee IM, Weiderpass E, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern Med. 2016;176(6):816-825.

37. Karlstad O, Stårup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies. Curr Drug Saf. 2013;8(5):333-348.

38. Salmon C, Conus F, Parent M, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. Cancer Epidemiol. 2020;65:101696.

39. Leung CY, Huang HL, Rahman MM, et al. Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates. BMC Cancer. 2020;20(1):412.
1. Yoosuf S, Makharia GK. Evolving Therapy for Celiac Disease. *Front Pediatr.* 2019;7:193.

2. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. *Int. J. Mol. Sci.* 2020;21(11).

3. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. *Nat Rev Dis Primers.* 2018;4:18001.

4. Din L, Sheikh M, Kosaraju N, et al. Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes. *Genet. Epidemiol.* 2019;43(7):844-863.

5. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. *Nat Rev Dis Primers.* 2018;4:18001.

6. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. *Int. J. Mol. Sci.* 2020;21(11).

7. Jardin F. Development of autoimmunity in lymphoma. *Expert Rev. Clin. Immunol.* 2008;4(2):247-266.

8. Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):52-65.

9. Khaled H, Abu-Taleb F, Haggag R. Hepatitis C virus and non-Hodgkin's lymphomas: A minireview. *J. Adv Res.* 2017;8(2):131-137.

10. Persico M, Capasso M, Persico E, et al. Interleukin-10 - 1082 GG polymorphism influences the occurrence and the clinical characteristics of hepatitis C virus infection. *J. Hepatol.* 2006;45(6):779-785.

11. Mazzaro C, Franzin F, Tulissi P, et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon therapy. *Cancer.* 1996;77(12):2604-2613.

12. Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. *JAMA.* 2007;297(18):2010-2017.

13. Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. *Nanomedicine.* 2015;11(4):1003-1018.
58. Böhm M, Luger TA, Schneider M, Schwarz T, Kuhn A. New insight into immunosuppression and treatment of autoimmune diseases. *Clin. Exp. Rheumatol.* 2006;24(1 Suppl 40):S67-71.

59. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. *BMJ.* 2010;340:c221.

60. Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. *Stat. Med.* 2017;36(5):855-875.

61. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. *Gastroenterology.* 2019;157(3):647-659 e644.

62. Kim JH, Kim JY, Lee J, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. *Lancet Psychiatry.* 2020;7(11):955-970.

63. Solmi M, Radua J, Stubbs B, et al. Risk factors for eating disorders: an umbrella review of published meta-analyses. *Braz J Psychiatry.* 2021;43(3):314-323.

64. Thang Le VN, Kim JG, Yang YM, Lee DW. Risk Factors for Early Childhood Caries: An Umbrella Review. *Pediatr. Dent.* 2020;43(3):176-194.

65. Barbosa A, Whiting S, Simmonds P, Scotini Moreno R, Mendes R, Breda J. Physical Activity and Academic Achievement: An Umbrella Review. *Int. J. Environ. Res. Public Health.* 2020;17(16).

66. Girgis B, Duarte JA. Physical therapy for tendinopathy: An umbrella review of systematic reviews and meta-analyses. *Phys. Ther. Sport.* 2020;46:30-46.

67. Ioannidis JP. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. *Milbank Q.* 2016;94(3):485-514.

68. Wallach JD. Meta-analysis Metastasis. *JAMA Intern Med.* 2019.

69. Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. *J. Psychiatr. Res.* 2018;103:189-207.

70. Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. *Alzheimers Dement.* 2017;13(4):406-418.

71. Radua J, Ramella-Cravaro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. *World Psychiatry.* 2018;17(1):49-66.

Table 1. Grading criteria for evidence categories

Strength of association	Description*
Highly statistically significant association ($P < 10^{-6}$)	At least 1000 NHL cases
Low/moderate between study heterogeneity ($I^2 < 50\%$)
95% prediction interval excluding the null value
Largest study reporting a nominally statistically significant ($P < 0.05$)
No evidence of small-study effects
No evidence of excess significance bias

Highly suggestive (class II)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Largest study reporting a nominally statistically significant ($P < 0.05$)
Suggestive (class III)	At least 1000 NHL cases
	Statistically significant association ($P < 10^{-3}$)
Weak (class IV)	Nominally statistically significant association ($P < 0.05$)
Non-significant	Non-statistically significant associations ($P > 0.05$)

* P value for the association that calculated by random effects model.
NHL = non-Hodgkin lymphoma.
| Risk factors category | Environmental risk factors | Level of comparison | Outcome | Study type | Author or year | No. of primary studies | No. of cases | Efficacy measure | Random effects summary effect size (95% CI) | P randoma | I² (%) | 95% PI | Small study effect size | Strength of reported association | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Renal transplant | Renal transplant recipients vs general population | NHL | SRMA | Wang 2018 | 6 | 770 | SIR | 10.66 (8.54, 13.31) | 3.44E-86 | Yes | 80.2 | NA | NA | II |
| Autoimmune diseases | Rheumatoid arthritis | NHL | SRMA | Simon 2015 | 16 | 1531 | SIR | 2.26 (1.82, 2.81) | 8.42E-13 | Yes | 96 | NA | NA | II |
| Primary Sjogren's syndrome | Patients vs general population | NHL | SRMA | Liang 2014 | 11 | 1232 | RR | 13.76 (8.53, 18.99) | 1.62E-34 | Yes | 58.8 | NA | NA | II |
| Systemic lupus erythematosus | Patients vs general population | NHL | MA | Cao 2015 | 12 | 166 | RR | 5.4 (3.75, 7.77) | 1.99E-18 | Yes | 74.3 | NA | NA | II |
| Celiac disease | Patients vs general population | NHL | SRMA | Tio 2012 | 8 | 1102 | OR | 2.61 (2.04, 3.33) | 9.32E-14 | Yes | 23.4 | (1.57, 4.33) | No | I |
| Celiac disease | Patients vs general population | TCL | SRMA | Tio 2012 | 5 | 3535 | OR | 15.84 (7.85, 31.94) | 6.90E-14 | Yes | 55.5 | NA | NA | II |
| Infectious diseases | Tuberculosis | NHL | SRMA | Leung 2020 | 8 | 2390 | RR | 1.61 (1.34, 1.94) | 6.76E-07 | Yes | 50.2 | NA | NA | II |
| HBV | HBV infected vs non-infected | NHL | SRMA | Li 2018 | 58 | 5371 | OR | 2.50 (2.2, 2.83) | 6.33E-42 | Yes | 77.9 | NA | NA | II |
| HBV | HBV infected vs non-infected | BCL | SRMA | Li 2018 | 20 | >100 | OR | 2.46 (1.97, 3.07) | 1.24E-14 | Yes | 62.9 | NA | NA | II |
| Risk factors category | Environmental risk factors | Level of comparison | Outcome | Study type | Author | Year | No. of primary studies | No. of cases | Effect measure | Random effects summary effect size (95% CI) | P random | Large study nominally significant (P<0.05) | I² (%) | 95% PI | Small study effect | Strength of reported association |
|-----------------------|---------------------------|---------------------|---------|-----------|--------|------|-----------------------|-------------|--------------|--|--------|--|-------|-------|-----------------|-----------------------|
| Occupation | Teacher | Teacher vs non-teachers | NHL | MA | Boffetta | 2007 | 19 | >100 | RR | 1.47 (1.34, 1.61) | 1.60E-15 | Yes | 76 | NA | NA | II |
| Occupation | Teacher | Teacher vs non-teachers | HCV | MA | DalMaso | 2006 | 8 | 1020 | RR | 2.65 (1.88, 3.74) | 4.98E-08 | Yes | 39 | (1.46, 5.81) | No | II |
| HCV | HCV infected vs non-infected | NHL | SRM A | Masa rone | 2019 | 27 | 3307 | 7 | OR | 3.36 (2.4, 4.72) | 7.92E-12 | Yes | 88 | NA | NA | II |

BCL=B cell lymphoma; CI=confidence interval; HBV=hepatitis B virus; HCV=hepatitis C virus; MA=meta-analysis; NA=not available; NHL=non-Hodgkin lymphoma; OR=odds ratio; PI=prediction interval; SIR=standardized incidence ratio; SRMA=systematic review and meta-analysis; RR=risk ratio; TCL=T-cell lymphoma.

*P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.

*P<0.1 for Egger’s test suggests the presence of small study effects.

Strength of association using the criteria listed in Table 1.
Table 3. Environmental risk factors for NHL reported in MPL with suggestive (Class III), weak (Class IV) and non-significant evidence

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
Dietary factors												
Meat	Red meat	Highest vs lowest	NHL	MA	Yang 2015	18	12579	RR	1.32 (1.12, 1.55)	8.52E-04	III	
Processed meat		Highest vs lowest	NHL	MA	Yang 2015	18	14112	RR	1.17 (1.07, 1.29)	1.04E-03	IV	
Red meat		Highest vs lowest	DLBCL	MA	Yang 2015	5	NA	RR	1.34 (0.97, 1.86)	7.80E-02	NS	
Processed meat		Highest vs lowest	DLBCL	MA	Yang 2015	5	NA	RR	1.23 (1.03, 1.48)	2.50E-02	IV	
Processed meat		Highest vs lowest	FL	MA	Yang 2015	5	NA	RR	1.21 (0.98, 1.48)	7.00E-02	NS	
Red meat		Highest vs lowest	CLL/SL	MA	Yang 2015	5	NA	RR	1.01 (0.84, 1.21)	9.22E-01	NS	
Processed meat		Highest vs lowest	CLL/SL	MA	Yang 2015	5	NA	RR	1.06 (0.85, 1.33)	6.22E-01	NS	
White meat/poultry		Highest vs lowest	NHL	MA	Dong 2017	10	10671	RR	1.04 (0.86, 1.27)	7.06E-01	NS	
White meat/poultry		Highest vs lowest	DLBCL	SRMA	Caini 2016	3	1134	RR	0.96 (0.63, 1.48)	8.62E-01	NS	
White meat/poultry		Highest vs lowest	FL	SRMA	Caini 2016	3	858	RR	1.09 (0.51, 2.31)	8.34E-01	NS	
White meat/poultry		Highest vs lowest	CLL/SL	SRMA	Caini 2016	3	1337	RR	1.05 (0.71, 1.54)	8.17E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	-------------------	---------	------------	-------------	-----------------------	-------------	--------------	--	----------	----------------------------------	
Fish	Fish	Highest vs lowest	NHL	SRMA	Caini 2016	11	8839	RR	0.93 (0.72, 1.19)	5.83E-01	NS	
Fish	Fish	Highest vs lowest	DLBCL	SRMA	Caini 2016	4	1228	RR	0.86 (0.48, 1.56)	6.29E-01	NS	
Fish	Fish	Highest vs lowest	FL	SRMA	Caini 2016	4	970	RR	0.86 (0.48, 1.56)	6.29E-01	NS	
Fish	Fish	Highest vs lowest	CLL/SL	SRMA	Caini 2016	5	1703	RR	0.90 (0.72, 1.14)	3.75E-01	NS	
Fruits and vegetables	Fruit and vegetable	Highest vs lowest	NHL	MA	Chen 2013	4	1747	RR	0.78 (0.66, 0.92)	3.00E-03	IV	
Fruit	Fruit	Highest vs lowest	NHL	MA	Chen 2013	13	8476	RR	0.97 (0.87, 1.08)	5.93E-01	NS	
Vegetable	Vegetable	Highest vs lowest	NHL	MA	Chen 2013	13	8332	RR	0.81 (0.71, 0.92)	1.00E-03	IV	
Fruit	Fruit	Highest vs lowest	DLBCL	MA	Chen 2013	8	NA	RR	0.94 (0.79, 1.13)	5.08E-01	NS	
Vegetable	Vegetable	Highest vs lowest	DLBCL	MA	Chen 2013	7	NA	RR	0.70 (0.54, 0.91)	7.00E-03	IV	
Fruit	Fruit	Highest vs lowest	FL	MA	Chen 2013	8	NA	RR	0.96 (0.72, 1.28)	7.93E-01	NS	
Vegetable	Vegetable	Highest vs lowest	FL	MA	Chen 2013	7	NA	RR	0.70 (0.53, 0.92)	1.10E-02	IV	
Eggs and dairy	Eggs	Highest vs lowest	NHL	SRMA	Caini 2016	10	5775	RR	1.17 (0.86, 1.60)	3.26E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	----------------------	-------------	---------------	-------------------------------------	----------	------------------------------------	
Total dairy	Highest vs lowest NHL	MA	Wang 2016	7	4207 RR	1.20 (1.02, 1.42)	3.00E-02	IV				
Total dairy	Highest vs lowest DLBCL	MA	Wang 2016	3	321 RR	1.73 (1.22, 2.45)	2.00E-03	IV				
Total dairy	Highest vs lowest FL	MA	Wang 2016	3	355 RR	1.23 (0.88, 1.72)	2.28E-01	NS				
Total dairy	Highest vs lowest CLL/SL	MA	Wang 2016	3	390 RR	1.35 (0.77, 2.39)	3.03E-01	NS				
Milk	Highest vs lowest NHL	MA	Wang 2016	16	7109 RR	1.41 (1.08, 1.84)	1.10E-02	IV				
Milk	Highest vs lowest DLBCL	MA	Wang 2016	3	352 RR	1.49 (1.08, 2.06)	1.50E-02	IV				
Milk	Highest vs lowest FL	MA	Wang 2016	3	390 RR	0.99 (0.47, 2.07)	9.81E-01	NS				
Milk	Highest vs lowest CLL/SL	MA	Wang 2016	3	477 RR	1.04 (0.69, 1.55)	8.60E-01	NS				
Cheese	Highest vs lowest NHL	MA	Wang 2016	10	5519 RR	1.14 (0.96, 1.34)	1.24E-01	NS				
Cheese	Highest vs lowest DLBCL	MA	Wang 2016	3	352 RR	0.93 (0.63, 1.37)	7.27E-01	NS				
Cheese	Highest vs lowest FL	MA	Wang 2016	3	390 RR	1.04 (0.74, 1.46)	8.32E-01	NS				
Cheese	Highest vs lowest CLL/SL	MA	Wang 2016	3	477 RR	1.28 (0.91, 1.81)	1.60E-01	NS				
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	----------------	---	---------	-------------------------------	
Yogurt	Highest vs lowest	NHL	MA	Wang 2016	4	2372	RR	0.78	(0.54, 1.12)	1.83E-01	NS	
Yogurt	Highest vs lowest	DLBCL	MA	Wang 2016	3	352	RR	0.90	(0.67, 1.21)	4.95E-01	NS	
Yogurt	Highest vs lowest	FL	MA	Wang 2016	3	390	RR	0.89	(0.63, 1.25)	5.15E-01	NS	
Yogurt	Highest vs lowest	CLL/SL	MA	Wang 2016	3	477	RR	0.97	(0.76, 1.23)	8.16E-01	NS	
Yogurt	Highest vs lowest	NHL	MA	Wang 2016	4	1534	RR	1.31	(1.04, 1.65)	2.20E-02	IV	
Ice-cream	Highest vs lowest	NHL	MA	Wang 2016	4	1598	RR	1.57	(1.11, 2.00)	1.00E-02	IV	
Coffee and tea	Coffee	Highest vs lowest	NHL	SRMA	Mirtavoos-Mahyari 2019	11	4418	RR	1.21	(0.97, 1.50)	8.60E-02	NS
Black tea	Highest vs lowest	NHL	SRMA	Mirtavoos-Mahyari 2019	5	1600	RR	1.01	(0.82, 1.24)	9.40E-01	NS	
Green tea	Highest vs lowest	NHL	SRMA	Mirtavoos-Mahyari 2019	3	637	RR	0.61	(0.38, 0.99)	4.30E-02	IV	
Carotenoids	Alpha-carotene	Highest vs lowest	NHL	SRMA	Chen 2017	8	2926	RR	0.87	(0.78, 0.97)	1.20E-02	IV
Carotenoids	Alpha-carotene	Highest vs lowest	DLBCL	SRMA	Chen 2017	3	NA	RR	0.75	(0.59, 0.97)	2.30E-02	IV
Carotenoids	Alpha-carotene	Highest vs lowest	FL	SRMA	Chen 2017	4	NA	RR	0.84	(0.60, 1.16)	3.04E-01	NS
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI) P random	Strength of reported association		
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	--------------	---	-----------------------------		
Alpha-carotene	Highest vs lowest	CLL/SL	SRMA	Chen 2017	2	NA	RR	1.41	(0.80, 2.50) 2.40E-01	NS		
Beta-carotene	Highest vs lowest	NHL	SRMA	Chen 2017	10	3946	RR	0.80	(0.68, 0.94) 7.00E-03	IV		
Beta-carotene	Highest vs lowest	DLBCL	SRMA	Chen 2017	5	NA	RR	0.65	(0.46, 0.91) 1.30E-02	IV		
Beta-carotene	Highest vs lowest	FL	SRMA	Chen 2017	6	NA	RR	0.80	(0.55, 1.16) 2.44E-01	NS		
Beta-cryptoxanthin	Highest vs lowest	CLL/SL	SRMA	Chen 2017	4	NA	RR	0.98	(0.76, 1.25) 8.83E-01	NS		
Beta-cryptoxanthin	Highest vs lowest	NHL	SRMA	Chen 2017	7	2325	RR	0.87	(0.75, 1.01) 6.60E-02	NS		
Beta-cryptoxanthin	Highest vs lowest	DLBCL	SRMA	Chen 2017	4	NA	RR	0.84	(0.67, 1.05) 1.28E-01	NS		
Beta-cryptoxanthin	Highest vs lowest	FL	SRMA	Chen 2017	4	NA	RR	0.75	(0.50, 1.13) 1.67E-01	NS		
Beta-cryptoxanthin	Highest vs lowest	CLL/SL	SRMA	Chen 2017	3	NA	RR	0.51	(0.15, 1.72) 2.83E-01	NS		
Lycopene	Highest vs lowest	NHL	SRMA	Chen 2017	7	2325	RR	0.99	(0.88, 1.12) 8.80E-01	NS		
Lycopene	Highest vs lowest	DLBCL	SRMA	Chen 2017	3	NA	RR	1.04	(0.69, 1.57) 8.62E-01	NS		
Lycopene	Highest vs lowest	FL	SRMA	Chen 2017	3	NA	RR	0.90	(0.54, 1.49) 6.97E-01	NS		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	---------------	--	-----------	-------------------------------	
Lycopene	Highest vs lowest	CLL/SL L	SRMA	Chen 2017	2	NA	RR	0.80	(0.60, 1.07)	1.31E-01	NS	
Andlutein/zeaxanthin	Highest vs lowest	NHL	SRMA	Chen 2017	7	2325	RR	0.82	(0.69, 0.97)	2.20E-02	IV	
Andlutein/zeaxanthin	Highest vs lowest	DLBCL	SRMA	Chen 2017	3	NA	RR	0.87	(0.54, 1.40)	5.78E-01	NS	
Andlutein/zeaxanthin	Highest vs lowest	FL	SRMA	Chen 2017	3	NA	RR	0.70	(0.48, 1.02)	6.30E-02	NS	
Andlutein/zeaxanthin	Highest vs lowest	CLL/SL L	SRMA	Chen 2017	2	NA	RR	0.93	(0.70, 1.23)	6.26E-01	NS	
Micronutrient intake/supplements	Vitamin A (retinol)	Highest vs lowest	NHL	Psaltopoulou 2018	3	3314	RR	0.92	(0.80, 1.07)	2.64E-01	NS	
Micronutrient intake/supplements	Vitamin C	Highest vs lowest	NHL	Psaltopoulou 2018	5	3879	RR	1.00	(0.90, 1.12)	1.00E+00	NS	
Micronutrient intake/supplements	Vitamin D	Highest vs lowest	NHL	Lu 2014	6	4400	OR	1.07	(0.82, 1.40)	6.33E-01	NS	
Micronutrient intake/supplements	Vitamin D	Highest vs lowest	DLBCL	Lu 2014	5	NA	OR	1.05	(0.73, 1.52)	8.06E-01	NS	
Micronutrient intake/supplements	Vitamin D	Highest vs lowest	FL	Lu 2014	5	NA	OR	1.00	(0.63, 1.58)	1.00E+00	NS	
Micronutrient intake/supplements	Vitamin D	Highest vs lowest	CLL/SL L	Lu 2014	4	NA	OR	1.10	(0.56, 2.14)	7.93E-01	NS	
Micronutrient intake/supplements	Vitamin D	Highest vs lowest	TCL	Lu 2014	3	NA	OR	1.69	(0.68, 4.20)	2.62E-01	NS	

https://mc.manuscriptcentral.com/bmjmedicine
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
Vitamin E	Highest vs lowest	NHL	SRMA	Psaltopoulou 2018	5	3879	RR	0.98 (0.88, 1.10)	7.36E-01	NS	
Dietary fat	Total fat	Highest vs lowest	NHL	MA	Han 2017	10	5042	RR	1.26 (1.12, 1.42)	1.51E-04	III
	Total fat	Highest vs lowest	DLBCL	MA	Han 2017	5	NA	RR	1.41 (1.08, 1.84)	1.10E-02	IV
	Total fat	Highest vs lowest	FL	MA	Han 2017	5	NA	RR	1.21 (0.97, 1.52)	9.60E-02	NS
	Total fat	Highest vs lowest	CLL/SL	MA	Han 2017	4	NA	RR	0.91 (0.68, 1.23)	5.44E-01	NS
	Total fat	Highest vs lowest	TCL	MA	Han 2017	4	NA	RR	1.12 (0.60, 2.09)	7.35E-01	NS
	Animal fat	Highest vs lowest	NHL	MA	Han 2017	5	1432	RR	1.31 (1.08, 1.58)	5.00E-03	IV
	Vegetable fat	Highest vs lowest	NHL	MA	Han 2017	5	1432	RR	1.00 (0.84, 1.20)	1.00E+00	NS
	Dietary trans-fatty acid intake	Highest vs lowest	NHL	SRMA	Michels 2021	4	4701	OR	1.32 (0.99, 1.76)	5.80E-02	NS
	Dietary nitrate and nitrite intake	Highest vs lowest	NHL	SRMA	Xie 2016	7	1703	RR	0.85 (0.68, 1.06)	1.57E-01	NS
	Dietary nitrate	Highest vs lowest	NHL	SRMA	Xie 2016	5	1547	RR	1.54 (0.98, 2.41)	6.00E-02	NS
Alcohol	Ever drinking	Ever vs never	NHL	SRMA	Tramacere 2012	29	18759	RR	0.85 (0.79, 0.91)	8.50E-06	III
Risk factors category	Environmental risk factors	Level of comparison	Outcomes	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	---------------------------	---------------------	----------	------------	--------------	-----------------------	-------------	---------------	--	-----------	-------------------------------
Ever drinking	Ever vs never	TCL SRMA	Tramacere 2012	8	NA	RR	0.78 (0.58, 1.05)	1.00E-01	NS		
Ever drinking	Ever vs never	BCL SRMA	Tramacere 2012	15	NA	RR	0.86 (0.76, 0.97)	1.50E-02	IV		
Ever drinking	Ever vs never	DLBCL SRMA	Tramacere 2012	14	NA	RR	0.79 (0.68, 0.91)	1.60E-03	IV		
Ever drinking	Ever vs never	FL SRMA	Tramacere 2012	14	NA	RR	0.80 (0.69, 0.92)	2.40E-03	IV		
Ever drinking	Ever vs never	CLL/SL SRMA	Tramacere 2012	12	NA	RR	1.00 (0.80, 1.26)	1.00E+00	NS		
Ever drinking	Ever vs never	NHL SRMA	Tramacere 2012	6	1181	OR	0.84 (0.70, 1.00)	5.50E-02	NS		
Heavy drinking	Heavy vs never	NHL SRMA	Martin 2005	7	477	OR	1.00 (0.58, 1.73)	1.00E+00	NS		

Breastfeeding

| Ever vs never | breastfeeding | childhoud NHL SRMA | Martin 2005 | 7 | 477 | OR | 1.00 (0.58, 1.73) | 1.00E+00 | NS | |

Drugs, vaccinations and procedures

Non-steroidal anti-inflammatory drugs	Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS	
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Aspirin	Users vs non-users	NHL SRMA	Ye 2015	10	6818	OR	1.02 (0.89, 1.17)	7.89E-01	NS		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random α	Strength of reported association b	
NA-NSAIDS	Users vs non-users	CLL/SL	SRMA	Ye 2015	3	NA	OR	1.26	(0.86, 1.85)	2.39E-01	NS	
NSAIDS	Users vs non-users	NHL	SRMA	Ye 2015	13	9896	OR	1.05	(0.90, 1.22)	5.41E-01	NS	
NSAIDS	Users vs non-users	DLBCL	SRMA	Ye 2015	3	NA	OR	0.99	(0.81, 1.21)	9.28E-01	NS	
NSAIDS	Users vs non-users	FL	SRMA	Ye 2015	3	NA	OR	1.07	(0.69, 1.68)	7.78E-01	NS	
NSAIDS	Users vs non-users	CLL/SL	SRMA	Ye 2015	4	NA	OR	0.77	(0.51, 1.15)	2.09E-01	NS	
NSAIDS	Users vs non-users	TCL	SRMA	Ye 2015	3	NA	OR	1.04	(0.52, 2.07)	9.19E-01	NS	
NSAIDS	Users vs non-users	BCL	SRMA	Ye 2015	5	NA	OR	1.01	(0.75, 1.36)	9.52E-01	NS	
Corticosteroids	Corticosteroids	Users vs non-users	NHL	Bernatsky 2007	8	6897	OR	1.13	(0.99, 1.29)	7.00E-02	NS	
Statin	Users vs non-users	NHL	SRMA	Ye 2017	9	7825	OR	0.82	(0.69, 0.99)	3.10E-02	IV	
Statin	Users vs non-users	DLBCL	SRMA	Ye 2017	4	897	OR	0.78	(0.55, 1.11)	1.66E-01	NS	
Statin	Users vs non-users	FL	SRMA	Ye 2017	4	495	OR	0.89	(0.62, 1.27)	5.35E-01	NS	
Statin	Users vs non-users	MZL	SRMA	Ye 2017	3	215	OR	0.54	(0.31, 0.94)	2.90E-02	IV	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	----------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	--------------	----------------------------------	----------	-------------------------------	
	Statin	Users vs non-users	TCL	SRMA	Ye 2017	4	227	OR	0.70 (0.41, 1.19)	1.91E-01	NS	
	Paracetamol	Paracetamol	Users vs non-users	NHL	SRMA	Prego-Dominguez 2021	3	3022	1.20 (0.96, 1.51)	1.10E-01	NS	
	Bacillus calmette-guerin vaccination	Yes vs no	NHL	SRMA	Salmon 2020	11	4350	RR	1.20 (1.01, 1.43)	4.00E-02	IV	
	Insulin	Yes vs no	NHL	SRMA	Karlstad 2013	4	NA	RR	1.16 (0.83, 1.62)	3.91E-01	NS	
	Inflammatory bowel disease treatment	Yes vs no	NHL	SRMA	Yang 2018	3	35	RR	1.34 (0.62, 2.89)	4.70E-01	NS	
	Azathioprine and 6-mercaptopurine	Patients vs general population	NHL	MA	Kandiel 2005	3	9	SIR	3.92 (1.78, 7.47)	2.10E-04	IV	
	HAART among patients with HIV/AIDS	Pre vs post-HAART eras	NHL	SRMA	Cobucci 2015	6	7701	SIR	0.42 (0.26, 0.67)	3.00E-04	III	
	Red blood cell transfusions	Red blood cell transfusion	Yes vs no	NHL	MA	Castillo 2010	14	5904	RR	1.2 (1.07, 1.35)	2.00E-03	IV
	Red blood cell transfusion	Yes vs no	CLL/SL	MA	Castillo 2010	5	3450	RR	1.66 (1.08, 2.56)	2.10E-02	IV	
	Red blood cell transfusion	Yes vs no	FL	MA	Castillo 2010	6	NA	RR	1.02 (0.67, 1.55)	9.32E-01	NS	
	Red blood cell transfusion	Yes vs no	DLBCL	MA	Castillo 2010	5	NA	RR	1.06 (0.86, 1.3)	5.92E-01	NS	

Non-dietary lifestyle factors

Risk factors category	Physical activity	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
	Physical activity	Highest vs lowest	NHL	SRMA	Davies 2020	17	13425	RR	0.92 (0.84, 1.00)	6.00E-02	NS
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	--------------	--	-----------	-------------------------------------
Physical activity	Highest vs lowest	DLBCL	SRMA	Davies 2020	10	1957	RR		0.95 (0.83, 1.09)	4.70E-01	NS
Physical activity	Highest vs lowest	FL	SRMA	Davies 2020	10	1467	RR		0.95 (0.80, 1.12)	5.60E-01	NS
Physical activity	Highest vs lowest	CLL/SL	SRMA	Davies 2020	8	1452	RR		0.95 (0.76, 1.20)	6.70E-01	NS
Hair dye	Highest vs lowest	NHL	MA	Qin 2019	16	10967	OR		1.14 (1.01, 1.29)	3.60E-02	IV
Hair dye	User before 1980 vs never user	FL	SRMA	Odutola 2020	4	439	OR		1.66 (1.22, 2.25)	1.20E-03	IV
Night shift work	Shift workers vs non shift workers	NHL	SRMA	Dun 2020	5	>1000	OR		1.05 (0.99, 1.10)	6.91E-02	NS
Indoor tanning	Ever vs never	NHL	SRMA	O'Sullivan 2018	10	14018	RR		0.95 (0.83, 1.08)	4.54E-01	NS
Indoor tanning	Ever vs never	BCL	SRMA	O'Sullivan 2018	4	NA	RR		0.82 (0.70, 0.95)	1.10E-02	NS
Indoor tanning	Ever vs never	TCL	SRMA	O'Sullivan 2018	3	NA	RR		1.23 (0.95, 1.59)	1.15E-01	IV
Residential exposure to petrochemical activity	Living near vs far	NHL	SRMA	Jephcote 2020	9	1078	RR	1.06 (0.97, 1.17)	2.25E-01	NS	
Smoking	Ever vs never	childhoo d NHL	MA	Boffetta 2000	4	204	RR		2.08 (1.08, 3.98)	2.80E-02	IV
Maternal smoking	Ever vs never	childhoo d NHL	MA	Antonopoul os 2011	7	1072	OR		1.22 (1.02, 1.46)	2.57E-02	IV
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	---------------------------	---------------------	---------	-----------	-------------	-----------------------	-------------	---------------	---	-----------	-----------------------------
Ever smoking	Ever vs never	NHL	MA	Sergentanis 2013	33	25891	RR	1.05	(1.00, 1.09)	2.60E-02	IV
Ever smoking	Ever vs never	DLBCL	MA	Sergentanis 2013	12	NA	RR	1.01	(0.95, 1.07)	7.60E-01	NS
Ever smoking	Ever vs never	FL	MA	Sergentanis 2013	11	NA	RR	1.05	(0.88, 1.25)	6.00E-01	NS
Ever smoking	Ever vs never	CLL/SL	MA	Sergentanis 2013	9	NA	RR	0.96	(0.89, 1.04)	3.10E-01	NS
Ever smoking	Ever vs never	TCL	MA	Sergentanis 2013	12	NA	RR	1.23	(1.06, 1.43)	6.70E-03	IV
Sun exposure	Personal sunlight exposure	Highest vs lowest	NHL	Kim 2021	15	11272	OR	0.81	(0.71, 0.92)	1.50E-03	IV
Sun exposure	Personal sunlight exposure	Highest vs lowest	CLL/SL	Kim 2021	4	1564	OR	0.80	(0.63, 1.00)	5.80E-02	NS
Sun exposure	Personal sunlight exposure	Highest vs lowest	DLBCL	Kim 2021	5	1843	OR	0.76	(0.66, 0.87)	1.10E-04	III
Sun exposure	Personal sunlight exposure	Highest vs lowest	FL	Kim 2021	5	1348	OR	0.81	(0.67, 0.99)	3.40E-02	IV
Sun exposure	Personal sunlight exposure	Highest vs lowest	TCL	Kim 2021	4	413	OR	1.00	(0.68, 1.46)	1.00E+00	NS
Sun exposure	Ambient sunlight exposure during lifetime	Highest vs lowest	NHL	Kim 2021	7	19627	OR	0.84	(0.73, 0.96)	1.30E-02	IV
Sun exposure	Ambient sunlight exposure during lifetime	Highest vs lowest	CLL/SL	Kim 2021	4	NA	OR	0.93	(0.73, 1.19)	5.70E-01	NS
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	----------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	---------------	---	----------	--------------------------------------
Ambient sunlight exposure during lifetime	Highest vs lowest	DLBCL	MA	Kim 2021	4	NA	OR	0.80 (0.69, 0.92)	2.40E-03	IV	
Ambient sunlight exposure during lifetime	Highest vs lowest	FL	MA	Kim 2021	4	NA	OR	0.82 (0.72, 0.93)	2.40E-03	IV	
Occupational ultraviolet exposure	Occupation vs general population	NHL	MA	Lu 2017	11	8829	OR	1.15 (0.99, 1.32)	5.60E-02	NS	
Occupational ultraviolet exposure	Occupation vs general population	TCL	MA	Lu 2017	4	NA	OR	1.16 (0.90, 1.50)	2.60E-01	NS	

Medical history and comorbid diseases

Autoimmune diseases

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
Pernicious anemia	Patients vs general population	NHL	SRMA	Lahner 2018	3	70	RR	1.16 (0.79, 1.71)	4.60E-01	NS	

B-cell activating diseases

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
Psoriasis	Patients vs general population	NHL	SRMA	Vaengebjerg 2020	8	7626	RR	1.48 (1.30, 1.69)	9.49E-09	III	
Type 1 diabetes	Patients vs general population	NHL	MA	Wang 2020	3	1155	RR	1.56 (1.15, 2.08)	4.00E-03	IV	
Cellulitis herpetiformis	Patients vs general population	NHL	MA	Kane 2011	6	<1000	RR	2.75 (1.42, 5.33)	2.60E-03	IV	
Systemic sclerosis	Patients vs general population	NHL	SRMA	Zhang 2013	4	23	SIR	2.75 (1.42, 5.33)	2.60E-03	IV	

Other
Risk factors category	Environmental risk factors	Level of comparison	Outcome type	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
Behcet's disease	Patients vs general population	NHL	SRMA	Wang 2019	3	4	RR	7.79 (3.76, 16.11)	3.16E-08	IV		
Ankylosing spondylitis	Patients vs general population	NHL	SRMA	Deng 2016	5	>1000	RR	1.03 (0.83, 1.28)	8.00E-01	NS		
Inflammatory bowel disease	Crohn's disease	Patients vs general population	NHL	SRMA	Lo 2021	6	30	IRR	1.81 (0.94, 3.49)	7.60E-02	NS	
Ulcerative colitis	Patients vs general population	NHL	SRMA	Lo 2021	8	79	IRR	1.34 (0.95, 1.88)	9.30E-02	NS		
Allergy/Atopic diseases	Asthma	Patients vs general population	NHL	SRMA	Yang 2017	15	36903	OR	0.92 (0.86, 0.99)	3.00E-02	IV	
Hay fever	Patients vs general population	NHL	SRMA	Yang 2017	8	4528	OR	0.73 (0.62, 0.84)	5.67E-05	III		
Food allergy	Patients vs general population	NHL	SRMA	Yang 2017	6	6191	OR	0.71 (0.51, 0.98)	3.90E-02	IV		
Eczema	Patients vs general population	NHL	SRMA	Yang 2017	15	NA	OR	0.99 (0.81, 1.21)	9.28E-01	NS		
Type 2 diabetes	Type 2 diabetes	Patients vs general population	NHL	SRMA	Castillo 2012	21	17282	OR	1.22 (1.07, 1.39)	2.94E-03	IV	
Parkinson's disease	Parkinson's disease	Patients vs general population	NHL	SRMA	Zhang 2019	5	620	OR/RR	Not specified	0.80 (0.74, 0.87)	1.10E-07	IV
Sarcoidosis	Sarcoidosis	Patients vs general population	NHL	SRMA	Bonifazi 2015	8	150	RR	1.43 (1.03, 1.99)	3.30E-02	IV	
Biliary cirrhosis	Biliary cirrhosis	Patients vs general population	NHL	SRMA	Liang 2012	3	2860	SIR	1.15 (0.36, 1.94)	7.58E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	--------------	--	-----------	-----------------------------	
Overweight and obesity	Overweight	Overweight vs normal weight	NHL	SRMA	Larsson 2007	16	21720	RR	1.07 (1.01, 1.14)	2.80E-02	IV	
Overweight	Overweight	Overweight vs normal weight	DLBCL	MA	Castillo 2014	16	7349	RR	1.14 (1.04, 1.24)	3.50E-03	IV	
Overweight	Overweight	Overweight vs normal weight	CLL	MA	Castillo 2012	9	2142	RR	1.10 (1.03, 1.17)	3.40E-03	IV	
Overweight	Overweight	Overweight vs normal weight	FL	SRMA	Odutola 2020	14	1798	RR	0.99 (0.92, 1.07)	8.10E-01	NS	
Obesity	Obesity	Obesity vs normal weight	NHL	SRMA	Larsson 2007	16	21720	RR	1.20 (1.07, 1.34)	1.50E-03	IV	
Obesity	Obesity	Obesity vs normal weight	DLBCL	MA	Castillo 2014	16	7349	RR	1.29 (1.16, 1.43)	2.50E-06	III	
Obesity	Obesity	Obesity vs normal weight	CLL	MA	Castillo 2012	10	912	RR	1.17 (1.08, 1.27)	1.60E-04	IV	
Obesity	Obesity	Obesity vs normal weight	FL	SRMA	Odutola 2020	13	903	RR	1.08 (0.99, 1.17)	7.10E-02	NS	
Infection	Herpes zoster	Yes vs no	NHL	SRMA	Schmidt 2017	7	52134	RR	1.72 (1.27, 2.32)	4.49E-04	III	
Herpes zoster	Yes vs no	Yes vs no	CLL	SRMA	Schmidt 2017	4	>1000	RR	1.65 (1.20, 2.25)	2.00E-03	IV	
HPgV	Yes vs no	Yes vs no	DLBCL	SRMA	Fama 2019	3	54	OR	3.29 (1.63, 6.62)	1.00E-03	IV	
HPgV	Yes vs no	Yes vs no	FL	SRMA	Fama 2019	3	75	OR	3.01 (1.95, 4.63)	8.64E-07	IV	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
--------------------------------------	--	---------------------	---------	------------	--------------	------------------------	--------------	----------------	--	-----------	-------------------------------	
Epstein–Barr virus early antigen	High (75th percentile) vs low (<25th percentile)	NHL	MA	Teras 2015	8	1421	RR	1.52	(1.16, 1.99)	2.40E-03	IV	
Epstein–Barr virus viral capsid antigen	High (75th percentile) vs low (<25th percentile)	NHL	MA	Teras 2015	9	1764	RR	1.20	(1.00, 1.44)	5.00E-02	NS	
Borrelia burgdorferi	Yes vs no	PCL	SRMA	Travaglino 2020	10	410	OR	10.88	(3.84, 30.81)	8.98E-06	IV	
Borrelia burgdorferi	Yes vs no	DLBCL	SRMA	Travaglino 2020	3	53	OR	8.15	(1.25, 53.06)	2.80E-02	IV	
HBV	Yes vs no	TCL	SRMA	Li 2018	12	NA	OR	1.59	(1.11, 2.26)	1.07E-02	IV	
HBV	Yes vs no	DLBCL	SRMA	Li 2018	10	11943	OR	2.06	(1.48, 2.88)	2.53E-05	III	
HBV	Yes vs no	FL	SRMA	Li 2018	9	5124	OR	1.60	(1.24, 2.07)	3.50E-04	III	
HBV	Yes vs no	CLL/SL	SRMA	Li 2018	8	10738	OR	1.87	(1.34, 2.61)	2.60E-04	III	
HBV	Yes vs no	BL	SRMA	Li 2018	3	264	OR	2.12	(0.97, 4.65)	6.00E-02	NS	
HCV	Patients vs general population	FL	MA	DalMaso 2006	7	193	RR	2.73	(2.20, 3.38)	9.12E-19	IV	
HCV	Patients vs general population	MZL	MA	DalMaso 2006	5	134	RR	3.41	(2.39, 4.87)	4.48E-11	IV	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association	
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	--------------	---	-----------	-------------------------------	
HCV	Patients vs general population	TCL	MA	DalMaso	2006	4	122	RR	1.52 (1.13, 2.05)	5.90E-03	IV	
HCV	Patients vs general population	CLL/SL	MA	DalMaso	2006	5	88	RR	1.65 (1.35, 2.02)	1.57E-06	IV	
Malaria infection	Yes vs no	eBL	SRMA	Kotepui	2021	5	6055	OR	0.87 (0.54, 1.39)	5.80E-01	NS	

Chemicals and pesticides

Solvent	Formaldehyde²	Ever vs never	FL	SRMA	Odutola 2021	3	292	RR	1.03 (0.83, 1.28)	8.00E-01	NS
Chlorinated solvents²	Ever vs never	FL	SRMA	Odutola 2021	3	143	RR	1.35 (1.09, 1.68)	6.60E-03	IV	
Any solvent²	Ever vs never	FL	SRMA	Odutola 2021	3	669	IRR	1.16 (1.00, 1.34)	4.60E-02	IV	
Aromatic hydrocarbons	Styrene³	Highest vs lowest	NHL	SRMA	Collins 2018	16	553	OR/R	1.14 (0.91, 1.43)	2.59E-01	NS
Benzene³	Ever vs never	NHL	SRMA	Kane 2010	24	1420	OR/RR, Not specified	1.11 (0.94, 1.30)	2.10E-01	NS	
Benzene³	Ever vs never	FL	SRMA	Odutola 2021	3	333	OR	1.30 (0.86, 1.97)	2.20E-01	NS	
Aromatic hydrocarbons³	Ever vs never	FL	SRMA	Odutola 2021	3	7262	OR	1.24 (0.88, 1.75)	2.20E-01	NS	
Polychlorinated biphenyls	PCBs²	Highest vs lowest	NHL	SRMA	Catalani 2019	30	1439	RR	0.96 (0.85, 1.07)	4.97E-01	NS
PCBs²	Highest vs lowest	DLBCL	SRMA	Catalani 2019	6	NA	RR	0.68 (0.24, 1.21)	3.31E-01	NS	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
PCBs	Highest vs lowest	FL	SRMA	Catalani	2019	5	NA	RR	1.21 (0.79, 1.64)	3.11E-01	NS
PCBs	Highest vs lowest	CLL	SRMA	Catalani	2019	4	573	RR	0.63 (0.39, 0.87)	2.40E-02	IV
Dioxin	Highest vs lowest	NHL	SRMA	Xu	2016	4	4263	RR	1.09 (0.92, 1.30)	3.34E-01	NS
Trichloroethylene	Highest vs lowest	NHL	SRMA	Scott	2011	17	>1000	RR	1.23 (1.07, 1.42)	7.70E-03	IV
Occupational exposure to methylene chloride	Highest vs lowest	NHL	MA	Liu 2013	6	3001	OR	1.28 (0.96, 1.70)	9.00E-02	NS	
Occupational exposure to gasoline	Highest vs lowest	NHL	MA	Kane 2010	35	1042	RR	1.02 (0.94, 1.12)	6.71E-01	NS	
Carbamate/thiocarbamate pesticides	Highest vs lowest	NHL	SRMA	Schinasi 2014	3	1621	RR	1.40 (1.10, 2.00)	2.70E-02	IV	
Carbamate insecticides	Highest vs lowest	NHL	SRMA	Schinasi 2014	3	1621	RR	1.70 (1.30, 2.30)	2.90E-04	III	
Organophosphate pesticides	Highest vs lowest	NHL	SRMA	Boffetta 2021	6	1297	RR	1.05 (0.90, 1.24)	5.60E-01	NS	
Glyphosate	Highest vs lowest	NHL	SRMA	Boffetta	2021	4	1285	RR	1.29 (1.02, 1.63)	3.30E-02	IV
Glyphosate	Ever vs never	FL	SRMA	Odutola	2021	4	897	RR	0.90 (0.60, 1.34)	6.20E-01	NS
Malathion	Yes vs no	NHL	MA	Hu	2017	7	NA	OR	1.17 (0.82, 1.67)	3.94E-01	NS
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	---------------------------	---------------------	---------	------------	--------------	-----------------------	-------------	--------------	--	-----------	-------------------------------
Diazinon	Yes vs no	NHL	MA	Hu 2017	7	NA	OR	1.39	(1.11, 1.73)	4.00E-03	IV
Terbufos	Yes vs no	NHL	MA	Hu 2017	5	NA	OR	1.07	(0.85, 1.36)	5.84E-01	NS
Organophosphate pesticides	Yes vs no	NHL	MA	Hu 2017	10	NA	OR	1.22	(1.04, 1.43)	1.40E-02	IV
Organophosphate pesticides	Ever vs never	FL	SRMA	Odutola 2021	3	545	OR	1.75	(0.46, 6.72)	4.20E-01	NS
DDT	Highest vs lowest	NHL	MA	Luo 2016	5	1010	OR	1.02	(0.81, 1.28)	8.73E-01	NS
DDT	Highest vs lowest	FL	SRMA	Odutola 2021	3	741	RR	1.25	(0.75, 2.07)	4.00E-01	NS
DDE	Highest vs lowest	NHL	MA	Luo 2016	11	1905	OR	1.38	(1.14, 1.66)	8.00E-04	III
DDE	Highest vs lowest	FL	SRMA	Odutola 2021	4	255	RR	1.51	(0.99, 2.31)	5.60E-02	NS
HCH	Highest vs lowest	NHL	MA	Luo 2016	6	1184	OR	1.36	(0.95, 1.95)	9.18E-02	NS
HCB	Highest vs lowest	NHL	MA	Luo 2016	7	1265	OR	1.54	(1.20, 1.99)	8.00E-04	III
Chlordane	Highest vs lowest	NHL	MA	Luo 2016	8	1218	OR	1.89	(1.42, 2.50)	1.29E-05	III
Organochlorine pesticides	Highest vs lowest	NHL	MA	Luo 2016	13	6582	OR	1.42	(1.27, 1.59)	2.16E-09	III
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
-----------------------	---------------------------	---------------------	---------	-----------	--------------	-----------------------	-------------	---------------	--	-----------	-----------------------------
Pentachlorophenol⁴	Highest vs lowest	NHL	SRMA	Zheng 2015	5	419	OR	2.65 (1.33, 5.27)	6.00E-03	IV	
Phenoxy herbicides	2,4-D	Highest vs lowest	NHL	SRMA	Smith 2017	11	<1000	OR	1.82 (1.14, 2.92)	1.30E-02	IV
MCPA	Highest vs lowest	NHL	SRMA	Schinasi 2014	5	3986	RR	1.50 (0.90, 2.50)	1.20E-01	NS	
Phenoxy herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	12	6493	RR	1.40 (1.20, 1.60)	6.00E-06	III	
Other pesticides	Amide herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1155	RR	1.30 (0.80, 2.00)	2.40E-01	NS
Benzoic acid herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1155	RR	1.30 (0.90, 1.90)	1.70E-01	NS	
Triazine herbicides	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1155	RR	1.50 (1.00, 2.10)	3.20E-02	IV	
Trifluralin	Highest vs lowest	NHL	SRMA	Schinasi 2014	4	1346	RR	0.90 (0.60, 1.30)	6.10E-01	NS	
Pyrethroid/pyrethrin⁵	Ever vs never	FL	SRMA	Odutola 2021	4	697	RR	1.45 (0.91, 2.32)	1.20E-01	NS	

Occupation

Flight attendant	Attendants vs general population	Attendants	NHL	MA	Buja 2006	3	NA	SIR	1.19 (0.52, 2.30)	6.44E-01	NS	
Farmer			NA	NHL	MA	Boffetta 2007	50	>1000	RR	1.11 (1.05, 1.17)	1.74E-04	III
Firefighter	Firefighter vs general population	NHL	SRMA	Jalilian 2019	14	NA	SIR	1.07 (0.96, 1.20)	2.37E-01	NS		
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author, year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Strength of reported association
Firefighter	Ever vs never	FL	SRMA	Odutola	2021	3	5	RR	1.16 (0.38, 3.52)	8.10E-01	NS
Hairdresser	Hairdresser	NA	NHL	MA	Takkouche	2009	13	22425 RR	1.11 (0.94, 1.32)	2.30E-01	NS

Petroleum refinery worker
Worker vs general population

| Petroleum refinery worker | Worker vs general population | NHL | SRMA | Schnatter 2018 | 16 | NA | RR | 0.98 (0.89, 1.09) | 7.09E-01 | NS |

Meat worker
Worker vs general population

| Meat worker | Worker vs general population | NHL | MA | Boffetta 2007 | 9 | NA | RR | 0.99 (0.77, 1.29) | 9.40E-01 | NS |

Printer
Worker vs general population

| Printer | Worker vs general population | NHL | MA | Boffetta 2007 | 6 | >1000 | RR | 1.86 (1.38, 2.50) | 5.00E-05 | III |

Wood worker
Worker vs general population

| Wood worker | Worker vs general population | NHL | MA | Boffetta 2007 | 11 | NA | RR | 1.04 (0.79, 1.37) | 7.90E-01 | NS |

Occupational exposure to polycyclic aromatic hydrocarbons
Aluminum plant workers

| Occupational exposure to polycyclic aromatic hydrocarbons | Worker vs general population | NHL | SRMA | Alicandro 2016 | 8 | 167 | RR | 1.19 (0.98, 1.44) | 7.60E-02 | NS |

Iron and steel foundry workers

| Iron and steel foundry workers | Worker vs general population | NHL | SRMA | Alicandro 2016 | 8 | 57 | RR | 0.94 (0.73, 1.22) | 6.50E-01 | NS |

2,4-D=2,4-Dichlorophenoxyacetic acid; ALCt=Acute lymphocytic leukemia; ALCL=Anaplastic large cell lymphoma; BL=Burkitt Lymphoma; CI=Confidence interval; CLL/SLL=Chronic lymphocytic leukemia/small lymphocytic lymphoma; DDE=dichlorodiphenyltrichloroethylene; DDT=dichlorodiphenyltrichloroethane; DLBCL=Diffuse large B-cell lymphoma; eBL=Endemic Burkitt Lymphoma; FL=Follicular lymphoma; HAART=Highly Active Antiretroviral Therapy; HBV=Hepatitis B virus; HCV=Hepatitis C virus; HIV/AIDS=Human immunodeficiency virus, acquired immunodeficiency syndrome; HPgV=Human Pegivirus; IRR=incidence rate ratio; MA=Meta-analysis; MZL=marginal zone lymphoma; MPA=2-methyl-4-chlorophenoxyacetic acid; NA=Not available; NHL=Non-Hodgkin lymphoma; OR=Odds ratio; PCBs=Polychlorinated biphenyls; PI=prediction interval; SIR=Standardized incidence ratio; SRMA=Systematic review and meta-analysis; RR=Risk ratio; TCL=T-cell lymphoma.

aP-value for summary effect estimates using a random-effects DerSimonian and Laird estimator.
bStrength of association using the criteria listed in Table 1.
cThese studies considered NHL incidence and mortality.
dSummary effect estimates were calculated using a fixed effect estimator.
eNot using inverse variance weighting. WHAT DOES THIS MEAN XS: They used Bayesian hierarchical models, I remember at some point Josh mentioned that we should make notes for this! but I'm okay with removing this footnote.
Table 4. Suggestive risk factors and protective factors identified in meta-analyses of individual patient data from International Lymphoma Epidemiology Consortium

NHL subtype	At least 1000 cases and $P^{\leq}10^{-3}$	At least 1000 cases and $P^{\leq}10^{-4}$
CLL/SLL	Years since quitting cigarette smoking; printing pressmen	None
CLL/SLL/PLL/MCL	Adult infectious mononucleosis	None
DLBCL	Alcohol; Any atopic disorder; Allergy; B and T-cell activating autoimmune diseases; HCV; Hay fever; Recreational sun exposure; Socioeconomic status (high vs low); BMI as young adult (25-30 kg/m2); Rheumatoid arthritis; Blood transfusion; Weight	History of B-cell activating autoimmune disease; Sjogren’s syndrome; HCV; Young adult BMI (%25 kg/m2); Years since quit cigarette smoking; Age first alcohol consumption (20-29 years vs. nondrinker); Current alcohol consumption status as of ~2 years prior to diagnosis/interview
FL	Blood transfusions; Young adult BMI (%25 kg/m2); Recreational sun exposure; History of cigarette smoking (females); Current cigarette smoking; University and higher education teachers; Male height (100% vs. 60%); Any atopic disorder	None
MZL	Systemic lupus erythematosus; HCV; Peptic ulcer; Wine	History of B-cell activating autoimmune disease; Sjogren’s syndrome
HCL	Current cigarette smoking	None
NHL	Hormone replacement therapy; Systemic lupus erythematosus; HCV; Allergy; Food allergy; Hay fever; Blood transfusion; Height; Alcohol exposures; Recreational hair dye use; Socioeconomic status (high vs low); Secondary Sjogren’s syndrome; Childhood measles	Sjogren’s syndrome; History of B-cell activating autoimmune disease; Hay fever; Young adult BMI (%25 kg/m2); Recreational sun exposure (%Q3-Q4 hours/week); Recreational hair dye use (%Q3-Q4 hours/week); Beer, wine, and liquor

BMI=body mass index; CI=confidence interval; CLL=chronic lymphocytic leukemia; DLBCL=diffuse large B-cell lymphoma; FL=follicular lymphoma; HCL=hairy cell leukemia; HCV=hepatitis C virus; MCL=mantle cell lymphoma; MZL=marginal zone lymphoma; NHL=non-Hodgkin lymphoma; SLL=small lymphocytic lymphoma; PLL=prolymphocytic leukemia.

* These were protective risk factors.
| Exposure [NHL subtype] | Effect estimate (95% CI) | Strength of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Effect estimates in the same direction | Overlapping 95% confidence intervals | Same level of statistical significance \((P<0.05)\) | At least one-third of studies overlapping |
|------------------------|--------------------------|----------------------------------|------------------------|--------------------------|---------------------------------------|-----------------------------------|------------------------------------|-------------------------------|
| Red blood cell transfusion [NHL] | RR 1.20 (1.07, 1.35) | IV | History of blood transfusion [NHL] | OR 0.83 (0.77, 0.91) | No | No | Both | Yes |
| Red blood cell transfusion [CLL/SLL] | RR 1.66 (1.08, 2.56) | IV | History of blood transfusion [CLL/SLL] | OR 0.79 (0.66, 0.94) | No | No | Both | Yes |
| Red blood cell transfusion [FL] | RR 1.02 (0.67, 1.55) | NS | History of blood transfusion [FL] | OR 0.78 (0.68, 0.89) | No | Yes | MA of IPD only | Yes |
| Red blood cell transfusion [DLBCL] | RR 1.06 (0.86, 1.30) | NS | History of blood transfusion [DLBCL] | OR 0.84 (0.75, 0.95) | No | Yes | MA of IPD only | Yes |
| Ever smoking [NHL] | RR 1.05 (1.00, 1.09) | IV | Any smoking [NHL] | OR 1.02 (0.97, 1.07) | Yes | Yes | Neither | No |
| Ever smoking [DLBCL] | RR 1.01 (0.95, 1.07) | NS | Any smoking [DLBCL] | OR 1.01 (0.94, 1.08) | Yes | Yes | Neither | No |
| Ever smoking [FL] | RR 1.05 (0.88, 1.25) | NS | Any smoking [FL] | OR 1.09 (1.00, 1.18) | Yes | Yes | Neither | Yes |
| Ever smoking [CLL/SLL] | RR 0.96 (0.89, 1.04) | NS | Any smoking [CLL/SLL] | OR 0.90 (0.81, 0.99) | Yes | Yes | MA of IPD only | Yes |
| Ever smoking [TCL] | RR 1.23 (1.06, 1.43) | IV | Any smoking [TCL] | OR 1.32 (1.09, 1.59) | Yes | Yes | Both | No |
| Ever drinking [NHL] | RR 0.85 (0.79, 0.91) | III | Any alcohol [NHL] | OR 0.87 (0.81, 0.93) | Yes | Yes | Both | Yes |
| Ever drinking [TCL] | RR 0.78 (0.58, 1.05) | NS | Any alcohol [TCL] | OR 0.68 (0.53, 0.87) | Yes | Yes | MA of IPD only | Yes |
| Ever drinking [DLBCL] | RR 0.79 (0.68, 0.91) | IV | Any alcohol [DLBCL] | OR 0.81 (0.73, 0.89) | Yes | Yes | Both | Yes |
| Ever drinking [FL] | RR 0.80 (0.69, 0.92) | IV | Any alcohol [FL] | OR 0.86 (0.77, 0.96) | Yes | Yes | Both | Yes |
| Exposure [NHL subtype] | Effect estimate (95% CI) | Strength of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Effect estimates in the same direction | Overlapping 95% confidence intervals | Same level of statistical significance (P<0.05) | At least one-third of studies overlapping |
|------------------------|--------------------------|---------------------------------|------------------------|--------------------------|--|--|---|---|
| Ever drinking [CLL/SLL] | RR 1.00 (0.80, 1.26) | NS | Any alcohol [CLL/SLL] | OR 1.04 (0.90, 1.19) | Yes | Yes | Neither | Yes |
| Pernicious anemia [NHL] | RR 1.16 (0.79, 1.71) | NS | Pernicious anemia [NHL]| OR 1.37 (0.62, 3.03) | Yes | Yes | Neither | No |
| Rheumatoid arthritis [NHL] | SIR 2.26 (1.82, 2.81) | II | Rheumatoid Arthritis [NHL]| OR 1.32 (0.99, 1.77) | Yes | No | MA of summary level data only | No |
| Primary Sjogren's syndrome [NHL] | RR 13.76 (8.53, 18.99) | II | Sjogren's syndrome [NHL]| OR 7.52 (3.68, 15.36) | Yes | Yes | Both | No |
| Systemic lupus erythematosus [NHL] | RR 5.40 (3.75, 7.77) | II | Systemic Lupus Erythematosus [NHL]| OR 2.83 (1.81, 4.11) | Yes | Yes | Both | No |
| Psoriasis [NHL] | RR 1.48 (1.3, 1.69) | III | Psoriasis [NHL] | OR 1.08 (0.90, 1.29) | Yes | No | MA of summary level data only | No |
| Type 1 diabetes [NHL] | RR 1.55 (1.15, 2.08) | IV | Type 1 diabetes [NHL] | OR 1.15 (0.80, 1.66) | Yes | Yes | MA of summary level data only | No |
| Celiac disease [NHL] | OR 2.61 (2.04, 3.33) | II | Celiac disease [NHL] | OR 1.77 (1.05, 2.99) | Yes | Yes | Both | Yes |
| Celiac disease [TCL] | OR 15.84 (7.85, 31.94) | II | Celiac disease [TCL] | OR 14.82 (7.27, 30.19) | Yes | Yes | Both | Yes |
| Celiac disease [DLBCL] | OR 2.25 (1.32, 3.85) | IV | Celiac disease [DLBCL] | OR 2.09 (1.04, 4.18) | Yes | Yes | Both | Yes |
| Celiac disease [CLL] | OR 0.80 (0.46, 1.38) | NS | Celiac disease [CLL/SLL]| OR 0.60 (0.14, 2.61) | Yes | Yes | Neither | Yes |
| Sarcoidosis [NHL] | RR 1.43 (1.03, 1.99) | IV | Sarcoidosis [NHL] | OR 0.71 (0.39, 1.29) | No | Yes | Neither | No |
| Exposure [NHL subtype] | Effect estimate (95% CI) | Strength of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Effect estimates in the same direction | Overlapping 95% confidence intervals | Same level of statistical significance (P<0.05) | At least one-third of studies overlapping |
|------------------------|--------------------------|----------------------------------|------------------------|--------------------------|--|--------------------------------------|---|---|
| Tuberculosis [NHL] | RR 1.61 (1.34, 1.94) | II | Adult Tuberculosis infection [NHL] | OR 1.16 (0.96, 1.39) | Yes | Yes | MA of summary level data only | No |
| Herpes Zoster [NHL] | RR 1.72 (1.27, 2.32) | III | Adult shingles [NHL] | OR 1.05 (0.93, 1.19) | Yes | No | MA of summary level data only | No |
| Hepatitis C virus [NHL] | OR 3.36 (2.40, 4.72) | II | Hepatitis C virus [NHL] | OR 1.81 (1.39, 2.37) | Yes | No | Both | No |
| Hepatitis C virus [DLBCL] | OR 2.65 (1.88, 3.74) | II | hepatitis C virus [DLBCL] | OR 2.33 (1.71, 3.19) | Yes | Yes | Both | Yes |
| Hepatitis C virus [FL] | OR 2.73 (2.20, 3.38) | IV | Hepatitis C virus [FL] | OR 0.57 (0.30, 1.10) | No | No | MA of summary level data only | Yes |
| Hepatitis C virus [MZL] | OR 3.41 (2.39, 4.87) | IV | Hepatitis C virus [MZL] | OR 3.04 (1.65, 5.60) | Yes | Yes | Both | Yes |
| Hepatitis C virus [CLL/SLL] | OR 1.65 (1.35, 2.02) | IV | Hepatitis C virus [CLL/SLL] | OR 2.08 (1.23, 3.49) | Yes | Yes | Both | Yes |
| Farmer [NHL] | RR 1.11 (1.05, 1.17) | III | Farmer [NHL] | OR 1.03 (0.95, 1.13) | Yes | Yes | Neither | No |
| Firefighter [NHL] | SIR 1.07 (0.96, 1.20) | NS | Firefighter [NHL] | OR 0.76 (0.53, 1.09) | No | Yes | Neither | No |
| Hairdresser [NHL] | RR 1.11 (0.94, 1.32) | NS | Hairdresser [NHL] | OR 1.21 (0.96, 1.52) | Yes | Yes | Both | No |
| Petroleum refinery worker [NHL] | RR 0.98 (0.89, 1.09) | NS | Petroleum workers [NHL] | OR 0.79 (0.38, 1.67) | Yes | Yes | Neither | No |
| Teacher [NHL] | RR 1.47 (1.34, 1.61) | II | Teacher [NHL] | OR 0.89 (0.81, 0.98) | No | No | Both | No |
| Meat worker [NHL] | RR 0.99 (0.77, 1.29) | NS | Meat worker [NHL] | OR 1.08 (0.81, 1.42) | No | Yes | Neither | No |
| Printer [NHL] | RR 1.86 (1.38, 2.50) | III | Printers [NHL] | OR 0.95 (0.78, 1.17) | No | No | MA of summary level data only | No |
| Exposure [NHL subtype] | Effect estimate (95% CI) | Strength of reported association | Exposure [NHL subtype] | Effect estimate (95% CI) | Overlapping 95% confidence intervals | Same level of statistical significance (P<0.05) | At least one-third of studies overlapping |
|------------------------|--------------------------|---------------------------------|------------------------|--------------------------|---------------------------------------|---|--|
| Wood worker [NHL] | RR 1.04 (0.79, 1.37) | IV | Wood workers [NHL] | OR 1.04 (0.89, 1.22) | Yes | Yes | Neither | No |

CI=confidence interval; CLL/SLL=chronic lymphocytic leukemia/small lymphocytic lymphoma; DLBCL=diffuse large B-cell lymphoma; NA=not available; NHL=non-Hodgkin lymphoma; OR=odds ratio; SIR=standardized incidence ratio; RR=risk ratio; TCL=T-cell lymphoma.
Response letter: BMJ-2021-069314

Comments from Editors:

1) The paper assumes that IPD MAs are of high quality. This may be true but it needs some supporting evidence to match that for summary MAs. For example what % of IPD findings are non- or weakly significant?

Response: Thank you for this comment. We agree that it is important to understand the strength of associations from the individual patient-level data (IPD) meta-analyses (MAs). However, similar to previous umbrella reviews, MAs of summary-level data were our primary focus. In our evaluation, we evaluated 85 MAs of summary level data reporting 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. These evaluations took us an extensive amount of time, and it would be unrealistic to formally evaluate thousands of other associations. That being said, we do provide information about the 715 nominally significant associations from IPD MAs (please see eTable 5).

Overall, we do not assume that either IPD MAs or MAs of summary level data are higher quality. For instance, in our manuscript we outline that “… MAs of IPD contain thousands of NHL cases and are strengthened by their ability to utilize raw data that are harmonized across multiple studies, they do not include evidence from case-control and cohort studies conducted by investigators outside of the InterLymph Consortium. Therefore, MAs of summary level data and MAs of IPD evaluating the same associations between environmental risk factors and NHL may sometimes lead to discordant results and conclusions.”

To further address this concern, we have updated the Limitations section to reflect the fact that MAs of IPD and MAs of summary level data can have different strengths and limitations, and our evaluation did not focus on comparing the potential quality of these types of reviews.

Page 17, Line 11:

Ninth, MAs of IPD and MAs of summary level data have different strengths and limitations, and our evaluation did not focus on comparing the potential quality of these types of reviews.

2) Excluding non-English language reviews was a limitation.

Response: Thank you for sharing this concern. Similar to other umbrella reviews,1,2 we focused on English-language reviews. In our evaluation, we excluded 20 non-English reviews at full-text stage. We have updated the Limitations section to reflect this concern.

Page 17, Line 8

Eighth, by excluding non-English language reviews, we may have missed additional potential associations. However, we utilized the same approach as previous umbrella review focused on environmental risk factors for health outcome(s).

3) Author John Ioannides is not mentioned in the Contributors section.

Response: Thank you for pointing this out. We have further clarified Dr. Ioannidis’s contribution in this section.
Page 18, Line 5:

“XS, JPAI, and JDW designed this study XS, JPAI, and JDW participated in the interpretation of the data. All authors and critically revised the manuscript for important intellectual content.”

4) Presenting the detailed AMSTAR2 scores for every MA would be helpful.

Response: Thank you for the comment. We present this information in eTable 6 and also added the information of author year in the table to make it more comprehensive. We did not evaluate the 27 MAs of IPD because the evaluation tool AMSTAR 2 was mainly designed for MAs of summary level data. Furthermore, MAs of summary level data is the major focus of our evaluation.

5) The percentages are all to one decimal place and would be simpler as whole numbers.

Response: Thanks for the comments. We have carefully revised our manuscript to make sure we reported all the percentages as whole numbers.

Comments from reviewers:

Reviewer: 1

This paper presents an umbrella review and synthesis of published meta-analyses on environmental risk factors for non-Hodgkin lymphoma. Eighty-five meta-analyses of summary-level data reporting 257 associations were identified, 11 of which were classed as providing highly suggestive evidence, for autoimmune diseases or infections- generally accepted risk factors. Further, the meta-analyses of summary-level data were compared with the InterLymph Consortium’s individual-level data analyses.

In the process of its aims, the paper collates a vast array of published meta-analyses and uses statistical criteria for evaluation. Its findings are what is already known for lymphoma. The project is undoubtedly ambitious but misses the essential narrative where the reliability of the individual studies within each meta-analysis can be assessed for generalisability, potential biases, etc. Undoubtedly more systematic reviews/meta-analyses on risk factors for NHL will continue to be published, but although there is care in the statistical criteria applied here, I am not convinced that evaluations such as this will help the overall narrative; there is a danger that purely statistical assessments could exacerbate some of the issues round assessment of the evidence by unintentionally adding weight to small risk estimates, and misses the careful attention that good reviews employ.

Response: Thank you for your careful review of our work, we appreciate the helpful feedback. To the best of our knowledge, no study has either comprehensively evaluated all the reported associations in current reviews or investigated the agreement between MAs of IPD and MAs of summary level data. Umbrella reviews can help provide information about the quality of MAs, the accumulated evidence supporting different associations, and the potential research gaps that may exist. Similar to previous high profile umbrella reviews, the primary focus of our study is to evaluate the accumulated evidence. While individual systematic reviews and meta-analyses focus on the quality of individual studies, umbrella
reviews provide information about the quality and conduct of reviews. To further address these concerns, we have updated our Limitations section.

Page 16, Line 15:

Second, we did not evaluate the quality of individual studies included in the MAs of summary level data, the impact that individual studies have on the overall heterogeneity, or the potential role that residual/unmeasured confounding could have on associations. Individual risk of bias evaluations are outside the scope of umbrella reviews, and it is the expectation that MAs have already conducted these quality assessments.

Major:

1) The criteria for selection of the meta-analyses are not clear, why are some given precedent over others? For instance, Kane et al 2011 on gluten sensitivity included over 30 studies on coeliac disease and the related dermatitis herpetiformis while the chosen Tio et al 2012 includes less of the literature at only 8 studies.

Response: Thank you for your comment. Our work focuses on the etiology of NHL risk, which specifically refers to the risk of developing NHL. In our Methods section, we mentioned that we focused on reviews “evaluating associations between environmental risk factors and incident NHL”. Although Kane et al 2011 was identified, this review included studies on coeliac disease and NHL incidence and mortality, while the eight studies included in Tio et al 2012 were all studies on NHL incidence.

2) There is no mention of the consistency of evidence within the meta-analyses using absence of heterogeneity in the study-specific risk estimates. E.g. of the 16 studies included in Qin et al 2019, the 3 which were statistically significant largely drive the overall pooled estimate of 1.14 (95%CI 1.01-1.29, heterogeneity I-squared 79.7%).

Response: Thank you for sharing this concern. Umbrella reviews focus on the totality of the evidence from meta-analyses. For these evaluations, which consider a large number of exposures and outcomes, investigating the role of individual studies is not feasible. However, our formal evaluations of the strength of evidence considers the I² value from each association.

However, to further address this comment, we have updated our Limitations section.

Page 16, Line 15:

Second, we did not evaluate the quality of individual studies included in the MAs of summary level data, the impact that individual studies have on the overall heterogeneity, or the potential role that residual/unmeasured confounding could have on associations.

3) Many of the statistically significant associations are less than 1.5 and only marginally significant (lower CI limit close to 1). This requires commentary since associations could be due to confounding, and/or scenarios such as that for Qin et al 2019.

Response: Thanks for the comment. Among the 112 statistically significant associations, we found 63 (56%) of them had effect estimates between 0.67 and 1.5. We have included this information in the revised manuscript. Please also see our response to Comment #2 above, where we note that we do not account for residual/unmeasured confounding.
Across all 112 nominally statistically significant associations, 63 (56%) had relative risk values that were between 0.67 and 1.50.

Minor:

1) There is no list of references for the meta-analyses. Those excluded because full-text could not be retrieved should also be cited. The tables should include reference numbers for the meta-analyses.

Response: Thanks for your comment. We have updated our Supplement 2 to include references to the MAs that were considered in our evaluation.

2) The items of AMSTAR2 are not mentioned.

Response: Thank you for sharing this concern. We present the items of AMSTAR 2 for each included meta-analysis in eTable 6. We also mentioned in the Results section that “The most common unfulfilled critical domains of the AMSTAR 2 tool were incomplete justification of excluded studies (74, 87%) and missing or no information about preregistered protocols (72, 85%).”

3) Tables should cite references using author name and year (missing from table 7) and repeat the header row if over more than 1 page.

Response: Thank you for this helpful suggestion. We added the author name and year information to eTable 6 and edited all our tables in the main text and supplement accordingly.

4) The authors state that InterLymph has published 1000s of associations; this statement requires qualification as like others, risk factors would have been explored based on a priori evidence, and subgroup analyses by age, sex, dose etc conducted if there is an overall association or a priori suggestion to do so. For information, InterLymph was specifically set-up in the early 2000s to explore potential risk factors for the heterogeneous subtypes of NHL; requiring international collaboration, it endeavoured to include all studies in the field at this time. The consortium has reported for most subtypes in publications by lifestyle and environmental factors as well as providing overview of each subtype in a JNCI monograph published in 2014 (please note that Morton et al 2014 in this monograph is a summary of evidence across all subtypes from the papers by Linet 2014, Cerhan 2014, Monnereau 2014, etc).

Response: Thank you for the comment. We have now updated our Discussion to improve clarity.

Furthermore, the InterLymph findings may be difficult to disentangle, with at least 700 nominally statistically significant associations among thousands of analyses conducted across different subtypes of NHL and exposure levels (e.g., different type/dosage of alcohol consumption).”
Reviewer: 2

Comments:

The authors attempted to summarize the range, strength, and validity of reported associations between environmental risk factors and NHL and evaluate the concordance between associations reported in MAs of summary level data and MAs of IPD. Please find my comments below:

1. The WCRF/AICR Continuous Update Project (CUP) is considered a gold standard reference, especially when risk factors referring to diet, nutrition, physical activity, and body fatness are concerned. The novelty of the present umbrella review will be clearer if authors indicate very specifically how their study is different or stands out from the WCRF/AICR CUP, which is supposed to be more comprehensive than any single study. The WCRF/AICR concluded that there is limited evidence for an association between excess body fatness (Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K; International Agency for Research on Cancer Handbook Working Group. Body Fatness and Cancer--Viewpoint of the IARC Working Group. N Engl J Med. 2016 Aug 25;375(8):794-8.). Has the WCRF/AICR published reports on other environmental risk factors of NHL? I would like to see this mentioned in the introduction.

Response: We appreciated the comment and the helpful information. WCRF/AICR Continuous Update Project was established to answer the critical question of how diet, nutrition, and physical activity impact cancer risk. Based on our search, we were only able to identify one paper that investigated environmental risk factors for non-Hodgkin's lymphoma (NHL).\(^7\) This evaluation suggested that BMI and BMI in early adulthood (aged 18-21 years) were associated with the risk of NHL and diffuse large beta-cell lymphoma (DLBCL), which was also similar to our summary in Table 3 (obesity and overweight during adulthood were associated with the increased risk of NHL and DLBCL). Furthermore, the WCRF study only reported the relative risks for dose-response relationships (i.e., per 5 kg/m\(^2\)). As we outlined in our methods, our evaluation prioritized the effect estimates comparing ever versus never exposure (or the highest versus lowest levels of exposures). We also address this in our Limitation section, where we noted that we did not consider dose-response relationships.

We also checked the website of WCRF and it seemed that NHL is not among one of the priority areas for WCRF (https://www.wcrf.org/diet-and-cancer/cancer-types/). For the reasons outlined above, we would prefer not to mention WCRF in our Introduction, but defer to the Editors.

2. Comparing the MAs that included different study design is problematic, as different study designs have different robustness. If possible, I believe the authors should focus on the findings of MAs of prospective observational studies. Otherwise, this issue should be discussed in detail as a limitation.

Response: We are grateful for this comment. We acknowledge the fact that we did not prioritize reviews of certain study designs or address differences across different study designs. This approach has also been used for previous umbrella reviews looking at risk factors for chronic diseases.\(^8\)-\(^10\) Furthermore, certain NHL subtypes are rare, and prospective observational studies may not always be realistic. However, we have updated our
Limitation section to clarify that we did not differentiate between reviews of cohort or case-control studies.

Page 16, Line 19

...we considered MAs that included cohort and case-control studies, and our assessments did not prioritize reviews of certain study designs or address differences across different study designs. Considering that certain NHL subtypes are rare, case-control studies may often be the most realistic study design to evaluate exposure histories.

3. Since the association between environmental factors and NHL risk might be subtype-specific, the analyses should focus on NHL subtypes rather than NHL as a single exposure.

Response: Thank you for the comment. We focused on all NHL outcomes reported in MAs. In Table 2 and 3, we have one column for the outcome which specifies if it is NHL overall or a subtype of NHL. We believe that this comprehensive focus helps provide an overview of what is reported in the literature.

4. Please present the reference list of the excluded MAs. As for now, the Reviewer could not assess whether their exclusions were justified.

Response: Thanks for the comment. We have now provided a list of 904 papers that we excluded at full text stage.

5. It is not clear whether the authors only included environmental factors in adulthood. The environmental factors during childhood, adolescence, and young adulthood may be important for NHL development (Hidayat K, Li HJ, Shi BM. Anthropometric factors and non-Hodgkin's lymphoma risk: systematic review and meta-analysis of prospective studies. Crit Rev Oncol Hematol. 2018 Sep;129:113-123.; Abar L, Sobiecki JG, Cariolou M, Nanu N, Vieira AR, Stevens C, Aune D, Greenwood DC, Chan DSM, Norat T. Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies. Ann Oncol. 2019 Apr 1;30(4):528-541.).

Response: We appreciated the comment and also acknowledged the importance of distinguishing environmental factors during different periods. We considered any environmental exposure at any time, as defined by the authors of the individual review papers. In Table 2, we specified which risk factors were explicitly described by the authors as childhood exposures (e.g., maternal/paternal smoking).

6. The authors should also discuss that most of the meta-analyses included in their review were largely based on the data from case-control studies. Moreover, the authors did not discuss the ability of the included studies to control for important confounders. Many of the individual studies did not control for important confounders. Therefore, more long-term, well-designed prospective cohort studies are warranted to confirm or refute the current findings.

Response: We appreciated the comment. However, case-control studies are an important study design when it comes to rare outcomes. We agree that confounding is always an important issue for observational studies. The AMSTAR 2 evaluation includes a confounding-related question (item 11: “If meta-analysis was justified did the review authors use appropriate methods for statistical combination of results?”). Given our focus on accumulated evidence and the large number of associations, it would not be feasible to
examine the individual studies for their consideration of important confounders. However, we have mentioned this as a limitation in our Limitations section (see Reviewer 1 Comment #2 above).

7. “when multiple MAs of summary level data evaluated the same exposures and outcomes, we selected the association based on the largest number of included studies. Although this approach does not ensure that the highest quality MAs are selected, this methodology has been utilized by previous umbrella reviews.”

This reasoning does not provide a satisfactory rationale for utilizing the approach; please ensure that only the highest quality MAs are selected.

Response: Thank you for this comment. During the design of our study, we had several discussions about the strengths and limitations of different approaches. We reviewed previous umbrella reviews and prespecified our approach of selecting MAs with the largest number of included studies. Selecting the MAs based on the number of reviews included is one of the most extensively used approaches in current umbrella reviews.1,8 We identified 257 associations from 85 MAs in our study. For multiple risk factors (e.g., obesity/overweight, different pesticides, and some autoimmune diseases) we identified more than 5 MAs for each association. We hope that our supplementary eTable 4, which describes the overlapping MAs of summary level data, helps provide information about the associations evaluated in multiple studies.

Reference:

1. Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. *J. Psychiatr. Res.* 2018;103:189-207.
2. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. *Gastroenterology.* 2019;157(3):647-659 e644.
3. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ.* 2017;358:j4008.
4. Neuenschwander M, Ballon A, Weber KS, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. *BMJ.* 2019;366:l2368.
5. O'Sullivan JW, Muntinga T, Grigg S, Ioannidis JPA. Prevalence and outcomes of incidental imaging findings: umbrella review. *BMJ.* 2018;361:k2387.
6. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. *BMJ.* 2017;359:j5024.
7. Abar L, Sobiecki JG, Cariolou M, et al. Body size and obesity during adulthood, and risk of lympho-haematopoietic cancers: an update of the WCRF-AICR systematic review of published prospective studies. *Ann. Oncol.* 2019;30(4):528-541.
8. Radua J, Ramella-Cravarro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. *World Psychiatry.* 2018;17(1):49-66.
9. Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. *Alzheimers Dement.* 2017;13(4):406-418.

10. Bellou V, Belbasis L, Tzoulaki I, Evangelou E, Ioannidis JP. Environmental risk factors and Parkinson's disease: An umbrella review of meta-analyses. *Parkinsonism Relat. Disord.* 2016;23:1-9.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Journal:	BMJ Medicine
Manuscript ID	bmjmed-2022-000184.R1
Article Type:	Original research
Date Submitted by the Author:	14-Apr-2022
Complete List of Authors:	Shi, Xiaoting; Yale University School of Public Health, Department of Environmental Health Sciences
Zhao, Haoran; Yale School of Public Health, Department of Environmental Health Sciences	
Du, Yuxuan; Yale School of Public Health, Department of Health Policy and Management	
Nyhan, Kate; Yale University, Harvey Cushing/John Hay Whitney Medical Library; medical library	
Ioannidis, John; Stanford University, Stanford Prevention Research Center, Department of Medicine and Department of Health Research and Policy	
Wallach, Joshua D.; Yale University School of Public Health, Department of Environmental Health Sciences	
Keywords:	Lymphoma, Epidemiology
I, the Submitting Author, have the right to grant and do grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Xiaoting Shi, Haoran Zhuo, Yuxuan Du, Kate Nyhan, John P.A. Ioannidis, Joshua D. Wallach

Xiaoting Shi, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Haoran Zhuo, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Yuxuan Du, Graduate student
Department of Health Policy & Management, Yale School of Public Health, New Haven, Connecticut, USA

Kate Nyhan, Librarian
Harvey Cushing/John Hay Whitney Medical Library; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA

John P.A. Ioannidis, Professor
Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, California, USA

Joshua D Wallach, Assistant Professor
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Corresponding author:
Joshua D Wallach, MS, PhD
Assistant Professor
Department of Environmental Health Sciences
Yale School of Public Health
60 College Street, 4th Floor, Room 411
Abstract

Objectives: To summarize the range, strength, and validity of reported associations between environmental risk factors and non-Hodgkin lymphoma (NHL), and to evaluate the concordance between associations reported in meta-analyses (MAs) of summary level data and MAs of individual participant data (IPD).

Design: Umbrella review.

Data sources: MEDLINE, Embase, Scopus, Web of Science Core Collection, Cochrane Library, and Epistemonikos from inception to 23 July 2021.

Eligibility criteria: English language MAs of summary level data and MAs of IPD evaluating associations between environmental risk factors and incident NHL (overall and NHL subtypes).

Data extraction and synthesis: Summary effect estimates from MAs of summary level data comparing ever versus never exposure that were adjusted for the largest number of potential confounders were re-estimated using a random-effects model and classified as presenting non-significant, weak ($P<0.05$), suggestive ($P<10^{-3}$ and >1000 cases), highly suggestive ($P<10^{-6}$, >1000 cases, largest study reporting a significant association), or convincing ($P<10^{-6}$, >1000 cases, largest study reporting a significant association, $I^2<50\%$, 95% prediction interval excluding the null value, and no evidence of small study effects and excess significance bias) evidence. When the same exposures, exposure contrast levels, and outcomes were evaluated in MAs of summary level data and MAs of IPD from the International Lymphoma Epidemiology (InterLymph) Consortium, concordance in terms of direction, level of significance, and overlap of 95% confidence intervals (CI) was examined. We assessed the methodological quality of the MAs of summary level data using the A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2 tool.

Results: We identified 85 MAs of summary level data reporting 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. Nearly all (79/85, 93%) MAs of summary level data were classified as having critically low quality. Most (225, 88%) associations presented either non-significant or weak evidence. The 11 (4%) associations presenting highly suggestive evidence were primarily for autoimmune or infectious disease-related risk factors. Only 1 association, history of celiac disease and risk of NHL, presented convincing evidence. Overall, 40 associations reported in MAs of summary level data were also evaluated in InterLymph MAs of IPD. Of these, 22 (55%) pairs were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 28 (70%) pairs where the summary effect sizes from the MAs of IPD were more conservative.
Conclusion: This umbrella review suggests that there is a mass production of low-quality MAs of summary level data, many of which report weak associations between environmental risk factors and NHL, and highlights the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

Systematic review registration PROSPERO CRD42020178010.
What is already known on this topic

- Observational studies have suggested that environmental risk factors, including clinical, occupational, and lifestyle exposures, may be associated with the risk of developing non-Hodgkin lymphoma.

- As a result of the large number of observational studies evaluating the impact of environmental risk factors on non-Hodgkin lymphoma, dozens of systematic reviews and meta-analyses of summary and individual participant level data have focused on synthesizing evidence and identifying potential risk factors.

- Little is known about: (1) the range, strength, and validity of associations between environmental risk factors and non-Hodgkin lymphoma reported in meta-analyses or (2) the concordance between meta-analyses of summary level data and meta-analyses of individual participant data evaluating the same associations.

What this study adds

- This umbrella review suggests that although a large range of environmental risk factors for non-Hodgkin lymphoma have been evaluated in meta-analyses, the vast majority of meta-analyses of summary level data are low quality and present either non-significant or weak associations.

- Overall, only half of the associations that were evaluated in both meta-analyses of summary level data and meta-analyses of individual participant data were in the same direction, had the same level of statistical significance, and had overlapping 95% confidence intervals.

- Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, this umbrella review highlights the need for improving not only primary studies but also evidence synthesis in the field of non-Hodgkin lymphoma etiology.
Introduction
Non-Hodgkin lymphoma (NHL), a lymphoid cancer that originates in white blood cells called lymphocytes, is the 9th leading cause of cancer death among both men and women.\(^1\) NHL accounts for nearly 90% of all lymphomas\(^2\) and is the most common hematologic malignancy in the world.\(^3\) Although NHL can be broadly categorized into two major groups (i.e., B-cell, T-cell/natural killer-cell lymphomas), it represents a diverse group of malignant disorders with dozens of subtypes.\(^4\) Evidence suggests that NHL is more common among older adults, men, and people with a first degree relative with NHL.\(^5,6\) However, despite substantial effort to identify NHL causes and risk factors over the past few decades, the exact etiology of NHL is unknown.\(^5\)

Epidemiological studies have suggested that environmental risk factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors, may be associated with the risk of developing NHL. In particular, several prominent potential risk factors proposed in the literature include viruses (e.g., Epstein-Barr virus infection),\(^7\) autoimmune diseases (e.g., Sjogren’s syndrome, celiac disease, and rheumatoid arthritis),\(^8-10\) and immune dysregulation (i.e., patients with a history of organ transplantation, acquired immunodeficiency syndromes (HIV/AIDs), or immunosuppressive medication treatment).\(^5,6,11\) However, given that these exposures and conditions are relatively rare,\(^11\) a broad range of additional environmental risk factors, including exposure to insecticides,\(^12\) red and processed meat consumption,\(^13\) and hair dye,\(^14\) have been evaluated and proposed as potential risk factors.

As a result of the large number of observational studies evaluating the impact of environmental risk factors on NHL, dozens of systematic reviews and meta-analyses (MAs) of summary level data have focused on synthesizing evidence and identifying the most promising risk factors. Moreover, the International Lymphoma Epidemiology (InterLymph) Consortium,\(^15\) a group of investigators who pool data from their completed or ongoing NHL case-control studies, have published multiple MAs of individual participant data (IPD) evaluating associations between various environmental risk factors and NHL.\(^16-18\) Although these MAs of IPD contain thousands of NHL cases and are strengthened by their ability to utilize raw data that are harmonized across multiple studies, they do not include evidence from case-control and cohort studies conducted by investigators outside of the InterLymph Consortium. Therefore, MAs of summary level data and MAs of IPD evaluating the same associations between environmental risk factors and NHL may sometimes lead to discordant results and conclusions.
To provide an overview of the range, strength, and validity of reported associations between environmental risk factors and NHL, we conducted an umbrella review of the evidence across published systematic reviews and MAs. In addition to summarizing the results, determining hints of biases, and assessing the quality of reviews, we evaluated the consistency between all associations reported in both MAs of summary level data and InterLymph MAs of IPD.

Methods

We conducted an umbrella review on the reported associations between environmental risk factors and the risk of NHL. Umbrella reviews are used to systematically identify and evaluate evidence reported in published systematic reviews and MAs.19,20 Our study protocol was pre-registered on the International prospective register of systematic reviews (CRD42020178010) and posted on Open Science Framework (https://osf.io/6g2ev/). We did not involve patients or members of the public when designing the question and study, interpreting the results, and/or drafting the manuscript.

Database searches

Working with an experienced medical librarian (KN), we developed and performed a comprehensive search of multiple databases: MEDLINE (Ovid), Embase (Ovid), Scopus, Web of Science Core Collection (as licensed at Yale University), Cochrane Library, and Epistemonikos from inception to July 24th 2020 (\textit{eTable 1 in Supplement 1}). In each database, we used three concepts: NHL, risk factors, and the study designs of interest (MAs, systematic reviews, and pooled analyses). The search strategy for NHL was based on the search strategy used in a published review.21 The study design search strategy used elements from a published search filter.22 Database limits were used to exclude conference papers and meeting abstracts. No language limits were used. Records were deduplicated in EndNote, the Yale Reference Deduplicator, and Covidence. No citation chaining was conducted.

On July 24th 2020, searches were run in each database and 14,753 references were identified. After deduplication in EndNote and Covidence, 8025 unique records were uploaded for screening. On July 23th 2021, all searches were rerun and deduplicated and 969 additional unique records were added to Covidence for manual screening. In total, our search retrieved 8994 unique records across all databases.

Eligibility criteria
We included English language systematic reviews, MAs of summary level data (i.e., MAs using effect estimates reported in individual studies), and MAs of IPD of observational studies evaluating associations between environmental risk factors and incident NHL (overall or any subtypes, eTable 2 in Supplement 1). We considered all non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors. Systematic reviews and MAs were excluded if they primarily focused on genetic risk factors, evaluated risk factors for the treatment, relapse, remission, or prognosis of NHL patients, or examined NHL as a risk factor for other diseases (eText 1 in Supplement 1).

Two reviewers (XS and HZ) independently screened the titles and abstracts and then full-text versions of potentially eligible articles. Any disagreements or uncertainties were discussed with a third reviewer (JDW).

Data extraction

Data extraction was performed independently by two reviewers (XS and HZ), and a third reviewer (JDW) arbitrated all potential discrepancies. For each systematic review and MA, we recorded the first author, year of publication, article title, journal of publication, study design, population, examined exposures and their definitions, and examined outcomes and their definition (i.e., NHL or NHL subtypes). For all MAs of summary level data, we identified each unique exposure-outcome relationship and recorded the number of studies included, total sample size, number of cases, and study-specific adjusted relative risk estimates (e.g., relative risks, hazard ratios, or odds ratios) and corresponding 95% confidence intervals (CIs). For studies that considered multiple exposure contrast levels, control groups, and/or confounders, we prioritized the effect estimates comparing ever versus never exposure that were adjusted for the largest number of potential confounders. Whenever ever versus never exposures comparisons were not reported, we recorded the effect estimates comparing the highest versus lowest levels of exposures. When multiple MAs of summary level data were identified for the same environmental risk factor, we selected the effect estimates that were based on the largest number of component studies.

For systematic reviews with unique associations that were not investigated in MAs of summary level data, we recorded the number of studies identified, the reasons why MAs were not performed, and the main conclusions. Lastly, for all MAs of IPD, one author (JDW) identified the exposures, NHL subtypes, and number of NHL cases for: (1) all nominally
statistically significant ($P<0.05$) associations and (2) any associations that were also evaluated in MAs of summary level data.

Quality Assessment

Four reviewers (XS, HZ, YD, and JDW) evaluated the quality of all MAs of summary level data using A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2.33 Any discrepancies were discussed and resolved by consensus. Based on the suggested rating scheme,33 the overall confidence in the results of the MAs of summary level data were classified as high, moderate, low, or critically low. We did not examine the quality of MAs of IPD.

Statistical analysis

First, we used a random-effects model, which allows for unexplained between-study heterogeneity on the effect of interest, with the between-study variance estimated using the DerSimonian and Laird (DL) estimator. When summary effect estimates were reported without a corresponding P value, we used the 95% CIs to calculate the P value using a previously described method.24 Next, we categorized the strength of the reported associations across five levels (Table 1), following previously established methodology.25-28 All associations with $P>0.05$ were classified as non-significant. Associations with $P<0.05$ and fewer than 1000 cases were classified as weak. Associations with $P<10^{-3}$ and at least 1000 cases were classified as suggestive. For associations with $P<10^{-6}$, at least 1000 cases, and $P<0.05$ for the largest component study, we sequentially evaluated 95% prediction intervals (PIs), presence of small study effects (Egger regression asymmetry test),29 and evidence of excess significance using the Ioannidis test.30 PIs provide a potential range of the true effect and incorporate the uncertainty of whether the observed effect will arise in future studies as well.31,32 $P<0.1$ for Egger’s test suggests the presence of small study effects (i.e. small studies are more prone to report larger or more significant results while larger studies tend to report more conservative results). The Ioannidis test estimates whether the observed number of studies with nominally statistically significant ($P<0.05$) results in a MA differs from the expected number of studies with nominally statistically significant studies.30 Associations with 95% PIs including the null, statistically significant Egger’s test ($P<0.1$), and/or evidence of excess significance were classified as highly suggestive. Associations with 95% prediction intervals excluding the null, non-statistically significant Egger’s test ($P>0.1$), and no evidence of excess significance were classified as convincing.
Statistical analysis was conducted using metagen package in R version 4.1.0. (eTable 3 in Supplement 1).

Concordance between MAs of summary level data and InterLymph MAs of IPD

When the same exposures, exposure contrast levels, and NHL subtypes were examined in MAs of summary level data and InterLymph MAs of IPD, two authors (XS and JDW) determined whether the effect estimates: (1) were in the same direction, (2) had overlapping 95% CIs, and/or (3) had the same level of statistical significance ($P<0.05$ or $P\geq0.05$). Associations with all three criteria fulfilled were classified as fully concordant. Lastly, we determined how often MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD.

Results

Literature search

Among 16438 records identified through the literature search, 7444 were excluded as duplicates, leaving 8994 titles and abstracts for initial screening. 7970 records were excluded based on the title and abstract and 1024 were screened at the full text stage for inclusion. After excluding 904 records at the full text stage (eTable 1 in Supplement 2), our searches identified 85 MAs of summary level data evaluating 134 unique environmental risk factors and 8 systematic reviews evaluating 8 unique risk factors (eFigure 1 and eText 2 in Supplement 1 and eTable 2 in Supplement 2). In addition, we identified 27 MAs of IPD (Supplement 2), of which 24 (89%) were conducted by the InterLymph Consortium. More than one MA of summary level data was identified for 44 (44/134, 33%) risk factors (eTable 4 in Supplement 1). Among the MAs of summary level data selected based on the largest number of component studies, approximately half were also the most recently published (25/44, 57%).

Methodological quality

The vast majority of the 85 MAs of summary level data had overall confidence ratings of low (3, 4%) or critically low (79, 93%) according to the AMSTAR 2 tool. There were 2 (2%) where the overall confidence in the results was classified as moderate. Only 1 (1%), evaluating the association between tuberculosis and risk of NHL, had an overall confidence rating of high (eTable 3 in Supplement 2). The most common unfulfilled critical domains of the
AMSTAR 2 tool were incomplete justification of excluded studies (74, 87%) and missing or no information about preregistered protocols (72, 85%).

MAs of summary level data

Among the 257 associations reported in the MAs of summary level data, 124 and 133 evaluated the impact of environmental risk factors on the risk of NHL overall and NHL subtypes, respectively. NHL subtypes included follicular lymphoma (FL; 43, 17%), diffuse large B-cell lymphoma (DLBCL; 35, 14%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 31, 12%), T-cell lymphoma (TCL; 12, 5%), B-cell lymphoma (BCL; 4, 2%), marginal zone lymphoma (MZL; 2, 1%), endemic Burkitt Lymphoma (eBL; 1, 0.4%), Burkitt lymphoma (BL; 1, 0.4%), primary cutaneous lymphoma (PCL; 1, 0.4%). The most common exposure categories were dietary factors (90, 35%), medical histories and comorbidities (54, 21%), chemicals and pesticides (42, 16%), lifestyle factors (29, 11%), drugs, vaccinations, and medical procedures (30, 12%), and occupational (12, 5%). The median number of component studies per MA of summary level data was 5 (IQR 4-10). The median number of NHL cases, among the 64 (75%) MAs reporting this information, was 1533 (IQR, 482-5872).

Credibility criteria

After re-estimating the 257 associations using a random-effects DL estimator and applying the credibility criteria, 145 (56%) were classified as presenting non-significant evidence (eTable 4 in Supplement 2). There were 80 (31%) nominally statistically significant ($P<0.05$) associations that were classified as presenting weak evidence. There were 20 (8%) statistically significant associations ($P<10^{-3}$), based on analyses with at least 1000 NHL cases, that were classified as presenting suggestive evidence. Only 12 (5%) associations were classified as presenting highly suggestive or convincing evidence, with a $P<10^{-6}$, at least 1000 cases, and a $P<0.05$ for the largest component study. The 11 highly suggestive associations were for history of renal transplantation and risk of NHL, rheumatoid arthritis and risk of NHL, primary Sjogren's syndrome and risk of NHL, systemic lupus erythematosus and risk of NHL, celiac disease and risk of TCL, tuberculosis and risk of NHL, hepatitis B virus (HBV) and risk of NHL and BCL, hepatitis C virus (HCV) and risk of NHL and DLBCL, and teaching as an occupation and risk of NHL (Table 2).

There was one association, between history of celiac disease and risk of NHL (OR 2.61, 95% CI 2.04 to 3.33; 110, 245 NHL cases from 8 individual studies), that was classified as presenting convincing evidence. Although the association had $P<10^{-6}$, at least 1000 cases, a nominally significant result for the largest component study, low/moderate proportion of
total variability due to between-study variability ($I^2 < 50\%$), a 95% PI excluding the null, and no evidence of small study effects, we were unable to conduct the Ioannidis test due to the incomplete information reported about the component studies. Across all the 112 nominally statistically significant associations, 63 (56\%) had relative risk values that were between 0.67 and 1.50.

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by MAs of summary level data (*eText 2 in Supplement 1*).

MAs of IPD

We identified 27 MAs of IPD, of which 24 were from the InterLymph Consortium. The 24 InterLymph MAs of IPD reported 715 nominally statistically significant ($P<0.05$) associations. Of these, 116 and 21 associations were based on analyses with at least 1000 NHL cases and had $P<10^{-3}$ and $P<10^{-6}$, respectively (*Table 3 and eTable 5 in Supplement 2*). Overall, the unique suggestive exposures categories were alcohol consumption on risk of DLBCL, MZL and NHL, history of Sjogren’s syndrome on risk of DLBCL, MZL and NHL, recreational sun exposure on risk of DLBCL, FL and NHL, and history of HCV on risk of DLBCL, MZL and NHL. Although the 3 non-InterLymph MAs of IPD examined 5 associations not reported in systematic reviews and/or MAs of the summary level data, including fish eaters and risk of NHL, vegetarians and vegans and risk of NHL, maternal age at the time of the child’s birth and risk of NHL, paternal age at the time of the child’s birth and risk of NHL, and leisure-time physical activity and risk of NHL, none were nominally statistically significant.

Consistency between MAs of summary level data and InterLymph MAs of IPD

There were 40 associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD (*eTable 6 in Supplement 2 and eFigure 1 in Supplement 1*). While 22 (55\%) evaluated the impact of environmental risk factors on the risk of NHL overall, the other half (18, 45\%) focused on various NHL subtypes (CLL/SLL, 5 (13\%); DLBCL, 5 (13\%); FL, 4 (10\%); TCL, 3 (8\%); MZL, 1 (3\%)).

Overall, 22 of 40 (55\%) of the associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD were in the same direction, had the same level of statistical significance, and had overlapping 95\% CIs. There were 10 (25\%) pairs where the effect estimates were both statistically significantly increased, 3 (8\%) where they were both statistically significantly decreased, 7 (18\%) where they were both non-statistically significantly increased, and 2 (5\%) where they were both non-statistically significantly decreased (Kappa=0.37, *eTable 6 in Supplement 2 and eFigure 1 in Supplement 1*). The 13
associations where the MAs of the summary level data and MAs of IPD effect estimates were both statistically significantly increased or decreased were for history of smoking and risk of TCL, history of drinking and risk of NHL, DLBCL, and FL, history of primary Sjogren's syndrome and risk of NHL, history of systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL, TCL and DLBCL, and history of HCV and risk of NHL, DLBCL, MZL and CLL/SLL. There were 28 (70%) pairs where the effect sizes from the MAs of IPD were more conservative than the effect sizes from the MAs of summary level data.

There were 4 suggestive associations reported in MAs of summary level data that were also evaluated in the InterLymph MAs of IPD. Of these, 3 associations from MAs of IPD had effect estimates in the same direction, had $P<10^{-3}$, and were based on analyses with at least 1000 NHL cases (i.e., history of psoriasis and risk of NHL, history of Herpes Zoster and risk of NHL, and history of farming as an occupation and risk of NHL). There were 8 highly suggestive associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD. Of these, 7 associations from the MAs of IPD had effect estimates in the same direction, had $P<10^{-6}$, and were based on analyses with at least 1000 NHL cases (i.e., history of rheumatoid arthritis and risk of NHL, history of primary Sjogren's syndrome and risk of NHL, history systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL and TCL, history of tuberculosis and risk of NHL, and history of HCV and risk of NHL).

There were 19 (48%) pairs where the MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD. There was no difference in terms of concordance (direction, statistical significance of summary effect estimates and overlapping 95% CIs) between MAs of summary level data that included at least one-third versus fewer than one-third of the same component studies as the MAs of IPD (12/19 (63%) vs 10/21 (48%), $P=0.32$).

Discussion

In this umbrella review, we evaluated the range, strength, and validity of reported associations between environmental risk factors and NHL across 85 MAs of published observational studies. Overall, we identified 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. The vast majority of the associations, including those evaluating various dietary, clinical, lifestyle, chemical, and occupational exposures, were classified as having either non-significant or weak evidence. More than half of the nominally significant

https://mc.manuscriptcentral.com/bmjmedicine
associations were only marginally significant. Only 5% of the associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence. When the same associations were evaluated in MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Overall, effect sizes from MAs of IPD were more conservative. This umbrella review suggests that there is a mass production of low-quality MAs of summary level data reporting weak associations between environmental risk factors and NHL. These findings highlight the need for improving not only primary studies but also evidence synthesis in this field. Moreover, given that many of the assessed risk factors are correlated, simultaneous consideration of multiple risk factors will be useful to understand which ones have the strongest, independent effects on NHL risk.

Although a wide range of environmental exposures have been evaluated and proposed as potential risk factors for NHL, our evaluation suggests that the only highly suggestive or convincing exposures proposed in MAs of summary level data and MAs of IPD are related to autoimmune and infectious diseases. In particular, the prominent autoimmune disease-related risk factors include history of celiac disease, rheumatoid arthritis, primary Sjogren's syndrome, and systemic lupus erythematosus. Although the exact mechanisms behind these associations remains unclear, many autoimmune disorders are characterized by chronic inflammation,\(^{40-42}\) which may intensify B cell or T cell activation and promote the development of lymphoma.\(^{43,44}\) Previous studies have also suggested that the dysfunction of some protein families, such as FAS and tumor necrosis factor, and the interplay between various immune cells, could be potential mechanisms.\(^{45}\) However, there is uncertainty when it comes to the temporality of these associations, with studies reporting that autoimmune diseases can occur during lymphoma.\(^{46,47}\)

Associations between viral and bacterial infections and NHL risk have been suggested for several decades.\(^{2,5,6,48,49}\) Different hypotheses for HCV-related lymphomagenesis have been proposed. For instance, chromosomal aberrations, including chromosome t(14;18) translocation, have been found to be associated with mixed cryoglobulinemia, a disorder most commonly caused by HCV infection and that can evolve into lymphoproliferative disorders.\(^{50-52}\) Furthermore, genetic variations, including Interleukin-10 polymorphisms, have also been proposed as a potential pathway between HCV infection and NHL susceptibility and development.\(^{53}\) Similar to autoimmune disease-related risk factors, it remains unclear whether these associations are driven by disease status, medication use, or disease-medication interactions.\(^{54-58}\) Considering how rare many of these autoimmune and infectious disease-
related exposures are, future efforts are necessary to determine the impact of multiple environmental as well as non-environmental risk factors simultaneously.5,6

Among 40 associations evaluated by both MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Unlike MAs of summary level data, MAs of IPD tend to focus on studies with more homogeneous designs and patient populations. Furthermore, MAs of IPD can allow for better harmonization of data across studies, more advanced one-stage meta-analytical approaches, and analyses accounting for many exposure categories and potential confounders.59,60 Although the InterLymph MAs of IPD are particularly robust due to the large number of NHL cases and subtypes considered, MAs of IPD without systematic reviews may exclude evidence from high-quality case-control or cohort studies. For instance, the InterLymph analyses only included evidence from completed and ongoing case-control studies from consortium members. Furthermore, the InterLymph findings may be difficult to disentangle, with at least 700 nominally statistically significant associations among thousands of analyses conducted across different subtypes of NHL and exposure levels (e.g., different type/dosage of alcohol consumption). In the future, it will be necessary to monitor the consistency between MAs of summary level data and MAs of IPD, especially since approximately half of the MAs of summary level data had at least one-third of the same component studies as the MAs of IPD. In addition, authors of MAs should carefully evaluate whether any external studies can and should be included in their syntheses. Of interest, we observed that more than two thirds of the effect sizes were more conservative in the InterLymph MAs of IPD than in the MAs of summary level data. This may be a reflection of greater selective reporting bias in the corpus of studies available in the literature as compared with a set of studies participating in a consortium.

Our study suggests that nearly all MAs of summary level data evaluating associations between environmental risk factors and risk of NHL could be classified as having critically low quality according to the AMSTAR 2 tool. Previous umbrella reviews focused on the associations between environmental risk factors and health outcomes have noted similar concerns. However, the proportion of low or critically low-quality NHL reviews is higher than what has been observed among umbrella reviews for inflammatory bowel diseases,61 attention-deficit/hyperactivity disorder,62 eating disorders,63 early childhood caries,64 physical activity for academic achievement,65 and physical therapy for tendinopathy.66 These findings may not be surprising considering recent concerns about the mass production of systematic reviews.67,68 In the future, authors planning systematic reviews and MAs of summary level data of the
associations between environmental exposures and NHL should adhere to reporting guidelines. Moreover, authors should also critically evaluate how their findings relate to existing MAs of IPD, focusing on the impact of different methods, populations, and other characteristics.

