Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

A search is presented for a right-handed W boson (W_R) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or $\mu\mu$) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of W_R production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses m_N equal to half the W_R mass m_{W_R} ($m_N = 0.2$ TeV), m_{W_R} is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the W_R mass to date.

Published in the Journal of High Energy Physics as doi:10.1007/JHEP04(2022)047.
1 Introduction

Left-right (LR) symmetric models [1-4], which extend the electroweak sector of the standard model (SM) by a right-handed SU(2) group, provide a possible explanation for parity violation in the SM as the consequence of spontaneous symmetry breaking at a multi-TeV mass scale. These models predict a heavy partner of the SM W boson, a heavy, right-handed gauge boson W_R that is coupled to right-handed fermions. In addition, LR models also provide an explanation for the small mass of SM neutrinos through the seesaw mechanism [5-7], which requires the existence of a heavy right-handed neutrino (N) for each lepton flavor. The heavy neutrinos couple exclusively to leptons of the corresponding flavor, and have different masses.

The coupling strength of the W_R boson to the SM particles (g_R) is a free parameter in most LR models. We assume LR symmetry, such that g_R is the same as the SM coupling constant g_L.

![Feynman diagram](image)

Figure 1: Feynman diagram for the production of a heavy neutrino via the decay of a W_R boson.

The dominant production process for the W_R boson at the CERN LHC is the Drell–Yan (DY) mechanism. The leading order Feynman diagram for this process is shown in Fig. 1. Although the potential Majorana nature of the right-handed neutrinos implies that the final-state charged leptons can have the same sign, we do not impose charge requirements on the final-state leptons, in order to remain sensitive to the widest possible range of models. Searches for W_R bosons and heavy neutrinos have been performed by the ATLAS [8-10] and CMS [11-15] Collaborations using LHC proton-proton (pp) collision data at $\sqrt{s} = 8$ and 13 TeV. These searches have excluded regions of phase space with masses of the right-handed W boson and heavy neutrino (m_{W_R} and m_N, respectively) up to several TeV.

In this paper, we extend the region of parameter space covered in the previous 2016 CMS search for W_R bosons in events with two same-flavor leptons (e or μ) and two jets using 2016 data [12], by including the regime where the W_R boson is heavy compared to the N ($m_{W_R}/m_N \geq 10$). In this scenario, the heavy neutrinos are produced with large transverse momentum (p_T) and their decay products are collimated along their direction of motion. Therefore, the heavy neutrino decay is reconstructed in a single jet and identified using jet substructure techniques, similar to those discussed in Refs. [16-18] and previously applied in Ref. [10]; we refer to these as “boosted” events, in contrast to “resolved” events where the two jets from the heavy neutrino decay are reconstructed separately. The inclusion of boosted events leads to significant improvements in the search sensitivity in the region where $m_N < 0.5$ TeV. To obtain maximum sensitivity, a statistical combination of the resolved and boosted results is performed. For this analysis we use the data sample collected in 2016–2018 with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$. Tabulated results are provided in HEPData [19].
2 The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system and the relevant kinematic variables, can be found in Ref. \[20\]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (\(\eta \)) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger system \[21\]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed time interval of less than 4 \(\mu s \) \[22\]. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage.

3 Simulated samples

All signal events are simulated using the MadGraph5_aMC@NLO 2.6.5 \[23\] Monte Carlo (MC) event generator at leading order (LO) following the prescriptions described in Refs. \[17, 18\] for various \(m_{W_R} \) hypotheses in the range from 0.2 to 7.0 TeV, with \(m_N \) ranging from 0.1 TeV up to \(m_{W_R} \) where \(N \) is a Majorana neutrino. The events are generated in final states with two same-flavor (SF) leptons (ee or \(\mu \mu \)). The production cross sections are scaled to next-to-LO (NLO) in quantum chromodynamics (QCD) using \(K \) factors obtained from the same generator.

The background samples are simulated with several MC event generators. The Z and W boson production associated with jets is simulated with the MadGraph5_aMC@NLO 2.2.2 (2.4.2) generator for up to four parton-level jets at LO for the 2016 (2017–2018) samples, with the MLM matching scheme between jets from matrix element calculations and parton showers \[24\]. The POWHEG 2.0 \[25, 28\] generator is used to model the t\(\bar{t} \) production, as well as tW and t-channel single top quark production at NLO. The s-channel single top quark production is generated with the MadGraph5_aMC@NLO generator at NLO precision. The inclusive decay of t\(\bar{t} \) produced in association with a W and Z boson is simulated by MadGraph5_aMC@NLO at NLO and LO precision, respectively. The PYTHIA generator \[29\] is used to simulate diboson processes (WW, WZ, and ZZ) at LO. Triple vector boson (WWW, WWZ, WZZ, and ZZZ) events are generated at NLO using MadGraph5_aMC@NLO.

The generators used for the signal and background processes are interfaced with PYTHIA 8.226 (8.230) \[29\] to simulate the parton showering and hadronization in the 2016 (2017–2018) samples. The PYTHIA parameters for the underlying event description are set with either the CUETP8M1 \[30\] tune for the 2016 samples or the CP5 \[31\] tune for the 2017–2018 samples. For the description of the parton distribution functions (PDFs), the NNPDF3.0 \[32\] PDF sets are used to produce all simulated background samples in 2016. For the 2017–2018 background samples, the NNPDF3.1 next-to-NLO (NNLO) PDF sets \[33\] are used. The NNPDF3.1 NNLO PDF sets are used to simulate all the signal samples.

All simulated samples were processed through a Geant4 simulation \[34\] of the CMS detector. Multiple pp collisions may occur in the same or adjacent LHC bunch crossings (pileup) and contribute to the overall event activity in the detector. This effect is included in the simulation,
and the distribution of the number of pileup interactions is adjusted to match the one observed in the data, assuming a total inelastic cross section of 69.2 mb \cite{35}.

\section{Event reconstruction and object selection}

For this search, the events were selected at the trigger level by requiring the presence of a high-momentum lepton in the event. A combination of three triggers that require an isolated electron with $p_T > 27\, (32)$ GeV, an electron with $p_T > 115$ GeV, or a photon with $p_T > 175\, (200)$ GeV is used to collect events that contain at least one electron in 2016 (2018). In 2017, two triggers with the requirement of an isolated electron with $p_T > 35$ GeV or a photon with $p_T > 200$ GeV were used. The single-electron triggers differ in their usage of isolation requirements: while the lower-threshold trigger requires electrons to be well isolated, the higher-threshold trigger does not, which gives an improved efficiency at high p_T. Similarly, the single-photon trigger avoids reliance on the online track reconstruction and increases the overall efficiency for electrons with $p_T > 200$ GeV. Events containing at least one isolated muon are collected by triggers that require a muon with a minimum p_T of 50 GeV.

The candidate vertex with the largest value of summed physics-object p_T^2 is taken to be the primary pp interaction vertex. The physics objects used for this determination are the jets, clustered using the jet finding algorithm \cite{36,37} with the tracks assigned to candidate vertices as inputs, as well as the remaining single tracks (including identified leptons), and the associated missing transverse momentum, taken as the negative vector sum of the p_T of those objects.

The global event reconstruction (also called particle-flow event reconstruction) \cite{38} aims to reconstruct and identify each individual particle in an event, with an optimized combination of all subdetector information. In this process, the identification of the particle type (photon, electron, muon, charged and neutral hadron) plays an important role in the determination of the particle direction and energy. Photons (e.g., coming from π^0 decays or from electron bremsstrahlung) are identified as ECAL energy clusters not linked to the extrapolation of any charged particle trajectory to the ECAL. Each electron (e.g., coming from photon conversions in the tracker material or from B hadron semileptonic decays) is identified as a primary charged particle track and potentially many ECAL energy clusters corresponding to this track extrapolation to the ECAL and to possible bremsstrahlung photons emitted along the way through the tracker material. Muons (e.g., from B hadron semileptonic decays) are identified as tracks in the central tracker consistent with either a track or several hits in the muon system, and associated with calorimeter deposits compatible with the muon hypothesis. Charged hadrons are identified as charged particle tracks neither identified as electrons, nor as muons. Finally, neutral hadrons are identified as HCAL energy clusters not linked to any charged hadron trajectory, or as a combined ECAL and HCAL energy excess with respect to the expected charged hadron energy deposit.

