Purity determination of cyclophosphamide hydrate by quantitative 31P-NMR and method validation

Nahoko Uchiyama*¹, Junko Hosoe¹, Naoki Sugimoto¹, Kyoko Ishizuki¹, Tatsuo Koide¹,
Mika Murabayashi², Naoto Miyashita³, Kengo Kobayashi³, Yoshinori Fujimine⁴, Toshiyuki Yokose⁴,
Katsuya Ofuji⁵, Hitoshi Shimizu⁵, Takashi Hasebe⁶, Yumi Asai⁶, Eri Ena⁶, Junko Kikuchi⁷,
Kohei Kiyota⁸, Kazuhiro Fujita⁸, Yoshinobu Makino⁹, Naoko Yasobu¹, Yoshiaki Iwamoto¹⁰,
Toru Miura¹, Koji Mizui¹, Katsuo Asakura¹, Takako Suematsu¹, Hitomi Muto¹, Ai Kohama¹¹,
Takashi Goto¹, Masu Yasuda¹, Tomohiko Ueda¹, Yukihiro Goda²

¹National Institute of Health Sciences (NIHS); 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki,
Kanagawa 210-9501, Japan: ²Takeda Pharmaceutical Co., Ltd.; 26-1, Muraoka-Higashi 2-chome,
Fujisawa, Kanagawa 251-8555, Japan: ³Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka,
Kanagawa 254-0014, Japan: ⁴Otsuka Pharmaceutical Co., Ltd.; 224-18, Hiraishiebisuno,
Kawauchi-cho, Tokushima 771-0182, Japan: ⁵Chugai Pharma Manufacturing Co., Ltd.; 5-5-1
Ukima, Kita-ku, Tokyo 115-8543, Japan: ⁶Eisai Co., Ltd.; 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635,
Japan: ⁷SHIONOGI & Co., Ltd.; 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan: ⁸Juzen
Chemical Corp.; 1-10 Kiba-Machi, Toyama 930-0806 Japan: ⁹FUJIFILM Corporation., 4-1,
Shimokui 2-chome, Toyama 930-8508, Japan: ¹⁰FUJIFILM Wako Pure Chemical Corporation, 1633,
Oazamatoba, Kawagoe-shi, Saitama 350-1101 Japan: ¹¹JEOL Ltd, 2-1-1 Otemachi, Chiyoda, Tokyo
100-0004, Japan: ¹²JEOL RESONANCE Inc, 3-1-2,Musashino, Akishima, Tokyo 196-8558, Japan:
"Pharmaceutical and Medical Device Regulatory Science Society of Japan(PMRJ); 2-1-2,
Hiranomachi, Chuo-ku, Osaka 541-0046, Japan:"Nippon Shinyaku Co., Ltd.; 14,
Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan: © Sumitomo Dainippon Pharma Co., Ltd.; 6-8, Doshomachi 2-chome, Chuo-ku, Osaka, Osaka 541-0045, Japan

* To whom correspondence should be addressed. e-mail: nuchiyama@nihs.go.jp; goda@nihs.go.jp
Summary

Recently, quantitative NMR (qNMR), especially 1H-qNMR, has been widely used to determine the absolute quantitative value of organic molecules. We previously reported an optimal and reproducible sample preparation method for 1H-qNMR. In the present study, we focused on a ^{31}P-qNMR absolute determination method. An organophosphorus compound, cyclophosphamide hydrate (CP), listed in the Japanese Pharmacopeia 17th edition was selected as the target compound, and the ^{31}P-qNMR and 1H-qNMR results were compared under three conditions with potassium dihydrogen phosphate (KH$_2$PO$_4$) or O-phosphorylethanolamine (PEA) as the reference standard for ^{31}P-qNMR and DSS-d_6 as the standard for 1H-qNMR. Condition 1: separate sample containing CP and KH$_2$PO$_4$ for ^{31}P-qNMR or CP and DSS-d_6 for 1H-qNMR. Condition 2: mixed sample containing CP, DSS-d_6, and KH$_2$PO$_4$. Condition 3: mixed sample containing CP, DSS-d_6, and PEA. As conditions 1 and 3 provided good results, validation studies at multiple laboratories were further conducted. The purities of CP determined under condition 1 by 1H-qNMR at 11 laboratories and ^{31}P-qNMR at 10 laboratories were 99.76±0.43% and 99.75±0.53%, respectively, and those determined under condition 3 at five laboratories were 99.66±0.08% and 99.61±0.53%, respectively. These data suggested that the CP purities determined by ^{31}P-qNMR are in good agreement with those determined by the established 1H-qNMR method. Since the ^{31}P-qNMR signals are less complicated than the 1H-qNMR signals, ^{31}P-qNMR would be useful for the absolute quantification of compounds that do not have a simple and separate 1H-qNMR signal, such as a singlet or doublet, although further investigation with other compounds is needed.