Limitations

Our umbrella review has several limitations. First, we did not identify potential environmental risk factors that were only examined in individual observational studies. Our objective was to identify and summarize the associations that were reported by the MAs of summary level data, which already covered a wide space of diverse associations. Second, we did not evaluate the quality of individual studies included in the MAs of summary level data, the impact that individual studies have on the overall heterogeneity, the magnitude of the associations, or the potential role that residual/unmeasured confounding could have on associations. Individual risk of bias evaluations are outside the scope of umbrella reviews, and it is the expectation that MAs have already conducted these quality assessments. Third, we considered MAs that included cohort and case-control studies, and our assessments did not prioritize reviews of certain study designs or address differences across different study designs. Considering that certain NHL subtypes are rare, case-control studies may often be the most realistic study design to evaluate exposure histories. Fourth, although umbrella reviews provide a comprehensive summary of the associations reported in MAs, the validity of the summary effect estimates is dependent on the quality of the individual MAs. Although we attempted to standardize associations using a random-effects DL estimator, we did not evaluate or re-conduct the literature searches for all potential exposure-outcome relationships. Fifth, we did not calculate \(I^2 \), 95% PIs, Egger’s test, and excess significance test for non-significant and nominally statistically significant associations. Given the large number of associations identified, we prioritized these calculations for associations where these values were necessary to determine the strength of associations using the previously established classification system.\(^{20}\) It is also worth noting that \(I^2 \) values should not be used to make inferences about heterogeneity, as it does not measure heterogeneity directly, but rather the proportion of total variability due to between-study variability.\(^{69}\) However, the \(I^2 \) cut-off of 50% is a standard grading criterion for evidence in umbrella reviews.\(^{25,62}\) Sixth, when summary effect estimates of multiple exposure contrast levels were reported, we focused on the risk estimates comparing ever versus never exposure (or comparing the highest versus lowest levels of exposures). Although we did not consider all potential contrast levels and dose-response relationships, our objective was to provide a universal overview of the relationships.
between examined risk factors and NHL. Specific dose-response relationships may nevertheless exist for certain associations, and they would need to be examined on a case-by-case basis. Seventh, we only identified the nominally statistically significant associations among the thousands of associations reported in InterLymph MAs of IPD. Eighth, by excluding non-English language reviews, we may have missed additional potential associations. However, we utilized the same approach as previous umbrella reviews that focused on risk factors for health outcome(s). Ninth, MAs of IPD and MAs of summary level data can have different strengths and limitations, and our evaluation did not focus on comparing the potential quality of these types of studies. We also did not focus on the impact of different methods, populations, or other characteristics when comparing the consistency of the results between the two study types. Tenth, umbrella reviews are not intended to provide information about the likelihood that associations are causal. Lastly, when multiple MAs of summary level data evaluated the same exposures and outcomes, we selected the association based on the largest number of included studies. Although this approach does not ensure that the highest quality MAs are selected, this methodology has been utilized by previous umbrella reviews.

Conclusion

In this large-scale umbrella review, we identified dozens of MAs evaluating associations between environmental risk factors and NHL. However, the vast majority of MAs of summary level data were low quality and presented either non-significant or weak evidence. When the same associations were evaluated in MAs of summary level data and MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, these findings highlight the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.
ACKNOWLEDGEMENTS

The authors would like to thank DP and VP of the Cushing/Whitney Medical Library at Yale for technical support. DP and VP are employees of Yale University and did not receive additional compensation for this work, nor do they have competing interest to disclose.

Contributors: XS and JDW originally conceived this study. XS, JPAI, and JDW designed this study. XS, HZ, YD, KN, and JDW acquired the data. XS and YD conducted the statistical analysis. XS and JDW and drafted the manuscript. XS, JPAI, and JDW participated in the interpretation of the data. All authors and critically revised the manuscript for important intellectual content. XS and JDW had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. JDW provided supervision. JDW is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: XS is supported by the China Scholarship Council. JDW is supported by the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under award K01AA028258.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: In the past 36 months, JDW received research support from the FDA. There are no other competing interests.

Patient consent: Not required

Ethical approval: Not required

Data sharing: The dataset will be made available via a publicly accessible repository on publication.
Transparency: The senior author (manuscripts guarantor) (JDW) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant registered) have been explained.

License: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide license to the Publishers and its licensees in perpetuity, in all forms, formats and median (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) license any third party to do any or all of the above.

The default license, a CC BY NC license, is needed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Reference

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. *CA Cancer J. Clin.* 2022;72(1):7-33.

2. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. *Lancet.* 2017;390(10091):298-310.

3. Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. *JAMA Oncol.* 2019;5(12):1749-1768.

4. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. *CA Cancer J. Clin.* 2016;66(6):443-459.

5. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. *Cold Spring Harb. Perspect. Med.* 2019.

6. Chiu BC, Hou N. Epidemiology and etiology of non-hodgkin lymphoma. *Cancer Treat. Res.* 2015;165:1-25.

7. Teras LR, Rollison DE, Pawlita M, et al. Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies. *Int. J. Cancer.* 2015;136(1):108-116.

8. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. *Blood.* 2008;111(8):4029-4038.

9. Elfström P, Granath F, Ekström Smedby K, et al. Risk of lymphoproliferative malignancy in relation to small intestinal histopathology among patients with celiac disease. *J. Natl. Cancer Inst.* 2011;103(5):436-444.

10. Klein A, Polliack A, Gafter-Gvili A. Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome. *Hematol. Oncol.* 2018;36(5):733-739.

11. Zhang Y, Dai Y, Zheng T, Ma S. Risk Factors of Non-Hodgkin Lymphoma. *Expert Opin. Med. Diagn.* 2011;5(6):539-550.

12. Pahwa M, Harris SA, Hohenadel K, et al. Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces. *Int. J. Cancer.* 2012;131(11):2650-2659.

13. Ollberding NJ, Aschebrook-Kilfoy B, Caces DB, et al. Phytanic acid and the risk of non-Hodgkin lymphoma. *Carcinogenesis.* 2013;34(1):170-175.

14. Cantor KP, Blair A, Everett G, et al. Hair dye use and risk of leukemia and lymphoma. *Am. J. Public Health.* 1988;78(5):570-571.

15. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):1-14.

16. Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):130-144.

17. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. *Blood.* 2008;111(8):4029-4038.

18. t Mannetje A, De Roos AJ, Boffetta P, et al. Occupation and Risk of Non-Hodgkin Lymphoma and Its Subtypes: A Pooled Analysis from the InterLymph Consortium. *Environ. Health Perspect.* 2016;124(4):396-405.
19. Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. *CMAJ: Canadian Medical Association Journal = Journal de l'Association medicale canadienne.* 2009;181(8):488-493.

20. Janiaud P, Agarwal A, Tzoulaki I, et al. Validity of observational evidence on putative risk and protective factors: appraisal of 3744 meta-analyses on 57 topics. *BMC Med.* 2021;19(1):157.

21. Greb A, Bohlius J, Schiefer D, Schwarzer G, Schulz H, Engert A. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of aggressive non-Hodgkin lymphoma (NHL) in adults. *Cochrane Database Syst. Rev.* 2008(1):CD004024.

22. Lee E, Dobbins M, Decorby K, McRae L, Tirilis D, Husson H. An optimal search filter for retrieving systematic reviews and meta-analyses. *BMJ Med. Res. Methodol.* 2012;12:51.

23. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. *BMJ.* 2019;364:l265.

24. Altman DG, Bland JM. How to obtain the P value from a confidence interval. *BMJ.* 2011;343:d2304.

25. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki L. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. *Lancet Neurol.* 2015;14(3):263-273.

26. Kim JY, Son MJ, Son CY, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. *Lancet Psychiatry.* 2019;6(7):590-600.

27. Barbui C, Purgato M, Abdulmalik J, et al. Efficacy of psychosocial interventions for mental health outcomes in low-income and middle-income countries: an umbrella review. *Lancet Psychiatry.* 2020;7(2):162-172.

28. Tortella-Feliu M, Fullana MA, Perez-Vigil A, et al. Risk factors for posttraumatic stress disorder: An umbrella review of systematic reviews and meta-analyses. *Neurosci. Biobehav. Rev.* 2019;107:154-165.

29. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical research ed.)*. 1997;315(7109):629-634.

30. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. *Clin. Trials.* 2007;4(3):245-253.

31. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. *J R Stat Soc Ser A Stat Soc.* 2009;172(1):137-159.

32. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. *BMJ.* 2011;342:d549.

33. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ.* 2017;358:j4008.

34. Karlstad O, Starup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies. *Curr Drug Saf.* 2013;8(5):333-348.

35. Salmon C, Conus F, Parent M, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. *Cancer Epidemiol.* 2020;65:101696.

36. Leung CY, Huang HL, Rahman MM, et al. Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates. *BMC Cancer.* 2020;20(1):412.
37. Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. *Am. J. Clin. Nutr.* 2014;100 Suppl 1(1):378S-385S.

38. Johnson KJ, Carozza SE, Chow EJ, et al. Parental age and risk of childhood cancer: a pooled analysis. *Epidemiology.* 2009;20(4):475-483.

39. Moore SC, Lee IM, Weiderpass E, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. *JAMA Intern Med.* 2016;176(6):816-825.

40. Yoosuf S, Makharia GK. Evolving Therapy for Celiac Disease. *Front Pediatr.* 2019;7:193.

41. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. *Int. J. Mol. Sci.* 2020;21(11).

42. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. *Nat Rev Dis Primers.* 2018;4:18001.

43. Din L, Sheikh M, Kosaraju N, et al. Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes. *Genet. Epidemiol.* 2019;43(7):844-863.

44. Baeccklund E, Smedby KE, Sutton LA, Askling J, Rosenquist R. Lymphoma development in patients with autoimmune and inflammatory disorders--what are the driving forces? *Semin. Cancer Biol.* 2014;24:61-70.

45. Khanmohammadi S, Shabani M, Tabary M, Rayzan E, Rezaei N. Lymphoma in the setting of autoimmune diseases: A review of association and mechanisms. *Crit. Rev. Oncol. Hematol.* 2020;150:102945.

46. Hauswirth AW, Skrabs C, Schützinger C, Gaiger A, Lechner K, Jäger U. Autoimmune hemolytic anemias, Evans’ syndromes, and pure red cell aplasia in non-Hodgkin lymphomas. *Leuk. Lymphoma.* 2007;48(6):1139-1149.

47. Jardin F. Development of autoimmunity in lymphoma. *Expert Rev. Clin. Immunol.* 2008;4(2):247-266.

48. Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):52-65.

49. Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):15-25.

50. Ferri C. Mixed cryoglobulinemia. *Orphanet J. Rare Dis.* 2008;3:25-25.

51. Zignego AL, Giannelli F, Marrocchi ME, et al. T(14;18) translocation in chronic hepatitis C virus infection. *Hepatology.* 2000;31(2):474-479.

52. Khaled H, Abu-Taleb F, Haggag R. Hepatitis C virus and non-Hodgkin's lymphomas: A minireview. *J Adv Res.* 2017;8(2):131-137.

53. Persico M, Capasso M, Persico E, et al. Interleukin-10 - 1082 GG polymorphism influences the occurrence and the clinical characteristics of hepatitis C virus infection. *J. Hepatol.* 2006;45(6):779-785.

54. Hermine O, Lefrère F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. *N. Engl. J. Med.* 2002;347(2):89-94.

55. Mazzaro C, Franzin F, Tulissi P, et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon therapy. *Cancer.* 1996;77(12):2604-2613.
56. Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. *JAMA*. 2007;297(18):2010-2017.

57. Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. *Nanomedicine*. 2015;11(4):1003-1018.

58. Böh M, Luger TA, Schneider M, Schwarz T, Kuhn A. New insight into immunosuppression and treatment of autoimmune diseases. *Clin. Exp. Rheumatol*. 2006;24(1 Suppl 40):S67-71.

59. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. *BMJ*. 2010;340:c221.

60. Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. *Stat. Med.* 2017;36(5):855-875.

61. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. *Gastroenterology*. 2019;157(3):647-659 e644.

62. Kim JH, Kim JY, Lee J, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. *Lancet Psychiatry*. 2020;7(11):955-970.

63. Solmi M, Radua J, Stubbs B, et al. Risk factors for eating disorders: an umbrella review of published meta-analyses. *Braz J Psychiatry*. 2021;43(3):314-323.

64. Thang Le VN, Kim JG, Yang YM, Lee DW. Risk Factors for Early Childhood Caries: An Umbrella Review. *Pediatr. Dent*. 2021;43(3):176-194.

65. Barbosa A, Whiting S, Simmonds P, Scotini Moreno R, Mendes R, Breda J. Physical Activity and Academic Achievement: An Umbrella Review. *Int. J. Environ. Res. Public Health*. 2020;17(16).

66. Girgis B, Duarte JA. Physical therapy for tendinopathy: An umbrella review of systematic reviews and meta-analyses. *Phys. Ther. Sport*. 2020;46:30-46.

67. Ioannidis JP. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. *Milbank Q*. 2016;94(3):485-514.

68. Wallach JD. Meta-analysis Metastasis. *JAMA Intern Med*. 2019.

69. Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. *BMC Med. Res. Methodol*. 2008;8:79.

70. Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. *J. Psychiatr. Res*. 2018;103:189-207.

71. Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. *Alzheimers Dement*. 2017;13(4):406-418.

72. Radua J, Ramella-Cravarro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. *World Psychiatry*. 2018;17(1):49-66.
Tables and figures:

Table 1. Grading criteria for evidence categories

Strength of association	Description
Convincing (class I)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Low/moderate proportion of total variability due to between-study variability
	($I^2 < 50\%$)
	95% prediction interval excluding the null value
	Largest study reporting a nominally statistically significant ($P < 0.05$)
	No evidence of small-study effects
	No evidence of excess significance bias
Highly suggestive (class II)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Largest study reporting a nominally statistically significant ($P < 0.05$)
Suggestive (class III)	At least 1000 NHL cases
	Statistically significant association ($P < 10^{-3}$)
Weak (class IV)	Nominally statistically significant association ($P < 0.05$)
Non-significant	Non-statistically significant associations ($P > 0.05$)

*P value for the association that calculated by random effects model.
NHL=non-Hodgkin lymphoma.
Table 2. Environmental risk factors for non-Hodgkin lymphoma reported in meta-analyses of summary level data with convincing (Class I) and highly suggestive (Class II) evidence

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author	Year	No. of primary studies	No. of cases	Effec measure	Random effects summary effect size (95% CI)	P random	Large study nominally significant (P<0.05)	I² (%)	95% PI	Small study effect	Strength of reported association
Renal transplant	Renal transplant	Transplant recipients vs general population	NHL	SRM	Wang	2018	6	770	SIR	10.66 (8.54, 13.31)	3.44E-86	Yes	80.2	NA	NA	II
Autoimmune diseases	Rheumatoid arthritis	Patients vs general population	NHL	SRM	Simon	2015	16	1531	SIR	2.26 (1.82, 2.81)	8.42E-13	Yes	96	NA	NA	II
Primary Sjogren's syndrome	Patients vs general population	NHL	SRM	Liang	2014	11	12325	RR	13.76 (8.53, 18.99)	1.62E-34	Yes	58.8	NA	NA	II	
Systemic lupus erythematosus	Patients vs general population	NHL	MA	Cao	2015	12	166	RR	5.4 (3.75, 7.77)	1.99E-18	Yes	74.3	NA	NA	II	
celiac disease	Patients vs general population	NHL	SRM	Tio	2012	8	110245	OR	2.61 (2.04, 3.33)	9.32E-14	Yes	23.4	(1.57 , 4.33)	No	I	
celiac disease	Patients vs general population	TCL	SRM	Tio	2012	5	35358	OR	15.84 (7.85, 31.94)	6.90E-14	Yes	55.5	NA	NA	II	
Infectious diseases	Tuberculosis	Patients vs general population	NHL	SRM	Leung	2020	8	2390	RR	1.61 (1.34, 1.94)	6.76E-07	Yes	50.2	NA	NA	II
HBV	HBV infected vs	NHL	SRM	Li	2018	58	53714	OR	2.50 (2.2, 2.83)	6.33E-42	Yes	77.9	NA	NA	II	
Risk factors category	Environment risk factors	Level of comparison	Outcome	Study type	Author/year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Large study nominally significant (P<0.05)	I² (%)	95% PI	Small study effect	Strength of reported association	
-----------------------	--------------------------	---------------------	---------	------------	-------------	------------------------	-------------	---------------	--	----------	-------------------------------	--------	-------	-----------------	-------------------------------	
HBV	HBV infected vs non-infected	BCL	SRMA	Li 2018	>1000	OR	2.46 (1.97, 3.07)	1.24E-14	Yes	62.9	NA	NA	II			
HCV	HCV infected vs non-infected	NHL	SRMA	Masa rome 2019	3307	OR	3.36 (2.4, 4.72)	7.92E-12	Yes	88	NA	NA	II			
HCV	Patients vs general population	DLBCL	MA	DalMaso 2006	1020	RR	2.65 (1.88, 3.74)	4.98E-08	Yes	39	(1.46, 5.81)	No	II			
Occupation	Teacher vs non-teachers	NHL	MA	Boffetta 2007	>1000	RR	1.47 (1.34, 1.61)	1.60E-15	Yes	76	NA	NA	II			

BCL=B cell lymphoma; CI=confidence interval; HBV=hepatitis B virus; HCV=hepatitis C virus; MA=meta-analysis; NA=not available; NHL=non-Hodgkin lymphoma; OR=odds ratio; PI=prediction interval; SIR=standardized incidence ratio; SRMA=systematic review and meta-analysis; RR=risk ratio; TCL=T-cell lymphoma.

*P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.

NHL subtype	At least 1000 cases and P<10^-3	At least 1000 cases and P<10^-6
CLL/SLL	Years since quitting cigarette smoking; printing pressmen	None

Table 3. Suggestive risk factors and protective factors identified in meta-analyses of individual patient data from International Lymphoma Epidemiology Consortium
CLL/SLL/PLL/MCL	Adult infectious mononucleosis	None
DLBCL	Alcohol; Any atopic disorder; Allergy; B and T-cell activating autoimmune diseases; HCV; Hay fever; Recreational sun exposure; Socioeconomic status (high vs low); BMI as young adult (25<30 kg/m²); Rheumatoid arthritis; Blood transfusion; Weight	History of B-cell activating autoimmune disease; Sjogren’s syndrome; HCV; Young adult BMI (%25 kg/m²+); Years since quit cigarette smoking; Age first alcohol consumption (20-29 years vs. nondrinker); Current alcohol consumption status as of ~2 years prior to diagnosis/interview
FL	Blood transfusions; Young adult BMI (%25 kg/m²+); Recreational sun exposure; History of cigarette smoking (females); Current cigarette smoking; University and higher education teachers; Male height (100% vs. 60%); Any atopic disorder	None
MZL	Systemic lupus erythematosus; HCV, Peptic ulcer; Wine	History of B-cell activating autoimmune disease; Sjogren’s syndrome
HCL	Current cigarette smoking	None
NHL	Hormone replacement therapy; Systemic lupus erythematosus; HCV; Allergy; Food allergy; Hay fever; Blood transfusion; Height; Alcohol exposures; Recreational hair dye use; Socioeconomic status (high vs low); Secondary Sjogren’s syndrome; Childhood measles	Sjogren’s syndrome; History of B-cell activating autoimmune disease; Hay fever; Young adult BMI (%25 kg/m²); Recreational sun exposure (%Q3-Q4 hours/week); Recreational hair dye use (%Q3-Q4 hours/week); Beer, wine, and liquor

BMI=body mass index; CI=confidence interval; CLL=chronic lymphocytic leukemia; DLBCL=diffuse large B-cell lymphoma; FL=follicular lymphoma; HCL=hairy cell leukemia; HCV=hepatitis C virus; MCL=mantle cell lymphoma; MZL=marginal zone lymphoma; NHL=non-Hodgkin lymphoma; SLL=small lymphocytic lymphoma; PLL=prolymphocytic leukemia.

*These were protective risk factors.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Xiaoting Shi, Haoran Zhuo, Yuxuan Du, Kate Nyhan, John P.A. Ioannidis, Joshua D. Wallach

Xiaoting Shi, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Haoran Zhuo, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Yuxuan Du, Graduate student
Department of Health Policy & Management, Yale School of Public Health, New Haven, Connecticut, USA

Kate Nyhan, Librarian
Harvey Cushing/John Hay Whitney Medical Library; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA

John P.A. Ioannidis, Professor
Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, California, USA

Joshua D Wallach, Assistant Professor
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Corresponding author:
Joshua D Wallach, MS, PhD
Assistant Professor
Department of Environmental Health Sciences
Yale School of Public Health
60 College Street, 4th Floor, Room 411
Abstract

Objectives: To summarize the range, strength, and validity of reported associations between environmental risk factors and non-Hodgkin lymphoma (NHL), and to evaluate the concordance between associations reported in meta-analyses (MAs) of summary level data and MAs of individual participant data (IPD).

Design: Umbrella review.

Data sources: MEDLINE, Embase, Scopus, Web of Science Core Collection, Cochrane Library, and Epistemonikos from inception to 23 July 2021.

Eligibility criteria: English language MAs of summary level data and MAs of IPD evaluating associations between environmental risk factors and incident NHL (overall and NHL subtypes).

Data extraction and synthesis: Summary effect estimates from MAs of summary level data comparing ever versus never exposure that were adjusted for the largest number of potential confounders were re-estimated using a random-effects model and classified as presenting non-significant, weak ($P<0.05$), suggestive ($P<10^{-3}$ and >1000 cases), highly suggestive ($P<10^{-6}$, >1000 cases, largest study reporting a significant association), or convincing ($P<10^{-6}$, >1000 cases, largest study reporting a significant association, $I^2<50\%$, 95% prediction interval excluding the null value, and no evidence of small study effects and excess significance bias) evidence. When the same exposures, exposure contrast levels, and outcomes were evaluated in MAs of summary level data and MAs of IPD from the International Lymphoma Epidemiology (InterLymph) Consortium, concordance in terms of direction, level of significance, and overlap of 95% confidence intervals (CI) was examined. We assessed the methodological quality of the MAs of summary level data using the A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2 tool.

Results: We identified 85 MAs of summary level data reporting 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. Nearly all (79/85, 93%) MAs of summary level data were classified as having critically low quality. Most (225, 88%) associations presented either non-significant or weak evidence. The 11 (4%) associations presenting highly suggestive evidence were primarily for autoimmune or infectious disease-related risk factors. Only 1 association, history of celiac disease and risk of NHL, presented convincing evidence. Overall, 40 associations reported in MAs of summary level data were also evaluated in InterLymph MAs of IPD. Of these, 22 (55%) pairs were in the same direction,
had the same level of statistical significance, and had overlapping 95% CIs. There were 28 (70%) pairs where the summary effect sizes from the MAs of IPD were more conservative. Nearly all (79/85, 93%) MAs of summary level data were classified as having critically low quality.

Conclusion: This umbrella review suggests that there is a mass production of low-quality MAs of summary level data, many of which report weak associations between environmental risk factors and NHL, and highlights the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

Systematic review registration PROSPERO CRD42020178010.
What is already known on this topic

- Observational studies have suggested that environmental risk factors, including clinical, occupational, and lifestyle exposures, may be associated with the risk of developing non-Hodgkin lymphoma.
- As a result of the large number of observational studies evaluating the impact of environmental risk factors on non-Hodgkin lymphoma, dozens of systematic reviews and meta-analyses of summary and individual participant level data have focused on synthesizing evidence and identifying potential risk factors.
- Little is known about: (1) the range, strength, and validity of associations between environmental risk factors and non-Hodgkin lymphoma reported in meta-analyses or (2) the concordance between meta-analyses of summary level data and meta-analyses of individual participant data evaluating the same associations.

What this study adds

- This umbrella review suggests that although a large range of environmental risk factors for non-Hodgkin lymphoma have been evaluated in meta-analyses, the vast majority of meta-analyses of summary level data are low quality and present either non-significant or weak associations.
- Overall, only half of the associations that were evaluated in both meta-analyses of summary level data and meta-analyses of individual participant data were in the same direction, had the same level of statistical significance, and had overlapping 95% confidence intervals.
- Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, this umbrella review highlights the need for improving not only primary studies but also evidence synthesis in the field of non-Hodgkin lymphoma etiology.
Introduction

Non-Hodgkin lymphoma (NHL), a lymphoid cancer that originates in white blood cells called lymphocytes, is the 9th leading cause of cancer death among both men and women.\(^1\) NHL accounts for nearly 90% of all lymphomas\(^2\) and is the most common hematologic malignancy in the world.\(^3\) Although NHL can be broadly categorized into two major groups (i.e., B-cell, T-cell/natural killer-cell lymphomas), it represents a diverse group of malignant disorders with dozens of subtypes.\(^4\) Evidence suggests that NHL is more common among older adults, men, and people with a first degree relative with NHL.\(^5,6\) However, despite substantial effort to identify NHL causes and risk factors over the past few decades, the exact etiology of NHL is unknown.\(^5\)

Epidemiological studies have suggested that environmental risk factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors, may be associated with the risk of developing NHL. In particular, several prominent potential risk factors proposed in the literature include viruses (e.g., Epstein-Barr virus infection),\(^7\) autoimmune diseases (e.g., Sjogren’s syndrome, celiac disease, and rheumatoid arthritis),\(^8-10\) and immune dysregulation (i.e., patients with a history of organ transplantation, acquired immunodeficiency syndromes (HIV/AIDS), or immunosuppressive medication treatment).\(^5,6,11\) However, given that these exposures and conditions are relatively rare,\(^11\) a broad range of additional environmental risk factors, including exposure to insecticides,\(^12\) red and processed meat consumption,\(^13\) and hair dye,\(^14\) have been evaluated and proposed as potential risk factors.

As a result of the large number of observational studies evaluating the impact of environmental risk factors on NHL, dozens of systematic reviews and meta-analyses (MAs) of summary level data have focused on synthesizing evidence and identifying the most promising risk factors. Moreover, the International Lymphoma Epidemiology (InterLymph) Consortium,\(^15\) a group of investigators who pool data from their completed or ongoing NHL case-control studies, have published multiple MAs of individual participant data (IPD) evaluating associations between various environmental risk factors and NHL.\(^16-18\) Although
these MAs of IPD contain thousands of NHL cases and are strengthened by their ability to utilize raw data that are harmonized across multiple studies, they do not include evidence from case-control and cohort studies conducted by investigators outside of the InterLymph Consortium. Therefore, MAs of summary level data and MAs of IPD evaluating the same associations between environmental risk factors and NHL may sometimes lead to discordant results and conclusions.

To provide an overview of the range, strength, and validity of reported associations between environmental risk factors and NHL, we conducted an umbrella review of the evidence across published systematic reviews and MAs. In addition to summarizing the results, determining hints of biases, and assessing the quality of reviews, we evaluated the consistency between all associations reported in both MAs of summary level data and InterLymph MAs of IPD.

Methods

We conducted an umbrella review on the reported associations between environmental risk factors and the risk of NHL. Umbrella reviews are used to systematically identify and evaluate evidence reported in published systematic reviews and MAs.\(^\text{19,20}\) Our study protocol was pre-registered on the International prospective register of systematic reviews (CRD42020178010) and posted on Open Science Framework (https://osf.io/6g2ev/). We did not involve patients or members of the public when designing the question and study, interpreting the results, and/or drafting the manuscript.

Database searches

Working with an experienced medical librarian (KN), we developed and performed a comprehensive search of multiple databases: MEDLINE (Ovid), Embase (Ovid), Scopus, Web of Science Core Collection (as licensed at Yale University), Cochrane Library, and Epistemonikos from inception to July 24\(^\text{th}\) 2020 (eTable 1 in Supplement \textbf{41}). In each database, we used three concepts: NHL, risk factors, and the study designs of interest (MAs, systematic reviews, and pooled analyses). The search strategy for NHL was based on the search strategy used in a published review.\(^\text{21}\) The study design search strategy used elements from a published search filter.\(^\text{22}\) Database limits were used to exclude conference papers and meeting abstracts. No language limits were used. Records were deduplicated in EndNote, the Yale Reference Deduplicator, and Covidence. No citation chaining was conducted.
On July 24th 2020, searches were run in each database and 14,753 references were identified. After deduplication in EndNote and Covidence, 8025 unique records were uploaded for screening. On July 23rd 2021, all searches were rerun and deduplicated and 969 additional unique records were added to Covidence for manual screening. In total, our search retrieved 8994 unique records across all databases.

Eligibility criteria

We included English language systematic reviews, MAs of summary level data (i.e., MAs using effect estimates reported in individual studies), and MAs of IPD of observational studies evaluating associations between environmental risk factors and incident NHL (overall or any subtypes, eTable 2 in Supplement 1). We considered all non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors.23 Systematic reviews and MAs were excluded if they primarily focused on genetic risk factors, evaluated risk factors for the treatment, relapse, remission, or prognosis of NHL patients, or examined NHL as a risk factor for other diseases (eText 1 in Supplement 1).

Two reviewers (XS and HZ) independently screened the titles and abstracts and then full-text versions of potentially eligible articles. Any disagreements or uncertainties were discussed with a third reviewer (JDW).

Data extraction

Data extraction was performed independently by two reviewers (XS and HZ), and a third reviewer (JDW) arbitrated all potential discrepancies. For each systematic review and MA, we recorded the first author, year of publication, article title, journal of publication, study design, population, examined exposures and their definitions, and examined outcomes and their definition (i.e., NHL or NHL subtypes). For all MAs of summary level data, we identified each unique exposure-outcome relationship and recorded the number of studies included, total sample size, number of cases, and study-specific adjusted relative risk estimates (e.g., relative risks, hazard ratios, or odds ratios) and corresponding 95% confidence intervals (CIs). For studies that considered multiple exposure contrast levels, control groups, and/or confounders, we prioritized the effect estimates comparing ever versus never exposure that were adjusted for the largest number of potential confounders. Whenever ever versus never exposures comparisons were not reported, we recorded the effect estimates comparing the highest versus lowest levels of exposures. When multiple MAs of summary level data were identified for the
same environmental risk factor, we selected the effect estimates that were based on the largest number of component studies.

For systematic reviews with unique associations that were not investigated in MAs of summary level data, we recorded the number of studies identified, the reasons why MAs were not performed, and the main conclusions. Lastly, for all MAs of IPD, one author (JDW) identified the exposures, NHL subtypes, and number of NHL cases for: (1) all nominally statistically significant ($P<0.05$) associations and (2) any associations that were also evaluated in MAs of summary level data.

Quality Assessment

Four reviewers (XS, HZ, YD, and JDW) evaluated the quality of all MAs of summary level data using A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2. Any discrepancies were discussed and resolved by consensus. Based on the suggested rating scheme, the overall confidence in the results of the MAs of summary level data were classified as high, moderate, low, or critically low. We did not examine the quality of MAs of IPD.

Statistical analysis

First, we used a random-effects model, which allows for unexplained between-study heterogeneity on the effect of interest, with the between-study variance estimated using the DerSimonian and Laird (DL) estimator. We estimated all summary effect estimates and 95% CIs using a random-effects DerSimonian and Laird (DL) estimator. When summary effect estimates were reported without a corresponding P value, we used the 95% CIs to calculate the P value using a previously described method. Next, we categorized the strength of the reported associations across five levels (Table 1), following previously established methodology. All associations with $P>0.05$ were classified as non-significant. Associations with $P<0.05$ and fewer than 1000 cases were classified as weak. Associations with $P<10^{-3}$ and at least 1000 cases were classified as suggestive. For associations with $P<10^{-6}$, at least 1000 cases, and $P<0.05$ for the largest component study, we sequentially evaluated 95% prediction intervals (PIs), presence of small study effects (Egger regression asymmetry test), and evidence of excess significance using the Ioannidis test. PIs provide a potential range of the true effect and incorporate the uncertainty of whether the observed effect will arise in future studies as well. $P<0.1$ for Egger’s test suggests the presence of small study effects (i.e. small studies are more prone to report larger or more significant results while larger studies tend to report more conservative results). The Ioannidis test estimates whether the observed
number of studies with nominally statistically significant \((P<0.05) \) results in a MA differs from the expected number of studies with nominally statistically significant studies.\(^{30}\) Associations with 95\% PIs including the null, statistically significant Egger’s test \((P<0.1) \), and/or evidence of excess significance were classified as highly suggestive. Associations with 95\% prediction intervals excluding the null, non-statistically significant Egger’s test \((P>0.1) \), and no evidence of excess significance were classified as convincing.

Statistical analysis was conducted using \textit{metagen} \mbox{package in R version 4.1.0}. (eTable 3 in Supplement 1).

\textit{Concordance between MAs of summary level data and InterLymph MAs of IPD}

When the same exposures, exposure contrast levels, and NHL subtypes were examined in MAs of summary level data and InterLymph MAs of IPD, two authors (XS and JDW) determined whether the effect estimates: (1) were in the same direction, (2) had overlapping 95\% CIs, and/or (3) had the same level of statistical significance \((P<0.05 \text{ or } P\geq 0.05) \). Associations with all three criteria fulfilled were classified as fully concordant. Lastly, we determined how often MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD.

\textit{Quality Assessment}

Four reviewers (XS, HZ, YD, and JDW) evaluated the quality of all MAs of summary level data using \textit{A MeaSurement Tool to Assess Systematic Reviews (AMSTAR)} \(^{2,33}\) Any discrepancies were discussed and resolved by consensus. Based on the suggested rating scheme,\(^{33}\) the overall confidence in the results of the MAs of summary level data were classified as high, moderate, low, or critically low. The quality of MAs of IPD was not examined in our study.

\textit{Results}

\textit{Literature search}

Among 16438 records identified through the literature search, 7444 were excluded as duplicates, leaving 8994 titles and abstracts for initial screening. 7970 records were excluded based on the title and abstract and 1024 were screened at the full text stage for inclusion. After excluding 904 records at the full text stage (eTable 1 in Supplement 2), our searches identified 85 MAs of summary level data evaluating 134 unique environmental risk factors and 8 systematic reviews evaluating 8 unique risk factors (eFigure 1, \textit{and} eText 2 in
Supplement 1 and eTable 2 in Supplement 32). In addition, we identified 27 MAs of IPD (Supplement 32), of which 24 (89%) were conducted by the InterLymph Consortium. More than one MA of summary level data was identified for 44 (44/134, 33%) risk factors (eTable 4 in Supplement 1). Among the MAs of summary level data selected based on the largest number of component studies, approximately half were also the most recently published (25/44, 57%) (eTable 4 in Supplement 1).

Methodological quality

The vast majority of the 85 MAs of summary level data had overall confidence ratings of low (3, 4%) or critically low (79, 93%) according to the AMSTAR 2 tool. There were 2 (2%) where the overall confidence in the results was classified as moderate.34,35 Only 1 (1%), evaluating the association between tuberculosis and risk of NHL, had an overall confidence rating of high (eTable 643 in Supplement 42).36 The most common unfulfilled critical domains of the AMSTAR 2 tool were incomplete justification of excluded studies (74, 87%) and missing or no information about preregistered protocols (72, 85%).

MAs of summary level data

Among the 257 associations reported in the MAs of summary level data, 124 and 133 evaluated the impact of environmental risk factors on the risk of NHL overall and NHL subtypes, respectively. NHL subtypes included follicular lymphoma (FL; 43, 17%), diffuse large B-cell lymphoma (DLBCL; 35, 14%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 31, 12%), T-cell lymphoma (TCL; 12, 5%), B-cell lymphoma (BCL; 4, 2%), marginal zone lymphoma (MZL; 2, 1%), endemic Burkitt Lymphoma (eBL; 1, 0.4%), Burkitt lymphoma (BL; 1, 0.4%), primary cutaneous lymphoma (PCL; 1, 0.4%). The most common exposure categories were dietary factors (90, 35%), medical histories and comorbidities (54, 21%), chemicals and pesticides (42, 16%), lifestyle factors (29, 11%), drugs, vaccinations, and medical procedures (30, 12%), and occupational (12, 5%). The median number of component studies per MA of summary level data was 5 (IQR 4-10). The median number of NHL cases, among the 64 (75%) MAs reporting this information, was 1533 (IQR, 482-5872).

Credibility criteria

After re-estimating the 257 associations using a random-effects DL estimator and applying the credibility criteria, 145 (56%) were classified as presenting non-significant evidence (eTable 324 in Supplement 2). There were 80 (31%) nominally statistically significant (P<0.05)
associations that were classified as presenting weak evidence. There were 20 (8%) statistically significant associations \((P<10^{-3}) \), based on analyses with at least 1000 NHL cases, that were classified as presenting suggestive evidence. Only 12 (5%) associations were classified as presenting highly suggestive or convincing evidence, with a \(P<10^{-6} \), at least 1000 cases, and a \(P<0.05 \) for the largest component study. The 11 highly suggestive associations were for history of renal transplantation and risk of NHL, rheumatoid arthritis and risk of NHL, primary Sjogren's syndrome and risk of NHL, systemic lupus erythematosus and risk of NHL, celiac disease and risk of TCL, tuberculosis and risk of NHL, hepatitis B virus (HBV) and risk of NHL and BCL, hepatitis C virus (HCV) and risk of NHL and DLBCL, and teaching as an occupation and risk of NHL (Table 2).

There was one association, between history of celiac disease and risk of NHL (OR 2.61, 95% CI 2.04 to 3.33; 110, 245 NHL cases from 8 individual studies), that was classified as presenting convincing evidence. Although the association had \(P<10^{-6} \), at least 1000 cases, a nominally significant result for the largest component study, low/moderate proportion of total variability due to between-study variability (heterogeneity \((I^2 \leqslant 50\%) \), a 95% PI excluding the null, and no evidence of small study effects, we were unable to conduct the Ioannidis test due to the incomplete information reported about the component studies. Across all the 112 nominally statistically significant associations, 63 (56%) had relative risk values that were between 0.67 and 1.50.

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by MAs of summary level data (eText 2 in Supplement 1).

MAs of IPD

We identified 27 MAs of IPD, of which 24 were from the InterLymph Consortium. The 24 InterLymph MAs of IPD reported 715 nominally statistically significant \((P<0.05) \) associations. Of these, 116 and 21 associations were based on analyses with at least 1000 NHL cases and had \(P<10^{-3} \) and \(P<10^{-6} \), respectively (Table 4 and eTable 5 in Supplement 12). Overall, the unique suggestive exposures categories were alcohol consumption on risk of DLBCL, MZL and NHL, history of Sjogren’s syndrome on risk of DLBCL, MZL and NHL, recreational sun exposure on risk of DLBCL, FL and NHL, and history of HCV on risk of DLBCL, MZL and NHL. Although the 3 non-InterLymph MAs of IPD examined 5 associations not reported in systematic reviews and/or MAs of the summary level data, including fish eaters and risk of NHL, vegetarians and vegans and risk of NHL, maternal age at the time of the child’s birth.
and risk of NHL, paternal age at the time of the child’s birth and risk of NHL, and leisure-time physical activity and risk of NHL, none were nominally statistically significant.

Consistency between MAs of summary level data and InterLymph MAs of IPD

There were 40 associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD (eTable 5 in Supplement 2 and eFigure 1 in Supplement 1). While 22 (55%) evaluated the impact of environmental risk factors on the risk of NHL overall, the other half (18, 45%) focused on various NHL subtypes (CLL/SLL, 5 (13%); DLBCL, 5 (13%); FL, 4 (10%); TCL, 3 (8%); MZL, 1 (3%)).

Overall, 22 of 40 (55%) of the associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 10 (25%) pairs where the effect estimates were both statistically significantly increased, 3 (8%) where they were both statistically significantly decreased, 7 (18%) where they were both non-statistically significantly increased, and 2 (5%) where they were both non-statistically significantly decreased (Kappa=0.37, eTable 46 in Supplement 2; eTable 7 and eFigure 1 in Supplement 1). The 13 associations where the MAs of the summary level data and MAs of IPD effect estimates were both statistically significantly increased or decreased were for history of smoking and risk of TCL, history of drinking and risk of NHL, DLBCL, and FL, history of primary Sjogren's syndrome and risk of NHL, history of systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL, TCL and DLBCL, and history of HCV and risk of NHL, DLBCL, MZL and CLL/SLL. There were 28 (70%) pairs where the effect sizes from the MAs of IPD were more conservative than the effect sizes from the MAs of summary level data.

There were 4 suggestive associations reported in MAs of summary level data that were also evaluated in the InterLymph MAs of IPD. Of these, 3 associations from MAs of IPD had effect estimates in the same direction, had \(P<10^{-3} \), and were based on analyses with at least 1000 NHL cases (i.e., history of psoriasis and risk of NHL, history of Herpes Zoster and risk of NHL, and history of farming as an occupation and risk of NHL). There were 8 highly suggestive associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD. Of these, 7 associations from the MAs of IPD had effect estimates in the same direction, had \(P<10^{-6} \), and were based on analyses with at least 1000 NHL cases (i.e., history of rheumatoid arthritis and risk of NHL, history of primary Sjogren's syndrome and risk of NHL, history systemic lupus erythematosus and risk of NHL, history of celiac...
disease and risk of NHL and TCL, history of tuberculosis and risk of NHL, and history of HCV and risk of NHL).

There were 19 (48%) pairs where the MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD. There was no difference in terms of concordance (direction, statistical significance of summary effect estimates and overlapping 95% CIs) between MAs of summary level data that included at least one-third versus fewer than one-third of the same component studies as the MAs of IPD (12/19 (63%) vs 10/21 (48%), \(P = 0.32\)).

Methodological quality

The vast majority of the 85 MAs of summary level data had overall confidence ratings of low (3, 4%) or critically low (79, 93%) according to the AMSTAR 2 tool. There were 2 (2%) where the overall confidence in the results was classified as moderate.\(^{34,35}\) Only 1 (1%), evaluating the association between tuberculosis and risk of NHL, had an overall confidence rating of high (eTable 6 in Supplement 1).\(^{36}\) The most common unfulfilled critical domains of the AMSTAR 2 tool were incomplete justification of excluded studies (74, 87%) and missing or no information about preregistered protocols (72, 85%).

Discussion

In this umbrella review, we evaluated the range, strength, and validity of reported associations between environmental risk factors and NHL across 85 MAs of published observational studies. Overall, we identified 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. The vast majority of the associations, including those evaluating various dietary, clinical, lifestyle, chemical, and occupational exposures, were classified as having either non-significant or weak evidence. More than half of the nominally significant associations were only marginally significant. Only 5% of the associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence. When the same associations were evaluated in MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Overall, effect sizes from MAs of IPD were more conservative. This umbrella review suggests that there is a mass production of low-quality MAs of summary level data reporting weak associations between environmental risk factors and NHL. These findings highlight the need for improving not only primary studies but also evidence synthesis in this field. Moreover, given that many of the assessed risk factors
are correlated, simultaneous consideration of multiple risk factors will be useful to understand which ones have the strongest, independent effects on NHL risk.

Although a wide range of environmental exposures have been evaluated and proposed as potential risk factors for NHL, our evaluation suggests that the only highly suggestive or convincing exposures proposed in MAs of summary level data and MAs of IPD are related to autoimmune and infectious diseases. In particular, the prominent autoimmune disease-related risk factors include history of celiac disease, rheumatoid arthritis, primary Sjogren's syndrome, and systemic lupus erythematosus. Although the exact mechanisms behind these associations remains unclear, many autoimmune disorders are characterized by chronic inflammation, which may intensify B cell or T cell activation and promote the development of lymphoma.

Previous studies have also suggested that the dysfunction of some protein families, such as FAS and tumor necrosis factor, and the interplay between various immune cells, could be potential mechanisms. However, there is uncertainty when it comes to the temporality of these associations, with studies reporting that autoimmune diseases can occur during lymphoma.

Associations between viral and bacterial infections and NHL risk have been suggested for several decades. Different hypotheses for HCV-related lymphomagenesis have been proposed. For instance, chromosomal aberrations, including chromosome t(14;18) translocation, have been found to be associated with mixed cryoglobulinemia, a disorder most commonly caused by HCV infection and that can evolve into lymphoproliferative disorders. Furthermore, genetic variations, including Interleukin-10 polymorphisms, have also been proposed as a potential pathway between HCV infection and NHL susceptibility and development. Similar to autoimmune disease-related risk factors, it remains unclear whether these associations are driven by disease status, medication use, or disease-medication interactions. Considering how rare many of these autoimmune and infectious disease-related exposures are, future efforts are necessary to determine the impact of multiple environmental as well as non-environmental risk factors simultaneously.

Among 40 associations evaluated by both MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Unlike MAs of summary level data, MAs of IPD tend to focus on studies with more homogeneous designs and patient populations. Furthermore, MAs of IPD can allow for better harmonization of data across studies, more advanced one-stage meta-analytical approaches, and analyses accounting for many exposure categories and potential confounders. Although the InterLymph MAs of IPD are particularly robust due to the large
number of NHL cases and subtypes considered, MAs of IPD without systematic reviews may exclude evidence from high-quality case-control or cohort studies. For instance, the InterLymph analyses only included evidence from completed and ongoing case-control studies from consortium members. Furthermore, the InterLymph findings may be difficult to disentangle, with at least 700 nominally statistically significant associations among thousands of analyses conducted across different subtypes of NHL and exposure levels (e.g., different type/ dosage of alcohol consumption). In the future, it will be necessary to monitor the consistency between MAs of summary level data and MAs of IPD, especially since approximately half of the MAs of summary level data had at least one-third of the same component studies as the MAs of IPD. In addition, authors of MAs should carefully evaluate whether any external studies can and should be included in their syntheses. Of interest, we observed that more than two thirds of the effect sizes were more conservative in the InterLymph MAs of IPD than in the MAs of summary level data. This may be a reflection of greater selective reporting bias in the corpus of studies available in the literature as compared with a set of studies participating in a consortium.

Our study suggests that nearly all MAs of summary level data evaluating associations between environmental risk factors and risk of NHL could be classified as having critically low quality according to the AMSTAR 2 tool. Previous umbrella reviews focused on the associations between environmental risk factors and health outcomes have noted similar concerns. However, the proportion of low or critically low-quality NHL reviews is higher than what has been observed among umbrella reviews for inflammatory bowel diseases, attention-deficit/hyperactivity disorder, eating disorders, early childhood caries, physical activity for academic achievement, and physical therapy for tendinopathy. These findings may not be surprising considering recent concerns about the mass production of systematic reviews. In the future, authors planning systematic reviews and MAs of summary level data of the associations between environmental exposures and NHL should adhere to reporting guidelines and critically evaluate how their studies’ findings relate to existing MAs of IPD, focusing on the impact of different methods, populations, and other characteristics.

Limitations

Our umbrella review has several limitations. First, we did not identify potential environmental risk factors that were only examined in individual observational studies. Our objective was to identify and summarize the associations that were reported by the MAs of
summary level data, which already covered a wide space of diverse associations. Second, we
did not evaluate the quality of individual studies included in the MAs of summary level data,
the impact that individual studies have on the overall heterogeneity, the magnitude of the
associations, or the potential role that residual/unmeasured confounding could have on
associations. Individual risk of bias evaluations are outside the scope of umbrella reviews, and
it is the expectation that MAs have already conducted these quality assessments. Third, we
considered MAs that included cohort and case-control studies, and our assessments did not
prioritize reviews of certain study designs or address differences across different study designs.
Considering that certain NHL subtypes are rare, case-control studies may often be the most
realistic study design to evaluate exposure histories. Fourth, although umbrella reviews
provide a comprehensive summary of the associations reported in MAs, the validity of the
summary effect estimates is dependent on the quality of the individual MAs. Although we
attempted to standardize associations using a random-effects DL estimator, we did not
evaluate or re-conduct the literature searches for all potential exposure-outcome relationships.
Fifth, we did not calculate I^2, 95% PIs, Egger’s test, and excess significance test for non-
significant and nominally statistically significant associations. Given the large number of
associations identified, we prioritized these calculations for associations where these values
were necessary to determine the strength of associations using the previously established
classification system. It is also worth noting that I^2 values should not be used to make
inferences about heterogeneity, as it does not measure heterogeneity directly, but rather the
proportion of total variability due to between-study variability. However, the I^2 cut-off of 50%
is a standard grading criterion for evidence in umbrella reviews. Sixth, when summary
effect estimates of multiple exposure contrast levels were reported, we focused on the risk
estimates comparing ever versus never exposure (or comparing the highest versus lowest
levels of exposures). Although we did not consider all potential contrast levels and dose-
response relationships, our objective was to provide a universal overview of the relationships
between examined risk factors and NHL. Specific dose-response relationships may
nevertheless exist for certain associations, and they would need to be examined on a case-by-
case basis. Seventh, we only identified the nominally statistically significant associations
among the thousands of associations reported in InterLymph MAs of IPD. Eighth, by
excluding non-English language reviews, we may have missed additional potential
associations. However, we utilized the same approach as previous umbrella reviews that
focused on risk factors for health outcome(s). Ninth, MAs of IPD and MAs of summary
level data can have different strengths and limitations, and our evaluation did not focus on
comparing the potential quality of these types of studies. We also did not focus on the impact of different methods, populations, or other characteristics when comparing the consistency of the results between the two study types. Tenth, umbrella reviews are not intended to provide information about the likelihood that associations are causal. Lastly, when multiple MAs of summary level data evaluated the same exposures and outcomes, we selected the association based on the largest number of included studies. Although this approach does not ensure that the highest quality MAs are selected, this methodology has been utilized by previous umbrella reviews.25,70-72

Conclusion

In this large-scale umbrella review, we identified dozens of MAs evaluating associations between environmental risk factors and NHL. However, the vast majority of MAs of summary level data were low quality and presented either non-significant or weak evidence. When the same associations were evaluated in MAs of summary level data and MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, these findings highlight the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

ACKNOWLEDGEMENTS

The authors would like to thank DP and VP of the Cushing/Whitney Medical Library at Yale for technical support. DP and VP are employees of Yale University and did not receive additional compensation for this work, nor do they have competing interest to disclose.
Contributors: XS and JDW originally conceived this study. XS, JPAI, and JDW designed this study. XS, HZ, YD, KN, and JDW acquired the data. XS and YD conducted the statistical analysis. XS and JDW and drafted the manuscript. XS, JPAI, and JDW participated in the interpretation of the data. All authors and critically revised the manuscript for important intellectual content. XS and JDW had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. JDW provided supervision. JDW is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: XS is supported by the China Scholarship Council. JDW is supported by the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under award K01AA028258.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: In the past 36 months, JDW received research support from the FDA. There are no other competing interests.

Patient consent: Not required

Ethical approval: Not required

Data sharing: The dataset will be made available via a publicly accessible repository on publication.

Transparency: The senior author (manuscripts guarantor) (JDW) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant registered) have been explained.
License: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide license to the Publishers and its licensees in perpetuity, in all forms, formats and median (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) license any third party to do any or all of the above.

The default license, a CC BY NC license, is needed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

See: http://creativecommons.org/licenses/by-nc/4.0/.

Reference

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022;72(1):7-33.
2. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390(10091):298-310.
3. Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-
Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. *JAMA Oncol.* 2019;5(12):1749-1768.

4. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. *CA Cancer J. Clin.* 2016;66(6):443-459.

5. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. *Cold Spring Harb. Perspect. Med.* 2019.

6. Chiu BC, Hou N. Epidemiology and etiology of non-hodgkin lymphoma. *Cancer Treat. Res.* 2015;165:1-25.

7. Teras LR, Rollison DE, Pawlita M, et al. Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies. *Int. J. Cancer.* 2015;136(1):108-116.

8. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. *Blood.* 2008;111(8):4029-4038.

9. Elfström P, Granath F, Ekström Smedby K, et al. Risk of lymphoproliferative malignancy in relation to small intestinal histopathology among patients with celiac disease. *J. Natl. Cancer Inst.* 2011;103(5):436-444.

10. Klein A, Polliack A, Gafter-Gvili A. Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome. *Hematol. Oncol.* 2018;36(5):733-739.

11. Zhang Y, Dai Y, Zheng T, Ma S. Risk Factors of Non-Hodgkin Lymphoma. *Expert Opin. Med. Diagn.* 2011;5(6):539-550.

12. Pahwa M, Harris SA, Hohenadel K, et al. Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces. *Int. J. Cancer.* 2012;131(11):2650-2659.

13. Ollberding NJ, Aschebrook-Kilfoy B, Caces DB, et al. Phytanic acid and the risk of non-Hodgkin lymphoma. *Carcinogenesis.* 2013;34(1):170-175.

14. Cantor KP, Blair A, Everett G, et al. Hair dye use and risk of leukemia and lymphoma. *Am. J. Public Health.* 1988;78(5):570-571.

15. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):1-14.

16. Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):130-144.

17. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. *Blood.* 2008;111(8):4029-4038.

18. Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne.* 2009;181(8):488-493.

19. Janiaud P, Agarwal A, Tzoulaki I, et al. Validity of observational evidence on putative risk and protective factors: appraisal of 3744 meta-analyses on 57 topics. *BMC Med.* 2021;19(1):157.

20. Greb A, Bohlius J, Schiefer D, Schwarzer G, Schulz H, Engert A. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of
aggressive non-Hodgkin lymphoma (NHL) in adults. Cochrane Database Syst. Rev. 2008(1):CD004024.

22. Lee E, Dobbins M, Decorby K, McRae L, Tirilis D, Husson H. An optimal search filter for retrieving systematic reviews and meta-analyses. BMC Med. Res. Methodol. 2012;12:51.

23. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. BMJ. 2019;364:l265.

24. Altman DG, Bland JM. How to obtain the P value from a confidence interval. BMJ. 2011;343:d2304.

25. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki L. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263-273.

26. Kim JY, Son MJ, Son CY, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry. 2019;6(7):590-600.

27. Barbui C, Purgato M, Abdulmalik J, et al. Efficacy of psychosocial interventions for mental health outcomes in low-income and middle-income countries: an umbrella review. Lancet Psychiatry. 2020;7(2):162-172.

28. Tortella-Feliu M, Fullana MA, Perez-Vigil A, et al. Risk factors for posttraumatic stress disorder: An umbrella review of systematic reviews and meta-analyses. Neurosci. Biobehav. Rev. 2019;107:154-165.

29. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed.). 1997;315(7109):629-634.

30. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. Clin. Trials. 2007;4(3):245-253.

31. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;172(1):137-159.

32. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549.

33. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.

34. Karlstad O, Starup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies. Curr Drug Saf. 2013;8(5):333-348.

35. Salmon C, Conus F, Parent M, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. Cancer Epidemiol. 2020;65:101696.

36. Leung CY, Huang HL, Rahman MM, et al. Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates. BMC Cancer. 2020;20(1):412.

37. Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am. J. Clin. Nutr. 2014;100 Suppl 1(1):378S-385S.

38. Johnson KJ, Carozza SE, Chow EJ, et al. Parental age and risk of childhood cancer: a pooled analysis. Epidemiology. 2009;20(4):475-483.

39. Moore SC, Lee IM, Weiderpass E, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern Med. 2016;176(6):816-825.
40. Yoosuf S, Makharia GK. Evolving Therapy for Celiac Disease. *Front Pediatr.* 2019;7:193.

41. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. *Int. J. Mol. Sci.* 2020;21(11).

42. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. *Nat Rev Dis Primers.* 2018;4:18001.

43. Din L, Sheikh M, Kosaraju N, et al. Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes. *Genet. Epidemiol.* 2019;43(7):844-863.

44. Baecklund E, Smedby KE, Sutton LA, Askling J, Rosenquist R. Lymphoma development in patients with autoimmune and inflammatory disorders--what are the driving forces? *Semin. Cancer Biol.* 2014;24:61-70.

45. Khanmohammadi S, Shabani M, Tabary M, Rayznan E, Rezaei N. Lymphoma in the setting of autoimmune diseases: A review of association and mechanisms. *Crit. Rev. Oncol. Hematol.* 2020;150:102945.

46. Hauswirth AW, Skrabs C, Schützinger C, Gaiger A, Lechner K, Jäger U. Autoimmune hemolytic anemias, Evans' syndromes, and pure red cell aplasia in non-Hodgkin lymphomas. *Leuk. Lymphoma.* 2007;48(6):1139-1149.

47. Jardin F. Development of autoimmunity in lymphoma. *Expert Rev. Clin. Immunol.* 2008;4(2):247-266.

48. Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):52-65.

49. Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):15-25.

50. Ferri C. Mixed cryoglobulinemia. *Orphanet J. Rare Dis.* 2008;3:25-25.

51. Zignego AL, Giannelli F, Marrocchi ME, et al. T(14;18) translocation in chronic hepatitis C virus infection. *Hepatology.* 2000;31(2):474-479.

52. Khaled H, Abu-Taleb F, Haggag R. Hepatitis C virus and non-Hodgkin's lymphomas: A minireview. *J Adv Res.* 2017;8(2):131-137.

53. Persico M, Capasso M, Persico E, et al. Interleukin-10 - 1082 GG polymorphism influences the occurrence and the clinical characteristics of hepatitis C virus infection. *J. Hepatol.* 2006;45(6):779-785.

54. Hermine O, Lefrère F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. *N. Engl. J. Med.* 2002;347(2):89-94.

55. Mazzaro C, Franzin F, Tulissi P, et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon therapy. *Cancer.* 1996;77(12):2604-2613.

56. Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. *JAMA.* 2007;297(18):2010-2017.

57. Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. *Nanomedicine.* 2015;11(4):1003-1018.

58. Böhm M, Luger TA, Schneider M, Schwarz T, Kuhn A. New insight into immunosuppression and treatment of autoimmune diseases. *Clin. Exp. Rheumatol.* 2006;24(1 Suppl 40):S67-71.
59. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ. 2010;340:c221.

60. Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat. Med. 2017;36(5):855-875.

61. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology. 2019;157(3):647-659 e644.

62. Kim JH, Kim JY, Lee J, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. Lancet Psychiatry. 2020;7(11):955-970.

63. Solmi M, Radua J, Stubbs B, et al. Risk factors for eating disorders: an umbrella review of published meta-analyses. Braz J Psychiatry. 2021;43(3):314-323.

64. Thang Le VN, Kim JG, Yang YM, Lee DW. Risk Factors for Early Childhood Caries: An Umbrella Review. Pediatr. Dent. 2021;43(3):176-194.

65. Barbosa A, Whiting S, Simmonds P, Scotini Moreno R, Mendes R, Breda J. Physical Activity and Academic Achievement: An Umbrella Review. Int. J. Environ. Res. Public Health. 2020;17(16).

66. Girgis B, Duarte JA. Physical therapy for tendinopathy: An umbrella review of systematic reviews and meta-analyses. Phys. Ther. Sport. 2020;46:30-46.

67. Ioannidis JP. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. Milbank Q. 2016;94(3):485-514.

68. Wallach JD. Meta-analysis Metastasis. JAMA Intern Med. 2019.

69. Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med. Res. Methodol. 2008;8:79.

70. Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. J. Psychiatr. Res. 2018;103:189-207.

71. Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. Alzheimers Dement. 2017;13(4):406-418.

72. Radua J, Ramella-Cravarro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. World Psychiatry. 2018;17(1):49-66.
Tables and figures:

Table 1. Grading criteria for evidence categories

Strength of association	Description
Convincing (class I)	Highly statistically significant association \(P < 10^{-6} \)
	At least 1000 NHL cases
	Low/moderate proportion of total variability due to between-study variability
	\(I^2 \leq 50\% \)
	95% prediction interval excluding the null value
	Largest study reporting a nominally statistically significant \(P < 0.05 \)
	No evidence of small-study effects
	No evidence of excess significance bias
Highly suggestive (class II)	Highly statistically significant association \(P < 10^{-6} \)
	At least 1000 NHL cases
	Largest study reporting a nominally statistically significant \(P < 0.05 \)
Suggestive (class III)	At least 1000 NHL cases
	Statistically significant association \(P < 10^{-3} \)
Weak (class IV)	Nominally statistically significant association \(P < 0.05 \)
Non-significant	Non-statistically significant associations \(P > 0.05 \)

*\(P \) value for the association that calculated by random effects model.

NHL = non-Hodgkin lymphoma.
Table 2. Environmental risk factors for non-Hodgkin lymphoma reported in meta-analyses of summary level data with convincing (Class I) and highly suggestive (Class II) evidence

Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author	Year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P randoma	Large study nominally significant (P<0.05)	I² (%)	95% PI	Sma ll study effectb	Stren gth of reported associationc
Renal transplant	Renal transplant	Transplant recipients vs general population	NHL	SRM A	Wang	2018	6	770	SIR	10.66 (8.54, 13.31)	3.44E-86	Yes	80.2	NA	NA	II
Autoimmune diseases	Rheumatoid arthritis	Patients vs general population	NHL	SRM A	Simon	2015	16	1531	SIR	2.26 (1.82, 2.81)	8.42E-13	Yes	96	NA	NA	II
Autoimmune diseases	Primary Sjogren's syndrome	Patients vs general population	NHL	SRM A	Liang	2014	11	1232	RR	13.76 (8.53, 18.99)	1.62E-34	Yes	58.8	NA	NA	II
Autoimmune diseases	Systemic lupus erythematosus	Patients vs general population	NHL	MA	Cao	2015	12	166	RR	5.4 (3.75, 7.77)	1.99E-18	Yes	74.3	NA	NA	II
celiac disease	Patients vs general population	NHL	SRM A	Tio	2012	8	1102	OR	2.61 (2.04, 3.33)	9.32E-14	Yes	23.4	(1.57, 4.33)	No	I	
celiac disease	Patients vs general population	TCL	SRM A	Tio	2012	5	3535	OR	15.84 (7.85, 31.94)	6.90E-14	Yes	55.5	NA	NA	II	
Infectious diseases	Tuberculosis	Patients vs general population	NHL	SRM A	Leung	2020	8	2390	RR	1.61 (1.34, 1.94)	6.76E-07	Yes	50.2	NA	NA	II
HBV	HBV infected vs	NHL	SRM A	Li	2018	58	5371	OR	2.50 (2.2, 2.83)	6.33E-42	Yes	77.9	NA	NA	II	
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random^a	Largest study nominally significant (P<0.05)	P^b (%)	95% PI	Strength of reported association^c		
-----------------------	---------------------------	---------------------	---------	------------	--------------	------------------------	-------------	---------------	---	----------------	--	----------------	--------	--		
HBV	HBV infected vs non-infected	BCL	SRMA	Li 2018	20	>100 0	OR	2.46 (1.97, 3.07)	1.24E-14	Yes	62.9	NA	NA	II		
HCV	HCV infected vs non-infected	NHL	SRMA	Masaione 2019	27	3307 7	OR	3.36 (2.4, 4.72)	7.92E-12	Yes	88	NA	NA	II		
HCV	Patients vs general population	DLBCL	MA	DalMaso 2006	8	1020	RR	2.65 (1.88, 3.74)	4.98E-08	Yes	39	(1.46 , 5.81)	No	II		
Occupation	Teacher vs non-teachers	NHL	MA	Boffetta 2007	19	>100 0	RR	1.47 (1.34, 1.61)	1.60E-15	Yes	76	NA	NA	II		

BCL = B cell lymphoma; CI = confidence interval; HBV = hepatitis B virus; HCV = hepatitis C virus; MA = meta-analysis; NA = not available; NHL = non-Hodgkin lymphoma; OR = odds ratio; PI = prediction interval; SIR = standardized incidence ratio; SRMA = systematic review and meta-analysis; RR = risk ratio; TCL = T-cell lymphoma.

^a P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.

^b P<0.1 for Egger’s test suggests the presence of small study effects.

^c Strength of association using the criteria listed in Table 1.
Table 3. Suggestive risk factors and protective factors identified in meta-analyses of individual patient data from International Lymphoma Epidemiology Consortium

NHL subtype	At least 1000 cases and P<10^-3	At least 1000 cases and P<10^-6
CLL/SLL	Years since quitting cigarette smoking; printing pressmen	None
CLL/SLL/PLL/MCL	Adult infectious mononucleosis	None
DLBCL	Alcohol; Any atopic disorder; Allergy; B and T-cell activating autoimmune diseases; HCV; Hay fever; Recreational sun exposure; Socioeconomic status (high vs low); BMI as young adult (25<-30 kg/m^2); Rheumatoid arthritis; Blood transfusion; Weight	History of B-cell activating autoimmune disease; Sjogren’s syndrome; HCV; Young adult BMI (%25 kg/m^2); Years since quit cigarette smoking; Age first alcohol consumption (20-29 years vs. nondrinker); Current alcohol consumption status as of ~2 years prior to diagnosis/interview*
FL	Blood transfusions; Young adult BMI (%25 kg/m^2+); Recreational sun exposure; History of cigarette smoking (females); Current cigarette smoking; University and higher education teachers; Male height (100% vs. 60%); Any atopic disorder*	None
MZL	Systemic lupus erythematosus; HCV, Peptic ulcer; Wine	History of B-cell activating autoimmune disease; Sjogren’s syndrome
HCL	Current cigarette smoking	None
NHL	Hormone replacement therapy; Systemic lupus erythematosus; HCV; Allergy; Food allergy; Hay fever; Blood transfusion; Height; Alcohol exposures; Recreational hair dye use; Socioeconomic status (high vs low); Secondary Sjogren’s syndrome; Childhood measles*	Sjogren’s syndrome; History of B-cell activating autoimmune disease; Hay fever; Young adult BMI (%25 kg/m^2); Recreational sun exposure (%Q3-Q4 hours/week); Recreational hair dye use (%Q3-Q4 hours/week); Beer, wine, and liquor*

BMI=body mass index; CI=confidence interval; CLL=chronic lymphocytic leukemia; DLBCL=diffuse large B-cell lymphoma; FL=follicular lymphoma; HCL=hairy cell leukemia; HCV=hepatitis C virus; MCL=mantle cell lymphoma; MZL=marginal zone lymphoma; NHL=non-Hodgkin lymphoma; SLL=small lymphocytic lymphoma; PLL=prolymphocytic leukemia.

* These were protective risk factors.
Identify correctly:
- Wrong study design: the examined study was not a systematic review, meta-analysis or pooled analysis
- Wrong topic: the examined review did not examine non-Hodgkin lymphoma or its subtypes as an outcome OR the study did not examine the impact of an environmental exposure on the risk of non-Hodgkin lymphoma development
- Wrong exposure: the examined risk factor does not meet the definition of environmental risk factor in our study
- Wrong study focus: the review did not examine the impact of an exposure on the risk of developing NHL
- Wrong component study design: the review did not synthesize observational study data
- Insufficient data for analyses: the review included fewer than 3 component studies
- Overlapping review: a larger review was identified for the same association

Figure 1: Study selection flowchart

* Web of Science Core Collection as licensed at Yale: Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years
** Wrong study design: the examined study was not a systematic review, meta-analysis or pooled analysis
Wrong topic: the examined review did not examine non-Hodgkin lymphoma or its subtypes as an outcome OR the study did not examine the impact of an environmental exposure on the risk of non-Hodgkin lymphoma development
Wrong exposure: the examined risk factor does not meet the definition of environmental risk factor in our study
Wrong study focus: the review did not examine the impact of an exposure on the risk of developing NHL
Wrong component study design: the review did not synthesize observational study data
Insufficient data for analyses: the review included fewer than 3 component studies
Overlapping review: a larger review was identified for the same association
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 1: Search strategy..1
eTable 2: NHL subtypes ...6
eTable 3: R code ...9
eTable 4: Overlapping meta-analyses of summary level data...10
eFigure 1..13
eText 1: eligibility criteria ...14
eText 2..16
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 1: Search strategy
Database searches, 2021-07-23
Searches on the Ovid platform can be rerun at https://tools.ovid.com/ovidtools/launcher.html

Ovid MEDLINE(R) ALL <1946 to July 22, 2021>	
1 [Xiaoting Shi]	0
2 [concept two: SRs]	0
3 (systematic adj4 review).ti.	16047
4 systematic review.pt.	16216
5 Cochrane Database of Systematic Reviews.jn. and review.pt.	13658
6 [approach c: based on Lee 2012]	0
7 medline.tw. or systematic review.ti. or meta-analysis.pt. or pubmed.tw.	35748
8 [from our previous searches]	0
9 (pooled analysis or pooled analyses).mp.	11737
10 (metaanalysis or meta-analysis).af.	22010
11 [NHL concept]	0
12 neoplasms/ or lymphoma/ or exp lymphoma, non-hodgkin/	58950
13 [alternative based on https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004024.pub2/appendices#CD004024-sec1-0011]	0
14 *Lymphoma/	36024
15 *hematologic neoplasms/	10823
16 lymphom*.mp.	25857
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

17	non-hodgkin*.mp.	58024
18	nonhodgkin*.mp.	136
19	(non adj1 hodgkin*).mp.	58025
20	nhl.mp.	13936
21	(hemato* adj1 malign*).mp.	26969
22	(haemato* adj1 malign*).mp.	5497
23	(hemato* adj1 neoplas*).mp.	16617
24	(haemato* adj1 neoplas*).mp.	415
25	or/12,14-24	72171
26	risk/ or protective factors/ or risk factors/	9999
27	(risk* or protective factor*).mp.	28997
28	26 or 27	28997
29	or/3-10	42317
30	25 and 28 and 29	5543

Embase
<1974 to 2021 July 22>

1	[NHL concept]	0
2	neoplasm/ or lymphoma/ or lymphatic system tumor/ or exp nonhodgkin lymphoma/	67263
3	*Lymphoma/	1
4	hematologic malignancy/	45821
5	lymphom*.mp.	35048
6	non-hodgkin*.mp.	35048
7	nonhodgkin*.mp.	60548
8	(non adj1 hodgkin*).mp.	62197
9	(non adj1 neoplas*).mp.	60551
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

	Query	Results
9	nhl.mp.	25440
10	(hemato* adj1 malign*).mp.	63015
11	(haemato* adj1 malign*).mp.	9491
12	(hemato* adj1 neoplas*).mp.	4590
13	(haemato* adj1 neoplas*).mp.	689
14	or/2-13	82181
15	exp risk/ or protection/	27149
16	(risk* or protective factor*).mp.	43275
17	15 or 16	43681
18	[study design concept]	0
19	(systematic adj4 review).ti.	19182
20	Cochrane Database of Systematic Reviews.jn. and review.pt.	11247
21	medline.tw. or systematic review.ti. or pubmed.tw.	38012
22	(pooled analysis or pooled analyses).mp.	19038
23	(metaanalysis or meta-analysis).af.	32779
24	or/19-23	56318
25	14 and 17	15598
26	limit 25 to meta analysis	3382
27	limit 25 to systematic review	3023
28	25 and 24	6739
29	26 or 27 or 28	7272
30	limit 29 to conference abstract status	2936
31	29 not 30	4336
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Scopus	3173
Web of Science Core Collection	
TS=(lymphom* OR non-hodgkin* OR (non NEAR/1 hodgkin*) OR nhl OR ((hemato* OR haemato*) NEAR/1 (malign* OR neoplas*)) AND TS=(risk* OR protective-factor*) AND TS=((systematic W/4 review) OR medline OR pubmed OR "pooled analysis" OR "pooled analyses" OR metaanalysis OR meta-analysis)) AND (EXCLUDE (DOCTYPE, "cp"))	
Cochrane Library	2417
ID	
#1 ((systematic NEAR/4 review)):ti OR (systematic review):pt OR (medline or pubmed or "pooled analysis" or "pooled analyses" or metaanalysis or meta-analysis):ti,ab,kw (Word variations have been searched)	29396
#2 MeSH descriptor: [Neoplasms] this term only	6376
#3 MeSH descriptor: [Lymphoma] this term only	1369
#4 MeSH descriptor: [Lymphoma, Non-Hodgkin] explode all trees	2056
#5 MeSH descriptor: [Hematologic Neoplasms] this term only	466
#6 (lymphom* or non-hodgkin* or nonhodgkin* or (non NEAR/1 hodgkin*) or nhl or (hemato* NEAR/1 malign*) or (haemato* NEAR/1 malign*) or (hemato* NEAR/1 neoplas*) or (haemato* NEAR/1 neoplas*)):ti,ab,kw	14144
#7 #2 or #3 or #4 or #5 or #6	20192
#8 (risk* or (protective NEAR/1 factor*)):ti,ab,kw	25391
#9 MeSH descriptor: [Risk] this term only	3322
#10 MeSH descriptor: [Protective Factors] this term only	135
#11 MeSH descriptor: [Risk Factors] this term only	24955
#12 #8 or #9 or #10 or #11	25391
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

#13	#1 and #7 and #12	273
	Limited to reviews (not trials)	167

Epistemonikos

SR filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective))
736	

broad synthesis filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective))
24	

no filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective)) AND (title:("pooled analysis" OR "pooled analyses") OR abstract:("pooled analysis" OR "pooled analyses"))
42	
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 2: NHL subtypes

Category	Subtypes	Eligibility as NHL
Mature B-cell neoplasms	Chronic lymphocytic leukemia/small lymphocytic lymphoma	Yes
	Monoclonal B-cell lymphocytosis*	No
	B-cell prolymphocytic leukemia	Yes
	Splenic marginal zone lymphoma	Yes
	Hairy cell leukemia	Yes
	Splenic B-cell lymphoma/leukemia, unclassifiable	Yes
	Splenic diffuse red pulp small B-cell lymphoma	Yes
	Hairy cell leukemia-variant	Yes
	Lymphoplasmacytic lymphoma	Yes
	Waldenström macroglobulinemia	Yes
	Monoclonal gammopathy of undetermined significance (MGUS), IgM*	No
	μ heavy-chain disease	No
	γ heavy-chain disease	No
	α heavy-chain disease	No
	Monoclonal gammopathy of undetermined significance (MGUS), IgG/A*	No
	Plasma cell myeloma	No
	Solitary plasmacytoma of bone	No
	Extraosseous plasmacytoma	No
	Monoclonal immunoglobulin deposition diseases*	No
	Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma)	Yes
	Nodal marginal zone lymphoma	Yes
	Pediatric nodal marginal zone lymphoma	Yes
	Follicular lymphoma	Yes
	In situ follicular neoplasia*	Yes
	Duodenal-type follicular lymphoma*	Yes
	Pediatric-type follicular lymphoma*	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL
	Large B-cell lymphoma with IRF4 rearrangement*	Yes
	Primary cutaneous follicle center lymphoma	Yes
	Mantle cell lymphoma	Yes
	In situ mantle cell neoplasia*	Yes
	Diffuse large B-cell lymphoma (DLBCL), NOS	Yes
	Germinal center B-cell type*	Yes
	Activated B-cell type*	Yes
	T-cell/histiocyte-rich large B-cell lymphoma	Yes
	Primary DLBCL of the central nervous system (CNS)	Yes
	Primary cutaneous DLBCL, leg type	Yes
	EBV+ DLBCL, NOS*	Yes
	EBV+ mucocutaneous ulcer*	No
	DLBCL associated with chronic inflammation	Yes
	Lymphomatoid granulomatosis	No
	Primary mediastinal (thymic) large B-cell lymphoma	Yes
	Intravascular large B-cell lymphoma	Yes
	ALK+ large B-cell lymphoma	Yes
	Plasmablastic lymphoma	Yes
	Primary effusion lymphoma	Yes
	HHV8+DLBCL, NOS*	Yes
	Burkitt lymphoma	Yes
	Burkitt-like lymphoma with 11q aberration*	Yes
	High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements*	Yes
	High-grade B-cell lymphoma, NOS*	Yes
	B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classical Hodgkin lymphoma	Yes
	Double hit/triple hit lymphoma	Yes
Mature T and NK	T-cell prolymphocytic leukemia	Yes
	T-cell large granular lymphocytic leukemia	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL
neoplasms	Chronic lymphoproliferative disorder of NK cells	Yes
	Aggressive NK-cell leukemia	Yes
	Systemic EBV+ T-cell lymphoma of childhood*	Yes
	Hydroa vacciniforme–like lymphoproliferative disorder*	Yes
	Adult T-cell leukemia/lymphoma	Yes
	Extranodal NK-/T-cell lymphoma, nasal type	Yes
	Enteropathy-associated T-cell lymphoma	Yes
	Monomorphous epitheliotropic intestinal T-cell lymphoma*	Yes
	Indolent T-cell lymphoproliferative disorder of the GI tract*	No
	Hepatosplenic T-cell lymphoma	Yes
	Subcutaneous panniculitis-like T-cell lymphoma	Yes
	Mycosis fungoides	Yes
	Sézary syndrome	Yes
	Primary cutaneous CD30+ T-cell lymphoproliferative disorders	Yes
	Lymphomatoid papulosis	No
	Primary cutaneous anaplastic large cell lymphoma	Yes
	Primary cutaneous γδ T-cell lymphoma	Yes
	Primary cutaneous CD8+aggressive epidermotropic cytotoxic T-cell lymphoma	Yes
	Primary cutaneous acral CD8+T-cell lymphoma*	Yes
	Primary cutaneous CD4+small/medium T-cell lymphoproliferative disorder*	No
	Peripheral T-cell lymphoma, NOS	Yes
	Angioimmunoblastic T-cell lymphoma	Yes
	Follicular T-cell lymphoma*	Yes
	Nodal peripheral T-cell lymphoma with TFH phenotype*	Yes
	Anaplastic large-cell lymphoma, ALK+	Yes
	Anaplastic large-cell lymphoma, ALK−*	Yes
	Breast implant–associated anaplastic large-cell lymphoma*	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL
	Acute lymphoblastic leukaemia (ALL)	No

Footnotes:
*Changes from the 2008 classification.
NOS: not otherwise specified
Information source: 2016 WHO classification of mature lymphoid neoplasms (https://pubmed.ncbi.nlm.nih.gov/26980727/)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 3: R code

```
Below is the R code example for the association between Behcet disease and NHL

# read in data_Behcet Disease
meta1 = read_excel("RR_effect_sizes_Behcet Disease_#4206.xlsx")
head(meta1)

# conduct main analysis
meta2<-metagen(meta1$LNRR,meta1$SE,
sm="R",studlab=paste(lastname,publication_year)
    ,data=meta1,method.bias="Egger",prediction = TRUE,
    level.predict =0.95)
summary(meta2)

# create forest plot, funnel plot
forest(meta2)
funnel(meta2)
meta2$pval.random

# conduct egger's test
metabias(meta2,method.bias="Egger",plotit=TRUE, correct= TRUE, k=3)
```
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 4: Overlapping meta-analyses of summary level data

Environmental risk factors	Largest review (First author, year)	Number of overlapping meta-analyses	Number of primary studies in the largest meta-analyses	Most recent (Y/N)	Highest impact factor one (Y/N)
Dietary factors					
Red meat	Yang 2015	4	18	N	N
Processed meat	Yang 2015	4	18	N	N
White meat/poultry	Dong 2017	3	10	N	N
Fish	Caini 2016	3	11	N	N
Fruit and vegetable	Chen 2013	2	4	N	Y
Fruit	Chen 2013	2	13	N	Y
Vegetable	Chen 2013	2	13	N	Y
Eggs	Caini 2016	2	10	N	N
Total dairy products	Wang 2016	2	7	Y	Y
Milk	Wang 2016	3	16	N	Y
Cheese	Wang 2016	2	10	Y	Y
Vitamin D	Lu 2014	2	6	N	N
Drugs, vaccinations and procedures					
Aspirin	Ye 2015	2	10	Y	Y
Non-steroidal anti-inflammatory drugs	Ye 2015	2	13	Y	N
Statin	Ye 2017	3	9	Y	Y
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Environmental risk factors	Largest review (First author, year)	Number of overlapping meta-analyses	Number of primary studies in the largest meta-analyses	Most recent (Y/N)	Highest impact factor one (Y/N)
Non-dietary lifestyle factors					
Physical activity	Davies 2020	3	17	Y	Y
Hair dye	Qin 2019	2	16	Y	N
Petrochemical exposure	Jephcote 2020	2	9	Y	Y
Maternal smoking	Antonopoulos 2011	2	7	N	Y
Ever smoking	Sergentanis 2013	2	33	Y	N
Ever drinking	Tramacere 2012	3	29	N	Y
Heavy drinking	Tramacere 2012	2	6	N	Y
Medical history and comorbid diseases					
Rheumatoid arthritis	Simon 2015	2	17	Y	N
Primary Sjogren’s syndrome	Liang 2014	2	11	Y	Y
Systemic lupus erythematosus	Cao 2015	3	12	N	N
Psoriasis	Vaengebjerg 2020	3	8	Y	Y
Type 1 diabetes	Wang 2020	2	3	Y	N
Celiac disease	Tio 2012	2	8	Y	Y
Systemic sclerosis	Zhang 2013	2	4	Y	N
Environmental Risk Factors for Non-Hodgkin Lymphoma: An Umbrella Review and Comparison of Meta-Analyses of Summary and Individual Participant Level Data

Environmental Risk Factors	Largest Review (First Author, Year)	Number of Overlapping Meta-Analyses	Number of Primary Studies in the Largest Meta-Analyses	Most Recent (Y/N)	Highest Impact Factor One (Y/N)
Asthma	Yang 2017	2	15	Y	Y
Type 2 diabetes	Castillo 2012	8	21	N	N
Overweight	Larsson 2007	11	16	N	Y
Obesity	Larsson 2007	11	16	N	Y
Hepatitis B virus	Li 2018	5	58	N	N
Hepatitis C virus	Masarone 2019	4	27	Y	Y
Chemicals and Pesticides					
Benzene	Kane 2010	4	24	Y	N
Polychlorinated biphenyls	Catalani 2019	3	30	Y	N
Trichloroethylene	Scott 2011	3	17	N	N
Glyphosate	Boffetta 2021	4	6	Y	N
2,4-Dichlorophenoxyacetic acid	Smith 2017	3	11	Y	Y
Occupation					
Female flight attendant	Buja 2006	4	3	Y	N
Farmer	Boffetta 2007	4	50	Y	N
Firefighter	Jalilian 2019	3	14	Y	Y
Petroleum refinery worker	Schnatter 2018	2	16	Y	N

Y=Yes; N=No.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eFigure 1

eFigure 1: Scatterplot of summary effect estimates in meta-analyses of summary level data and meta-analyses of IPD (pooled analyses) reporting the same associations between environmental risk factors and non-Hodgkin lymphoma. CI=confidence interval.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eText 1: eligibility criteria

Eligibility criteria for systematic reviews and (or) meta-analyses

General inclusion criteria

Language: English only.

Study types: Systematic review and (or) meta-analysis (referred as ‘Review studies’ in the following contents).

Study designs included in review studies: Observational epidemiological studies\(^1\).

Study subjects: Human only\(^2\).

General exclusion criteria

Review studies that:

1. Focus on genetic risk factors\(^3\) for non-Hodgkin lymphoma (NHL)
2. Focus on biomarkers\(^4\) for NHL
3. Focus on risk factors for treatment, relapse, remission, or prognosis on NHL patients
4. Examine NHL as a risk factor for other diseases
5. Focus on cancer, hematological cancers, lymphoma, or any broader spectrum of diseases, but fail to provide specific data for NHL\(^5\)
6. Only include experimental studies
7. Focus on NHL as a metastasis/secondary cancer of other primary cancers
8. Focus on NHL in a particular population but fail to provide detailed information on environmental risk factors\(^6\)
9. Investigate the prevalence/incidence of NHL

\(^1\) Cohort studies or case control studies only
\(^2\) Review studies mixed with human and animal subjects will be checked in details at full text screening stage
\(^3\) Including genetic polymorphisms, family history/familial aggregation
\(^4\) Any substance, structure, or process that can be measured in the body or its products that can influence or predict the incidence of outcome or disease. Ref: http://www.inchem.org/documents/ehc/ehc/ehc222.htm (accessed 24th April, 2020)
\(^5\) This may be unclear at the title-abstract screening, therefore when in doubt, two researchers will send it on to the full text screening
\(^6\) For example, NHL in indigenous population, or men who have sex with men (MSM)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Besides the aforementioned eligibility criteria, based on our definition of environmental risk factors, personal medical history and comorbidities (excluding metastasis of tumors) will be considered eligible in our study. In addition to the 8th General exclusion criteria, studies focus on NHL on a particular occupational population would be included since occupation can act as proxy for certain environmental exposures.

Study types, exposures and outcome definition

Systematic reviews and (or) Meta-analyses of summary level data and individual participant data:

The eligible study types in our study are systematic reviews (SRs), meta-analyses (MAs), systematic reviews and meta-analyses (SRMAs) or pooled analyses. To be eligible, SRs and SRMAs must have performed a systematic search in at least one bibliographic database. SRs, MAs and SRMAs should clearly define themselves as systematic reviews and(or) meta-analyses. For SRs in particular, we will only include exposure-outcome relationships (i.e., associations) that have not been investigated in MAs or SRMAs.

In terms of pooled analyses, the primary goal for including pooled analyses in our study is to incorporate the valuable pooled information of individual level data from scientific institutes on NHL and its subtypes, such as The International Lymphoma Epidemiology Consortium (InterLymph7) and to add to the evidence for meta-analyses on certain risk factors.

Environmental risk factors:

We define environmental risk factors as a broad concept of non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors.4

Outcome of interest:

Our study outcome is non-Hodgkin lymphoma, including its subtypes (eTable 2 in Supplement 1). The classification of NHL subtypes was consulted and confirmed by an epidemiologist on NHL from InterLymph consortia. We will identify with the definition/diagnostic criteria of NHL from the original review studies.

References

1. Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev. 2017;6(1):245.

7 An open scientific forum for epidemiologic research in non-Hodgkin's lymphoma and a group of international investigators who have completed or have ongoing case-control studies and who discuss and undertake research projects that pool data across studies or otherwise undertake collaborative research. Ref: https://epi.grants.cancer.gov/interlymph/ (accessed 24th April, 2020)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

2. Faggion CM, Jr., Diaz KT. Overview authors rarely defined systematic reviews that are included in their overviews. *J. Clin. Epidemiol.* 2019;109:70-79.

3. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):1-14.

4. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. *BMJ.* 2019;364:l265.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eText 2

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by meta-analyses of the published literature (Supplement). Among them, 6 (75.0%) concluded that there were weak or non-statistically significant associations between the examined risk factors (Omega-3 fatty acids, sugar intake, artificial sweetener consumption, hazardous waste, preterm birth, and prenatal/postnatal Diagnostic X-rays and childhood) and NHL risk. Two (25%) additional systematic reviews suggested possible associations between Gaucher disease and NHL risk and breast implants and anaplastic large cell lymphoma risk. Half (4, 50.0%) of the systematic reviews outlined that quantitative analyses were not conducted due to high levels of heterogeneity and/or a small number of eligible studies. The remaining 4 (50.0%) systematic reviews did not provide any reasons for not conducting quantitative analyses.

Exclusion reasons

Among the 1024 records screened at the full text level, 904 were excluded, mostly because they were for the wrong topic (442, 48.9%), they had the wrong study design (240, 26.5%), or they were not the largest meta-analysis of the published literature for a specific association (102, 11.3%).
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

References

1. MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lim YW, Traina SB, Hilton L, Garland R, Morton SC. Effects of omega-3 fatty acids on cancer risk: a systematic review. Jama. 2006 Jan 25;295(4):403-15.

2. Makarem N, Bandera EV, Nicholson JM, Parekh N. Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: a systematic review of longitudinal studies. Annual review of nutrition. 2018 Aug 21;38:17-39.

3. Mishra A, Ahmed K, Froghi S, Dasgupta P. Systematic review of the relationship between artificial sweetener consumption and cancer in humans: analysis of 599,741 participants. International journal of clinical practice. 2015 Dec;69(12):1418-26.

4. Fazzo L, Minichilli F, Santoro M, Ceccarini A, Della Seta M, Bianchi F, Comba P, Martuzzi M. Hazardous waste and health impact: a systematic review of the scientific literature. Environmental Health. 2017 Dec;16(1):1-1.

5. Paquette K, Cote H, Boivin A, Amre D, Nuyt AM, Luu TM. Cancer risk in children and young adults born preterm: A systematic review and meta-analysis. PloS one. 2019 Jan 4;14(1):e0210366.

6. Schulze-Rath R, Hammer GP, Blettner M. Are pre-or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiation and environmental biophysics. 2008 Jul;47(3):301-12.

7. Arends M, van Dussen L, Biegstraaten M, Hollak CE. Malignancies and monoclonal gammopathy in G auber disease; a systematic review of the literature. British journal of haematology. 2013 Jun;161(6):832-42.

8. Kim B, Roth C, Chung KC, Young VL, van Busum K, Schnyer C, Mattke S. Anaplastic large cell lymphoma and breast implants: a systematic review. Plastic and reconstructive surgery. 2011 Jun 1;127(6):2141-50.
Exposure to glyphosate and risk of non-Hodgkin lymphoma and multiple myeloma: an updated meta-analysis.

Physical Activity in Cancer Prevention and Survival: A Systematic Review.

Meat, fish, dairy products and risk of hematological malignancies in adults - a systematic review and meta-analysis of prospective studies.

Physical activity in relation to risk of hematologic cancers: a systematic review and meta-analysis.

Statins use and the risk of all and subtype hematological malignancies: a meta-analysis of observational studies.

Physical activity and risk of lymphoma: a meta-analysis.

Systematic review and meta-analysis of glyphosate exposure and risk of lymphohematopoietic cancers.

Association of psoriasis with the risk of developing or dying of cancer: a systematic review and meta-analysis.

Risk of cancer in psoriasis: A systematic review and meta-analysis of epidemiological studies.

The associations of fruit and vegetable intakes with burden of diseases: A systematic review of meta-analyses.

Use of statins and risk of haematological malignancies: a meta-analysis of six randomized clinical trials and eight observational studies.

Sedentary behavior and incident cancer: a meta-analysis of prospective studies.

The risks of cancer development in systemic lupus erythematosus (SLE) patients: a systematic review and meta-analysis.

Fish consumption and risk of non-Hodgkin lymphoma: A meta-analysis of observational studies.

Body mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies.

Quantitative association between body mass index and the risk of cancer: A global Meta-analysis of prospective cohort studies.

Body fatness at a young age and risks of eight types of cancer: systematic review and meta-analysis of observational studies.

Anthropometric factors and non-Hodgkin’s lymphoma risk: systematic review and meta-analysis of prospective studies.

