RESEARCH ARTICLE

Strategies to prevent hospital readmission and death in patients with chronic heart failure, chronic obstructive pulmonary disease, and chronic kidney disease: A systematic review and meta-analysis

Ryan J. Bamforth1,2, Ruchi Chhibba1,2, Thomas W. Ferguson1,2, Jenna Sabourin1,2, Domenic Pieroni1,2, Nicole Askin1, Navdeep Tangri1,2, Paul Komenda1,2, Claudio Rigatto1,2*

1 Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada, 2 Seven Oaks Hospital Chronic Disease Innovation Centre, Winnipeg, Manitoba, Canada

* crigatto@sbgh.mb.ca

Abstract

Background
Readmission following hospital discharge is common and is a major financial burden on healthcare systems.

Objectives
Our objectives were to 1) identify studies describing post-discharge interventions and their efficacy with respect to reducing risk of mortality and rate of hospital readmission; and 2) identify intervention characteristics associated with efficacy.

Methods
A systematic review of the literature was performed. We searched MEDLINE, PubMed, Cochrane, EMBASE and CINAHL. Our selection criteria included randomized controlled trials comparing post-discharge interventions with usual care on rates of hospital readmission and mortality in high-risk chronic disease patient populations. We used random effects meta-analyses to estimate pooled risk ratios for all-cause and cause-specific mortality as well as all-cause and cause-specific hospitalization.

Results
We included 31 randomized controlled trials encompassing 9654 patients (24 studies in CHF, 4 in COPD, 1 in both CHF and COPD, 1 in CKD and 1 in an undifferentiated population). Meta-analysis showed post-discharge interventions reduced cause-specific (RR = 0.71, 95% CI = 0.63–0.80) and all cause (RR = 0.90, 95% CI = 0.81–0.99) hospitalization, all-cause (RR = 0.73, 95% CI = 0.65–0.83) and cause-specific mortality (RR = 0.68, 95% CI
All-cause mortality (RR = 0.54, 95% CI = 0.32–0.83) in CHF studies, and all-cause hospitalization (RR = 0.52, 95% CI = 0.32–0.83) in COPD studies. The inclusion of a cardiac nurse in the multidisciplinary team was associated with greater efficacy in reducing all-cause mortality among patients discharged after heart failure admission (HR = 0.64, 95% CI = 0.54–0.75 vs. HR = 0.87, 95% CI = 0.73–1.03).

Conclusions
Post-discharge interventions reduced all-cause mortality, cause-specific mortality, and cause-specific hospitalization in CHF patients and all-cause hospitalization in COPD patients. The presence of a cardiac nurse was associated with greater efficacy in included studies. Additional research is needed on the impact of post-discharge intervention strategies in COPD and CKD patients.

Introduction
Readmission following hospital discharge is a common occurrence and results in a major financial burden on health care systems [1]. In particular, patients suffering from chronic diseases, mainly chronic obstructive pulmonary disease (COPD) and congestive heart failure (CHF), have frequent readmissions and suffer from increased morbidity and mortality related to these events [2]. Overall, up to 19.6% of patients admitted with chronic health conditions in the United States are readmitted within one month and 34.0% within three months of discharge [3].

It has been estimated that nearly 60% of hospital readmissions are preventable [4]. Risk factors associated with avoidable readmissions include those related to patient, social, clinical and system factors such as patient behaviors, community services, adequacy and appropriateness of assessment and treatment, as well as accessibility and coordination within the healthcare delivery system [4]. Preventing such hospitalizations may result in up to $12 billion dollars of savings in the United States alone [5]. The absence of suitable post-discharge care is just one of many potential factors contributing to future hospitalizations [6] and continuity of care in high-risk chronic disease patients is crucial in order to mitigate the risk of readmission [7].

A variety of post-discharge interventions have been proposed to reduce this readmission risk, ranging from minimal (i.e. follow-up telephone calls), to complex, multifaceted interventions such as “virtual wards”, which provide patients with a period of intensive multidisciplinary team management, often employing telemonitoring and nurse led case-management strategies [8]. Use of virtual wards following hospital discharge has been associated with a lower risk of readmission in certain health conditions. In a recent systematic review, we found that virtual wards were effective in improving clinical outcomes and reducing hospital readmissions in heart failure [9]. However, the costs and complexities associated with virtual wards may be a barrier to implementation. The question of whether, and to what degree, less complex and less costly interventions can be as effective as highly complex virtual wards in minimizing hospital readmissions and death in high-risk chronic disease patient populations is unknown.

To address this knowledge gap, we conducted a systematic review of randomized clinical trials examining different follow-up programs and strategies specific to high-risk chronic disease populations after hospital discharge. These interventions ranged from simple (e.g.,
telephone calls) to more complex and costly programs such as virtual wards. We focused primarily on chronic kidney disease (CKD), heart failure (HF), and chronic obstructive pulmonary disease (COPD). We chose these conditions because all of them are common and associated with frequent and costly exacerbations/acute decompensations necessitating admission for stabilization and associated with high risk of recurrence [2, 3, 10–12]. Our co-primary objectives were: 1) to estimate the efficacy of post-discharge interventions in each chronic disease reviewed, and 2) identify intervention components most strongly associated with efficacy.

Materials and methods

This systematic review is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement [13]. It was performed under a pre-written protocol that was not registered with a traditional systematic review registry.

Data sources and searches

We searched MEDLINE, PubMed, Cochrane, EMBASE and CINAHL identifying relevant studies published up to November 2020. The goal of our literature search was to identify all relevant studies in CHF, COPD and CKD that included any post-discharge intervention. In collaboration with a medical librarian, we developed search terms tailored to each database. We incorporated keywords such as “virtual ward”, “telemedicine,” “case management”, and other types of interventions to maximize the capture of potentially relevant studies from the available literature. The complete search strategy can be found in supplemental materials (S1 Table).

Study selection

We included randomized controlled trials comparing post-discharge interventions with usual care in community-dwelling adult patients (≥18 years of age) recruited to the trial directly following or within three months of hospitalization. The main outcomes of interest were rates of hospital readmission and mortality. No restrictions were placed on dates or language. Two independent reviewers (JS, DP) screened the titles and abstracts of all articles identified in the database search. Potentially eligible articles underwent independent full text review by the same two reviewers to identify the final set of articles. Included articles went on to data extraction. Reasons for exclusion were documented for the remaining articles. Disagreements about inclusion were settled by consensus, with the assistance of a third reviewer (CR, RC) as necessary.

Data extraction

Relevant data, including first author, year of publication, study location (country), sample size, study population, mean age, proportion of women, study design including components associated with risk of bias, description of usual care, as well as description of intervention(s) employed were extracted from the included studies. All-cause hospitalization, cause-specific hospitalization, all-cause mortality, and cause-specific mortality for both control and intervention groups were also extracted from studies. All data was abstracted in duplicate (JS, DP). Conflicts were resolved by consensus, or by a third reviewer if consensus was not reached (CR, RC).

Classification of intervention strategies

Based on our review, we identified five types of post-discharge intervention strategies that were variably incorporated into a given intervention. These strategies included pre-discharge
disease specific patient education, post-discharge follow-up telephone calls, home visits, continuous or semi-continuous telemonitoring of vital signs, and coordinated multidisciplinary team care. For the purposes of our review, multidisciplinary team care was defined as care offered by at least three health care providers in three different areas of patient care. We also captured information on whether a given team member was described as having (or not having) any disease specific training or expertise (e.g., heart failure specialist vs. general internist; Heart failure nurse vs. general nurse). Patient education was deemed to be additional instruction or training specific to self-management of the disease in question, beyond what is generally provided to patients upon discharge. Telemonitoring was defined as continuous or semi-continuous monitoring of patient data via a dedicated or web-based platform. There was no inclusion threshold placed on number telephone calls, home visits, or telemonitoring frequency. Additionally, telephone calls, home visits, and telemonitoring could be conducted by any care provider. In most studies, these interventions were overseen or applied by nurses. For our analysis, we recorded the number and type(s) of intervention(s) used in each study.

Quality assessment
Risk of bias was determined via the application of the Cochrane Collaboration’s Tool (CCT) for assessing risk of bias in randomized trials [14, 15]. This tool considers 6 domains of bias (selection bias, performance bias, detection bias, attrition bias, reporting bias, and other bias). Studies were classified as being at low, unclear, or high risk of bias in each of the 6 bias domains. The evaluation was conducted by two reviewers (JS, DP), with discrepancies resolved by consensus (CR, RC) as described for study inclusion above. Further information on the risk of bias criteria is located in supplemental materials (S2 Table).

