ON CLASSIFICATION OF THE EXTREMAL
CONTRACTION FROM A SMOOTH FOURFOLD

HIROMICHI TAKAGI

Abstract. We classify extremal divisorial contraction which contracts a divisor to a
curve from a smooth fourfold. We prove the exceptional divisor is \mathbb{P}^2 bundle or quadric
bundle over a smooth curve and the contraction is the blowing up along the curve.

0. Introduction

In his pioneer paper [M1] and [M2], Shigefumi Mori introduced the extremal
ray and classified completely the extremal contraction from a smooth 3-fold. In
dimension 4, we will consider the same problem, i.e., we want to classify the ex-
ternal contraction from a smooth 4-fold. In dimension 4, the situation is more
complicated.

First small (flipping) contraction appears. This case was completely classified
by Yujiro Kawamata in his ingenious paper [Ka1].

Secondly, in case the contraction is fibre type from 4-fold to 3-fold and divisorial
type which contracts a divisor to a surface, equidimensionality of the fibre is not
satisfied in general. (i.e., general fibres are 1 dimensional but some special fibres are
possibly 2 dimensional.) The special 2 dimensional fibre are classified by Yasuyuki
Kachi in [Kac] in case of fibre type, and by Marco Andreatta in case of divisorial
type.

Thirdly in case the contraction is divisorial type which contracts a divisor to a
point, the exceptional divisor is possibly nonnormal. In fact Mauro Beltrametti
listed up all the possibility of the exceptional divisor in [Be1], [Be2]. It include
nonnormal possibility. (But many cases are excluded by Takao Fujita in [F2].)

In this paper, we consider the contraction is divisorial type which contracts a
divisor to a curve. This case turns out to be very mild in contrast to the above
cases.

Main Theorem. Let X be a smooth 4-fold and let $f: X \to Y$ be a divisorial
contraction which contracts a divisor to a curve. Let E be the exceptional divisor
of f and C be $f(E)$. Then

1. C is a smooth curve.
2. $f|_E: E \to C$ is \mathbb{P}^2 bundle or quadric bundle (see the definition 1.4 below) over
 C.
3. f is the blowing up of Y along C.

Key words and phrases. Mori Theory, Extremal Ray.
Acknowledgement. I express my gratitude to Professor Y. Kawamata for encouraging me during preparing this paper. In particular, he told me that I should prove the irreducibility of general fibres in Theorem 1.1 and investigate the local structure of the contraction. I am also thankful to Dr. Yoshiaki Fukuma for giving me much advice.

1. Notations and Preliminaries

We cite the key theorems and make some definitions in this section.

Notation 1.0. The \mathbb{P}^1 bundle $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-a))$ over \mathbb{P}^1 is called a Hirzebruch surface of degree a and denoted by \mathbb{F}_a. The unique negative section of it is denoted by C_0 and a ruling is denoted by f.

The projective cone obtained from \mathbb{F}_a by the contraction of C_0 is denoted by $\mathbb{F}_{a,0}$. A generating line on $\mathbb{F}_{a,0}$ is denoted by l.

Theorem 1.1. (cf. [TA], [Be1] and [Be2]) Let X, Y, E and C be as in Main Theorem. Let F be a general fibre of $f|_E: E \to C$.

Then

$$(F, -K_X|_F) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)), (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1, 1)) \text{ or } (\mathbb{F}_{2,0}, \mathcal{O}_{\mathbb{P}^3}(1)|_{\mathbb{F}_{2,0}})$$

We give the outline of the proof.

Outline of the proof. Once we prove the irreducibility of F, the results are follow from [TA] and [Be1] and [Be2], so we will prove only the irreducibility here. We assume that F is reducible and get a contradiction. Let H be a good supporting divisor of f. We may assume that H is a smooth variety and at least locally $F = H \cap E$. By the adjunction formula, $-K_F = -K_X - E - H|_F$, but since $H|_F \sim 0$, $-K_F = -K_X - E|_F$. Note that $-K_X|_F$ is ample Cartier divisor on F. Since $-K_F$ is ample on F, F is a generalized del Pezzo surface (i.e., a Gorenstein (possibly reducible) anti polarized surface). Write $F = \bigcup F_i$ where F_i is an irreducible component of F. By [R3], $(F_i, -K_F|_{F_i})$ is one of the following:

(a) $(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(i))$ where i is 1 or 2.
(b) $(\mathbb{F}_{a,0}, \mathcal{O}_{\mathbb{F}_{a,0}}(al))$
(c) $(\mathbb{F}_a, \mathcal{O}_{\mathbb{F}_a}(C_0 + (a + 1)f))$
(d) $(\mathbb{F}_a, \mathcal{O}_{\mathbb{F}_a}(C_0 + (a + 2)f))$

But since $-K_F$ is a sum of two ample Cartier divisor, (a) with $i = 1, (b),(c)$ and (d) is impossible. So we get $(F_i, -K_F|_{F_i}) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2))$ and $-K_X|_{F_i} \simeq \mathcal{O}_{\mathbb{P}^2}(1)$. Furthermore by [R3, Main Theorem and 1.3], F is union of two \mathbb{P}^2’s which intersect line in \mathbb{P}^2. But this is impossible since $N_{F_i/H} \simeq \mathcal{O}_{\mathbb{P}^2}(-2)$ and so the birational contraction which contracts only one F_i.

The next theorem of freeness is very useful for classification of low dimensional fibres of an extremal contraction.

Theorem 1.2. (see [A-W]) Let X be a normal log terminal variety and L be an ample line bundle on X. Let $f: X \to Y$ be the adjunction contraction supported by $K_X + rL$ and F be a fibre of f. Assume that $\dim F < r + 1$ if $\dim Y < \dim X$ or $\dim E < a + 1$ if $\dim X < \dim Y$.

Then $f^*f_*L \rightarrow L$ is surjective at every point of F. □

The next theorem was proved in [Wi1] and [Wi2] (see also [R1] and [R2]) but we will give the proof again here for readers’ convenience.

Theorem 1.3. Let X be a smooth 3-fold and Y be a canonical 3fold. Let $f: X \rightarrow Y$ be a crepant birational contraction which contracts a irreducible divisor to a curve. Let E be the exceptional divisor and $C = f(E)$.

Then C is a smooth curve.

Proof. Let P be any point of C. The assertion is local, so we may replace C and Y with an affine (not analytic) neighborhood of P. We will keep this in mind below.

Claim 1. P is a cDV point of Y.

Proof. Suppose that P is not a cDV point. By [R1] and [R2], we have a birational morphism $g: X' \rightarrow X$ such that X' is terminal, g is crepant and g has a exceptional divisor E_0 which contracts to P. Take a common resolution \tilde{X}.

$$
\begin{array}{ccc}
\tilde{X} & \longrightarrow & X' \\
\downarrow & & \downarrow g \\
X & \longrightarrow & Y
\end{array}
$$

Since f and g is crepant, strict transform of E_0 on X is exceptional for f but this contradicts to the irreducibility of the exceptional divisor of f. □

Let H be the pull back of a very ample divisor on Y.

Claim 2. $|mH - E|$ is very ample for $m \gg 0$. In particular $f^*f_*O_X(-E) \rightarrow O_X(-E)$ is surjective.

Proof. Since $mH - 2E$ is ample for $m \gg 0$, it follow from the vanishing theorem (see [KMM]) and the exact sequence

$$0 \rightarrow O_X(mH - 2E) \rightarrow O_X(mH - E) \rightarrow O_E(mH - E) \rightarrow 0$$

that $H^0(O_X(mH - E)) \rightarrow H^0(O_E(mH - E))$ is surjective. Let l be a fibre of $f|_E$. From the vanishing $H^1(X, O_X) = 0$, l is a tree of \mathbb{P}^1, so $|mH - E|_l$ is very ample and so is $|mH - E|_E$ since we consider locally. From these, $|mH - E|$ is also very ample. □

Claim 3. C can be embedded in a smooth surface.

Proof. In fact, let S be a smooth general member of $|mH - E|$. Since $f|_S: S \rightarrow f(S)$ is etale, so $f(S)$ is smooth. C is in $f(S)$ so we are done. □

Claim 4. f is the blowing up of Y along C.

Proof. Let I_C be the ideal sheaf of C in Y.

First we see that

$$f_*O_X(-E) = I_C$$

Let’s consider the exact sequence

$$0 \rightarrow O_X(-E) \rightarrow O_X \rightarrow O_E \rightarrow 0$$
From this and vanishing theorem, we get the exact sequence

$$0 \to f_* \mathcal{O}_X(-E) \to \mathcal{O}_Y \to f_* \mathcal{O}_E \to 0$$

Since except at finite points $f_* \mathcal{O}_E = \mathcal{O}_C$, we have $f_* \mathcal{O}_X(-E) = \mathcal{I}_C$ except at finite point. But they are reflexive(cf.[H2,Corollary 1.5,Proposition 1.6,Corollary 1.7]),so they are actually equal.

