Abstract

Owing to its strong acid production, the stomach was known to be a bacteria-free organ for many years. On the other hand, the presence of *Helicobacter pylori* (H. pylori) and other acid-resistant microbiota that are to persist in the stomach challenged this. It is now recognized that the existence of *H. pylori* and non-*H. pylori* species have been linked to the improvement of gastric disease; despite this, there is little published data on the interaction of gastric bacterial flora and the resultant effect on gastric health. The stomach has a unique microbiota including five major phyla, such as Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, and Bacteroidetes. These phyla are identified in both *H. pylori*-infected and uninfected persons. The resident gastric microflora may mediate the role of *H. pylori* in the gastric diseases. This article aims to review previous studies that examine the impact of *H. pylori* infection and the effect of resident gastric microbiota on gut health and disease conditions.

Keywords: Gastric microbiota, *Helicobacter pylori*, Stomach.

Background

The compound of human gastrointestinal microbiota tract has been well studied and a number of reports explaining the relationships between the diversity of microbiota in the human gastrointestinal tract and its influence on health and disease have been conducted. The human gut microbiota includes about 10 trillion microbial substances comprising of many archaea, bacteria and viruses. The development of the intestinal microbiome during the early stages of life affects the improvement of the mucosal immune system and an individual's susceptibility to some diseases. The gastric was known to be a sterile organ owing to its strong acid production; however, *H. pylori* other non-*H. pylori* in the stomach inhibited the colonization of *H. pylori* individual's susceptibility to some diseases. The gastric bacterial flora are very limited. Detection of the gastric microbiota composition is diverse in *H. pylori*-infected individuals. In contrast to this, Bik et al. suggested that no statistically significant discrepancy in the diversity of gastric microbiota between *H. pylori*-positive and negative patients was found. However, in this study, 7 *H. pylori*-uninfected individuals identified by traditional methods were actually had *H. pylori*-positive results when tested using the DNA-based techniques. Others have reported inconsistent properties of gastric microbiota in *H. pylori*-positive patients.

Gastric Microbiota in Association with *H. pylori* Infection

Although non-*H. pylori* species have been related to the improvement of gastric disorders, the published information on the gastric bacterial flora are very limited. Detection of the gastric microbiota is often dependent on the cultivation of gastric juice or mucosal biopsies where reports have detected several genera of the Actinobacteria, Firmicutes, Fusobacteria, and Proteobacteria, as well as yeasts.

1Department of Medical Services and Techniques, Vocational School of Health Services, Firat University, Elazig, Turkey
2Department of Biology and Biochemistry, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
3Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia

Address reprint requests to: Gokben Ozbey, Department of Medical Services and Techniques, Vocational School of Health Services, Firat University, Elazig, Turkey, Phone: +904242370000-6535, e-mail: gokben.ozbey@yahoo.com

How to cite this article: Ozbey G, Sproston E, Hanafiah A. *Helicobacter pylori* Infection and Gastric Microbiota. *Euroasian J Hepato-Gastroenterol* 2020;10(1):36–41.

