The Extracellular A-loop of Dual Oxidases Affects the Specificity of Reactive Oxygen Species Release*

Received for publication, July 8, 2014, and in revised form, January 11, 2015. Published, JBC Papers in Press, January 13, 2015. DOI 10.1074/jbc.M114.592717

Takehiko Ueyama†1, Megumi Sakuma†, Yuzuru Ninoyu†, Takeshi Hamada§, Corinne Dupuy¶, Miklós Geiszta§, Thomas L. Leto**, and Naoaki Saito**†‡

From the †Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan, §CNRS UMR8200 Laboratoire Stabilité Génétique et Oncogénèse, Université Paris-Sud, Institut Gustave Roussy, Villejuif 94805, France, ¶Department of Physiology, Faculty of Medicine, Semmelweis University, H-1444 Budapest, Hungary, **Lendület Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, H-1444 Budapest, Hungary, and ‡Molecular Defenses Section, Laboratory of Host Defenses, NIAID, National Institutes of Health, Rockville, Maryland 20852

Background: Dual oxidase (Duox)-Duox activator (DuoxA) complexes produce H2O2, not O2, suggesting that specialized mechanisms convert O2 to H2O2.

Results: In comparison with Duox2, Duox1 prevents O2 leakage more stringently.

Conclusion: Duox A-loops function in reducing O2 release by promoting the stabilization and maturation of Duox-DuoxA complexes.

Significance: The mechanism underlying H2O2 production by Duoxes has been clarified.

NADPH oxidase (Nox) family proteins produce superoxide (O2) directly by transferring an electron to molecular oxygen. Dual oxidases (Duoxes) also produce an O2 intermediate, although the final species secreted by mature Duoxes is H2O2, suggesting that intramolecular O2 dismutation or other mechanisms contribute to H2O2 release. We explored the structural determinants affecting reactive oxygen species formation by Duox enzymes. Duox2 showed O2 leakage when mismatched with Duox activator 1 (DuoxA1). Duox2 released O2 even in correctly matched combinations, including Duox2 + DuoxA2 and Duox2 + N-terminally tagged DuoxA2 regardless of the type or number of tags. Conversely, Duox1 did not release O2 in any combination. Chimeric Duox2 possessing the A-loop of Duox1 showed no O2 leakage; chimeric Duox1 possessing the A-loop of Duox2 released O2. Moreover, Duox2 proteins possessing the A-loops of Nox1 or Nox5 co-expressed with DuoxA2 showed enhanced O2 release, and Duox1 proteins possessing the A-loops of Nox1 or Nox5 co-expressed with DuoxA1 acquired O2 leakage. Although we identified Duox1 A-loop residues (His1071, His1072, and Gly1074) important for reducing O2 release, mutations of these residues to those of Duox2 failed to convert Duox1 to an O2-releasing enzyme. Using immunoprecipitation and endoglycosidase H sensitivity assays, we found that the A-loop of Duoxes binds to DuoxA N termini, creating more stable, mature Duox-DuoxA complexes. In conclusion, the A-loops of both Duoxes support H2O2 production through interaction with corresponding activators, but complex formation between the Duox1 A-loop and DuoxA1 results in tighter control of H2O2 release by the enzyme complex.

Dual oxidases (Duoxes3; Duox1 and Duox2) are members of the NADPH oxidase (Nox) family proteins (Nox1–5 and Duoxes) that produce reactive oxygen species (ROS) (1–3). Duox1 (4) and Duox2 (5) are functional only in combination with maturation factors known as Duox activators (DuoxAs; DuoxA1 and DuoxA2) (6). Although DuoxAs were first described as factors required to permit Duoxes to exit the endoplasmic reticulum, it was later reported that Duox and DuoxA proteins form stable heterodimers and co-translocate to the plasma membrane (7). Both Duoxes were first characterized as thyroid oxidases supporting thyroid hormone biosynthesis, although Duox2 is the dominant form, with an expression level five times higher than that of Duox1 in thyroid tissue (8). Moreover, mutations or deficiencies in Duox2 or DuoxA2 have been reported to cause congenital hypothyroidism in mice (9, 10) and humans (8), whereas deficiency in Duox1 has no effect on thyroid hormone levels in Duox1 knock-out mice (11). Bi-allelic mutations in Duox2 reportedly cause transient congenital hypothyroidism, suggesting that some compensation occurs by Duox1 (12). More recently, a patient with transient congenital hypothyroidism was described; this patient was compound heterozygous for a large deletion comprising DUOX2, DUOXA2, and DUOXA1 and a nonfunctional missense muta-

*This work was supported, in whole or in part, by the Intramural Research Program of the NIAID, National Institutes of Health. This work was also supported in part by a grant-in-aid for Scientific Research (C) of the Ministry of Education, Culture, Sports, Science and Technology, Japan, by a grant “Japan-Hungary Research Cooperative Program” from the Japan Society for the Promotion of Science and the Hungarian Academy of Sciences, by the Uehara Memorial Foundation, and by the Hyogo Science and Technology Association.

1To whom correspondence may be addressed: Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan. Tel.: 81-78-803-5962; Fax: 81-78-803-5971; E-mail: tueyama@kobe-u.ac.jp.

2To whom correspondence may be addressed: Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan. Tel.: 81-78-803-5962; Fax: 81-78-803-5971; E-mail: naosaito@kobe-u.ac.jp.

3The abbreviations used are: Duox, Dual oxidase; Nox, NADPH oxidase; DuoxA, Duox activator; O2, superoxide; ROS, reactive oxygen species; PoXH, peroxidase homology; Endo H, endoglycosidase H; TM, transmembrane; pAb, polyclonal antibody; HBSS, Hank’s balanced Salt Solution; aa, amino acids.
Role of Duox A-loops in H_2O_2 Release

A switch in ROS generation from H_2O_2 to O_2^- occurs when Duox2 is mismatched with DuoxA1 (26). We reported that the mismatched combination of Duox2 + DuoxA1, but not that of Duox1 + DuoxA2, releases O_2^- in addition to H_2O_2; we called this phenomenon O_2^- leakage (7). In this study we examined dismutation activity in addition to H_2O_2; we called VOLUME 290 • NUMBER 10 • 6496 JOURNAL OF BIOLOGICAL CHEMISTRY A switch in ROS generation from H_2O_2 to O_2^- occurs when Duox2 is mismatched with DuoxA1 (26). We reported that the mismatched combination of Duox2 + DuoxA1, but not that of Duox1 + DuoxA2, releases O_2^- in addition to H_2O_2; we called this phenomenon O_2^- leakage (7). In this study we examined dismutation activity in addition to H_2O_2; we called the enzymes accumulate on the apical plasma membrane, facilitating H_2O_2 release from epithelial cell surfaces to support ion, the enzymes accumulate on the apical plasma membrane, facilitating H_2O_2 release from epithelial cell surfaces to support functions of extracellular hemoperoxidases (22).