From this and claim2, we have $f^* \mathcal{I}_C \to \mathcal{O}_X(-E)$ is surjective, i.e., $\mathcal{I}_C \mathcal{O}_X = \mathcal{O}_X(-E)$. So by the universal property of blowing up(cf.[H1,II proposition7.14]), f decomposes as $X \to X_1 \to Y$, where X_1 is the blowing up of Y along C. X_1 is normal since C is a cDV curve in Y.(see also the calculations below.) So $X \simeq X_1$ since f is a primitive contraction. This established claim4.

We suppose P is a singular point of C and get a contradiction. Recall that P is a cDV point and so Y can be embedded(analytically locally)in \mathbb{C}^4. Let x, y, z, t be its coordinate around P and g be the defining equation of Y in \mathbb{C}^4. By claim3, We may assume $\mathcal{I}_C = \langle x, y, h \rangle$, where $h \in \mathbb{C}[[z,t]]$. Since we suppose P is singular point of C, $h = 0$ is singular at $z = t = 0$ in zt-plane. X is the strict transform of Y in the blowing up $\tilde{\mathbb{C}}^4$ of \mathbb{C}^4 along C. $\tilde{\mathbb{C}}^4$ is in $\mathbb{C}^4 \times \mathbb{P}^2$ and given by

$$\text{rank} \begin{pmatrix} x & y & h \\ u & v & w \end{pmatrix} \leq 1$$

(u, v, w is the homogenous coordinate of \mathbb{P}^2). Take the affine piece given by $u = 1$. We can embed this affine piece of $\tilde{\mathbb{C}}^4$ in \mathbb{C}^5 with coordinate (x, z, t, v, w) and equation $xw = h$. This affine variety is singular above P along the line L defined by $x = z = t = w = 0$. Write $g(x, xv, z, t) = x^m \tilde{g}(x, v, z, t)$,where \tilde{g} can not devided by x. Then X is defined by $xw = h$ and $\tilde{g} = 0$. This intersects L and at the intersections, X is singular, a contradiction. □

Definition 1.4. Let E be a normal projective 3-fold and C be a smooth curve. Let $f: E \to C$ be a projective surjective morphism.

We say $f: E \to C$ is quadric bundle if the following conditions are satisfied.

1. there exists a f-very ample line bundle \mathcal{L} on E.
2. For any closed point s of C, $h^0(E_s, \mathcal{L}_s) = 3$ and E_s is a quadric in

$$\mathbb{P}(H^0(E_s, \mathcal{L}_s)^*) \simeq \mathbb{P}^3$$

If we can take such an \mathcal{L}, we say $f: E \to C$ is the quadric bundle associated to \mathcal{L}. □

Remark. We require E is normal above so general fibres of f are irreducible. □

2. **Proof of the Main theorem**

Proof of (1). Let H be a good supporting divisor of f and L be $\mathcal{O}_X(mH - K_X)$ for $m \gg 0$. Since L is ample, we apply Theorem 1.2 for this f and L with $r = 1$.(Remark that the dimension of fibres of f is 2.) Then for any point P of C and a suitable affine neighborhood U of P in Y, $|L|_{f^{-1}(U)}$ has no base points on E. So furthermore if we replace $f^{-1}(U)$ with a suitable neighborhood V of E in X, $|L|_V$ is base point free on V. Let X_0 be a general smooth member of $|L|_V$, $Y_0 = f(X_0)$ and E_0 be $f|_{X_0}$. Then
Claim. E_0 is irreducible

Proof. Let F be a general fibre of f and F_0 be $F|_{X_0}$. It suffices to prove F_0, i.e., $X_0|_F$ is irreducible. For this it suffices to prove the surjectivity of $H^0(L|_V) \to H^0(L|_F)$. For by Theorem 1.1, general member of $|L|_F$ is irreducible. First from the exact sequence

$$0 \to L|_V \otimes \mathcal{O}_X(-E) \to L|_V \to L|_E \to 0$$

and the vanishing theorem, we have $H^0(L|_V) \to H^0(L|_E)$ is surjective. Secondly since we take F to be a general fibre, F is a Cartier of E and since near F, $E \simeq \mathbb{P}^2 \times \mathbb{A}^1, \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{A}^1$ or $\mathbb{P}^2 \times \mathbb{A}^1, E$ has at worst canonical singularities near F (cf. Theorem 1.1). So we can use the vanishing theorem for the exact sequence

$$0 \to L|_E \otimes \mathcal{O}_E(-F) \to L|_E \to L|_F \to 0$$

and we get the surjectivity of $H^0(L|_E) \to H^0(L|_F)$. This establishes the claim. □

