CONNES INTEGRATION FORMULA FOR THE NONCOMMUTATIVE PLANE

F. SUKOCHEV AND D. ZANIN

ABSTRACT. Our aim is to prove the integration formula on the noncommutative (Moyal) plane in terms of singular traces à la Connes.

1. Introduction

Let M be a compact Riemannian manifold. The following formula can be found in p. 34 in [1] and in Corollary 7.21 in [9].

\[
\text{Tr}_\omega(M_f(1-\Delta)^{-\frac{d}{2}}) = \int_M f \, d\text{vol}, \quad f \in C_\infty(M).
\]

Here, M_f is the multiplication operator, Δ is the Hodge-Laplacian operator on $L_2(M, \text{vol})$ and Tr_ω is the Dixmier trace on the ideal L_1, ∞ (see Section 2). Also, Corollary 7.22 in [9] wrongly extends this result to $f \in L_1(M, \text{vol})$ (in fact, $f \in L_2(M, \text{vol})$ is the necessary and sufficient condition for this formula to hold; see [14] or the book [15] for detailed proofs).

According to [1], formula (1) “led Connes to introduce the Dixmier trace as the correct operator theoretical substitute for integration of infinitesimals of order one in non-commutative geometry.” It appears suitable to refer to (1) and similar results as the “Connes Integration Formula”.

Compactness of the (resolvent of the) Hodge-Dirac operator plays a crucial role in the proofs of Connes Integration Formula for unital spectral triples (see [1] and [9]). For non-unital spectral triples (including non-compact manifolds), the proofs become radically harder. Even the case of the simplest non-compact manifold \mathbb{R}^d required a substantial effort and the first reasonable answer was very recently given in [11] (see the book [15] for detailed proofs).

In this paper, we investigate the validity of Connes Integration Formula for the noncommutative (Moyal) plane \mathbb{R}^d_θ (here, θ is a non-degenerate antisymmetric matrix). Earlier attempts in this direction can be found in [8] (see Proposition 4.17 there), [2] and [3]. We substantially strengthen corresponding results from these papers and present a completely different approach to Connes Integration Formula. The novelty of our approach is in the consistent use of Cwikel estimates for the noncommutative plane (obtained in a recent paper [12]) — see Section 2.

Our main result is the following theorem.

Theorem 1.1. If $x \in W^{d,1}(\mathbb{R}^d_\theta)$, then $x(1-\Delta)^{-\frac{d}{2}} \in L_1, \infty$ and

\[
\varphi(x(1-\Delta)^{-\frac{d}{2}}) = \tau_\theta(x)
\]

for every normalised continuous trace φ on L_1, ∞.

Here, \(W^{d,1}(\mathbb{R}^d_0) \) is a Sobolev space on \(\mathbb{R}^d_0 \) and \(\tau_0 \) is the faithful normal semifinite trace on \(L_{\infty}(\mathbb{R}^d_0) \).

Section 2 involves the preliminaries necessary to prove Theorem 1.1. In Section 3, we prove that

\[\varphi(x(1 - \Delta)^{-\frac{d}{2}}) = c_\varphi \tau_0(x), \quad x \in W^{d,1}(\mathbb{R}^d_0), \]

for every normalised trace on \(L_{1,\infty} \). In Section 4, we construct one particular \(x \in W^{d,1}(\mathbb{R}^d_0) \) such that \(\varphi(x(1 - \Delta)^{-\frac{d}{2}}) \) does not depend on the choice of a normalised continuous trace \(\varphi \). The combination of these results yield Theorem 1.1.

2. Preliminaries

2.1. General notation. Fix throughout a separable infinite dimensional Hilbert space \(H \). We let \(\mathcal{L}(H) \) denote the algebra of all bounded operators on \(H \). For a compact operator \(T \) on \(H \), let \(\mu(k,T) \) denote the \(k \)-th largest singular value (these are the eigenvalues of \(|T| \)). The sequence \(\mu(T) = \{\mu(k,T)\}_{k \geq 0} \) is referred to as to the singular value sequence of the operator \(T \). The standard trace on \(\mathcal{L}(H) \) is denoted by \(\text{Tr} \).

Fix an orthonormal basis in \(H \) (the particular choice of a basis is inessential). We identify the algebra \(l_\infty \) of bounded sequences with the subalgebra of all diagonal operators with respect to the chosen basis. For a given sequence \(\alpha \in l_\infty \), we denote the corresponding diagonal operator by diag(\(\alpha \)).

2.2. Schatten ideals \(\mathcal{L}_p \) and \(\mathcal{L}_{p,\infty} \), \(p > 0 \). For every \(p > 0 \), we set

\[\mathcal{L}_p = \{ T \in \mathcal{L}(H) : \text{Tr}(|T|^p) < \infty \}. \]

We set

\[\|T\|_p = \left(\text{Tr}(|T|^p)\right)^{\frac{1}{p}}, \quad T \in \mathcal{L}_p. \]

For every \(p > 0 \), \(\| \cdot \|_p \) is a quasi-norm\(^1\) and \((\mathcal{L}_p, \| \cdot \|_p) \) is a quasi-Banach space. For \(p \geq 1 \), \(\| \cdot \|_p \) is a norm. For \(p < 1 \), the space \((\mathcal{L}_p, \| \cdot \|_p) \) is not Banach — that is, its quasi-norm is not equivalent to any norm.

For a given \(0 < p \leq \infty \), we let \(\mathcal{L}_{p,\infty} \) denote the principal ideal in \(\mathcal{L}(H) \) generated by the operator diag(\(\{(k + 1)^{-\frac{1}{p}}\}_{k \geq 0} \)). Equivalently,

\[\mathcal{L}_{p,\infty} = \{ T \in \mathcal{L}(H) : \mu(k,T) = O((k + 1)^{-1/p}) \}. \]

We set

\[\|T\|_{p,\infty} = \sup_{k \geq 0} (k + 1)^{1/p} \mu(k,T), \quad T \in \mathcal{L}_{p,\infty}. \]

For every \(p > 0 \), \(\| \cdot \|_{p,\infty} \) is a quasi-norm and \((\mathcal{L}_{p,\infty}, \| \cdot \|_{p,\infty}) \) is a quasi-Banach space. For \(p > 1 \), \(\| \cdot \|_{p,\infty} \) is equivalent to a (unitarily invariant Banach) norm. For \(p \leq 1 \), the space \((\mathcal{L}_{p,\infty}, \| \cdot \|_{p,\infty}) \) is not Banach — that is, its quasi-norm is not equivalent to any norm. In \([17]\), the Banach envelope of \(\mathcal{L}_{1,\infty} \) was thoroughly investigated.

