THE TOPOLOGY OF LARGE-SCALE STRUCTURE IN THE 1.2 Jy IRAS REDSHIFT SURVEY

ZACHARIAS A. M. PROTOGEROS
Department of Physics, Ohio State University, Columbus, OH 43210; zack@ohstpy.mps.ohio-state.edu

AND

DAVID H. WEINBERG
Department of Astronomy, Ohio State University, Columbus, OH 43210; dhw@payne.mps.ohio-state.edu

Received 1997 January 21; accepted 1997 June 20

ABSTRACT

We measure the topology (genus) of isodensity contour surfaces in volume-limited subsets of the 1.2 Jy IRAS redshift survey, for smoothing scales \(\lambda = 4, 7, \) and \(12 \, h^{-1} \text{ Mpc} \). At \(12 \, h^{-1} \text{ Mpc} \), the observed genus curve has a symmetric form similar to that predicted for a Gaussian random field. At the shorter smoothing lengths, the observed genus curve shows a modest shift in the direction of an isolated cluster or "meatball" topology. We use mock catalogs drawn from cosmological N-body simulations to investigate the systematic biases that affect topology measurements in samples of this size and to determine the full covariance matrix of the expected random errors. We incorporate the error correlations into our evaluations of theoretical models, obtaining both frequentist assessments of absolute goodness of fit and Bayesian assessments of models' relative likelihoods. We compare the observed topology of the 1.2 Jy survey to the predictions of dynamically evolved, unbiased, gravitational instability models that have Gaussian initial conditions. The model with an \(n = -1 \) power-law initial power spectrum achieves the best overall agreement with the data, though models with a low-density cold dark matter power spectrum and an \(n = 0 \) power-law spectrum are also consistent. The observed topology is inconsistent with an initially Gaussian model that has \(n = -2 \), and it is strongly inconsistent with a Voronoi foam model, which has a non-Gaussian, bubble topology.

Subject headings: galaxies: clusters: general — galaxies: distances and redshifts — large-scale structure of universe — surveys

1. INTRODUCTION

According to the most popular theories of structure formation, the observed distribution of galaxies—a complex network of clusters, superclusters, tunnels, and voids—developed by gravitational instability from Gaussian primordial fluctuations. Two different and complementary approaches have been followed to test the Gaussian hypothesis. The first uses the probability distribution function (PDF) or its moments (skewness, kurtosis, etc.); observed results are compared with predictions for a gravitationally evolved Gaussian field, which are computed either by numerical simulations or by various approximation schemes (e.g., Fry 1984; Bernardeau 1992; Juszkiewicz, Bouchet, & Colombi 1993; Juszkiewicz et al. 1995; Bernardeau & Kofman 1995; Protogeros & Scherrer 1997). The second approach uses topological characteristics of the galaxy density field, quantified by percolation analysis (Shandarin & Zeldovich 1983; Yess, Shandarin, & Fisher 1997) or by the genus of isodensity contours (Gott, Melott, & Dickinson 1986, hereafter GMD; Gott, Weinberg, & Melott 1987, hereafter GWM; for a review, see Melott 1990). The genus measure also yields constraints on the index of the primordial power spectrum by quantifying the "corruption" of structure in the smoothed density field. In this paper, we apply the genus method to one of the largest complete galaxy redshift surveys, the 1.2 Jy IRAS redshift survey (Fisher et al. 1995). We make extensive use of mock catalogs drawn from cosmological N-body simulations to estimate systematic and random errors and to evaluate the viability of models. Our statistical methodology should also be useful for topological analyses of future, larger redshift surveys.

Our basic approach follows that of GMD, GWM, and Gott et al. (1989). From the galaxy distribution, we create a density field by convolving with a Gaussian window,

\[
W(r) = \frac{1}{(2\pi)^{3/2}} \lambda^3 e^{-r^2/2\lambda^2}.
\]

(Note that our definition of the smoothing length, \(\lambda \), based on the conventional form of a Gaussian window, differs by a factor of \(\sqrt{2} \) from that used in the papers of Gott et al.) We then construct isodensity contours at a variety of threshold levels and measure the genus of each. Applying the Gauss-Bonnet theorem, GMD defined the genus \(G_s \) through the integrated Gaussian curvature,

\[
G_s \equiv -\frac{1}{4\pi} \int_S K \, dA,
\]

with \(K \equiv 1/(a_1 a_2) \), where \(a_1 \) and \(a_2 \) are the principal radii of curvature. Equation (2) differs slightly from the standard mathematical definition of the genus, but it is useful for cosmological purposes because it can be applied to a contour that runs into the boundary of a finite survey and it defines a quantity that is, statistically, proportional to volume. For a compact surface, \(1 + G_s \) is the number of handles or holes (in the sense of doughnut holes), while a surface broken into \(n \) disjoint, simply connected pieces (e.g., \(n \) spheres) has \(G_s = -n \). We measure \(G_s \) with the program CONTOUR (Weinberg 1988), based on the algorithm of
GMD (see Coles, Davies, & Pearson 1996 for an alternative method of computing the genus).

For a Gaussian random field, the mean genus per unit volume is

$$g_s = A(1 - v^2)e^{-v^2/2},$$

where v is the threshold density of the contour in units of the standard deviation (Doroshkevich 1970; Adler 1981; Bardeen et al. 1986; Hamilton, Gott, & Weinberg 1986). Positive and negative fluctuations are statistically interchangeable in a Gaussian field, so the $v = 0$ contour has a spongeliike topology (positive G_s), in which the high- and low-density regions are both multiply connected and mutually interlocking. At high or low v, the genus becomes negative as a typical contour breaks into separate bags around isolated clusters or voids, but the dependence is symmetric about $v = 0$. The normalization constant A depends on the second moment of the power spectrum. For a field with a power-law spectrum $P(k) \propto k^n$ smoothed with the Gaussian filter of equation (1), it is

$$A = \frac{1}{4\pi^2 \lambda^2} \left(\frac{3 + n}{6} \right)^{3/2}.$$

A field with more small-scale power (higher n) has choppier, more corrugated structure and, hence, a higher genus per unit volume for a given smoothing length. Since the smoothing length provides the only characteristic length scale in a Gaussian field with a power-law spectrum, the mean genus per unit volume necessarily scales as λ^{-3} for fixed n.

Linear evolution preserves the Gaussian character of the initial density field. Nonlinear evolution does not, but the effects of nonlinear evolution on the genus curve are modest if the smoothing length is greater than or equal to the correlation length and if one characterizes contours by the fractional volume that they enclose rather than the density level per se (GWM; Weinberg, Gott, & Melott 1987). Volume weighting also makes the genus curve insensitive to "biased" galaxy formation, since even nonlinear bias tends to maintain a monotonic relation between galaxy density and mass density. The information "lost" by volume weighting is precisely that contained in the PDF, so with this approach the genus curve and PDF at a given smoothing scale provide independent and complementary information about the density field. For convenience, we characterize a contour that encloses fractional volume f (in the region above the threshold density) by the value of v for a corresponding contour in a Gaussian field, defined through the implicit equation

$$f = \frac{1}{\sqrt{2\pi} v} \int_v^{\infty} e^{-x^2/2} dx.$$

With this definition, equation (3) continues to hold for a Gaussian field, and it remains a good first approximation as the field evolves into the nonlinear regime (Melott, Weinberg, & Gott 1988; Park & Gott 1991). Using second-order perturbation theory, Matsubara (1994) and Matsubara & Suto (1996) have shown that even weakly nonlinear evolution distorts the shape of the genus curve if it is plotted as a function of density contrast rather than fractional volume or equivalent v.