Proof of (2). Let F be a general fibre of f. If $(F, -K_F|_F) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1)), (\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1,1)), (2, \mathcal{O}(1,1)), \text{or } (\mathbb{P}^2 \times \mathbb{A}^1, \mathcal{O}(1,1)), \text{let } \mathcal{L} \text{ be } \mathcal{O}_E(-K_X)$.

If $(F, -K_F|_F) \simeq (\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)), \text{let } \mathcal{L} \text{ be } \mathcal{O}_E(-E)$. Then we will prove

(i) If $F \simeq \mathbb{P}^2, f|_E: E \to C$ is \mathbb{P}^2-bundle.

(ii) If $F \simeq \mathbb{P}^1 \times \mathbb{P}^1 \text{ or } \mathbb{P}^2 \times \mathbb{A}^1, f|_E: E \to C$ is the quadric bundle associated to \mathcal{L}.

If $\mathcal{L} \simeq \mathcal{O}_E(-K_X), \text{we can argue as follow.}$

First we see $f_* \mathcal{L}$ is locally free. The exact sequence

$$0 \to \mathcal{O}_X(-K_X - E) \to \mathcal{O}_X(-K_X) \to \mathcal{O}_E(-K_X) \to 0$$

and the vanishing theorem, we have $R^i f_* \mathcal{O}_E(-K_X) = 0 (i > 0)$. On the other hand, we have $H^i(E_s, \mathcal{L}_s) = 0$ for $i > 0$ and any $s \in C$. Furthermore by above (1), C is smooth so $f|_E$ is flat. So by Cohomology and Base change theorem (cf. [H1, III Theorem 12.11]), $f_* \mathcal{L}$ is locally free.

Next we see \mathcal{L} is f-free. Let’s consider the commutative diagram

$$\begin{array}{ccc}
f^* f_* \mathcal{O}_X(-K_X) & \longrightarrow & f^* f_* \mathcal{O}_E(-K_X) \\
\downarrow & & \downarrow \\
\mathcal{O}_X(-K_X) & \longrightarrow & \mathcal{O}_E(-K_X)
\end{array}$$

We see the left arrow is surjective by Theorem 1.2 and so is the bottom arrow by the above exact sequence and vanishing. So the right arrow must be surjective, i.e., \mathcal{L} is f-free.

By these, we get the morphism $g: E \to \mathbb{P}(f_* \mathcal{L})$ defined by \mathcal{L}.

If we are in case (i), g is birational since general fibre of f is \mathbb{P}^2 and $\mathbb{P}(f_* \mathcal{L})$ is \mathbb{P}^2-bundle. And g is finite since \mathcal{L} is f-ample. So by Zariski Main Theorem, g is isomorphism.

If we are in case (ii), then...
Claim. \(\mathcal{L} \) is \(f \)-very ample.

Proof. We will prove \(g \) is isomorphism onto \(g(E) \). \(g \) is birational because on the general fibre of \(f \), \(\mathcal{L} \) is very ample. \(g \) is finite because \(\mathcal{L} \) is \(f \)-ample. The dimension of singular locus of \(g(E) \) is not greater than 2 since general fibres of \(g(E) \to C \) are \(\mathbb{P}^1 \times \mathbb{P}^1 \) or \(\mathbb{F}_{2,0} \) and \(C \) is smooth. \(g(E) \) satisfies the Serre’s condition \(S_2 \) since \(E \) is a divisor of smooth 4-fold. So \(g(E) \) is normal. Then by Zariski main theorem, \(g \) is isomorphism.

From this claim, it is easy to see that \(E \) is quadric bundle associated to \(\mathcal{L} \).

