Improvement in the photoelectrochemical responses of PCBM/TiO₂ electrode by electron irradiation

Seung Hwa Yoo¹, Jong Min Kum¹, Ghafar Ali¹,², Sung Hwan Heo³ and Sung Oh Cho¹*

Abstract

The photoelectrochemical (PEC) responses of electron-irradiated [6,6]-phenyl-C₆₁-butyric acid methyl ester (PCBM)/TiO₂ electrodes were evaluated in a PEC cell. By coating PCBM on TiO₂ nanoparticle film, the light absorption of PCBM/TiO₂ electrode has expanded to the visible light region and improved the PEC responses compared to bare TiO₂ electrode. The PEC responses were further improved by irradiating an electron beam on PCBM/TiO₂ electrodes. Compared to non-irradiated PCBM/TiO₂ electrodes, electron irradiation increased the photocurrent density and the open-circuit potential of PEC cells by approximately 90% and approximately 36%, respectively at an optimum electron irradiation condition. The PEC responses are carefully evaluated correlating with the optical and electronic properties of electron-irradiated PCBM/TiO₂ electrodes.

Keywords: photoelectrochemical cell, TiO₂, electron irradiation, PCBM, band-edge tuning

Introduction

TiO₂ has been widely used for photocatalysts because of its good chemical- and photostabilities to convert photon energy to electrical and chemical energies [1]. However, due to its wide bandgap, the light absorption is limited only to the ultraviolet (UV) region of the solar spectrum. Hence, sensitizing TiO₂ with small bandgap semiconductors, such as quantum dots or organic dyes, has been extensively studied to harvest more photons in the visible light region of solar spectrum for the applications to quantum dot-sensitized solar cells [2-4], dye-sensitized solar cells [5-7], and photoelectrochemical (PEC) cells [8-10].

Along with this current research trends, combining TiO₂ with carbonaceous nanomaterials has attracted much interest, and studies on these materials are increasing exponentially these days [11]. For instance, high performance photocatalysts such as carbon nanotube-TiO₂ [12-14], fullerene-TiO₂ (C₆₀-TiO₂) [15-17], and graphene-TiO₂ [18,19] composites have been introduced by several groups and have shown enhanced photocatalytic activities. Notably, C₆₀ has shown interesting effects when combined with TiO₂: facilitating the separation of photo-generated charge carriers from TiO₂ to C₆₀ [15,16] or sensitizing TiO₂ to absorb visible light [17]. However, the band-edge position of C₆₀ is unfavorable for a sensitizer of TiO₂ because the lowest unoccupied molecular orbital (LUMO) level of C₆₀ is lower than the conduction band of TiO₂ [17]. From the viewpoint of energy levels, [6,6]-phenyl-C₆₁-butyric acid methyl ester (PCBM) is a better candidate than C₆₀ for the sensitization of TiO₂. We expect that the photo-excited electrons of PCBM can be transferred to TiO₂ more efficiently because the LUMO level of PCBM is slightly higher than the conduction band of TiO₂ [20].

In our previous study, we have found that the band-edge positions as well as the bandgap of PCBM can be tuned by electron irradiation at different fluences [21]. We believe that electron irradiation technique can be an alternative and unique method to modify the molecular structure and tune the bandgap [22,23] compared to the conventional methods such as adjusting the particle size of quantum dots [24,25] or modifying the molecular structure of the dyes [26] for larger light absorption. In addition to the bandgap, the band-edge positions can also be tuned by electron irradiation compared to the
conventional methods such as ionic adsorption for specific quantum dots [27] or by varying the conjugation linkers in organic dyes [28]. Based on our previous findings, we present here a novel approach to improve the PEC performance of PCBM/TiO₂ electrodes using electron beam irradiation. The photocurrent density and open-circuit potential of PCBM/TiO₂ were respectively improved by 90% and 36% by electron irradiation. The effects of the electron irradiation on the PEC performances of PCBM/TiO₂ were systematically analyzed in this study.

