A GENERALIZATION OF SELBERG'S BETA INTEGRAL

ROBERT A. GUSTAFSON

Abstract. We evaluate several infinite families of multidimensional integrals which are generalizations or analogs of Euler's classical beta integral. We first evaluate a q-analogue of Selberg's beta integral. This integral is then used to prove the Macdonald-Morris conjectures for the affine root systems of types $S(C_\ell)$ and $S(C_\ell)^\vee$ and to give a new proof of these conjectures for $S(BC_\ell)$, $S(B_\ell)$, $S(B_\ell)^\vee$ and $S(D_\ell)$.

1. Introduction

In 1944, A. Selberg [23] evaluated the following integral (see also Aomoto [1]):

\[
\int_0^1 \cdots \int_0^1 \prod_{1 \leq i < j \leq n} |t_i - t_j|^{2z} \prod_{j=1}^{n} t_j^{x-1} (1-t_j)^{y-1} \, dt_j \\
= \prod_{j=1}^{n} \frac{\Gamma(x + (j-1)z) \Gamma(y + (j-1)z) \Gamma(jz + 1)}{\Gamma(x + y + (n+j-2)z) \Gamma(z+1)},
\]

where n is a positive integer, $x, y, z \in \mathbb{C}$ and $\text{Re}(x), \text{Re}(y) > 0$ and $\text{Re}(z) > -\max\{\frac{1}{n}, \text{Re}(x)/(n-1), \text{Re}(y)/(n-1)\}$. For $n = 1$, the integral (1) reduces to Euler's classical beta integral.

Now let $n \geq 1$ and $a_1, a_2, a_3, a_4, b, q \in \mathbb{C}$ with

\[
\max\{|a_1|, \ldots, |a_4|, |b|, |q|\} < 1.
\]

For $c \in \mathbb{C}$ define

\[
[c; q]_\infty = [c]_\infty = \prod_{k=0}^{\infty} (1 - cq^k).
\]

Received by the editors April 19, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 33A15, 33A75, 05A19.

This research is partially supported by NSF Grant INT-8713472.
If T^n is the n-fold direct product of the unit circle $\{t \in \mathbb{C} | |t| = 1\}$ traversed in the positive direction, then we can evaluate the integral

\[
(2) \quad \frac{1}{(2\pi i)^n} \int_{T^n} \prod_{1 \leq j < k \leq n} \frac{[t_j t_k^{-1}]_{\infty} [t_j^{-1} t_k]_{\infty} [t_j^-1 t_k^-1]_{\infty}}{[b t_j t_k^{-1}]_{\infty} [b t_j^-1 t_k]_{\infty} [b t_j^-1 t_k^-1]_{\infty}} \cdot \prod_{j=1}^{n} \frac{[t_j^2]_{\infty} [t_j^{-2}]_{\infty}}{\prod_{k=1}^{4} [a_k t_j]_{\infty} [a_k t_j^{-1}]_{\infty}} dt_j
\]

\[
= 2^n n! \prod_{j=1}^{n} \frac{[b]_{\infty} [b^{n+j-2}]_{\infty}}{\prod_{1 \leq k < l \leq 4} [a_k a_l b^{l-j-1}]_{\infty}}.
\]

Then $n = 1$ case of integral (2) is due to Askey and Wilson [4]. The integral (2) is a q-analog of (1) in the sense that after a change of variables and an appropriate specialization of (2) and limit as $q \to 1$, then (1) can be deduced from (2).

Selberg’s integral (1) has had diverse applications in fields ranging from number theory, physics, statistics, combinatorics, algebra and analysis. Two particular applications were a use by Bombieri to prove Mehta’s conjecture [18] and by Macdonald [17] to prove some of his conjectures ($q = 1$ case) for the affine root systems (for definition and properties see [15]) of types $S(BC_l)$, $S(B_l)$, $S(B_l)^\vee$, $S(C_l)$, $S(C_l)^\vee$ and $S(D_l)$ for all $l \geq 1$ (when defined). Just as Macdonald used integral (1) to prove some of his ($q = 1$) conjectures, we will use integral (2) to prove for the same set of affine root systems the corresponding Macdonald-Morris conjectures with arbitrary parameter q.