If \(\mathcal{L} \simeq \mathcal{O}_E(-E) \), we can argue as follow. (cf.[F1,1.5])

Let \(F' \) be any fibre of \(f|_E \) and write \(F' = \bigcup F'_i \), where \(F'_i \) is an irreducible component of \(F' \). Since \(f|_E \) is flat, \(1 = (-E)^2 F = \sum (-E)^2 F_i \). Since \(-E|_{F_i} \) is ample, \((-E)^2 F_i > 0 \). So \(F' \) must be irreducible. By the lower semicontinuity of \(\Delta \)-genus (cf.[H1,III,Theorem 12]), we have \(\Delta(F',-E|_{F'}) \leq \Delta(F,-E|_F) = 0 \). \(F' \) has no embedded points since \(E \) is Cohen-Macaulay and \(F' \) is Cartier divisor on \(E \). So \(\Delta(F',-E|_{F'}) \geq 0 \) by [F0] and so \(\Delta(F',-E|_{F'}) = 0 \). Since \((-E)^2 F' = 1 \), \((F',-E|_{F'}) \simeq (\mathbb{P}^2,\mathcal{O}(1)) \) by the classification of the varieties of \(\Delta \)-genus 0. So \(f:E \to C \) is \(\mathbb{P}^2 \)-bundle.

Remark. We cannot proceed in case \(\mathcal{L} \simeq \mathcal{O}_E(-E) \) similar to the case \(\mathcal{L} \simeq \mathcal{O}_E(-K_X) \) because we have not freeness of \(\mathcal{O}_E(-E) \) apriori.

As for (3), the proof is almost the same as [M2,Corollary(3.4)]. So we will give only the outline of the proof.

Outline of the proof of (3). We see that \(\mathcal{O}_E(-E) \) is \(f|_E \)-very ample by (2) and \(\mathcal{O}_X(-E) \) is \(f \)-ample. So we get the following.

Claim.

(a) \(R^i f_* \mathcal{O}_X(-jE) = 0 \) for \(i > 0 \) and \(j \geq 0 \).
(b) \(f_* \mathcal{O}_X(-jE) = \mathcal{L}_C^{-j}, \mathcal{L}_C^{-j} \mathcal{O}_X = \mathcal{O}_X(-jE) \) for \(j \geq 0 \).
(c) \(\oplus_{n \geq 0} \mathcal{L}_C^n/\mathcal{L}_C^{n+1} \simeq \oplus_{n \geq 0} f_* \mathcal{O}_E(-nE) \) as \(\mathcal{O}_C \) algebra.

By this claim, we can easily get the result.

Remarks and Examples. We can say the following about the local analytic structure of the contraction. Let \(F' \) be a fibre of \(f|_E \) and \(F \) is any general fibre of \(f|_E \) near \(F' \). We will give the description near \(F' \).

(1) If \(f|_E : E \to C \) is \(\mathbb{P}^2 \) bundle and \(\mathcal{O}_X(-E)|_F \simeq \mathcal{O}_{\mathbb{P}^2}(1), Y \) is smooth along \(C \) (cf.[SN])
(2) If \(f|_E : E \to C \) is \(\mathbb{P}^2 \) bundle and \(\mathcal{O}_X(-E)|_F \simeq \mathcal{O}_{\mathbb{P}^2}(2), Y \) can be considered as one parameter family of \(\frac{1}{2}(1,1,1) \) singularity. In fact, let \(P \) be any point of \(C \) and take a general very ample divisor \(A \) through \(P \). Let \(H \) be the pull back of \(A \). Then \(H \) is smooth along \(E|_H \simeq \mathbb{P}^2 \) since \(E|_H \) is smooth and a Cartier divisor of \(H \). So \(f|_H \) is the extremal contraction from a smooth 3-fold near the fibre over \(P \). Then by Mori’s classification, \(A \) has \(\frac{1}{2}(1,1,1) \) singularity at \(P \).
(3) If \(f|_E : E \to C \) is quadric bundle we see \(Y \) is locally hypersurface in \(\mathbb{C}^5 \) and \(C \) is locally complete intersection in the \(\mathbb{C}^5 \) because \(\mathcal{L}_C/\mathcal{L}_C^2 \) is locally free sheaf of rank 4 on \(C \) by the claim in the proof of Main Theorem (2). But the
type of singularity of Y along C is very various(case (c) and (e) below), so we will give some examples here. Below \mathbb{C}^5 has always coordinates x, y, z, w, t. Y is given hypersurface in \mathbb{C}^5 and X is the blow up of Y along C. We assume F' is the fibre over the origin.

