The influence of atmospheric pollutant concentration in basin area and the design of architectural space art form

Pingyu Wang¹ · Yun Huang¹

Received: 12 March 2021 / Accepted: 27 April 2021 / Published online: 28 May 2021
© Saudi Society for Geosciences 2021

Abstract
With the rapid development of China’s economy, acceleration of urbanization, and continuous increase in energy consumption, the basin area has become one of the four major air pollution areas in China. The basin is known for its complex topography, towering mountains, unique meteorological, and climatic conditions. The causes and formation mechanisms of atmospheric pollution in the basin area need to be studied in depth. Through the research on the influence of atmospheric pollutant concentration in the basin area, the characteristics of air pollution in various parts of the basin area are further revealed, thus making up for the deficiencies of previous studies, enriching the theoretical significance of atmospheric pollution meteorology in the basin area, and contributing to the atmospheric pollution in the basin area. Provide support and help for prevention strategies and improvement countermeasures. This article summarizes the natural geography and human environment of folk houses in the basin, and introduces the formation and evolution of local traditional houses and their basic characteristics. This article briefly summarizes two basic characteristics that can be used as the criteria for analyzing and judging the ecological characteristics of the residential areas in the basin. The ecological experience of traditional villages is analyzed from the aspects of site selection and layout planning, in addition, based on research traditions, facing modern architectural design, exploring the environment of sustainable design concepts and coordinated modern architectural design, providing design methods and model guidance. The ultimate goal of providing design techniques and model guidance is to apply the research results to today’s buildings and use the ecological experience of traditional houses to create new modern buildings.

Keywords Basin atmosphere · Pollutant concentration · Building design · Spatial art form

Introduction
The theoretical research and practice of ecological system structure are widespread in developed countries, but the research results are difficult to promote in China due to high investment and high cost, lack of regional relevance, and difficulties in promotion and implementation (Aboufizzasi et al. 1991). Traditional Chinese architecture has lasted for thousands of years. It is rich in much ecological architectural creativity and has great ecological research value. Traditional buildings can not only reflect the objective conditions of the local natural geography are the products of the natural environment and the influence of life inside and outside but also have the characteristics of universality and applicability (Aller 1985). The original construction of traditional houses and unique solutions to the environment can neither be replaced nor transplanted. In order to reduce the impact of buildings on the ecological environment and provide a healthy living environment, this paper proposes two basic requirements for ecological characteristics from the viewpoints of design concept and design (Aller et al. 1987). Analyze the traditional style housing system in the basin area, study the material structure, excavate the ecological significance of the approaching living plan level from the natural environment and long cultural connotation, and study the architectural details in depth (Amil et al. 2020).

Since China’s reform and opening up, with the acceleration of industrialization, urbanization, and rapid economic development, energy consumption has increased substantially, and air pollution in most cities has become more and more serious, and the scope of radiation has become wider and wider (An...
and Lu 2018). At present, air pollution is more obvious in areas characterized by particulate matter (PM2.5) and ozone pollution. The pollution areas are mainly concentrated in the North China Plain, the Yangtze River Delta, and the Pearl River Delta. In recent years, air pollution in most areas has shown a haze situation, and the number of days of haze weather each year is gradually increasing (Awawdeh and Jaradat 2010). This situation has caused great harm to the safety of transportation and aviation, industrial production, and even the increase of crops. Deeply study the main cause of air pollution which is caused by excessive discharge of pollutants (Bahir and Ouhamdouch 2020). There is a close relationship between the change in the concentration of pollutants and air pollution. Through the analysis of the time and space distribution characteristics of air pollution, and the comparative study of the three air pollution areas, we can fully understand the complex terrain and current air pollution (Bahir et al. 2007). The situation and the distribution characteristics of urban integration are particularly important (Bahir et al. 2018).

Materials and methods

Data source

Air quality data

In order to implement the quality management of air pollutant concentration data, strictly abide by the national standards of the People’s Republic of China GB3095-2012 “Atmospheric Environmental Standards”. The hourly concentration data of 6 standard air pollutants (PM2.5, PM10, SO2, NO2, O3, CO) in 357 cities in China released by the Ministry of Environmental Protection on January 1, 2015, and December 31, 2017 (Bahir et al. 2019). At present, the state has established air pollution monitoring stations in each city to monitor the concentration of air pollution every hour. This article uses the daily data of pollution levels and primary pollutants in 20 cities in the basin area released by the Ministry of Environmental Protection of China on January 1, 2015, and December 31, 2016, to carry out a statistical analysis of the number of days of air pollution (Bahir et al. 2020b).

Atmospheric extinction coefficient

The polar-orbiting satellite CALIPSO mainly carries 532 nm and 1064 nm channels, and collects high-resolution atmospheric absorption coefficients between 82°N and 82°S at 13:30 and 01:30 local time every day.

This paper uses the monthly average of the atmospheric absorption coefficient distribution of the level 3 data observed by the 532 nm channel transmitted by the CALIPSO satellite to verify the vertical distribution of urban particulate pollutants in the basin area. The vertical resolution of this data set is 60 m (Bahir et al. 2020c). Moreover, the amount of sunshine and cloud cover in Japan and China will have a great impact on the data quality of CALIPSO.

Meteorological data

(1) Surface meteorological observation data to investigate the relationship between meteorological conditions and regional air quality in China’s four major air pollution regions, this article selects China’s surface 651 meteorological data for the past 10 years from January 1, 2017, to December 31, 2019. The station observes the daily average wind speed, daily average temperature, and daily average relative humidity, and monitors the total rainfall of the day on the spot, calculates the 10-year average wind speed, temperature, and relative humidity of the station, and calculates the annual cumulative rainfall of the station. In order to study the atmospheric visibility and meteorological characteristics of the atmospheric pollution process in the northwestern part of Basin A, the atmospheric visibility of meteorological phenomena of Solsis on January 1, 2017, December 31 and January 1, 2019, and 2 solstices a year in the winter of A were collected (Bahir et al. 2020d).

