A Note on the Asymptotic Expansion of Matrix Coefficients over p-adic Fields

Zahi Hazan

Abstract

In this note, presented as a “community service”, followed by the PhD research of the author, we draw the relation between Casselman’s theorem [Cas93] regarding the asymptotic behavior of matrix coefficients of reductive algebraic groups over p-adic fields and its expression as a finite sum of finite functions. In addition, we write the expansion explicitly for general linear groups.

1 Introduction

Let k be a non-Archimedean locally compact field with \mathcal{O}, its ring of integers, and \mathcal{P}, the maximal ideal in \mathcal{O}. Denote a uniformizer of \mathcal{P} by ϖ, and the cardinality of the residue field by q. Let G be the group of k-rational points of a k-split reductive algebraic group. Let (π, V) be a (complex) smooth, admissible, irreducible representation of G. For a parabolic subgroup P of G with Levi decomposition $P = MN$, we denote by $V(N)$ the subspace of V generated by $\{ \pi(n) v - v | n \in N, v \in V \}$. We also denote $V_N = V/V(N)$. This is the space of a smooth representation (π_N, V_N) of M, called the Jacquet module of (π, V) along N.

Let $P_{\phi} = M_{\phi} N_{\phi}$ be a minimal parabolic subgroup. Let $T_{\phi} = Z(M_{\phi})$ be the center of M_{ϕ}. This is the maximal split torus of G. Let Σ be the set of all roots corresponding to the pair (G, T_{ϕ}), i.e., the non-trivial eigencharacters of the adjoint action of T_{ϕ} on the lie algebra \mathfrak{g} of G. Let Σ^+ be the subset of positive roots determined by P_{ϕ}, so that $n = \bigoplus_{\alpha \in \Sigma^+} g_{\alpha}$, where g_{α} is the eigenspace of α, and n is the lie algebra of N_{ϕ}. Let Δ be the basis of Σ^+, so that every root in Σ^+ is a sum of roots in Δ.

For each $\Theta \subseteq \Delta$ and $0 < \varepsilon \leq 1$, we define

$$\Theta T_{\phi}^{-} (\varepsilon) = \left\{ a \in T_{\phi} : |\alpha(a)| \leq \varepsilon, \forall \alpha \in \Delta \setminus \Theta \right\}$$
and $T_{\Theta}^-(\varepsilon) = \Theta T_{\phi}^- (\varepsilon) \cap T_{\Theta}$. These are subsets of

$$T_{\phi}^- = \{ a \in T_{\phi} \mid |\alpha(a)| \leq 1, \forall \alpha \in \Delta \}. $$

For any $0 < \varepsilon \leq 1$ one sees that T_{ϕ}^- is the disjoint union of the $\Theta T_{\phi}^- (\varepsilon)$ as Θ ranges over all subsets of Δ. Moreover, by [BP12, Proof of Lemma 2.3.2] we have the following decomposition of T_{ϕ}^-.

Lemma A. Let $v \in V$. Let K_v be an open subgroup of

$$T_1 = \{ a \in T_{\phi} \| \alpha(a) \| = 1, \forall \alpha \in \Delta \},$$

that stabilizes v. For all $0 < \varepsilon < 1$,

$$\Theta T_{\phi}^- (\varepsilon) = \bigcup_{\gamma \in \Gamma_{\Theta}^-} T_{\Theta}^- (\varepsilon) \gamma K_v, \tag{1}$$

where $\Gamma_{\Theta}^- \subseteq T_{\phi}^-$ is a finite set. Hence,

$$T_{\phi}^- = \bigcup_{\Theta \subseteq \Delta} \bigcup_{\gamma \in \Gamma_{\Theta}^-} T_{\Theta}^- (\varepsilon) \gamma K_v.$$

Let N_{Θ}^- be the unipotent radical opposite to N_{Θ}. We define a canonical non-degenerate pairing of $V_{N_{\Theta}}$ with $\tilde{V}_{N_{\Theta}^-}$ according to the formula

$$\langle u_{\Theta}, \tilde{u}_{\Theta} \rangle_{N_{\Theta}} = \langle v, \tilde{v} \rangle,$$

where $v \in V, \tilde{v} \in \tilde{V}$ are any two canonical lifts of $u_{\Theta}, \tilde{u}_{\Theta}$. We have the following theorem from [Cas93, Corollary 4.3.4].

