Effect of sacubitril/valsartan vs. enalapril on changes in heart failure therapies over time: the PARADIGM-HF trial

Ankeet S. Bhatt†, Muthiah Vaduganathan†, Brian L. Claggett†, Jiankang Liu†, Milton Packer, Akshay S. Desai†, Martin P. Lefkowitz, Jean L. Rouleau, Victor C. Shi, Michael R. Zile, Karl Swedberg, Orly Vardeny, John J.V. McMurray, and Scott D. Solomon†*

1Division of Cardiology, Brigham and Women’s Hospital, Boston, MA, USA; 2Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA; 3Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 4Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada; 5Medical University of South Carolina, Charleston and Ralph H. Johnston Veterans Administration Medical Center, Charleston, SC, USA; 6Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; 7Center for Care Delivery and Outcomes Research, Minneapolis VA Health Care System, and University of Minnesota, Minneapolis, MN, USA; and 8British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, UK

Received 13 March 2021; revised 28 April 2021; accepted 30 May 2021; online publish-ahead-of-print 21 June 2021

Aims
Sacubitril/valsartan improves morbidity and mortality in patients with heart failure and reduced ejection fraction (HFrEF). Whether initiation of sacubitril/valsartan limits the use and dosing of other elements of guideline-directed medical therapy for HFrEF is unknown. We examined the effects of sacubitril/valsartan, compared with enalapril, on β-blocker and mineralocorticoid receptor antagonist (MRA) use and dosing in a large randomized clinical trial.

Methods and results
Patients with full data on medication use were included. We examined β-blocker and MRA use in patients randomized to sacubitril/valsartan vs. enalapril through 12-month follow-up. New initiations and discontinuations of β-blocker and MRA were compared between treatment groups. Overall, 8398 (99.9%) had full medication and dose data at baseline. Baseline use of β-blocker and MRA at any dose was 87% and 56%, respectively. Mean doses of β-blocker and MRA were similar between treatment groups at baseline and at 6-month and 12-month follow-up. New initiations through 12-month follow-up were infrequent and similar in the sacubitril/valsartan and enalapril groups for β-blockers [37 (9.9%) vs. 42 (10.2%), P = 0.56] and MRA [127 (7.6%) vs. 143 (9.2%), P = 0.10]. Among patients on MRA therapy at baseline, there were fewer MRA discontinuations in patients on sacubitril/valsartan as compared with enalapril at 12 months [125 (6.2%) vs. 187 (9.0%), P = 0.001]. Discontinuations of β-blockers were not significantly different between groups in follow-up (2.2% vs. 2.6%, P = 0.26).

Conclusions
Initiation of sacubitril/valsartan, even when titrated to target dose, did not appear to lead to greater discontinuation or dose down-titration of other key guideline-directed medical therapies, and was associated with fewer discontinuations of MRA. Use of sacubitril/valsartan (when compared with enalapril) may promote sustained MRA use in follow-up.

Keywords
β-blockers • Guideline-directed medical therapy • Heart failure with reduced ejection fraction • Mineralocorticoid receptor antagonists • Sacubitril/valsartan
Introduction

Despite recommendations supporting the use of guideline-directed medical therapy (GDMT) for heart failure with reduced ejection fraction (HFrEF), registry data show rates of comprehensive pharmacotherapy for HFrEF care are low in usual care. In the PARADIGM-HF (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) trial, the angiotensin receptor–neprilysin inhibitor (ARNI) sacubitril/valsartan reduced cardiovascular death or heart failure (HF) hospitalization compared with enalapril among patients with chronic HFrEF. As a result, major guidelines recommend switching to sacubitril/valsartan in eligible patients. The clinical benefits of sacubitril/valsartan were consistently observed irrespective of baseline medical therapy and the effects of randomization on mineralocorticoid receptor antagonist (MRA) use patterns and incident hyperkalaemia have been described. Patients in PARADIGM-HF randomized to sacubitril/valsartan had greater blood pressure reductions compared with enalapril. Whether switching to sacubitril/valsartan (and its attendant haemodynamic and clinical effects) requires early alteration in initiation, dosing, and maintenance of foundational GDMT is not known; these data may inform optimal sequencing pathways to implement contemporary multi-drug regimens in HFrEF. Therefore, we investigated the effects of randomization to sacubitril/valsartan compared with enalapril on early changes in the use and dosing of β-blockers and MRAs over time in PARADIGM-HF.

