New Routes for Multicomponent Atomically Precise Metal Nanoclusters

Esma Khatun and Thalappil Pradeep*

ABSTRACT: Atomically precise metal nanoclusters (NCs), protected by a monolayer of ligands, are regarded as potential building blocks for advanced technologies. They are considered as intermediates between the atomic/molecular regime and the bulk. Incorporation of foreign metals in NCs enhances several of their properties such as catalytic activity, luminescence, and so on; hence, it is of high importance for tuning their properties and broadening the scope of applications. In most of the cases, enhancement in specific properties was observed upon alloying due to the synergistic effect. In the past several years, many alloy clusters have been synthesized, which show a tremendous change in the properties than their monometallic analogs. However, controlling the synthesis and tuning the structures of alloy NCs with atomic precision are major challenges. Various synthetic methodologies have been developed so far for the controlled synthesis of alloy NCs. In this perspective, we have highlighted those diverse synthetic routes to prepare alloys, which include co-reduction, galvanic reduction, antigalvanic reduction, metal deposition, ligand exchange, intercluster reaction, and reaction of NCs with bulk metals. Advancement in synthetic procedures will help in the preparation of alloy NCs with the desired structure and composition. Future perceptions concerning the progress of alloy nanocluster science are also provided.

1. INTRODUCTION

There is a rich and fascinating history for metals and their alloys. Alloys have been known from ancient times; bronze (90% Cu and 10% Sn) was the first to be invented circa BC 3500. Nanoscience has provided a new direction to the subject of metals and their alloys. The famous Lycurgus cup known since the 4th century AD is one of the earliest known applications of nanotechnology. It is found to be composed of nanoparticles of Ag, Au, and Cu of 50–100 nm in size, dispersed in a glass matrix. The cup changes its color in different light, greenish in reflected light, and reddish in transmitted light. The nanoalloy particles of different sizes in the cup are responsible for this color change. Michael Faraday observed the unusual behavior of finely divided metal particles in their colloids in 1857. Their optical properties are now known to be due to surface plasmon excitations. Nanoparticles with monolayer protection were prepared over a century later, enabling the synthesis of solid powders of such freely dispersible particles. They also show similar optical characteristics. Nanoclusters (NCs), which are atomically precise, are the smallest analogues of such ligand-protected nanoparticles and they exhibit unique optical, electronic, dielectric, magnetic, and chemical properties. These properties are strongly dependent on the composition and geometric variations. The combination of two or more metals in NCs modify several of their properties, often leading to enhancement in the desired properties such as luminescence, catalysis, etc. Therefore, the main objective of multicomponent alloy NC science is to explore the rich variety of alloys and their interesting properties.

The synthesis of solution-phase Au NCs protected by phosphine ligands was started in 1969–1970 and a few phosphine-protected bi- and trimetallic NCs were also prepared. After a long gap, in 2005, Shichibu et al. synthesized Au25(SG)18 (SG = glutathione) by ligand exchange from phosphine-protected Au NCs. Glutathione was used for the synthesis of gold nanoparticles by Whetten et al. After that, many NCs have been prepared with ligand protection. More than 300 monometallic NCs of Au, Ag, and Cu have been synthesized by various synthetic methods. However, the number of multimetallic NCs is less. Among them, the number of bimetallic NCs is higher than trimetallic and tetrametallic ones.

During the synthesis of alloy NCs, mixtures of products get formed. For unambiguous characterization of the formed NC, it is important to purify or separate the as-synthesized NCs. Several separation techniques such as gel electrophoresis and
size exclusion chromatography (SEC) have made tremendous contributions to the science of metal NCs and their alloys. In 2005, Tsukuda et al. separated the composition of glutathione-protected Au NCs such as Au_{10}(SG)_{10}, Au_{14}(SG)_{13}, Au_{16}(SG)_{14}, Au_{19}(SG)_{16}, Au_{22}(SG)_{17}, Au_{23}(SG)_{18}, Au_{25}(SG)_{18}, Au_{29}(SG)_{20}, and Au_{33}(SG)_{22}, using polyacrylamide gel electrophoresis (PAGE). Other than SEC, high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) are used widely for purification and separation of clusters. The composition of alloy NCs can be probed by high-resolution electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). In 2005, compositions of a series of glutathione-protected Au NCs separated by PAGE technique were determined mass-spectrometrically. Later, Whetten et al. unambiguously assigned the composition of the most popular NC in this family, Au_{25}(PET)_{18}, (PET = 2-phenylethanethiol), through ESI MS in 2007. Although the composition of alloy NCs can be examined by MS, the exact structure and position of dopants can be understood only by using single-crystal X-ray diffraction (SCXRD). The structure of Au_{25}(PET)_{18} was solved in 2008 and, in 2014, the first X-ray crystal structure of Ag_Au_{25−14}(PET)_{13} was determined. Recently, electron diffraction has been used to resolve the structures of those NCs for which crystallization is difficult. In addition to the experimental methods, computation has also contributed significantly for understanding the structures and properties of these clusters.

To understand the origin of optical and electronic properties of NCs, the substitution of metal atoms by another element is worthwhile. For example, the emission intensity of rod-like [Au_{25}(PPh_3)_{10}(SR)_{5}Cl_2]^{2+} can be enhanced 200-fold by substituting 13 Au atoms with Ag. The doped NC, [Ag_{13}Au_{12}(PPh_3)_{10}(SR)_{5}Cl_2]^{2+}, having the same structure and chirality. Along with a significant change in circular dichroism (CD) spectrum, Ag_{6}Au_{35−6}−(SR)_{24} lowers the racemization temperature. The doped foreign atoms prefer to occupy certain positions in the parent NC. Pd, Ni, Pt, and Cd atoms always prefer to occupy the center, whereas Ag and Au atoms can be doped in all the possible positions. But Cu atoms always prefer outer staple positions. Hence, by proper combinations, more than one metal atom can be incorporated to make multicomponent alloy NCs.

In this perspective article, we focus on the various synthetic methods used for making multimetallic alloy NCs (Scheme 1).

Scheme 1. Schematic Representation of Various Synthetic Methodologies of Alloy NCs

At first, we discuss the classical methods used for the preparation of alloy NCs such as co-reduction and galvanic and antigalvanic reduction methods. After that, we discuss the other emerging procedures for the formation of alloy NCs, which are metal deposition, ligand exchange, intercluster reactions, and reaction between NCs and bulk metals. In the case of co-reduction method, the structure and composition cannot be controlled, while galvanic and antigalvanic exchange reaction methods are used for making a large number of alloy NCs, keeping the structural integrity the same as that of the monometallic analogues. Metal deposition certainly changes the composition; however, the total structure of the parent cluster remains unaltered. Ligand exchange method, which is a well-established method for the preparation of noble metal NCs, is now being used for the synthesis of alloy NCs with new atomicity and properties. Other than galvanic and antigalvanic reduction methods, a new synthetic method has been discussed in detail where reaction involving two different NCs (named as intercluster reaction) leads to the formation of structure-conserved alloy NCs. Such intercluster reactions between Ag and Au NCs are illustrated here. Similar to the reaction between two NCs, NC was found to react with bulk metals also. For more detailed information about the structures and properties of NCs, we direct the readers to several recent review articles.

2. **CO-REDUCTION METHOD**

Co-reduction is a kind of Brust–Schiffrin method where, instead of one metal precursor, several metal precursors are mixed with appropriate protective ligands and the reduction is performed with suitable reducing agents. The method is also known as the direct reduction method. With the help of this synthetic
no	core	ligand	alloy cluster	focus	method of synthesis	reference
1	Au₂₅Cd	phenylethylthiol	[Au₂₅Cd(PET)₁₈]	crystal structure	antigalvanic exchange	91, 92
2	Au₂₅Hg	phenylethylthiol	[Au₂₅Hg(PET)₁₈]	mass spectrometry	antigalvanic exchange	91, 92
3	Au₁₇Ag₈	2,4-dimethylbenzenethiol	[Au₁₇Ag₈(PMePh₂)₁₈][C₂B₉H₁₁]CH₂Cl₂	crystal structure	antigalvanic exchange	63
4	Au₃₄(M = Ag, Cu)	diphenylmethylyphosphine	[Au₃₄(M = Ag, Cu)₂₄]	FAB mass spectrometry	antigalvanic exchange	93
5	Au₂₃−₅₆Cu₉	cyclohexanethiol	[Au₂₃−₅₆Cu₉(CH₂O)₁₈]	crystal structure	antigalvanic exchange	94
6	M₁₇Ag₁₆₄₋₅₆(M = Cd, Hg)	phenylethanethiol	[M₁₇Ag₁₆₄₋₅₆(PET)₁₈]	mass spectrometry	antigalvanic exchange	41
7	Au₁₇	hexanethiol	AgAu₁₇-HT	crystal structure	antigalvanic exchange	95
8	Au₂₃₋₅₆AgₓCu₉₋₅₆	1-dodecanethiol	[Au₂₃₋₅₆AgₓCu₉₋₅₆(SC₆H₁₂)₁₈]	mass spectrometry	antigalvanic exchange	96
9	Au₁₇Ag₉	2-phenylethanethiol	(Ag: Au)₁₇(PET)₉	mass spectrometry	co-reduction	83
10	Au₁₇Ag₉	hexanethiol	Au₁₇Ag₉-HT	mass spectrometry	co-reduction	82
11	Ag₉Ni₁	dimercaptoosuccinic acid	Ag₉Ni₁(DMSA)₄	mass spectrometry	co-reduction	80
12	Ag₉Pt₁	dimercaptoosuccinic acid	Ag₉Pt₁(DMSA)₄	mass spectrometry	co-reduction	98
13	Ag₉Pd₁	dimercaptoosuccinic acid	Ag₉Pd₁(DMSA)₄	mass spectrometry	co-reduction	99
14	Au₁₇Cuₙ (x = 2, 4, 8)	pyridine-2-thiol, triphenylypyridine 4-(tert-butylbenzenethiol)pyridinediphosphine	Au₁₇Cuₙ[(PPh₂Py)₄(Spy)₆]⁺	crystal structures	co-reduction	100
15	Au₁₇Cuₙ	hexanethiol	Au₁₇Cuₙ-HT	crystal structure	co-reduction	95
16	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(SC₆H₄-Cl₂)₁₈]⁻⁴⁺	crystal structure	co-reduction	85
17	Au₂₅Ag₉	phenylalkyl, 2-pyridylthiolate	(Ag: Au)₂₅(PET)₉	mass spectrometry	co-reduction	96
18	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	97
19	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(SR)₁₈]	mass spectrometry	co-reduction	98
20	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	101
21	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	102
22	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	103
23	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	104
24	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	105
25	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	106
26	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	107
27	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	108
28	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	109
29	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	110
30	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	111
31	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	112
32	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	113
33	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	114
34	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	115
35	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	116
36	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	117
37	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	118
38	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	119
39	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	120
40	Au₂₅Ag₉	2,4-dichlorobenzenethiol	[Au₂₅Ag₉(PPh₂Py)₁₈]	crystal structure	co-reduction	121
Table 1. continued

