Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae

Hayley Wilson1,* and M. Estée Török1,2,3

Abstract

Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant bacteria, which includes extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these organisms, and the impact of AMR.

INTRODUCTION

The development and introduction of antimicrobials in the 20th century has transformed the delivery of modern medical care. Yet, this ‘antibiotic golden-age’ is ending, threatened by rising rates of antimicrobial resistance (AMR) globally. Enterobacteriaceae, a family encompassing many clinically important bacterial species, exhibits rising levels of AMR. Infection with either extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) or carbapenemase-producing Enterobacteriaceae (CPE) is associated with increased mortality rates, time to effective therapy, length of stay and overall healthcare costs [1–8]. The impact of the continued spread of AMR could have repercussions in multiple sectors. In the healthcare sector itself, patient deaths resulting from AMR are projected to reach 10 million annually by 2050, but AMR will also cause losses in the trillions to global economic output [9]. ESBL-E and CPE have spread globally [10, 11], and technologies such as whole-genome sequencing (WGS) are providing detailed insights into their evolution and dissemination. The World Health Organization has recently published a global priority pathogens list to focus attention on the most significantly resistant pathogens. Enterobacteriaceae resistant to third-generation cephalosporins (which includes ESBL-E) and Enterobacteriaceae resistant to carbapenems (CRE) are included within the critical category of this list [12].

ESBL-E

The definition of multidrug resistance is variable [13], but Enterobacteriaceae exhibiting resistance to β-lactams, extended-spectrum β-lactams and third-generation cephalosporins are commonly recognized as ESBL-E [11, 14]. Extended-spectrum β-lactamase (ESBL) mechanisms themselves are classified based on their molecular structure or functional similarities [15, 16] (Table 1). Initially, ESBL-E were predominantly associated with nosocomial outbreaks, with resistance arising from point mutations in plasmid-mediated enzymes such as TEM-1, TEM-2, SHV-1 and OXA-10 [14]. CTX-M enzymes are now predominant. They arose via multiple escape events of chromosomal β-lactamase-encoding genes (blalab) from Kluyvera spp. [17–19], supported by the presence of transpositional units including ISEcp1 in CTX-M groups 1, 2, 9 and 25 or ISCR1 in groups 2 and 9 [20]. Following initial reports in Europe [21], South America [22] and Japan [23], CTX-M enzymes have disseminated globally [24]. The group 1 enzyme CTX-M-15 is the most frequently identified, and dominates in many countries in Europe [25–30], Asia [31, 32], Africa [33–35] and the USA [36, 37]. Additional CTX-M mechanisms predominate in other locations. For example, the group 9 enzyme CTX-M-14 is the leading mechanism in Escherichia coli in some areas of Korea [38] and South America [39]. Until recently, CTX-M-14 was the major mechanism across China [40–42], but a steady increase in CTX-M-15 has also occurred [43–45].
Genomic epidemiology demonstrates a number of widespread lineages including sequence type (ST)131, ST38, ST405 and ST10 in \textit{E. coli} \cite{46–49}, and ST11, ST14 and ST15 in \textit{Klebsiella pneumoniae} \cite{32, 50, 51}. ST131, an extra-intestinal pathogenic \textit{E. coli}, has undergone massive clonal expansion and is strongly associated with the global dissemination of the \textit{bla}_{CTX-M-15} gene \cite{47, 52, 53}.

WGS has resolved ST131 into three clades, based upon the presence of marker alleles for the type 1 fimbriae, \textit{fimH}. Clade A is associated with \textit{H41}, clade B with \textit{H22} and \textit{H30} is associated with clade C \cite{54–58}. A clade C sublineage is the main driving force in the widespread dissemination of CTX-M-15 and fluoroquinolone resistance (FQR) in ST131 \cite{55, 56, 59}. Clade C is identifiable by FQR mutations in \textit{gyrA} (\textit{gyrA1AB}) and \textit{parC} (\textit{parC1aAB}) genes, whereas clades A and B are predominantly fluoroquinolone susceptible \cite{55}. Further segregation of clade C into C1 and C2 occurs depending upon the presence of \textit{bla}_{CTX-M-15} \cite{56, 59}. Prior to the emergence of C1 and C2, acquisition of elements including the \textit{Gly-phV} genomic island \cite{54} and the \textit{H30} allele \cite{60} helped to prime ST131 for global success. C1 and C2 divergence and the development of FQR mutations is estimated to have occurred in the late 1980s, consistent with the introduction of fluoroquinolones for clinical use \cite{54}. CTX-M-14, CTX-M-27, CTX-M-19, CTX-M-24 and CTX-M-55 have been identified in clade C \cite{59}; however, CTX-M-15 is almost entirely restricted to C2 \cite{55, 56, 59}. Bayesian analysis based upon CTX-M variant distribution also suggests \textit{bla}_{CTX-M-15} emerged in ST131 following the introduction of extended-spectrum cephalosporins into clinical practice \cite{59}.

Plasmid movement between different species and lineages represents a major source of AMR. \textit{bla}_{CTX-M-15}, in ST131 is invariably associated with plasmids of incompatibility group F (IncF) \cite{25, 59, 61}, albeit presence on IncN \cite{64}, IncX \cite{65} and IncI \cite{66} plasmids has also been reported. Specific IncF plasmids have been associated with C2 isolates. This includes those with dual replicons, which complicates plasmid typing and broadens the plasmid host range \cite{67, 68}, additional AMR genes, gene cassettes, toxin/

Table 1. Classification of \(\beta\)-lactamases

Adapted from Bush and Jacoby, 2010 \cite{16}.

Ambler molecular class	Bush–Jacoby group	Preferred substrate	Inhibited	Representative enzyme
A (serine penicillinas)	2a	Penicillins	+	PCI from \textit{S. aureus}
	2b	Penicillins, narrow-spectrum cephalosporins	+	TEM-1, TEM-2, SHV-1
	2e	Penicillins, narrow-spectrum and extended-spectrum cephalosporins	+	SHV-2 to SHV-6, TEM-3 to TEM-26, CTX-Ms, BEL-1, VEB-1, PER-1
	2r	Penicillins	−	TEM-30, SHV-72, SHV-19
	2c	Penicillins, carbenicillin	+	PSE-1
	2e	Extended-spectrum cephalosporins	+	FEC-1, CepA
	2f	Penicillins, cephalosporins, carbapenems	+/-	KPC-2, SME-1, NMC-A
B (MBLs)	3	Most \(\beta\)-lactams including carbapenems	−	IMP-1, VIM-1, NDM-1, CcrA and BcII, CphaA, L1
C (cephalosporinas)	1	Cephalosporins	−	AmpC, CMY-2, ACT-1
D (oxacillinas)	2	Penicillins, cloxacin	+/-	OXA-1, OXA-10
	2de	Extended-spectrum cephalosporins	+/-	OXA-11, OXA-15
	2df	Carbapenems	+/-	OXA-23, OXA-48

