Abstract

We discuss how four-lepton decays of the Z boson probe currently unconstrained flat directions in the parameter space of the Standard Model Effective Field Theory (SMEFT). We derive the constraints from these decays on four-lepton operators in the SMEFT and show how the LHC data for this process complements probes from neutrino-trident production. Future differential measurements with high-luminosity data can strongly constrain four-lepton operators and remove all flat directions in the four-muon sector of the SMEFT. We comment briefly on the possibility of using rare Z-decays to τ-leptons to probe untested directions in the SMEFT parameter space.
1 Introduction

The search for physics beyond the Standard Model (SM) at the Large Hadron Collider (LHC) and other experiments has so far yielded no new particles. This lack of evidence for new electroweak-scale physics suggests that there is a mass gap between the SM and the next energy scale at which new particles appear. Although the search for new particles will continue in the future at the high-luminosity LHC, it is becoming increasingly important to search for potentially small and subtle indirect signatures of new physics, and to understand the constraints imposed by current data on high-scale new physics. A systematic framework for characterizing deviations from the SM in the presence of no new electroweak-scale particle is the SM effective field theory (SMEFT). The SMEFT is constructed by allowing higher-dimensional operators containing only SM fields that respect the SM gauge symmetries. These operators are suppressed by an energy scale Λ at which the effective theory breaks down and new fields must be added to the Lagrangian. The leading lepton-number conserving dimension-6 operators characterizing deviations from the SM have been classified \[1–3\].

Significant effort has been devoted to performing global analyses of the available data within the SMEFT framework with varying assumptions \[4–18\]. Since the general dimension-6 SMEFT Lagrangian contains 2499 parameters for three generations assuming baryon-number conservation, quite often additional flavor symmetries such as Minimal Flavor Violation (MFV) are assumed in order to reduce the number of Wilson coefficients. Assuming MFV implies that the flavor structure of the SMEFT Wilson coefficients are carried by combinations of Yukawa matrices. This leads to several familiar intuitions \[19,20\]: for example, that the coefficients of scalar and dipole operators are suppressed by small fermion masses for the lighter generations, and that vector four-fermion interactions are generation-independent. Flavor assumptions such as MFV lead to several advantages. In general fits without such flavor assumptions, flat directions exist since current experimental constraints cannot access all possible Wilson coefficients. MFV also effectively suppresses strongly-constrained flavor-violating effects.

Despite these advantages it remains important to extend fits within the SMEFT framework beyond the MFV assumption. Going beyond MFV allows global fits to encompass a broader range of ultraviolet completions. For example, models which attempt to explain discrepancies in rare B-meson decays have a structure that violates lepton flavor universality \[21\]. Allowing for flavor structure in the SMEFT requires addressing and removing the flat directions between Wilson coefficients that appear. The removal of flat directions in fits to SMEFT Wilson coefficients require the use of additional processes and experiments \[22\]. In this work we point out that the rare Z boson decays to four-leptons offer the potential to probe combinations of four-fermion Wilson coefficients not accessible in other measurements. In particular, only a single combination of four-muon Wilson coefficients is currently constrained in global fits by the neutrino-trident production process $\gamma^*\nu_\mu \rightarrow \nu_\mu\mu^+\mu^-$ \[13\].

Four-muon Z boson decays at the LHC probe orthogonal combinations of these Wilson coefficients, allowing for a complete determination of the four-muon operators in the SMEFT. The potential of four-lepton decay modes to constrain physics beyond the SM has been inves-
tigated previously, particularly in the context of Z' models \[23,24\]. We study the constraints imposed by current LHC data, as well as potential future constraints at a high-luminosity LHC. Current measurements of this mode consider only the total rate. We point out that differential measurements can completely determine all four-muon Wilson coefficients, which motivates their study with future high-luminosity data. Although we focus here on the four-muon mode as experimental searches for $Z \rightarrow 4\mu$ exist, other channels such as $Z \rightarrow 2\tau2\mu$ and $Z \rightarrow 4\tau$ may provide probes of completely untested parameters in the SMEFT. We comment briefly on this possibility in our conclusions.

Our paper is organized as follows. We review aspects of the SMEFT needed for our analysis in Section 2. In Section 3 we study the constraints imposed by inclusive LHC measurements of the $Z \rightarrow 4\mu$ decay rate on the SMEFT four-muon operators. We also discuss their complementarity with constraints from neutrino-trident production. We discuss what can be learned from future differential LHC measurements in Section 4. Finally, we conclude in Section 5.

2 Review of the SMEFT

We review in this section aspects of the SMEFT relevant for our analysis of four-muon decays of the Z boson. The SMEFT is an extension of the SM Lagrangian to include terms suppressed by an energy scale Λ at which the ultraviolet completion becomes important and new particles beyond the SM appear. Truncating the expansion in $1/\Lambda$ at dimension-6, and ignoring operators of odd-dimension which violate lepton number, we have

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_i C_i O_i + \ldots,$$

where the ellipsis denotes operators of higher dimensions. The Wilson coefficients C_i defined above are dimensionless. When computing the Z boson decay width we consider only the leading interference of the SM amplitude with the dimension-6 contribution. This is consistent with our truncation of the SMEFT expansion above, since the dimension-6 squared contributions are formally the same order in the $1/\Lambda$ expansion as the dimension-8 terms which we neglect. The Wilson coefficients are renormalization-scheme dependent quantities. In an \overline{MS} scheme they become scale-dependent and run with energy. As we perform only a leading-order analysis in this manuscript we neglect this running.