\(^1\)A quasinorm satisfies the norm axioms, except that the triangle inequality is replaced by \(\|x + y\| \leq K(\|x\| + \|y\|) \) for some uniform constant \(K > 1 \).
2.3. Traces on $L_{1,\infty}$.

Definition 2.1. If \mathcal{I} is an ideal in $L(H)$, then a unitarily invariant linear functional $\varphi: \mathcal{I} \to \mathbb{C}$ is said to be a trace.

Since $U^{-1}TU - T = [U^{-1}, TU]$ for all $T \in \mathcal{I}$ and for all unitaries $U \in L(H)$, and since the unitaries span $L(H)$, it follows that traces are precisely the linear functionals on \mathcal{I} satisfying the condition

$$\varphi(TS) = \varphi(ST), \quad T \in \mathcal{I}, S \in L(H).$$

The latter may be reinterpreted as the vanishing of the linear functional φ on the commutator subspace which is denoted $[\mathcal{I}, L(H)]$ and defined to be the linear span of all commutators $[T,S] : T \in \mathcal{I}, S \in L(H)$. It is shown in Lemma 5.2.2 in [15] that $\varphi(T_1) = \varphi(T_2)$ whenever $0 \leq T_1, T_2 \in \mathcal{I}$ are such that the singular value sequences $\mu(T_1)$ and $\mu(T_2)$ coincide.

For $p > 1$, the ideal $L_{p,\infty}$ does not admit a non-zero trace [7], while for $p = 1$, there exists a plethora of traces on $L_{1,\infty}$ (see e.g. [18] or [15]). A standard example of a trace on $L_{1,\infty}$ is a Dixmier trace introduced in [6] that we now explain.

Definition 2.2. Let ω be a free ultrafilter on \mathbb{Z}_+. The functional

$$\text{Tr}_\omega : A \to \lim_{n \to \omega} \frac{1}{\log(2+n)} \sum_{k=0}^n \mu(k, A), \quad 0 \leq A,$$

is finite and additive on the positive cone of $L_{1,\infty}$. Therefore, it extends to a trace on $L_{1,\infty}$. We call such traces Dixmier traces.

These traces clearly depend on the choice of the ultrafilter ω on \mathbb{Z}_+. Using a slightly different definition, this notion of trace was applied by Connes [4] in noncommutative geometry.

An extensive discussion of traces, and more recent developments in the theory, may be found in [15] including a discussion of the following facts. We refer the reader to an alternative approach to the theory of traces on $L_{1,\infty}$ suggested in [18] (based on the fundamental paper [16] by Pietsch).

1. All Dixmier traces on $L_{1,\infty}$ are positive.
2. All positive traces on $L_{1,\infty}$ are continuous in the quasi-norm topology.
3. There exist positive traces on $L_{1,\infty}$ which are not Dixmier traces (see [18]).
4. There exist traces on $L_{1,\infty}$ which fail to be continuous (see [15]).

Definition 2.3. We say that an operator $A \in L_{1,\infty}$ is measurable if $\varphi(A)$ does not depend on the choice of the continuous normalised trace φ on $L_{1,\infty}$.

2.4. Noncommutative plane: algebra. Each assertion in this subsection is rigorously established in Section 6 in [12].

Our approach to the noncommutative plane is to introduce the von Neumann algebra generated by a strongly continuous family of unitary operators $\{U(t)\}_{t \in \mathbb{R}^d}$, $d \in \mathbb{N}$, satisfying the commutation relation

$$U(t+s) = \exp\left(-\frac{i}{2} (t, \theta s)\right) U(t)U(s), \quad t, s \in \mathbb{R}^d,$$

where θ is a fixed antisymmetric real $d \times d$ matrix. Namely, we set

$$\langle U(t)\xi\rangle(u) = e^{-\frac{i}{2}(t, \theta u)} \xi(u-t), \quad \xi \in L_2(\mathbb{R}^d), \quad u, t \in \mathbb{R}^d.$$

Definition 2.4. Let $d \in \mathbb{N}$ and let θ be a fixed non-degenerate\footnote{A non-degenerate antisymmetric matrix is automatically of even order.} antisymmetric real $d \times d$ matrix. The von Neumann subalgebra in $L(L_2(\mathbb{R}^d))$ generated by $\{U(t)\}_{t \in \mathbb{R}^d}$, introduced in \cite{8}, is called the noncommutative plane and denoted by $L_\infty(\mathbb{R}_d^d)$.

Example 2.5. If $d = 2$, then $L_\infty(\mathbb{R}_d^d)$ is generated by 2 unitary groups $t \to U_1(t)$, $t \to U_2(t)$, $t \in \mathbb{R}$ satisfying the condition

$$U_1(t_1)U_2(t_2) = e^{i\alpha t_1 t_2}U_2(t_2)U_1(t_1), \quad t_1, t_2 \in \mathbb{R}.$$

Here, $U_1(t_1) = U((t_1,0))$ and $U_2(t_2) = U((0,t_2))$.

The following assertion is well-known. In [12], a spatial isomorphism is constructed.

Theorem 2.6. For every non-degenerate antisymmetric real matrix θ, the algebra $L_\infty(\mathbb{R}_d^d)$ is isomorphic to $L(L_2(\mathbb{R}^d))$.

Having established the isomorphism between $r : L_\infty(\mathbb{R}_d^d) \to L(L_2(\mathbb{R}^d))$ we now equip $L_\infty(\mathbb{R}_d^d)$ with a faithful normal semifinite trace $\tau_\theta = \text{Tr} \circ r$.

