Hemimasticatory Spasm: Report of a Case and Review of the Literature

Corina Christie 1*, Sergio Alejandro Rodríguez-Quiroga 1, Tomoko Arakaki 1, Roberto Daniel Rey 1 & Nélida Susana Garretto 1

1 Instituto Argentino de Investigación Neurológica – IADIN, Buenos Aires, Argentina

Abstract

Background: Hemimasticatory spasm is a very rare movement disorder characterized by unilateral, involuntary, paroxysmal contractions of the jaw-closing muscles, causing clinically brief twitches and/or spasms.

Case Report: A 62-year-old female consulted us with a 30-year history of unusual involuntary twitches in the preauricular region and spasms that hampered jaw opening. During these spasms, she could not open her mouth. On physical examination, we also observed hypertrophy of the masseter and temporalis muscles, which can be features of hemimasticatory spasm. She was treated with botulinum toxin type A, with excellent response. Here, we present her case and review the literature.

Discussion: Hemimasticatory spasm is a rare movement disorder. Given the excellent response to botulinum toxin type A treatment, it should be considered within the spectrum of facial spasms.

Keywords: Hemimasticatory spasm, botulinum toxin, jaw-closing spasm

Citation: Christie C, Rodríguez-Quiroga SA, Arakaki T, et al. Hemimasticatory spasm: Report of a case and review of the literature. Tremor Other Hyperkinet Mov. 2014; 4. doi: 10.7916/D8QF8QWD

* To whom correspondence should be addressed. E-mail: corinachristie@yahoo.com.ar

Editor: Elan D. Louis, Columbia University, United States of America

Received: October 30, 2013 Accepted: February 27, 2014 Published: April 4, 2014

Copyright: © 2014 Christie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivatives License, which permits the user to copy, distribute, and transmit the work provided that the original author(s) and source are credited; that no commercial use is made of the work; and that the work is not altered or transformed.

Funding: None.

Financial Disclosures: None.

Conflict of Interest: The authors report no conflict of interest.
Authors	Age at Onset	Sex	Involved Muscles	Mechanism or Special Clinical Features	Response to Botulinum Toxin	Surgical Treatment
Kaufman, 1980	25	F	Left masseter	—	NA	
Lapresle, 1982	15	F	Right masseter	Linear scleroderma with right FHA	NA	—
Thompson and Carroll, 1983	57	F	Left masseter and temporalis	Idiopathic	NA	Cryosurgical lesion
Thompson, et al., 1986	31	F	Right masseter	Morphea with right FHA	NA	Myotomy
Parisi, et al., 1987	38	F	Right masseter	Linear scleroderma with right FHA	NA	
Yoshii and Alba, 1989	44	M	Left masseter and both (medial and lateral) pterygoids	Idiopathic	NA	
Auger, et al., 1992	20	F	Right masseter and temporalis	Idiopathic	Yes	Transient response to trigeminal rootlets section
	17	F	Right medial pterygoid	Idiopathic	NA	
	20	F	Right masseter and temporalis	Idiopathic	NA	
Cruccu, et al., 1994	18	M	Left temporalis	Left FHA	NA	
	44	F	Right masseter and temporalis	Morphea	Yes	
	44	M	Right masseter	FHA	Yes	
Ebersbach, et al., 1995	26	M	Left masseter and temporalis	Left FHA	Yes	
	26	F	Right masseter and temporalis	Local scleroderma with FHA	Yes	
	34	F	Right masseter	Local scleroderma with FHA	Yes	
	47	F	Left masseter	Idiopathic	Yes	
	44	F	Right masseter and temporalis	Idiopathic	Yes	
Wang, et al., 2004	38	F	Left masseter	NA	NA	
	12	M	Right masseter and temporalis	Right linear scleroderma	NA	
	33	M	Right temporal	NA	NA	
Table 1. Continued

