GLIOENDOCRINE SYSTEM: EFFECTS OF THYROID HORMONES IN GLIA AND THEIR FUNCTIONS IN THE CENTRAL NERVOUS SYSTEM

Mami Noda

Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

Abstract

Glia play a significant role in the link between the endocrine and nervous systems. Among hormones, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and glial cells, and hence for development and function of the central nervous system (CNS). THs are transported into the CNS, metabolized in astrocytes and affect various cell types in the CNS including astrocyte itself. Since 3,3’,5-triiodo-L-thyronine (T3) is apparently released from astrocytes in the CNS, it is a typical example of glia-endocrine system.

The prevalence of thyroid disorders increases with age. Both hypothyroidism and hyperthyroidism are reported to increase the risk of cognitive impairment or Alzheimer’s disease (AD). Therefore, understanding the neuroglial effects of THs may help to solve the problem why hypothyroidism or hyperthyroidism may cause mental disorders or become a risk factor for cognitive impairment. In this review, THs are focused among wide variety of hormones related to brain function, and recent advancement in glioendocrine system is described.

Keywords

thyroid hormone • aging • microglia • astrocytes • oligodendrocyte

Abbreviations

AD......................... Alzheimer’s disease
AHDS..................... Allan-Herndon-Dudley syndrome
Akt......................... Serine/threonine kinase
albumin D-box D site of albumin promoter
BBB Blood brain barrier
BHLHe22 Basic helix-loop-helix family member e22
CSF Cerebrospinal fluid
CKI Cyclin-dependent kinase inhibitor
cGMP Cyclic guanosine phosphate
D2 Type 2-deiodinase
D3 Type 3-deiodinase
DBP Albumin D box-binding protein
FAO Fatty acid oxidation
GS Glutamine synthetase
NA Noradrenaline
CNS Central nervous system
GFAP Glial-fibrillary acidic protein
HADHA Hydroxyacetyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase alpha
Hr Hairless
IFN-γ Interferon-gamma
iNOS Inducible NO synthase
KLF9 Kruppel-like factor 9
LAT L-type amino acid transporters
MAPK/ERK Mitogen-activated protein kinase/extracellular signal-regulated kinase
MBP Myelin basic protein
MCT8 Monocarboxylate transporters 8
MOG Myelin/oligodendrocyte glycoprotein
Ncoa1 Nuclear coactivator 1
Ncor1 Nuclear corepressor 1
NO Nitric oxide
OATPs Organic anion-transporting polypeptides
OPCs Oligodendrocyte precursor cells
p27........................ p27/Kip1
p18 p18/INK
PI3K Phosphoinositide 3-kinase
ROS Reactive oxygen species
SLC16A2 Solute carrier family 16 member 2

© 2020 Mami Noda. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
SNPs Single nucleotide polymorphisms
T2 Diiodothyronines
T3 3,3’,5-triiodo-L-thyronine
T4 L-thyroxine
TBI Traumatic brain injury
THs Thyroid hormones
TNFα Tumor necrosis factor α
TR Thyroid hormone receptor

Introduction

More than two decades ago, it was already postulated that glial cells may play a significant role in the link between the endocrine and nervous systems [1]. In those days, THs, glucocorticoids, gonadal steroids, and neurosteroids were known to affect myelinization by acting on oligodendroglia, modulate astrocyte morphology, differentiation, and gene expression, and activate micoglia. Recently, more and more information has been supplied on the beneficial effects of hormone on the brain function. Pathologically, reduced level of hormones in aged brain or cerebrospinal fluid are reported, for example, noradrenaline (NA) [2], insulin [3, 4], THs, growth hormone, estrogen, etc. Among them, insulin, NA and THs regulate metabolic plasticity of astrocytes in aged brain [5]. Therefore, increasing the hormone is one of the ways to improve the aged brain. For example, intranasal insulin administration is speculated as a promising treatment of AD [6, 7], age-related cognitive deficits [8], and traumatic brain injury (TBI) [9]. The mechanism may be due to that insulin reduces nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor α (TNFα) production, inducible NO synthase (iNOS) expression, while increases phagocytic activity in activated microgla [10].

Not only metabolism-related hormones, social behavior-related hormones also target glial cell. For example, oxytocin seems to target microgla, in addition to neurons, and reduces inflammation in activated microgla [11], and perinatal brain damage [12], or improves neuropsychiatric disorders [13]. Among wide variety of hormones related to brain function, THs are focused and recent advancement in glial research is described.

