Experimental Analysis of Mechanical Properties, Wear and Corrosion Characteristics of IS500/7 Grade Ductile Iron Casting

Mohit Kumar Agarwal, Vineet Kumar

Abstract: In the present research investigation, ductile iron castings conforming to IS500/7 grade casting were produced using green sand moulds. The castings were produced in a regular production foundry using 1.25T Induction Furnace. The molten metal was subjected to standard desulphurisation and modularisation to get graphite in the nodular form. Based on the earlier investigation by the above group the castings were austenitised at 900°C for 120 minutes and quenched in a salt bath consisting of potassium nitrate and sodium nitrate in the ratio of 55:45 and maintained at 310°C for 120 minutes to bring about austempering treatment. The result in austempered ductile iron will consist of graphite nodules in a matrix of bainite [1,2].

The effect of austempering heat treatment on microstructure, mechanical properties [13,14] and wear characteristics were studied and compared with the as-cast condition. Mechanical properties such as ultimate tensile strength, % elongation, hardness and impact strength were determined. Wear tests were carried out to determine the weight loss of specimens; using pin on disc type machine. Wear test was held for different loads viz. 300 gm, 400 gm and 500 gm and different speeds conditions viz. 950 r.p.m, 1430 r.p.m and 2130 r.p.m. Corrosion tests were carried out to determine corrosion rate at different viz. 35°C & 45°C temperature for increasing duration viz. 2 hours to 24 hours.

The results of the research investigation indicate that the heat treated castings show higher Ultimate Tensile Strength values (54.86% increase), elongation values (64.32% increase) and Brinell hardness values (19.03% increase) as compared to the as-cast condition of castings. From the dry sliding wear studies, it is seen that heat treated specimen's shows higher resistance to wear compared to the as-cast specimens and corrosion rate & weight loss due to corrosion in heat treated condition is less compared to as-cast ones.

Key Words: Austempered Ductile Iron (ADI), Corrosion, Ductile Iron (DI), Heat Treatment (HT), Wear,

I. INTRODUCTION

The Mechanical properties of ductile iron combine the properties of cast iron and steel. Iron with different microstructure can be obtained by changing the treatment conditions during melting, after treatment and also by heat treating the castings. By changing any one of the parameters, a suitable iron casting as per requirements and application can be obtained. For improving mechanical properties of the material can be heat-treated to make change in the properties of ductile iron. Commonly, austempering heat treatment is carried out on ductile iron; hence the name “Austempered Ductile Iron” or “ADI”. ADI has found its application in a wide range of components [5,6] for many engineering sectors as in gears, crank shafts, transmissions, suspensions, earth-moving and construction equipment, railways etc. Wear is an important property, which is evaluated in materials to find out its response to undergo loss of material [10,11]. It is a progressive, unintentional loss of material when two surfaces come in contact under normal load and there is relative motion between the surfaces. Wet abrasive wear test is one method for evaluating the material behaviour to wet abrasive action. Many Indian foundries are producing ductile iron on a commercial scale since a few decades [12].

However, the production of ADI in India is still in infant stages. Hence, in the present investigation ductile iron conforming to IS7500/7 grade was produced and austempered for the best conditions hence, in the present research investigation different experimentation was done for evaluation of mechanical properties, and wear properties for different loads and speed level [1,2].

II. EXPERIMENTAL DETAILS

A. Evaluation of Properties:

Standard metallographic procedures like grinding and polishing were done for microstructure examination. Standard test procedures were employed for structure examination and mechanical property assessments [3,4].

B. Impact Studies:

Impact test was carried out using standard Izod (cantilever type) and standard Charpy (simply supported) specimens and evaluation of impact on specimen in as-cast condition and heat-treated condition. It is absorbed on heat treatment, the impact values will come down appreciably [5-6].

C. Dry Sliding Wear Test:

The specimens in the form of 5 mm pins were prepared in a lathe and used as a sample for dry wear test. A hardened circular disc having hardness of 64 HRC was used as counter face. The testing was carried out [7] by allowing the specimen to rub against hardened disc for a given normal load and speed condition. Making use of pin on disc machine test was carried out. The specimens were taken out at regular intervals and the weight was recorded. The experiment was conducted for different load, speeds and different conditions of metal (as-cast or heat treated) [8,9].
D. Corrosion test:
Corrosion studies carried out using standard salt spray fog type corrosion testing apparatus conforming to ASTM standard B117 specification. The corrosion rate of the specimen was calculated using the formula.

\[
\text{Corrosion rate (mpy)} = \frac{534 \times w}{d \times a \times t}
\]

Where
\[w = \text{Weight loss in mg},\]
\[d = \text{Density of the specimen in gm/cc},\]
\[a = \text{Area in square mm},\]
\[t = \text{Exposure time in hours}.
\]

Also, weight loss method was used to assess the corrosion of the specimen[15].

