Distribution of *Streptococcus agalactiae* Among Iranian Women from 1992 to 2018: A Systematic Review and Meta-Analysis

Maryam Sadeh 1, Amin Salehi-Abargouei 2, Nastaran Azartoos 3, Farzaneh Mirzaei 4 and Mohammad Bagher Khalili 3,*

1Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2Nutrition and Food Security Research Center, Department of Nutrition, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
4Department of Parasitology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

*Corresponding author: Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Tel: +98-36233235, Fax: +98-36238561, Email: khalilimb@yahoo.com

Received 2020 March 09; Revised 2020 July 22; Accepted 2020 July 25.

Abstract

Context: Group B *Streptococcus* has the capacity of being colonized in the rectovaginal organ of women and causes infections in a mother and her fetus, thereby leading to neonatal diseases.

Evidence Acquisition: The aim of this review was to summarize all of the relevant articles published to highlight the prevalence of group B *Streptococcus* colonization or infection in different regions of Iran. A systematic literature review was conducted by searching PubMed, Scopus, Web of Science (ISI), ScienceDirect, Google Scholar, and domestic databases for papers published in English or Persian from 1992 up to July 2019, concerning the prevalence of group B *Streptococcus* among Iranian women. All information regarding year, location of cases, frequency, author’s name, date of publication, participants, pregnancy period, sampling, and quality assessment were recorded. Summary effects were derived using the random effects model.

Results: Among 61 suitable papers, data revealed that 36,807 cases of pregnant and non-pregnant women had been tested for group B *Streptococcus* during 1992-2018. Overall, 11.9% of pregnant and 5.3% of non-pregnant women were positive. Further results were as follows: vaginal, recto-vaginal, rectal, and endocervical colonization rates were 12.9%, 9.7%, 18.5%, and 3.7%, respectively. Group B *Streptococcus* incidence was the highest in Sanandaj (61.5%), and the lowest in Tabriz (1.8%).

Conclusions: Although the prevalence distribution in Iran seems to be acceptable, more investigations are needed to represent the real incidence of group B *Streptococcus* around the country. In addition, a program with a standard lab technique is needed to screen pregnant women for further treatment before birth.

Keywords: Epidemiology, Iran, Pregnant, Prevalence, *Streptococcus agalactiae*, Women

1. **Context**

As group B *Streptococcus* is a pathogen commonly found in rectovaginal mucosa of pregnant women, it appears reasonable to label this bacterium as a cause of neonatal diseases at birth (1). Several investigations have revealed that about 10% - 40% of healthy women carry group B *Streptococcus* in their vagina and/or rectum. Much as the bacterium threatens the fetus in pregnant women, it can also induce infection of the endometrium or amniotic membrane, bacteremia, as well as sepsis and meningitis in susceptible women (2, 3). Since 1970, the etiological role of group B *Streptococcus* in diseases was highlighted, especially with regard to its ability to cause newborn infections. Recently, two kinds of infantile diseases have been attributed to group B *Streptococcus*: early-onset diseases and late-onset diseases. The early-onset diseases are usually manifested during the first week after birth, while late-onset diseases may appear 2 - 3 months after birth. Pneumonia and sepsis are both attributed to early-onset diseases; however, late-onset diseases likely engender meningitis in newborn infants.

Albeit different structures have been identified as group B *Streptococcus* virulence factors, a polysaccharide capsule is known to carry the most important role in this regard (4). It has antiphagocytic function. Other virulence factors include secreted hemolysin, superoxide dismutase, D-alanylated lipoteichoic acid, and some of the surface proteins such as the surface-localized protease CspA. Although surface proteins of *S. agalactiae* may have considerable roles during various stages of infection, they attract more...
and more importance regarding the development of a vaccine. Adhesion to epithelial cells, interactions with human extracellular matrix or plasma proteins, and escape from host immunity are other possible roles of surface proteins of group B Streptococcus (5).

Based on the proportion of cps, group B Streptococcus has been classified into 10 serotypes; Ia, Ib, and II-IX (1, 6). The prevalence rate of group B Streptococcus infections in both pregnant and non-pregnant women varies widely depending on the population studied; however, group B Streptococcus is usually isolated from 10% - 30% of women. In Iran, an estimated average of 9.8% of women are rectovaginally infected; however, the colonization rate of their neonates at birth is not clearly known (7). Some authors believe that about 50% - 75% of infants are exposed to the organism during the birth process (8-10). The major infant's diseases are attributed to meningitis and septicemia (11, 12). Furthermore, transmission of group B Streptococcus infection to infants at the time of birth, other group B Streptococcus-related infection complications, including premature rupture of membrane, low birth weight, and preterm labor may develop during pregnancy (13).

