Relationship of physical activity to cardiovascular risk factors in an urban population of Nigerian adults

Adewale L Oyeyemi* and Olumide Adeyemi

Abstract

Background: The burden of chronic diseases including cardiovascular disease (CVD) is increasing rapidly in Nigeria, but fewer studies have evaluated the role of physical activity in the development of CVD in this country. We examined the relationship between health enhancing physical activity and risk factors of CVD in a working population of adults in Maiduguri, Nigeria.

Methods: In a cross-sectional study, we assessed health enhancing moderate-to-vigorous physical activity (MVPA) among 292 government employees (age: 20–65 years, 40% female, 24% obese and 79.8% response) using the self-administered version of International Physical Activity Questionnaire (IPAQ-SF). Time spent in walking and sitting during occupational activity was assessed as well. Anthropometric measurement of height, weight and waist circumference, and blood pressure were also measured. Independent t-test and One-Way ANOVA were conducted, and the relationships between MVPA and body mass index (BMI), waist circumference, blood pressure and heart rate were explored using Pearson correlations coefficients and multiple regression analyses.

Results: The mean time spent in health enhancing MVPA (116.4 ± 101.3 min/wk) was lower than the recommended guideline of 150 min/wk sufficient for health benefits. Compared with men, more women were less physically active, obese and reported more diagnoses of component of metabolic syndrome (p < 0.05). Participants whose work activities were highly sedentary tend to accumulate less minutes of MVPA compared with those who reported their work as moderately active or highly active (p < 0.001). Health enhancing MVPA was inversely related with body mass index (BMI), waist circumference, heart rate, and systolic and diastolic blood pressure (p < 0.05).

Conclusion: Physical activity level of the working population of Nigerian adults was low and was related with adverse risk factors for CVD. Promoting health enhancing physical activity at work places may be important for prevention and control of CVD among the working population in Maiduguri, Nigeria.

Keywords: Health-related physical activity, Obesity, Chronic diseases, Nigeria

Background

The burden of cardiovascular disease (CVD) and other chronic diseases is rising rapidly in Nigeria [1]. The epidemiological transition in this country has been linked to ongoing lifestyle changes of urbanization including reduced physical activity and inappropriate diets [2-4]. Urbanization in Nigeria has been characterized by increased adoption of western life styles and preference for white collar and modern jobs with attendant public health consequences [1-3]. Current estimates indicate that chronic diseases including CVD already account for 24.2% and 25.1% of all mortalities in males and females, respectively in Nigeria [1]. Nevertheless, there is clear evidence that engaging in health enhancing physical activity protects against the development of CVD including coronary heart disease and stroke, and other chronic diseases [4-8]. Health enhancing physical activity is generally considered as any activity that benefits health and functional capacity, and it includes lifestyle, fitness, recreational, occupational and sports activities rather than just exercise alone [9-12]. Engaging in any or combination of these activities regularly at moderate or
vigor intensity is an important public health recommendation, and guidelines for sufficient health-enhancing physical activity are based on moderate-to-vigorous physical activity (MVPA) [11,12].

Until very recently [13,14], most studies from Nigeria have focused on therapeutic exercise and exercise training [15-18], neglecting the health effects of everyday activities like occupational related physical activity, tasks and chores around the home and walking for different purposes that have become central to public health interventions [10,11,19,20]. Promoting multiple forms of activities that contribute to health enhancing physical activity is one of four strategies recommended by the United Nations to reduce global epidemics of chronic non-communicable diseases [21], but strategies should be evidence base. Since Nigeria is the most populated country in Africa and with attendant rising rates of chronic diseases [1,2], there is clear relevance for understanding the relationships between risk factors of CVD and health enhancing physical activity in this country.

Blood pressure and anthropometric variables like body mass index and waist circumference are good markers and predictors of CVD because they are easy to use, less expensive and have been found to be strongly and consistently associated with risk factors of CVD and other chronic diseases, including coronary heart disease, type 2- diabetes and obesity [10,22-25]. Sufficient health enhancing physical activity has been negatively associated with these markers of risk of CVD [26-31], but has been relatively unstudied in Nigeria. To our knowledge, only two studies were available from Nigeria that explored the relationship between health enhancing physical activity and risk factors of CVD [32,33]. These studies were conducted over a decade ago, one of them did not directly explore the relationship between risk factors of CVD and physical activity [33], and it is not clear if these studies can be situated within the context of present level of urbanization in Nigeria. It is important to study the working population in Nigeria because they constitute a productive segment of the Nigerian society, are the driving force of the economy and are more likely to be receptive and impacted by the ongoing lifestyle changes of urbanization. The aim of this study was to examine the relationship between health enhancing physical activity and cardiovascular disease risk factors including body mass index, waist circumference and blood pressure in a working population of adults in Maiduguri, Nigeria. A secondary objective was to investigate the effect of occupational activity on physical activity level, BMI, waist circumference and blood pressure.

