Research on Statistics of Passenger Transfer Flow at Urban Rail Transit Station

Kunkun Zhu1,a, Qiangqiang Li1*
1School of Highway, Chang’an University, Xi’an 710064, Shaanxi, China
a2018121212@chd.edu.cn
*Corresponding author’s e-mail: 18788868586@163.com

Abstract. With the continuous advancement of urbanization, the urban rail transit network continues to be dense, and the number of transfer stations increases, resulting in an increase in the flow of interchange passengers. This paper introduces pedestrian detection into the statistics to realize real-time statistics of passenger transfer flow. This article first determines the research scenario and simplifies the transfer path. Then, the pedestrian detection model is constructed by using the histogram of gradient directions (HOG) and support vector machine (SVM), and combined with the continuous adaptive mean shift algorithm (CamShift) to design and realize the transfer path passenger flow statistics. Finally, the algorithm was trained and tested through the samples obtained at Xi’an Xiaozhai subway station, and the test results obtained have high accuracy.

1. Introduction

In recent years, the urban rail transit network has been improved, the number of transfer stations in the line network has increased year by year, and the transfer passengers have large numbers and complicated transfer routes. How to realize real-time statistics of transfer passengers flow has great significance to the operation and management of urban rail transit transfer stations.

In the existing research, many scholars have used Automatic Fare Collection data (AFC) to study the characteristics of passenger flow in stations [1-2]. However, AFC data only provides data on passenger flow in and out of the station, and there are few statistics on transfer passenger flow. Therefore, the article considers the introduction of pedestrian detection technology into the transfer flow statistics of urban rail transit to realize real-time statistics of transfer route passenger flow.

Domestic and abroad research on pedestrian detection is mainly based on template matching and statistical learning. The basic idea of template matching is to collect image samples of different parts of pedestrians, and achieve the purpose of pedestrian detection by constructing a similarity combination relationship model between the samples and the targets. Philomin V. et al. [3] obtained a multi-pose template, specified indicators to measure the similarity between the evaluation sample and the template, and finally used a hierarchical template for matching. Lin Z. et al. [4] extract the local and global features of pedestrian images, and hierarchically use local feature decision trees to achieve pedestrian detection. The main idea of statistical learning is to process the sample algorithmically, extract its characteristic data, and then train the classifier to classify the characteristic data. Papageorgiou. et al. [5] designed to use Haar wavelet to extract features from positive and negative samples, and select support vector machines (SVM) to train the feature data. The model learns from the samples and does not rely on any prior models or motion-based segmentation. Dalal N. et al. [6]
designed the use of directional gradient histogram (HOG) for feature extraction of samples, and the combination with SVM has an excellent effect. Jia Shijie et al. [7] first calculated the Haar features of pedestrian heads, used the Adaboost classifier to learn the samples, and used the continuous adaptive mean shift algorithm (CamShift) for pedestrian tracking. For crowded people, the average accuracy of this method reached 98.2%. Experiments show that the pedestrian features of the HOG descriptor are significantly better than the existing human detection feature set. Therefore, the article combines HOG-SVM and CamShift to realize the statistics of transfer passenger flow paths.

2. Research scenario determination
As the transfer path becomes more and more complex, in order to improve the pertinence of the model, the transfer path is simplified. The main transfer methods are divided into: cross transfer, L-type transfer, T-type transfer, and H-type transfer [8].

Cross transfer: The station generally has three floors, the first floor is the station hall floor, and the lower two floors are the cross-intersecting platform floor. Advantages and disadvantages: The transfer lines in both directions are shorter and the transfer efficiency is higher; but passenger flow gather in the centre of the platform, which is likely to cause congestion.

L-shaped transfer: The two transfer platforms intersect in an L-shape, and passengers can transfer through the passage or escalator at the intersection of the platforms. Advantages and disadvantages: The direction of passenger flow transfer is clear, but the transfer distance is long due to the transfer at both ends of the platform.

T-shaped transfer: The transfer platforms intersect in a T shape, and the middle of one platform is connected to one end of the other platform, and the transfer is carried out through escalators or stairs. Advantages and disadvantages: the transfer distance in one direction is longer, and the other is shorter, which is suitable for passengers with unbalanced transfer directions.

H-type transfer: The two transfer platforms are arranged in parallel, connected by a transfer passage, and the platform and the transfer passage are H-shaped. Advantages and disadvantages: Generally, the H-type transfer distance is long (generally more than 100m), and it is difficult to use other transfer methods to use the H-type transfer.

