A study on Determinants That Effect Klang Valley (Malaysia) Consumer Preference in Rail Industry

Pavithran Sathiaseelan¹, Avitra Dhivia Brhma Dava¹, and Bahri Mahmud¹*

¹Faculty of Business and Information Science, UCSI University, Jalan Menara Gading, 56000 Cheras, Kuala Lumpur, Malaysia.
*Corresponding author's e-mail: bahri@ucsiuniversity.edu.my

Abstract. There are several factors included the services of the railways industry can influence the decision of a customer for choosing specific rail. This study aims to identify the relationship between rail fares, railway reputation, service quality, environmental concern and consumer preference towards rail transport in Klang valley. There are 384 of the respondent from Klang Valley area are participated in the questionnaire survey. SPSS version 22 is used in this study to process the collected data. The data analysis methods included in this study are descriptive analysis, correlation analysis, normality test, reliability test and multiple linear regressions. The result highlighted there is a strong relationship between all the independent variables and dependent variable. Thus, rail fares, railway reputation, service quality and environmental concern are important components for respondents in choosing a specific rail.

1. INTRODUCTION
Klang Valley is located in Kuala Lumpur which is a large urban agglomeration with an estimated population of 7.2 million in 2016 with a population density that is nearly equal to that of the city proper (Kuala Lumpur Population, 2017). There is a variety of transport model choices such as air, water, and land transport, which includes rail, road and off-road transport. Therefore, consumer’s preferences towards rail transportation rely on 4 factors which are flight fares, service quality, airline reputation and environmental concern.

Rail fares define the cash a man pays to go on railway. Key variables impacting travellers travelling for business are reliability, punctuality, schedules, and seating comfort. Travellers travelling for recreation showed that value, seating comfort, unwavering quality, and dependability are most critical to them. Moreover, rail transport should be available to all Malaysians on an equitable basis, and not only to those living in urban centres, the affluent, or the physically able figured out that the young group of travellers would choose to go further to get cheaper rail [1].

Service quality defines is an accomplishment in customer service. It reflects at each administration experience. Service quality measures how well an organization is passed on, stood out from customer wants. Associations that meet or outperform wants are considered to have high organization quality. In the rail business setting the issue is whether administration can see effectively what travellers need and anticipate. In addition, desires fill in as benchmarks or reference focuses for clients. In assessing service quality, travellers think about what they see they get in an administration experience with their desires of that experience. Administration quality can be estimated in light of client observation, client desire, client satisfaction from addressing a need or achieving an objective and client's perspective [2].

Railway reputation has been a shocking one for Malaysia Rail industry. On November 23rd 2017, twelve wagons of a south-bound goods train derailed early today between the Bank Negara and Kuala
Lumpur railway stations, disrupting train services on the line connecting the Segambut, Putra, Bank Negara and Kuala Lumpur stations for an estimated three days. A company's good reputation can help develop and fill in as real points of interest. The railway businesses in Klang Valley, Malaysia are ruled by KTM Komuter, Star LRT, Putra LRT, ERL, ERL Transit, MRT Corporation and KL Monorail.

Environmental concern, any business is required to be feasible. There are various ways to reduce the impact of energy deficiency and environmental issues such as global warming and climate change. Unnecessary noise is the most savage and uncalled for treatment of care which can be caused on either the tired or the impact of prosperity [3]. One of the actions in reducing environmental pollution and energy deficiency is by promoting public transport. Chaturvedi and Kim (2014) claimed that public transportation is an alternative strategy to cater to the transportation demands of developing countries in a sustainable and energy efficient way [4]. As a developing country, Malaysia is attempting to improve the urban public transportation in order to alleviate these problems.

There are four principle factors considered and accepted by individuals who utilize an item or administration while choosing the inclination railroad. Therefore, this study aim to identify the relationship between rail fares, railway reputation, service quality, environmental concern and consumer preference towards rail transport in Klang valley.

2. METHODOLOGY

This study is under the category of explanatory because of the intended to discover the relationship between rail fares, service quality, railway reputation, environmental concern and consumer perception while selecting their preference rail. As a result, the hypotheses have been developed.