no	core	ligand	alloy cluster	focus	method of synthesis	reference
41	Au₄Ag₂₉	1,1'-bis(diphenylphosphino)ferrocene, tert-butylbenzylmethyl	[Au₄Ag₂₉(C≡CCH₂P₂-C₂H₅-But)₁₆(dppf)₂Cl₄]²⁺	crystal structure	co-reduction	39
42	Au₄Ag₂₉	1,3-benzenedithiol, triphenylphosphine	Au₄Ag₂₉-(BDDT)₁₂(PPh₃)₄	crystal structure,	co-reduction	35
43	Au₂₃Ag₆	cyclohexanethiol	Au₂₃Ag₆(S-Adm)₁₀	crystal structure	co-reduction	111
44	Au₂₃Cd	cyclohexanethiol	[Au₂₃Cd₃(CHT)₆Cl₄]⁻	crystal structure,	co-reduction	94
45	Cd₁₉Ag₆	adamantane thiol, tetraphenylborate	[Cd₁₉Ag₆(S-Adm)₆Cl₂][BP₄]	crystal structure	co-reduction	112
46	Au₂₃Cu₄	adamantane thiol, 1,1-bis(diphenylphosphino) methane	[Au₂₃Cu₄(Dppp)₁₂(S-Adm)₄][Br]	crystal structure	co-reduction	113
47	Au₄Ag₅₇	1,3-bis(diphenylphosphino)propane, cyclohexanethiol	[Au₄Ag₅₇(Dppp)₁₂(CHT)₄Cl₄]	crystal structure	co-reduction	114
48	Pt₁Ag₆	tri(4-fluorophenyl)phosphate	Pt₁Ag₆[P(Ph-F)₃]₈	crystal structure	co-reduction	115
49	Au₃₁₀₋₃Ag₆	tert-butylbenzenethiol	Au₃₁₀₋₃Ag₆(TBBT)₁₅	crystal structure	co-reduction	116
50	Ag₃⁻Cu₁₂	1,3-benzenedithiol, triphenylphosphate	Ag₃⁻Cu₁₂(BDT)₁₂(PPh₃)₄	crystal structure	co-reduction	117
51	Au₂₁⁻Ag₆	1,1'-bis(diphenylphosphino)ferrocene	[Au₂₁⁻Ag₆(CF₃CO₂⁺)₂BF₄]	crystal structure	co-reduction	118
52	Ag₈₀⁻Cu₁₂	2,4-dimethylbenzenethiol, 1,1-bis(diphenylphosphino) methane	[Ag₈₀⁻Cu₁₂(2,4-DMBT)₁₄(Dppm)₈Br₈]²⁺	crystal structure	co-reduction	119
53	Au₄Ag₂₅	1-adamantanethiol/tert-butylmercaptan, 1,1-bis(diphenylphosphino) methanep	[Au₄Ag₂₅(SR)₄(dppm)ₓX₆]²⁺	crystal structure	co-reduction	120
54	PtAu₆	triphenylphosphine	PtAu₆(PPh₃)₄(NO₃)₁₂	crystal structure	co-reduction	121
55	Au₁₂⁺Cu₃₂	4-(trifluoromethyl)thiophenol	Au₁₂⁺Cu₃₂(SR)ₖ₊(n = 0, 2, 4, 6)	crystal structure	co-reduction	122
56	Cd₁₆Au₁₄	tert-butylthiol	Cd₁₆Au₁₄(SBU₄)₁₆	crystal structure	co-reduction	123
57	Au₃₆⁻Ag₆	triphenylphosphine	Au₃₆⁻Ag₆(PPh₃)₄Cl	crystal structure	co-reduction	124
58	Au₃₆⁻Cu₃₀	tert-butylbenzenethiol	Au₃₆⁻Cu₃₀(SP₂Bu)₄	mass spectrometry	co-reduction	125
59	Au₃₆⁻Cu₃₀	2,4-dimethylbenzenethiol	Au₃₆⁻Cu₃₀(2,4-DMBT)₁₆(x = 0-6)	crystal structure	co-reduction	126
60	Au₁₉Cu₃₀	3-ethylthiophene/ethynylbenzene	[Au₁₉Cu₃₀(C≡CC≡CR)₁₂(PPh₃)Cl₄]	crystal structure	co-reduction	127
61	Au₄₈⁻Ag₈⁶	phenylethiol	[Au₄₈⁻Ag₈⁶(PET)₈X₆]²⁺(X = Cl or Br)	crystal structure	co-reduction	128
62	Au₄⁺Pt₁₂	phenylethiophenol	Au₄⁺Pt₁₂(PET)₈	crystal structure	co-reduction	129
63	Au₄⁺P₁₆	phenylethyl thiophenol	Au₄⁺P₁₆(PET)₈	crystal structure	co-reduction	130
64	Au₄⁺Cu₁₂	tert-butylbenzenethiol	Au₄⁺Cu₁₂(TBBT)₁₂	crystal structure	co-reduction	131
65	Au₄⁺Cu₁₂	m-methylbenzenethiol	Au₄⁺Cu₁₂(m-MBT)₂₄(x = 1-3)	crystal structure	co-reduction	132
66	Au₁₉Cu₁₂	1,3-bis(diphenylphosphino)propane, pyridine-2-thiol, (2x₄r)/(2x₄s)₂₄-bis(diphenylphosphino)pentane	Au₁₉Cu₁₂(DPPP)₂(SPy)₆Au₁₉Cu₁₂((2x₄r)/(2x₄s)₂₄-BDP)₂(SPy)₆	crystal structure	co-reduction	81
67	PtAu₄	triphenylphosphine	[Pt(H)(PPh₃)₄(AuPPh₃)₄]²⁺	crystal structure	co-reduction, intercluster reaction	90, 31, 133
68	Ag₅₈⁻Au₁₁	fluorenebenzothiol	Ag₅₈⁻Au₁₁(TP₂)₁₂	crystal structure	co-reduction, intercluster reaction	31, 133
69	Au₂₃⁻Ag₈(x = 6-8)	phenylethiol	[Au₂₃⁻Ag₈(PET)₈]₆	crystal structure	co-reduction, antigalvanic exchange	48, 70, 22, 23, 31, 36
70	Au₂₃⁻Cu₁₀	tert-butylthiol	Au₂₃⁻Cu₁₀(TBBT)₁₅(x = 4-8)	crystal structure	co-reduction, ligand exchange	134
71	Au₂₃⁻Cu₁₀	tert-butylthiol	Au₂₃⁻Cu₁₀(TBBT)₁₅(x = 0-1), Au₂₃⁻Cu₁₀(TBBT)₁₅(x = 2-5)	crystal structure	co-reduction, ligand exchange	134
72	Au₂₃⁻Cu₁₂	phenylethanol	[Au₂₃⁻Cu₁₂(PET)₈]₂	mass spectrometry	co-reduction, antigalvanic exchange	77, 92, 136
73	Au₄₈⁻Au₁₂	2,4-dichlorobenzenethiol/2,4-dimethylbenzenethiol	(PPh₃)₁₂[Au₄₈⁻Au₁₂(SR)₁₂]	crystal structure	co-reduction, galvanic exchange, intercluster reaction	60, 137, 138
74	Ag₆Au₆	mercaptosuccinic acid	Ag₆Au₆(H₄MSA)	mass spectrometry	galvanic exchange	37
75	Au₄₆⁻Au₆	tert-butyl mercaptant, 1,1-bis(diphenylphosphino) methane	Au₄₆⁻Au₆(DPMM)₂₆(SR)₆(R = TBBM)	crystal structure	galvanic exchange	139
no	core	ligand	alloy cluster	focus	method of synthesis	reference
----	------	--------	--------------	-------	---------------------	-----------
76	AuAg₂₄	6-mercaptobenzoic acid	AuAg₂₄(MHA)₁₈	mass spectrometry	galvanic exchange	140
77	Ag₁₂Au/Au₁₂Au	2-ethylbenzenethiol	[Ag₁₂Au(2-EBT)₁₈(PPh₃)₆]⁺/[Ag₁₂Au(2-EBT)₁₈]⁻	crystal structure	galvanic exchange	141
78	Pt₁Au₂₄Cu₁₂Au₄	adamanthethiol	Pt₁Au₂₄Cu₁₂Au₄(S-Adm)₁₈(PPh₃)₄	mass spectrometry	galvanic reduction	34
79	Au₂₄Ir₅	phenylethyliothiol	Au₂₄Ir₅(PET)₁₈	mass spectrometry	intercluster reaction	142
80	Au₁₃Ag₇	1,3-benzenedithiol, triphenylphosphine	Au₁₃Ag₇(BDT)₁₈(PPh₃)₆	mass spectrometry	intercluster reaction	89
81	MAuₓAg₂₈₋ₓ (M = Ni/Pd/Pt)	1,3-benzenedithiol, triphenylphosphine	MAuₓAg₂₈₋ₓ(BDT)₁₈(PPh₃)₆ (M = Ni/Pd/Pt)	mass spectrometry	intercluster reaction	89
82	Au₁₉Ag₁	captopril	Au₁₉Ag₁(Capt)₁₈	mass spectrometry	intercluster reaction	143
83	Ag₁₁₋₉Au	1,3-benzenedithiol	Ag₁₁₋₉Au(BDT)₁₈(PPh₃)₆	mass spectrometry	intercluster reaction	144
84	Ag₁₃Au₁₂	triphenylphosphine, phenylethanethiol	[Ag₁₃Au₁₂(PPh₃)₁₈(SR)Cl₂]⁺⁺	crystal structure	ligand exchange	54
85	Pt₁Ag₂₈	1,3-benzenedithiol, triphenylphosphine	Pt₁Ag₂₈(BDT)₁₈(PPh₃)₆	mass spectrometry	ligand exchange	145,146
86	Pd₁Ag₂₈	1,3-benzenedithiol, triphenylphosphine	Pd₁Ag₂₈(BDT)₁₈(PPh₃)₆	mass spectrometry	ligand exchange	89
87	Ni₁Ag₂₈	1,3-benzenedithiol, triphenylphosphine	Ni₁Ag₂₈(BDT)₁₈(PPh₃)₆	mass spectrometry	ligand exchange	89
88	Au₁₉Ag	adamanthethiol	[Au₁₉Ag(S-Adm)₁₈]⁻	crystal structure	ligand exchange	95
89	Pt₁Ag₂₈	1,1-bis(diphenylphosphinomethane)methane, 2,4-dimethylbenzenethiol	Pt₁Ag₂₈(dppm)₁₈(SPhMe₂)₂	mass spectrometry	ligand exchange	147
90	Au₁₉Cu₃	cyclohexanethiol, 1,1-bis(diphenylphosphinomethane)methane	[Au₁₉Cu₃(C₆H₁₁S)₆(dppm)₂](BPh₄)₂	crystal structure	ligand exchange	113
91	Au₁₉Ag₆₃	1,1-bis(diphenylphosphinomethane)propane, cyclohexanethiol, tetrathienylborate	[Au₁₉Ag₆₃(Dppm)₁₈(C₆H₁₁S)₃(BPh₄)₆]⁺⁺	crystal structure	ligand exchange	114
92	Pt₁Ag₂₈	adamanthethiol, triphenyolphosphate	Pt₁Ag₂₈(S-Adm)₁₈(PPh₃)₆	crystal structure	ligand exchange	148
93	Au₁₉Ag₁₂	adamanthethiol	[Au₁₉Ag₁₂(S-Adm)₁₂]⁺⁺	crystal structure	ligand exchange	149
94	Au₃₄₋₉Ag	tert-butyl benzyl mercaptant	Au₃₄₋₉Ag(TBBM)₁₀	crystal structure	ligand exchange	150
95	Pt₁Ag₂₈	hexanethiol	Pt₁Ag₂₈(HT)₁₈(PPh₃)₆	crystal structure	ligand exchange	151
96	Ag₁₉Au₃₅	phenylethanethiol	Ag₁₉Au₃₅(PET)₁₈	mass spectrometry	metal deposition	152
97	MAuₓ₄ (M = Ag/Cu)	phenylethanethiol, triphenylphosphine	[MAuₓ₄(PPh₃)₁₀(PET)₂Cl]⁺⁺ (M = Ag/Cu)	crystal structure	metal deposition	153
procedure, a large number of bimetallic NCs and a few trimetallic NCs have been prepared. In 1984, the first phosphine-protected bicosahedral Au and Ag alloy NC was synthesized following co-reduction method by Teo and Keating. The obtained alloy NC contained 25 metal atoms with the molecular composition of \([[(PPh_3)_2Au_2Ag_2Cl_6]^{mn}] \). This work was followed by the synthesis of \([[(PPh_3)_2Au_2Ag_2Br_6]^{(PF_6)}] \). Then, the same group found new tricosahedral and tetracosahedral alloy NCs, \([[(p-Tol)_2P(3)Au_{18}Ag_{26}Cl_{44}]^{3.2}] \) and \([[(PPh_3)_2Au_8Ag_2Cl_6]^{3.2}] \), respectively.\(^{73,74}\) In 1994, Brust et al. reported the synthesis of thiolate-protected Au NCs, which showed more stability than their phosphine-protected analogs.\(^{75}\)

