Mesenteric venous thrombosis as a complication of appendicitis in an adolescent
A case report and literature review
Seo Hee Yoon, MD, Mi-Jung Lee, MD, Se Yong Jung, MD, In Geol Ho, MD, Moon Kyu Kim, MD

Abstract
Rationale: Mesenteric venous thrombosis is an uncommon but potentially fatal condition that can cause bowel ischemia. It results from a systemic hypercoagulable state or abdominal infection draining into the portal venous system. Several cases regarding portomesenteric venous thrombosis as a complication of appendicitis were reported in adults, but there are far fewer reports in pediatric patients. The mortality rate of the condition is high if untreated, especially in children, reaching up to 50%.

Patient concerns: A healthy 15-year-old male with no significant past medical history presented with right lower quadrant pain, lethargy, and fever. The computed tomography scan showed a focal thrombosis at the superior mesenteric vein branch and an inflamed appendix.

Diagnoses: Mesenteric venous thrombosis complicating acute appendicitis.

Interventions: Intravenous antibiotics along with anticoagulants and laparoscopic appendectomy

Outcomes: After 1 month, a follow-up ultrasonography revealed full resolution of the thrombosis.

Lessons: Appendicitis is one of the most frequently encountered causes of pediatric surgical emergencies; therefore, physicians should be conscious of mesenteric venous thrombosis as a possible complication of acute appendicitis, irrespective of whether patients have thrombophilic conditions or not.

Abbreviations: aPTT = activated partial thromboplastin time, CT = computed tomography, DVT = deep vein thrombosis, INR = international normalized ratio, NOACs = non-vitamin K antagonist oral anticoagulants, RLQ = right lower quadrant, SMV = superior mesenteric vein.

Keywords: adolescent, appendicitis, complication, mesenteric venous thrombosis, superior mesenteric vein thrombosis

1. Introduction
Mesenteric venous thrombosis is a rare cause of bowel ischemia, resulting from abdominal infection draining into the portal venous system (in diverticulitis, appendicitis, and cholecystitis), or in systemic prothrombotic states (smoking, obesity, hypertension, immobilization, surgery, trauma, oral contraceptives, pregnancy, deficiencies of coagulation factors, cancer, etc.).\(^1\)\(^{-}\)\(^4\) The diagnosis is frequently delayed because the presenting symptoms and physical examination and laboratory features are usually subtle and non-specific.\(^5\)\(^,\)\(^6\) The overall incidence of mesenteric venous thrombosis is estimated at 1 in 1000 emergency department admissions and accounts for 6% to 9% of all acute mesenteric ischemic events.\(^1\)\(^{-}\)\(^7\)

There have been several reports regarding portomesenteric venous thrombosis as a complication of appendicitis in adults, but there are far fewer reports in children and adolescents. The mortality rate of the condition is high if untreated, especially in children, reaching up to 50%.\(^8\)\(^,\)\(^9\) Therefore, it is crucial for physicians to notice a mesenteric venous thrombosis as a possible complication of acute appendicitis, which is one of the most common surgical emergencies in pediatric patients.

Here we present a case of mesenteric venous thrombosis complicating acute appendicitis in a previously healthy adolescent and we also review the literature of the clinical features, management, and outcomes of the condition in pediatric patients. This study was approved by the Institutional Review Board of the Yonsei University Severance Hospital. Verbal informed consent was obtained from the patient for publication of the case details and the accompanying images. The verbal consent has been documented and will be made available on request.

2. Case presentation
A healthy 15-year-old male with no significant past medical history presented to the ED with a 2-day history of right lower quadrant (RLQ) pain, lethargy, and 1 day of fever. He had no
known allergies. He was not taking any prescribed medications and denied cigarette smoking and use of alcohol. There was no family history of bleeding or clotting disorders.

At presentation, his vital signs included a temperature of 37.0°C, a pulse rate 98 beats/minute, a respiratory rate 16 breaths/minute, and a blood pressure of 109/57 mm Hg. On physical exam, there was significant RLQ tenderness without rebound tenderness, rigidity, or muscle guarding. Laboratory tests showed an elevated white blood cell count of 14,130/μl (neutrophils 95.4%), an aspartate aminotransferase level of 52 IU/L, a total bilirubin level of 2.2 mg/dl and a direct bilirubin level of 0.8 mg/dl, a high C-reactive protein level of 136.8 mg/L, a prolonged prothrombin time of 17.5 seconds (international normalized ratio [INR] 1.56), and an activated partial thromboplastin time (aPTT) of 33.5 seconds. Other laboratory test results were unremarkable.

