Asymmetry and nonlinearity of current-bias characteristics in superfluid-normal state junctions of weakly-interacting Bose gases

Shun Uchino1

1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan

We uncover current-bias characteristics of superfluid-normal state junctions with weakly-interacting Bose gases. It is shown that in the presence of a chemical potential bias the characteristics can strongly be asymmetric for origin. The salient feature that is absent in the fermionic counterpart arises from a tunneling process associated with a condensate and a bosonic Andreev reflection process. It turns out that such processes are intrinsically nonlinear and therefore do not obey Ohm’s law even at a low bias. In addition, the remaining processes are found to obey Ohm’s law and become dominant for transport driven by a temperature bias.

Recent years have witnessed spectacular development of atomtronics [1,2], where quantum transport phenomena with ultracold atomic gases have been studied under various geometries such as quantum point contact [3], planar junction [4,5], and junction on spin space [6]. Owing to controllability of ultracold atomic gases, one can utilize quantum states whose realizations are elusive with typical condensed matter systems including metals, semiconductors, and superconductors. A weakly-interacting Bose-Einstein condensate (BEC) is the stellar example in that our understanding on it has significantly deepened since the first realization with ultracold atomic gases [1,7]. When it comes to quantum transport of the BECs, Josephson and dissipative currents passing through barriers [9–13] and tubes [14,15] have already been measured.

In quantum transport, it is known that junction systems in which different quantum states are attached play a crucial role in condensed matter physics. A celebrated example is the p-n junction, which has a direct relevance to electronics and has been applied for semiconductor devices such as diodes and transistors [16]. Another famous example, which is related to the present work, is the superconductor-normal metal (or semiconductor) junction [17]. In this system, one can observe the current-bias characteristics that originate from suppression of the quasi-particle transport process [18] and presence of the effective pair transport process due to the Andreev reflection [19]. Especially, the latter process is associated with the conversion between particle and hole, which is imprinted as particle-hole mixing in superconductors described by Bogoliubov-de-Gennes Hamiltonian. Since weakly-interacting BECs at low temperature are described by the Bogoliubov Hamiltonian that has the 2×2 matrix structure analogous to one in superconductors, the existence of bosonic Andreev reflections in such BECs is expected [20–22]. However, transport characteristics of a superfluid-normal state (SN) junction composed of weakly-interacting bosons and the role of the bosonic Andreev reflection process in terms of mesoscopic transport have yet to be understood.

In this paper, we microscopically investigate transport characteristics of SN junctions made of weakly-interacting Bose gases (Fig. 1 (a)). By analyzing typical situations such as planar junction and point contact via the tunneling Hamiltonian formalism, we demonstrate that unlike the superconductor-normal metal junctions, the current-chemical potential bias characteristics show an asymmetry for origin (Fig. 1 (b)), which is significant in the vicinity of the critical temperature of a BEC. This notable feature of the bosonic junction is ascribed by presences of a tunnel coupling between condensate and normal boson and bosonic Andreev reflection process, both of which emerge for $\Delta \mu < \mu_0$ with chemical potential of noninteracting bosons μ_0.

We consider a two-terminal configuration where the left (right) reservoir is filled by normal (superfluid) bosons and the coupling between reservoirs can be captured with the following tunneling term:

$$H_T = \sum_{p,k} \left(t_{p,R} b_{p,R}^{\dagger} b_{p,L} + h.c. \right). \quad (1)$$
Here $t_{p,k}$ is the tunneling amplitude, and $b_{k,R}(b_{p,R}^\dagger)$ the annihilation (creation) operator of a boson with momentum k (p) in the left (right) reservoir. In order to obtain comparable results with superconductor-normal metal junctions in which the Bogoliubov-de-Gennes approach is applicable, we focus on a situation that an interaction between bosons in each reservoir is short range and weakly repulsive. In such a situation, the superfluid reservoir at low temperature and the normal reservoir can be described by the Bogoliubov theory and the Hartree-Fock (HF) theory respectively.

With these understandings, we now evaluate the particle current in SN junctions of bosons. By taking the convention that a particle flow from left to right reservoir is positive, the particle current at time τ is expressed as

$$I_N = 2 \sum_{p,k} \text{Re} [t_{p,k} G^<_{k,p,LR}(\tau, \tau)] ,$$

where $G^<_{k,p,LR}(\tau, \tau') = -i\langle b_{k,R}(\tau') b_{p,L}(\tau) \rangle$ is lesser Green’s function \[23\]. We are especially interested in mesoscopic transport induced by chemical potential or temperature bias between reservoirs. Therefore, we turn to adapt the Keldysh formalism \[21-25\], which provides an efficient program for calculation of mesoscopic currents. In addition, since in the SN system an AC component is absent in the presence of a static bias unlike superfluid-superfluid junctions \[3-4\], it is also convenient to work in the frequency space, where the current is expressed as

$$I_N = \int_{-\infty}^{\infty} d\omega I_N(\omega) ,$$

with the integrand $I_N(\omega)$ with respect to frequency ω. By solving the Dyson equation for lesser Green’s function with the help of the Langreth rule \[21\], we find that the current including all processes up to infinite order in tunneling amplitude is obtained as \[25\]

$$I_N = I_c + I_1 + I_2 + I_3 + I_A.$$

The expression above shows that the particle current consists of five different processes. First, I_c is unique to the present system being absent in the superconducting junction case and describes a process in which a particle in the normal phase is converted into a condensate in the superfluid phase. We point out that this process resembles a conversion process between condensate and Bogoliubov mode appearing in the superfluid-superfluid junction \[2-4\] \[29\] \[30\]. In such a superfluid junction, the presence of the conversion process between condensate and normal boson (Bogoliubov mode) is inevitable for tunneling where the momentum conversation is broken. In addition, I_1, I_2, and I_3 are processes, which are also present in the fermionic case, describe normal particle transfer between reservoirs, transfer of a particle with creation or annihilation of pairs, and a process in which a particle in the normal phase is converted into a hole in the superfluid phase, respectively \[5\] \[32\]. Finally, I_A is the bosonic Andreev reflection process where a particle in the normal phase is reflected as a hole.

