The elliptic quantum algebra $A_{q,p}(\widehat{sl}_n)$ and its bosonization at level one

Heng Fanb, Bo-yu Houb, Kang-jie Shia,b, Wen-li Yanga,b

a CCAST(World Laboratory)
P.O.Box 8730,Beijing 100080,China
b Institute of Modern Physics, P.O.Box 105, Northwest University, Xian 710069,China

October 16, 2018

Abstract

We extend the work of Foda et al and propose an elliptic quantum algebra $A_{q,p}(\widehat{sl}_n)$. Similar to the case of $A_{q,p}(\widehat{sl}_2)$, our presentation of the algebra is based on the relation $RLL = LLR^*$, where R and R^* are \mathbb{Z}_n symmetric R-matrices with the elliptic moduli chosen differently and a scalar factor is also involved. With the help of the results obtained by Asai et al, we realize type I and type II vertex operators in terms of bosonic free fields for \mathbb{Z}_n symmetric Belavin model. We also give a bosonization for the elliptic quantum algebra $A_{q,p}(\widehat{sl}_n)$ at level one.

Mathematics Subject Classification (1991): 81U40,81R50,58F07,16W30.

1 Introduction

The investigation of the symmetries in quantum integrable models has been attracting a great deal of interests. Recently, the quantum affine algebra $U_q(\widehat{sl}_2)$ has been studied extensively and applied successfully to the XXZ model in the anti-ferromagnetic regime,
see [1] and the references therein. The R-matrix associated with the XXZ model is the six-vertex model which is a trigonometric vertex model. Using the approach of free boson realization of the vertex operators, Jimbo et al obtained integral formulae for the correlation functions and the form factors for the XXZ model.

It is well known that we can obtain the six-vertex model from the Baxter’s [2] eight-vertex model by taking a special limit. And we know that the XYZ model, spin chain equivalent of the eight-vertex model, is a generalization of XXZ model. Foda et al [3] proposed an elliptic extension of the quantum affine algebra $A_{q,p}(\widehat{sl}_2)$ as an algebra of symmetries for the eight-vertex model. The Kyoto group also conjecture that type I and type II vertex operators for the elliptic algebra $A_{q,p}(\widehat{sl}_2)$ can be found. So, it is an open problem to give a bosonic free fields realization for vertex operators of the elliptic algebra $A_{q,p}(\widehat{sl}_2)$. It is also an interesting problem to extend the elliptic algebra $A_{q,p}(\widehat{sl}_2)$ to a more general case $A_{q,p}(\widehat{sl}_n)$ which would play the role of the symmetry algebra in Z_n Belavin model[11]. In this paper, we will study these problems.

It is now believed that the vertex operator approach [1,4] and the method of bosonization are very powerful to study correlation functions of solvable lattice models. It is firstly formulated for vertex models, and then extended to incorporate face models[5,6]. Lukyanov and Pugai [6] give successfully a bosonic realization of the vertex operators for ABF model [7]. This result is developped to to a more general case by Asai et al [8]. They give a bosonization of vertex operators for the $A_{n-1}^{(1)}$ face model [9], the ABF model being the case $n = 2$ with restricted condition. We know there is a face-vertex correspondence between $A_{n-1}^{(1)}$ face model and Z_n Belavin [10] vertex model. When $n = 2$, Z_n symmetric Belavin model reduces to the Baxter’s eight-vertex model. In our former work [11], we use the intertwiners of face-vertex correspondence, and obtained type I vertex operators for Z_n Belavin vertex model with the help of the results obtained by Asai et al [8]. The correlation functions of Z_n Belavin model are also obtained. In the present paper, continuing to extend the results in Ref.[8] and our former work in Ref.[11], we give a bosonization of type II vertex operators for Z_n Belavin model. Using the Miki’s [12] construction, we obtain a bosonic realization for the elliptic algebra $A_{q,p}(\widehat{sl}_n)$ (which is first proposed in this paper) at level one. As a special case of $n=2$, this will give the bosonization for $A_{q,p}(\widehat{sl}_2)$ algebra at level one.

The paper is organized as follows. In Section 2 we introduce the Z_n symmetric Belavin vertex model and give a definition for the elliptic algebra $A_{q,p}(\widehat{sl}_n)$. In Section 3 we define the vertex operators for the algebra $A_{q,p}(\widehat{sl}_n)$ at level one. Section 4 is devoted to the main results of this paper. Extending the work of Asai et al, we introduce another set of boson oscillators and obtain a bosonization of type II vertex operators for $A_{n-1}^{(1)}$ face model. Using face-vertex correspondence, we give a free boson realization of type I and type II vertex operators for Z_n Belavin model. This gives a bosonization of the elliptic
algebra $A_{q,p}(\mathfrak{sl}_n)$ at level one. Finally, we give summary and discussions in Section 5. Appendix contains some detailed calculations.

2 The model and the elliptic algebra $A_{q,p}(\mathfrak{sl}_n)$

We first introduce some notations. Let $n \in \mathbb{Z}^+$ and $n \geq 2$, $w \in \mathbb{C}$ and $\text{Im} w \geq 0$, $r \geq n+2$ and take real value, $\tau \in \mathbb{C}$ with $\text{Im} \tau > 0$.

Define matrix g, h, I_α with elements take values $g_{ij} = \omega^i \delta_{ij}$, $\omega = e^{\frac{2\pi i}{n}}$, $h_{jk} = \delta_{j+1,k}$, $I_\alpha = I(\alpha_1, \alpha_2) = g^\alpha h^\alpha$.

The elliptic functions defined as

$$\theta \left[a \atop b \right](z, \tau) = \sum_{m \in \mathbb{Z}} \exp\{\pi i[(m+a)^2 \tau + 2(m+a)(z+b)]\},$$

$$\sigma_\alpha(z, \tau) = \sigma(\alpha_1, \alpha_2)(z, \tau) = \theta \left[\frac{1}{2} + \frac{\alpha_1}{n} \atop \frac{1}{2} + \frac{\alpha_2}{n} \right](z, \tau).$$

Redefine $z \equiv vw$, $\tau \equiv rw$. The R-matrix of Z_n symmetric R-matrix can be defined as

$$\bar{R}(vw, rw) = \frac{\sigma_0(w, rw)}{\sigma_0(vw + w, rw)} \sum_{\alpha} W_\alpha(vw, rw) I_\alpha \otimes I_{\alpha}^{-1},$$

where

$$W_\alpha(wv, rw) = \frac{\sigma_\alpha(vw + \frac{w}{n}, rw)}{n \sigma_\alpha(w, rw)}.$$ (2)

It is necessary to introduce other notations

$$R(v) \equiv R(vw, rw) = x^{2v(\frac{1}{n} - 1)} \frac{g_1(v)}{g_1(-v)} \bar{R}(vw, rw),$$

where $x = e^{\pi i w}$ and

$$g_1(v) = \left\{ \frac{x^{2v} \xi^2}{x^{2n} \xi^{2n}} \right\} \left\{ \frac{x^{2n+2r-2} \xi^{2n}}{x^{2r} \xi^{2n}} \right\}$$

(4)

where $\{z\} = (z; x^{2r}, x^{2n})$ and $(z; p_1, \ldots, p_n) \equiv \prod_{\{n_i\}=0}^{\infty}(1 - z p_1^{n_1} \cdots p_m^{n_m})$.

