Regulation of Matrix Metalloproteinases-2 and -9 Gene Expression in Cultured Human Fetal Membrane Cells by Influenza Virus Infection

Noboru Uchide,*a,b Kyoko Obatake,*a Ric Yamada,*a Hidetaka Sadanari,*a Keiko Matsubara,*a Tsugiya Murayama,*a and Kunio Ohyama*b

a Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University; Ho-3 Kanagawa-machi, Kanazawa, Ishikawa 920–1181, Japan; and b Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences; 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan.

Received January 28, 2016; accepted September 5, 2016

In order to understand a possible etiology of adverse pregnancy outcomes associated with intrauterine influenza virus infection, we examined the effect of influenza virus infection on gene expression of matrix metalloproteinases (MMPs) in cultured amnion epithelial, amnion mesenchymal and chorion trophoblast cells prepared from human fetal membrane tissues by gelatin zymography, Western blotting and reverse transcriptase-PCR. The cells were infected with influenza A (H1N1) virus. The levels of pro-MMP-9 activity in culture supernatants of three types of cells were increased during the period of 24–48 h after the virus infection as compared to those of mock infection. Chorion trophoblast cells spontaneously released a much greater level of pro-MMP-2 activity than amnion epithelial and amnion mesenchymal cells. The cleavage of pro-MMP-2 into an active intermediate form was enhanced in chorion trophoblast cells by the virus infection. The activity levels of MMP-2 and MMP-9 in culture supernatants were consistent with their protein levels. The virus infection induced the mRNA expression of MMP-9, but not MMP-2, in three types of cells. These results suggest that influenza virus infection induces the gene expression of MMP-9 and the cleavage of pro-MMP-2 into an active intermediate form in human fetal membrane cells, resulting in weakening of the membranes through extracellular matrix degradation. Therefore, it is possible that the regulation of MMPs gene expression in fetal membrane cells by influenza virus infection is implicated in a part of the etiology of adverse pregnancy outcomes associated with intrauterine infection with the virus.

Key words matrix metalloproteinase; fetal membrane; influenza virus; placenta; pregnancy

Human fetal membranes, which surround the amniotic cavity and enclose the fetus, are composed of several types of cells and extracellular matrix fibers (Fig. 1). The amnion layer is composed of epithelial cells, which sit upon a basement membrane including type IV collagen, and mesenchymal cells, while the chorion layer is composed of trophoblast cells and mesenchymal cells. During the normal parturition process at term, these membranes rupture after the onset of uterine contractions. When ruptures take place prior to term, this leads to a preterm birth, which is a major risk factor for neonatal morbidity and mortality. The mechanisms involved with both the preterm and term parturition in humans have been widely shown and accepted to be associated with inflammation in the fetal membranes.4

The worldwide study of the 2009 flu pandemic caused by a novel influenza A (H1N1) virus has clearly demonstrated that pregnant women confirmed to be infected with the pandemic strain of A (H1N1) pdm09 virus using PCR analysis were at an increased risk of adverse pregnancy outcomes. These adverse outcomes included premature delivery, spontaneous abortion and fetal distress.5,6 Although influenza viruses mainly attack the upper respiratory tracts, the viruses have been rarely isolated from or detected in human placental tissues obtained from patients infected with human influenza A (H1N1) virus,7 (H3N2) virus,8 influenza B virus,9 or the avian influenza A (H5N1) virus.10 Intranasal inoculation of pregnant mice with the H5N1 virus has been shown to lead to transplacental transmission of the virus, which subsequently resulted in abortion and preterm delivery.11 Consequently, it can be considered that a direct effect of influenza virus infection on gestational tissues may be implicated in the etiology of adverse pregnancy outcomes. Interestingly, we have reported that influenza virus infection induced apoptosis and the gene expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α and interferon (IFN)-β in cultured human fetal membrane chorion trophoblast cells.12–14 However, even though the virus proliferated in cultured amnion epithelial cells, it should be noted that we did not observe the above phenomena in these cells.12–14 Overall, these findings suggest that the induction of apoptosis and gene expression of pro-inflammatory cytokines in chorion trophoblast cells may have a possible role in the etiology of adverse pregnancy outcomes that are associated with an intrauterine infection caused by an influenza virus.15

The main etiological factor responsible for the development of both premature rupture of the membranes (PROM) and preterm labor has been reported to be an intraterine bacterial infection.3,4,16 Although the mechanisms responsible for the PROM due to bacterial infection are not yet elucidated definitely, a premature activation of apoptotic cell death and extracellular matrix degradation by matrix metalloproteinases (MMPs) in the membranes appears to be implicated.3 Both term labor and PROM have been found to be associated with increased levels of MMP-9 and reduced levels of tissue inhibitor of MMP-1 (TIMP-1) in the amniotic fluid.17 A comparison of the levels of MMP-2 and MMP-9 in cultured fetal membrane tissues between non-laboring women to those with proven intra-amniotic infection, found that MMP-2 was present in

