Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation is thought to involve the autocrine and/or paracrine production of insulin-like growth factor-I. This brief review outlines components of the insulin-like growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulin-like growth factor-I is involved with muscle adaptation.

From the Department of Physiology & Biophysics, University of California Irvine, Irvine, CA.

Reprint requests to Gregory R. Adams, PhD, Department of Physiology & Biophysics, C308 Medical Sciences I, University of California Irvine, Irvine, CA 92697-4560.

DOE: 10.1097/01.blo.000031980.92980.48
It has long been recognized that bone can adapt to changes in loading via mechanisms that are, at least in part, intrinsic to the bone tissue. Autocrine and paracrine growth factor signaling, in particular signaling involving IGF-I, has been recognized for some time.

Similar to bone, skeletal muscle is a highly plastic tissue that constantly adapts to the functional demands imposed by the activities of the individual. In mammalian skeletal muscle, this adaptation can include changes in the size and the qualities of the myofibers that comprise the muscle. This cellular level adaptation is specific to the muscle that is experiencing the alteration in activity pattern. For example, a program of focused arm resistance training will not result in adaptation in the leg musculature (Fig 1). The simplest explanation for this observation is that the regulatory mechanisms that modulate the cellular level adaptation in a given muscle most likely reside within that muscle. To elicit adaptation of a specific muscle via some central mechanism, for example changes in the circulating levels of some hormone, would require that all nontarget tissues must in some way down regulate their response to the circulating signal leaving only the impacted muscle to respond and adapt. This local control hypothesis has been verified in vivo. For example, in rats the circulating hormone and growth factor milieu can be depressed drastically via surgical hypophysectomy that prevents additional growth (Fig 2). However, the muscles of these hypophysectomized rats can respond to increased loading with substantial compensatory hypertrophy. Insulin-like growth factor-I peptide and mRNA expression also is substantially increased in the overloaded muscles from hypophysectomized and control rats. However, the circulating IGF-I is very low in the hypophysectomized muscle.

Fig 1. The specificity of adaptation is shown. Although it may seem like a simple concept, it is important to remember that changes in the loading state of individual muscles or muscle groups elicit adaptation specific to the affected muscles.
pophysectomized rats. The low circulating levels of IGF-I most likely account for much of the somatic growth deficit in these rats.

In traditional endocrinology, IGF-I (originally called somatomedin C) appears as a component of the somatic growth and development system mediated by GH (originally Somatotrophin). Much of the literature concerning the role of IGF-I in relation to skeletal muscle appears in two major contexts: (1) IGF-I as a component of the GH control axis\(^{60,74}\); and (2) the role of IGF-I in myogenesis during the process of development.\(^{23}\) In the GH context, much of the emphasis has been on the insulin-like metabolic and anabolic effects of IGF-I. In developmental scenarios, the role of IGF-I in stimulating mitotic and myogenic processes has been the major point of emphasis. In contrast to these established theories the concept of a major role for GH-independent, autocrine and/or paracrine functions of IGF-I has been developed relatively recently.\(^{23}\)

To understand the importance of intrinsic regulation via autocrine and/or paracrine signaling, it is instructive to consider some cellular processes such as myofiber regeneration, that appear to be regulated or modulated by IGF-I. Severe myofibrillar injury results in the death of some myofibers leaving behind the basal lamina and some satellite cells. Satellite cells are small mononucleated skeletal muscle stem cells located between the basal lamina of the muscle and the sarcolemma of myofibers (There is evidence that multiple muscle stem cell populations may be contributing to processes traditionally ascribed to satellite cells).\(^{16}\) As a result of the injury to myofibers, satellite cells are mobilized to begin regeneration.\(^{16,40–51,61}\) The initial events after satellite cell activation have been reported to be a proliferative response in that some or all of the activated satellite cells undergo at least one mitotic cycle.\(^{8,40,55,62}\) After this initial phase, some of the activated cells and/or their progeny are thought to differentiate.