Macdonald’s root system conjectures in [17] were motivated partly by a conjecture of Dyson [7] related to the root system A_n, a q-analog of Dyson’s conjecture made by Andrews [2] and some conjectures of Morris [19] for the root system of type G_2. Dyson’s conjecture was proved by Gunson [10] and Wilson [25]. The Andrews-Dyson conjecture was proved by Zeilberger and Bressoud [28].

Morris’ Conjecture A in [19] for arbitrary parameter q and any reduced irreducible affine root system S extends Macdonald’s Conjectures 2.3 and 3.1 in [17]. In the simplest case of these Macdonald-Morris conjectures, let R be a reduced finite (not affine) root system of rank l with basis $\{\alpha_1, \ldots, \alpha_l\}$. For each $\alpha \in R$, let e^α be the formal exponential, which is an element of the group ring of the lattice generated by R. Let d_1, \ldots, d_l
be the degrees of the fundamental invariants of the Weyl group \(W(R) \).

Conjecture (Macdonald [17, Conjecture 3.1]). With the above notation, the constant term (i.e. involving \(q \) but no exponential \(e^\alpha \)) in

\[
\prod_{\alpha > 0} \prod_{i=1}^{k} (1 - q^{l-1} e^{-\alpha})(1 - q^l e^\alpha)
\]

where \(k \) is a positive integer or \(+\infty\) is

\[
\prod_{i=1}^{l} \left[\frac{k d_i}{k} \right]
\]

where

\[
\begin{pmatrix} n \\ r \end{pmatrix}
\]

is the "\(q \)-binomial coefficient"

\[
\frac{(1 - q^n)(1 - q^{n-1}) \cdots (1 - q^{n-r+1})}{(1 - q)(1 - q^2) \cdots (1 - q^r)}
\]

We will actually prove the more general Morris’ Conjecture A [19] for the affine root systems \(S \) of types \(S(BC_I), S(B_I), S(B_I)^\vee, S(C_I), S(C_I)^\vee \) and \(S(D_I) \) for all \(l \geq 1 \) (when defined) and for arbitrary parameter \(q \). Macdonald’s Conjecture 3.1 stated above, where \(R \) is a finite root system of type \(B_I, C_I \) or \(D_I \), then follows as a special case of Morris’ Conjecture A for \(S(B_I), S(C_I) \) and \(S(D_I) \). Kadell [14] has previously proved these conjectures for all affine root systems of type \(S(BC_I) \) and hence \(S(B_I), S(B_I)^\vee \) and \(S(D_I) \). The Macdonald-Morris conjectures for \(R = G_2 \) have been proved by Habsieger [13] and Zeilberger [26]. See Garvan [8] for \(F_4 \), Garvan and Gonnet [9] for \(S(F_4)^\vee \), Zeilberger [27] for \(S(G_2)^\vee \) and Opdam [20] for the \(q = 1 \) conjectures. There is also the conjecture of Rahman [21] which seems related to the special case of integral (2) where \(a_2 = q^{1/2}a_1 \) and \(a_4 = q^{1/2}a_3 \).

2. Proof of integral (2)

Since the \(n = 1 \) case of (2) is proved in [4], we may assume that \(n \geq 2 \). Denote the integral on the left-hand side of (2) by \(I_n(a_1, a_2, a_3, a_4; b; q) \). Let \(c_j \in \mathbb{C}, |c_j| < 1 \), for \(1 \leq j \leq 2n+2 \).
with \(q \) and \(T \) as above. In [11] we have evaluated the integral

