RESEARCH ARTICLE

Risk Associated with Bee Venom Therapy: A Systematic Review and Meta-Analysis

Jeong Hwan Park1, Bo Kyung Yim2, Jun-Hwan Lee1, Sanghun Lee1, Tae-Hun Kim3*

1 Acupuncture, Moxibustion and Meridian Research Group, Korean Institute of Oriental Medicine, Daejeon, South Korea, 2 Division of Cardiovascular and Rare Diseases, Center for Biomedical Science, National Institute of Health, Cheongju, Chungcheongbuk-do, South Korea, 3 Korean Medicine Clinical Trial Center, Korean Medicine Hospital, Kyung Hee University, Seoul, South Korea

* rockandmineral@gmail.com

Abstract

Objective

The safety of bee venom as a therapeutic compound has been extensively studied, resulting in the identification of potential adverse events, which range from trivial skin reactions that usually resolve over several days to life-threatening severe immunological responses such as anaphylaxis. In this systematic review, we provide a summary of the types and prevalence of adverse events associated with bee venom therapy.

Methods

We searched the literature using 12 databases from their inception to June 2014, without language restrictions. We included all types of clinical studies in which bee venom was used as a key intervention and adverse events that may have been causally related to bee venom therapy were reported.

Results

A total of 145 studies, including 20 randomized controlled trials, 79 audits and cohort studies, 33 single-case studies, and 13 case series, were evaluated in this review. The median frequency of patients who experienced adverse events related to venom immunotherapy was 28.87% (interquartile range, 14.57–39.74) in the audit studies. Compared with normal saline injection, bee venom acupuncture showed a 261% increased relative risk for the occurrence of adverse events (relative risk, 3.61; 95% confidence interval, 2.10 to 6.20) in the randomized controlled trials, which might be overestimated or underestimated owing to the poor reporting quality of the included studies.

Conclusions

Adverse events related to bee venom therapy are frequent; therefore, practitioners of bee venom therapy should be cautious when applying it in daily clinical practice, and the practitioner’s education and qualifications regarding the use of bee venom therapy should be ensured.
Introduction

Bee venom is one of the most commonly encountered animal venoms and consists of various chemical agents that induce allergic reactions in the human body [1]. Bee venom therapy (BVT), in which bee venom is used for medicinal purposes, is available worldwide, but is primarily utilized in Asia, Eastern Europe, and South America [2]. The diverse therapeutic applications of BVT include various musculoskeletal conditions, such as arthritis and rheumatism, chronic recalcitrant neuralgia, arthralgia, and immune-related diseases. BVT is also used to desensitize patients to bee stings and thus inhibit allergic reactions [3] [4] [5].

Although the therapeutic utility of bee venom has been demonstrated, its safety profile is an important limiting consideration, because immune responses to BVT can range from trivial skin reactions that resolve over several days to life-threatening responses such as anaphylaxis [6] [7]. In a recent survey, the incidence of systematic reactions (SRs) in patients who received venom and inhaled-allergen subcutaneous immunotherapy was 13.60%, whereas the prevalence of SRs in patients that received bee venom immunotherapy (VIT) was 28.72% [8]. In another survey, 12.13% patients who received VIT experienced SRs (an average of 1.91 SR events per subject), suggesting that serious adverse events (SAEs) due to BVT are quite common [9].

The most significant issue related to the AEs of BVT is that the occurrence of SAEs is unpredictable. It is therefore necessary to determine the prevalence and nature of AEs related to various types of BVT, so that bee venom can be used safely in clinical practice. The aim of this systematic review was to provide summary information regarding the types of AEs related to BVT and their prevalence in treated patients.

Methods

Study selection

Types of studies. All types of clinical studies, including randomized controlled trials (RCTs) and randomized crossover trials, as well as observational studies, including cohort studies, case-control studies, case series, and case studies, were included in this study.

Types of participants. The subjects of the studies evaluated in this review included adults and pediatric patients, and the selection was not limited to studies of patients with specific diseases. Regardless of a patient’s condition and disease status, studies were included if bee venom was used as a key intervention, and AEs that may have been causally related to BVT were reported.

Types of interventions. In this review, we included studies of bee sting acupuncture (BSA), a subcutaneous or intramuscular injection of bee venom for the purpose of acupoint stimulation (bee venom acupuncture [BVA], sweet bee venom [SBV]), and dried honeybee venom (apitoxin injections), as well as subcutaneous VIT for desensitization of venom immune reactions. BSA, BVA, SBV, and apitoxin injections usually involve the use of venom derived from bees (family Apidae), whereas VIT generally involves the use of venom from bees (family Apidae) and wasps (family Vespidae) concomitantly. Therefore, we included all types of venom therapy including both bee and wasp venoms. We also reviewed studies where bee venom was used alone or in combination with other treatments. However, studies describing bee stings resulting from random encounters (e.g., during resting or by attack), sting challenge tests, sublingual VIT, and irrelevant venom types were excluded from this study. We included RCTs comparing BVT with no treatment, normal saline injections, and conventional medications for relative risk assessment. Trials in which different types of BVT were compared with each other were excluded.

Types of outcome measures. The major aim of this review was to identify the frequency and types of AEs related to BVT. In case studies and case review series, the type of AE was
classified into 1 of 3 categories: SR, skin problem (SP), and other (nonspecific reaction, symptom, or sign that was not an SR or SP). If an SR occurred as an AE, it was classified into 1 of 5 categories based on the Mueller classification (grade I, grade II, grade III, and grade IV) [10]. The causal relationship between BVT and AEs was also assessed in each study according to the WHO-UMC causality scale [11]. AEs were scored as certain when they clearly occurred after BVT, disappeared after withdrawal, and could not be explained by other diseases or treatments. AEs were scored as probable when the timing of the AEs and BVT indicated that they were most likely related, they disappeared as a probable result of the discontinuation of BVT, and the events were not induced by other diseases or treatment. AEs were scored as possible when they occurred after BVT treatment but no information was available on the relationship between their disappearance and the withdrawal of BVT and when they could potentially be explained by other diseases or treatments. In addition, AEs were scored as unlikely when the event and the BVT had an improbable causal relationship. AEs were scored as conditional/unclassified when the event occurred but more data were necessary for a conclusion to be reached. Finally, AEs were scored as unassessable/unclassifiable when they could not be evaluated properly owing to insufficient and/or contradictory information [12].

In audits and cohort studies, AE types were divided into SR, large local reaction (LLR), local reaction (LR), and other (nonspecific reaction, symptom, or sign that was not an SR, LLR, or LR). An LLR was defined as swelling exceeding 10 cm in diameter and lasting longer than 24 h, and an LR was defined as local pruritus, edema, or erythema [13]. Finally, the prevalence of AEs related to BVT was assessed through observational studies, including audits and cohort studies.

Data sources
The following 12 databases were searched: PubMed, EMBASE, the Cochrane Library, CINAHL, China National Knowledge Infrastructure (CNKI), Wanfang (China), Weipu (China), KoreaMED, the Korean Medical Database (KMBASE), the Korean Studies Information Service System (KISS), National Discovery for Science Leaders (NDSL) (Korea), and the Oriental Medicine Advanced Searching Integrated System (OASIS) (Korea). Bibliographic references in relevant publications (Journal of Pharmacopuncture) were manually searched to avoid missing eligible articles. The References sections of reviews on AEs of BVT were searched manually, and articles published through June 2014 were included. The search terms consisted of two parts: “BVT” (e.g., bee sting, apitoxin, or venom immunotherapy) and “adverse events” (e.g., adverse reaction, side effects, risk, or safe). The search strategy was modified appropriately according to the databases. The detailed search strategies for PubMed, China National Knowledge Infrastructure (CNKI), Wanfang (China), Weipu (China), KoreaMED, the Korean Medical Database (KMBASE), the Korean Studies Information Service System (KISS), National Discovery for Science Leaders (NDSL) (Korea), and the Oriental Medicine Advanced Searching Integrated System (OASIS) (Korea) are presented in the Supporting Information.

Data collection and analysis

Study selection. Two independent reviewers (JHP and BKY) screened the articles for inclusion by title and abstract. If disagreements regarding the selection of a study could not be resolved through discussion, the final decision was made by the arbiter (THK).

Data extraction and management. One reviewer (JHP) read the full text of the articles selected for review and extracted the data using a standard data extraction form. Another reviewer (BKY) rechecked the data to ensure that it had been extracted appropriately. Any disagreement among the reviewers was resolved by discussion or by the arbiter (THK).
Quality assessment of AEs in RCTs. To evaluate the quality of the detection and reporting of the AEs in the included RCTs, 7 items were assessed according to the CONSORT recommendations for harm data: (1) mention of AEs in the title or abstract, (2) mention of BVT-related AEs in the introduction, (3) predefined definition of AEs related to BVT, (4) collection or monitoring method for AEs, (5) mention of the method for analyzing and presenting AEs, (6) mention of any patients who dropped out of the study owing to AEs, and (7) mention of the specific denominator for the analysis of AEs [14] [15]. The quality of each item was judged as good, moderate, bad, or not reported [12]. The quality of a study was scored as good if each item was reported clearly in the manuscript or in the registered protocol. If each item was reported, but not in detail, the methodological quality was scored as moderate. The quality of a study was scored as bad when any of the items were not appropriately reported. If an item was not described at all, it was recorded as not reported.

Statistical analysis
A meta-analysis of the RCTs was conducted if the incidence of AEs was clearly reported and the relative risk of AEs could be assessed because of similar study designs and intervention methods, including BVT types and control interventions, with minimal clinical heterogeneity. The relative risk of BVT and control interventions was assessed, and effects were calculated using Revman 5.2 software (http://ims.cochrane.org/revman).

Results
Through electronic and manual searching, 8,108 potentially relevant articles were identified, including 5,504 records from PubMed, EMBASE, the Cochrane Library, and CINAHL; 468 records from the Chinese databases; and 2,136 records from the Korean databases, from which 2,118 duplicate records were removed. Through a screening process involving the use of the titles and abstracts of identified records, we excluded 5,699 records that did not meet the inclusion criteria. The remaining 291 articles were reviewed for eligibility, and 146 articles were excluded, including experimental studies (32), reviews (57), surveys (3), studies without description of the assessment of AEs (43), and studies without relevant intervention or comparison groups (11). Finally, 145 studies, including 20 RCTs, 79 audits and cohort studies, 33 single-case studies, and 13 case series, were included in the review (Fig 1).

Case studies and case series
Thirty-three single-case studies and 13 case series were identified as described in Table 1 [2,7,16–59]. A total of 69 individual isolated cases were reported in 46 papers. Incidents were reported in 11 countries: Korea (37 cases), China (10 cases), the United States (7 cases), France (6 cases), Germany (2 cases), Turkey (2 cases), Canada (1 case), Italy (1 case), Russia (1 case), Saudi Arabia (1 case), and the Slovak Republic (1 case). The reported BVT methods included BSA (29), BVA (21), and VIT (19). Among the 69 AE cases, 58 cases were related to BVT, 6 cases were related to wasp venom treatment, and 5 cases were related to treatment with a mixture of bee venom and wasp venom. Among the 58 AE cases related to treatment with bee venom only, 30 SRs, 23 SPs, and 5 other cases, including cough; headache; uremia; anorexia; discoloration of the sclera; jaundice; painful cyclic uterine contractions; severe pain affecting the left shoulder, chest wall, and left arm; and muscular weakness in the left arm and hand, were reported. The 30 SRs related to treatment with bee venom only were classified as grade I (5 cases), grade II (10 cases), grade III (14 cases), and grade IV (1 case). The severity of the AEs related to BVT only were reported as moderate (34 cases) or severe (24 cases), and the causality was deemed to be probable for 49 cases and possible for 9 cases. Most practitioners were
qualified practitioners (30 cases), and 4 patients were treated by unqualified personal with no medical training or licensure regarding BSA. One patient died after treatment by an unqualified BSA practitioner. In 23 cases, there was no description of the practitioner. A pre-treatment skin test for venom allergies was reported in only 10 cases, and it was almost always performed
Table 1. Case studies and case series on adverse events associated with bee venom therapy.