Authors	Age at Onset	Sex	Involved Muscles	Mechanism or Special Clinical Features	Response to Botulinum Toxin	Surgical Treatment
21	42	F	Left masseter and temporalis	NA	NA	—
Cersosimo, et al. 2003	29	F	Right masseter and temporalis	Severe worsening during pregnancy	Yes	—
Mir, et al. 2006	26	M	Left masseter and temporalis	Idiopathic	Yes	—
Gunduz, et al. 2007	62	F	Right masseter and temporalis	Right pontine and cerebellar hemisphere infarction	Yes	—
Jiménez-Jiménez, et al. 2007	40	M	Right masseter and temporalis	Biopercular infarct with previous Foix–Marie–Chavany syndrome	Yes	—
Kumar, et al. 2008	49	F	Left masseter, temporalis and lateral pterygoid	Left morphea	Yes	—
Yalto and Jankovic 2011	63	F	Left masseter	Idiopathic	Yes	—
Gopalakrishnan, et al. 2011	56	F	Left masseter and temporalis	Cerebellopontine angle hematoma	Spontaneous remission	—
Sinha, et al. 2011	38	M	Right masseter and temporalis	Idiopathic	—	Debulking and stripping masseter muscle
Chon, et al. 2012	40	M	Right masseter and temporalis	Idiopathic	Yes	MVD
Wang, et al. 2013	50	F	Left masseter	NA	NA	MVD
32	42	F	Right masseter and temporalis	NA	NA	MVD
33	38	M	Right masseter	NA	NA	MVD
34	48	F	Right masseter	NA	NA	MVD
35	57	F	Left masseter and temporalis	NA	NA	MVD
36	53	F	Right masseter and temporalis	NA	NA	MVD
37	32	F	Right masseter	Idiopathic	Yes	—

FHA, Facial Hemiatrophy; F, Female; M, Male; MVD, Microvascular Decompression; NA, Not Available.
On physical examination, hypertrophy of the masseter and temporalis muscles was noted. Dental treatments were required in order to repair several broken teeth.

She has no other medical conditions or family history; she does not take any medications and has no laboratory evidence for connective tissue disease or thyroid dysfunction.

At present, computerized tomography scan of the brain, brain magnetic resonance imaging, and electroencephalography are normal. Electromyography (EMG) of the right masseter and temporalis muscles revealed spontaneous activity consisting of repetitive, spontaneous bursts of motor unit discharges, ranging from 100 to 200 Hz (Figure 1).

Over the last years, she has been treated with injections of botulinum toxin type A, every 3–4 months, with 60 U in the right masseter muscle and 40 U in the right temporalis muscle, with an excellent response. To date, this treatment remains beneficial.

Discussion

HMS is characterized by involuntary movements, consisting of brief twitches and/or spasms, resembling cramps. It is considered a disorder of the motor branch of the trigeminal nerve, and is characterized by unilateral, involuntary, paroxysmal, sometimes painful, violent, and prolonged contractions of the jaw-closing muscles.3,4

Typically, HMS involves the masseter and the temporalis muscles, with the medial pterygoid muscle also rarely being involved. There is usually no involvement of the jaw-opening muscles, but there are at least two cases describing involvement of the lateral pterygoid (Table 1), one of them with associated lateral deviation of the jaw.5 There are no reports of bilateral involvement. HMS more commonly presents in females in the third and fourth decade, as observed in our patient.4

The most frequent triggers that precipitate spasms are talking, laughing, or chewing; these triggers are always voluntary movements rather than sensory stimuli, as in trigeminal neuralgia. Brief spasms are generally painless; prolonged spasms can be painful, as occurs with cramps. Severe or violent spasms can result in temporomandibular joint dislocation, and some patients, such as ours, may even bite their tongue or break teeth.6

The neurological examination should be normal in HMS, except for the spasm, the hypertrophy of the involved muscles or the atrophy of the subcutaneous tissue that may occur in cases associated with localized scleroderma.7 Facial sensation is always spared and no other cranial nerves should be compromised.

Video 1. Hemimasticatory Spasm in a 62-year-old Female. The patient presents involuntary contraction of the right temporal and masseter muscles.