* To whom correspondence should be addressed. e-mail: n-uchide@hokuriku-u.ac.jp

© 2016 The Pharmaceutical Society of Japan
β as IL-1 has been postulated that pro-inflammatory cytokines, such as IL-6 and TNF-α, may have a pivotal role in the etiology of the bacterial infection-associated preterm PROM. Therefore, we further examined the effect of influenza virus infection on the gene expression of MMP-2, MMP-9, MT1-MMP, TIMP-1 and TIMP-2 in cultured human fetal membrane cells, and then attempted to elucidate the possible etiology of the adverse pregnancy outcomes that have been shown to be associated with influenza virus infection.

MATERIALS AND METHODS

Preparation of Primary Cultured Cells All of the human fetal membrane tissues were collected by elective cesarean section procedures that were performed during the month of the normal parturition. The Institutional Review Board Committee of Tokyo University of Pharmacy and Life Sciences approved both the study and the use of human tissues (receipt number 09-06). After obtaining informed consent from patients at the time of surgery, primary cultured chorion trophoblast, amnion epithelial and amnion mesenchymal cells were collected and prepared from the separated amniochorion tissues, as per previously described studies. The approximative cell densities of the chorion trophoblast, amnion epithelial and amnion mesenchymal cells were 8×10⁵, 20×10⁵ and 8×10⁴ cells/cm², respectively.

Immunohistochemical Analysis It has been demonstrated that cytookeratin 7 is a marker for epithelial cells and trophoblast cells, vimentin is a maker for trophoblast and mesenchymal cells such as fibroblast cells, and α-smooth muscle actin is a marker for myofibroblast cells. In order to identify the cell types in the preparations of cultured cells, immunohistochemical staining was performed with mouse monoclonal antibodies against cytoskeletal filaments, such as human cytokeratin 7, vimentin and α-smooth muscle actin, and DAKO ENVISION kit HRP/DAB (Dako North America Inc., CA, U.S.A.) according to the manufacturer’s protocol. Non-immunized mouse immunoglobulin G (IgG) (Dako North America Inc.) was used as a negative control antibody. Cells were counterstained with hematoxylin solution (Merck, Darmstadt, Germany) and enclosed with Entellan neu (Merck). Cells were observed under a microscope.

Viruses and Infection Embryonal chicken eggs were used for the propagation of the influenza A (H1N1) virus (PR/8/34). The number of infectious virus particles within the chorioallantoic fluid was 4×10⁶ plaque-forming units (p.f.u.)/mL. The influenza virus particles at 0.8, 2 and 2 multiplicities of infection (m.o.i.), respectively, were used to infect the confluent monolayers of the amnion epithelial, amnion mesenchymal and chorion trophoblast cells, as has been previously described. We also prepared confluent monolayers of cells in the absence of viruses for use as the mock-infected control cells. Using 0.2 mL/cm² of macrophage serum-free medium (Invitrogen, MD, U.S.A.), all of the cells were incubated for the desired experimental periods in a CO₂ incubator.

Gelatin Zymography Cells were incubated with macrophage serum-free medium until 48 h after the virus infection with changing fresh medium at 24 h. The culture supernatants incubated during the periods of 0–24 h and 24–48 h after infection were collected by centrifugation at 600×g for 5 min at 4°C and stored at –80°C until use. The culture supernatants were thawed and mixed with an equal volume of sample buffer (125 mM Tris–HCl (pH 6.8), 4% sodium dodecyl sulfate (SDS)).

Gene expression of MMPs in human gestational tissues or not. Therefore, we further examined the effect of influenza virus infections on the gene expression of MMP-2, MMP-9, MT1-MMP, TIMP-1 and TIMP-2 in cultured human fetal membrane cells, and then attempted to elucidate the possible etiology of the adverse pregnancy outcomes that have been shown to be associated with influenza virus infection.

MATERIALS AND METHODS

Preparation of Primary Cultured Cells All of the human fetal membrane tissues were collected by elective cesarean section procedures that were performed during the month of the normal parturition. The Institutional Review Board Committee of Tokyo University of Pharmacy and Life Sciences approved both the study and the use of human tissues (receipt number 09-06). After obtaining informed consent from patients at the time of surgery, primary cultured chorion trophoblast, amnion epithelial and amnion mesenchymal cells were collected and prepared from the separated amniochorion tissues, as per previously described studies. The approximative cell densities of the chorion trophoblast, amnion epithelial and amnion mesenchymal cells were 8×10⁵, 20×10⁵ and 8×10⁴ cells/cm², respectively.