Methods

Similar to the methodology of a previous study [26], workers were recruited from work places with variations in occupational activity level (see Table 1). Six workplaces (2 each in the health sector, education sector and government ministry) with more than 100 employees were purposively recruited from federal or state government funded facilities in Maiduguri, North Eastern Nigeria. Occupational activities at the health sector typically involved meeting with patients or clients in an office setting or long-term care of patients in an institutional setting, but also included administrative and other services (e.g., kitchen workers). Work activities at the educational sector involved teaching, research and also included managerial, administrative, or clerical work. For the Government ministry, work activities descriptions were

Health Status	Total (N = 292)	Women (n = 102)	Men (n = 190)	p-value*
Excellent				0.282
Good	202 (69.2)	73 (71.6)	129 (67.9)	
Fair	25 (8.5)	11 (10.8)	14 (7.4)	

Occupation activity	Total (N = 292)	Women (n = 102)	Men (n = 190)	p-value*
Highly active	34 (25.4)	17 (16.7)	17 (20.8)	
Moderately active	47 (16.1)	15 (14.7)	32 (16.8)	
Moderately sedentary	109 (37.3)	37 (36.3)	72 (37.9)	
Highly sedentary	62 (21.2)	33 (32.4)	29 (15.3)	

Body Mass Index	Total (N = 292)	Women (n = 102)	Men (n = 190)	p-value*
Normal weight	134 (45.9)	44 (42.7)	90 (47.4)	<0.001*
Overweight	88 (30.1)	37 (35.7)	51 (26.8)	
Obese	70 (24.0)	34 (32.6)	36 (18.8)	

Education level	Total (N = 292)	Women (n = 102)	Men (n = 190)	p-value*
< Secondary school	26 (8.9)	13 (12.7)	13 (6.8)	
Secondary school	256 (87.7)	88 (86.3)	168 (88.4)	

Education level	Total (N = 292)	Women (n = 102)	Men (n = 190)	p-value*
< Secondary school	10 (3.4)	1 (1.0)	9 (4.7)	
Secondary school	206 (70.5)	60 (58.8)	146 (76.8)	

Table 1 Description of general health, education, and occupational characteristics of the participants

a- p-value based on Chi-Square statistic;* p < 0.05 was considered significant.
††, Values do not add up due to missing data (13 missing data for heart disease, 6 for hypertension, and 28 for high cholesterol). ††, Only for hypertension (p = 0.045), high cholesterol (p = 0.023) and metabolic syndrome (p = 0.048) were significant differences exist in health problems between men and women.
clerical, administrative or managerial in nature and involved
significant sitting time on the typewriter or computer. All
workers in the selected workplaces who met the eligibility
criteria of being between 18 and 65 years old, not having
any disability that prevents independent walking and able
to complete questionnaire in English language were invited
to participate in a cross-sectional study. A total of 386
workers (60 in the health sector, 63 in education sector and
255 in government ministry) were surveyed, out of whom
55 refused to participate and 23 were not present during
data collection. The response rate was 79.8% overall. Of the
308 participants that completed the survey, 292 workers
that comprise 102 (35.0%) women and 190 (65.0%) men,
aged 44.9 ± 8.5 years provided usable physical activity data
and were included in the analysis. All participants provided
informed consent, and the study was approved by the
Research and Ethics Committee of the University of
Maiduguri Teaching Hospital, Maiduguri.

Data collection
Data were collected at the workplace at a time that was
convenient to both workers and the research team. Each
participant completed a questionnaire to provide data
regarding occupational activity, education, health status
and previous diagnoses of components of metabolic
syndrome. Occupational activity was defined as highly
sedentary (sitting more than 75% of work time), moderately
sedentary (sitting more than 50% of the work time),
moderately active (moving about more than 50% of the
work time), or highly active (moving more than 75%
of the work time). Educational level was classified
as more than secondary education, secondary school
education, and less than secondary school education.
Participants’ health status was classified as excellent,
good or fair. For previous diagnoses of components of
metabolic syndrome, participants were to recall any
diagnosis of elevated blood pressure (hypertension),
elevated fasting glucose (diabetes), elevated triglycerides
(hypercholesterolemia), elevated waist circumference
(abdominal obesity), reduced high-density lipoprotein or
heart disease by their physician or any other health
workers. Participants with a known diagnosis of three or
more of these conditions were considered to have the
metabolic syndrome [34].

