Identifying subtypes of HIV/AIDS-related symptoms in China using latent profile analysis and symptom networks

Zhongfang Yang1,2,3, Zheng Zhu4,4,5, Huan Wen5, Shuyu Han6, Lin Zhang7, Yanfen Fu8, Yan Hu1,2,3 & Bei Wu4

The identification of subgroups of people living with HIV in China based on the severity of symptom clusters and individual symptoms is crucial to determine group-specific symptom management strategies. Participants reported 27 highly prevalent HIV/AIDS-related symptoms. Latent profile analysis based on symptom severity was used to identify person-centered subtypes of HIV/AIDS-related symptoms. Symptom networks were compared among subgroups identified by latent profile analysis. A total of 2927 eligible people living with HIV (PWH) were included in the analysis. Five profiles were identified: “Profile 1: all low symptom severity” (n2 = 2094, 71.54%), “Profile 2: medium symptom severity with syndemic conditions” (n3 = 109, 3.72%), “Profile 3: medium symptom severity with low functional status” (n1 = 165, 5.64%), “Profile 4: medium symptom severity in transitional period” (n4 = 448, 15.31%), and “Profile 5: all high symptom severity” (n5 = 111, 3.79%).

Except for Profile 1 and Profile 5, the symptom severity was similar among the other three profiles. Profiles 1 (2.09 ± 0.52) and 4 (2.44 ± 0.66) had the smallest ∑s values, and Profiles 2 (4.38 ± 1.40) and 5 (4.39 ± 1.22) had the largest ∑s values. Our study demonstrates the need for health care professionals to provide PWH with group-specific symptom management interventions based on five profiles to improve their physical and psychological well-being. Future studies should be conducted in different contexts using different symptom checklists to further validate our results.

Antiretroviral therapy (ART), with its wide availability, has transformed HIV/AIDS from a fatal acute disease to a manageable chronic condition1–4. Despite the use of effective ART, people with HIV (PWH) face increasing challenges related to the physical and psychological symptoms caused by HIV infection, opportunistic infections, the side effects of ART, chronic comorbidities, aging, and social discrimination5–8. It is widely reported that PWH experience multiple symptoms simultaneously9–12. These symptoms may impact the quality of life, medication adherence, physical and psychological functioning, and social engagement of PWH, which could have a long-term effect on achieving the “90–90–90–90” target13–15.

PWH may have a variety of complex symptom manifestations. Common and severe symptoms in PWH include fatigue, sleep disturbance, memory loss, and dizziness. The prevalence of these symptoms may vary across studies and with different study designs13,14. In addition, it is likely that PWH experience multiple symptoms simultaneously. Wilson and colleagues found that more than 30% of PWH in the United States experienced an average of seven or more symptoms concurrently15. Zhu and colleagues found that the median number of PWH with cooccurring symptoms was nine12,16.

The majority of previous studies investigated symptoms separately, which may not reflect the complex real-world situations that PWH experience16–18. Zhu and colleagues investigated 1116 PWH in China and found five symptom clusters: cognitive dysfunction, mood disturbance, wasting syndrome, dizziness/headache, and

1 Shanghai Institute of Infectious Disease and Biosecurity, School of Nursing, Fudan University, Shanghai, China. 2 School of Nursing, Fudan University, 305 Fenglin Rd., Shanghai, China. 3 Fudan University Centre for Evidence-Based Nursing: A Joanna Briggs Institute Centre of Excellence, Fudan University, Shanghai, China. 4 NYU Rory Meyers College of Nursing, New York University, New York City, NY, USA. 5 School of Public Health, Fudan University, Shanghai, China. 6 School of Nursing, Peking University, Beijing, China. 7 Shanghai Public Health Clinical Center, Shanghai, China. 8 School of Nursing, Dali University, Dali, Yunnan, China. *email: zhengzhu@fudan.edu.cn
Identifying symptom clusters is a commonly used approach for dimension reduction to simplify complex relationships among symptoms in real-world clinical practice. This method can not only enhance the efficiency of symptom management strategies but also prevent the occurrence of symptoms in the same cluster. However, many reviews have noted that the combinations of symptoms in clusters may vary depending on the selection of symptoms included in the analysis, the statistical methods used, and other covariates. Whether the dimension reduction approach to exploring symptom clusters suits today’s clinical practice with large amounts of big data continues to be debated.

Categorized symptoms give only a broad picture of which HIV/AIDS-related symptoms share the same cooccurring mechanisms. It is still unclear whether demographic and health-related characteristics differ among PWH with different symptom subgroups. Few studies have focused on differentiating profiles and symptom networks of clinical subtypes of HIV/AIDS-related symptoms rather than creating symptom clusters. The identification of subgroups of PWH based on the severity of symptom clusters and individual symptoms is crucial to determine group-specific management strategies.

Latent profile analysis (LPA), as a patient-centered analytic methodology, is used to identify subgroups or classes of individuals within a sample or population who share comparable characteristics or symptom experiences. Different from variable-centered approaches such as factor analysis, LPA can distinguish salient characteristics and evaluate how patient outcomes differ by profiles. In addition, LPA fit indices are assessed before choosing the final LPA model, which is more objective than patient-centered analytic methodology.