Methods

Figure 1 shows the schematic representation of the preparation of PCBM/TiO₂ electrode and subsequent electron irradiation. The as-received TiO₂ nanoparticle paste (DSL 18NR-T, Dyesol Industries Pty Ltd., Queanbeyan, New South Wales, Australia) was deposited on a fluorine-doped tin oxide (FTO) glass substrate (8 Ω m⁻², Dyesol) by a doctor blade technique. Before the deposition of TiO₂ paste, FTO glass substrates were cut by 1.0 × 2.5 cm² in dimension and were sonicated successively in acetone, isopropanol, ethanol, and deionized water for thorough cleaning and dried in N₂ gas stream. After the deposition of TiO₂ paste, subsequent annealing process was performed at 450°C for 30 min with a temperature increase rate of 1°C min⁻¹. After the annealing, TiO₂ nanoparticle film was formed. The as-prepared TiO₂ electrodes were immersed vertically in a chlorobenzene solution containing 1.5 mM PCBM for 5 h while stirring. PCBM solution was prepared by dissolving PCBM (99.5% purity, Nano-C, Inc., Westwood, MA, USA) powder into chlorobenzene (≥99.5% purity, Sigma-Aldrich, St. Louis, MO, USA) solvent. After the immersion, the electrodes were washed in pure chlorobenzene several times and dried at ambient condition. As a result, PCBM/TiO₂ electrodes, where a thin layer of PCBM was coated on the TiO₂ nanoparticle electrodes, were prepared. Coating process of PCBM was carried out in darkness. The irradiation of an electron beam on PCBM/TiO₂ electrodes was carried out at room temperature and in vacuum lower than 2 × 10⁻⁵ Torr. An electron beam was generated from a thermionic electron gun with electron energy of 50 keV, and current density of the electron beam was 1.6 μA cm⁻². The electron fluence was varied by adjusting the irradiation time. PCBM/TiO₂ electrodes were irradiated by 1, 2, and 4 h which correspond to electron fluence of 3.6 × 10¹⁶, 7.2 × 10¹⁶, and 1.44 × 10¹⁷ cm⁻², respectively. Diffuse reflectance UV-visible (VIS) spectra of electron-irradiated PCBM/TiO₂ powders were measured on a spectrometer (S-4100, SCINCO CO., LTD., Seoul, South Korea) by scratching the nanoparticle film off the FTO glass substrate.

After electron irradiation of PCBM/TiO₂ electrodes, a custom-made PEC cell was constructed to measure the PEC responses of electron-irradiated PCBM/TiO₂ electrodes, which act as photo-anodes of PEC cells. The PEC cell has a three-electrode configuration comprising a photo-anode, a Pt wire as a cathode, and a saturated calomel electrode (SCE) (0.242 V vs. NHE, BAS Inc., West Lafayette, IN, USA) as a reference electrode. An aqueous solution of 1 M NaOH (Junsei Chemical Co., Ltd., Chuo-ku, Tokyo, Japan) was used as a supporting electrolyte after 30 min purging with N₂ gas. The PEC response of the electrodes was recorded on a potentiostat (Model SP-50, BioLogic, Claix, France) by sweeping the potential from -1.2 to 0.5 V (vs. SCE) at a sweep rate of 100 mV s⁻¹. The photo-anodes were illuminated with a solar simulator (Model LS-150, Abet Technologies, Inc., Milford, CT, USA) equipped with AM 1.5 filter. The illumination power was estimated as 80 mW cm⁻² at the photo-anode surface by a digital photometer (ILT1400-A, International Light Technologies, Inc., Peabody, MA, USA).

Results and discussion

Figure 1 displays the schematic representation for the preparation of the PCBM/TiO₂ photo-anodes of PEC cells. TiO₂ nanoparticles (NPs) were firstly deposited to

Figure 1 Schematic representation of the preparation of PCBM/TiO₂ electrode and subsequent electron irradiation.

