SLOWING PROGRESSION OF CHRONIC KIDNEY DISEASE

ASPN/HKSN CME COURSE
SEPTEMBER 28, 2019
Prognosis of CKD by GFR and albuminuria category

Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012

Persistent albuminuria categories	A1	A2	A3
Description and range	Normal to mildly increased	Moderately increased	Severely increased
	<30 mg/g	30-300 mg/g	>300 mg/g
	<3 mg/mmol	3-30 mg/mmol	>30 mg/mmol

GFR categories (ml/min 1.73 m²)	Description and range
G1	Normal or high ≥90
G2	Mildly decreased 60-89
G3a	Mildly to moderately decreased 45-59
G3b	Moderately to severely decreased 30-44
G4	Severely decreased 15-29
G5	Kidney failure ≤15

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.
Timing of clinical outcomes in CKD with severely decreased GFR

Age (30-85 yrs) 60
Sex Male
Race (White or Black) White
eGFR (mL/min/1.73m²) 25
Systolic Blood Pressure (mmHg) 140
History of Cardiovascular Disease Yes
Diabetes Diabetes
Urine Albumin to Creatinine (mg/g) Click to change between mg/g and mg/mmol 2000
Smoking History Current Smoker

Risk at 4 Years

Outcome	Risk
Any Kidney Replacement Therapy (KRT a.k.a. ESRD)	37.1%
Any Cardiovascular Disease (CVD)	45.2%
Any Death	40.1%

- CKD G4+ - no event 19.8%
- KRT Only 15.3%
- KRT After CVD 2.4%
- CVD After KRT 4.7%
- Death After KRT 7.9%
- Death After KRT and CVD 6.7%
- Death After CVD 13.7%
- Death Only 11.8%
- CVD Only 17.7%

Grams ME, et al: Kidney Int 2018; 93:1442
Why identify patients with early CKD?

- Manage complications
 - Anemia
 - Mineral and bone disorders
 - Hypertension
 - Cardiovascular **
- Slow progression
- Plan for renal replacement therapy
PATHOPHYSIOLOGY OF PROGRESSION

- Hyperfiltration
- Renin-angiotensin-aldosterone
- Inflammation/oxidant stress
- Genetic susceptibility
• 1388 living kidney donors
 • CT scan kidney
 • Iothalamate-based GFR
 • Kidney biopsy at donation
• SNGFR = GFR/number of nephrons
 (#nephrons: cortical volume on CT x biopsy determined glomerular density)
Mean number of nephrons = 860,000 ± 370,000
Mean GFR = 115 ± 24 ml/min
Mean SNGFR = 80 ± 40 nl/minute
Higher SNGFR associated with risk factors for CKD:
 ▪ Larger nephrons
 ▪ More glomerulosclerosis and arteriosclerosis
 ▪ Obesity
 ▪ Family history of ESRD
Nephron number and GFR progressively decrease even with healthy aging.

Aleksandar Denic et al. JASN 2017;28:313-320

©2017 by American Society of Nephrology
N=9361 SBP >130
Intensive: SBP<120
Standard: SBP<140
• **Primary outcome:** composite of MI, acute coronary syndrome, stroke, HF, death
Outcome	Intensive Treatment	Standard Treatment	Hazard Ratio (95% CI)	P Value				
	no. of patients (%)	% per year	no. of patients (%)	% per year	(N=1330)	(N=1316)		
Participants with CKD at baseline								
Composite renal outcome‡	14 (1.1)	0.33	15 (1.1)	0.36	0.89 (0.42–1.87)	0.76		
≥50% reduction in estimated GFR§	10 (0.8)	0.23	11 (0.8)	0.26	0.87 (0.36–2.07)	0.75		
Long-term dialysis	6 (0.5)	0.14	10 (0.8)	0.24	0.57 (0.19–1.54)	0.27		
Kidney transplantation	0	0						
Incident albuminuria¶	49/526 (9.3)	3.02	59/500 (11.8)	3.90	0.72 (0.48–1.07)	0.11		
Participants without CKD at baseline	(N=3332)		(N=3345)					
≥30% reduction in estimated GFR to <60 ml/min/ min/1.73 m²§	127 (3.8)	1.21	37 (1.1)	0.35	3.49 (2.44–5.10)	<0.001		
Incident albuminuria¶	110/1769 (6.2)	2.00	135/1831 (7.4)	2.41	0.81 (0.63–1.04)	0.10		

Renal outcome: decrease eGFR 50% or more, ESRD requiring dialysis or transplant
ADVERSE EFFECTS OF ANGIOTENSIN II

Afferent arteriole

Efferent arteriole

glomerular capillary hypertension

proteinuria

Loss of podocytes

↑ mesangial matrix and proliferation

Pro-fibrotic

proinflammatory

mesangial matrix and proliferation
The renin-angiotensin-aldosterone system

- Angiotensinogen
 - Renin
 - Renin Inhibitor
 - Angiotensin I
 - ACE
 - ACE-I
 - Angiotensin II
 - Angiotensin II receptor
 - Aldosterone antagonist
 - Aldosterone
 - Aldosterone receptor
Diabetic patients:
- Normoalbuminuric normotensive
- Microalbuminuric normotensive
- Diabetic nephropathy
- Non-diabetic kidney disease