III. RESULTS AND DISCUSSION
A. Mechanical Properties:
The variation of Ultimate Tensile Strength, % elongation and hardness values of the specimen are shown in Table-1. It can be seen that the UTS values, percentage elongation values and hardness values of the heat-treated specimen are higher than the as cast ones. This may be due to the formation of bainite in the heat-treated condition.

Table-1 Details of Mechanical properties under As-Cast and Heat-Treated condition.
Mechanical Properties

BHN (Hardness Values)
Impact Energy values (kg-m), Izod test
Impact Energy values(kg-m), Charpy test
UTS (N/mm2)
% Elongation
B. Impact Test:
The Izod impact results show that the impact energy decreases on heat treatment indicating that the specimen tends to become brittle. There is a decrease in energy level by nearly 29% as shown in Table-1 and figure 3. Charpy result shows that the impact energy decreases on heat treatment. But there is a tendency to show sudden drop. The decrease is as high as 71% as shown in Table-1 and figure 4 this may be attributed to the type of arrangement used for impact measurement and due to the specimen tending to become brittle.

C. Dry Sliding Wear:
The variation of loss of weight at 3 different speeds and 3 different loads were evaluated. Wear of, as cast specimen is higher than heat-treated condition for any given speed or any given normal load condition. Dry sliding wear increases with increase in time of testing. Decrease in wear for heat-treated specimen, varies from 12 to 16% with respect to as cast specimen as shown in Table 2 to Table 9 and fig. 6 to fig. 13.

Table-2 Effect of speeds on dry sliding wear at constant load 300 gm in As-Cast and Heat-Treated condition (at the end of 20 minutes).

Speed in rpm	Condition-Wear	Ascast, wear (in mm)	Heat Treated, Wear (in mm)
950		0.12	0.1
1430		0.15	0.13
2130		0.18	0.15

Table-4 Effect of speeds on dry sliding wear at constant load 500 gm in As-Cast and Heat-Treated condition (at the end of 20 minutes).

Speed in rpm	Condition-Wear	Ascast, wear (in mm)	Heat Treated, Wear (in mm)
950		0.29	0.26
1430		0.33	0.29
2130		0.38	0.35

Table-5 Wear of As-Cast and Heat-Treated specimens for different loads and speeds

Load (in gms)	Speed (in rpm)	Condition-Wear	Ascast, wear (in mm)	Heat Treated, Wear (in mm)
	950		0.12	0.1
300	1430		0.15	0.13
	2130		0.18	0.15
400	950		0.18	0.15
	1430		0.24	0.2
	2130		0.3	0.28
500	950		0.29	0.26
	1430		0.33	0.29
	2130		0.38	0.35
Experimental Analysis of Mechanical Properties, Wear and Corrosion Characteristics of IS500/7 Grade Ductile Iron Casting

Table-6 Effect of loads on dry sliding wear at constant speed 950 r.p.m in As-Cast and Heat – Treated condition (at the end of 20 minutes).

Loads in gm	Condition-Wear	Wear (in mm)
	Ascast, wear (in mm)	Heat Treated, Wear (in mm)
300	0.31	0.27
400	0.35	0.32
500	0.37	0.34

Table-7 Effect of loads on dry sliding wear at constant speed 1430 r.p.m in As-Cast and Heat – Treated condition (at the end of 20 minutes).

Loads in gm	Condition-Wear	Wear (in mm)
	Ascast, wear (in mm)	Heat Treated, Wear (in mm)
300	0.32	0.28
400	0.37	0.33
500	0.4	0.37

Table-8 Effect of loads on dry sliding wear at constant speed 2130 r.p.m in As-Cast and Heat – Treated condition (at the end of 20 minutes).

Loads in gm	Condition-Wear	Wear (in mm)
	Ascast, wear (in mm)	Heat Treated, Wear (in mm)
300	0.37	0.34
400	0.41	0.37
500	0.44	0.4
D. Corrosion:

The variation of corrosion rate and variation of loss of weight at different temperatures conditions (i.e. 35°C & 45°C) for duration of 2 hours and 124 hours respectively were evaluated. Corrosion rate is higher for ascast specimen as compared to heat treated specimen.

