Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii using a modified Carba NP test

S. Bakour1,2, V. Garcia1, L. Loucif1, J.-M. Brunet1, A. Gharout-Sait3, A. Touati3 and J.-M. Rolain1

1) Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille University, Marseille, France; 2) Laboratory of Integrative Structural and Chemical Biology (lSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille University, CNRS UMR 7258, Faculté de Pharmacie, Marseille, France; 3) Laboratoire d’Ecologie Microbienne, FSNV, Université de Béjaïa, Béjaïa, Algeria

Abstract

Biochemical tests have been previously developed to identify carbapenemase-producing Enterobacteriaceae, Pseudomonas spp. (Carba NP test) and Acinetobacter spp. (CarbaAcineto NP test). We evaluated a modified Carba NP test to detect carbapenemase production in Enterobacteriaceae, Pseudomonas and Acinetobacter species using a single protocol with rapid results and found good reliability and speed.

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.

Keywords: Carba NP test, carbapenemase, carbapenems, Gram negative, multidrug-resistant bacteria

Original Submission: 24 June 2015; Accepted: 2 July 2015

Available online 10 July 2015

Corresponding author: J.-M. Rolain, Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
E-mail: jean-marc.rolain@univ-amu.fr

Multidrug-resistant Gram-negative bacteria (GNB) are increasingly being reported worldwide. The spread of carbapenemase-producing Enterobacteriaceae, Pseudomonas and Acinetobacter species have become a global threat. The emergence of resistance to carbapenems makes the treatment for infections caused by these carbapenem-resistant strains very limited [1–3]. Different types of carbapenemase have been reported, such as Ambler class A Klebsiella pneumoniae carbapenemase (KPC) and Guiana extended spectrum (GES) ß-lactamase, Ambler class B metallo-ß-lactamases (MBL) and Ambler class D oxacillinase type [1].

Rapid methods for detecting carbapenemase producers have been described, such as MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) carbapenemase assay [4]. Previous studies have described a rapid biochemical carbapenemase detection method based on imipenem hydrolysis, the Carba NP test, for Enterobacteriaceae [5] and Pseudomonas species [6], as well as the CarbaAcineto NP test for Acinetobacter species [7]. Recently, however, several authors have published evaluations of the Carba NP and the CarbaAcineto NP tests; their criticisms focused essentially on the absence of detection of oxacillinase (OXA) type carbapenemases [8–10].

Here we describe a modified Carba NP (MCNP) test which enables the rapid detection of different carbapenemases (KPC, MBL and OXA types) from Enterobacteriaceae, Pseudomonas and Acinetobacter species using a single protocol.

One hundred ten previously characterized GNB, including 69 carbapenemase-producing GNB (Enterobacteriaceae n = 14, Pseudomonas aeruginosa n = 11 and Acinetobacter baumannii n = 44), and 41 non-carbapenemase-producing GNB, including Enterobacteriaceae (n = 24), P. aeruginosa (n = 5) and A. baumannii (n = 12), were tested in two laboratories including Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), Aix-Marseille University, Marseille, France, and Microbial Ecology laboratory, Béjaïa University, Béjaïa, Algeria (Table 1). Carbapenemase activity was assessed using phenotypic and genotypic tests, including the modified Hodge test, MALDI-TOF MS assay, PCR amplification and sequencing [4,11].

The Carba NP and the CarbaAcineto NP tests are straightforward biochemical tests which identify carbapenemase production in GNB by detecting imipenem hydrolysis using phenol red solution as a colour indicator and a bacterial lysis buffer (B-PER II, Bacterial Protein Extraction Reagent) for Enterobacteriaceae and Pseudomonas species (Carba NP test) [5,6] and 5 M NaCl for Acinetobacter species (CarbaAcineto NP test) [7].