3
The R-matrix $R(v, rw)$ have the following properties:

Yang – Baxter equation:

\[
R_{12}(v_1 - v_2)R_{13}(v_1 - v_3)R_{23}(v_2 - v_3) = R_{23}(v_2 - v_3)R_{13}(v_1 - v_3)R_{12}(v_1 - v_2)
\]

Unitarity:

\[
R_{12}(v)R_{21}(-v) = 1,
\]

Cross – unitarity:

\[
\sum_{jl} R_{kl}^{li}(v) R_{lj}^{kj}(-v) = \delta_{ii}\delta_{kk}.
\]

(5)

The parameters v, w, r in our parameterization for Z_n symmetric R-matrix in Eq.(3) are related to that of Foda et al [8] as follows: $q = e^{i\pi w} = x, \xi = x^v, p = x^{2r}$.

Define

\[
R^*(v) = \Delta_n^2(v) R(vw, (r - c)w),
\]

\[
\Delta_n(v) = -x^{\frac{2(n-2)}{n}} v \left(\frac{x^{2n-2+2v} x^{2n}}{(x^{2+2v} x^{2n}) (x^{2n-2+2v} x^{2n})} \right)
\]

(6)

Definition: Algebra $A_{q,p}(gl_n)$ is generated by $L_{ij}(v)$ satisfying the relation

\[
R^+(v_1 - v_2)L_1(v_1)L_2(v_2) = L_2(v_2)L_1(v_1)R^{++}(v_1 - v_2),
\]

(7)

where

\[
R^+(v) = R(v)\tau^{-1}(-v + \frac{1}{2}) , \quad R^{++}(v) = R^*(v)\tau^{-1}(-v + \frac{1}{2})
\]

\[
\tau(v) = x^{\frac{2(n-1)}{n}} v \left(\frac{x^{1+2v} x^{2n}}{(x^{2n-1+2v} x^{2n}) (x^{1+2v} x^{2n})} \right)
\]

(8)

By a standard argument based on the anti-symmetric fusion for Z_n symmetry R-matrix [10,15], we find that the following quantum determinant belongs to the center of $A_{q,p}(gl_n)$:

\[
q - \det L(v) = \sum_{\sigma \in S_n} \text{sign}(\sigma) L_{1,\sigma(1)}(v - n)L_{2,\sigma(2)}(v - n + 1) \ldots L_{n,\sigma(n)}(v - 1)
\]

(9)

Therefore, we can impose the further relation $q - \det L(v) = q^\xi$ and define the quotient algebra

\[
A_{q,p}(sl_n) = A_{q,p}(gl_n)/(q - \det L(v) - q^\xi)
\]

(10)

Remark: For the case $n = 2$, we have $\Delta_n(v) = -1$. The algebra $A_{q,p}(sl_n)$ reduces to the original elliptic algebra $A_{q,p}(sl_2)$ proposed by Foda et al[3].

4
3 Bosonization of the algebra $A_{q,p}(\hat{sl}_n)$ at level one

In the following, we will mainly restrict our attention to the level one case, and we have $c = 1$. The $R^*(v)$ now becomes
\[R^*(v) = \Delta^2_n(v)R(v, (r-1)w). \] (11)

The algebra relation remains as:
\[R^+(v_1 - v_2)L_1(v_1)L_2(v_2) = L_2(v_2)L_1(v_1)R^{*+}(v_1 - v_2). \] (12)

We first introduce type I vertex operator corresponding to the half-column transfer matrix of Z_n Belavin model [5,11,13], and type II vertex operator of Z_n Belavin model which are expected to create the eigenstates of the transfer matrix. We denote the two types of vertex operators as:

- Vertex operator of type I: $\Phi_i(v)$,
- Vertex operator of type II: $\Psi^*_i(v)$.

These Vertex operators satisfy the Faddeev-Zamolodchikov (ZF) algebra.
\[
\Phi_j(v_2)\Phi_i(v_1) = \sum_{lk} R^j_{ik}(v_1 - v_2)\Phi_l(v_1)\Phi_k(v_2),
\] (13)
\[
\Psi^*_i(v_1)\Psi^*_j(v_2) = \sum_{lk} \Psi^*_k(v_2)\Psi^*_l(v_1)R^{*l}_{kj}(v_1 - v_2)\Delta^{-1}_n(v_1 - v_2),
\] (14)
\[
\Phi_i(v_1)\Psi^*_j(v_2) = \tau^{-1}(v_1 - v_2)\Psi^*_j(v_2)\Phi_i(v_1).
\] (15)

In the next section, we will give a q-boson free fields realization of the type I and type II vertex operators listed above.

Introduce Miki’s construction [12],
\[L_{ij}(v) = \Phi_i(v)\Psi^*_j(v - \frac{1}{2}). \] (16)

Using relations of the ZF algebra Eq.(13)—Eq.(15), one can prove that the operator matrix L constructed above satisfy the defining relation of the elliptic quantum algebra Eq.(7). Here the relation $\frac{\tau(v + \frac{1}{2})}{\tau(-v + \frac{1}{2})} = \Delta^{-1}_n(v)$ has been used.

Thus if the bosonization of the type I and type II vertex operators at level one satisfying Eq.(13)—Eq.(15) can be find, we can find a free boson realization of the elliptic algebra $A_{q,p}(\hat{sl}_n)$ at level one.
4 Bosonization for vertex operators

In this section, we will use face-vertex correspondence relation to obtain a bosonization of vertex operators for Z_n Belavin model satisfying Eq.(13)—Eq.(15).

4.1 Bosonization for $A_{n-1}^{(1)}$ face model

We first give a brief review of the bosonization of type I vertex operators for $A_{n-1}^{(1)}$ face model [8], and then similarly construct the bosonization of type II vertex operators for $A_{n-1}^{(1)}$ face model.