IMPACT STATEMENT

The World Health Organization (WHO) has published a global priority pathogens list of antibiotic-resistant bacteria, in order to increase the significance of and galvanize research into new treatments for particular antibiotic-resistant pathogens. Of critical importance on this list are carbapenem-resistant \textit{Acinetobacter baumanii}, \textit{Pseudomonas aeruginosa} and \textit{Enterobacteriaceae}. Pathogens of this nature cause high morbidity and mortality and increased healthcare costs. Carbapenem-resistant \textit{Enterobacteriaceae} encompasses a number of genera, many of which harbour acquired multidrug-resistance plasmids, which can carry and transmit antimicrobial-resistance genes on an intra- and interspecies level. This complicates surveillance, outbreak investigations and actions by infection control professionals. The spread of multidrug resistance is a globally important problem, with several countries currently reporting endemicity of highly resistant pathogens such as carbapenem-resistant \textit{Klebsiella pneumoniae}. We have reviewed the current literature on carbapenem and third-generation cephalosporin-resistant \textit{Enterobacteriaceae}. Our review highlights the continued increasing trend of resistance in \textit{Enterobacteriaceae} and discusses the mechanisms by which this occurs. We aim to provide valuable collated information as part of a series of reviews on the WHO priority pathogens and enhance the current understanding in this area.
antitoxin systems and stability mechanisms, all of which may have influenced plasmid and clade success [57, 59, 69]. Architecture of the ST131 accessory genome, including plasmids, further supports clade-specific adaptations that have likely contributed to the success of ST131 [70]. Multiple clusters of variable accessory genome content within clade C suggest that clonal expansions of stabilized accessory gene profiles occur frequently, allowing generalization of this highly structured clone [59, 70].

CPE

Rising ESBL-E prevalence correlates with increased carbapenem consumption [71, 72]; and appears to have driven the emergence and spread of carbapenem resistance, especially in Enterobacteriaceae [73]. Carbapenem resistance may be caused by different mechanisms, including inducible overexpression of chromosomal cephalosporinases, such as AmpC, combined with porin loss [74]. More problematic, however, is acquisition of carbapenemase genes via mobile genetic elements. The most frequently identified mechanism is the Ambler class A K. pneumoniae carbapenemase (KPC), followed by class B metallo-β-lactamases (MBLs) such as New Delhi MBL (NDM), and the class D OXA-type genes [75] (Table 2, Fig. 1).

Since its identification in the USA in 1996 [76], KPC has disseminated globally, has been reported to be present in more than 50 % of CPE in many countries, and in some cases 100 % of carbapenem-resistant K. pneumoniae [77–84]. The majority of KPC-encoding genes are seen in K. pneumoniae clonal group (CG)258, which includes the successful lineages ST258 and ST11 [85–87]. An example of this rapid dissemination can be seen in Greece. Following the first KPC isolation in 2007 [88], KPC had spread to most acute-care facilities within 2 years [89–92]. Most infections remain hospital-related, and associated with high mortality rates [6, 93–95]. Many early cases were epidemiologically linked to travel to high prevalence locations [96–101]; however, complex local transmission networks now signify endemicity [102, 103]. More than 20 KPC variants have been recognized, with blaKPC2 and blaKPC3 being the most abundant [79, 83, 85, 104–106]. The gene is located in isoforms of the 10 kb Tn4401 transposon [107], of the Tn3 transposon family [108, 109], and is associated with diverse plasmids including IncFIIK [87], IncI [110], IncN [111], IncL/M [112] and IncX [113].

Carbapenem-resistant lineages exhibit less diversity when compared to carbapenem-susceptible Enterobacteriaceae [114, 115] and lineages such as ST258 [112, 116, 117] and ST11 [84, 106] demonstrate clonal spread. However, in contrast to the clonality of ESBL lineages and predominance of a small number of globally disseminated epidemic lineages, carbapenemase genes and plasmids show increased transferability within and between species, lineages, STs and patients. This genetic mobility complicates the investigation of outbreaks [114, 118–120]. This has been observed more frequently in E. coli than other Enterobacteriaceae. The spread of carbapenem resistance displays increased diversity across STs, such as the large ST10 complex, rather than strong association with existing global epidemic lineages like ST131 [114, 121–123].

Non-clonal dissemination is also highly apparent in MBLs, especially NDM. These class B enzymes, which include NDM, GES, VIM and IMP, have also disseminated globally [124]. MBLs hydrolyse all β-lactams, are not inhibited by β-lactamase inhibitors, and their host bacteria often carry additional resistance mechanisms such as ESBLs [125–128]. First identified in a Swedish patient repatriated from a New Delhi hospital [129], most early cases had epidemiological links to the Indian subcontinent [130–133]. Epidemic spread and environmental contamination is evident in India, Pakistan and Bangladesh [144, 145], whilst sporadic cases or regional spread now occur on all continents [75, 84, 146, 147]. Clonal spread may occur during outbreaks [148, 149], but the high resolution of WGS enables tracking of varying blaNDM-positive plasmids including IncA/C, IncF, IncH, IncL/M, IncN and IncX types [113, 150–153], and fluctuating genomic contexts flanking the blaNDM gene among non-clonal isolates [128, 151, 154–156]. The blaNDM gene is chimeric following fusion with the aminoglycoside gene aphA6 and lies downstream of either entire, truncated or remnants of the ISAba125 element [157].

blaVIM genes were originally described in Italian Pseudomonas aeruginosa in the mid-1990s [158] and Enterobacteriaceae carrying blaVIM are predominantly reported in Europe as occurring sporadically or in single hospital outbreaks [147]. Sporadic cases are also seen in Africa, Taiwan, Mexico, Saudi Arabia and the USA [159]. Since 2015, Hungary, Italy and Spain have reported inter-regional spread; however, as with other CPE mechanisms, blaVIM is endemic in Greece [147]. More than 48 variants have been identified with blaVIM-1 and blaVIM-2 showing global dissemination [159]. blaVIM genes are carried on variable class 1 integrons within multiple plasmid Inc types [159–161].

blaIMP was the first described case of a transmissible carbapenemase gene [162]; however, large-scale epidemiological studies are lacking. The majority of blaIMP isolates originate in the South Pacific [163] and Asia [164]. blaIMP is found predominantly in K. pneumoniae, E. coli and Enterobacter spp. on class 1 integrons [165]. Integrons and their gene cassette combinations are variable and may show geographical correlations [164]. Despite being named due to imipenem resistance, certain variants of blaIMP, particularly blaIMP-6, actually exhibit low levels of imipenem resistance, which may lead to misidentification, and contribute to the lower detection rates of this mechanism [166, 167]. Genomic evidence is now emerging of this mechanism moving into epidemic Enterobacteriaceae such as E. coli ST131 [168, 169].

