Supporting Information

Atypically modified carbapenem antibiotics display improved anti-mycobacterial activity in the absence of β-lactamase inhibitors.

Rashmi Gupta,¹ Noora M.S.A. Al-Kharji,² Maha A. Alqurafi,² Thu Q. Nguyen,² Weirui Chai,² Pojun Quan,² Riya Malhotra,² Breven S. Simcox,¹ Phil Mortimer,³ Leighanne A. Brammer Basta,⁴* Kyle H. Rohde,¹* John D. Buynak²*

¹ Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL 32827, USA
² Department of Chemistry, South Methodist University, Dallas, TX 75275-0314, USA
³ Department of Chemistry, Mass Spectrometry Facility, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
⁴ Chemistry Department, United States Naval Academy, 572M Holloway Rd, Annapolis, MD 21402, USA

*Correspondence: John D. Buynak, Phone: 214-803-4871, email: jbuynak@smu.edu
Supporting Information

Part 1: Procedures for the Synthesis of Atypical Carbapenems 10a, 10b, 13a, and 13b. Pages 3-20

Part 2: Table S1, Bacterial Strains, Page 21.

Part 3: Figure S1, Dose Response curves of data in Table 1, pg 22.
Supporting Information Part 1: Procedures for the Synthesis of Atypical Carbapenems 10a, 10b, 13a, and 13b.

2a: A solution of methyl magnesium iodide was prepared as follows. To a stirred slurry of magnesium turnings (30.5 g, 1.26 mol, 1.5 eq) in anhydrous diethyl ether was added a small crystal of iodine, and then a solution of methyl iodide (118.6 g, 52 mL, 0.835 mol) in 50 mL of anhydrous diethyl ether dropwise at such a rate as to maintain a gentle reflux. Once complete, the reaction was allowed to stir under an inert atmosphere at room temperature overnight.

To a rapidly stirred (overhead stirrer) slurry of copper (I) iodide (79 g, 0.42 mol) in anhydrous THF (2 L) at room temperature was added dimethyl sulfide (25.8 g, 30.7 mL, 0.42 mol). This solution was allowed to stir under an inert atmosphere for 30 min, then chilled to -60 °C. To this rapidly stirred solution was added the ethereal solution of methyl magnesium iodide prepared above, at a rate so as to maintain the temperature below -40 °C. Then the temperature of the reaction mixture was allowed to rise to a temperature between -10 and 0 °C, and stirred at that temperature for 30 min. The solution was then again cooled to -60 °C and a solution of 1 (60 g, 0.208 mol) in 300 mL anhydrous THF was added slowly. The reaction was then allowed to warm to room temperature over the course of 90 min. The reaction was again chilled to 0 °C, and remaining organometallic quenched by slowly pouring the reaction into a rapidly stirred saturated aqueous solution of ammonium chloride (vigorously evolves methane and ammonia gas!, exothermic !). The THF was then removed in vacuo, water was added, and the product extracted with EtOAc. The combined EtOAc layers were washed with dilute aqueous ammonium hydroxide to remove copper. The organic layers were dried over Na₂SO₄, concentrated in vacuo, and the product purified by silica gel chromatography (increasing 2 to 40% EtOAc/CH₂Cl₂) to produce 2a (42.2 g, 83% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 6.38 (s, 1H), 5.29 (s, 1H), 4.19 (m, 1H), 3.83 (m, 1H), 2.69 (m, 1H), 1.3 (dd, J= 54 Hz, 3H), 0.86 (s, 9H), 0.067 (S, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 168.99, 65.74, 65.50, 47.88, 25.74, 25.59, 22.33, 20.59, 17.77, -4.34, -4.62, -4.75.
IR: 3415.79, 3229.86, 2959.39, 2929.27, 2893.85, 2857.09, 2708.17, 2249.20, 1754.52, 1471.48, 1462.92, 1446.72, 1378.34, 1347.43, 1333.39, 1299.97, 1254.06, 1187.16, 1143.14, 1096.71, 1037.92, 1005.93, 986.68, 956.49, 909.25, 835.17, 809.60, 766.45, 734.96, 661.74, 646.36.

HRMS: calcd C₁₂H₂₆NO₂Si⁺ [M + H]⁺ 244.1727, obs 244.1686

2b: compound 2b was prepared as described above for 2a, using ethyl iodide in place of methyl iodide and keeping the organocuprate reagent at -15 to -10 °C (instead of -10 to 0 °C). Purified yield of 2b was 81%.

¹H NMR (400 MHz, CDCl₃): δ 5.32 (s, 1H), 2.5 (m, 1H), 2.14 (s, 1H), 1.87 (t, j= 3.2 Hz, 3H), 1.26 (q, j= 2.4 Hz, 2H), 0.92 (s, 9H), 0.094 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 169.20, 65.66, 63.92, 52.69, 27.98, 25.88, 22.75, 22.74, 17.94, 10.70, -4.26, -4.91.

IR: 3311.64, 2931.54, 2886.10, 2857.70, 2739.21, 2709.67, 1782.31, 1464.07, 1369.46, 1251.31, 1160.75, 1102.39, 1016.07, 990.17, 945.01, 885.89, 834.36, 812.53, 776.38, 752.23, 660.51.