The genus statistic has been applied previously to six different redshift surveys of optically selected galaxies (Gott et al. 1989; Park, Gott, & da Costa 1992a; Vokeley et al. 1994), and to the QDOT survey, a one-in-six subset of IRAS galaxies with 60μm flux density brighter than 0.6 Jy (Moore et al. 1992). It has also been applied to redshift surveys of Abell clusters (Gott et al. 1989; Rhoads, Gott, & Postman 1994), and its two-dimensional analog has been applied to redshift slices (Park et al. 1992b; Colley 1997), to projected galaxy and cluster catalogs (Coles & Plionis 1991; Plionis, Valdardini, & Coles 1992; Gott et al. 1992), and to COBE maps of cosmic microwave background fluctuations (Smooy et al. 1994; Colley, Gott, & Park 1996; Kogut et al. 1996).

The 1.2 Jy IRAS survey contains 5321 galaxies and covers all of the sky except for the Galactic plane (Galactic latitude $|b| < 5\degree$) and a number of small, isolated patches at high Galactic latitude, covering about 4% of the sky in total. For our analysis, we use a catalog provided by M. A. Strauss in which these high-latitude regions have been filled with randomly placed galaxies. Observational details of the survey are described by Strauss et al. (1992) and Fisher et al. (1995). The survey has been the basis for many statistical investigations of large-scale structure, including the power spectrum (Fisher et al. 1993; Cole, Fisher, & Weinberg 1995), the two-point correlation function (Fisher et al. 1994a, 1994b), and moments of the counts-in-cells distribution (Bouchet et al. 1993). It has also been used in comparisons between predicted and observed peculiar velocity fields (e.g., Davis, Nusser, & Willick 1996).

For topological analysis, we use volume-limited subsets of the redshift survey, so that the physical properties of the tracer galaxies and the effects of shot noise are uniform throughout the survey volume. A volume-limited sample consists of those galaxies within distance R_{max} that are luminous enough that they would still exceed the survey flux limit if they were at distance R_{max}. The number of galaxies in a volume-limited sample first increases with R_{max} as the survey volume grows, then declines at large R_{max} as the fraction of galaxies luminous enough to be seen at the sample edge begins to decline rapidly. For the 1.2 Jy survey, the size of a volume-limited sample peaks at ~ 1100 galaxies for $R_{\text{max}} \approx 60$ h$^{-1}$ Mpc.1 We infer a galaxy’s distance from its redshift referred to the frame of the Local Group.

The smoothing length must be large enough to suppress shot noise fluctuations in the density field, but, at fixed R_{max}, increasing the smoothing length reduces the number of independent resolution elements in the survey volume. Following the rule of thumb suggested by Weinberg et al. (1987) and used in subsequent observational analyses, we adopt a smoothing length $\lambda \approx d/\sqrt{2}$, where $d = \eta_g \lambda^{-1/3}$ is the mean intergalaxy separation. (The factor of $\sqrt{2}$ does not appear in the earlier papers because of their different Gaussian filter definition.) We discuss this choice further in § 3 below. The number of resolution elements in the smoothed density field, i.e., the ratio of the survey volume to the smoothing volume, is

$$N_{\text{res}} = \frac{\omega_g R_{\text{max}}^3}{3} \frac{1}{(2\pi)^{3/2} \lambda^3},$$

where $\omega_g = 4\pi(1 - \sin(\pi/36))$ sr is the solid angle of the 1.2 Jy survey.

Figure 1 plots the mean separation \bar{d} and the number of resolution elements N_{res}, computed from equation (6) and

1 We take $h = H_0/(100 \text{ km s}^{-1} \text{ Mpc}^{-1})$.
assuming $\lambda = \bar{d}/\sqrt{2}$, as a function of the sample depth R_{max}. The number of resolution elements (which is proportional to the number of galaxies in the volume-limited sample) peaks at ~ 170 for $R_{\text{max}} = 60 \ h^{-1} \text{ Mpc}$, where the mean separation is $\bar{d} = 9.5 \ h^{-1} \text{ Mpc}$. In this sense, the $R_{\text{max}} = 60 \ h^{-1} \text{ Mpc}$ sample is the optimal volume-limited subset that we can construct for topological analysis, and we focus our greatest attention on this sample. The corresponding smoothing scale is $\lambda \approx 7 \ h^{-1} \text{ Mpc}$. Since the dependence of topology on smoothing scale is itself interesting, we also analyze samples with $R_{\text{max}} = 30$ and $100 \ h^{-1} \text{ Mpc}$, using smoothing scales $\lambda = 4$ and $12 \ h^{-1} \text{ Mpc}$, respectively.

In the next section, we describe our procedure for creating mock catalogs designed to mimic the 1.2 Jy redshift survey. In § 3, we use these mock catalogs to study the systematic distortions in the genus curve that arise from shot noise, the finite size of the survey volume, and peculiar velocities. In § 4, we use the mock catalogs to examine the magnitude and covariance of random errors in the genus curves of the 1.2 Jy subsamples and we outline a statistical methodology for comparing observed and predicted genus curves. In § 5, we present results for the 1.2 Jy survey and compare them with theoretical predictions. We summarize our conclusions in § 6.

2. CONSTRUCTION OF MOCK CATALOGS

In order to assess uncertainties in our observational analysis and generate theoretical predictions for comparison with the data, we want realistic mock catalogs that will be subject to the same systematic effects as the 1.2 Jy survey. For our primary set of mock catalogs, we use the same N-body simulations as Cole et al. (1995). These simulations have Gaussian initial conditions with the $\Gamma = 0.25$ power spectrum of Efstathiou, Bond, & White (1992), which produces large-scale clustering consistent with recent studies of IRAS galaxies. The linear-theory power spectrum is normalized to an rms fluctuation $\sigma_g = 0.8$ in spheres of radius $8 \ h^{-1} \text{ Mpc}$ at $z = 0$, and the density parameter is $\Omega_0 = 0.3$ (with no cosmological constant). There are four independent realizations, each of a periodic box of size $L_{\text{box}} = 400 \ h^{-1} \text{ Mpc}$. The simulations use a staggered particle-mesh code written by Park (1991) to evolve a density field represented by 200^3 particles, with a 400^3 mesh for force computations. The simulations begin at a redshift of 24 and evolve to the present in 48 equal steps, using the expansion factor a as the time variable for integration. The large time steps are adequate because of the rather low ($\sim 1-2 \ h^{-1} \text{ Mpc}$) force resolution of the computations. Because we are interested in properties of the galaxy density field smoothed over several $h^{-1} \text{ Mpc}$, this force resolution is more than sufficient for our purposes.

