Clinical and endoscopic characteristics of acute esophageal necrosis and severe reflux esophagitis

Takeshi Okamoto, MDa,b,*, Hidekazu Suzuki, MD, PhDb, Katsuyuki Fukuda, MD, PhDa

Abstract
The similarities and differences between acute esophageal necrosis and severe reflux esophagitis have not been elucidated. We compared Los Angeles classification Grade C reflux esophagitis, Grade D reflux esophagitis, and acute esophageal necrosis to consider the similarities and differences between acute esophageal necrosis and severe reflux esophagitis.

We retrospectively reviewed records of patients who underwent esophagogastroduodenoscopy at a tertiary referral center from January 2012 to December 2019. Data on patients diagnosed as Grade C reflux, Grade D reflux, or acute esophageal necrosis for the first time were extracted for analysis.

A total of 213 patients were enrolled in the study, composed of 130 Grade C reflux, 74 Grade D reflux, and 9 acute esophageal necrosis patients. Compared to Grade C reflux patients, Grade D reflux and acute esophageal necrosis patients were more likely to be transfused (P = .013 and P = .011, respectively), to have duodenal ulcers (P = .025 and P = .049, respectively), and to have psychiatric illnesses (P = .022 and P = .018, respectively). Compared to both Grade C and D reflux, acute esophageal necrosis patients were more likely to present with shock (P = .003 and P < .001, respectively), have type 1 diabetes (P = .030 and P = .004, respectively), and present in winter (P < .001 and P < .001, respectively). Significant step-wise differences (Grade C < Grade D < acute esophageal necrosis) were observed in the need for admission (P < .001 and P = .009), coffee ground emesis (P < .001 and P = .022), and stigmata of hemorrhage on endoscopy (P = .002 and P < .001). Admission (P = .003) and coffee ground emesis (P = .005) independently predicted either Grade D reflux or acute esophageal necrosis over Grade C reflux on multivariate analysis.

Shock, type 1 diabetes, and winter may predict acute esophageal necrosis, while the need for admission and coffee ground emesis may predict Grade D reflux or acute esophageal necrosis.

Abbreviations: AEMLO = acute esophageal mucosal lesion, AEN = acute esophageal necrosis, DKA = diabetic ketoacidosis, EGD = esophagogastroduodenoscopy, GERD = gastroesophageal reflux, PPI = proton pump inhibitor, RE = reflux esophagitis, RE-C = reflux esophagitis Grade C, RE-D = reflux esophagitis Grade D, SCJ = squamo-columnar junction.

Keywords: acute esophageal necrosis, endoscopy, gastroesophageal reflux disease, reflux esophagitis, upper gastrointestinal bleeding

1. Introduction
Gastroesophageal reflux (GERD) is a common gastrointestinal disorder characterized by the reflux of stomach contents into the esophagus. GERD classically causes heartburn and acid regurgitation and is observed in about 13% of the global population. Endoscopic findings in reflux esophagitis (RE) are frequently categorized using the Los Angeles (LA) classification, which uses a scale from A to D to represent increasing severity. While frequency and severity of symptoms are often associated with endoscopic severity, about 15% of both Grade C and D RE (RE-C and RE-D) patients are asymptomatic.

Acute esophageal necrosis (AEN) is a rare esophageal disorder characterized by circumferential mucosal damage of the esophagus with a sharp demarcation at the squamo-columnar junction (SCJ). Also known as black esophagus, at least 160 cases of AEN have been reported since the first report in 1990. AEN is believed to result from multiple factors such as damage from reflux of gastric contents, ischemia, and weakened mucosal barriers secondary to other debilitating conditions. However, the precise pathogenesis is still under investigation. Despite the various similarities between AEN and severe RE, there is a clear discrepancy in reported risk factors and clinical courses of the 2 conditions. It remains unclear whether AEN can be considered an extremely severe form of RE or a completely different entity.

We therefore conducted a three-way comparative analysis on RE-C, RE-D, and AEN patients at our institution. Specifically, we sought to identify factors which are observed in all 3 conditions to varying degrees as well as those which may be unique to AEN.
2. Materials and methods

2.1. Patients

We screened records of all patients who received at least 1 esophagogastroduodenoscopy (EGD) at St. Luke’s International Hospital in Tokyo, Japan, between January 1, 2012, and December 1, 2019. A retrospective electronic chart review was conducted on all patients with endoscopic findings consistent with RE-C, RE-D, or AEN.