Source of support: Nil

Conflict of interest: None
Table 1: Distribution of gastric microbiota in humans

Country	Study population (number of subjects)	Type of samples, method	Distribution of gastric microbiota	References
United States	23 adults (13 Caucasians, 5 Hispanics, and 5 African Americans)	Gastric biopsies, 16S rDNA clone library	Overall gastric microbiota:	
Proteobacteria (952 clones)				
Firmicutes (464 clones)				
Bacteroidetes (193 clones)				
Actinobacteria (164 clones)				
Fusobacteria (56 clones)				
Top 5 genera:				
Streptococcus (299 clones)				
Prevotella (139 clones)				
Rothia (95 clones)				
Fusobacterium (45 clones)				
Veillonella (41 clones)				
No. of phylotypes:				
HP+ve = 60 phylotypes				
HP−ve = 143 phylotypes	Bik et al.18			
Sweden	6 adults (healthy individuals)	Gastric biopsies, 454 pyrosequencing	HP−ve = 262 phylotypes: Most prominent phylotypes were *Streptococcus*, *Actinomyces*, *Prevotella*, *Gemella*	
HP+ve = 93–97% of the reads belong to Proteobacteria	Andersson et al.19			
Sweden	6 gastric cancer	Gastric biopsies, T-RFLP, 16S rRNA cloning and sequencing	102 phylotypes were identified including 5 phyla:	
 Firmicutes (61% relative abundance)
 Bacteroidetes (11% relative abundance)
 Actinobacteria (7% relative abundance)
 Proteobacteria (6% relative abundance)
 Fusobacteria (3% relative abundance)
 Highly presented genera:
 Firmicutes: *Streptococcus*, *Lactobacillus*, *Veillonella*, *Prevotella*
 Bacteroidetes: different species of *Prevotella*
 Proteobacteria: alpha-, beta-, gamma-, delta-, and Epsilonproteobacteria, *Neisseria*, *Haemophilus* | Dicksved et al.20 |
| Chinese | 10 adults (5 normal, 5 gastritis) | Gastric biopsies, Cloning and sequencing of 16S rRNA | Clone percentage from normal and gastritis biopsies (average):
 Firmicutes: 22% in normal, 41% in gastritis
 Proteobacteria: 37% in normal, 20% in gastritis
 Bacteroidetes: 28% in normal, 25% in gastritis
 Actinobacteria: 8% in normal, 8% in gastritis
 Fusobacteria: 4% in normal, 6% in gastritis
 Overall top 5 genera:
 Streptococcus (254 clones)
 Prevotella (243 clones)
 Neisseriae (175 clones)
 Haemophilus (122 clones)
 Porphyromonas (68 clones) | Li et al.21 |
| Puerto Rico, Venezuela, and United States | 12 adults (10 Amerindians, 2 immigrants to the United States) | Gastric biopsies, PhyloChip (DNA microarray) | Phyla identified in HP+ve (n = 8):
 Proteobacteria (classes Alpha, Delta, Epsilonproteobacteria)
 Acidobacteria
 Spirochaetae
Phyla identified in HP−ve (n = 4):
 Actinobacteria
 Firmicutes
 Bacteroidetes | Maldonado-Contreras et al.22 |

Contd…
Helicobacter pylori and Microbiota

Contd…

Country	Study population (number of subjects)	Type of samples, method	Distribution of gastric microbiota	References
Chinese	103 patients with dyspeptic symptoms	Gastric biopsies, MALDI-TOF MS	Fusobacteria	
Proteobacteria (classes Beta and Gammaproteobacteria)				
In 65% of HP-ve patients, 201 non-HP bacterial isolates were identified. The dominant species were:				
Streptococcus				
Neisseria				
Rothia				
Staphylococcus	Hu et al.\(^{14}\)			
Spain	12 healthy persons	Gastric biopsies and gastric juice, Culture nested PCR pyrosequencing of 16S rRNA	Most abundant phylum:	
Firmicutes				
Proteobacteria				
Actinobacteria				
4 main genera identified:				
Propionibacterium				
Lactobacillus				
Streptococcus				
Staphylococcus	Delgado et al.\(^{5}\)			
Korean	31 patients (11 noncardia GC, 10 intestinal metaplasia, 10 chronic gastritis)	Gastric biopsies, 454 pyrosequencing	Dominant phyla identified:	
Chronic gastritis—Epsilonproteobacteria (contain *H. pylori*)				
Gastric cancer—Bacilli (Streptococci and Lactobacilli)	Eun et al.\(^{23}\)			
Spain	51 children	Gastric biopsies, V4-16S ribosomal RNA gene high-throughput sequencing	HP+ve (n = 18):	
Higher abundance of *Helicobacter* genus (66.3%)
Abundant of Epsilonproteobacteria
HP-ve (n = 33):
0.45% *Helicobacter* genus
Abundant of gamma- and betaproteobacteria | Llorca et al.\(^{24}\) |

from 8 bacterial phyla.\(^{18,25}\) The gastric microbiome in *H. pylori*-negative subjects was mostly predominated by the same phylum, however, with diverse percent abundances: with 52.6% of Proteobacteria, 26.4% of Firmicutes, 12% of Bacteroidetes and 6.4% of Actinobacteria.\(^{24}\) In other studies, the most abundant phyla of Firmicutes, Bacteroidetes, and Actinobacteria were found in *H. pylori*-negative subjects.\(^{26}\) The common genera observed in *H. pylori*-negative individuals includes *Gemella*, *Prevotella*, and *Streptococcus*.\(^{19}\)