Theorem A (Casselman). Let $v \in V$ and $\tilde{v} \in \tilde{V}$ be given. For $\Theta \subseteq \Delta$, let $u_{\Theta}, \tilde{u}_{\Theta}$ be their images in $V_{N_{\Theta}}$, $\tilde{V}_{N_{\Theta}^-}$. There exists $\varepsilon > 0$ such that for any $\Theta \subseteq \Delta$ and $a \in \Theta T_{\phi}^- (\varepsilon)$ one has

$$\langle \pi(a)v, \tilde{v} \rangle = \langle \pi_{N_{\Theta}}(a)u_{\Theta}, \tilde{u}_{\Theta} \rangle_{N_{\Theta}}.$$

For a subgroup H of G, we say that a function is an H-finite function (or simply finite) if the space spanned by its right H-translations is finite dimensional. By Jacquet and Langlands [JL06, Lemma 8.1] we have an explicit basis for all H-finite function when H is a locally compact abelian group.

Theorem B (Jacquet and Langlands). Let H be a locally compact abelian group of the form

$$H = K \times \mathbb{Z}^r \times \mathbb{R}^n$$

where K is a compact group. For $1 \leq i \leq r + n$ let $\xi_i : (h_0, x_1, \ldots, x_{r+n}) \to x_i$ be the projection map. Then, for any sequence of non-negative integers p_1, \ldots, p_{r+n} and any quasi-character χ of H, the function $\chi \prod_{i=1}^{r+n} \xi_i^{p_i}$ is continuous and finite. These functions form a basis of the space of continuous finite functions on H.

Our main goal is to show how Theorem A and Theorem B give an asymptotic expansion for matrix coefficients in terms of a finite linear combination of T_{Θ}-finite functions. In detail,
Theorem 1. Let \(v \in V \) and \(\tilde{v} \in \tilde{V} \). There exists \(\varepsilon > 0 \) such that for any \(\Theta \subseteq \Delta \) and \(a \in gT_\phi^- (\varepsilon) \) there exist finite sets of vectors, that depend on \(\{ \pi, v, \tilde{v} \}, p' = (p'_1, \ldots, p'_r) \in \mathbb{R}^r, \ p = (p_1, \ldots, p_r) \in \mathbb{Z}_{\geq 0}^r, \) and \(\chi = (\chi_1, \ldots, \chi_r) \) where for all \(1 \leq i \leq r, \chi_i : k^\times \to \mathbb{C}^\times \) is a unitary character, so that

\[
\langle \pi(a) v, \tilde{v} \rangle = \sum_{p', p, \chi} \alpha_{p', p, \chi} \prod_{i=1}^{r} \chi_i(b_i) |b_i|^{p'_i} \log_{|q_i|} |b_i|,
\]

where \(r \) is such that \(T_\Theta^- (\varepsilon) \cong (k^\times)^r \) by the map \(b \mapsto (b_1, \ldots, b_r) \). There exist finite sets of vectors, that depend on \(\{ \pi, u_\Theta, \tilde{u}_\Theta \}, p' = (p'_1, \ldots, p'_r) \in \mathbb{R}^r, \ p = (p_1, \ldots, p_r) \in \mathbb{Z}_{\geq 0}^r, \) and \(\chi = (\chi_1, \ldots, \chi_r) \), where for all \(1 \leq i \leq r, \chi_i : k^\times \to \mathbb{C}^\times \) is a unitary character, such that for all \(b \in T_\Theta \), one has

\[
\langle \pi_{N_\Theta} (b) u_\Theta, \tilde{u}_\Theta \rangle_{N_\Theta} = \sum_{p', p, \chi} \alpha_{p', p, \chi} \prod_{i=1}^{r} \chi_i(b_i) |b_i|^{p'_i} \log_{|q_i|} |b_i|,
\]

where \(\alpha_{p', p, \chi} \in \mathbb{C} \) such that \(\alpha_{p', p, \chi} = 0 \) for all but finitely many \(p_i, p, \chi \).