Among thiolate-protected NCs, \(Au_{25}(SR)_{18} \) is one of the most studied NCs due to its higher stability. In 2009, Murray et al. synthesized \(PdAu_{44}(PET)_{18} \), which was found to have different electrochemical properties than its monometallic analog.\(^{76}\) Ag, Cu, and Pt atoms were incorporated into \(Au_{25}(PET)_{18} \) to make \(Au_{25-}Ag_{x}(PET)_{18} \) and \(PtAu_{24}(PET)_{18} \) via this method. Later, \(PdAu_{24}(DDT)_{18} \) (DDT = dodecanethiol) was purified by Negishi et al. using HPLC and the cluster was more stable than monometallic \(Au_{25}(DDT)_{18} \).\(^{78}\) \(Au_{25-}Ag_{x}(DDT)_{18} \) was also prepared and the number of doped Ag atoms was dependent on the molar ratio of the precursor salts.\(^{79}\) Ni-doped bi- and trimetallic clusters such as \(Ag_{25}Ni \) and \(Ag_{12}Au_{12}Ni \) were achieved by this method, which can exhibit interesting magnetic properties.\(^{80}\) Various other alloys with interesting properties can be synthesized easily. Such an example is the chiral alloy NC, \(Au_{12}Cu_{12}(2,5,4,5)-BDPP\) (BDPP = bis(diphenylphosphino)pentane) which was synthesized using chiral ligand \(2,4-(SC_6H_13)_6 \).\(^{81}\) In addition, alloys of larger-sized NCs were also obtained such as \(Ag_{46}Au_{44}(PET)_{60} \), \(Au_{144-}Cu_{x}(SC_6H_13)_6 \), \([Ag_{80}Au_{30}(PhC_6H_4-Tol_3P)]_{12} \), and \([Ag_{80}Au_{30}(PhC_6H_4-Tol_3P)]_{12} \).\(^{82-84}\) A large number of Ag-rich alloy NCs were also synthesized such as \([Au_{46}Ag_{24}(TBHP)]_{12} \), \([Au_{12}Ag_{12}(TPP)]_{12} \), \([Ag_{28}Cu_{28}(2,4-DCBT)]_{18} \) etc. Among various Ag NCs, \(Ag_{25}(DMBT)_{18} \) is one of the most studied Ag NCs due to its exceptional stability than other Ag NCs and it is structurally similar to \(Au_{25}(PET)_{18} \). Different groups have synthesized its Pt-, Pd-, and Au-doped alloys such as \(PtAg_{24}(2,4-DMBT)_{18} \) and \(PdAg_{24}(2,4-DMBT)_{18} \) and \(Ag_{Au_{24-}}(PET)_{18} \).\(^{85-90}\) Our group has reported Ni-doped \(Ag_{25}NiAg_{24}(2,4-DMBT)_{18} \).\(^{91}\) Synthesis of alloy NCs using metal precursors having large differences in their redox potentials is difficult. Hence, the incorporation of Fe and Cd by co-reduction method is not possible. NaBH$_4$ is the most used reducing agent during the synthesis of bi- and trimetallic NCs. However, other reducing agents were used such as H$_2$, which is used to prepare \([Pt(H)(PPh_3)(AuPPh_3)]_2 \).\(^{92,93}\) A list of NCs prepared so far (until September 2020) is given in Table 1, which includes co-reduction method.

3. GALVANIC REDUCTION METHOD

The post-synthetic metal exchange reaction of a NC with a suitable metal precursor is one of the important methods for the preparation of alloy NCs. Among different metal exchange reactions, galvanic reduction reaction has become a very effective approach for making multimetallic NCs as well as various anisotropic alloy nanoparticles. According to the classic galvanic theory, a metal ion of higher reduction potential in solution gets reduced and replaces a metal atom present in a material and the latter subsequently enters the solution after being oxidized. The metal activity sequence is \(Fe (-0.77 \text{ V}) > Cd (-0.40 \text{ V}) > \).}

| 4. ANTIGALVANIC EXCHANGE REACTION |

Alloying or dopping in \(Au_{25}(SR)_{18} \) was performed largely with different metals such as \(Ag, Cu, Pd, Pt, Ni, Cd, Hg, \) and \(Ir. \) According to the classic galvanic reduction method, Au NCs are unable to react with the less noble metal atoms such as \(Ag, Cu, Cd, \) etc. (reduction potentials of \(Au^+ / Au^- \), \(Ag^+ / Ag^- \), \(Cu^{2+} / Cu^+ \), and \(Cd^{2+} / Cd \) are +1.50, +0.80, +0.34, and −0.40 V, respectively). However, Murray et al. showed the reduction of Ag ions by Au NCs, which was followed by the replacement of Au atoms with Ag, leading to the formation of \(Ag_{Au_{25-}}(SR)_{18} \) alloy NCs.\(^{94}\) This reaction was named as antigalvanic reduction, which is a unique property of Au and Ag NCs and nanoparticles of core size below 3 nm.\(^{95}\) In 2012, Wu performed the reaction between \(Au_{25}(PET)_{18} \) and Ag ions and the formed bimetallic
products were characterized using laser desorption ionization (LDI) MS. To prove that antigalvanic exchange reaction is not a unique property of Au25(PET)18 NC, approximately 2−3 nm nanoparticles were treated with AgNO3 solution. The incorporated Ag was detected by XPS and, after the reaction, the binding energy of Ag indicated the incorporation of neutral Ag, which confirmed the reduction of Ag ions by Au nanoparticles. A similar experiment was performed on 3 nm-sized Ag nanoparticles using Cu salt and incorporation of neutral Cu in Ag nanoparticles was observed using XPS. This proved that Cu ions can be reduced by more noble Ag atoms. Antigalvanic reduction reaction is feasible due to the enhanced reducing ability when the metal is in nanoscale form. One of the important driving factors for antigalvanic reduction is the protective ligands on the surface of nanoparticles or NCs. It was proposed that the partial negative charge present on the surface ligands plays a crucial role in the reduction of more reactive ions. This observation led Wu et al. to modify the sequence of metal activity as Fe > Ni > Pd > Au (~3 nm) > Cu > Ag.92,136 After that, Zhu et al. showed the incorporation of monovalent Cu/Ag and bivalent Cd/Hg in Au25(SR)18 NCs.33 Cd and Hg atoms were getting doped at the center of the icosahedral core, while Cu and Ag atoms were incorporated on the surface of the icosahedron. Similar to galvanic exchange reaction, in the case of antigalvanic exchange, dopants are mostly getting incorporated in the parent NCs without changing their structures and compositions. However, in some NC systems, the replacement with a foreign metal atom can lead to structural transformations. For example, the doping of Ag and Cu atoms in Au25(SR)18, Au38(PET)24, Au50(SR)24, Au144(PET)60, etc., and doping of Cd and Hg in Au25(SR)18 resulted in the formation of alloy NCs with preserved composition and structure.82,91,97,132 On the other hand, doping of Ag atoms in Au23(CHT)16 (CHT = cyclohexylthiol) NCs first led to the formation of Au23−xAgx(CHT)16, which then got converted to Au25−xAgx(CHT)18.38,154 The Au-rich trimetallic and tetrametallic NCs MxAgAu24−x(SR)18 (M = Cd/Hg)41 have also been synthesized by this effective method. A list of multicomponent NCs made via antigalvanic reduction is presented in Table 1.