Immunohistochemical Analysis It has been demonstrated that cytookeratin 7 is a marker for epithelial cells and trophoblast cells, vimentin is a maker for trophoblast and mesenchymal cells such as fibroblast cells, and α-smooth muscle actin is a marker for myofibroblast cells. In order to identify the cell types in the preparations of cultured cells, immunohistochemical staining was performed with mouse monoclonal antibodies against cytoskeletal filaments, such as human cytokeratin 7, vimentin and α-smooth muscle actin, and DAKO ENVISION kit HRP/DAB (Dako North America Inc., CA, U.S.A.) according to the manufacturer’s protocol. Non-immunized mouse immunoglobulin G (IgG) (Dako North America Inc.) was used as a negative control antibody. Cells were counterstained with hematoxylin solution (Merck, Darmstadt, Germany) and enclosed with Entellan neu (Merck). Cells were observed under a microscope.

Viruses and Infection Embryonal chicken eggs were used for the propagation of the influenza A (H1N1) virus (PR/8/34). The number of infectious virus particles within the chorioallantoic fluid was 4×10⁶ plaque-forming units (p.f.u.)/mL. The influenza virus particles at 0.8, 2 and 2 multiplicities of infection (m.o.i.), respectively, were used to infect the confluent monolayers of the amnion epithelial, amnion mesenchymal and chorion trophoblast cells, as has been previously described. We also prepared confluent monolayers of cells in the absence of viruses for use as the mock-infected control cells. Using 0.2 mL/cm² of macrophage serum-free medium (Invitrogen, MD, U.S.A.), all of the cells were incubated for the desired experimental periods in a CO₂ incubator.

Gelatin Zymography Cells were incubated with macrophage serum-free medium until 48 h after the virus infection with changing fresh medium at 24 h. The culture supernatants incubated during the periods of 0–24 h and 24–48 h after infection were collected by centrifugation at 600×g for 5 min at 4°C and stored at –80°C until use. The culture supernatants were thawed and mixed with an equal volume of sample buffer (125 mM Tris–HCl (pH 6.8), 4% sodium dodecyl sulfate (SDS)).

Gene expression of MMPs in human gestational tissues or not. Therefore, we further examined the effect of influenza virus infections on the gene expression of MMP-2, MMP-9, MT1-MMP, TIMP-1 and TIMP-2 in cultured human fetal membrane cells, and then attempted to elucidate the possible etiology of the adverse pregnancy outcomes that have been shown to be associated with influenza virus infection.
In brief, although there were differences in the levels of expression, almost all cells in all three cultures were positive for the two evaluated markers.
for both cytokeratin 7 and vimentin. They have distinct cell shapes, such as epithelial-like and fibroblast-like. Moreover, a small number of myofibroblast-like cells existed in all three cultures. These results are summarized in Table 2.

Cytopathic Effect of Influenza Virus on Cultured Amnion Epithelial, Amnion Mesenchymal and Chorion Trophoblast Cells

Rounded and detached cells were observed in cultured chorion trophoblast, not amnion epithelial, cells at 48h after influenza virus infection (Fig. 3), corresponding with our previous observations.12) Rounded and detached cells were observed in also amnion mesenchymal cells. The cytopathic effect is characteristic for influenza virus infection.

Induction of Pro-MMP-9 Production and Pro-MMP-2 Cleavage by Influenza Virus Infection

Figure 4 presents the results of the gelatin zymography that was performed to determine the gelatinolytic activity of the culture supernatants. At 24–48h after the influenza infection, there were significant increases in the activities of pro-MMP-9 (92kDa) in the culture supernatants of the amnion epithelial, amnion mesenchymal and chorion trophoblast cells, as compared to both the 0–24h period and to the mock infection. These results suggest that the virus infection caused an increase in the pro-MMP-9 production in the amnion epithelial, amnion mesenchymal and chorion trophoblast cells.