In order to use a single protocol to detect the production of carbapenemases in the three types of bacteria...
Group	Species	Carbapenemase or other β-lactamase gene	Test result by:		
			MHT MALDI-TOF MS	MCNP	
Enterobacteriaceae	Klebsiella pneumoniae HS50047	NDM-1	+	+	+
	K. pneumoniae 472	NDM-1	+	+	+
	K. pneumoniae U2A 224647	KPC-3	+	+	+
	K. pneumoniae 36047	KPC-2	+	+	+
	K. pneumoniae 41347	OXA-48	+	+	+
	K. pneumoniae 47347	TEM-1/CTX-M-3/SHV-12/DHA-1	−	−	−
	K. pneumoniae 46347	TEM-1/CTX-M-15	−	−	−
	K. pneumoniae 55047	TEM-1/CTX-M-3	−	−	−
	K. pneumoniae 47647	CTX-M-15	−	−	−
	K. pneumoniae 12347	CTM-4	−	−	−
	K. pneumoniae 31847	CTX-M-15	−	−	−
	K. pneumoniae 4747	CTX-M-15	−	−	−
	K. pneumoniae 61347	CTX-M-15	−	−	−
	K. pneumoniae 61547	CTX-M-15	−	−	−
	Escherichia coli H563167	NDM-1	+	+	+
	E. coli 18147	NDM-5	+	+	+
	E. coli 9947	NDM-5	+	+	+
	E. coli 10047	OXA-48	+	+	+
	E. coli 13247	OXA-48	+	+	+
	E. coli 19247	OXA-48	+	+	+
	E. coli 54447	TEM-1/CTX-M-15/OXA-1	−	−	−
	E. coli 46947	TEM-1/CTX-M-3/OXA-1	−	−	−
	E. coli 47247	TEM-1/CTX-M-3/OXA-1	−	−	−
	E. coli 23447	TEM-1/CTX-M-15/OXA-1	−	−	−
	E. coli 61147	TEM-1/CTX-M-15/OXA-1	−	−	−
	E. coli 53647	TEM-1/CTX-M-15/OXA-1	−	−	−
	E. coli 53447	CTX-M-15/OXA-1	−	−	−
	E. coli 54247	CTX-M-15/OXA-1	−	−	−
	E. coli 56047	TEM-1/CTX-M-15/OXA-1	−	−	−
	E. coli 60647	TEM-1/CTX-M-15/OXA-1	−	−	−
	E. coli ATCC 2592247	—	—	—	—
	E. coli 76247	—	—	—	—
	E. cloaceae 10847	TEM-1/CTX-M-15/OXA-1	−	−	−
	E. cloaceae 57047	TEM-1/CTX-M-15/OXA-1	−	−	−
Pseudomonas	P. aeruginosa 45	VM-2	+	+	+
	P. aeruginosa 46	VM-2	+	+	+
	P. aeruginosa 47	VM-2	+	+	+
	P. aeruginosa 48	VM-2	+	+	+
	P. aeruginosa 49	VM-2	+	+	+
	P. aeruginosa 50	VM-2	+	+	+
	P. aeruginosa 51	VM-2	+	+	+
	P. aeruginosa 52	VM-2	+	+	+
	P. aeruginosa 53	VM-2	+	+	+
	P. aeruginosa 54	VM-2	+	+	+
	P. aeruginosa 55	VM-2	+	+	+
	P. aeruginosa 56	VM-2	+	+	+
	P. aeruginosa 57	VM-2	+	+	+
	P. aeruginosa 58	VM-2	+	+	+
	P. aeruginosa UAA 225747	IMP-1	+	+	+
Acinetobacter	A. baumannii 4	OXA-23	+	+	+
	A. baumannii 5	OXA-23	+	+	+
	A. baumannii 6	OXA-23	+	+	+
	A. baumannii 7	OXA-23	+	+	+
	A. baumannii 8	OXA-23	+	+	+
	A. baumannii 9	OXA-23	+	+	+
	A. baumannii 10	OXA-23	+	+	+
	A. baumannii 11	OXA-23	+	+	+
	A. baumannii 12	OXA-23	+	+	+
	A. baumannii 13	OXA-23	+	+	+
	A. baumannii 14	OXA-23	+	+	+
	A. baumannii 15	OXA-23	+	+	+
	A. baumannii 16	OXA-23	+	+	+
	A. baumannii 17	OXA-23	+	+	+
	A. baumannii 18	OXA-23	+	+	+
	A. baumannii 19	OXA-23	+	+	+
	A. baumannii 20	OXA-23	+	+	+
	A. baumannii 21	OXA-23	+	+	+
	A. baumannii 22	OXA-23	+	+	+
	A. baumannii 23	OXA-23	+	+	+
	A. baumannii 24	OXA-23	+	+	+
	A. baumannii 25	OXA-23	+	+	+
	A. baumannii 26	OXA-23	+	+	+
	A. baumannii 27	OXA-23	+	+	+
	A. baumannii 28	OXA-23	+	+	+
	A. baumannii 29	OXA-23	+	+	+
	A. baumannii 30	OXA-23	+	+	+