In this study, symptom networks were used based on the LPA results. A symptom network is defined as a new paradigm for analyzing complex interconnectedness among multiple symptoms. Although the concept of symptom networks originated in psychopathology, over the past three years the paradigm has been used to capture the complex relationships between symptoms of various chronic diseases. Symptom networks explore and visualize the internal mechanisms of symptoms in a given population, which can help researchers not only identify the potential causality of symptoms but also explore core symptoms from a mechanism perspective. Indices of symptom networks, such as centrality and density, have been reported in previous studies as more sensitive indicators than symptom severity and occurrence. Based on network theory, using symptom networks can further differentiate the profiles and provide additional data that patient-centered analytic methodology could not find. Using LPA and symptom networks together may have more clinical implications and could lead to the development of a more precise and individualized intervention.

Therefore, the objectives of this study were to 1) generate subgroups of HIV/AIDS-related symptoms by latent profile analysis (LPA) and 2) determine whether the subgroups differ in demographic and health-related characteristics and indicators for symptom networks.

Methods

Study design. This study used data from the HIV-related Symptoms Monitoring Survey (HSMS). The HSMS is a cross-sectional dataset collected by our team that includes PWH from 11 cities in eastern (Shanghai City), central (Changsha in Hunan Province), and southwestern (Ruili, Tengchong, Kunming, Longxiang, Changning, Baoshan, Linchang, and Longchuan in Yunnan Province and Nanning in Guangxi Province) China from 2017 to 2019. More information regarding the HSMS can be found elsewhere. Ethics approval was obtained from the institutional review board of the School of Nursing, Fudan University (IRB#TYSA2016-3-1). This research was performed in accordance with the Declaration of Helsinki. Written informed consent was obtained from participants before data collection.

Sample. Participants were included in the study if they were (1) HIV positive and (2) aged ≥18 years and over. PWH who did not complete a self-reported symptom checklist or (3) were diagnosed with severe neurocognitive disorders were excluded from the study. From 2017 to 2019, we recruited 3017 participants through a convenience sample from 11 hospitals in 11 cities as mentioned in the study design, which are responsible for HIV/AIDS-related treatment and care in these areas. Ninety participants were excluded due to missing data. As a result, a total of 2927 eligible PWH were included in the analysis.

Measures. **Sociodemographic and clinical data.** Demographic, socioeconomic, and clinical data were collected from a self-administered questionnaire. Demographic variables included age (continuous), sex (male and female), and ethnicity (Han and minority). Socioeconomic variables included marital status (married, single, and otherwise), employment status (employed and otherwise), educational attainment (middle school or below, high school or equivalent, bachelor’s degree or equivalent, and master’s degree or above), and primary caregiver (myself, family members, and others). Clinical variables included years since HIV diagnosis (in years, continuous), ART use (yes or no), ART use duration (in years, continuous), latest CD4+ T-cell count (continuous), and comorbidities (yes or no). All sociodemographic and clinical data were confirmed by medical records.

Self-reported symptoms. The HIV/AIDS Self-reported Symptom Checklist (HSSC) was used to evaluate the severity of 27 highly prevalent HIV/AIDS-related symptoms. The twenty-seven symptoms included in the HSSC were categorized into 5 symptom clusters (wasting syndrome, dizziness/headache, cognitive function, skin-muscle-joint disorder). Moens and colleagues conducted a cross-sectional study in 217 PWH in South Africa and Uganda and summarized five symptom clusters: dermatological, generalized anxiety and elimination, social and image, persistently present, and gastrointestinal-related. A systematic review included thirteen studies exploring HIV/AIDS symptom clusters and found five common symptom clusters: sad/depressed/loss of interest/nervous/anxious/worrying, difficulty sleeping/problems with having sex/fatigue, fever/chills/sweat/nausea/vomiting/loss of appetite, numbness/muscle ache/joint pain, and dizziness/headache.

Identifying symptom clusters is a commonly used approach for dimension reduction to simplify complex relationships among symptoms in real-world clinical practice. This method can not only enhance the efficiency of symptom management strategies but also prevent the occurrence of symptoms in the same cluster. However, many reviews have noted that the combinations of symptoms in clusters may vary depending on the selection of symptoms included in the analysis, the statistical methods used, and other covariates. Whether the dimension reduction approach to exploring symptom clusters suits today’s clinical practice with large amounts of big data continues to be debated.

Categorized symptoms give only a broad picture of which HIV/AIDS-related symptoms share the same cooccurring mechanisms. It is still unclear whether demographic and health-related characteristics differ among PWH with different symptom subgroups. Few studies have focused on differentiating profiles and symptom networks of clinical subtypes of HIV/AIDS-related symptoms rather than creating symptom clusters. The identification of subgroups of PWH based on the severity of symptom clusters and individual symptoms is crucial to determine group-specific management strategies.

Latent profile analysis (LPA), as a patient-centered analytic methodology, is used to identify subgroups or classes of individuals within a sample or population who share comparable characteristics or symptom experiences. Different from variable-centered approaches such as factor analysis, LPA can distinguish salient characteristics and evaluate how patient outcomes differ by profiles. In addition, LPA fit indices are assessed before choosing the final LPA model, which is more objective than patient-centered analytic methodology.

In this study, symptom networks were used based on the LPA results. A symptom network is defined as a new paradigm for analyzing complex interconnectedness among multiple symptoms. Although the concept of symptom networks originated in psychopathology, over the past three years the paradigm has been used to capture the complex relationships between symptoms of various chronic diseases. Symptom networks explore and visualize the internal mechanisms of symptoms in a given population, which can help researchers not only identify the potential causality of symptoms but also explore core symptoms from a mechanism perspective. Indices of symptom networks, such as centrality and density, have been reported in previous studies as more sensitive indicators than symptom severity and occurrence. Based on network theory, using symptom networks can further differentiate the profiles and provide additional data that patient-centered analytic methodology could not find. Using LPA and symptom networks together may have more clinical implications and could lead to the development of a more precise and individualized intervention.

