B7 molecule mRNA expression in colorectal carcinoma

Ju-Xiang Xiao, Pei-Song Bai, Bao-Chang Lai, Li Li, Juan Zhu, Yi-Li Wang

AIM: To observe the status of tumor-associated B7 molecule mRNA expression in human colorectal cancer tissue by in situ hybridization.

METHODS: The mRNA expression patterns of cancer-associated B7.1, B7H1, B7H2, ICOS in 22 specimens of human colorectal cancer tissue were monitored by in situ hybridization (ISH) with digoxin-labeled oligonucleotide probes.

RESULTS: B7.1, B7H1, B7H2, ICOS mRNA were detected in both cancer cells and tumor infiltrating lymphocytes (TIL). The mRNA expression level of these molecules in tumor cells was higher than that in TIL (0.76±0.54-1.62±0.82 vs 0.38±0.19-0.65±0.33, P<0.001). There was no relationship between expression level of tested B7 family molecules and patients’ sex, age, differentiation status of cancer and regional lymph node metastasis.

CONCLUSION: Th2 cytokine predominant in tumor microenvironment might be related to the expression of B7H1, B7H2 co-signal molecules in tumor cells and TIL. Elucidation of tumor-associated B7 molecules may contribute to the design of T cell-based cancer immunotherapy.

Key words: Colorectal cancer; B7.1, B7H1, B7H2 and ICOS; Tumor immunity; Immune evasion

Abstract

The mRNA expression patterns of cancer-associated B7.1, B7H1, B7H2, ICOS in 22 specimens of human colorectal cancer tissue were monitored by in situ hybridization (ISH) with digoxin-labeled oligonucleotide probes. The mRNA expression level of these molecules in tumor cells was higher than that in TIL (0.76±0.54-1.62±0.82 vs 0.38±0.19-0.65±0.33, P<0.001). There was no relationship between expression level of tested B7 family molecules and patients’ sex, age, differentiation status of cancer and regional lymph node metastasis.

CONCLUSION: Th2 cytokine predominant in tumor microenvironment might be related to the expression of B7H1, B7H2 co-signal molecules in tumor cells and TIL.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

INTRODUCTION

Although it has been well accepted that human tumor is immunogenic, most patients suffering from cancer are destined to die due to tumor progress. Establishment of the bisignal model for T-cell activation leads people to think that inactivation of infiltrating immune potential cells in tumor tissue might be immune anergic owing to the deficiency of co-stimulatory molecules. Tumor cells modified with B7 co-stimulatory molecule gene could be rejected by tumor-bearing host[1,2], but most human cancer tissues express co-stimulators[3,4], suggesting that co-stimulatory molecules might not be the only mechanism of immune evasion. The tumor-associated B7-H1 and B7-H2, new members of B7 family can preferentially stimulate the production of IL-10, promote activated T cell apoptosis[5].

In the present study, the status of tumor-associated B7 molecule mRNA expression in human colorectal cancer tissue was observed using B7-H1, B7-H2 and ICOS cDNA probe, in situ hybridization. The results showed that B7.1, B7-H1, B7-H2, ICOS mRNA were expressed in both cancer cells and tumor infiltrating lymphocytes (TIL), indicating that Th2 cytokine predominant in tumor microenvironment might be related to the expression of B7-H1, B7-H2 co-signal molecules in tumor cells and TIL. Elucidation of tumor-associated B7 molecules may contribute to the design of T cell-based cancer immunotherapy.

MATERIALS AND METHODS

Samples

Tissue samples were obtained from 22 patients with colorectal cancer. The specimen were fixed in 4 g/L formaldehyde in phosphate-buffered saline (PBS) immediately and embedded in paraffin. Serial sections (5 μm in thickness) were cut for in situ hybridization or histological evaluation, and mounted on slides covered with APES, dried overnight at 65 °C, stored at -70 °C until use. The diagnosis of colorectal carcinoma was histopathologically verified in all cases. None of the patients had previously received radio-, chemo-, or immunotherapy.