2.2. Definitions

In accordance with the revised LA classification for RE,[2,3] patients were diagnosed with RE-C if “1 (or more) mucosal break that is continuous between the tops of 2 or more mucosal folds but which involves less than 75% of the circumference” was observed at the SCJ. Similarly, patients were diagnosed with RE-D if “1 (or more) mucosal break which involves at least 75% of the esophageal circumference” was observed at the SCJ. AEN was defined as the circumferential mucosal damage of the esophagus with a sharp demarcation at the SCJ, at least involving the lower esophagus and extending proximally to various degrees[5] (Fig. 1). Diagnosis was based purely on endoscopic findings; pathology was not required for inclusion.

If multiple EGDs were performed on the same patient, only the first episode of the most severe disease (assuming RE-C < RE-D < AEN) was used for analysis. To correct for inter-observer variability[8] and to identify errors in electronic medical records, all endoscopic images of enrolled patients were confirmed by one of the authors (TO). If the reported severity differed from the definitions provided above, a second author (KF) was shown the endoscopic images asked to evaluate the severity of RE after being blinded to the report and the first author’s opinion. Severity was changed only if both the first and second authors agreed that there was an error in the recorded RE grade. No exclusions were made for any particular cause of RE.

2.3. Statistical analysis

Data on demographics, clinical variables, endoscopic findings, and clinical outcomes were extracted for analysis. Denominators of proportional figures were adjusted for missing data. Statistical analyses were conducted using Pearson Chi-Squared test or Fisher exact test for categorical variables, as appropriate, and the Mann–Whitney U test for continuous variables. To evaluate significance in differences between the 3 groups, one-way analysis of variance was used for continuous variables and either the Pearson Chi-Squared test or Fisher exact test was used for categorical variables. Multiple comparisons were performed to calculate odds ratios and confidence intervals for statistically significant variables. Multiple regression analysis was performed to determine independent predictors of RE-D or RE-D/AEN relative to RE-C. Cramer’s coefficient of association was calculated to determine correlation between dichotomous variables. P values <.05 were considered statistically significant. All statistical analyses were conducted using IBM SPSS Statistics ver. 25.0 (IBM Corp., Armonk, NY).

2.4. Ethical considerations

The study was approved by the ethics committee at St. Luke’s International Hospital (20-R009). Patient consent was waived due to the retrospective study design. A summary of the study was publicized on the hospital website with an explicit statement that patients could opt-out of the study freely without any negative consequences relating to their care.

3. Results

3.1. Patient characteristics

A total of 49,789 EGDs were performed on 22,274 patients during the relevant period, of which 7079 patients were diagnosed with RE or AEN. The 6866 patients diagnosed with mild or moderate RE were excluded. A total of 213 patients were included in the study, with 130 RE-C patients (61.0%), 74 RE-D patients (34.7%), and 9 AEN patients (4.2%) (Fig. 2). Two of the AEN cases were subjects of previous publications from our institution.[9,10] Patient characteristics of the 9 AEN patients are listed on Table 1. All had characteristic circumferential lesions with varying degrees of black areas. The median age was 69 years (range: 39–86 years) and 5 were male. All 9 patients presented after episodes of vomiting and all but 1 experienced hematemesis, coffee ground emesis, or melena. Five were in shock and 4 required transfusions. Only 3 had a history of RE. Notably, 2

Figure 1. Typical endoscopic findings in Los Angeles classification Grade C reflux esophagitis (A), Grade D reflux esophagitis (B), and acute esophageal necrosis (C).
Table 1
Patient characteristics: acute esophageal necrosis.

Case	Age	Gender	Presentation	Shock	Transfusion	Medical History	Medications before Admission	Thickening of Esophageal Wall (CT)	Hospital Stay (Days)	Hemostatic Procedures	Endoscopies Performed	
1	83	F	Vomiting 1 day PTA, followed by hematemesis and shock	+	+	Duodenal ulcer, RE, breast cancer, chronic kidney disease, Zollinger-Ellison syndrome, appendicitis	+	-	+	27	Duodenum	4
2	86	F	Vomiting from 10 days PTA, melena from 4 days PTA	+	+	None	+	-	+	25	Esophagus, duodenum	4
3	69	M	Melena from 5 days PTA, hematemesis from 2 days PTA	-	-	Type 2 DM, duodenal ulcer	-	-	+	5	-	1
4	52	M	Admitted for diabetic ketoacidosis; repeated episodes of vomiting	-	-	Type 1 DM	-	-	+	6	-	1
5	74	F	Melena from 3 days PTA, vomiting 1 day PTA	+	-	Gastric ulcer, alcoholic hepatitis	+	-	-	2	-	1
6	39	M	Coffee ground emesis	+	-	Type 1 DM, chronic kidney disease, depression, irritable bowel syndrome	-	-	+	NA	-	2
7	54	M	Repeated episodes of coffee ground emesis	+	+	Schizophrenia, RE, chronic hepatitis B infection	-	-	+	7	-	1
8	82	F	Frequent vomiting followed by coffee ground emesis	+	+	Breast cancer, paroxysmal atrial fibrillation, angina pectoris, ovarian cancer, RE, appendicitis	-	+	-	2	-	1
9	63	M	Hematemesis from 1 day PTA	-	-	Schizophrenia, type 2 DM	-	-	+	10	-	2