Study (first author, year)	Country	Number of cases	Reason for BVT	Practitioner	BVT stimulation feature	Venom type	Skin test	Injection amount	Concomitant treatment	AE symptoms	AE severity	AE type	Mueller classification	Diagnosis	Causality
Alqutub 2011 [2]	Saudi Arabia	1 case (F/35)	Multiple sclerosis	Local practitioner	BSA	Bees	Not reported	10 bee stings	Not reported	Fatigue, anorexia, and discoloration of sclera (jaundice)	Severe	Others	-	Hepatotoxicity	Probable
An 2001 [16]	Korea	3 cases (F58)	a) Degenerative knee arthritis	a) KMD	a) BVA	Bees	a) Not reported	a) BV injection 2,000:1, 0.25 mL	a) Cold pack	a) Extreme pain, muscular convulsion and tremble, ocular hyperemia, sleepiness, stiffness of limbs, and hyperventilation	a)	a) SR	a) Grade III	a) Pain shock	a) Probable
Bae 2009 [17]	Korea	1 case (M/76)	Palpable subcutaneous nodule	Not reported	BSA	Bees	Not reported	Not reported	Not reported	Two erythematous plaques, skin ulcerations, and necrosis	Moderate	SP	-	Foreign body granuloma	Probable
Cheng 2004 [18]	China	2 cases (M/2)	a) Repeated respiratory infections	a) MD	a) BSA	Bees	a) Not reported	a) 1 bee sting	a) Not reported	a) Anaphylaxis, palp, face, nausea, vomiting, and cold sweats	a)	a) SR	a) Grade II	a) Anaphylaxis	a) Probable
Choi 2010 [19]	Korea	1 case (F/37)	Lower back pain	KMD	BVA	Bees	Not reported	Not reported	Not reported	Skin rash, pruritus, arthralgia, fever, and myalgia	Moderate	SR	Grade I	Serum sickness reaction	Probable
Herr 1999 [20]	Korea	1 case (M/64)	Knee arthralgia	Unqualified person	BSA	Bees	Not reported	Not reported	Not reported	Localized edema and pruritus, skin nodules	Moderate	SP	-	Eosinophilic granuloma	Probable
Huh 2008 [21]	Korea	1 case (M/71)	Knee pain	Not reported	BSA	Bees	Not reported	Not reported	Not reported	Dysthria, dizziness, and left hemiparesis	Severe	SR	Grade III	Pontine and thalamic infarction	Possible
Jung 2012 [22]	Korea	1 case (F/80)	Knee pain	Unqualified person (apitherapist)	BSA	Bees	Not reported	Not reported	Not reported	Nausea, dizziness, weakness, generalized paresthesia, whole-body wheal, diffuse edema, unconsciousness, and death	Severe	SR	Grade IV	Anaphylaxis, disseminated intravascular coagulation (DIC)	Probable
Karapata 1961 [23]	Russia	1 case (M/51)	Hypertensive disorders	Not reported	BVA	Bees	Not reported	Not reported	Not reported	Vomiting, headache, and uremia	Severe	Others	-	Toxic pulmonary edema	Possible
Kim 2005 [24]	Korea	1 case (F/53)	Pain in the scapular region	KMD	BVA	Bees	Not reported	Not reported	Not reported	Localized pruritus and multiple erythematous papules	Moderate	SP	-	Hypersensitivity	Probable
Kim 2007 [25]	Korea	1 case (F/28)	Not reported	Not reported	BVA	Bees	Not reported	Not reported	Not reported	Facial and generalized edema, backache, and abdominal distension	Moderate	SR	Grade II	Minimal change, nephrotic syndrome	Probable
Kim 2010 [26]	Korea	1 case (F/36)	Knee osteoarthritis	KMD	BSA	Bees	Not reported	Not reported	Not reported	Two erythematous plaques and nodules; skin ulcerations	Moderate	SP	-	Foreign body granuloma	Probable (Continued)
Study (first author, year)	Country	Number of cases	Reason for BVT	Practitioner type	BVT stimulation feature	Venom type[^a]	Skin test	Injection amount	Concomitant treatment	AE symptoms	AE severity[^b]	AE type[^c]	Mueller classification[^d]	Diagnosis	Causality[^e]
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Kim 2011 [27]	Korea	1 case (F/75)	Knee and lower back pain	KMD	SBV and BVA	Bees	Not reported	SBV injection 2.4 mL, BV injection 4.000:1, 1.0 mL	Pharmacopuncture	Facial erythema, localized erythema, generalized pruritus, chest discomfort, mild dyspnea	Moderate	SR	Grade II	Anaphylaxis	Probable
Kwon 2009 [28]	Korea	2 cases a) M/76	a) Lower back pain, knee osteoarthritis	a) KMD	a) SBV	a) Bees	a) Not reported	a) Not reported	b) Pharmacopuncture	a) Tongue edema, dysarthria, mild dyspnea, localized erythema, swelling	a)	a) SR	a) Grade III b	a) Anaphylaxis	a) Probable
			b) Pain in hand and shoulder joints	b) KMD	b) SBV	b) Bees	b) Not reported	b) SBV injection 2.2 mL	b)	b) Moderate	a) Generalized pruritus and fever	b)	b) SR	a) Grade I	a) Anaphylaxis
Lee 1996 [29]	Korea	1 case (F/43)	Chronic eczema-like dermatitis	Not reported	BSA	Bees	Not reported	Not reported	Not reported	Multiple erythematous plaques and nodules	Moderate	SP	Foreign body granuloma	Probable	
Lee 1996 [30]	Korea	1 case (F/42)	Polyarthralgia	Not reported	BSA	Bees	Not reported	Not reported	Not reported	Localized edema and redness, subcutaneous nodules	Moderate	SP	Foreign body granuloma	Probable	
Lee 2000 [31]	Korea	1 case (M/28)	Ankle sprain	KMD	BVA	Bees	Not reported	Not reported	Not reported	Neck stiffness, chest pressure sensation, stridor, and dyspnea	Severe	SR	Grade III	Anaphylaxis	Probable
Lee 2010 [32]	Korea	1 case (M/59)	Lipoma	Not reported	BSA	Bees	Not reported	Not reported	Not reported	Single erythematous plaques	Moderate	SP	-	Foreign body granuloma	Probable
Lee 2011 [33]	Korea	2 cases a) F/53	a) Knee and lower back pain	a) MD	a) BVA (apitoxin injection)	Bees	a) Not tested	a) Not reported	a) Not reported	a) Multiple erythematous plaques and nodules, skin ulcerations, and tenderness	a)	a) SP	a) Foreign body granuloma	a) Probable	
			b) Foot pain	b) MD	b) BVA (apitoxin injection)	Bees	b) Not tested	b) Not reported	b) Not reported	b) Multiple erythematous plaques and nodules, skin ulcerations, and tenderness	b)	b) SP	b) Foreign body granuloma	b) Probable	
Lee 2013 [34]	Korea	1 case (M/50)	Back pain	KMD	BSA	Bees	Not reported	Not reported	Not reported	Multiple erythematous plaques and nodules	Moderate	SP	-	Chronic folliculitis and granuloma	Probable
Li 2002 [35]	China	1 case (F/163)	Limb joint pain	MD	BSA	Bees	Not reported	More than 20 bee stings	Not reported	Pallor face, chest discomfort, dyspnea, dysarthria	Severe	SR	Grade III	Anaphylaxis	Probable
Li 2005 [36]	China	4 cases a) F/87	a) Rheumatoid arthritis	a) Not reported	a) BSA	Bees	a) Not reported	a) 3 bee stings	a) Not reported	a) Generalized pruritus, large amounts of sweat, paor lip, decreased consciousness, hot feeling of the extremities, chest discomfort, and nausea	a)	a) SR	a) Grade III	a) Anaphylaxis	a) Probable
			b) Rheumatoid arthritis	b) Not reported	b) BSA	Bees	b) Not reported	b) Not reported	b) Not reported	b) Pallor face (blue violet), tachypnea, dysarthria, and dizziness	b)	b) SR	b) Grade III	Anaphylaxis	b) Probable
			c) Rheumatoid arthritis	c) Not reported	c) BSA	Bees	c) Not reported	c) 2 bee stings	c) Not reported	c) Localized edema and redness, and generalized urticaria	c)	c) SR	c) Anaphylaxis	c) Probable	
			d) Rheumatoid arthritis	d) Not reported	d) BSA	Bees	d) Not reported	d) 2 bee stings	d) Not reported	d) Systemic papules, generalized pruritus, localized edema, and redness	d)	d) SR	d) Grade I	Anaphylaxis	d) Probable
(Continued)			e) Rheumatoid arthritis	e) Not reported	e) BSA	Bees	e) Not reported	e) 3 bee stings	e) Not reported	e) Generalized pruritus, large amounts of sweat, paor lip, decreased consciousness, hot feeling of the extremities, chest discomfort, and nausea	e)	e) SR	e) Grade III	e) Anaphylaxis	e) Probable

[^a]: Not reported
[^b]: Moderate
[^c]: SR
[^d]: Grade I
[^e]: Probable
Table 1. (Continued)

