Stabilization of a Multi-Dimensional System of Hyperbolic Balance Laws
– A Case Study

Ferdinand Thein⁠¹,*

¹ RWTH Aachen University, Templergraben 55, 52056, Aachen

In a recent work we studied a stabilization problem for a multi-dimensional system of \(n \) hyperbolic partial differential equations. Using a novel Lyapunov function taking into account the multi-dimensional geometry we show stabilization in \(L^2 \) for the arising system using a suitable feedback control. The aim of the present work is to show how this approach can be applied to a particular system. Moreover we present numerical results supporting the theoretical results.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

1 Introduction

Stabilization of spatially one–dimensional systems of hyperbolic balance laws has recently attracted research interest in the mathematical and engineering community. We refer to the monographs [1–4] for further references and an overview also on related controllability problems. A key tool in the analysis has been the introduction of a Lyapunov function as a weighted \(L^2 \) (or \(H^s \)) function that allows to estimate deviations from steady states, see e.g. [1]. Exponential decay of a Lyapunov function under general dissipative conditions has been established for a variety of problem formulations [15–18] and a comparison to other stability concepts is presented e.g. in [19].

However, to the best of our knowledge the presented results are limited to the spatially one–dimensional case. In a recent work, see [25], we introduced a new approach which is able to deal with multi–dimensional hyperbolic balance laws. The other stability concepts is presented e.g. in [19].

In Section 2 we provide the basic framework and the key result for our purpose. The system subject to study is presented in Section 3 and we also derive all needed quantities. Finally numerical results are presented in Section 4.

2 Stabilization of Multi-Dimensional Linear Hyperbolic Balance Laws

We are interested in the following initial boundary value problem (IBVP) for the given system of PDEs

\[
\frac{\partial}{\partial t} \mathbf{w}(t,x) + \sum_{k=1}^{n} \mathbf{A}^{(k)}(x) \frac{\partial}{\partial x_k} \mathbf{w}(t,x) + \mathbf{B}(x) \mathbf{w}(t,x) = 0, \quad (t,x) \in [0,T) \times \Omega
\]

\[
\mathbf{w}(0,x) = \mathbf{w}_0(x), \quad x \in \Omega,
\]

where \(\mathbf{w} \equiv (w_1(t,x), \ldots, w_n(t,x))^T \) is the vector of unknowns and \(\Omega \subset \mathbb{R}^n \) a bounded domain with sufficiently smooth boundary \(\partial \Omega \). Moreover, \(\mathbf{A}^{(k)} \) and \(\mathbf{B} \) are sufficient smooth and bounded \(n \times n \) real matrices. Additionally, the matrices \(\mathbf{A}^{(k)}(x) = (a_{i,j}^{(k)}(x))_{i=1,...,n} \) are assumed to be diagonal matrices and hence have a full set of eigenvectors. The system is hyperbolic. The boundary condition will be made more precise later on. According to the references [26–29] there exists a solution \(\mathbf{w} \in C^3((0,T), H^s(\Omega))^n \) if the initial and boundary data are sufficiently smooth. In order to study the Lyapunov function it is beneficial to rewrite the equation for each unknown \(w_i \) as follows

\[
\frac{\partial}{\partial t} w_i(t,x) + a_i(x) \cdot \nabla w_i(t,x) + b_i(x) \cdot \mathbf{w}(t,x) = 0,
\]

with \(a_i := (a_{i,1}^{(1)}, \ldots, a_{i,n}^{(n)}) \), and \(b_i := (b_{i,1}, \ldots, b_{i,n}) \).

For later use, let

\[
\mathcal{E}(\mu(x)) := \text{diag}(\exp(\mu_1(x)), \ldots, \exp(\mu_n(x))),
\]

\[
\mathbf{A}(t,x) := \left(w^T \mathbf{A}^{(1)} \mathcal{E} w, \ldots, w^T \mathbf{A}^{(n)} \mathcal{E} w \right)^T,
\]

\[
\mathcal{M}^{(k)}(x) := \text{diag}\left(\frac{\partial}{\partial x_k} \mu_1(x), \ldots, \frac{\partial}{\partial x_k} \mu_n(x) \right).
\]

* Corresponding author: e-mail thein@igpm.rwth-aachen.de, phone +49 241 8097679

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The boundary $\partial \Omega$ will be separated in the controllable and uncontrollable part, i.e. for $i = 1, \ldots, n$

$$\Gamma^+_i := \{x \in \partial \Omega \mid a_i \cdot n \geq 0\}, \quad \Gamma^-_i := \{x \in \partial \Omega \mid a_i \cdot n < 0\}.$$

The part Γ^-_i is then split disjointly into the part \mathcal{C}_i where we apply a feedback control u_i and a part \mathcal{Z}_i where we prescribe $w_j = 0$.