5. METAL DEPOSITION METHOD

The metal deposition or intramolecular metal exchange is one of the emerging alloying methods. Li et al. reported the synthesis of Ag2Au25(SR)18 via reaction of Au25(SR)18 with AgNO3 152 where Ag atoms occupied the outer staple. But, after treatment with excess ligand, Ag atoms diffused within the icosahedral core, which led to the formation of AgAu24(SR)18. The reaction occurred in two steps as shown in Scheme 3A. The first step is the self-metal exchange, which is the intramolecular metal exchange. During the first step, one of the Ag atoms, which were in the outer staple (denoted in blue color in Scheme 3A), got exchanged with one of the icosahedral Au atoms. Thus, after exchange, one Ag atom was on the inner icosahedral surface and another one in the outer staple. This was followed by the second step where the surface Au and Ag atoms were detached from the surface of the cluster and resulted in the synthesis of AgAu24(SR)18. This process was called the metal stripping process. The same process was observed by Zheng et al. in AuAg24(MHA)18 NCs.140 Using high-resolution ESI MS, they monitored real-time diffusion of Au atoms from the staple motif to the icosahedral surface and then to the center of the icosahedron to attain
thermodynamic stability. The metal deposition method can be extrapolated into a hollowing and refilling process where foreign metal atoms are incorporated to make alloy NCs. Single Cu and Ag atoms were added successfully by Wang et al. in [Au42(PPh3)14(PET)Cl]−, which led to the synthesis of [MAg24(PPh3)10(PET)2Cl]2+ (M = Ag/ Cu). In this case, the −SR group and Cl atom played important roles. At first, a foreign atom got attached to the S/ Cl atom present in the waist/ apex positions, respectively. Due to this interaction, the Au−S/ Au−Cl bond collapsed and the Au atom migrated to the central position, which reduced the energy of the system as shown in Scheme 3B,C. Mainly, the Ag atom was doped at the apex site, while Cu occupied both apex and waist positions as the Ag−Cl bond is stronger than Ag−SR, unlike that of Cu−Cl that has the same binding energy as of Cu−SR.

6. LIGAND EXCHANGE METHOD

Ligand exchange is an efficient method for the synthesis of atomically precise NCs in which one NC is converted to another, with the same or different nuclearity in the presence of foreign ligands. The ligand exchange process where the structure of the starting NC undergoes structural conversion is named as ligand exchange-induced structural transformation (LEIST) by Jin’s group. This is a fast-evolving method in NC chemistry, which enhances the range of applications of NCs by introducing different functional ligands. LEIST method has been widely used for making a large number of monometallic NCs; however, it is now also being used for the preparation of multimetallic NCs. Biocoshedral PtAg24(PPh3)10Cl was converted to monooicosahedral PtAg24(DMBT)18 and PtAg25−x(BDT)x(PPh3)6 on addition of DMBT and BDT ligands, respectively. PtAg28(S-Adm)18(PPh3)4 was synthesized by the conversion of PtAg24(DMBT)18 after addition of Adm-SH and PPh3. Similarly, MAg28(BDT)12(PPh3)4 (M = Ni/Pd/Pt) was synthesized via the LEIST method starting from MAg24(DMBT)18 (M = Ni/Pd/Pt) (see Figure 1). Ligand exchange also helped make the n-hexanethiol (HT)-protected NC, PtAg25-HT(PPh3)16 from PtAg25−x(HT)x(PPh3)6, keeping the structure unaltered. Moreover, Zhu et al. showed the synthesis of highly luminescent Pt1Ag23(dppm)5(DMBT)2 from feebly luminescent Pt1Ag23(DMBT)10Cl, by introducing dppm along with DMBT. Further, Kang et al. reported a new alloy NC, AgAu16(S-Adm)13 starting from AgAu17(CHT)14 by this methodology. Also, AgAu14−x(TBBT)x was synthesized from AgAu44−x(HT)x upon treatment with TBBT. It has been proposed that the drastic change in the nuclearity of the NC is due to the change in the electron-withdrawing and electron-donating effect of ligands, which depends on the position of the functional groups. The noncovalent interactions and steric hindrance are also crucial factors for this transformation. However, the effect of ligand on the nuclearity and structure of the NC is unclear.

7. INTERCLUSTER REACTION METHOD

Besides various synthetic methods, the reaction between two NCs has become an emerging method to obtain multimetallic alloy NCs. We are discussing this method more elaborately than others as it has not been reviewed previously, in the context of alloy clusters. Krishnadas et al. found the chemical reaction between two atomically precise NCs, which resembles the reaction between two organic molecules. They first reported the reaction between pure Ag and Au NCs, Au25(FTP)18 and Ag44(FTP)30, respectively, which led to the formation of Au-doped Ag25(FTP)30 and Ag-doped Au25(FTP)18 bimetallic NCs. These intercluster reactions are controlled by both kinetics and thermodynamics. The extent of reaction and its mechanism were studied in detail using MS. Negative-mode MALDI MS at two different reaction times at the Au25(FTP)18 side is shown in Figure 2. The blue spectrum corresponding to MALDI MS after 1 h of reaction showed the incorporation of up to 5 Ag atoms, which resulted in the formation of Au25−xAgx(FTP)30, while the insertion of up to 13 Ag atoms was observed after 3 h of reaction (red spectrum). As both reacting NCs were protected by the same protecting ligand, no
ligand exchange was observed in the MS. The doping of Ag atoms into Au$_{25}$(SR)$_{18}$ was found to be more facile via this protocol where up to 20 Ag atoms can be incorporated. The total number of atoms and the overall charge state remain preserved in the formed alloy NCs during this kind of substitution reaction. Similar to the Au$_{25}$ region, the reaction also occurred in the Ag$_{44}$ region as shown in Figure 3. At first, a mixture of bimetallic NCs was formed having the composition, Au$_x$Ag$_{44-x}$(FTP)$_{30}$ where $x = 1$–12. After 1 h, this mixture resulted in the formation of Au$_{12}$Ag$_{32}$(FTP)$_{30}$ exclusively (Figure 3A). The reaction was monitored by time-dependent UV–vis spectroscopy as shown in Figure 3B. It showed a significant spectral change with time and the final spectrum was completely different than that of Ag$_{44}$(FTP)$_{30}$ as well as Au$_{25}$(FTP)$_{18}$ confirming the formation of the bimetallic NC Au$_{12}$Ag$_{32}$(FTP)$_{30}$. Although tools like MS, UV–vis absorption spectroscopy, NMR, etc., help in understanding the extent of doping, the precise structural insight can be obtained only from X-ray crystallography. In the absence of a single crystal, one can understand the doping position by computations as the structures of the monometallic NCs remain preserved to a large extent in the multimetallic NCs during such reactions. The single-crystal X-ray structure of Ag$_{44}$(FTP)$_{30}$ consists of a Ag$_{12}$ hollow icosahedron inside a Ag$_{20}$ dodecahedron, which is covered by a Ag$_{12}$(FTP)$_{30}$ outer shell. On the other hand, Au$_{25}$(FTP)$_{18}$ is made up of a Ag$_{13}$ central icosahedron protected by a Ag$_{12}$(FTP)$_{18}$ surface motif. In the case of the reaction involving Ag$_{44}$(FTP)$_{30}$ and Au$_{25}$(FTP)$_{18}$, the total energy of the substituted product was found to be the most negative when Au and Ag atoms occupied the icosahedral core. Hence, it was concluded that the substitution of metal atoms during the intercluster reaction was an energy-driven process. It was proposed that the intercluster reaction proceeds through bond breaking due to metallophilic and noncovalent interactions between ligands or redox reactions. The fragments generated after bond breaking behaved as nucleophiles, which led to the incorporation of another metal atom similar to that of the metal exchange reactions. The formation of an adduct of two NCs (due to noncovalent interactions between ligands and metallophilic interactions) was observed in ESI MS during the reaction between two structurally similar Au and Ag NCs, Au$_{25}$(PET)$_{18}$ and Ag$_{85}$(DMBT)$_{18}$ as shown in Figure 4. The adduct vanished within 5 min of mixing and a series of peaks were observed due to the formation of Au$_x$Ag$_y$(SR)$_{18}$. This adduct formation suggested that the intercluster reaction is bimolecular. The structure of this adduct was calculated using DFT, which manifested that bond lengths of both NCs were longer than that of individual NCs. Also, the bond angles of staples of both NCs changed significantly in the adduct. Further chemical and structural transformation might occur during the reaction after adduct formation. In the alloy NCs Au$_x$Ag$_y$(SR)$_{18}$, the number of doped Ag and Au atoms can be varied from 1 to 24 by varying the molar ratio of reactant NCs. Therefore, the desired number of dopants can be inserted using intercluster reaction. Similar to the previous reaction, in this case, the total number of metal and ligand in alloy NCs is identical with that of the unreacted NCs. Regarding the dopant position, the computational study revealed that the total energy of the reaction will be the most favorable when a Au atom occupies the central position of the icosahedron in Ag$_{85}$(DMBT)$_{18}$ while a Ag atom occupies the icosahedral surface of Au$_{25}$(PET)$_{18}$. Not only Ag but also Ir metal incorporation in Au$_{25}$(SR)$_{18}$ was obtained via intercluster reaction, which otherwise is difficult to achieve by other methods. Bhat et al. discussed the intercluster reaction between an Ir NC, Ir$_9$(PET)$_6$, and a Au NC, Au$_{25}$(PET)$_{18}$ which led to the formation of Ir$_x$Au$_{25}$(PET)$_{18}$. In this reaction, only one single product got formed, which was then separated from the unreacted NCs by thin-layer chromatography (TLC), and the purity was checked with ESI MS. The DFT study revealed that the Ir atoms occupy the central and surface of the icosahedral core.