Fig 2. Muscle hypertrophy in a nongrowth environment is shown. Hypophysectomy drastically reduces the circulating levels of numerous growth factors and hormones thereby preventing somatic growth. However, the muscles of nongrowing hypophysectomized rats will hypertrophy in response to overloading. Percent change values are based on muscle mass, which is normalized to body weight.
into myoblastlike cells. In regenerating muscle, these myoblasts either can fuse with each other to form new myofibers or become incorporated into surviving myofibers. If the capacity of satellite cells to proliferate is eliminated, for example via irradiation, the regeneration process is inhibited. There is evidence that locally produced, autocrine and/or paracrine IGF-I, may be important in the regeneration process. Jennische et al showed that IGF-I immunoreactivity was detected in the cytoplasm of myoblasts and myotubes and in satellite cells during muscle regeneration. LeFaucheur and Sebille reported that antibodies that neutralized either IGF-I or FGF activity, reduced the number and size of regenerating myofibers after muscle injury and that the antiIGF-I treatment had a higher potency.

With the muscle regeneration process in mind, an examination of the known effects of IGF-I on skeletal muscle cell types provides insight into the potential importance of this growth factor. In studies involving established cell lines and primary satellite cell cultures, ligation of the IGF-I receptor has been shown to initiate intracellular signaling cascades involved in key mitogenic and myogenic responses (Fig 4). One pathway activated by IGF-I involves Ras-Raf signaling to extracellular response kinases and has been shown to promote increased cell proliferation. A second important pathway activates PI3K. Phosphatidylinositol 3-kinase activation is central to numerous important cellular processes including protection from apoptosis via AKT activation and alteration in intracellular calcium via the inositol phosphate cascade. In addition, PI3K activation increases the initiation of translation via alter-

Fig 3. Satellite cells and myofiber regeneration is shown. Severely injured myofibers degenerate. In response to the injury satellite cells proliferate, differentiate, and fuse to form new multinucleated myofibers.
The activation of S6K1 is of particular interest in that it enhances the translation of mRNAs encoding ribosomal proteins and elongation factors, integral components of the protein synthesis machinery. In addition to generalized anabolic effects, the activation of portions of the PI3K signaling cascade is associated with the differentiation of muscle cells in culture. Interestingly, the processes of cellular proliferation and differentiation generally are thought to be mutually exclusive. In fact, studies have shown that activation of one of the two primary signaling pathways (Ras-Raf versus PI3K) generally will inactivate portions of the other. Among the well-characterized growth factors, IGF-I is relatively unique in that it has been reported to stimulate both of these processes, possibly via temporal modulation.

There is evidence that the mitogenic and myogenic effects of IGF-I that render it useful for muscle regeneration also might be important for the adaptation of muscle to increased loading. Numerous in vivo activity models, such as increased loading, stretch and eccentric contraction are known to result in myofibrillar increases in IGF-I and IGF-I mRNA expression. Experimental manipulation of muscle IGF-I levels, in the absence of changes in loading state, also has been shown to induce muscle hypertrophy. As with myofiber regeneration, IGF-I is known to stimulate numerous processes that would promote skeletal muscle hypertrophy. The utility of insulinlike anabolic effects for promoting muscle hypertrophy is obvious. However, the impact of IGF-I on muscle satellite cells is of particular interest. In the case of

![Diagram of IGF-I receptor related intracellular signaling pathways](image)
the hypertrophy response, satellite cell-derived myoblasts are thought to fuse with existing myofibers much as they would with damaged but still viable myofibers after injury.12,44,58,59,64

The importance of this response is suggested by the fact that: (1) mature mammalian skeletal muscle fibers maintain a relatively finite, fiber type specific, relationship between the size of the myofiber and the number of myonuclei present in a given myofiber.5,6,13,20,29,40,42,65,67,69 (2) mammalian myofibers become permanently differentiated shortly after birth and do not undergo mitotic division or directly increase their myonuclear number (myonuclear division).12,66

Therefore, the requirement for additional nuclei to support hypertrophy appears to be met via the proliferation, differentiation, and fusion of muscle satellite cells providing the new myonuclei needed to support the hypertrophy process5,42,47,53,54,59 (Fig 5).