Corrections to the $Z \rightarrow 4l$ decay widths come from two sources: shifts of the $Zl\bar{l}$ and $\gamma l\bar{l}$ vertices that scale as v^2/Λ^2 where v is the Higgs vev, and four-fermion operators which scale as E^2/Λ^2 where E is the characteristic energy scale of the process. Note that the $\gamma l\bar{l}$ vertex is shifted from the SM expression in the (G_μ,M_W,M_Z) input parameter scheme \[25\] adopted here since the electromagnetic coupling is shifted. We summarize in Table 1 the dimension-6 operators that shift the decay width at leading-order in its perturbative expansion. Here, l denotes a Dirac lepton, ϕ the Higgs boson, and W and B the field-strength tensors of the SU(3)\timesU(1) gauge bosons. p, r, s, t denote generation indices. We have introduced explicit projection operators $P_{L,R}$ to denote the projections onto left-handed doublets and right-handed singlets. All operators containing the Higgs field ϕ only shift the $Zl\bar{l}$ and $\gamma l\bar{l}$ vertices.
and can be combined into shift constants δg^L_Z, δg^R_Z, δg^L_{γ} and δg^R_{γ} respectively. We note that $\delta g^R_{\gamma} = \delta g^L_{\gamma} = \delta g_{\gamma}$. Explicit expressions for these shifts are given in Appendix A.

There are potentially additional dimension-6 contributions from operators modifying the total Z boson decay width that appear in the denominator of the branching ratio. To study these effects we express each Z boson partial width in terms of its dimension-4 and dimension-6 contribution:

$$\Gamma_i = \Gamma_i^{(4)} + \Gamma_i^{(6)},$$

(2)

where the dimension-6 contribution is assumed to be small. The branching ratio for $Z \rightarrow 4\mu$ can then be written as

$$\text{BR}(Z \rightarrow 4\mu) = \frac{\Gamma(Z \rightarrow 4\mu)}{\sum_i \Gamma_i} \approx \frac{\Gamma^{(4)}(Z \rightarrow 4\mu)}{\sum_i \Gamma^{(4)}_i} \left[1 + \frac{\Gamma^{(6)}(Z \rightarrow 4\mu)}{\Gamma^{(4)}(Z \rightarrow 4\mu)} - \sum_i \frac{\Gamma^{(6)}_i}{\sum_i \Gamma^{(4)}_i} \right]$$

(3)

where the sum over i includes all Z boson decay modes and we have expanded to linear order in the dimension-6 corrections. The second term in the square bracket above comes from the dimension-6 corrections to the total decay width. Since $\sum_i \Gamma^{(4)}_i \gg \Gamma^{(4)}(Z \rightarrow 4\mu)$, the only significant corrections from this last term come from the large Z partial decay widths. We assume that the dominant corrections come from the $Z \rightarrow \bar{f}f$ decay widths. The corrections to these widths come from shifts in the left and right-handed couplings of the Z boson to the different fermions, and are analogous to the operators leading to the shifts of the leptonic vertices in Table 1 above. We will study the effects from shifts to the $Z \rightarrow \bar{f}f$ decays and absorb them into global shift factors δg^L_{Zf} and δg^R_{Zf} for each fermion species.

Finally, we note that dipole operators that can potentially contribute vanish for massless fermions upon truncation of the EFT expansion to dimension-6, which we assume here. The explicit expressions for all decay widths in terms of the SMEFT coefficients can be found in Appendix A.

3 Constraining the four-lepton operators

The coefficients parameterizing the SMEFT contributions to the decay $Z \rightarrow 4\mu$ depend on the matrix elements describing the process and the imposed experimental cuts. We
evaluate them numerically at leading-order using the Madgraph package SMEFTsim [25]. The UV scale Λ is set to the Higgs vacuum expectation value $v = 246$ GeV for comparison with previous results in the literature [13]. Explicit expressions for the four-lepton decay widths are given in Appendix B. We express the deviation for the four-muon decay mode in terms of the normalized branching ratio

$$\frac{\text{BR}(Z \rightarrow 4\mu)}{\text{BR}_{SM}} = 1 + a_{ll} + a_{ee} + a_{le} + a_{LZl} + a_{RZl} + a_{LZu} + a_{RZu} + a_{LZd} + a_{RZd},$$

(4)

where we assume lepton and quark flavor universality for the vertex shift operators for clarity of this argument. We note from the expression above that this decay is directly sensitive to the four-muon couplings in the SMEFT, making it of interest for accessing these operators.

We discuss next how well measurements of the inclusive $Z \rightarrow 4\mu$ decay width can constrain the four-muon SMEFT operators defined in the previous section. We first show that after accounting for the strong constraints on the vertex shifts from $Z \rightarrow 2f$ decays at LEP and other experiments, measurements of the $Z \rightarrow 4l$ decay are primarily sensitive to leptonic four-fermion operators, which are not as strongly bounded yet. The relevant comparison to establish whether Z vertex shifts or four-fermion terms dominate the SMEFT correction is the size of $a_i C_i$ for each term defined in Eq. (4). We evaluate the branching ratio imposing $80 \text{ GeV} < m_{4l} < 100 \text{ GeV}$ and $m_{ll} > 4 \text{ GeV}$ for all fermion pairs, consistent with experimental analyses, and obtain the results for the a_i shown in Table 2. The lepton vertex-shift $a_{L,R}^{Zl}$

a_{ll}	a_{ee}	a_{le}	a_{LZl}	a_{RZl}	a_{LZu}	a_{RZu}	a_{LZd}	a_{RZd}		
0.025	0.016	0.009	4.2	-3.3	4.0	-0.40	-0.39	-0.071	-0.87	-0.027