To create a mock catalog from the simulation, we first select a random particle to represent the "observer." The Local Group is known to be in a region where shear and dispersion in the peculiar velocity field are fairly low. We therefore reject observer particles if the three-dimensional peculiar velocity dispersion within a surrounding sphere of radius $5 \ h^{-1} \text{ Mpc}$ exceeds $200 \ \text{km s}^{-1}$, thus avoiding observers in rich clusters and other regions where peculiar velocity distortions would be radically different from those affecting samples centered on the Local Group. Given an observer that passes this velocity dispersion cut, we select particles in a surrounding sphere of radius R_{max}. We compute redshift-space positions $r = H_0(v - v_o) \cdot \hat{r}$, where v is the particle velocity (including Hubble flow relative to the observer) and v_o is the average velocity of all particles within $1 \ h^{-1} \text{ Mpc}$ of the observer, thus mimicking the procedure of referring galaxy redshifts to the Local Group frame. We randomly sample the particle distribution within the sphere to obtain a mean interparticle separation equal to that of the corresponding IRAS sample: $\bar{d} = 9.5 \ h^{-1} \text{ Mpc}$ for $R_{\text{max}} = 60 \ h^{-1} \text{ Mpc}$, $\bar{d} = 5.5 \ h^{-1} \text{ Mpc}$ for $R_{\text{max}} = 30 \ h^{-1} \text{ Mpc}$, and $\bar{d} = 17.0 \ h^{-1} \text{ Mpc}$ for $R_{\text{max}} = 100 \ h^{-1} \text{ Mpc}$. Finally, we eliminate particles in a 10° wedge to represent the Galactic plane cut in the 1.2 Jy survey. We create 512 mock catalogs for each value of R_{max}, drawing 128 from each of the four simulations. The ratio of the volume of an individual simulation to the volume of an individual mock catalog is $77(60 \ h^{-1} \text{ Mpc}/R_{\text{max}})^3$, so in general these 128 mock catalogs are largely but not completely independent.

The $\Gamma = 0.25$ power spectrum has the shape predicted for a cold dark matter (CDM) model with scale-invariant primordial fluctuations, $\Omega_0 = 0.3$, and a Hubble constant $h = 0.8$ (Efstathiou et al. 1992). We therefore refer to these simulations below as the CDM simulations. In order to test Gaussian models with other initial power spectra, we also construct mock catalogs from simulations with initial spectra $P(k) \propto k^n$ with $n = 0, -1, \text{ and } -2$. We again assume $\Omega_0 = 0.3$, normalize the linear power spectra to $\sigma_g = 0.8$, and run four realizations of each model. The numerical parameters of these simulations are similar to those of the CDM simulations, except that they use 1503 particles, a 300^3 mesh, and a cube of size $300 \ h^{-1} \text{ Mpc}$. In all our models, we choose a random subset of N-body particles to represent galaxies, thus implicitly assuming that galaxies are unbiased tracers of the mass. IRAS-selected galaxies generally correspond to late-type optical galaxies (see, e.g., Babul & Postman 1990), and they are underrepresented in the cores of rich galaxy clusters. We have not attempted to incorporate this effect in our mock catalogs, but the use of fractional volume weighting to define contours makes the topology results insensitive to the details of the relation between galaxies and mass (see eq. [5] and the accompanying discussion).

3. SYSTEMATIC EFFECTS

When measuring the genus curve of a mock catalog or of a volume-limited subset of the 1.2 Jy survey, we first compute the galaxy density field on a cubic mesh, using cloud-in-cell binning. We convert this density field ρ_g to a

![Fig. 1.—Mean separation \bar{d} (solid line; left axis scale) and number of resolution elements N_{res} (dotted line; right axis scale) for volume-limited samples of depth R_{max}. Distances are in $h^{-1} \text{ Mpc}$.](image)
density contrast field \(\delta = (n_g - \bar{n}_g)/\bar{n}_g \), with \(\bar{n}_g = N/V \), the mean galaxy density of the sample. We set \(\delta = 0 \) in all mesh cells outside the sample volume, i.e., with \(R > R_{\text{max}} \) or within 5° of the Galactic plane. We also create a “mask” array that is 1.0 for all cells within the sample volume and 0.0 for all exterior cells. We smooth the galaxy density contrast field by convolving it with the Gaussian window function (eq. [1]). At each cell, we want the convolution to cover only that portion of the smoothing window that lies within the sample volume. Technically, we accomplish this objective by smoothing both the density contrast array and the mask array with a fast Fourier transform convolution, then dividing the smoothed density contrast by the smoothed mask. Since \(\delta = 0 \) outside the sample boundary, the exterior regions do not contribute to the convolved density contrast, and dividing by the smoothed mask provides the necessary volume normalization. This is the smoothing procedure advocated by Melott & Dominik (1993), who tested a variety of schemes for defining smoothed density fields from finite samples.

When we apply CONTOUR to measure the topology of isodensity surfaces in this smoothed field, we sum the Gaussian curvature only over those vertices whose surrounding cells all lie within the sample volume (Weinberg 1988; Gott et al. 1989). We compute the genus at 19 values of \(v \), ranging from \(-2.5\) to \(2.5\), with \(v \) defined in terms of the contour’s enclosed fractional volume by equation (5). In order to reduce noise in the genus curve, we set \(G_j(v) \) equal to the mean of the five genus values measured at \(v - 0.05 \), \(v - 0.025 \), \(v \), \(v + 0.025 \), and \(v + 0.05 \); this is similar to the boxcar local smoothing used by Vogeley et al. (1994).

If we could measure the topology of the galaxy distribution from perfect data in very large volumes, then the genus curve \(g_j(v) \) where \(g_j \equiv G_j/V \) is the genus per unit volume, would approach a global average that would be independent of the details of the data sample. The genus curve measured in a limited volume will differ from this global mean genus curve in part because of random statistical fluctuations, which would average to zero in the analysis of many independent, equivalent samples of the same size. However, there are also effects that cause the genus curves measured from finite galaxy redshift samples to differ systematically from the true global mean. The first is discreteness error, which arises because our input galaxy distribution is a series of Dirac delta functions rather than a continuous field. Our adopted smoothing criterion, \(\lambda \approx d/\sqrt{2} \), ensures enough smoothing to suppress strong discreteness distortion (Weinberg et al. 1987), but the topology of the smoothed density field may still differ from what would be obtained by starting from a more densely sampled galaxy distribution, with \(d \ll \lambda/2 \). A second class of systematic error arises from the finite volume itself. Contours run into the sample boundary, so some of the holes or isolated pieces of the contour are not fully contained within the sample. The CONTOUR algorithm can count “fractional holes” because it sums the Gaussian curvature \(K \) only over vertices contained within the sample, but the values of \(K \) along the boundary are correlated, and there can be systematic biases whenever the summed curvature along the boundary is a significant fraction of the summed curvature in the interior. Another finite-volume error arises because we plot \(g_j \) against \(v \) defined by equation (5) using the fractional volume \(f \) enclosed by the contour within the survey region. In general this is not the same as the global value of \(f \) at the same threshold density, though it should be close if the survey volume is large enough to be statistically representative. A third systematic error arises because we set the density contrast outside the sample region to zero before smoothing instead of to the true (but unknown) density contrast, so that cells within 1 or 2 smoothing lengths of the boundary do not have the correct smoothed density value. Finally, peculiar velocities can distort the genus curve because we compute galaxy positions from redshifts rather than true distances. Melott et al. (1988) used numerical simulations to argue that peculiar velocity effects are small, and Matsubara (1996) has demonstrated this point analytically by using linear perturbation theory.