In contrast to Nox1–5, Duoxes have an extended N-terminal extracellular domain called the peroxidase homology (PoxH) domain, followed by an additional transmembrane (TM) segment and an intracellular loop containing two calcium-binding EF-hand motifs (4, 23) (Fig. 1A). Thus, Duoxes possess four extracellular regions: the PoxH domain (1–595 amino acids (aa) in human Duox2) and three loops (the A-loop, 1064–1078 aa; C-loop, 1146–1184 aa; E-loop, 1242–1251 aa in human Duox2) (Fig. 1A). The PoxH domain is a candidate for intramolecular O_2^- dismutation, although the isolated PoxH domains of both Duoxes demonstrate no O_2^- dismutation activity in vitro (24, 25). Thus, the mechanism underlying H_2O_2 production by Duoxes remains poorly understood.

A switch in ROS generation from H_2O_2 to O_2^- occurs when Duox2 is mismatched with DuoxA1 (26). We reported that the mismatched combination of Duox2 + DuoxA1, but not that of Duox1 + DuoxA2, releases O_2^- in addition to H_2O_2; we called this phenomenon O_2^- leakage (7). In this study we examined dismutation activity in addition to H_2O_2; we called the enzymes accumulate on the apical plasma membrane, facilitating H_2O_2 release from epithelial cell surfaces to support functions of extracellular hemoperoxidases (22).

In contrast to Nox1–5, Duoxes have an extended N-terminal extracellular domain called the peroxidase homology (PoxH) domain, followed by an additional transmembrane (TM) segment and an intracellular loop containing two calcium-binding EF-hand motifs (4, 23) (Fig. 1A). Thus, Duoxes possess four extracellular regions: the PoxH domain (1–595 amino acids (aa) in human Duox2) and three loops (the A-loop, 1064–1078 aa; C-loop, 1146–1184 aa; E-loop, 1242–1251 aa in human Duox2) (Fig. 1A). The PoxH domain is a candidate for intramolecular O_2^- dismutation, although the isolated PoxH domains of both Duoxes demonstrate no O_2^- dismutation activity in vitro (24, 25). Thus, the mechanism underlying H_2O_2 production by Duoxes remains poorly understood.

A switch in ROS generation from H_2O_2 to O_2^- occurs when Duox2 is mismatched with DuoxA1 (26). We reported that the mismatched combination of Duox2 + DuoxA1, but not that of Duox1 + DuoxA2, releases O_2^- in addition to H_2O_2; we called this phenomenon O_2^- leakage (7). In this study we examined dismutation activity in addition to H_2O_2; we called the enzymes accumulate on the apical plasma membrane, facilitating H_2O_2 release from epithelial cell surfaces to support functions of extracellular hemoperoxidases (22).

In contrast to Nox1–5, Duoxes have an extended N-terminal extracellular domain called the peroxidase homology (PoxH) domain, followed by an additional transmembrane (TM) segment and an intracellular loop containing two calcium-binding EF-hand motifs (4, 23) (Fig. 1A). Thus, Duoxes possess four extracellular regions: the PoxH domain (1–595 amino acids (aa) in human Duox2) and three loops (the A-loop, 1064–1078 aa; C-loop, 1146–1184 aa; E-loop, 1242–1251 aa in human Duox2) (Fig. 1A). The PoxH domain is a candidate for intramolecular O_2^- dismutation, although the isolated PoxH domains of both Duoxes demonstrate no O_2^- dismutation activity in vitro (24, 25). Thus, the mechanism underlying H_2O_2 production by Duoxes remains poorly understood.

A switch in ROS generation from H_2O_2 to O_2^- occurs when Duox2 is mismatched with DuoxA1 (26). We reported that the mismatched combination of Duox2 + DuoxA1, but not that of Duox1 + DuoxA2, releases O_2^- in addition to H_2O_2; we called this phenomenon O_2^- leakage (7). In this study we examined dismutation activity in addition to H_2O_2; we called the enzymes accumulate on the apical plasma membrane, facilitating H_2O_2 release from epithelial cell surfaces to support functions of extracellular hemoperoxidases (22).

In contrast to Nox1–5, Duoxes have an extended N-terminal extracellular domain called the peroxidase homology (PoxH) domain, followed by an additional transmembrane (TM) segment and an intracellular loop containing two calcium-binding EF-hand motifs (4, 23) (Fig. 1A). Thus, Duoxes possess four extracellular regions: the PoxH domain (1–595 amino acids (aa) in human Duox2) and three loops (the A-loop, 1064–1078 aa; C-loop, 1146–1184 aa; E-loop, 1242–1251 aa in human Duox2) (Fig. 1A). The PoxH domain is a candidate for intramolecular O_2^- dismutation, although the isolated PoxH domains of both Duoxes demonstrate no O_2^- dismutation activity in vitro (24, 25). Thus, the mechanism underlying H_2O_2 production by Duoxes remains poorly understood.

A switch in ROS generation from H_2O_2 to O_2^- occurs when Duox2 is mismatched with DuoxA1 (26). We reported that the mismatched combination of Duox2 + DuoxA1, but not that of Duox1 + DuoxA2, releases O_2^- in addition to H_2O_2; we called this phenomenon O_2^- leakage (7). In this study we examined dismutation activity in addition to H_2O_2; we called the enzymes accumulate on the apical plasma membrane, facilitating H_2O_2 release from epithelial cell surfaces to support functions of extracellular hemoperoxidases (22).