Corrosion rate and weight loss of, ascast specimen is higher than heat-treated condition for any given temperature and duration. Corrosion rate decreases with increase in time of testing. Decrease in corrosion for heat-treated specimen, varies from 12.5 to 33.33% at temperature 35°C and 12.36 to 26.41% at temperature 45°C respect to ascast specimen for duration 2 hours to 24 hours as shown in Table 10, 12, 14, 15 and Figure 14, 16, 18, 19.

Weight loss decreases with increase in time of testing. Decrease in weight loss due to corrosion for heat-treated specimen varies from 16.66 to 42.50% at temperature 35°C and 3.86 to 31.14% at temperature 45°C respect to ascast specimen for duration of 2 hours to 24 hours as shown in Table 11, 13, 16, 17 and Figure 15, 17, 20, 21.

Table-10 Corrosion rate (in mpy) in ascast and Heat Treated condition at 35°C

Condition	Corrosion rate (in mpy) - Time in hours	Corrosion rate at the end of 2 hours	Corrosion rate at the end of 24 hours
As cast		200	60
Heat treated		175	40

Table-11 Weight loss (in mg) due to corrosion in ascast and Heat Treated condition at 35°C

Condition	Weight Loss (in mg) - Time in hours	Weight Loss at the end of 2 hours	Weight Loss at the end of 24 hours
As cast		0.24	0.8
Heat treated		0.2	0.46
Experimental Analysis of Mechanical Properties, Wear and Corrosion Characteristics of IS500/7 Grade Ductile Iron Casting

Table 14: Corrosion rate at a temperature 35°C and 45°C in as cast and heat treated condition for 2 hours duration

Condition	Temperature in Degree Centigrade-Corrosion Rate (in mpy)	
	At a Temperature 35°C	At a Temperature 45°C
As cast	200	542
Heat Treated	175	475

Table 15: Corrosion rate at a temperature 35°C and 45°C in ascast and heat treated condition for 24 hours duration

Condition	Temperature in Degree Centigrade-Corrosion Rate (in mpy)	
	At a Temperature 35°C	At a Temperature 45°C
As cast	60	265
Heat Treated	40	195

Table 16: Weight loss at a temperature 35°C and 45°C in as cast and heat treated condition for 2 hours duration

Condition	Temperature in Degree Centigrade-Weight loss (in mg)	
	At a Temperature 35°C	At a Temperature 45°C
As cast	0.24	0.52
Heat Treated	0.2	0.5

Table 17: Weight loss at a temperature 35°C and 45°C in as cast and heat treated condition for 24 hours duration

Condition	Temperature in Degree Centigrade-Weight loss (in mg)	
	At a Temperature 35°C	At a Temperature 45°C
As cast	0.8	3.5
Heat Treated	0.46	2.41
IV CONCLUSIONS

The result of present investigation was held on ascast and heat treated ductile iron specimens shown below:

1. Mechanical properties in heat treated condition such as Ultimate Tensile Strength (54.36% increase), % elongation (64.32% increase) and Brinell hardness values (19.03% increase) as compared to the ascast condition in present research investigation.

2. Impact test (Izod and Charpy) shows that impact energy decreases on heat-treating of the specimen as compared to as cast ones in present research investigation.

3. Dry sliding wear found less in heat treated condition as compared to as cast condition in present research investigation.

4. Corrosion rate and weight loss shows that on heat treating the specimen is less as compared to as cast specimen in both temperature conditions.

Hence, from above it has been noted that by heat treating the ductile iron castings provides better mechanical properties, wears and corrosion characteristics.

REFERENCES

1. N. D. Prasanna, March, Effect of processes variables on the structure of mechanical properties and wear characteristics of Austempered Ductile Iron, Ph.D thesis, submitted to Bangalore University, 2000.

2. R. Grundy, July, The development and introduction of spheroidal graphite irons into an established range of malleable irons to meet current engineering requirements, Transactions of Foundrymen, Vol.72, Part-7, 1979, p.141-151.

3. Shakhir K.A, Ahamed Aashraf, Vijay Kumar, “Analysis of Tensile strength and Hardness of IS 500/7 Ductile Iron Subjected to Austempering Heat treatment”,International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 5, May 2015.

4. TFH Mohamed, SS Abd El Rehim, “Improving the Corrosion Behavior of Ductile Cast Iron in Sulphuric Acid by Heat Treatment”;Pelaigia Research Library Der Chemaica Sinica, 8(6), 2017,p513-523.