Phenoxy herbicides, soft-tissue sarcoma and non-Hodgkin lymphoma: a systematic review of evidence from cohort and case-control studies.
Cancer among Acquavella, J; 1998 Annals of epidemiology 8 1 64-74
Cancer incidence Ballard, T; Lagarde van der Rhee 2000 Aviation, space and environment 71 2 216-24
Does sunlight van der Rhee 2006 European journal of epidemiology 42 14 2222-32
Systematic review Porta, Daniel 2009 Environment 8 101147645 60
Frequency of Hill, C L; Zhan 2001 Lancet (London, England) 357 9250 96-100
Vitamin d an Kelly, J. L.; Friberg 2009 Cancer Investigation 27 9 942-951
Both chronic Zhou, Xi; Pan 2019 BMC cancer 19 1 477
Non-Hodgkin Lamm, S. H.; 2005 Chemico-Biol 153-154 231-237
Personal hair Rollison, Dan 2006 Journal of toxicology and environmental health. Part B, Critical reviews 9 6 721-24
Primary immHerber, Math l 2020 Leukemia & lym 60071 8 274-284
Is there an as GIRARDI, J. D.; 2019 Vigilanza Sanita 7 4 85-95
Agricultural Zheng, T; Zhao 2001 Journal of ocular medicine 43 7 641-9
Exposure to t Khalade, Abd 2010 Environment 9 101147645 31
Maternal Sm Rumrich, Isabella 2016 PloS one 11 11 e0165040
Insecticide use Kachuri, Lindi P 2020 International Journal of Cancer 132 11 5431-30
Meta-analysis Khuder, S A; 1998 Scandinavian journal of medicine and science in sports 24 4 255-61
Sunlight, vita van der Rhee 2009 European journal of immunology 18 6 458-75
Cancer Incidence Oncyje, Felix 2021 International journal of cancer 18 8
Cancer risks Caasens, Swaen 2020 International journal of cancer 93 7 839-852
Association of Lim, Suping; 2020 Diabetes care 43 9 2313-2322
Risk of cancer Pouplard, C; I 2013 Journal of the 27 Suppl 3 e2r 921603736-46
Fish consumption Yang, Li; Shi, J 2014 Hematology (Amsterdam, Netherlands) 9708388
Human Pegiv Fama, Angelic 2020 Clinical infective diseases 71 5 1221-1228
Selenium for Vinceti, Marco 2018 The Cochrane database of systematic reviews 1 100909747 CD005195
Vitamin D staPark, Hye Yin 2019 PloS one 14 4 e0216284
Pre-eclampsia Bellamy, Lear 2007 BMJ (Clinical research ed.) 335 7627 974
Vitamin D with Chung, Mei; I 2011 Annals of internal medicine 155 12 827-38
Green tea (CBoehm, Katja 2009 The Cochrane database of systematic reviews 3 CD005004
Benefits of vi Grant, W. B. 2010 Journal of the 9 8 81-88
Some risk facPerrson, B; Fr 1999 International journal for biological Psychiatry 12 2 135-42
Hair dye use Anonymous 2005 South African medical journal 47 7 12
Body mass index Hu, C. R.; Wa 2012 Chinese Journal of epidemiology 12 1 55-60
Autoimmune Zarnavalou, C 2016 Review of clinical microbiology 30 1 23-29
Listeria peric Findlater, Aidan Reid; Haider, Shariq; Leto, Daniela 2020 JAMMI 5 3 182-186
Frequency of Wallace, T M. 2001 Canadian journal of infectious diseases 15 1 21-8
What is the ER Ramos-Gallar 2020 Aesthetic plastic surgery 44 2 286-294
Anterior ischi Sousa, David 2016 Canadian journal of infectious diseases 51 6 459-466
European e Annese, V.; B 2015 Journal of cancer 9 11 945-965
Allograft involzadi, M.; Tah 2011 Progress in transplantation 21 4 353-359
Biological the Pereira, Vane 2017 Revista brasileira de medica 57 2 174-181
Breast Implant Ramos-Gallar 2017 Journal of infection 30 1 56-65
An integrative Grinyo, J.; Ch 2010 Transplantation 90 12 1521-1527
The morbidity; Lenz, M.; Ricl 2009 Deutsches Ar 106 40 641-648
Estimation of; Xiang, W.; Sh 2011 Cancer Cause 22 8 1153-1161
Cancer and n; Boehmer, Ulr 2012 The Lancet. C 13 12 e545-53
Alu Methylat; Ye, Ding; Jian 2020 The American 359 5 271-280
Non-Hodgkin; Lee, Won Jin; 2004 International 111 2 298-302
Is birth weigh; Papadopoulo 2012 International 130 1 179-89
Birth weight ; Yang, T; O; Re 2014 Annals of onc 25 9 1836-43
Birth order ai; Von Behren, . 2011 International 128 11 2709-16
Height and cc; Green, Jane; 2011 The Lancet. C 12 8 785-94
Smoking, vari; Gibson, Todd 2013 Cancer cause 24 1 125-34
Non-Hodgkin; Kane, Elisane 2015 Cancer epide 24 7 1061-70
An associatio; Lens, M B; Ne 2005 Annals of onc 16 3 460-5
Birth order a; Grulich, Andr 2010 American jou 172 6 621-30
Burkitt and B; Saleh, K.; Mic 2020 Current Onc 22 4 33
Dose-respon; Li, Dongyang; 2018 The American 107 3 371-388
Height, leg ie; Gunnell, D; O 2001 Epidemiologi 23 2 313-42
Infectious mc; Wade, N. B.; 2020 Cancer Cause 31 5 451-462
Juvenile dern; Stubgen, J. P. 2017 Journal of the 377 19-24
Serologic mai; Bassig, B. A.; 2018 International 143 3 570-579
Dietary Inflar; Jayedi, Ahma 2018 Advances in r 9 4 388-403
IdentificationNishishinya, I 2015 Rheumatolog 35 1 17-26
Number of pi; Guo, Peng; H 2017 Hematology (22 5 274-285
Metabolic ris; Stocks, Tanja 2015 International 44 4 1353-63
Ethylene oxic; Marsh, Gary I 2019 International 92 7 919-939
The associati; Zhang, Yaoya 2020 European jou 138 133-148
Yogurt, cultu; Savaiano, Del 2021 Nutrition revi 79 5 599-614
Thyroid dysf; Tran, Thi-Van 2020 Endocrine-rel 27 4 245-259
The potential Muir, Amand 2020 Clinical and e 50 2 147-159
Systematic re; Chupin, Anto 2020 Alimentary pl 52 8 1289-1297
Systematic re; Piovan, Dani 2020 Alimentary pl 51 9 820-830
Risk scores fc; Mulder, Frits 2020 Journal of thr 18 10 2622-2628
Potential riskMa, Haozhen 2020 International 17 16 2531-2543
Meta-analysis; Zhang, Dai; D 2020 Aging 12 11 10772-10794
Maternal dial; Yan, Pengfei; 2021 Acta diabetol 58 2 153-168
Long-Term Vi; Shurrab, Mol 2019 American jou 42 9 717-724
Dried Fruit InMossine, Val 2020 Advances in r 11 2 237-250
Does heart fa; Zhang, Hanla 2020 Heart failure 25 6 949-955
Evaluation of Chong, Zhi Xi 2020 Asian Pacific 21 4 881-895
ConsumptionLi, Yuting; Gu 2021 Journal of Cai 12 10 3077-3088
Combined lifi; Zhang, Yan-B 2020 British journa 122 7 1085-1093
Donor-TransrEccher, Albin 2021 Liver transpla 27 1 55-66
Effects of BarZhang, Kui; Li 2020 Obesity surge 30 4 1265-1272
Risk of Cance; Micic, Dejan; 2019 Journal of clir 53 1 e1-e11
Does insomnia: Shi, Tingting; 2020 Journal of sleep research 29 1 e12876
Risk of cancer: Ghajarzadeh, 2020 Autoimmun 19 10 102650
Prevalence of Yin, Tingxuan 2021 BMC infection 21 1 200
Subclinical hyg: Gomez-Izquierdo 2020 BMC endocrinol 20 1 83
Hypnotics an-Peng, Tzu-Ro 2020 Medicina (Ka) 56 10
Mediterraneansanchez-Sanclemente 2020 Maturitas 136 25-37
Inhalation of Reddam, Aakriti 2021 Environment 149 106402
Risk of cancer: Amnella, Gerardo 2021 Neuroscience 126 529-541
Risk of malignancy: Haber, Roger 2020 Journal of the American Medical Association 83 2 661-663
The risk of mLotfi-Foroush 2020 Clinical and Tumor Biology 22 10 1825-1837
Risk of Malignt Karmacharya 2020 Rheumatic Disease 46 3 463-511
Donor-transnEcker, Albin 2020 Journal of Neurology 33 6 1321-1332
Domestic radLu, Yan; Liu, L 2020 Journal of Biotecnology 25 2 1035-1041
N-6 PolyunsaKim, Youngyeong 2020 Nutrients 12 9
Whole Grains: Gaesser, Glen 2020 Nutrients 12 12
Risk of malignancy: Biardeau, Xavier 2015 Neurourology and Urodynamics 23 4 635-642
Cigarette SmiChang, Joanne 2021 Nicotine & Tobacco Research 23 4 635-642
Eating disorder Michelis, Nat 2021 Eating and weight 26 4 1021-1035
TNF Inhibitor Muller, Marie 2021 Journal of Clinical Oncology 15 5 840-859
Cancer occurred Zhang, Zheyu 2021 Journal of Clinical Oncology 88 70-74
Cancer in gliLehnert, Martin 2020 International Journal of Cancer 93 1 10-Jan
Bisphosphonate: Li, Yuan-Yuan 2020 British Journal of Cancer 123 10 1570-1581
Benefits of Q Tonti-Bruna 2020 Revista Latina de Oncologia 28 e3317
Association onkhshi, Sina 2021 Advances in radiotherapy 12 3 793-808
Association bKalantari, Nai 2020 Microbiol path 148 104440
Association BLam, Megan; 2021 JAMA dermatology 157 5 549-558
Aspirin and tSantucci, Claudio 2021 International Journal of Cancer 148 6 1372-1382
Analysis of arParvova, I.; H 2019 Revmatologii 27 4 17-Mar
Alcohol and cSinghavi, Hitesh 2020 Indian journal of Cancer 64 2 186-190
Anesthesia arChang, Chun 2021 Anesthesia Asia 132 3 623-634
Association bSeretis, Arist 2019 Scientific reports 9 1 8565
Association BOspina-Rome 2020 JAMA network 3 11 e2025515
A meta-analysis Xie, Wenhui; 2020 Rheumatology 59 5 930-939
Dietary acrylamide: Pelucchi, Claudio 2015 International Journal of Cancer 136 12 2912-22
Dietary acrylamide: Virk-Baker, N 2014 Nutrition and Cancer 66 5 774-90
Whole-grain Jacobs, DR Jr 1998 Nutrition and Cancer 30 2 85-96
The Protective effect Ismail, V 2019 Journal of Preventive Medicine 52 4 205-213
Cancer risk of Bosetti, Cristi 2013 The oncologist 18 2 148-56
Use of benzodiazepine: Kim, Hong-Baek 2017 International Journal of Clinical Chemistry 140 3 513-525
Work stress eYang, Tingting 2019 International Journal of Theoretical Psychology 144 10 2390-2400
Observational study: Solomon, D. I 2012 Arthritis and Rheumatology 64 1 21-32
Noncutaneous: Wang, L.; Bie 2020 Jama Dermatology 156 2 158-171
Magnetic fields: Feychting, M 1995 European journal of Cancer 31A 12 2035-9
Year	Journal/Description	Volume/Issue	Pages	Authors
2016	Gastroenterol	2016	101475557	1632439
2018	Environment	2018	16	0147621 467-474
2017	British journal	2017	116	1 126-133
2015	Current Opin	2015	31	4 296-302
2018	Cochrane Dal	2018	1 CD005195	3 CD005195
2004	8 Clinical gastro	2004	3 CD005195	3 CD005195
2020	The Lancet	2020	4 9609-340	357
2012	JBI Database	2012	10 Supplement	S259-S272
2014	Asian Pacific	2014	15	19 8509-19
2018	Environment	2018	1 107	3 95-104
2003	Current Nutri	2003	1	1 24-29
2014	British journal	2014	111	5 976-80
2013	American jou	2013	109	3 9-Jan
2000	Gastroenterol	2000	119	6 1447-53
2007	2 Asian Pacific	2007	10	1 11-Jun
2010	The Lancet	2010	371	9 609-340-357
2012	Journal of the	2012	10	17 3640-3649
2018	Japanese jou	2018	48	5 426-433
2005	American jou	2005	136	1 95-104
2019	BMC public h	2019	19	1 900
2012	2 Obesity revi	2012	13	11 985-1000
2018	Environment	2018	166	2 0147621 628-637
2012	American Jou	2012	96	6 1249-1251
2011	Journal of med	2011	14	10 1065-78
2017	Critical review	2017	57	6 1153-1173
2010	Deutsches Ar	2010	107	37 638-43
2018	Journal of Int	2018	283	5 430-445
2010	Maturitas	2010	65	2 122-30
2016	International	2016	55	5 487-493
2018	Schizophreni	2018	195	1 ayx, 8804207 519-528
2013	PloS one	2013	8	10 e77941
2006	International	2006	119	4 884-7
2013	Regulatory tc	2013	66	1 5-Jan
2020	Medicine	2020	99	15 e19698
2016	BMJ open	2016	6	6 e010438
2017	Environment	2017	125	8 87001
1999	American jou	1999	17	3 211-29
2012	Hormones &	2012	3	4 137-46

https://mc.manuscriptcentral.com/bmjmedicine
Sulfonylurea Hendriks, An 2019 European jou 861 en6, 1254354 172598
Substantially Noto, Hiroshi 2010 Journal of dia 24 5 345-53
Statins and riBrowning, Da 2007 International 120 4 833-43
Statins and ciKuoppala, Ja 2008 European jou 44 15 2122-32
Smokeless toSinha, Dhiren 2016 International 138 6 1368-79
Sex differencWang, Yafen 2019 BMC medicin 17 1 136
Sleep duratioChen, Yuheng 2018 BMC cancer 18 1 1149
Risk of maligrLopez-Olivo, I 2012 JAMA 308 9 898-908
Risk of canceOlIn, Jacqueli 2011 American jou 68 22 2139-46
Sedentary BeKatmarzyk, l 2019 Medicine anc 51 6 1227-1241
Selenium ExpCai, Xianlei; V 2016 Scientific rep 6 101563288 19213
Sedentary beLynch, Brigid 2010 Cancer epide 19 11 2691-709
Salmon calcitOverman, Ro 2013 The Annals of 47 12 1675-84
Safety of synSepriano, Ale 2020 Annals of the 79 6 760-770
Safet of sectBlauvelt, A. 2016 Expert Opinic 15 10 1413-1420
Risks and berHooper, Lee; 2006 BMJ (Clinical 332 7544 752-60
Risk of maligrUngrprasert, f 2014 Seminars in a 44 3 366-70
Risk of cancePeleva, E; Ext 2018 The British jo 178 1 103-113
Risk of CanceSaerens, Antc 2019 International 16 22
Prenatal mulGoh, Y I; Bolt 2007 Clinical pharr 81 5 685-91
Prediabetes zHuang, Yi; Ca 2014 Diabetologia 57 11 2261-9
Pre-eclampsiiBellamy, L; C 2008 Hipertension 25 2 87-88
Potential heaWolk, A 2017 Journal of int 281 2 106-122
Organic food Glibowski, Pa 2020 Roczniki Pan 71 2 131-136
Psoriasis and Takeshita, J; 2017 Journal of the 76 3 377-390
Radon and caDarby, S C; W 1995 Journal of the 87 5 378-84
Review of theAhlbom, I C; l 2001 Environment 109 Suppl 6 e10, 0330411 911-33
Risk of canceAhn, Hee Kyu 2016 Psycho-oncol 25 12 1393-1399
Reduction of Han, Mi Ah; Z 2019 Annals of Intc 171 10 711-720
Protective EfIWang, A.; W 2016 Current Athe 18 12 72
Oral contraceBassuk, S. S.; 2015 Annals of Epi 25 3 193-200
Oral contraceLa Vecchia, C 2001 Drug safety 24 10 741-54
OccupationalGhafari, Mah 2017 Epidemiology 39 101519472 e2017027
Olive oil and Lipworth, L; h 1997 Preventive m 26 2 181-90
Risk of lymphLegendre, La 2015 Journal of the 72 6 992-1002
Magnetic fiel Feychting, M. 1995 European Jol 31 12 2035-2039
The epidemicSteineck, G; c 1993 European jou 2 4 293-300
What diseaseReid, I. R. 2016 Archives of D 101 2 185-189
Whole grain tAune, Dagfin 2016 BMJ (Clinical 353 8900488, bm 2716
Waterpipe smMontazeri, Zi 2017 Tobacco cont 26 1 92-97
Tobacco smoGandini, Sara 2008 International 122 1 155-64
PharmacologWu, Lang; Zh 2015 Scientific rep 5 101563288 10147
Oral bisphosDeng, Yingfar 2018 Archives of o 14 1 1
The natural hDurico, D.; 2017 European Jou 29 2 125-134
Risk of maligRe Blay, P.; M 2012 Clinical and E 30 5 756-764
The effect of Balter, Katari 2012 Current opini 24 1 90-102
The efficacy eHuang, Han- 2006 Annals of int 145 5 372-85
Tobacco smoSasco, A J; Se 2004 Lung cancer (45 Suppl 2 b3u, 8800805 S3-9
Ultrasound dSalvesen, K A 1999 Ultrasound ir 25 7 1025-31
Vitamin and rFortmann, St 2013 Annals of int 159 12 824-34
Obesity and rGallagher, E. 2015 Physiological 95 3 727-748
OccupationalBozetti, C; La 2003 European jou 12 5 427-30
Non-AIDS-deNguyen, M. L 2010 Current Infec 12 1 46-55
Non-cardiovaDesai, Chinta 2014 BMJ (Clinical 349 8900488, bm g3743
No evidence Deijaard, A; l 2009 Diabetologia 52 12 2507-12
MonotherapMekuria, Abr 2019 Journal of dia 7676909
Metformin arGandini, Sara 2014 Cancer preve 7 9 867-85
MediterraneanGrosso, Giuse 2013 BMC surgery 13 Suppl 2 100968567 514
Association bTong, Gui-Xia 2014 Asian Pacific 15 10 4265-9
An update orTzavara, V.; P 2013 Clinical Inves 3 3 281-293
MalignanciesNiimen, Ur 2015 Scandinavian 50 1 81-9
ImmunosuppDasari, B. V. I 2012 Diseases of t 55 9 1008-1011
Exam 1: RisksAnonymous 2014 Clinical Gastr 12 9 e87-e89
Exam 1: Risk Anonymous 2015 Clinical Gastr 13 5 e48-e50
Epidemiology Zhang, J.; Ma 2014 Medical oncc 31 7 32
Does the risk Nocturne, G.; 2017 Annals of the 76 2 2
Does a MeditSchwingshacl 2016 Current Nutri 5 1 17-Sep
Light alcohol Bagnardi, V; I 2013 Annals of onc 24 2 301-8
Knowns and iPruss-Ustun, 2011 Environment 10 1 9
Kefir and canRafie, N.; Har 2015 Archives of Ir 18 12 852-857
Hormone theWeinand, J. E 2015 Journal of Cll 2 2 55-60
Ovulation indBrinton, Loui 2005 Fertility and s 83 2 261-6
Possible role Grosso, Giuse 2017 Nutrition revis 75 6 405-419
Omega-3 fattGerber, Mari 2012 The British jo 107 Suppl 2 az4, 0372547S228-39
Omalizumab Busse, Williar 2012 The Journal o 129 4 983-9.e6
Oils and cancTolbert, P E 1997 Cancer cause 8 3 386-405
Occupationalvan Uffelen, J 2010 American jou 39 4 379-88
Obstructive szZhang, Xiao-E 2017 European jou 26 2
Selenium for Dennert, Gab 2011 The Cochrane database of 5 CD005195
Tumor NecroArentz-Hanse 2007 NIPH Systematic Reviews: Executive Summaries
Olive oil intPsaltopoulou 2011 Lipids in heal 10 101147696 127
Opium use: aKamangar, Fz 2014 The Lancet. C 15 2 e69-77
Obesity and cShanmugalin 2014 BMC cancer 14 100967800 712
Nut consumpAune, Dagfin 2016 BMC medicin 14 1 207
Nut consumpWu, Lang; W 2015 Nutrition revi 73 7 409-25
Health risks r Lee, P. N. 2014 Regulatory To 69 1 125-134

https://mc.manuscriptcentral.com/bmjmedicine
Title	Journal/Source	Volume/Issue/Year	Pages	
Green tea (CzFilippini, T.; A)	2020 Cochrane Database of Systematic	3		
Ginseng consI (X.; Che, D)	2016 Journal of Gerontology	40	269-277	
Genotoxic risk Bolognesi, C.; Moretto, A.	Toxicology Letters			
Fermented d (Zhang, K.; Da)	2019 International	144	2099-2108	
Exposure to r (Zaki, A. M.; R)	2020 Middle East J	11	11-11Jan	
Exposure to s (Pelucchi, C.; L)	2011 Annals of Oncology	22	1487-99	
Differences ir (Bella, France)	2017 International	68	402-410	
Dietary phytoCoke (Fe)	2016 Oncotarget	7	52517-52529	
Dietary magnKo (H. J.; You)	2014 Nutrition and Cancer Risk	66	915-923	
Diabetes mel (Sasazuki, Sh)	2013 Cancer Science	104	1499-507	
Diabetes, Inside (Miguel-Ya)	2011 Current Cardiology	5	70-78	
DermatomyoAuss (A.; Bo)	2017 Frontiers in Ir	8 AUG	992	
Depression a (Wang, Y. H.; I)	2020 Molecular PS	25	1487-1499	
Connections Calvillo-Arg (L.)	2019 JAMA Cardiol	4	380-387	
ComprehensiHaußmann, I	2016 Critical Reviews	48	701-734	
Comparative Desai (R. J.; T)	2016 Arthritis Care	68	1078-1088	
Collection an (Gossec, L.; Ba)	2016 Jt. Bone Spine	83	501-509	
Coffee consu (Yu, Xiaofeng; J.)	2011 BMC cancer	11	100967800	
Co-morbiditiGullick, N. J.	2011 Best Practice	25	469-483	
Cancers attr (Parkin, D. M.)	2011 British Journal	105 SUPPL. 2	514-518	
Cancer Risk AM (Mundt, Ken)	2018 Journal of Oncology	60	e6-e54	
Cancer risk a (Merrill, Ray A)	2005 Gynecologic Oncology	96	583-93	
Cancer risk a (Wang, Tingti)	2019 International	144	3001-3013	
Cancer risk a (Hieu, Trinh T)	2012 Endocrine-reality	19	645-55	
Cancer IncideDal, Jakob; Le	2018 The Journal of Oncology	103	2182-2188	
Cancer Event Kotronias, Ra	2017 Drug Safety	40	229-240	
Cancer and o (Fu, H.; Boffett)	1995 Occupational	52	73-81	
Cancer after ! (Oenga, Tracy)	2006 Cancer epide	15	1532-7	
Breast-feedinMartin, Richa	2005 Journal of the Carcinogenesis	97	1446-57	
Impact of StaVallakati, A.;	2016 Circulation: H	9	003265	
Impact of ma (Han, Mi Ah; S)	2020 PloS one	15	e0230721	
Impact of cor (Ganesan, Kur)	2019 Critical Reviews	59	488-505	
HyperuricemXie, Yuxiu; Xu	2019 Journal of Cell Transplantation	234	14364-14376	
Effect of the .Schwab, U.; L	2014 Food and Nutrition	58	25145	
Does use offBo, S.; Benso	2012 Journal of Environ Health	35	231-235	
Does salmon Wells, G.; Chi	2016 Osteoporosis	27	13-19	
Does dietary Kuria, Angelic	2020 Critical Reviews	60	684-694	
EpidemiologiBukowski, J. J.	2009 Risk Analysis	29	1203-1216	
Efficacy of grSturgeon, Jer	2009 Nursing & he	11	436-46	
Effects of reg (Algra, Annem)	2012 The Lancet. C	13	518-27	
A meta-analyBagnardi, V; I	2001 British journal	85	1700-5	
Black tea--he (Gardner, E J;)	2007 European journal	61	18-Mar	
Birthweight a (Paltiel, Ora; T)	2015 Paediatric ann	29	335-45	
Association oNawrot, Tim	2015	Cancer cause	26	9 1281-8
Association oZhang, Peng	2013	Cancer epidemio	37	3 207-18
Association oCatala-Lopez,	2019	JAMA network	2	6 e195313
Association bLu, Yan; Tian,	2013	PLoS one	8	9 e74723
Association bPalamaner St	2015	Sleep medicine	16	10 1289-94
Association BVeronesen, Ni	2018	Journal of the	19	11 981-988.e7
Association bMalhotra, Jyc	2017	Cancer prevention	10	12 704-709
Association bGuo, Zhen-La	2017	Medicine	96	39 e8177
Association bLucariello, Ric	2018	The Australasian journal of dermatology	59	4 253-260
Association bLi, Ying; Yang	2011	PLoS one	6	4 e18776
Assisted repr Gilboa, Danie	2019	Cancer Epidemiology	63	101613
Arsenic exposure; Engel, Arnold	2008	Journal of environmental health	71	3 6-Dec
Are infant size; Fisher, David	2006	International	35	5 1196-210
AntipsychoticFond, G; Mac	2012	Medical hypothesis	79	1 38-42
Alcohol consiBagnardi, V; I	2001	Alcohol research	25	4 263-70
Adherence tcJankovic, Nico	2017	Cancer Epidemiology	26	1 136-144
Adherence tcSchwingshacl	2015	Cancer medicine	4	12 1933-47
Adherence tcSchwingshacl	2014	International	135	8 1884-97
A Systematic Froes Asmus,	2016	Annals of Global Health	82	1 132-148
A meta-analyCorrao, G.; Bi	2004	Preventive Medicine	38	5 613-619
A comprehensiBazyar, Jafar;	2019	Environment	26	1 12648-12661
Risk factors for Castles, Simo	2016	Australian Journal of Cancer	22	3 190-197
Risk of LympNagahori, M,	2015	Frontiers of Cancer	34	143-146
Significantly inNoto, Hiroshi	2011	Endocrine practice	17	4 616-28
Association oMidvar, S.; I	2013	World Health	5	1 47-68
The associationPapageorgak	2017	Hellenic journal of diabetes	20 Suppl	101257471 45-57
Olive oil and Pelucchi, Claudio	2011	Current prevention	17	8 805-12
Adverse effects of I; Rein	2015	Current Prevention	21	9 1220-1226
Cancer risk inDi Rollo, D; A	2014	Giornale italiano di Oncologia	149	5 525-37
The effects of Aki, Elie A; G	2010	International journal of cancer	39	3 834-57
A systematic Alexander, Di	2013	Journal of the European Society for Medical Oncology	32	5 339-54
Parkinson's disease; Bajaj, Archna	2010	Cancer cause	21	5 697-707
HeterogeneityBenmarhnia,	2018	International journal of cancer	15	5
A systematic Kirk, S; Pee	2012	Obesity reviews	13	10 868-91
Young Adult; Berger, Nathi	2018	Obesity (Silver Spring, Md)	26	4 641-650
The role of diWilliams, Ma	2005	Nutrition in Cancer	20	4 451-9
The risk of cavon Roan, Ale	2007	Diseases of the Colon and Rectum	50	6 839-55
Residential piWashburn, E	1994	Cancer cause	5	4 299-309
Vitamin K antRoman, E; Fe	2002	British journal of Nutrition	86	1 63-9
Exposure to eSchuz, Joachi	2011	Progress in biophysics and molecular biology	107	3 339-42
Meta-analysis; Boniol, Mathi	2017	International journal of Cancer	46	6 1940-1947
The carcinogen; Chen, Ling-Xi	2015	PLoS one	10	4 e0123080
Apple intake Fabiani, Robe	2016	Public health	19	14 2603-17
Processed mRohrmann, S; 2016 The Proceedi 75 3 233-41
Smoking cessSaito, Eiko; In 2017 Cancer epide 51 101508793 98-108
A Systematic Elands, Raché 2016 PloS one 11 9 e0158003
Accruing evidSofi, Francesc 2010 The Americar 92 5 1189-96
Adult weight Keum, NaNa; 2015 Journal of the 107 2
Alzheimer disShi, Hai-bin; 2015 Journal of car 141 3 485-94
Association bKalantari, Nai 2020 Parasitology i 74 dya, 9708545 101979
Cancer risk inNoto, Hiroshi 2012 PloS one 7 3 e33411
Cancer risk inMamta, R 2017 International 62 1 73-83
Cancer risk olChen, Yuehor 2017 Journal of dia 9 5 482-494
Cancer risks εCalvert, G M; 1998 American jou 33 3 282-92
CardiovasculHuang, Tao; \ 2012 Annals of nut 60 4 233-40
Childhood obLlewellyn, A; 2016 Obesity revie 17 1 56-67
Chlorination, Morris, R D; / 1992 American jou 82 7 955-63
Choline and ℃Sun, Shanwen 2016 Scientific rep 6 101563288 35547
Chronic kidneWong, Germi 2016 BMC cancer 16 100967800 488
Circulating scHe, Lan; Bao, 2014 Tumour biolc 35 9 8749-55
Clinical and nConzatti, Adr 2014 Nutricion hos 31 2 559-69
Comparison εFreslinsg, Hei 2017 British journa 116 11 1486-1497
Comparison εSamkange-Ze 2010 Journal of cli 28 7 e123-5
Critical revieWong, O; Raε 1989 American jou 15 3 283-310
Cumulative eGarcia-Doval, 2018 The British jo 179 4 863-871
Depression aJia, Y; Li, F; Li 2017 Public health 149 q17, 0376507138-148
Diet and cancBaena Ruiz, R 2014 Maturitas 77 3 202-8
Diet Quality εPotter, Jennif 2016 International 17 7
Diet Quality εSchwingshacl 2018 Journal of the 118 1 74-100.e11
Dietary cadmCho, Young A 2013 PloS one 8 9 e75087
Dietary flavoWoo, Hae Do 2013 PloS one 8 9 e75604
Dietary intakAune, Dagfin 2018 The Americar 108 5 1069-1091
Does pravastBonovas, Ste 2007 CMAJ : Canac 176 5 649-54
Effect of LonqWu, Jennifer 2016 Diabetes care 39 3 486-94
Effect of vitaAutier, Philip 2017 The lancet. D 5 12 986-1004
Effects of BarZhou, Xu; Yu, 2016 Obesity surge 26 11 2590-2601
Effects on HeBloombfield, H 2016 Annals of int 165 7 491-500
Efficacy of anBardia, Adity; 2008 Mayo Clinic p 83 1 23-34
ElectromagnFeychting, M. 1995 Cancer cause 6 3 275-9
EpidemiologiRiboli, Elio; N 2003 The Americar 78 3 Suppl 5595-5695
EpidemiologyCeschi, Mich 2007 Swiss medica 137 4-Mar 50-6
Evaluation bInoue, Manari 2005 Japanese jou 35 7 404-11
Factors prediLu, Xin; Yang, 2014 PloS one 9 4 e94128
Flavan-3-ols εLe, Lei; Yang, 2016 Oncotarget 7 45 73573-73592
Fruit and veg Takachi, Ribe 2017 Journal of ep 27 4 152-162
Fruit, vegetalBlock, G; Patt 1992 Nutrition and 18 1 29-Jan
Garlic intake Kim, Ji Yeon; 2009 The American 89 1 257-64
Glycemic indiGnagnarella, 2008 The American 87 6 1793-801
Glycemic IndiTurati, Federi 2019 Nutrients 11 10
Health effect:Critchley, J A; 2003 Thorax 58 5 435-43
Household aiJosyla, Sowr 2015 Environment 14 101147645 24
Household plShi, Yun; Li, T 2015 Scientific rep 5 101563288 14901
Incidence of iCasagrande, I 2014 Obesity surge 24 9 1499-509
Incidence of iShang, WeiFe 2015 PloS one 10 5 e0126016
Increased RisWang, WeiJie 2015 Mediators of 2015 c2m, 920900 680853
Insulin glargiTang, Xulei; Y 2012 PloS one 7 12 e51814
Insulin glargiDu, Xinli; Zha 2012 The Internati 27 3 e241-6
Intensified loSun, Haixia; Y 2015 Lipids in heal 14 101147696 140
Iron and cancFonseca-Nun 2014 Cancer epide 23 1 31-Dec
Is There a RisFerraro, Sara 2019 Frontiers in p 10 101548923 247
Is there an in Mirghani, Hai 2017 Oral oncolgy 67 cu5, 9709118138-145
Late onset pcKhedmat, Ho 2009 Annals of tra 14 4 80-5
Leisure time jLiu, Li; Shi, YL 2016 British journ 50 6 372-8
Light Alcohol Choi, Yoon-Jl 2018 Cancer resear 50 2 474-487
Linoleic acid iZock, P L; Kat 1998 The American 68 1 142-53
Literature resSimning, Ada 2007 Occupational 64 7 432-8
Long term hoFarquhar, Cin 2009 The Cochrane database of 2 CD004143
MediterraneLa Vecchia, C 2004 Public health 7 7 965-8
MediterraneD’Alessandro 2016 International 67 6 593-605
MediterraneSofi, Francesc 2014 Public health 17 12 2769-82
Meta-analyseMeinert, R; N 1996 Radiation an 35 1 8-Nov
Meta-analyseZhang, Yema 2016 Environment 88 du1, 780727C36-43
Meta-analyseMasunaga, Yi 2007 The Annals ol 41 1 21-8
Meta-analyseWang, J; Guo 2013 The British jo 169 4 838-47
Meta-analyseLi, Li Li; Zhou, 2013 International 23 1 16-24
Metabolic synEsposito, Katl 2012 Diabetes care 35 11 2402-11
Metformin ardDecensi, And 2010 Cancer preve 3 11 1451-61
Metformin tFranciosi, Mc 2013 PloS one 8 8 e71583
Multiple sclеHandel, Adan 2010 Journal of ne 81 12 1413-4
Obesity and cSvatetz, C. A. 2015 Medicina ClV 145 1 24-30
The safety of Askling, J.; Di 2008 Current Opin 20 2 138-144
Ten years incBeiranvand, S 2018 Clinical Epide 6 2 94-102
Obesity and cVuSchenik, I.; St 2012 Ann. New Yo 1271 37-43
Malignancy aAskling, J. 2007 Current Rheu 9 5 421-426
Exercise: FrieDangardt, F .. 2013 Nature Revi 10 9 495-507
Estimating thMicha, R.; Ka 2011 European Journal of Clinical Nutrition
Dietary fortifiMohapatra, F 2013 American Jou 126 2 e13
60Hz EMF heAlbert Bren, S 1995 IEEE Enginee 14 4 370-374
Adverse everde Fraga, R. S 2020 Journal of Ga 55 5 496-514

https://mc.manuscriptcentral.com/bmjmedicine
Publication Title	Year	Journal Name	Volume/Publication Details
Alcohol drink	2014	Cancer Epide	38: 4 339-345
Comorbiditie	2018	Best Practice	32: 3 390-400
Platelet trans	2015	Transfusion	55: 5 1116-1127
Risk of skin	2019	Journal of Ga	34: 3 507-516
A review of dBrandes	2009	Current Medi	25: 1 77-92
Adalimumab Lapadula	2014	International	27: 33-48
Aggressive st	2013	Current athe	15: 4 316
Adverse ever	2014	Digestive Dis	31: 4-Mar 374-378
All for statins	2016	Current Pha	22: 1 18-27
Aspirin and c	2012	Annals of onc	23: 6 1403-15
Association bLi	2014	Journal of evi	7: 2 79-83
Bioavailability	2014	Archives of Ti	88: 10 1803-1853
Cancer risk	2015	American jou	16: 2 89-98
Current pers	2013	Annual Revie	34: 97-117
Epidemiologigi	2016	Regulatory	80 rbh, 8214983134-63
Exposure to	2017	Science of th	575: 525-535
Fertility treat	2013	Fertility and s	100: 1 150-61
Exposure to	2011	Occupational	68: 9 694-702
Hormonal co	2010	Human repro	16: 6 631-50
Insulin use	2012	Diabetes & m	38: 6 485-506
Medical histc	2014	Journal of the	2014: 48 125-9
Use of Antib	2019	Cancers	11: 8
Are health caDran	2005	Journal of on	11: 2 69-78
Association bNama	2018	Public health	164 qi7, 0376507148-156
Alcohol drinkInoue	2007	Japanese jou	37: 9 692-700
Cancer risk inTennis	2005	Annals of alle	95: 4 354-60
Association oWu	2017	Journal of the	18: 6 551.e17-551.
Dietary flavio	2004	Nutrition and	50: 1 7-Jan
Glycaemic inChoi	2012	The British jo	108: 11 1934-47
Human papillMoore	2001	Journal of cut	5: 4 323-8
Is personality	2014	British journa	110: 7 1820-4
Literature reReigstad	2017	Acta paediatr	106: 5 698-709
Meta-analysis	2003	Environment	111: 5 681-7
Metal-on-me	2012	Acta orthopa	83: 6 553-8
Low-dose asPatrono	2013	European he	34: 44 3403-11
LymphomatoWieser	2016	American jou	17: 4 319-27
Meat and miJun	2016	The Proceedi	75: 3 374-84
Mediterraneansofi	2013	BioFactors (C	39: 4 335-42
Men's informSaab	2018	Psycho-oncol	27: 2 410-419
Population-apPark	2014	PloS one	9: 4 e90871
Potato consu	2020	Critical review	60: 7 1063-1076
Statins and	2010	American jou	17: 4 e100-4
Oral alendror	2012	Journal of bo	27: 9 1951-8
Coffee and cʌAlicandro, Gi 2017 European jou 26 5 424-432
Overweight cArnold, Melir 2016 European jou 31 9 893-904
A meta-analyShiels, Mere 2009 Journal of acc 52 5 611-22
A systematic Bara, Tivadar 2017 Romanian jou 58 1 41-44
ABO blood grZhang, Bai-Li 2014 Asian Pacific 15 11 4643-50
Elevated honZhang, D.; Wi 2015 PLoS ONE 10 5 e0123423
MalignanciesSimon, T. A.; 2009 Annals of the 68 12 1819-1826
More benign Khedmat, H.; 2013 Progress in Ti 23 2 158-164
The CanadiarRamasubbu, K 2012 Annals of Clir 24 1 91-109
The Role of AALabbagh, A 2017 American J 17 3 12
Abatacept foMaxwell, L.; 2008 Cochrane Database of Syst 3 CD007277
A systematic Newland, A.; 2019 Hematology (24 1 679-719
A review of tlAlibhai, M. H. 2015 Journal of Sur 112 3 279-283
Atypical featGantz, M.; Bu 2017 Journal of the 77 5 952-957.e95·
Characteristilanotto, J. C.; 2019 Haematologi 104 8 1580-1588
Malignancy aAardoom, M 2018 Inflammator 24 4 732-741
Adherence tcSchwingshacl 2017 Nutrients 9 10
Association bSchierhout, G 2020 The Lancet. l 20 1 133-143
Atopic DermHallin-Overg 2019 Journal of the 33 2 e81-e82
Health Risks lLawin, Herve 2018 International 15 9
Mortality ancDonato, Fran 2016 International 89 8 1155-1168
Periodontal EMichaud, Doi 2017 Epidemiologi 39 1 49-58
TNF-alpha blkSilva, F.; Ciste 2012 Current Rheu 14 6 501-508
Venous throrRodrigues, Ce 2010 Journal of thr 30 1 67-78
Serious AdveHansen, R. A. 2007 Clinical Gastr 5 6 729-735.e72·
Skin diseases Patterson, Ar 2016 Journal of the 74 1 143-70
Single- VersuWang, Li; Gu, 2019 Transfusio 33 1 51-60
Alcohol conside Menezes, 2013 Asian Pacific 14 9 4965-72
Rituximab anFederico, Ma 2018 The Lancet. l 5 8 e359-e367
Vitamin D suBjelakovic, G 2008 Cochrane Database of Syst 4 CD007469
Sedentary tinBiswas, Aviro 2015 Annals of inte 162 2 123-32
Pediatric canJohnson, Kim 2017 PloS one 12 7 e0181246
Relationship Gupta, Sanja 2018 The Indian jo 148 1 56-76
Cardiac glycoOsman, Moh 2017 PloS one 12 6 e0178611
Green tea anAbe, Sarah Kr 2021 European Joul 75 6 865-876
Diffuse large Bonesteel, C 2020 Molecular ge 25 1 00663
Cancer IncideLaroche, Elen 2021 International 18 5
A critical reviChang, E. T.; I 2015 Annals of Epi 25 4 275-292
Association bSomigliana, E 2006 Gynecologic 101 2 331-41
Atopy and SpCui, Yubao; H 2016 Clinical review 51 3 338-352
Atopic dermaWang, H; Die 2006 The British jo 154 2 205-10
Allergies and Merril, R. M. 2008 Otorinolaring 58 1 61-82
Assessing theAyrignac, X.; I 2019 Expert Review 19 7 695-706
Human health
Chiu, W. A.; J
2013 Environmental Health Perspectives 121 3 303-311

The overall aizAntos, D; Zh
1994 The Journal of Pediatrics 21 10 1855-9

The risk of HCGarozzo, A.; f
2017 Molecular Medicine 15 5 3336-3339

Type 2 diabetesYang, W. S.; L
2016 European Journal of Gastroenterology & Hepatology 25 2 149-154

Occupational Descatha, Alè
2005 Cancer cause & control 16 8 939-53

InflammatorySultan, K.; Sh
2012 Practical Gastroenterology 36 8 13-18

Cancer risks εThet, Z.; Lam,
2020 Clinical Rheumatology 5

The Dark Side
Versini, M.; S
2017 Israel Medical Gazette 19 6 380-381

NON-HODGKFarmanfarma
2020 World Cancer Research Fund 7

Non-HodgkinWong, O; Rač
2000 Journal of occupational and environmental medicine 42 5 554-68

Is there an inLakatos, P L; l
2010 Current Drug Therapy 11 2 179-86

Vitamin D forHossein-Nezh
2013 Mayo Clinic Proceedings 88 7 720-755

The relationsYu, Mengxia;
2020 Scientific reports 10 1 551

TNF antagoniNasir, A.; Gre
2007 Bulletin of the World Health Organization 65 3 178-181

Smoking and Morton, L. M
2012 Leukemia & Lymphoma 53 10 1853-1854

Risk of lymphAng, Y. S.; Fai
2006 Gut 55 4 580-581

Sarcoidosis aCohen, P. R.;
2007 Clinics in Dermatology 25 3 326-333

Risks and berMcGovern, D
2005 Gut 54 8 1055

Richter SyndrVitale, C.; Fer
2016 Current Hematology & Oncology Reports 11 1 43-51

Rheumatoid :Klein, A.; Poll
2018 Hematological Oncology & the blasts 36 5 733-739

RESIDENTIAL Washburn, E.
1994 Cancer Causes & Control 5 5 487-487

Residential ePedersen, Ca
2015 British Journal of Cancer 113 9 1370-4

Polyphenols: Rothwell, Jos
2017 Current opinion in oncology 20 6 512-521

Risk of MycoGiovanni, B.;
2019 Journal of the European Academy of Dermatology and Venereology 34 6 1186-1195

Psoriasis, carRichard, M. A
2013 Journal of the American Academy of Dermatology 27 SUPPL.3 11-Feb

Meta-analysisSwen, G M I
2010 Occupational and Environmental Medicine 67 4 286-287

Adverse reactionWeber, R. W.
2004 Current Opinion in Allergy and Clinical Immunology 4 4 277-283

Long-term saYazici, Y.
2010 Clinical and Experimental Rheumatology 28 5 SUPPL. 61 565-567

Insights fromCooper, G. S.
2011 International Journal of Rheumatic Disease 8 8 3380-3398

Transfusion aCerhan, J. R.
2010 Blood 116 16 2863-2864

Tobacco smoKhani, Y.; Pol
2018 Biomedical Research 5 4 2142-2159

The relation IgEissler, E. K.
2004 Current Opinion in Allergy and Clinical Immunology 9 4 394-399

Risk of malignMannion, M.
2014 Current Opinion in Allergy and Clinical Immunology 26 5 538-542

Risk of cancerGarg, S. K.; Lc
2016 Current Opinion in Allergy and Clinical Immunology 32 4 274-281

Systemic lupusMao, Song; S
2016 Journal of Clinical and Investigative Dermatology 142 1 253-62

The epidemicGruilich, Andr
2005 Pathology 37 6 409-19

Themes in LitRashtil, S. L.
2019 Cancer Causes & Control 42 1 E28-E35

Occupational Gangemi, S.;
2016 Molecular Medicine Reports 14 5 4475-4488

Occupational Marant Mical
2018 Occupational Medicine 75 8 604-614

Occupational Brown, Terry
2012 British Journal 107 1 22-May

Occupational Brown, T.; Ru
2012 British Journal of Cancer 107 5 531-44

Nightshift woKolstad, Henrik
2008 Scandinavian Journal of Work, Environment and Health 34 1 5 303-311

New insights Chihara, Dai;
2015 Expert review 15 5 531-44
Malignancy RCush, J. J.; Da 2012 Rheumatic Di 38 4 761+-
Malignancy irEgiziano, G.; I 2016 Current Treat 2 1 13-20
Malignancy aTuresson, C.; 2013 Rheumatolog 52 1 14-May
Meta-analysis: Casjens, Swa 2019 International 145 6 1701
Exposure to jJurewicz, Joa 2006 International 19 3 152-69
Comparison tBassig, B. A.; 2016 Carcinogenes 37 7 692-700
Malignancies Goobie, G. C. 2015 Current Opin 27 5 454-460
Lymphoma, r Mariette, X. 2010 Joint, Bone, S 77 3 195-197
Male Infertili Rogers, M. J.; 2017 Seminars in R 35 3 298-303
Integrating uGlass, Saman 2016 Discovery me 21 115 181-8
Is there truly Dommasch, Et 2009 Dermatologic 22 5 418-430
Intestinal arcGarg, S. K.; Vi 2017 Gastroentero 46 3 515+
Insulin resistIounoue, M.; Ts 2012 Endocr.-Relat 19 5 F1-F8
Insufficient E Peyrin-Birou 2009 Clinical Gastr 7 10 1139-1139
Human immEngels, E. A.; 2005 Journal of the 97 6 407-409
Obesity and tLichtman, Ms 2010 The oncologi 15 10 1083-101
Sun exposure Negri, Eva 2010 Nutrition and 62 7 878-82
Obesity and cKey, T. J.; Spe 2010 Proceedings o 69 1 86-90
Hepatitis C viAnderson, L. 2008 International 122 8 X-XII
Do inflmMason, Mysh 2013 Inflammato 19 6 1306-21
Diabetes, gesChodick, G.; Z 2011 Women's He 7 2 227-237
Diabetes and Wang, T.; N 2013 Journal of Dia 5 4 378-390
Current statuKramer, Shira 2012 Environment 120 8 1067-75
Combination Borges, A. H. 2017 Current Opin 12 1 19-Dec
Clinical picturPapageorgiou 2015 Autoimmunit 14 7 641-649
Chemical expBlair, A.; Purc 2007 British Journ 139 5 753-761
CarcinogeniciBaan, R.; Stra 2007 Lancet Oncol 8 4 292-293
Cancer risks iGibbs, G. W.; 2014 Journal of Oc 56 5 540-559
Cancer in adcBohlius, J.; Fc 2018 Current Opin 13 3 196-203
Cancer and rDe Fijter, J. V 2017 Transplantati 101 1 45-55
Hepatitis C-aPeveling-Obe 2013 Journal of He 59 1 169-177
Hepatitis C viJadali, Zohrel 2012 Hepatitis moi 12 2 85-91
Hepatitis B arKwok, R. M.; 2016 Clinics in Live 20 4 693+
Immunomod Ponce, R. 2018 Current Opin 10 98-110
Epidemiology Wang, Sihe 2009 Nutrition resi 22 2 188-203
Epidemiology Nair, R.; Aror 2016 Oncology (Sw 91 1 Supplemen 18-25
Epidemiology Skrabek, P.; T 2013 Transfusion a 49 2 133-138
Epidemiology Mbulaiteye, S 2003 Hematolog 17 3 673-696
Epidemiology Boffetta, P. 2011 Annals of On 22 27-31
Does simian Engels, E. A. 2005 Cancer Invest 23 6 529-536
Epidemiology Turner, M. C. 2012 Cancer Immu 61 9 1493-1510
Epidemiology La Vecchia, C 2003 European Joul 12 1 14-May
Epidemiology Boffetta, P. / 2009 Journal of Oc 51 11 1275-1287

https://mc.manuscriptcentral.com/bmjmedicine
The human hLongnecker, I 1997 Annual Revie 18 211-244
Meta-analysisKotlyar, D. S.; 2010 Journal of Clinical Oncology
Lymphoma ri Stern, R. S. 2006 Archives of D 142 9 1132-1135
Helicobacter Crowe, S. E. 2005 Current Opin 21 1 32-38
Fournier's GaD'Arena, G.; 2013 Mediterranea 5 1 e2013067
Establishing t Weaver, J. L. 2012 Toxicologic P. 40 2 267-271
Can aspirin ai Farag, M. 2015 Journal of Cii 9 1 XE01-XE03
Estimating th Polednak, A. 2008 Cancer Detect 32 3 190-199
Incidence of lHashimoto, A 2015 Journal of Rh 42 4 564-571
Chronic HepaWang, Q.; De 2017 Annals of Inte 166 1 9-+
Diabetes, ant Gallagher, E. 2013 Current Opin 20 5 485-494
Metabolic syn Esposito, K.; 2014 Endocrine 45 3 362-364
Metformin ai Zi, F. M.; Zi, H 2018 Oncology Let 15 1 683-690
To Each Its O Koff, J. L.; Chi 2015 Current Hem 10 3 244-255
72nd Americ Kuznar, W. 2012 Formulary 47 8 287
Acquired imm Thirlwell, C.; 2003 Clinical Lymp 4 2 86-92
Adult Height Kabat, G. C.; I 2016 Current Nutri 5 1 18-28
Adult T-cell le Mehta-Shah, 2017 Journal of On 13 8 487-492
Alcohol const Afshar, M.; O 2019 Journal of Co 5 5 234-241
An epidemiol Huang, Y. H. J 2015 Cancer Epide 24 1 15-31
Allergies, Hel Sitaraman, R. 2015 Frontiers in \ 6 JUN 578
Allergy-assoc Dikalioti, Stav 2012 European jou 48 12 1860-6
Antenatal the Satge, D; Sax 1998 Paediatric an 12 1 84-117
Antihyperten Cassano, N.; I 2018 Giornale Itali 153 5 672-684
Are patients y Yates, W. B.; 2013 Journal of Op 3 1 9-Jan
Aspirin and c Potter, J. D. 2012 Cancer Epide 21 9 1439-1440
Association o Adi, Muham 2018 Current drug 19 11 902-909
Atypical man Bolis, V.; Kar 2016 Jornal de Ped 92 2 113-121
Benzene expr Smith, Marty 2007 Cancer epide 16 3 385-91
Beyond skin k Kovitwanichk 2020 Medical Jouri 212 11 528-534
Biologics in p Gouldt horpe, 2011 Gastroenterology Research and Practice 287574
Cancer and ir Biancone, Liv 2015 Inflammator 21 3 674-98
Cancer incide Boniol, M.; K 2017 Occupational 74 6 417-421
Cancer incide Amin, J.; Dori 2006 Journal of He 45 2 197-203
Do the Fertil i Momenimov 2019 Frontiers in e 10 101555782 313
Environment:Newby, J. A.; 2005 Journal of Nu 15 3-Feb 56-114
Epidemiologi Blair, Aaron; i 2009 Journal of agi 14 2 125-31
Epidemiologi Hardell, Lenn 2009 Pathophysiol 16 3-Feb 113-22
Do tumor nec Chen, Y.; Frie 2018 Cytokine 101 78-88
Epidemiolog Cerhan, Jame 2020 Hematology/ 34 4 631-646
Epidemiologo Roman, E.; Sr 2011 Histopatholo 58 1 14-Apr
Epstein-Barr Fugl, Anders; 2019 BMC family p 20 1 62
Epstein-barr Hsu, J L; Glassi 2000 Critical rev 34 1 27-53
Year	Title	Journal	Authors
2018	Extrahepatic Pol, S.; Vallet	Nature Reviews 15	5 283-290
2014	Fire fighters eFritschi, L.; Gl	Occupational 71	8 525-526
2018	Folate and ItsPieroth, René	Current nutrition 7	3 70-84
2012	Follicular lyme De Angelis, F.	Experimental 34	4 380-383
2015	Fruit and veg Turati, F.; Ros	British Journal of 113 S2	5 102-S110
2019	Genetically D Moore, Amy;	Frontiers in o 9	101568867 1539
2004	Health effect Franchini, M.	Annali dell'Ist 40	1 101-115
2017	Hidradenitis !Sotodion, B;	Journal of cut 21	2 158-161
2000	Highly active Appleby, P.; l	Journal of the 92	22 1823-1830
2019	Human T-Cell Eusebio-Ponc	Tropical Med 24	8 934-953
2012	Integrated aCFaudv©n, E.;	Obes. and Cancer Research 103 SUPPL. 1 Jan-64	
2020	Light alcohol Caprio, Giuse	Reviews on Recent Clinical Trials 73	
2005	Is atopy a prc Wang, H.; Die	Allergy 60	9 1098-1111
2004	MalignanciesHoshida, Y.; A	Pathology Int 54	9 649-658
2013	Aspirin for pr Sutcliffe, P; C	Health techn 17	43 1-253
2009	Lymphoma a Willett, E. V.;	Obes. and Cancer Research 35-69	
2018	Metformin ac Cunha JV Nio	Clinics 73	
2007	The associati Merril, Ray N	Annals of alle 99	2 102-150
1997	Organic solve Lyne, E.; An	Cancer Cause 8	3 406-419
2007	Sun exposure Armstrong, B	Cancer epide 16	3 396-400
2006	Autoimmune Hauswirth, Al	Leukemia & l 48	6 1139-49
2014	Association b Nyboe Ander	JAMA 311	23 2406-13
2016	Diabetes, Eps Spadigam, Ar	Indian journa 37	1 13-Jun
2003	Dioxin and ca Cole, Philip; T	Regulatory tc 38	3 378-88
2000	Increased risl McLaughlin, I	Liver transpl 6	5 570-4
2006	(Nutritional) i Baron, John A	Journal of the 98	14 945-6
2005	Skin cancer a Hu, Shasa; Fe	Dermatologic 31	1 76-82
1998	Review of the Davis, M K	International 11 grm, 871026: 29-33	
2007	Pesticides an Nasterlack, N	International 210	5 645-57
2016	A review of t Hills, W. P.	Infectious Ag 11	12
2005	Antibody indi Nashan, B.	Biodrugs 19	1 39-46
2014	Avoiding Ras Il Sao, D.; Vela	Clinical Gastr 12	2 274-276
2020	Genetically DM Moore, A.; ki	Frontiers in C 9	8
1999	Leukemia in Clapp, R. W.	New solution 9	4 375-387
2015	Metformin: R Provinciali, N	Expert Opinic 14	10 1573-1585
2017	Physical activ Moore, S. C.	Schottenfeld and Fraumeni Cancer Epidemiology 377-394	
2017	Psoriasis and Yin, L.; Hu, Y.	Biomedical R 28	5 2111-2113
2015	Safety of infi Khanna, R.; F	Expert Opinic 14	6 987-997
2016	ABO Mismatr Worel, N.	Transfusion 43	1 12-Mar
2010	Adverse effect Schonder, K.	Pediatr. Drug 12	1 35-49
2018	Decolonization Kuraitis, D.; V	Journal of He 2018	2382050
2017	Excess Weigh Arnold, Melir	Cancer epide 26	5 663-665
1997	A review of e Sathia kumar,	Critical Review 27	6 599-612

https://mc.manuscriptcentral.com/bmjmedicine
Title	Year	Journal	Volume	Issue	Pages
Alcoholic bevLatino-Martel	2016	Critical review			99 ago, 891604508-23
Body mass inChoi, E K; Par	2018	Annals of onc	29		3 749-757
EndometriosisKvaskoff, Maria	2015	Human repro	21		4 500-16
Cancer risks etHortlund, M.;	2017	International	140		5 1091-1101
EpidemiologySmedby, K. E.	2011	Seminars in C	21		5 293-298
Metabolic facNagel, G.; Stc	2012	Annals of Her	91		10 1519-1531
Plasma levelsFreeman, Mx	2012	Journal of en	2012	101516361	258981
Ranking occuRieutort, D.; I	2016	American Jou	59		7 561-574
Risk of canceYoukim, S.	2006	Archives of Ei	61		5 223-231
ABO blood grlodice, Simon	2010	European jou	46		18 3345-50
The challengSasco, Annie	2010	PloS one	5		1 e8621
Risk of lymphLargent, J.; O	2012	European Jou	21		3 274-280
Anti-TNF theFiorino, G.; D	2010	Clinical Upda	26		95-107
A critical reviChang, E. T.;	2014	Critical Revie	44 S1		Jan-81
ReproductiveCostas, Laura	2014	Critical review	92		3 181-93
Statin use is aPonvilawan, I	2020	J. Clin. Oncol.	38		15
OccupationalCatalani, Sim	2019	BMC cancer	19		1 1245
Tooth loss anShi, J.; Leng, I	2018	Oncotarget	9		19 15090-15100
The risk of deCani, Saveric	2014	Journal of de	75		1 9-Mar
Health effectZhivin, S.; Lau	2014	International	90		11 1104-1113
InflammatorStubgen, J. P.	2016	Journal of th	369		377-389
THE INCIDENCEFouladseresh	2019	World Cancei	6		7
Is Banning TeDanilla, Stefa	2020	Aesthetic Sur	40		7 721-731
A Systematic Kotlyar, D. S.;	2011	Clinical Gastr	9		1 36-U75
A systematic Marrie, Ruth	2015	Multiple scler	21		3 294-304
Ethylene oxicShore, R E; G;	1993	British journa	50		11 971-97
HLA-haploideMeybodi, M.	2019	Blood Advanc	3		17 2581-2585
Weight loss aNicholson, Br	2018	The British jo	68		670 e311-e322
Obesity and (Yang, Lin; Drz)	2016	Journal of clin	34		35 4231-4237
Adherence tcSofi, Francesco	2008	BMJ (Clinical	337	8900488	31a1344
Acrylonitrile :Cole, Philip; H;	2008	Regulatory tc	52		3 342-51
Adherence tcKohler, Lindss	2016	Cancer epidc	25		3 1018-28
Active CommDinu, Monica	2019	Sports medic	49		3 437-452
PentachloropCooper, Glnc	2008	Environment	116		8 1001-8
Comparison cDe Ridder, Jo	2016	Cancer cause	27		3 291-300
Associations Qiao, Yan; Ya	2018	BMC cancer	18		1 288
Nut ConsumpLong, Jieyi; Ji;	2020	Cancer epidc	29		3 565-573
Relationship Fernandez-M	2020	Environment	188		109787
Maternal expMavoungou,	2020	Cancer epidc	68		10179
Muscle-strenNascimento,	2021	The internati	18		1 69
ConsumptionLlaha, Fjorida	2021	Nutrients	13		2
Cellular PhonChoi, Yoon-Jl	2020	International	17		21
Exposure to RBoffetta, Pao	2018	Critical review	48		6 433-442
Title	Year	Journal	Volume	Pages	
--	------------	--	--------	-------	
Is periodontit (Corbella, Stef)	2018	PloS One	13	4	
Consumption (Makarem, Nc)	2016	Nutrition Reviews	74	6	
Thiazolidined (Colmers, I N)	2012	Diabetes & Metabolism	38	6	
Risk of lymphoma (Siegel, Corey)	2009	Clinical Gastroenterology	7	8	
The comparison (Garlethner, C)	2006	Journal of Rheumatology	33	12	
Comorbidities (Partington, R)	2018	Arthritis Research	20	1	
Dietary total (Parohan, M)	2019	Critical Reviews	138	ago, 8916045	
A review and Cohen, Sarah	2014	Occupational Reviews	71	11	
Systemic sclerosis (Boni, M)	2013	Rheumatology	52	1	
Sex Differences (Liu, Wen; Zhe)	2018	Disease Mark	2018	dim, 8604127	
Dietary factors (Tsai, Huei-Tin)	2010	Cancer Epidemiology	19	10	
Exposure to tHardell, Lenn	2002	Leukemia & Lymphoma	43	5	
Sweetened (Boyle, Peter; C)	2014	European Journal	23	5	
Risk of lymphoma (Kotylyar, David)	2015	Clinical Gastroenterology	13	5	
Hepatitis C (Khoury, Tawf)	2014	World Journal	20	43	
Association BGhasemiesfe,	2019	JAMA Network	2	11	
Cancer Risk (Wiggins, Tom)	2019	Obesity Surgery	29	3	
Effect of bariTee, May C; C	2013	Surgical Endc	27	12	
Exposure to Skim, A-Sol; Kc	2018	International	15	9	
The association (Song, Hyun Ji)	2020	European Journal of Clinical Pharmacology			
Dietary fat in Bertrand, Kin	2017	The American	106	2	
Cancer risk (Partenen, T; L)	1994	American Journal	26	6	
Exposure to tGlass, D; Sc	2017	Journal of Occupational & Environmental	14	11	
Mobile phone (Myung, Seun)	2009	Journal of Clinical Research	27	33	
A prospective Bertrand, Kin	2013	Cancer Prevent	6	8	
Proximity V (alefranc, A)	2020	Environ. Risque:	19	6	
Proximity to tLefranc, Agne	2020	Environnement	19	6	
[Influence of Contreras Ga]	2020	Influencia de	37	1	
Risk of cancer (Zaroushani, V)	2019	Iran Occup. H	16	4	
Meta-analysis (Wang, L.; Xie)	2010	Journal of Preventive Medicine	25	4	
Pills and cancSchmidmayr, L.	2014	Gynecologic Cancer	12	3	
Documented Magnani, C.;	2016	Epidemiology	40	5	
Does the baris Vanderbeken	2014	Obesite	9	3	
Domestic wa (Anzivino-Virico)	2012	Environneme	11	5	
Parental tob (Ferris, I. Torto)	2004	Revista Española	60	3	
Research proQi, G.; Feng, J.	2018	Chinese Journal	25	22	
Correlation bSun, Y.; Wang	2019	Chinese Journal	26	18	
EnvironmentZuurbier, M.;	2007	Environneme	6	1	
Pesticide expNicolle-Mir, L.	2012	Environneme	11	3	
HCV-assosiat Milovanova, T.	2018	Terapeutiche	90	6	
Childhood ca Lopez Duenas	2012	Revista Española	68	1	
Non-Hodgkin Lasfargues, G.	2017	Bulletin De L	201	9	
Risk of cancer (Boaventura, I.)	2007	Revista de Ps	29	1	
Overweight, Ancellin, R.; E
Depression, Lemogne, C.;

2013 Oncologie
2010 Psycho-Onco

15 4-Mar 193-201
4 1 22-27
DOI	Study	Notes
Xue 2017	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1016/j.chemosphere.2017.05.053	Exclusion reason: *Overlapping studies	
Zani 2017	Exclusion reason: *Overlapping studies	
Starup-Linde 2013	Exclusion reason: *Overlapping studies	
Matsuo 2004	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.2337/dc08-1034	Exclusion reason: *Overlapping studies	
Mitri 2008	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1186/ar2404	Exclusion reason: *Overlapping studies	
Smitten 2008	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1080/10428194.2017.1339873	Exclusion reason: *Overlapping studies	
Sergentanis 2018	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1002/ijc.31330	Exclusion reason: *Overlapping studies	
Psaltopoulou 2018	Exclusion reason: *Overlapping studies	
Yi 2014	Exclusion reason: *Overlapping studies	
Baris 1998	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.3109/10428194.2012.673225	Exclusion reason: *Overlapping studies	
Castillo 2012	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1016/j.ypmed.2019.03.035	Exclusion reason: *Overlapping studies	
Volesky 2019	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1097/MD.0000000000014755	Exclusion reason: *Overlapping studies	
Zhu 2019	Exclusion reason: *Overlapping studies	
Bagnardi 2015	Exclusion reason: *Overlapping studies	
Bassil 2007	Exclusion reason: *Overlapping studies	
Buja 2005	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1080/10408444.2016.1214681	Exclusion reason: *Overlapping studies	
Acquavella 2016	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.31557/APJCP.2019.20.11.3221	Exclusion reason: *Overlapping studies	
Soteriades 2019	Exclusion reason: *Overlapping studies	
Zhou 2015	Exclusion reason: *Overlapping studies	
Machado 2014	Exclusion reason: *Overlapping studies	
Keller-Byrne 1997	Exclusion reason: *Overlapping studies	
LeMasters 2006	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1002/art.37969	Exclusion reason: *Overlapping studies	
Onishi 2013	Exclusion reason: *Overlapping studies	
http://dx.doi.org/10.1111/j.1708-8305.2006.00029.x	Exclusion reason: *Overlapping studies	
Tokumaru 2006	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1016/j.ejca.2012.11.001	Exclusion reason: *Overlapping studies	
vanderRhee 2013	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1016/j.leukres.2013.06.007	Exclusion reason: *Overlapping studies	
Dalia 2013	Exclusion reason: *Overlapping studies	
http://dx.doi.org/10.1016/j.annepidem.2017.01.008	Exclusion reason: *Overlapping studies	
Goodman 2017	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1136/oemed-2018-105655	Exclusion reason: *Overlapping studies	
El-Zaemey 2019	Exclusion reason: *Overlapping studies	
Han 2016	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1155/2013/371610	Exclusion reason: *Overlapping studies	
Qi 2015	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1080/16078454.2019.1636485	Exclusion reason: *Overlapping studies	
Xu 2019	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1016/j.mrrev.2019.02.001	Exclusion reason: *Overlapping studies	
Zhang 2019	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.4317/medoral.23166	Exclusion reason: *Overlapping studies	
Wu 2020	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1016/j.annepidem.2015.04.002	Exclusion reason: *Overlapping studies	
Goodman 2015	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1016/j.numecd.2020.09.023	Exclusion reason: *Overlapping studies	
Ling 2021	Exclusion reason: *Overlapping studies	
Merhi 2007	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1590/1980-549720200022	Exclusion reason: *Overlapping studies	
Moura 2020	Exclusion reason: *Overlapping studies	
https://dx.doi.org/10.1007/s11356-021-14789-3	Exclusion reason: *Overlapping studies	
Roingeard 2021	Exclusion reason: *Overlapping studies	
Abar 2019 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1093/annonc/mdz045

Psaltopoulou 2019 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1002/ijc.32109

Hidayat 2018 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1111/obr.12705

Fang 2018 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1002/ijc.31553

Hidayat 2018 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1016/j.critrevonc.2018.05.018

Larsson 2011 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1016/j.ejca.2011.06.029

Renehan 2008 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1002/ijc.32109

Yang 2020 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.3748/wjg.v21.i45.12896

Fiorino 2015 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1186/s13075-018-1760-3

Song 2018 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1371/journal.pone.0105709

Shen 2014 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1016/j.jand.2018.11.007

Bonovas 2007 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1016/j.jpeds.2020.08.087

Komaki 2021 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1016/j.critrevonc.2018.05.018

Amoori 2015 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1136/oem.2007.036913

Steinmaus 2008 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1007/s10552-016-0745-2

Solimini 2016 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1371/journal.pone.0087019

Yi 2014 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1016/j.jand.2018.11.007

Chao 2008 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1111/jdv.12165

Pouplard 2013 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1007/s00125-018-4664-5

Ohkuma 2018 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1289/ehp.1002318

Vlaanderen 2011 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1136/oemed-2012-101212

Karami 2013 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1093/aje/kwn160

Chang 2008 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1158/1055-9965.EPI-13-0182

Vermaete 2013 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1093/ije/dyz017

Leon 2019 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1002/cam4.411

Pradelli 2015 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1158/1055-9965.EPI-13-0699

Jochem 2014 Exclusion reason: *Overlapping studies;
http://dx.doi.org/10.1080/10590501.2013.782174

Zani 2013 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1016/j.leukres.2014.06.025

Apor 2014 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1093/jnci/djt107

Hansen 2013 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1080/10590501.2013.782174

Sergentanis 2019 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.1093/ije/dyz017

McTiernan 2019 Exclusion reason: *Overlapping studies;
https://dx.doi.org/10.23749/mdl.v111i1.8967

Donato 2020 Exclusion reason: *Overlapping studies;
http://dx.doi.org/Lenz 2009 Exclusion reason: Incorrect component study design;
http://dx.doi.org/Xiang 2011 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Boehmer 2011 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Ye 2020 Exclusion reason: Incorrect exposure;
Lee 2004 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Papadopoulou 2012 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Yang 2014 Exclusion reason: Incorrect exposure;
https://dx.doi.org/VonBehren 2011 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Green 2011 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Gibson 2013 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Lens 2005 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Saleh 2020 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Gunnell 2001 Exclusion reason: Incorrect exposure;
10.1007/s10552-012-0098-4 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Stubgen 2017 Exclusion reason: Incorrect exposure;
10.1002/ijc.26001 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Boehmer 2012 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Gibson 2013 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Papadopoulou 2012 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Grulich 2010 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Saleh 2020 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Gunnell 2001 Exclusion reason: Incorrect exposure;
10.1007/s10552-020-01266-4 Exclusion reason: Incorrect exposure;
https://dx.doi.org/Wade 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Stubgen 2017 Exclusion reason: Incorrect indication;
https://dx.doi.org/Gibson 2013 Exclusion reason: Incorrect indication;
https://dx.doi.org/Papadopoulou 2012 Exclusion reason: Incorrect indication;
https://dx.doi.org/Grulich 2010 Exclusion reason: Incorrect indication;
https://dx.doi.org/Saleh 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Gunnell 2001 Exclusion reason: Incorrect indication;
10.1007/s10552-020-01266-4 Exclusion reason: Incorrect indication;
https://dx.doi.org/Wade 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Stubgen 2017 Exclusion reason: Incorrect indication;
https://dx.doi.org/Gibson 2013 Exclusion reason: Incorrect indication;
https://dx.doi.org/Papadopoulou 2012 Exclusion reason: Incorrect indication;
https://dx.doi.org/Grulich 2010 Exclusion reason: Incorrect indication;
https://dx.doi.org/Saleh 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Gunnell 2001 Exclusion reason: Incorrect indication;
10.1007/s10552-020-01266-4 Exclusion reason: Incorrect indication;
https://dx.doi.org/Shi 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Ghajarzadeh Exclusion reason: Incorrect indication;
https://dx.doi.org/Yin 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Gomez-IzquierdoExclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Gomez-Izquierdo 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Gomez-Izquierdo 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Haber 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Lotfi-Foroushani 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Karmacharya 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Peng 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Sanchez-Sanchez 2020 Exclusion reason: Incorrect indication;
https://dx.doi.org/Reddam 2021 Exclusion reason: Incorrect indication;
https://dx.doi.org/Anmella 2021 Exclusion reason: Incorrect indication;
http://dx.doi.org/10.1097/MEG.0000000000000761
Duricova 2017 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1097/CCO.0b013e32834e0531
LeBlay 2012 Exclusion reason: Incorrect indication;

http://dx.doi.org/10.1152/physrev.00030.2014
Balter 2012 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1007/s11908-009-0075-6
Huang 2006 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1136/bmj.g3743
Salasco 2004 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1007/s00125-009-1568-4
Fortmann 2013 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1016/j.cgh.2014.07.007
Gallagher 2015 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1155/2019/7676909
Bosetti 2003 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1186/1471-2482-13-S2-S14
Nguyen 2010 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1007/s12032-014.2
Desai 2014 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1155/2019/7676909
Dejgaard 2009 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1158/1940-6207.CAPR-13-0424
Mekuria 2019 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1097/DCR.0b013e31825d9269
Gandini 2014 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1016/j.cgh.2015.03.008
Grosso 2013 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.4155/cli.13.2
Tong 2014 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1007/s13668-015-0141-7
Tzavara 2013 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1093/annonc/mds337
Nieminen 2015 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1016/j.cgh.2014.07.007
Anonymous 2014 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1016/j.cgh.2015.03.008
Anonymous 2015 Exclusion reason: Incorrect indication;

10.1007/s12032-014.2
Zhang 2014 Exclusion reason: Incorrect indication;

10.1136/annrheumdis-2016-210566
Nocturne 2017 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1007/s13668-015-0141-7
Schwingshackl 2016 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1186/1476-069X-10-9
Bagnardi 2013 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1186/1471-2482-13-S2-S14
Pruss-Ustun 2011 Exclusion reason: Incorrect indication;

http://dx.doi.org/10.1016/j.jcte.2015.02.003
Rafie 2015 Exclusion reason: Incorrect indication;

http://dx.doi.org/10.1016/j.jaci.2012.01.033
Weinand 2015 Exclusion reason: Incorrect indication;

http://dx.doi.org/10.1093/nutrit/nux012
Brinton 2005 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1017/S0007114512001614
Gerber 2012 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1016/j.jaci.2012.01.033
Busse 2012 Exclusion reason: Incorrect indication;

Tolbert 1997 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1111/ecc.12427
vanUffelen 2010 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1002/14651858.CD005195.pub2
Dennert 2011 Exclusion reason: Incorrect indication;

Arentz-Hansen 2007 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1186/1476-511X-10-127
Psaltopoulou 2011 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1016/S1470-2045(13)70550-3
Kamangar 2014 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1186/1471-2407-14-712
Shanmugalingam 2014 Exclusion reason: Incorrect indication;

Aune 2016 Exclusion reason: Incorrect indication;

https://dx.doi.org/10.1093/nutrit/nuv006
Wu 2015 Exclusion reason: Incorrect indication;

http://dx.doi.org/10.1016/j.yrtph.2013.10.007
Lee 2014 Exclusion reason: Incorrect indication;
Filippini 2020 Exclusion reason: Incorrect indication ;
http://dx.doi.org/10.1016/j.jgr.2015.08.007

Jin 2016 Exclusion reason: Incorrect indication ;
http://dx.doi.org/10.1016/j.toxlet.2013.11.013

Zhang 2019 Exclusion reason: Incorrect indication ;
http://dx.doi.org/10.30476/mejc.2019.78705.0

Zaki 2020 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1093/annonc/mdq610

Pelucchi 2011 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1080/09637486.2016.1261087

Bella 2017 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.18632/oncotarget.9593

Kotecha 2016 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1080/01635581.2014.922203

Ko 2014 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1111/cas.12241

Sasazuki 2013 Exclusion reason: Incorrect indication ;
http://dx.doi.org/10.1007/s12170-010-0136-2

deMiguel-Yanes 2011 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.3389/fimmu.2017.00992

Aussy 2017 Exclusion reason: Incorrect indication ;
10.1038/s41380-019-0595-x

Wang 2020 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1001/jamacardio.2019.0302

Calvillo-Arguelles 2019 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1080/10408444.2016.1182116

Haussmann 2016 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1002/acr.22815

Desai 2016 Exclusion reason: Incorrect indication ;
10.1016/j.bjc.2011.05.012

Gossec 2016 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1186/1471-2407-11-96

Yu 2011 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1016/j.berh.2011.10.009

Gullick 2011 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1038/bjc.2011.476

Parkin 2011 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1097/JOM.0000000000001202

Mundt 2018 Exclusion reason: Incorrect indication ;
Merrill 2005 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1002/ijc.32062

Wang 2019 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1530/ERC-12-0176

Hieu 2012 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1210/jc.2017-02457

Dal 2018 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.3389/fimmu.2017.00992

Kotronias 2017 Exclusion reason: Incorrect indication ;
Fu 1995 Exclusion reason: Incorrect indication ;
Onega 2006 Exclusion reason: Incorrect indication ;
Martin 2005 Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1002/14651858.CD005004.pub3

http://dx.doi.org/10.1016/j.jgr.2015.08.007

Exclusion reason: Incorrect indication ;

http://dx.doi.org/10.1016/j.toxlet.2013.11.013

Exclusion reason: Incorrect indication ;

http://dx.doi.org/10.30476/mejc.2019.78705.0

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1093/annonc/mdq610

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1080/09637486.2016.1261087

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.18632/oncotarget.9593

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1080/01635581.2014.922203

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1111/cas.12241

Exclusion reason: Incorrect indication ;

http://dx.doi.org/10.1007/s12170-010-0136-2

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.3389/fimmu.2017.00992

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1002/acr.22815

Exclusion reason: Incorrect indication ;

10.1016/j.bjc.2011.05.012

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1186/1471-2407-11-96

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1016/j.berh.2011.10.009

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1038/bjc.2011.476

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1002/ijc.32062

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1530/ERC-12-0176

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1210/jc.2017-02457

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.3389/fimmu.2017.00992

Exclusion reason: Incorrect indication ;

https://dx.doi.org/10.1002/14651858.CD005004.pub3

Exclusion reason: Incorrect indication ;
https://dx.doi.org/10.1017/S0029665115004255
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.canep.2017.10.013
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1371/journal.pone.0158003
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.3945/ajcn.2010.29673
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1093/jnci/djv088
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1007/s00432-014-1773-5
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1371/journal.pone.0033411
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1007/s00038-016-0856-2
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1111/obr.12316
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1159/000337301
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1111/1753-0407.12435
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1007/s13277-014-2122-7
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.3305/nh.2015.31.2.7685
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1038/bjc.2017.106
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1200/JCO.2009.26.9084
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1038/bjd.16715
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.puhe.2017.04.026
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.maturitas.2013.11.010
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.3390/ijms17071052
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.parint.2019.101979
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1186/s12885-016-2532-6
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1007/s13277-014-2122-7
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.maturitas.2013.11.010
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.puhe.2017.04.026
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.puhe.2017.04.026
Exclusion reason: Incorrect indication;
https://dx.doi.org/10.1016/j.maturitas.2013.11.010
Exclusion reason: Incorrect indication;
10.1016/j.car Rota 2014 Exclusion reason: Incorrect indication;
10.1016/j.bei Molto 2018 Exclusion reason: Incorrect indication;
http://dx.doi Kumar 2015 Exclusion reason: Incorrect indication;
10.1111/jgh.-Huang 2019 Exclusion reason: Incorrect indication;
http://dx.doi Brandes 2006 Exclusion reason: Incorrect indication;
10.1177/039 H Lapadula 201 Exclusion reason: Incorrect indication;
https://dx.doi Liao 2013 Exclusion reason: Incorrect indication;
http://dx.doi Fellermann 2 Exclusion reason: Incorrect indication;
http://dx.doi Bosetti 2012 Exclusion reason: Incorrect indication;
http://dx.doi Li 2014 Exclusion reason: Incorrect indication;
http://dx.doi Rodriguez-Mi Exclusion reason: Incorrect indication;
https://dx.doi Olazagasti 2018 Exclusion reason: Incorrect indication;
http://dx.doi Schottenfeld Exclusion reason: Incorrect indication;
https://dx.doi Lee 2016 Exclusion reason: Incorrect indication;
http://dx.doi Kim 2017 Exclusion reason: Incorrect indication;
https://dx.doi Hargreave 2018 Exclusion reason: Incorrect indication;
https://dx.doi Vinson 2011 Exclusion reason: Incorrect indication;
https://dx.doi Cibula 2010 Exclusion reason: Incorrect indication;
https://dx.doi Colmers 2011 Exclusion reason: Incorrect indication;
https://dx.doi Skibola 2014 Exclusion reason: Incorrect indication;
https://dx.doi Petrelli 2019 Exclusion reason: Incorrect indication;
Dranitsaris 2016 Exclusion reason: Incorrect indication;
https://dx.doi Namazi 2018 Exclusion reason: Incorrect indication;
Inoue 2007 Exclusion reason: Incorrect indication;
Tennis 2005 Exclusion reason: Incorrect indication;
https://dx.doi Wu 2017 Exclusion reason: Incorrect indication;
Neuhouser 2011 Exclusion reason: Incorrect indication;
https://dx.doi Choi 2012 Exclusion reason: Incorrect indication;
Moore 2001 Exclusion reason: Incorrect indication;
https://dx.doi Jokela 2014 Exclusion reason: Incorrect indication;
https://dx.doi Reigstad 201 Exclusion reason: Incorrect indication;
Crump 2003 Exclusion reason: Incorrect indication;
https://dx.doi Wagner 2012 Exclusion reason: Incorrect indication;
https://dx.doi Patrono 2013 Exclusion reason: Incorrect indication;
https://dx.doi Wieser 2016 Exclusion reason: Incorrect indication;
https://dx.doi 16-Jun Exclusion reason: Incorrect indication;
https://dx.doi Sofi 2013 Exclusion reason: Incorrect indication;
https://dx.doi Saab 2018 Exclusion reason: Incorrect indication;
https://dx.doi Park 2014 Exclusion reason: Incorrect indication;
https://dx.doi Daroohegi 2017 Exclusion reason: Incorrect indication;
https://dx.doi Thompson 2012 Exclusion reason: Incorrect indication;
http://dx.doi.org/chiu 2013 Exclusion reason: Incorrect study design;
Zantos 1994 Exclusion reason: Incorrect study design;
10.3892/mmGarozzo 2017 Exclusion reason: Incorrect study design;
10.1097/cej.(Yang 2016 Exclusion reason: Incorrect study design;
Descatha 20C Exclusion reason: Incorrect study design;
Sultan 2012 Exclusion reason: Incorrect study design;
http://dx.doi.org Thet 2020 Exclusion reason: Incorrect study design;
Versini 2017 Exclusion reason: Incorrect study design;
Farmanfarma: Exclusion reason: Incorrect study design;
Wong 2000 Exclusion reason: Incorrect study design;
Lakatos 2010 Exclusion reason: Incorrect study design;
http://dx.doi.org Hossein-Nezhad 2013 Exclusion reason: Incorrect study design;
https://dx.doi.org Yu 2020 Exclusion reason: Incorrect study design;
Nasir 2007 Exclusion reason: Incorrect study design;
10.3109/104.Morton 2012 Exclusion reason: Incorrect study design;
http://dx.doi.org Ang 2006 Exclusion reason: Incorrect study design;
http://dx.doi.org Cohen 2007 Exclusion reason: Incorrect study design;
http://dx.doi.org McGovern 2C Exclusion reason: Incorrect study design;
10.1007/s111 Ex Vitale 2016 Exclusion reason: Incorrect study design;
10.1002/hon Klein 2018 Exclusion reason: Incorrect study design;
10.1007/bf01 Washburn 19 Exclusion reason: Incorrect study design;
https://dx.doi.org Pedersen 201Exclusion reason: Incorrect study design;
https://dx.doi.org Rothwell 201 Exclusion reason: Incorrect study design;
10.1111/jdv:. Giovanni 201 Exclusion reason: Incorrect study design;
10.1111/jdv:. Richard 2013 Exclusion reason: Incorrect study design;
https://dx.doi.org Swaen 2010 Exclusion reason: Incorrect study design;
http://dx.doi.org Weber 2004 Exclusion reason: Incorrect study design;
Yazici 2010 Exclusion reason: Incorrect study design;
http://dx.doi.org Cooper 2011 Exclusion reason: Incorrect study design;
http://dx.doi.org Cerhan 2010 Exclusion reason: Incorrect study design;
http://dx.doi.org Khani 2018 Exclusion reason: Incorrect study design;
http://dx.doi.org Geissler 2004 Exclusion reason: Incorrect study design;
http://dx.doi.org Mannion 201 Exclusion reason: Incorrect study design;
http://dx.doi.org Garg 2016 Exclusion reason: Incorrect study design;
https://dx.doi.org Mao 2016 Exclusion reason: Incorrect study design;
Grulich 2005 Exclusion reason: Incorrect study design;
http://dx.doi.org Rashti 2019 Exclusion reason: Incorrect study design;
10.3892/mm Gangemi 201 Exclusion reason: Incorrect study design;
10.1136/oen MarantMicallef 201 Exclusion reason: Incorrect study design;
https://dx.doi.org Brown 2012 Exclusion reason: Incorrect study design;
10.1038/bjc.: Brown 2012 Exclusion reason: Incorrect study design;
Kolstad 2008 Exclusion reason: Incorrect study design;
https://dx.doi.org Chihara 2015 Exclusion reason: Incorrect study design;
http://dx.doi.org/10.1016/j.yrtph.2012.05.012 Exclusion reason: Incorrect study design; Mink 2012

10.1182/blocMelenotte2C Exclusion reason: Incorrect study design; http://dx.doMeurman 20 Exclusion reason: Incorrect study design; Melenotte 2020

10.1002/acr:.Onel 2010 Exclusion reason: Incorrect study design; 10.1097/PRS.Brody 2015 Exclusion reason: Incorrect study design; Onel 2010

10.1002/ijc.3Raaschou-Nie Exclusion reason: Incorrect study design; http://dx.doi.org/Boffetta 200C Exclusion reason: Incorrect study design; Raaschou-Nielsen 2018

10.1186/s40557-016-0245-9 Exclusion reason: Incorrect study design; Blonski 2005

Grant 2013 Exclusion reason: Incorrect study design; http://dx.doi.org/13816128113199990294 Kostapanos 2013

Lakatos 2009 Exclusion reason: Incorrect study design; Lampe 2011 Exclusion reason: Incorrect study design; Lakatos 2009

Park 2012 Exclusion reason: Incorrect study design; 10.5812/jheaParvizishad 2 Exclusion reason: Incorrect study design; Phillips 2005

Spitzer 1990 Exclusion reason: Incorrect study design; http://dx.doi.Tavani 2005 Exclusion reason: Incorrect study design; Tavani 2005

http://dx.doi.Ungefroren 2 Exclusion reason: Incorrect study design; http://dx.doi.Holden 2016 Exclusion reason: Incorrect study design; Ungefroren 2015

DeChambrun Exclusion reason: Incorrect study design; https://dx.doi.Baldini 2018 Exclusion reason: Incorrect study design; Baldini 2018

Scott 2006 Exclusion reason: Incorrect study design; Yeung 2001 Exclusion reason: Incorrect study design; Scott 2006

https://dx.doi.Vettori 2010 Exclusion reason: Incorrect study design; Morrison 195 Exclusion reason: Incorrect study design; Vettori 2010

Hashibe 2005 Exclusion reason: Incorrect study design; https://dx.doi.Kricheldorff 2 Exclusion reason: Incorrect study design; Kricheldorff 2015

https://dx.doi.Rupani 2015 Exclusion reason: Incorrect study design; Davis 1993 Exclusion reason: Incorrect study design; Rupani 2015

https://dx.doConnor 2017 Exclusion reason: Incorrect study design; Blair 1999 Exclusion reason: Incorrect study design; Connor 2017

; Vilchez 2004 Exclusion reason: Incorrect study design; https://dx.doDomingo 202 Exclusion reason: Incorrect study design; Domingo 2020

https://dx.doKempen 200 Exclusion reason: Incorrect study design; Tanne 2007 Exclusion reason: Incorrect study design; Kempen 2008

https://dx.doMelenotte 2C Exclusion reason: Incorrect study design; Salim 2010 Exclusion reason: Incorrect study design; Melenotte 2010

http://dx.doi Bassig 2012 Exclusion reason: Incorrect study design; 10.1007/978-Guidotti 201 Exclusion reason: Incorrect study design; Bassig 2012

http://dx.doi Hanna 2019 Exclusion reason: Incorrect study design; 10.1023/A:1CZahm 1997 Exclusion reason: Incorrect study design; Hanna 2019

http://dx.doi McLean 2015 Exclusion reason: Incorrect study design;
10.1146/annLongnecker 1 Exclusion reason: Incorrect study design; Kotlyar 2010 Exclusion reason: Incorrect study design; http://dx.doi Stern 2006 Exclusion reason: Incorrect study design; Crowe 2005 Exclusion reason: Incorrect study design; http://dx.doi D’Arena 2013 Exclusion reason: Incorrect study design; http://dx.doi Weaver 2012 Exclusion reason: Incorrect study design; http://dx.doi Farag 2015 Exclusion reason: Incorrect study design; 10.1016/j.cdypolednak 20C Exclusion reason: Incorrect study design; 10.3899/jrhe Hashimoto 2t Exclusion reason: Incorrect study design; 10.7326/m16 Wang 2017 Exclusion reason: Incorrect study design; http://dx.doi Gallagher 20: Exclusion reason: Incorrect study design; http://dx.doi Esposito 201: Exclusion reason: Incorrect study design; 10.3892/ol.2 Zi 2018 Exclusion reason: Incorrect study design; http://dx.doi Koff 2015 Exclusion reason: Incorrect study design; Kuznar 2012 Exclusion reason: Incorrect study design; http://dx.doi Thirlwell 200 Exclusion reason: Incorrect study design; http://dx.doi Kabat 2016 Exclusion reason: Incorrect study design; http://dx.doi Mehta-Shah: Exclusion reason: Incorrect study design; 10.22317/jcn Afshar 2019 Exclusion reason: Incorrect study design; http://dx.doi Huang 2015 Exclusion reason: Incorrect study design; http://dx.doi Sitaraman 20 Exclusion reason: Incorrect study design; https://dx.doi Dikalioti 2012 Exclusion reason: Incorrect study design; Satge 1998 Exclusion reason: Incorrect study design; http://dx.doi Cassano 2011 Exclusion reason: Incorrect study design; http://dx.doi Yates 2013 Exclusion reason: Incorrect study design; http://dx.doi Potter 2012 Exclusion reason: Incorrect study design; https://dx.doi Adil 2018 Exclusion reason: Incorrect study design; 10.1016/j.jpe Bolis 2016 Exclusion reason: Incorrect study design; Smith 2007 Exclusion reason: Incorrect study design; http://dx.doi Kovitwanichk Exclusion reason: Incorrect study design; http://dx.doi Gouldthorpe Exclusion reason: Incorrect study design; https://dx.doi Biancone 201 Exclusion reason: Incorrect study design; 10.1136/oen Boniol 2017 Exclusion reason: Incorrect study design; 10.1016/j.jhe Amin 2006 Exclusion reason: Incorrect study design; https://dx.doi Momenimov Exclusion reason: Incorrect study design; http://dx.doi Newby 2005 Exclusion reason: Incorrect study design; https://dx.doi Blair 2009 Exclusion reason: Incorrect study design; https://dx.doi Hardell 2009 Exclusion reason: Incorrect study design; 10.1016/j.cyt Chen 2018 Exclusion reason: Incorrect study design; https://dx.doi Cerhan 2020 Exclusion reason: Incorrect study design; 10.1111/j.13l Roman 2011 Exclusion reason: Incorrect study design; https://dx.doi Fugl 2019 Exclusion reason: Incorrect study design; Hsu 2000 Exclusion reason: Incorrect study design;
10.1038/nrgastro.2017.172 Pol 2018 Exclusion reason: Incorrect study design;
http://dx.doi.org/10.1136/oemed-2014-102230 Fritschi 2014 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1007/s13668-018-0237-y Pieroth 2018 Exclusion reason: Incorrect study design;
http://dx.doi.org/10.1017/S0007114515000148 DeAngelis 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.3389/fonc.2019.01539 Turati 2015 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/S1578-2190(12)70829-6 Daudén 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.2174/1574887115666200628143015 Caprio 2020 Exclusion reason: Incorrect study design;
10.1016/j.tmi.2015.07.016 Moore 2020 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1111/tmi.13278 Eusebio-Ponce 2019 Exclusion reason: Incorrect study design;
10.1016/S1578-2190(12)70829-6 Daudén 2012 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.2174/1574887115666200628143015 Caprio 2020 Exclusion reason: Incorrect study design;
10.1016/j.tmi.2015.07.016 Moore 2020 Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.critrevonc.2016.01.002 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1093/annonc/mdx819 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1002/ijc.30531 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.semcancer.2011.09.010 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1007/s00277-012-1489-z | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1093/humupd/dmv013 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1155/2012/258981 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1002/ajim.22604 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.3200/aeoh.61.5.223-231 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.ejca.2010.08.009 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1371/journal.pone.0008621 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.critrevonc.2014.07.004 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1002/ijc.2014564489 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1002/ijc.30531 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.semcancer.2011.09.010 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1007/s00277-012-1489-z | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1155/2012/258981 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1093/humupd/dmv013 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1002/ijc.30531 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.semcancer.2011.09.010 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1002/ijc.30531 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1016/j.semcancer.2011.09.010 | Exclusion reason: Incorrect study design;
https://dx.doi.org/10.1371/journal.pone.0195683
Corbella 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1186/s13075-018-1757-y
Partington 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.critrevonc.2019.04.003
Parohan 2019
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/rheumatology/kes303
Bonifazi 2013
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1155/2018/7925219
Liu 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1136/oemed-2014-102193
Cohen 2014
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1155/2018/7925219
Partanen 1994
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.3748/wjg.v20.i43.16197
Khoury 2014
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1001/jamanetworkopen.2019.16318
Ghasemiesfe 2019
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1007/s00464-013-3127-9
Tee 2013
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.3390/ijerph15091981
Kim 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1007/s00228-020-02927-8
Song 2020
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1684/ERS.2020.1495
Lefranc 2020
Exclusion reason: Non-English;

https://dx.doi.org/10.20960/nh.02588
ContrerasGarcia 2020
Exclusion reason: Non-English;

https://dx.doi.org/10.1007/s10304-013-0623-x
Wang 2010
Exclusion reason: Non-English;

https://dx.doi.org/10.1684/ers.2012.0559
Anzivino-Viricel 2012
Exclusion reason: Non-English;

https://dx.doi.org/10.1007/s11690-014-0427-8
Vanderbeken 2014
Exclusion reason: Non-English;

https://dx.doi.org/10.1684/ERS.2012.0537
Nicolle-Mir 2012
Exclusion reason: Non-English;

https://dx.doi.org/10.1016/s0001-4079(19)30406-6
Lasfargues 2017
Exclusion reason: Non-English;

https://dx.doi.org/10.26442/terarkh2018906112-120
Milovanova 2018
Exclusion reason: Non-English;

https://dx.doi.org/10.1016/j.cgh.2014.05.015
Kotlyar 2015
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1097/CEJ.0000000000000015
Boyle 2014
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1200/JCO.2008.21.6366
Myung 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1158/1940-6207.CAPR-13-0132
Bertrand 2013
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1186/s13075-018-1757-y
Partington 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1186/s13075-018-1757-y
Partington 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1186/s13075-018-1757-y
Partington 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1186/s13075-018-1757-y
Partington 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1186/s13075-018-1757-y
Partington 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1186/s13075-018-1757-y
Partington 2018
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1093/nutrit/nuw003
Makarem 2016
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.diabet.2012.06.003
Colmers 2012
Exclusion reason: Insufficient data for analysis;

https://dx.doi.org/10.1016/j.cgh.2009.01.004
Siegel 2009
Exclusion reason: Insufficient data for analysis;
Title

Postmenopausal hormone therapy and non-Hodgkin lymphoma: a pooled analysis from the InterLymph Consortium

Occupational exposure to trichloroethylene and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Consortium

Non-Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph Consortium

Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma

Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: a pooled analysis from the InterLymph Consortium

Hepatitis C and non-Hodgkin lymphoma among 4784 cases: a pooled analysis from the InterLymph Consortium

Menstrual and reproductive factors, and hormonal contraceptive use: associations with non-Hodgkin lymphoma in a pooled analysis of InterLymph case-control studies

Self-reported history of infections and the risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Consortium

Personal sun exposure and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph Consortium

Occupation and Risk of Non-Hodgkin Lymphoma and Its Subtypes

Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma

Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma

Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma

Medical history, lifestyle, family history, and occupational risk factors for mantle cell lymphoma

Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma

Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sezary syndrome

Medical history, lifestyle, family history, and occupational risk factors for peripheral T-cell lymphomas

Medical history, lifestyle, family history, and occupational risk factors for sporadic Burkitt lymphoma/leukemia

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project

Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgink
Non-Hodgkin's lymphoma--meta-analyses of the effects of c
Cigarette smoking and risk of lymphoma in adults: a compre
Exposure to glyphosate and risk of non-Hodgkin lymphoma:
Fruits and vegetables consumption and risk of non-Hodgkin
Occupation and the risk of non-Hodgkin lymphoma.
Breast-feeding and childhood cancer: A systematic review w
The risk of cancer development in systemic sclerosis: a met
Occupational exposure to methylene chloride and risk of ca
Primary Sjogren's syndrome and malignancy risk: a systema
Increased risk of lymphoma among inflammatory bowel dis
Occupational exposure to pentachlorophenol causing lympl
Epstein-Barr virus and risk of non-Hodgkin lymphoma in the
Assessing the impact of HAART on the incidence of defining
Use of non-steroidal anti-inflammatory drugs and risk of no
Incidence of malignancy in adult patients with rheumatoid é
Vitamin D status and risk of non-Hodgkin lymphoma: a met
Red and Processed Meat Consumption Increases Risk for Nc
Allergic conditions are not associated with the risk of non-H
Occupational ultraviolet exposure and risk of non-Hodgkin's
Cancer risks in recipients of renal transplants: a meta-analysi
Occupational and environmental exposure to polychlorinate
Hepatitis C virus infection and non-hepatocellular malignant
Effects of Coffee, Black Tea and Green Tea Consumption on Systemic lupus erythematosus and malignancy risk: a meta-
Food of animal origin and risk of non-Hodgkin lymphoma ar
Dairy Product Consumption and Risk of Non-Hodgkin Lymph
Exposure to organochlorine pesticides and non-Hodgkin lym
Association between dietary nitrate and nitrite intake and s
Association between dioxin and cancer incidence and mort:
Associations between statin use and non-Hodgkin lymphom
Lack of association of poultry and eggs intake with risk of nc
Herpes zoster as a marker of occult cancer: A systematic rev
Carotenoid intake and risk of non-Hodgkin lymphoma: a sys
dietary Fat Consumption and Non-Hodgkin's Lymphoma Ris
Occupational exposure to polycyclic aromatic hydrocarbons
Risk of malignancy in ankylosing spondylitis: a systematic re
The association between non-Hodgkin lymphoma and organar
Incidence of cancer (other than gastric cancer) in pernicious
2,4-dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodg
Systematic Review and Meta-Analysis of Selected Cancers ir
Indoor tanning and the risk of developing non-cutaneous ca
Micronutrient Intake and Risk of Hematological Malignanci
Risk of childhood cancer and adult lung cancer after childhood exposure to passive smoke: A meta-analysis.

Hepatitis B virus and risk of non-Hodgkin lymphoma: An update.

A systematic review of epidemiologic studies of styrene and cancer.

Risk of malignancy in Behcet disease: A meta-analysis with systematic review.

Alcohol drinking and non-Hodgkin lymphoma risk: a systematic review and meta-analysis.

Cancer incidence and mortality among firefighters.

Risk of Lymphoma in Patients With Inflammatory Bowel Disease: A Meta-Analysis on the Relationship Between Hair Dye and Lymphoma Risk.

Association between Parkinson's Disease and Risk of Cancer: A PRISMA-compliant Meta-analysis.

Association between type 1 and type 2 diabetes and risk of lymphoma: A systematic review and meta-analysis.

Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis.

Prevalence, Incidence, and Risk of Cancer in Patients With Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-analysis.

Human Pegivirus Infection and Lymphoma Risk: A Systematic Review and Meta-analysis.

Sarcoidosis and Cancer Risk Systematic Review and Meta-analysis.

Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates.

Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: A systematic review and meta-analysis.

Cancer incidence among female flight attendants: a meta-analysis of published data.

A systematic review and meta-analysis of haematological malignancies in residents living near petrochemical facilities.

Association Between Night-Shift Work and Cancer Risk: Updated Systematic Review and Meta-analysis.

Risk of cancer among hairdressers and related workers: a meta-analysis.

Occupational exposure to gasoline and the risk of non-Hodgkin lymphoma: a review and meta-analysis of the literature.

Borrelia burgdorferi in primary cutaneous lymphomas: a systematic review and meta-analysis.

Use of insulin and insulin analogs and risk of cancer - systematic review.

Obesity and risk of non-Hodgkin's lymphoma: a meta-analysis.

Obesity is associated with increased relative risk of diffuse large B-cell lymphoma.

Obesity but not overweight increases the incidence and mortality of leukemia in adults: A meta-analysis of prospective cohort studies.

Increased incidence of non-Hodgkin lymphoma, leukemia, and myeloma in patients with diabetes mellitus type 2: a meta-analysis of observational studies.

Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis.

Hazardous waste and health impact: a systematic review of the literature.

Effects of omega-3 fatty acids on cancer risk: a systematic review.

Anaplastic Large Cell Lymphoma and Breast Implants: A Systematic Review.

Malignancies and monoclonal gammopathy in Gaucher disease: A systematic review of the relationship between artificial sweeteners and cancer risk.

Consumption of Sugars, Sugary Foods, and Sugary Beverages in Relation to Cancer Risk: A Systematic Review of Longitudinal Studies.

Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer risk in children and young adults born preterm: A systematic review?
Bernatsky 2007

Sergentanis 2013
Boffetta 2021
Chen 2013
Boffetta 2007
Martin 2005
Zhang 2013
Liu 2013
Liang 2014
Kandiel 2005
Zheng 2015
Teras 2015
Cobucci 2015
Ye 2015
Simon 2015
Lu 2014
Yang 2015
Yang 2017
Lu 2017
Wang 2017
Catalani 2019
Masarone 2019
Mirtavoos-Mahyari 2019
Cao 2015
Caini 2016
Wang 2016
Luo 2016
Xie 2016
Xu 2016
Ye 2017
Dong 2017
Schmidt 2017
Chen 2017
Han 2017
Alicandro 2016
Deng 2016
Hu 2017
Lahner 2018
Smith 2017
Schnatter 2018
O'Sullivan 2018
Psaltopoulou 2018
meta-analysis of summary level data
https://mc.manuscriptcentral.com/bmjmedicine
meta-analysis of summary level data
systematic review
eTable 3: AMSTAR 2 evaluation

Rating	Title	Author year	Item 1	Item 2	Item 3	Item 4				
Critically low	Benzene exposure	Kane 2010	No	No	NA	No				
Critically low	Maternal smoking	Antonomopoulous 2011	Yes	No	NA	Partial Yes				
Critically low	Lifestyle factors	Odutola 2020	No	Partial Yes	NA	No				
Critically low	Dietary trauma	Michels 2021	Yes	Partial Yes	NA	Partial Yes				
Critically low	Sunlight exposure	Kim 2021	Yes	No	NA	Partial Yes				
Critically low	Non-Hodgkin lymphoma	Kane 2011	Yes	No	NA	No				
Critically low	Trichloroethylene	Scott 2011	No	No	NA	Partial Yes				
Critically low	The relationship	Davies 2020	Yes	Partial Yes	No	Partial Yes				
Critically low	Association	Castillo 2010	No	No	NA	No				
Critically low	A systemic factor	Odutola 2021	No	Partial Yes	NA	No				
Critically low	Malaria Infection	Kotepui 2021	Yes	No	NA	Partial Yes				
Critically low	Meta-analysis	Tio 2012	No	No	NA	Partial Yes				
Critically low	The Risk of	Lo 2021	Yes	Partial Yes	NA	Partial Yes				
Critically low	Primary bile acids	Liang 2012	Yes	No	NA	No				
Low	Paracetamol	Prego-Dominguez 2021	Yes	Partial Yes	No	Partial Yes				
Critically low	Non-Hodgkin lymphoma	Bernatsky 2007	No	No	No	No				
Critically low	Cigarette smoking	Sergentanis 2013	No	No	NA	Partial Yes				
Critically low	Exposure to	Boffetta 2021	No	No	NA	No				
Critically low	Fruits and vegetables	Chen 2013	No	No	NA	No				
Critically low	Occupation	Boffetta 2007	No	No	No	No				
Critically low	Breast-feeding	Martin 2005	Yes	No	NA	No				
Critically low	The Risk of	Zhang 2013	No	No	NA	No				
Critically low	Occupation	Liu 2013	No	No	NA	Partial Yes				
Critically low	Primary Sjogren's syndrome	Liang 2014	Yes	No	NA	No				
Critically low	Increased exposure	Kandiel 2005	Yes	No	No	No				
Critically low	Occupation	Zheng 2015	No	No	NA	No				
Critically low	Epstein-Ba	Teras 2015	No	No	NA	No				
Critically low	Assessing	Cobucci 2015	Yes	No	NA	Partial Yes				
Critically low	Use of non-steroidal analgesics	Ye 2015	Yes	No	Yes	Yes				
Critically low	Incidence of	Simon 2015	Yes	No	NA	No				
Critically low	Vitamin D	Lu 2014	No	No	No	Partial Yes				
Critically low	Red and Pr	Yang 2015	No	No	NA	No				
Critically low	Allergic conditions	Yang 2017	No	No	NA	Partial Yes				
Critically low	Occupation	Lu 2017	No	No	NA	Partial Yes				
Critically low	Cancer risk	Wang 2017	Yes	No	NA	Partial Yes				
Low	Occupation	Catalani 2019	Yes	Partial Yes	NA	Partial Yes				
Critically low	Hepatitis C	Masarone 2019	Yes	No	NA	Partial Yes				
Critically low	Effects of	Mirtavoos-Mahyari 2019	Yes	No	NA	No				
Critically low	Systemic lupus	Cao 2015	Yes	No	NA	Partial Yes				
Critically low	Food of an	Cai 2016	No	No	No	Partial Yes				
Critically low	Dairy products	Wang 2016	No	No	NA	No				
Critically low	Exposure to	Luo 2016	No	No	NA	Partial Yes				
Critically low	Association	Xie 2016	No	No	NA	No				
Critically low	Association	Xu 2016	Yes	No	NA	No				
Strength of Evidence	Association	Year	Risk	Cancer Type	Study	Meta-Analysis	Results			
----------------------	-------------	------	------	-------------	-------	---------------	---------			
Critically low	Lack of ass	Dong 2017	No	NA	Partial Yes					
Critically low	Herpes zoster	Schmidt 2017	Yes	NA	No					
Critically low	Carotenoid	Chen 2017	No	NA	Partial Yes					
Critically low	Dietary Fat	Han 2017	No	NA	No					
Critically low	Occupation	Alicandro 2016	Yes	NA	Partial Yes					
Critically low	Risk of mal	Deng 2016	Yes	NA	No					
Critically low	The associ	Hu 2017	No	NA	No					
Critically low	Incidence	Lahner 2018	No	NA	Partial Yes					
Critically low	2,4-dichlor	Smith 2017	No	NA	Partial Yes					
Critically low	Systematic	Schnatter 2018	Yes	Yes	Partial Yes					
Critically low	Indoor tan	O'Sullivan 2018	No	No	No					
Critically low	Micronutri	Psaltopoulou 2018	Yes	Partial Yes	Yes					
Critically low	Risk of chil	Boffetta 2000	No	No	NA					
Critically low	Hepatitis B	Li 2018	Yes	No	NA					
Critically low	A systemat	Collins 2018	Yes	No	NA					
Critically low	Risk of mal	Wang 2019	Yes	No	NA					
Critically low	Alcohol dri	Tramacere 2012	No	No	NA					
Critically low	Cancer inc	Jalilian 2019	Yes	No	NA					
Critically low	Risk of Lyn	Yang 2018	Yes	No	Yes					
Critically low	A Meta-An	Qin 2019	No	No	NA					
Critically low	Association	Zhang 2019	Yes	No	NA					
Critically low	Association	Wang 2020	No	No	NA					
Moderate	Association	Salmon 2020	No	Partial Yes	Yes					
Critically low	Prevalence	Vaengebjerg 2020	Yes	Partial Yes	NA					
Critically low	Human Pe	Fama 2020	Yes	No	NA					
Critically low	Sarco	Bojani 2015	No	No	NA					
High	Cancer inc	Leung 2020	Yes	Partial Yes	NA					
Critically low	Non-hodgki	Schinasi 2014	No	No	NA					
Critically low	Cancer inc	Buja 2006	No	No	No					
Low	A systemic	Jephcote 2020	Yes	Partial Yes	NA					
Critically low	Association	Dun 2020	Yes	No	NA					
Critically low	Risk of can	Takkouche 2009	Yes	No	NA					
Critically low	Occupation	Kane 2010	Yes	No	NA					
Critically low	Borrelia bu	Travaglino 2020	No	No	NA					
Moderate	Use of insu	Karlstad 2013	Yes	Partial Yes	No					
Critically low	Obesity an	Larsson 2007	Yes	No	NA					
Critically low	Obesity is	Castillo 2014	Yes	No	NA					
Critically low	Obesity bu	Castillo 2012	Yes	No	NA					
Critically low	Increased	Castillo 2012	Yes	No	NA					
Critically low	Hepatitis C	DalMaso 2006	Yes	No	NA					
Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13		
--------	--------	--------	--------	--------	---------	---------	---------	--------		
No	No	No	Yes	No	No	No	No	No		
No	Yes	No	Partial Yes	No	Yes	No	No	No		
Yes	Yes	No	No	Yes	No	Yes	Yes	Yes		
Yes	No	No	Partial Yes	Yes	No	Yes	No	No		
No	Yes	No	Partial Yes	Yes	No	Yes	Yes	No		
No	No	No	No	No	No	No	No	No		
No	No	No	Partial Yes	No	No	Yes	No	No		
Yes	No	No	Partial Yes	Yes	No	Yes	No	No		
Yes	Yes	No	No	Yes	No	No	No	No		
No	No	No	Partial Yes	Yes	No	Yes	No	No		
No	No	No	No	No	No	Yes	No	No		
No	Yes	No	Yes	No	No	Yes	No	No		
No	No	No	No	Yes	No	Yes	No	No		
No	No	No	No	No	Yes	Yes	Yes	Yes		
No	No	Yes	No	No	No	Yes	No	No		
No	No	No	No	Yes	No	Yes	No	No		
No	No	No	No	Yes	No	Yes	No	No		
No	No	No	No	No	Yes	Yes	Yes	Yes		
No	No	No	No	No	No	Yes	No	No		
No	No	No	No	No	Yes	Yes	Yes	Yes		
Yes	Yes	Partial Yes	No	Partial Yes	No	Yes	No	No		
No	No	No	No	No	No	No	No	No		
Yes	Yes	No	No	Yes	No	Yes	No	No		
Yes	Yes	No	No	Yes	No	Yes	No	No		
No	No	No	No	No	Yes	Yes	Yes	Yes		
No	No	No	No	No	Yes	Yes	Yes	Yes		
Yes	Yes	No	No	Yes	No	Yes	No	No		
Yes	Yes	No	No	Yes	No	Yes	No	No		
Yes	Yes	No	No	Yes	No	Yes	No	No		
No	Yes	No	No	No	Yes	Yes	Yes	Yes		
No	Yes	No	No	No	Yes	Yes	Yes	Yes		
No	Yes	No	No	No	Yes	Yes	Yes	Yes		
No	Yes	No	No	No	Yes	Yes	Yes	Yes		
No	Yes	No	No	No	Yes	Yes	Yes	Yes		
No	Yes	No	No	No	Yes	Yes	Yes	Yes		
	Yes	Yes	No	No	No	No	Yes	No	No	
---	-----	-----	----	----	----	----	-----	----	----	
1	Yes	Yes	No	No	Yes	No	Yes	Yes	No	
2	Yes	Yes	No	No	Partial Yes	Partial Yes	No	Yes	Yes	Yes
3	No	Yes	No	No	No	Yes	No	Yes	No	No
4	Yes	Yes	No	No	Yes	No	Yes	No	Yes	No
5	No	No	Yes	Yes	No	No	No	No	No	No
6	No	Yes	No	No	No	Yes	No	Yes	Yes	Yes
7	Yes	Yes	No	No	Yes	No	Yes	No	No	No
8	No	No	Yes	Yes	No	No	No	No	No	No
9	No	Yes	No	No	No	Yes	No	Yes	No	No
10	No	Yes	No	No	Partial Yes	Yes	No	Yes	Yes	Yes
11	Yes	Yes	No	No	Yes	No	Yes	No	No	No
12	No	Yes	No	No	Yes	No	Yes	No	No	No
13	Yes	Yes	No	No	Yes	No	Yes	No	No	No
14	No	No	Yes	Yes	No	No	Yes	No	No	No
15	Yes	Yes	No	No	Yes	No	Yes	No	No	No
16	Yes	Yes	No	No	Yes	No	Yes	No	No	No
17	No	Yes	No	No	Yes	No	Yes	No	No	No
18	Yes	Yes	No	No	Yes	No	Yes	No	No	No
19	No	Yes	No	No	Yes	No	Yes	No	No	No
20	Yes	Yes	No	No	Yes	No	Yes	No	No	No
21	No	Yes	No	No	Yes	No	Yes	No	No	No
22	Yes	Yes	No	No	Yes	No	Yes	No	No	No
23	No	Yes	No	No	Yes	No	Yes	No	No	No
24	No	No	Yes	Yes	No	No	Yes	No	No	No
25	Yes	Yes	No	No	Yes	No	Yes	No	No	No
26	Yes	Yes	No	No	Yes	No	Yes	No	No	No
27	Yes	Yes	No	No	Yes	No	Yes	No	No	No
28	Yes	Yes	No	No	Yes	No	Yes	No	No	No
29	No	No	No	Partial Yes	No	No	Yes	No	No	No
30	Yes	Yes	No	No	Yes	No	Yes	No	No	No
31	No	Yes	No	No	Yes	No	Yes	No	No	No
32	Yes	Yes	No	No	Yes	No	Yes	No	No	No
33	No	No	No	No	No	Yes	No	Yes	No	No
34	Yes	Yes	No	No	Partial Yes	Yes	No	Yes	Yes	Yes
35	Yes	Yes	No	No	Yes	No	Yes	No	No	No
36	Yes	Yes	No	No	Yes	No	Yes	No	No	No
37	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	Yes
38	No	No	No	Yes	No	No	Yes	No	No	No
39	Yes	Yes	No	No	Partial Yes	Yes	No	Yes	Yes	Yes
40	No	No	No	No	No	Yes	No	Yes	No	No
41	Yes	Yes	No	No	Partial Yes	Yes	No	Yes	Yes	Yes
42	Yes	Yes	No	No	Yes	No	Yes	No	No	No
43	Yes	Yes	No	No	Yes	No	Yes	No	No	No
44	No	No	No	No	No	Yes	No	Yes	Yes	Yes
45	Yes	Yes	No	No	Partial Yes	Yes	No	Yes	Yes	Yes
46	Yes	No	No	No	No	Yes	No	Yes	Yes	Yes
47	Yes	No	No	Partial Yes	Yes	No	No	No	No	No
48	Yes	Yes	Partial Yes	Yes	Yes	No	Yes	No	Yes	No
49	No	No	Partial Yes	Partial Yes	No	No	Yes	No	No	No
50	No	No	No	No	Yes	No	Yes	No	No	No
51	Yes	No	No	No	Yes	No	Yes	No	No	No
52	Yes	No	No	No	Yes	No	Yes	No	No	No
53	Yes	No	No	No	Yes	No	Yes	No	No	No
54	No	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes
55	No	No	No	Partial Yes	No	No	Yes	No	No	No
Item 14	Item 15	Item 16								
--------	--------	--------								
Yes	No	Yes								
Yes	Yes	No								
Yes	No	Yes								
No	No	Yes								
No	Yes	Yes								
Yes	Yes	Yes								
Yes	Yes	Yes								
No	No	Yes								
No	No	Yes								
Yes	No	Yes								
Yes	Yes	Yes								
No	Yes	Yes								
Yes	Yes	Yes								
No	Yes	Yes								
No	No	Yes								
Yes	No	Yes								
Yes	Yes	Yes								
No	No	Yes								
No	Yes	Yes								
Yes	No	Yes								
Yes	Yes	Yes								
No	No	Yes								
No	Yes	Yes								
Yes	No	Yes								
Yes	Yes	Yes								
No	Yes	Yes								
Yes	Yes	Yes								
No	No	Yes								
No	Yes	Yes								
Yes	No	Yes								
Yes	Yes	Yes								
No	Yes	Yes								
Yes	No	Yes								
Yes	Yes	Yes								
No	Yes	Yes								
Yes	Yes	Yes								
Yes	Yes	Yes								
No	No	Yes								
Yes	Yes	Yes								
No	Yes	Yes								
Yes	No	Yes								
Yes	Yes	Yes								
No	Yes	Yes								
Yes	Yes	Yes								
	No	Yes	Yes							
---	-----	-----	-----							
1	Yes	Yes	Yes							
2	Yes	Yes	Yes							
3	Yes	Yes	Yes							
4	No	Yes	Yes							
5	Yes	Yes	Yes							
6	Yes	Yes	Yes							
7	Yes	Yes	Yes							
8	Yes	Yes	Yes							
9	Yes	Yes	Yes							
10	Yes	Yes	Yes							
11	Yes	Yes	Yes							
12	No	No	Yes							
13	Yes	Yes	Yes							
14	Yes	Yes	Yes							
15	No	No	Yes							
16	Yes	Yes	Yes							
17	No	No	Yes							
18	No	Yes	No							
19	Yes	Yes	Yes							
20	Yes	Yes	Yes							
21	No	Yes	No							
22	Yes	Yes	Yes							
23	No	Yes	Yes							
24	Yes	Yes	Yes							
25	No	Yes	No							
26	Yes	Yes	Yes							
27	No	Yes	Yes							
28	Yes	Yes	Yes							
29	No	Yes	Yes							
30	Yes	Yes	Yes							
31	No	Yes	Yes							
32	Yes	Yes	Yes							
33	Yes	Yes	Yes							
34	Yes	Yes	Yes							
35	No	Yes	Yes							
36	Yes	Yes	Yes							
37	Yes	No	Yes							
38	No	Yes	No							
39	Yes	Yes	Yes							
40	Yes	Yes	Yes							
41	Yes	Yes	Yes							
42	Yes	Yes	Yes							
43	Yes	Yes	Yes							
44	Yes	Yes	Yes							
45	Yes	Yes	Yes							
46	Yes	No	Yes							
47	No	Yes	Yes							
48	No	Yes	Yes							
49	No	Yes	Yes							
50	No	Yes	Yes							
51	Yes	Yes	Yes							
52	Yes	Yes	Yes							
53	Yes	Yes	Yes							
54	No	Yes	No							
55	No	Yes	No							
Risk factors category	Environmental risk factors									
-----------------------	----------------------------									
Dietary factors										
Meat	Red meat									
	Processed meat									
	Red meat									
	Processed meat									
	Processed meat									
	Red meat									
	Processed meat									
	White meat/poultry									
Fish	Fish									
	Fish									
	Fish									
	Fish									
Fruits and vegetables	Fruit and vegetable									
	Fruit									
	Vegetable									
	Fruit									
	Vegetable									
	Fruit									
	Vegetable									
Eggs and dairy	Eggs									
	Total dairy									
	Milk									
	Cheese									
	Cheese									
	Cheese									
	Cheese									
	Yogurt									
	Butter									
	Ice-cream									
Coffee and tea	Coffee									
	Black tea									
Carotenoids	Micronutrient intake/supplements									
-------------	--------------------------------									
Green tea	Vitamin A (retinol)									
Alpha-carotene	Vitamin C									
Alpha-carotene	Vitamin D									
Alpha-carotene	Vitamin D									
Alpha-carotene	Vitamin D									
Alpha-carotene	Vitamin E									
Alpha-carotene	Total fat									
Beta-carotene	Animal fat									
Beta-carotene	Vegetable fat									
Beta-carotene	Dietary nitrate									
Beta-carotene	Dietary nitrite									
Beta-cryptoxanthin	Dietary trans-fatty acid intake									
Beta-cryptoxanthin	Dietary nitrate									
Beta-cryptoxanthin	Dietary nitrite									
Beta-cryptoxanthin	Dietary trans-fatty acid intake									
Lycopene										
Andlutein/zeaxanthin										
Andlutein/zeaxanthin										
Andlutein/zeaxanthin										
Andlutein/zeaxanthin										
Andlutein/zeaxanthin										
Andlutein/zeaxanthin										
Vitamin D										
Vitamin D										
Vitamin D										
Vitamin D										
Vitamin E										
Heavy drinking										
Heavy drinking										
Heavy drinking										
Heavy drinking										
Heavy drinking										
Heavy drinking										
Heavy drinking										
Breastfeeding

Drugs, vaccinations and procedures

Non-steroidal anti-inflammatory drugs	Aspirin	Aspirin	Aspirin	Aspirin	NA-NSAIDS	NA-NSAIDS	NSAIDS	NSAIDS	NSAIDS	NSAIDS	NSAIDS	NSAIDS
Corticosteroids	Corticosteroids											
Statin	Statin	Statin	Statin	Statin	Statin							
Paracetamol intake	Paracetamol											
Bacillus calmette-guerin vaccination	Insulin											
Insulin	Insulin											
Anti-tumor necrosis factor alpha agents	Azathioprine and 6-mercaptopurine											

Inflammatory bowel disease treatment among patients with HIV/AIDS

| Red blood cell transfusion | Red blood cell transfusion | Red blood cell transfusion |

