Antimicrobial potential of 1H-benzo[d]imidazole scaffold: a review

Sumit Tahlan, Sanjiv Kumar and Balasubramanian Narasimhan*

Abstract

Background: Benzimidazole is a heterocyclic moiety whose derivatives are present in many of the bioactive compounds and possess diverse biological and clinical applications. Benzimidazole agents are the vital pharmacophore and privileged sub-structures in chemistry of medicine. They have received much interest in drug discovery because benzimidazoles exhibited enormous significance. So attempts have been made to create repository of molecules and evaluate them for prospective inherent activity. They are extremely effective both with respect to their inhibitory activity and favorable selectivity ratio.

Conclusion: Benzimidazole is the most promising category of bioactive heterocyclic compound that exhibit a wide variety of biological activities in medicinal field. The present review only focus on antimicrobial activity of reported benzimidazole derivatives may serve as valuable source of information for researchers who wish to synthesize new molecules of benzimidazole nucleus which have immense potential to be investigated for newer therapeutic possibilities.

Keywords: Benzimidazole derivatives, Antimicrobial activity, Antifungal activity

Background

Benzimidazole is a dicyclic organic scaffold having imidazole (containing two nitrogen atoms at adjoining site) attached with benzene ring. Benzimidazole considered as potential bioactive heterocyclic aromatic compounds with a variety of biological activities like anti-inflammatory [1], antiparasitic [2], antimalarial [3], antimycobacterial [4], antineoplastic [5], antiviral [6], antihypertensive [7] and anticonvulsant [8] activities. Benzimidazole (synthesis (A); Fig. 1) and its derivatives are the most resourceful classes of molecules against microorganisms [9]. The increase in antimicrobial resistance to existing drugs necessitated the search for new molecules for the treatment of bacterial infections [10, 11]. Currently, a number of benzimidazole containing drugs are available in market namely: albendazole (i), mebendazole (ii), thiabendazole (iii) ridinalazon (iv) and cyclobendazole (v) (marketed drugs (B); Fig. 1).

Biological profile

Antimicrobial activity

Ansari et al. synthesized 2-substituted-1H-benzimidazole derivatives by nucleophilic substitution reaction and evaluated their antimicrobial activity against selected microbial species. The compounds 1a, 1b, 1c and 1d showed good antibacterial activity as well as compound 1c showed good antifungal activity (Table 1, Fig. 2). SAR study inferred that at 2-position of oxadiazole ring increased side chain carbon atom number causes an enhanced the antimicrobial activity toward *C. albicans*, *S. aureus* and *B. subtilis* and also the para-substituted phenyl nucleus supported the activity [9].

Ansari et al. reported a series of 2-mercaptobenzimidazole derivatives and screened for its in vitro antimicrobial activity (using cup-plate agar diffusion method) against selected microbial species i.e. *E. coli*, *B. subtilis*, *A. flavus*, *C. albicans* and *A. niger*. Structure activity relationship studies revealed that compounds having o-Cl (2f and 2h), o-CH₃ (2g and 2i), −OH (2b, 2c and 2d) and p-NH₃ (2e) groups in phenyl ring as well as compound 2a without substitution displayed significant antibacterial potential.
which is comparable to the reference drugs (Table 2, Fig. 2) [12].

Arjmand et al. synthesized novel Cu(II) complex benzimidazole derivative via condensation of 2-mercapto-benzimidazole with diethyloxalate and screened for their antimicrobial activity against bacterial (E. coli, S. aureus) and fungal (A. niger) species. Compound 3a exhibited highest activity against the bacterial as well inhibited the growth of fungal species (Table 3, Fig. 3) [13].

A novel series of benzimidazole derivatives was reported by Ayhan-Kilcigil et al. and evaluated for its antimicrobial potential against selected strains by the tube dilution technique. Compound 4a showed significant antimicrobial potential against B. subtilis and P. aeruginosa with MIC values of 12.5 and 25 µg/mL, respectively which is comparable to ampicillin (MIC = 6.25 and 25 µg/mL) as well 4a and 4b (Fig. 3) showed good antifungal activity with MIC values of 6.25 and 12.5 µg/mL (C.

Compounds	Antibacterial activity Microbial strains (MIC = µg/mL)	Antifungal activity (ZI mm)							
	S. aureus	B. subtilis	S. mutans	E. coli	P. aeruginosa	S. typhi	C. albicans	A. niger	A. flavus
1a	4	4	8	64	64	16	–	–	–
1b	4	8	4	32	> 128	32	–	–	–
1c	2	4	4	> 128	NE	NE	22–28	10–15	22–28
1d	2	8	4	16	64	16	–	–	–
Ciprofloxacin	≤ 1	≤ 1	NE	≤ 1	NE	NE	–	–	–
Ampicillin	2	2	2	4	> 128	> 128	–	–	–
Amphotericin B	–	–	–	–	–	–	22–28	22–28	22–28

NE: not exercised
albicans as comparable with fluconazole (MIC = 6.25 µg/mL) and miconazole (MIC = 3.125 µg/mL) [14].

Bandyopadhyay et al. synthesized new class of 1,2-disubstituted benzimidazole derivatives using Al₂O₃–Fe₂O₃ nanocrystals as heterogeneous catalyst under mild reaction conditions and evaluated for its antibacterial activity (Kirby–Bauer disc diffusion method) against *B. cereus*, *V. cholerae*, *S. dysenteriae*, *S. aureus* and *E. coli*. Compounds, 5a, 5b and 5c (Fig. 3) showed good activity as compared to standard ciprofloxacin. Additionally, compounds 5a and 5c showed absolute bactericidal activity against tested strains within 24 h, whereas ciprofloxacin kill those bacteria in 48 h (Table 4) [15].

Barot et al. developed some novel benzimidazole derivatives and evaluated for their antimicrobial potential towards *P. aeruginosa*, *E. coli*, *B. cereus*, *K. pneumonia*, *S.*
aureus, E. faecalis, C. albicans, A. niger and F. oxyspora and compared to standard drugs ofloxacin metronidazole and fluconazole. From this series, compounds 6a and 6b revealed good antibacterial activity whereas compound 6c showed significant antifungal activity (Table 5, Fig. 3).

Desai et al. reported a series of 2-mercaptobenzimidazole and β-lactum segment derivatives containing –CONH– and evaluated for its in vitro antibacterial (Kirby–Bauer disc diffusion technique) and antifungal potentials against tested microorganisms using streptomycine and flucanozole as standards. Among the synthesized compounds, 7a displayed tremendous inhibitory activity against B. subtilis, 7b showed excellent activity against E. coli and S. aureus, 7c showed considerable activity against A. niger and 7d showed significant activity against C. krusei (Table 6, Fig. 3).

Desai et al. reported new benzimidazoles bearing 2-pyridone and evaluated for their antimicrobial activity against S. pyogenes, E. coli, S. aureus, P. aeruginosa, C. albicans, A. clavatus and A. niger by conventional broth dilution technique. Among the synthesized compounds, 8a, 8b, 8c and 8d (Table 7, Fig. 4) having electron withdrawing group (nitro) at the m-position enhanced the antibacterial activity and compared to chloramphenicol while compound 8e displayed most effective antifungal activity and comparable to standard ketoconazole [11].

Dolzhenko et al. prepared novel 3,4-dihydro [1, 3, 5]triazino[1,2-a]benzimidazole compounds and screened for their in vitro antibacterial activity by twofold serial dilution technique. Compound 9a exhibited good antibacterial potential as compared to standard drug tetracyclin (Table 8, Fig. 4) [17].

Goker et al. developed novel substituted benzimidazole carboxamidine molecules and assessed for their antibacterial activity by tube dilution method against selected microbes. Compounds 10a and 10b displayed significant antibacterial activity (Table 9, Fig. 4) as comparable to standard drugs (ampicillin and sultamicillin) [18].