(2) In order to investigate the impact of the thermal dynamics of the surface convection on the air quality in the northwest of the A basin, from January 1, 2017 (to) to February 28, 2019, the winter of 30.70°N and 103.83°E in City A. Vertical detection data of air temperature and wind speed (Blavoux 1978).

(3) The ERA-intermediate reanalysis data was collected on January 1, 2017, and the winter ERA-intermediate reanalysis data was collected on February 28, 2019. The data collected need to include terrain height, temperature, vertical speed, horizontal wind speed U and V (Carreira et al. 2018).

Inventory of global emission sources

The emission source list data used in the numerical simulation of HTAP v2 WRF-Chem is the global emission source list HTAP v2. The global emission source supplier HTAP v2 was developed by the EPA-US/Canada, EMEP, TNO, and EDGAR teams.

Research methods of atmospheric pollutant concentration

Polluted meteorological parameters

Atmospheric stability of the lower troposphere (LST) Slingo defines the temperature difference between the 700 hPa isobaric surface layer and the ground as the decrease in convective stability (LST). The stability of the lower convection ring
can describe the thermal state of the lower convection ring and quantitatively evaluate the vertical mixing ability of pollutants in the lower convection ring. The definition of LST is as follows:

$$LST = \theta_{700\text{hPa}} - \theta_{\text{surface}}$$ (1)

The higher the LST value, the stronger the atmospheric stability of the lower convection circle and the lower the vertical mixing capacity of atmospheric pollutants.

Average wind speed in the lower troposphere (MWS) In order to quantitatively evaluate the level of atmospheric pollutants in the dynamic diffusion capacity of the lower convective circle, this paper also defines the average wind speed of the lower convective circle (MWS), which is defined as follows:

$$MWS = \frac{1}{h} \int_0^h v(z) \, dz$$ (2)

MWS is the average wind speed of the entire layer of the lower convection, h is the height of the 700 hPa isobaric surface above the ground, and $v(z)$ is the horizontal wind speed at a specific height layer of the lower convection.

The calculation of MWS in the above formula can be simplified as:

$$MWS = \frac{1}{h} \sum_{i=1}^{n} [v_i + v_{i-1}]0.5\Delta z$$ (3)

The number of layers of A700 is shown on the horizontal plane, and the number of layers of A700 is shown on the horizontal plane; when $l = n$, the horizontal wind speed represents 700 hPa isobaric surface, Δz refers to the height difference between two adjacent vertical layers. The higher the MWS value, the stronger the dynamic diffusion capacity of atmospheric pollutants in the horizontal direction of the lower convection circle (Figs. 1 and 2) (Chamchati 2014).

Fig. 1 Three-dimensional topographic distribution map of a basin and its surrounding area

Fig. 2 Spatial distribution map of 20 cities in a basin

Basic statistics

Person correlation coefficient (r) Person’s correlation coefficient r is a statistic that can quantitatively reflect the closeness of the linear relationship between the two groups of variables. For any two groups of variables x_k and x_l, the interpersonal relationship of the calculation formula is as follows:

$$r_{kl} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{ki} - \bar{x_k})(x_{li} - \bar{x_l})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ki} - \bar{x_k})^2} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{li} - \bar{x_l})^2}}$$ (4)

Mean bias

$$MB = \frac{1}{n} \sum_{i=1}^{n} (C_{mi} - C_{oi})$$ (5)
Mean bias (MB) is the average deviation between the simulated value and the observed value, CMI is the concentration of simulated atmospheric pollutants, COI is the observed concentration of atmospheric pollutants, and \(N \) is the number of samples. MB is positive, indicating that the WRF-Chem model has overestimated the concentration of air pollutants. Conversely, a negative value of Mb indicates that the model underestimates the concentration of air pollutants.

Standardized mean deviation NMB

\[
NMB = \frac{\sum_{i=1}^{n} (C_{mi} - C_{oi})}{\sum_{i=1}^{n} C_{oi}} \times 100\%
\]
(6)

The normalized average deviation NMB is a dimensionless quantity, which represents the square between the simulated value and the observed value of the concentration of air pollutants.

Standardized average error

\[
NME = \frac{\sum_{i=1}^{n} |C_{mi} - C_{oi}|}{\sum_{i=1}^{n} C_{oi}} \times 100\%
\]
(7)

The standardized mean error NME is a dimensionless quantity that represents the degree of deviation between the simulated value and the observed value of the concentration of air pollutants.

Root mean square error

\[
RASE = \sqrt{\frac{\sum_{i=1}^{n} (C_{mi} - C_{oi})^2}{n}}
\]
(8)

RASE is the square root error, which reflects the average error between the simulated and observed values of atmospheric pollutant concentrations.

Results

Overview of air quality in the basin

Excessive air pollution

According to the recently announced ambient air quality standard CAAQSGB3095-2012, the national second-level standard concentration exceeds any of the 6 standard air pollutants, and it will be calculated as a pollutant exceeding the standard day. According to analysis, cities located in the basin area have relatively low altitudes (less than 500 m), high population density, rapid urbanization, and many advanced industries (Driouech et al. 2009). They are the economic and industrial centers of southwestern China.