HRMS: calcd C₁₃H₂₈NO₂Si⁺ [M + H]⁺ 258.1884, obs 258.1843
3a: To a solution of 2a (5.0 g, 20.5 mmol) in anhydrous ethyl acetate (205 mL) was added anhydrous sodium acetate (1.01 g, 12.3 mmol, 0.6 eq) and anhydrous acetic acid (10.25 mL, 10.8 g, 179 mmol, 8.7 eq). Commercial RuCl₃ was placed in a flask with a Teflon coated stir bar, put under high vacuum (0.1 mm Hg), and the flask heated with a Bunsen burner with external manual agitation until last traces of water were removed and the consistency was that of finely-divided free-flowing black powder (approximately 15 min). This dried RuCl₃ (0.3 g, 1.44 mmol, 0.07 eq) was allowed to cool to rt and then added to the reaction vessel. The flask was then sealed tightly with a wired septum and the flask placed under dynamic oxygen pressure (12 psi) using a pressurized needle through the septum and chilled in an external bath to 10-12 °C. Freshly (twice) distilled acetaldehyde (11.8 g, 15 mL, 268 mmol, 13.4 eq) was then added using a chilled syringe. The reaction was then allowed to stir at 12 °C while maintaining external pressure of oxygen and monitored by ¹H NMR. Reaction completed in 1-2 h, and then was diluted with cold hexane and the hexane layer washed with ice cold brine until the pH of the aqueous layer reached 7 (approximately 7 to 10 washes). The organic layer was dried over Na₂SO₄ and evaporated in vacuo to afford 3a (4.5 g, 73% crude yield) as a purple oil. This material was unstable toward further purification and was directly used in the next reaction.

¹H NMR (400 MHz, CDCl₃): δ 7.05 (s, 1H), 4.31 (m, 1H), 3.05 (d, J= 9.2 Hz, 1H), 2.04 (s, 3H), 1.82 (s, 3H), 1.33 (d, 6Hz, 3H), 0.86 (s, 9H), 0.067 (s, 6H). ¹³C NMR (400 MHz, CDCl₃): δ 170.22, 166.39, 88.61, 70.25, 68.75, 67.32, 64.69, 25.49, 21.90, 19.69, 17.64, 0.82, -3.98, -4.41.

IR: 3327.71, 2957.92, 2931.39, 2887.40, 2858.22, 2253.32, 1781.31, 1472.47, 1463.20, 1416.50, 1362.49, 1254.34, 1222.80, 1171.03, 1092.37, 1015.43, 963.78, 914.20, 835.01, 812.13, 778.15, 733.78, 647.79.
3b: To a solution of 2b (10.0 g, 38.8 mmol) in anhydrous ethyl acetate (388 mL) was added anhydrous sodium acetate (1.8 g, 22 mmol, 0.6 eq) and anhydrous acetic acid (23.1 g, 22 mL, 384 mmol, 9.9 eq). Commercial RuCl₃ was placed in a flask with a Teflon coated stir bar, put under high vacuum (0.1 mm Hg), and the flask heated with a Bunsen burner with external manual agitation until last traces of water were removed and the consistency was that of finely-divided free-flowing black powder (approximately 15 min). This dried RuCl₃ (3.0 g, 14.5 mmol, 37 mol%) was allowed to cool to rt and then added to the reaction vessel. The flask was then sealed tightly with a wired septum and the flask placed under dynamic oxygen pressure (12 psi) using a pressurized needle through the septum and chilled in an external bath to 10-12 °C. Freshly (twice) distilled acetaldehyde (23.6 g, 30 mL, 536 mmol, 13.8 eq) was then added using a chilled syringe. The reaction was then allowed to stir at 12 °C while maintaining external pressure of oxygen and monitored by ¹H NMR. Reaction completed in 1-2 h, and then was diluted with cold hexane and the hexane layer washed with ice cold brine until the pH of the aqueous layer reached 7 (approximately 7 to 10 washes). The organic layer was dried over Na₂SO₄ and evaporated _in vacuo_ to afford 3b (9.1 g, 74% crude yield) as a purple oil. This material was unstable toward further purification and was directly used in the next reaction.

¹H NMR (400 MHz, CDCl₃): 65.89 (s, 1H), 4.29 (m, 1H), 2.64 (q, J= 0.8 Hz, 2H), 1.27 (d, j= 3Hz, 3H), 1.05 (t, J= 3 Hz, 3H), 0.873 (s, 9H), 0.088 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): 170.38, 166.22, 90.01, 66.10, 64.47, 28.77, 25.51, 22.21, 21.52, 17.72, 9.02, 0.84, -4.13, -4.76.

IR: 3092.33, 2963.11, 2927.92, 2895.10, 2853.16, 2282.96, 1754.39, 1710.67, 1463.12, 1444.34, 1381.09, 1369.22, 1348.24, 1332.02, 1300.65,1252.41, 1185.02, 1139.74, 1099.13, 1066.49, 1047.11, 961.20, 835.24, 807.11, 775.92, 739.17, 714.54, 662.98.
5a: To a solution of 3a (3.0 g, 9.95 mmol) and TBS enol ether 4 (5.9 g, 15.6 mmol, 1.57 eq) in 25 mL dry CH₂Cl₂ was added a solution of ZnCl₂ in Et₂O (7.3 mL, 1 M, 7.3 mmol, 0.7 eq) and the flask was heated to reflux. The reaction was monitored by ¹H NMR, and once completed (30 min), the reaction was cooled to room temperature and diluted with EtOAc. The solution was washed with satd aq NaHCO₃ once and the aqueous layer extracted with EtOAc twice. The combined organic layers were dried over Na₂SO₄ and then evaporated in vacuo. The crude material was purified by silica gel flash chromatography via gradient elution (2.5:97.5 EtOAc/ CH₂Cl₂ to 40/60 EtOAc/ CH₂Cl₂) to afford 5a (0.92 g, 18% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.92 (dd, J= 287 Hz, 8.4 Hz 4H), 6.38 (s, 1H), 5.35 (d, J= 14Hz, 2H), 4.27 (t, J= 2.8 Hz, 1H), 3.59 (dd, J= 292 Hz, 16.8 Hz, 2H), 2.85 (s, 1H), 1.538 (s, 3H), 1.40 (d, J=12, 3H), 1.33 (t, J= 13.6 Hz, 2 H), 0.085 (s, 9H), 0.866 (S, 6H).

