Clinical paper

Out-of-hospital cardiac arrest across the World: First report from the International Liaison Committee on Resuscitation (ILCOR)

Tekeyuki Kiguchi,1, Masashi Okubo,1 Chika Nishiyama,1 Ian Maconochie,2 Marcus Eng Hock Ong,1,2 Karl B. Kerr,2 Myra H. Wyckoff,3 Bryan McNally,4 Erik F. Christensen,5 Ingvid Tjelmeland,6 Johan Herlitz,7 Gavin D. Perkins,8 Scott Booth,5 Judith Finn,5,7,11 Nur Shahidah,8 Sang Do Shin,10 Bentley J. Bobrow,8 Laurie J. Morrison,4,11 Ari Salo,11 Enrico Baldi,11,12 Roman Burkart,12 Chih-Hao Lin,12 Xavier Jouven,13 Jasmeet Soar,14 Jerry P. Nolan,14 Taku Iwami,13,15

1 Kyoto University Health Service, Kyoto, Japan
2 Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
3 Department of Critical Care Nursing, Kyoto University Graduate School of Human Health Science, Kyoto, Japan
4 Department of Emergency Medicine, Division of Medicine, Imperial College London, London, UK
5 Health Services & Systems Research, Duke-NUS Medical School, Singapore
6 Division of Cardiology, University of Arizona, Sarver Heart Center, Tucson, AZ, USA
7 Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
8 Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
9 Center for Prehospital and Emergency Research, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
10 Norwegian National Advisory Unit on Prehospital Emergency Medicine (NAKOS), Division of Prehospital Services, Oslo University Hospital, Oslo, Norway
11 University of Borås, Sahlgrenska University Hospital, Göteborg, Sweden
12 Warwick Medical School and University Hospitals Birmingham NHS Foundation Trust, UK
13 Warwick Medical School, University of Warwick, Coventry, UK
14 School of Nursing, Midwifery and Paramedicine, Curtin University, WA, Australia
15 University of Western Australia, WA, Australia
16 Department of Epidemiology and Preventive Medicine, Monash University, VIC, Australia
17 Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
18 Department of EMS, McGovern Medical School at UT Health, Houston, TX, USA
19 Rescu, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Division of Emergency Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
20 Emergency Medical Services, Department of Emergency Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
21 Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
22 Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy

* Corresponding author.
E-mail address: iwami.taku.8w@kyoto-u.ac.jp (T. Iwami).
1 These authors contributed equally.
https://doi.org/10.1016/j.resuscitation.2020.02.044
Received 4 November 2019; Received in revised form 7 February 2020; Accepted 24 February 2020
0300-9 © 2020 Published by Elsevier B.V.
Abstract
Background: Since development of the Utstein style recommendations for the uniform reporting of cardiac arrest, increasing numbers of national and regional out-of-hospital cardiac arrest (OHCA) registries have been established worldwide. The International Liaison Committee on Resuscitation (ILCOR) created the Research and Registries Working Group and aimed to systematically report data collected from these registries.

Methods: We conducted two surveys of voluntarily participating national and regional registries. The first survey aimed to identify which core elements of the current Utstein style for OHCA were collected by each registry. The second survey collected descriptive summary data from each registry. We chose the data collected for the second survey based on the availability of core elements identified by the first survey.

Results: Seven national and four regional registries were included in the first survey and nine national and seven regional registries in the second survey. The estimated annual incidence of emergency medical services (EMS)-treated OHCA was 30.0–97.1 individuals per 100,000 population. The combined data showed the median age varied from 64 to 79 years and more than half were male in all 16 registries. The provision of bystander cardiopulmonary resuscitation (CPR) and bystander automated external defibrillator (AED) use was 19.1–79.0% in all registries and 2.0–37.4% among 11 registries, respectively. Survival to hospital discharge or 30-day survival after EMS-treated OHCA was 3.1–20.4% across all registries. Favorable neurological outcome at hospital discharge or 30 days after EMS-treated OHCA was 2.8–18.2%. Survival to hospital discharge or 30-day survival after bystander-witnessed shockable OHCA ranged from 11.7% to 47.4% and favorable neurological outcome from 9.9% to 33.3%.

Conclusion: This report from ILCOR describes data on systems of care and outcomes following OHCA from nine national and seven regional registries across the world. We found variation in reported survival outcomes and other core elements of the current Utstein style recommendations for OHCA across nations and regions.

Keywords: Out-of-hospital cardiac arrest, Utstein template, Epidemiology, Resuscitation, Registry

Introduction
Out-of-hospital cardiac arrest (OHCA) is a global health issue. The incidence of emergency medical services (EMS)-treated OHCA has been reported as 40.6 per 100,000 person-years in Europe, 47.3 in North America, 45.9 in Asia, and 51.1 in Australia.1 Patient outcomes after OHCA vary substantially by region but are generally poor, suggesting opportunities for improvement.2–6

A high-quality registry with a uniform collecting system enables better understanding of the epidemiology of OHCA, facilitates inter-system and intra-system comparisons, identifies knowledge gaps, supports clinical research, and may help to influence performance and improve survival after OHCA.7 The Utstein style was originally developed to facilitate uniform reporting of terms and to standardize definitions for out-of-hospital resuscitation.7 The International Liaison Committee on Resuscitation (ILCOR) has revised and updated the Utstein style recommendations for OHCA in 2004 and 2014.8–11

Along with the development and revisions of the Utstein style recommendations, increasing numbers of OHCA registries have been established in Europe,2,12–17 North America,18–21 Asia,22,23 and Oceania.24,25 However, to date, there has been a paucity of systematic collection and reporting of data from existing registries.26 A Research and Registries Working Group was created by ILCOR with the objective of establishing a system to collect descriptive data on systems of care and outcomes following OHCA from registries across the world, which could potentially enable benchmarking and possibly improvement of patient outcomes from cardiac arrest.27 This article describes the initial findings of the working group.