Data synthesis and analysis
We used random effects meta-analyses to estimate pooled risk ratios and 95% confidence intervals for all-cause and cause-specific mortality as well as all-cause and cause-specific hospitalization for each chronic disease category [16]. To address our pre-hoc hypothesis that number, type, or specificity of intervention strategies used might influence effectiveness, we conducted subgroup analyses to: 1) compare efficacy in studies using fewer or greater than the median number of strategies; 2) compare studies according to type of intervention strategy used; 3) compare studies with disease specific teams. These latter analyses were only performed for the heart failure studies, as the number of COPD and CKD studies was too small. In a post hoc, secondary analysis, we created a simple scoring system to rank intervention strategies in terms of complexity: pre-discharge patient education = 1; post-discharge telephone calls = 2; home visits = 3; continuous tele-monitoring = 4; and multidisciplinary team care = 5. We defined a complexity score for a study as the simple sum of the complexity ranks of all strategies employed in that study. We then used meta-regression to examine whether complexity as measured using this score was associated with efficacy of the intervention. Additional sensitivity analyses were performed by excluding studies at high risk of reporting, attrition, selection or concealment bias to assess uncertainty. Finally, to examine whether there is evidence of an era effect, we conducted a subgroup analysis including only recently published heart-failure studies (since January 2009).

Results
Study selection
A flow diagram summarizing our literature search and selection of relevant articles is shown below in Fig 1. A total of 8690 articles were identified based on our search strategy.
The titles and abstracts of these articles were screened, and 214 were selected for full text review. Of these 214 articles, 31 met all the inclusion criteria. A summary of the full-text review is located in supplemental materials (S3 Table).

Characteristics of selected studies

We included 31 randomized controlled trials encompassing 9654 patients in our systematic review [17–47]. The mean age of the various study populations ranged from 56 to 80 years. The study populations consisted of patients admitted to hospital within the past three months due to HF, CKD, or COPD, and discharged home. Most studies had a larger proportion of males than females. Of the included studies, 24 were specifically on congestive heart failure.
and 1 study included both congestive heart failure and chronic obstructive pulmonary disease [38]. There were 4 studies specifically on chronic obstructive pulmonary disease [39–41, 45], 1 on chronic kidney disease [42], and 1 study which focused on undifferentiated, high risk chronic disease patient populations [43]. The last study could not be included because separate outcome data for each chronic disease of interest was not reported [43].

In all studies, the control group consisted of patients receiving “usual care” following hospital discharge. The definition of usual care varied across studies, however. Typically, usual care was comprised of an outpatient follow-up appointment scheduled with the patient’s primary care physician. However, some studies described more intensive usual care practices, such as follow-up with a disease focused team.

The interventions described also varied between studies. However, all included one or more of the following elements: patient education, telephone calls, home visits, telemonitoring, and multidisciplinary care. The intervention period varied greatly between studies, as did the follow-up period (from six months to two years). Additional details on all included studies can be found in Tables 1 and 2.

Quality of reporting and risk of bias
Risk of bias for the included studies is summarized in the supplemental material (S4 Table). Most studies were judged to be at low risk of reporting, detection, and selection biases. Blinding of participants was not attempted in any of the studies. While this is understandable given the nature of the intervention, lack of participant blinding does increase the risk of performance bias in all studies. Moreover, a description of steps taken to ensure blinding of outcome assessors was not included in many studies, leading to a high overall risk of measurement bias in the included studies. Overall, three of the thirty-one studies were deemed at high risk of bias [26, 33, 38]. In sensitivity analyses, the calculated risk ratios were found to be of similar direction and magnitude when studies at high risk of bias were excluded (S1–S3 Figs).

Qualitative analysis
Two of the thirty-one included studies were excluded from the meta-analysis. The first study was excluded as it was the sole study in CKD patients that met inclusion criteria and we were unable to meta-analyze it on its own [42] The second study was excluded due to the inability to extract outcome data for each separate chronic disease of interest [42, 43]. Li et al. examined the effectiveness of telephone support in patients undergoing peritoneal dialysis in China [42]. Overall, 135 patients were recruited (66 randomized to control group, 69 to intervention group) with results showing a statistically significant difference in quality of life measures (symptom/problem, work status, staff encouragement, patient satisfaction and energy/fatigue as measured by the KDQOL-SF) favoring the intervention group, with no differences in blood chemistry and complication control as well as health-care utilization (readmissions) between the control and intervention groups [42]. Dhalla et al. evaluated the effectiveness of virtual wards on readmissions and death in high-risk patients (based upon length of stay, acuity of the admission, comorbidities, and emergency department visits in the previous 6 months) [43]. Patients randomized to the intervention group were admitted to the virtual ward once discharged, providing them telephone access to a multidisciplinary team consisting of a case coordinator, part-time pharmacist, part-time nurse, or nurse-practitioner, full-time physician, and a clerical assistant, in addition to usual care. The authors found that virtual wards had no statistically significant effect on readmissions and death at 30 and 60 days, 6 months and 1 year post discharge in comparison to usual care [43].
First author, YR	Country	N	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population
Stewart, 1999 [37]	Australia	97	0.25 (1 week)	18	Patients received usual post-discharge care.	Patients received one home visit by a nurse and a pharmacist shortly after discharge and were referred to their primary care provider, as necessary.	Patients hospitalized with heart failure and with a history of at least 1 addition hospitalization for acute heart failure.	75	52
Stewart, 1999 [36]	Australia	200	6	6	Usual care was comprised of both community-based and inpatient contact with a cardiac rehabilitation nurse, dietician, social worker, pharmacist, and community nurse. Patients had follow-up appointments with their primary care physician and/or a cardiologist within 2 weeks of being discharged.	In addition to usual care, patients received a home visit by a cardiac nurse 1–2 weeks following discharge. Based on the nurse’s assessment and after consultation with the patient’s primary care physician and cardiologist, modifications to the treatment plan took place if necessary. Patients received a second home visit if they had 2 or more hospital readmissions within 6 months. All patients were contacted by telephone at 3 months and 6 months.	Patients ≥ 55 years of age admitted with heart failure (LVEF ≤ 55%, NYHA Class I-IV), and at least 1 previous hospitalization for acute heart failure.	75.7	38
Kasper, 2002 [35]	USA	200	6	6	Patients received follow-up care from their primary care physician. Each primary care physician received a baseline management plan from the heart failure cardiologist as documented in their patient’s chart.	Patients received follow-up care from a multidisciplinary team consisting of a nurse coordinator, heart failure nurse, cardiologist, and the patient’s primary care physician. Patients were contacted via telephone by the nurse coordinator within 3 days of discharge, then once per week for one month, twice in the second month, and then once per month until the end of the intervention period. Additionally, patients were scheduled for appointments with a heart failure nurse at a clinic or in their home (rare). The multidisciplinary team met weekly to discuss patient care and optimize treatment. Patients were also given a contact number that they could call 24 h/day.	Patients hospitalized with NYHA Class III/IV heart failure and the having at least one additional designated high-risk criteria: age >70 years, LVEF <35%, one or more additional heart failure admission in the past year, ischemic cardiomyopathy, peripheral edema upon hospital discharge, <3 kg weight loss during hospital stay, peripheral vascular disease or hemodynamic findings of pulmonary capillary wedge pressure >25 mm Hg, cardiac index <2.0 l/min/m², systolic blood pressure >180 mm Hg or diastolic blood pressure >100 mm Hg.	63.5	39.5
Goldberg, 2003 [34]	USA	280	6	6	Prior to discharge, all patients received education regarding heart failure. Patients in the usual care group were then followed-up by their primary care provider.	In addition to usual care, patients received follow-up care via telemonitoring equipment including an electronic weight scale and symptom response system. Everyday, patients weighed themselves and answered questions related to heart failure symptoms. This information was automatically transmitted to the research nurses for interpretation. Increases in weight or concerning symptoms were reported to the patient’s physician.	Patients hospitalized with NYHA class III or IV heart failure and LVEF ≤ 35%.	59	32