TABLE 1. Test results for Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii strains
(Enterobacteriaceae, Pseudomonas and Acinetobacter) and to accelerate the speed with which results are produced, the lysis buffer and pH of the colour indicator solution used in the Carba NP and CarbAcineto NP tests were changed.

In the MCNP test, the lysis buffers used for the Carba NP test and CarbAcineto NP test, B-PER II, Bacterial Protein Extraction Reagent and NaCl 5 M, respectively, were replaced by cetyl trimethyl ammonium bromide (CTAB) 0.02%, and the pH value of the phenol red solution was adjusted to 7.5 (instead of 7.8). In addition, two steps used in the previous protocols [5,6], centrifugation and incubation at room temperature for 30 minutes, were eliminated in our method. These modifications simplify the lysis step and produce results more quickly.

The MCNP test was performed as follows. One inoculation loop (10 μL) of the tested strain, directly recovered from a Mueller Hinton agar plate (bioMérieux, Marcy l’Étoile, France), was resuspended in 200 μL of 0.02% CTAB (Sigma-Aldrich Chimie, Saint-Quentin-Fallavier, France) and vortexed for 1 to 2 minutes. Subsequently, 100 μL of the bacterial suspension was mixed with 100 μL of diluted phenol red solution (2 mL of phenol red (Sigma-Aldrich) solution 0.5% (wt/vol) with 16.6 mL of distilled water) containing 0.1 mM ZnSO4 (pH 7.5) in the first tube, tube 1, used as negative control, and a diluted phenol red

TABLE 1. Continued

Group	Species	Carbapenemase or other β-lactamase gene	Test result by:		
			MHT	MALDI-TOF MS	MCNP
A. baumannii^a	NDM-1	+	+	+	+
A. baumannii^a	NDM-1	+	+	+	+
A. baumannii^a	NDM-1	+	+	+	+
A. baumannii^a	OXA-23/NDM-1	+	+	+	+
A. baumannii^a	OXA-23/NDM-1	+	+	+	+
A. baumannii^a	OXA-23/NDM-1	+	+	+	+
A. baumannii^a	OXA-23/NDM-1	+	+	+	+
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	TEM-128	--	--	--	--
A. baumannii^a	AYE^b	VEβ-1	--	--	--
A. baumannii SDF^c			--	--	--

FIG. 1. Modified Carba NP test results for Enterobacteriaceae, Pseudomonas and Acinetobacter species. (A) Escherichia coli ATCC 25922. (B) NDM-5-positive E. coli. (C) KPC-2-positive Klebsiella pneumoniae 360. (D) IMP-1-positive Pseudomonas aeruginosa UAA 2257. (E) OXA-23-positive Acinetobacter baumannii. (F) OXA-24-positive A. baumannii. (G) NDM-1-positive A. baumannii. (a) Tube containing phenol red solution 0.1 mM ZnSO₄ (pH 7.5) and cetyl trimethyl ammonium bromide (CTAB) 0.02%. (b) Tube containing phenol red solution 0.1 mM ZnSO₄ (pH 7.5) supplemented with 6 mg/mL of imipenem and CTAB 0.02%.