Study (first author, year)	Country	Number of cases	Reason for BVT	BVT injection feature	Venom type	Skin test	Injection amount	Concomitant treatment	AE symptoms	AE severity	AE type	Mueller classification	Diagnosis	Causality	
Park 1998 [37]	Korea	1 case	Facial papule	Self	BSA	Bees	Not reported	Not reported	Ulcerative tumor	Moderate	SP	-	Eosinophilic foreign body granuloma	Probable	
Park 2000 [38]	Korea	1 case	Not reported	Not reported	BVA	Bees	Not reported	Not reported	Severe diaphoresis, dizziness, palpitation, dysarthria, and left hemiparesis	Severe	SR	Grade III	Ischemic stroke	Probable	
Park 2013 [7]	Korea	2 cases	a) Arthralgia pain	a) Not reported	a) BSA	a) Bees	a) Not reported	a) Not reported	a) Ulcerative tumor	a) Moderate	a) SP	a) -	a) Live bee acupuncture dermatitis	a)	Probable
Rhee 2009 [39]	Korea	1 case	A small nodule	Not reported	BVA	Bees	Not reported	Not reported	Erythematous tumor	Moderate	SP	-	Giant dermatofibroma	Probable	
Rho 2009 [40]	Korea	1 case	Knee arthritis	Not reported	BVA	Bees	Not reported	Not reported	Fever, dysuria, face edema, and generalized erythematous papular rash	Moderate	SR	Grade I	Systemic lupus erythematosus	Possible	
Shim 2011 [41]	Korea	1 case	Paralysis	KMD	BVA	Bees	Not reported	Not reported	Multiple erythematous plaques and nodules, skin ulceration, and tenderness	Severe	SP	-	Mycobacterium chabake infection	Probable	
Song 2003 [42]	Korea	2 cases	a) Pain in the scapular region	a) Unqualified person	a) BSA	a) Bees	a) Not reported	a) Not reported	a) Generalized urticaria, facial edema, dyspnea, and chest pain	a) Severe	a) SR	a) Grade II	a) Anaphylaxis	a)	Probable
Yoon 2012 [45]	Korea	2 cases	a) Lower back pain	a) KMD	a) BVA	a) Bees	a) Tested (negative)	a) 8V injection 2,000:1, 0.4 ml	a) Facial edema, generalized pruritus, erythema, respiratory depression, and fever	a) Severe	a) SR	a) Grade II	a) Hypersensitivity	a)	Probable
Veraldi Italy 1995 [43]	Italy	1 case	Spinal column arthritis	Not reported	BSA	Bees	Not reported	Not reported	Swelling, edema, and numerous inflammatory nodules	Severe	SP	-	Long-lasting subacute inflammatory reaction	Probable	
Yoon 1994 [44]	Korea	1 case	Lower back pain	Not reported	BSA	Bees	Not reported	Not reported	Generalized erythematous plaques	Moderate	SP	-	Contact urticaria	Probable	
Youn 2005 [46]	Korea	2 cases	a) Knee pain	a) KMD	a) BVA	a) Bees	a) Not reported	a) 8V injection 2,000:1, 0.2 ml	a) Chest discomfort, nausea, dizziness, drowsiness, and chillis	a) Severe	a) SR	a) Grade II	a) Anaphylaxis	a)	Probable
Yu 1998 [47]	Korea	2 cases	a) Pruritic skin eruption	a) Not reported	a) BSA	a) Bees	a) Not reported	a) Not reported	a) Multiple erythematous plaques and nodules, tenderness	a) Moderate	a) SP	a) -	a) Foreign body granulomas	a)	Possible
Table 1. (Continued)

Study (first author, year)	Country	Number of cases	Reason for BVT	Practitioner type	VBT stimulation feature	Venom type*	Skin test injection amount	Concomitant treatment	AE symptoms	AE severity*	AE type**	Mueller classification*	Diagnosis	Causality*
b) M/50	b) Subcutaneous nodule	b) Not reported	b) BSA	b) Bees	b) Not reported	b) Not reported	b) Not reported	b) Ill-defined subcutaneous nodules	b) Moderate	b) -	b) Foreign body granulomas	b) Possible		
Zhang	China	2 cases a) M/50	a) Knee joint soft tissue damage	a) Not tested	a) BSA	b) Not tested	b) Not reported	b) Localized edema; two ecchymas	a) Moderate	a) -	a) Live bee acupuncture dermatitis	a) Possible		
b) M/29	b) Lumbodorsal fibromyalgia	b) Not reported	b) BSA	b) Bees	b) Not tested	b) Not reported	b) Not reported	b) Generalized purpuric limb paralysis, dyspnea, nausea, vomiting, systemic papules, large amounts of sweat, paralysis, and tremors	b) Severe	b) SR	b) Grade III	b) Anaphylaxis	b) Possible	
Zhong	China	1 case (F/51)	Osteoarthritis pain	MD	BSA	Bees	Not reported	30–40 bee stings	Not reported	Anorexia, listlessness; jaundice	Severe	Others -	Acute icteric hepatitis	Possible

Venom immunotherapy (VIT)

Antosso-Cazes	France	1 case (F/49)	Not reported	Not reported	Rush VIT	Wasp	Tested (positive)	1YV 60 μg	Not reported	Urticaria and cough	Mild	SR	Grade I	Hypersensitivity	Possible
Bousquet	France	4 cases a) M/42	a) Treatment of systemic allergic reactions	a) MD	a) VIT	Bees	a) Tested (positive)	a) HBV 50 μg	a) Not reported	a) Angioedema involving the larynx and tracheobronchial tree; hypotension	a) Severe	a) SR	a) Grade III	a) Anaphylaxis	a) Possible
c) M/16	b) Treatment of systemic allergic reactions	b) MD	b) VIT	Bees	b) Tested (positive)	b) HBV 100 μg	b) Not reported	b) Urticaria, tracheobronchial angioedema, and slight hypotension	b) Severe	b) SR	b) Grade II	b) Anaphylaxis	b) Possible		
d) M/19	c) Treatment of systemic allergic reactions	c) MD	c) VIT	Bees	c) Tested (positive)	c) HBV 100 μg	c) Not reported	c) Increased pulse rate and decreased blood pressure	c) Severe	c) SR	c) Grade III	c) Anaphylaxis	c) Possible		
d) M/19	d) Treatment of systemic allergic reactions	d) MD	d) VIT	Bees	d) Tested (positive)	d) HBV 100 μg	d) Not reported	d) Mild hypotension, tachycardia, severe headaches, and erythematous rash	d) Severe	d) SR	d) Grade III	d) Anaphylaxis	d) Possible		
De Bandt	France	1 case (M/69)	Desensitization of BV	MD	VIT	Wasp	Tested (positive)	Not reported	Not reported	Motor loss in the left upper limb, weakness of both lower limbs, high grade fever, generalized rash, an indurated erythematous skin lesion over the left forearm, and arthritis of both wrists	Severe	SR	Grade III	Serum sickness reaction	Possible
Erwing	Germany	1 case (F/51)	Desensitization of BV	Not reported	Rush VIT	Bees	Tested (positive)	Not reported	Not reported	Multiple erythematous and subcutaneous nodules	Moderate	SP	-	Panniculitis	Possible
Karakurt	Turkey	1 case (f/45)	Desensitization of BV	MD	VIT	Bees	Tested (positive)	Not reported	Not reported	Painful cyclic uterine contractions	Moderate	Others -	Hypocalcemia or electrolyte imbalance	Probable	
Lyanga	Canada	1 case (F/24)	Desensitization of BV	MD	VIT	Wasp	Tested (positive)	Vespid venom 0.433 μg–100 μg	Not reported	Transient bradycardia	Moderate	Others -	Idiosyncratic or direct toxic effect	Probable	
Nemat	Germany	1 case (F/16)	Desensitization of BV	MD	VIT	Bees	Tested (positive)	Not reported	Not reported	Severe pain affecting the left shoulder, chest wall, and left arm; muscular weakness in left the arm and hand; shortness of breath	Severe	Others -	Neurologic amyotrophy	Possible	
Study (first author, year)	Country	Number of cases	Reason for BVT	Practitioner type	BVT stimulation feature	Venom typea	Skin test	Injection amount	Concomitant treatment	AE symptoms	AE severityb	AE typec	Mueller classificationd	Diagnosis	Causalityf
Pijak 2011[57]	Slovak Republic	1 case (M/47)	Because of significant professional risk	Not reported	VIT	Wasps	Tested (positive)	Not reported	Elevations of amylotransferases and development of nephrotic syndrome	Severe	Others -	Hepatitis B reactivation complicated with nephrotic syndrome	Probable		
Reisman 1988[58]	USA	7 cases	Desensitization of BV	a) MD	a) VIT	Mix	a) Tested (positive)	a) HBV 1.0 μg, YJV 0.1 μg, Polistes venom 0.1 μg	a) Not reported	a) Nausea, emesis, headache, fever, malaise	a) Moderate	a) SR	a) Grade II	a) Late onset reaction	a) Possible
				b) MD	b) VIT	Mix	b) Tested (positive)	b) HBV 5.0 μg, YJV 2.0 μg	b) Not reported	b) Fatigue, malaise, local swelling	b) Moderate	b) SR	b) Grade I	b) Late onset reaction	b) Possible
				c) MD	c) VIT	Mix	c) Tested (positive)	c) HBV 50.0 μg, YJV 5.0 μg	c) Not reported	c) Generalized aches, joint pain	c) Moderate	c) -	c) Late onset reaction	c) Possible	
				d) MD	d) VIT	Mix	d) Tested (positive)	d) HBV 0.3 μg, YJV 0.3 μg	d) Not reported	d) Muscles aches, joint pain, difficulty in walking	d) Moderate	d) -	d) Late onset reaction	d) Possible	
				e) MD	e) VIT	Wasps	e) Not reported	e) YJV 50.0 μg	e) Not reported	e) Chills, fever, aches	e) Moderate	e) SR	e) Grade I	e) Late onset reaction	e) Possible
				f) MD	f) VIT	Wasps	f) Tested (positive)	f) YJV 50.0 μg	f) Not reported	f) Asthma, chest tightness	f) Moderate	f) -	f) Late onset reaction	f) Possible	
				g) MD	g) VIT	Mix	g) Tested (positive)	g) HBV 0.1 μg, YJV 0.1 μg	g) Not reported	g) Generalized aches, fatigue	g) Moderate	g) SR	g) Grade I	g) Late onset reaction	g) Possible
Yalcin 2012[59]	Turkey	1 case (M/61)	Desensitization of BV	MD	VIT	Bees	Tested (positive)	Not reported	Severe itching, erythematous papules, and plaques	Moderate	SP -	Jessner lymphocytic infiltrate	Possible		

AE: adverse event; BVT: bee venom therapy; BSA: bee sting acupuncture; BVA: bee venom acupuncture; SBV: sweet bee venom; HBV: honeybee venom; KMD: Korean medical doctor; MD: Medical doctor; VIT: venom immunotherapy; YJV: yellow jacket venom.

Venom type: bees (family Apidae); wasps (family Vespidae); mix (bees and wasps).

AE severity was assessed using Spilker's criteria: mild, moderate, and severe.

AE type was classified into 1 of 3 categories: systemic reaction (SR), skin problem (SP), and other.

Mueller classification: if a systemic reaction occurred as an AE, it was classified into 1 of 5 categories: large local reaction, grade I, grade II, grade III, and grade IV.

Causality was determined through the WHO-UMC causality scale: certain, probable, possible, unlikely, conditional, and inaccessible.

doi:10.1371/journal.pone.0126971.t001
prior to VIT, whereas in most cases of BSA and BVA, it was not reported whether or not this test was conducted.

Audits and cohort studies

AEs were also reported in 79 mainly retrospective audit studies that aimed to assess the safety of BVT (Table 2) [60–138]. These studies were chiefly observational and included case-controlled and cohort studies. VIT (63 studies) was the most commonly used BVT method, followed by BSA (9 studies) and BVA (7 studies). The treatment protocol for VITs included conventional VIT, cluster VIT, rush VIT, ultra-rush VIT, specific immunotherapy, and rush-specific immunotherapy. Eleven studies were conducted in Spain, 10 studies were conducted in China, 8 studies were conducted in Italy and the United States, 6 studies were conducted in Germany, 5 studies were conducted in France, Korea, and Switzerland, and 21 studies were conducted in 18 other countries. The prevalence of AEs ranged from 0.00% [60] [117] [118] [134] up to 90.63% [109]. In the 46 VIT studies, the median incidence (number of patients with AEs/number of patients in all cases, %) of AEs was 28.87% (interquartile range [IQR], 14.57–39.74%), and the AE types included SR (50.37%), LR (35.80%), LLR (9.99%), and other (3.85%; blood pressure elevation, moderate hypotension, rhinitis, asthenia or headache, visual disorders and vertigo, transient dyspnea, proteinuria with microscopic hematuria, generalized pruritus without skin lesions or other signs, and not reported).