Quantitative method is used in this study to examine the relationship between both variables. It also dealt with numbers through the use of questionnaires which helped to collect accurate data.

2.1. Hypothesis
Ho 1: There is a significant relationship between rail fares and consumer preference towards rail transport in Klang valley.
Ho 2: There is a significant relationship between railway reputation and consumer preference towards rail transport in Klang valley.
Ho 3: There is a significant relationship between service quality and consumer preference towards rail transport in Klang valley.
Ho 4: There is a significant relationship between environmental concern and consumer preference towards rail transport in Klang valley.

2.2. Sampling design

2.2.1. Target Population
Particular clusters of individuals who have utilized and experience railway service previously are consumers who stay around Klang Valley area.

2.2.2. Sampling Location
The consumers are being observed from Klang Valley railway. Data collection process was conducted by distributing questionnaires to respondent to be filled up in Klang Valley area [5]. As the information obtained had to be accurate, before they started filling up the questionnaire, a confirmation of respondent nationality would be done.

This study was conducted to analyse the behaviour and preference of respondent towards railway preferences as Klang Valley is chosen as the sampling location. Klang Valley region is said to be situated in an urbanized area. Therefore, the main concerns of the prospects are mostly regarding rail fare, service quality, railway reputation and environmental concern. Residents in Klang Valley are most concerned on price they need to pay, the quality of service, the reputation of the organization and
the environmental issues. Listed concerns above parallel with all dependant variables thus, this is the main reason on the selection of Klang Valley area as the sampling location in this study.

2.2.3. Sampling Size
Approximately 7.2 million is said to be the total population of Klang Valley area. Based on Krejcie & Morgan (1970), when the target population has greater than 1 million, 384 sample size is required [6]. Moreover, to be able to answer the questionnaire based on their knowledge and experience, the chosen respondent should have utilized and experienced railway services before.

2.2.4. Sampling Technique
Convenience sampling is used in this study due to cost effective, easy and simple to conduct as compared to other types of sampling method, there is none complexion in conducting convenience sampling. Convenience sampling method is easy to generate hypothesis and helpful for pilot studies.

2.3. DATA Collection
Convenience sampling method is used for data collection in this study. In other words, it is also prescribed as availability sampling. Generally, this method involves obtaining participants wherever you will be able to notice them at anywhere convenient. Prior to process of subjects selection is identified as none inclusion criteria in convenience sampling method.

2.4. Variable Measure
The questionnaire is separated into three sections, which are section A (Social Demographic Profile), section B (factors that affect consumer preference in railway industry), and section C (consumer preference in railway industry).

In section A, general questions such as demographic information of the respondent in terms of gender, age, academic level, race, monthly income level and employment status are determined by using the Nominal, Ordinal and Ratio Scale.

Then, in section B, ranks of the respondent main concern, such as rail fares, service quality, railway reputation, and environmental concern are examine by using the 5-points likert scales starting with 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly disagree.

Lastly, section C consist questions of dependent variables which is consumer preference towards rail transport. In this section, questions are asked to obtain customers perception towards railway industry. 5-points likert scales starting with 1=strongly disagree, 2=disagree, 3=neutral, 4=agree, and 5=strongly disagree would be utilize in this section as well.

2.5. Pilot Testing
A small-scale testing that is conducted by the researchers prior to the actual research is referred to as pilot testing [7]. Before conducting the main study, it is required to check the validity of survey instrument. To evaluate whether dependent variables have direct relationship with independent variables, pilot testing are to be carried out. In other words, it examined does rail fare, service quality, railway reputation and environmental concern affect consumer perception while selecting their preference rail. To examine the feasibility and suitability of this study, samples of target respondent (\(n = 30 \)) were involved in the pre-test.