The energy of each photon is obtained from the ECAL measurement. The energy of each electron is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The momentum of each muon is obtained from the trajectory of the corresponding track in the magnetic field. The energy of each charged hadron is determined from a combination of the momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy of each neutral hadron is obtained from the corresponding corrected ECAL and HCAL...
energies.

For each event, the jets are clustered from the reconstructed particles using the infrared and collinear safe anti-k_T algorithm \cite{ref36, ref37} with a distance parameter of 0.4 (AK4 jets) or 0.8 (AK8 jets). The jet momentum is determined as the vectorial sum of all particle momenta in the jet, and is found from simulation to be, on average, within 5–10% of the true momentum over the whole p_T spectrum and detector acceptance \cite{ref39}.

Pileup interactions can contribute additional tracks and calorimetric energy deposits to the reconstructed jets, increasing their apparent momentum. To mitigate this effect for AK4 jets, charged particles identified as originating from pileup vertices are discarded and an offset correction is applied to correct for the remaining contributions. Jet energy corrections are derived by comparing the average measured energies of jets in data with those of simulated jets. In situ measurements of the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to account for any residual differences in jet energy scale in data and simulation \cite{ref39}.

The typical jet energy resolution is 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV. Additional selection criteria are applied to each jet to remove jets potentially dominated by anomalous contributions from various subdetector components or reconstruction failures \cite{ref40}. For AK8 jets, the pileup-per-particle identification algorithm \cite{ref41, ref42} is used to mitigate the effect of pileup at the reconstructed-particle level, making use of local shape information, event pileup properties and tracking information.

The momentum resolution for electrons with $p_T \approx 45$ GeV from $Z \rightarrow ee$ decays ranges from 1.7% to 4.5%. It is generally better in the barrel region than in the endcaps, and also depends on the bremsstrahlung energy emitted by the electron as it traverses the material in front of the ECAL \cite{ref43}.

Muons are measured in the range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The single-muon trigger efficiency exceeds 90% over the full η range, and the subsequent efficiency to reconstruct and identify muons is greater than 96%. Matching muons to tracks measured in the silicon tracker results in a fractional p_T resolution of 1% in the barrel and 3% in the endcaps for muons with p_T up to 100 GeV, and of better than 7% in the barrel for muons with p_T up to 1 TeV \cite{ref44}.

To reconstruct resolved W_R candidates, events with two leptons and at least two AK4 jets are selected. Events with additional leptons are rejected, and if more than two jets exist, the two jets with the highest p_T are used. The leading (subleading) lepton is required to have $p_T > 60 (53)$ GeV and to be within the fiducial acceptance ($|\eta| < 2.4$). Electrons are rejected if the cluster lies in the range $1.44 < |\eta| < 1.57$, which corresponds to the transition region between the barrel and endcap sections of the ECAL, where the performance is degraded. To suppress muons originating from hadron decays or pion punch-through in jets, the p_T sum of additional tracks that originate at the PV and are inside a cone of $\Delta R < 0.3$, where $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, is required to be less than 10% of the muon p_T. Electrons are also required to be isolated, i.e., the p_T sum of all tracks in a cone of $\Delta R < 0.3$ centered on the electron candidate, not associated with the electron and originating from the PV, must be below 5 GeV. Dedicated identification algorithms, optimized for the selection of high-momentum leptons \cite{ref43, ref45} are used. The two jet candidates must each have $p_T > 40$ GeV and be within $|\eta| < 2.4$. To avoid overlaps between leptons and jets, they are required to be separated in ΔR by at least 0.4. An event is considered resolved if it contains four well-separated final-state objects as described above.

Events that fail the resolved selection criteria are used to reconstruct the boosted W_R candidates. The $N \rightarrow \ell qq'$ decay is reconstructed as a single AK8 jet. The boosted signature requires
an AK8 jet with $p_T > 200$ GeV and two leptons that have the same p_T requirements as in the resolved search. The leading lepton is required to be separated in the azimuthal direction by $\Delta \phi > 2.0$ with respect to the AK8 jet. The subleading lepton, with the isolation requirement removed, is required to fall within the AK8 jet cone. The AK8 jet with the highest p_T is chosen when multiple jets satisfy the conditions above, and events with additional isolated leptons are rejected. The jet is groomed \[46\] to remove soft and wide-angle radiation using the soft-drop algorithm \[47, 48\], with the soft radiation fraction parameter z set to 0.1 and the angular exponent parameter β set to 0. The groomed jet is used to compute the soft-drop jet mass (m_{SD}) and each AK8 jet is required to have $m_{SD} > 40$ GeV, to optimize the signal selection and background rejection.

The lepton subjet fraction (LSF$_3$) algorithm \[49\] is used to determine the consistency of the jet with three subjets, where one subjet is dominated by the four-momentum of the lepton. This algorithm clusters the constituents of a jet into three subjets using the exclusive-k_T algorithm, and LSF$_3$ is defined as the ratio of the lepton p_T to its associated subjet $p_T (\ell) / p_T (\text{subjet})$. Jets with higher LSF$_3$ values are considered to have a more isolated lepton within the jet and therefore the lepton is assumed to originate from a prompt decay. A selection of LSF$_3 > 0.75$ is required for all signal AK8 jets, which removes more than 81 (94)% of dielectron (dimuon) background events that have leptons originating from the decay of particles with non-negligible lifetimes (nonprompt leptons), while keeping 87 (92)% of signal events with $(m_{W_R}, m_N) = (5.0, 0.2)$ TeV.

For the resolved events we reconstruct an invariant mass distribution from the two leptons and two AK4 jets ($m_{\ell\ell jj}$), and for the boosted events we consider the distribution in invariant mass of the lead lepton and AK8 jet ($m_{\ell J}$). We search for deviations from the expected SM background in these distributions in the mass regions with $m_{\ell\ell jj} > 0.8$ TeV. To reduce the contribution from Z boson production, we also impose a requirement of $m_{\ell\ell} > 0.4$ (0.2) TeV in the resolved (boosted) search. For the signal samples with $m_{W_R} = 5.0$ TeV and $m_N = 0.2$ (3.0) TeV, the product of acceptance and efficiency is 21–22 (49–50)% and 34–43 (54–67)% in the dielectron and dimuon boosted (resolved) signal regions (SRs), respectively, depending on the year.

5 Background estimation

The dominant SM processes that contribute to the background in each SR are DY production of lepton pairs with additional jets in the final state (DY+jets), leptonic decays of pair-produced top quarks, and single top production with an associated W boson. These backgrounds are estimated from simulation and the modeling is corrected using control regions (CRs), as described below. A schematic diagram presenting the CRs and SR is shown in Fig. 2.

The $t\bar{t}$ events with at least one hadronically decaying W boson, s- and t-channel production of a single top quark, and W boson production in association with jets can contribute to the SRs when nonprompt leptons from, e.g., semileptonic decays of B hadrons, are misidentified as signal-like leptons. These types of background are labeled as nonprompt, and are estimated by means of simulated samples. Multiboson and $t\bar{t}$ production in association with a gauge boson are rare SM processes that can also contribute to the SRs, and their contributions are obtained from simulation as well.