In contrast to Nox1–5, Duoxes have an extended N-terminal extracellular domain called the peroxidase homology (PoxH) domain, followed by an additional transmembrane (TM) segment and an intracellular loop containing two calcium-binding EF-hand motifs (4, 23) (Fig. 1A). Thus, Duoxes possess four extracellular regions: the PoxH domain (1–595 amino acids (aa) in human Duox2) and three loops (the A-loop, 1064–1078 aa; C-loop, 1146–1184 aa; E-loop, 1242–1251 aa in human Duox2) (Fig. 1A). The PoxH domain is a candidate for intramolecular O_2^- dismutation, although the isolated PoxH domains of both Duoxes demonstrate no O_2^- dismutation activity in vitro (24, 25). Thus, the mechanism underlying H_2O_2 production by Duoxes remains poorly understood.
possessing the N-terminal extracellular region of DuoxA2 (1–19 aa) and DuoxA1 (20–343 aa), were created in pcDNA3.1 using PCR. N-terminal deletion (2–17 aa) mutants of DuoxA1 and DuoxA2 were generated using PCR and named DuoxA1(N-del) and DuoxA2(N-del). All other mutants/chimeric constructs of Duox and DuoxA, including Duox2→1(A:8aa), Duox2→1(C:10aa), Duox2→1(E:ETY/RF), Duox1→2(A:8aa + L), Duox1→Nox1(A), Duox1→Nox5(A), Duox2→Nox1(A), Duox2→Nox5(A), DuoxA→1(F:2), and DuoxA→2(I-S:2), were made by QuikChange. These are named and described in Table 1 and are illustrated in Figs. 3A, 4A, 5A, 7A, 7C, and 8A. All plasmids were sequenced to confirm their identities.

In Vitro Binding (Pulldown) Assays—Forward and reverse oligonucleotides for Duox A N terminus (1–20 aa for DuoxA1 or 1–19 aa for DuoxA2) were annealed and cloned into the BamHI and EcoRI sites of pGEX-6P-1. Purified GST and GST-tagged DuoxA N-terminal proteins (DuoxA1(N), GST-MATLGHTPPFYAGPKPTFP; DuoxA2(N), GST-MTLWNGVLPFYQPRHAAG) were obtained as described previously (27). Biotin-labeled Duox A-loop peptides (Duox1(Aloop), biotin-AAHHTGITDTTRV; Duox2(Aloop), biotin-ALPPSDIAQTYPQPRHAAG) were obtained as described previously (27). DuoxA(N) was mixed with biotin-labeled Duox(Aloop) in 300 μl of binding buffer (500 nM each) (27). After rotation for 2 h at 4 °C, 40 μl of streptavidin-coupled magnetic beads (Dynabeads M-280 Streptavidin; Invitrogen) were added to the solution, and the mixture was agitated for 90 min at 4 °C. The precipitates were washed 3 times using a magnetic rack, and then the material absorbed to the beads was eluted in Laemmli sample buffer; the magnetic beads were then removed using a magnetic rack. The eluents were subjected to SDS-PAGE followed by immunoblotting using a polyclonal antibody against GST (Santa Cruz Biotechnology). Bound antibodies were detected with an HRP-conjugated secondary antibody using the ECL detection system (GE Healthcare).

Immunoprecipitation and Immunoblotting—Various pairs of 2×HA-Duox and FLAG-tagged DuoxA constructs were co-transfected into HEK293 cells plated on 10-cm dishes using FuGENE 6 (Promega). Forty-eight hours after transfection, the cells were lysed in 250 μl of lysis buffer with a protease inhibitor mixture (27) by sonication. Total cell lysates were centrifuged at 800 × g for 5 min at 4 °C, and the supernatants were incubated with 10 μl of magnetic agarose-conjugated HA mAb for 2 h at 4 °C. The precipitates were washed 3 times, and aliquots of the precipitates were subjected to SDS-PAGE followed by immunoblotting using an HRP-conjugated FLAG mAb and detected using the ECL detection system.

N-Deglycosylation Analysis—The deglycosylation assay was performed as previously described (7). Briefly, various pairs of 2×HA-Duox and DuoxA constructs were co-transfected into HEK293 cells plated in 10-cm dishes using FuGENE 6. Forty-eight hours after transfection, the cells were lysed in 250 μl of lysis buffer with a protease inhibitor mixture. After centrifugation at 12,000 × g for 10 min at 4 °C, equal amounts of proteins were treated with 100 units/50 μl of Endo H for 30 min at 37 °C or left untreated and separated by SDS-PAGE. Immunoblotting was performed using an HRP-conjugated HA mAb.

Confocal Fluorescence Imaging Studies—A total of 2.5 × 10⁵ HEK293 cells were seeded in 35-mm glass-bottomed dishes (MatTek Corp.) 48 h before transfection and transfected using FuGENE 6. Thirty-two hours after transfection, the cells were fixed using 4% paraformaldehyde in 0.1 M PBS (pH 7.4) without permeabilization and stained using an Alexa Fluor 488-conjugated HA mAb (1:500) at room temperature for 2 h for visualization by confocal laser scanning fluorescence microscopy (LSM700; Carl Zeiss AG). All imaging experiments were performed in triplicate and were repeated in at least three independent transfection experiments (n = 9).

ROS Production Assay—HEK293 cells were seeded in 6-well dishes at 2.5 × 10⁵ cells/well 48 h before transfection. HEK293 cells were transfected using FuGENE 6 in complexes with various combinations of plasmids. The cells were fed 6 h post-transfection with complete medium and harvested using 0.02% EDTA solution (Nacalai Tesque). Thirty-two hours after transfection, 2 × 10⁵ cells in Hank’s balanced salt solution (HBSS(−); Wako Pure Chemical Industries) were used for ROS assays with 0.2 μM ionomycin (Sigma) + 2 mM Ca²⁺. Chemiluminescence methods were used in the presence of luminol + HRP (Sigma) for gross ROS detection (H₂O₂, O₂⁻, and other non-identified ROS), superoxide dismutase-inhibitable Diogenes reagent (National Diagnostics) for O₂⁻ detection, or Amplex Red (Invitrogen) + HRP for H₂O₂ detection for 10 min using a luminometer (Mithras LB940; Berthold Detection Systems GmbH) (28) as previously described (7, 29). O₂⁻ production from 5 × 10⁵ cells in 100 μl of HBSS(−) stimulated by 0.2 μM ionomycin + 2 mM Ca²⁺ was also measured based on the assay of cytochrome c (100 μM, Sigma) reduction with a molar extinction coefficient of 21 mM⁻¹ cm⁻¹ at 550 nm using a monochromator (Multiskan GO; Thermo Fisher Scientific) as previously described (7, 30). O₂⁻ production was inhibited by the addition of 10 units/ml superoxide dismutase (Sigma) in the assay solution. Comparable expression of proteins was confirmed by immunoblotting using total lysates from the same number of cells. Mean oxidase activities were calculated from at least three independent transfection experiments.

