Original Article / Оригинални рад

Jelena Antić 1,2,*, Radoica Jokić 1,2, Svetlana Bukarica 1,2, Ivana Lukić 1,2

Postoperative recovery assessment after appendectomy in children – laparoscopic versus open technique

Процена постоперативног опоравка након апендектомије код деце – лапароскопска у поређењу са класичном техником

1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Institute for Child and Youth Health Care of Vojvodina, Clinic of Pediatric Surgery, Novi Sad, Serbia

Received: July 10, 2021
Revised: February 2, 2022
Accepted: February 2, 2022
Online First: February 8, 2022
DOI: https://doi.org/10.2298/SARH210710015A

*Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Jelena ANTIĆ
Hajdučka Veljkova 10, 21000 Novi Sad, Serbia
E mail: jelena.antic@mf.uns.ac.rs
Postoperative recovery assessment after appendectomy in children – laparoscopic versus open technique

Процена постоперативног опоравка након апендектомије код деце – лапароскопска у поређењу са класичном техником

SUMMARY

Introduction/Objective Surgery is a “gold standard” in treating the acute appendicitis in pediatric patients. The aim of the study was to determine the effect of open and laparoscopic appendectomy on postoperative recovery, return to everyday activities and quality of life in patients operated for the acute appendicitis.

Methods This prospective study was performed at the Institute for Children and Youth Healthcare of Vojvodina, during a period of ten months. This study was approved by Ethic committee of the Institute. All patients treated for the acute appendicitis by surgery were divided into two basic groups: open or laparoscopic appendectomy and into three subgroups, depending on the degree of appendicitis. We analyzed length of surgery, oral intake, establishing peristalsis, hospital stay, return to everyday activities and quality of life after surgery.

Results Laparoscopic technique was performed in 60 patients (48%), and the open method in 65 (52%). In laparoscopically treated patients (66.7%), peristalsis occurred earlier \((p < 0.001) \), length of hospital stay was shorter \((5.95 \pm 1.21 \text{ days}) \) \((Z = -3.054; p = 0.002) \), the total score of daily activities showed a statistically significantly better score \((Z = -7.667; p = 0.000) \), and they achieved a high level of quality of life significantly earlier \((t = 2.773; p = 0.007) \).

Conclusion The advantage of minimally invasive surgery in the treatment of acute appendicitis in children is reflected in the faster re-establishment of every day functioning, faster recovery, and a good quality of life.

Keywords: appendicitis; minimally invasive surgery; return to everyday activities, quality of life; children

САЖЕТАК

Увод/Циљ Хируршко лечење представља „платини стандарт” у третману акутног апендицитиса код педијатријских пацијената. Циљ студије је да се утврди ефекат отворене и лапароскопске технике, на постоперативни опоравак, повратак свакодневним активностима и квалитет живота пацијената оперисаних због акутног апендицитиса.

Методе Ова проспективна студија спроведена је на Институту за здравствену заштиту деце и омладине Војводине током десет месеци. Студију је одобрио Етички одбор Института. Сви пацијенти хируршки лечени због акутног апендицитиса подељени су у две основне групе у односу на хируршку технику: отворена или лапароскопска апендектомија и у три подгрупе, у зависности од степена упале апендикса. Аналлизирали емо дужину операције, започињење перисталтике, дужину хоспитализације, повратак свакодневним активностима и квалитет живота након операције.

Резултати Лапароскопска техника изведена је код 60 пацијената (48%), а отворена метода код 65 (52%). Код већине лапароскопски оперисаних пацијената (66,7%) перисталтика је успостављена раније \((p < 0.001) \), хоспитализација је била краћа \((5.95 \pm 1.21 \text{ дана}) \) \((Z = -3.054; p = 0.002) \), укупни скор свакодневних активности показао је статистички значајно бољу укупну вредност \((Z = -7.667; p = 0.000) \) и постигнут је висок ниво квалитета живота знатно раније \((t = 2.773; p = 0.007) \).

Закључак Предност минимално инвазивне хирургије у лечењу акутног апендицитиса код деце огледа се у бржем посветном успостављању свакодневног функционисања, бржом опоравку и добром квалитету живота.