Figure 3 shows the seasonal distribution of air pollution in the three regions of the basin, exceeding the standard rate. It can be seen from the analysis of the chart that there is a big seasonal difference in air pollution in the basin. Cities along the bottom of the basin, slopes, and basins have the highest air pollution rates in winter (Dufaud 1960). In the 11 cities at the bottom of the basin, the pollution rate in winter exceeds the standard rate of more than 50%, and the pollution rate in winter exceeds the standard rate of city D by 72.93%.

Please refer to relevant reports, reports, and charts according to the research purpose and content of this article, through a lot of detailed reading and research on ecological system structure, ecological theory, ecological technology, housing research, related theories, housing ecology, and examples and development of modern ecological system structure. Collect and sort relevant materials from society, network resources, and libraries, and strive to form more detailed and comprehensive research, to achieve the integrity and consistency of the research methods and ideas of the paper, so as to innovate the research content.

Field survey method

Through an in-depth investigation of representative traditional residential villages in the basin area and excellent modern works of residential ecology, direct information was obtained. According to ecological concepts and ecological technology, the overall selection and layout of residential areas, residential units, space environment, and structural technology have been investigated on site (Chandoul et al. 2015). The survey is conducted through actual surveys, data collection, interviews with local leaders, and interviews with users. Relevant data are compared through qualitative analysis of comprehensive data and social feasibility combinations (Colins Johnny et al. 2016).

Inductive finishing method

According to the reading of most documents, the classification of data, on-site investigations, and theoretical and practical investigations on differences, the survey data is classified and analyzed in detail (Daly and Drew 1999).

Research on the spatial art form of buildings in the basin area

Data collection method

Please refer to relevant reports, reports, and charts according to the research purpose and content of this article, through a lot of detailed reading and research on ecological system structure, ecological theory, ecological technology, housing research, related theories, housing ecology, and examples and development of modern ecological system structure. Collect and sort relevant materials from society, network resources, and libraries, and strive to form more detailed and comprehensive research, to achieve the integrity and consistency of the research methods and ideas of the paper, so as to innovate the research content.
Except for City B, which is located on the slope of the basin, the 17 cities at the bottom of the basin and on the slope all had the second-highest pollution rate in the spring. The seasonal distribution of pollution in Ya’an has exceeded the standard rate and is different from other cities. The minimum pollution has exceeded the standard rate (El Hafid et al. 2017). For these areas, the air quality in summer and autumn is generally good, and there is less pollution that exceeds the standard. However, in summer, O3 pollution in cities A, B, and C at the bottom of the basin is serious, with a pollution rate of more than 20%, of which the standard of city A exceeds 40.44% (Table 1).

Concentration characteristics of standard air pollutants

The six standard atmospheric pollutants monitored in the basin can be divided into two categories: particulate matter (PM10 and PM2.5) and gaseous pollutants (SO2, NO2, CO, and O3). Tables 2 and 3 show the annual average concentration and standard deviation of 6 pollutants in 20 cities in the basin. In addition, the analysis of the total emissions of PM2.5 and PM2.5 in the basin over the past 10 years revealed that the slight release of particulate matter concentration along the basin is one of the main reasons for the local low particulate matter concentration.

Table 1 Basic information and statistical data of 20 cities in a basin

City	Population (10,000 people)	Altitude (m)	Urbanization rate	Number of civilian vehicles (ten thousand)	Number of stations	2015.01.01–2016.12.31 Substandard days (days)
Basin						
A	1465.80	481.00	71.47%	366.20	8	310/728
B	237.02	295.00	47.88%	15.97	4	270/728
C	330.13	411.00	41.87%	21.60	4	248/728
D	263.52	250.00	46.08%	24.10	4	218/728
E	351.30	487.00	48.50%	36.10	4	215/728
F	373.90	322.00	45.60%	15.60	4	209/728
G	326.05	370.00	47.31%	25.78	4	192/728
H	556.76	277.00	40.87%	21.10	5	191/728
J	449.00	307.00	45.10%	22.22	6	180/728
K	636.40	273.00	43.80%	32.7	6	179/728
L	356.90	355.00	39.50%	15.00	5	174/728
M	324.70	249.00	37.20%	14.10	5	163/728
N	329.00	276.00	45.90%	15.50	4	160/728
O	3016.55	161.00	60.94%	282.61	17	151/728
P	477.19	383.00	48.00%	42.75	4	149/728
Q	154.68	641.00	42.55%	13.10	4	83/728
R	332.86	369.00	37.52%	14.00	4	83/728

Fig. 3 Seasonal changes in the rate of excess air pollution in 20 cities in the basin
Compared with the spatial distribution of particulate matter concentration, the local difference in the concentration of gaseous pollutants is larger. The average concentration of SO2 on the floor, slope, and 20 cities along the basin is lower than the national standard ($60\mu g m^{-3}, \sim 22.90$ PPB). Only the floor of the basin and the slopes of N, D, and U in the W city exceed the national standard ($60\mu g m^{-3}, \sim 22.90$ PPB). Standard ($20\mu g m^{-3}, \sim 7.63$ PPB) (Fig. 4).

To sum up, the average annual concentration of particulate matter in the three parts of the basin (the floor, the slope, and the edge of the basin) generally decreases with the increase in altitude. However, the difference in the annual average concentration of gaseous pollutants in the three regions is very small. In addition, the spatial distribution of the annual average concentration of various gaseous pollutants is very different.

Concentrations and changes of atmospheric pollutants in the basin

The six standard air pollutants that contribute the most to air pollution are defined as “primary pollutants” (Wang et al., 2014). Table 3 shows the proportion of six standard air pollutants in the main pollutants of seasonal severe pollution days.