Methods
The ILCOR Research and Registries Working Group conducted three face-to-face meetings and five teleconferences between January 2016 and September 2017, and a consensus was reached for a strategy to collect data from participating registries. Participation in this project by registries was voluntary. We conducted two surveys of the participating national and regional registries (Table 1): the first survey aimed to describe which of the Utstein elements were collected by each registry and the second survey aimed to report summary data from each registry to describe characteristics of OHCA in the nation or region. The first survey assessed which core elements of the latest Utstein style recommendation for OHCA in 2014 were collected by each registry,10,11 and identified any discrepancies in the data collection process. Based on the availability of the data elements in each registry in the first survey, we chose the elements for the second survey and descriptively reported the 2015 summary data from each registry. If 2015 data were not available, the most recently available data were reported. The data from the Rescu Epistry in Toronto, Canada were extracted from a published paper.29 We included population-based registries which covered all EMS resuscitation attempted OHCA in each area. We defined a national registry as one that collected data from the whole nation or multiple regions within one nation designated to be representative of the whole nation; other registries were designated as regional registries. We calculated the estimated annual incidence of EMS-treated OHCA at each registry, using the annual number of EMS-treated OHCA as the numerator and the total population of covered area as the denominator. When a registry collected type of bystander cardiopulmonary resuscitation (CPR), i.e., conventional CPR with rescue breathing or chest compression-only
CPR, we presented proportion of patients who received each type of bystander CPR among EMS resuscitation attempted OHCA in the registry. Similarly, when a registry collected data on the application of an AED and shock delivery by a bystander, we presented the proportion of those who had an AED applied and a shock delivered. When we calculated the proportion of those who received bystander CPR, had an AED applied, and received an AED shock, we excluded EMS-witnessed OHCA from the denominators because those with EMS-witnessed OHCA did not have the opportunity to have these bystander interventions. Survival outcomes were reported for both all EMS-treated OHCA and bystander-witnessed shockable OHCA. Favorable neurological outcome was defined as Cerebral Performance Category (CPC) 1 or 2, or modified Rankin Scale ≤ 3 following the Utstein recommendation. We used a secure electronic database, Research Electronic Data Capture (RED Cap) for data collection for both surveys and data management.

Results

Eighteen registries were invited to participate in the first survey. Seven national and 4 regional OHCA registries responded and are included in the first survey results. Thirty-seven registries were invited to participate in the second survey, 14 did not respond to the invitation, and 7 were not population-based registries. As a result, 9 national and 7 regional registries are included in the second survey results (Table 1). Based on the differences between the elements measured by each registry and the core elements of Utstein 2014 OHCA style recommendations, we excluded the following elements from the secondary survey: dispatcher-identified cardiac arrest, resuscitation not attempted (because of a written do not attempt cardiopulmonary resuscitation order or obvious death), targeted temperature management (TTM) indication, vasopressin use, reperfusion (e.g., percutaneous coronary intervention, PCI) attempted, and type and timing of reperfusion (Supplemental Table).

We report the results of the second survey, summary data of core elements of the Utstein template from each participating registry in 2015 in Tables 2–5 and Fig. 1. All registries were population-based and national registries included between 25.0% and 100% of the national population. (Table 2) The estimated annual incidence of EMS-treated OHCA ranged from 30.0 to 97.1 individuals per 100,000 population. Seven registries recorded dispatcher CPR instructions, which ranged from 1.6% to 54.7% of EMS-treated OHCA across registries. Median age varied from 64 to 79 years and more than half of patients were male in all registries. (Table 3) All registries reported witness status and 37.0–69.8% of OHCA were witnessed by a bystander. Fourteen registries recorded the location of OHCA and 51.6–85.3% occurred at home. All registries reported bystander CPR and 11 registries reported bystander AED use (Fig. 1 and Table 3). The provision of bystander CPR ranged from 19.1% to 79.0% in all registries (Fig. 1). Six registries recorded types of bystander CPR. Chest compression-only bystander CPR was provided for 15.4–46.9% of OHCA. Bystander AED use varied from 2.0% to 37.4% and shock delivered from 0.5% to 7.2% (Table 3). Fourteen registries recorded the cause of cardiac arrests, and the proportion of documented as medical cause ranged from 52.0% to 95.2%. Thirteen registries recorded EMS response time, the interval from incoming call to the time that the first emergency response vehicle stopped at the scene, with median intervals ranging from 5 to 11 min (Table 4).

All registries recorded survival to hospital discharge or 30-day survival and 11 registries recorded favorable neurological outcome at hospital discharge or 30 days after EMS-treated OHCA (Table 5). Survival to hospital discharge or 30-day survival after EMS-treated OHCA varied from 3.1% to 20.4% across all registries. Favorable neurological outcome at hospital discharge or 30 days after EMS-treated OHCA varied from 2.8% to 18.2%. Survival to hospital discharge or 30-day survival after bystander-witnessed shockable OHCA ranged 11.7–47.4% and favorable neurological outcome was from 9.9% to 33.3%.

Table 1 – Participating registries.