RCTs and randomized crossover trials

Eighteen RCTs and 2 randomized crossover trials were included in this review (Table 3) [139–158]. One-hundred and forty-eight AEs related to BVT were reported in 397 participants. Seventeen patients ended their study participation owing to BVT-related AEs. For the BSA and BVA studies, all of the participants who were negative for skin allergy tests were included in the studies. With regard to the quality of the reporting of AEs, more than half of the items in the CONSORT AE reporting guidelines were not reported (52.14%). Most RCTs did not report the AEs in the title, abstract, or introduction, or report definitions of AEs and mention the methods for analyzing and presenting AEs. In 9 studies, the collecting and monitoring method for AEs involved retrospectively checking with the physician and/or participant, and the monitoring methods of 7 studies were not reported appropriately. Most studies reported the number of patients who stopped participating, as well as the specific denominator for the analysis of BVT-related AEs.

The meta-analysis of AE occurrence in the 4 RCTs assessing patients experiencing AEs showed that BVA increased the risk of AEs by 261% compared to the risk associated with normal saline control treatment (relative risk, 3.61; 95% CI [2.10, 6.20], Fig 2).

Discussion

The aim of our systematic review was to summarize the evidence pertaining to BVT-related AEs by analyzing AE types and their prevalence in patients. We reviewed 145 studies, including 20 RCTs and randomized crossover studies, 79 audits and cohort studies, 33 single-case studies, and 13 case series. According to our findings, BVT can lead to AEs such as SRs, LLRs, LRs, SPs, and nonspecific reactions, some of which are serious.

In case studies and case series, we found that SRs comprised 51.72% of the AEs produced by bee venom. Moreover, the identified severe AEs included 14 cases of grade III SR and 1 case of grade IV SR (50.00% of the total SRs). We also found that there have been SAEs associated with BVT that urgently required subcutaneous adrenaline or steroid and oxygen therapy, with death occurring in 1 case [22] [51] [58]. Aside from SRs, AEs associated with BSA and BVA...
Study (first author, year)	Country	Prospective or retrospective study	Stimulation features of bee venom therapy	Venom type	Incidence of AEs	Types of AEs
Bee sting acupuncture (BSA) and bee venom acupuncture (BVA)						
Castro 2005 [60]	USA	Prospective study	Bee venom acupuncture	Bees	0/9 (0.00%)	LR (minor)
Choi 2010 [61]	Korea	Retrospective study	SBV	Bees	48/374 (12.83%)	LR (48)
Gao 2011 [62]	China	Retrospective study	Bee sting acupuncture	Bees	395/250^a	-
Hwang 2000 [63]	Korea	Retrospective study	Bee venom acupuncture	Bees	11/32,000 (0.03%)^b	SR (11)
Jung 2013 [64]	Korea	Retrospective study	SBV	Bees	a) 37/130 (26.46%) b) 41/130 (31.54%)	a) LR (37) b) LR (41)
Kwon 2000 [65]	Korea	Retrospective study	Bee venom acupuncture	Bees	361/2765 (13.00%)^c	SR (361)
Li 1995 [66]	China	Retrospective study	Bee sting acupuncture	Bees	186/160^d	-
Liu 1993 [67]	China	Retrospective study	Bee sting acupuncture	Bees	96/32^d	-
Ma 2008 [68]	China	Retrospective study	Bee venom acupuncture	Bees	7/40^d	-
Tang 2003 [69]	China	Retrospective study	Bee sting acupuncture	Bees	20/468 (4.27%)	SR (20)
Wen 2003 [70]	China	Retrospective study	Bee sting acupuncture	Bees	12/40^d	-
Xiao 2013 [71]	China	Retrospective study	Bee sting acupuncture	Bees	492/4960 (98.83%)^e	LR (4902)
Yeon 2012 [72]	Korea	Prospective study	SBV	Bees	2/11 (18.18%)	LR (2)
Yu 2006 [73]	China	Retrospective study	Bee sting acupuncture	Bees	30/250 (12.00%)	SR (30)
Zhang 2010 [74]	China	Retrospective study	Bee sting acupuncture	Bees	141/120^d	-
Zhou 2009 [75]	China	Retrospective study	Bee sting acupuncture	Bees	3/40 (7.50%)	SR (3)
Venom immunotherapy (VIT)						
Aguilar 1999 [76]	Spain	Retrospective study	CVIT	Mix	12/70 (17.14%)	SR (4), LR (5), Others (3)
Alessandrini 2006 [77]	Italy	Prospective study	VIT	Wasps	40/107 (37.38%)	SR (7), LR (33)
Anguita Carazo 2011 [78]	Spain	Retrospective study	VIT	Hymenoptera	352/935 (1.19%)^f	SR (9), LR (26)
Bemanian 2007 [79]	Iran	Prospective study	CVIT	Mix	12/1291 (0.93%)	SR (9), LR (3)
Bernstein 1989 [80]	USA	Retrospective study	Rapid VIT	Single or mix	19/33 (57.58%)	SR (4), LR (18)
Bernstein 1994 [81]	USA	Retrospective study	VIT	Single or mix	4/77 (5.19%)	SR (4)
Birnbaum 1993 [82]	France	Retrospective study	RVIT	Hymenoptera	3428/244 (11.97%)	SR (34)
Birnbaum 2003 [83]	France	Retrospective study	Ultra-RVIT	Bees	24/91 (26.37%)	SR (24)
Bonadonna 2008 [84]	Italy	Retrospective study	SIT	Mix	10/193 (5.18%)	SR (10)
Bonadonna 2013 [85]	Italy and Spain	Retrospective study	VIT	Single or mix	36/325 (11.08%)	SR (36)
Breihler 2000 [86]	Germany	Retrospective study	VIT	Single	10/84 (11.90%)	SR (4), LLR (6)
Bucher 2003 [87]	Switzerland	Retrospective study	Ultra-RVIT	Hymenoptera	127/179 (70.95%)	SR (24), LR (103)
Cadario 2004 [88]	Italy	Prospective study	VIT	Bees	63/85 (74.12%)	SR (18), LR (45)
Calaforra 2009 [89]	Spain	Retrospective study	CVIT	Wasp	64/94 (68.09%)	SR (6), LR (58)
Carballada 2003 [90]	Spain	Retrospective study	VIT	Single	15/45 (33.33%)	SR (4), LR (11)
Carballada Gonzalez 2009 [91]	Spain	Retrospective study	VIT	Hymenoptera	5/21 (23.81%)	SR (2), LR (3)

(Continued)
Study (first author, year)	Country	Prospective or retrospective study	Stimulation features of bee venom therapy	Venom type	Incidence of AEs (numbers or cases)	Types of AEs
Catalá 2009 [92]	Spain	Retrospective study	CVIT	Single	7/180 (3.89%)	SR (2), LLR (3), Others (2)
Caubet 2008 [93]	Switzerland	Retrospective study	Subcutaneous IT	Hymenoptera	173/1,278 (13.54%)	SR (53), LLR (120)
Cavallucci 2010 [94]	Italy	Retrospective study	VIT	Single	2/20 (10.00%)	SR (2)
De Jong 1999 [95]	Netherlands	Retrospective study	VIT	Bees	14/194 (7.22%)	SR (2), LLR (12)
Dursun 2006 [96]	Turkey	Retrospective study	Mix		2/20 (10.00%)	SR (2)
Eben 2010 [97]	Germany	Retrospective study	VIT	IP	32/72 (44.44%)	SR (9), LR (23)
Gastaminza 2003 [98]	Spain	Retrospective study	VIT	Mix	<250/4973 (=5.03%)	SR (<79)
Goldberg 2011 [99]	Israel	Retrospective study	RVIT	Single or mix	53/179 (29.61%)	SR (53)
Golden 1980 [100]	USA	Retrospective study	Slow VIT, RVIT, or Step VIT		6/21 (28.57%)	SR (6)
Gonzalez de Olando 2008 [102]	Spain	Retrospective study	VIT	Single or mix	10/41 (24.39%)	SR (1), LR (9)
Gorska 2008 [103]	Poland	Retrospective study	RVIT		18/118 (15.25%)	SR (18)
Hirata 2003 [104]	Japan	Retrospective study	RVIT	Single or mix	3/95 (3.16%)	SR (3)
Kerddonfak 2009 [105]	Thailand	Retrospective study	RVIT	Single or mix	4/6 (<66.67%)	SR (<3), LLR (<1)
Kologeromitros 2009 [106]	USA	Prospective study	RVIT		9/49 (18.37%)	SR (9)
Köhli-Wiesner 2012 [107]	Switzerland	Retrospective study	Ultra-RVIT	Single or mix	16/94 (17.02%)	SR (13), Others (3)
Kopae 2009 [108]	Slovenia	Retrospective study	Ultra-RVIT	Single	14/77 (18.18%)	SR (10), LLR (4)
Lata 2005 [109]	Poland	Retrospective study	SIT	Mix	29/32 (90.63%)	SR (6), LR(23)
Laurent 1997 [110]	France	Retrospective study	RVIT	Single or mix	39/97 (40.21%)	LLR (9), Others (30)
Lee 2006 [111]	Germany	Prospective study	Ultra-RVIT	Wasps	28/110 (25.45%)	SR (5), LLR (23)
Marqués 2010 [112]	Spain	Retrospective study	VIT	Single or mix	184/536 (34.33%)	SR (35), LR (149)
Mellerup 2000 [113]	Denmark	Retrospective study	VIT		14/117 (11.97%)	SR (14)
Mingomataj 2002 [114]	Albania	Retrospective study	RSIT	Single	16/37 (43.24%)	SR (16)
Mosbech 2000 [115]	10 European	Prospective study	VIT	Single or mix	20.00%	-
Müller 1992 [116]	Switzerland	Retrospective study	RVIT or VIT		74/205 (36.10%)	SR (74)
Nagai 2004 [117]	Japan	Retrospective study	RVIT	Mix	0/2 (0.00%)	-
Nataf 1984 [118]	France	Retrospective study	RVIT	Mix	0/54 (0.00%)	-
Pasaoglu 2006 [119]	Turkey	Retrospective study	RVIT	Hymenoptera	15/469 (3.20%)	SR (4), LR(11)
Poli 2001 [120]	Italy	Retrospective study	VIT		2/36 (5.56%)	LR (2)
Quercia 2001 [121]	Italy	Retrospective study	RVIT or CVIT	Bees	17/55 (30.91%)	SR (8), LLR (9)
Study (first author, year)	Country	Prospective or retrospective study	Stimulation features of bee venom therapy	Venom type	Incidence of AEs	Types of AEs (numbers or cases)
---------------------------	---------	-----------------------------------	---	------------	------------------	---------------------------------
Quercia 2006 [122]	Italy	Prospective study	VIT or CVIT	Bees	a) IP 20/68 (29.41%) b) MP 5/68 (7.35%)	a) SR (9) LR (11) b) SR (5)
Ramirez 1981 [123]	USA	Retrospective study	VIT	Hymenoptera	36/859 (4.19%)	LLR (36)
Rocklin 1982 [124]	USA	Retrospective study	VIT	Single	1/1032 (0.01%)	SR (1)
Roll 2006 [125]	Switzerland	Retrospective study	Ultra-RVIT	Single or mix	14/80 (17.50%)	SR (10), LLR (4)
Roumana 2009 [126]	Greece	Retrospective study	RVIT or Ultra-RVIT	Single or mix	219/8,030 (2.73%)	SR (219)
Ruëff 1997 [127]	Germany	Retrospective study	RVIT	Hymenoptera	57/144 (39.58%)	SR (57)
Ruëff 2004 [128]	Germany	Prospective study	SIT	Bees	46/116 (39.66%)	SR (46)
Sánchez-Machín 2010 [129]	Spain	Retrospective study	CVIT	Bees	25/54 (46.30%)	SR (2), LR (23)
Sánchez-Morillas 2005 [130]	Spain	Retrospective study	RVIT	Single or mix	14/48 (29.17%)	SR (2), LR (12)
Schiavino 2004 [131]	Italy	Retrospective study	Ultra-RVIT	Hymenoptera	20/57 (35.09%)	SR (4) LR (16)
Sporic 2009 [132]	Serbia and Montenegro	Retrospective study	VIT	Single or mix	6/14 (42.86%)	SR (2), LR (4)
Sturm, 2002 [133]	Austria	Retrospective study	RVIT	Single	7/101 (6.93%)	SR (7)
Tarhini 1992 [134]	France	Prospective study	CVIT	Single or mix	0/100 (0.00%)	-
Thurnheer 1983 [135]	Sweden	Retrospective study	RVIT or VIT	Single or mix	24/42 (57.14%)	SR (16) LLR (8)
Wenzel 2003 [136]	Germany	Retrospective study	RVIT	Single or mix	32/178 (17.98%)	SR (32)
Westall 2001 [137]	Australia	Retrospective study	RVIT	Hymenoptera	26/68 (38.24%)	SR (26)
Youlten 1995 [138]	UK	Retrospective study	VIT	Hymenoptera	24/109 (22.02%)	SR (24)
				Bees	12/83 (14.46%)	SR (12)
				Wasps	12/26 (46.15%)	SR (12)