Now, we cite the Corollary needed for the focus of this work and which is a special case of the main theorem given in [25]. The remarkable fact is that here the Lyapunov function is equal to the exponential function.

Corollary 2.1 Let $w(t, x) \in C^1((0, T), H^s(\Omega))^n$, $s \geq 1 + n/2$, be a solution to the IBVP (1) and additionally assume that B is a diagonal matrix. The Lyapunov function is given as

$$L(t) = \int_{\Omega} w(t, x)^T E(\mu(x)) w(t, x) \, dx$$

where we assume that there exists $\mu_i(x) \in H^s(\Omega)$ satisfy

$$\sum_{k=1}^n \left(M^{(k)} A^{(k)} + \frac{\partial}{\partial x_k} A^{(k)} \right) - 2B = -C_L I d$$

$$\Leftrightarrow a_i \cdot \nabla \mu_i(x) + \nabla \cdot a_i - 2B_{ii} = -C_L, \quad C_L > 0$$

for some value $C_L \in \mathbb{R}_{>0}$. The boundary condition for (1) is given by

$$w_{BC,i}(t, x) = \begin{cases} 0 & x \in \mathcal{Z}_i, \quad x \in \mathcal{C}_i, \quad t \in [0, T), \quad i = 1, \ldots, n \\ u_i(t, x) & x \in \mathcal{C}_i \end{cases}$$

where the u_i satisfies

$$-\sum_{i=1}^n \int_{\mathcal{C}_i} u_i(t, x)^2 (a_i \cdot n) \exp(\mu_i(x)) \, dx = \sum_{i=1}^n \int_{\Gamma^-_i} u_i^2 (a_i \cdot n) \exp(\mu_i(x)) \, dx.$$

Then the Lyapunov function satisfies

$$L(t) = L(0) \exp(-C_L t).$$

and thus the solution w of the IBVP (1) is asymptotically stable in the L^2-sense.

3 Case Study of a Two Dimensional Linear System

We want to study a system of two linear equations in two dimensions which has the form

$$\frac{\partial}{\partial t} w(t, x) + A^{(1)} \frac{\partial}{\partial x_1} w(t, x) + A^{(2)} \frac{\partial}{\partial x_2} w(t, x) = 0$$

with the matrices

$$A^{(1)} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}, \quad A^{(2)} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

Furthermore we consider the spatial domain $\Omega = [0, 1] \times [0, 1]$. From the matrices (6) we obtain the following vectors

$$a_1 = (4, 2) \quad \text{and} \quad a_2 = (2, -2).$$

The matrix B is identically zero in this system and does not need to be considered. For the normal of the domain Ω we obtain

$$n(x) = \begin{cases} (1, 0), & x \in \{1\} \times [0, 1], \\ (0, 1), & x \in [0, 1] \times \{1\}, \\ (-1, 0), & x \in \{0\} \times [0, 1], \\ (0, -1), & x \in [0, 1] \times \{0\} \end{cases}$$
and thus we yield for the associated products \(a_i \cdot n \)

\[
a_1 \cdot n(x) = \begin{cases}
4, & x \in \{1\} \times [0,1], \\
2, & x \in [0,1] \times \{1\}, \\
-4, & x \in \{0\} \times [0,1], \\
-2, & x \in [0,1] \times \{0\}
\end{cases}
\]

and

\[
a_2 \cdot n(x) = \begin{cases}
2, & x \in \{1\} \times [0,1], \\
-2, & x \in [0,1] \times \{1\}, \\
-2, & x \in \{0\} \times [0,1], \\
2, & x \in [0,1] \times \{0\}
\end{cases}
\]

Hence we have the following partitioning of the boundary

\[
\Gamma^+ := \{1\} \times [0,1] \cup [0,1] \times \{1\}, \quad \Gamma^- := \{0\} \times [0,1] \cup [0,1] \times \{0\},
\]

\[
\Gamma^+ := [0,1] \times \{0\} \cup \{1\} \times [0,1], \quad \Gamma^- := [0,1] \times \{0\} \cup \{1\} \times [0,1].
\]

In what follows we apply the control on the part \(C := C_1 = C_2 = \{0\} \times [0,1] \) and prescribe zero boundary conditions on \(Z_1 = [0,1] \times \{0\} \) and \(Z_2 = [0,1] \times \{1\} \). Note that the boundary parts correspond to the respective component of \(w \). Next we determine the weight functions \(\mu_1(x) \) and \(\mu_2(x) \). Due to the given structure we obtain for the weight functions

\[
\mu_1(x) = g_i \left(x_2 - \frac{1}{2} + 4 C_L x_1 \right) \quad \text{and} \quad \mu_2(x) = x_2 + \left(1 - \frac{1}{2} C_L \right) x_1.
\]