Let $\varepsilon_\mu (1 \leq \mu \leq n)$ be the orthonormal basis in R^n, which are supplied with the inner product $<\varepsilon_\mu, \varepsilon_\nu> = \delta_{\mu\nu}$. Set

$$\tau_\mu = \varepsilon_\mu - \epsilon, \quad \epsilon = \frac{1}{n} \sum_{\mu=1}^{n} \varepsilon_\mu.$$

The type $A_{n-1}^{(1)}$ weight Lattice is the linear span of the $\tau_\mu : P = \sum_{\mu=1}^{n} Z \tau_\mu$. Let $\omega_\mu (1 \leq \mu \leq n - 1)$ be the fundamental weights and $\alpha_\mu (1 \leq \mu \leq n - 1)$ be the simple roots:

$$\omega_\mu = \sum_{\nu=1}^{\mu} \tau_\nu, \quad \alpha_\mu = \varepsilon_\mu - \varepsilon_{\mu+1}.$$

An ordered pair $(b, a) \in P^2$ is called admissible if and only if there exists $\mu (1 \leq \mu \leq n)$ such that $b - a = \tau_\mu$. An ordered set of four weights $(c\ b\ a)$ $\in P^4$ is called an admissible configuration around a face if and only if the pairs $(b, a), (c, b), (d, a)$ and (c, d) are admissible. To each admissible configuration around a face, one can associate the Botlzmann weight for it $[2, 7, 9]$.

We introduce the zero mode operators $q_\mu, p_\mu (1 \leq \mu \leq n)$, which satisfy:

$$[p_\mu, i q_\nu] = <\varepsilon_\mu, \varepsilon_\nu> = \delta_{\mu\nu}.$$

Set

$$Q_{\tau_\mu} = q_\mu - \frac{1}{n} \sum_{t=1}^{n} q_t, \quad P_{\tau_\mu} = p_\mu - \frac{1}{n} \sum_{t=1}^{n} p_t + \frac{1}{\sqrt{r(r-1)}} w_\mu,$$

where $\{w_j\}$ are generic complex numbers, which ensures that the intertwiners $\tilde{\varphi}(v)_\mu^{(k)}$ and $\varphi(v)^{(k)}_{\mu, \nu}$ (see the following subsection) could exist. We can also reconstruct the zero mode operators $P_\alpha, Q_\alpha [8]$ indexed by $\alpha \in P$, which are Z-linear in α and satisfy

$$[P_\alpha, i Q_\beta] = <\alpha, \beta> \quad (\alpha, \beta \in P).$$
Now we consider the oscillator part. Define free bosonic oscillators $\beta^j_m \ (1 \leq j \leq n, m \in Z/\{0\})$ satisfying relations

$$[\beta^j_m, \beta^k_n] = \begin{cases} m \sum_{[m]} \sum_{[n]} \delta_{n+m,0}, & j = k \\ -m \sum_{[m]} \sum_{[n]} \delta_{n+m,0}, & j \neq k. \end{cases} \tag{17}$$

Here we have used the standard notation $[a]_x = \frac{a - x - n}{x - x}$. The bosonic oscillators should satisfy the constraint: $\sum_{j=1}^n x^{-2jm} \beta^j_m = 0$. One can check that the above constraint is compatible with the commutation relations Eq.(18). Similarly, we can also introduce another set of bosonic oscillators $\beta^j_m \ (1 \leq j \leq n, m \in Z/\{0\})$ which will be used to construct the type II vertex operators and are related to the original bosons by: $\beta^j_m = \frac{1}{(r-1)m} \beta^j_m$. Use $\beta^j_m, \beta^{j'}_m$, we define operators

$$S^j_m = (\beta^j_m - \beta^{j+1}_m)x^{-jm}, \quad \Omega^j_m = \sum_{k=1}^{j} x^{(j-2k+1)m} \beta^k_m; \quad S^{j'}_m = (\beta^{j'}_m - \beta^{j'+1}_m)x^{-jm}, \quad \Omega^{j'}_m = \sum_{k=1}^{j} x^{(j-2k+1)m} \beta^k_m. \tag{18, 19}$$

Define the bosonic Fock spaces $\mathcal{F}_{l,k} = c(\{\beta^j_1, \beta^{j'}_1, \cdots \}_{1 \leq j \leq n}) |l, k >$ and the vacuum vector

$$|l, k > = e^{i \sqrt{-r} Q_l - i \sqrt{r} Q_k} |0, 0 > \tag{20}$$

In the following part of this paper, we will construct the bosonic realization of the vertex operators defined in Eq.(13)—Eq.(15) on the space $\sum_{l,k \in P} \mathcal{F}_{l,k}$. For the generic r (e.g. irrational number), we can introduce two type independent operators \hat{K} and \hat{L} with $\hat{K} = \sum_{\mu} \hat{k}_\mu \xi_\mu$, $\hat{L} = \sum_{\mu} \hat{l}_\mu \xi_\mu$, which act on the space $\sum_{l,k \in P} \mathcal{F}_{l,k}$ as

$$\hat{k}_\mu F_{l,k} = (w_\mu + k_\mu) F_{l,k}, \quad \text{if} \quad k = \sum_{\mu} k_\mu \xi_\mu$$

$$\hat{l}_\mu F_{l,k} = (w_\mu + l_\mu) F_{l,k}, \quad \text{if} \quad l = \sum_{\mu} l_\mu \xi_\mu$$

Let us introduce some basic operators acting on the space $\sum_{l,k \in P} \mathcal{F}_{l,k}$

$$\eta_j(v) = e^{-i \sqrt{-r} \Omega_m x^{-2vm}} e^{-\sum_{m \neq 0} \frac{1}{m} \Omega_m x^{-2vm}};$$

$$\xi_j(v) = e^{i \sqrt{-r} \Omega_m x^{-2vm}} e^{\sum_{m \neq 0} \frac{1}{m} \Omega_m x^{-2vm}};$$

$$\eta^{j'}_j(v) = e^{i \sqrt{-r} \Omega_m x^{-2vm}} e^{\sum_{m \neq 0} \frac{1}{m} \Omega_m x^{-2vm}};$$

$$\xi^{j'}_j(v) = e^{-i \sqrt{-r} \Omega_m x^{-2vm}} e^{-\sum_{m \neq 0} \frac{1}{m} \Omega_m x^{-2vm}}. \tag{21}$$
We can obtain the normal order relations which will be presented in Appendix. From those results, we have the following commutation relations

\[
\begin{align*}
\xi_j(v_1)\xi_{j+1}(v_2) &= -\left[\frac{v_1 - v_2 + \frac{1}{2}}{v_1 - v_2 - \frac{1}{2}}\right]\xi_{j+1}(v_2)\xi_j(v_1), \\
\xi_j(v_1)\eta_j(v_2) &= -\left[\frac{v_1 - v_2 + \frac{1}{2}}{v_1 - v_2 - \frac{1}{2}}\right]\eta_j(v_2)\xi_j(v_1), \\
\xi_j(v_1)\xi_j(v_2) &= \left[\frac{v_1 - v_2 - 1}{v_1 - v_2 + 1}\right]\xi_j(v_2)\xi_j(v_1),
\end{align*}
\]

where

\[
[v] = x^{v^2 - v(x^{2v}; x^{2r})(x^{2r}; x^{2v})(x^{2r}; x^{2v})} = \sigma\left(\frac{v}{r}, -\frac{1}{r}w\right) \times \text{const.}
\]