We can now define L_p-spaces on $L_\infty(\mathbb{R}_d^d)$.

$$L_p(\mathbb{R}_d^d) = \{x \in L_\infty(\mathbb{R}_d^d) : \tau_\theta(|x|^p) < \infty\}.$$

Lemma 2.7. An operator $x \in L_\infty(\mathbb{R}_d^d)$ is in $L_2(\mathbb{R}_d^d)$ if and only if

$$x = \text{Op}(f) \overset{\text{def}}{=} \frac{1}{(2\pi)^{d/4}} \int_{\mathbb{R}^d} f(s)U(s)ds$$

for some unique $f \in L_2(\mathbb{R}^d)$ with $\|x\|_2 = \|f\|_2$.

Note that our picture is the Fourier dual of the one considered in [8]. More precisely, the paper [8] deals with operators of the form $\text{Op}(\mathcal{F}f)$, where f is Schwartz (in [8], these operators are written simply as f).

2.5. Noncommutative plane: calculus. Each assertion in this subsection is rigorously established in Section 6 in [12].

Let D_k, $1 \leq k \leq d$ be multiplication operators on $L_2(\mathbb{R}^d)$

$$(D_k \xi)(t) = t_k \xi(t), \quad \xi \in L_2(\mathbb{R}^d).$$

For brevity, we denote $\nabla = (D_1, \cdots, D_d)$. For every $1 \leq k \leq d$, we have

$$[D_k, U(s)] = sk U(s), \quad s \in \mathbb{R}^d.$$

Moreover, we have

$$e^{i(t,\nabla)}U(s)e^{-i(t,\nabla)} = e^{i(t,s)}U(s), \quad s, t \in \mathbb{R}^d.$$

If $[D_k, x] \in L(L_2(\mathbb{R}^d))$ for some $x \in L_\infty(\mathbb{R}_d^d)$, then $[D_k, x] \in L_\infty(\mathbb{R}_d^d)$. This crucial fact allows us to introduce mixed partial derivative $\partial^a x$ of $x \in L_\infty(\mathbb{R}_d^d)$.

\footnote{To be precise,}

$$x = \lim_{N \to \infty} \frac{1}{(2\pi)^{d/4}} \int_{[-N,N]^d} f(s)U(s)ds,$$

where the limit is taken in $L_2(\mathbb{R}_d^d)$. In what follows, we write the integral over \mathbb{R}^d instead of the limit in order to lighten the notations.
Definition 2.8. Let α be a multiindex and let $x \in L_\infty(\mathbb{R}_d^d)$. If every repeated commutator $[D_{\alpha_1}, [D_{\alpha_1}, x]]$, $1 \leq j \leq n$, is a bounded operator on $L_2(\mathbb{R}^d)$, then the mixed partial derivative $\partial^\alpha x$ of x is defined as

$$\partial^\alpha x = [D_{\alpha_1}, [D_{\alpha_2}, \cdots, [D_{\alpha_n}, x]].$$

In this case, we have that $\partial^\alpha x \in L_\infty(\mathbb{R}_d^d)$. As usual, $\partial^0 x = x$.

Therefore, we can introduce the Sobolev space $W^{m,p}(\mathbb{R}_d^d)$ associated with the noncommutative plane in the following way.

Definition 2.9. For $m \in \mathbb{Z}_+$ and $p \geq 1$, the space $W^{m,p}(\mathbb{R}_d^d)$ is the space of $x \in L_p(\mathbb{R}_d^d)$ such that every partial derivative of x up to order m is also in $L_p(\mathbb{R}_d^d)$. This space is equipped with the norm,

$$||x||_{W^{m,p}} = \sum_{|\alpha| \leq m} ||\partial^\alpha x||_p, \quad x \in W^{m,p}(\mathbb{R}_d^d).$$

The following assertion is one of the main results in [12].

Theorem 2.10. If $x \in W^{d,1}(\mathbb{R}_d^d)$, then

(a) $x(1 - \Delta)^{-\frac{d}{4}} \in L_1$ and

$$||x(1 - \Delta)^{-\frac{d}{4}}||_1 \leq c_d \|x\|_{W^{d,1}}.$$

(b) $x(1 - \Delta)^{-\frac{d}{4}} \in L_{1,\infty}$ and

$$||x(1 - \Delta)^{-\frac{d}{4}}||_{1,\infty} \leq c_d \|x\|_{W^{d,1}}.$$

3. Integration Formula Modulo a Constant Factor

For every $\phi \in L_\infty(\mathbb{R}^d)$, we define a bounded operator $T_\phi : L_2(\mathbb{R}_d^d) \rightarrow L_2(\mathbb{R}_d^d)$ by the formula

$$T_\phi : \int_{\mathbb{R}^d} f(s)U(s)ds \rightarrow \int_{\mathbb{R}^d} f(s)\phi(s)U(s)ds, \quad f \in L_2(\mathbb{R}^d).$$

Lemma 3.1. If ϕ is a Schwartz function, then $T_\phi : L_1(\mathbb{R}_d^d) \rightarrow L_1(\mathbb{R}_d^d)$.

Proof. We claim that

$$T_\phi x = \int_{\mathbb{R}^d} (\mathcal{F}\phi)(u)U(-\theta^{-1} u)xU(\theta^{-1} u)du, \quad x \in L_2(\mathbb{R}_d^d).$$

Since both sides above define bounded operators on $L_2(\mathbb{R}_d^d)$ and since the set $\{\text{Op}(f) : f \text{ is Schwartz}\}$ is dense in $L_2(\mathbb{R}_d^d)$, it suffices to establish the claim for

$$x = \int_{\mathbb{R}^d} f(s)U(s)ds, \quad f \in S(\mathbb{R}^d).$$

Using the inverse Fourier transform, we write

$$\phi(s) = \int_{\mathbb{R}^d} (\mathcal{F}\phi)(u)e^{i(u,s)}du, \quad s \in \mathbb{R}^d.$$

Since both f and $\mathcal{F}\phi$ are Schwartz functions, it follows that

$$T_\phi x = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(s)(\mathcal{F}\phi)(u)e^{i(u,s)}U(s)du.$$

It follows from (2) that

$$e^{i(u,s)}U(s) = U(-\theta^{-1} u)U(s)U(\theta^{-1} u).$$
Therefore,
\[T_\varphi x = \int_{\mathbb{R}^d} (\mathcal{F}\varphi)(u) \left(\int_{\mathbb{R}^d} f(s)U(-\theta^{-1}u)U(s)U(\theta^{-1}u)ds \right) du. \]
Using the definition of \(x \), we obtain
\[\int_{\mathbb{R}^d} f(s)U(-\theta^{-1}u)U(s)U(\theta^{-1}u)ds = U(-\theta^{-1}u)xU(\theta^{-1}u). \]
This proves the claim.