Non-dietary lifestyle factors

Physical activity	Physical activity	Physical activity	Physical activity
Hair dye	Hair dye	Hair dye	
Night shift work	Night shift work		
Indoor tanning	Indoor tanning	Indoor tanning	
Petrochemical exposure			
Paternal smoking	Paternal smoking		
Maternal smoking	Maternal smoking		
Ever smoking	Ever smoking		

Smoking

| Smoking | Ever smoking | Ever smoking | Ever smoking |

https://mc.manuscriptcentral.com/bmjmedicine
Sun exposure	Medical history and comorbid diseases
Personal sunlight exposure	B-cell activating diseases
Ambient sunlight exposure during lifetime	Psoriasis
Occupational ultraviolet exposure	Type 1 diabetes
	celiac disease
	Dermatitis herpetiformis
	Systemic sclerosis
	Crohn's disease
	Ulcerative colitis
	Sarcoidosis
	Other
	Behcet's disease
	Ankylosing spondylitis
	Biliary cirrhosis
	Eczema
	Allergy/Atopic diseases
Overweight and obesity	Type 2 diabetes
Overweight	Parkinson's disease
Overweight	Overweight
Obesity	Obesity
Obesity	Obesity
Obesity	Obesity
Obesity	Herpes zoster

Medical history and comorbid diseases

- **B-cell activating diseases**
 - Pernicious anemia

- **T-cell activating diseases**
 - Psoriasis
 - Type 1 diabetes
 - celiac disease

- **Other**
 - Behcet's disease
 - Ankylosing spondylitis
 - Biliary cirrhosis
 - Eczema

- **Allergy/Atopic diseases**
 - Asthma
 - Hay fever
 - Food allergy
 - Type 2 diabetes
 - Parkinson's disease

- **Overweight and obesity**
 - Overweight
 - Overweight
 - Overweight
 - Obese
 - Obese
 - Obese
 - Obese
| Infection |
|---|
| Herpes zoster |
| HPV |
| HPV |
| Epstein–Barr virus early antigen |
| Epstein–Barr virus viral capsid antigen |
| Borrelia burgdorferi |
| Borrelia burgdorferi |
| HBV |
| HCV |
| HCV |
| HCV |
| Malaria infection |

Chemicals and pesticides
Solvent
Formaldehyde^c
Chlorinated solvents^c
Any solvent^c
Aromatic hydrocarbons
Styrene^c
Benzene^c
Benzene^c
Aromatic hydrocarbons^c
Polychlorinated biphenyls
PCB^c
PCB^c
PCB^c
PCB^c
Dioxin
Dioxin
Trichloroethylene
Trichloroethylene^c
Occupational exposure to methylene chloride
Occupational exposure to gasoline^c
Carbamate/thiocarbamate pesticides
Carbamate/thiocarbamate herbicides
Carbamate insecticides
Organophosphate pesticides
Glyphosate
Glyphosate^c
Glyphosate^c
Malathion
Diazinon
Terbufos
Organophosphate pesticides
Organophosphate pesticides^c
Organochlorine pesticides

Pesticide
DDT
DDT^c
DDE
DDE^c
HCH
HCB
Chlordane
Pentachlorophenol^c

Phenoxy herbicides

Herbicide
2,4-D
MCPA
Phenoxy herbicides

Other pesticides

Pesticide
Amide herbicides
Benzoic acid herbicides
Triazine herbicides
Trifluralin
Pyrethroid/pyrethin^c

Occupation

Occupation	Occupations
Flight attendant	Female flight attendant^e
Farmer	Farmer
Firefighter	Firefighter^c
Hairdresser	Hairdresser
Petroleum refinery worker	Petroleum refinery worker
Meat worker	Meat worker
Printer	Printer
Wood worker	Wood worker
Occupational exposure to	Aluminum plant workers^c
polycyclic aromatic	Iron and steel foundry workers^c

Footnotes

- 2,4-D=2,4-Dichlorophenoxyacetic acid; ALCL=aANaplastic largecell lymphoma; BL=Burkitt Lymphoma; CI=confidence interval; CLL=chronic lymphocytic leukaemia; CR=confidence range; CSR=case survival rate; CI=confidence interval; DR=death rate; SR=standardized mortality rate; T=total; SIR=standardized incidence ratio; SRMA=systematic review and meta-analysis; RR=risk ratio; TCL=T-cell lymphoma.
- ^a P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.
- ^b Strength of association using the criteria listed in Table 1.
- ^c These studies considered NHL incidence and mortality.
- ^d Summary effect estimates were calculated using a fixed effect estimator.
- ^e Not using inverse variance weighting.
| Level of comparison | Outcome | Study type | Author, year | No. of primary studies | No. of cases |
|---------------------|---------|------------|--------------|------------------------|--------------|
| Highest vs lowest | NHL | MA | Yang 2015 | 18 | 12579 |
| Highest vs lowest | NHL | MA | Yang 2015 | 18 | 14112 |
| Highest vs lowest | DLBCL | MA | Yang 2015 | 5 | NA |
| Highest vs lowest | DLBCL | MA | Yang 2015 | 5 | NA |
| Highest vs lowest | FL | MA | Yang 2015 | 5 | NA |
| Highest vs lowest | CLL/SLL| MA | Yang 2015 | 5 | NA |
| Highest vs lowest | CLL/SLL| MA | Yang 2015 | 5 | NA |
| Highest vs lowest | NHL | MA | Dong 2017 | 10 | 10671 |
| Highest vs lowest | DLBCL | SRMA | Caini 2016 | 3 | 1134 |
| Highest vs lowest | FL | SRMA | Caini 2016 | 3 | 858 |
| Highest vs lowest | CLL/SLL| SRMA | Caini 2016 | 3 | 1337 |
| Highest vs lowest | NHL | SRMA | Caini 2016 | 11 | 8839 |
| Highest vs lowest | DLBCL | SRMA | Caini 2016 | 4 | 1228 |
| Highest vs lowest | FL | SRMA | Caini 2016 | 4 | 970 |
| Highest vs lowest | CLL/SLL| SRMA | Caini 2016 | 5 | 1703 |
| Highest vs lowest | NHL | MA | Chen 2013 | 4 | 1747 |
| Highest vs lowest | NHL | MA | Chen 2013 | 13 | 8476 |
| Highest vs lowest | NHL | MA | Chen 2013 | 13 | 8332 |
| Highest vs lowest | DLBCL | MA | Chen 2013 | 8 | NA |
| Highest vs lowest | DLBCL | MA | Chen 2013 | 7 | NA |
| Highest vs lowest | FL | MA | Chen 2013 | 8 | NA |
| Highest vs lowest | FL | MA | Chen 2013 | 7 | NA |
| Highest vs lowest | NHL | SRMA | Caini 2016 | 10 | 5775 |
| Highest vs lowest | NHL | MA | Wang 2016 | 7 | 4207 |
| Highest vs lowest | DLBCL | MA | Wang 2016 | 3 | 321 |
| Highest vs lowest | FL | MA | Wang 2016 | 3 | 355 |
| Highest vs lowest | CLL/SLL| MA | Wang 2016 | 3 | 390 |
| Highest vs lowest | NHL | MA | Wang 2016 | 16 | 7109 |
| Highest vs lowest | DLBCL | MA | Wang 2016 | 3 | 352 |
| Highest vs lowest | FL | MA | Wang 2016 | 3 | 390 |
| Highest vs lowest | CLL/SLL| MA | Wang 2016 | 3 | 477 |
| Highest vs lowest | NHL | MA | Wang 2016 | 10 | 5519 |
| Highest vs lowest | DLBCL | MA | Wang 2016 | 3 | 352 |
| Highest vs lowest | FL | MA | Wang 2016 | 3 | 390 |
| Highest vs lowest | CLL/SLL| MA | Wang 2016 | 3 | 477 |
| Highest vs lowest | NHL | MA | Wang 2016 | 4 | 1534 |
| Highest vs lowest | NHL | MA | Wang 2016 | 4 | 1598 |
| Highest vs lowest | NHL | SRMA | Mirtavoos-Mahy 2019 | 11 | 4418 |
| Highest vs lowest | NHL | SRMA | Mirtavoos-Mahy 2019 | 5 | 1600 |
| Study | Disease Type | Analysis | Reference | Cases | Controls |
|-------------------------------|--------------|----------|--------------------|-------|----------|
| Highest vs lowest | NHL SRMA | Mirtavoos-Mahy 2019 | 3 | 637 |
| Highest vs lowest | NHL SRMA | Chen 2017 | 8 | 2926 |
| Highest vs lowest | DLBCL SRMA | Chen 2017 | 3 | NA |
| Highest vs lowest | FL SRMA | Chen 2017 | 4 | NA |
| Highest vs lowest | CLL/SLL SRMA| Chen 2017 | 2 | NA |
| Highest vs lowest | NHL SRMA | Chen 2017 | 10 | 3946 |
| Highest vs lowest | DLBCL SRMA | Chen 2017 | 5 | NA |
| Highest vs lowest | FL SRMA | Chen 2017 | 6 | NA |
| Highest vs lowest | CLL/SLL SRMA| Chen 2017 | 4 | NA |
| Highest vs lowest | NHL SRMA | Chen 2017 | 7 | 2325 |
| Highest vs lowest | DLBCL SRMA | Chen 2017 | 4 | NA |
| Highest vs lowest | FL SRMA | Chen 2017 | 4 | NA |
| Highest vs lowest | CLL/SLL SRMA| Chen 2017 | 3 | NA |
| Highest vs lowest | NHL SRMA Psaltopoulou 2018 | 3 | 3314 |
| Highest vs lowest | NHL SRMA Psaltopoulou 2018 | 5 | 3879 |
| Highest vs lowest | NHL MA | Lu 2014 | 6 | 4400 |
| Highest vs lowest | DLBCL MA | Lu 2014 | 5 | NA |
| Highest vs lowest | FL MA | Lu 2014 | 5 | NA |
| Highest vs lowest | CLL/SLL MA | Lu 2014 | 4 | NA |
| Highest vs lowest | TCL MA | Lu 2014 | 3 | NA |
| Highest vs lowest | NHL SRMA Psaltopoulou 2018 | 5 | 3879 |
| Highest vs lowest | NHL MA | Han 2017 | 10 | 5042 |
| Highest vs lowest | DLBCL MA | Han 2017 | 5 | NA |
| Highest vs lowest | FL MA | Han 2017 | 5 | NA |
| Highest vs lowest | CLL/SLL MA | Han 2017 | 4 | NA |
| Highest vs lowest | TCL MA | Han 2017 | 4 | NA |
| Highest vs lowest | NHL MA | Han 2017 | 5 | 1432 |
| Highest vs lowest | NHL MA | Han 2017 | 5 | 1432 |
| Highest vs lowest | NHL SRMA Michels 2021 | 4 | 4701 |
| Highest vs lowest | NHL SRMA Xie 2016 | 7 | 1703 |
| Highest vs lowest | NHL SRMA Xie 2016 | 5 | 1547 |
| Ever vs never | NHL SRMA | Tramacere 2012 | 29 | 18759 |
| Ever vs never | TCL SRMA | Tramacere 2012 | 8 | NA |
| Ever vs never | BCL SRMA | Tramacere 2012 | 15 | NA |
| Ever vs never | DLBCL SRMA | Tramacere 2012 | 14 | NA |
| Ever vs never | FL SRMA | Tramacere 2012 | 14 | NA |
| Ever vs never | CLL/SLL SRMA| Tramacere 2012 | 12 | NA |
| Heavy vs never | NHL SRMA | Tramacere 2012 | 6 | 1181 |
| Ever vs never | N.H. | SRMA | Year | No. | Count |
|---------------|------|------|-----------|------|-------|
| Users vs non-users | NHL | SRMA | Ye 2015 | 10 | 6818 |
| Users vs non-users | DLBCL| SRMA | Ye 2015 | 3 | NA |
| Users vs non-users | FL | SRMA | Ye 2015 | 3 | NA |
| Users vs non-users | CLL/SLL | SRMA | Ye 2015 | 4 | NA |
| Users vs non-users | NHL | SRMA | Ye 2015 | 8 | 5427 |
| Users vs non-users | CLL/SLL | SRMA | Ye 2015 | 3 | NA |
| Users vs non-users | NHL | SRMA | Ye 2015 | 13 | 9896 |
| Users vs non-users | DLBCL| SRMA | Ye 2015 | 3 | NA |
| Users vs non-users | FL | SRMA | Ye 2015 | 3 | NA |
| Users vs non-users | CLL/SLL | SRMA | Ye 2015 | 4 | NA |
| Users vs non-users | TCL | SRMA | Ye 2015 | 3 | NA |
| Users vs non-users | BCL | SRMA | Ye 2015 | 5 | NA |
| Users vs non-users | NHL | MA | Bernatsky 2007 | 8 | 6897 |
| Users vs non-users | NHL | SRMA | Ye 2017 | 9 | 7825 |
| Users vs non-users | DLBCL| SRMA | Ye 2017 | 4 | 897 |
| Users vs non-users | FL | SRMA | Ye 2017 | 4 | 495 |
| Users vs non-users | MZL | SRMA | Ye 2017 | 3 | 215 |
| Users vs non-users | TCL | SRMA | Ye 2017 | 4 | 227 |
| Users vs non-users | NHL | SRMA | Prego-Dominguez | 3 | 3022 |
| Yes vs no | NHL | SRMA | Salmon 2020 | 11 | 4350 |
| Yes vs no | NHL | SRMA | Karlstad 2013 | 4 | NA |
| Yes vs no | NHL | SRMA | Yang 2018 | 3 | 35 |
| Patients vs general population | NHL | MA | Kandiel 2005 | 3 | 9 |
| Pre vs post-HAART era | NHL | SRMA | Cobucci 2015 | 6 | 7701 |
| Yes vs no | NHL | MA | Castillo 2010 | 14 | 5904 |
| Yes vs no | CLL/SLL | MA | Castillo 2010 | 5 | 3450 |
| Yes vs no | FL | MA | Castillo 2010 | 6 | NA |
| Yes vs no | DLBCL| MA | Castillo 2010 | 5 | NA |
| Highest vs lowest | NHL | SRMA | Davies 2020 | 17 | 13425 |
| Highest vs lowest | DLBCL| SRMA | Davies 2020 | 10 | 1957 |
| Highest vs lowest | FL | SRMA | Davies 2020 | 10 | 1467 |
| Highest vs lowest | CLL/SLL | SRMA | Davies 2020 | 8 | 1452 |
| Highest vs lowest | NHL | MA | Qin 2019 | 16 | 10967 |
| User before 1980 vs never | FL | SRMA | Odutola 2020 | 4 | 439 |
| Shift workers vs non shift | NHL | SRMA | Dun 2020 | 5 | >1000 |
| Ever vs never | NHL | SRMA | O’Sullivan 2018 | 10 | 14018 |
| Ever vs never | BCL | SRMA | O’Sullivan 2018 | 4 | NA |
| Ever vs never | TCL | SRMA | O’Sullivan 2018 | 3 | NA |
| Living near vs far | NHL | SRMA | Jephcote 2020 | 9 | 1078 |
| Ever vs never | childhood | MA | Boffetta 2000 | 4 | 204 |
| Ever vs never | childhood | MA | Antonopoulos 2001 | 7 | 1072 |
| Ever vs never | NHL | MA | Sergentanis 201 | 33 | 25891 |
| Ever vs never | DLBCL| MA | Sergentanis 201 | 12 | NA |
| Comparison | Disease | Type | Reference | Year | Count |
|----------------------------------|---------|------|-----------------|------|--------|
| Ever vs never | FL | MA | Sergentanis 201 | 11 | NA |
| Ever vs never | CLL/SLL | MA | Sergentanis 201 | 9 | NA |
| Ever vs never | TCL | MA | Sergentanis 201 | 12 | NA |
| Highest vs lowest | NHL | MA | Kim 2021 | 15 | 11272 |
| Highest vs lowest | CLL/SLL | MA | Kim 2021 | 4 | 1564 |
| Highest vs lowest | DLBCL | MA | Kim 2021 | 5 | 1843 |
| Highest vs lowest | FL | MA | Kim 2021 | 5 | 1348 |
| Highest vs lowest | TCL | MA | Kim 2021 | 4 | 413 |
| Highest vs lowest | NHL | MA | Kim 2021 | 7 | 196272 |
| Highest vs lowest | CLL/SLL | MA | Kim 2021 | 4 | NA |
| Highest vs lowest | DLBCL | MA | Kim 2021 | 4 | NA |
| Highest vs lowest | FL | MA | Kim 2021 | 4 | NA |
| Occupation vs general population | NHL | MA | Lu 2017 | 11 | 8829 |
| Occupation vs general population | TCL | MA | Lu 2017 | 4 | NA |
| Patients vs general population | NHL | SRMA | Lahner 2018 | 3 | 70 |
| Patients vs general population | NHL | SRMA | Vaengebjerg 202 | 8 | 7626 |
| Patients vs general population | NHL | MA | Wang 2020 | 3 | 1155 |
| Patients vs general population | DLBCL | MA | Tio 2012 | 3 | 13990 |
| Patients vs general population | CLL | MA | Tio 2012 | 3 | 51984 |
| Patients vs general population | NHL | MA | Kane 2011 | 6 | <1000 |
| Patients vs general population | NHL | SRMA | Zhang 2013 | 4 | 23 |
| Patients vs general population | NHL | SRMA | Lo 2021 | 6 | 30 |
| Patients vs general population | NHL | SRMA | Lo 2021 | 8 | 79 |
| Patients vs general population | NHL | SRMA | Bonifazi 2015 | 8 | 150 |
| Patients vs general population | NHL | SRMA | Wang 2019 | 3 | 4 |
| Patients vs general population | NHL | SRMA | Deng 2016 | 5 | >1000 |
| Patients vs general population | NHL | SRMA | Liang 2012 | 3 | 2860 |
| Patients vs general population | NHL | SRMA | Yang 2017 | 15 | NA |
| Patients vs general population | NHL | SRMA | Yang 2017 | 15 | 36903 |
| Patients vs general population | NHL | SRMA | Yang 2017 | 8 | 4528 |
| Patients vs general population | NHL | SRMA | Yang 2017 | 6 | 6191 |
| Patients vs general population | NHL | SRMA | Castillo 2012 | 21 | 17282 |
| Patients vs general population | NHL | SRMA | Zhang 2019 | 5 | 620 |
| Overweight vs normal | NHL | SRMA | Larsson 2007 | 16 | 21720 |
| Overweight vs normal | DLBCL | MA | Castillo 2014 | 16 | 7349 |
| Overweight vs normal | CLL | MA | Castillo 2012 | 9 | 2142 |
| Overweight vs normal | FL | SRMA | Odutola 2020 | 14 | 1798 |
| Obesity vs normal weight | NHL | SRMA | Larsson 2007 | 16 | 21720 |
| Obesity vs normal weight | DLBCL | MA | Castillo 2014 | 16 | 7349 |
| Obesity vs normal weight | CLL | MA | Castillo 2012 | 10 | 912 |
| Obesity vs normal weight | FL | SRMA | Odutola 2020 | 13 | 903 |
| Yes vs no | NHL | SRMA | Schmidt 2017 | 7 | 52134 |

https://mc.manuscriptcentral.com/bmjmedicine
Test	Group 1	Group 2	Year	N	P-value
Yes vs no	CLL	SRMA	Schmidt 2017	4	>10000
Yes vs no	DLBCL	SRMA	Fama 2019	3	54
Yes vs no	FL	SRMA	Fama 2019	3	75
High (75th percentile)	NHL	MA	Teras 2015	8	1421
High (75th percentile)	NHL	MA	Teras 2015	9	1764
Yes vs no	PCL	SRMA	Travaglino 2020	10	410
Yes vs no	DLBCL	SRMA	Travaglino 2020	3	53
Yes vs no	TCL	SRMA	Li 2018	12	NA
Yes vs no	DLBCL	SRMA	Li 2018	10	11943
Yes vs no	FL	SRMA	Li 2018	9	5124
Yes vs no	CLL/SLL	SRMA	Li 2018	8	10738
Yes vs no	BL	SRMA	Li 2018	3	264
Patients vs general population	FL	MA	DalMaso 2006	7	193
Patients vs general population	MZL	MA	DalMaso 2006	5	134
Patients vs general population	TCL	MA	DalMaso 2006	4	122
Patients vs general population	CLL/SLL	MA	DalMaso 2006	5	88
Yes vs no	eBL	SRMA	Kotepeui 2021	5	6055
Ever vs never	FL	SRMA	Odutola 2021	3	292
Ever vs never	FL	SRMA	Odutola 2021	3	143
Ever vs never	FL	SRMA	Odutola 2021	3	669
Highest vs lowest	NHL	SRMA	Collins 2018	16	553
Ever vs never	NHL	SRMA	Kane 2010	24	1420
Ever vs never	FL	SRMA	Odutola 2021	3	333
Ever vs never	FL	SRMA	Odutola 2021	3	7262
Highest vs lowest	NHL	SRMA	Catalani 2019	30	1439
Highest vs lowest	DLBCL	SRMA	Catalani 2019	6	NA
Highest vs lowest	FL	SRMA	Catalani 2019	5	NA
Highest vs lowest	CLL	SRMA	Catalani 2019	4	573
Highest vs lowest	NHL	SRMA	Xu 2016	4	4263
Highest vs lowest	NHL	SRMA	Scott 2011	17	>1000
Highest vs lowest	NHL	MA	Liu 2013	6	3001
Highest vs lowest	NHL	MA	Kane 2010	35	1042
Highest vs lowest	NHL	SRMA	Schinasi 2014	3	1621
Highest vs lowest	NHL	SRMA	Schinasi 2014	3	1621
Highest vs lowest	NHL	SRMA	Boffetta 2021	6	1297
Highest vs lowest	DLBCL	SRMA	Boffetta 2021	4	1285
Ever vs never	FL	SRMA	Odutola 2021	4	897
Yes vs no	NHL	MA	Hu 2017	7	NA
Yes vs no	NHL	MA	Hu 2017	7	NA
Yes vs no	NHL	MA	Hu 2017	5	NA
Yes vs no	NHL	MA	Hu 2017	10	NA
Ever vs never	FL	SRMA	Odutola 2021	3	545
Study	Disease	Group 1	Group 2	Year	p-value
---------------------------	----------	---------	---------	------	---------
Highest vs lowest	NHL MA	Luo 2016	5 1010		
Highest vs lowest	FL SRMA	Odutola21	3 741		
Highest vs lowest	NHL MA	Luo 2016	6 1184		
Highest vs lowest	FL SRMA	Odutola21	4 255		
Highest vs lowest	NHL MA	Luo 2016	7 1265		
Highest vs lowest	NHL MA	Luo 2016	8 1218		
Highest vs lowest	NHL MA	Luo 2016	13 6582		
Highest vs lowest	NHL SRMA	Zheng 2015	5 419		
Highest vs lowest	NHL SRMA	Smith 2017	11 <1000		
Highest vs lowest	NHL SRMA	Schinasi 2014	5 3986		
Highest vs lowest	NHL SRMA	Schinasi 2014	12 6493		
Highest vs lowest	NHL SRMA	Schinasi 2014	4 1155		
Highest vs lowest	NHL SRMA	Schinasi 2014	4 1155		
Highest vs lowest	NHL SRMA	Schinasi 2014	4 1346		
Ever vs never	FL SRMA	Odutola21	4 697		

Study	Disease	Group 1	Group 2	Year	p-value
Attendants vs general	NHL MA	Buja 2006	3 NA		
NA	NHL MA	Boffetta 2007	50 >1000		
Firefighter vs general	NHL SRMA	Jalilian 2019	14 NA		
Ever vs never	FL SRMA	Odutola21	3 5		
NA	NHL MA	Takkouche 2009	13 22425		
Worker vs general population	NHL SRMA	Schnatter 2018	16 NA		
Worker vs general population	NHL MA	Boffetta 2007	9 NA		
Worker vs general population	NHL MA	Boffetta 2007	6 >1000		
Worker vs general population	NHL MA	Boffetta 2007	11 NA		
Worker vs general population	NHL SRMA	Alicandro 2016	8 167		
Worker vs general population	NHL SRMA	Alicandro 2016	8 57		

ir kitt Lymphoma; CI=confidence interval; CLL/SLL=chronic lymphocytic leukemia/small lymphocytic rd estimator.
Effect measure	Random effects summary	P random	Strength of reported association	
RR 1.32 (1.12, 1.55)	8.52E-04	III		
RR 1.17 (1.07, 1.29)	1.04E-03	IV		
RR 1.34 (0.97, 1.86)	7.80E-02	NS		
RR 1.23 (1.03, 1.48)	2.50E-02	IV		
RR 1.21 (0.98, 1.48)	7.00E-02	NS		
RR 1.01 (0.84, 1.21)	9.22E-01	NS		
RR 1.06 (0.85, 1.33)	6.22E-01	NS		
RR 1.04 (0.86, 1.27)	7.06E-01	NS		
RR 0.96 (0.63, 1.48)	8.62E-01	NS		
RR 1.09 (0.51, 2.31)	8.34E-01	NS		
RR 1.05 (0.71, 1.54)	8.17E-01	NS		
RR 0.93 (0.72, 1.19)	5.83E-01	NS		
RR 0.86 (0.48, 1.56)	6.29E-01	NS		
RR 0.86 (0.48, 1.56)	6.29E-01	NS		
RR 0.90 (0.72, 1.14)	3.75E-01	NS		
RR 0.78 (0.66, 0.92)	3.00E-03	IV		
RR 0.97 (0.87, 1.08)	5.93E-01	NS		
RR 0.81 (0.71, 0.92)	1.00E-03	IV		
RR 0.94 (0.79, 1.13)	5.08E-01	NS		
RR 0.70 (0.54, 0.91)	7.00E-03	IV		
RR 0.96 (0.72, 1.28)	7.93E-01	NS		
RR 0.70 (0.53, 0.92)	1.10E-02	IV		
RR 1.17 (0.86, 1.60)	3.26E-01	NS		
RR 1.20 (1.02, 1.42)	3.00E-02	IV		
RR 1.73 (1.22, 2.45)	2.00E-03	IV		
RR 1.23 (0.88, 1.72)	2.28E-01	NS		
RR 1.35 (0.77, 2.39)	3.03E-01	NS		
RR 1.41 (1.08, 1.84)	1.10E-02	IV		
RR 1.49 (1.08, 2.06)	1.50E-02	IV		
RR 0.99 (0.47, 2.07)	9.81E-01	NS		
RR 1.04 (0.69, 1.55)	8.60E-01	NS		
RR 1.14 (0.96, 1.34)	1.24E-01	NS		
RR 0.93 (0.63, 1.37)	7.27E-01	NS		
RR 1.04 (0.74, 1.46)	8.32E-01	NS		
RR 1.28 (0.91, 1.81)	1.60E-01	NS		
RR 0.78 (0.54, 1.12)	1.83E-01	NS		
RR 0.90 (0.67, 1.21)	4.95E-01	NS		
RR 0.89 (0.63, 1.25)	5.15E-01	NS		
RR 0.97 (0.76, 1.23)	8.16E-01	NS		
RR 1.31 (1.04, 1.65)	2.20E-02	IV		
RR 1.57 (1.11, 2.20)	1.00E-02	IV		
RR 1.21 (0.97, 1.50)	8.60E-02	NS		
RR 1.01 (0.82, 1.24)	9.40E-01	NS		
	RR	CI	P-value	Category
---	--------	----------------	---------	----------
1	0.61	(0.38, 0.99)	4.30E-02	IV
2	0.87	(0.78, 0.97)	1.20E-02	IV
3	0.75	(0.59, 0.97)	2.30E-02	IV
4	0.84	(0.60, 1.16)	3.04E-01	NS
5	1.41	(0.80, 2.50)	2.40E-01	NS
6	0.80	(0.68, 0.94)	7.00E-03	IV
7	0.65	(0.46, 0.91)	1.30E-02	IV
8	0.80	(0.55, 1.16)	2.30E-02	NS
9	0.84	(0.67, 1.05)	1.28E-01	NS
10	0.75	(0.50, 1.13)	1.67E-01	NS
11	0.51	(0.15, 1.72)	2.83E-01	NS
12	0.99	(0.88, 1.12)	8.80E-01	NS
13	1.04	(0.69, 1.57)	8.62E-01	NS
14	0.90	(0.54, 1.49)	6.97E-01	NS
15	0.80	(0.60, 1.07)	1.31E-01	NS
16	0.82	(0.69, 0.97)	2.20E-02	IV
17	0.87	(0.54, 1.40)	5.78E-01	NS
18	0.70	(0.48, 1.02)	6.30E-02	NS
19	0.93	(0.70, 1.23)	6.26E-01	NS
20	0.92	(0.80, 1.07)	2.64E-01	NS
21	1.00	(0.90, 1.12)	1.00E+00	NS
22	1.07	(0.82, 1.40)	6.33E-01	NS
23	1.05	(0.73, 1.52)	8.06E-01	NS
24	1.00	(0.63, 1.58)	1.00E+00	NS
25	1.10	(0.56, 2.14)	7.93E-01	NS
26	1.69	(0.68, 4.20)	2.62E-01	NS
27	0.98	(0.88, 1.10)	7.36E-01	NS
28	1.26	(1.12, 1.42)	1.51E-04	III
29	1.41	(1.08, 1.84)	1.10E-02	IV
30	1.21	(0.97, 1.52)	9.60E-02	NS
31	0.91	(0.68, 1.23)	5.44E-01	NS
32	1.12	(0.60, 2.09)	7.35E-01	NS
33	1.31	(1.08, 1.58)	5.00E-03	IV
34	1.00	(0.84, 1.20)	1.00E+00	NS
35	1.32	(0.99, 1.76)	5.80E-02	NS
36	0.85	(0.68, 1.06)	1.57E-01	NS
37	1.54	(0.98, 2.41)	6.00E-02	NS
38	0.85	(0.79, 0.91)	8.50E-06	III
39	0.78	(0.58, 1.05)	1.00E-01	NS
40	0.86	(0.76, 0.97)	1.50E-02	IV
41	0.79	(0.68, 0.91)	1.60E-03	IV
42	0.80	(0.69, 0.92)	2.40E-03	IV
43	1.00	(0.80, 1.26)	1.00E+00	NS
44	0.84	(0.70, 1.00)	5.50E-02	NS
OR	1.00 (0.58, 1.73)	1.00E+00	NS	
-----	------------------	----------	----	
OR	1.02 (0.89, 1.17)	7.89E-01	NS	
OR	1.06 (0.85, 1.33)	6.22E-01	NS	
OR	1.15 (0.83, 1.59)	4.07E-01	NS	
OR	0.70 (0.54, 0.91)	7.00E-03	IV	
OR	1.33 (1.11, 1.60)	2.00E-03	IV	
OR	1.26 (0.86, 1.85)	2.39E-01	NS	
OR	0.95 (0.90, 1.22)	5.41E-01	NS	
OR	0.99 (0.81, 1.21)	9.28E-01	NS	
OR	1.07 (0.69, 1.68)	7.78E-01	NS	
OR	0.77 (0.51, 1.15)	2.09E-01	NS	
OR	1.04 (0.52, 2.07)	9.19E-01	NS	
OR	1.01 (0.75, 1.36)	9.52E-01	NS	
OR	1.13 (0.99, 1.29)	7.00E-02	NS	
OR	0.82 (0.69, 0.99)	3.10E-02	IV	
OR	0.78 (0.55, 1.11)	1.66E-01	NS	
OR	0.89 (0.62, 1.27)	5.35E-01	NS	
OR	0.54 (0.31, 0.94)	2.90E-02	IV	
OR	0.70 (0.41, 1.19)	1.91E-01	NS	
RR	1.20 (0.96, 1.51)	1.10E-01	NS	
RR	1.20 (1.01, 1.43)	4.00E-02	IV	
RR	1.16 (0.83, 1.62)	3.91E-01	NS	
RR	1.34 (0.62, 2.89)	4.70E-01	NS	
SIR	3.92 (1.78, 7.47)	2.10E-04	IV	
SIR	0.42 (0.26, 0.67)	3.00E-04	III	
RR	1.2 (1.07, 1.35)	2.00E-03	IV	
RR	1.66 (1.08, 2.56)	2.10E-02	IV	
RR	1.02 (0.67, 1.55)	9.32E-01	NS	
RR	1.06 (0.86, 1.3)	5.92E-01	NS	
RR	0.92 (0.84, 1.00)	6.00E-02	NS	
RR	0.95 (0.83, 1.09)	4.70E-01	NS	
RR	0.95 (0.80, 1.12)	5.60E-01	NS	
RR	0.95 (0.76, 1.20)	6.70E-01	NS	
OR	1.14 (1.01, 1.29)	3.60E-02	IV	
OR	1.66 (1.22, 2.25)	1.20E-03	IV	
OR	1.05 (0.99, 1.10)	6.91E-02	NS	
RR	0.95 (0.83, 1.08)	4.54E-01	NS	
RR	0.82 (0.70, 0.95)	1.10E-02	IV	
RR	1.23 (0.95, 1.59)	1.15E-01	NS	
RR	1.06 (0.97, 1.17)	2.25E-01	NS	
RR	2.08 (1.08, 3.98)	2.80E-02	IV	
OR	1.22 (1.02, 1.46)	2.57E-02	IV	
RR	1.05 (1.00, 1.09)	2.60E-02	IV	
RR	1.01 (0.95, 1.07)	7.60E-01	NS	
	RR	CI	p-value	Category
---	--------	---------------	---------	----------
1	1.05	(0.88, 1.25)	6.00E-01	NS
2	0.96	(0.89, 1.04)	3.10E-01	NS
3	1.23	(1.06, 1.43)	6.70E-03	IV
4	0.81	(0.71, 0.92)	1.50E-03	IV
5	0.80	(0.63, 1.00)	5.80E-02	NS
6	0.76	(0.66, 0.87)	1.10E-04	III
7	0.81	(0.67, 0.99)	3.40E-02	IV
8	1.00	(0.68, 1.46)	1.00E+00	NS
9	0.84	(0.73, 0.96)	1.30E-02	IV
10	0.93	(0.73, 1.19)	5.70E-01	NS
11	0.80	(0.69, 0.92)	2.40E-03	IV
12	0.82	(0.72, 0.93)	2.40E-03	IV
13	1.15	(0.99, 1.32)	5.60E-02	NS
14	1.16	(0.90, 1.50)	2.60E-01	NS
---	--------	---------------	---------	----------
15	1.16	(0.79, 1.71)	4.60E-01	NS
16	1.48	(1.30, 1.69)	9.49E-09	III
17	1.55	(1.15, 2.08)	4.00E-03	IV
18	2.25	(1.32, 3.85)	3.03E-03	IV
19	0.80	(0.46, 1.38)	4.34E-01	NS
20	6.48	(2.32, 18.1)	3.91E-04	IV
21	2.75	(1.42, 5.33)	2.60E-03	IV
22	1.81	(0.94, 3.49)	7.60E-02	NS
23	1.34	(0.95, 1.88)	9.30E-02	NS
24	1.43	(1.03, 1.99)	3.30E-02	IV
25	7.79	(3.76, 16.11)	3.16E-08	IV
26	1.03	(0.83, 1.28)	8.00E-01	NS
27	1.15	(0.36, 1.94)	7.58E-01	NS
28	0.99	(0.81, 1.21)	9.28E-01	NS
29	0.92	(0.86, 0.99)	3.00E-02	IV
30	0.73	(0.62, 0.84)	5.67E-05	III
31	0.71	(0.51, 0.98)	3.90E-02	IV
32	1.22	(1.07, 1.39)	2.94E-03	IV
33	0.80	(0.74, 0.87)	1.10E-07	IV
34	1.07	(1.01, 1.14)	2.80E-02	IV
35	1.14	(1.04, 1.24)	3.50E-03	IV
36	1.10	(1.03, 1.17)	3.40E-03	IV
37	0.99	(0.92, 1.07)	8.10E-01	NS
38	1.20	(1.07, 1.34)	1.50E-03	IV
39	1.29	(1.16, 1.43)	2.50E-06	III
40	1.17	(1.08, 1.27)	1.60E-04	IV
41	1.08	(0.99, 1.17)	7.10E-02	NS
42	1.72	(1.27, 2.32)	4.49E-04	III
	RR	95% CI	P Value	Stage
----	----------	--------------	---------	-------
1	1.65	(1.20, 2.25)	2.00E-03	IV
2	3.29	(1.63, 6.62)	1.00E-03	IV
3	3.01	(1.95, 4.63)	8.64E-07	IV
4	1.52	(1.16, 1.99)	2.40E-03	IV
5	1.20	(1.00, 1.44)	5.00E-02	NS
6	10.88	(3.84, 30.81)	8.98E-06	IV
7	8.15	(1.25, 53.06)	2.80E-02	IV
8	1.59	(1.11, 2.26)	1.07E-02	IV
9	2.06	(1.48, 2.88)	2.53E-05	III
10	1.60	(1.24, 2.07)	3.50E-04	III
11	1.87	(1.34, 2.61)	2.60E-04	III
12	2.12	(0.97, 4.65)	6.00E-02	NS
13	2.73	(2.20, 3.38)	9.12E-19	IV
14	3.41	(2.39, 4.87)	4.48E-11	IV
15	1.52	(1.13, 2.05)	5.90E-03	IV
16	1.65	(1.35, 2.02)	1.57E-06	IV
17	0.87	(0.54, 1.39)	5.80E-01	NS
	RR	1.03 (0.83, 1.28)	8.00E-01	NS
18	1.35	(1.09, 1.68)	6.60E-03	IV
19	IRR	1.16 (1.00, 1.34)	4.60E-02	IV
20	RR, Not specified	1.14 (0.91, 1.43)	2.59E-01	NS
21	OR	1.11 (0.94, 1.30)	2.10E-01	NS
22	OR	1.30 (0.86, 1.97)	2.20E-01	NS
23	OR	1.24 (0.88, 1.75)	2.20E-01	NS
24	RR	0.96 (0.85, 1.07)	4.97E-01	NS
25	RR	0.68 (0.24, 1.12)	3.31E-01	NS
26	RR	1.21 (0.79, 1.64)	3.11E-01	NS
27	RR	0.63 (0.39, 0.87)	2.40E-02	IV
28	RR	1.09 (0.92, 1.30)	3.34E-01	NS
29	RR	1.23 (1.07, 1.42)	7.70E-03	IV
30	OR	1.28 (0.96, 1.70)	9.00E-02	NS
31	RR	1.02 (0.94, 1.12)	6.71E-01	NS
32	RR	1.40 (1.10, 2.00)	2.70E-02	IV
33	RR	1.70 (1.30, 2.30)	2.90E-04	III
34	RR	1.05 (0.90, 1.24)	5.60E-01	NS
35	RR	1.29 (1.02, 1.63)	3.30E-02	IV
36	RR	0.90 (0.60, 1.34)	6.20E-01	NS
37	OR	1.17 (0.82, 1.67)	3.94E-01	NS
38	OR	1.39 (1.11, 1.73)	4.00E-03	IV
39	OR	1.07 (0.85, 1.36)	5.84E-01	NS
40	OR	1.22 (1.04, 1.43)	1.40E-02	IV
41	OR	1.75 (0.46, 6.72)	4.20E-01	NS
	OR	CI		
---	--------	---------	---	
	1.02 (0.81, 1.28)	8.73E-01	NS	
RR	1.25 (0.75, 2.07)	4.00E-01	NS	
OR	1.38 (1.14, 1.66)	8.00E-04	III	
RR	1.51 (0.99, 2.31)	5.60E-02	NS	
OR	1.36 (0.95, 1.95)	9.18E-02	NS	
RR	1.54 (1.20, 1.99)	8.00E-04	III	
OR	1.89 (1.42, 2.50)	1.29E-05	III	
RR	1.42 (1.27, 1.59)	2.16E-09	III	
OR	2.65 (1.33, 5.27)	6.00E-03	IV	
OR	1.82 (1.14, 2.92)	1.30E-02	IV	
RR	1.50 (0.90, 2.50)	1.20E-01	NS	
RR	1.40 (1.20, 1.60)	6.00E-06	III	
RR	1.30 (0.80, 1.90)	2.40E-01	NS	
RR	1.30 (0.90, 1.90)	1.70E-01	NS	
RR	1.50 (1.00, 2.10)	3.20E-02	IV	
RR	0.90 (0.60, 1.30)	6.10E-01	NS	
RR	1.45 (0.91, 2.32)	1.20E-01	NS	
SIR	1.19 (0.52, 2.15)	6.44E-01	NS	
RR	1.11 (1.05, 1.17)	1.74E-04	III	
SIR	1.07 (0.96, 1.20)	2.37E-01	NS	
RR	1.16 (0.38, 3.52)	8.10E-01	NS	
RR	1.11 (0.94, 1.32)	2.30E-01	NS	
RR	0.98 (0.89, 1.09)	7.09E-01	NS	
RR	0.99 (0.77, 1.29)	9.40E-01	NS	
RR	1.86 (1.38, 2.50)	5.00E-05	III	
RR	1.04 (0.79, 1.37)	7.90E-01	NS	
RR	1.19 (0.98, 1.44)	7.60E-02	NS	
RR	0.94 (0.73, 1.22)	6.50E-01	NS	

lymphoma; DDE=dichlorodiphenyldichloroethylene; DDT=dichlorodiphenyltrichloroethane; DLB
CL=diffuse large B-cell lymphoma; eBL=endemic Burkitt Lymphoma; FL=follicular lymphoma; HAART=
=Highly Active Antiretroviral Therapy; HBV=hepatitis B virus; HCB=hexachlorobenzene; HCH=hexachlorobenzene
orocyclohexane; HCV=hepatitis C virus; HIV/AIDS=human immunodeficiency virus, acquired immunodeficiency syndrome.
deficiency syndrome; HPgV=Human Pegivirus; IRR= incidence rate ratio; MA= meta-analysis; MZL=mili
arginal zone lymphoma; MCPA=2-methyl-4-chlorophenoxyacetic acid; NA-NSAIDS=non-aspirin non-st
teroidal anti-inflammatory drugs; NSAIDS=non-steroidal anti-inflammatory drugs; NA=not available;
NHL= non-Hodgkin lymphoma; OR=odds ratio; PCBs=Polychlorinated biphenyls; PI=prediction interval.
T-cell lymphoma.
Study	Outcome																						
Kane 2013	NHL																						
Kane 2013	DLBCL																						
Kane 2013	FL																						
Cocco 2013	DLBCL																						
Cocco 2013	DLBCL																						
Cocco 2013	FL																						
Cocco 2013	FL																						
Willet 2008	NHL																						
Willet 2008	FL																						
Willet 2008	CLL/SLL																						
Willet 2008	Other BCL																						
Willet 2008	Other BCL																						
Willet 2008	DLBCL																						
Willet 2008	BL																						
Slager 2014	CLL/SLL																						
Reference	Diagnosis																						
-----------	------------																						
Slager 2014	CLL/SLL																						
Morton 2014	NHL																						
Morton 2014	MZL																						
Morton 2014	LPL/WM																						
Morton 2014	DLBCL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	MZL																						
Morton 2014	DLBCL																						
Morton 2014	NHL																						
Morton 2014	MZL																						
Morton 2014	LPL/WM																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	MF/SS																						
Morton 2014	PTCL																						
Morton 2014	MZL																						
Morton 2014	LPL/WM																						
Morton 2014	DLBCL																						
Morton 2014	MF/SS																						
Morton 2014	PTCL																						
Morton 2014	NHL																						
Morton 2014	PTCL																						
Morton 2014	DLBCL																						
Morton 2014	PTCL																						
Morton 2014	MF/SS																						
Morton 2014	HCL																						
Morton 2014	NHL																						
Morton 2014	MZL																						
Morton 2014	LPL/WM																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	MZL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	MCL																						
Morton 2014	MCL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	DlBCL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	BL																						
Morton 2014	BL																						
Morton 2014	LPL/WM																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	HCL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	HCL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	HCL																						
Morton 2014	DLBCL																						
Morton 2014	MF/SS																						
Morton 2014	LPL/WM																						
Morton 2014	DLBCL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	HCL																						
Morton 2014	MF/SS																						
Morton 2014	MF/SS																						
Morton 2014	MZL																						
Morton 2014	LPL/WM																						
Morton 2014	DLBCL																						
Morton 2014	MCL																						
Morton 2014	NHL																						
Morton 2014	PTCL																						
Morton 2014	MZL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	MZL																						
Morton 2014	BL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	NHL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	NHL																						
Morton 2014	MZL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	NHL																						
Morton 2014	PTCL																						
Morton 2014	DLBCL																						
Morton 2014	NHL																						
Morton 2014	PTCL																						
Morton 2014	DLBCL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	NHL																						
------------	-----																						
Morton 2014	NHL																						
Morton 2014	MF/SS																						
Morton 2014	MF/SS																						
Morton 2014	MZL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	MZL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	PTCL																						
Morton 2014	MZL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	BL																						
Morton 2014	DLBCL																						
Morton 2014	PTCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	HCL																						
Morton 2014	PTCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	HCL																						
Morton 2014	PTCL																						
Morton 2014	LPL/WM																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	PTCL																						
Morton 2014	LPL/WM																						
Morton 2014	FL																						
Morton 2014	PTCL																						
Morton 2014	CLL/SLL																						
Morton 2014	PTCL																						
Morton 2014	MZL																						
Morton 2014	LPL/WM																						
Morton 2014	LPL/WM																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	PTCL																						
Morton 2014	CLL/SLL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	MZL																						
Morton 2014	NHL																						
Morton 2014	NHL																						
Morton 2014	NHL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	NHL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	FL																						
Morton 2014	FH																						
Morton 2014	FL																						
Morton 2014	FL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	HCL																						
Morton 2014	PTCL																						
Morton 2014	CLL/SLL																						
Morton 2014	HCL																						
Morton 2014	MCL																						
Morton 2014	PTCL																						
Morton 2014	PTCL																						
Morton 2014	MCL																						
Morton 2014	CLL/SLL																						
Morton 2014	NHL																						
Morton 2014	NHL																						
Morton 2014	MF/SS																						
Morton 2014	MF/SS																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	HCL																						
Morton 2014	NHL																						
Morton 2014	MF/SS																						
Morton 2014	CLL/SLL																						
Morton 2014	NHL																						
Morton 2014	DLBCL																						
Morton 2014	CLL/SLL																						
Morton 2014	ALL																						
Morton 2014	MF/SS																						
Morton 2014	PTCL																						
Morton 2014	DLBCL																						
Morton 2014	DLBCL																						
Morton 2005	NHL																						
Morton 2005	Other T-cell																						
Morton 2005	BL																						
Morton 2005	BL																						
Morton 2005	DLBCL																						
Morton 2005	DLBCL																						
Morton 2005	FL																						
Morton 2005	CL/L/SLL																						
Morton 2005	DLBCL																						
Morton 2005	FL																						
Morton 2005	FL	Morton 2005	BL	Morton 2005	BL	Morton 2005	DLBCL																
------------	-------	------------	-------	------------	-------	------------	-------	------------	-------	------------	-------	------------	-------										
Ekstrom 2008	NHL	Ekstrom 2008	DLBCL	Ekstrom 2008	DLBCL	Ekstrom 2008	DLBCL																
Ekstrom 2008	FL	Ekstrom 2008	FL	Ekstrom 2008	CLL/SLL/PLL	Ekstrom 2008	MZL																
Cerhan 2019	NHL																						
Cerhan 2019	NHL	Cerhan 2019	NFL	Cerhan 2019	NHL	Cerhan 2019	NHL	Cerhan 2019	NHL	Cerhan 2019	FL	Cerhan 2019	DLBCL										
Cerhan 2019	CLL/SLL	Cerhan 2019	FL	Morton 2005 (Cigarette smoking)	NHL																		
Reference	NHL	Other B-cell lymphoma																					
------------------	--------------------------	-----------------------																					
Morton 2005	NHL																						
Morton 2005	FL																						
Morton 2005	DLBCL																						
Morton 2005	PTCL																						
Morton 2005	MCL																						
Morton 2005	Other T-cell																						
De Sanjose 2008	NHL																						
De Sanjose 2008	DLBCL																						
De Sanjose 2008	LPL																						
De Sanjose 2008	MZL																						
De Sanjose 2008	Other B-cell																						
Becker 2012	NHL																						
Becker 2012	CLL/SLL/PLL																						
Becker 2012	T-cell																						
Becker 2012	PTCL																						
Mbulaiteye 2014	BL																						
Wang 2014	PTCL																						
Wang 2014	PTCL																						
Wang 2014	PTCL																						
Authors	Diagnosis																						
--------------	-------------------------																						
Wang 2014	PTCL																						
Wang 2014	PTCL-NOS																						
Wang 2014	ALCL																						
Wang 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Aschebrook-Kilfoy 2014	Mycosis fungoides																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	MZL																						
Bracci 2014	EMZL																						
Bracci 2014	NMZL																						
Bracci 2014	SMZL																						
Date	Code																						
----------	------------																						
Bracci 2014	SMZL																						
Smedby 2014	MCL																						
Vajdic 2014	LPL/WM																						
Linet 2014	FL																						
Year	Type																						
------	----------																						
2014	FL																						
2014	DLBCL																						
Cerhan 2014	DLBCL																						
-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------	-------------	-------
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
Cerhan 2014	DLBCL																						
------------	-------																						
Cerhan 2014	DLBCL																						
Monnereau 2014	HCL																						
Kane 2012	FL																						
Kane 2012	FL																						
tMannetje 2016	NHL																						
tMannetje 2016	DLBCL																						
Reference	Type																						
---------------	----------																						
tMannetje 2016	DLBCL																						
tMannetje 2016	FL																						
tMannetje 2016	FL																						
tMannetje 2016	FL																						
tMannetje 2016	CLL/SLL																						
tMannetje 2016	PTCL																						
Kricker 2008	NHL																						
Kricker 2008	FL																						
Kricker 2008	FL																						
Kricker 2008	DLBCL																						
Kricker 2008	DLBCL																						
Exposure

Exposure	
Hormone therapy (ever vs. never)	
Hormone therapy age first used (50-54 years vs. never used)	
Hormone therapy age first used (55+ years vs. never used)	
Hormone therapy years used (<2 years vs. never used)	
Hormone therapy years used (5 to <10 years vs. never used)	
Hormone therapy years since last used (current vs. never used)	
Hormone therapy (ever vs. never)	
Hormone therapy age first used (50-54 years vs. never used)	
Hormone therapy years used (5 to <10 years vs. never used)	
Hormone therapy years since last used (current vs. never used)	
Hormone therapy years since last used (current vs. never used)	
Duration trichloroethylene exposure (30-39 years vs. unexposed)	
Frequency trichloroethylene exposure (<5% work time vs. unexposed)	
Frequency trichloroethylene exposure (31%+ work time vs. unexposed)	
Intensity of trichloroethylene exposure (>150 ppm vs. unexposed)	
Male height (100% vs. 60%)	
Male height (100% vs. 60%)	
Female height (20% vs. 60%)	
Male height (100% vs. 60%)	
Female height (80% vs. 60%)	
Weight (Grade 3 obese vs. normal weight)	
Weight (Underweight vs. normal weight)	
Any atopic disease (yes vs. no)	
Allergy (yes vs. no)	
Blood transfusion (yes vs. no)	
Total number of transfusions (1 vs none)	
Number of years from first transfusion to date of diagnosis (<20 years vs. no treatment)	
Transfusion before 1990 (Transfusion 1990+ vs. No transfusion)	
Adult height (Q4 vs Q1)	
Adult height (continuous, 10 cm)	
HCV	
Ever lived or worked on a farm (yes vs. no)	
Farmer (yes vs. no)	
Animal farmer (yes vs. no)	
Mixed animal and crop farmer (yes vs. no)	
Hairdresser (yes vs. no)	
Total sun exposure (quartile 4 (high) vs. 1 (low))	
Recreational sun exposure (Quartile 4 (high) vs 1 (low))	
Recreational sun exposure (Quartile 2 vs. 1)	
History of cigarette smoking (yes vs. no)	
Smoking status as of ~1 year before diagnosis/interview (current vs. nonsmoker)	
Question	

Age started smoking cigarettes (14-<18 years)	
Age started smoking cigarettes (18-<20 years)	
Frequency of cigarette smoking (30+ cigarettes/day vs. nonsmoker)	
Duration of cigarette smoking (30-39 years vs. nonsmoker)	
Years since quitting cigarette smoking (former smoker unknown when quit vs.)	
Lifetime cigarette exposure (>20-35 plac-years vs. nonsmoker)	
Lifetime cigarette exposure (>35 plac-years vs. nonsmoker)	
Frequency of hair dye use (12+ times/year vs. never hair dye)	
History of B-cell activating autoimmune disease (any vs. none)	
History of B-cell activating autoimmune disease (any vs. none)	
History of B-cell activating autoimmune disease (any vs. none)	
History of B-cell activating autoimmune disease (any vs. none)	
Hemolytic anemia (any vs. non)	
Hemolytic anemia (any vs. non)	
Pernicious anemia	
Rheumatoid arthritis (any vs. none)	
Sjogren's syndrome (any vs. none)	
Sjogren's syndrome (any vs. none)	
Sjogren's syndrome (any vs. none)	
Sjogren's syndrome (any vs. none)	
Sjogren's syndrome (any vs. none)	
Sjogren's syndrome (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
History of T-cell activating autoimmune disease	
History of T-cell activating autoimmune disease	
Celiac disease (any vs. none)	
Celiac disease (any vs. none)	
Celiac disease (any vs. none)	
Psoriasis (any vs. none)	
Systemic sclerosis/scleroderma	
Systemic sclerosis/scleroderma	
Hepatitis C virus seropositivity	
Hepatitis C virus seropositivity	
HCV	
HCV	
HCV	
Peptic ulcer	
Allergy	
Allergy	
Condition	

Allergy	
Allergy	
Hay fever	
Allergy	
Food allergy	
Asthma	
Food allergy	
Food allergy	
Hay fever	
Systemic sclerosis/scleroderma	
Hay fever	
History of blood transfusion (any vs. none)	
History of blood transfusion (any vs. none)	
History of blood transfusion (any vs. none)	
History of blood transfusion (any vs. none)	
History of blood transfusion (any vs. none)	
Age at least transfusion (%>40 years)	
No. transfusions (% 2+)	
No. transfusions (% 2+)	
No. transfusions (% 2+)	
Blood transfusion <1990	
Blood transfusion <1991	
Blood transfusion <1992	
Blood transfusion <1993	
Blood transfusion <1994	
Year first Ocs use (%<1970)	
Ever used HRT	
Usual adult BMI (% 25 kg/m^2+)	
Usual adult BMI (% 25 kg/m^2+)	
Usual adult BMI (% 25 kg/m^2+)	
Young adult BMI (% 25 kg/m^2+)	
Young adult BMI (% 25 kg/m^2+)	
Height (% Q3-Q4)	
Height (% Q3-Q4)	
Parameter	

Physical activity (%≥moderate)	
Height (% Q3-Q4)	
Height (% Q3-Q4)	
Height (% Q3-Q4)	
Physical activity (%≥moderate)	
Weight (% Q3-Q4)	
Weight (% Q3-Q4)	
Weight (% Q3-Q4)	
Physical activity (%≥moderate)	
Ever used HRT	
Young adult BMI (% 25 kg/m^2+)	
Height (% Q3-Q4)	
Any alcohol	
Status (% current)	
Status (% current)	
Any alcohol	
Status (% current) alcohol	
Status (% current) alcohol	
Age at initiation (% <20 years)	
Age at initiation (% <20 years) alcohol	
Age at initiation (% <20 years) alcohol	
Frequency (%>14 servings/week) alcohol	
Frequency (%>14 servings/week)	
Frequency (%>14 servings/week) alcohol	
Frequency (%>14 servings/week) alcohol	
Frequency (%>14 servings/week) alcohol	
Duration (%>30 years) alochol	
Duration (%>30 years) alochol	
Lifetime (%>200 kg) alcohol	
Lifetime (%>200 kg) alcohol	
Any beer	
Any beer	
Any beer	
Frequency (%>14 servings/week) beer	
Frequency (%>14 servings/week) beer	
Lifetime (%>200 kg) beer	
Frequency (%>14 servings/week) beer	
Description	Count
---	---
Lifetime (%>200 kg) beer	
Any liquor	
Eczema	
Any liquor	
Frequency (%>=14 servings/week) any liquor	
Frequency (%>=14 servings/week) any liquor	
Frequency (%>=14 servings/week) any liquor	
Frequency (%>=14 servings/week) any liquor	
Frequency (%>=23 servings/week) any liquor	
Lifetime (%>200 kg) any liquor	
Lifetime (%>200 kg) any liquor	
Any wine	
Frequency (%>=14 servings/week) wine	
Frequency (%>=14 servings/week) wine	
Frequency (%>=14 servings/week) wine	
Frequency (%>=14 servings/week) wine	
Frequency (%>=14 servings/week) wine	
Frequency (%>=14 servings/week) wine	
Lifetime (%>200 kg) any wine	
Lifetime (%>200 kg) any wine	
History of ciagrette smoking (any vs. none)	
History of ciagrette smoking (any vs. none)	
History of ciagrette smoking (any vs. none)	
History of ciagrette smoking (any vs. none)	
Status (% current) cigarette smoking	
Status (% current) cigarette smoking	
Status (% current) cigarette smoking	
Years since quitting (%>15 years) cigarette smoking	
Age at initiation (%<20 years) cigarette smoking	
Frequency (%>20 years) cigarette smoking	
Duration (%>=20 years) cigarette smoking	
Packyears (%>20) cigarette smoking	
Status (% current) cigarette smoking	
Years since quitting (%>15 years)	
Years since quitting (%>15 years) cigarette smoking	
Years since quitting (%>15 years)	
Description	Percentage
--	------------
Years since quitting (%>15 years)	
Age since initiation (% <20 years) cigarette smoking	
Age since initiation (% <20 years) cigarette smoking	
Age since initiation (% <20 years) cigarette smoking	
Frequency (%>20) cigarette smoking	
Frequency (%>20) cigarette smoking	
Duration (%>=20 years) cigarette smoking	
Duration (%>=20 years) cigarette smoking	
Duration (%>=20 years) cigarette smoking	
Forestry worker	
Duration (%>=20 years) cigarette smoking	
Duration (%>=20 years) cigarette smoking	
Duration (%>=20 years) cigarette smoking	
Packyears (%>20) cigarette smoking	
Packyears (%>20) cigarette smoking	
Packyears (%>20) cigarette smoking	
Frequency (%>-12 times/year) personal hairdye use	
Frequency (%>-12 times/year) personal hairdye use	
Frequency (%>-12 times/year) personal hairdye use	
Duration of hairdye use (%>=20 years)	
Any hairdye use <1980	
Any hairdye use <1980	
Recreational hairdye use (%Q3-Q4 hours/week)	
Sun exposure (%Q3-Q4 hours/week)	
Sun exposure (%Q3-Q4 hours/week)	
Recreational sun exposure (%Q3-Q4 hours/week)	
Recreational sun exposure (%Q3-Q4 hours/week)	
General unspecified laborer	
Baker/miller	
Recreational sun exposure (%Q3-Q4 hours/week)	
Socioeconomic status (% low)	
Socioeconomic status (% low)	
Socioeconomic status (% low)	
History of living or working on a farm	
History of living or working on a farm	
History of living or working on a farm	
Ever lived on a farm	
Mixed/unspecified farmer	
Ever worked on a farm	
Electonical/electronics worker	
Farmer any type	
Animal farmer	
Field crop/vegetable farmer	
Lifetime liquor (%>200 kg)	
Field crop/vegetable farmer	
Field crop/vegetable farmer	Mixed/unspecified farmer
---------------------------	-------------------------
Hairdresser	
Hairdresser	
Hairdresser	
Women's hairdresser	
Women's hairdresser	
Women's hairdresser	
Leather worker	
Painter	
Textile worker	
Textile worker	
Welder/flamecutter	
Wine and beer	
Ever drinker vs. never drinker	
Wine and liquor	
Beer, wine, and liquor	
Frequency (1-6 servings per week vs. none) alcohol	
Frequency (7-13 servings per week vs. none) alcohol	
Frequency (14-27 servings per week vs. none) alcohol	
Frequency (>=28 servings per week vs. none) alcohol	
Beer	
Ever vs. non-drinker	
Current vs. non-drinker	
Ever vs. non-drinker	
Current vs. non-drinker	
Ever vs. non-drinker	
Ever vs. non-drinker	
Frequency (1-6 servings per week vs. none) drinking	
Frequency (7-13 servings per week vs. none) drinking	
Frequency (14-27 servings per week vs. none) drinking	
Frequency (>=28 servings per week vs. none) drinking	

https://mc.manuscriptcentral.com/bmjmedicine
Variable	Description
Frequency	(7-13 servings per week vs. none) drinking
Duration	(21-30 years) drinking
Duration	(31-40 years) drinking
Duration	(1-20 years) drinking
Duration	(21-30 years) drinking
Duration	(31-40 years) drinking
Duration	(>=41 years) drinking
Hemolytic anemia	(any vs. non)
Systemic lupus erythematosus	(any vs. none)
Hemolytic anemia	(any vs. non)
Sjogren's syndrome	(any vs. none)
Primary sjogren's syndrome	
Secondary sjogren's syndrome	
Hemolytic anemia	(any vs. non)
Systemic lupus erythematosus	(any vs. none)
Sjogren's syndrome	(any vs. none)
Primary sjogren's syndrome	
Secondary sjogren's syndrome	
Sjogren's syndrome	(any vs. none)
Secondary sjogren's syndrome	
Type 1 diabetes	
Sjogren's syndrome	(any vs. none)
Systemic lupus erythematosus	(any vs. none)
Primary sjogren's syndrome	
Secondary sjogren's syndrome	
Sjogren's syndrome	(any vs. none)
Secondary sjogren's syndrome	
History of blood transfusion	(any vs. none) white men
Number of blood transfusions	(One vs none) white men
Age of 1st transfusion	(21-30 years vs. none) white men
Age of 1st transfusion	(31-40 years vs. none) white men
Age of 1st transfusion	(41-50 years vs. none) white men
Era first transfusion	(<1970) white men
Era first transfusion	(1970s) white men
Era first transfusion	(1990+) white men
Number of blood transfusions	(two vs none) white women
Age of 1st transfusion	(31-40 years vs. none) white women
Age of 1st transfusion	(51-60 years vs. none) white women
History of blood transfusion	(any vs. none) white men
Status (%) current cigarette smoking	
Intensity	(11-20 cigarettes/d)
Intensity	(21-30 cigarettes/d)
Duration (21-35 years) cigarette smoking	
--	
Duration (>=36 years) cigarette smoking	
Pack-years (21-35) cigarette smoking	
Pack-years (>=36) cigarette smoking	
Ever vs. never smoker	
Status (% current) cigarette smoking	
Age at initiation (% >-20 years)	
Intensity (21-30 cigarettes/d)	
Pack-years (>=36) cigarette smoking	
Age at initiation (18-19 years vs. nonsmoker)	
Pack-years (>=36) cigarette smoking	
Intensity (11-20 cigarettes/d)	
Years since quit cigarette smoking (>=31 vs. nonsmoker)	
Intensity (11-20 cigarettes/d)	
Intensity (21-30 cigarettes/d)	
Duration (21-35 years) cigarette smoking	
Duration (>=36 years) cigarette smoking	
Pack-years (>=36) cigarette smoking	
HCV	
Childhood measles	
Childhood whooping cough/pertussis	
Adult infectious mononucleosis	
Adult infectious mononucleosis	
Adult infectious mononucleosis	
Asthma (<50 years age)	
Number of blood transfusions (>=3 vs. no transfusion), <50 years age	
Lifetime alcohol consumed (>400 kg vs. nondrinker), >=50 years age	
Lifetime alcohol consumed (drinker, consumption unknown), >=50 years age	
Duration of employment as cleaner (1-10 years vs. never)	
Eczema with no other atopic conditions (<50 years age)	
Usual adult height (Q4 vs. Q1, <50 years age)	
Charworker cleaner or related work (<50 years age)	
HCV (>50 years)	
Usual adult body mass index (25-<30 Kg/m^2) (>=50 years age)	
Drinker (at least 1 drink per month vs. non-drinker)	
Celiac disease (any vs. none)	
Allergy	
Eczema	
Feature	
--	
Psoriasis (any vs. none)	
Duration of cigarette smoking (40+ years)	
Smoker, duration unknown	
Drinker (at least 1 drink per month vs. non-drinker)	
Electrical fitters	
Textile worker	
Ever lived or worked on a farm	
Celiac disease (any vs. none)	
Allergy	
Psoriasis (any vs. none)	
Duration of cigarette smoking (40+ years)	
Smoker, duration unknown	
Drinker (at least 1 drink per month vs. non-drinker)	
Celiac disease (any vs. none)	
Duration of cigarette smoking (40+ years)	
Smoker, duration unknown	
Recreation sun exposure (Q4 (high) vs. Q1)	
Electrical fitters	
Textile worker	
Electrical fitters	
Hay fever	
Celiac disease (any vs. none)	
Duration of cigarette smoking (1-19 years)	
Duration of cigarette smoking (40+ years)	
Smoker, duration unknown	
Asthma with allergy, hay fever, and/or eczema	
Fire fighter	
Duration (>=40 years) cigarette smoking	
Usual adult body mass index (30-50 kg/m^2)	
B and T-cell activation	
History of eczema	
Multiple myeloma	
Crop and vegetable farm workers	
Painter	
Woodworkers	
General carpenter	
Physical activity (%>=vigorous)	
Physical activity (%>=moderate)	
Sjogren's syndrome (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
B-cell activation	
HCV	
Ulcer	
Subject	
--	
Asthma with out other atopy	
Recreational sun exposure (Q2 vs Q1 hours/week)	
Recreational sun exposure (Q3 vs Q1 hours/week)	
Recreational sun exposure (Q4 vs Q1 hours/week)	
Years since quit cigarette smoking (Former <5 years vs. nonsmoker)	
Years since quit cigarette smoking (Former unknown years)	
Any type of alcohol (Q1 vs nondrinker g/wk)	
Any type of alcohol (Q3 vs nondrinker g/wk)	
Any type of alcohol (Q4 vs nondrinker g/wk)	
Wine (Q2 vs. nondrinker g/wk)	
Wine (Q3 vs. nondrinker g/wk)	
Wine (Q4 vs. nondrinker g/wk)	
Teacher	
General carpenter	
Sjogren's syndrome (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
B-cell activation	
HCV	
Ulcer	
Years since quit cigarette smoking (Former <5 years vs. nonsmoker)	
Years since quit cigarette smoking (Former unknown years)	
Any type of alcohol (Q3 vs nondrinker g/wk)	
Any type of alcohol (Q4 vs nondrinker g/wk)	
Wine (Q2 vs. nondrinker g/wk)	
Wine (Q3 vs. nondrinker g/wk)	
Wine (Q4 vs. nondrinker g/wk)	
Any type of alcohol (Q1 vs nondrinker g/wk)	
Any type of alcohol (Q2 vs nondrinker g/wk)	
Wine (Q1 vs. nondrinker g/wk)	
Wine (Q2 vs. nondrinker g/wk)	
Wine (Q3 vs. nondrinker g/wk)	
Sjogren's syndrome (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
B and T-cell activation	
Metal worker	
B-cell activation	
Asthma no other atopy	
General unspecified laborer	
Teacher	
Use hair dyes before 1980	
Color of hairdye used (women only; light vs. never)	
Color of hairdye used (women only; dark vs. never)	
Type of hairdye used (women only; permanent vs. never)	
Physical activity (%>=vigorous)	
Ever used hairdye	
Any atopic disorder	
Allergy	
Allergy and asthma, hay fever, or eczema	
Hay fever	
Hay fever but no other atopic conditions	
Hay fever and asthma, allergy, or eczema	
Ever lived on a farm	
Divers: material handling equipment operators	
Electrical and electronics workers	
Sjogren’s syndrome (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
HCV	
B-cell activation	
Hay fever	
Usual adult weight (Q2 vs Q1)	
Usual adult weight (Q3 vs Q1)	
Usual adult weight (Q4 vs Q1)	
Duration (>=40 years) cigarette smoking	
Age started smoking cigarettes (>=20 years vs. nonsmoker)	
Medical doctor	
Sjogren's syndrome (any vs. none)	
Any atopic disorder	
Allergy	
Food allergy	
Astma	
Hay fever	
Blood transfusion, Male	
Blood transfusion, Female	
BMI as young adult (kg/m^2) continuous, Female	
Physical activity (Mild), Female	
Recreational sun exposure (Q2 vs Q1 hours/week), Male	
Recreational sun exposure (Q3 vs Q1 hours/week), Male	
Recreational sun exposure (Q4 vs Q1 hours/week), Male	
Spray-painter (except construction), Male	
University and higher education teachers, Male	
History of cigarette smoking (any vs. none), Female	
Drinker (at least 1 drink per month vs. non-drinker), Female	
Recreational sun exposure (Q2 vs Q1 hours/week), Female	
Recreational sun exposure (Q3 vs Q1 hours/week), Female	
Recreational sun exposure (Q4 vs Q1 hours/week), Female	
Blood transfusion	
Blood transfusion 1 vs none	
Blood transfusion 2 vs none	
--	
Number of years from 1st blood transfusion to date of diagnosis/interview (<20 years)	
Number of years from 1st blood transfusion to date of diagnosis/interview (20-39 years)	
Blood transfusion <1990	
Blood transfusion after 1990	
BMI as young adult (25-<30 kg/m^2)	
BMI as young adult (kg/m^2) continuous (5 kg/m^2 increase)	
Usual adult height (Q4 vs. Q1)	
Physical activity (mild vs. no)	
Status (% current) cigarette smoking	
Age started smoking cigarettes regularly (14-17 years)	
Frequency of cigarette smoking (11-20 per day)	
Duration (>=40 years) cigarette smoking	
Pack-years (21-35) cigarette smoking	
Drinker (at least 1 drink per month vs. non-drinker)	
Alcohol consumption status (Drinker status unknown vs. nondrinker)	
Duration of alcohol consumption (Drinker duration unknown vs. nondrinker)	
Servings of alcohol per week as an adult (1-6 drinks/week vs. nondrinker)	
Servings of alcohol per week as an adult (7-13 drinks/week vs. nondrinker)	
Servings of alcohol per week as an adult (>=28 drinks/week vs. nondrinker)	
Servings of alcohol per week as an adult (Drinker drinks/week unknown vs. nondrinker)	
Grams of ethanol per week as adult (Q1 vs nondrinker)	
Grams of ethanol per week as adult (Q2 vs nondrinker)	
Grams of ethanol per week as adult (Q4 vs nondrinker)	
Lifetime alcohol consumption (1-100 kg vs nondrinker)	
Lifetime alcohol consumption (101-200 kg vs nondrinker)	
Total sun exposure (Q2 vs Q1 hours/week)	
Total sun exposure (Q4 vs Q1 hours/week)	
Recreational sun exposure (Q2 vs Q1 hours/week)	
Recreational sun exposure (Q3 vs Q1 hours/week)	
Recreational sun exposure (Q4 vs Q1 hours/week)	
Bakers and millers	
Spray-painter (except construction)	
University and higher education teachers	
Sjogren's syndrome (any vs. none)	
Systemic lupus erythematosus (any vs. none)	
Hemolytic anemia (any vs. non)	
Celiac disease (any vs. none)	
Rheumatoid arthritis (any vs. none)	
Allergy	
Asthma	
Hay fever	
Age at first blood transfusion	
Description	Comparison 1
---	-----------------------
Total number of blood transfusions (2+ vs none)	
Number of transfusions unknown	
Number of years from 1st blood transfusion to date of diagnosis/interview	<20 years
Transfusions before 1990	
Usual adult height (Q4 vs Q1)	
Usual adult weight (Q4 vs Q1)	
Usual adult body mass index (15-<18.5 vs. 18.5-<22.5)	
Usual adult body mass index (35-50 vs. 18.5-<22.5)	
Smoking status as of ~1 year before diagnosis/interview (status unknown vs	
Frequency of cigarette smoking (21-30 cigarettes/day vs. nonsmoker)	
Smoker, duration unknown	
Years since quit cigarette smoking (Former unknown years)	
History of alcohol consumption (>=1 drink/month v. non-drinker)	
Alcohol consumption status as of ~2 years prior to diagnosis/interview (current drinker vs. nondrinker)	
Age first alcohol consumption (20-29 years vs. nondrinker)	
Duration of alcohol consumption (1-20 years vs. nondrinker)	
Duration of alcohol consumption (21-30 years vs. nondrinker)	
Duration of alcohol consumption (30-39 years vs. nondrinker)	
Duration of alcohol consumption (40+ years vs. nondrinker)	
Duration of alcohol consumption (Drinker duration unknown vs. nondrinker)	
Servings of alcohol per week as an adult (1-6 drinks/week vs. nondrinker)	
Servings of alcohol per week as an adult (7-13 drinks/week vs. nondrinker)	
Servings of alcohol per week as an adult (14-27 drinks/week vs. nondrinker)	
Servings of alcohol per week as an adult (>=28 drinks/week vs. nondrinker)	
Servings of beer per week as an adult (<1 drinks/week vs. nondrinker)	
Servings of beer per week as an adult (1-6 drinks/week vs. nondrinker)	
Servings of liquor per week as an adult (<1 drinks/week vs. nondrinker)	
Servings of liquor per week as an adult (1-6 drinks/week vs. nondrinker)	
Servings of wine per week as an adult (1-6 drinks/week vs. nondrinker)	
Servings of wine per week as an adult (7-13 drinks/week vs. nondrinker)	
Servings of wine per week as an adult (14-27 drinks/week vs. nondrinker)	
Servings of wine per week as an adult (>=28 drinks/week vs. nondrinker)	
Grams of ethanol per week as adult (Q1 vs nondrinker)	
Grams of ethanol per week as adult (Q2 vs nondrinker)	
Grams of ethanol per week as adult (Q3 vs nondrinker)	
Grams of ethanol per week as adult (Q4 vs nondrinker)	
Grams of ethanol per week as adult, Beer (Q1 vs nondrinker)	
Grams of ethanol per week as adult, beer (Q2 vs nondrinker)	
Grams of ethanol per week as adult, beer (Q4 vs nondrinker)	
Drinker, wine & liquor (no beer)	
Grams of ethanol per week as adult, wine (Q1 vs nondrinker)	
Grams of ethanol per week as adult, wine (Q2 vs nondrinker)	
Grams of ethanol per week as adult, wine (Q3 vs nondrinker)	
Grams of ethanol per week as adult, wine (Q4 vs nondrinker)	
Grams of ethanol per week as adult, liquor (Q1 vs nondrinker)	
Grams of ethanol per week as adult, liquor (Q2 vs nondrinker)	
Grams of ethanol per week as adult, liquor (Q3 vs nondrinker)	
Grams of ethanol per week as adult, liquor (Q4 vs nondrinker)	
Drinker, wine & beer (no liquor)	
Lifetime beer consumption (1-100 kg vs. nondrinker)	
Lifetime wine consumption (201-400 kg vs. nondrinker)	
Lifetime wine consumption (unknown vs. nondrinker)	
Drinker, wine, & liquor (no beer)	
Lifetime liquor consumption (1-100 kg vs. nondrinker)	
Lifetime liquor consumption (201-400 kg vs. nondrinker)	
Lifetime liquor consumption (unknown vs. nondrinker)	
Lifetime wine consumption (1-100 kg vs. nondrinker)	
Lifetime wine consumption (101-200 kg vs. nondrinker)	
Lifetime wine consumption (201-400 kg vs. nondrinker)	
Lifetime wine consumption (400+ kg vs. nondrinker)	
Lifetime wine consumption (unknown vs. nondrinker)	
Color of hair dye used (unknown vs. never)	
Drivers: material handling equiment	
Cleaners and related workers	
Hairdresser	
Textile worker	
Fiber preparers	
Socioeconomic status (medium vs. low)	
Socioeconomic status (high vs. low)	
B-cell activation	
B and T-cell activation	
Any atopic disorder	
HCV	
Blood transfusion	
BMI as young adult (25-<30 kg/m^2)	
BMI as young adult (30-50 kg/m^2)	
Lifetime alcohol consumption (1-100 kg vs nondrinker)	
Lifetime alcohol consumption (101-200 kg vs nondrinker)	
Lifetime alcohol consumption (201-400 kg vs nondrinker)	
Lifetime alcohol consumption (unknown)	
Recreational sun exposure (Q3 vs Q1 hours/week)	
Recreational sun exposure (Q4 vs Q1 hours/week)	
Field crop/vegetable farmer	
Sewer and embroiderer	
Women's hairdresser	
Variable	

Lifetime cigarette exposure (11-20 pack-years vs. nonsmoker)	
Lifetime cigarette exposure (21-35 pack-years vs. nonsmoker)	
Lifetime cigarette exposure (>35 pack-years)	
Ever lived on a farm	
Height (Q3 vs. Q1)	
Height (Q4 vs. Q1)	
History of cigarette smoking (any vs. none)	
Status (% current) cigarette smoking	
Age started smoking cigarettes regularly (14-17 years)	
Age started smoking cigarettes regularly (18-19 years)	
Frequency of cigarette smoking (11-20 per day)	
Frequency of cigarette smoking (21-30 per day)	
Frequency of cigarette smoking (>30 per day)	
Duration of cigarette smoking (21-30 years)	
Duration of cigarette smoking (30-39 years)	
Duration of cigarette smoking (40+ years)	
Lifetime cigarette exposure (continuous)	
Ever worked as a mixed animal and crop farmer	
Duration as mixed animal and crop farmer (10 years+ vs. never)	
Years since last child (<10 years)	
Contraception among women born in 1925 or later	
Charworkers, cleaners and related	
Railway-engine drivers and firemen	
Vehicle electrician	
Other motor-vehicle drivers	
Field crop/vegetable farmer	
Field crop farm worker general	
General farmer worked	
Women's hairdresser	
Medical assistants	
Spray-painter (except construction)	
Teachers	
University and higher education teachers	
Secondary education teachers	
Head teacher	
Other teachers	
Milliners and hatmakers	
Carpenter, general	
Charworkers, cleaners and related	
Field crop/vegetable farmer	
Field crop farm worker general	
Hairdresser	
Women's hairdresser	
Occupation	
--	
Medical workers	
Metal melters and reheaters	
Special education teachers	
Textile worker	
Milliners and hatmakers	
Sewer and embroiderer	
Bakers and millers	
Spray-painter (except construction)	
University and higher education teachers	
Farmer-animal	
Farmers-mix and unspecified	
General farm worker	
Hairdresser	
Women's hairdresser	
Printing pressmen	
Preprimary education teachers	
Carpenter, general	
Electric fitters	
Metal workers	
Painters	
Textile worker	
Spinners, weavers, knitters, dyers, and related workers	
Wood workers	
Cabinetmakers	
Recreational sun exposure (Q4 vs Q1 hours/week)	
Recreational sun exposure (Q2 vs Q1 hours/week)	
Recreational sun exposure (Q4 vs Q1 hours/week)	
Recreational sun exposure (Q3 vs Q1 hours/week)	
Recreational sun exposure (Q4 vs Q1 hours/week)	
Number of cases	

2094	
1987	
1987	
2094	
2094	
2035	
675	
637	
675	
637	
637	
552	
418	
1251	
1251	
639	
639	
5731	
1047	
625	
228	
174	
6285	
90	
2345	
2182	
1168	
1168	
1168	
1168	
1168	
1794	
1794	
994	
1595	
1042	
1042	
1013	
1042	
685	
1301	
1301	
2191	
2191	
1	3034
---	------
2	3034
3	3034
4	3034
5	3034
6	3034
7	3034
8	3034
9	3034
10	3034
11	3034
12	3034
13	3034
14	3034
15	3034
16	3034
17	3034
18	3034
19	3034
20	3034
21	3034
22	3034
23	3034
24	3034
25	3034
26	3034
27	3034
28	1155
29	3064
30	3064
31	3066
32	3066
33	1645
34	4667
35	4667
36	4546
37	4546
38	4577
39	2382
40	3264
41	3645
42	3645
43	4124
44	4124
45	4124
46	4124
47	2863
48	2863
49	2765
50	3086
51	2983
Effect estimate (95% CI)	

0.79 (0.69-0.90)	
0.74 (0.61-0.91)	
0.78 (0.62-0.98)	
0.78 (0.62-0.98)	
0.72 (0.57-0.91)	
0.70 (0.54-0.90)	
0.66 (0.54-0.80)	
0.58 (0.42-0.80)	
0.59 (0.40-0.86)	
0.57 (0.44-0.74)	
0.76 (0.58-0.99)	
0.4 (0.2-1.0)	
0.6 (0.4-1.0)	
1.8 (1.1-2.9)	
2.2 (1.1-4.2)	
1.19 (1.06-1.34)	
1.47 (1.18-1.84)	
0.72 (0.56-0.93)	
1.71 (1.14-2.58)	
1.87 (1.14-3.05)	
1.80 (1.23-2.62)	
3.13 (1.19-8.25)	
0.86 (0.78-0.95)	
0.87 (0.77-0.98)	
0.79 (0.66-0.94)	
0.81 (0.66-0.99)	
0.71 (0.55-0.92)	
0.68 (0.49-0.94)	
1.23 (1.05-1.44)	
1.10 (1.02-1.19)	
1.99 (1.16-3.41)	
1.21 (1.07-1.36)	
1.20 (1.06-1.35)	
0.64 (0.43-0.96)	
1.32 (1.08-1.61)	
1.77 (1.05-3.01)	
0.75 (0.59-0.96)	
0.80 (0.69-0.94)	
0.81 (0.68-0.96)	
0.90 (0.81-0.99)	
0.82 (0.71-0.94)	
Value	Lower CI
---	---
0.87	0.76
0.83	0.71
0.72	0.57
0.82	0.71
2.54	1.53
0.84	0.72
0.82	0.70
1.51	1.09
1.96	1.60
5.46	3.81
2.61	1.34
2.45	1.91
2.24	1.03
2.72	1.13
3.45	1.07
1.94	1.35
7.52	3.68
38.07	16.94
12.14	3.16
8.77	3.94
3.23	1.19
2.83	1.82
5.03	1.16
3.90	1.24
6.54	3.10
8.41	2.81
2.49	1.42
1.66	1.00
1.95	1.37
1.77	1.05
14.82	7.27
2.09	1.04
2.05	1.23
8.87	1.11
12.74	1.49
1.81	1.39
3.04	1.65
2.70	1.11
2.33	1.71
2.08	1.23
1.56	1.21
0.86	0.81
0.82	0.74
---	---
0.80 (0.65-0.99)	1.29 (1.06-1.57)
---	---
0.74 (0.58-0.94)	
0.84 (0.78-0.91)	
2.31 (1.68-3.17)	
0.66 (0.47-0.92)	
0.71 (0.58-0.88)	
0.81 (0.73-0.90)	
0.86 (0.76-0.97)	
0.77 (0.64-0.93)	
0.37 (0.19-0.70)	
0.33 (0.15-0.74)	
0.65 (0.50-0.84)	
1.70 (1.15-2.52)	
0.15 (0.03-0.84)	
0.57 (0.41-0.79)	
0.85 (0.79-0.91)	
0.67 (0.52-0.86)	
0.64 (0.53-0.78)	
0.69 (0.51-0.95)	
0.81 (0.73-0.89)	
0.85 (0.76-0.95)	
0.81 (0.72-0.92)	
0.61 (0.39-0.95)	
0.45 (0.30-0.69)	
0.41 (0.23-0.73)	
0.67 (0.57-0.80)	
0.17 (0.05-0.65)	
0.52 (0.39-0.70)	
1.32 (1.09-1.59)	
0.90 (0.81-0.99)	
1.09 (1.00-1.18)	
0.51 (0.37-0.71)	
1.46 (1.16-1.84)	
0.83 (0.73-0.94)	
1.18 (1.06-1.31)	
0.40 (0.26-0.61)	
0.49 (0.30-0.81)	
0.23 (0.12-0.44)	
0.37 (0.22-0.62)	
0.30 (0.18-0.51)	
0.37 (0.23-0.57)	
1.54 (1.23-1.94)	
1.37 (1.01-1.85)	
0.82 (0.72-0.94)	
---	---
	1.17 (1.06-1.29)
	1.29 (1.00-1.66)
	1.38 (1.02-1.86)
	1.13 (1.02-1.26)
	1.60 (1.16-2.19)
	0.78 (0.66-0.93)
	1.75 (1.33-2.30)
	1.27 (1.03-1.57)
	3.17 (1.08-9.31)
	1.50 (1.10-2.04)
	0.84 (0.74-0.96)
	1.19 (1.06-1.33)
	1.67 (1.28-2.18)
	0.80 (0.70-0.91)
	1.13 (1.01-1.27)
	1.16 (1.00-1.35)
	1.55 (1.05-2.29)
	1.18 (1.02-1.35)
	1.23 (1.06-1.42)
	1.32 (1.05-1.65)
	0.74 (0.66-0.83)
	0.79 (0.68-0.91)
	0.79 (0.64-0.98)
	0.74 (0.66-0.83)
	0.75 (0.64-0.88)
	1.28 (1.06-1.55)
	0.51 (0.28-0.93)
	0.70 (0.58-0.84)
	0.88 (0.83-0.93)
	0.82 (0.76-0.90)
	1.72 (1.13-2.63)
	0.73 (0.55-0.95)
	1.21 (1.07-1.36)
	1.68 (1.04-2.71)
	1.40 (1.03-1.90)
	0.56 (0.31-0.98)
	0.68 (0.47-0.99)
	1.63 (1.09-2.44)
	1.23 (1.04-1.45)
	0.77 (0.63-0.94)
	1.32 (1.06-1.61)
	3.18 (1.44-7.05)
	2.80 (1.38-5.68)
Value	95% CI
-------	--------
1.48	(1.14-1.93)
1.31	(1.07-1.60)
2.34	(1.36-4.01)
1.28	(1.10-1.50)
2.07	(1.06-4.07)
1.46	(1.15-1.85)
1.34	(1.05-1.72)
1.49	(1.10-2.03)
1.77	(1.05-2.98)
1.42	(1.07-1.89)
1.63	(1.15-2.31)
2.46	(1.31-4.62)
3.89	(1.34-11.33)
3.42	(1.81-6.47)
1.55	(1.03-2.33)
1.20	(1.02-1.41)
1.33	(1.00-1.77)
0.85	(0.75-0.96)
0.83	(0.76-0.89)
0.79	(0.70-0.90)
0.76	(0.68-0.84)
0.81	(0.74-0.88)
0.83	(0.74-0.92)
0.85	(0.76-0.95)
0.87	(0.76-0.99)
0.85	(0.76-0.95)
0.85	(0.74-0.99)
0.51	(0.33-0.77)
0.29	(0.13-0.64)
0.75	(0.66-0.84)
0.64	(0.53-0.77)
0.84	(0.73-0.97)
0.66	(0.45-0.98)
0.60	(0.37-0.96)
0.42	(0.21-0.85)
0.41	(0.19-0.92)
0.36	(0.14-0.89)
0.80	(0.65-0.99)
0.76	(0.67-0.87)
0.73	(0.62-0.85)
0.73	(0.61-0.86)
0.73	(0.60-0.90)
0.82	(0.70-0.96)
---	---
0.80 (0.65-0.98)	
0.24 (0.08-0.76)	
0.27 (0.07-0.99)	
0.72 (0.56-0.92)	
0.74 (0.57-0.94)	
0.72 (0.57-0.93)	
0.67 (0.53-0.85)	
2.57 (1.27-5.21)	
2.69 (1.68-4.30)	
2.57 (1.27-5.21)	
6.56 (3.10-13.9)	
4.75 (1.79-12.6)	
9.57 (2.90-31.6)	
3.22 (1.31-7.89)	
2.74 (1.47-5.11)	
8.92 (3.82-20.7)	
6.57 (2.12-20.3)	
6.57 (2.12-20.3)	
3.91 (1.39-11.0)	
7.55 (1.75-32.7)	
1.97 (1.00-3.88)	
30.6 (12.3-76.1)	
7.52 (3.39-16.7)	
23.1 (7.16-74.5)	
44.6 (10.6-187)	
0.74 (0.65-0.83)	
0.70 (0.60-0.81)	
0.61 (0.45-0.82)	
0.71 (0.51-0.97)	
0.68 (0.50-0.92)	
0.77 (0.61-0.98)	
0.58 (0.42-0.79)	
0.66 (0.52-0.84)	
0.76 (0.63-0.92)	
0.78 (0.63-0.97)	
0.70 (0.50-0.97)	
0.70 (0.56-0.88)	
0.72 (0.59-0.87)	
0.67 (0.52-0.87)	
0.77 (0.64-0.92)	
1.10 (1.00-1.20)	
1.12 (1.02-1.22)	
1.19 (1.04-1.36)	
Value	95% CI
--------	------------
1.12	1.02-1.23
1.16	1.05-1.28
1.14	1.02-1.27
1.21	1.09-1.34
1.15	1.12-1.52
1.31	1.12-1.52
1.24	1.05-1.46
1.27	1.05-1.53
1.24	1.06-1.44
0.34	0.12-0.96
0.38	0.15-0.97
0.63	0.40-0.98
2.04	1.14-3.65
1.25	1.08-1.46
1.33	1.06-1.67
1.21	1.03-1.42
1.28	1.08-1.53
1.30	1.08-1.56
1.78	1.40-2.25
2.24	1.68-2.99
2.57	1.14-5.79
2.47	1.44-4.23
2.36	1.11-5.01
0.84	0.76-0.93
0.85	0.78-0.93
1.26	1.01-1.57
1.71	1.30-2.25
1.41	1.01-1.97
1.72	1.14-2.59
0.35	0.13-0.95
6.46	1.75-23.81
0.22	0.06-0.86
0.63	0.40-0.98
3.27	1.24-8.60
2.54	1.20-5.40
2.17	1.08-4.36
3.49	1.13-10.7
4.19	1.05-16.61
0.27	0.08-0.98
0.63	0.40-0.98
17.80	8.61-36.79
0.69	0.54-0.87
1.41	1.07-1.85
---	---
1	1.97 (1.17-3.32)
2	1.92 (1.41-2.62)
3	4.44 (2.14-9.25)
4	0.64 (0.49-0.82)
5	2.89 (1.41-5.95)
6	1.58 (1.05-2.38)
7	0.72 (0.55-0.95)
8	8.66 (1.97-38.1)
9	0.67 (0.46-0.98)
10	2.41 (1.15-5.04)
11	1.76 (1.14-2.72)
12	3.61 (1.26-10.4)
13	0.65 (0.45-0.93)
14	16.59 (3.27-84.3)
15	2.46 (1.30-4.65)
16	5.26 (1.31-21.1)
17	0.48 (0.26-0.88)
18	4.08 (1.36-12.2)
19	2.60 (1.21-5.58)
20	5.45 (1.20-24.7)
21	6.38 (1.77-23.0)
22	39.91 (3.15-506.4)
23	3.62 (1.13-11.55)
24	5.82 (1.63-20.80)
25	16.37 (1.49-183.4)
26	10.2 (2.90-35.5)
27	15.2 (2.69-85.7)
28	1.55 (1.04-2.31)
29	1.57 (1.03-2.40)
30	9.45 (1.80-49.60)
31	2.38 (1.73-3.29)
32	6.17 (2.39-15.91)
33	2.37 (1.14-4.92)
34	3.71 (1.94-7.07)
35	2.20 (1.18-4.08)
36	4.07 (1.54-10.75)
37	0.50 (0.28-0.90)
38	0.46 (0.22-0.97)
39	38.38 (17.04-86.48)
40	6.57 (3.11-13.86)
41	5.74 (3.97-8.33)
42	3.04 (1.65-5.60)
43	1.56 (1.21-2.03)
Value	95% CI
---------	--------------
1.42	(1.03-1.97)
0.66	(0.52-0.84)
0.78	(0.62-0.97)
0.68	(0.54-0.85)
1.62	(1.17-2.24)
3.24	(1.49-7.05)
0.76	(0.59-0.98)
0.60	(0.44-0.82)
0.61	(0.42-0.88)
0.62	(0.46-0.84)
0.60	(0.44-0.80)
0.59	(0.37-0.95)
0.50	(0.35-0.70)
2.34	(1.23-4.45)
40.25	(17.5-92.6)
8.44	(3.58-19.91)
6.40	(4.24-9.68)
5.29	(2.48-11.28)
1.83	(1.35-2.49)
1.55	(1.03-2.33)
3.58	(1.65-7.78)
0.55	(0.36-0.84)
0.48	(0.28-0.82)
0.61	(0.41-0.92)
0.65	(0.43-0.98)
0.50	(0.29-0.88)
0.41	(0.21-0.83)
0.38	(0.20-0.72)
0.37	(0.17-0.78)
0.45	(0.22-0.90)
141	(25.01-800)
9.24	(1.95-43.74)
11.67	(1.33-103)
3.56	(1.67-7.58)
4.25	(1.49-12.14)
2.28	(1.23-4.23)
2.10	(1.15-3.84)
0.33	(0.12-0.91)
14.85	(1.94-114)
9.69	(2.12-44.34)
5.30	(1.19-23.66)
6.59	(1.54-28.17)
0.44	(0.22-0.90)
	6.54 (1.53-27.85)
---	------------------
2	0.74 (0.61-0.89)
3	0.79 (0.63-0.98)
4	0.68 (0.52-0.88)
5	0.63 (0.48-0.82)
6	0.55 (0.33-0.93)
7	0.66 (0.49-0.89)
8	1.40 (1.03-1.90)
9	3.05 (1.47-6.31)
10	1.63 (1.09-2.44)
11	14.0 (3.60-54.5)
12	8.23 (2.69-25.2)
13	2.51 (1.03-6.17)
14	2.78 (1.43-5.43)
15	0.73 (0.44-0.99)
16	0.71 (0.51-0.99)
17	0.72 (0.53-0.98)
18	0.61 (0.44-0.85)
19	1.46 (1.04-2.05)
20	1.45 (1.05-2.00)
21	5.54 (2.19-14.0)
22	3.37 (1.23-9.19)
23	0.87 (0.80-0.94)
24	0.88 (0.79-0.98)
25	0.79 (0.67-0.94)
26	0.85 (0.74-0.97)
27	0.82 (0.73-0.91)
28	0.74 (0.59-0.92)
29	0.80 (0.68-0.95)
30	1.25 (1.09-1.44)
31	1.53 (1.02-2.30)
32	0.77 (0.61-0.96)
33	0.74 (0.58-0.93)
34	0.77 (0.62-0.95)
35	3.83 (1.87-7.84)
36	0.53 (0.31-0.90)
37	1.22 (1.09-1.37)
38	0.79 (0.68-0.91)
39	0.77 (0.64-0.93)
40	0.78 (0.64-0.95)
41	0.70 (0.58-0.85)
42	0.78 (0.68-0.89)
43	0.83 (0.71-0.97)
---	---
0.63	0.46
0.77	0.63
0.76	0.62
0.83	0.71
0.62	0.45
1.49	1.21
1.21	1.09
1.15	1.02
1.41	1.04
1.19	1.07
1.12	1.01
1.13	1.02
1.18	1.04
1.18	1.04
0.86	0.77
0.81	0.69
0.80	0.69
0.85	0.75
0.84	0.72
0.78	0.64
3.00	1.25
0.79	0.68
0.83	0.71
0.79	0.66
0.75	0.60
0.68	0.51
0.83	0.69
0.82	0.69
0.77	0.67
0.77	0.66
0.74	0.65
0.51	0.28
2.66	1.36
0.58	0.41
9.35	4.20
2.53	1.44
2.72	1.13
2.14	1.07
1.94	1.35
0.82	0.74
0.87	0.77
0.78	0.70
0.69	0.54
---	---
1	0.70 (0.53-0.92)
2	0.44 (0.20-0.96)
3	0.83 (0.70-0.98)
4	0.87 (0.76-0.99)
5	1.12 (1.01-1.25)
6	1.20 (1.07-1.33)
7	0.60 (0.41-0.88)
8	1.26 (1.04-1.53)
9	1.26 (1.01-1.57)
10	1.17 (1.01-1.35)
11	1.42 (1.04-1.95)
12	2.20 (1.65-2.95)
13	0.81 (0.73-0.89)
14	0.71 (0.63-0.80)
15	0.71 (0.62-0.82)
16	0.79 (0.65-0.95)
17	0.60 (0.60-0.91)
18	0.82 (0.68-0.99)
19	0.71 (0.60-0.85)
20	0.86 (0.75-0.98)
21	0.81 (0.73-0.91)
22	0.76 (0.67-0.87)
23	0.77 (0.67-0.89)
24	0.77 (0.66-0.90)
25	0.80 (0.69-0.92)
26	0.82 (0.72-0.94)
27	0.75 (0.62-0.92)
28	0.71 (0.62-0.82)
29	0.78 (0.67-0.90)
30	0.75 (.66-0.85)
31	0.70 (0.58-0.83)
32	0.78 (0.65-0.93)
33	0.75 (0.61-0.92)
34	0.84 (0.75-0.96)
35	0.79 (0.70-0.90)
36	0.77 (0.68-0.88)
37	0.78 (0.67-0.90)
38	0.80 (0.69-0.92)
39	0.78 (0.66-0.91)
40	0.75 (0.63-0.88)
41	0.81 (0.72-0.91)
42	0.78 (0.68-0.90)
43	0.78 (0.68-0.90)
---	---
0.75 (0.65-0.86)	
0.78 (0.66-0.91)	
0.70 (0.59-0.83)	
0.79 (0.67-0.93)	
0.74 (0.62-0.89)	
0.81 (0.68-0.98)	
0.84 (0.76-0.94)	
0.78 (0.66-0.92)	
0.63 (0.44-0.91)	
0.82 (0.72-0.93)	
0.81 (0.72-0.93)	
0.74 (0.62-0.89)	
0.67 (0.47-0.94)	
0.79 (0.69-0.89)	
0.74 (0.53-0.86)	
0.70 (0.53-0.92)	
0.71 (0.52-0.98)	
0.56 (0.40-0.79)	
0.83 (0.74-0.94)	
1.41 (1.07-1.87)	
1.56 (1.03-2.37)	
1.27 (1.03-1.57)	
1.49 (1.10-2.03)	
1.20 (1.02-1.41)	
2.21 (1.21-4.03)	
0.88 (0.81-0.95)	
0.86 (0.79-0.94)	
2.36 (1.80-3.09)	
4.86 (2.31-10.25)	
0.82 (0.76-0.89)	
2.02 (1.47-2.76)	
0.81 (0.72-0.91)	
1.47 (1.22-1.77)	
1.58 (1.12-2.23)	
0.80 (0.68-0.95)	
0.79 (0.63-0.98)	
0.66 (0.53-0.83)	
0.87 (0.77-0.97)	
0.79 (0.69-0.90)	
0.78 (0.69-0.89)	
1.49 (1.14-1.95)	
1.43 (1.10-1.87)	
1.61 (1.13-2.31)	
---	---
1	0.56 (0.34-0.95)
2	0.48 (0.28-0.83)
3	0.29 (0.14-0.58)
4	1.70 (1.02-2.82)
5	2.40 (1.23-4.70)
6	2.59 (1.32-5.07)
7	0.51 (0.37-0.71)
8	0.34 (0.21-0.55)
9	0.46 (0.30-0.72)
10	0.48 (0.25-0.91)
11	0.49 (0.32-0.75)
12	0.34 (0.13-0.85)
13	0.22 (0.07-0.71)
14	0.39 (0.22-0.69)
15	0.44 (0.25-0.78)
16	0.49 (0.27-0.91)
17	0.98 (0.96-0.99)
18	2.34 (1.36-4.01)
19	2.98 (1.50-5.93)
20	1.87 (1.02-3.40)
21	1.30 (1.04-1.63)
22	1.17 (1.01-1.36)
23	0.45 (0.22-0.94)
24	2.58 (1.20-5.55)
25	0.65 (0.46-0.92)
26	1.26 (1.05-1.51)
27	1.38 (1.07-1.77)
28	1.19 (1.03-1.37)
29	1.34 (1.02-1.74)
30	0.69 (0.50-0.95)
31	2.07 (1.30-3.29)
32	0.89 (0.81-0.98)
33	0.75 (0.61-0.90)
34	0.82 (0.69-0.98)
35	2.16 (1.15-4.06)
36	0.63 (0.40-0.98)
37	2.46 (1.28-4.74)
38	1.42 (1.04-1.93)
39	1.27 (1.03-1.58)
40	1.50 (1.15-1.97)
41	1.48 (1.01-2.17)
42	1.47 (1.08-2.00)
43	1.60 (1.13-2.27)
Value	95% CI
-------	-------------
0.85	(0.72-0.99)
2.31	(1.01-5.26)
1.94	(1.01-3.71)
1.19	(1.01-1.41)
2.90	(1.30-6.45)
1.51	(1.16-1.96)
0.54	(0.30-0.99)
2.67	(1.36-5.25)
0.62	(0.44-0.89)
0.63	(0.42-0.96)
1.30	(1.06-1.60)
1.44	(1.13-1.84)
1.79	(1.06-3.03)
2.69	(1.43-5.06)
6.52	(2.79-15.21)
2.00	(1.04-3.87)
2.10	(1.08-4.09)
2.02	(1.03-3.97)
0.66	(0.45-0.99)
1.80	(1.14-2.84)
1.60	(1.18-2.17)
1.85	(1.21-2.83)
1.54	(1.04-2.27)
2.41	(1.22-4.74)
0.76	(0.63-0.91)
0.83	(0.71-0.96)
0.73	(0.62-0.86)
0.75	(0.61-0.93)
0.69	(0.55-0.87)
Classification of evidence	
---------------------------	--
Suggestive	
Weak	
1	Weak
---	--------
2	Weak
3	Weak
4	Weak
5	Suggestive
6	Weak
7	Weak
8	Weak
9	Weak
10	Highly suggestive
11	Highly suggestive
12	Weak
13	Highly suggestive
14	Weak
15	Suggestive
16	Weak
17	Highly suggestive
18	Weak
19	Weak
20	Weak
21	Suggestive
22	Highly suggestive
23	Highly suggestive
24	Weak
25	Highly suggestive
26	Weak
27	Weak
28	Suggestive
29	Week
30	Weak
31	Weak
32	Suggestive
33	Weak
34	Weak
35	Suggestive
36	Weak
37	Weak
38	Weak
39	Weak
40	Weak
41	Weak
42	Weak
43	Weak
44	Weak
45	Weak
46	Weak
47	Weak
48	Weak
49	Weak
50	Weak
51	Suggestive
52	Suggestive
53	Weak
54	Highly suggestive
55	Weak
56	Suggestive
57	Suggestive
58	Suggestive
59	Suggestive
60	Suggestive
	Weak
---	--------

https://mc.manuscriptcentral.com/bmjmedicine
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Weak
Suggestive
Weak
Weak
Suggestive
Weak
Weak
Suggestive
Weak
Weak
Suggestive
Weak
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Weak
Suggestive
Weak
Suggestive
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Suggestive
Weak
Suggestive
Weak
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Weak
Suggestive
Weak
Suggestive
Weak
Suggestive
Weak
Weak
Weak
Highly suggestive
Weak
Suggestive
Suggestive
Weak
Weak
Weak
Weak
Suggestive
Suggestive
Weak
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Weak
Highly suggestive
Suggestive
Highly suggestive
Highly suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Suggestive
Weak
Suggestive
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Weak
Weak
Weak
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Table 6. Concordance between meta-analyses of summary level data and MAs of individual participant data from International Lymphoma Epidemiology Consortium

Exposure [NHL subtype]	Effect estimate (95% CI)	Strength of reported association
Red blood cell transfusion [NHL]	RR 1.20 (1.07, 1.35)	IV
Red blood cell transfusion [CLL/SLL]	RR 1.66 (1.08, 2.56)	IV
Red blood cell transfusion [FL]	RR 1.02 (0.67, 1.55)	NS
Red blood cell transfusion [DLBCL]	RR 1.06 (0.86, 1.30)	NS
Ever smoking [NHL]	RR 1.05 (1.00, 1.09)	IV
Ever smoking [DLBCL]	RR 1.01 (0.95, 1.07)	NS
Ever smoking [FL]	RR 1.05 (0.88, 1.25)	NS
Ever smoking [CLL/SLL]	RR 0.96 (0.89, 1.04)	NS
Ever smoking [TCL]	RR 1.23 (1.06, 1.43)	IV
Ever drinking [NHL]	RR 0.85 (0.79, 0.91)	III
Ever drinking [TCL]	RR 0.78 (0.58, 1.05)	NS
Ever drinking [DLBCL]	RR 0.79 (0.68, 0.91)	IV
Ever drinking [FL]	RR 0.80 (0.69, 0.92)	IV
Ever drinking [CLL/SLL]	RR 1.00 (0.80, 1.26)	NS
Pernicious anemia [NHL]	RR 1.16 (0.79, 1.71)	NS
Rheumatoid arthritis [NHL]	SIR 2.26 (1.82, 2.81)	II
Primary Sjogren's syndrome [NHL]	RR 13.76 (8.53, 18.99)	II
Systemic lupus erythematosus [NHL]	RR 5.40 (3.75, 7.77)	II
Psoriasis [NHL]	RR 1.48 (1.3, 1.69)	III
Type 1 diabetes [NHL]	RR 1.55 (1.15, 2.08)	IV
Celiac disease [NHL]	OR 2.61 (2.04, 3.33)	II
Celiac disease [TCL]	OR 15.84 (7.85, 31.94)	II
Celiac disease [DLBCL]	OR 2.25 (1.32, 3.85)	IV
Celiac disease [CLL]	OR 0.80 (0.46, 1.38)	NS
Sarcoidosis [NHL]	RR 1.43 (1.03, 1.99)	IV
Tuberculosis [NHL]	RR 1.61 (1.34, 1.94)	II
Herpes Zoster [NHL]	RR 1.72 (1.27, 2.32)	III
Hepatitis C virus [NHL]	OR 3.36 (2.40, 4.72)	II
Hepatitis C virus [DLBCL]	OR 2.65 (1.88, 3.74)	II
Hepatitis C virus [FL]	OR 2.73 (2.20, 3.38)	IV
Hepatitis C virus [MZL]	OR 3.41 (2.39, 4.87)	IV
Hepatitis C virus [CLL/SLL]	OR 1.65 (1.35, 2.02)	IV
Farmer [NHL]	RR 1.11 (1.05, 1.17)	III
Firefighter [NHL]	SIR 1.07 (0.96, 1.20)	NS
Hairdresser [NHL]	RR 1.11 (0.94, 1.32)	NS
Petroleum refinery worker [NHL]	RR 0.98 (0.89, 1.09)	NS
Teacher [NHL]	RR 1.47 (1.34, 1.61)	II
Meat worker [NHL]	RR 0.99 (0.77, 1.29)	NS
Printer [NHL]	RR 1.86 (1.38, 2.50)	III
Wood worker [NHL]	RR 1.04 (0.79, 1.37)	IV

Footnotes

CI=confidence interval; CLL/SLL=chronic lymphocytic leukemia/small lymphocytic lymphoma.
Exposure [NHL subtype]	Effect estimate (95% CI)	Effect estimates in the same direction	Overlapping 95% confidence intervals	Same level of statistical significance (P<0.05)	
History of blood transfusion	MA of IPD	OR 0.83 (0.77, 0.91)	No	No	Both
History of blood transfusion	MA of IPD	OR 0.79 (0.66, 0.94)	No	No	Both
History of blood transfusion	MA of IPD	OR 0.78 (0.68, 0.89)	No	Yes	MA of IPD
History of blood transfusion	MA of IPD	OR 0.84 (0.75, 0.95)	No	Yes	MA of IPD
Any smoking [NHL]	Both	OR 1.02 (0.97, 1.07)	Yes	Yes	Neither
Any smoking [DLBCL]	Both	OR 1.01 (0.94, 1.08)	Yes	Yes	Neither
Any smoking [FL]	MA of IPD	OR 0.90 (0.81, 0.99)	Yes	Yes	MA of IPD
Any smoking [TCL]	MA of IPD	OR 1.32 (1.09, 1.59)	Yes	Yes	Both
Any alcohol [NHL]	MA of IPD	OR 0.87 (0.81, 0.93)	Yes	Yes	Both
Any alcohol [TCL]	MA of IPD	OR 0.68 (0.53, 0.87)	Yes	Yes	MA of IPD
Any alcohol [DLBCL]	MA of IPD	OR 0.81 (0.73, 0.89)	Yes	Yes	Both
Any alcohol [FL]	MA of IPD	OR 0.86 (0.77, 0.96)	Yes	Yes	Both
Any alcohol [CLL/SLL]	MA of IPD	OR 1.04 (0.90, 1.19)	Yes	Yes	Neither
Pernicious anemia [NHL]	MA of IPD	OR 1.37 (0.62, 3.03)	Yes	Yes	Neither
Rheumatoid Arthritis [NHL]	MA of IPD	OR 1.32 (0.99, 1.77)	Yes	No	MA of sum
Sjogren’s syndrome [NHL]	MA of IPD	OR 7.52 (3.68, 15.36)	Yes	Yes	Both
Systemic Lupus Erythematosus [NHL]	MA of IPD	OR 2.83 (1.81, 4.11)	Yes	Yes	Both
Psoriasis [NHL]	MA of IPD	OR 1.08 (0.90, 1.29)	Yes	No	MA of sum
Type 1 diabetes [NHL]	MA of IPD	OR 1.15 (0.80, 1.66)	Yes	Yes	MA of sum
celiac disease [NHL]	MA of IPD	OR 1.77 (1.05, 2.99)	Yes	Yes	Both
celiac disease [TCL]	MA of IPD	OR 14.82 (7.27, 30.19)	Yes	Yes	Both
celiac disease [DLBCL]	MA of IPD	OR 2.09 (1.04, 4.18)	Yes	Yes	Both
celiac disease [CLL/SLL]	MA of IPD	OR 0.60 (0.14, 2.61)	Yes	Yes	Neither
Sarcoidosis [NHL]	MA of IPD	OR 0.71 (0.39, 1.29)	No	Yes	Neither
Adult Tuberculosis infection	MA of IPD	OR 1.16 (0.96, 1.39)	Yes	Yes	MA of sum
Adult shingles [NHL]	MA of IPD	OR 1.05 (0.93, 1.19)	Yes	No	MA of sum
Hepatitis C virus [NHL]	MA of IPD	OR 1.81 (1.39, 2.37)	Yes	No	Both
hepatitis C virus [DLBCL]	MA of IPD	OR 2.33 (1.71, 3.19)	Yes	Yes	Both
Hepatitis C virus [FL]	MA of IPD	OR 0.57 (0.30, 1.10)	No	No	MA of sum
Hepatitis C virus [MZL]	MA of IPD	OR 3.04 (1.65, 5.60)	Yes	Yes	Both
Hepatitis C virus [CLL/SLL]	MA of IPD	OR 2.08 (1.23, 3.49)	Yes	Yes	Both
Farmer [NHL]	MA of IPD	OR 1.03 (0.95, 1.13)	Yes	Yes	Neither
Firefighter [NHL]	MA of IPD	OR 0.76 (0.53, 1.09)	No	Yes	Neither
Hairdresser [NHL]	MA of IPD	OR 1.21 (0.96, 1.52)	Yes	Yes	Both
Petroleum workers [NHL]	MA of IPD	OR 0.79 (0.38, 1.67)	Yes	Yes	Neither
Teacher [NHL]	MA of IPD	OR 0.89 (0.81, 0.98)	No	No	Both
Meat worker [NHL]	MA of IPD	OR 1.08 (0.81, 1.42)	No	Yes	Neither
Printers [NHL]	MA of IPD	OR 0.95 (0.78, 1.17)	No	No	MA of sum
Wood workers [NHL]	MA of IPD	OR 1.04 (0.89, 1.22)	Yes	Yes	Neither

NHL = non-Hodgkin lymphoma; DLBCL = diffuse large B-cell lymphoma; NA = not available; MAs of IPD = meta-analyses of individual participant data from International Lymphoma Epidemiology Consortium.
Overlapping evidence
At least one-third of studies overlapping
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No

CI=confidence interval; CLL/SLL=chronic lymphocytic leukemia/small lymphocytic lymphoma; DLBCL=diffuse large B-cell lymphoma; NHL=non-Hodgkin lymphoma; OR=odds ratio; SIR=standardized incidence ratio; RR=risk ratio; TCL=T-cell lymphoma.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Journal: *BMJ Medicine*

Manuscript ID: bmjmed-2022-000184.R2

Article Type: Original research

Date Submitted by the Author: 16-May-2022

Complete List of Authors:

Shi, Xiaoting; Yale University School of Public Health, Department of Environmental Health Sciences
Zhuo, Haoran; Yale School of Public Health, Department of Environmental Health Sciences
Du, Yuxuan; Yale School of Public Health, Department of Health Policy and Management
Nyhan, Kate; Yale University, Harvey Cushing/John Hay Whitney Medical Library; medical library
Ioannidis, John; Stanford University, Stanford Prevention Research Center, Department of Medicine and Department of Health Research and Policy
Wallach, Joshua D.; Yale University School of Public Health, Department of Environmental Health Sciences

Keywords: Lymphoma, Epidemiology
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Xiaoting Shi, Haoran Zhuo, Yuxuan Du, Kate Nyhan, John P.A. Ioannidis, Joshua D. Wallach

Xiaoting Shi, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Haoran Zhuo, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Yuxuan Du, Graduate student
Department of Health Policy & Management, Yale School of Public Health, New Haven, Connecticut, USA

Kate Nyhan, Librarian
Harvey Cushing/John Hay Whitney Medical Library; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA

John P.A. Ioannidis, Professor
Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, California, USA

Joshua D Wallach, Assistant Professor
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Corresponding author:
Joshua D Wallach, MS, PhD
Assistant Professor
Department of Environmental Health Sciences
Yale School of Public Health
60 College Street, 4th Floor, Room 411
Abstract

Objectives: To summarize the range, strength, and validity of reported associations between environmental risk factors and non-Hodgkin lymphoma (NHL), and to evaluate the concordance between associations reported in meta-analyses (MAs) of summary level data and MAs of individual participant data (IPD).

