Association Between Monocyte Count and Preoperative Deep Venous Thrombosis in Older Patients with hip Fracture: A Retrospective Study

Zhicong Wang1*, Qing Zhou1*, Hailong Liu1*, Jianjun Zhang1, Zhonglun Zhu1, Jijun Wu2, Xue Chen1, and Yuehong Liu1

Abstract

Purpose: To analyze the relationship between monocyte count and preoperative deep venous thrombosis (DVT) in older patients with hip fracture.

Methods: Consecutive older patients with hip fracture undergoing surgery were included from January 2014 to December 2021. Monocyte count was measured on admission, and Doppler ultrasonography was performed for DVT screening prior to surgery. Univariate and multivariate logistic regression analyses were used to assess the association between monocyte count and DVT.

Results: A total of 674 patients were finally included, and 128 patients (19.0%) were diagnosed with preoperative DVT. Patients with DVT exhibited a higher monocyte count than patients without DVT \(0.55 (0.43-0.72) \times 10^9/L\) versus \(0.49 (0.38-0.63) \times 10^9/L\), \(P=0.007\). Multivariate logistic regression analysis showed that a high monocyte count (> \(0.6 \times 10^9/L\)) was independently associated with a higher risk of DVT (OR = 1.705, 95% CI: 1.121-2.593, \(P=0.013\)), and for every \(0.1 \times 10^9/L\) increase in monocyte count, the risk of DVT increased by 8.5% (OR = 1.085, 95% CI: 1.003-1.174, \(P=0.041\)). Other risk factors associated with DVT included intertrochanteric fracture (OR = 1.596, 95% CI: 1.022-2.492, \(P=0.040\)), and elevated fibrinogen level (OR = 1.236, 95% CI: 1.029-1.484, \(P=0.023\)).

Conclusion: A high monocyte count is associated with an increased risk of DVT in older patients with hip fracture. Future studies should evaluate the potential role of monocyte in the prevention and treatment of thrombosis.

Keywords

monocyte, deep venous thrombosis, hip fracture, older adults

Date received: 30 March 2022; revised: 19 April 2022; accepted: 19 April 2022.

Introduction

Venous thromboembolism (VTE), including both deep venous thrombosis (DVT) and pulmonary embolism (PE), is a common and potentially fatal disease that affects nearly 10 million people every year worldwide.1 Although there have been substantial advances in thromboprophylaxis, VTE still leads to high healthcare costs, morbidity and mortality.2–4 For these reasons, VTE is a major global public health burden.1

As is well known, thrombus formation is a complex process that involves the interaction of various blood cells, such as platelets and leukocytes.1 Recently, growing evidences from basic researches support that peripheral monocytes may play an important role in thrombus formation.5–8 Even more, Von

1 Department of Orthopedics, Deyang People’s Hospital, Deyang, Sichuan, China
2 Department of Cardiology, Deyang People’s Hospital, Deyang, Sichuan, China
*Zhicong Wang, Qing Zhou and Hailong Liu contributed equally to this work

Corresponding Author:
Yuehong Liu, Department of Orthopedics, Deyang People’s Hospital, No. 173 Taishan North Road, Jinyang District, Deyang, Sichuan 618000, China.
Email: doctorliuyuehong@163.com
Brühl et al.\(^9\) clearly observed that monocytes and neutrophils were the first circulating cells that actively accumulated at the vascular surface during DVT development. However, to our knowledge, clinical studies on the association between monocyte count and VTE risk are limited,\(^{10–13}\) and these results are not always consistent.\(^{12,14,15}\) Besides this, the incidence of VTE increases dramatically with age, but this relationship has not been explored in older people. Moreover, recent studies included almost all blood cells for the prediction of VTE, except for monocyte count, suggesting that clinicians did not actually consider monocytes as a potential risk factor for VTE occurrence.\(^{16–18}\)

Hip fracture is a common type of fracture in older adults. Due to the rapid global aging, it is predicted that the number of hip fracture will be dramatically increased worldwide from 1.66 million in 1990 to 6.26 million in 2050.\(^{19}\) Also, hip fracture is associated with excess mortality, great risk of disability, and heavy economic burden.\(^{20}\) Notably, DVT is one of the most common complications after hip fracture that should not be ignored. Many studies have reported a high incidence of preoperative DVT after acute hip fracture, ranging from 10.2% to 35.0%.\(^{14,16,21–23}\) On the basis of the hip fracture database that established by our team,\(^{24}\) we aimed to investigate the relationship between monocyte count and preoperative DVT in these patients.

