ABSTRACT

Waldheimia glabra (Decne.) Rgl. 1879 (family Asteraceae) is a perennial herb with high economic and medicinal values. In this study, we sequenced the complete chloroplast (cp) genome of *W. glabra* by high-throughput Illumina sequencing. The size of the *W. glabra* cp genome is 151,499 bp, with overall GC content of 37.3%. It contains a large single copy and a small single copy region of 83,078 bp and 18,457 bp, respectively, separated by a pair of inverted repeats regions of 24,982 bp. We also discovered 131 genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes in the genome. The maximum-likelihood phylogenetic tree demonstrated that *W. glabra* is closely related to *Leucanthemella linearis*.

Novaseq platform. The results were stored in the FASTQ file format.

Approximately 4.25 Gb of clean data were generated after filtering. The GetOrganelle (Jin et al. 2018) and SOAPdenovo software (Luo et al. 2012) assessed and assembled the paired-end reads. We used OGDRAW program to draw circular chloroplast genome map (Marc et al. 2013). The cp genome sequence of *W. glabra* has been submitted to GenBank (accession number: MW628520).

The cp DNA of *W. glabra* is 151,499 bp long, with an average sequencing depth of 467x. It contains a large single-copy (LSC) region of 83,078 bp and a small single-copy (SSC) region of 18,457 bp, which is separated by a pair of inverted repeats (IR) regions (24,982 bp). The overall GC content of the cp genome is 37.3%. We annotated a total of 131 functional genes, including 86 protein-coding genes, 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. Among them, 15 genes contain only one intron and 2 genes contain two introns. In addition, one ribosomal-protein gene has trans-splicing. Gene duplication was found in the IR regions, including one protein-coding gene, four tRNA genes, and four rRNA genes. Our result is consistent with those obtained from other Asteraceae species (Zhang et al. 2016).

Since reports on the floristic study of this high-altitude plant species are limited, its interspecific relationship with other members of the Asteraceae family is still unclear. A phylogenetic analysis compared the cp genome of *W. glabra* with those from 21 Asteraceae species, including *Chrysanthemum, Artimisia, Crossostephium, Opisthopappus*, and other genera. *Arabidopsis thaliana* was used as an outgroup for the study. The maximum-likelihood phylogenetic tree demonstrated that *W. glabra* is closely related to *Leucanthemella linearis*.

ARTICLE HISTORY

Received 15 March 2021
Accepted 12 June 2021

KEYWORDS

Asteraceae; chloroplast genome; phylogenetic relationships; *Waldheimia glabra*
likelihood phylogenetic tree shows that *W. glabra* is most closely related to *Leucanthemella linearis* with high bootstrap values. It clusters with *Stilpnolepis centiflora*, *Chrysanthemum*, and *Artimisia*. *Chrysanthemum* and *Artimisia* are grouped together (Figure 1). Our result is consistent with previous studies on the phylogenetic relationship of Asteraceae species (Panero and Crozier 2016; Wang et al. 2020). Our research lays the foundation for the study of genetic diversity and phylogeny of *W. glabra*.

Acknowledgments

The authors would like to thank TopEdit (www.topeditsci.com) for linguistic assistance during preparation of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was funded by the National Key R&D Program of China [grant number 2018YFD1000401] and the World-Class Discipline Construction and Characteristic Development Guidance Funds for Beijing Forestry University [grant number 2019XKJS0323].

ORCID

Wang Hai http://orcid.org/0000-0003-0832-3050

Wei Li http://orcid.org/0000-0002-3886-933X

Yi-Zeng Lu http://orcid.org/0000-0002-5198-0155

Data availability statement

The genome sequence data that support the findings of this study are openly available in the GenBank of NCBI at (https://www.ncbi.nlm.nih.gov) under the accession no. MW628520 (https://www.ncbi.nlm.nih.gov/nuccore/MW628520.1/). The associated BioProject, SRA and Bio-Sample number are PRJNA702561 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA702561), SRR14664915 and SAMN19356817 respectively.
References

Bhatnagar M, Avasthi AS, Singh S, Ghosal S. 2017. Evaluation of anti-leishmanial and antibacterial activity of Waldheimia tomentosa (Asteraceae), and chemical profiling of the most bioactive fraction. Trop J Pharm Res. 16(9):2169–2178.

Du FK, Lang T, Lu S, Wang Y, Li J, Yin K. 2015. An improved method for chloroplast genome sequencing in non-model forest tree species. Tree Genet Genomes. 11(6):114.

Jin J, Yu WB, Yang JB, Song Y, Li DZ, Yi T. 2018. GetOrganelle: a simple and fast pipeline for de novo assembly of a complete circular chloroplast genome using genome skimming data. bioRxiv. 256479.

Li J, Wang S, Yu J, Zhou S. 2013. An improved method for extracting plant DNA. Chin Bull Bot. 48(1):78–78.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 1(1):18–18.

Marc L, Oliver D, Sabine K, Ralph B. 2013. OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41(W1):W575–W581.

Panero JL, Crozier BS. 2016. Macroevolutionary dynamics in the early diversification of Asteraceae. Mol Phylogenet Evol. 99:116–132.

Wang J, Qian Q, He R, Zhang H, Wang J, Hu Y, Wang L, Li Y. 2020. The complete chloroplast genome of Saussurea medusa (Asteraceae), a rare subnival plant in Qinghai-Tibetan Plateau. Mitochondrial DNA Part B. 5(3):3563–3564.

Xu ZZ, Zhang CP, Jiang XQ, Guo X, Li WQ, Liu QH, Wang KL, Li W. 2019. The complete chloroplast genome of Styrax japonicus. Mitochondrial DNA Part B. 5(1):81–82.

Zhang JM, Huang B, Chen XL. 2016. The complete chloroplast genomes of Asteraceae species. Res Rev J Bot Sci. 5:24–28.