Name of registry	Country	Response to the first survey	Response to the second survey
National/international registries*			
Cardiac Arrest Registry to Enhance Survival (CARES)	United States	✓	✓
Danish Cardiac Arrest Registry	Denmark	✓	✓
Norwegian Cardiac Arrest Registry	Norway	✓	✓
Swedish Cardiac Arrest Registry	Sweden	✓	✓
Out-of-hospital Cardiac Arrest Outcomes (OHCAO)	United Kingdom	✓	✓
Australian Resuscitation Outcomes Consortium (Aus-ROC)	Australia	✓	✓
Australian Resuscitation Outcomes Consortium (Aus-ROC)	New Zealand	✓	✓
Pan-Asian Resuscitation Outcomes Study (PAROS)	Singapore	✓	✓
Pan-Asian Resuscitation Outcomes Study (PAROS)	South Korea	✓	✓
Utstein Japan	Japan	✓	✓
Regional registries			
Saving Hearts in Arizona Registry & Education (SHARE)	United States	✓	✓
Rescu Epistry	Canada	✓	✓
Helsinki Cardiac Arrest Registry	Finland	✓	✓
Pavia Cardiac Arrest Registry (Pavia CARE)	Italy	✓	✓
Ticino Registry of Cardiac Arrest	Switzerland	✓	✓
Pan-Asian Resuscitation Outcomes Study (PAROS)	Tainan City, Taiwan	✓	✓
Sudden Death Expertise center registry (SDEC)	Paris	✓	✓

* We defined a national registry as one aiming for nationwide coverage and an international registry as one including more than one country.

CPR, we presented proportion of patients who received each type of bystander CPR among EMS resuscitation attempted OHCA in the registry. Similarly, when a registry collected data on the application of an AED and shock delivery by a bystander, we presented the proportion of those who had an AED applied and a shock delivered. When we calculated the proportion of those who received bystander CPR, had an AED applied, and received an AED shock, we excluded EMS-witnessed OHCA from the denominators because those with EMS-witnessed OHCA did not have the opportunity to have these bystander interventions. Survival outcomes were reported for both all EMS-treated OHCA and bystander-witnessed shockable OHCA. Favorable neurological outcome was defined as Cerebral Performance Category (CPC) 1 or 2, or modified Rankin Scale ≤ 3 following the Utstein recommendation. We used a secure electronic database, Research Electronic Data Capture (RED Cap) for data collection for both surveys and data management.

We report the results of the second survey, summary data of core elements of the Utstein template from each participating registry in 2015 in Tables 2–5 and Fig. 1. All registries were population-based and national registries included between 25.0% and 100% of the national population. (Table 2) The estimated annual incidence of EMS-treated OHCA ranged from 30.0 to 97.1 individuals per 100,000 population. Seven registries recorded dispatcher CPR instructions, which ranged from 1.6% to 54.7% of EMS-treated OHCA across registries. Median age varied from 64 to 79 years and more than half of patients were male in all registries. (Table 3) All registries reported witness status and 37.0–69.8% of OHCA were witnessed by a bystander. Fourteen registries recorded the location of OHCA and 51.6–85.3% occurred at home. All registries reported bystander CPR and 11 registries reported bystander AED use (Fig. 1 and Table 3). The provision of bystander CPR ranged from 19.1% to 79.0% in all registries (Fig. 1). Six registries recorded types of bystander CPR. Chest compression-only bystander CPR was provided for 15.4–46.9% of OHCA. Bystander AED use varied from 2.0% to 37.4% and shock delivered from 0.5% to 7.2% (Table 3). Fourteen registries recorded the cause of cardiac arrests, and the proportion of documented as medical cause ranged from 52.0% to 95.2%. Thirteen registries recorded EMS response time, the interval from incoming call to the time that the first emergency response vehicle stopped at the scene, with median intervals ranging from 5 to 11 min (Table 4).

All registries recorded survival to hospital discharge or 30-day survival and 11 registries recorded favorable neurological outcome at hospital discharge or 30 days after EMS-treated OHCA (Table 5). Survival to hospital discharge or 30-day survival after EMS-treated OHCA varied from 3.1% to 20.4% across all registries. Favorable neurological outcome at hospital discharge or 30 days after EMS-treated OHCA varied from 2.8% to 18.2%. Survival to hospital discharge or 30-day survival after bystander-witnessed shockable OHCA ranged 11.7–47.4% and favorable neurological outcome was from 9.9% to 33.3%.
Name of registries	Country	Total population of covered area of the registry	Proportion of population in covered area of the registry among the country’s population, %	Population-based	Annual number of attempted resuscitation in 2015	Estimated Incidence of EMS-treated OHCA per 100,000 population	Annual number of dispatcher CPR instruction, n (%)
National/international registries							
Cardiac Arrest Registry to Enhance Survival (CARES)	United States	85,000,000	25.0%	Yes	52,902	62.2	N/A
Danish Cardiac Arrest Registry^a	Denmark	5,627,235	100.0%	Yes	4053	72.0	N/A
Norwegian Cardiac Arrest Registry^a	Norway	4,793,741	93.0%	Yes	2298	47.9	N/A
Out-of-hospital Cardiac Arrest Outcomes	United Kingdom	54,646,932	83.9%	Yes	28,914	52.9	N/A
Australian Resuscitation Outcomes Consortium (Aus-ROC)	Australia	15,215,358	64.0%	Yes	7120	46.8	N/A
Australian Resuscitation Outcomes Consortium (Aus-ROC)	New Zealand	4,595,720	100.0%	Yes	2305	50.2	N/A
Pan-Asian Resuscitation Outcomes Study^b	Singapore	5,535,000	100.0%	Yes	2322	42.0	1250 (53.8)
Pan-Asian Resuscitation Outcomes Study^b	South Korea	51,069,375	97.0%	Yes	27,656	54.2	10,432 (37.7)
Utstein Japan	Japan	127,094,745	100.0%	Yes	123,421	97.1	67,488 (54.7)
Regional registries							
Saving Hearts in Arizona Registry & Education (SHARE)	United States	6,931,071	2.2%	No	4467	64.4	71 (1.6)
Rescu Epistry^b	Canada	6,600,000	19.0%	Yes	3610	54.7	N/A
Helsinki Cardiac Arrest Registry	Finland	639,222	12.0%	Yes	225	35.2	120 (53.3)
Pavia Cardiac Arrest Registry (Pavia CARe)	Italy	547,435	1.0%	Yes	490	89.5	50 (10.2)
Ticino Registry of Cardiac Arrest	Switzerland	350,363	10.0%	Yes	247	70.5	N/A
Pan-Asian Resuscitation Outcomes Study^b	Tainan City, Taiwan	1,885,390	8.0%	Yes	1,599	84.8	261 (16.3)
Sudden Death Expertise Center registry (SDEC)	Paris	6,800,000	10.0%	Yes	2040	30.0	N/A