¹³C NMR (100 MHz, CDCl₃): 189.84, 167.09, 160.56, 147.85, 141.95, 128.66, 128.56, 123.88, 123.81, 66.80, 65.43, 65.21, 55.71, 49.90, 25.69, 25.33, 22.29, 21.15, 19.78, 17.76, -3.30, -4.82.

HRMS: calcd C₂₃H₃₃N₄O₇Si⁺ [M + H]⁺ 505.2113, obs 505.2836
5b: To a solution of 3b (12.3 g, 38.85 mmol) and TBS enol ether 4 (21.2 g, 56.2 mmol, 1.45 eq) in 50 mL dry CH$_2$Cl$_2$ was added a solution of ZnCl$_2$ in Et$_2$O (27 mL, 1 M, 27 mmol, 0.7 eq) and the flask was heated to reflux. The reaction was monitored by 1HNMR, and once completed (30 min), the reaction was cooled to room temperature and diluted with EtOAc. The solution was washed with satd aq NaHCO$_3$ once and the aqueous layer extracted with EtOAc twice. The combined organic layers were dried over Na$_2$SO$_4$ and then evaporated in vacuo. The crude material was purified by silica gel flash chromatography via gradient elution (2.5:97.5 EtOAc/ CH$_2$Cl$_2$ to 40/60 EtOAc/ CH$_2$Cl$_2$) to afford 5b (3.9 g, 19% yield) as a white solid.

1H NMR (400 MHz, CDCl$_3$): δ 7.93 (d, J = 282 Hz, 20.4 Hz, 4 H), 6.21 (s, 1H), 5.36 (d, J = 36.8 Hz, 2 H), 4.29 (m, 1 H), 3.74 (dd, J = 343 Hz, 14.8 Hz, 2 H), 3.14 (d, J = 8.8 Hz, 1 H), 2.02 (q, J = 7.6 Hz, 1H), 1.90 (q, J = 7.6 Hz, 1 H), 1.34 (d, J = 36.8 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H), 0.932 (s, 9H), 0.138 (s, 6H).

13C NMR (100 MHz, CDCl$_3$): δ 199.20, 189.52, 168.88, 167.61, 160.90, 147.94, 141.85, 128.63, 123.95, 65.73, 61.61, 59.41, 52.50, 46.92, 27.89, 25.69, 22.64, 22.68, 17.82, 10.60, 8.05, 0.92, -3.33, -4.36.

IR: 3258.47, 2958.53, 2930.65, 2884.27, 2856.98, 2140.77, 1751.98, 1651.27, 1608.18, 1525.54, 1471.60, 1462.71, 1375.46, 1347.80, 1258.48, 1214.02, 1188.42, 1103.18, 1039.56, 987.42, 957.23, 896.93, 834.10, 811.33, 776.83, 739.51.

HRMS: calcd C$_{24}$H$_{34}$N$_4$NaO$_7$Si$^+$ [M + Na]$^+$ 541.2089, obs 541.2043
6a: To a solution of 5a (2g, 3.96 mmol) in 20 mL of acetonitrile, 2 mL of HF (48% aqueous) was added. The reaction was stirred at rt and monitored by thin layer chromatography and 1HNMR. If needed, additional HF was added to insure completion in 1-3 h. Once complete, the reaction was further diluted with 100 mL ethyl acetate, and finely ground NaHCO$_3$ was carefully added to the reaction (caution CO$_2$ evolution) to attain pH= 7. The reaction was filtered to remove the precipitated NaF, and evaporated in vacuo to afford 6a (1.4 g, 91% yield) as white solid.

1H NMR (400 MHz, CDCl$_3$): δ 7.91 (dd, J= 280 Hz, 8.3 Hz, 4H), 5.34 (q, J=18.4 Hz, 13.2 Hz, 2H), 4.84 (s, 1H), 4.39 (m, 1H), 3.22 (d, J= 10` Hz, 1H), 2.7 (dd, J= 44.4, 18 Hz, 2H), 1.63 (s, 3H), 1.42 (d, J= 6.4 Hz, 3H), 0.89 (s, 1H), 0.085 (s, 2H).

13C NMR (100 MHz, CDCl$_3$): δ 190.53, 167.18, 160.14, 147.43, 141.86, 128.37, 123.50, 65.32, 63.51, 54.89, 49.67, 49.07, 48.64, 48.00 21.24, 20.29.

IR: 3362.70, 2969.02, 2143.11, 1722.43, 1648.53, 1522.75, 1347.90, 1306.60, 1216.14, 1127.81, 1025.25, 853.56, 739.51.

6b: To a solution of 5b (6g, 11.6 mmol) in 40 mL of acetonitrile, 5 mL of HF (48% aqueous) was added. The reaction was stirred at rt and monitored by thin layer chromatography and 1HNMR. If needed, additional HF was added to insure completion in 1-3 h. Once complete, the reaction was further diluted with 200 mL ethyl acetate, and finely ground NaHCO$_3$ was carefully added to the reaction (caution CO$_2$ evolution) to attain pH= 7. The reaction was filtered to remove the precipitated NaF, and evaporated in vacuo to afford 6b (4.0 g, 85% yield) as white solid.
1H NMR (400 MHz, CDCl$_3$): δ 7.90 (dd, $J = 289$ Hz, 8.5 Hz, 4H), 5.35 (s, 2H), 4.23 (m, 1H), 3.35 (dd, $J = 260$ Hz, 18.4 Hz, 2 H), 2.05 (m, 1H), 1.88 (m, 1H), 1.35, (d, $J = 4$ Hz, 3H), 0.92 (t, $J = 7$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 190.98, 167.27, 160.44, 147.99, 141.88, 128.82, 124.02, 66.76, 65.74, 63.57, 58.61, 46.13, 26.04, 21.85, 8.57.

IR: 3457.32, 2967.10, 2348.64, 2145.69, 1722.53, 1640.10, 1607.84, 1523.19, 1347.83, 1316.92, 1261.20, 1214.38, 1129.57, 1040.55, 1015.59, 853.38, 799.72, 738.72.

