Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases

Li-Qun Yang, Shen-Jing Li, Yun-Fei Cao, Xiao-Bo Man, Wei-Feng Yu, Hong-Yang Wang, Meng-Chao Wu

INTRODUCTION

Hepatic cytochrome P450 enzymes constitute a superfamily of hemoproteins which play a major role in the metabolism of endogenous compounds and in the detoxification of xenobiotic molecules, including anesthetics and carcinogens[1-3]. About 200 CYPs have been found in the past 20 years, and many factors including age, gender, nutrition, hormone and general or local pathologic reaction affect CYPs, and the biotransformation of many clinical therapeutic drugs would be changed. P450 3A4 is one of the most important forms in human, mediating the metabolism of about 70 % of therapeutic drugs and endogenous compounds[4-6]. Although the mechanism and consequences of regulation of P450s by drugs and chemicals have been intensively studied, the mechanisms by which P450s are changed by hepatic pathologocal factors still remained unclear[7-11]. Hepatic cirrhosis and obstructive jaundice are most common chronic hepatobiliary diseases among Chinese people, the change of CYPs with cirrhosis and jaundice provided us fundamental knowledge about the effect of pathologocal factors on P450[12-15]. The aim of this study is to determine the alterations of CYP3A4 enzyme and its gene expression in patients with those chronic liver diseases, and to investigate the pharmacologic and clinical significance behind this alterations.

MATERIALS AND METHODS

Materials

pBS M13 CYP3A4 plasmid was kindly provided by Prof Ying-Nian Yu (Zhe-jiang University, China). Rabbit anti-human CYP3A4 polyclonal antibody was purchased from Chemicon (San Diego, CA); HRP tagged sheep anti-rabbit antibody was purchased from PharMingen (Mannheim, Germany); glucose 6-phosphoric acid, erythromycin, Lowry’s phenol reagent, glucose 6-phosphoric transferase, acetic ammonium, acetyl-acetone, and NADP were purchased from Sigma Chemical (St. Louis, MO); and all other reagents used in this study were of analytical grade.

Source of human liver tissues and patient characters

Human liver samples (30-50 g) were taken from patients undergoing hepatic surgery. Patients did not receive medication of CYPs activator and inhibitor (rifampicin, demethasone, propofol, etc) before the surgery. None of the patients were habitual consumers of alcohol or other drugs. A total of 18 liver samples from 15 men and 3 women were used. They were all cases admitted from 2000 to 2001 in Eastern Hepatobiliary Surgery Hospital in Shanghai, China. Informed consent was obtained from all patients for subsequent use of their specimen tissues. These specimens were immediately

RESULTS

Compared to control group, the CYP3A4 activity and protein in liver tissue among patients with cirrhosis were evidently reduced. (P<0.01) Northern blot showed the same change in its mRNA levels. In contrast, the isoenzyme and its gene expression were not changed among patients with obstructive jaundice.

CONCLUSION: Hepatic levels of P450s and its CYP3A4 isoform activity were selectively changed in different chronic liver diseases. CYP3A4 isoenzyme and its activity declined among patients with hepatic cirrhosis as expression of cyp3a4 gene was significantly reduced. Liver’s ability to eliminate many clinical therapeutic drug substrates would decline consequently. These findings may have practical implications for the use of drugs in patients with cirrhosis and emphasize the need to understand the metabolic fate of therapeutic compounds. Elucidation of the reasons for these different changes in hepatic CYP3A4 may provide insight into more fundamental aspects and mechanisms of impaired liver function.
dissected into small pieces under aseptic condition within half an hour, quickly frozen and preserved in liquid nitrogen before subsequent procedure. Patients’ characters and liver function are shown in Table 1.

Table 1. Clinicopathological characteristics of patients studied and their Pugh class

Groups	Median Age (yrs)	Gender	Smoking	Alcohol	Pugh Class
C (n=6)	42(21-56)	2/4	2	1	A(6)
H (n=6)	38(28-61)	1/5	1	1	A(4),B(2)
O (n=6)	44(27-65)	0/6	1	2	B(6)

C: controls; H: hepatic cirrhosis; O: obstructive jaundice.

