SOME UNSTABLE CRITICAL METRICS FOR THE $L^{\frac{n}{2}}$-NORM OF THE CURVATURE TENSOR

ATREYEE BHATTACHARYA AND SOMA MAITY

Abstract. We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M given by $R_p(g) := \int_M |R(g)|^p dv_g$ where $R(g)$, dv_g denote the Riemannian curvature and volume form corresponding to g. We show that there are locally symmetric spaces which are unstable critical points for this functional.

1. Introduction

Let M be a closed smooth manifold of dimension $n \geq 3$ and \mathcal{M}_1 be the space of Riemannian metrics with unit volume on M endowed with the $C^{2,\alpha}$-topology for any $\alpha \in (0,1)$. In this paper we study the following Riemannian functional

$$R_p(g) = \int_M |R(g)|^p dv_g$$

where $R(g)$ and dv_g denote the corresponding Riemannian curvature tensor and volume form, $p \in [2, \infty)$. Let $S^2(T^*M)$ be the space of symmetric two tensors on M and W be the subspace of $S^2(T^*M)$ orthogonal to the tangent space of the orbit of g under the action of the group of diffeomorphisms of M at g. Let H denote the Hessian of R_p at any critical metric. For definitions of critical metric and Hessian we refer to section 2.

Definition 1.1. Let g be a critical point for $R_p|_{\mathcal{M}_1}$. g is stable for R_p if there is an $\epsilon > 0$ such that for every element h in W,

$$H(h, h) \geq \epsilon \|h\|^2$$

where $\|\cdot\|$ denote the L^2-norm on $S^2(T^*M)$ defined by g.

Spherical space forms are stable for R_p for $p \geq 2$ and hyperbolic manifolds are stable for $p \geq \frac{n}{2}$ [2]. The stability of locally symmetric spaces is not known in general. In this paper we prove the following.

Theorem 1. Let (M, g) be an irreducible locally symmetric space of compact type. If the universal cover of M is one of the following then (M, g) is not stable for $R_{\frac{n}{2}}$:

- $SU(q)(q \geq 3)$, $Sp(q)(q \geq 2)$, $Spin(5)$, $Spin(6)$, $SU(2q + 2)/Sp(q + 1)$,
- $Spin(q + l)/Sp(q) \times Sp(l)(l, q \geq 1)$, E_6/F_4, $F_4/Spin(9)$

Moreover, (M, g) is a saddle point for $R_{\frac{n}{2}}$.

The theorem follows by restricting H to the space of conformal variations of any irreducible symmetric space and using an estimate for the first positive eigenvalue of the Laplacian of (M, g).

Let (M, g) be a simply connected irreducible symmetric space of compact and λ_1 and s denote its first positive eigenvalue of the Laplacian and scalar curvature of it. We prove that if $\frac{\lambda_1}{s} \geq \frac{2}{n}$

Key words and phrases. Riemannian functional, stability.
then \((M, g) \) is stable for \(\mathcal{R}_{\frac{n}{2}} \) restricted to the conformal variations of \(g \). The above condition is also a necessary and sufficient criterion for the stability of the identity map of \((M, g) \) as a harmonic map. In [2] the stability of the identity map of these spaces has been studied in detail. We observe that if \((M, g) \) is not a sphere then \(g \) is stable for \(\mathcal{R}_{\frac{n}{2}} \) if and only if it is stable for the identity map.

Let \((M, g) \) be an irreducible symmetric space of compact type or a compact quotient of an irreducible locally symmetric space of non-compact type. From the proof of the theorem we observe that if \((M, g) \) is neither one of the type in Theorem 1 then \((M, g) \) is stable for \(\mathcal{R}_{p}(p \geq \frac{n}{2}) \) restricted to the conformal variations of \((M, g) \).