Key words
quantitative ^{31}P-NMR; cyclophosphamide hydrate; absolute purity; certified reference material
Introduction

Quantitative NMR (qNMR), especially 1H-qNMR, has emerged as an absolute quantitation method for small molecules. In the Japanese Pharmacopoeia (JP), including the 18th edition scheduled for publication in 2021, 19 compounds evaluated using 1H-qNMR are listed as HPLC analytical standards in the assay of crude drug section.1-8 To establish HPLC reference standards with purities determined by 1H-qNMR in the JP crude drug section, there are several problems to better understand. We previously resolved issues related to 1) establishing reference standards for 1H-qNMR, 2) signals from impurities in 1H-qNMR reference standards and targeted marker compounds, and 3) the peak unity of the signals of targeted marker compounds in HPLC.9-12 We also reported that humidity affects the purity of hygroscopic reagents. Humidity control before and/or during weighing is essential for reproducible analysis, and an indication of the absolute amount (not the purity value) that is unaffected by water content is vital for hygroscopic products determined by 1H-qNMR.13,14 We also developed an optimal and reproducible method for the sample preparation of hygroscopic marker compounds of crude drugs such as ginsenoside Rb\textsubscript{1} for 1H-qNMR.13,14

Additionally, we have reported that the absolute quantitation of chemical drugs such as nabumetone and ipriflavone is feasible using 1H-qNMR.12 Recently, the absolute purity of indocyanine green, a hygroscopic chemical drug listed in the Japanese Pharmaceutical Codex 2002, was determined by 1H-qNMR toward adaption of the drug into the JP. A comparison of absolute indocyanine green purities under three different humidity control revealed that using a constant temperature and humidity box resulted in the lowest variability.15

As described above, we developed an optimal and reproducible 1H-qNMR sample preparation method suitable for the respective properties of targeted compounds. However, depending on the purity and structure of the compound, selecting a quantitative signal can be difficult due to overlapping and complexity. To overcome this limitation, other nuclear measurements were considered potentially useful because of their signal simplicity, although their sensitivity is worse...
than that of 1H-NMR. Since the relative sensitivity of 31P-NMR is better than that of 13C-NMR, and 31P nuclei exist in relatively large quantities in chemical drugs, we investigated 31P-qNMR. There have been few reports on 31P-qNMR. Kato et al. reported measuring the absolute purity of synthetic phosphatidylecholine using 31P-qNMR, and the results were consistent with those determined by 1H-qNMR using an internal standard. However, the investigated compound was not a chemical drug, and they did not report validation data.

Cyclophosphamide hydrate (CP), an anticancer drug, is an organophosphorus compound listed in the JP 17th edition (Fig. 1). In this study, CP was selected as the compound of interest for absolute quantification using 31P-qNMR, and the results were compared with those determined by 1H-qNMR. In addition, validation studies of 31P-qNMR at multiple laboratories were conducted utilizing the purity determination of CP.

Results and Discussion

1. Optimization of CP purity determination by 1H- and 31P-qNMR

1-1. Selection of appropriate solvent and reference standards for 1H- and 31P-qNMR

To select the appropriate solvent, acetone-d_6, CDCl$_3$, CD$_3$OD, and D$_2$O were preliminary used for the 1H- and 31P-qNMR analysis of CP. D$_2$O was selected (Fig. 2a, 2b) because CP existed as two conformers in acetone-d_6, CDCl$_3$, and CD$_3$OD (data not shown). From the viewpoint of solubility, sodium 4,4-dimethyl-4-silapentanesulfonate-d_6 (DSS-d_6; IUPAC name: sodium 3-(trimethylsilyl)propane-1-sulfonate-1,1,2,2,3,3-d_6), an SI-traceable certified reference material (CRM), was selected as the 1H-qNMR reference standard. Previous reports state that potassium dihydrogen phosphate (KH$_2$PO$_4$), triphenyl phosphate, and phosphonoacetic acid can be used as commercially available CRMs for 31P-qNMR. We chose KH$_2$PO$_4$ (δP: approximately 0.7 ppm) due to its solubility and the chemical shift of CP (δP: approximately 15.9 ppm) (Fig. 1, 2b). Separately, O-phosphorylethanolamine (PEA; IUPAC name: 2-aminoethyl dihydrogen phosphate) was also assessed in terms of purity by 1H-qNMR with SI-traceable DSS-d_6 and then used as a reference.
1-2. Relaxation delay time for 31P-qNMR measurements

For quantitative NMR experiments using the internal standard method (AQARI: accurate quantitative NMR with internal reference substance), a relaxation delay time exceeding seven times longer than T_1 is required for stabilization. The T_1 values of the 31P signals of CP, PEA, and KH$_2$PO$_4$ in D$_2$O were 2.5, 4.6, and 8.0 s, respectively. Therefore, the relaxation delay time for 31P-qNMR was set to 60 s or more.

1-3. Hygroscopicity of CP

The hygroscopicity of CP was investigated by moisture adsorption and desorption analysis prior to quantitative NMR measurements. Under the conditions of 15–80% relative humidity, the weight of CP did not change (0.1% or less in 1 h) (data not shown). Therefore, sample preparation was performed under 15–80% relative humidity.

1-4. Optimization of 1H- and 31P-qNMR measurements

Next, to determine the optimum 1H- and 31P-qNMR measurement conditions, the following three conditions were examined in Laboratory A (Table 1). Condition 1: DSS-d_6 and KH$_2$PO$_4$ were used as quantitative reference standards for 1H- and 31P-qNMR, respectively, with separate quantitative samples. Condition 2: a mixed solution of CP, DSS-d_6, and KH$_2$PO$_4$ was prepared. Condition 3: a mixed solution of CP, DSS-d_6, and PEA was prepared. PEA was assessed for purity by 1H-qNMR with DSS-d_6 as the standard and used as a reference standard for CP quantitation by 31P-qNMR. The devices and parameters for sample preparation and 1H- and 31P-qNMR measurements in Laboratory A are summarized in Tables 2–4. 1H- and 31P-qNMR spectra of CP prepared under the three conditions are shown in Fig. 2a and b, Fig. 2c and 2d, and Fig. 2e and f, respectively, and the quantitative data for each condition are shown in Table 1.