2. Evidence Acquisition

In the present study, almost all of the literature published from 1992 to July 2019 were reviewed to determine the prevalence of group B Streptococcus carrier state in different regions of Iran. In addition, this study shows the relative frequency of group B Streptococcus positivity with respect to geographical area, date of sampling, and type of the swab specimen.

2.1. Search Strategy

The strategy employed for identifying group B Streptococcus prevalence was searching in PubMed, Scopus, Web of Science (ISI), ScienceDirect, Google Scholar, and domestic databases for papers published in English or Persian. Terms such as Streptococcus agalactiae, group B streptococcus, S. agalactiae, streptococcus group B, and Iran were used as keywords to find the relevant published works. In order to find the maximum number of related papers and also gray literature, three local search engines, including the Iranian Scientific Information Database (www.sid.ir), Medlib (www.medlib.ir), and Magiran (www.magiran.com) were used. No limitations were applied when searching the mentioned databases. Extracted references were all reviewed, and the irrelevant titles/abstracts were excluded from the collection. The study selection process was handled by three researchers (MS, AS, NA). To reach a consensus on the selection of the relevant articles, any disagreement was discussed by the team members.

2.2. Inclusion Criteria

The following publications were identified as eligible to be included in the present systematic review and meta-analysis:

A) Investigations assessing the prevalence of Streptococcus agalactiae in the Iranian women,

B) Group B Streptococcus sampling from the vaginal, rectovaginal, endocervical, and rectal regions as well as the urine, and

C) Using culturing and/or PCR method as techniques applied for the detection of group B Streptococcus.

2.3. Exclusion Criteria

Studies were excluded if:

A) They had failed to use a standard method for group B Streptococcus isolation,

B) They had an irrelevant source of sampling (from men, animal, etc.),

C) They were review, meta-analysis or systematic review, or a duplicate publication of the same study.

2.4. Data Collection

Two authors conducted the data extraction, and the following information was collected: The first author's name and the date of publication, the participants’ status, including the pregnancy period, geographic location, group B Streptococcus isolation, and finally, the number of group B Streptococcus carriers were all noted for further investigation. Any disagreement as for data collection was discussed by the colleagues to reach the final decision (Figure 1).

2.5. Quality Assessment

In this study, a checklist recommended by Hoy et al. (14) was used for the evaluation of the methodological quality. The checklist consisted of nine questions, representing the sampling-related information, technique of sampling, the response rate, the technique applied for data collection, tools for measurement, definition of cases, and the statistical method. Each question was scored 1 or 0, defined as low- or high-risk bias, respectively. Scores 0 to 9 were selected and defined as follows: 0 to 3 as “high-risk”, 4 to 6 “moderate-risk”, and 7 to 9 as “low-risk” bias.
Records identified through searching PubMed, ISI Web of Sciences, Scopus, Google Scholar, Magiran, IranMedex, SID (n = 927)

Duplicates excluded (n = 563)

Records screened (n = 364)

Articles excluded due to (n = 292)
- Not relevant study
- Review articles

Full text 72 articles evaluated

Manually added references by searching in articles references (n = 10)

21 articles excluded due to:
- Performed in infertile women or neonates or adults (men)
- Unclear materials and methods or sample size or results

Figure 1. Flow diagram of the study process

2.6. Limitations

The overall prevalence of group B Streptococcus carriers in our query could not be determined comprehensively. Different factors such as geographical region, collection of samples, site of sampling, socioeconomic status, and microbiological methods all contributed to the results obtained. Also, due to lack of group B Streptococcus prevalence works in some provinces such as Golestan, Semnan, Mazandaran, Zanjan, Qom, South Khorasan, North Khorasan, Sistan and Baluchestan, Hormozgan, Kohgiluyeh and Boyer-Ahmad, Alborz, Qazvin, and West Azarbaijan, this review paper failed to present a full account of group B Streptococcus prevalence in Iran (Figure 2).

2.7. Statistical Analysis

The total number of the participants and the number of samples with Streptococcus agalactiae were used to calculate the event rate and confidence interval. The summary estimates were derived using the DerSimonian and Laird random effects model by taking inter-study heterogeneity into account. The I-squared and Cochran’s Q tests were used to assess heterogeneity between the studies. Subgroup analysis was used to explore the prevalence rates according to the sampling year, the province in which the study was conducted, and the quality of studies. Sensitivity analysis was carried out to explore the extent to which the overall calculations might depend on a specific study. All analyses were performed using the STATA software version 11.2 (STATA Corp, College Station, TX, USA).