Statistical Analysis—All data are presented as the means ± S.E. of mean. For comparisons of more than two groups, one-way analysis of variance was performed. Statistical analyses were performed using GraphPad Prism 5.0 software (GraphPad Software Inc.); p < 0.05 was considered statistically significant.

RESULTS

Tags at the N terminus of DuoxA2 Enhance O₂⁻ Leakage from Matched Duox2-DuoxA2 Complexes—We previously demonstrated that co-expression of the mismatched Duox2 and DuoxA1, but not of Duox1 and DuoxA2, causes O₂⁻ leakage into the extracellular milieu (7). In this study we found that co-expression of matched Duox2 and DuoxA2, but not of Duox1 and DuoxA1, caused a small amount of O₂⁻ release (5.4 ± 0.6%) detected by Diogenes; this is consistent with the result of a previous report (31). To elucidate why only Duox2- and not Duox1-based combinations cause extracellular O₂⁻ release, we created a series of N-terminally FLAG-tagged DuoxA1 and DuoxA2 constructs (Table 1). Interestingly, although C-terminally 3×FLAG-tagged DuoxA2 co-expressed with Duox2 did
not enhance O_2^\bullet release, N-terminally tagged DuoxA2 dramatically enhanced the amount of O_2^\bullet release regardless of the number or type of epitope tags (Fig. 2A; 3N×FLAG, 291.2 ± 36.5%; 2N×FLAG, 387.4 ± 9.1%; 1N×FLAG, 543.9 ± 66.9%; 2N×HA, 465.4 ± 67.8%). Duox1 exhibited no O_2^\bullet leakage when co-expressed in any combination regardless of whether DuoxA was untagged, N-terminally 3×FLAG-tagged, or C-terminally 3×FLAG-tagged (Fig. 2A; data not shown). O_2^\bullet release by Duox2 with DuoxA1 or various types of N-terminally tagged DuoxAs for O_2^\bullet release regardless of the number or type of epitope tags (Fig. 2A; 3N×FLAG, 291.2 ± 36.5%; 2N×FLAG, 387.4 ± 9.1%; 1N×FLAG, 543.9 ± 66.9%; 2N×HA, 465.4 ± 67.8%). Duox1 exhibited no O_2^\bullet leakage when co-expressed in any combination regardless of whether DuoxA was untagged, N-terminally 3×FLAG-tagged, or C-terminally 3×FLAG-tagged (Fig. 2A; data not shown). O_2^\bullet release by Duox2 with DuoxA1 or various types of N-terminally tagged DuoxA2 was confirmed by examining the effect of superoxide dismutase and/or through cytochrome c reduction assays (Fig. 2, A and B). The luminol + HRP assays were used to detect gross ROS production (H_2O_2, O_2^\bullet, and other non-identified ROS) and to measure the ROS production capabilities in each Duox-DuoxA pair. Immunoblotting was performed to confirm comparable expression of constructs used (Fig. 2C). The results of these assays suggested that altered interactions between Duox2 and the N-terminal regions of its maturation factor, DuoxA2, cause increased O_2^\bullet leakage from this enzyme complex; the same was not observed in case of Duox1.

The N-terminal Extracellular Region of DuoxA1 Plays a Pivotal Role in O_2^\bullet Release—DuoxA proteins have four TM segments, and their N-terminal regions are positioned on the extracytoplasmic membrane surface (6). When transported to the plasma membrane in complexes with Duoxes, the N termini of DuoxA proteins are detectable on the cell surface (7). To confirm the importance of the N-terminal extracellular regions of DuoxAs for O_2^\bullet leakage, we made two chimeric mutants of DuoxA1 and DuoxA2: DuoxA(1-2), in which the N-terminal extracellular region of DuoxA2 was substituted with that of DuoxA1, and DuoxA(2-1), in which the N-terminal extracellular region of DuoxA1 was substituted with that of DuoxA2 (Fig.
When co-expressed with Duox2-DuoxA1, Duox2 exhibited no O$_2^\bullet$ release (Fig. 3B); in contrast, when co-expressed with DuoxA(1-2), Duox2 showed markedly enhanced O$_2^\bullet$ release (Fig. 3B). To define the specific aa sequence in the N-terminal extracellular region of DuoxA(1-2) that influences O$_2^\bullet$ release, we made two additional chimeric mutants of DuoxA(1-2): DuoxA1(1F-2), which in which only the first half of the N-terminal extracellular region of DuoxA2 was substituted with that of DuoxA1, and DuoxA2(2-1S-2), in which only the second half of the N-terminal extracellular region of DuoxA2 was substituted with that of DuoxA1 (Fig. 3A). O$_2^\bullet$ release from Duox2 with DuoxA(1-2) DuoxA1(1F-2) or DuoxA(2-1S-2) was similar, at about one-third that from Duox2 + DuoxA(1-2) (Fig. 3B). Duox1 with DuoxA1-DuoxA2 showed no O$_2^\bullet$ release (Fig. 3B). Comparable expression of constructs was confirmed by immunoblotting (Fig. 3B). DuoxA1 pAb detected only WT DuoxA1 and not DuoxA1 chimera. These results suggest that the entire N-terminal, extracellular region of DuoxA1 has a strong influence on O$_2^\bullet$ release when expressed in combination with Duox2.

The Extracellular Region(s) after the First TM Segment of Duox2 Is Key to O$_2^\bullet$ Release—To explore the regions of Duox involved in O$_2^\bullet$ release, we made two chimeric Duox mutants: Duox(2PoxH-1), in which PoxH domain of Duox1 was substituted with that of Duox2, and Duox(1PoxH-2), in which the PoxH domain of Duox2 was substituted with that of Duox1 (Fig. 4A). Three combinations, Duox2-DuoxA1, Duox(1PoxH-2)-DuoxA1, and Duox(1PoxH-2)-DuoxA1(1-2) (highlighted by two-way red arrows in Fig. 4B), showed O$_2^\bullet$ release. All these combinations contained the common Duox2 portion starting with the first TM segment and the N-terminal extracellular region of DuoxA1. Comparable expression of mutants was confirmed by immunoblotting (Fig. 4B). These results suggest that other extracellular region(s) after the first TM segment of Duox2 and the N-terminal extracellular region of DuoxA1 affect O$_2^\bullet$ leakage.