Physical activity
The short version of the international physical activity
questionnaire (IPAQ-SF) was used to assess health enhan-
cing physical activity level of the participants. The ques-
tionnaire estimated vigorous- and moderate- intensity
activities, and walking in terms of frequency (days/wk)
and duration (min/day) in the last 7 days. These activity
categories may be treated separately by computing the
total minutes of each category in a week or multiplied by
their estimated values in METs and summed to gain an
overall estimate of physical activity in a week [35]. Total
minute of moderate-to vigorous physical activity (MVPA)
was the primary physical activity outcome in this study,
and was computed by summing minutes of time per day
of moderate- and vigorous-intensity activity. Meeting
recommendation on physical activity for health was
defined according to the global standard of accumulating
at least 150 minutes of MVPA per week [11,12]. The test
retest reliability (ICC = 0.33- 0.73) and concurrent validity
(ρ =0.78- 0.92) of the IPAQ-SF among Nigerian adults
are good and acceptable [36]. Acceptable test retest
reliability (r = 0.70- 0.97) and criterion validity (r = 0.23)
compared with accelerometer monitoring has also been
reported for IPAQ in both the developed and developing
countries [35].

Anthropometric measures
Height (to the nearest 0.5 cm) and weight (to the nearest
0.2 kg) were measured in light clothing and without shoes,
using standardized instruments. Body mass index (BMI)
was calculated as body weight divided by the square of
height (kg m⁻²), and participants were categorized into nor-
ural weight (18.5- 24.9 kg m⁻²), overweight (25.0- 29.9 kg
m⁻²) and obese (≥ 30.0 kg m⁻²) groups according to the
WHO guidelines [37]. Waist circumference measurements
(to the nearest 0.5 cm) were standardized by placing the
measuring tape at the level of the last rib in standing sub-
jects [26]. The criterion for defining abdominal obesity was
based on the recent international consensus cut-points of ≥
94cm and ≥ 80cm for Sub-Saharan African men and
women, respectively [34].

Blood pressure
Resting blood pressure and heart rate were obtained
using a Dinamap (model 8100/8101) digital blood pres-
sure measuring device, after the participants have been
sitting quietly for 5 minutes. Three measurements were
taken at intervals of 3–5 minutes on the left arm, and
the mean systolic blood pressure, diastolic blood pres-
sure and heart rate were used in the analysis.

Statistical analysis
Because physical activity variables are often skewed, the
square root of the original variable (min/week of
moderate-to-vigorous physical activity) was used in the
analyses to improve normality. Raw data were used to
present the descriptive statistics.
Descriptive data are presented as means and standard
development (SD) for continuous data and proportions for
categorical data. The independent t- test was conducted
to compare the differences in moderate-to-vigorous
physical activity (MVPA) levels and cardiovascular dis-
ase risk factors between men and women, and also to
compare MVPA and risk factors between participants who reported diagnosis of components of metabolic syndrome and those not reporting. One-Way ANOVA was carried out to explore the effect of occupational activity on BMI, waist circumference, blood pressure and MVPA. Pearson correlations coefficients were computed to investigate the relationship between MVPA and each of BMI, waist circumference and blood pressure. Multiple linear regressions were conducted as a secondary analyses to model for the predictors of MVPA and to control for the confounding influence of participants’ sociodemographics on the associations between MVPA (dependent variable) and different risk factors of CVD (independent variables).

To reduce the potential for multicollinearity, only variables that seemed essential to the model were force-entered as independent variables in the first block of the regression model and removed stepwise in the second block. The modifying effects of gender on the associations between outcomes and risk factors of CVD were explored by including gender in most analyses, and variables for which there were significant interactions were separately explored for women and men. All analyses were conducted in SPSS 15.0 for Windows.

Results

The general characteristics of the participants are shown in Table 1. More than 90% of the participants described their health as good or excellent. Hypertension (23.1%) was the most commonly reported health problem of the components of metabolic syndrome, and about half of the participants reported a previous diagnosis of metabolic syndrome (48.8%). More than 87% of the participants had more than secondary school education and most of the participants (70.5%) work in government ministry. The majority (58.5%) of the participants described their work activities as moderately or highly sedentary. About one-fourth of participants were obese (24.0%) and the prevalence of obesity was higher among women (42.1%). No participants in this study was classified as underweight (<18.5 kg m⁻²).