(Continued)
First author, YR	Country	N	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population
Dunagan, 2005	USA	151	12	12	Patients received usual post-discharge care.	Patients received a telephone call from a study nurse within 3 days of hospital discharge and then once per week for 2 weeks. Frequency of telephone calls were subsequently individualized based on patient needs. The goal of these telephone calls was to improve self-management, lifestyle, and adherence to treatment plan.	Patients ≥21 years of age hospitalized with NYHA class II-IV heart failure.	70	56
Cleland, 2005	Germany, Netherlands, UK	253	15	15	Patients’ management plans were sent to their primary care provider and patients were followed-up there.	In addition to usual care, patients were followed-up via telemonitoring equipment including an electronic weight scale, an automated sphygmomanometer, and an ECG. Patients took their measurements twice per day and they were automatically sent to a web server at each research site. Measurements that fell outside a predetermined range were analyzed by the study nurse and corrective action was taken, as necessary.	Patients hospitalized >48 hours due to worsening heart failure within the past 6 weeks, with persistent symptoms, LVEF <40%, an LV end-diastolic dimension >30 mm/m (height). Patients also had to be receiving furosemide at a dose of ≥40 mg/day or equivalent (e.g., ≥1 mg of bumetanide or ≥10 mg of torasemide). Additionally, patients had to have at least one of these high-risk criteria: unplanned cardiovascular admission >48 hours within the past 2 years, LVEF <25%, or treatment with furosemide at a dose of ≥100 mg/day or equivalent.	67.5	19
Cleland, 2005	Germany, Netherlands, UK	258	15	15	Patients’ management plans were sent to their primary care provider and patients were followed-up there.	In addition to usual care, patients were contacted by a heart failure nurse once per month. Patients could also call the nurse at anytime to address questions and/or concerns.	Patients hospitalized >48 hours due to worsening heart failure within the past 6 weeks, with persistent symptoms, LVEF <40%, an LV end-diastolic dimension >30 mm/m (height). Patients also had to be receiving furosemide at a dose of ≥40 mg/day or equivalent (e.g., ≥1 mg of bumetanide or ≥10 mg of torasemide). Additionally, patients had to have at least one of these high-risk criteria: unplanned cardiovascular admission >48 hours within the past 2 years, LVEF <25%, or treatment with furosemide at a dose of ≥100 mg/day or equivalent.	67.5	23

(Continued)
First author, YR	Country	N	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population
Del Sindaco, 2007 [31]	Italy	173	24	24	Patients received discharge summaries and educational information regarding lifestyle modifications related to heart failure and self-monitoring. Following discharge, patients received usual care from their primary care provider and/or cardiologist. Additionally, vital signs and events were reported by telephone calls every 6 months.	The patient follow-up team consisted of a cardiologist specialized in geriatrics, 2-4 specialized nurses, and the patient’s primary care physician. Patients were provided with written recommendations, a weight chart, a telephone number available 6 hours per day, and information brochures. Post-discharge follow-ups occurred at the heart failure clinics within 1-2 weeks of discharge and again at 1, 3, and 6 months afterwards. Additionally, nurses made follow-up telephone calls and were directly involved in educating patients.	Patients ≥70 years of age being discharged following hospitalization due to heart failure (NYHA Class I-IV) lasting ≥24 hours.	77	48
Wakefield, 2008 [29]	USA	101	3	6	Patients were followed-up with their primary care provider.	Patients were contacted via video calls 3 times in the week following discharge, and then weekly for 11 weeks. Patients had a symptoms checklist, weight scale, blood pressure cuff, and tape measure to monitor fluid overload. Patients were assessed throughout the study by the study nurse and, together with the patient’s physician, the study nurse made adjustments as needed. Throughout the intervention, nurses also provided patients with behavioural skill strategies to improve self-efficacy, self-monitoring, and goal setting.	Patients admitted to hospital for heart failure.	68.1	2
Wakefield, 2008 [29]	USA	96	3	6	Patients were followed-up with their primary care provider.	Patients were contacted via telephone 3 times in the week following discharge, and then weekly for 11 weeks. Patients had a symptoms checklist, weight scale, blood pressure cuff, and tape measure to monitor fluid overload. Patients were assessed throughout the study by the study nurse and, together with the patient’s physician, the study nurse made adjustments as needed. Throughout the intervention, nurses also provided patients with behavioural skill strategies to improve self-efficacy, self-monitoring, and goal setting.	Patients admitted to hospital for heart failure.	69.5	1
Antonicelli, 2008 [30]	Italy	57	12	12	Prior to discharge, patients and/or their family members/caregivers attended educational sessions regarding heart failure and lifestyle. Subsequently, patients received follow-up care in the form of scheduled appointments at the heart failure outpatient clinic at least every 4 months and more as needed.	In addition to usual care and following discharge, the heart failure team contacted patients at least weekly to gather information on symptoms, adherence to treatment, blood pressure, heart rate, body weight, and 24-hour urine output. Patients were also required to have an ECG once per week. Based on this information, treatment was adjusted as needed. Patients also regularly attended the heart failure clinic.	Patients ≥70 years of age admitted to hospital with worsening signs and symptoms of heart failure.	78	39

(Continued)
First author, YR	Country	N	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population
Giordano, 2009 [28]	Italy	460	12	12	All patients received pre-discharge education and then were referred to their primary care provider for a follow-up appointment within 2 weeks of discharge.	In addition to usual care, patients were given a portable device for telemonitoring which included an ECG. Scheduled telemonitoring was done every week or every 15 days. This consisted of the nurse assessing the patient by asking questions regarding symptoms, lifestyle, etc. Patients could also call the study nurse with any questions and/or concerns. Once per week, nurses and cardiologist met to discuss patients enrolled in the study and their care.	Patients hospitalized with heart failure, LVEF <40%, and at least 1 hospitalization due to heart failure within the past year.	57	15
Scherr, 2009 [26]	Austria	120	6	6	Patients received regular follow-up care with their primary care physician.	Patients were provided with telemonitoring equipment including a mobile phone, a weight scale, and a sphygmomanometer for an automated measurement of blood pressure and heart rate. Everyday, patients took their vital signs and entered them into the mobile phone’s Internet browser where they could be interpreted by study physicians. Physicians contacted patients should their treatment plan need to be adjusted based on their measurements.	Patients with decompensated heart failure admitted to hospital for >24 hours within the past month.	66	27
Dar, 2009 [27]	England	182	6	6	Initially, patients received a home visit by the study nurse during which time they were given advice regarding self-monitoring of heart failure. Afterwards, they were provided follow-up care from a secondary-care-based heart failure service, including at least one cardiology or physician and a heart failure nurse, via regular clinic appointments with the heart failure team. The frequency of follow-up appointments was decided by the heart failure team. Telephone support was also available to patients during regular business hours.	In addition to usual care, patients received home telemonitoring via an electronic weight scale, automated blood pressure cuff, pulse oximeter, and a control box connected to their home phone line. Every morning, patients were given instructions to use this equipment to measure their vital signs and answer four questions regarding symptoms of heart failure decompensation. This information was automatically transmitted to the hospital base station where it was reviewed by a heart failure nurse. Changes in vital signs from pre-set parameters triggered an alert and patients were contacted, resulting in one of the following: further lifestyle or medication advice, recommendation to contact primary care, or early review in secondary care.	Patients >18 years of age hospitalized with heart failure and in NYHA Class II-IV upon discharge.	72	34
Leventhal, 2011 [25]	Switzerland	42	12	12	The usual group were followed-up by their primary care provider.	Patients received a home visit from a heart failure nurse ~1 week after discharge and then 17 telephone calls throughout the intervention to address patient questions and/or concerns, which the nurse discussed with the patient’s primary care provider. The home visit consisted of an assessment, patient education, and goal setting.	Patients hospitalized with decompensated heart failure (NYHA class II-IV).	77	38.1
First author, YR	Country	N	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population
------------------------	--------------	-----	---------------------------------	--------------------------	--	---	---	----------------------------------	----------------------------------
Dendale, 2012 [23]	Belgium	160	6	6	Prior to discharge, all patients and their family members participated in an educational session with a heart failure nurse. Patients were seen at the heart failure clinic 2 weeks post-discharge. Thereafter, patients were followed-up by their primary care provider.	Following discharge, patients received telemonitoring via an electronic body weight scale and a blood pressure monitoring device which were connected to a cell phone via Bluetooth. Patients used this equipment daily and the information was automatically transmitted to a central computer. The heart failure clinic and the patient's primary care physician were alerted if the measurements fell outside of a predetermined range. The primary care physician then contacted the patient to make the necessary adjustments. The heart failure nurse also phoned the patient 1–3 days after the alert. Additionally, patients were scheduled for follow-up in the heart failure clinic 2 weeks, 3 months, and 6 months following discharge, but could visit the clinic more often.	Patients hospitalized for fluid overload due to heart failure and required to start or increase diuretic treatment.	76	35
Angermann, 2012 [24]	Germany	715	6	6	Patients received treatment plans, discharge letters, and follow-up appointments with either a primary care provider or cardiologist within 1–2 weeks following discharge.	In addition to usual care, patients and relatives participated in pre-discharge educational sessions with a specialist nurse. Following discharge, patients received telephone-based monitoring involving symptom and well-being questionnaires, planning of medications in conjunction with primary care providers, individualized specialist care coordinated by nurses with the patients' physician, and further education. During the first month following discharge, patients received telephone calls once per month. The frequency of phone calls were subsequently individualized based on patient needs.	Patients ≥18 years of age hospitalized with signs and symptoms of decompensated heart failure and LVEF ≤ 40%.	68.6	29
Tsuchihashi-Makaya, 2013 [22]	Japan	161	6	12	Prior to discharge, patients received extensive education by a cardiologist, nurse, dietitian, and pharmacist. Patients then had regular post-discharge follow-up care including management by the cardiologist.	In addition to usual care, follow-up care included home visits within 2 weeks of discharge and then once every 2 weeks for the following month and a half. Thereafter, nurses made monthly telephone calls to patients until 6 months following discharge. During all encounters, nurses assessed potential symptoms of decompensated heart failure, body weight, and educated patients. Nurses consulted a multidisciplinary team consisting of a cardiologist, dietitian, pharmacist, and social worker throughout the study.	Patients hospitalized with heart failure.	76	30