Section 2 is devoted to the proof of the following proposition.

Proposition 1. Let \(\Theta \subseteq \Delta, u_\Theta \in V_{N_\Theta} \) and \(\tilde{u}_\Theta \in \tilde{V}_{N_\Theta} \). Let \(r \) be such that \(T_\Theta \cong (k^\times)^r \) by the map \(b \mapsto (b_1, \ldots, b_r) \). There exist finite sets of vectors, that depend on \(\{ \pi, u_\Theta, \tilde{u}_\Theta \}, p' = (p'_1, \ldots, p'_r) \in \mathbb{R}^r, \ p = (p_1, \ldots, p_r) \in \mathbb{Z}_{\geq 0}^r, \) and \(\chi = (\chi_1, \ldots, \chi_r) \), where for all \(1 \leq i \leq r, \chi_i : k^\times \to \mathbb{C}^\times \) is a unitary character, so that for all \(b \in T_\Theta \), one has

\[
\langle \pi_{N_\Theta} (b) u_\Theta, \tilde{u}_\Theta \rangle_{N_\Theta} = \sum_{p', p, \chi} \alpha_{p', p, \chi} \prod_{i=1}^{r} \chi_i(b_i) |b_i|^{p'_i} \log_{|q_i|} |b_i|,
\]

where \(\alpha_{p', p, \chi} \in \mathbb{C} \) such that \(\alpha_{p', p, \chi} = 0 \) for all but finitely many \(p_i, p, \chi \).

The proof of Theorem 1 is followed immediately from Proposition 1 and Lemma A. Indeed,

Proof of Theorem 1. Let \(\Theta \subseteq \Delta \) and \(a \in gT_\phi^- (\varepsilon) \). Using the decomposition (1), for any \(0 < \varepsilon \leq 1 \), there exist \(b \in T_\Theta^- (\varepsilon) \) (corresponding to \(a \) as in Lemma A), \(\gamma \in T_\phi^- \), and \(k_1 \in K_\varepsilon \), such that we can write \(a = b \gamma k_1 \). Hence,

\[
\langle \pi(a) v, \tilde{v} \rangle = \langle \pi(b \gamma k_1) v, \tilde{v} \rangle = \langle \pi(\gamma) v, \tilde{v} \rangle.
\]

Since \(b \in T_\Theta^- (\varepsilon) \) and \(\gamma \in T_\phi^- \), we have \(b \gamma \in T_\Theta^- (\varepsilon) \). Thus, we can apply Theorem A, i.e. there exists \(\varepsilon > 0 \) such that

\[
\langle \pi(\gamma) v, \tilde{v} \rangle = \langle \pi_{N_\Theta} (\gamma) u_\Theta, \tilde{u}_\Theta \rangle_{N_\Theta}.
\]

We write

\[
\langle \pi_{N_\Theta} (b \gamma) u_\Theta, \tilde{u}_\Theta \rangle_{N_\Theta} = \langle \pi_{N_\Theta} (b) (\pi_{N_\Theta} (\gamma) u_\Theta), \tilde{u}_\Theta \rangle_{N_\Theta}.
\]

We have \(b \in T_\Theta^- (\varepsilon) \subseteq T_\Theta \), so the result is obtained by applying Proposition 1, where \(u_\Theta \) is replaced with \(\pi_{N_\Theta} (\gamma) u_\Theta \). \(\square \)