Now, we prove the assertion of the lemma as follows.
\[\| T_\varphi x \|_1 \leq \int_{\mathbb{R}^d} |(\mathcal{F}\varphi)(u)| \cdot \| U(-\theta^{-1}u)xU(\theta^{-1}u) \|_1 du = \| \mathcal{F}\varphi \|_1 \| x \|_1. \]

\[\square \]

Lemma 3.2. For every \(x \in W^{d,1}(\mathbb{R}^d) \), the mapping
\[t \mapsto U(-t)xU(t), \quad t \in \mathbb{R}^d, \]
is a continuous \(W^{d,1}(\mathbb{R}^d) \)-valued function. Moreover,
\[\| U(-t)xU(t) \|_{W^{d,1}} = \| x \|_{W^{d,1}}. \]

Proof. It follows from Leibniz rule that
\[[D_k, U(-t)xU(t)] = [D_k, U(-t)] \cdot xU(t) + U(-t) \cdot [D_k, x] \cdot U(t) + U(-t)x \cdot [D_k, U(t)] = -t_k U(-t)xU(t) + U(-t)[D_k, x]U(t) + t_k U(-t)xU(t) = U(-t)[D_k, x]U(t). \]
Iterating the latter inequality, we obtain
\[\partial^\alpha(U(-t)xU(t)) = U(-t)\partial^\alpha(x)U(t). \]
Thus,
\[\| U(-t)xU(t) \|_{W^{d,1}} = \sum_{|\alpha| \leq d} \| \partial^\alpha(U(-t)xU(t)) \|_1 = \sum_{|\alpha| \leq d} \| \partial^\alpha(x) \|_1 = \| x \|_{W^{d,1}}. \]

We now establish the continuity. For every \(y \in \mathcal{L}_1 \), the mapping
\[t \mapsto V(-t)yV(t), \quad t \in \mathbb{R}^d, \]
is continuous in the \(\mathcal{L}_1 \)-norm whenever the mapping \(t \mapsto V(t) \) is strongly continuous. Recall that \((L_\infty(\mathbb{R}^d), \tau_\theta) \) is *-isomorphic (so that trace is preserved) to \((\mathcal{L}(L_2(\mathbb{R}^d)), \text{Tr}) \). Thus, the mapping
\[t \mapsto U(-t)\partial^\alpha(x)U(t) = \partial^\alpha(U(-t)xU(t)) \]
is continuous in \(L_1 \)-norm. This completes the proof. \[\square \]

Lemma 3.3. (a) If \(f \) is Schwartz, then \(\text{Op}(f) \in W^{d,1}(\mathbb{R}^d) \).
(b) The set \(\{ \text{Op}(f) : f \text{ is Schwartz} \} \) is dense in \(L_1(\mathbb{R}^d) \). In particular, \(W^{d,1}(\mathbb{R}^d) \) is dense in \(L_1(\mathbb{R}^d) \).

Proof. There exists a sequence \(\{ e_{kl} \}_{k,l \geq 0} \subset L_\infty(\mathbb{R}^d) \) such that
\begin{itemize}
 \item[(i)] \(e_{k1}, e_{k2} = \delta_{k1}, \delta_{k2} e_{k1}, e_{k2} \) and \(e_{kl}^* = e_{lk} \).
 \item[(ii)] \(\tau_\theta(e_{kk}) = 1 \).
 \item[(iii)] \(\sum_{k \geq 0} e_{kk} = 1 \) in strong operator topology.
 \item[(iv)] for every \(k, l \geq 0 \), there exists a Schwartz function \(f_{kl} \) such that \(e_{kl} = \text{Op}(f_{kl}) \).
\end{itemize}
The existence of such a sequence is established in Lemma 2.4 in [8] (see also additional references therein). A particular formula for f_{kl} can be found on p. 618 in [8] in terms of Laguerre polynomials.

We prove (b). Let f be a Schwartz function. By Proposition 2.5 in [8], one can write f as

$$f = \sum_{k,l \geq 0} c_{kl}f_{kl}, \quad \sum_{k,l \geq 0} |c_{kl}| < \infty.$$

Thus,

$$\text{Op}(f) = \sum_{k,l \geq 0} c_{kl}f_{kl},$$

where the series converges in L_1–norm. Thus, $\text{Op}(f) \in L_1(\mathbb{R}_d)$. Let $f_\alpha(t) = t^\alpha f(t)$, $t \in \mathbb{R}^d$. By [4], $\partial^\alpha(\text{Op}(f)) = \text{Op}(f_\alpha)$. Since f_α is also a Schwartz function, it follows that $\partial^\alpha(\text{Op}(f)) \in L_1(\mathbb{R}_d)$. This proves (b).

To prove (c), note that, for every $x \in L_1(\mathbb{R}_d)$,

$$\sum_{k,l \leq N} e_{kk}xe_{ll} = \left(\sum_{k \leq N} e_{kk} \right) x \left(\sum_{l \leq N} e_{ll} \right) \rightarrow x$$

in L_1–norm as $N \to \infty$. Note that $e_{kk}xe_{ll}$ is a scalar multiple of $e_{kl} = \text{Op}(f_{kl})$. Since a linear combination of Schwartz functions is again a Schwartz function, it follows that

$$\sum_{k,l \leq N} e_{kk}xe_{ll} \in \{ \text{Op}(f) : f \text{ is Schwartz} \} \subset W^{d,1}(\mathbb{R}_d).$$

This proves (c). \hfill \Box

Lemma 3.4. If F is a continuous functional on $W^{d,1}(\mathbb{R}_d)$ such that

$$F(x) = F(U(-t)xU(t)), \quad x \in W^{d,1}(\mathbb{R}_d), \quad t \in \mathbb{R}^d,$$

then $F = \tau_\theta$ (up to a constant factor).