Furthermore, the activities of pro-MMP-2 (72kDa) in culture supernatants of chorion trophoblast cells were much
greater than those of amnion epithelial and amnion mesenchymal cells. The activities of pro-MMP-2 in three types of cells were slightly decreased during the period of 24–48 h after the virus infection. The activities of an intermediate form of MMP-2 (68 kDa) resulting from cleavage was observed in culture supernatants of chorion trophoblast cells, which significantly increased to 1.4 times during the period of 24–48 h after the virus infection as compared to that of mock infection or 1.7 times as compared to that of 0–24 h after the virus infection. However, in amnion epithelial and amnion mesenchymal cells, the intermediate form of MMP-2 was not observed. These results suggested that chorion trophoblast cells produced a large amount of pro-MMP-2 than amnion epithelial and amnion mesenchymal cells, the cleavage of which was enhanced by the virus infection. In negative control experiments, no gelatinolytic activity was observed in the presence of 10 mM ethylenediaminetetraacetic acid disodium salt during washing and incubating gels (data not shown).

Induction of Gene Expression for MMP-9, but Not MMP-2, by Influenza Virus Infection

During the 0–24 h period after the influenza virus infection, Western blot analysis (Fig. 3a) of the culture supernatants of the amnion epithelial, amnion mesenchymal and chorion trophoblast cells revealed there were increased levels of pro-MMP-9 protein, which further increased during the 24–48 h period. Chorion trophoblast cells produced a large amount of pro-MMP-2 protein than amnion epithelial and amnion mesenchymal cells. The active intermediate form of MMP-2 protein increased 2.13±0.11 times (the mean and standard deviation, ranging from 2.01 to 2.22, n=3) during the period of 24–48 h after the virus infection as compared to that of mock infection. The levels of MMP-2 and MMP-9 gelatinolytic activities correlated closely with their protein levels (Fig. 6). A correlation coefficient between them was calculated as 0.871 (n=24).

At 48 h after the virus infection, RT-PCR analysis (Fig. 3b) revealed that there were increased levels of the MMP-9 mRNA expression in all of the cultured amnion epithelial, amnion mesenchymal and chorion trophoblast cells, as compared to the
mock infection. In addition, the chorion trophoblast cells exhibited higher levels of MMP-2 mRNA expression versus that seen for the amnion epithelial and amnion mesenchymal cells. After the virus infection, there was also a slight decrease in the levels of the mRNA expression for MMP-2 and MT1-MMP in both the amnion epithelial and mesenchymal cells, but not in the chorion trophoblast cells. There were no changes noted after the virus infection with regard to the levels of the mRNA expression of TIMP-1 and TIMP-2 in these three types of cells. In all of the samples, constant levels were observed for the PCR products for the housekeeping genes, such as β-actin and G3PDH. Thus, these results suggest that at 48 h after the influenza virus infection, there was an induction of the expression of MMP-9 mRNA in all of the amnion epithelial, amnion mesenchymal and chorion trophoblast cells.

DISCUSSION

It has been widely accepted that cytokeratin is one of markers for epithelial cell, and vimentin and α-smooth muscle actin are markers for mesenchymal cell.37 Co-expression of both epithelial and mesenchymal markers defines an intermediate phenotype of epithelial to mesenchymal transition (EMT).37 Our results demonstrated that cultured amnion epithelial and mesenchymal cells consisted of a large number of epithelial cells and a small number of fibroblast cells, both of which possessed epithelial and mesenchymal phenotypes; cultured chorion trophoblast cells consisted of a large number of fibroblast cells with epithelial and mesenchymal phenotypes. Additionally, a small number of myofibroblast cells existed in all three cultures. Alcaraz et al have suggested that cultured amnion epithelial cells undergo EMT, resulting in fibroblast and myofibroblast cells.38 Therefore, it is probable that the ex-
pression showing mixed phenotypes of cells may result from an EMT in not only amnion epithelial cell culture but also amnion mesenchymal and chorion trophoblast cell cultures.

We have previously demonstrated that chorion trophoblast cells and amnion epithelial cells were infected with influenza virus, and moreover that rounded and detached cells were observed in only cultured chorion trophoblast cells. Our results also showed that amnion mesenchymal cells as well as chorion trophoblast cells both exhibited degenerated cells. Since the cytopathic effect is a characteristic of an influenza virus infection, it is conceivable that the amnion mesenchymal cells are susceptible to influenza virus infections. In order to precisely determine the types of susceptible cells that might be present in preparations of cultured amnion mesenchymal cells, a further study will need to be undertaken.