Methods

The design and results of PARADIGM-HF have been previously reported. In brief, PARADIGM-HF was a global, double-blind, active-controlled trial that enrolled patients with New York Heart Association (NYHA) class II–IV HFrEF (ejection fraction ≤ 40%). Patients underwent sequential active run-in phases with enalapril up-titrated to 10 mg twice daily followed by sacubitril/valsartan up-titrated to 97/103 mg twice daily to assess tolerability of both study drugs at target doses. Patients completing run-in were randomized to sacubitril/valsartan 97/103 mg twice daily or enalapril 10 mg twice daily and were followed for a median of 27 months. Use and dose of evidence-based β-blockers (carvedilol, extended-release metoprolol, and bisoprolol) and MRAs (spironolactone and eplerenone) were collected at randomization and at 6 and 12 months post-randomization. The percentage of patients on each dose of each therapy was calculated and the proportion of patients on therapy (at any dose, ≥50% target dose, and ≥100% target dose) was assessed in both treatment arms (sacubitril/valsartan vs. enalapril) at baseline, 6 months and 12 months. Target proximate multi-drug regimens in HFrEF. Therefore, we investigated may inform optimal sequencing pathways to implement contemporary multi-drug regimens in HFrEF. Therefore, we investigated the effects of randomization to sacubitril/valsartan compared with enalapril on early changes in the use and dosing of β-blockers and MRAs over time in PARADIGM-HF.

Statistical analysis

As the objective of this analysis was to determine the association between sacubitril/valsartan vs. enalapril on use patterns of β-blockers and MRA, all analyses were performed in the as-treated cohort (based on treatment received). Patients with full data on medication use/dose at baseline and in follow-up were included. Follow-up was limited to 12 months given high missingness further from randomization. The proportion of patients on therapy (at any dose, ≥50% target dose, and ≥100% target dose) was assessed in both treatment arms (sacubitril/valsartan vs. enalapril) at baseline, 6 months and 12 months. Target

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
doses were based on the 2016 European Society of Cardiology (ESC) HF guidelines. Target doses for β-blockers were bisoprolol 10 mg daily, carvedilol 25 mg twice daily, and extended-release metoprolol 200 mg once daily. Given variable definitions of target dosing for MRA and lack of consistent demonstrated dose response on clinical outcomes, dosing was summarized for β-blocker only.

Among patients not receiving β-blocker and MRA at baseline, new initiations were compared by treatment arm in follow-up. Similarly, among patients receiving β-blocker and MRA at baseline, discontinuations were compared during follow-up by treatment arm. New initiations and discontinuations were assessed among patients alive and with available data at each follow-up time point. A P-value <0.05 was considered statistically significant.

Results

Baseline characteristics

Overall, of 8399 patients validly randomized in PARADIGM-HF, 8398 (99.9%) had full medication/dose data for β-blocker and MRA at baseline. Full medication/dose data were available in 7341 (87.4%) and 7340 (87.4%) patients for β-blocker and MRA, respectively at 12 months. Baseline characteristics by randomization assignment according to baseline β-blocker and MRA use have been previously reported.

β-blocker use during 12-month follow-up

β-blocker use was similar between groups at baseline (sacubitril/valsartan: 87.4% vs. enalapril: 86.8%, P = 0.40), and at 6-month (88.0% vs. 88.2%, P = 0.88), and 12-month follow-up (87.9% vs. 87.6%, P = 0.63). As previously reported, of all patients on β-blockers at baseline, 47.7% were on ≥50% target dose and 17.4% were on ≥100% target dose. Mean β-blocker doses were not significantly different between those on sacubitril/valsartan and enalapril at any time point (Table 1). Patients receiving sacubitril/valsartan had higher rates of ≥50% target β-blocker dose at baseline (42.7% vs. 40.4%, P = 0.036), though there were no significant differences at 6 months (43.2% vs. 41.9%, P = 0.24) and 12 months (43.8% vs. 42.6%, P = 0.24) post-randomization (Figure 1).

Among patients not on β-blocker, new initiations were infrequent and similar based on treatment with sacubitril/valsartan vs. enalapril at 6-month [31 (7.0%) vs. 36 (8.0%), P = 0.57] and 12-month follow-up [37 (9.0%) vs. 42 (10.2%), P = 0.56] (Figure 2A).