It can be seen from Table 3 that the primary pollutants in the three parts of the basin are quite different. In spring, PM10 is the main pollutant on the slope of the basin. On the slope of...
the basin, 61.11% and 100% of the pollution exceeded the standard. At that time, the main pollution was PM10.

Changes in atmospheric pollutant concentration with altitude

Changes in the concentration of particulate pollutants with altitude

It can be seen from Table 3 that the concentration of PM2.5 and PM10 in the basin decreases as the altitude increases. In order to further analyze the high variation characteristics of particulate matter concentration, the regional average of the daily average concentration of PM2.5 and PM10 was implemented in 15 cities on the basin floor, 3 cities on the slope, and 2 cities along the basin. Then, the seasonal average and annual average of the obtained basin average concentration were carried out (El Mountassir et al. 2020). Finally, the fluctuations of the seasonal and annual average concentrations of PM2.5 and PM10 at the three heights are respectively nonlinear. According to the analysis in Fig. 5, the changes in PM2.5 and PM10 concentrations caused by the height x can be adjusted by the non-linear function $y = (a + b/x)^2$.

Table 3 The annual and seasonal distribution characteristics of the six pollutants as the primary pollutants in the days when the air is not up to the standard

Year	PM2.5	PM10	SO2	NO2	CO	8 h O3
Basin						
Spring	79.49%	1.86%	0.00%	0.00%	0.00%	18.78%
Summer	71.56%	4.74%	0.00%	0.00%	0.00%	24.00%
Autumn	11.14%	0.25%	0.00%	0.00%	0.00%	10.11%
Winter	88.74%	1.15%	0.00%	0.00%	0.00%	10.11%
Year	98.86%	1.20%	0.00%	0.00%	0.00%	0.00%
Side slope						
Spring	77.83%	12.67%	0.00%	0.00%	0.00%	9.55%
Summer	11.11%	61.11%	0.00%	0.00%	0.00%	27.78%
Autumn	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Winter	73.91%	21.74%	0.00%	0.00%	0.00%	3.53%
Year	93.29%	7.32%	0.00%	0.00%	0.00%	0.00%
Basin edge						
Spring	0.00%	22.22%	0.00%	77.78%	0.00%	0.00%
Summer	0.00%	100%	0.00%	0.00%	0.00%	0.00%
Autumn	0.00%	0.00%	0.00%	100%	0.00%	0.00%
Winter	0.00%	0.00%	0.00%	100%	0.00%	0.00%
Year	0.00%	16.67%	0.00%	83.33%	0.00%	0.00%

Fig. 4 2012 MEIC source emission inventory
Changes in the concentration of gaseous pollutants with altitude

This paper also fitted the changes of four gaseous pollutants with altitude (see Fig. 8).

Characteristics of daily variation of atmospheric pollutant concentration

In order to further investigate the characteristics of the atmospheric pollution in the basin, in 15 cities along the floor of the basin, 3 cities on the slope, and 2 cities on the edge of the basin, the average time concentration of 6 standard air pollution was calculated, and the hourly average concentrations of 3 parts of the region were obtained. Finally, we analyzed the daily variation characteristics of the average concentration of 6 pollutants in 3 parts. Figure 9 shows the daily distribution of particle concentrations in three parts of the basin. It can be seen from Fig. 9 that PM2.5 and PM10 in the three parts of the basin show a bimodal change.

Level uniformity of air pollutants

In order to investigate the differences in air pollutants between cities at the bottom of the basin, the Pearson correlation coefficients of the average daily concentrations of 6 standard air pollutants in the 15 cities at the bottom of the basin were calculated (Fig. 10). Table 4 shows the correlation coefficients of the daily average concentrations of PM2.5 and PM10 between cities in the basin on January 1, 2015, and December 31, 2016.
In order to further investigate the uniformity of the six standard atmospheric pollutant levels in the three parts of the basin, the HI index was defined to quantitatively evaluate the uniformity of the atmospheric pollution level. The HI index is defined as follows:

$$HI = \frac{r_1 + r_2 + r_3 + \ldots + r_n}{n},$$

where r_i refers to the correlation coefficient of the average daily concentration of pollutants between the two cities on the floor of the basin, and is identified by the validity of $\alpha = 0.05$. N is the number of cities between the basin levels (Tables 5 and 6). The higher the HI value, the higher the level of atmospheric pollutants in the basin floor. The range of HI value is $-1 \sim 1$.

Figure 11 shows the seasonal distribution of the uniformity of the six air pollutants in the three parts of the basin.

It can be seen from Fig. 11 that the horizontal uniformity index of the six standard atmospheric pollutants in the three parts of the basin is almost positive, indicating the significant horizontal uniformity of the atmospheric pollutants in the basin.

The spatial art form of traditional dwellings in the basin

The residences in the basin have many things in common, but there are some differences in the spatial structure due to the different internal geographical environment. They can be roughly divided into 4 different areas according to the direction. In the plain area centered on City B, there are fertile fields, rapid cultural development, developed economy, and

![Fig. 7](image-url) The profile of atmospheric extinction coefficient monitored by City A

![Fig. 8](image-url) Changes in the annual and seasonal average concentrations of CO in three parts of a basin a SO2, b NO2, c O3, and d with altitude
high population density. The plains of traditional dwellings and the hills of the geographical environment have formed an unlimited shape. Plain B has been deeply influenced by the culture of the central plain since ancient times. Atrium-style houses are more common than dry-column houses. External houses are the main traditional local dwellings.