Кључне речи: апендицитис; минимално инвазивна хирургија; повратак свакодневним активностима; квалитет живота; деца

INTRODUCTION

Acute appendicitis is one of the most common abdominal emergencies in pediatric population. The lifetime risk of developing appendicitis is 6–8%, with a peak incidence in the
teenage years [1]. The cause of appendicitis is an obstruction of the appendix, either from inflammation of the wall or a fecalith. Typical symptoms of appendicitis are acute abdominal pain, fever, nausea and vomiting. Appendicitis in pediatric patients is less likely to present in a classic manner than commonly thought [2]. Considering stage of inflammation, appendicitis can be classified as noncomplicated and complicated. Complicated appendicitis are defined as gangrenous or perforated appendicitis, suppurative appendicitis or appendicitis with an abscess formation, periappendicular mass or fecal peritonitis [3]. In children, complicated appendicitis is relatively common, and the rate of perforated appendicitis varies with age, the presence of obesity, socioeconomic status, and healthcare access. High rate of postoperative morbidity in complicated cases in children require prompt and precise diagnosis, as well as adequate treatment [4].

Surgical treatment is a “gold standard” in treating this condition. Surgeons still use open surgical technique that was described back in 18th century. Rising popularity of minimally-invasive surgery in other surgical fields implemented this technique in pediatric surgeon’s everyday-practice. First laparoscopic appendectomy was performed by Kurt Samm in 1981 [5]. Eight years later, Thom Lobe performed this technique in a child [6]. Compared to open technique, laparoscopic appendectomy, like any minimally invasive technique causes less tissue trauma, which is associated with less postoperative pain, shorter hospital stay, faster recovery and better cosmetic result.

There has been an increased interest in the conservative management of appendicitis over the last 20 years [7, 8]. Conservative (non-operative) management for carefully selected children with acute appendicitis has been described. In patients with initial appendicitis, non-operative treatment, with the use of antibiotics, could be applied, with healing in most of them. The use of antibiotics in these patients may be sufficient for cure, if there are no sure indications for surgery, such as the presence of peritonitis or signs of perforation [9, 10, 11].

Although laparoscopic appendectomy gained popularity among many surgeons the advantage of laparoscopic appendectomy is still the subject of research [3].

The aim of the study was to determine the effect of both methods, open technique and laparoscopic appendectomy, on early postoperative recovery, return to everyday activities and quality of life in pediatric patients operated for the acute appendicitis.
METHODS

This prospective study was performed at the Clinic for Pediatric Surgery, Institute of Children and Youth Healthcare of Vojvodina, during a period of ten months. This study was approved by the Ethics Committee of the Institute. We analyzed all patients treated for the acute appendicitis by surgery during this period. All patients with acute appendicitis, ASA classification (general state) I–III, whose parents have given written consent, were included in research. Patients who were classified as ASA IV and V, and without written consent were excluded.

All patients operated for the acute appendicitis were divided into two basic groups, in relation to the surgical technique: open or laparoscopic appendectomy. Conversion, intraoperative change of laparoscopic to open access was performed due to the complex operative finding. It is important to emphasize that decision to make a conversion is due to a proper intraoperative judgment of surgeon which provides the best possible outcome for the child.

Then, all the operated patients were divided into three subgroups, depending on the degree of appendicitis (negative, uncomplicated and complicated appendicitis). Appendicitis with perforation or with abscess was classified as complicated appendicitis, and remaining were classified as uncomplicated. Intraoperative assessment of the degree of appendix was performed by a surgeon macroscopically, and then all surgical specimens were transferred to the histopathology department for histopathological analysis. Age, sex, ASA classification score were analyzed preoperatively. Type of surgery, degree of the appendicitis, and length of surgery were analyzed during surgery. Oral intake, establishing peristalsis, length of hospitalization, restitution of daily activities using Activity Assessment Scale (AAS) modified for children, and quality of life of patients after surgery, were analyzed after surgery.

