Stochastic differential equations driven by G-Brownian motion and ordinary differential equations

Peng Luo∗ Falei Wang†

Abstract
In this paper, we show that the integration of a stochastic differential equation driven by G-Brownian motion (G-SDE for short) in \mathbb{R} can be reduced to the integration of an ordinary differential equation (ODE for short) parametrized by a variable in (Ω, \mathcal{F}). By this result, we obtain a comparison theorem for G-SDEs and its applications.

Keywords: G-Brownian motion, G-Itô’s formula, G-SDE, Comparison theorem.

Mathematics Subject Classification (2000). 60H30, 60H10.

1 Introduction
Motivated by uncertainty problems, risk measures and the superhedging in finance, Peng systemically established a time-consistent fully nonlinear expectation theory (see [13, 14, 15]). As a typical and important case, Peng introduced the G-expectation theory (see [16, 17] and the references therein) in 2006. In the G-expectation framework (G-framework for short), the notion of G-Brownian motion and the corresponding stochastic calculus of Itô’s type were established. On that basis, Gao [4] and Peng [16] studied the existence and uniqueness of the solution of G-SDE under a standard Lipschitz condition. Moreover, Lin [11] obtained the existence and uniqueness of the solution of G-SDE with reflecting boundary. For a recent account and development of this theory we refer the reader to [1, 7, 8, 9, 10, 12, 20].

Under the classical framework, Doss [3] and Huang, Xu and Hu [6] studied the sample solutions of stochastic differential equations, which enables us to transfer a stochastic differential equation into a set of ordinary differential equations for each sample path. Using the method of sample solutions to SDEs, Huang [5] established a comparison theorem of SDEs.

The aim of this paper is to study the sample solutions of G-SDEs by ODEs parameterized by a variable in basis probability space. Since G-SDE admits a unique solution in the space $M^2_G(0, T)$, the main difficulty is how to prove that the sample solution belongs to this space. We overcome this problem through some G-stochastic calculus techniques. Then we show that the solution of G-SDE can be represented as a function of both G-Brownian motion and a finite variation process. Since we can use the existing results in the theory of ordinary differential equations directly, this approach provides a powerful tool both in the theoretical analysis and in the practical computation of G-SDEs. In particular, we get a new kind of comparison theorem for G-SDEs. Moreover, a necessary and sufficient condition for comparison theorem of G-SDEs is also obtained.

∗School of Mathematics and Qilu Securities Institute for Financial Studies, Shandong University and Department of Mathematics and Statistics, University of Konstanz; pengluo1989@gmail.com
†School of Mathematics, Shandong University; fwang2011@gmail.com. Partially supported by Graduate Independent Innovation Foundation of Shandong University (No. YZC12062). Luo and Wang’s research was partially supported by NSF (No. 10921101) and by the 111 Project (No. B12023)
This paper is organized as follows: In the next section, we recall some notations and results that we will use in this paper. In section 3, we study the sample solution of G-SDE under some strong conditions, then, in section 4, we extend this result to a more general case. Finally in section 5, we establish a new kind of comparison theorem and give its applications.

2 Preliminaries

The main purpose of this section is to recall some preliminary results in G-framework which are needed in the sequel. More details can be found in Denis et al [2], Li and Peng [10], Lin [11 12] and Peng [10].

2.1 Sublinear expectation

Definition 2.1 Given a set Ω and a linear space \mathcal{H} of real valued functions defined on Ω. Moreover, if $X_i \in \mathcal{H}, i = 1, \ldots, d$, then $\varphi(X_1, \ldots, X_d) \in \mathcal{H}$ for all $\varphi \in C_{b,Lip}(\mathbb{R}^d)$, where $C_{b,Lip}(\mathbb{R}^d)$ is the space of all bounded real-valued Lipschitz continuous functions. A sublinear expectation $\hat{\mathbb{E}}$ on \mathcal{H} is a functional $\hat{\mathbb{E}} : \mathcal{H} \to \mathbb{R}$ satisfying the following properties: for all $X, Y \in \mathcal{H}$,

(a) **Monotonicity:** if $X \geq Y$, then $\hat{\mathbb{E}}[X] \geq \hat{\mathbb{E}}[Y]$;

(b) **Constant preserving:** $\hat{\mathbb{E}}[c] = c$, \forall $c \in \mathbb{R}$;

(c) **Sub-additivity:** $\hat{\mathbb{E}}[X + Y] \leq \hat{\mathbb{E}}[X] + \hat{\mathbb{E}}[Y]$;

(d) **Positive homogeneity:** $\hat{\mathbb{E}}[\lambda X] = \lambda \hat{\mathbb{E}}[X]$, $\forall \lambda \geq 0$.

The triple $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is called a sublinear expectation space. $X \in \mathcal{H}$ is called a random variable in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$. We often call $Y = (Y_1, \ldots, Y_d), Y_i \in \mathcal{H}$ a d-dimensional random vector in $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$.

Definition 2.2 In a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$, a d-dimensional random vector $Y = (Y_1, \ldots, Y_d)$ is said to be independent from an m-dimensional random vector $X = (X_1, \ldots, X_m)$ under $\hat{\mathbb{E}}$ if for any test function $\varphi \in C_{b,Lip}(\mathbb{R}^{m+n})$

$$
\hat{\mathbb{E}}[\varphi(Y, X)] = \hat{\mathbb{E}}[\hat{\mathbb{E}}[\varphi(x, Y)]_{x=X}].
$$

Definition 2.3 Let X_1 and X_2 be two n-dimensional random vectors defined on sublinear expectation spaces $(\Omega_1, \mathcal{H}_1, \hat{\mathbb{E}}_1)$ and $(\Omega_2, \mathcal{H}_2, \hat{\mathbb{E}}_2)$, respectively. They are called identically distributed, denoted by $X_1 \overset{d}{=} X_2$, if

$$
\hat{\mathbb{E}}_1[\varphi(X_1)] = \hat{\mathbb{E}}_2[\varphi(X_2)], \forall \varphi \in C_{b,Lip}(\mathbb{R}^n).
$$

X is said to be an independent copy of X if $X \overset{d}{=} X$ and X is independent from X.

Definition 2.4 (G-normal distribution) A random variable X on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is called (centralized) G-normal distributed if for any $a, b \geq 0$

$$
aX + b\hat{X} \overset{d}{=} \sqrt{a^2 + b^2}X,
$$

where \hat{X} is an independent copy of X. The letter G denotes the function

$$
G(a) = \frac{1}{2}(\sigma^2 a^2 - \sigma^2 a^-)
$$

with $\sigma^2 := -\hat{\mathbb{E}}[-X^2] \leq \hat{\mathbb{E}}[X^2] =: \sigma^2$.

2
2.2 G-Brownian motion

Definition 2.5 (G-Brownian motion) A process $(B_t \in \mathcal{H})_{t \geq 0}$ on a sublinear expectation space $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ is called a G-Brownian motion if the following properties are satisfied:

(a) $B_0 = 0$.

