SUPPLEMENTARY INFORMATION

Statistics

Statistical analyses were performed using IBM SPSS Statistics 25 (SPSS Inc., Armonk, New York, USA), GraphPad Prism 8 (GraphPad Software, La Jolla, California, USA) and R 3.6.2 (R Core Team, R Foundation for Statistical Computing, Vienna, Austria). Continuous variables were reported as mean ± standard deviation or median (interquartile range (IQR)) depending on their distribution, while categorical variables were shown as numbers and proportions of patients. Comparisons of continuous variables were performed using Student’s t-test or Mann-Whitney U test, as applicable. For comparisons of more than two groups, Chi-squared test was used. Areas under the receiver operating characteristic curves (AUROC) were calculated to assess the diagnostic accuracy of non-invasive markers for the prediction of hepatic decompensation, transplant-free mortality, and de-novo HCC, and also included 95% confidence intervals (95%CI) to quantify uncertainty. Youden’s index was used to obtain optimized cut-offs. Survival analyses were performed using the Kaplan-Meier method and log-rank test to compare the incidence of hepatic decompensation. Cox regression analysis was performed to determine factors associated with hepatic decompensation. Patients were censored at the time of HCC diagnosis/OLT/death in analyses investigating hepatic decompensation and at the time of OLT/death in the analyses on HCC development. In addition, we conducted a competing risks analysis (cmprsk: subdistribution analysis of competing risks, https://CRAN.R-project.org/package=cmprsk) considering hepatic decompensation as the event of interest and HCC development, OLT, and death as competing risks. Group comparisons were performed using Gray’s test (1).

A two-sided p-value ≤0.05 was considered as statistically significant.
Internal validation cohort

Except for a larger proportion of CTP B/C patients (18.6% vs. 7.2%; \(P=0.002\)) and higher BL-MELD (9.9±4.4 vs. 8.6±2.6 points; \(P=0.012\)), as well as a more pronounced male predominance (n=67, 77.9% vs. n=174, 63.0%; \(P=0.011\)), patient characteristics of the internal validation cohort were comparable to the derivation cohort (Supplementary Table 4).

Patients in the internal validation cohort were followed for a median of 39.6 (IQR: 36.3) months after end of IFN-free therapy. Seven (8.1%) patients experienced hepatic decompensation during FU: Variceal bleeding in 1 (1.2%) patient, ascites in 5 (5.8%) patients, and HE in 1 (1.2%) patient.

External validation cohort

Compared to the derivation cohort, patients in the external validation cohort (n=162) were older (60.1±11.1 vs. 56.0±10.6 years; \(P<0.001\)), more commonly female (n=76, 46.9% vs. n=102, 37.0%; \(P=0.041\)), and also showed a lower BL-MELD (7.9±2.2 vs. 8.6±2.6 points; \(P=0.001\)) (Supplementary table 5).

Patients in the external validation cohort were followed for a median of 38.7 (IQR: 26.7) months after treatment cessation. Seven (4.3%) patients experienced hepatic decompensation during post-treatment FU: Variceal bleeding in 2 (1.2%) patients, ascites in 4 (2.5%) patients, and HE in 1 (0.6%) patient.

Non-invasive prediction of de-novo HCC and liver-related transplant-free mortality in the derivation cohort

The predictive performances of non-invasive parameters for HCC development during FU tended to be worse than those reported for hepatic decompensation, with BL-
VITRO (AUROC=0.806 (95%CI: 0.723-0.889)) achieving the best result, followed by BL-PLT (AUROC=0.798 (95%CI: 0.697-0.899)), and FU-VITRO (AUROC=0.786 (95CI: 0.682-0.890)); Supplementary table 6). Interestingly, although LSM at BL or FU was not predictive of HCC, absolute/relative changes in LSM showed some predictive capacity, with AUROC values of 0.709/0.705, respectively. BL-VITRO (>2.66; 0% vs. 15.3% at 3 years; \(P<0.001 \)) and FU-VITRO (>1.82; 1.3% vs. 11.8% at 3 years; \(P<0.001 \)) cut-offs obtained by Youden's index discriminated between patients at a very low-risk of HCC (more than two thirds of patients) and patients at high-risk for de-novo HCC development (less than one third of patients) (Supplementary figure 9).