Next we specify the constraint for the boundary control and we assume \(u(t) := u_1(t, x) = u_2(t, x) \) which leads to

\[
u(t)^2 \leq -\sum_{i=1}^{2} \int_{\Gamma^+_i} (a_i \cdot n) \exp(\mu_i(x)) \, dx \leq \sum_{i=1}^{2} \int_{\Gamma^-_i} w_i^2 (a_i \cdot n) \exp(\mu_i(x)) \, dx.
\]

Inserting the obtained results we get

\[
-\sum_{i=1}^{2} \int_{\Gamma^+_i} (a_i \cdot n) \exp(\mu_i(x)) \, dx = 6 \int_0^1 \exp(x_2) \, dx_2 = 6(e-1),
\]

\[
\mathcal{I}(t) := \sum_{i=1}^{2} \int_{\Gamma^-_i} w_i^2 (a_i \cdot n) \exp(\mu_i(x)) \, dx
\]

\[
= 2 \int_0^1 2 w_1(t, 1, \sigma)^2 \exp(\mu_1(1, \sigma)) + w_1(t, \sigma, 1)^2 \exp(\mu_1(\sigma, 1)) \ldots
\]

\[
\ldots + w_2(t, \sigma, 0)^2 \exp(\mu_2(\sigma, 0)) + w_2(t, 1, \sigma)^2 \exp(\mu_2(1, \sigma)) \, d\sigma
\]

\[
\Rightarrow \quad u(t)^2 \leq \frac{1}{6(e-1)} \mathcal{I}(t).
\]

Thus a possible boundary control satisfying Corollary 2.1 is given by

\[
u(t) = \sqrt{\frac{1}{6(e-1)} \mathcal{I}(t)}.
\]

Now we have specified all the details needed to stabilize the solution of the given PDE (5) in \(\Omega \). This will be demonstrated in the following section numerically.
4 Numerical Results

In this section the theoretical estimate on the decay of the Lyapunov function is confirmed using a numerical discretization of the dynamics. The MUSCL second–order finite–volume scheme, see [30], is used on a regular mesh for \(\Omega \) with grid size \(\Delta x \) to solve the discretized equation (5). The cell average of \(W \) on \(C_{i,j} = [x_{1,i} - \Delta x/2, x_{1,i} + \Delta x/2] \times [x_{2,j} - \Delta x/2, x_{2,j} + \Delta x/2] \), \(x_{k,i} = i \Delta x \) for \(k = 1, 2 \) and time \(t_n = n \Delta t \) is given by

\[
W^n_{i,j} = \frac{1}{|C_{i,j}|} \int_{C_{i,j}} W(t_n, x) \, dx,
\]

for \(i, j = 0, \ldots, N_x \) and \(n \geq 0 \) and where \(N_x \Delta x = 1 \). The cell averages of the initial data \(W_0 \) are obtained analogously and define \(W^0_{i,j} \). As boundary conditions we use transmissive boundary conditions on \(\Gamma_1^+ \) and \(\Gamma_2^+ \), see [30]. Zero boundary conditions are prescribed on \(\Sigma_1, \Sigma_2 \) and the boundary control is imposed on \(\mathcal{C} \). Here, the control \(u^n \) is obtained using a numerical quadrature formula applied to (13). The Lyapunov function itself (2) is approximated at time \(t_n \) by \(L^n \) using a numerical quadrature rule with equi-distant grid

\[
L^n := \Delta x^2 \sum_{i,j=0}^{N_x} \left[(w^n_{1,i,j})^2 \exp(\mu_1(x_i, x_j)) + (w^n_{2,i,j})^2 \exp(\mu_2(x_i, x_j)) \right].
\]

As initial data a sinusoidal function is chosen, i.e. \(w_i(0, x) = \sin(2 \pi x_1) \sin(2 \pi x_2) \). We report on computational results for \(L^n, n \geq 0 \) for the following computational setup \(\Delta x = 10^{-2} \), \(t_{\text{end}} = 3 \) and \(C_{\text{CFL}} = 0.5 \). In Figure 1 the results for the control (13) are presented. It is visible that the numerical decay of the Lyapunov function agrees well with the theoretical decay, as expected from Corollary 2.1. In Figure 1 (d) the results for the same setup and the Rusanov scheme, see [30], is given. There the observed numerical decay is stronger compared with the theoretical estimate possibly due to additional diffusive terms in the numerical approximation. This is confirmed by the observation that coarser grids lead to stronger decay compared with refined meshes, see [31].
5 Summary

A novel Lyapunov function for L^2-control of a class of multi-dimensional systems of hyperbolic equations has been presented in [25]. A stabilizing feedback control has been derived and exponential decay of a weighted L^2-norm has been established. In the present work the obtained results are applied to a particular system of two equations in two dimensions. Further numerical results are presented which support the theoretical results. Future extensions could be given towards numerical discretizations as well as stabilization in H^s-norm.

