GABA, a non-protein amino acid ubiquitous in food matrices

Roberto Ramos-Ruiz1, Emmanuel Poirot2 and María Flores-Mosquera2*

Abstract: GABA has attracted great attention over the last several decades due to its ubiquity in life. It is an important molecule naturally present in considerable amounts in many feed and food matrices of vegetable and animal origin. GABA occurs naturally in plants, animals and microorganisms, having diverse physiological functions and great potential health benefits. Extensive data demonstrates that GABA content is usually higher in plants than in animals and its concentration is in the range of mg g\(^{-1}\) depending on plant matrix, development stage and postharvest processing conditions. In animals, GABA was found at significantly high levels in the brain and central nervous system and some specific peripheral tissues like livestock muscles in the range of \(\mu g\) g\(^{-1}\). Food items produced by different types of animals, such as eggs, milk or honey, also show remarkable GABA content without any processing steps. A healthy diet following the set of recommendations of WHO national food-based dietary guidelines (FBDG) or/and the Healthy Eating Plate (Harvard) will provide a considerable amount of GABA as a natural nutrient. Additionally, considering its potential health benefits, many efforts are being allocated to developing new technological processes for GABA enhancement in traditional foodstuffs or avoiding losses after processing treatments.

ABOUT THE AUTHOR

Dr. Roberto Ramos Ruiz is technical director at Servalesa, a company aiming to offer products for farming which provide a differential value through their innovation and contribution to ensure healthier crops for healthier consumers. Amongst other responsibilities, Roberto is in charge of research and development. Servalesa has developed for the past decade several research projects in collaboration with different universities and research organizations. The fundamental objective of these projects is to offer farmers technologies able to mitigate the effects caused by different kind of plant stress with impact on crops, either biotic or abiotic, with an acceptable efficacy, no residues, a minimal impact on the environment and a toxicological profile with no effect on users and consumers through food treated with these products. Within this research activity, Servalesa has a particular interest in studying the effects on crops and impacts on human health and the environment of naturally occurring substances.

PUBLIC INTEREST STATEMENT

Tendency of experts and consumers towards a healthy diet includes an increasing interest on details about the nutrients (e.g. carbohydrates, fat, protein, vitamins and minerals) needed to achieved a healthy balance diet. GABA is a non-protein amino-acid that occurs naturally in plants, animals, and microorganisms, having diverse physiological functions and great potential health benefits. Over the last several decades GABA has attracted great attention due to its different positive effects on mammalian physiology. The aim of this review is to compile the levels of GABA measured in nature, specifically in plant and animal products for the food industry.
1. Introduction

Gamma-amino-butyric acid (γ-amino-butyric acid, GABA, CAS [56–12-2]) is a well-known, non-protein amino acid that was first identified in potato tubers (Steward, Thompson, & Dent, 1949) and found one year later in mammalian brains (Awapara, Landua, Fuerst, & Seale, 1950; Roberts & Frankel, 1950; Udenfriend, 1950). Since then, GABA has been investigated in many organisms including bacteria, fungi, plants and animals (Dhakal, Bajpai, & Baek, 2012; Erdö, 1992; Lin et al., 2013; Minuk, 1992; Seher, Filiz, & Melike, 2013; Tanaka, 1985). This small molecule has been found in almost every living organism and many essential roles and functions have been described.

It has been reported that GABA induces different positive effects on mammalian physiology. Some examples of GABA activity include hypotensive effects and relaxation (Mody, De Koninck, Otis, & Soltesz, 1994; Yang, Jhou, & Tseng, 2012; Yoshimura et al., 2010), enhancement of immunity under stress conditions (Abdou Adham, Higashiguchi, Horie, Mujo Kim, & Yokogoshi, 2008), prevention of cancer cell proliferation (Oh & Oh, 2004), prevention of diabetic conditions (Hagiwara, Seki, & Ariga, 2004) or modulation of blood cholesterol levels (Roohinejad et al., 2009). Due to all of these biological functions, GABA is a potentially bioactive component of foods and pharmaceuticals (Boonstra et al., 2015; Diana, Quílez, & Rafecas, 2014). Due to its relevance, GABA is also becoming recognized as an essential nutrient for a healthy balanced diet.

GABA is metabolized via a three-enzyme pathway known as the GABA shunt, which bypasses two steps of the tricarboxylic acid (TCA) cycle (Michaeli & Fromm, 2015; Watanabe, Maemura, Kanbara, Tamayama, & Hayasaki, 2002).

GABA is mainly produced from glutamate by the irreversible reaction of the cytosolic enzyme glutamate decarboxylase (GAD; EC 4.1.1.15) which involves cytosolic acidification and/or Ca+2/calmodulin activation (Roberts & Kuriyama, 1968; Shelp, Bozzo, Trobacher, Chiu, & Bajwa, 2012). However, GABA synthesis may also occur via polyamine (putrescine and spermidine) degradation (Fait, Fromm, Walter, Galli, & Fernie, 2008) and possibly by a non-enzymatic reaction from proline under oxidative stress (Signorelli, Dans, Coitino, Borsani, & Monza, 2015).

GABA catabolism occurs by the action of GABA transaminase (GABA-T; EC 2.6.1.19) to produce succinic semi-aldehyde (SSA). SSA in turn, is oxidized to succinate by SSA dehydrogenase (SSADH) (Bouché, Fait, Bouchez, Moller, & Fromm, 2003; Roberts & Hammerschlag, 1972, Tunnicliff, 1986), or alternatively, reduced to γ-hydroxybutyrate via SSA reductase (SSAR) activity (Hildebrandt, Nunes, Araujo, & Braun, 2015).

This review aims to give an overview of the natural occurrence of GABA, not only in plants, animals and environment, but also focused on GABA concentrations in food and feed. GABA concentrations in these matrices are reported to reach considerable levels. Data coming from original references have been maintained and, if required, values with harmonized units are incorporated in square brackets in the text or in a separate column within tables.

2. GABA in plants

GABA is a ubiquitous non-protein amino acid that is present in almost every plant. During the last few decades, research related to GABA in plants was focused on understanding GABA metabolism and its role in plant growth and response to stress (Bouché, Lacombe, & Fromm, 2003; Bown & Shelp, 1997; Ham, Chu, Han, & Ryu, 2012; Kinnersley & Turano, 2000; Satya & Nair, 1990; Shelp, Bown, & McLean, 1999).
More recent studies show that GABA is also involved in various physiological processes and could have a potential role as a signalling molecule (Bouché, Fait, Zik, & Fromm, 2004; Bown, MacGregor, & Shelp, 2006; Bown & Shelp, 2016; Fait, Yellin, & Fromm, 2006; Gillham & Tyerman, 2015; Häusler, Ludewig, & Krueger, 2014; Michaeli & Fromm, 2015; Shelp, Bown, & Zarei, 2017; Shelp, Van Cauwenberghe, & Bown, 2003).

GABA levels are influenced by many factors, including species and variety, environmental conditions, stress during cultivation and even post-harvest treatments. It is well known that GABA accumulation occurs in response to biotic and/or abiotic stresses such as hypoxia, cytosolic acidification, cold shock, mechanical stimulation, water stress and light (Ham et al., 2012; Kinnersley & Turano, 2000). GABA content also changes depending on the plant growth and development stage and its level increases during germination of food grains (Chalorcharoenying, Lomthaisong, Suriharn, & Lertrat, 2017; Karladee & Suriyong, 2012; Kim et al., 2013; Li, Bai, Jin, Wen, & Zhenxin, 2010).

The aim of this review is to compile the levels of GABA measured in plants in nature, also reporting the evolution of GABA content during product life. Plants have been considered as food and feed products mainly coming from agriculture. Taking into account regulations on health issues related to production and consumption of plants, plant classification within the review is aligned with the classification described in Commission Regulation (EU) 2018/62 of 17 January 2018.²

2.1. GABA in fruits and treetnus

2.1.1. Citrus fruits

Citrus is one of the most widely produced and popular types of fruits, with a related industry constantly developing processing technologies to produce juices and high value derivatives coming from its wastes and by-products. Citrus are rich in phenolic compounds as well as vitamins, minerals, dietary fibre, essential oils and carotenoids. The first quantitative data reported by (Clements & Leland, 1962), showed that GABA content in lemon juices (Eureka and Lisbon lemon, 7 mg 100 mL⁻¹ [0.07 mg mL⁻¹] of juice) was lower than in orange juices of different varieties (mature Valencia, Washington navel oranges and Dancy tangerines, with 32, 24 and 18 mg of GABA 100 mL⁻¹ of juice respectively [0.32, 0.24 and 0.18 mg mL⁻¹]). Bergamot juice was reported to have 25.7 μgm L⁻¹ [0.026 mg mL⁻¹] GABA (Mazzotti et al., 2012).