The computed tomography (CT) scan showed a focal thrombosis at the superior mesenteric vein (SMV) branch with patent distal and proximal flow without abnormal bowel changes (Fig. 1). Focal fluid distension at the appendix tip and aeration at the proximal portion of appendix was noted (Fig. 2). Otherwise the small and large bowel loops were not remarkable.

Additional coagulation tests were performed for measuring his coagulability status and then anticoagulation therapy with intravenous heparin was immediately started. The test results showed an elevated D-dimer level (963 mg/ml, normal 0–243) and low protein C activity (46%, normal 70–130). Other tests including protein S activity (64%, normal 62–154), fibrinogen functional level (382 mg/dl, normal 200–400), and antithrombin III level (84%, normal 80–120) were within their normal ranges. The patient received consultation from the Department of Hematology as prolonged INR with decreased protein C activity were thought to be a manifestation of non-overt disseminated intravascular coagulation from the intra-abdominal infection. After obtaining a blood culture, we also started intravenous antibiotics (ceftriaxone and metronidazole).

The patient’s RLQ pain did not improve over the next 2 days; therefore, he was referred to the Pediatric Surgery Department and underwent laparoscopic appendectomy. The appendix was noted as being inflamed and swollen. There was no evidence of ischemic change of the intestine or active bleeding. Microorganisms were not found in the blood culture. INR and abnormal coagulation tests (except aPTT due to heparinization) were normalized before discharge. On hospital day 9, the patient was discharged without any surgical complications. Intravenous heparin was replaced with apixaban (oral factor Xa inhibitor, 2.5 mg twice daily for 3 months) at discharge. After 1 month, a follow-up ultrasound revealed full resolution of the SMV thrombosis.

3. Discussion

We present a healthy adolescent who was diagnosed with SMV thrombosis and appendicitis with no predisposing history. We found 19 reports of portomesenteric vein thrombosis complicating acute appendicitis in children and adolescents from 1979 to 2016 with ages ranging from 5 to 16 years (Table 1).[2,10–26] The time from the initial symptom to diagnosis varied from a few days to 6 weeks. Delayed diagnosis occurred mostly due to the nonspecific presentation or symptoms which might to be attributed to the appendicitis itself. Concomitant thrombophilic conditions or a predisposing history were not found in most
Table 1

Patient demographics, symptoms, management of the 19 reported cases of portal/mesenteric venous thrombosis complicating appendicitis in children.