^a Data in 2014.

^b Data in 2013 CPR denote cardiopulmonary resuscitation.
Table 3 – Summary data for all EMS-treated OHCA in Utstein core elements (patient).

Name of registries	Country	Age, n (%)	Male, n (%)	Witnessed arrest, n (%)	Location, n (%)	AED use by bystander, n (%)	First monitored rhythm, n (%)	Pathogenesis, n (%)
National/international registries								
Cardiac Arrest Registry to Enhance Survival (CARES)	United States	64 (52, 77)	62.5 (19.4)	32,255	19,558 (37.0)	6346 (12.0)	36,733 (69.4)	880 (1.7)
Norwegian Cardiac Arrest Registry	Norway	N/A	N/A	2535	1898 (44.9)	472 (11.7)	2966 (72.0)	N/A
Out-of-hospital Cardiac Arrest Outcomes (OHCAO)	United Kingdom	72.6 (58.2)	68.6 (19.2)	17,626	10,742 (51.5)	3512 (12.7)	1402 (61.0)	N/A
Australian Resuscitation Outcomes Consortium (AUSROC)	Australia	65 (48.7)	61.5 (21.2)	4863	2687 (36.0)	1081 (15.2)	4741 (66.6)	N/A
New Zealand Resuscitation Outcomes Study (NEWZOR)	New Zealand	66 (52, 77)	61.7 (20.6)	1540	1179 (29.4)	678 (7.4)	1554 (67.4)	N/A
Pan-Asian Resuscitation Outcomes Study (PAROS)	Singapore	67 (56, 77)	65.7 (18.0)	1512	1253 (9.1)	212 (1.6)	1649 (71.0)	N/A
Pan-Asian Resuscitation Outcomes Study (PAROS)	South Korea	69 (54, 79)	65.0 (19.0)	17,884	10,472 (37.9)	1911 (8.8)	16,089 (58.2)	N/A
Japan Resuscitation Outcomes Study (JAPROS)	Japan	79 (67, 86)	75 (17.0)	70,421	51,125 (41.4)	9682 (8.0)	9682 (1.4)	N/A
Regional registries								
Saving Hearts in Arizona Registry & Education (SHARE)	United States	64 (51, 76)	61 (20.9)	2869	1764 (39.3)	438 (9.8)	2701 (0.9)	41 (1.5)
Helsinki Cardiac Arrest Registry	Finland	66 (67)	66 (16.1)	2310	1639 (46.4)	469 (13.0)	3079 (85.3)	N/A
Pavia Cardiac Arrest Registry (Pavia CAREs)	Italy	75 (66, 85)	75 (15.0)	297	276 (56.3)	79 (16.1)	393 (8.0)	9 (0.2)
Ticino Registry of Cardiac Arrest	Switzerland	74 (62, 70)	70 (17.0)	159	131 (10.1)	25 (3.2)	167 (67.6)	4 (2.2)
Pan-Asian Resuscitation Outcomes Study (PAROS)	Taiwan	70 (54, 81)	66.1 (18.9)	1018	913 (57.1)	89 (3.5)	1168 (72.8)	52 (0.5)
Sudden Death Expertise Center registry (SDEC)	Paris	66 (54, 78)	65 (16.0)	1344	1274 (62.5)	251 (12.3)	1511 (74.1)	N/A

IQR denote interquartile range; SD: standard deviation; EMS: emergency medical services; AED: automated external defibrillator.

a Data in 2014.
b Data in 2013.
c We excluded EMS-witnessed OHCA from the denominators.
Table 4 – Summary data for all EMS-treated OHCA in Utstein core elements (process).