We note that Lemma A does not give an explicit expression of \(b \in T_\Theta^- (\varepsilon) \) in terms of its correspondent \(a \in gT_\phi^- (\varepsilon) \). In Section 3 we give a constructed proof of Lemma A for the case \(G = \text{GL}_n \) for any positive integer \(n \). This allows us to write an explicit asymptotic expansion of the matrix coefficient at \(a \) in terms of its coordinates.
2 Proof of Proposition 1

First, we use Theorem B to write an explicit basis for all finite function in our case,

Corollary 1. Let \(\Theta \subseteq \Delta \) and \(f : T_\Theta \to \mathbb{R} \) a continuous finite function. Let \(r \) be such that \(T_\Theta \cong (k^\times)^r \) by the map \(b \mapsto (b_1, \ldots, b_r) \). Then, for all \(b \in T_\Theta \), \(f(b) \) is spanned by

\[
\prod_{i=1}^r \chi_i(b_i) |b_i|^{p_i' \log q |b_i|},
\]

where \((p_1', \ldots, p_r') \in \mathbb{R}^r, (p_1, \ldots, p_r) \in \mathbb{Z}_{\geq 0}^r \), and for all \(1 \leq i \leq r \), \(\chi_i : k^\times \to \mathbb{C}^\times \) is a unitary character.

Proof. We have \(k^\times \cong \mathcal{O}^\times \times \mathbb{Z} \) by the map \(x \mapsto \left(\frac{x}{|x|}, \log q |x| \right) \). A character of \(k^\times \) is of the form \(\chi'(|\cdot|) : |\cdot| \), where \(\chi' \) is a unitary character and \(0 \neq s \in \mathbb{C} \). We can assume \(s \in \mathbb{R} \) by attaching the imaginary part to \(\chi' \). Let \((b_1, \ldots, b_r) \in (k^\times)^r \) be the image of \(b \in T_\Theta \). Let \(\chi \) be a quasi character of \((\mathcal{O}^\times)^r \). Then \(\chi(b) = \prod_{i=1}^r \chi_i(b_i)^{p_i'} |b_i|^{p_i} \), where \(\chi_i \) is unitary and \(p_i' \in \mathbb{R} \) for all \(1 \leq i \leq r \). Applying Theorem B for \(H = (k^\times)^r \) implies that the space of continuous finite function on \(T_\Theta \) is spanned by \(\chi \prod_{i=1}^r \xi_i^{p_i} \), where \(\chi \) is a quasi character of \((\mathcal{O}^\times)^r \) and for all \(1 \leq i \leq r \), \(\xi_i \) is the projection map to each coordinate of \(\mathbb{Z}^r \), i.e. \(\xi_i(b) = \log q |b_i| \). Therefore, this space is spanned by \(\prod_{i=1}^r \chi_i(b_i) |b_i|^{p_i' \log q |b_i|^{p_i}} \). □

In order to deduce Proposition 1 from Theorem A and Corollary 1, it is left to show that for each \(\Theta \subseteq \Delta \), the function \(x \mapsto \langle \pi_{N_\Theta}(x) u_\Theta, \tilde{u}_\Theta \rangle_{N_\Theta} \) is a \(T_\Theta \)-finite function. Namely,

Proposition 2. Let \(u_\Theta \in V_{N_\Theta} \), \(\tilde{u}_\Theta \in \tilde{V}_{N_\Theta} \). There exist finite sets \(\{b_i\}_{1 \leq i \leq \ell} \subseteq T_\Theta \) and \(\{c_i(b)\}_{1 \leq i \leq \ell} \subseteq \mathbb{C} \), such that for all \(b \in T_\Theta \) and \(m \in M_\Theta \) we have

\[
\langle \pi_{N_\Theta}(mb) u_\Theta, \tilde{u}_\Theta \rangle_{N_\Theta} = \sum_{i=1}^\ell c_i(b) \langle \pi_{N_\Theta}(mb_i) u_\Theta, \tilde{u}_\Theta \rangle_{N_\Theta}.
\]

Before proving Proposition 2 we need the following lemma.