Preparation of oligonucleotide probes

Primer 3 software was used to design oligonucleotide probes complementary to the mRNA of all kinds of target sequences including B7.1, B7-H1, B7-H2, ICOS mRNA. The specificity of all oligonucleotide probes was analyzed by BLAST software (www.ncbi.nlm.gov). The probes were labeled by tailing the oligonucleotides with digoxigenin-11-dUTP kit (Boehringer Mannheim, German). A labeling activity of 1.56 nmol/L was obtained (Primer3 http://wwwgenome.wi.mit.edu/cgi-bin/primer/Primer3BLAST

http://www.ncbi.nlm.gov/cgi-bin/BLAST). Sequence of oligonucleotide probes of co-stimulatory molecules was tested B7.1: 5’-CAT GAA GCT GTG TGT GGT -3'; B7-H1;
5'-TGCTCGTCCAGATTGCTCTTCGGAGTGAACCTGCGCATACAGTCGAGGCTCCTCCTCTCCCTCACAGTCGACCTGGCACAACAGTGGTGAGTGGTGAGTGGTGAGT

In situ hybridization (ISH)

Diethyl pyrocarbonate (DEPC) water was used for all solutions necessary for ISH. The sections were deparaffinized in xylene and rehydrated in descending ethanol, followed by digestion with 1 g/L proteinase K at 37°C for 30 min and terminated with 20 g/L glycine in PBS for 5 min. Then, the sections were refixed in 40 g/L polyformaldehyde for 20 min, washed with PBS for 10 min, treated with 0.2 mol/L HCl for 10 min and washed with DEPC water for 3 min. The sections were dehydrated in ascending gradient ethanol, air-dried and followed by prehybridization at 42°C for 2 h. Hybridization reaction was carried out at 42°C for 22 h. Then the sections were washed with gradient SSC thoroughly and followed by treatment with digoxin antibody at 37°C for 2 h. The color was developed in NBT-BCIP substrate, then counterstained with 10 g/L methyl green in distilled water, dehydrated and mounted with neutral gum.

For negative controls, probes and antibodies were replaced by PBS or the slides were treated with RNase A (20 mg/L) at 37°C for 30 min. B7-1 mRNA expression in mononuclear leucocytes was used as positive control.

Evaluation of results

Purple blue precipitation in cytoplasm under light microscope was considered as positive signal, and 5 high power fields were randomly chosen from each slide. The percentage of positive cells and the positive cell index (total positive granule number/positive cell number) were calculated. Intensity of the color reaction was classified into 4 grades: strongly positive (+++), positive (++), weakly positive (+) and negative (–) and scored as 3, 2, 1 and 0, respectively. The Accumulation index was determined as percentage of positive cells multiply intensity score.

Statistics analysis

All datas were expressed as mean±SD. Analysis was performed by using chi-square test and Spearman correlation analysis with SPSS 11.0 software. *P*<0.05 was considered statistically significant.

RESULTS

Expression of B7-1, B7H1, B7H2, ICOS mRNA was detected in both cancer cells and tumor infiltrating lymphocytes (Figure 1). The mRNA expression level of these molecules in tumor cells was higher than that in TIL. (0.76±0.54-1.62±0.82 vs 0.38±0.19-0.65±0.33, *P* = 0.000). However, when the expression of B7 family mRNA was analyzed with respect to the tested members, there was a significant difference in B7H1 and ICOS expression between TIL and cancer cells (*P*<0.05). The expression of B7H1 and ICOS mRNA was higher in tumor cells and TIL. The expression of B7 family molecules either in tumor cells or in TIL was not correlated with patients’ sex, age, differentiation status of cancer and regional lymph node metastasis. B7-H1 expression in TIL and tumor invasiveness was significantly associated with the intensity and the depth of tumor invasion (*P* = 0.050, Tables 1-3).

![Figure 1](image_url) mRNA expression of B7-1 (A), B7H1 (B), B7H2 (C) and ICOS (D) in human colorectal cancer tissues (ISH×400).