Name of registries	Country	Median time from call to EMS arrival on, minute, median (IQR)	Median time from call to shock by EMS, minute, median (IQR)	The time interval from incoming call to initiation of EMS CPR[^1^], minute, median (IQR)	The time interval from incoming call to hospital arrival[^2^], minute, median (IQR)	TTM, n (%)	Drugs given, n (%)
National/international registries							
Cardiac Arrest Registry to Enhance Survival (CARES)	United States	7.1 (5.1, 10.0)	N/A	N/A	40.0 (31.4, 51.0)	5224 (9.9)	10,174 (19.2)
Danish Cardiac Arrest Registry[^a^]	Denmark	N/A	N/A	N/A	N/A	N/A	N/A
Norwegian Cardiac Arrest Registry	Norway	9 (6.0, 14.0)	N/A	N/A	N/A	0 (0)	N/A
Out-of-hospital Cardiac Arrest Outcomes (OHCAO)	United Kingdom	6.1 (3.8, 9.3)	N/A	N/A	N/A	N/A	N/A
Australian Resuscitation Outcomes Consortium (Aus-ROC)	Australia	8.0 (6.0, 11.0)	N/A	N/A	65.0 (49, 88)	N/A	N/A
Australian Resuscitation Outcomes Consortium (Aus-ROC)	New Zealand	9.0 (7.0, 13.0)	N/A	N/A	58.0 (43, 79)	N/A	N/A
Pan-Asian Resuscitation Outcomes Study (PAROS)	Singapore	9.0 (7.1, 11.5)	16.6 (12.7, 23.9)	12.3 (10.1, 15.5)	37.7 (33.0, 42.8)	N/A	133 (5.7)
Pan-Asian Resuscitation Outcomes Study (PAROS)	South Korea	7 (5.0, 10.0)	10 (9, 14)	9 (6, 12)	26 (21, 33)	N/A	627 (2.3)
Utstein Japan Regional registries	Japan	7 (6.0, 9.0)	12 (9, 20)	9 (7, 12)	32 (26, 40)	N/A	21,712 (17.6)
Saving Hearts in Arizona Registry & Education (SHARE)	United States	5 (4, 7)	12 (8, 19)	9 (6, 11)	28 (23, 34)	33 (0.7)	454 (10.2)
Rescu Epistry[^a^]	Canada	6.5 (2.8)[^c^]	N/A	N/A	N/A	N/A	2101 (58.2)
Rescu Epistry[^a^]	Finland	8.5 (7.0, 10.0)	9.5 (8.0, 11.1)	8.5 (7.0, 10.0)	N/A	N/A	11 (4.9)
Name of registries	Country	Median time from call to EMS arrival on, minute, median (IQR)	Median time from call to shock by EMS, minute, median (IQR)	The time interval from incoming call to initiation of EMS CPR, minute, median (IQR)	The time interval from incoming call to hospital arrival, minute, median (IQR)	TTM, n (%)	Drugs given, n (%)
-------------------	-------------	---	---	--	---	------------	-------------------
Helsinki Cardiac Arrest Registry	Italy	11 (8.0, 14.0)	15 (11, 26)	13 (10, 21)	66 (51, 87)	N/A	223 (45.5) 43 (8.8)
Pavia Cardiac Arrest Registry (Pavia CARe)	Switzerland	9 (6.0, 12.0)	11 (9, 15)	N/A	66 (49, 79)	N/A	205 (83.0) 36 (14.6)
Ticino Registry of Cardiac Arrest Pan-Asian Resuscitation Outcomes Study (PAROS)	Taiwan	6 (4.6, 8.1)	N/A	N/A	23 (19, 29)	N/A	60 (3.8) 0 (0)
Sudden Death Expertise Center registry (SDEC)	Paris	N/A	N/A	N/A	N/A	N/A	271 (13.3) 1522 (74.6) 241 (16.7)

SD: standard deviation; EMS: Emergency medical services; AED: automated external defibrillator; CPR: cardiopulmonary resuscitation; TTM: Targeted temperature management.

a Data in 2014.
b Data in 2013.
c Reported mean (SD).
d Not in Utstein core element IQR denote interquartile range.
Table 5 – Summary data in Utstein core elements (outcome).

Name of registries	Country	All EMS-treated OHCA including EMS witnessed, n (%)	Shockable bystander-witnessed (EMS witnessed excluded), n (%)		
		Either discharged alive or 30 day survival	Good neurological outcome at hospital discharge or 30 days	Either discharged alive or 30 day survival	Good neurological outcome at hospital discharge or 30 days
National/international registries					
Cardiac Arrest Registry to Enhance Survival (CARES)	United States	5562 (10.5)	4467 (8.4)	2096 (33.4)	1877 (29.9)
Danish Cardiac Arrest Registry	Denmark	515 (12.7)	N/A	233 (47.4)	N/A
Norwegian Cardiac Arrest Registry	Norway	360 (15.7)	N/A	157 (43.6)	N/A
Out-of-hospital Cardiac Arrest Outcomes	United Kingdom	1962 (7.8)	N/A	761 (21.6)	N/A
Australian Resuscitation Outcomes Consortium (Aus-ROC)	Australia	531 (11.0)	N/A	220 (31.0)	N/A
Australian Resuscitation Outcomes Consortium (Aus-ROC)	New Zealand	316 (13.8)	N/A	175 (31.0)	N/A
Pan-Asian Resuscitation Outcomes Study (PAROS)	Singapore	121 (5.2)	3.2	53 (20.5)	37 (14.3)
Pan-Asian Resuscitation Outcomes Study (PAROS)	South Korea	1875 (6.8)	3.9	833 (34.4)	659 (27.3)
Utstein Japan Registry (SHARE)	Japan	7802 (6.3)	4400 (4.6)	1721 (33.8)	1213 (23.8)
Saving Hearts in Arizona Registry & Education	United States	524 (12.0)	279 (6.2)	168 (31.0)	129 (23.8)
Helsinki Cardiac Arrest Registry	Finland	339 (9.4)	307 (8.5)	1123 (31.1)	N/A
Registries					
Pavia Cardiac Arrest Registry (Pavia CARE)	Italy	37 (7.6)	28 (5.7)	17 (29.8)	12 (21.1)
Registry of Cardiac Arrest	Switzerland	21 (8.5)	20 (8.1)	10 (24.4)	10 (24.4)
Pan-Asian Resuscitation Outcomes Study (PAROS)	Tainan City, Taiwan	50 (3.1)	44 (2.8)	13 (11.7)	11 (9.9)
Sudden Death Emergency Center registry (SDEC)	Paris	144 (7.1)	140 (6.9)	92 (20.9)	88 (20.0)

IQR denote interquartile range; SD: standard deviation; OHCA: out-of-hospital cardiac arrest; EMS: emergency medical services.