The A-loops of Duoxes, but Not the C- or E-loops, Affect O$_2^\bullet$ Release—To identify the extracellular region after the first TM segment of Duox2 involved in O$_2^\bullet$ release in cooperation with the N-terminal extracellular region of DuoxA1, we focused on three extracellular regions of Duoxes, A-, C-, and E-loop (Fig. 1A). Because Duoxes, like all Nox enzymes, donate electrons to molecular oxygen in the extracytoplasmic compartment, we did not examine the roles of the intracellular EF-hand motifs or the B- or D-loops in O$_2^\bullet$ release. These loops were defined in reference to previous papers (4, 23) and using websites that predict the secondary structures of membrane proteins (SOSUI WWW Server; TMHMM Server). We hypothesized that if a particular extracellular loop of Duox2 was involved in O$_2^\bullet$ release, then chimeric mutants in which this loop of Duox2 is replaced with that of Duox1 would exhibit reduced O$_2^\bullet$ leakage. To explore this hypothesis, we first made two chimeric mutants of Duox2 possessing the A-loop sequences of Duox1: Duox2\rightarrow1(A:5aa) and Duox2\rightarrow1(A:8aa) (Fig. 5A). O$_2^\bullet$ release by Duox2\rightarrow1(A:5aa)-DuoxA1 and Duox2\rightarrow1(A:8aa)-DuoxA1 was dramatically reduced relative to the Duox2-DuoxA1 complex (2.27 \pm 0.81% and 0.83 \pm 0.38%, respectively; Fig. 5B). To confirm these results, we made three reverted chimeric mutants of Duox1 possessing some A-loop sequence.
from Duox2: Duox1→2(A:F4aa), Duox1→2(A:S4aa), and Duox1→2(A:8aa) (Fig. 5A). Although Duox1→2(A:F4aa) and Duox1→2(A:S4aa) showed no O$_2^*$ release, Duox1→2(A:8aa) co-expressed with DuoxA1 did show O$_2^*$ release ($67.4 \pm 8.9\%$) but to a lesser extent than that by Duox2-DuoxA1 (Fig. 5B). Duox1→2(A:8aa) maintained capabilities to secrete H$_2$O$_2$, which were detected by Amplex Red/HRP, as in the case of Duox1 and Duox2 (Fig. 5B). We then made two additional Duox1 mutants: Duox1→2(A:8aa+L) and Duox1→2(A:8aa+GL) (Table 1). In Duox1→2(A:8aa+GL), the entire A-loop aa sequence of Duox1 was replaced with that of Duox2. O$_2^*$ release from Duox1→2(A:8aa+L)-DuoxA1 (146.9 ± 16.7%) and Duox1→2(A:8aa+GL)-DuoxA1 (101.4 ± 19.3%) matched that from Duox2-DuoxA1 (Fig. 5C); therefore, Duox1→2(A:8aa+L) was used for further studies.

To examine which aa residues in the A-loop of Duox1 are critical for the reduction of O$_2^*$ release, we made various mutants in which one or two aa residues in the A-loop of Duox1→2(A:8aa+L) were reverted to those of Duox1. Chang-
FIGURE 5. The A-loop of Duox is associated with \(O_2^\bullet\) leakage. A, alignment of the A-loops of Duox1 and Duox2. The upper (blue) and lower (red) illustrations indicate the changes in aa sequence (number and residue) of the A-loop from Duox2 to Duox1 (Duox2→1(A)) and those from Duox1 to Duox2 (Duox1→2(A)), respectively. B, various pairs, including Duox2→1(A:3aa) or Duox2→1(A:8aa) + DuoxA, Duox1→2(A:F4aa), Duox1→2(A:S4aa), or Duox1→2(A:8aa) + DuoxA, were transfected into HEK293 cells. \(O_2^\bullet\), reactive oxygen species, and \(H_2O_2\) were measured by chemiluminescence assay using Diogenes, luminol + HRP, and Amplex Red + HRP, respectively. Neither Duox2→1(A:3aa) nor Duox2→1(A:8aa) shows significant \(O_2^\bullet\) production. In contrast, Duox1→2(A:8aa), but not Duox1→2(A:F4aa) or Duox1→2(A:S4aa), gained the ability to produce \(O_2^\bullet\), which is abolished by the addition of superoxide dismutase. Immunoblotting detects comparable expression levels of various Duox and DuoxA pairs. C, various pairs of Duox1→2(A) + DuoxA were transfected into HEK293 cells. \(O_2^\bullet\) was measured by chemiluminescence assay using Diogenes. Duox1→2(A:8aa + L) + DuoxA shows the highest \(O_2^\bullet\) production. PP/HH or D/G mutations abolish \(O_2^\bullet\) production by Duox1→2(A:8aa + L). Duox1→2(APBD) + DuoxA shows no ability to produce \(O_2^\bullet\). Immunoblotting detects expression levels of various Duox and DuoxA pairs.

FIGURE 6. Kinetics of \(O_2^\bullet\) and ROS production. A, various pairs, including HA-Duox2-DuoxA2, HA-Duox2-DuoxA2(N-del), HA-Duox2→1(A:8aa)-DuoxA2, HA-Duox1-DuoxA1, HA-Duox2→2(A:8aa)-DuoxA1, and HA-Duox1→2(A:8aa + L)-DuoxA1, and HA-Duox2-DuoxA1, were transfected into HEK293 cells. Representative (n ≥ 3) kinetics of \(O_2^\bullet\) and reactive oxygen species production measured by chemiluminescence assay using Diogenes and luminol + HRP, respectively, are shown. B, immunoblotting detects comparable expression levels of various Duox and DuoxA pairs.
Role of Duox A-loops in \(\text{H}_2\text{O}_2 \) Release

8aa + L); this was confirmed using PP/HP and PP/PH mutations in Duox1→2(A:8aa + L) (data not shown). In addition, although the expression levels of Duox1→2(A:PPD), in which three critical residues (HH + G) in the A-loop of Duox1 were exchanged for those of Duox2, were apparently low (ROS production detected by luminol + HRP was 36.8 ± 10.8%), it showed no \(\text{O}_2^\bullet^- \) release (Fig. 5C). Taken together, these results suggest that these specific residues alone do not account for the function of the Duox A-loop in preventing \(\text{O}_2^\bullet^- \) release. Comparable expression of constructs was confirmed by immunoblotting (Fig. 5, B and C).

