An Adjuvanted, Postfusion F Protein–Based Vaccine Did Not Prevent Respiratory Syncytial Virus Illness in Older Adults

Judith Falloon, Jing Yu, Mark T. Esser, Tonya Villafana, Li Yu, Filip Dubovsky, Therese Takas, Myron J. Levin, and Ann R. Falsey

1Medimmune, Gaithersburg, Maryland; 2University of Colorado Anschutz Medical Campus, Aurora; and 3Rochester General Hospital and University of Rochester, New York

(See the editorial commentary by Langley, on pages 1334–6.)

Background. Respiratory syncytial virus (RSV) is an important cause of illness in older adults. This study assessed efficacy of a vaccine for prevention of RSV-associated acute respiratory illness (ARI), defined by specified symptoms with virologic confirmation.

Methods. This phase 2b study evaluated RSV postfusion F protein (120 µg) with glucopyranosyl lipid adjuvant (5 µg) in 2% stable emulsion. Subjects aged ≥60 years were randomly assigned at a ratio of 1:1 to receive vaccine or placebo (all received inactivated influenza vaccine). Ill subjects recorded symptoms and provided blood and nasal swab samples.

Results. In the per-protocol population (n = 1894), the incidence of RSV-associated ARI occurring ≥14 days after dosing was 1.7% and 1.6% in the vaccine and placebo groups, respectively, for a vaccine efficacy (VE) of −7.1% (90% confidence interval [CI], −106.9%–44.3%). Efficacy was not observed in secondary analyses that included seroresponse to nonvaccine RSV antigens (VE, 8.9%; 90% CI, −28.5%–35.4%) or symptoms combined with seroresponse (VE, 10.0%; 90% CI, −45.4%–44.4%). On day 29, 92.9% of vaccinees had an anti-F immunoglobulin G antibody seroresponse. Overall, 48.5% and 30.9% of RSV vaccine recipients reported local and systemic solicited symptoms, respectively.

Conclusion. The RSV vaccine was immunogenic but did not protect older adults from RSV illness.

Clinical Trials Registration. NCT02508194.

Keywords. Adjuvant; clinical trial; efficacy; respiratory syncytial virus; subunit; vaccine.

The recognition that respiratory syncytial virus (RSV) is an important cause of illness in older adults has driven the development of RSV vaccines for this age group [1]. RSV circulates annually, but protective immunity is short-lived despite multiple exposures [2]. Neutralizing antibodies are important for protection; however, cellular immunity is also thought to play a role, probably in limiting viral spread [3–5]. Although adults maintain neutralizing antibodies as they age, older adults may be deficient in cellular immune responses to RSV, compared with younger adults [6]. Immunosenescence poses a challenge for the development of vaccines for older adults, and inclusion of an adjuvant might improve immune responses in this population [4].

RSV vaccine candidates generally include the fusion (F) protein of the virus, a highly conserved surface protein essential for infection containing multiple neutralizing and CD4+ and CD8+ T-cell epitopes. The F protein exists in pre- and postfusion conformations, with prefusion antibodies significantly contributing to the magnitude of neutralizing antibodies in human sera [7]. The development of vaccines to the prefusion conformation was hindered by manufacturing difficulties, but prefusion vaccine candidates are now being studied [8, 9]. The monoclonal antibody palivizumab binds postfusion F protein and prevents RSV disease in infants; thus, vaccines that stimulate antibody to postfusion F have been considered viable vaccine candidates [9, 10]. The postfusion F used in this vaccine study protected cotton rats and mice from experimental challenge [11].

We hypothesized that an adjuvanted, RSV postfusion F–based vaccine shown to be immunogenic in phase 1 studies would protect older adults from RSV illness [12, 13]. Based on animal studies demonstrating generation of a T-helper type 1–biased immune response, the adjuvant selected was glucopyranosyl lipid adjuvant (GLA), a Toll-like receptor 4 agonist, in a squalene-based oil-in-water stable emulsion (SE) [11, 14, 15]. Phase 1 data demonstrated appropriate safety and immunogenicity and, based on both cellular and humoral responses, provided support for inclusion of the adjuvant [12, 13]. Thus, a phase 2b study was conducted to assess the immunogenicity and efficacy of this investigational RSV vaccine among older adults.
Efficacy of RSV Vaccine in Older Adults • JID 2017:216 (1 December) • 1363

