POLYMER FILM WITH OPTICALLY CONTROLLED FORM AND ACTUATION (PREPRINT)

Nelson Tabiryan, Svetlana Serak, Xiao-Man Dai, and Timothy J. Bunning

Hardened Materials Branch
Survivability and Sensor Materials Division

SEPTEMBER 2006
Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-ML-WP-TP-2007-505 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
TIMOTHY J. BUNNING, Ph.D. MARK S. FORTE, Acting Chief
Research Lead Hardened Materials Branch
Exploratory Development Survivability and Sensor Materials Division
Hardened Materials Branch

//Signature//
TIM J. SCHUMACHER, Chief
Survivability and Sensor Materials Division

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.
Title and Subtitle

POLYMER FILM WITH OPTICALLY CONTROLLED FORM AND ACTUATION (PREPRINT)

Authors

Nelson Tabiryan, Svetlana Serak, and Xiao-Man Dai (Beam Engineering for Advanced Measurements Corporation)

Timothy J. Bunning (AFRL/MLPJ)

Abstract

Polymer networks containing azobenzene liquid-crystalline (azo LC) moieties are capable of changing their macroscopic shape when influenced by light. Two distinct processes take place in azo LCs due to the photoisomerization of the azobenzene chromophores. Trans-cis isomerization and thus a reduced order parameter is dominant at UV wavelengths whereas trans-cis-trans isomerization processes are dominant at visible wavelengths resulting in orientation of the molecules perpendicular to the beam polarization.
Polymer film with optically controlled form and actuation

Nelson Tabiryan, Svetlana Serak, and Xiao-Man Dai
Beam Engineering for Advanced Measurements Corporation, 809 South Orlando Ave., Suite I, Winter Park, Florida 32789, USA

Timothy J. Bunning
Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707, USA

Polymer networks containing azobenzene liquid-crystalline (azo LC) moieties are capable of changing their macroscopic shape when influenced by light [1-4]. Two distinct processes take place in azo LCs due to the photoisomerization of the azobenzene chromophores. Trans-cis isomerization and thus a reduced order parameter is dominant at UV wavelengths whereas trans-cis-trans isomerization processes are dominant at visible wavelengths resulting in orientation of the molecules perpendicular to the beam polarization [5].

Bending of LC network films containing azobenzene chromophore was first demonstrated for UV light [1]. Bending of the film (towards the radiation source only), heated to 85°C, was induced by radiation of \(\lambda = 366 \) nm wavelength. The initial shape could be restored with visible radiation (\(\lambda = 540 \) nm) within several seconds. Two orders of magnitude faster photomechanical response was observed in a LC elastomer doped with an azo chromophore using argon-ion laser radiation [2] where a bending angle of \(\sim 67^\circ \) (towards radiation source) in a highly absorbing 320 \(\mu \)m-thick material was achieved with 1.3 W power.

We recently reported the laser-induced photomechanical actuation of azo LC polymer films characterized by: 1) single wavelength operation; 2) reversible bi-directional bending (\(70^\circ < \alpha < 70^\circ \)); 3) high speed of photoinduced deformation (170°/s); and 4) room temperature operation. These results were obtained for thin samples (10-50 \(\mu \)m) controlled with low power density radiation (~0.1 W/cm²) [3].

Two monomers, 4,4'-Di(6-acryloxyalkyloxy)azobenzene and the LC monomer 4-(6-acyrloxy)hexyloxy-4'-ethoxyazobenzenewere copolymerized according to [1]. Polymerization was performed between two glass substrates (10-50 \(\mu \)m) coated with poly(vinyl alcohol) and rubbed to create an easy-axis for the azo LC moieties. Rectangular slices of the polymer (removed from the substrates), a lower edge fixed to a platform, were exposed to a linearly polarized beam of a multimode cw argon-ion laser, expanded to the film size. The polymer film bends away or towards the laser for polarization perpendicular or parallel to the easy-axis, respectively. Figure 1 shows the magnitude of the bend angle for both polarizations as a function of power density and the deformation dynamics. Films could be reversibly bent towards and away from the incoming laser by switching the beam polarization. The complete oscillation for the extremes of bend angles (\(70^\circ < \alpha < 70^\circ \)) was accomplished in \(\sim 1.3 \) s.

The polarization dependence of the deformation sign results from the optically-induced realignment of LC chromophores which shrinks the volume of the polymer along the polarization direction and expands it along the direction perpendicular to it. Due to light attenuation caused by absorption and scattering, this effect is more efficient at the input surface of the incident beam causing the bending.
In summary, we report on the large and fast photomechanical actuation of a LC polymer film, operational at room temperature with bi-directionality of the mechanical response using a low power, single wavelength laser beam. This demonstration opens up interesting practical opportunities for controlling light beams, for adaptive optics, nonlinear optics, and lays the groundwork for enabling components for the next generation of Micro-Opto-Mechanical Systems.

References

1. Y. Yu, M. Nakano, and T. Ikeda, “Directed bending of a polymeric film by light,” Nature 425, 145 (2003).
2. M. Camacho-Lopez, H. Finkelmann, P. Palfy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nature 3, 307-310 (2004).
3. N. V. Tabiryan, S. V. Serak, Xiao-Man Dai, T. J. Bunning, Polymer film with optically controlled form and actuation, Optics Express, 13, 7442-7448, 2005.
4. K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M. Bastiaansen, J. Lub, and D. J. Broer, Large amplitude light-induced motion in high elastic modulus polymer actuators, J. Mater. Chem., 15, 5043–5048, 2005.
5. C. Kempe, M. Rutloeh, and J. Stumpe, “Photo-orientation of azobenzene side chain polymers parallel or perpendicular to the polarization of red He-Ne light,” J. Phys.: Condens. Matter. 15, S813-S823 (2003).
Figure 1. (a) Bend angle of a polymer film (3 mm x 7 mm x 20 µm) as a function of power density of the laser beam (488 nm) for polarization parallel (open triangles) and perpendicular (dark triangles) to the LC orientation imposed at curing. (b) Deformation dynamics of the polymer film (1 mm x 7 mm x 20 µm) at a power density of 0.25 W/cm². The azo LC polymer film shown in photos (c) is vertically attached to a platform. It bends away from the laser for a beam polarized perpendicular to the film orientation and towards the laser for a beam polarized parallel to the film orientation.