HRMS: calcd C$_{18}$H$_{20}$N$_4$NaO$_7$ $^{+}$ [M + Na]$^{+}$ 427.1224, obs 427.1187

![Chemical Structure](image)

To a solution of 6a (1.3g, 3.33 mmol) in 50 mL dry EtOAc was added a catalytic amount of Rh$_2$(OAc)$_4$ (15 mg, 0.034 mmol, 0.01 eq). The reaction was warmed to 60 °C for 30 min while monitoring by 1HNMR. Once completed, the reaction was cooled to room temperature and the solvent was evaporated in vacuo to produce 1.21 g (100% crude yield) of 7a. This material was unstable toward further purification and was used directly in the next step.

1H NMR (400 MHz, CDCl$_3$): δ 7.96 (dd, $J = 232$ Hz, 8.4 Hz, 4H), 5.31 (q, $J = 19.6$ 2H), 4.15 (q, $J = 8$ Hz, 1H), 3.68 (q, $J = 10$ Hz, 1H), 3.18 (d, $J = 4$Hz, 1H), 2.65 (dd, $J = 40$ Hz, 20 Hz, 1H)), 2.08 (s, 3H), 1.55 (dd, $J = 30$ Hz, 15 Hz, 3H), 1.45 (d, $J = 15$ Hz, 1H), 1.28 (m, 1H).
7b: To a solution of 6b (2.34 g, 5.79 mmol) in 100 mL dry EtOAc was added a catalytic amount of Rh$_2$(OAc)$_4$ (30 mg, 0.034 mmol, 0.01 eq). The reaction was warmed to 60 °C for 30 min while monitoring by 1HNMR. Once completed, the reaction was cooled to room temperature and the solvent was evaporated in vacuo to produce 2.18 g (100% crude yield) of 7b. This material was unstable toward further purification and was used directly in the next step.

1H NMR (400 MHz, CDCl$_3$): δ 7.94 (dd, J= 272 Hz, 88 Hz, 4 H), 5.40 (dd, J= 38 Hz, 13.2 Hz, 2 H), 4.83 (s, 1H), 4.45 (m, 1H), 3.25 (d, J= 9.6 Hz, 1 H), 2.5 (dd, J= 158 Hz, 17.6 Hz, 2H), 1.95 (m, 2H), 1.49 (d, J= 3.5 Hz, 3H), 1.16 (dt, J=108 HZ, 7.2 Hz, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 189.62, 167.71, 161.00, 141.95, 128.73, 124.05, 65.55, 61.71, 52.60, 46.02, 27.46, 25.75, 22.68, 17.92, 10.70, 8.15, 1.02, -3.23, -4.26.

9a: A solution of 7a (1.3g, 3.59 mmol) in 10 mL of dry CH$_3$CN under inert atmosphere was cooled to -35 °C. Diphenyl phosphoryl chloride (0.96 g, 0.74 mL, 3.59 mmol, 1 eq) was then added to the flask, followed by a slow addition of N,N-diisopropylethylamine (0.46 g, 0.625 mL, 3.59 mmol, 1 eq), and the reaction was allowed to stir for 30 minutes, monitoring by tlc, to generate the intermediate enol phosphate, which was not isolated. Once the enol phosphate had formed, thiol 8 (1.27 g, 3.59 mmol, 1 eq) and an additional 1
eq of DIPEA (0.46 g, 0.625 mL, 3.59 mmol, 1 eq) were added. The reaction was then allowed to warm to room temperature over a course of 1 h, while monitoring by 1H NMR and TLC. Once completed, the reaction was diluted with EtOAc (200 mL) and successively washed with satd aq NaHCO$_3$ and satd aq NH$_4$Cl. The resultant EtOAc solution was then dried over Na$_2$SO$_4$, evaporated in vacuo, and further purified by column chromatography using an increasing gradient of MeOH/CH$_2$Cl$_2$ (0% to 10% in 1% increments) as eluent to afford 9a (1.1 g, 44% yield) as a white solid.

1H NMR (400 MHz, CDCl$_3$): δ 8.25 (d, J= 8.8 Hz, 2H), 7.67 (d, J= 8.4 Hz, 2H), 7.50 (dd, J= 28.8 Hz, 8.4 Hz, 2H), 5.54 (d, J= 13.6 Hz, 2H), 5.24 (m, 1H), 4.74, (m, 1H), 4.31 (m, 1H), 3.57 (m, 1H), 3.25 (dd, J= 56 Hz, 14.4 Hz, 2H), 3.09 (dd, J= 78 Hz, 4 Hz, 6H), 2.8 (m, 1H), 1.99 (m, 1H), 1.62 (d, J= 6 Hz, 3H), 1.45 (d, J= 6 Hz, 3H).

IR: 3429.25, 3114.77, 3080.51, 2970.22, 1773.76, 1708.32, 1648.96, 1606.81, 1520.54, 1429.55, 1403.63, 1375.21, 1345.86, 1287.63, 1208.91, 1173.33, 1149.68, 1111.84, 1046.69, 1014.02, 853.63, 853.63, 803.04, 778.75, 765.87, 736.85, 684.52.