Table 1. Symptom Locations and Definitions of Respiratory Syncytial Virus (RSV)–Associated Acute Respiratory Illness (ARI) and Lower Respiratory Tract Illness (LRTI)

Variable	Symptom or Definition
Location	
Upper respiratory tract	Nasal congestion/rhinorrhea (runny or stuffy nose), sore throat, and earache or ear pain
Lower respiratory tract	Cough, dyspnea (shortness of breath), sputum (coughing up sputum or phlegm), and wheezing by self-report
Systemic	Myalgias or arthralgias (overall body aches), fatigue (tiredness), headache, decreased appetite, and feverishness
ARI (primary end point)	Detection of RSV in at least 1 respiratory sample at the time of illness plus ≥2 lower respiratory tract symptoms
LRTI (secondary end point)	Detection of RSV in at least 1 respiratory sample at the time of illness plus ≥2 lower respiratory tract symptoms
risk is calculated as \([\text{rate of RSV-associated ARI in the vaccine group} ÷ \text{rate of RSV-associated ARI in the placebo group}]\). The sample size calculation was based on these assumptions: a VE of 70%, an incidence of RSV-associated ARI in placebo recipients of 2.5% [1, 20], a dropout rate of 10%, a 2-sided \(\alpha\) of 0.1, and a superiority margin 0%.

The primary analysis was conducted in the per-protocol population, defined as all subjects dosed and analyzed by product received who were followed for symptoms until their first RSV-associated ARI or the end of the surveillance period. The intention-to-treat (ITT) population, analyzed by randomized treatment group, included all subjects who were randomly assigned to a study group and dosed. A high-risk subgroup was determined before unmasking by selecting terms preferred by the Medical Dictionary for Regulatory Activities, version 19, for medical history that placed the subject in a risk category for severe influenza [21, 22].

The primary end point, the incidence of the first RSV-associated ARI episode occurring \(\geq 14\) days after vaccination and within the RSV surveillance period, was evaluated by constructing a 2-sided 90% CI for VE in the vaccine group as compared to the placebo group. A period of 14 days was selected to eliminate the risk of including subjects with incubating disease and to permit an immune response to vaccination. The CI was estimated by an exact conditional method dependent on the total number of cases [23, 24]. If the lower bound of the 90% CI was >0%, VE would be demonstrated. A modified Poisson regression with robust error variance was conducted to adjust for duration of follow-up, and a multiple imputation analysis was conducted to address the impact of missing data, both in the ITT population. To evaluate the effect of RSV vaccine on the immune response to IIV, 910 subjects had predose and day 29 postdose HAI antibodies assessed after receipt of Fluzone Quadrivalent, for a 90% power to demonstrate a 1.5-fold noninferiority margin for the postdose HAI antibody geometric mean titer (GMT) ratios (calculated as the GMT of HAI antibody in the placebo group divided by that of the vaccine group) for each of 4 strains. The power calculation was based on a 2-sample \(t\) test, assuming log-normal distribution, a 1-sided \(\alpha\) of 0.025, a standard deviation for the HAI GMT of 1.48 in natural log transformation, an attrition rate of 10%, and no true difference between both groups.

RESULTS

As planned, 1900 subjects were enrolled. Dosing occurred from 30 September–24 November 2015 and from 15 to 29 April 2016, in the northern and southern hemispheres, respectively. Median follow-up duration was 368 and 370 days for RSV vaccine and placebo groups, respectively, and efficacy follow-up was high (Figure 1). Groups were demographically comparable (Supplementary Table 1) except that more placebo recipients were female. The mean age was 67 years, with 14.1% of subjects aged \(>75\) years. Similar proportions of subjects had high-risk comorbidities at baseline.

Overall, 539 subjects (28.9%) had an illness episode; 25.8% in the RSV vaccine group and 28.6% in the placebo group had \(\geq 1\) event that met RSV-associated ARI symptom criteria. At least 1 swab specimens was self-collected by 93.1% of subjects with an illness episode, and a multiple imputation analysis was conducted to address the impact of missing data, both in the ITT population. To evaluate the effect of RSV vaccine on

Figure 1. Disposition of subjects (as treated; 1 subject who was randomly assigned to receive respiratory syncytial virus (RSV) vaccine received placebo in error). IIV, inactivated influenza vaccine; PI, principal investigator. *Completed efficacy follow-up.