Proportion/ Median													
Proportion/ Median	69	55%	56%	44%	33%	11%	11%	56%	44%	33%	100%	7	22%

BZ = benzodiazepines, CT = computed tomography, DM = diabetes mellitus, NA = not available, NSAIDs = non-steroidal anti-inflammatory drugs, PPI = proton pump inhibitors, PTA = prior to admission, RE = reflux esophagitis.
relatively young patients had type 1 diabetes mellitus, while 2 others had schizophrenia. More than half were taking psychiatric drugs and/or benzodiazepines. All but 1 presented in winter (December, January, or February). Computed tomography was performed in 8 cases, all of which showed a circumferential thickening of the lower esophageal wall. The median hospital stay was 7 days (range: 2–27), and all patients survived. Endoscopy was repeated in 4 cases. Two cases requiring endoscopic hemostatic procedures each underwent endoscopy 4 times.

Initial laboratory data for the AEN patients are shown in Table 2. Seven had hypoalbuminemia, 6 had high blood urea nitrogen, and 5 had increased creatinine. Leukocytosis of varying degrees was observed in all cases, and 7 had increased C-reactive protein. Two patients had diabetic ketoacidosis (DKA), while one had severe hypoglycemia.

3.2. Comparison between acute esophageal necrosis and severe reflux esophagitis

A three-way comparison between the groups is provided on Table 3 and Table 4. There were no differences in age, gender, or body mass index between the 3 groups. Compared to RE-C patients, RE-D and AEN patients were more likely to be transfused \((P=.013\) and \(P=.011,\) respectively), to have duodenal ulcers \((P=.025\) and \(P=.049,\) respectively), and to have psychiatric illnesses \((P=.022\) and \(P=.018,\) respectively). Compared to both Grade C and D reflux, acute esophageal necrosis patients were more likely to present with shock \((P=.003\) and \(P<.001,\) respectively), have type 1 diabetes \((P=.030\) and \(P=.004,\) respectively), and present in winter \((P<.001\) and \(P<.001,\) respectively). Significant step-wise differences \((\text{Grade C} < \text{Grade D} < \text{acute esophageal necrosis})\) were observed in the need for admission \((P<.001\) and \(P=.009,\) coffee ground emesis

Table 2

Initial laboratory data: acute esophageal necrosis.

Case	Age	Gender	Albumin (g/dL)	BUN (mg/dL)	Creatinine (mg/dL)	White Blood Cells (μL)	Hemoglobin (g/L)	Platelets (μL)	CRP (mg/dL)	Glucose (mg/dL)	pH	Lactate (mmol/L)
1	83	F	3.1	52.6	2.01	19,200	10.1	360	12.5	148	7.586	2.3
2	86	F	2.1	27.5	0.88	25,400	6.1	327	6.5	96	7.574	4
3	69	M	3.3	14.5	0.88	8400	1.7	338	6.3	267	NA	9.369
4	52	M	4.6	40.5	1.55	17,800	17.0	297	18.1	1039	6.937	5
5	74	F	2.0	8.0	0.067	9300	10.0	164	163	163	7.39	4.8
6	39	M	3.6	51.7	2.93	26,200	11.5	28	1.7	1113	7.215	4.2
7	54	M	1.9	60.1	2.49	54,000	5.5	254	5.0	280	7.176	22
8	82	F	0.9	28.3	0.91	9000	6.0	102	15.0	15	7.501	2.8
9	63	M	4.8	15.8	0.76	13,100	13.7	249	0.2	180	NA	7.4
Median	69	M	3.1	28.3	0.9	17,800	10.0	254	6.3	180	7.4	4.2

Note: BUN = blood urea nitrogen, CRP = C-reactive protein, NA = not available.
(P < .001 and P = .022), and stigmata of hemorrhage on endoscopy (P = .002 and P < .001). Finally, AEN patients were more likely to present with melena (P = .017), to be taking proton pump inhibitors (PPI) (P = .035), benzodiazepines or antipsychotics (P = .048), or to have ulcers in the second part of the duodenum (P = .013) than RE-C patients, but the difference was not significant in relation to RE-D patients (Fig. 3). The difference in the frequency of admission and coffee ground emesis between RE-C and RE-D patients remained significant in multiple regression analysis (P = .009 and P = .010, respectively). The