Like *H. pylori*-negative individuals, *H. pylori*-positive humans’ stomach were also abundant with Proteobacteria, Firmicutes, and Actinobacteria.\(^{19}\) However, in samples from 3 *H. pylori*-positive individuals, *H. pylori* was the dominant species and accounted for more than 90% of all sequence reads using 454 pyrosequencing technology.\(^{19}\) Here, only 33 phyotypes were identified, which was 229 fewer than were found in *H. pylori*-negative individuals.\(^{19}\) This suggests that *H. pylori*-colonized individuals harbor a significantly lower diversity of gastric microbiota and may suggest some inhibitory effects on the colonization of non-*H. pylori* gastric bacteria. This is also suggested in other studies where *H. pylori* dominates the gastric microbiota and results in a reduced bacterial diversity. The *H. pylori* eradication yielded a restoration of microbiota in the gastric environment where the abundance of *Helicobacter* in pretreatment and posttreatment was 83.7 and 6.88%, respectively, and the relative abundance of non-*H. pylori* Proteobacteria raised from 4.55 to 51.7%.\(^{27}\) It also appears that the relative abundance changes with Proteobacteria, Spirochaetes, and Acidobacteria increasing, and Actinobacteria, Bacteroidetes, and Firmicutes decreasing in *H. pylori*-positive individuals.\(^{28}\) A total of 44 phyla were identified from 12 corpus biopsy samples from 8 *H. pylori*-positive individuals with the most common being Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes.\(^{22}\) This was performed using high-density 16S rRNA gene microarray (PhyloChip).\(^{22}\) Again and in agreement with the above study, the relative abundance of Acidobacteria, Proteobacteria, and Spirochaetes increased while Actinobacteria, Bacteroidetes, and Firmicutes decreased in *H. pylori*-positive samples. In *H. pylori*-positive pediatric patients, the major phylum were Proteobacteria (69.3%), Firmicutes (14.3%), Bacteroidetes (8.2%), and Actinobacteria (6%).\(^{29}\) The higher percentage of Proteobacteria is likely to be due to the presence of *Helicobacter* genus in these samples. It has also been shown that the compound of microbiota between *H. pylori*-negative controls and *H. pylori* positive individuals were diversities in the total number of anaerobes and clostridia.\(^{30}\)

Gastric Microbiota Compositions in Patients with Gastric Diseases

The above highlights the alterations in the microbiota composition in relation to the infection with *H. pylori*.\(^{31}\) Below we discuss the compound of the gastric microbiota in *H. pylori*-infected and
uninfected patients with gastric disorders (e.g. peptic ulcer, chronic gastritis, and gastric cancer). 11

A study by Eun et al. 23 suggested that differences exist in the compound of gastric microbiota in people with chronic gastritis, precancerous lesions and gastric cancer. The same authors also reported that the gastric flora may also partially influence the impact of H. pylori infection in carcinogenesis. 24 Diversities in the gastric microbiota in healthy individuals are unlikely to be due to ethnicity or geographical region because these factors have been shown to have a similar gastric microbiota composition.13

Chronic Gastritis

In H. pylori-positive individuals with antral gastritis, the abundance of phyla Proteobacteria was decreased and Firmicutes was increased compared to H. pylori-negative subjects. 21 In patients with atrophic gastritis, Streptococcus increased whilst Prevotella decreased when compared to healthy subjects. 1 In addition, those with chronic gastritis showed a higher rate of bacterial growth than individuals not having gastritis. 12 This was performed on gastric samples from 50 individuals having chronic gastritis and 53 samples without chronic gastritis. 12 By using matrix assisted laser desorption ionization-time of flight (MALDI-TOF), the species that were significantly associated with gastritis from mucosa samples were H. pylori, Streptococcus mitis, Neisseria flavescens, and Nieseria perla and species associated with gastritis from gastric juice samples were S. oralsi, Rothia mucilaginosus, and Nieseria perla. 12 The dominant species associated with gastritis such as Neisseria, Rothia, Staphylococcus and Streptococcus were identified and varied from the acid resistant bacterial species as indicated earlier in healthy individuals. 14,32

Peptic Ulcer Disease

A study demonstrated that despite being no significant differences between uninfected and H. pylori-infected persons, the isolation of streptococci was related to the presence of peptic ulcers. 33 This analysis was performed using molecular methods such as MALDI-TOF MS biotyping and 16S rRNA sequencing on samples obtained from 215 Malaysian patients. 33 In China the common species identified from H. pylori-positive gastric biopsy specimens were Streptococcus, Neisseria, Rothia, and Staphylococcus using the MALDI-TOF MS technique. 14 These isolated bacteria are more acid-susceptible and differed from H. pylori-negative volunteers. In addition, the H. pylori-positive individuals with gastric ulcers, a much lower prevalence of non-H. pylori species were identified compared to those with nonulcer dyspepsia. 14