1364 • JID 2017:216 (1 December) • Falloon et al
RSV vaccination in 7 subjects and following placebo receipt in 8 and type B (in 8 and 7, respectively). The genotypes were consistent with that of ON1 for RSV A and BAIX for RSV B [25, 26]. In the RSV vaccine and placebo groups, 96.6% and 98.9% of subjects, respectively, provided data on at least 70% of days, for a median of 21 days (range, 5–21 days) of data.

VE
The incidence of the RSV-associated ARI end point occurring ≥14 days after vaccination was 1.7% in the RSV vaccine arm and 1.6% in the placebo arm, for an estimated VE of −7.1% (90% CI, −106.9%–44.3%; Figure 2). All subjects with RSV detected in a respiratory specimen who provided any symptom data met the RSV-associated ARI end point; when a more stringent definition (2 lower respiratory tract illness symptoms) was used, efficacy again was not observed. Efficacy was not observed in subset analyses by age, sex, race, ethnicity, or region (data not shown).

A total of 802 patients (406 in the RSV vaccine group and 396 in the placebo group) were considered high risk for ARI at baseline; the VE in this group was 51.2% (90% CI, −33.3%–83.9%), with 1.2% and 2.5% in the RSV vaccine and placebo groups, respectively, meeting the RSV-associated ARI end point. Serious adverse cardiopulmonary events, which could have represented a history at baseline of cardiac failure, chronic kidney disease, asthma, or chronic obstructive pulmonary disorder. RSV-associated ARI events were not clustered at the end of the RSV season in RSV vaccine recipients (10 of 16 events occurred in months 3 and 4 after dosing).

Using the broadest definition (either a 4-fold increase from baseline at any time during the study or a 3-fold increase between illness days 4 and 22 in response to nonvaccine RSV antigens), 5.4% of all subjects (5.3% and 5.8% of RSV vaccine and placebo recipients, respectively) had an RSV seroresponse (VE, 8.9%; 90% CI, −28.5%–35.4%; Figure 2B). Approximately one half of these subjects (55 of 103) reported illness. Of subjects with ARI symptoms and RSV detected, 83.9% (26 of 31) had a seroresponse.

Analyses intended to compare disease severity across arms, including cycle threshold values from the RT-PCR assay as an

Figure 2. Forest plot of vaccine efficacy (VE) for the first episode of acute respiratory syncytial virus (RSV)–associated respiratory illness (ARI) or by seroresponse in the per protocol (PP) population. Assessment was during the surveillance period, starting 14 days after dosing, unless otherwise noted. A, Efficacy according to RSV-associated ARI definition (first episode of RSV-associated ARI symptoms plus RSV detection in respiratory specimen by polymerase chain reaction analysis). B, Efficacy according to seroresponse definition (ie, RSV-associated ARI symptoms plus seroresponse to nonvaccine antigens). CI, confidence interval; ITT, intention to treat; LRTI, lower respiratory tract illness.
estimate of viral load, duration of RSV illness, individual and composite symptom scores from the illness workbook, proportion of subjects treated with antibiotics or nonantibiotic medications, and proportion of subjects with various levels of healthcare professional visits, did not suggest RSV VE (data not shown).

Immunogenicity
Subjects who received RSV vaccine developed an anti-F IgG immune response that was not observed in placebo recipients (Figure 3). Anti-F IgG levels declined by the end of the RSV season but remained significantly higher than in the placebo group (geometric mean fold rise [GMFR], 4.6 [95% CI, 4.34–4.88] vs 0.94 [95% CI, 0.91–0.96]). In RSV vaccine recipients, anti-F IgG levels on day 29 were 1015.46 (95% CI, 955.73–1078.94) units/mL in subjects aged 60–75 years and 905.05 (95% CI, 778.03–1052.82) units/mL in subjects aged >75 years. As previously demonstrated [12], baseline values affected day 29 values. Those with baseline values below the baseline median values had lower geometric mean responses (GMRs) but higher GMFRs than those with higher baseline values (GMR, 823.81 antibody units/mL [95% CI, 757.25–896.23] vs 1226.2 antibody units/mL [95% CI, 1144.26–1314.00]; GMFR, 20.73 [95% CI, 19.00–22.61] vs 7.64 [95% CI, 7.09–8.24]).