In order to see a qualitative difference between bosonic and fermionic systems in a simple manner, we first look at the planar junction case in which the current analysis up to second order in tunneling amplitude is reasonable. In this case, the particle current passing through the junction is expressed as

$$I_N \approx I_c + I_1.$$

Here, I_2, I_3, I_A are extinguished, since these are composed of the higher-order processes in tunneling amplitude \[28\]. Whereas I_1 is the only contribution in the tunneling junction of the fermionic system, the contribution of I_c also appears in the present boson system. The presence of the additional contribution and the difference of quasi-particle excitations between bosons and fermions give rise to a nontrivial current response. To demonstrate this, we focus on the particle current in a low chemical-potential bias ($\Delta \mu$) regime where the low-energy excitations play dominant roles \[3-4\]. In this case, we find that I_1 in the bosonic junction obeys Ohm’s law and therefore its differential conductance G_1 is independent of $\Delta \mu$. This implies that I_1 component in the current-bias curve is symmetric for origin in a similar manner to the corresponding fermionic junction. We also point out that G_1 shows a peculiar temperature dependence depending on the temperature regime of the normal bosons in which the chemical potential of noninteracting bosons μ_0 is a key parameter within the HF theory; G_1 is proportional to $T^{7/2}$ near the critical temperature of BECs T_c where $\mu_0 \to 0^-$, whilst at high temperature where $\mu_0/T \to -\infty$ it is suppressed by an exponential factor whose argument is proportional to μ_0/T \[25\]. Especially, the fractional temperature dependence near T_c reflects on the density of states in normal bosons $\rho_N(\omega) \propto \sqrt{\mu_0 + \omega}$. Such a behavior in I_1 is different from the fermionic junction in which the quasi-particle current as a function of $\Delta \mu$ is suppressed by the factor $e^{-\Delta/T}$ below the superconducting gap Δ and shows the abrupt enhancement near $\Delta \mu$. The difference between bosonic and fermionic junctions arises from facts that the quasi-particle excitation in the fermions has the gap while that in the bosons is gapless, and frequency dependence of density of states in normal fermions is ignorable owing to the Fermi level while that in normal bosons is non-negligible.

On the other hand, I_c, being inherent to the bosonic junction shows an asymmetric behavior in $\Delta \mu$, since it vanishes for $\Delta \mu > \mu_0$. This property arises from the fact that I_c is proportional to $\rho_N(-\Delta \mu)$, which becomes zero unless $\mu_0 - \Delta \mu > 0$. Physically, this means that for $\mu_0 - \Delta \mu < 0$ the conversion between the condensation element and normal boson does not occur, as a particle in the normal phase cannot find the corresponding condensation element. Notice that for the low-$\Delta \mu$ regime I_c is absent at high temperature where μ_0 takes a large negative value. In addition, the appearance of the factor
\(\rho_N(-\Delta \mu) \) implies that \(I_c \) is intrinsically nonlinear and has a square root dependence in \(\Delta \mu \). The presence of the nonlinear curve due to \(I_c \) is peculiar to the bosonic SN junction and is absent in the superfluid-superfluid junction of bosons \[2-4, 28, 30\].

Now that the particle current in the tunneling regime has been demonstrated, we turn to look at the higher-order tunneling effects. To see this, we consider the single-mode point-contact system in which tunneling occurs between the single points in each reservoir \[3\] or increasing an atom-impurity potential via the Feshbach resonance \[8\], and therefore, all the contributions in the right hand side of Eq. (4) are facilitated. The detailed calculation based on the Keldysh formalism reveals that the qualitative change of \(I_c \) compared to the planar junction case does not occur in that \(I_c \) is proportional to \(\rho_N(-\Delta \mu) \), whereas the higher-order tunneling processes give an impact on its proportional coefficient \[28\]. Thus, it follows that as in the planar junction case \(I_c \) in the point contact case is relevant near \(T_c \). In addition, we find \(I_1 \approx G_1 \Delta \mu \) for low \(\Delta \mu \), where \(G_1 \) is independent of \(\Delta \mu \) similar to the planar junction. Due to the difference in \(t_{p,k} \) between the planar junction and the point contact, however, \(G_1 \) in the point contact is found to be proportional to \(T^{3/2} \) near \(T_c \), which is different from one in the planar junction \[28\]. With increasing the coupling between reservoirs, \(I_2 \) and \(I_3 \) whose leading order contributions are respectively proportional to fourth order and sixth order in \(t_{p,k} \) are generated. By performing an explicit calculation for low \(\Delta \mu \), we find that \(I_2 \) and \(I_3 \) also obey Ohm’s law where the corresponding conductances \(G_2 \) and \(G_3 \) are proportional to \(T^{3/2} \) near \(T_c \) and are exponentially suppressed at high temperature as in \(G_1 \) \[28\].

In contrast, \(I_A \) whose leading contribution is proportional to the fourth order in \(t_{p,k} \) turns out to possess a non-Ohmic character. To see this, we point out that the integrand in \(I_A \) contains the product of densities of states in particle and hole branches of normal bosons, that is,

\[
\rho_N(\omega - \Delta \mu)\rho_N(-\omega - \Delta \mu).
\]

Thus, it follows that in order for \(I_A \) to be nonzero, there must be frequencies that simultaneously satisfy \(\mu_0 + \omega - \Delta \mu > 0 \) and \(\mu_0 - \omega - \Delta \mu > 0 \). This indicates that \(I_A \) can be nonzero for \(\Delta \mu < \mu_0 \) and contribute to low-energy transport near \(T_c \), similar to \(I_c \). In addition, the fact that a particle is reflected as a hole in the Andreev reflection process implies that the integrand in \(I_A \) also contains the factor

\[
n_L(\omega - \Delta \mu) = n_L(\omega + \Delta \mu),
\]

where \(n_L \) is the Bose distribution function in (normal) reservoir \(L \). Equation (7) is linear in \(\Delta \mu \) for the low-bias regime. However, Ohm’s law is prohibited in \(I_A \) due to the dependence in densities of states (Eq. (6)), which introduces an additional \(\Delta \mu \) dependence in the integrand of \(I_A \). An explicit numerical analysis shows that \(I_A \propto (\Delta \mu - \mu_0)^2 \delta(\mu_0 - \Delta \mu) \) for small \(\Delta \mu \) and \(\mu_0 \) \[28\]. This is in sharp contrast to the Andreev reflection contribution in the superconductor where the Andreev current obeys Ohm’s law for the low-bias regime \[5\] \[32\]. We also point out that up to this order of the expression, \(I_A \) has no temperature dependence as in \(I_c \). Since the leading order contribution in \(I_c \) is the second order in \(t_{p,k} \) and \(I_c \propto \sqrt{\mu_0 - \Delta \mu} \), however, \(I_c \) is more dominant than \(I_A \) over the low-bias regime.