Design: Umbrella review.

Data sources: MEDLINE, Embase, Scopus, Web of Science Core Collection, Cochrane Library, and Epistemonikos from inception to 23 July 2021.

Eligibility criteria: English language MAs of summary level data and MAs of IPD evaluating associations between environmental risk factors and incident NHL (overall and NHL subtypes).

Data extraction and synthesis: Summary effect estimates from MAs of summary level data comparing ever versus never exposure that were adjusted for the largest number of potential confounders were re-estimated using a random-effects model and classified as presenting non-significant, weak ($P<0.05$), suggestive ($P<10^{-3}$ and >1000 cases), highly suggestive ($P<10^{-6}$, >1000 cases, largest study reporting a significant association), or convincing ($P<10^{-6}$, >1000 cases, largest study reporting a significant association, $I^2 < 50\%$, 95% prediction interval excluding the null value, and no evidence of small study effects and excess significance bias) evidence. When the same exposures, exposure contrast levels, and outcomes were evaluated in MAs of summary level data and MAs of IPD from the International Lymphoma Epidemiology (InterLymph) Consortium, concordance in terms of direction, level of significance, and overlap of 95% confidence intervals (CIs) was examined. We assessed the methodological quality of the MAs of summary level data using the A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2 tool.

Results: We identified 85 MAs of summary level data reporting 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. Nearly all (79/85, 93%) MAs of summary level data were classified as having critically low quality. Most (225, 88%) associations presented either non-significant or weak evidence. The 11 (4%) associations presenting highly suggestive evidence were primarily for autoimmune or infectious disease-related risk factors. Only 1 association, history of celiac disease and risk of NHL, presented convincing evidence. Overall, 40 associations reported in MAs of summary level data were also evaluated in InterLymph MAs of IPD. Of these, 22 (55%) pairs were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 28 (70%) pairs where the summary effect sizes from the MAs of IPD were more conservative.
Conclusion: This umbrella review suggests that there is a mass production of MAs of summary level data, many of which report weak associations between environmental risk factors and NHL, and highlights the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

Systematic review registration PROSPERO CRD42020178010.
What is already known on this topic

- Observational studies have suggested that environmental risk factors, including clinical, occupational, and lifestyle exposures, may be associated with the risk of developing non-Hodgkin lymphoma.

- As a result of the large number of observational studies evaluating the impact of environmental risk factors on non-Hodgkin lymphoma, dozens of systematic reviews and meta-analyses of summary and individual participant level data have focused on synthesizing evidence and identifying potential risk factors.

- Little is known about: (1) the range, strength, and validity of associations between environmental risk factors and non-Hodgkin lymphoma reported in meta-analyses or (2) the concordance between meta-analyses of summary level data and meta-analyses of individual participant data evaluating the same associations.

What this study adds

- This umbrella review suggests that although a large range of environmental risk factors for non-Hodgkin lymphoma have been evaluated in meta-analyses, the vast majority of meta-analyses of summary level data are low quality and present either non-significant or weak associations.

- Overall, only half of the associations that were evaluated in both meta-analyses of summary level data and meta-analyses of individual participant data were in the same direction, had the same level of statistical significance, and had overlapping 95% confidence intervals.

- Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, this umbrella review highlights the need for improving not only primary studies but also evidence synthesis in the field of non-Hodgkin lymphoma etiology.
Introduction

Non-Hodgkin lymphoma (NHL), a lymphoid cancer that originates in white blood cells called lymphocytes, is the 9th leading cause of cancer death among both men and women.1 NHL accounts for nearly 90% of all lymphomas2 and is the most common hematologic malignancy in the world.3 Although NHL can be broadly categorized into two major groups (i.e., B-cell, T-cell/natural killer-cell lymphomas), it represents a diverse group of malignant disorders with dozens of subtypes.4 Evidence suggests that NHL is more common among older adults, men, and people with a first degree relative with NHL.5,6 However, despite substantial effort to identify NHL causes and risk factors over the past few decades, the exact etiology of NHL is unknown.5

Epidemiological studies have suggested that environmental risk factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors, may be associated with the risk of developing NHL. In particular, several prominent potential risk factors proposed in the literature include viruses (e.g., Epstein-Barr virus infection),7 autoimmune diseases (e.g., Sjogren’s syndrome, celiac disease, and rheumatoid arthritis),8-10 and immune dysregulation (i.e., patients with a history of organ transplantation, acquired immunodeficiency syndromes (HIV/AIDS), or immunosuppressive medication treatment).5,6,11 However, given that these exposures and conditions are relatively rare,11 a broad range of additional environmental risk factors, including exposure to insecticides,12 red and processed meat consumption,13 and hair dye,14 have been evaluated and proposed as potential risk factors.

As a result of the large number of observational studies evaluating the impact of environmental risk factors on NHL, dozens of systematic reviews and meta-analyses (MAs) of summary level data have focused on synthesizing evidence and identifying the most promising risk factors. Moreover, the International Lymphoma Epidemiology (InterLymph) Consortium,15 a group of investigators who pool data from their completed or ongoing NHL case-control studies, have published multiple MAs of individual participant data (IPD) evaluating associations between various environmental risk factors and NHL.16-18 Although these MAs of IPD contain thousands of NHL cases and are strengthened by their ability to utilize raw data that are harmonized across multiple studies, they do not include evidence from case-control and cohort studies conducted by investigators outside of the InterLymph Consortium. Therefore, MAs of summary level data and MAs of IPD evaluating the same associations between environmental risk factors and NHL may sometimes lead to discordant results and conclusions.
To provide an overview of the range, strength, and validity of reported associations between environmental risk factors and NHL, we conducted an umbrella review of the evidence across published systematic reviews and MAs. In addition to summarizing the results, determining hints of biases, and assessing the quality of reviews, we evaluated the consistency between all associations reported in both MAs of summary level data and InterLymph MAs of IPD.

Methods
We conducted an umbrella review on the reported associations between environmental risk factors and the risk of NHL. Umbrella reviews are used to systematically identify and evaluate evidence reported in published systematic reviews and MAs.19,20 Our study protocol was pre-registered on the International prospective register of systematic reviews (CRD42020178010) and posted on Open Science Framework (https://osf.io/6g2ev/). We did not involve patients or members of the public when designing the question and study, interpreting the results, and/or drafting the manuscript.

Database searches
Working with an experienced medical librarian (KN), we developed and performed a comprehensive search of multiple databases: MEDLINE (Ovid), Embase (Ovid), Scopus, Web of Science Core Collection (as licensed at Yale University), Cochrane Library, and Epistemonikos from inception to July 24th 2020 (eTable 1 in Supplement 1). In each database, we used three concepts: NHL, risk factors, and the study designs of interest (MAs, systematic reviews, and pooled analyses). The search strategy for NHL was based on the search strategy used in a published review.21 The study design search strategy used elements from a published search filter.22 Database limits were used to exclude conference papers and meeting abstracts. No language limits were used. Records were deduplicated in EndNote, the Yale Reference Deduplicator, and Covidence. No citation chaining was conducted.

On July 24th 2020, searches were run in each database and 14,753 references were identified. After deduplication in EndNote and Covidence, 8025 unique records were uploaded for screening. On July 23th 2021, all searches were rerun and deduplicated and 969 additional unique records were added to Covidence for manual screening. In total, our search retrieved 8994 unique records across all databases.

Eligibility criteria
We included English language systematic reviews, MAs of summary level data (i.e., MAs using effect estimates reported in individual studies), and MAs of IPD of observational studies evaluating associations between environmental risk factors and incident NHL (overall or any subtypes, eTable 2 in Supplement 1). We considered all non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors. Systematic reviews and MAs were excluded if they primarily focused on genetic risk factors, evaluated risk factors for the treatment, relapse, remission, or prognosis of NHL patients, or examined NHL as a risk factor for other diseases (eText 1 in Supplement 1).

Two reviewers (XS and HZ) independently screened the titles and abstracts and then full-text versions of potentially eligible articles. Any disagreements or uncertainties were discussed with a third reviewer (JDW).

Data extraction

Data extraction was performed independently by two reviewers (XS and HZ), and a third reviewer (JDW) arbitrated all potential discrepancies. For each systematic review and MA, we recorded the first author, year of publication, article title, journal of publication, study design, population, examined exposures and their definitions, and examined outcomes and their definition (i.e., NHL or NHL subtypes). For all MAs of summary level data, we identified each unique exposure-outcome relationship and recorded the number of studies included, total sample size, number of cases, and study-specific adjusted relative risk estimates (e.g., relative risks, hazard ratios, or odds ratios) and corresponding 95% confidence intervals (CIs). For studies that considered multiple exposure contrast levels, control groups, and/or confounders, we prioritized the effect estimates comparing ever versus never exposure that were adjusted for the largest number of potential confounders. Whenever ever versus never exposures comparisons were not reported, we recorded the effect estimates comparing the highest versus lowest levels of exposures. When multiple MAs of summary level data were identified for the same environmental risk factor, we selected the effect estimates that were based on the largest number of component studies.

For systematic reviews with unique associations that were not investigated in MAs of summary level data, we recorded the number of studies identified, the reasons why MAs were not performed, and the main conclusions. Lastly, for all MAs of IPD, one author (JDW) identified the exposures, NHL subtypes, and number of NHL cases for: (1) all nominally
statistically significant ($P<0.05$) associations and (2) any associations that were also evaluated in MAs of summary level data.

Quality Assessment

Four reviewers (XS, HZ, YD, and JDW) evaluated the quality of all MAs of summary level data using A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2. Any discrepancies were discussed and resolved by consensus. Based on the suggested rating scheme, the overall confidence in the results of the MAs of summary level data were classified as high, moderate, low, or critically low. We did not examine the quality of MAs of IPD.

Statistical analysis

First, we used a random-effects model, which allows for unexplained between-study heterogeneity on the effect of interest, with the between-study variance estimated using the DerSimonian and Laird (DL) estimator. When summary effect estimates were reported without a corresponding P value, we used the 95% CIs to calculate the P value using a previously described method. Next, we categorized the strength of the reported associations across five levels (Table 1), following previously established methodology. All associations with $P>0.05$ were classified as non-significant. Associations with $P<0.05$ and fewer than 1000 cases were classified as weak. Associations with $P<10^{-3}$ and at least 1000 cases were classified as suggestive. For associations with $P<10^{-6}$, at least 1000 cases, and $P<0.05$ for the largest component study, we sequentially evaluated 95% prediction intervals (PIs), presence of small study effects (Egger regression asymmetry test), and evidence of excess significance using the Ioannidis test. PIs provide a potential range of the true effect and incorporate the uncertainty of whether the observed effect will arise in future studies as well. $P<0.1$ for Egger’s test suggests the presence of small study effects (i.e. small studies are more prone to report larger or more significant results while larger studies tend to report more conservative results). The Ioannidis test estimates whether the observed number of studies with nominally statistically significant ($P<0.05$) results in a MA differs from the expected number of studies with nominally statistically significant studies. Associations with 95% PIs including the null, statistically significant Egger’s test ($P<0.1$), and/or evidence of excess significance were classified as highly suggestive. Associations with 95% prediction intervals excluding the null, non-statistically significant Egger’s test ($P>0.1$), and no evidence of excess significance were classified as convincing. Statistical analysis was conducted using metagen package in R version 4.1.0. (eTable 3 in Supplement 1).
Table 1. Grading criteria for evidence categories

Strength of association	Description
Convincing (class I)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Low/moderate proportion of total variability due to between-study variability ($I^2 < 50\%$)
	95% prediction interval excluding the null value
	Largest study reporting a nominally statistically significant ($P < 0.05$)
	No evidence of small-study effects
	No evidence of excess significance bias
Highly suggestive (class II)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Largest study reporting a nominally statistically significant ($P < 0.05$)
Suggestive (class III)	At least 1000 NHL cases
	Statistically significant association ($P < 10^{-3}$)
Weak (class IV)	Nominally statistically significant association ($P < 0.05$)
Non-significant	Non-statistically significant associations ($P > 0.05$)

* P value for the association that calculated by random effects model.
NHL=non-Hodgkin lymphoma.

Concordance between MAs of summary level data and InterLymph MAs of IPD

When the same exposures, exposure contrast levels, and NHL subtypes were examined in MAs of summary level data and InterLymph MAs of IPD, two authors (XS and JDW) determined whether the effect estimates: (1) were in the same direction, (2) had overlapping 95% CIs, and/or (3) had the same level of statistical significance ($P<0.05$ or $P\geq 0.05$). Associations with all three criteria fulfilled were classified as fully concordant. Lastly, we determined how often MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD.

Results

Literature search

Among 16438 records identified through the literature search, 7444 were excluded as duplicates, leaving 8994 titles and abstracts for initial screening (Figure 1). 7970 records were excluded based on the title and abstract and 1024 were screened at the full text stage for inclusion. After excluding 904 records at the full text stage (eTable 1 in Supplement 2), our
searches identified 85 MAs of summary level data evaluating 134 unique environmental risk factors and 8 systematic reviews evaluating 8 unique risk factors (eFigure 1 and eText 2 in Supplement 1 and eTable 2 in Supplement 2). In addition, we identified 27 MAs of IPD (Supplement 2), of which 24 (89%) were conducted by the InterLymph Consortium. More than one MA of summary level data was identified for 44 (44/134, 33%) risk factors (eTable 4 in Supplement 1). Among the MAs of summary level data selected based on the largest number of component studies, approximately half were also the most recently published (25/44, 57%).

Methodological quality

The vast majority of the 85 MAs of summary level data had overall confidence ratings of low (3, 4%) or critically low (79, 93%) according to the AMSTAR 2 tool. There were 2 (2%) where the overall confidence in the results was classified as moderate.\(^{34,35}\) Only 1 (1%), evaluating the association between tuberculosis and risk of NHL, had an overall confidence rating of high (eTable 3 in Supplement 2).\(^{36}\) The most common unfulfilled critical domains of the AMSTAR 2 tool were incomplete justification of excluded studies (74, 87%) and missing or no information about preregistered protocols (72, 85%).

MAs of summary level data

Among the 257 associations reported in the MAs of summary level data, 124 and 133 evaluated the impact of environmental risk factors on the risk of NHL overall and NHL subtypes, respectively. NHL subtypes included follicular lymphoma (FL; 43, 17%), diffuse large B-cell lymphoma (DLBCL; 35, 14%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 31, 12%), T-cell lymphoma (TCL; 12, 5%), B-cell lymphoma (BCL; 4, 2%), marginal zone lymphoma (MZL; 2, 1%), endemic Burkitt Lymphoma (eBL; 1, 0.4%), Burkitt lymphoma (BL; 1, 0.4%), primary cutaneous lymphoma (PCL; 1, 0.4%). The most common exposure categories were dietary factors (90, 35%), medical histories and comorbidities (54, 21%), chemicals and pesticides (42, 16%), lifestyle factors (29, 11%), drugs, vaccinations, and medical procedures (30, 12%), and occupational (12, 5%). The median number of component studies per MA of summary level data was 5 (IQR 4-10). The median number of NHL cases, among the 64 (75%) MAs reporting this information, was 1533 (IQR, 482-5872).

Credibility criteria

After re-estimating the 257 associations using a random-effects DL estimator and applying the credibility criteria, 145 (56%) were classified as presenting non-significant evidence (eTable 4 in Supplement 2). There were 80 (31%) nominally statistically significant (\(P<0.05\))
associations that were classified as presenting weak evidence. There were 20 (8%) statistically
significant associations ($P<10^{-3}$), based on analyses with at least 1000 NHL cases, that were
classified as presenting suggestive evidence. Only 12 (5%) associations were classified as
presenting highly suggestive or convincing evidence, with a $P<10^{-6}$, at least 1000 cases, and a
$P<0.05$ for the largest component study. The 11 highly suggestive associations were for history
of renal transplantation and risk of NHL, rheumatoid arthritis and risk of NHL, primary
Sjogren's syndrome and risk of NHL, systemic lupus erythematosus and risk of NHL, celiac
disease and risk of TCL, tuberculosis and risk of NHL, hepatitis B virus (HBV) and risk of
NHL and BCL, hepatitis C virus (HCV) and risk of NHL and DLBCL, and teaching as an
occupation and risk of NHL (Table 2).

Risk factors category	Environmental risk factors	Level of comparison	Outcomes type	Author	Year	N. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Largest study nominally significant ($P<0.05$)	I^2 (%)	95% PI	Strength of association	
Renal transplant	Renal transplant recipients vs general population	NHL	SR MA	Wang 2018	6	770	SI R	10.66 (8.54, 13.31)	3.44E-86	Yes	80.2	NA	NA	II	
Autoimmune diseases	Rheumatoid arthritis patients vs general population	NHL	SR MA	Simon 2015	16	153	SI R	2.26 (1.82, 2.81)	8.42E-13	Yes	96	N A	NA	NA	II
Primary Sjogren's syndrome patients vs general population	NHL	SR MA	Lian 2014	11	123	R R	13.76 (8.53, 18.99)	1.62E-34	Yes	58.8	N A	NA	NA	II	
Systemic lupus patients vs general	NHL	MA	Cao 2015	12	166	R R	5.4 (3.75, 7.77)	1.99E-18	Yes	74.3	N A	NA	NA	II	

Table 2. Environmental risk factors for non-Hodgkin lymphoma reported in meta-analyses of summary level data with convincing (Class I) and highly suggestive (Class II) evidence.
Disease	Patients vs general population	NHL	SR/MA	Tio 2012	8	110/245	OR	2.61 (2.04, 3.33)	9.32 E-14	Yes	23/4	(1.57, 5.33)	No	I
Celiac disease	Patients vs general population	TCL	SR/MA	Tio 2012	5	353/58	OR	15.84 (7.85, 31.94)	6.70 E-14	Yes	55/5	NA	NA	II
Tuberculosis	Patients vs general population	NHL	SR/MA	Leung 2020	8	239/14	RR	1.61 (1.34, 1.94)	6.76 E-07	Yes	50/2	NA	NA	II
HBV	HBV infected vs non-infected	NHL	SR/MA	Li 2018	58	537/14	OR	2.50 (2.2, 2.83)	6.33 E-42	Yes	77/9	NA	NA	II
HBV	HBV infected vs non-infected	NHL	SR/MA	Li 2018	20	>10/00	OR	2.46 (1.97, 3.07)	1.24 E-14	Yes	62/9	NA	NA	II
HCV	HCV infected vs non-infected	NHL	SR/MA	Masaroni 2019	27	330/77	OR	3.36 (2.4, 4.72)	7.92 E-12	Yes	65/12	NA	NA	II
HCV	Patients vs general population	DLBCL	MA	Dal Maso 2006	8	102/0	RR	2.65 (1.88, 3.74)	4.98 E-08	Yes	39/17	NA	NA	II

| Occupation | Teachers vs non-teachers | NHL | MA | Boffetta 2007 | 19| >10/00 | RR | 1.47 (1.34, 1.61) | 1.60 E-15 | Yes | 76/15 | NA | NA | II |

BCL=B cell lymphoma; CI=confidence interval; HBV=hepatitis B virus; HCV=hepatitis C virus; MA=meta-analysis; NA=not available; NHL=non-Hodgkin lymphoma; OR=odds ratio; PI=prediction interval; SIR=standardized incidence ratio; SRMA=systematic review and meta-analysis; RR=risk ratio; TCL=T-cell lymphoma.

P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.

P<0.1 for Egger’s test suggests the presence of small study effects.

Strength of association using the criteria listed in Table 1.

There was one association, between history of celiac disease and risk of NHL (OR 2.61, 95% CI 2.04 to 3.33; 110, 245 NHL cases from 8 individual studies), that was classified as presenting convincing evidence. Although the association had *P*<10^-6, at least 1000 cases, a nominally significant result for the largest component study, low/moderate proportion of total variability due to between-study variability (*I^2*<50%), a 95% PI excluding the null, and no evidence of small study effects, we were unable to conduct the Ioannidis test due to the incomplete information reported about the component studies. Across all the 112 nominally...
statistically significant associations, 63 (56%) had relative risk values that were between 0.67 and 1.50.

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by MAs of summary level data (*eText 2 in Supplement 1*).

MAs of IPD

We identified 27 MAs of IPD, of which 24 were from the InterLymph Consortium. The 24 InterLymph MAs of IPD reported 715 nominally statistically significant (*P*<0.05) associations. Of these, 116 and 21 associations were based on analyses with at least 1000 NHL cases and had *P*<10^-3 and *P*<10^-6, respectively (*Table 3 and eTable 5 in Supplement 2*). Overall, the unique suggestive exposures categories were alcohol consumption on risk of DLBCL, MZL and NHL, history of Sjogren’s syndrome on risk of DLBCL, MZL and NHL, recreational sun exposure on risk of DLBCL, FL and NHL, and history of HCV on risk of DLBCL, MZL and NHL. Although the 3 non-InterLymph MAs of IPD examined 5 associations not reported in systematic reviews and/or MAs of the summary level data, including fish eaters and risk of NHL, vegetarians and vegans and risk of NHL, maternal age at the time of the child’s birth and risk of NHL, paternal age at the time of the child’s birth and risk of NHL, and leisure-time physical activity and risk of NHL, none were nominally statistically significant.

| Table 3. Suggestive risk factors and protective factors identified in meta-analyses of individual patient data from International Lymphoma Epidemiology Consortium |
|-----------------|---------------------------------|---------------------------------|
| **NHL subtype** | **At least 1000 cases and *P*<10^-3** | **At least 1000 cases and *P*<10^-6** |
| CLL/SLL | Years since quitting cigarette smoking; printing pressmen | None |
| CLL/SLL/PLL/MCL | Adult infectious mononucleosis | None |
| DLBCL | Alcohol; Any atopic disorder; Allergy; B and T-cell activating autoimmune diseases; HCV; Hay fever; Recreational sun exposure; Socioeconomic status (high vs low); BMI as young adult (25-<30 kg/m²); Rheumatoid arthritis; Blood transfusion; Weight | History of B-cell activating autoimmune disease; Sjogren’s syndrome; HCV; Young adult BMI (%25 kg/m²²); Years since quit cigarette smoking; Age first alcohol consumption (20-29 years vs. nondrinker); Current alcohol consumption status as of ~2 years prior to diagnosis/interview |
| FL | Blood transfusions; Young adult BMI (%25 kg/m²²); Recreational sun exposure; History of cigarette smoking (females); Current cigarette smoking; University and higher education teachers; Male height | None |
Consistency between MAs of summary level data and InterLymph MAs of IPD

There were 40 associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD (eTable 6 in Supplement 2 and eFigure 1 in Supplement 1). While 22 (55%) evaluated the impact of environmental risk factors on the risk of NHL overall, the other half (18, 45%) focused on various NHL subtypes (CLL/SLL, 5 (13%); DLBCL, 5 (13%); FL, 4 (10%); TCL, 3 (8%); MZL, 1 (3%)).

Overall, 22 of 40 (55%) of the associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 10 (25%) pairs where the effect estimates were both statistically significantly increased, 3 (8%) where they were both statistically significantly decreased, 7 (18%) where they were both non-statistically significantly increased, and 2 (5%) where they were both non-statistically significantly decreased (Kappa=0.37, eTable 6 in Supplement 2 and eFigure 1 in Supplement 1). The 13 associations where the MAs of the summary level data and MAs of IPD effect estimates were both statistically significantly increased or decreased were for history of smoking and risk of TCL, history of drinking and risk of NHL, DLBCL, and FL, history of primary Sjogren’s syndrome and risk of NHL, history of systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL, TCL and DLBCL, and history of HCV and risk of NHL, DLBCL, MZL and CLL/SLL. There were 28 (70%) pairs where the effect sizes from the MAs of IPD were more conservative than the effect sizes from the MAs of summary level data.

There were 4 suggestive associations reported in MAs of summary level data that were also evaluated in the InterLymph MAs of IPD. Of these, 3 associations from MAs of IPD had effect estimates in the same direction, had P<10^-3, and were based on analyses with at least 1000 NHL cases (i.e., history of psoriasis and risk of NHL, history of Herpes Zoster and risk...
of NHL, and history of farming as an occupation and risk of NHL). There were 8 highly suggestive associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD. Of these, 7 associations from the MAs of IPD had effect estimates in the same direction, had $P<10^{-6}$, and were based on analyses with at least 1000 NHL cases (i.e., history of rheumatoid arthritis and risk of NHL, history of primary Sjogren's syndrome and risk of NHL, history systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL and TCL, history of tuberculosis and risk of NHL, and history of HCV and risk of NHL).

There were 19 (48%) pairs where the MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD. There was no difference in terms of concordance (direction, statistical significance of summary effect estimates and overlapping 95% CIs) between MAs of summary level data that included at least one-third versus fewer than one-third of the same component studies as the MAs of IPD (12/19 (63%) vs 10/21 (48%), $P=0.32$).

Discussion

In this umbrella review, we evaluated the range, strength, and validity of reported associations between environmental risk factors and NHL across 85 MAs of published observational studies. Overall, we identified 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. The vast majority of the associations, including those evaluating various dietary, clinical, lifestyle, chemical, and occupational exposures, were classified as having either non-significant or weak evidence. More than half of the nominally significant associations were only marginally significant. Only 5% of the associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence. When the same associations were evaluated in MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Overall, effect sizes from MAs of IPD were more conservative. This umbrella review suggests that there is a mass production of low-quality MAs of summary level data reporting weak associations between environmental risk factors and NHL. These findings highlight the need for improving not only primary studies but also evidence synthesis in this field. Moreover, given that many of the assessed risk factors are correlated, simultaneous consideration of multiple risk factors will be useful to understand which ones have the strongest, independent effects on NHL risk.
Although a wide range of environmental exposures have been evaluated and proposed as potential risk factors for NHL, our evaluation suggests that the only highly suggestive or convincing exposures proposed in MAs of summary level data and MAs of IPD are related to autoimmune and infectious diseases. In particular, the prominent autoimmune disease-related risk factors include history of celiac disease, rheumatoid arthritis, primary Sjogren's syndrome, and systemic lupus erythematosus. Although the exact mechanisms behind these associations remains unclear, many autoimmune disorders are characterized by chronic inflammation, which may intensify B cell or T cell activation and promote the development of lymphoma. Previous studies have also suggested that the dysfunction of some protein families, such as FAS and tumor necrosis factor, and the interplay between various immune cells, could be potential mechanisms. However, there is uncertainty when it comes to the temporality of these associations, with studies reporting that autoimmune diseases can occur during lymphoma.

Associations between viral and bacterial infections and NHL risk have been suggested for several decades. Different hypotheses for HCV-related lymphomagenesis have been proposed. For instance, chromosomal aberrations, including chromosome t(14;18) translocation, have been found to be associated with mixed cryoglobulinemia, a disorder most commonly caused by HCV infection and that can evolve into lymphoproliferative disorders. Furthermore, genetic variations, including Interleukin-10 polymorphisms, have also been proposed as a potential pathway between HCV infection and NHL susceptibility and development. Similar to autoimmune disease-related risk factors, it remains unclear whether these associations are driven by disease status, medication use, or disease-medication interactions. Considering how rare many of these autoimmune and infectious disease-related exposures are, future efforts are necessary to determine the impact of multiple environmental as well as non-environmental risk factors simultaneously.

Among 40 associations evaluated by both MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Unlike MAs of summary level data, MAs of IPD tend to focus on studies with more homogeneous designs and patient populations. Furthermore, MAs of IPD can allow for better harmonization of data across studies, more advanced one-stage meta-analytical approaches, and analyses accounting for many exposure categories and potential confounders. Although the InterLymph MAs of IPD are particularly robust due to the large number of NHL cases and subtypes considered, MAs of IPD without systematic reviews may exclude evidence from high-quality case-control or cohort studies. For instance, the
InterLymph analyses only included evidence from completed and ongoing case-control studies from consortium members. Furthermore, the InterLymph findings may be difficult to disentangle, with at least 700 nominally statistically significant associations among thousands of analyses conducted across different subtypes of NHL and exposure levels (e.g., different type/dosage of alcohol consumption). In the future, it will be necessary to monitor the consistency between MAs of summary level data and MAs of IPD, especially since approximately half of the MAs of summary level data had at least one-third of the same component studies as the MAs of IPD. In addition, authors of MAs should carefully evaluate whether any external studies can and should be included in their syntheses. Of interest, we observed that more than two thirds of the effect sizes were more conservative in the InterLymph MAs of IPD than in the MAs of summary level data. This may be a reflection of greater selective reporting bias in the corpus of studies available in the literature as compared with a set of studies participating in a consortium.

Our study suggests that nearly all MAs of summary level data evaluating associations between environmental risk factors and risk of NHL could be classified as having critically low quality according to the AMSTAR 2 tool. Previous umbrella reviews focused on the associations between environmental risk factors and health outcomes have noted similar concerns. However, the proportion of low or critically low-quality NHL reviews is higher than what has been observed among umbrella reviews for inflammatory bowel diseases,61 attention-deficit/hyperactivity disorder,62 eating disorders,63 early childhood caries,64 physical activity for academic achievement,65 and physical therapy for tendinopathy.66 These findings may not be surprising considering recent concerns about the mass production of systematic reviews.67,68 In the future, authors planning systematic reviews and MAs of summary level data of the associations between environmental exposures and NHL should adhere to reporting guidelines. Moreover, authors should also critically evaluate how their findings relate to existing MAs of IPD, focusing on the impact of different methods, populations, and other characteristics.

Limitations
Our umbrella review has several limitations. First, we did not identify potential environmental risk factors that were only examined in individual observational studies. Our objective was to identify and summarize the associations that were reported by the MAs of summary level data, which already covered a wide space of diverse associations. Second, we did not evaluate the quality of individual studies included in the MAs of summary level data, the impact that individual studies have on the overall heterogeneity, the magnitude of the
associations, or the potential role that residual/unmeasured confounding could have on associations. Individual risk of bias evaluations are outside the scope of umbrella reviews, and it is the expectation that MAs have already conducted these quality assessments. Third, we considered MAs that included cohort and case-control studies, and our assessments did not prioritize reviews of certain study designs or address differences across different study designs. Considering that certain NHL subtypes are rare, case-control studies may often be the most realistic study design to evaluate exposure histories.

Fourth, although umbrella reviews provide a comprehensive summary of the associations reported in MAs, the validity of the summary effect estimates depends on the quality of the individual MAs. Although we attempted to standardize associations using a random-effects DL estimator, we did not evaluate or re-conduct the literature searches for all potential exposure-outcome relationships. Different approaches can impact the width of the CIs (i.e., Wald vs. Hartung-Knapp-Sidik-Jonkman). In our evaluation, it is unlikely that these differences would impact the associations that were classified as highly suggestive or convincing. Given that the Hartung-Knapp-Sidik-Jonkman method has been found to outperform the standard DL method in certain scenarios, future MAs should consider this approach in their analyses.69-71

Fifth, we did not calculate I^2, 95% PIs, Egger’s test, and excess significance test for non-significant and nominally statistically significant associations. Given the large number of associations identified, we prioritized these calculations for associations where these values were necessary to determine the strength of associations using the previously established classification system.20 It is also worth noting that other tests may be more appropriate (e.g., Peter’s test vs. Egger’s test to examine small study effects72), and that I^2 values should not be used to make inferences about heterogeneity, as it does not measure heterogeneity directly, but rather the proportion of total variability due to between-study variability.73 However, we used the same approaches as previous umbrella reviews.26,62

Sixth, when summary effect estimates of multiple exposure contrast levels were reported, we focused on the risk estimates comparing ever versus never exposure (or comparing the highest versus lowest levels of exposures). Although we did not consider all potential contrast levels and dose-response relationships, our objective was to provide a universal overview of the relationships between examined risk factors and NHL. Specific dose-response relationships may nevertheless exist for certain associations, and they would need to be examined on a case-by-case basis. Seventh, we only identified the nominally statistically significant associations among the thousands of associations reported in
InterLymph MAs of IPD. Eighth, by excluding non-English language reviews, we may have missed additional potential associations. However, we utilized the same approach as previous umbrella reviews that focused on risk factors for health outcome(s).51,74

Ninth, MAs of IPD and MAs of summary level data can have different strengths and limitations, and our evaluation did not focus on comparing the potential quality of these types of studies. We also did not focus on the impact of different methods, populations, or other characteristics when comparing the consistency of the results between the two study types. Tenth, umbrella reviews are not intended to provide information about the likelihood that associations are causal. Lastly, when multiple MAs of summary level data evaluated the same exposures and outcomes, we selected the association based on the largest number of included studies. Although this approach does not ensure that the highest quality MAs are selected, this methodology has been utilized by previous umbrella reviews.26,74-76

Conclusion

In this large-scale umbrella review, we identified dozens of MAs evaluating associations between environmental risk factors and NHL. However, the vast majority of MAs of summary level data were low quality and presented either non-significant or weak evidence. When the same associations were evaluated in MAs of summary level data and MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95\% CIs. Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, these findings highlight the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

ACKNOWLEDGEMENTS

The authors would like to thank DP and VP of the Cushing/Whitney Medical Library at Yale for technical support. DP and VP are employees of Yale University and did not receive additional compensation for this work, nor do they have competing interest to disclose.

Contributors: XS and JDW originally conceived this study. XS, JPAI, and JDW designed this study. XS, HZ, YD, KN, and JDW acquired the data. XS and YD conducted the statistical analysis. XS and JDW and drafted the manuscript. XS, JPAI, and JDW
participated in the interpretation of the data. All authors and critically revised the manuscript for important intellectual content. XS and JDW had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. JDW provided supervision. JDW is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: XS is supported by the China Scholarship Council. JDW is supported by the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under award K01AA028258.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: In the past 36 months, JDW received research support from the FDA. There are no other competing interests.

Patient consent: Not required

Ethical approval: Not required

Data sharing: All data are included in the supplementary materials.

Transparency: The senior author (manuscripts guarantor) (JDW) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant registered) have been explained.

License: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide license to the Publishers and its licensees in perpetuity, in all forms, formats and median (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and
create summaries, extracts and/or, abstracts of the Contribution, iii) create any other
derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the
Contribution, v) the inclusion of electronic links from the Contribution to third party material
where-ever it may be located; and, vi) license any third party to do any or all of the above.
The default license, a CC BY NC license, is needed.

This is an Open Access article distributed in accordance with the Creative Commons
Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute,
remix, adapt, build upon this work non-commercially, and license their derivative works on
different terms, provided the original work is properly cited and the use is non-commercial.
See: http://creativecommons.org/licenses/by-nc/4.0/.

Reference

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022;72(1):7-33.
2. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. Lancet. 2017;390(10091):298-310.
3. Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019;5(12):1749-1768.
4. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016;66(6):443-459.
5. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb. Perspect. Med. 2019.
6. Chiu BC, Hou N. Epidemiology and etiology of non-hodgkin lymphoma. Cancer Treat. Res. 2015;165:1-25.
7. Teras LR, Rollison DE, Pawlita M, et al. Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies. Int. J. Cancer. 2015;136(1):108-116.
8. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029-4038.
9. Elfsröm P, Granath F, Ekström Smedby K, et al. Risk of lymphoproliferative malignancy in relation to small intestinal histopathology among patients with celiac disease. J. Natl. Cancer Inst. 2011;103(5):436-444.
10. Klein A, Polliack A, Gafter-Gvili A. Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome. Hematol. Oncol. 2018;36(5):733-739.
11. Zhang Y, Dai Y, Zheng T, Ma S. Risk Factors of Non-Hodgkin Lymphoma. Expert Opin. Med. Diagn. 2011;5(6):539-550.
12. Pahwa M, Harris SA, Hohenadel K, et al. Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces. Int. J. Cancer. 2012;131(11):2650-2659.
13. Ollberding NJ, Aschebrook-Kilfoy B, Caces DB, et al. Phytanic acid and the risk of non-Hodgkin lymphoma. Carcinogenesis. 2013;34(1):170-175.
14. Cantor KP, Blair A, Everett G, et al. Hair dye use and risk of leukemia and lymphoma. Am. J. Public Health. 1988;78(5):570-571.
15. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):1-14.
16. Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):130-144.
17. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029-4038.
18. Mannetje A, De Roos AJ, Boffetta P, et al. Occupation and Risk of Non-Hodgkin Lymphoma and Its Subtypes: A Pooled Analysis from the InterLymph Consortium. Environ. Health Perspect. 2016;124(4):396-405.
19. Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2009;181(8):488-493.
20. Janiaud P, Agarwal A, Tzoulaki I, et al. Validity of observational evidence on putative risk and protective factors: appraisal of 3744 meta-analyses on 57 topics. BMC Med. 2021;19(1):157.
21. Greb A, Bohlius J, Schiefer D, Schwarzer G, Schulz H, Engert A. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of aggressive non-Hodgkin lymphoma (NHL) in adults. Cochrane Database Syst. Rev. 2008(1):CD004024.
22. Lee E, Dobbins M, Decorby K, McRae L, Tirilis D, Husson H. An optimal search filter for retrieving systematic reviews and meta-analyses. BMC Med. Res. Methodol. 2012;12:51.
23. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. BMJ. 2019;364:l265.
24. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.

25. Altman DG, Bland JM. How to obtain the P value from a confidence interval. BMJ. 2011;343:d2304.

26. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki L. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263-273.

27. Kim JY, Son MJ, Son CY, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry. 2019;6(7):590-600.

28. Barbu C, Purgato M, Abdulmalik J, et al. Efficacy of psychosocial interventions for mental health outcomes in low-income and middle-income countries: an umbrella review. Lancet Psychiatry. 2020;7(2):162-172.

29. Tortella-Feliu M, Fullana MA, Perez-Vigil A, et al. Risk factors for posttraumatic stress disorder: An umbrella review of systematic reviews and meta-analyses. Neurosci. Biobehav. Rev. 2019;107:154-165.

30. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed.). 1997;315(7109):629-634.

31. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. Clin. Trials. 2007;4(3):245-253.

32. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;172(1):137-159.

33. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549.

34. Karlstad O, Starup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies. Curr Drug Saf. 2013;8(5):333-348.

35. Salmon C, Conus F, Parent M, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. Cancer Epidemiol. 2020;65:101696.

36. Leung CY, Huang HL, Rahman MM, et al. Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates. BMC Cancer. 2020;20(1):412.

37. Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am. J. Clin. Nutr. 2014;100 Suppl 1(1):378S-385S.

38. Johnson KJ, Carozza SE, Chow EJ, et al. Parental age and risk of childhood cancer: a pooled analysis. Epidemiology. 2009;20(4):475-483.

39. Moore SC, Lee IM, Weiderpass E, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern Med. 2016;176(6):816-825.

40. Yoosuf S, Makharia GK. Evolving Therapy for Celiac Disease. Front Pediatr. 2019;7:193.

41. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. Int. J. Mol. Sci. 2020;21(11).

42. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001.
43. Din L, Sheikh M, Kosaraju N, et al. Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes. *Genet. Epidemiol.* 2019;43(7):844-863.

44. Baecklund E, Smedby KE, Sutton LA, Askling J, Rosenquist R. Lymphoma development in patients with autoimmune and inflammatory disorders—what are the driving forces? *Semin. Cancer Biol.* 2014;24:61-70.

45. Khanmohammadi S, Shabani M, Tabary M, Rayzan E, Rezaei N. Lymphoma in the setting of autoimmune diseases: A review of association and mechanisms. *Crit. Rev. Oncol. Hematol.* 2020;150:102945.

46. Hauswirth AW, Skrabs C, Schützinger C, Gaiger A, Lechner K, Jäger U. Autoimmune hemolytic anemias, Evans' syndromes, and pure red cell aplasia in non-Hodgkin lymphomas. *Leuk. Lymphoma.* 2007;48(6):1139-1149.

47. Jardin F. Development of autoimmunity in lymphoma. *Expert Rev. Clin. Immunol.* 2008;4(2):247-266.

48. Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):52-65.

49. Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):15-25.

50. Ferri C. Mixed cryoglobulinemia. *Orphanet J. Rare Dis.* 2008;3:25-25.

51. Zignego AL, Giannelli F, Marrocchi ME, et al. T(14;18) translocation in chronic hepatitis C virus infection. *Hepatology.* 2000;31(2):474-479.

52. Khaled H, Abu-Taleb F, Haggag R. Hepatitis C virus and non-Hodgkin's lymphomas: A minireview. *J Adv Res.* 2017;8(2):131-137.

53. Persico M, Capasso M, Persico E, et al. Interleukin-10 - 1082 GG polymorphism influences the occurrence and the clinical characteristics of hepatitis C virus infection. *J. Hepatol.* 2006;45(6):779-785.

54. Hermine O, Lefrère F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. *N. Engl. J. Med.* 2002;347(2):89-94.

55. Mazzaro C, Franzin F, Tulassi P, et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon therapy. *Cancer.* 1996;77(12):2604-2613.

56. Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. *JAMA.* 2007;297(18):2010-2017.

57. Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. *Nanomedicine.* 2015;11(4):1003-1018.

58. Böhm M, Luger TA, Schneider M, Schwarz T, Kuhn A. New insight into immunosuppression and treatment of autoimmune diseases. *Clin. Exp. Rheumatol.* 2006;24(1 Suppl 40):S67-71.

59. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. *BMJ.* 2010;340:c221.

60. Burke DL, Ensor J, Riley RD. Meta analysis using individual participant data: one - stage and two - stage approaches, and why they may differ. *Stat. Med.* 2017;36(5):855-875.
61. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. *Gastroenterology*. 2019;157(3):647-659 e644.

62. Kim JH, Kim JY, Lee J, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. *Lancet Psychiatry*. 2020;7(11):955-970.

63. Solmi M, Radua J, Stubbs B, et al. Risk factors for eating disorders: an umbrella review of published meta-analyses. *Braz J Psychiatry*. 2021;43(3):314-323.

64. Thang Le VN, Kim JG, Yang YM, Lee DW. Risk Factors for Early Childhood Caries: An Umbrella Review. *Pediatr. Dent*. 2021;43(3):176-194.

65. Barbosa A, Whiting S, Simmonds P, Scotini Moreno R, Mendes R, Breda J. Physical Activity and Academic Achievement: An Umbrella Review. *Int. J. Environ. Res. Public Health*. 2020;17(16).

66. Girgis B, Duarte JA. Physical therapy for tendinopathy: An umbrella review of systematic reviews and meta-analyses. *Phys. Ther. Sport*. 2020;46:30-46.

67. Ioannidis JP. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. *Milbank Q*. 2016;94(3):485-514.

68. Wallach JD. Meta-analysis Metastasis. *JAMA Intern Med*. 2019.

69. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. *BMC Med. Res. Methodol*. 2014;14:25.

70. Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. *Research Synthesis Methods*. 2019;10(1):83-98.

71. Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. *Stat. Med*. 2016;35(15):2503-2515.

72. Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ*. 2011;343:d4002.

73. Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. *BMC Med. Res. Methodol*. 2008;8:79.

74. Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. *J. Psychiatr. Res*. 2018;103:189-207.

75. Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. *Alzheimers Dement*. 2017;13(4):406-418.

76. Radua J, Ramella-Cravarro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. *World Psychiatry*. 2018;17(1):49-66.
Figure 1: Study selection flowchart

* Web of Science Core Collection as licensed at Yale: Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years

** Wrong study design: the examined study was not a systematic review, meta-analysis or pooled analysis

Wrong topic: the examined review did not examine non-Hodgkin lymphoma or its subtypes as an outcome OR the study did not examine the impact of an environmental exposure on the risk of non-Hodgkin lymphoma development

Wrong exposure: the examined risk factor does not meet the definition of environmental risk factor in our study

Wrong study focus: the review did not examine the impact of an exposure on the risk of developing NHL

Wrong component study design: the review did not synthesize observational study data

Insufficient data for analyses: the review included fewer than 3 component studies

Overlapping review: a larger review was identified for the same association
Response letter: bmjmed-2022-000184

Response: We would like to thank the BMJ Medicine Editors for considering our revised manuscript. Although we truly appreciate the additional feedback, we are unable to make the changes requested with the data that we currently have. We hope that the Editors and Dr. Riley will consider our explanations and proposed additions to the Limitations section. Please find more details responses below. Once again, thank you for considering a revised version of our manuscript.

Reviewer 1:

I thank the authors for their clear response and improved revision. I flag again the considerable work the authors have done.

Response: We would like to thank Dr. Riley for considering our revised manuscript. We appreciate the opportunity to respond to the remaining comments below.

We are close, but an issue remains, in that there continues to be inappropriate methods in places, and the authors decide to stick with them because that is what previous umbrella reviews did. E.g. they say in their response: “We completely agree that other approaches may be more appropriate than Egger’s test. However, to ensure that our umbrella review is aligned with current practices, we did not use Peter’s or Debray’s tests in this study.” The same is true with their sticking to the use of a Wald-based confidence interval rather than the Hartung-Knapp confidence interval, simply because the former is what umbrella reviews have used before.

I urge the authors to reconsider this for their next revision. At the least, the better methods can be applied and shown in a supplementary material, for completeness. There is a chance to demonstrate better practice than previous umbrella reviews, as otherwise sub-standard methods will continue to be used simply because that is what previously has always been done. I appreciate that the conclusions are unlikely to change (as they are actually flagging the poor quality of the field primarily), but at least reconsider the confidence interval derivation in key analyses to demonstrate robustness.

Response: We appreciate Dr. Riley’s attention to detail and helpful feedback. However, at this stage, we are unable to conduct the analyses requested above. In order to perform Peter’s tests and update our analyses using HKSJ confidence intervals, we would need to identify all the individual studies included in 257 associations from 85 separate meta-analyses. This is very challenging given the incomplete reporting across individual meta-analyses. Moreover, given that we have worked on this project since July 2020, it is not feasible for us to re-abstract the data from the individual studies to re-run each meta-analysis.

Although we are not able to fully respond to Dr. Riley’s requests, we are assured that our findings are unlikely to change. In fact, for the 12 associations classified as presenting highly suggestive or convincing evidence, applying the HKSJ method did not change any
conclusions. This may not be surprising given that none of these associations are close to the null OR value of 1.0 (i.e., they are highly significant).

Page 19:

Different approaches can impact the width of the CIs (i.e., Wald vs. Hartung-Knapp-Sidik-Jonkman). In our evaluation, it is unlikely that these differences would impact the associations that were classified as highly suggestive or convincing. Given that the Hartung-Knapp-Sidik-Jonkman method has been found to outperform the standard DL method in certain scenarios, future MAs should consider this approach in their analyses.

It is also worth noting that other tests may be more appropriate (e.g., Peter’s test vs. Egger’s test to examine small study effects). However, we used the same approaches as previous umbrella reviews.

Reference

1. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med. Res. Methodol. 2014;14:25.
2. Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Research Synthesis Methods. 2019;10(1):83-98.
3. Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat. Med. 2016;35(15):2503-2515.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Xiaoting Shi, Haoran Zhuo, Yuxuan Du, Kate Nyhan, John P.A. Ioannidis, Joshua D. Wallach

Xiaoting Shi, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Haoran Zhuo, PhD student
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Yuxuan Du, Graduate student
Department of Health Policy & Management, Yale School of Public Health, New Haven, Connecticut, USA

Kate Nyhan, Librarian
Harvey Cushing/John Hay Whitney Medical Library; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA

John P.A. Ioannidis, Professor
Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, California, USA

Joshua D Wallach, Assistant Professor
Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA

Corresponding author:
Joshua D Wallach, MS, PhD
Assistant Professor
Department of Environmental Health Sciences
Yale School of Public Health
60 College Street, 4th Floor, Room 411
New Haven, CT, 06510 USA

ORCID number: 0000-0002-2816-6905
Twitter: @JoshuaDWallach

Key words: Umbrella review; environmental exposures; meta-analyses; non-Hodgkin lymphoma
Word count: 4773
Figures/Tables: 1/3
References: 7276
Appendix: 2
Abstract

Objectives: To summarize the range, strength, and validity of reported associations between environmental risk factors and non-Hodgkin lymphoma (NHL), and to evaluate the concordance between associations reported in meta-analyses (MAs) of summary level data and MAs of individual participant data (IPD).

Design: Umbrella review.

Data sources: MEDLINE, Embase, Scopus, Web of Science Core Collection, Cochrane Library, and Epistemonikos from inception to 23 July 2021.

Eligibility criteria: English language MAs of summary level data and MAs of IPD evaluating associations between environmental risk factors and incident NHL (overall and NHL subtypes).

Data extraction and synthesis: Summary effect estimates from MAs of summary level data comparing ever versus never exposure that were adjusted for the largest number of potential confounders were re-estimated using a random-effects model and classified as presenting non-significant, weak ($P<0.05$), suggestive ($P<10^{-3}$ and >1000 cases), highly suggestive ($P<10^{-6}$, >1000 cases, largest study reporting a significant association), or convincing ($P<10^{-6}$, >1000 cases, largest study reporting a significant association, $I^2<50\%$, 95% prediction interval excluding the null value, and no evidence of small study effects and excess significance bias) evidence. When the same exposures, exposure contrast levels, and outcomes were evaluated in MAs of summary level data and MAs of IPD from the International Lymphoma Epidemiology (InterLymph) Consortium, concordance in terms of direction, level of significance, and overlap of 95% confidence intervals (CIs) was examined. We assessed the methodological quality of the MAs of summary level data using the A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2 tool.

Results: We identified 85 MAs of summary level data reporting 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. Nearly all (79/85, 93%) MAs of summary level data were classified as having critically low quality. Most (225, 88%) associations presented either non-significant or weak evidence. The 11 (4%) associations presenting highly suggestive evidence were primarily for autoimmune or infectious disease-related risk factors. Only 1 association, history of celiac disease and risk of NHL, presented convincing evidence. Overall, 40 associations reported in MAs of summary level data were also evaluated in InterLymph MAs of IPD. Of these, 22 (55%) pairs were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 28 (70%) pairs where the summary effect sizes from the MAs of IPD were more conservative.
Conclusion: This umbrella review suggests that there is a mass production of low-quality MAs of summary level data, many of which report weak associations between environmental risk factors and NHL, and highlights the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.

Systematic review registration PROSPERO CRD42020178010.
What is already known on this topic

- Observational studies have suggested that environmental risk factors, including clinical, occupational, and lifestyle exposures, may be associated with the risk of developing non-Hodgkin lymphoma.
- As a result of the large number of observational studies evaluating the impact of environmental risk factors on non-Hodgkin lymphoma, dozens of systematic reviews and meta-analyses of summary and individual participant level data have focused on synthesizing evidence and identifying potential risk factors.
- Little is known about: (1) the range, strength, and validity of associations between environmental risk factors and non-Hodgkin lymphoma reported in meta-analyses or (2) the concordance between meta-analyses of summary level data and meta-analyses of individual participant data evaluating the same associations.

What this study adds

- This umbrella review suggests that although a large range of environmental risk factors for non-Hodgkin lymphoma have been evaluated in meta-analyses, the vast majority of meta-analyses of summary level data are low quality and present either non-significant or weak associations.
- Overall, only half of the associations that were evaluated in both meta-analyses of summary level data and meta-analyses of individual participant data were in the same direction, had the same level of statistical significance, and had overlapping 95% confidence intervals.
- Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, this umbrella review highlights the need for improving not only primary studies but also evidence synthesis in the field of non-Hodgkin lymphoma etiology.
Introduction

Non-Hodgkin lymphoma (NHL), a lymphoid cancer that originates in white blood cells called lymphocytes, is the 9th leading cause of cancer death among both men and women.\(^1\) NHL accounts for nearly 90% of all lymphomas\(^2\) and is the most common hematologic malignancy in the world.\(^3\) Although NHL can be broadly categorized into two major groups (i.e., B-cell, T-cell/natural killer-cell lymphomas), it represents a diverse group of malignant disorders with dozens of subtypes.\(^4\) Evidence suggests that NHL is more common among older adults, men, and people with a first degree relative with NHL.\(^5,6\) However, despite substantial effort to identify NHL causes and risk factors over the past few decades, the exact etiology of NHL is unknown.\(^5\)

Epidemiological studies have suggested that environmental risk factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors, may be associated with the risk of developing NHL. In particular, several prominent potential risk factors proposed in the literature include viruses (e.g., Epstein-Barr virus infection),\(^7\) autoimmune diseases (e.g., Sjogren’s syndrome, celiac disease, and rheumatoid arthritis),\(^8-10\) and immune dysregulation (i.e., patients with a history of organ transplantation, acquired immunodeficiency syndromes (HIV/AIDS), or immunosuppressive medication treatment).\(^5,6,11\) However, given that these exposures and conditions are relatively rare,\(^11\) a broad range of additional environmental risk factors, including exposure to insecticides,\(^12\) red and processed meat consumption,\(^13\) and hair dye,\(^14\) have been evaluated and proposed as potential risk factors.

As a result of the large number of observational studies evaluating the impact of environmental risk factors on NHL, dozens of systematic reviews and meta-analyses (MAs) of summary level data have focused on synthesizing evidence and identifying the most promising risk factors. Moreover, the International Lymphoma Epidemiology (InterLymph) Consortium,\(^15\) a group of investigators who pool data from their completed or ongoing NHL case-control studies, have published multiple MAs of individual participant data (IPD) evaluating associations between various environmental risk factors and NHL.\(^16-18\) Although these MAs of IPD contain thousands of NHL cases and are strengthened by their ability to utilize raw data that are harmonized across multiple studies, they do not include evidence from case-control and cohort studies conducted by investigators outside of the InterLymph Consortium. Therefore, MAs of summary level data and MAs of IPD evaluating the same associations between environmental risk factors and NHL may sometimes lead to discordant results and conclusions.
To provide an overview of the range, strength, and validity of reported associations between environmental risk factors and NHL, we conducted an umbrella review of the evidence across published systematic reviews and MAs. In addition to summarizing the results, determining hints of biases, and assessing the quality of reviews, we evaluated the consistency between all associations reported in both MAs of summary level data and InterLymph MAs of IPD.

Methods

We conducted an umbrella review on the reported associations between environmental risk factors and the risk of NHL. Umbrella reviews are used to systematically identify and evaluate evidence reported in published systematic reviews and MAs. Our study protocol was pre-registered on the International prospective register of systematic reviews (CRD42020178010) and posted on Open Science Framework (https://osf.io/6g2ev/). We did not involve patients or members of the public when designing the question and study, interpreting the results, and/or drafting the manuscript.

Database searches

Working with an experienced medical librarian (KN), we developed and performed a comprehensive search of multiple databases: MEDLINE (Ovid), Embase (Ovid), Scopus, Web of Science Core Collection (as licensed at Yale University), Cochrane Library, and Epistemonikos from inception to July 24th 2020 (**Table 1 in Supplement 1**). In each database, we used three concepts: NHL, risk factors, and the study designs of interest (MAs, systematic reviews, and pooled analyses). The search strategy for NHL was based on the search strategy used in a published review. The study design search strategy used elements from a published search filter. Database limits were used to exclude conference papers and meeting abstracts. No language limits were used. Records were deduplicated in EndNote, the Yale Reference Deduplicator, and Covidence. No citation chaining was conducted.

On July 24th 2020, searches were run in each database and 14,753 references were identified. After deduplication in EndNote and Covidence, 8025 unique records were uploaded for screening. On July 23th 2021, all searches were rerun and deduplicated and 969 additional unique records were added to Covidence for manual screening. In total, our search retrieved 8994 unique records across all databases.

Eligibility criteria
We included English language systematic reviews, MAs of summary level data (i.e., MAs using effect estimates reported in individual studies), and MAs of IPD of observational studies evaluating associations between environmental risk factors and incident NHL (overall or any subtypes, eTable 2 in Supplement 1). We considered all non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors. Systematic reviews and MAs were excluded if they primarily focused on genetic risk factors, evaluated risk factors for the treatment, relapse, remission, or prognosis of NHL patients, or examined NHL as a risk factor for other diseases (eText 1 in Supplement 1).

Two reviewers (XS and HZ) independently screened the titles and abstracts and then full-text versions of potentially eligible articles. Any disagreements or uncertainties were discussed with a third reviewer (JDW).

Data extraction
Data extraction was performed independently by two reviewers (XS and HZ), and a third reviewer (JDW) arbitrated all potential discrepancies. For each systematic review and MA, we recorded the first author, year of publication, article title, journal of publication, study design, population, examined exposures and their definitions, and examined outcomes and their definition (i.e., NHL or NHL subtypes). For all MAs of summary level data, we identified each unique exposure-outcome relationship and recorded the number of studies included, total sample size, number of cases, and study-specific adjusted relative risk estimates (e.g., relative risks, hazard ratios, or odds ratios) and corresponding 95% confidence intervals (CIs). For studies that considered multiple exposure contrast levels, control groups, and/or confounders, we prioritized the effect estimates comparing ever versus never exposure that were adjusted for the largest number of potential confounders. Whenever ever versus never exposures comparisons were not reported, we recorded the effect estimates comparing the highest versus lowest levels of exposures. When multiple MAs of summary level data were identified for the same environmental risk factor, we selected the effect estimates that were based on the largest number of component studies.

For systematic reviews with unique associations that were not investigated in MAs of summary level data, we recorded the number of studies identified, the reasons why MAs were not performed, and the main conclusions. Lastly, for all MAs of IPD, one author (JDW) identified the exposures, NHL subtypes, and number of NHL cases for: (1) all nominally
statistically significant ($P<0.05$) associations and (2) any associations that were also evaluated in MAs of summary level data.

Quality Assessment

Four reviewers (XS, HZ, YD, and JDW) evaluated the quality of all MAs of summary level data using A MeaSurement Tool to Assess Systematic Reviews (AMSTAR) 2. Any discrepancies were discussed and resolved by consensus. Based on the suggested rating scheme, the overall confidence in the results of the MAs of summary level data were classified as high, moderate, low, or critically low. We did not examine the quality of MAs of IPD.

Statistical analysis

First, we used a random-effects model, which allows for unexplained between-study heterogeneity on the effect of interest, with the between-study variance estimated using the DerSimonian and Laird (DL) estimator. When summary effect estimates were reported without a corresponding P value, we used the 95% CIs to calculate the P value using a previously described method. Next, we categorized the strength of the reported associations across five levels (Table 1), following previously established methodology. All associations with $P>0.05$ were classified as non-significant. Associations with $P<0.05$ and fewer than 1000 cases were classified as weak. Associations with $P<10^{-3}$ and at least 1000 cases were classified as suggestive. For associations with $P<10^{-6}$, at least 1000 cases, and $P<0.05$ for the largest component study, we sequentially evaluated 95% prediction intervals (PIs), presence of small study effects (Egger regression asymmetry test), and evidence of excess significance using the Ioannidis test. PIs provide a potential range of the true effect and incorporate the uncertainty of whether the observed effect will arise in future studies as well. $P<0.1$ for Egger’s test suggests the presence of small study effects (i.e. small studies are more prone to report larger or more significant results while larger studies tend to report more conservative results). The Ioannidis test estimates whether the observed number of studies with nominally statistically significant ($P<0.05$) results in a MA differs from the expected number of studies with nominally statistically significant studies. Associations with 95% PIs including the null, statistically significant Egger’s test ($P<0.1$), and/or evidence of excess significance were classified as highly suggestive. Associations with 95% prediction intervals excluding the null, non-statistically significant Egger’s test ($P>0.1$), and no evidence of excess significance were classified as convincing. Statistical analysis was conducted using metagen package in R version 4.1.0. (eTable 3 in Supplement 1).
Table 1. Grading criteria for evidence categories

Strength of association	Description
Convincing (class I)	Highly statistically significant association \((P < 10^{-6}) \)
	At least 1000 NHL cases
	Low/moderate proportion of total variability due to between-study variability \((I^2 < 50\%) \)
	95% prediction interval excluding the null value
	Largest study reporting a nominally statistically significant \((P < 0.05) \)
	No evidence of small-study effects
	No evidence of excess significance bias
Highly suggestive (class II)	Highly statistically significant association \((P < 10^{-6}) \)
	At least 1000 NHL cases
	Largest study reporting a nominally statistically significant \((P < 0.05) \)
Suggestive (class III)	At least 1000 NHL cases
Weak (class IV)	Statistically significant association \((P < 10^{-3}) \)
Non-significant	Nominally statistically significant association \((P < 0.05) \)
	Non-statistically significant associations \((P > 0.05) \)

\(^aP\) value for the association that calculated by random effects model.

NHL = non-Hodgkin lymphoma.

Statistical analysis was conducted using metagen package in R version 4.1.0. (eTable 3 in Supplement 1).

Concordance between MAs of summary level data and InterLymph MAs of IPD

When the same exposures, exposure contrast levels, and NHL subtypes were examined in MAs of summary level data and InterLymph MAs of IPD, two authors (XS and JDW) determined whether the effect estimates: (1) were in the same direction, (2) had overlapping 95% CIs, and/or (3) had the same level of statistical significance \((P < 0.05 \) or \(P \geq 0.05) \). Associations with all three criteria fulfilled were classified as fully concordant. Lastly, we determined how often MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD.

Results

https://mc.manuscriptcentral.com/bmjmedicine
Literature search

Among 16438 records identified through the literature search, 7444 were excluded as duplicates, leaving 8994 titles and abstracts for initial screening (Figure 1). 7970 records were excluded based on the title and abstract and 1024 were screened at the full text stage for inclusion. After excluding 904 records at the full text stage (eTable 1 in Supplement 2), our searches identified 85 MAs of summary level data evaluating 134 unique environmental risk factors and 8 systematic reviews evaluating 8 unique risk factors (eFigure 1 and eText 2 in Supplement 1 and eTable 2 in Supplement 2). In addition, we identified 27 MAs of IPD (Supplement 2), of which 24 (89%) were conducted by the InterLymph Consortium. More than one MA of summary level data was identified for 44 (44/134, 33%) risk factors (eTable 4 in Supplement 1). Among the MAs of summary level data selected based on the largest number of component studies, approximately half were also the most recently published (25/44, 57%).

Methodological quality

The vast majority of the 85 MAs of summary level data had overall confidence ratings of low (3, 4%) or critically low (79, 93%) according to the AMSTAR 2 tool. There were 2 (2%) where the overall confidence in the results was classified as moderate. Only 1 (1%), evaluating the association between tuberculosis and risk of NHL, had an overall confidence rating of high (eTable 3 in Supplement 2). The most common unfulfilled critical domains of the AMSTAR 2 tool were incomplete justification of excluded studies (74, 87%) and missing or no information about preregistered protocols (72, 85%).

MAs of summary level data

Among the 257 associations reported in the MAs of summary level data, 124 and 133 evaluated the impact of environmental risk factors on the risk of NHL overall and NHL subtypes, respectively. NHL subtypes included follicular lymphoma (FL; 43, 17%), diffuse large B-cell lymphoma (DLBCL; 35, 14%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 31, 12%), T-cell lymphoma (TCL; 12, 5%), B-cell lymphoma (BCL; 4, 2%), marginal zone lymphoma (MZL; 2, 1%), endemic Burkitt Lymphoma (eBL; 1, 0.4%), Burkitt lymphoma (BL; 1, 0.4%), primary cutaneous lymphoma (PCL; 1, 0.4%). The most common exposure categories were dietary factors (90, 35%), medical histories and comorbidities (54, 21%), chemicals and pesticides (42, 16%), lifestyle factors (29, 11%), drugs, vaccinations, and medical procedures (30, 12%), and occupational (12, 5%). The median number of component studies per MA of summary level data was 5 (IQR 4-10). The median
number of NHL cases, among the 64 (75%) MAs reporting this information, was 1533 (IQR, 482-5872).

Credibility criteria

After re-estimating the 257 associations using a random-effects DL estimator and applying the credibility criteria, 145 (56%) were classified as presenting non-significant evidence (eTable 4 in Supplement 2). There were 80 (31%) nominally statistically significant ($P<0.05$) associations that were classified as presenting weak evidence. There were 20 (8%) statistically significant associations ($P<10^{-3}$), based on analyses with at least 1000 NHL cases, that were classified as presenting suggestive evidence. Only 12 (5%) associations were classified as presenting highly suggestive or convincing evidence, with a $P<10^{-6}$, at least 1000 cases, and a $P<0.05$ for the largest component study. The 11 highly suggestive associations were for history of renal transplantation and risk of NHL, rheumatoid arthritis and risk of NHL, primary Sjogren's syndrome and risk of NHL, systemic lupus erythematosus and risk of NHL, celiac disease and risk of TCL, tuberculosis and risk of NHL, hepatitis B virus (HBV) and risk of NHL and BCL, hepatitis C virus (HCV) and risk of NHL and DLBCL, and teaching as an occupation and risk of NHL (Table 2).

Table 2. Environmental risk factors for non-Hodgkin lymphoma reported in meta-analyses of summary level data with convincing (Class I) and highly suggestive (Class II) evidence

Risk factors category	Environmental risk factors	Level of comparison	Outcomes	Study type	Author year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random*	Largest study nominally significant ($P<0.05$)	95% PI	Small study effect²	Strength of reported association³
Renal transplant	Renal transplant recipients vs general population	NHL	SR MA	Wang 2018	6	770	SI R	10.66 (8.54, 13.31)	3.44 E-86	Ye s	80	NA	NA	II
Autoimmune Rheumatology	Patients	NHL	SR	Sim	16	153	SI	2.26	8.42	Ye s	96	N	NA	II
Risk factors category	Environmental risk factors	Level of comparison	Outcome	Study type	Author year	No. of cases	Effect summary (95% CI)	Effect size	No. of studies	Effect	Strength of reported association			
-----------------------	---------------------------	---------------------	---------	-----------	-------------	--------------	------------------------	------------	----------------	--------	--------------------------			
HCV	HCV	NHL	SR	Mas	2015	123 25	1.82 (1.81, 1.83)	1.62	Ye a	A	58.3 1.62 (E-34)			
Sjogren's syndrome	Patients vs general population	NHL	SR	MA	Liang 2014	11	162 13	3.75 (18.99) 5.4 (3.75, 7.72) 1.99	Ye a	74.3	NA	NA II		
celiac disease	Patients vs general population	NHL	SR	MA	Cao 2015	12	166	5.4 (3.75, 7.77) 1.99	Ye a	74.3	NA	NA II		
Tuberculosis	Patients vs general population	NHL	SR	MA	Leung 2020	8	239 0	1.61 (1.34, 1.94) 6.76	Ye a	50.3	NA	NA II		
HBV	HBV infected vs non-infected	NHL	SR	MA	Li 2018	58	537 14	2.50 (2.23, 2.83) 6.33	Ye a	77.3	N A	NA II		
HBV	HBV infected vs non-infected	BCL	SR	MA	Li 2018	20	>10 00	2.46 (1.97, 3.07) 1.24	Ye a	62.9	N A	NA II		
There was one association, between history of celiac disease and risk of NHL (OR 2.61, 95% CI 2.04 to 3.33; 110, 245 NHL cases from 8 individual studies), that was classified as presenting convincing evidence. Although the association had \(P < 10^{-6} \), at least 1000 cases, a nominally significant result for the largest component study, low/moderate proportion of total variability due to between-study variability (\(I^2 < 50\% \)), a 95% PI excluding the null, and no evidence of small study effects, we were unable to conduct the Ioannidis test due to the incomplete information reported about the component studies. Across all the 112 nominally statistically significant associations, 63 (56%) had relative risk values that were between 0.67 and 1.50.

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by MAs of summary level data (eText 2 in Supplement 1).

MAs of IPD

We identified 27 MAs of IPD, of which 24 were from the InterLymph Consortium. The 24 InterLymph MAs of IPD reported 715 nominally statistically significant (\(P < 0.05 \)) associations. Of these, 116 and 21 associations were based on analyses with at least 1000 NHL cases and had \(P < 10^{-3} \) and \(P < 10^{-6} \), respectively (Table 3 and eTable 5 in Supplement 2). Overall, the unique suggestive exposures categories were alcohol consumption on risk of DLBCL, MZL and NHL, history of Sjogren’s syndrome on risk of DLBCL, MZL and NHL, recreational sun exposure on risk of DLBCL, FL and NHL, and history of HCV on risk of DLBCL, MZL and NHL. Although the 3 non-InterLymph MAs of IPD examined 5 associations not reported in...
systematic reviews and/or MAs of the summary level data, including fish eaters and risk of NHL, vegetarians and vegans and risk of NHL, maternal age at the time of the child’s birth and risk of NHL, paternal age at the time of the child’s birth and risk of NHL, and leisure-time physical activity and risk of NHL, none were nominally statistically significant.

NHL subtype	At least 1000 cases and \(P<10^{-3} \)	At least 1000 cases and \(P<10^{-6} \)
CLL/SLL	Years since quitting cigarette smoking; printing pressmen	None
CLL/SLL/PLL/MCL	Adult infectious mononucleosis	None
DLBCL	Alcohol; Any atopic disorder; Allergy; B and T-cell activating autoimmune diseases; HCV; Hay fever; Recreational sun exposure; Socioeconomic status (high vs low); BMI as young adult (25<30 kg/m\(^2\)); Rheumatoid arthritis; Blood transfusion; Weight	History of B-cell activating autoimmune disease; Sjogren’s syndrome; HCV; Young adult BMI (%25 kg/m\(^2\)); Years since quit cigarette smoking; Age first alcohol consumption (20-29 years vs. nondrinker); Current alcohol consumption status as of ~2 years prior to diagnosis/interview;
FL	Blood transfusions; Young adult BMI (%25 kg/m\(^2\)); Recreational sun exposure (%); History of cigarette smoking (females); Current cigarette smoking; University and higher education teachers; Male height (100% vs. 60%); Any atopic disorder;	None
MZL	Systemic lupus erythematosus; HCV; Peptic ulcer; Wine	History of B-cell activating autoimmune disease; Sjogren’s syndrome
HCL	Current cigarette smoking	None
NHL	Hormone replacement therapy; Systemic lupus erythematosus; HCV; Allergy; Food allergy; Hay fever; Blood transfusion; Height; Alcohol exposures; Recreational hair dye use; Socioeconomic status (high vs low); Secondary Sjogren’s syndrome; Childhood measles;	Sjogren’s syndrome; History of B-cell activating autoimmune disease; Hay fever; Young adult BMI (%25 kg/m\(^2\)); Recreational sun exposure (%Q3-Q4 hours/week); Recreational hair dye use (%Q3-Q4 hours/week); Beer, wine, and liquor;

BMI=body mass index; CI=confidence interval; CLL=chronic lymphocytic leukemia; DLBCL=diffuse large B-cell lymphoma; FL=follicular lymphoma; HCL=hairy cell leukemia; HCV=hepatitis C virus; MCL=mantle cell lymphoma; MZL=marginal zone lymphoma; NHL=non-Hodgkin lymphoma; SLL=small lymphocytic lymphoma; PLL=prolymphocytic leukemia.

* These were protective risk factors.
Consistency between MAs of summary level data and InterLymph MAs of IPD

There were 40 associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD (eTable 6 in Supplement 2 and eFigure 1 in Supplement 1). While 22 (55%) evaluated the impact of environmental risk factors on the risk of NHL overall, the other half (18, 45%) focused on various NHL subtypes (CLL/SLL, 5 (13%); DLBCL, 5 (13%); FL, 4 (10%); TCL, 3 (8%); MZL, 1 (3%)).

Overall, 22 of 40 (55%) of the associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. There were 10 (25%) pairs where the effect estimates were both statistically significantly increased, 3 (8%) where they were both statistically significantly decreased, 7 (18%) where they were both non-statistically significantly increased, and 2 (5%) where they were both non-statistically significantly decreased (Kappa=0.37, eTable 6 in Supplement 2 and eFigure 1 in Supplement 1). The 13 associations where the MAs of the summary level data and MAs of IPD effect estimates were both statistically significantly increased or decreased were for history of smoking and risk of TCL, history of drinking and risk of NHL, DLBCL, and FL, history of primary Sjogren's syndrome and risk of NHL, history of systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL, TCL and DLBCL, and history of HCV and risk of NHL, DLBCL, MZL and CLL/SLL. There were 28 (70%) pairs where the effect sizes from the MAs of IPD were more conservative than the effect sizes from the MAs of summary level data.
There were 4 suggestive associations reported in MAs of summary level data that were also evaluated in the InterLymph MAs of IPD. Of these, 3 associations from MAs of IPD had effect estimates in the same direction, had $P<10^{-3}$, and were based on analyses with at least 1000 NHL cases (i.e., history of psoriasis and risk of NHL, history of Herpes Zoster and risk of NHL, and history of farming as an occupation and risk of NHL). There were 8 highly suggestive associations reported in MAs of summary level data that were also evaluated in InterLymph MAs of IPD. Of these, 7 associations from the MAs of IPD had effect estimates in the same direction, had $P<10^{-6}$, and were based on analyses with at least 1000 NHL cases (i.e., history of rheumatoid arthritis and risk of NHL, history of primary Sjogren's syndrome and risk of NHL, history systemic lupus erythematosus and risk of NHL, history of celiac disease and risk of NHL and TCL, history of tuberculosis and risk of NHL, and history of HCV and risk of NHL).

There were 19 (48%) pairs where the MAs of summary level data included at least one-third of the same component studies as the InterLymph MAs of IPD. There was no difference in terms of concordance (direction, statistical significance of summary effect estimates and overlapping 95% CIs) between MAs of summary level data that included at least one-third versus fewer than one-third of the same component studies as the MAs of IPD (12/19 (63%) vs 10/21 (48%), $P=0.32$).

Discussion
In this umbrella review, we evaluated the range, strength, and validity of reported associations between environmental risk factors and NHL across 85 MAs of published observational studies. Overall, we identified 257 associations for 134 unique environmental risk factors and 10 NHL subtypes. The vast majority of the associations, including those evaluating various dietary, clinical, lifestyle, chemical, and occupational exposures, were classified as having either non-significant or weak evidence. More than half of the nominally significant associations were only marginally significant. Only 5% of the associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence. When the same associations were evaluated in MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Overall, effect sizes from MAs of IPD were more conservative. This umbrella review suggests that there is a mass production of low-quality MAs of summary level data reporting weak associations between environmental risk
factors and NHL. These findings highlight the need for improving not only primary studies but also evidence synthesis in this field. Moreover, given that many of the assessed risk factors are correlated, simultaneous consideration of multiple risk factors will be useful to understand which ones have the strongest, independent effects on NHL risk.

Although a wide range of environmental exposures have been evaluated and proposed as potential risk factors for NHL, our evaluation suggests that the only highly suggestive or convincing exposures proposed in MAs of summary level data and MAs of IPD are related to autoimmune and infectious diseases. In particular, the prominent autoimmune disease-related risk factors include history of celiac disease, rheumatoid arthritis, primary Sjogren's syndrome, and systemic lupus erythematosus. Although the exact mechanisms behind these associations remains unclear, many autoimmune disorders are characterized by chronic inflammation, which may intensify B cell or T cell activation and promote the development of lymphoma. Previous studies have also suggested that the dysfunction of some protein families, such as FAS and tumor necrosis factor, and the interplay between various immune cells, could be potential mechanisms. However, there is uncertainty when it comes to the temporality of these associations, with studies reporting that autoimmune diseases can occur during lymphoma.

Associations between viral and bacterial infections and NHL risk have been suggested for several decades. Different hypotheses for HCV-related lymphomagenesis have been proposed. For instance, chromosomal aberrations, including chromosome t(14;18) translocation, have been found to be associated with mixed cryoglobulinemia, a disorder most commonly caused by HCV infection and that can evolve into lymphoproliferative disorders. Furthermore, genetic variations, including Interleukin-10 polymorphisms, have also been proposed as a potential pathway between HCV infection and NHL susceptibility and development. Similar to autoimmune disease-related risk factors, it remains unclear whether these associations are driven by disease status, medication use, or disease-medication interactions. Considering how rare many of these autoimmune and infectious disease-related exposures are, future efforts are necessary to determine the impact of multiple environmental as well as non-environmental risk factors simultaneously.

Among 40 associations evaluated by both MAs of summary level data and InterLymph MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Unlike MAs of summary level data, MAs of IPD tend to focus on studies with more homogeneous designs and patient populations. Furthermore, MAs of IPD can allow for better harmonization of data across studies, more advanced one-stage meta-
analytical approaches, and analyses accounting for many exposure categories and potential confounders. Although the InterLymph MAs of IPD are particularly robust due to the large number of NHL cases and subtypes considered, MAs of IPD without systematic reviews may exclude evidence from high-quality case-control or cohort studies. For instance, the InterLymph analyses only included evidence from completed and ongoing case-control studies from consortium members. Furthermore, the InterLymph findings may be difficult to disentangle, with at least 700 nominally statistically significant associations among thousands of analyses conducted across different subtypes of NHL and exposure levels (e.g., different type/dosage of alcohol consumption). In the future, it will be necessary to monitor the consistency between MAs of summary level data and MAs of IPD, especially since approximately half of the MAs of summary level data had at least one-third of the same component studies as the MAs of IPD. In addition, authors of MAs should carefully evaluate whether any external studies can and should be included in their syntheses. Of interest, we observed that more than two thirds of the effect sizes were more conservative in the InterLymph MAs of IPD than in the MAs of summary level data. This may be a reflection of greater selective reporting bias in the corpus of studies available in the literature as compared with a set of studies participating in a consortium.

Our study suggests that nearly all MAs of summary level data evaluating associations between environmental risk factors and risk of NHL could be classified as having critically low quality according to the AMSTAR 2 tool. Previous umbrella reviews focused on the associations between environmental risk factors and health outcomes have noted similar concerns. However, the proportion of low or critically low-quality NHL reviews is higher than what has been observed among umbrella reviews for inflammatory bowel diseases, attention-deficit/hyperactivity disorder, eating disorders, early childhood caries, physical activity for academic achievement, and physical therapy for tendinopathy. These findings may not be surprising considering recent concerns about the mass production of systematic reviews. In the future, authors planning systematic reviews and MAs of summary level data of the associations between environmental exposures and NHL should adhere to reporting guidelines. Moreover, authors should also critically evaluate how their findings relate to existing MAs of IPD, focusing on the impact of different methods, populations, and other characteristics.

Limitations

Our umbrella review has several limitations. First, we did not identify potential environmental risk factors that were only examined in individual observational studies. Our
objective was to identify and summarize the associations that were reported by the MAs of summary level data, which already covered a wide space of diverse associations. Second, we did not evaluate the quality of individual studies included in the MAs of summary level data, the impact that individual studies have on the overall heterogeneity, the magnitude of the associations, or the potential role that residual/unmeasured confounding could have on associations. Individual risk of bias evaluations are outside the scope of umbrella reviews, and it is the expectation that MAs have already conducted these quality assessments. Third, we considered MAs that included cohort and case-control studies, and our assessments did not prioritize reviews of certain study designs or address differences across different study designs. Considering that certain NHL subtypes are rare, case-control studies may often be the most realistic study design to evaluate exposure histories.

Fourth, although umbrella reviews provide a comprehensive summary of the associations reported in MAs, the validity of the summary effect estimates is dependent on the quality of the individual MAs. Although we attempted to standardize associations using a random-effects DL estimator, we did not evaluate or re-conduct the literature searches for all potential exposure-outcome relationships. It has been shown that different approaches can impact the width of the CIs (i.e., Wald-type vs. Hartung-Knapp-Sidik-Jonkman). In our evaluation, however, it is unlikely that these differences would impact the associations that were classified as highly suggestive or convincing. Given that the Hartung-Knapp-Sidik-Jonkman method has been found to outperform the standard DL method in certain scenarios, future UR evaluations should consider this approach in their analyses.

Fifth, we did not calculate I^2, 95% PIs, Egger’s test, and excess significance test for non-significant and nominally statistically significant associations. Given the large number of associations identified, we prioritized these calculations for associations where these values were necessary to determine the strength of associations using the previously established classification system. It is also worth noting that other tests may be more appropriate (e.g., Peter’s test vs. Egger’s test to examine small study effects), and that I^2 values should not be used to make inferences about heterogeneity, as it does not measure heterogeneity directly, but rather the proportion of total variability due to between-study variability. However, the I^2 cut-off of 50% is a standard grading criterion for we used the same approaches as previous evidence in umbrella reviews.

Sixth, when summary effect estimates of multiple exposure contrast levels were reported, we focused on the risk estimates comparing ever versus never exposure (or...
comparing the highest versus lowest levels of exposures). Although we did not consider all potential contrast levels and dose-response relationships, our objective was to provide a universal overview of the relationships between examined risk factors and NHL. Specific dose-response relationships may nevertheless exist for certain associations, and they would need to be examined on a case-by-case basis. Seventh, we only identified the nominally statistically significant associations among the thousands of associations reported in InterLymph MAs of IPD. Eighth, by excluding non-English language reviews, we may have missed additional potential associations. However, we utilized the same approach as previous umbrella reviews that focused on risk factors for health outcome(s).

Ninth, MAs of IPD and MAs of summary level data can have different strengths and limitations, and our evaluation did not focus on comparing the potential quality of these types of studies. We also did not focus on the impact of different methods, populations, or other characteristics when comparing the consistency of the results between the two study types. Tenth, umbrella reviews are not intended to provide information about the likelihood that associations are causal. Lastly, when multiple MAs of summary level data evaluated the same exposures and outcomes, we selected the association based on the largest number of included studies. Although this approach does not ensure that the highest quality MAs are selected, this methodology has been utilized by previous umbrella reviews.

Conclusion

In this large-scale umbrella review, we identified dozens of MAs evaluating associations between environmental risk factors and NHL. However, the vast majority of MAs of summary level data were low quality and presented either non-significant or weak evidence. When the same associations were evaluated in MAs of summary level data and MAs of IPD, only half were in the same direction, had the same level of statistical significance, and had overlapping 95% CIs. Although several associations, primarily those for autoimmune and infectious disease-related risk factors, presented either highly suggestive or convincing evidence, these findings highlight the need for improving not only primary studies but also evidence synthesis in the field of NHL etiology.
ACKNOWLEDGEMENTS

The authors would like to thank DP and VP of the Cushing/Whitney Medical Library at Yale for technical support. DP and VP are employees of Yale University and did not receive additional compensation for this work, nor do they have competing interest to disclose.

Contributors: XS and JDW originally conceived this study. XS, JPAI, and JDW designed this study. XS, HZ, YD, KN, and JDW acquired the data. XS and YD conducted the statistical analysis. XS and JDW and drafted the manuscript. XS, JPAI, and JDW participated in the interpretation of the data. All authors and critically revised the manuscript for important intellectual content. XS and JDW had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. JDW provided supervision. JDW is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: XS is supported by the China Scholarship Council. JDW is supported by the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health under award K01AA028258.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: In the past 36 months, JDW received research support from the FDA. There are no other competing interests.

Patient consent: Not required

Ethical approval: Not required
Data sharing: The dataset will be made available via a publicly accessible repository on publication. All data are included in the supplementary materials.

Transparency: The senior author (manuscripts guarantor) (JDW) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant registered) have been explained.

License: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide license to the Publishers and its licensees in perpetuity, in all forms, formats and median (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) license any third party to do any or all of the above.

The default license, a CC BY NC license, is needed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

See: http://creativecommons.org/licenses/by-nc/4.0/.
Reference

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. *CA Cancer J. Clin.* 2022;72(1):7-33.
2. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-Hodgkin lymphoma. *Lancet.* 2017;390(10091):298-310.
3. Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. *JAMA Oncol.* 2019;5(12):1749-1768.
4. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. *CA Cancer J. Clin.* 2016;66(6):443-459.
5. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. *Cold Spring Harb. Perspect. Med.* 2019.
6. Chiu BC, Hou N. Epidemiology and etiology of non-hodgkin lymphoma. *Cancer Treat. Res.* 2015;165:1-25.
7. Teras LR, Rollison DE, Pawlita M, et al. Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies. *Int. J. Cancer.* 2015;136(1):108-116.
8. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. *Blood.* 2008;111(8):4029-4038.
9. Elfström P, Granath F, Ekström Smedby K, et al. Risk of lymphoproliferative malignancy in relation to small intestinal histopathology among patients with celiac disease. *J. Natl. Cancer Inst.* 2011;103(5):436-444.
10. Klein A, Polliack A, Gafter-Gvili A. Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome. *Hematol. Oncol.* 2018;36(5):733-739.
11. Zhang Y, Dai Y, Zheng T, Ma S. Risk Factors of Non-Hodgkin Lymphoma. *Expert Opin. Med. Diagn.* 2011;5(6):539-550.
12. Pahwa M, Harris SA, Hohenadel K, et al. Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces. *Int. J. Cancer.* 2012;131(11):2650-2659.
13. Ollberding NJ, Aschebrook-Kilfoy B, Caces DB, et al. Phytanic acid and the risk of non-Hodgkin lymphoma. *Carcinogenesis.* 2013;34(1):170-175.
14. Cantor KP, Blair A, Everett G, et al. Hair dye use and risk of leukemia and lymphoma. *Am. J. Public Health.* 1988;78(5):570-571.
15. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):1-14.
16. Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst.* 2014;2014(48):130-144.

17. Ekström Smedby K, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. *Blood.* 2008;111(8):4029-4038.

18. t Mannetje A, De Roos AJ, Boffetta P, et al. Occupation and Risk of Non-Hodgkin Lymphoma and Its Subtypes: A Pooled Analysis from the InterLymph Consortium. *Environ. Health Perspect.* 2016;124(4):396-405.

19. Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. *CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne.* 2009;181(8):488-493.

20. Janiaud P, Agarwal A, Tzoulaki I, et al. Validity of observational evidence on putative risk and protective factors: appraisal of 3744 meta-analyses on 57 topics. *BMC Med.* 2021;19(1):157.

21. Greb A, Bohlhus J, Schiefer D, Schwarz G, Schulz H, Engert A. High-dose chemotherapy with autologous stem cell transplantation in the first line treatment of aggressive non-Hodgkin lymphoma (NHL) in adults. *Cochrane Database Syst. Rev.* 2008(1):CD004024.

22. Lee E, Dobbins M, Decorby K, McRae L, Tirilis D, Husson H. An optimal search filter for retrieving systematic reviews and meta-analyses. *BMC Med. Res. Methodol.* 2012;12:51.

23. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. *BMJ.* 2019;364:l265.

24. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ.* 2017;358:j4008.

25. Altman DG, Bland JM. How to obtain the P value from a confidence interval. *BMJ.* 2011;343:d2304.

26. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki L. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. *Lancet Neurol.* 2015;14(3):263-273.

27. Kim JY, Son MJ, Son CY, et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. *Lancet Psychiatry.* 2019;6(7):590-600.

28. Barbui C, Purgato M, Abdulmalik J, et al. Efficacy of psychosocial interventions for mental health outcomes in low-income and middle-income countries: an umbrella review. *Lancet Psychiatry.* 2020;7(2):162-172.

29. Tortella-Feliu M, Fullana MA, Perez-Vigil A, et al. Risk factors for posttraumatic stress disorder: An umbrella review of systematic reviews and meta-analyses. *Neurosci. Biobehav. Rev.* 2019;107:154-165.

30. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical research ed.).* 1997;315(7109):629-634.

31. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. *Clin. Trials.* 2007;4(3):245-253.

32. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. *J R Stat Soc Ser A Stat Soc.* 2009;172(1):137-159.

33. Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. *BMJ.* 2011;342:d549.
34. Karlstad O, Starup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer - systematic review and meta-analysis of observational studies. *Curr Drug Saf.* 2013;8(5):333-348.

35. Salmon C, Conus F, Parent M, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. *Cancer Epidemiol.* 2020;65:101696.

36. Leung CY, Huang HL, Rahman MM, et al. Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates. *BMC Cancer.* 2020;20(1):412.

37. Key TJ, Appleby PN, Crowe FL, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. *Am. J. Clin. Nutr.* 2014;100 Suppl 1(1):378S-385S.

38. Johnson KJ, Carozza SE, Chow EJ, et al. Parental age and risk of childhood cancer: a pooled analysis. *Epidemiology.* 2009;20(4):475-483.

39. Moore SC, Lee IM, Weiderpass E, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. *JAMA Intern Med.* 2016;176(6):816-825.

40. Yoosuf S, Makharia GK. Evolving Therapy for Celiac Disease. *Front Pediatr.* 2019;7:193.

41. Marafini I, Monteleone G, Stolfi C. Association Between Celiac Disease and Cancer. *Int. J. Mol. Sci.* 2020;21(11).

42. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. *Nat Rev Dis Primers.* 2018;4:18001.

43. Din L, Sheikh M, Kosaraju N, et al. Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes. *Genet. Epidemiol.* 2019;43(7):844-863.

44. Baecklund E, Smedby KE, Sutton LA, Askling J, Rosenquist R. Lymphoma development in patients with autoimmune and inflammatory disorders--what are the driving forces? *Semin. Cancer Biol.* 2014;24:61-70.

45. Khanmohammadi S, Shabani M, Tabary M, Rayzan E, Rezaei N. Lymphoma in the setting of autoimmune diseases: A review of association and mechanisms. *Crit. Rev. Oncol. Hematol.* 2020;150:102945.

46. Hauswirth AW, Skrabs C, Schützinger C, Gaiger A, Lechner K, Jäger U. Autoimmune hemolytic anemias, Evans' syndromes, and pure red cell aplasia in non-Hodgkin lymphomas. *Leuk. Lymphoma.* 2007;48(6):1139-1149.

47. Jardin F. Development of autoimmunity in lymphoma. *Expert Rev. Clin. Immunol.* 2008;4(2):247-266.

48. Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):52-65.

49. Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J. Natl. Cancer Inst. Monogr.* 2014;2014(48):15-25.

50. Ferri C. Mixed cryoglobulinemia. *Orphanet J. Rare Dis.* 2008;3:25-25.

51. Zignego AL, Giannelli F, Marrocchi ME, et al. T(14;18) translocation in chronic hepatitis C virus infection. *Hepatology.* 2000;31(2):474-479.

52. Khaled H, Abu-Taleb F, Haggag R. Hepatitis C virus and non-Hodgkin's lymphomas: A minireview. *J Adv Res.* 2017;8(2):131-137.
53. Persico M, Capasso M, Persico E, et al. Interleukin-10 - 1082 GG polymorphism influences the occurrence and the clinical characteristics of hepatitis C virus infection. *J. Hepatol.* 2006;45(6):779-785.

54. Hermine O, Lefrère F, Bronowicki JP, et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. *N. Engl. J. Med.* 2002;347(2):89-94.

55. Mazzaro C, Franzin F, Tulissi P, et al. Regression of monoclonal B-cell expansion in patients affected by mixed cryoglobulinemia responsive to alpha-interferon therapy. *Cancer.* 1996;77(12):2604-2613.

56. Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. *JAMA.* 2007;297(18):2010-2017.

57. Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. *Nanomedicine.* 2015;11(4):1003-1018.

58. Böhm M, Luger TA, Schneider M, Schwarz T, Kuhn A. New insight into immunosuppression and treatment of autoimmune diseases. *Clin. Exp. Rheumatol.* 2006;24(1 Suppl 40):S67-71.

59. Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. *BMJ.* 2010;340:c221.

60. Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. *Stat. Med.* 2017;36(5):855-875.

61. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. *Gastroenterology.* 2019;157(3):647-659 e644.

62. Kim JH, Kim JY, Lee J, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. *Lancet Psychiatry.* 2020;7(11):955-970.

63. Solmi M, Radua J, Stubbs B, et al. Risk factors for eating disorders: an umbrella review of published meta-analyses. *Braz J Psychiatry.* 2021;43(3):314-323.

64. Thang Le VN, Kim JG, Yang YM, Lee DW. Risk Factors for Early Childhood Caries: An Umbrella Review. *Pediatr. Dent.* 2021;43(3):176-194.

65. Barbosa A, Whiting S, Simmonds P, Scotini Moreno R, Mendes R, Breda J. Physical Activity and Academic Achievement: An Umbrella Review. *Int. J. Environ. Res. Public Health.* 2020;17(16).

66. Girgis B, Duarte JA. Physical therapy for tendinopathy: An umbrella review of systematic reviews and meta-analyses. *Phys. Ther. Sport.* 2020;46:30-46.

67. Ioannidis JP. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. *Milbank Q.* 2016;94(3):485-514.

68. Wallach JD. Meta-analysis Metastasis. *JAMA Intern Med.* 2019.

69. IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. *BMC Med. Res. Methodol.* 2014;14:25.

70. Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. *Research Synthesis Methods.* 2019;10(1):83-98.

71. Wiksten A, Rucker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. *Stat. Med.* 2016;35(15):2503-2515.
72. Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ*. 2011;343:d4002.

73. Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. *BMC Med. Res. Methodol.* 2008;8:79.

74. Köhler CA, Evangelou E, Stubbs B, et al. Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. *J. Psychiatr. Res.* 2018;103:189-207.

75. Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: An umbrella review of systematic reviews and meta-analyses. *Alzheimers Dement.* 2017;13(4):406-418.

76. Radua J, Ramella-Cravaro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. *World Psychiatry*. 2018;17(1):49-66.
Table 1: Grading criteria for evidence categories

Strength of association	Description
Convincing (class I)	Highly statistically significant association ($P < 10^{-6}$)
	At least 1000 NHL cases
	Low/moderate proportion of total variability due to between-study variability ($I^2 < 50\%$)
	95% prediction interval excluding the null value
	Largest study reporting a nominally statistically significant ($P < 0.05$)
	No evidence of small-study effects
	No evidence of excess significance bias
Highly suggestive (class II)	Highly statistically significant association ($P < 10^{-6}$)
	Largest study reporting a nominally statistically significant ($P < 0.05$)
Suggestive (class III)	At least 1000 NHL cases
	Statistically significant association ($P < 10^{-3}$)
Weak (class IV)	Nominally statistically significant association ($P < 0.05$)
Non-significant	Non-statistically significant associations ($P > 0.05$)

* P-value for the association calculated by random-effects model.