Although several parameters achieved AUROC values >0.8 for liver-related transplant-free mortality, we abstained from conducting detailed analyses, as the number of events was low (Supplementary table 7).

Recompensation in dACLD patients of the derivation cohort

Of 26 dACLD patients (9.4%) in our derivation cohort, 5 patients had a history of variceal bleeding as the only decompensating event. Of the remaining 21 patients, all were either on diuretics for ascites control or on HE medication at treatment initiation. Of these, 9 patients recompensated and the proportion of patients with recompensation was twice as high in patients in the gray-zone (66.7% (4/6)), as compared to patients in the high-risk group (33.3% (5/15)), although the difference did not attain statistical significance (\(P=0.331 \)). Of note, none of the dACLD patients had been assigned to the low-risk group according to our FU-LSM and -VITRO-based algorithm.
Supplementary tables

Supplementary table 1

Patient characteristics	All patients, n=276	No hepatic decompensation during FU, n=264	Hepatic decompensation during FU, n=12	P value
BMI, kg x m⁻²²	26.8±5.0	26.8±5.0	27.6±4.9	0.566
≥25kg x m⁻²²	165 (59.8%)	157 (59.5%)	8 (66.7%)	0.788
≥30kg x m⁻²²	62 (22.5%)	59 (22.3%)	3 (25.0%)	0.736
Prediabetes¹	25 (9.1%)	24 (9.1%)	1 (8.3%)	1.000
Diabetes²	45 (16.3%)	42 (16.0%)	3 (25.0%)	0.423
Arterial hypertension³	102 (37.0%)	100 (37.9%)	2 (16.7%)	0.221
Hypertriglyceridemia⁴	27 (9.8%)	27 (10.2%)	0 (0.0%)	0.615
HDL below threshold⁵	49 (17.8%)	47 (17.8%)	2 (16.7%)	1.000
Statin use	13 (4.7%)	13 (4.9%)	0 (0.0%)	1.000
Hepatic steatosis⁶	141 (53.6%)	136 (54.0%)	5 (45.5%)	0.579
Alcohol consumption				
Abstinent	224 (81.2%)	218 (82.6%)	6 (50.0%)	
Non-abstinent but below the threshold⁷	22 (8.0%)	22 (8.3%)	0 (0.0%)	<0.001
Above the threshold⁷	30 (10.9%)	24 (9.1%)	6 (50.0%)	

¹ Fasting blood glucose 100-125mg x dL⁻¹.
² Fasting blood glucose >125mg x dL⁻¹, HbA1c ≥6.5%, or antidiabetic medication.
³ Blood pressure >140/90mmHg, or antihypertensive medication.
⁴ Fasting triglyceride levels >150mg x dL⁻¹.
⁵ <35mg x dL⁻¹ for males and <39mg x dL⁻¹ for females.
⁶ Controlled attenuation parameter >248dB/m. Data were available in 263 patients.
⁷ >30g/day and >20g/day for males and females, respectively (2).

Supplementary table 1. Comparison of factors related to the metabolic syndrome (3) and alcohol consumption between patients with and without hepatic decompensation during follow-up (FU).

Abbreviations:

BMI body mass index
FU follow-up
Supplementary table 2

Parameter	Model A			Model B		
	aHR	95%CI	P value	aHR	95%CI	P value
History of hepatic decompensation	2.605	0.618-10.972	0.192	3.110	0.748-12.930	0.119
FU-MELD, per point	1.041	0.903-1.200	0.582	1.074	0.929-1.240	0.336
FU-albumin, per g x L⁻¹	0.846	0.782-0.914	<0.001	0.846	0.779-0.920	<0.001
Alcohol consumption above the threshold¹	10.593	2.849-39.387	<0.001	7.554	1.955-29.193	0.003
FU-LSM, per kPa	1.045	1.018-1.074	0.001	-	-	-
FU-VITRO per point	-	-	-	1.315	1.128-1.533	<0.001

¹ >30g/day and >20g/day for males and females, respectively (2).