We will compare our observational results for the 1.2 Jy data with theoretical predictions based on mock catalogs that are analyzed in the same fashion as the data. This approach allows a fair test of theoretical models regardless of the systematic effects, but it is nonetheless valuable to know just how these influence the observed genus curve. We can judge this by comparing the average mock catalog results to those obtained from the full, periodic, densely sampled simulation cubes, which constitute effectively perfect data.

Figure 2 illustrates this comparison for the \(R_{\text{max}} = 60 \ h^{-1} \) Mpc data sample using the low-\(\Omega \) CDM simulations described in § 2, which have a power spectrum similar to that observed for IRAS galaxies (Fisher et al. 1993). The solid lines show the genus curves measured from the full, densely sampled simulation cubes, with \(\lambda = 7 \ h^{-1} \) Mpc (left) and \(\lambda = 9 \ h^{-1} \) Mpc (right). We average results from the four 400 \(h^{-1} \) Mpc cubes, and we plot \(4\pi \lambda^3 g_j \), where \(g_j \) is the genus per unit volume, so that the expected amplitude of the curve is of order unity and independent of the simulation volume itself (see eqs. [3] and [4]). These curves, free of systematic errors, are labeled “E_0.” The dotted curves are measured from the full, periodic cubes after the galaxy distribution is randomly sampled to the mean density of the 1.2 Jy, \(R_{\text{max}} = 60 \ h^{-1} \) Mpc sample, \(\bar{n}_g = 1.17 \times 10^{-3} \ h^3 \) Mpc\(^{-3} \). These curves, labeled “E_1,” contain discreteness error but no other systematic biases. Comparing with the solid curves, we see that discreteness raises the amplitude of the genus curve and shifts it to the left, but with \(\lambda = 7 \) or 9 \(h^{-1} \) Mpc the impact is small. Next we take the smoothed field created from the sampled particle distribution in the periodic cubes, but we measure the topology in volumes that have the size and geometry of the 1.2 Jy sample, i.e., 60 \(h^{-1} \) Mpc spheres with 10° wedges removed. Averaging over 512 such volumes, we obtain the dashed curves in Figure 2, labeled “E_1 + E_2,” because they include both discreteness error and finite-volume effects. The latter amplify the genus curve substantially at all values of \(v \). However, when we smooth using only the sample volume itself, i.e., carry out our full observational procedure but on mock catalogs that use true distances instead of redshifts, we obtain the long-dashed curves “E_1 + E_2 + E_3,” which are much closer to the true genus curves E_0. It thus appears that the finite-volume and boundary-smoothing errors largely cancel each other. Finally, the dot-dashed curve, labeled “E_{total},” shows the average genus curve measured from the 512 mock catalogs in redshift space. It is similar to E_1 + E_2 + E_3, indicating, as expected from earlier studies, that peculiar velocities have little effect on the genus curve.

As we shall soon see, the difference between curves E_0 and E_{total} in Figure 2 is small compared with the random
FIG. 2.—Influence of systematic biases on the measured genus curve, for smoothing lengths $\lambda = 7 \, h^{-1} \, \text{Mpc}$ (left) and $\lambda = 9 \, h^{-1} \, \text{Mpc}$ (right) and sample geometry and mean galaxy density equivalent to those of the $R_{\text{max}} = 60 \, h^{-1} \, \text{Mpc}$ volume-limited subset of the 1.2 Jy survey. Solid lines show genus curves measured from the effectively “perfect” theoretical data provided by our four CDM simulations, each of which is a densely sampled, 400 $h^{-1} \, \text{Mpc}$, periodic cube. Dotted, short-dashed, long-dashed, and dot-dashed curves incorporate, successively, discreteness effects, finite-volume effects, boundary-smoothing effects, and peculiar velocity effects, as discussed in the text.

statistical fluctuations expected in a single volume the size of our 1.2 Jy sample. In this sense, the cumulative effect of the systematic errors that we have described is small, though it is disconcerting to see that this small cumulative impact reflects a cancellation between two types of errors (finite volume and boundary smoothing) that appear to be quite substantial individually. After a number of tests, we remain somewhat puzzled about the nature of the finite-volume effect and the reason for its cancellation by the boundary-smoothing effect. The systematic amplification of the genus curve in a finite volume occurs for cubical masks and spherical masks, as well as for our IRAS masks (spheres with missing wedges), and it occurs for Gaussian random fields as well as for N-body models. It gradually disappears as the survey volume becomes large (compared with the smoothing volume), presumably because “fractional” holes then make a small contribution to a contour’s total genus. Note that the difference between locally and globally defined values of ν (e.g., the fact that $\nu = 0$ corresponds to the median density within the sample instead of the true median density) can alter the shape of the genus curve but cannot produce an overall amplification, so it is not responsible for the effect seen here.

The systematic biases illustrated in Figure 2 are not significantly larger for $\lambda = 7 \, h^{-1} \, \text{Mpc}$ than for $\lambda = 9 \, h^{-1} \, \text{Mpc}$. Even though the larger smoothing length suppresses discreteness more effectively, it leads to larger finite-volume effects because the number of independent structures within a sample volume is smaller. The random statistical fluctuations should be smaller with $\lambda = 7 \, h^{-1} \, \text{Mpc}$ for the same reason, so we adopt this smoothing length for the 1.2 Jy, $R_{\text{max}} = 60 \, h^{-1} \, \text{Mpc}$ sample. With a much smaller smoothing length, discreteness effects would become excessive. We have carried out analysis similar to that in Figure 2 for our $R_{\text{max}} = 30 \, h^{-1} \, \text{Mpc}$ and $R_{\text{max}} = 100 \, h^{-1} \, \text{Mpc}$ samples, with $\lambda \approx d/\sqrt{2} = 4$ and $12 \, h^{-1} \, \text{Mpc}$, respectively. The qualitative results are similar, although the systematic biases are somewhat stronger for these sample volumes because of the smaller numbers of resolution elements (see Fig. 1).

4. RANDOM ERRORS AND STATISTICAL METHODOLOGY

We ultimately wish to use the measured topology of structure in the 1.2 Jy survey to evaluate the viability of theoretical models for the origin of this structure. By using mock catalogs, we can ensure that the theoretical predictions incorporate the same systematic biases that influence the observational data. We are then faced with the task of deciding whether the model predictions are consistent with the data to within the expected random errors and whether the data favor one theoretical model over another. These evaluations will have the maximum statistical power if they are based on the likelihood $L \equiv P(\text{data} | \text{Model})$, the conditional probability of obtaining the observed data given the assumed model.

If the random errors in the values of G_s measured at N different values of ν were independent and Gaussian distributed, then the likelihood would be

$$L = \exp \left(-\frac{1}{2} \chi^2_{\text{diag}} \right) \prod_{i=1}^{N} (2\pi \sigma_i^2)^{-1/2},$$

where

$$\chi^2_{\text{diag}} = \sum_{i=1}^{N} \left[\frac{G_{s,\text{data}}(\nu_i) - G_{s,\text{Model}}(\nu_i)}{\sigma_i^2} \right]^2$$

and $G_{s,\text{Model}}(\nu_i)$ and σ_i^2 are respectively the mean and variance of the genus values obtained from the mock catalogs. In a “frequentist” statistical analysis, one typically evaluates the acceptability of a model by asking whether its χ^2_{diag} is “reasonable,” i.e., whether $\chi^2_{\text{diag}}/N \leq 1$. In a Bayesian analysis, the ratio of likelihoods for two models tells one how to update the relative assessment of these models in light of the new data, since the ratio of models’ posterior probabilities is equal to the ratio of their prior probabilities multiplied by their likelihood ratio.