Gumus et al. synthesized platinum(II) complexes with substituted benzimidazole ligands and evaluated for their antimicrobial potential against S. aureus, P. aeruginosa, S.
Fig. 3 Molecular structures of compounds (3a, 4a–4b, 5a–5c, 6a–6c, 7a–7d)
faecalis, E. coli and C. albicans using the macro dilution broth method. Complex 11a (MIC = 100 µg/mL) exhibited good antibacterial activity against S. faecalis, 11b (Mpyrb- methyl α-pyridyl benzimidazole, MIC = 50 µg/mL) against C. albicans and 11c (Merb- mercaptobenzimidazole, MIC = 50 and 100 µg/mL) (Fig. 4) found active against S. faecalis and S. aureus [19].

Guven et al. reported a new class of benzimidazole and phenyl-substituted benzyl ethers and evaluated for its antimicrobial potential against selected microbial

Table 4	Antibacterial activity of compounds (5a–5c)					
Comp.	Microorganisms (ZI mm)					
	E. coli	V. cholera	S. dysenteriae	S. aureus	B. cereus	
5a	19	33	23	10	22	
5b	22	13	19	22	–	
5c	–	23	11	10	–	
Ciprofloxacin	–	32	24	14	15	14

Table 5	Antimicrobial activity of compounds (6a–6c)								
Comp.	Microorganisms (MIC in µg/mL)								
	B. cereus	E. faecalis	S. aureus	E. coli	P. aeruginosa	K. pneumonia	C. albicans	A. niger	F. oxyspora
6a	5	7	7	10	10	9	–	–	–
6b	5	7	8	8	8	11	–	–	–
6c	–	–	–	–	–	–	8	7	8
Ofloxacin	2	2	3	4	4	5	–	–	–
Metronidazole	3	3	3	3	4	4	–	–	–
Fluconazole	–	–	–	–	–	–	2	3	3

Table 6	Antimicrobial activity results of compounds (7a–7d)						
Compounds	Microorganisms	Bacteria (ZI mm)	Fungi (MIC in µg/mL)				
		B. subtilis	S. aureus	E. coli	C. albicans	C. krusei	A. niger
7a	–	20–25	15–20	15–20	–	–	–
7b	–	15–20	20–25	20–25	–	–	–
7c	–	–	–	150	100	150	100
7d	–	–	–	150	150	100	–
Streptomycin	25–30	25–30	25–30	–	–	–	–
Fluconazole	–	–	–	–	50	50	50

Table 7	Antimicrobial activity results of compounds (8a–8e)						
Comp.	Microorganisms (MIC in µg/mL)						
	S. aureus	S. pyrogens	E. coli	P. aeruginosa	C. albicans	A. niger	A. clavatus
8a	12.5 ± 1.05	12.5 ± 1.21	25 ± 1.35	25 ± 2.80	500 ± 1.57	100 ± 1.24	250 ± 2.78
8b	50 ± 1.54	50 ± 1.31	100 ± 2.65	100 ± 1.61	500 ± 2.15	250 ± 2.21	250 ± 1.24
8c	12.5 ± 1.48	25 ± 2.15	25 ± 1.35	25 ± 1.15	100 ± 1.64	500 ± 1.85	250 ± 1.32
8d	25 ± 1.21	50 ± 1.81	25 ± 1.54	50 ± 1.51	250 ± 1.32	> 1000	500 ± 2.32
8e	62.5 ± 1.35	100 ± 1.65	125 ± 1.42	125 ± 1.71	25 ± 1.41	50 ± 1.14	62.5 ± 1.35
Chloramphenicol	50 ± 1.24	50 ± 2.04	50 ± 1.00	50 ± 2.06	–	–	–
Ketoconazole	–	–	–	–	50 ± 0.50	50 ± 1.20	50 ± 1.10
Table 8 Antibacterial activity of the fluorinated compound 9a

Compound	Microbial strains (MIC = µg/mL)				
	S. aureus	*B. subtilis*	*B. megaterium*	*K. aerogenes*	*E. coli*
9a	25	25	>25	>25	>25
Tetracycline	0.63	0.63	0.63	1.25	1.25

Fig. 4 Molecular structures of compounds (8a–8e, 9a, 10a–10b, 11a–11c, 12a)
species. Among the synthesized derivatives, compound 12a (Table 10, Fig. 4) exhibited good antibacterial activity and comparable to the standard drug [20].

Hu et al. designed new bis-benzimidazole diamidine compounds and evaluated for their antibacterial activity against tested species and compared to standard drugs (penicillin G, vancomycin and ciprofloxacin). Compound 13a exhibited the potent antibacterial activity than vancomycin (Table 11, Fig. 5) [21].

Jardosh et al. developed a novel series of pyrido[1,2-α]benzimidazole derivatives and assessed for its in vitro antimicrobial activity against S. typhi, S. pneumoniae, E. coli, C. tetani, V. cholera, B. subtilis, C. albicans and A. fumigatus using broth micro dilution technique. Among the synthesized derivatives, compounds 14a–14c (Fig. 5) displayed the good antimicrobial activity and compared to standard drugs (Table 12, Fig. 5) [22].

Kalinowska-Lis et al. synthesized silver (I) complexes of benzimidazole and screened for their antimicrobial activity against S. epidermidis, S. aureus and C. albicans. In this series, compound 15a (Fig. 5) exhibited good antifungal but moderate antibacterial activity as compared to standard drugs AgNO₃ and silver sulfadiazine (AgSD) (Table 13) [23].

Kankate et al. developed novel benzimidazole analogues and screened for their in vitro (tube dilution technique) and in vivo antifungal activity (kidney burden test) against C. albicans. Compound 16a (Fig. 5) exhibited superior in vitro antifungal activity with MIC value of 0.0075 µmol/mL as comparable to fluconazole while in vivo activity was significantly less (P < 0.001) [24].

Khalafi-Nezhad et al. synthesized some chloroaryloxyalkyl benzimidazole derivatives and screened for their in vitro antimicrobial activity against S. typhi and S. aureus using disk diffusion method. Compound 17a showed good antibacterial activity against the tested microbial species (Table 14, Fig. 5) [25].

Klimesova et al. developed a chain of 2-alkylsulphonylbenzimidazoles and evaluated for its in vitro

| Table 9 In vitro antibacterial activity of compounds (10a–10b) |
Compounds	Microorganisms MIC (µg/mL)	S. aureus	MRSA	MRSA (isolate from blood)	MRSA (isolate from wound)
10a	0.78	0.78	0.39	1.56	
10b	0.39	0.78	0.39	0.78	
Ampicillin	0.78	50	50	50	
Sultamicillin	0.39	25	25	25	

| Table 10 In vitro antimicrobial activity of compounds (12a) |
Compounds	Microbial strains MIC (µg/mL)	S. aureus	MRSA	C. albicans	C. krusei
12a	3.12	6.25	12.5	12.5	
Ampicillin	0.78	25	–	–	
Fluconazole	–	0.78	25		
Miconazole	–	0.19	0.78		

| Table 11 Antibacterial results of compound 13a |
Compound	Strains	MIC (µg/mL)	Penicillin-G	Ciprofloxacin	Vancomycin
13a	S. aureus	0.25–0.5	1	0.5	0.5
	S. aureus^a	0.5	>32	8	1
	S. aureus^b	0.25–0.5	>32	≤0.12	1
	S. epidermidis	<0.06	32	≤0.12	1
	S. epidermidis^c	0.125	32	≤0.12	1
	S. pneumoniae	<0.06	<0.06	0.5	1
	E. faecalis^d	0.25–0.5	4	0.5	>64
	E. faecium^a	0.12	>32	>64	>64
	B. subtilis	0.12	<0.06	≤0.12	0.12–0.5
	B. cereus	0.12	4–32	≤0.12	1–≤0.12
	B. fragilis	0.5–1	4–8	0.5	4–8
	C. perfringens	0.25–0.5	≤0.06–0.12	0.25	0.12–0.25

^a MDRSA
^b MRSA
^c MRSE
^d VRE
antimycobacterial and antifungal activities against selected strains using isoniazide and ketoconazole as standards. Among the synthesized compounds, 18a exhibited significant antimycobacterial and antifungal activities (Table 15, Fig. 5) [26].