Table 3	Patient characteristics.			
RE-C (n = 130)	**RE-D** (n = 74)	**AEN** (n = 9)	**P value**	
Age, median (interquartile range)	72 (62–81)	72 (60.3–85.8)	68 (53–81)	.643
Male, n (%)	81 (62.3%)	45 (60.8%)	5 (55.6%)	.912
Body mass index, median (interquartile range)	21.8 (19.1–24.5)	21.6 (18.7–24.4)	20.2 (19.1–23.4)	.653
Obese, n (%)	23 (20.9%)	11 (17.2%)	2 (25.0%)	.779
Symptoms, n (%)				
Admission	39 (30.0%)	43 (58.1%)	9 (100.0%)	<.001*
Shock	13 (10.0%)	12 (16.2%)	6 (66.7%)	<.001*
Death	0 (0.0%)	0 (0.0%)	0 (0.0%)	-
Transfusion	12 (9.2%)	16 (21.6%)	4 (44.4%)	.002*
Hematemesis	12 (9.2%)	13 (17.6%)	3 (33.3%)	.044*
Coffee ground emesis	15 (11.5%)	27 (36.5%)	7 (77.8%)	<.001*
Vomiting	26 (20.0%)	48 (64.9%)	9 (100.0%)	<.001*
Melena	14 (10.8%)	15 (20.3%)	4 (44.4%)	.010*
Abdominal pain	15 (11.5%)	12 (16.2%)	3 (33.3%)	.155
Bright red blood per rectum	0 (0.0%)	0 (0.0%)	0 (0.0%)	-
Weight loss	5 (3.8%)	1 (1.4%)	0 (0.0%)	.389
Medical/Social History, n (%)				
Type 1 diabetes	0 (0.0%)	1 (1.4%)	2 (22.2%)	<.001*
Type 2 diabetes	24 (18.5%)	20 (27.0%)	2 (22.2%)	.360
Cardiovascular disease	27 (20.8%)	15 (20.3%)	1 (11.1%)	.784
Hypertension	44 (33.8%)	28 (37.8%)	0 (0.0%)	.077
Hyperlipidemia	14 (10.8%)	11 (14.9%)	0 (0.0%)	.365
Psychiatric disorders	7 (5.4%)	11 (14.9%)	3 (33.3%)	.005*
Chronic kidney disease	14 (10.8%)	10 (13.5%)	2 (22.2%)	.546
Cancer	14 (10.8%)	11 (14.9%)	1 (11.1%)	.688
Systemic sclerosis	7 (5.4%)	1 (1.4%)	0 (0.0%)	.288
Liver cirrhosis	4 (3.1%)	6 (8.1%)	0 (0.0%)	.209
Medical use (current or past history, >20 g of ethanol/day)	47 (56.6%)	28 (48.3%)	3 (37.5%)	.084
Smoking (current or past history)	31 (39.2%)	23 (41.1%)	2 (26.6%)	.222
Medications n, (%)				
Proton pump inhibitors	28 (21.5%)	22 (29.7%)	5 (55.6%)	.050*
Histamine 2 blockers	10 (7.7%)	4 (5.4%)	0 (0.0%)	.588
Bisphosphonates	4 (3.1%)	4 (5.4%)	0 (0.0%)	.584
Antithrombotic agents	23 (17.7%)	13 (17.6%)	1 (11.1%)	.879
Benzodiazepines/antipsychotics	20 (15.4%)	19 (25.7%)	4 (44.4%)	.038*
Non-steroidal anti-inflammatory drugs	14 (10.8%)	6 (8.1%)	0 (0.0%)	.505
Steroids	6 (4.6%)	3 (4.1%)	0 (0.0%)	.798
Other endoscopic findings				
Hiatal hernia	86 (66.2%)	41 (55.4%)	4 (44.4%)	.178
Esophageal stricture	0	2	0	.150
Atrophic gastritis	47 (36.4%)	22 (29.7%)	3 (33.3%)	.624
Gastric ulcer	6 (4.7%)	10 (13.5%)	0	.046*
Gastric ulcer scar	6 (4.7%)	6 (8.1%)	1 (11.1%)	.501
Post-operative stomach	14 (10.9%)	5 (6.8%)	0	.388
Duodenitis	8 (6.2%)	6 (8.2%)	1 (11.1%)	.773
Duodenal ulcer (all parts)	11 (8.5%)	16 (21.9%)	3 (33.3%)	.041*
Duodenal ulcer (1st part)	9	15	2 (22.2%)	.012
Duodenal ulcer (2nd part)	6	6	3 (33.3%)	.005*
Duodenal ulcer scar	7	12	3 (33.3%)	.003*
Duodenal stricture	0	10	1 (11.1%)	<.001*
Stigmata of hemorrhage	20	25	9 (100.0%)	<.001*
Hemostatic intervention performed	8 (6.2%)	4	2 (22.2%)	.150

AEN = acute esophageal necrosis, RE-C = reflux esophagitis Grade C, RE-D = reflux esophagitis Grade D. * denotes statistical significance (P < .05).

