Longevity Compliance Scale

TAHIR BELICE (✉️ drtahirelf@hotmail.com)

Research Article

Keywords: Aged, Longevity, Female, Humans

Posted Date: February 2nd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-40627/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objectives

Nine common characteristics of Blue Zone regions (Power 9) are having a natural movement pattern, having an ikigai (a reason for being), being able to cope with stress, being able to stop eating before being full, eating a predominantly plant-based diet, drinking wine regularly, having a sense of belonging, strong family ties and strong social bonds. In the present study, we investigated the relationship of Power 9 characteristics with age and gender using the 'Longevity Compliance Scale' that we have recently developed.

Methods

Data were collected by administering the online 'Longevity Compliance Scale' (nine questions of 5-point Likert scale type) to 490 participants. SPSS was used for calculations.

Results

Cronbach's alpha value was found to be 0.763 (76.3%). Kaiser–Meyer–Olkin coefficient was 83%, and the factor analysis test provided high reliability (0.830 > 0.750). The total score was higher in female and elderly participants (Hedges' g: 0.046643, 95% Cls: 1.152-4.517, p:0.01).

Conclusion

We found that longevity compliance developed predominantly in female and elderly participants. These results may vary across regions and cultures; thus, they cannot be generalized. However, it is crucial to demonstrate the effect of the nine common dominant points, which have been found after extensive studies conducted for many years. These nine points could be critical factors associated with longevity. It might provide us with tips to prolong our lives and help us stay healthy. Knowledge and experience accumulated as a result of aging, especially in women, may, instinctively or consciously, enhance compliance with the codes for longevity.

Introduction

Eos begs with Zeus, the father of gods, to make his lover Tithonus immortal. But Eos forgets to ask for eternal youth for his lover (1). As Tithonus grows older, he loses his strength one by one, but is immortal. He lives in pain and torment forever. Human life expectancy is getting longer as our knowledge and experience about treating and preventing diseases increase. This brings with it many diseases due to aging and a decrease in the quality of life accompanying. We look at old age with the hope of getting a healthy age, not the years of pain and torment like Tithonus in this mythological phenomenon, and we have experienced a kind of paradigm shift over the years, and a period of reign years that was missed in our life, as the Cicero described in his book of "Cato the Elder on Old Age".
In a study of National Geography with a team of researchers for many years, they showed the common 9 characteristics (Power 9) of people living in long living areas they call the Blue Zone (2). Blue Zone points are: Sardinia (Italy), Okinawa (Japan), Loma Linda (California), Ikaria (Greece) and Nicoya (Costa Rica). The vast majority of people in these regions can reach the age of 100 and actively continue their lives until the years of 80-90. Power 9 features are:

1- **Having a natural movement pattern:** Walking, doing gardening or doing housework during the day is one of the main features of the blue zone lifestyle.

2- **Finding your ikigai:** When we research this word of Japanese origin, "iki" means life, “gai” means impact, cause, benefit, and “ikigai” has a deep meaning as “reason for living”. According to the Japanese, each individual has a different ikigai. In order to find this, the individual will go on a long and deep inner journey and find the light at the end of this meaningful journey, namely Ikigai, and will eventually reach a power that can define his own "ikigai". After finding it, we embrace life more strongly, we can maximize our energy and be protected from chronic diseases (3).

3- **Coping with stress:** Blue Zone people lead a less stressful life. BlueZone centenarians continue stress-reducing rituals in their daily lives. Adventists pray, Ikarians relieve stress by napping, and Sardinias have "happy hour" (2).

4- **Stomach 80% Rule:** These people stop eating when their stomachs are 80% full and make their smallest meals in the early evening. So eat less, live longer (4).

5- **Plant-based diet:** Vegetables, fruits, whole wheat are the main nutrients, while meat constitutes only a small part of the meals. High micronutrient and fiber ratios make herbal nutrition a part of being healthy (5,6).

6- **Drinking light and regular wine:** Light but on a regular base, wine consumption is also common. Polyphenols in wine are resveratrol, anthocyanins, catechins, and tannins, and their positive effects on health have been shown in many studies (7).

