Phylogeny and taxonomy of the genus *Gliocladiopsis*

L. Lombard¹, P.W. Crous¹, ², ³

Key words
Gliocladiopsis
phylogeny
taxonomy

Abstract
Using a global set of isolates and a phylogenetic approach employing DNA sequence data from five genes (β-tubulin, histone H3, internal transcribed spacer region, 28S large subunit region and translation elongation factor 1α), the taxonomic status of the genus *Gliocladiopsis* (*Gliocladium*) (*Hypocreales*, *Nectriaceae*) was re-evaluated. *Gliocladiopsis sagariensis* is reinstated as type species for the genus, which proved to be distinct from its former synonym, *G. tenuis*. The purported teleomorph state of *G. tenuis*, *Gliocladium tenuis*, is shown to be distinct based on morphological comparisons supported by phylogenetic inference, and is provided with a new name, *Gliocladiopsis pseudotenuis*. A further four species, mostly isolated from soil, are newly described, namely *G. curvata* (New Zealand, Ecuador and Indonesia), *G. elpholtii* (USA), *G. indonesiensis* (Indonesia) and *G. mexicana* (Mexico). Although species of *Gliocladiopsis* are frequently isolated from roots of diseased plants or plant litter in soil, little is presently known of their ecology, or potential role as plant pathogens.

Article info
Received: 1 February 2012; Accepted: 29 February 2012; Published: 6 March 2012.

INTRODUCTION

The genus *Gliocladiopsis* was introduced by Sakسena (1954) based on *G. sagariensis* to accommodate a fungal isolate from soil that had penicillate conidiophores resembling *Penicillium* and *Gliocladium*, and cylindrical conidia similar to that of *Calonectria* (as *Cylindrocladium*). Sakseна (1954) distinguished *G. sagariensis* from *Penicillium* and *Gliocladium* based on morphological differences in conidium and conidigenous apparatus morphology, and the apparent lack of chlamydomspore formation in culture. Agnihotrudu (1959), however, was able to observe chlamydospore formation in culture, and based on this as well as morphological similarity, synonymised *G. sagariensis* under *Cylindrocarpon tenue* (Bugnicourt 1939). In contrast, Barron (1968) considered *Gliocladiopsis* as a later synonym of *Calonectria* (as *Cylindrocladium*).

Crous & Wingfield (1993) resurrected the genus *Gliocladiopsis* to accommodate species characterised by dense, penicillate conidiophores, which unlike *Cylindrocladium* and *Calonectria*, lacked sterile stipe extensions. Based on the characteristic conidiophores, the genus *Cylindrocarpon* was also found to be unsuitable to accommodate these species. These observations led Crous & Wingfield (1993) to place *C. tenue* in *Gliocladiopsis*, retaining *G. sagariensis* as synonym. Watanabe (1994) transferred *G. tenue* to *Cylindrocladium* based on observations that isolates of *Cylindrocladium* and *Cylindrocladiella* generally lose their ability to produce stipe extensions with continuous subcylindric, and therefore he rejected this feature as a stable character to define these genera. Various morphological studies have shown, however, that the presence of a stipe extension and the terminal vesicle shape is an important character to distinguish species of *Calonectria* (Crous & Wingfield 1994, Lombard et al. 2010a–c) and *Cylindrocladiella* (Crous & Wingfield 1993, Victor et al. 1998, van Coller et al. 2005, Lombard et al. 2012).

The first phylogenetic study conducted on this generic complex was that by Schoch et al. (2000), which clearly showed that *Gliocladiopsis* was closely related to *Gloeophalotrichum*/*Leuco-nectria*, and removed from *Cylindrocladiella*, *Cylindrocarpon* and *Calonectria* (Fig. 1). Furthermore, the genus *Gliocladium* was proposed as teleomorph of *Gliocladiopsis* in this study, and defined by perithecia that are obovoid to broadly obpyriform, with warted, red-brown walls and dark red stromatic bases, producing ellipsoidal, 1-septate ascospores.

Presently *Gliocladiopsis* accommodates three species which include *G. irregularis* (Crous & Peerally 1996), *G. sumatrensis* (Crous et al. 1997) and *G. tenuis* (Crous & Wingfield 1993), and is defined by densely penicillate conidiophores lacking a stipe extension and terminal vesicle, and produce small, narrow, cylindrical, (0–)1-septate conidia held in yellow droplets, and chains of globose, brown chlamydospores (Crous 2002).

Over the course of several years a collection of *Gliocladiopsis* isolates have been accumulated in the culture collection of the CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands. These isolates were identified as *G. tenuis* based on morphological comparisons only. The aim of this study was to reconsider the taxonomic status of the genus *Gliocladiopsis* using multigene phylogeny and morphological comparisons to correctly identify these isolates.