NHL = non-Hodgkin lymphoma.
Environmental risk factors for non-Hodgkin lymphoma reported in meta-analyses of summary-level data with convincing (Class I) and highly suggestive (Class II) evidence

Level of comparison	Outcome	Study type	Author/year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Large study nominally significant (P<0.05)	I^2 (%)	95% CI of effect estimate	
Renal transplant	Transplant recipients vs. general population	NHL	Wang 2018	6	770	SIR	10.66 (8.54, 13.31)	0.005	Yes	80.2	NA	NA
Rheumatoid arthritis	Patients vs general population	NHL	Simo 2015	16	1534	SIR	2.26 (1.82, 2.81)	0.003	Yes	96	NA	NA
Primary Sjögren's syndrome	Patients vs. general population	NHL	Liang 2014	11	1233	RR	1.76 (1.53, 1.99)	0.003	Yes	58.8	NA	NA
Systemic lupus erythematosus	Patients vs. general population	NHL	Cao 2015	12	166	RR	1.44 (1.25, 1.65)	0.003	Yes	24.3	NA	NA
Colitis disease	Patients vs. general population	NHL	Tio 2012	5	1102	OR	2.61 (2.04, 3.33)	0.003	Yes	33.4 (1.57, 7.22)	No	
Colitis disease	Patients vs. general population	TCI	Tio 2012	5	1353	OR	1.84 (1.25, 2.64)	0.003	Yes	55.5	NA	NA
Tuberculosis	Patients vs. general population	NHL	Leung 2020	5	2300	RR	1.61 (1.34, 1.94)	0.003	Yes	50.2	NA	NA
HBV infected vs. non-infected	HBV infected vs. non-infected	NHL	Li 2016	58	5334	OR	2.60 (2.23, 3.02)	0.003	Yes	37.9	NA	NA
HDV infected vs. non-infected	HDV infected vs. non-infected	BCL	Li 2015	20	1000	OR	2.46 (1.97, 3.07)	0.003	Yes	62.0	NA	NA
Environmental risk factors	Level of comparison	Outcome	Study type	Author/year	No. of primary studies	No. of cases	Effect measure	Random effects summary effect size (95% CI)	P random	Large study nominally significant (P<0.05)	I^2 (%)	95% CI of effect estimate
HCV infected vs. non-infected	HCV infected vs. non-infected	NHL	Mane 2010	22	2307	OR	3.36 (2.49, 4.52)	0.003	Yes	68	NA	NA
HCV infected vs. non-infected	Patients vs. general population	DHB	MA 2006	8	1020	RR	2.65 (1.88, 3.74)	0.003	Yes	29.8	0.006	NA
Table 3. Suggestive risk factors and protective factors identified in meta-analyses of individual patient data from International Lymphoma Epidemiology Consortium

NHL subtype	At least 1000 cases and P<10^-4	At least 1000 cases and P<10^-6
CLL/SLL	Years since quitting cigarette smoking, printing pressman	None
CLL/SLL/PLL/MCL	Alcohol, Any atopic disorder, Allergy, B and T cell activating autoimmune disease, HCV, Hay fever, Recreational sun exposure, Socioeconomic status (high vs low), BMI as young adult (25<30 kg/m^2), Rheumatoid arthritis, Blood transfusion, Weight, Occupation	History of B cell activating autoimmune disease, Siogren’s syndrome, HCV, Young BMI (%25 kg/m^2), Years since quitting smoking, Age first alcohol consumption (20-29 years vs. nondrinker), Current alcohol consumption status as of ~2 years prior to diagnosis/interview
DLBCL	Blood transfusion, Young adult BMI (%25 kg/m^2), Recreational sun exposure, History of cigarette smoking (female), Current cigarette smoking, University and higher education teachers, Male height (100% vs. 60%), Any atopic disorder	None
FL	Blood transfusion, Young adult BMI (%25 kg/m^2), Recreational sun exposure, History of cigarette smoking (female), Current cigarette smoking, University and higher education teachers, Male height (100% vs. 60%), Any atopic disorder	None
MZL	Systemic lupus erythematosus, HCV, Peptic ulcer, Wine	History of B cell activating autoimmune disease, Siogren’s syndrome
HCL	Current cigarette smoking	None
NHL	Hormone replacement therapy, Systemic lupus erythematosus, HCV, Allergy, Food allergy, Hay fever, Blood transfusion, Height, Alcohol exposure, Recreational hair dye use, Socioeconomic status (high vs low), Secondary Sjoogren’s syndrome, Childhood measles	Siogren’s syndrome, History of B cell activating autoimmune disease, Hay fever, Young BMI (%25 kg/m^2), Recreational sun exposure (%Q3 Q4 hours/week), Recreational hair use (%Q3 Q4 hours/week), Beer, wine, and liquor

BMI, body mass index; CI, confidence interval; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; HCL, hairy cell leukemia; HCV, hepatitis C virus; HLA, human leukocyte antigen; MA, meta-analysis; NA, not available; NHL, non-Hodgkin lymphoma; OR, odds ratio; PI, prediction interval; SIR, standardized incidence ratio; SRMA, systematic review and meta-analysis; RR, risk ratio; TCL, T-cell lymphoma.

a These were protective risk factors.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Supplementary materials summary

Supplement 1

- eTable 1: Search strategy ... 2
- eTable 2: NHL subtypes ... 7
- eTable 3: R code .. 11
- eTable 4: Overlapping meta-analyses of summary level data 12
- eText 1: Eligibility criteria .. 16
- eText 2: Systematic reviews without quantitative synthesis 19
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 1: Search strategy
Database searches, 2021-07-23
Searches on the Ovid platform can be rerun at https://tools.ovid.com/ovidtools/launcher.html

Ovid MEDLINE(R) ALL <1946 to July 22, 2021>	
1 [Xiaoting Shi]	0
2 [concept two: SRs]	0
3 (systematic adj4 review).ti.	16047
4 systematic review.pt.	3
5 Cochrane Database of Systematic Reviews.jn. and review.pt.	16216
6 [approach c: based on Lee 2012]	2
7 medline.tw. or systematic review.ti. or meta-analysis.pt. or pubmed.tw.	13658
8 [from our previous searches]	0
9 (pooled analysis or pooled analyses).mp.	35748
10 (metaanalysis or meta-analysis).af.	3
11 [NHL concept]	0
12 neoplasms/ or lymphoma/ or exp lymphoma, non-hodgkin/	58950
13 [alternative based on https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD004024.pub2/appendices#CD004024-sec1-0011]	0
14 *Lymphoma/	36024
15 *hematologic neoplasms/	10823
16 lymphom*.mp.	25857
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

17	non-hodgkin*.mp.	58024
18	nonhodgkin*.mp.	136
19	(non adj1 hodgkin*).mp.	58025
20	nhl.mp.	13936
21	(hemato* adj1 malign*).mp.	26969
22	(haemato* adj1 malign*).mp.	5497
23	(hemato* adj1 neoplas*).mp.	16617
24	(haemato* adj1 neoplas*).mp.	415
25	or/12,14-24	72171
26	risk/ or protective factors/ or risk factors/	99999
27	(risk* or protective factor*).mp.	28997
28	26 or 27	28997
29	or/3-10	42317
30	25 and 28 and 29	5543

Embase <1974 to 2021 July 22>

1	[NHL concept]	0
2	neoplasm/ or lymphoma/ or lymphatic system tumor/ or exp nonhodgkin lymphoma/	67263
3	*Lymphoma/	45821
4	hematologic malignancy/	35985
5	lymphom*.mp.	35048
6	non-hodgkin*.mp.	60548
7	nonhodgkin*.mp.	62197
8	(non adj1 hodgkin*).mp.	60551
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

9	nhl.mp.	25440
10	(hemato* adj1 malign*).mp.	63015
11	(haemato* adj1 malign*).mp.	9491
12	(hemato* adj1 neoplas*).mp.	4590
13	(haemato* adj1 neoplas*).mp.	689
14	or/2-13	82181
15	exp risk/ or protection/	27149
16	(risk* or protective factor*).mp.	43275
17	15 or 16	43681
18	[study design concept]	0
19	(systematic adj4 review).ti.	19182
20	Cochrane Database of Systematic Reviews.jn. and review.pt.	11247
21	medline.tw. or systematic review.ti. or pubmed.tw.	38012
22	(pooled analysis or pooled analyses).mp.	19038
23	(metaanalysis or meta-analysis).af.	32779
24	or/19-23	56318
25	14 and 17	15598
26	limit 25 to meta analysis	3382
27	limit 25 to systematic review	3023
28	25 and 24	6739
29	26 or 27 or 28	7272
30	limit 29 to conference abstract status	2936
31	29 not 30	4336
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Scopus	((TITLE-ABS-KEY (lymphom* OR non-hodgkin* OR (non W/1 hodgkin*) OR nhl OR ((hemato* OR haemato*) W/1 (malign* OR neoplas*))) AND (TITLE-ABS-KEY (risk* OR protective-factor*)))) AND (TITLE-ABS-KEY ((systematic W/4 review) OR medline OR pubmed OR "pooled analysis" OR "pooled analyses" OR metaanalysis OR meta-analysis)) AND (EXCLUDE (DOCTYPE, "cp"))	3173
Web of Science Core Collection	TS=(lymphom* OR non-hodgkin* OR (non NEAR/1 hodgkin*) OR nhl OR ((hemato* OR haemato*) NEAR/1 (malign* OR neoplas*)) AND TS=(risk* OR protective-factor*) AND TS=((systematic NEAR/4 review) OR medline OR pubmed OR "pooled analysis" OR "pooled analyses" OR metaanalysis OR meta-analysis)	2417
Cochrane Library	Refined by excluding the Web of Science document types proceedings papers and meeting abstracts	
ID	Search	Hits
#1	((systematic NEAR/4 review)):ti OR (systematic review):pt OR (medline or pubmed or "pooled analysis" or "pooled analyses" or metaanalysis or meta-analysis):ti,ab,kw (Word variations have been searched)	29396
#2	MeSH descriptor: [Neoplasms] this term only	6376
#3	MeSH descriptor: [Lymphoma] this term only	1369
#4	MeSH descriptor: [Lymphoma, Non-Hodgkin] explode all trees	2056
#5	MeSH descriptor: [Hematologic Neoplasms] this term only	466
#6	(lymphom* or non-hodgkin* or nonhodgkin* or (non NEAR/1 hodgkin*) or nhl or (hemato* NEAR/1 malign*) or (haemato* NEAR/1 malign*) or (hemato* NEAR/1 neoplas*) or (haemato* NEAR/1 neoplas*)):ti,ab,kw	14144
#7	#2 or #3 or #4 or #5 or #6	20192
#8	(risk* or (protective NEAR/1 factor*)):ti,ab,kw	25391
#9	MeSH descriptor: [Risk] this term only	3322
#10	MeSH descriptor: [Protective Factors] this term only	135
#11	MeSH descriptor: [Risk Factors] this term only	24955
#12	#8 or #9 or #10 or #11	25391
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

#13	#1 and #7 and #12	273
Epistemikon	Limited to reviews (not trials)	167

SR filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective))	736
broad synthesis filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective))	24
no filter	(title:(lymphoma*) OR abstract:(lymphoma*)) AND (title:(risk* OR protective) OR abstract:(risk* OR protective))	42
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 2: NHL subtypes

Category	Subtypes	Eligibility as NHL
Mature B-cell neoplasms	Chronic lymphocytic leukemia/small lymphocytic lymphoma	Yes
	Monoclonal B-cell lymphocytosis*	No
	B-cell prolymphocytic leukemia	Yes
	Splenic marginal zone lymphoma	Yes
	Hairy cell leukemia	Yes
	Splenic B-cell lymphoma/leukemia, unclassifiable	Yes
	Splenic diffuse red pulp small B-cell lymphoma	Yes
	Hairy cell leukemia-variant	Yes
	Lymphoplasmacytic lymphoma	Yes
	Waldenström macroglobulinemia	Yes
	Monoclonal gammopathy of undetermined significance (MGUS), IgM*	No
	μ heavy-chain disease	No
	γ heavy-chain disease	No
	α heavy-chain disease	No
	Monoclonal gammopathy of undetermined significance (MGUS), IgG/A*	No
	Plasma cell myeloma	No
	Solitary plasmacytoma of bone	No
	Extraosseous plasmacytoma	No
	Monoclonal immunoglobulin deposition diseases*	No
	Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue	Yes
	(MALT lymphoma)	
	Nodal marginal zone lymphoma	Yes
	Pediatric nodal marginal zone lymphoma	Yes
	Follicular lymphoma	Yes
	In situ follicular neoplasia*	Yes
	Duodenal-type follicular lymphoma*	Yes
	Pediatric-type follicular lymphoma*	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL
	Large B-cell lymphoma with IRF4 rearrangement*	Yes
	Primary cutaneous follicle center lymphoma	Yes
	Mantle cell lymphoma	Yes
	In situ mantle cell neoplasia*	Yes
	Diffuse large B-cell lymphoma (DLBCL), NOS	Yes
	Germinal center B-cell type*	Yes
	Activated B-cell type*	Yes
	T-cell/histiocyte-rich large B-cell lymphoma	Yes
	Primary DLBCL of the central nervous system (CNS)	Yes
	Primary cutaneous DLBCL, leg type	Yes
	EBV+ DLBCL, NOS*	Yes
	EBV+ mucocutaneous ulcer*	No
	DLBCL associated with chronic inflammation	Yes
	Lymphomatoid granulomatosis	No
	Primary mediastinal (thymic) large B-cell lymphoma	Yes
	Intravascular large B-cell lymphoma	Yes
	ALK+ large B-cell lymphoma	Yes
	Plasmablastic lymphoma	Yes
	Primary effusion lymphoma	Yes
	HHV8+DLBCL, NOS*	Yes
	Burkitt lymphoma	Yes
	Burkitt-like lymphoma with 11q aberration*	Yes
	High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements*	Yes
	High-grade B-cell lymphoma, NOS*	Yes
	B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classical Hodgkin lymphoma	Yes
	Double hit/triple hit lymphoma	Yes
	T-cell prolymphocytic leukemia	Yes
	T-cell large granular lymphocytic leukemia	Yes
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL
Chronic lymphoproliferative disorder of NK cells	Yes	
Aggressive NK-cell leukemia	Yes	
Systemic EBV+ T-cell lymphoma of childhood*	Yes	
Hydroa vacciniforme–like lymphoproliferative disorder*	Yes	
Adult T-cell leukemia/lymphoma	Yes	
Extranodal NK-/T-cell lymphoma, nasal type	Yes	
Enteropathy-associated T-cell lymphoma	Yes	
Monomorphic epitheliotropic intestinal T-cell lymphoma*	Yes	
Indolent T-cell lymphoproliferative disorder of the GI tract*	No	
Hepatosplenic T-cell lymphoma	Yes	
Subcutaneous panniculitis-like T-cell lymphoma	Yes	
Mycosis fungoides	Yes	
Sézary syndrome	Yes	
Primary cutaneous CD30+ T-cell lymphoproliferative disorders	Yes	
Lymphomatoid papulosis	No	
Primary cutaneous anaplastic large cell lymphoma	Yes	
Primary cutaneous γδ T-cell lymphoma	Yes	
Primary cutaneous CD8+aggressive epidermotropic cytotoxic T-cell lymphoma	Yes	
Primary cutaneous acral CD8+T-cell lymphoma*	Yes	
Primary cutaneous CD4+small/medium T-cell lymphoproliferative disorder*	No	
Peripheral T-cell lymphoma, NOS	Yes	
Angioimmunoblastic T-cell lymphoma	Yes	
Follicular T-cell lymphoma*	Yes	
Nodal peripheral T-cell lymphoma with TFH phenotype*	Yes	
Anaplastic large-cell lymphoma, ALK+	Yes	
Anaplastic large-cell lymphoma, ALK−*	Yes	
Breast implant–associated anaplastic large-cell lymphoma*	Yes	
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Category	Subtypes	Eligibility as NHL
	Acute lymphoblastic leukaemia (ALL)	No

Footnotes:
*Changes from the 2008 classification.
NOS: not otherwise specified
Information source: 2016 WHO classification of mature lymphoid neoplasms (https://pubmed.ncbi.nlm.nih.gov/26980727/)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 3: R code

```
# read in data_Behcet Disease
meta1 = read_excel("RR_effect_sizes_Behcet Disease_#4206.xlsx")
head(meta1)

# conduct main analysis
meta2<-metagen(meta1$LNRR,meta1$SE,
sm="R",studlab=paste(lastname,publication_year)
 ,data=meta1,method.bias="Egger",prediction = TRUE,
 level.predict =0.95)
summary(meta2)

# create forest plot, funnel plot
forest(meta2)
funnel(meta2)
meta2$pval.random

# conduct egger's test
metabias(meta2,method.bias="Egger",plotit=TRUE, correct= TRUE, k=3)
```
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eTable 4: Overlapping meta-analyses of summary level data

Environmental risk factors	Largest review (First author, year)	Number of overlapping meta-analyses	Number of primary studies in the largest meta-analyses	Most recent (Y/N)	Highest impact factor one (Y/N)
Dietary factors					
Red meat	Yang 2015	4	18	N	N
Processed meat	Yang 2015	4	18	N	N
White meat/poultry	Dong 2017	3	10	N	N
Fish	Caini 2016	3	11	N	N
Fruit and vegetable	Chen 2013	2	4	N	Y
Fruit	Chen 2013	2	13	N	Y
Vegetable	Chen 2013	2	13	N	Y
Eggs	Caini 2016	2	10	N	N
Total dairy products	Wang 2016	2	7	Y	Y
Milk	Wang 2016	3	16	N	Y
Cheese	Wang 2016	2	10	Y	Y
Vitamin D	Lu 2014	2	6	N	N
Drugs, vaccinations and procedures					
Aspirin	Ye 2015	2	10	Y	Y
Non-steroidal anti-inflammatory drugs	Ye 2015	2	13	Y	N
Statin	Ye 2017	3	9	Y	Y
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Environmental risk factors	Largest review (First author, year)	Number of overlapping meta-analyses	Number of primary studies in the largest meta-analyses	Most recent (Y/N)	Highest impact factor one (Y/N)
Non-dietary lifestyle factors					
Physical activity	Davies 2020	3	17	Y	Y
Hair dye	Qin 2019	2	16	Y	N
Petrochemical exposure	Jephcote 2020	2	9	Y	Y
Maternal smoking	Antonopoulos 2011	2	7	N	Y
Ever smoking	Sergentanis 2013	2	33	Y	N
Ever drinking	Tramacere 2012	3	29	N	Y
Heavy drinking	Tramacere 2012	2	6	N	Y
Medical history and comorbid diseases					
Rheumatoid arthritis	Simon 2015	2	17	Y	N
Primary Sjogren’s syndrome	Liang 2014	2	11	Y	Y
Systemic lupus erythematosus	Cao 2015	3	12	N	N
Psoriasis	Vaengebjerg 2020	3	8	Y	Y
Type 1 diabetes	Wang 2020	2	3	Y	N
Celiac disease	Tio 2012	2	8	Y	Y
Systemic sclerosis	Zhang 2013	2	4	Y	N
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Environmental risk factors	Largest review (First author, year)	Number of overlapping meta-analyses	Number of primary studies in the largest meta-analyses	Most recent (Y/N)	Highest impact factor one (Y/N)
Asthma	Yang 2017	2	15	Y	Y
Type 2 diabetes	Castillo 2012	8	21	N	N
Overweight	Larsson 2007	11	16	N	Y
Obesity	Larsson 2007	11	16	N	Y
Hepatitis B virus	Li 2018	5	58	N	N
Hepatitis C virus	Masarone 2019	4	27	Y	Y
Chemicals and pesticides					
Benzene	Kane 2010	4	24	Y	N
Polychlorinated biphenyls	Catalani 2019	3	30	Y	N
Trichloroethylene	Scott 2011	3	17	N	N
Glyphosate	Boffetta 2021	4	6	Y	N
2,4-Dichlorophenoxyacetic acid	Smith 2017	3	11	Y	Y
Occupation					
Female flight attendant	Buja 2006	4	3	Y	N
Farmer	Boffetta 2007	4	50	Y	N
Firefighter	Jalilian 2019	3	14	Y	Y
Petroleum refinery worker	Schnatter 2018	2	16	Y	N

Y=Yes; N=No.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eFigure 1: Scatterplot of summary effect estimates in meta-analyses of summary level data and meta-analyses of individual participant data

CI=confidence interval.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eText 1: Eligibility criteria

Eligibility criteria for systematic reviews and (or) meta-analyses

General inclusion criteria

Language: English only.

Study types: Systematic review and (or) meta-analysis (referred as ‘Review studies’ in the following contents).

Study designs included in review studies: Observational epidemiological studies.

Study subjects: Human only.

General exclusion criteria

Review studies that:

1. Focus on genetic risk factors3 for non-Hodgkin lymphoma (NHL)
2. Focus on biomarkers4 for NHL
3. Focus on risk factors for treatment, relapse, remission, or prognosis on NHL patients
4. Examine NHL as a risk factor for other diseases
5. Focus on cancer, hematological cancers, lymphoma, or any broader spectrum of diseases, but fail to provide specific data for NHL5
6. Only include experimental studies
7. Focus on NHL as a metastasis/secondary cancer of other primary cancers
8. Focus on NHL in a particular population but fail to provide detailed information on environmental risk factors6
9. Investigate the prevalence/incidence of NHL

1 Cohort studies or case control studies only
2 Review studies mixed with human and animal subjects will be checked in details at full text screening stage
3 Including genetic polymorphisms, family history/familial aggregation
4 Any substance, structure, or process that can be measured in the body or its products that can influence or predict the incidence of outcome or disease. Ref: http://www.inchem.org/documents/ehc/ehc/ehc222.htm (accessed 24th April, 2020)
5 This may be unclear at the title-abstract screening, therefore when in doubt, two researchers will send it on to the full text screening
6 For example, NHL in indigenous population, or men who have sex with men (MSM)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Besides the aforementioned eligibility criteria, based on our definition of environmental risk factors, personal medical history and comorbidities (excluding metastasis of tumors) will be considered eligible in our study. In addition to the 8th General exclusion criteria, studies focus on NHL on a particular occupational population would be included since occupation can act as proxy for certain environmental exposures.

Study types, exposures and outcome definition

Systematic reviews and (or) Meta-analyses of summary level data and individual participant data:

The eligible study types in our study are systematic reviews (SRs), meta-analyses (MAs), systematic reviews and meta-analyses (SRMAs) or pooled analyses. To be eligible, SRs and SRMAs must have performed a systematic search in at least one bibliographic database. SRs, MAs and SRMAs should clearly define themselves as systematic reviews and(or) meta-analyses. For SRs in particular, we will only include exposure-outcome relationships (i.e., associations) that have not been investigated in MAs or SRMAs.

In terms of pooled analyses, the primary goal for including pooled analyses in our study is to incorporate the valuable pooled information of individual level data from scientific institutes on NHL and its subtypes, such as The International Lymphoma Epidemiology Consortium (InterLymph) and to add to the evidence for meta-analyses on certain risk factors.

Environmental risk factors:

We define environmental risk factors as a broad concept of non-genetic factors, including physical, natural, chemical, biological, psychosocial, occupational, and lifestyle factors that can affect a person’s health, as environmental risk factors.

Outcome of interest:

Our study outcome is non-Hodgkin lymphoma, including its subtypes (eTable 2 in Supplement 1). The classification of NHL subtypes was consulted and confirmed by an epidemiologist on NHL from InterLymph consortia. We will identify with the definition/diagnostic criteria of NHL from the original review studies.

References

1. Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev. 2017;6(1):245.

7 An open scientific forum for epidemiologic research in non-Hodgkin's lymphoma and a group of international investigators who have completed or have ongoing case-control studies and who discuss and undertake research projects that pool data across studies or otherwise undertake collaborative research. Ref: https://epi.grants.cancer.gov/interlymph/ (accessed 24th April, 2020)
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

2. Faggion CM, Jr., Diaz KT. Overview authors rarely defined systematic reviews that are included in their overviews. J. Clin. Epidemiol. 2019;109:70-79.

3. Morton LM, Sampson JN, Cerhan JR, et al. Rationale and Design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014;2014(48):1-14.

4. Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. BMJ. 2019;364:l265.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

eText 2: Systematic reviews without quantitative synthesis

Systematic reviews

We identified 8 systematic reviews without quantitative synthesis with 8 unique associations that were not investigated by meta-analyses of the published literature (Supplement). Among them, 6 (75.0%) concluded that there were weak or non-statistically significant associations between the examined risk factors (Omega-3 fatty acids,1 sugar intake,2 artificial sweetener consumption,3 hazardous waste,4 preterm birth,5 and prenatal/postnatal Diagnostic X-rays and childhood6) and NHL risk. Two (25%) additional systematic reviews suggested possible associations between Gaucher disease7 and NHL risk and breast implants and anaplastic large cell lymphoma risk.8 Half (4, 50.0%) of the systematic reviews outlined that quantitative analyses were not conducted due to high levels of heterogeneity and/or a small number of eligible studies.1,3,6,7 The remaining 4 (50.0%) systematic reviews did not provide any reasons for not conducting quantitative analyses.2,4,5,8

Exclusion reasons

Among the 1024 records screened at the full text level, 904 were excluded, mostly because they were for the wrong topic (442, 48.9%), they had the wrong study design (240, 26.5%), or they were not the largest meta-analysis of the published literature for a specific association (102, 11.3%).
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

References

1. MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttrop MJ, Lim YW, Traina SB, Hilton L, Garland R, Morton SC. Effects of omega-3 fatty acids on cancer risk: a systematic review. Jama. 2006 Jan 25;295(4):403-15.

2. Makarem N, Bandera EV, Nicholson JM, Parekh N. Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: a systematic review of longitudinal studies. Annual review of nutrition. 2018 Aug 21;38:17-39.

3. Mishra A, Ahmed K, Froghi S, Dasgupta P. Systematic review of the relationship between artificial sweetener consumption and cancer in humans: analysis of 599,741 participants. International journal of clinical practice. 2015 Dec;69(12):1418-26.

4. Fazzo L, Minichilli F, Santoro M, Ceccarini A, Della Seta M, Bianchi F, Comba P, Martuzzi M. Hazardous waste and health impact: a systematic review of the scientific literature. Environmental Health. 2017 Dec;16(1):1-1.

5. Paquette K, Coltin H, Boivin A, Amre D, Nuyt AM, Luu TM. Cancer risk in children and young adults born preterm: A systematic review and meta-analysis. PloS one. 2019 Jan 4;14(1):e0210366.

6. Schulze-Rath R, Hammer GP, Blettner M. Are pre-or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review. Radiation and environmental biophysics. 2008 Jul;47(3):301-12.

7. Arends M, van Dussen L, Biegstraaten M, Hollak CE. Malignancies and monoclonal gammopathy in Gaucher disease; a systematic review of the literature. British journal of haematology. 2013 Jun;161(6):832-42.

8. Kim B, Roth C, Chung KC, Young VL, van Busum K, Schnyer C, Mattke S. Anaplastic large cell lymphoma and breast implants: a systematic review. Plastic and reconstructive surgery. 2011 Jun 1;127(6):2141-50.
Environmental risk factors for non-Hodgkin lymphoma: an umbrella review and comparison of meta-analyses of summary and individual participant level data

Supplementary materials summary

Supplement 2

- eTable 1: Excluded studies...2
- eTable 2: Included studies...67
- eTable 3: AMSTAR 2 evaluation..69
- eTable 4: Environmental risk factors for NHL reported in meta-analyses of summary level data with suggestive (Class III), weak (Class IV) and non-significant evidence...71
- eTable 5: Nominally significant associations from meta-analysis of individual participant data…..74
- eTable 6: Concordance between meta-analyses of summary level data and meta-analyses of individual participant data from International Lymphoma Epidemiology Consortium..81
| Title | Authors | PubMed | Journal | Volume | Issue | Pages | DOI | Study | Notes |
|-------|---------|--------|---------|--------|-------|-------|-----|-------|-------|
| Body mass index and the risk of cancer in women compared with men: a meta-analysis of prospective cohort studies. | Xue, Kai; Li, Feng; Chen, Yi-Wei; Zhou, Yu-Hao; He, Jia | 2017 | European journal of cancer prevention | 16 | 64 | 104-105 | | Xue 2017 | Exclusion reason: "Overlapping studies;" |
| Do polychlorinated biphenyls cause cancer? A systematic review and meta-analysis of epidemiological studies on risk of cutaneous melanoma and non-Hodgkin lymphoma. | Zani, Claudia; Ceretti, Elisabetta; Covolo, Loredana; Donato, Francesco | 2017 | Chemosphere | 183 | 4 | 97-106 | https://dx.doi.org/10.1016/j.chemosphere.2017.08.044 | Zani 2017 | Exclusion reason: "Overlapping studies;" |
| CARING (Cancer Risk and Nutritional Guesstimates): the association of diabetes mellitus and cancer risk with focus on possible determinants - a systematic review and a meta-analysis. | Starup-Linde, Jakob; Karlstad, Øystein; Eriksen, Stine Aistrup; Vestergaard, Peter; Bronsveld, Heleen K.; de Vries, Frank; Andersen, Morten; Auvinen, Ari; Haukkka, Jari; Hjelvik, Vidar; Bazelier, Marco; Boer, Anthonius de; Furu, Kari; De Bruin, Marie L. | 2013 | Current drug safety | 8 | 5 | 296-332 | | Starup-Linde 2013 | Exclusion reason: "Overlapping studies;" |
| Effect of hepatitis C virus infection on the risk of non-Hodgkin’s lymphoma: a meta-analysis of epidemiological studies. | Matsu, Keitaro; Kusano, Aaron; Sugum, Aravinda; Nakamura, Shigetsugu; Tajima, Kazu; Mueller, Tesla; Boer, Anthonius de; Furu, Kari; De Bruin, Marie L. | 2008 | Diabetes care | 16 | 3 | 2391-7 | https://dx.doi.org/10.2337/dc08-2196 | Matsu 2008 | Exclusion reason: "Overlapping studies;" |
| A meta-analysis of the incidence of malignancy in adult patients with rheumatoid arthritis. | Simmen, Allison L.; Simon, Teresa A.; Hochberg, Marc C.; Sussia, Sany | 2008 | Arthritis research & therapy | 10 | 2 | 645 | https://dx.doi.org/10.1186/ar1654 | Simmen 2008 | Exclusion reason: "Overlapping studies;" |
| Consumption of fruits, vegetables, and risk of hematological malignancies: a systematic review and meta-analysis of prospective studies. | Sergentanis, Theodoros N.; Psaltopoulos, Theodoros; Tzaninisis, Ioannis-Georgios; Dimopoulos, Meletios-Athanasiou. | 2018 | Leukemia & lymphoma | 59 | 2 | 434-447 | https://dx.doi.org/10.1080/10428194.2017.1380978 | Sergentanis 2018 | Exclusion reason: "Overlapping studies;" |
| Alcohol consumption and risk of hematological malignancies: A meta-analysis of prospective studies. | Psaltopoulos, Theodoros; Sergentanis, Theodoros N.; Tzaninisis, Ioannis-Georgios; Tzanninis, Ioannis-Georgios; Kusano, Aaron; De Bruin, Marie L. | 2018 | International journal of cancer | 143 | 3 | 486-495 | https://dx.doi.org/10.1002/ijc.31468 | Psaltopoulos 2018 | Exclusion reason: "Overlapping studies;" |
| Association between infection of hepatitis B virus and onset risk of B-cell non-Hodgkin’s lymphoma: a systematic review and a meta-analysis. | Yi, Hai-zen; Chen, Jin; Ding, Cen; Hong; Yan; Wei; Tan, Xiao-hong | 2014 | Medical oncology (Northwood, London, England) | 31 | 8 | 84 | https://dx.doi.org/10.1007/s10830-014-0176-7 | Yi 2014 | Exclusion reason: "Overlapping studies;" |
| Agricultural use of DDT and risk of non-Hodgkin’s lymphoma: pooled analysis of three case-control studies in the United States. | Baris, D.; Zahn, S. H.; Cantor, K. P.; Blair, A. | 1998 | Occupational and environmental medicine | 55 | 8 | 522-7 | | Baris 1998 | Exclusion reason: "Overlapping studies;" |
| Cigarette smoking is associated with a small increase in the incidence of non-Hodgkin lymphoma: a meta-analysis of 24 studies. | Castillo, J. J.; Dalia, S. | 2012 | Leukemia & lymphoma | 53 | 10 | 1911-1917 | https://dx.doi.org/10.1016/j.leukres.2012.06.006 | Castillo 2012 | Exclusion reason: "Overlapping studies;" |
| Title | Authors | Year | Journal/Conference | Volume/Issue | Pages | DOI |
|--|---------|------|--------------------|--------------|-------|---|
| Is prevention of cancer by sun exposure more than just the effect of vitamin D? A systematic review of epidemiological studies. | van der Rhee, Han; Coebergh, Jan Willem; de Vries, Esther | 2013 | European journal of cancer (Oxford, England : 1990) | 49 | 6 1422-36 | https://dx.doi.org/10.1016/j.ej cancer.2013 | Exclusion reason: *Overlapping studies ; |
| Hepatitis B infection increases the risk of non-Hodgkin lymphoma: a meta-analysis of observational studies. | Dalia, Samir; Chavez, Julio; Castillo, Jorge J; Sokol, Lubomir | 2013 | Leukemia research | 37 | 9 1107-15 | https://dx.doi.org/10.1016/j.leuk.2013 | Exclusion reason: *Overlapping studies ; |
| 2,4-Dichlorophenoxyacetic acid and non-Hodgkin’s lymphoma: results from the Agricultural Health Study and an updated meta-analysis | Goodman, J. E.; Loftus, C. T.; Zu, K. | 2017 | Annals of Epidemiology | 27 | 4 290 | http://dx.doi.org/10.1016/j.anedem.2017 | Exclusion reason: *Overlapping studies ; |
| Animal farming and the risk of lympho-haematopoietic cancers: a meta-analysis of three cohort studies within the AGRICROC consortium. | El-Zaemey, Sonia; Schirnasi, Leah H; Ferro, Gilles; Tu, Severeine; Lebailly, Pierre; Baldi, Isabelle; Nordby, Karl-Christian; Kjaerheim, Kristina; Schur, Joachim; Monnereau, Alain; Brouwer, Maartje; Koutros, Stella; Hofmann, Jonathan; Kristensen, Petter; Kronbou, Hans; Leon, | 2019 | Occupational and environmental medicine | 76 | 11 827-837 | https://dx.doi.org/10.1136/oem.2019.010542 | Exclusion reason: *Overlapping studies ; |
| Coffee and the Risk of Lymphoma: A Meta-analysis Article. | Han, Tianjie; L; Junshan; Wang, Ling; Xu, Hongyi | 2016 | Iranian journal of public health | 45 | 9 1126-1130 | https://dx.doi.org/10.1136/ijph.2016.082412 | Exclusion reason: *Overlapping studies ; |
| A Systematic Review of Carcinogenic Outcomes and Potential Mechanisms from Exposure to 2,4-D and MCPA in the Environment. | von Stackelberg, Katherine | 2013 | Journal of Toxicology | 2013 10159097 | 371610 | https://dx.doi.org/10.1155/2013/10159097 | Exclusion reason: *Overlapping studies ; |
| Benzene exposure and non-Hodgkin lymphoma: a meta-analysis of epidemiologic studies. | Alexander, Dominik D; Wagner, Meghan E | 2010 | Journal of occupational and environmental medicine | 52 | 2 169-89 | https://dx.doi.org/10.1097/JOC.0b013e3181d754d | Exclusion reason: *Overlapping studies ; |
| Association of risk of non-Hodgkin’s lymphoma with hepatitis B virus infection: a meta-analysis. | Qi, Zhen; Wang, Hao; Gao, Guangxun | 2015 | International journal of clinical and experimental medicine | 8 | 12 22167-74 | https://dx.doi.org/10.1186/0007-0994-2015-22167 | Exclusion reason: *Overlapping studies ; |
| Association of diabetes mellitus with non-Hodgkin lymphoma risk: a meta-analysis of cohort studies. | Xu, Jian; Wang, Tingting | 2019 | Hematology (Amsterdam, Netherlands) | 24 | 1 527-532 | https://dx.doi.org/10.1080/00070002.2019.1664972 | Exclusion reason: *Overlapping studies ; |
| Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. | Zhang, Luoping; Rana, Iman; Shaffer, Rachel M; Taill, Emanuela; Sheppard, Lianne | 2018 | Mutation research | 781 | 040078 166-206 | https://dx.doi.org/10.1016/j.mma.2018 | Exclusion reason: *Overlapping studies ; |
| Hematopoietic and lymphatic cancers in patients with periodontitis: a systematic review and meta-analysis. | Wu, Y; Shi, X; Li, Y; Gu, Y; Qian, Q; Hong, Y | 2020 | Medicina oral, patologia oral y cirugia bucal | 25 | 1 e21-e28 | https://dx.doi.org/10.4317/medicina.2020 | Exclusion reason: *Overlapping studies ; |
| 2,4-Dichlorophenoxyacetic acid and non-Hodgkin’s lymphoma, gastric cancer, and prostate cancer: meta-analyses of the published | Goodman, Julie E; Loftus, Christine T; Zu, Ke | 2015 | Annals of epidemiology | 25 | 8 626-636 | https://dx.doi.org/10.1016/j.annepidem.2015 | Exclusion reason: *Overlapping studies ; |
| Risk of cancer incidence and mortality associated with diabetes: A systematic review with trend analysis of 203 cohorts | Ling, Suping; Brown, Karen; Mikaza, Joanne K; Howell, Lynne M; Morrison, Amy; Issa, Eyad; Yates, Thomas; Khunti, Kamlesh; Davies, Melanie J; Zaccardi, Francesco | 2021 | Nutrition, metabolism, and cardiovascular diseases : NMC | 31 | 1 14-22 | https://dx.doi.org/10.1016/j.nm.2021 | Exclusion reason: *Overlapping studies ; |
| Risk of Malignancy in Dermatomyositis and Polymyositis. | Qiang, Judy K; Kim, Whan B; Babbergenova, Akerke; Alhusayen, Raed | 2017 | Journal of cutaneous medicine and surgery | 21 | 2 131-136 | https://dx.doi.org/10.1177/1229-136x21697798 | Exclusion reason: *Overlapping studies ; |
| Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. | Merhi, M; Raynal, H; Cahuza, E; Vinson, P; Cravedi, J P; Gamet-Payrastre, L | 2007 | Cancer causes & control : CCC | 18 | 10 1209-26 | https://dx.doi.org/10.1158/1059-7517.CAN-06-0115 | Exclusion reason: *Overlapping studies ; |
Exposicao ocupacional a agrotoxicos organofosforados e neoplasias hematologicas: uma revisao sistematica.

Environmental science and pollution research international

Fish consumption and risk of hepatocellular carcinoma: A systematic review.

Body mass index and risk of non-Hodgkin's and Hodgkin's lymphoma: a systematic review and meta-analysis of prospective cohort studies.

Anthropometric factors and non-Hodgkin's lymphoma risk: systematic review and meta-analysis of prospective studies.

Body fatness at a young age and risks of eight types of cancer: systematic review and meta-analysis of observational studies.

Quantitative association between body mass index and the risk of cancer: A global Meta-analysis of prospective cohort studies.

Body mass index and risk of non-Hodgkin's and Hodgkin's lymphoma: a meta-analysis of prospective studies.

Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies.

Fish consumption and risk of non-Hodgkin's lymphoma: A meta-analysis of observational studies.

Possible association between hepatitis C virus and malignancies different from hepatocellular carcinoma: A systematic review.
Title	Authors	Year	Volume	Pages	DOI	Exclusion reason	PubMed ID	Exclusion reason	PubMed ID
The risks of cancer development in systemic lupus erythematosus (SLE) patients: a systematic review and meta-analysis	Song, Lebén; Wang, Yi; Zhang, Jiayi; Song, Ninhong; Xu, Xiaoyun; Lu, Yan	2018	20	1-270	https://dx.doi.org/10.1186/s11874-018-0169-4	Overlapping studies	90e105709	Overlapping studies	90e105709
Sedentary behavior and incident cancer: a meta-analysis of prospective studies	Shen, Dong; Mao, Wei; Liou, Liu; Tao; Lin, Qinfeng; Lu, Xiangdong; Wang, Qiong; Lin, Peng; Ekelund, Ulf; Wijnaeaele, Katrien	2014	PloS one	9-8	https://dx.doi.org/10.1371/journal.pone.0102117	Overlapping studies	81e105709	Overlapping studies	81e105709
Use of statins and risk of haematological malignancies: a meta-analysis of six randomized clinical trials and eight observational studies.	Bonovas, Stafanos; Filisousi, Kalista; Tsantes, Argiros; Stitaras, Nikolaos M	2007	British journal of clinical pharmacology	64	3	255-62	Bonova s 2007	Overlapping studies	90e105709
Risk of Cancers in Patients with Pediatric Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis	Komaki, Yuga; Komaki, Fukuiko; Yamada, Akithiro; Mico, Degan; Id; Aiki; Sakuraba, Atsushi	2021	The Journal of Pediatrics	229	102-117	Komaki 2021	Overlapping studies	Overlapping studies	Overlapping studies
Lack of association between using aspirin and development of non-Hodgkin lymphoma: a meta-analysis.	Ammori, Neda; Cheragh; Maria; Fahlazadeh, Hosein; Rahmani, Hossein	2015	Asian Pacific journal of cancer prevention : APJCP	16	2	787-92	Ammori 2015	Overlapping studies	Overlapping studies
Meta-analysis of benzene exposure and non-Hodgkin lymphoma: biases could mask an important association.	Steinma, C.; Smith, A. H.; Jones, R M; Smith, M T	2008	Occupational and environmental medicine	65	6	371-8	Steinma 2008	Overlapping studies	Overlapping studies
Meat intake and non-Hodgkin lymphoma: a meta-analysis of observational studies.	Solinini, Angelo G; Lombardi, Anna Maria; Palazzo, Caterina; De Giusti, Maria	2018	Cancer causes & control : CCC	27	5	595-606	Solinini 2018	Overlapping studies	Overlapping studies
Statin use is associated with reduced risk of haematological malignancies: evidence from a meta-analysis.	Yi, Xiao; Jia, Wei; Jin, Yin; Zhen, Shang	2014	PloS one	9	1	e87019	Yi 2014	Overlapping studies	Overlapping studies
The Associations of Fruit and Vegetable Intakes with Burden of Diseases: A Systematic Review of Meta-Analyses.	Yip, Cynthia Sau Chun; Chan, Wendy; Fielding, Richard	2019	Journal of the Academy of Nutrition and Dietetics	119	3	464-481	Yip 2019	Overlapping studies	Overlapping studies
Type 2 diabetes mellitus and risk of non-Hodgkin lymphoma: a systematic review and meta-analysis.	Chao, Chun; Page, John H	2008	American journal of epidemiology	168	5	471-80	Chao 2008	Overlapping studies	Overlapping studies
A critical review of cancer epidemiology in the petroleum industry, with a meta-analysis of a combined database of more than 300,000 workers.	Wong, C; Raabe, G K	2000	Regula ry toxicology and pharmacology : RTP	32	1	78-98	Wong 2000	Overlapping studies	Overlapping studies
Risk of cancer in psoriasis: A systematic review and meta-analysis of epidemiological studies	Poupard, C.; Brenaut, E.; Horreau, C.; Barretche, T.; Misyery, L.; Richard, M. A.; Aractingi, S.; Aubin, F.; Critier, B.; Joly, P.; Julien, D.; Le Maletre, M.; Ortonne, J P.; Paul, C.	2015	Journal of the European Academy of Dermatology and Venereology	27	SUPPL.3	36-46	Poupard 2015	Overlapping studies	Overlapping studies
Sex differences in the association between diabetes and cancer: a systematic review and meta-analysis of 121 cohorts including 20 million individuals and one million events.	Okkuma, Toshiaki; Peters, Sanne A E; Woodward, Mark	2018	Diabetologia	81	10	2140-215	Okkuma 2018	Overlapping studies	Overlapping studies
Occupational benzene exposure and the risk of lymphoma subtypes: a meta-analysis of cohort studies incorporating three study quality dimensions.	Vlaanderen, Jelle; Lan, Qing; Kromhout, Hans; Rothman, Nathaniel; Vermeulen, Roel	2011	Environmental health perspectives	119	2	159-67	Vlaanderen 2011	Overlapping studies	Overlapping studies
Occupational trichloroethylene exposure and risk of lymphatic and haematopoietic cancers: a meta-analysis.	Karami, Sara; Bassis, Bryan; Stewart, Patricia A; Lee, Kyoung-Mu; Rothman, Nathaniel; Moore, Lee E; Lan, Qing	2013	Occupational and environmental medicine	70	8	591-9	Karami 2013	Overlapping studies	Overlapping studies
Study Title	Authors	Year	Journal	Volume	Pages	Exclusion Reason			
---	---	------	---	--------	-------	------------------			
The association between allergic diseases and cancer: a systematic review of the literature.	Karim, A F; Westenberg, L E H; Eurelings, L E M; Otten, R; Gerth van Wijk, R	2019	The Netherlands journal of medicine	77	2-42-66				
Television viewing and time spent sedentary in relation to cancer risk: a meta-analysis.	Schmid, Daniela; Leitzmann, Michael F	2014	Journal of the National Cancer Institute	106	7				
Association of Psoriasis With the Risk of Developing or Dying of Cancer: A Systematic Review and Meta-analysis.	Trafford, Alex M; Parisi, Rosa; Kontopantelis, Evangelos; Griffths, Christopher E M; Ashcroft, Darren M	2019	JAMA dermatology	101589530	10	Exclusion reason: *Overlapping studies ;			
Personal use of hair dyes and risk of cancer: a meta-analysis.	Takkouche, Bahi; Elminan, Mahyar; Montes-Martinez, Agustín	2005	JAMA	293	20-2516-25	Exclusion reason: *Overlapping studies ;			
Systematic review and meta-analysis of glyphosate exposure and risk of lymphohematopoietic cancers.	Chang, Ellen T; Delzelli, Elizabeth	2016	Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes	51	6	Exclusion reason: *Overlapping studies ;			
Occupational trichloroethylene exposure and non-Hodgkin's lymphoma: a meta-analysis and review.	Mandel, J H; Kelsh, M A; Mink, P J; Alexander, D D; Kalmes, R M; Weisinger, M; Yost, L; Goodman, M	2006	Occupational and environmental medicine	63	9	Exclusion reason: *Overlapping studies ;			
The risk of lymphoma development in autoimmune diseases: a meta-analysis.	Zintzaras, Elias; Voulgarelis, Michael; Moutsopoulos, Haralampus M	2005	Archives of internal medicine	165	20-2337-44	Exclusion reason: *Overlapping studies ;			
Red meat intake and risk of non-Hodgkin lymphoma: a meta-analysis.	Fallahzadeh, Hosein; Cheraghi, Maria; Amoort, Neda; Alaf; Mejraniz	2014	Asian Pacific journal of cancer prevention ; APJCP	15	23-10421-5	Exclusion reason: *Overlapping studies ;			
Physical activity and risk of lymphoma: a meta-analysis.	Vermeeze, Nele V H; Wolter, Pascal; Verhof, Gregor E G; Kollen, Boudewijn J; Kwakkel, Gert; Schepers, Leen; Gosselink, Rik	2015	Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology	22	7	Exclusion reason: *Overlapping studies ;			
Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium.	Leon, Maria E; Schiassi, Leah H; Lebailly, Pierre; Beane Freeman, Laura E; Nordby, Karl-Christian; Ferro, Gilles; Monnereau, Alain; Brouwer, Maartje; Tuil, Severine; Baldi, Isabelle; Kjærheim, Kristina; Hofmann, Jonathan N; Kristensen, Petter; Koutros, Stella; Straf, Kurt; Kromhout, Daniel	2019	International journal of epidemiology	48	5	Exclusion reason: *Overlapping studies ;			
Statins use and the risk of all and subtype hematological malignancies: a meta-analysis of observational studies.	Pradelli, Danita; Soranna, Davide; Zambon, Antonella; Catapano, Alberico; Mancia, Giuseppe; La Vecchia, Carlo; Corrao, Giovanni	2015	Cancer medicine	4	5	Exclusion reason: *Overlapping studies ;			
Physical activity in relation to risk of hematologic cancers: a systematic review and meta-analysis.									
Jochem, Carmen; Leitzmann, Michael F; Keimling, Marlen; Schmid, Daniela; Behrens, Gundula									
2014	Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology								
23	583-46	https://dx.doi.org/10.1158/1058-0854.EPI-13-0728	Jochem 2014						
Exclusion reason: *Overlapping studies ;									

| Polychlorinated biphenyls and cancer: An epidemiological assessment |
| Zani, C.; Tornelli, G.; Filisetti, B.; Donato, F. |
| 2015 | Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews |
| 31 | 2 | 99-144 | http://dx.doi.org/10.1080/10807035.2013.853346 | Zani 2015 |
| Exclusion reason: *Overlapping studies ; |

| Systemic lupus erythematosus is associated with increased incidence of hematologic malignancies: a meta-analysis of prospective cohort studies. |
| Apor, Emmanuel; O’Brien, Jennifer; Stephen, Merin; Castillo, Jorge J |
| 2014 | Leukemia research |
| 38 | 9 | 1067-71 | https://dx.doi.org/10.1016/j.leukres.2014.05.008 | Apor 2014 |
| Exclusion reason: *Overlapping studies ; |

| Risk of cancer among workers exposed to trichloroethylene: analysis of three Nordic cohort studies. |
| Hansen, Johnn; Sallmen, Markku; Selden, Anders I; Anttila, Antti; Pukkala, Eero; Andersson, Kjell; Brynildsson, Ing-Liss; Raaschou-Nielsen, Ole; Olsen, Jorgen H; McLaughlin, Joseph K |
| 2015 | Journal of the National Cancer Institute |
| 105 | 12 | 869-77 | https://dx.doi.org/10.1093/jnci/djv005 | Hansen 2015 |
| Exclusion reason: *Overlapping studies ; |

| Meat, fish, dairy products and risk of hematological malignancies in adults - a systematic review and meta-analysis of prospective studies. |
| Sergentanis, Theodoros N; Nanasis-Stathopoulos, Ioannis; Tzanninis, Ioannis-Georgios; Gavriatopoulou, Maria; Sergentanis, Ioannis N; Dimopoulos, Meletios A; Psaltopoulou, Theodora |
| 2019 | Leukemia & lymphoma |
| 60 | 8 | 1978-1991 | https://dx.doi.org/10.1080/10428194.2018.1534416 | Sergentanis 2019 |
| Exclusion reason: *Overlapping studies ; |

| Physical Activity in Cancer Prevention and Survival: A Systematic Review. |
| McTiernan, Anne; Friedenreich, Christine M; Katzmarzyk, Peter T; Powell, Kenneth E; Mack, Richard; Buchner, David; Pescatello, Linda S; Bloodgood, Bonny; Tennant, Bethany; Vaux-Bjerve, Alison; George, George; Stephane M; Troiano, Richard P; Piercy, Katrina L; 2018 |
| 2019 | Medicine and science in sports and exercise |
| 51 | 6 | 1252-1260 | https://dx.doi.org/10.1245/MEDICINE.2019.05.001 | McTiernan 2019 |
| Exclusion reason: *Overlapping studies ; |

| Exposure to glyphosate and risk of non-Hodgkin lymphoma and multiple myeloma: an updated meta-analysis. |
| Donato, Francescoa; Pira, Enrico; Ciocan, Catalinab; Buffetta, Paolo |
| 2020 | La Medicina del lavoro |
| 111 | 1 | 63-73 | https://dx.doi.org/10.23749/mrl.111.1.63-73 | Donato 2020 |
| Exclusion reason: *Overlapping studies ; |

| Cancer among farmers: a meta-analysis. |
| Acquavella, J.; Olsen, G; Cole, P; Ireland, B; Kaneene, J; Schuman, S; Holden, L |
| 1998 | Annals of epidemiology |
| 8 | 1 | 64-74 | Acquavella 1998 |
| Exclusion reason: *Overlapping studies ; |

| Cancer incidence and mortality among flight personnel: a meta-analysis. |
| Ballard, T; Lagori, S; De Angelis, G; Verdecella, A |
| 2000 | Aviation, space, and environmental medicine |
| 71 | 3 | 216-24 | Ballard 2000 |
| Exclusion reason: *Overlapping studies ; |

| Does sunlight prevent cancer? A systematic review. |
| van der Rhee, H J; de Vries, E; Coebergh, J W W |
| 2008 | European journal of cancer (Oxford, England : 1990) |
| 42 | 14 | 2222-32 | vander Rhee 2008 |
| Exclusion reason: *Overlapping studies ; |

| Systematic review of epidemiological studies on health effects associated with management of solid waste. |
| Porta, Daniela; Milans Simona; Lazzerino, Antonio I; Perucci, Carlo A; Forastiere, Francesco |
| 2009 | Environmental health - a global access science source |
| 8 | 10147645 | 60 | https://dx.doi.org/10.1186/1476-069X-8-10147645 | Porta 2009 |
| Exclusion reason: *Overlapping studies ; |
Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study.	Hill, C L; Zhang, Y; Sigurgeirsson, B; Pukkala, E; Melemkijer, L; Arjo, A; Evans, S R; Petson, D T	2001	Lancet (London, England)	357	9250	96-100	Hill 2001	Exclusion reason: "Overlapping studies"
Vitamin d and non-Hodgkin lymphoma risk in adults: A review	Kelly, J. L.; Friedberg, J. W.; Calvi, L. M.; Van Wijngaarden, E.; Fisher, S. G.	2009	Cancer Investigation	27	9	942-951	Kelly 2009	Exclusion reason: "Overlapping studies"
Both chronic HBV infection and naturally acquired HBV immunity confer increased risks of B-cell non-Hodgkin lymphoma.	Zhou, Xi; Pan, Huaxiong; Yang, Peng; Ye, Pian; Cao, Haiyan; Zhou, Hao	2019	BMC cancer	19	1	477	Zhou 2019	Exclusion reason: "Overlapping studies"
Non-Hodgkin lymphoma and benzene exposure: A systematic literature review	Lamm, S. H.; Engel, A.; Byrd, D. M.	2005	Chemo-Biological Interactions	153-154	231-237	Lamm 2005	Exclusion reason: "Overlapping studies"	
Personal hair dye use and cancer: a systematic literature review and evaluation of exposure assessment in studies published since 1992.	Rollison, Dana E.; Helzlsouer, Kathy J; Pinney, Susan M	2006	Journal of toxicology and environmental health. Part B, Critical reviews	9	5	413-39	Rollison 2006	Exclusion reason: "Overlapping studies"
Primary immunodeficiencies and lymphoma: a systematic review of literature.	Herber, Matthide; Mertz, Philippe; Dieudonne, Yannick; Guffroy, Blandine; Jung, Sophie; Gies, Vincent; Korgarow, Anne; Sophie; Guffroy, Aurelien	2020	Leukemia & lymphoma	61	2	274-284	Herber 2020	Exclusion reason: "Overlapping studies"
Is there an association between the use of textured breast implants with anaplastic large cell lymphoma?	Girardi, J. D.; de Britto, G. V.	2019	Vigilanza Sanitaria Em Debate-Sociedade Ciencia & Tecnologia	7	4	85-95	Girardi 2019	Exclusion reason: "Overlapping studies"
Agricultural exposure to carbamate pesticides and risk of non-Hodgkin lymphoma.	Zheng, T; Zahm, S H; Cantor, K P; Weisenburger, D D; Zhang, Y; Blair, A	2001	Journal of occupational and environmental medicine	43	7	641-9	Zheng 2001	Exclusion reason: "Overlapping studies"
Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis.	Khalade, Abdul; Jaakkola, Maritta S; Pukkala, Eero; Jaakkola, Joumi J K	2010	Environmental health : a global access science source	9	101147645	31	Khalade 2010	Exclusion reason: "Overlapping studies"
Maternal Smoking and the Risk of Cancer in Early Life - A Meta-Analysis.	Rumrich, Isabell; Katharina; VLukseika, Matti; Vahakangas, Kirsi; Gisler, Mika; Suncei, Helja-Maria; Hanninen, Otto	2018	PLoS one	11	11	e016504	Rumrich 2018	Exclusion reason: "Overlapping studies"
Insecticide use and risk of non-Hodgkin lymphoma subtypes: a subset meta-analysis of the North American Pooled Project	Kachuri, Linda; Beane Freeman, Laura E.; Spinelli, John J.; Blair, Aaron; Pahwa, Manisha; Koutros, Stella; Hoar Zahm, Shelia; Cantor, Kenneth P.; Weisenburger, Dennis D.; Pahwa, Punam; Dosman, James A.; McLaughlin, John R.; Demers, Paul A.; Harris, Shelley A.	2020	International Journal of Cancer				Kachuri 2020	Exclusion reason: "Overlapping studies"
Meta-analyses of non-Hodgkin’s lymphoma and farming.	Khuder, S A; Schaub, E A; Keller-Byrne, J E	1998	Scandinavian journal of work, environment & health	24	4	255-61	Khuder 1998	Exclusion reason: "Overlapping studies"
Sunlight, vitamin D and the prevention of cancer: a systematic review of epidemiological studies.	van der Rhee, Han; Coebergh, Jan Willem; de Vries, Esther	2009	European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP)	18		458-75	van der Rhee 2009	Exclusion reason: "Overlapping studies"
Title	Authors	Year	Journal/Database	Volume/Issue/DOI	Exclusion reason			
Cancer Incidence and Mortality among Petroleum Industry Workers and Residents Living in Oil Producing Communities: A Systematic Review and Meta-Analysis	Onyje, Felix M.; Hosseini, Bayan; Togawa, Kayo; Schuz, Joachim; Olsson, Ann; Zaccardi, Francesco	2021	International Journal of environmental research and public health	18(6):395014; https://doi.org/10.3950/ijerp.2021	Exclusion reason: "Overlapping studies";			
Cancer risks of firefighters: a systematic review and meta-analysis of secular trends and region-specific differences	Casjens, Swaanja; Brunning, Thomas; Taeger, Dirk	2020	International archives of occupational and environmental health	93(7):839-852; https://doi.org/10.1007/sd_2020_0001	Exclusion reason: "Overlapping studies";			
Association of Type 2 Diabetes With Cancer: A Meta-analysis With Bias Analysis for Unmeasured Confounding in 151 Cohorts Comprising 32 Million People	Ling, Suping; Brown, Karen; Kikazza, Joanne K.; Howells, Lynne; Morrison, Amy; Issa, Eyad; Yates, Thomas; Khunti, Kamlesh; Davies, Melanie J.; Zaccardi, Francesco	2020	Diabetes care	43(5):1513-23; https://doi.org/10.2337/dc20-0962	Exclusion reason: "Overlapping studies";			
Risk of cancer in psoriasis: a systematic review and meta-analysis of epidemiological studies.	Poulard, C; Brenaut, E; Horreau, C; Barneche, T; Misery, L; Richard, M-A; Ataciling, S; Aubin, F; Cribier, B; Joly, P; Jullien, D; Le Maire, M; Ortonne, J-P; Paul, C	2013	Journal of the European Academy of Dermatology and Venereology	27(6):z2; 921603-93-46; https://doi.org/10.1111/jdv.12278; Poulard et al. 2013	Exclusion reason: Duplicate;			
Fish consumption and risk of non-Hodgkin lymphoma: A meta-analysis of observational studies.	Yang, Li; Shi, Wen-Yu; Xu, Xiao-Hong; Wang, Xin-Feng; Zhu, Lit; Wu, De-Fei	2014	Hematology (Amsterdam, Netherlands)	970388; Yang 2014	Exclusion reason: Duplicate;			
Human Papillomavirus Infection and Lymphoma Risk: A Systematic Review and Meta-Analysis	Fama, Angela; Larson, Melissa C.; Link, Brian K.; Habermann, Thomas M.; Feldman, Andrew L.; Call, Timothy G.; Ansell, Stephen M.; Liebow, Mark, Xiang, Jinhuai; Maurer, Matthew J.; Slager, Susan L.; Nowakowski, Grzegorz S.; Stapleton, Jack T.; Cerhan, James R.	2020	Clinical Infectious Diseases : An official publication of the Infectious Diseases Society of America	71(5):1221-1226; https://doi.org/10.1093/cid/ciaa015; Fama 2020	Exclusion reason: Duplicate;			
Selenium for preventing cancer.	Vinceti, Marco; Filippini, Tommaso; Del Giovanne, Cinzia; Derrnert, Gabrielle; Zawhelen, Marcel; Bruinkman, Maree; Zeegers, Maurice Pa; Hornebeer, Markus; D'Amico, Roberto; Gregori, Catrighena M.	2018	The Cochrane database of systematic reviews	1000909747; CDO005156; Vinceti 2018	Exclusion reason: Duplicate;			
Vitamin D status and risk of non-Hodgkin lymphoma: An updated meta-analysis.	Park, Hye Yim; Hong, Yun-Chul; Lee, Kyoung-ho; Koh, Jiaroow	2019	PLoS one	4(5):14620128; Park 2019	Exclusion reason: Duplicate;			
Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis.	Bellamy, Leanne; Casas, Juan-Pablo; Gubrihotra, Aron D.; Williams, David J.	2007	BMJ (Clinical research ed.)	335(7):727-794; Bellamy 2007	Exclusion reason: Duplicate;			
Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. Preventive Services Task Force.	Chung, Mei; Lee, Jongsu; Terashima, Teruhiko; Lau, Joseph; Trakalinos, Thomas A; Togawa, Kayo; Habacher, Gabi; Hung, Shao Kang; Milazzo, Stefania; Hornebeer, Markus	2011	Annals of internal medicine	155(12):827-38; https://doi.org/10.7326/0002-9345_2011; Chung 2011	Exclusion reason: Duplicate;			
Green tea (Camellia sinensis) for the prevention of cancer.	Boehm, Katja; Borrelli, Francesca; Ernst, Edzard; Habacher, Gabi; Hung, Shao Kang; Milazzo, Stefania; Hornebeer, Markus	2009	The Cochrane database of systematic reviews	3; CDO005060; https://doi.org/10.1002/14651858; Boehm 2009	Exclusion reason: Duplicate;			
Benefits of vitamin D in reducing the risk of cancer: Time to include vitamin D in cancer treatment?	Grant, W. B.	2010	Journal of the Society for Integrative Oncology	8(3):81-88; http://dx.doi.org/10.2310/7200; Grant 2010	Exclusion reason: inability to identify full text;			
Title	Authors	Year	Journal	Volume	Pages	Exclusion reason		
--	--	--------	--	--------	---------	--		
Some risk factors for non-Hodgkin’s lymphoma.	Persson, B.; Fredrikson, M.	1999	International Journal of occupational medicine and environmental health	12	2135-42	Persson 1999 excluded due to inability to identify full text.		
Hair dye use may slightly increase cancer risk.	Anonymous	2005	South African Family Practice	47	7	Anonymous 2005 excluded due to inability to identify full text.		
Body mass index and risk of malignant lymphoma: A Meta-analysis	Lin, Jennifer S.; Eder, Michelle; Weimann, Shelia; Zuber, Sarah P.; Beil, Tracy L.; Plaut, Dagpne; Liiz, Kevin	2011	Chinese Journal of Evidence-Based Medicine	12	1-55-60	Lin 2011 excluded due to inability to identify full text.		
Autoimmune diseases and correlation with malignancies	Zarnavaliou, C.; Guri, K.; Anagnostopoulou, F. A.	2016	Review of Clinical Pharmacology and Pharmacokinetics, International Edition	30	1-23-29	Zarnavaliou 2016 excluded due to inability to identify full text.		
Listeria pericarditis in a lymphoma patient: Case report and literature review	Findlater, Aidan Reid; Haider, Shariq; Leto, Daniela	2020	JAMMI	5	3-182-186	Findlater 2020 excluded due to incorrect component study design.		
Frequency of use and standards of care for the use of azathioprine and 6-mercaptopurine in the treatment of inflammatory bowel disease: a systematic review of the literature and a survey of Canadian gastroenterologists.	Wallace, T. M.; Veldhuizen van Zanten, S J	2001	Canadian journal of gastroenterology = Journal canadien de gastroenterologie	15	1-21-8	Wallace 2001 excluded due to incorrect component study design.		
What is the Evidence of Lymphoma in Patients with Prostheses Other Than Breast Implants?	Ramos-Gallardo, G.; Carballo-Zarate, A. A.; Cuenca-Pardo, J.; Cardenas-Camera, L.; Solano-Genesta, M.; Beltran, J. A. C.; Gallagher-Hernandez, S.; Contreras-Bulnes, S.; Velez-Bentoz, E.; Bucio-Duarte, J. J.; Cedillo-Alem, E. J.	2020	Aesthetic Plastic Surgery	44	2-286-294	Ramos-Gallardo 2020 excluded due to incorrect component study design.		
Anterior ischemic optic neuropathy and hematologic malignancy: a systematic review of case reports and case series.	Sousa, David Cordeiro; Rodrigues, Filipe Brogueira; Duarte, Goncalo; Campos, Fatima; Pinto, Filomena; Vaz-Camire, A	2016	Canadian journal of ophthalmology = Journal canadien d'ophthalmologie	51	6-459-466	Sousa 2016 excluded due to incorrect component study design.		
European evidence-based consensus: Inflammatory bowel disease and malignancies	Annese, V.; Beaugerie, L.; Egan, L.; Biancone, L.; Bolling, C.; Brandts, C.; Dierickx, D.; Dummer, R.; Fiore, G.; Gornet, J. M.; Higgins, P. J.; Katsanos, K. H.; Nissen, L.; Pelli, G.; Roger, G.; Sedlajfers, F.; Szymanska, E.; Elakim, R.; Bossuyl, P.; Bogut, A.; Kranarc, Z.; Mijandrusic-Sinicic, B.	2015	Journal of Crohn's and Colitis	9	11-945-965	Annese 2015 excluded due to incorrect component study design.		
Allograft involvement by lymphoproliferative disorders after lung transplantation: report from the PTLD.Int survey	Izadi, M.; Tahen, S.	2011	Progress in Transplantation	21	4-353-359	Izadi 2011 excluded due to incorrect component study design.		
Biological therapy and development of neoplastic disease in patients with juvenile rheumatic disease: a systematic review.	Pereira, Vanessa Patricia L; Robazzi, Teresa Cristina Martins Vicente	2017	Revista brasileira de reumatologia	57	2-174-181	Pereira 2017 excluded due to incorrect component study design.		
Title	Authors	Year	Journal	Volume	Pages	DOI	Exclusion reason	Coauthors
--	---	------	---------------------------------	--------	-----------	--	---	--
Breast Implant and Anaplastic Large Cell Lymphoma Meta-Analysis	Ramos-Gallardo, Guillermo; Cuenca-Pardo, Jesus; Rodriguez-Olvera, Eugenio; Iribarren-Moreno, Rufino; Contreras-Buines, Livia; Vallarta-Rodriguez, Alfonso; Kalixto-Sanchez, Marco; Hernandez, Claudia; Ceja-Martinez, Ricardo; Torres-Rivero, Cesar	2017	Journal of investigative surgery : the official journal of the Academy of Surgical Research	30	1 96-65	https://dx.doi.org/10.1080/08914109.2017.1281151	Exclusion reason: Incorrect component study design	
An integrated safety profile analysis of belatacept in kidney transplant recipients	Oriinyo, J.; Charpentier, B.; Pestana, J. M.; Varenterghem, Y.; Vincenti, F.; Reyes-Acevedo, R.; Apanovich, A. M.; Gujrathi, S.; Aganwal, M.; Thomas, D.; Larsen, C. P.	2010	Transplantation	90	12 1521-152	http://dx.doi.org/10.1097/TP.0b013e3181ed3a0c	Exclusion reason: Incorrect component study design	
The morbidity and mortality associated with overweight and obesity in adulthood: A systematic review	Deutsches Arzteblatt	2009	Deutsches Arzteblatt	106	40 641-648	http://dx.doi.org/10.3238/arzt.2009	Exclusion reason: Incorrect component study design	
Estimation of cancer cases and deaths attributable to infection in China	Xiang, W.; Shi, J. F.; Li, P.; Wang, J. B.; Xu, L. N.; Wei, W. Q.; Zhao, F. H.; Qiao, Y. L.; Bofetta, P.	2011	Cancer Causes and Control	22	8 1153-1169	http://dx.doi.org/10.1007/s10512-011-1529-4	Exclusion reason: Incorrect exposure to infection	
Cancer and men who have sex with men: a systematic review.	Boehmert, Ulrike; Cooley, Timothy P.; Clark, Melissa A	2012	The Lancet. Oncology	13	12 6545-53	https://dx.doi.org/10.1016/S0140-6736(11)61830-4	Exclusion reason: Incorrect exposure to infection	
Alu Methylation and Risk of Cancer: A Meta-analysis	Ye, Ding; Jiang, Danjie; Zhang, Xinhan; Mao, Yingying	2020	The American journal of the medical sciences	359	5 271-280	https://dx.doi.org/10.1016/j.ajms.2020.02.003	Exclusion reason: Incorrect exposure to infection	
Non-Hodgkin’s lymphoma among asthmatics exposed to pesticides.	Lee, Won Jin; Cantis, Kenneth P.; Berzofsky, Jay A.; Zahm, Sheila H.; Blair, Aaron	2004	International journal of cancer	111	2 298-302	http://dx.doi.org/10.1002/ijc.10684	Exclusion reason: Incorrect exposure to infection	
Is birth weight associated with childhood lymphoma? A meta-analysis	Papadopoulou, C.; Antonopoulou, C N.; Sergentanis, T N.; Panagopoulou, P.; Belechni, M. Petridou, E	2012	International journal of cancer	130	1 177-89	https://dx.doi.org/10.1002/ijc.28763	Exclusion reason: Incorrect exposure to infection	
Birth weight and adult cancer incidence: large prospective study and meta-analysis	Yang, T. G.; Reeves, G. K.; Green, J.; Beral, V.; Caims, B J; Million Women Study Collaborators	2011	Annals of oncology : official journal of the European Society for Medical Oncology	25	9 1836-43	https://dx.doi.org/10.1093/annonc/mdr338	Exclusion reason: Incorrect exposure to infection	
Birth order and risk of childhood cancer: a pooled analysis from five US States	Von Behren, Julie; Spector, Logan G.; Mueller, Beth A.; Carozza, Susan; Chow, Eric; Fox, Erin; Horel, Scott; Johnson, Kimberly J.; McLaughlin, Colleen; Puimala, Susan; Ross, Julie A.; Reynolds, Peggy	2011	International journal of cancer	128	11 2709-16	https://dx.doi.org/10.1002/ijc.28605	Exclusion reason: Incorrect exposure to infection	
Height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk.	Green, Jane; Cairms, Benjamin J.; Casabonne, Delphine; Wright, F; Lucy; Reeves, Gillian; Beral, Valerie; Million Women Study Collaborators	2011	The Lancet. Oncology	12	8 785-94	https://dx.doi.org/10.1016/S0140-6736(11)61684	Exclusion reason: Incorrect exposure to infection	

https://mc.manuscriptcentral.com/bmjmedicine
Title	Authors	Year	Page	Volume	DOI	Exclusion reason			
Smoking, variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma: a pooled analysis within the InterLymph consortium.	Gibson, Todd M; Smedby, Karin E; Skiboda, Christine F; Heim, David W; Slager, Susan L; de Sanjose, Silvia; Vadjic, Claire M; Zhang, Yawei; Chiu, Brian C-H; Wang, Sophia S; Hjälmgrim, Henrik; Nieters, Alexandra; Bracci, Paige M; Knicker, Anne; Zheng, Tongzhang; Kolar, Carol; Cerhan, J. R.	2015	24	1007	10.1007/s10552-015-01266-4	Exclusion reason: Incorrect exposure			
Non-Hodgkin Lymphoma, Body Mass Index, and Cytokine Polymorphisms: A Pooled Analysis from the InterLymph Consortium.	Kane, Eleanor; Skiboda, Christine F; Bracci, Paige M; Gerhan, James R; Costas, Laura; Smedby, Karin Ekstrom; Holly, Elizabeth A; Maynadie, Marc; Novak, Anne J; Lightfoot, Tracy J; Arnessel, Stephen M; Smith, Alex G; Liebow, Mark; Melbye, Mads; Morton, Lindsay; de Sanjose, Silvia; Slager, Susan L; de Sanjose, Karin E; Becher, H.; InterLymph Consortium.	2015	24	1016	10.1158/1073-030X.JCO.2015-4006	Exclusion reason: Incorrect exposure			
An association between cutaneous melanoma and non-Hodgkin's lymphoma: a pooled analysis of published data with a review.	Lens, M B; Newton-Bishop, J A	2005	16	460	399-403	Exclusion reason: Incorrect exposure			
Birth order and risk of non-Hodgkin lymphoma–true association or bias?.	Grulich, Andrew E; Vadjic, Claire M; Falster, Michael O; Kane, Eleanor; Smedby, Karin Ekstrom; Bracci, Paige M; de Sanjose, Silvia; Becker, Nikolaus; Turner, Jenny; Martinez-Maza, Ottoniel; Melbye, Mads; Engels, Eric A; Vines, Paolo; Costantini, Adele; Seniori, Holly; Elizabeth A; Silli, J.; InterLymph consortium.	2010	172	621-30	10.1093/aje/kwp233	Exclusion reason: Incorrect exposure			
Burkitt and Burkitt-Like Lymphomas: a Systematic Review	Saleh, K.; Michot, J. M.; Camara-Clayette, V.; Vasselytsk, Y.; Ribrag, V	2020	22	47	10.1007/s10432-020-02366-2	Exclusion reason: Incorrect exposure			
Dose-response relation between dietary inflammatory index and human cancer risk: evidence from 44 epidemiologic studies involving 1,082,092 participants.	Li, Dongyang; Hao, K.; Yuanu; Li, Jinn; Wu, Zhenhai; Chen, Silei; Lin, Jianzheng; Li, Xinyang; Dong, Yudi; Na, Zhijing; Zhang, Yali; Dai, Huixu; Song, Yongsheng	2018	107	371-388	10.1093/ajcn/qny332	Exclusion reason: Incorrect exposure			
Height, leg length, and cancer risk: a systematic review.	Gunnell, D.; Okasha, M.; Smith, G. D; Oliver, S. E; Sandhu, J.; Holly, J M	2007	23	513-42	10.1007/s10432-006-01541-nan	Exclusion reason: Incorrect exposure			
Infectious mononucleosis, immune genotypes, and non-Hodgkin lymphoma (NHL): an InterLymph Consortium study.	Wade, N. B.; Chang, C. M.; Conti, D.; Millstein, J.; Skibola, C.; Nieters, A.; Wang, S. S.; De Sanjose, S.; Kane, E.; Spinelli, J. J.; Bracci, P.; Zhang, Y. W.; Slager, S.; Wang, J.; Hjälmgrim, H.; Smedby, K. E.; Brown, E. E.; Jarrett, R. F.; Cozen, W.; InterLymph Consortium, Immuno	2020	31	451-462	10.1007/s10552-020-01266-4	Exclusion reason: Incorrect exposure			
Juvenile dermatomyositis/polymyositis and lymphoma	Stubgen, J. P.	2017	377	19-24	10.1016/j.jns.2017.03.011	Exclusion reason: Incorrect exposure			
Dietary Inflammatory Index and Site-Specific Cancer Risk: A Systematic Review and Dose-Response Meta-Analysis.	Jayed, Ahmad; Emadi, Alireza; Shab-Bidar, Sakineh	2015	Advances in nutrition (Bethesda, Md.)	9	4	388-403	https://dx.doi.org/10.1093/advjnl/50.4.388	Jayed 2018	Exclusion reason: Incorrect indication
Identification of lymphoma predictors in patients with primary Sjögren’s syndrome: a systematic literature review and meta-analysis.	Nishishinya, Maria B; Perea, Claudia A; Munoz-Fernandez, Santiago; Pego-Reigosa, Jose M; Rua-Figueroa, Irigo; Andreu, Jose-Luis; Fernandez-Castro, Monica; Rosas, Jose; Loza Santamaria, Estibaliz	2015	Rheumatology international	35	1	17-26	https://dx.doi.org/10.1007/s00296-015-2501-5	Nishishinya 2015	Exclusion reason: Incorrect indication
Number of parity and the risk of non-Hodgkin lymphomas: a dose-response meta-analysis of observational studies.	Guo, Peng; Huang, GuiChuan; Ren, Lei; Chen, Yu; Zhou, Quan	2017	Hematology (Amsterdam, Netherlands)	22	5	274-285	https://dx.doi.org/10.1080/10428194.2017.135363	Guo 2017	Exclusion reason: Incorrect indication
Metabolic risk score and cancer risk: pooled analysis of seven cohorts.	Stocks, Tanja; Bjorge, Tone; Ulmer, Hanno; Manjer, Jonas; Haggstrom, Christel; Nagel, Gabriele; Engeland, Anders; Johansen, Dorte; Hallmans, Goran; Selmer, Randi; Concini, Hans; Tretli, Steinar; Jonsson, Hakan; Stattin, Par	2015	International journal of epidemiology	44	4	1353-63	https://dx.doi.org/10.1093/ije/dyu216	Stocks 2015	Exclusion reason: Incorrect indication
Ethylene oxide and risk of lympho-hematopoietic cancer and breast cancer: a systematic literature review and meta-analysis.	Marsh, Gary M; Keeton, Kara A; Ristol, Alexander S; Best, Elizabeth A; Benson, Stacey M	2019	International archives of occupational and environmental health	92	7	919-939	https://dx.doi.org/10.1007/s00420-019-10069-y	Marsh 2019	Exclusion reason: Incorrect indication
The association between fertility treatments and the incidence of paediatric cancer: A systematic review and meta-analysis.	Zhang, Yaoyao; Gao, Rui; Chen, Hanxiao; Xu, Wenming; Yang, Yihong; Zeng, Xun; Sun, Xiaochi; Zhang, Sirui; Hu, Xiao; Qin, Lang	2020	European journal of cancer (Oxford, England : 1990)	138	133-148	https://dx.doi.org/10.1016/j.ejca.2020.06.002	Zhang 2020	Exclusion reason: Incorrect indication	
Yogurt, cultured fermented milk, and health: a systematic review	Savaiano, Dennis A; Hutkins, Robert W	2021	Nutrition reviews	79	5	599-614	https://dx.doi.org/10.1093/nutre/nvab058	Savaiano 2021	Exclusion reason: Incorrect indication
Thyroid dysfunction and cancer incidence: a systematic review and meta-analysis	Tran, Thi-Van-Nhith; Kihara, Caril M; de Vathaire, Florence; Bontoux-Ruault, Marie-Christine; Journy, Neige	2020	Endocrine-related cancer	27	4	245-259	https://dx.doi.org/10.1530/Endocr-20-0362	Tran 2020	Exclusion reason: Incorrect indication
The potential for malignancy from atopic disorders and allergic inflammation: A systematic review and meta-analysis	Mur, Amanda B; Whelan, Kelly A; Dougherty, Michael K; Aaron, Bailey; Navarre, Brianna; Aceves, Steema S; Dellon, Evan S; Jensen, Elizabeth T	2020	Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology	50	2	147-159	https://dx.doi.org/10.1111/cea.13503	Mur 2020	Exclusion reason: Incorrect indication
Systematic review with meta-analysis: comparative risk of lymphoma with anti-tumour necrosis factor agents and/or thiopurines in patients with inflammatory bowel disease.	Chupin, Antoine; Perduca, Vittorio; Meyer, Antoine; Bellanger, Christophe; Carbonnel, Franck; Dong, Catherine	2020	Alimentary pharmacology & therapeutics	52	8	1289-1292	https://dx.doi.org/10.1111/apt.15321	Chupin 2020	Exclusion reason: Incorrect indication
Title	Authors	Year	Volume	Pages	DOI	Exclusion reason	ERR		
--	--	------	--------	-------	--	----------------------------	------		
Systematic review with meta-analysis: biologics and risk of infection or cancer in elderly patients with inflammatory bowel disease	Piovanì, Daniele; Danese, Silvio; Peyrin-Biroulet, Laurent; Nikolopoulos, Georgios K.; Bonovas, Stefanos	2020	51	820-830	https://dx.doi.org/10.1111/apj.13480	Piovanì 2020			
Risk scores for occult cancer in patients with unprovoked venous thromboembolism: Results from an individual patient data meta-analysis	Mulder, Frits L.; Carneri, Marc van Doormaal, Frederik; Robin, Philippe; Otten, Hans-Martin; Salaun, Pierre-Yves; Buller, Harry R.; Le Gal, Gaspard; van Es, Nick	2020	18	10 2022-2026	https://dx.doi.org/10.1111/jhj.13667	Mulder 2020			
Potential risk of certain cancers among patients with Periodontitis: a supplementary meta-analysis of a large-scale population	Ma, Haozhen; Zheng, Jianmao; Li, Xiaolan	2020	17	16 2531-2534	https://dx.doi.org/10.17150/pma.2020	Ma 2020			
Meta-analysis of the association between nut consumption and the risks of cancer incidence and cancer-specific mortality	Zhang, Dai; Dai, Cong; Zhou, Lingli; Li, Yiche; Liu, Kang; Deng, Yu-Jiao; Li, Na; Zheng, Yi; Hao, Qian; Yang, Si; Song, Dingli; Wu, Ying; Zhai, Zhen; Cao, Shi; Dai, Zhijun	2020	11	10 772-10 774	https://dx.doi.org/10.1097/CORL.0000000000000644	Zhang 2020			
Maternal diabetes and risk of childhood malignancies in the offspring: a systematic review and meta-analysis of observational studies	Yan, Pengfei; Wang, Yongbo; Yu, Xue; Liu, Yu; Zhang, Zhi-Jiang	2021	58	2 153-156	https://dx.doi.org/10.1007/s00703-021-02845-5	Yan 2021			
Long-Term Vitamin K Antagonists and Cancer Risk: A Systematic Review and Meta-Analysis	Shurrab, Mohammed; Quinn, Kieran L.; Kitchlu, Abhijit; Jackiw, Cynthia A.; Ko, Denis T.	2019	42	9 717-724	https://dx.doi.org/10.1097/CORL.0000000000000644	Shurrab 2019			
Sired Fruit Intake and Cancer: A Systematic Review of Observational Studies	Moschize, Valen V.; Mahe, Wawinney, Thomas P.; Giovannucci, Edward L.	2020	11	2 237-250	https://dx.doi.org/10.1093/acid/aaab006	Moschize 2020			
Does heart failure increase the risk of incident cancer? A meta-analysis and systematic review	Zhang, Hanrui; Gao, Yonghong; Wang, Lijin; Tian, Li; An, Na; Yang, Xinyu; Li, Xinyu; Tian, Chao; Yuan, Mengchen; Xiong, Xingjiang; Liu, Nian; Shang, Hongcai; Xing, Yanwei	2020	25	6 949-955	https://dx.doi.org/10.1007/s11495-020-00098-9	Zhang 2020			
Evaluation of Khat (Catha edulis) Use as a Risk Factor of Cancer: A Systematic Review	Chong, Zhixiong; Ho, Wan Yong; Yan, Pan; Alishgah, Mustafa Ahmed	2020	21	4 881-890	https://dx.doi.org/10.31557/APJC.2020	Chong 2020			
Consumption of sugar-sweetened beverages and fruit juice and human cancer: A systematic review and dose-response meta-analysis of observational studies	Li, Yuting; Guo, Liliazzi; He, Kailin; Tang, Shaozhi; Huang, Changbing	2021	12	10 3077-3088	http://dx.doi.org/10.7150/jca.21205	Li 2021			
Combined lifestyle factors, incident cancer, and cancer mortality: a systematic review and meta-analysis of prospective cohort studies	Zhang, Yan-Bo; Pan, Xiong-Fei; Chen, Junxiang; Cao, Anlan; Zhang, Yu-Ge; Xia, Lu; Wang, Jing; Li, Huiqi; Liu, Gang; Pan, An	2020	122	7 1085-1097	https://dx.doi.org/10.1038/s41395-020-03212-0	Zhang 2020			
Donor-Transmitted Cancers in Transplanted Livers: Analysis of Clinical Outcomes	Echter, Albino; Giorlami, Ilaria; Marletta, Stefano; Brunelli, Matteo; Carraro, Amadeo; Montini, Umberto; Boggi, Ugo; Moscetti, Claudia; Novelli, Luca; Malvi, Deborah; Lombardini, Letizia; Cardillo, Massimo; Neil, Desley; D’Enrico, Antonietta	2021	27	1 55-66	https://dx.doi.org/10.1002/lit.2021	Echter 2021			
Effects of Bariatric Surgery on Cancer Risk: Evidence from a Meta-analysis	Zhang, Kui; Luo, Yufeng; Dai, Hao; Deng, Zhenhua	2020	30	4 1265-1270	https://dx.doi.org/10.1007/s11486-020-00385-x	Zhang 2020			
Title	Authors	Year	Journal/Source	Volume	Issue	Pages	Digital Object Identifier	Exclusion reason: Incorrect indication	
--	--	------	--	--------	------	-------	----------------------------	--	
Risk of Cancer Recurrence Among Individuals Exposed to Antinuclear	Micic, Dejan; Komaki, Yuga; Alavanja, Aleksandar; Rubin, David T.; Sakuraba, Atsushi	2019	Journal of clinical gastroenterology	53	1	e1-e11	https://dx.doi.org/10.1097/MCG.0b013e3181e21796		
Necrosis Factor Therapy: A Systematic Review and Meta-Analysis of									
Observational Studies									
Does insomnia predict a high risk of cancer? A systematic review	Shi, Tingting; Min, Min; Sun, Chenyu; Zhang, Yun; Liang, Mingming; Sun, Yehuan	2020	Journal of sleep research	29	1	e12876	https://dx.doi.org/10.1111/jps.13547	Exclusion reason: Incorrect indication	
and meta-analysis of cohort studies									
Risk of cancer in multiple sclerosis (MS): A systematic review and	Qaharzadeh, Mehsa; Mohammad, Aida; Sahraain, Mohammad	2020	Autoimmunity reviews	19	10	102650	https://dx.doi.org/10.1016/j.jaam.2020.09.020	Exclusion reason: Incorrect indication	
meta-analysis									
Prevalence of comorbidity in Chinese patients with COVID-19:	Yih, Tingsuan; Li, Yuanjun; Ying, Ying; Luo, Zhijun	2021	BMC infectious diseases	21	1	260	https://dx.doi.org/10.1186/s11686-020-20146-9	Exclusion reason: Incorrect indication	
systematic review and meta-analysis of risk factors									
Subclinical hypothyroidism and the risk of cancer incidence and	Gomez-Izquierdo, Juan; Filion, Kristen B.; Boivin, Jean-Francois; Azoulay, Laurent; Poliak, Michael; Yu, Oriana Hoi Yun	2020	BMC endocrine disorders	20	1	83	https://dx.doi.org/10.1186/s11686-020-20146-9	Exclusion reason: Incorrect indication	
cancer mortality: a systematic review									
Hypnotics and Risk of Cancer: A Meta-Analysis of Observational	Peng, Tzu-Rong; Yang, Li-Jou; Wu, Ta-Wei; Chao, You-Chen	2020	Medicina (Kaunas, Lithuania)	56	10		https://dx.doi.org/10.3390/medicina56100107	Exclusion reason: Incorrect indication	
Studies									
Mediterranean diet and health: A systematic review of	Sancheti-Sanchez, Maria Luz; Garcia-Vigara, Alicia; Hidalgo-Mora, Juan Jose; Garcia-Perez, Miguel-Angel; Tarin, Juan; Cano, Antonio	2020	Mutantras	136	25-37		https://dx.doi.org/10.1016/j.mutantras.2020.09.009	Exclusion reason: Incorrect indication	
epidemiological studies and intervention trials									
Inhilation of two Prop 65-listed chemicals within vehicles may be	Reddam, Aalekhya; Volz, David C.	2021	Environment international	149	1	106402	https://dx.doi.org/10.1016/j.reda.2021.09.002	Exclusion reason: Incorrect indication	
associated with increased cancer risk									
Risk of cancer in bipolar disorder and the potential role of	Annella, Gerard; Fico, Giovanni; Lotfaliany, Mojtaba; Hidalgo-Mazzei, Diego; Soto-Angona, Oscar; Gimenez-Palomo, Anna; Aram, Silvia; Murr, Andrea; Radau, Joaquim; Solanes, Alex; Pacchiarotti, Isabella; Tedolin, Norma; Cowdry, Stephanie; Dodd, Seetal; Williams, Lana	2021	Neuroscience and biobehavioral reviews	128	529-541		https://dx.doi.org/10.1016/j.reda.2021.09.002	Exclusion reason: Incorrect indication	
lithium: International collaborative systematic review and									
meta-analyses									
The risk of malignancies in patients receiving hematopoietic stem	Loff-Forusiani, P.; Heydari, K.; Shamsbrian, A.; Hadayatvakkah-Hashem, A.; Ahmad, M.; Janabi, G.; Zabol, E.; Alisadeh-Navaei, R.; Aref, A.; Keyhani, S.; Ghasemzadeh, S. M.	2020	Clinical and Translational Oncology	22	10	1825-1830	http://dx.doi.org/10.1007/s10786-020-06240-4	Exclusion reason: Incorrect indication	
cell transplantation: a systematic review and meta-analysis									
Risk of Malignancy in Spontaneous Infections: A Systematic Review	Karmecharya, Paras; Shahuulkal, Ravi; Ogdie, Alexs	2020	Rheumatic Disease Clinics of North America	46	3	463-511	https://dx.doi.org/10.1016/j.reda.2020.09.002	Exclusion reason: Incorrect indication	
Donor-transmitted cancer in kidney transplant recipients:	Echer, Albino; Ciolfi, Babina; Marletta, Stefano; Motter, Jennifer Daniel; Segev, Dorny; Lidor, Gambaro; Giovanni, Zaza; Gianluigi, Momo; Rosand Emmanuell Angel; Nacchia, Francesco; Donato, Paola; Boschiere, Luigi; Boggi, Ugo; Lombardini, Letizia	2020	Journal of Nephrology	33	6	1321-1331	https://dx.doi.org/10.1007/s40464-020-06240-4	Exclusion reason: Incorrect indication	
Title	Authors	Year	Journal	Volume	Issue	Pages	DOI	Exclusion reason	
--	---	------	---	--------	------	--------------------------------	---	--	
Domestic radon exposure and risk of childhood leukemia: A meta-analysis	Lu, Yan; Liu, Lan; Chen, Qingping; Wei, Jienan; Cao, Guangzheng; Zhang, Jing	2020	Journal of BU.ON.; official journal of the Balkan Union of Oncology	29		1035-1041	https://dx.doi.org/10.3390/mi.20200014	Exclusion reason: Incorrect indication	
N-6 Polyunsaturated Fatty Acids and Risk of Cancer: Accumulating Evidence from Prospective Studies	Kim, Youngyo; Kim, Jeongseon	2020	Nutrients	12		9	https://dx.doi.org/10.3390/nu.12050731	Exclusion reason: Incorrect indication	
Whole Grains, Refined Grains, and Cancer Risk: A Systematic Review of Meta-Analyses of Observational Studies	Gaesser, Glenn A.	2020	Nutrients	12		12	https://dx.doi.org/10.3390/nu.12050731	Exclusion reason: Incorrect indication	
Risk of malignancy after augmentation cystoplasty: A systematic review	Biardeau, Xavier; Chartier-Kastler, Emmanuel; Roupret, Morgan; Phe, Veronique	2015	Neurourology and Urodynamics				http://dx.doi.org/10.1002/nau.21005	Exclusion reason: Incorrect indication	
Cigarette Smoking Reduction and Health Risks: A Systematic Review and Meta-analysis	Chang, Joanne T.; Anic, Gabriella M.; Rostron, Brian L.; Tanwar, Manju; Chang, Cindy M.	2021	Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco	23		635-642	https://dx.doi.org/10.1093/ntr/ntab200	Exclusion reason: Incorrect indication	
Eating disorders and the risk of developing cancer: a systematic review	Michels, Nathalie; De Backer, Fien; Dimakopoulou, Myrto; Mane, Katerina; Indave, Ioar; Huybrechts, Inge	2021	Eating and weight disorders : EWD	15		4	https://dx.doi.org/10.1007/s44014-021-01012-5	Exclusion reason: Incorrect indication	
TNF Inhibitors and Risk of Malignancy in Patients with Inflammatory Bowel Diseases: A Systematic Review	Muller, Marie; D'Amico, Ferdinando; Bonovas, Stefanos; Danese, Silvio; Peyrin-Biroulet, Laurent	2021	Journal of Crohn's & colitis	15		840-859	https://dx.doi.org/10.1093/sectonm/mct016	Exclusion reason: Incorrect indication	
Cancer occurrence following azathioprine treatment in myasthenia gravis patients: A systematic review and meta-analysis	Zhang, Zheyu; Wang, Meiping; Xu, Liang; Jiang, Bingze; Jin, Tianyu; Shi, Tianming; Xu, Bin	2021	Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia	88		70-74	https://dx.doi.org/10.1016/j.jns.2021.05.029	Exclusion reason: Incorrect indication	
Cancer in glass workers: a systematic review and meta-analysis	Lehner, Martin; Behrens, Thomas; Tulowiecki, Justus; Guldner, Karthikeyan; Bruning, Thomas; Taeger, Dirk	2020	International archives of occupational and environmental health	93		10-Jan	https://dx.doi.org/10.1007/s00124-020-00050-5	Exclusion reason: Incorrect indication	
Bisphosphonates and risk of cancers: a systematic review and meta-analysis	Li, Yuan-Yuan; Gao, Li-Jie; Zhang, Yu-Xue; Lu, Shu-Juan; Cheng, Shuo; Liu, Yu-Peng; Jia, Cun-Xian	2020	British journal of cancer	123		1570-1580	https://dx.doi.org/10.1038/s41406-020-00050	Exclusion reason: Incorrect indication	
Benefits of Qigong as an integrative and complementary practice for health: a systematic review	Tonetti, Bruna Franchielle; Barbosa, Rafael Fernando Mendes; Mano, Leandro Yukio; Sawada, Luana Okino; Oliveira, Igor Goulart; Sawada, Name Okino	2020	Revista latino-americana de enfermagem	28		e3317	https://dx.doi.org/10.1590/1517-881X20200548.4.2020	Exclusion reason: Incorrect indication	
Association of Total Nut, Tree Nut, Peanut, and Peanut Butter Consumption with Cancer Incidence and Mortality: A Comprehensive Systematic Review and Dose-Response Meta-Analysis of Observational Studies	Naghsh, Sina; Sadeghian, Mehdi; Nasiri, Morteza; Mobarak, Sara; Asadi, Masoomeh; Sadeghi, Omid	2021	Advances in nutrition (Bethesda, Md.)	12		793-808	https://dx.doi.org/10.1093/advan/nmb074	Exclusion reason: Incorrect indication	
Association between Toxoplasma gondii exposure and hematological malignancies: A systematic review and meta-analysis	Kalantarj, Narges; Gorgani-Firoozjazi, Tahmineh; Hassan, Saeed; Chehrazi, Mohammad; Ghaffari, Salman	2020	Microbial pathogenesis	148		10449	https://dx.doi.org/10.1016/j.bm.202004031	Exclusion reason: Incorrect indication	
Title	Authors	Date	Journal	Volume	Pages	DOI	Exclusion Reason		
--	---	------------	--------------------------	--------	---------	--	--		
Association Between Topical Calcineurin Inhibitor Use and Risk of Cancer, Including Lymphoma, Keratinocytic Carcinoma, and Metastases: A Systematic Review and Meta-analysis	Lam, Megan; Zhu, Jie; Wei, Tadrous; Mina; Drucker, Aaron M.	2021	JAMA dermatology	157	548-558	https://dx.doi.org/10.1001/jama.2021.2390	Exclusion reason: Incorrect indication		
Appetite and the risk of nondigestive tract cancers: An updated meta-analysis to 2019	Santucci, Claudia; Gallus, Silvano; Martinetti, Marco; La Vecchia, Carlo; Bosetti, Cristina	2021	International journal of cancer	148	6 1372-138	https://dx.doi.org/10.1002/ijc.31773	Exclusion reason: Incorrect indication		
Analysis of adverse drug reactions in the treatment of rheumatological diseases with biological medicinal products: A systematic review of scientific publications	Parvova, I.; Hristov, E.; Rangelov, A.	2019	Neuvmatologia (Bulgaria)	27	4 17-Mar	https://dx.doi.org/10.1080/01694758.2019.1630770	Exclusion reason: Incorrect indication		
Alcohol and cancer risk: A systematic review and meta-analysis of prospective Indian studies	Singhavi, Hitesh; Rajendra; Singh, Arjun; Bhatthacherjee, Atanu; Talote, Sanjay; Dikshit, Rajesh; Chaturvedi, Pankaj	2020	Indian journal of public health	64	2 186-190	https://dx.doi.org/10.4103/ijph.IJPH_21_19	Exclusion reason: Incorrect indication		
Anesthesia and Long-term Oncological Outcomes: A Systematic Review and Meta-analysis	Chang, Chun-Yu; Wu, Meng-Yu; Chien, Yung-Jun; Su, J. Min; Wang, Shih-Ching; Kao, Ming-Chang	2021	Anesthesiology and analgesia	132	3 623-634	https://dx.doi.org/10.1213/ANES.0000000000006197	Exclusion reason: Incorrect indication		
Association between blood pressure and risk of cancer development: a systematic review and meta-analysis of observational studies	Serelis, Aristidis; Cividini, Sofia; Markozannes, Georgios; Tserotopoulou, Xanthippe; Lopez, David S.; Ntzani, Evangelia E.; Tsilidis, Konstantinos K.	2019	Scientific reports	9	1 8565	https://dx.doi.org/10.1038/s41598-019-13876-2	Exclusion reason: Incorrect indication		
Association Between Alzheimer Disease and Cancer With Evaluation of Study Biases: A Systematic Review and Meta-analysis	Osprina-Romero, Monica; Glymour, M. Maria; Hayes-Larson, Eleanor; Mayeda, Elizabeth Rose; Graff, Rebecca E.; Brenowitz, Willa D.; Ackley, Sarah F.; Witte, John S.; Kobayashi, Lindsay C.	2020	JAMA network open	3	11 e202551	https://dx.doi.org/10.1001/jamanetworkopen.2020.2551	Exclusion reason: Incorrect indication		
A meta-analysis of biologic therapies on risk of new or recurrent cancer in patients with rheumatoid arthritis and a prior malignancy	Xie, Wenhui; Xiao, Shiyu; Huang, Yanrong; Sun, Xiaoying; Gao, Dai; Ji, LianLan; Li, Guantao; Zhang, Zhihui	2020	Rheumatology (Oxford, England)	59	5 939-939	https://dx.doi.org/10.1093/heapro/daz196	Exclusion reason: Incorrect indication		
Dietary acrylamide and cancer risk: an updated meta-analysis.	Pelucchi, Claudio; Bosetti, Cristina; Galeone, Carlotta; La Vecchia, Carlo	2015	International journal of cancer	136	12 2012-22	https://dx.doi.org/10.1002/ijc.32040	Exclusion reason: Incorrect indication		
Dietary acrylamide and human cancer: a systematic review of literature.	Virk-Baker, Mandee K; Ngyi, Tim R; Barnes, Stephen; Groopman, John	2014	Nutrition and cancer	66	5 774-90	https://dx.doi.org/10.1080/01477197.2014.921874	Exclusion reason: Incorrect indication		
Whole-grain intake and cancer: an expanded review and meta-analysis.	Jacobs, D R Jr; Manquart, L; Slavin, J; Kush, L H	1998	Nutrition and cancer	30	2 85-96	https://dx.doi.org/10.1001/jama.1998.01080303	Exclusion reason: Incorrect indication		
The Protective Effect of Maternal Folic Acid Supplementation on Childhood Cancer: A Systematic Review and Meta-analysis of Case-control Studies.	Wan Ismail, Wan Rosmawati; Abdul Rahman, Raudah; Rahman, Nur Ashiqin Ab; Ais, Azman; Naw, Azmawati Mohammed	2019	Journal of preventive medicine and public health = Yebang Uihakhoe chi	52	4 205-213	https://dx.doi.org/10.3961/jrpm.19.000372	Exclusion reason: Incorrect indication		
Cancer risk for patients using thiazolidinediones for type 2 diabetes: a meta-analysis.	Bosetti, Cristina; Rosato, Valentina; Buniat, Daniil; Zambon, Antonella; La Vecchia, Carlo; Correa, Giovanni	2013	The oncologist	18	2 148-56	https://dx.doi.org/10.1634/theoncologist.2013-0063	Exclusion reason: Incorrect indication		
Use of benzodiazepine and risk of cancer: A meta-analysis of observational studies.	Kim, Hong-Bae; Myung, Seung-Kwon; Park, Yon Chul; Park, Byoungin	2017	International journal of cancer	140	3 513-525	https://dx.doi.org/10.1002/ijc.31773	Exclusion reason: Incorrect indication		
Work stress and the risk of cancer: A meta-analysis of observational studies.	Yang, Tingting; Giao, Yan; Xiang, Siyuan; Li, Wenzhen; Gan, Yong; Chen, Yongchun	2019	International journal of cancer	144	10 2350-24	https://dx.doi.org/10.1002/ijc.31773	Exclusion reason: Incorrect indication		
Study	Authors	Year	Journal	Volume	Pages	DOIs	Exclusion reason		
--	---	------	---	--------	-------	--	--		
Observational studies on the risk of cancer associated with tumor necrosis factor inhibitors in rheumatoid arthritis: A review of their methodologies and results	Solomon, D. H.; Mercer, E.; Kavanagh, A.	2012	Arthritis and Rheumatism	64	21-32	[10.1002/art.26906](https://doi.org/10.1002/art.26906) Solomo in 2012	Incorrect indication		
Noncutaneous and Cutaneous Cancer Risk in Patients With Atopic Dermatitis A Systematic Review and Meta-analysis	Wang, L.; Bierri, R.; Drucker, A. M.; Chan, A. W.	2020	Jama Dermatology	156	2	[10.1001/jamadermatol.2019.1101](https://doi.org/10.1001/jamadermatol.2019.1101) Wang 2020	Incorrect indication		
Magnetic fields and childhood cancer--a pooled analysis of two Scandinavian studies.	Feychting, M.; Schulgen, G.; Olsen, J; Ahlbom, A.	1995	European journal of cancer (Oxford, England : 1990)	31A	12	2035-9	Incorrect indication		
Occupational extremely low frequency magnetic fields (ELF-MF) exposure and hematolymphopoietic cancers - Swiss National Cohort analysis and updated meta-analysis.	Huss, Anke; Spoerri, Adrian; Egger, Matthias; Kromhout, Hans; Vermeulen, Roel; Swiss National Cohort	2018	Environmental research	164	el2, 014762	467-474	Incorrect indication		
In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts.	Schuz, Joachim; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M. P. A.; Horneber, M.; D'Amico, R.; Crespi, C. M.	2017	British journal of cancer	116	1	128-133	Incorrect indication		
Complications of biologics in inflammatory bowel disease	Souza, P.; Allez, M.	2015	Current Opinion Gastroenterology	31	4	298-302	Incorrect indication		
Selenium for preventing cancer	Vinci, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M. P. A.; Horneber, M.; D'Amico, R.; Crespi, C. M.	2018	Cochrane Database of Systematic Reviews	2018	1	CD00518	Incorrect indication		
Risks and benefits of infliximab for the treatment of Crohn's disease.	Siegel, Corey A; Hur, Chin; Korzenik, Joshua R; Gazelle, G Scott; Sands, Bruce E	2006	Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association	4	8	1017-976	Incorrect indication		
Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies	Vernooij, Robin W. M.; Zeraatkar, Dena; Han, Mi Ah; El Dib, Regina; Zworth, Max; Milo; Kirolos; Sit, Daegian; Lee, Yung; Gomas; Huda; Valli, Claudia; Swierz, Mateusz J.; Chang, Yaping; Hanna, Steven E.; Brauer, Paula M.; Sievenpiper, John; de Souza, Russell; Alonso-Coello, Pablo; Bala, Malgorzata	2019	Annals of Internal Medicine	171	10	732-741	Incorrect indication		
Selenium for preventing cancer	Vinci, Marco; Dennert, Gabriele; Crespi, Catherine M; Zwahlen, Marcel; Brinkman, Marree; Zeegers, Maurice P A; Horneber, Markus; D'Amico, Roberto; Del Giovane, Cigusa	2014	The Cochrane database of systematic reviews	2014	3	CD00518	Incorrect indication		
Sleep duration and cancer risk: a systematic review and meta-analysis of prospective studies.	Zhao, Hao; Yin, Ji-Yun; Yang, Wan-Shui; Qin, Qin; Li, Ting-Ting; Shy, Yun; Deng, Qin; Wei, Sheng; Liu, Li; Wang, Xin; Nie, Shao-Fa	2013	Asian Pacific journal of cancer prevention : APJCP	14	12	7509-15	Incorrect indication		
Title	Authors	Year	Volume	Issue	Pages	DOI	Exclusion reason: Incorrect indication		
--	---	------	--------	-------	---------	--	--		
Tea consumption and the incidence of cancer: a systematic review and meta-analysis of prospective observational studies.	Zhang, Yu-Fei; Xu, Qin; Zhao, Shuang; Zhang, Hong-Wei; Zhou, Li; Ma, Xia; Qiang; Zhou, Yu-Hao	2018	4	355-62	https://dx.doi.org/10.1097/CEJ	Exclusion reason: Incorrect indication			
Vitamin D status and cancer: New insights	Schwartz, G. G.; Skinner, H. G.	2007	1	11-Jun	http://dx.doi.org/10.1097/MCD	Exclusion reason: Incorrect indication			
Maternal and child undernutrition: consequences for adult health and human capital	Victoria, C. G.; Adair, L.; Fall, C.; Hallal, P. C.; Martorell, R.; Richter, L.; Sachdev, H. S.	2008	371	9609-357	http://dx.doi.org/10.1016/S0305-0498(08)00778-9	Exclusion reason: Incorrect indication			
Epidemiological association between chlorinated water and overall risk of cancer: A systematic review	Parbery, B.; Yivey, D.; McArthur, A.	2012	10 Supplement	S259-S272		Exclusion reason: Incorrect indication			
Diet and cancer risk in the Korean population: a meta-analysis.	Woo, Hae-Dong; Park, Sohee; Oh, Kyungseon; Kim, Hyun Ja; Shin, Hae Kim; Moon, Hyun Kyung; Kim, Jeongsun	2016	15	19	8509-19	http://dx.doi.org/10.1097/LA.0000000000000397	Exclusion reason: Incorrect indication		
Comparison of racial differences in childhood cancer risk in case-control studies and population-based cancer registries.	Slusky, D. A.; Mezei, G.; Metayer, C.; Selvin, S.; Von Behren, J.; Buffler, P. A.	2016	2014	Cancer Epidemiology	http://dx.doi.org/10.1097/LA.0000000000000397	Exclusion reason: Incorrect indication			
Worldwide Incidence of Colorectal Cancer, Leukemia, and Lymphoma in Inflammatory Bowel Disease: An Updated Systematic Review and Meta-Analysis.	Wheat, Chelle L; Clark-Snustad, Kindra; Devine, Beth; Grebowski, David; Thornton, Timothy A; Ko, Cynthia W	2016	2016	101475557-1632439	https://dx.doi.org/10.1155/2016/101475557	Exclusion reason: Incorrect indication			
Vitamin D and Cancer Prevention	Zeef, H.	2012	1	24-29	http://dx.doi.org/10.1007/s13304-012-0226-y	Exclusion reason: Incorrect indication			
Vitamin D supplements and cancer incidence and mortality: a meta-analysis.	Keum, N; Giovannucci, E	2013	2014	976-80	https://dx.doi.org/10.1038/bjc.2014.25	Exclusion reason: Incorrect indication			
Vitamin D status and childhood health	Shin, Y. H.; Shin, H. J.; Lee, Y. J.	2013	2013	417-423	http://dx.doi.org/10.3345/kjp.2013.55.5	Exclusion reason: Incorrect indication			
Vitamin B6 and Cancer Risk: A Field Synopsis and Meta-Analysis.	Mocellin, Simone; Binarava, Marta; Plati; Pierluigi	2017	2017	9-19	https://dx.doi.org/10.1093/jnci/djx181	Exclusion reason: Incorrect indication			
Very high risk of cancer in familial Peutz-Jeghers syndrome.	Giardello, F M; Brensinger, J D; Tersmette, A C; Goodman, S N; Petersen, G M; Booker, S V; Cruz-Correa, M; Giardello, F M; Brensinger, J D; Tersmette, A C; Goodman, S N; Petersen, G M; Booker, S V; Cruz-Correa, M;	2008	2000	6	1447-53	Giardello 2000	Exclusion reason: Incorrect indication		
Venous thromboembolic events and organ-specific occult cancers: a review and meta-analysis.	Bidic, S; Gandini, S; Lohr, M; Lowenfels, A B; Maisonneuve, P	2008	2008	5	781-8	https://dx.doi.org/10.1111/j.1365-2559.2008.02281.x	Exclusion reason: Incorrect indication		
Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies.	Dinu, Monica; Abbate, Rosanna; Gensini, Gian Franco; Casini, Alessandro; Sofi, Francesca	2017	2017	3640-364	Critical reviews in food science and nutrition	Exclusion reason: Incorrect indication			
Type 1 diabetes mellitus and risk of cancer: a meta-analysis of observational studies	Sona, M; Makita, F; Myung, Seung-Kwon; Park, Keeho; Jargals, Khan; Galsuren	2015	2015	426-433	Japanese journal of clinical oncology	Exclusion reason: Incorrect indication			
Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis.	Rump, P; Zeegers, M P A; van Essen, A J	2005	2005	136	95-104	Rump 2005	Exclusion reason: Incorrect indication		
Title	Authors	Year	Volume	Issue	Pages	DOI	Exclusion reason		
--	--	------	--------	------	-------	---	--		
The impact of physical activity and an additional behavioural risk factor on cardiovascular disease, cancer and all-cause mortality: a systematic review.	Lacombé, Jason; Armstrong, Miranda E G; Wright, F Lucy; Foster, Charlie	2019	BMC public health	19	1	https://dx.doi.org/10.1186/s12696-018-01155-9	Exclusion reason: Incorrect indication		
The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review.	Park, M H; Falconer, C; Viner, R M; Kinra, S	2012	Obesity reviews	13	11	865-1000	https://dx.doi.org/10.1111/j.1600-0625	Exclusion reason: Incorrect indication	
The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes.	Twogood-Bennett, Caciminnie; Jones, Andy	2018	Environmental Research	166	e12, 014762	028-637	https://dx.doi.org/10.1016/j.ear.2018.03.006	Exclusion reason: Incorrect indication	
Soft drinks, aspartame, and the risk of cancer and cardiovascular disease	Aune, D.	2012	American journal of clinical nutrition	96	6	1249-1262	http://dx.doi.org/10.3945/ajcn.111.014762	Exclusion reason: Incorrect indication	
The Mediterranean diet in cancer prevention: a review.	Kontou, Niki; Psaltopoulou, Theodora; Panagiotakos, Demosthenes; Dimopoulou, Meletios A; Linos, Athina	2011	Journal of medicinal food	14	10	1055-78	https://dx.doi.org/10.1089/jmf.2010.0147	Exclusion reason: Incorrect indication	
The relationship of red meat with cancer: Effects of thermal processing and related physiological mechanisms.	Chang, Vic Shao-Chih; Quek, Siew-Young	2017	Critical reviews in food science and nutrition	57	6	1153-1163	https://dx.doi.org/10.1080/10408397.2017.1395230	Exclusion reason: Incorrect indication	
The role of vitamin D in cancer prevention; does UV protection conflict with the need to raise low levels of vitamin D?	Zeeb, Hajo; Greiner, Rudiger	2016	Deutsches Arzteblatt internationales	107	37	658-43	https://dx.doi.org/10.3238/arz.2016.37.37.658-43	Exclusion reason: Incorrect indication	
The role of pregnancy, perinatal factors and hormones in maternal cancer risk: a review of the evidence.	Troisi, R.; Bjoerg, T.; Gissler, M; Grotmol, T.; Kihara, C. M.; Myrvold S; A. Myrvold; Skold, C; Sorensen, H. T.; Trabert, B; Glimelius, I.	2016	Journal of Internal Medicine	263	5	430-445	http://dx.doi.org/10.1111/j.1751-1437.2016.02345.x	Exclusion reason: Incorrect indication	
The role of Mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: a systematic review.	Tyrovolas, Stefanos; Panagiotakos, Demosthenes B	2010	Matutinas	65	2	122-30	https://dx.doi.org/10.1016/j.matut.2010.03.031	Exclusion reason: Incorrect indication	
The risk of malignancy or progression of existing malignancy in patients with psoriasis treated with biologics: case report and review of the literature.	Patel, S.; Patel, T.; Kerdil, F. A.	2015	International journal of Dermatology	55	5	487-493	10.1111/jid.13129	Exclusion reason: Incorrect indication	
The incidence rate of cancer in patients with schizophrenia: A meta-analysis of cohort studies.	Li, Hailing; Li, Jiass; Xu, Xia; Zhang; Huilin; Sun, Xu; Lu, Yue; Zhang; Yanbo; Li, Chunbo; Bi, Xiaoying	2018	Schizophrenia Research	195	519-528	880425	https://dx.doi.org/10.1016/j.schres.2018.04.016	Exclusion reason: Incorrect indication	
Smoking, menthol cigarettes and all-cause, cancer and cardiovascular mortality: evidence from the National Health and Nutrition Examination Survey (NHANES) and a meta-analysis.	Jones, Miranda R; Tellez-Plaza, Maria; Navas-Acien, Ana	2013	PloS one	8	10	e77491	https://dx.doi.org/10.1371/journal.pone.0077491	Exclusion reason: Incorrect indication	
The burden of cancer attributable to alcohol drinking.	Boffetta, Paolo; Hashibe, Mia; La Vecchia, Carlo; Zatonski, Wlosid; Rehn, Jurgen	2006	International journal of cancer	119	4	884-7	https://dx.doi.org/10.1111/j.1520-6295.2006.00681.x	Exclusion reason: Incorrect indication	
The effect of health switching from cigarettes to snus - a review.	Lee, Peter N	2013	Regulatory Toxicology and Pharmacology : RTP	66	1	5-jan	https://dx.doi.org/10.1016/j.rrtp.2013.03.009	Exclusion reason: Incorrect indication	
The effect of periodontal bacteria infection on incidence and prognosis of cancer: A systematic review and meta-analysis	Xiao, Li; Zhang, Qianyu; Peng, Yanshuang; Wang, Daqing; Liu, Ying	2020	Medicine	99	15	e19698	https://dx.doi.org/10.1097/MLR.00000000000019698	Exclusion reason: Incorrect indication	
Study Title	Authors	Year	Journal	Volume	Pages	DOI			
--	---	------	--------------------------------	--------	-------	--			
Systematic review of the association between dietary acid load, alkaline water and cancer.	Fenton, Tanis R; Huang, Tian	2016	BMJ open	6	6	10.10438 https://dx.doi.org/10.1136/bmjopen.2016	Exclusion reason: Incorrect indication		
The Association of Arsenic Metabolism with Cancer, Cardiovascular Disease, and Diabetes: A Systematic Review of the Epidemiological Evidence.	Kuo, Chin-Chi; Moon, Katherine A; Wang, Shu-Li; Silberfeld, Ellen; Navas-Acien, Ana	2017	Environmental health perspectives	125	8	87001 https://dx.doi.org/10.1289/EHP.172598	Exclusion reason: Incorrect indication		
The accuracy of self-reported health behaviors and risk factors relating to cancer and cardiovascular disease in the general population: a critical review.	Newell, S.A; Gargis, A; Sanson-Fisher, R W; Savolainen, N J	1999	American journal of preventive medicine	17	3	211-29 Newell 1999	Exclusion reason: Incorrect indication		
Systematic review and meta-analysis of insulin therapy and risk of cancer.	Janghorbani, Mohsen; Dehghani, Mohsen; Salehi-Marzijarani, Mohammad	2012	Hormones & cancer	3	4	137-46 https://dx.doi.org/10.1007/s11012	Exclusion reason: Incorrect indication		
Sulfonylurea derivatives and cancer, friend or foe?	Noto, Hiroshi; Oseme, Keichiro; Sazazuki, Takehiko; Noda, Mitsukito	2019	European journal of pharmacology	861	125432	172598 https://dx.doi.org/10.1016/j.ejphar.2019	Exclusion reason: Incorrect indication		
Substantially increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis of epidemiologic evidence in Japan.	Noto, Hiroshi; Oseme, Keichiro; Sazazuki, Takehiko; Noda, Mitsukito	2010	Journal of diabetes and its complications	24	5	345-53 https://dx.doi.org/10.1016/j.jdpd.2010	Exclusion reason: Incorrect indication		
Statins and risk of cancer: a systematic review and meta-analysis.	Browning, Danielle L; Martin, Richard M	2007	International journal of cancer	120	4	633-43 Browning 2007	Exclusion reason: Incorrect indication		
Statins and cancer: A systematic review and meta-analysis.	Kuoppala, Jaana; Lamminpaa, Anne; Pukkala, Eero	2009	European journal of cancer (Oxford, England: 1990)	44	15	2122-32 Kuoppala 2008	Exclusion reason: Incorrect indication		
Smokeless tobacco-associated cancers: A systematic review and meta-analysis of Indian studies.	Sinha, Dhirenda N; Abdulakdar, Rizwan Srilankatchi; Gupta, Prakash C	2016	International journal of cancer	138	6	1368-79 Sinha 2016	Exclusion reason: Incorrect indication		
Sex differences in the association between diabetes and risk of cardiovascular disease, cancer, and all-cause and cause-specific mortality: a systematic review and meta-analysis of 5,162,654 participants.	Wang, Yaling; O'Neil, Adrienne; Jian, Yunui; Wang, Lijun; Huang, Jingxin; Lan, Yutao; Zhu, Yikun; Yu, Chuanhua	2019	BMC medicine	17	1	136 https://dx.doi.org/10.1186/s12015	Exclusion reason: Incorrect indication		
Sleep duration and the risk of cancer: a systematic review and meta-analysis including dose-response relationship.	Chen, Yunheng; Tan, Fengwei; Wei, Luqei; Li, Xin; Lyu, Zhangyan; Feng, Xiaoshuang; Wen, Yan; Guo, Lanwei; He, Jie; Dai, Min; Li, Ni	2018	BMC cancer	18	1	1149 https://dx.doi.org/10.1186/s12880	Exclusion reason: Incorrect indication		
Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: a meta-analysis.	Lopez-Olivo, Maria A; Tayar, Jean H; Martinez Lopez, Juan A; Pollono, Eduardo N; Cueto, Jose Polo; Gonzales-Crespo, M Rosa; Fulton, Stephanie; Suarez-Almazor, Maria E	2012	JAMA	308	9	888-908 Lopez-Olivo 2012	Exclusion reason: Incorrect indication		
Risk of cancer associated with the use of angiotensin II receptor blockers.	Olin, Jacqueline L; Veverka, Angelo; Nuzum, Donald S	2011	American journal of health system pharmacy	68	22	2139-46 Olin 2011	Exclusion reason: Incorrect indication		
Sedentary Behavior and Health: Update from the 2018 Physical Activity Guidelines Advisory Committee.	Katzmarzyk, Peter T; Powell, Kenneth E; Jakicic, John M; Troiano, Richard P; Piercy, Katrina; Tennant, Bethany; 2018 PHYSICAL ACTIVITY GUIDELINES ADVISORY COMMITTEE*	2019 Medicine and science in sports and exercise	51	6	1227-1234	https://dx.doi.org/10.1249/MSS.0b013e31819284a2	Katzmarzyk, 2019	Exclusion reason: Incorrect indication	
Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression.	Cai, Xianlei; Wang, Chen; Yu, Wangq; Fan, Wenjie; Wang, Shan; Shen, Ning; Wu, Pengcheng; Li, Xiuying; Wang, Fudi	2016 Scientific reports	6	101563288	19213	https://dx.doi.org/10.1038/srep19213	Cai, 2016	Exclusion reason: Incorrect indication	
Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms.	Lynch, Brigid M	2010 Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology	19	11	2061-70	https://dx.doi.org/10.1158/1055-4906.CAN-09-2534	Lynch, 2010	Exclusion reason: Incorrect indication	
Salmon calcitonin use and associated cancer risk.	Overman, Robert A; Borse, Mrutula; Courley, Margaret L	2013 The Annals of pharmacotherapy	47	12	1675-84	https://dx.doi.org/10.1177/0003999313501733	Overman, 2013	Exclusion reason: Incorrect indication	
Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis	Sepiano, Alexandre; Kerschbaumer, Andreas; Smolen, Josef S.; van der Heijde, Desiree; Dougdos, Maxime; van Vollenhoven, Ronald; Michnes, Iain B.; Bijlsma, Johannes W.; Burmester, Gerd R.; de Wit, Maarten; Falzon, Louise; Landewe, Robert	2020 Annals of the Rheumatic Diseases	79	6	1690-770	https://dx.doi.org/10.1136/annrheumdis-2019-217864	Sepiano, 2020	Exclusion reason: Incorrect indication	
Safety of secukinumab in the treatment of psoriasis	Blauvelt, A	2016 Expert Opinion on Drug Safety	15	10	1413-1425	http://dx.doi.org/10.1080/14740338.2015.1092458	Blauvelt, 2016	Exclusion reason: Incorrect indication	
Risks and benefits of omega-3 fats for mortality, cardiovascular disease, and cancer: systematic review.	Hooper, Lee; Thompson, Rachel L; Harrison, Roger A; Summerbell, Carolyn D; Ness, Andy R; Moore, Helen J; Worthington, Helen V; Durnington, Paul N; Higgins, Julian P T; Capps, Nigel E; Riemersma, Rudolph A; Ebrahim, Shah B J; Davey Smith, George; 2006 BMJ (Clinical research ed.)	332	7544-7551	752-60	https://dx.doi.org/10.1136/bmj.38877.709038.AA	Hooper, 2006	Exclusion reason: Incorrect indication		
Risk of malignancy in patients with giant cell arteritis and polymyalgia rheumatica: a systematic review and meta-analysis.	Ungprasert, P; Paton, A; Sanguankeo, A; Goh, Y I; Bollano, E; Godderis, L; Vollenhoven, R; Saerens, A; Saerens, A; Einarson, T R; Koren, G	2014 Seminars in arthritis and rheumatism	44	3	366-70	https://dx.doi.org/10.1001/jar.2014.25	Ungprasert, 2014	Exclusion reason: Incorrect indication	
Risk of cancer in patients with psoriasis on biological therapies: a systematic review.	Peleva, E; Eaton, L S; Kelley, K; Kley, C E; Mason, K J; Smith, C H	2018 British journal of dermatology	178	103-113	103-113	https://dx.doi.org/10.1111/bjd.15871	Peleva, 2018	Exclusion reason: Incorrect indication	
Risk of Cancer for Workers Exposed to Antimony Compounds: A Systematic Review.	Saerens, Anton; Ghosh, Manoj; Verdunck, Jelle; Godderis, Lode	2019 International journal of environmental research and public health	16	22	3390-3390	https://dx.doi.org/10.3390/ijerph16223390	Saerens, 2019	Exclusion reason: Incorrect indication	
Prenatal multivitamin supplementation and rates of pediatric cancers: a meta-analysis.	Goh, Y; Bollano, E; Einarson, T R	2007 Clinical pharmacology and therapeutics	81	5	685-91	https://dx.doi.org/10.1016/j.cpt.2007.06.001	Goh, 2007	Exclusion reason: Incorrect indication	
Prediabetes and the risk of cancer: a meta-analysis.	Huang, Y; Cai, Xiaoyan; Gu, Miao; Chen, Peizong; Tang, Hongfeng; Hu, Yunzhou; Huang, Yuli	2014 Diabetologia	57	11	2261-8	https://dx.doi.org/10.1007/s00125-013-3109-1	Huang, 2014	Exclusion reason: Incorrect indication	
Year	Title	Authors	Exclusion reason: Incorrect indication						
------	---	--	--						
2008	Hypertension	Bellamy, L.; Casas, J. J.; Hingorani, A. D.; Williams, D. J.; Vynnycky, E.							
2017	Journal of internal medicine	Wolk, A.							
2020	Roczniki Powszechnego Zakladowy Hipogeny	Gilbowksi, Pawel							
2017	Journal of the American Academy of Dermatology	Takeshita, J.; Grewal, S.; Langian, S. M.; Mehta, N. N.; Ogdie, A.; Van Voorhees, A. S.; Gelfand, J. M.							
1995	Journal of the National Cancer Institute	Darby, S. C.							
2001	Environmental health perspectives	Ahlbom, I. C.; Carles, E.; Green, A.; Linet, M.; Savitz, D.; Swedlow, A.; ICNIRP (International Commission for Non-Ionizing Radiation Protection) Standing Committee on Epidemiology							
2016	Psycho-oncology	Ahn, Hye Kyung; Bae, Jeong Hun; Ahn, Hong Yup; Hwang, In Cheol							
2019	Annals of Internal Medicine	Han, Mi Ah; Zeraatkar, Dena; Guyatt, Gordon H.; Vemooj, Robin W. M.; El Dib, Regina; Zhang, Ying; Algarr, Abdullah; Leung, Gareth; Storman, Dawit; Vali, Claudia; Rabassa, Montserrat; Rehman, Nada; Pavvian, Michael K.; Zworth, Max; Bartoszko, Jessica J.; Lopes, Luciane Cruz;							
2019	Current Atherosclerosis Reports	Wang, A.; Wakelee, H. A.; Aragahi, A. K.; Tang, J. Y.; Kurlan, A. W.; Manson, J. A. E.; Stefanick, M. L.							
2015	Drug safety	La Vecchia, C.; Allen, A.; Franceschi, S.; Tavani, A.							
2017	Epidemiology and health	Ghafani, Mahin; Cheraghi, Zahra; Doosti Irani, Amin							
2017	Preventive medicine	Lipworth, L.; Martinez, M E.; Angel, J.; Hisieh, C C; Trichopoulous, D							
2015	Journal of the American Academy of Dermatology	Legendre, Laureline; Barinetche, Thomas; Mazereeuw-Hautier, Juliette; Meyer, Nicolas; Murrell, Dodies; Paul Carle							
1996	European Journal of Cancer Part A: General Topics	Feychtig, M. E.; Schulgen, G.; Olsen, J. H.; Ahlbom, A.							
The epidemiological evidence concerning intake of mutagenic activity from the fried surface and the risk of cancer cannot justify preventive measures.	Steineck, G; Gerhardsson de Verdier, M; Ovsvik, E.	1993	European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP)	2	4	293-300	Steineck 1993	Exclusion reason: Incorrect indication	
What diseases are causally linked to Vitamin D deficiency?	Reid, I. R.	2016	Archives of Disease in Childhood	101	2	185-189	Reid 2016	Exclusion reason: Incorrect indication	
Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies.	Aune, Dagfinnr; Keum, N; NaNa; Giovannucci, E; Edward; Fadnes, Lars T; Boffetta, Paolo; Greenwood, Darren C; Tonsstad, Serena; Vatten, Lars J; Riboli, Erio; Norat, Teresa.	2018	BMJ (Clinical research ed.)	353	8	S000488, br 2716	Aune 2018	Exclusion reason: Incorrect indication	
Waterpipe smoking and cancer: systematic review and meta-analysis.	Montazer, Zahra; Nyiraneza, Christine; El Katerji, Hoda; Little, Julien.	2017	Tobacco control	26	1	92-97	Montazeri 2017	Exclusion reason: Incorrect indication	
Tobacco smoking and cancer: a meta-analysis.	Gandini, Sara; Botteri, Edoardo; Iodice, Simona; Boniol, Mathieu; Lowenfels, Albert B; Maisonneuve, Patrick; Boyle, Peter.	2008	International journal of cancer	122	1	155-64	Gandini 2008	Exclusion reason: Incorrect indication	
Pharmacologic Therapy of Diabetes and Overall Cancer Risk and Mortality: A Meta-Analysis of 265 Studies.	Wu, Lang; Zhu, Jingjing; Prokop, Larry J; Murad, Mohammad Hassan.	2015	Scientific reports	5	101563288	10147	Wu 2015	Exclusion reason: Incorrect indication	
Oral bisphosphonates and incidence of cancers in patients with osteoporosis: a systematic review and meta-analysis.	Deng, Yingfeng; Zhang, Zhen; Jia, Xi; Cheng, Wenke; Zhou, Xixi; Liu, Yi; Wang, Miaozhou.	2018	Archives of osteoporosis	14	1	1	Deng 2018	Exclusion reason: Incorrect indication	
The natural history of Crohn’s disease in children: A review of population-based studies.	Duricova, M; Fumery, M; Annees, V; Lakatos, P; Peyrin-Biroulet, L; Gower-Rousseau, C.	2017	European Journal of Gastroenterology and Hepatology	29	2	125-134	Duricova 2017	Exclusion reason: Incorrect indication	
Risk of malignancy including non-melanoma skin cancers with anti-tumour necrosis factor therapy in patients with rheumatoid arthritis: Meta-analysis of registries and systematic review of long-term extension studies.	Le Bloy, P; Moutarde, G; Barretche, T; Moreil, J; Combe, B.	2012	Clinical and Experimental Rheumatology	30	5	756-764	Le Bloy 2012	Exclusion reason: Incorrect indication	
The effect of dietary guidelines on cancer risk and mortality.	Balter, Katanna; Moller, Elisabeth; Fonnell, Elison.	2012	Current opinion in oncology	24	1	90-102	Balter 2012	Exclusion reason: Incorrect indication	
The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: a systematic review for a National Institutes of Health state-of-the-science conference.	Huang, Han-Yao; Caballero, Benjamin; Chang, Stephanie; Alberg, Anthony J; Semb, Richard D; Schnayder, Christine R; Wilson, Renee F; Cheng, Ting-Yuan; Vassy, Jason; Prokopowicz, Gregory; Barnes, George J 2nd; Bass, Eric B.	2006	Annals of internal medicine	145	5	372-85	Huang 2006	Exclusion reason: Incorrect indication	
Tobacco smoking and cancer: a brief review of recent epidemiological evidence.	Sasco, A J; Secretan, M B; Straif, K.	2004	Lung cancer (Amsterdam, Netherlands)	45	3	80098	Sasco 2004	Exclusion reason: Incorrect indication	
Ultrasound during pregnancy and birthweight, childhood malignancies and neurological development.	Salvesen, K A; Eik-Nes, S H.	1993	Ultrasound in medicine & biology	25	7	1025-31	Salvesen 1999	Exclusion reason: Incorrect indication	
Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force.	Fortmann, Stephen P; Burda, Brittany U; Benger, Caitlin A; Lin, Jennifer S; Whitlock, Evelyn P.	2013	Annals of internal medicine	159	12	624-34	Fortmann 2013	Exclusion reason: Incorrect indication	
Topic	Author(s)	Year	Journal	DOI					
--	---	------	--	--------------------------------------					
Obesity and diabetes: The increased risk of cancer and cancer-related mortality	Gallagher, E. J.; LeRoth, D.	2018	Physiological Reviews	10.1152/physrev.2018.0127-748					
Occupational exposure to vinyl chloride and cancer risk: a review of the epidemiologic literature.	Bosetti, C; La Vecchia, C; Lipworth, L; McLaughlin, J K	2003	European Journal of Cancer Prevention: the official journal of the European Cancer Prevention Organisation (ECP)	10.1136/bmj.305663773					
Non-AIDS-defining malignancies in patients with HIV in the HAART era	Nguyen, M. L.; Farell, K. J.; Gunthel, C. J.	2010	Current Infectious Disease Reports	10.1007/s119 (Epub 2010 Nov 18)					
Non-cardiovascular effects associated with statins.	Desai, Chintan S.; Martin, Seth S.; Blumenthal, Roger S.	2014	BMJ (Clinical research ed.)	10.1136/bmj.g3743 (Epub 2014 Mar 5)					
No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir: a meta-analysis.	Deggaard, A.; Lynggaard, H.; Rastam, J.; Krogsgaard; Thomsen, M.	2009	Diabetologia	10.1157/2009 (Epub 2009 Feb 25)					
Monotherapy with Methotrexate versus Sulfasalazine and Risk of Cancer in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis	Mekuria, Abraham Nigussie; Ayale, Yohannes; Tola, Asefa; Mishore, Kirubel Minsamo	2019	Journal of diabetes research	10.1155/2019 (Epub 2019 Mar 27)					
Methotrexate and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders.	Gandini, Sara; Puntoni, Matteo; Heckman; Stoddard, Brandy M.; Dunn, Barbara K; Ford, Leslie; DeCensi, Andrea; Szabo, Eva	2014	Cancer prevention research (Philadelphia, Pa.)	10.1158/2014 (Epub 2014 Feb 18)					
Mediterranean diet and cancer: epidemiological evidence and mechanism of selected aspects.	Grosso, Giuseppe; Buscemi, Silvio; Galvano, Fabio; Mistretta, Antonio; Marventano, Stefano; La Vela, Vanessa; Drago, Filippo; Gangi, Santi; Basile, Francesco; Biondi, Antonio	2013	BMC surgery	10.1093/bmc/100968567					
Association between gestational diabetes mellitus and subsequent risk of cancer: a systematic review of epidemiological studies.	Tong, Gui-Xian; Cheng, Jing; Chai, Jing; Geng, Qiang-Qing; Chen, Peng-Lai; Shen, Xin-Rong; Liang, Han; Wang, De-Bin	2014	Asian Pacific Journal of cancer prevention: APJCP	10.4155/apjcp.14.4265-9 (Epub 2014 Aug 1)					
An update on the management of comorbid conditions in lupus nephritis.	Yzavara, V.; Pambili, C.; Boumpas, D. T.; Bertias, G. K.	2013	Critical Investigation	10.4155/ci.12.281-293					
Malignancies in inflammatory bowel disease.	Neiminen, Uppo; Farkkila, Martti	2013	Scandinavian Journal of gastroenterology	10.3109/0036552013508181					
Immunosuppression in patients with Crohn's disease and neoplasia: An ongoing clinical dilemma	Dasari, B. V. M.; McCreany, A.; Gardiner, K.	2012	Diseases of the Colon and Rectum	10.1097/OCP.2012.1008-10					
Exam 1: Risks of Serious Infection or Lymphoma With Anti-Tumor Necrosis Factor Therapy for Pediatric Inflammatory Bowel Disease: A Systematic Review	Anonymous	2014	Clinical Gastroenterology and Hepatology	10.1016/j.cgjo.2014.09.001 (Epub 2014 Sept 25)					
Exam 1: Risk of Lymphoma in Patients With Inflammatory Bowel Disease Treated With Azathioprine and 6-Mercaptopurine: A Meta-analysis	Anonymous	2015	Clinical Gastroenterology and Hepatology	10.1016/j.cgjo.2015.08.001 (Epub 2015 Aug 28)					
Epidemiology of post-transplant malignancy in Chinese renal transplant recipients: a single-center experience and literature review	Zhang, J.; Ma, L.; Xie, Z.; Guo, Y.; Sun, W.; Zhang, L.; Lin, J.; Xiao, J.; Zhu, Y.; Tian, Y.	2014	Medical oncology (Northwood, London, England)	10.1007/s12032-014-0332-6 (Epub 2014 Dec 20)					
Does the risk of lymphoma in patients with RA treated with TNF inhibitors differ according to the histological subtype and the type of TNF inhibitor?	Nocturne, G.; Senor, R.; Mariette, X.	2017	Annals of the Rheumatic Diseases	76	2	2	10.1136/annrheumdis-2016-200170	Nocturne 2017	Exclusion reason: Incorrect indication
Does a Mediterranean-Type Diet Reduce Cancer Risk?	Schweglacki, L.; Hoffmann, G.	2016	Current Nutrition Reports	5	1	17-Sep	http://dx.doi.org/10.1007/s13668-016-0116-1	Schweglacki 2016	Exclusion reason: Incorrect indication
Light alcohol drinking and cancer: a meta-analysis.	Bagnardi, V.; Rota, M.; Botteri, E; Tramace, I; Islam, F.; Fedrigo, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquale, E.; Pelucchi, C.; Belluco, R.; Negri, E.; Corraro, G.; Rehm, J.; Boffetta, P.; La Vecchia, C.	2013	Annals of Oncology	24	2	301-8	https://dx.doi.org/10.1093/annonc/mdt221	Bagnardi 2013	Exclusion reason: Incorrect indication
Knowns and unknowns on burden of disease due to chemicals: A systematic review	Pruss-Ustun, A.; Vickers, C.; Haefliger, P.; Bertolini, R.	2011	Environmental Health: A Global Access Science Source	10	1	9	http://dx.doi.org/10.1186/1476-069X-10-9	Pruss-Ustun 2011	Exclusion reason: Incorrect indication
Kefir and cancer: A systematic review of literatures	Kaife, N.; Hamedani, S. G.; Ghiasv, R.; Miragha, M.	2013	Archives of Iranian Medicine	18	12	1	852-857	Rafie 2015	Exclusion reason: Incorrect indication
Hormone therapy in transgender adults is safe with provider supervision; A review of hormone therapy sequelae for transgender individuals	Weiand, J. D.; Safer, J. D.	2015	Journal of Clinical and Translational Endocrinology	2	2	55-60	http://dx.doi.org/10.1016/j.jcte.2015.01.007	Weiand 2015	Exclusion reason: Incorrect indication
Ovulation induction and cancer risk.	Brinton, Louise A.; Moghissi, Karran; Soccia, Bert; Westhoff, Carolyn L; Lamb, Emmet J.	2005	Fertility and sterility	83	2	261-8	Brinton 2005	Exclusion reason: Incorrect indication	
Possible role of diet in the development of cancer: systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk.	Grosso, Giuseppe; Bellia, Francesca; Godos, Justyna; Sciacca, Salvatore; Del Rio, Daniele; Ray, Sumantra; Galvano, Fabio; Giovanniucci, Edward L.	2017	Nutrition reviews	75	6	405-419	https://dx.doi.org/10.1034/j.1750-3131.2017.01295.x	Grosso 2017	Exclusion reason: Incorrect indication
Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies.	Gerber, Mariette	2012	The British journal of nutrition	107	5	az4, 037254	https://dx.doi.org/10.1055/s-0032-131228	Gerber 2012	Exclusion reason: Incorrect indication
Omalizumab and the risk of malignancy: results from a pooled analysis.	Busse, William; Buht, Roland; Fernandez Vidaurre, Carlos; Bloogg, Martin; Zhu, Jin; Eisner, Mark O; Carvin, Janice	2012	The Journal of allergy and clinical immunology	129	4	863-9.e6	https://dx.doi.org/10.1016/j.jaci.2012.01.021	Busse 2012	Exclusion reason: Incorrect indication
Oils and cancer.	Tolbert, P E	1997	Cancer causes & control : CCC	8	3	386-405	Tolbert 1997	Exclusion reason: Incorrect indication	
Occupational sitting and health risks: a systematic review.	van Uffelen, Jannique G Z; Wong, Jason; Chau, Josephine Y; van der Ploeg, Hidde P; Ripphagen, Ingrid; Gilson, Nicholas D; Burton, Nicola W; Healy, Genevieve N; Thorp, Alicia A; Clark, Bronwyn K; Gardiner, Paul A; Dunstan, David W; Bauman, Adrian; Owen, Neville; Brown, Wendy J	2010	American journal of preventive medicine	39	4	378-88	https://dx.doi.org/10.1016/j.amepre.2010.05.037	van Uffelen 2010	Exclusion reason: Incorrect indication
Obstructive sleep apnoea and the incidence and mortality of cancer: a meta-analysis.	Zhang, Xiao-Bin; Peng, Li-Hong; Li, Yu; Zhang, Xing-Tang; Du, Yan-Ping	2017	European journal of cancer care	26	2	1	17-Sep	Zhang 2017	Exclusion reason: Incorrect indication
Selenium for preventing cancer.	Dennert, Gabriele; Zwahlen, Marcel; Brinkman, Maree; Vinici, Marco; Zeegers, Maurice P A; Horneber, Markus	2011	The Cochrane database of systematic reviews	5	CD00516	https://dx.doi.org/10.1002/14651858.CD00516.pub4	Dennert 2011	Exclusion reason: Incorrect indication	
Tumor Necrosis Factor (TNF) Inhibitors for Rheumatic Diseases (Part 2): A Systematic Review of Data From Registries and Safety	Arendt-Hansen, H.; Palm, V.; Natvig, Norderhaug, I.; Klemp, Gjersten, M.; Nordv, B.; Y.	2007	NIPH Systemic Reviews: Executive summaries	2007				Arendt-Hansen 2007	Exclusion reason: Incorrect indication
Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies.