To correct the mismodeled p_T distribution of the Z boson in the DY simulation \[50, 51\], we apply a K factor as a function of the generator-level Z boson p_T (“$p_T(Z)$ correction”). The NLO-to-LO K factor in QCD is obtained by taking the ratio between DY samples simulated to NLO and LO precision. The uncertainties from renormalization and factorization scale, PDF
To constrain the normalization of the $t\bar{t}$ and tW backgrounds in each SR, a corresponding control region (flavor CR) dominated by $t\bar{t}$ and tW events is defined by requiring the two leptons to have different flavors (the green region in Fig. 2). For the boosted analysis, separate control regions are used for the dielectron and dimuon searches. These require a lead muon plus a jet with an electron contained within it (e-jet), and a lead electron plus a jet with a muon contained within it (μ-jet), respectively. The normalizations of these backgrounds are extracted by performing a simultaneous fit across the SRs and flavor CRs.
The invariant mass distributions in the DY CRs, flavor CRs, and the SRs are simultaneously fitted (Section 7). The \(m_{\ell\ell jj} \) and \(m_{\ell Jd} \) distributions after the fitting (post-fit) in the DY CRs and flavor CRs are shown in Figs. 3 and 4 respectively.

![Graphs showing invariant mass distributions](image)

Figure 3: The \(m_{\ell\ell jj} (m_{\ell Jd}) \) distributions in the resolved (boosted) DY CRs are shown in the upper (lower) row. Results in the ee (\(\mu\mu \)) channels are shown in the left (right) plots. The hatched uncertainty bands on the simulated background histograms include statistical and systematic components.

6 Systematic uncertainties

The \(m_{\ell\ell jj} (m_{\ell Jd}) \) distribution is used to perform a binned maximum likelihood fit in the resolved (boosted) SR. The shapes of the invariant mass distributions are affected by a number of systematic uncertainties. Each systematic uncertainty is treated either as uncorrelated or fully correlated across the three data-taking years. A complete list of systematic uncertainties and their correlations is given in Table [1].
Figure 4: The reconstructed mass of the W_R boson in the resolved (upper), boosted with e-jet (lower left), and boosted with μ-jet (lower right) flavor CR.

The integrated luminosities for the 2016, 2017, and 2018 data-taking years have 1.2–2.5% individual uncertainties [52–54], while the overall uncertainty for the 2016–2018 period is 1.6%. The uncertainties in the expected signal and background yields associated with the pileup simulation are estimated by varying the total cross section of the inelastic scattering used in the simulation by $\pm5\%$. The resultant uncertainties are 0.0–0.9% and 0.2–1.1% in signal and background yields, respectively.

The lepton trigger, reconstruction, identification, and isolation efficiencies are measured in both data and simulation using $Z \rightarrow \ell^+\ell^-$ ($\ell = e$ or μ) events and data-to-simulation scale factors are applied to all simulation samples to correct any discrepancies. The uncertainties in the lepton scale factors are evaluated by changing the scale factors by ±1 standard deviation from their nominal values. The momenta of leptons are varied in the simulation within their ±1 standard deviation from their nominal value, and the differences in the mass distributions are taken as the uncertainties. The uncertainties in the jet energy scale and resolutions [39] affect the signal and background yields by less than 5%. The jet selection efficiency associated with
the requirement $\text{LSF}_3 > 0.75$ is measured by taking a sample of AK8 jets from boosted W bosons in $t\bar{t}$ events where one W boson decays leptonically and the other decays hadronically and injecting a simulated lepton (e or μ) in the direction of the hadronically decaying W boson, to emulate the 3-prong jet topology. The data-to-simulation scale factor obtained for the LSF_3 requirement, ranging from 0.95 to 1.05, is then applied to the simulated samples. The resulting uncertainty in the yields amounts to less than 10% for both the signal and background.

As described in Section 5, the two corrections applied to the DY simulation are varied within their uncertainties to estimate their impact on the invariant mass distributions.

Owing to the imperfect description of nonprompt leptons in the simulation, a conservative 100% normalization uncertainty, cross-checked with a dedicated control region with zero b jets, is assigned to the nonprompt background estimation. A 50% uncertainty is assigned to the rare SM background. The theoretical uncertainties originating from the strong coupling constant α_S, PDFs, and renormalization/factorization scales are the dominant sources of uncertainties for the signal shape estimate. The PDF and α_S uncertainties are estimated from the standard deviation of the weights from the PDF replicas provided in the NNPDF3.1 PDF set [33], following the PDF4LHC procedure [55].

Table 1: Summary of the relative uncertainties in the total yields of the signal and background (bkgd) predictions. The uncertainties are given for the resolved (boosted) SR. The values for the signal correspond to $m_W^R = 5$ TeV. The range given for each systematic uncertainty source covers the variation across the years and the year-to-year treatment is shown as either fully correlated (C) or uncorrelated (U). The EW1, EW2, and EW3 entries are the uncertainties from the $\mathcal{O}(\alpha^2)$ Sudakov terms, the NLO portion of the nNLO EW uncertainty, and the uncertainty in the Sudakov approximation at nNLO, respectively.

Source	Process	Corr.	ee bkgd. (%)	ee signal (%)	$\mu\mu$ bkgd. (%)	$\mu\mu$ signal (%)		
Integrated luminosity	All	C	1.6 (1.6)	1.6 (1.6)	1.6 (1.6)	1.6 (1.6)		
Electron reconstruction	All	C	1.0–1.6 (0.5–0.8)	0.8–1.4 (0.4–0.8)	—	—		
Electron energy resolution	All	C	<0.1 (<0.3)	<0.1 (<0.1)	—	—		
Electron energy scale	All	C	0.5–1.9 (0.5–2.4)	0.0–2.0 (0.0–2.0)	—	—		
Electron identification	All	C	3.1–3.3 (1.8–1.9)	4.1–4.4 (2.1–2.4)	—	—		
Electron trigger	All	C	0–0.1 (0.2–0.4)	<0.1 (0.1–0.2)	—	—		
Muen reconstruction	All	C	—	—	0.4–1.0 (0.3–0.7)	4.4–36.8 (5.6–30.7)		
Muenon momentum scale	All	U	0.8–1.4 (0.5–0.8)	0.8–1.4 (0.4–0.8)	—	—		
Muenon identification	All	C	0.0–0.2 (0.1–0.2)	0.2–1.0 (0.1–0.2)	0.2–1.0 (0.1–0.2)	0.2–1.0 (0.1–0.2)		
Muenon isolation	All	C	0.1–0.2 (0.0–0.1)	0.1–0.2 (0.0–0.1)	0.1–0.2 (0.0–0.1)	0.1–0.2 (0.0–0.1)		
Muenon trigger	All	U	0.5–2.5 (0.5–2.5)	0.5–3.5 (0.5–3.5)	0.1–0.2 (0.1–0.2)	0.1–0.2 (0.1–0.2)		
Jet energy scale	All	U	0.8–1.8 (0.8–1.8)	0.8–2.8 (0.8–2.8)	0.8–2.8 (0.8–2.8)	0.8–2.8 (0.8–2.8)		
Jet energy resolution	All	U	0.1–0.2 (0.1–0.2)	0.1–0.2 (0.1–0.2)	0.1–0.2 (0.1–0.2)	0.1–0.2 (0.1–0.2)		
Jet mass scale	All	U	0.0–0.2 (0.0–0.2)	0.0–0.2 (0.0–0.2)	0.0–0.2 (0.0–0.2)	0.0–0.2 (0.0–0.2)		
LSF scale factor	All	C	<0.1 (0.0–0.1)	<0.1 (0.0–0.1)	<0.1 (0.0–0.1)	<0.1 (0.0–0.1)		
Pileup modeling	All	C	0.0–0.1 (0.0–0.1)	0.0–0.1 (0.0–0.1)	0.0–0.1 (0.0–0.1)	0.0–0.1 (0.0–0.1)		
$p_T(Z)$ correction, MC stat.	DY+jets	C	0.6–2.0 (0.6–2.0)	0.6–2.0 (0.6–2.0)	0.6–2.0 (0.6–2.0)	0.6–2.0 (0.6–2.0)		
$p_T(Z)$ correction, renorm./fact. scales	DY+jets	C	6.3–7.1 (6.7–7.3)	6.1–7.1 (6.8–7.4)	6.1–7.1 (6.8–7.4)	6.1–7.1 (6.8–7.4)		
$p_T(Z)$ correction, PDF replicas	DY+jets	C	0.6–2.0 (0.6–2.0)	0.6–2.0 (0.6–2.0)	0.6–2.0 (0.6–2.0)	0.6–2.0 (0.6–2.0)		
$p_T(Z)$ correction, PDF replicas	DY+jets	C	0.8–4.7 (0.8–5.2)	0.8–4.7 (0.8–5.2)	0.8–4.7 (0.8–5.2)	0.8–4.7 (0.8–5.2)		
$p_T(Z)$ correction, EW1 [51]	DY+jets	C	<0.1 (<0.1)	<0.1 (<0.1)	<0.1 (<0.1)	<0.1 (<0.1)		
$p_T(Z)$ correction, EW2 [51]	DY+jets	C	0.3 (0.3)	0.3 (0.3)	0.3 (0.3)	0.3 (0.3)		
$p_T(Z)$ correction, EW3 [51]	DY+jets	C	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)		
DY reshape	DY+jets	C	8.5–9.1 (10.1–11.6)	8.5–9.1 (9.7–11.6)	8.5–9.1 (9.7–11.6)	8.5–9.1 (9.7–11.6)		
Nonprompt background normalization	Nonprompt	U	—	—	—	—		
Rare SM background normalization	Others	C	50 (50)	50 (50)	50 (50)	50 (50)		
PDF replicas	Signal	C	5.9–11.9 (8.8–40.3)	5.9–11.9 (8.8–40.3)	5.9–11.9 (8.8–40.3)	5.9–11.9 (8.8–40.3)		
$	s_s	$	Signal	C	0.0–0.2 (0.2–1.3)	0.0–0.2 (0.2–1.3)	0.0–0.2 (0.2–1.3)	0.0–0.2 (0.2–1.3)
Renorm./fact. scales	Signal	C	0.0–0.1 (0.3–2.3)	0.0–0.1 (0.3–2.3)	0.0–0.1 (0.3–2.3)	0.0–0.1 (0.3–2.3)		
7 Results