Under condition 1, the 1H-qNMR spectra of CP could be measured without any problems. Signals a and b of CP were selected as quantitative candidates considering their sufficient separation and height (Fig. 2a). For 31P-qNMR, a slight signal attributed to a CP-derived degradant was observed at...
approximately 9 ppm beginning from 6 h after preparation (data not shown). However, this signal was not problematic if the sample was measured quickly after preparation (Fig. 2b). The purities of CP determined by 1H-qNMR were 99.37±0.20% (signal a) and 99.99±0.16% (signal b), where the quantitative signal values for a were slightly lower (Table 1). The purity of CP determined by 31P-qNMR was 99.54±0.69%; thus, the quantitative CP purities determined by 1H-qNMR (signals a and b) and 31P-qNMR were almost the same (Table 1). Additionally, the time course of the purity of CP determined by 31P-qNMR up to 32 h after preparation was examined. Since the determined purity was relatively stable until 12.5 h after preparation, and an apparent reduction in purity occurred after 17 h, we concluded that the data obtained within 12.5 h after sample preparation was acceptable (Fig. 3).

In the 1H-qNMR spectrum measured under condition 2, signals estimated to be from CP-derived degradants were observed at approximately 4.1, 3.5, and 2.0 ppm beginning from 2.5 h after preparation (Fig. 2c). In the 31P-qNMR spectrum, a small signal was observed in the shoulder of the KH$_2$PO$_4$ signal (Fig. 2d). In addition, similar to the 1H-qNMR spectrum, a slight signal estimated to be from a CP-derived degradant was recorded at approximately 9 ppm beginning from 2.5 h after preparation (data not shown). The purities of CP determined by 1H-qNMR were 99.42±0.04% (signal a) and 100.09±0.08% (signal b), while the purity of CP determined by 31P-qNMR was 97.66±1.80% with a high variation (Table 1). The relative sensitivity of 31P-qNMR is 7% that of 1H-qNMR, meaning that the 31P-qNMR measurement time required to obtain enough S/N for quantification is approximately 200 times longer than that required for 1H-qNMR. The difference in the obtained purity values with variations by 1H-qNMR and 31P-qNMR apparently reflect this. In other words, under condition 2, the samples decomposed gradually, suggesting that condition 2 is inappropriate for 31P-qNMR.

Under condition 3, impurity signals derived from PEA at approximately 3.8 ppm and 4.12 ppm were observed in the 1H-qNMR spectrum (Fig. 2e). In contrast, the 31P-qNMR spectrum did not contain any impurities (Fig. 2f). The quantitative purities of CP determined by 1H-qNMR were
99.28±0.11% (signal CP-a) and 99.93±0.19% (signal CP-b), where the average was slightly lower for signal CP-a (Table 1). For the determination of CP purity by 31P-qNMR, the purity of PEA, which was selected as another 31P-qNMR reference standard, was first calculated as 99.28±0.10% (signal PEA-a) using DSS-d_6 as the 1H-qNMR reference standard. It should be noted that this PEA purity was calculated by including the slight impurity signal at approximately 4.12 ppm. Next, the purity of CP was calculated by 31P-qNMR based on the calculated purity of PEA, and the result was 99.96±0.19%. As the purities determined by 1H-qNMR and 31P-qNMR were almost the same, we believe that condition 3 is also acceptable for 31P-qNMR measurements (Table 1).

From the above results, conditions 1 and 3 were considered appropriate for the subsequent validation studies of 31P-qNMR at multiple laboratories by comparison with established 1H-qNMR data. In addition, we selected signal b of CP as the quantitative signal for 1H-qNMR because it had the highest intensity and is a simple triplet signal without any interference by impurities. Next, validation studies were conducted.

2. Validation studies of 31P-qNMR at multiple laboratories under conditions 1 and 3

Validation studies of 31P-qNMR with conditions 1 and 3 for the purity determination of CP were conducted. Table 2 summarizes the devices and parameters used for sample preparation in each laboratory, and Tables 3 and 4 summarize the devices and parameters for 1H-qNMR and 31P-qNMR measurements in each laboratory, respectively.

2-1. Purity determination of CP under condition 1

Under condition 1, the CP purity determined by 1H-qNMR at 11 laboratories was 99.76±0.43% (Table 5), and that determined by 31P-qNMR at 10 laboratories was 99.75±0.53% (Table 6). The results were in good agreement.

2-2. Purity determination of CP under condition 3

Under condition 3, the CP purity determined by 1H-qNMR at five laboratories was 99.66±0.08% (Table 7). The purity of PEA, which was used as the quantitative reference standard in subsequent

31P-qNMR measurements, determined by 1H-qNMR at five laboratories ranged from 98.85% to 99.77%, as shown in Table 8. The CP purity determined by 31P-qNMR at five laboratories was 99.61±0.53% (Table 9), which also agreed well with that determined by 1H-qNMR (Table 7).