(b) For each $t, s \geq 0$ the increment $B_{t+s} - B_t \overset{d}{=} \sqrt{s}X$ and independent from $(B_{t_1}, B_{t_2}, ..., B_{t_n})$ for each $n \in \mathbb{N}$, $0 \leq t_1 \leq t_2 \leq ... \leq t_n \leq t$, where X is G-normal distributed.

Denote by $\Omega = C_0(\mathbb{R}^+)\,$ the space of all \mathbb{R}-valued continuous paths $(\omega_t)_{t \in \mathbb{R}^+}$, with $\omega_0 = 0$, equipped with the distance

$$\rho(\omega^1, \omega^2) := \sum_{i=1}^{\infty} 2^{-i}\max_{t \in [0,1]}|\omega^1_t - \omega^2_t| \wedge 1.$$

$B(\Omega)$ is the Borel σ-algebra of Ω.

For each $t \in [0, \infty)$, we introduce the following spaces.

- $\Omega_t := \{\omega(\cdot \wedge t) : \omega \in \Omega\}, F_t := \mathcal{B}(\Omega_t)$
- $L^0(\Omega)$: the space of all $\mathcal{B}(\Omega)$-measurable real functions,
- $L^0(\Omega_t)$: the space of all F_t-measurable real functions,
- $B^0_\Omega(\Omega) :=$ all bounded elements in $L^0(\Omega)$
- $C^0_\Omega(\Omega)$: all continuous elements in $B^0_\Omega(\Omega)$
- $B^0_\Omega(\Omega_t) := B^0_\Omega(\Omega) \cap L^0(\Omega_t)$
- $C^0_\Omega(\Omega_t) := C^0_\Omega(\Omega) \cap L^0(\Omega_t)$

In Peng [10], a G-Brownian motion is constructed on a sublinear expectation space $(\Omega, L^0_G, \hat{\mathbb{E}}, (\hat{\mathcal{F}}_t)_{t \geq 0})$, where $L^p_G(\Omega)$ is a Banach space under the natural norm $\|X\|_p := \hat{\mathbb{E}}[|X|^p]^{1/p}$. In this space the corresponding canonical process $B_t(\omega) = \omega_t$ is a G-Brownian motion. Denote by $L^G_2(\Omega)$ the completion of $B^0_\Omega(\Omega)$. Denis et al. [2] proved that $L^G_2(\Omega) \supset L^G_0(\Omega) \supset C^0_\Omega(\Omega)$, and there exists a weakly compact family \mathcal{P} of probability measures defined on $(\Omega, \mathcal{B}(\Omega))$ such that

$$\hat{\mathbb{E}}[X] = \sup_{P \in \mathcal{P}} E_P[X], \quad X \in L^G_2(\Omega).$$

Remark 2.6 Denis et al. [2] gave a concrete set \mathcal{P}_M that represents $\hat{\mathbb{E}}$. Consider a 1-dimensional Brownian motion B_t on (Ω, F, P), then

$$\mathcal{P}_M := \{P_\theta : P_0 = P \circ X^{-1}, \quad X_t = \int_0^t \theta_s dB_s, \quad \theta \in L^G_2([0,T]; [\mathcal{F}^2_2, \mathcal{F}^2_\theta])\}$$

is a set that represents $\hat{\mathbb{E}}$, where $L^G_2([0,T]; [\mathcal{F}^2_2, \mathcal{F}^2_\theta])$ is the collection of all \mathcal{F}-adapted measurable processes with $\theta^2 \leq \theta(s)^2 \leq \mathcal{F}^2_\theta$.

Now we introduce the natural Choquet capacity

$$c(A) := \sup_{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega).$$

Definition 2.7 A set $A \subset \mathcal{B}(\Omega)$ is polar if $c(A) = 0$. A property holds “quasi-surely" (q.s.) if it holds outside a polar set.

Definition 2.8 A real function X on Ω is said to be quasi-continuous if for each $\varepsilon > 0$, there exists an open set O with $c(O) < \varepsilon$ such that $X|_O$ is continuous.

Definition 2.9 We say that $X : \Omega \mapsto \mathbb{R}$ has a quasi-continuous version if there exists a quasi-continuous function $Y : \Omega \mapsto \mathbb{R}$ such that $X = Y$, q.s.
Then $L^p_b(\Omega)$ and $L^p_G(\Omega)$ can be characterized as follows:

$$L^p_b(\Omega) = \{ X \in L^0(\Omega) \mid \lim_{N \to \infty} \mathbb{E} [|X|^p I_{|X| \geq N}] = 0 \}$$

and

$$L^p_G(\Omega) = \{ X \in L^p_b(\Omega) \mid X \text{ has a quasi-continuous version} \}.$$

2.3 G-stochastic calculus

Peng [16] also introduced the related stochastic calculus of Itô’s type with respect to G-Brownian motion (see Li and Peng [10], Lin [11] for more general and systematic research).

Let $T \in \mathbb{R}^+$ be fixed.

Definition 2.10 For each $p \geq 1$, consider the following simple type of processes:

$$M^0_{G}(0,T) = \{ \eta := \eta_t(\omega) = \sum_{j=0}^{N-1} \xi_j(\omega) I_{[t_j, t_{j+1})}(t) \}$$

$$\forall N > 0, 0 = t_0 < ... < t_N = T, \xi_j \in L^p_G(\Omega_{t_j}), j = 0, 1, 2, ..., N - 1 \}.$$

Denote by $M^p_G(0,T)$ the completion of $M^0_G(0,T)$ under the norm

$$||\eta||_{M^p_G(0,T)} = \left(\int_0^T \mathbb{E}[|\eta(t)|^p] dt \right)^{1/p}.$$

Definition 2.11 For each $\eta \in M^0_{G}(0,T)$ with the form

$$\eta_t(\omega) = \sum_{k=0}^{N-1} \xi_k(\omega) I_{[t_k, t_{k+1})}(t),$$

define

$$I(\eta) = \int_0^T \eta_t dB_t := \sum_{k=0}^{N-1} \xi_k (B_{t_{k+1}} - B_{t_k}).$$

The mapping $I : M^0_{G}(0,T) \to L^2_G(\Omega_T)$ can be continuously extended to $I : M^2_G(0,T) \to L^2_G(\Omega_T)$. For each $\eta \in M^2_{G}(0,T)$, the stochastic integral is defined by

$$I(\eta) := \int_0^T \eta_t dB_t, \quad \eta \in M^2_{G}(0,T).$$

Unlike the classical theory, the quadratic variation process of G-Brownian motion B is not always a deterministic process and it can be formulated in $L^2_G(\Omega_t)$ by

$$\langle B \rangle_t := \lim_{N \to \infty} \sum_{i=0}^{N-1} (B_{t_{i+1}}^N - B_{t_i}^N) = B^2_t - 2 \int_0^t B_s dB_s,$$

where $t_i^N = \frac{t_i}{N}$ for each integer $N \geq 1$.