3. Results

According to Databases, 927 articles were selected, among which 563 duplicated articles were excluded. Following reviewing all abstracts of the published works, 292 articles were deleted because of being irrelevant. Full texts of 82 articles were carefully considered, and again, 21 articles that were directly related to infertile women, neonates, adults, and those with ambiguous methods were all excluded from the study. Overall, the remaining 61 articles were approved for further investigation (Figure 1).

3.1. Prevalence of Group B Streptococcus in Iranian Women

Extraction of the information of these articles revealed 36,807 pregnant and non-pregnant women had been examined for group B Streptococcus detection during 1992-2018, out of which 2,930 cases (9.7%) were found positive for group B Streptococcus (Table 1). Observed data demonstrated the prevalence of group B Streptococcus among...
pregnant women to be 11.9% (95% CI: 0.103 - 0.135). Based on swab sampling technique, positive cases were found as the following: (1) vaginal samples with 34 studies (12.9%) (95% CI: 0.103 - 0.155), (2) recto-vaginal samples with 25 studies (9.7%) (95% CI: 0.075 - 0.120), rectum samples with 10 studies (18.5%) (95% CI: 0.096 - 0.275), endocervical samples with one study (3.7%) (95% CI: -0.003 - 0.077), vaginal and urine with one study (6.1%) (95% CI: 0.030 - 0.092), and urine with three studies (2.3%) (95% CI: 0.001 - 0.044). When the recorded data regarding distribution of group B Streptococcus among non-pregnant women were extracted, 5.3% (95% CI: 0.034 - 0.072) of the cases were identified as group B Streptococcus colonized.

3.2. Prevalence of Group B Streptococcus in Vaginal and Recto-vaginal Swabs of Pregnant Women

The majority of group B Streptococcus research works were based on vaginal or rectovaginal samples. Therefore, an effort was made to analyze and record the data in terms of city, quality assessment index, and year of publication (Tables 1 and 2). The papers were then classified into high-, moderate-, and low-quality index, and consequently, we found vaginal swab samples were in the low-risk (13.7%) group, while rectovaginal cases were in the high-risk (13%) group. Further observation indicated the prevalence of group B Streptococcus from vaginal samples was 15.8% before the year 2000; the city of Sanandaj carried the highest rate with 61.5%, and Tabriz recorded the lowest incidence with 1.8% (Table 2). Data observed from rectovaginal samples (Table 3) revealed that the highest incidence of group B Streptococcus had been observed in 2000 - 2009, during which Isfahan had suffered from the highest rate (18.2%), but Jahrom had the lowest rate (1.7%).

4. Discussion and Conclusions

The present systematic review and meta-analysis has summarized 61 published works on group B Streptococcus distribution in Iran. Among 36,807 samples examined, 2,930 samples (9.7%) were reported positive for group B Streptococcus. The prevalence was estimated to be 11.9% in pregnant and 5.3% in non-pregnant women (Table 1). The worldwide investigations show that a total of 11% - 30% of women are carriers of group B Streptococcus in their genital system. The important point is that contaminated women
Table 2. Status of Group B Streptococcus Prevalence in Vaginal Samples

Sample	Number of Studies	Prevalence	95% CI	Heterogeneity	P Value		
				Q-Statistic	I-Squared (%)	P Value	
Experiment date							
< 2000	2	15.8	0.122-0.194	0.40	0.0	0.528	< 0.001
2000 - 2009	12	11.8	0.076-0.160	339.12	96.8	0.000	
≥ 2010	20	13.4	0.096-0.172	454.24	95.6	0.000	
City							
Kerman	2	8.7	0.066-0.108	0.76	0.0	0.384	< 0.001
Yazd	1	16.5	0.126-0.204	0.00			
Sanandaj	1	61.5	0.548-0.682	0.00			
Mashhad	3	6.4	-0.003-0.131	13.25	84.9	0.001	
Ardabil	2	4.1	0.023-0.059	0.84	0.0	0.359	
Tehran	4	14.1	0.053-0.230	68.97	95.7	0.000	
Ahvaz	1	27.7	0.203-0.352	0.00			
Arak	2	13.4	0.096-0.173	1.80	44.4	0.180	
Kermanshah	1	5	0.003-0.097	0.00			
Amol	1	4	-0.003-0.083	0.00			
Khorram-abad	1	14	0.070-0.209	0.00			
Isfahan	2	23.1	0.082-0.381	38.77	94.8	0.000	
Jahrom	1	16.4	0.128-0.200	0.00			
Hamadan	3	13.8	0.012-0.264	69.17	97.1	0.000	
Ilam	1	4.4	-0.003-0.092	0.00			
Tabriz	1	1.8	0.009-0.026	0.00			
Bushehr	1	9.5	0.060-0.129	0.00			
Kashan	2	8.6	0.067-0.106	0.48	0.0	0.487	
Shahrekord	1	17.6	0.146-0.206	0.00			
Rasht	2	10.7	0.037-0.177	3.26	69.3	0.071	
Babol	1	7.8	0.051-0.104	0.00			
Quality assessment							
Low-risk	8	13.7	0.090-0.184	124.62	93.6	0.000	
Moderate-risk	24	12.8	0.093-0.163	729.01	96.8	0.000	
High-risk	2	10.7	0.040-0.074	3.28	69.5	0.000	
Overall	34	12.9	0.103-0.155	865.91	96.1	0.000	< 0.001