MATERIALS AND METHODS

Isolates
Isolates and ex-type strains of *Gliocladiopsis* spp. were obtained from the CBS-KNAW Fungal Biodiversity Centre (CBS) and other culture collections as indicated in Table 1. These isolates were either isolated from plant material or baited from soil using the methods described by Crous (2002).

Phylogeny
Total genomic DNA was extracted from single-conidial isolates grown on 2 % malt extract agar (MEA) for 7 d, using the Ultra-Clean™ Microbial DNA isolation kits (Mo Bio Laboratories, Inc., California, USA) according to the manufacturer’s protocol.

¹ CBS-KNAW Fungal Biodiversity Centre, Uppsala Alan 8, 3584 CT Utrecht, the Netherlands; corresponding author e-mail: l.lombard@cbs.knaw.nl.
² Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
³ Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.

© 2012 Nationaal Herbarium Nederland & Centraalbureau voor Schimmelcultures
Partial gene sequences were determined for β-tubulin (BT), histone H3 (HIS3), internal transcribed spacer region (ITS), 28S large subunit region (LSU) and translation elongation factor 1-α (TEF 1-α) using the primers and protocols described by Lombard et al. (2010b). To ensure the integrity of the sequences, the amplicons were sequenced in both directions with the same primer pairs used for amplification, and subsequent alignments were generated using MAFFT v. 6 (Katoh & Toh 2010), and manually corrected where necessary. Congruency of the sequence datasets for the separate loci, with the exception of LSU, were determined using tree topologies of 70 % reciprocal Neighbour-Joining bootstrap trees with Maximum Likelihood distances that were compared visually to identify conflicts between partitions (Gueidan et al. 2007). Molecular evolution models for the separate gene regions were determined in Modeltest v. 3.7 (Posada & Crandall 1998) and bootstrap analyses were run for 10 000 replicates.

PAUP (Phylogenetic Analysis Using Parsimony, v. 4.0b10, Swofford 2002) was used to analyse the DNA sequence dataset. Phylogenetic relationships were estimated by heuristic searches with 1 000 random addition sequences and tree bisection-reconnection was used, with the branch swapping option set on ‘best trees’ only. All characters were weighted equally and alignment gaps were treated as missing data. Measures calculated for parsimony included tree length (TL), consistency index (CI), retention index (RI) and rescaled consistency index (RC). Bootstrap analysis (Hillis & Bull 1993) was based on 1 000 replications. A second phylogenetic analysis using a Markov Chain Monte Carlo (MCMC) algorithm was done to generate trees with Bayesian probabilities in MrBayes v. 3.1.1 (Ronquist & Huelsenbeck 2003). Nucleotide substitution models were determined using MrModeltest (Nylander 2004) for each gene region and included in the analyses. Two analyses of four MCMC chains were run from random trees for one million generations and
Species	Culture accession1	GenBank accession2	Substrate	Country	Collector
Calonectria brachiatica	CBS 123700	FJ86388	FJ86396	GQ280555	GQ287296
C. brassicae	CBS 11869	AF232857	DQ190720	GQ280576	FJ18857
G. curvata	CBS 978.73	JO666119	JO666009	JO666043	JO666085
	CBS 194.80	JO666120	JO666001	JO666044	JO666084
	CBS 110840 = MUCL 38873 = CPC 855	JO666121	JO666011	JO666045	JO666087
	CBS 111194 = CPC 1354	JO666122	JO666012	JO666046	JO666088
	CBS 111195 = CPC 1355	JO666123	JO666013	JO666047	JO666089
	CBS 111196 = CPC 1356	JO666124	JO666014	JO666048	JO666090
	CBS 111421 = CPC 1652	JO666125	JO666015	JO666049	JO666091
G. elghollii	CBS 206.94	JO666130	JO666020	JO666054	JO666096
	CBS 116104 = CPC 636 = P93-2051	JO666131	JO666021	JO666055	JO666097
G. indonesiensis	CBS 116000	JO666132	JO666022	JO666056	JO666098
	CBS 755.97 = CPC 718	JO666133	JO666023	AF220977	JO666099
G. irregularis	CBS 111142 = CPC 1279	JO666134	JO666024	JO666057	JO666100
	CBS 111178 = CPC 1280	JO666135	JO666025	JO666058	JO666101
	CBS 114667 = 1278	JO666136	JO666026	JO666059	JO666102
G. mexicana	CBS 110938 = CPC 964	JO666137	JO666027	JO666060	JO666103
	CBS 111131 = CPC385	JO666138	JO666028	JO666061	JO666104
G. pseudotenuis	CBS 114763 = CPC4575	JO666139	JO666029	JO666062	JO666105
	CBS 116074 = CPC706	JO666140	JO666030	AF220981	JO666106
G. sagariensis	CBS 199.55	JO666141	JO666031	JO666063	JO666107
G. sumatrensis	CBS 754.97 = CPC 1333	JO666142	JO666032	JO666064	JO666108
	CBS 111198 = CPC 1352	JO666143	JO666033	JO666065	JO666109
	CBS 111213	JO666144	JO666034	JO666066	JO666110
	CBS 111368 = CPC 1351	JO666145	JO666035	AF220978	JO666111
G. tenuis	CBS 111961 = CPC 2910	JO666146	JO666036	JO666067	JO666112
Gliocladiopsis sp.1	CBS 11038 = CPC 1157	JO666151	JO666041	JO666071	JO666117
Gliocladiopsis sp.2	CBS 118086 = CPC 716	JO666152	JO666042	JO666072	JO666118