4
Definition 2.12 Define a mapping $M_{1}^{0, 1}(0, T) \mapsto L_{G}^{1}(\Omega_{T})$:

$$Q(\eta) = \int_{0}^{T} \eta_{s} d(B)_{s} := \sum_{k=0}^{N-1} \xi_{k}[(B)_{t \xi_{k+1}} - (B)_{t \xi_{k}}].$$

Then Q can be uniquely extended to $M_{1}^{1}(0, T) \mapsto L_{G}^{1}(\Omega_{T})$. We also denote this mapping by

$$Q(\eta) := \int_{0}^{T} \eta_{s} d(B)_{s}, \quad \eta \in M_{1}^{1}(0, T).$$

In view of the dual formulation of G-expectation as well as the properties of the quadratic variation process (B) in G-framework, Gao [14] obtained the following BDG type inequalities.

Lemma 2.13 For each $p \geq 1$ and $\eta \in M_{1}^{p}(0, T)$,

$$\hat{\mathbb{E}}\left[\sup_{0 \leq t \leq T} \left| \int_{0}^{t} \eta_{s} d(B)_{s} \right|^{p} \right] \leq \sigma^{2p} T^{p-1} \int_{0}^{T} \hat{\mathbb{E}}[|\eta_{s}|^{p}] ds.$$

Lemma 2.14 Let $p \geq 2$ and $\eta \in M_{1}^{p}(0, T)$. Then there exists some constant C_{p} depending only on p and T such that

$$\hat{\mathbb{E}}\left[\sup_{0 \leq t \leq T} \left| \int_{0}^{t} \eta_{s} dB_{s} \right|^{p} \right] \leq C_{p} \hat{\mathbb{E}}[|\eta_{0}|^{2}] T.$$

3 G-Stochastic differential equation

Let us first recall some notations,

- $C^{n}(\mathbb{R}^{d})$: the space of all functions of class C^{n} from \mathbb{R}^{d} into \mathbb{R},
- $C^{n}_{b, \text{lip}}(\mathbb{R}^{d})$: the space of all bounded functions of class $C^{n}(\mathbb{R}^{d})$ whose partial derivatives of order less than or equal to n are bounded Lipschitz continuous functions,
- $C^{n}([0, T] \times \mathbb{R}^{d})$: the space of all functions of class C^{n} from $[0, T] \times \mathbb{R}^{d}$ into \mathbb{R},
- $C^{n}_{b, \text{lip}}([0, T] \times \mathbb{R}^{d})$: the space of all bounded functions of class $C^{n}([0, T] \times \mathbb{R}^{d})$ whose partial derivatives of order less than or equal to n are bounded Lipschitz continuous functions.

Consider the following SDE driven by a 1-dimensional G-Brownian motion:

$$X_{t} = X_{0} + \int_{0}^{t} b(s, X_{s}) ds + \int_{0}^{t} h(s, X_{s}) d(B)_{s} + \int_{0}^{t} \sigma(s, X_{s}) dB_{s}, \quad t \in [0, T],$$

where the initial condition $X_{0} \in \mathbb{R}$ is a given constant.

We recall the following assumption.

(H) $b, h, \sigma : \Omega \times [0, T] \times \mathbb{R} \to \mathbb{R}$ are given functions satisfying $b(\cdot, x), h(\cdot, x), \sigma(\cdot, x) \in M_{1}^{2}(0, T)$ for each $x \in \mathbb{R}$. Moreover, there exists some constant K such that $|\varphi(t, x) - \varphi(t, y)| \leq K|x - y|$ for each $t \in [0, T], x, y \in \mathbb{R}, \varphi = b, h$ and σ, respectively.

From Peng [16],

Theorem 3.1 Under the assumption (H), there exists a unique solution $X \in M_{2}^{2}(0, T)$ to the stochastic differential equation (1).

Remark 3.2 We remark that there is a potential to extend our results to a much more general setting. However, in order to focus on the main ideas, in this paper we content ourselves with the case that the coefficients are 1-dimensional satisfying bounded condition. In particular, by slightly more involved estimates, we can extend our results to the multi-dimensional case without bounded condition.
3.1 A simple case

In order to explain the main ideas, we first consider a simple G-SDE,

\[X_t = X_0 + \int_0^t b(X_s) ds + \frac{1}{2} \int_0^t \sigma(X_s)\partial_x \sigma(X_s) d(B)_s + \int_0^t \sigma(X_s) dB_s, \quad t \in [0, T], \]

(2)

where $\sigma(x) \in C^1_{b,lip}(\mathbb{R})$ and $b(x) \in C_{b,lip}(\mathbb{R})$. By Theorem 3.1 G-SDE (2) admits a unique solution $X \in \mathcal{M}_G^2(0, T)$.

Now consider the following ODE

\[\frac{dy}{dx} = \sigma(y), \quad y(0) = v \in \mathbb{R}. \]

(3)

The above ODE has a unique solution $y = \varphi(x, v) \in C(\mathbb{R}^2)$. Then,

\[\partial_x \varphi = \sigma(\varphi), \quad \varphi(0, v) = v. \]

Consequently,

\[\partial_{\omega} \varphi(x, v) = \exp\left\{ \int_0^x \partial_x \sigma(\varphi(y, v)) dy \right\}, \quad \partial_{xx} \varphi(x, v) = (\partial_x \sigma)(\varphi(x, v)). \]

(4)

Next we introduce the following ODE with parameter ω:

\[
\begin{cases}
 dV_t = \exp\{-\int_0^{B_t(\omega)} \partial_x \sigma(\varphi(y, V_t)) dy\} b(\varphi(B_t(\omega), V_t)) dt, \\
 V_0 = X_0.
\end{cases}
\]

(4)

For every fixed ω, recalling Cauchy–Lipschitz theorem, the equation (4) has a unique solution $V_t = V_t(\omega)$ and V_t is a continuous finite variation process. Moreover, $V_t(\omega)$ is a continuous function on (Ω, ρ).

The following result is important in our future discussion.

Lemma 3.3 For any $p \geq 0$, there exists a constant C_p depending only on p such that,

\[\hat{\mathbb{E}}[\sup_{0 \leq t \leq T} e^{p|B_t|}] \leq C_p. \]

Proof. For any $p \geq 0$, we have

\[\hat{\mathbb{E}}[\sup_{0 \leq t \leq T} e^{p|B_t|}] \leq \sum_{n=0}^{\infty} \hat{\mathbb{E}}[\sup_{0 \leq t \leq T} |pB_t|^n]. \]

Applying Doob’s maximal inequality yields that

\[\hat{\mathbb{E}}[\sup_{0 \leq t \leq T} |pB_t|^n] \leq (1 + \frac{1}{n-1})^n \hat{\mathbb{E}}[|pB_T|^n]. \]

By Exercise 1.7 in Chapter 3 of Peng [16], one can show that for some constant C'_p depending only on p,

\[\sum_{n=0}^{\infty} \frac{\hat{\mathbb{E}}[|pB_T|^n]}{n!} \leq C'_p. \]

Since $\lim_{n} (1 + \frac{1}{n-1})^n = e$, we can find some constant C_p depending only on p such that,

\[\hat{\mathbb{E}}[\sup_{0 \leq t \leq T} e^{p|B_t|}] \leq C_p, \]

which is the desired result. ■
Lemma 3.4 For each $p \geq 1$, $V_t \in L^p_G(\Omega_t)$. Moreover, there exists some constant C_p depending only on p such that for each $s \leq t \in [0, T]$,
\[
\hat{E}[[T^V_t - T^V_s]^p] \leq C_p|t - s|^p,
\]
where T^V is the total variation process of V.