Lemma 1. Let \(R \) be a group with center \(Z(R) \cong K \times \mathbb{Z}^r \), where \(K \) is a compact group. Denote the standard basis of \(\mathbb{Z}^r \) by \(\{e_1, \ldots, e_r\} \). Let \((L, \sigma) \) be a (complex) smooth \(R \)-module of finite length.

(i.) For all finite dimensional spaces \(W \subseteq L \) and all \(1 \leq j \leq r \) there exists a finite dimensional \(Z(R) \)-invariant space \(W_j \subseteq L \), such that

\[
\sigma(e_j) W \subseteq W + W_j.
\]

(ii.) For all finite dimensional spaces \(W \subseteq L \), there exists a finite dimensional \(Z(R) \)-invariant space \(W' \subseteq L \), such that

\[
\sigma(Z^r) W \subseteq W + W'.
\]

(iii.) Let \(v \in L \). The \(Z(R) \)-module generated by \(v \) is finite dimensional.
Proof. We begin by proving part (i.). It is sufficient to prove this part for a one dimensional space \(W \) as the general case follows directly. Hence, we assume that \(W \) is spanned as a \(R \)-module by \(v \in L \). We prove this part by induction on the length of \(L \). First, assume the length is 1. i.e. \(L \) is irreducible. Then, by Schur’s lemma, \(Z(R) \) acts on \(L \) as a scalar. Thus, the \(Z(R) \)-module generated by \(v \) is of dimension 1 and all the parts of the lemma follow. Now, assume that the assertion is true for modules of length \(d - 1 \). Let \(L \) be a \(R \)-module of length \(d \). That is, there exists a sequence of \(R \)-modules

\[
0 = L_0 \subseteq L_1 \subseteq L_2 \subseteq \ldots \subseteq L_d = L
\]

such that \(L_{i+1}/L_i \) is irreducible for all \(0 \leq i < d \).

By the fact that \(L_d/L_{d-1} \) is irreducible, and by Schur’s lemma, for all \(1 \leq j \leq r \) there exists \(\alpha_j \in \mathbb{C} \), such that

\[
\sigma(e_j)(v + L_{d-1}) = \alpha_jv + L_{d-1}.
\]

In particular,

\[
\sigma(e_j)v = \alpha_jv + h_j,
\]

where \(h_j \in L_{d-1} \).

Let \(w = \sum_{i=1}^{\ell} c_i \sigma(g_i)v \in W \), where \(c_i \in \mathbb{C} \) and \(g_i \in R \) for all \(1 \leq i \leq \ell \). Then, by eq. (4)

\[
\sigma(e_j)w = \sigma(e_j)\left(\sum_{i=1}^{\ell} c_i \sigma(g_i)v \right) = \sum_{i=1}^{\ell} c_i \sigma(g_i)\sigma(e_j)v = \sum_{i=1}^{\ell} c_i \sigma(g_i)(\alpha_jv + h_j).
\]

Denote by \(U_j \) the \(R \)-module spanned by \(h_j \). In this notation, eq. (5) gives

\[
\sigma(e_j)w \in \mathbb{C}w + U_j.
\]

We have \(U_j \subseteq L_{d-1} \). Thus, by the induction hypothesis, there exists a finite dimensional \(Z(R) \)-invariant space \(W'_j \subseteq L_{d-1} \), such that

\[
\sigma(e_j)U_j \subseteq U_j + W'_j.
\]

We take \(W_j = U_j + W'_j \). Thus, \(U_j \subseteq W_j \), so eq. (6) gives \(\sigma(e_j)w \in \mathbb{C}w + W_j \) and by eq. (7) gives

\[
\sigma(e_j)W_j = \sigma(e_j)\left(U_j + W'_j \right) \subseteq W_j + W'_j = W_j.
\]

Next, we prove part (ii.). Let \(1 \leq j \leq r \). First,

\[
\sigma(0e_j)W = W.
\]