1 CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: working collection of Pedro Crous housed at CBS; IFO: Institute for Fermentation, 17-85, Juso-honmachi, 2-chrome, Yodogawa-ku, Osaka 532, Japan; IMI: International Mycological Institute, CAB-I-Bioscience, Egham, Bakeham Lane, UK; Lynfield: Private collection Frank Hill; MUCL: Mycothèque, Laboratoire de Mycologie Systématique et Appliquée, l'Université, Louvain-la-Neuve, Belgium; NBRC: National Institute of Technology and Evaluation, NITE Biological Resource Center, 2-49-10 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan.

2 BT = β-tubulin; HIS3 = histone H3, ITS = internal transcribed spacer regions 1 and 2 and the 5.8S gene of the ribosomal RNA; TEF 1-α = translation elongation factor 1-alpha. Ex-type isolates indicated in bold.

Table 1 Gliocladiopsis isolates included in this study.
Fig. 2 The most parsimonious tree obtained from a heuristic search with 1 000 random addition sequences of the combined sequences of β-tubulin, histone H3, internal transcribed spacer region and translation elongation factor 1-α sequence alignments of the Gliocladiopsis isolates used in this study. Scale bar shows 10 changes. Bootstrap support values (bold) and Bayesian posterior probability values are shown at the nodes. Thickened lines indicate branches in the strict consensus tree and the consensus tree of the Bayesian analysis. The tree was rooted to C. brachiatica (CBS 123700) and C. brassicae (CBS 111869). Ex-type isolates are indicated in bold.

sampled every 100 generations. All runs converged on the same likelihood score and tree topology, and therefore the first 1 200 trees were discarded as the burn-in phase of each analysis and posterior probabilities determined from the remaining trees. The phylogenetic analyses included 36 partial gene sequences for each gene region, with the exception of LSU, representing all known Gliocladiopsis spp. (Table 1). Calonectria brachiatica (CBS 123700) and C. brassicae (CBS 111869) were used as outgroup taxa in both parsimony and Bayesian analyses. All novel sequences were deposited in GenBank and the alignments in TreeBASE (http://www.treebase.org).

For the LSU sequence data, distance analyses using neighbour-joining was performed in MEGA v. 5.0 (Tamura et al. 2011) using the incorrect 'p', Juke-Cantor and Kimura-2-parameter substitution models. The robustness of the trees were evaluated by 1 000 bootstrap replicates. The LSU sequence dataset consisted of 33 partial gene sequences representing 10 genera of which Nectria cinnabarina (CBS 278.48) was used as outgroup.

Taxonomy

Morphological characterisation of the Gliocladiopsis isolates was done using single conidial cultures prepared on MEA and synthetic nutrient-poor agar (SNA; Nirenburg 1981). Inoculated plates were incubated at room temperature and examined after 7 d. Gross morphological characteristics were determined by mounting fungal structures in clear lactic acid and 30 measure-
mements at ×1 000 magnification were made for each isolate using a Zeiss Axioscope 2 microscope with interference contrast (DIC) illumination. The 95 % confidence levels were determined and extremes of conidial measurements are given in parentheses. For other structures, only extremes are presented. Colony characteristics were noted after 7 d of growth on MEA at 24 °C and colony colours determined using the colour charts of Rayner (1970). Descriptions, nomenclature and illustrations were deposited in MycoBank (Crous et al. 2004).