HRMS: calcd C$_{32}$H$_{35}$N$_5$NaO$_{11}$S$^+$ [M + Na]$^+$ 720.1946, obs 720.1904

9b: A solution of 7b (2.34 g, 6.22 mmol) in 30 mL of dry CH$_3$CN under an inert atmosphere was cooled to -35 °C. Diphenyl phosphoryl chloride (1.67 g, 1.29 mL, 6.22 mmol, 1 eq) was then added to the flask, followed by a slow addition of N$_2$N-diisopropylethylamine (0.804 g, 1.08 mL, 6.22 mmol, 1 eq), and the reaction was allowed to stir for 30 minutes, monitoring by TLC, to generate the intermediate enol phosphate, which was not isolated. Once the enol phosphate had formed, thiol 8 (2.20 g, 6.22 mmol, 1 eq) and an additional 1 eq of DIPEA (0.804 g, 1.08 mL, 6.22 mmol, 1 eq) were added. The reaction was then allowed to warm to room temperature over a course of 1 h, while monitoring by 1H NMR and TLC. Once completed, the reaction was diluted with EtOAc (400 mL) and successively washed with satd aq NaHCO$_3$ and satd aq NH$_4$Cl. The resultant EtOAc solution was then dried over Na$_2$SO$_4$, evaporated in vacuo,
and further purified by column chromatography using an increasing gradient of MeOH/CH₂Cl₂ (0% to 10% in 1% increments) as eluent to afford 9b (1.8 g, 41% yield) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.20 (m, 4H), 7.64 (d, J= 8.8 Hz, 2H), 7.47 (dd, J= 35 Hz, 8.8 Hz, 2 H), 5.52 (d, J= 14 Hz, 2H), 5.22 (m, 1H), 5.18 (dd, J= 77.2 Hz, 14 Hz, 2H), 4.15 (m, 1H), 3.65 (m, 1H), 3.55 (m, 1H), 3.26 (m, 2H), 3.09 (d, J= 78 Hz, 6H), 2.75 (m, 1H), 2.04 (m, 1H), 1.91 (m, 2H), 1.40 (d, J= 6 Hz, 3H), 0.99 (t, J= 7.2 Hz, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 175.86, 170.52, 160.54, 153.49, 153.02, 147.43, 146.01, 143.75, 143.06, 127.95, 124.34, 124.21, 123.66, 123.57, 69.04, 65.73, 65.13, 64.28, 64.17, 56.18, 55.85, 53.80, 52.90, 45.98, 41.44, 40.70, 37.14, 36.89, 36.06, 27.60, 22.67, 7.68, 0.91.

IR: 3412.08, 2917.18, 2282.69, 1770.98, 1708.50, 1650.00, 1606.39, 1520.45, 1403.11, 1345.69, 1281.09, 1206.45, 1147.09, 1110.40, 1036.35, 735.94.

HRMS: calcd C₃₃H₃₇N₅NaO₁₁S⁺ [M + Na]⁺ 734.2102, obs 734.2021

A two-phase solution of 9a (0.55 g, 0.79 mmol) in 80 mL of EtOAc and 40 mL of pH 6 aqueous phosphate buffer solution (0.3 M) was placed in a 250 mL Parr hydrogenation vessel. This solution was degassed by bubbling argon through it for 5 min, then 10% Pd on carbon (0.55 g) was added. The vessel was connected to the Parr apparatus, further degassed by two successive evacuation-argon repressurization cycles, then evacuated once more and subjected to hydrogen pressure at 55 psi and shaken for 90 min at this pressure. The hydrogen gas was completely removed under vacuum, the vessel opened to air, the resultant solution was filtered through celite to remove the catalyst. The filtrate was placed in a separatory funnel and the aqueous (product) layer was separated. The aqueous layer was further washed with Et₂O to remove traces
of EtOAc and remaining unionized organic material. Then the aqueous layer was further subjected to vacuum (rotary evaporator) to remove last traces of diethyl ether and to partially reduce the total volume. The aqueous layer was then placed on a column of Diaion CHP20P resin and eluted with increasing percentage of ethanol/water (0 to 40% in 5% increments). Tubes containing the product were identified by inspection of the UV of each fraction, those tubes displaying the carbapenem 296 nm absorption were combined, and the solvent was removed in vacuo. The remaining aqueous solution was transferred to a small vial, frozen, and lyophilized overnight to produce the purified carbapenem antibiotic 10a (0.138 g, 46% yield) as white solid.

\[^{1}H\text{ NMR (400 MHz, }\text{CDCl}_3\text{)}: \delta 4.85 (s, 1H), 4.60 (t, J= 8.4 Hz, 1H), 4.33 (m, 1H), 3.98 (t, J= 6.4 Hz, 1H), 3.64 (q, J= 6.8 Hz, 1H), 3.36 (m, 2H), 3.09 (d, J= 47 Hz, 6H), 2.90 (d, J= 22 Hz, 2H), 1.87 (m, 1H), 1.55 (s, 3H), 1.34 (d, 66 Hz, 3H).\]

\[^{13}C\text{ NMR (100 MHz, CDCl}_3\text{)}: \delta 178.0, 170.0, 168.5, 137.5, 129.7, 66.5, 66.4, 63.00, 60.5, 58.8, 52.0, 47.6, 41.7, 37.5, 36.5, 36.4, 22.0, 21.5.\]