One of the more interesting recent developments regarding IGF-I has been the identification of a unique IGF-I isoform that is expressed in response to changes in the loading state of skeletal muscles.73 This isoform, MGF, has been shown to be upregulated markedly in response to stretch and increased loading.41,45 It appears that muscles produce a generalized tissue type IGF-I and the loading sensitive MGF isoform with differing time courses suggesting distinct roles for these two growth factors.28,45

The key role of IGF-I in muscle regeneration and adaptation argues for an increased awareness of the potential for injury, illness, or iatrogenic impacts on the functioning of this system. For example, the IGF-I receptor seems to be sensitive to inhibition by components of proinflammatory cytokine intracellular signaling pathways19,26,68 and to share common intracellular signaling components with these cytokines.33 Sensitivity of the muscle IGF-I system to proinflammatory cytokines may contribute to the catabolic effects of these cytokines on skeletal muscle.21,22,25,34,35,37,38 Injury or illness also may result in patient inactivity and muscle disuse. It appears that some forms of disuse cause the number of myonuclei to decrease via nuclear apoptosis4,42 and that IGF-I may partially ame-

![Figure 5. Satellite cells and myofiber hypertrophy](image-url)
liorate this process. In addition, glucocorticoids (methylprednisolone, triamcinolone) are known to modulate IGF-I abundance and IGF-I effects in muscle whereas HMGCoA reductase inhibitors (Pravastatin, Simvastatin) may interfere with PI3K signaling. Therefore, numerous commonly prescribed drugs may unwittingly impair the IGF-I system in muscles.

The proper functioning of skeletal muscle is important for positive outcomes in the setting of orthopaedic medicine and in a broader quality of life context. It appears that the IGF-I system may provide useful insights in patient care settings.

The relationships between IGF-I, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81:2509–2516, 1996.

Adams GR, Haddad F, Baldwin, KM: Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87:1705–1712, 1999.

Adams GR, McCue SA: Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722, 1998.

Adams GR, Linderman JK, Roy RR, et al: Apoptosis: A mechanism contributing to remodeling of skeletal muscle in response to unweighting. Am J Physiol 273:C579–C587, 1997.

Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR: Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78:1969–1976, 1995.

Allen DL, Yasui W, Tanaka T, et al: Myonuclear number and myosin heavy chain expression in rat soleus single muscle fibers after space flight. J Appl Physiol 81:145–151, 1996.

Bamman MM, Shipp JR, Jiang J, et al: Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol 280:E383–E390, 2001.

Beauchamp JR, Heslop L, Yu DS, et al: Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234, 2000.

Beilhauf R: Analysis of muscle regeneration using single myoblasts in culture. Med Sci Sport Exer 21(5 Suppl):S164–S172, 1989.

Booth FW, Baldwin KM: Muscle Plasticity: Energy Demand and Supply Processes. In Rowell LB, Shepard JT (eds). Handbook of Physiology. New York, Oxford University Press 1074–1123, 1966.

Canicic J, Gallardo E, Illa I, et al: p70 S6 kinase activation is not required for insulin-like growth factor-induced differentiation of rat, mouse or human skeletal muscle cells. Endocrinology 139:5042–5049, 1998.

Chambers RL, McDermott JC: Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21:155–184, 1996.

Cheek DB, Holt AB, Hill DE, Talbert JL: Skeletal muscle mass and growth: the concept of the deoxyribonucleic acid unit. Pediatr Res 5:312–328, 1971.

Coleman ME, DeMayo F, Yin KC, et al: Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myotube hypertrophy in transgenic mice. J Biol Chem 270:12109–12116, 1995.

Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR: The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662, 1997.

Creuzet S, Lescaudron L, Li Z, Fontaine-Perus J: MyoD, myogenin, and desmin-nls-lacZ transgene emphasize the distinct patterns of satellite cell activation in growth and regeneration. Exp Cell Res 243:241–253, 1998.

Czerninski SM, Martin JM, Bechtel PJ: Modulation of IGF-1 mRNA abundance during stretch induced skeletal muscle hypertrophy and regression. J Appl Physiol 76:2026–2030, 1994.

DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ: Activation of insulin like growth factor gene expression during work induced skeletal muscle growth. Am J Physiol 259:E89–E95, 1990.

Dey BR, Spence SL, Nissley P, Furlanetto RW: Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem 273:24095–24101, 1998.

Edgerton VR, Roy RR: Regulation of skeletal muscle fiber size, shape and function. J Biomechanics 24:123–133, 1991.

Fan J, Wojnar MM, Theodorakis M, Lang CH: Regulation of insulin like growth factor (IGF)-1 mRNA and peptide and IGF-binding proteins by interleukin-1. Am J Physiol 270:R621–R629, 1996.