RESULTS

Phylogeny

Amplicons of approximately 500–550 bases were determined for BTUB, HIS3, ITS and TEF 1-α, and 850 for LSU. The phylogenetic analysis included 34 ingroup taxa, with C. brachyta (CBS 123700) and C. brassicae (CBS 111869) as outgroup taxa. Comparisons of the 70 % reciprocal bootstrap NJ tree topologies of the individual gene regions showed no conflict and therefore the sequence datasets were combined. The resulting dataset of 2 242 characters, including alignment gaps, consisted of 1 713 constant and 93 parsimony-uninformative characters. Analysis of the 436 parsimony-informative characters yielded one tree (TL = 748; CI = 0.826; RI = 0.914; RC = 0.755), which is presented in Fig. 2. For the Bayesian analysis, a HKY+I+G model was selected for BT and TEF 1-α, GTR+I+G for HIS3, and SYM+I+G for ITS which was incorporated into the analysis. The Bayesian consensus tree confirmed both the tree topology and bootstrap support of the strict consensus tree obtained with maximum-parsimony.

In the phylogenetic tree (Fig. 2) the Gliocladiopsis isolates are divided into two main clades. The first main clade (bootstrap support (BS) = 100; posterior probability (PP) = 1.00) contains the ex-type strain of G. sagariensis (CBS 199.55) as well as two isolates (CBS 206.94 and CBS 116104) forming a terminal clade (BS = 98; PP = 1.00) representing a unique phylogenetic species. The second main clade (BS = 82; PP = 0.99) is further divided into two clades. The first of these clades (BS = 57, PP = 0.99) represents the anamorph state of G. tenuis (ex-type IMI 68205; BS = 100; PP = 1.00) as well as a unique single lineage (CBS 111038). The second of these clades (BS = 97; PP = 0.86) is also further divided into five well-supported terminal clades and two unique single lineages. Two of these terminal clades represent G. irregularis (ex-type CBS 755.97; BS = 97; PP = 0.93) and G. sumatrensis (ex-type CBS 754.97; BS = 100; PP = 1.00), respectively. The ex-type strain of the purported teleomorph state of G. tenuis (CBS 116074) is also represented by one of these terminal clades (BS = 93; PP = 0.98), indicating that this ex-type strain represents a distinct species from the ex-type strain of the anamorph state. The remaining two terminal clades and two unique single lineages represent possible new species.

The LSU sequence dataset consisted of 892 characters, representing 32 ingroup taxa from nine genera and N. cinnabarina (CBS 278.48) as outgroup. Distance analyses using the three substitution models resulted in the same tree topology and bootstrap support values and therefore the tree obtained using the Kimura-2-parameter substitution model is presented in Fig. 1. In the tree, all the Gliocladiopsis isolates included, clustered together in one clade (BS = 72) showing a close relationship with Glioccephalotrichum/Lueconectria (BS = 89), and showing a more distant relationship with Calonectria and Cylindrocladiella.

Taxonomy

Based on the phylogenetic inference and morphological observations, numerous Gliocladiopsis isolates included in this study represent novel species. Following the approach of Lombard et al. (2010a–c, 2012) and Crous et al. (2006, 2008, 2009) for other fungal groups, all new species are described in Gliocladiopsis, as this represents the older generic, and best established name for this group of fungi (Saksena 1954).

Gliocladiopsis S.B. Saksena, Mycologia 46: 663. 1954.

=Glioccephalotrichum Crous & C.L. Schoch, Stud. Mycol. 45: 58. 2000.

Type species. Gliocladiopsis sagariensis S.B. Saksena, Mycologia 46: 663. 1954.

Perithecia superficial, in dense groups, obovate to broadly obpyriform; perithelial wall warty, turning red-brown in 3 % KOH+ with a dark red stromatic base, collapsing laterally when dry, consisting of two layers: outer layer of thick-walled textura globulosa, inner layer of compressed cells of textura angularis; ostioral peripheries tubular with rounded ends. Ascii unitunicate, 8-spored, cylindrical, sessile, with flattened apex and a refractive apical papilla. Ascospores uniseriate, hyaline, ellipsoidal, smooth, 1-septate, becoming brown and verrucose with age. Conidiophores penicillate and/or subverticillate, consisting of a septate, hyaline stipe and penicillate and/or subverticillate arrangement of fertile branches, lacking a stipe extension and terminal vesicle. Conidigenous apparatus with several series of asceptate to 1-septate branches, each terminating in 2–7 phialides; phialides doliform to cymbiform to cylindrical, hyaline, asceptate with obvious colarettes, central phialide sometimes extending above the rest. Conidia cylindrical, straight to curved, asceptate to 1-septate, borne in a yellow mass on conidiophores.

Specimen examined. INOX, Madhya Pradesh, Ghatera Forest c. 100 km east of Sagar, from soil, Mar. 1955, S.B. Saksena, culture ex-type CBS 199.55.