(A) Deposition of TiO₂ paste by doctor blade technique. (B) Formation of TiO₂ nanoparticle film by annealing the as-deposited TiO₂ paste at 450°C for 30 min. (C) Fabrication of PCBM/TiO₂ electrode by immersing TiO₂ electrode in 1.5 mM PCBM solution for 5 h. (D) Electron irradiation on PCBM/TiO₂ electrode at different fluences.
form a film on a FTO glass substrate. A uniform TiO2 NP film was formed by annealing the as-deposited TiO2 paste at 450°C for 30 min. The TiO2 NP film was submerged in a PCBM solution for 5 h, and consequently, the TiO2 NP film was coated with PCBM. Subsequently, the PCBM/TiO2 electrodes were irradiated with an electron beam. The energy of the electron beam was 50 keV, and the electron fluence was changed by controlling the irradiation time. These electron-irradiated PCBM/TiO2 films on FTO glass substrates were used as photo-anodes of PEC cells for water splitting. Figure 2 shows the field emission scanning electron microscopy (FESEM) images of the fabricated PCBM/TiO2 film. TiO2 NPs with the diameter of approximately 20 nm were deposited on a FTO glass substrate (see details in the ‘Methods’ section). As shown in the FESEM image, the TiO2 NPs were well interconnected with one another, forming a rigid film that is strongly attached to the FTO glass substrate. The thickness of the TiO2 NP film was approximately 16.5 μm.

We observed that transparent TiO2 NP film became slightly yellowish after the PCBM coating. The UV-VIS absorption spectra shown in Figure 3 more clearly characterize the optical properties of the TiO2 NP films. When PCBM was coated on TiO2, visible light absorption of TiO2 in the wavelength range of 390 to 800 nm was increased, while absorption of UV in the range of 300 to 360 nm was decreased. In addition, when PCBM/TiO2 was irradiated with an electron beam, the absorbance in both UV and visible light region decreased gradually as the electron fluence increased. In our previous work, we reported that the bandgap of electron-irradiated PCBM increased as the electron fluence was increased. The modification of the bandgap was attributed to the change in the molecular structure of PCBM by electron irradiation. From these facts, we could conclude that the effective bandgap of electron-irradiated PCBM/TiO2 also increased as the electron fluence increased (Figure 4).

In order to investigate the band-tuning effect caused by the electron irradiation, we tried to characterize the PEC cell device performances using the electron-irradiated PCBM/TiO2 electrodes. The measurement results of the PEC responses of bare TiO2, PCBM/TiO2, and electron-irradiated PCBM/TiO2 electrodes are listed on Table 1, and the typical current density-potential curves of the electrodes are shown in Figure 5. The saturated current density at 0 V vs. saturated calomel electrode under dark conditions of all the electrodes was less than 15 μA cm⁻². Under illumination of simulated solar light, bare TiO2 nanoparticle electrode shows saturated photocurrent density (J_ph) of 176 μA cm⁻² and open-circuit potential (E_ocp) of -0.85 V vs. SCE. After coating PCBM on TiO2 nanoparticles, the PEC performance was improved: J_ph and E_ocp of PCBM/TiO2 electrode increased to 234 μA cm⁻² and -1.05 V vs. SCE, respectively. The improvement in J_ph and E_ocp is attributed to the increment of visible light absorption of PCBM compared to that of TiO2. After electron irradiation of PCBM/TiO2 electrode at electron fluence of 3.6 × 10¹⁶ cm⁻², J_ph and E_ocp increased from 234 to 306 μA cm⁻² and -1.05 to -1.16 V vs. SCE, respectively. The PEC performance of PCBM/TiO2 electrode was further improved through electron irradiation of increased electron fluence. Both J_ph and E_ocp of electron-irradiated PCBM/TiO2 were increased with increasing the electron fluence. J_ph increased to 333 μA cm⁻², and E_ocp increased to -1.16 V vs. SCE at the electron fluence of 7.2 × 10¹⁶ cm⁻².

The fact that the PEC performance of PCBM/TiO2 electrode was improved by electron fluence is interesting because electron irradiation increases the bandgap of...
PCBM and accordingly decreases the light absorption. As verified in our previous work, the LUMO level of PCBM shifts upward to the vacuum energy level as electron fluence increases. Since the bandgap of PCBM is much lower than that of TiO₂, electron-hole pairs produced in PCBM can contribute to the increase in the photo-current of TiO₂. However, the energy difference between the LUMO energy level of PCBM and the

![Figure 3](image-url) Diffuse reflectance UV-VIS spectra. (a) TiO₂ and (b) PCBM/TiO₂. PCBM/TiO₂ irradiated at (c) 3.6 × 10¹⁶, (d) 7.2 × 10¹⁶, and (e) 1.44 × 10¹⁷ cm⁻².