A complex analytical method was developed using positive electrospray ionization and a triple quadrupole mass spectrometer (MS) operating in multiple reaction monitoring (MRM) mode. This method allows low level detection of GABA in its native form from freshly squeezed orange juice (Zazzeroni, Homan, & Thain, 2009). The concentration of GABA measured in orange juice, using this new method, increased slightly to 344 μg mL⁻¹ [0.344 mg mL⁻¹]. It is relevant to note that different methods of measuring GABA concentration, along with L-Arginine and L-Aspartic acid, have been used to differentiate the quality of commercial orange juices (Simó, Martin-Alvarez, Barbas, & Cifuentes, 2004).

The fermentation of fruit produces significant changes in their nutritional composition. Determination of the influence of controlled alcoholic fermentation and thermal pasteurization on the amino acid profile of orange juice has been studied (Cerrillo et al., 2015). An UHPLC (Ultra High Performance Liquid Chromatography) system coupled with a 6460 tandem triple quadrupole mass spectrometer was used for the analysis of orange juice samples. GABA was the ninth most abundant amino acid in orange juice (187 mg L⁻¹ [0.187 mg mL⁻¹]), but this amount decreased in fermented orange juice after 15 days (167 mg L⁻¹ [0.167 mg mL⁻¹]) and appears to be lower in fermented-pasteurized (85°C for 30 s) orange juice (126 mg L⁻¹ [0.126 mg mL⁻¹]).

A different technique, High-Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy (Mucci, Parenti, Righi, & Schenetti, 2013), was used to identify several metabolites of intact specimens
from flavedo, albedo, pulp, seeds and the content of oil glands obtained from shelf samples of lemon (Citrus limon) and citron (Citrus medica). Only in albedo and pulp was it possible to detect GABA, with a relative average molar content of 0.26 and 0.28 in pulp of lemon and citron respectively. Using the same technique, (Corsaro et al., 2015), studied the cultivar “Interdonato” lemon, which is a hybrid between a cedar and a lemon. They evaluated the lemon juice for different samples of both Protected Geographical Indication (PGI) Interdonato lemon of Messina and Interdonato lemon from Turkey. In the Turkish lemon there was a higher amount of GABA (2.40 mM [0.247 mg mL⁻¹]) than in the Italian lemon (1.05 mM [0.108 mg mL⁻¹]).

(Sun et al., 2013) measured variations of GABA content in Hirado Buntan Pomelo (HBP; Citrus grandis). The harvested HBP fruits were stored at ambient temperature (16–20°C) and 85–90% relative humidity for 132 days. The average content of GABA in the pulp fruit was more than 140 μg g⁻¹ [0.140 mg g⁻¹] Fresh Weight (FW). This content slightly increased in the fruit over time from 145 μg g⁻¹ FW [0.145 mg g⁻¹] at day 12–190 μg g⁻¹ FW [0.190 mg g⁻¹] at day 78.

2.1.2. Tree nuts
This group comprises fruits that are composed of an inedible hard shell and a seed which is generally edible. It includes a wide variety of dried seeds, the most common being almonds, brazil nuts, cashew nuts, chestnuts, coconuts, hazelnuts/cobnuts, macadamias, pecans, pine nut kernels, pistachios and walnuts. Even though the concentration of GABA in chestnuts is significant (188 nmol g⁻¹ Dry Weight (DW), [0.019 mg g⁻¹] (Oh, Moon, & Oh, 2003)) not much information related to GABA content has been reported.

The cola nut is a caffeine-containing nut from evergreen trees of the genus Cola. These are consumed, fresh or fermented, for their excitant properties. These properties could be attributed to the richness of the seeds in purine alkaloids, polyphenols and sugars. (Onomo, Niemenak, Ndoumou, & Lieberei, 2010) studied the GABA contents of accessions of Cola acuminata and Cola anomala, harvested randomly from trees from different sites in Cameroon. GABA content was measured in mature seeds, germinated seeds and seedlings and the amounts of GABA always increased in that order. Only the sample from Zoatele of the six accessions of C. acuminata had a lower amount of GABA in seedlings (1,241.3 μg g⁻¹ DW [1.241 mg g⁻¹]) than in mature germinated seeds (3,128.8 μg g⁻¹ DW [3.129 mg g⁻¹]). Except for mature seeds (1,054.3–1,452.6 μg g⁻¹ DW [1.054–1.453 mg g⁻¹]), GABA content of both, germinated seeds (2,788.0–3,102.4 μg g⁻¹ DW [2.788–3.102 mg g⁻¹]) and seedlings (3,546.8–4,004.3 μg g⁻¹ DW [3.547–4.004 mg g⁻¹]) of C. acuminata was higher than the quantities detected in C. anomala (1,650.6–1,663.2; 2,300.0–2,309.6; 2,475.9–2,502.7 μg g⁻¹ DW [1.651–1.663, 2.300–2.310, 2.476–2.503 mg g⁻¹] respectively).

GABA is found in coconut (Cocos nucifera L.) water, the aqueous part of the coconut endosperm (Yong, Ge, Ng, & Tan, 2009). The chemical composition of this edible part varies with the age and type of coconuts. (Arndtii, 2009) reports 820 μg mL⁻¹ [0.820 mg mL⁻¹] of GABA in coconut water. (Tulecke, Weinstein, Rutner, & Laurencot, 1961) determined GABA content in coconut water at different fruit ages: young green (1.90 μg mL⁻¹ [0.002 mg mL⁻¹]), mature green (34.60 μg mL⁻¹ [0.035 mg mL⁻¹]), mature (168.80 μg mL⁻¹ [0.169 mg mL⁻¹]) and mature (autoclaved) (173.20 μg mL⁻¹ [0.173 mg mL⁻¹]).

2.1.3. Pome fruits
Apple was one of the first fruits to be studied for its amino acid content, including GABA (Hulme & Arthington, 1950). Since then, many studies have shown that apple contains low amounts of this non-protein amino acid; that is (Oh et al., 2003) reported 2 nmol of GABA g⁻¹ [0.00021 mg g⁻¹] DW, (Zazzeroni et al., 2009) detected 7.11 μg g⁻¹ [0.007 mg g⁻¹] in the epicarp/mesocarp mixture. Although GABA contents vary among varieties of apples, it is always present within a similar range of concentrations (Deewatthanawong & Watkins, 2010; Deyman, Brikis, Bozzo, & Shelp, 2014; Vasanits, Kutlan, Sass, & Molnar-Perl, 2000): Jonagored 2.55 μg g⁻¹ Wet Pulp (WP) [0.003 mg g⁻¹], Idared 4.38 μg g⁻¹ WP [0.004 mg g⁻¹], Jonica 3.66 μg g⁻¹ WP [0.004 mg g⁻¹], Florina 4.45 μg
g\(^{-1}\) WP [0.004 mg g\(^{-1}\)], Freedom 3.93 μg g\(^{-1}\) WP [0.004 mg g\(^{-1}\)], Empire, 25–40 nmol g\(^{-1}\) FW [0.003–0.004 mg g\(^{-1}\)].

(Zhang, Pengmin, & Cheng, 2010) investigated the developmental changes of several compounds in “Honeycrisp” apple flesh. Fruits were sampled at 2-week intervals from 2 weeks after full bloom. Initial GABA content was around 100 μg g\(^{-1}\) FW [0.1 mg g\(^{-1}\)]. The concentration increased from 2 to 4 weeks after bloom to more than 140 μg g\(^{-1}\) FW [0.14 mg g\(^{-1}\)], and then decreased exponentially to harvested fruits to approximately 10 μg g\(^{-1}\) FW [0.01 mg g\(^{-1}\)]. On a whole fruit basis, GABA content increased rapidly in the first 6 weeks reaching 2.3 mg fruit\(^{-1}\), decreased slightly in the next 4 weeks, and then increased gradually to fruit harvest (up to 2.6 mg fruit\(^{-1}\)).