AE: adverse event; SR: systemic reaction; LR: local reaction; LLR: large local reaction; VIT: venom immunotherapy; RVIT: rush VIT; SIT: specific immunotherapy; RSIT: rush-specific immunotherapy; CVIT: cluster VIT; IP: induction phase; EP: extension phase; MP: maintenance phase.

- If it was not reported in prospective articles, it was considered a retrospective study.
- Venom type: bees (family Apidae); wasps (family Vespidae); single (some bee venom or some wasp venom); mix (bee and wasp venom).
- Incidence: number of patients with AEs/number of patients of total cases, %
- Incidence: number of cases with AEs/number of patients of total cases.
- Incidence: number of injections (dose) that resulted in AEs/total number of injections (dose), % (if the number of patients with AEs was not mentioned or precisely presented).
- Incidence of AEs caused by BVTs combined with the incidence of AEs from other allergens.
- This study was the only report of anaphylaxis related to BVT.

doi:10.1371/journal.pone.0126971.t002
Table 3. Randomized controlled trials and randomized crossover trials reporting adverse events of bee venom therapy.

Study (first author, year)	Disease type	Intervention	Control	Skin test	Incidence and type of AEs*	Quality of AE reporting (CONSORT items for reporting AEs)*									
		BVA			Bee sting acupuncture (BSA) and bee venom acupuncture (BVA)										
					Bee venom therapy	Control	1	2	3	4	5	6	7		
Oho 2012 [139]	Idiopathic Parkinson’s disease (RCT)	BVA Acupuncture; no treatment	Tested (negative)	0/18	0/17; 0/14	Not reported	Not reported	Not reported	Moderate (retrospective checking by participant)	Not reported	Moderate (1 drop-out because of pruritus)	Moderate			
Oho 2013 [140]	Central post-stroke pain (RCT)	BVA Normal saline injection	Tested (negative)	0/10	0/10	Not reported	Not reported	Not reported	Bad	Not reported	Moderate (1 drop-out because of pruritus)	Moderate			
Ding 2011 [141]	Rheumatoid arthritis (RCT)	BSA Methotrexate; Prednisone and methotrexate	Tested (negative)	5/20 (localized swelling and pruritus, fever (3), nausea (2))	4/20 (nausea (3), leucopenia (1)); 9/20 (nausea, flattulence (6), mental excitation, insomnia (3))	Not reported	Not reported	Not reported	Moderate	Bad	Not reported	Moderate (retrospective checking by physician)	Good	Not reported	Good
Gwak 2009 [142]	Central post-stroke pain (RCT)	BVA Normal saline injection	Tested (negative)	Not reported	Bad	Moderate	Moderate (1 drop-out because of hypersensitivity)	Moderate							
Kim 2005 [143]	Sprain of C-spine (RCT)	BVA and acupuncture Normal saline injection and acupuncture	Tested (negative)	Not reported	Bad	Not reported	Moderate (1 drop-out because of pruritus)	Moderate							
Ko 2007 [144]	Shoulder pain after stroke (RCT)	BVA Normal saline injection	Tested (negative)	13/24 (pruritus (8), burning, sensation (3), pain (2))	6/22 (pruritus (2), burning sensation (1), pain (3))	Not reported	Not reported	Bad	Moderate	Moderate (retrospective checking by physician)	Good	Not reported	Good		
Koh 2013 [145]	Adhesive capsulitis (RCT)	BVA and physiotherapy Normal saline injection and physiotherapy	Tested (negative)	3/45 (slight pruritus, local swelling, and/or redness (30), mild, generalized swelling and aching (1))	3/23 (slight redness and pruritus)	Not reported	Not reported	Bad	Moderate	Moderate (retrospective checking by physician)	Not reported	Moderate (1 drop-out because of allergic response)	Good		
Ku 2010 [146]	Carpal tunnel syndrome (RCT)	BVA Sclopoendrid pharmacopuncture	Tested (negative)	0/11	Not reported	Moderate	Not reported	Bad	Not reported	Bad	Not reported	Moderate (1 drop-out because of allergic response)	Bad		
Lee 2003 [147]	Rheumatoid arthritis (RCT)	BVA Normal saline injection	Tested (negative)	Not reported	Bad	Not reported	Moderate (2 drop-out because of pruritus)	Not reported							
Noh 2010 [148]	Upper limb spasticity after stroke (randomized crossover trial)	BVA Normal saline injection	Tested (negative)	Not reported	Moderate (2 drop-out because of pruritus)	Not reported									
Rong 2002 [149]	Rheumatoid arthritis (RCT)	BSA Methotrexate, auranofin, and NSAIDs	Tested (negative)	3/20 (fever, localized erythema (3))	9/20 (atmoch discomfort and pain, nausea, loss of appetite, diarrhea, mouth dry, rash (9))	Not reported	Bad	Bad	Moderate	Moderate (1 drop-out because of pruritus)	Moderate				
Shin 2012 [150]	Chronic low back pain (RCT)	BVA Normal saline injection	Tested (negative)	17/30 (pruritus (15), erythema (5), edema (4), skin rash (2))	3/30 (skin rash (1), headache (1), hand and foot tingling (1))	Moderate	Not reported	Good	Good (retrospective checking by physician, research coordinator, and participant)	Good	Moderate (1 drop-out because of pruritus)	Good			
Song 2005 [151]	Acute ankle sprain (RCT)	BVA Normal saline injection	Not reported	Bad	Not reported	Moderate (1 drop-out because of pruritus)	Not reported								

(Continued)
Study (first author, year)	Disease type Intervention	Control	Skin test	Incidence and type of AEs^a	Quality of AE reporting (CONSORT items for reporting AEs)^b
Wen 2011¹⁵⁵	Ankylosing spondylitis (RCT)	BSA Sulfasalazine	Tested (negative)	4/40 (pruritus, skin eruption (3), slight fever (1))	10/40 (epigastric discomfort slight pain, nausea (9), hepatic function abnormal (3), leukopenia (1), drug hypersensitivity syndrome (1))
Wen 2012¹⁵⁶	Ankylosing spondylitis (RCT)	BSA Sulfasalazine	Tested (negative)	4/30 (pruritus, skin eruption (3), slight fever (1))	12/30 (epigastric discomfort slight pain, nausea (7), hepatic function abnormal (2), leukopenia (2), drug hypersensitivity syndrome (1))
Wesselius 2005¹⁵⁷	Multiple sclerosis (randomized crossover trial)	BVT No treatment	Tested (negative)	11/26 (extreme localized swelling (2), pruritus (4), flu-like symptoms (5), no serious AEs)	0/26
Won 1999¹⁵⁸	Knee or spinal osteoarthritis (RCT)	BVA Nabumetone	Tested (negative)	60/76 (pruritus (60), chill and pain (49), local pain (36), edema (25), muscle pain (16), headache (14), fever (13), nausea (4), sweating (3), fatigue (3), vertigo (3), vomiting (1), abdominal pain (1))	Not reported
Yoo 2008¹⁵⁹	Cancer-related pain (RCT)	SBV Normal saline injection	Tested (negative)	Not reported	Not reported
Oude Elberink 2002¹⁶⁰	Desensitization of BV (RCT)	VIT (YJV) EpiPen	Tested (positive)	0/47 (no systemic AEs reported)	Not reported
Oude Elberink 2006¹⁶¹	Desensitization of BV (RCT)	VIT (YJV) EpiPen	Tested (positive)	0/47 (no systemic AEs reported)	Not reported

Venom immunotherapy (VIT)

AE: adverse event; BVT: bee venom therapy; BSA: bee sting acupuncture; BVA: bee venom acupuncture; SBV: sweet bee venom; VIT: venom immunotherapy; YJV: yellow jacket venom. Quality of reporting: good, clear, and well described; moderate, described but not in detail; bad, inappropriately described; not reported, not described at all.

^a Incidence: number of patient with AEs/number of patients of total cases, %.

^b CONSORT items for reporting AEs: 1, statement of AEs in title or abstract; 2, statement of BVT related AEs in the introduction; 3, predefined definition of AEs related to the BVT; 4, collection or monitoring method for AEs; 5, statement of the method for analyzing and presenting AEs; 6, statement of any patients who dropped out due to AEs; 7, description of the specific denominator for the analysis of AEs.

doi:10.1371/journal.pone.0126971.t003
mainly include SPs such as granulomas and plaques, which may be attributable to persistent local inflammation caused by venomic components or from the remaining stinger at the site of cutaneous injection [29]. In contrast, SRs resulting from BVT are mainly derived from anaphylaxis, hypersensitivity, and late-onset reactions [3][58].

In 46 audits and cohort studies of VIT, the median incidence of AEs was 28.87%, and SRs occurred in 681/4844 (14.06%) participants. These results suggest a more frequent AE incidence in comparison with that in previous systematic reviews of VIT, which reported SR incidences of 11.5 to 11.8% [159][160]. Interestingly, some studies found a complete lack of AEs related to BVT and a corresponding lack of SRs, and some studies have shown minor AEs, but no serious SRs [60][117,118][134].

Skin tests allow practitioners to distinguish whether BVT is an appropriate intervention for particular patients. In most RCTs and randomized crossover trials with BSA and BVA, participants were included if they showed negative responses in skin tests, whereas participants were included in VIT case studies and case series if they showed positive responses in skin tests. This difference in the participants included in each type of study does not seem to be directly related to the AEs associated with BVT; negative venom skin test results are not always a guarantee of VIT safety [94]. However, serious AEs can occur as a result of BSA and BVA in patients with positive skin tests. There is a report of a young, healthy adult who was sensitized to bee venom through BSA, and who was later stung by a bee and developed severe, life-threatening anaphylaxis [161].