may transfer the bacterium to their fetus or neonates (9, 45, 72).

The knowledge resulting from the present review of group B Streptococcus colonization allows us to conclude that since up to 9.7% of females have been found to be group B Streptococcus-positive, it seems reasonable to suggest a strengthened program for screening the pregnant women to illuminate the more accurate prevalence of group B Streptococcus among the Iranian population. Moreover, a variation was discovered in the reported data, which could be mainly due to different methods for group B Streptococcus detection. Therefore, it is essential to document a more sensitive method for the studies to come. Furthermore, more serious measures are needed to represent
Table 3. Status of Group B Streptococcus Prevalence in Rectovaginal Samples

Sample	Number of Studies	Prevalence	95% CI	Heterogeneity	P Value	
				Q-Statistic	I-Squared(%)	P Value
< 2000	0	-	-	-	-	-
2000 - 2009	10	11.3	0.087-0.139	49.39	81.8	0.000
≥ 2010	15	8.7	0.056-0.137	286.00	95.1	0.000

City

City	Number of Studies	Prevalence	95% CI	Heterogeneity	P Value	
Yazd	2	16	0.092-0.228	4.36	77.1	0.037
Mashhad	1	6	0.026-0.094	0.00	-	-
Ardabil	3	10.7	0.052-0.162	21.40	90.7	0.000
Tehran	7	9.9	0.041-0.156	132.41	95.5	0.793
Ahvaz	1	13.2	0.090-0.174	0.00	-	0.000
Arak	1	5.2	0.025-0.080	0.00	-	-
Amol	1	3	-0.010-0.070	0.00	-	-
Birjand	1	5.2	0.032-0.072	0.00	-	-
Khorrzam-	1	17	0.096-0.244	0.00	-	-
abad						
Shiraz	2	11.2	0.067-0.157	4.77	79.0	0.029
Isfahan	1	18.2	0.124-0.241	0.00	-	-
Jahrom	1	1.7	0.004-0.031	0.00	-	-
Tabriz	1	9.6	0.059-0.133	0.00	-	-
Babol	2	6.8	-0.018-0.153	24.23	95.9	0.000

Quality assessment

Quality assessment	Number of Studies	Prevalence	95% CI	Heterogeneity	P Value	
Low-risk	6	12.2	0.049-0.195	281.57	98.2	0.000
Moderate-risk	16	8.1	0.065-0.097	67.98	77.9	0.000
High-risk	3	13	0.076-0.183	7.01	71.5	0.000
Overall	25	9.7	0.075-0.120	373.41	93.6	0.000

an account of group B Streptococcus in infected pregnant women for preventing the transmission of bacterium to their neonates. Additionally, a treatment program must be optimized to eradicate the infection in pregnant women and carriers. Finally, despite controversy in reported data from different populations, group B Streptococcus is surely present in different races around our country. As a result, documenting a legal program is highly recommended for screening pregnant women in rural and low-income populations in this country.

Footnotes

Authors’ Contribution: MS contributed to the conception and design; data collection and interpretation of data and final approval of the version to be published. ASA contributed to statistical analysis and drafting the manuscript. NA and FM contributed to data collection and interpretation. MBK and SHHM contributed to revising the article and final approval of the version to be published.

Conflict of Interests: The authors declare that there have no conflicts of interest in the present study.

Funding/Support: No funding was provided by any organization or company.

References

1. Imperi M, Pataracchia M, Alfarone G, Baldassarri I, Orefici G, Creti R. A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J Microbiol Methods. 2010;80(2):212-4. doi: 10.1016/j.mimet.2009.11.010. [PubMed: 19958797].

Jundishapur J Microbiol. 2020;13(7):e102314.
34. Javadi A, Khourvash F, Tabibian A, Darvishi M, Marimitani T. Vaginal and anorectal carriage of group B streptococci in late pregnancy. J Shahid Rajaee Univ Med Sci. 2005;22(7-8):89-94.