In these reactions, the use of two monothiol-protected NCs also led to ligand exchange; although, the total number of thiol ligands remains the same. As DMBT and PET are of the same mass, no ligand exchange could be observed in ESI MS data but ligand exchange between FTP and PET was observed. Due to high mobility, ligands undergo spontaneous exchange. The mobility of ligands can be decreased by using bidentate ligands such as dithiols. Ghosh et al. showed the reactions of bidentate thiol-protected NCs, Ag$_{51}$(BDT)$_{19}$(PPh$_3$)$_3$ and Ag$_{29}$(BDT)$_{12}$(PPh$_3$)$_4$ with Au$_{25}$(PET)$_{18}$ and noticed the exchange between Ag and Au atoms and no exchange occurred between the ligands. The reaction rate was observed to be slow, which may be due to the presence of a rigid bidentate ligand that rigidifies the surface of the NC. They found the incorporation of three Au atoms in Ag$_{51}$(BDT)$_{19}$(PPh$_3$)$_3$ and
The doped Ag and Au atoms underwent intramolecular galvanic outer staple, leading to the synthesis of bimetallic NCs. Then, interaction assisted the metal exchange between two NCs at the Outer Surface, Which Then incorporation of 1

Ag$_{29}$(BDT)$_{12}$(PPh$_3$)$_4$

Borromean rings, as proposed by Natarajan structure of these kinds of NCs had been compared to the referred to as aspicules (meaning shielded molecules). 157 comprised two types of staples: Ag$_3$S$_6$ and Ag-P, unlike that of Thermodynamically Stable Structure.

Di denotes S atoms, and orange denotes P atoms.

The oligomeric M$_x$L$_y$ surface staples were well defined in these NCs, and in some of these clusters, the oligomeric staple motifs formed interlocked rings as in Ag$_{25}$(SR)$_{18}$ and Au$_{25}$(SR)$_{18}$. The structure of these kinds of NCs had been compared to the Borromean rings, as proposed by Natarajan et al, and NCs were referred to as aspicules (meaning shielded molecules). 157

According to this structural alignment, breaking of one ring led to the destruction of the entire structure of these NCs, which resulted in the generation of M$_x$L$_y$ fragments behaving as nucleophiles in the substitution reaction. This process led to the incorporation of 1–24 Ag and Au atoms in the respective NCs to make bimetallic ones. This was not the same in the case of dithiol-protected NCs such as in Ag$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$, which comprised two types of staples: Ag$_x$S$_6$ and Ag-P, unlike that of the Borromean ring structure. These staples were difficult to break as they were stabilized by dithiol, and hence, it was proposed that Au$_{25}$(SR)$_{18}$ NCs were interacting with Ag$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$ via weak van der Waal interactions at the less congested Ag$_x$S$_6$ staples as shown in Scheme 4. This interaction assisted the metal exchange between two NCs at the outer staple, leading to the synthesis of bimetallic NCs. Then, the doped Ag and Au atoms underwent intramolecular galvanic and antigalvanic exchange to occupy the energetically most stable positions, which were the icosahedral surface positions.

Intercluster reaction was then expanded to make trimetallic NCs. 159 We showed the reaction of bimetallic MAu$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$ (where M = Ni/Pd/Pt) with monometallic Au$_{25}$(PET)$_{18}$, which produced a mixture of trimetallic MAu$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$ and bimetallic AgAu$_{25}$−(PET)$_{18}$. Unlike Ag$_{29}$(BDT)$_{12}$(PPh$_3$)$_4$, the use of doped Ag$_{29}$(BDT)$_{12}$(PPh$_3$)$_4$ exhibited higher reactivity; however, it was slower as compared to the mono- and bimetal-protected ones. A time-dependent ESI MS of the reaction sequence between PdAg$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$ and Au$_{25}$(PET)$_{18}$ (1:5 molar ratio) is shown in Figure 5, which manifests the extent of reaction with time. With increasing time, the number of doped Au atoms increased and it formed a stable single trimetallic NC PdAu$_{12}$Ag$_{16}$(BDT)$_{12}$(PPh$_3$)$_4$, while doping up to 7 Au atoms was seen in Au$_{25}$(PET)$_{18}$ forming a mixture of bimetallic Ag$_{25}$−x(PET)$_{18}$ (where x = 1–7) clusters. Similar to PdAu$_{12}$Ag$_{16}$(BDT)$_{12}$(PPh$_3$)$_4$, trimetallic PtAu$_{12}$Ag$_{16}$(BDT)$_{12}$(PPh$_3$)$_4$ NC too got formed by intercluster reaction between PtAg$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$ and Au$_{25}$(PET)$_{18}$. Also, NiAu$_{25}$−x(PET)$_{18}$(PPh$_3$)$_4$ was obtained by intercluster reaction between NiAg$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$ and Au$_{25}$(PET)$_{18}$. One important aspect to notice here was that the centrally doped Ni, Pd, and Pt atoms in Ag$_{25}$(BDT)$_{12}$(PPh$_3$)$_4$ did not get transferred to Au$_{25}$(PET)$_{18}$ to make corresponding bi- or trimetallic NCs. This observation supported the above mechanism, which depicted the involvement of metal–ligand interface during the intercluster reaction and not the central atom. Hence, based on this, we calculated the structure of trimetallic MAu$_{12}$Ag$_{16}$(BDT)$_{12}$(PPh$_3$)$_4$ (M = Ni/Pd/Pt), where M atom was at the center of the icosahedral core and 12 Au atoms occupied the icosahedral surface positions.

There have been other attempts of intercluster reactions by other groups such as Xia et al, who reported the synthesis of Au$_{25}$(Capt)$_{18}$ by the reaction between Au$_{25}$(Capt)$_{18}$ and Au$_{38}$(Capt)$_{24}$. The product was purified using polyacrylamide gel electrophoresis (PAGE). While both the reactant NCs were non-emissive, the alloy cluster exhibited intense red emission. MALDI MS was used to determine the composition of as-synthesized alloy NCs.

The reaction of nanocluster has also been observed with nanoparticles by Xia et al. 165 They found the doping of Cu atoms by the reaction of Au$_{25}$(SR)$_{18}$ with Cu nanoparticles of ~1.4 nm. This gave a new turn of the reaction involving nanoclusters. Similarly, Bose et al. have observed doping of Ag atoms in atomically precise Au$_{25}$(PET)$_{18}$ nanoclusters using polydisperse Ag nanoparticles. 166

8. NANOCLUSTER-BULK REACTIONS

To understand the mechanism of intercluster reactions and the role of metal–ligand interfaces in greater detail, Kazan et al, conducted a reaction of NCs with surfaces of bulk metals. 159 They used Au$_{12}$(PET)$_{18}$ and Au$_{14}$(PET)$_{18}$ NCs to react with Ag, Cu, and Cd foils before and after functionalization with thiols. The doping rate was observed to be different for the treated and untreated foils. Treated Ag foils exhibited a faster reaction rate, which decreased with time, while the untreated one showed a lower reaction rate at first and slowly increased after a certain time. This observation indicated that pre-functionalized thiols on the foils play a crucial role in the reaction, which indeed emphasized the importance of metal–ligand interfaces during the reaction between NCs (the mechanism is shown in Scheme

Adapted with permission from ref 89. Copyright 2020 American Chemical Society *Color codes: Green and pink (both light and dark shades) denote Ag atoms, yellow and purple denote Au atoms, cyan shades) denote Ag atoms, yellow and purple denote Au atoms, cyan
In the case of Cu and Cd foils, the reaction did not occur with the bare metal foils. Insertion of a few Cu and Cd atoms can be seen during the reaction with the pre-treated foils. This new class of reactions of NCs with bulk metals opens up new opportunities for making different alloy NCs.

9. CONCLUSIONS AND FUTURE PERSPECTIVES

In the following, we list below several possibilities to expand this science.

Diversity: About 100 bimetallic alloy NCs are known till now; however, only about 10 alloy NCs with more than one heteroatom have been reported. To the best of our knowledge, only two tetrametallic NCs ([Pt1Ag12Cu12Au4(S-Adm)18(PPh3)4] and [Au24-xAgx(PET)18]) have been reported. Hence, incorporation of more metals in a given cluster core, such as pentametallic and beyond, will be worth exploring. This may lead to high entropy alloy NCs, which might show improved properties, in areas such as catalysis. Finding some methods to control the number of doped atoms in an alloy NC are also important.

The reaction of a NC with another NC of a different metal or even bulk metal is an efficient method for preparing bimetallic and trimetallic NCs. The reactions between a few NCs have been studied. There are more than 150 NCs whose structures have been solved and many more NCs are reported, whose structures are yet to be understood. Hence, intercluster reactions using these NCs can be studied to expand their chemistry. Reactions of NCs can be studied with other nanostructures and different bulk metals, which might give a new twist to the area.