† One-way analysis of variance used for continuous variables and Pearson Chi-Squared test or Fisher exact test used for categorical variables.
Table 4	Multiple comparisons and multivariate analysis.										
	% Observed	Multiple comparisons: Odds ratios (95% CI)	Multiple comparisons: \(p \)-value	Multivariate analysis: \(P \)-value							
	RE-C	RE-D	AEN	RE-C vs RE-D	RE-D vs AEN	RE-C vs AEN	RE-C vs RE-D	RE-D vs AEN	RE-C vs AEN	RE-C vs RE-D	RE-C vs Re-D+AEN
Symptoms											
Admission	30%	57%	100%	3.1 (1.7–5.5)	1.8 (1.4–2.2)	3.3 (2.3–4.3)	<.001*	.009*	<.001*	.009*	.003*
Shock	10%	16%	67%	10.3 (2.3–47.1)	18.0 (4.0–80.7)	.193	.003*	<.001*	.036	.755	
Transfusion	9%	22%	44%	2.7 (1.2–6.1)	7.8 (1.9–33.3)	.013*	.137	.011*	.936	.755	
Hematemesis	9%	18%	33%	4.4 (2.2–9.0)	6.1 (1.2–31.4)	26.8 (5.1–141.3)	<.001*	.022*	<.001*	.010*	.003*
Coffee ground emesis	12%	36%	78%	7.4 (3.9–14.0)	1.5 (1.3–1.8)	5.0 (3.6–7.0)	<.001*	.027*	<.001*	.017*	
Vomiting	20%	65%	100%	1.1 (1–8.3)	8.8 (1.8–42.7)	.222*	.173	.018*	.118	.096	
History											
Type 1 diabetes mellitus	0%	1%	22%	20.9 (1.7–259.9)	6.2 (1.9–20.0)	.363	.030*	.004*	.362	.003*	
Psychiatric	5%	15%	33%	3.1 (1.1–8.3)	8.8 (1.8–42.7)	.222*	.173	.018*	.118	.096	
Medications											
Proton pump inhibitors	22%	30%	56%	4.6 (1.1–18.1)	1.91	.120	.035*				
Benzodiazepines	15%	26%	44%	4.4 (1.1–17.8)	.072	2.09	.048*				
Diagnosis in winter	25%	26%	89%	22.2 (2.7–1039.3)	23.9 (3.0–1091.2)	0.868	<.001*	<.001*	.553	.553	
Endoscopic Findings											
Gastric ulcer	2%	14%	0%	3.2 (1.1–9.3)	.023*	2.95	.664	.399	.553		
Duodenal ulcer	9%	22%	33%	3.0 (1.3–6.9)	5.4 (1.2–24.5)	.025*	3.45	.049*	.151	.094	
Duodenal ulcer (1st part)	7%	20%	22%	3.4 (1.4–8.3)	.004*	5.98	.153				
Duodenal ulcer (2nd part)	5%	8%	33%	10.2 (2.0–51.3)	.232	.056	.013*				
Duodenal ulcer scar	5%	16%	33%	3.4 (1.3–9.1)	8.7 (1.8–42.4)	.011*	2.09	.019*			
Duodenal stricture	0%	14%	11%	1.2 (1.1–1.3)	<.001*	6.59	.065				
Stigmata of hemorrhage	15%	34%	100%	2.8 (1.4–5.5)	3.0 (2.2–4.1)	6.5 (4.3–9.7)	.002*	<.001*	<.001*		

AEN = acute esophageal necrosis, BZ = benzodiazepines, CI = confidence interval, RE-C = reflux esophagitis Grade C, RE-D = reflux esophagitis Grade D.

* Denotes significance \((P < .05)\).
differences in these 2 variables were more pronounced when AEN patients was added to the RE-D group (P = .003 and P = .003, respectively).

Seven RE-C patients, 11 RE-D patients, and 3 AEN patients were being treated for psychiatric disease at the time of diagnosis. Three RE-C patients, 5 RE-D patients, and 1 AEN patient had major depressive disorder, while 0, 3, and 2 had schizophrenia, respectively. Correlation analyses showed a significant association between psychiatric disease and vomiting (coefficient: 0.22, P = .001), coffee ground emesis (coefficient: 0.23, P = .001), and benzodiazepine or antipsychotic use (coefficient: 0.422, P < .001).