Koc et al. synthesized few tripodal-benzimidazole derivatives and evaluated for their antibacterial activity against *S. aureus*, *B. subtilis* and *E. coli* by standard disk diffusion technique using gentamycin as reference. Among the synthesized compounds, 19a and 19b exhibited good antibacterial activity toward *E. coli*, *S. aureus* and *B. subtilis* (Table 16, Fig. 5) [27].

Kucukbay et al. synthesized new electron-rich olefins benzimidazole compounds and evaluation for their in vitro antimicrobial activity against the selected microbial species and compared to standard drug. Among the prepared compounds, 20a and 20b were found to be most effective against *C. albicans* and *C. tropicalis* (Table 17, Fig. 5) [28].
Kumar et al. developed a new series of substituted benzimidazole scaffolds and screened for its in vitro antibacterial potential against *S. aureus* and *S. typhimurium* and compared to cephalexin as standard. Compounds, 21a and 21b exhibited good antibacterial activity against *S. typhimurium* whereas showed pitiable activity against *S. aureus* (Table 18, Fig. 6) [29].

Kumar et al. reported a series of trisubstituted benzimidazole molecules and screened for its antimicrobial potential against *F. tularensis* LVS strain using Microplate Alamar Blue assay. Compounds, 22a and 22b (Fig. 6) exhibited promising antimicrobial activity with MIC values of 0.35 and 0.48 µg/mL [30].

Lopez-Sandoval et al. reported a series of cobalt (II) and zinc (II) coordination complexes with benzimidazole and evaluated for its antimicrobial potential by disk diffusion method and antibiotics microbial assays (U.S.P 23) against *P. aeruginosa, E. coli, S. typhi, M. luteus, S. aureus* and *P. vulgaris*. Among the synthesized complexes, complex 23a exhibited good activity toward *M. luteus* and *E. coli* (Table 19, Fig. 6) [31].

Mehboob et al. reported a class of second generation benzimidazole derivatives and screened for its antibacterial activity against *S. aureus, MRSA, F. tularensis* and *E. coli*. Among the synthesized compounds, 24a exhibited good antibacterial activity against selected bacterial strains (Table 20, Fig. 6) [32].

Mohamed et al. reported a class of seven transition metal complexes of benzimidazole and assessed for its antifungal activity against *S. aureus, MRSA, F. tularensis* and *E. coli*. Among the synthesized compounds, 25a exhibited good antibacterial activity against selected bacterial strains (Table 20, Fig. 6) [33].

Moreira et al. reported a series of bis-benzimidazole conjugates and screened for its antibacterial activity against selected microbes. Among the synthesized derivatives, compounds 26a, 26b and 26c possessed excellent activity against Gram-positive bacteria with MIC values between 0.06 and 1 mg/L. Compounds 26c and 26d exhibited significant activity against *M. tuberculosis*

Table 12 In vitro antimicrobial activity of benzimidazole compounds (14a–14c)

Compounds	Microorganisms (MIC = µg/mL)	B. subtilis	C. tetani	S. pneumoniae	E. coli	S. typhi	V. cholera	A. fumigatus	C. albicans
14a		100	200	100	200	250	250	> 1000	250
14b		500	200	200	250	250	50	200	> 1000
14c		250	250	250	62.5	200	100	> 1000	250
Ciprofloxacin		50	100	50	25	25	25	–	–
Chloramphenicol		50	50	50	50	50	50	–	–
Norfloxacin		100	50	10	10	10	10	–	–
Ampicillin		250	250	100	100	100	100	–	–
Griseofulvin		–	–	–	–	–	–	100	500

Table 13 Antimicrobial activity results of compound 15a

Compound 15a	Microorganisms					
	S. aureus	*S. epidermis*	*C. albicans*			
	MIC	MBC	MIC	MBC	MIC	MBC
[Ag(2-CH₂OHbim)₂NO₃]	80	171	90	193	80	171
AgNO₃	15	88	25	147	15	88
Silver sulfadiazine (AgSD)	60	168	90	252	40	112

Table 14 Antibacterial screening results of compound 17a

Compound	Microorganisms (MIC = µg/mL)	*S. aureus*	*S. typhi*
17a		22	24
Chloramphenicol		16	20
Hexachlorophene		10	1
Table 15 Antimycobacterial screening results of compound 18a (MIC = µmol/L)

Compound	Bacterial strains	Fungal strains
	M. tuberculosis MY 331/88	*M. kansasii* My 235/80
18a	4 4 4 8 8 8 8 8 8	14 days 21 days
Isoniazide	0.5 1 > 250 > 250 > 250 2 4 4 > 250 > 250	– – – – – – –
Ketoconazole	– – – – – – –	– – – – – – –
H37Rv with MIC value of 2 mg/L and 1 mg/L, respectively (Fig. 6) [34].

Noolvi et al. developed a class of 1H-benzimidazole azetidine-2-one scaffolds and assessed for its antibacterial activity against selected bacteria (S. aureus, B. pumillus, E. coli and P. aeruginosa). The MIC and ZI of the synthesized compounds was determined by agar diffusion technique. Compounds 27a–27e showed significant antibacterial activity as comparable to ampicillin (Table 21, Fig. 7) [35].

Ozden et al. synthesized a chain of benzimidazole-5-carboxylic acid alkyl esters and evaluated for its antifungal activity against methicillin resistant E. coli, MRSA, S. aureus, S. faecalis, MRSE and C. albicans. Compounds 28a, 28b and 28c exhibited promising antifungal activity as compared to reference drugs (Table 22, Fig. 7) [36].

Ozkay et al. developed a series of benzimidazole compounds with hydrazone moiety and assessed for its in vitro antimicrobial potential against bacterial (E. faecalis, B. subtilis, L. cytogenes, S. aureus, P. aeruginosa, K. pneumoniae, E. coli ATCC 35218, E. coli ATCC 25922, S. typhimurium, P. vulgaris) and fungal (C. albicans, C. tropicalis, C. glabrata) species by twofold serial dilutions technique taking chloramphenicol and ketoconazole as reference drugs. In this series, compounds, 29a and 29b showed promising antibacterial and antifungal activities as compared to standard drugs (Tables 23 and 24, Fig. 7) [37].

Padalkar et al. synthesized a new class of 2-(1H-benzimidazol-2-yl)-5-(diethylamino) phenol derivatives and screened for its antimicrobial potential against S. aureus, E. coli, A. niger and C. albicans using serial dilution method. Among them, compounds, 30a (2-(1H-benzo[d] imidazol-2-yl)-5-(diethylamino)phenol) and 30b (5-(diethylamino)-2-(5-nitro-1H-benzo[d]imidazol-2-yl) phenol) displayed significant activity against tested bacterial species and their activity results are similar to the reference drug (Table 25, Fig. 7) [38].

Seenaiah et al. reported a series of benzimidazole derivatives and screened for its antimicrobial activity against selected bacterial and fungal species by agar well diffusion (ZI) and broth dilution methods (MIC). In this series, compound 31a displayed promising activity against tested microorganisms as comparable to standard drugs (Tables 26, 27, 28 and Fig. 7) [39].

Tiwari et al. designed a new series of benzimidazole scaffolds and evaluated for its in vitro antifungal potential against A. flavus and A. niger by agar plate method. From the synthesized derivatives, compounds 32a and 32b showed excellent antimicrobial activity as comparable to reference (amphotericin B) (Table 29, Fig. 8) [40].