Proof. By equation (4),
\[
V_t = V_0 + \int_0^t \exp\{-\int_0^{B_u(\omega)} \partial_x \sigma(\varphi(y, V_u))dy\} b(\varphi(B_u(\omega), V_u))du.
\]
Denote by C_p a constant depending only on p, which is allowed to change from line to line. Then applying Lemma 3.3 we conclude
\[
\hat{E}[\sup_{0 \leq t \leq T} |V_t|^p] \leq C_p \hat{E}[|V_0|^p] + \int_0^T \exp\{-p \int_0^{B_u(\omega)} \partial_x \sigma(\varphi(y, V_u))dy\}du]\]
\[
\leq C_p (|V_0|^p + \hat{E}[\sup_{0 \leq t \leq T} e^{Cp[B_t]}]) \leq C_p.
\]
Since $V_t(\omega)$ is a continuous function on (Ω, ρ), recalling the pathwise description of $L^p_G(\Omega_t)$, $V_t \in L^p_G(\Omega_t)$ for each $p \geq 1$.

Note that
\[
T^V_t = \int_0^t \exp\{-\int_0^{B_u} \partial_x \sigma(\varphi(y, V_u))dy\} b(\varphi(B_u, V_u))du,
\]
applying Lemma 3.3 again, we obtain for each $s \leq t \in [0, T]$,
\[
\hat{E}[[T^V_t - T^V_s]^p] \leq C_p |t - s|^p,
\]
which completes the proof. □

By Lemma 3.4, we deduce that $\varphi(B_t, V_t) \in M^2_G(0, T)$. Since φ satisfies the conditions of Theorem 6.1, applying G-Itô formula, we get
\[
d\varphi(B_t, V_t) = \partial_x \varphi(B_t, V_t)dB_t + \partial_y \varphi(B_t, V_t)dV_t + \frac{1}{2} \partial_{xx} \varphi(B_t, V_t)d\langle B \rangle_t
\]
\[= b(\varphi(B_t, V_t))dt + \frac{1}{2} \partial_x \sigma(\varphi(B_t, V_t))\sigma(\varphi(B_t, V_t))d\langle B \rangle_t + \sigma(\varphi(B_t, V_t))dB_t.
\]
Consequently, $X_t = \varphi(B_t, V_t)$ is the unique $M^2_G(0, T)$-solution of G-SDE (2).

3.2 The general case

In this section, we will extend the above result to a more general case, where all the coefficients are functions in t, B_t and x. Assume $b(t, x, y), h(t, x, y) \in C_{b, lip}([0, T] \times \mathbb{R}^2)$ and $\sigma(t, x, y) \in C_{b, lip}^1([0, T] \times \mathbb{R}^2)$. It is obvious G-SDE
\[
X_t = X_0 + \int_0^t b(s, B_s, X_s)ds + \int_0^t h(s, B_s, X_s)d\langle B \rangle_s + \int_0^t \sigma(s, B_s, X_s)dB_s, \ t \in [0, T]
\]
has a unique solution $X \in M^2_G(0, T)$.

Then the following ODE
\[
\frac{dy}{dx} = \sigma(t, x, y), \quad y(t, 0) = v \in \mathbb{R}
\]
(6)
admits a unique solution \(y = \varphi(t, x, v) \in C([0, T] \times \mathbb{R}^2) \). Moreover, we can get
\[
\partial_v \varphi(t, x, v) = \exp\left\{ \int_0^t \partial_u \sigma(t, u, \varphi(t, u, v))du \right\}
\]
and
\[
\partial_t \varphi(t, x, v) = \exp\left\{ \int_0^t \partial_z \sigma(t, z, \varphi(t, z, v))dz \right\}(\int_0^t \partial_t \sigma(t, u, \varphi(t, u, v))e^{-\int_0^t \partial_t \sigma(t, z, \varphi(t, z, v))dz}du)
\]
Set
\[
g(t, x, v) := \partial_v \varphi^{-1}(t, x, v)(b(t, x, \varphi(t, x, v)) - \partial_t \varphi(t, x, v)),
\]
\[
f(t, x, v) := \partial_v \varphi^{-1}(t, x, v)(h(t, x, \varphi(t, x, v)) - \frac{1}{2}(\partial_x \sigma + \partial_y \sigma)(t, x, \varphi(t, x, v))).
\]
Then consider the following initial value problem with parameter \(\omega \):
\[
\begin{align*}
dV_t &= g(t, B_t(\omega), V_t)dt + f(t, B_t(\omega), V_t)d(B)_t(\omega), \\
V_0 &= X_0.
\end{align*}
\]
(7)

Note that \(\langle B \rangle_t \) is a continuous finite variation process, then the ODE (7) has a unique solution \(V = V_t(\omega) \) and \(V_t \) is a continuous finite variation process. Since \(\langle B \rangle_t(\omega) \) is not always a deterministic process, in general we can not get \(V_t(\omega) \) is a continuous function on \((\Omega, \rho) \) as the above section. However, we also have the following result.

Lemma 3.5 For each \(p \geq 1 \), there exists some constant \(C_p \) depending only on \(p \) such that, for each \(s \leq t \in [0, T] \),
\[
\mathbb{E}[|T^V_s - T^V_t|^p] \leq C_p|t - s|^p,
\]
where \(T^V \) is the total variation process of \(V \).

Proof. The proof is immediate in light of Lemma 3.3. \(\blacksquare \)

Now we shall give the main result of this section.

Theorem 3.6 Assume \(b(t, x, y), h(t, x, y) \in C_{b, lip}([0, T] \times \mathbb{R}^2) \) and \(\sigma(t, x, y) \in C_{b, lip}([0, T] \times \mathbb{R}^2) \), then for each \(p \geq 1 \), \(V_t \in L^p_p(\Omega_t) \) and \(\varphi(t, B_t, V_t) \) is the unique \(M^p_{\mathcal{F}}(0, T) \)-solution of G-SDE (5).