**Materials and Methods**

We conducted a retrospective case-control study based on the data available from our own hip fracture database, which has been described in detail in our previous studies.\(^{24–26}\) From January 2014, patients were consecutively enrolled in this clinical database if they meet the following inclusion criteria: (1) diagnosis of hip fracture according to the radiographic image, including femoral neck fracture and intertrochanteric fracture; (2) not pathological fracture; (3) age ≥ 60 years; (4) caused by low-energy fall; (5) fresh fracture ≤ 3 weeks. Until now, the database contains 1240 older patients with hip fracture. In this study, the following patients were excluded: (1) non-surgical treatment; (2) no screening for DVT by lower-extremity ultrasonography; (3) postoperative DVT; (4) missing monocyte count on admission. The study protocol was approved by the Institutional Ethics Committee of Deyang People’s Hospital (approval number: 2021-04-019-K01), and performed in accordance with the Declaration of Helsinki. As this was a retrospective study, and data were analyzed anonymously, informed consent was therefore waived by the committee.

Prior to surgery, patients’ both lower limbs were screened for DVT using Doppler ultrasonography (iU 22, Philips, The Netherlands), which were conducted by an experienced radiologist, and the results were reviewed by another senior radiologist. The scanning was routinely performed at iliac vein, common femoral vein, superficial femoral vein, popliteal vein, anterior tibial vein, posterior tibial vein, fibular vein and calf muscle vein. DVT was diagnosed according to Robinov group’s criteria.\(^{27}\) Proximal DVT was defined as thrombosis occurring in the popliteal vein and / or above, whereas below the popliteal vein as distal DVT. Patients with both proximal and distal thrombosis were classified as mixed DVT.

The following data were extracted from the hip fracture database, including demographics [age, sex, and body mass index (BMI), and smoking], comorbidities (hypertension, diabetes, pulmonary disease, atrial fibrillation, renal disease, liver disease, cancer and heart failure), fracture information (time from injury to hospital, hip fracture type), ultrasonography result (with / without DVT, thrombosis location), and laboratory results within 24 h after admission (monocyte, neutrophil, hemoglobin, platelet, albumin, fibrinogen and D-dimer). The reference range of monocyte at our institution is (0.1–0.6) × 10^9/L, and a high monocyte was defined as above the upper limit of normal (> 0.6 × 10^9/L).

**Statistical Analysis**

Before statistical analysis, normality of continuous variables was checked by the Shapiro-Wilk test, and described as mean ± standard deviation (SD) or median (interquartile range, IQR). Differences between mean or median were compared by Student’s t-test or Wilcoxon rank-sum test as appropriate. Categorical variables were expressed as counts (percentages), and analyzed by chi-square test or Fisher exact test. Logistic regression analyses were performed to examine the association between factors and DVT, and variables that were significant in univariate analysis were further included in the multivariate analysis. Moreover, monocyte count was also entered into the multivariate analysis model as a continuous variable (per 0.1 × 10^9/L increase) instead of a categorical variable. Odds ratio (OR) and 95% confidence interval (CI) were calculated. All reported P values are two-sided, and P < 0.05 was considered statistically significant. All analyses were performed using JMP Pro software (version 13.2.1; SAS Institute Inc., Cary, NC, USA).
A total of 674 older patients with hip fracture were finally included in this study (Figure 1). Among them, 128 patients (19.0%) were diagnosed with preoperative DVT, of whom 88 (13.1%) had distal DVT, 29 (4.3%) had proximal DVT, and 11 (1.6%) had mixed DVT. During hospitalization, two patients developed PE. The median time from admission to the diagnosis of DVT was 2.0 days, ranging from 1.0 to 16.0 days.