2.6. Data Analysis Method

2.6.1. Descriptive Analysis
Basic method for statistical analysis is also known as descriptive analysis. Transferring raw data into useful information that enable readers to easily understand, interpret, and rearrange are involved in descriptive analysis. Through frequency distribution, percentage, mean and standard deviation, the raw data are converted into readable data [8].
2.6.2. Correlation Analysis
One of the data analysis methods used in quantitative research in order to examine the relationship between both variables is also described as correlation analysis. The Pearson’s Moment Correlation Coefficient (PMCC) ranges between +1 and -1. Relationships between both variables are strong if the coefficient falls at +1 and -1. Positive relationship between variables indicates a value of +1, means that an increase in A will directly affect an increase in B. Vice versa, negative relationship between variables indicates, a value of -1, means that an increase in A will directly affect a decrease of B. However, relationship between variables is weaken, when the coefficient falls between +1 and -1. Both variables are completely independent when a value of 0 is represented. It means that variables have no relationship between each other. Statistical Package for the Social Sciences (SPSS) software can be utilized to generate data collected from respondents.

2.6.3. Normality Test
Examines if the samples or data fits the normal distribution is an example of data analysis method called normality test. In alternative words if the data has drawn from the normally distributed populations, normality test is then used to examine. The data will be considered as normal, when the probability (p-value) is greater than 0.05 during the normality test, so not reject the null hypothesis. Vice versa, the data will be considered as abnormal; therefore reject the null hypothesis if the probability (p-value) is lesser than 0.05 during the normality test.

2.6.4. Reliability Test
Examining the internal consistency and reliability of a set of scale or test equipment is described as reliability test [9, 10]. A test cannot be valid yet unreliable whereas a test can be reliable but not necessary valid [11]. Hence, to calculate the intensity and direction of the relationship between two variables, Cronbach’s alpha reliability analysis method will be utilized [12]. The value of Cronbach’s alpha ranges from 0 to 1, lower the coefficient is, the lesser the information are correlated [13]. In contrast, the higher the coefficient is, the more the items have shared covariance.

2.6.5. Multiple Linear Regressions
Multiple Linear Regression is applied in this study to identify the relationship between independent variables (IV) and dependent variables (DV). Furthermore, this test is applied to examine the strength of relationship for the overall regression model.

3. RESULT AND DISCUSSION
The data collected from the survey will be processed using SPSS version 22.

3.1. Pilot Test
Pilot testing was the first approach of analysis that was carried out. The purpose of doing pilot testing is to ensure the feasibility of an approach that will be conducted in a larger scale study. A sample size of 10 to 30 is considered in this study as suggested by Hill [14].

3.1.1. Reliability test
To examine the internal consistency and the reliability of a set of scale or test equipment, reliability test was used. Ranges as 0 to 1 were used, where the higher the coefficient is, the greater the items shared covariance [15-17]. Table 1 shows the reliability test for independent variables and dependent variables. The Cronbach’s alpha value for items under rail fares was 0.902 which indicates as an excellent reliability. Next, service quality has a value of 0.904 which is the highest Cronbach’s value among all the other items which also indicates that the item has an excellent reliability too. Besides, railway reputation has Cronbach’s alpha value of 0.829 and environmental concern has Cronbach’s alpha value of 0.816 which has good reliability as well. Finally, the Cronbach’s alpha value in consumer preference was 0.804 which indicated to be good reliability as it is greater than 0.8. Since all
of the items fall in a Cronbach’s alpha value range 0.8 to 1, thus it shows that the items based on the variables are good and reliable.

Factors	Cronbach’s Alpha
Independent Variable – Rail Fares	0.902
Independent Variable – Service Quality	0.904
Independent Variable – Railway Reputation	0.829
Independent Variable – Environmental Concern	0.816
Dependent Variable – Consumer Preference	0.804

3.1.2. Normality Test
To examine whether the data fits the normal distribution or not, normality test was conducted. Furthermore, it is also used to ensure and examine if the data has drawn from the normally distributed populations. As mentioned by Chua, if the skewness and kurtosis values which are the z-values, falls between the range of -1.96 to +1.96, the data is said to be normally distributed [7].

Table 2 shows the rail fares has a skewness and kurtosis value of 0.378 and 0.615. Next, skewness and kurtosis value of service quality is 0.279 and 0.091. Besides that, railway reputation has a skewness and kurtosis value of 0.014 and 0.079. Moreover, skewness and kurtosis value of environmental concern is 0.520 and -0.428. Finally, skewness and kurtosis value of consumer preference is 0.074 and 0.177.