The statistical evaluation of topology data is complicated by the fact that random errors at different values of ν are not independent. Error correlations arise because a given volume contains only one set of structures—changing ν in a
given volume is not equivalent to changing \(\nu \) and simultaneously moving to a different region of the universe to obtain an independent genus measurement. The genus curve of an individual mock catalog is typically shifted or amplified coherently relative to the average model prediction. Figure 3 shows the covariance matrix,

\[
C_{ij} = \langle [G_z^{\text{Model}}(\nu_i) - \bar{G}_z^{\text{Model}}(\nu_i)] [G_z^{\text{Model}}(\nu_j) - \bar{G}_z^{\text{Model}}(\nu_j)] \rangle,
\]

computed from 512 mock catalogs of the \(R_{\text{max}} = 60 \ h^{-1} \) Mpc sample drawn from the CDM simulations, with \(\lambda = 7 \ h^{-1} \) Mpc. Circles and squares represent positive and negative values of \(C_{ij} \) respectively, and the area of the symbol shows the magnitude \(|C_{ij}| \). The matrix is approximately diagonal in the sense that the largest element in any row \(\nu_i \) is the variance \(C_{ii} = \sigma^2_i \), but there are significant correlations between the errors at neighboring values of \(\nu \), and there are anticorrelations for \(\nu_i - \nu_j \sim 1 \), reflecting the coherent shifts of genus curves mentioned above. The errors are largest at \(\nu \approx 0 \), but this is mainly because the genus curve itself peaks here.

Even though the errors in the genus curve are not independent, we can adopt the working hypothesis that the error distribution is a multivariate Gaussian. In this case the likelihood is

\[
\mathcal{L} = (2\pi)^{-N/2} |C_{ij}|^{-1/2} e^{-\chi^2/2},
\]

where

\[
\chi^2 = \sum_{i,j} [G_z^{\text{data}}(\nu_i) - \bar{G}_z^{\text{Model}}(\nu_i)] C_{ij}^{-1} [G_z^{\text{data}}(\nu_j) - \bar{G}_z^{\text{Model}}(\nu_j)]
\]

and \(C_{ij}^{-1} \) is the inverse of the covariance matrix defined in equation (9). If the errors were independent, then the covariance matrix would be diagonal, \(C_{ij} = \delta_{ij} \sigma_i^2 \), and equation (10) would reduce to equation (7). To the extent that the error distribution is indeed multivariate Gaussian, the quantity \(\chi^2 \) should follow a \(\chi^2 \) distribution with \(N \) degrees of freedom, so we can still use the criterion \(\chi^2/N \approx 1 \) as a frequentist evaluation of a model's success. Even if the multivariate Gaussian assumption does not hold perfectly, \(\chi^2 \) still provides a useful goodness-of-fit measure, and we can use the mock catalogs to derive its distribution empirically. With the Gaussian error approximation, we can also use equation (10) to compute likelihood ratios for comparisons between models.

Figure 4 shows the inverse covariance matrix \(C_{ij}^{-1} \) corresponding to the covariance matrix in Figure 3. The main impact of the correlations in \(C_{ij} \) is to introduce negative terms immediately off the diagonal in \(C_{ij}^{-1} \). From equation (11) we see that these negative off-diagonal terms mean that deviations of the same sign at neighboring values of \(\nu \) are "penalized" in the likelihood less strongly than they would be if we ignored the error correlations by using equation (7).

While our method of treating correlated errors has not been used in previous topology analyses, it is similar to the approach used by Fisher et al. (1994b) and Cole et al. (1995) in their studies of anisotropic redshift-space clustering in the 1.2 Jy survey.

5. RESULTS

5.1. Topology of the 1.2 Jy Survey

As mentioned earlier, we perform the topology analysis at three different smoothing scales, \(\lambda = 4, 7, \) and \(12 \ h^{-1} \) Mpc. For each scale, we use a volume-limited subset of the 1.2 Jy survey with outer radius \(R_{\text{max}} \) chosen so that the mean intergalaxy separation is \(d \approx \lambda / 2 \). The sample radii are \(R_{\text{max}} = 30, 60, \) and \(100 \ h^{-1} \) Mpc, respectively. Since each sample is at least 4.6 times the volume of the preceding one, and the smoothing scales themselves differ by factors of \(\lambda / 1.7 \), the genus curves obtained from these three samples are effectively independent.

The \(R_{\text{max}} = 60 \ h^{-1} \) Mpc sample has the largest number of resolution elements, as shown in Figure 1. The solid line in Figure 5 shows the genus curve of this sample. We attach 1 \(\sigma \) error bars computed from the CDM mock catalogs; they are the square roots of the diagonal elements of the covariance matrix (eq. [9]) illustrated in Figure 3. While the size of the error bars varies from one theoretical model to another, we have chosen a model that is known to reproduce other clustering properties of galaxies in the 1.2 Jy
The genus curve of the $R_{\max} = 60 \ h^{-1}\text{Mpc}$, volume-limited subset of the IRAS $1.2\ Jy$ survey (solid line), with a smoothing length $\lambda = 7 \ h^{-1}\text{Mpc}$. Error bars (1 σ) were computed from the CDM mock catalogs. The dotted line shows the genus curve expected for a Gaussian random field, eq. (3), with amplitude chosen by χ^2 minimization as described in the text.

We will conduct a detailed comparison with theoretical models in the next section, but, as a guide, in Figures 5–7 we show a genus curve with the form (eq. [3]) predicted for a Gaussian random field. In each case, we choose the amplitude A by minimizing χ^2 using the covariance matrix computed from the CDM mock catalogs. (A better way of choosing the amplitude would be to use the covariance matrix for the Gaussian random field models, but as we do not have mock catalogs for those, we do not know the covariance matrix.) The fitted amplitudes are $A = 5.5, 3.6,$ and 12.0 for $R_{\max} = 60, 30,$ and $100 \ h^{-1}\text{Mpc}$, respectively, corresponding (through eq. [4]) to effective power spectral indices $n_{e0} = -1.9, n_{e30} = -1.9,$ and $n_{e100} = -1.0$. At smoothing lengths $\lambda = 4$ and $7 \ h^{-1}\text{Mpc}$, the observed genus curves are shifted to the left relative to the best-fitting Gaussian field predictions. This shift in the direction of an isolated cluster or “meatball” topology has also been seen in a number of other data samples at similar smoothing lengths (Gott et al. 1989; Moore et al. 1992; Park et al. 1992a). Yess et al. (1997) also find evidence for a “meatball” topology in the $1.2\ Jy$ survey from percolation analysis. At $\lambda = 12 \ h^{-1}\text{Mpc}$, the observed genus curve is symmetric and similar in form to the Gaussian field prediction. Visual examination with the plotted error bars suggests that the observed genus curve disagrees significantly with the Gaussian field curve for $\lambda = 4 \ h^{-1}\text{Mpc}$, is marginally compatible with it for $\lambda = 7 \ h^{-1}\text{Mpc}$, and matches it well for $\lambda = 12 \ h^{-1}\text{Mpc}$. This impression is borne out by the χ^2 values, which are $34.0, 21.2,$ and 15.3 for the three smoothing lengths, respectively, with 18 degrees of freedom (19 data points less one free fitting parameter). These χ^2 values should not be taken too literally, since they are all computed using the CDM covariance matrix. Still more important, the Gaussian field predictions do not include any effects of nonlinear gravitational evolution, and they do not include the systematic biases discussed in §3.