(Continued)
Table 1. (Continued)

First author, YR	Country	N	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population
Villani, 2014 [21]	Italy	80	12	12	Prior to discharge, all patients participated in an educational session with a heart failure nurse. Following discharge, patients were scheduled for appointments at a heart failure clinic every three months.	In addition to usual care, patients were given a handheld PDA to measure their heart rate, body weight, blood pressure, and ECG. Everyday, patients were alerted and reminded to measure and send this information in at predetermined times and frequencies. The PDA software also included a questionnaire regarding mental wellbeing and medications as well as reminders to take their medications at the correct time. A cardiologist interpreted the information and contacted patients with modifications or recommendations as needed. A psychologist was also available to patients during their follow-up visits in clinic.	Patients hospitalized with NYHA class III/IV heart failure, LVEF <40%, and at high risk of readmission defined by 2 or more of the following: age >70, >2 hospitalizations related to heart failure in the past 6 months, >1 comorbidities (diabetes, COPD, cerebrovascular disease, renal failure).	72	27.5
Yu, 2015 [20]	Hong Kong	178	9	9	Patients were scheduled for follow-up at a specialist clinic 4–6 weeks following discharge.	Patients received pre-discharge visits as well as two post-discharge home visits from a cardiac nurse which involved individualized education and goal setting regarding self-care. Patients received telephone calls from the cardiac nurse 1 week following the second home visit, then every 2 weeks for three months, followed by every 2 months for 6 months. Additional home visits were conducted for patients requiring further assessment and care. Patients were also provided with a telephone number that they could call during regular business hours to have questions and/or concerns addressed by the cardiac nurse.	Patients ≥60 years of age admitted to hospital due to heart failure.	78.6	55
Ritchie, 2016 [38]	USA	346	3	3	Patients received usual post-discharge care by their primary care provider.	Prior to discharge and during the follow-up period, patients received support and education from care transition nurses and an “E-Coach” (IVR-supported care system). This device provided automated telephone calls and was used to accumulate data on patients, provide patients with individualized management plans, and alert the nurse when intervention was required. Patients received calls from the E-Coach everyday for a week following discharge and either everyday or every 3 days for an additional 21 calls.	Patients admitted to hospital with either heart failure being discharged home.	63.3	48.7
First author, YR	Country	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population	
------------------	---------	--------------------------------	---------------------------	---------------------------	----------------------------	-------------------	-----------------------------------	----------------------------------	
Ong, 2016 [19]	USA	1437	6	Patients received extensive pre-discharge education and often a follow-up telephone call once discharged, which was followed by one phone call each month, then once every three months.	Patients were given pre-discharge education regarding heart failure, 9 telephone calls over the period of 6 months following discharge (the first one being 2-3 days after discharge, then once per month for the remaining 5 months), and a bi-weekly weight check. This information was automatically transmitted back to central servers via Bluetooth for interpretation by study nurses.	Patients ≥ 50 years of age hospitalized for decompensated heart failure.	73.4	46.2	
Kotooka, 2018	Japan	181	12	Upon discharge, patients were provided education and recommended to measure their body weight daily.	Patients were given education regarding heart failure and discharged with a home telemonitoring system which automatically transmitted blood pressure, heart rate, body weight, and daily symptoms to the central server. Nurses monitored the incoming data and if it exceeded a pre-set threshold, the patient's primary care provider was notified, and corrective action was taken.	Patients aged between 20-65 years of age hospitalized due to NYHA class II-IV decompensated heart failure and being discharged home.	66.3	40.9	
Olivari, 2018	Italy	339	12	Patients received routine post-discharge care, which was generally comprised of a follow-up visit within the first month of discharge.	Patients were given wearable devices which they used to measure their body weight, heart rate, blood pressure, and pulse oximetry, as well as a digital weight scale used to measure their body weight. This information was transmitted every day, 5 days per week, and was interpreted via phone.	Patients aged between 65 years of age hospitalized with heart failure in the past 3 months and LVEF <40% or >40% with BNP >400 (or NT-proBNP >1500) during hospitalization.	80.3	40.6	
Wierzchowiecki, 2006 [44]	Poland	160	12	Regular follow-up with their primary care physicians.	Patients were given a multi-disciplinary care team consisting of a cardiologist, a heart failure nurse, a psychologist, and a physiotherapist, as well as a home telemonitoring system.	Patients hospitalized for COPD, with an established diagnosis.	68.4	40.6	
First author, YR, Country, Period of Intervention	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population			
---	---------------------------	---------------------------	-----------------------------	-------------------	-----------------------------------	----------------------------------			
Negarandeh, 2019, Iran 80, 24, 24	6	Patients were discharged given usual care; education was provided by the nurse at this time.	In addition to usual care and providing 20-minute phone calls, phone calls varied by patients' needs and educational questions. The calls evaluated patient's self-care status, providing recommendations and education for performing self-care.	Hospitalized heart failure patients aged 45 or older.	Unable to extract	33.8			
Oscalices, 2019, Brazil 201, 36, 36	6	Patients were followed-up with by the researcher after 3 months. Patients were given discharge guidance by the researcher. After 30 days, patients were contacted via phone to identify treatment difficulties and clarify doubts. Evaluation of outcomes were performed at 90 days post discharge via telephone.	Patients over the aged of 18 who were admitted to the emergency room with a diagnosis of decompensated heart failure.	COPD Patient Population	62.6 59.2				
Casas, 2006, Spain, Belgium 155, 12, 12	12	Patient follow-up care included extensive assessment and educational sessions by a respiratory nurse regarding COPD and self-monitoring prior to discharge, individual management plans, and availability of a specialized nurse to patients, as well as their caregivers and primary care providers, via telephone. Additionally, patients received at least 1 home visit from the specialized nurse and their primary care team (physician, nurse, and social worker) or solely their primary care provider. During the first month following discharge, weekly telephone calls were made from the nurse to the patients.	Patients presenting with an acute exacerbation of COPD requiring ≥48 hours of hospitalization.	COPD Patient Population	71 17				
Sorknaes, 2013, Denmark 266, 0.25, 6	12	Patients had the option of attending an outpatient clinic with a nurse 1- and 3-months following discharge to confirm the diagnosis of COPD. Thereafter, a plan was made regarding future follow-up. In addition to usual care and following discharge, patients received daily monitoring via video from a study nurse. Nurse assessments were made during this time and advice was given as needed. Patients measured their heart rate, saturation, and spirometry using their telemonitoring equipment.	Patients >40 years of age admitted to hospital with an acute exacerbation of COPD.	COPD Patient Population	72 61				
First author, YR	Country	N	Period of Intervention (months)	Follow-Up Period (months)	Description of Usual Care	Description of Intervention	Patient Population	Mean Age of Total Study Population	% Female in Total Study Population
-----------------	-----------	----	---------------------------------	---------------------------	---------------------------	-----------------------------	---------------------	-----------------------------------	----------------------------------
Ritchie, 2016 [38]	USA	132	3	3	Patients received usual post-discharge care by their primary care provider.	Prior to discharge and during the follow-up period, patients received support and education from care transition nurses and an “E-Coach” (IVR-supported care system). This device provided automated telephone calls and was used to accumulate data on patients, provide patients with individualized management plans, and alert the nurse when intervention was required. Patients received calls from the E-Coach everyday for a week following discharge and either everyday or every 3 days for an additional 21 calls.	Patients admitted to hospital with COPD and being discharged home.	63.6	44.9
Ko, 2017 [39]	Hong Kong	180	12	12	Following discharge, patients were advised to continue follow-up with their regular primary care physician.	Prior to discharge, patients participated in educational sessions given by respiratory nurses and physiotherapists. Following discharge, patients were provided with a telephone number that they could call during regular business hours to address questions and/or concerns. Additionally, they received 3 telephone calls per month from a respiratory nurse and were followed-up in clinic by a respiratory specialist every 3 months.	Patients ≥40 years with a diagnosis of COPD admitted with 2 or more of the following: increased dyspnea, increased sputum purulence, increased sputum volume, or one of: nasal discharge/congestion, whizzle, sore throat, cough for at least two days straight.	74.7	4.4
Ho, 2016 [45]	Taiwan	106	2	6	Regular follow-up with their primary care physician.	Patients were provided with telemonitoring equipment including a pulse oximeter, thermometer, and sphygmomanometer. Patients reported their symptoms daily on an electronic diary for two months post-discharge.	No	80.2	23.6
Li, 2014 [42]	China	135	1.5	3	Usual discharge care involved providing patients with information and a telephone hotline service. Patients were then followed-up by their primary care provider.	Patients underwent extensive pre-discharge assessments and education. Following discharge, nurse case managers monitored patients via regular telephone calls starting within 3 days of discharge and occurring once per week for 6 weeks.	Patients hospitalized due to end-stage renal failure.	56.3	41.5
Dhalla, 2014 [49]	Canada	1923	12	12	Patients received discharge counseling, a discharge summary (which was also sent to their primary care provider), and prescriptions and home care arrangements as needed. Upon discharge, patients were recommended or scheduled for follow-up appointments with their primary care and specialist physicians.	In addition to usual care, patients received multidisciplinary care in the form of a virtual ward. The virtual ward team consisted of care coordinators, a pharmacist, a nurse or nurse practitioner, a physician, and a clerical assistant. Patients were also monitored via telephone calls, home visits, and/or clinic visits as needed. The VW team held daily meetings to discuss patient care and to design/modify individual treatment plans.	Patients ≥18 years of age being discharged from a general internal medicine ward and at high risk of being readmitted determined by a LACE (length of stay, acuity of the admission, comorbidities, and emergency department visits in the past 6 months) score of ≥10.	71.3	48.5
Studies of heart failure patients