2.3. Comparison of absolute CP purities

Under both conditions 1 and 3, the CP purities determined by 1H- and 31P-qNMR were almost the same. These data clearly suggested that the absolute quantitation of CP using both 31P-qNMR and 1H-qNMR is possible. Under condition 1, KH$_2$PO$_4$, an SI-traceable CRM, was used as a reference standard for 31P-qNMR to determine the CP purity. On the other hand, under condition 3, PEA was used as an alternative reference standard for 31P-qNMR, and its purity was calculated based on the SI-traceable CRM DSS-d_6. As a result, a good quantitation value was obtained despite the inclusion of two weighing errors. The lower S/N of 31P-qNMR may be one reason for the slightly larger variation in CP purity values determined by 31P-qNMR, compared with the 1H-qNMR (Tables 3 and 4).

Additionally, the quantitative value of CP determined by titration of chloride ion caused by alkali degradation was 99.1% (data not shown); the method used (European Pharmacopoeia (EP) method) was described in the EP10.0. The value was almost the same as, but slightly smaller than that by 1H-qNMR and 31P-qNMR (Table 5–7, 9). This might be because the EP method is more complex, and includes a degradation process compared with qNMR methods; both of which are simple direct absolute determinations. Since qNMR is a more convenient and clean analysis than titration, our proposed method is useful for the quantitative assay of CP as a substitute of titration.

Conclusion

In this study, we focused on a 31P-qNMR absolute determination method and selected the organophosphorus compound CP listed in the JP 17th edition as the target compound. After the optimum measurement conditions were set, validation tests at multiple laboratories were conducted. The purities of CP determined by 1H-qNMR and 31P-qNMR under condition 1 were 99.76±0.43%
and 99.75±0.53%, respectively, and those determined under condition 3 were 99.66±0.08% and 99.61±0.53%, respectively. These data suggested that the CP purities determined by 31P-qNMR are in good agreement with the established 1H-qNMR values. Since the 31P-qNMR signals are less complicated than the 1H-qNMR signals, 31P-qNMR would be useful for the absolute quantification of compounds that do not have a simple and separate 1H-qNMR signal such as a singlet or doublet, although further investigation with other compounds is necessary.

Experiments

1. Facilities

A total of 11 investigators from 11 laboratories (A–K) performed separate experiments.

2. Reagents, reference standards for 1H-qNMR and 31P-qNMR, and solvents

CP was purchased from Tokyo Chemical Industry (TCI, Tokyo, Japan). DSS-d_6 (MW = 224.36), a CRM traceable to the National Metrology Institute of Japan/National Institute of Advanced Industrial Science and Technology, was purchased from FUJIFILM Wako Pure Chemical (Osaka, Japan) and used as the reference standard for 1H-qNMR. KH$_2$PO$_4$ (MW = 136.09), a qNMR CRM traceable to the International System of Units (SI) (TraceCERT®), was purchased from Sigma-Aldrich (MO, USA) and used as a reference standard for 31P-qNMR. PEA as another reference standard for 31P-qNMR was purchased from TCI. D$_2$O (>99.8% atom% D) was used as a deuterated solvent for qNMR, as shown in Table 2.

3. Instruments and equipment

An ultra-micro balance and micro balance with readabilities of 0.0001 and 0.001 mg, respectively, were used (Table 2). One 700 MHz NMR spectrometer equipped with a cryogenic probe and three 600 MHz, two 500 MHz, and five 400 MHz NMR spectrometers equipped with normal (room temperature) probes were used for 1H-qNMR measurements (Table 3). For 31P-qNMR measurements, three 600 MHz, two 500 MHz, and six 400 MHz NMR spectrometers equipped with normal probes were used (Table 4).
4. Preparation of sample solutions

4.1. NMR validation test

Approximately 5–20 mg of each reagent (CP) and approximately 1–6 mg of the reference standard for 1H-qNMR (DSS-d_6) or 31P-qNMR (KH$_2$PO$_4$ or PEA) were precisely weighed, placed in the same vial for each tare, and dissolved in the NMR solvent (D$_2$O) (1–2 mL). From the sample solution, precisely 0.6 mL was sealed in an NMR sample tube (Table 2).

4.2. Humidity conditions

Condition 1: The observed humidity’s in the 11 laboratories were 26–72%. Condition 2: The observed humidity in one laboratory was 66%. Condition 3: The observed humidity’s in the five laboratories were 51–73% (data not shown). CP, DSS-d_6, KH$_2$PO$_4$, and PEA were equilibrated for 0.5–3 h under each condition before weighing (Table 2).

5. Conditions for qNMR

Table 3 shows the devices and parameters employed for 1H-qNMR measurements in each lab. A reference standard for 1H-qNMR (DSS-d_6) was used as the chemical shift reference signal (0 ppm). The δ values are expressed in ppm. The observed spectral width was 20–25 ppm, and a digital filter was used. The center of the spectrum was set at 5 ppm, and the pulse width was set to the time at which a 90° pulse was obtained. The acquisition time was 4 or 8 s (Lab. I), the digital resolution was 0.125 or 0.25 Hz, and the delay time was 60 s. An auto FG shim or a Topshim was used for shim adjustment. The determination temperature was set at 22–30°C. 13C decoupling was performed with MPF8 or MPF9. Scans were performed 8 or 32 (Lab. G) times, and a dummy scan was performed two or four times.