7- **A sense of belonging:** Being part of a faith-based community is thought to extend life at least 4 years (8). Personality development has an important place in Erikson's life and theory. According to Erikson, one of the pioneers of ego psychology, there are eight stages of development: (1) Trust or insecurity 2) Autonomy or shame and indecision 3) Venture or guilt 4) Skill or inferiority 5) Ego identity or role complex 6) Close relationships or abstraction 7) Productivity or infertility 8) Belonging or despair (9). Considering the increasingly long life of people in the West, his wife added the "age" stage as the ninth stage after he died.

8- **Strong family ties:** Maintaining close and strong family ties is a common feature of long living areas. Many studies show positive health outcomes of family ties (10).
9-Social Interaction: Having close friends and strong social connections have positive effects on health. Physio-social factors such as participation in social activities have been shown to significantly reduce mortality at older ages (11).

In this cross-sectional study, we tried to analyze the 'Longevity Compliance Scale' (LCS) and scale scores that we created based on the common features, namely Power 9, of Blue Zone Points and the scale scores between age groups and gender (Table I.).

Method

Data were collected by administering the online ‘Longevity Compliance Scale’ (nine questions of 5-point Likert scale type) to 490 participants who were 18 and over years old. In calculating the sample size of this study for LCS evaluation, power for each variable was determined by taking at least 80% and type 1 error 5%. Kolmogorov-Smirnov (n> 50) and Skewness-Kurtosis tests were examined to see if the measurements in the study were normally distributed and parametric tests were applied since the measurements were normally distributed. Descriptive statistics for continuous variables in our study; mean, standard deviation, minimum, maximum; for categorical variables, they are expressed as numbers and percentages. Within the scope of Validity-Reliability, “factor analysis” was applied to determine LCS sub-dimensions. Cronbach's Alpha coefficients were obtained within the scope of reliability analysis of LCS questions. Calculation was made by taking into consideration the total scores of LCS questions. Independent T-test and One-Way Variance Analysis (ANOVA) were performed to compare LCS scores according to demographic data. Following the variance analysis, Duncan test was used to identify different groups. Chi-square test was used to determine the relationship between categorical variables (Age group and Gender and scale question items). The statistical significance level (a) was taken as 5% in calculations and SPSS (IBM SPSS for Windows, Ver.24) statistical software was used for calculations.

Results

We shared the scale on social media and the study with 490 participants including 250 (51%) men and 240 (49%) women were conducted between 03.10.2019 and 10.11.2019. According to the results of the Kolmogorov-Smirnov (n> 50) test, LCS total score does not appear to be normally distributed (p <0.05). However, since the Skewness and Kurtosis values of these measurements show normal distribution (range of ±1.5), it is appropriate to use Parametric tests in comparisons. Cronbach's Alpha value of “LCS Total Score” was found to be 0.776 (76.3%) and so the reliability of these questions (items) is high. The entire questionnaire was subjected to factor analysis. The reliability of the factor analysis was tested with the Kaiser-Meyer-Olkin (KMO) test. The KMO coefficient is 83%. Factor analysis test based on the results of the KMO test provides high reliability (0.830> 0.750). Bartlett test is also significant (p <0.05). According to this, it can be said that there is a high correlation between the variables.

In the study, the factors with significant initial eigenvalue statistics were determined. There are 2 factors with eigenvalues greater than 1. The first factor explains 37.77% of the total variance. The first and
second factors together explain 51.44% of the total variance. As a result of factor analysis, the scale questions were grouped by dividing the questions into 2 sub-dimensions. As a result of the factor analysis, the scale questions were grouped significantly in 2 factors. Each factor shows a different sub-level/dimension. According to this; factor 1 included questions 1-9 (except question 6). In Factor 2; only the 6th question took place. Therefore; since there is only one question (question-6) in the second factor, all questions are treated as a single factor.

No statistically significant relationship was observed between “gender” and items of 1,2,6,7 (p> 0.05). A statistically significant relationship was observed between “gender” and items of 3,4,5,8 and 9 (p <0.05). A statistically significant relationship was observed between “gender” and “all scale questions” (p <0.05), (Table II.). The difference between all age groups was found significant (p <0.05). In other words, compared to the previous age group, there is a significant increase in the LCS total score (Table III).