Let \(0 \neq n \in \mathbb{Z} \). By eq. (3) we have

\[
\sigma(ne_j)W \subseteq \sigma((n - \text{sgn}(n))e_j)(W + W_j)
\]

\[
= \sigma((n - \text{sgn}(n))e_j)W + W_j
\]

\[
= \ldots = \sigma(e_j)(W + W_j) \subseteq \sigma(e_j)W + W_j,
\]

where eq. (9) is due to the \(Z(R) \)-invariant property of \(W_j \), and eq. (10) is followed by repeating eqs. (8) and (9) \(n \) times. Thus, by taking \(W' = \sum_{j=1}^{r} W_j \) the statement readily follows.
In order to deduce part (iii.) we first note that \(\sigma \) is smooth, so for all \(v \in L \), the space \(\text{sp}\{\sigma(x)v \mid x \in K\} \) is of finite dimension. Hence, for a finite dimensional space \(W \subseteq L \), the space

\[
\sigma(K)W = \text{sp}\{\sigma(x)w \mid x \in K, w \in W\}
\]
is also of finite dimension. It follows that \(\sigma(K)Cv \) is finite dimensional. Therefore, by part 2 there exists \(W' \subseteq L \) a finite dimensional \(Z(R) \)-invariant space such that

\[
\text{sp}_C\{\sigma(z)v \mid z \in Z(R)\} = \sigma(Z') (\sigma(K)Cv) \subseteq \sigma(K)Cv + W'.
\]

\(\square \)

We are now ready to prove Proposition 2.

Proof of Proposition 2. The Jacquet module is a smooth \(G \)-module of finite length [Cas93, Theorems 3.3.1 and 6.3.10]. Applying part (iii.) of Lemma 1 for \(R = M_\Theta \) (with \(Z(R) = T_\Theta \)), \(L = V_{N_\Theta}, \sigma = \pi_{N_\Theta}, \) and \(v = u_\Theta \in V_{N_\Theta} \), gives that \(\{\pi_{N_\Theta}(b) u_\Theta \mid b \in T_\Theta\} \) is of finite dimension. Let \(\{\pi_{N_\Theta}(b_1) u_\Theta, \ldots, \pi_{N_\Theta}(b_l) u_\Theta\} \) be its basis. Let \(b \in T_\Theta \) and \(m \in M_\Theta \). Then,

\[
\pi_{N_\Theta}(b) u_\Theta = \sum_{i=1}^{l} c_i(b) \pi_{N_\Theta}(b_i) u_\Theta.
\]

Therefore,

\[
\langle \pi_{N_\Theta}(mb) u_\Theta, \bar{u}_\Theta \rangle_{N_\Theta} = \sum_{i=1}^{l} c_i(b) \langle \pi_{N_\Theta}(mb_i) u_\Theta, \bar{u}_\Theta \rangle_{N_\Theta}.
\]

\(\square \)

3 General linear groups

Let \(n \) be a positive integer. We provide a proof of Lemma A for the \(\text{GL}_n \) case. This will allow us to express \(b \in T_{\Theta}^{-}(\varepsilon) \), corresponding to \(a \in T_{\Phi}^{-}(\varepsilon) \) in the decomposition (1), in terms of the coordinates of \(a \).

Proof of Lemma A (for \(\text{GL}_n \)). Let \(0 < \varepsilon < 1, \Theta \subseteq \Delta, \) and \(a \in \Theta T_{\Phi}^{-}(\varepsilon) \). There exists a positive integer \(\ell \) such that \(T_{\Phi}^{-} \cong (k^\times)^\ell \). Under this isomorphism we identify \(a \) with \((a_1, \ldots, a_\ell) \). We denote \(\Delta = \{\alpha_1, \ldots, \alpha_{\ell-1}\} \), where for all \(1 \leq i \leq \ell - 1, \alpha_i(a) = \frac{a_i}{a_{i+1}}. \)