Therefore, the objectives of this study were to 1) generate subgroups of HIV/AIDS-related symptoms by latent profile analysis (LPA) and 2) determine whether the subgroups differ in demographic and health-related characteristics and indicators for symptom networks.
skin-muscle-joint disorder, and mood disturbance) and 7 individual symptoms (fatigue, sleep disturbance, cough, hair loss, blurred vision, low sex drive, and lipodystrophy). The responses ranged from not at all (0) to severe (3). The total score was determined by summing the scores of these 27 items (ranging from 0 to 81). The total scores for the wasting syndrome cluster, dizziness/headache cluster, cognitive function cluster, skin-muscle-joint disorder cluster, and mood disturbance cluster were 15, 6, 15, 12, and 12, respectively. The HSSC had good expert validity (content validity index = 0.918) and internal consistency (Cronbach’s α = 0.961).

Basic activities of daily living. The ability to perform basic activities of daily living was assessed by the Barthel Index (BI)30. The BI is a widely used measure for evaluating the ability to perform basic activities of daily living, such as bathing, dressing, and grooming. The BI contains 10 items, and the total score ranges from 0 to 100. A higher score indicates a lower level of perceived discrimination. The measure showed good internal consistency in our sample (Cronbach’s α = 0.913).

Medication adherence. Patient-reported medication adherence was measured by one question: “How often did you forget to take your medication in the last 7 days?” The response ranged from never (1) to all the time (5).

Discrimination perceived by PWH. The discrimination perceived by PWH was assessed by the Expanded Everyday Discrimination Scale31. This measure includes 10 items and describes different scenarios in day-to-day life in which PWH may perceive discrimination. The total score ranges from 10 to 40. A higher score indicates a lower level of perceived discrimination. The measure showed good internal consistency in our sample (Cronbach’s α = 0.913).

Self-reported health condition, quality of life, and self-management capacity. Self-reported health condition, quality of life, and self-management capacity were measured by the questions “How do you rate your overall health condition?”, “How do you rate your quality of life?”, and “How do you rate your self-management capacity for HIV/AIDS?” Responses for these variables ranged from very good (1) to very bad (5).

Statistical analysis. Mplus 8.1 was used to perform LPA to identify person-centered subtypes of HIV/AIDS-related symptoms. LPA was conducted based on the severity of symptom clusters (wasting syndrome, dizziness/headache, cognitive function, skin-muscle-joint disorder, and mood disturbance) and individual symptoms (fatigue, sleep disturbance, cough, hair loss, blurred vision, low sex drive, and lipodystrophy). We calculated the total severity score for each cluster (dizziness/headache, cognitive dysfunction, skin muscle joint disorder, wasting syndrome, mood disturbance). For 7 symptoms that could not be categorized into clusters, we used Likert items to assess the severity of each symptom. We used LPA due to the severity scores being continuous response variables, whereas latent class analysis (LCA) was used for categorical variables. The number of classes was determined by comparing the Bayesian information criterion (BIC), Akaike information criterion (AIC), sample-size-adjusted BIC (ABIC), Lo-Mendell-Rubin likelihood ratio test (LMR), bootstrapped likelihood ratio test (BLRT) and entropy of each model. Smaller AIC, ABIC and LMR values indicate a better model fit. P values higher than 0.05 for the LMR and BLRT indicated that the k−1 model was rejected and that the k model was supported. Theoretical interpretability was also taken into consideration. We plotted the conditional probabilities of symptom severity for each of the classes. The code for conducting LPA in Mplus is shown in Supplementary file 1.

After identifying the classes, we analyzed the differences in the sociodemographic and clinical data, basic activities of daily living, medication adherence, perceived discrimination, self-reported health condition, quality of life, and self-management capacity by using the chi-square test and one-way analysis of variance (ANOVA) with post hoc tests (Fisher’s least significant difference). Tamhane’s T2 multiple comparison test was used if the variances were heterogeneous. Multinomial logistic regression analysis of the five profiles was further conducted. The Nagelkerke R^2 and χ^2 were used as indicators for model fitness. We considered a two-tailed $P < 0.05$ to indicate statistical significance in all analyses.

R 4.0.2 and the Qgraph module were used to conduct the network analysis. We used Spearman correlations to assess the relationships (edges) between pairs of symptoms (nodes) in the full sample and subgroups. The Fruchterman-Reingold (FR) algorithm and spring layout were used to generate symptom networks25. In the FR algorithm, the node (symptom) with the strongest centrality was placed in the center of the network, and nodes with similar characteristics were placed more closely. Covariates were selected from bivariate analysis results and included age (continuous), sex (male = 1, female = 2), ethnicity (Han = 1, minority = 2), educational attainment (middle school or below = 1, high school or above = 2), employment (employed = 1, otherwise = 2), marital status (married = 1, otherwise = 2), primary caregiver (myself = 1, otherwise = 2), having ART (yes = 1, no = 2), years of having ART (continuous), having comorbidities (yes = 1, no = 2), IgGCD4 (continuous), medication adherence (continuous), self-management capacity (continuous), and perceived discrimination (continuous).