No	Author (year)	Age (year)	Sex	Time course and presenting symptom	Concomitant prothrombotic condition	Involved vein(s)	Causative microorganism	Treatment	Use of anticoagulant	Outcome (last known follow-up)		
1	Babcock [10] (1979)	6/M	2 weeks of epigastric and RLQ pain, fever	None	Main and intrahepatic branches of the portal vein (with liver abscess)	E. coli (blood culture)	Antibiotics and appendectomy	No	No	Thrombosis not fully resolved (at biopsy culture)		
2	Shaw [11] (1986)	13/M	1 week of LLQ and central abdominal pain, anorexia, nausea and vomiting	Factor XII deficiency	Superior mesenteric, splenic, portal	Bacteroides (blood culture)	Appendectomy	No	Yes	Resolution of thrombosis (10 days after surgery)		
3	Sade [12] (1989)	6/F	2 weeks of RUQ pain and 5 days of fever	Not stated	Portal (with cavernous transformation)	Not stated	Not stated	Not stated	No	Portal hypertension, bleeding epigastric varices (not stated)	No follow-up	
4	Sade [13] (1989)	9/M	6 weeks of RUQ pain and 6 days of fever	Not stated	Portal	Not stated	Not stated	Not stated	No	No	Resolution of thrombosis (10 days after surgery)	
5	Glüer [14] (1990)	12/M	Abdominal pain and fever (duration: not stated)	Not stated	Portal (with liver abscess)	Not stated	Not stated	Not stated	No	No	Resolution of thrombosis (10 days after surgery)	
6	Szulby [15] (1991)	15/M	40 days of RUQ pain and 37 days of fever	None	None	Porta	Not stated	Not stated	No	No	Resolution of thrombosis (10 days after surgery)	
7	van Spronsen [16] (1996)	11/M	26 days of diarrhea, vomiting, headache, later splintering, fever, and RLQ pain	None	Superior mesenteric, intrahepatic, and extrahepatic vessels of the portal vein	Yersinia enterocolitica (serology)	Antibiotics → interval appendectomy (4 months later)	No	No	Recanalization (5 weeks after surgery)		
8	El [17] (1998)	12/F	Vomiting and diarrhea (2 days after simple appendectomy)	Protein S, protein C, and antithrombin III deficiencies	Venous branches of the peripheral mesenteric arcades and vasa recta	Not stated	Not stated	Not stated	No	No	Resolution of thrombosis (10 days after surgery)	
9	Kader [18] (1998)	15/M	2.5 weeks of periumbilical pain and then right-side, cramping abdominal pain, poor appetite, fatigue, fever, vomiting, and watery diarrhea	None	Superior mesenteric, splenic, portal	Bacteroides fragilis (blood culture), Clostridium difficile (basal in stool)	Antibiotics → interval appendectomy (10 days later)	IV heparin → warfarin (for 6 months)	Yes	Resolution of thrombosis (after 3 months of therapy)		
10	Shirmazi [19] (1998)	18/M	RUQ pain, fever, and diarrhea (2 weeks after appendectomy)	None	Superior mesenteric	No growth (blood culture)	No additional surgery performed	No	No	Resolution of thrombosis (3 months after initial CT)		
11	Vananano [20] (2000)	7/F	2 weeks of abdominal pain, vomiting, diarrhea, and fever	None	Superior mesenteric, portal	Microaerophilic streptococci, Bacteroides fragilis (blood culture)	Antibiotics, anticoagulant, appendectomy	Warfarin (for 1 year)	No	Resolution of thrombosis (6 months after surgery)		
12	Chang [21] (2001)	9/M	6 weeks of vomiting, diarrhea, fever, and, later RLQ and severe back pain	None	Superior mesenteric, splenic, portal (with liver abscess)	E. coli, anaerobic gastrointestinal flora, viridans streptococci and gram-positive cocci (blood culture), C. difficile (in stool)	Antibiotics, ileocolic resection	Low molecular weight heparin → warfarin (for 3-month follow-up)	No	Asymptomatic (8 months after discharge)		
13	Rich [22] (2003)	17/M	3-week history of epigastric pain, constipation, weight loss and then fever	Not stated	Portal (with liver abscess)	Not stated	Antibiotics, anticoagulant, appendectomy	Yes (died: not stated)	No	Resolution of thrombosis (4 months after surgery)		
14	Nishimoto [23] (2004)	16/M	2 weeks with a high fever and anorexia, and abdominal pain	None	Superior mesenteric portal (with liver abscess)	Bacteroides fragilis (blood culture)	Antibiotics, anticoagulant, appendectomy with thrombectomy	IV heparin → warfarin	No	Resolution of thrombosis (at discharge)		
15	Strashbauer [24] (2006)	5/F	7 days of fever, vomiting, anorexia, 24 hours of diffuse abdominal pain	None	Superior mesenteric, left branch of the portal	Not stated	Antibiotics, anticoagulant, appendectomy (4 months later)	IV unfractionated heparin → low molecular weight heparin → warfarin (for 3 months)	No	No	Resolution of thrombosis (at discharge)	
16	Lewis [25] (2006)	13/M	High fever and jaundice (duration: not stated)	None	Superior mesenteric portal	No growth (blood culture)	Antibiotics, anticoagulant, appendectomy	Low molecular weight heparin → warfarin (for 6 months)	No	No	Resolution of thrombosis (6 months after surgery)	
17	Palet [26] (2008)	14/M	2 days of fever and right sweats, 3 days of RUQ pain that extended to upper back	None	Anterior branch of the right portal	No growth (blood culture), abscess fluid culture	Antibiotics, appendectomy	No	No	Resolution of thrombosis (2 weeks after discharge)		
18	Granero-Castro [27] (2010)	17/M	>2 weeks of fever, abdominal pain, vomiting, diarrhea and later abscess	None	Superior mesenteric and its branches (with liver abscess)	Escherichia coli, Bacteroides fragilis (blood culture), gram-positive cocci (blood culture), C. difficile (in stool)	Antibiotics, anticoagulant, appendectomy	Low molecular weight heparin (for 4 months)	Low molecular weight heparin	Low molecular weight heparin	Resolution of thrombosis (4 weeks after discharge)	
19	Lade Hirsh [28] (2016)	13/M	Abdominal pain, diarrhea, vomiting and back pains (duration: not stated)	None	Superior mesenteric, portal, ileocolic, other SMV tributaries	No growth (blood culture)	Antibiotics, anticoagulant, appendectomy (3 months later)	Low molecular weight heparin	Low molecular weight heparin	Resolution of thrombosis (4 weeks after discharge)		