Table 16 Antimicrobial activity of compounds (19a–19b)

Compounds	Microorganisms (ZI/mm²)		
	E. coli	B. subtilis	S. aureus
19a	7	9	9
19b	7	9	10
Gentamycin	16	16	18

Table 17 Antimicrobial results of compounds (20a–20b)

Compound	Microorganisms (MIC = µg/mL)					
	Bacteria	Fungi				
	E. Faecalis	S. aureus	E. coli	P. aeruginosa	C. albicans	C. tropicalis
20a	200	200	50	50		
Ampicillin	0.78	0.39	3.12	> 75		
20b	–	–	–	–	50	50
Fluconazole	–	–	–	–	1.25	1.25

Table 18 Antibacterial activity of compounds (21a–21b)

Compounds	Concentration (µg/mL) (S. typhimurium)						
	0.1	1	10	100	200	500	App. MIC
21a	+	+	PG	PG	–	–	200
21b	+	+	+	PG	–	–	200
Cephalexin	++	++	+	PG	–	–	200

Full inhibition, no growth of organism: –; meager growth compared to controls: PG; average growth compared to controls: +; confluent growth, inhibition: ++
Tuncbilek et al. designed some novel benzimidazole derivatives and screened for their antimicrobial potential toward *E. coli*, *B. subtilis*, MRSA (clinical and standard isolates), *S. aureus* and *C. albicans*. Compounds 33a–33d displayed the excellent antibacterial activity as comparable to reference drugs (sultamicillin, ciprofloxacin and ampicillin) (Table 30, Fig. 8) [41].

Zhang et al. synthesized a chain of new actinonin derivatives of benzimidazole and evaluated for its antimicrobial potential against *S. lutea*, *K. pneumoniae* and *S. aureus*.

![Molecular structures of compounds](image)

Table 19 Antibacterial activity of compound 23a

Compound 23a	Microorganisms	*M. luteus*	*E. coli*	
	ZI (mm)	**MIC (µg/mL)**	**ZI (mm)**	**MIC (µg/mL)**
[Zn(2-aminobenzimidazole)2Cl2]·0.5H2O	10	1.6	11.1	3.9
Amoxicillin	104	0.125	–	–
Chloramphenicol	–	–	11.3	1.6

Tuncbilek et al. designed some novel benzimidazole derivatives and screened for their antimicrobial potential toward *E. coli*, *B. subtilis*, MRSA (clinical and standard isolates), *S. aureus* and *C. albicans*. Compounds 33a–33d displayed the excellent antibacterial activity as comparable to reference drugs (sultamicillin, ciprofloxacin and ampicillin) (Table 30, Fig. 8) [41].

Zhang et al. synthesized a chain of new actinonin derivatives of benzimidazole and evaluated for its antimicrobial potential against *S. lutea*, *K. pneumoniae* and
S. aureus using microbroth dilution method. Compound 34a ((R)-3-(4-(1H-benzo[d]imidazol-2-yl)-1-en-2-yl)-N-hydroxy heptanamide) showed potent antibacterial activity against tested microorganism than the standard drug (Table 31, Fig. 8) [42].

Zhang et al. reported a class of substituted benzimidazole compounds and screened for its antimicrobial potential against two fungal, four Gram-positive and five Gram-negative bacterial strains through twofold serial dilution technique. Among them, compound 35a exhibited remarkable antimicrobial activity even better than the standards fluconazole, chloromycin and norfloxacin (Tables 32, 33 and Fig. 8) [43].

Zhang et al. designed a novel class of benzimidazole type of fluconazole compounds and evaluated for its antimicrobial activity by two-fold serial dilution technique. Among them, compounds 36a and 36b exhibited the potent antimicrobial efficiency as compared to standards norfloxacin, chloromycin and fluconazole (Tables 34 and 35, Fig. 8) [44].

Madabhushi et al. synthesized a new series of benzimidazole functionalized chiral thioureas and assessed for their antimicrobial activity against S. aureus, B. subtilis, S. aureus MLS16, M. luteus, K. planticola, E. coli and P. aeruginosa. Among them, compounds 37a and 37b displayed excellent antibacterial activity toward selected microorganisms (Table 36, Fig. 8) [45].

Yadav et al. synthesized some 2-(1-benzyol-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamide derivatives and evaluated for their antimicrobial activity (MIC and MBC/MFC) against tested strains by tube dilution method using cefadroxil and fluconazole as references. Among the synthesized compounds, 38a, 38b and 38c emerged out as excellent antimicrobial agents (Tables 37, 38 and Fig. 9) [46].

Yadav et al. reported a class of novel benzimidazole derivatives and screened for its antimicrobial potency (MIC, MBC/MFC) against S. aureus, B. subtilis, E. coli, C. albicans, A. niger by tube dilution method. In this series, compound 40a displayed the most potent antimicrobial activity (Table 41, Fig. 9) [48].

Kerimov et al. developed new benzimidazole derivatives and evaluated for their antifungal activity against C. albicans and C. krusei by the agar diffusion method using fluconazole as standard. Among the synthesized compounds, compound 41a (Table 42 and Fig. 9) found to be most active against tested fungal species [49].

Si et al. synthesized a series of new benzimidazole scaffolds and evaluated for their antifungal activity against Botrytis cinerea and Sclerotinia sclerotiorum using thiabendazole and azoxystrobin as references. In this series, compound 42a exhibited excellent antifungal activity (Table 43 and Fig. 9) [50].

Tahlan et al. reported a class of novel benzimidazole Schiff base derivatives and screened for its antimicrobial potency against tested microbial strains by tube dilution method. Among the synthesized compounds, 43a

Table 20 Compound 24a MIC/MBC (µg/mL) values of compound 24a

Compound	Microorganisms	F. tularensis	S. aureus	MRSA	E. coli	E. coli TolC-
24a		5.5/12.5	>12.5	>125	>125	125

*MBCs were not determined for compounds with MICs ≥ 12.5 µg/mL. E. coli TolC- is the E. coli TolC efflux pump knockout mutant.

Table 21 In vitro antimicrobial activity of compounds (27a–27e)

Compounds	Microorganisms (ZI mm)	Microorganisms (MIC=µg/mL)						
	S. aureus	B. pumillus	E. coli	P. aeruginosa	S. aureus	B. pumillus	E. coli	P. aeruginosa
27a	11.3	10.2	10.8	10.6	–	–	–	–
27b	10.9	10.5	11.2	11.0	–	–	–	–
27c	13.2	11.2	13.6	10.9	–	–	–	–
27d	13.2	11.5	12.8	11.3	25	25	50	75
27e	–	–	–	–	25	25	50	50
Ampicillin	14.8	12.8	15.2	13.4	6.5	12.5	25	25
Fig. 7 Molecular structures of compounds (27a–27e, 28a–28c, 29a–29b, 30a–30b, 31a)
and 43b were found to be most potent antifungal agents against A. niger and C. albicans (Table 44 and Fig. 9) [51].

Tahlan et al. reported a series of new benzimidazole Schiff base derivatives and evaluated for its antimicrobial potency against selected microbial species. In this series, compounds 44a and 44b showed significant antimicrobial activity towards tested bacterial and fungal strains (Table 45 and Fig. 9) [52].
Table 27 Antifungal activity of compound 31a

Compound	Fungus (ZI mm)	A. niger	P. chrysogenum				
	25 µg/mL	50 µg/mL	100 µg/mL	25 µg/mL	50 µg/mL	100 µg/mL	
31a	27 ± 1	30 ± 3	32 ± 1	33 ± 2	35 ± 1	38 ± 2	
Ketoconazole		31 ± 2	33 ± 3	36 ± 3	35 ± 1	36 ± 2	38 ± 3

Table 28 Antimicrobial activity of compound 31a

Compound	MIC (MBC/MFC) µg/mL	S. aureus	E. coli	P. aeruginosa	A. niger	P. chrysogenum
31a	12.5 (25)	50 (200)	12.5 (100)	12.5 (100)	12.5 (25)	
Ciprofloxacin	12.5	12.5	12.5	–	–	
Ketoconazole	–	–	–	6.25	12.5	