We used three centrality indices (strength, betweenness, and closeness) to identify the most central symptoms32,33. Strength is a measure of network connectivity. The greater the strength is, the higher the probability that the symptom will cooccur with other symptoms. Betweenness quantifies the number of times a node acts as a bridge along the shortest path between two nodes. A node with higher betweenness centrality has more influence on the network. Closeness represents the average farness (inverse distance) from one symptom to all other nodes. The greater the value of closeness is, the shorter the path. For a contemporaneous network, strength is used as the major indicator among the three indices. We used the absolute value of all Spearman coefficients (Zs) to indicate the density of symptom network interconnections.
Ethical approval. Ethics approval was obtained from the institutional review board of the School of Nursing, Fudan University (IRB#TYSA2016-3-1).

Results
Sample characteristics. Overall, the mean age of the participants was 42.26 years, ranging from 10 to 87 years old. The majority of participants were male (63.7%), of Han ethnicity (74.8%), married (55.3%), not employed (59.7%), and had a middle school or below educational attainment (64.7%). The average years since HIV diagnosis were 5.66 years (0–36 years). Among all participants, 96.7% received ART. The average duration of ART use was 4.49 ± 3.83 years (0–24 years). The average latest CD4+ T-cell count was 411.37 ± 264.55 cell/mm³ (1.00 ~ 2125.00 cell/mm³). Approximately one-third of the participants (31.2%) had comorbidities.

Symptom subgroups identified by LPA. LPA identified five subgroups of participants based on the rating of symptom severity. Table 1 shows the results of latent profile model fit indices. Although the six-profile model had the lowest AIC (90,046.269), BIC (90,578.643), and aBIC (90,295.857) values, the BLRT and LMR-LRT tests indicated that the five-profile model was more appropriate than the six-profile model. The five-profile model also showed the highest entropy value (0.955). In addition, five latent profiles were selected based on the clinical significance and results from our previous studies.

Figure 1 shows symptom severity score plots for the five-profile model. The purple line (Profile 2) shows the subgroup with medium–high symptom severity in 5 symptom clusters and fatigue (3.72%, n = 109). The bluish-green line (Profile 3) shows the subgroup with a medium–high severity of symptoms, including cognitive function, sex function, and sleep function (5.64%, n = 165). The blue line (Profile 4) shows the subgroup with a medium–high severity of symptoms related to opportunistic infections, such as wasting syndrome and cough (15.31%, n = 448).
Differences in demographic and health-related characteristics among subgroups. Table 2 shows the demographic and health-related characteristic differences among the 5 subgroups identified by LPA. Except for medication adherence ($P = 0.321$), there were significant differences in all demographic and health-related characteristics among the 5 subgroups ($P < 0.05$). Table 3 shows the multinomial logistic regression analysis of the five profiles. Profile 5 was chosen as the reference group. Being male (OR = 2.103–2.729), longer duration of using ART (OR = 0.834–0.851), having comorbidity (OR = 0.278), lower level of basic activity of daily living (OR = 1.033) and self-reported health condition (OR = 0.327–0.558), and higher level of perceived discrimination (OR = 1.073 = 1.234) were associated with higher likelihood in profile 5.

Symptom networks and centrality indices of subgroups. Figure 2 shows the symptom networks of the full sample and five subgroups. One-way ANOVA showed that the Σs were significantly different across the five subgroups ($F = 32.441$, $P < 0.0001$). The least significant difference test confirmed that differences in the Σs between Profiles 1 and 4 were not significant ($P = 0.192$). The Σs of Profiles 2 and 5 were not significantly different ($P = 0.980$). Profiles 1 (2.09 ± 0.52) and 4 (2.44 ± 0.66) had the smallest Σs values, and Profiles 2 (4.38 ± 1.40) and 5 (4.39 ± 1.22) had the largest Σs values.

Figure 3 shows the three centrality indices after controlling for covariates in these five subgroups. In the network of Profile 1 (Fig. 2b), slow reaction was the most central symptom based on strength ($rS = 3.267$), closeness ($rC = 0.004$), and betweenness ($rB = 54.000$). In the network of Profile 2 (Fig. 2c), having difficulty reasoning had the largest value for strength ($rS = 7.253$) and betweenness ($rB = 90.000$). Becoming confused had the largest value for betweenness ($rB = 90.000$).

Table 2. Demographic and health-related characteristics difference among subgroups.
Table 3. Multinomial logistic regression analysis of five profiles. Significant values are in [bold]. Model fitness: Nagelkerke $R^2=0.230$, $\chi^2=522.403$, $P<0.0001$. *$P<0.05$, **$P<0.01$, ***insufficient statistical power in subgroup.