Discussion

With this study, we wanted to question how much the life adaptation of the participants developed, and in which age groups adequate adaptations to live long and healthy life, and to what extent these adaptations can be applied to life practices with the knowledge and experience that individuals have accumulated over the years. The question of how we can adapt the power 9 principles that BlueZone taught us to our own community is a difficult question to answer. In modern cities and public living areas that we have built with our own hands, mostly vehicles and buildings are included and as a result, people's activities such as walking, cycling and climbing are severely restricted (12). We spend most of our daily life in our cars on the way to work, shopping and even to gyms. In this way, going everywhere by car causes us not only to increase our stress but also to spend less time with our loved ones. Lack of time management causes us to take practical decisions in the short term, but to make decisions that will impair our health in the long term. The environment we live in, due to reasons such as time constraints and the presence of stress increasing factors, the necessity to live in an obestogenic environment, dictates us habits such as eating ready-made and processed foods, or fast food-style ones (13,14). We do not have the time to cook our meals ourselves and grow our fruits and vegetables ourselves.

It is thought that there is a long-standing and increasing value gain in the presence of reflexive and transactional relationships between the places where aging occurs (15). Studies indicate that elderly people who have a good connection with the place are likely to feel safe and develop a positive sense of self (16). Therefore, it is important to understand the relationship that the elderly establish with the place, the meaning that people attach to both objects and places as they get older. Decisions taken by both the elderly and their families to be geographically close often have important implications for the nature of their interactions (17).

In our study, we found that long life harmony developed more dominantly in women and older ages. We can say that these results may vary according to regions and cultures and therefore cannot be
generalized. Because countless factors such as living spaces, religious and cultural differences of people or life styles affect human health in many ways. However, showing the effects of 9 dominant common points on human life in studies in different societies, which may be related to long life arising from extensive and many years of studies such as Blue Zone, may be important in terms of giving us tips that will prolong some kind of life and keep us healthy.

Conclusion

The knowledge and experiences accumulated with aging cause individuals to instinctively or consciously adapt to long life codes in the Blue Zone regions. However, in matters where religious and cultural influences prevail, this adaptation may be disrupted against long life. It is possible to increase the awareness of individuals' adaptation to longevity in terms of health with awareness and education studies.

References

1-Richardson A. (2013). Rapamycin, anti-aging, and avoiding the fate of Tithonus. The Journal of clinical investigation, 123(8), 3204–3206. https://doi.org/10.1172/jci70800

2-Buettner, D., & Skemp, S. (2016). Blue Zones: Lessons From the World's Longest Lived. American journal of lifestyle medicine, 10(5), 318–321. https://doi.org/10.1177/1559827616637066

3-Koizumi, M., Ito, H., Kaneko, Y., & Motohashi, Y. (2008). Effect of having a sense of purpose in life on the risk of death from cardiovascular diseases. Journal of epidemiology, 18(5), 191–196. https://doi.org/10.2188/jea.je2007388

4-Levenson CW, Rich NJ. (2007), Eat less, live longer? New insights into the role of caloric restriction in the brain. Nutr Rev. 2007 Sep;65(9):412-5. DOI: 10.1111/j.1753-4887.2007.tb00319.x

5-Montgomery SC, Streit SM, Beebe ML, Maxwell PJ (2014), Micronutrient Needs of the Elderly. Nutr Clin Pract. 2014 Aug;29(4):435-444.doi: 10.1177/0884533614537684

6-Donini LM, Savina C, Cannella C.(2009), Nutrition in the elderly: role of fiber. Arch Gerontol Geriatr. 49 Suppl 1:61-9. doi: 10.1016/j.archger.2009.09.013.