Table 2: Results for the a_i coefficients given the cuts $80 \text{ GeV} < m_{4l} < 100 \text{ GeV}$ and $m_{ll} > 4 \text{ GeV}$. For comparison with the available Z-pole bounds we assume flavor universality for the vertex-shift operators.

factors are in general two orders of magnitude larger than the four-muon a coefficients for the relevant experimental cuts. However, the $\delta g_{Zl}^{L,R}$ are constrained to be 2×10^{-4} or smaller from LEP data [26]. The hadronic vertex shifts that enter the branching fraction through the total width are similarly constrained through the available LEP data, though the bounds are generally weaker than the ones on the leptonic coefficients by a factor 3 to 5. However, the shift factors $a_{L,R}^{Zu,d}$ are small, and these corrections are numerically negligible. The relevant bounds on the Wilson coefficients that enter the vertex shifts from the literature are adapted from [27] and are summarized in Table 3. The single combination of four-muon couplings probed by neutrino trident production is only constrained to the 2×10^{-1} level [13], and the two orthogonal combinations are not bounded at all. Therefore the $a_i C_i$ factors for the four-muon couplings are allowed to be at least an order of magnitude larger than those of the vertex shifts. In what follows we assume the vertex shifts are strongly constrained by other measurements and neglect them, consistent with the above observation.
Table 3: 68% confidence-level (C.L.) bounds for a single Wilson coefficient. The UV scale is set to Λ = 246 GeV. The bounds are derived assuming flavor universality. These numbers are adapted from Ref. [27].

3.1 Single Wilson-coefficient constraints from inclusive LHC measurements

Both ATLAS and CMS have performed measurements of the $Z \to 4l$ branching ratios [28–31]. These experiments are summarized in Ref. [24], where a combination of existing results is also given. The combined measurement of the $Z \to 4l$ branching ratio is:

$$\text{BR}(Z \to 4l) = (4.58 \pm 0.26) \times 10^{-6}.$$ \hspace{1cm} (5)

The measurements are scaled via a Monte-Carlo simulation to the following common phase-space region:

$$80 \text{ GeV} < m_{4l} < 100 \text{ GeV}, \quad m_{l+l-} > 4 \text{ GeV}$$ \hspace{1cm} (6)

where m_{l+l-} refers to the invariant mass of any combination of oppositely-charged leptons. As our interest is in the four-muon mode, we convert this combination to a result for $\text{BR}(Z \to 4\mu)$ as follows. For each of the experimental measurements in Table 1 of Ref. [24] we scale the central value by the leading-order ratio $\Gamma(Z \to 4\mu)/\Gamma(Z \to 4l)$ computed using Madgraph, and the statistical uncertainty by $\sqrt{\Gamma(Z \to 4l)/\Gamma(Z \to 4\mu)}$. Combining the results yields

$$\text{BR}(Z \to 4\mu) = (1.21 \pm 0.41) \times 10^{-6}.$$ \hspace{1cm} (7)

We have checked that including the correlation coefficients listed in Table 2 of Ref. [24] does not significantly change this result. We estimate the expected constraints from an inclusive measurement at a high-luminosity LHC by assuming that both statistical and systematic errors scale as $1/\sqrt{L}$, where L is the integrated luminosity. We show the current constraints and those from a HL-LHC assuming 3000 fb$^{-1}$ below in Table 4 for each four-muon Wilson coefficient turned on separately. The current constraints on the Wilson coefficients from the inclusive branching ratio measurement are quite weak. They become much stronger with the full HL-LHC data set. We note that the choice of the phase-space constraint m_{l+l-} was not optimized for SMEFT studies. However, the effect of increasing this cut does not lead
	Current \((Z \to 4\mu)\)	HL-LHC \((Z \to 4\mu)\)	
\(C_{\mu \mu}\)\(_{2222}\)	< 10.5	< 1.0
\(C_{ee}\)\(_{2222}\)	< 16.9	< 1.6
\(C_{\mu e}\)\(_{2222}\)	< 28.8	< 2.7

Table 4: Single parameter constraints on the Wilson coefficients of the four-\(\mu\) operators at 68% CL for both the current LHC data and a projection based on the HL-LHC with a luminosity of 3 ab\(^{-1}\). For the projection of the uncertainties at the HL-LHC, we assume that all uncertainties scale as \(\frac{1}{\sqrt{N}}\).