Preparation of microsomes

Liver tissues were subsequently homogenized in ice-cold 0.1 mol/L Tris-HCl buffer containing 1.15 % KCl(pH7.4) and to yield a liver homogenate tissue concentration of 0.33 g/ml. Microsomal fractions were prepared by differential ultracentrifugation. After tissue homogenization in 20 mM Tris-HCl buffer, pH 7.4, containing 0.15 M KCl, the microsomal fraction was isolated from the supernatant of a 20-min 9 000xg spin by ultracentrifugation. The microsomal precipitate was suspended in 100 mM potassium phosphate buffer, pH 7.4, and recentrifuged at 105 000xg for an additional 60 min. The final precipitate was suspended in 10 Mm Tris-HCl buffer (pH 7.4) containing 10 mM EDTA and 20 % (v/v) glycerol. Liver microsomal protein contents were determined following the methods of Lowry et al[16], using bovine serum albumin as standard.

Microsomes P450s and CYP3A4 activity assays

CO-bound total cytochrome P450 content was determined by the method of Omura et al[17]. Spectra were recorded using a Shimadzu UV-250 double-beam spectrophotometer. CYP3A4 specific activity was determined by N-demethylation of erythromycin using the Nash method as previously described[18].

Immunquantition of CYP3A4 isoform protein by western blot analysis

Hepatic microsomal proteins were resolved by SDS-PAGE with vertical mini-gel electrophoresis equipment. Samples of liver microsomal protein (10 µg/lane) were denatured in 10 µl loading buffer (4 ml distilled water, 1 ml 0.5M Tris-HCl, pH 6.8, 0.8 ml glycerol, 1.6 ml 10 % w/v SDS, 0.4 ml mercaptoethanol, 0.05 ml 0.05 % w/v Pyronin Y) and were separated on a 10 % w/v resolving gel. Proteins were transferred from the polycrylamide gel to the nitrocellulose sheets by an electrophoretic method, and probed with rabbit anti-human CYP3A4 polyclonal antibody (not cross-reactive with other rat P450s) according to supplied protocol. CYP3A4 protein was detected by secondary conjugation to the primary antibody by a HRP-linked sheep anti-rabbit secondary antibody using diaminobenzidine as substrate.

Northern blot analysis CYP3A4 mRNA

Total RNA was isolated from frozen human liver tissues by the acid guanidinium thiocyanate-phenol-chloroform one step extraction method as previously described[19]. 20 mg of RNA was size-fractionated on a 1.0 % agarose gel containing 2.2 mol/L formaldehyde, and then transferred into nitrocellulose membrane (BA85, Schleicher Schuell, Germany). The membrane was dried in a vacuum drying over at 80 °C for 2 h and sealed in a plastic bag for use. CYP3A4 probe was cut from pBS M13 CYP3A4 plasmid by Hind III. Hybridization was performed in the presence of the appropriate 32P-labeled probes. The membrane was washed twice at room temperature in 2×SSC, 0.1 % SDS for 30 min, once at 65 °C in 1×SSC, 0.1 % SDS for 30 min and once at 65 °C in 0.1×SSC, 0.1 % SDS for 30 min. Membranes was then exposed to X-ray films (FujiFilm, Tokyo, Japan) at -70 °C for a week and analyzed by Phosphor Image (FLA 2000, Fujifilm, Japan). The difference of CYP3A4mRNA was compared among three groups.

Statistical analysis

Data was analyzed using the χ² test. A P<0.05 was considered significant.

RESULTS

P450 and CYP3A4 activity changes in chronic liver diseases

As shown in Table 2, compared with controls, the hepatic microsome protein and total P450 content remained unchanged in the patients with hepatic cirrhosis and obstructive jaundice, but CYP3A4 activity in the liver tissue of patients with cirrhosis liver was evidently reduced. This change was not seen in the obstructive jaundice group.

Table 2. Microsomal protein, total P450 content and CYP3A4 content and its activity among three groups (mean±SE)

	C	H	O
Microsomal protein (g/L)	10.32±3.98	9.57±3.72	9.42±3.26
P450 content (nmol/mg protein)	0.99±0.16	0.94±0.151	0.89±0.18
CYP3A4 activity (nmol/min/mg protein)	3.01±0.74	1.78±0.65±	2.89±0.65±

*P<0.01 vs controls C: controls; H: hepatic cirrhosis; O: obstructive jaundice.