Variables	Skewness	Kurtosis
IV1 Independent Variable – Rail Fares	0.378	0.615
IV2 Independent Variable – Service Quality	0.279	0.091
IV3 Independent Variable – Railway Reputation	0.014	0.079
IV4 Independent Variable – Environmental Concern	0.520	-0.428
DV Dependent Variable – Consumer Preference	0.074	0.177

3.2. Descriptive Analysis of Respondent’s Demographic Information
Table 3 shows that male respondents are accounted for 48.2% of the total respondents whereas female respondents are accounted for 51.8% of the total population. The range aged from 19 to 25 years old consist of the highest number about 284 respondents with 74% of the total respondents. In this study, there are 50.3% of the respondents are Chinese, 42.7% are Indians, 5.2% are Malay and the remaining are others ethnic such as Iranian, Mauritian, Armenian and Punjabi. Based on Table 3, majority of the respondents are single, contributes by 78.1%. Regarding the education level, Bachelor Degree had the highest frequency of 242 respondents which accounted 63% of the total respondents. There are 3 respondents which accounted 0.8% of the total respondents obtained their professional certificate by taking some special courses.

Characteristics	Category	Frequency (n)	Percentage (%)
Gender	Male	185	48.2
	Female	199	51.8
Age group (years old)	Less than 18	7	1.8
	19 to 25	284	74.0
	26 to 35	38	9.9
	36 to 45	27	7.0
	46 to 55	22	5.7
	56 and above	6	1.6
Ethnic	Malay	20	5.2
	Chinese	193	50.3
Table 3 shows that majority of the respondents falls under RM 0 to RM 1000 which accounted 66.7% of the total respondents as most of them students and has not started working yet. Furthermore, the respondent’s employment status has shown that about 262 of the total respondents which account 68.2% are students. Regarding the respondents’ frequency traveling by rail per year, majority of the respondents used 0 – 1 time per year and 2 – 3 times per year about 44.8% and 36.5% respectively. The purpose of travel signified that about 291 which are the majority of the respondents which accounts 75.8% of the total respondents are leisure travellers.

3.2.1. Reliability Test
Table 4 shows the Cronbach’s alpha value for items under rail fares was 0.902 which indicates as an excellent reliability. Next, service quality has a value of 0.904 which is the highest Cronbach’s value among all the other items which also indicates that the item has an excellent reliability too. Besides, railway reputation has Cronbach’s alpha value of 0.827 and environmental concern has Cronbach’s alpha value of 0.815 which means good reliability as well. Finally, the Cronbach’s alpha value in consumer preference was 0.801 which indicated to be good reliability as it is greater than 0.8. Since all of the items fall in a Cronbach’s alpha value 0.8 to 1, thus it shows that the items based on the variables are good and reliable.

Table 4. Reliability Test for Independent Variables and Dependent Variables (N = 384)

Factors	Cronbach’s Alpha
Independent Variable – Rail Fares	0.902
Independent Variable – Service Quality	0.904
3.2.2. Normality Test

Table 5 shows that rail fares has a skewness and kurtosis value of 0.342 and 0.174. Next, skewness and kurtosis value of service quality is 0.239 and -0.229. Besides that, railway reputation has a skewness and kurtosis value of -0.008 and -0.181. Moreover, skewness and kurtosis value of environmental concern is 0.397 and -0.610. Finally, skewness and kurtosis value of consumer preference is 0.049 and -0.108.