2. Proof

Let \(\{e_i\} \) be an orthonormal basis at a point of \(M \). \(\hat{R} \) is a symmetric 2-tensor defined by

\[
\hat{R}(x, y) = \sum R(x, e_i, e_j)R(y, e_i, e_j).
\]

Let \(D \) and \(D^* \) be the Riemannian connection, its formal adjoint and \(s \) denote the scalar curvature. \(d^D : S^2(T^*M) \to \Gamma(T^*M \otimes \Lambda^2 M) \) and its formal adjoint \(\delta^D \) are defined by

\[
d^D \alpha(x, y, z) := (D_y \alpha)(x, z) - (D_z \alpha)(x, y)
\]

\[
\delta^D(A)(x, y) = \sum \{D_{e_i}A(x, y, e_i) + D_{e_i}A(y, x, e_i)\}
\]

where \(\Lambda^2 M \) and \(\Gamma(T^*M \otimes \Lambda^2 M) \) denote alternating two forms and sections of \(T^*M \otimes \Lambda^2 M \). Let \(g_t \) be a one-parameter family of metrics with \(\frac{dt}{dt}(g_t)_{t=0} = h \) and \(T(t) \) be a tensor depending on \(g_t \). Then \(\frac{dt}{dt}T(t)_{t=0} \) is denoted by \(T'(h) \). Define \(\Pi_h(x, y) = \frac{dt}{dt}D_x y_{t=0} \) where \(x, y \) are two fixed vector fields. The suffix \(h \) will be omitted when there will not be any ambiguity. Consider any \(f \in C^\infty(M) \). Note that

\[
g(\Pi_{fg}(x, y), z) = \frac{1}{2}[D_x fg(y, z) + D_y fg(x, z) - D_z fg(x, y)]
\]

\[
= \frac{1}{2}[df(x)g(y, z) + df(y)g(x, z) - df(z)g(x, y)]
\]

Let \(\Delta \) denote the Laplace operator which acts on \(C^\infty(M) \). We use the following definition.

\[
\Delta f = -\text{tr}(Ddf)
\]

\((,), |\cdot|, \langle \cdot, \cdot \rangle, ||\cdot|| \) denote point-wise inner product, point-wise norm, global inner product and global norms induced by \(g \).

\(\nabla \mathcal{R}_p(g) \) in \(S^2(T^*M) \) is called the gradient of \(\mathcal{R}_p \) at \(g \) if for every \(h \in S^2(T^*M) \),

\[
\frac{d}{dt}|_{t=0} \mathcal{R}_p(g + th) = \mathcal{R}_p'(g)h = \langle \nabla \mathcal{R}_p(g), h \rangle
\]

g is called a critical point for \(\mathcal{R}_{p|\mathcal{M}_1} \) if the component of \(\nabla \mathcal{R}_p(g) \) along the tangent space of \(\mathcal{M}_1 \) at \(g \) is zero. The Hessian at a critical point of \(\mathcal{R}_p \) is given by

\[
H(h_1, h_2) = \langle (\nabla \mathcal{R}_p)'_g(h_1), h_2 \rangle \quad \forall h_1, h_2 \in S^2(T^*M)
\]

Proposition 2.1. Let \((M, g) \) be a compact irreducible symmetric space and \(f \in C^\infty(M) \). Then

\[
H(fg, fg) = p|R|^{p-2}[a\|\Delta f\|^2 - b\|df\|^2 + c\|f\|^2]
\]
where, a, b, c is given by,

$$a = n - 1 + (p - 2) \frac{4s^2}{n^2|R|^2},$$
$$b = 4(p - 1) \frac{s}{n},$$
$$c = (p - \frac{n}{2}) |R|^2.$$

Let (M, g) be a closed irreducible symmetric space and $h_1, h_2 \in S^2(T^*M)$. From [2] (4.1) we have,

$$H(h_1, h_2) = -p|R|^{p-2} \langle \delta^D(D^*)'_g(h_1)R, h_2 \rangle - p|\langle |R|^{p-2}((D^*)'_g(h_1)h_2) \rangle - p|R|^{p-2} \langle (D^*)'_g(h_1), h_2 \rangle (2.2)$$

$$+ \frac{1}{2} \langle (|R|^{p-2})'_g(h_1)g, h_2 \rangle + \frac{p}{n} \|R\|^p \langle h_1, h_2 \rangle$$

Next we compute each term of the above equation for conformal variations to obtain the Proposition.