Figure 1. Electromyographic recording. Simultaneous electromyography recording (concentric needle electrodes) from right masseter and temporalis muscles shows continuous bursts of activity during the prolonged spasms.
The pathophysiologic mechanisms that produce HMS are not entirely clear. There is an impaired inhibition of the muscle contraction that can be evidenced electrically by loss of the silent period, which is almost unique to HMS, and so can be a very useful aid for differential diagnosis.\(^5\,^6\) The characteristic EMG findings of HMS include irregular bursts of motor unit potentials (MUPs) that correlate with the involuntary masseter spasms.

MUPs are often morphologically normal but with very high frequency. Cruccu et al.\(^4\) noticed a delay in the conduction speed of the motor branch of the trigeminal nerve, localized at the infratemporal fossa between the lateral pterygoid and skull surface. This could explain a focal demyelination of the trigeminal motor fibers in these cases, as well as the hemifacial atrophy seen in almost 70% of cases.

In HMS, unlike unilateral jaw closing oro-mandibular dystonia, there is no agonist/antagonist muscle co-contraction during the voluntary movement of jaw opening.\(^7\) Furthermore, electrophysiological studies have demonstrated that the masseter inhibitory reflex and the silent period were absent during periods of spasm in the affected side, independent of the stimulated trigeminal nerve. The complete absence of the silent period in one or more muscles of one side of the face is an almost exclusive feature of HMS.\(^8\)

The fact that in almost all informed cases the muscles affected were the masseter and temporal, sometimes the medial pterygoid, but only on two occasions the lateral pterygoid, suggests that the site generator of ectopic impulses should be at the distal fibers of the trigeminal nerve.\(^4\) This is also supported by previous reports showing relief by microvascular decompression of the trigeminal nerve.\(^9\)

The hypertrophy of jaw-closing muscles, as in our patient, suggests that the generator of ectopic impulse may be at the motor root of the trigeminal nerve or at its motor nucleus, as can be seen in hemifacial spasm.\(^6\,^8\)

Botulinum toxin type A injection is the most effective available treatment.\(^10\,^11\)

In summary, HMS is a rare movement disorder. Given the excellent response to botulinum toxin type A treatment, it should be considered within the spectrum of focal spasms.