![Figure 4](image-url) Band structure of PCBM after electron beam irradiation of different fluences. (a) Non-irradiated PCBM, (b) Irradiated PCBM at 3.6 × 10¹⁶, (c) 7.2 × 10¹⁶, and (d) 1.44 × 10¹⁷ cm⁻².
The conduction band edge minimum of pure TiO$_2$ is 0.2 eV, which might not be high enough for efficient electron transfer from PCBM to TiO$_2$ [29]. Since LUMO energy level of PCBM is up-shifted by electron irradiation, electron-irradiated PCBM provides higher driving force of electron injection from PCBM to TiO$_2$ [25]. This can explain why J_{ph} of electron-irradiated PCBM/TiO$_2$ electrodes was increased by increasing the electron fluence. Moreover, the increase in the energy difference between the LUMO energy level of electron-irradiated PCBM and the conduction band edge minimum of TiO$_2$ provides efficient charge separation of the photo-excited electron-hole pairs, thereby improving E_{ocp} [30].

However, when the electron fluence was further increased to 1.44×10^{17} cm$^{-2}$, the PEC performance of electron-irradiated PCBM/TiO$_2$ became worse. As shown in Figure 4, the LUMO energy level of PCBM was constantly up-shifted toward the vacuum energy level as the electron fluence was increased. The up-shift in the LUMO energy level of electron-irradiated PCBM increases the driving force of electron injection from PCBM to TiO$_2$. With the up-shift in the LUMO energy level, the bandgap of the electron-irradiated PCBM also increases with increasing the electron fluence. The increase in the bandgap reduces the light absorption of PCBM and consequently deteriorates the PEC performance. Therefore, electron irradiation induces the two contradictory effects on the PEC performance of the electron-irradiated PCBM/TiO$_2$, and this suggests that there is an optimum electron fluence at which the PEC performance is maximized. In our experiments, J_{ph} increased by approximately 90% and E_{ocp} increased by approximately 36% compared to bare TiO$_2$ at an optimum electron fluence at 7.2×10^{16} cm$^{-2}$.

Conclusions

Using the fact that the electronic band structure of PCBM can be modified by electron irradiation, PCBM/TiO$_2$ electrodes were fabricated and tested in a PEC cell. We observed that electron irradiation on PCBM/TiO$_2$ electrodes led to an increase in J_{ph} by approximately 90% and E_{ocp} by approximately 36% at an optimum electron irradiation condition. These results show that electron irradiation approach can be a good tool to

Table 1 Photoelectrochemical performance of various electrodes investigated

Electrode	J_{ph} (μA cm$^{-2}$)	E_{ocp} (V) vs. SCE
TiO$_2$	176	-0.85
PCBM/TiO$_2$	234	-1.05
PCBM/TiO$_2$ (3.6 \times 10^{16} \text{ cm}^{-2})	306	-1.16
PCBM/TiO$_2$ (7.2 \times 10^{16} \text{ cm}^{-2})	333	-1.16
PCBM/TiO$_2$ (1.44 \times 10^{17} \text{ cm}^{-2})	285	-1.10

Figure 5 Current density-potential curves of TiO$_2$ and PCBM/TiO$_2$ electrodes irradiated at different electron fluences under illumination. (a) Non-irradiated TiO$_2$ and (b) PCBM/TiO$_2$. PCBM/TiO$_2$ irradiated at (c) 3.6×10^{16}, (d) 7.2×10^{16}, and (e) 1.44×10^{17} cm$^{-2}$.

http://www.nanoscalereslett.com/content/7/1/142
tune the bandgap and the band-edge positions of PCBM and provide an evidence that the approach is useful for PEC device application. We believe that the electron irradiation strategy can also control the electronic band structures of other organic semiconducting materials, and thus, this strategy can improve the performances of PEC and photocatalytic devices.

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (no. 2011-0020764).