Proof. Let $T : W^{d,1}(\mathbb{R}_d) \to W^{d,1}(\mathbb{R}_d)$ be defined by setting

$$Tx = \int_{\mathbb{R}^d} U(-\theta^{-1}t)xU(\theta^{-1}t)e^{-\frac{1}{2}|t|^2} dt.$$

The integral is understood as a Bochner integral of a continuous $W^{d,1}(\mathbb{R}_d)$–valued function (the continuity and convergence of the integral follow from Lemma 3.2).

For every $x \in W^{d,1}(\mathbb{R}_d)$, we have

$$F(Tx) = \int_{\mathbb{R}^d} F(U(-\theta^{-1}t)xU(\theta^{-1}t))e^{-\frac{1}{2}|t|^2} dt = \int_{\mathbb{R}^d} F(x)e^{-\frac{1}{2}|t|^2} dt = (2\pi)^{\frac{d}{2}} F(x).$$

Thus,

$$F(x) = (2\pi)^{-\frac{d}{2}} F(Tx), \quad x \in W^{d,1}(\mathbb{R}_d).$$

We claim that $\|Tx\|_{W^{d,1}} \leq c_d \|x\|_1$ for every $x \in W^{d,1}(\mathbb{R}_d)$. To see this, let

$$x = \int_{\mathbb{R}^d} f(s)U(s)ds, \quad f \in L_2(\mathbb{R}^d).$$

If, in the proof of Lemma 3.1, we select $\phi(t) = e^{-\frac{1}{2}|t|^2}$, $t \in \mathbb{R}^d$, then the argument given there yields

$$Tx = \int_{\mathbb{R}^d} f(s)U(s)e^{-\frac{1}{2}|s|^2} ds.$$
By (1), we have
\[\partial^\alpha(Tx) = \int_{\mathbb{R}^d} f(s) U(s) s^\alpha e^{-\frac{1}{2}|x|^2} ds. \]

Let \(\phi_\alpha(s) = s^\alpha e^{-\frac{1}{2}|s|^2}, \ s \in \mathbb{R}^d. \) We have that \(\partial^\alpha \circ T = T_{\phi_\alpha}. \) By Lemma 3.1
\(T_{\phi_\alpha} : L_1(\mathbb{R}^d_0) \to L_1(\mathbb{R}^d_0) \) is a bounded operator. This proves the claim.

For every \(x \in W^{d,1}(\mathbb{R}^d_0), \) we have
\[|F(x)| = (2\pi)^{-\frac{d}{2}} |F(Tx)| \leq (2\pi)^{-\frac{d}{2}} \|F\|_{(W^{d,1})^*} \|Tx\|_{W^{d,1}} \leq c_d \|F\|_{(W^{d,1})^*} \|x\|_1. \]

Thus, a functional \(F \) on \(W^{d,1}(\mathbb{R}^d_0) \) is bounded in \(\| \cdot \|_1 \)-norm. By the Hahn-Banach Theorem, \(F \) extends to a bounded functional on \(L_1(\mathbb{R}^d_0). \) Hence, there exists \(y \in L_\infty(\mathbb{R}^d_0) \) such that
\[F(x) = \tau_\theta(xy), \quad x \in W^{d,1}(\mathbb{R}^d_0). \]

Clearly,
\[F(U(-t)xU(t)) = \tau_\theta(U(-t)xU(t)y) = \tau_\theta(xU(t)yU(-t)). \]

Comparing the last 2 equalities, we obtain
\[\tau_\theta(xU(t)yU(-t)) = \tau_\theta(xy), \quad x \in W^{d,1}(\mathbb{R}^d_0). \]

Since \(W^{d,1}(\mathbb{R}^d_0) \) is dense in \(L_1(\mathbb{R}^d_0), \) it follows that \(y = U(t)yU(-t) \) for every \(t \in \mathbb{R}^d. \)

In other words, \(y \) commutes with every \(U(t) \) and, therefore, with every element in \(L_\infty(\mathbb{R}^d_0). \) Since \(L_\infty(\mathbb{R}^d_0) \) is a factor (see Theorem 2.6), it follows that \(y \) is a scalar operator. This completes the proof. \(\square \)

The following proposition is a light version of Theorem 1.1

Proposition 3.5. If \(x \in W^{d,1}(\mathbb{R}^d_0), \) then \(x(1 - \Delta)^{-\frac{d}{2}} \in L_{1,\infty} \) and
\[\varphi(x(1 - \Delta)^{-\frac{d}{2}}) = c_\varphi \tau_\theta(x) \]
for every continuous trace on \(L_{1,\infty} \) and for some constant \(c_\varphi. \)

Proof. By Theorem 2.10 (3), the functional
\[F : x \mapsto \varphi(x(1 - \Delta)^{-\frac{d}{2}}), \quad x \in W^{d,1}(\mathbb{R}^d_0), \]
is a well defined bounded linear functional on \(W^{d,1}(\mathbb{R}^d_0). \)

Since \(\varphi \) is unitarily invariant, it follows that
\[\varphi(x(1 - \Delta)^{-\frac{d}{2}}) = \varphi(e^{i(t,\nabla)}x(1 - \Delta)^{-\frac{d}{2}} e^{-i(t,\nabla)}), \quad t \in \mathbb{R}^d. \]

By the Spectral Theorem, we have
\[(1 - \Delta)^{-\frac{d}{2}} e^{-i(t,\nabla)} = e^{-i(t,\nabla)}(1 - \Delta)^{-\frac{d}{2}}, \]
and so
\[\varphi(x(1 - \Delta)^{-\frac{d}{2}}) = \varphi(e^{i(t,\nabla)}xe^{-i(t,\nabla)}(1 - \Delta)^{-\frac{d}{2}}). \]

For every \(s \in \mathbb{R}^d, \) we have (see (3))
\[e^{i(t,\nabla)} U(s)e^{-i(t,\nabla)} = e^{i(t,s)} U(s). \]