Demographic characteristics and laboratory data of the patients are listed in Table 1. When compared with patients without DVT, patients with DVT were older, and had a longer time from injury to admission, and a higher proportion of intertrochanteric fracture (P < 0.05). Laboratory findings showed that the median monocyte count was $0.49 \times 10^9/L$ [IQR: (0.38–0.64) $\times 10^9/L$], and 155 patients (23.0%) had a high monocyte count over $0.6 \times 10^9/L$. Patients with DVT were more likely to have higher levels of monocyte, platelet and fibrinogen, but lower levels of hemoglobin and albumin (P < 0.05). Regarding the DVT localization, patients with distal DVT $[0.53 (0.42–0.70) \times 10^9/L]$, proximal DVT $[0.60 (0.44–0.77) \times 10^9/L]$, and mixed DVT $[0.67 (0.53–0.80) \times 10^9/L]$ also exhibited a higher monocyte count than patients without DVT (Figure 2, P < 0.05). However, no significant differences were observed in sex, BMI, smoking, comorbidities, neutrophil count and D-dimer level.

The details of logistic regression analysis are described in Table 2. Univariate analysis results showed that age, time from injury to admission, hip fracture type, monocyte, hemoglobin, platelet, albumin and fibrinogen were associated with DVT occurrence (P < 0.05). In terms of DVT sites, patients with a high monocyte count had a higher risk of distal DVT.
Table 2. The univariate and multivariate logistic regression analysis of factors associated with DVT.

| Variable                        | Univariate OR (95% CI) | P value | Multivariate OR (95% CI) | P value |
|---------------------------------|------------------------|---------|--------------------------|---------|
| Age (per 1 year increase)       | 1.025 (1.002–1.048)    | 0.036   | 1.006 (0.982–1.031)      | 0.610   |
| Sex (female vs male)            | 1.467 (0.766–1.737)    | 0.511   |                          |         |
| BMI (per 1.0 Kg/m² increase)    | 1.031 (0.973–1.092)    | 0.304   |                          |         |
| Time from injury to admission (per 10 hours increase) | 1.022 (1.005–1.040) | 0.014   | 1.012 (0.990–1.034)      | 0.285   |
| Hip fracture type (Intertrochanteric vs Neck) | 1.697 (1.145–2.516) | 0.009   | 1.596 (1.022–2.492)      | 0.040   |
| Monocyte (> 0.6 × 10⁹/L)        | 1.918 (1.290–2.851)    | 0.001   | 1.705 (1.121–2.593)      | 0.013   |
| Monocyte (per 0.1 × 10⁹/L increase) | 1.108 (1.029–1.193)  | 0.006   | 1.085 (1.003–1.174)      | 0.041*  |
| Neutrophil (per 1.0 × 10⁹/L increase) | 0.959 (0.901–1.021)  | 0.191   |                          |         |
| Hemoglobin (per 1.0 g/L increase) | 0.988 (0.979–0.998)   | 0.014   | 0.998 (0.987–1.010)      | 0.754   |
| Platelet (per 1.0 × 10⁹/L increase) | 1.004 (1.001–1.007)  | 0.010   | 1.002 (0.998–1.005)      | 0.294   |
| Albumin (per 1.0 g/L increase)  | 0.926 (0.886–0.967)    | 0.001   | 0.953 (0.905–1.002)      | 0.060   |
| Fibrinogen (per 1.0 g/L increase) | 1.325 (1.122–1.564)   | 0.001   | 1.236 (1.029–1.484)      | 0.023   |
| D-dimer (per 1.0 mg/L increase) | 1.000 (0.999–1.000)   | 0.463   |                          |         |

DVT deep venous thrombosis, OR Odds ratio, CI confidence interval, BMI body mass index.

*Adjusted for age, time from injury to admission, hip fracture type, hemoglobin, platelet, albumin, and fibrinogen.