5.2. Comparison with Models

Our goal in this section is to test dynamically evolved models with Gaussian initial conditions against the observed topology of the $1.2\ Jy$ survey. We will also consider a simple example of a model with a non-Gaussian topology. As discussed in §2, we have performed N-body simulations starting from Gaussian initial conditions with a $\Gamma = 0.25$ CDM spectrum and power-law spectra with
n = 0, -1, and -2. In all models, we assume that $\Omega_0 = 0.3$ and that galaxies are unbiased tracers of the mass distribution. For each of the models, we have used these simulations to construct 512 mock 1.2 Jy catalogs at each value of R_{max}, and from these we compute the mean predicted genus curve and the covariance matrix of the random errors.

As an example, Figure 8 shows (left) the mean genus curve of the CDM mock catalogs (solid line) for $\lambda = 7 \ h^{-1}$ Mpc and $R_{\text{max}} = 60 \ h^{-1}$ Mpc. Error bars show the dispersion of the mock genus curve values at each value of ν; they are the square roots of the diagonal elements of the covariance matrix. The dotted line shows the observed genus curve of the $R_{\text{max}} = 60 \ h^{-1}$ Mpc sample, repeated from Figure 5. Visual examination suggests that the CDM model and the IRAS data agree fairly well given the size of the 1 σ error bars, though a "chi by eye" cannot easily take error correlations into account.

The value of χ^2 from this comparison, using the CDM covariance matrix and equation (11), is $\chi^2 = 24.0$. We can use this value to obtain a "frequentist" measure of the goodness of fit between the CDM prediction and the observations. Since there are no free parameters chosen to fit the data, the number of degrees of freedom is $N = 19$, one for each data point. If the CDM model were correct and the distribution of errors were truly a multivariate Gaussian, the probability of obtaining a χ^2 value larger than that found for the 1.2 Jy survey.

We conclude that the CDM model does indeed yield acceptable agreement (at the $\sim 1 \sigma$ level) with the observed topology of this data sample for $\lambda = 7 \ h^{-1}$ Mpc.

The smooth solid curve in the right-hand panel of Figure 8 shows $g(\chi^2; 19)$, a χ^2 distribution with 19 degrees of freedom. This curve tracks the mock catalog histogram $f(\chi^2)$ remarkably well, implying that the assumption of a multivariate Gaussian error distribution is indeed a good approximation for these purposes. The value $F_{\nu}(24.0; 19) = 0.196$ obtained from equation (12) is close to the value $F(\chi^2) = 0.184$ obtained from the mock catalogs. We have carried out similar comparisons for our other models and other sample radii. We find that the agreement between the mock catalog $f(\chi^2)$ and $g(\chi^2; 19)$ holds quite well in most cases, though the mock catalog distributions tend to have somewhat longer tails toward high χ^2, so assuming Gaussian errors tends to underestimate the probability of the most extreme events.

Figures 9, 10, and 11 show the comparisons between our four dynamically evolved, initially Gaussian models and the 1.2 Jy data for $(\lambda, R_{\text{max}}) = (7, 60), (4, 30), (12, 100)$, respectively. In each panel, we show the mean predicted genus curve as a solid line with 1 σ error bars and the observed genus curve as a dotted line. We also list the value of χ^2 obtained using the model covariance matrix and the

![Figure 8](image-url)
Comparison between the observed genus curve of the 1.2 Jy sample for $\lambda = 7 h^{-1}$ Mpc ($R_{\text{max}} = 60 h^{-1}$ Mpc) and the predictions of the four N-body models, which assume Gaussian initial conditions with CDM, $n = 0$, $n = -1$, and $n = -2$ initial power spectra. In each panel, the dotted line shows the observed genus curve, and the solid line with 1 σ error bars shows the mean model prediction computed from the mock catalogs. The values of χ^2 and $F(\chi^2)$ are listed in each panel.

For $\lambda = 7 h^{-1}$ Mpc (Fig. 9), the CDM and $n = -1$ models yield similar results, both in reasonable agreement with the observed genus curve. The $n = 0$ model predicts a higher amplitude genus curve, as expected given the greater amount of small-scale power in its initial conditions (see eq. [4]). However, this model also predicts larger error bars than the CDM or $n = -1$ models, and its χ^2 of 23.8 is similar to the CDM $\chi^2 = 24.0$. A discrepancy of $\chi^2 \geq 23.8$ is found for $F(\chi^2) = 22.3\%$ of the $n = 0$ mock catalogs. The $n = -2$ model predicts the lowest amplitude genus curve, and it also has $\chi^2 = 24.0$, with $F(\chi^2) = 18.0\%$. At $\lambda = 7 h^{-1}$ Mpc, all four models predict an approximately symmetric genus curve, with a small asymmetry between the topology of high- and low-density regions that reflects the combination of nonlinear gravitational evolution and systematic biases in the topology measurements.

For $\lambda = 4 h^{-1}$ Mpc (Fig. 10), the amplitude of the CDM-predicted genus curve is lower than that of the observed genus curve. The comparison yields $\chi^2 = 30.4$ and $F(\chi^2) = 0.088$, indicating only marginal compatibility between the model and the data. The $n = 0$ model predicts a higher amplitude curve that agrees fairly well with the observations. The $n = -1$ prediction is similar to the CDM prediction, but it is different enough to yield better quantitative agreement with the 1.2 Jy data. The $n = -2$ model predicts a genus curve whose amplitude is too low. It is strongly contradicted by the data, with $\chi^2 = 38.1$ and $F(\chi^2) = 0.02$. At this smoothing length, all four models predict a genus curve that is shifted slightly in the direction of a "meatball" topology, but in all cases the shift is smaller than that seen in the 1.2 Jy genus curve.

At $\lambda = 12 h^{-1}$ Mpc (Fig. 11), the observed genus curve is quite symmetric, and it agrees well with the CDM, $n = 0$, and $n = -1$ model predictions. Indeed, the match to the $n = 0$ and $n = -1$ curves is so good that in each case more
than 90% of the mock catalogs have higher χ^2 than the 1.2 Jy data. The amplitude of the $n = -2$ genus curve is lower than observed, but for this smoothing length the discrepancy with the data ($\chi^2 = 21.9$) is not very significant, with $F(\chi^2) = 29.1\%$.

As a simple example of a model with a non-Gaussian topology, we consider a Voronoi foam, which has often been used as a phenomenological description of the large-scale structure of the galaxy distribution (van de Weygaert 1994 and references therein). Starting with a Poisson distribution of particles in a box of size $300 \, h^{-1}$ Mpc, we randomly distribute “seeds” with a mean separation $d_s = \bar{n}_s^{-1/3} = 50 \, h^{-1}$ Mpc, and then project each particle radially outward from the nearest seed until it is equidistant with the second-nearest seed. This procedure distributes the particles on the walls of polygonal cells, whose faces are the perpendicular bisector planes of neighboring seeds. The resulting “bubble” topology is similar to that of structure that evolves from initial conditions with a negatively skewed probability distribution (Weinberg & Cole 1992). We generated four Voronoi foams of this sort and created mock catalogs and computed mean predictions and covariance matrices just as we have done for the N-body models.