HRMS: calcd C_{17}H_{26}N_{3}O_{5}S^+ [M + H]^+ 384.1588, obs 384.1545

10b: A two-phase solution of 9b (0.60 g, 0.84 mmol) in 30 mL of EtOAc and 30 mL of pH 6 aqueous phosphate buffer solution (0.3 M) was placed in a 250 mL Parr hydrogenation vessel. This solution was degassed by bubbling argon through it for 5 min, then 10% Pd on carbon (0.60 g) was added. The vessel was connected to the Parr apparatus, further degassed by two successive evacuation-argon repressurization cycles, then evacuated once more and subjected to hydrogen pressure at 55 psi and shaken for 90 min at this pressure. The hydrogen gas was completely removed under vacuum, the vessel opened to air, the resultant solution was filtered through celite to remove the catalyst. The filtrate was
placed in a separatory funnel and the aqueous (product) layer was separated. The aqueous layer was further washed with Et₂O to remove traces of EtOAc and remaining unionized organic material. Then the aqueous layer was further subjected to vacuum (rotary evaporator) to remove last traces of diethyl ether and to partially reduce the total volume. The aqueous layer was then placed on a column of Diaion CHP20P resin and eluted with increasing percentage of ethanol/water (0 to 40% in 5% increments). Tubes containing the product were identified by inspection of the UV of each fraction, those tubes displaying the carbapenem 296 nm absorption were combined, and the solvent was removed \(\text{in vacuo} \). The remaining aqueous solution was transferred to a small vial, frozen, and lyophilized overnight to produce the purified carbapenem antibiotic \(10b \) (0.15 g, 45% yield) as white solid.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 4.58 (s, 1H), 3.43 (m, 2H), 3.29 (d, \(J = 17.6 \) Hz, 2H), 3.02 (d, \(J = 4.4 \) Hz, 6H), 1.98 (m, 1H), 1.85 (m, 1H), 1.33 (d, \(J = 6.4 \) Hz, 3H), 0.97 (t, \(J = 7.2 \) Hz, 3H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 182.09, 171.06, 170.79, 138.38, 134.87, 67.02, 66.44, 61.01, 54.74, 47.27, 43.88, 39.31, 38.53, 38.05, 29.90, 214.12, 18.83, 9.83.

HRMS: calcd C\(_{18}\)H\(_{28}\)N\(_3\)O\(_5\)S\(^+\) [M + H]\(^+\) 398.1744, obs 398.1708

\[\begin{align*}
\text{CO}_2\text{PNB} & \quad \text{ClP(O)(OPh)}_2 \\
\text{7a} & \quad \text{DIPEA, ACN} \\
\stackrel{\text{OP(O)(OPh)}_2}{\text{Me}} & \quad \text{11a (47%)}
\end{align*} \]

\(11a \): Diphenyl phosphoryl chloride (0.89 g, 0.68 mL, 3.31 mmol, 1 eq) was added to a cold (-35 °C) solution of \(7a \) (1.2 g, 3.31 mmol) in 10 mL of dry CH\(_3\)CN. Subsequently, diisopropylethylamine (0.43 g, 0.58 mL, 3.31 mmol, 1 eq) was added to the reaction dropwise over a period of 5 min. The reaction was allowed to warm to -20 °C over a period of 30 min, while monitoring by TLC. Once completed, the reaction was diluted with EtOAc (100 mL), washed with aqueous NH\(_4\)Cl, dried over Na\(_2\)SO\(_4\), and then evaporated \(\text{in vacuo} \). The crude material was purified by silica gel flash chromatography via gradient elution (0.5/99.5 MeOH/CH\(_2\)Cl\(_2\) to 6/94 MeOH/CH\(_2\)Cl\(_2\)) to afford \(11a \) (0.92 g, 47% yield) as a white solid.
1H NMR (400 MHz, CDCl$_3$): δ 7.88 (dd, J= 236 Hz, 4 Hz, 4H), 7.30 (dd, J= 63 Hz, 6.8 Hz, 4 Hz, 10H), 5.36 (dd, J= 82 Hz, 14 Hz, 2 H), 4.25 (m, 1H), 3.15 (d, J= 173 Hz, 21 Hz, 2H), 3.16 (d, J= 10 Hz, 1H), 1.74 (d, J= 10 Hz, 1H), 1.58 (s, 3H), 1.43 (d, J= 18.4 Hz, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 176.42, 159.18, 152.42, 150.03, 147.62, 142.83, 129.93, 128.42, 126.03, 123.78, 120.17, 117.47, 68.58, 65.28, 64.68, 59.73, 45.18, 22.68, 21.63, 1.12.

IR: 3455.73, 1778.25, 1724.91, 1637.25, 1522.40, 1488.46, 1345.79, 1297.66, 1194.34, 1012.38, 971.78, 851.65, 773.25.

11b: Diphenyl phosphoryl chloride (1.67 g, 1.28 mL, 6.22 mmol, 1 eq) was added to a cold (-35 °C) solution of 7b (2.34 g, 6.22 mmol) in 15 mL of dry CH$_3$CN. Subsequently, diisopropylethylamine (0.804 g, 1.08 mL, 6.22 mmol, 1 eq) was added to the reaction dropwise over a period of 5 min. The reaction was allowed to warm to -20 °C over a period of 30 min, while monitoring by TLC. Once completed, the reaction was diluted with EtOAc (150 mL), washed with aqueous NH$_4$Cl, dried over Na$_2$SO$_4$, and then evaporated in vacuo. The crude material was purified by silica gel flash chromatography via gradient elution (0.5/99.5 MeOH/CH$_2$Cl$_2$ to 6/94 MeOH/ CH$_2$Cl$_2$) to afford 11b (1.6 g, 42% yield) as a white solid.

1H NMR (400 MHz, CDCl$_3$): δ 7.83 (dd, J= 248 Hz, 5.2 Hz, 4 H), 7.28 (m, 5H), 5.32 (dd, J= 81.2 Hz, 4 Hz, 2H), 4.21 (m, 1H), 3.17 (d, J= 4 Hz, 1H), 3.17 (dd, J= 49.6 Hz, 4 Hz, 2H), 2.18 (s, 1H), 2.02 (m, 1 H), 1.84 (m, 1H), 1.30 (d, J= 6 Hz, 3H), 0.923 (t, J= 4 Hz, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 177.26, 158.85, 152.25, 152.19, 149.77, 147.49, 142.64, 129.98, 129.79, 129.52, 128.00, 126.12, 123.64, 119.93, 118.62, 118.51, 69.54, 65.16, 64.22, 62.95, 41.50, 27.74, 22.59, 7.36.
IR: 3330.57, 3076.23, 2973.44, 2252.61, 1762.98, 1639.31, 1590.35, 1522.95, 1489.09, 1457.42, 1385.69, 1347.37, 1296.95, 1186.99, 1163.02, 1072.32, 1046.82, 1025.78, 1012.10, 969.62, 912.30, 850.68, 776.44, 735.26, 689.20, 647.55.