Besides transport induced by a chemical potential bias, we can discuss one induced solely by a temperature bias between reservoirs \(\Delta T \). Regarding the particle current, it turns out that both \(I_c \) and \(I_A \) become zero. The former contribution is absent since the density of states in the normal bosons vanishes at zero frequency. On the other hand, the latter one is absent due to the fact that the Andreev reflection process contains the factor Eq. (7) in the integrand, which trivially vanishes at \(\Delta \mu = 0 \). In other words, the remaining processes \(I_1, I_2, \) and \(I_3 \) are generated by \(\Delta T \). It is then straightforward to show that in the presence of small \(\Delta T \) these contributions are proportional to \(\Delta T \). Furthermore, we discuss the heat current \(I_Q \) induced by \(\Delta T \). By using lesser Green’s function, it is expressed as

\[
I_Q = 2 \sum_{p,k} \lim_{\tau \rightarrow \tau'} \text{Re} \left[iG_{k,p,L,R}^{\omega<}(\tau, \tau') \right].
\]

As in the case of the particle current, the heat current can efficiently be calculated in the frequency space. Then, \(i\partial_\tau \) in Eq. (8) is replaced by \(\omega \) in the frequency representation and the integrand of Eq. (8) is given by one of Eq. (4) multiplied by \(\omega \), i.e., \(I_Q = \int_{-\infty}^{\infty} d\omega \omega I_N(\omega) \). The direct evaluation of \(I_Q \) shows that the contributions coming from the conversion process between condensate and normal boson and the Andreev reflection process vanish, and the remaining processes corresponding to \(I_1, I_2, \) and \(I_3 \) in the particle current become dominant. In addition, we can show that for the low-\(\Delta T \) regime, \(I_Q \) is proportional to \(\Delta T \), implying the presence of Fourier’s law.

We now discuss possible realizations of the bosonic SN junctions with ultracold atomic gases. Unlike condensed-matter setups where superconductor and normal metal consist of different materials, junction systems in cold-atom experiments are made of an atomic gas originally trapped in one \[3\]. By considering that the critical temperature of the BEC depends on an atomic density, in order to verify the predictions discussed in this work, one has to make a two-terminal system where the chemical potential difference between reservoirs is small and density difference between reservoirs is sufficiently large such that the thermodynamic properties of the left and right reservoirs are described by the HF and the Bogoliubov theories, respectively. To achieve this, one can use a repulsive external potential, which is only added in the left reservoir and compensates the chemical potential difference arising from the large density difference between reservoirs \[36\]. Another way to make the similar system
is to use the synthetic-reservoir technique available in ultracold atomic gases with internal degrees of freedom. There, the hyperfine or nuclear spin index of each atom is regarded as the reservoir index, and tunneling and chemical-potential shift between reservoirs can be introduced as coupling and energy-level shift between spins, respectively. Such a technique has already been implemented to confirm the Josephson effect \cite{3} and point contact transport \cite{5}.

For realizations of the SN junctions, it is instructive to point out that due to the critical fluctuation the HF theory is broken down in the very vicinity of T_c, where μ_0 approaches to zero. By using the Ginzburg criterion, such a fluctuation is important around the critical chemical potential $\mu_c = (4\pi a^2 M T)^{2}$ with the mass of an atom M and the s-wave scattering length a \cite{1}. In order to see the existence of the regime where the theoretical analysis addressed in this work is justified in a concrete way, we consider a system of 87Rb atoms and assume that the atomic densities in the normal and superfluid reservoirs are respectively of the order of 10^{11}cm$^{-3}$ and 10^{13}cm$^{-3}$. In this case, $T_c \sim 10^{-9}$K and $\mu_c \sim 10^{-11}$K in the normal reservoir, while $T_c \sim 10^{-8}$K in the superfluid reservoir. Thus, if the temperature of the system is $T \sim 10^{-9}$K, we can reach the regime in which the superfluid reservoir is described by the Bogoliubov theory and normal reservoir is done by the HF theory while avoiding the critical fluctuation.

To summarize, we addressed the current-bias characteristics of the bosonic SN systems. Owing to the presence of the tunneling process inherent to the bosonic systems and the excitation properties, the transport characteristics turn out to be drastically different from the fermionic counterparts. Especially, we revealed that in the vicinity of the critical temperature of a BEC, the current-chemical potential bias characteristics can be nonlinear due to the conversion process between condensate and normal boson and the bosonic Andreev process.

At the same time, such processes yielding the nonlinear character are found to be irrelevant for transport induced by a temperature bias.

The results shown in this paper may encourage a variety of related works. An analysis in terms of the scattering formalism with the Bogoliubov equation is an interesting direction for future research. Such an analysis may play a key role in connecting the tunneling process such as the conversion process discussed in this work with the so-called quantum condensation and evaporation \cite{38} \cite{42}. In addition, the formalism explored in this work can be applied to various BEC systems discussed in ultracold atomic gases. Weakly-interacting Bose gases with spin could be one of the systems. There, the current-bias characteristics may further be nontrivial, since such BECs possess a variety of Bogoliubov excitations depending on the phases realized \cite{35}. Similarly, junction systems of the binary mixtures with or without spin-orbit coupling are promising in terms of comparable superconducting systems \cite{41}. Furthermore, the SN junction in two-component Fermi gases may be interesting in terms of Bardeen-Cooper-Schrieffer (BCS)-BEC crossover \cite{43}. There, questions would be how evolution of the transport characteristics as a function of the s-wave scattering length and crossover between fermionic and bosonic Andreev reflections are. Another promising direction may be to look at optical lattice systems in which an effect of commensurability is significant near the Mott-insulator transition \cite{40}.