Table 5. Normality Test for Dependent Variables and Independent Variables (N = 384)

Variables	Skewness	Kurtosis
IV1 Independent Variable – Rail Fares	0.342	0.174
IV2 Independent Variable – Service Quality	0.239	-0.229
IV3 Independent Variable – Railway Reputation	-0.008	-0.181
IV4 Independent Variable – Environmental Concern	0.397	-0.610
DV Dependent Variable – Consumer Preference	0.049	-0.108

3.3. Pearson’s Correlation Test

Table 6 shows a significant relationship between rail fare and consumer preference (r=0.906, r>0.5) which results in a strong relationship between rail fares and consumer preference is shown. Then, the relationship between service quality and consumer preference is strong (r=0.871, r>0.5) as it clarifies a significant relationship between these two variables. Service quality has the least correlation value among all, which indicates that the respondents put less concern on the service quality compare to other variables. Furthermore, there is a significant relationship between railway reputation and consumer preference (r=0.993, r>0.5). Also, it has the highest correlation value among other variables, which indicates that consumers are really concern on its railway reputation. Finally, the strength of relationship between environmental concern and consumer preference is strong (r=0.886, r>0.5) which shows a significant relationship as well.

Table 6. Summary result of Pearson Correlation Test of the relationship between Independent and Dependent Variable

Variables	Pearson Correlation
IV1 Rail Fares	0.906
IV2 Service Quality	0.871
IV3 Railway Reputation	0.993
IV4 Environmental Concern	0.886

3.4. Multiple Linear Regression Analysis

The multiple correlation coefficients (R), is an estimation of the combined influence of two or more independent variables on the dependent variable. Table 7 shows that the value of R is 0.995. This indicated that both the independent and dependent variables have a strong positive relationship between each other. Next, R-squared is a statistical measure of how nearly the data are fitted into the regression line. R-squared ranges from 0% to 100%, the higher the R-square obtained, the better the model fit the data. The R-square shows a value of 0.991. It indicates that the four predictors, which is rail fare, service quality, railway reputation, and environmental concern contributed to 81.7% of the variance in the consumer preference criterion variable. The remaining 18.3% (100% - 81.7% = 18.3%) of change cannot be predicted as it may be caused by other variables that were not considered in this study. The adjusted R square is 0.991. The standard error gives a value of 0.30090, which provides an indication of how much the point estimate is likely to vary from the corresponding population parameter.
Table 7. Model Summary of Regression Analysis

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.995a	.991	.991	.30090

a. Predictors: (Constant), IV4, IV2, IV3, IV1
b. Dependent Variable: DV

The T value shows a good result if the data falls above +2 or below -2. Based on Table 8, the t value for rail fare (IV1) is 10.200, follow by service quality (IV2) -12.395, railway reputation (IV3) 73.571 and environmental concern -0.464 (IV4). It shows that rail fare (IV1), service quality (IV2) and railway reputation (IV3) has a significant relationship with the dependent variable as its T value are above +2 and below -2. However, the T value for environmental concern (IV4) is in between +2 and -2 which shows a strong negative relationship with the dependent variable.

The model of multiple linear regression equation can be shown as Y (Consumer Preference) = X1 (0.341) + X2 (-0.335) + X3 (0.989) + X4 (-0.006) + C (0.151).

Table 8. Coefficients of Regression Analysis

Model 1	Unstandardized Coefficients	Standardized Coefficients	t	Sig.	
	B	Std. Error	Beta		
(Constant)	.151	.081			
IV1	.341	.033	.401	10.200	.061
IV2	-.335	.027	-.409	-12.395	.000
IV3	.989	.013	.996	73.571	.000
IV4	-.006	.012	-.006	-4.64	.000

Table 8 shows that if rail fares increase in one unit, it would result an increase of 0.341 unit on consumer preference. Moreover, if service quality increase in one unit, it would result a decrease of -0.335 unit on consumer preference. Furthermore, if railway reputation increases in one unit, it would result an increase of 0.989 unit on consumer preference. Lastly, if environmental concern increases in one unit, it would result decrease of -0.006 unit on consumer preference.

From Table 8, the railway reputation (IV3) has the highest beta value among all the variables, which has a value of 0.989. This indicated that railway reputation has the most impact on consumer preference. However, service quality (IV2) obtained the lowest beta value among all other independent variables, which has a value of -0.335. It means that service quality has the least influential effect toward consumer preference.