(OR = 1.603, 95% CI: 1.004–2.559, P = 0.048), proximal DVT (OR = 2.376, 95% CI: 1.120–5.039, P = 0.024), and mixed DVT (OR = 4.455, 95% CI: 1.286–15.432, P = 0.018), when adjusted for all the above factors, a high monocyte count remained an independent risk factor for DVT (OR = 1.705, 95% CI: 1.121–2.593, P = 0.013). Other risk factors associated with DVT included intertrochanteric fracture (OR = 1.596, 95% CI: 1.022–2.492, P = 0.040), and elevated fibrinogen level (OR = 1.236, 95% CI: 1.029–1.484, P = 0.023). After adjusting for the same factors, every 0.1 × 10⁹/L increase in monocyte count was significantly associated with a 8.5% higher risk of DVT (OR = 1.085, 95% CI: 1.003–1.174, P = 0.041). Due to the limited patient number in the distal, proximal and mixed DVT, we did not perform multivariate analyses.

**Discussion**

Blood cell count is a simple, inexpensive, and widely available test in most hospitals. In this laboratory result, monocyte is a common indicator that constitutes nearly 10% of leucocytes in human. In the present study, we aimed to identify the association between monocyte count and preoperative DVT in older patients with hip fracture. We firstly found that the incidence of preoperative DVT after hip fracture was 19.0%, which was consistent with other studies.22,23 Most importantly, a high monocyte count was independently associated with an increased risk of DVT even after adjustment for potential confounders.

In this study, patients with a high monocyte count (> 0.6 × 10⁹/L) had a 1.705-fold increased risk of DVT (95% CI: 1.121–2.593). When analyzing as a continuous variable, every 0.1 × 10⁹/L increase in monocyte count was associated with a 8.5% higher risk of DVT (OR = 1.085, 95% CI: 1.003–1.174). In a large case-control study, Rezende et al13 found that patients with a high monocyte count (> 0.77 × 10⁹/L) had a 2.75-fold higher risk of VTE, while a low monocyte count (< 0.12 × 10⁹/L) had a 0.56-fold lower risk of VTE. Similarly, Maldonado-Peña et al11 reported that patients with monocytosis were more likely to develop DVT (OR = 9.35, 95% CI: 3.20–27.3), with an area under the curve (AUC) of 0.742, a sensitivity of 67.3%, a specificity of 80.9%, a positive predictive value (PPV) of 79.49% and a negative predictive value (NPV) of 69.39%. Moreover, some indexes based on the monocyte count, such as lymphocyte to monocyte ratio (LMR) and monocyte to high-density lipoprotein ratio (MHR), were also confirmed to be associated with DVT after total joint arthroplasty.28 More clinical evidences have recently been summarized in a review article, and highlighted the relationship between monocyte and DVT, although the predictive ability was suboptimal.29

Currently, the underlying mechanism of monocyte causing thrombosis is relatively well understood.30 Monocytes are a major source of tissue factor (TF), which is a central initiator of DVT formation.9 Recently, Amadio et al8 showed that monocytes could directly trigger DVT formation through PTGII/ANXA2/TF pathway. Also, monocytes are the main producers of inflammatory cytokines, such as interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α).30 The crucial role of inflammation in thrombus formation has been well demonstrated, and the thromboembolic risk can be attenuated by their neutralizing antibody or blockade.30 Interestingly, hip fracture itself and the thromboembolic risk can be attenuated by their neutralizing antibody or blockade.30 Interestingly, hip fracture itself and the thromboembolic risk can be attenuated by their neutralizing antibody or blockade.30 Interestingly, hip fracture itself and the thromboembolic risk can be attenuated by their neutralizing antibody or blockade.30 Interestingly, hip fracture itself and the thromboembolic risk can be attenuated by their neutralizing antibody or blockade.30 Interestingly, hip fracture itself and the thromboembolic risk can be attenuated by their neutralizing antibody or blockade.30 Interestingly, hip fracture itself and the thromboembolic risk can be attenuated by their neutralizing antibody or blockade.
(≤ 0.4 × 10^9/L) during the first year (HR = 2.51, 95% CI: 0.69–
9.12). However, this association was gradually attenuated over
time, and lost its statistical significance at the end of follow-up.
Likewise, Liu et al15 examined the association between inflam-
mation / immune-based indexes and DVT in 1179 patients with
tibial plateau fracture. The results showed that a high monocyte
count (> 0.78 × 10^9/L) was associated with the risk of DVT
in the univariate analysis, but failed to reach statistical signi-
cance in the multivariate analysis. In fact, monocytes have 3 dif-
ferent subsets: classical, intermediate and non-classical. Wypasek et al6
showed that VTE was strongly associated
with an increased number of non-classical and intermediate
monocyte, while total monocyte count did not reach statistical
significance. This may be one possible reason for the inconsis-
tent results. Unfortunately, monocyte subset is not routinely
tested in clinical practice, but a previous study found that inter-
mediate monocyte increased immediately after acute hip frac-
ture.31 In addition, patients included in our study were
significantly older than the above studies, with a mean age of
79.0 years. Since the incidence of VTE increases with age,
this may be another important factor influencing the results.