35. Javanmard F, Eshraghi N. Prevalence of positive recto-vaginal culture for Group B streptococci in pregnant women at 35-37 weeks of gestation. Med J Islam Repub Iran. 2013;27(1):5-11. [PubMed: 23483827]. [PubMed Central: PMC3592444].

36. Kabiri S, Kargar-Jahromi S, Solhjoo K, Sadeghi-Jahromi S. Frequency of Group B Streptococcus Colonization in pregnant women in Jahrom, 2014. Pars Jahrom Univ Med Sci. 2016;14(1):119-26. [PubMed: 2092528][PMC:14119].

37. Kalantar E. High burden of Group B Streptococcus: an invasive bacterium among pregnant women referring to Health Centers of Sanandaj, Iran. Infec Epidem Microbiol. 2013;3(1):25-35.

38. Kasraeian M, Asadi N, Ghaffarpasand F. Prevalence of asymptomatic bacteriuria among pregnant women in Shiraz, Iran. Saudi Med J. 2009;30(7):977-80. [PubMed: 19618007].

39. Khoshkhootabar T, Zand S, Abtahi H, Rafiee M. Frequency and drug resistance of Group B Streptococcus in pregnant women in Markazi Province, Iran. Med Lab J. 2015;4(4):275-80.

40. Malee-Jafarian M, Hosseini FS, Ahmadi AR. Pattern of infection and antibiotic activity among Streptococcus agalactiae isolates from adults in Mashhad, Iran. Rep Biochem Mol Biol. 2015;3(2):89-93. [PubMed: 26989741]. [PubMed Central: PMC4757047].

41. Mansouri S, Ghasami E, Najad N. Vaginal Colonization of Group B Streptococcus during Late Pregnancy in Southeast of Iran: Incidence, Serotype Distribution and Susceptibility to Antibiotics. J Med Sci. 2008;8(6):573-84. [PubMed: 1899323][PMJ:2008.5745-78].

42. Yousefi Mashouf R, Mousavi SM, Rabiee S, Alilkhani MY, Arabestani MR. Direct Identification of Streptococcus Agalactiae at Vaginal Colonization in Pregnant Women by PCR. Iran J Public Health. 2014;43(2):189.

43. Mobasheri M, Saeedi Varnamkhast N, Karimi A, Banaeiany S. Prevalence study of genital tract infections in pregnant women referred to health centers in Iran. Turk J Med Sci. 2014;44(2):232-6. [PubMed: 10.3906/sag-1208-33]. [PubMed: 25536729].

44. Nakhaei Mo M. Recto-Vaginal Colonization of Group B Streptococcus in Pregnant Women Referred to a Hospital in Iran and its Effect on Lactobacillus Normal Flora. Journal of Biological Sciences. 2000;30(2):166-9. [PubMed: 10.5455/medarh.2013.67.124-125][PubMed Central: PMC3901181].

45. Mohammadi J, Pakzad I, Khodai Z, Havsani MR. The Prevalence of vaginal carrier of Group B Streptococcus (GBS) among Pregnant Women Attending Menopause at Mustafa-Khomeini Hospital, Isfahan. J Exp Biol Agric Sci. 2017;5(1):SAPFASV:561-70. [PubMed: 18008620][PMC:561.567].

46. Mousavi SM, Hosseini SM, Mashouf RY, Arabestani MR. Identification of Group B Streptococcus Using 16S rRNA, cfb, and atr Genes in Pregnant Women by PCR. Acta Med Iran. 2016;54(12):765-70. [PubMed: 28020657].

47. Safghani, M. Pourali L, Ghazvini K, Maleki A, Ghavidel M, Karbalaeizadeh Babaki M. Cervical bacterial colonization in women with preterm premature rupture of membrane and pregnancy outcomes: A cohort study. Int J Reprod Biomed. 2018;16(5):341-8. [PubMed: 30027150]. [PubMed Central: PMC6044268].

48. Namavar Jahromi B, Poorarian S, Poorbarfheesee S. The prevalence and adverse effects of group B streptococcal colonization during pregnancy. Arch Iran Med. 2008;11(5):634-7. [PubMed: 18976037].

49. Nasiri K, Chehre A, Manavi MS. Evaluation of vaginal group B streptococcal culture results after digital vaginal examination and its pattern of antibiotic resistance in pregnant women. Iran J Reprod Med. 2013;11(12):999-1004. [PubMed: 24639726]. [PubMed Central: PMC3941399].

50. Nazari A, Khalili MB, Astani A, Vakili M, Sadeh M, Mojibyan M, et al. Determination of Genotypes of Streptococcus Agalactiae Isolated from Both Urine and Vagina of Pregnant Women Referred to Gynecology Clinics of Yazd, Iran-2015. Int J Med Lab. 2017;4(3):3180-8.