Change of CYP3A4 isoform protein

Hepatic CYP3A4 protein expression was shown in Figure 1 by western blot analysis. CYP3A4 protein in liver tissues was also reduced in the patients with cirrhosis liver, but in obstructive jaundice, there was no change of as compared with controls.

Figure 1. Western Blot analysis of CYP3A4 isoform protein among three groups, compared with controls (tagged by “C”).

CYP3A4 protein content in liver tissues among patients with cirrhosis (tagged by “H”), reduced, but in obstructive jaundice (tagged by “O”), there was no change of CYP3A4 protein expression.

Change of CYP3A4mRNA in chronic liver diseases

As shown in Figure 2, CYP3A4 probe was cut from pBS M13 CYP3A4 plasmid by Hind III, we got a 800 bp cDNA fragment as expected.
Northern blot analysis showed that CYP3A4 was expressed well in human liver tissues, which agreed with other reports\[20-23\]. In patients with cirrhosis (shown in Figure 3), CYP3A4mRNA reduced significantly as compared with controls, but no change happened in the jaundice group.

Figure 2 The results of substratum electrophoresis in pBS M13 CYP3A4 plasmid. Lane 1: pBS M13 CYP3A4 (Hind III), Lane 2: Marker (1kb DNA ladder).

Figure 3 Northern blot analysis mRNA expression of CYP3A4 isoform in liver tissues among three groups. Total RNA was isolated without degradation and each bottom panel showed an equal amount of total RNA loading as indicated in 28 s and 18 s rRNA. CYP3A4mRNA was expressed well in human liver tissues, of patients with cirrhosis (tagged by “H”), CYP3A4mRNA was reduced significantly compared with control (tagged by “C”), but no decline happened in jaundice group (tagged by “O”).

DISCUSSION

CYP3A appears to be one of the most important human enzymes as approximately 60% of oxidised drugs are biotransformed. The isoforms of CYP3A in humans include 3A3, 3A4, 3A5 and 3A7, each of these enzymes shared at least 85% amino acid sequence homology\[24\]. CYP3A4 is the predominant isoform of CYP3A in adult humans. It can catalyse a remarkable number of metabolic processes including aliphatic oxidation, aromatic hydroxylation, N-dealkylation, O-demethylation, S-demethylation, oxidative deamination, sulfoxide formation, N-oxidation and N-hydroxylation. This usually produced inactivation and elimination of most pharmaceuticals. A number of drugs from a broad range of therapeutic categories are CYP3A4 substrates. The change of CYP3A4 isoform was the main reason for enhancement or reduction of drug elimination\[25-27\].

In our studies, total P450 contents of 18 Chinese patients were obviously lower than results those reported about Caucasian. (1 pmol/mg vs 5-6 pmol/mg), and the activity of CYP3A4 isoform was also lower\[28-30\]. Although CYP3A4 drug metabolizing activity varied widely among individuals, it had a unimodal population distribution and did not appear to be subject to genetic polymorphism as seen with other CYP isoforms (2D6, 2C9 and 2C19)\[31-34\]. The wide inter races variability was likely, in part, to be caused by ethnic or cultural differences, which might be related to an interaction between habit and diet. Therefore we could not draw any conclusion about the normal distribution character of CYPs in Chinese because of the limited sample number and experimental conditions. More detailed and complete studies should be performed for analysing the distribution of CYPs in Chinese in the near future\[35\].

Most information on drug metabolism impairment at pathologic status has been obtained in rodent in vivo or in vitro models, and most of these studies have focused on the effects of IFNs and the major inflammatory cytokines, namely, IL-1, IL-6, TNF-α, IL-10 and IL-12, but relatively few studies have examined the effect of liver disease on human CYP expression. Hepatic cirrhosis and obstructive jaundice are most common chronic hepatobiliary disease in Chinese, the change of CYPs with cirrhosis and jaundice can provide us basic knowledge about the effect of pathologic factors on P450s. The present study demonstrated that, in patients with cirrhosis, CYP3A4-mediated erythromycin N-demethylation activity and 3A4 protein were significantly less than in controls, but the total P450 content and hepatic microsome protein still remained unchanged. These results suggest that family ingredients of P450s have changed in the cirrhosis. That is, CYP family 1, 2 may enhance following with CYP3A reduced, since CYP1 and CYP2 families play a major role in biotransformation of most carcinogens, but few studies described whether high morbidity of hepatic cancer in cirrhosis is correlated with these changes of drug metabolic enzymes\[40\].