Table 1 B7 family molecule expression in colorectal cancer cells and TIL (mean±SD)

B7 molecule	Tumor cell (mean±SD)	TIL (mean±SD)
B7-1	1.29±0.63	0.45±0.28
B7H1	1.38±0.71	0.65±0.33
B7H2	0.76±0.54	0.38±0.19
ICOS	1.62±0.82	0.53±0.27

a P<0.05 vs tumor cell.

B7 molecule	Tumor cell (mean±SD)	TIL (mean±SD)
B7-1	1.22±0.82	0.36±0.43
B7H1	1.43±0.63	0.64±0.25
B7H2	0.62±0.05	0.42±0.21
ICOS	1.59±1.14	0.48±0.35

b P<0.05 vs T2, T4.
function and also plays an important role in acquired immunity[8,10]. This could well elucidate our previous findings, i.e. although expression of B7-1 by human tumor cells can activate T cells and enhance the secretion of Th1 cytokines such as IL-2 and IFN-γ, Th2 cytokine predominates ultimately since co-stimulators such as B-H1, B-H2 and ICOS act dominantly.

In the present study, we observed that B7-1 co-stimulatory molecule mRNA was expressed in tumor cells and tumor infiltrating lymphocytes (TIL) of human colorectal carcinoma by in situ hybridization, which is consistent with many experiments of B7-gene transfection vaccine[11,12]. However, the other members of B7 family such as B-H1, and ICOS can also be detected. In our study, the expression of B7-molecules in tumor cells was higher than that in TIL (P<0.005), and B-H1 and ICOS mRNA expression in tumor cells was even higher than that of B7-1, suggesting that B7-family plays a role in tumor immunity. In addition, the expression of B-H1 and ICOS mRNA is related with the invasion depth of tumor, the mRNA expression of B-H1, and ICOS in both tumor cells and TIL is associated with the metastasis of colorectal carcinoma. A recent study on B7-family molecules in tumor biological behavior demonstrated that aberrant expression of B-H1 in renal cell carcinoma apparently impairs T cell function and survival[13]. Our results and these data provide the morphological and clinical support to elucidate the role of B7-co-stimulatory molecules in tumor immune evasion.

The present findings indicate that new members of B7 family such as B-H1, B-H2 and ICOS are involved in promoting TH2-based responses preferentially. More interestingly, it has been reported that tumor-associated B-H1 can promote apoptosis of antigen-specific human T-cell clones in vitro[14,18], and mouse P815 tumor-expressed B-H1 increases apoptosis of activated tumor-reactive T-cells and promotes the growth of highly immunogenic B7-1 tumor in vivo[9,10]. These results suggest that induction of apoptosis of tumor-infiltrating lymphocytes by B-H1 molecules overexpressed in human colorectal carcinoma may be a potentially active escape strategy of various tumors from immune attack as is shown by Wintterle et al.[18].

Tumor escape is attributed to a variety of immune evasion strategies, including downregulation of MHC-I class molecules, regulatory T cells, Th2 cytokines, secretion of immunosuppressive factors from tumor cells or TIL, and lack of T-cell co-stimulation. Tumor local microenvironment plays an essential role in determining the final destiny of antitumor immunity[17].

The discovery of new members of B7-family presenting different co-stimulatory effects indicates that different co-signaling molecules lead to different results, such as enhancement of T-cell Receptor (TCR)-mediated immune responses or inhibition of TCR-mediated immune responses. Tumor-associated B-H1 might produce tumor immune escape by promoting apoptosis of tumor-reactive T-cells and type II cytokine secretion through PD-1 ligand[18,19]. Hirano et al.[20], reported that B-H1/PD-1 forms a molecular shield to prevent destruction by CTL, suggesting that to block B-H1 or PD-1 by specific monoclonal antibodies could reverse this resistance and profoundly enhance therapeutic efficacy. Strome et al.[21], have shown the
feasibility of the new immunotherapy. With the suggestion of the concept of co-inhibitors3,25, investigation of the functional characteristics of tumor-associated signal molecules may contribute to exploitation of T cell-based tumor immunotherapy.