4. Discussion

4.1. Summary

In this study, we found that AEN patients were more likely to have type 1 diabetes mellitus, be in shock, present in winter, require admission, present with coffee ground emesis, and have stigmata of hemorrhage on endoscopy than both RE-C and RE-D patients. Compared to RE-C patients, AEN patients were also more likely to have a history of psychiatric illness, present with melena, be transfused, be taking PPIs, benzodiazepines or antipsychotics, and to have active or healed duodenal ulcers. Notably, there were no differences in age, gender, body mass index, use of antithrombotic agents, or the need for endoscopic hemostasis among the 3 groups.

4.2. Acute esophageal necrosis

In a pooled analysis on 114 AEN cases, 73% were male, with a mean age of 62.1 years. Compared to this report, our 9 AEN patients had significantly higher rates of acute kidney injury (44% vs 8%, P = .018) and tended to present more frequently with shock (67% vs 29%, P = .054) based on a two-sided Fisher exact test, but all survived the episode of AEN (deaths: 0% vs 30%, P = .062). Recent case reports tend to describe patients with higher severity requiring surgery than older reports, possibly due to publication bias.

Reports from Japan which refer to AEN as acute esophageal mucosal lesion (AEML) tended to be missing from the pooled analysis. Tsumura et al. reported 12 cases of AEN, including 6 cases which were not black on the surface. They suggested use of the term AEML, as its acute and transient nature are similar to that of acute gastric and duodenal mucosal lesions. They found no differences in characteristics between 6 black and 6 non-black AEML cases. Only one case had a history of GERD, and only one case required acid suppression therapy after the acute phase.

4.3. Severe reflux esophagitis and acute esophageal necrosis

Sakata et al. conducted the only study to date which compared severe RE (RE-C and RE-D) to AEML cases. Comparing 39 RE cases with 32 AEML (6 black and 26 non-black esophagus) cases, they found male sex, hypertension, and renal dysfunction to be risk factors for AEML. Similar to our results, AEML patients tended to present with leukocytosis, high blood urea nitrogen, and hyperglycemia, and were more likely to need emergency endoscopy and to have concurrent duodenal lesions.

RE-D appears closer to AEN than mild RE in many respects. Coronary artery disease, congestive heart failure, and chronic obstructive pulmonary disorder are risk factors for RE-D, which may act through a mechanism similar to the way debilitating disease triggers AEN. RE-D patients are more likely to be older, admitted and/or required intensive care, and have more cardiopulmonary disorders and gastrointestinal bleeding compared to Grade A RE patients, but are less likely to be obese or have a history of alcohol use and tended to have less hiatal hernias.

RE-C and RE-D patients experience more reflux at night than during the day, unlike their milder counterparts. Healing occurs in only 70% and 58% of RE-C and RE-D patients after PPI therapy, respectively. In contrast, most AEN patients achieve complete healing and are able to discontinue PPIs after the acute phase. Thus, AEN has some severe RE-like characteristics and some unique, AEN-specific characteristics. Our study also found that some factors are specific to severe RE or AEN, while others are common to both.

4.4. Seasonality

Eighty nine percent of our AEN patients presented in the winter. In contrast, no clear seasonality was observed in RE-C and RE-D patients. As an increase in ischemic heart disease and heart failure in the winter has been documented in various reports since 1937 and as necrosis is associated with compromised blood flow, a predilection for cold weather in AEN appears reasonable. However, it must be noted that the timing of onset of RE in our RE-C and RE-D patients remains unclear, as many were diagnosed during routine endoscopies and/or without symptoms. The impact of seasonality in AEN has not been reported and may be a topic for further research.

4.5. Diabetic ketoacidosis

DKA has been associated with AEN in multiple reports, including 1 report with 4 cases among 16 AEN patients. As there were only 29 DKA admissions during the relevant period in that report, AEN risk may be particularly high in this population.

While gastric stasis and hypovolemia have been proposed as possible mechanisms in previous reports, the relationship and direction of causality between DKA and AEN remain unclear. DKA is one of the most common diabetes-related
emergencies, which may result from various causes including concurrent conditions (such as infections) and poor adherence to medications.[20] Thus, a concurrent disease process may trigger both DKA and AEN.