Note: All patients received antibiotics. Anticoagulant therapy was used in the majority of cases, but the duration and type of anticoagulation varied. The outcomes included resolution of thrombosis, recanalization, or long-term sequelae. CT = computed tomography, E. coli = Escherichia coli, IV = intravenous, LLQ = left lower quadrant, RLQ = right lower quadrant, RUQ = right upper quadrant, SMV = superior mesenteric vein.
Bacteroides fragilis was the most common isolated organism (4/8, 50.0%). Physicians should consider these pathogens when initiating empirical antibiotic therapy.

A filling defect of the vessel was found in about 90% of cases in contrast-enhanced CT scans. The presence of locules of air within the SMV or portal venous system is another CT finding suggestive of thrombosis. CT is also helpful for identifying the thrombophilic condition. In our case, the patient’s laboratory examination revealed a mild elevation of aspartate aminotransferase and bilirubin with coagulopathy, but those abnormalities were normalized before discharge (aPTT was normalized after heparin discontinuation).

Blood and abdominal fluid cultures can be helpful in identifying the causative microorganisms in mesenteric vein thrombosis. In adult cases, Escherichia coli, Klebsiella pneumoniae, Bacteroides fragilis, Proteus mirabilis are commonly detected causative microorganisms. In pediatric cases, the causative microorganisms found in 42.1% (8/19) of cases included Bacteroides fragilis, Escherichia coli, Yersinia enterocolitica, and Clostridium difficile. Physicians should consider these pathogens when initiating empirical antibiotic therapy.

Mesenteric venous thrombosis can lead to bowel ischemia or infarction unless treated. Therefore, if mesenteric venous thrombosis is diagnosed, adequate treatment should be promptly initiated including surgical removal of the infection source, broad-spectrum antibiotics, and anticoagulation therapy. In our case, we immediately started heparinization and systemic antibiotics, and we delayed surgical treatment because some reported cases successfully recovered with interval appendectomy. However, the abdominal pain was not relieved; therefore, a laparoscopic appendectomy was performed.

The role and duration of anticoagulation therapy in patients with mesenteric venous thrombosis is still controversial but anticoagulation therapy is reported to lower the recurrence of thrombosis and the mortality rate. The recommended total duration of anticoagulant therapy is at least 3 to 6 months, although a longer duration is suggested if a thrombophilic condition is identified. In our case, the patient received intravenous unfractionated heparin during the hospital stay and then apixaban for 3 months after discharge. He was successfully treated without other complications or a recurrence of thrombosis.

Apixaban, a factor Xa inhibitor, is 1 of the non-vitamin K antagonist oral anticoagulants (NOACs), and is a safer alternative for the prevention of venous thromboembolism than vitamin K antagonists (e.g., warfarin) in adults. NOACs do not need specific monitoring and have fewer complications (e.g., a lower incidence of major bleeding) than warfarin.

Moreover, apixaban has been reported to be effective in both the treatment and prevention of deep vein thrombosis (DVT) and for the postoperative prevention of DVT. Although the use of NOACs in pediatric patients has limited data, recent studies found similar concentration-related effects between adults and children. Furthermore, clinical outcomes in adult studies and pharmacological properties suggest that apixaban may have particular advantages for children. There are currently several ongoing studies. In the present case, we prescribed apixaban because the patient was a previously healthy adolescent and due to the risk of postoperative bleeding, and to improve anticoagulant therapy adherence. He was successfully treated without other complications or a recurrence of thrombosis.

4. Conclusion

Mesenteric venous thrombosis is a rare but possible complication of acute appendicitis in previously healthy pediatric patients. Its non-specific clinical characteristics can make an early diagnosis difficult. Mesenteric venous thrombosis should be considered when prolonged unexplained abdominal pain, fever, or elevated liver enzyme levels are concomitant in a patient with appendicitis (whether before or after surgery). Appendicitis is the most common cause of pediatric surgical emergencies therefore, clinical awareness and concern for mesenteric venous thrombosis is warranted for physicians.

Author contributions

Conceptualization: Mi-Jung Lee.
Data curation: Seo Yong Jung, In Geol Ho.
Investigation: Mi-Jung Lee.
Supervision: Moon Kyu Kim.
Writing – original draft: Seo Hee Yoon.
Writing – review & editing: Moon Kyu Kim.