Table 4 shows the devices and parameters employed for 31P-qNMR measurements in each lab. A reference standard for 31P-qNMR (KH$_2$PO$_4$ or PEA) was used as the chemical shift reference signal (0 ppm). The observed spectral width was 50 ppm, and a digital filter was used. The center of the spectrum was set at 8 ppm, and the pulse width was set to the time at which a 90° pulse was obtained. The acquisition time was 4 or 8 s (Lab. I); the digital resolution was 0.19, 0.23, or 0.25 Hz; and the
delay time was 60 or 70 s. Under condition 2, the delay times were 60 and 70 s for 1H- and 31P-qNMR, respectively, in Lab A. An auto FG shim or a Topshim was used for shim adjustment. The determination temperature was set at 22–30℃. 1H decoupling with inverse gated decoupling (No-NOE) was performed. Scans were performed 32 or 64 times, and a dummy scan was performed twice.

In principle, the measurements were performed three times for each sample following the internal standard method (AQARI) to ensure that the S/N of the quantitative signal was 100 or higher (Tables 3 and 4). Alice 2 for qNMR, Purity Pro, Delta (JEOL), and TopSpin (Bruker) were used for NMR data processing.

The trimethylsilyl peak of the reference standard for 1H-qNMR (DSS-d6) and the phosphorus peak of the reference standard for 31P-qNMR (KH$_2$PO$_4$ and PEA) were set at 0 ppm. Phase correction, baseline correction, and determination of peak integration ranges were performed manually or automatically. All integrated values in this study are expressed in terms of purity (%). The purity of the reagents was calculated using the following formula based on a previous study21,22:

$$ P_{\text{sample}} = \left(\frac{I_{\text{sample}}}{I_{\text{std}}} \times \frac{H_{\text{std}}}{H_{\text{sample}}} \times \frac{W_{\text{std}}}{W_{\text{sample}}} \times \frac{M_{\text{sample}}}{M_{\text{std}}} \right) \times P_{\text{std}} $$

P_{sample} = Purity of the sample (%)

I_{sample} = Integral area of the sample signal

I_{std} = Integral area of the reference standard signal

H_{std} = Number of protons or phosphorus nuclei in the reference standard

H_{sample} = Number of protons or phosphorus nuclei in the sample

W_{std} = Weight of the reference standard

W_{sample} = Weight of the sample

M_{sample} = Molecular weight of the sample
\[M_{\text{std}} = \text{Molecular weight of the reference standard} \]

\[P_{\text{std}} = \text{Purity of the reference standard (\%)} \]

The following values were used for the calculations: number of methyl group protons in DSS-\textit{d}_6 (reference standard for 1H-qNMR), \(\text{CH}_3 \times 3 = 9 \); molecular weight of DSS-\textit{d}_6 = 224.36; molecular weight of CP = 279.10 (C\textsubscript{7}H\textsubscript{17}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{3}P); molecular weight of KH\textsubscript{2}PO\textsubscript{4} = 136.09; and molecular weight of PEA = 141.06 (C\textsubscript{2}H\textsubscript{8}NO\textsubscript{4}P).

\textbf{Acknowledgments}

This research was supported by the Japan Agency for Medical Research and Development (AMED), grant number JP20mk0101129.

\textbf{Conflict of Interest}: The authors declare no conflict of interest.
References

1) The Ministry of Health, Labour and Welfare, Japan. “The Japanese Pharmacopoeia Seventeenth Edition (2016)”: ⟨https://www.mhlw.go.jp/file/06-Seisakuhou-11120000-Iyakushokuhinkyoku/JP17_REV_1.pdf⟩, cited 10 March, 2020.

2) The Ministry of Health, Labour and Welfare, Japan. “Supplement I to The Japanese Pharmacopoeia Seventeenth Edition (2017)”: ⟨https://www.mhlw.go.jp/content/11120000/000352508.pdf⟩, cited 10 March, 2020.

3) The Ministry of Health, Labour and Welfare, Japan. “Supplement II to The Japanese Pharmacopoeia Seventeenth Edition (2019)”: ⟨https://www.mhlw.go.jp/content/11120000/000597173.pdf⟩, cited 10 March, 2020.

4) The Ministry of Health, Labour and Welfare, Japan. “The Japanese Pharmacopoeia Seventeenth Edition (2016), General Information, Quantitative Analytical Technique Utilizing Nuclear Magnetic Resonance (NMR) Spectroscopy and its Application to Reagents in the Japanese Pharmacopoeia.”: ⟨https://www.pmda.go.jp/files/000217666.pdf⟩, cited 10 March, 2020.

5) Pharmaceuticals and Medical Devices Agency (PMDA). “JP drafts for public comments. (3 June, 2019)”: ⟨https://www.pmda.go.jp/rs-std-jp/standards-development/jp/pub-comments/jp/0161.html⟩, cited 10 March, 2020.

6) Pharmaceuticals and Medical Devices Agency (PMDA). “Byakkokaninjinto Extract (3 June, 2019)”, ⟨https://www.pmda.go.jp/files/000229715.pdf⟩, cited 10 March, 2020.

7) Pharmaceuticals and Medical Devices Agency (PMDA). “JP drafts for public comments (3 June, 2019)”, ⟨https://www.pmda.go.jp/files/000229718.pdf⟩, cited 16 January, 2021.

8) Pharmaceuticals and Medical Devices Agency (PMDA). “JP drafts for public comments (2 September, 2019)”, ⟨https://www.pmda.go.jp/files/000231158.pdf⟩, cited 16 January, 2021.