The Activity Assessment Scale (AAS) is a measure of functional activity designed as part of the postoperative period analysis. This scale measures a wide degree of activity, and in the form of a questionnaire, it is easily and quickly filled in by the patient. The Activity Assessment Scale (AAS), modified for children, was used to measure activity every postoperative day, during the first five days, a month, three and six months after surgery. The patient's ability to perform activities was measured through nine categories, from behavior in
hospital bed to the ability to go to school and engage in sports activities after dismissing. All items have response categories ranging from 1 to 5. The response categories for the activities are: (1) no difficulty, (2) little difficulty, (3) difficult, (4) very difficult, (5) unable to do so.

Especially, we observed the quality of life of patients after surgery on the basis of the child's health condition, limitations in performing daily activities, physical pain, the child's satisfaction and anxiety. We used the modified questionnaire SF 10 for children during the period of six months after surgery.

Statistical analysis

Statistical analyzes were performed using the IBM Statistics 20 statistical package. Descriptive statistics methods were used. The significance of the differences between the two groups was determined using the t-test of independence or the Mann–Whitney U test, depending on the normality of the distribution determined by the Shapiro–Wilk test. Significance between categorical variables was determined using the χ² test. One-factor analysis of variance (ANOVA) with repeated measurements was used to determine the difference between quality of life after the first, third and sixth months. Statistically significant correlations between days of hospitalization with daily activities were determined by Pearson's correlation analysis and linear regression model. The influence of age, gender, on the type of surgery and the degree of inflammation as potential predictors of performing daily activity in the observed time periods was analyzed by multiple regression analysis. For daily activities in the examined time intervals, the area under the curve is determined by the receiver operating characteristic curve (ROC) analysis. Values of p < 0.05 were considered statistically significant.

RESULTS

Over a period of 10 months, we operated on 125 patients, aged 2–18 years, due to acute appendicitis. Laparoscopic technique was performed in 60 patients (48%), and the open method
in 65 (52%). In four patients the conversion was made (operative technique changed from laparoscopic to open method) and they are included into the open group. There were no statistically significant differences between the treatment groups with respect to mean age, gender distribution, preoperative risk assessment, the degree of appendix inflammation. In both treatment groups, most subjects belong to ASA I category, and only one child belongs to ASA III (Table 1). The mean operative time was 65 minutes (range 25–185 minutes) when laparoscopy was used. Open technique required statistically significantly shorter period of time (mean 49.38 minutes, range 25–130 minutes; p < 0.001). In majority of laparoscopically treated patients (66.7%), peristalsis occurred on the first postoperative day, whereas in 78.5% classically operated it was registered one day later, which made a significant difference (p < 0.001). Oral feeding was initiated earlier in patients operated laparoscopically (in 85% on the first postoperative day) compared to those operated using open technique (on second postoperative day in 84.6%) ($\chi^2 = 82.763$; df = 4; p = 0.000).

Length of hospital stay in children operated by laparoscopy was 5.95 ± 1.21 days and by open technique 6.63 ± 1.04 days, which is significantly longer ($Z = -3.054$; p = 0.002) (Figure 1).

Activity Assessment Scale (AAS) modified for pediatric population was used for measuring period of time needed for recovering to everyday-activities. These results were compared for the first, third, seventh postoperative day, as well as for one, three and six months after surgery. It is noticed that daily activities are established faster after minimally invasive surgery in each observed time period. Difference was statistically relevant on the first ($Z = -7.783$; p = 0.000) and third postoperative day ($Z = -3.955$; p = 0.000). The total score of daily activities showed a statistically significantly better overall score for the group of laparoscopic appendectomies ($Z = -7.667$; p = 0.000) (Figure 2).

We analyzed the influence of special categories such as the technique of surgery, the degree of inflammation of the appendix, gender and age on everyday-activities.

From the partial influences after the first and third postoperative day on the performance of everyday-activities, the method of operation and the degree of inflammation have a statistically significant influence. From the seventh day to six months after the operation, only the technique of operation had a statistically significant (p < 0.05) effect (Table 2). Results of
the Mann-Whitney U test showed significantly better overall record of daily activities for a group of laparoscopic appendectomy ($Z = 7.667; p = 0.000$).