Structures and properties: Over 100 multicomponent atomically precise alloy NCs comprising Au, Ag, Ni, Cu, Hg, Ir, Cd, Pd, and Pt have been synthesized till date using different synthesis methods. Most of these have been characterized with mass spectrometry, and about 50 have crystal structures. As a glaring gap, Fe and Co doping has not been accomplished yet in such clusters and these alloy clusters can be of potential interest due to their magnetic properties. Incorporation of lanthanides in NCs to make alloys will be an exciting study due to their interesting magnetic and photophysical properties. Even though Ni-doped NCs such as NiAu24, NiAg24, and NiAg28 have been synthesized, their magnetic properties have not been studied so far. These alloy NCs can show multiple phenomena such as circularly polarized luminescence, magneto-fluorescence, etc., which will help to broaden their applications.

Structures of multimetallic NCs will provide details of their optical and electronic properties. Unlike bimetallic NCs, the structure of tri- and tetrametallic NCs are yet to be studied extensively. Mainly, two kinds of alloy NCs are observed, (i) keeping the structure and composition the same, a specific number of foreign atoms are doped and (ii) the structure and compositions are different and the extent of doping depends on the molar ratio of the precursors used. In both the cases, it is crucial to get a single product either by controlling the synthesis method or by isolating the cluster of interest. The isolation of a specific isomer will be highly interesting, which can induce the possibility of crystallization.

Figure 5. ESI MS of reaction between PdAg28(BDT)12(PPh3)4 and Au25(PET)18 (1:5 molar ratio) at different time intervals. (A) Reaction at the PdAg28(BDT)12(PPh3)4 side and (B) the reaction at the Au25(PET)18 side. The formed clusters are [PdAuAg28−x(BDT)12]4− and [AgAu25−x(PET)18]−. The charged species are not mentioned in the text for simplicity. The red asterisk in (A) is due to thiolates produced during the reaction. Adapted with permission from ref 89. Copyright 2020 American Chemical Society.

Scheme 5. Pictorial Illustration of the Reaction between Au25(PET)18 with Ag Foil. Adapted with permission from ref 159. Copyright 2019 Royal Society of Chemistry
Dynamics and mechanism: The exchange of metal atoms and the ligands between two different NCs manifest the dynamic nature of the outer staple motifs of NCs and protecting ligands. The investigation of this chemical event will be interesting. Also, a detailed study of the metal—ligand interface by theoretical calculations can reveal important information. In addition, a mechanistic study of the interactions between two NCs in the transition state is essential to have a deeper understanding of intercluster reactions. Although interaction of clusters leading to dimers have been observed in mass spectrometry, these species have not been trapped. Cluster reactions go through such an intermediate and several such intermediates have been identified. However, none of them have been seen. With the advancements in cryo-electron microscopy, it might be possible to observe such species in solution. If that becomes possible, it will lead to a new understanding of atom transfer processes, how chemical bonds are modified, etc. The existence of Borromean rings may be understood from such studies. Bulk properties: The availability of larger crystals will enable the measurements of various physical properties of NC solids such as electrical conductivity, mechanical properties, etc., which can open a new paradigm in NC-based research. A systematic effort in the properties of clusters has to occur. The mechanical response of a few monometallic NC solids has been studied; however, this new field need to be explored using various multimetallic NC solids. Assemblies and superstructures: Supramolecular assemblies of NCs with different nanoparticles or molecules and NC-based metal—organic frameworks are emerging materials as they can be used as functional building blocks to make hierarchical frameworks with improved properties. Although a few assemblies have been made using monometallic NCs, the area is yet to be expanded to multimetallic alloy NCs, which can bring in several unprecedented properties.

While many of these will be pursued in the coming years, there are inherent challenges in this system. The principal one is related to the dynamics of atoms in this length scale. That would mean that stabilizing the cluster systems in the solution and solid state for extended periods would involve the use of specific ligands, which do not allow atom transfer to occur. However, in some other contexts, these dynamics may be advantageous also. The extent of dynamics may be the reason for their use in catalysis. Whatever be the case, understanding such processes will require a great amount of computational effort. As the size of the systems increases, these efforts will become increasingly demanding.

AUTHOR INFORMATION

Corresponding Author

Thalappill Pradeep — Department of Chemistry, DST Unit of Nanoscience (DST UNIS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India; orcid.org/0000-0003-3174-534X;

Email: pradeep@iitm.ac.in

Author

Esma Khatun — Department of Chemistry, DST Unit of Nanoscience (DST UNIS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c04832

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Department of Science and Technology, Government of India for constantly supporting our research program on nanomaterials. E.K. thanks the Indian Institute of Technology Madras for research and doctoral fellowships.

REFERENCES

(1) Aicheson, L. A History of Metals. Science 1960, 132, 887–888.
(2) Maddin, R. The Beginning of the Use of Metals and Alloys. The MIT Press, 1988.
(3) Pradeep, T.; Anshup. Noble Metal Nanoparticles for Water Purification: A Critical Review. Thin Solid Films 2009, 517, 6441–6478.
(4) Talapin, D. V.; Shevchenko, E. V. Introduction: Nanoparticle Chemistry. Chem. Rev. 2016, 116, 10343–10345.
(5) Sajanlanl, P. R.; Khatun, E.; Pradeep, T. Gold Nanoparticles; Kirk-Other Encyclopedia, 2019.
(6) Haruta, M.; Editor; Gold Nanotechnology: Fundamentals and Applications; Shi Emu Shi Shuppan Co., Ltd. 2009.
(7) The British Museum. https://www.thebritishmuseum.ac.uk.
(8) Barber, D. J.; Freestone, I. C. An investigation of the origin of the Lycurgus Cup by analytical transmission electron spectroscopy. Archaeometry 1990, 32, 33–45.
(9) Faraday, M. X. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. London 1857, 147, 145–181.
(10) Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271.
(11) Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346–10413.
(12) Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanomaterials: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910.
(13) Wang, S.; Li, Q.; Kang, X.; Zhu, M. Customizing the Structure, Composition, and Properties of Alloy Nanoclusters by Metal Exchange. Acc. Chem. Res. 2018, 51, 2784–2792.
(14) Hossain, S.; Nihiyori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy Clusters: Precise Synthesis and Mixing Effects. Acc. Chem. Res. 2018, 51, 3114–3124.
(15) McPartlin, M.; Mason, R.; Malatasta, L. Novel Cluster Complexes of Gold(0)−Gold(1). J. Chem. Soc. D 1969, 7, 334–338.
(16) Boer, F. P.; Flynn, J. J.; Hecht, J. K. Crystal and Molecular Structure of Cis-1,2-Diacetoxy-1,3,3-Tetra-Chlorocyclopropane. J. Chem. Soc. B 1970, 4021, 381.
(17) Teo, B. K.; Zhang, H.; Shi, X. Design, Synthesis, and Structure of the Largest Trinetallic Cluster. [(Ph,P)[M]Au12Ag12PtCl4]: The First Example of a Trinetallic Biocoshedral Supracluster and Its Implication for the Vertex-Sharing Polycoshedral Growth of the Au/Ag/Pt Ternary Cluster. J. Am. Chem. Soc. 1993, 115, 8489–8490.
(18) Teo, B. K.; Zhang, H.; Shi, X. Site Preference in Vertex-Sharing Polycoshedral Supraclusters Containing Groups 10 and 11 Metals and Their Bonding Implications: Syntheses and Structures of the First Au–Ag–M (M = Pt, Ni) Biocoshedral Clusters [(Ph,P)3Au11Ag42PtCl4]:Cl and [(Ph,P)3Au11Ag42NiCl4]:[SbF6]3. Inorg. Chem. 1994, 33, 4086–4097.
(19) Teo, B. K.; Zhang, H.; Shi, X. Molecular Architecture of a Novel Vertex-Sharing Biocoshedral Cluster [(p-Tol,P)3Au11Ag42Br4](PF6)
Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster.

Phosphine-Stabilized Au$_{11}$ Clusters.

Luminescence Quantum Yield.

from Monometallic to Tetrametallic.

Dass, A. Crystal Structure of Faradaurate-279: Au$_{279}$(SPh-tBu)$_{84}$ Chem. Soc. S.; Haldane, N. Analysis.

Silver Nanoclusters Co-Protected by Phosphines.

Nanoparticles with Single-Crystal Structures.

Plasmonic Nanocrystal Molecules.

Mobilization on Silica, and

Cluster.

Angew. Chem., Int. Ed.

Balasubramanian, K.; Pradeep, T. Ag$_{7}$Au$_{6}$: A 13-Atom Alloy Quantum

5749

(22) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(21) Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, F. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Nanocrystal Gold Molecules. Adv. Mater. 1996, 8, 428–433.

(20) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(19) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(18) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(17) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(16) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(15) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(14) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(13) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(12) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(11) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(10) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(9) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(8) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(7) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(6) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.

(5) Dass, A. Correlating the Crystal Structure of a Thiol-Protected Au$_{25}$ Cluster and Ag$_{29}$(BDT)$_{12}$(TPP)$_{4}$: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2005, 127, 13464–13465.
(58) Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D.-E.; Lee, D. A Molecule-like PtAu25(SCH3)18 Cluster as an Electrocatalyst for Hydrogen Production. Nat. Commun. 2017, 8, 14723.

(59) Xie, S.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25Clusters by Single Pd Atom Doping. ACS Catal. 2012, 2, 1519–1523.

(60) Yan, J.; Su, H.; Yang, H.; Malola, S.; Lin, S.; Häkkinen, H.; Zheng, N. Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2+ (M = Pd, Pt) Clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.

(61) Jin, R.; Zhao, S.; Xing, Y.; Jin, R. All-Thiolated-Protected Silver and Silver-Rich Alloy Nanoclusters with Atomic Precision: Stable Sizes, Structural Characterization and Optical Properties. CrystEngComm 2016, 18, 3996–4005.