In immunogenicity subset analyses, microneutralizing and palivizumab-competitive antibodies and ELISPOT results were significantly higher after dosing than at baseline (Figure 4).

The ratio of the HAI antibody GMT in the placebo group to that in the vaccine group was 1.04 to 1.82 among the 4 influenza virus strains, with upper bounds of the 95% CIs of 1.190 to 1.266, meeting the preestablished boundary of 1.5. The corresponding ratios of GMFRs were 1.07 to 1.13, with the highest upper bound being 1.321.

Using a definition of hMPV illness that required RSV-associated ARI symptoms and detection of hMPV by RT-PCR, 0.86% (8 of 931) and 1.82% (17 of 935) RSV vaccine and placebo recipients, respectively, had hMPV illness (VE, 52.7%; 90% CI, −1.9–79.4).

Safety
Local reactogenicity (Table 2) was greater after RSV vaccine receipt than after placebo or IIV receipt, but grade 3 events were uncommon (0.5% each for RSV vaccine and IIV). More subjects who received RSV vaccine plus IIV experienced systemic events of fatigue and muscle aches than those who received placebo plus IIV (Supplementary Table 2). Adverse events through the day 29 visit were balanced (Supplementary Table 3). One adverse event of special interest (autoimmune thyroiditis; Supplementary Tables 4 and 5) was considered by the investigator to be caused by RSV vaccine; in this case, chronic lymphocytic thyroiditis was observed in a specimen obtained during surgery for papillary thyroid carcinoma. Eight subjects died (3 RSV vaccine recipients and 5 placebo recipients); no death was considered to be related to study dosing (Supplementary Table 4).

DISCUSSION
This phase 2b study demonstrated that an investigational GLA-SE–adjuvanted vaccine based on the RSV F protein in postfusion configuration, although immunogenic, did not prevent RSV disease in older adults. There was no clinically
Efficacy of RSV Vaccine in Older Adults

There were no identifiable flaws in study execution that would have led to these results. Our older adult population was highly compliant, despite limitations of age and health for some, and data quality was good. Although the study was underpowered for the observed incidence, the absence of a trend toward efficacy indicates that a much larger study would not be expected to reach a different conclusion. For example, if 3500 subjects had been enrolled, and, hypothetically, the VE was 70% in the additional 1600 subjects, the overall study VE would be 29% (90% CI, –20%–58%). The study end point, RSV-associated ARI, performed well, and use of a more stringent definition did not result in observed efficacy. The F antigen used in this study was from the same lot used in the phase 1b program. The adjuvant was from a new lot manufactured by the previously used process, and release specifications were met. The study appears to have failed because the vaccine did not generate adequate protective antibodies, either because antibodies to postfusion F were not qualitatively appropriately protective or because sufficiently high titers of anti–postfusion F neutralizing antibodies were not generated.

The vaccine induced a significant immune response, which declined during the RSV season, as has been observed after wild-type RSV infection [27]. However, RSV-associated ARI end points were not clustered in the end of the season, suggesting that the decline in immunogenicity did not lead to low efficacy. Although immunogenicity was lower than that observed in the phase 1b study (data not shown), this finding could have been due to population differences, and responses confirmed correct randomization and excluded significant loss of potency. Neutralizing antibody titers and cellular responses were not collected for all subjects in this study and RSV B neutralizing antibodies were not assessed; however, in a previous study, neutralizing antibodies to a type B strain were demonstrated after immunization with this vaccine. Because similar numbers of types A and B viruses were detected, it is unlikely that failure to prevent type B RSV infection was an important cause of the lack

Table 2. Proportion of Subjects With Local Solicited Symptoms During Days 1–7 After Receipt of Placebo, Inactivated Influenza Vaccine (IIV), and Respiratory Syncytial Virus (RSV) Vaccine, by Study Group

Symptom	Placebo and IIV Group, Recipients, No. (%) (n = 948)	RSV Vaccine and IIV Group, Recipients, No. (%) (n = 948)	All IIV Recipients, No. (%)* (n = 1894)
Any	199 (21.0)	459 (48.5)	822 (43.4)
Pain at injection site	126 (13.3)	299 (31.8)	527 (27.8)
Tenderness/soreness at injection site	147 (15.5)	383 (40.5)	696 (36.7)
Redness at injection site	7 (0.7)	65 (6.9)	90 (4.8)
Swelling at injection site	4 (0.4)	49 (5.2)	82 (4.3)

Abbreviations: IIV, inactivated influenza vaccine; RSV, respiratory syncytial virus.
*Data are for all subjects who received IIV.
of efficacy. The observation that responses were greater in the F IgG assay than in the microneutralization assay suggests that many antibodies generated were nonneutralizing and therefore ineffective.