Among patients on β-blocker, discontinuations occurred at similar
Figure 2 New initiations (A) and discontinuations (B) of β-blocker and mineralocorticoid receptor antagonist (MRA) at 6 and 12 months post-randomization. Sac/Val, sacubitril/valsartan. Note: Percentage for new initiations are calculated as the proportion of patients newly initiating therapy among all patients not previously on this particular therapy. Percentages for discontinuations are calculated as the proportion of patients discontinuing therapy among all patients previously on this particular therapy.
rates at 6 months [56 (1.6%) vs. 47 (1.4%), \(P = 0.40 \)] and 12 months [72 (2.2%) vs. 85 (2.6%), \(P = 0.26 \)] (Figure 2B).

Mineralocorticoid receptor antagonist use during 12-month follow-up

Patients receiving sacubitril/valsartan had lower MRA use as compared with those receiving enalapril at baseline (53.9% vs. 56.4%, \(P = 0.02 \)) and at 6 months post-randomization (53.4% vs. 56.9%, \(P = 0.05 \)). At 12 months post-randomization, there were no significant differences in MRA use by treatment arm (54.6% vs. 56.0%, \(P = 0.23 \)). Mean doses of spironolactone and eplerenone were similar between groups at all time points (Table 1).

Among patients not on MRA, new initiations did not significantly differ by treatment with sacubitril/valsartan vs. enalapril at 6 months [91 (5.1%) vs. 105 (6.4%), \(P = 0.11 \)] and 12 months [127 (7.6%) vs. 143 (9.2%), \(P = 0.10 \)] (Figure 2A). However, in patients on MRA, there were fewer discontinuations of MRA in patients assigned to sacubitril/valsartan as compared to enalapril at 6 months post-randomization [101 (4.7%) vs. 132 (5.9%), \(P = 0.08 \)], reaching significance at 12 months post-randomization [125 (6.2%) vs. 187 (9.0%), \(P = 0.001 \)] (Figure 2B).

Discussion

Given multiple disease-modifying benefits in patients with HFrEF,\(^{10}\) achieving comprehensive combination regimens is a high treatment priority. However, many of these therapies influence haemodynamics, electrolytes, and kidney function; upfront initiation of certain GDMT components may influence the subsequent tolerability of other core elements. Integration of new GDMT without compromising other foundational therapies is a major therapeutic goal in HFrEF management, and these data from PARADIGM-HF provide some reassurance that this can be practically achieved when initiating sacubitril/valsartan. This tolerability should be interpreted within the context of the PARADIGM-HF study design, in which enrolled subjects were optimized on these classes of therapies included in this study (derived from ESC clinical practice guidelines) may differ from those included in other international guidelines or those tested in pivotal randomized clinical trials. Sequential run-in phases may have selected for patients who had demonstrated ability to tolerate sacubitril/valsartan in addition to background therapy. Unmeasured confounding leading to differential tolerability to MRA in each arm may also in part explain these findings. Finally, reasons for treatment changes in background therapies were not prospectively collected from site investigators.

Conclusion

Multi-drug regimens in HFrEF require simultaneous balancing of multiple factors (haemodynamics, kidney function, electrolytes, affordability, and adherence). In PARADIGM-HF, initiation of sacubitril/valsartan did not influence use and dosing of \(\beta \)-blocker and was associated with less discontinuations of background MRA therapy, compared with enalapril. These data are reassuring that in a well-monitored clinical trial cohort, initiation of sacubitril/valsartan leads to minimal disruption of other background HFrEF therapy and may promote sustained MRA use. Further data are needed from usual care settings to understand the practicalities of various combinations and sequencing of contemporary GDMT in HFrEF.

Funding

The PARADIGM-HF trial was funded by Novartis AG. **Conflict of interest:** A.S.B. has received consulting/speaking fees from Sanofi Pasteur, Verve Therapeutics, and Clarivate and is supported by the National Heart, Lung, and Blood Institute (NHLBI)
References

1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filipatos GS, Fornarow GC, Givertz MM, Hoeffenberg SM, Lindenfeld J, Massoudi FA, McBride P, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA focused update of the 2013 ACC/AHA guideline for the management of heart failure: a report of the American College Of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–e161.

2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Niky Iacopino P, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Rutlege LM, Ruschitzka F, Rutten FH, van der Meer P. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.