Because of the cross-shaped, T-shaped, H-shaped, and L-shaped transfer paths, the transfer path generally contains one-way passenger passages, stairs, and escalators, and the flow of passengers is simple; especially when the pedestrian density is high at the escalator, pedestrians stand side by side, the speed is basically the same. In order to effectively carry out transfer passenger flow statistics, this paper considers the one-way passage, stairs or escalators in the above transfer path as the detection scene.

3. Pedestrian detection technology
Considering the effectiveness and feasibility, this article uses statistics-based pedestrian detection counting. This method is generally divided into feature extraction and classification recognition. Feature extraction is to simplify the target image into a segment of identifiable feature data, and classification recognition is a two-classification problem, that is, whether the target is a pedestrian. The positive and negative samples after feature extraction are added to the classification model for training, and the trained classifier is used to judge the target to realize pedestrian detection.

3.1. feature extraction
This paper uses HOG to extract features from images.

Since the colour will greatly increase the computational complexity, the original image is processed in grayscale first. The HOG feature divides the image into 64×128 windows. First, calculate the gradient and amplitude of all pixels in the windows using convolution. Next, combine the 3×3 windows without overlapping into one unit, and classify the gradient of each pixels in unit by direction (For example, 0-360° is divided into 9 categories, each category is 40°). Then sum the magnitude of the gradient in each direction to get the gradient histogram of each unit. Finally regard
the 3*3 unit as a block and the histogram of each unit in blocks is combined into a one-dimensional vector and normalized. The HOG feature is the result of connecting all the normalized vectors of the blocks. The schematic diagram of HOG features is shown in Figure 1.

3.2. Classifier
The feature data of the image will be input into the classification machine to segment the sample. SVM is a two-class classification model. Its purpose is to find a hyperplane to segment samples. The principle of segmentation is to maximize the interval. In this way, positive samples of pedestrians can be distinguished from negative samples of other objects.

Assume that the training set T is defined as the feature set of HOG:

\[T = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\} \]

Where \(x_i \) is the i-th HOG feature vector, \(y_i \) is the positive and negative sample label, +1 represents the pedestrian sample label, and -1 other sample labels.

The geometric interval between the training set T and the hyperplane is defined as follows:

\[\gamma_i = y_i \left(\frac{\omega}{||\omega||} \cdot x_i + \frac{b}{||\omega||} \right) \]

The minimum geometric interval of all sample points is required. At this time, the problem of solving the optimal segmentation hyperplane of the SVM model can be expressed as an optimization problem, and after transformation, the equation (3) is obtained.

\[L(w, b, a) = \min_a \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_i y_j (x_i \cdot x_j) - \sum_{i=1}^N a_i \]

Finally, find the optimal solution.
And calculate \(w^*, b^* \) according to the following formula:

\[
\begin{align*}
\mathbf{w}^* &= \sum_{i=1}^{N} a_i^* y_i (x_i \cdot x_j) \\
\mathbf{b}^* &= y_j - \sum_{i=1}^{N} a_i^* y_i (x_i \cdot x_j)
\end{align*}
\]

(4)

(5)

In this way, the optimal hyperplane is obtained:

\[\mathbf{w}^* \cdot \mathbf{x} + \mathbf{b}^* = 0 \]

(6)

4. Target tracking

Pedestrian detection can determine the location of pedestrians in the image, that is, a search window containing pedestrian targets. However, in order to count the passenger flow, it is necessary to use the target tracking method to track the identified pedestrian, that is, to determine the position of the pedestrian in the subsequent frames of the video to realize the passenger flow statistics. The commonly used multi-target tracking method is MeanShift.

Figure 3. Schematic diagram of MeanShift principle

Set the center point of the search window as \(\mathbf{X} \). Then draw a circle with a specific radius with \(\mathbf{X} \) as the center, calculate the distance from all points in the circle to \(\mathbf{X} \). Next, take the average of distance to get the mean shift value of the center point. Finally the center point \(\mathbf{X} \) moves to the point \(\mathbf{X}' \) in the direction of the mean shift, and then moves to the next point \(\mathbf{X}'' \) in the same way. Bradski G. R. et al. [9] proposed the CamShift algorithm based on the MeanShift algorithm. The main idea is to use MeanShift to obtain the center point of the tracking target for each frame, as the initial value of the MeanShift algorithm for the next frame, and repeat the iteration. The basic steps as follows:

- Initialize the search window in HOG-SVM;
- Determine the search area and convert the image into a color probability distribution image;
- Iterative search using MeanShift algorithm, the end condition of the iteration is to reach the maximum number of iterations or iterative convergence;
- Obtain the center position and window size of the search window from the results of step 4, and substitute them into step 2 as new parameters to achieve continuous tracking.