The bosonization of type I vertex operator in $A_{n-1}^{(1)}$ face model was given by Asai et al.[8].

\[
\phi_{\mu}(v) = \int \prod_{j=1}^{\mu-1} \frac{dx_{2v_j}}{2\pi i x_{2v_j}} \eta_1(v)\xi_1(v_1)\cdots\xi_{\mu-1}(v\mu-1) \prod_{j=1}^{\mu-1} f(v_j - v_{j-1}, \pi_{j\mu}),
\]

\[
\pi_{\mu} = \sqrt{r(r-1)}P_{\pi_{\mu}}, \quad \pi_{j\mu} = \pi_{\mu} - \pi_{\nu}, \quad v_0 = v, \quad f(v, w) = \left[\frac{v + \frac{1}{2} - w}{v - \frac{1}{2}}\right].
\]

The integration contours are simple closed curves around the origin satisfying

\[x|x^{2v_j-1}| < |x^{2v_j}| < x^{-1}|x^{2v_j-1}|
\]

We have also another set of relations

\[
\begin{align*}
\xi'_j(v_1)\xi'_{j+1}(v_2) &= -\left[\frac{v_1 - v_2 - \frac{1}{2}'}{v_1 - v_2 + \frac{1}{2}'}\right]\xi'_{j+1}(v_2)\xi'_j(v_1), \\
\xi'_j(v_1)\eta'_j(v_2) &= -\left[\frac{v_1 - v_2 - \frac{1}{2}'}{v_1 - v_2 + \frac{1}{2}'}\right]\eta'_j(v_2)\xi'_j(v_1), \\
\xi'_j(v_1)\xi_j(v_2) &= \left[\frac{v_1 - v_2 + 1'}{v_1 - v_2 - 1'}\right]\xi_j(v_2)\xi'_j(v_1),
\end{align*}
\]

where

\[
[v]' = x^{v^2 - v(x^{2v}; x^{2r-2})(x^{2r-2}; x^{2v-2})(x^{2r-2}; x^{2v-2})} = \sigma\left(\frac{v}{r-1}, -\frac{1}{(r-1)w}\right) \times \text{const}'.
\]
Construct type II vertex operators in $A_{n-1}^{(1)}$ face model as:

$$
\phi'_\mu(v) = \oint \frac{d^2x}{2\pi i x^2 v_j} \eta'_1(v) \xi'_1(v_1) \cdots \xi'_{\mu-1}(v_{\mu-1}) \prod_{j=1}^{\mu-1} f'(v_j - v_{j-1}, \pi_{j\mu}),
$$

where

$$
f'(v, w) = \frac{[v - \frac{1}{2} + w]'}{[v + \frac{1}{2}]'}.
$$

Here the integration contours are simple closed curves around the origin satisfying

$$
x|x^{2v_j}| < |x^{2v_j}| < x^{-1}|x^{2v_j-1}|
$$

Define the face Boltzmann weights for admissible configurations around a face

$$
\tilde{W}(a|v)^{\mu\nu} = 1,
$$

$$
\tilde{W}(a|v)^{\mu\nu} = \frac{[v + a_{\mu\nu}] [1]}{[v + 1][a_{\mu\nu}]}, \quad \mu \neq \nu,
$$

$$
\tilde{W}(a|v)^{\mu\nu} = \frac{[v|[\mu - 1]}{[v + 1][a_{\mu\nu}]}, \quad \mu \neq \nu.
$$

We also define another Boltzmann weights

$$
\tilde{W}'(a|v)^{\mu\nu} = 1,
$$

$$
\tilde{W}'(a|v)^{\mu\nu} = \frac{[v + a_{\mu\nu}] [1]}{[v + 1][a_{\mu\nu}]}, \quad \mu \neq \nu,
$$

$$
\tilde{W}'(a|v)^{\mu\nu} = \frac{[v|[\mu - 1]}{[v + 1][a_{\mu\nu}]}, \quad \mu \neq \nu.
$$

Following the results obtained by Asai et al in ref. [8], we have

$$
\phi_\mu(v_2)\phi_\nu(v_1) = r_1(v_2 - v_1) \sum_{\mu', \nu'} \phi_{\mu'}(v_1)\phi_{\nu'}(v_2)\tilde{W}(\pi|v_1 - v_2)^{\mu\nu}_{\mu'\nu'}.
$$

Using the method introduced by Asai et al in ref. [8] and noting that

$$
f'(v, \pi_{j\mu} - r) = \frac{[v - \frac{1}{2} + \pi_{j\mu} - r]'}{[v + \frac{1}{2}]'} = \frac{[v - \frac{1}{2} + \pi_{j\mu} - 1]'}{[v + \frac{1}{2}]'},
$$

$$
f'(v, \pi_{\mu\nu} + r) = -f(-v, \pi_{\mu\nu} + 1)|_{r \rightarrow r - 1},
$$

$$
f'(v, \pi_{j\mu} + r) = -f(-v, \pi_{j\mu} - 1)|_{r \rightarrow r - 1},
$$

$$
f'(v, \pi_{\mu\nu} - r) = -f(-v, \pi_{\mu\nu} - 1)|_{r \rightarrow r - 1}.
$$
we can derive the following commutation relations:

\[\phi^{\prime}_{\mu}(v_1)\phi_{\nu}(v_2) = r^I_1(v_1 - v_2) \sum_{\mu', \nu'} \phi^{\prime}_{\mu'}(v_2)\phi_{\nu'}(v_1) \tilde{W}^{\mu'\nu'}_{\nu'\mu'}(\pi|v_1 - v_2), \tag{33} \]

\[\phi_{\mu}(v_1)\phi^{\prime}_{\nu}(v_2) = \tau(v_1 - v_2)\phi_{\nu}(v_2)\phi_{\mu}(v_1), \tag{34} \]

where

\[r_1(v) = \frac{2^{(r-1)(n-1)\nu}}{g_1(-v)} g_1(v), \quad r_1^{\prime}(v) = \frac{2^{(r-1)\nu}}{g_1(-v)} g_1(v). \]

One can see that \(\phi_{\mu} \), \(\phi^{\prime}_{\mu} \) are the intertwiners between the Fock space

\[\phi_{\mu}(v) : F_{l,k} \longrightarrow F_{l,k+\tau_\mu}, \quad \phi^{\prime}_{\mu}(v) : F_{l,k} \longrightarrow F_{l+\tau_{\mu},k} \]