* a: Data in 2014.
* b: Data in 2013.
* c: Reported 30 day survival.

Discussion

This ILCOR report presents a descriptive summary of OHCA systems of care and outcome data from 16 national and regional OHCA registries across the world. The data show that most registries are collecting and reporting core elements of the Utstein data set. There is a 6.6-fold difference in survival to hospital discharge or 30-day survival (3.1–20.4%) and a 6.5-fold difference in favorable neurological outcome at hospital discharge or at 30 days (2.8–18.2%) after EMS-treated OHCA across the registries. Importantly, direct comparison of the outcomes between registries is not appropriate because of multiple confounders: system, dispatch, patient, and process that are measured and unmeasured in the latest Utstein style templates. For example, core elements of the latest Utstein templates do not include the following data points which contribute to the denominator for population-based EMS-treated cases, although some of these factors are listed as supplemental elements of system in the Utstein template: (1) criteria to dispatch EMS providers, (2) how prehospital advance directives are handled by dispatcher, (3) legislation prescribing who is mandated to receive resuscitation, (4) determination of futility before starting resuscitation, and (5) determination of who should be transported with continued treatment and who should have their...
resuscitative efforts terminated at the scene.10,11 Each one of these factors at system-level contributes to the determination of who receives an EMS response and if EMS initiates resuscitative effort through a standardized endpoint. The difference in these factors across registries could also explain the observed large variation in the estimated incidence of EMS-treated OHCA in our report. Prior work from the Resuscitation Outcomes Consortium, a multicentre research network in the United States and Canada showed that there was a variability (23.9–100%) in the proportion of patients where resuscitation was initiated by EMS in EMS-assessed OHCA across 129 EMS agencies in North America.30 Future efforts are warranted to capture these known factors that contribute to the denominator for population-based EMS-treated cases across registries. Furthermore, a recent analysis of data from 12 OHCA registries showed that Utstein factors could explain only about half of the variation in OHCA survival between settings.26

We also reported a 4.1-fold difference in survival to hospital discharge or 30-day survival (11.7–47.4%) and a 3.4-fold difference in favorable neurological outcome at hospital discharge or at 30 days (9.9–33.3%) for patients with bystander-witnessed shockable OHCA. This population can be considered to represent a less heterogeneous group than all EMS-treated OHCA and is a better comparator of system efficacy as recommended in the Utstein style.10,11 The potential mechanisms of the variation in outcomes after bystander-witnessed shockable OHCA across registries include differences in each Utstein OHCA element: system, dispatch, patient, and process. Importantly, we observed a 4.1-fold difference in the provision of bystander CPR (19.1–79.0%) and a 18.7-fold difference in bystander AED use (2.0–37.4%). As these interventions are linked closely with favorable outcomes23,31–37 and modifiable, it is important to recognize these differences by regions and optimize the provision of bystander CPR and AED use in all communities. This might include widespread training in CPR and AED use,14,38 media campaigns,39 dispatcher CPR instructions,40–42 and new technologies using a mobile phone to direct nearby registered lay rescuers to the scene.43–45

We found discrepancies between measured elements in each registry and core elements of the latest Utstein style recommendations for OHCA (e.g., 6/11 registries measured “resuscitation not attempted because of a written do not attempt cardiopulmonary resuscitation decision or obvious death”), 6/11 “dispatcher-identified cardiac arrest”, 3/11 “targeted temperature management indication”, 7/11 “reperfusion attempted”, which is consistent with a previous report.46 Most of these infrequently measured core elements of the Utstein style recommendations are variables that were newly adopted in 2014, implying that the updated Utstein templates have yet to be widely implemented. As new post cardiac arrest treatments have been

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Proportion of provision of bystander cardiopulmonary resuscitation among patients with emergency medical services resuscitation attempted out-of-hospital cardiac arrest (we excluded EMS-witnessed out-of-hospital cardiac arrest).}
\end{figure}
developed, many of the recently adopted core and supplemental elements include in-hospital post-resuscitation interventions, which implies the need for a comprehensive data collecting system to linkprehospital and in-hospital elements. This will necessitate collaboration between EMS systems and medical institutions. The Utstein elements predict survival but account for only a modest portion of regional variation in patient outcome after OHCA, suggesting that there are other unmeasured factors that are contributing to the outcome variability.5,49,50 To capture these important yet to be measured factors, future research should identify these factors and subsequent revision of the Utstein style recommendation is required.