\[
\frac{1}{(2\pi i)^n} \int_{T^n} \prod_{1 \leq j < k \leq n} \left\{ [t_j t_k^{-1}]_\infty [t_j^{-1} t_k]_\infty [t_j t_k]_\infty [t_j^{-1} t_k^{-1}]_\infty \right\}
\times \prod_{j=1}^{n+2} \prod_{k=1}^n [c_j t_k]_\infty [c_j t_k^{-1}]_\infty
\times \prod_{j=1}^n \frac{[t_j^2]_\infty [t_j^{-2}]_\infty \, dt_j}{t_j}
\times 2^n n! \left[\prod_{j=1}^{n+2} c_j \right]_\infty
\frac{[q]_\infty^n \prod_{1 \leq j < k \leq 2n+2} [c_j c_k]_\infty \cdot}{[q]_\infty^n \prod_{1 \leq j < k \leq 2n+2} [c_j c_k]_\infty}.
\]

With notation as above, consider the integral

\[
\frac{1}{(2\pi i)^{2n-1}} \int_{T^n} \int_{T^{n-1}} \prod_{1 \leq j < k \leq n} \left\{ [t_j t_k^{-1}]_\infty [t_j^{-1} t_k]_\infty [t_j t_k]_\infty [t_j^{-1} t_k^{-1}]_\infty \right\}
\times \prod_{j=1}^{n+1} \prod_{k=1}^n [a_j t_j]_\infty [a_k t_j^{-1}]_\infty
\times \prod_{j=1}^n \frac{[t_j^2]_\infty [t_j^{-2}]_\infty \, dt_j}{t_j}
\times \prod_{j=1}^{n-1} \prod_{k=1}^n \left\{ [b_1/2 s_j t_j]_\infty [b_1/2 s_k t_j]_\infty [b_1/2 s_j t_j^{-1}]_\infty [b_1/2 s_k t_j^{-1}]_\infty \right\}
\times \prod_{k=1}^{n-1} \frac{[s_k^2]_\infty [s_k^{-2}]_\infty \, ds_k}{s_k} \prod_{j=1}^n \frac{dt_j}{t_j},
\]

where \(b^{1/2} \) is any fixed square root of \(b \). In the integral (4) we may use identity (3) to evaluate the interior integral either with respect to the set of variables \(\{s_1, \ldots, s_{n-1}\} \) or, by changing the order of integration, with respect to the set of variables \(\{t_1, \ldots, t_n\} \). Equating the resulting integrals we obtain

\[
\frac{2^{n-1} (n-1) \prod_{j=1}^4 [a_j]_\infty}{[a_1 b]_\infty^n} I_n(a_1, a_2, a_3, a_4; b; q)
\times 2^n n! \prod_{j=1}^{n-1} [a_j]_\infty
\frac{[b]_\infty^{n-1} \prod_{1 \leq j < k \leq 4} [a_j a_k]_\infty}{[a_1 b^{1/2}, \ldots, a_4 b^{1/2}; b; q].}
\]
We finish the proof of identity (2) by doing induction on n, using identity (5) and the Askey-Wilson integral for the case $n = 1$.

3. Morris' Conjecture A

We sketch a proof of Morris' Conjecture A [19] for the affine root systems S of types $S(BC_l)$, $S(B_l)$, $S(C_l)$, $S(C_l)^{\vee}$ and $S(D_l)$ where $l \geq 1$ (when defined) and for arbitrary parameter q. The proof consists of specializing the parameters in identity (2) and making use of the identity found in Theorem 2.8 of [16]. As an illustration of this method of proof of Morris' Conjecture A, consider the case $S = S(C_l)$ where $l \geq 2$. Consider the integral $I_t(a^{1/2}, -a^{1/2}, q^{1/2}a^{1/2}, -q^{1/2}a^{1/2}; b; q)$ where $|a|, |b| < 1$. Multiply the integrand in this integral by

$$\prod_{1 \leq j < k \leq l} \frac{(1 - bw(t_j^{-1}t_k))(1 - bw(t_j^{-1}t_k^{-1}))}{(1 - w(t_j^{-1}t_k))(1 - w(t_j^{-1}t_k^{-1}))} \prod_{j=1}^l (1 - aw(t_j^{-2})),$$