MALDI-TOF MS. matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; **MCNP.** modified Carba NP test; **MHT.**modified Hodge test.

^aStrains tested in Microbial Ecology Laboratory, Béjaia University, Béjaia, Algeria.

^bStrains tested in Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), Aix-Marseille University, Marseille, France.

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 89–93

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
solution containing 0.1 mM ZnSO₄ (pH 7.5) supplemented with 6 mg/mL of commercially available imipenem (Tienam 500; Merck Sharp & Dohme, Paris, France) in the second tube, tube 2. Tubes 1 and 2 were vortexed, then incubated at 37°C for a maximum of 2 hours.

Carbapenemase activity was revealed when the test and negative control solutions, respectively, were yellow vs. red or orange vs. red. In contrast, both solutions remained red in the case of noncarbapenemase producers (Fig. 1).

The results showed that the MCNP method detected all carbapenemases produced by carbapenem-resistant strains with 100% sensitivity and 100% specificity. Positive results were observed at different times for the different carbapenemases types (MBL, KPC and OXA-48 at 10 to 30 minutes vs. 1 to 2 hours for OXA type). The most interesting aspect of this method is that the colour changed from red to orange or yellow (positive result) even before incubation in some cases (NDM-5-producing Escherichia coli, NDM-1-producing Klebsiella pneumoniae (Kpnasey) and imipenem-producing P. aeruginosa UAA2257). Moreover, a higher inoculums (two inoculation loops (10 μL)) is recommended for Acinetobacter species tests.

Currently, the MCNP test is routinely used in Timone Hospital, Marseille, France. It was performed when antibiotic susceptibility testing revealed a resistance to ertapenem and susceptibility or resistance to imipenem. The suspicion of carbapenemase producers, in particular OXA-48, was based on this phenotype. Between November 2014 and May 2015, a total of 233 strains were tested. Among them, 35 positives strains with carbapenemase producers were detected (Table 2). These positives strains were isolated from 25 different patients. These results confirm the efficiency of the MCNP test with high sensitivity, given the detection of all strains producing OXA-48-type carbapenemases. Also, two carbapenemase-producing A. baumannii were detected, thus confirming the advantages of the MCNP test.

In conclusion, the advantages of the MCNP test are the detection of different carbapenemase types from Enterobacteriaceae, Pseudomonas and Acinetobacter species using a single protocol, as well as the short time to results, particularly in the case of MBL-producing Enterobacteriaceae and Pseudomonas species. In addition, the effectiveness of this test on a large series of bacteria may allow us to identify the production

TABLE 2. Results of MCNP test applied for carbapenem-resistant strains isolated in La Timone Hospital, Marseille, France