Gastric Cancer

Gastric cancer has various risk factors which includes H. pylori infection, host genetic and environmental factors. H. pylori infection is a well-studied risk factor for gastric adenocarcinoma; however, cancer risks can alter greatly between different populations that have a relatively similar H. pylori prevalence. 15 One of the possible factors is the interaction of different H. pylori strains and the compound of gastric microbiota. 4 The different in gastric microbiota composition between two populations within the same country with different risks of gastric cancer has been indicated in a previous study. 7 They found that operational taxonomic units (OTUs) identified as Leptotrichia wadei and a genus Veillonella were greatly abundant in those with high gastric cancer risks (Túquerres town). 7 Those with a lower gastric cancer risk had a high abundance of OTU’s assigned to Staphylococcus, Neisseria flavescens, a member of family Porphyromonadaceae, Flavobacterium and Rothia sp. (Tumaco town). 5

Gastric Microbiota Compositions in Animal Studies

Recent studies in a diverse range of animal models (mice, 15–37 Mongolian gerbils, 38,39 dogs, 40 Eastern oysters, 41 horses, 42,43 and yellow catfish 44) have reported the potential role of the gastric microbiota in different animal species. 36,45,46 Several papers have reported the effect of bacterial infection on gastric mucin expression. Muc1 expression in the stomach of mice showed a decrease level in acute and chronic H. pylori infection. 47 In Helicobacter felis-infected mice, increased Muc4 and Muc5b gene expressions were observed, while the expression of Muc5Ac was unaltered or had decreased in level of expression. 48,49

In germ-free INS-GAS mice the supplementation of just 3 species of commensal gastric and intestinal microbiota (ASFS19 Bacteroides spp., ASF356 Clostridium spp. and ASF361 Lactobacillus murinus) in conjunction with H. pylori infection were adequate to stimulate gastric neoplasia to the same extent as observed in mice harboring a complex microbiota. 45 Significantly, these genera are enhanced in the stomach of patients with premalignant and malignant lesions. 50 The contributory role to the constitution of the gastric microbiota in stimulating disease has been further supported by successfully delaying the beginning of gastric cancer in INS-GAS mice using antibiotic therapy that was independent upon the presence of H. pylori. 50,51

Earlier studies have reported that the whole or individual microbiota can either contribute to noxious effects by the carcinogenic nitrosamines formation under hypochlorhydric conditions or show positively influences, by decreasing the pro-inflammatory cytokines secretion, improving the healing of gastric ulcer, 46,57 or inactivating the growth and colonization of H. pylori. 53,58

The gastric microbiota has been shown to be altered by the infection of H. pylori in both gerbils and mice. 36,39,59 Helminth infections are at higher prevalence in children infected with H. pylori and were showed to decrease the survival-time risk for gastric adenocarcinoma. 60 In rodent models, co-infection with helmint had not decrease the grade of Helicobacter-caused inflammation but did delay the improvement to premalignant gastric lesions. 60

The effect of Heligmosomoides polygyrus co-infection with H. pylori in INS-GAS mice showed that despite having similar gastric inflammation and increased levels of proinflammatory miRNA, Foxp3+ cells in the corpus increased, H. pylori-related gastric atrophy and dysplasia were decreased, and H. pylori-caused alterations in the gastric flora was prevented. 60

Conclusion

In spite of the fact that major improvements in research techniques have been made to figure out the correlation between H. pylori and the gastric microbiota in the incidence of gastric cancer, ongoing and future studies should be required in well-designed human populations. Research needs to be conducted to compare the variations of the gastric microbiota composition in uninfected and H. pylori-infected patients with and without different gastric diseases and to enhance the knowledge of the microbiota composition, diversity, and dynamics along with species interactions and mechanism driving/functional phyla in...
the onset and prevention of gastric diseases, including gastric cancers.

REFERENCES

1. Engstrand L, Lindberg M. *Helicobacter pylori* and the gastric microbiota. Best Pract Res Clin Gastroenterol 2013;27(1):39–45. DOI: 10.1016/j.bpg.2013.03.016.

2. Wang B, Yao M, Lv L, et al. The human microbiota in health and disease. Engineering 2017;3(1):71–82. DOI: 10.1016/j.eng.2017.01.008.