Twenty-five studies [17–38, 44, 46, 47] on heart failure were included in the meta-analysis. Post-discharge interventions reduced the risk of all-cause mortality (RR = 0.73, 95% CI = 0.65–0.83; I² = 0%; Fig 2A), all-cause hospitalization (RR = 0.90, 95% CI = 0.81–0.99; I² = 61%; Fig 2B), cause-specific mortality (RR = 0.68, 95% CI = 0.54–0.84; I² = 0%; Fig 2C), and cause-specific hospitalization (RR = 0.71, 95% CI = 0.63–0.80; I² = 4%; Fig 2D), in heart failure patients.
A) All-cause mortality in heart failure studies

Study or Subgroup	Reference	Events	Total	Weight	MI: Bicarbonate, OR (95% CI)	Risk Ratio

B) All-cause hospitalization in heart failure studies

Study or Subgroup	Reference	Events	Total	Weight	MI: Bicarbonate, OR (95% CI)	Risk Ratio

C) Cause-specific mortality in heart failure studies

Study or Subgroup	Reference	Events	Total	Weight	MI: Bicarbonate, OR (95% CI)	Risk Ratio

D) Cause-specific hospitalization in heart failure studies

Study or Subgroup	Reference	Events	Total	Weight	MI: Bicarbonate, OR (95% CI)	Risk Ratio

E) All-cause mortality in COPD studies

Study or Subgroup	Reference	Events	Total	Weight	MI: Bicarbonate, OR (95% CI)	Risk Ratio

F) All-cause hospitalization in COPD studies

Study or Subgroup	Reference	Events	Total	Weight	MI: Bicarbonate, OR (95% CI)	Risk Ratio
Studies of COPD patients

All 5 of the studies examining chronic obstructive pulmonary disease were included in a meta-analysis [38–41, 45]; however, only two outcomes, all-cause mortality and all-cause hospitalization could be analyzed based on the outcomes reported in the studies. Post-discharge interventions reduced the risk of all-cause hospitalization in COPD patients (RR 0.52, 95% CI = 0.32–0.83; \(I^2 = 61\%\); Fig 2F) yet did not appear to reduce all-cause mortality (RR 0.96, 95% CI = 0.62–1.48; \(I^2 = 0\%\); Fig 2E).

Subgroup analyses and meta-regression

In the univariate subgroup analyses, we were unable to discern a statistically significant association between number or type of intervention strategy (multidisciplinary care, pre-discharge patient education, home visits, post-discharge telephone calls and continuous tele-monitoring) and efficacy for any of the outcomes (all-cause and cause-specific hospitalization and all-cause and cause-specific mortality) (Table 3). We did find an association between the reported presence of a trained cardiac nurse and a lower risk for all-cause mortality in heart failure studies [(HR 0.64, 95% CI = 0.54–0.75; \(I^2 = 0\%\); Fig 3A)] vs. (HR 0.87, 95% CI = 0.73–1.03; \(I^2 = 0\%\); Fig 3B)]. In a secondary analysis, we used a meta-regression strategy together with a simple scoring system to rank intervention strategies in terms of complexity (pre-discharge patient education = 1, post-discharge telephone calls = 2, home visits = 3, continuous tele-monitoring = 4, and multidisciplinary team care = 5). We defined a complexity score for a study as the simple sum of the complexity ranks of all strategies employed in that study. We were unable to show a clear relationship between complexity score and efficacy for any outcome in the heart-failure studies using meta-regression (Table 4). Additionally, we conducted subgroup analysis including only recently published heart-failure studies (since January 2009). Subgroup and main analysis results were found to be consistent as calculated risk ratios were of similar direction and magnitude in all cases. (S4–S7 Figs).

Discussion

In this systematic review and meta-analysis of RCT’s examining post-discharge interventions in heart failure, COPD and CKD, we found that the interventions studied consistently reduced all-cause mortality, cause-specific mortality, all-cause hospitalization, and cause-specific hospitalization in heart failure patient populations. We were unable to discern an association between complexity (number or type) of intervention strategy employed using the data available. Calculated risk ratios were similar to main analysis when removing older studies in CHF (published prior to 2009), showing no clear difference in effectiveness over time. In a post hoc analysis, inclusion of cardiac specific nurses in the intervention team was associated with greater efficacy in heart failure trials.

Previous systematic reviews have found that interventions including patient education, home visits, self-management support, and telemonitoring have been effective in reducing hospital readmissions [48–52]. As such, these findings support those reported in our previous work [8] and are broadly consistent with recent systematic reviews in heart failure [49–52]. Thus, there appears to be strong evidence for efficacy of post-discharge interventions in heart...
failure patients. This research adds to previous systematic reviews by including more recently published studies as well as by analyzing the presence of an era effect in heart failure studies.

The data in COPD and CKD are sparse, and at present only support the efficacy of post-discharge interventions related to all-cause hospitalization in COPD patients. More research is required in these settings.

Other systematic reviews have found that interventions with increased complexity were more effective in reducing hospital readmissions compared to less complex interventions [48]. We could not detect a clear relationship between intervention complexity and efficacy across heart failure studies, nor were we able to identify components of the interventions most responsible for variations in efficacy across studies. This was true both in our primary analysis comparing sub-groups, or in a more sophisticated supplemental analysis using meta-regression and a simple complexity score. One possible interpretation is that there is no true association, and that the effect of a post-discharge intervention on outcomes is driven primarily by increased surveillance and is less dependent on the precise nature of that surveillance. We

Table 3. Component analysis in heart failure studies.
Component Analysis in Congestive Heart Failure Studies
Multidisciplinary Care
All-Cause Mortality
All-Cause Hospitalization
Cause-Specific Mortality
Cause-Specific Hospitalization
Patient Education
All-Cause Mortality
All-Cause Hospitalization
Cause-Specific Mortality
Cause-Specific Hospitalization
Home Visits
All-Cause Mortality
All-Cause Hospitalization
Cause-Specific Mortality
Cause-Specific Hospitalization
Telephone Calls
All-Cause Mortality
All-Cause Hospitalization
Cause-Specific Mortality
Cause-Specific Hospitalization
Telemonitoring
All-Cause Mortality
All-Cause Hospitalization
Cause-Specific Mortality
Cause-Specific Hospitalization

* Risk ratio model did not converge, a binomial distribution with a LOGIT link was used to converge model.

https://doi.org/10.1371/journal.pone.0249542.t003
A) All-cause mortality incorporating a cardiac nurse