Discussion

The trinity of image, image, and form in space art

Human emotions are the embodiment of social development and culture, while space art is expressed through rational and objective human emotions. According to research, human emotions originate from the human brain, and the back of the brain also plays a role in maintaining perception and constructing self. Because perception and emotion are produced in the same system, we can convey our feelings to others through our feelings, and we can also understand others.

Lange believes that the key to artistic creation lies in abstract forms, while Kraucher believes that art is intuition and intuition is performance. American psychologist McKim said, “Visual thinking is realized by means of three visual images. The first is what people see. The second is imagined through the window of our mind. The third is drawn by us. It is a concrete presentation of one’s own thoughts.”
Space esthetics the trinity of truth-good-enlightenment of place god

As the soul of the universe, space esthetics is people’s esthetic embodiment of the space structure between heaven and earth. It has the characteristics of truth-goodness-enlightenment. “Savvy” is the appreciation of beauty, the unity of regularity, purpose, and perceptual perception. All innovative art forms and pioneers’ scientific research have touched the nature of reality, and in the final sense they must be said to be natural esthetics. The three “forces” of nature, consciousness, and the self-discipline between man and heaven and earth determine the three aspects of human thinking: a sympathetic myth full of fantasy and thinking about everything. Human beings are still in the process of evolution including habits and ideas. Their extreme moments also protect people themselves. The French Enlightenment thinker Rousseau’s “Social Contract Theory” is derived from such a profound reality that “freedom arises, where is the chain?”. The freedom to explore and construct struggles is the pre-existing one. The bounds of are also new bounds that transcend it, face, and accept (Fig. 12).

The artistic construction of the trinity of spatial esthetics of meaning-image-form

Beauty is the cosmic order that human beings know and express through the American law. Based on “beauty is the embodiment of true emotions”, this article questions the traditional “truth, kindness, and beauty”, proposes the existence

Table 4 Pearson correlation coefficient of the average daily concentration among the basin bottom cities

	A	B	C	D	E	F	G	H	I	J	K	L	M	N
A	0.84	0.91	0.74	0.92	0.81	0.85	0.74	0.82	0.81	0.79	0.74	0.80	0.72	0.88
B	0.82	0.86	0.87	0.82	0.93	0.88	0.74	0.91	0.85	0.87	0.79	0.88	0.76	0.81
C	0.91	0.85	0.78	0.85	0.84	0.89	0.73	0.85	0.79	0.80	0.72	0.81	0.71	0.82
D	0.75	0.89	0.79	0.69	0.85	0.77	0.71	0.86	0.77	0.78	0.78	0.83	0.82	0.68
E	0.90	0.79	0.84	0.71	0.80	0.81	0.77	0.79	0.83	0.75	0.75	0.80	0.73	0.95
F	0.80	0.93	0.84	0.88	0.79	0.83	0.77	0.86	0.87	0.88	0.81	0.91	0.79	0.77
G	0.84	0.86	0.89	0.79	0.78	0.81	0.72	0.86	0.78	0.79	0.73	0.80	0.69	0.79
H	0.73	0.74	0.72	0.73	0.76	0.76	0.7	0.77	0.89	0.72	0.89	0.84	0.84	0.77
I	0.80	0.91	0.84	0.90	0.74	0.86	0.85	0.75	0.83	0.81	0.79	0.82	0.70	0.77
J	0.79	0.85	0.78	0.77	0.82	0.87	0.75	0.86	0.80	0.83	0.92	0.94	0.95	0.84
K	0.83	0.88	0.85	0.79	0.81	0.89	0.81	0.74	0.81	0.83	0.78	0.86	0.72	0.75
L	0.73	0.78	0.72	0.79	0.75	0.82	0.71	0.89	0.77	0.89	0.76	0.88	0.90	0.76
M	0.77	0.86	0.78	0.81	0.78	0.90	0.75	0.80	0.81	0.94	0.78	0.86	0.82	0.80
N	0.70	0.77	0.71	0.82	0.71	0.80	0.67	0.82	0.76	0.81	0.71	0.89	0.81	0.71

Table 5 Correlation coefficient of average daily concentration among cities in the North China Plain

	A	B	C	D	E	F	G	H	I	J	K	L	M	N
A	0.86	0.78	0.73	0.80	0.70	0.63	0.71	0.68	0.53	0.57	0.32	0.44	0.86	0.78
B	0.83	0.84	0.83	0.87	0.83	0.76	0.76	0.71	0.61	0.69	0.46	0.56	0.83	0.89
C	0.75	0.87	0.81	0.91	0.88	0.77	0.79	0.77	0.59	0.71	0.51	0.53	0.75	0.87
D	0.79	0.80	0.80	0.76	0.84	0.78	0.81	0.64	0.63	0.73	0.54	0.63	0.70	0.80
E	0.75	0.85	0.88	0.75	0.80	0.72	0.77	0.81	0.58	0.69	0.45	0.55	0.79	0.85
F	0.71	0.82	0.87	0.82	0.81	0.86	0.79	0.65	0.68	0.76	0.58	0.60	0.71	0.82
G	0.79	0.75	0.78	0.80	0.72	0.87	0.73	0.55	0.75	0.81	0.60	0.68	0.62	0.75
H	0.70	0.74	0.72	0.79	0.74	0.77	0.74	0.61	0.61	0.83	0.45	0.67	0.70	0.74
I	0.69	0.70	0.75	0.66	0.80	0.66	0.57	0.57	0.41	0.54	0.38	0.42	0.69	0.70
J	0.51	0.56	0.58	0.58	0.57	0.67	0.72	0.56	0.43	0.73	0.71	0.73	0.51	0.56
K	0.55	0.67	0.68	0.73	0.67	0.76	0.85	0.81	0.51	0.70	0.57	0.77	0.55	0.67
L	0.33	0.36	0.48	0.45	0.40	0.52	0.55	0.35	0.39	0.64	0.53	0.57	0.33	0.36
M	0.43	0.52	0.56	0.60	0.53	0.62	0.70	0.60	0.42	0.72	0.73	0.56	0.43	0.52
N	0.86	0.78	0.72	0.80	0.70	0.63	0.71	0.68	0.53	0.57	0.32	0.44	0.86	0.78
of “truth, kindness, and sentiment (in the broad sense of aesthetics),” and advocates “form”, Meaning, image” aesthetics and structural thinking. The focus is on the “image” that is often neglected as an intermediary between empirical facts and logical concepts, and the consistency and intersection between the “shape” and “meaning” of the universe art of the human living environment point. This is the “possibility of form” in terms of quantity, graphics, and color and its harmonious and unified relationship. On this basis, this article summarizes the three types and six combinations of the cosmic art construction logic and “creative image composition” of basin urban sculpture, and incorporates them into the artistic practice of basin urban space, architecture, and sculpture. Life and the universe, due to their internal differences, have the same relationship. That is the internal connection and unity of material and spirit, experience and transcendence. This