Denote \(I_\Theta = \{i_1, \ldots, i_m\} \subseteq \{1, \ldots, \ell - 1\}, \) such that \(\Theta = \{\alpha_{i_1}, \ldots, \alpha_{i_m}\} \). We write \(\{1, \ldots, \ell - 1\} \backslash I_\Theta = \{i_{m+1}, \ldots, i_{\ell - 1}\} \). Thus,

\[
\begin{cases}
\varepsilon < \frac{a_{i_j}}{a_{i_{j+1}}} \leq 1, & \forall 1 \leq j \leq m, \\
\left|\frac{a_{i_j}}{a_{i_{j+1}}}\right| \leq \varepsilon, & \forall m + 1 \leq j \leq \ell - 1.
\end{cases}
\] (11)

We take \(a' \) identified with \((a'_1, \ldots, a'_\ell) \) such that for all \(1 \leq i \leq \ell, \) the following change of variables is satisfied \(a_i = \prod_{j=1}^{i} a'_j \). We have \(\alpha_i(a) = a'_i. \) Therefore, (11) gives

\[
\begin{cases}
\varepsilon < |a'_{i_j}| \leq 1, & \forall 1 \leq j \leq m, \\
|a'_{i_j}| \leq \varepsilon, & \forall m + 1 \leq j \leq \ell - 1.
\end{cases}
\] (12)
We take \(b \) identified with \((b_1, \ldots, b_\ell)\) as follows. For \(1 \leq i \leq \ell \),

\[
b_i = a'_\ell \prod_{\substack{i \leq j < \ell \\
m < j < \ell}} a'_{ij}.
\]

Note that \(b_\ell = a'_\ell = a_\ell \). Let \(1 \leq j' \leq m \). Then,

\[
\alpha_{i,j'}(b) = \frac{b_{i,j'}}{b_{i,j'+1}} = \frac{a'_\ell \prod_{\substack{i \leq j < \ell \\
m < j < \ell}} a'_{ij}}{a'_\ell \prod_{\substack{i \leq j < \ell \\
m < j < \ell}} a'_{ij+1}} = 1,
\]

i.e. \(\alpha(b) = 1 \) for all \(\alpha \in \Theta \). Let \(m < j' < \ell \). Then,

\[
\alpha_{i,j'}(b) = \frac{b_{i,j'}}{b_{i,j'+1}} = \frac{a'_\ell \prod_{\substack{i \leq j < \ell \\
m < j < \ell}} a'_{ij}}{a'_\ell \prod_{\substack{i \leq j < \ell \\
m < j < \ell}} a'_{ij+1}} = a'_{i,j'},
\]

i.e. \(|\alpha(b)| \leq \varepsilon \) for all \(\alpha \in \Delta \setminus \Theta \). Thus, \(b \in T^-_{\Theta}(\varepsilon) \).

We take \(c = b^{-1}a \), so \(c_\ell = 1 \) and for all \(1 \leq i \leq \ell - 1 \),

\[
c_i = \prod_{\substack{i \leq j < \ell \\
m < j < \ell}} a'_{ij} = \prod_{\substack{i \leq j < \ell \\
m < j < \ell}} a'_{ij}.
\]

By Equation (12), for all \(1 \leq j \leq m \) we have \(\varepsilon < |a'_{ij}| \leq 1 \). Thus, \(c_i \) is bounded for all \(1 \leq i \leq \ell - 1 \) as a product of bounded elements. For all \(1 \leq i < \ell \), we write \(c_i = u_i \varpi^r_i \) where \(u_i \in \mathcal{O}^\times \), and \(r_i \) is an integer in a bounded set. Next, we split \(c = c_\varpi c_u \), such that \(c_u \) is identified with \((u_1, \ldots, u_{\ell-1}, 1)\) and \(c_\varpi \) is identified with \((\varpi^{r_1}, \ldots, \varpi^{r_{\ell-1}}, 1)\).