Variable	OR (95% CI)			
	Profile 1 versus Profile 5	Profile 2 versus Profile 5	Profile 3 versus Profile 5	Profile 4 versus Profile 5
Age	1.018 (0.993, 1.043)	1.034 (1.002, 1.068)	1.011 (0.982, 1.040)	1.030 (0.984, 1.035)
Male (compared to female)	2.103 (1.180, 3.747)**	2.035 (0.929, 4.486)	2.729 (1.357, 5.487)**	1.423 (0.782, 2.593)
Han ethnicity (compared to minority)	0.777 (0.424, 1.423)	1.084 (0.464, 2.535)	1.055 (0.511, 2.176)	1.196 (0.634, 2.255)
Employed (compared to otherwise)	1.493 (0.794, 2.807)	0.710 (0.289, 1.744)	1.429 (0.680, 3.001)	1.406 (0.731, 2.704)
Primary caregiver: myself (compared to otherwise)	1.854 (0.985, 3.489)	1.719 (0.747, 3.960)	2.020 (0.976, 4.183)	1.599 (0.830, 3.079)
Years since HIV diagnosis	1.051 (0.951, 1.161)	1.036 (0.907, 1.184)	1.039 (0.926, 1.166)	1.000 (0.900, 1.110)
Use ART	0.742 (0.085, 6.480)	0.874 (0.095, 9.986)	0.954 (0.098, 9.277)	
Duration of using ART	0.851 (0.756, 0.958)**	0.834 (0.705, 0.987)*	0.880 (0.763, 1.013)	0.918 (0.811, 1.039)
Lg CD4+ T cell count	1.176 (0.617, 2.242)	1.369 (0.544, 3.449)	1.017 (0.483, 2.141)	1.511 (0.771, 2.964)
Having Comorbidity	0.374 (0.213, 0.656)	0.278 (0.121, 0.637)**	0.792 (0.406, 1.546)	0.752 (0.421, 1.344)
Basic activity of daily living	1.033 (1.014, 1.053)**	1.009 (0.985, 1.033)	1.004 (0.985, 1.023)	1.003 (0.987, 1.020)
Medication adherence	0.954 (0.670, 1.356)	1.178 (0.721, 1.922)	0.995 (0.649, 1.526)	0.896 (0.621, 1.292)
Self-reported health condition	0.327 (0.215, 0.498)**	0.929 (0.530, 1.630)	**0.558 (0.342, 0.912)**	0.690 (0.447, 1.065)
Self-reported quality of life	0.771 (0.504, 1.204)	0.719 (0.410, 1.262)	1.093 (0.658, 1.814)	1.006 (0.646, 1.566)
Self-management capacity	1.161 (0.873, 1.543)	0.974 (0.650, 1.460)	1.088 (0.716, 1.419)	0.993 (0.741, 1.335)
Perceived discrimination	1.148 (1.096, 1.204)**	1.234 (1.116, 1.366)**	1.105 (1.041, 1.173)**	1.073 (1.024, 1.125)**

for closeness ($r_c=0.009$). In the network of Profile 3 (Fig. 2d), appetite loss had the largest values for strength ($r_s=5.344$), closeness ($r_c=0.007$), and betweenness ($r_b=94.000$). In the network of Profile 4 (Fig. 2e), memory loss was the most central symptom across the three centrality indices ($r_s=3.818$, $r_b=90.000$, and $r_c=0.005$). Most of the strength and closeness in the networks of Profiles 2, 3, and 5 were larger than those in Profiles 1 and 4 except memory loss, difficulty reasoning, lipodystrophy, and weight loss.

Names of the five profiles. Based on the results of LPA and comparing demographic and health-related characteristics and symptom networks, the five profiles were named as follows: "Profile 1: medium symptom severity with low functional status", "Profile 2: all low symptom severity", "Profile 3: medium symptom severity with syndemic conditions", "Profile 4: medium symptom severity in transitional period", and "Profile 5: all high symptom severity".

Discussion

This is the first study to identify five profiles of PWH by conducting LPA and comparing the characteristics and symptom networks of PWH. "Profile 1: all low symptom severity", "Profile 2: medium symptom severity with syndemic conditions", "Profile 3: medium symptom severity with low functional status", "Profile 4: medium symptom severity in transitional period", and "Profile 5: all high symptom severity". Except for "Profile 1: all low" and "Profile 5: all high", the symptom severity was similar in the other three profiles. Profiles 2, 3, and 4 were further differentiated by the comparison of symptom networks and centrality indices.

Profile 1: all low symptom severity. We found that over 70% of participants were classified in profile 1. PWH in this group not only reported low levels of symptom severity and perceived discrimination but also reported high levels of ADL, medication adherence, quality of life, and self-management capacity. Our results were consistent with previous studies showing that although PWH may have multiple symptoms at same time, the symptom conditions of the majority of PWH may not influence their daily life6,35. We found that this proportion in our study was approximately 70% in China.

Profile 2: medium symptom severity with syndemic conditions. Profile 2 was named "syndemic conditions" due to high density of symptom networks. A high density of symptom networks represented a high probability of having opportunistic infections and comorbidities. Zhu and colleagues conducted a cross-sectional study and found that PWH with a time since HIV-positive diagnosis of 6 months or less or longer than 10 years who had more comorbidities had denser symptom networks than PWH with other times since HIV-positive diagnosis3. Schweren’s study identified that symptom network density could be a prognostic indicator of treatment and the consequences of having long-term illness and comorbidities36.
Previous studies showed that high symptom network density indicated that symptoms, especially wasting syndrome clusters and cough, were closely related to and might aggravate other symptoms quickly. Shkarin and colleagues reported that the pathogen of opportunistic infections could go undetected in the human body, causing potential endogenous infections and thus resulting in complex comorbidities that could lead to severe symptoms. Sandler and Douek evaluated the mechanism of opportunistic infections from the intestinal lumen into systemic circulation and found a key role of endogenous infections in immune activation and disease progression in PWH. Health care professionals may need to pay close attention to PWH in this profile who report a medium level of symptom severity but may have simultaneous infection.