Notes — Gliocladiopsis sagariensis was synonymised under G. tenuis by Crous & Wingfield (1993) based on their close morphological resemblance. Phylogenetic inference in this study shows that CBS 199.55, ex-type of G. sagariensis, is distinct from IMI 68205, ex-type of G. tenuis. Based on the description and illustration of Saksena (1954), G. sagariensis can be distinguished from G. tenuis by having shorter phialides (10–15 µm vs 10–25 µm) and secondary branches (8–12 µm vs 10–18 µm) (Crous & Wingfield 1993).

Gliocladiopsis curvata L. Lombard & Crous, sp. nov. — MycoBank MB564399, Fig. 3

Etymology. Name refers to the curved conidia produced by this fungus.

Teleomorph unknown. Conidiophores penicillate without stipe extensions and terminal vesicles. Conidiogenous apparatus with several series of hyaline branches: primary branches asceptate or 1-septate, 17–37 × 2–5 µm; secondary branches asceptate, 12–21 × 2–4 µm, tertiary branches asceptate, 8–14 × 2–3 µm; quaternary branches rare to absent, asceptate, 9–10 × 3 µm; phialides cymbiform, 12–21 × 2–3 µm, arranged in terminal whorls of 2–6 per branch, with minute colarettes. Subverticillate conidiophores absent. Conidia cylindrical, hyaline, smooth with rounded ends, straight to slightly curved, asceptate to 1-septate, (16–)17–21(–23) × 3–5 µm (av. = 19 × 3 µm), lacking a visible abscession scar, but frequently with a flattened base, held in a pale yellow, asymmetrical cluster by colourless slime.

Culture characteristics — Colonies sayal brown to sepia (reverse); chlamydospores extensive, in non-delimited chains. Aerial mycelium dense, off-white to pale luteous.

Specimens examined. ECUADOR, Sabal, sol, 20 June 1997, coll. M.J. Wingfield, isol. P.W. Crous, culture CBS 114464 = CPC 1656. — INDONESIA, Tondano, from soil adjacent to Syzygium aromaticum, coll. M.J. Wingfield,
isol. P.W. Crous, culture CBS 112935 = CPC 4574. — NEW ZEALAND, Auckland, from Archontophoenix purpurea, 30 Jan. 2003. F. Klassen, (CBS H-20907, holotype of G. curvata) culture ex-type CBS 112365 = CPC 10491 = Lynfield 791-B.

Notes — Although isolates of G. curvata were previously treated as G. tenuis, they more closely resemble G. irregularis, by having slightly curved conidia (Crous & Peerally 1996). The conidia of G. curvata (av. = 19 × 3 µm) are longer than those of G. irregularis (av. = 13 × 2.5 µm) and slightly longer than those of G. tenuis (av. = 18 × 2 µm) (Crous & Wingfield 1993, Crous 2002). Gliocladiopsis curvata produces quaternary branches on the conidiogenous apparatus, not reported for G. irregularis (Crous & Peerally 1996), and has no central phialide extending above the others as reported for G. tenuis (Crous & Wingfield 1993, Crous 2002).

Gliocladiopsis curvata

Etymology. Named after Prof. N.E. El-Gholl, who isolated this fungus, and contributed greatly to our knowledge of this generic complex.

Teleomorph unknown. **Conidiophores** penicillate without stipe extensions and terminal vesicles. **Conidiogenous apparatus** with several series of hyaline branches: primary branches aseptate or 1-septate, 17–35 × 3–5 µm; secondary branches aseptate, 12–20 × 2–4 µm, tertiary branches aseptate, 8–16 × 2–3 µm; quaternary branches abundant, aseptate, 6–12 × 2–4 µm; phialides doliiform to cymbiform to cylindrical, 9–49 × 2–4 µm, arranged in terminal whorls of 2–6 per branch, with minute collarettes, central phialide frequently extending above the rest. **Subverticillate conidiophores** absent. **Conidia** cylindrical, hyaline, smooth with rounded ends, straight, aseptate to 1-septate, (18–)19–23(–29) × 2–4 µm (av. = 21 × 3 µm), lacking a visible abscission scar, but frequently with a flattened base, held in a pale yellow, asymmetrical cluster by colourless slime.

Culture characteristics — Colonies sayal brown (reverse); chlamydospores extensive, in non-delimited chains. Aerial mycelium dense and off-white.

Specimen examined. USA, Florida, from Chamaedorea elegans, June 1993, N.E. El-Gholl, (CBS H-20905, holotype of G. elghollii) culture ex-type CBS 116104 = CPC 636 = P93-2051.

Notes — The phylogenetic inference used in this study reveals G. elghollii to be closely related to CBS 199.55 (ex-type of G. sagariensis). Based on the description by Saksena (1954), G. elghollii can be distinguished from G. sagariensis by its larger primary (up to 35 µm vs up to 22 µm) and secondary (up to 20 µm vs up to 12 µm) branches formed on the conidiogenous apparatus. The presence of abundant quaternary branches on the conidiogenous apparatus also distinguishes G. elghollii from other species in the genus.