9) Hosoe J., Sugimoto N., Goda Y., Pharmaceutical and Medical Device Regulatory Science,
10) Hosoe J., Sugimoto N., Suematsu T., Yamada Y., Hayakawa M., Katsuhara T., Nishimura H., Goda Y., *Pharmaceutical and Medical Device Regulatory Science*, 43(2), 182-193 (2012).

11) Hosoe J., Sugimoto N., Suematsu T., Yamada Y., Miura T., Hayakawa M., Suzuki H., Katsuhara T., Nishimura H., Kikuchi Y., Yamashita T., Goda Y., *Pharmaceutical and Medical Device Regulatory Science*, 45(3), 243-250 (2014).

12) Goda Y., *Pharmaceutical and Medical Device Regulatory Science*, 48(9), 615-619 (2017).

13) Uchiyama N., Hosoe J., Miura T., Sugimoto N., Ishizuki K., Yamada Y., Iwamoto Y, Suematsu T., Komatsu T., Maruyama T., Igarashi Y., Higano T., Shimada N., Goda Y., *YAKUGAKU ZASSHI*, 140, 1063-1069 (2020).

14) Uchiyama N., Hosoe J., Miura T., Sugimoto N., Ishizuki K., Yamada Y., Iwamoto Y, Suematsu T., Komatsu T., Maruyama T., Igarashi Y., Higano T., Shimada N., Goda Y., *Chem. Pharm. Bull.*, 69(1), 26-31 (2021).

15) Uchiyama N., Hosoe J., Sugimoto N., Ishizuki K., Koide T., Murabayashi M., Miyashita N., Kobayashi K., Fujimine Y., Yokose T., Ofuji K., Shimizu H., Hasebe T., Asai Y., Ena E., Kikuchi J., Kiyota K., Fujita K., Makino Y., Yasobu N., Yamada Y., Iwamoto Y., Miura T., Mizui K., Asakura K., Suematsu T., Kohama A., Goda Y., *Chem. Pharm. Bull.*, 69(1), 118-123 (2021).

16) Kato T., Nishimiya M., Kawata A., Kishida K., Suzuri K., Saito M., Fujita K., Igarashi T., Inagaki M.: J. Oleo Sci., 67(10):1279-1289 (2018).

17) Weber, M., Hellriegel, C., Rueck, A., Wuethrich, J., Jenks, P., & Obkircher, M. (2015) Anal. Bioanal. Chem. 407, 3115–3123. doi:10.1007/s00216-014-8306-6.

18) Rigger R., Rück A., Hellriegel C., Sauermoser R., Morf F., Breitrick K.B., Obkircher M., *J. AOAC Int.*, 100(5):1365-1375 (2017). doi: 10.5740/jaoacint.17-0093.

19) qNMR primary guide. A guide to quantitative analysis for beginners-from basics to practice, qNMR primary guide working group, pp96-97, Kyoritsu publication (Tokyo, Japan), 2015.

20) European Directorate for the Quality of Medicines. European Pharmacopoeia 10.0. Council of
Europe, Strasbourg, France. 2326 (2019).

21) Sugimoto N., Tada A., Suematsu T., Arifuku K., Saito T., Ihara T., Yoshida Y., Kubota R., Tahara M., Shimizu K., Ito S., Yamazaki T., Kawamura Y., Nishimura T., Shokuhin Eiseigaku Zasshi (Food Hygiene and Safety Science), 51, 19-27 (2010).

22) Sato-Masumoto N., Nishizaki Y., Saito N., Yamazaki T., Numata M., Ihara T., Sugimoto N., Sato K., Nippon Shokuin Kagaku Gakkaishi (Jpn. J. Food Chem. Safety), 24, 75-81 (2017).
Fig. 1 Structures of cyclophosphamide hydrate (CP), qNMR CRMs traceable to the SI reference standards of 1H- and 31P-NMR (DSS-d_6 and KH$_2$PO$_4$), and reference standard for 31P-NMR (O-phosphorylethanolamine (PEA))

*¹ IUPAC name: sodium 3-(trimethylsilyl)propane-1-sulfonate-1,1,2,2,3,3-d_6

*² IUPAC name: 2-aminoethyl dihydrogen phosphate
Fig. 2 ¹H-qNMR and ³¹P-qNMR spectra of CP under three different conditions. Condition 1: ¹H-qNMR spectrum of CP with DSS-d₆ in D₂O (a) and ³¹P-qNMR spectrum of CP with KH₂PO₄ in D₂O (b). Condition 2: ¹H-qNMR (c) and ³¹P-qNMR (d) spectra of CP with DSS-d₆ and KH₂PO₄ in D₂O, respectively. Condition 3: ¹H-qNMR (e) and ³¹P-qNMR (f) spectra of CP with DSS-d₆ and PEA in D₂O, respectively.
Fig. 3 Time course of CP purity (%) with KH$_2$PO$_4$ in D$_2$O determined by 31P-qNMR under condition
Table 1 Purity (%) of CP determined by 1H- and 31P-qNMR under conditions 1–3