Profile 3: medium symptom severity with low functional status. Profile 3 was named “low functional status” due to its high severity of functional symptoms such as cognitive function, sleep disturbance, and low sex drive. PWH in Profile 3 reported similar levels of CD4 compared to those in Profile 2 but had a higher level of medication adherence, which indicated that Profile 3 could be the comparison group of Profile 2 if PWH maintain a high level of ART adherence. The high prevalence and severity of cognitive function, sleep, and sex function in Profile 3 may be due to long-term ART (especially integrase inhibitors). For cognitive symptoms, the findings are inconclusive regarding whether ART improves or increases cognitive impairment in PWH. Gao and colleagues conducted a systematic review and found that ART did not improve cognitive function in the population of PWH, especially in PWH in moderate and good physical condition. Paul summarized the neurocognitive phenotype of PWH taking ART and found that PWH had poor understanding and reasoning but no loss of memory after receiving ART. The results of these two studies were in line with our results that ART-related cognitive impairment commonly manifested as difficulty in reasoning and understanding in PWH. HIV infection and nonnucleoside analogs (e.g., efavirenz) may increase cortisol levels and result in wakefulness, shallow sleep, or decreased REM sleep at night. Previous studies reported that HIV-related sleep disorder was closely related to a shorter time since HIV/AIDS diagnosis and ART use. In our study, the time since HIV/AIDS diagnosis and the duration of ART use in PWH in Profile 3 were shorter than those of their counterparts, which could make them more vulnerable to sleep disorders. Moreover, previous studies suggested...
a potential correlation between sleep disorders and cognitive impairment in PWH. However, according to the symptom network of Profile 3 in Fig. 2, we did not find a close relationship between sleep disorders and...
cognitive impairment. Our results indicated that the relationships may vary in subgroups of the population. For PWH without opportunistic infections and comorbidities and in moderate physical condition, sleep quality may not be associated with the level of cognitive impairment.

Profile 4: medium symptom severity in the transitional period. Profile 4 was named the “transitional period” and described a subgroup of PWH who recovered from opportunistic infections and comorbidities and transitioned to the “all low” status. For PWH in this profile, their symptom network was sparse, and only symptoms within the clusters were highly correlated. Unlike Profile 2, cognitive symptoms, such as memory loss, were the core symptoms in Profile 4. This finding indicates that cognitive impairment in the transitional period may be mainly caused by HIV rather than ART side effects. Bandera and colleagues found that the level of cognitive impairment could be an indicator of the scale of HIV replication in the central nervous system when viral load could not be detected in blood\(^{10,11}\). HIV in the brain can further infect monocytes and lymphocytes that migrate and produce monocyte chemoattractant protein-1, which could damage the structure of the hippocampus and lead to memory loss. Nonetheless, the concentration of ART in the central nervous system is low owing to the existence of the blood–brain barrier\(^{52,53}\). Therefore, it is recommended to use ART regimens with higher central nervous system penetration effectiveness scores, such as regimens with nevirapine, zidovudine, and indinavir/r. In PWH with a long time since HIV-positive diagnosis, it is important to perform cognitive screening during routine follow-up visits.

Profile 5: all high symptom severity. PWH in profile 5 have the opposite characteristics to the “all low” group. They reported a high level of symptom severity and perceived discrimination and a low level of ART, medication adherence, quality of life, and self-management capacity. The average years since HIV diagnosis and duration of ART use were over 6 and 5 years, respectively, which should be noted. Long-term ART users who had low levels of medication adherence may contribute to high levels of symptom severity in their survivorships. Current clinical practices mainly focus on newly diagnosed and newly ART-prescribed PWH within 6 months\(^{50,51}\). We recommend that ART adherence monitoring should also be applied in PWH with an HIV-positive duration over 5 years.

Limitations. Despite the many strengths of our study, it has several limitations. First, the cross-sectional design data cannot identify the causality of symptoms. Longitudinal studies are warranted to examine the five profiles found by this study. Second, we did not include PWH diagnosed with severe neurocognitive impairment. Therefore, the severity and centrality of the cognitive dysfunction cluster and five cognitive symptoms might be underestimated. Third, information on the types of comorbidities and ART regimens was not collected in our study. Future studies are needed to identify PWH in whom the types of comorbidities and ART regimens are likely to be categorized into Profile 2 and Profile 3. Fourth, as LPA is a patient-center analytic approach, the results of 5 profiles can only be generalized into similar populations. The convenience method of sampling limits the generalizability of the findings. The conclusion can only be generalized to central, southern, and eastern China in a similar context. Future studies could be conducted in different contexts using different symptom checklists to prove the generalizability of our results. Finally, we used self-reported measures to assess symptoms, medication adherence, quality of life, and self-management capacity. Self-reported assessments may be associated with biases, particularly for psychological symptoms and medication adherence. Future studies are warranted to use objective assessments to strengthen and consolidate our findings.

Conclusion

The findings of our study identified five profiles in 2927 PWH in China. Our study demonstrates the need for health care professionals to provide PWH with group-specific symptom management interventions based on five profiles to improve their physical and psychological well-being. It is crucial for health care providers to understand that although PWH in profiles 2, 3, and 4 have a moderate level of symptom severity, the potential cause and handling methods are different. Future studies should be conducted in different contexts using different symptom checklists to further validate our results.

Data availability

The data will not be shared because the information of people living with HIV/AIDS must be kept confidential.