Date	Sample source	Strain	Antibiotic susceptibility testing results	Carbapenemases gene detected	
10/11/2014	Urine	Klebsiella pneumonia	ETP: R, IMP: R	+	OXA-48
20/11/2014	Rectal swab	E. coli	ETP: R, IMP: R	+	OXA-48
25/11/2014	Bronchoalveolar lavage fluid	K. pneumonia	ETP: R, IMP: R	+	OXA-48
05/12/2014	Bronchoalveolar lavage fluid	K. pneumonia	ETP: R, IMP: R	+	OXA-48
09/12/2014	Recal swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
11/12/2014	Urine	Enterobacter cloacae	ETP: R, IMP: R	+	OXA-48
21/12/2014	Stools	K. pneumonia	ETP: R, IMP: R	+	OXA-48
31/12/2014	Spittle	K. pneumonia	ETP: R, IMP: R	+	OXA-48
12/01/2015	Urine	E. coli	ETP: R, IMP: R	+	OXA-48
24/01/2015	Arial swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
02/02/2015	Rectal swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
06/02/2015	Urine	E. coli	ETP: R, IMP: R	+	OXA-48
17/02/2015	Urine	E. coli	ETP: R, IMP: R	+	OXA-48
19/02/2015	Spittle	K. pneumonia	ETP: R, IMP: R	+	OXA-48
20/02/2015	Rectal swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
23/02/2015	Urine	K. pneumonia	ETP: R, IMP: R	+	OXA-48
04/03/2015	Rectal swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
16/03/2015	Rectal swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
23/03/2015	Bronchial aspirate	K. pneumonia	ETP: R, IMP: R	+	OXA-48
30/03/2015	Arial swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
31/03/2015	Urine	K. pneumonia	ETP: R, IMP: R	+	OXA-48
13/04/2015	Sinus	Seratia marcescens	ETP: R, IMP: R	+	OXA-48
13/04/2015	Blood culture	E. cloacae	ETP: R, IMP: R	+	OXA-48
18/04/2015	Blood culture	E. coli	ETP: R, IMP: R	+	OXA-48
18/04/2015	Rectal swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48
18/04/2015	Blood culture	E. coli	ETP: R, IMP: R	+	OXA-48
04/05/2015	Urine	K. pneumonia	ETP: R, IMP: R	+	OXA-48
06/05/2015	Urine	K. pneumonia	ETP: R, IMP: R	+	OXA-48
07/05/2015	Bronchial aspirate	K. pneumonia	ETP: R, IMP: R	+	OXA-48
08/05/2015	Blood culture	Acinetobacter baumannii	ETP: R, IMP: R	+	OXA-23
11/05/2015	Urine	A. baumannii	ETP: R, IMP: R	+	OXA-23
18/05/2015	Rectal swab	K. pneumonia	ETP: R, IMP: R	+	OXA-48

ETP, ertapenem; IMP, imipenem; MCNP, modified Carba NP test; NT, not tested; R, resistant; S, susceptible; I, Intermediate.
of carbapenemase enzymes even before identification of the bacterial strain.

Interestingly, as well as using this test in developed countries such as France (URMITE laboratories, La Timone Hospital), given the simplicity and the low cost of the MCNP test, it could be used by any laboratory, including laboratories in developing countries. In Algeria, this test has been used in the Microbial Ecology Laboratory of Béjaia University since May 2014, and it will soon be introduced to laboratories in Algerian hospitals.

Conflict of interest

None declared.

Acknowledgements

We thank L. Hadjadj, A. Bergal, M. A. El-Gawad El-Sayed and N. Mathlouthi for their contributions. Supported in part by CNRS and IHU Méditerranée Infection.

References

[1] Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014:2014:249856.

[2] Zarrilli R, Pournaras S, Giannoulis M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2013;41:11–9.

[3] Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents 2012;39:105–14.

[4] Kempf M, Bakour S, Flaudrops C, et al. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS One 2012;7:e31676.

[5] Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2012;18:1503–7.

[6] Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol 2012;50:3773–6.

[7] Dortet L, Poirel L, Errera C, Nordmann P. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol 2014;52:2359–64.

[8] Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013;57:4578–80.

[9] Chong PM, McCorrister SJ, Unger MS, et al. MALDi-TOF MS detection of carbapenemase activity in clinical isolates of Enterobacteriaceae spp., Pseudomonas aeruginosa, and Acinetobacter baumannii compared against the Carba-NP assay. J Microbiol Methods 2015;111:21–3.

[10] Osterblad M, Hakanen AJ, Jalava J. Evaluation of the Carba NP test for carbapenemase detection. Antimicrob Agents Chemother 2014;58:7553–6.

[11] Lee K, Kim CK, Yong D, et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods 2010;83:149–52.