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	
A	0.91	0.72	0.67	0.65	0.60	0.70	0.69	0.51	0.41	0.66	0.41	0.53	0.58	0.63	0.51	0.84	0.91		
B	0.84	0.84	0.86	0.85	0.83	0.69	0.75	0.75	0.81	0.67	0.56	0.71	0.54	0.59	0.67	0.65	0.61	0.84	0.84
C	0.90	0.82	0.76	0.67	0.66	0.59	0.81	0.77	0.54	0.46	0.79	0.45	0.53	0.71	0.74	0.63	0.90	0.82	0.71
D	0.71	0.87	0.76	0.84	0.90	0.67	0.80	0.87	0.71	0.59	0.71	0.62	0.61	0.66	0.59	0.65	0.71	0.87	
E	0.61	0.84	0.62	0.82	0.93	0.70	0.70	0.76	0.82	0.67	0.63	0.70	0.64	0.62	0.56	0.59	0.61	0.84	
F	0.59	0.82	0.63	0.89	0.92	0.70	0.74	0.83	0.81	0.66	0.66	0.71	0.63	0.64	0.56	0.6	0.59	0.82	
G	0.60	0.71	0.60	0.66	0.73	0.70	0.55	0.60	0.75	0.75	0.50	0.71	0.90	0.46	0.44	0.42	0.71		
H	0.70	0.74	0.84	0.80	0.65	0.71	0.59	0.87	0.58	0.51	0.85	0.53	0.52	0.80	0.70	0.76	0.70	0.74	
I	0.69	0.80	0.79	0.86	0.74	0.80	0.62	0.88	0.65	0.53	0.81	0.55	0.53	0.75	0.63	0.71	0.59	0.80	
J	0.48	0.64	0.51	0.66	0.77	0.74	0.75	0.57	0.61	0.83	0.53	0.89	0.73	0.55	0.46	0.2	0.48	0.64	
K	0.42	0.59	0.45	0.57	0.67	0.64	0.77	0.51	0.55	0.84	0.45	0.82	0.79	0.47	0.37	0.45	0.42	0.59	
L	0.66	0.70	0.80	0.72	0.61	0.65	0.54	0.84	0.80	0.50	0.45	0.45	0.46	0.92	0.85	0.83	0.66	0.70	
M	0.42	0.59	0.46	0.63	0.71	0.72	0.73	0.53	0.58	0.88	0.82	0.47	0.72	0.93	0.43	0.43	0.42	0.59	
N	0.48	0.59	0.49	0.56	0.63	0.62	0.87	0.53	0.52	0.73	0.76	0.46	0.43	0.39	0.41	0.48	0.48	0.59	
O	0.61	0.66	0.75	0.67	0.61	0.64	0.52	0.77	0.77	0.49	0.44	0.93	0.47	0.44	0.82	0.88	0.61	0.66	
P	0.62	0.61	0.75	0.60	0.53	0.55	0.47	0.70	0.64	0.41	0.35	0.96	0.37	0.40	0.87	0.74	0.62	0.61	
Q	0.52	0.64	0.65	0.64	0.60	0.62	0.49	0.74	0.73	0.48	0.45	0.77	0.45	0.44	0.88	0.80	0.52	0.64	

Fig. 11 The characteristics of seasonal changes in water levels in three parts of a basin
article advocates that matter is the spirit that can be seen by the eyes, and spirit is the matter that is invisible to the eyes. Matter and spirit are unified by energy and operating rules and appear as life phenomena. As a physiological and psychological structure, the transcendence of life is the combination, specificity, and deliberation of action experience. The transcendence structure is to continuously adapt to empirical actions, to adapt to each individual’s different experience, to internalize it, and to continuously adjust in the process of acquired practice and communication.

Design of building space art form based on basin climate and space esthetics

Controlling the figure coefficient

Nowadays, whether the energy consumption of the building can be saved has become a benchmark for evaluating the rationality of the building design, which has attracted much attention. Energy efficiency targets are also incorporated into the building standard law for residential buildings. One of the important parameters of the building energy consumption index is the shape factor, which is generally used to control the shape of a house. In the “Energy-saving Design Standards for Civil Buildings”, the shape factor of a building is defined as “the ratio of the external area in contact with the outside air to the volume of the surrounding building”, and the formula is \(S = \frac{F_0}{V_0} \). Here, \(S \) represents the shape factor of the building, \(F_0 \) represents the external area of the building, and \(V_0 \) represents the volume of the building. Therefore, the shape factor reflects the complexity of the envelope heat dissipation area and the shape of the residence. The smaller the size factor of the building, the harder it is to lose energy, the higher the insulation, and the higher the energy efficiency.