ACKNOWLEDGMENT

The author is supported by MEXT Leading Initiative for Excellent Young Researchers, JSPS KAKENHI Grant No. JP21K03436, and Matsuo Foundation.

\[\text{[1]}\] L. Amico, M. Boshier, G. Birkl, A. Minguzzi, C. Miniatura, L. C. Kwek, D. Aghamalyan, V. Ahufinger, D. Anderson, N. Andrei, A. S. Arnold, M. Baker, T. A. Bell, T. Bland, J. P. Brantut, D. Cassettari, W. J. Chetcuti, F. Chevy, R. Citro, S. D. Palo, R. Dunke, M. Edwards, R. Felman, J. Fortagh, S. A. Gardiner, B. M. Garraway, G. Gauthier, A. Günther, T. Haug, C. Hufnagel, M. Keil, W. von Klitzing, P. Lebrat, W. Li, L. Longchambon, J. Mompart, O. Morsch, P. Naklesi, T. W. Neely, M. Olshanii, E. Orignac, S. Pandey, A. Pérez-Obiol, H. Perrin, L. Piroli, J. Polo, A. L. Pritchard, N. P. Proukakis, C. Rylands, H. Rubinsztein-Dunlop, F. Scazza, S. Stringari, F. Tosto, A. Trombettoni, N. Victorin, D. Willkowski, K. Xhani, and A. Yakimenko, AVS Quantum Sci. 3, 039201 (2021).

\[\text{[2]}\] L. Amico, D. Anderson, M. Boshier, J.-P. Brantut, L.-C. Kwek, A. Minguzzi, and W. von Klitzing, (2021), arXiv:2107.08561 [cond-mat.quant-gas].

\[\text{[3]}\] S. Krinner, T. Esslinger, and J.-P. Brantut, Journal of Physics: Condensed Matter 29, 343003 (2017).

\[\text{[4]}\] G. Del Piano, W. J. Kwon, M. Zaccanti, G. Roati, and F. Scazza, Phys. Rev. Lett. 126, 055301 (2021).

\[\text{[5]}\] N. Luick, L. Sobirey, M. Bohlen, V. P. Singh, L. Mathey, T. Lompe, and H. Moritz, Science 369, 89 (2020).

\[\text{[6]}\] K. Ono, T. Higomoto, Y. Saito, S. Uchino, Y. Nishida, and Y. Takahashi, Nature Communications 12, 6724 (2021).

\[\text{[7]}\] C. J. Pethick and H. Smith, Bose–Einstein condensation in dilute gases (Cambridge university press, 2008).

\[\text{[8]}\] L. Pitaevskii and S. Stringari, Bose–Einstein condensation and superfluidity (Oxford University Press, 2016).

\[\text{[9]}\] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).

\[\text{[10]}\] S. Levy, I. Lahoud, E. Shiomroni, and J. Steinhauer, Nature (London) 449, 579 (2007).
[11] L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Phys. Rev. Lett. 106, 025302 (2011).
[12] G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman, A. Trombettoni, A. Smerzi, M. Zaccanti, M. Inguscio, et al., Science 350, 1505 (2015).
[13] A. Burchianti, F. Scazza, A. Amico, G. Valtolina, J. A. Seman, C. Fort, M. Zaccanti, M. Inguscio, and G. Roati, Phys. Rev. Lett. 120, 025302 (2018).
[14] S. Eckel, J. G. Lee, F. Jendrzejewski, C. J. Lobb, G. K. Campbell, and W. T. Hill, Phys. Rev. A 93, 063619 (2016).
[15] G. Gauthier, S. S. Szigeti, M. T. Reeves, M. Baker, T. A. Bell, H. Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely, Phys. Rev. Lett. 123, 260402 (2019).
[16] B. Anderson and R. Anderson, Fundamentals of semiconductor devices (McGraw-Hill, Inc., 2017).
[17] M. Tinkham, Introduction to superconductivity (Courier Corporation, 2004).
[18] G. D. Mahan, Many-particle physics (Springer Science & Business Media, 2013).
[19] Y. V. Nazarov and Y. M. Blanter, Quantum transport: introduction to nanoscience (Cambridge University Press, 2009).
[20] I. Zapata and F. Sols, Phys. Rev. Lett. 102, 180405 (2009).
[21] I. Zapata, M. Albert, R. Parentani, and F. Sols, New Journal of Physics 13, 063048 (2011).
[22] S. K. Manikandan and A. N. Jordan, Phys. Rev. D 98, 124043 (2018).
[23] We note that since the particle current does not depend on time, its temporal argument is omitted.
[24] J. Rammer, Quantum field theory of non-equilibrium states (Cambridge University Press, 2007).
[25] A. Kamenev, Field theory of non-equilibrium systems (Cambridge University Press, 2011).
[26] S. Uchino, Phys. Rev. A 64, 033610 (2001).
[27] S. Uchino and J.-P. Brantut, Phys. Rev. Research 2, 023284 (2020).
[28] See Supplemental Material for the derivation and further discussion.
[29] M. Zaccanti and W. Zwerger, Phys. Rev. A 100, 063601 (2019).
[30] S. Uchino, Phys. Rev. Research 2, 023340 (2020).
[31] S. Uchino, Phys. Rev. Research 3, 043058 (2021).
[32] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
[33] J. C. Cuevas, A. Martín-Rodero, and A. L. Yeyati, Phys. Rev. B 54, 7366 (1996).
[34] C. Berthod and T. Giamarchi, Phys. Rev. B 84, 155114 (2011).
[35] D. Husmann, S. Uchino, S. Krinner, M. Lebrat, T. Giamarchi, T. Esslinger, and J.-P. Brantut, Science 350, 1498 (2015).
[36] C. Oliver, A. Smith, T. Easton, G. Salerno, V. Guerrera, N. Goldman, G. Barontini, and H. M. Price, (2021), 10.48550/ARXIV.2112.10648.
[37] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Phys. Rev. Lett. 105, 204101 (2010).
[38] W. D. Johnston and J. G. King, Phys. Rev. Lett. 16, 1191 (1966).
[39] P. Anderson, Physics Letters A 29, 563 (1969).
[40] F. R. Hope, M. J. Baird, and A. F. G. Wyatt, Phys. Rev. Lett. 52, 1528 (1984).
I. WEAKLY-INTERACTING BOSE GASES