Supplementary table 2. Cox regression analyses investigating factors associated with hepatic decompensation during follow-up (FU) in the derivation cohort. Model A included FU-LSM and was adjusted for history of hepatic decompensation and indicators of hepatic dysfunction (FU-MELD score and serum FU-albumin levels) and alcohol consumption above the threshold¹, while model B included FU-VITRO and was adjusted for the same factors.

Abbreviations:
- FU follow-up
- LSM liver stiffness measurement
- VITRO von Willebrand factor antigen/platelet count ratio
- MELD model for end-stage liver disease
Supplementary table 3

Parameter	Model A			Model B		
	aHR	95% CI	P value	aHR	95% CI	P value
Ascites	2.427	0.611-9.643	0.208	1.750	0.460-6.662	0.412
FU-MELD, per point	1.085	0.952-1.235	0.220	1.135	1.000-1.289	0.050
FU-albumin, per g x L^{-1}	0.866	0.805-0.932	<0.001	0.852	0.790-0.919	<0.001
FU-LSM, per kPa	1.043	1.017-1.070	0.001	-	-	-
FU-VITRO, per point	-	-	-	1.384	1.186-1.614	<0.001

Supplementary table 3. Cox regression analyses investigating factors associated with hepatic decompensation during follow-up (FU) in the derivation cohort. Model A included FU-LSM and was adjusted for ascites and indicators of hepatic dysfunction (FU-MELD score and serum FU-albumin levels), while model B included FU-VITRO and was adjusted for the same factors.

Abbreviations: FU follow-up
LSM liver stiffness measurement
VITRO von Willebrand factor antigen/platelet count ratio
Supplementary table 4

Patients characteristics	Derivation cohort, n=276	Internal validation cohort, n=86	\(P \) value
Age, years	56.0±10.6	55.8±11.2	0.11
Sex			
Male	174 (63.0%)	67 (77.9%)	0.011
Female	102 (37.0%)	19 (22.1%)	
History of hepatic decompensation	26 (9.4%)	14 (16.3%)	0.076
Varices	62 (22.5%)	19 (22.1%)	0.943
Small	33 (12.0%)	11 (12.8%)	0.936
Large	29 (10.5%)	8 (9.3%)	
BL-CTP, points	5±1	6±1	0.020
Stage A	256 (92.8%)	70 (81.4%)	0.002
Stage B/C	20 (7.2%)	16 (18.6%)	
\(\Delta \) CTP, points	0 (0)	0 (0)	0.014
FU-CTP, points	5±1	5±1	0.271
BL-MELD, points	8.6±2.6	9.9±4.4	0.012
\(\Delta \) MELD, points	0 (2)	0 (2)	0.949
FU-MELD, points	8.8±3.3	9.9±5.0	0.048
BL-albumin, g x L\(^{-1}\)	41.1±4.6	41.3±4.9	0.759
Absolute \(\Delta \) albumin, g x L\(^{-1}\)	1.9 (4.5)	2.0 (5.2)	0.820
Relative \(\Delta \) albumin, %	4.4 (11.9)	4.6 (12.5)	0.786
FU-albumin, g x L\(^{-1}\)	43.1±4.5	43.3±4.7	0.735
BL-LSM, kPa	17.1 (15.6)	18.4 (20.3)	0.353
Absolute \(\Delta \) LSM, kPa	-3.6 (7.4)	-4.4 (11.2)	0.153
Relative \(\Delta \) LSM, %	-20.7 (39.2)	-26.3 (46.9)	0.119
FU-LSM, kPa	12.7 (14.3)	14.8 (18.5)	0.203
BL-PLT, G x L\(^{-1}\)	146±69	149±66	0.741
Absolute \(\Delta \) PLT, G x L\(^{-1}\)	9 (28)	11 (39)	0.897
Relative \(\Delta \) PLT, %	6.8 (20.8)	9.4 (30.2)	0.960
FU-PLT, G x L\(^{-1}\)	158±72	168±76	0.274
BL-VWF, %	233 (144)	237 (171)	0.532
Absolute \(\Delta \) VWF, %	-38 (68)	-45 (78)	0.337
Relative \(\Delta \) VWF, %	-18.4 (25.2)	-20.0 (26.8)	0.514
FU-VWF, %	180 (105)	180 (133)	0.724
BL-VITRO	1.69 (2.08)	1.74 (2.34)	0.952
Supplementary table 4. Comparison of patient characteristics between the derivation and the internal validation cohort.