3.2 Complementarity with neutrino trident production

Another constraint on four-muon operators comes from the neutrino-trident production process \(\nu_\mu \gamma^* \to \nu_\mu \mu^+ \mu^-\) which occurs in the Coulomb field of a heavy nucleus. Formulae for the deviation of this process from SM predictions within the SMEFT framework are given in Ref. \[13\]. We reproduce this deviation below:

\[
\frac{\sigma_{\text{trident}}}{\sigma_{\text{SM trident}}} = 1 + \frac{2}{(1 + 4s_W^2 + 8s_W^4)} \frac{v^2}{\Lambda^2} \left\{(C_{\mu \mu}^{1221} - C_{\mu \mu}^{2222})(1 + 2s_W^2) - 2s_W^3 C_{\mu e}^{2222} + 2(\delta g_W^{L \mu} - \delta g_Z^{L \nu_\mu} + 2s_W^2 \delta g_{W\mu}^{L} + 2s_W^2 \delta g_{Z\mu}^{L} + 8s_W^4 \delta g_{Z\nu_\mu} + (1 + 2s_W^2) \delta g_{We})\right\}
\]

where \(\delta g_{W,\nu_\mu}^{L, R}\) is the shift to the \(W\nu_\mu\) vertex. Its explicit expression in terms of standard SMEFT operators is given in Appendix A. We see that the deviation depends on the following combination of four-muon Wilson coefficients:

\[
\hat{C}_{\mu \mu}^{2222} = C_{\mu \mu}^{2222} + \frac{2s_W^2}{1 + 2s_W^2} C_{\mu e}^{2222}.
\]

From this we see that this measurement is proportional to only a single combination of \(C_{\mu \mu}\)\(_{2222}\) and \(C_{\mu e}\)\(_{2222}\), and is insensitive to \(C_{ee}\)\(_{2222}\). The \(Z \to 4\mu\) decay is sensitive to all three operators in a different combination than neutrino-trident production. Once differential measurements are made with higher luminosities, all three four-muon Wilson coefficients can be separately determined from a combination of neutrino-trident production and LHC data.
To demonstrate what can be learned from a combination of neutrino-trident production and inclusive $Z \rightarrow 4\mu$ measurements at the LHC we perform fits to the inclusive LHC measurement and neutrino-trident production data from the experiments CCFR [32] and CHARM-II [33]. We consider two different choices of Wilson coefficients:

1. C_{ll}^{2222} and C_{ee}^{2222} non-zero;
2. C_{le}^{2222} and C_{ee}^{2222} non-zero.

The results of these fits are shown in Figs. 1 and 2. The solid bands refer to the constraints from neutrino trident production. We see that this data is not sensitive to C_{ee}^{2222}. The ellipses refer to current LHC constraints, and projections for 300 fb$^{-1}$ and 3000 fb$^{-1}$ of integrated luminosity. Including the LHC data removes the flat direction that occurs due to the insensitivity of neutrino-trident production to C_{ee}^{2222}. We note that the constraints from neutrino trident production on C_{ll}^{2222} and C_{le}^{2222} are stronger than the current LHC bounds, with these coefficients constrained to be less than unity while current LHC data only requires $C_{ee}^{2222} \lesssim 20$. The power of the LHC measurement increases with higher luminosities. With 3000 fb$^{-1}$ the constraints on C_{ee}^{2222} approach the level of the neutrino-trident production bounds on C_{ll}^{2222} and C_{le}^{2222}.

Figure 1: 68% C.L. bounds on the combination of inclusive LHC $Z \rightarrow 4\mu$ data and neutrino trident production assuming non-zero C_{ll}^{2222} and C_{ee}^{2222}

4 Differential measurements with future LHC data

The fits in the previous section to the inclusive $Z \rightarrow 4\mu$ measurement and neutrino-trident production probe two independent combinations of the three four-muon Wilson coefficients.
Figure 2: 68% C.L. bounds on the combination of inclusive LHC \(Z \rightarrow 4\mu \) data and neutrino trident production assuming non-zero \(C_{\text{le}2222} \) and \(C_{\text{ee}2222} \).

With differential measurements of \(Z \rightarrow 4\mu \), all three coefficients can be determined. Enough \(Z \rightarrow 4\mu \) events will be available to allow for differential measurements with high-luminosity LHC data. Four-lepton final states are defined by five angles \([34]\): \(\theta_1, \theta_2, \theta^*, \Phi_1, \) and \(\Phi \). We illustrate their definitions in Fig. 3. When defining these angles we have several choices of pairing each muon with an anti-muon. Labeling the muon momenta as \(p_1, p_2 \) with \(p_T(p_1) > p_T(p_2) \), and the anti-muons as \(p_3, p_4 \) with \(p_T(p_3) > p_T(p_4) \), we find that if we look at single-differential distributions, the pairing that gives the most discrimination between SMEFT-induced deviations and the SM is \(p_1 \) with \(p_4 \) and \(p_2 \) with \(p_3 \). To demonstrate that this is the optimal pairing we perform simple one-dimensional fits between the SM and the SMEFT with a single Wilson coefficient turned on. We define the following test statistic:

\[
\chi^2 \equiv \sum_{i=1}^{\text{#of bins}} \frac{(N_i^{\text{SMEFT}} - N_i^{\text{SM}})^2}{(\sigma_i^{\text{SM}})^2}
\]

where the number of bins is set to 10 and \(N_i^{\text{SM}}(N_i^{\text{SMEFT}}) \) stands for the number of SM (SMEFT) events in the \(i \)th bin. \(\sigma_i^{\text{SM}} = \sqrt{N_i^{\text{SM}}} \) represents the standard deviation of the \(i \)th bin. For each of the four-muon Wilson coefficients we use this test statistic to probe the sensitivity of each variable to deviations for each pairing. The results are shown in Tables 5 and 6, where we have highlighted the three most discriminating cases for each pairing. We see that the \(p_1 - p_4 \) pairing is generally more sensitive, and that the most discriminating variables are \(\theta_1 \) and \(\theta_2 \).