During storage under Controlled Atmosphere (CA) conditions, GABA accumulated in apple fruit (Malus × domestica Borkh. cv. Empire), probably as a stress response. GABA only accumulated slowly in fruit stored in 1% CO\(_2\) over an 8-week storage period (from 33 to 60 nmol g\(^{-1}\) FW [0.003–0.006 mg g\(^{-1}\)]), while GABA accumulated to reach maximum concentrations by week 4 in fruit stored in 2.5 and 5% CO\(_2\) (135 nmol g\(^{-1}\) FW [0.014 mg g\(^{-1}\)]). GABA concentrations in the elevated CO\(_2\) treated fruit subsequently declined to levels similar to those in fruit stored at 1% CO\(_2\) (Deewatthanawong & Watkins, 2010). (Deyman et al., 2014) presented results of longer lasting experiments in the same fruit variety. During their CO\(_2\) treatments GABA accumulated in a linear fashion over the storage period (50 weeks). Notably, fruit receiving 2.5 kPa CO\(_2\) accumulated almost twice as much GABA (∼2 nmol g\(^{-1}\) Fresh Matter week\(^{-1}\) [0.0002 mg g\(^{-1}\) week\(^{-1}\)]) as fruit receiving 0.03 kPa CO\(_2\).

(Troebacher et al., 2013) maintained “Empire” apples for 10 months under controlled atmospheric conditions (2.0 kPa CO\(_2\), 2.5 kPa O\(_2\), 3°C; GABA level entire fruit: 942 ± 217 nmol g\(^{-1}\) FW [0.097 ± 0.022 mg g\(^{-1}\)]). After 10 months, the apples were transferred from storage to ambient conditions (0.038 kPa CO\(_2\), 21 kPa O\(_2\), 25°C; GABA level whole apple: 370 ± 48 nmol g\(^{-1}\) FW [0.038 ± 0.005 mg g\(^{-1}\)]) for 3 h and the fruits dissected into peel (GABA, 172 ± 28 nmol g\(^{-1}\) FW [0.044 ± 0.008 mg g\(^{-1}\)]) and flesh (GABA, 428 ± 73 nmol g\(^{-1}\) FW [0.044 ± 0.008 mg g\(^{-1}\)]) and core (GABA, 905 ± 179 nmol g\(^{-1}\) FW [0.093 ± 0.018 mg g\(^{-1}\)]), a process that took approximately 2 min. GABA contents decreased in intact fruit by approximately 60% after the transition between storage conditions. Removal of the stress conditions rapidly resulted in a net decline in GABA level, indicating that the GABA was being catabolized.

Accumulation of GABA was also observed in loquat fruit under cold conditions (Cao, Cai, Yang, & Zheng, 2012). The content of GABA increased steadily during storage time. After 35 days at 1°C the amount of GABA in loquat pulp was 49 μg g\(^{-1}\) FW [0.049 mg g\(^{-1}\)], almost three times more than at harvest (18 μg g\(^{-1}\) FW [0.018 mg g\(^{-1}\)]).

2.1.4. Stone fruits
GABA is present in very low concentrations in peach fruits (Prunus persica L. Batsch). GABA content is independent of fruit acidity, as demonstrated in “Jalousia” low acid fruit or “Fantasia” normal acid fruit (Moing et al., 1998). (Jia, Okamoto, & Hirano, 2000) evaluated the influence of fertilizer levels on GABA concentration in Hakuho peach fruit at harvest. Liquid fertilizer (Ohtsuka House) was used at three different nitrogen application rates; L-40 ppm, M-80 ppm and H-160 ppm. GABA content increased with increased fertilizer concentration, from 0.08 μmol mL\(^{-1}\) [0.008 mg mL\(^{-1}\)] (L) to 0.15 μmol mL\(^{-1}\) [0.015 mg mL\(^{-1}\)] (H).

2.1.5. Berries, grapes and small fruits
2.1.5.1. Berries. One of the first studies related to GABA content on berry fruits appeared in 1965 for blueberry (Strech & Copellini, 1965). Since then, different studies reported that blueberry is one of the fruits of this group with less GABA content, that is 89.27 g\(^{-1}\) [0.089 mg g\(^{-1}\)] (Zhang et al., 2014) and 7.9 mg 100 g\(^{-1}\) FW [0.079 mg g\(^{-1}\)] (Lee et al., 2015). Mulberry seems to be the berry with
highest content of GABA. (Choi et al., 2010) analyzed the GABA content in mulberry fruits from 7 Morus alba L. cultivars, including Daejappong, Iksuppong, Daesungppong, Yongppong, Cheongilppong, Gwasang 1 and Gwasang 2 with results in the range of 86.08–185.63 mg 100 g−1 DW [0.86–1.86 mg g−1]. Black raspberry and raspberry contained intermediate GABA levels; 19.4 mg 100 g−1 FW [0.194 mg g−1] and 10.1 mg 100 g−1 FW [0.101 mg g−1] respectively (Lee et al., 2015).

More recently, (Lee & Hwang, 2017) investigated changes in the physicochemical properties of mulberry fruits at seven maturity stages during ripening. Content of GABA decreased during ripening. GABA contents of the immature mulberry fruits were 113.2 and 59.6 mg 100 g−1 [1.132 and 0.596 mg g−1] respectively. These concentrations were significantly higher than those of the mature fruits (MS-3–6, 17.1–33.6 mg 100 g−1 DW [0.171–0.336 mg g−1]). Final GABA content in the fully mature phase increased slightly to 42.1 mg 100 g−1 DW [0.421 mg g−1]. The concentrations of GABA in the leaf, stem, and root bark of mulberry have also been reported. (Kwon, Kim, Hwang, & Park, 2013), using a simple high-performance anion-exchange chromatography-integrated pulsed amperometric detection method, determined that GABA content was 2.22 ± 0.20 mg g−1 in leaf, 2.84 ± 0.20 mg g−1 in stem, and 1.87 ± 0.14 mg g−1 in root bark. These results are in line with those previously reported, showing that GABA content of mulberry root bark ranged from 1.70 to 2.62 mg g−1 (Bang, Lee, Choi, & Kim, 1998) and of mulberry leaf were 2.36 mg g−1 (Yoo, Kim, Kim, & Rhee, 2002).

GABA concentrations in four strawberry (Fragaria ananassa Duch) cultivars, “Allstar”, “Earliglow”, “Jewel” and “Northeast” were studied (Deewatthanawong, Nock, & Watkins, 2010). “Allstar” and “Earliglow” had the lowest GABA concentrations of 0.15 mmol kg−1 [0.0155 mg g−1] at harvest. The highest GABA levels were detected in “Jewel” with an average of 0.35 mmol kg−1 [0.036 mg g−1], while in “Northeast” the GABA concentration was 0.24 mmol kg−1 [0.025 mg g−1]. GABA behaviour in strawberries during storage was also studied. When berries were stored in air, GABA concentrations showed different behaviour; in “Allstar” and “Earliglow” the concentration of GABA decreased, in “Jewel” the GABA concentration remained unchanged and in “Northeast” the GABA concentration increased. For CO2 treated fruit, the amounts of GABA were always higher than fruit stored in air, increasing by 2.2-fold in “Allstar” to 7.1-fold in “Northeast”. (Zhang et al., 2014) reported a GABA content in freeze-dried samples of strawberry (Fragaria × Ananassa) of 548.17 μg g−1 [0.548 mg g−1], slightly higher than GABA concentrations in stored strawberries. (Ordóñez et al., 2015) analyzed samples of strawberry purée. The concentration of GABA was 1.89 ± 0.89 mg L−1 [0.002 ± 0.0009 mg mL−1]. GABA content increased during fermentation of strawberry purée, using a surface culture of three strains of different acetic acid bacteria species.

Omija fruit is another example of a berry which contains GABA (Kim et al., 2008) at a substantial amount of 10 mg 100 g−1 [0.1 mg g−1] of fruits. It has also been reported (Kim, Lim, & Yang, 2016) that in the ethanolic extract of the stems of Elaeagnus umbellata Thunb., GABA was the major free amino acid (300.17 mg 100 g−1 [3.002 mg g−1]).