Lemma 2.1. $\langle \delta^D(D^*)'_g(fg)R, fg \rangle = 4\frac{s^2}{n} \|df\|^2$

Proof. Let $\tilde{g}(t)$ be an one-parameter family of metrics with $\tilde{g}(0) = g$ and T be a $(0, 4)$ tensor independent of t. Expressing D^* in a local coordinate chart and differentiating it, we obtain,

$$(D^*)'(x, y, z) = -(\hat{g}^{ij})(D_kT)_{jxyz} + \hat{g}^{ij}[\Pi_{xyz} + T_{jxyz} + T_{jxyz}]$$

Note that, Π acting on two vector fields gives a vector field. Now evaluating $(D^*)_g(h)(R)$ on an orthonormal basis we have,

$$(D^*)_g(h)(R)_{jkl} = R_{\Pi_{i,j}kl} + R_{\Pi_{i,j}kl} + R_{ij\Pi_{k}l} + R_{ij\Pi_{k}l}.$$

From the definition of D^* we have,

$$d^D fg(x, y, z) = D_g f g(x, y, z) - D_z f g(x, y, z) = df(y)g(x, z) - df(z)g(x, y)$$

Combining these two,

$$\sum (D^*)_g(h)(R)_{jkl} = 2 \sum [R_{\Pi_{i,j}kl} + R_{\Pi_{i,j}kl} + R_{ij\Pi_{k}l} + R_{ij\Pi_{k}l}]df_k$$

Let μ be the Einstein constant of (M, g). Now using (2.2) we have,

$$2 \sum R_{\Pi_{i,j}kl}df_k = 2 \sum g(\Pi(e_i, e_i, e_m)R(e_m, e_j, e_j)df(e_k)$$

$$= - (n - 2) \mu \|df\|^2$$

Similarly,

$$2 \sum R_{ij\Pi_{k}l}df_k = n \mu \|df\|^2$$

$$2 \sum R_{i\Pi_{j}kl}df_k = 2 \mu \|df\|^2$$

Combining the equations (2.3) and (2.4) the proof of the lemma follows. \qed

Lemma 2.2. $\langle (D^*)'_g(fg), d^D fg \rangle = -(n - 1)\|\Delta f\|^2 + (n - 4)\frac{s^2}{n} \|df\|^2$

Proof. By a simple calculation we have,

$$D^2 f g(u, v) = Ddf(x, y)g(u, v)$$

and

$$Dd^D fg(x, y, z, w) = Ddf(x, z)g(y, w) - Ddf(x, w)g(y, z).$$
From [1] 1.174(c) and using (2.5) we have,
\[R'_g(fg)(x, y, z, u) = -\frac{1}{2} [Ddf(y, z)g(x, u) + Ddf(x, u)g(y, z) - Ddf(x, z)g(y, u) - Ddf(y, u)g(x, z)] + fR(x, y, z, u) \] (2.7)

Therefore,
\[(R'_g(fg), D^D fg) = Ddf_{ik}R'_g(fg)_{ijkl} - Ddf_{il}R'_g(fg)_{ijkl} = -(n - 2)|Ddf|^2 - |\Delta f|^2 - 2\mu|df|^2 \]

Using Bochner-Weitzenböck formula on the space of one forms we have,
\[\Delta df = D^*Ddf + (n - 1)cdf \]

Hence the lemma follows. \(\square\)

Lemma 2.3. \((\bar{R}'_g(fg), fg) = 4\frac{s}{n}\|df\|^2 - |R^2||f||^2\)

Proof.
\[\bar{R}_{pq} = g^{ij}g^{kl}R_{pij}R_{qkl} \]

Differentiating it with respect to \(t\) and evaluating on an orthonormal basis we have,
\[(\bar{R}_g; h)'_{pq} = -h_{mn}(R_{pm}R_{nq} + R_{pn}R_{mq} + R_{pq}R_{mn}) + (R'_g, h)_{pijk}R_{qijk} + R_{pijk}(R'_g, h)_{qijk} \]

Therefore,
\[(\bar{R}'_g(fg), fg) = -3|R|^2\|f\|^2 + 2\langle(R'_g, fg), fR \rangle \]

Using (2.7) we have,
\[(\bar{R}'_g(fg), R) = \frac{1}{2} \sum [Ddf_{jk}R_{ijkl} + Ddf_{il}R_{ijkl} - Ddf_{ik}R_{ijkl} - Ddf_{jl}R_{ijkl}] + f|R|^2 \] (2.8)
\[= 2\mu\Delta f + f|R|^2 \]