Our results demonstrated that inductions of gene expression of MMP-9 after an influenza virus infection occurred in three types of cultured cells, the amnion epithelial, amnion mesenchymal and chorion trophoblast cells. It is capable of being considered that common subpopulations in all cultures produced MMP-9 in response to the virus infection. Furthermore, there was a much greater amount of pro-MMP-2 protein spontaneously produced in cultured chorion trophoblast cells versus the cultured amnion epithelial and amnion mesenchymal cells, and the virus infection enhanced cleavage of the pro-MMP-2 into an active intermediate form. Previous studies, using non-stimulated amniochorion tissues obtained before the onset of labor, have demonstrated that there was only weak detection of MMP-9 and MMP-2 proteins in the amnion epithelial cells, the amnion mesenchymal cells and the chorion trophoblast cells. However, after stimulations with bacterial toxin and lipopolysaccharide (LPS) in vitro, these proteins were strongly detected in all three types of these cells. The secretion of pro-MMP-9 and pro-MMP-2 from isolated amniochorion tissues was increased after the exposure to Escherichia coli. The cleavage of pro-MMP-2 into an active intermediate form in isolated amniochorion tissues was observed after the stimulation with LPS and the exposure to Escherichia coli. Contrary, it has been published that cytomegalovirus infection reduced the gene expression of MMP-2 and MMP-9 in organ cultured human villous tissues. However, in our knowledge, there is no literature demonstrating that virus infection induces the gene expression of MMPs in human gestational tissues. Therefore, the present study demonstrated for the first time that influenza virus infection induced the gene expression of MMP-9 in cultured human fetal membrane cells, such as amnion epithelial, amnion mesenchymal and chorion trophoblast cells, and the cleavage of pro-MMP-2 into an active intermediate form in chorion trophoblast cells as similar to either bacterial exposure or LPS stimulation.

A previous study analyzed the extracts of the amnion and chorion tissues separated from the human amniochorion tissues prior to labor, and detected only minimal levels of pro-MMP-9 activity. However, when the tissues were analyzed after the onset of labor and after delivery, the authors found a remarkable increase in the levels of pro-MMP-9 activity. Higher concentrations of pro-MMP-9 protein in the amniotic fluids were associated with spontaneous rupture of membranes at term. Based on these findings, it is now widely accepted that there is an association between labor and the production of pro-MMP-9 in human fetal membranes. Moreover, during the physiological and pathological parturition processes, it is possible that this increased expression of MMP-9 could lead to the degradation of the extracellular matrix of the fetal...
membranes, thereby facilitating their rupture. When the activity of MMP-2 was assayed by measuring the digestion of an MMP-2 specific substrate, the levels of MMP-2 activity in human amniochorion tissues ruptured prematurely before the onset of labor at term were higher than amniochorion tissues obtained by cesarean section at term before the onset of labor or obtained from normal delivery. These results have implied that the activation of pro-MMP-2 may be involved in the degradation of extracellular matrix of the fetal membranes associated with PROM at term. Consequently, our results suggest that the induction of MMP-9 gene expression and pro-MMP-2 cleavage in fetal membrane cells by influenza virus infection may be implicated in a part of the etiology of adverse pregnancy outcomes, such as premature delivery, associated with intrauterine infection with the virus.

Many studies have elucidated some intracellular and extracellular regulators for MMP-2 and MMP-9 gene expression in human fetal membrane cells. The inflammatory response is under the control of cAMP content, which is partly regulated by phosphodiesterases. Rolipram, a selective inhibitor of phosphodiesterase 4 (PDE4), blocked the production of MMP-9 in isolated amniochorion tissues stimulated with LPS. 15-Deoxy-Δ12,14-prostaglandin J2 and troglitazone, natural and synthetic peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands, inhibited the production of MMP-9 in isolated amnion tissues. TNF-α and IL-1β increased the production of MMP-9 in cultured amnion epithelial cells, which is inhibited by an antioxidant, α-lipoic acid. Contrary, oncostatin M reduced the production of MMP-9 in cultured amnion epithelial cells. In addition, the anti-human IL-6 receptor monoclonal antibody, tocilizumab, has been reported to block the IL-6-increased secretion of MMP-2 and MMP-9 from cultured amniotic epithelial cells. We have previously demonstrated that influenza virus infection induced the secretion of bioactive IL-6 and TNF-α proteins from cultured choriocarcinoma cells, but not amnion epithelial cells. In other words, the induction of cytokine production by the virus infection is one-sidedly between two cell types. Therefore, it is probable that some common interventions, such as PDE4 and PPAR-γ rather than IL-6 or TNF-α, may contribute to the regulation of MMP-9 gene expression by influenza virus infection among three different types of cultured human fetal membrane cells. It has been shown that the inhibition of caspases with ZVAD-fmk blocked the cleavage of pro-MMP-2 into an intermediate form by MT1-MMP. In another prior study, we also found that after an influenza virus infection, the executioner of apoptosis, caspase-3, was cleaved into an active form in the cultured choriocarcinoma cells, but not in the amnion epithelial cells. Consequently, we infer that the activation of caspases may be associated with the cleavage of pro-MMP-2 in cultured choriocarcinoma cells undergoing apoptosis after the virus infection. In order to further clarify the association between influenza virus infections in human fetal membrane cells and the intracellular and extracellular regulators of the induction of the MMP-9 gene expression and pro-MMP-2 cleavage, we are now in the process of conducting further experiments.