Angiotensin II receptor blockade = Angiotensin converting enzyme inhibition

20% risk reduction
Table 3. Summary of the Effects of Glycemic Control on Renal Disease

Event	Effect
Development of albuminuria	+
Progression of microalbuminuria to overt proteinuria	+
GFR loss in type 2 diabetes	−
GFR loss in type 1 diabetes	+, long-term effect

Seminars in Nephrology, Vol 36, No 4, July 2016, pp 331–342
The diagram illustrates the transport of glucose in the kidney. Glucose is absorbed in the proximal tubule via SGLT2, with approximately 90% reabsorption. In the distal S2/S3 segment of the proximal tubule, SGLT1 is involved in the transport of glucose, with about 10% reabsorption. There is no glucose detected in the collecting duct.
• N=4401, DM2, eGFR=30 to <90, max RAAS blockade
• Median follow-up = 2.62 years
• Primary outcome: composite of ESRD, doubling S[Cr], death from renal cause
• Main results: primary outcome 30% lower in canagliflozin group
• Also: lower risk of CV death, MI, or stroke, hospitalization for heart failure
• No differences in rates of amputation or fracture
Nephron Protection in Diabetic Kidney Disease

Hans-Joachim Anders, M.D., John M. Davis, Ph.D., and Klaus Thurau, M.D.
- Endothelin A receptor antagonist
- Type 2 diabetic patients:
 - Age 18-85 years (5117 enrichment; 2648 responders)
 - eGFR – 25-75 mL/min/1.73m²
 - UACR – 300-5000 mg/g
- Maximal RAAS blockade for 4 weeks
- Median follow up 2.2 years
Primary renal outcome - composite of:
• Doubling of SCr
• ESRD
• Death

Primary endpoint:
• 6% atrasentan vs 7.9% placebo (p=0.0047)
Liraglutide and Renal Outcomes in Type 2 Diabetes

Johannes F.E. Mann, M.D., David D. Ørsted, M.D., Ph.D.,
Kirstine Brown-Frandsen, M.D., Steven P. Marso, M.D.,
Neil R. Poulter, F.Med.Sci., Søren Rasmussen, Ph.D., Karen Tornøe, M.D., Ph.D.,
Bernard Zinman, M.D., and John B. Buse, M.D., Ph.D.,
for the LEADER Steering Committee and Investigators

Liraglutide: glucagon-like peptide-1 (GLP-1) analogue – stimulates insulin release

- 9340 DM2 patients at high risk for CV disease
- Secondary renal outcome: new onset persistent macroalbuminuria, persistent doubling of serum Cr, need for renal replacement therapy, or death due to renal cause
A Composite Renal Outcome

Hazard ratio, 0.78 (95% CI, 0.67–0.92)
P=0.003

No. at Risk
Placebo 4672 4643 4540 4428 4316 4196 4094 3990 3901 3331 1613 433
Liraglutide 4688 4635 4561 4492 4400 4304 4210 4114 3132 1632 454

B New Onset of Persistent Macroalbuminuria

Hazard ratio, 0.74 (95% CI, 0.60–0.91)
P=0.004

No. at Risk
Placebo 4672 4646 4551 4455 4359 4252 4162 4073 1642 442
Liraglutide 4688 4638 4570 4508 4437 4353 4268 4182 1662 461

C Persistent Doubling of Serum Creatinine Level

Hazard ratio, 0.89 (95% CI, 0.67–1.19)
P=0.43

No. at Risk
Placebo 4672 4647 4596 4529 4447 4367 4282 4196 1682 456
Liraglutide 4688 4639 4591 4544 4476 4403 4332 4264 1692 475

D Continuous Renal-Replacement Therapy

Hazard ratio, 0.87 (95% CI, 0.61–1.24)
P=0.44

No. at Risk
Placebo 4672 4645 4590 4527 4454 4370 4299 4227 1699 461
Liraglutide 4688 4640 4596 4547 4484 4416 4349 4282 1710 483
Trial	Target
FIDELIO-DKD	Finerenone (nonsteroidal MRA)
PERL	Allopurinol
BASE	Bicarbonate (high and low dose)
SONAR	Atrasentan (endothelin antagonist)
Many	Linagliptin (DPP-4 inhibitor)
Many	SGLT2 inhibitors (DN and non-DN)
NCT01377285	Pentoxifylline (antifibrotic)
PROCEED	Paricalcitol (Vit D receptor agonist)
VALID	Dual RAAS blockade
EXECUTIVE ORDERS

Executive Order on Advancing American Kidney Health

HEALTHCARE | Issued on: July 10, 2019

By the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows:

HEALTH AND SCIENCE

Trump signs executive order overhauling kidney transplant, dialysis market

PUBLISHED WED. JUL 10 2019 - 9:48 AM EDT | UPDATED WED. JUL 10 2019 - 6:26 PM EDT

Brockley Lovelace Jr. | UAHKXEL1YR

SHARE

Press

Executive order provides more options for people with kidney disease
CONCLUSIONS

- Lower BP – <130/80 (more aggressive in those patients with >proteinuria)
- Use RAAS blockade but only single agent
- SGLT2 inhibitors and liraglutide can prevent DN
- Keep HCO₃ >22; consider low protein diets
- Early nephrology referral and coordinated CKD care
- The future: endothelin antagonists, antifibrotic agents, antioxidants, cellular therapy
- Many ongoing trials
- White House Executive Order