Proof. It is obvious \(V_t \in L^p_p(\Omega_t) \). Then applying Theorem 6.1 we obtain q.s.
\[
\begin{align*}
d\varphi(t, B_t, V_t) &= \partial_{y} \varphi(t, B_t, V_t)dt + \partial_{z} \varphi(t, B_t, V_t)dB_t + \partial_{v} \varphi(t, B_t, V_t)dV_t + \frac{1}{2} \partial^2_{x z} \varphi(t, B_t, V_t)d\langle B \rangle_t \\
&= b(t, B_t, \varphi(t, B_t, V_t))dt + h(t, B_t, \varphi(t, B_t, V_t))d\langle B \rangle_t + \sigma(t, B_t, \varphi(t, B_t, V_t))d\langle B \rangle_t.
\end{align*}
\]
By a standard argument, there exists some constant \(C \) such that,
\[
\mathbb{E}[|\varphi(t, B_t, V_t) - X_t|^2] \leq C \int_0^t \mathbb{E}[|\varphi(s, B_s, V_s) - X_s|^2]ds.
\]
Applying Gronwall’s lemma, we obtain \(\varphi(t, B_t, V_t) = X_t \), q.s.. By the uniqueness of solution of ODE (6),
\[
v = \varphi(t, -x, \varphi(t, x, v)),
\]
thus, \(V_t = \varphi(t, -B_t, X_t) \) q.s.. In particular, \(V_t \) has a quasi-continuous version and \(V_t \in L^p_{\mathcal{F}}(\Omega_t) \). The proof is completed. \(\blacksquare \)
4 G-diffusion process

The objective of this section is to remove the condition that σ is continuously differentiable and to obtain a more general result on this topic. By an approximation approach, we can also represent the solution of G-SDE as a function of B_t and a continuous finite variation process V_t as the above section.

Theorem 4.1 If $b, \sigma, h \in C_{b,\text{lip}}(\mathbb{R})$, then there exists a unique continuous finite variation process $V_t \in L^p_G(\Omega_t)$ for each $p \geq 1$ such that,

$$X_t = \varphi(B_t, V_t),$$

where φ is the solution of the ODE:

$$\partial_x \varphi(x, v) = \sigma(\varphi(x, v)), \quad \varphi(0, v) = v.$$

Moreover if $\sigma \in C^1_{b,\text{lip}}(\mathbb{R})$, then for q.s. ω, $V_t(\omega)$ is the solution of the following ODE:

$$\begin{align*}
dV_t &= \exp\{-\int_0^{B_t} \partial_x \sigma(\varphi(y, V_t))dy\}[b(\varphi(B_t, V_t))dt + (h(\varphi(B_t, V_t)), V_t)] - \frac{1}{2} \partial_x \sigma(\varphi(B_t, V_t))d(B_t)\|,
v_0 &= X_0.
\end{align*}$$

Proof. If $\sigma \in C^1_{b,\text{lip}}(\mathbb{R})$, then the theorem holds true. If $\sigma \in C_{b,\text{lip}}(\mathbb{R})$, one can define

$$\sigma_n(x) := \int_{\mathbb{R}} \sigma(y)\rho_n(y-x)dy = \int_{\mathbb{R}} \sigma(y+x)\rho_n(y)dy,$$

where ρ_n is a nonnegative C^∞ function defined on $\{x : |x| \leq \frac{1}{n}\}$ with $\int_{\mathbb{R}} \rho_n(y)dy = 1$. From this definition, we conclude that

$$|\sigma_n(x) - \sigma(x)| \leq \int_{\mathbb{R}} |\sigma(y + x) - \sigma(x)|\rho_n(y)dy \leq \int_{\mathbb{R}} K|y|\rho_n(y)dy \leq \frac{K}{n},$$

where K is the Lipschitz coefficient of b, h and σ.

For each n, it is obvious $\sigma_n \in C^1_{b,\text{lip}}(\mathbb{R})$. Thus, $X^n_t := \varphi^n(B_t, V^n_t)$ is the solution of G-SDE:

$$X^n_t = X_0 + \int_0^t b(X^n_s)ds + \int_0^t h(X^n_s)d(B)_s + \int_0^t \sigma^n(X^n_s)dB_s, \quad t \in [0, T],$$

where φ^n satisfies

$$\partial_x \varphi^n(x, v) = \sigma^n(\varphi^n(x, v)), \quad \varphi^n(0, v) = v$$

and

$$\begin{align*}
dV^n_t &= \exp\{-\int_0^{B_t} \partial_x \sigma^n(\varphi^n(y, V^n_t))dy\}[b(\varphi^n(B_t, V^n_t))dt + (h(\varphi^n(B_t, V^n_t)), V^n_t)] - \frac{1}{2} \partial_x \sigma^n(\varphi^n(B_t, V^n_t))d(B_t)\|,
V^n_0 &= X_0.
\end{align*}$$

For each n, there exists some constant C depending only on T and K such that,

$$\mathbb{E} \left[\sup_{t \in [0, T]} |X^n_t - X_t|^2 \right] \leq \frac{C}{n^2}.$$
Indeed, applying BDG inequalities, we obtain for some constant C, which is allowed to change from line to line,

$$
\hat{E}[\sup_{t \in [0,T]} |X^n_t - X_t|^2] \leq \hat{E}[\sup_{t \in [0,T]} |\int_0^t b(X^n_s) - b(X_s)ds + \int_0^t h(X^n_s) - h(X_s)d(B)_s + \int_0^t \sigma^n(X^n_s) - \sigma(X_s)dB_s|^2]
$$

$$
\leq C\hat{E}[(\int_0^T K|X^n_t - X_t|ds)^2 + (\int_0^T K|X^n_t - X_t|dt)^2 + (\int_0^T (K|X^n_t - X_t| + \frac{1}{n})dB_t)^2]
$$

$$
\leq C\left(\frac{1}{n^2} + \int_0^T \hat{E}[|X^n_t - X_t|^2]dt\right)
$$

$$
\leq C\left(\frac{1}{n^2} + \int_0^T \hat{E}[\sup_{s \in [0,t]} |X^n_s - X_s|^2]dt\right).
$$

By Gronwall’s lemma, we can get the desired result. Moreover, choosing a subsequence if necessary, $X^n \to X$ uniformly in $[0, T]$ q.s.

For each $v_1, v_2, x \in \mathbb{R}$,

$$
|\varphi^n(x, v_1) - \varphi(x, v_2)| \leq |\varphi^n(x, v_1) - \varphi^n(x, v_2)| + |\varphi^n(x, v_2) - \varphi(x, v_2)|.
$$

Applying Taylor formula yields that

$$
|\varphi^n(x, v_1) - \varphi^n(x, v_2)| \leq |\partial_x \varphi^n(x, v^*)||v_1 - v_2| \leq |v_1 - v_2|e^{C|x|}.
$$

By the definitions of φ^n and φ, we obtain

$$
|\varphi^n(x, v_2) - \varphi(x, v_2)| \leq |\int_0^x \sigma^n(\varphi^n(s, v_2)) - \sigma(\varphi(s, v_2))ds| \leq \int_0^{|x|} K(|\varphi^n(s, v_2) - \varphi(s, v_2)| + \frac{1}{n})ds.
$$

From Gronwall’s lemma, we conclude for some constant C

$$
|\varphi^n(x, v_1) - \varphi(x, v_2)| \leq C(|v_1 - v_2| + \frac{|x|}{n})e^{C|x|}.
$$

Define $V_t := \varphi(-B_t, X_t)$, thus $X_t = \varphi(B_t, V_t)$ and V_t has a quasi-continuous version. Moreover,

$$
\lim_{n \to \infty} \sup_{t \in [0,T]} |V^n_t - V_t| = \lim_{n \to \infty} \sup_{t \in [0,T]} |\varphi^n(-B_t, X^n_t) - \varphi(-B_t, X_t)|
$$

$$
\leq C \lim_{n \to \infty} (\sup_{t \in [0,T]} |X^n_t - X_t| + \sup_{t \in [0,T]} |B_t|) \frac{C}{n} = 0.
$$