In conclusion, the present study suggests that influenza virus infection induces the gene expression of MMP-9 and the cleavage of pro-MMP-2 into an active intermediate form in human fetal membrane cells, resulting in weakening of the membranes through extracellular matrix degradation. Therefore, it is possible that the regulation of MMP gene expression in fetal membrane cells by influenza virus infection is implicated in a part of the etiology of adverse pregnancy outcomes, such as premature delivery, associated with intrauterine infection with the virus. Intracellular and extracellular molecules regulating MMP gene expression in the fetal membranes can be pharmacological targets for helping the management of premature delivery associated with intrauterine influenza virus infection.

Acknowledgments Noboru Uchide and Tsugiyu Murayama received the specific research fund of Hokuriku University. Noboru Uchide received Grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and from the Promotion and Mutual Aid Corporation for Private School of Japan.

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Lavery JP. Appendages of the placenta. The human placenta (Lavery JP ed.), Aspen Publishers Inc., Maryland, pp. 257–279 (1987).
2) Malak TM, Bell SC. Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration with - in the rupture site. Br. J. Obstet. Gynaecol., 101, 375–386 (1994).
3) Parry S, Strauss JP. 3rd. Premature rupture of the fetal membranes. N. Engl. J. Med., 338, 663–670 (1998).
4) Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin. Fetal Neonatal Med., 11, 317–326 (2006).
5) Uchide N, Ohyama K, Bessho T, Takeuchi M, Toyoda H. Possible roles of proinflammatory and chemokines produced by human fetal membrane cells in the pathology of adverse pregnancy outcomes associated with influenza virus infection. Mediators Inflamm., 2012, 270670 (2012).
6) Mosby LG, Rasmussen SA, Jamieson DJ. 2009 pandemic influenza A (H1N1) in pregnancy: a systematic review of the literature. Am. J. Obstet. Gynecol., 205, 10–18 (2011).
7) Lieberman RW, Bagdasarian N, Thomas D, Van De Ven C. Seasonal influenza A (H1N1) infection in early pregnancy and second trimester fetal demise. Emerg. Infect. Dis., 17, 107–109 (2011).
8) McGregor JA, Burns JC, Levin MJ, Burlington B, Meiklejohn G. Transplacental passage of influenza A/Bangkok (H3N2) mimicking amniotic fluid infection syndrome. Am. J. Obstet. Gynecol., 149, 856–859 (1984).
9) Mel’nikova VF, Tsinzerling AV, Aksenov OA, Vydumkina SP, Kaulina NA. Involvement of the afterbirth in influenza. Arkh. Patol., 49, 19–25 (1987).
10) Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J, Lau LT, Lu J, Gao Z, Zhang B, McNutt MA, Lu M, Anderson VM, Gons L, Yu AC, Lipkin WJ. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet, 376, 1137–1145 (2007).
11) Xu L, Bao L, Deng W, Qin C. Highly pathogenic avian influenza H5N1 virus could partly be evacuated by pregnant BALB/c mouse during abortion or preterm delivery. Virol. J., 8, 342 (2011).
12) Uchide N, Ohyama K, Bessho T, Yuan B, Yamakawa T. Apoptosis in cultured human fetal membrane cells infected with influenza virus. Biol. Pharm. Bull., 25, 109–114 (2002).
13) Uchide N, Ohyama K, Yuan B, Sano T, Bessho T, Yamakawa T. Differential mRNA expression of inflammatory cytokines in cultured human fetal membrane cells responding to influenza virus...
infection, *Biol. Pharm. Bull.*, 25, 239–243 (2002).

14) Uchide N, Suzuki A, Ohyama K, Bessho T, Toyoda H. Secretion of bioactive interleukin-6 and tumor necrosis factor-α proteins from primary cultured human fetal membrane chorion cells infected with influenza virus. *Placenta*, 27, 678–690 (2006).

15) Uchide N, Ohyama K, Bessho T, Toyoda H. Induction of pro-inflammatory cytokine gene expression and apoptosis in human chorion cells of fetal membranes by influenza virus infection: possible implications for maintenance and interruption of pregnancy during infection. *Med. Sci. Monit.*, 11, RA7–RA16 (2005).