Study or Subgroups	Intervention	Control	Total	Total Mortality	RR (95% CI)	p-value
Argentina 2012	33	257	290	113	0.81 (0.68, 0.97)	0.03
Brazil 2005	100	200	300	120	0.70 (0.54, 0.89)	0.007
Spain 2012	450	250	700	280	0.80 (0.66, 0.96)	0.016
Portugal 2013	100	200	300	120	0.70 (0.54, 0.89)	0.007
Italy 2014	100	200	300	120	0.70 (0.54, 0.89)	0.007
Total			900	440	0.77 (0.65, 0.91)	0.002

B) All-cause mortality without a cardiac nurse

Study or Subgroups	Intervention	Control	Total	Total Mortality	RR (95% CI)	p-value
Argentina 2012	33	257	290	113	0.81 (0.68, 0.97)	0.03
Brazil 2005	100	200	300	120	0.70 (0.54, 0.89)	0.007
Spain 2012	450	250	700	280	0.80 (0.66, 0.96)	0.016
Portugal 2013	100	200	300	120	0.70 (0.54, 0.89)	0.007
Italy 2014	100	200	300	120	0.70 (0.54, 0.89)	0.007
Total			900	440	0.77 (0.65, 0.91)	0.002

C) Heart failure mortality incorporating cardiac nurse

Study or Subgroups	Intervention	Control	Total	Total Mortality	RR (95% CI)	p-value
Argentina 2012	33	257	290	113	0.81 (0.68, 0.97)	0.03
Brazil 2005	100	200	300	120	0.70 (0.54, 0.89)	0.007
Spain 2012	450	250	700	280	0.80 (0.66, 0.96)	0.016
Portugal 2013	100	200	300	120	0.70 (0.54, 0.89)	0.007
Italy 2014	100	200	300	120	0.70 (0.54, 0.89)	0.007
Total			900	440	0.77 (0.65, 0.91)	0.002

D) All-cause hospitalization incorporating a cardiac nurse

Study or Subgroups	Intervention	Control	Total	Total Mortality	RR (95% CI)	p-value
Argentina 2012	33	257	290	113	0.81 (0.68, 0.97)	0.03
Brazil 2005	100	200	300	120	0.70 (0.54, 0.89)	0.007
Spain 2012	450	250	700	280	0.80 (0.66, 0.96)	0.016
Portugal 2013	100	200	300	120	0.70 (0.54, 0.89)	0.007
Italy 2014	100	200	300	120	0.70 (0.54, 0.89)	0.007
Total			900	440	0.77 (0.65, 0.91)	0.002

E) All-cause hospitalization without a cardiac nurse

Study or Subgroups	Intervention	Control	Total	Total Mortality	RR (95% CI)	p-value
Argentina 2012	33	257	290	113	0.81 (0.68, 0.97)	0.03
Brazil 2005	100	200	300	120	0.70 (0.54, 0.89)	0.007
Spain 2012	450	250	700	280	0.80 (0.66, 0.96)	0.016
Portugal 2013	100	200	300	120	0.70 (0.54, 0.89)	0.007
Italy 2014	100	200	300	120	0.70 (0.54, 0.89)	0.007
Total			900	440	0.77 (0.65, 0.91)	0.002

F) Heart failure hospitalizations incorporating a cardiac nurse

Study or Subgroups	Intervention	Control	Total	Total Mortality	RR (95% CI)	p-value
Argentina 2012	33	257	290	113	0.81 (0.68, 0.97)	0.03
Brazil 2005	100	200	300	120	0.70 (0.54, 0.89)	0.007
Spain 2012	450	250	700	280	0.80 (0.66, 0.96)	0.016
Portugal 2013	100	200	300	120	0.70 (0.54, 0.89)	0.007
Italy 2014	100	200	300	120	0.70 (0.54, 0.89)	0.007
Total			900	440	0.77 (0.65, 0.91)	0.002

G) Heart failure hospitalizations without a cardiac nurse

Study or Subgroups	Intervention	Control	Total	Total Mortality	RR (95% CI)	p-value
Argentina 2012	33	257	290	113	0.81 (0.68, 0.97)	0.03
Brazil 2005	100	200	300	120	0.70 (0.54, 0.89)	0.007
Spain 2012	450	250	700	280	0.80 (0.66, 0.96)	0.016
Portugal 2013	100	200	300	120	0.70 (0.54, 0.89)	0.007
Italy 2014	100	200	300	120	0.70 (0.54, 0.89)	0.007
Total			900	440	0.77 (0.65, 0.91)	0.002

Fig 3. Subgroup analysis—presence and absence of a cardiac nurse in heart failure studies.

https://doi.org/10.1371/journal.pone.0249542.g003
cannot exclude, however, the possibility that such an association exists, but was obscured by the limitations of our approach. In this regard it is important to note that no standard, validated measure of intervention complexity exists. Even our meta-regression strategy using a simple weighting system based on the reported components of an intervention, while reasonable a priori, may have been too crude to capture an association that may well be complex and nonlinear. Given sufficient data points (i.e., individual studies), it might be possible to accurately model the association between intervention complexity and efficacy; however, such techniques are not possible in the context of a meta-analysis of only 23 data points (studies). Indeed, it is unlikely that sufficient data points (i.e., studies) would ever be attainable in the setting of a systematic review and meta-analysis on this topic.

We did observe that studies including a trained, cardiac-specific nurse observed greater risk reduction for mortality and hospitalizations than those without a cardiac specific nurse. Although this finding in isolation must be interpreted cautiously, it is congruent with previous observations that the disease specificity of an intervention is important [8]. Taken together, these findings suggest that a specific-disease focus and expertise is needed in designing and implementing successful post-discharge interventions.

Our study has significant strengths. We adhered to PRISMA recommendations in the conduct of the review [13]. Our search strategy was broad, capturing many randomized clinical trials on diverse types of post-discharge interventions in recently discharged patients with congestive heart failure, chronic kidney disease, or chronic obstructive pulmonary disease. Our analysis included a wide spectrum of interventions that have been implemented in these patient populations in the past two decades. Our review included only randomized clinical trials reporting hard outcomes, because such studies provide the highest level of evidence for the efficacy of interventions.

Our study also has some important limitations. Few studies meeting our inclusion criteria were found for COPD and CKD, limiting conclusions about post-discharge interventions in these conditions. We were unable to show any association between complexity of the intervention and outcome. As discussed above, it may be that our study lacked sufficient power to detect a relationship between these variables if one existed, but it is also probable that this question cannot be answerable by a systematic review of any reasonable size.

Despite these limitations, we believe our findings provide a valid summary of the evidence to date, and as such have implications for research and clinical care. Our results confirm a compelling and consistent benefit for a wide array of post-discharge interventions in heart failure patients. Even though our study was unable to identify a minimum efficacious set of interventions, defining such a subset remains important, as complexity and cost are major barriers to the real-world implementation and scaling of these strategies. Our results suggest that meta-analytic techniques may not be able to answer this question and that randomized clinical trials comparing the efficacy and cost effectiveness of different types of post-discharge intervention should be conducted. In the absence of such data, programs planning on implementing post-

| Table 4. Complexity score analysis in heart failure studies. |
|-----------------|------------------|
| Outcome | P-value |
| All-Cause Mortality | 0.9317* |
| All-Cause Hospitalization | 0.4962 |
| Cause-Specific Mortality | 0.721 |
| Cause-Specific Hospitalization | 0.2423 |

* Risk ratio model did not converge, a binomial distribution with a LOGIT link was used to converge model.

https://doi.org/10.1371/journal.pone.0249542.t004

Strategies to prevent hospital readmission and death in patients with advanced chronic diseases
discharge interventions for heart failure are justified in choosing specific interventions based on which of the published strategies appear most feasible in the local context. Our data further suggest that inclusion of a cardiac nurse in that strategy may be critical. Finally, evidence on post-discharge interventions in COPD and CKD are lacking, and further RCT data is urgently needed, particularly for COPD, which is one of the leading chronic diseases requiring readmission [2].

Conclusions
In conclusion, post-discharge interventions appeared effective in preventing readmission in heart failure populations. Inclusion of a trained cardiac nurse may be an important feature. Additional research is urgently needed on the impact of post-discharge intervention strategies in CKD and COPD.