Finally, OXA-48 carbapenemases, first identified in 2001 in Turkey, are also a public-health threat [170–172]. Owing to their variable levels of carbapenem resistance, the spread of
Table 2. Carbapenem-resistance genes identified in Enterobacteriaceae

Gene	Species of origin†	Geographical origin† (year)	Active site	Ambler class	Location	Plasmid	No. of variants	Case
bla SME-1	Serratia marcescens enzyme	London, UK (1982)	Serine	A	Chromosomally encoded, SmarGI1 novel genomic island [250]	IncF types [251, 252]	5	Mataje et al. [250] – characterization of a novel genomic island
bla IMI	Enterobacter cloacae	California, USA (1984)	Serine	A	Chromosomally encoded in Enterobacter cloacae, IncF plasmid in Klebsiella variicola [251] and Escherichia coli [252]	Multiple [107, 254]	12	Rasmussen et al. [253] – characterization of first clinical IMI isolate
bla KPC	Klebsiella pneumoniae	North Carolina, USA (1996)	Serine	A	Tn401 [107]	Multiple [107, 254]	24	Munoz-price et al. [105] – description of an ongoing UK outbreak
bla OXA-48	Klebsiella pneumoniae	Istanbul, Turkey (2001)	Serine	D	Tn999 [185]	IncI/M [185]	OXA-181, OXA-204, OXA-232, OXA-163	Potron et al. [175] – description of a clonal multi-country outbreak
bla IMP	Serratia marcescens enzyme	Aichi Prefecture, Japan (1991)	Zinc	B	Variable – chromosomal, class I integron [255]	IncA/C, IncH, IncL/M [255]	>52	Peleg et al. [256] – multi-genera dissemination of *bla* IMP in Australia
bla NDM	Klebsiella pneumoniae	New Delhi, India (2008)	Zinc	B	Tn125 [151]	Multiple [126, 151, 153]	16	Walsh et al. [145] – environmental spread of *bla* NDM
bla VIM	Pseudomonas aeruginosa	Verona, Italy (1997)	Zinc	B	Class I integrons, In2-Tn402 [257]	IncHI2, IncHl [257], IncN [238]	>46	Luzzaro et al. [259] – *bla* VIM in multiple genera from one patient
bla GM	Pseudomonas aeruginosa	North Rhine-Westphalia, Germany (2004)	Zinc	B	Not determined	Not determined	Not determined	Rieber et al. [260] – emergence of *bla* GM in clinical samples
bla KHIM	Citrobacter freundii	Tokyo, Japan (1997)	Zinc	B	Not determined	Not determined	Not determined	Sekiguchi et al. [261] – first identification of *bla* KHIM

*First species known to be reported in.
†First location reported in the literature.
OXA-48 has been initially underestimated [173–175]. In parallel to *blaNDM* and its Indian origins, *blaOXA-48* was initially geographically linked to Turkey [171, 176]. However, since 2015, multiple countries have inter-regional spread and *blaOXA-48* is endemic in Malta and Turkey [147]. Further afield, extensively drug resistant (XDR) strains co-harbouring *blaNDM* and *blaOXA-48* have been identified in the Middle East [177, 178], and *blaOXA-48* strains have emerged in Canada [173], Algeria [179] and Korea [180]. *Shewanella* spp. may be the natural progenitors of *blaOXA-48* genes [181], which now predominantly appear in *K. pneumoniae*, *E. coli* and *Enterobacter* spp. [173, 182, 183]. *blaOXA-48* is associated with the Tn1999 transposon, which is composed of two copies of IS1999 bracketing the gene [184, 185]. The majority of *blaOXA-48* genes are associated with Tn1999 or the variants Tn1999.2 [171], Tn1999.3 [186] and Tn1999.4 [187]. Tn1999.4 is a mosaic of Tn1999 and a second transposon, Tn2015, which additionally carries *blaCTX-M-15* [187]. In contrast to other CPE genes, dissemination of *blaOXA-48* is associated with a single, successful IncL/M plasmid into which the Tn1999 transposon has inserted [173, 174, 178, 185, 187–193].

A variant of *blaOXA-48*, *blaOXA-181*, has also begun to disseminate among *Enterobacteriaceae* and appears to be establishing in the Indian subcontinent, South Africa and Singapore, or in patients epidemiologically linked to these areas [194–199]. Recently, the first cases of likely patient-to-patient transmission have also been reported [200, 201]. *blaOXA-181* has been identified on a non-self-conjugative ColE2 plasmid in association with IS*Ecp1* and the Tn2013 transposon [198]. Additionally, *blaOXA-181* has been identified in the same strains as *blaNDM* genes, reflecting its prevalence in India [201, 202], and now in a conjugative plasmid [202], suggesting widespread dissemination may occur in the future.

THE CONTINUED THREAT OF AMR

The impact of antibiotic consumption is reflected in geographical variations of CPE and ESBL-E prevalence. Countries with high antibiotic consumption rates, such as
Turkey, Tunisia, Algeria, Greece and Romania [71], have particularly high rates of multidrug-resistant (MDR) bacteria [11, 147]. Overuse of particular antibiotic classes also affects MDR organisms, such as in Greece where high cephalosporin use [203] is paralleled by high levels of ESBL-E [11]. Travel to endemic regions also may be having a global impact following acquisition of MDR pathogens by travellers [204–208].

A particularly concerning issue, especially in Asia, is transferrable colistin resistance [209]. Increased carbapenem resistance has resulted in an increase in the use of polymyxins (e.g. colistin) to treat XDR pathogens [71, 210]. We are now faced with the dissemination of genes conferring resistance to these drugs, which are frequently co-located with additional resistance genes, leaving some infections almost untreatable [211–214]. Following the first publication of the transferrable colistin-resistance gene, mcr-1 [209], screening has demonstrated global existence of mcr-1 in food, animal and human samples [215, 216]. Following the association of mcr-1 with ISApl-1 of the IS30 family and formation of the composite transposon Tn6330, mcr-1 and its genetic environment has stabilized [217–219]. It is now beginning to spread across multiple plasmid types [214, 220–224]. The ancestral mobilizable state of mcr-1 is more frequently identified in agricultural isolates than human isolates, particularly those in China, supporting the theory of an animal origin [209, 225–227]. Colistin is ubiquitous in food-animal production [228], but its use as a growth promoter has been banned in the European Union since 2006 and in China since 2016 [229, 230]. This may begin to ease the antibiotic selection pressure; however, it is difficult to speculate how this may affect the human situation as stabilization and dissemination of the gene into conjugative plasmids has already occurred.

CONCLUSION

Antimicrobial stewardship as a strategy to reduce AMR is high on policy agendas in many countries [231–235] and a positive impact on the prevalence of MDR pathogens is beginning to show [236, 237]. Continued strategy development is still required; accepted international definitions and guidelines are yet to be adopted, particularly those suitable for low-to-middle income countries [238]. With the inception of the ‘One Health’ initiative [233, 239, 240], consideration should also be given to antimicrobial prescription in primary care [30, 210, 241, 242], poorly regulated community antimicrobial use [243–246] and agricultural antimicrobial use [239, 247–249].