Fang CH, Li BG, James H, Fischer JE, Hasselgren PO: Cytokines block the effects of insulin-like growth factor-I on glucose uptake and lactate production in skeletal muscle but do not influence IGF-I induced changes in protein turnover. Shock 8:362–367, 1997.

Florini JR, Ewton DZ, Coolican SA: Growth hormone and insulin like growth factor system in myogenesis. Endocrine Rev 17:481–517, 1996.

Frame S, Balmain A: Integration of positive and negative growth signals during ras pathway activation in vivo. Cur Opin Genet Dev 10:106–113, 2000.

Goldberg AL: Work induced growth of skeletal muscle in normal and hypophsectomized rats. Am J Physiol 213:1193–1198, 1967.

Gual P, Baron V, Lequoy V, Van Obberghen E: Interaction of janus kinases JAK-1 and JAK-2 with the insulin receptor and the insulin-like growth factor-1 receptor. Endocrinol 139:884–893, 1998.

Gulati AK: The effect of X-irradiation on skeletal muscle in normal and hypophsectomized rats. Am J Physiol 213:1193–1198, 1967.

Haddad F, Adams GR: Acute cellular and molecular
responses to resistance exercise. J Appl Physiol In Press.

29. Hikida RS, Van Nostran S, Murray JD, et al: Myonuclear loss in atrophied soleus muscle fibers. Anat Rec 247:350–354, 1997.

30. Jennische E, Hansson HA: Regenerating skeletal muscle cells express insulin-like growth factor 1. Acta Physiol Scand 130:327–332, 1987.

31. Jennische E, Skottner A, Hansson HA: Satellite cells express the trophic factor IGF-1 in regenerating skeletal muscle. Acta Physiol Scand 129:9–15, 1987.

32. Keller HL, St. Pierre Schneider B, Eppihimer LA, Canfield RE: Response of satellite cells and muscle fibers to long-term compensatory hypertrophy. J Submicrosc Cytol 15:929–940, 1983.

33. Kelso A: Cytokines: Principles and prospects. Immunol Cell Biol 76:300–317, 1998.

34. LeFaucheur JP, Sebille A: Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J Neuroimmunol 57:85–91, 1995.

35. Ling PR, Schwartz JH, Bistrian BR: Mechanisms of host wasting induced by administration of cytokines in rats. Am J Physiol 272:E333–E339, 1997.

36. Luque E, Pena J, Salas P, Martin JD: Changes in satellite cell population associated with regenerating muscle fibers in rats. J Submicrosc Cytol Pathol 28:305–311, 1996.

37. Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano F, Argiles JM: TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Com 230:238–241, 1997.

38. LUQUE E, PENA J, SALAS P, MARTIN JD: Changes in satellite cell population associated with regenerating muscle fibers in rats. J Submicrosc Cytol Pathol 28:305–311, 1996.

39. McCall GE, Allen DL, Linderman JK, et al: Maintenance of myonuclear domain size in rat soleus after overloading and growth hormone/IGF-I treatment. J Appl Physiol 84:1407–1412, 1998.

40. McKoy G, Ashley W, Mander J, et al: Expression of insulin growth factor-I splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516:583–592, 1999.

41. Mitchell PO, Pavlath GK: A muscle precursor cell-dependent pathway contributes to muscle growth after atrophy. Am J Physiol 281:C1706–C1715, 2001.

42. Molnar G, Ho ML, Schroedl NA: Evidence for multiple satellite cell populations and a nonmyogenic cell type that is regulated differently in regenerating and growing skeletal muscle. Tissue Cell 28:547–556, 1996.

43. Moss FP, Leblond CP: Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–436, 1971.

44. Owino V, Yang SY, Goldspink G: Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload. Febs Let 505:259–263, 2001.

45. Petley T, Graft K, Jiang W, Florini J: Variation among cell types in the signaling pathways by which IGF-I stimulates specific cellular responses. Horm Metab Res 31:70–76, 1999.

46. Phelan JN, Gonyea WJ: Effect of radiation on satellite cell activity and protein expression in overloaded mammalian skeletal muscle. Anat Rec 247:179–188, 1997.