4.2 Face-vertex correspondence and modular transformation

It is convenient to introduce some notations. Define

\[
\tilde{R}^{(1)}(v) = \frac{\sigma_0(\frac{1}{r}, -\frac{1}{rw})}{\sigma_0(\frac{v+1}{r}, -\frac{1}{rw})} \sum_\alpha \sigma_\alpha \left(\frac{v}{r}, -\frac{1}{rw} \right) I_\alpha \otimes I_\alpha^{-1},
\]

\[
\tilde{R}^{(1)}(v) = \frac{\sigma_0(\frac{1}{r-1}, -\frac{1}{(r-1)w})}{\sigma_0(\frac{v+1}{r-1}, -\frac{1}{(r-1)w})} \sum_\alpha \sigma_\alpha \left(\frac{v}{r-1}, -\frac{1}{(r-1)w} \right) I_\alpha \otimes I_\alpha^{-1},
\]

\[
\varphi^{(k)}_{\mu,\tilde{K}}(v) = \theta^{(k)}(v + n < \tilde{K}, \epsilon_\mu >) + (n - 1) - \frac{1}{r},
\]

\[
\varphi^{(k)}_{\tilde{L},\mu}(v) = \theta^{(k)}(v + n < \tilde{L}, \epsilon_\mu >) + P_0 - \frac{1}{(r-1)w},
\]

\[
\theta^{(k)}(z, \tau) = \theta \left[\begin{array}{c} -\frac{1}{n} \\ 0 \end{array} \right] (z, n\tau),
\]

Although we choose the different function \(\theta^{(k)}(v) \) from the ordinary one[15], the face-vertex correspondence relation is still survived

\[
\sum_{k,l} \tilde{R}^{(1)}(v_1 - v_2)_{ij}^{kl} \varphi^{(k)}_{\nu,\tilde{K}+\epsilon_\mu} (v_1) \varphi^{(l)}_{\mu,\tilde{K}} (v_2) = \sum_{\mu', \nu'} \tilde{W}(\tilde{K}|v_1 - v_2)_{\nu',\mu'}^{\mu,\nu} \varphi^{(i)}_{\mu',\tilde{K}} (v_1) \varphi^{(j)}_{\nu,\tilde{K}+\epsilon_\mu} (v_2)
\]

\[
\sum_{k,l} \tilde{R}^{(1)}(v_1 - v_2)_{ij}^{kl} \varphi^{(k)}_{\tilde{L},\mu} (v_1) \varphi^{(l)}_{\tilde{L}-\epsilon_\mu,\nu} (v_2) = \sum_{\mu', \nu'} \tilde{W}'(\tilde{L}|v_1 - v_2)_{\nu',\mu'}^{\mu,\nu} \varphi^{(i)}_{\tilde{L}-\epsilon_\mu,\nu} (v_1) \varphi^{(j)}_{\tilde{L},\mu} (v_2)
\]
For the generic number \(\{w_j\} \), we can introduce intertwiners \(\tilde{\varphi}_{\mu,\tilde{R}}(v) \) and \(\tilde{\varphi}_{L,\mu}^{(k)}(v) \) satisfying relations\([15]\)

\[
\sum_k \tilde{\varphi}_{\mu,\tilde{R}}^{(k)}(v) \varphi_{\nu,\tilde{R}}^{(k)}(v) = \delta_{\mu\nu}, \quad \sum_k \tilde{\varphi}_{L,\mu}^{(k)}(v) \varphi_{L,\nu}^{(k)}(v) = \delta_{\mu\nu}.
\]

So it is easy to find the following face-vertex correspondence relations

\[
\sum_{k,l} \tilde{R}^{(1)}(v_1 - v_2)_{kl} \tilde{\varphi}_{\mu,\tilde{R}}^{(k)}(v_1) \tilde{\varphi}_{\nu,\tilde{R} + \epsilon_{\mu}}^{(l)}(v_2) = \sum_{\mu',\nu'} \tilde{W}(\tilde{R}|v_1 - v_2)_{\mu'\nu'} \tilde{\varphi}_{\nu',\tilde{R} + \epsilon_{\nu'}}^{(i)}(v_1) \tilde{\varphi}_{\nu,\tilde{R}}^{(j)}(v_2),
\]

\[
\sum_{k,l} \tilde{R}^{(1)}(v_1 - v_2)_{kl} \tilde{\varphi}_{L,\mu}^{(k)}(v_1) \tilde{\varphi}_{L,\nu}^{(l)}(v_2) = \sum_{\mu',\nu'} \tilde{W}'(\tilde{L}|v_1 - v_2)_{\mu'\nu'} \tilde{\varphi}_{L,\nu'}^{(i)}(v_1) \tilde{\varphi}_{L,\mu}^{(j)}(v_2). \tag{36}
\]

Introduce the modular transformation

\[
\theta \left[\frac{1}{2} + a \right] \left(\frac{z}{\tau}, -\frac{1}{\tau} \right) = \theta \left[\frac{1}{2} + b \right] \left(\frac{z}{\tau} \right) \exp\{ \frac{z^2}{\tau} + a - b + 2ab \} \times \text{const.,} \tag{38}
\]

where the const. only depends on \(\tau \). Therefore, we can derive the following relations for \(Z_n \) symmetry R-matrices \(\tilde{R}^{(1)}(v) \) and \(\tilde{R}^{(1)}(v) \)

\[
(M \otimes M)\tilde{R}^{(1)}(v)(M^{-1} \otimes M^{-1}) = x^{\frac{2v(1-n)}{n}} P \tilde{R}(vw, rw) P, \tag{39}
\]

\[
(M \otimes M)\tilde{R}^{(1)}(v)(M^{-1} \otimes M^{-1}) = x^{\frac{2v(1-n)}{n(r-1)}} P \tilde{R}(vw, (r-1)w) P, \tag{40}
\]

where \(P \) is the permutation operator acting on the tensor space \(V \otimes V \) as \(P(e_i \otimes e_j) = e_j \otimes e_i \), and the matrix \((M)_{ik} = \omega^{-ik} = \exp \{ -\frac{2i\pi}{n} l k \} \) which have the following properties

\[
MgM^{-1} = h^{-1}, \quad MhM^{-1} = g.
\]

4.3 Bosonization for \(Z_n \) Belavin model

Based on the bosonization for \(A_n^{(1)} \) face model and the face-vertex correspondence, we will construct the bosonization of two type vertex operators for \(Z_n \) Belavin model.