Hence the lemma follows. \(\square\)

Lemma 2.4. \((|R|^p)'(fg) = 2\frac{s}{n}p|R|^{p-2}\Delta f - pf|R|^p\)

Proof.
\[(|R|^p)'(fg) = p|R|^{p-2}(R, R'_g fg) - 2p|R|^{p-2}(\bar{R}, fg) = p|R|^{p-2}(R, R'_g fg) - 2pf|R|^{p-2}tr(\bar{R}) = p|R|^{p-2}(2\mu\Delta f + f|R|^2) - 2pf|R|^p = 2\mu p|R|^{p-2}\Delta f - pf|R|^p \]

Using (2.6) we have,
\[(D^D fg, R) = 2(Ddf, r) = -2\mu\Delta f \]

Now the Proposition follows from the above lemma and equation.

Proof of Theorem 1.1: Let \((M, g)\) is a simply connected irreducible symmetric space of compact type which is not a sphere. Then
\[R = \frac{s}{n(n - 1)} I + W \]
where I is the curvature of the standard sphere with sectional curvature 1 and W is the Weyl curvature of (M,g). From the above expression we have

$$\frac{s^2}{|R|^2} < \frac{2}{n(n-1)}$$

Let λ_1 be the first positive eigenvalue of the Laplacian of (M,g) and f be an eigenfunction corresponding to λ_1. Then from Proposition 2.1 we have,

$$H(fg, fg) = s\lambda_1 |R|^{p-2} [a(\frac{\lambda_1}{s}) - \frac{b}{s}] \|f\|^2$$

$$\leq s\lambda_1 |R|^{p-2} \left[(n-1 + 4\frac{n-4}{n^3(n-1)}) \frac{\lambda_1}{s} - 2\frac{n-2}{n} \right] \|f\|^2$$

From the Table A.1 and A.2 in [2] we have,

$$H(fg, fg) < 0.$$

Next, we choose a sufficiently large eigenvalue λ_i such that $a(\frac{\lambda_i}{s}) - \frac{b}{s} < 0$. Let \tilde{f} be an eigenfunction corresponding to λ_i. Then we have,

$$H(\tilde{f}g, \tilde{f}g) < 0$$

This completes the proof. \qed

Theorem 2. Let (M,g) be either a compact quotient of an irreducible symmetric of non-compact type or a compact symmetric space which is not one of the types in Theorem 1. (M,g) is stable for R_p for $p \geq \frac{n}{2}$ when it is restricted to the space of conformal variations of g.

Proof. If (M,g) is a a compact quotient of an irreducible symmetric of non-compact type then the theorem is an immediate consequence of Proposition 2.1. Otherwise from the Table A.1 and A.2 in [2] we have $\frac{\lambda_1}{s} \geq \frac{2}{n}$. Therefore,

$$H(fg, fg) \geq sp\lambda_1 |R|^{p-2} [a(\frac{\lambda_1}{s}) - \frac{b}{s}] \|f\|^2$$

$$\geq sp\lambda_1 |R|^{p-2} \left[(n-1 + 4\frac{n-4}{n^3(n-1)}) \frac{\lambda_1}{s} - 2\frac{n-2}{n} \right] \|f\|^2$$

$$\geq 2sp\lambda_1 |R|^{p-2} \left[\frac{n-1}{n} - 2\frac{n-2}{n} \right] \|f\|^2$$

$$\geq 0$$

\qed

Remark: Let (M,g) be one of the critical metrics of R_p mentioned in Theorem 2. This is an immediate consequence of the above theorem that (M,g) is a local minimizer for $R_p(p \geq \frac{n}{2})$ restricted to the space of metrics conformal to g.

References

[1] Arthur L. Besse, *Einstein manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3)[Results in Mathematics and Related Areas (3)], Volume 10, Springer-Verlag, Berlin, (1987).

[2] Soma Maity, *On the stability of the L^p-norm of curvature tensor*, arXive:1201.1691[math.DG] 15 March 2012.

[2] Hajime Urakawa, *The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold*, Compositio Mathematica, Volume 59, p. 57-71(1986).