	Derivation	Internal validation	p-value
Absolute Δ VITRO	-0.32 (0.80)	-0.37 (0.79)	0.649
Relative Δ VITRO, %	-23.3 (32.4)	-25.6 (30.5)	0.780
FU-VITRO	1.15 (1.52)	1.14 (1.60)	0.629

Abbreviations: ACLD advanced chronic liver disease, BL baseline, CTP Child-Turcotte-Pugh score, FU follow-up, HVPG hepatic venous pressure gradient, LSM liver stiffness measurement, MELD model for end-stage liver disease score, PLT platelet count, VITRO von Willebrand factor antigen/platelet count ratio, VWF von Willebrand factor.
Supplementary table 5

Patients characteristics	Derivation cohort, n=276	External validation cohort, n=162	\(P \) value
Age, years	56.0±10.6	60.1±11.1	<0.001
Sex			
Male	174 (63.0%)	86 (53.1%)	0.041
Female	102 (37.0%)	76 (46.9%)	
History of hepatic decompensation			
Varices	62 (22.5%)	38 (23.5%)	0.811
Small	33 (12.0%)	25 (15.4%)	0.449
Large	29 (10.5%)	13 (8.0%)	
BL-CTP, points	5±1	5±1	0.158
Stage A	256 (92.8%)	154 (95.1%)	0.340
Stage B/C	20 (7.2%)	8 (4.9%)	
Δ CTP, points	0 (0)	0 (0)	<0.001
FU-CTP, points	5±1	5±0	0.034
BL-MELD, points	8.6±2.6	7.9±2.2	0.001
Δ MELD, points	0 (2)	0 (2)	0.224
FU-MELD, points	8.8±3.3	7.8±2.1	<0.001
BL-albumin, g x L\(^{-1}\)	41.1±4.6	40.4±4.3	0.082
Absolute Δ albumin, g x L\(^{-1}\)	1.9 (4.5)	2.0 (5.0)	0.981
Relative Δ albumin, %	4.4 (11.9)	4.8 (12.4)	0.982
FU-albumin, g x L\(^{-1}\)	43.1±4.5	42.5±3.8	0.177
BL-LSM, kPa	17.1 (15.6)	15.9 (11.4)	0.998
Absolute Δ LSM, kPa	-3.6 (7.4)	-5.4 (6.8)	<0.001
Relative Δ LSM, %	-20.7 (39.2)	-34.3 (30.4)	<0.001
FU-LSM, kPa	12.7 (14.3)	11.4 (9.8)	0.004
BL-PLT, G x L\(^{-1}\)	146±69	152±63	0.482
Absolute Δ PLT, G x L\(^{-1}\)	9 (28)	9 (31)	0.633
Relative Δ PLT, %	6.8 (20.8)	8.1 (21.9)	0.582
FU-PLT, G x L\(^{-1}\)	158±72	160±69	0.712
BL-VWF, %	233 (144)	225 (143)	0.667
Absolute Δ VWF, %	-38 (68)	-50 (72)	0.092
Relative Δ VWF, %	-18.4 (25.2)	-21.5 (24.7)	0.115
FU-VWF, %	180 (105)	170 (89)	0.398
BL-VITRO	1.69 (2.08)	1.57 (1.59)	0.379
Absolute Δ VITRO | -0.32 (0.80) | -0.35 (0.64) | 0.949
Relative Δ VITRO, % | -23.3 (32.4) | -26.4 (32.9) | 0.544
FU-VITRO | 1.15 (1.52) | 1.07 (1.27) | 0.530

Supplementary table 5. Comparison of patient characteristics between the derivation and the external validation cohort.