Supporting information
S1 Checklist. PRISMA 2009 checklist.
(DOC)

S1 Fig. Meta-analysis of relative risks of all-cause mortality in heart failure patients, excluding those studies deemed at high risk of bias.
(DOCX)

S2 Fig. Meta-analysis of relative risks of all-cause hospitalization in heart failure patients, excluding those studies deemed at high risk of bias.
(DOCX)

S3 Fig. Meta-analysis of relative risks of cause-specific hospitalization in heart failure patients, excluding those studies deemed at high risk of bias.
(DOCX)

S4 Fig. Meta-analysis of relative risks of all-cause hospitalization in heart failure patients, excluding studies published prior to 2009.
(DOCX)

S5 Fig. Meta-analysis of relative risks of cause-specific hospitalization in heart failure patients, excluding studies published prior to 2009.
(DOCX)

S6 Fig. Meta-analysis of relative risks of all-cause mortality in heart failure patients, excluding studies published prior to 2009.
(DOCX)

S7 Fig. Meta-analysis of relative risks of cause-specific mortality in heart failure patients, excluding studies published prior to 2009.
(DOCX)

S1 Table. Search strategies.
(XLSX)

S2 Table. The Cochrane Collaboration’s Tool for randomized studies risk of bias criteria.
(XLSX)

S3 Table. Virtual full text review.
(XLSX)
S4 Table. Individual risk of bias assessment for all included studies using the Cochrane Collaboration’s Tool for randomized studies.
(XLSX)

Author Contributions
Conceptualization: Ruchi Chhibba, Navdeep Tangri, Paul Komenda, Claudio Rigatto.
Data curation: Jenna Sabourin, Domenic Pieroni.
Formal analysis: Ryan J. Bamforth, Thomas W. Ferguson.
Investigation: Ryan J. Bamforth, Ruchi Chhibba, Claudio Rigatto.
Methodology: Ryan J. Bamforth, Thomas W. Ferguson, Nicole Askin, Navdeep Tangri, Paul Komenda, Claudio Rigatto.
Resources: Nicole Askin.
Supervision: Navdeep Tangri, Paul Komenda, Claudio Rigatto.
Visualization: Ryan J. Bamforth.
Writing – original draft: Ruchi Chhibba, Thomas W. Ferguson, Jenna Sabourin, Domenic Pieroni, Paul Komenda.
Writing – review & editing: Ryan J. Bamforth, Thomas W. Ferguson, Claudio Rigatto.

References
1. van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. CMAJ. 2010; 182(6):551–7. https://doi.org/10.1503/cmaj.091117 PMID: 20194559
2. Canadian Institute for Health Information. All-cause readmission to acute care and return to the emergency department (Ottawa, ONT: CIHI; 2012). Available from: https://secure.cihi.ca/free_products/Readmission_to_acute_care_en.pdf
3. Jencks S, Williams M, Coleman E. Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med. 2011; 364(16):1582.
4. Yam CH, Wong EL, Chan FW, Wong FY, Leung MC, Yeoh EK. Measuring and preventing potentially avoidable hospital readmissions: a review of the literature. Hong Kong Med J. 2010; 16(5):383–9. PMID: 20890004
5. Medicare Payment Advisory Commission. Report to the Congress: Reforming the Delivery System (Washington, DC: Medpac; 2008). Available from: http://www.medpac.gov/docs/default-source/reports/June08_EntireReport.pdf
6. Costantino ME, Frey B, Hall B, Painter P. The influence of a postdischarge intervention on reducing hospital readmissions in a Medicare population. Popul Health Manag. 2013; 16(5):310–6. https://doi.org/10.1089/PHM.2012.0084 PMID: 23537154
7. Swanson JO, Vogt V, Sundmacher L, Hagen TP, Moger TA. Continuity of care and its effect on readmissions for COPD patients: A comparative study of Norway and Germany. Health Policy. 2018; 122(7):737–45. https://doi.org/10.1016/j.healthpol.2018.05.013 PMID: 29933893
8. Uminski K, Komenda P, Whitlock R, Ferguson T, Nadurak S, Hochheim L, et al. Effect of post-discharge virtual wards on improving outcomes in heart failure and non-heart failure populations: A systematic review and meta-analysis. PLoS One. 2018; 13(4):e0196114. https://doi.org/10.1371/journal.pone.0196114 PMID: 29708997
9. Lewis G, Wright L, Valthianathan R. Multidisciplinary case management for patients at high risk of hospitalization: comparison of virtual ward models in the United kingdom, United States, and Canada. Popul Health Manag. 2012; 15(5):315–21. https://doi.org/10.1089/PHM.2011.0086 PMID: 22788975
10. Ambrosy AP, Fonarow GC, Butler J, Chiocciel O, Greene SJ, Vaduganathan M, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014; 63(12):1123–33. https://doi.org/10.1016/j.jacc.2013.11.053 PMID: 24491689
11. Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2020; 395(10225):709–33.

12. Benady S. The human and economic burden of COPD a leading cause of hospital admission in Canada. Ottawa, Ont; 2010.

13. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151(4):264–9, W64. https://doi.org/10.7326/0003-4819-151-4-200908180-00135 PMID: 19622511

14. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011; 343:d5928. https://doi.org/10.1136/bmj.d5928 PMID: 22080217

15. Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. 2011.

16. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. 1986; 7(3):177–88. https://doi.org/10.1016/0197-2456(86)90046-2 PMID: 3802833

17. Kotooka N, Kitakaze M, Nagashima K, Asaka M, Kinugasa Y, Nochioka K, et al. The first multicenter, randomized, controlled trial of home telemonitoring for Japanese patients with heart failure: home telemonitoring study for patients with heart failure (HOMES-HF). Heart Vessels. 2018; 33(8):866–76. https://doi.org/10.1007/s00380-018-1133-5 PMID: 29450689

18. Olivari Z, Giacomelli S, Gubian L, Mancin S, Visentin E, Di Francesco V, et al. The effectiveness of remote monitoring of elderly patients after hospitalisation for heart failure: The renewing health European project. Int J Cardiol. 2018; 257:137–42. https://doi.org/10.1016/j.ijcard.2017.10.099 PMID: 29506685

19. Ong MK, Romano PS, Edgington S, Aronow HU, Auerbach AD, Black JT, et al. Effectiveness of Remote Patient Monitoring After Discharge of Hospitalized Patients With Heart Failure: The Better Effectiveness After Transition—Heart Failure (BEAT-HF) Randomized Clinical Trial. JAMA Intern Med. 2016; 176(3):310–8. https://doi.org/10.1001/jamaintermed.2015.7711 PMID: 26857383

20. Yu DS, Lee DT, Stewart S, Thompson DR, Choi KC, Yu CM. Effect of Nurse-Implemented Transitional Care for Chinese Individuals with Chronic Heart Failure in Hong Kong: A Randomized Controlled Trial. J Am Geriatr Soc. 2015; 63(8):1583–93. https://doi.org/10.1111/jgs.13533 PMID: 26289684

21. Villani A, Malfatto G, Compare A, Della Rosa F, Bellardita L, Branzi G, et al. Clinical and psychological telemonitoring and telecare of high risk heart failure patients. J Telemed Telecare. 2014; 20(8):468–75. https://doi.org/10.1177/1357633X14555644 PMID: 25339632

22. Tsuchihashi-Makaya M, Matsuho H, Kakinoki S, Takechi S, Kinugawa S, Tsutsui H, et al. Home-based disease management program to improve psychological status in patients with heart failure in Japan. Circ J. 2013; 77(4):926–33. https://doi.org/10.1253/circj-cj-13-0115 PMID: 23502992

23. Dendale P, De Keulenaer G, Troisfontaines P, Weytjens C, Mullens W, Elegeert I, et al. Swiss Interdisciplinary Management Programme for Heart Failure (SWIM-HF): a randomised controlled trial study of an outpatient inter-professional management programme for heart failure patients in Switzerland. Swiss Med Wkly. 2011; 141:w13171. https://doi.org/10.4414/smw.2011.13171 PMID: 21384285

24. Angermann CE, Stork S, Gelbrich G, Faller H, Jahns R, Frantz S, et al. Mode of action and effects of standardized collaborative disease management on mortality and morbidity in patients with systolic heart failure: the Interdisciplinary Network for Heart Failure (INH) study. Circ Heart Fail. 2012; 5(1):25–35. https://doi.org/10.1161/CIRCHEARTFAILURE.111.962969 PMID: 21956192

25. Leventhal ME, Denhaerynck K, Brunner-La Rocca HP, Burmand B, Conca-Zeller A, Bernasconi AT, et al. Swiss Interdisciplinary Management Programme for Heart Failure (SWIM-HF): a randomised controlled trial study of an outpatient inter-professional management programme for heart failure patients in Switzerland. Swiss Med Wkly. 2011; 141:w13171. https://doi.org/10.4414/smw.2011.13171 PMID: 21384285

26. Scherr D, Kastner P, Kollmann A, Hallas A, Auer J, Krapfinger H, et al. Effect of home-based telemonitoring using mobile phone technology on the outcome of heart failure patients after an episode of acute decompensation: randomized controlled trial. J Med Internet Res. 2009; 11(3):e34. https://doi.org/10.2196/jmir.1252 PMID: 19687005