HRMS: calcd C_{30}H_{30}N_{2}O_{10}P^{+} [M + H]^+ 609.1633, obs 609.1583

12a: n-BuLi (2.5 M in hexanes, 0.51 mL, 1.27 mmol, 1 eq) was added to a cold (-78 °C) solution of ethanethiol (0.197 g, 0.235 mL, 3.18 mmol, 2.5 eq) in anhyd THF (4 mL). This solution was allowed to stir for 15 min, and then transferred to a second flask containing a solution of 11a (0.75 g, 1.26 mmol) in 10 mL of dry CH_{3}CN at -30 °C. This reaction was allowed to warm to room temperature over a period of 30 min, then diluted with EtOAc (150 mL), and successively washed with saturated aq NaHCO_{3} and saturated aq NH_{4}Cl. After drying over Na_{2}SO_{4}, the solvent was evaporated and the residue purified by flash chromatography on silica gel (EtOAc/CH_{2}Cl_{2}) to produce 12a (0.29 g, 56% yield) as a white foam.

{\(^1\)H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta 8.05 (dd, J= 224 \text{ Hz}, 8.4 \text{ Hz}, 4H), 5.41 (dd, J= 128 \text{ Hz}, 14 \text{ Hz}, 2H), 4.30 (m, 1H), 3.11 (dd, J= 138 \text{ Hz}, 17.6 \text{ Hz}, 1H), 3.23 (d, J= 10Hz, 1H), 2.95 (d, J= 10 HZ), 3.9 (m, 2H), 1.69 (s, 3H), 1.45 (d, 6 Hz, 3H), 1.37 (t, 7.2 Hz, 3H).}

{\(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta 174.92, 160.99, 149.97, 147.48, 143.28, 128.00, 123.69, 121.68, 76.66, 67.79, 65.08, 64.98, 60.93, 48.57, 26.56, 22.64, 21.24, 14.81.}

IR: 3148.95, 1764.33, 1696.54, 1606.15, 1520.10, 1378.46, 1331.14, 1290.03, 1212.07, 1150.74, 851.88, 736.74.

HRMS: calcd C_{19}H_{22}N_{2}NaO_{5}S^{+} [M + Na]^+ 429.1091, obs 429.103
A cold (0 °C) solution of 11b (180 mg, 0.30 mmol) and ethanethiol (28.0 mg, 33 µl, 0.45 mmol, 1.5 eq) in anhyd DMF (1.5 mL) was treated with diisopropylamine (39.5 mg, 55 µl, 0.39 mmol, 1.3 eq) and then allowed to stir at this temperature for 1.5 h. The reaction was then diluted with EtOAc (100 mL), and washed with saturated aq NaHCO₃ and with saturated aq NH₄Cl. After drying over Na₂SO₄, the solvent was removed in vacuo, and the residue purified by flash chromatography on silica gel using MeOH/CH₂Cl₂ as eluent to produce 12b (0.10 g, 79% yield) as a white foam.

1H NMR (400 MHz, CDCl₃): δ 7.93 (dd, J= 224 Hz, 8.8 Hz, 4 H), 5.42 (dd, J= 122 Hz, 14 Hz, 2 H), 4.33 (m, 1H), 3.17 (m, 2H), 2.88 (m, 2H), 1.98 (m, 2H), 1.64 (m, 1 H), 1.44 (d, J= 64 Hz, 3H), 1.36 (t, J= 7.6 Hz, 3H), 1.03 (t, J= 7.6 Hz, 3H).

13C NMR (100 MHz, CDCl₃): δ 176.09, 160.80, 150.08, 147.36, 143.35, 127.88, 123.62, 122.66, 68.84, 64.88, 64.44, 64.11, 45.10, 27.65, 26.45, 22.65, 14.89, 7.71, 0.91.

IR: 3512.85, 3079.12, 2967.46, 2932.06, 1770.02, 1697.31, 1606.26, 1545.62, 1521.00, 1459.46, 1378.27, 1347.30, 1329.68, 1262.12, 1206.81, 1147.47, 1099.54, 1038.43, 848.90, 801.04, 737.00, 686.66.

HRMS: calcd C₂₀H₂₄N₂NaO₆S⁺ [M + Na]⁺ 443.1247, obs 443.1209

13a: A two-phase solution of 12a (0.25 g, 0.62mmol) in 25 mL of EtOAc and 10 mL of pH 6 aqueous sodium phosphate buffer solution (0.3 M) was placed in a 250 mL Parr hydrogenation vessel. This solution was degassed by bubbling argon through it for 5 min, then 10% Pd on carbon (0.30 g) was added. The vessel was connected to the Parr apparatus, further degassed by two successive evacuation-argon repressurization cycles, then evacuated once more and subjected to hydrogen pressure at 55 psi and shaken for 90 min at this pressure. The hydrogen gas was completely removed under vacuum, the vessel opened to air, the resultant solution was filtered through celite to remove the catalyst. The filtrate was placed in a separatory funnel and the aqueous (product) layer was separated. The aqueous layer was
further washed with Et₂O to remove traces of EtOAc and remaining unionized organic material. Then the aqueous layer was further subjected to vacuum (rotary evaporator) to remove last traces of diethyl ether and to partially reduce the total volume. The aqueous layer was then placed on a column of Diaion CHP20P resin and eluted with increasing percentage of ethanol/water (0 to 40% in 5% increments). Tubes containing the product were identified by inspection of the UV of each fraction, those tubes displaying the carbapenem 296 nm absorption were combined, and the solvent was removed in vacuo. The remaining aqueous solution was transferred to a small vial, frozen, and lyophilized overnight to produce the purified carbapenem antibiotic 13a (0.016 g, 9% yield) as white solid.

1H NMR (400 MHz, CDCl₃): δ 4.94 (s, 1H), 4.33 (m, 1H), 3.14 (dd, J= 117 Hz, 6.8 Hz, 2H), 2.82 (m, 1H), 1.51 (s, 3H), 1.34 (d, J= 6 Hz, 3H), 1.28 (t, J= 7.6 Hz, 3H).

