Research Article

Direct Incorporation of $^{[11C]}$CO$_2$ into Asymmetric $^{[11C]}$Carbonates

Abdul Karim Haji Dheere, Salvatore Bongarzone, Dinah Shakir, and Antony Gee

Department of Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, UK

Correspondence should be addressed to Antony Gee; antony.gee@kcl.ac.uk

Received 31 July 2018; Revised 13 October 2018; Accepted 22 October 2018; Published 10 December 2018

A novel carbon-11 radiolabelling methodology for the synthesis of the dialkylcarbonate functional group has been developed. The method uses cyclotron-produced short-lived $^{[11C]}$CO$_2$ (half-life 20.4 min) directly from the cyclotron target in a one-pot synthesis. Alcohol in the presence of base trapped $^{[11C]}$CO$_2$ efficiently forming an $^{[11C]}$alkylcarbonate intermediate that subsequently reacted with an alkyl chloride producing the di-substituted $^{[11C]}$carbonate (34% radiochemical yield, determined by radio-HPLC) in 5 minutes from the end of $^{[11C]}$CO$_2$ cyclotron delivery.

1. Introduction

Positron emission tomography (PET) is an imaging technique able to detect and monitor specific target proteins in vivo [1–5]. The use of PET imaging has advanced in the last few decades to become a valuable tool in clinical diagnostics, medical research, and drug discovery [6–8]. PET relies on the use of tracer amounts of imaging probes (radiotracers). The administration of radiotracers allows the biochemical process to be imaged and quantified in vivo without manifestation of pharmacological or toxicological effects [9–13].

Carbon-11 (11C) is one of the most common radio-nuclides used for the synthesis of PET radiotracers. The short half-life of 11C (20.4 min) makes it an attractive radionuclide as it enables the collection of a sufficient amount of PET data while keeping the subject radiation dose and exposure time to minimum. Furthermore, it allows orthologous substitution with carbon-12 in biologically active molecules with no alteration of the parent molecule’s physicochemical and pharmacological properties. Carbon-11 is commonly produced in the form of $^{[11C]}$carbon dioxide ($^{[11C]}$CO$_2$) [14, 15]. $^{[11C]}$CO$_2$ is usually converted into more reactive secondary precursors such as $^{[11C]}$methyl iodide ($^{[11C]}$CH$_3$I), $^{[11C]}$carbon monoxide ($^{[11C]}$CO), and $^{[11C]}$phosgene ($^{[11C]}$COCl$_2$) [16–19]. As these multistep conversion processes are time-consuming, the use of $^{[11C]}$CO$_2$ for directly radiolabelling functional groups is highly attractive.

$^{[11C]}$CO$_2$ is a weak electrophile with an affinity for electron-donating reagents such as amines and organometallics [20]. However, due to the thermodynamic and kinetic properties of $^{[11C]}$CO$_2$, it has high activation energy which requires the use of highly reactive reagents, temperatures, pressures, or the presence of a catalyst [21–23]. Nevertheless, the primary synthon, $^{[11C]}$CO$_2$, has been deployed successfully for the synthesis of 11C-compounds that contain carbonyl groups such as $^{[11C]}$carbamates [24, 25], amide [26], and $^{[11C]}$ureas [23, 27–29]. However, the radiolabelling of the carbonyl group of carbonates from $^{[11C]}$CO$_2$ has not yet been established. To date, the synthesis of $^{[11C]}$carbonates has relied on the use of $^{[11C]}$COCl$_2$ which is produced from a multistep process starting from cyclotron-produced $^{[11C]}$CO$_2$ or $^{[11C]}$CH$_4$ conversion to $^{[11C]}$CCl$_4$ and then to $^{[11C]}$COCl$_2$ [30, 31]. Although this 11C-carbonate reaction is rapid and efficient, routine
production of $[^{11}\text{C}]\text{COCl}_2$ requires multistep syntheses and specialized equipment, thereby restricting its widespread use [30, 31].

As the carbonate functional group is found in prodrugs as well as being an intermediate in organic synthesis [32–35], we aimed at developing a simple and robust radiolabelling methodology that uses $[^{11}\text{C}]\text{CO}_2$ for the synthesis of $[^{11}\text{C}]$carbonates. Here we present a rapid, one-pot radiosynthetic strategy using $[^{11}\text{C}]\text{CO}_2$ directly from the cyclotron, avoiding the need for specialized equipment and multistep syntheses.

2. Materials and Methods

All purchased chemicals were used without further purification. Chemicals were purchased in highest available purity from Sigma-Aldrich and Alfa Aesar and used as received (>99% purity). All solvents were purchased as anhydrous in highest available purity (>99.8% purity) from Sigma-Aldrich.

$[^{11}\text{C}]\text{CO}_2$ was produced by a Siemens RDS112 cyclotron (St Thomas’ Hospital, London, United Kingdom) via the $^{14}\text{N}(p,\alpha)[^{11}\text{C}]$ nuclear reaction. Typical irradiation time for exploratory work was 1 minute, 10 μA, bombardment typically yielding ca. 300 MBq $[^{11}\text{C}]\text{CO}_2$ at end of cyclotron bombardment. Radiolabelling reactions were performed in a 1.5 mL screw top vial with a “V” internal shape. HPLC analysis was performed on an Agilent 2060 Infinity HPLC system with a variable wavelength detector (254 nm was used as default wavelength) [10]. An Agilent Eclipse XDB-C18 reverse-phase column (4.6 x 150 mm, 5 μm) was used at a flow rate of 1 mL/min and H$_2$O/MeOH (HPLC-grade solvents with 0.1% TFA) gradient elution (flow rate: 1 mL/min, 0–2 min: 5% MeOH, 2–11 min: 5 to 95% MeOH linear gradient, 11–13 min: 90% MeOH, 13–14 min: 90% to 5% MeOH linear gradient, and 14–15 min: 5% MeOH). The RCY was estimated by radio-HPLC and defined as the radiochemical yield determined by radio-HPLC analysis of the total ^{11}C labelled peak areas observed in the chromatogram. Molar radioactivity was calculated from analytical HPLC sample of 25 μL. A calibration curve of known mass quantity versus HPLC peak area (254 nm) was used to calculate the mass concentration of the 25 μL radiolabelled compound. The identity of the radiolabelled compound peak was confirmed by HPLC coinjection of a nonradioactive reference compound and yielded a single peak.