References

[1] Singal AK, Kamath PS, Tefferi A. Mesenteric venous thrombosis. Mayo Clin Proc 2013;88:285–94.
[2] Lole Harris BH, Walsh JL, Nazir SA. Super-mesenteric-vein-exceptional thrombosis, the clinical sequelae can be quite atrocious. Int J Adolesc Med Health 2016;28:445–9.
[3] Hudd BK, Lents SR. Prothrombotic states that predispose to stroke. Curr Treat Options Neurol 2002;4:417–25.
[4] Wong K, Weisman DS, Patrick K-A. Pylephlebitis: a rare complication of an intra-abdominal infection. J Community Hosp Intern Med Perspect 2013;3:20732.
[5] Singh P, Yadav N, Visvalingam V, et al. Pylephlebitis—diagnosis and management. Am J Gastroenterol 2001;96:1312–3.
[6] Takehara K, Miyano S, Machida M, et al. Superior mesenteric vein thrombosis as a complication of acute appendicitis: report of a case. Clin J Gastroenterol 2013;6:269–73.
[7] Harnik IG, Brandt LJ. Mesenteric venous thrombosis. Vasc Med 2015;10:407–18.
[8] Plenmonrs RM, Dooley DP, Longfield RN. Septic thrombophlebitis of the portal vein (pylephlebitis): diagnosis and management in the modern era. Clin Infect Dis 1995;21:1114–20.
[9] Baril N, Wren S, Radin R, et al. The role of anticoagulation in pylephlebitis. Am J Surg 1996;172:449–52. discussion 452–443.
[10] Babcock DS. Ultrasound diagnosis of portal vein thrombosis as a complication of appendicitis. AJR Am J Roentgenol 1979;133:317–9.
[11] Shaw PJ, Saunders AJ, Drake DP. Case report: ultrasonographic demonstration of portal vein thrombosis in the acute abdomen. Clin Radiol 1986;37:101–2.
[12] Slovis TL, Haller JO, Cohen HL, et al. Complicated appendiceal inflammatory disease in children: pyelophlebitis and liver abscess. Radiology 1989;171:823–5.
[13] Giuliano CT, Zerykier A, Haller JO, et al. Radiological case of the month. Pyelophlebitis secondary to unsuspected appendiceal rupture. Am J Dis Child 1989;143:1099–100.
[14] Case records of the Massachusetts General Hospital, Weekly clinicopathological exercises. Case 22-1991. A 15-year-old boy with fever of unknown origin, severe anemia, and portal-vein thrombosis. N Engl J Med 1991;324:1573–84.
[15] van Spronsen FJ, de Langen ZJ, van Elburg RM, et al. Appendicitis in an eleven-year-old boy complicated by thrombosis of the portal and superior mesenteric veins. Pediatr Infect Dis J 1996;15:910–2.
[16] Eire PF, Vallejo D, Sastre JL, et al. Mesenteric venous thrombosis after appendicectomy in a child: clinical case and review of the literature. J Pediatr Surg 1998;33:1820–1.
[17] Kader HA, Baldassano RN, Harty MP, et al. Ruptured retrocecal appendicitis in an adolescent presenting as portal-mesenteric thrombosis and pyelophlebitis. J Pediatr Gastroenterol Nutr 1998;27:584–8.
[18] Schlumitz GR, Benko A, Billard JS, et al. Computed tomography of superior mesenteric vein thrombosis following appendectomy. Abdom Imaging 1998;23:563–7.
[19] Vanamo K, Kiekkara O. Pyelophlebitis after appendicitis in a child. J Pediatr Surg 2001;36:1374–6.
[20] Chang TN, Tang L, Keller K, et al. Pyelophlebitis, portal-mesenteric thrombosis, and multiple liver abscesses owing to perforated appendicitis. J Pediatr Surg 2001;36:E19.
[21] Pittcher R, McKenzie C. Simultaneous ultrasound identification of acute appendicitis, septic thrombophlebitis of the portal vein and pyogenic liver abscess. S Afr Med J 2003;93:426–8.
[22] Nishihara H, Eoze E, Ura H, et al. Septic thrombophlebitis of the portal and superior mesenteric veins as a complication of appendicitis: report of a case. Surg Today 2004;34:173–6.
[23] Stutenberg KB, Pichl MD, Monahan PE, et al. Interval laparoscopic appendectomy for appendicitis complicated by pyelophlebitis. JLS 2006;10:108–13.