Table 2 shows the comparison of physical characteristics, CVD risk factors and physical activity level between men and women. Compared with men, women had significantly (p < 0.001) higher mean BMI (29.4 kg/m² vs 24.8 kg/m², t = 7.752) and waist circumference (96.1 cm vs 87.7 cm, t = 4.179). Notably, the mean waist circumference of women was about 16 cm greater than the men (87.7 cm, t = 4.179). Notably, the mean waist circumference (96.1 cm vs 87.6 cm, t = 4.179) and BMI (26.4 kg/m² vs 24.8 kg/m², t < 0.001) were significant between women and men. Also, participants who reported diagnoses of metabolic syndrome had significantly higher mean BMI (29.4 ± 5.6 vs 24.8 ± 4.5, p < 0.001) and waist circumference (96.1 cm vs 87.7 cm, p < 0.001) and BMI (28.8 kg/m² vs 25.2 kg/m², p < 0.001). Participants who did not report diagnoses of metabolic syndrome accumulated less minutes of MVPA per week compared to participants who did not report diagnoses of metabolic syndrome (83.9 min/wk vs 132.0 min/wk, p < 0.001) (Not shown in table). A significant modifying effect of gender (p = 0.047) but not of occupation (p = 0.528) was found. While pattern of findings in men was similar to that reported in the overall sample, only systolic blood pressure (p < 0.001) and waist circumference (p = 0.003) were significant between women who reported and do not report diagnoses of metabolic syndrome. Systolic blood pressure (138.8 mmHg vs 123.3 mmHg) and waist circumference (102.8 cm vs 93.4 cm) were higher among women who reported diagnoses of metabolic syndrome than those who did not report (Not shown in table).

Self-reported occupational activity had effects on CVD risk factors including health related MVPA (Table 3). Body mass index, waist circumference and blood pressure were significantly higher among participants who reported their work activities as highly sedentary compared with participants who reported their work as moderately active or highly active (p < 0.001). On the other hands, participants who reported highly sedentary work activities tend to accumulate less minute of MVPA compared with participants who reported their work as moderately active or highly active (p < 0.001). Gender specific findings were similar to the pattern in the overall sample with Body mass index, waist circumference and blood pressure

Table 2 Physical characteristics, physical activity level and risk factors of cardiovascular diseases overall and by gender

Variables	Total (n = 292)	Women (n = 102)	Men (n = 190)	p-value*
Age (years)	44.8 ± 8.5	44.6 ± 8.8	44.9 ± 8.3	0.697
Weight (kg)	75.3 ± 13.7	78.8 ± 14.5	73.3 ± 12.9	0.002
Height (m)	1.69 ± 0.08	1.64 ± 0.08	1.71 ± 0.08	<0.001
BMI (kg/m²)	26.4 ± 5.3	29.4 ± 5.6	24.8 ± 4.5	<0.001
WC (cm)	90.7 ± 16.9	96.1 ± 15.9	87.7 ± 16.7	<0.001
Heart rate (beat/min)	78.5 ± 10.9	79.2 ± 10.4	78.1 ± 11.3	0.436
SBP (mm Hg)	129.2 ± 16.8	129.4 ± 18.9	129.1 ± 15.6	0.875
DBP (mm Hg)	81.3 ± 10.5	81.5 ± 11.9	81.2 ± 9.7	0.792
MVPA (min/wk)	116.4 ± 101.3	102.7 ± 103.3	123.8 ± 99.8	0.043

SBP: Systolic Blood Pressure. DBP: Diastolic Blood Pressure. MVPA: Moderate-to-vigorous physical activity. *_ Based on independent t-test statistics.
significantly higher in both men and women who engaged in highly sedentary work activities compared to their counterparts who engaged in moderately active or highly active work activities.

Figure 1 shows the relationships between health-related MVPA and BMI, waist circumference and systolic blood pressure. A modest inverse correlation between MVPA and BMI was detected (Figure 1A, \(r = -0.319, p < 0.001 \)). Inverse correlations were also found between MVPA and waist circumference \((r = -0.252, p < 0.001, \text{Figure 1B}) \), and with systolic blood pressure \((r = -0.224, p < 0.001) \). There was significant inverse relationship between MVPA and diastolic blood pressure \((r = -0.194, p = 0.010) \) but not between MVPA and heart rate \((r = -0.102, p = 0.075) \). Patterns of significant findings \((p < 0.001) \) similar to the results in the overall sample were found for both men (MVPA and BMI: \(r = -0.305; \) MVPA and WC; \(r = -0.219; \) MVPA and SBP; \(r = -0.200) \) and women (MVPA and BMI, \(r = -0.291; \) MVPA and WC, \(r = -0.236; \) MVPA and SBP: \(r = -0.264) \).

Multiple regression analyses with age, gender, educational level, occupation and health status included as independent covariates was used to model health enhancing MVPA (Table 4). Body mass index, waist circumference and systolic blood pressure were significant predictors of health enhancing MVPA in the overall model. While similar trend of inverse significant associations for all risk factors with health enhancing physical activity in the overall model was found in men, only body mass index and systolic blood pressure were significant and inversely associated with health enhancing MVPA in women.