(62) Liu, Y.; Chai, X.; Cai, X.; Chen, M.; Jin, R.; Ding, W.; Zhu, Y. Central Doping of a Foreign Atom into the Silver Cluster for Catalytic Conversion of CO2 toward C=C Bond Formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.

(63) Kang, X.; Sililai, C.; Lv, Y.; Sun, G.; Chen, S.; Yu, H.; Xu, F.; Zhu, M. Au13+Ag(SPhMe2)14 Clusters – Crystal Structure and Insights into Ligand-Induced Variation. Eur. J. Inorg. Chem. 2017, 2017, 1414–1419.

(64) Molina, B.; Tlahuice-Flores, A. Thiolated Au25Cluster: Preferred Ag Sites for Doping, Structures, and Optical and Chiroptical Properties. Phys. Chem. Chem. Phys. 2016, 18, 1397–1403.

(65) Jin, R.; Nobusada, K. Doping and Alloying in Atomically Precise Gold Nanoparticles. Nano Res. 2014, 7, 285–300.

(66) Kang, X.; Li, Y.; Zhu, M.; Jin, R. Atomically Precise Alloy Nanoclusters: Syntheses, Structures, and Properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

(67) Kawakazi, T.; Imai, Y.; Suzuki, D.; Kato, S.; Kobayashi, I.; Suzuki, T.; Kaneko, R.; Hossain, S.; Negishi, Y. Atomically Precise Alloy Nanoclusters. Chem. Eur. J. 2020, 16, 1415–1419.

(68) Kang, X.; Zhu, M. Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chem. Mater. 2019, 31, 9939–9969.

(69) Higaki, T.; Li, Y.; Zhao, S.; Li, Q.; Li, S.; Yu, X.-S.; Yang, S.; Chai, J.; Jin, R. Atomically Tailored Gold Nanoclusters for Catalytic Application. Angew. Chem. Int. Ed. 2019, 58, 8291–8302.

(72) Sun, H.; Yang, H.; Malola, S.; Lin, S.; Beaber, A.; C.; Pedicini, A. F.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. Continuous Modulation of the Chirality of Ligated Au13Cu2 Nanoclusters. J. Phys. Chem. Lett. 2017, 8, 4522–4528.

(73) Negishi, Y.; Kini, Y.; Iwai, T.; Ide, M. Continuous Modulation of Electronic Structure of Stable Thiolate-Protected Au25Cluster by Ag Doping. Chem. Commun. 2010, 46, 4713–4715.

(80) Blüte, S. R.; Mandal, S.; Sen, A.; Reber, A. C.; Pedicini, A. F.; Khanna, S. N. Synthesis and Structural Characterization of an Atom-Precise Bimetallic Nanocluster, Ag26Ni5(DMSA)6. J. Am. Chem. Soc. 2013, 135, 20.

(81) Deng, G.; Malola, S.; Yan, J.; Han, Y.; Yuan, P.; Zhao, C.; Yuan, X.; Lin, S.; Tang, Z.; Teo, B. K.; et al. From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13Cu2 Nanoclusters. Angew. Chem. Int. Ed. 2018, 57, 3421–3425.

(82) Dharmaratne, A. C.; Dass, A. Au144Cu2(S2C2H4)20 Nanostructures: Effect of Cu Incorporation on Composition and Plasmon-Peak Existence in Optical Spectra. Chem. Commun. 2014, 50, 1722.

(83) Jensen, K. M. O.; Juhás, P.; Tofanelli, M. A.; Heinecke, C. L.; Vaughan, G.; Ackerson, C. J.; Billinge, S. J. L. Polymorphism in Magic-Sized Au25(SR)20 Clusters. Nat. Commun. 2016, 7, 11859.

(84) Zeng, J.; Guan, Z. J.; Yu, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. Chloride-Promoted Formation of a Bimetallic Nanocluster Au25Ag60 and the Total Structure Determination. J. Am. Chem. Soc. 2016, 138, 7848–7851.

(85) Yan, J.; Su, H.; Yang, H.; Hu, C.; Malola, S.; Lin, S.; Beaber, A.; C.; Pedicini, A. F.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. A Quantum Alloy: The Ligand-Protected Au25Ag60Cluster. J. Phys. Chem. C 2013, 117, 7914–7923.

(86) Wang, S.; Jin, S.; Yang, S.; Chen, S.; Song, Y.; Zhang, J.; Zhu, M. Total Structure Determination of Surface Doping [Ag2Au25(SR)2]−(BPh3)− Nanocluster and Its Structure-Related Catalytic Property. Sci. Adv. 2015, 1, e1500441.

(87) Conn, B. E.; Atagulov, A.; Yoon, B.; Barnett, R. N.; Landman, U.; Bigioni, T. P. Confirmation of a de Novo Structure Prediction for an Atomically Precise Monolayer-Coated Silver nanoparticle. Sci. Adv. 2016, 2, No. e1601609.

(88) Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. A Quantum Alloy: The Ligand-Protected Au25Ag60Cluster. J. Phys. Chem. C 2013, 117, 7914–7923.

(89) Khatun, E.; Chakraborty, P.; Jacob, B. R.; Paramasivam, G.; Boduzumam, M.; Dar, W. A.; Pradeep, T. Intercluster Reactions Resulting in Silver-Rich Trimetallic Nanoclusters. Chem. Mater. 2020, 32, 611–619.

(90) Kanters, R. P. F.; Bour, J. J.; Schlebos, P. P. J.; Bosman, W. P.; Behm, H.; Steggerda, J. J.; Ito, L. N.; Pignolet, L. H. Structure and Properties of the Hydride-Containing Cluster Ion hydrido-triphenyolphosphate)heptakis[(triphenylphosphine)gold]platinum(2−). Inorg. Chem. 1989, 28, 2591–2594.

(91) Wang, S.; Song, Y.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X.; Chen, M.; Li, P.; Zhu, M. Metal Exchange Method Using Au25 Nanoclusters as Templates for Alloy Nanoclusters with Atomic Precision. J. Am. Chem. Soc. 2015, 137, 4018–4021.

(92) Gan, Z.; Xia, N.; Wu, Z. Discovery, Mechanism, and Application of Antiglavanic Reaction. Acc. Chem. Res. 2018, 51, 2774–2783.

(93) Copley, R. C. B.; Mingsos, D. M. P. Synthesis and Characterization of the Centred Icosahedral Cluster Series [Au4MB6Cl4(PMe3)6][C6B4H11]2 Where MB= Au, Ag or Cu. J. Chem. Soc. Dalton Trans. 1996, 4, 491.

(94) Li, Q.; Lambright, K. J.; Taylor, M. G.; Kirschbaum, K.; Luo, T. Y.; Zhao, J.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. Reconstructing the Surface of Gold Nanoclusters by Cadmium Doping. J. Am. Chem. Soc. 2017, 139, 17779–17782.

(95) Kang, X.; Xiong, L.; Wang, S.; Pei, Y.; Zhu, M. Combining the Single-Atom Engineering and Ligand-Wearing Strategies: Obtaining the Single-Heteroatom-Doped Au25Ag60(3-Adm)11Nanocluster with Atomically Precise Structure. Inorg. Chem. 2017, 57, 335–342.

(96) Sharma, S.; Yamazoe, S.; Ono, T.; Kurashige, W.; Nihori, Y.; Nobusada, K.; Tsukuda, T.; Negishi, Y. Tuning the Electronic Structure of Thiolate-Protected 25-Atom Clusters by Co-Substitution with Metals Having Different Preferential Sites. Dalton Trans. 2016, 45, 18064–18068.
(97) Kazan, R.; Zhang, B.; Kürti, T. Au38Cu16(DPP)16(C6H11S)x2[Cl]16. Nanocluster: Synthesis, Enantioseparation and Luminescence. *Dalton Trans.* 2017, 46, 7708–7713.

(98) Bilite, S. R.; Sen, A.; Pedicini, A. F.; Reber, A. C.; Khanne, S. N. Isolation and Structural Characterization of a Silver–Platinum Nanocluster, Ag3Pt4(DMSA)6. *J. Phys. Chem. A* 2014, 118, 8314–8319.

(99) Liu, X.; Yuan, J.; Chen, J.; Yang, J.; Wu, Z. The Synthesis of Chiral Au5Pd(SR)2 by Nonreplaced Galvanic Reaction. *Part. Part. Syst. Charact.* 2019, 36, 1900003.

(100) Yang, H.; Wang, Y.; Lei, J.; Shi, L.; Wu, X.; Mäkinen, V.; Lin, S.; Tang, Z.; He, J.; Hakkinen, H.; et al. Ligand-Stabilized Au45Cu22. *Angew. Chem., Int. Ed.* 2019, 58, 18798–18802.

(101) Wang, Y.; Su, H.; Xu, C.; Li, G.; Gell, L.; Lin, S.; Tang, Z.; Hakkinen, H.; Zheng, N. An Intermetallic Au13Ag4 Superatom Nanocluster Stabilized by Labile Ligands. *J. Am. Chem. Soc.* 2015, 137, 4324–4327.

(102) Tian, S.; Liao, L.; Yuan, J.; Yao, C.; Chen, J.; Yang, J.; Wu, Z. Structures and Magnetism of Mono-Palladium and Mono-Platinum Doped Au38(PET)18 Nanoclusters. *Chem. Commun.* 2016, 52, 9873–9876.

(103) Negishi, Y.; Igarashi, K.; Munakata, K.; Ohgake, W.; Nobusada, K. Palladium Doping of Magic Gold Cluster Au32(SC2H4Ph)24 by Formation of PdAu28(SC2H4Ph)16, with Higher Stability than Au32(SC2H4Ph)16. *Chem. Commun.* 2012, 48, 660–662.

(104) Teo, B. K.; Deng, H.; Campana, C. F.; Zhang, H. Synthesis, Structure, and Characterization of (MePh2P)10Au12Br6: The First Example of a Neutral Bi-Icosahedral Au46 Core with Six Free Valence Electrons. *Chem. Commun.* 2019, 55, 6457–6460.