Acknowledgements This research is part of the DFG SPP 2183 Eigenschaftsgeregelte Umformprozesse, project 424334423 and the authors thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the financial support through 320021702/GRK2326, 333849990/IRTG-2379, CRC1481, HE5386/18-1,19-2,22-1,23-1, ERS SFDdM035 and under Germany’s Excellence Strategy EXC-2023 Internet of Production 390621612 and under the Excellence Strategy of the Federal Government and the Länder. Open access funding enabled and organized by Projekt DEAL.

References

[1] G. Bastin and J. M. Coron, Stability and boundary stabilization of 1-D hyperbolic systems, Progress in Nonlinear Differential Equations and their Applications, Vol. 88 (Birkhäuser/Springer, [Cham], 2016), Subseries in Control.
[2] J. M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs, Vol. 136 (American Mathematical Society, Providence, RI, 2007).
[3] T. Li, Controllability and observability for quasilinear hyperbolic systems, AIMS Series on Applied Mathematics, Vol. 3 (American Institute of Mathematical Sciences (AIMS), Springfield, MO: Higher Education Press, Beijing, 2010).
[4] M. Krcic and A. Smyshlyaev, Boundary control of PDEs, Advances in Design and Control, Vol. 16 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008). A course on backstepping designs.
[5] M. Gugat and M. Herty, ESAIM: Control, optimisation and calculus of variations 17, 28–51 (2011).
[6] M. K. Banda, M. Herty, and A. Klar, Networks and heterogeneous media 1(1), 41–56 (2006).
[7] M. Dick, M. Gugat, and G. Leugering, Networks and heterogeneous media 5(4), 691–709 (2010).
[8] M. Gugat, G. Leugering, S. Tamassoiu, and K. Wang, Chin. Ann. Math. 4, 479–500 (2012).
[9] J. M. Coron, ESAIM: Control, Optimisation and calculus of variations 8, 513–554 (2002).
[10] J. de Halleux, C. Prieur, J. M. Coron, B. D’Andrea-Novel, and G. Bastin, Automatica 39, 1365–1376 (2003).
[11] M. Gugat and G. Leugering, Ann. Inst. Henri Poincaré Anal. Non Linéaire 20(1), 1–11 (2003).
[12] G. Leugering and G. Schmidt, SIAM J. Control Optim. 41, 164–180 (2002).
[13] J. M. Coron, G. Bastin, and B. D’Andrea-Novel, Networks and heterogeneous media 4, 177–187 (2009).
[14] M. Gugat, G. Leugering, and G. Schmidt, Mathematical methods in the applied science 27, 781–802 (2004).
[15] J. M. Coron, and B. D’Andrea-Novel, Proceedings of the 47th IEEE Conference on decision and control (2008).
[16] J. M. Coron, G. Bastin, B. D’Andrea-Novel, and B. Haut, Networks and heterogeneous media 2(4), 749–757 (2007).
[17] J. M. Coron and G. Bastin, SIAM J. Control Optim. 53(3), 1464–1483 (2015).
[18] J. M. Coron, G. Bastin, and B. D’Andrea-Novel, Conference Paper; IEEE Transactions on Automatic Control 52(1), 2–11 (2007).
[19] J. M. Coron, G. Bastin, and B. D’Andrea-Novel, SIAM J. Control Optim. 47(3), 1460–1498 (2008).
[20] C. Prieur and F. Mazenc, Math. Control Signals Systems 24(1-2), 111–134 (2012).
[21] S. Gerster and M. Herty, Math. Control Relat. Fields 9(3), 517–539 (2019).
[22] M. K. Banda and M. Herty, Math. Control Relat. Fields 3(2), 121–142 (2013).
[23] S. Göttlich and P. Schillen, Eur. J. Control 35, 11–18 (2017).
[24] J. M. Coron, A. Keimer, and L. Pfug, SIAM J. Math. Anal. 52(6), 5500–5532 (2020).
[25] M. Herty and F. Thein, SIAM Journal on Control and Optimization (submitted) 10.48550/ARXIV.2207.12006 (2022).
[26] T. Kato, Arch. Rational Mech. Anal. 58(3), 181–205 (1975).
[27] A. Majda and S. Osher, Comm. Pure Appl. Math. 28(5), 607–675 (1975).
[28] T. Ruggeri and M. Sugiyama, Classical and relativistic rational extended thermodynamics of gases (Springer, Cham, 2021).
[29] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edition, Grundlehren der mathematischen Wissenschaften, Vol. 325 (Springer Berlin Heidelberg, 2016).
[30] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer Berlin Heidelberg, 2009).
[31] M. Bambach, M. Gugat, M. Herty, and F. Thein, Proceedings of 61st IEEE Conference on Decision and Control (to appear) (2022).