Although neutralizing antibody to the F protein is known to be protective in infants and to correlate with protection in older adults, this adjuvanted F protein–based RSV vaccine joins other F-based vaccines in failing to prevent RSV disease in adults [3, 5, 28]. Most recently, after a successful phase 2 study, the Novavax RSV F–based vaccine failed to prevent RSV disease in a phase 3 study, with outcomes very similar to those reported here (available at: http://novavax.com/presentation.show). The F protein used in current study, in the postfusion conformation, contains neutralizing epitopes including antigenic sites I, II, and IV on the F1 subunit [29]. Recently, antibodies to the prefusion conformation were shown to have greater neutralizing activity, including in adults, than antibodies to postfusion F; in particular, antibodies to site O, which are not induced by postfusion F, are far more important than those to site II (the palivizumab epitope), which are induced by both prefusion and postfusion F [7, 30, 31]. Thus, it is possible that a postfusion F–based vaccine may not generate appropriate neutralizing antibodies to prevent RSV disease in older adults; however, the efficacies of palivizumab and motavizumab suggest that, at least in young children, there is a concentration of antibodies to site II that can protect against RSV disease [32].

The observed incidence of RSV disease in this study did not reflect the epidemiologic incidence of disease in older adults. Dosing in this study occurred during the upslope of the RSV season so that part of the epidemic curve was excluded [33]. More RSV disease occurred in the southern hemisphere (2.7% in the placebo group), and the start of dosing was more timely for that inverted seasonality (but the sample size was small). Although most study subjects had underlying diseases, the oldest and most frail elderly subjects (who might have the highest RSV disease rates) were underrepresented. End points were probably underreported. Only about 29% of subjects had an illness visit, which is low frequency as compared to other studies [34]; in addition, we know that subjects with respiratory diseases such as pneumonia or exacerbation of respiratory illness often did not consider these to be potential RSV illnesses despite being asked to do so. Also, no patient was tested for RSV during a hospitalization. The RSV incidence assumption for sample size calculation was 2.5%, based primarily on the report from McClure et al [20], with adjustment for lack of requirement of medical attendance in the current study. In healthy adults aged ≥65 years, the incidence of RSV infection (not necessarily medically attended) diagnosed on the basis of culture, RT-PCR, or serologic test results was 3%–7% annually [1]. In our study, diagnosis on the basis of serologic test results was 5.3%–5.8%. The 2015–2016 season, based on MedImmune internal data from laboratory surveillance (primarily based on pediatric respiratory samples), was typical of recent RSV seasons (data not shown).

The trend toward efficacy against hMPV is an intriguing finding. Although this study was not designed to evaluate VE against hMPV, the findings may be meaningful and deserve consideration. Monoclonal antibodies with efficacy against both hMPV and RSV have been generated, and cross-neutralization is hypothesized to occur, based on a conserved region of the F protein [35, 36]. Anti-hMPV efficacy demonstrates biologic activity and suggests that the lack of efficacy was RSV specific.

The failure of this vaccine has broad implications for the field. Our vaccine contained a potent Toll-like receptor 4 agonist in a SE and a large quantity of antigen (close to the maximum that could feasibly be included in a vaccine), which suggests creating an improved postfusion F protein–based vaccine will be difficult. Inclusion of an F protein in the prefusion configuration may improve immunogenicity and efficacy. It is also possible that antibodies to the RSV G protein are protective; however, the need to match the highly variable G protein to circulating strains might entail periodic reformulation and inclusion of >1 genotype, which would be a significant barrier to a preventive strategy [9]. We plan to continue to investigate the immune responses to this RSV vaccine to better understand protective immunity against RSV.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Notes

Author Contribution. J. F., M. T. E., T. V., F. D., T. T., M. J. L., and A. R. F. contributed to study design and data analysis and interpretation. J. Y. and L. Y. contributed to data analysis and interpretation. M. J. L. and A. R. F., as lead investigators, enrolled and followed subjects in the study and contributed to data interpretation. All authors had access to all data, contributed to manuscript writing and provided final approval of the manuscript.