16) Menon R, Fortunato SJ. Infection and the role of inflammation in preterm premature rupture of the membranes. *Best Pract. Res. Clin. Obstet. Gynaecol.*, 21, 467–478 (2007).

17) Vadillo-Ortega F, Hernandez A, Gonzalez-Avila G, Bermejo L, Iwata K, Strauss JF 3rd. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinase-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. *Am. J. Obstet. Gynecol.*, 174, 1371–1376 (1996).

18) Fortunato SJ, Menon R, Lombardi SJ. Collagenolytic enzymes (gelatinases) and their inhibitors in human amnionchoriochorionic membrane. *Am. J. Obstet. Gynecol.*, 177, 731–741 (1997).

19) Menon R, Fortunato SJ. The role of matrix degrading enzymes and apoptosis in rupture of membranes. *J. Soc. Gynecol. Investig.*, 11, 327–337 (2004).

20) Geng J, Huang C, Jiang S. Roles and regulation of the matrix metalloproteinase system in parturition. *Mol. Reprod. Dev.*, 83, 276–286 (2016).

21) Weiss A, Goldman S, Shaley E. The matrix metalloproteinases (MMPs) in the decidua and fetal membranes. *Front. Biosci.*, 11, 649–659 (2007).

22) Fortunato SJ, Menon R. IL-1β is a better inducer of apoptosis in human fetal membranes than IL-6. *Placenta*, 24, 922–928 (2003).

23) Menon R, Lombardi SJ, Fortunato SJ. TNF-α promotes caspase activation and apoptosis in human fetal membranes. *J. Assist. Reprod. Genet.*, 19, 201–204 (2002).

24) Kumar D, Fung W, Moore RM, Pandey V, Fox J, Stetzer B, Mansour JM, Mercer BM, Redline RW, Moore JJ. Proinflammatory cytokines found in amniotic fluid induce collagen remodeling, apoptosis, and biophysical weakening of cultured human fetal membranes. *Biol. Reprod.*, 74, 29–34 (2006).

25) Yeo SJ, Kim SJ, Kim JH, Lee HJ, Kook YH. Influenza A virus infection modulates the expression of type IV collagenase in epithelial cells. *Arch. Virol.*, 149, 1361–1370 (1999).

26) Wang S, Quang Le T, Chida J, Cisse Y, Yano M, Kido H. Mechanisms of matrix metalloproteinase-9 upregulation and tissue destruction in various organs in influenza A virus infection. *J. Med. Invest.*, 57, 26–34 (2010).

27) Shaprio S, Khodalev O, Bitterman H, Auslander R, Lahat N. Different activation forms of MMP-2 oppositely affect the fate of endothelial cells. *Am. J. Physiol. Cell Physiol.*, 298, C942–C951 (2010).

28) Sun K, Xu Q, Gao L, Myatt L. Dexamethasone fails to inhibit the induction of cytosolic phospholipase A, expression by interleukin-1β in cultured primary human amnion fibroblasts. *Placenta*, 27, 164–170 (2006).

29) Steel JH, O'donoghue K, Kennea NL, Sullivan MH, Edwards AD. Maternal origin of inflammatory leukocytes in preterm fetal membranes, shown by fluorescence in situ hybridisation. *Placenta*, 26, 672–677 (2005).

30) Gibb W, Sun M. Cellular specificity of interleukin-1β-stimulated expression of type-2 prostaglandin H synthase in human amnion cell cultures. *Biol. Reprod.*, 59, 1139–1142 (1998).

31) McPartland PC, Taylor DJ, Bell SC. Myofibroblast differentiation in the connective tissues of the amnion and chorion of term human fetal membranes-implications for fetal membrane rupture and labour. *Placenta*, 21, 44–53 (2000).

32) Kim SS, Romero R, Kim JS, Abbas A, Espinoza J, Kusanovic JP, Hassan S, Yoon BH, Kim CJ. Coexpression of myofibroblast and macrophage markers: novel evidence for in vivo plasticity of cho-rioamniotic mesodermal cells of the human placenta. *Lab. Invest.*, 88, 365–374 (2008).

33) Sato T, Iwai M, Sakai T, Sato H, Seiki M, Mori Y, Ito A. Enhancement of membrane type-1 matrix metalloproteinase (MT1-MMP) production and sequential activation of progelatinase A on human squamous carcinoma cells co-cultured with human dermal fibroblasts. *Br. J. Cancer.*, 89, 1137–1143 (1999).

34) Ogawa K, Chen F, Kuang C, Chen Y. Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-β1 is mediated by a nuclear factor-κ B site. *Biochem. J.*, 381, 413–422 (2004).