We consider a system of a spinless Bose gas with mass M that undergoes an s-wave scattering. The grand canonical Hamiltonian of the system is given by

$$
H = \int d^3x \phi^\dagger(x) \left[-\frac{\nabla^2}{2M} - \mu \right] \phi(x) + \frac{g}{2} \int d^3x \phi^\dagger(x) \phi(x) \phi(x) \phi(x),
$$

where $\phi(x)$ ($\phi^\dagger(x)$) is the annihilation (creation) operator of a boson at position x, g the coupling constant of the two-body interaction, μ the chemical potential, and we note that we adopt units of $\hbar = k_B = 1$. Since the interaction between bosons is assumed to be weak, the coupling constant g is related to the s-wave scattering length a as follows:

$$
g = \frac{4\pi a}{M}.
$$

A. Bogoliubov theory

We consider the low-temperature limit of the Bose gas, where almost all of the bosons condense at $k = 0$. In such a limit, $k = 0$ component in $\phi(x)$ gives a dominant contribution. In the Bogoliubov theory, the dominant component is replaced by c-number and an effect of the fluctuation part ($k \neq 0$) is incorporated up to second order in the Hamiltonian. By using this prescription, Eq. (S1) is approximated as

$$
H_B = \sum_k (\epsilon_k + \mu) b_k^\dagger b_k + \frac{\mu}{2} \sum_k [b_k^\dagger b_k^\dagger b_k - b_k b_{-k}],
$$

where $\epsilon_k = k^2/(2M)$ and b_k is the annihilation operator of a boson with momentum k. We note that in Eq. (S3) we drop the constant term arising from the c-number field. Actually, such a term determines the following relation between the c-number field v and the chemical potential:

$$
\mu = v g.
$$

Equation (S3) can be diagonalized by the Bogoliubov transformation:

$$
b_k = u_k \beta_k - v_k \beta_{-k}^\dagger,
$$

with

$$
u_k = \sqrt{\epsilon_k + \mu + E_k},
$$
$$
u_k = \sqrt{\epsilon_k + \mu - E_k},
$$
$$
E_k = \sqrt{\epsilon_k (\epsilon_k + 2\mu)}.
$$

Namely, in the representation of β_k, Eq. (S3) is expressed as

$$
H_B = \sum_k E_k \beta_k^\dagger \beta_k.
$$

We now introduce a couple of Green’s functions used in the Keldysh formalism. Especially, in the presence of the BEC, it is convenient to introduce the Nambu spinor:

$$
\hat{b}_k = \begin{pmatrix} b_k \\ b_{-k}^\dagger \end{pmatrix}.
$$

By using the Nambu spinor, we can introduce 2×2 matrix contour-ordered Green’s function as follows:

$$
\hat{G}_p(\tau_a, \tau_b') = -i \langle T_c[\hat{b}_k(\tau) \hat{b}_k^\dagger(\tau')] \rangle,
$$

where T_c is the contour-ordered time evolution.
where T_c is the contour ordering. We now apply the formalism above to the Bogoliubov theory, which can be done by the replacement $H \to H_B$ in Eq. (55). In the frequency space, retarded Green’s functions are obtained as

$$
\hat{g}_k^R(\omega) = -i \int_{-\infty}^{\infty} d\tau \Theta(\tau) \langle \hat{b}_k(\tau), \hat{b}_k^\dagger(0) \rangle
$$

and

$$
\hat{g}_k^A(\omega) = -i \int_{-\infty}^{\infty} d\tau e^{i\omega\tau} \left(\langle \hat{b}_k(\tau) \rangle \langle \hat{b}_{-k}(0) \rangle - \langle \hat{b}_k(\tau) \rangle \langle \hat{b}_{-k}(0) \rangle \right)
$$

Advanced Green’s function \hat{g}^A can be determined with $\hat{g}_k^A(\omega) = [\hat{g}_k^R(\omega)]^\dagger$. In addition, lesser Green’s function is obtained as

$$
\hat{g}_k^\langle(\omega) = -i \int_{-\infty}^{\infty} d\tau e^{i\omega\tau} \left(\langle \hat{b}_k(\tau) \rangle \langle \hat{b}_{-k}(0) \rangle - \langle \hat{b}_k(\tau) \rangle \langle \hat{b}_{-k}(0) \rangle \right)
$$

where $n(\omega) = \frac{1}{e^{\beta\omega} - 1}$ is the Bose distribution function.

For the sake of the latter discussion, we also express local Green’s functions $\hat{g} = \sum_k \hat{g}_k$. The retarded component is calculated as

$$
\hat{g}_k^R(\omega) = \left(\Phi(\omega) - i\pi\rho(\omega) \Psi(\omega) - i\pi\sigma(\omega) \right)
$$

where

$$
\Phi(\omega) = -\frac{\sqrt{2}\mu^2}{c^2\pi^2} \left[\frac{cA}{\sqrt{2}\mu} + \frac{\pi(\omega - 1)}{4\sqrt{1 + \omega^2}} \left(\sqrt{1 + \sqrt{1 + \omega^2}} - \sqrt{1 - \sqrt{1 + \omega^2}} \right) \right]
$$

and for $\omega > 0$

$$
\rho(\omega) = \frac{k_0(\epsilon_{k_0} + \mu + E_{k_0})}{4\pi^2c^2(1 + \epsilon_{k_0}/\mu)} \theta(\Lambda - k_0),
$$

$$
\sigma(-\omega) = \frac{-\mu k_0}{4\pi^2c^2(1 + \epsilon_{k_0}/\mu)} \theta(-k_0),
$$

In the above expression, we introduce the cutoff momentum Λ and

$$
k_0 = \sqrt{2M\sqrt{\mu^2 + \omega^2} - 2M\mu}.
$$

In a similar manner, the lesser and greater components are obtained as

$$
\hat{g}_k^\langle(\omega) = -\frac{2\pi\mu i}{g} \left(\begin{array}{c} 1 \\ 1 \end{array} \right) - 2\pi i\langle\omega\rangle \hat{\rho}(\omega),
$$

$$
\hat{g}_k^>(\omega) = -\frac{2\pi\mu i}{g} \left(\begin{array}{c} 1 \\ 1 \end{array} \right) - 2\pi i(1 + n(\omega)) \hat{\rho}(\omega),
$$

where

$$
\hat{\rho}(\omega) = \begin{pmatrix} \rho(\omega) & \sigma(\omega) \\ \sigma(\omega) & \rho(\omega) \end{pmatrix}.
$$
B. Hartree-Fock theory

We next consider a system with a temperature higher than the critical temperature of the BEC \(T_c \). Such a regime of the weakly-interacting Bose gas can be described by the Hartree-Fock (HF) theory \([S1]\). In this theory, the interaction term is replaced by \[\frac{g}{2} \int d^3x \phi^\dagger(x) \phi^\dagger(x) \phi(x) \phi(x) \rightarrow 2gn \int d^3x \phi^\dagger(x) \phi(x), \] where \(n \) is the density of the gas. By using this prescription, Eq. \([S2]\) is approximated as

\[
H_{HF} = \sum_k (\epsilon_k + 2gn - \mu) \hat{b}_k^\dagger \hat{b}_k.
\]