3. Results and Discussion

As the starting point, we selected the method developed by Salvatore et al. [21–23] (Figure 1) for the synthesis of carbonates. The established method used nonradioactive CO$_2$, an alcohol derivative, and benzyl chloride (BzCl) in the presence of Cs$_2$CO$_3$, TBAI in DMF to produce the corresponding carbonate derivative efficiently. By substituting CO$_2$ with $[^{11}\text{C}]\text{CO}_2$ and applying the same reaction conditions, the synthesis of di-substituted $[^{11}\text{C}]$carbonates was investigated.

$[^{11}\text{C}]\text{CO}_2$ was trapped in isopropyl alcohol in the presence of Cs$_2$CO$_3$, forming an $[^{11}\text{C}]$isopropyl carbonate intermediate that subsequently reacted with BzCl to produce $[^{11}\text{C}]$benzyl isopropyl carbonate ($[^{11}\text{C}]$1) in a moderate radiochemical yield (RCY). The RCY is the nonisolated radiochemical yield determined by radio-HPLC analysis of the crude product of 24% (Table 1, entry 1). Interestingly, almost all the cyclotron-produced $[^{11}\text{C}]\text{CO}_2$ was trapped within the reaction mixture at room temperature (>95%); any unreacted radioactive $[^{11}\text{C}]\text{CO}_2$ was immobilized on an ascarite trap connected to the vial vent needle. The trapping efficiency is the amount of radioactivity trapped in the reaction vial as a percentage of the overall radioactivity produced by the cyclotron.

In an attempt to increase the RCY, Cs$_2$CO$_3$ was replaced with Cs$_2$SO$_4$ (Table 1, entry 2). The trapping efficiency of $[^{11}\text{C}]\text{CO}_2$ dropped significantly from 95.2% to 1.5%. Since Cs$_2$CO$_3$ contributed towards the trapping of $[^{11}\text{C}]\text{CO}_2$ efficiently, we investigated whether the Cs$^+$ or the CO$_3^{2-}$ ion was responsible for the high $[^{11}\text{C}]\text{CO}_2$-trapping efficiency. Of a number of caesium bases explored (Table 1, entries 3–5), CsI and CsF trapped only minute amounts of $[^{11}\text{C}]\text{CO}_2$ (4% and 34%, respectively), indicating that the basicity of the reaction mixture had a major effect on trapping efficiency. These results can be explained by the ability of a strong base to deprotonate the alcohol present in the reaction mixture enabling it to react with $[^{11}\text{C}]\text{CO}_2$ to form a ^{11}C radiolabelled intermediate. The importance of CO$_3^{2-}$ was then explored by comparing Cs$_2$CO$_3$ with other carbonate bases (K$_2$CO$_3$ and CaCO$_3$, Table 1, entries 6 and 7). The trapping efficiencies were extremely low for both reagents. High trapping in the reaction mixture with Cs$_2$CO$_3$ is therefore most likely due to its superior solubility in organic solvents.

In a further attempt to increase the RCY of $[^{11}\text{C}]$1, a number of aprotic solvents were screened (CH$_3$CN and DMSO, Table 1, entries 8 and 9). However, these solvents did not produce $[^{11}\text{C}]$1, and the trapping efficiency was poor (20% and 65%, respectively). Reaction dependency on temperature was subsequently examined. The RCY of $[^{11}\text{C}]$1 improved from 24% to 33% by increasing the reaction temperature from 25°C to 65°C (Table 1, entry 10). Increasing the temperature to 100°C promoted the product formation and resulted in the highest observed RCY (82%, Table 1, entry 11). This might be rationalised by an increase in Cs$_2$CO$_3$ solubility at higher temperatures. However, due to the presence of Cs$_2$CO$_3$ as a reagent, low molar activities (A_m) were observed. The low A_m (2 GBq/µmol in this case) is likely due to release of nonradioactive CO$_2$ from Cs$_2$CO$_3$, CO$_3^{2-}$ deprotonates the alcohol to form HCO$_3^-$, which at high temperature has the potential to decompose releasing nonradioactive CO$_2$ causing isotopic dilution and low A_m of
The carbonate 11C1 was produced with a molar activity (Am) of 10–20 GBq/mol, and organohalide (66 µmol) in 500 µL DMF, 10 mins from end of delivery (EOD) (n = 1). The nonisolated radiochemical yield determined by radio-HPLC analysis of the crude product. Reaction time of 10 mins from EOD.$^4 n = 3.$

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

Abdul Karim Haji Dheere and Salvatore Bongarzone contributed equally to this work.

Acknowledgments

This work was supported by the Medical Research Council (MRC; MR/K022733/1) and the European Commission, FP7-PEOPLE-2012-ITN (316882; RADIOMI). The authors acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust and the Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC under grant number WT 088641/Z/09/Z.

References

[1] P. Miller, N. Long, R. Vilar, and A. Gee, “Synthesis of 11C, 18F,15O, and 13N radiolabels for positron emission tomography,” Angewandte Chemie International Edition, vol. 47, no. 47, pp. 8998–9033, 2008.