Firstly, define

\[
\Phi_j(v) = \sum_{i=1}^{n} \sum_{\mu=1}^{n} M_{ji} \phi_{\mu}^{(i)}(v) \varphi_{\mu,\tilde{R}}^{(i)}(-v), \tag{41}
\]

\[
\Psi_j(v) = \sum_{i=1}^{n} \sum_{\mu=1}^{n} M_{ji} \phi_{\mu}^{(i)}(v) \varphi_{L,\mu}^{(i)}(-v), \tag{42}
\]

\[11\]
which satisfy the commutation relations on the space $\sum_{l,k\in P} \oplus F_{l,k}$

\[\Phi_j(v_2)\Phi_i(v_1) = \sum_{lk} R_{lk}^{ij}(v_1 - v_2)\Phi_l(v_1)\Phi_k(v_2), \quad (43) \]

\[\Psi_i(v_1)\Psi_j(v_2) = \sum_{lk} \Psi_k(v_2)\Psi_l(v_1)R^{*ij}_{lk}(v_1 - v_2)\Delta_n^{-1}(v_1 - v_2), \quad (44) \]

\[\Phi_i(v_1)\Psi_j(v_2) = \tau(v_1 - v_2)\Psi_j(v_2)\Phi_i(v_1). \quad (45) \]

Based on the anti-symmetric fusion for Z_n symmetric R-matrix [10,15], we can define

\[\Psi_j^*(v) = \Psi(1,...,j-1,j+1,...,n)(v) \equiv \sum_{\sigma \in S_{n-1}} \text{sign}(\sigma)\Psi_{\sigma(1)}(v + n - 1)\Psi_{\sigma(2)}(v + n - 2)....\Psi_{\sigma(n)}(v + 1), \]

and derive the following relations

\[\Phi_j(v_2)\Phi_i(v_1) = \sum_{lk} R_{lk}^{ij}(v_1 - v_2)\Phi_l(v_1)\Phi_k(v_2), \quad (46) \]

\[\Psi_i^*(v_1)\Psi_j^*(v_2) = \sum_{lk} \Psi_i^*(v_2)\Psi_l^*(v_1)R^{*ij}_{lk}(v_1 - v_2)\Delta_n^{-1}(v_1 - v_2), \quad (47) \]

\[\Phi_i(v_1)\Psi_j^*(v_2) = \tau^{-1}(v_1 - v_2)\Psi_j^*(v_2)\Phi_i(v_1). \quad (48) \]

Therefore, we obtain the bosonic realization of vertex operators $\Phi_i(v)$ and $\Psi_i^*(v)$ defined in section 2. Moreover, we obtain the bosonic realization for $A_{q,p}(\hat{sl}_n)$ algebra at level one through Miki construction Eq.(16). Thus this algebra is self-consistent.

Remark: For the case $n=2$ ($\Delta_2 = -1$), the bosonic operators $\Phi_i(v)$ and $\Psi_i^*(v)$ become the type I and type II vertex operators of $A_{q,p}(\hat{sl}_2)$ at level one proposed by Foda et al [3].

Discussions

For $n=2$, the algebra $A_{q,p}(\hat{sl}_2)$ reduces to the original one $A_{q,p}(\hat{sl}_2)$ algebra which was first proposed by Foda et al [3]. The quantum affine algebra $U_q(\hat{sl}_2)$ is a degeneration algebra of $A_{q,p}(\hat{sl}_2)$ with $p = 0$ [3]. Unfortunately, due to the nontrivial scalar factor $\Delta_n(v)$ when $2 < n$, the relation between the elliptic algebra $A_{q,p}(\hat{sl}_n)$ and $U_q(\hat{sl}_n)$ is still an open problem.

As discussed in [8], vertex operators $\phi_{\mu}(v)$ in $A_{n-1}^{(1)}$ face model was the q-analog of the chiral primary fields of q-deformed W-algebras[14]. However, the vertex operators $\Phi_i(v)$ and $\Psi_j^*(v)$ in Z_n Belavin model are reconstructed by the vertex operators of $A_{n-1}^{(1)}$ face model through the face-vertex correspondence relations. Moreover, the elliptic algebra $A_{q,p}(\hat{sl}_n)$ at
level one can be constructed by Miki construction. So, there exists some relations between the algebra \(A_{q,p}(sl_n) \) and q-deformed W-algebras.

Besides the degenerate algebra \(A_{q,0}(sl_n) \), there exists another degenerate algebra \(A_{h,\eta}(sl_n) \) [16], which can be obtained by the scaling limit \((v = \frac{\hbar}{\eta}, q = x, p = x^\eta, x \to 1)\) of the elliptic algebra \(A_{q,p}(sl_n) \). The resulted algebra \(A_{h,\eta}(sl_n) \) is some deformation of Yangian double \(DY(sl_n) \) [16,17]. In the scaling limit case the R-matrix entering the \(\Psi^*\Psi^* \) commutation relation would be interpreted as the S-matrix for soliton of affine Toda theory (In the case of \(n=2 \), it is related to sine-Gordon theory [17]). Moreover, the \(h \)-deformed W-algebra [18] would be obtained by the quantum Hamiltonian reduction from the degenerate algebra \(A_{h,\eta}(sl_n) \).

In our formulation, the algebra \(A_{q,p}(sl_n) \) is formulated in the framework of the “RLL” approach in terms of the L-operator. It would be of great importance to find an analogous Drinfeld currents for the algebra \(A_{q,p}(sl_n) \). For a special case \(A_{q,p}(sl_2) \) with the scaling limit, the Drinfeld currents for the algebra \(A_{h,\eta}(sl_2) \) was found to be the Gauss coordinates of the L-operator[16]. We expect that the same relation would be existed for the elliptic algebra \(A_{q,p}(sl_n) \).

Appendix

A. The normal order relation for basic operator

We list the relations as three series:

Type I:

\[
\eta_1(v_1)\eta_1(v_2) = x^{\frac{2(r-1)(n-1)v_1}{nr}}g_1(v_2 - v_1) : \eta_1(v_1)\eta_1(v_2) : \\
\eta_j(v_1)\xi_j(v_2) = x^{\frac{2(1-r)v_1}{r}}s(v_2 - v_1) : \eta_j(v_1)\xi_j(v_2) : \\
\xi_j(v_2)\eta_j(v_1) = x^{\frac{2(1-r)v_2}{r}}s(v_1 - v_2) : \xi_j(v_2)\eta_j(v_1) : \\
\xi_j(v_1)\xi_{j+1}(v_2) = x^{\frac{2(1-r)v_1}{r}}s(v_2 - v_1) : \xi_j(v_1)\xi_{j+1}(v_2) : \\
\xi_{j+1}(v_2)\xi_j(v_1) = x^{\frac{2(1-r)v_2}{r}}s(v_1 - v_2) : \xi_{j+1}(v_2)\xi_j(v_1) : \\
\xi_j(v_1)\xi_j(v_2) = x^{\frac{4(r-1)v_1}{r}}t(v_2 - v_1) : \xi_j(v_1)\xi_j(v_2) : \\
\xi_j(v_1)\xi_l(v_2) = : \xi_j(v_1)\xi_l(v_2) : \quad \text{if } |l - j| > 1, \\
\eta_j(v_1)\xi_l(v_2) = : \eta_j(v_1)\xi_l(v_2) : \quad \text{if } l \neq j.
\]