Optimize the building volume

In the complex terrain environment and the backward era of science and technology, folk houses with flexible ground spaces such as dry track type, hanging limb type, and cliff installation type have been formed, which made up for the lack of foundation. However, in modern housing construction, large-scale excavation and landfill “REBELLING” seems very popular, and this design not only wastes labor costs but also destroys the natural terrain. Therefore, in a complex terrain environment, the grounding mode of traditional houses and buildings can be subdivided, the volume of the building can be decomposed, and the damage to the terrain and the environment can be reduced. Buildings that are too large are suitable for the special size of the human body and facilitate the communication and integration between humans and the natural environment. However, due to the constraints of population density and material characteristics, almost all houses in the basin are one-story or two-story houses, which is not suitable for the conditions of the modern population growth period, so modern design houses can be appropriately improved.

Reasonable organization of space

Traditional residences in the basin are good at using special spatial treatment methods such as arcades and corridors to create atmosphere. In traditional villages and urban villages, these flexible spatial forms not only enrich the street form of the village but also play a role in effectively using space, adjusting the microclimate, and gathering popularity. The streets of traditional villages are formed according to the walking speed and the spatial scale of the human body. Modern urban traffic patterns are changing and higher efficiency is pursued. Urban highways are large open spaces designed at the speed and scale of cars. In the traditional living experience, creating a comfortable, efficient, and abundant space that adapts to the physical and mental living environment is the liberating effect of street nodes (Figs. 13, 14, and 15).
belonging is the weakest, and the external environment has a great influence. The B-shaped space maintains a sense of protection and a sense of openness, giving people a sense of peace of mind. At the same time, it has a strong connection with the most general external environment in the traditional villages of the basin. The C-shaped wide-eave corridor has the strongest sense of space protection, the central part has a strong sense of security, and the external influence is weak. The D-shaped space cannot communicate with the outside at all, and the sense of space is low.

The arcades and corridors have variable domains and flexible functions, which may change according to the changes of adjacent space and time. On cloudy or rainy days, its function is similar to that of the internal space. The more crowded the street, the more obvious its impact.

Inheriting the spirit of gray space

Gray space refers to the semi-open space that Kurokawa originally proposed as a transition between indoor and outdoor. Reasonably design the gray building space, realize the peaceful transition and organic combination of indoor and outdoor, and make people’s living environment more comfortable. In the traditional residences of the basin, the gray space plays an important role in people’s daily life. In the traditional way of life, people live in different families, and neighbors communicate more closely. After agriculture is over, people must find a place to chat, rest, and enjoy outdoor activities on the street in front of their homes. The gray space of the eaves gallery protruding from the house eaves not only meets people’s need for shelter from the wind but also gives people a feeling of being near home, thus providing a place for family activities such as drinking tea, chatting, and doing business. It is not only an extension of the indoor living space but also a part of the living space. At the same time, the gray space is also an important air buffer layer, which can buffer the impact of external climate change on the interior of the building and form a comfortable microclimate. The design of modern architecture needs to transition from the gray space of the traditional residential model to the design of modern architecture, forming an indoor and outdoor buffer and communication space, and improving the modern living atmosphere.
Learn from the bottom-level overhead model

The lowest aerial model of a traditional residence in a certain basin is of great reference value for the construction of modern residences. For a small number of modern basin buildings, traditional high-rise buildings not only help protect the natural environment but also maintain the beauty of lightweight buildings (Figs. 16, 17, and 18).

A traditional residence in a basin is an atrium layout of a residential community composed of five atriums that are not completely enclosed. Due to the influence of the particular basin climate, the first floor of the house has become higher, leaving unobstructed air ducts. By combining the design of the atrium, the semi-underground garage will be properly connected to the high ground of the house to form a ventilation platform for the entire courtyard under the conditions of ensuring good wind conduction.

Flexible handling of height difference

The experience of handling the height difference of traditional houses is mainly applicable to the design of modern low-rise basin buildings. The building layer in the low-level basin terrain environment does not need to use a large-scale excavator to level the building base. In addition to cutting the cubic structure and removing the external type, it can also be installed on the cliff, and the flexible, soft, and easy-to-change terrain can be used for the building. Carry out transformations to flexibly handle height differences.

Conclusion

As a design concept for sustainable development, ecological thinking is a long-term strategic choice made by mankind in
order to adapt to the environment. The traditional houses in the basin reflect the ecological characteristics, that is, reduce the impact on the ecological environment, have a very high ecological experience value, and provide people with a healthy living environment. Today, with the advancement of science, technology, and culture, people’s requirements for the living environment continue to increase. Although we are faced with insufficient energy and resources and serious environmental problems, through the study of traditional houses, we can think about the ecology of respect for the environment, health, and energy saving in modern architectural design, and provide help for the development of modern buildings.

Funding This paper was supported by (1) Visual Research on the Characteristics of Mountainous Cities and Architectural Spaces, a scientific research project of Chongqing Key Research Base of Humanities and Social Sciences in 2016. Project No.: 16zx26; (2) The General Project of Chongqing Education and Teaching Reform Research in 2018 “Beautiful China, Western Characteristics: Research on the Training and Transformation of Innovative Landscape Architectural Talents in Contemporary Art Colleges and Universities” No.:183191.

Declarations

Competing interests The authors declare no competing interests.