The ability of CPE and ESBL-E to evolve and adapt rapidly due to antibiotic selective pressures is one of the biggest threats to medical care. An international, multi-disciplinary approach is urgently required to tackle this global threat. Pressing issues include improving surveillance to recognize the importance of mobile AMR elements and increasing the drive to move rapid, high-resolution diagnostics, such as WGS, from the research environment into routine clinical practice. A proactive approach involving all users of antimicrobials is imperative to prevent a return to the pre-antibiotic era.

Funding information

This work was supported by the Academy of Medical Sciences, the Health Foundation, and by the NIHR Cambridge Biomedical Research Centre.

Acknowledgements

M. E. T. is a Clinician Scientist Fellow funded by the Academy of Medical Sciences, the Health Foundation, and supported by the NIHR Cambridge Biomedical Research Centre.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

1. Ray S, Anand D, Purwar S, Samanta A, Upadhye KV et al. Association of high mortality with extended-spectrum β-lactamase (ESBL) positive cultures in community acquired infections. J Crit Care 2018;44:255–260.
2. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae: a systematic review and meta-analysis. J Antimicrob Chemother 2007;60:913–920.
3. Giske CG, Monnet DL, Cars O, Carmeli Y. ReAct-ACTION on Antibiotic Resistance. Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob Agents Chemother 2008;52:813–821.
4. Tumbarello M, Spanu T, di Bidino R, Marchetti M, Ruggeri M et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-β-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010;54:4085–4091.
5. Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum β-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect 2007;55:254–259.
6. Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, Yinnon AM, Assous MV. Mortality due to blag Kebsiella pneumoniae bacteraemia. J Antimicrob Chemother 2016;71:1083–1087.
7. Mcconville TH, Sullivan SB, Gomez-Simmonds A, Whittier S, Uhlemann AC. Carbapenem-resistant Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in critically ill patients, an observational study. PLoS One 2017;12:e0186195.
8. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob 2017;16:18.
9. O’Neill J. The Review on Antimicrobial Resistance. London: Wellcome Trust and HM Government; 2016.
10. World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. Geneva: World Health Organization; 2014.
11. European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: European Centre for Disease Prevention and Control; 2017.
12. World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: World Health Organization; 2017.
13. Drees M, Pineles L, Harris AD, Morgan DJ. Variation in definitions and isolation procedures for multidrug-resistant Gram-negative bacteria: a survey of the society for healthcare epidemiology of america research network. Infect Control Hosp Epidemiol 2014;35:362–366.
49. Peirano G, van der Bij AK, Gregson DB, Pitout JD. Molecular epidemiology over an 11-year period (2000 to 2010) of extended-spectrum β-lactamase-producing Escherichia coli causing bacteremia in a centralized Canadian region. J Clin Microbiol 2012;50:294–299.

50. Oteo J, Cuevas O, Lopez-Rodriguez I, Banderas-Florido A, Vindel A et al. Emergence of CTX–M–15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. Antimicrob Chemother 2009;44:524–528.

51. KS K, Lee JY, Baek JY, Suh JY, Lee MY et al. Predominance of an ST11 extended-spectrum β-lactamase-producing Klebsiella pneumoniae clone causing bacteremia and urinary tract infections in Korea. J Med Microbiol 2010;59:822–828.

52. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX–M–15. Emerg Infect Dis 2008;14:195–200.

53. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli ST25b–ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011;68:1–14.

54. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 2016;7.

55. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippering E, Totska M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci USA 2014;111:5694–5699.

56. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B et al. The epidemic of extended-spectrum β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 2013;4:e00377-13.

57. Schembri MA, Zakour NL, Phan MD, Forde BM, Stanton-Cook M et al. Molecular characterization of the multidrug resistant Escherichia coli ST131 clone. Pathogens 2015;4:422–430.

58. Peirano G, van der Bij AK, Freeman JL, Poirel L, Nordmann P et al. Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamas: global distribution of the H30-Rx sublineage. Antimicrob Agents Chemother 2014;58:3762–3767.

59. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio 2016;7:e02162-15.

60. Paul S, Linardopoulou EV, Billig M, Tchesnokova V, Price LB et al. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli. J Bacteriol 2013;195:231–242.

61. Ciesielczuk H, Doumith M, Hope R, Woodford N, Wareham DW. Characterization of the extra-intestinal pathogenic Escherichia coli ST131 clone among isolates recovered from urinary and bloodstream infections in the United Kingdom. J Med Microbiol 2015;64:1496–1503.

62. Day MJ, Rodríguez I, van Essen-Zandbergen A, Dierikx C, Kadlec K et al. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J Antimicrob Chemother 2016;71:1178–1182.

63. Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N. Characterization of plasmids encoding extended-spectrum β-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J Antimicrob Chemother 2012;67:878–885.

64. Chen L, Hu H, Chavda KD, Zhao S, Liu R et al. Complete sequence of a KPC-producing IncN multidrug-resistant plasmid from an epidemic Escherichia coli sequence type 131 strain in China. Antimicrob Agents Chemother 2014;58:2422–2425.

65. Partridge SR, Ellem JA, Tetu SG, Zong Z, Paulsen IT et al. Complete sequence of pJE143, a pir-type plasmid carrying ISEcp1-blactCTX–M–15 from an Escherichia coli ST131 isolate. Antimicrob Agents Chemother 2011;55:5933–5935.

66. Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ et al. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 2009;53:4472–4482.

67. Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, Saunders JR. Mosaic plasmids and mosaic replications: evolutionary lessons from the analysis of genetic diversity in IncFII-related replications. Microbiology 2000;146:2267–2275.

68. Vila L, Garcia-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010;65:2518–2529.

69. Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S et al. Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone. PLoS One 2015;10:e0122369.

70. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 2016;12:e1006280.

71. Klein EY, van Boeckel TP, Martinez EM, Pant S, Gandra S et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 2018;115:E3463–E3470.

72. Meyer E, Schwab F, Schroeren-Boersch B, Gastmeier P. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Crit Care 2010;14:R113.

73. McLaughlin M, Advincula MR, Maclzynski M, Qi C, Bolon M et al. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob Agents Chemother 2013;57:5131–5133.

74. Nordmann P, Dortlet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012;18:263–272.

75. Logan JK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 2017;215:528–536.

76. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:1151–1161.

77. Tavares CP, Pereira PS, Marques EA, Faria C, de Souza MP et al. Molecular epidemiology of KPC-2-producing Enterobacteriaceae (non-Klebsiella pneumoniae) isolated from Brazil. Diagn Microbiol Infect Dis 2015;82:326–330.

78. Bradford PA, Brait AD, Urban C, Visalli M, Mariano N et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin Infect Dis 2004;39:55–60.

79. Castanheira M, Costello AJ, Deshpande LM, Jones RN. Expansion of clonal complex 258 KPC-2-producing Klebsiella pneumoniae in Latin American hospitals: report of the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2012;56:1668–1669.