Condition	Reference standard for qNMR	Analyte	Solvent	1H-qNMR Purity±S.D. (%) (n=3)	31P-qNMR Purity±S.D. (%) (n=3)
1	DSS-d_6	CP	D$_2$O	Signal a: 99.37±0.20	99.54±0.69
	DSS-d_6	KH$_2$PO$_4$	CP	Signal b: 99.99±0.16	
2	DSS-d_6	KH$_2$PO$_4$	CP	Signal a: 99.42±0.04	97.66±1.80
			D$_2$O	Signal b: 100.09±0.08	
3	DSS-d_6	α-Phosphoryl-ethanolamine (PEA) (Purity: determined by DSS-d_6)	CP	Signal a: 99.28±0.11	99.96±0.19
			D$_2$O	Signal b: 99.93±0.19	
				PEA: 99.28±0.10	

* Purity of DSS-d_6: 92.4% (CRM); purity of KH$_2$PO$_4$: 99.68% (CRM)

S.D.: Standard deviation
Table 2 Devices and parameters employed for sample preparation at different laboratories

Sample preparation	A	B	C	D	E	F	G	H	I	J	K
Reference standard for 1H-qNMR											DSS-d$_6$ (FUJIFILM Wako)
Reference standard for 31P-qNMR (condition 1)											KH$_2$PO$_4$ (SIGMA-ALDRICH)
Reference standard for 31P-qNMR (condition 3)											Reference standard for 1H-qNMR DSS-d$_6$ (Isotec)
Analyte	C-Phosphorylethanolamine (PEA) (TCI)										PEA (TCI)
Solvent	D$_2$O: 99.9 atom%D (Isotec)	D$_2$O: 99.9 atom%D (Isotec)	D$_2$O: 99.9 atom%D (CIL)	D$_2$O: 99.9 atom%D (Alrich)	D$_2$O: 99.9 atom%D (CIL)	D$_2$O: 99.8 atom%D (Kanto)	D$_2$O: 99.9 atom%D (CIL)	D$_2$O: 99.9 atom%D (MERCK)	D$_2$O: 99.9 atom%D (Alrich)	D$_2$O: 99.9 atom%D (CIL)	D$_2$O: 99.9 atom%D (MERCK)
Solvent	Ultramicro balance	Ultramicro balance	Micro balance	Ultramicro balance	Ultramicro balance	Ultramicro balance	Ultramicro balance				
Minimum indicated value (mg)	0.0001	0.0017	0.001	0.001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Minimum weight (mg)	0.3777	0.2951	0.1531	0.1498	0.0718	0.1531	0.0718	0.1531	0.0718	0.1531	0.0718

Condition 1

Preparation for 1H-qNMR

Laboratory	A	B	C	D	E	F	G	H	I	J	K
Reference standard for 1H-qNMR: DSS-d$_6$ (mg)	1.1093	1.0545	2.147	1.996	2.107	1.0156	1.0128	1.0073	1.0093	1.0075	0.9508
Analyte volume: CP (mg)	6.5047	5.1956	10.003	10.382	10.385	5.0452	5.0646	5.3129	4.7470	5.0745	5.1522
Equilibration period before weighing (h)	DSS-d$_6$: 1 h	DSS-d$_6$: 1 h	CP: 1 h	CP: 1 h	DSS-d$_6$: 3 h	DSS-d$_6$: 1 h	CP: 1 h	DSS-d$_6$: 0.5 h	DSS-d$_6$: 0.5 h	CP: 0.5 h	CP: 0.5 h
Reference standard for 3P-qNMR: KH$_2$PO$_4$ (mg)	3.5049	2.914	2.958	5.996	3.021	3.1539	2.9957	3.2085	3.0782	3.0602	2.9928
Analyte volume: CP (mg)	10.2745	9.7551	4.883	19.597	9.806	9.9722	10.0758	10.1997	10.4469	10.1546	10.2215
Equilibration period before weighing (h)	KH$_2$PO$_4$: 1 h	KH$_2$PO$_4$: 1 h	CP: 1 h	CP: 1 h	KH$_2$PO$_4$: 0.5 h	KH$_2$PO$_4$: 0.5 h	CP: 0.5 h	CP: 0.5 h	KH$_2$PO$_4$: 0.5 h	KH$_2$PO$_4$: 0.5 h	CP: 0.5 h

Condition 3

Reference standard for 1H-qNMR: DSS-d$_6$ (mg) | 1.1726 | 1.0125 | | | | | | | | | 1.0602 | 1.0068 | 1.0523 |
Reference standard for 3P-qNMR: PEA (mg)	3.2419	3.0892									3.0628	3.035	3.0061	
Analyte volume: CP (mg)	10.0026	10.3019									10.0818	10.0901	9.702	
Equilibration period before weighing (h)	DSS-d$_6$, PEA, CP: 1 h	DSS-d$_6$, PEA, CP: 1 h									DSS-d$_6$, PEA, CP: 2 h			
Laboratory	A	B	C	D	E	F	G	H	I	J	K
Observation nuclear	¹H										
Spectrometer frequency	600 MHz	600 MHz	500 MHz	400 MHz	500 MHz	700 MHz	400 MHz	600 MHz	400 MHz	400 MHz	400 MHz
Probe type	Normal	Normal	Normal	Normal	Normal	Cryogenic	Normal	Normal	Normal	Normal	Normal
Spectral width	20 ppm	25 ppm	20 ppm								
Pulse offset	5 ppm										
Spinning	No										
Digital filter	Yes										
Pulse angle	90°	90°	90°	90°	90°	90°	90°	90°	90°	90°	90°
Digital resolution	0.25 Hz	0.125 Hz	0.25 Hz	0.25 Hz	0.25 Hz						
Relaxation delay time	60 s										
Acquisition time	4 s	4 s	4 s	4 s	4 s	4 s	4 s	4 s	4 s	4 s	4 s
Measurement temperature	22°C	23°C	25°C	25°C	23°C	30°C	25°C	25°C	25°C	30°C	25°C
¹³C decoupling	Yes										
Decoupling sequence	MPF8	MPF8	MPF9	MPF9	MPF8	MPF8	MPF8	MPF8	MPF9	MPF8	MPF8
Scan times	8	8	8	8	8	8	32	8	8	8	8
Dummy scan times	2	2	2	2	2	4	2	2	2	2	2
S/N (4.4 ppm: CP-a) (Condition 1)	624	530	480	223	386	1527	610	252	230	350	204
S/N (4.1 ppm: PEA) (Condition 3)	931	830	970	970	970	970	555	297			
Table 4 Devices and parameters employed for 31P-qNMR measurements at different laboratories