Abbreviations:
ACLD advanced chronic liver disease
BL baseline
CTP Child-Turcotte-Pugh score
FU follow-up
HVPG hepatic venous pressure gradient
LSM liver stiffness measurement
MELD model of end-stage liver disease score
PLT platelet count
VITRO von Willebrand factor antigen/platelet count ratio
VWF von Willebrand factor
Supplementary table 6

Parameter	AUROC (95% CI)	Youden’s index-optimized cut-off	Sensitivity	Specificity	PPV	NPV
BL-MELD	0.673 (0.524-0.823)	>9 points	57.1%	76.0%	11.3%	97.1%
FU-MELD	0.646 (0.472-0.821)	-	-	-	-	-
BL-albumin	0.753 (0.615-0.890)	<39.6 g x L⁻¹	71.4%	72.4%	12.0%	97.9%
FU-albumin	0.786 (0.651-0.922)	<41.8 g x L⁻¹	78.6%	70.8%	12.6%	98.4%
BL-LSM	0.497 (0.365-0.629)	-	-	-	-	-
FU-LSM	0.597 (0.474-0.721)	-	-	-	-	-
Absolute Δ LSM	0.709 (0.600-0.818)	> -3.7kPa	92.9%	50.8%	9.2%	99.3%
Relative Δ LSM	0.705 (0.600-0.810)	> -37.6%	100%	29.0%	7.0%	100%
BL-PLT	0.798 (0.697-0.899)	<103 G x L⁻¹	78.6%	72.5%	13.3%	98.4%
FU-PLT	0.778 (0.672-0.884)	<154 G x L⁻¹	92.9%	53.1%	9.6%	99.3%
BL-VWF	0.680 (0.544-0.817)	>266%	78.6%	63.4%	10.3%	98.2%
FU-VWF	0.689 (0.548-0.830)	>236%	57.1%	75.6%	11.1%	97.1%
BL-VITRO	0.806 (0.723-0.889)	>2.66	85.7%	71.4%	13.8%	98.9%
FU-VITRO	0.786 (0.682-0.890)	>1.82	78.6%	69.8%	12.2%	98.4%

Supplementary table 6. Area under the receiver operating characteristic curve (AUROC) values, Youden’s index-optimized cut-offs, and diagnostic indices of potential non-invasive predictors of de-novo hepatocellular carcinoma in the derivation cohort.
Abbreviations	Description
95%CI	95% confidence interval
AUROC	area under the receiver operator characteristic curve
BL	baseline
FU	follow-up
LSM	liver stiffness measurement
NPV	negative predictive value
PLT	platelet count
PPV	positive predictive value
VITRO	von Willebrand factor antigen/platelet count ratio
VWF	von Willebrand factor
Supplementary table 7

Parameter	AUROC (95%CI)	Cut-off	Sensitivity	Specificity	PPV	NPV
BL-MELD	0.746 (0.532-0.959)	> 9 points*	80.0%	75.3%	5.6%	99.5%
FU-MELD	0.621 (0.294-0.948)	-	-	-	-	-
BL-albumin	0.829 (0.666-0.992)	<33.1 g x L⁻¹*	60.0%	95.2%	18.8%	99.2%
FU-albumin	0.766 (0.585-0.947)	<43.8 g x L⁻¹*	100%	50.4%	2.9%	100%
BL-LSM	0.550 (0.348-0.752)	-	-	-	-	-
		>12.4 kPa	80.0%	48.7%	2.9%	99.2%
		>25.3 kPa	40.0%	79.0%	3.4%	98.6%
BL-PLT	0.829 (0.741-0.917)	<86 G x L⁻¹*	100%	68.6%	5.6%	100%
FU-PLT	0.839 (0.724-0.955)	<129 G x L⁻¹*	100%	63.5%	4.8%	100%
BL-VWF	0.730 (0.456-1.000)	-	-	-	-	-
FU-VWF	0.832 (0.678-0.986)	>221%*	80.0%	74.9%	5.6%	99.5%
BL-VITRO	0.824 (0.691-0.957)	>3.35*	80.0%	80.1%	6.9%	99.5%
		>0.95	100%	41.3%	3.0%	100%
FU-VITRO	0.873 (0.771-0.975)	>3.3	60.0%	86.7%	7.7%	99.2%