Although many factors including age, gender, nutrition, hormone and general or local pathologic reaction affect drug elimination, the enzymatic activity as well as content of P450s is still a basic reason for change of drug metabolism, and the biotransformation of many clinical therapeutic drugs either enhanced or reduced\[41-43\]. This study is for the first time to examine simultaneously in patients with liver diseases the hepatic P450 protein level, isoform activity as well as its mRNA expression. Significant correlations with CYP3A4 protein level, isoform activity and mRNA expression were observed, suggesting that with the decrease of CYP3A4 mRNA expression, RNA encoded CYP3A4 protein reduced, which would cause the decrease of CYP3A4-mediated erythromycin N-demethylation activity. Since CYP3A4 is the predominant isoform of CYP3A in adult humans, the Change of hepatic CYP3A4 activity will change the metabolism of most clinical therapeutic drugs. Firstly, a large number of intravenous anesthetic and sedative agents (including diazepam, midozolam, fentanyl, lidocaine, etc.) are substrates of CYP3A4 isoform, N-hydroxylation and N-dealkylation reactions of anesthetics reduced in cirrhosis patients will cause drug racemisation, oversedation and postoperative awake delay\[44,45\]. Secondly, Amiodarone, quinidine, nifedipine, beryllium and Cyclosporin were also eliminated through CYP3A4, thus competitive inhibition should be noticed and avoided especially when more than one drugs must be administrated in patients with cirrhosis. These findings are in agreement with pharmacokinetics studies that have shown reduced clearance of midozolam when combined with fentanyl in cirrhosis, but over-dosage condition of anti-irrhythmia drugs had more clinical significance than that of other therapeutic drugs\[46,47\]. Thirdly, as CYP3A4 also plays an important role in the biotransformation and detoxification of many endogenous substrates, reduction of CYP3A4 activity may result in inactivation disorder of endogenous substance including cholesterol, bile acid and sex steroids, thus causing more extensive physiopathologic changes in patients with cirrhosis, these changes, on contrary, will affect the drug metabolic enzymes\[48,49\].
In summary, the present study demonstrated that hepatic levels of individual P450s and its CYP3A4 isoform activity can selectively change in different chronic liver diseases. The hepatic microsome proteins and total P450 content remained unchanged in patients with hepatic cirrhosis and obstructive jaundice, but CYP3A4 activity and its protein level in liver tissue among patients with cirrhosis were evidently lowered. This change was not seen in obstructive jaundice group, and the cause of this change may be the lowered expression of CYP3A4 mRNA. These findings may have practical implications for the use of drugs in patients with liver diseases and emphasize the need to understand the metabolic fate of therapeutic compounds.[50,51] Elucidation of the reasons for these different changes in hepatic P450s may provide insight into more fundamental aspects and mechanisms of impaired liver function in patients with chronic liver diseases.

REFERENCES

1 Kostrubsky VE, Ramachandran V, Venkataramanan R, Dorko K, Esplen JE, Zhang S, Sinclair JF, Wrighton SA, Strom SC. The use of human hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab Dispos 1999; 27: 887-894

2 Neber D W, Nelson DR, Coon MJ, Estabrook RW, Feyerisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. D N A Cell Biol 1991; 10: 1-10

3 Capevielja JH, Harris RC, Falck JR. Microsomal cytochrome P450 and ecocannabinoid metabolism. Cell Mol Life Sci 2002; 59: 780-789

4 Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1-17

5 Raucy JL, Allen SW. Recent advances in P450 research. Pharmacogenomics 2001; 1: 178-186

6 Zhu-Ge J, Yu YN, Qian YL, Li X. Establishment of a transgenic cell line stably expressing human cytochrome P450 2C18 and identification of a CYP2C18 clone with exon 5 missing. World J Gastroenterol 2002; 8: 889-892