Thyroid hormones in the CNS

Among hormones, THs are critical for the regulation of development and differentiation of neurons and glial cells, and hence for development and function of the CNS. In developing CNS, T3 exerts numerous effects regulating astrocyte and oligodendrocyte differentiation [14-21] and myelination [22]. In addition, THs may control the ratio of oligodendrocytes to astrocytes in white matter [23]. TH is also an important promoter of microglial growth and morphological differentiation [24]. Any impairment of THs supply to the developing CNS causes severe and irreversible changes in the architecture and function of the brain, leading to various neurological dysfunctions as mentioned below. Though the importance of THs during developing brain is obvious, there are few reports on the role of THs in glial cells in adult brain. In the adult brain, THs pathologies, for example hypothyroidism and hyperthyroidism, can cause psychiatric abnormalities such as schizophrenia, bipolar disorder, anxiety and depression. While impact of hypothyroidism and hyperthyroidism on synaptic transmission and plasticity is getting obvious, their effects on glial cells and related cellular mechanisms remain enigmatic.

THs are transported into the brain, metabolized in astrocytes and affect various cell types in the CNS including astrocyte itself. THs have to cross multiple membranes in order to reach their receptors in the nuclei and mitochondria in addition to the ones in the cytoplasm. Especially, THs need to enter the brain through the blood brain barrier (BBB). Astrocytes, forming partly the BBB, are the main cell population incorporating circulating L-thyroxine (T4) through TH transporters. Circulating T4 is transported across the BBB via specific transporters, such as organic anion-transporting polypeptides (OATPs) containing OATP14/SLCO1C1 (OATP1c1) [25-27] and OATP1a2 [28-30], L-type amino acid transporters (LAT1 and LAT2) [31], and monocarboxylate transporters 8 (MCT8) (SLC16A2) (for both T3 and T4) [32] (for review, see [33]).

Recently, an important role of radial glia in controlling TH delivery and metabolism is also suggested [34]. Transported T4 into astrocytes is de-iodinated by type 2-deiodinase (D2) to produce T3 [35-37]. Subsequently T3 is released via LAT [38, 39], presumably LAT2, and taken up by other cells via distinct transporters (paracrine signaling). For example, adjacent neurons express MCT8. They also express TH receptors and type 3-deiodinase (D3) which inactivates T3. Since the neuronal paracrine pathway is regulated by hypoxia, ischemia, or inflammation, it is postulated that deiodinases could act as potential control points for the regulation of TH signaling in the brain during health and disease [40]. Since T3 is apparently released from astrocytes in the CNS, it is a typical example of glioendocrine system, a term originally proposed to generally describe interactions between endocrine system and glial cells (Figure 1).

The prevalence of thyroid disorders increases with age [41, 42]. Abnormal levels of THs often causes psychological and behavioral abnormality. Hypothyroidism is one of the most common causes of cognitive impairment [43-46], and can lead to psychiatric symptoms [47]. The complicated problem
Effects of THs on microglia

Microglia express TH transporters such as OATP4a1, LAT2 and MCT10 [58] and TH receptors such a TRα1 and TRβ1 in cultured rat microglia [24]. T3 is important for microglial development [24], and could directly or indirectly stimulate morphological maturation of amoeboid microglial cells and limit their degeneration [59].

In addition to their genomic effects during development, nongenomic signaling of THs through a plasma membrane-localized receptor has been described [60]. For example, in osteoblast cells, TH signaling is induced through plasma membrane-bound TH receptors and couples to increases in intracellular Ca²⁺ concentration, NO, and cyclic guanosine phosphate (cGMP), leading to activation of various kinases such as protein kinase G II, tyrosine kinase Src, extracellular signal-related kinase (ERK), and serine/threonine kinase Akt [61]. Similarly in primary cultured microglial cells, increased migration induced by T3 was observed within 15 min and seems to be due to distinct intracellular signaling pathways [62] (Figure 1). T3 stimulates microglial migration and phagocytosis in vitro and in vivo [62, 63] and induces their morphological changes in sex- and age-dependent manner [64], which are summarized in a review [65]. Microglial migration is mediated through T3 uptake by TH transporters and binding to the TRs. Then TH signaling in microglia involved several signaling pathways including G/β-protein, phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK)/ERK, as reported in ATP-induced microglial migration [66] or bradykinin [67] or galanin [68] with slight difference. T3-induced NO signaling [61] is also present in microglia [62]. In addition, Na⁺/K⁺-ATPase, reverse mode of Na⁺/Ca²⁺exchanger, activation of Ca²⁺-dependent K⁺ channel, and GABA receptors likely contribute to T3-induced microglial migration [62], although it is only speculated from pharmacological analyses and the precise mechanism is still unknown. Considering these information, microglial dysfunction in hypothyroidism or hyperthyroidism may be closely related to psychological or cognitive symptoms in elderly patients, which needs be investigated in the future.