2.1.5.2. Grapes. The amino acid profiles of grape berries harvested at a similar maturity from six different cultivars of Vitis vinifera L. were investigated (Stines et al., 2000). GABA content for Sangiovese, Riesling, Pinot Noir, Cabernet Sauvignon, Muscat Gordo and Grenache were 82.51, 152.70, 174.30, 146.60, 79.56 and 90.53 mg g−1 FW respectively. The GABA distribution in seeds, skin and pulp was determined for berries of Riesling (RI) and Cabernet Sauvignon (CS). In both varieties, more than 65% of GABA was found in the pulp (RI, 85.36 mg g−1 FW, CS, 107.72 mg g−1 FW). Riesling berries had a higher GABA content in the seed than in the skin (30.88 and 14.03 mg g−1 FW respectively) and the contrary was observed for Cabernet Sauvignon berries (9.30 and 20.04 mg g−1 FW respectively). Data of GABA content in leaves of grapevines of Chardonnay (0.257 μmol g−1 DW [0.027 mg g−1]) and Meski (0.200 μmol g−1 DW [0.021 mg g−1]) have also
been reported (Hatmi et al., 2015). Under drought stress GABA content increased significantly to more than 3,400 μmol g⁻¹ DW [350.6 mg g⁻¹].

A chemical study was carried out on de-seeded berries of Carlos and Noble muscadine grapes (V. rotundifolia) during berry maturation (Marcy, Carroll, & Young, 1981). HIS plus GABA (also with Thr) were the predominant free amino acids in both cultivars at an immature berry stage (229.9 nm g⁻¹ [0.024 mg g⁻¹] fresh de-seeded weight). At full berry maturity, HIS plus GABA content increased (397.0 nm g⁻¹ [0.041 mg g⁻¹]) and was only surpassed by Arg content. The mean concentration (nm g⁻¹ fresh de-seeded weight) of HIS plus GABA for three V. rotundifolia cultivars determined at normal harvest were very similar (Regale, 688.7 [0.071 mg g⁻¹], Pride, 699.8 [0.072 mg g⁻¹] and Magnolia, 714.3 [0.074 mg g⁻¹]). The amount of HIS plus GABA for the Dixie cultivar was lower (444.0 nm g⁻¹ [0.046 mg g⁻¹]).

Data on GABA behaviour during maturation was reported by (Murch, Hall, Le, & Saxena, 2010) for wine grapes of Merlot varieties. GABA was found at approximately 115 μg g⁻¹ [0.115 mg g⁻¹] in 77% of early stage green grapes (pre-lag) and there was a significant linear decrease in both prevalence and concentration as the grapes matured through the process of véraison (green: 80 μg g⁻¹ [0.080 mg g⁻¹], transition, 70 μg g⁻¹ [0.070 mg g⁻¹] and purple 40 μg g⁻¹ [0.040 mg g⁻¹]).

The analysis of metabolite variation throughout the physiological development was also analyzed for the Sardinian Vermentino grape berry (Mulas et al., 2011). The variability in metabolite concentration was investigated as a function of the clone, the position of berries in the bunch or growing area within the vineyard, environmental factors and grape maturity. GABA contents varied between 6 and 67 mg kg⁻¹ [0.006–0.067 mg g⁻¹] depending on these factors.

2.1.5.3. Musts, wines and vinegars. Free amino acid contents are of great physiological significance for the final taste and quality of wines and vinegars. They are considered as barcodes to wine authenticity. Many studies have been reported showing the detailed chemical composition and, more specifically, the GABA content of these products (see Table 1).

Reported data are generally comparable within the different grape varieties (Bouloumpasi, Soufferos, Tsarchopoulos, & Biliaderis, 2002; Carlavilla, Moreno-Arribas, Fanali, & Cifuentes, 2006; Erbe & Brückner, 1998; Herbert, Cabrita, Ratola, Laureano, & Alves, 2006; Kliewer, 1970), with consideration of geography (Table 1), raw material (Kliewer, 1970), processing (Callejón et al., 2008; Guitart, Hernandez-Orte, & Cacho, 1997; Martínez-Pinilla, Guadalupe, Hernández, & Ayestarán, 2013) and vintage (Martínez-Pinilla et al., 2013). GABA content seems to be higher in white wines than red wines. The amount of GABA is also higher in varieties of grapes harvested at a later stage of fruit maturity.

Considering vinegars, acetatos balsámico di Modena are the ones with the higher GABA content. Sherry vinegars (Spain) show much lower content. Red wine vinegars contain more GABA than vinegars from white wine.

2.1.6. Miscellaneous fruits
The amounts of GABA of different parts of jujube fruits were analyzed (Collado et al., 2014). Data indicated that edible parts (peel and flesh) with 1.4 g kg⁻¹ (DW) [1.4 mg g⁻¹] contain more GABA than the pits (shell plus seed), which contain 0.3 g kg⁻¹ (DW) [0.3 mg g⁻¹]. Contents decreased with low irrigation and limited soil water conditions.

Among small fruits with inedible peel, kiwi has been well studied. (Macrae & Redgwell, 1992) investigated the distribution of GABA in different tissues of kiwi fruit (Actinidia delicosa) and changes in GABA concentration during maturation. Although amino acid concentrations in the fruit decreased during maturation, GABA, along with Arg, increased to become the predominant amino acids in fruit harvested at the end of May (GABA + Arg: 76.9 μg g⁻¹ FW [0.077 mg g⁻¹]) compared to 140.7 μg g⁻¹ FW [0.141 mg g⁻¹] in fruits harvested in February. Considering the outer
Variety	Origin	Beverage	GABA content	GABA content (harmonized units)	Reference
Syrah	France	Grapejuice	25-60 mg L\(^{-1}\)	0.025-0.060 mg mL\(^{-1}\)	(Kelly, Blaise, & Larroque, 2010)
Marsh	US	Grapejuice	190 mg L\(^{-1}\)	0.19 mg mL\(^{-1}\)	(Clements & Leland, 1962)
Several	–	Musts	2-580 mg L\(^{-1}\)	0.002-0.580 mg mL\(^{-1}\)	(Boch, Sauvage, Dequin, & Camarasa, 2009)
Tempranillo	La Rioja, Spain	Red Must	89.43 mg L\(^{-1}\)	0.089 mg mL\(^{-1}\)	(Garde-Cerdán, Portu, López, & Santamarina, 2016)
Several	Alentejo region, Portugal	Red Must	20.2-110.3 mg L\(^{-1}\)	0.020-0.110 mg mL\(^{-1}\)	(Herbert et al., 2006)
Several	Alentejo region, Portugal	White Must	29.9-118.1 mg L\(^{-1}\)	0.030-0.118 mg mL\(^{-1}\)	(Herbert et al., 2006)
Airen variety	La Mancha	White Must	109.2 mg L\(^{-1}\)	0.109 mg mL\(^{-1}\)	(Hernández-Orte, Ibarz, Cacho, & Ferreira, 2003)
Chardonnay	Spain	White Must	57.4 mg L\(^{-1}\)	0.057 mg mL\(^{-1}\)	(Guitart et al., 1997)
Grenache (late stage fruit maturity)	–	Red Wine	125 µmol 100 mL\(^{-1}\)	0.129 mg mL\(^{-1}\)	(Kliewer, 1970)
Corinongne (late stage fruit maturity)	–	Red Wine	410 µmol 100 mL\(^{-1}\)	0.423 mg mL\(^{-1}\)	
Gamay (early stage fruit maturity)	–	Red Wine	61 µmol 100 mL\(^{-1}\)	0.063 mg mL\(^{-1}\)	
Alicante Bouschet (early stage fruit maturity)	–	Red Wine	294 µmol 100 mL\(^{-1}\)	0.303 mg mL\(^{-1}\)	
Xinomavro, Agiorgitiko, Mandilara, Katsifali	Greek	Red Wine	15.3-30.8 mg L\(^{-1}\)	0.015-0.031 mg mL\(^{-1}\)	(Bouloumpasi et al., 2002)
Cabernet Sauvignon, Merlot, Syrah, Grenache rouge	Greek	Red Wine	9.5-17.5 mg L\(^{-1}\)	0.009-0.017 mg mL\(^{-1}\)	
Cannonau	Italy	Red Wine	43.1 mg L\(^{-1}\)	0.043 mg mL\(^{-1}\)	(Tuberoso, Giovanni, Congiu, Serrelli, & Mameli, 2015)
Hungarian red wine	Hungary	Red Wine	6.9 mg L\(^{-1}\)	0.007 mg mL\(^{-1}\)	(Kutlán & Molnár-Perl, 2003)
Several	Alentejo region, Portugal	Red Wine	2.5-85.4 mg L\(^{-1}\)	0.002-0.085 mg mL\(^{-1}\)	(Herbert et al., 2006)