On the other hand, it follows from (2) that
\[U(-\theta^{-1}t) U(s) U(\theta^{-1}t) = e^{i(t,s)} U(s). \]

Comparing preceding equalities, we arrive at
\[e^{i(t,\nabla)} U(s)e^{-i(t,\nabla)} = U(-\theta^{-1}t) U(s) U(\theta^{-1}t). \]
It follows that
\[e^{i(t,\nabla)}xe^{-i(t,\nabla)} = U(-\theta^{-1}t)xU(\theta^{-1}t), \quad x \in L_\infty(\mathbb{R}^d). \]

Combining the preceding paragraphs, we obtain
\[\varphi(x(1-\Delta)^{-\frac{d}{2}}) = \varphi(U(-\theta^{-1}t)xU(\theta^{-1}t)(1-\Delta)^{-\frac{d}{2}}). \]

Applying Lemma 3.4 to our functional \(F \), we conclude the argument. \(\square \)

4. PROOF OF MEASURABILITY

Lemma 4.1. If \(K \in W^{2d+2,1}([0,1]^d \times [0,1]^d) \) and if \(T : L_2((0,1)^d) \to L_2((0,1)^d) \) is an integral operator with integral kernel \(K \), then \(T \in \mathcal{L}_1 \) and \(\|T\|_1 \leq c_d\|K\|_{W^{2d+2,1}} \).

Proof. Let \(K \in W^{2d+2,1}([-\pi,\pi]^d \times [-\pi,\pi]^d) \) be an extension of \(K \) such that
\[\|K\|_{W^{2d+2,1}([-\pi,\pi]^d \times [-\pi,\pi]^d)} \leq c_d\|K\|_{W^{2d+2,1}([0,1]^d \times [0,1]^d)} \]
and such that \(K \) vanishes on and near the boundary. Thus, \(K \in W^{2d+2,1}(\mathbb{T}^d \times \mathbb{T}^d) \). Let \(S : L_2(\mathbb{T}^d) \to L_2(\mathbb{T}^d) \) be an integral operator with integral kernel \(K \). We have \(T = M_{\chi_{[0,1]^d}}SM_{\chi_{[0,1]^d}} \). Thus, \(\|T\|_1 \leq \|S\|_1 \).

Let us write Fourier series
\[K(t,s) = \sum_{m_1,m_2 \in \mathbb{Z}^d} c_{m_1,m_2}e_{m_1}(t)e_{m_2}(s), \quad t, s \in \mathbb{T}^d. \]
Set
\[S_{m_1,m_2}\xi = \langle \xi, e_{-m_2}\rangle e_{m_1}, \quad \xi \in L_2(\mathbb{T}^d). \]
It is an integral operator on \(L_2(\mathbb{T}^d) \) with the integral kernel \((t,s) \to e_{m_1}(t)e_{m_2}(s) \).
Hence,
\[S = \sum_{m_1,m_2 \in \mathbb{Z}^d} c_{m_1,m_2}S_{m_1,m_2}. \]
By triangle inequality, we have
\[\|S\|_1 \leq \sum_{m_1,m_2 \in \mathbb{Z}^d} |c_{m_1,m_2}| \leq \sup_{m_1,m_2 \in \mathbb{Z}^d} (1 + |m_1|^2 + |m_2|^2)^{d+1} |c_{m_1,m_2}| \cdot \sum_{m_1,m_2 \in \mathbb{Z}^d} (1 + |m_1|^2 + |m_2|^2)^{-d-1}. \]
Observe that \((1 + |m_1|^2 + |m_2|^2)^{d+1} |c_{m_1,m_2}| \) is the \((m_1,m_2)\)–th Fourier coefficient of the function \((1 - \Delta_{\mathbb{T}^d})^{d+1}K \) (here, \(\Delta_{\mathbb{T}^d} \) is the Laplacian on the torus \(\mathbb{T}^d \)). Taking into account that Fourier coefficients do not exceed the \(L_1 \)–norm, we infer that
\[(1 + |m_1|^2 + |m_2|^2)^{d+1} |c_{m_1,m_2}| \leq (2\pi)^{-2d} |(1 - \Delta_{\mathbb{T}^d})^{d+1}K|_1 \leq c_d\|K\|_{W^{2d+2,1}}. \]
Here, the last inequality follows from the definition of a Sobolev space. \(\square \)

In what follows, we consider the tensor product of 2 bounded operators on a Hilbert space \(H \) and a bounded operator on the Hilbert space \(H \otimes H \).

Lemma 4.2. If \(T \in \mathcal{L}_{1,\infty} \) and \(S \in \mathcal{L}_1 \), then \(S \otimes T \in \mathcal{L}_{1,\infty} \) and
\[\varphi(S \otimes T) = \text{Tr}(S) \cdot \varphi(T) \]
for every continuous trace \(\varphi \) on \(\mathcal{L}_{1,\infty} \).
Proof. Firstly, we show that $S \otimes T \in \mathcal{L}_{1,\infty}$. Let $z(t) = t^{-1}, t > 0$. By definition, we have $\mu(T) \leq \|T\|_{1,\infty}z$. The crucial fact that $\mu(S \otimes z) = \|S\|_1 z$ is proved on p. 211 in [3]. Thus,

$$\|S \otimes T\|_{1,\infty} = \|S \otimes \mu(T)\|_{1,\infty} \leq \|T\|_{1,\infty}\|S \otimes z\|_{1,\infty} = \|T\|_{1,\infty}\|S\|_1.$$

We now turn to the proof of (6). If S is a rank one projection, then there is nothing to prove. If S is a positive finite rank operator, then the assertion follows by linearity. If S is an arbitrary finite rank operator, then the assertion again follows by linearity.