Effects of THs on astrocytes

Effects of THs on astrocytes and regulation of gene expression by THs in cultured astrocytes have been reviewed [27, 69, 70]. However, non-genomic effects of THs in astrocytes still remain to be investigated. Since astrocytes metabolize T4 to active form (T3) [71], they play a central role in the endocrine control of neural environment [27]. Cultured astrocytes express relevant genes of T3 receptors, TH receptor α1 (Thrα1) and TH receptor β (TRβ), presumably both in the nucleus/mitochondria and in the cytoplasm, and nuclear coressper (Ncor1) and coactivator (Ncoa1), in addition to D2 and TH transporter (Mct8/Sic16a2) (autocrine signaling) [70]. During CNS development, T3 exerts various effects in astrocyte differentiation [17, 72], as well as neuronal maturation due to astrocytic production of extracellular matrix proteins and growth factors [71]. Mitochondrial metabolism in astrocytes plays a significant role in neuroprotection. Mitochondrial energy production is rapidly increased via a mitochondrial targeted TH receptors after treatment with T3 [73]. Therefore, targeting astrocyte metabolism to increase brain ATP levels could be an efficient strategy to enhance neuroprotection. Stimulating endogenous ATP release from astrocytes has also been reported to induce antidepressant-like effects in mouse models of depression [74]. Although most energy in the CNS is derived from glucose catabolism, significant energy can also be derived from fatty acid oxidation (FAO) which is stimulated by THs. It has been
shown that hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase alpha (HADHA), an essential component of the mitochondrial trifunctional protein complex in the FAO cycle, is critical for the FAO regulation by T3 [75]. Since 95% of HADHA co-localize with glial-fibrillary acidic protein (GFAP) in the brain, T3 is considered to upregulate HADHA and subsequent neuroprotective mitochondrial energy production via FAO in astrocytes.

Expression alterations of genes using hypothyroidism model rats show that immature astrocytes immunoreactivity for vimentin and GFAP are increased in the corpus callosum (Shiraki et al., 2014). Analyses of human brain gene expression databases indicate that the chromosome 12p12 locus, where many genomic markers are related to dementia risk, may regulate particular astrocyte-expressed genes induced by T3. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12, rs704180 and rs73069071, were found as risk alleles for non-Alzheimer’s neurodegeneration [76, 77] and hippocampal sclerosis pathology [78]. The rs73069071 risk genotype is also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. SLCO1C1 protein transports TH into astrocytes from blood. Interestingly, total T3 levels in cerebrospinal fluid (CSF) are elevated in hippocampal sclerosis cases but not in Alzheimer’s disease cases, relative to controls [78]. This suggests that even normal level of T3 in the CSF, astrocyte-TH dysregulation in the brain due to genetic modification contributes to dementia in the elderly. Energy metabolism in hypothroid brain leads to disruption in astrocyte cytoskeleton as well as glutamatergic and cholinergic neurotransmission, Ca** equilibrium, redox balance, morphological and functional aspects in the cerebral cortex even in young rats from maternal hypothyroidism [79].

Effects of THs on oligodendrocytes

TH signaling in oligodendrocytes has been also reviewed [80], which suggest both non-genomic and genomic pathways. Requirments of THs in growth and development of oligodendrocyte both in vitro and in vivo are reported [81-83]. THs also regulate oligodendrocyte accumulation in developing rat brain white matter tracts [20] as well as neural stem cells and oligodendrocyte precursor cells (OPCs) in adult brain [84]. A direct effect of T3 on oligodendrocytes is reported as a stimulant of sulfolipid synthesis, cholesterogenesis and lipogenesis by oligodendrocytes in neurone-free culture system [85]. TH receptors and their isoforms are also reported in oligodendrocytes [86-89]. THs are required for different timing in oligodendrocyte differentiation and devlopment [90, 91], for example at the terminal differentiation [92, 93] or during early stage [94] of OPCs into myelinating oligodendrocytes, by regulating the probability of cell-cycle withdrawal [95] or depending on the expression of TRα1 [96]. There are bimodal effects of TRα1 on cerebellum oligodendrocyte differentiation; At the early postnatal stage, it promotes the secretion of several neurotrophic factors by acting in Purkinje neurons and astrocytes. At later stages, TRα1 acts in a cell-autonomous manner to ensure the complete arrest of OPC proliferation, explaining contradictory observations made on various models, T3 signaling for synchronizing postnatal neurodevelopment, and restraining OPC proliferation in adult brain [97]. TRβ seems to be also important; a β receptor selective thyromimetic can enhance oligodendrocyte differentiation in vitro and during developmental myelination in vivo, suggesting a usefulness as a therapeutic agent for demyelinating models [14].