Since for each n and $t, s \in [0, T]$, there exists some constant C such that

$$
|V^n_t - V^n_s| \leq C \sup_{t \in [0,T]} e^{C|B_t|}|t - s|.
$$

Thus

$$
|V_t - V_s| \leq C \sup_{t \in [0,T]} e^{C|B_t|}|t - s|.
$$

By the pathwise description of $L^p_G(\Omega_t)$, $V_t \in L^p_G(\Omega_t)$ for each $p \geq 1$ and the proof is completed. ■

In general, we can also get

Theorem 4.2 If $b, \sigma, h \in C_{b, lip}([0, T] \times \mathbb{R}^2)$, then there exists a unique continuous finite variation process $V_t \in L^p_G(\Omega_t)$ for each $p \geq 1$ such that

$$
X_t = \varphi(t, B_t, V_t),
$$

where φ is given by equation (12). Moreover if $\sigma \in C_{b, lip}([0, T] \times \mathbb{R}^2)$, then for q.s. ω, V_t is the solution of ODE (2).
5 Comparison Theorem for G-SDEs

In the above sections, we establish the relations between G-SDEs and ODEs. From these results, we shall study the comparison theorem for G-SDEs. We refer to Lin [9] for some sufficient condition under which a comparison theorem for G-SDEs is also obtained by virtue of a stochastic calculus approach.

We begin with a lemma, which is from [5].

Lemma 5.1 Assume that two functions \(f(t, x) \) and \(\tilde{f}(t, x) \) are defined on \(\mathbb{R}^2 \), satisfying the Carathéodory conditions, that is, they are measurable in \(t \), continuous in \(x \) and dominated by a locally integrable function \(m_t \) in \(\mathbb{R}^2 \). Let \((t_0, x_0), (\tilde{t}_0, \tilde{x}_0) \) be two points in \(\mathbb{R}^2 \) such that \(x_0 \leq \tilde{x}_0 \). Moreover, \(x_t \) is the solution to the initial value problem

\[
\frac{dx_t}{dt} = f(t, x_t)dt, \quad x_{t_0} = x_0,
\]

and \(\tilde{x}_t \) is the maximal solution to the problem

\[
\frac{d\tilde{x}_t}{dt} = \tilde{f}(t, \tilde{x}_t)dt, \quad \tilde{x}_{\tilde{t}_0} = \tilde{x}_0.
\]

If the inequality

\[
(t - t_0)f(t, x) \leq (t - \tilde{t}_0)\tilde{f}(t, \tilde{x})
\]

holds a.e. in \(\mathbb{R}^2 \), then \(x(t) \leq \tilde{x}(t) \) for every \(t \) in the common interval of existence of the solutions \(x_t \) and \(\tilde{x}_t \).

Then we have the following comparison theorem.

Theorem 5.2 Let \(b(t, x, y), h(t, x, y) \in C_{b,\text{lip}}([0, T] \times \mathbb{R}^2) \) and \(\sigma(t, x, y) \in C_{b,\text{lip}}^1([0, T] \times \mathbb{R}^2) \) be given. If there exists three functions \(\sigma, \tilde{f}, \tilde{g} \) satisfying the Carathéodory conditions and the inequalities

\[
x\sigma(t, x, y) \leq x\tilde{\sigma}(t, x, y), \quad 2G(f(t, x, y) - \tilde{f}(t, x, y)) + g(t, x, y) - \tilde{g}(t, x, y) \leq 0 \quad \text{in} \quad [0, T] \times \mathbb{R}^2.
\]

Then for the unique solution \(X_t \) of SDE \(\tilde{X}_t \)

\[
X_t \leq \tilde{\varphi}(t, B_t, \tilde{V}_t)
\]

holds for q.s. \(\omega \) and every \(t \) in the common interval where both sides are defined. Here \(\tilde{\varphi} \) and \(\tilde{V} \) are the maximal solutions to the problems

\[
\frac{d\tilde{\varphi}}{dx} = \tilde{\sigma}(t, x, \tilde{\varphi}), \quad \tilde{\varphi}(t, 0, v) = v \in \mathbb{R},
\]

and

\[
\frac{d\tilde{V}}{dt} = \tilde{g}(t, B_t, \tilde{V}_t)dt + \tilde{f}(t, B_t(\omega), \tilde{V}_t)d(B)_t, \quad \tilde{V}_0 = \tilde{X}_0
\]

with \(X_0 \leq \tilde{X}_0 \), respectively.

Proof. According to the Lemma 5.1, we get

\[
\varphi(t, x, v) \leq \tilde{\varphi}(t, x, \tilde{v})
\]

provided \(v \leq \tilde{v} \). From \[2\] or \[19\], \(d(B)_t = \hat{\alpha}_t(\omega)dt \), where \(\hat{\alpha} \) is well defined for each \(\omega \) and q.s. takes value in \([\omega^2, \sigma^2] \). Since \(2G(f(t, x, v) - \tilde{f}(t, x, v)) + g(t, x, v) - \tilde{g}(t, x, v) \leq 0 \), we obtain

\[
(f(t, x, v) - \tilde{f}(t, x, v))\hat{\alpha}_t + g(t, x, v) - \tilde{g}(t, x, v) \leq 0.
\]

Then applying Lemma 5.1 again, we also have \(V_t \leq \tilde{V}_t \) in the common interval where both sides are defined, which is the desired result.

Now we consider some examples of its applications.
Example 5.3 Consider two G-SDEs with the same diffusion coefficient σ:

$$
\begin{align*}
\begin{cases}
 dX_i^t = b^i(t, B_t, X_i^t) dt + h^i(t, B_t, X_i^t) dB_t + \sigma(t, B_t, X_i^t) dB_t, \\
 X_0^i = X_i^0,
\end{cases} & (i = 1, 2),
\end{align*}
$$

where σ, b^1, b^2, h^1, h^2 satisfy the conditions in Theorem 5.2 and $X_0^1 \leq X_0^2$, $b^1 - b^2 + 2(\sigma^1 - \sigma^2) \leq 0$.

Denote:

$$
g^i(t, x, v) = \partial_x \varphi^{-1}_i(t, x, v)(b^i(t, x, \varphi(t, x, v))) - \partial_t \varphi(t, x, v),
$$

$$
f^i(t, x, v) = \partial_x \varphi^{-1}_i(t, x, v)(h^i(t, x, \varphi(t, x, v))) - \frac{1}{2}(\partial_x \varphi + \partial_y \varphi \varphi)(t, x, \varphi(t, x, v)), \quad (i = 1, 2)
$$

One can easily show that

$$
g^1 - g^2 + 2G(f^1 - f^2) \leq 0.
$$

Applying Theorem 5.2, we obtain $X_1^t \leq X_2^t$ q.s.