Table 29 Antifungal activity of benzimidazole derivatives (32a–32b)

Compounds	Concentration (µg/mL)	Microorganisms	
	A. flavus	A. niger	
	Colony diameter	Inhibition (%)	
	Colony diameter	Inhibition (%)	
32a	10	0.8	73.3
	20	0.6	76.7
	50	0.5	88.3
32b	10	1.2	60.8
	20	1.1	73.4
	50	0.7	92.1
Amphotericin B	20	3.0	86.4

32b	10	0.8	60.7
	20	1.1	73.2
	50	0.7	92.6
Amphotericin B	20	3.0	86.4

32b	10	0.8	60.7
	20	1.1	73.2
	50	0.7	92.6
Amphotericin B	20	3.0	86.4
Fig. 8 Molecular structures of compounds (32a–32b, 33a–33d, 34a, 35a, 36a–36b, 37a–37b)
Table 30 Antibacterial and antifungal activities of compounds (33a–33d)

Compounds	Microorganisms (MIC = µg/mL)	S. aureus	MRSA^a	MRSA^b	E. coli	B. subtilis	C. albicans
33a		3.12	6.25	6.25	50	6.25	6.25
33b		3.12	3.12	3.12	50	6.25	6.25
33c		3.12	3.12	3.12	50	50	12.5
33d		3.12	3.12	3.12	50	6.25	12.5
Sultamicillin		0.39	25	25	–	0.78	–
Ampicillin		0.78	50	50	–	–	–
Ciprofloxacin		0.78	6.25	12.5	0.19	0.09	–
Fluconazole		–	–	–	–	–	1.56

^a MRSA—standard
^b MRSA—clinical isolate

Table 31 Antibacterial activity of compound 34a

Compound	Microorganisms (MIC = µg/mL)	S. aureus	K. pneumonia	S. lutea
34a		2	0.5	4
Cefoperazone		0.25	0.25	0.25

Table 32 Antibacterial and antifungal activities of compound 35a

Compound	Microorganisms (MIC = µg/mL)
Bacteria (Gram + ve)	
MRSA	S. aureus
35a	2
Chloromycin	16
Norfloxacin	8
Fluconazole	–

Fungi	C. albicans	C. mycoderma
35a	4	8
Chloromycin	8	8
Norfloxacin	8	32
Fluconazole	–	–
Yadav et al. synthesized a series of novel benzimidazole derivatives and accessed for its antimicrobial activity against *S. aureus*, *B. subtilis*, *E. coli*, *C. albicans* and *A. niger* by serial dilution method using ciprofloxacin and fluconazole as standard drugs. From the synthesized derivatives, compounds 45a and 45b showed excellent antimicrobial activity against selected microorganisms (Tables 46, 47 and Fig. 9) [53].

Table 34 Antibacterial activity (MIC = µg/mL) of compounds (36a–36b)

Compounds	Microorganisms (bacteria)									
36a	2	16	4	8	2	2	4	2	2	
36b	8	16	8	8	16	32	16	16	16	
Chloromycin	8	16	32	8	32	16	16	32		
Norfloxacin	1	2	1	4	1	1	1	1		

Table 35 Antifungal activity (MIC = µg/mL) of compound 36a

Compound	Microorganisms (fungi)	C. albicans	C. mycoderma	C. utilis	S. cerevisiae	A. flavus	
36a	2	2	8	2	8		
Fluconazole	1	4	8	16	256		

Table 36 Antibacterial activity of compounds (37a–37b)

| Compounds | Microbial strains (MIC = µg/mL) | | | | | | | | |
|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 37a | 25.0 | 12.5 | 12.5 | 25.0 | 25.0 | 12.5 | 6.25 | |
| 37b | 25.0 | 12.5 | 12.5 | 6.25 | 12.5 | 12.5 | 6.25 | |
| Neomycin | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | |

Table 37 Antimicrobial activity of compounds (38a–38c)

Compounds	Microorganisms (MIC = µM/mL)											
38a	0.027	0.027	0.027	0.027	0.027	0.027	0.013	0.027				
38b	0.027	0.027	0.027	0.027	0.027	0.027	0.013	0.027				
38c	0.027	0.027	0.027	0.027	0.027	0.027	0.013	0.027				
Cefadroxil	0.37	0.37	0.37	0.37	0.37	0.37	–	–				
Fluconazole	–	–	–	–	–	–	0.47	0.47				

Table 38 Antimicrobial activity (MBC/MFC) of compounds (38a–38c)

Compounds	Microorganisms (µg/mL)											
38a	–	–	–	–	–	–	50	> 50	50	> 50	50	> 50
38b	> 50	> 50	> 50	> 50	> 50	> 50	50	> 50	50	> 50	50	> 50
38c	50	> 50	> 50	> 50	> 50	> 50	50	> 50	50	> 50	50	> 50
Fig. 9 Molecular structures of compounds (38a–38c, 39a–33b, 40a, 41a, 42a, 43a–43b, 44a–44b, 45a–45b)
Table 39 Antimicrobial activity (MIC = µM/mL) of compounds (39a–39b)

Compounds	Microorganisms	S. aureus	B. subtilis	E. coli	C. albicans	A. niger
39a	0.027	0.027	0.013	0.027	0.027	
39b	0.029	0.029	0.015	0.007	0.029	
Norfloxacin	0.47	0.47	0.47	–	–	
Fluconazole	–	–	–	0.50	0.50	

Table 40 Antimicrobial activity (MBC/MFC) of compounds (39a–39b)

Compounds	Microorganisms (µg/mL)	S. aureus	B. subtilis	E. coli	C. albicans	A. niger
39a	> 0.108	> 0.108	0.013	0.054	0.054	
39b	> 0.116	> 0.116	0.015	0.015	0.116	

Table 41 Antimicrobial activity (MIC = µM/MBC/MFC = µg/mL) of compound 40a

| Compound | Microorganisms | S. aureus | B. subtilis | E. coli | C. albicans | A. niger | 40a | 0.032/> 50 | 0.032/> 50 | 0.016/> 50 | 0.032/> 50 |
|----------|----------------|-----------|-------------|---------|-------------|---------|
| Cefadroxil | 0.345 | 0.345 | 0.345 | – | – |
| Fluconazole | – | – | – | 0.40 | 0.82 |

Table 42 Antifungal activity of compound 41a

Compound	Fungal strains (ZI mm)	C. albicans	C. krusei
41a	15	15	
Fluconazole	19	20	

Table 43 In vitro antifungal activity of compound 42a

Compound	Fungal strains [EC_{50} ± SE (mg/L)]	B. cinerea	S. sclerotiorum
42a	9.75 ± 0.23	18.27 ± 0.22	
Thiabendazole	14.16 ± 0.20	39.43 ± 0.23	
Azoxytrobin	39.22 ± 0.26	30.37 ± 0.28	

Table 44 Antimicrobial results of compounds (43a–43b)

Compounds	Microbial strains (MIC = µM/mL)	Bacterial strains	Fungal strains
43a	9.62 9.62 2.41 2.41 4.81	2.41 1.20	
43b	5.82 2.91 5.82 5.82 5.82	1.46 2.91	
Cefadroxil	1.72 1.72 1.72 1.72	– –	
Fluconazole	– – – – –	2.04 2.04	

Table 45 Antimicrobial results of compounds (44a–44b)

Compounds	Microbial strains (MIC = µM/mL)	Bacterial strains	Fungal strains
44a	1.28 1.28 1.28 2.55 5.11	5.11 2.55	
44b	0.68 0.68 2.72 2.72 5.44	5.44 2.72	
Cefadroxil	1.73 3.46 3.46 3.46	– –	
Fluconazole	– – – – –	4.08 4.08	

Table 46 Antibacterial and antifungal activities of compounds (45a–45b)