where w is an element of the Weyl group W of C_l, i.e. a permutation of the variables t_1, \ldots, t_l together with inversions $t_j \rightarrow t_j^{-1}$ and the corresponding action on $t_1^{-1}, \ldots, t_l^{-1}$. The resulting integral is independent of $w \in W$. Now summing over $w \in W$ and using the identity [16, Theorem 2.8] for C_l we obtain

$$\frac{1}{(2\pi i)^l} \int_{T} \prod_{1 \leq j < k \leq l} \frac{[t_j^2 t_k^{-2}]_{\infty}[q t_j t_k^{-1} t_k^{-1}]_{\infty}}{[b t_j^2 t_k^{-2}]_{\infty}[q b t_j t_k^{-1} t_k^{-1}]_{\infty}} \prod_{j=1}^l \frac{[t_j^2]_{\infty}[q t_j^{-2}]_{\infty}}{[a t_j^2]_{\infty}[q a t_j^{-2}]_{\infty}} dt_j$$

$$= \prod_{j=1}^l \frac{[qb]_{\infty}[q a^2 b^{l+j-2}]_{\infty}[q a b^{l+1-j}]_{\infty}}{[q]_{\infty}[q b^j]_{\infty}[q a^2 b^{2(j-1)}]_{\infty}},$$

which is equivalent to Morris' Conjecture A for $S(C_l)$ [19, p. 131]. Setting $a = b$ in (6), this also proves Macdonald's Conjecture 3.1 for $R = C_l$ as stated above.

4. Some integral evaluations

We state some integral identities whose proofs are similar to that of (2), making use of integral identities from [11 and 12].
Details of the proofs of these and related integral identities should be given elsewhere.

Let \(n \geq 1 \) and \(z_1, \ldots, z_n, \alpha_1, \ldots, \alpha_4, a_1, \ldots, a_4, \beta_1, \beta_2, b, \delta \in \mathbb{C} \) and \(m_1, \ldots, m_n \in \mathbb{Z} \). Choose \(z_1, \ldots, z_n \) so that the integrands in the integrals (9) and (10) below have no poles. Then

\[
\begin{align*}
(7) \quad & \frac{1}{(2\pi i)^n} \int_{-i\infty}^{i\infty} \cdots \int_{-i\infty}^{i\infty} \prod_{1 \leq j < k \leq n} \left\{ \frac{\Gamma(\delta + t_j - t_k)\Gamma(\delta + t_k - t_j)}{\Gamma(t_j - t_k)\Gamma(t_k - t_j)} \right\} \\
& \cdot \frac{\Gamma(\delta + t_j + t_k)\Gamma(\delta - t_j - t_k)}{\Gamma(t_j + t_k)\Gamma(-t_j - t_k)} \prod_{j=1}^{n} \prod_{k=1}^{4} \frac{\Gamma(\alpha_k + t_j)\Gamma(\alpha_k - t_j)}{\Gamma(2t_j)\Gamma(-2t_j)} \\
& = 2^n n! \prod_{j=1}^{n} \prod_{1 \leq k < l \leq 4} \frac{\Gamma(\alpha_k + \alpha_l + (j - 1)\delta)}{\Gamma(\delta)\Gamma((n + j - 2)\delta + \sum_{k=1}^{4} \alpha_k)},
\end{align*}
\]

where the contours of integration are the imaginary axis and

\[
\min\{\text{Re}(\delta), \text{Re}(\alpha_1), \ldots, \text{Re}(\alpha_4)\} > 0;
\]

\[
\begin{align*}
(8) \quad & \frac{1}{(2\pi i)^n} \int_{-i\infty}^{i\infty} \cdots \int_{-i\infty}^{i\infty} \prod_{1 \leq j < k \leq n} \left\{ \frac{\Gamma(\delta + t_j - t_k)}{\Gamma(t_j - t_k)} \right\} \\
& \cdot \prod_{j=1}^{n} \left\{ \prod_{k=1}^{2} \left[\frac{\Gamma(\alpha_k + t_j)\Gamma(\beta_k - t_j)}{\Gamma(\beta_k - t_j)} \right] \right\} \\
& = n! \prod_{j=1}^{n} \frac{\Gamma(j\delta) \prod_{k, l=1}^{2} \Gamma(\alpha_k + \beta_l + (j - 1)\delta)}{\Gamma(\delta)\Gamma((n + j - 2)\delta + \sum_{k=1}^{4} (\alpha_k + \beta_k))},
\end{align*}
\]