51. Nazer MR, Rafiei Alavi E, Nazer E, Khamene M. Prevalence of Group B Streptococcus Vaginal Colonization in The Third Trimester of Pregnancy. J Shahid Sadoughi Univ Med Sci. 2011;19(1):13-23.

52. Pirouz T, Farsi S, Foroozeh Tehrani H. Group B Streptococcus colonization in pregnant women in labor. Razi J Med Sci. 2000;6(4):275-80.

53. Rabiei S, Arab M, Yousefi MR. Epidemiologic pattern of vaginal colonization by group B Streptococcus in pregnant women in Hamadan, Central west of Iran. Iran J Med Sci. 2006;31(2):206-8.

54. Rahbar M, Hajia M, Mohammadzadeh M. Urinary tract infections caused by group b streptococcus in adult women: Survey of 11800 urine culture results. Iran J Pathol. 2012;7(3):32-7.

55. Seyyed EZ, Toossi E, Jalalvand A, Sadjadi M. Group B Streptococci investigation in pre-term labors. Med Arch. 2015;69(2):124-5. [PubMed: 24484278]. [PubMed Central: PMC3900181].

56. Tajbakhsh S, Norouzi Esfahani M, Emameini M, Motamed N, Rabani E, Gharibi S. Identification of Streptococcus agalactiae by flu- orescent in situ hybridization compared to culturing and the determination of prevalence of Streptococcus agalactiae colonization among pregnant women in Bushehr, Iran. BMC Infect Dis. 2013;13:420. [PubMed: 24002461]. [PubMed Central: PMC3844618].

57. Vaseini M, Moniri R, Ghorbazi A, Ansarioupour L, Movahedinejad M, Yadegarsalehi M. Prevalence rate, Antibiotic susceptibility and Colonization risk factors of Group B Streptococcus in genital tract of preg- nant women. Med J Mashhad Univ Med Sci. 2014;57(5):676-83.

58. Zamanzad B. Prevalence of Group B Streptococcus Vaginal Carriers in Pregnant Women Referenced to the Maternity Ward of Shahrekord Hospital (Year 2000). J Shahid Sadoughi Univ Med Sci. 2001;3:27-31.

59. Amirzobzafar N, Mansour Ghanai A, Sadr Nouri B, Farhadi Toosi L. Survey Prevalence of Group B Streptococcus in Genital Tract Women in 28-37 Weeks Pregnancy. J Guilian Univ Med. 2006;9(5):91-6.

60. Haghsenas Mojaveri M, Zadehpasha Y, Asnafi N, Farhadi J, Haddad G. A survey on the prevalence of group b streptococcus in pregnant women referred to the obstetrics and Gynecology ward at babol Aya- tollah Rouhani hospital. Iran J Neonatol. 2014;5(3):23-7.

61. Bahad E, Shariati MK, Darabi P, Karimi A. Frequency of group B streptococcus colonization and antibiotic in women in 35-37 weeks of gestation visited in prenatal clinic of Mahdieh Hospital in 2008. Pay- noonbehdeh. 2011;16(5):139-43.

62. Khatiea G, Shahrokhi N. Bacteriologic and serologic diagnosis of group B streptococci in pregnant women, neonates and infants. Tehran Univ Med J. 1998;56(6):54-60.

63. Nasrollahi M, Moghadzadeh A, Abdollahi M, Marzhooseyni Z, Salehian M, Nazar E, et al. Comparison of Culture and PCR Methods for Diagnosis of Group B Streptococcus in Women. Current Science. 2018;114(8):7378. doi: 10.18520/cjcs/v114/i08/7378-741.

64. Rostami S, Rahim Khorasani M, Ahmadi M, Naghshein E, Zaman- pour M. Evaluating of molecular diagnostic accuracy of pregnant women colonization with Group B Streptococcus after bacterial en- richment culture. Iran J Obstet Gynecol Infertil. 2019;21(12):36-22.

65. Salehanejad, H., Milani F, Roushan ZA, Rostami S, Sheja S, Sheikh R. The Prevalence of Rectovaginal Colonization and Antibiotic Susceptibility Pattern of Streptococcus agalactiae in Pregnant Women in Al-Zahra Hospital, Rasht, Iran. Infect Dis Clin Pract. 2019;27(3):143-7.

66. Abdollahi-Fard S, Ghotasloo R, Zafaroodost S. Study on Colonization of}
Group Streptococcus (GBS) and Relationship with Perinatal Complication in Pregnant Women Referred to Alzahra Hospital. *Int J Obstetr Gynaecol*. 2008;3(7):726–8.