Psaltopoulou, Theodora; Kosti, Rena I; Haidopoulous, Dimitrios; Dimopoulous, Meletios; Panagiotakos, Demetrios B

2011

Lipids in health and disease

10

101147696

127

https://dx.doi.org/10.1186/1424-3106-10-14

Psaltopoulou 2011

Exclusion reason: Incorrect indication

Dietary phytochemicals and cancer chemoprevention: A meta-analysis of prospective studies.

Kamangar, Farin; Shakeri, Ramin; Malekzadeh, Reza; Ismail, Farshad

2014

The Lancet. Oncology

15

2

e66-77

https://dx.doi.org/10.1016/S1470-2045(14)70076-9

Kamangar 2014

Exclusion reason: Incorrect indication

Obesity and cancer: the role of vitamin D.

Shanmugalingam, Thukral; Crawley, Danielle; Bosco, Cecilia; Melvin, Jennifer; Rohrmann, Sabine; Chowdhury, Simon; Holmeirick, Mieke

2014

BMC cancer

14

1

207

https://dx.doi.org/10.1186/1473-2840-14-14

Shanmugalingam 2014

Exclusion reason: Incorrect indication

Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies.

Aune, Dagfinn; Reim, Nana; Giovannucci, Edward; Fadnes, Lars T; Boffetta, Paolo; Greenwood, Darren C; Tonstad, Serena; rij,i, Lars J; Ribolli, Elko; Norat, Teresa

2016

BMC medicine

14

7

409-25

https://dx.doi.org/10.1186/s12916-016-0967-5

Aune 2016

Exclusion reason: Incorrect indication

Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis.

Wu, Lang; Wang, Zhen; Zhu, Jingping; Murad, Angela L; Prima, Alessia; Ippolito, Antonella; Di Bella, Francesca; Giosuli, M; Borrelli, P; Izzo, A; Fairweather-Tait, S J; Hornet, M; vincelli, M

2015

Nutrition reviews

73

7

125-134

http://dx.doi.org/10.1093/nutrrev/54.7.125

Wu 2015

Exclusion reason: Incorrect indication

Health risks related to dual use of cigarettes and snus - A systematic review.

Lee, P. N.

2014

Regulatory Toxicology and Pharmacology

69

1

125-134

http://dx.doi.org/10.1016/j.yrtph.2014.08.004

Lee 2014

Exclusion reason: Incorrect indication

Green tea (Camellia sinensis) for the prevention of cancer.

Filippini, T; Malavoltil, M; Borelli, P; Iizzo, A; Fairweather-Tait, S J; Hornet, M; vincelli, M

2020

Cochrane Database of Systematic Reviews

3

10.1002/14651858.CD008590

Filippini 2020

Exclusion reason: Incorrect indication

Ginseng consumption and risk of cancer: A meta-analysis.

Jin, X; Che, D. B; Zhang, Z. H; Yan, H; Li, Z. Y; Jia, X. B

2016

Journal of Ginseng Research

40

3

269-277

http://dx.doi.org/10.1016/j.jgr.2016.02.003

Jin 2016

Exclusion reason: Incorrect indication

Genotoxic risk in rubber manufacturing industry: A systematic review.

Bolognesi, C; Morello, A

2016

Toxicology Letters

http://dx.doi.org/10.1016/j.toxlet.2013.11.030

Exclusion reason: Incorrect indication

Fermented dairy foods intake and risk of cancer.

Zhang, K; Dai, H; Liang, W. B; Zhang, L; Deng, Z. H

2019

International Journal of Cancer

144

9

2099-2106

10.1002/ijc.32959

Zhang 2019

Exclusion reason: Incorrect indication

Exposure to non-ionizing radiation and childhood cancer: A meta-analysis.

Zaki, A. M; Rahim, M. A. A; Zaidun, Z; Ramzdian, A. R; Isa, Z. M

2020

Middle East Journal of Cancer

11

1

1-11-Jan

http://dx.doi.org/10.30472/majc3.12020

Zaki 2020

Exclusion reason: Incorrect indication

Exposure to acrylamide and human cancer--a review and meta-analysis of epidemiologic studies.

Pelucchi, C; La Vecchia, C; Bosetti, C; Boyle, P; Boffetta, P

2011

Annals of oncology official journal of the European Society for Medical Oncology

22

7

1487-99

https://dx.doi.org/10.1093/annonc/mdr319

Pelucchi 2011

Exclusion reason: Incorrect indication

Differences in the association between empirically derived dietary patterns and cancer: a meta-analysis.

Bella, Francesca; Godos, Justyna; Ippolito, Antonella; Di prima, Alessia; Sciaccia, Salvatore

2017

International journal of food sciences and nutrition

88

4

402-410

https://dx.doi.org/10.1080/09637486.2017.1368308

Bella 2017

Exclusion reason: Incorrect indication

Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence.

Kotecha, R; Takami, A; Espinoza, J. L

2016

Oncotarget

7

32

52517-52523

http://dx.doi.org/10.18632/oncotarget.11510

Kotecha 2016

Exclusion reason: Incorrect indication

Dietary magnesium intake and risk of cancer: A meta-analysis of epidemiologic studies.

Ko, H. J; Youn, C. H; Kim, H. M; Cho, Y. J; Lee, G. H; Lee, W. K

2014

Nutrition and Cancer

66

6

915-923

http://dx.doi.org/10.1080/0161-6851.2014.919108

Ko 2014

Exclusion reason: Incorrect indication
Diabetes, Insulin Resistance, and Cancer: An Update

Gossec, L.; Baillet, A.; Hansen, R. A.; Haussmann, H. J.; Gopalakrishnan, C.; Gartlehner, G.; McDonagh, M. S.; Mesgarpour, B.; Van Acker, M.; Schimmer, A.; Barac, A.; Thavendiranathan, P.; Mundt, K. A.; Dell, E.; Soubrier, M.; Savel, C.; Senbel, A.; Savel, C.; Sparsa, L.; Wendling, E.; Aussy, A.; Boyer, O.; Cordel, N.; LeGoff, J. L.; Bao, Y. P.; Qiao, Y. L.; Shi, J.; Lu, L.; Ban, Y. P.; Lelinneth B; Raphael, Stephanie; Novilla, R. J.; Thaler, K.; Merrill, Ray M; Fugal, Paola; Sax, Sonja N; Boffetta, Paolo; Tsugane, Shoichiro; Keitaro; Inoue, Manami; Tetsuya; Tanaka, O.; Azabu, Y.; Kato, Y.; Sato, Y.; Ono, Y.; Aoyagi, K.; Aoki, S.; Takeuchi, H.; Manabe, A.; Ikeda, M.; Iwasaki, Y.; Tsuji, Ichiro; Sugawara, Yumi; Tamakoshi, Akiko; Matsuo, Keitaro; Oze, I.; Mizoue, Tetsuya; Tanaka, Keitaro; Inoue, Manami; Tsugane, Shoichiro; Research Group for the Development and

2013 Current Cardiovascular Risk Reports 5 1 70-78 http://dx.doi.org/10.1007/s12696-013-0136-y by Tsubaki, Nami; Tsugane, Shoichiro; Research Group for the Development and

2013 Cancer science 104 11 1499-500 http://dx.doi.org/10.1111/j.1758-081X.2013.01368.x by Tsubaki, Nami; Tsugane, Shoichiro; Research Group for the Development and

Diabetes mellitus and cancer risk: pooled analysis of eight cohort studies in Japan.

Sasazuki, Shizuka; Chihara, Takashi; Hara, Azusa; Kakizaki, K.; Nagata, Chisato; Nakamura, Koziue; Tsuji, Ichiro; Sugawara, Yumi; Tamakoshi, Akiko; Matsuo, Keitaro; Oze, I.; Mizoue, Tetsuya; Tanaka, Keitaro; Inoue, Manami; Tsugane, Shoichiro; Research Group for the Development and

2011 Japanese Journal of Cancer Research 102 3 129-137 http://dx.doi.org/10.1111/j.1349-7006.2011.01995.x by Tsubaki, Nami; Tsugane, Shoichiro; Research Group for the Development and

2011 Cancer science 103 11 1499-500 http://dx.doi.org/10.1111/j.1758-081X.2013.01368.x by Tsubaki, Nami; Tsugane, Shoichiro; Research Group for the Development and

Diabetes, Insulin Resistance, and Cancer: An Update

Gossec, L.; Baillet, A.; Hansen, R. A.; Haussmann, H. J.; Gopalakrishnan, C.; Gartlehner, G.; McDonagh, M. S.; Mesgarpour, B.; Maczynska, A.; Gehlert, A.; Gopalakrishnan, C.; Hansen, R. A.;

2016 Arthritis Care and Research 68 8 10978-108 http://dx.doi.org/10.1002/acr.21061 by Desai, R. J.; Thaler, K. J.; Mahlke, C.; Gartlehner, G.; McDonagh, M. S.; Mesgarpour, B.; Maczynska, A.; Gehlert, A.; Gopalakrishnan, C.; Hansen, R. A.;

2016 J. Bone Spine 83 5 501-509 http://dx.doi.org/10.1016/j.jbspin.2016.05.012 by Gossec, L.; Baillet, A.; Dadoun, S.; Daire, C.; Benabou, F.; Demis, E.; Fayet, F.; Hudry, C.; Mezieres, M.; Pouplin, S.; Richez, C.; Saraux, A.; Savel, C.; Serbel, E.; Soubrier, M.; Sparis, L.; Wendling, D.; Douglas, M.;

2015 BMC cancer 14 96 http://dx.doi.org/10.1186/1471-2407-14-96 by Yu, Xiaofeng; Bao, Zhijun; Zou, Jian; Dong, Jie;}

2015 Best Practice & Research: Clinical Rheumatology 29 4 469-483 http://dx.doi.org/10.1016/j.berpr.2015.06.004 by Gullick, N. J.; Scott, D. L.;

2014 British Journal of Cancer 109 SUPPL. 2 S14-S18 http://dx.doi.org/10.1038/bjc.2014.59 by Parkin, D. M.;

2013 Cochrane Database Systematic Reviews 4 CD008876 (Review) The Manitoba Cancer Registry: A systematic review and meta-analysis of the association between cancer incidence and years of education, 1969-2006.

2012 Cancer: A Review 7 4 380-387 http://dx.doi.org/10.1016/j.2011.01.001.by Calviño-Arugués, O.; Jaiswal, S.; Shlush, L. I.; Moslehi, J. J.; Schimmer, A.; Barac, A.; Thavendiranathan, P.; Calviño-Arugueños 2019

2012 JAMA Cardiology 4 4 380-387 http://dx.doi.org/10.1001/jamacardio.2016.3573 by Calviño-Arugués, O.; Jaiswal, S.; Shlush, L. I.; Moslehi, J. J.; Schimmer, A.; Barac, A.; Thavendiranathan, P.; Calviño-Arugueños 2019

2017 Frontiers in Immunology 8 AUG 992 http://dx.doi.org/10.3389/fimmu.2017.00992 by Aussy, A.; Boyer, O.; Cordel, N.;

2017 Molecular Psychiatry 25 7 1487-1498 http://dx.doi.org/10.1038/mp.2017.140 by Wang, Y. H.; Li, J. Q.; Shi, J. F.; Que, J. Y.; Li, J. J.; Lappin, J. M.; Leung, J.; Ravindran, A. V.; Chen, W. Q.; Qiao, Y. L.; Shi, J.; Lu, L.; Ban, Y. P.;

2020 Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se

Hausmann, H. J.; Faris, M. W.;

2018 Critical Reviews in Toxicology 48 6 701-734 http://dx.doi.org/10.1080/10408444.2018.1468888 by Hausmann, H. J.; Faris, M. W.;

2016 Comparative Risk of Harm Associated With the Use of Targeted Immunomodulators: A Systematic Review

Desai, R. J.; Thaler, K. J.; Mahlke, C.; Gartlehner, G.; McDonagh, M. S.; Mesgarpour, B.; Maczynska, A.; Gehlert, A.; Gopalakrishnan, C.; Hansen, R. A.;

2015 Coffee consumption and risk of cancers: a meta-analysis of cohort studies.

Yu, Xiaofeng; Bao, Zhijun; Zou, Jian; Dong, Jie;}

2011 BMC cancer 11 1 100967800 96 http://dx.doi.org/10.1186/1471-2407-11-96 by Yu, Xiaofeng; Bao, Zhijun; Zou, Jian; Dong, Jie;
The Journal of Clinical Endocrinology and Metabolism: Hyperuricemia and gout are various cancers: A critical review.

Impact of maternal reproductive factors on cancer risks of offspring: A systematic review and meta-analysis of cohort studies.

Impact of development of type 2 diabetes, cardiovascular diseases, and cancer: A systematic review.

Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review.

Does use of hormone replacement therapy affect risk of cardiovascular disease and cancer? A systematic review and meta-analysis.

Does salmon calcitonin cause diabetes mellitus? A review and meta-analysis.

Cancer Incidence in Patients With Acromegaly: A Cohort Study and Meta-Analysis of the Literature.
Title	Authors	Year	Citation	Exclusion reason	Notes			
Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies.	Kuna, Angelica; Fang, Xin; Li, Mei; Han, Hedong; He, Jia; Asseth, Jan Olav; Cao, Yang	2020	Critical reviews in food science and nutrition 60 4 684-694	https://dx.doi.org/10.1080/104684-694	Kuna 2020: Exclusion reason: Incorrect indication			
Epidemiologic evidence for chloroprene carcinogenicity: Review of study quality and its application to risk assessment	Bukowski, J. A.	2009	Risk Analysis 29 9 1203-1211	http://dx.doi.org/10.1111/j.1532-5415.2009.01301.x	Bukowski 2009: Exclusion reason: Incorrect indication			
Efficacy of green tea in the prevention of cancers.	Sturgeon, Jenna L; Williams, Mary; van Servellen, Gwen	2005	Nursing & health sciences 11 4 436-46	https://dx.doi.org/10.1001/jama.294.4.436	Sturgeon 2005: Exclusion reason: Incorrect indication			
Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials.	Bagnardi, A; Seminari, R; Rothwell, Peter M	2012	The Lancet. Oncology 13 5 518-27	https://dx.doi.org/10.1016/S1470-2045(12)70052-5	Bagnardi 2012: Exclusion reason: Incorrect indication			
A meta-analysis of alcohol drinking and cancer risk.	Lu, Yan; Blangardi, M; La Vecchia, C; Correa, G	2001	British journal of cancer 85 11 1700-5	https://dx.doi.org/10.1054/ebjc.2001.0392	Lu 2001: Exclusion reason: Incorrect indication			
Black tea–helpful or harmful? A review of the evidence.	Gardner, E. J; Ruxton, C H S; Leeds, A R	2007	European journal of clinical nutrition 61 1 18-Mar	https://dx.doi.org/10.1111/j.1365-2362.2007.02532.x	Gardner 2007: Exclusion reason: Incorrect indication			
Birthweight and Childhood Cancer: Preliminary Findings from the International Childhood Cancer Cohort Consortium (ICC).	Palisik, Ora; Tikellis, Gabriella; Linet, Martha; Goldberg, Joan; Lemeshev, Stanley; Phillips, Gary; Lamb, Karen; Stoltenberg, Camilla; Haberg, Siri E; Strom, Martin; Granstrom, Charlotte; Northstone, Kate; Klebanoff, Mark; Porsonby, Anne-Louise; Milne, Elizabeth; Pedersen, Shumei	2015	Paediatric and perinatal epidemiology 29 4 335-45	https://dx.doi.org/10.1111/ppa.12724	Palisik 2015: Exclusion reason: Incorrect indication			
Association of total cancer and lung cancer with environmental exposure to cadmium: the meta-analytical evidence.	Nawrot, Tim S; Martens, Dries S; Hara, Azusa; Plusquin, Michelle; Vangronsveld, Jaco; Roels, Harry A; Staessen, Jan A	2015	Cancer causes & control : CCC 28 9 1281-8	https://dx.doi.org/10.1007/s11401-015-0512-x	Nawrot 2015: Exclusion reason: Incorrect indication			
Association of metformin use with cancer incidence and mortality: a meta-analysis.	Zhang, Pengpeng; Li, Hao; Tan, Xiaohua; Chen, Lili; Wang, Shumei	2015	Cancer epidemiology 37 3 207-18	https://dx.doi.org/10.1001/jama.2014.15635	Zhang 2013: Exclusion reason: Incorrect indication			
Association of Anorexia Nervosa With Risk of Cancer: A Systematic Review and Meta-analysis.	Catala-Lopez, Ferran; Fores-Martors, Jaume; Driver, Jane A; Page, Matthew J; Hutton, Brian; Riada, Manuel; Alonso-Arroyo, Adolfo; Macias Saint-Gerons, Diego; Genova-Materas, Ricardo; Valderas, Jose M; Viera, Eduard; Valencia, Alfonso; Tabares-Seisdedos, Rafael	2019	JAMA network open 2 6 e1965313	https://dx.doi.org/10.1001/jamanetworkopen.2019.6139	Catala-Lopez 2019: Exclusion reason: Incorrect indication			
Association between sleep duration and cancer risk: a meta-analysis of prospective cohort studies.	Lu, Yan; Tian, Nong; Yin, Jie; Shi, Yuhua; Huang, Zhenping	2013	PloS one 8 9 e74723	https://dx.doi.org/10.1371/journal.pone.0074723	Lu 2013: Exclusion reason: Incorrect indication			
Association between sleep-disordered breathing, obstructive sleep apnea, and cancer incidence: a systematic review and meta-analysis.	Palamander Subash Shantha, Ghanshyam; Kumar, Anita Ashok; Cheskin, Lawrence J; Pancholy, Samir Bipin	2015	Sleep medicine 16 10 1289-94	https://dx.doi.org/10.1080/13899459.2015.1084623	PalamanderShantha 2015: Exclusion reason: Incorrect indication			
Study Title	Authors	Year	Journal	Volume	Issue	Pages	DOI	Exclusion Reason
--	---	------	--	--------	-------	---------	--	--
Association Between Gait Speed With Mortality, Cardiovascular Disease and Cancer: A Systematic Review and Meta-analysis of Prospective Cohort Studies.	Veronese, Nicola; Stubbs, Brenton; Volpato, Stefano; Zuliani, Giovanni; Maggi, Stefania; Cesari, Matteo; Lipincki, Darren M; Smith, Lee; Schofield, Patricia; Firth, Joseph; Vancampfort, Davy; Koyanagi, Ai; Pilotto, Alberto; Cereda, Emanuele	2018	Journal of the American Medical Directors Association	19	1	981-988	https://dx.doi.org/10.1016/j.jamdd.2018.08.003	Exclusion reason: Incorrect indication
Association between Cigar or Pipe Smoking and Cancer Risk in Men: A Pooled Analysis of Five Cohort Studies.	Malhotra, Jyoti; Borron, Claire; Freedman, Neal D; Abnet, Christian C; van den Brandt, Piet A; White, Emily; Mine, Roger L; Giles, Graham G; Boffetta, Paolo	2017	Cancer prevention research (Philadelphia, Pa.)	10	12	704-709	https://dx.doi.org/10.1158/1940-6288.EJCP-17-0383	Exclusion reason: Incorrect indication
Association between butchers and cancer incidence: A systematic review and meta-analysis.	Guo, Zhen-Lang; Wang, Jun-Yue; Li, Yu-Sti; Gong, Lei-Liang; Gan, Shu; Wang, Shu-Sheng	2017	Medicine	96	39	e8177	https://dx.doi.org/10.1097/MD.0000000000001721	Exclusion reason: Incorrect indication
Association between bullous pemphigoid and malignancy: A meta-analysis.	Lucarello, Richard J; Villalbanca, Salvador E; Mascaro, Jose M Jr; Reichel, Martin	2016	The Australasian journal of dermatology	59	4	253-260	https://dx.doi.org/10.1111/ajds.12824	Exclusion reason: Incorrect indication
Association between alcohol consumption and cancers in the Chinese population—a systematic review and meta-analysis.	Li, Ying; Yang, Huan; Cao, Jia	2015	PLoS one	6	4	e18778	https://dx.doi.org/10.1371/journal.pone.0137180	Exclusion reason: Incorrect indication
Assisted reproductive technology and the risk of pediatric cancer: A population based study and a systematic review and meta analysis	Gilboa, Daniella; Koren, Gideon; Barer, Yael; Katz, Rachel; Rotem, Ram; Lunefeld, Eitan; Shaieb, Varda	2019	Cancer Epidemiology	63	101613	1933-47	https://dx.doi.org/10.1016/j.canep.2019.101613	Exclusion reason: Incorrect indication
Arsenic exposure and childhood cancer—a systematic review of the literature.	Engel, Arnold; Lamm, Steven H	2008	Journal of environmental health	71	3	6-Dec	https://dx.doi.org/10.1289/ehp.1002463	Exclusion reason: Incorrect indication
Are infant size and growth related to burden of disease in adulthood? A systematic review of literature.	Fisher, David; Baird, Janice; Payne, Liz; Lucas, Patricia; Kleijnen, Jos; Roberts, Helen; Law, Catherine	2000	International journal of epidemiology	35	5	1196-210	https://dx.doi.org/10.1002/ije.476	Exclusion reason: Incorrect indication
Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review.	Fond, G; Macgregor, A; Attai, J; Larue, A; Britten, M; Ducasse, D; Capdevieille, D	2012	Medical hypotheses	79	1	38-42	https://dx.doi.org/10.1016/j.medhy.2012.02.001	Exclusion reason: Incorrect indication
Alcohol consumption and the risk of cancer: a meta-analysis.	Bagnardi, V; Blangiardo, M; La Vecchia, C; Corrao, G	2001	Alcohol research & health: the journal of the National Institute on Alcohol Abuse and Alcoholism	25	4	263-70	https://dx.doi.org/10.1002/ajr.2001	Exclusion reason: Incorrect indication
Adherence to the WCRF/AICR Dietary Recommendations for Cancer Prevention and Risk of Cancer in Elderly from Europe and the United States: A Meta-Analysis within the CHANCES Project.	Jankovic, Nicole; Geelen, Anouk; Winkels, Renate M; Mwungura, Blaise; Pedirko, Veronika; Jenab, Mazda; Illner, Anne K; Brenner, Hermann; Ordonez-Men, Jose M; Keffe de Jong, Jessica C; Franco, Oscar H; Orfanos, Philippos; Trichopoulos, Antonia; Boffetta, Paolo; Agudo, E	2017	Cancer Epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology	26	1	138-144	https://dx.doi.org/10.1016/j.cancer.2017.03.013	Exclusion reason: Incorrect indication
Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies.	Schwingshackl, Lukas; Hoffmann, Georg	2015	Cancer medicine	4	12	1933-47	https://dx.doi.org/10.1002/cam.1884	Exclusion reason: Incorrect indication
Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies.	Schwingshackl, Lukas; Hoffmann, Georg	2014	International journal of cancer	135	8	1884-97	https://dx.doi.org/10.1002/jic.2014	Exclusion reason: Incorrect indication
Title	Authors	Year	Volume	Page	Journal	DOI	Exclusion reason	
--	---	------	--------	--------	---	---	---------------------------	
A Systematic Review of Children's Environmental Health in Brazil	Frosa Aumas, C. T. R.; Camara, V. M.; Landrigan, P. J.; Claudio, L.	2016	82	132-148	Annals of Global Health	https://dx.doi.org/10.1016/j.agrumet.2016		
A meta-analysis of alcohol consumption and the risk of 15 diseases	Corrao, G.; Bagnardi, V.; Zambon, A.; La Vecchia, C.	2004	38	5613-619	Preventive Medicine	http://dx.doi.org/10.1016/j.premed.2004	Exclusion reason: Incorrect indication	
A comprehensive evaluation of the association between ambient air pollution and adverse health outcomes of major organ systems: a systematic review with a worldwide approach	Bazyar, Jalal; Pourvashkhooshi, Negan; Khanehk, Hamidreza; Farrokhiz, Mehrdad; Delshad, Vahid; Rajabi, Elham	2015	26	12684-12	Environmental science and pollution research international	https://dx.doi.org/10.1007/s12840-019	Exclusion reason: Incorrect indication	
Risk factors for cancer in the Australian Aboriginal and Torres Strait Islander population: a systematic review.	Castles, Simon; Wainer, Zoe; Jayasekara, Harindra	2015	22	190-197	Australian journal of primary health	https://dx.doi.org/10.1071/PP15006	Exclusion reason: Incorrect indication	
Risk of Lymphoma	Nagahori, M.; Watanabe, M.	2015	34	143-146	Frontiers of Gastrointestinal Research	http://dx.doi.org/10.1159/000264837	Exclusion reason: Incorrect indication	
Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis.	Noto, Hiroshi; Tsujimoto, Tetsuro; Sasazuki, Takehiko; Noda, Mitsuhiro	2011	17	4616-28	Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologist	https://dx.doi.org/10.4158/EP2011	Exclusion reason: Incorrect indication	
Association of cocoa consumption and risk of cardiovascular diseases and other chronic diseases	Omidvar, S.; Patti, S.; Takahashi, T.; Shin, H.; Lee, M. K.; Kim, S. R.; Fedacko, J.; Singh, R.; Tribulova, N.; Hristova, K.; De Meester, F.; Wilczynska, A.; Wilson, D. W.; Martynosyan, D.; Singh, R. B.; Sharma, R.; Juneja, L. R.	2013	5	47-68	World Heart Journal	https://dx.doi.org/10.1190/0000502712131228	Exclusion reason: Incorrect indication	
The association between Alzheimer's disease and cancer: Systematic review - Meta-analysis.	Papageorgakopoulos, Tilemahos Nektarios; Moratou, Despina; Papap Nikolou, Maria; Tsolaki, Magda	2017	20 Su	45-57	Helvetic journal of nuclear medicine	https://dx.doi.org/10.1057/jnc.2017	Exclusion reason: Incorrect indication	
Olive oil and cancer risk: an update of epidemiological findings through 2010.	Pelucchi, Claudio; Bosetti, Cristina; Negri, Eva; Lipworth, Loren; La Vecchia, Carlo	2011	17	805-12	Current pharmaceutical design	http://dx.doi.org/10.1007/s10651-011-9346-9	Exclusion reason: Incorrect indication	
Adverse effects of statins - myths and reality.	Simic, I.; Reiner, Z.	2015	21	1220-122	Current Pharmaceutical Design	http://dx.doi.org/10.2174/138949215121952579	Exclusion reason: Incorrect indication	
Cancer risk in dermatomyositis: a systematic review of the literature.	Di Rollo, D.; Abeni, D.; Tracannia, M.; Capo, A.; Amento, P.	2014	149	525-53	Giornale Italiano di dermatologia e venereologia : organo ufficiale , Societa Italiana di dermatologia e sfilografia	http://dx.doi.org/10.1007/s11872-014-0345-x	Exclusion reason: Incorrect indication	
The effects of waterpipe tobacco smoking on health outcomes: a systematic review.	Akl, Eile A; Gaddam, Swama; Guinukula, Saneer K; Honseine, Roland; Jaoude, Philippe Abou; Irani, Jihad	2010	39	634-57	International journal of epidemiology	https://dx.doi.org/10.1093/ije/dyp226	Exclusion reason: Incorrect indication	
A systematic review of multivitamin-multiminerale use and cardiovascular disease and cancer incidence and total mortality.	Alexander, Dominik D; Weed, Douglas L; Chang, Ellen T; Miller, Paige E; Mohamed, Mumhina A; Elkayam, Laura	2013	32	5339-54	Journal of the American College of Nutrition	https://dx.doi.org/10.1080/07415348.2013	Exclusion reason: Incorrect indication	
Parkinson's disease and cancer risk: a systematic review and meta-analysis.	Baiq, Archna, Divner, Jane A; Schenhammer, Eva S	2010	21	697-707	Cancer causes & control : CCC	https://dx.doi.org/10.1007/s12840-010	Exclusion reason: Incorrect indication	
Heterogeneity in the Relationship between Disinfection By-Products in Drinking Water and Cancer: A Systematic Review.	Beznarid, Tanik, Delphi, Ianis; Schwarz, Lara; Rodrigue, Manuel J; Levallois, Patrick	2018	5	5390-396	International journal of environmental research and public health	https://dx.doi.org/10.3390/ijerph16083964	Exclusion reason: Incorrect indication	
Title	Authors	Year	Journal/Database Information	Exclusion reason: Incorrect indication				
--	---	------	-------------------------------	--				
A systematic review of the impact of weight loss on cancer incidence and mortality.	Birks, S; Peebles, A; Blackhofer, K; O’Brien, P; Brown, W	2012	Obesity reviews: an official journal of the International Association for the Study of Obesity	10 868-91; Birks 2012; Exclusion reason: Incorrect indication				
Young Adult Cancer: Influence of the Obesity Pandemic.	Berger, Nathan A	2018	Obesity (Silver Spring, Md.)	4 641-650; Berger 2018; Exclusion reason: Incorrect indication				
The role of dietary factors in cancer prevention: beyond fruits and vegetables.	Williams, Mark T; Hord, Norman G	2005	Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral Nutrition	4 451-9; William s 2005; Exclusion reason: Incorrect indication				
The risk of cancer in patients with Crohn’s disease.	van Roon, Alexander C; Reese, George; Teare, Julian; Constantinides, Vasili; Darzi, Ana W; Tekkis, Paris P	2007	Diseases of the colon and rectum	50 6 856-55; van Roo n 2007; Exclusion reason: Incorrect indication				
Residential proximity to electricity transmission and distribution equipment and risk of childhood leukemia, childhood lymphoma, and childhood nervous system tumors: systematic review, evaluation, and meta-analysis.	Washburn, E P; Orza, M J; Berlin, J A; Nicholson, W J; Todd, A C; Frumkin, H; Chalmers, T C	1994	Cancer causes & control : CRC	5 4 299-309; Washb urn 1994; Exclusion reason: Incorrect indication				
Vitamin K and childhood cancer: analysis of individual patient data from six case-control studies.	Roman, E; Fear, N T; Arsoff, P; Bull, D; Draper, G; McKinney, P; Michaelis, J; Passmore, S J; von Kries, R	2002	British journal of cancer	86 1 63-9; Roman 2002; Exclusion reason: Incorrect indication				
Exposure to extremely low-frequency magnetic fields and the risk of childhood cancer: update of the epidemiological evidence.	Schuz, Joachim	2011	Progress in biophysics and molecular biology	107 3 339-42; Schuz 2011; Exclusion reason: Incorrect indication				
Meta-analysis of occupational exposures in the rubber manufacturing industry and risk of cancer.	Boniol, Mathieu; Koehlman, Alice; Boyle, Peter	2017	International journal of epidemiology	46 6 1940-194; Boniol 2017; Exclusion reason: Incorrect indication				
The carcinogenicity of alendronate in patients with osteoporosis: evidence from cohort studies.	Chen, Ling-Xiao; Ning, Guang-Zhi; Zhou, Zhi-Rui; Li, Yu-Lin; Zhang, Di; Wu, Qiu-Li; Zhang, Tian-Song; Cheng, Lei; Feng, Shi-Qing	2015	PloS one	10 4 e012308; Chen 2015; Exclusion reason: Incorrect indication				
Apple intake and cancer risk: a systematic review and meta-analysis of observational studies.	Fabiani, Roberto; Minelli, Liliana; Rosignoli, Patrizia	2016	Public health nutrition	19 14 2603-17; Fabiani 2016; Exclusion reason: Incorrect indication				
Processed meat: the real villain?.	Rohrmann, Sabine; Linseisen, Jakob	2016	The Proceedings of the Nutrition Society	75 3 233-41; Rohrm ann 2016; Exclusion reason: Incorrect indication				
Smoking cessation and subsequent risk of cancer: A pooled analysis of eight population-based cohort studies in Japan.	Saito, Eiko; Inoue, Manami; Taagane, Shiochiro; Ito, Hitomi; Matsuo, Keitaro; Wakai, Kenji; Wada, Keiko; Nagata, Chisato; Tamakoshi, Akiko; Sugawara, Yumi; Tsujii, Ichiro; Mizoue, Tetsuya; Tanaka, Keitaro; Sasaazuki, Shizuka; Research Group for the Development and Evaluation of Cancer Epidemiology	2017	Cancer epidemiology	51 101508793 98-108; Saito 2017; Exclusion reason: Incorrect indication				
A Systematic Literature Review and Meta-Regression Analysis on Early-Life Energy Restriction and Cancer Risk in Humans.	Elands, Rachell J; Simons, Colinda C J M; Dongen, Martien van; Schouten, Leo J; Verhage, Bas A J; van den Brandt, Piet A; Weijenberg, Matty P	2016	PloS one	11 9 e015600; Elands 2016; Exclusion reason: Incorrect indication				
Authors	Title	Year	Journal	Volume	Page Range	DOI	Exclusion Reason	
---------	--	------	--	--------	------------	--	------------------	
Sofi, Francesco; Abbate, Rosanna; Gensini, Gian Franco; Casini, Alessandro	Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis.	2010	The American Journal of Clinical Nutrition	92	1189-96	https://dx.doi.org/10.3945/ajcn.210.016554	Incorrect indication	
Keum, NaNa; Greenwood, Darren C; Lee, Dong Hoon; Kim, Rockl; Aune, Dagfinn; Ju, Woong; Hu, Frank B; Giovannucci, Edward L	Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies.	2015	Journal of the National Cancer Institute	107	2	https://dx.doi.org/10.1093/cjp/cej1411	Incorrect indication	
Shi, Hai-bin; Tang, Bo; Liu, Yao-Wen; Wang, Xue-Feng; Chen, Guo-Jun	Alzheimer disease and cancer risk: a meta-analysis.	2015	Journal of Cancer Research and Clinical Oncology	141	485-94	https://dx.doi.org/10.1007/s10532-014-0387-3	Incorrect indication	
Kalantiari, Narges; Organi-Firouzjaste, Tahmineh; Ghaffari, Salman; Bayani, Masomeh; Ghaffari, Taraneh; Cherazi, Mohammad	Association between Cryptosporidium infection and cancer: A systematic review and meta-analysis.	2020	Parasitology International	74	970854	https://dx.doi.org/10.1016/j.parint.2020.05.003	Incorrect indication	
Noto, Hiroshi; Goto, Atsushi; Tsujimoto, Tetsuro; Noda, Mitsuhiko	Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis.	2012	PloS one	7	3e33411	https://dx.doi.org/10.1371/journal.pone.00333411	Incorrect indication	
Mantalini, Ravinder; Cheema, Sohaila; Sheikh, Javed; Ali Mulla, Ahmad; Lowenfels, Albert; Masonneuve, Patrick	Cancer risk in waterpipe smokers: a meta-analysis.	2017	International Journal of Public Health	62	73-83	https://dx.doi.org/10.1007/s10488-016-0854-4	Incorrect indication	
Chen, Yuehong; Du, Liang; Li, Ling; Ma, Jun; Geng, Xingsun; Yao, Xun; Liu, Guanjian; Sun, Xin	Cancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic review.	2017	Journal of Diabetes	9	482-494	https://dx.doi.org/10.1111/1753-0424.12704	Incorrect indication	
Calvert, G M; Ward, E; Schnorr, T M; Fine, L J	Cancer risks among workers exposed to metalworking fluids: a systematic review.	1998	American Journal of Industrial Medicine	33	282-92	https://dx.doi.org/10.1007/s003660050015	Incorrect indication	
Huang, Tao; Yang, Bin; Zheng, Jusheng; Li, Guipu; Wahliwist, Mark L; Li, Duo	Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review.	2012	Annals of Nutrition & Metabolism	60	233-40	https://dx.doi.org/10.1159/000341915	Incorrect indication	
Llewellyn, A; Simmons, M; Owen, C G; Woolacott, N	Childhood obesity as a predictor of morbidity in adulthood: a systematic review and meta-analysis.	2016	Obesity Reviews	17	56-67	https://dx.doi.org/10.1111/obr.12054	Incorrect indication	
Morris, R D; Audet, A M; Angelillo, I F; Chalmers, T; Mosteller, F	Chloration, chlordination by-products, and cancer: a meta-analysis.	1992	American Journal of Public Health	82	955-63	https://dx.doi.org/10.1086/216934	Incorrect indication	
Sun, Shanwen; Li, Xiao; Ren, Anjing; Du, Mulong; Du, Haina; Shu, Yongqian; Zhu, Linghan; Wang, Wei	Choline and betaine consumption lowers cancer risk: a meta-analysis of epidemiologic studies.	2016	Scientific Reports	6	35547	https://dx.doi.org/10.3838/sr.2016.36577	Incorrect indication	
Wong, Germanee; Staplin, Natalie; Emerson, Jonathan; Baigent, Colin; Turner, Robin; Chalmers, John; Zougas, Sophia; Pollock, Carol; Cooper, Bruce; Harris, David; Wang, Jie Jin; Mitchell, Paul; Prince, Richard; Lim, Wai Hon; Lewis, Joshua; Chapman, Jeremy; Craig, Jonathan	Chronic kidney disease and the risk of cancer: an individual patient data meta-analysis of 32,027 participants from six prospective studies.	2015	BMC Cancer	16	609-7600	https://dx.doi.org/10.1186/s12890-015-0156-6	Incorrect indication	
Circulating soluble advanced glycation end product is inversely associated with the significant risk of developing cancer: evidence from a meta-analysis.								

He, Lan; Bao, Hongguang; Xue, Jing; Zheng, Lihong; Zhang, Qi; Sun, Lei; Pan, Hongming								
2014	Tumour biology and the journal of the International Society for Oncodevelopmental Biology and Medicine	35	9	67-49-55	https://dx.doi.org/10.1007/s12087-014-1281-x	Exclusion reason: Incorrect indication		

Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans.
Conzatt, Adriana; Froes, Fernanda Carolina Telles da Silva; Schweigert Perri, Ingrid Dalila; Souza, Carolina Guerini de Jeong; Jeong; Lee, Young Ae; Yoon, Hong

Comparison of general obesity and measures of body fat distribution in older adults in relation to cancer risk: meta-analysis of individual participant data of seven prospective cohorts in Europe.
Freising, Heinz; Arnold, Melina; Soerjomataram, Isabelle; O’Donohey, Mark George; Ordonez-Mena, Jose Manuel; Bama, Christina; Kampman, Ellen; Leitzmann, Michael; Romieu, Isabelle; Kee, Frank; Tai, Lida; Konstantinopoulou, Anna; Trichopoulos, Antonia; Samkange-Zeeb, Maria
2017

Comparison of studies on mobile phone use and risk of tumors.
Samkange-Zeeb, Maria; Floresco, Schuz, Joachim; Schiehlofer, Brigitte; Berg-Beckhoff, Gabrielle; Blettner, Maria
2010

Critical review of cancer epidemiology in petroleum industry employees, with a quantitative meta-analysis by cancer site.
Wong, O; Raabe, G K
1989

Cumulative exposure to biological therapy and risk of cancer in patients with psoriasis: a meta-analysis of Psonet studies from Israel, Italy, Spain, the U.K. and Republic of Ireland.
Garcia-Doval, I; Desalzo, M A; Mason, K J; Cohen, A D; Ormerod, A D; Gomez-Garcia, F J; Cazzaniga, S; Feldthamer, I; Ali, H; Herrera-Acosta, E; Griffiths, C E M; Stem, R S; Naldi, L; Psonet Network
2018

Depression and cancer risk: a systematic review and meta-analysis.
Jia, Y; Li, F; Liu, Y F; Zhao, J P; Leng, M M; Chen, L
2017

Diet and cancer: risk factors and epidemiological evidence.
Baena Ruiz, Raul; Salinas Hernandez, Pedro
2014

Diet Quality and Cancer Outcomes in Adults: A Systematic Review of Epidemiological Studies.
Potter, Jennifer; Brown, Leanne; Williams, Rebecca L; Byles, Julie; Collins, Clare E
2010

Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies.
Schwingshackl, Lukas; Bogensberger, Bernt; Hoffmann, Georg
2018

Dietary cadmium intake and the risk of cancer: a meta-analysis.
Cho, Young Ae; Kim, Jeonghoon; Woo, Hae Dong; Kang, Moonsu
2013

Dietary flavonoid intake and smoking-related cancer risk: a meta-analysis.
Woo, Hae Dong; Kim, Jeonghoon
2013
Title

Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis.
Does pravastatin promote cancer in elderly patients? A meta-analysis.
Effect of Long-Acting Insulin Analogos on the Risk of Cancer: A Systematic Review of Observational Studies.
Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials.
Effects of Bariatric Surgery on Mortality, Cardiovascular Events, and Cancer Outcomes in Obese Patients: Systematic Review and Meta-analysis.
Effects on Health Outcomes of a Mediterranean Diet With No Restriction on Fat Intake: A Systematic Review and Meta-analysis.
Efficacy of antioxidant supplementation in reducing primary cancer incidence and mortality: systematic review and meta-analysis.
Electromagnetic fields and childhood cancer: meta-analysis.
Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk.
Epidemiology and pathophysiology of obesity as cause of cancer.
Evaluation based on systematic review of epidemiologic evidence among Japanese populations: tobacco smoking and total cancer risk.
Factors predicting malignancy in patients with polymyositis and dermatomyositis: a systematic review and meta-analysis.
Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies.
Title
--
Fruit and vegetable intake and the risk of overall cancer in Japanese: A pooled analysis of population-based cohort studies.
Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence.
Garlic intake and cancer risk: an analysis using the Food and Drug Administration's evidence-based review system for the scientific evaluation of health claims.
Glycemic index, glycemic load, and cancer risk: a meta-analysis.
Glycemic Index, Glycemic Load and Cancer Risk: An Updated Meta-Analysis.
Health effects associated with smokeless tobacco: a systematic review.
Household air pollution and cancers other than lung: a meta-analysis.
Household physical activity and cancer risk: a systematic review and dose-response meta-analysis of epidemiological studies.
Incidence of cancer following bariatric surgery: systematic review and meta-analysis.
Incidence of Cancer in ANCA-Associated Vasculitides: A Meta-Analysis of Observational Studies.
Increased Risk of Cancer in relation to Gout: A Review of Three Prospective Cohort Studies with 50,358 Subjects.
Insulin glargine and cancer risk in patients with diabetes: a meta-analysis.
Insulin glargine and risk of cancer: a meta-analysis.
Intensified low-density lipoprotein-cholesterol target of statin therapy and cancer risk: a meta-analysis.
Title
--
Iron and cancer risk—a systematic review and meta-analysis of the
epidemiologic evidence.
Is there a Risk of Lymphoma Associated With Anti-tumor Necrosis
Factor Drugs in Patients With Inflammatory Bowel Disease? A Systematic
Review of Observational Studies.
Is there an increased risk of cancer among spouses of patients with
an HPV-related cancer: A systematic review.
Late onset post transplantation lymphoproliferative disorders:
analysis of international data
Leisure time physical activity and cancer risk: evaluation of the
WHO’s recommendation based on 126 high-quality epidemiologic studies.
Light Alcohol Drinking and Risk of Cancer: A Meta-Analysis of Cohort
Studies.
Linoleic acid intake and cancer risk: a review and meta-analysis.
Literature review of cancer mortality and incidence among dentists.
Long term hormone therapy for perimenopausal and postmenopausal
women.
Mediterranean diet and cancer.
Mediterranean diet and cancer risk: an open issue.
Mediterranean diet and health status: an updated meta-analysis and a
proposal for a literature-based adherence score.
Meta-analyses of studies on the association between electromagnetic
fields and childhood cancer.
Meta-analysis of extremely low frequency electromagnetic fields and
cancer risk: a pooled analysis of epidemiologic studies.
Meta-analysis of risk of malignancy with immunosuppressive drugs in
inflammatory bowel disease.
Meta-analysis of the association of dermatomyositis and polymyositis
with cancer.
Title
--
Meta-analysis on the possible association between in vitro fertilization and cancer risk.
Metabolic syndrome and risk of cancer: a systematic review and meta-analysis.
Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis.
Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review.
Multiple sclerosis and risk of cancer: a meta-analysis.
Obesity and cancer: "Dangerous friendship"
The safety of anti-tumour necrosis factor therapy in rheumatoid arthritis
Ten years incidence of cancer in Iran: a systematic review and meta-analysis.
Obesity and cancer risk: Evidence, mechanisms, and recommendations.
Malignancy and rheumatoid arthritis.
Exercise: Friend or foe?
Estimating the global and regional burden of suboptimal nutrition on chronic disease: methods and inputs to the analysis.
Dietary fortification of aspirin: A novel modality for cancer prevention.
60Hz EMF health effects - A scientific uncertainty
Adverse events of nucleos(t)ide analogues for chronic hepatitis B: a systematic review.
Alcohol drinking and risk of leukemia-A systematic review and meta-analysis of the dose-risk relation.
Comorbidities in spondyloarthritis including psoriatic arthritis.
Title
--
Platelet transfusion: A systematic review of the clinical evidence
Risk of skin cancers in thiopurines-treated and thiopurines-unreated patients with inflammatory bowel disease: A systematic review and meta-analysis
A review of disease-modifying therapies for MS: Maximizing adherence and minimizing adverse events
Adalimumab in the Treatment of Immune-Mediated Diseases
Aggressive statin therapy and the risk of malignancy.
Adverse events of tumor necrosis factor inhibitors
All for statins and statins for all; An update
Aspirin and cancer risk: a quantitative review to 2011.
Association between the ABO blood group and risk of common cancers.
Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update
Cancer risk in dermatomyositis: a meta-analysis of cohort studies.
Current perspective on the global and United States cancer burden attributable to lifestyle and environmental risk factors
Epidemiological evidence on environmental tobacco smoke and cancers other than lung or breast.
Exposure to pesticides and the associated human health effects
Fertility treatment and childhood cancer risk: a systematic meta-analysis.
Exposure to pesticides and risk of childhood cancer: a meta-analysis of recent epidemiological studies.
Hormonal contraception and risk of cancer.
Title
--
Insulin use and cancer risk in patients with type 2 diabetes: a systematic review and meta-analysis of observational studies.
Medical history, lifestyle, family history, and occupational risk factors for adult acute lymphocytic leukemia: the Intergroup Non-Hodgkin Lymphoma Subtypes Project.
Use of Antibiotics and Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies.
Are health care providers who work with cancer drugs at an increased risk for toxic events? A systematic review and meta-analysis of the literature.
Association between the dietary inflammatory index and the incidence of cancer: a systematic review and meta-analysis of prospective studies.
Alcohol drinking and total cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population.
Cancer risk in asthmatic populations.
Association of Grip Strength With Risk of All-Cause Mortality, Cardiovascular Diseases, and Cancer in Community-Dwelling Populations: A Meta-analysis of Prospective Cohort Studies.
Dietary flavonoids and cancer risk: evidence from human population studies.
Glycaemic index and glycaemic load in relation to risk of diabetes-related cancers: a meta-analysis.
Human papillomavirus, smoking, and cancer.
Title
--
Is personality associated with cancer incidence and mortality? An individual-participant meta-analysis of 2156 incident cancer cases among 42,843 men and women.
Literature review on cancer risk in children born after fertility treatment suggests increased risk of haematological cancers.
Meta-analysis of dioxin cancer dose response for three occupational cohorts.
Metabolic risk factors and hematopoetic malignancy.
Low-dose aspirin in primary prevention: cardioprotection, chemoprevention, both, or neither?
Lymphomatoid Papulosis in Children and Adolescents: A Systematic Review.
Meat and milk intake in the rice-based Korean diet: Impact on cancer and metabolic syndrome.
Mediterranean diet and health.
Men's information-seeking behavior regarding cancer risk and screening: A meta-narrative systematic review.
Population-attributable causes of cancer in Korea: obesity and physical inactivity.
Potato consumption and risk of all cause, cancer and cardiovascular mortality: a systematic review and dose-response meta-analysis of prospective cohort studies.
Sarcoma and cancer: a potential link?.
Oral alendronate use and risk of cancer in postmenopausal women with osteoporosis: A nationwide study.
Coffee and cancer risk: a summary overview.
Overweight duration in older adults and cancer risk: a study of cohorts in Europe and the United States. Arnold, Melissa; Freistling, Heinz; Stolzenberg-Solomon, Rachael; Kee, Frank; O’DoHERTY, Mark; George, Ondonez; Menia, Jose Manuel; Wilsgaard, Tom; May, Anne Maria; Bueno-de-Mesquita, Hendrik Bas; Tjonneland, Anne; Orfanos, Philipp; Trichopoulou, Antonia; Boffetta, Paolo; Bray, Charles. 2016 European journal of epidemiology 31 9 893-904 https://dx.doi.org/10.1007/s10655-016-9986-1 Arnold 2016 Exclusion reason: Incorrect indication

A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. Shieh, Meredith S; Cole, Stephen R; Kirk, Gregory D; Poole, Charles. 2003 Journal of acquired immune deficiency syndromes (1999) 32 5 611-22 https://dx.doi.org/10.1097/01.qai.0000064055.97711.65 Shieh 2003 Exclusion reason: Incorrect indication

A systematic review of the possible carcinogenic role of the aristolochic acid. Bara, Tsvadzor Jr; Guzu, Simona; Sugimura, Haruhiko; Bara, Tsvadzor; Beleaua, Marius Alexandru; Jung, Ioan. 2017 Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie 58 1 44-44 Bara 2017 Exclusion reason: Incorrect indication

ABO blood groups and risk of cancer: a systematic review and meta-analysis. Zhang, Bai-Lin; He, Na; Huang, Yu-Bei; Song, Feng-Ju; Chen, Ke-Xin. 2014 Asian Pacific journal of cancer prevention : APJCP 15 11 4643-50 Zhang 2014 Exclusion reason: Incorrect indication

Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: Meta-analysis of 83 case-control studies involving 35,758 individuals. Zhang, D.; Wen, X.; Wu, W.; Guo, Y.; Cui, W. 2015 PLoS ONE 10 5 e012342 https://dx.doi.org/10.1371/journal.pone.012342 Zhang 2015 Exclusion reason: Incorrect indication

Malignancies in the rheumatoid arthritis abatacept clinical development programme: an epidemiological assessment. Simon, T. A.; Smitten, A. L.; Aspinall, J.; Lagorce, J.; Lin, C. Y.; Lin, L. S.; Lin, H.; Lin, M.; Lin, S.-Y.; Lin, W. 2009 Annals of the Rheumatic Diseases 68 12 1819-1824 10.1136/ard.2008.097527 Simon 2009 Exclusion reason: Incorrect indication

More benign lymphoproliferative disease after liver transplant in infants. Khedmat, H.; Ghahraman, Chehraez, M. E.; Amini, M.; TAHEN, S. 2013 Progress in Transplantation 23 2 158-164 10.7182/pit2013425 Khedmat 2013 Exclusion reason: Incorrect indication

The Canadian Network for Mood and Anxiety Treatments (CANMAT) task force recommendations for the management of patients with mood disorders and select comorbid medical conditions. Kamasubbu, R.; Taylor, V. H.; Samean, Z.; Stockalingham, S.; Li, M.; Patten, S.; Rodin, G.; Schaffer, A.; Beaulieu, S.; McIntyre, R. S. 2012 Annals of Clinical Psychiatry 24 1 91-109 Kamasubbu 2012 Exclusion reason: Incorrect indication

The Role of Antiviral Prophylaxis for the Prevention of Epstein-Barr Virus-Associated Posttransplant Lymphoproliferative Disease in Solid Organ Transplant Recipients: A Systematic Review. Abidabbagh, M. A.; Gitman, M. R.; Kumar, D.; Humar, A.; Rotstein, C.; Husain, S. 2017 American Journal of Transplantation 17 3 12 10.1111/ajt.14020 Abidabbagh 2017 Exclusion reason: Incorrect indication

Abatacept for rheumatoid arthritis. Maxwell, L.; Singh, J. A. 2008 Cochrane Database of Systematic Reviews 3 CD000722 https://dx.doi.org/10.1002/14651858.CD000722 Maxwell 2008 Exclusion reason: Incorrect indication

A systematic literature review on the use of platelet transfusions in patients with thrombocytopenia. Newland, A.; Bentley, R.; Jakubowska, A.; Liebman, H.; Lorenz, J.; Peck-Radosavljevic, M.; Taeib, V.; Takami, A.; Tateishi, R.; Younossi, Z. M. 2019 Hematology (United Kingdom) 24 1 679-719 https://dx.doi.org/10.1080/10245804.2019.1664300 Newland 2019 Exclusion reason: Incorrect indication

A review of the role of robotics in bariatric surgery. AliBhai, M. H.; Shah, S. K.; Walker, P. A.; Watson, E. B. 2015 Journal of Surgical Oncology 112 3 279-283 http://dx.doi.org/10.1002/jso. AliBhai 2015 Exclusion reason: Incorrect indication

Atypical features and systemic associations in extensive cases of Grover disease: A systematic review. Gantz, M.; Butler, D.; Goldberg, M.; Ryu, J.; McCalmont, T.; Shinkai, K. 2017 Journal of the American Academy of Dermatology 77 5 952-957 10.1016/j.jaad.2017.06.041 Gantz 2017 Exclusion reason: Incorrect indication
Title	Year	Journal/Database	Volume	Pages	DOI Link	Exclusion Reason
Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: A systematic review	2019	Haematologica	104	81580-1581	http://dx.doi.org/10.3324/haematologica.2019-1580	Incorrect indication
Malignancy and Mortality in Pediatric-onset Inflammatory Bowel Disease: A Systematic Review	2018	Inflammatory bowel diseases	24	4732-741	https://dx.doi.org/10.1093/bcd/igy189	Incorrect indication
Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis	2017	Nutrients	9	10	https://dx.doi.org/10.3390/nu9030281	Incorrect indication
Association between HTLV-1 infection and adverse health outcomes: a systematic review and meta-analysis of epidemiological studies.	2020	The Lancet. Infectious diseases	20	1133-143	https://dx.doi.org/10.1016/S1473-3099(19)30717-8	Incorrect indication
Atopic Dermatitis and Cancer in Solid Organs: A Systematic Review and Meta-Analysis	2019	Journal of the European Academy of Dermatology and Venereology	33	2e81-2e82	10.1111/jdv.15230	Incorrect indication
Health Risks Associated with Occupational Exposure to Ambient Air Pollution in Commercial Drivers: A Systematic Review	2016	International Journal of environmental research and public health	15	9	https://dx.doi.org/10.3390/ijerph14111155	Incorrect indication
Mortality and cancer morbidity among cement production workers: a meta-analysis.	2016	International archives of occupational and environmental health	89	81155-1168	Donato 2016	Incorrect indication
Periodontal Disease, Tooth Loss, and Cancer Risk.	2017	Epidemiologic reviews	39	49-58	https://dx.doi.org/10.1093/epirev/mxu031	Incorrect indication
TNF-alpha blocker therapy and solid malignancy risk in ANCA-associated vasculitis	2012	Current Rheumatology Reports	14	501-508	http://dx.doi.org/10.1007/s11947-012-0778-1	Incorrect indication
Venous thromboembolism and cancer: a systematic review.	2010	Journal of thrombosis and thrombolysis	30	67-78	https://dx.doi.org/10.1007/s11785-010-0368-4	Incorrect indication
Venous thromboembolism and cancer: a systematic review.	2007	Clinical Gastroenterology and Hepatology	5	799-835	10.1016/j.cgh.2007.02.019	Incorrect indication
Skin diseases associated with Agent Orange and other organochlorine exposures.	2011	Journal of the American Academy of Dermatology	74	143-70	https://dx.doi.org/10.1016/j.jaad.2010.09.020	Incorrect indication
Single- Versus Double-Unit Umbilical Cord Blood Transplantation for Hematologic Diseases: A Systematic Review.	2019	Transfusion medicine reviews	33	51-60	https://dx.doi.org/10.1016/j.transci.2019.04.025	Incorrect indication
Alcohol consumption and risk of cancer: a systematic literature review.	2013	Asian Pacific journal of cancer prevention : APJCP	14	4965-72	deMenezes 2013	Incorrect indication
Title	Authors	Year	Volume	Pages	DOI	Exclusion reason
--	---	------	--------	-------	-------------------------------	---------------------------------------
Rituximab and the risk of transformation of follicular lymphoma: a retrospective pooled analysis.	Faderencio, Massimo; Caballero Barrigon, Maria Dolores; Marcheselli, Luigi; Taratino, Vittoria; Manni, Martina; Sarkozy, Clementine; Alonso-Alvarez, Sara; Wondergem, Marielle; Carton, Guillaume; Lopez-Guillermo, Armando; Issa, Djamila; Morshausser, Franck; Alcocba, Miguel	2018	The Lancet. Haematology	5	8 e339-e339	Fedencio 2018
Vitamin D supplementation for prevention of cancer in adults	Bjelakovic, G.; Glish, L. L.; Nikolova, D.; Whitfield, K.; Wettersten, J.; Glish, C.	2005	Cochrane Database of Systematic Reviews	4	000744	Bjelakovic 2008
Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis.	Biswas, Avropoo; Oh, Paul I; Faulkner, Guy E; Baji, Ravi R; Silver, Michael A; Mitchell, Marc S; Alter, David A	2015	Annals of internal medicine	162	2 123-32	Biswas 2015
Pediatric cancer risk in association with birth defects. A systematic review.	Johnson, Kimberly J; Lee, Jong Min; Alsham, Kaz; Padita, Hannah; Feng, Qianxi; Partap, Sonia; Fowler, Susan A; Druley, Todd E	2017	PloS one	12	7 e0181245	Johnson 2017
Relationship between type of smokeless tobacco & risk of cancer: A systematic review.	Gupta, Sanjay; Gupta, Ruchika; Sinha, Dhirendra N; Mehrotra, Ravi	2018	The Indian journal of medical research	148	1 56-76	Gupta 2018
Cardiac glycosides use and the risk and mortality of cancer; systematic review and meta-analysis of observational studies.	Osman, Mohamed Hosny; Farrag, Eman; Selim, Ma; Osman, Mohamed Samy; Hasanine, Awia; Azza	2017	PloS one	12	6 e017861	Osman 2017
Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence	Abe, Sarah Krull; Inoue, Manami	2021	European Journal of Clinical Nutrition	75	6 865-876	Abe 2021
Diffuse large B-cell non-Hodgkin’s lymphoma in Gaucher disease	Bonesteel, Grant; Gargus, J. Jay; Curtin, Emily; Tang, Mabel; Rosenblom, Barry; Kimonis, Virginia	2020	Molecular genetics and metabolism reports	25	100663	Bonesteel 2020
Cancer Incidence and Mortality among Firefighters: An Overview of Epidemiologic Systematic Reviews	Laroche, Elena; L’Esperance, Sylvain	2021	International journal of environmental research and public health	18	5	Laroche 2021
A critical review of the epidemiology of Agent Orange or 2,3,7,8-tetrachlorodibenzo-p-dioxin and lymphoid malignancies	Chang, E. T.; Boffetta, P.; Adami, H. O.; Mandel, J. S.	2015	Annals of Epidemiology	25	4 275-292	Chang 2015
Association between endometriosis and cancer: a comprehensive review and a critical analysis of clinical and epidemiological evidence.	Somigliana, Edgardo; Viganò, Paola; Parazzini, Fabio; Stopelli, Sandra; Giambattista, Erika; Vercellini, Paola	2006	Gynecologic oncology	101	2 331-41	Somigliana 2006
Atopy and Specific Cancer Sites: A review of Epidemiologic Studies	Cui, Yubao; Hill, Andrew W	2016	Clinical reviews in allergy & immunology	51	3 338-352	Cui 2016
Atopic dermatitis and cancer risk.	Wang, H; Diepgen, T L	2006	The British journal of dermatology	154	2 205-10	Wang 2006
Allergies and cancer a review	Memell, R. M.	2008	Critical review	58	1 61-82	Memell 2008
Assessing the risk of multiple sclerosis disease-modifying therapies	Ayirgam, X.; Bildeaux, P. A.; Prat, A.; Girard, M.; Labauge, P.; Le Lorier, J.; Lanoched, C.; Duquette, P.	2019	Expert Review of Neurotherapeutics	19	7 695-706	Ayirgam 2019
Human health effects of trichloroethylene: Key findings and scientific issues
Chiu, W. A.; Jinot, J.; Scott, C. S.; Makris, S. L.; Cooper, G. S.; Dzubow, R. C.; Bale, A. S.; Evans, M. V.; Guyton, K. Z.; Keshtova, N.; Lipscomb, J. C.; Barone Jr., S.; Fox, J. F.; Gwinn, M. R.; Schum, J.; O’Fallon, W. 2013 Environmental Health Perspectives 121 3 303-311 http://dx.doi.org/10.1289/ehp.1306811 Chiu 2013 Exclusion reason: Incorrect study design;

The overall and temporal association of cancer with polyposis and dermatomyositis.
Zantos, D.; Zhang, Y.; Felson, D. 1994 The Journal of rheumatology 21 10 1855-9 Zantos 1994 Exclusion reason: Incorrect study design;

The risk of HCV infection among health-care workers and its association with extrahepatic manifestations
Garozzo, A.; Falzone, L.; Rapisarda, V.; Marconi, A.; Gira, D.; Fenga, C.; Spandidos, G. A.; Libra, M. 2017 Molecular Medicine Reports 15 5 3336-3339 http://dx.doi.org/10.3822/mmr.2017.0378 Garozzo 2017 Exclusion reason: Incorrect study design;

Type 2 diabetes and the risk of non-Hodgkin’s lymphoma: a report from two population-based cohort studies in China
Yang, W. S.; Lu, H. L.; Xu, H. L.; Yang, G.; Gao, Y. T.; Zheng, W.; Shu, X. O.; Xiang, Y. B. 2018 European Journal of Cancer Prevention 25 2 146-154 http://dx.doi.org/10.1097/oaj.s000000000000000 Yang 2018 Exclusion reason: Incorrect study design;

Occupational exposures and haematological malignancies: an overview on human recent data.
Descalzi, Alexis; Jendalian, Arash; Conso, Francesc; Amelled, Jacques 2005 Cancer causes & control; CCC 16 8 938-963 Desca 2005 Exclusion reason: Incorrect study design;

Inflammatory bowel disease and lymphoma: A comprehensive review for the general gastroenterologist
Sultan, K.; Shapira, I. 2012 Practical Gastroenterology 36 8 13-18 Sultan 2012 Exclusion reason: Incorrect study design;

Cancer risks along the disease trajectory in antrumophilyploicyt displasias associated vasculitis
Ythel, Z.; Lam, A. K.; Ranganathan, D.; Aung, S. Y.; Khoo, T. K., Chiu, W. A.; Jinot, J.; De J. 2020 Clinical Rheumatology http://dx.doi.org/10.1007/s10026-020-0244-9 Ythel 2020 Exclusion reason: Incorrect study design;

The Dark Side of Beauty: About Breast Implants and Lymphoma
Versimi, M.; Shoenfield, Y. 2017 Israel Medical Association Journal 19 6 380-381 Versimi 2017 Exclusion reason: Incorrect study design;

NON-HODGKINS LYMPHOMA IN THE WORLD: AN EPIDEMIOLOGICAL REVIEW
Farmanfarma, K. K.; Kiasara, S. H.; Hassanpour, S.; Salehniya, H. 2020 World Cancer Research Journal 7 6 Farmanfarma 2020 Exclusion reason: Incorrect study design;

Non-Hodgkin’s lymphoma and exposure to benzene in a multinational cohort of more than 308,000 petroleum workers, 1937 to 1996.
Wong, O.; Raabe, G K 2000 Journal of occupational and environmental medicine 42 5 554-68 Wong 2000 Exclusion reason: Incorrect study design;

Is there an increased risk of lymphoma and malignancies under anti-TNF therapy in IBD?
Lakatos, P. L; Mihelich, P 2010 Current drug targets 11 2 179-86 Lakatos 2010 Exclusion reason: Incorrect study design;

Vitamin D for health: A global perspective
Hossein-Nezhad, A.; Holick, M. F. 2013 Mayo Clinic Proceedings 88 7 720-755 http://dx.doi.org/10.1016/j.mayocp.2013.06.020 Hossein 2013 Exclusion reason: Incorrect study design;

The relationship between consumption of nitrate or nitrite and risk of non-Hodgkin lymphoma.
Yu, Mengxia; Li, Chenying; Hu, Chao; Jin, Jing; Qian, Shexian; Jin, Jie 2020 Scientific reports 10 1 551 https://dx.doi.org/10.1038/s41598-019-51231-5 Yu 2020 Exclusion reason: Incorrect study design;

TNF antagonist safety in rheumatoid arthritis: Updated evidence from observational registries
Nasir, A.; Greenberg, J. D. 2007 Bulletin of the NYU Hospital for Joint Diseases 65 3 178-181 Nasir 2007 Exclusion reason: Incorrect study design;

Smoking and lymphoma: a small part of a complex story
Morton, L. M. 2015 Leukemia & Lymphoma 53 10 1853-1859 http://dx.doi.org/10.1080/10428194.2012.6807 2012 Morton 2012 Exclusion reason: Incorrect study design;

Risk of lymphoma: Inflammatory bowel disease and immunomodulators [3]
Ang, Y. S.; Farrar, R. J. 2008 Gut 54 4 580-581 http://dx.doi.org/10.1136/gut.2006.096697 Ang 2006 Exclusion reason: Incorrect study design;

Sarcoidosis and malignancy
Cohen, P. R.; Kurzrok, R 2007 Clinics in dermatology 25 3 326-333 http://dx.doi.org/10.1016/j.clindermatol.2007.01.012 Cohen 2007 Exclusion reason: Incorrect study design;

Risks and benefits of azathioprine therapy
McGovern, D.; Jewell, D 2005 Gut 54 8 1055 http://dx.doi.org/10.1136/gut.2005.091064 McGovern 2005 Exclusion reason: Incorrect study design;

Richter Syndrome in Chronic Lymphocytic Leukaemia
Vitale, C.; Ferrajoli, A 2015 Current Hematologic Malignancy Reports 11 1 43-51 http://dx.doi.org/10.1007/s11899-016-0305-y Vitale 2015 Exclusion reason: Incorrect study design;