References

1. Gowers WR. A manual of diseases of the nervous system. 1897, 2nd edition, Philadelphia: Blakston. Vol 2. p 221–224.
2. Yaltho TC, Jankovic J. The many faces of hemifacial spasm: Differential diagnosis of unilateral focal spasms. Mov Disord 2011;26:1582–1592, doi: http://dx.doi.org/10.1002/mds.23692.
3. Auger RG, Litchy WJ, Cascino TL, Ahlkog E. Hemimasticatory spasm: Clinical and electrophysiological observations. Neurology 1992;42:2263–2266, doi: http://dx.doi.org/10.1212/WNL.42.12.2263
4. Cruccu G, Inghilleri M, Berardelli A, et al. Pathophysiology of hemimasticatory spasms. J Neurol Neurosurg Psychiatry 1994;57:43–50, doi: http://dx.doi.org/10.1136/jnnp.57.1.43.
5. Kumar N, Krueger BR, Ahlkog JE. Hemimasticatory spasm with lateral jaw deviations. Mov Disord 2008;23:2265–2266, doi: http://dx.doi.org/10.1002/mds.22304.
6. Thompson PD, Obeso JA, Delgado G, Gallego J, Marsden CD. Focal dystonia of the jaw and the differential diagnosis of unilateral jaw and masticatory spasm. J Neurol Neurosurg Psychiatry 1986;49:651–656, doi: http://dx.doi.org/10.1136/jnnp.49.6.651.
7. Kim HJ, Jeou BS, Lee KW. Hemimasticatory spasm associated with localized scleroderma and facial hemiatrophy. Arch Neurol 2000;57:576–580, doi: http://dx.doi.org/10.1001/archneur.57.4.576.
8. Michel F, Luquin-Piuldo MR. Movimientos anormales: Clínica y terapéutica. 1ra edición. 2012: Editorial: Panamericana. Chapter 36: “Espasmo Hemifacial y Espasmo Hemimasticatorio.” P. 549–559.
9. Wang YN, Dou NN, Zhou QM, et al. Treatment of hemimasticatory spasm with microvascular decompression. J Craniofac Surg 2014;25:1735–1755, doi: http://dx.doi.org/10.1097/SCS.0b013e318295025a.
10. Ceserisso MG, Bertoti A, Roca CU, Michel F. Botulinum toxin in a case of hemimasticatory spasm with severe worsening during pregnancy. Clin Neuropharmacol 2004;27:6–8, doi: http://dx.doi.org/10.1097/00002826-200401000-00004.
11. Teive HA, Piovesan EJ, Germiniani FMB, et al. Hemimasticatory spasm treated with botulinum toxin: Case report. Arq Neuro-psiquiatr 2002;60:288–289, doi: http://dx.doi.org/10.1590/S0004-282X2002000200020.
12. Kaufman MD. Masticatory spasm in facial hemiatrophy. Ann Neurol 1980;7:585–587, doi: http://dx.doi.org/10.1002/ana.410070614.
13. Lapresle J, Desi M. Sclerodermie avec hemiatrophie faciale progressive et atrophie cursive de 1 hemicorps. Rev Neurol (Paris) 1982;138:815–822.
14. Thompson PD, Carroll WM. Hemimasticatory and hemifacial spasm: A common pathophysiology? Clin Exp Neurol 1983;19:110–119.
15. Parisi L, Valente G, Dell’Anna C, Marierienez R, Amabile G. A case of facial hemiatrophy associated with linear scleroderma and homolateral masseter spasm. Ital J Neurol Sci 1987;8:63–65, doi: http://dx.doi.org/10.1007/BF02361430.
16. Yoshii K, Seki Y, Aiba T. A case of unilateral masticatory spasm without hemifacial atrophy. No To Shanki 1989;57:43–50.
17. Kim YH, Lee KS, Na JH, Kim BS, Ko YJ. A case of hemimasticatory spasm. J Korean Neurol Assoc 1994;12:175–178.
18. Ebersbach G, Kabus C, Schelosky L, Terstegge L, Poewe W. Hemimasticatory spasm in hemifacial atrophy: Diagnostic and therapeutic aspects in two patients. Mov Disord 1995;10:504–507, doi: http://dx.doi.org/10.1002/mds.870100417.
19. Esteban A, Traha A, Prieto J, Granada F. Long term follow up of a hemimasticatory spasm. Acta Neurol Scand 2002;105:67–72, doi: http://dx.doi.org/10.1034/j.1600-0404.2002.00119.x.
20. Wang YW, Ma X, Zhang ZK, Shen D, Su F, Fu K. [Hemimasticatory muscle spasm: An electromyogram analysis]. Zhonghua Kou Qiang Yi Xue Za Zhi 2004;39:155–157.
21. Mir P, Gálo F, Edwards M, et al. Alteration of central motor excitability in a patient with hemimasticatory spasm after treatment with botulinum toxin injections. Mov Disord 2006;21:73–78, doi: http://dx.doi.org/10.1002/mds.20653.
22. Gunduz A, Karaali-Savrun F, Uluduz D. Hemimasticatory spasm following pontine infarction. Mov Disord 2007;22:1674–1675, doi: http://dx.doi.org/10.1002/mds.21406.
23. Jimenez-Jimenez FJ, Puertas I, Alonso-Navarro H. Hemimasticatory spasm secondary to biopercular syndrome. *Eur Neurol* 2008;59:276–279, doi: http://dx.doi.org/10.1159/000115644.

24. Gopalakrishnan CV, Dhakoji A, Nair S. Hemimasticatory spasm following surgery for vestibular schwannoma. *Mov Disord* 2011;26:2481–2482, doi: http://dx.doi.org/10.1002/mds.23988.

25. Sinha R, Chattopadhyay PK. Hemimasticatory spasm: A case report with a new management strategy. *J Maxillofac Oral Surg* 2011;10:170–172, doi: http://dx.doi.org/10.1007/s12663-010-0162-0.

26. Chon KH, Lee JM, Koh EJ, Choi HY. Hemimasticatory spasm treated with microvascular decompression of the trigeminal nerve. *Acta Neurochir (Wien)* 2012;154:1635–1639, doi: http://dx.doi.org/10.1007/s00701-012-1360-y.