* Youden’s index-optimized cut-off.

Supplementary table 7.

Area under the receiver operating characteristic curve (AUROC) values, Youden’s index-optimized cut-offs, and diagnostic indices of potential predictors of liver-related mortality in the derivation cohort.

Abbreviations:

95%CI 95% confidence interval
AUROC area under the receiver operating characteristic curve
BL baseline
FU follow-up
LSM liver stiffness measurement
NPV negative predictive value
PLT platelet count
PPV positive predictive value
VITRO von Willebrand factor antigen/platelet count ratio
VWF von Willebrand factor
Supplementary figures

Supplementary figure 1

A

\[\text{BL-LSM} \]
\[\text{AUROC} = 0.812 \quad (95\% \text{ CI: 0.721-0.904}) \]

\[\text{FU-LSM} \]
\[\text{AUROC} = 0.875 \quad (95\% \text{ CI: 0.796-0.954}) \]

\[\Delta \text{LSM (abs.)} \]
\[\text{AUROC} = 0.658 \quad (95\% \text{ CI: 0.427-0.890}) \]

\[\Delta \text{LSM (rel.)} \]
\[\text{AUROC} = 0.721 \quad (95\% \text{ CI: 0.546-0.897}) \]

B

\[\text{BL-PLT} \]
\[\text{AUROC} = 0.837 \quad (95\% \text{ CI: 0.739-0.935}) \]

\[\text{FU-PLT} \]
\[\text{AUROC} = 0.883 \quad (95\% \text{ CI: 0.815-0.951}) \]

\[\Delta \text{PLT (abs.)} \]
\[\text{AUROC} = 0.697 \quad (95\% \text{ CI: 0.536-0.858}) \]

\[\Delta \text{PLT (rel.)} \]
\[\text{AUROC} = 0.704 \quad (95\% \text{ CI: 0.496-0.911}) \]
BL-VWF AUROC = 0.758 (95% CI: 0.604-0.911)
FU-VWF AUROC = 0.871 (95% CI: 0.757-0.986)
\(\Delta \, \text{VWF (abs.)} \) AUROC = 0.787 (95% CI: 0.671-0.904)
\(\Delta \, \text{VWF (rel.)} \) AUROC = 0.820 (95% CI: 0.745-0.896)

BL-VITRO AUROC = 0.857 (95% CI: 0.762-0.952)
FU-VITRO AUROC = 0.925 (95% CI: 0.874-0.977)
\(\Delta \, \text{VITRO (abs.)} \) AUROC = 0.756 (95% CI: 0.574-0.938)
\(\Delta \, \text{VITRO (rel.)} \) AUROC = 0.715 (95% CI: 0.681-0.949)
Supplementary figure 1. Area under the receiver operator characteristics curve (AUROC) of A liver stiffness measurement (LSM), B platelet count (PLT), C von Willebrand factor (VWF), D von Willebrand factor antigen/platelet count ratio (VITRO), and E serum albumin levels for predicting hepatic decompensation after HCV-cure in the derivation cohort.

Abbreviations: AUROC area under the receiver operator characteristics curve
BL baseline
FU follow-up
LSM liver stiffness measurement
PLT platelet count
SVR sustained virological response
VITRO von Willebrand factor antigen/platelet count ratio
VWF von Willebrand factor
Supplementary figure 2. Assignment of patients to risk groups at baseline (BL) and follow-up (FU), as well as stage migration occurring between these two timepoints in the derivation cohort.