Delayed gastric emptying in diabetes result from microvascularopathy, autonomic neuropathy, and enteric neuromuscular disturbances, all of which contribute to reduced contractility of the gastric antrum, spasm of the pylorus, and small bowel dysmotility.[21] Gastroparesis occurs in about 5% of type 1 diabetes mellitus patients and may lead to vomiting or reduced intake, both of which may precipitate AEN as well as DKA. Diabetic gastroparesis may also be associated with an infectious prodrome, which could also trigger DKA.[22]

DKA patients are inevitably hypovolemic due to osmotic diuresis which may be accompanied by poor intake, presenting a risk of hypoperfusion and ischemia. Increased lipase due to insulin deficiency leads to the accumulation of ketone bodies, resulting in high anion gap metabolic acidosis.[20] Hypovolemia and metabolic acidosis can both trigger hypercalcemia, which causes elevations in gastrin and acetylcholine.[23] This leads to an increase in gastric acid secretions and therefore predisposes affected patients to peptic ulcers, and possibly, to AEN.[24]

Finally, DKA is associated with elevated proinflammatory cytokines such as interleukins and C-reactive protein, which may aggravate hypoperfusion via thrombus formation.[25]

4.6. Psychiatric disease

The relationship between psychiatric disorders and GERD is well-documented. The prevalence of GERD was higher in depressed patients than non-depressed patients in a population-based study, while other studies suggest that GERD is a risk factor for depression, anxiety disorder, sleep disorders, bipolar disorder, and schizophrenia.[26–29] The relationship between GERD and psychiatric disorders is most likely bidirectional and multifactorial.[30] Inflammatory cytokines produced from the esophageal mucosa in GERD can lead to depression or anxiety. Reduced quality of life due to GERD may also trigger or exacerbate psychiatric disease. Psychiatric disease has been reported to cause esophageal contraction abnormalities and alter sensory function. It may also alter health-related behavior which may induce GERD, including change in diet, alcohol consumption, smoking, compliance with medications, and frequency of hospital visits. Tricyclic antidepressants and benzodiazepines induce reflux by reducing the lower esophageal sphincter pressure.[31] Depression is also associated with the use of proton pump inhibitors in elderly patients.[32]

We found high rates of psychiatric disease in RE-D and AEN patients, particularly major depressive disorder and schizophrenia. In addition to the expected association with benzodiazepine or antipsychotic use, there was significant positive association between psychiatric disease and vomiting. While associations between psychiatric disease and AEN have not been reported in the existing literature, the abovementioned factors may predispose psychiatric patients to AEN. More research is required to elucidate the relationship between these 2 clinical entities.

4.7. Limitations

There are several limitations to this study. The study was a retrospective study at a single institution. Multivariate analyses could not be performed for AEN, owing to the small sample size. The same patient may fall in different categories of severity, depending on the timing of the EGD. No pathological evaluation was conducted. The period of PPI use prior to EGD could not be determined for patients taking PPIs. Long-term outcomes could not be evaluated in this study, as most AEN patients were lost to follow-up.

5. Conclusion

In conclusion, we present a three-way comparison of clinical and endoscopic characteristics in RE-C, RE-D, and AEN. AEN has some characteristics which are similar to severe RE, but has some distinct features which set it apart as a separate clinical entity. Shock, type 1 diabetes, and winter may predict AEN, while the need for admission and coffee ground emesis may predict RE-D or AEN.

Author contributions

Conceptualization: Takeshi Okamoto.

Formal analysis: Takeshi Okamoto.

Investigation: Takeshi Okamoto.

Methodology: Takeshi Okamoto, Hidekazu Suzuki.

Project administration: Takeshi Okamoto.

Supervision: Hidekazu Suzuki, Katsuyuki Fukuda.

Writing – original draft: Takeshi Okamoto.

Writing – review & editing: Takeshi Okamoto, Hidekazu Suzuki, Katsuyuki Fukuda.

References

[1] Richter JE, Rubenstein JH. Presentation and epidemiology of gastroesophageal reflux disease. Gastroenterology 2018;154:267–76.

[2] Armstrong D, Bennett JR, Blum AL, et al. The endoscopic assessment of esophagitis: a progress report on observer agreement. Gastroenterology 1996;111:85–92.

[3] Lundell LR, Dent J, Bennett JR, et al. Endoscopic assessment of oesophagitis: clinical and functional correlates and further validation of the Los Angeles classification. Gut 1999;45:172–80.

[4] Kasayak AK, Sah SK, Chaudhary S. Clinical spectrum and risk factors associated with asymptomatic erosive esophagitis as determined by Los Angeles classification: a cross-sectional study. PLoS One 2018;13: e0192739.

[5] Gurvits GE. Black esophagus: acute esophageal necrosis syndrome. World J Gastroenterol 2010;16:3219–25.

[6] Goldenberg SP, Wain SL, Marignani P. Acute necrotizing esophagitis. Gastroenterology 1990;98:493–6.

[7] Schizas D, Theochari NA, Mylonas KS, et al. Acute esophageal necrosis: a systematic review and pooled analysis. World J Gastrointest Surg 2012;4:104–15.

[8] Nasser-Moghaddam S, Razjouyan H, Nouraei M, et al. Inter- and intra-observer variability of the Los Angeles classification: a reassessment. Arch Iran Med 2007;10:48–53.