The chemical potential with the HF theory is obtained as

\[
\mu = 2gn + \mu_0,
\]

where \(\mu_0 \) is the chemical potential of free bosons and is determined from

\[
n \left(\frac{2\pi}{MT} \right)^{3/2} = \frac{2}{\sqrt{\pi}} \int_0^\infty dx \frac{\sqrt{x}}{e^{x-\mu_0/T} - 1}.
\]

In addition, \(T_c \) with the HF theory is same as that of free bosons given by

\[
T_c = \frac{3.31n^{2/3}}{M}.
\]

As in the case of the Bogoliubov theory, Green’s functions within the HF theory by the replacement \(H \rightarrow H_{HF} \) in Eq. \([S5]\). Retarded and advanced Green’s functions are obtained as

\[
\hat{g}^{R/A}_k(\omega) = \left(\begin{array}{cc} \frac{1}{\omega - \omega_k + i0^+} & 0 \\ 0 & \frac{1}{\omega + \omega_k + i0^+} \end{array} \right),
\]

where \(\omega_k = \frac{k^2}{2M} + 2ng - \mu = \frac{k^2}{2M} - \mu_0 \). In addition, lesser Green’s function is obtained as

\[
\hat{g}^-_k(\omega) = \left(\begin{array}{cc} -2\pi i n(\omega) \delta(\omega - \omega_k) & 0 \\ 0 & 2\pi i n(\omega) \delta(\omega + \omega_k) \end{array} \right).
\]

As in the case of the Bogoliubov theory, we now obtain local Green’s functions. Local retarded Green’s function is calculated as

\[
\hat{g}^R(\omega) = \left(\begin{array}{cc} R(\mu_0 + \omega) - i\pi \rho_N(\omega) & 0 \\ 0 & R(\mu_0 - \omega) + i\pi \rho_N(-\omega) \end{array} \right),
\]

where

\[
R(\mu_0 \pm \omega) = \begin{cases} \frac{-M}{\pi^2} \left[\Lambda + \sqrt{2M(\mu_0 \pm \omega)} \log \left[\frac{1 - \sqrt{2M(\mu_0 \pm \omega)/\Lambda}}{1 + \sqrt{2M(\mu_0 \pm \omega)/\Lambda}} \right] \right], & \mu_0 \pm \omega > 0 \\ \frac{-M}{\pi^2} \left[\Lambda - \sqrt{2M(\mu_0 \pm \omega)} \arctan \left(\frac{\Lambda}{\sqrt{2M(\mu_0 \pm \omega)}} \right) \right], & \mu_0 \pm \omega < 0
\end{cases}
\]

\[
\rho_N(\omega) = \frac{M \sqrt{2M(\mu_0 + \omega)}}{2\pi^2} \theta(\mu_0 + \omega).
\]

The local lesser and greater components are calculated as

\[
\hat{g}^\lt(\omega) = -2\pi i n(\omega) \hat{\rho}(\omega),
\]

\[
\hat{g}^\gt(\omega) = -2\pi i \{1 + n(\omega)\} \hat{\rho}(\omega),
\]

where

\[
\hat{\rho}(\omega) = \begin{pmatrix} \rho_N(\omega) & 0 \\ 0 & -\rho_N(-\omega) \end{pmatrix}.
\]
II. CURRENT EXPRESSIONS

In the tunneling Hamiltonian formalism, the particle current between reservoirs is defined as

\[I = -\dot{N}_L(\tau). \]

(S37)

By using the Heisenberg equation of \(N_L \), the current is expressed as

\[I = -i \sum_{p,k} \int_{p,k} \langle \dot{b}_{p,R}(\tau) b_{k,L}(\tau) \rangle + h.c. \]

\[= 2 \sum_{p,k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \text{Re}[\dot{i}_{p,k} \hat{G}^{<}_{k,p,L,R}(\omega)]_{11}, \]

(S38)

where \(\hat{G} \) represents full Green’s function including the tunneling term in the Hamiltonian, and we introduce

\[\dot{i}_{p,k} = \left(\begin{array}{cc} \dot{t}_{p,k} & 0 \\ 0 & -\dot{t}_{p,k} \end{array} \right). \]

(S39)

Moreover, by using

\[\hat{G}^R - \hat{G}^A = \hat{G}^> - \hat{G}^<, \]

(S40)

and the Langreth rule, i.e., \((AB)^{<()} = A^R B^{<()} + A^{<()} B^A\), the current is rewritten as

\[I = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left[\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{>}_{R,R,11}(\omega) - t\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{>}_{R,R,11}(\omega) \right], \]

(S41)

with the chemical potential difference between reservoirs \(\Delta \mu \). Here, we introduce a shorthand notation that omits the momentum indices of the tunneling matrix and Green’s functions and summation over the momentum variable. In order to obtain a convenient expression, we look at the Dyson equation for \(\hat{G}^{<()} \),

\[\hat{G}^{<}_{R,R} = (1 + \hat{G}^{R}_{RL}(\omega) \hat{g}^{<}_{R}(\omega))(1 + t\hat{G}^{A}_{LR}) + \hat{G}^{R}_{RR} \hat{i}\hat{g}^{<}_{L}(\omega) \hat{G}^{A}_{RR}. \]

(S42)

By using this, we have

\[I = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left[\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,11}(\omega) \hat{g}^{<}_{R,11}(\omega)(1 + t\hat{G}^{A}_{LR,11}(\omega)) \right.

- \left. t\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,11}(\omega) \hat{g}^{<}_{R,11}(\omega)(1 + t\hat{G}^{A}_{LR,11}(\omega)) \right]

+ \left[\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,12}(\omega) \hat{g}^{<}_{R,12}(\omega)(1 + t\hat{G}^{A}_{LR,12}(\omega)) \right.

- \left. t\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,12}(\omega) \hat{g}^{<}_{R,12}(\omega)(1 + t\hat{G}^{A}_{LR,12}(\omega)) \right]

+ \left[\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,22}(\omega) \hat{g}^{<}_{R,22}(\omega)(1 + t\hat{G}^{A}_{LR,22}(\omega)) \right.