Figure 12 shows the comparison between the Voronoi foam model and the 1.2 Jy data for the three smoothing lengths. On all three scales, the genus curve of the Voronoi foam shows the rightward shift characteristic of a bubbly (as opposed to spongelike) distribution. In every case, the χ^2 value is very large, greater than that in 99% or more of the mock catalogs.

Table 1 summarizes the results of these comparisons, listing the values of χ^2 and $F(\chi^2)$ for each combination of model and smoothing length. We can directly compare the ability of these models to account for the topology of the 1.2 Jy data using a likelihood ratio test. For this purpose, we will assume that the error distribution is indeed multivariate Gaussian, so that the relative likelihood of obtaining the observed genus curve in two models A and B is, from equation (10),

$$\frac{\mathcal{L}_A}{\mathcal{L}_B} = \frac{|C_{44,A}|^{1/2}}{|C_{44,B}|^{1/2}} \exp \left[-\frac{1}{2} (\chi^2_A - \chi^2_B) \right].$$

Because the genus curves for the three smoothing lengths are effectively independent (see § 5.1), the overall likelihood ratio of two models is simply the product of their likelihood.
ratios for the three different samples. Note that the covariance matrix determinants enter into the likelihood ratio, as well as the χ^2 values themselves: for instance, if two models have the same χ^2 value but one predicts smaller random errors, then the model that makes the tighter prediction is preferred. The determinant ratio factor can be quite significant, as one can easily see for the case of uncorrelated errors $(C_{ij} = \delta_{ij} \sigma_i^2)$. If one model predicts error bars that are consistently 20% larger at each of the $N = 19 \nu$-values, then the determinant ratio factor is $1.2^N \approx 32$ at each smoothing length.

The likelihood ratios (relative to the CDM model) are listed in the last column of Table 1. We have already seen from the χ^2 test that the CDM, $n = 0$, and $n = -1$ models

![Graphs showing topology in 1.2 Jy IRAS Redshift Survey](image)

Fig. 11.—Same as Fig. 9, but for a smoothing scale $\lambda = 12 \ h^{-1} \text{Mpc}$ $(R_{\text{max}} = 100 \ h^{-1} \text{Mpc})$

TABLE 1

Model	$\chi^2(F(\chi^2))$	χ^2	$F(\chi^2)$	$\mathscr{L}/\mathscr{L}_{\text{CDM}}$
CDM	(7, 60)	24.0 (0.184)	12.8 (0.854)	1.00
$n = 0$	(4, 30)	30.4 (0.088)	19.3 (0.428)	9.95
$n = -1$	(12, 100)	10.1 (0.934)	11.4 (0.926)	5.77
$n = -2$	(7, 60)	22.5 (0.753)	21.9 (0.291)	0.002
Voronoi	(4, 30)	10.1 (0.934)	11.4 (0.926)	5.77
(12, 100)	46.5 (0.002)	21.9 (0.291)	21.9 (0.291)	0.002

Notes.—Summary of comparisons between models and the observed genus curves. The second, third, and fourth columns list the values of χ^2 and $F(\chi^2)$ for smoothing lengths $\lambda = 7$, 4, and $12 \ h^{-1} \text{Mpc}$, respectively. The rightmost column lists the overall likelihood of the model relative to the likelihood of the CDM model.
are separately compatible with the observed topology of the three volume-limited 1.2 Jy samples at the greater than 5% level. The likelihood ratios, which combine the information from all three samples, show that the $n = -1$ model (advocated on other grounds as early as & ReesGott 1975) is the most successful overall, with a likelihood ~90 times higher than that of the CDM model. While the $n = 0$ model produces lower χ^2 values than the CDM model at each smoothing length, its overall likelihood is only about half that of the CDM model because of its systematically larger error bars. The $n = -2$ model is strongly disfavored by the data, with a likelihood ratio of 0.002 relative to CDM and 2.2×10^{-5} relative to the $n = -1$ model. We have also investigated power-law models with $\Omega_0 = 1$ instead of $\Omega_0 = 0.3$ (but otherwise identical to our standard power-law models), and although the predicted genus curves are not radically different in the high-density models, the statistical discrepancies with the observations are substantially larger for $n = -1$ and $n = -2$ and slightly smaller for $n = 0$. The Voronoi foam has a formal likelihood ratio of 4.4×10^{-26}, and while the assumption of Gaussian errors surely breaks down at this level, it is clear that the observed topology of the 1.2 Jy survey is inconsistent with the “bubble” topology of this model.

6. SUMMARY

We have measured the topology of the galaxy distribution in the IRAS 1.2 Jy redshift survey using the methods of Gott et al. (1986, 1987, 1989). We consider three volume-limited subsets of the data, with limiting radii $R_{\text{max}} = 30, 60$, and $100 \, h^{-1} \text{Mpc}$, analyzed with corresponding smoothing lengths $\lambda = 4, 7$, and $12 \, h^{-1} \text{Mpc}$. We use mock catalogs drawn from cosmological N-body simulations in order to derive theoretically predicted genus curves and to study the systematic and random errors expected in samples of this size. Our principal conclusions are as follows:

1. In tests on mock catalogs from low-Ω CDM simulations, the net systematic error in volumes the size of our 1.2 Jy subsamples is small compared with the random errors. However, this small net error involves a cancellation between the systematic effects of measuring the genus in a

Fig. 12.—Comparison of the observed genus curves (dotted lines) with the predictions of the Voronoi foam model (solid lines; 1 σ error bars are shown), for the three smoothing lengths and corresponding sample volumes. Values of χ^2 and $F(\chi^2)$ are listed in each panel.
volume that contains few independent structures and the effects of smoothing only with that portion of the smoothing window that lies within the sample volume.

2. The covariance matrix of random errors in the genus curve is predominantly diagonal, but there are significant correlations in the errors that should be taken into account when assessing theoretical models. To a reasonable approximation, χ^2 (including covariances) is distributed as it would be if the errors followed a multivariate Gaussian distribution, though extreme values of χ^2 are more common than they would be for purely Gaussian statistics.

3. With $\lambda = 12 h^{-1}$ Mpc, the genus curve of the 1.2 Jy data has a symmetric form similar to that predicted for a Gaussian random field. For $\lambda = 7$ and $4 h^{-1}$ Mpc, the observed genus curves are increasingly shifted in the direction of a "meatball" topology.

4. Taken individually, the three observed genus curves are consistent at the greater than 5% level with the topology of dynamically evolved N-body models that have Gaussian initial conditions with low-Ω CDM ($\Gamma = 0.25$, $n = 0$, or $n = -1$ power spectra). Combining all three data sets, the $n = -1$ model is the most successful overall, with a likelihood ratio of 91.8 relative to CDM and 161 relative to $n = 0$.

5. The observed genus curves are inconsistent with an $n = -2$, initially Gaussian model, which produces structure that is excessively coherent and, consequently, genus curves whose amplitudes are too low. The observed genus curves are strongly inconsistent with a Voronoi foam model, which, because of its "bubble" topology, predicts genus curves that are systematically shifted toward higher densities, in the opposite direction from the observed shifts.