To determine the sensitivity of the future LHC data to four-muon Wilson coefficients, and its complementarity with neutrino-trident production, we perform fits to both data sets. We study both 300 fb\(^{-1} \) and 3000 fb\(^{-1} \) to mimic future LHC data sets. We construct a
Figure 3: Illustration of the angles characterizing the decay $Z \rightarrow 4\mu$ in the rest frame of the Z boson. The nomenclature is adapted from \[34\]. Z' denotes the direction of the boost of the highest p_T muon-system. Not shown is the angle Φ_1 which is between the normal vectors of the planes spanned by the Z axis and Z' as well as the one spanned by the highest p_T muons.

Table 5: χ^2 values for the five single-differential distribution. l_1 and l_3 (l_2 and l_4) are grouped together in the same decay plane. The three largest χ^2 values are highlighted.

(l_1, l_3)	$\cos \theta^*$	$\cos \theta_1$	$\cos \theta_2$	Φ_1	Φ
C_{ll}^{2222}	39.8	73.3	18.1	9.7	15.2
C_{ee}^{2222}	37.3	41.6	14.0	17.0	16.9
C_{le}^{2222}	16.0	51.0	18.7	10.2	76.3

two-dimensional differential distribution based on the variables θ_1 and θ_2, which were found above to be the most sensitive to SMEFT-induced deviations. While a more sophisticated multi-variate analysis could potentially improve the results found here, we believe that our approach captures the essence of what can be learned from differential measurements. We define a χ^2 function as follows:

$$\chi^2 \equiv \sum_{i=\# \text{ of bins}} \frac{(N_i^{\text{theo}} - N_i^{\text{exp}})^2}{(\sigma_i^{\text{exp}})^2} + \sum_{j} \frac{(f_j^{\text{theo}} - f_j^{\text{exp}})^2}{(\sigma_j^{\text{exp}})^2}$$ (11)

where the first term accounts for predicted future LHC data for $Z \rightarrow 4\mu$. i ranges from 1 to the number of bins of a given differential distribution. In constructing our binning we impose the requirement $N_i > 10$ so that we can assume Gaussian errors. The cuts used in Ref. \[30\] are applied. We conservatively use the systematic uncertainty from Ref. \[30\].
neglecting possible improvements with future LHC data, and assume that it is constant and uncorrelated for all bins. We stress that this is only a simple estimate of the LHC potential, and is meant to motivate more detailed future experimental studies. The statistical uncertainty of the ith bin is assumed to be $\sqrt{N_i}$. The second term in Eq. (11) accounts for the neutrino-trident experimental measurements discussed in Section 3.2. f_{i}^{theo} denotes the theoretical prediction for the neutrino-trident cross section given in Eq. (8), while the f_{i}^{\exp} are the experimental measurements from CCFR and CHARM-II. The σ_i^{\exp} in the denominator denote the experimental errors.

To permit simple two-dimensional representations of our results we allow C_{ll}^{2222} and C_{le}^{2222} to be non-zero. Only a single combination of these parameters can be determined from neutrino-trident production, so this example will study how well differential LHC measurements can help break the remaining degeneracy between Wilson coefficients that occurs given only the inclusive branching ratio measurement. For comparison we also fit to the inclusive LHC measurement. The results assuming differential LHC measurements are shown in Fig. 4. For comparison the result assuming only an inclusive branching ratio measurement with 3000 fb$^{-1}$ is shown as well. The improvement going from inclusive to differential measurements at the LHC is significant, with bounds on C_{le}^{2222} improving from $\mathcal{O}(10)$ to $\mathcal{O}(1)$.

This strong improvement is in large part due to the sign of the SMEFT deviations changing in different regions of (θ_1, θ_2) space, which is partially averaged out in the inclusive analysis, while the differential analysis resolves the opposite-sign contributions. The flat direction in the C_{le}^{2222} versus C_{ll}^{2222} plane present with just neutrino trident production leads to the elongated shape of the constraint ellipse in this figure. This is removed by the high-luminosity LHC data.

\section{5 Conclusions}

In this paper we have studied what can be learned about four-muon operators in the SMEFT from rare $Z \to 4\mu$ decays at the LHC. Measurements of this decay mode constrain linear combinations of Wilson coefficients not accessible in other processes. We determined

\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
(l_1, l_4) & $\cos \theta^*$ & $\cos \theta_1$ & $\cos \theta_2$ & Φ_1 & Φ \\
\hline
C_{ll}^{2222} & 24.6 & 77.8 & 61.6 & 24.1 & 65.3 \\
C_{le}^{2222} & 11.6 & 44.9 & 102.1 & 21.0 & 69.6 \\
C_{te}^{2222} & 6.6 & 375.2 & 335.5 & 25.5 & 48.7 \\
\hline
\end{tabular}
\end{center}
\end{table}

Table 6: χ^2 values for the five single-differential distribution. l_1 and l_4 (l_2 and l_3) are grouped together in the same decay plane here. The three largest χ^2 values are highlighted.
Figure 4: 68% C.L. bounds on the combination of differential LHC $Z \rightarrow 4\mu$ data and neutrino trident production assuming non-zero C_{2222}^{μ} and C_{2222}^{e}

the constraints imposed on these coefficients from current measurements of the inclusive branching ratio, and showed their complementarity with existing constraints from neutrino-trident production. Future differential measurements of $Z \rightarrow 4\mu$ have the potential to completely determine the four-muon Wilson coefficients in SMEFT. We show that strong bounds on all four-muon interactions can be obtained assuming 3000 fb$^{-1}$ of integrated luminosity at the LHC.

