Matrix Metalloproteinase-8 in Pulmonary Hypertension: The Sheep in the Wolf’s Skin?

Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder defined as a mean pulmonary artery (PA) pressure ≥20 mm Hg at rest, leading to right heart failure and premature death (1). Despite the progress of past decades, pulmonary arterial hypertension (PAH) (group I PH) remains a life-threatening disease with a high mortality rate and a lack of curative options. The mechanisms of development and progression of other groups of PH are also hugely understudied. The key pathophysiologic feature of PAH is a hyperproliferation of resident cells in small PAs, resulting in remodeling, lumen obliteration, and an unresolved increase of PA pressure (2).

The remodeling and stiffening of extracellular matrix (ECM) in PAH PAs promote the proliferative response of PA smooth muscle cells (PASMCs), PA endothelial cells (PAECs), and PA adventitial fibroblasts, making cell–ECM interaction a desirable antiremodeling target. To date, several pathologic mechanisms by which defective cell–matrix interactions drive pulmonary vascular proliferation and PH have been identified, including upregulation of the proproliferative transcriptional coactivators YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) (3–5), dysregulation of the aldosterone–NEDD9 pathway (6), BMPR2 mutation–driven endothelial-to-mesenchymal transition (7), and disbalance between MMPs (matrix metalloproteinases) and their inhibitors, TIMPs (tissue inhibitors of metalloproteinases) (7).

MMPs are proteolytic enzymes that degrade structural ECM proteins and regulatory molecules and are involved in the pathogenesis of proliferative, fibrotic, and vascular diseases, including PH (7, 8). Elevated plasma amounts of several MMPs and TIMPs have been associated with worse clinical outcomes, PA stiffness, remodeling, and right ventricular dysfunction in adult and pediatric PH, suggesting their potential attractiveness as clinical biomarkers (7, 9, 10). Preclinical studies, however, report both pro- and antiremodeling roles for different MMPs, cautioning against the use of pan-MMP inhibitors and calling for careful investigation of individual MMPs as candidate targets for antiremodeling therapeutics in PH (8).

In the current issue of the Journal, Dieffenbach and colleagues (pp. 1433–1451) performed comprehensive analysis of previously understudied member of the MMP family, MMP-8 (collagenase 2 or neutrophil collagenase), in PH (11). The authors found that MMP-8 concentrations are significantly higher in plasma from patients with PAH and group III PH, as well as in small PAs from subjects with PAH and three rodent models of PH. Importantly, the authors detected a modest association between MMP-8 plasma concentrations and PH severity and detected a strong correlation between pulmonary vascular MMP-8 amount and PA muscularization and remodeling, strongly suggesting involvement of MMP-8 in PASMC remodeling and PH. Intriguingly, mice with MMP-8 germline knockout were not protected from hypoxia-induced PH but developed exaggerated PASMC proliferation, pulmonary vascular remodeling, and PH upon hypoxia exposure (11). Further confirming the antiremodeling role of MMP-8 in PASMCs, MMP-8 deficiency induced PASMC hyperproliferation via activating FAK (focal adhesion kinase)–YAP/TAZ signaling (Figure 1).

MMP production could be induced by multiple stimuli, including growth factors, cytokines, and cell–cell and cell–ECM interactions, all of which are involved in PAH pathogenesis (7, 8). The majority of MMPs, however, are generated as inactive proenzymes and become activated only after secretion, which appeared to be suppressed in PAH PASMCs compared with controls. Furthermore, MMPs were shown to directly cleave and inactivate FAK (12), supporting the potential existence of negative cross-talk between MMP-8 and FAK in PAH PASMCs. In line with this, the findings by Dieffenbach and colleagues (11) implicate potential defects in MMP-8 secretion, which can lead to both maladaptive overaccumulation of MMP-8 in PAH PASMCs and deficiency of active MMP-8 in the extracellular space, resulting in constitutive activation of the proremodeling FAK–YAP/TAZ axis. However, better understanding of spatiotemporal regulation of MMP-8 expression and secretion as well as the cellular origin of MMP-8 in the PH context are required to gain comprehensive knowledge on the role of MMP-8 in PAH.