The influence of the length of hospitalization on daily activities is shown in Figure 3, where a significant negative correlation was observed between daily activities ($r = -0.190; p = 0.037$) and the length of hospitalization.

ROC analysis results suggested that randomly chosen child operated by laparoscopy performed better in everyday-activities than a child operated using open technique in 88.8% of cases on the first and in 68.0% of cases on third postoperative day (AUC 0.888; $p = 0.000$; 95% CI = 0.825 – 0.951 and AUC = 0.680; $p = 0.000$; 95% CI = 0.586-0.778, respectively). There was no significant separation in the other time intervals examined (Figure 4).

In all examined indicators of quality of life, children of the laparoscopic group had a higher score. Statistically significant ($p < 0.01$) they complained less about pain and were more satisfied. Children with acute appendicitis operated by laparoscopy achieved a high level of quality of life significantly earlier ($t = 2.773; p = 0.007$). Quality of life increased gradually over the time ($F = 7.404; p = 0.007$), with significantly better results in laparoscopy group operated after first and third month (Figure 5).

Over 95% of parents reported their children’s quality of life excellent six months after the surgery in all patients. There was no difference in quality of life between children in these two groups.

DISCUSSION

The advantages of laparoscopic surgery in relation to open surgery are described in many papers in terms of postoperative recovery, reduced pain, significantly better aesthetic result and a total number of complications [12–15]. However, many studies have described that the length of the operation, and even the cost of treatment, are higher with the laparoscopic technique compared to the open one [16, 17]. In our study, the mean operative time was 65 minutes (range 25–185 minutes) when laparoscopy was used. Open technique required statistically
significantly shorter period of time (mean 49.38 minutes, range 25–130 minutes; p < 0.001). Recently, studies indicate that the operative time for laparoscopic appendectomies in uncomplicated appendicitis is even shorter compared to the open technique. One study showed that the average operative time for laparoscopic appendectomies today is 41 min in the trainee group vs. 39 in the surgeons group [17]. Another meta-analysis shows that increased experience of surgeons and nursing staff indeed decreased the operating time [18].

Analyzing immediate postoperative recovery in our study, in majority of laparoscopically treated patients (66.7%), peristalsis occurred faster, oral feeding was initiated earlier. These results, which indicate a statistically significant difference between two groups of patients, definitely confirm the advantage of the laparoscopic approach in resolving acute appendicitis. Seqsaqa et al. compared the results of open and laparoscopic appendectomy in complicated appendicitis. Patients could tolerate oral intake after (2.37 ± 0.85 days) OA group vs. (1.9 ± 0.71 days) in LA group, which was significantly faster with LA (p = 0.025*) [13]. Meta-analysis of Neogi et al. showed that the laparoscopy group has a statistically significant shorter time taken to oral intake as compared to open appendectomy, with almost no statistical heterogeneity [14].

Length of hospital stay in children operated by laparoscopy was significantly shorter. Patients of both treatment groups with complicated appendix had a statistically significantly longer hospital stay than children with negative and uncomplicated appendix. According to the results of recent studies, the length of hospitalization after laparoscopic appendectomy is significantly shorter compared to open appendectomy, which is explained by faster postoperative mobilization of the patient and recovery. In this way costs of the treatment are reduced and the return of patients to daily life activities is accelerated [13, 14]. Most authors agree that the length of hospital stay is shorter for patients operated with laparoscopy. Median hospital stay for laparoscopic appendectomy varies among authors. Some report a median stay of 3 days in case of simple appendicitis and 5.2 days in case of peritonitis. In other studies it varies from 2.06 to 4.1 days [14].

Restoring daily functioning is an important measure of patient satisfaction. The Activity Assessment Scale is a measure of functional activity designed as part of the postoperative period analysis. This scale measures a wide degree of activity in the form of a questionnaire that is easily filled in by the patient [19, 20]. This instrument was constructed to analyze the
results of a multicenter study after open and laparoscopic operations for inguinal hernias [19].
McCarthy and coworkers classified physical activities at 13 levels of physical activity, and scoring was done according to the degree of difficulty in performing them [21].