Acknowledgments. We thank the site investigators and their staff, the study programmers Ekaterina Batkhan and Anna Soloviov, Stacie Lambert of MedImmune's translational medicine group, Amanda Kuehn and Dave Vallo from MedImmune's clinical operations group, and MedImmune clinical scientist Nancy Mueller, for their contributions; and Disha Patel, PhD, of inScience Communications, Springer Healthcare (Philadelphia, PA, USA), for figure formatting and text editing before submission of the manuscript.

Financial support. This work was supported by MedImmune, a subsidiary of AstraZeneca.

Potential conflicts of interest. J. F., J. Y., M. T. E., T. V., L. Y., F. D., and T. T. are all employees of MedImmune, a wholly owned subsidiary of AstraZeneca, and may hold AstraZeneca
Efficacy of RSV Vaccine in Older Adults • JID 2017:216 (1 December) • 1369

stock or stock options. M. J. L. and A. R. F. disclose receipt of research grants from MedImmune for the conduct of this study. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med 2005; 352:1749–59.
2. Hall CB, Walsh EE, Long CE, Schnabel KC. Immunity to and frequency of reinfection with respiratory syncytial virus. J Infect Dis 1991; 163:693–8.
3. Falsey AR, Walsh EE. Relationship of serum antibody to risk of respiratory syncytial virus infection in elderly adults. J Infect Dis 1998; 177:463–6.
4. Malloy AMW, Falsey AR, Ruckwardt TJ. Consequences of immature and senescent immune responses for infection with respiratory syncytial virus. In: Anderson LJ, Graham BS, eds. Challenges and opportunities for respiratory syncytial virus vaccines. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013:211–231.
5. Walsh EE, Peterson DR, Falsey AR. Risk factors for severe respiratory syncytial virus infection in elderly persons. J Infect Dis 2004; 189:233–8.
6. Cherukuri A, Patton K, Gasser RA Jr, et al. Adults 65 years old and older have reduced numbers of functional memory T cells to respiratory syncytial virus fusion protein. Clin Vaccine Immunol 2013; 20:239–47.
7. Graham BS, Modjarrad K, Mclellan JS. Novel antigens for RSV vaccines. Curr Opin Immunol 2015; 35:30–8.
8. Langley JM, Aggarwal N, Toma A, et al. A randomized, controlled, observer-blinded phase I study of the safety and immunogenicity of a respiratory syncytial virus vaccine with or without alum adjuvant. J Infect Dis 2017; 215:24–33.
9. Melero JA, Mas V, Mclellan JS. Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development. Vaccine 2017; 35:461–8.
10. Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80–99.
11. Lambert SL, Yang CF, Liu Z, et al. Molecular and cellular response profiles induced by the TLR4 agonist-based adjuvant glucopyranosyl lipid A. PLoS One 2012; 7:e51618.
12. Falloon J, Ji F, Curtis C, et al. A phase 1a, first-in-human, randomized study of a respiratory syncytial virus F protein vaccine with and without a toll-like receptor-4 agonist and stable emulsion adjuvant. Vaccine 2016; 34:2847–54.
13. Falloon J, Talbot K, Curtis C, et al. Dose selection for an adjuvanted respiratory syncytial virus F protein vaccine for older adults based on humoral and cellular immune responses. Clin Vaccine Immunol 2017. In press. doi: 10.1128/CVI.00157-17.
14. Lambert SL, Aslam S, Stillman E, et al. A novel respiratory syncytial virus (RSV) F subunit vaccine adjuvanted with GLA-SE elicits robust protective TH1-type humoral and cellular immunity in rodent models. PLoS One 2015; 10:e0119509.
15. Patton K, Aslam S, Shambaugh C, et al. Enhanced immunogenicity of a respiratory syncytial virus (RSV) F subunit vaccine formulated with the adjuvant GLA-SE in cynomolgus macaques. Vaccine 2015; 33:4472–8.
16. Powers JH, Guerrero ML, Leidy NK, et al. Development of the Flu-PRO: a patient–reported outcome (PRO) instrument to evaluate symptoms of influenza. BMC Infect Dis 2016; 16:1.
17. Powers JH, Stringer S, Clifford S, et al. Development of the patient–reported outcome (PRO) instrument FLU-PRO to standardize and quantify symptoms of influenza. Presented at: 2nd Joint Meeting of the Infectious Diseases Society of America, the Society for Healthcare Epidemiology of America, the HIV Medicine Association, and the Pediatric Infectious Diseases Society, IDWeek 2013: Advancing Science, Improving Care, San Francisco, CA, 2–6 October 2013.
18. Maifield SV, Ro B, Mok H, et al. Development of electrochemiluminescent serology assays to measure the humoral response to antigens of respiratory syncytial virus. PLoS One 2016; 11:e0153019.
19. Patton K, Aslam S, Lin J, et al. Enzyme-linked immunospot assay for detection of human respiratory syncytial virus f protein-specific gamma interferon-producing T cells. Clin Vaccine Immunol 2014; 21:628–35.
20. McClure DL, Kieke BA, Sundaram ME, et al. Seasonal incidence of medically attended respiratory syncytial virus infection in a community cohort of adults ≥50 years old. PLoS One 2014; 9:e102586.
21. Centers for Disease Control and Prevention (CDC). People at high risk of developing flu-related complications. http://www.cdc.gov/flu/about/disease/high_risk.htm. Accessed 5 August 2016.
22. Grohskopf LA, Shay DK, Shimabukuro TT, et al. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices—United States, 2013–2014. MMWR Morb Mortal Wkly Rep 2014; 63:691–7.
23. Breslow NE, Day NE. Statistical methods in cancer research. Volume II—the design and analysis of cohort studies. IARC Sci Publ 1987; 82:1–406.
24. Chan ISF, Bohidar NR. Exact power and sample size for vaccine efficacy studies. Commun Stat Theory Methods 1998; 27:1305–22.
25. Duvvuri VR, Granados A, Rosenfeld P, Bahl J, Eshaghi A, Gubbay JB. Genetic diversity and evolutionary insights of respiratory syncytial virus A ON1 genotype: global and local transmission dynamics. Sci Rep 2015; 5:14268.