69. Akbarian Rad Z, Haghshenas Mojaveri M, Esmaeilzadeh S, Firouzjahi A, Laegh M, Khafri S, et al. Colonization of rectovaginal Escherichia coli and group B streptococci in mothers and on infants’ body surface and their related risk factors. *Caspian J Pediatr*. 2016;2(2):148–52.

70. Shahbazian N, Rajabzadeh A, Alavi SM. Prevalence of group b streptococcal colonization in vagina and rectum of 35-37 weeks pregnant women and its sensitivity to antibiotics. *Jundishapur J Microbiol*. 2007;6(3):294–8.

71. Sarafrazi N, Mesdaghinia E, Moniri R, Mousavi SGA. Evaluation of vaginal Streptococcus hemolytic type B in pregnant women and its relationship with early neonatal infection. *Feyz*. 2003;5(2):22–7.

72. Fatemi F, Pakzad P, Zeraati H, Talebi S, Asgari S, Chamani TL. Comparative molecular and microbiologic diagnosis of vaginal colonization by group b streptococcus in pregnant women during Labor. *Iran J Basic Med Sci*. 2010.
Table 1. Characteristics of the Studies Included in the Systematic Review and Meta-Analysis

First Author (Ref. No.)	Place (City)	Year (yr)	Age (wk)	Pregnancy	Swab Samples	Identification Method	Sample Size	No. Positive GBS Carriers (%)	Quality Assessment	
Aali (15) Kerman	2005	25-6	Preg	38-40	Vag Cult	PCR	105	7	Low-risk	
Absalam (16) Yazd	2002	15-40	Preg	Recto-Vag	Cult. PCR	PCR	250	49	Low-risk	
Ahmadi (17) Sanandaj	2007	19-43	Preg	35-37	Endocervical	PCR	109	4	Moderate-risk	
Ahklanghi (18) Mashhad	2007	NA	Preg	33-37	Vag Cult	PCR	43	3	Moderate-risk	
Azaranous (2) Analeh	2008	NA	Preg	35-37	Recto-Vag	PCR	420	56	Low-risk	
Bakhtiari (19) Tehran	2010	NA	Preg	28-38	Recto-Vag	PCR	375	35	Low-risk	
Bigrani (20) Ahvaz	2013-2014	16-45	Preg	28-38	Vag Cult	PCR	137	38	Moderate-risk	
Bornasi (21) Arak	2012	NA	Preg	35-37	Recto-Vag	PCR	420	56	Low-risk	
Darabi (22) Tehran	2014-2015	16-45	Preg	28-38	Vag Cult	PCR	137	38	Moderate-risk	
Daramroodi (23) Kermanshad	2007	NA	Preg	33-37	Recto-Vag	PCR	420	56	Low-risk	
Ebrahimi (24) Mashhad	2010	NA	Preg	Recto-Vag	Cult. PCR	PCR	100	3	Moderate-risk	
Fatemi (25) Tehran	2008	16-40	Recto-Vag	PCR	137	38	Moderate-risk			
Farzinnejad (26) Amol	2003	NA	Preg	35-37	Recto-Vag	PCR	100	35	Moderate-risk	
Frouhesh (27) Tehran	2010-2012	NA	Non-preg	-	Urine Cult	PCR	5000	104	High-risk	
Ghanbarzadeh (28) Birjand	2013-2014	16-37	Preg	Recto-Vag	Cult. PCR	PCR	500	26	Moderate-risk	
Goudarzi (29) Khorramabad	2002	NA	Preg	35-37	Recto-Vag	PCR	100	47	Moderate-risk	
Hamedani (30) Mashhad	2007	NA	Preg	35-37	Recto-Vag	PCR	100	47	Moderate-risk	
Hadavand (31) Tehran	2010-2011	15-44	Recto-Vag	PCR	200	123	Moderate-risk			
Javadi (32) Isfahan	2004	NA	Preg	35-37	Recto-Vag	PCR	200	123	Moderate-risk	
Javanmanesh (33) Tehran	2012	16-42	Preg	Recto-Vag	Cult. PCR	PCR	100	43	Moderate-risk	
Kalhor (34) Jaleh	2004	16-40	Preg	35-37	Recto-Vag	PCR	100	43	Moderate-risk	
Kalantar (35) Sanandaj	2010-2012	18-37	Preg	28-38	Recto-Vag	PCR	100	43	Moderate-risk	