- \left. t\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,22}(\omega) \hat{g}^{<}_{R,22}(\omega)(1 + t\hat{G}^{A}_{LR,22}(\omega)) \right]. \]

(S43)

The expression above contains all the transport processes in the junction. The contribution containing the condensation element \(I_c \) can be obtained by substituting the \(k = 0 \) element of \(\hat{g}^{<}_{R}(\omega) \) into (S45). The remaining contributions are obtained by using the \(k \neq 0 \) elements of \(\hat{g}^{<}_{R}(\omega) \) and are given by

\[I_1 = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left[\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,11}(\omega) \hat{g}^{<}_{nc,R,11}(\omega)(1 + t\hat{G}^{A}_{LR,11}(\omega)) \right.

- \left. t\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,11}(\omega) \hat{g}^{<}_{nc,R,11}(\omega)(1 + t\hat{G}^{A}_{LR,11}(\omega)) \right], \]

(S44)

\[I_2 = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left[\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,12}(\omega) \hat{g}^{<}_{nc,R,21}(\omega)(1 + t\hat{G}^{A}_{LR,12}(\omega)) \right.

- \left. t\hat{g}^{<}_{L,11}(\omega - \Delta \mu) \hat{G}^{R}_{RL,12}(\omega) \hat{g}^{<}_{nc,R,21}(\omega)(1 + t\hat{G}^{A}_{LR,12}(\omega)) \right], \]

(S45)
\[I_3 = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left\{ \tilde{g}_{L,11}^> (\omega - \Delta \mu) \tilde{g}_{R,12}^< (\omega) \tilde{g}_{nc,R,22}^< (\omega) \tilde{G}_{L,21}^A (\omega) - t \tilde{g}_{L,11}^>(\omega - \Delta \mu) \tilde{G}_{RL,12}^R (\omega) \tilde{g}_{nc,R,22}^< (\omega) \right\}, \]

(S46)

\[I_A = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left\{ t \tilde{g}_{L,11}^>(\omega - \Delta \mu) \tilde{G}_{RL,12}^R (\omega) \tilde{g}_{R,22}^< (\omega + \Delta \mu) \tilde{G}_{RR,21}^A (\omega) - t \tilde{g}_{L,11}^>(\omega - \Delta \mu) \tilde{G}_{RL,12}^R (\omega) \tilde{g}_{R,22}^< (\omega + \Delta \mu) \tilde{G}_{RR,21}^A (\omega) \right\}, \]

(S47)

where \(\tilde{g}_{nc,R}(\omega) \) represents the \(k \neq 0 \) contribution in lesser Green’s function. Although the current formulas above contain all order contributions in the tunneling amplitudes, it is useful to understand the leading order contribution in each process. To this end, we note that \(\tilde{G}_{RL(LR)} \) contains at least first order in \(t \), while \(\tilde{G}_{LL(RR)} \) starts from zeroth order in \(t \). Thus, it turns out that the leading order contributions of \(I_c \) and \(I_1 \) are \(t^2 \), those of \(I_2 \) and \(I_A \) are \(t^4 \), and that of \(I_3 \) is \(t^6 \).

A. Planar junction case

We now consider the planar junction where the current expression up to \(t^2 \) is concerned. In this case, the particle current is obtained as

\[I = \sum_{p,k} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} |t_{p,k}|^2 \left\{ \tilde{g}_{L,k,11}^>(\omega - \Delta \mu) \tilde{g}_{R,p,11}^< (\omega) - \tilde{g}_{L,k,11}^>(\omega - \Delta \mu) \tilde{g}_{R,p,11}^< (\omega) \right\}. \]

(S48)

As pointed out in the previous section, the expression above contains \(I_c \) and \(I_1 \). First, \(I_c \) arises from the contribution containing \(\tilde{g}_{R,0,11}^< (\omega) = -\frac{2\pi \mu}{g} \delta(\omega) \) and \(t_{0,k} \). The corresponding tunneling element satisfies

\[t_{0,k} = t_c \delta_{k,0}. \]

(S49)

where the Kronecker delta above represents the momentum conservation along the interface. Thus, \(I_c \) can analytically be calculated as

\[I_c = -\frac{4\pi^2 \mu |t_c|^2 \rho_N (-\Delta \mu)}{g}, \]

(S50)

where \(\rho_N \) is the local density of states in normal bosons. On the other hand, for calculation of \(I_1 \), we utilize the following tunneling matrix expression:

\[t_{p,k} = t p k \delta_{k,p}. \]

(S51)

In a small bias regime in which the phonon approximation is reasonable \[S3\] \[S4\], \(I_1 \) obeys Ohm’s law and is given by

\[I_1 \approx \frac{T^{7/2} \sqrt{2\pi} \mu \Delta \mu}{40 \pi c^4} f_1(y), \]

(S52)

where

\[f_1(y) = \int_y^\infty dx \frac{x^3 \sqrt{x-y}}{\sinh^2(x/2)}, \]

(S53)

with \(y = -\mu_0/T \). In Fig. S1 we plot \(f_1(y) \) which indicates that it reduced to a constant for \(y \to 0 \) and experiences an exponential decay for \(y \to \infty \).

B. Point contact case

We next consider the point-contact system \[S4\] \[S8\] where the tunneling is assumed to occur at the origin in each reservoir, that is,

\[H_T = t [\phi_L^\dagger (0) \phi_R (0) + \phi_R^\dagger (0) \phi_L (0)]. \]

(S54)
The treatment of the above tunneling term is allowed for the single-mode quantum point contact whose width and length are so short that the 1D wire in detail is irrelevant. It is also straightforward to confirm that the above tunneling term is identical to one with momentum independent tunneling amplitude, i.e., $f_{p,k} \to f$.