Given the clear association between monocyte count and
VTE risk, targeting monocyte was considered as an important
novel therapeutic approach for the prevention and treatment of
thrombosis.7,8,5,6 Shahnhe et al8 attempted to selectively reduce
inflammatory monocytes by enforcing monocyte conversion
using the nuclear receptor group 4 family A member 1
(Nur77) agonist, and this treatment decreased venous thrombus
formation in wild-type mice. This effect was also observed
upon the deletion of inflammatory monocytes using anti-C-C
chemokine receptor type 2 (CCR2) antibody.7 Similarly, total
monocyte depletion by intravenous administration of clodronate
or gadolinium chloride markedly reduced thrombus size.7,8
Notably, monocytes rapidly accumulate in skin wounds, and
play an important role in wound repair.32 Therefore, it is neces-
sary to consider the side effect of monocyte depletion on wound
healing in patients undergoing hip fracture surgery.

Furthermore, other risk factors associated with DVT in the
multivariate analysis included intertrochanteric fracture, and
elevated fibrinogen level. These findings have been reported
by other studies.22,33 A recent meta-analysis conducted by
Wang et al34 found that advanced age, prolonged time from
injury to admission, low albumin and hemoglobin levels, and
high platelet level were associated with preoperative DVT in
hip fracture patients. However, in our study, these factors
reached statistical significance in the univariate analyses, but
lost significance in the multivariate analysis. This may be due
to the small number of patients with DVT.

However, several limitations should be mentioned. First, this
was a retrospective study, and a selection bias may exist. In this
study, patients were included consecutively, thus selection bias
was minimized. For the same reason, some factors associated
with DVT formation were not obtained for further analysis,
such as previous history of VTE, anticoagulation medication
before admission, and malnutrition inflammation complex syn-
drome (MICS). Second, as it was a classical case-control study,
it is not possible to establish causal relationship. Third, the
sample size was relatively small, which may influence statistical
power. To make the results stable, we analyzed monocyte count
continuously and categorically using multivariate logistic
regression models, and this relationship persisted. To overcome
these limitations, prospective studies with large sample sizes are
needed to confirm our findings.

Conclusion

Taken together, a high monocyte count is independently associ-
ated with an increased risk of DVT in older patients with hip
fracture. As monocyte is a simple indicator that can be obtained
from the blood routine test, future studies should evaluate
the potential role of monocyte in the prevention and treatment of
thrombosis.

Acknowledgements

We would like to thank several nurses from the Department of
Orthopedics in Deyang People’s Hospital, for the help with the data
inspection

Author Contributions

Zhicong Wang: Methodology, Formal analysis, Software,
Visualization, Funding acquisition, Writing-original draft. Qing
Zhou: Methodology, Formal analysis, Writing-review & editing,
Project administration. Hailong Liu: Methodology, Formal analysis,
Writing-review & editing, Project administration. Jianjun Zhang:
Investigation, Supervision, Validation. Zhonglun Zhu: Investigation,
Supervision, Validation. Jijun Wu: Investigation, Supervision,
Validation. Xue Chen: Investigation, Supervision, Validation.
Yuehong Liu: Conceptualization, Writing-review & editing,
Supervision, Validation.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to
the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work
was supported by the Sichuan Science and Technology Program,
Deyang Science and Technology Bureau Project (grant number No.
2021JDR0337, No. 2019SZ118, No. 2019SZ125).