Next, we examined the kinetics of \(\text{O}_2^\bullet^- \) and ROS production (detected by Diogenes and luminol + HRP, respectively) from various Duox + DuoxA pairs: Duox2-DuoxA2, Duox2-DuoxA2(N-del), Duox2→1(A:8aa)-DuoxA2, Duox1-DuoxA1, Duox2→1(A:8aa)-DuoxA1, Duox1→2(A:8aa + L)-DuoxA1, and Duox2-DuoxA1. Duox1→2(A:8aa + L)-DuoxA1 and Duox2-DuoxA1 showed very similar kinetic curves in terms of both \(\text{O}_2^\bullet^- \) and ROS production (Fig. 6A). Duox2→1(A:8aa)-DuoxA1 showed a kinetic curve of ROS production similar to that of Duox1-DuoxA1 (Fig. 6A). Duox2-DuoxA2(N-del) showed an increase in \(\text{O}_2^\bullet^- \) release and a decrease in ROS production compared with Duox2-DuoxA2 (Fig. 6A). Duox2→1(A:8aa + L)-DuoxA2 did not show any \(\text{O}_2^\bullet^- \) release (Fig. 6A). In the Duox1-DuoxA1(N-del) pair, ROS production was severely impaired (<10% that of Duox1-DuoxA1), and no apparent plasma membrane targeting/localization of Duox1 or \(\text{O}_2^\bullet^- \) release was observed (data not shown). Comparable expression of constructs was confirmed by immunoblotting (Fig. 6B).

Finally, we assessed the involvement of the C- and E-loops in \(\text{O}_2^\bullet^- \) release using chimeric mutants in which their sequences in Duox2 were replaced with those of Duox1 (Fig. 7, A and C). \(\text{O}_2^\bullet^- \) release was not reduced in either the C-loop mutant, Duox2→1(C:10aa), or the E-loop mutant, Duox2→1(E:TY/RF) (Fig. 7, B and D). Comparable expression of constructs was confirmed by immunoblotting (Fig. 7, B and D). Taken together, we conclude that the A-loop, but not the C- or E-loop, of Duox2 is involved in \(\text{O}_2^\bullet^- \) release.
The A-loops of Both Duox1 and Duox2 Function in Reducing O_2^- Leakage—To further investigate the mechanism underlying the reduction of O_2^- release by the Duox A-loop, we made chimeric Duox proteins possessing the A-loops of Nox1 or Nox5 (23, 32) (Fig. 8A). Duox2 possessing the A-loop of Nox1 or Nox5 showed markedly enhanced O_2^- release in matched combination with DuoxA2 in comparison with the native Duoxt2-DuoxA2 complex (Fig. 8B), suggesting that the A-loop of Duox2 also functions in the reduction of O_2^- release. Furthermore, Duox1 possessing the A-loop of Nox1 or Nox5 exhibited O_2^- release even when matched with DuoxA1 (Fig. 8B). Comparable expression of constructs was confirmed by immunoblotting (Fig. 8B). Taken together, these observations imply that the A-loops of both Duox1 and Duox2 function in reducing O_2^- release, although it appears that the A-loop of Duox1 is more effective in reducing O_2^- release.

Stable and Mature Duox-DuoxA Complex Formation Is Required for H_2O_2 Production—To examine the hypothesis that the A-loops of Duoxes have the intrinsic ability to convert O_2^- to H_2O_2, we synthesized oligopeptides of the A-loops of Duox1 and Duox2. We performed the following experiments: 1) adding A-loop peptides into xanthine oxidase reactions generating O_2^- to detect its conversion and 2) adding A-loop peptides into Diogenes-based O_2^- assays in heterologous Duox-reconstituted cell systems. However, these experiments failed to reduce O_2^- production (data not shown), suggesting that the A-loops of Duoxes have no O_2^- dismutation activity.

Next, we investigated possible direct interaction between the biotin-labeled A-loop peptides of Duoxes and the GST-tagged N-terminal extracellular sequences of the DuoxAs by pulldown assays using streptavidin-conjugated magnetic beads. We detected the strongest interaction between Duox1(Aloop) and DuoxA1(N) among Duox1(Aloop)-DuoxA1(N), Duox2(Aloop)-DuoxA2(N), Duox1(Aloop)-DuoxA2(N), and Duox2(Aloop)-DuoxA1(N) pairs (Fig. 9).

We then focused on the interaction between full-length Duoxes and DuoxAs at the cellular level because our previous paper established that Duox maturation, reflected in N-glycosyl modifications and stable interactions with DuoxAs, affects the type of ROS produced in that fully processed and stable complexes do not leak O_2^- (7). The relationship between O_2^- release and Duox binding to DuoxAs was examined by immunoprecipitation assays using lysates from HEK293 cells transfected with various Duox and DuoxA combinations. The order of the strength of Duox2 binding to FLAG-tagged DuoxAs was 3N×FLAG-DuoxA2 < DuoxA1–3C×FLAG < DuoxA2–3C×FLAG (Fig. 10A). This order inversely correlated with the amount of O_2^- release by the Duox2 complex: 3N×FLAG-DuoxA2 > DuoxA1–3C×FLAG > DuoxA2–3C×FLAG (Fig. 10A). The order of the strength of DuoxA1 binding to HA-tagged Duoxes was HA-Duox1–2(A:8aa) > HA-Duox2–1(A:8aa) > HA-Duox2 < HA-Duox1 = HA-Duox2→1(A:8aa) (Fig. 10B). This order also inversely correlated with the amount of O_2^- release: HA-Duox1→1(2(A:8aa) > HA-Duox2 > HA-Duox1 = HA-Duox2→1(2(A:8aa) (Fig. 10B), suggesting that stable interactions between Duoxes and DuoxAs prevent O_2^- release. Comparable plasma membrane targeting/localization of these seven pairs was statistically confirmed by the nonpermeable immunostaining of HA-tagged Duoxes using an Alexa Fluor 488-conjugated HA mAb (data not shown).

To explore the relationship between Duox maturation (Golgi apparatus-based glycosyl modifications) and O_2^- release, Endo H treatments were performed. Duox2-DuoxA1 complexes that showed O_2^- release was sensitive to Endo H treatment (Fig. 10C,
Interestingly, although the Duox1→2(A:8aa+L)-DuoxA1 complex showed glycosyl modifications of Duox1 and DuoxA similar to that of Duox1 in the Duox1-DuoxA1 complex, the Duox1→2(A:8aa+L)-DuoxA1 complex that exhibited O$_2^\text{−}$ release was also susceptible to Endo H treatment (Fig. 10C, right). Conversely, Duox2→1(A:8aa)-DuoxA1, which produced H$_2$O$_2$ but no O$_2^\text{−}$, was resistant to Endo H treatment (Fig. 10C, right). Taken together, these results suggest that the A-loop of Duox1 functions to promote the formation of stable and mature Duox1-DuoxA1 complexes, preventing O$_2^\text{−}$ release.