Let $S \in \mathcal{L}_1$ be arbitrary. Fix $\epsilon > 0$ and choose $S_1, S_2 \in \mathcal{L}_1$ such that $S = S_1 + S_2$, S_1 is finite rank and $\|S_2\|_1 \leq \epsilon$. Clearly,

$$\varphi(S \otimes T) - \text{Tr}(S) \cdot \varphi(T) =
\quad (\varphi(S_1 \otimes T) - \text{Tr}(S_1) \cdot \varphi(T)) + (\varphi(S_2 \otimes T) - \text{Tr}(S_2) \cdot \varphi(T)).$$

By the preceding paragraph, the summand in the first bracket vanishes. Thus,

$$\varphi(S \otimes T) - \text{Tr}(S) \cdot \varphi(T) = \varphi(S_2 \otimes T) - \text{Tr}(S_2) \cdot \varphi(T).$$

Hence,

$$|\varphi(S \otimes T) - \text{Tr}(S) \cdot \varphi(T)| \leq |\varphi(S_2 \otimes T)| + |\text{Tr}(S_2) \cdot \varphi(T)| \leq ||\varphi||_{\mathcal{L}_1,\infty} \cdot (\|S_2 \otimes T\|_{1,\infty} + \|\text{Tr}(S_2)\|_1)\|T\|_{1,\infty}.$$

By the norm estimate in the first paragraph and the assumption on S_2, we have

$$|\varphi(S \otimes T) - \text{Tr}(S) \cdot \varphi(T)| \leq 2\epsilon ||\varphi||_{\mathcal{L}_1,\infty} \|T\|_{1,\infty}.$$

Since $\epsilon > 0$ is arbitrarily small, the assertion follows. \hfill \Box

In the following lemma, we consider the direct sum of bounded operators on a Hilbert space H as a bounded operator on a Hilbert space $\bigoplus_{m \geq 0} H$.

Lemma 4.3. If the operators $\{T_m\}_{m \geq 0}$ are pairwise orthogonal, i.e. $T_{m_1} T_{m_2} = T_{m_1} T_{m_2} = 0$ for $m_1 \neq m_2$, then $\sum_{m \geq 0} T_m$ is unitarily equivalent\footnote{To be pedantic, $\sum_{m \geq 0} T_m$ is unitarily equivalent to the direct sum $\bigoplus_{m \geq 0} T_m|_{r_m(H) \to r_m(H)}$, where r_m is the projection defined in the proof of Lemma 4.3. Clearly, T_m is unitarily equivalent to the direct sum $T_m|_{r_m(H) \to r_m(H)} \bigoplus \theta(1-r_m)(H) \to (1-r_m)(H)$. Thus, a direct sum $\bigoplus_{m \geq 0} T_m$ is unitarily equivalent to $\bigoplus_{m \geq 0} T_m \bigoplus 0$. In what follows, we ignore this subtle difference and write unitary equivalence as stated in Lemma 4.3.} to $\bigoplus_{m \geq 0} T_m$. Here, the sums are taken in the weak operator topology.

Proof. Let p_1 and p_2 be projections on H. Since $t \to t\frac{1}{t}$, $t > 0$, is an operator monotone function for every $n \geq 1$, it follows that

$$p_1 = p_1 \frac{1}{p_1} \leq (p_1 + p_2) \frac{1}{p_1 + p_2} \Rightarrow \text{supp}(p_1 + p_2).$$

Similarly, $p_2 \leq \text{supp}(p_1 + p_2)$ and, therefore,

$$p_1 \vee p_2 \leq \text{supp}(p_1 + p_2).$$

This simple fact can be also found in Proposition 2.5.14 in [10].

Let $p_m = \text{supp}(T_m)$ and $q_m = \text{supp}(T^*_m)$. It follows from the assumption that $p_{m_1} p_{m_2} = p_{m_1} q_{m_2} = q_{m_1} q_{m_2} = 0$, $m_1 \neq m_2$. Set $r_m = p_m \vee q_m$. We have

$$(p_{m_1} + q_{m_1})(p_{m_2} + q_{m_2}) = 0, \quad m_1 \neq m_2.$$

Thus,

$$\text{supp}(p_{m_1} + q_{m_1}) \cdot \text{supp}(p_{m_2} + q_{m_2}) = 0, \quad m_1 \neq m_2.$$
By the preceding paragraph, we have \(r_m r_m = 0, \) \(m_1 \neq m_2. \)
If \(T = \sum_{m \geq 0} T_m, \) then \(r_m T = T_m \) and \(T r_m = T_m \) for every \(m \geq 0. \) Thus, \(T = \bigoplus_{m \geq 0} T_m, \) where \(T_m \) acts on the Hilbert space \(r_m(H). \) \(\square \)

Let
\[
h(t) = (1 + \sum_{k=1}^{d} |t_k|^2)^{-\frac{d}{2}}, \quad t \in \mathbb{R}^d.
\]

The following proposition yields a special case of Theorem 13.

Proposition 4.4. If \(f \) is a Schwartz function supported on \([-1,1]^d\) and if \(f = \text{Op}(f) \), then \(x h(\nabla) \) is measurable.

Proof.

Step 1: We have that \(x h(\nabla) \) is an integral operator with the kernel
\[
K : (t,s) \to f(t-s) h(s) e^{\frac{1}{2} \langle s, \theta t \rangle}, \quad t, s \in \mathbb{R}^2.
\]
By assumption on \(f \), we have that
\[
f(s - t) = 0, \quad s \in m_1 + [0,1]^d, \quad t \in m_2 + [0,1]^2, \quad m_1 - m_2 \notin \{-1,0,1\}^d.\]

Thus,
\[
\text{op}(x h(\nabla)) = \sum_{\xi \in [-1,0,1]^d} \sum_{m \in \mathbb{Z}^d} T_{m,\xi} T_{m,\xi} = \sum_{m \in \mathbb{Z}^d} h(m) T_{m,\xi},
\]
where \(T_{m,\xi} \) is an integral operator whose integral kernel is given by the formula
\[
(t,s) \to f(t-s) e^{\frac{1}{2} \langle s, \theta t \rangle} \chi_{m_1 + [0,1]^2}(t) \chi_{m + [0,1]^4}(s), \quad t, s \in \mathbb{R}^d.
\]

Step 2:

We claim that \(T_{m,\xi} \) is measurable.
Note that the operators \(\{ T_{m,\xi} \}_{m \in \mathbb{Z}^d} \) are pairwise orthogonal. Therefore, we have (\(\sim \) denotes unitary equivalence)
\[
T_{m,\xi} \sim \bigoplus_{m \in \mathbb{Z}^d} (1 + |m|^2)^{-\frac{d}{2}} T_{m,\xi}.
\]