Important components of TH-regulated timer are cycline-dependent kinase inhibitor (CKI), p27/Kip1 (p27) or p18/INK (p18) [98]. On the other hand, during TH-induced OPC differentiation, both p53 and p73, but not p63, are involved [99]. During oligodendrocyte differentiation and myelin regeneration, 4 transcription factors are regulated specifically by T3; They are Kruppel-like factor 9 (KLF9), basic helix-loop-helix family member e22 (BHLHe22), Hairless (Hr), and Albumin D box-binding protein (DBP) [100] which is also known as D site of albumin promoter (albumin D-box). Perinatal rodent OPCs cultured with TH under hypoxia become quiescent and acquire adult OPCs-like characteristics, though the mechanism is not clear yet. So far, it is known that the CDK inhibitor, p15/INK4b, plays crucial roles in the TH-dependent cell cycle deceleration in OPCs under hypoxia, while KLF9 is a direct target of TH-dependent signaling [101].

THs affect Schwann cell and oligodendrocyte gene expression [102] and distribution of oligodendrocyte/myelin markers during differentiation [103]. Though glutamine synthetase (GS) is an marker of astrocytes [104], GS as well as myelin/oligodendrocyte glycoprotein (MOG) are involved in maturation of oligodendrocytes [105]. While T3 does not affect on myelin basic protein (MBP) gene expression, T3 stimulates the expression and activity of GS in oligodendrocytes after a lag time through a posttranscriptional event [106]. Therefore THs independently regulate proliferation of OPCs and oligodendrocyte maturation [92, 105]. In addition, it is noteworthy that responsiveness of OPCs to THs is different in different brain area [107].

Using human cultured CD34+ stem cells, differentiation of stem cells into OPCs is stimulated by THs [108]. However, interferon-gamma (IFN-γ) produces a dose-dependent apoptotic response in OPCs [109] or abrogates TH-induced differentiation of OPCs into oligodendrocytes but not into astrocytes. Therefore, as a result, action of IFN-γ gives rise to astrocytes [110].
Therapeutic importance of THs and glial cells

As mentioned above, THs deficiency in developing brain results in low number of microglial cells [24], and immature differentiation of both astrocytes and oligodendrocytes, causing morphological changes in the brain. In hypothyroid model animal, anxiety-like behavior is reported in the male mice [111]. In this model, the spine density on basal dendrites in the CA1 of the hippocampus is not changed but T3-treated hypothyroid mice show lower spine density. This additional effect may be explained by the result of increased microglial phagocytosis [62], though the contribution to the therapeutic outcome is not known. As for the spine density, decrease in spine density by T3 in CA1 region was also reported in adult female rats [112]. Dysfunction of THs impairs myelination. Not only during development but also in the adult brain. For example, THs promote differentiation of oligodendrocyte progenitor cells and improve remyelination after injury [113].

Human mutations of the gene, solute carrier family 16 member 2 (SLC16A2), encoding MCT8, result in the X-linked inherited psychomotor retardation and hypomyelination disorder, Allan-Herndon-Dudley syndrome (AHDS). It is also reported that mutation of neuronal MCT8 and disrupted T3 uptake by neurons are responsible [114]. Likewise, pharmacological and genetic blockade of MCT8 induces significant oligodendrocyte apoptosis, impairing myelination as a result. Treatment with an MCT8-independent TH analog limits oligodendrocyte apoptosis mediated by SLC16A2 down-regulation, driving myelination. Therefore, MCT8-independent TH analog is implicated as a promising treatment for developmentally regulated myelination in AHDS [115]. It was also reported that THs alleviates demyelination induced by cuprizone through its role in remyelination [116]. On the contrary, lowering T3 signaling accelerates the reinnervation of the optic tectum following optic nerves crush in adult zebrafish [117]. Since TH is known as a promoter of differentiation of oligodendrocyte, TH is used to validate high-throughput drug screening assay to identify compounds that promote oligodendrocyte differentiation [118].

Conclusion

THs are important factors both functionally and morphologically for glial cells during development and in adulthood. Therefore, brain dysfunction due to abnormal level of THs could be treated, at least partially, by targeting glial cells.

Acknowledgments

I thank Prof. Robert Zorec (University of Ljubljana, Slovenia), Dr. Mitsuhiro Morita (Kobe University, Japan), and Dr. Hiroko Kataoka-Ikeshima (Waseda University, Japan) for helpful advice and discussions. This work was supported by Grants-in Aid for Scientific Research of Japan Society for Promotion of Science (JSPS 17K08276) and was partly supported by Research Support Center, Graduate School of Medical Sciences, Kyushu University.

Conflicts of Interest Statement

The author declares that there is no competing interest.