The questionnaire created for the purposes of this study is a modified form of the AAS questionnaire, with the necessary adaptation to children's age. Physical activities were classified to four or five levels according to the difficulty in performing them. Then, we analyzed them on the first, third, seventh postoperative day, one month, three months and six months after the operation. In our study, it was very clearly observed that a significantly higher number of patients from the laparoscopy group did not have or had minimal difficulties in getting up, sitting and walking compared to the group of open appendectomies. At the end of the observed period, the results of the analysis are equalized. It can be concluded on the basis of the mentioned analysis that faster recovery of children after laparoscopic appendectomy was confirmed, in relation to the therapeutic group of open appendectomies.

The effects of treatment on patient functioning and quality of life have been the subject of much research for decades [2, 23, 24]. When the postoperative course was analyzed through the prism of the quality of life of patients, the questionnaire SF-10, which was modified for the needs of our study, was especially emphasized in clinical practice. This questionnaire was completed by parents and contains ten questions to assess physical and psychosocial categories.

Within this analysis, limitations in performing daily activities, the presence of pain, child satisfaction, and anxiety after surgery were assessed. In our study, a statistically significantly better quality of life is clearly seen in the group of laparoscopically operated children, especially in the first three months after surgery, which is another confirmation of faster recovery and return to daily activities after laparoscopic appendectomies.

Quality of life increased gradually over the time in all patients, but the first and third month after surgery it was significantly better in group of minimally invasive operated patients.
CONCLUSION

It is already known that laparoscopic appendectomy, like any minimally invasive technique causes less tissue trauma, which is associated with less postoperative pain, shorter hospital stay and better cosmetic result. The advantage of minimally invasive surgery in the treatment of acute appendicitis in children is reflected in the faster re-establishment of every day functioning and therefore, a faster overall recovery, resuming normal activities and a good quality of life.

ACKNOWLEDGMENT

This paper is a part of doctoral thesis by Jelena Antić, the lead author, published in 2016, and is available at:
http://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija146288059311667.pdf?controlNumber=(BISIS)100926&fileName=146288059311667.pdf&id=5574&source=NaRDuS&language=sl.

Conflict of interest: None declared.
REFERENCES

1. York, T.J. Seasonal and climatic variation in the incidence of adult acute appendicitis: a seven year longitudinal analysis. BMC Emerg Med. 2020 20, 24. https://doi.org/10.1186/s12873-020-00321-2

2. Rentea RM, St Peter SD. Pediatric Appendicitis. Surg Clin North Am. 2017 Feb;97(1):93–112. doi: 10.1016/j.suc.2016.08.009. PMID: 27894435. Huang L, Yin Y,

3. Neogi S, Banerjee A, Panda SS, Ratan SK, Narang R. Laparoscopic versus open appendicectomy for complicated appendicitis in children: A systematic review and meta-analysis. J Pediatr Surg. 2021 Jul 13;S0022-3468(21)00495-4. doi: 10.1016/j.jpedsurg. 2021.07.005. Epub ahead of print. PMID: 34332757.

4. Abhinav Totapally, Paul Martinez, Andre Raszyński, Fuad Alkhoury, Balagangadhar R. Totapally, "Do Racial/Ethnic and Economic Factors Affect the Rate of Complicated Appendicitis in Children?", Surgery Research and Practice, vol. 2020, Article ID 3268567, 9 pages, https://doi.org/10.1155/2020/3268567

5. Semm K. Endoscopic appendectomy. Endoscopy 1983;15:59–64. doi: 10.1055/s-2007-1021466.

6. Gilchrist BF, Lobe TE, Schropp KP, et al. Is there a role for laparoscopic appendectomy in pediatric surgery? J Pediatr Surg. 1992;27:209–212

7. Mosuka EM, Thilakarathne KN, Mansuri NM, Mann NK, Rizwan S, Mohamed AE, Elshafey AE, Khadka A, Mohammad M. A Systematic Review Comparing Nonoperative Management to Appendectomy for Uncomplicated Appendicitis in Children. Cureus. 2021 Oct 19;13(10):e18901. doi: 10.7759/cureus.18901. PMID: 34692267; PMCID: PMC8528224.