Gliocladiopsis elghollii L. Lombard & Crous, **sp. nov.** — MycoBank MB564400; Fig. 4

Etymology. Name refers to Indonesia, the country from which the fungus was collected.

Teleomorph unknown. **Conidiophores** penicillate and subverticillate without stipe extensions and terminal vesicles. **Conidiogenous apparatus** with several series of hyaline branches: primary branches aseptate or 1-septate, 17–24 × 3–4 µm; secondary branches aseptate, 13–20 × 2–3 µm, tertiary branches aseptate, 8–15 × 2–3 µm; quaternary branches rare to absent, aseptate, 9–13 × 2–3 µm; phialides cymbiform to cylindrical, 13–21 × 2–4 µm, arranged in terminal whorls of 2–6 per branch, with minute collarettes. **Subverticillate conidiophores** moderate, mostly formed in aerial mycelium, with series of hya-
L. Lombard & P.W. Crous: Phylogeny and taxonomy of the genus Gliocladiopsis

line branches: primary branches aseptate or 1-septate, 18–27 × 3–4 µm; secondary branches aseptate, 16–24 × 2–3 µm; phialides cymbiform, 17–24 × 2–4 µm, arranged in terminal whorls of 1–3 per branch, with minute collarettes. Conidia cylindrical, hyaline, smooth with rounded ends, straight, 1-septate, (11–)13–15(–17) × 2–4 µm (av. = 14 × 3 µm), lacking a visible abscission scar, but frequently with a flattened base, held in a pale yellow, asymmetrical cluster by colourless slime.

Culture characteristics — Colonies luteous to cinnamon (reverse); chlamydospores sparse, forming microsclerotia. Aerial mycelium dense and off-white.

Specimen examined. INDONESIA, from soil, Jan. 1994, coll. A.C. Alfenas, isol. P.W. Crous, (CBS H-20906, holotype of G. indonesiensis), culture ex-type CBS 116090 = CPC 715.

Notes — Gliocladiopsis indonesiensis is morphologically similar to G. irregularis but can be distinguished by the quaternary branches formed on the conidiogenous apparatus, which is not reported for G. irregularis (Crous & Peerally 1996).

Gliocladiopsis mexicana L. Lombard & Crous, sp. nov. — MycoBank MB564402; Fig. 6

Etymology. Name refers to Mexico, the country from which the fungus was collected.

Teleomorph unknown. Conidiophores penicillate without stipe extensions and terminal vesicles. Conidiogenous apparatus with several series of hyaline branches: primary branches aseptate or 1-septate, 12–22 × 3–6 µm; secondary branches aseptate, 9–15 × 2–4 µm, tertiary branches rare to absent, aseptate, 7–14 × 2–4 µm; phialides doliform to cymbiform, 9–15 × 3–4 µm, arranged in terminal whorls of 2–4 per branch, with minute collarettes. Subverticillate conidiophores absent. Conidia cylindrical, hyaline, smooth with rounded ends, straight, 1-septate, (15–)17–19(–21) × 2–4 µm (av. = 18 × 3 µm), lacking a visible abscission scar, but frequently with a flattened base, held in a pale yellow, asymmetrical cluster by colourless slime.

Culture characteristics — Colonies sayal brown to sepia (reverse); chlamydospores extensive, in non-delimited chains. Aerial mycelium dense, off-white to pale luteous.

Specimens examined. MEXICO, Campeche, Holpechén, from soil, Apr. 1994, coll. M.J. Wingfield, isol. P.W. Crous, (CBS H-20908, holotype of G. mexicana), culture ex-type CBS 110938 = CPC 964; Campeche, Holpechén, from soil, Apr. 1994, coll. M.J. Wingfield, isol. P.W. Crous, culture CBS 111131 = CPC 965.

Notes — Gliocladiopsis mexicana is morphologically similar to G. tenuis but can be distinguished based on the number of branches formed on the conidiogenous apparatus. Gliocladiopsis tenuis has quaternary branches (Crous & Wingfield 1993), whereas these were not observed for G. mexicana, which only rarely formed tertiary branches.

Gliocladiopsis pseudotenuis L. Lombard & Crous, nom. nov. — MycoBank MB564403; Fig. 7

Basionym. Glionectria tenuis Crous & C.L. Schoch, Stud. Mycol. 45: 58. 2000.

Etymology. Name reflects the fact that this species resembles G. tenuis.