27. Dar O, Riley J, Chapman C, Dubrey SW, Morris S, Rosen SD, et al. A randomized trial of home telemonitoring in a typical elderly heart failure population in North West London: results of the Home-HF study. Eur J Heart Fail. 2009; 11(3):319–25. https://doi.org/10.1093/eurjhf/hfp050 PMID: 19174529

28. Giordano A, Scalvini S, Zanelli E, Corra U, Longobardi GL, Ricci VA, et al. Multicenter randomised trial on home-based telemanagement to prevent hospital readmission of patients with chronic heart failure. Int J Cardiol. 2009; 131(2):192–9. https://doi.org/10.1016/j.ijcard.2007.10.027 PMID: 18222552
29. Wakefield BJ, Ward MM, Holman JE, Ray A, Scherubel M, Burns TL, et al. Evaluation of home telehealth following hospitalization for heart failure: a randomized trial. Telemed J E Health. 2008; 14(8):753–61. https://doi.org/10.1089/tmj.2007.0131 PMID: 18954244

30. Antonicelli R, Testarmata P, Spazzafumo L, Gagliardi C, Bilo G, Valentini M, et al. Impact of telemonitoring at home on the management of elderly patients with congestive heart failure. J Telemed Telecare. 2008; 14(6):300–5. https://doi.org/10.1258/jtt.2008.071213 PMID: 18776075

31. Del Sindaco D, Pulignano G, Minardi G, Apostoli A, Guerrieri L, Rotoloni M, et al. Two-year outcome of a prospective, controlled study of a disease management programme for elderly patients with heart failure. J Cardiovasc Med (Hagerstown). 2007; 8(5):324–9. https://doi.org/10.1245/JCM.0b013e32801164cb PMID: 17443097

32. Cleland JG, Louis AA, Rigby AS, Janssens U, Balk AH, Investigators T-H. Noninvasive home telemonitoring for patients with heart failure at high risk of recurrent admission and death: the Trans-European Network-Home-Care Management System (TEN-HMS) study. J Am Coll Cardiol. 2005; 45(10):1654–64. https://doi.org/10.1016/j.jacc.2005.01.050 PMID: 15893183

33. Dunagan WC, Littenberg B, Ewald GA, Jones CA, Emery VB, Waterman BM, et al. Randomized trial of a nurse-administered, telephone-based disease management program for patients with heart failure. J Card Fail. 2005; 11(5):358–65. https://doi.org/10.1016/j.cardfail.2004.12.004 PMID: 15948086

34. Goldberg LR, Piette JD, Walsh MN, Frank TA, Jaski BE, Smith AL, et al. Randomized trial of the Use of Monitoring in Heart Failure (WHARF) trial. American Heart Journal. 2003; 146(4):705–12. https://doi.org/10.1016/S0002-7812(03)00393-4 PMID: 14564327

35. Kasper EK, Gerstenblith G, Heffer G, Van Anden E, Brinker JA, Thiemann DR, et al. A randomized trial of the efficacy of multidisciplinary care in heart failure outpatients at high risk of hospital readmission. Journal of the American College of Cardiology. 2002; 39(3):471–80. https://doi.org/10.1016/S0735-1097(01)01761-2 PMID: 14564327

36. Stewart S, Marley JE, Horowitz JD. Effects of a multidisciplinary, home-based intervention on planned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study. The Lancet. 1999; 354(9184):1077–83.

37. Stewart S. Prolonged Beneficial Effects of a Home-Based Intervention on Unplanned Readmissions and Mortality Among Patients With Congestive Heart Failure. JAMA. 1999; 281(15). https://doi.org/10.1001/archinte.159.3.257 PMID: 9989537

38. Ritchie CS, Houston TK, Richman JS, Sobko HJ, Berner ES, Taylor BB, et al. The E-Coach technology-assisted care transition system: a pragmatic randomized trial. Transl Behav Med. 2016; 6(3):428–37. https://doi.org/10.1007/s13142-016-0422-8 PMID: 27339715

39. Ko FW, Cheung NK, Rainer TH, Lum C, Wong I, Hui DS. Comprehensive care programme for patients with chronic obstructive pulmonary disease: a randomized controlled trial. Thorax. 2017; 72(2):122–8. https://doi.org/10.1136/thoraxjnl-2016-208396 PMID: 27471050

40. Sorknaes AD, Bech M, Madsen H, Titelstad IL, Hounsgaard L, Hansen-Nord M, et al. The effect of real-time teleconsultations between hospital-based nurses and patients with severe COPD discharged after an exacerbation. J Telemed Telecare. 2013; 19(8):466–74. https://doi.org/10.1177/1357633X13512067 PMID: 24227799

41. Casas A, Troosters T, Garcia-Aymerich J, Roca J, Hernandez C, Alonso A, et al. Integrated care prevents hospitalisations for exacerbations in COPD patients. Eur Respir J. 2006; 28(1):123–30. https://doi.org/10.1183/09031936.06.0063205 PMID: 16611656

42. Li J, Wang H, Xie H, Mei G, Cai W, Ye J, et al. Effects of post-discharge nurse-led telephone supportive care for patients with chronic kidney disease undergoing peritoneal dialysis in China: a randomized controlled trial. Perit Dial Int. 2014; 34(3):278–88. https://doi.org/10.3747/pdi.2012.00268 PMID: 24385331

43. Dhalla IA, O’Brien T, Morra D, Thorpe KE, Wong BM, Mehta R, et al. Effect of a postdischarge virtual ward on readmission or death for high-risk patients: a randomized clinical trial. JAMA. 2014; 312(13):1305–12. https://doi.org/10.1001/jama.2014.11492 PMID: 25268437

44. Wierzchowiecki M, Poprawski K, Nowicka A, Kandziorska M, Piatekowska A, Jankowiak M, et al. A new programme of multidisciplinary care for patients with heart failure in Poznań: one-year follow-up. Kardiol Pol. 2006; 64(10):1063–70. PMID: 17089238

45. Ho TW, Huang CT, Chiu HC, Ruan SY, Tsai YJ, Yu CJ, et al. Effectiveness of Telemonitoring in Patients with Chronic Obstructive Pulmonary Disease in Taiwan-A Randomized Controlled Trial. Sci Rep. 2016; 6:23797. https://doi.org/10.1038/srep23797 PMID: 27029815

46. Negarandeh R, Zolfaghari M, Bashi N, Kiasri M. Evaluating the Effect of Monitoring through Telephone (Tele-Monitoring) on Self-Care Behaviors and Readmission of Patients with Heart Failure after Discharge. Appl Clin Inform. 2019; 10(2):261–8. https://doi.org/10.1055/s-0039-1685167 PMID: 30995686
47. Oscalices MIL, Okuno MFP, Lopes M, Campanharo CRV, Batista REA. Discharge guidance and telephone follow-up in the therapeutic adherence of heart failure: randomized clinical trial. Rev Lat Am Enfermagem. 2019; 27:e3159. https://doi.org/10.1590/1518-8345.2484.3159 PMID: 31432915

48. Leppin AL, Gionfriddo MR, Kessler M, Brito JP, Mair FS, Gallacher K, et al. Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials. JAMA Intern Med. 2014; 174(7):1095–107. https://doi.org/10.1001/jamainternmed.2014.1608 PMID: 24820131

49. Gwadry-Sridhar FH, Flintoft V, Lee DS, Lee H, Guyatt GH. A systematic review and meta-analysis of studies comparing readmission rates and mortality rates in patients with heart failure. Arch Intern Med. 2004; 164(21):2315–20. https://doi.org/10.1001/archinte.164.21.2315 PMID: 15557409

50. Carbo A, Gupta M, Tamariz L, Palacio A, Levis S, Nemeth Z, et al. Mobile Technologies for Managing Heart Failure: A Systematic Review and Meta-analysis. Telemed J E Health. 2018. https://doi.org/10.1089/tmj.2017.0269 PMID: 29608430

51. Yun JE, Park JE, Park HY, Lee HY, Park DA. Comparative Effectiveness of Telemonitoring Versus Usual Care for Heart Failure: A Systematic Review and Meta-analysis. J Card Fail. 2018; 24(1):19–28. https://doi.org/10.1016/j.cardfail.2017.09.006 PMID: 28939459

52. Lin MH, Yuan WL, Huang TC, Zhang HF, Mai JT, Wang JF. Clinical effectiveness of telem medicine for chronic heart failure: a systematic review and meta-analysis. J Investig Med. 2017; 65(5):899–911. https://doi.org/10.1136/jim-2016-000199 PMID: 28330835