[9] Shimamura Y, Nakamura K, Ego M, Omata F. Advanced endoscopic imaging in black esophagus. Can J Gastroenterol Hepatol 2014;28:471–2.

[10] Matsuo T, Ishii N. Acute esophageal necrosis. N Engl J Med 2017;377:1378.

[11] Tsumura T, Maruo T, Tsuji K, Osaki Y, Tomono N. Twelve cases of acute esophageal mucosal lesion. Dis Endosc 2006;18:199–205.

[12] Sakata Y, Tsuruoka N, Shioda R, et al. Comparison of clinical characteristics of patients with acute esophageal mucosal lesion and those with severe reflux esophagitis. Digestion 2019;99:275–82.

[13] Nguyen AD, Spechler SJ, Shuler MN, Souza RF, Dunbar KB. Unique clinical features of Los Angeles grade D esophagitis suggest that factors other than gastroesophageal reflux contribute to its pathogenesis. J Clin Gastroenterol 2019;53:9–14.

[14] Adachi K, Fujishiro H, Katsube T, et al. Predominant nocturnal acid reflux in patients with Los Angeles grade C and D reflux esophagitis. J Gastroenterol Hepatol 2001;16:1191–6.
[15] Mizuno H, Matsuhashi N, Sakaguchi M, et al. Recent effectiveness of proton pump inhibitors for severe reflux esophagitis: the first multicenter prospective study in Japan. J Clin Biochem Nutr 2015;57:233–8.
[16] Rosahn PD. Incidence of coronary thrombosis in relation to climate. JAMA 1937;109:1294–9.
[17] Bhata S, Bhata S, Mears J, Dib G, Deshmukh A. Seasonal periodicity of ischemic heart disease and heart failure. Heart Fail Clin 2017;13:681–9.
[18] Yasuda H, Yamada M, Endo Y, Inoue K, Yoshina M. Acute necrotizing esophagitis: role of nonsteroidal anti-inflammatory drugs. J Gastroenterol 2006;41:193–7.
[19] Jeyalingam T, Shimamura Y, Teshima C. Endoscopic resolution of black esophagus with treatment of diabetic ketoacidosis. Clin Gastroenterol Hepatol 2013;11:68–9.
[20] Dhatariya KK. Defining and characterising diabetic ketoacidosis in adults. Diabetes Res Clin Pract 2019;155:107797.
[21] Bharucha AE, Camilleri M, Low PA, Zinsmeister AR. Autonomic dysfunction in gastrointestinal motility disorders. Gut 1993;34:397–401.
[22] Shen S, Xu J, Lamm V, Vachaparambil CT, Chen H, Cai Q. Diabetic gastroparesis and nondiabetic gastroparesis. Gastrointest Endosc Clin N Am 2019;29:15–25.
[23] Gurnurkar S, DiLillo ER, Carakushansky M. Severe hypercalcemia in an adolescent with new-onset diabetes mellitus and diabetic ketoacidosis. Cureus 2020;12:e8435.
[24] Donegan WL, Spiro HL. Parathyroids and gastric secretion. Gastroenterology 1960;38:750–9.
[25] Nyenwe EA, Katbchi AE. The evolution of diabetic ketoacidosis: an update of its etiology, pathogenesis and management. Metabolism 2016;65:507–21.
[26] Chou PH, Lin CC, Lin CH, et al. Prevalence of gastroesophageal reflux disease in major depressive disorder: a population-based study. Psychosomatics 2014;55:155–62.
[27] You ZH, Peng CL, Hu LY, et al. Risk of psychiatric disorders following gastroesophageal reflux disease: a nationwide population-based cohort study. Eur J Intern Med 2015;26:334–9.
[28] Lin WS, Hu LY, Liu CJ, et al. Gastroesophageal reflux disease and risk for bipolar disorder: a nationwide population-based study. PLoS One 2014;9:e107694.
[29] Kasap E, Ayer A, Bozoğlan H, Ozen C, Eslek I, Yüceyar H. Schizophrenia and gastroesophageal reflux symptoms. Indian J Psychiatry 2015;57:73–7.
[30] Clouse RE, Lustman PJ. Psychiatric illness and contraction abnormalities of the esophagus. N Engl J Med 1983;309:1337–42.
[31] Mungan Z, Pınarbaşı Şimşek B. Which drugs are risk factors for the development of gastroesophageal reflux disease? Turk J Gastroenterol 2017;28:538–43.
[32] Laudisio A, Antonelli Incalzi R, Gemma A, et al. Use of proton-pump inhibitors is associated with depression: a population-based study. Int Psychogeriatr 2018;30:153–9.