(3a) $(F$ and F' are $\mathbb{P}^1 \times \mathbb{P}^1)$ Let Y be $(x^2 + y^2 + z^2 + w^2 = 0)$ and C be $(x = y = z = w = 0)$. In this case above example is all.

(3b) $(F$ is $\mathbb{P}^1 \times \mathbb{P}^1$ and F' is $\mathbb{F}_{2,0}$) Let Y be $(x^2 + y^2 + z^2 + tw^2 = 0)$ or $(x^2 + y^2 + z^2 + t^m w^2 + w^3 = 0)$ and C be $(x = y = z = w = 0)$. In this case above examples are all.

(3c) $(F$ is $\mathbb{P}^1 \times \mathbb{P}^1$ and F' is union of two planes in \mathbb{P}^3) Let Y be $(x^2 + y^2 + t^m z^2 + z^3 + t^m w^2 + w^3 = 0)$ and $(x = y = z = w = 0)$. In this case this example is all.

(3d) $(F$ and F' are $\mathbb{F}_{2,0}$) Let Y be $(x^2 + y^2 + z^2 + w^3 = 0)$ and $(x = y = z = w = 0)$.

(3e) $(F$ is $\mathbb{F}_{2,0}$ and F' is union of two planes in \mathbb{P}^3) Let Y be $(x^2 + y^2 + z^3 + t^m w^2 + w^3 = 0)$ and $(x = y = z = w = 0)$.

\[\square \]

Question. Does any quadric bundle appear as the exceptional divisor of the contraction as in Main Theorem?

References

[TA] T. Ando, *On extremal rays of the higher dimensional varieties*, Invent.Math 81 (1985), 347–357.

[A-W] M. Andreata and J. Wiśniiewski, *A note on nonvanishing and applications*, Duke Math J 72 (1993), 739–755.

[Be1] M. Beltrametti, *On d-folds whose canonical bundle is not numerically effective, According to Mori and Kawamata*, Ann.Math.Pura.Appl 116 (1982), 133–176.

[Be2] —, *Contraction of non numerically effective extremal rays in dimension 4*, Teubner-Texte Math 92 (1986), 24–37.

[F0] T. Fujita, *Classification theories of polarized varieties*, London Math.Soc.Lecture Note Ser 115 (1990), Cambridge Univ.Press.

[F1] —, *On del Pezzo fibrations over curves*, Osaka.J.Math 27 (1990), 229–245.

[F2] —, *On singular Del Pezzo varieties*, Lecture Notes in Math., vol. 1417, Springer-Verlag, 1990, p. 117–128.

[H1] R. Hartshorne, *Algebraic Geometry*, GTM 52 (1977), Springer-Verlag.

[H2] —, *Stable reflexive sheaves*, Math.Ann 254 (1980), 121–176.

[Kac] Y. Kachi, *Extremal contractions from 4-dimensional manifolds to 3-folds*, preprint.

[Ka1] Y. Kawamata, *The cone of Curves of algebraic varieties*, Ann. of Math 119 (1984), 603–633.

[Ka2] —, *Small contractions of four dimensional algebraic manifolds*, Math.Ann 284 (1989), 595–600.

[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, *Introduction to the minimal model problem*, Adv.St.Pure Math 10 (1987), 287–360.

[M1] S. Mori, *Projective manifolds with ample tangent bundles*, Ann. of Math 110 (1979), 593–606.

[M2] —, *Threefolds whose canonical bundles are not numerically effective*, Ann. of Math 116 (1982), 133–176.

[SN] S. Nakano, *On the inverse of monoidal transformations*, Publ.RIMS Kyoto Univ 6 (1971), 483–502.

[R1] M. Reid, *Canonical 3-folds*, Journées de Géométrie Algébrique d’Angers, Sijthoff and Noordhoff, Alphen, 1980, p. 273–310.

[R2] —, *Minimal models of canonical 3-folds*, Adv.St.Pure Math 1 (1983), 131–180.

[R3] —, *Nonnormal del Pezzo surfaces*, Publ RIMS Kyoto Univ. (1984), 695–705.
[Wi1] P.M.H. Wilson, *The Kähler cone on Calabi Yau threefolds*, Invent.Math 107 (1992), 561–583.

[Wi2] , *Erratum The Kähler cone on Calabi Yau threefolds*, Invent.Math 114 (1993), 231–233.

Department of Mathematical Science, Tokyo University, Komaba, Tokyo, 153, Japan