(Continued)
Variety	Origin	Beverage	GABA content	GABA content (harmonized units)	Reference
Tempranillo (after alcohol. ferment.)	La Rioja, Spain	Red Wine	48.2–14.8 mg L⁻¹	0.048–0.015 mg mL⁻¹	(Martínez-Pinilla et al., 2013)
Tempranillo (after malolact. ferment.)	La Rioja, Spain	Red Wine	44.9–16.1 mg L⁻¹	0.045–0.016 mg mL⁻¹	
Monastel (after alcohol. ferment.)	La Rioja, Spain	Red Wine	25.9–14.7 mg L⁻¹	0.026–0.015 mg mL⁻¹	
Monastel (after malolact. ferment.)	La Rioja, Spain	Red Wine	11.1–15.1 mg L⁻¹	0.011–0.015 mg mL⁻¹	
Maturana (after alcohol. ferment.)	La Rioja, Spain	Red Wine	10.7–5.2 mg L⁻¹	0.011–0.005 mg mL⁻¹	
Maturana (after malolact. ferment.)	La Rioja, Spain	Red Wine	15.1–5.8 mg L⁻¹	0.015–0.006 mg mL⁻¹	
Grey Riesling (early stage fruit maturity)	–	White Wine	53 μmol 100 mL⁻¹	0.055 mg mL⁻¹	(Kliewer, 1970)
Orange Musca (early stage fruit maturity)	–	White Wine	208 μmol 100 mL⁻¹	0.214 mg mL⁻¹	
Grey riesling (late stage fruit maturity)	–	White Wine	140 μmol 100 mL⁻¹	0.144 mg mL⁻¹	
Flora (late stage fruit maturity)	–	White Wine	420 μmol 100 mL⁻¹	0.433 mg mL⁻¹	
Vermentino	Italy	White Wine	130 mg L⁻¹	0.13 mg mL⁻¹	(Tuberoso et al., 2015)
Badacsonyi Szurkebarát	Hungary	White Wine	16.6 mg L⁻¹	0.017 mg mL⁻¹	(Kutlán & Molnár-Perl, 2003)
Several	Alentejo region, Portugal	White Wine	2.1–183.5 mg L⁻¹	0.002–0.183 mg mL⁻¹	(Herbert et al., 2006)
Airen variety	La Mancha	White Wine	36 mg L⁻¹	0.036 mg mL⁻¹	(Hernández-Orte et al., 2003)
Chardonnay	Spain	White Wine	114.8° mg L⁻¹	0.115 mg mL⁻¹	(Guitart et al., 1997)
Table 1. (Continued)

Variety	Origin	Beverage	GABA content (harmonized units)	Reference
Wine vinegar with extracts of herbs	Italy	Vinegar	0.8 μg mL⁻¹	0.0008 mg mL⁻¹ (Carlavilla et al., 2006)
Acetatos balsámico di Modena	Italy	Vinegar	62.9–159.4 μg mL⁻¹	0.063–0.159 mg mL⁻¹
Balsamic vinegar	Italy	Vinegar	64.8–151.9 mg L⁻¹	0.065–0.152 mg mL⁻¹ (Erbe & Brückner, 1998)
Balsamic vinegar	Italy	Vinegar	6.09–164.47 mg kg⁻¹	0.006–0.164 mg g⁻¹ (Chinnici, Duran-Guerrero, & Riponi, 2016)
Sherry vinegars	Spain	Vinegar	9.9–21.0 μg mL⁻¹	0.010–0.021 mg mL⁻¹ (Carlavilla et al., 2006)
Sherry vinegars	Spain	Vinegar	15.6–23.1 mg L⁻¹	0.016–0.023 mg mL⁻¹ (Erbe & Brückner, 1998)
Sherry vinegars	Spain	Vinegar	44.61–96.69 mg kg⁻¹	0.045–0.097 mg g⁻¹ (Chinnici et al., 2016)
Sweet Sherry vinegars	Spain	Vinegar	57.15–106.17 mg kg⁻¹	0.057–0.106 mg g⁻¹
White wine vinegar	Spain	Vinegar	7.9 μg mL⁻¹	0.008 mg mL⁻¹ (Carlavilla et al., 2006)
White wine vinegar	Germany	Vinegar	2.6–7.9 mg L⁻¹	0.003–0.008 mg mL⁻¹ (Erbe & Brückner, 1998)
Hungarian wine-vinegar	Hungary	Vinegar	21.5 mg L⁻¹	0.021 mg mL⁻¹ (Kutlán & Molnár-Perl, 2003)
3 different red wines	Spain	Vinegar	4.60–31.80 mg L⁻¹	0.005–0.032 mg mL⁻¹ (Collejón et al., 2008)
Red wine vinegar	France, Germany	Vinegar	9.3–34.5 mg L⁻¹	0.009–0.034 mg mL⁻¹ (Erbe & Brückner, 1998)
Cava vinegar	Spain	Vinegar	1.6 μg mL⁻¹	0.0016 mg mL⁻¹ (Erbe & Brückner, 1998)
Spirit vinegar	Germany	Vinegar	0.0–0.2 mg L⁻¹	0.0–0.0002 mg mL⁻¹ (Erbe & Brückner, 1998)

* Data for Vintage 2009–Vintage 2010
§ Data after 18 h fermentation and 6 months of bottle ageing, other examples reported
cortex, Arg/GABA content increased significantly during development in the stem ends (from 26 to 44 μg g⁻¹ FW [0.026 to 0.044 mg g⁻¹]) and decreased in middle of the fruit and blossom (17 to less than 5 μg g⁻¹ FW [0.017 to 0.005 mg g⁻¹]). The same tendency was observed in the inner cortex, demonstrating increasing Arg/GABA concentrations in stem ends (from 120 to 195 μg g⁻¹ FW [0.120–0.195 mg g⁻¹]) and decreasing in middle of the outer cortex and blossom (from around 100 to less than 25 μg g⁻¹ FW [0.100–0.025 mg g⁻¹]). In the core, the Arg/GABA content showed the same pattern in all the parts of the fruit, being lower in May than in February (blossom: from 1750 to 1300 μg g⁻¹ FW [1.75 to 1.3 mg g⁻¹]; middle of the fruit: from 1200 to 200 μg g⁻¹ FW [1.2–0.2 mg g⁻¹]; stem: from 600 to 75 μg g⁻¹ FW [0.6–0.075 mg g⁻¹]). It could be theorized that as the fruit ripens GABA is transported from the leaf to the fruit (Redgwell & Macrae, 1992).

GABA is the most abundant amino acid in lychee flesh (1.7–3.5 mg g⁻¹ FW), with a concentration approximately 100 times higher than in other fruits (Wu et al., 2016). The concentration varies among cultivars but remains relatively constant during development and maturation. When the amino acid composition of five kinds of lychee juices from cultivars of five regions in China were analyzed, GABA was found to be one of the major amino acids, with an average content of 104.69 mg 100 mL⁻¹ [1.05 mg mL⁻¹] (Cui et al., 2011). GABA was also found in other small fruits of inedible peel, such as in the flesh of rambutan, with a low concentration of 0.71 ± 0.23 mg g⁻¹ (Meeploy & Deewatthanawong, 2016); or in “Chuliang” and “Shixia” cultivars of Longan fruit (Dimocarpus longan Lour.) with a GABA content of 13–14 mmol kg⁻¹ FW [1.341–1.444 mg g⁻¹] (Zhou, Ndeurumio, Zhao, & Zhuoyan, 2016).