Author details
1Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, South Korea
2Nanomaterials Research Group, Physics Division, PISTECH, Islamabad, 45600, Pakistan
3Partida Co. Ltd., Daejeon, 306-220, South Korea

Authors’ contributions
The work was carried out by the collaboration between all authors. SOC initiated the idea of electron irradiation on PCDTBT:TiO2 electrodes. SHY performed the electron irradiation experiments. SHY and GA performed the construction of PEC cell and measurement of PEC responses of electron-irradiated PCDTBT:TiO2 electrodes. JMK and SHH carried out the diffuse reflectance UV-VIS spectroscopy measurements of electron-irradiated PCDTBT:TiO2. SOC and SHY analyzed the data and suggested the mechanism of improvement of electron-irradiated PCDTBT:TiO2 electrodes. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 21 October 2011 Accepted: 20 February 2012
Published: 20 February 2012

References
1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev 1995, 95:69.
2. Lee YH, Huang BM, Chen HT. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem Mater 2009, 21:2093.
3. Xie Y, Ali G, Yoo SH, Cho SO. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl Mater Interfaces 2010, 2:2910.
4. Chen C, Ali G, Yoo SH, Kim MJ, Cho SO. Improved conversion efficiency of CdS quantum-dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. J Mater Chem 2011, 21:16450.
5. O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353:737.
6. Bach J, Lupo D, Comte P, Moser JE, Weissrotter F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395:583.
7. Law M, Greene LE, Johnson JC, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Mater 2003, 2:455.
8. Hodes G. A thin-film polycrystalline photoelectrochemical cell with 8% solar conversion efficiency. Nature 1980, 285:29.
9. Heller A. Conversion of sunlight into electrical power and photosynthesized electrolysis of water in photoelectrochemical cells. Acc Chem Res 1981, 14:154.
10. Grätzel M. Photoelectrochemical cells. Nature 2001, 414:388.
11. Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49:741.
12. Yao Y, Li G, Ciston S, Lueptow RM, Gray KA. Photoactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 2008, 42:4952.
13. Gao B, Peng C, Chen GZ, Li Puma G. Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method. Appl Catal B 2008, 85:17.
14. Xie KH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma LL. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45:717.
15. Krishna V, Noguchi N, Koopman B, Moudgil B. Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J Colloid Interface Sci 2006, 304:166.
16. Long Y, Lu Y, Huang Y, Peng Y, Lu Y, Kang SZ, Mu J. Effect of C60 on the photocatalytic activity of TiO2 nanorods. J Phys Chem C 2009, 113:13899.
17. Meng ZD, Zhi L, Choi JS, Chen ML, Oh WC. Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light. J Mater Chem 2011, 21:7596.
18. Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4:360.
19. Zhou K, Zhi Y, Yang X, Jiang X, Li C. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 2011, 35:353.
20. Kamat PV, Haria M, Hotchandani S. C60 cluster as an electron shuﬄe in a Ru(II)-polypyridyl sensitizer-based photocatalytic solar cell. J Phys Chem B 2004, 108:516.
21. Yoo SH, Kim JA, Cho SO. Tuning the electronic band structure of PCBM by electron irradiation. Nanoscale Research Letters 2011, 6:545.
22. Lee HW, Kim YN, Kim BH, Kim SO, Cho SO. Fabrication of luminescent nanoarchitectures by electron irradiation of polystyrene. Adv Mater 2005, 17:120.
23. Li Y, Lee EJ, Cai W, Kim KY, Cho SO. Unconventional method for morphology-controlled carbonaceous nanoarrays based on electron irradiation of polystyrene colloidal monolayer. ACS Nano 2008, 2:1108.
24. Kongkkanand A, Tvedy K, Takechi K, Kuno M, Kamat PV. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Phys Chem C 2008, 112:18737.
25. Kamat PV. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 2008, 112:18737.
26. Robertson N. Optimizing dyes for dye-sensitized solar cells. Angew Chem Int Ed 2006, 45:2338.
27. Peter LM, Wijayantang KGU, Ryley DJ, Waggett JP. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J Phys Chem B 2003, 107:8378.
28. Hagberg DP, Mainiado T, Karlsson KM, Nonomura K, Qin P, Boschloo G, Brink T, Hagfeldt A, Sun L. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J Org Chem 2007, 72:9550.
29. Wang ZS, Yamaguchi T, Sugihara H, Arakawa H. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir 2005, 21:6272.
30. Lin CJ, Lu YT, Heish CH, Chen SH. Surface modification of highly ordered TiO2 nanotube arrays for efficient photocatalytic water splitting. Appl Phys Lett 2009, 94:113102.