We have focused in this paper on the $Z \rightarrow 4\mu$ decay since experimental searches for this channel exist. However, measurements of the decay $Z \rightarrow 2\mu 2\tau$ would probe SMEFT Wilson coefficients such as C_{2332}^{μ}, C_{2332}^{e}, and C_{3333}^{ee}, while $Z \rightarrow 4\tau$ would probe C_{3333}^{μ}, C_{3333}^{e}, and C_{3333}^{ee}. Only C_{3333}^{μ} is weakly constrained by τ-decays. The remaining coefficients are completely untested. The suggested rare Z-decays would provide the first tests of this unknown sector of the SMEFT. To our knowledge these rare Z-decays into τ-leptons have not been considered. However, searches for Higgs bosons into these final states have been performed at the LHC [36,37]. We encourage the ATLAS and CMS collaborations to perform these searches with future data.

Acknowledgments

We thank W. Hopkins for helpful discussions. R. B. is supported by the DOE contract DE-AC02-06CH11357. C.-Y. C. is supported by the NSF grant NSF-1740142. F. P. and D. W. are supported by the DOE grants DE-FG02-91ER40684 and DE-AC02-06CH11357.
A Vertex shifts

We present here the vertex shift factors. Our conventions for the Zff vertices are such that

$$V_{\text{SMEFT}}^\mu P_{L/R} = V_{\text{SM}}^\mu P_{L/R} \left\{ 1 + \frac{v^2}{\Lambda^2} \delta g_{L/R}^V \right\}.$$ \hspace{1cm} (12)

The Higgs vev can be expressed in term of input parameters as

$$v^2 = \frac{1}{\sqrt{2}G_\mu}.$$ \hspace{1cm} (13)

The shift factors that appear in the dimension-6 corrections to the $Z \rightarrow 4\mu$ decay width in the (G_μ, M_W, M_Z) input scheme are:

$$\delta g_{Zl_l} = \frac{1}{4s_W^2} \left\{ \left(C_{1221}^\mu + C_{2112}^\mu - C_{1\phi l}^{(3)} \right) - C_{2\phi l}^{(3)} \right\} s_W^2 - \frac{C_{\phi D} c_W^2}{4} - 4c_W s_W C_{\phi WB} \left(1 + C_{1\phi l}^{(3)} - C_{2\phi l}^{(3)} \right),$$

$$\delta g_{Zl_R} = \frac{1}{4(1 - 2s_W^2)} \left\{ \left(C_{1221}^\mu + C_{2112}^\mu - 2C_{1\phi l}^{(3)} \right) s_W^2 - \frac{C_{\phi D} c_W^2}{4} - 4c_W s_W C_{\phi WB} \right\},$$

$$\delta g_{Zl_R} = \frac{1}{4} \left\{ C_{1221}^\mu + C_{2112}^\mu - 2C_{1\phi l}^{(3)} - 2C_{2\phi l}^{(3)} - C_{\phi D} + 4C_{1\phi l}^{(3)} - 4C_{2\phi l}^{(3)} \right\},$$

$$\delta g_{Zl_R} = \frac{1}{4} \left\{ (1 - 4c_W^2) \left(C_{1221}^\mu + C_{2112}^\mu - 2C_{1\phi l}^{(3)} + C_{2\phi l}^{(3)} \right) - (1 + 4c_W^2) C_{\phi D} - 16c_W s_W C_{\phi WB} + 12C_{1\phi l}^{(3)} - 12C_{2\phi l}^{(3)} \right\},$$

$$\delta g_{Zl_R} = \frac{1}{4s_W^2} \left\{ s_W^2 \left(C_{1221}^\mu + C_{2112}^\mu - 2C_{1\phi l}^{(3)} + C_{2\phi l}^{(3)} \right) - (1 + 4c_W^2) C_{\phi D} - 4c_W s_W C_{\phi WB} + 3C_{1\phi l}^{(3)} \right\},$$

$$\delta g_{Zl_R} = \frac{1}{4(1 + 2c_W^2)s_W} \left\{ (1 + 4c_W^2) \left(C_{1221}^\mu + C_{2112}^\mu - 2C_{1\phi l}^{(3)} + C_{2\phi l}^{(3)} \right) s_W^2 \right\},$$

$$\delta g_{Zd_d} = \frac{1}{4s_W^2} \left\{ s_W^2 \left(C_{1221}^\mu + C_{2112}^\mu - 2C_{1\phi l}^{(3)} + C_{2\phi l}^{(3)} \right) - (1 + 4c_W^2) C_{\phi D} - 4c_W s_W C_{\phi WB} - 6C_{1\phi l}^{(3)} \right\},$$

$$\delta g_{Zl_l} = \frac{1}{4} \left\{ C_{1221}^\mu + C_{2112}^\mu - 2C_{1\phi l}^{(3)} - 2C_{2\phi l}^{(3)} + 4C_{1\phi l}^{(3)} \right\}. \hspace{1cm} (14)

We have made use of the on-shell definition of the weak mixing angle

$$s_W^2 = 1 - \frac{M_W^2}{M_Z^2} = 1 - c_W^2.$$ \hspace{1cm} (15)