5. Case Analysis

5.1. Sample collection and feature calculation

Select transfer route from line 3 to line 2 in Xi’an Xiaozhai station which is T-shaped transfer station. The detection time is 7:30-8:00. At this time, on the escalator from Line 3 to the station hall in the transfer path, most of the passenger flow is a single-direction passenger flow.

The positive sample extracts the head and shoulders information of the passenger flow for HOG calculation. Select the head and shoulders of the pedestrian in the video frame to mark it with a
rectangular box, and the marking box is required to include the head and shoulders of the pedestrian as much as possible. A total of 1665 positive samples from different positions were obtained, as shown in Figure 4(a). After background extraction, the detection point interferers include moving escalators, other parts of pedestrians, such as backpacks, handbags, mobile phones, trunk parts, and a total of 1701 negative samples are obtained, as shown in Figure 4(b).

The HOG feature data of the positive and negative samples are divided into a training set and a test set. The training set accounts for 60%, the validation set accounts for 20%, the remaining 20% is confused, and the negative samples are mixed into the positive samples as the test set. Input the training set into the SVM with set parameters, train the classifier, and save the first classifier. Use the trained classifier to detect negative samples to obtain difficult cases, and then perform a second learning on the difficult cases to reduce the false detection rate in this way. Finally, it is substituted into the test set for inspection. The accuracy rate is about 91.54%.

Table 1. Test set sample	Positive sample	Negative sample	total	Accuracy		
numbers	correct	numbers	correct			
Positive sample	318	293	15	13	333	91.90%
Negative sample	39	36	301	274	340	91.18%

5.2. Target tracking
In this paper, target tracking is implemented using the built-in function of Python_Opencv, and the search window box obtained by pedestrian detection is input into this function to achieve tracking. Figure 5 shows the statistical process.
According to Figure 5(a), after training on difficult cases, interference objects such as backpacks and targets can be distinguished well, reducing the false detection rate. As for pedestrian tracking, CamShift performs well in tracking. The model is basically running well. The picture below shows the passenger flow time series data collected by the video with a time scale of 1s.

![Test data](image1)

![Actual data](image2)

(a) Test data
(b) Actual data

Figure 6. Passenger flow time series data

6. Conclusion

With the development of cities, the urban rail transit network continues to be dense, and the pressure of passenger flow continues to increase. With the increase of transfer stations, the flow of transfer passengers is also increasing. In view of its complex path and large fluctuations over time, this paper introduces pedestrian detection into the statistics of interchange passenger flow.

First, the research scenario is determined, the transfer path is simplified, and the pertinence of the model is improved. Next, extract the HOG feature of the sample, and input the feature data into the SVM classifier for training and testing. The final test shows that the trained classifier can accurately distinguish passengers and other objects. Finally, use CamShift to track the location of passengers, so as to realize the statistics of the transfer passengers. The obtained test results show that the model has high accuracy for the statistics of transfer passengers flow.

References

[1] You Qing. (2019) Analysis of Passenger Flow Characteristics of Zhengzhou Rail Transit Based on AFC System. Urban Express Rail Transit, 32(06): 56-62.
[2] Wang Xingchuan, Yao Enjian, Liu Shasha. (2018) Urban rail transit passenger flow prediction during large-scale events based on AFC data. Journal of Beijing Jiaotong University, 42(01): 87-93.
[3] Philomin V., Duraiswami R., and Davis L. (2000) Pedestrian tracking from a moving vehicle. In: Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511), Dearborn, MI, USA, pp. 350-355.

[4] Lin Z., Hua G., and Davis L. S. (2009) Multiple instance Feature for robust part-based object detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 405-412.

[5] Papageorgiou, Oren M., Poggio T. (1998) A general framework for object detection. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, India, pp. 555-562.

[6] Dalal N., Triggs B. (2008) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, pp. 886-893 vol. 1.

[7] Jia Shijie, Wu Huabin, Zhang Yuanyuan. (2015) Automatic statistics of human flow in shopping malls based on human head target detection. Journal of Dalian Jiaotong University, 36(03): 82-86.

[8] Sha Bin, Yuan Zhenzhou, Miao Jianghua, Cao Shouhua. (2006) Comparative analysis of urban rail transit transfer modes. Urban Transportation, (02): 11-15.

[9] Bradski G. R. (1998) Real time face and object tracking as a component of a perceptual user interface. In: Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201), Princeton, NJ, USA, pp. 214-219.