DISCUSSION

Duox enzymes serve as dedicated H$_2$O$_2$ generators at the plasma membrane, where they support the activities of extracellular hemoperoxidases (22). We (7) and another group (26) previously reported a switch in the type of ROS released, from H$_2$O$_2$ to O$_2^\text{−}$, with co-expression of the mismatched Duox2 and DuoxA1 pair, but not with Duox1 and DuoxA2 (7). These findings suggest that DuoxA proteins contribute to Duox maturation and subcellular targeting; they also function as a part of the ROS-generating complex. Subsequently, Hoste et al. (31) showed that the N terminus of DuoxA2 acts as an important determinant of the type of ROS produced by Duox2 by comparing native DuoxA2 with N-terminally truncated and chimeric versions of DuoxA2 and DuoxA1. Consistent with our results, they showed that 1) the addition of tags of various types and lengths to the N-terminal of DuoxA2 increased the amount of O$_2^\text{−}$ leakage by Duox2 (rhodopsin (19 aa) and FLAG (8 aa) tags (31); FLAG (22 aa in 3N-HA, 15 aa in 2N-HA, and 8 aa in 1N-HA), and 2N-HA (20 aa) tags (this study)) and 2) a small amount of O$_2^\text{−}$ is released by the native Duox2-DuoxA2 complex but not by the Duox1-DuoxA1 or Duox1-DuoxA2 complexes (31).

In this study we expanded upon these observations on ROS generation by Duoxes by identifying novel structural determinants within the Nox-like extracellular portion of Duoxes, termed the A-loop, that appears to function in preventing O$_2^\text{−}$ leakage by supporting the stabilization and maturation of the...
Role of Duox A-loops in H_2O_2 Release

Duox-DuoxA complex. Although the A-loop of Duox1 is more effective at preventing O_2^* leakage than that of Duox2, the A-loops of both the Duox isozymes function in preventing O_2^* release (Fig. 8). A recent study (33) showed that Nox4 has a unique extracellular E-loop, longer than that in other Nox family proteins, which was proposed to hinder O_2^* release and facilitate its conversion to H_2O_2. Interestingly, this study highlighted the importance of His222 of Nox4, proposing that this conserved residue serves as a source of protons for O_2^* dismutation. However, we found that neither the E-loop nor the C-loop aa sequences of either Duox influenced O_2^* release by Duox-DuoxA complexes. The PoxH domain of Duoxes is a candidate for intramolecular O_2^* dismutation, although the isolated domains of both Duox isozymes did not demonstrate superoxide dismutase or peroxidase activity in vitro (24, 25). In this study we observed reduced O_2^* release by Duox(1PoxH-2)-DuoxA1 than by Duox2-DuoxA1 (Fig. 4), suggesting that the PoxH domain of Duox1 could reduce O_2^* leakage by supporting its conversion to H_2O_2. Three residues in the A-loop of Duox1 (HH and G) critical for the reduction of O_2^* leakage are highly conserved in Duox1 in many species (Fig. 11), and the corresponding PP residues in the A-loop of Duox2 are also well conserved in many species. The A-loop sequences of human Duox1 and Duox2 indicate highly conserved residues between species.

Duox-DuoxA complex. Although the A-loop of Duox1 is more effective at preventing O_2^* leakage than that of Duox2, the A-loops of both the Duox isozymes function in preventing O_2^* release (Fig. 8). A recent study (33) showed that Nox4 has a unique extracellular E-loop, longer than that in other Nox family proteins, which was proposed to hinder O_2^* release and facilitate its conversion to H_2O_2. Interestingly, this study highlighted the importance of His222 of Nox4, proposing that this conserved residue serves as a source of protons for O_2^* dismutation. However, we found that neither the E-loop nor the C-loop aa sequences of either Duox influenced O_2^* release by Duox-DuoxA complexes. The PoxH domain of Duoxes is a candidate for intramolecular O_2^* dismutation, although the isolated domains of both Duox isozymes did not demonstrate superoxide dismutase or peroxidase activity in vitro (24, 25). In this study we observed reduced O_2^* release by Duox(1PoxH-2)-DuoxA1 than by Duox2-DuoxA1 (Fig. 4), suggesting that the PoxH domain of Duox1 could reduce O_2^* leakage by supporting its conversion to H_2O_2. Three residues in the A-loop of Duox1 (HH and G) critical for the reduction of O_2^* leakage are highly conserved in Duox1 in many species (Fig. 11), and the corresponding PP residues in the A-loop of Duox2 are also well conserved in many species. The A-loop sequences of human Duox1 and Duox2 indicate highly conserved residues between species.

REFERENCES

1. Quinn, M. T., Ammons, M. C., and Deleo, F. R. (2006) The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin. Sci. 111, 1–20
2. Leto, T. L., Morand, S., Hurt, D., and Ueyama, T. (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox. Signal 11, 2607–2619
3. Matsushima, S., Tsutsui, H., and Sadoshima, J. (2014) Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc. Med. 24, 202–205
4. De Deken, X., Wang, D., Many, M. C., Costagliola, S., Libert, F., Vassart, G., Dumont, J. E., and Miot, F. (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J. Biol. Chem. 275, 23227–23233
Role of Duox A-loops in \(\text{H}_2\text{O}_2 \) Release

5. Dupuy, C., Ohayon, R., Valent, A., Noël-Hudson, M. S., Démé, D., and Virion, A. (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. *J. Biol. Chem.* 274, 37265–37269

6. Grasberger, H., and Refetoff, S. (2006) Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. *J. Biol. Chem.* 281, 18269–18272

7. Morand, S., Ueyama, T., Tsujibe, S., Saito, N., Korzeniowska, A., and Leto, T. L. (2009) Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. *FASEB J.* 23, 1205–1218

8. Moreno, J. C., Pauws, E., van Kampen, A. H., Jedlicková, M., de Vijlder, J. J., and Ris-Stalpers, C. (2001) Cloning of tissue-specific genes using serial analysis of gene expression and a novel computational subtraction approach. *Genomics* 75, 70–76