12
B Z Decay Widths at Leading Order

We summarize here all leading-order SMEFT contributions to the Z-decay width that have been used in this paper. Our conventions are such that

$$\Gamma_{\text{SMEFT}}(Z \to f\bar{f}) = \Gamma_{\text{SM}}^{f\bar{f}} + \frac{M_Z^2}{\Lambda^2} \delta \Gamma_{f\bar{f}}$$

with the following analytic expressions for the SMEFT contributions:

$$\delta \Gamma_{\nu\nu} = \frac{M_Z}{12\pi} \delta g_{Z\nu\nu}^L,$$

$$\delta \Gamma_{li} = \frac{M_Z}{12\pi} \left\{ (1 - 2s^2_W) \delta g_{Zli}^L + 4s^4_W \delta g_{Zli}^R \right\},$$

$$\delta \Gamma_{ui} = \frac{N_c M_Z}{108\pi} \left\{ 16s^4_W \delta g_{Zui}^R + (3 - 4s^2_W)^2 \delta g_{Zui}^L \right\},$$

$$\delta \Gamma_{bb} = \frac{N_c M_Z}{108\pi} \left\{ 2s^2_W (2s^2_W - \beta_b^2 (9 - 4s^2_W)) \delta g_{Zb}^R + (3 - 2s^2_W)(3 - 2s^2_W) \right\} \sqrt{1 - 4\beta_b^2}. \quad (17)$$

We have assumed a non-vanishing bottom mass, appearing as

$$\beta_b = \frac{m_b}{M_Z}. \quad (18)$$

The remaining two down-type partial widths can be found by setting $\beta_b = 0$ and appropriately changing the generational indices of the $\{3,3\}$ Wilson coefficients. We give below the numerical expressions for the SMEFT dependence of the decay width for the process $Z \to 4\mu$, obtained with MadGraph:

$$\Gamma_{\text{LO}}^{LO}(Z \to 4\mu) = \Gamma_{\text{SM}}^{LO}(Z \to 4\mu) + \frac{v^2}{\Lambda^2} \left\{ 0.0260 C'_{\text{ee}}^{2222} + 0.0711 C'_{\text{uu}}^{2222} + 0.0444 C'_{\text{ee}}^{2222} + 15.0 C'_{\text{uu}}^{1221} + 24.0 C'_{\phi WB} + 6.08 C'_{\phi D} - 0.0062 C'_{\text{ll}}^{11} + 12.0 C'_{\text{ll}}^{11} - 2.14 C'_{\text{ll}}^{11} + 0.445 C'_{\text{ll}}^{32} + 0.733 C'_{\text{ll}}^{22} \right\} \times 10^{-6}\text{GeV}. \quad (19)$$
For completeness we also give the result for the process $Z \rightarrow 2\mu2e$ below:

$$\Gamma^{LO}(Z \rightarrow 2\mu2e) = \Gamma^{LO}_{SM}(Z \rightarrow 2\mu2e) + \frac{\nu^2}{\Lambda^2} \left\{ 29.9 C_{\mu 1221} + 0.0752 C_{\mu 1212} + 0.180 C_{\mu 1122} \\
+ 0.0840 C_{1212} + 0.108 C_{1122} + 0.0769 C_{1221} \\
+ 0.0740 C_{1212} + 0.108 C_{1211} + 46.9 C_{\phi WB} \\
+ 12.1 C_{\phi D} + 12.1 C^{(1)}_{\phi 11} + 12.1 C^{(1)}_{\phi 22} \\
- 1.50 C^{(3)}_{11} - 1.50 C^{(3)}_{22} + 0.927 C_{\phi e} \\
+ 0.921 C_{\phi 22} \right\} \times 10^{-6} \text{GeV.} \quad (20)$$

The leading-order SM results are

$$\Gamma^{LO}_{SM}(Z \rightarrow 4\mu) = 2.86 \times 10^{-6} \text{GeV} \quad \text{and} \quad \Gamma^{LO}_{SM}(Z \rightarrow 2\mu2e) = 5.62 \times 10^{-6} \text{GeV.} \quad (21)$$

References

[1] W. Buchmuller and D. Wyler, Nucl. Phys. B 268, 621 (1986). doi:10.1016/0550-3213(86)90262-2

[2] C. Arzt, M. B. Einhorn and J. Wudka, Nucl. Phys. B 433, 41-66 (1995) doi:10.1016/0550-3213(94)00336-D [arXiv:hep-ph/9405214 [hep-ph]].

[3] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, JHEP 1010, 085 (2010) doi:10.1007/JHEP10(2010)085 [arXiv:1008.4884 [hep-ph]].

[4] Z. Han and W. Skiba, Phys. Rev. D 71, 075009 (2005) doi:10.1103/PhysRevD.71.075009 [hep-ph/0412166].

[5] A. Pomarol and F. Riva, JHEP 1401, 151 (2014) doi:10.1007/JHEP01(2014)151 [arXiv:1308.2803 [hep-ph]].

[6] C. Y. Chen, S. Dawson and C. Zhang, Phys. Rev. D 89, no. 1, 015016 (2014) doi:10.1103/PhysRevD.89.015016 [arXiv:1311.3107 [hep-ph]].

[7] J. Ellis, V. Sanz and T. You, JHEP 1407, 036 (2014) doi:10.1007/JHEP07(2014)036 [arXiv:1404.3667 [hep-ph]].

[8] J. D. Wells and Z. Zhang, Phys. Rev. D 90, no. 3, 033006 (2014) doi:10.1103/PhysRevD.90.033006 [arXiv:1406.6070 [hep-ph]].