8. Huang L, Yin Y, Yang L, Wang C, Li Y, Zhou Z. Comparison of Antibiotic Therapy and Appendectomy for Acute Uncomplicated Appendicitis in Children: A Meta-analysis. JAMA Pediatr. 2017 May 1;171(5):426–434. doi: 10.1001/jamapediatrics.2017.0057. PMCID: 28346589.

9. Gorter RR, The SML, Gorter-Stam MAW, Eker HH, Bakx R, van der Lee JH, Heij HA. Systematic review of nonoperative versus operative treatment of uncomplicated appendicitis. J Pediatr Surg. 2017 Aug;52(8):1219–1227. doi: 10.1016/j.jpedsurg.2017.04.005. Epub 2017 Apr 18. PMID: 28449821.

10. Wu JX, Sacks GD, Dawes AJ, DeUgarte D, Lee SL. The cost-effectiveness of nonoperative management versus laparoscopic appendectomy for the treatment of acute, uncomplicated appendicitis in children. J Pediatr Surg. 2017 Jul;52(7):1135–1140. doi: 10.1016/j.jpedsurg.2016.10.009. Epub 2016 Oct 20. PMID: 27836368.

11. Guevara-Cuellar CA, Rengifo-Mosquera MP, Furody-Rúa E. Cost-effectiveness analysis of nonoperative management versus open and laparoscopic surgery for uncomplicated acute appendicitis in Colombia. Cost Eff Resour Alloc. 2021 Jun 10;19(1):34. doi: 10.1186/s12962-021-00288-2. PMID: 34112179; PMCID: PMC8194214.

12. Ioannis V, Constantinos F. Comparison between Open and Laparoscopic Appendectomy: A Systematic Review. World J Surg Surgical Res. 2018; 1: 1004. Available at: http://www.surgeryresearchjournal.com/full-text/wjssr-v1-id1004.php

13. Seqsaqa, M., Rozeik, A.E., Khalifa, M. et al. Laparoscopic versus open appendectomy in complicated appendicitis in children: a single center study. Egypt Pediatric Association Gaz 68, 26 (2020). https://doi.org/10.1186/s43054-020-00034-y

14. Neogi S, Banerjee A, Panda SS, Ratan SK, Narang R. Laparoscopic versus open appendicectomy for complicated appendicitis in children: a systematic review and meta-analysis. J Pediatr Surg. 2021 Jul 13;S0022-3468(21)00495-4.

15. Rodríguez-Gutierrez M, Díaz-Vallejo J, Bastidas-Acosta J, Lozada-Martinez I, Diaz-Rivera M. A comment on "laparoscopic versus open appendectomy for complicated appendicitis in children: A systematic review and meta-analysis", Journal of Pediatric Surgery, 2022 Volume 57, Issue 1, 175. doi.org/10.1016/j.jpedsurg.2021.08.009.

16. Biondi A, Di Stefano C, Ferrara F, Bellia A, Vacante M, Piazza L. Laparoscopic versus open appendectomy: a retrospective cohort study assessing outcomes and cost-effectiveness. World J Emerg Surg. 2016 Aug 30;11(1):44. doi: 10.1186/s13017-016-0102-5. PMID: 27582784; PMCID: PMC5006397.

17. Baumgarten HD, Brown EG, Russell KW, Adzick NS, Laje P. Laparoscopic appendectomy - Outcomes of senior trainees operating without supervision versus experienced pediatric surgeons. J Pediatr Surg. 2019 Feb;54(2):276–279. doi: 10.1016/j.jpedsurg.2018.10.092. Epub 2018 Nov 7. PMID: 30502007.

18. Yu MC, Feng YJ, Wang W, Fan W, Cheng HT, Xu J. Is laparoscopic appendectomy feasible for complicated appendicitis? A systematic review and meta-analysis. Int J Surg. 2017 Apr;40:187–197. doi: 10.1016/j.ijsu.2017.03.022. Epub 2017 Mar 14. PMID: 28302449.