9. Johnson, K. R., Marden, C. C., Ward-Bailey, P., Gagnon, L. H., Bronson, R. T., and Donahue, L. R. (2007) Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene. *Duox2*. *Mol. Endocrinol.* 21, 1593–1602

10. Grasberger, H., De Deken, X., Benyó, Z., and Geiszt, M. (2010) Urothelial cells produce hydrogen peroxide by the activation of Duox1. *Free Radic. Biol. Med.* 49, 2040–2048

11. Geiszt, M., Witta, J., Baffi, J., Lekstrom, K., and Leto, T. L. (2003) Dual oxidase in *Drosophila* gut immunity. *Science* 301, 847–850

12. El Hassani, R. A., Benfares, N., Caillou, B., Talbot, M., Sabourin, J. C., and Chiumello, G. (2008) Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene, Duox2. *J. Clin. Endocrinol. Metab.* 93, 1502–1504

13. Meitzler, J. L., and Ortiz de Montellano, P. R. (2009) Caenorhabditis elegans and human dual oxidase 1 (DUOX1) “peroxidase” domains: insights into heme binding and catalytic activity. *J. Biol. Chem.* 284, 18634–18643

14. Meitzler, J. L., and Ortiz de Montellano, P. R. (2011) Structural stability and heme binding potential of the truncated human dual oxidase 2 (DUOX2) peroxidase domain. *Arch. Biochem. Biophys.* 512, 197–203

15. Zamproni, I., Grasberger, H., Cortinovis, F., Vigone, M. C., Mora, S., Onigata, K., Fugazzola, L., Refetoff, S., Persani, L., and Weber, G. (2008) Biallelic inactivation of the dual oxidase maturation factor 2 (DUOX2) gene as a novel cause of congenital hypothyroidism. *J. Clin. Endocrinol. Metab.* 93, 605–610

16. Sumimoto, H. (2008) Structure, regulation and evolution of Nox-family homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. *Mol. Endocrinol.* 22, E841–E845

17. Kawahara, T., Quinn, M. T., and Lambeth, J. D. (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. *BMC Evol. Biol.* 7, 109

18. Meitzler, J. L., and Ortiz de Montellano, P. R. (2009) Caenorhabditis elegans and human dual oxidase 1 (DUOX1) “peroxidase” domains: insights into heme binding and catalytic activity. *J. Biol. Chem.* 284, 18634–18643

19. Node, T., Tatsuono, T., Kawasaki, T., Suijibe, S., Shirai, Y., Sumimoto, H., Leto, T. L., and Saito, N. (2007) A regulated adaptor function of p40phox, distinct p67phox membrane targeting by p40phox and by p47phox. *Mol. Biol. Cell* 18, 441–454

20. Nauseef, W. M. (2014) Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. *Biochim. Biophys. Acta* 1840, 757–767

21. Ueyama, T., Son, J., Kobayashi, T., Hamada, T., Nakamura, T., Sakaguchi, H., Shirafuji, T., and Saito, N. (2013) Negative charges in the flexible N-terminal domain of rho GDP-dissociation inhibitors (RhoGDIs) regulate the targeting of the RhoGDI-Rac1 complex to membranes. *J. Immunol.* 191, 2560–2569

22. Pick, E. (2014) Cell-free NADPH oxidase activation assays: “in vitro veritas.” *Methods Mol. Biol.* 1124, 339–403

23. Hoste, C., Dumont, J. E., Miot, F., and De Deken, X. (2012) The type of DUOX-dependent ROS production is dictated by defined sequences in DUOX. *Exp. Cell Res.* 318, 2353–2364

24. Cheng, G., Cao, Z., Xu, X., van Meir, E. G., and Lambeth, J. D. (2001) Homologs of gp91phox: cloning and tissue expression of Nox1, Nox4, and Nox5. *Gene* 269, 131–140

25. Takac, I., Schroder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., Shah, A. M., Morel, F., and Brandes, R. P. (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. *J. Biol. Chem.* 286, 13304–13313

Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent helicobacter felis infection and inflammation in mice. *Gastroenterology* 145, 1045–1054

26. Sumimoto, H. (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. *FEBS J.* 275, 3249–3277

27. Ameziane-El-Hassani, R., Morand, S., Boucher, J. L., Frapart, Y. M., Apostolou, D., Agnandji, D., Gnidiehou, S., Ohayon, R., Noël-Hudson, M. S., Francon, J., Lalouë, K., Virion, A., and Dupuy, C. (2005) Dual oxidase-2 has an intrinsic \(\text{Ca}^{2+} \)-dependent \(\text{H}_2\text{O}_2 \)-generating activity. *J. Biol. Chem.* 280, 30046–30054

28. De Deken, X., Corvilain, B., Dumont, J. E., and Miot, F. (2014) Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. *Antioxid. Redox. Signal* 20, 2776–2793

29. Kawahara, T., Quinn, M. T., and Lambeth, J. D. (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. *BMC Evol. Biol.* 7, 109

30. Meitzler, J. L., and Ortiz de Montellano, P. R. (2009) Caenorhabditis elegans and human dual oxidase 1 (DUOX1) “peroxidase” domains: insights into heme binding and catalytic activity. *J. Biol. Chem.* 284, 18634–18643

31. Hoste, C., Dumont, J. E., Miot, F., and De Deken, X. (2012) The type of DUOX-dependent ROS production is dictated by defined sequences in DUOX. *Exp. Cell Res.* 318, 2353–2364

32. Cheng, G., Cao, Z., Xu, X., van Meir, E. G., and Lambeth, J. D. (2001) Homologs of gp91phox: cloning and tissue expression of Nox1, Nox4, and Nox5. *Gene* 269, 131–140

33. Takac, I., Schroder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., Shah, A. M., Morel, F., and Brandes, R. P. (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. *J. Biol. Chem.* 286, 13304–13313
The Extracellular A-loop of Dual Oxidases Affects the Specificity of Reactive Oxygen Species Release
Takehiko Ueyama, Megumi Sakuma, Yuzuru Ninoyu, Takeshi Hamada, Corinne Dupuy, Miklós Geiszt, Thomas L. Leto and Naoaki Saito

J. Biol. Chem. 2015, 290:6495-6506.
doi: 10.1074/jbc.M114.592717 originally published online January 13, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M114.592717

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 33 references, 9 of which can be accessed free at http://www.jbc.org/content/290/10/6495.full.html#ref-list-1