Venom concentration and the frequency of venom administration can influence the severity and rate of incidence of AEs resulting from BSA and BVA. Unfortunately, we could not analyze the effect of venom concentration and administration frequency on the severity and rate of incidence of AEs because only limited numbers of RCTs were included in this review.

With regard to the quality of reporting of AEs in RCTs, CONSORT items were generally not reported properly. Future RCTs with BVT must adopt the CONSORT AE reporting guidelines to ensure transparency and accuracy. When designing protocols, methods of AE assessment based on the CONSORT AE reporting guidelines should be suggested in detail.

AEs related to BVA or VIT have been reported in various studies, including surveys [8][162][163] and reviews [159][160][164][165]. However, in this paper, we extensively reviewed all types of BVT (BSA, BVA, SBV, apitoxin injection, and VIT). We focused on the incidence of AEs in audit and cohort studies related to BVT, and sought to provide an overview of the many types of AEs that were reported in case studies and case series. We performed this investigation through a comprehensive search of the literature.

This review has some limitations. First, the heterogeneity of intervention in the reviewed articles was high; thus, the exact AE incidence and risk associated with the treatment methods could not be calculated. Second, although different venoms were used in different therapies (bee [family Apidae] venom was mainly used in BSA and BVA, whereas venom of both bees...
[family Apidae] and wasps [family Vespidae] was used in VIT), AEs from VIT were not classified in terms of the type of venom, treatment protocol (conventional VIT, cluster VIT, rush VIT, ultra-rush VIT, etc.), or phase (induction and maintenance).

While it is evident that BVA clearly increases the risk of AEs in comparison with normal saline, our review revealed that BSA and BVA are often implemented without a skin test, and also showed that patients have experienced SAEs that can be fatal after receiving BSA from unqualified personnel. Therefore, in order to enhance the safety of BVT, a skin test should be conducted before BVT is administered, and the venom should be administered only by qualified individuals [166].

Based on the results of this review, several suggestions can be made to support effective clinical practice and future clinical trials with BVT. In order to support responsible use of BVT, educational materials on the safety and efficacy of BVT should be made available for patients. Moreover, practitioners should be aware of the various AEs associated with BVT, establish clinical guidelines to minimize the development of AEs, and develop and implement strict criteria for monitoring AEs once they occur.

Conclusion

AEs related to BVT are not uncommon. Therefore, BVT practitioners should pay careful attention to the incidence of AEs and patterns of AE occurrence in their patients. Additionally, education and qualification of BVT practitioners should be ensured based on appropriate training programs and clinical guidelines for monitoring of AEs related to BVA and BSA. Furthermore, when reporting AEs in RCTs evaluating BVT, researchers should describe AEs in detail according to the CONSORT recommendation for harm data to ensure transparency and accuracy.

Supporting Information

S1 File. Search strategies for the electronic databases. (DOCX)

S2 File. PRISMA Checklist. (DOC)

Acknowledgments

We thank the members of the Folk Medicine Team that was created for this study for their valuable input in planning the study.

Author Contributions

Conceived and designed the experiments: JHP THK JHL BKY SHL. Performed the experiments: JHP BKY. Wrote the paper: JHP THK. Extracted the data: JHP BKY. Monitored data collection: THK JHL.

References

1. Czarnetzki BM, Thiele T, Rosenbach T (1990) Evidence for leukotrienes in animal venoms. J Allergy Clin Immunol 85: 505–509. PMID: 1968071

2. Alqutub AN, Masoodi I, Alsayari K, Alomair A (2011) Bee sting therapy-induced hepatotoxicity: A case report. World J Hepatol 3: 268–270. doi: 10.4254/wjh.v3.i10.268 PMID: 22059110

3. Bilò BM, Bonifazi F (2011) Hymenoptera venom immunotherapy. Immunotherapy 3: 229–246. doi: 10.2217/imt.10.88 PMID: 21322761
4. Lee MS, Pittler MH, Shin BC, Kong JC, Ernst E (2008) Bee venom acupuncture for musculoskeletal pain: a review. J Pain 9: 289–297. doi: 10.1016/j.jpain.2007.11.012 PMID: 18226968

5. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-relieving, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115: 246–270. PMID: 17555825

6. Valentine MD, Schuberth KC, Kagey-Sobotka A, Graft DF, Kwiterovich KA, Szkelo M, et al. (1990) The value of immunotherapy with venom in children with allergy to insect stings. N Engl J Med 323: 1601–1603. PMID: 2098016

7. Park JS, Lee MJ, Chung KH, Ko DK, Chung H (2013) Live bee acupuncture (Bong-Chim) dermatitis: dermatitis due to live bee acupuncture therapy in Korea. Int J Dermatol 52: 1519–1524. doi: 10.1111/ijd.12161 PMID: 24134690

8. Adamic K, Zidarn M, Bajrovic N, Erzen R, Kopac P, Music E, et al. (2009) The local and systemic side-effects of venom and inhaled-allergen subcutaneous immunotherapy. Wiener klinische Wochenschrift 121: 357–360. doi: 10.1007/s00508-009-1172-0 PMID: 19562302

9. Lockey RF, Turkeltaub PC, Olive ES, Hubbard JM, Baird-Warren IA, Bukantz SC, et al. (1990) The Hymenoptera venom study III: safety of venom immunotherapy. Journal of allergy and clinical immunology 86: 775–780. PMID: 2229842

10. Mueller HL (1966) Diagnosis and treatment of insect sensitivity. J Asthma Res 3: 331–333. PMID: 4380730

11. World Health Organization (2005) The use of the WHO-UMC system for standardized case causality assessment. Uppsala, Sweden. http://who-umcorg/Graphics/24734pdf.

12. Kim TH, Kim KH, Choi JY, Lee MS (2013) Adverse events related to cupping therapy in studies conducted in Korea: A systematic review. European Journal of Integrative Medicine. PMID: 23795222

13. Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-Elberink JN (2005) Diagnosis of Hymenoptera venom allergy. Allergy 60: 1339–1349. PMID: 16197464

14. Turner LA, Singh K, Garrity C, Tsertsvadze A, Manheimer E, et al. (2011) An evaluation of the completeness of safety reporting in reports of complementary and alternative medicine trials. BMC Complement Altern Med 11: 67. doi: 10.1186/1472-6882-11-67 PMID: 21859470

15. Ioannidis JP, Evans SJ, Gotzsche PC, O'Neill RT, Altman DG, et al. (2004) Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann Intern Med 141: 781–788. PMID: 15545678

16. An C-S, Kwon G-R, Lee J-S (2001) A clinical study on the cases of The pain shock patients after Korean bee-venom therapy. Journal of Pharmacopuncture 4: 109–117.

17. Bae EJ, Son SB, Seo SH, Son SW, Kim IH (2009) A case of foreign body granuloma with skin necrosis occurring after bee sting therapy. Korean Journal of Dermatology 47: 350–353.

18. Cheng YM, Ren XH (2004) Arrhythmia by bee sting acupuncture. Journal of Clinical Acupuncture and Moxibustion 20: 54.

19. Cho HJ, Choi GS, Kim JH, Sung JM, Ye YM, Park HS, et al. (2010) A case of serum sickness reaction caused by honeybee acupuncture. Korean Journal of Asthma, Allergy and Clinical Immunology 30: 325–328.

20. Herr H, Kim JH (1999) Eosinophilic granuloma induced by bee-sting therapy. Hanyang Medical Reviews 19: 159–162.

21. Huh SY, Yoo BG, Kim MJ, Kim JK, Kim KS (2008) Cerebral infarction after honey bee venom acupuncture. Journal of the Korean Geriatrics Society 12: 50–52.

22. Jung JW, Jeon EJ, Kim JW, Choi JC, Shin JW, Kim JY, et al. (2012) A fatal case of intravascular coagulation after bee sting acupuncture. Allergy Asthma Immunol Res 4: 107–109. doi: 10.4168/aair.2012.4.2.107 PMID: 22379607

23. Karapata A, Shumakov A (1961) A case of toxic pulmonary edema after the administration of bee venom in chronic nephritis. Klinicheskaia meditsina 39: 142–144. PMID: 13885336

24. Kim DH, Kim MY, Park YM, Kim HO (2005) A case of delayed type skin reaction induced by bee venom acupuncture. Korean Journal of Dermatology 43: 1237–1240.

25. Kim JO, Shin BC, Hyun Lee Kim M, Chung JH (2007) Minimal change nephrotic syndrome after apitoxin therapy: a case report. Korean Journal of Nephrology 26: 736–739.

26. Kim JW, Yang I, Kim JW, Jung SY, Chung SY, Kim HD, et al. (2010) Radiologic findings of foreign body granuloma by the bee sting: a case report. Journal of the Korean Society of Radiology 62: 283–286.

27. Kim CW, Lee YH, Lee KH (2011) The case report of an anaphylaxis occurred when using sweet bee venom and common bee venom at the same time. Journal of Pharmacopuncture 14: 59–61.
28. Kwon KR, Kang KS, Lee KH, Lim CS, Jeong HS, Kwon HY, et al. (2009) Clinical observation of anaphylaxis after treated with Sweet BV. Journal of Korean Institute of Herbal Acupuncture 12: 85–90.

29. Lee C, Cho J, Yu H-J, Yang H, Park C, Park MH, et al. (1996) Bee-sting granulomas in the skin. Dermatology 193: 355–356. PMID: 8993970

30. Lee SH, Jung KJ, Koh JK (1996) Foreign-body granuloma after honeybee acupuncture. Annals of Dermatology 8: 215–217.

31. Lee TW, Lee JA, Kim MK (2000) A case of anaphylaxis by bee venom acupuncture. Journal of Asthma, Allergy and Clinical Immunology 20: 551–552.

32. Lee S, Lee J, Choi Y, An J, Park M (2010) A case of foreign body granuloma following bee sting acupuncture on lipoma below frontalis(abstruct). Korean journal of dermatology 48: 170–171.

33. Lee JS, Cho YS, Song KH, Hwang SR, Park J, Yun SK, et al. (2011) Foreign body granuloma following dried honey bee venom (Apitoxin Inj) injection. Korean Journal of Dermatology 49: 943–947.

34. Lee NR, Lee SY, Lee WS (2013) Granulomatous inflammation with chronic folliculitis as a complication of bee sting acupuncture. Indian Journal of Dermatology, Venereology, and Leprology 79: 554.

35. Li WY, Lin GH, Yin LH (2002) Investigation of anaphylaxis during bee sting acupuncture treatment. Chinese Journal of Natural Medicine 4: 163–164.

36. Li WY (2005) Investigation of interval bee sting acupuncture. Apiculture of China 56: 28–29.

37. Park JH, GU Kim J, Cha SH, Don Park S (1998) Eosinophilic foreign body granuloma after multiple self-administered bee stings. British journal of dermatology 139: 1102–1105. PMID: 9990382

38. Park JH, Jung MK, Lee TK, Ahn MY, Bang CO (2000) A case of ischemic stroke following bee venom acupuncture. Journal of the Korean Neurological Association 18: 356–358.