By definition, \(T_{m,\xi} : L^2(m + [-1,2]^d) \to L^2(m + [-1,2]^d). \) Define a unitary operator
\[
U_m : L^2([-1,2]^d) \to L^2([-1,2]^d)
\]
by setting
\[
(U_m \xi)(t) = e^{\frac{1}{2} \langle m, \theta t \rangle} \xi(t - m), \quad \xi \in L^2([-1,2]^d), \quad t \in m + [-1,2]^d.
\]

Define an operator \(S_{l_1} : L^2([-1,2]^d) \to L^2([-1,2]^d) \) to be an integral operator with the integral kernel
\[
(t,s) \to f(t-s) e^{\frac{1}{2} \langle s, \theta t \rangle} \chi_{l_1 + [0,1]^d}(t) \chi_{[0,1]^4}(s), \quad t, s \in [-1,2]^d.
\]

A direct computational argument shows that
\[
T_{m,\xi} = U_m S_{l_1} U^{-1}_m.
\]

\[\footnote{Indeed,}
\[
(U_m^{-1} \xi)(t) = e^{-\frac{1}{2} \langle m, \theta t \rangle} \xi(t + m), \quad \xi \in L^2(m + [-1,2]^d), \quad t \in [-1,2]^d.
\]

Thus,
\[
(S_{l_1} U^{-1}_m \xi)(t) = \chi_{l_1 + [0,1]^d}(t) \cdot \int_{[0,1]^d} f(t-s) e^{\frac{1}{2} \langle s, \theta (t+m) \rangle} \xi(s + m) ds.
\]
and Theorem 2.10 (a), we infer that \(\tau \) is a bounded function on \(\mathbb{R}^d \).

Let now \(x \in W^{d,1}(\mathbb{R}^d) \) be arbitrary. Since \(f_0 \) is a Schwartz function, it follows that

\[
\tau_0(x_0) = f_0(0) \neq 0.
\]

Without loss of generality, \(\tau_0(x_0) = 1 \). Let \(z = x - \tau_0(x)x_0 \in W^{d,1}(\mathbb{R}^d) \). Clearly, \(\tau_0(z) = 0 \). We have

\[
\varphi(x(1 - \Delta)^{-\frac{d}{2}}) = \varphi(z(1 - \Delta)^{-\frac{d}{2}}) + \tau_0(x) \cdot \varphi(x_0(1 - \Delta)^{-\frac{d}{2}}).
\]

By Proposition 4.4, the first summand vanishes. By the preceding paragraph, the second summand does not depend on \(\varphi \). This completes the proof. \(\square \)

References

1. Benameur M., Fack T. Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras. Adv. Math. 199 (2006), no. 1, 29–87.
2. Carey A., Gayral V., Rennie A., Sukochev F. Integration on locally compact noncommutative spaces. J. Funct. Anal. 263 (2012), no. 2, 383–414.
3. Carey A., Gayral V., Rennie A., Sukochev F. Index theory for locally compact noncommutative geometries. Mem. Amer. Math. Soc. 231 (2014), no. 1085.
4. Connes A. Noncommutative Geometry. Academic Press, San Diego, 1994.
5. Connes A. The action functional in noncommutative geometry. Comm. Math. Phys. 117 (1988), no. 4, 673–683.
6. Dixmier J. Existence de traces non normales. (French) C. R. Acad. Sci. Paris Ser. A-B 262 (1966) A1107–A1108.
7. Dykema K., Figiel T., Weiss G., Wodzicki M. Commutator structure of operator ideals. Adv. Math. 185 (2004), no. 1, 1–79.

Thus,

\[
(U_mS_1U_m^{-1}\xi)(t) = \chi_{m+1+[0,1]^d} (t - m) \cdot \int_{[0,1]^d} e^{\frac{s}{2}(m,\theta t)} f(t - s - m) e^{\frac{s}{2}(s,\theta t)} \xi(s + m) ds =
\]

\[
= \chi_{m+t+1+[0,1]^d} (t) \cdot \int_{m+[0,1]^d} f(t - s) e^{\frac{s}{2}(s,\theta t)} \xi(s) ds.
\]
[8] Gayral V., Gracia-Bondia J., Iochum B., Schücker T., Varilly J. Moyal planes are spectral triples. Comm. Math. Phys. 246 (2004), no. 3, 569–623.
[9] Gracia-Bondia J., Varilly J., Figueroa H. Elements of noncommutative geometry. Birkhauser Advanced Texts: Basel Textbooks, Birkhauser Boston, Inc., Boston, MA, 2001.
[10] Kadison R., Ringrose J. Fundamentals of the theory of operator algebras. Vol. I. Elementary theory. Reprint of the 1983 original. Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997.
[11] Kalton N., Lord S., Potapov D., Sukochev F. Traces of compact operators and the noncommutative residue. Adv. Math. 235 (2013), 1–55.
[12] Levitina G., Sukochev F., Zanin D. Cwikel estimates revisited. submitted manuscript.
[13] Lindenstrauss J., Tzafriri L. Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 97. Springer-Verlag, Berlin-New York, 1979.
[14] Lord S., Potapov D., Sukochev F. Measures from Dixmier traces and zeta functions. J. Funct. Anal. 259 (2010), no. 8, 1915–1949.
[15] Lord S., Sukochev F., Zanin D. Singular traces. Theory and applications. De Gruyter Studies in Mathematics, 46. De Gruyter, Berlin, 2013.
[16] Pietsch A. Traces and shift invariant functionals. Math. Nachr. 145 (1990), 7–43.
[17] Pietsch A. About the Banach envelope of l_1,∞. Rev. Mat. Complut. 22 (2009), no. 1, 209–226.
[18] Semenov E., Sukochev F., Usachev A., Zanin D. Banach limits and traces on L_1,∞. Adv. Math. 285 (2015), 568–628.

School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, Australia
E-mail address: f.sukochev@unsw.edu.au

School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, Australia
E-mail address: d.zanin@unsw.edu.au