(105) Bootharaju, M. S.; Kovlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F.; et al. Doping-Induced Anisotropic Self-Assembly of Silver Icosahedron in [Pt48Cl2(PPh3)18] Nanoclusters. *J. Am. Chem. Soc.* 2017, 139, 1053–1056.

(106) He, L.; Yuan, J.; Xia, N.; Liao, L.; Liu, X.; Gan, Z.; Wang, C.; Yang, J.; Wu, Z. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters. *J. Am. Chem. Soc.* 2018, 140, 3487–3490.

(107) Bootharaju, M. S.; Kovlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F.; et al. Doping-Induced Anisotropic Self-Assembly of Silver Icosahedron in [Pt48Cl2(PPh3)18] Nanoclusters. *J. Am. Chem. Soc.* 2017, 139, 1053–1056.

(108) He, L.; Yuan, J.; Xia, N.; Liao, L.; Liu, X.; Gan, Z.; Wang, C.; Yang, J.; Wu, Z. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters. *J. Am. Chem. Soc.* 2018, 140, 3487–3490.

(109) Bootharaju, M. S.; Kovlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F.; et al. Doping-Induced Anisotropic Self-Assembly of Silver Icosahedron in [Pt48Cl2(PPh3)18] Nanoclusters. *J. Am. Chem. Soc.* 2017, 139, 1053–1056.

(110) He, L.; Yuan, J.; Xia, N.; Liao, L.; Liu, X.; Gan, Z.; Wang, C.; Yang, J.; Wu, Z. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters. *J. Am. Chem. Soc.* 2018, 140, 3487–3490.

(111) Liu, C.; Ren, X.; Lin, F.; Fu, X.; Lin, M.; Li, T.; Sun, K.; Huang, J. Application of the Structure of Au32Ag18(S-Adm)18 Nanocluster and Its Application for Photocatalytic Degradation of Organic Pollutants. *Angew. Chem., Int. Ed.* 2019, 58, 11335–11339.

(112) Zhou, X.; Li, Y.; Jin, S.; Kang, X.; Wei, X.; Wang, S.; Meng, X.; Zhu, M. Dopding Copper Atoms into the Nanocluster Kernel: Total Structure Determination of \([\text{Cu}_{n}\text{Ag}_{m}\text{S-Adm}_{s}]_{x}\text{Cl}_{y}\). Derivative. *Angew. Chem.* 2020, 132, 3919–3923.

(113) Zhou, M.; Jin, S.; Wei, X.; Yuan, Q.; Wang, S.; Du, Y.; Zhu, M. Reversibly Cu–S Motif Transformation and Au, Distortion via Thiol Ligand Exchange Engineering. *J. Phys. Chem. C* 2020, 124, 7531–7538.

(114) Jin, S.; Zhou, M.; Kang, X.; Li, X.; Du, W.; Wei, X.; Chen, S.; Wang, S.; Zhu, M. Three-dimensional Octameric Assembly of Icosahedral M1 Units in \([\text{Au}_{2n}\text{Ag}_{m}\text{Dppp}]_{x}(\text{C}_6\text{H}_4\text{S})_y\text{Cl}_z\) Cl and Its Structure Determination of \([\text{Au}_{2n}\text{Ag}_{m}\text{Dppp}]_{x}(\text{C}_6\text{H}_4\text{S})_y\text{Cl}_z\) Cl and Its Interface. *Chem. Eur. J.* 2019, 25, 18178–18182.

(115) Chai, J.; Yang, S.; Du, Y.; Chong, H.; Yu, H.; Zhu, M. Exposing the Delocalized Cu–S Motif Transformation and Au, Distortion via Thiol Ligand Exchange Engineering. *J. Phys. Chem. C* 2020, 124, 7531–7538.

(116) Rao, B.; Zhao, T.; Yang, S.; Chai, J.; Pan, Y.; Weng, S.; Yu, H.; Li, X.; Zhu, M. X-Ray Crystal Structure and Doping Mechanism of [AuAg6(Dppp)(C6H4S)3]Cl and Its Structure Determination and Enantioseparation of [Au9Ag12(SR)4-Cl]2+. *Inorg. Chem.* 2018, 57, 5114–5119.

(117) Bour, J. J.; Kanters, R. P. F.; Schlebos, P. P. J.; Bosman, W. P.; Behm, H.; Beurksens, P. T.; Steggerda, J. H. Hetero-Metallic Clusters: Synthesis and Characterization of [PdAu16PPh16]2+ and [HPTAu(PPh3)]2(NO3)2. *Recl. Trav. Chim. des Pays-Bas* 1987, 106, 157–158.
Bimetallic Nanocluster Au$_{50}$Cu$_5$(m-MBT)$_{12}$(x = 1–3). Dalton Trans. 2018, 47, 475–480.

(133) Krishnasad, K. R.; Baks; A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Manifestation of Geometric and Electronic Shell Structures of Metal Clusters in Intercalator Reactions. ACS Nano 2017, 11, 6015–6023.

(134) Yang, S.; Chi; J.-S.; Song, Y.; Fan, J.; Chen, T.; Wang, S.; Yu, H.; Li, X.; Zhu, M. In Situ Two-Phase Ligand Exchange: A New Method for the Synthesis of Alloy Nanoclusters with Precise Atomic Structures. J. Am. Chem. Soc. 2017, 139, 5668–5671.

(135) Choi, J.-P.; Field; Zinn, C. A.; Stiles, R. L.; Balasubramanian, R.; Douglas, A. D.; Crowe, M. C.; Murray, R. W. Reactivity of [Au$_{12}$(SC$_2$H$_4$)$_{18}$] Nanoparticles with Metal Ions. J. Phys. Chem. C 2010, 114, 15890–15896.

(136) Wu, Z. Anti-Galvanic Reduction of Thiolate-Protected Gold and Silver Nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 2934–2938.

(137) Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag$_{24}$Au(SR)$_{18}$] Nanocluster. Angew. Chem., Int. Ed. 2016, 55, 824.

(138) Krishnasad, K. R.; Ghosh, A.; Baks; A.; Chakraborthy, L.; Natarajan, G.; Pradeep, T. Intercalator Reactions between Au$_{12}$SR$_{18}$ and Au$_{24}$SR$_{30}$J. Am. Chem. Soc. 2016, 138, 140–148.

(139) Du, W.; Jin, S.; Xiong, L.; Chen, M.; Zhang, J.; Zou, X.; Pei, Y.; Wang, S.; Zhu, M. Ag$_{50}$Dppm$_{20}$SR$_{30}$ and Its Homologue Au$_{50}$Dppm$_{20}$SR$_{30}$ Alloy Nanocluster: Seeded Growth, Structure Determination, and Differences in Properties. J. Am. Chem. Soc. 2017, 139, 1618–1624.

(140) Zheng, K.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.

(141) He, L.; Gan, Z.; Xia, N.; Liao, L.; Wu, Z. Alternating Array Stacking of Au$_{50}$ and Ag$_{50}$ Nanoclusters. Angew. Chem. 2019, 131, 10002–10006.

(142) Bhat, S.; Baks; A.; Mueddla, S. K.; Natarajan, G.; Subramanian, V.; Pradeep, T. Au$_{24}$Ir$_4$(PET)$_{14}$: An Unusual Alloy Cluster through Intercalator Reaction. J. Phys. Chem. Lett. 2017, 8, 2787–2793.

(143) Xia, W.; Wu, Z. Doping Au$_{50}$ Nanoparticles Using Ultrasmall Silver or Copper Nanoparticles as the Metal Source. J. Mater. Chem. C 2016, 4, 4125–4128.

(144) Ghosh, A.; Ghosh, D.; Khatun, E.; Chakraborthy, P.; Pradeep, T. Unusual Reactivity of Dithiol Protected Clusters in Comparison to Monothiol Protected Clusters: Studies Using Ag$_{30}$(DTP)$_2$(TPP)$_4$, and Ag$_{57}$(DTP)$_2$(TTP). Nanoscale 2017, 9, 1068–1077.

(145) Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Parida, M. R.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M.; Cavallo, L.; Basset, J.-M. Direct versus Ligand-Exchange Synthesis of Pt$_{30}$(DTP)$_2$(TPP)$_4$ Nanoclusters: Effect of a Single-Atom Dopant on the Optoelectronic and Chemical Properties. Nanoscale 2017, 9, 9529–9536.

(146) Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Shkurenko, A.; El-Zohry, A. H.; Mohammed, O. F.; Eddaoudi, M.; Bakr, O. M.; Cavallo, L.; Basset, J.-M. Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing. Chem. Mater. 2018, 30, 2719–2725.

(147) Kang, X.; Xiong, L.; Wang, S.; Pei, Y.; Zhu, M. De-Assembly of Assembled Pt$_{48}$ Units: Tailoring the Photoluminescence of Atomically Precise Nanoclusters. Chem. Commun. 2017, 53, 12564–12567.

(148) Kang, X.; Zhou, M.; Wang, S.; Jin, S.; Sun, G.; Zhu, M.; Jin, R. The Tetrahedral Structure and Luminescence Properties of Bi-Metallic Pt$_{48}$(SR)$_{18}$(PPh$_3$)$_3$ Nanocluster. Chem. Sci. 2017, 8, 2581–2587.

(149) Chen, S.; Du, W.; Qin, C.; Liu, D.; Tang, L.; Liu, Y.; Wang, S.; Zhu, M. Assembly of the Thiolated [Au$_{15}$Ag$_{24}$(S-Adm)$_{12}$]$^{14+}$ Superatom Complex Into a Framework Material through Direct Linkage by SbF$_6$ Anions. Angew. Chem., Int. Ed. 2020, 59, 7542–7547.

(150) Li, Q.; Taylor, M. G.; Kirschbaum, K.; Lambright, K. J.; Zhu, X.; Mpourmpakis, G.; Jin, R. Site-Selective Substitution of Gold Atoms in the Au$_{12}$(SR)$_{30}$ Nanocluster by Silver. J. Colloid Interface Sci. 2017, 505, 1202–1207.