39. Rhee DY, Lee HW, Chung WK, Chang SE, Lee MW, Choi JH, et al. (2009) Giant dermatofibroma with granular cell changes: side-effect of bee-venom acupuncture? Clin Exp Dermatol 34: e18–20. doi: 10.1111/j.1365-2230.2008.03149.x PMID: 19486038

40. Rho YH, Woo JH, Choi SJ, Lee YH, Ji JD, Song GG. (2009) A new onset of systemic lupus erythematosus developed after bee venom therapy. Korean J Intern Med 24: 283–285. doi: 10.3904/kjim.2009.24.3.283 PMID: 19721868

41. Shim WH, Park HJ, Kim HS, Chin HW, Kim SH, Ko HC, et al. (2011) Mycobacterium cheloneae infection occurring at the site of bee sting therapy. Korean Journal of Dermatology 49: 374–378.

42. Song HJ, Suh YJ, Yang YM, Jung JW, Lee YM, Suh CH, et al. (2002) Two cases of anaphylaxis due to bee venom acupuncture. Journal of Asthma, Allergy and Clinical Immunology 22: 481–486.

43. Veraldi S, Raiteri F, Caputo R, Alessi E (1995) Persistent nodular lesions caused by "bee-sting therapy". Acta dermato-venereologica 75: 161–162. PMID: 7604655

44. Yoo MS, Ahn SK, Lee SH, Lee WS (1994) Contact urticaria due to bee sting therapy in a patient with chronic pain. Korean Journal of Dermatology 32: 885–888.

45. Yoon KS, Cho E, Kang JH, Lee H (2012) The clinical observation of bee venom hypersensitivity reaction after bee venom pharmacopuncture treatment. Research Institute of Korean Medicine, Taegon University 21: 117–124.

46. Yoon H (2005) The clinical observation of anaphylaxis on bee-venom acupuncture. The Journal of Korean Acupuncture & Moxibustion Society 22: 179–188. doi: 10.3831/KPIS.2014.17.032 PMID: 25780715

47. Yu HJ, Lee CW, Yang HY, Kim JS, Kim YS (1998) Three cases of bee-sting granuloma. Korean Journal of Dermatology 36: 914–917.

48. Zhang JW, Shi DY, Wang LY, Liu RC, Zhang L (1995) Investigation of anaphylaxis by bee sting acupuncture in 9 case. Shanghai Journal of Acupuncture and Moxibustion 3: 126.

49. Zhong S, Zhou Z, Zhao Y, Luo Q, Ren H (2005) A case of subacute liver failure resulted from bee venom. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology 13: 827, 831. PMID: 16313726

50. Anfosso-Capra F, Philip-Joet F, Reynaud-Gaubert M, Arnaud A (1990) Occurrence of cold urticaria during venom desensitization. Dermatology 180: 276. PMID: 2358109

51. Bousquet J, Menardo J, Velasquez G, Michel F (1988) Systemic reactions during maintenance immunotherapy with honey bee venom. Annals of allergy 61: 63–68. PMID: 3061324

52. De Bandt M, Atassi-Dumont M, Kahn M, Herman D (1997) Serum sickness after wasp venom immunotherapy: clinical and biological study. The Journal of Rheumatology 24: 1195–1197. PMID: 9195533

53. Eming SA, Theile-Ochel S, Casper C, Krieg T, Scharffetter-Kochanek K, Hunzelmann N. (2004) Panniculitis induced by specific venom immunotherapy. Dermatology 209: 62–63. PMID: 15237271
54. Karakurt F, Kargili A, Bozkurt B, Kasapoglu B, Ikizek M (2010) Uterine contractions: an unusual side effect of venom immunotherapy. J Investig Allergol Clin Immunol 20: 431–432. PMID: 20945611
55. Lyanga J, McPHILLIPS-FEENER S, Warrington R (1982) Transient bradycardia during vespid venom immunotherapy. Clinical & Experimental Allergy 12: 91–93.
56. Nemat K, Gahr M, Reuner U (2011) Neuralgic amyotrophy associated with venom immunotherapy. Allergologie 34: 68.
57. Pijak M, Csibova V (2011) Hepatitis B reactivation complicated with nephrotic syndrome in association with venom immunotherapy-Need for preemptive treatment? Hepatology International 5: 104.
58. Reisman R (1988) Late onset reactions following venom immunotherapy and venom skin tests. Annals of allergy 61: 383–387. PMID: 3189964
59. Yalcin A, Bisgin A, Akman A, Erdogan G, Çiftcioglu M, Yegin O. (2012) Jessner lymphocytic infiltrate as a side effect of bee venom immunotherapy. Journal of investigational allergology & clinical immunology 22: 308. doi:10.1111/ddg.12103 PMID: 23721594
60. Castro HJ, Mendez-Inocencio JL, Omidvar B, Omidvar J, Santilli J, Nielsen HS, et al. (2005) A phase I study of the safety of honeybee venom extract as a possible treatment for patients with progressive forms of multiple sclerosis. Allergy and asthma proceedings 26: 470–476. PMID: 16541972
61. Choi SW, Choi SU, Oh SJ (2010) A clinical report of localized itching after treatment with sweet bee venom. Journal of Pharmacopuncture 13: 103–108.
62. Gao PX (2011) Bee acupuncture treatment of 250 patients with refractory peripheral facial paralysis and nursing of patients. Contemporary Nurse: 117–119.
63. Hwang Y, Lee B (2000) Clinical study of anaphylaxis on bee venom acupuncture. The Journal of Korean Acupuncture & Moxibustion Society 17: 149–159. doi:10.3831/KPI.2014.17.032 PMID: 25780715
64. Jung DJ, Lee HG, Choi YM, Song BY, Yook TH, Kim JU. (2013) The clinical study on 130 cases with sweet bee venom treatment. The Acupuncture 30: 211–217.
65. Kwon G, Koh H (2000) The clinical observation of immune response by Korean bee venom therapy. The Journal of Korean Acupuncture & Moxibustion Society 17: 169–174. doi:10.3831/KPI.2014.17.032 PMID: 25780715
66. Li WY, Deng JF, Lai XE, Lin GH (1995) Observation of anaphylaxis by bee sting therapy. Journal of Bee Venom 7: 3–5.
67. Liu WQ, Wu HZ (1993) Bee venom acupuncture therapy for chronic hepatitis B in 32 cases. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases 3: 31–32.
68. Ma H, Chang WZ (2008) Clinical observation of simultaneous treatment morphine sulfate controlled-release tablets and apitoxin injection for cancer pain. Jilin Medical Journal 29: 1914–1915.
69. Tang T, Lei Y, Zhao MQ (2004) Treatment of 468 osteoarthritis patients by acupoint injection of apisin and fengtongning. Shanghai Journal of Acupuncture and Moxibustion 22: 21–22.
70. Wen WQ, Huang SG, Wang RY (2003) Bee sting acupuncture for undifferentiated connective tissue diseases in 40 cases. Journal of Guangzhou University of Traditional Chinese Medicine 20: 221–223.
71. Xiao X, Zhao B, Li W (2013) Analysis on the pattern of edema in initial patients treated by apitherapy. Apiculture of China 64: 53–55.
72. Yoon J, Jeon JH, Lee YW, Cho CK, Kwon KR, Shin JE, et al. (2012) Sweet bee venom pharmacopuncture for chemotherapy-induced peripheral neuropathy. J Acupunct Meridian Stud 5: 156–165. doi: 10.1016/j.jams.2012.05.003 PMID: 22898064
73. Yu XJ (2006) Cases of parallel bee acupuncture and bee products treatment for rare disease. Apiculture of China 57: 27–28.
74. Zeng JL, Liu XD, Ye LH, Zhang P (2010) Clinical observation on toxicity of bee venom. Zhejiang Journal of Traditional Chinese Medicine 45: 849–850.
75. Zhou RY, Tan N, Huang SG (2009) Parallel kidney tonic decoction and bee venom therapy for ankylosing spondylitis in 40 cases. Guiding Journal of Traditional Chinese Medicine and Pharmacy 15: 40–41.
76. Aguilar CM, Pasadas FG (1999) Immunotherapy with Hymenoptera venom. Safety of a cluster schedule. Alergologia et Immunologia Clinica 14: 315–321.
77. Alessandri AE, Berra D, Rizzini FL, Mauro M, Melchiorre A, Rossi F, et al. (2006) Flexible approaches in the design of subcutaneous immunotherapy protocols for Hymenoptera venom allergy. Annals of Allergy, Asthma & Immunology 97: 92–97.
78. Anguita Carazo J, Gutierrez Fernandez D, Fernandez Melendez S, Saenz de San Pedro Morera B, Munoz Munoz M, Foncubierta Fernandez A. (2011) Safety and tolerability of a venom immunotherapy
99. Goldberg A, Yoge A, Confino-Cohen R (2011) Three days rush venom immunotherapy in bee allergy: safe, inexpensive and instantaneously effective. International archives of allergy and immunology 156: 90–98. doi: 10.1159/000322258 PMID: 21447964

100. Golden DB, Valentine MD, Kagey-Sobotka A, Lichtenstein LM (1980) Regimens of Hymenoptera venom immunotherapy. Ann Intern Med 92: 620–624. PMID: 7387002

101. Golub J, Kaplan S, Mascia A (1984) Stinging insect hypersensitivity. Safety and efficacy of venom immunotherapy. New York state journal of medicine 84: 66–68. PMID: 6583559

102. Gonzalez de Olano D, Alvarez-Twose I, Esteban-Lopez M, de Durana MD, Vega A, et al. (2008) Safety and effectiveness of immunotherapy in patients with indolent systemic mastocytosis presenting with Hymenoptera venom anaphylaxis. J Allergy Clin Immunol 121: 519–526. doi: 10.1016/j.jaci.2007.11.010 PMID: 18177694

103. Gorska L, Chelminska M, Kuziemski K, Skrzypski M, Niedoszytko M, Damps-Konstanska I, et al. (2008) Analysis of safety, risk factors and pretreatment methods during rush hymenoptera venom immunotherapy. International archives of allergy and immunology 147: 241–245. doi: 10.1159/000142048 PMID: 18594155

104. Hirata H, Asakura T, Arima M, Cheng G, Honda K, Fukushima F, et al. (2003) Efficacy and safety of rush immunotherapy in patients with Hymenoptera allergy in Japan. Asian Pac J Allergy Immunol 21: 89–94. PMID: 14629126

105. Kohli-Wiesner A, Stahlberger L, Bieli C, Stricker T, Lauener R (2012) Induction of specific immunotherapy with hymenoptera venoms using ultrarush regimen in children: safety and tolerance. J Allergy (Cairo) 2012: 790910. doi: 10.1155/2012/790910 PMID: 21804830

106. Mellerup MT, Hahn GW, Poulsen LK, Malling H (2000) Safety of allergen-specific immunotherapy. Relation between dosage regimen, allergen extract, disease and systemic side-effects during induction treatment. Clin Exp Allergy 30: 1423–1429. PMID: 10998019

107. Nagai Y, Oyama N, Hattori T, Ishikawa O, Tamura M (2004) A clinical study of 245 Japanese patients with bee sting and two cases administrated rush hymenoptera venom immunotherapy. The Kitakanto medical journal 54: 297–300.

