LOCO-Reg

Locality-Promoting Representation Learning

Johannes Schneider
Assistant Professor in Data Science
Weights in Convolutional Networks

... are not of the same magnitude
On average weights near the center are larger

3x3 Filter

S(mall)	M(edium)	S
M	Large	M
S	M	S

Distribution in log-scale of absolute weights of 3x3 filters at center, left middle and left upper
Let us think about that...

Filter = common pattern in feature maps

Red or violet? Red preferred because they have a large center

⇒ More robust (to noise, variation)
Model from Physics

- We want maximal feature cohesion
- Activation, weight = Mass
- Cohesion = Gravitational Force

3x3 spatial filter

1	2	2
2	6	3
1	3	2

\[
d(m_{0,0}, m_{0,1}) = 1 \\
d(m_{0,0}, m_{0,2}) = 2 \\
d(m_{0,0}, m_{1,1}) = 2.5 \\
d(m_{0,0}, m_{1,2}) = 5.5 \\
d(m_{0,0}, m_{2,2}) = 8.5
\]

Theorem 1. For any feature strength distribution \(m' \leq m_c, m_{co}, m_n < (1 + \epsilon)m' \) with \(\epsilon \in [0, 0.675] \), the cohesion \(F_{tot} \) of the feature is increased most by increasing \(m_c \), and more by increasing any \(m_n \in M_n \) than any \(m_{co} \in M_{co} \) for arbitrary \(m' \), center \(m_c = m_{1,1} \), direct neighbors \(M_n := \{m_{1,0}, m_{0,1}, m_{2,1}, m_{1,2}\} \) and corners \(M_{co} := \{m_{0,0}, m_{2,0}, m_{2,2}, m_{0,2}\} \) (Figure 3).
Implementation: LOCO-Reg

Standard L2-regularization pushes all weights to be equal
⇒ This reduces central weights too much
LOCO-Reg: Regularize outer weights more than more central weights

Base L2
Regularization Constant

	LOCO- Regularization weights			
γ > η		η > 1		γ > η
η > 1		1		η > 1

λ	γ > η	η > 1	γ > η	

Dataset	Architecture	(η, γ)	Avg. Accuracy for different λ	Best Acc.
cifar10	MobileNet	(1,1)	.8611 .8686 .8688 .8647 .8688	.8688
cifar10	MobileNet	(1.4, 1.56)	.8618 .8701* .8714 .8657 .8714	
cifar10	MobileNet	(1.8, 2.13)	.8619* .8692* .8721*γ .8668*γ .8721*γ	
cifar10	ResNet	(1,1)	.9191 .9227 .9236 .9222 .9236	.9236
cifar10	ResNet	(1.4, 1.56)	.921 .9253* .9242 .9224 .9253*	.9253*
cifar10	ResNet	(1.8, 2.13)	.9186 .9244* .9237 .9236 .9244*	.9244*
cifar10	VGG	(1,1)	.8754 .8761 .882 .8858 .8858	.8858
cifar10	VGG	(1.4, 1.56)	.8722 .884** .8858** .8869 .8869	
cifar10	VGG	(1.8, 2.13)	.8808** .8816* .8875*** .8884* .8884*	
cifar100	MobileNet	(1,1)	.5926 .6116 .6182 .6155 .6182	.6182
cifar100	MobileNet	(1.4, 1.56)	.5941 .6124 .6182 .6149 .6182	.6182
cifar100	MobileNet	(1.8, 2.13)	.5935 .6144 .6199 .6184* .6199	.6199
cifar100	ResNet	(1,1)	.702 .71 .7156 .7124 .7156	.7156
cifar100	ResNet	(1.4, 1.56)	.702 .7129* .7163 .7146 .7163	.7163
cifar100	ResNet	(1.8, 2.13)	.7022 .7116 .7198*** .7142 .7198***	
cifar100	VGG	(1,1)	.6415 .6551 .6597 .6599 .6599	.6599
cifar100	VGG	(1.4, 1.56)	.6432 .6583* .6665*** .6645* .6665***	
cifar100	VGG	(1.8, 2.13)	.6449* .6629*** .6653** .6671*** .6671***	
fashion	MobileNet	(1,1)	.9403 .9402 .939 .9369 .9403	.9403
fashion	MobileNet	(1.4, 1.56)	.9398 .9406 .9385 .9372 .9406	.9406
fashion	MobileNet	(1.8, 2.13)	.9402 .9408 .9398 .9371 .9408	.9408
fashion	ResNet	(1,1)	.9501 .9504 .9494 .9492 .9504	.9504
fashion	ResNet	(1.4, 1.56)	.9496 .951 .9506** .9489 .951	.951
fashion	ResNet	(1.8, 2.13)	.9509* .9505 .9515 .9494 .9504	.9504
fashion	VGG	(1,1)	.9404 .942 .9417 .9426 .9426	.9426
fashion	VGG	(1.4, 1.56)	.941 .9414 .9419 .9436* .9436*	.9436*
fashion	VGG	(1.8, 2.13)	.9423 .9417 .9436* .9437* .9437*	.9437*
THANKS