Type II:

\[
\eta'_1(v_1)\eta'_1(v_2) = x^{\frac{2(r-1)(n-1)v_1}{(r-1)n}}g'_1(v_2 - v_1) : \eta'_1(v_1)\eta'_1(v_2) :
\]

(49)
Type I with type II:

\[
\begin{align*}
\xi_j'(v_1)\eta_j'(v_2) &= x^{-2r_1}v_1 s(v_2 - v_1) \colon \xi_j'(v_1)\eta_j'(v_2) : \\
\eta_j'(v_2)\xi_j'(v_1) &= x^{-2r_1}v_2 s(v_1 - v_2) \colon \eta_j'(v_2)\xi_j'(v_1) : \\
\xi_j'(v_1)\xi_j'_{j+1}(v_2) &= x^{-2r_1}v_1 s(v_2 - v_1) \colon \xi_j'(v_1)\xi_j'_{j+1}(v_2) : \\
\xi_{j'}_{j+1}(v_2)\xi_j'(v_1) &= x^{-2r_2}v_2 s(v_2 - v_1) \colon \xi_{j'}_{j+1}(v_2)\xi_j'(v_1) : \\
\xi_j'(v_1)\xi_j'(v_2) &= x^{-2r_1}v_1 |'(v_2 - v_1) \colon \xi_j'(v_1)\xi_j'(v_2) : \\
\xi_j'(v_1)\xi_j'(v_2) &= : \xi_j'(v_1)\xi_j'(v_2) : \text{ if } |l - j| > 1, \\
\eta_j'(v_1)\xi_j'(v_2) &= : \eta_j'(v_1)\xi_j'(v_2) : \text{ if } l \neq j,
\end{align*}
\]

(50)

\[
\begin{align*}
\eta_j(v_1)\xi_j'(v_2) &= (x^{2v_1} - x^{2v_2}) \colon \xi_j'(v_2)\eta_j(v_1) : \\
\xi_j'(v_2)\eta_j(v_1) &= (x^{2v_2} - x^{2v_1}) \colon \eta_j(v_1)\xi_j'(v_2) : \\
\xi_j(v_1)\eta_j'(v_2) &= (x^{2v_1} - x^{2v_2}) \colon \xi_j(v_1)\eta_j'(v_2) : \\
\eta_j'(v_2)\xi_j(v_1) &= (x^{2v_2} - x^{2v_1}) \colon \eta_j'(v_2)\xi_j(v_1) : \\
\eta_j(v_1)\xi_j'(v_2) &= : \eta_j(v_1)\xi_j'(v_2) := \xi_j'(v_2)\eta_j(v_1) \text{ if } l \neq j, \\
\eta_j'(v_1)\xi_j'(v_2) &= : \eta_j'(v_1)\xi_j'(v_2) := \xi_j(v_2)\eta_j'(v_1) \text{ if } l \neq j, \\
\xi_j(v_1)\xi_j'(v_2) &= (x^{2v_1} - x^{2v_2}) \colon \xi_j(v_1)\xi_j'(v_2) : \\
\xi_{j'}_{j+1}(v_2)\xi_j(v_1) &= (x^{2v_2} - x^{2v_1}) \colon \xi_{j'}_{j+1}(v_2)\xi_j(v_1) : \\
\xi_j(v_1)\xi_j'(v_2) &= x^{-4v_1} \frac{1}{(1 - x^{2v_2 - v_1})(1 - x^{-1}x^{2v_2 - v_1})} \colon \xi_j(v_1)\xi_j'(v_2) : \\
\xi_j'(v_2)\xi_j(v_1) &= x^{-4v_2} \frac{1}{(1 - x^{2v_1 - v_2})(1 - x^{-1}x^{2v_1 - v_2})} \colon \xi_j'(v_2)\xi_j(v_1) : \\
\xi_j(v_1)\xi_j'(v_2) &= : \xi_j(v_1)\xi_j'(v_2) : \text{ if } |j - l| > 1, \\
\xi_j'(v_2)\xi_j(v_1) &= : \xi_j'(v_2)\xi_j(v_1) : \text{ if } |j - l| > 1, \\
\eta_j(v_1)\eta_j'(v_2) &= x^{2v_1 \sum_{j=0}^{n} \frac{x^{2n-j}x^{2v_2-v_1}; x^{2n}}{(x^jx^{2v_2-v_1}; x^{2n})}} \colon \eta_j(v_1)\eta_j'(v_2) : \\
\eta_j'(v_2)\eta_j(v_1) &= x^{2v_2 \sum_{j=0}^{n} \frac{x^{2n-j}x^{2v_1-v_2}; x^{2n}}{(x^jx^{2v_1-v_2}; x^{2n})}} \colon \eta_j'(v_2)\eta_j(v_1) :
\end{align*}
\]

(51)

where

\[
\begin{align*}
g_1(v) &= \frac{\{x^{2n+2v}\} \{x^{2n+2r-2}x^{2n}\}}{\{x^{2n}x^{2n}\} \{x^{2r}x^{2r}\}}, \\
s(v) &= \frac{(x^{2r-1}x^{2v}; x^{2r})}{(x^{2v}; x^{2r})}, \\
t(v) &= (1 - x^{2v}) \frac{x^{2r-2}x^{2v}; x^{2r}}{(x^{2v}; x^{2r})},
\end{align*}
\]
using the exchange relation of \(\phi \)

\[
g'(v) = \left\{ x^{2n} \right\} v \left\{ x^{2n+2r-2} \right\} v', \quad \{ z \}' = (z; x^{2r-2}, x^{2n})
\]

\[
s'(v) = \frac{(x^{2r-1}x^{2r-2})}{(x^{-1}x^{2r-2})}, \quad t'(v) = (1 - x^{2r}) \frac{(x^{-2}x^{2r}; x^{2r-2})}{(x^{2r}x^{2r-2})}
\]

(52)

B. Proof of the commutation relations Eq.(43)-Eq.(45)

Notice that the commutation relation for zero mode operators, we have

\[
\phi_{\nu}(v_1)\tilde{\varphi}^{(k)}_{\mu,\bar{R}}(v_2) = \varphi^{(k)}_{\mu,\bar{R}}(v_2)\phi_{\nu}(v_1), \quad \phi'_{\nu}(v_1)\varphi^{(k)}_{\mu,\bar{R}}(v_2) = \tilde{\varphi}^{(k)}_{\mu,\bar{R}}(v_2)\phi'_{\nu}(v_1),
\]

\[
\phi_{\nu}(v_1)\tilde{\varphi}^{(k)}_{L,\mu}(v_2) = \varphi^{(k)}_{L,\mu}(v_2)\phi_{\nu}(v_1) , \quad \phi'_{\nu}(v_1)\varphi^{(k)}_{L,\mu}(v_2) = \tilde{\varphi}^{(k)}_{L,\mu}(v_2)\phi'_{\nu}(v_1).
\]