where the contours of integration are the imaginary axis and

\[
\min\{\text{Re}(\delta), \text{Re}(\alpha_1), \text{Re}(\alpha_2), \text{Re}(\beta_1), \text{Re}(\beta_2)\} > 0;
\]
(9) \[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{1 \leq j, k \leq n \atop j \neq k} \frac{\Gamma(1 + z_j + t_j - z_k - t_k)}{\Gamma(1 + \delta + z_j + t_j - z_k - t_k)} \cdot \prod_{j=1}^{n} \frac{e^{2\pi im_j t_j}}{\prod_{k=1}^{2} \Gamma(1 + \alpha_k + z_j + t_j)\Gamma(1 + \beta_k - z_j - t_j)} \]

\[= \begin{cases} \prod_{j=1}^{n} \frac{\Gamma(1 + \delta)\Gamma(1 + (n + j - 2)\delta + \sum_{k=1}^{2} (\alpha_k + \beta_k))}{\prod_{k, l=1}^{2} \Gamma(1 + \alpha_k + \beta_l + (j - 1)\delta)} , & \text{if } m_1 = \cdots = m_n = 0 \\
0, & \text{otherwise} \end{cases} \]

where

\[\min \left\{ \text{Re} \left((n - 1)\delta + \sum_{k=1}^{2} (\alpha_k + \beta_k) \right) , \text{Re} \left(2(n - 1)\delta + \sum_{k=1}^{2} (\alpha_k + \beta_k) \right) \right\} > -1 ; \]

\[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{1 \leq j < k \leq n} \left\{ \frac{[bq^{1+z_j+t_j-z_k}]_{\infty}[bq^{1-z_j-t_j+z_k+t_k}]_{\infty}}{[q^{1+z_j+t_j-z_k}]_{\infty}[q^{1-z_j-t_j+z_k+t_k}]_{\infty}} \cdot \frac{[bq^{1+z_j+t_j+z_k+t_k}]_{\infty}[bq^{1-z_j-t_j-z_k-t_k}]_{\infty}}{[q^{1+z_j+t_j+z_k+t_k}]_{\infty}[q^{1-z_j-t_j-z_k-t_k}]_{\infty}} \right\} \]

\[\cdot \prod_{j=1}^{n} \{a_k q^{1+z_j+t_j}\}_{\infty}\{a_k q^{1-z_j-t_j}\}_{\infty} \cdot e^{2\pi i m_j t_j} \]

(10) \[= \begin{cases} \prod_{k=1}^{n} \frac{[q]_{\infty}[qb^j]_{\infty} \prod_{1 \leq k < l \leq 4} [qa_k a_l b^{l-1}]_{\infty}}{[qb]_{\infty} [q b^{n+j-2} a_k]_{\infty} , & \text{if } m_1 = \cdots = m_n = 0 \\
0, & \text{otherwise} \end{cases} \]
where
\[
\max \left\{ \left| q b^{n-1} \prod_{k=1}^{4} a_k \right|, \left| q b^{2(n-1)} \prod_{k=1}^{4} a_k \right| \right\} < 1
\]
and for simplicity we assume that \(q \in \mathbb{R}, 0 < q < 1 \). The \(n = 1 \) case of (7) is due to de Branges [6] and Wilson [24], of (8) to Barnes [5], of (9) to Ramanujan [22] and (10) essentially to Askey [3].