A maximum-likelihood fit is performed on the $m_ℓℓjj (m_ℓj)$ distributions in the resolved (boosted) SRs and CRs, with the systematic uncertainties described in Section 6 treated as nuisance parameters. The background-only post-fit invariant mass distributions are shown in Fig. 5 and no significant excess over the background expectations is observed. A simulated signal distribution corresponding to mass values at the limit of sensitivity is shown for comparison. The shape of this distribution is very similar for the resolved and the boosted analysis, with the peak falling in the last bin. The enhancement visible around 2 TeV in the resolved distribution is due to sculpting of the W_R off-shell mass distribution. The upper limits on the product of the cross section for W_R production and the branching fractions $\sigma(pp \to W_R)B(W_R \to ee(\mu\mu)qq')$ for various m_{W_R} and m_N hypotheses are obtained using the distributions of the likelihood ratio calculated using the asymptotic approximation [56] and the CL$_s$ criterion [57, 58]. The excluded phase space as a function of m_{W_R} obtained from the expected and observed upper limits at 95% confidence level (CL) is shown in Fig. 6. With $m_N = m_{W_R}/2$, the observed (expected) lower limit at 95% CL on the mass of the W_R is 4.7 (5.2) TeV and 5.0 (5.2) TeV for the electron and muon channels, respectively; for $m_N = 0.2$ TeV, limits exclude the phase space up to $m_{W_R} = 4.8$ (5.0) and 5.4 (5.3) TeV for the electron and muon channels. The local p-value of the signal strength, as a function of m_{W_R} and m_N, is obtained from fits to the data with the signal strength at each point treated as a free parameter. We observe the most extreme p-value to occur in the electron channel for the $(m_{W_R}, m_N) = (6.0, 0.8)$ TeV mass point and to be 1.58×10^{-3}, corresponding to a local significance of 2.95σ. The look-elsewhere effect [59] is taken into account by using pseudo-experiments to calculate the probability under the background-only hypothesis of observing a similar or larger excess in the electron channel across the full analysis mass range. This probability is 2.7×10^{-3}, corresponding to a global significance of 2.78σ. The upper limits across the entire (m_{W_R}, m_N) plane are shown in Fig. 7. The results are compared with previous searches for W_R bosons and heavy neutrinos performed by the ATLAS Collaboration [9] using LHC pp collision data at $\sqrt{s} = 13$ TeV and the excluded regions from this analysis in m_{W_R}, with $m_N = m_{W_R}/2$, match these previous results in the electron channel and extend them by 0.3 TeV in the muon channel. Furthermore, for values of m_N less than 0.5 TeV, the introduction of the boosted analysis provides a significant increase in sensitivity, extending the range of m_{W_R} excluded in this region beyond 4.8 and 5.0 TeV in the electron and muon channels, respectively.
Figure 5: The background-only post-fit $m_{\ell\ell} (m_{ll})$ distributions in the resolved (boosted) SR are shown in the upper (lower) plot. Results for the dielectron (dimuon) channel are shown on the left (right). Statistical and systematic uncertainties in the expected background yields are represented by the hatched band. The simulated signal distribution is scaled up by a factor of five to enhance visibility.
Figure 6: The expected (black dashed line) and the observed (black solid line) 95% CL upper limits on the product of the cross section for \(W_R \) production and the branching fractions for the electron channel (left) and muon channel (right) from the combination of the resolved and boosted categories. The plots in the upper (lower) row are the results for the \(m_N = m_{W_R}/2 \) (\(m_N = 0.2 \text{ TeV} \)) mass point, which correspond to the resolved (boosted) \(W_R \) topology. The green (inner) and yellow (outer) bands indicate the 68 and 95% coverage of the expected upper limits. The red solid lines represent the values expected from the theory [17].
Figure 7: The observed 95% CL upper limits on the product of the production cross sections and the branching fractions of a right-handed W_R boson divided by the theory expectation for a coupling constant g_R equal to the SM coupling of the W_R boson (g_L), for the electron channel (left) and muon channel (right). The observed exclusion regions are shown for the resolved (solid green), boosted (solid blue), and combined (solid black) channels, together with the expected exclusion region for the combined result (dotted black). The dash-dotted lines represent the 68% coverage of the boundaries of the expected exclusion regions. The observed exclusion regions obtained in the previous search performed by the CMS Collaboration [12] are bounded by the magenta lines. The biggest improvement can be seen in the $m_N < 0.5$ TeV region, where the new boosted category greatly improves the sensitivity over the previous result.

8 Summary

A search for right-handed bosons (W_R) and heavy right-handed neutrinos (N) in the left-right symmetric extension of the standard model has been presented. The analysis is based on proton-proton collision data collected at $\sqrt{s} = 13$ TeV by the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. The final state consists of events with two same-flavor leptons (ee or $\mu\mu$) and two quarks, and is identified through two regions: the resolved region, where all four objects are well separated, and the boosted region, where the heavy neutrino decay is identified using jet substructure techniques applied to large-area jets. The addition of the boosted region greatly improves the search sensitivity in the region where $m_N < 0.5$ TeV. No significant excess over the standard model background expectations is observed in the invariant mass distributions. Upper limits are set on the products of the W_R and N production cross sections and their branching fraction to two leptons and two quarks assuming that couplings are identical to those of the standard model. For N masses m_N equal to half the W_R mass (m_{W_R}) ($m_N = 0.2$ TeV), m_{W_R} is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the W_R mass to date.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and
other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MBM, ROSATOM, and RFBR (Russia); MEST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFI grant 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, projects no. 14.W03.31.0026 and no. FSFW-2020-0008, and the Russian Foundation for Basic Research, project No.19-42-703014 (Russia); MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] J. C. Pati and A. Salam, “Lepton number as the fourth “color””, Phys. Rev. D 10 (1974) 275, doi:10.1103/PhysRevD.10.275.
[2] R. N. Mohapatra and J. C. Pati, “A natural left-right symmetry”, Phys. Rev. D 11 (1975) 2558, [doi:10.1103/PhysRevD.11.2558]