Remark 5.4 In Example 5.3, we can also assume that $\sigma \in C_{b, lip}([0, T] \times \mathbb{R}^2)$. Indeed, applying Theorem 4.1, there exists a sequence $X^{i,n} \to X^i$ uniformly in $[0, T]$. Then we conclude $X_1^t \leq X_2^t$ from $X_1^{i,n} \leq X_2^{i,n}$ for each $t \in [0, T]$.

In particular, we obtain a necessary and sufficient condition for comparison theorem of 1-dimensional G-SDEs.

Theorem 5.5 Consider two G-SDEs:

$$
\begin{align*}
\begin{cases}
 dX_{i,x}^t = b^i(X_{i,x}^t) dt + h^i(X_{i,x}^t) dB_t + \sigma^i(X_{i,x}^t) dB_t, \\
 X_{0,x}^i = x_i,
\end{cases} & (i = 1, 2),
\end{align*}
$$

where $\sigma^i, b^i, h^i \in C_{b, lip}(\mathbb{R})$ and $i \in \{1, 2\}$, then for each $x_1 \leq x_2$, $X_1^{1,x} \leq X_2^{2,x}$ if and only if

$$
b^1(x) - b^2(x) + 2G(h^1(x) - h^2(x)) \leq 0, \quad \sigma^1(x) = \sigma^2(x), \quad \forall x \in \mathbb{R}.
$$

Proof. We shall only have to prove that from $X_1^{1,x} \leq X_2^{2,x}$ for each $x \in \mathbb{R}$, we infer that

$$
b^1(x) - b^2(x) + 2G(h^1(x) - h^2(x)) \leq 0, \quad \sigma^1(x) = \sigma^2(x).
$$

By $X_1^{1,x} \leq X_2^{2,x}$, we get

$$
\int_0^t b^1(X_{s,x}^1) ds + \int_0^t h^1(X_{s,x}^1) dB_s + \int_0^t \sigma^1(X_{s,x}^1) dB_s \\
\leq \int_0^t b^2(X_{s,x}^2) ds + \int_0^t h^2(X_{s,x}^2) dB_s + \int_0^t \sigma^2(X_{s,x}^2) dB_s.
$$

Set $\alpha_s^i = b^i(X_{s,x}^i) - b^i(x)$, $\beta_s^i = h^i(X_{s,x}^i) - h^i(x)$ and $\gamma_s^i = \sigma^i(X_{s,x}^i) - \sigma^i(x)$. From Peng [16], there exists some constant C such that,

$$
\mathbb{E} \left[\sup_{s \in [0, t]} (|\alpha_s^1|^2 + |\beta_s^1|^2 + |\gamma_s^1|^2) \right] \leq Ct.
$$

For each $t \in [0, T]$, we have

$$
(b^1(x) - b^2(x))t + (h^1(x) - h^2(x))\langle B \rangle_t + (\sigma^1(x) - \sigma^2(x))B_t \\
\leq \int_0^t (\alpha_s^2 - \alpha_s^1) ds + \int_0^t (\beta_s^2 - \beta_s^1) dB_s + \int_0^t (\gamma_s^2 - \gamma_s^1) dB_s.
$$

(10)
Applying BDG inequalities, we can find some constant C so that
\[\mathbb{E}[|\int_0^t \gamma_s^2 dB_s|^2] \leq C \int_0^t \mathbb{E}[\gamma_s^4] ds \leq Ct^2.\]
Thus q.s.
\[
\lim_{t \downarrow 0} \frac{1}{\sqrt{t}} \int_0^t \gamma_s dB_s = 0.
\]
In a similar way we can also obtain q.s.
\[
\lim_{t \downarrow 0} \frac{1}{\sqrt{t}} \int_0^t \alpha_s^2 ds = 0, \quad \lim_{t \downarrow 0} \frac{1}{\sqrt{t}} \int_0^t \beta_s^2 dB_s = 0.
\]
Recalling that
\[c(\limsup_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = +\infty) = 1, \quad c(\liminf_{t \downarrow 0} \frac{B_t}{\sqrt{t}} = -\infty) = 1,
\]
then there exists a subset $\Omega \subset \Omega$ with $c(\Omega_0) = 1$, such that for each $\omega \in \Omega_0$, we can find a sequence $(r_n := r_n(\omega))$ so that $\lim_{r_n \downarrow 0} \frac{t}{r_n} = +\infty$. By equation (10), we derive that
\[\langle \sigma^1(x) - \sigma^2(x) \rangle \lim_{r_n \downarrow 0} \frac{B_{r_n}}{\sqrt{r_n}} \leq 0,
\]
Consequently, $\sigma^1(x) \leq \sigma^2(x)$. Similarly we can prove $\sigma^1(x) \geq \sigma^2(x)$, then,
\[\sigma^1(x) = \sigma^2(x).
\]
Finally, taking expectation on both sides of equation (10) yields
\[b^1(x) - b^2(x) + 2G(h^1(x) - h^2(x)) \leq \lim_{t \downarrow 0} \frac{1}{t} \mathbb{E}[\int_0^t (\alpha^2_s - \alpha^1_s) ds + \int_0^t (\beta^2_s - \beta^1_s) dB_s] = 0,
\]
which completes the proof. \blacksquare

Remark 5.6 Let $\sigma^1 = \sigma^2 = b^1 = h^2 = 0, b^2 = \sigma^2, h^1 = 1$, one can show that $b^1(x) - b^2(x) + 2G(h^1(x) - h^2(x)) \leq 0$ and $X^1_{1:x} = x + \langle B \rangle_t \leq x + \sigma^2 t = X^2_{1:x}$ q.s.. Thus $b^1(x) - b^2(x) + 2G(h^1(x) - h^2(x)) \leq 0$ does not imply $b^1(x) \leq b^2(x)$ and $h^1(x) \leq h^2(x)$.

Example 5.7 Consider two G-SDEs with different diffusion coefficients:
\[
\begin{cases}
 dX^i_t = \sigma_i(X^i_t) dB_t + \frac{1}{2} \sigma_i(X^i_t) \sigma'_i(X^i_t) dB_t, \\
 X^i_0 = X^i_0 \quad (i = 1, 2),
\end{cases}
\]
where $\sigma_i > 0$ and $\sigma_i \in C^{1}_{b, lip}(\mathbb{R})$. Consider the following initial value problems:
\[\frac{d\varphi_i}{dx} = \sigma_i(\varphi_i), \quad \varphi_i(0) = v_i \quad (i = 1, 2).
\]
Clearly, the solutions $\varphi_i(x, v_i)$ satisfy the equalities
\[
\int_{v_1}^{\varphi_1(x, v_1)} ds = x = \int_{v_2}^{\varphi_2(x, v_2)} \frac{ds}{\sigma_2(s)}.
\]
Note that \(b_i \equiv 0 \), we can obtain \(V_i \equiv X_0^0 \) by equation (1). Hence, if for every \(x \in \mathbb{R} \) the inequality

\[
\int_{X_0^0}^x \frac{dy}{\sigma_1(y)} \geq \int_{X_0^0}^x \frac{dy}{\sigma_2(y)}
\]

holds, then \(\varphi_1(x, X_0^1) \leq \varphi_2(x, X_0^2) \) and therefore q.s.