Compounds	Microorganisms (pMIC = µM/mL)	S. aureus	B. subtilis	E. coli	C. albicans	A. niger
45a	2.43 2.43 2.43 2.13 1.53	2.13 1.53				
45b	2.24 2.24 1.85 1.94 1.63	1.94 1.63				
Ciprofloxacin	0.19 0.20 0.28	– –				
Fluconazole	– – – 0.20	0.20 0.22				

Table 47 Antibacterial and antifungal activities of compounds (45a–45b)

Compounds	Microorganisms (MBC/MFC = µg/mL)	S. aureus	B. subtilis	E. coli	C. albicans	A. niger
45a	50 50 15.6 25 > 50	25 > 50				
45b	12.5 50 3.12 50 > 50	50 > 50				
Ciprofloxacin	0.019 0.019 0.019	– –				
Fluconazole	– – 0.040	0.040 0.040				
Table 48 Condensed information of most active compounds with their antimicrobial activity

S. No.	Molecular structure	Microbial species (MIC value)	Microbial species (ZI)	Standard drug	References	
1	![Molecular structure](image1)	C. albicans, A. niger	A. flavus (22-28, 10-15, 22-28 mm)	Amphotericin B	Amari et al., 2009 [9]	
2	![Molecular structure](image2)	S. aureus, B. subtilis, S. mohottae, E. coli, P. aeruginosa, S. typhi (2, 4, 16, 64, 16 µg/mL)	-	Ampicillin		
3	![Molecular structure](image3)	C. albicans, A. niger, A. flavus (16-21, 10-21, 16-21 mm)	-	Amphotericin B	Amari and Lai, 2009 [12]	
4	![Molecular structure](image4)	E. coli, V. cholerae, S. dysenteriae, S. aureus, B. cereus (19, 33, 33, 10, 22 mm)	-	Ciprofloxacin	Bandyopadhyay et al., 2011 [15]	
5	![Molecular structure](image5)	B. cereus, E. faecalis, S. aureus, E. coli, P. aeruginosa, K. pneumoniae (5, 7, 6, 9, 8, 10, 11 µg/mL)	-	Ondanestron, Meropenem	Burst et al., 2017 [10]	
6	![Molecular structure](image6)	C. albicans, A. niger, F. oxysporum (8, 7, 8 µg/mL)	-	Fluconazole		
7	![Molecular structure](image7)	R. subtilis, S. aureus, E. coli (20,25, 15-20, 15-20 mm)	-	Streptomycin	Denai et al., 2006 [16]	
8	![Molecular structure](image8)	C. albicans, C. krusei, A. niger (150, 150, 100 µg/mL)	-	Fluconazole	Denai et al., 2006 [16]	
9	![Molecular structure](image9)	S. aureus, S. pyogenes	E. coli, P. aeruginosa, C. albicans, A. niger, A. clavatus (12,5±1,05, 12,5±1,21, 25±1,35, 25±2,80, 500±1,57, 100±1,24, 250±1,78 µg/mL)	-	Chloramphenicol, Kanamycine	Denai et al., 2014 [11]
10	![Molecular structure](image10)	S. aureus, B. subtilis, R. aerogenes, E. coli (25, 25, >25, >25 µg/mL)	-	Tetracycline	Dzuljženko et al., 2005 [17]	
11	![Molecular structure](image11)	S. aureus, MRSA, MRSA (isolate from wound), MRS (isolate from wound) (0,59, 0,78, 0,59, 0,78 µg/mL)	-	Ampicillin, Sulbactam	Goker et al., 2005 [18]	
12	![Molecular structure](image12)	S. aureus, MRSA, C. albicans, C. krusei (3,12, 9,25, 12,5, 12,5 µg/mL)	-	Ampicillin, Fluconazole, Minocycline	Green et al., 2007 [20]	
13	![Molecular structure](image13)	B. subtilis, C. trachomatis, S. pneumoniae, E. coli, S. typhi, V. cholerae, A. faecalis, C. albicans (250, 250, 250, 250, 250, 250, >1000, 250 µg/mL)	-	Ciprofloxacin, Chloramphenicol, Norfloxacin, Ampicillin, Ciprofloxacin	Jacobs et al., 2013 [22]	
14	![Molecular structure](image14)	S. aureus, S. typhi (22, 24 µg/mL)	-	Cloroxephenicol, Hemophilic enzyme	Khaiti-Nehad et al., 2005 [25]	
15	![Molecular structure](image15)	R. subtilis, S. aureus	E. coli, B. subtilis, S. aureus (7, 9, 9 mm)	Gentamicin	Koc et al., 2010 [27]	
16	![Molecular structure](image16)	E. faecalis, S. aureus, E. coli, P. aeruginosa (200, 200, 200, 50, 50 µg/mL)	-	Ampicillin	Karabatay et al., 2005 [28]	
17	![Molecular structure](image17)	C. albicans, C. tropicalis (50, 50 µg/mL)	-	Fluconazole		
18	![Molecular structure](image18)	M. furus, E. coli (1,5, 3,9 µg/mL)	M. furus, E. coli (10, 1.1 mm)	Amoxicillin, Chloramphenicol	Lopez-Sanjuán et al., 2008 [31]	
Table 48 (continued)

S. No.	Molecular structure	Microbial species (MIC values)	Microbial species (ED)	Standard drugs	References
19		S. aureus, B. cereus, E. coli, P. aeruginosa (11, 10, 10, 10; mm)	-	Ampicillin	Neidle et al., 2014 [35]
20		S. aureus, B. cereus, E. coli, P. aeruginosa (25, 25, 50, 50 μg/mL)	-	-	Ouden et al., 2005 [36]
21		S. aureus, MRSA, S. faecalis, MSSE, E. coli, C. albicans (1.56, 0.59, 3.12, 1.56, >100, 0.25 μg/mL)	-	Ampicillin, Sulfamethoxa, Cefazolin, Fluconazole	Rodon et al., 2010 [37]
22	L. monocytogenes, S. aureus, E. faecalis, B. subtilis, C. albicans, C. glabrata, C. parapsilosis (100, 12.5, 12.5, 25, 50, 50 μg/mL)	-	Chloramphenicol, Ketocanazole	-	Oudon et al., 2005 [36]
23	E. coli ATCC 35218, E. coli ATCC 29522, P. vulgaris, S. typhimurium, K. pneumoniae, P. aeruginosa (25, 50, 25, 25, 25 μg/mL)	-	Chloramphenicol	-	Oudon et al., 2005 [36]
24	E. coli, S. aureus, C. albicans, A. niger (100, 50, 100, 150, 150 μg/mL)	-	Streptomycin, Cephalosporin, Ceftazidime	-	Paladino et al., 2016 [38]
25	S. aureus, E. coli, P. aeruginosa, A. niger, P. chrysogenum (12.5, 50, 12.5, 12.5 μg/mL)	-	Ciprofloxacin, Ketocanazole	-	Sciamish et al., 2014 [39]
26	S. aureus, MRSA (clinical isolate), E. coli, B. subtilis, C. albicans (1.56, 3.12, 3.12, 50, 6.25, 6.25 μg/mL)	-	Sulfamethoxa, Ampicillin, Cephalosporin, Fluconazole, Ceftazidime	-	Tumbolinski et al., 2009 [40]
27	S. aureus, K. pneumoniae, S. lutea (2, 0.5, 4 μg/mL)	-	Cefuroxime, Cefazolin, Ceftazidime	-	Zhong et al., 2009 [41]
28	S. aureus, B. subtilis, S. aureus MLS16, M. luteus, K. pneumoniae, E. coli, P. aeruginosa (25, 12.5, 12.5, 6.25, 6.25, 6.25 μg/mL)	-	Neomycin	-	Madlakashvili et al., 2014 [42]
29	S. aureus, B. subtilis, E. coli, C. albicans, A. niger (2.24, 2.24, 1.85, 1.94, 1.65 μM/mL)	-	Norforastatin	-	Yadav et al., 2017 [43]
30	S. aureus, B. subtilis, E. coli, C. albicans, A. niger (0, 0.032, 0.062, 0.032, 0.016, 0.032 μg/mL)	-	Cefuroxime	-	Yadav et al., 2014 [44]
31	C. albicans, C. krusei (15, 15 mm)	-	Cefuroxime	-	Korineve et al., 2007 [45]
32	S. aureus, E. coli, B. subtilis, P. aeruginosa, S. epidermidis, C. albicans, A. niger (0.62, 0.82, 2.41, 2.41, 1.41, 1.41, 1.20 μM/mL)	-	Cefuroxime, Fluconazole	-	Tahlan et al., 2018 [46]
33	B. subtilis, P. aeruginosa, E. coli, S. typhimurium, K. pneumoniae, C. albicans, A. niger (1.28, 1.28, 1.28, 1.28, 1.28, 1.28, 1.28, 1.28 μM/mL)	-	Cefuroxime	-	Tahlan et al., 2018 [46]
34	S. aureus, B. subtilis, E. coli, C. albicans, A. niger (2.24, 1.85, 1.94, 1.65 μM/mL)	-	Ciprofloxacin	-	Yadav et al., 2010 [47]
Table 49 Abbreviation of microbial species and other