[3] G. Senjanović and R. N. Mohapatra, “Exact left-right symmetry and spontaneous violation of parity”, Phys. Rev. D 12 (1975) 1502, [doi:10.1103/PhysRevD.12.1502]

[4] W.-Y. Keung and G. Senjanović, “Majorana neutrinos and the production of the right-handed charged gauge boson”, Phys. Rev. Lett. 50 (1983) 1427, [doi:10.1103/PhysRevLett.50.1427]

[5] R. N. Mohapatra and G. Senjanović, “Neutrino mass and spontaneous parity nonconservation”, Phys. Rev. Lett. 44 (1980) 912, [doi:10.1103/PhysRevLett.44.912]

[6] A. Das, P. S. B. Dev, and R. N. Mohapatra, “Same sign versus opposite sign dileptons as a probe of low scale seesaw mechanisms”, Phys. Rev. D 97 (2018) 015018, [doi:10.1103/PhysRevD.97.015018], arXiv:1709.06553

[7] M. Gell-Mann, P. Ramond, and R. Slansky, “Complex spinors and unified theories”, Conf. Proc. C 79027 (1979) 315, [doi:10.1142/9789812836854_0018], arXiv:1306.4669

[8] ATLAS Collaboration, “Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV”, JHEP 07 (2015) 162, [doi:10.1007/JHEP07(2015)162], arXiv:1506.06020

[9] ATLAS Collaboration, “Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 01 (2019) 016, [doi:10.1007/JHEP01(2019)016], arXiv:1809.11105

[10] ATLAS Collaboration, “Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV”, Phys. Lett. B 798 (2019) 134942, [doi:10.1016/j.physletb.2019.134942], arXiv:1904.12679

[11] CMS Collaboration, “Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at $\sqrt{s} = 8$ TeV”, Eur. Phys. J. C 74 (2014) 3149, [doi:10.1140/epjc/s10052-014-3149-z], arXiv:1407.3683

[12] CMS Collaboration, “Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at $\sqrt{s} = 13$ TeV”, JHEP 05 (2018) 148, [doi:10.1007/JHEP05(2018)148], arXiv:1803.11116

[13] CMS Collaboration, “Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 01 (2019) 122, [doi:10.1007/JHEP01(2019)122], arXiv:1806.10905

[14] CMS Collaboration, “Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying τ leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 03 (2017) 077, [doi:10.1007/JHEP03(2017)077], arXiv:1612.01190
[15] CMS Collaboration, “Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 07 (2017) 121, doi:10.1007/JHEP07(2017)121, arXiv:1703.03995

[16] A. Ferrari et al., “Sensitivity study for new gauge bosons and right-handed Majorana neutrinos in pp collisions at $\sqrt{s} = 14$ TeV”, Phys. Rev. D 62 (2000) 013001, doi:10.1103/PhysRevD.62.013001

[17] O. Mattelaer, M. Mitra, and R. Ruiz, “Automated neutrino jet and top jet predictions at next-to-leading-order with parton shower matching in effective left-right symmetric models”, 2016, arXiv:1610.08985

[18] M. Mitra, R. Ruiz, D. J. Scott, and M. Spannowsky, “Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models”, Phys. Rev. D 94 (2016) 095016, doi:10.1103/PhysRevD.94.095016, arXiv:1607.03504

[19] “HEPData record for this analysis”, 2021, doi:10.17182/hepdata.114866

[20] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[21] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02365

[22] CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 15 (2020) P10017, doi:10.1088/1748-0221/15/10/P10017, arXiv:2006.10165

[23] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301

[24] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569

[25] S. Alioli, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092

[26] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450

[27] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions”, JHEP 09 (2009) 111, doi:10.1088/1126-6708/2009/09/111, arXiv:0907.4076 [Erratum: doi:10.1007/JHEP02(2010)011].

[28] S. Frixione, G. Ridolfi, and P. Nason, “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126, doi:10.1088/1126-6708/2007/09/126, arXiv:0707.3088
[29] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, \url{doi:10.1016/j.cpc.2015.01.024} | arXiv:1410.3012

[30] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, \url{doi:10.1140/epjc/s10052-016-3988-x} | arXiv:1512.00815

[31] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, \url{doi:10.1140/epjc/s10052-019-7499-4} | arXiv:1903.12179

[32] NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, \url{doi:10.1007/JHEP04(2015)040} | arXiv:1410.8849

[33] NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, \url{doi:10.1140/epjc/s10052-017-5199-5} | arXiv:1706.00428

[34] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, \url{doi:10.1016/S0168-9002(03)01368-8}

[35] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV”, JHEP 07 (2018) 161, \url{doi:10.1007/JHEP07(2018)161} | arXiv:1802.02613

[36] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, JHEP 04 (2008) 063, \url{doi:10.1088/1126-6708/2008/04/063} | arXiv:0802.1189

[37] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, \url{doi:10.1140/epjc/s10052-012-1896-2} | arXiv:1111.6097

[38] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, \url{doi:10.1088/1748-0221/12/10/P10003} | arXiv:1706.04965

[39] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, \url{doi:10.1088/1748-0221/12/02/P02014} | arXiv:1607.03663

[40] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.

[41] D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identification”, JHEP 10 (2014) 059, \url{doi:10.1007/JHEP10(2014)059} | arXiv:1407.6013

[42] CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, JINST 15 (2020) P09018, \url{doi:10.1088/1748-0221/15/09/P09018} | arXiv:2003.00503.

[43] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P06005, \url{doi:10.1088/1748-0221/10/06/P06005} | arXiv:1502.02701

[44] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P06015, \url{doi:10.1088/1748-0221/13/06/P06015} | arXiv:1804.04528
[45] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at \(\sqrt{s} = 7 \) TeV”, *JINST* 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071

[46] G. P. Salam, “Towards jetography”, *Eur. Phys. J. C* 67 (2010) 637, doi:10.1140/epjc/s10052-010-1314-6, arXiv:0906.1833

[47] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, “Towards an understanding of jet substructure”, *JHEP* 09 (2013) 029, doi:10.1007/JHEP09(2013)029, arXiv:1307.0007

[48] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, “Soft drop”, *JHEP* 05 (2014) 146, doi:10.1007/JHEP05(2014)146, arXiv:1402.2657

[49] C. Brust et al., “Identifying boosted new physics with non-isolated leptons”, *JHEP* 04 (2015) 079, doi:10.1007/JHEP04(2015)079, arXiv:1410.0362.

[50] CMS Collaboration, “Measurements of differential Z boson production cross sections in proton-proton collisions at \(\sqrt{s} = 13 \) TeV”, *JHEP* 12 (2019) 061, doi:10.1007/JHEP12(2019)061, arXiv:1909.04133

[51] J. M. Lindert et al., “Precise predictions for V+jets dark matter backgrounds”, *Eur. Phys. J. C* 77 (2017) 829, doi:10.1140/epjc/s10052-017-5389-1, arXiv:1705.04664

[52] CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at \(\sqrt{s} = 13 \) TeV in 2015 and 2016 at CMS”, *Eur. Phys. J. C* 81 (2021) 800, doi:10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927

[53] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at \(\sqrt{s} = 13 \) TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.

[54] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at \(\sqrt{s} = 13 \) TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2017.

[55] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, *J. Phys. G* 43 (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865

[56] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].