13C NMR (100 MHz, CDCl₃): δ 191.14, 181.55, 154.21, 140.66, 78.60, 76.99, 73.72, 59.56, 38.47, 33.98, 32.43, 27.41, 9.83.

HRMS: calcd C₁₂H₁₇NNaO₄S⁺ [M + H]⁺ 294.0770, obs 294.0727

13b: A two-phase solution of 12b (0.185 g, 0.44mmol) in 20 mL of EtOAc and 20 mL of pH 6 aqueous sodium phosphate buffer solution (0.3 M) was placed in a 250 mL Parr hydrogenation vessel. This solution was degassed by bubbling argon through it for 5 min, then 10% Pd on carbon (0.26 g) was added. The vessel was connected to the Parr apparatus, further degassed by two successive evacuation-argon repressurization cycles, then evacuated once more and subjected to hydrogen pressure at 55 psi and shaken for 90 min at this pressure. The hydrogen gas was completely removed under vacuum, the vessel opened to air, the resultant solution was filtered through celite to remove the catalyst. The filtrate was placed in a separatory funnel and the aqueous (product) layer was separated. The aqueous layer was further washed with Et₂O to remove traces of EtOAc and remaining unionized organic material. Then the aqueous layer was further subjected to vacuum (rotary evaporator) to remove last traces of diethyl ether and to partially reduce the total volume. The aqueous layer was then placed on a column of Diaion
CHP20P resin and eluted with increasing percentage of ethanol/water (0 to 40% in 5% increments). Tubes containing the product were identified by inspection of the UV of each fraction, those tubes displaying the carbapenem 296 nm absorption were combined, and the solvent was removed in vacuo. The remaining aqueous solution was transferred to a small vial, frozen, and lyophilized overnight to produce the purified carbapenem antibiotic $13b$ (0.019 g, 14% yield) as white solid.

1H NMR (400 MHz, CDCl$_3$): δ 4.63 (s, 1H), 4.19 (m, 1H), 3.21 (d, 9.6 Hz, 1H), 3.08 (dd, J= 54, 18 Hz, 2H), 2.73 (m, 2H), 1.82 (m, 2H), 1.194 (m, 6H), 0.816 (t, 5.2 Hz, 3 H).

13C NMR (100 MHz, CDCl$_3$): δ 192.32, 181.42, 154.19, 142.01, 83.18, 56.42, 39.96, 38.45, 35.30, 34.17, 32.21, 19.85, 10.83.

HRMS: calcd C$_{13}$H$_{18}$NNaO$_4$S$^+$ [M + H]$^+$ 308.0927, obs 308.0889
Name	Genotype/Phenotype	Reference
Strains		
Mtb	*M. tuberculosis* CDC1551	1
Mtb-lux	*Mtb* CDC1551 expressing pMV306hsp+LuxG13	2
Mtb Cl 1	*Mtb* clinical isolate 9532/03, Euroamerican lineage 2, Haarlem	3
Mtb Cl 2	*Mtb* clinical isolate 2191/99, Euroamerican lineage 13, Uganda	3
Mtb Cl 3	*Mtb* clinical isolate 1934/03, East Asian lineage 8, Beijing	3
Mtb Cl 4	*Mtb* clinical isolate 4850/03, Indo Oceanic lineage 5, EAI	3
Mtb Cl 5	*Mtb* clinical isolate 5468/02, West African 2 lineage 15, WA2	3
Mab	*M. abscessus* 390S, smooth colony phenotype	4
Mab-lux	*M. abscessus* 390S expressing pMV306hsp+LuxG13	2
Mab Cl 1	*Mab* clinical isolate	National Jewish Health
Mab Cl 2	*Mab* clinical isolate	National Jewish Health
Mab Cl 3	*Mab* clinical isolate	National Jewish Health
Mab Cl 4	*Mab* clinical isolate	National Jewish Health
Mab Cl 5	*Mab* clinical isolate	National Jewish Health
Figure S1: Dose response curves for C5-substituted carbapenems against Mtb (top panel) and Mab (bottom panel) with and without β-lactam inhibitors (5 µg/ml). Data is an average of three independent experiments each with two technical replicates with SEM error bars.
References

1. Fleischmann, R. D.; Alland, D.; Eisen, J. A.; Carpenter, L.; White, O.; Peterson, J.; DeBoy, R.; Dodson, R.; Gwinn, M.; Haft, D.; Hickey, E.; Kolonay, J. F.; Nelson, W. C.; Umayam, L. A.; Ermolaeva, M.; Salzberg, S. L.; Delcher, A.; Utterback, T.; Weidman, J.; Khouri, H.; Gill, J.; Mikula, A.; Bishai, W.; Jacobs Jr, W. R., Jr.; Venter, J. C.; Fraser, C. M., Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. *J Bacteriol* 2002, 184, 5479-5490.

2. Rodrigues Felix, C.; Gupta, R.; Geden, S.; Roberts, J.; Winder, P.; Pomponi, S. A.; Diaz, M. C.; Reed, J. K.; Wright, A. E.; Rohde, K. H., Selective Killing Of Dormant Mycobacterium tuberculosis By Marine Natural Products. *Antimicrob Agents Chemother* 2017, e00743-17/1-e00743-17/14.

3. Homolka, S.; Niemann, S.; Russell, D. G.; Rohde, K. H., Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. *PLoS pathogens* 2010, 6, e1000988/1-e1000988/17.

4. Howard, S. T.; Rhoades, E.; Recht, J.; Pang, X.; Alsup, A.; Kolter, R.; Lyons, C. R.; Byrd, T. F., Spontaneous reversion of *Mycobacterium abscessus* from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. *Microbiology* 2006, 152, 1581-1590.