Define

\[
Z_j(v) = \sum_{\mu=1}^{n} \phi_{\mu}(v)\tilde{\varphi}^{(i)}_{\mu,\bar{R}}(-v), \quad Z'_j(v) = \sum_{\mu=1}^{n} \phi'_{\mu}(v)\tilde{\varphi}^{(i)}_{-L,\mu}(-v).
\]

Notice that

\[
\tilde{W}(\tilde{\pi}|v)^{\nu'\mu'}_{\nu\mu}|_{F_{i,k}} = \tilde{W}(\tilde{K}|v)^{\nu'\mu'}_{\nu\mu}|_{F_{i,k}}
\]

using the exchange relation of \(\phi_{\mu}(v) \) in Eq.(32) and the face-vertex correspondence by \(\tilde{\varphi}^{(k)}_{\mu,\bar{R}}(v) \) in Eq.(36), we have

\[
Z_j(v_2)Z_i(v_1) = \sum_{l,k} r_1(v_2 - v_1)(P \tilde{R}^{(1)}(v_1 - v_2)P)_{l,k}^{ij}Z_l(v_1)Z_k(v_2).
\]

Notice the properties of \(Z_n \) symmetry R-matrix under the modular transformation Eq.(39), we obtain

\[
Z_j(v_2)Z_i(v_1) = \sum_{l,k} (M^{-1} \otimes M^{-1} R(v_1 - v_2)M \otimes M)_{l,k}^{ij}Z_l(v_1)Z_k(v_2)
\]

Due to \(\Phi_j(v) = \sum_{i=1}^{n} M_{ji}Z_i(v) \), one can obtain Eq.(43). Using the same method and notice that

\[
\tilde{W}^{r}(\tilde{L}|v)^{\nu'\mu'}_{\nu'\mu} = \tilde{W}^{r}(\tilde{\pi}|v)^{\nu'\mu'}_{\nu'\mu}, \quad \frac{r'_1(v)}{r_1(-v)}|_{r \rightarrow r-1} = \Delta_n(v);
\]

\[
\tilde{W}^{r}(\tilde{L}|v)^{\nu'\mu'}_{\nu'\mu} |_{F_{i,k}} = \tilde{W}^{r}(\tilde{\pi}|v)^{\nu'\mu'}_{\nu'\mu} |_{F_{i,k}}
\]

we can obtain Eq.(44) and Eq.(45).
References

[1] Jimbo, M., Miwa, T.: Algebraic Analysis of Solvable Lattice Models, CBMS Regional Conference Series in Mathematics, col.85. AMS.1994.

[2] Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London, 1982.

[3] Foda, O., Iohara, K., Jimbo, M., Kedem, R., Miwa, T., Yan, H.: An elliptic quantum algebra for \hat{sl}_2. Lett. Math. Phys. 32(1994), 259; Notes on highest weight modules of the elliptic algebra $A_{q,p}(\hat{sl}_2)$. Prog. Theor. Phys., Supplement, 118(1995), 1.

[4] Davies, B., Foda, O., Jimbo, M., Miwa, T., Nakayashiki, A.: Diagonalization of the XXZ Hamiltonian by vertex operators. Comm. Math. Phys. 151(1993), 89.

[5] Foda, O., Jimbo, M., Miwa, T., Miki, K., Nakayashiki, A.: Vertex operators in solvable lattice models. J. Math. Phys. 35(1994), 13; Jimbo, M., Miwa, T. and Nakayashiki, A.: J. Phys. A 26 (1993), 2199.

[6] Lukyanov, S.L., Pugai, Ya.: Multi-point local height probabilities in the integrable RSOS model, Nucl. Phys. B473[FS](1996), 631.

[7] Andrews, G.E., Baxter, R.J., Forrester, P.J., Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities. J. Stat. Phys. 35(1984), 193.

[8] Asai, Y., Jimbo, M., Miwa, T., Pugai, Ya.: Bosonization of vertex operators for the $A^{(1)}_{n-1}$ face model, J. Phys. A 29 (1996), 6595.

[9] Jimbo, M., Miwa, T., Okado, M.: Local state probabilities of solvable lattice models: an $A^{(1)}_{n-1}$ family. Nucl. Phys. B300[FS22](1988), 74.

[10] Belavin, A.A.: Nucl. Phys. B180(1981), 189; Richey, M.P., Tracy, C.A., J. Stat. Phys. 42(1986), 311.

[11] Fan, H., Hou, B.Y., Shi, K.J., Yang, W.L.: Bosonization of vertex operators for Zn symmetric Belavin model and its correlation functions, hep-th/9703126; Fan, H., Hou, B.Y., Shi, K.J., Yang, W.L. and Yang, Z.X.: J. Phys. A 28 (1995), 3157.

[12] Miki, K.: Creation/annihilation operators and form factors of the XXZ model. Phys. Lett. A186(1994), 217.

[13] Quano, Y.-H.: Mod. Phys. Lett. A 8 , No.35(1993), 3363.
[14] Awata, H., Kubo, H., Odake, S., and Shiraishi, J.: Comm. Math. Phys. 179 (1996), 401; Feigin, B. and Frenkel, E.: Comm. Math. Phys. 178 (1996), 653.

[15] Hou, B.Y. and Zhou, Y.K.: J. Phys. A 23 (1990), 1147; Hou, B.Y., Shi, K.J. and Yang, Z.X.: J. Phys. A 26 (1993), 4951.

[16] Khoroshkin, S., Lebedev, D. and Pakuliak, S.: Elliptic algebra $A_{h,q}(\hat{sl}_2)$ in the scaling limit, q-alg/9702002; Hou, B.Y., Zhao, L. and Ding, X.M.: The algebra $A_{h,q}(\hat{g})$ and Hopf family of algebra, hep-th/9703046.

[17] Iohara, K.: Bosonic representations of Yangian double $DY_h(g)$ with $g = gl_N, sl_N$; Konno, H.: Degeneration of the elliptic algebra $A_{q,p}(\hat{sl}_n)$ and form factors in the sine-Gordon theory, hep-th/9701034; Jimbo, M., Konno, H. and Miwa, T.: Massless XXZ model and degeneration of the elliptic algebra $A_{q,p}(\hat{sl}_2)$, hep-th/9610079.

[18] Hou, B.Y. and Yang, W.L.: A \hbar-deformed Virasoro algebra as a hidden symmetry of the restricted sine-Gordon model, hep-th/9612233; Hou, B.Y. and Yang, W.L.: A \hbar-deformation of the W_N algebra and its vertex operators, hep-th/9701101.