Specimens examined. CHINA, Hong Kong, from soil, Nov. 1993, coll. M.J. Wingfield, isol. P.W. Crous, (PREM 56381, holotype of teleomorph state) culture ex-type CBS 116074 = CPC 706. — INDONESIA, Warambungan, from soil next to Vanilla sp., ?, coll. M.J. Wingfield, isol. P.W. Crous (CBS H-20904, anamorph state), culture CBS 114763 = CPC 4575.
Notes — *Gliocladiopsis pseudotenuis* is introduced as a new name for *Glionectria tenuis* in the genus *Gliocladiopsis*, which was incorrectly linked to its purported anamorph *G. tenuis* (Schoch et al. 2000). *Gliocladiopsis pseudotenuis* is morphologically similar to *G. tenuis*, but can be distinguished based on the slightly smaller conidia of *G. pseudotenuis* (14–)15–19(–21) × 2–4 µm; av. = 17 × 2 µm) compared to *G. tenuis* (av. = 18 × 2 µm). No quaternary branches were observed on the conidigenous apparatus of *G. pseudotenuis*, and it does not have an elongated central phialide as reported for *G. tenuis* (Crous & Wingfield 1993). However, phylogenetic inference is required to accurately distinguish between these two species.

DISCUSSION

The taxonomy of *Gliocladiopsis* isolates collected from various substrates and countries were investigated in this study using phylogenetic inference and morphological comparisons. This resulted in the identification of seven novel taxa. Following the ‘strict priority’ option as applied by Gräfenhan et al. (2011) and Lombard et al. (2010c, 2012), these novel taxa were named in the anamorph genus *Gliocladiopsis* (Saksena 1954) and not the teleomorph genus *Glionectria* (Schoch et al. 2000). Two unique phylogenetic lineages could not be provided with names in this study as the isolates were sterile.

Based on the multigene phylogeny used here, *G. sagariensis* is reinstated as the type species for the genus. Phylogenetic inference revealed that the ex-type culture of *G. sagariensis* (CBS 199.55) represents a unique lineage separate from the *G. tenuis* s.str. clade. Morphological comparisons, however, were not possible as the ex-type isolate of *G. sagariensis* is sterile and therefore comparisons relied on the description and illustration provided by Saksena (1954). *Gliocladiopsis elghollii*, a novel taxon described here, is closely related to *G. sagariensis*, but could be distinguished morphologically, supported by the multigene sequence data.

Glionectria tenuis was described by Schoch et al. (2000) as the teleomorph state of *Gliocladiopsis tenuis* from a soil isolate collected from China that produced perithecia in culture. With additional sequence data supporting morphological observations *Glionectria tenuis* has been provided with a new name, *Gliocladiopsis pseudotenuis*.

The description of *G. curvata*, *G. elghollii*, *G. indonesiensis*, *G. mexicana* and *G. pseudotenuis* adds five more species to this genus, which only included three taxa prior to this study (Crous & Wingfield 1993, Crous & Peerally 1996, Crous et al. 1997). Previously, the isolates representing these new taxa were treated as *G. tenuis* based on morphological identification only. However, closer investigation of the morphology revealed differences distinguishing them from *G. tenuis*, a decision that was strongly supported by phylogenetic inference.

The first phylogenetic study to include *Gliocladiopsis* isolates by Schoch et al. (2000) used only ITS sequence data to distinguish between *G. irregularis*, *G. sumatrensis* and *G. tenuis*. Based on the phylogeny in that study, *G. irregularis* could not be distinguished from *G. sumatrensis*, whereas variation was seen within the *G. tenuis* clade. In this study, the ITS and BT sequence data could also not distinguish between *G. irregularis* and *G. sumatrensis*, and only 5 of the 11 lineages were recovered. The HIS3 and TEF 1-α sequence data, however, resolved all 11 lineages when the various gene regions were analysed separately (results not shown). The LSU sequence
data showed that the Gliocladiopsis isolates included formed a monophyletic clade, supporting the generic status of the genus. Although a large number of the Gliocladiopsis isolates included in this study were isolated from symptomatic plant material, their relevance as plant pathogens has never been tested. In general, this group of soil-borne fungi has been regarded as secondary pathogens or saprobes (Crous 2002). Pathogenicity trials conducted by Dann et al. (2012), which included Gliocladiopsis isolates, revealed that these isolates were non-pathogenic to avocado plant roots. Inoculation with these isolates, however, improved the overall condition of the plants compared to the controls included. The possibility of using these fungi to improve plant growth in the future, therefore, requires further investigation.

Acknowledgements The authors thank the technical staff, A. van Iperen and Y. Vlug for their invaluable assistance with cultures. We also thank the curator of CABI Bioscience for making the ex-type strain of G. tenuis available for study.