80. Castanheira M, Farrell SE, Deshpande LM, Mendes RE, Jones RN. Prevalence of β-lactamace-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY antimicrobial surveillance program (2010). Antimicrob Agents Chemother 2013;57:3012–3020.
81. Chiang T, Mariano N, Urban C, Colon-Urban R, Grenier L et al. Identification of carbapenem-resistant Klebsiella pneumoniae harboring KPC enzymes in New Jersey. Microb Drug Resist 2007;13:235–240.

82. Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J Antimicrob Chemother 2011;66:1510–1513.

83. Richter SN, Frasson I, Franchin E, Bergo C, Lavezzo E et al. KPC-mediated resistance in Klebsiella pneumoniae in two hospitals in Padua, Italy, June 2009–December 2011: massive spreading of a KPC-3-encoding plasmid and involvement of non-intensive care units. Gut Pathog 2012;4:7.

84. Zhang R, Liu L, Zhou H, Chan EW, Li J et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine 2017;19:98–106.

85. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 2009;53:3365–3370.

86. Breurec S, Guessennad N, Timinoumi M, Le TA, Cao V et al. Klebsiella pneumoniae resistant to third-generation cephalosporins in two African and two Vietnamese major towns: multiclonal population structure with two major international clonal groups, CG15 and CG258. Clin Microbiol Infect 2013;19:349–355.

87. Chen L, Mathema B, Chavda KD, Deleo FR, Bonomo RA et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014;22:484–496.

88. Tegmark-Wisell K, Haeggman S, Gezelius L, Thompson O, Gustafsson I et al. Identification of Klebsiella pneumoniae carbapenemase in Sweden. Euro Surveill 2007;12:3333.

89. Maltezou HC, Giakkoupi P, Maragos A, Bolikas M, Raftopoulos V et al. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect 2009;58:213–219.

90. Pournaras S, Protonotariou E, Voulgaris E, Christo I, Dimitriouli E et al. Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother 2009;64:348–352.

91. Souli M, Galani I, Antoniadou A, Papadomicheleakis E, Poulakou G et al. An outbreak of infection due to β-lactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis 2010;50:364–373.

92. Kontopoulou K, Protonotariou E, Vasilakos K, Kriti M, Kotelis A et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin. J Hosp Infect 2010;76:70–73.

93. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 2015;70:2133–2143.

94. Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitriglia V et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 2011;17:1798–1803.

95. Lübbert C, Becker-Rux D, Rodloff AC, Laudi S, Busch T et al. Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case-control analysis. Infection 2014;42:309–316.

96. Bogarts P, Montesinos I, Rodriguez-Villalobos H, Blairon L, Deplano A et al. Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing KPC-2 carbapenemase in Belgium. J Antimicrob Chemother 2010;65:361–362.

97. Chua KY, Grayson ML, Burgess AN, Lee JY, Howden BP. The growing burden of multidrug-resistant infections among returned Australian travellers. Med J Aust 2014;200:116–118.

98. Lopez JA, Correa A, Navon-Venezia S, Correa AL, Torres JA et al. Intercontinental spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain. Clin Microbiol Infect 2011;17:52–56.

99. Naas T, Nordmann P, Vedel G, Poyart C. Plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother 2005;49:4423–4424.

100. Samuelsen O, Naseer U, Tofteland S, Skutlåberg DH, Onken A et al. Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J Antimicrob Chemother 2009;63:654–658.

101. Wendt C, Schütt S, Dalpke AH, Konrad M, Mieth M et al. First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur J Clin Microbiol Infect Dis 2010;29:563–570.

102. Kanerva M, Skogberg K, Ryynänen K, Pahkamäki A, Jalava J et al. Coincidental detection of the first outbreak of carbapenemase-producing Klebsiella pneumoniae colonisation in a primary care hospital, Finland, 2013. Euro Surveill 2015;20:21172.

103. Kwong JC, Lane CR, Romanes F, Gonçalves da Silva A, Easton M et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ 2018;6:e4210.

104. Chen S, Hu F, Xu X, Liu Y, Wu W et al. High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum β-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Antimicrob Agents Chemother 2011;55:2493–2496.

105. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:785–796.

106. Qi Y, Wei Z, Ji S, Du X, Shen P et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother 2011;66:307–312.

107. Stoesser N, Sheppard AE, Peirano G, Anson LW, Pankhurst L et al. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci Rep 2017;7:5917.

108. Cuzon G, Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP et al. Characterization of an atypical IncX3 plasmid pKPC-NY79 carrying blablaKPC. Antimicrob Agents Chemother 2013;57:5019–5025.

109. Chmelnitsky I, Shklyar M, Leavitt A, Sadovsky E, Navon-Venezia S et al. Genetic structures at the origin of acquisition of the β-lactamase blablaKPC gene. Antimicrob Agents Chemother 2008;52:1257–1263.

110. Chen L, Chavda KD, Al Laham N, Melano RG, Jacobs MR et al. Complete nucleotide sequence of a blablaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother 2013;57:5019–5025.

111. Andrade LN, Curiao T, Ferreira JC, Longo JM, Clímaco EC et al. Intercontinental spread from Israel to Colombia of a KPC-2 encoding plasmid in Enterobacteriaceae-comparative genomics. Diagn Microbiol Infect Dis 2014;79:255–260.

112. Ho PL, Cheung YY, Lo WU, Li Z, Chow KH et al. Molecular characterization of an atypical IncX3 plasmid pKPC-NY79 carrying
blaKPC-2 in a Klebsiella pneumoniae. Curr Microbiol 2013;67:493–498.

114. Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci USA 2017;114:1135–1140.

115. Esteban-Cantos A, Araci B, Bautista V, Ortega A, Lara N et al. The carbapenemase-producing Klebsiella pneumoniae population is distinct and more clonal than the carbapenem-susceptible population. Antimicrob Agents Chemother 2017;61:e02520-16.

116. Gonzalez SA, Pasteran FG, Faccione D, Tijet N, Rapoport M et al. Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clin Microbiol Infect 2011;17:1520–1524.

117. Weterings V, Zhou K, Rossen JW, van Stenis D, Thewessen E et al. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis 2015;34:1647–1655.

118. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. Nested russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob Agents Chemother 2016;60:3767–3778.

119. Kanamori HPC, Juliano JJ, van Duin D, Cairns BA, Weber DJ et al. A prolonged outbreak of KPC-3-producing Enterobacter cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance transmission at a large academic burn center. Antimicrob Agents Chemother 2016;61:e01516-16.

120. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother 2015;59:1656–1663.

121. Zong Z, Yu F, Connor C, Fenn S, McNally A. Complete genomic characterisation of two Escherichia coli lineages responsible for a cluster of carbapenem resistant infections in a Chinese hospital. bioRxiv 2018.

122. Pi H, Cheung YY, Wang Y, Wu L, Lai EL et al. Characterization of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae from a healthcare region in Hong Kong. European J Clin Microbiol Infect Dis 2016;35:379–385.