Data Sharing Statement

The data used during the current study are available from the corre-
sponding author on reasonable request.

Consent to Participate

As this was a retrospective study, and data were analyzed anony-
mously, informed consent was therefore waived by the committee.
Ethical Approval

This study was approved by the Institutional Ethics Committee of Deyang People’s Hospital (approval number: 2021-04-019-K01), and performed in accordance with the Declaration of Helsinki.

ORCID iD

Yuehong Liu https://orcid.org/0000-0001-8606-5371

References

1. Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021;398(10294):64-77.
2. Zhang Z, Lei J, Shao X, et al. Trends in hospitalization and in-hospital mortality from VTE, 2007 to 2016, in China. Chest. 2019;152(2):342-353.
3. Rattan R, Parreco J, Eidelson S, et al. Hidden burden of venous thromboembolism after trauma: a national analysis. J Trauma Acute Care Surg. 2018;85(5):899-906.
4. Nilius H, Mertins T, Boss R, et al. Long-term survival after venous thromboembolism: a prospective cohort study. Front Cardiovasc Med. 2021;8:749342.
5. Laurance S, Bertin F, Ebrahimian T, et al. Gas6 promotes inflammatory monocyte recruitment in venous thromboembolism. Arterioscler, Thromb, Vasc Biol. 2022;42(2):145-155.
6. Amadio P, Tarantino E, Sandrini L, Tremoli E, Barbieri S. Non-classical and intermediate monocytes in patients following venous thromboembolism: links with inflammation. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University. 2019;28(1):51-58.
7. Shahneh F, Christian Probst H, Wiesmann S, et al. Inflammatory monocyte counts determine venous blood clot formation and resolution. Arterioscler Thromb Vasc Biol. 2022;42(2):145-155.
8. Wypasek E, Padjas A, Szymanska M, Plens K, Siedlar M, Undas A. Prostaglandin-endoperoxide synthase-2 deletion affects the natural trafficking of Annexin A2 in monocytes and favours venous thrombosis in mice. Thromb Haemostasis. 2017;117(8):1486-1497.
9. von Brühl M, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819-835.
10. Rojnuckarin P, Uaprasert N, Suriapanong V. Monocyte count associated with subsequent symptomatic venous thromboembolism (VTE) in hospitalized patients with solid tumors. Thromb Res. 2012;130(6):e279-e282.
11. Maldonado-Peña J, Rivera K, Ortega C, Betancourt M, Lugo J, Camargo E. Can monocytosis act as an independent variable for predicting deep vein thrombosis? Int J Cardiol. 2016;219:282-284.
12. Basavaraj M, Breqkkan S, Brodin E, Østerud B, Hansen J. Monocyte count and procoagulant functions are associated with risk of venous thromboembolism: the Tromsø study. J Thrombosis and Haemostasis: JTH. 2011;9(8):1673-1676.
13. Rezende S, Lifjering W, Rosendaal F, Cannegieter S. Hematologic variables and venous thrombosis: red cell distribution width and blood monocyte count are associated with an increased risk. Haematologica. 2014;99(1):194-200.
30. Colling M, Tourdot B, Kanthi Y. Inflammation, infection and venous thromboembolism. *Circ Res.* 2021;128(12):2017-2036.
31. Baëhl S, Garneau H, Lorrain D, et al. Alterations in monocyte phenotypes and functions after a hip fracture in elderly individuals: a 6-month longitudinal study. *Gerontology.* 2016; 62(5):477-490.
32. Min D, Nube V, Tao A, et al. Monocyte phenotype as a predictive marker for wound healing in diabetes-related foot ulcers. *J Diabetes Complications.* 2021;35(5):107889.
33. Xing F, Li L, Long Y, Xiang Z. Admission prevalence of deep vein thrombosis in elderly Chinese patients with hip fracture and a new predictor based on risk factors for thrombosis screening. *BMC Musculoskelet Disord.* 2018; 19(1):444.
34. Wang T, Guo J, Long Y, Yin Y, Hou Z. Risk factors for preoperative deep venous thrombosis in hip fracture patients: a meta-analysis. *J Orthop Traumatol.* 2022;23(1):19.