Discussion

This study investigated the relationship between health enhancing physical activity and risk factors of cardiovascular diseases, and explored the effect of occupational activity on BMI, waist circumference, blood pressure and health enhancing physical activity in a working population of adults in Nigeria. Health enhancing physical activity was inversely related to body mass index, waist circumference and blood pressure. Consistently, health-related physical activity level has been reported to be inversely related to risk of CVD including body mass index, waist circumference, blood pressure, high density lipoprotein (HDL) and blood cholesterol levels in occupational groups [26,32,33,35-40], and in the general population [27-30]. Our finding therefore seems to affirm a pattern that suggests that health enhancing physical activity can confer protection against the risks of CVD in a sample of Nigerian working population.

We found health enhancing physical activity to increase with more occupational activity, and more favorable CVD risk profiles among those who reported high occupational activity, suggesting that some of the relationship between health-enhancing physical activity and CVD risk factors was explained by occupational activity. Previous studies have emphasized the contribution of occupational activities to total physical activity [26,41]. Low level of occupational physical activity has also been reported to independently accentuate the risks of CVD in many population [19,39,42], including that of Nigeria [32]. Plausibly, promoting occupational based physical activity may be a viable approach for improving health enhancing physical activity and control the risk of CVD in the Nigerian working population.

Not surprising, participants whose occupational activity was highly sedentary were found to have higher BMI, waist circumference and elevated blood pressure compared to those whose work activity was not sedentary. It is possible that work places that promote sedentariness may be contributory to the risks and the development of obesity and hypertension among employees in Nigeria. This is important because obesity and hypertension are strong risk factors that could erroneously be perceived as sign of affluent and remain largely asymptomatic, respectively, until they manifest in the development of chronic diseases. Typifying this paradox is the finding that majority of the participants reported their health as good and excellent despite the fact that most of them.

Table 3 Association between occupational activity and physical activity level, BMI, waist circumference and blood pressure

Occupation activity (n)	MVPA (min/wk) Mean ± SD	BMI (kg/m²) Mean ± SD	WC (cm) Mean ± SD	SBP (mmHg) Mean ± SD
Highly sedentary (62)	34.1 ± 25.3	30.6 ± 5.2	104.5 ± 10.4	142.9 ± 18.7
Moderately sedentary (109)	111.7 ± 97.4	26.1 ± 4.7	89.3 ± 12.8	126.4 ± 14.6
Moderately active (47)	148.5 ± 106.6	25.7 ± 5.5	89.2 ± 23.7	125.9 ± 13.8
Highly active (74)	171.8 ± 98.1	23.7 ± 3.7	81.9 ± 14.5	123.8 ± 13.8

MVPA, Moderate-to-vigorous physical activity.
BMI, Body mass index.
WC, Waist circumference.
SBP, Systolic blood pressure.
had previous diagnoses of one or more components of metabolic syndrome, were overweight/obese and did not meet the guideline for health enhancing physical activity. It may be timely to institute public health interventions that include education on the contribution of sedentary workplaces to risk of CVD in Nigeria.

Also worth noting is the high prevalence of obesity in the present study. With both measures of adiposity (BMI and waist circumference), women were consistently more obese than men. The prevalence of obesity found was considerably higher than that of the general adult population in Nigeria (24% vs 7.8%- 13.9%) [1]. Perhaps, obesity is more of a problem to the working population in Nigeria because the influence of urbanization and adoption of western lifestyles is more pronounced among this group. However, a finding of this nature warrants urgent attention because persistent obesity can dysregulates the metabolic processes including the action of insulin on glucose-lipid-free fatty acid metabolism and can severely affects processes controlling blood glucose, blood pressure, and lipids metabolism [43,44]. This often results in a cluster of conditions including dyslipidemia, hypercholesterolaemia, hypertension, type 2- diabetes mellitus, abdominal obesity and cardiovascular diseases, known as the metabolic syndrome with dire public health consequences [34,43].

Consistent with previous studies [26,45,46], we found higher adverse risk profiles of CVD including reduced level of health enhancing physical activity in those that have been diagnosed previously with factors associated with metabolic syndrome. Evidence suggests that individuals who are less fit have a 7-fold greater chance of developing the metabolic syndrome compared to fit and physically active individuals [45], and that sedentary individuals are

Variables	Overall	Women	Men			
	β	p	β	p	β	p
BMI	-0.297	<0.001	-0.246	0.029	-0.282	<0.001
WC	-0.185	0.005	-0.155	0.153	-0.197	0.016
SBP	-0.192	0.002	-0.187	0.037	-0.186	0.012
DBP	-0.122	0.054	0.079	0.465	-0.178	0.042
Age	0.035	0.545	-0.094	0.535	0.063	0.430
Gender	-0.005	0.935	-	-	-	-
Education	0.016	0.773	-0.009	0.927	0.010	0.884
Occupation	0.040	0.492	0.089	0.380	0.033	0.608
Health Status	-0.120	0.062	-0.056	0.655	-0.167	0.041

β - Standardized Regression Coefficient.