[57] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006

[58] A. L. Read, “Presentation of search results: the CLs technique”, *J. Phys. G* 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313

[59] E. Gross and O. Vitells, “Trial factors for the look elsewhere effect in high energy physics”, *Eur. Phys. J. C* 70 (2010) 525, doi:10.1140/epjc/s10052-010-1470-8, arXiv:1005.1891
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam, J.W. Andrejkovic, T. Bergauer, S. Chatterjee, K. Damanakis, M. Dragicevic, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, D. Schwarz, S. Tempel, W. Waltenberger, C.-E. Wulz

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, T. Janssen, T. Kello, A. Lelek, H. Rejeb Sfar, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, J. D’Hondt, M. Delcourt, H. El Fahami, S. Lowette, S. Moortgat, A. Morton, D. Müller, A.R. Sahasransu, S. Tavernier, W. Van Doninck

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, L. Favart, A. Grebenyuk, A.K. Kals, K. Lee, M. Mahdavikhorrami, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, J. Knolle, L. Lambrechts, G. Mestdagh, M. Niedziela, C. Roskas, A. Samalan, K. Skovpert, M. Tytgat, B. Vermassen, L. Wezenbeek

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Benecke, A. Bethani, G. Bruno, F. Bury, C. Caputc, P. David, C. Delaere, I.S. Donertas, A. Giammanci, K. Jaffel, Sa. Jain, V. Lemaître, K. Monda, J. Prisciandaro, A. Taliercio, M. Teklishyn, T.T. Tran, P. Vischia, S. Wertz

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. Brandao Malbouisson, W. Carvalho, J. Chinellato, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiac, S. Fonseca De Souza, C. Mora Herrera, K. Mota Amarilo, L. Mundim, H. Nogima, P. Rebello Teles, A. Santoro, S.M. Silva Do Amaro, A. Sznajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista (a), Universidade Federal do ABC (b), São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
T. Cheng, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, C. Dozen, Z. Hu, J. Martins, Y. Wang, K. Yi

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Cher, F. Iemmi, A. Kapoor, D. Leggat, H. Liao, Z.-A. Liu, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, China, Zhejiang, China
Z. Lin, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencz, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, K. Christoforou, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, J. Mouse, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egypt
tian Network of High Energy Physics, Cairo, Egypt
S. Abu Zeid14, S. Elgammal15

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy16, M.A. Mahmoud16

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik17, R.K. Dewanjee17, K. Ehahta, M. Kadastik, S. Nandan, C. Nielsen, J. Pata, M. Raidal18, L. Tani, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola19, L. Forthoorm20, H. Kirschenmann20, K. Osterberg20, M. Voutilainen20

Helsinki Institute of Physics, Helsinki, Finland
S. Bharthuar, E. Brücker21, F. García22, J. Havukainen22, M.S. Kim22, R. Kinnunen, T. Lampén, K. Lassila-Perini22, S. Lehti22, T. Lindén, M. Lotti, M. Martikainen, M. Myllämäki, J. Ott22, H. Síkonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka23, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola24, M. Besançon, F. Couderc25, M. Dejardin, D. Denegri, J.L. Faure, F. Ferr25, S. Ganjour, P. Gras, G. Hamel de Monchenault25, P. Jarry, B. Lenzi25, E. Locci, J. Malcles, J. Rander, A. Rosowsky25, M.Ö. Sahin25, A. Savoy-Navarro16, M. Titov16, G.B. Yu16

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
S. Ahuja26, F. Beaudette27, M. Bonanomi27, A. Buchot Perraguin, P. Busson, A. Cappati, C. Charlot27, O. Davignon, B. Diab, G. Falmagne27, S. Ghosh, R. Granier de Cassagnac28, A. Hakimi, I. Kuchert28, J. Motta, M. Nguyen28, C. Ochando28, P. Paganini28, J. Rembser, R. Salerno29, U. Sarkar29, J.B. Sauvan29, Y. Siros29, A. Tarabini, A. Zabi, A. Zghiche29

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram30, J. Andrea, D. Apparu, D. Bloch31, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard31, D. Darej, J.-C. Fontaine17, U. Goerlach, C. Grimault, A.-C. Le Bihan, E. Nibigire32, P. Van Hove32

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
E. Asilar33, S. Beauceron34, C. Bernet35, G. Boudoul, C. Camen, A. Carle, N. Chanor35, D. Contardo, P. Depasse36, H. El Mamouni, J. Fay, S. Gasiorowicz37, M. Gouzevitch38, B. Ille, I.B. Laktineh, H. Lattaud39, A. Lesauvage40, M. Lethuillier40, L. Mirabito, S. Perries, K. Shchablo, V. Sordini41, L. Torretotot42, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
I. Bagaturia18, I. Lomidze, Z. Tsamalaidze13

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta, L. Feld43, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert, J. Schulz, M. Teroerde44

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Dodonova, D. Eliseev, M. Erdmann45, P. Fackeldey46, B. Fischer, S. Ghosh46, T. Hebbeker47, K. Hoepfner, F. Ivone, L. Mastrolorenzo, M. Merschmeyer48, A. Meyer48, G. Mocellin, S. Mondal, S. Mukherjee49, D. Noll50, A. Novak, T. Pook50, A. Pozdnyakov50
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, K. Farkas, M.M.A. Gadallah, S. Lőkös, P. Major, K. Manda, A. Mehta, G. Pasztor, A.J. Rádl, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszprémi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, D. Fasanella, J. Karancsi, J. Molnár, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsányi, B. Ujvari

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair, Bindhu, A. Nayak, P. Saha, N. Suri, S.K. Swain, D. Vats

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Meena, K. Sandeep, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwa, B.C. Choudhary, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Dutta, B. Gomber, M. Maity, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, V. Kumar, D.K. Mishra, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, M. Kumar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee

Indian Institute of Science Education and Research (IISER), Pune, India
K. Alpana, S. Dubey, B. Kansal, A. Laha, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Isfahan University of Technology, Isfahan, Iran
A. Alimena, M. Avanzini, M. Bagliesi, R. Bagnoli, M. Barrasi, M. Bassi, E. Bentivegna, C. Betti, M. Biancotto, V. Bindi, M. Bonacorsi, C. Bonati, M. Bozzo, G. Brando, D. Brandolisio, G. Bruni, E. Bruni, S. Buontempo, S. Caffo, M. Causa, C. Ceccarelli, F. Cerretani, A. Cerrato, P. Cerroni, D. Cevolani, A. Chiaveri, M. Chierici, F. Chiarotti, C. Chiorino, N. Cipriani, M. Ciprandi, A. Cislaghi, S. Ciocci, G. Ciafaloni, G. Cipolletti, A. Ciucu, F. Cividino, I. Cioffi, G. Colonna, E. Colombo, M. Colombo, F. Comelli, G. Condorelli, M. Conigli, M. Contessa, G. Conti, A. Cossutti, F. Cottini, M. Cottoloni, L. Cottoloni, R. Costantini, M. Costantini, U. Costa, A. Cotana, M. Covarelli, G. Covello, V. Covello, L. Cucuzza, G. Cuglieri, A. Cuneo, M. Cupo, M. D’Alessandro, G. Dateo, R. Davico, A. Davide, S. Dell’Oca, E. Deppisch, G. De Franco, G. De Franceschi, A. De Florio, E. De Giorgi, C. De Leo, G. De Mauro, A. De Maria, D. De Marchi, M. De Marchi, M. De Mauro, G. De Nittis, A. De Pasquale, G. De Rosis, M. De Sciascio, M. De Stefano, M. De Tommasi, M. De Tommasi, G. Dedovich, A. Dell’Olio, M. Del Re, R. Dell’Oro, A. De Marchi, M. De Nardis, M. Del Zotto, G. De Filippis, A. De Felice, M. De Filippis, M. De Gregorio, M. De Laurenzi, A. De Liberato, M. De Lucchi, S. De Pasquale, C. De Ponte, R. De Ritis, M. De Risi, G. De Rosa, A. De Spagnuolo, L. De Tommasi, C. De Tommasi, L. De Tommasi, M. De Tommasi, M. De Tommasi, G. De Vito, A. De Vittorio, G. Del Piero, E. Del Re, M. Del Re, G. Del Sole, S. Del Zotto, M. Del Zotto, G. Dell’Olio, G. Dell’Oro, A. Dell’Orio, M. Dell’Oro, G. Dell’Oro, A. Dell’Oro, M. Dell’Oro, G. Dell’Oro, A. Dell’tuo
di Trento, Trento, Italy
P. Azzi, N. Bacchetta, D. Bisello, P. Bortignon, A. Bragagnolo, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, G. Grosso, S.Y. Hoh, L. Layer, E. Lusiani, M. Margoni, A.T. Meneguzso, J. Pazzini, P. Ronchese, R. Rossin, F. Simonett, G. Strong, M. Tosi, H. Yarar, M. Zanetti, P. Zotto, A. Zucchetta, G. Zumerle