4. CONCLUSION

In conclusion, the outlined hypotheses are accepted where the rail fares, railway reputation, service quality and environmental concern are significant and are important components for respondents in choosing a specific rail. Furthermore, consumer preferences towards railway transportation have made a major impact to the perception of consumers in Klang Valley, Malaysia as it corresponds to the growth of city. This study shows that railway reputation is an important determinant in choosing a specific rail. Moreover, the consumers however will forego cheaper travel expenses and better courtesies.

References
[1] Warnock-Smith, D. & Potter, A., 2005. An exploratory study into airport choice factors for European low-cost airlines. *Journal of Air Transport Management*, 11(6), pp.388–392.
[2] Sachdev, S.B. and H.V. Verma, 2004. Relative importance of service quality dimensions: a multi-sectoral study. *Journal of Services Research*, 4(1): 93-116.
[3] R. Khaiwal, T. Singh, J.P. Tripathy, S. Mor, S. Munjal, B. Patro, and N. Panda, Assessment of noise pollution in and around a sensitive zone in North India and its non-auditory impacts, *Sci. Total Environ.*, 566–567, 981–987 (2016)
[4] Chaturvedi, V. and Kim, S.H. Long Term Energy and Emission Implications of A Global Shift to Electricity-Based Public Rail Transportation System. *Energy Policy*, 81, 176–185 (2014).

[5] Wahab, S.N., Lay, Y.F., Koay, W.L., & Hussin, A.A.A, (2019). Usage of Pedestrian Bridge among the Urban Commuters in Kuala Lumpur. *International Journal of Operational Research*, DOI: 10.1504/IJOR.2021.10019276.

[6] Krejcie, R.V., & Morgan, D.W., (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement. Small-Sample Techniques (1960). *The NEA Research Bulletin*, Vol. 38.

[7] Chua, Y. P. Asas Statistik Penyelidikan (2nd Ed.). (Mc Graw-Hill, Kuala Lumpur, 2012).

[8] Baker, T., 1994. Doing Social Research 2nd ed., New York: McGraw-Hill.

[9] Teo, A.C., Tan, G.W.H., Cheah, C.M., Ooi, K.B & Yew, K.T. (2012). Can the Demographic and Subjective Norms Influence the Adoption of Mobile Banking?, *International Journal of Mobile Communications*, Vol. 10 No. 6, 578-597.

[10] Wahab, S.N., Sham, R., Hussin, A.A.A, Ismail, S., & Rajendran, S.D. (2018). Urban Transportation: An Analysis on Bike Sharing Usage in Klang Valley. *International Journal of Supply Chain Management*, 7(5), 470-476.

[11] Malhotra, N.K., & Peterson, M (2006). Basic Marketing Research: A decision-making approach (2nd ed.). New Jersey: Prentice Hall

[12] Ling E.K. & Wahab, S.N. (2018). Integrity of Food Supply Chain: Going beyond Food Safety and Food Quality. *International Journal of Productivity and Quality Management*, DOI: 10.1504/IJPQM.2019.10019297.

[13] Hair, J. F. Jr., Babin, B., Money, A. H., & Samouel, P. (2003). Essentials of business research methods. New Jersey: John Wiley & Sons.

[14] Hill, R. (1998). “What Sample Size is ‘Enough’ in Internet Survey Research”? *Interpersonal Computing and Technology: An electronic Journal for the 21st Century*. Available at: http://www.emoderators.com/ipct-j/1998/n3-4/hill.html

[15] Wahab, S.N., & Khong W.L. (2018). Multiple Linear Regression Modelling of Parcels’ Distribution Design Factors and online Shopping Customer Satisfaction. International Journal of Modelling in Operations Management, 7(2), 95-110.

[16] Wahab, S.N, Olugu, E.U., Lee, W.C., & Tan, S.Y. (2018). Big data analytics adoption in Malaysia warehousing industry. *The 32nd International Business Information Management Association Conference, IBIMA 2018*, 15-16 November, 2349-2365, Seville Spain.

[17] Sham, R., Wahab, S.N., Anuar, M.M., Tong, W.H. & Yap, J.T. (2019). Safety Indicator for Taxi Users in Urban Area. *International Journal of Supply Chain Management*, 8(2), pp. 1035-1041.