- Control not made for gender because data was split by gender.

BMI- Body Mass Index, WC- Waist Circumference, SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure.
more susceptible to suffer from or develop the metabolic syndrome [45,46]. Regular physical activity has been recommended as an effective preventative approach to modulate the metabolic syndrome [26,43], and this may be an important public health recommendation in Nigeria where chronic disease rates are rising.

Overall, our findings underscored the potential link between health enhancing physical activity and risk factors of emergent chronic diseases of urbanization in Nigeria. Because of the tremendous socio-economic changes associated with urbanization and upsurge in rural–urban migration occurring in Nigeria, many people are likely adopting sedentary lifestyles and putting themselves at risk of chronic diseases. Motorized transportation seems to have become dominant in most urban cities in Nigeria thereby reducing active forms of transportation like walking and bicycling. This is especially apparent in the working populations who are more likely to own a car compared to the unemployed populations. Also, advances in technology and introduction of numerous modern labour saving devices into Nigeria could be contributing negatively to people's activity patterns. Although desirable for efficiency, increasing computerization and mechanization at many government workplaces in Nigeria could lead to reduce occupational activity and subsequently to decline in overall physical activity. People in Nigeria are likely to be receptive to the advances brought by urbanization because they could be considered to be associated with improved standard of living and socioeconomic progress [2]. However, urbanization accentuates physically inactive lifestyles and increases the risk of CVD and numerous chronic diseases. Promotion of physically active lifestyles is particularly important in a developing country like Nigeria, because physical inactivity is not only the fourth leading cause of death worldwide but most of these deaths are occurring in developing countries [5,6,47].

The strength of this study was a sample that was selected to represent varying level of occupational activities that enables us to explore the independent effect of occupational activity on risk factors of CVD and health-enhancing physical activity. Also, the objective assessment of BMI, waist circumference, blood pressure and the use of current international health related guideline for sufficient health-related physical [11,12] were other strengths of this study. However, this study has some important limitations which should be considered when interpreting the findings. First, the use of government employees produced a sample of relatively high socioeconomic status which may reduce generalizability of results to other Nigerian samples, especially women and those in rural populations with traditional jobs. Our sample did not include unemployed Nigerians who were mostly women, and was limited to the urbanized population with potential for modern jobs, thereby biasing our findings in favor of employed men and urbanized population. However, previous Nigerian studies have consistently found higher prevalence of CVD risk factors and metabolic syndrome in studies of urban populations compared with rural populations [3,4,48,49], suggesting that public health burden of chronic diseases in Nigeria increases as the population transits from rural subsistence agricultural setting to a more westernized society. A second limitation was the use of self-report measure of physical activity as opposed to objective. Self-report measures of physical activity are prone to misinterpretation, social desirability bias and inaccurate recall of intensity, frequency and duration of physical activity [50,51]. Third, the study did not include measures of fasting blood glucose, serum lipid profiles and diets which are important risk factors of CVD [38,39,42]. A fourth limitation was that the cross-sectional design utilized does not allow for causal relationships to be determined. However, given the limited literature in this field in Nigeria, correlational studies such as this can provide leads for researchers and policy makers in planning future work or interventions to prevent and control the risk of CVD.

Despite these limitations, the present study of Nigerian working population may have practical relevance for policy on prevention and control of CVD in Nigeria. Generally, rapid urbanization and lifestyle changes have negatively impacted physical activity behaviors of adults in Nigeria. Particularly, the increased access to automobiles and the use of technology such as computers and elevators at work seem to be contributing to the decline in transport- and occupational- related physical activity in this country. Low occupational physical activity can obviously reduce total daily physical activity [26,41,52,53], and has been documented for many years to be consistently and independently associated with negative health status [54-56]. World-wide, the workplace is increasingly becoming the focus of detection and intervention programs that include physical activity to reduce the risk of CVD and other chronic diseases [39,40,56,57]. Given that many adults in Nigeria are employed (59% of women and 80% of men) [58], and are expected to spend a considerable part of their daily time at work, promoting and encouraging health enhancing physical activity at work places could therefore be a practical and effective approach for preventing and controlling the risk of CVD and other chronic diseases in the Nigerian population.

Conclusions

In conclusion, low level of health-enhancing physical activity in Nigerian working population was related to elevated BMI, waist circumference and blood pressure. High occupational activity was significantly associated with more health-enhancing physical activity but with
lower BMI, waist circumference and blood pressure. Engaging in health enhancing physical activity may be effective for primary prevention of CVD risk factors in Nigeria. Future studies in larger heterogeneous samples are needed in order to generalize these findings to other Nigerian population.

Competing interests
The authors declare that there is no competing interest.

Authors’ contributions
ALO conceived and designed the study, analyzed and interpreted the data, drafted and revised the manuscript and gave approval for the final version. OA participated in the design of the study and was responsible for data acquisition. Both authors read and approved the manuscript.