The data generated by this global registry report help with understanding the current epidemiology of OHCA and inform quality improvement. We plan to increase the number of participating registries to enable more comprehensive reporting of systems of care and outcomes following OHCA throughout the world. Continuity is also important to assess secular trends of outcomes and evaluate effectiveness of various interventions. We also plan to conduct a similar project for in-hospital cardiac arrest following the Utstein style recommendations for in-hospital cardiac arrests.51–54

This report has several limitations. First, denominators may not have been standardized across all elements. We intended to include all EMS-resuscitated OHCA in the denominators, but the failure to include all of these OHCA in the denominators may account at least partially for the large variation in outcomes such as survival, bystander CPR, and AED use across registries. Second, we were not able to include all core and supplemental elements of the latest Utstein style recommendation for OHCA in 2014 because these data were not available in all registries. Third, although most registries provided data for 2015, the year of data collection was different in two of the registries. Fourth, most of the registries which participated in this survey are from high income nations/regions, so our results may not be applicable to low income nations/regions.

Conclusion

Based on the Utstein style recommendations for OHCA reporting, we described the data collected on systems of care and outcomes following OHCA from 9 national and 7 regional registries across the world. We found variation in patient outcomes and in other core elements of the latest Utstein style recommendations for OHCA across nations and regions, suggesting opportunities for improvements in data definitions and reporting system.

Financial disclosure

The authors have no financial relationships relevant to this manuscript to disclose.

Funding

This manuscript received funding from the American Heart Association on behalf of ILCOR and a charge of Redcap was supported by Japan Resuscitation Council (JRC). Neither ILCOR nor JRC had no role in this study design, data collection, and analysis, or preparation of the manuscript.

Conflict of interest

JPN is Editor-in-Chief, GDP and JS are Editors of Resuscitation. The rest of authors report no conflicts of interest related specifically to this manuscript.

Acknowledgements

We thank all who contribute participating registries for providing their valuable data. The authors would like to express their appreciation to the following for contributing valuable support: the ILCOR staff members, Bill Montgomery, Veronica Zamora, and Noelle Hutchins.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.resuscitation.2020.02.044.

References

1. Berdowski J, Berg RA, Tijssen JGP, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 2010;81:1479–87.
2. Gränsner J-T, Lefering R, Koster RW, et al. EuReCa ONE – 27 Nations, ONE Europe, ONE Registry. Resuscitation 2016;105:188–95.
3. Nichol G, Thomas E, Callaway CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 2008;300:1423–31.
4. Girotra S, Diepen S, van Nallamothu BK, et al. Regional variation in out-of-hospital cardiac arrest survival in the United States. Circulation 2016;133:2159–68.
5. Okubo M, Gibo K, Wallace DJ, et al. Regional variation in functional outcome after out-of-hospital cardiac arrest across 47 prefectures in Japan. Resuscitation 2018;124:21–8.
6. Benjamin EJ, Blaha MJ, Chlieve SE, et al. Heart disease and stroke statistics – 2019 update: a report from the American Heart Association. Circulation 2019.
7. Cummins RO, Chamberlain DA, Abramson NS, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. Circulation 1991;84:960–75.
8. Jacobs I, Nadkarni V, Bahr J, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. Circulation 2004;110:3385–97.
9. Jacobs I, Nadkarni V, Bahr J, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. Resuscitation 2004;63:233–49.
10. Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest. Circulation 2015;132:1286–300.
11. Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for out-of-hospital cardiac arrest. Resuscitation 2015;96:328–40.
12. Kuisma M, Määttä T. Out-of-hospital cardiac arrests in Helsinki: Utstein style reporting. Heart 1996;76:18–23.
13. Strömööe A, Svensson L, Axelsson AB, Göransson K, Todorova L, Herlitz J. Validity of reported data in the Swedish Cardiac Arrest Register in selected parts in Sweden. Resuscitation 2013;84:952–6.
14. Wissberg M, Lippert FK, Folke F, et al. Association of national initiatives to improve cardiac arrest management with rates of
bystander intervention and patient survival after out-of-hospital cardiac arrest. JAMA 2013;310:1377–84.

15. Perkins GD, Brace-McDonnell SJ. The UK Out of Hospital Cardiac Arrest Outcome (OHCAO) project. BMJ Open 2015;5:e008736.

16. Savastano S, Servi S, De Oltrona Visconti L, Raimondi M. The Pavia Cardiac Arrest REGistry – Pavia CARE, it’s time for cardiologists to be engaged in cardiac arrest. Int J Cardiol 2015;185:93–4.

17. Mauri R, Burkart R, Benvenuti C, et al. Better management of out-of-hospital cardiac arrest increases survival rate and improves neurological outcome in the Swiss Canton Ticino. Europace 2016;18:398–404.

18. McNally B, Stokes A, Crouch A, Kellermann AL. CARES: cardiac arrest registry to enhance survival. Ann Emerg Med 2009;54:674–83.

19. Bobrow BJ, Vadeboncoeur TF, Clark L, Chikani V. Establishing Arizona’s statewide cardiac arrest reporting and educational network. Prehospital Emerg Care 2008;12:381–7.

20. Morrison LJ, Nichol G, Rea TD, et al. Rationale, development and implementation of the resuscitation outcomes consortium epistry-cardiac arrest. Resuscitation 2008;78:161–9.

21. Lin S, Morrison LJ, Brooks SC. Developing a common data dictionary for the Strategies for Post Arrest Resuscitation Care (SPARC) network for post cardiac arrest research. Resuscitation 2011;82:419–22.

22. Ong MEH, Shin S, Do Tanaka H, et al. Pan-Asian Resuscitation Outcomes Study (P-ROAS): rationale, methodology, and implementation. Acad Emerg Med 2011;18:890–7.