108. Pasaoglu G, Sin BA, Misirligil Z (2006) Rush hymenoptera venom immunotherapy is efficacious and safe. J Investig Allergol Clin Immunol 16: 232–238. PMID: 16889280
120. Poli F, Longo G, Parmiani S (2001) The safety and efficacy of immunotherapy with aluminum hydroxide-adsorbed venom extract of Vespuula spp. An open, retrospective study. Allergol Immunopathol (Madr) 29: 191–196. PMID: 11720652

121. Quercia O, Rafanelli S, Puccinelli P, Stefanini GF (2001) The safety of cluster immunotherapy with aluminum hydroxide-adsorbed honey bee venom extract. J Investig Allergol Clin Immunol 11: 27–33. PMID: 11436967

122. Quercia O, Emiliani F, Pecora S, Burastero SE, Stefanini GF (2006) Efficacy, safety, and modulation of immunologic markers by immunotherapy with honeybee venom: comparison of standardized quality depot versus aqueous extract. Allergy Asthma Proc 27: 151–158. PMID: 16724636

123. Ramirez D, Londono S, Evans R 3rd (1981) Adverse reactions to venom immunotherapy. Annals of allergy 47: 435–439. PMID: 7325415

124. Rocklin RE, Alfano N, Sabotka AK, Rosenwasser LJ, Findlay SR (1962) Low incidence of systemic reactions during venom immunotherapy. Journal of Allergy and Clinical Immunology 69: 125.

125. Roll A, Hofbauer G, Ballmer-Weber BK, Schmid-Grendelmeier P (2006) Safety of specific immunotherapy using a four-hour ultra-rush induction scheme in bee and wasp allergy. J Investig Allergol Clin Immunol 16: 79–85. PMID: 16689180

126. Roumana A, Pitsios C, Vartholomaios S, Kompoti E, Kontou-Fili K (2009) The safety of initiating Hyposensitization. J Investig Allergol Clin Immunol 19: 379–381. doi: 10.1016/j.jaci.2009.05.026 PMID: 19560804

127. Rueff F, Reissig J, Przybilla B (1997) Side effects of rush hyposensitization with hymenoptera venom. Allergo Journal 6: S59–S64.

128. Rueff F, Wolf H, Schnitker J, Ring J, Przybilla B (2004) Specific immunotherapy in honeybee venom allergy: a comparative study using aqueous and aluminium hydroxide adsorbed preparations. Allergy 59: 589–595. PMID: 15147443

129. Sanchez-Machin I, Moreno C, Gonzalez R, Iglesias-Souto J, Perez E, Matheu V. (2010) Safety of a 2-visit cluster schedule of venom immunotherapy in outpatients at risk of life-threatening anaphylaxis. J Investig Allergol Clin Immunol 20: 91–92. PMID: 20232782

130. Sanchez-Morillas L, Reano Martos M, Rodriguez Mosquera M, Iglesias Cadarso A, Dominguez Lazaro AR (2005) Safety of rush immunotherapy with Hymenoptera venom. Allergol Immunopathol (Madr) 33: 224–227. PMID: 16045862

131. Schiavino D, Nucera E, Pollastrini E, De Pasquale T, Buonomo A, Bartolozzi F, et al. (2004) Specific ultrarush desensitization in Hymenoptera venom-allergic patients. Ann Allergy Asthma Immunol 92: 409–413. PMID: 15104191

132. Sporcic Z, Milicic A, Tadic D, Subotic M, Parabucki TD, Kuzmanovic PD, et al. (2009) Safety of hymenoptera venom immunotherapy: our experience. Allergy 64: 342.

133. Sturm G, Kränke B, Rudolph C, Aberer W (2002) Rush Hymenoptera venom immunotherapy: A safe and practical protocol for high-risk patients. Journal of Allergy and Clinical Immunology 110: 928–933. PMID: 12464961

134. Tarhini H, Knani J, Michel FB, Bousquet J (1992) Safety of venom immunotherapy administered by a cluster schedule. Journal of allergy and clinical immunology 89: 1198–1199. PMID: 16075544

135. Thumheer U, Muller U, Stoller R, Lanner A, Hoigne R (1983) Venom immunotherapy in hymenoptera sting allergy. Comparison of rush and conventional hyposensitization and observations during long-term treatment. Allergy 38: 465–475. PMID: 6638413

136. Wenzel J, Meissner-Kraemer M, Bauer R, Bieber T, Gerdsen R (2005) Answer to the letter of Brockow et al. concerning our article ‘safety of rush insect venom immunotherapy’. Results of a retrospective study in 178 patients. Allergy 60: 127. PMID: 15575945

137. Westall GP, Thien FC, Czarny D, O’Hehir RE, Douglas JA (2001) Adverse events associated with bee venom acupuncture in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 18: 948–952. doi: 10.1016/j.parkreldis.2005.01.016 PMID: 11720652

138. Westall GP, Thien FC, Czarny D, O’Hehir RE, Douglas JA (2001) Adverse events associated with bee venom acupuncture in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 18: 948–952. doi: 10.1016/j.parkreldis.2005.01.016 PMID: 11720652

139. Youlten LJ, Atkinson BA, Lee TH (1995) The incidence and nature of adverse reactions to injection immunotherapy in bee and wasp venom allergy. Clin Exp Allergy 25: 159–165. PMID: 7750008

140. Youlten LJ, Atkinson BA, Lee TH (1995) The incidence and nature of adverse reactions to injection immunotherapy in bee and wasp venom allergy. Clin Exp Allergy 25: 159–165. PMID: 7750008

141. Deng M, Zhang WN (2011) Clinical observation of bee sting acupuncture therapy for rheumatoid arthritis in 20 cases. Guiding Journal of Traditional Chinese Medicine and Pharmacy 17: 71–73.
142. Gwak JY, Cho SY, Shin AS, Lee IW, Kim NH, Kim HM, et al. (2009) Efficacy of bee-venom acupuncture on central post stroke pain: single-blind randomized controlled trial. The Journal of Korean Acupuncture and Moxibustion Society 26: 205–214.

143. Kim K, Song H (2005) A randomized controlled double blinding study of bee venom acupuncture therapy on sprain of c-spine. J Korean Acupunct Moxibustion Soc 22: 189–195.

144. Ko C, Min I, Park S, Jung W, Moon S, Park J, et al. (2007) Effectiveness of bee venom acupuncture on shoulder pain after stroke. J Korean Oriental Med 28: 11–24.

145. Koh PS, Seo BK, Cho NS, Park HS, Park DS, Baek YH. (2013) Clinical effectiveness of bee venom acupuncture and physiotherapy in the treatment of adhesive capsulitis: a randomized controlled trial. J Shoulder Elbow Surg 22: 1053–1062. doi: 10.1016.j.jse.2012.10.045 PMID: 23352187

146. Ku JY, Lee KH, Cho SW, Lee SC, Youn HM, Jang KJ, et al. (2010) Comparison of the effects between sweet bee venom pharmacopuncture and scolopendrid pharmacopuncture on carpal tunnel syndrome (randomized, controlled clinical trial). Journal of Pharmacopuncture 13: 75–89.

147. Lee S, Hong S, Kim S, Yang H, Lee J, Choi D, et al. (2003) Randomized controlled double blind study of bee venom therapy on rheumatoid arthritis. J Kor Acu Mox Soc 20: 80–88.

148. Noh JH, Park JA, Cho SW, Youn HM, Jang KJ, Song CH, et al. (2010) Effect of bee-venom acupuncture on upper limb spasticity of stroke patients. The Journal of Korean Acupuncture and Moxibustion Society 27: 115–125.

149. Rong L, Lun X (2002) Clinical observation of bee sting acupuncture for rheumatoid arthritis. Journal of External Therapy of TCM 11: 14–15.

150. Shin BC, Kong JC, Park TY, Yang CY, Kang KW, Choi SM, et al. (2012) Bee venom acupuncture for chronic low back pain: a randomised, sham-controlled, triple-blind clinical trial. European Journal of Integrative Medicine 4: e271–e280.

151. Song HS (2005) The effect of bee venom acupuncture(BVA) on acute ankle sprain: a randomized controlled trial and double blinding-pilot study. Journal of Pharmacopuncture 8: 11–16.

152. Wen WQ, Huang SG, Chen H, Tan N, Zhou RY, Zhu HJ. (2011) Bee-acupuncture based on Midnight-Noon and Ebb-Flow doctrine for ankyllosing spondylitis. Journal of Anhual Traditional Chinese Medical College 30: 40–43.

153. Wen WQ, Huang SG, Chen H, Tan N, Zhou RY, Zhu HJ. (2012) Effects and mechanism of bee-venom-acupuncture based on Midnight-Noon and Ebb-Flow doctrine on ankylosing spondylitis. Journal of Traditional Chinese Medicine University of Hunan 32: 67–71.

154. Wessellius T, Heersema D, Mostert J, Heerings M, Admiraal-Behloul F, Talebian A, et al. (2005) A randomized crossover study of bee sting therapy for multiple sclerosis. Neurology 65: 1764–1768. PMID: 16221950

155. Won CH, Choi ES, Hong SS (1999) Efficacy of bee venom injection for osteoarthritis patients. The Journal of the Korean Rheumatism Association 6: 218–226.

156. Yoo H, Kim J (2008) The effect of sweet bee venom pharmacopuncture (SBVP) on cancer-related pain: a randomized controlled trial and double blinded-pilot study. J Korean Pharmacopuncture Instit 11: 21–29.

157. Oude Elberink JNG, de Monchy JGR, van der Heide S, Guyatt GH, Dubois AEJ (2002) Venom immunotherapy improves health-related quality of life in patients allergic to yellow jacket venom. Journal of Allergy and Clinical Immunology 110: 174–182. PMID: 12110838

158. Oude Elberink JN, van der Heide S, Guyatt GH, Dubois AE (2006) Analysis of the burden of treatment in patients receiving an EpiPen for yellow jacket anaphylaxis. J Allergy Clin Immunol 118: 699–704. PMID: 16950290

159. Boyle RJ, Elremeli M, Hookenhull J, Cherry MG, Bulsara MK, Daniels M, et al. (2012) Venom immunotherapy for preventing allergic reactions to insect stings. Cochrane Database Syst Rev 10: Cd008838. doi: 10.1002/14651858.CD008838.pub2 PMID: 23076950

160. Incorvaia C, Frati F, Dell’Albani I, Robino A, Cattaneo E, Mauro M, et al. (2011) Safety of hymenoptera venom immunotherapy: a systematic review. Expert Opin Pharmacother 12: 2527–2532. doi: 10.15171/4656566.2011.616494 PMID: 21883032

161. Lee SH, Kang HR, Kim JH, Park SH, Kim CH, Hwang YI, et al. (2008) A fatal case of bee venom anaphylaxis to bee sting after repeated honeybee acupuncture. Korean Journal of Asthma, Allergy and Clinical Immunology 28: 313–316.

162. Golden DB, Kagey-Sobotka A, Lichtenstein LM (2000) Survey of patients after discontinuing venom immunotherapy. J Allergy Clin Immunol 105: 385–390. PMID: 10669863

163. Schwartz HJ, Golden DB, Lockey RF (1990) Venom immunotherapy in the Hymenoptera-allergic pregnant patient. J Allergy Clin Immunol 85: 709–712. PMID: 2324411
164. Yi W-S (2014) Adverse events of bee venom acupuncture: a systematic review. Seoul: Graduate School of Kyung Hee University.

165. Ross RN, Nelson HS, Finegold I (2000) Effectiveness of specific immunotherapy in the treatment of hymenoptera venom hypersensitivity: a meta-analysis. Clin Ther 22: 351–358. PMID: 10963289

166. Liccardi G, D'Amato G, Canonica GW, Salzillo A, Piccolo A, Passalacqua G, et al. (2006) Systemic reactions from skin testing: literature review. J Investig Allergol Clin Immunol 16: 75–78. PMID: 16689179