Species/Abbreviation	Microbial Species/Other
Absidia corymbifera	Methicillin-resistant Staphylococcus aureus: MRSA
A. corymbifera	Zone of inhibition: ZI
Aspergillus clavatus	Methicillin-resistant Staphylococcus epidermidis: MRSE
A. clavatus	Minimum inhibitory concentration: MIC
Aspergillus flavus	Micrococcus luteus: M. luteus
A. flavus	Multi-drug-resistant Staphylococcus aureus: MDRSA
Bacillus cereus	Mycobacterium avium: M. avium
B. cereus	Mycobacterium tuberculosis: M. tuberculosis
Bacillus proteus	Pencillium chrysogenum: P. chrysogenum
B. proteus	Proteus vulgaris: P. vulgaris
Bacillus pumilus	Pseudomonas aeruginosa: P. aeruginosa
B. pumilus	Rhizoctonia solani: R. solani
Bacillus subtilis	Saccharomyces cerevisiae: S. cerevisiae
B. subtilis	Salmonella enterica: S. enterica
Candida albicans	Salmonella typhimurium: S. typhimurium
C. albicans	Streptococcus faecalis: S. faecalis
Candida glabrata	Streptococcus pneumonia: S. pneumoniae
C. glabrata	Streptococcus pyogenes: S. pyogenes
Candida krusei	Streptococcus facialis: S. facialis
C. krusei	Streptococcus mutans: S. mutans
Candida mycoderma	Streptococcus pneumoniae: S. pneumoniae
C. mycoderma	Trichosporon beigelli: T. beigelli
Candida tropicalis	Trichosporon mentagrophytes: T. mentagrophytes
C. tropicalis	Trichophyton mentagrophytes: T. mentagrophytes
Candida utilis	Vancocycin-resistant Enterococcus faecium: VRE
C. utilis	Vibrio cholerae: V. cholera

Conclusions

Summarizingly, after review of literature reports we concluded that benzimidazole is most promising category of bioactive heterocyclic compound that exhibit a wide variety of biological activities i.e. antimicrobial, anti-inflammatory, antiparasitic, antimalarial, antiviral, antimycobacterial, antineoplastic, antihypertensive activity etc. The present review only focus on antimicrobial activity of reported benzimidazole derivatives may serve as valuable source of information for researchers who wish to synthesize new molecules of benzimidazole nucleus which have immense potential to be investigated for newer therapeutic possibilities. Condensed information of most active compounds with their antimicrobial activity and abbreviation of microbial species and other are shown in Tables 48 and 49, respectively.

Authors’ contributions

BN, ST and SK have designed and prepared the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors are thankful to Head, Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, for providing necessary facilities to carry out this research work.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Not applicable.

Funding

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 October 2018 Accepted: 16 January 2019
Published online: 04 February 2019