47. Raisz LG: Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358, 1999.

48. Robertson TA, Walker BD, Papadimitriou JM: Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiation. J Anat 181:265–276, 1992.

49. Robertson T, Papadimitriou JM, Grounds MD: Fusion between a myogenic cell in the satellite cell position and undamaged adult myotubers segments. Exp Cell Res 48:394–395, 1992.

50. Robertson TA, Papadimitriou JM, Grounds MD: Fusion of myogenic cells to the newly sealed region of damaged myofibers in skeletal muscle regeneration. Neuropathol Appl Neurobiol 19:350–358, 1993.

51. Robertson T, Papadimitriou JM, Grounds MD: Fusion of myogenic cells to the newly sealed region of damaged myofibers in skeletal muscle regeneration. Neuropathol Appl Neurobiol 19:350–358, 1993.

52. Rommel C, Clarke BA, Zimmermann S, et al: Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741, 1999.

53. Rosenblatt JD, Parry DJ: Adaptation of rat extensor digitorum longus muscle to gamma irradiation and overload. Pflugers Arch 423:255–264, 1993.

54. Rosenthal SM, Brown EJ, Brunetti A, Goldfine ID: Fibroblast growth factor inhibits insulin like growth factor-II (IGF-II) gene expression and increases IGF-I receptor abundance. Mol Endocrin 5:678–684, 1991.

55. Rosenthal SM, Cheng ZQ: Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Nat Acad Sci USA 92:10307–10311, 1995.

56. Sakuma K, Watanabe K, Totsuka T, et al: Differential adaptations of insulin-like growth factor-I, basic fibroblast growth factor, and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: an immunohistochemical study. Acta Neuropathol 95:123–130, 1998.

57. Salleo A, LaSpada G, Falzea G, Denaro MG, Ciccia-rillo R: Response of satellite cells and muscle fibers to long-term compensatory hypertrophy. J Submicrosc Cytol 15:929–940, 1983.

58. Schiaffino S, Pierobon Bormioli S, Aloisi M: The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B 21:113–118, 1976.

59. Schlechter NL, Russell SM, Spencer EM, Nicholl CS: Evidence suggesting that the growth promoting effect of GH on cartilage in vivo is mediated by local production of somatomedin. Proc Nat Acad Sci USA 83:7923–7934, 1986.

60. Schultz E: Satellite cell behavior during skeletal muscle growth and regeneration. Med Sci Sport Exerc 21(S Suppl):S181–S186, 1989.
62. Schultz E, McCormick KM: Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123:213–257, 1994.
63. Singleton JR, Feldman EL: Insulin-like growth factor-I in muscle metabolism and myotherapies. Neurobiol Dis 8:541–554, 2001.
64. Snow MH: Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists. Anat Rec 227:437–446, 1990.
65. Snow MH: Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. Anat Rec 188:181–200, 1976.
66. Stockdale FE, Holtzer H: DNA synthesis and myogenesis. Exp Cell Res 24:508–520, 1961.
67. Taipale J, Keski-Oja J: Growth factors in the extracellular matrix. FASEB J 11:51–59, 1997.
68. Takahashi T, Fukuda K, Pan J, et al: Characterization of insulin-like growth factor-I-induced activation of the JAK/STAT pathway in rat cardiomyocytes. Circ Res 85:884–891, 1999.
69. Talmadge RJ, Roy RR, Chalmers GR, Edgerton VR: MHC and sarcoplasmic reticulum protein isoforms in functionally overloaded cat plantaris muscle fibers. J Appl Physiol 80:1296–1303, 1996.
70. Thomas G, Hall MN: TOR signaling and control of cell growth. Curr Opin Cell Biol 9:782–787, 1997.
71. Vandenburgh HH, Karlisch P, Shansky J, Feldstein R: Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol 260:C475–C484, 1991.
72. Yan Z, Biggs RB, Booth FW: Insulin-like growth factor immunoreactivity increases in muscle after acute eccentric contractions. J Appl Physiol 74:410–414, 1993.
73. Yang S, Alnaqeeb M, Simpson H, Goldspink G: Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Mus Res Cell Motil 17:487–495, 1996.
74. Yarasheski KE: Growth hormone effects on metabolism, body composition, muscle mass, and strength. Exerc Sport Sci Rev 22:285–312, 1994.