The presence of GABA in large fruit with inedible peel has also been reported. GABA content in banana fruit just after harvest was 23 μg g⁻¹ FW [0.023 mg g⁻¹]. The GABA concentration increased after 20 days of storage to 40.5 μg g⁻¹ [0.040 mg g⁻¹] (Wang, Luo, Mao, & Ying, 2016). The GABA content increased 41.1% during storage with nitrogen oxide treatment. In freshly harvested cherimoya fruit, GABA concentration was determined to be 0.045 μmol g⁻¹ FW [0.005 mg g⁻¹] increasing to 0.1 μmol g⁻¹ FW [0.010 mg g⁻¹] during storage. In treatments with CO₂, GABA content increased to 0.45 μmol g⁻¹ FW [0.047 mg g⁻¹] (Merodio, Muñoz, Del Cura, Buitrago, & Escribano, 1998). GABA concentrations in cherimoya varied between 2 and 6% of the total free amino acids content (Torres, Lazaro, Periago, Gil, & Faus, 1995). Pineapple juice was reported to have 40.1 μg mL⁻¹ [0.040 mg mL⁻¹] of GABA content (Mazzotti et al., 2012). Pepino (Solanum muricatum) extract was reported to have a very similar GABA concentration of 62.7 ± 0.9 μg mL⁻¹ [0.063 ± 0.0009 mg mL⁻¹] (Chang, Chiu, & Fu, 2015).

(Booz, Kerbasy, Guerra, & Pescador, 2009) reported the levels of endogenous GABA and investigated its role in different stages of somatic embryogenesis in guava (Acca sellowiana Berg. (Myrtaceae)). The highest level of GABA was detected from the third to the ninth day of culture (12.77 μmol g⁻¹ FW [1.317 mg g⁻¹]), during the period of intense cell proliferation in the explants. A decrease of GABA and other amino acids occurred during the different developmental stages of somatic embryos, being the lowest in cotyledonary-staged somatic embryos (0.08 μmol g⁻¹ FW [0.008 mg g⁻¹]).

2.2. GABA in vegetables

2.2.1. Root and tuber vegetables

Potato tuber was the vegetable in which GABA was detected for the first time (Steward et al., 1949). Many further studies have been undertaken since this first analysis. (Table 2). GABA is usually found in higher concentrations than other plant metabolites (Choi, Kozukue, Kim, & Friedman, 2016; Golan-Goldhirsh, Hogg, & Wolfe, 1982) and the content varies depending on the potato tissue (Choi et al., 2016; Talley, Toma, & Orr, 1983), type of cultivar (Choi et al., 2016; Nakamura, Nara, Noguchi, Ohshiro, & Koga, 2006; Talley et al., 1983), environmental conditions and postharvest processing (Kim & Yoon, 2013; Sullivan, Kozempel, Egoville, & Talley, 1985; Talley...
Potato tissue	Potato variety	GABA content (μmol g⁻¹ FW)	GABA content (harmonized units)	Reference
Potato tuber		5.66	0.54 mg g⁻¹	(Jaarma, 1969)
Raw whole potato	Katahdin//Pontiac	18.4	0.017 mg g⁻¹	(Oh et al., 2003)
Potato	22 varieties	16–61	0.16–0.61 mg g⁻¹	(Nakamura et al., 2006)
Whole potato	Atlantic//Goun//K1//K20		783//1.41//2.51//1.05//1.64 mg g⁻¹	(Choi et al., 2016)
Peeled potato	–	27% of total free aa		(Galan-Goldhirsh et al., 1982)
Raw flesh	Katahdin//Pontiac	22.1	2.279 mg g⁻¹	(Talley et al., 1983)
Pulp	Atlantic//Goun//K1//K20	154//1.99//3.57//1.282 mg 100 g⁻¹ DW	1.54//1.99//3.57//1.65//2.82 mg g⁻¹	(Choi et al., 2016)
Peel	Superior	108–143	1.08–1.43 mg g⁻¹	(Choi et al., 2016)
Potato juice	–	110–240	1.10–2.40 mg mL⁻¹	(Kim & Yoon, 2013)
Sweet potato	–	137 nmol g⁻¹ DW	0.014 mg g⁻¹	(Oh et al., 2003)
Peeled Bo flesh	Katahdin//Pontiac	25.4	2.619 mg g⁻¹	(Talley et al., 1983)
Flesh from BoU whole potato	–	21.3//26.8	2.196//2.764 mg g⁻¹	(Talley et al., 1983)
Flesh from MC whole potato	–	25.9//20.3	2.671//2.093 mg g⁻¹	(Talley et al., 1983)
Flesh from OB whole potato	–	25.8//27.3	2.660//2.815 mg g⁻¹	(Talley et al., 1983)
Peel from Bo whole potato	–	14.4//19.9	1.485//2.052 mg g⁻¹	(Talley et al., 1983)
Peel from MC whole potato	–	14.0//15.5	1.444//1.598 mg g⁻¹	(Talley et al., 1983)
Peel from OB whole potato	–	14.1//21.7	1.454//2.238 mg g⁻¹	(Talley et al., 1983)
et al., 1983). Sweet potato has similar amounts of GABA (137 nmol g$^{-1}$ DW [0.014 mg g$^{-1}$]) to potato (Oh et al., 2003).

Radish (Raphanus sativus L.) has been reported to contain 0.28 ± 0.01 mg of GABA per g of dry weight (DW) of root radish at harvest (Kato et al., 2015) and 1 µmol g$^{-1}$ FW [0.103 mg g$^{-1}$] in mature leaves (Streeter & Thompson, 1972). Powdered sprouts of radish had a GABA concentration of 18.7 mg 100 g$^{-1}$ DW [0.187 mg g$^{-1}$] (Nakamura et al., 2016). Post-harvest processing, such as dehydration by sun-drying or salt-pressing process, caused an increased of GABA content in roots to 7.30 ± 1.57 and 4.98 ± 0.06 mg g$^{-1}$ DW, respectively. Leaves also showed an increase of GABA content when submitted to anaerobic stress.

Carrot is another example of root vegetables with low GABA contents, <0.14 µg g$^{-1}$ FW [0.00014 mg g$^{-1}$] (Fan, Higashi, Lane, & Jardetzky, 1986) and 28 nmol g$^{-1}$ DW [0.003 mg g$^{-1}$] (Oh et al., 2003). GABA concentration was reported to be higher in dehydrated carrots, 2.3–2.8 g kg$^{-1}$ DW [2.3–2.8 mg g$^{-1}$] (Gamboa-Santos, Soria, Corzo-Martinez, Villamiel, & Montilla, 2012). In beet roots, GABA content was quantified in the range of 0–16 mg g$^{-1}$ (Westall, 1950). Jerusalem artichoke (Helianthus tuberosus L.) tubers contain GABA, as demonstrated using 1H-NMR (Claussen, Bach, Edelenbos, & Bertram, 2012). Flour from six varieties of taro roots, grown in Cameroon and Chad, were reported to contain 1.61 and 2.40 g GABA 100 g$^{-1}$ respectively (Lim, 2015).

2.2.2. Bulb vegetables

There have been few studies to determine GABA content of bulb vegetables, such as onions, garlics and shallots, among others. (Oh et al., 2003) showed that onions contain a low amount of GABA, 12 nmol g$^{-1}$ DW [0.001 mg g$^{-1}$]. However, (Moreno, Marta Corzo-Martinez, Del Castillo, & Villamiel, 2006) were not able to find GABA, measured as 2-furoylmethyl derivative (2-FM-GABA), neither in dehydrated onion nor in garlic. FM-GABA was only detected at low levels in stored onion. Thus, 2-FM-GABA showed a maximum concentration of 247 mg 100 g$^{-1}$ [2.47 mg g$^{-1}$] protein and remained constant from the fourth to the tenth day of storage.

2.2.3. Fruiting vegetables

Tomato (Solanum lycopersicum L.; Solanaceae) is a major crop worldwide. It has become an excellent model for the analysis of fruit development, ripening, metabolism and genomic research of solanaceous plants ((Rastogi & Davies, 1990; Takayama & Ezura, 2008; Yin et al., 2010) and references therein). In comparison with other plants, this vegetable accumulates a large amount of GABA in the fruits (Choi et al., 2014; Morini, Stingone, Cornali, & Sondei, 2015), although the content differs greatly among the varieties (Table 3). GABA content in other parts of the plant has also been reported but is usually found in lower quantities.