7- Del Pino-García R, González-Sanjosé ML, Rivero-Pérez MD, García-Lomillo J, Muñiz P Food Chem. (2017), The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings. Apr 15; 221():1723-1732.
8- Manning, L. K., Leek, J. A., & Radina, M. E. (2012). Making Sense of Extreme Longevity: Explorations Into the Spiritual Lives of Centenarians. Journal of religion, spirituality & aging, 24(4), 345–359. https://doi.org/10.1080/15528030.2012.706737

9- Malone, J. C., Liu, S. R., Vaillant, G. E., Rentz, D. M., Waldinger, R. J. (2016). Midlife Eriksonian psychosocial development: Setting the stage for late-life cognitive and emotional health. Developmental psychology, 52(3), 496–508. https://doi.org/10.1037/a0039875

10- Thomas, P. A., Liu, H., & Umberson, D. (2017). Family Relationships and Well-Being. Innovation in aging, 1(3), igx025. https://doi.org/10.1093/geroni/igx025

11- Pynnönen K, Törmäkangas T, Heikkinen RL, Rantanen T, Lyyra TM. (2012) Does social activity decrease risk for institutionalization and mortality in older people? J Gerontol B Psychol Sci Soc Sci. Nov;67(6):765-74. doi: 10.1093/geronb/gbs076.

12-Hinckson, E., Cerin, E., Mavoa, S., Smith, M., Badland, H., Witten, K., et al. (2017). What are the associations between neighbourhood walkability and sedentary time in New Zealand adults? The URBAN cross-sectional study. BMJ open, 7(10), e016128. https://doi.org/10.1136/bmjopen-2017-016128

13- Steptoe A, Deaton A, Stone AA (2015) Subjective wellbeing, health, and ageing. Lancet. Feb 14;385(9968):640-648. doi: 10.1016/S0140-6736(13)61489-0.

14-Townshend T, Lake A. (2017) Obesogenic environments: current evidence of the built and food environments. Perspect Public Health. Jan;137(1):38-44. doi: 10.1177/175791391679860.

15- Brenda V, Valerie L, Mary L (2011). Aging-in-Place: Exploring the Transactional Relationship Between Habits and Participation in a Community Context. OTJR: Occupation, Participation, Health. 31. 151-159. 10.3928/15394492-20110218-01.

16- Wick JY. (2017) Aging in Place: Our House Is a Very, Very, Very Fine House. Consult Pharm. Oct 1;32(10):566-574. doi: 10.4140/TCP.n.2017.566.
17-Fausset, C. B., Kelly, A. J., Rogers, W. A., & Fisk, A. D. (2011). Challenges to Aging in Place: Understanding Home Maintenance Difficulties. Journal of housing for the elderly, 25(2), 125–141. https://doi.org/10.1080/02763893.2011.571105.

Declarations

Conflict of Interest: The authors have no conflicts of interest to report.

Author Contributions: All authors contributed to the writing, reviewing and editing of the review.

Financial Disclosure: The authors declared that this study received no financial support.

Tables

Table 1: Longevity Compliance Scale Questions

1. Does your diet predominantly consist of vegetables?	
2. Do you perform things like napping, walking, etc., to cope with stress?	
3. Do you have strong family ties?	
4. Do you have strong social bonds?	
5. Do you feel that you belong to a place or a group?	
6. Do you occasionally drink wine?	
7. Do you stop eating before you are completely full?	
8. Have you found your reason for being (ikigai)?	
9. Do you have a natural movement pattern (garden work, daily walking, housework etc.)?	

Table 2: Correlations of scale's total scores with Gender

	N	mean	Std. Sap.	Min.	Max.	*p.
Men	250	27,712	7,2741	12,0	41,0	.001
Women	240	29,833	6,7127	14,0	45,0	
Total	490	28,751	7,0777	12,0	45,0	

Independent T-test significance analysis
Table 3. Correlations of scale's total scores with with Age groups

Age groups	N	mean.	Std. Sap.	Min.	Max.	*p.
20-29	101	22,901 e	6,0341	14,0	38,0	<0,001
30-39	102	25,706 d	6,1008	12,0	40,0	
40-49	98	27,735 c	5,6487	16,0	40,0	
50-59	103	32,951 b	5,3254	17,0	45,0	
60 +	86	35,360 a	3,4807	22,0	41,0	
Total	490	28,751	7,0777	12,0	45,0	

*ANOVA test significance results

A, b : Duncan post-hoc testi