REFERENCES

1 Chen LP, McGowan P, Ashe S, Johnston J, Li Y, Helleström I, Helleström KE. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 1994; 179: 523-532

2 Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol 2001; 2: 293-299

3 Si LS, Chen YY, Wang YL, Guo JF, Sun Y. B\textsubscript{3}1 Molecule expression on tumor cells in human cancerous tissues. Chin Med Sci J 1998; 13: 195-198

4 Guo JF, Si LS, Wang YL, Zhao YR, Liu Z, Xiu CF, Sun X. An in situ study on immunostimulatory molecules in cancer cells within the cervical carcinoma tissues. Zhonghua Yi Xue Zazhi 2000; 80: 342-345

5 Liu P, Xiao JX, Li R, Chen XL, Lai BC, Si LS, Wang YL. Analysis on local immune environment of human gastric carcinoma in situ. J Tumor Marker Oncol 2003; 18: 80-85

6 Li R, Rättinger D, Li R, Si LS, Wang YL. Analysis of the immunological microenvironment at the tumor site in patients with non-small cell lung cancer. Langenbecks Arch Surg 2003; 388: 406-412

7 Dong HD, Zhu GF, Tamada K, Chen LP. B7H-1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Medicine 1999; 5: 1365-1369

8 Watanabe M, Watanabe S, Harayama H, Harada Y, Kubo K, Tanabe K, Toma H, Abe R. ICOS-mediated costimulation on Th2 differentiation is achieved by the enhancement of IL-4 receptor-mediated signaling. J Immunol 2005; 174: 1989-1996

9 Dong C, Juedes AE, Tomann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 2001; 409: 97-101

10 Smith KM, Brewer JM, Webb P, Coyle AJ, Gutierrez-Ramos C, Garside P. Inducible costimulatory molecule-B7-related protein 1 interactions are important for the clonal expansion and B cell helper functions of naïve, Th1, and Th2 T cells. J Immunol 2003; 170: 2310-2315

11 Fujiiwara K, Higashi T, Nousu K, Nakatsukasa H, Kobayashi Y, Uemura M, Nakamura S, Sato S, Hanafusa T, Yamoto Y, Naito I, Shiratori Y. Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. J Gastroenterol Hepatol 2004; 19: 1121-1127

12 Ke XY, Jia LP, Wang J, Wang DB. Transfection of B7-1 cDNA empowers antigen presentation of blood malignant cells for activation of anti-tumor T cells. Chin Med J 2003; 116: 78-84

13 Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong HD, Webster WS, Krejci KG, Lobo JR, Sengupta S, Chen LP, Zincke H, Blute ML, Strome SE, Leibovich BC, Kwon ED. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. PNAS 2004; 101: 17174-17179

14 Dong HD, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen LP. Tumor-associated B7-H1 Promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Medicine 2002; 8: 793-800

15 Dong HD, Chen LP. B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med 2003; 81: 281-287

16 Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen LP, Meyermann R, Weller M, Wiendl H. Expression of the B7-related molecule B7-H1 by gloma cells: a potential mechanism of immune paralysis. Cancer Res 2003; 63: 7462-7467

17 Chu Y, Hu HM, Winter H, Wood WJ, Doran T, Lashley D, Bashey J, Schuster J, Wood J, Lowe BA, Vetto JT, Weinberg AD, Puri R, Smith JW 2nd, Urba WJ, Fox BA. Examining the immune response in sentinel lymph nodes of mice and men. Eur J Nucl Med 1999; 26(4 Suppl): S50-S53

18 Blank C, Gajewski TF, Mackemeier A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 2005; 54: 307-314

19 Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, Collins M, Honjo T, Freeman GJ, Carreno BM. PD-1-PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur J Immunol 2002; 32: 634-643

20 Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005; 65: 1089-1096

21 Strome SE, Dong HD, Tamura H, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W, Kasperbauer JL, Ballman KV, Chen L. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003; 63: 6501-6505

22 Chen LP. Co-inhibitory molecules of the B7-CD28 Family in the control of T-cell immunity. Nature Review Immunol 2004; 4: 336-347

Science Editor Wang XL and Guo SY Language Editor Elsevier HK