References

1. El-Feky SA, Thabet HK, Ubeid MT (2014) Synthesis, molecular modeling and anti-inflammatory screening of novel fluorinated quinoline incorporated benzimidazole derivatives using the Pfitzinger reaction. J Fluorine Chem 161:87–94
2. Andrzejeviskia M, Yepez-Mulia L, Tapia A, Cedillo-Rivera R, Laudy AE, Starosciak BJ, Kazimierczuk Z (2004) Synthesis, and antiprotozoal and antibacterial activities of S-substituted 4,6-dibromo- and 4,6-dichloro-2-mercaptobenzimidazoles. Eur J Pharm Sci 21:323–329
3. Camacho J, Barazarte A, Gamboa N, Rodrigues J, Rojas R, Vaisberg A, Gilman R, Charris J (2011) Synthesis and biological evaluation of benzimidazole-5-carboxylic acid derivatives as antimalarial, cytotoxic and antitubercular agents. Bioorg Med Chem 19:2023–2029
4. Gong Y, Karakaya SS, Guo X, Zheng P, Gold B, Ma Y, Little D, Roberts J, Warner T, Jiang X, Pingle M, Nathan CF, Liu G (2014) Benzimidazole-based compounds kill Mycobacterium tuberculosis. Eur J Med Chem 75:336–353
5. Abonia R, Cortes E, Insua B, Quiroga, J, Nogueras M, Cobo J (2011) Synthesis of novel 1,2,5-trisubstituted benzimidazoles as potential antitumor agents. Eur J Med Chem 46:4062–4070
6. Fonseca T, Gigante B, Marques MM, Gilchrist TL, Clercq ED (2004) Synthetic and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroaobaticic acid. Bioorg Med Chem 12:103–112
7. Kaur N, Kaur A, Bansal Y, Shah DI, Bansal C, Singh M (2008) Design, synthesis, and evaluation of S-sulfamoyl benzimidazole derivatives as novel angiotensin II receptor antagonists. Bioorg Med Chem 16:10210–10215
8. Falco JL, Pique M, Gonzalez M, Buira I, Mendez E, Terencio J, Perez C, Princep M, Palomer A, Guglietta A (2006) Synthesis, pharmacology and molecular modeling of N-substituted 2-phenyl-indoles and benzimidazoles as potent GABA(A) agonists. Eur J Med Chem 41:985–990
9. Ansari KF, Lal C (2009) Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur J Med Chem 44:4028–4033
10. Barot KP, Mangia K, Ghate MD (2017) Design, synthesis and antimicrobial activities of some novel 1,3,4-thiadiazole, 1,2,4-triazole-5-thione and 1,3-thiazol-4-one derivatives of benzimidazole. J Saudi Chem Soc 21:535–543
11. Desai NC, Shiroy NR, Kotadiya GM (2014) Facile synthesis of benzimidazole bearing 2-pyridone derivatives as potential antimicrobial agents. Chin Chem Lett 25:305–307
12. Ansari KF, Lal C (2009) Synthesis and evaluation of some new benzimidazole derivatives as potential antimicrobial agents. Eur J Med Chem 44:2209–2220
13. Arjmand F, Mohani B, Ahmad S (2005) Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex. Eur J Med Chem 41:1103–1110
14. Ayhan-Klicioglu G, Alatan N (2003) Synthesis and antimicrobial activities of some new benzimidazole derivatives. Il Farmaco 58:1345–1350
15. Bandypadhyay P, Sathe M, Ponmariappan S, Sharma A, Sharma P, Srivastava AK, Kaushik MP (2011) Exploration of in vitro time point quantitative evaluation of newly synthesized benzimidazole and benzothiazole derivatives as potential bacterial agents. Bioorg Med Chem Lett 21:7306–7309
16. Desai KG, Desai KR (2006) Green route for the heterocyclization -mercaptobenzimidazole into β-lactum segment derivatives containing –CONH– bridge with benzimidazole screening in vitro antimicrobial activity with various microorganisms. Bioorg Med Chem Lett 14:8271–8279
17. Dolzhenko AV, Dolzhenko AV, Chan LW (2005) Synthesis and biological activity of fluorinated 2-amino-4-aryl-3,4-dihydro[1,3,5]triazino[1,2-a]benzimidazoles. J Fluorine Chem 126:759–763
18. Goker H, Ozden S, Yildiz S, Boykin DW (2005) Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-4-yl-alkylated-5-carboxamides. Eur J Med Chem 40:1082–1092
19. Gumus F, Pamuk I, Ozden S, Dirl N, Oksuzoglu E, Gur S, Ozkul A (2003) Synthesis, characterization and in vitro cytotoxic, mutagenic and antimicrobial activity of platinum (II) complexes with substituted benzimidazole ligands. J Inorg Biochem 94:255–262
20. Guven OO, Erdogan T, Goker H, Yildiz S (2007) Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers. Bioorg Med Chem Lett 17:2323–2326
21. Hu L, Kully ML, Boykin DW, Abood N (2009) Synthesis and in vitro activity of dicatonic bis-benzimidazoles as a new class of anti-MRSA and anti-VRE agents. Bioorg Med Chem Lett 19:1292–1295
22. Jardosh HH, Sangani CB, Patel MF, Patel RG (2013) One step synthesis of pyrido[1,2-α]benzimidazole derivatives of aryloxypyrazole and their antimicrobial evaluation. Chin Chem Lett 24:123–126
23. Kalinowska-Lis U, Felczak A, Checinska L, Lisowska K, Ochocki J (2014) Synthesis, characterization and antimicrobial activity of silver (I) complexes of hydroxymethyl derivatives of pyridine and benzimidazole. J Organomet Chem 749:394–399
24. Kankate RS, Gide PS, Belsare DP (2015) Design, synthesis and antifungal evaluation of novel benzimidazole tertiary amine type of fluconazole analogues. Arabian J Chem. doi:10.1016/j.arabjc.2015.02.002
25. Khalafi-Nezhad A, Rad MNS, Mohabatkar H, Asrari Z, Hemmateenejad B (2015) Design, synthesis and antifungal activities of electron-rich olefins derived benzimidazole compounds. Il Farmaco 58:431–437
26. Koc ZE, Bingol H, Saf AO, Torlak E, Coskun A (2010) Synthesis of novel triiodobenzimidazole from 2,4,6-tris(5-formylphenoxo)-1,3,5-triazine: structural, electrochemical and antimicrobial studies. J Hazard Mater 183:251–255
27. Kurukbay H, Durmaz R, Orhan E, Guna S (2003) Synthesis, antibacterial and antifungal activities of electron-rich olefins derived benzimidazole compounds. Il Farmaco 49:53–56
28. Kumar A, Awashti D, Lee S-Y, Cummings JE, Knudson SE, Slayden RA, Ojima I (2013) Benzimidazole-based antibacterial agents against Francisella tularensis. Bioorg Med Chem 21:3318–3326
29. Lopez-Sandoval H, Londoño-Lemus ME, Garza-Velasco R, Poblano-Melendez I, Granada-Macias P, Gracia-Mora I, Barba-Behrens N (2008) Synthesis, structure and biological activities of cobalt(II) and zinc(II) coordination compounds with 2-benzimidazole derivatives. J Inorg Biochem 102:1267–1276
30. Mehboob S, Song J, Hevener KE, Su P-C, Boci T, Brubaker L, Truong L, Mistry D, Deng J, Cook JL, Santasiero BD, Ghosh AK, Johnson ME (2015) Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI). Bioorg Med Chem Lett 25:1292–1296
31. Mohammed GM, Ibrahim NA, Attia HAE (2009) Synthesis and antifungal activity of some transition metal complexes with benzimidazole dithiocarbamate ligand. Spectrochim Acta A 72:610–615
32. Moreira JB, Mann J, Neidle S, McHugh TD, Taylor PW (2013) Antibacterial activity of head-to-head bis-benzimidazoles. Int J Antimicrob Agents 42:361–366
33. Noolvi M, Agrawal S, Patel H, Badiger A, Gaba M, Zambre A (2014) Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole. Arabian J Chem 7:219–226
34. Ozden S, Atabey D, Yildiz S, Goker H (2005) Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amingroups. Bioorg Med Chem 13:1587–1597
35. Ozkay Y, Tunaly R, Karaca H, Isikdag I (2010) Antimicrobial activity and SAR study of some novel benzimidazole derivatives bearing hydrazono moiety. Eur J Med Chem 45:3293–3298
36. Padalkar VS, Borse BN, Gupta VD, Phatangare KR, Patil VS, Umapa PG, Sekar N (2016) Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoazole and benzothiazole derivatives. Arabian J Chem 9:125–131
37. Seenaiyah D, Reddy RP, Reddy GM, Padmaja A, Padmavathi V, Siva Krishna N (2014) Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzimidazole, benzoazole and benzothiazole. Arabian J Chem 77:1–7
38. Tiwari AK, Mishra AK, Bajpai A, Mishra P, Singh S, Singh VK (2007) Synthesis and evaluation of novel benzimidazole derivative [Bz-im] and its radio/biological studies. Bioorg Med Chem Lett 17:2749–2755
39. Tuncbilek M, Kiper T, Alatan N (2009) Synthesis and in vitro antimicrobial activity of some novel substituted benzimidazole derivatives having potent activity against MRSA. Eur J Med Chem 44:1024–1033
40. Zhang D, Wang Z, Xu W, Sun F, Tang L, Wang J (2009) Design, synthesis and antibacterial activity of novel acetonin derivaties containing benzimidazole heterocycles. Eur J Med Chem 44:2202–2210
41. Zhang SL, Danu GLV, Zhang L, Gong R-X, Zhou C-H (2012) Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin. Eur J Med Chem 55:164–175
42. Zhang H-Z, Danu GLV, Cai G-X, Zhou C-H, Yue J-J, Wu J-J, Sun J-J (2014) Synthesis of novel benzimidazole functionalized chiral thioareas and evaluation of their antibacterial and anticaner activity. Bioorg Med Chem Lett 24:4822–4825
43. Yadav S, Lim SM, Rassamay K, Vasudevan M, Shah SAA, Mathur A, Narasimhan B (2018) Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzimidazol-2-yl)thio)-N-substitutedacetamides. Chem Cent J 12:66
47. Yadav S, Narasimhan B, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Selvaraj M (2017) Synthesis, characterization, biological evaluation and molecular docking studies of 2-(1H-benzo[d]imidazol-2-ylthio)-N-(substituted-4-oxothiazolidin-3-yl)acetamides. Chem Cent J 11:137
48. Yadav S, Narasimhan B, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Mathur A (2018) Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. Egypt J Basic Appl Sci 5:100–109
49. Kerimov I, Ayhan-Kilcigil G, Can-Eke B, Altanlar N, Iscan M (2007) Synthesis, antifungal and antioxidant screening of some novel benzimidazole derivatives. J Enzyme Inhib Med Chem 22(6):696–701
50. Si W, Zhang T, Li Y, She D, Pan W, Gao Z, Ning J, Mei X (2016) Synthesis and biological activity of novel benzimidazole derivatives as potential antifungal agents. J Pestic Sci 41(1):15–19
51. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA (2018) Mercaptobenzimidazole Schiff bases: design, synthesis, antimicrobial studies and anticancer activity on HCT-116 cell line. Mini-Rev Med Chem. https://doi.org/10.2174/1389557118666181009151008
52. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA (2018) Design, synthesis, SAR study, antimicrobial and anticancer evaluation of novel mercaptobenzimidazole azomethine derivatives. Mini-Rev Med Chem. https://doi.org/10.2174/1389557118666180903151849
53. Yadav S, Kumar P, De Clercq E, Balzarini J, Pannecouque C, Dewan SK, Narasimhan B (2010) 4-[1-(Substituted aryl/alkyl carbonyl)-benzoimidazol-2-yl]-benzenesulfonic acids: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J Med Chem 45:5985–5997