REFERENCES

Agnihothrudu V. 1959. Notes on fungi from North-East India. Transactions of the British Mycological Society 42: 458–462.
Barron GL. 1968. The genera of Hyphomycetes from soil. The Williams & Wilkins Company, Baltimore, USA.
Bugnicourt F. 1939. Les fusarium et cylindrocarpon de l’Indochine. Encyclopédie Mycologique 11: 1–206.
Coller GJ van, Denman S, Groenewald JZ, Lamprecht SC, Crous PW. 2005. Characterisation and pathogenicity of Cylindrocladiella spp. associated with root and cutting rot symptoms of grapevines in nurseries. Australasian Plant Pathology 34: 489–498.
Crous PW. 2002. Taxonomy and pathology of Cylindrocladiella (Calonectria) and allied genera. APS Press, St. Paul, Minnesota, USA.
Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. 2004. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.
Crous PW, Kendrick WB, Aftenas AC. 1997. New species of hyphomycetes associated with Eucalyptus. South African Journal of Botany 63: 286–290.
Crous PW, Peerally A. 1996. Gliocladiopsis irregularis sp. nov. and notes on Cylindrocladium spathiphylli. Mycotaxon 58: 119–128.
Crous PW, Slipper B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves A, Burgess T, Barber P, Groenewald JZ. 2006. Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55: 235–253.
Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Groenewald JZ. 2009. Novel species of Mycosphaerellaceae and Teratosphaeraceae. Persoonia 23: 119–146.
Crous PW, Wingfield MJ. 1993. A re-evaluation of Cylindrocladiella, and a comparison with morphologically similar genera. Mycological Research 97: 433–448.
Crous PW, Wingfield MJ. 1994. A monograph of Cylindrocladium, including anamorphs of Calonectria. Mycotaxon 51: 341–435.
Crous PW, Wood AR, Okada G, Groenewald JZ. 2008. Foliicolous microfungi occurring on Eneophalartos. Persoonia 21: 135–146.
Dann EK, Cooke AW, Forsberg LI, Pegg KG, Tan Y-P, Shivas RG. 2012. Pathogenicity studies in avocado with three nectriaceous fungi, Calonectria illicicola, Gliocladiopsis sp. and Ilyonectria liriodendri. Plant Pathology doi: 10.1111/j.1365-3059.2011.02579.x.
Gräfenhan T, Schroers H-J, Nirenberg Hl, Seifert KA. 2011. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella and Volutella. Studies in Mycology 68: 79–114.
Gueidan C, Roux C, Lutzoni F. 2007. Using multigene phylogeny analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycological Research 111: 1145–1168.
Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method of assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192.
Katoh K, Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26: 1899–1900.
Lombard L, Crous PW, Wingfield BD, Wingfield MJ. 2010a. Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pseudaromana. Studies in Mycology 66: 15–30.
Lombard L, Crous PW, Wingfield BD, Wingfield MJ. 2010b. Phylogeny and systematics of the genus Calonectria. Studies in Mycology 66: 31–69.
Lombard L, Crous PW, Wingfield BD, Wingfield MJ. 2010c. Species concepts in Calonectria (Cylindrocladium). Studies in Mycology 66: 1–14.
Lombard L, Shivas RG, To-Anun C, Crous PW. 2012. Phylogeny and taxonomy of the genus Cylindrocladiella. Mycological Progress doi: 10.1007/s11557-011-0799-1.
Nirenburg Hl. 1981. A simplified method to identify Fusarium spp. occurring on wheat. Canadian Journal of Botany 59: 1599–1609.
Nylander JAA. 2004. MrModeltest v. 2. Programme distributed by the author. Evolutionary Biology Centre, Uppsala University.
Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.
Rayner RW. 1970. A mycological colour chart. Commonwealth Mycological Society, Kew, Surrey, British Mycological Society.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
Saksva SB. 1954. A new genus of Moniliaceae. Mycologia 46: 660–666.
Schoch CL, Crous PW, Wingfield MJ, Wingfield BD. 2000. Phylogeny of Calonectria and selected hypocrealean genera with cylindrical macroconidia. Studies in Mycology 45: 45–62.
Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods), v. 4.0b10. Computer program. Sinauer Associates, Sunderland, Massachusetts, USA.
Tamara K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.
Vitor D, Crous PW, Janse BJH, Zyl WH van, Wingfield MJ, Aftenas AC. 1998. Systematic appraisal of species complexes within Cylindrocladiella. Mycological Research 102: 273–279.
Watanabe T. 1994. Cylindrocladium tenue comb. nov. and two other Cylindrocladium species isolated from diseased seedlings of Phellodendron amurense in Japan. Mycologia 86: 151–156.