To overcome the limitations of a mouse model with global MMP-8 deficiency, the authors elegantly excluded the direct effects of MMP-8 loss on the right ventricle by using a PA banding approach, which confirmed the importance of MMP-8 loss, specifically in the pulmonary vasculature (11). However, in addition to playing a role in the heart, MMP-8 plays a role in multiple cell types. This not only could interfere with pulmonary vasculature–focused studies but could also make systemic targeting of MMP-8 challenging because of potential off-target effects. As an example, MMP-8 plays a pro-proliferative role in systemic smooth muscle cells and is expressed by several inflammatory cell types, making MMP-8–deficient mice protected from the remodeling of systemic arteries but prone to an exacerbated inflammatory response and delayed wound healing (13, 14). In the pulmonary vasculature, the striking increase of MMP-8 in the intimal layer of PAH PAs suggests a potential role for MMP-8 in PAH PASMCs. Furthermore, MMP-8 overaccumulation, seen in whole PAs, could not be detected in isolated PAH PASMCs, implying a complex scenario in which MMP-8 overproduction by PASMCs...
requires a PAH-specific microenvironment and, potentially, a PAEC–PASMC interaction. Although enabling total ablation of extracellular MMP-8, the use of mice with germline MMP-8 knockout lacks resolution for identifying cell-specific roles of MMP-8 in PAH. In this sense, use of conditional knockout models to uncover the specific functions of MMP-8 in different inflammatory and pulmonary vascular cell populations in PAH is warranted. In addition, a detailed analysis of ECM composition and specific matrix components altered by MMP-8 to provide insights on adaptive versus maladaptive ECM composition in the PAH setting is required. Previous studies have reported alterations in ECM composition upon the onset of MMP-8 deficiency, as well as differential expression of important regulators of mechanosensitive pathways (ADAM10, N-cadherin, β-catenin) (13). Thus, it would be also interesting to investigate which events that are mediated by a lack of MMP-8 precede and potentially cause the exaggerated phenotype that arises upon chronic pathologic stimulation.

Interestingly, the authors clearly demonstrate that plasma MMP-8 concentrations were significantly higher in patients with PH than in those without the disease. This may have practical implications for both diagnosis and therapy in PH. As the neutrophils are an important source of MMP-8 (15), this has to be correlated with neutrophil subsets as well as with the markers of systemic inflammation to improve the prognostic and diagnostic significance of MMP-8 in PH. Furthermore, genetic association studies on the role of specific MMP variants in PH are warranted, as SNPs of MMP-8 in atherosclerosis have been shown to influence its gene expression (16).

In conclusion, the study by Dieffenbach and colleagues (11) uncovers a novel role and mechanism of action for MMP-8 in PH. Importantly, the pharmacologic attractiveness of targeting the MMP-8 downstream effectors FAK and YAP/TAZ has already proven promising as an antiproliferative, antiremodeling therapy in experimental PH. However, an additional endeavor would be required to identify crucial targetable nodes of MMP-8 signaling and develop safe and efficient cell-specific therapeutic strategies to target MMP-8 in PH. ■

Author disclosures are available with the text of this article at www.atsjournals.org.

Elena A. Goncharova, Ph.D.
Tatiana V. Kudryashova, Ph.D.
Department of Internal Medicine
University of California, Davis
Davis, California

Giovanni Maroli, Ph.D.
Soni S. Pullamsetti, Ph.D.
Department of Lung Development and Remodeling
Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL)
Bad Nauheim, Germany
New Insights into the Limitations of Host Transcriptional Biomarkers of Tuberculosis

A central pillar of global tuberculosis (TB) control programs is early antimicrobial treatment of paucibacillary infection to prevent its progression to multibacillary disease (1). The rationale is self-evident. This approach is expected to reduce incident disease, both in the infected individual and by reducing risk of onward transmission of infection. It also offers the advantage of shorter treatment with fewer drugs and mitigates risk of antimicrobial resistance. The gold standard to identify prevalent disease necessitating antimicrobial treatment has been microbiological diagnosis of Mycobacterium tuberculosis (Mtb) infection by microscopy, culture, PCR, or antigen detection in clinical samples, but the sensitivity of all of these tests is inevitably proportional to the bacillary burden. Our enduring challenge has been how to identify those who will benefit from antimicrobial treatment before we can detect the pathogen. Established tests of T-cell immune memory responses to Mtb antigens have provided reasonable negative predictive value (2), but they do not re...

---

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0. For commercial usage and reprints, please e-mail Diane Gern (dgern@thoracic.org).

Originally Published in Press as DOI: 10.1164/rccm.202109-2146ED on October 27, 2021