123. Chavda KD, Chen L, Jacobs MR, Bonomo RA, Kreiswirth BN. Molecular diversity and plasmid analysis of KPC-producing Escherichia coli. Antimicrob Agents Chemother 2016;60:4073–4081.

124. Kazmierzczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ et al. Multyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016;60:1067–1078.

125. Bathoorn E, Rossen JW, Lokate M, Friedrich AW, Hammerum AM. Isolation of an NDM-5-producing ST16 Klebsiella pneumoniae from a Dutch patient without a travel history abroad. August 2015. Euro Surveill 2015;20:30040.

126. Huang TW, Wang JT, Liao TL, Lai JF et al. Complete sequences of two plasmids in a blaNDM-1-positive Klebsiella oxytoca isolate from Taiwan. Antimicrob Agents Chemother 2013;57:4072–4076.

127. Stoesser N, Giess A, Batty EM, Sheppard AE, Walker AS et al. Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob Agents Chemother 2014;58:7347–7357.

128. Wailan AM, Paterson DL, Kennedy K, Ingram PR, Bursle E et al. Genomic characteristics of NDM-producing Enterobacteriaceae isolates in Australia and their blaNDM-genetic contexts. Antimicrob Agents Chemother 2016;60:136–141.

129. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009;60:5046–5054.

130. Chihara S, Okuzumi K, Yamamoto Y, Oikawa S, Hishinuma A. First case of New Delhi metallo-β-lactamase 1-producing Escherichia coli infection in Japan. Clin Infect Dis 2011;52:153–154.

131. Gaibani P, Ambretti S, Berlingeri A, Cordovana M, Farruggia P et al. Outbreak of NDM-1-producing Enterobacteriaceae in northern Italy, July to August 2011. Euro Surveill 2011;16:20027.

132. McDermott H, Morris D, MacArdie E, O’Mahony G, Kelly S et al. Isolation of NDM-1-producing Klebsiella pneumoniae in Ireland. July 2011. Euro Surveill 2012;17:20087.

133. Nielsen JB, Hansen F, Littauer P, Schonning K, Hammerum AM. An NDM-1-producing Escherichia coli obtained in Denmark has a genetic profile similar to an NDM-1-producing E. coli isolate from the UK. J Antimicrob Chemother 2012;67:2049–2051.

134. Osterblad M, Kirveskari J, Hakanen AJ, Tissari P, Vaara M et al. Carbapenemase-producing Enterobacteriaceae in Finland: the first years (2008–11). J Antimicrob Chemother 2012;67:2860–2864.

135. Oteo J, Domingo-Garcia D, Fernandez-Romero S, Saez D, Guiu A et al. Abdominal abscess due to NDM-1-producing Klebsiella pneumoniae in Spain. J Med Microbiol 2012;61:864–867.

136. Peirano G, Ahmed-Bentley J, Woodford N, Pitout JD. New Delhi metallo-β-lactamase from traveler returning to Canada. Emerg Infect Dis 2011;17:242–244.

137. Pfeifer Y, Witte W, Holfelder M, Busch J, Nordmann P et al. NDM-1-producing Escherichia coli in Germany. Antimicrob Agents Chemother 2011;55:1318–1319.

138. Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob Agents Chemother 2010;54:4914–4916.

139. Samuelsen Ø, Thilensen CM, Hansen F, Littauer P, Schonning K et al. Emergence of New Delhi metallo-β-lactamase in clinical isolates of Escherichia coli in Norway. Emerg Infect Dis 2011;17:306–307.

140. Williamson DA, Sidjabat HE, Freeman JT, Roberts SA, Silvey A et al. Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1) and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int J Antimicrob Agents 2012;39:529–533.

141. Wu HS, Chen T-L, Chen IC-J, Huang M-S, Wang F-D et al. First identification of a patient colonized with Klebsiella pneumoniae carrying blaNDM-1 in Taiwan. J Chin Med Assoc 2010;73:596–598.

142. Zarfel G, Hoenigl M, Leitner E, Salzer HJ, Feierl G et al. Emergence of New Delhi metallo-β-lactamase, Austria. Emerg Infect Dis 2011;17:129–130.

143. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010;10:597–602.

144. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 2011;11:355–362.

145. Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014;2014:249856.

146. Albigler B, Glaser C, Struelsen MJ, Grundmann H, Monnet DL et al. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill 2015;20:30062.
148. Phan HTT, Stoesser N, Maciucia IE, Toma F, Szekely E et al. Illumina short-read and MinION long-read WGS to characterize the molecular epidemiology of an NDM-1 *Serratia marcescens* outbreak in Romania. *J Antimicrob Chemother* 2018;73:672–679.

149. Bosch T, Lutgens SPM, Hermans MHA, WEVER PC, Schneeberger PM et al. Outbreak of NDM-1-producing *Klebsiella pneumoniae* in a Dutch hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated health care centers. *J Clin Microbiol* 2015;53:2380–2390.

150. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among *Enterobacteriaceae* worldwide. *Clin Microbiol Infect* 2014;20:821–830.

151. Sekizuka T, Matsui M, Yamane K, Takeuchi F, Ohnishi M et al. Complete sequencing of the *bla*_{NDM-1}-positive IncA/C plasmid from *Escherichia coli* ST38 isolate suggests a possible origin from plant pathogens. *PLoS One* 2011;6:e25534.

152. Villa L, Poirel L, Nordmann P, Carta C, Carattoli A. Complete sequencing of an IncN plasmid carrying the *bla*_{NDM-1}, *bla*_{RTX-M-15} and mrrB1 genes. *J Antimicrob Chemother* 2012;67:1645–1650.

153. Wailan AM, Sartor AL, Zowawi HM, Perry JD, Paterson DL et al. Genetic contexts of *bla*_{NDM-1} in patients carrying multiple NDM-producing strains. *Antimicrob Agents Chemother* 2015;59:7405–7410.

154. Giske CG, Fröding I, Hasan CM, Turlej-Rogacka A, Toleman M et al. Diverse sequence types of *Klebsiella pneumoniae* contribute to the dissemination of *bla*_{NDM-1} in India, Sweden, and the United Kingdom. *Antimicrob Agents Chemother* 2012;56:2735–2738.

155. Khong WX, Xia E, Marimuthu K, Xu W, Teo YY et al. Local transmission and global dissemination of New Delhi metallo-β-lactama (NDM): a whole genome analysis. *BMJ Genomics* 2016;1:17:452.

156. Wailan AM, Sidjabat HE, Yam WK, Alikhan NF, Petty NK et al. Mechanisms involved in acquisition of *bla*_{NDM} genes by IncA/C2 and IncFII plasmids. *Antimicrob Agents Chemother* 2016;60:4082–4088.

157. Toleman MA, Spencer J, Jones L, Walsh TR. *bla*_{NDM-1} is a chimera likely constructed in Acinetobacter baumannii. *Antimicrob Agents Chemother* 2012;56:2773–2776.