Received: 11 November 2021; Accepted: 29 July 2022
Published online: 02 August 2022

References

1. Colvin, C. J. HIV/AIDS, chronic diseases and globalisation. Global Health 7, 31 (2011).
2. McGrath, J. W. et al. Challenging the paradigm: Anthropological perspectives on HIV as a chronic disease. Med. Anthropol. 33, 303–317 (2014).
3. Katz, I. T. & Maughan-Brown, B. Improved life expectancy of people with HIV: Who is left behind? Lancet HIV 4, e324-326 (2017).
4. Hogg, R. S. et al. Health-adjusted life expectancy in HIV-positive and HIV-negative men and women in British Columbia, Canada: A population-based observational cohort study. Lancet HIV 4, e270-276 (2017).
5. Zhu, Z. et al. Evolving symptom networks in relation to HIV-positive duration among people with HIV: A network analysis. Int. J. Infect. Dis. 108, 503–509 (2021).
6. Lu, D. Y. et al. HAART in HIV/AIDS treatments: Future trends. Infect. Disord. Drug Targets 18, 15–22 (2018).
7. Quinn, K., Sanders, C. & Petroll, A. E. "HIV is not going to kill me, old age is!": The intersection of aging and HIV for older HIV-infected adults in rural communities. AIDS Educ Prev. 29, 62–76 (2017).
8. Erlandson, K. M. & Karrio, M. Y. HIV and aging: Reconsidering the approach to management of comorbidities. Infect. Dis. Clin. North Am. 33, 769–786 (2019).
9. Harris, T. G., Rabkin, M. & El-Sadr, W. M. Achieving the fourth 90: healthy aging for people with HIV. AIDS 32, 1563–1569 (2018).
10. Guarraldi, G., Milic, J. & Wu, A. W. What is the measure of success in HIV? The fourth 90: quality of life or healthy aging?. Eur. Geriatr. Med. 10, 267–274 (2019).
11. Lazarus, J. V. et al. Beyond viral suppression of HIV - the new quality of life frontier. BMC Med. 14, 94 (2016).
12. Zhu, Z. et al. Urban and rural differences: Unmet needs for symptom management in people with HIV in China. J. Assoc. Nurses AIDS Care 30, 206–217 (2019).
13. Schnall, R. et al. Racial and socioeconomic disparities in the symptom reporting of persons living with HIV. AIDS Care 30, 774–783 (2018).
14. Schreiner, N. et al. Associations between symptom severity and treatment burden in people with HIV. J. Adv. Nurs. 76, 2348–2358 (2020).
15. Wilson, N. L. et al. Identifying symptom patterns in people with HIV disease. J. Assoc. Nurses AIDS Care 27, 121–132 (2016).
16. Zhu, Z., Zhao, R. & Hu, Y. Symptom clusters in people with HIV: A systematic review. J. Pain Symptom Manag. 58, 115–133 (2019).
17. Zhu, Z. et al. Identifying symptom clusters among people with HIV on antiretroviral therapy in China: A network analysis. J. Pain Symptom Manag. 57, 617–626 (2019).
18. Moens, K. et al. Symptom clusters in people with HIV attending five palliative care facilities in two sub-Saharan African countries: A hierarchical cluster analysis. PLoS ONE 10, e0126554 (2015).
19. Dodd, M. J., Miaskowski, C. & Paul, S. M. Symptom clusters and their effect on the functional status of patients with cancer. Oncol. Nurs. Forum 28(3), 465–470 (2001).
20. Zhu, Z., Guo, M., Dong, T., Han, S., Hu, Y. & Wu, R. Assessing psychological symptom networks related to HIV-positive duration among people living with HIV: a network analysis. AIDS Care 1–9 (2021).
21. Dong, S. T., Butow, P. N., Costa, D. S., Lovell, M. R. & Agar, M. Symptom clusters in patients with advanced cancer: a systematic review of observational studies. J. Pain Symptom Manag. 48(3), 411–450 (2014).
22. Zhu, Z., Xing, W., Hu, Y., Wu, B. & So, W. K. W. Paradigm shift: Moving from symptom clusters to symptom networks. Asia Pac. J. Oncol. Nurs. 9(1), 5–6 (2021).
23. Namisango, E. et al. A novel symptom cluster analysis among ambulatory HIV/AIDS patients in Uganda. AIDS Care 27, 954–963 (2015).
24. Cook, P. F., Sousa, K. H., Matthews, E. E., Meek, P. M. & Kwong, J. Patterns of change in symptom clusters with HIV disease progression. J. Pain Symptom Manag. 42, 12–23 (2011).
25. Keiser, O. et al. Outcomes of antiretroviral therapy in the Swiss HIV cohort study: Latent class analysis. AIDS Behav. 16, 245–255 (2012).
26. Harris, C. S. et al. Advances in conceptual and methodological issues in symptom cluster research: A 20-year perspective. ANS Adv. Nurs. Sci. https://doi.org/10.1097/ANS.0000000000000423 (2022).
27. Sullivan, C. W., Leutwyler, H., Dunn, L. B. & Masikowski, C. A review of the literature on symptom clusters in studies that included oncology patients receiving primary or adjuvant chemotherapy. J. Clin. Nurs. 27(3/4), 516–545 (2018).
28. Mikhailtaryan, S., Cruizzen, R., Steenaert, E. & de Vries, N. K. Network approach in health behavior research: How can we explore new questions? Health Psychol. Behav. Med. 7, 362–384 (2019).
29. Zhou, X., Menche, J., Barabási, A. L. & Sharma, A. Human symptoms-disease network. Nat. Commun. 5, 4212 (2014).
30. Leung, S. O., Chan, C. C. & Shah, S. Development of a Chinese version of the modified Barthel Index-validity and reliability. Clin. Rehabil. 21, 912–922 (2007).
31. Williams, D. R. et al. Perceived discrimination, race and health in South Africa. Soc. Sci. Med. 67, 441–452 (2008).