Rheumatoid arthritis and lymphoma: Incidence, pathogenesis, biology, and outcome
Klein, A.; Pollack, A.; Gafer-Gvili, A. 2015 Hematological Oncology 36 5 733-739 http://dx.doi.org/10.1002/hon.2525 Klein 2018 Exclusion reason: Incorrect study design;
Reference	Title	Journal/Conference	Volume/Issue/Pages	Year	DOI	Exclusion reason
Washburn, E. P.	Residential exposure to extremely low-frequency magnetic fields and risk of childhood leukemia, CNS tumour and lymphoma in Denmark.	British Journal of Cancer	113	1994	10.1007/bf01694765	Pedersen 2015
Pedersen, Camilla; Johansen, Christoffer; Schuz, Joachim; Olsen, Jorgen H; Raaschou-Nielsen, Ole	Polyphenolics: dietary assessment and role in the prevention of cancers.	Current Opinion in Clinical Nutrition and Metabolic Care	20	2017	10.1097/MON.0000000000000194	Exclusion reason: Incorrect study design
Rothwell, Joseph A; Knaz, Viktoria; Zamora-Ros, Raúl	Risk of Mycosis Fungoides in Psoriatic Patients: A Critical Review	Journal of the European Academy of Dermatology and Venereology	34	2015	10.1111/jdv.12162	Exclusion reason: Incorrect study design
Giovanni, B.; Carrani, L.; Brunasso, A. M. G.; Sola, S.; Cota, C.; Javor, S.; Massone, C.	Psoriasis, cardiovascular events, cancer risk and alcohol use: Evidence-based recommendations based on systematic review and expert opinion	Journal of the European Academy of Dermatology and Venereology	27 SUPPL.3 11-Feb	2015	10.1111/jdv.12162	Richard 2015
Swaan, G M H; Tsai, S P; Burns, C	Meta-analysis on benzene exposure and non-Hodgkin’s lymphoma.	Occupational and Environmental Medicine	4	2010	10.1136/oce.2010.053631	Exclusion reason: Incorrect study design
Weber, R. W.	Adverse reactions to biological modifiers	Current Opinion in Allergy and Clinical Immunology	4	2004	10.1097/01.iad.0000141173.59269.ba	Exclusion reason: Incorrect study design
Yazici, Y.	Long-term safety of Methotrexate in the treatment of rheumatoid arthritis	Clinical and Experimental Rheumatology	28 SUPPL. 6 S65-S67	2011	10.1136/cer.6.2011.2142	Exclusion reason: Incorrect study design
Cooper, G. S.; Scott, C. S.; Bale, A. S.	Insights from epidemiology into dichloromethane and cancer risk	International Journal of Environmental Research and Public Health	8	2011	10.3390/ijerph8083380	Cooper 2011
Cerhan, J. R.	Transfusion and NHL risk: A meta-answer?	Blood	116	2010	10.1182/blood-2010-06-307857	Exclusion reason: Incorrect study design
Khani, Y.; Pourholam-Amjji, N.; Afshar, M.; Otroshi, O.; Shariﬁ-Esfahani, M.; Sadeghi-Gandomani, H.; Vejdani, M.; Salehiy, H.	Tobacco smoking and cancer types: A review	Biomedical Research and Therapy	5	2018	10.15419/br2018.5.2142	Exclusion reason: Incorrect study design
Geissler, E. K.; Schiff, H. J.	The relation between immunosuppressive agents and malignancy	Current Opinion in Organ Transplantation	9	2004	10.1097/01.top.0000121879.88144.69	Geissler 2004
Mannion, M. L.; Beukelman, T.	Risk of malignancy associated with biological agents in pediatric rheumatic diseases	Current Opinion in Rheumatology	28	2014	10.1097/rhe.2014.01.089	Mannion 2014
Garg, S. K.; Loftus, E. V.	Risk of cancer in inflammatory bowel disease: Going up, going down, or still the same?	Current Opinion in Gastroenterology	32	2016	10.1097/mog.0000000000000379	Garg 2016
Mao, Song; Shen, Hua; Zhang, Jianhua	Systemic lupus erythematosus and malignancies risk.	Journal of cancer research and clinical oncology	142	2016	10.1007/s10974-016-4612-4	Mao 2016
Grulich, Andrew E; Vajdic, Claire M	The epidemiology of non-Hodgkin lymphoma.	Pathology	37	2005	10.3894/2005.p37.6.409-19	Grulich 2005
Curso, E.; Cerhan, J. R.; Beukelman, T.; Otroshi, O.; Shariﬁ-Esfahani, M.; Sadeghi-Gandomani, H.; Vejdani, M.; Salehiy, H.	Tobacco smoking and cancer types: A review	Biomedical Research and Therapy	5	2018	10.15419/br2018.5.2142	Exclusion reason: Incorrect study design
Geissler, E. K.; Schiff, H. J.	The relation between immunosuppressive agents and malignancy	Current Opinion in Organ Transplantation	9	2004	10.1097/01.top.0000121879.88144.69	Geissler 2004
Mannion, M. L.; Beukelman, T.	Risk of malignancy associated with biological agents in pediatric rheumatic diseases	Current Opinion in Rheumatology	28	2014	10.1097/rhe.2014.01.089	Mannion 2014
Garg, S. K.; Loftus, E. V.	Risk of cancer in inflammatory bowel disease: Going up, going down, or still the same?	Current Opinion in Gastroenterology	32	2016	10.1097/mog.0000000000000379	Garg 2016
Mao, Song; Shen, Hua; Zhang, Jianhua	Systemic lupus erythematosus and malignancies risk.	Journal of cancer research and clinical oncology	142	2016	10.1007/s10974-016-4612-4	Mao 2016
Grulich, Andrew E; Vajdic, Claire M	The epidemiology of non-Hodgkin lymphoma.	Pathology	37	2005	10.3894/2005.p37.6.409-19	Grulich 2005

https://mc.manuscriptcentral.com/bmjmedicine
Title	Authors	Journal	Volume	Issue	Pages	DOI	Year	Exclusion reason
Themes in Literature Related to Incidence, Risk, and Prevention of Cancer in Solid-Organ Transplantation Recipients on Immunosuppressive Therapy	Rashid, S. L.	Cancer Nursing	42	1	E28-E35	http://dx.doi.org/10.1097/NCN.0000000000000148	2019	
Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans (Review)	Gangemi, S.; Miczzi, E.; Teodoro, M.; Brugiglio, G.; De Luca, A.; Albano, A.; Polillo, L.; Libra, M.	Mol. Med. Rep.	14		4475-448	10.3892/mmr.2016.5817	2016	
Occupational exposures and cancer: A review of agents and relative risk estimates	Maranant Micaleff, C.; Shield, K. D.; Baldi, I.; Charbotel, B.; Fervers, B.; Gilg Solt Ig, A.; Guilem, P.; Otson, A.; Rushton, L.; Hutchings, S. J.; Straif, K.; Sorejomaram, I.	Occupational and Environmental Medicine	75		8004-814	10.1136/omed-2017-104886	2018	
Occupational cancer in Britain. Haematopoietic malignancies: leukaemia, multiple myeloma, non-Hodgkin's lymphoma.	Brown, Terry; Rushton, Lesley; British Occupational Cancer Burden Study Group	British Journal of Cancer	107	5	S41-8	https://dx.doi.org/10.1038/bjc.2012.177	2012	
Occupational cancer in Britain: Haematopoietic malignancies: Leukaemia, multiple myeloma, non-Hodgkin's lymphoma	Brown, T.; Rushton, L.	British Journal of Cancer	107	5	S41-548	10.1038/bjc.2012.117	2012	
Nightshift work and risk of breast cancer and other cancers--a critical review of the epidemiologic evidence.	Kolstad, Henrik A	Scandinavian journal of work, environment & health	34	1	22-May		2008	
New insights into the epidemiology of non-Hodgkin lymphoma and implications for therapy.	Chithara, Dai; Nastoupori, Loretta J; Williams, Jessica N; Lee, Paul; Koff, Jean L; Flowers, Christopher R	Expert review of anticancer therapy	15	5	531-44	https://dx.doi.org/10.1586/14710112.2015.1052961	2015	
Malignancy Risks With Biologic Therapies	Cush, J. J.; Dao, K. H.	Rheumatic Disease Clinics of North America	38		1761-+	10.1016/j.rdc.2012.09.006	2012	
Malignancy in Systemic Lupus Erythematosus	Egutiano, G.; Clarke, A. E.; Ramsey-Goldman, R.; Bernatsky, S.	Current Treatment Options in Rheumatology	2	1	13-20	http://dx.doi.org/10.1007/s40667-015-0185-2	2015	
Malignancy as a comorbidity in rheumatic diseases	Turesson, C.; Matteson, E. L.	Rheumatology (United Kingdom)	52	1	14-May	http://dx.doi.org/10.1093/rheumatology/fav4.037	2016	
Meta-analysis of cancer risks of professional firefighters.	Caspens, Swaentine; Bruning, Thomas; Taege, Dirk	International Journal of Cancer	145	6	1701	https://dx.doi.org/10.1002/jic.20190	2019	
Exposure to pesticides and childhood cancer risk: has there been any progress in epidemiological studies?	Jurewicz, Joanna; Hanke, Wojciech	International Journal of occupational medicine and environmental health	19	3	152-69		2006	
Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene	Basag, B. A.; Zhang, L. P.; Vermeulen, R.; Tang, X. J.; Li, G. L.; Hu, W.; Guo, W. H.; Purdie, M. P.; Yin, S. N.; Rappaport, S. M.; Shen, M.; Ji, Z. Y.; Qu, C. Y.; Ge, Y. C.; Hospood, H. D.; Reiss, B.; Wu, B. H.; Xie, Y. X.; Li, L. Y.; Yue, F.; Freeman, L. E. B.; Blair, A.; Hayes, R. B.; Huang, H. L.; Smith, M.	Carcinogenesis	37	1	692-700	10.1093/carcin/bgw053	2016	
Malignancies in systemic lupus erythematosus: a 2015 update	Gioobie, G. C.; Bernatsky, S.; Ramsey-Goldman, R.; Clarke, A. E.	Current Opinion in Rheumatology	27	4	454-460	10.1097/bor.0000000000000000	2015	
Lymphoma, rheumatoid arthritis, and TNF alpha antagonists	Mariette, X.	Joint, Bone, Spine: Revue du Rhumatisme	77	3	195-197	10.1016/j.bspin.2010.02.002	2010	
Male Infertility and Risk of Cancer	Rogers, M. J.; Walsh, T. J.	Seminars in Reproductive Medicine	35	3	298-303	http://dx.doi.org/10.1055/s-0041-169212	2017	

https://mc.manuscriptcentral.com/bmjmedicine
Title	Year	Journal	Volume	Issue	Pages	DOI	Authors	Key
Integrating understanding of epidemiology and genetics in B-cell non-Hodgkin lymphoma as a pathway to novel management strategies.	2016	Discovery Medicine	21		115-181	http://dx.doi.org/10.1111/j.1540-5794.2016.01256.x	Glass, Samantha; Phan, Anh; Williams, Jessica N; Flowers, Christopher R; Koff, Jean L.	
Is there truly a risk of lymphoma from biologic therapies?	2009	Dermatologic Therapy	22		418-430	http://dx.doi.org/10.1001/j.am.2008.221	Dommasch, E.; Geffland, J. M.	
Intestinal and Nonintestinal Cancer Risks for Patients with Crohn's Disease	2017	Gastroenterology Clinics of North America	46		351-3+	http://dx.doi.org/10.1016/j.gact.2017.05.006	Garg, S. K.; Velayos, F. S.; Kisel, J. B.	
Insulin resistance and cancer: Epidemiological evidence	2012	Endocrinologist-Relat. Cancer	19		5F1-F8	http://dx.doi.org/10.1530/ERC-12-0142	Inoue, M.; Yasugane, S.	
Insufficient Evidence to Conclude Whether Anti-Tumor Necrosis Factor Therapy Increases the Risk of Lymphoma in Crohn's Disease	2009	Clinical Gastroenterology and Hepatology	7		101139-111364	http://dx.doi.org/10.1016/j.cgh.2009.05.012	Peyrin-Biroulet, L.; Colombel, J. F.; Sandborn, W. J.	
Human immunodeficiency virus/acquired immunodeficiency syndrome and cancer: Past present and future	2005	Journal of the National Cancer Institute	97		6407-409	http://dx.doi.org/10.1093/jnci/dji005	Engels, E. A.; Goedert, J. J.	
Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma	2010	The oncologist	15		10083-10106	http://dx.doi.org/10.1034/j.1033-7290.2010.01134.x	Lichtman, Marshall A.	
Sun exposure, vitamin D, and risk of Hodgkin and non-Hodgkin lymphoma.	2010	Nutrition and cancer	82		878-882	http://dx.doi.org/10.1080/01422810.2010.493939	Negri, Eva	
Obesity and cancer risk	2010	Proceedings of the Nutrition Society	69		186-90	http://dx.doi.org/10.1017/s0026665610999169	Negri, Eva	
Hepatitis C virus infection and non-Hodgkin lymphoma: interesting association or causal relationship?	2000	International Journal of Cancer	122		8X-XII	http://dx.doi.org/10.1002/jc.23462	Anderson, L. A.; Engels, E. A.	
UC inflammatory bowel disease therapies cause cancer?	2013	Inflammatory bowel diseases in patients with inflammatory bowel disease	19		1306-21	http://dx.doi.org/10.1097/MCO.0b013e3182760a4d	Mason, Myshu, Siegel, Corey A	
Diabetes, gestational diabetes and the risk of cancer in women: Epidemiologic evidence and possible biologic mechanisms	2011	Women's Health	7		2227-237	http://dx.doi.org/10.2121/whe.110011	Chodick, G.; Zucker, I.	
Diabetes and cancer relationships	2013	Journal of Diabetes	5		378-390	http://dx.doi.org/10.1111/j.1756-2864.2013.01134.x	Wang, T.; Ning, G.; Bloomgardan, Z.	
Current status of the epidemiologic evidence linking polychlorinated biphenyls and non-hodgkin lymphoma, and the role of immune dysregulation.	2012	Environmental Health Perspectives	120		1067-75	http://dx.doi.org/10.1289/ehp.12076	Kramer, Shira; Hikel, Stephanie Moller; Adams, Kristen; Hinds, David; Moon, Katherine	
Combination antiretroviral therapy and cancer risk	2017	Current Opinion in HIV and AIDS	12		19-Dec	http://dx.doi.org/10.1097/COH.0000000000000000	Borges, A. H.	
Clinical picture, outcome and predictive factors of lymphoma in Sjogren's syndrome	2015	Autoimmunity Reviews	14		641-649	http://dx.doi.org/10.1007/s10292-014-2227-x	Papageorgiou, A.; Vougiarelis, M.; Tsoufas, A. G.	
Chemical exposures and risk of chronic lymphocytic leukaemia	2007	British Journal of Haematology	139		753-761	http://dx.doi.org/10.1111/j.1365-2457.2007.06789.x	Blair, A.; Purdie, M. P.; Weisenburger, D. D.; Baris, B.	
Carcinogenicity of alcoholic beverages	2007	Lancet Oncology	8		252-253	http://dx.doi.org/10.1016/S1470-2045(07)00200.x	Baan, R.; Grosse-Yeh, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Alten, A.; Cogliano, V.; Monograph, W. H. O. Int Agency Res Canc	
Cancer risks in aluminum reduction plant workers: A review	2014	Journal of Occupational and Environmental Medicine	56		540-559	http://dx.doi.org/10.1097/JOM.0b013e3182956409	Gibbs, G. W.; Labreche, F.	
Cancer in adolescents and young adults living with HIV	2018	Current Opinion in HIV and AIDS	13		3196-203	http://dx.doi.org/10.1097/COH.0000000000000000	Bohlius, J.; Foster, C.; Naidu, G.; Sengayi, M.; Turkova, A.	
Cancer and mTOR inhibitors in transplant recipients	2017	Transplantation	101		145-55	http://dx.doi.org/10.1097/TP.0000000000002946	De Fijter, J. W.	
Title	Author(s)	Year	Volume/Issue/Start Page	Exclusion reason	PMCID			
--	--	------	--------------------------	-------------------	-----------------------------			
Lymphoma risk in inflammatory bowel disease: Role of azathioprine-6-mercaptopurine and infliximab	Bionskı, W.; Kundi, R.; Lichtenstein, G. R.	2005	Practical Gastroenterology 29 2 17-32	Bionskı 2005	Exclusion reason: Incorrect study design			
Update on evidence that support a role of solar ultraviolet-B irradiance in reducing cancer risk	Grant, W. B.	2013	Anti-Cancer Agents in Medicinal Chemistry 13 1 140-146	Grant 2013	Exclusion reason: Incorrect study design			
Pheglutzone and cancer: Angel or demon?	Kostapanos, M. S.; Elisa, M. S.; Makalidis, D. P.	2013	Current Pharmaceutical Design 19 27 4913-4923	Kostapanos 2013	Exclusion reason: Incorrect study design			
Is there a benefit from the concomitant use of immunosuppression with anti-TNF in Crohn’s disease; heads or tails?	Lakatos, Peter Laszlo	2005	Reviews on recent clinical trials 4 3 152-8	Lakatos 2009	Exclusion reason: Incorrect study design			
Dairy products and cancer	Lampe, J. W.	2011	Journal of the American College of Nutrition 30 5 464-470	Lampe 2011	Exclusion reason: Incorrect study design			
TNF-alpha antagonism and cancer risk in rheumatoid arthritis: Is continued vigilance warranted?	Park, H. J.; Ranganathan, P.	2012	Discovery Medicine 13 70 229-234	Park 2012	Exclusion reason: Incorrect study design			
A Review of Adverse Effects and Benefits of Nitrate and Nitrite in Drinking Water and Food on Human Health	Parvizshad, M.; Dalvand, A.; Mahvi, A. H.; Goodarzi, F.	2017	Health Scope 6 3 9	Parvizshad 2017	Exclusion reason: Incorrect study design			
An update on the safety and efficacy of topical retinoids	Phillips, T. J.	2005	Cuts 75 2 SUPPL. 14-24	Phillips 2005	Exclusion reason: Incorrect study design			
Links between passive smoking and disease: a best-evidence synthesis. A report of the Working Group on Passive Smoking.	Spitzer, W. O.; Lawrence, V.; Daies, R.; Hill, G.; Archer, M. C.; Clark, P.; Abenhaim, L.; Hardy, J.; Sampalis, J.; Pinto, S. P.	1990	Clinical and investigative medicine. Medecine clinique et experimentale 13 1 17-6	Spitzer 1990	Exclusion reason: Incorrect study design			
Fish, omega-3 polyunsaturated fat intake and cancer at selected sites.	Tavani, Alessandra; Franceschi, Silvia; Levi, Fabio; La Vecchia, Carlo	2005	World review of nutrition and dietetics 9 exp. 011728 166-175	Tavani 2005	Exclusion reason: Incorrect study design			
Obesity and cancer	Ungerechten, H.; Giesel, F.; Fiedler, S.; Lehner, H.	2015	Hormone Molecular Biology and Clinical Investigation 21 1 15-May	Ungerechten 2015	Exclusion reason: Incorrect study design			
Diabetes and cancer	Holden, S. E.	2010	Endocrine Development 31 155-145	Holden 2010	Exclusion reason: Incorrect study design			
Lymphoma and IBD: What is the actual risk?	De Chambon, G. P.; Peyrin-Biroulet, L.; De Viney, B.; Colombel, J. F.	2011	Inflammatory Bowel Disease Monitor 11 3 93-102	DeChambon 2011	Exclusion reason: Incorrect study design			
The Association of Sjögren Syndrome and Autoimmune Thyroid Disorders.	Baldini, Chiara; Ferro, Francesco; Mosca, Marta; Fallahi, Poupak; Antonelli, Alessandro	2018	Frontiers in endocrinology 9 101555762 121	Baldini 2018	Exclusion reason: Incorrect study design			
Trichothroene cancer epidemiology: a consideration of select issues.	Scott, Cheryl Siegel; Chiu, Weihsueh A	2005	Environmental health perspectives 114 5 147-18	Scott 2006	Exclusion reason: Incorrect study design			
Invasive disease due to Mucorales: a case report and review of the literature.	Yeung, C K; Cheng, V C; Lie, A K; Yuen, K Y	2001	Hong Kong medical journal 7 2 180-8	Yeung 2001	Exclusion reason: Incorrect study design			
Non-Hodgkin’s lymphoma in systemic sclerosis: case and literature review.	Vettori, Serena; Staibano, Stefania; Mascoli, Massimo; Iardi, Gennaro; Valentini, Gabriele	2010	Clinical haematology 29 1 6-Jan	Vettori 2010	Exclusion reason: Incorrect study design			
Hericides and cancer.	Morrison, H.; Wilkins, K.; Semenciw, R.; Mao, Y.; Wigle, D	1992	Journal of the National Cancer Institute 84 24 1866-74	Morrison 1992	Exclusion reason: Incorrect study design			
Epidemiologic review of marijuana use and cancer risk.	Hashibe, M.; Straif, K.; Tashkin, Donald P.; Morganstein, Hal; Greenland, Sander; Zhang, Zuo-Feng	2005	Alcohol (Fayetteville, N.Y.) 35 3 265-75	Hashibe 2005	Exclusion reason: Incorrect study design			
Breast implant-Associated Lymphoma.	Knocheloff, Julian; Fallenberg, Eva Maria; Solbach, Christine; Gerber-Schaller, Claudia; Rancso, Christoph; Fritschen, Uwe von	2016	Deutsches Arzteblatt international 115 38 628-635	Knocheloff 2016	Exclusion reason: Incorrect study design			
Lymphomas Associated with Breast Implants: A Review of the Literature.
Rupani, Asha; Frame, James D; Kamel, Oza 2015 Aesthetic surgery journal 35 5 533-44 https://dx.doi.org/10.1093/asj Rupani 2015 Exclusion reason: Incorrect study design ;

Agricultural exposures and cancer trends in developed countries.
Davis, D L; Blair, A; Hoel, D G 1993 Environmental health perspectives 100 e11.033041 39-44 Davis 1993 Exclusion reason: Incorrect study design ;

Alcohol consumption as a cause of cancer.
Connor, Jennie 2017 Addiction (Abingdon, England) 112 2 222-228 https://dx.doi.org/10.1111/add Connor 2017 Exclusion reason: Incorrect study design ;

Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues.
Blair, S N; Brodney, S 1999 Medicine and science in sports and exercise 31 11 Suppl S646-62 Blair 1999 Exclusion reason: Incorrect study design ;

Emergent human pathogen Avian influenza 40 and its role in cancer.
Vilchez, Regis A; Butel, Janet S 2004 Clinical microbiology reviews 17 3 495-contents Vilchez 2004 Exclusion reason: Incorrect study design ;

Health risks for the population living near petrochemical industrial complexes. 1. Cancer risks: A review of the scientific literature.
Domingo, Jose L; Marques, Montse; Nadal, Marti; Schuhmacher, Marta 2020 Environmental research 186 e12.014762 109495 Domingo 2020 Exclusion reason: Incorrect study design ;

Long-term risk of malignancy among patients treated with immunosuppressive agents for ocular inflammation: a critical assessment of the evidence.
Kempen, John H; Gangaputra, Sapna; Daniel, Ebenizer; Levy-Clarke, Grace A; Nussenblatt, Robert B; Rosenbaum, James T; Suhler, Eric B; Thorne, Jennifer E; Foster, C Stephen; Jacobs, Douglas A; Heidtsouer, Kathy J 2008 American journal of ophthalmology 146 6 802-12.e Kempen 2008 Exclusion reason: Incorrect study design ;

Meta-analysis says low LDL cholesterol may be associated with greater risk of cancer.
Tarne, Janice Hopkins 2007 BMJ (Clinical research ed.) 335 7612 177 Tarne 2007 Exclusion reason: Incorrect study design ;

New insights in Coxiella burnetii infection: diagnosis and therapeutic update.
Melenotte, Clea; Million, Matthieu; Raoult, Didier 2020 Expert review of anti-infective therapy 18 7 75-86 https://dx.doi.org/10.1080/14766445 Melenotte 2020 Exclusion reason: Incorrect study design ;

Cancer Epidemiology in South-West Asia - Past, Present and Future
Salm, E. L; Moore, M. A; Benner, A; Habib, O. S; Self-Eidin, I. A. B; Sobue, T 2010 Asian Pacific Journal of Cancer Prevention 11 33-48 Salm 2010 Exclusion reason: Incorrect study design ;

Current understanding of lifestyle and environmental factors and risk of non-Hodgkin lymphoma: An epidemiological update
Bassig, B. A; Lari, Q; Rothman, N; Zhang, Y; Zheng, T 2012 Journal of Cancer Epidemiology 978930 http://dx.doi.org/10.1155/2012 Bassig 2012 Exclusion reason: Incorrect study design ;

Cancer
Guidotti, T. L 2016 Health Risks and Fair Compensation in the Fire Service 93-162 10.1007/978-3-319-23069-6 Guidotti 2016 Exclusion reason: Incorrect study design ;

What is the Risk of Harm Associated With Topical Calcineurin Inhibitors?
Hanna, S; Zip, C; Shear, N. H 2010 Journal of Cutaneous Medicine and Surgery 23 4_suppl 196-265 http://dx.doi.org/10.11177/12 Hanna 2019 Exclusion reason: Incorrect study design ;

Tobacco and non-Hodgkin's lymphoma: Combined analysis of three case-control studies (United States)
Zahm, S H; Weisenburger, D. D; Holmes, F. F; Cantor, K. P; Blair, A 1997 Cancer Causes & Control 8 2 159-166 10.1023/A:1018412027985 Zahm 1997 Exclusion reason: Incorrect study design ;

The Individual and Combined Effects of Obesity and Type 2 Diabetes on Cancer Predisposition and Survival
McLean, R. C; Logue, J 2015 Current Nutrition Reports 4 1 22-32 http://dx.doi.org/10.1007/s11756 McLean 2015 Exclusion reason: Incorrect study design ;

The human health effects of DDT (dichlorodiphenyl-trichloroethane) and PCBS (polychlorinated biphenyls) and an overview of organochlorines in public health
Longnecker, M. P; Rogan, W. J; Lucier, G 1997 Annual Review of Public Health 18 211-244 10.1146/annurev.publhealth.18 Longnecker 1997 Exclusion reason: Incorrect study design ;

Meta-analysis of risk for lymphoma with immunomodulators for inflammatory bowel disease
Kotlyar, D. S; Brerenger, C; Lewis, J. D; Blonski, W; Van Dornelaar, M; Porter, D. L; Sandilya, S; Lichtenstein, G. R 2010 Journal of Clinical Oncology Kotlyar 2010 Exclusion reason: Incorrect study design ;

Lymphoma risk in psoriasis: Results of the PUVA follow-up study
Stern, R. S 2005 Archives of Dermatology 142 9 1132-1136 http://dx.doi.org/10.1001/arch dermatol.2005.79 Stern 2006 Exclusion reason: Incorrect study design ;
Title	Authors	Year	Volume	Pages	Digital Object Identifier	Exclusion reason		
Helicobacter infection, chronic inflammation, and the development of malignancy	Crowe, S. E.	2005	21	152-38	http://dx.doi.org/10.1111/j.1540-8758.2005.00352.x	Exclusion reason: Incorrect study design		
Fournier's Gangrene Complicating Hematologic Malignancies: Literature Review and Treatment Suggestions	D'Arena, G.; Pietrantuono, G.; Buccino, E.; Pacifico, G.; Musto, P.	2015	5	1-251	http://dx.doi.org/10.1007/s11864-013-0304-y	Exclusion reason: Incorrect study design		
Establishing the carcinogenic risk of immunomodulatory drugs	Weaver, J. L.	2012	40	105-118	http://dx.doi.org/10.1162/tmol.2011.12-09-117	Exclusion reason: Incorrect study design		
Can aspirin and cancer prevention be ageless companions?	Farag, M.	2015	9	1-8	http://dx.doi.org/10.1007/s11864-015-0352-3	Exclusion reason: Incorrect study design		
Estimating the number of US incident cancers attributable to obesity and the impact on temporal trends in incidence rates for obesity-related cancers	Polednak, A. P.	2008	32	190-199	10.1016/j.cdp.2008.08.004	Exclusion reason: Incorrect study design		
Incidence of Malignancy and the Risk of Lymphoma in Japanese Patients with Rheumatoid Arthritis Compared to the General Population	Hashimoto, A.; Chiba, N.; Tsuho, H.; Komiya, A.; Furukawa, H.; Matsui, T.; Nishino, J.; Tohma, S.	2015	42	564-571	10.3899/jrheum.140533	Exclusion reason: Incorrect study design		
Chronic Hepatitis B and C Virus Infection and Risk for Non-Hodgkin Lymphoma in HIV-Infected Patients	Wang, Q.; De Luca, A.; Smith, C.; Zangerle, R.; Sambatakou, H.; Bonnet, F.; Smit, C.; Schommers, P.; Thornton, A.; Berenguer, J.; Peters, L.; Spagnuolo, V.; Ammassari, A.; Antinori, A.; Roldan, E. Q.; Musini, C.; Miro, J. M.; Konopnicki, D.; Fehr, J.; Campbell, M. A.; Termote, M.; Bucher, H.	2017	166	19-4	10.7326/mj-2016-0240	Exclusion reason: Incorrect study design		
Diabetes, antihyperglycemic medications and cancer risk: Smoke or fire?	Gallagher, E. J.; Leroith, D.	2013	20	485-494	http://dx.doi.org/10.1097/01.PDR.0000441404.86889.10	Exclusion reason: Incorrect study design		
Metabolic syndrome and cancer: Holistic or reductionists?	Esposito, K.; Capuano, A.; Giugliano, D.	2014	45	362-364	http://dx.doi.org/10.1007/s12098-014-1319-0	Exclusion reason: Incorrect study design		
Metformin and cancer: An existing drug for cancer prevention and therapy (Review)	Zi, F. M.; Zi, H. P.; Li, Y.; He, J. S.; Shi, Q. Z.; Cai, Z.	2015	15	683-690	10.3892/oal.2017.7412	Exclusion reason: Incorrect study design		
To Each Its Own: Linking the Biology and Epidemiology of NHL Subtypes	Koff, J. L.; Chihara, D.; Phan, A.; Nastoupil, L. J.; Williams, J. N.; Flowers, C. R.	2015	10	244-255	http://dx.doi.org/10.1007/s11665-014-0516-0	Exclusion reason: Incorrect study design		
72nd American Diabetes Association Scientific Sessions: Clinical updates review findings on risk of malignancy with pioglitazone, as well as various risk factors associated with insulin resistance use	Kuznar, W.	2012	34	287	http://dx.doi.org/10.4084/mjhi.2012.17206	Exclusion reason: Incorrect study design		
Acquired immunodeficiency syndrome - Related lymphoma in the era of highly active antiretroviral therapy	Thirlwell, C.; Sarker, B.; Stebbing, J.; Bower, M.	2003	4	86-92	http://dx.doi.org/10.3816/CL.2003.4.5	Exclusion reason: Incorrect study design		
Adult Height in Relation to the Incidence of Cancer at Different Anatomic Sites: the Epidemiology of a Challenging Association	Kabat, G. C.; Hosgood, H. D.; Rohan, T. E.	2015	5	18-28	http://dx.doi.org/10.1007/s10775-016-0581-1	Exclusion reason: Incorrect study design		
Adult T-cell leukemia/lymphoma	Mehta-Shah, N.; Rafter, L.; Horwitz, S. M.	2017	13	487-492	http://dx.doi.org/10.1200/JOP.2016.01010	Exclusion reason: Incorrect study design		
Alcohol consumption and types of cancer: a review	Afshar, M.; Otoshi, O.; Elahian, E.; Papi, S.; Aalipour, R.; Pourehabhim, M.; Moghaddam, L. F.; Morantini, M. K.; Salehiyari, H.	2019	5	234-241	10.22317/jcims.10201901.60	Exclusion reason: Incorrect study design		
Title	Authors	Year	Volume	Issue	Pages	DOI	Exclusion reason	Journal
---	--	------	--------	------	-------	--	---	--
An epidemiologic review of marijuana and cancer: An update	Huang, Y. H. J.; Zhang, Z. F.; Tashkin, D. P.; Feng, B.; Straif, K.; Hashibe, M.	2015	24	1	115-31	http://dx.doi.org/10.1158/1058-8837.CSR-15-0213	Exclusion reason: Incorrect study design	Cancer Epidemiology Biomarkers and Prevention
Allergies, Helicobacter pylori and the continental enigmas	Sitaranam, K.	2015	6 JUN	578		http://dx.doi.org/10.3389/fmicb.2015.00578	Exclusion reason: Incorrect study design	Frontiers in Microbiology
Allergy-associated symptoms in relation to childhood non-Hodgkin’s as contrasted to Hodgkin’s lymphomas: a case control study in Greece and meta-analysis.	Dikaioti, Stavroula K.; Chang, Ellen T.; Dessypris, Nick; Papadopoulou, Charalampia; Sideris, Nick; Pourisidis, Apostolos; Moschouri, Maria; Polychronopoulou, Sophia; Athanasiadou-Papenopoulou, Fanis; Sidi, Vassiliki; Kalma, Maria; Petridou, Eleoni	2012	European Journal of Cancer (Oxford, England : 1990)	48	12 1860-6	https://dx.doi.org/10.1016/j.ejca.2012.05.002	Exclusion reason: Incorrect study design	
Antenatal therapeutic drug exposure and fetal/neonatal tumours: review of 89 cases.	Satge, D.; Sasco, A. J.; Little, J.	1998	Paediatric and perinatal epidemiology	12	1 84-117	Satge 1998	Exclusion reason: Incorrect study design	
Antihypertensive drugs and risk of skin cancer	Cassano, N.; Distefani, A.; Vena, G. A.; Peris, R.	2015	UOMO - Ital. Dermatologica e Venereologia	153	5 672-684	http://dx.doi.org/10.23736/S0378-5123.2015-0015.10.1158/1058_1062	Exclusion reason: Incorrect study design	
Are patients with inflammatory eye disease treated with systemic immunosuppressive therapy at increased risk of malignancy?	Yates, W. B.; McCluskey, P. J.; Wakefield, D.	2015	Journal of Ophthalmic Inflammation and Infection	3	1 9-9	http://dx.doi.org/10.1186/1863-5523.13.1.9	Exclusion reason: Incorrect study design	
Aspirin and cancer prevention and treatment: Are we there yet?	Potter, J. D.	2012	Cancer Epidemiology Biomarkers and Prevention	21	9 1439-1444	http://dx.doi.org/10.1158/1058-8837.CSR-15-0213	Exclusion reason: Incorrect study design	
Association of Metronidazole with Cancer: A Potential Risk Factor or Inconsistent Deductions?.	Adil, Muhammad; Isbail, Waheed; Adrian, Faizal; Wazir, Shabnam; Khan, Imran; Khayam, M Umar; Kamal, Mohammad Amjad; Ahmad, Shafiq; Ahmed, Jawad; Khan, Ishaq N	2018	Current drug metabolism	19	11 902-909	https://dx.doi.org/10.2174/13894501188006111825	Exclusion reason: Incorrect study design	
Atypical manifestations of Epstein-Barr virus in children: a diagnostic challenge	Bolis, V.; Karademos, C.; Chaliasos, N.; Tsabouri, S.	2016	Journal de Pediatría	92	2 113-121	10.1016/j.jped.2015.06.007	Exclusion reason: Incorrect study design	
Benzene exposure and risk of non-Hodgkin lymphoma.	Smith, Marlyn T.; Jones, Rachael M. Smith, Allan H.	2007	Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology	16	3 385-91	http://dx.doi.org/10.5694/mja10.1015184	Exclusion reason: Incorrect study design	
Beyond skin deep: addressing comorbidities in psoriasis	Kovtivanchikamont, T.; Chong, A. H.; Foley, P.	2020	Medical Journal of Australia	212	11 528-534	http://dx.doi.org/10.5694/mja10.1015184	Exclusion reason: Incorrect study design	
Biologics in paediatric Crohn's disease	Gouldthorpe, O.; Catto-Smith, A. G.; Alex, G.	2011	Gastroenterology Research and Practice	21	3 674-96	http://dx.doi.org/10.1155/2011/687574	Exclusion reason: Incorrect study design	
Cancer and immunomodulators in inflammatory bowel diseases	Biancone, Livia; Onali, Sara; Petruzzelli, Carmeline; Calabrese, Emma; Pallone, Francesco	2015	Inflammatory bowel diseases	21	3 674-96	https://dx.doi.org/10.1097/MIB.000000000000000000	Exclusion reason: Incorrect study design	
Cancer incidence in cohorts of workers in the rubber manufacturing industry first employed since 1975 in the UK and Sweden	Bonnif, M.; Koehlin, A.; Sorohan, T.; Jakobsson, K.; Boyle, P.	2017	Occupational and Environmental Medicine	74	6 417-421	10.1136/oemed-2016-10386	Exclusion reason: Incorrect study design	

https://mc.manuscriptcentral.com/bmjmedicine
Title	Authors	Year	Journal/Conference	Volume/Issue	Pages	DOI	Exclusion Reason
Cancer incidence in people with hepatitis B or C infection: A large community-based linkage study	Amn, J.; Dore, G. J.; D’OConnell, D. L.; Bartlett, M.; Tracey, E.; Kaldor, J. M.; Law, M. G.	2006	Journal of Hepatology	45	2197-2003	10.1016/j.jhep.2006.02.014	Amn 2006 Exclusion reason: Incorrect study design
Do the Fertility Drugs Increase the Risk of Cancer? A Review Study.	Momennimovahed, Zohre; Taheri, Safoura; Timbalk, Azita; Salehiyina, Hamid	2019	Frontiers in endocrinology	10	101555782	313 https://dx.doi.org/10.3389/fendo	Momenni movahed 2019 Exclusion reason: Incorrect study design
Environmental influences in cancer aetiology	Newby, J. A.; Howard, C. V.	2005	Journal of Nutritional and Environmental Medicine	15	3-Feb	56-114 http://dx.doi.org/10.1080/13877600500532072 Newby 2005	Exclusion reason: Incorrect study design
Epidemiologic studies in agricultural populations: observations and future directions	Blair, Aaron; Freeman, Laura Beane	2009	Journal of agronomy	14	2	125-31 https://dx.doi.org/10.1080/10789590902957205 Blair 2009	Exclusion reason: Incorrect study design
Epidemiologic evidence for an association between use of wireless phones and tumor diseases.	Hardell, Lennart; Carberg, Michael; Hansson Mild, Kjell	2009	Pathophysiology : the official journal of the International Society for Pathophysiology	16	3-Feb	113-22 https://dx.doi.org/10.1016/j.physiology.2009.02.017 Hardell 2009	Exclusion reason: Incorrect study design
Do tumor necrosis factor inhibitors increase cancer risk in patients with chronic immune-mediated inflammatory disorders?	Chen, Y.; Friedman, M.; Lu, G.; Deodhar, A.; Chu, C. Q.	2018	Cytokine	101	78-88	10.1016/j.cytobio.2016.09.013 Chen 2018	Exclusion reason: Incorrect study design
Epidemiology of Follicular Lymphoma	Cerhan, James R.	2020	Hematology/Onology Clinics of North America	34	4	631-646 https://dx.doi.org/10.1016/j.hemonc.2019.04.010 Cerhan 2020	Exclusion reason: Incorrect study design
Epidemiology of lymphomas	Roman, E.; Smith, A. G.	2011	Histopathology	58	1	14-Apr 10.1111/j.1365-2559.2010.03707.11 Roman 2011	Exclusion reason: Incorrect study design
Epstein-Barr virus and its association with disease - a review of relevance to general practice	Fugl, Anders; Andersen, Christen Lykkegaard	2019	BMC family practice	20	1	62 https://dx.doi.org/10.1186/s12915-019-0709-4 Fugl 2019	Exclusion reason: Incorrect study design
Epstein-Barr virus-associated malignancies: epidemiologic patterns and etiologic implications.	Hsu, J L; Glaser, S L	2000	Critical reviews in oncology/hematology	34	1	27-53 Hsu 2000	Exclusion reason: Incorrect study design
Extrahepatic cancers and chronic HCV infection	Pol, S.; Valet-Pichard, A.; Hemine, O.	2018	Nature Reviews: Gastroenterology & Hepatology	15	5	283-290 10.1038/nrgastro.2017.172 Pol 2018	Exclusion reason: Incorrect study design
Fire fighters and cancer: Where are we and where to now?	Hintschi, L.; Glass, D. C.	2014	Occupational and Environmental Medicine	71	8	525-526 http://dx.doi.org/10.1136/semaliment.2013.005363 Hintschi 2014	Exclusion reason: Incorrect study design
Folate and Its Impact on Cancer Risk.	Pieroth, Renee; Paver, Stephanie; Day, Sharon; Lammersfeld, Carolyn	2018	Current nutrition reports	7	3	70-84 https://dx.doi.org/10.1007/s10076-017-0765-5 Pieroth 2018	Exclusion reason: Incorrect study design
Follicular lymphoma	De Angelis, F.; Foa, R.	2012	Experimental Oncology	34	4	380-383 DeAngelis 2012	Exclusion reason: Incorrect study design
Fruit and vegetables and cancer risk: A review of southern European studies	Turati, F.; Rossa, M.; Pelucchi, C.; Levi, F.; La Vecchia, C.	2015	British Journal of Nutrition	113	502-512	5102-512 http://dx.doi.org/10.1017/S0007114515001323 Turati 2015	Exclusion reason: Incorrect study design
Genetically Determined Height and Risk of Non-Hodgkin Lymphoma.	Moore, Amy; Kane, Eleanor; Wang, Zhaoming; Panagiotou, Orestis A; Teras, Lauren R; Monnereau, Alain; Wong Doo, Nicole; Machiela, Mitchell J; Skubola, Christine F; Slager, Susan L; Salles, Gilles; Camp, Nicola J; Bracci, Paige M; Nieters, Alexandra; Vermeulen, Roel C H; Vijal, Joseph;	2019	Frontiers in oncology	9	10156887	1539 https://dx.doi.org/10.3389/fonc	Moore 2019 Exclusion reason: Incorrect study design
Health effects of exposure to waste incinerator emissions: A review of epidemiological studies	Franchini, M.; Rial, M.; Buati, E.; Bianchi, F.	2004	Annali dell’Istituto Superiore di Sanità	40	101-115	Franchini 2004	Exclusion reason: Incorrect study design
Hidradenitis Suppurativa and the Association With Hematological Malignancies	Sotodiani, Bahman; Abbas, Mariam; Brassard, Alain	2017	Journal of cutaneous medicine and surgery	21	2	158-161 https://dx.doi.org/10.1177/1200048966304044 Sotodi an 2017	Exclusion reason: Incorrect study design
Exclusion reason: Incorrect study design;							
Title	Authors	Year	Reference				
---	---	---	---	---	---	---	---
Diabetes, Epstein-Barr virus and extranodal natural killer cell lymphoma in India: Unravelling the plausible nexus.	Spadigam, Anita; Dhupar, Anita; Syed, Shaheen; Saluja, Tajindra Singh	2016	[Indian journal of medical and paediatric oncology official journal of Indian Society of Medical & Paediatric Oncology](https://dx.doi.org/10.4103/0974-928X.219607) 37 1 13-Jun-2016 (Spadigam 2016)				
Drown and cancer: a critical review.	Cole, Philip; Trichopoulos, Dimitrios; Pasides, Harris; Starr, Thomas; Mandel, Jack S	2003	[Regulatory toxicology and pharmacology : RTP](https://doi.org/10.1016/S0890-0592(03)00147-1) 38 3 378-88 (Cole 2003)				
Increased risk for posttransplant lymphoproliferative disease in recipients of liver transplants with hepatitis C.	McLaughlin, K; Wajstaub, S; Marotta, P; Adams, P; Grant, D R; Wall, W J; Jevnikar, A M; Rizkalla, K S	2000	[Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society](https://doi.org/10.1053/lt.2000.21576) 6 5 570-4 (McLaughlin 2000)				
(Nutritional) chemoprevention of cancer: what's up?	Baron, John A	2006	[Journal of the National Cancer Institute](https://doi.org/10.1007/s11763-006-1352-0) 98 14 945-6 (Baron 2006)				
Skin cancer and non-Hodgkin's lymphoma: examining the link.	Hu, Shasa; Federman, Daniel G; Ma, Fangchao; Kirsner, Robert S	2005	[Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.]](https://doi.org/10.1016/j.asd.2005.03.001) 31 1 76-82 (Hu 2005)				
Review of the evidence for an association between infant feeding and childhood cancer.	Davis, M K	1998	[International journal of cancer. Supplement = Journal international du cancer. Supplement](https://doi.org/10.1002/1097-0246(199805)91:5<29:aid-ijc27>3.0.co;2-4) 11 5 29-33 (Davis 1998)				
Pesticides and childhood cancer: an update.	Nasterlack, Michael	2007	[International journal of hygiene and environmental health](https://doi.org/10.1080/00207510701383165) 210 5 644-57 (Nasterlack 2007)				
A review of the infection-associated cancers in North African countries	Hussein, W. M.; Anwar, W. A.; Alateeb, M.; Mazini, L.; Forsti, A.; Thinhitas, R. D.; Khyatt, M.	2018	[Infectious Agents and Cancer](https://doi.org/10.1089/inf.2017.0662) 11 12 10.1186/s13027-016-0083-8 (Hussein 2018)				
Antibody induction therapy in renal transplant patients receiving calcineurin-inhibitor immunosuppressive regimens: A comparative review.	Nashan, B.	2005	[Biodrugs](https://doi.org/10.2165/00063030-200505000-00006) 19 1 39-46 (Nashan 2005)				
Avoiding Rash Decision Making: Skin Cancer Screening of Patients With Inflammatory Bowel Disease	Siao, D.; Velayos, F.	2014	[Clinical Gastroenterology and Hepatology](https://doi.org/10.1016/j.cgh.2013.10.018) 12 2 274-276 (Siao 2014)				
Genetically Determined Height and Risk of Non-Hodgkin Lymphoma	Moore, A.; Kane, E.; Wang, Z. M.; Paragotou, O. A.; Teras, L. R.; Monnereau, A.; Doo, N. W.; Machida, M. J.; Skiboda, C. F.; Slager, S. L.; Salles, G.; Camp, N. J.; Bracci, P. M.; Nieters, A.; Vermeulen, R. C. H.; Vijai, J.; Smadby, K. E.; Zhang, Y. W.; Vajdic, C. M.; Cozen, W.; Spinelli, J.	2020	[Frontiers in Oncology](https://doi.org/10.3389/fonc.2019.01539) 9 8 10.3389/fonc.2019.01539 (Moore 2020)				
Title	Authors	publication Year	Volume/Issue/Start Page	PubMed/DOI	Exclusion reason		
--	---	------------------	--------------------------	---	---		
Leukemia in petroleum refinery workers: a review of recent studies	Clapp, R. W.; Coogan, P. F.	1999	9	457-587; 10.2190/METL-UD49-01YH-Clapp 1999			
Meflornin: Risk-benefit profile with a focus on cancer	Provinciali, N.; Lazerooni, M.; Cazzaniga, M.; Gorliro, F.; Dunn, B. K.; Decensi, A.	2015	14	1573-1580; http://dx.doi.org/10.1517/14740338.2015.102	Exclusion reason: Incorrect study design		
Physical activity, sedentary behaviors, and risk of cancer	Moore, S. C.; Matthews, C. E.; Keadie, S.; Patel, A. V.; Lee, I. M.	2017	14	577-394; 10.1093/uso/078019002866-Moore 2017	Exclusion reason: Incorrect study design		
Psoriasis and skin cancer	Yin, L.; Hu, Y. Y.; Bin Jameel, A. A.; Xu, J. L.; Yin, Z. Q.	2017	28	2111-2113; Yin 2017	Exclusion reason: Incorrect study design		
Safety of infliximab for the treatment of inflammatory bowel disease: Current understanding of the potential for serious adverse events	Khanna, R.; Feagan, B. G.	2015	14	987-999; 10.1517/14740338.2015.102; Khanna 2015	Exclusion reason: Incorrect study design		
ABO-Mismatched Allogeneic Hematopoietic Stem Cell Transplantation	Wore, N.	2016	43	1-12-March; http://dx.doi.org/10.1158/0000-0000-Wore 2016	Exclusion reason: Incorrect study design		
Adverse effects of immunosuppression in pediatric solid organ transplantation	Schonder, K. S.; Mazariagos, G. V.; Weber, R. J.	2010	12	35-49; 10.2165/11316180-00000000-Schonder 2010	Exclusion reason: Incorrect study design		
Decolonization of Staphylococcus aureus in Healthcare: A Dermatology Perspective	Kuraltis, D.; Williams, L.	2016	2018	2382050; http://dx.doi.org/10.1155/2018-Kuraltis 2018	Exclusion reason: Incorrect study design		
Excess Weight as a Risk Factor Common to Many Cancer Sites: Words of Caution when Interpreting Meta-analytic Evidence.	Arnold, Melina; Renehan, Andrew G; Colditz, Graham A	2017	26	5663-666; https://dx.doi.org/10.1158/1078-0432-Armold 2017	Exclusion reason: Incorrect study design		
A review of epidemiologic studies of tizaine herbicides and cancer	Sathiaikumar, N.; Delzeil, E.	1997	27	599-612; 10.3109/1040844079088440-Sathiai-kumar 1997	Exclusion reason: Incorrect study design		
Alcoholic beverages, obesity physical activity and other nutritional factors, and cancer risk: A review of the evidence.	Latino-Martel, Paule; Cottel, Vanessa; Druesne-Picollo, Nathalie; Pierre, Fabrice H F; Touilaud, Marina; Touvier, Mathilde; Vaussion, Marie-Paule; Deschasaux, Melanie; Le Mery, Julie; Barrandon, Emilie; Ancelin, Raphaelle	2018	99-100	308-23; https://dx.doi.org/10.1016/j.latino-martel 2016	Exclusion reason: Incorrect study design		
Body mass index and 20 specific cancers: re-analyses of dose-response meta-analyses of observational studies.	Choi, E K; Park, H B; Lee, K H; Park, J H; Eisenhut, M; van der Vliet, H J; Kim, G; Shin, J I	2018	29	749-757; https://dx.doi.org/10.1093/analsci/ Choi 2018	Exclusion reason: Incorrect study design		
Endometriosis: a high-risk population for major chronic diseases?.	Kvasnakoff, Marina; Mu, Fan; Terry, Kathryn L; Harris, Holly R; Poole, Elizabeth M; Farland, Leslie; Misser, Stacey	2015	21	4500-16; https://dx.doi.org/10.1093/humrep/kv 2015	Exclusion reason: Incorrect study design		
Cancer risks after solid organ transplantation and after long-term dialysis	Hortlund, M.; Muhr, L B A.; Storm, H.; Engholm, G.; Dillner, J.; Bzhalava, D.	2017	140	1091-1110; 10.1002/jc.30531; Hortlund 2017	Exclusion reason: Incorrect study design		
Title	Year of Publication	Journal Name	Volume	Pages	Digital Object Identifier	Exclusion reason	
---	---------------------	--	--------	--	---	--------------------------	
Epidemiology and etiology of mantle cell lymphoma and other non-Hodgkin lymphoma subtypes.	2011	Seminars in Cancer Biology	21	5293-5298	10.1016/j.semcancer.2011.06.015	Smedby 2011	
Metabolic factors and blood cancers among 578,000 adults in the metabolic syndrome and cancer project (Me-Can).	2012	Annals of Hematology	91	1519-153	10.1007/s00277-012-1489-z	Nagel 2012	
Plasma levels of polychlorinated biphenyls, non-Hodgkin lymphoma, and causation.	2012	Journal of Environmental and public health	2012	256981	https://dx.doi.org/10.1159/000417656	Freema 2012	
Ranking occupational contexts associated with risk of non-Hodgkin lymphoma.	2016	American Journal of Industrial Medicine	59	561-574	10.1002/ajim.22004	Reutort 2016	
Risk of cancer among firefighters: A quantitative review of selected malignancies.	2006	Archives of Environmental & Occupational Health	61	223-231	https://dx.doi.org/10.1016/j.aeoeh.2006	Youakim 2006	
ABO blood group and cancer risk.	2010	European journal of cancer (Oxford, England : 1990)	46	18345-18350	https://dx.doi.org/10.1016/j.ejca.2010	Iodice 2010	
The challenge of AIDS-related malignancies in sub-Saharan Africa.	2010	PLoS one	5	1e8621	https://dx.doi.org/10.1371/journal.pone.0008621	Sasco 2010	
Risk of lymphoma in women with breast implants: analysis of clinical studies.	2012	European Journal of Cancer Prevention	21	274-280	10.1097/CEJ.0b013e326350	Larget 2012	
Anti-TNF therapy in inflammatory bowel diseases.	2010	Clinical Update on Inflammatory Disorders of the Gastrointestinal Tract	26	95-107	http://dx.doi.org/10.1159/000417656	Fiorino 2010	
A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and cancer risk in humans.	2014	Critical Reviews in Toxicology	44	S1	http://dx.doi.org/10.3106/1047686	Chang 2014	
Reproductive factors and non-Hodgkin lymphoma: a systematic review.	2014	Critical reviews in oncology/hematology	92	181-193	https://dx.doi.org/10.1016/j.crot.2014	Costas 2014	
Statin use is associated with a lower risk of diffuse large B-cell lymphoma: A systematic review and meta-analysis.	2020	J. Clin. Oncol.	38	15	10.1200/jco.2020.38.15_supplement	Ponvila 2020	
Occupational exposure to formaldehyde and risk of non-Hodgkin lymphoma: a meta-analysis.	2019	BMC cancer	19	1240	https://dx.doi.org/10.1186/s12885-019-0651	Catalan 2019	
Tooth loss and cancer risk: A dose-response meta-analysis of prospective cohort studies.	2018	Oncotarget	9	15090-15100	10.18632/oncotarget.23850	Shi 2018	
The risk of developing a second primary cancer in melanoma patients: a comprehensive review of the literature and meta-analysis.	2014	Journal of dermatological science	75	1	9-Mar	Cai 2014	
Study Title	Authors	Year	Journal	Page(s)	DOI Link	Exclusion Reason	
---	--	------	---	---------	--	--	
Health effects of occupational exposure to uranium: Do physicochemical properties matter?	Zhivin, S.; Launier, D.; Guseva Gamu, I.	2014	International Journal of Radiation Biology	90	1104-11 http://dx.doi.org/10.3109/09993993.2014.929234	Exclusion reason: Incorrect study focus;	
Inflammatory myopathies and lymphoma	Stuigen, J. P.	2016	Journal of the Neurological Sciences	369	377-389 http://dx.doi.org/10.1016/j.jnns.2016.06.018	Exclusion reason: Incorrect study focus;	
THE INCIDENCE OF NON-HODGKIN LYMPHOMA IN IRAN: A SYSTEMATIC REVIEW AND META-ANALYSIS	Fouladseresht, H.; Ghobari, M.; Hassanpour, S.; Dastmohseni, A.; Mohseni, S.; Abbate, Rosanna; Abbate, Rosanna; Gensini, Gian Franco; Casini, Alessandro	2019	World Cancer Research Journal	6	7 http://dx.doi.org/10.1002/wcr.20101001	Exclusion reason: Incorrect study focus;	
Is Banning Texturized Implants to Prevent Breast Implant-Associated Anaplastic Large Cell Lymphoma a Rational Decision? A Meta-Analysis and Cost-Effectiveness Study	Danilla, Stefan V.; Jara, Rocio P.; Miranda, Felipe; Aparicio, A.; Aguilera, E.; Rioja, S.; Mohammadian-Hafshejani, A.; Salehi-Rouhi, H.	2020	Aesthetic Surgery Journal	40	7 121-731 https://dx.doi.org/10.1093/apt/faz180	Exclusion reason: Incorrect study focus;	
A Systematic Review of Factors That Contribute to Hepatosplenic T-Cell Lymphoma in Patients With Inflammatory Bowel Disease	Kolyar, D. S.; Osterman, M. T.; Diamond, R. H.; Porter, D.; Blonski, W. C.; Wasik, M.; Sampaio, S.; Mendizabal, M.; Lin, M. V.; Lichtenstein, G. R.	2011	Clinical Gastroenterology and Hepatology	9	1 10164.ghg.2010.09.016 Kolyar 2011	Exclusion reason: Incorrect study focus;	
A systematic review of the incidence and prevalence of cancer in multiple sclerosis.	Mairie, Ruth Ann; Reider, Nadia; Cohen, Jeffrey; Steve, Olaf; Trojano, Maria; Sorensen, Per; Soelberg, Reingold, Stephen C; Cutter, Gary	2015	Multiple sclerosis (Houndmills, Basingstoke, England)	21	3 294-304 https://dx.doi.org/10.1177/1345915615578060	Exclusion reason: Incorrect study focus;	
Ethylene oxide: an assessment of the epidemiological evidence on carcinogenicity.	Shore, R. E; Gardner, M J; Pannett, B	1993	British Journal of Industrial Medicine	50	11 971-97 Shore 1993	Exclusion reason: Incorrect study focus;	
HLA-haploidentical vs matched-sibling hematopoietic cell transplantation: A systematic review and meta-analysis	Meybodi, M. A.; Cao, W.; Luznik, L.; Bashey, A.; Zhang, X.; Romee, R.; Saber, W.; Hamadian, M.; Weisdorf, D. J.; Chu, H.; Rashid, A.	2019	Blood Advances	3	17 2561-2587 https://dx.doi.org/10.1182/blood.2018-819430 Meybodi 2019	Exclusion reason: Incorrect study focus;	
Weight loss as a predictor of cancer in primary care: a systematic review and meta-analysis.	Nicholson, Bnian B; Hamilton, William; O’Sullivan, Jack; Aveyard, Paul; Hobbs, Fd Richard	2013	The British journal of general practice : the journal of the Royal College of General Practitioners	68	670 431-432 https://dx.doi.org/10.3399/bjgp18X708961 Nicholson 2018	Exclusion reason: Incorrect study focus;	
Obesity and Other Cancers.	Yang, Lin; Drake, Betina F; Coolitz, Graham A	2016	Journal of clinical oncology : official journal of the American Society of Clinical Oncology	34	35 4231-4237 Yang 2016	Exclusion reason: Incorrect study focus;	
Adherence to Mediterranean diet and health status: meta-analysis.	Solfi, Francesco; Cesari, Francesco; Abbate, Rosanna; Gensini, Gian Franco; Casini, Alessandro	2008	BMJ (Clinical research ed.)	337	3800488, bm1344 https://dx.doi.org/10.1136/bmj.3800488, bm1344 Solfi 2008	Exclusion reason: Insufficient data for analysis;	
Acrylonitrile and cancer: a review of the epidemiology.	Cole, Philip; Mandel, Jack S; Collins, James J	2008	Regulatory toxicology and pharmacology : RTP	52	3 342-51 https://dx.doi.org/10.1016/j.yrtp.2008.04.007 Cole 2008	Exclusion reason: Insufficient data for analysis;	
Title	Authors	Year	Volume	Issue	Pages	DOI	Exclusion reason
--	---	------	--------	-------	-------	--	---
Adherence to Diet and Physical Activity Cancer Prevention Guidelines and Cancer Outcomes: A Systematic Review.	Kohler, Lindsay N; Garcia, David D; Harris, Robin B; Oren, Eyad; Roe, Denise J; Jacobs, Elizabeth T	2016	25	7	1016-28	https://dx.doi.org/10.1158/1058-8840.CAN-16-0063 (Kohler 2016)	Insufficient data for analysis;
Active Commuting and Multiple Health Outcomes: A Systematic Review and Meta-Analysis.	Dinu, Monica; Pagliai, Giuditta; Macchi, Claudio; Sofi, Francesco	2019	49	3	437-452	https://dx.doi.org/10.1007/s10555-019-00806-5 (Dinu 2019)	Insufficient data for analysis;
Pentachlorophenol and cancer risk: focusing the lens on specific chlorophenols and contaminants.	Cooper, Glenis; Jones, Samantha	2008	116	8	1001-8	https://dx.doi.org/10.1289/ehp.1104711 (Cooper 2008)	Insufficient data for analysis;
Comparison of anthropometric measurements of adiposity in relation to cancer risk: a systematic review of prospective studies.	De Ridder, Josefine; Julian-Almarcegui, Cristina; Mullée, Amy; Rinaldi, Sabina; Van Herck, Koen; Vicente-Rodriguez, German; Huybrechts, Inge	2016	27	3	291-300	https://dx.doi.org/10.1007/s10555-016-0287-z (DeRidder 2016)	Insufficient data for analysis;
Associations between aspirin use and the risk of cancers: a meta-analysis of observational studies.	Qiao, Tian; Yang, Tingting; Gan, Yong; Li, Wenzhen; Wang, Chao; Gong, Yanhong; Liu, Zuxun	2018	18	1	286	https://dx.doi.org/10.1289/ehp.208295 (Qiao 2018)	Insufficient data for analysis;
Nut Consumption and Risk of Cancer: A Meta-Analysis of Prospective Studies	Long, Jieyi; Ji, Zhi; Yuan, Peihong; Long, Tingting; Liu, Ke; Li, Jiaoyuan; Cheng, Liming	2020	29	3	565-573	https://dx.doi.org/10.1158/1058-8840.CAN-20-0267 (Long 2020)	Insufficient data for analysis;
Relationship between exposure to mixtures of persistent, bioaccumulative, and toxic chemicals and cancer risk: A systematic review	Fernandez-Martinez, Nicolas Francisco; Ching-Lopez, Ana; Oly de Labry Lima, Antonio; Salamanca-Fernandez, Elena; Perez-Gomez, Beatriz; Jimenez-Moleen, Jose Juan; Sanchez, Maria Jose; Rodriguez-Barranco, Miguel	2020	18	1	109787	https://dx.doi.org/10.1016/j.envres.2020.109787 (Fernandez-Martinez 2020)	Insufficient data for analysis;
Maternal exposure to pesticides and risk of childhood lymphoma in France: A pooled analysis of the ESCALE and ESTELLE studies (SFCE).	Mavounou, Sandra; Rios, Paula; Pacquement, Helene; Nolla, Marie; Rigaud, Charlotte; Simonin, Mathieu; Bertrand, Yves; Lambillotte, Anne; Faure, Laure; Orsi, Laurent; Clavel, Jacqueline; Bonaventure, Audrey	2020	68	4	101797	https://dx.doi.org/10.1016/j.envres.2020.101797 (Mavounou 2020)	Insufficient data for analysis;
Muscle-strengthening activities and cancer incidence and mortality: a systematic review and meta-analysis of observational studies	Nascimento, Wilson; Ferrari, Gerson; Martini, Camila Berlinki; Rey-Lopez, Juan Pablo; Izquierdo, Mikel; Lee, Dong Hoon; Giovannucci, Edward L; Rezende, Leandro M	2021	18	1	69	https://dx.doi.org/10.1186/s11767-021-01831-2 (Nascimento 2021)	Insufficient data for analysis;
Consumption of Sweet Beverages and Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies	Llaha, Fjorida; Gil-Lespinard, Mercedes; Unal, Pelin; de Villante, Izar; Castaneda, Jazmin; Zamora-Ros, Raul	2021	13	2	3390-3612	https://dx.doi.org/10.3390/nutrients130303390 (Llaha 2021)	Insufficient data for analysis;
Title	Authors	Year	Volume	Pages	Journal	Date	Exclusion reason
--	---	------	--------	---------	--	-----------	--
Cellular Phone Use and Risk of Tumors: Systematic Review and Meta-Analysis	Cho, Yoon-Jung; Moskowitz, Joel M.; Myung, Seung-Kwon; Lee, Yi-Ryong; Hong, Yun-Chul	2020	75	1-8	International Journal of environmental research and public health	Choi 2020	Insufficient data for analysis;
Exposure to permethrin and cancer risk: a systematic review.	Boffetta, Paolo; Desai, Vini	2018	33	4-12	Critical Reviews in Toxicology	Boffetta 2018	Insufficient data for analysis;
Is periodontitis a risk indicator for cancer? A meta-analysis.	Corbella, Stefano; Veronesi, Paolo; Galimberti, Viviana; Weinstein, Roberto; Del Fabbro, Massimo; Francetti, Luca	2018	23	4-12	PloS One	Corbella 2018	Insufficient data for analysis;
Consumption of whole grains and cereal fiber in relation to cancer risk: a systematic review of longitudinal studies.	Makarem, Nour; Nicholson, Joseph M; Bandera, Elisa V; McGowan, Nicola M; Parekh, Niyaati	2018	33	1-8	Nutrition Reviews	Makarem 2016	Insufficient data for analysis;
Thiazolidinedione use and diabetes: a systematic review and meta-analysis.	Colmers, J N; Bowker, S L; Johnson, J A	2012	138	1-8	Diabetes & Metabolism	Colmer 2012	Insufficient data for analysis;
Risk of lymphoma associated with combination anti-tumor necrosis factor and immunomodulator therapy for the treatment of Crohn’s disease: a meta-analysis.	Siegel, Corey A; Marden, Sadie M; Persing, Sarah M; Larson, Robin J; Sands, Bruce E	2009	33	1-8	Clinical Gastroenterology and Hepatology: the official clinical practice journal of the American Gastroenterology Association	Siegel 2009	Insufficient data for analysis;
The comparative efficacy and safety of biologics for the treatment of rheumatoid arthritis: A systematic review and meta-analysis.	Gartlehner, G.; Hansen, R. A.; Jonas, B. L.; Thieda, P.; Loehr, K. N.	2005	12	1-8	Journal of Rheumatology	Garthe 2006	Insufficient data for analysis;
Comorbidities in polymyalgia rheumatica: a systematic review.	Parington, Richard; Heilwell, Toby; Muller, Sara; Abdul Sultan, Alyshah; Mallen, Christian	2016	23	1-8	Arthritis Research & Therapy	Paringt 2016	Insufficient data for analysis;
Dietary total antioxidant capacity and risk of cancer: a systematic review and meta-analysis on observational studies.	Paro, Mohammad; Sadeghi, Ali; Khatri, Seyed Reza; Nasir, Morteza; Milajerdi, Ali; Khosadost, Mahmoud; Sadeghi, Omid	2019	23	1-8	Critical Reviews in Oncology/Hematology	Paroha 2019	Insufficient data for analysis;
A review and meta-analysis of cancer risks in relation to Portland cement exposure.	Cohen, Sarah S; Sadoff, Margaret M; Jiang, Xiaohui; Fryzek, Jon P; Garabrant, David H	2014	37	1-8	Occupational and Environmental Medicine	Cohen 2014	Insufficient data for analysis;
Systemic sclerosis (scleroderma) and cancer risk: systematic review and meta-analysis of observational studies.	Bonfazi, Marina; Tramacere, Irene; Pomponio, Giovanni; Gabrielli, Barbara; Avvedimento, Enrico V; La Vecchia, Carlo; Negri, Eva; Gabrielli, Armando	2013	24	1-8	Rheumatology (Oxford, England)	Bonfazi 2013	Insufficient data for analysis;
Sex Differences in the Association between Night Shift Work and the Risk of Cancers: A Meta-Analysis of 57 Articles.	Liu, Wen; Zhou, Zhong; Han, Dong; Chen, Jun; Zhang, Guiming	2018	35	1-8	Disease Markers	Liu 2018	Insufficient data for analysis;
Dietary factors and risk of chronic lymphocytic leukemia and small lymphocytic lymphoma: a pooled analysis of two prospective studies.	Tsai, Hue-Ting; Cross, Amanda J; Graubard, Barry I; Oken, Martin; Moskowitz, Joel; Barnett, Neil E	2010	33	1-8	Cancer Epidemiology, Biomarkers & Prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society for Preventive Oncology	Tsai 2010	Insufficient data for analysis;
Title	Authors	Year	Volume	Pages	Journal	DOI	Exclusion reason
--	--	------	--------	---------	--	--	--
Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies.	Hardell, Lennart; Eriksson, Mikael; Nordstrom, Marie	2002	43	1045-9	Leukemia & lymphoma	https://dx.doi.org/10.1043-9	Hardev 2002
Sweetened carbonated beverage consumption and cancer risk: meta-analysis and review.	Boyle, Peter; Koechlin, Alice; Aulier, Philippe	2014	European Journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP)	23	5	481-90	https://dx.doi.org/10.1097/CEJ
Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: a meta-analysis.	Koltyar, David S; Lewis, James D; Beaugerite, Laurent; Tiemey, Ann; Brenninger, Colleen M; Gisbert, Javier P; Loftus, Edward V Jr; Peyrin-Biroulet, Laurent; Blonski, Wojciech C; Van Domselaar, Manuel; Chaparro, Maria; Sandiyya, Sandipani; Bewtra, Meenakshi; Beigel, Florian;	2015	Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association	13	5	847-50	https://dx.doi.org/10.1016/j.cge
Hepatitis C infection and lymphoproliferative disease: accidental comorbidities?.	Khoury, Fawik; Chen, Shmuel; Adar, Tomer; Jacob, E; Otteh, Mizrati, Meir;	2014	World Journal of gastroenterology	20	43	16197-20	https://dx.doi.org/10.3748/wjm
Association Between Marijuana Use and Risk of Cancer: A Systematic Review and Meta-analysis.	Ghasemiesfe, Mehrnaz; Barlow, Brooke; Leonard, Samuel; Keyhani, Salomeh; Kerenstein, Deborah;	2019	JAMA network open	2	11	e191631	https://dx.doi.org/10.1001/jama
Cancer Risk Following Bariatric Surgery: Systematic Review and Meta-analysis of National Population-Based Cohort Studies.	Wiggins, Tom; Antonowicz, Stefan S; Marker, Sheraz R;	2019	Obesity surgery	29	3	1031-106	https://dx.doi.org/10.1007/s10561
Effect of bariatric surgery on oncologic outcomes: a systematic review and meta-analysis.	Tee, May C; Cao, Yin; Warnock, Garth L; Hu, Frank B; Chavarro, Jorge E;	2013	Surgical endoscopy	27	12	4449-56	https://dx.doi.org/10.1001/jam
Exposure to Secondhand Smoke and Risk of Cancer in Never Smokers: A Meta-Analysis of Epidemiologic Studies.	Kim, A-Sol; Ko, Hae-Jin; Kwon, Jin-Hyun; Lee, Jong-Mying;	2018	International Journal of environmental research and public health	15	9		https://dx.doi.org/10.3390/ijer
The association between acid suppressive agent use and the risk of cancer: a systematic review and meta-analysis.	Song, Hyun Jin; Jeon, Nakyung; Squires, Patrick;	2020	European Journal of Clinical Pharmacology	106	2	650-656	https://dx.doi.org/10.1007/s00239
Dietary fat intake and risk of non-Hodgkin lymphoma in 2 large prospective cohorts.	Bertrand, Kimberly A; Giovannucci, Edward; Rosner, Bernard A; Zhang, Shummi M; Laden, Francine; Birmann, Brenda M;	2017	The American Journal of clinical nutrition	14	11	863-872	https://dx.doi.org/10.3945/ajcn
Cancer risk in asphalt workers and roofers: review and meta-analysis of epidemiologic studies.	Partanen, T; Boffetta, P;	1994	American Journal of industrial medicine	28	6	721-40	https://dx.doi.org/10.1080/15
Exposure to benzene in a pooled analysis of petroleum industry case-control studies.	Glass, D C; Schnatter, A R; Tang, G; Armstrong, T W; Rushion, L;	2017	Journal of occupational and environmental hygiene	14	11	863-872	https://dx.doi.org/10.1080/15
Mobile phone use and risk of tumors: a meta-analysis.	Myung, Seung-Kwon; Ju, Woong; McDonnell, Diana D; Lee, Yeon Ji; Kazinets, Gene; Cheng, Chih-Tao; Moskowitz, Joel M;	2000	Journal of clinical oncology official journal of the American Society of Clinical Oncology	27	33	5565-72	https://dx.doi.org/10.1200/jco
Title	Authors	Year	PMID	URL	Exclusion reason		
--	---	------	-------	-----	-----------------		
A prospective analysis of body size during childhood, adolescence, and adulthood and risk of non-Hodgkin lymphoma.	Bertrand, Kimberly A; Giovannucci, Edward; Zhang, Shumin M; Laden, Francine; Rosner, Bernard; Birnbaum, Brenda M	2013	2064-73	https://dx.doi.org/10.1158/1940-6288.CAN-12-0426	Bertran d 2013		
Proximity of industries and occupational populations to petrochemical industries and hematological malignancies: Systematic review and meta-analysis of available epidemiological studies	Lefranc, Agnes	2020	6 Envir. Risques et Sante	https://dx.doi.org/10.1684/ERS.2020.1495	Exclusion reason: Non-English		
Influence of food or food groups intake on the occurrence and/or protection of different types of cancer: systematic review	Contreras Garcia, Enrique; Zaragoza-Martí, Ana	2020	169-192	https://dx.doi.org/10.20960/nEnviron. Risques et Sante	Exclusion reason: Non-English		
Risk of cancer in occupational exposure to radar radiation: A systematic review	Zaroushani, V.; Vanani, A. S.; Ahmadi, S.	2019	46-58	http://dx.doi.org/10.1684/ERS.2019.1190	Exclusion reason: Non-English		
Meta-analysis of case-control studies on risk factors of malignant lymphoma in China	Wang, L.; Xie, X. H.; Chen, Y. J.	2010	4477-480	http://dx.doi.org/10.1007/s10388-010-0736-9	Wang 2010		
Pills and cancer risk: Contraindication versus chemoprevention	Schmidmayr, M.; Siefer, Klaus; Klauss, V.; Kiechle, M.	2014	1583-143	http://dx.doi.org/10.1007/s10388-010-0736-9	Exclusion reason: Non-English		
Documented and suspected risk factors for childhood cancer aetiology	Magnani, C.; Miligi, L.; Parodi, S.	2018	16-Oct	http://dx.doi.org/10.1007/s10388-010-0736-9	Exclusion reason: Non-English		
Does the bariatric surgery allow a decrease of oncologic risk in obese subject?	Vanderingen, M.; Waraumont, M.; Ciazzo, R.; Pigeyre, M.	2014	214-220	http://dx.doi.org/10.1007/s10388-010-0736-9	Exclusion reason: Non-English		
Domestic waste management: State of current knowledge and health effects assessment in general and occupational populations	Anzivino-Viricel, L.; Falette, N.; Carrelier, J.; Montestruq, L.; Guye, O.; Philip, T.; Fervers, B.	2012	360-377	http://dx.doi.org/10.1684/ers.2012.1478	Exclusion reason: Non-English		
Parental tobacco smoke and childhood cancer	Ferris, I.; Tortajada J.; Ortega Garcia, J. A.; Lopez Andreu, J. A.; Berbel Tomero, O.; Marco Macian, A.; Garcia, I.; Castell J.	2004	226-236	http://dx.doi.org/10.1684/ers.2012.1478	Exclusion reason: Non-English		
Research progress on the correlation between obesity, exercise and tumor	Qi, G.; Feng, L. Y.; Liang, H.	2018	1611-1614	http://dx.doi.org/10.1684/ers.2018.1183	Exclusion reason: Non-English		
Correlation between obstructive sleep apnea syndrome and tumor: A Meta-analysis	Sun, Y.; Wang, W.; Kang, J.	2019	1394-143	http://dx.doi.org/10.1158/1940-6288.CAN-18-1119	Sun 2019		
Environmental health of European children: Priorities recommended by the PINCHE network	Zuurberg, M.; Salines, G.; Moshhammer, H.; Stansfeld, S.; Lundqvist, C.; Hanke, W.; Van den Hazel, P.; Bistrup, M.; Babisch, W.	2007	143-56	http://dx.doi.org/10.1007/s10388-010-0736-9	Exclusion reason: Non-English		
Pesticide exposure and cancers in children: Meta-analysis of recent studies	Nicolle-Mir, L.	2012	191-192	http://dx.doi.org/10.1684/ers.2012.1478	Exclusion reason: Non-English		
Title	Authors	Year	Journal	Volume	Pages	DOI	Exclusion reason
---	---	------	-----------------------------------	--------	--------	--------------------------------------	---------------------------------------
HCV-associated mixed cryoglobulinemia and b-cell non-Hodgkin's lymphoma - pathogenetically related problems	Milovanova, S. Y.; Lysenko, L. V.; Milovanova, L. Y.; Mykhlin, N. N.; Russikh, A. V.; Muchin, N. A.	2018	Terapevticheskii Arkhiv	90	6	112-120	Milovanova 2018
Childhood cancer of occupations origin: Leukemia and lymphomas	Lopez Duenas, A.; Aldea Romero, A. E.; Sanz Anquela, J. M.; Jimenez Bustos, J. M.	2012	Revista Española de Pediatría	68	1	59-64	LopezDuenas 2012
Non-Hodgkin’s lymphoma and pesticides	Lasfargues, G.	2017	Bulletin De L’Academie Nationale De Medecine	201	9-Jun	1161-1161	Lasfargues 2017
Risk of cancer associated with the use of antidepressants	Boaventura, C. S.; Guimaraes, A. N.; Soares, G. R.; Fraga, A. M. B. F.; Neves, F. B. C. S.; Fonse, M. P.	2007	Revista de Psiquiatria do Rio Grande do Sul	29	1	163-169	Boaventura 2007
Overweight, obesity and cancer risks	Ancelin, R.; Bessette, D.	2013	Oncologie	15	4-Mar	193-201	Ancelin 2013
Depression and cancer: Challenging the myth through epidemiology	Lemogne, C.; Consoli, S. M.	2010	Psycho-Oncologie	4	1	22-27	Lemogne 2010

Exclusion reason: Non-English;
Topic	Year	Type of Review																
Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies	DalMaso 2006	meta-analysis of summary level data																
Hazardous waste and health impact: a systematic review of the scientific literature	Fazzo 2017	systematic review																
Effects of omega-3 fatty acids on cancer risk: a systematic review	MacLean 2006	systematic review																
Anaplastic Large Cell Lymphoma and Breast Implants: A Systematic Review	Kim 2011	systematic review																
Malignancies and monoclonal gammopathy in Gaucher disease: a systematic review of the literature	Arends 2013	systematic review																
Systematic review of the relationship between artificial sweetener consumption and cancer in humans: analysis of 999,741 participants	Mishra 2015	systematic review																
Consumption of Sugars, Sugary Foods, and Sugary Beverages in Relation to Cancer Risk: A Systematic Review of Longitudinal Studies	Makarem 2018	systematic review																
Are pre- or postnatal diagnostic X-rays a risk factor for childhood cancer? A systematic review	Schulze-Rath 2008	systematic review																
Cancer risk in children and young adults born preterm: A systematic review and meta-analysis	Paquette 2019	systematic review																
Rating	Topic	Author year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11	Item 12	Item 13	Item 14	Item 15	Item 16
-------	--	-------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
eTable 3: AMSTAR 2 evaluation																		
Dietary factors	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
----------------	------------------------	--------------------	--------------	---------------	-----------------------	-------------	--------------	------------------------------------	--									
Meat	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Fish	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Fruits and vegetables	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Legumes	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Coffee and tea	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Condiments	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Dietary fat	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Dietary fibre	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Alcoholic drink	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Breastfeeding	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
High-risk lymphomas	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Non-steroidal anti-inflammatory drugs	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Contraception	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Smoking	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									
Alcohol	Nutritional risk factor	Level of comparison	Outcome type	Follow-up type	No. of primary studies	No. of cases	Effect measure	Relative effects summary effect size	P-value of strength of reported association									

Table 5: Environmental factors for NHL, reported in reanalysis of summary level data with suggestive (Class III), weak (Class IV) and nonsignificant evidence (Class V) of an association with NHL.

RR: relative risk; *OR*: odds ratio; *CI*: confidence interval; *NS*: nonsignificant; *IV*: informative value; *b*: baseline value; *b-l*: baseline level; *b-h*: baseline high level.
Outcome	Group 1	Group 2	Reference	OR/RR	95% CI	P value	Methodology

Notes:
- OR/RR: Odds ratio/relative risk.
- CI: Confidence interval.
- P: Probability.
- Methodology: IV = Inverse variance, NS = Not significant.
A P value for summary effect estimates using a random-effects DerSimonian and Laird estimator.

b Strength of association using the criteria listed in Table 1.

c These studies considered NHL incidence and mortality.

d Summary effect estimates were calculated using a fixed effect estimator.

e Not using inverse variance weighting.
Page 155 of 161
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BMJ Medicine

eTable 5: Nominally significant associations from meta-analysis of individual participant data

Study
Kane 2013

Outcome
NHL
NHL
NHL
NHL
NHL
NHL
DLBCL
DLBCL
DLBCL
DLBCL
FL

Exposure
Hormone therapy (ever vs. never)
Hormone therapy age first used (50-54 years vs. never used)
Hormone therapy age first used (55+ years vs. never used)
Hormone therapy years used (<2 years vs. never used)
Hormone therapy years used (5 to <10 years vs. never used)
Hormone therapy years since last used (current vs. never used)
Hormone therapy (ever vs. never)
Hormone therapy age first used (50-54 years vs. never used)
Hormone therapy years used (5 to <10 years vs. never used)
Hormone therapy years since last used (current vs. never used)
Hormone therapy years since last used (current vs. never used)

Number of cases
2094
1987
1987
2094
2094
2035
675
637
675
552
418

Cocco 2013

DLBCL

0.4 (0.2-1.0)

Weak

DLBCL

1251

0.6 (0.4-1.0)

Weak

Cocco 2013

FL

Duration trichloroethylene exposure (30-39 years vs. unexposed)
Frequency trichloroethylene exposure (<=5% work time vs.
unexposed)
Frequency trichloroethylene exposure (31%+ work time vs.
unexposed)

1251

Cocco 2013

639

1.8 (1.1-2.9)

Weak

Cocco 2013
Willet 2008
Slager 2014
Slager 2014
Slager 2014
Slager 2014

FL
NHL
FL
CLL/SLL
Other BCL
Other BCL
DLBCL
BL
CLL/SLL
CLL/SLL
CLL/SLL
CLL/SLL

639
5731
1047
625
228
174
6285
90
2345
2182
1168
1168

2.2 (1.1-4.2)
1.19 (1.06-1.34)
1.47 (1.18-1.84)
0.72 (0.56-0.93)
1.71 (1.14-2.58)
1.87 (1.14-3.05)
1.80 (1.23-2.62)
3.13 (1.19-8.25)
0.86 (0.78-0.95)
0.87 (0.77-0.98)
0.79 (0.66-0.94)
0.81 (0.66-0.99)

Weak

Slager 2014

CLL/SLL

1168

0.71 (0.55-0.92)

Weak

Slager 2014

CLL/SLL

1168
1794
1794
994
1595
1042
1042
1013
1042
685
1301
1301
2191

0.68 (0.49-0.94)
1.23 (1.05-1.44)
1.10 (1.02-1.19)
1.99 (1.16-3.41)
1.21 (1.07-1.36)
1.20 (1.06-1.35)
0.64 (0.43-0.96)
1.32 (1.08-1.61)
1.77 (1.05-3.01)
0.75 (0.59-0.96)
0.80(0.69-0.94)
0.81 (0.68-0.96)
0.90 (0.81-0.99)

Weak

Slager 2014
Slager 2014
Slager 2014

CLL/SLL
CLL/SLL
CLL/SLL

2191
2191
2191

0.82 (0.71-0.94)
0.87 (0.76-0.99)
0.83 (0.71-0.98)

Weak
Weak
Weak

Slager 2014
Slager 2014

CLL/SLL
CLL/SLL

2191
2191

0.72 (0.57-0.90)
0.82 (0.71-0.96)

Weak
Weak

Slager 2014
Slager 2014
Slager 2014
Slager 2014
Morton 2014

CLL/SLL
CLL/SLL
CLL/SLL
CLL/SLL
NHL
MZL
LPL/WM
DLBCL
NHL
DLBCL
MZL
DLBCL
NHL
MZL
LPL/WM
DLBCL
FL
NHL
MF/SS
PTCL
MZL
LPL/WM
DLBCL
MF/SS
PTCL
NHL
PTCL
DLBCL
PTCL
MF/SS
HCL
NHL
MZL
LPL/WM
DLBCL
CLL/SLL
MZL
NHL
DLBCL
CLL/SLL
FL
MCL
MCL
NHL
DLBCL
DlBCL
FL
NHL
BL
BL
LPL/WM
DLBCL
FL
FL
NHL
DLBCL
CLL/SLL
FL
HCL
NHL
DLBCL
CLL/SLL
FL
HCL
NHL

1714
2191
2191
404
17471
1052
374
4667
17471
4667
1052
4667
17471
1052
374
4667
3530
17471
324
584
1052
374
4667
324
584
17471
584
4667
584
324
154
17471
1052
374
4667
2440
1052
17471
4667
2440
3530
557
557
17471
4667
4667
3530
17471
295
295
374
4667
3530
3530
17471
4667
2440
3530
154
17471
4667
2440
3530
154
17471

2.54 (1.53-4.21)
0.84 (0.72-0.98)
0.82 (0.70-0.95)
1.51 (1.09-2.10)
1.96 (1.60-2.40)
5.46 (3.81-7.83)
2.61 (1.34-5.08)
2.45 (1.91-3.16)
2.24 (1.03-4.87)
2.72 (1.13-6.57)
3.45 (1.07-11.15)
1.94 (1.35-2.79)
7.52 (3.68-15.36)
38.07 (16.94-85.55)
12.14 (3.16-46.58)
8.77 (3.94-19.54)
3.23 (1.19-8.80)
2.83 (1.82-4.41)
5.03 (1.16-21.57)
3.90 (1.24-12.30)
6.54 (3.10-13.82)
8.41 (2.81-25.20)
2.49 (1.42-4.37)
1.66 (1.00-2.75)
1.95 (1.37-2.77)
1.77 (1.05-2.99)
14.82 (7.27-30.19)
2.09 (1.04-4.18)
2.05 (1.23-3.42)
8.87 (1.11-71.25)
12.74 (1.49-108.84)
1.81 (1.39-2.37)
3.04 (1.65-5.60)
2.70 (1.11-6.56)
2.33 (1.71-3.19)
2.08 (1.23-3.49)
1.56 (1.21-2.03)
0.86 (0.81-0.92)
0.82 (0.74-0.90)
0.87 (0.77-0.98)
0.88 (0.79-0.98)
0.63 (0.48-0.82)
0.79 (0.63-0.98)
0.83 (0.74-0.92)
0.87 (0.77-0.98)
0.77 (0.65-0.91)
0.79 (0.67-0.94)
0.82 (0.77-0.88)
20.16 (2.44-166.28)
0.64 (0.44-0.95)
0.70 (0.52-0.96)
0.78 (0.70-0.86)
0.85 (0.74-0.97)
0.82 (0.73-0.91)
0.83 (0.77-0.91)
0.84 (0.75-0.95)
0.79 (0.66-0.94)
0.78 (0.68-0.89)
0.21 (0.05-0.86)
0.80 (0.71-0.90)
0.83 (0.70-0.97)
0.73 (0.56-0.96)
0.76 (0.63-0.92)
0.10 (0.01-0.93)
0.72 (0.61-0.85)

Suggestive
Weak
Weak
Weak
HIghly suggestive
Highly suggestive
Weak
Highly suggestive
Weak
Weak
Weak
Suggestive
HIghly suggestive
Highly suggestive
Weak
Highly suggestive
Weak
Suggestive
Weak
Weak
Suggestive
Weak
Suggestive
Suggestive
Weak
Highly suggestive
Weak
Suggestive
Suggestive
Suggestive
Weak
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Suggestive
Weak
Weak
Suggestive
Weak
Weak
Weak
Weak
Suggestive
Weak
Weak
Weak
Weak
Suggestive

Intensity of trichloroethylene exposure (>150 ppm vs. unexposed)
Male height (100% vs. 60%)
Male height (100% vs. 60%)
Female height (20% vs. 60%)
Male height (100% vs. 60%)
Female height (80% vs. 60%)
Weight (Grade 3 obese vs. normal weight)
Weight (Underweight vs. normal weight)
Any atopic disease (yes vs. no)
Allergy (yes vs. no)
Blood transfusion (yes vs. no)
Total number of transfusions (1 vs none)
Number of years from first transfusion to date of diagnosis (<20
years vs. no transfusion)
Transfusion before 1990 (Transfusion 1990+ vs. No transfusion)
Adult height (Q4 vs Q1)
Adult height (continuous, 10 cm)
HCV
Ever lived or worked on a farm (yes vs. no)
Farmer (yes vs. no)
Animal farmer (yes vs. no)
Mixed animal and crop farmer (yes vs. no)
Hairdresser (yes vs. no)
Total sun exposure (quartile 4 (high) vs. 1 (low))
Recreational sun exposure (Quartile 4 (high) vs 1 (low))
Recreational sun exposure (Quartile 2 vs. 1)
Hisotry of cigarette smoking (yes vs. no)
Smoking status as of ~1 year before diagnosis/interview (current
vs.nonsmoker)
Age started smoking cigarettes (14-<18 years)
Age started smoking cigarettes (18-<20 years)
Frequency of cigarette smoking (30+ cigarettes/day vs.
nonsmoker)
Duration of cigarette smoking (30-39 years vs. nonsmoker)
Years since quitting cigarette smoking (former smoker unknown
when quit vs. nonsmoker)
Lifetime cigarette exposure (>20-35 plac-years vs. nonsmoker)
Lifetime cigarette exposure (>35 plack-years vs. nonsmoker)
Frequency of hair dye use (12+ times/year vs. never hair dye)
History of B-cell activating autoimmune disease (any vs. none)
History of B-cell activating autoimmune disease (any vs. none)
History of B-cell activating autoimmune disease (any vs. none)
History of B-cell activating autoimmune disease (any vs. none)
Hemolytic anemia (any vs. non)
Hemolytic anemia (any vs. non)
Pernicious anemia
Rheumatoid arthritis (any vs. none)
Sjogren's syndrome (any vs. none)
Systemic lupus erythematosus (any vs. none)
History of T-cell activating autoimmune disease
History of T-cell activating autoimmune disease
Celiac disease (any vs. none)
Celiac disease (any vs. none)
Celiac disease (any vs. none)
Psoriasis (any vs. none)
Systemic sclerosis/scleroderma
Systemic sclerosis/scleroderma
Hepatitis C virus seropositivity
Hepatitis C virus seropositivity
HCV
HCV
HCV
Peptic ulcer
Allergy
Allergy
Allergy
Allergy
Hay fever
Allergy
Food allergy
Asthma
Food allergy
Food allergy
Hay fever
Systemic sclerosis/scleroderma
Hay fever
Hay fever
Hay fever
Asthma
Hay fever
History of blood transfusion (any vs. none)
Age at least transfusion (%>40 years)
No. transfusions (% 2+)

Effect estimate (95% CI)
0.79 (0.69-0.90)
0.74 (0.61-0.91)
0.78 (0.62-0.98)
0.78 (0.62-0.98)
0.72 (0.57-0.91)
0.70 (0.54-0.90)
0.66 (0.54-0.80)
0.58 (0.42-0.80)
0.59 (0.40-0.86)
0.57 (0.44-0.74)
0.76 (0.58-0.99)

https://mc.manuscriptcentral.com/bmjmedicine

Classification of evidence
Suggestive
Weak


Any beer 17471 0.90 (0.84-0.97) Weak
Any liquor 324 0.66 (0.47-0.92) Weak
Frequency (%>14 servings/week) alcohol 3530 0.82 (0.69-0.96) Weak
Lifetime (%>200 kg) alcohol 295 0.28 (0.12-0.70) Weak
HCL
BL
Any liquor 17471 0.84 (0.78-0.91) Suggestive
Height (% Q3-Q4) 3530 1.20 (1.02-1.40) Weak
Frequency (%>14 servings/week) beer 4667 0.67 (0.55-0.83) Suggestive
Lifetime (%>200 kg) alcohol 4667 0.64 (0.52-0.79) Suggestive
Years since quitting (%>15 years) cigarette smoking 374 1.37 (1.01-1.85) Weak
Packyears (%>20) cigarette smoking 3530 1.13 (1.01-1.27) Weak
Any alcohol 17471 0.87 (0.81-0.93) Suggestive
PTCL
BL
NHL
HCL
FL
Frequency (%>14 servings/week) beer 3530 0.78 (0.61-0.99) Weak
Lifetime (%>200 kg) beer 4667 0.64 (0.46-0.87) Weak
History of cigarette smoking (any vs. none) 2440 0.90 (0.81-0.99) Weak
Young adult BMI (% 25 kg/m^2+) 4667 3.02 (2.13-4.37) Highly suggestive
LPL/WM
Any wine 584 0.67 (0.52-0.86) Weak
Frequency (%>-12 times/year) personal hairdye use 1052 1.55 (1.05-2.29) Weak
Years since quitting (%>15 years) 2440 0.82 (0.72-0.94) Weak
LPL/WM
MF/SS
HCL
History of cigarette smoking (any vs. none) 154 0.51 (0.37-0.71) Weak
Any wine 4667 0.81 (0.73-0.89) Suggestive
Ever used HRT 17471 0.84 (0.73-0.96) Weak
FL
BL
CLL/SLL
HCL
BL
Duration of hairdye use (%>=20 years) 17471 1.18 (1.02-1.35) Weak
Any alcohol 3530 0.86 (0.77-0.96) Weak
PTCL
Status (% current) 17471 0.86 (0.78-0.94) Weak
Height (% Q3-Q4) 295 2.43 (1.37-4.31) Weak
DLBCL
Any wine 1052 0.64 (0.53-0.78) Suggestive
Usual adult BMI (% 25 kg/m^2+) 324 1.95 (1.10-3.46) Weak
Ever used HRT 4667 0.78 (0.65-0.94) Weak
DLBCL
Year first Ocs use (%<1970) 4667 0.74 (0.59-0.93) Weak
FL
Any wine 3530 0.85 (0.76-0.95) Weak
No. transfusions (% 2+) 4667 0.70 (0.56-0.88) Weak
Frequency (%>=14 servings/week) wine 1052 0.45 (0.30-0.69) Suggestive
FL
NHL
CLL/SLL
HCL
BL
Age at initiation (% <20 years) alcohol 4667 0.73 (0.62-0.86) Suggestive
Frequency (%>14 servings/week) beer 584 0.49 (0.27-0.88) Weak
LPL/WM
NHL
MZL
BL
DLBCL
HCL
LPL/WM
Age at initiation (%<19 years) alcohol 4667 0.72 (0.60-0.87) Suggestive
Frequency (%>=14 servings/week) wine 4667 0.67 (0.57-0.80) Suggestive
Frequency (%>14 servings/week) 1052 0.61 (0.45-0.84) Weak
DLBCL
BL
DLBCL
MZL
HCL
LPL/WM
Frequency (%>20) cigarette smoking 2440 0.78 (0.66-0.93) Weak
Duration (%>30 years) alcohol 4667 0.73 (0.62-0.86) Suggestive
NHL
FL
PTCL
Blood transfusion <1991 4667 0.78 (0.65-0.94) Weak
DLBCL
NHL
CLL/SLL
PTCL
Duration (%>20 years) cigarette smoking 374 1.50 (1.10-2.04) Weak
NHL
NHL
CLL/SLL
PTCL
Blood transfusion <1994 154 0.06 (0.00-0.82) Weak
NHL
NHL
NHL
Frequency (%>=23 servings/week) any liquor 3530 1.70 (1.15-2.52) Weak
PTCL
Usual adult BMI (% 25 kg/m^2+) 4667 1.32 (1.11-1.57) Weak
Packyears (%>20) cigarette smoking 584 1.67 (1.28-2.18) Weak
Years since quitting (%>15 years) cigarette smoking 154 0.40 (0.26-0.61) Weak
Lifetime (%>200 kg) any liquor 4667 0.57 (0.41-0.79) Suggestive
Frequency (%>=14 servings/week) 1052 0.61 (0.45-0.84) Weak
DLBCL
NHL
CLL/SLL
PTCL
Duration (%>30 years) alcohol 4667 0.73 (0.62-0.86) Suggestive
NHL
FL
LPL/WM
DLBCL
Blood transfusion <1991 4667 0.78 (0.65-0.94) Weak
DLBCL
Frequency (%>14 servings/week) any liquor 17471 2.21 (1.71-2.86) Highly suggestive
Any liquor 3530 0.86 (0.76-0.97) Weak
Height (% Q3-Q4) 4667 1.16 (1.01-1.33) Weak
LPL/WM
NHL
DLBCL
Frequency (%>=23 servings/week) any liquor 3530 1.70 (1.15-2.52) Weak
Frequency (%>14 servings/week) wine 1052 0.61 (0.45-0.84) Weak
Frequency (%>14 servings/week) 1052 0.61 (0.45-0.84) Weak
DLBCL
NHL
CLL/SLL
PTCL
Frequency (%>14 servings/week) any liquor 17471 2.21 (1.71-2.86) Highly suggestive
Any liquor 3530 0.86 (0.76-0.97) Weak
Height (% Q3-Q4) 4667 1.16 (1.01-1.33) Weak
LPL/WM
NHL
DLBCL
Frequency (%>=23 servings/week) any liquor 3530 1.70 (1.15-2.52) Weak
Frequency (%>14 servings/week) wine 4667 0.67 (0.57-0.80) Suggestive
Frequency (%>14 servings/week) wine 584 0.61 (0.39-0.95) Weak
DLBCL
NHL
CLL/SLL
PTCL
Condition	OR	95% CI	Evidence Level			
CLL/SLL						
Recreational sun exposure (%Q3-Q4 hours/week)	17471	0.74 (0.66-0.83)	Highly suggestive			
DLBCL						
Sjogren's syndrome (any vs. none)	1801	3.91 (1.39-11.0)	Weak			
Intensity (21-30 cigarettes/d)	6393	1.19 (1.04-1.36)	Weak			
General unspecified laborer	3530	1.28 (1.06-1.55)	Weak			
FL						
Women's hairdresser	17471	1.42 (1.07-1.89)	Weak			
Status (% current) cigarette smoking	10351	1.10 (1.00-1.20)	Weak			
HCL						
Leather worker	152	3.89 (1.34-11.33)	Weak			
MF/SS						
Recreational sun exposure (%Q3-Q4 hours/week)	3530	0.70 (0.58-0.84)	Suggestive			
NHL						
Frequency (>=28 servings per week vs. none)	6492	0.87 (0.76-0.99)	Weak			
Ever vs. non-drinker	2126	0.75 (0.66-0.84)	Suggestive			
Frequency (>=28 servings per week vs. none) drinking	2126	0.73 (0.60-0.90)	Weak			
Age of 1st transfusion (31-40 years vs. none) white men	4599	0.71 (0.51-0.97)	Weak			
Duration (14-27 servings per week vs. none) drinking	2126	0.73 (0.61-0.86)	Suggestive			
PTCL						
Painter	324	3.42 (1.81-6.47)	Weak			
Lifetime liquor (%>200 kg)	324	3.18 (1.44-7.05)	Weak			
Duration (21-30 years) drinking	2126	0.74 (0.57-0.94)	Weak			
DLBCL						
Hairdresser	17471	1.34 (1.05-1.72)	Weak			
NHL						
MZL						
Age at initiation (% >-20 years) cigarette smoking	1452	1.24 (1.05-1.46)	Weak			
DLBCL						
Type 1 diabetes	1813	1.97 (1.00-3.88)	Weak			
DLBCL						
NHL						
MZL						
Farmland any type	2440	1.23 (1.04-1.45)	Weak			
Socioeconomic status (% low)	17471	0.88 (0.83-0.93)	Suggestive			
Primary sjorgen's syndrom	2356	6.57 (2.12-20.3)	Weak			
Beer, wine, and liquor	6492	0.76 (0.68-0.84)	Highly suggestive			
Sjogren's syndrome (any vs. none)	8230	6.56 (3.10-13.9)	Suggestive			
Field crop/vegetable farmer	324	2.80 (1.38-5.68)	Weak			
NHL						
MZL						
Age at initiation (18-19 years vs. nonsmoker)	89	0.34 (0.12-0.96)	Weak			
DLBCL						
Duration (>=41 years) drinking	2126	0.67 (0.53-0.85)	Suggestive			
MF/SS						
Women's hairdresser	2440	2.46 (1.31-4.62)	Weak			
NHL						
Duration (>=36 years) cigarette smoking	6570	1.16 (1.05-1.28)	Weak			
Pack-years (>=36) cigarette smoking	6373	1.21 (1.09-1.34)	Weak			
CLL/SLL						
Number of blood transfusions (One vs none) white men	4571	0.70 (0.60-0.81)	Suggestive			
NHL						
History of living or working on a farm	584	0.73 (0.56-0.99)	Weak			
PTCL						
Age of 1st transfusion (1970s) white men	4501	0.58 (0.42-0.79)	Suggestive			
Era first transfusion (1990+) white men	4501	0.66 (0.52-0.84)	Suggestive			
Baker/miller						
History of living or working on a farm	584	0.73 (0.55-0.95)	Weak			
BL						
NHL						
History of living or working on a farm	4599	0.61 (0.45-0.82)	Weak			
ALL						
MZL						
Women's hairdresser	4667	1.63 (1.15-2.31)	Weak			
NHL						
Systemic lupus erythematosus (any vs. none)	3364	2.74 (1.47-5.11)	Weak			
NHL						
MCL						
PTCL						
History of living or working on a farm	4501	0.73 (0.55-0.95)	Weak			
Year	Study	Exposure	Outcomes	HR (95% CI)	Grade	
------	-------	----------	----------	-------------	--------	
2014	Wang	NMZL	B-cell activation	1.07 (1.01-1.13)	Weak	
2014	Wang	NMZL	Asthma with or without atopy	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	PTCL-NOS	1.04 (1.00-1.09)	Weak	
2014	Wang	NMZL	Mycosis fungoides and Sézary syndrome	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Intensity (21-30 cigarettes/d)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Textile worker	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Any type of alcohol (Q1 vs non-drinkers)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Sjogren's syndrome (any vs. none)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Any type of alcohol (Q4 vs non-drinkers)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Adult infectious mononucleosis	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Electrical fitters	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	History of eczema	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Duration of cigarette smoking (40+ years)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Adult infectious mononucleosis	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Any type of alcohol (Q1 vs non-drinkers)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Angioimmunoblastic lymphoma	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Duration of employment as cleaner (1-10 years vs. never)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Smoker, duration unknown	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	PTCL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	MZL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	EMZL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	General carpenter	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Duration (21-35 years) of cigarette smoking	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Wine (Q3 vs non-drinkers)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	HCV (>=50 years)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	MZL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	ALCL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	PTCL-Cutaneous NOS	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	African carpenter	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Duration of employment as cleaner (1-10 years vs. never)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Smoker, duration unknown	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	PTCL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	MZL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	EMZL	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	General carpenter	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Duration (21-35 years) of cigarette smoking	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	Wine (Q3 vs non-drinkers)	1.03 (1.00-1.07)	Weak	
2014	Wang	NMZL	HCV (>=50 years)	1.03 (1.00-1.07)	Weak	
Description	Odds Ratio	95% CI	P-value	Interpretation		
--	------------	------------	---------	----------------------		
Lifetime alcohol consumption (101-200 kg vs nondrinker)	0.68	0.51-0.91	0.016	Weak		
LPL/WM						
Usual adult weight (Q4 vs Q1)	1.20	1.07-1.33	0.002	Weak		
Hay fever	0.73	0.44-0.99	0.032	Weak		
Recreational sun exposure (Q4 vs Q1 hours/week), Female	0.70	0.58-0.85	0.003	Suggestive		
Status (% current) cigarette smoking	1.19	1.07-1.32	0.002	Weak		
LPL/WM						
Allergy and asthma, hay fever, or eczema	0.68	0.52-0.88	0.003	Weak		
Color of hairdye used (women only; light vs. never)	9.69	2.12-44.34	0.001	Weak		
History of cigarette smoking (any vs. none), Female	1.22	1.09-1.37	0.002	Suggestive		
Duration (>=40 years) cigarette smoking	1.18	1.04-1.35	0.009	Weak		
Physical activity (Mild), Female	1.53	1.02-2.30	0.038	Weak		
Transfusions before 1990	0.87	0.76-0.99	0.016	Weak		
Blood transfusion, Female	0.80	0.68-0.95	0.005	Weak		
Metal worker	3.56	1.67-7.58	0.001	Weak		
Age started smoking cigarettes regularly (14-17 years)	1.12	1.01-1.25	0.038	Weak		
Grams of ethanol per week as an adult (Q4 vs nondrinker)	0.79	0.66-0.94	0.005	Weak		
Blood transfusion	0.78	0.68-0.89	0.001	Suggestive		
Any atopic disorder	0.74	0.61-0.89	0.001	Weak		
Asthma no other atopy	2.28	1.23-4.23	0.008	Weak		
BMI as young adult (25-<30 kg/m²)	1.49	1.21-1.83	0.001	Suggestive		
Total number of blood transfusions (2+ vs none)	0.70	0.53-0.92	0.011	Weak		
University and higher education teachers, Male	0.53	0.31-0.90	0.024	Weak		
Total sun exposure (Q4 vs Q1 hours/week)	0.82	0.69-0.99	0.030	Weak		
Color of hairdye used (women only; dark vs. never)	5.30	1.19-23.66	0.031	Weak		
Duration of alcohol consumption (Drinker duration unknown vs. nondrinker)	1.45	1.04-2.00	0.026	Weak		
Usual adult height (Q4 vs Q1)	1.12	1.01-1.25	0.033	Weak		
Duration of alcohol consumption (Drinker duration unknown vs. nondrinker)	1.46	1.04-2.05	0.026	Weak		
Atelectasis	0.85	0.75-0.97	0.002	Weak		
History of chronic obstructive lung disease	1.17	1.01-1.35	0.041	Weak		
University and higher education teachers, Female	0.53	0.31-0.90	0.024	Weak		
Total sun exposure (Q4 vs Q1 hours/week), Female	0.77	0.63-0.95	0.006	Weak		
University and higher education teachers, Female	0.53	0.31-0.90	0.024	Weak		
Blood transfusion	0.79	0.63-0.98	0.021	Weak		
Age started smoking cigarettes regularly (>=20 years vs. nonsmoker)	1.45	1.04-2.00	0.026	Weak		
Usual adult body mass index (15-<18.5 vs. 18.5-<22.5)	0.60	0.41-0.88	0.008	Weak		
Total sun exposure (Q4 vs Q1 hours/week), Female	0.77	0.63-0.95	0.006	Weak		
Electrical and electronics workers	1.63	1.09-2.44	0.020	Weak		
Hay fever and asthma, allergy, or eczema	0.66	0.49-0.89	0.008	Weak		
Celiac disease (any vs. none)	2.14	1.07-4.28	0.030	Weak		
Metal worker	3.56	1.67-7.58	0.001	Weak		
History of chronic obstructive lung disease	1.17	1.01-1.35	0.041	Weak		
History of chronic obstructive lung disease	1.17	1.01-1.35	0.041	Weak		
University and higher education teachers, Male	0.53	0.31-0.90	0.024	Weak		
Total sun exposure (Q4 vs Q1 hours/week), Female	0.77	0.63-0.95	0.006	Weak		
University and higher education teachers, Female	0.53	0.31-0.90	0.024	Weak		
Year	Code	Description	N	Ratio	95% CI	P Value
--------	------	----------------------------------	---	---------	------------------	---------
Mannetje 2016	NHL	Secondary education teachers	10046	0.82	0.69-0.98	Weak
Mannetje 2016	NHL	Head teacher	10046	2.16	1.15-4.06	Weak
Mannetje 2016	NHL	Other teachers	10046	0.63	0.40-0.98	Weak
Mannetje 2016	NHL	Milliners and hatmakers	10046	2.46	1.28-4.74	Weak
Mannetje 2016	NHL	Carpenter, general	10046	1.42	1.14-1.79	Weak
Mannetje 2016	DLBCL	Charworkers, cleaners and related	10046	1.50	1.16-1.99	Weak
Mannetje 2016	DLBCL	Field crop farmer general	10046	1.38	1.04-1.85	Weak
Mannetje 2016	DLBCL	Milliners	10046	4.17	1.19-14.32	Weak
Mannetje 2016	DLBCL	Sewer and embroiderer	10046	2.30	0.90-6.06	Weak
Mannetje 2016	DLBCL	Field workers	10046	1.14	0.95-1.37	Weak
Mannetje 2016	DLBCL	Field crop farm worker general	10046	1.48	1.01-2.17	Weak
Mannetje 2016	DLBCL	Carpenter, general	10046	2.10	1.08-4.09	Weak
Mannetje 2016	DLBCL	Printers	10046	1.80	1.14-2.84	Weak
Mannetje 2016	DLBCL	Spinners, weavers, knitters, dye	10046	1.85	1.21-2.83	Weak
Mannetje 2016	DLBCL	Wood workers	10046	1.54	1.04-2.27	Weak
Mannetje 2016	DLBCL	Cabinetmakers	10046	2.41	1.22-4.74	Weak
Mannetje 2016	PTCL	Electric fitters	652	2.02	1.03-3.97	Weak
Mannetje 2016	PTCL	Metal workers	652	0.66	0.45-0.99	Weak
Mannetje 2016	PTCL	Painters	652	1.80	1.14-2.84	Weak
Mannetje 2016	PTCL	Textile worker	652	1.60	1.18-2.17	Weak
Mannetje 2016	PTCL	Spinners, weavers, knitters, dye	652	1.85	1.21-2.83	Weak
Mannetje 2016	PTCL	Wood workers	652	1.54	1.04-2.27	Weak
Mannetje 2016	PTCL	Cabinetmakers	652	2.41	1.22-4.74	Weak
Mannetje 2016	PTCL	Electric fitters	652	2.02	1.03-3.97	Weak
Mannetje 2016	PTCL	Metal workers	652	0.66	0.45-0.99	Weak
Mannetje 2016	PTCL	Painters	652	1.80	1.14-2.84	Weak
Mannetje 2016	PTCL	Textile worker	652	1.60	1.18-2.17	Weak
Mannetje 2016	PTCL	Spinners, weavers, knitters, dye	652	1.85	1.21-2.83	Weak
Mannetje 2016	PTCL	Wood workers	652	1.54	1.04-2.27	Weak
Mannetje 2016	PTCL	Cabinetmakers	652	2.41	1.22-4.74	Weak
Mannetje 2016	PTCL	Electric fitters	652	2.02	1.03-3.97	Weak
Mannetje 2016	PTCL	Metal workers	652	0.66	0.45-0.99	Weak
Mannetje 2016	PTCL	Painters	652	1.80	1.14-2.84	Weak
Mannetje 2016	PTCL	Textile worker	652	1.60	1.18-2.17	Weak
Mannetje 2016	PTCL	Spinners, weavers, knitters, dye	652	1.85	1.21-2.83	Weak
Mannetje 2016	PTCL	Wood workers	652	1.54	1.04-2.27	Weak
Mannetje 2016	PTCL	Cabinetmakers	652	2.41	1.22-4.74	Weak
Mannetje 2016	PTCL	Electric fitters	652	2.02	1.03-3.97	Weak
Mannetje 2016	PTCL	Metal workers	652	0.66	0.45-0.99	Weak
Mannetje 2016	PTCL	Painters	652	1.80	1.14-2.84	Weak
Mannetje 2016	PTCL	Textile worker	652	1.60	1.18-2.17	Weak
Mannetje 2016	PTCL	Spinners, weavers, knitters, dye	652	1.85	1.21-2.83	Weak
Mannetje 2016	PTCL	Wood workers	652	1.54	1.04-2.27	Weak

Note: The table shows odds ratios (OR) with 95% confidence intervals (CI) and p-values for different occupations, indicating the association with increased risk of certain diseases.
Condition	OR (95% CI)	Strength of association	Concordance
Hepatitis C virus [FL]	0.57 (0.30, 1.10)	No	Both
Meat worker [NHL]	1.08 (0.81, 1.42)	No	Both
Any alcohol [TCL]	0.68 (0.53, 0.87)	Yes	Both
Petroleum workers [NHL]	0.79 (0.38, 1.67)	Yes	Neither
Firefighter [NHL]	0.76 (0.53, 1.09)	No	Both
Any alcohol [DLBCL]	0.81 (0.73, 0.89)	Yes	Both
Any smoking [DLBCL]	1.01 (0.94, 1.08)	Yes	Neither
Sarcoidosis [NHL]	0.71 (0.39, 1.29)	No	Neither
Herpes Zoster [NHL]	2.26 (1.82, 2.81)	NS	II
Tuberculosis [NHL]	1.37 (0.80, 2.19)	Yes	None
Psoriasis [NHL]	1.72 (1.27, 2.32)	III	Adult Shingles
celiac disease [CLL/SLL]	0.60 (0.14, 2.61)	Yes	None
celiac disease [DLBCL]	2.09 (1.04, 4.18)	Yes	Both
celiac disease [TCL]	14.82 (7.27, 30.19)	Yes	Both
Type 1 diabetes [NHL]	1.15 (0.80, 1.66)	Yes	None
Rheumatoid arthritis [NHL]	5.40 (3.75, 7.77)	II	
Primary Sjogren's syndrome [NHL]	13.76 (8.53, 18.99)	II	
Ever drinking [CLL/SLL]	1.32 (0.99, 1.77)	Yes	None
Ever drinking [FL]	0.89 (0.66, 1.22)	No	None
Ever drinking [DLBCL]	2.83 (1.81, 4.11)	Yes	Both
Ever drinking [TCL]	1.77 (1.02, 3.09)	Yes	Both
Ever smoking [TCL]	1.32 (0.99, 1.77)	Yes	None
Ever smoking [CLL/SLL]	1.32 (0.99, 1.77)	Yes	None
Ever smoking [DLBCL]	1.32 (0.99, 1.77)	Yes	None
Ever smoking [NHL]	1.81 (1.39, 2.37)	Yes	None
Red blood cell transfusion [FL]	0.9 (0.71, 1.14)	No	None
Red blood cell transfusion [CLL/SLL]	0.9 (0.71, 1.14)	No	None
Red blood cell transfusion [NHL]	0.9 (0.71, 1.14)	No	None

Footnotes

- [FL]: Hepatitis C virus
- [CLL/SLL]: Chronic lymphocytic leukemia/small lymphocytic lymphoma
- [DLBCL]: Diffuse large B-cell lymphoma
- [TCL]: T-cell lymphoma
- [NHL]: Non-Hodgkin lymphoma
- OR: Odds ratio
- CI: Confidence interval
- RR: Risk ratio
- SIR: Standardized incidence ratio
- MA: Meta-analysis
- NS: Not significant