Correction: Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of *Staphylococcus aureus*

Sofia Santos Costa¹,², Celeste Falcão¹, Miguel Viveiros¹,³, Diana Machado¹,⁴, Marta Martins¹,⁴,⁵, José Melo-Cristino⁶, Leonard Amaral¹,³,⁴ and Isabel Couto¹,²*

After the publication of our study [1], we became aware that the mutations in the quinolone resistance-determining region (QRDR) of the gene *grlA* were incorrectly described for some of the *Staphylococcus aureus* clinical isolates studied in this work. In particular, isolates SM1, SM10, SM14, SM17, SM25, SM27, SM43, SM46, SM47 and SM48 carry the GrlA double mutation S80Y/E84G; isolate SM52 carries the GrlA mutation S80Y; isolates SM3 and SM5 carry the GrlA double mutation S80F/E84G. The correct data can be found in Table 1.

All clinical isolates included in this study were selected upon a ciprofloxacin resistance phenotype and all the 25 representative isolates screened for mutations conferring resistance to fluoroquinolones.

Table 1 Genotypic and phenotypic characterization of *S. aureus* clinical isolates

Isolate	PFE pattern	QRDR mutations	MIC (mg/L)			
		GrlA GyrA	EtBr CIP NOR NAL			
			EI TZ CPZ EI TZ CPZ EI TZ CPZ EI TZ CPZ			
ATCC25923	-	WT WT	6.25 0.75 0.75	0.25 0.25 0.25	0.5 0.125 0.125	0.125 0.125 64 n.d. n.d.
ATCC25923*	-	WT WT	200 25 12.5	1 0.25 0.25	2 0.25 0.25	64 n.d. n.d.
SM1	A2	S80Y/E84G S84L	16 4 4	128 32 64	512 128 256	256 64 64
SM10	A4	S80Y/E84G S84L	16 2 4	128 64 64	512 128 128	128 64 64
SM14	A3	S80Y/E84G S84L	16 4 4	256 32 128	1024 128 256	256 64 64
SM17	A4	S80Y/E84G S84L	16 4 4	256 64 64	1024 256 512	256 64 64
SM25	A1	S80Y/E84G S84L	8 2 4	128 32 64	512 64 128	256 64 64
SM27	A4	S80Y/E84G S84L	16 4 4	256 32 64	512 128 256	256 64 64
SM43	A1	S80Y/E84G S84L	16 2 4	128 64 64	512 128 128	128 256 64
SM46	A1	S80Y/E84G S84L	16 4 4	128 64 64	512 128 256	256 64 64
SM47	A1	S80Y/E84G S84L	8 2 4	256 32 64	512 128 256	256 64 64
SM48	A1	S80Y/E84G S84L	8 4 4	256 32 64	512 128 256	256 64 64
SM50	B1	S80F/E84K S84L	8 1 2	64 16 16	256 32 64	128 64 64
SM52	C1	S80Y S84L	16 1 2	16 8 8	64 32 32	128 32 64

* Correspondence: icouto@ihmt.unl.pt
³Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Rua da Junqueira, 100, 1349-008, Lisbon, Portugal
²Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
Full list of author information is available at the end of the article

© 2013 Costa et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
fluoroquinolone resistance carried QRDR mutations in both grlA and gyrA genes. All the mutations found have been described in literature as associated with fluoroquinolone resistance in S. aureus clinical isolates [2].

As stated previously in our study, the majority of the isolates presented a double mutation in GrlA together with a single mutation in GyrA. Eleven isolates carried the GrlA and GyrA mutations S80Y/E84G and S84L, respectively; three isolates carried mutations GrlA S80F/E84K and GyrA S84L and two isolates carried mutations GrlA S80F/E84G and GyrA S84L. The remaining nine isolates carried a single mutation in both genes, in three distinct arrangements (Table 1).

Despite this correction in the QRDR mutations carried by some of the isolates studied, the main findings of our study are not altered. In particular, our data show the potential role played by efflux systems in the development of resistance to fluoroquinolones in clinical isolates of S. aureus, independently of the mutations occurring in the target genes.

We apologize for any inconvenience that this may have caused to the readers.

Author details
1Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Rua da Junqueira, 100, 1349-008, Lisbon, Portugal. 2Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal. 3COST ACTION BM0701 (ATENS). 4Unidade de Parasitologia e Microbiologia Médica (UPMWM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008, Lisbon, Portugal. 5UCD School of Public Health, Physiotherapy and Population Science, UCD Centre for Food Safety, Veterinary Sciences Centre, University College Dublin, Belfield Dublin 4, Ireland. 6Centro Hospitalar Lisboa Norte E.P.E., Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisbon, Portugal.

Received: 15 May 2013 Accepted: 24 May 2013 Published: 6 June 2013

References
1. Costa SS, Falcão C, Viveiros M, Machado D, Martins M, Melo-Cristino J, Amaral L, Couto I: Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol 2011, 11:241.

2. Hooper DC: Mechanisms of fluoroquinolone resistance. Drug Resist Updat 1999, 2:38-55.

doi:10.1186/1471-2180-13-127

Cite this article as: Costa et al.: Correction: Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiology 2013 13:127.

Table 1 Genotypic and phenotypic characterization of S. aureus clinical isolates (Continued)

Isolate	GrlA Mutations	GyrA Mutations	MIC CIP	MIC NOR	MIC NAL	MIC TZ	MIC CPZ	MIC n.d.
SM2	S80F/E84K	S84L	2	2	16	128	32	16
SM3	S80F/E84G	S84L	1	1	16	8	8	64
SM4	S80F	S84L	4	2	1	8	8	64
SM5	S80F/E84G	S84L	4	2	32	16	16	128
SM6	S80F	E88K	4	2	1	16	16	16
SM7	S80F	S84L	2	2	1	8	8	64
SM8	S80F	E88K	4	2	1	16	8	128
SM12	S80F	S84L	2	2	1	16	8	64
SM16	S80F	E88K	4	2	1	16	16	128
SM22	S80F/E84G	S84L	8	4	128	16	32	128
SM34	S80F/E84K	S84L	4	2	64	16	32	16
SM40	S80F	S84L	8	4	128	16	32	128

aIsolates in bold correspond to the EtBrCW-positive isolates. bWT: wild-type; S: serine; F: phenylalanine; E: glutamate; K: lysine; Y: tyrosine; L: leucine; G: glycine.

Values in bold-type correspond to a MIC decrease of ≥ four-fold in the presence of the efflux inhibitor (EI) in comparison to the values with no EI [10]. The concentration of each EI used is defined in the Methods section. EtBr: ethidium bromide; CIP: ciprofloxacin; NOR: norfloxacin; NAL: nalidixic acid; TZ: thioridazine; CPZ: chlorpromazine; n.d.: not determined.