19. Neumayer L, Jonasson O, Fitzgibbons R, Henderson W, Gibbs J, Carrico CJ, et al. Tension-free inguinal hernia repair: the design of a trial to compare open and laparoscopic surgical techniques. Journal of the American College of Surgeons. 2003;196(5):743–52. doi: 10.1016/S1072-7515(03)00004-8

20. Barber MD, Kenton K, Janz NK, Hsu Y, Dyer KY, Greer WJ, et al. Validation of the activities assessment scale in women undergoing pelvic reconstructive surgery. Female pelvic medicine & reconstructive surgery. 2012;18(4):205–10. doi: 10.1097/SPV.0b013e31825e6422 PMID: 22777368
21. McCarthy M Jr, Jonasson O, Chang CH, Pickard AS, Giobbie-Hurder A, Gibbs J, et al. Assessment of patient functional status after surgery. Journal of the American College of Surgeons. 2005;201(2):171-8. doi: 10.1016/j.jamcollsurg.2005.03.035 PMID: 16038812

22. Zhang L, Fos PJ, Johnson WD, Kamali V, Cox RG, Zuniga MA, et al. Body mass index and health related quality of life in elementary school children: a pilot study. Health and quality of life outcomes. 2008;6:77. doi: 10.1186/1477-7525-6-77 PMID: 18845000

23. Stojanović B, Medović R, Donović N, Leković Z et al. Assessment of quality of life and physical and mental health in children and adolescents with coeliac disease compared to their healthy peers. Srp Arh Celok Lek. 2019 May-Jun;147(5-6):301-30. doi: 10.2298/SARH180222035S

24. Saris-Baglama RN, DeRosa MA, Raczek A. The SF-10™ Health Survey for Children: A User’s Guide. Lincoln: QualityMetric Incorporated. 2007:23. Available at: https://www.qualitymetric.com/health-surveys-old/the-sf-10-health-survey-for-children/
Table 1. Demographics data

Demographics	Laparoscopic (n = 60)	Open (n = 65)	Total (N = 125)	Significance
Sex ratio (M/F)	37/23	39/26	76/49*	0.859‡
Age (yr) (Mean ± SD)	12.17 ± 3.55	11.09 ± 3.69		0.100†
Degree of inflammation				
negative appendix n (%)	5 (8.3)	3 (4.6)	8 (6.4)	0.480#
uncomplicated n (%)	25 (41.7)	30 (46.2)	55 (44.0)	0.500‡
complicated n (%)	30 (50)	32 (49.2)	62 (49.6)	0.799‡
ASA				
I n (%)	37 (61.6)	50 (76.9)	87 (69.6)	0.163‡
II n (%)	22 (36.7)	14 (21.5)	36 (28.8)	0.182‡
III n (%)	1 (1.7)	1 (1.5)	2 (1.6)	

*χ² test (χ² = 6.950; df = 1; p = 0.008);
†t-test between groups;
‡χ² test between groups;
#Fisher exact test between groups
Table 2. Influence of sex, method of operation, degree of inflammation, and age of the patients on daily activities in the examined times

Parameter	Beta	Significance	R
1st day			
Sex	0.107	0.100	0.715
Group	-0.698	< 0.001	
Degree of inflammation	-0.125	0.048	
Age	0.015	0.818	
3rd day			
Sex	0.028	0.735	0.430
Group	-0.350	< 0.001	
Degree of inflammation	-0.239	0.005	
Age	-0.083	0.324	
7th day – 6th month			
Sex	0.087	0.340	0.286
Group	-0.188	0.038	
Degree of inflammation	-0.171	0.061	
Age	-0.089	0.323	

Bold values are statistically significant
Figure 1. Distribution of length of hospitalization in days in relation to the method of surgery
Figure 2. Total score of daily activities in the examined times for the examined groups
Figure 3. Influence of hospital length on performing daily activities
Figure 4. Receiver operating characteristic curve analysis of performing everyday activities by days.
Figure 5. Quality of life at one month, three months, and six months after surgery in laparoscopic and open technique groups.