26. Trento A, Casas I, Calderón A, et al. Ten years of global evolution of the human respiratory syncytial virus BA genotype with a 60-nucleotide duplication in the G protein gene. J Virol 2010; 84:7500–12.

27. Falsey AR, Singh HK, Walsh EE. Serum antibody decay in adults following natural respiratory syncytial virus infection. J Med Virol 2006; 78:1493–7.

28. Walsh EE, Falsey AR. Humoral and mucosal immunity in protection from natural respiratory syncytial virus infection in adults. J Infect Dis 2004; 190:373–8.

29. McLellan JS, Yang Y, Graham BS, Kwong PD. Structure of respiratory syncytial virus fusion glycoprotein in the post-fusion conformation reveals preservation of neutralizing epitopes. J Virol 2011; 85:7788–96.

30. Fuentes S, Coyle EM, Beeler J, Golding H, Khurana S. Antigenic fingerprinting following primary RSV infection in young children identifies novel antigenic sites and reveals unlinked evolution of human antibody repertoires to fusion and attachment glycoproteins. PLoS Pathog 2016; 12:e1005554.

31. Ngwuta JO, Chen M, Modjarrad K, et al. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci Transl Med 2015; 7:309ra162.

32. O’Brien KL, Chandran A, Weatherholtz R, et al.; Respiratory Syncytial Virus (RSV) Prevention study group. Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial. Lancet Infect Dis 2015; 15:1398–408.

33. Bloom-Feshbach K, Alonso WJ, Charu V, et al. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review. PLoS One 2013; 8:e54445.

34. Falsey AR, Walsh EE, Capellan J, et al. Comparison of the safety and immunogenicity of 2 respiratory syncytial virus (RSV) vaccines–nonadjuvanted vaccine or vaccine adjuvanted with alum–given concomitantly with influenza vaccine to high-risk elderly individuals. J Infect Dis 2008; 198:1317–26.

35. Schuster JE, Cox RG, Hastings AK, et al. A broadly neutralizing human monoclonal antibody exhibits in vivo efficacy against both human metapneumovirus and respiratory syncytial virus. J Infect Dis 2015; 211:216–25.

36. Wen X, Mousa JJ, Bates JT, Lamb RA, Crowe JE Jr, Jardetzky TS. Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nat Microbiol 2017; 2:16272.