[9] A. Falkowski and F. Riva, JHEP 1502, 039 (2015) doi:10.1007/JHEP02(2015)039 [arXiv:1411.0669 [hep-ph]].
[10] J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina and L. Silvestrini, JHEP 1612, 135 (2016) doi:10.1007/JHEP12(2016)135 [arXiv:1608.01509 [hep-ph]].

[11] V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti Phys. Rev. D 94, no. 3, 034031 (2016) doi:10.1103/PhysRevD.94.034031 [arXiv:1605.04311 [hep-ph]].

[12] C. Hartmann, W. Shepherd and M. Trott, JHEP 03, 060 (2017) doi:10.1007/JHEP03(2017)060 [arXiv:1611.09879 [hep-ph]].

[13] A. Falkowski, M. González-Alonso and K. Mimouni, JHEP 1708, 123 (2017) doi:10.1007/JHEP08(2017)123 [arXiv:1706.03783 [hep-ph]].

[14] A. Biekoetter, T. Corbett and T. Plehn, SciPost Phys. 6, no. 6, 064 (2019) doi:10.21468/SciPostPhys.6.6.064 [arXiv:1812.07587 [hep-ph]].

[15] C. Grojean, M. Montull and M. Riembau, JHEP 03, 020 (2019) doi:10.1007/JHEP03(2019)020 [arXiv:1810.05149 [hep-ph]].

[16] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou and C. Zhang, JHEP 1904, 100 (2019) doi:10.1007/JHEP04(2019)100 [arXiv:1901.05965 [hep-ph]].

[17] I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E. Vryonidou, S. Westhoff and C. Zhang, JHEP 2002, 131 (2020) doi:10.1007/JHEP02(2020)131 [arXiv:1910.03606 [hep-ph]].

[18] R. Aoude, T. Hurth, S. Renner and W. Shepherd, [arXiv:2003.05432 [hep-ph]].

[19] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, JHEP 04, 159 (2014) doi:10.1007/JHEP04(2014)159 [arXiv:1312.2014 [hep-ph]].

[20] J. M. Cullen and B. D. Pecjak, [arXiv:2007.15238 [hep-ph]].

[21] W. Altmannshofer, C. Niehoff, P. Stangl and D. M. Straub, Eur. Phys. J. C 77, no.6, 377 (2017) doi:10.1140/epjc/s10052-017-4952-0 [arXiv:1703.09189 [hep-ph]].

[22] R. Boughezal, F. Petriello and D. Wiegand, Phys. Rev. D 101, no.11, 116002 (2020) doi:10.1103/PhysRevD.101.116002 [arXiv:2004.00748 [hep-ph]].

[23] W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Phys. Rev. Lett. 113, 091801 (2014) doi:10.1103/PhysRevLett.113.091801 [arXiv:1406.2332 [hep-ph]].

[24] J. L. Rainbolt and M. Schmitt, Phys. Rev. D 99, no.1, 013004 (2019) doi:10.1103/PhysRevD.99.013004 [arXiv:1805.05791 [hep-ex]].

[25] I. Brivio, Y. Jiang and M. Trott, JHEP 12, 070 (2017) doi:10.1007/JHEP12(2017)070 [arXiv:1709.06492 [hep-ph]].
[26] S. Schael et al. [ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group], Phys. Rept. 427, 257-454 (2006) doi:10.1016/j.physrep.2005.12.006 arXiv:hep-ex/0509008 [hep-ex].

[27] S. Dawson and P. P. Giardino, Phys. Rev. D 101, no.1, 013001 (2020) doi:10.1103/PhysRevD.101.013001 arXiv:1909.02000 [hep-ph].

[28] S. Chatrchyan et al. [CMS], JHEP 12, 034 (2012) doi:10.1007/JHEP12(2012)034 arXiv:1210.3844 [hep-ex].

[29] V. Khachatryan et al. [CMS], Phys. Lett. B 763, 280-303 (2016) doi:10.1016/j.physletb.2016.10.054 arXiv:1607.08834 [hep-ex].

[30] A. M. Sirunyan et al. [CMS], Eur. Phys. J. C 78, 165 (2018) doi:10.1140/epjc/s10052-018-5567-9 arXiv:1709.08601 [hep-ex].

[31] G. Aad et al. [ATLAS], Phys. Rev. Lett. 112, no.23, 231806 (2014) doi:10.1103/PhysRevLett.112.231806 arXiv:1403.5657 [hep-ex].

[32] S. R. Mishra et al. [CCFR], Phys. Rev. Lett. 66, 3117-3120 (1991)

[33] D. Geiregat et al. [CHARM-II], Phys. Lett. B 245, 271-275 (1990)

[34] Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze and N. V. Tran, Phys. Rev. D 81, 075022 (2010) doi:10.1103/PhysRevD.81.075022 arXiv:1001.3396 [hep-ph].

[35] S. Dawson and A. Ismail, Phys. Rev. D 98, no. 9, 093003 (2018) arXiv:1808.05948 [hep-ph].

[36] V. Khachatryan et al. [CMS], JHEP 01, 079 (2016) doi:10.1007/JHEP01(2016)079 arXiv:1510.06534 [hep-ex].

[37] V. Khachatryan et al. [CMS], JHEP 10, 076 (2017) doi:10.1007/JHEP10(2017)076 arXiv:1701.02032 [hep-ex].