7 Goodwin B, Redlinbo MR, Klewaer SA. Regulation of cyp3a gene transcription by the pregnane x receptor. Annu Rev Pharmacol Toxicol 2002; 42: 1-23

8 Quattozoli LC, Guzelian PS. CYP3A regulation: from pharmacology to nuclear receptors. Drug Metab Dispos 2001; 29: 615-622

9 Wawman DJ. P450 gene induction by structurally diverse xenocohemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 1999; 369: 11-23

10 Nicholson TE, Brockmoller J. Assessment of liver metabolic function. Clin Pharmacokinet 1999; 36: 3-18

11 Domingo SC, Whitelaw ML, May BK. Transcriptional activation of cytochrome P450 genes by differential classes of chemical inducers. Curr Pharm Anal 1998; 25: 1-9

12 Lieber CS. Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta 1997; 257: 59-84

13 Paintaud G, Bechtel Y, Brietmini M, Miquet JP, Bechtel PR. Effects of liver diseases on drug metabolism. Therapie 1996; 51: 384-389

14 Brockmoller J. Roots I. Assessment of liver metabolic function. Clinical implications. Clin Pharmacokinet 1994; 27: 216-248

15 Murray M. P450 enzymes. Inhibition mechanisms, genetic regulation and effects of liver disease. Clin Pharmacokinet 1992; 23: 132-146

16 Lowry OH, Passonneau JV. Some recent refinements of quantitative histochemical analysis. Curr Prob Clin Chem 1971; 3: 63-84

17 Omura T. Forty years of cytochrome P450. Biochem Biophys Res Commun 1999; 266: 690-698

18 Hover CG, Kulkarni AP. Lipoygenase-mediated hydrogen peroxide-dependent N-demethylation of N, N-dimethylxilane and related compounds. Chem Biol Interact 2000; 124: 191-203

19 Chomczynski P, Sacch N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-159

20 Goodwin B, Hodgson E, D’ Costa DJ, Robertson GR, Liddle C. Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 2002; 62: 359-365

21 Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, Thuemmler KE. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162-172

22 Finnstrom N, Thorn M, Loof L, Rane A. Independent patterns of cytochrome P450 gene expression in liver and blood in patients with suspected liver disease. Eur J Clin Pharmacol 2001; 57: 403-409

23 Rodriguez-Antona C, Donato MT, Pareja E, Gomez-Lechon MJ, Castell JV. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch Biochem Biophys 2001; 393: 308-315

24 Mitra AK, Patel J. Strategies to overcome simultaneous P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of drugs. Pharmacogenomics 2001; 2: 401-415

25 de Wildt SN, Kears GS, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999; 38: 475-470

26 Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 1998; 28: 35-72

27 Inaba T, Niebert DW, Burchell B, Watkins PB, Goldstein JA, Bertlsson L, Tucker GT. Pharmacogenetics in clinical pharmacology and toxicology. Can J Physiol Pharmacol 1995; 73: 331-338

28 El-Sankary W, Bombail V, Gibson GG, Plant N. Gluocorticoid-Mediated Induction of CYP3A4 is Decreased by Disruption of a Protein: DNA Interaction Distinct from the Pregnen X Receptor Response Element. Drug Metab Dispos 2002; 30: 1029-1034

29 Hijazi Y, Boullou R. Contribution of CYP3A4, CYP2B6, and CYP2C9 to S-N-demethylation of Ketamine in Human Liver Microsomes. Drug Metab Dispos 2002; 30: 853-858

30 Shu Y, Zheng ZN, Liu ZQ, Wang LS, Zhu B, Huang SL, Ou-Yang DS, Zhou HH. Interindividual variations in levels and activities of cytochrome P-450 in liver microsomes of Chinese subjects. Acta Pharmacol Sin 2001; 22: 283-288

31 Tenneze L, Tarral E, Ducloux N, Funck-Brentano C. Pharmacokinetics and electrocardiographic effects of a new controlled-release form of flecainide acetate: comparison with the standard form and influence of the CYP2D6 polymorphism. Clin Pharmacol Ther 2002; 72: 112-122

32 Cai L, Yu SZ, Zhang ZF. Cytochrome P450 2E1 genetic polymorphism and gastric cancer in China. Chinese Journal of Pharmacol Ther 2001; 7: 792-795