[24] Levin C, Koren A, Miron D, et al. Pyelophlebitis due to perforated appendicitis in a teenager. Eur J Pediatr 2009;168:633–5.
[25] Patel AJ, Ong PV, Huggins JP, et al. Liver abscesses, pyelophlebitis, and appendicitis in an adolescent male. Dig Dis Sci 2009;54:2546–8.
[26] Granero Castro P, Raposo Rodriguez L, Moreno Giron M, et al. Pyelophlebitis as a complication of acute appendicitis. Rev Esp Enferm Dig 2010;102:217–8.
[27] Chang PK, Hsu KY, Yu JC, et al. Acute appendicitis with superior mesenteric vein septic thrombophlebitis. J Chin Med Assoc 2012;75:187–9.
[28] Boiko JR, Srinath AI, Cooper JD. Portomesenteric Venous Thrombosis in Previously Healthy Adolescents Presenting With Subacute Abdominal Pain. Clin Pediatr (Phila) 2016;55:975–8.
[29] Chang YS, Min SY, Jou SH, et al. Septic thrombophlebitis of the portal-mesenteric veins as a complication of acute appendicitis. World J Gastroenterol 2008;14:4580–2.
[30] Lim HE, Cheong HJ, Woo HJ, et al. Pyelophlebitis associated with appendicitis. Korean J Intern Med 1999;14:73–6.
[31] Hassan HA, Kaufman JP. Mesenteric venous thrombosis. South Med J 1999;92:558–62.
[32] Kiyakos S, Sotiropoulos GC, Vernadakis S. Septic mesenteric venous thrombophlebitis: a rare complication of acute appendicitis. Case Rep Med 2011;2011:58563.
[33] Balhazar EJ, Gollapudi P. Septic thrombophlebitis of the mesenteric and portal veins: CT imaging. J Comput Assist Tomogr 2000;24:755–60.
[34] Sacerdotti D, Servanni G, Gaiasi S, et al. Thrombosis of the portal venous system. J Ultrasound 2007;10:12–21.
[35] Lee KW, Chyi YL. Superior mesenteric vein thrombosis accompanied with severe appendicitis. Korean J Hepatobilipancreat Surg 2014;18:101–3.
[36] Condat B, Pessione F, Helene Denninger M, et al. Recent portal or mesenteric venous thrombosis: increased recognition and frequent recanalization on anticoagulant therapy. Hepatology 2000;32:466–70.
[37] Brandt LJ, Boley SJ. AGA technical review on intestinal ischemia. American Gastrointestinal Association. Gastroenterology 2000;118:934–68.
[38] Malec L, Young G. Treatment of venous thromboembolism in pediatric patients. Front Pediatr 2017;5.
[39] Kumar R, Kerlin BA. Thrombosis of the abdominal veins in childhood. Front Pediatr 2015;3:687–77.
[40] Mekaj YH, Mekaj AY, Ducib SB, et al. New oral anticoagulants: their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events. Ther Clin Risk Manag 2015;11:967–77.
[41] Mandernach MW, Breyth RJ, Rajaseskhar A. Apixaban for the prophylaxis and treatment of deep vein thrombosis and pulmonary embolism: an evidence-based review. Ther Clin Risk Manag 2015;11:1273–92.
[42] Male G, Thom K, O’Brien SH. Direct oral anticoagulants: What will be their role in children? Thromb Res 2019;173:178–85.
[43] Pfeifer. Apixaban for the acute treatment of venous thromboembolism in children. ClinicalTrials.gov website. https://clinicaltrials.gov/ct2/show/NCT02464969. Published June 8, 2015. Accessed January 4, 2019.
[44] Squibb B-M. Study to evaluate a single dose of apixaban in pediatric subjects at risk for a thrombotic disorder. ClinicalTrials.gov website. https://clinicaltrials.gov/ct2/show/NCT01707394. Published October 16, 2012. Accessed January 4, 2019.
[45] Squibb B-M. A study of the safety and effectiveness of apixaban in preventing blood clots in children with leukemia who have a central venous catheter and are treated with asparaginase. ClinicalTrials.gov website. https://clinicaltrials.gov/ct2/show/NCT02369653. Published February 24, 2015. Accessed January 4, 2019.
[46] Glass CG, Rangel SJ. Overview and diagnosis of acute appendicitis in children. Semin Pediatr Surg 2016;25:198–203.