Drastic changes in GABA levels have been observed during fruit development, increasing during the mature green stage and rapidly decreasing during the ripening stage (Kader, Stevens, Albright, & Morris, 1978; Inaba, Yamamoto, Ito, & Nakamura, 1980; Akihiro et al., 2008; Perez et al., 2011). In order to improve tomato fruit quality, several analyzes have been reported to evaluate the influence of GABA content during plant development or postharvest storage under conditions of stress. It is generally reported that amounts of GABA increased compared to control samples (Bolarín, Santa-Cruz, Cayuela, & Pérez-Alfocena, 1995; Deewatthanawong & Watkins, 2010; Mae et al., 2010; Saito et al., 2008; Selman & Cooper, 1978; Zushi & Matsuzoe, 2007; Zushi, Matsuzoe, Yoshida, & Chikushi, 2005).

Data on GABA content of tomato-processed products has also been reported (Morini et al., 2015). A recent example is the quantification of GABA for each step of the production of tomato vinegar (Koyama et al., 2015): raw tomato juice (422 mg 100 mL$^{-1}$) [4.22 mg mL$^{-1}$], tomato wine after alcohol fermentation (348 mg 100 mL$^{-1}$) [3.48 mg mL$^{-1}$] and tomato vinegar after acetic acid fermentation (398 mg 100 mL$^{-1}$) [3.98 mg mL$^{-1}$].
Tomato variety *	Tissue*	Stage *	GABA content	GABA content (harmonized units)	Data comments	Reference
Solanum lycopersicum	Fruits	Days after flowering (DAF)	1250–140 mg 100 g⁻¹ FW	12.50–1.40 mg g⁻¹	27 DAF—45 DAF	(Akihiro et al., 2008)
L. esculentum Mill.	Leaves	Development	1–2.1 μmol mL⁻¹	0.103–0.217 mg mL⁻¹	day 0–day 8	(Balarin et al., 1995)
L. esculentum Mill.	Root		≤0.2–0.6 μmol mL⁻¹	≤0.021–0.062 mg mL⁻¹	day 0–day 8	
L. pennelli (Correll) D'Arcy (wild salt tolerant)	Leaves		0.6–0.8 μmol mL⁻¹	0.062–0.082 mg mL⁻¹	day 0–day 8	
L. pennelli (Correll) D'Arcy (wild salt tolerant)	Root		0.5–0.8 μmol mL⁻¹	0.052–0.082 mg mL⁻¹	day 0–day 8	
11 lines of San Marzano tomatoes	Fruits	At harvest	132–201 mg 100 g⁻¹	1.32–2.01 mg g⁻¹	≠ lines	(Loiudice et al., 1995)
L. peruvianum	Fruits	At harvest	9.8–10.1 mg 100 g⁻¹ FW	0.098–0.101 mg g⁻¹	≠ lines	(Anan, Ito, & Monma, 1996)
L. esculentum	Fruits	At harvest	52.4–107.7 mg 100 g⁻¹ FW	0.524–1.077 mg g⁻¹	≠ lines	
L. pimpinellifolium	Fruits	At harvest	34.2–49.7 mg 100 g⁻¹ FW	0.342–0.497 mg g⁻¹	≠ lines	
L. hirsutum	Fruits	At harvest	25.5 mg 100 g⁻¹ FW	0.255 mg g⁻¹		
Lycopersicon esculentum Mill	Fruits	At harvest	17.4 mg 100 g⁻¹ FW	0.174 mg g⁻¹	2.60 mg g⁻¹ DW	(Zushi et al., 2005)
61 commercial cultivars, wild species, and wild derivatives	Fruits	At harvest	8.8–189.7 mg 100 g⁻¹ FW	0.088–1.897 mg g⁻¹	≠ cultivars	(Saito et al., 2008)
Solanum lycopersicum Mill. “NDM051TM”	Fruits	At harvest	40.3 mg 100 g⁻¹ FW	0.403 mg g⁻¹		(Saito et al., 2008)
12 varieties of Korean cherry tomato	Fruits	At harvest	195.2–735 mg 100 g⁻¹ DW	1.952–7.35 mg g⁻¹	≠ varieties	(Choi et al., 2014)

(Continued)
Table 3. (Continued)

Tomato variety *	Tissue*	Stage *	GABA content	GABA content (harmonized units)	Data comments	Reference
Cherry tomato, variety Lycopersicon	Fruits	At harvest	305.99 mg 100 g⁻¹ DW	3.06 mg g⁻¹	= varieties	Ahn & 김현룡, 2014
* Solanum lycopersicum L., (varieties Rafito, Momotaro, and Medison)	Fruits	At harvest	666.95–868.48 mg 100 g⁻¹ DW	6.67–8.68 mg g⁻¹	= varieties	Ahn, 2016
* Solanum lycopersicum L., (House Momotaro cultivar)	Fruits	At harvest	8.2–9 μmol g⁻¹ FW	0.846–0.928 mg g⁻¹	= lines	Mae et al., 2010
* Solanum pennellii	Pericarp	At harvest	0.2–0.8 μmol g⁻¹ FW	0.021–0.082 mg g⁻¹	= lines	Deewatthanawong & Watkins, 2010

*As named by authors

* IG, Immature green; pMG, partially mature-green; MG, mature-green; B, breaker; LP, light pink; DP, dark pink; TR, table ripe
(Mori et al., 2013) reported the amount of GABA in nine selected varieties of aubergine (Solanum melongena L.). The results (23.3–38.1 mg 100 g⁻¹ FW) [0.23–0.38 mg g⁻¹] were very similar to those reported by (Horie, Ando, & Saito, 2013). The average content in the fruit was 24 mg 100 g⁻¹ FW [0.24 mg g⁻¹], and the difference among the varieties was not significant. Heat treatment at 60°C induced the accumulation of GABA in the fruit and doubled the contents of GABA after supplying glutamate to the fruit.

The variability of GABA levels was investigated in six cultivars of bitter melon (Momordica charantia L.) of different origins: Nikko and Peacock from Japan, Galaxy and Verde Buenas from Philippines and two native cultivars from China and Korea (Kim et al., 2009). The Philippines cultivar, Galaxy, contained the highest amount of GABA (19.3 μmol g⁻¹ DW [1.990 mg g⁻¹]) followed by the Chinese native (14.0 μmol g⁻¹ DW [1.444 mg g⁻¹]) which was around five times more than the other cultivars. The cultivars Peacock, the Korean native, Verde Buenas and Nikko contained as low as 3.5, 4.2, 4.8 and 5.2 μmol GABA g⁻¹ DW [0.361, 0.433, 0.495 and 0.536 mg g⁻¹], respectively. (Lee, 2016) also studied the GABA content of bitter melon and determined that it was rich in GABA, with a concentration of 283.8 mg 100 g⁻¹ DW [2.838 mg g⁻¹]. Courgette fruit (Cucurbita pepo) was found to have less GABA content in the exocarp, fluctuating from 26 to 40 μg g⁻¹ [0.026–0.040 mg g⁻¹] depending on variety. GABA content decreased during storage at 4°C in two varieties, by approximately 70% in Natura fruit (more tolerant to chilling) and 35% in Sinatra fruit (more sensitive) at 7 and 14 days (Palma, Carvajal, Jamilena, & Garrido, 2014). The floral nectar of Cucurbita pepo L was analyzed and showed a GABA content in male and female flowers of 734 ± 86.3 and 678.6 ± 94.1 pmol μL⁻¹ [75.69 ± 8.90 and 69.98 ± 9.70 mg mL⁻¹] respectively (Nepi et al., 2012).

Among cucurbits with inedible peel, studies on muskmelon (Cucumis melo L.) have been reported. Absolute concentration of GABA varied between 1 and 7 mM L⁻¹ of juice [0.103–0.722 mg mL⁻¹] depending on the location in the slice of melon fruit used (Cezanne cv.) (Biais et al., 2010). During plant growth (cv. Yipintianxia No. 208) leaves and roots behave differently with respect to GABA content. GABA in leaves remained constant over a period of 7 days (28.20–28.70 mg 100 g⁻¹ FW [0.282–0.287 mg g⁻¹]), whereas GABA content in roots increased from 27.6 to 50 mg 100 g⁻¹ FW [0.276–0.50 mg g⁻¹] (Hu et al., 2015).