References

1. Garcia-Segura LM, Chowen JA, Naftolin F. Endocrine glia: roles of glial cells in the brain actions of steroid and thyroid hormones and in the regulation of hormone secretion. Front Neuroendocrinol. 1996;17(2):180–211. https://doi.org/10.1006/frne.1996.0005
2. Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Brain Res Rev. 2004;45(1):38–78. https://doi.org/10.1016/j.brainresrev.2004.02.002
3. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer’s Disease Biomarkers: A Pilot Clinical Trial. J Alzheimers Dis. 2017;57(4):1325–34. https://doi.org/10.3233/JAD-161256
4. Gil-Bea FJ, Solas M, Solomon A, Mugeta C, Winblad B, Kivipelto M, et al. Insulin levels are decreased in the cerebrospinal fluid of women with prodromal Alzheimer’s disease. J Alzheimers Dis. 2010;22(2):405–13. https://doi.org/10.3233/JAD-2010-100795
5. Morita M, Ikeshima-Kataoka H, Kreft M, Vardjan N, Zorec R, Noda M. Metabolic Plasticity of Astrocytes and Aging of the Brain. Int J Mol Sci. 2019;20(4). https://doi.org/10.3390/ijms20040941
6. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long Acting Intranasal Insulin Detemir Im-
proves Cognition for Adults with Mild Cognitive Impairment or Early-Stage Alzheimer’s Disease Dementia. J Alzheimer’s Dis. 2015;45(4):1269–70. https://doi.org/10.3233/JAD-159002

7. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimer’s Dis. 2015;44(3):897–906. https://doi.org/10.3233/JAD-141791

8. Maimaiti S, Anderson KL, DeMoll C, Brewer LD, Rauh BA, Gant JC, et al. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging. J Gerontol A Biol Sci Med Sci. 2016;71(1):30–9. https://doi.org/10.1093/gerona/glu314

9. Brabazon F, Wilson CM, Jaiswal S, Reed J, Frey WHN, Byrnes KR. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(9):3203–18. https://doi.org/10.1177/0271678X16685106

10. Brabazon F, Bermudez A, Shaugness M, Khayrullina G, Byrnes KR. The effects of insulin on the inflammatory activity of BV2 microglia. PloS one. 2018;13(8):e0201878. https://doi.org/10.1371/journal.pone.0201878

11. Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation. 2016;13(1):77. https://doi.org/10.1186/s12974-016-0541-7

12. Mairesse J, Zinni M, Pansiot J, Hassan-Abdi R, Demene C, Colella M, et al. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia. 2019;67(2):345–59. https://doi.org/10.1002/glia.23546

13. Kato TA, Hayakawa K, Monji A, Kanba S. Missing and Possible Link between Neuroendocrine Factors, Neuropsychiatric Disorders, and Microglia. Front Integr Neurosci. 2013;7:53. https://doi.org/10.3389/fnint.2013.00053

14. Baxi EG, Schott JT, Fairchild AN, Kirby LA, Karani R, Uapin yoy-Colella M, et al. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia. 2019;67(2):345–59. https://doi.org/10.1002/glia.23546

15. Kato TA, Hayakawa K, Monji A, Kanba S. Missing and Possible Link between Neuroendocrine Factors, Neuropsychiatric Disorders, and Microglia. Front Integr Neurosci. 2013;7:53. https://doi.org/10.3389/fnint.2013.00053

16. Baxi EG, Schott JT, Fairchild AN, Kirby LA, Karani R, Uapin yoy-Colella M, et al. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia. 2019;67(2):345–59. https://doi.org/10.1002/glia.23546

17. Manzano J, Bernal J, Morte B. Influence of thyroid hormones on maturation of rat cerebellar astrocytes. Int J Dev Neurosci. 2007;25(3):171–9. https://doi.org/10.1016/j.ijdevneu.2007.01.003

18. Martinez-Galan JR, Escobar del Rey F, Morreale de Escobar G, Santacana M, Ruiz-Marcos A. Hypothyroidism alters the development of radial glial cells in the term fetal and postnatal neocortex of the rat. Brain Res Dev Brain Res. 2004;153(1):109–14. https://doi.org/10.1016/j.devbrainres.2004.08.002

19. Martinez-Galan JR, Pedraza P, Santacana M, Escobar del Rey F, Morreale de Escobar G, Ruiz-Marcos A. Myelin basic protein immunoreactivity in the internal capsule of neonates from rats on a low iodine intake or on methylmercaptoimidazole (MMI). Brain Res Dev Brain Res. 1997;101(1–2):249–56.

20. Schoonover CM, Seibel MM, Jolson DM, Stack MJ, Rahman RJ, Jones SA, et al. Thyroid hormone regulates oligodendrocyte accumulation in developing rat brain white matter tracts. Endocrinology. 2004;145(11):5013–20. https://doi.org/10.1210/en.2004-0065

21. Stenzel D, Huttner WB. Role of maternal thyroid hormones in the developing neocortex and during human evolution. Front Neuroanat. 2013;7:19. https://doi.org/10.3389/fnana.2013.00019

22. Ferreira AA, Pereira MJ, Manhaes AC, Barradas PC. Ultrastructural identification of oligodendrocyte/myelin proteins in corpus callosum of hypothyroid animals. Int J Dev Neurosci. 2007;25(2):87–94. https://doi.org/10.1016/j.ijdevneu.2006.12.007

23. Sharlin DS, Tighe D, Gilbert ME, Zoeller RT. The balance between oligodendrocyte and astrocyte production in major white matter tracts is linearly related to serum total thyroxine. Endocrinology. 2008;149(5):2527–36. https://doi.org/10.1210/en.2007-1431

24. Lima FR, Gervais A, Colin C, Izembart M, Neto VM, Mallat M. Regulation of microglial development: a novel role for thyroid hormone. J Neurosci. 2001;21(6):2028–38.

25. Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. JBC. 2003;278(44):43489–95. https://doi.org/10.1074/jbc.M306933200

26. Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology. 2004;145(9):4388–91. https://doi.org/10.1210/en.2004-0058

27. Dezonne RS, Lima FR, Trentin AG, Gomes FC. Thyroid hormone and astroglia: endocrine control of the neural environment. J Neuroendocrinol. 2015;27(6):435–45. https://doi.org/10.1111/jne.12283

28. Huber RD, Gao B, Sidler Pfandler MA, Zhang-Fu W, Leuthold S, Hagenbuch B, Folkers G, Meier PJ, Stieger B. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol. 2007;292(2):C795-806. https://doi.org/10.1152/ajpcell.00597.2005

29. Hagenbuch B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract Res Clin Endo-
57. Blondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29(1):76–131. https://doi.org/10.1210/er.2006-0043

58. Braun D, Kinne A, Brauer AU, Sapin R, Klein MO, Kohrle J, et al. Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells. Glia. 2011;59(3):463–71. https://doi.org/10.1002/glia.21116

59. Mallat M, Lima FR, Gervais A, Colin C, Moura Neto V. New insights into the role of thyroid hormone in the CNS: the microglial track. Mol Psychiatry. 2002;7(1):7–8. https://doi.org/10.1038/sj.mp.4001988

60. Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016;12(2):111–21. https://doi.org/10.1038/nrendo.2015.205

61. Kalyanaraman H, Schwappacher R, Joshua J, Zhuang S, Scott BT, Klos M, et al. Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci Signal. 2014;7(326):ra48. https://doi.org/10.1126/scisignal.2004911

62. Mori Y, Tomonaga D, Kalashnikova A, Furuya F, Akimoto N, Ifuku M, et al. Effects of 3,3',5-triiodothyronine on microglial functions. Glia. 2015;63(5):906–20. https://doi.org/10.1002/glia.22792

63. Noda M. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders. Front Cell Neurosci. 2015;9:194. https://doi.org/10.3389/fncel.2015.00194

64. Noda M, Mori Y, Yoshioka Y. Sex- and Age-Dependent Effects of Thyroid Hormone on Glial Morphology and Function. OM&P. 2016;2:85–92.

65. Noda M. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction. Vitam Horm. 2018;106:313–31. https://doi.org/10.1016/bs.vh.2017.05.005

66. Honda S, Sasaki Y, Ohsawa K, Inoue Y, et al. Extracellular ATP or ADP induce chemotaxis of cultured microglia through G_{i0}-coupled P2Y receptors. J Neurosci. 2001;21(6):1975–82.

67. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, et al. Bradykinin-induced microglial migration mediated by B₁-bradykinin receptors depends on Ca₂₊ influx via reverse-mode activity of the Na<sup>+</sub>/Ca₂₊ exchanger. J Neurosci. 2007;27(48):13065–73. https://doi.org/10.1523/JNEUROSCI.3467-07.2007

68. Ifuku M, Okuno Y, Yamakawa Y, Izumi K, Seifert S, Kettenmann H, et al. Functional importance of inositol-1,4,5-triphosphate-induced intracellular Ca₂₊ mobilization in galanin-induced microglial migration. J Neurochem. 2011;117(1):61–70. https://doi.org/10.1111/j.1471-4159.2011.07176.x

69. Morte B, Bernal J. Thyroid hormone action: astrocyte-neuron communication. Front Endocrinol (Lausanne). 2014;5:82. https://doi.org/10.3389/fendo.2014.00082

70. Morte B, Gil-Ibanez P, Bernal J. Regulation of Gene Expression by Thyroid Hormone in Primary Astrocytes: Factors Influencing the Genomic Response. Endocrinology. 2018;159(5):2083–92. https://doi.org/10.1210/endo.2017-03084

71. Trentin AG. Thyroid hormone and astrocyte morphogenesis. J Endocrinol. 2006;189(2):189–97. https://doi.org/10.1677/joe.1.06680

72. Das M, Ghosh M, Gharani K, Das S. Thyroid Hormone and Astrocyte Differentiation. Vitam Horm. 2018;106:283–312. https://doi.org/10.1016/bs.vh.2017.05.004