23. Kitamura T, Iwami T, Kawamura T, et al. Nationwide public-access defibrillation in Japan. N Engl J Med 2010;362:994–1004.

24. Beck B, Bray J, Smith K, et al. Establishing the Aus-ROC Australian and New Zealand out-of-hospital cardiac arrest registry. BMJ Open 2016;6:e011027.

25. Beck B, Bray J, Cameron P, et al. Regional variation in the characteristics, incidence and outcomes of out-of-hospital cardiac arrest in Australia and New Zealand: results from the Aus-ROC registry. Resuscitation 2017;114:42–57.

26. Dyson K, Brown SP, May S, et al. International variation in survival after out-of-hospital cardiac arrest: a validation study of the Utstein template. Resuscitation 2019;138:168–81.

27. Perkins GD, Neumar R, Monsieurs KG, et al. The International Liaison Committee on Resuscitation – review of the last 25 years and vision for the future. Resuscitation 2017;121:104–16.

28. Buick JE, Drennan IR, Scales DC, et al. Improving temporal trends in survival and neurological outcomes after out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes 2018;11:e003561.

29. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81.

30. Brooks SC, Schmicker RH, Cheseke S, et al. Variability in the initiation of resuscitation attempts by emergency medical services personnel during out-of-hospital cardiac arrest. Resuscitation 2017;117:102–8.

31. Sasson C, Rogers TAM, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2010;3:63–81.

32. Nakahara S, Tomio J, Ichikawa M, et al. Association of bystander interventions with neurologically intact survival among patients with bystander-witnessed out-of-hospital cardiac arrest in Japan. JAMA 2015;314:247.

33. Hasselqvist-Ax I, Riva G, Herlitz J, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med 2015;372:2307–15.

34. Holmberg MJ, Vognser M, Andersen MS, Donnino MW, Andersen LW. Bystander automated external defibrillation use and clinical outcomes after out-of-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation 2017;120:77–87.

35. Kitamura T, Kiyohara K, Sakai T, et al. Public-access defibrillation and out-of-hospital cardiac arrest in Japan. N Engl J Med 2016;375:1649–59.

36. Hallstrom A, Omato J, Weisfeldt M, et al. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med 2004;351:637–46.

37. Weisfeldt ML, Siltani CM, Ornato JP, et al. Survival after application of automatic external defibrillators before arrival of the emergency medical system: evaluation in the resuscitation outcomes consortium population of 21 million. J Am Coll Cardiol 2010;55:1713–20.

38. Böttiger BW, Van Aken H. Training children in cardiopulmonary resuscitation worldwide. Lancet 2015;385:2593–4.

39. Sayre MR, Berg RA, Cave DM, Page RL, Potts J, White RD. Hands-only (compression-only) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest — a science advisory for the public from the American heart association emergency cardivias. Circulation 2008;117:2162–7.

40. Wu Z, Panzyk M, Spaitse DW, et al. Telephone cardiopulmonary resuscitation is independently associated with improved survival and improved functional outcome after out-of-hospital cardiac arrest. Resuscitation 2018;122:135–40.

41. Ro YS, Shin S, Do Lee YJ, et al. Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome. Ann Emerg Med 2017;69:52–61.

42. Rea TD, Eisenberg MS, Culley LL, Becker L. Dispatcher-assisted cardiopulmonary resuscitation and survival in cardiac arrest. Circulation 2001;104:2513–6.

43. Brooks SC, Simmons G, Worthington H, Bobrow BJ, Morrison LJ. The pulsepoint respond mobile device application to crowdsourced basic life support for patients with out-of-hospital cardiac arrest: challenges for optimal implementation. Resuscitation 2016;98:20–6.

44. Ringh M, Rosenqvist M, Holfemmer J, et al. Mobile-telephone dispatch of laypersons for CPR in out-of-hospital cardiac arrest. N Engl J Med 2015;372:2316–25.

45. Caputo ML, Muschietti S, Burkart R, et al. Lay persons alerted by mobile application system initiate earlier cardiac-pulmonary resuscitation: a comparison with SMS-based system notification. Resuscitation 2017;114:79–87.

46. Nishiyama C, Brown SP, May S, et al. Apples to apples or oranges? International variation in reporting of process and outcome of care for out-of-hospital cardiac arrest. Resuscitation 2014;85:1599–609.

47. Nolan JP, Soar J, Caricu A, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015, Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015;95:202–22.

48. Callaway CW, Donnino MW, Fink EL, et al. Part 8: Post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2015;132:5465–82.

49. Rea TD, Cook AJ, Siellt IG, et al. Predicting survival after out-of-hospital cardiac arrest: role of the Utstein data elements. Ann Emerg Med 2010;55:249–57.

50. Okubo M, Schmicker RH, Wallace DJ, et al. Variation in survival after out-of-hospital cardiac arrest between emergency-medical-services agencies. JAMA Cardiol 2018;3:989–99.

51. Cummins RO, Chamberlain D, Hazinski MF, et al. Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in-hospital “Utstein style”. Resuscitation 1997;37:151–83.

52. Cummins RO, Chamberlain D, Hazinski MF, et al. Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in-hospital ‘Utstein Style’. Circulation 1997;95:2213–39.

53. Nolan JP, Berg RA, Andersen LW, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Template for in-hospital cardiac arrest. Resuscitation 2019.

54. Nolan JP, Berg RA, Andersen LW, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein resuscitation registry template for in-hospital cardiac arrest: a consensus report from a Task Force of the International Liaison Committee on Resuscitation. Circulation 2019;e746–57.