Kasraeian (36) Shiraz	2007	18-36	Preg	18	Urine Cult	PCR	200	123	Moderate-risk	
Khoshkhasteh (37) Shahr	2003	NA	Preg	35-37	Recto-Vag	PCR	200	123	Moderate-risk	
Malek-Jahrom (38) Mashhad	2005	15-40	Non-preg	Urine Cult	5000	104	Moderate-risk			
Mansouri (39) Kerman	2005-2007	20-35	Preg	Recto-Vag	Cult. PCR	PCR	402	55	Moderate-risk	
Mansour (40) Kerem	2013	NA	Preg	35-37	Recto-Vag	PCR	200	123	Moderate-risk	
Masoudi (41) Ramsar	2013-2014	NA	Preg	Recto-Vag	Cult. PCR	PCR	200	123	Moderate-risk	
Mohamadi (42) Analeh	2010	17-38	Preg	0-40	Recto-Vag	PCR	200	123	Moderate-risk	
Najafzadeh Boghaddan	2005-2007	16-40	Preg	Recto-Vag	Cult. PCR	PCR	200	123	Moderate-risk	
Study Area	Year	Age Range	Group	Gender	Sample Size	Risk	Notes			
------------	------	-----------	-------	--------	-------------	------	-------			
Ham	2014-2015	16-42	Preg	Vag	Cult	90	4.4	Moderate-risk		
Hormozan (48)	2010-2014	NA	Preg	Vag	Cult	PCR	203	15	7.4	Moderate-risk
Mashhad (49)	2015-2016	15-42	Preg	Vag	Cult	200	1	2	Moderate-risk	
Tabriz (51)	2001-2002	NA	Preg	Vag, Recto-Vag	Cult	945	17	1.8	Moderate-risk	
Shiraz (54)	2003	14-45	Preg	> 24	Recto-Vag	Cult	457	10	9.2	Moderate-risk
Arak (46)	2009	16-39	Preg	Vag	Cult	186	10	16.1	Moderate-risk	
Yazd (49)	2005-2006	15-40	Preg	Vag	Cult	346	17	16.5	Moderate-risk	
Khuran-Abad (50)	2009	18-39	Preg	Vag	Cult	310	14	14	Low-risk	
Tehran (52)	1992	15-45	Preg	> 27	Vag	Cult	200	16	1	Moderate-risk
Hormozan	2006	19-39	Preg	> 20	Vag	Cult	544	185	26.7	Moderate-risk
Tehran (54)	2001-2002	NA	Preg	Vag, Cult	965	17	1.8	Moderate-risk		
Tehran	2000	29.8 ± 19.37 (mean)	Preg	NA	Recto-Vag	Cult	200	22	11	Moderate-risk
Isfahan (55)	2010-2011	17-42	Non-Preg	Recto-Vag	Cult	250	21	8.4	Moderate-risk	
Tehran	2009-2010	19-50	Preg	Recto-Vag	Cult	500	40	4.1	Moderate-risk	
Newborns	2010-2011	26.39 ± 5.33 (mean)	Preg	NA	Recto-Vag	PCR	413	70	16.9	Moderate-risk
Kasah	2001-2002	16-45	Preg	Recto-Vag	Cult	362	16	9.4	Moderate-risk	
Shahrizad	2010	< 25-40	Preg	Recto-Vag	Cult	250	15	9.6	Moderate-risk	
Ronab	2005	25.9 ± 5.90 (mean)	Preg	NA	Recto-Vag	PCR	237	50	22	Moderate-risk
Babol	2014	25.3 ± 4.2 (mean)	Preg	Recto-Vag	Cult	200	20	5	Low-risk	
Tehran	2008	NA	Preg	Vag	Cult	246	13	5.3	Moderate-risk	
Tehran	1998	NA	Preg	Vag	Cult	180	26	14.7	Moderate-risk	
Sari	2018	< 25-40	Preg	Vag	Cult, PCR	285	12	4.1	Moderate-risk	
Isfahan	2015	29.35 ± 5.90 (mean)	Preg	Recto-Vag	Cult	200	16	2.5	Low-risk	
Isfahan	2007-2010	NA	Preg	Recto-Vag	Cult	245	62	20.2	Moderate-risk	
Tehran	2006	22.36 ± 3.69 (mean)	Preg	Recto-Vag	Cult	250	24	9.6	Moderate-risk	
Babol	2002-2004	25.7 ± 1.55 (mean)	Preg	> 24	Vag, Recto-Vag	Cult	410	45	31	Moderate-risk
Ahvaz	2007	NA	Preg	Vag	Recto-Vag	Cult	250	26	1	Moderate-risk
Kazerun	2008	NA	Preg	Vag	Cult	346	17	16.5	Moderate-risk	

Notes:
- **Abbreviations:** Cult, culture; GBS, Group B Streptococcus; NA, not available; Preg, pregnant; Rect, rectal; Recto-Vag, recto-vaginal; Vag, vaginal.