INFN Sezione di Pavia, Pavia, Italy, Università di Pavia, Pavia, Italy
C. Aime, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFN Sezione di Perugia, Perugia, Italy, Università di Perugia, Perugia, Italy
P. Asenov, G.M. Bilei, D. Ciangottini, L. Fanò, M. Magherini, G. Mantovani, V. Mariani, M. Menichelli, F. Moscatelli, A. Piccinelli, M. Presilla, A. Rossi, A. Santocchia, D. Spiga, T. Tedeschi

INFN Sezione di Pisa, Pisa, Italy, Università di Pisa, Pisa, Italy, Scuola Normale Superiore di Pisa, Pisa, Italy, Università di Siena, Siena, Italy
P. Azzurri, G. Bagliesi, V. Bertacchi, L. Bianchini, T. Boccali, E. Bossini, R. Castaldi, L. Riccio, R. Del’Orso, M.R. Di Domenico, S. Donato, A. Giassi, F. Ligabue, E. Manca, G. Mandorli, D. Matos Figueiredo, A. Messineo, F. Palla, S. Parolai, G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, A. Scribano, N. Shafiei, P. Spagnolo, R. Tanchini, G. Tonelli, N. Turini, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Rome, Italy, Sapienza Università di Roma, Rome, Italy
P. Barria, M. Campana, F. Cavallari, D. Del Re, E. Di Marco, M. Diemoz, E. Longo, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, C. Quaranta, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, R. Tramontano

INFN Sezione di Torino, Torino, Italy, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Bellora, J. Berenguer Antequera, C. Biuno, N. Cartiglia, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, F. Legger, C. Mariotti, S. Maselli, E. Migliore, E. Monteil, M. Monteno, M.M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, M. Ruspa, K. Shchelina, F. Siviero, V. Sola, A. Solano, D. Soldi, A. Staiano, M. Tornago, D. Trocino, A. Vagnerini

INFN Sezione di Trieste, Trieste, Italy, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, G. Sorrentino, F. Vazzoler

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon
Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea, Seoul, Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
W. Jang, D.Y. Kang, Y. Kang, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, J.A. Merlin, I.C. Park, Y. Roh, M.S. Ryu, D. Song, I.J. Watson, S. Yang

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait, Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
K. Dreimanis, V. Veckalns

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvia, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, M. León Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomino

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sánchez Hernández

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck
University of Canterbury, Christchurch, New Zealand
P.H. Butler
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas
AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bielańska, M. Bluś, B. Boimska, M. Górski, M. Kazana, M. Szlepet, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araújo, P. Bargassa, D. Bastos, A. Bolett, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonard, T. Niknejad, M. Pisanu, J. Seixas, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, D. Budkouski, I. Golutvin, I. Gorbunov, V. Karjavine, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, M. Savina, D. Seitoa, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, B.S. Yuldashev, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, D. Kirpichnikov, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, A. Stepenov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, R. Chistov, A. Oskin, P. Parygin, S. Polikarpov, E. Popova

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin
Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, A. Kozyrev, I. Ovtin, O. Radchenko, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, D. Elumakhov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitski, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Alvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colinc, B. De La Cruz, A. Delgado Peris, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Jose, J. Leon Holgado, D. Moran, Á. Navarro Tobar, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sanchez Navas, L. Urda Gomez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuesta, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernandez, E. Palencia Corteioro, C. Ramón Alvarez, V. Rodriguez Bouza, A. Soto Rodriguez, A. Trapote, N. Trevisani, C. Vico Villalba

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderof, J. Duarte Campderros, M. Fernandez, C. Fernandez Madrazi, P.J. Fernandez Manteca, A. Garcia Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, P. Matorras Cuevas, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz Jimenez, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
M.K. Jayananda, B. Kailasapathy, D.U.J. Sonnadara, D.D.C. Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, J. Alimena, E. Auffray, G. Auzinger, J. Baechler, P. Baillon†, D. Barney, J. Bendavid, M. Bianco, A. Bocci, T. Camporesi, M. Capeans Garrido, G. Cerminara, N. Chernyavskaya, S.S. Chhibra, M. Cipriani, L. Cristella, D. d’Enterria, A. Dabrowski, A. David, A. De Roeck, M.M. Defranceschi, M. Deile
Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, I. Hos, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci
C. Zorbilmez

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, S. Bologna, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder, S. Harper, M.-L. Holmberg, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M.H. Hassanshahi, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, D.G. Monk, J. Nash, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, A. Tapper, K. Uchida, T. Virdee, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, Texas, USA
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, B. McMaster, N. Pastika, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, Alabama, USA
A. Buccilli, S.I. Cooper, D. Di Croce, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, Massachusetts, USA
A. Akpinar, A. Albert, D. Arcard, C. Cosby, Z. Demiragli, E. Fontanesi, D. Gastler, S. May, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, A. Tsatsos, S. Yuan, D. Zou

Brown University, Providence, Rhode Island, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, U. Heintz, J.M. Hogan
F. Ravera, A. Reinsvold Hall, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Straif, L. Taylor, S. Tkaczyk, N.V. Trar, L. Uplegger, E.W. Vaandering, H.A. Weber

University of Florida, Gainesville, Florida, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamurc, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, E. Koenig, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, A. Muthirakalayil Madhu, N. Rawal, D. Rosenzweig, S. Rosenzweig, J. Rotter, K. Shi, J. Sturdy, J. Wang, E. Yigitbasi, X. Zuo

Florida State University, Tallahassee, Florida, USA
T. Adams, A. Askew, R. Habibullah, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prospe, C. Schiber, O. Viazlo, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, Florida, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy, M. Hohmann, R. Kumar Verma, D. Noonan, M. Rahmani, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, Illinois, USA
M.R. Adams, H. Becerril Gonzalez, R. Cavanaugh, S. Dittmer, O. Evdokimov, C.E. Gerbel, D.A. Hangal, D.J. Hofman, A.H. Merrit, C. Mills, G. Oh, T. Roy, S. Rudrabhatla, M.B. Tonjes, N. Varelas, J. Viinikainen, X. Wang, Z. Wu, Z. Ye

The University of Iowa, Iowa City, Iowa, USA
M. Alhusseini, K. Dilisz, R.P. Gandrajula, O.K. Koseyan, J.-P. Merlo, A. Mestvirishvili, J. Nachtman, H. Ogul, Y. Onel, A. Penzo, C. Snyder, E. Tiras

Johns Hopkins University, Baltimore, Maryland, USA
O. Amram, B. Blumenfeld, L. Corcodilos, J. Davis, M. Eminizer, A.V. Gritsar, S. Kyriacou, P. Maksimovic, J. Roskes, M. Swartz, T. G. Vami

The University of Kansas, Lawrence, Kansas, USA
A. Abreu, J. Anguiano, C. Baldenogro Barrera, P. Baringer, A. Bean, A. Bylinkir, Z. Flowers, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, M. Lazarovits, C. Le Mahieu, C. Lindsey, J. Marquez, N. Minafra, M. Murray, M. Nickel, C. Rogan, C. Royon, R. Salvatici, S. Sanders, E. Schmitz, C. Smith, J.D. Tapia Takaki, Q. Wang, Z. Warner, J. Williams, G. Wilson

Kansas State University, Manhattan, Kansas, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam

Lawrence Livermore National Laboratory, Livermore, California, USA
F. Rebasoo, D. Wright

University of Maryland, College Park, Maryland, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. End, N.J. Hadley, S. Jabeer, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, C. Palmer, M. Seidel, A. Skuja, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
D. Abercrombie, G. Andreassi, R. Bi, W. Buszcz, I.A. Cali, Y. Chere, M. D’Alfonso, J. Eysermans, C. Freer, G. Gomez Ceballos, M. Goncharov, P. Harris, M. Hu, M. Klute, D. Kovalisky, J. Krupa, Y.-J. Lee, C. Mironov, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, J. Wang, Z. Wang, B. Wyslouch
University of Minnesota, Minneapolis, Minnesota, USA
R.M. Chatterjee, A. Evans, J. Hiltbrand, Sh. Jair, M. Krohn, Y. Kubota, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Nebraska-Lincoln, Lincoln, Nebraska, USA
K. Bloom, M. Bryson, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finch, F. Golf, C. Joo, I. Kravchenko, M. Musich, I. Reed, J.E. Siado, G.R. Snow, W. Tabb, F. Yan, A.G. Zecchinelli

State University of New York at Buffalo, Buffalo, New York, USA
G. Agarwal, H. Bandyopadhyay, I. Hay, I. Iashvili, A. Kharchilava, C. McLear, D. Nguyen, J. Pekkanen, S. Rappoccio, A. Williams

Northeastern University, Boston, Massachusetts, USA
G. Alverson, E. Barberis, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnar, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, Illinois, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, Y. Liu, N. Odell, M.H. Schmitt, M. Velasco

University of Notre Dame, Notre Dame, Indiana, USA
R. Band, R. Bucci, M. Cremonesi, A. Das, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado, Anampa, C. Jessop, K. Lannor, J. Lawrence, N. Loukas, D. Lutton, N. Marinelli, I. Mcalister, T. McCalla, C. Mcgrady, K. Mohrman, C. Moore, Y. Musienko, R. Ruchti, P. Siddireddy, A. Townsend, M. Wayne, A. Wightman, M. Zarucki, L. Zygalala

The Ohio State University, Columbus, Ohio, USA
B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hil, M. Nunez Ornelas, K. Wei, B.L. Winer, B.R. Yates

Princeton University, Princeton, New Jersey, USA
F.M. Addesa, B. Bonham, P. Das, G. Dezoort, P. Elmer, A. Frankenthal, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, D. Marlow, K. Mei, I. Ojalvo, J. Olser, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, Puerto Rico, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, Indiana, USA
A.S. Bakshi, V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, S. Karmarkar, D. Kondratyev, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, S. Piperov, A. Purohit, J.F. Schulte, M. Stojanovic, J. Thieman, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, Indiana, USA
J. Doler, N. Parashar

Rice University, Houston, Texas, USA
A. Baty, T. Carnahan, M. Decaro, S. Dildick, K.M. Ecklund, S. Freed, P. Gardner, F.J.M. Geurts, A. Kumar, W. Li, B.P. Padley, R. Redjimi, W. Shi, A.G. Stahl Leitman, S. Yang, L. Zhang, Y. Zhang

University of Rochester, Rochester, New York, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti,
A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, Tennessee, USA
H. Acharya, A.G. Delannoy, S. Fiorendi, S. Spanier

Texas A&M University, College Station, Texas, USA
O. Bouhali, M. Dalchenko, A. Delgadillo, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luc, S. Malhotra, R. Mueller, D. Overton, D. Rathjens, A. Safronov

Texas Tech University, Lubbock, Texas, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, Tennessee, USA
E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovská

University of Virginia, Charlottesville, Virginia, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, C.E. Perez Lara, B. Tannenwald, S. White, E. Wolfe

Wayne State University, Detroit, Michigan, USA
N. Poudyal

University of Wisconsin - Madison, Madison, WI, Wisconsin, USA
K. Black, T. Bose, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, F. Fiengo, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-Reichert, W. Vetens

†: Deceased
1: Also at TU Wien, Wien, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at The University of the State of Amazonas, Manaus, Brazil
7: Also at University of Chinese Academy of Sciences, Beijing, China
8: Also at Department of Physics, Tsinghua University, Beijing, China
9: Also at UFMS, Nova Andradina, Brazil
10: Also at Nanjing Normal University Department of Physics, Nanjing, China
11: Now at The University of Iowa, Iowa City, Iowa, USA
12: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
13: Also at Joint Institute for Nuclear Research, Dubna, Russia
14: Also at Ain Shams University, Cairo, Egypt
15: Now at British University in Egypt, Cairo, Egypt
16: Also at Purdue University, West Lafayette, Indiana, USA
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Ilia State University, Tbilisi, Georgia
19: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
20: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
21: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
22: Also at University of Hamburg, Hamburg, Germany
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Brandenburg University of Technology, Cottbus, Germany
25: Also at Forschungszentrum Jülich, Juelich, Germany
26: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
27: Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
28: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
29: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
30: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
31: Also at Wigner Research Centre for Physics, Budapest, Hungary
32: Also at IIT Bhubaneswar, Bhubaneswar, India
33: Also at Institute of Physics, Bhubaneswar, India
34: Also at Punjab Agricultural University, Ludhiana, India
35: Also at Shoolini University, Solan, India
36: Also at University of Hyderabad, Hyderabad, India
37: Also at University of Visva-Bharati, Santiniketan, India
38: Also at Indian Institute of Technology (IIT), Mumbai, India
39: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
40: Also at Sharif University of Technology, Tehran, Iran
41: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
42: Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
43: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
44: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
45: Also at Scuola Superiore Meridionale, Università di Napoli Federico II, Napoli, Italy
46: Also at Università di Napoli ´Federico II’, Napoli, Italy
47: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico
48: Also at IFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
49: Also at Institute for Nuclear Research, Moscow, Russia
50: Now at National Research Nuclear University ´Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
51: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
52: Also at St. Petersburg Polytechnic University, St. Petersburg, Russia
53: Also at University of Florida, Gainesville, Florida, USA
54: Also at Imperial College, London, United Kingdom
55: Also at P.N. Lebedev Physical Institute, Moscow, Russia
56: Also at California Institute of Technology, Pasadena, California, USA
57: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
58: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
61: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
62: Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
63: Also at National and Kapodistrian University of Athens, Athens, Greece
64: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
65: Also at Universität Zürich, Zurich, Switzerland
66: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
67: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
68: Also at Şırnak University, Şırnak, Turkey
69: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
70: Also at Konya Technical University, Konya, Turkey
71: Also at Piri Reis University, Istanbul, Turkey
72: Also at Adiyaman University, Adiyaman, Turkey
73: Also at Ozyegin University, Istanbul, Turkey
74: Also at Necmettin Erbakan University, Konya, Turkey
75: Also at Bozok Üniversitesi Rektörlüğü, Yozgat, Turkey
76: Also at Marmara University, Istanbul, Turkey
77: Also at Milli Savunma University, Istanbul, Turkey
78: Also at Kafkas University, Kars, Turkey
79: Also at Istanbul Bilgi University, Istanbul, Turkey
80: Also at Hacettepe University, Ankara, Turkey
81: Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
82: Also at Vrije Universiteit Brussel, Brussel, Belgium
83: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
84: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
85: Also at IPPP Durham University, Durham, United Kingdom
86: Also at Monash University, Faculty of Science, Clayton, Australia
87: Also at Università di Torino, Torino, Italy
88: Also at Bethel University, St. Paul, Minneapolis, USA
89: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
90: Also at Bingol University, Bingol, Turkey
91: Also at Georgian Technical University, Tbilisi, Georgia
92: Also at Sinop University, Sinop, Turkey
93: Also at Erciyes University, Kayseri, Turkey
94: Also at Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
95: Also at Texas A&M University at Qatar, Doha, Qatar
96: Also at Kyungpook National University, Daegu, Korea