Acknowledgements
The authors wish to thank Dr. Adetoyeje Oyeyemi, the Head of Department of Physiotherapy, University of Maiduguri, Nigeria for providing supports and

Received: 16 January 2013 Accepted: 5 April 2013
Published: 11 April 2013

References
1. World Health Organization: WHO global infobase. Data for saving lifes. World Health Organization, 2010. https://apps.who.int/infobase/Indicators.aspx. August 02, 2012.

2. Olayinka K, Soyibo A, Atinmo T: Impact of globalization on food consumption, health and nutrition in Nigeria. In Globalization of food systems in developing countries: impact on food security and nutrition. Food and Nutrition Paper 81. Food and Agricultural Organization of the United Nations. 2004. http://ftp.fao.org/docrep/fao/007/y5736e/y5736e00.pdf. December 19, 2010.

3. Adeedran O, Akintunde AA, Edo AE, Opadigio OG, Arosey AM: Impact of urbanization and gender on frequency of metabolic syndrome among native Abua settlers in Nigeria. J Cardiovas Dis Res 2012, 3:191–196.

4. Okeahialam BN, Ogbonna C, Otukwu AE, Joseph DE, Chuwak EK, Iziquore IO: Cardiovascular epidemiological transition in a rural habitat of Nigeria: the case of Mangu local government area. West Afr J Med 2012, 31:14–18.

5. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, for the Lancet Commission on Physical Activity and Health: Evidence and theory of promotion of health-enhancing physical activity series working group: Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012, 380:219–226.

6. Kohl HW 3rd, Criag CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, for the American College of Sports Medicine: Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2011, 124:278–279.

7. Smith SC Jr: Reducing the global burden of ischemic heart disease and stroke: a challenge for the cardiovascular community and the United Nations. Circulation 2011, 124:278–279.

8. Millunapalo S: Evidence and theory of promotion of health-enhancing physical activity. Public Health Nutr 2001, 4:725–728.

9. Smith A, Bird S: From evidence to policy: reflections on emerging themes in health-enhancing physical activity. J Sports Sci 2004, 22:791–799.

10. Haskell WL, Lee I-M, Pate RP, Powell KE, Blair SN, Franklin BA, et al: Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116:1081–1093.

11. Smith SC Jr: Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.

12. Olayinka K, Soyibo A, Atinmo T: Impact of globalization on food consumption, health and nutrition in Nigeria. In Globalization of food systems in developing countries: impact on food security and nutrition. Food and Nutrition Paper 81. Food and Agricultural Organization of the United Nations. 2004. http://ftp.fao.org/docrep/fao/007/y5736e/y5736e00.pdf. December 19, 2010.

13. Adeedran O, Akintunde AA, Edo AE, Opadigio OG, Arosey AM: Impact of urbanization and gender on frequency of metabolic syndrome among native Abua settlers in Nigeria. J Cardiovas Dis Res 2012, 3:191–196.

14. Olayinka K, Soyibo A, Atinmo T: Impact of globalization on food consumption, health and nutrition in Nigeria. In Globalization of food systems in developing countries: impact on food security and nutrition. Food and Nutrition Paper 81. Food and Agricultural Organization of the United Nations. 2004. http://ftp.fao.org/docrep/fao/007/y5736e/y5736e00.pdf. December 19, 2010.

15. Adeedran O, Akintunde AA, Edo AE, Opadigio OG, Arosey AM: Impact of urbanization and gender on frequency of metabolic syndrome among native Abua settlers in Nigeria. J Cardiovas Dis Res 2012, 3:191–196.

16. Smith SC Jr: Reducing the global burden of ischemic heart disease and stroke: a challenge for the cardiovascular community and the United Nations. Circulation 2011, 124:278–279.

17. Smith SC Jr: Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.

18. Olayinka K, Soyibo A, Atinmo T: Impact of globalization on food consumption, health and nutrition in Nigeria. In Globalization of food systems in developing countries: impact on food security and nutrition. Food and Nutrition Paper 81. Food and Agricultural Organization of the United Nations. 2004. http://ftp.fao.org/docrep/fao/007/y5736e/y5736e00.pdf. December 19, 2010.

19. Adeedran O, Akintunde AA, Edo AE, Opadigio OG, Arosey AM: Impact of urbanization and gender on frequency of metabolic syndrome among native Abua settlers in Nigeria. J Cardiovas Dis Res 2012, 3:191–196.