Remarks. The integrals (9) and (10) are equivalent to multiple series summation theorems which generalize classical bilateral hypergeometric series summation theorems: Dougall’s \(_2H_2\) sum and Bailey’s \(_6\psi_6\) sum. A similar connection between some related integral evaluations and the corresponding multiple series identities is explained in [12]. As we plan to describe elsewhere, we are led to conjecture a family of multiple series summation identities which are equivalent to the Macdonald-Morris conjectures and contain the Macdonald identities [15] as special cases.

References

1. K. Aomoto, *Jacobi polynomials associated with Selberg integrals*, SIAM J. Math. Anal. 18 (1987), 545–549.
2. G. Andrews, *Problems and prospects for basic hypergeometric functions*, The Theory and Applications of Special Functions, (R. Askey, ed.), Academic Press, New York, 1975, pp. 191–224.
3. R. Askey, *Beta integrals and q-extensions*, Annamalai Univ. lecture, preprint.
4. R. Askey and J. Wilson, *Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials*, Mem. Amer. Math. Soc., no. 319 (1985).
5. E. W. Barnes, *A new development of the theory of hypergeometric functions*, Proc. London, Math. Soc. (2) 6 (1908), 141–177.
6. L. de Branges, *Tensor products spaces*, J. Math. Anal. Appl. 38 (1972), 109–148.
7. F. J. Dyson, *Statistical theory of the energy levels of complex systems. I*, J. Math. Phys. 3 (1962), 140–156.
8. F. Garvan, *A proof of the Macdonald-Morris root system conjecture for \(F_4 \)*, preprint.
9. F. Garvan and G. H. Gonnet, *A proof of the two parameter q-case of the Macdonald-Morris root system conjecture for \(S(F_4) \) and \(S(F_4) \) via Zeilberger's method*, preprint.
10. J. Gunson, *Proof of a conjecture of Dyson in the statistical theory of energy levels*, J. Math. Phys. 3 (1962), 752–753.
11. R. Gustafson, *Some q-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras*, preprint.
12. ——*, *Some multidimensional beta type integrals*, preprint.
13. L. Habsieger *La q-Macdonald-Morris pour \(G_2 \)*, C. R. Acad. Sci (Paris) 303 (1986), 211-213.
14. K. Kadell, *A proof of the q-Macdonald-Morris conjecture for BC_n*, preprint.
15. I. G. Macdonald, *Affine root systems and Dedekind’s η-function*, Invent. Math. 15 (1972), 91–143.
16. ______, *The Poincaré series of a Coxeter group*, Math. Ann. 199 (1972), 161–174.
17. ______, *Some conjectures for root systems*, SIAM J. Math. Anal. 13 (1982), 988–1007.
18. M. L. Mehta, *Random matrices and the statistical theory of energy levels*, Academic Press, New York, 1967.
19. W. G. Morris, *Constant term identities for finite and affine root systems: conjectures and theorems*, Ph. D. thesis, Univ. of Wisconsin-Madison, 1982.
20. E. Opdam, *Some applications of hypergeometric shift operators*, preprint.
21. M. Rahman, *Another conjectured q-Selberg integral*, SIAM J. Math. Anal. 17 (1986), 1267–1279.
22. S. Ramanujan, *A class of definite integrals*, Quart. J. Math. 48 (1920), 294–310.
23. A. Selberg, *Bemerkinger om et multipelt integral*, Norsk Mat. Tidsskr. 26 (1944), 71–78.
24. J. A. Wilson, *Some hypergeometric orthogonal polynomials*, SIAM J. Math. Anal. 11 (1980), 690–701.
25. K. Wilson, *Proof of a conjecture of Dyson*, J. Math. Phys. 3 (1962), 1040–1043.
26. D. Zeilberger, *A proof of the G₂ case of Macdonald’s root system-Dyson conjecture*, SIAM J. Math. Anal. 18 (1987), 880–883.
27. ______, *A unified approach to Macdonald’s root-system conjectures*, SIAM J. Math. Anal 19 (1988), 987–1013.
28. D. Zeilberger and D. M. Bressoud, *A proof of Andrews’ q-Dyson conjecture*, Discrete Math. 54 (1985), 201–224.

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843