The stabilizer of \(v \) is a congruence subgroup of \(K = \text{GL}_n(\mathcal{O}) \), the maximal compact subgroup of \(G \). Hence, \(K_v \leq K \cap T_1 \cong (\mathcal{O}^\times)^n \), and as an open subgroup, it has a finite index in this compact group. i.e., there exists \(d \) and \(\{x_i\}_{i=1}^d \) such that

\[
K \cap T_1 = \bigcup_{i=1}^d x_i K_v.
\]

Now \(c_u \in K \cap T_1 \). Therefore,

\[
c = c_\varpi c_u \in \bigcup_{i=1}^d c_\varpi x_i K_v \subseteq \bigcup_{\gamma \in \Gamma_{\Theta}^\varepsilon} \gamma K_v,
\]

where \(\Gamma_{\Theta}^\varepsilon \) is a finite set consisting of all the (finitely many) possibilities for \(c_\varpi \) multiplied by all the finitely many representatives \(x_i \). Hence,

\[
a = bc \in T^-_{\Theta}(\varepsilon) \bigcup_{\gamma \in \Gamma_{\Theta}^\varepsilon} \gamma K_v.
\]

\(\square \)
From this proof we conclude that for a given $a \in \Theta_\phi^- (\varepsilon)$ identified with (a_1, \ldots, a_ℓ), $\Theta = \{\alpha_{i_1}, \ldots, \alpha_{i_m}\}$, and $\Delta \setminus \Theta = \{\alpha_{i_{m+1}}, \ldots, \alpha_{i_{\ell-1}}\}$, the corresponding $b \in T_\phi^- (\varepsilon)$ from Lemma A is a block diagonal matrix with scalars blocks where the different scalars are

\[
\left\{ b_{j'} \right\}_{m < j' < \ell} \cup \left\{ a'_\ell \right\} = \left\{ a'_\ell \prod_{i_j \geq i_{j'}} \frac{a'_{i_j}}{m < j < \ell} \right\}_{m < j' < \ell},
\]

where for all $1 \leq i \leq \ell$, $a_i = \prod_{j=i}^\ell a'_j$, or equivalently $a'_\ell = a_{\ell}$ and for all $1 \leq i \leq \ell - 1$, $a'_i = a_{i+1}^{-1} a_i$. Therefore, the different scalars in b are

\[
\left\{ a_\ell \prod_{i_j \geq i_{j'}} \frac{a^{-1}_{i_{j+1}} a_{i_j}}{m < j < \ell} \right\}_{m < j' < \ell} \cup \left\{ a_\ell \right\}.
\]

By the multiplicity of characters and absolute values, and by the additivity of logarithm, we can write (2) explicitly.

Corollary 2. Let $G = \text{GL}_n$. In the setting of Theorem 1, and by writing $\Delta \setminus \Theta = \{\alpha_{i_{r+1}}, \ldots, \alpha_{i_{n-1}}\}$, formula (2) takes the following form.

\[
\langle \pi(a)v, \bar{v} \rangle = \sum_{\rho', \rho, \lambda} \alpha_{\rho'} \rho \lambda X_{n-r}(a_n) \left| a_n \right|^{p'_{n-r} \log p_{n-r}} |a_n| \prod_{j=r+1}^{n-1} X_j(a_{ij} |a_{ij}|^{p'_{j-r} \log p_{j-r}} |a_{ij}|).
\]

(13)

Acknowledgment

I would like to express my appreciation to David Soudry and Elad Zelingher for useful discussions and their valuable comments on earlier versions of this manuscript.

References

[BP12] Raphaël Beuzart-Plessis. La conjecture locale de gross-prasad pour les représentations tempérées des groupes unitaires. *arXiv preprint arXiv:1205.2987*, 2012.

[Cas93] William Casselman. Introduction to the theory of admissible representations of p-adic reductive groups. unpublished notes distributed by P Sally, draft May, 7:361, 1993.

[JL06] Hervé Jacquet and Robert P Langlands. *Automorphic Forms on GL(2): Part 1*, volume 114. Springer, 2006.