Abbreviations:
BL baseline
FU follow-up
Supplementary figure 3. Competing risk regression analyses of hepatic decompensation in the derivation cohort. Patients were stratified according to their probability of post-treatment clinically significant portal hypertension (CSPH, hepatic venous pressure gradient (HVPG)≥10mmHg).

Abbreviations:
- CSPH: clinically significant portal hypertension
- HVPG: hepatic venous pressure gradient
- FU: follow-up
- LSM: liver stiffness measurement
- VITRO: von Willebrand factor antigen/platelet count ratio
Supplementary figure 4

Kaplan-Meier analysis of hepatic decompensation in patients with cirrhosis included in the derivation cohort, stratified according to their risk of post-treatment clinically significant portal hypertension (CSPH, hepatic venous pressure gradient (HVPG)≥10mmHg).

Subjects at risk

CSPH ruled-in	65	52	37	23
Gray-zone	44	40	35	28
CSPH ruled-out	59	53	43	34

Time (months)

Cumulative incidence rates at 3 years: 18.4% vs. 2.9% vs. 0%; P=0.001

Abbreviations:

CSPH clinically significant portal hypertension
HVPG hepatic venous pressure gradient
FU follow-up
LSM liver stiffness measurement
VITRO von Willebrand factor antigen/platelet count ratio
Supplementary figure 5. Kaplan-Meier analysis of hepatic decompensation in patients of the derivation cohort, stratified according to their risk of post-treatment clinically significant portal hypertension (CSPH, hepatic venous pressure gradient (HVPG)≥10mmHg) by applying liver stiffness measurement (LSM) cut-offs that were not specifically developed for patients who achieved HCV-cure.

Abbreviations: CSPH clinically significant portal hypertension
HVPG hepatic venous pressure gradient
FU follow-up
LSM liver stiffness measurement
VITRO von Willebrand factor antigen/platelet count ratio
Supplementary figure 6. Kaplan-Meier analyses of hepatic decompensation in patients of the internal validation cohort, stratified according to their risk of post-treatment clinically significant portal hypertension (CSPH, hepatic venous pressure gradient (HVPG)≥10mmHg).

Abbreviations:

CSPH clinically significant portal hypertension

HVPG hepatic venous pressure gradient

FU follow-up

LSM liver stiffness measurement

VITRO von Willebrand factor antigen/platelet count ratio
Supplementary figure 7. Prevalence of clinically significant portal hypertension (HVPG≥10mmHg) and high-risk portal hypertension (HVPG≥16mmHg) and comparison of HVPG levels throughout the risk groups in the internal validation cohort, as defined by non-invasive tests.

Abbreviations:
CSPH clinically significant portal hypertension
HVPG hepatic venous pressure gradient
IQR interquartile range
PH portal hypertension
Supplementary figure 8. Kaplan-Meier analyses of hepatic decompensation in patients of the external validation cohort, stratified according to their risk of post-treatment clinically significant portal hypertension (CSPH, hepatic venous pressure gradient (HVPG) ≥ 10 mmHg).

1 Comparing only high-risk vs. low-risk due to crossing curves.

Abbreviations: CSPH clinically significant portal hypertension
HVPG hepatic venous pressure gradient
FU follow-up
LSM liver stiffness measurement
VITRO von Willebrand factor antigen/platelet count ratio
Supplementary figure 9. Kaplan-Meier analyses of de-novo hepatocellular carcinoma in the derivation cohort stratified by Youden’s index-optimized cut-offs for A baseline (BL)-VITRO (>2.66) and B) follow-up (FU)-VITRO (>1.82).
Abbreviations:

BL baseline

FU follow-up

VITRO von Willebrand factor antigen/platelet count ratio
References

1. Gray RJ. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. Ann Stat 1988;16:1141-1154.

2. European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016;64:1388-1402.

3. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15:539-553.