20. Olayinka K, Soyibo A, Atinmo T: Impact of globalization on food consumption, health and nutrition in Nigeria. In Globalization of food systems in developing countries: impact on food security and nutrition. Food and Nutrition Paper 81. Food and Agricultural Organization of the United Nations. 2004. http://ftp.fao.org/docrep/fao/007/y5736e/y5736e00.pdf. December 19, 2010.
35. Craig CL, Marshall AL, Sprott M, Bauman AE, Booth ML, Ainsworth BE, et al: International physical activity questionnaire: 12 country reliability and validity. Med Sci Sports Exerc 2003, 35:1381–1395.
36. Oyeyemi AL, Oyeyemi AY, Ayedele BO, Oyeteke FO, Aliyu HN, Aliau SU, et al: The Short International Physical Activity Questionnaire: cross-cultural adaptation, validation and reliability of the Hausa language version in Nigeria. BMC Med Res Methodol 2011, 11:56.
37. World Health Organization: Obesity: prevention and managing the global epidemic: Report of a WHO consultation on obesity. Geneva, Switzerland: World Health Organization; 1988.
38. Yan YX, Dong J, Liu YQ, Yang XH, Li M, Shia G, et al: Association of suboptimal health status and cardiovascular risk factors in urban Chinese workers. J Urban Health 2011, 89:329–338.
39. Freak-Poli R, Wolfe R, Peeters A: Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 2008, 93:9–130.
40. Groeneveld IF, Proper KI, van der Beek AJ, Hildebrandt VH, van Mechelen W: Lifestyle-focused interventions at the workplace to reduce the risk of cardiovascular disease – a systematic review. Scand J Work Environ Health 2010, 36:202–215.
41. Van Domelen DR, Koster A, Caserotti P, Brychta RJ, Chen KY, McClain JJ, et al: Employment and physical activity in the U.S. Am J Prev Med 2011, 41:136–145.
42. Oppert JM, Thomas F, Charles MA, Benetos A, Basdevant A, Simon C: Leisure time and occupational physical activity in relation to cardiovascular risk factors and eating habits in French adults. Public Health Nutr 2006, 9:746–754.
43. Misra A, Khera L: Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 2008, 93:9–130.
44. Eckel RH, Grundy SM, Zimmet PZ: The metabolic syndrome. Lancet 2005, 365:1415–1428.
45. Laaksonen DE, Lakka HM, Salonen JT, Niskanen LK, Rauramaa R, Lakka TA: Low levels of leisure time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care 2002, 25:1612–1618.
46. Brien SE, Katzmarzyk PT: Physical activity and the metabolic syndrome in Canada. Appl Physiol Nutr Metab 2006, 31:40–47.
47. World Health Organization: Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: WHO; 2009. http://www.who.int/healthinfo/global_burden_disease/en/.
48. Ekezie J, Anyanwu EG, Danborno B, Anthony U: Impact of urbanization on obesity, anthropometric profile and blood pressure in the Igbos of Nigeria. North Am J Med Sci 2011, 3:242–246.
49. Sani MU, Wahab KW, Yusuf BO, Gbadamosi M, Johnson OV, Gbadamosi A: Modifiable cardiovascular risk factors among apparently healthy adult Nigerian population – a cross sectional study. BMC Research Notes 2010, 3:11.
50. Sallis JF, Saelens BE: Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport 2000, 71:1–14.
51. Adams SA, Matthews CE, Ebbeling CB, Moore CG, Cunningham JE, Fulton J, et al: The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol 2003, 161:389–398.
52. Holtermann A, Hansen JV, Burh H, Søgaard K, Søgaard G: The health paradox of occupational and leisure-time physical activity. Br J Sports Med 2012, 46:291–295.
53. Brownson RC, Chang JC, Davis JR, Smith AJ: Physical activity on the job and cancer in Missouri. Am J Public Health 1991, 81:639–642.
54. Paffenbarger RS Jr, Laughlin ME, Gima AS, Black RA: Work activity of longshoremen as related to death from coronary heart disease and stroke. N Engl J Med 1970, 282:109–1114.
55. Paffenbarger RS Jr, Blair SN, Lee WJ: A history of physical activity, cardiovascular health and longevity: the scientific contributions of Jeremy N Morris, DSC, DPH, FRCP. Int J Epidemiol 2001, 30:1184–1192.
56. Khosravi AR, Rowzati M, Gharipour M, Fesharaki MG, Shirani S, Shahrokhi S, et al: Hypertension control in industrial employees: findings from SHIMSCO study. ARIIA Athenioscr 2012, 7:191–196.
57. Prabhakaran D, Jeemon P, Goenka S, Lakshmy R, Thankappan KR, Ahmed F, et al: Impact of a worksite intervention program on cardiovascular risk factors: a demonstration project in an Indian industrial population. J Am Coll Cardiol 2009, 53:1718–1728.
58. National Population Commission (NPC) [Nigeria] and ICF Macro: Nigeria Demographic and Health Survey 2008: Abuja, Nigeria: National Population Commission and ICF Macro; 2009.