Our conclusions about the shapes of observed genus curves and their consistency or inconsistency with various theoretical models are similar to those drawn from a number of other topological studies of the galaxy distribution (Gott et al. 1989; Moore et al. 1992; Park et al. 1992a; Colley 1997). They are somewhat at odds with the results of Vogeley et al. (1994), who found that genus curves measured from the extended CfA Redshift Survey showed shifts in the direction of a bubble topology and were inconsistent with the genus curves predicted by CDM N-body models. The differences could reflect systematic differences in the structure traced by optical and IRAS galaxies, differences in the details of the topology analysis, or the somewhat greater statistical power of the CfA data set at the short smoothing lengths ($\lambda \sim 5 h^{-1}$ Mpc) where the differences are most pronounced. The geometry of the CfA and 1.2 Jy survey volumes is also quite different; the "Great Wall" is a prominent feature in the CfA survey, but in the present analysis it is included only in the 100 h^{-1} Mpc sample, and its impact on the topology of this sample is diluted by the sparseness of the galaxy distribution, by the large smoothing length required for this sample, and by the fact that the Great Wall covers only a small fraction of the nearly 4π sr of the 1.2 Jy survey's solid angle.

Earlier topology studies, recognizing the problem of correlated errors in the genus curve, have developed "metastatistics" that characterize the overall shape of the genus curve (e.g., amplitude, asymmetry, width) and used these to assess the compatibility of models with the observations (see, e.g., Vogeley et al. 1994). Here we have taken the more direct approach of measuring the error covariance matrix from mock catalogs and incorporating it into model assessments. We compute χ^2 values that include the error covariance (eq. [11]) and calculate the distribution of χ^2 from mock catalogs, in order to obtain an absolute, frequentist assessment of a model's goodness of fit. The distribution of χ^2 values in the mock catalogs implies that the multivariate Gaussian approximation describes the error distribution quite well, failing only in the extreme tails. We perform likelihood ratio comparisons between theoretical models to assess their relative ability to account for the observed topology data, making use of the Gaussian error approximation. The advantages of our approach are that it has a clear statistical motivation, it provides a natural path for combining information from independent data samples, and to the extent that the Gaussian error approximation holds, it makes the best possible use of the data because it is based directly on the likelihood. The disadvantage is that a high χ^2 or low likelihood value says nothing in itself about how the model prediction and the data disagree. Thus, the likelihood approach used here is the most statistically powerful way to assess and compare models, but measures like those of Park et al. (1992a) and Vogeley et al. (1994) may be useful for quantifying the nature of discrepancies between theory and observation. Our approach to handling correlated errors is similar to that used by Fisher et al. (1994b) and Cole et al. (1995) in studies of redshift-space distortions of the correlation function and power spectrum, and it can be adapted to many other problems in which error correlations are important but computable. It should be especially useful for topological analyses of future large galaxy redshift surveys, such as the Anglo-Australian 2dF survey and the Sloan Digital Sky Survey, which will yield much more stringent tests of the hypothesis that structure in the universe formed from Gaussian primordial fluctuations.

We are grateful to Michael Strauss and Karl Fisher for providing us with the 1.2 Jy redshift data in electronic form and for numerous helpful discussions on large-scale structure. We thank Richard Gott, Adrian Melott, and Andrew Hamilton for helpful discussions on topological analysis of redshift surveys over the course of many years. We acknowledge support from NASA grants NAG 5-3111 and NAG 5-2759 and NSF grant AST 95-29120.

REFERENCES

Adler, R. J. 1981, The Geometry of Random Fields (New York: Wiley)
Babul, A., & Postman, M. 1990, ApJ, 359, 280
Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, MNRAS, 304, 15
Bernardeau, F. 1992, ApJ, 392, 1
Bernardeau, F., & Kolman, L. 1995, ApJ, 443, 479
Bouchet, F. R., Strauss, M. A., Davis, M., Fisher, K. B., Yahil, A., & Huchra, J. P. 1993, ApJ, 417, 36
Coles, S. Fisher, K. B., & Weinberg, D. H. 1995, MNRAS, 275, 515
Coles, P., Davies, A. G., & Pearson, R. C. 1996, MNRAS, 281, 1375
Coles, P., & Pilonis, M. 1991, MNRAS, 250, 75
Colley, W. N. 1997, ApJ, 489, 471
Colley, W. N., Gott, J. R., & Park, C. 1996, MNRAS, 281, L82
Davis, M., Nusser, A., & Willick, J. A. 1996, ApJ, 473, 22
Doroshkevich, A. G. 1970, Astrofizika, 6, 320
Efstathiou, G., Bond, J. R., & White, S. D. M. 1992, MNRAS, 258, 1
Fisher, K. B., Davis, M., Strauss, M. A., Yahil, A., & Huchra, J. P. 1993, ApJ, 402, 42
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1995, ApJS, 100, 69
Fisher, K. B. Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1995, ApJS, 100, 69
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1994b, MNRAS, 267, 927
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1994a, MNRAS, 266, 50
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1993, ApJ, 402, 42
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1992, ApJ, 392, 1
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1991, ApJ, 376, 523
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1990, ApJ, 356, 54
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1987, ApJ, 316, 500
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1986, ApJ, 300, 544
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1985, ApJ, 294, 544
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1984, ApJ, 285, 500
Fisher, K. B. Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1984, ApJ, 285, 500
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1983, ApJ, 279, 500
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1983, ApJ, 279, 500
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1982, ApJ, 279, 500
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1981, ApJ, 279, 500
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1980, ApJ, 279, 500
Fry, J. N. 1984, ApJ, 279, 499
Gott, J. R., Mao, S., Park, C., & Lahav, O. 1992, ApJ, 385, 26
Gott, J. R., Melott, A. L., & Dickinson, M. 1986, ApJ, 306, 341 (GMD)
Gott, J. R., et al. 1989, ApJ, 340, 625
Gott, J. R., & Rees, M. J. 1975, A&A, 45, 365
Gott, J. R., Weinberg, D. H., & Melott, A. L. 1987, ApJ, 319, 1 (GWM)
Hamilton, A. J. S., Gott, J. R., & Weinberg, D. H. 1986, ApJ, 309, 1
Juszkiewicz, R., Bouchet, F. R., & Colombi, S. 1993, ApJ, 412, L9
Juszkiewicz, R., Weinberg, D. H., Amsterdamski, P., Chodorowski, M., & Bouchet, F. R. 1995, ApJ, 442, 39
Kogut, A.; Banday, A. J., Bennett, C. L., Gorski, K. M., Hinshaw, G., Smoot, G. F., & Wright, E. L. 1996, ApJ, 464, L29
Matsubara, T. 1994, ApJ, 434, L43
———. 1996, ApJ, 457, 13
Matsubara, T., & Suto, Y. 1996, ApJ, 460, 51
Melott, A. L. 1990, Phys. Rep., 193, 1
Melott, A. L., & Dominik, K. G. 1993, ApJS, 86, 1, 1
Melott, A. L., Weinberg, D. H., & Gott, J. R. 1988, ApJ, 328, 50
Moore, B., et al. 1992, MNRAS, 256, 477
Park, C. 1991, Ph.D. thesis, Princeton Univ.