\[
X_t^1 = \varphi_1(B_t, X_0^1) \leq \varphi_2(B_t, X_0^2) = X_t^2.
\]

Example 5.8 Consider the following G-SDE:

\[
\begin{cases}
dX_t = b(X_t)dt + h(X_t)d(B)_t + \sigma(X_t)dB_t, \\
X_0 = X_0,
\end{cases}
\]

where \(b, h \in C^{b, \text{lip}}(\mathbb{R}) \) and \(\sigma \in C^{1, \text{lip}}(\mathbb{R}) \). Then we have for some constant \(C \)

\[
|\sigma(x)| \leq C, \quad |g(x, v)| \leq C|v|, \quad |f(x, v)| \leq C|v|.
\]

Let \(\hat{\sigma}(x) = C \text{sgn}(x) \), \(\hat{g}(x, v) = C|v| \) and \(\hat{f}(x, v) = C|v| \), combining these three inequalities and using Theorem 5.2, we obtain an asymptotic estimation for the paths of G-Itô diffusion process \(X_t \), for q.s. \(\omega \),

\[
X_t \leq C|B_t| + C \int_0^t e^{C|B_s|}ds + X_0.
\]

A symmetric argument shows that, for q.s. \(\omega \),

\[
X_t \geq -C|B_t| - C \int_0^t e^{C|B_s|}ds + X_0.
\]

6 Appendix

G-Itô formula for a G-Itô process was obtained by Peng \[10\] and improved by Gao \[3\], Zhang et al \[20\] in \(L^p_C(\Omega) \). Li and Peng \[10\] significantly improved the previous ones for a general \(C^{1,2} \)-function in a larger space \(L^p_C(\Omega) \) instead of \(L^p_C(\Omega) \). For reader’s convenience, we give the following G-Itô formula. Indeed, it can be viewed as a special case of Theorem 2.33 of Lin \[12\].

For each \(0 \leq t \leq T \), consider a G-Itô process:

\[
X_t = X_0 + \int_0^t f_udu + \int_0^t h_ud(B)_u + \int_0^t g_udu.
\]

Theorem 6.1 Suppose \(\varphi \in C([0, T] \times \mathbb{R}^2) \) satisfies for each \(t_1, t_2 \in [0, T], \ x_1, x_2, v_1, v_2 \in \mathbb{R}, \)

\[
|\psi(t_1, x_1, v_1) - \psi(t_2, x_2, v_2)| \leq C(1 + |x_1| + |x_2|)e^{C(|x_1| + |x_2|)}(|t_1 - t_2| + |x_1 - x_2| + |v_1 - v_2|),
\]

where \(\psi = \partial_t \varphi, \partial_x \varphi, \partial^2_{xx} \varphi \) and \(\partial_v \varphi \). Let \(f, h \) and \(g \) be bounded processes in \(M^2_C(0, T) \). If for each \(p \geq 1 \), the continuous finite variation process \(V_t \in L^p_C(\Omega_t) \) and there exists some constant \(C_p \), such that for each \(s \leq t \in [0, T] \):

\[
\mathbb{E}[|T^V_t - T^V_s|^p] \leq C_p|t - s|^p,
\]
where T^V is the total variation process of V. Then in $L^2_b(\Omega_t)$,

$$
\varphi(t, X_t, V_t) = \varphi(0, X_0, V_0) + \int_0^t \partial_u \varphi(u, X_u, V_u) f_u du + \int_0^t \partial_x \varphi(u, X_u, V_u) g_u d\langle B \rangle_u + \int_0^t \partial_v \varphi(u, X_u, V_u) h_u dB_u + \frac{1}{2} \int_0^t \partial_{xx} \varphi(u, X_u, V_u) g^2_u d\langle B \rangle_u.
$$

Proof. The proof is immediate in light of Lemma 3.3, Theorem 5.4 of Li and Peng [10], and Theorem 2.33 of Lin [12].

Acknowledgement: The authors would like to thank Prof. Peng, S. for his helpful discussions and suggestions. The authors also thank the editor and two anonymous referees for their careful reading, helpful suggestions.

References

[1] Bai, X. and Lin Y. (2010) On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with integral-Lipschitz coefficients, in arXiv:1002.1046.

[2] Denis, L., Hu, M. and Peng, S. (2011) Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Analysis, 34(2), 139-161.

[3] Doss, H. (1977) Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Sect. A (N.S.). 13, 99-125.

[4] Gao, F. (2009) Pathwise properties and homomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 119, 3356-3382.

[5] Huang, Z. (1984) A comparison theorem for solutions of stochastic differential equations and applications. Proc. AMS, 91, 611-617.

[6] Huang, Z., Xu, M. and Hu, Z. (1981) On the generalized sample solutions of stochastic differential equations. Wuhan Univ. J. (Natural Sci. Ed.) (Chinese) 2, 11-21.

[7] Lin, Q. (2013) Local time and Tanaka formula for the G-Brownian motion. Journal of Mathematical Analysis and Applications, 398, 315-334.

[8] Lin, Q. (2013) Some properties of stochastic differential equations driven by G-Brownian motion. Acta Mathematica Sinica, English Series, 29, 923-942.

[9] Lin, Q. (2013) Differentiability of stochastic differential equations driven by G-Brownian motion. Science China Mathematics, 56, 1087-1107.

[10] Li, X. and Peng, S. (2009) Stopping times and related Itô calculus with G-Brownian motion. Stochastic Processes and their Applications, 121, 1492-1508.

[11] Lin, Y. (2013) Stochastic differential equations driven by G-Brownian motion with reflecting boundary. Electron. J.Probab. 18(9), 1-23.

[12] Lin, Y. (2013) Équations différentielles stochastiques sous les espérances mathématiques non-linéaire et applications. Ph. D. thesis. Université de Rennes 1, in tel.archives-ouvertes.fr/tel-00955814.
[13] Peng, S. (2004) Filtration consistent nonlinear expectations and evaluations of contingent claims. *Acta Mathematicae Applicatae Sinica, English Series*, 20(2), 1-24.

[14] Peng, S. (2005) Nonlinear expectations and nonlinear Markov chains. *Chin. Ann. Math.* 26B(2), 159-184.

[15] Peng, S. (2009) Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. *Science in China Series A: Mathematics*, 52(7), 1391-1411.

[16] Peng, S. (2010) Nonlinear expectations and stochastic calculus under uncertainty, in [arxiv:1002.4546v1](http://arxiv.org/abs/1002.4546v1).

[17] Peng, S. (2010) Backward stochastic differential equation, nonlinear expectation and their applications. *Proceedings of the International Congress of Mathematicians Hyderabad*. India.

[18] Revuz, D. and Yor, M. (1999) Continuous Martingales and Brownian Motion, 3rd ed. Springer, Berlin.

[19] Soner, H. M., Touzi, N. and Zhang, J. (2012) Wellposedness of second order Backward SDEs. *Probability Theory and Related Fields*, 153, 149-190.

[20] Zhang, B., Xu, J. and Kannan, D. (2010) Extension and application of Itô’s formula under G-framework. *Stochastic Analysis and Applications*, 28, 322-349.