3. Greene SJ, Butler J, Albert NM, DeVore AD, Sharma PP, Duffy CJ, Hill CL, McGurk K, Xi M, Patterson JH, Spertus JA, Thomas L, Williams FB, Hernandez AF, Fonarow GC. Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry. J Am Coll Cardiol. 2017;72:351–366.

4. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR. PARADIGM-HF Investigators and Committees. Angiotensin-Neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

5. Vardeny O, Claggett B, Kashchadorian J, Pearson SM, Desai AS, Packer M, Rouleau J, Zile MR, Lefkowitz M, Shi V, McMurray JJV. SOLVD. Incidence, predictors, and outcomes associated with hypotensive episodes among heart failure patients receiving sacubitril/valsartan or enalapril: the PARADIGM-HF trial (Prospective Comparison of Angiotensin Receptor Neprilysin Inhibitor with Angiotensin-Converting Enzyme Inhibitor to Determine Impact on Global Mortality and Morbidity in Heart Failure). Circ Heart Fail. 2018;11:e004745.

6. Okumura N, Jhund PS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Swedberg K, Zile MR, Solomon SD, Packer M, McMurray JJ. PARADIGM-HF Investigators and Committees. Effects of sacubitril/valsartan in heart failure with reduced left ventricular ejection fraction: a randomized trial (PARADIGM-HF). JAMA. 2016;315:1265–1274.

7. Vardeny O, Claggett B, Kashchadorian J, Pearson SM, Desai AS, Packer M, Rouleau J, Zile MR, Swedberg K, Lefkowitz M, Shi V, McMurray JJV. REDUCE-IT. Reducing cardiovascular events with evolocumab in patients with established cardiovascular disease. N Engl J Med. 2018;378:1991–2000.

8. Bhandari A, Muntner P, Rashidi F, Snijdewind K, Saksena S, Lerman AM, Muhammad R, Newby LK, Nkomo VT, Chen J, Koenig W, Schiller NB. Contribution of the Heart Failure Association (HFA) of the ESC. Developed with the special contribution of the Heart Failure and Preventive Cardiology Association (HFA) of the ESC. Eur J Heart Fail. 2018;20:931–939.

9. Bonow RO, Carabello BA, Chatterjee K, de Jong S, Faxon DP, Freedman RA, Gardin JM, countert K, Abraham WT, Adams CD. AHA/ACC/HFS guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2013;126:e121–e265.

10. Yancy CW, Kim YH, Kushner FG, Nallamothu BK,标语 TS, Casey DE Jr. 2020 ACCF/AATS/ACCP/ACEM/ACR/ASA/SCC/AHA/SCAI/SCCP/SCCT/SCMR/SOCR/STS/SVM/SVS guideline for the diagnosis and management of patients with heart failure: a report of the American College of Cardiology/American Heart Association/American Association for Thoracic Surgery/American College of Chest Physicians/American College of Radiology/American Stroke Association/American Society for Clinical Oncology/American Society of Cardiac Imaging/American Society of Cardiopulmonary Care/American Society of Cardiovascular Computed Tomography/Ammer College of Cardiology/American Society of Nuclear Cardiology/Society of Cardiovascular Angiography and Interventions/Society of Cardiovascular Magnetic Resonance/Society of Cardiovascular Surgeons/Society for Cardiovascular Angiography and Interventions/Thoracic Surgeons of America/Society for Vascular Medicine/Thoracic and Cardiovascular Surgeons of America. J Am Coll Cardiol. 2020;77:1397–1407.

11. Aries H, Butter CJ, Collet J, de Boer RA, Koenig W, Mancini J, Massaro JM, McKegney FA, McMurray JJV, Packer M, Pfeffer MA, Schwartz SM, Tardif JC, Solomon SD, Swedberg K, Yan SD, Young JB. Heart failure with preserved ejection fraction: expert consensus document. JACC. 2019;73:1673–1720.
A.S. Bhatt et al. GC. Heart failure hospitalization and guideline-directed prescribing patterns among heart failure with reduced ejection fraction patients. JACC Heart Fail 2021;9:28–38.

16. Maddox TM, Januzzi JL Jr, Allen LA, Breathett K, Butler J, Davis LL, Fonarow GC, Ibrahim NE, Lindenfeld J, Masoudi FA, Motiwala SR, Oliveros E, Patterson JH, Walsh MN, Wasserman A, Yancy CW, Youmans QR. 2021 Update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment: answers to 10 pivotal issues about heart failure with reduced ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2021;77:772–810.