33 Zhang YX, Chan P, Pan ZF, Shi NN, Wang ZX, Pan J, Liang HM, Niu Y, Zhou XR, He FS. Polymorphism of metabolic genes and susceptibility to occupational chronic manganism. Biomarkers 2002; 7: 337-346

34 Dahl ML. Cytochrome P450 phenotyping’ genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacol 2002; 41: 453-470

35 Bertrilson L. Geographical/interacial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29: 192-209

36 Renton K W. Alteration of drug biotransformation and elimination during infection and inflammation. Pharmacol Ther 2003; 92: 147-163

37 Warren GW, van Es Pj, Watson AM, Mattson MP, Blouin RA. Cytochrome P450 and antioxidant activity in interleukin-6 knock-out mice after induction of the acute-phase response. Interferon Cytokine Res 2001; 21: 821-826

38 De Smet K, Loyer P, Gilot D, Vercreussie A, Rogiers V, Guguen-Guillouzo C. Effects of epidermal growth factor on cytochrome P450 enzymes. Inhibition mechanisms, genetic regulation and effects of liver disease. Clin Pharmacol Ther 1996; 51: 384-389

39 Mc Cormack G, Kulkarni AP, Lipoxygenase-mediated hydrogen peroxide-dependent N-demethylation of N, N-dimethylxilane and related compounds. Chem Biol Interact 2000; 124: 191-203

40 Okamoto T, Okabe S. Minimal effect of cytokine-independent hepatitis induced by anti-Fas antibodies on hepatic cytochrome P450 gene expression in mice. Int J Mol Med 2000; 6: 459-462

41 Shoda T, Mitsuokori K, Onoderma H, Toyoda K, Uneyama C,
Takada K, Hirose M. Liver tumor-promoting effect of beta-naphthoflavone, a strong CYP 1A1/2 inducer, and the relationship between CYP 1A1/2 induction and Cx32 decrease in its hepatocarcinogenesis in the rat. *Toxicol Pathol* 2000; 28: 540-547

41 Tanaka E. Gender-related differences in pharmacokinetics and their clinical significance. *J Clin Pharm Ther* 1999; 24: 339-346

42 Morgan ET, Sewer MB, Iber H, Gonzalez FJ, Lee YH, Tukey RH, Okino S, Vu T, Chen YH, Sidhu JS, Omiecinski CJ. Physiological and pathophysiological regulation of cytochrome P450. *Drug Metab Dispos* 1998; 26: 1232-1240

43 Imaoka S, Funae Y. The physiological role of P450-derived arachidonic acid metabolites. *Nippon Yakurigaku Zasshi* 1998; 112: 23-31

44 Vuyk J. Clinical interpretation of pharmacokinetic and pharmacodynamic propofol-opioid interactions. *Acta Anaesthesiol Belg* 2001; 52: 445-451

45 Oda Y, Mizutani K, Hase I, Nakamoto T, Hamaoka N, Asada A. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. *Br J Anaesth* 1999; 82: 900-903

46 Nims RW, Prough RA, Jones CR, Stockus DL, Dragnev KH, Thomas PE, Lubet RA. In vivo induction and in vitro inhibition of hepatic cytochrome P450 activity by the benzodiazepine anticonvulsants clonazepam and diazepam. *Drug Metab Dispos* 1997; 25: 750-756

47 Iribarne C, Dreano Y, Bardou LG, Menez JF, Berthou F. Interaction of methadone with substrates of human hepatic cytochrome P450 3A4. *Toxicology* 1997; 117: 13-23

48 Ourlin JC, Handschin C, Kaufmann M, Meyer UA. A link between cholesterol levels and phenobarbital induction of cytochromes P450. *Biochem Biophys Res Commun* 2002; 291: 378-384

49 Staudinger J, Liu Y, Madan A, Habeebu S, Klaassen CD. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. *Drug Metab Dispos* 2003; 29: 1467-1472

50 Hung DY, Chang P, Cheung K, McWhinney B, Masci PP, Weiss M, Roberts MS. Cationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity, and nature of drug. *J Pharmacol Exp Ther* 2002; 301: 1079-1087

51 Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. *Toxicol Sci* 2002; 65: 166-176

Edited by Ma JY