158. Lauretti L, Riccio M, Mazzariol A, Cornaglia G, Amicosante G et al. Cloning and characterization of *bla*_{NDM} in a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. *Antimicrob Agents Chemother* 1999;43:1584–1590.

159. Matsumura Y, Peirano G, Devinney R, Bradford PA, Motyl MR et al. Genomic epidemiology of global VIM-producing *Klebsiella pneumoniae*. *Antimicrob Agents Chemother* 2011;55:2380–2390.

160. Esposito EP, Gaiarsa S, Del Franco M, Crivaro V, Bernardo M et al. A novel IncA/C1 group conjugative plasmid, encoding VIM-1 metallo-β-lactamase, mediates the acquisition of carbapenem resistance in ST104 *Klebsiella pneumoniae* isolates from neonates in the intensive care unit of V. Monaldi Hospital in Naples. *Front Microbiol* 2017;8:2135.

161. Papagiannitis CC, Izdebski R, Baraniak A, Fiett J, Herda M et al. Survey of metallo-β-lactamase-producing *Enterobacteriaceae* colonizing patients in European ICUs and rehabilitation units, 2008–11. *J Antimicrob Chemother* 2015;70:1981–1988.

162. Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N et al. Plasmid-mediated dissemination of the metallo-β-lactamase gene *bla*_{IMP} among clinically isolated strains of *Serratia marcescens*. *Antimicrob Agents Chemother* 1995;39:824–829.

163. Sidjabat HE, Townell N, Nimmo GR, George NM, Robson J et al. Dominance of IMP-4-producing *Enterobacter cloacae* among carbapenemase-producing *Enterobacteriaceae* in Australia. *Antimicrob Agents Chemother* 2015;59:4059–4066.

164. Matsumura Y, Peirano G, Motyl MR, Adams MD, Chen L et al. Global molecular epidemiology of IMP-producing *Enterobacteriaceae*. *Antimicrob Agents Chemother* 2017;61:e02729-16.

165. Yamazaki Y, Funaki T, Yasuhara T, Sugano E, Ugajin K et al. Molecular characteristics of a carbapenemase-producing *Enterobacter* species and *Klebsiella* species outbreak in a Japanese University Hospital. *Showa Univer J Med Sciences* 2017;29:163–172.

166. Yamamoto N, Asada R, Kawahara R, Hagiya H, Akeda Y et al. Prevalence of, and risk factors for, carriage of carbapenem-resistant *Enterobacteriaceae* among hospitalized patients in Japan. *J Hosp Infect* 2017;97:212–217.

167. Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-β-lactamase gene *bla*_{IMP} among Gram-negative pathogens in a clinical setting in Australia. *Clin Infect Dis* 2005;2005:1549–1556.

168. Sidjabat HE, Robson J, Paterson DL. Draft genome sequences of two IMP-4-producing *Escherichia coli* sequence type 131 isolates in Australia. *Genome Announc* 2015;3:e00983-15.

169. Stoesser N, Sheppard AE, Peirano G, Sebra RP, Lynch T et al. First report of *bla*_{IMP-14} on a plasmid harboring multiple drug resistance genes in *Escherichia coli* sequence type 131. *Antimicrob Agents Chemother* 2016;60:5068–5071.

170. Matsue LF, Boyd DA, Fuller J, Haldane D, Hoang L et al. Characterization of OXA-48-like carbapenemase producers in Canada, 2011–14. *J Antimicrob Chemother* 2018;73:626–633.

171. Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-48 β-lactamase-producing *Enterobacteriaceae* over a 11-year period, 2001 to 2011. *Euro Surveill* 2013;18:20549.

172. Potron A, Kalpoe J, Poirel L, Nordmann P. European dissemination of a single OXA-48-producing *Klebsiella pneumoniae* clone. *Clin Microbiol Infect* 2011;17:E24–E26.

173. Kilic A, Aktas Z, Bedir O, Gumral R, Bulut Y et al. Identification and characterization of OXA-48 producing, carbapenem-resistant *Enterobacteriaceae* isolates in Turkey. *Ann Clin Lab Sci* 2011;41:161–166.

174. Moubareck CA, Moutthaf SF, Pál T, Ghazawi A, Halat DH et al. Clonal emergence of *Klebsiella pneumoniae* ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates. *Int J Antimicrob Agents* 2018;52:90–95.

175. Solgi H, Giske CG, Badmasti F, Aghamohammad S, Havaei SA et al. Emergence of carbapenem resistant *Escherichia coli* isolates producing *bla*_{IMP} and *bla*_{OXA-48}-like carried on IncA/C and IncL/M plasmids at two Iranian university hospitals. * Infect Genet Evol* 2017;55:318–323.

176. Loucif L, Cheлaghma W, Helis Y, Sebaa F, Baoune RD et al. First detection of OXA-48-producing *Klebsiella pneumoniae* in community-acquired urinary tract infection in Algeria. *J Glob Antimicrob Resist* 2018;12:115–116.

177. Jhang J, Wang HY, Yoo G, Hwang GY, Uh Y et al. NDM-5 and OXA-58 co-producing uropathogenic *Escherichia coli* isolate: first case in Korea. *Ann Lab Med* 2018;38:277–279.

178. Poirel L, Héritiier C, Nordmann P. Chromosome-embedded amider class D β-lactamase of *Shewanella oneidensis* as a progenitor of carbapenem-hydrolyzing oxacillinase. *Antimicrob Agents Chemother* 2004;48:348–351.

179. Lyman M, Walter M, Lonsway D, Rasheed K, Limbago B et al. Notes from the field: carbapenem-resistant *Enterobacteriaceae*
producing OXA-48-like carbapenemases – United States, 2010–2015. MMWR 2015;64:1315–1316.

183. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012;67:1597–1606.

184. Auber t D, Naas T, Hérilier C, Poirel L, Nordmann P. Functional characterization of IS1599, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J Bacteriol 2006;188:6506–6514.

185. Poirel L, Bonnin RA, Nordmann P. Genetic features of the wide-spread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012;56:559–562.

186. Giani T, Conte V, di Pilato V, Aschbacher R, Weber C et al. Escherichia coli from Italy producing OXA-48 carbapenemase encoded by a novel Tn1999 transposon derivative. Antimicrob Agents Chemother 2012;56:2211–2213.

187. Potron A, Nordmann P, Rondinaud E, Jaureguy F, Poirel L. A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance. J Antimicrob Chemother 2013;68:476–477.

188. Findlay J, Hopkins KL, Loy R, Doumith M, Meunier D et al. OXA-48-like carbapenemases in the UK: an analysis of isolates and cases from 2007 to 2014. J Antimicrob Chemother 2017;72:1340–1349.

189. Gaibani P, Scarlatti E, Benni C, Pongolini S, Ambretti S et al. Characterization of an IncL/M plasmid carrying blaOXA-48 in a Klebsiella pneumoniae strain from Italy. New Microbiol 2017;40:284–285.