35) Yu H, Pan C, Zhao S, Wang Z, Zhang H, Wu W. Reversatrol inhibits tumor necrosis factor-α-mediated matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells. *Biomed. Pharmacother.*, 62, 366–372 (2008).

36) Figueira RC, Gomes LR, Neto JS, Silva FC, Silva ID, Sogayar MC. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. *BMC Cancer.*, 9, 20 (2009).

37) Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. *J. Clin. Invest.*, 119, 1420–1428 (2009).

38) Alcaraz A, Morwcz A, Imamuddin CL, Garcia-Vicario EM, Ruiz-Canada C, Lopez-Martinez MC, Moraleda JM, Nicholson FB. Autocrine TGF-β induces epithelial to mesenchymal transition in human amniotic epithelial cells. *Cell Transplant.*, 22, 1351–1367 (2013).

39) Uchide N, Ohyama K, Bessho T, Toyoda H. Lactate dehydrogenase leakage as a marker for apoptotic cell degradation induced by influenza virus infection in human fetal membrane cells. *Interiology*, 52, 164–173 (2009).

40) Garcia-Lopez G, Vadillo-Ortega F, Merchant-Larios H, Maida-Claros R, Osorio M, Soriano-Becerril D, Flores-Herrera H, Beltran-Montoya J, Garfias-Beccera Y, Zaga-Cлавельнина V. Evidence of *in vitro* differential secretion of 72 and 92kDa type IV collagenases after selective exposure to lipopolysaccharide in human fetal membrane. *Mol. Hum. Reprod.*, 13, 409–418 (2007).

41) Zaga-Cлавельнина V, Garcia-Lopez G, Flores-Pliego A, Merchant-Larios H, Vadillo-Ortega F. *In vitro* secretion and activity profiles of matrix metalloproteinases, MMP-9 and MMP-2, in human term extra-placental membranes after exposure to Escherichia coli. *Reprod. Biol. Endocrinol.*, 9, 13 (2011).

42) Tao L, Suhua C, Juanjuan C, Zongzhi Y, Juan X, Dandan Z. *In vitro* study on human cytomegalovirus affecting early pregnancy villous EVT’s invasion function. *Virol. J.*, 8, 114 (2011).

43) Vadillo-Ortega F, Gonzalez-Avila G, Furth EE, Lei H, Muschel RJ, Stetler-Stevenson WG, Strauss JF 3rd. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amnionchorion increases with labor. *Am. J. Pathol.*, 146, 148–156 (1995).

44) Athayde N, Edwin SS, Romero R, Gomez R, Maymon E, Pacora P, Menon R. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. *Am. J. Obstet. Gynecol.*, 201, 1288–1293 (1998).

45) Ota A, Yonemoto H, Someya A, Itoh S, Kinoshita K, Nagoaka I. Changes in matrix metalloproteinase-2 activities in amnionchorions during premature rupture of membranes. *J. Soc. Gynecol. Investig.*, 13, 592–597 (2006).

46) Oger S, Méhats C, Dallot E, Cabrol D, Leroy MJ. Evidence for a role of phosphodiesterase 4 in lipopolysaccharide-stimulated prostanladden E, production and matrix metalloproteinase-9 activity in human amnionchorionic membranes. *J. Immunol.*, 174, 8082–8089 (2005).

47) Lappas M, Permezel M, Rice GE. 15-Deoxy-Δ12,14-prostaglandin J2 and troliglotazone regulation of the release of phospholipid metabolites, inflammatory cytokines and proteases from human gestational tissues. *Placenta*, 27, 1060–1072 (2006).

48) Moore RM, Novak JB, Kumar D, Mansour JM, Mercer BM, Moore
49) Izumi-Yoneda N, Toda A, Okabe M, Koike C, Takashima S, Yoshida T, Konishi I, Saito S, Nikaido T. Alpha 1 antitrypsin activity is decreased in human amnion in premature rupture of the fetal membranes. *Mol. Hum. Reprod.*, **15**, 49–57 (2009).

50) Mano Y, Shibata K, Sumigama S, Hayakawa H, Ino K, Yamamoto E, Kajiyama H, Nawa A, Kikkawa F. Tocilizumab inhibits interleukin-6-mediated matrix metalloproteinase-2 and -9 secretions from human amnion cells in preterm premature rupture of membranes. *Gynecol. Obstet. Invest.*, **68**, 145–153 (2009).

51) Levkau B, Kenagy RD, Karsan A, Weitkamp B, Clowes AW, Ross R, Raines EW. Activation of metalloproteinases and their association with integrins: an auxiliary apoptotic pathway in human endothelial cells. *Cell Death Differ.*, **9**, 1360–1367 (2002).