5. Olasupo Ogundare, Babaniyi Babatope, “Atmospheric Corrosion Studies of Ductile Iron and Austenitic Stainless Steel in an Extreme Marine Environment”,Journal of Minerals and Materials Characterization and Engineering, 914-918 Published Online, September 2012 [http://www.SciRP.org/journal/mmcg).

6. Shuai Han, Qingmin Li, “Electrical and Mechanical Properties of the Oil- paper Insulation under Stress of the Hot Spot Temperature”, IEEE Transactions on Dielectrics and Electrical Insulation Vol. 21, No. 1, February 2014.

7. V. D. Shinde, B. Ravi and K. Narasimhan,“Solidification behaviour and mechanical properties of ductile iron castings with varying thickness”,International Journal of Cast Metals Research icj1158.3d 8/612 12-56:27.

8. C. Labrecque, M. Gagné, “Optimizing the Mechanical Properties of Thin-Wall Ductile Iron Castings”,AFS Transactions 2005 © American Foundry Society, Schaumburg, IL USA, 2005.

9. Mohit Kumar Agrawal, Dr.Vineet Kumar “A REVIEW OF AUSTEMPERED DUCTILE IRON, MECHANICAL PROPERTIES, WEAR AND CORROSION CHARACTERISTICS” 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-516).

10. HaMiD PourAsiabi, and Hamed PourAsiabi"MICROSTRUCTURE AND TRIBOLOGICAL BEHA VIOUR OF AUSFERRITIC MN-NI-CU-MO ALLOYED DUCTILE IRON",International Iron & Steel Symposium, 02-04 April 2012, Karabük,Türkiye.

11. Sidduraju C, Dr. N. D. Prasanna and Dr. M. K. Muralidhara, Abrasive wear studies on austempered ductile iron castings, International Journal of Emerging Technology and Advanced Engineering, Vol 03, Issue 06, June 2013, pp124-130.

12. Mohammad BabaZadesh, HaMiD PourAsiabi and Hamed Pour asiabi, Wear characteristics of ADI; A comprehensive review on mechanisms and effective parameters, Journal of Basic and Applied Scientific Research, Vol 03, Issue 02, 2013,pp 646-656.

13. Yogesh K. B and Joel Hemanth, Mechanical properties of metallic and non-metallic chilled austempered ductile iron, International Journal of Advanced Engineering Research and Studies, Vol.1, Issue IL March 2012, pp240-243.

14. Amar Kumar Das, Ranjit Kumar Panda, Jyoti Prakash Dhal, Subash Chandra Mishra and Sudipta Sen, Variation of mechanical properties of austempered ductile iron with processing parameters, International Journal of Current Research, Vol.4, Issue, 08,August 2012, pp.012-016.

15. Ukoba, O. K and Ibegbulam, M. C, Corrosion behaviour of ductile iron in different environment, International Journal of Science and Technology, Vol 02, No. 09, Sept 2012, pp618-621.

AUTHORS PROFILE

Mr. Mohit Kumar Agrawal (B.E, M.Tech. in ME), currently doing Ph.D in Mechanical Engg. Deptt. from UIET, MDU, Rohtak under the supervision of Dr. Vineet Kumar, Professor in Mechanical Engineering Department, UIET, MDU, Rohtak, also working as a Associate Professor in Mechanical engg. deptt. VCE, Rohtak. He published 07 papers in International/National Journals and Conferences and also attended several workshops and FDPs. He is also working as Nodal officer AISHE (All India Survey on Higher Education, MHHRD), also incharge of CM Grievence portal for college, worked as ISO Coordinator, time table incharge & working as admission Coordinator at VCE, Rohtak.

Dr. Vineet Kumar (Ph.D in ME), Current Academic Position, Dean (Faculty of Engineering & Technology, MDU, Rohtak) , Professor, Mechanical, UIET, MDU, Rohtak.

Also worked as Principal, Dean, Professor and other faculty position in engineering colleges. He published about 50 papers indifferernt International/National Journals and Conferences. Guided number of MTech. & Ph.D scholars and currently guiding PhD scholars. He was awarded university Merit Scholarship and Awarded with National Merit Scholarship in 10+2. He is also Principal Coordinator of AICTE funded projects. Also conducted and participated in several AICTE or sponsored conference/Sesshon chair. Also worked as Head of Mechanical Engg. Deptt., worked as Chief Coordinator of ISO.