32. Bringmann, L. et al. What do centrality measures measure in psychological networks? J. Abnorm. Psychol. 128, 892–903 (2019).
33. Iacobucci, D., McBride, R., Popovich, D. L. & Rouziou, M. In social network analysis, which centrality index should I use? Theoretical differences and empirical similarities among top centralities. J. Methods Meas. Soc. Sci. 8, 72–99 (2017).
34. Wen, H. et al. Psychometric properties of self-reported measures of health-related quality of life in people living with HIV: A systematic review. Health Qual. Life Outcomes 20(1), 5 (2022).
35. Yang, Z. et al. Experience of chronic noncommunicable disease in people living with HIV: A systematic review and meta-aggregation of qualitative studies. BMC Public Health 21(1), 1651 (2021).
36. Schwenen, L., Van Borkulo, C. D., Fried, E. & Goodyer, I. M. Assessment of symptom network density as a prognostic marker of treatment response in adolescent depression. JAMA Psychiat. 75, 98–100 (2018).
37. Han, S. et al. Effects of a symptom management intervention based on group sessions combined with a mobile health application for persons living with HIV in China: A randomized controlled trial. Int. J. Nurs. Sci. 8(4), 370–379 (2021).
38. Yen, Y. F. et al. Short-and long-term risks of highly active antiretroviral treatment with incident opportunistic infections among people with HIV/AIDS. Scien. Rep. 9, 1–7 (2019).
39. Sandler, N. G. & Douek, D. C. Microbial translocation in HIV infection: Causes, consequences and treatment opportunities. Nat. Rev. Microbiol. 10, 655–666 (2012).
40. Alford, K. & Vera, J. H. Cognitive impairment in people with HIV in the ART era: A review. Br. Med. Bull. 127, 55–68 (2018).
41. Winston, A. & Spudich, S. Cognitive disorders in people with HIV. Lancet HIV 7, e504–513 (2020).
42. Gao, C. et al. Antiretroviral therapy improves neurocognitive impairment in people with HIV? A meta-analysis. Int. J. Nurs. Sci. 7, 238–247 (2020).
43. Paul, R. H. et al. Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nonmedicated individuals infected with HIV. J. Int. Neuropsychol. Soc. 14, 725–733 (2008).
44. Devlin, K. N. & Giovannetti, T. Heterogeneity of neuropsychological impairment in HIV infection: Contributions from mild cognitive impairment. Neuropsychol. Rev. 27, 101–123 (2017).
45. Kato, T. et al. Neurocognitive impairment and gray matter volume reduction in HIV-infected patients. J. Neurovirol. 26, 590–601 (2020).
46. Faraut, B. et al. Sleep disturbance and total sleep time in persons living with HIV: A cross-sectional study. AIDS Behav. 22, 2877–2887 (2018).
47. Tesoriero, C., Del Gallo, F. & Bentivoglio, M. Sleep and brain infections. Brain Res. Bull. 145, 59–74 (2019).
48. Huang, X. et al. Burden of sleep disturbances and associated risk factors: A cross-sectional survey among HIV-infected persons on antiretroviral therapy across China. Sleep Med. Rev. 1, 1–8 (2017).
49. Mengistu, N. et al. Quality of sleep and associated factors among people with HIV/AIDS on follow up at Ethiopian Zewditu memorial hospital, 2018. Sleep Sci. Pract. 5, 1–8 (2021).
50. Bandera, A. et al. HIV-associated neurocognitive impairment in the modern ART era: are we close to discovering reliable biomarkers in the setting of virological suppression?. Front Aging Neurosci. 11, 187 (2019).
51. Silva, A. et al. Mesenchymal stromal cells protect the blood-brain barrier, reduce astroglialia, and prevent cognitive and behavioral alterations in surviving septic mice. Crit. Care Med. 48, e290–e298 (2020).
52. Osborne, O., Peyravian, N., Nair, M., Daunert, S. & Toborek, M. The paradox of HIV blood–brain barrier penetration and antiretroviral drug delivery deficiencies. Trends Neurosci. 43, 695–708 (2020).
53. Bavaro, D. F. et al. Cerebrospinal fluid compartmentalization of HIV-1 and correlation with plasma viral load and blood–brain barrier damage. *Infection* 47, 441–446 (2019).
54. Yang, H. Y., Beymer, M. R. & Suen, S. C. Chronic disease onset among people living with HIV and AIDS in a large private insurance claims dataset. *Sci. Rep.* 9(1), 1–8 (2019).

Acknowledgements
This work is supported by the Shanghai Sailing Program (20YF1401800), China Medical Board Open Competition Program (#20-372), the Ministry of Education of Humanities and Social Science Project (20YJCH254), and National Natural Science Foundation of China (72104051). The funders had no involvement in or influence on this study.

Author contributions
Z.Z. did conceptualization, data collection, data analysis, methodology, and writing original Draft. Z.Y. supervised methodology, wrote original draft, and reviewed & edited the manuscript. H.W., S.H., and B.W. did writing—review and editing. L.Z. and Y.F. collected data. Y. H. did supervision, conceptualization, writing—review and editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-17720-z.

Correspondence and requests for materials should be addressed to Z.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022