Laboratory	A	B	C	D	E	F	G	H	I	J	K
Observation nuclear 31P	242.8 Hz (1'H: 600 MHz)	242.8 Hz (1'H: 600 MHz)	200 Hz (1'H: 500 MHz)	162 Hz (1'H: 400 MHz)	202.5 MHz (1'H: 500 MHz)	162 Hz (1'H: 400 MHz)	243 Hz (1'H: 600 MHz)	161.9 Hz (1'H: 400 MHz)	162 Hz (1'H: 400 MHz)	162 Hz (1'H: 400 MHz)	
Spectrometer frequency 1H	90°	90°	90°	90°	90°	90°	90°	90°	90°	90°	
Probe type	Normal										
Spectral width	50 ppm										
Pulse offset	8 ppm										
Spinning	No										
Digital filter	Yes										
Pulse angle	90°	90°	90°	90°	90°	90°	90°	90°	90°	90°	
Digital resolution	0.23 Hz	0.23 Hz	0.25 Hz	0.25 Hz	0.19 Hz	0.25 Hz	0.25 Hz	0.23 Hz	0.25 Hz	0.25 Hz	
Relaxation delay time (Condition 1)	70 s	70 s	70 s	60 s	70 s						
Relaxation delay time (Condition 3)	60 s	60 s	4 s	4 s	4 s	4 s	4 s	4 s	8 s	4 s	
Acquisition time	4 s	4.3 s	4 s	4 s	5.2 s	4 s	4 s	4 s	8 s	4 s	
Measurement temperature	22°C	23°C	25°C	25°C	23°C	30°C	25°C	25°C	25°C	25°C	
1H decoupling	Inverse gated decoupling (No-NOE)										
Decoupling sequence	Waltz										
Scan times	32	32	32	32	64	64	32	32	32	32	
Dummy scan times	2	2	2	2	2	2	2	2	2	2	
S/N (Condition 1: 15 ppm)	303	280	137	280	154	345	210	230	433	160	
S/N (Condition 3: 0 ppm)	210	260	280	280	154	345	210	230	433	160	
Table 5 Purities (%) of CP determined by 1H-qNMR under condition 1 at 11 laboratories

Position	Laboratory	Average (%) of 11 labs	S.D. (%) of 11 labs											
	A	B	C	D	E	F	G	H	I	J	K			
Signal b	3.7 ppm	99.99	99.82	100.33	100.13	99.07	99.61	99.56	99.42	100.49	99.44	99.52	99.76	0.43
	S.D. (%)	0.15	0.29	0.06	0.16	0.02	0.03	0.03	0.01	0.10	0.14	0.10		

S.D.: Standard deviation

Table 6 Purities (%) of CP determined by 31P-qNMR under condition 1 at 10 laboratories

Position	Laboratory	Average (%) of 10 labs	S.D. (%) of 10 labs									
	A	C	D	E	F	G	H	I	J	K		
15.3 ppm	99.54	100.48	99.82	98.87	99.88	100.37	99.31	100.32	99.53	99.36	99.75	0.53
	S.D. (%)	0.69	0.10	0.25	0.85	0.10	1.03	0.10	0.04	0.19	0.13	

S.D.: Standard deviation
Table 7 Purities (%) of CP determined by 1H-qNMR under condition 3 at five laboratories

Position	Laboratory	Average (%) of 5 Labs	S.D. (%) of 5 Labs			
Signal b (3.7ppm)	A	B	G	J	K	
Average (%)	99.62	99.79	99.67	99.59	99.65	99.66
S.D. (%)	0.33	0.18	0.06	0.14	0.05	0.08

S.D.: Standard deviation

Table 8 Purities (%) of PEA as a reference standard for 31P-qNMR determined by 1H-qNMR under condition 3 at five laboratories

Position	Laboratory	Average (%)	S.D. (%)			
4.1 ppm	A	B	G	J	K	
Average (%)	98.85	99.00	99.77	99.14	99.27	0.28
S.D. (%)	0.28	0.08	0.26	0.11	0.27	

S.D.: Standard deviation

Table 9 Purities (%) of CP determined by 31P-qNMR calculated from PEA purity under condition 3 at five laboratories

Position	Laboratory	Average (%) of 5 Labs	S.D. (%) of 5 Labs			
15.1 ppm	A	B	G	J	K	
Average (%)	100.33	99.58	99.87	99.36	98.91	99.61
S.D. (%)	0.30	0.91	0.45	0.20	0.35	0.53

S.D.: Standard deviation