190. Izdebski R, Baraniak A, Zabicka D, Machulskas M, Urbanowicz P et al. Enterobacteriaceae producing OXA-48-like carbapenemases in Poland, 2013-January 2017. J Antimicrob Chemother 2018;73:620–625.

191. Lutgring JD, Zhu W, de Man TJB, Avillan JJ, Anderson KF et al. Phenotypic and genotypic characterization of Enterobacteriaceae producing oxacillinase-48-like carbapenemases, United States. Emerg Infect Dis 2018;24:700–709.

192. Skalova A, Chudejova K, Rotova V, Medvecky M, Studentova V et al. Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic and evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother 2016;61:e01889-16.

193. Yu F, Wang S, Lv J, Qi X, Guo Y et al. Coexistence of OXA-48-producing Klebsiella pneumoniae and Escherichia coli in a hospitalized patient who returned from Europe to China. Antimicrob Agents Chemother 2017;61:e02580-16.

194. Balkan II, Aygün G, Aydin S, Mutcali SI, Kara Z et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: treatment and survival. Int J Infect Dis 2014;26:51–56.

195. Castanheira M, Deshpande LM, Matthai D, Bell JM, Jones RN et al. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY antimicrobial surveillance program, 2006–2007. Antimicrob Agents Chemother 2011;55:1274–1278.

196. Decousser JW, Poirel L, Desroches M, Jayol A, Denamur E et al. Failure to detect carbapenem-resistant Escherichia coli producing OXA-48-like using the Xpert Carba-R assay®. Clin Microbiol Infect 2015;21:e9–e10.

197. Kalpoe JS, Al Naiemi N, Poirel L, Nordmann P. Detection of an Ambler class D OXA-48-type β-lactamase in a Klebsiella pneumoniae strain in The Netherlands. J Med Microbiol 2011;60:677–678.

198. Potron A, Nordmann P, Lefeuille E, Al Maskari Z, Al Rashdi F et al. Characterization of OXA-181, a carbapenem-hydrolyzing class D β-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother 2011;55:4896–4899.

199. Williamson DA, Heffernan H, Sidjabat H, Roberts SA, Paterson DL et al. Intercountry transfer of OXA-181-producing Klebsiella pneumoniae into New Zealand. J Antimicrob Chemother 2011;66:2888–2890.

200. Cho SY, Huh HJ, Baek JY, Chung NY, Ryu JG et al. Klebsiella pneumoniae co-producing NDM-5 and OXA-181 carbapenemases, South Korea. Emerg Infect Dis 2015;21:1088–1089.

201. Gamal D, Fernández-Martínez M, El-Defrawy I, Ocampo-Sosa AA, Martínez-Martínez L. First identification of NDM-5 associated with OXA-181 in Escherichia coli from Egypt. Emerg Microbes Infect 2016;5:e30.

202. Overballe-Petersen S, Roer L, Ng K, Hansen F, Justesen US et al. Complete nucleotide sequence of an Escherichia coli sequence type 41 strain carrying blanDM-5 on an IncF multidrug resistance plasmid and blanOXA-181 on an IncX3 Plasmid. Genome Announc 2018;6:e01542-17.

203. Adriaenssens N, Coenen S, Versporten A, Muller A, Minalu G et al. European surveillance of antimicrobial consumption (ESAC): outpatient antibiotic use in Europe (1997–2009). J Antimicrob Chemother 2011;66:v12 vi12.

204. Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Gendenner PJJ et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis 2017;17:78–85.

205. Bengtsson-Palme J, Angelin M, Huss M, Kjellqvist S, Kristiansson E et al. The human gut microbiome as a trans- portier of antibiotic resistance genes between continents. Antimicrob Agents Chemother 2015;59:6551–6560.

206. Lübbert C, Straube L, Stein C, Makarewicz O, Schubert S et al. Colonization with extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol 2015;305:148–156.

207. Ruppe E, Armand-Lefèvre L, Estellat C, Consigny PH, El Mniai A et al. High rate of acquisition but short duration of carriage of multidrug-resistant Enterobacteriaceae after travel to the tropics. Clin Infect Dis 2015;61:593–600.

208. von Wintersdorff CJ, Penders J, Stoberbingh EE, Oude Lashof AM, Hoebe CJ et al. High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 2014;20:649–657.

209. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animal and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16:161–168.

210. European Centre for Disease Prevention and Control. Summary of the Latest Data on Antibiotic Consumption in the European Union. Stockholm: European Centre for Disease Prevention and Control; 2017.

211. Zheng B, Dong H, Xu H, Lv J, Zhang J et al. Coexistence of MCR-1 and NDM-1 in clinical Escherichia coli isolates. Clin Infect Dis 2016;63:1393–1395.

212. Newton-Foot M, Snyman Y, Maloba MRB, Whitelaw AC. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa. Antimicrob Resist Infect Control 2017;6:78.

213. Tian G-B, Doi Y, Shen J, Walsh TR, Wang Y et al. MCR-1-producing Klebsiella pneumoniae outbreak in China. Lancet Infect Dis 2017;17:577.

214. Li A, Yang Y, Mao J, Chavda KD, Mediavilla JR et al. Complete sequences of mcr-1-harboring plasmids from extended-spectrum-β-lactamase- and carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2016;60:4351–4354.

215. Skov RL, Monnet DL. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill 2016;21:30155.

216. Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 2016;71:2066–2070.
255. Espedido BA, Partridge SR, Iredell JR. blaIMP-4 in different genetic contexts in Enterobacteriaceae isolates from Australia. *Antimicrob Agents Chemother* 2008;52:2984–2987.

256. Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-β-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. *Clin Infect Dis* 2005; 41:1549–1556.

257. Tato M, Coque TM, Baquero F, Cantón R. Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother* 2010;54:320–327.

258. Loli A, Tzouvelekis LS, Tzelepi E, Carattoli A, Vatopoulos AC et al. Sources of diversity of carbapenem resistance levels in *Klebsiella pneumoniae* carrying blaVIM-1. *J Antimicrob Chemother* 2006;58:669–672.

259. Luzzaro F, Docquier JD, Colinon C, Endimiani A, Lombardi G et al. Emergence in *Klebsiella pneumoniae* and *Enterobacter cloacae* clinical isolates of the VIM-4 metallo-β-lactamase encoded by a conjugative plasmid. *Antimicrob Agents Chemother* 2004;48: 648–650.

260. Rieber H, Frontzek A, Pfeifer Y. Emergence of metallo-β-lactamase GIM-1 in a clinical isolate of *Serratia marcescens*. *Antimicrob Agents Chemother* 2012;56:4945–4947.

261. Sekiguchi J, Morita K, Kitao T, Watanabe N, Okazaki M et al. KHM-1, a novel plasmid-mediated metallo-β-lactamase from a *Citrobacter freundii* clinical isolate. *Antimicrob Agents Chemother* 2008;52:4194–4197.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.