3. Walsh CJ, Guinane CM, O’Tofele PW, et al. Beneficial modulation of the gut microbiota. FEBS Lett 2014;588(22):4120–4130. DOI: 10.1016/j.febslet.2014.03.035.

4. Yang J, Woltemate S, Piazuelo MB, et al. Different gastric microbiota compositions in two human populations with high and low gastric cancer risk in Colombia. Sci Rep 2016;6(18594):18594. DOI: 10.1038/srep18594.

5. Delgado S, Cabrera-Rubio R, Mira A, et al. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb Ecol 2013;65(3):763–772. DOI: 10.1007/s00248-013-0192-5.

6. Hooi JK, Lai WY, Ng WK, et al. Global prevalence of *Helicobacter pylori* infection: systematic review and meta-analysis. Gastroenterology 2015;148(2):420–429. DOI: 10.1053/j.gastro.2014.02.022.

7. Blaser MJ, who are wet indigenous microbes and the ecology of human diseases. EMBO Rep 2006;7(10):956–960. DOI: 10.1038/sj.emboj.7400812.

8. Herrera V, Parsonnet J. *Helicobacter pylori* and gastric adenocarcinoma. Clin Microbiol Infect 2009;15(11):971–976. DOI: 10.1111/j.1469-0699.2009.03031.x.

9. Titov SE, Panasyuk GV, Ivanov MK, et al. Detection of *Helicobacter pylori* in biopsates of gastric mucosa of patients with gastritis and gastric ulcers using real-time PCR. Mol Genet Microbiol Virol 2011;26(3):126–131. DOI: 10.3103/S0894146811003074.

10. Ozbay G, Klicin U, Ceribasi S, et al. Detection of *Helicobacter pylori* from gastric biopsy samples by culture, polymerase chain reaction and histopathological methods in eastern turkey. UMCJM 2012;2:112–118.

11. Ozbay G, Dogan Y, Demiroren K, et al. Prevalence of *Helicobacter pylori* in children in eastern turkey and molecular typing of isolates. Braz J Microbiol 2015;46(2):505–511. DOI: 10.1590/S1517-83822015020432.

12. Liu J, Xue Y, Zhou L. Detection of gastritis-associated pathogens by culturing of gastric juice and mucosa. Int J Clin Exp Pathol 2012;5(4):2214–2220.

13. Gantuya B, El-Serag HB, Matsumoto T, et al. Gastric microbiota in infected patients. J Antimicrob Chemother 1999;44(5):629–640. DOI: 10.1093/jac/44.5.629.

14. Savage DC. Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol 1977;31(1):107–133. DOI: 10.1146/annurev.mi.31.100177.000543.

15. Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 2006;103(3):732–737. DOI: 10.1073/pnas.0506655103.

16. Andersson AF, Lindberg M, Jakobsson H, et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 2008;3(7):e2836. DOI: 10.1371/journal.pone.0002836.

17. Dickseyveld J, Lindberg M, Rosenquist M, et al. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol 2009;58(Pt 4):509–516. DOI: 10.1099/jmm.0.003702-0.

18. Li X-X, Wong GL-H, To K-F, et al. Bacterial microbiota profiling in gastritis without *Helicobacter pylori* infection or non-steroidal anti-inflammatory drug use. PLoS ONE 2009;4(11):e7985. DOI: 10.1371/journal.pone.0007985.

19. Khosravi Y, Seow SW, Amoyo AA, et al. Phylotypes of the stomach microbiota in patients with gastric cancer and in non-cancer controls. J Med Microbiol 2009;58(Pt 4):509–516. DOI: 10.1099/jmm.0.003702-0.
Helicobacter pylori infection. Helicobacter 2003;8(2):149–157. DOI: 10.1046/j.1523-5378.2003.00136.x.

39. Osaki T, Matsuki T, Asahara T, et al. Comparative analysis of gastric bacterial microbiota in mongolian gerbils after long-term infection with Helicobacter pylori. Microb Pathog 2012;53(1):12–18. DOI: 10.1016/j.micpath.2012.03.008.

40. Garcia-Mazcorro JF, Suchodolski JS, Jones KR. Effect of the proton pump inhibitor omeprazole on the gastrointestinal bacterial microbiota of healthy dogs. FEMS Microbiol Ecol 2012;80(3):624–636. DOI: 10.1111/j.1574-6941.2012.01331.x.