Open access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

Aboufirassi M, Amrhar M, Bahir M, Errouane S, Fakir Y (1991) Hydrodynamique, hydrochimique et isotopique du système aquifère de Kourinat (Bassin d’Essaouira, Maroc). Estud Geol 31:17–26.

Aller L (1985) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency. Washington, DC, 455.

Amil A, Avcı P, Çiçek A, Muhammetoğlu A, Öz-yurt NN (2020) Significance of validation for karst aquifers’ vulnerability assessments: Antalya travertine plateau (Turkey) application. J Contam Hydrol 228:103557. https://doi.org/10.1016/j.jconhyd.2019.103557

An Y, Lu W (2018) Assessment of groundwater quality and groundwater vulnerability in the northern Ordos cretaceous basin, China. Arab J Geosci 11:118. https://doi.org/10.1007/s12517-018-3449-y

Awawdeh MM, Jaradat RA (2010) Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arab J Geosci 3:273–282. https://doi.org/10.1007/s12517-009-0074-9

Bahir M, Ouhamdouch S (2020) Groundwater quality in semi-arid environments (Essaouira Basin, Morocco). Carbonates Evaporites 35:1–16. https://doi.org/10.1007/s13146-020-00576-7

Bahir M, Carreira P, Da Silva MO, Fernandes P (2007) Characterisation hydrodynamique, hydrochimique et isotopique du système aquifère de Kourinat (Bassin d’Essaouira, Maroc). Estud Geol 31:17–26. https://doi.org/10.3989/egol.0864133

Bahir M, Ouhamdouch S, Carreira PM, Chikouche K, Kamea Z (2018) Geochemical and isotopic investigation of the aquifer system under semi-arid climate: case of Essaouira Basin (southwestern Morocco). Carbonates Evaporites 33:65–77. https://doi.org/10.1007/s13146-016-0323-4

Bahir M, Ouazaz D, Goumih A, Ouhamdouch S (2019) Evolution of the chemical and isotopic composition of groundwater under a semi-arid climate; the case of the Cenomano-Turonian aquifer within the Essaouira Basin (Morocco). Environ Earth Sci 78:353. https://doi.org/10.1007/s12665-019-4959-2

Bahir M, Ouhamdouch S, Ouazaz D, Chehbouni A (2020b) Assessment of groundwater quality from semi-arid area for drinking purpose using statistical, water quality index (WQI) and GIS technique. Carbonates Evaporites 35:1–24. https://doi.org/10.1007/s13146-020-00859-z

Bahir M, EL Mountassir O, Ouazaz D, Carreira PM (2020c) Use of WQI and isotopes to assess groundwater quality of coastal aquifers (Essaouira, Morocco). In: Advances in Science, Technology & Innovation. Springer, Portugal, Geothics and Groundwater Management International Congress

Bahir M, EL Mountassir O, Ouazaz D, Carreira PM (2020d) Hydrochemical analysis and evaluation of groundwater quality in Ouazi basin (Essaouira, Morocco). In: Advances in Science, Technology & Innovation. Springer, Portugal, Geothics and Groundwater Management International Congress

Blavoux B (1978) Etude du cycle de l’eau au moyen du foxygène 18 et du tritium: possibilités et limites de la méthode des isotopes du milieu en hydrologie de la zone tempérée. Doctoral dissertation, Cadi Ayyad University, Marrakech, Morocco.

Carreira PM, Bahir M, Ouhamdouch S, Fernandes PG, Nunes D (2018) Tracing salinization processes in coastal aquifers using an isotopic and geochemical approach: comparative studies in Western Morocco and Southwest Portugal. Hydrogeol J 26:2595–2615. https://doi.org/10.1007/s10040-018-1815-1

Chamchati H (2014) Evaluation and protection of the resources in eau en zones semi-arides; exemple du bassin d’Essaouira. PhD Thesis, Cadi Ayyad University, Marrakech, Morocco.

Chandoul IR, Bouaziz S, Ben Dhia H (2015) Groundwater vulnerability assessment using GIS-based DRASTIC models in shallow aquifer of Gabes North (South East Tunisia). Arab J Geosci 8:7619–7629. https://doi.org/10.1007/s12517-014-1702-6

Colins Johnny J, Sashikkumar MC, Anas PA, Kirubakaran M (2016) Evaluación Basada En El Sistema de Información Geográfica a La Vulnerabilidad de Un Acuífero a Partir Del Método DRASTIC: Caso de Estudio En La Cuenca Kodaganar. Earth Sci Res J 20:1–8. https://doi.org/10.15444/esrj.v20i1.522469

Daly D, Drew D (1999) Irish methodologies for karst aquifer protection. In: Hydrogeology and engineering geology of sinkholes and karst environments (Essaouira Basin, Morocco). Carbonates Evaporites 35:1–6. https://doi.org/10.1007/s13146-018-3449-y
Dufaud F (1960) Contribution à l’étude stratigraphique du bassin secondaire du Haut Atlas Occidental (Sud-Ouest du Maroc). Bull Soc Géol Fr 7:728–734. https://doi.org/10.2113/gssgbull.S7-II.6.728

El Hafid D, Zerrouqi Z, Akdim B (2017) Study of drought sequences in the Ilsly basin (East Morocco). LARHYSS journal P-ISSN 1112-3680/E-ISSN 2521-9782. 31:83-94

El Mountassir O, Bahir M, Ouazar D, Ouhamdouch S, Chehbouni A, Ouarani M (2020) The use of GIS and water quality index to assess groundwater quality of Krimat aquifer (Essaouira; Morocco). SN Appl Sci 2:1–16. https://doi.org/10.1007/s42452-020-2653-z