73. Saelin N, John LM, Wu J, Park JS, Bai Y, Camacho P, et al. Nontranscriptional modulation of intracellular Ca₂₊ signaling by ligand stimulated thyroid hormone receptor. J Cell Biol. 2004;167(5):915–24. https://doi.org/10.1083/jcb.200409011

74. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013;19(6):773–7. https://doi.org/10.1038/nm.3162

75. Chocron ES, Sayre NL, Holstein D, Saelin N, Idbah JA, Dong LQ, et al. The trifunctional protein mediates thyroid hormone receptor-dependent stimulation of mitochondria metabolism. Mol Endocrinol. 2012;26(7):1117–28. https://doi.org/10.1210/me.2011-1348

76. Roostaei T, Nazeri A, Felsky D, De Jager PL, Schneider JA, Pollock BG, et al. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol Psychiatry. 2017;22(2):287–95. https://doi.org/10.1038/mp.2016.35

77. Nelson PT, Estus S, Abner EL, Parikh I, Malik M, Neltner JH, et al. ABC9 gene polymorphism is associated with hippocampal scle-
84. Fernandez M, Pirondi S, Manservigi M, Giardino L, Caiza L. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat. Eur J Neurosci. 2004;20(8):2059–70. https://doi.org/10.1111/j.1460-9568.2004.03664.x

85. Koper JW, Hoeben RC, Hoodstenbach FM, van Golde LM, Lopes-Cardozo M. Effects of triiodothyronine on the synthesis of sulfatides by oligodendrocyte-enriched glial cultures. Biochim Biophys Acta. 1986;887(3):327–34.

86. Baas D, Fressinaud C, Ittel ME, Reebier A, Dalencon D, Puymirat J, et al. Expression of cell-intrinsic thyroid hormone receptor isoforms in rat oligodendrocyte cultures. Effect of 3,5,3′-triiodo-L-thyronine. Neurosci Lett. 1994;176(1):47–51.

87. Baas D, Bourbeau D, Carre JL, Sarlieve LL, Dussault JH, Puymirat J. Expression of alpha and beta thyroid receptors during oligodendrocyte differentiation. Neuroreport. 1994;5(14):1805–8.

88. Carre JL, Demerens C, Rodriguez-Pena A, Floch HH, Vincendon G, Sarlieve LL. Thyroid hormone receptor isoforms are sequentially expressed in oligodendrocyte lineage cells during rat cerebral development. J Neurosci Res. 1998;54(5):584–94. https://doi.org/10.1002/(SICI)1097-4547(19981201)54:5<584::AID-JNR3>3.0.CO;2-X

89. Sarlieve LL, Rodriguez-Pena A, Langle K. Expression of thyroid hormone receptor isoforms in the oligodendrocyte lineage. Neurochem Res. 2004;29(5):903–22.

90. Billon N, Tokumoto Y, Forrest D, Raff M. Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Dev Biol. 2001;235(1):110–20. https://doi.org/10.1006/dbio.2001.0293

91. Kondo T. [Cell-intrinsic timer regulating oligodendrocyte development]. Tanpakushitsu Kakusan Koso. 2001;46(7):821–8.

92. Ahlgren SC, Wallace H, Bishop J, Neophytou C, Raff MC. Effects of thyroid hormone on embryonic oligodendrocyte precursor cell development in vivo and in vitro. Mol Cell Neurosci. 1997;9(5-6):420–32. https://doi.org/10.1006/mcne.1997.0631

93. Baas D, Legrand C, Samarut J, Flamant P. Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(5):2907–11. https://doi.org/10.1073/pnas.052482299

94. Tokumoto YM, Durand B, Raff MC. An analysis of the early events when oligodendrocyte precursor cells are triggered to differentiate by thyroid hormone, retinoic acid, or PDGF withdrawal. Dev Biol. 1999;213(2):327–39. https://doi.org/10.1006/dbio.1999.9397

95. Gao FB, Apperly J, Raff M. Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells. Dev Biol. 1998;197(1):54–66. https://doi.org/10.1006/dbio.1998.8877

96. Billon N, Jolicoeur C, Tokumoto Y, Vennstrom B, Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J. 2002;21(23):6452–60.

97. Picou F, Fauquier T, Chatonnet F, Flamant F. A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Endocrinol. 2012;26(4):608–18. https://doi.org/10.1210/me.2011-1316

98. Tokumoto YM, Apperly JA, Gao FB, Raff MC. Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Dev Biol. 2002;245(1):224–34. https://doi.org/10.1006/dbio.2002.0626

99. Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, et al. Roles for p53 and p73 during oligodendrocyte development. Development. 2004;131(6):1211–20. https://doi.org/10.1242/dev.01035

100. Dugas JC, Ibrahim A, Barres BA. The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration. Mol Cell Neurosci. 2012;50(1):45–57. https://doi.org/10.1016/j.mcn.2012.03.007

101. Tokumoto Y, Tamaki S, Kabe Y, Takubo K, Suematsu M. Quiescence of adult oligodendrocyte precursor cells requires thyroid hormone and hypoxia to activate Runx1. Sci Rep. 2017;7(1):1019. https://doi.org/10.1038/s41598-017-01023-9

102. Knipper M, Bandtlow C, Gestwa L, Kopschall I, Robbock K, Wiechers B, et al. Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development. 1998;125(18):3709–18.