Correspondingly, the current can be expressed in terms of local Green’s functions: $\hat{G} = \sum_{p,k} \hat{G}_{p,k}$ and $\hat{g} = \sum_p \hat{g}_p$. Since the current expression contains full Green’s functions, we now obtain them by using the Dyson equations. By using the equation for \hat{G}_{RR},

$$\hat{G}_{RR}^{R(A)} = \hat{g}_{R,L}^{R(A)} + \hat{g}_{R,L}^{R(A)} \hat{g}^{R(A)}_{RR}$$, (S55)

we obtain

$$\hat{G}_{RR}^{R(A)} = \frac{1}{D^{R(A)}} \left(\hat{g}_{R,L,11} - \hat{g}_{R,L,22} \hat{g}_{R,L,12} \hat{g}_{R,L,22} - (\hat{g}_{R,L,12})^2 \right)$$, (S56)

where

$$D^{R(A)} = 1 - \hat{t}^2 \{ \hat{g}_{R,L,11} \hat{g}_{R,L,22}, \hat{g}_{R,L,22}, \hat{g}_{R,L,12}, \hat{g}_{R,L,12} \}. \quad (S57)$$

In addition, the Dyson equations for $\hat{G}_{LR(RL)}^{A}$ lead to

$$\hat{G}_{RL}^{A} = \begin{pmatrix} t_{G_{RR,11,11}} g_{RL,11}^{R(A)} & t_{G_{RR,12,12}} g_{RL,12}^{R(A)} \\ t_{G_{RR,21,21}} g_{RL,11}^{R(A)} & t_{G_{RR,22,22}} g_{RL,12}^{R(A)} \end{pmatrix}$$, (S58)

$$\hat{G}_{LR}^{A} = \begin{pmatrix} t_{G_{RR,11,11}} g_{RL,11}^{R(A)} & t_{G_{RR,12,12}} g_{RL,12}^{R(A)} \\ t_{G_{RR,21,21}} g_{RL,11}^{R(A)} & t_{G_{RR,22,22}} g_{RL,12}^{R(A)} \end{pmatrix}$$, (S59)

By using above, it is straightforward to confirm

$$[\hat{G}_{LR}^{A}]^{\dagger} = \hat{G}_{RL}^{R}$$, (S60)

Based on the expressions of full Green’s functions above, we next discuss the current expression in the point contact. First, I_c is calculated as

$$I_c = - \frac{2 \pi \mu^2 \rho_N}{\hbar} \rho_N (-\Delta \mu) \left[1 + t \hat{G}_{RL,11}^{R}(0) \right]^2 + 2 t \text{Re} \left\{ \hat{G}_{RL,21}^{A}(0)(1 + t \hat{G}_{RL,11}^{R}(0)) \right\} + t^2 |\hat{G}_{RL,12}^{R}(0)|^2 \right\} \right\} \right|$$, (S61)
The remaining contributions are calculated as

\[
I_1 = 4\pi^2 t^2 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left[1 + tG_{RL,11}^R(\omega) \right]^2 \hat{\rho}_{L,11}(\omega - \Delta \mu) \hat{\rho}_{R,11}(\omega) [n_L(\omega) - n_R(\omega)],
\]

\[
I_2 = 8\pi^2 t^3 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \text{Re} \{ G_{RL,11}^A(\omega)(1 + tG_{RL,11}^R(\omega)) \} \hat{\rho}_{L,11}(\omega - \Delta \mu) \hat{\rho}_{R,12}(\omega) [n_L(\omega) - n_R(\omega)],
\]

\[
I_3 = 4\pi^2 t^4 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} [G_{RL,12}^R(\omega)]^2 \hat{\rho}_{L,11}(\omega - \Delta \mu) \hat{\rho}_{R,22}(\omega) [n_L(\omega) - n_R(\omega)],
\]

\[
I_A = 4\pi^2 t^4 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} [G_{RL,12}^R(\omega)]^2 \hat{\rho}_{L,11}(\omega - \Delta \mu) \hat{\rho}_{R,22}(\omega + \Delta \mu) [n_L(\omega) - n_L(\omega + \Delta \mu)].
\]

As in the case of the planar junction, we evaluate each contribution at small \(\Delta \mu \). Except for \(I_A \), the current contributions obey Ohm’s law given by

\[
I_1 + I_2 + I_3 \approx G \Delta \mu,
\]

where

\[
G = \frac{T^{3/2} M \sqrt{2M\mu}[t^2 \left(1 - t^2 \hat{g}_{RL,11}^R(0) \hat{g}_{RL,11}^R(0) \right) - 2t^4 \hat{g}_{RL,11}^R(0) \hat{g}_{RL,11}^R(0) \left(1 - t^2 \hat{g}_{RL,11}^R(0) \hat{g}_{RL,11}^R(0) \right) + t^6 \hat{g}_{RL,11}^R(0) \hat{g}_{RL,12}^R(0) ^2] f_2(y)}{16\pi^3 \hbar^2 (D_R(0))^2}.
\]

As in the case of \(f_1(y) \) appearing in the planar junction, \(f_2(y) \) converges to a constant for small \(y \) and is exponentially suppressed for large \(y \). On the other hand, \(I_A \) is evaluated as

\[
I_A \approx -\frac{T^2 M^3 t^4 (\hat{g}_{RL,12}^R(0))^2}{\pi^3 (D_R(0))^2} f_3(y, z),
\]

where

\[
f_3(y, z) = \int_{-\infty}^{\infty} \frac{dx}{\sinh^2(x/2)} [z - y - x] \left[\frac{1}{e^{x+z} - 1} - \frac{1}{e^{x-z} - 1} \right],
\]

with \(z = -\Delta \mu/T \). Clearly, \(f_3 \) vanishes for \(z < y \) and therefore \(\Delta \mu < 0 \) as well as a small \(y \) is necessary to have \(I_A \) for low-energy transport. The typical behavior of \(f_3 \) is shown in Fig. [S2] we have for the low-bias regime

\[
f_3(y, z) \propto (z - y)^2 \theta(z - y),
\]

that is, \(I_A \) is proportional to \((\Delta \mu + \mu_0)^2 \) and its proportional constant does not depend on temperature.

References:

[S1] L. Pitaevskii and S. Stringari, *Bose-Einstein condensation and superfluidity* (Oxford University Press, 2016).

[S2] S. Uchino, Phys. Rev. Research 3, 043058 (2021).

[S3] F. Meier and W. Zwerger, Phys. Rev. A 64, 033610 (2001).

[S4] S. Uchino and J.-P. Brantut, Phys. Rev. Research 2, 023284 (2020).

[S5] J. C. Cuevas, A. Martín-Rodero, and A. L. Yeyati, Phys. Rev. B 54, 7366 (1996).

[S6] C. Berthod and T. Giamarchi, Phys. Rev. B 84, 155414 (2011).

[S7] D. Husmann, S. Uchino, S. Kirrner, M. Lebrat, T. Giamarchi, T. Esslinger, and J.-P. Brantut, Science 350, 1498 (2015).

[S8] K. Ono, T. Higomoto, Y. Saito, S. Uchino, Y. Nishida, and Y. Takahashi, Nature Communications 12, 6724 (2021).