41. King GM, Judd C, Kuske CR, et al. Analysis of stomach and gut bacterial microbiota in the eastern oyster (Crassotrea virginica) from coastal Louisiana, USA. PLoS ONE 2012;7(12):e51475. DOI: 10.1371/journal.pone.0051475.

42. Husted L, Jensen TK, Olsen SN, et al. Examination of equine glandular stomach lesions for bacteria, including Helicobacter spp. by fluorescence in situ hybridisation. BMC Microbiol 2010;10(1):84. DOI: 10.1186/1471-2180-10-84.

43. Perkins GA, den Bakker HC, Burton AJ. Equine stomachs harbor an abundant and diverse mucosal microbiota. Appl Environ Microbiol 2012;78(8):2522–2532. DOI: 10.1128/AEM.06252-11.

44. Wu S, Tian J, Wang G, et al. Characterization of bacterial community in the stomach of yellow catfish (Pelteobagrus fulvidraco) World J Microbiol Biotechnol 2012;28(5):2165–2174. DOI: 10.1007/s11274-012-1022-5.

45. Lertpiriyapong K, Whary MT, Muthupalani S, et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the INS-GAS mouse model of gastric carcinogenesis. Gut 2014;63(1):54–63. DOI: 10.1136/gutjnl-2013-305178.

46. Russo F, Linsalata M, Orlando A. Probiotics against neoplastic transformation of gastric mucosa: effects on cell proliferation and polyamine metabolism. World J Gastroenterol 2014;20(37):13258–13272. DOI: 10.3748/wjg.v20.i37.13258.

47. Navabi N, Johansson ME, Raghavan S, et al. Helicobacter pylori infection impairs the mucin production rate and turnover in the murine gastric mucosa. Infect Immun 2013;81(3):829–837. DOI: 10.1128/IAI.01000-12.

48. Schmitz JM, Durham CG, Ho SB, et al. Gastric mucus alterations associated with murine Helicobacter infection. J Histochim Cytochem 2009;57(5):457–467. DOI: 10.1369/jhc.2009.952473.

49. Schmitz JM, Durham CG, Schoeb TR, et al. Helicobacter felis-associated gastric disease in microbiota-restricted mice. J Histochim Cytochem 2011;59(9):826–841. DOI: 10.1369/002155411416242.

50. Noto JM, Peek RM Jr. The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog 2017;13(10):e1006573. DOI: 10.1371/journal.ppat.1006573.

51. Lee CW, Rickman B, Rogers AB, et al. Combination of sulindac and antimicrobial eradication of Helicobacter pylori prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res 2009;69(20):8166–8174. DOI: 10.1158/0008-5472.CAN-08-3856.

52. Lundberg JO, Weitzberg E. Biology of nitrogen oxides in the gastrointestinal tract. Gut 2013;62(4):616–629. DOI: 10.1136/gutjnl-2011-301649.

53. Hsieh PS, Tai C, Chen YC, et al. Eradication of Helicobacter pylori infection by the probiotic strains Lactobacillus johnsonii MH-68 and L. salivarius ssp. salicinus AP-32. Helicobacter 2012;17(6):466–477. DOI: 10.1111/j.1523-5378.2012.00992.x.

54. Ge Z, Feng Y, Muthupalani S, et al. Coinfection with enterohemorrhagic Helicobacter species can ameliorate or promote Helicobacter pylori-induced gastric pathology in C57BL/6 mice. Infect Immun 2011;79(10):3861–3871. DOI: 10.1128/IAI.01395-08.

55. Delgado S, Leite AMO, Ruas-Madiedo P, et al. Probiotic and technological properties of gastric-derived Lactobacillus plantarum X87 in the context of Helicobacter pylori infection. Helicobacter 2014;19(2):144–155. DOI: 10.1111/hel.12105.

56. Dharmani P, De Simone C, Chadee K. The probiotic mixture VSL#3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor. PLoS ONE 2013;8(3):e58671. DOI: 10.1371/journal.pone.0058671.

57. Davoudi M, Dehghan A, Stenoien SR, et al. Probiotic and technological properties of Lactobacillus ssp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis. Front Microbiol 2015;6:766. DOI: 10.3389/fmicb.2014.00766.

58. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338(6103):120–123. DOI: 10.1126/science.1224820.

59. Whary MT, Muthupalani S, Ge Z, et al. Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect Pasteur 2014;16(4):345–355. DOI: 10.1016/j.micinf.2014.01.005.