103. Younes-Rapozo V, Berendonk J, Savignon T, Manhaes AC, Barradas PC. Thyroid hormone deficiency changes the distribution of oligodendrocyte/myelin markers during oligodendrogial differentiation in vitro. Int J Dev Neurosci. 2006;24(7):445–53. https://doi.org/10.1016/j.ijdevneu.2006.08.004

104. Anlauf E, Derouiche A. Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front Endocrinol (Lausanne). 2013;4:144. https://doi.org/10.3389/fendo.2013.00144

105. Baas D, Bourbeau D, Sarlieve LL, Ittel ME, Dussault JH, Puymirat J. Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia. 1997;19(4):324–32.

106. Baas D, Fressinaud C, Vitkovic L, Sarlieve LL. Glutamine synthetase expression and activity are regulated by 3,5,3′-triiodo-L-thyronine and hydrocortisone in rat oligodendrocyte cultures. Int J Dev Neurosci. 1998;16(5):333–40.

107. Power J, Mayer-Proschel M, Smith J, Noble M. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions. Dev Biol. 2002;245(2):362–75. https://doi.org/10.1006/dbio.2002.0610
108. Venkatesh K, Srikanth L, Vengamma B, Chandrasekhar C, Prasad BC, Sarma PV. In vitro transdifferentiation of human cultured CD34+ stem cells into oligodendrocyte precursors using thyroid hormones. Neurosci Lett. 2015;588:36–41. https://doi.org/10.1016/j.neulet.2014.12.050

109. Chew LJ, King WC, Kennedy A, Gallo V. Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia. 2005;52(2):127–43. https://doi.org/10.1002/glia.20232

110. Tanner DC, Cherry JD, Mayer-Proschel M. Oligodendrocyte progenitors reversibly exit the cell cycle and give rise to astrocytes in response to interferon-gamma. J Neurosci. 2011;31(16):6235–46. https://doi.org/10.1523/JNEUROSCI.5905-10.2011

111. Buras A, Battle L, Landers E, Nguyen T, Vasudevan N. Thyroid hormones regulate anxiety in the male mouse. Horm Behav. 2014;65(2):88–96. https://doi.org/10.1016/j.yhbeh.2013.11.008

112. Gould E, Allan MD, McEwen BS. Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone. Brain Res. 1990;20;525(2):327–9.

113. Franco PG, Silvestroff L, Soto EF, Pasquini JM. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp Neurol. 2008;212(2):458–67. https://doi.org/10.1016/j.expneurol.2008.04.039

114. Wirth EK, Roth S, Blechschmidt C, Holter SM, Becker L, Racz I, et al. Neuronal 3’,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci. 2009;29(30):9439–49. https://doi.org/10.1523/JNEUROSCI.6055-08.2009

115. Lee JY, Kim MJ, Deliyanti D, Azari MF, Rossello F, Costin A, et al. Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination. EBioMedicine. 2017;25:122–35. https://doi.org/10.1016/j.ebiom.2017.10.016

116. Zhang M, Zhan XL, Ma ZY, Chen XS, Cai QY, Yao ZX. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period. Exp Biol Med (Maywood). 2015;240(9):1183–96. https://doi.org/10.1177/1535370214565975

117. Bhumika S, Lemmens K, Vancamp P, Moons L, Darras VM. Decreased thyroid hormone signaling accelerates the reinnervation of the optic tectum following optic nerve crush in adult zebrafish. Mol Cell Neurosci. 2015;68:92–102. https://doi.org/10.1016/j.mncn.2015.04.002

118. Lariosa-Willingham K, Leonoudakis D. Using Acutely Dissociated and Purified Oligodendrocyte Precursor Cells for High-Throughput Drug Screening to Identify Compounds that Promote Oligodendrocyte Differentiation. Curr Protoc Cell Biol. 2018;79(1):e49. https://doi.org/10.1002/cpcb.49
Figures

Figure 1. Glioendocrine system and functions of THs in the CNS. Circulating T4 is transported across the blood-brain barrier via specific transporters and enters into astrocytes, where it is type 2-deiodinase (D2) to produce T3. Subsequently T3 is released by transporters, and taken by other cells such as microglia, oligodendrocytes, and neurons via distinct transporters. T3 also affects astrocytes as autocrine signal.