Pumpkin is another widely cultivated vegetable used for human consumption. GABA was present in significant concentrations in the five cultivars of pumpkin seeds, ranging from 3.71 to 15.53 mg g⁻¹ (Qi, Yang, Wang, Xu, & Qu, 2012). (Watanabe et al., 2013) showed that pumpkin had a similar GABA content after freezing, 115 ± 31 mg 100 g⁻¹ [1.15 ± 0.31 mg g⁻¹].

2.2.4. Brassica vegetables

The levels of amino acids in broccoli (Brassica oleracea L. var italica) stems and florets have been analyzed (Murcia, Lopez-Ayerra, Martinez-Tome, & Garcia-Carmona, 2001). GABA content in raw broccoli stem was lower, 19 mg kg⁻¹ FW [0.019 mg g⁻¹] than in raw broccoli florets (31 mg kg⁻¹ FW [0.031 mg g⁻¹]). This data is similar to the data of (Oh et al., 2003) (77 nmol g⁻¹ DW [0.008 mg g⁻¹]). Powdered sprouts of broccoli had higher amounts of GABA, 30.7 mg 100 g⁻¹ [0.307 mg g⁻¹] (Nakamura et al., 2016). Postharvest treatments negatively affected the amount of GABA in broccoli. In the case of frozen (after blanching) broccoli florets, GABA decreased by 83.9 and 52.6% in frozen stems (Murcia et al., 2001). However, when bottling, GABA is one of the amino acids least affected (19.3% loss). Postharvest storage under CO₂ atmosphere increased GABA content from 27.4 μmol g⁻¹ DW [2.825 mg g⁻¹] (fresh harvested) to 211.8 μmol g⁻¹ DW [21.841 mg g⁻¹] after 7 days under an atmosphere of 20% CO₂ in N₂ (Hansen, Sorensen, & Cantwell, 2001).

(Park et al., 2014) identified moderate levels of GABA in different cabbage varieties. Quantification of GABA was made in 45 varieties of green cabbage (3.2–7.1 mg 100 g⁻¹ FW [0.032–0.071 mg g⁻¹]) and red cabbage (2.2–35.1 mg 100 g⁻¹ FW [0.022–0.351 mg g⁻¹]). Average contents were 1.66-fold higher in red cabbage, as opposed to the results obtained for...
kohlrabi (Brassica oleracea var. gongylodes) in which GABA was more abundant in green kohlrabi than in purple or pale green (Park et al., 2017). Using 1H NMR analysis (Kim et al., 2013) it was observed that Brassica rapa ssp. Pekinesis cultivars in Korea contained less GABA (below 500 μmol L⁻¹ [0.052 mg mL⁻¹]) than in China (700–2800 μmol L⁻¹ [0.072–0.289 mg mL⁻¹]).

(Na, Xiaofeng, & Liqian, 2013) observed that in leaves of fresh cabbage (Brassica oleracea var. capitata L.) GABA content in inner leaves (1.88 mg g⁻¹) was significantly higher than that in the outer leaves (1.02 mg g⁻¹). Postharvest treatments such as soaking or storing at low temperatures increased GABA concentration. GABA content in the Head-Type Kimchi cabbage leaves was higher than previously described (Seong, Chung, & Hwang, 2016). Kimchi cabbage leaves were divided into three portions, outer, mid and inner and the quantified GABA was 3.14 ± 0.06 mg 100 g⁻¹; 2.47 ± 0.15 mg 100 g⁻¹; 2.74 ± 0.09 mg 100 g⁻¹ wet basis [0.031 ± 0.0006; 0.025 ± 0.0015; 0.027 ± 0.0009 mg g⁻¹], respectively. Freeze-dried Chinese cabbage leaf and root were reported to contain 4690 and 7020 nmol g⁻¹ [0.484–0.724 mg g⁻¹] (Oh et al., 2003).

2.2.5. Leafy vegetables, herbs and edible flowers
Spinach (Spinacia oleracea) is an edible leaf vegetable with a high amount of GABA (414 nmol g⁻¹ DW [0.043 mg g⁻¹]; Oh et al., 2003)). GABA content was quantified in spinach grown in open fields and harvested at different intervals after sowing (DAS), showing that GABA concentration differed significantly depending on the harvesting day, 267 ± 29.3, 132.2 ± 15 and 260.7 ± 3.3 mg 100 g⁻¹ DM [2.67 ± 0.293; 1.32 ± 0.15; 2.61 ± 0.03 mg g⁻¹] at 79, 116, 145 DAS (Yoon et al., 2017). As in many other plants, GABA accumulated in spinach exposed to a variety of stresses, such as cold during development, cultivation in polder soil with high levels of NaCl (Shimomachi et al., 2008) or increase of UV-C radiation (Kobashigawa, Tamaya, & Shimomachi, 2011). Portulaca oleracea was found to contain a high concentration of GABA, 390 nmol g⁻¹ FW [0.040 mg g⁻¹] (Mudryj, Yu, & Aukema, 2014).

Mustard leaf (Brassica juncea (L.) Czern.) is part of a traditional fermented vegetable food (Kimchi) in Korea. In red mustard, the GABA content in flower buds was the highest (179.8 mg 100 g⁻¹ FW [1.798 mg g⁻¹]), whereas roots contained the lowest amount (1.77 mg 100 g⁻¹ FW [0.018 mg g⁻¹]). In green mustard, the GABA content in young leaves was the highest (97.76 mg 100 g⁻¹ FW [0.978 mg g⁻¹]), whereas seeds had the lowest (1.23 mg 100 g⁻¹ FW [0.012 mg g⁻¹]) (Kim, Lee, Kim et al., 2013).

2.2.6. Legume vegetables (fresh)
Legumes are considered to be an important dietary food with an excellent nutritional profile (Mudryj, Yu, & Aukema, 2014). They provide protein and fibre, as well as being a significant source of vitamins and minerals, such as iron, zinc, folate and magnesium. Among the amino acids, GABA is not very abundant in legume seeds although its concentration differs with the legume type. It is usually below a few milligrams per gram (Jeong et al., 2010; Li et al., 2010; Martinez-Villaluenga, Kuo, Lambein, Frias, & Vidal-Valverde, 2006; Pradeep, Malleshi, & Guha, 2011; Tiansawang, Luangpituksa, Varanyanond, & Hansawasdi, 2016).

Some studies related to amino acid metabolism and growth capacity in legumes have been reported (Bauer, Joy, & Urquhart, 1977; Camargos, Aguiar, Souza, Justino, & Azevedo, 2015; Dixon & Fowden, 1961). As in other types of vegetables, it has been shown that germination is the most sensitive growth stage when the concentration of GABA can be influenced (Nikmaram et al., 2017). Many methods have been tried to obtain sprouts with high GABA content. Such methods include varying pH, air flow (Li et al., 2010), temperature (Li et al., 2010; Mayer, Cherry, & Rhodes, 1990), irradiation (Antoniw & Sprent, 1978), hypoxia (Yang, Guo, & Zhenxin, 2013), salinity (Fougère, Le Rudulier, & Streeter, 1991), soaking during germination periods or the use of elicitors within the germination solution (Limon, Peñas, Martinez-Villaluenga, & Frias, 2014; Peñas et al., 2015). GABA content increases with fermentation. (Yeap et al., 2012) reported that 100 g of the nonfermented mung bean extract contained only 0.016 g [0.16 mg g⁻¹] of GABA, whereas the fermented mung bean extract showed an increased GABA concentration by 7.6-fold to 0.122 g 100 g⁻¹ [1.22 mg g⁻¹] of dried powder.
On the contrary, GABA decreased significantly after standard cooking methods. In germinated mung bean (0.807 g kg\(^{-1}\) DM [0.807 mg g\(^{-1}\)]), the remaining amounts of GABA were 0.063, 0.178, 0.218 and 0.184 mg g\(^{-1}\) after boiling, steaming, microwave cooking and open pan roasting processes, respectively (Tiansawang et al., 2016). Typical commercial products also showed very low GABA contents (Hermanussen, Gonder, Jakobs, Stegemann, & Hoffmann, 2010).

Data related to the most common legumes used as food dietary or forage crop are reported in Table 4.

2.2.7. Stem vegetables

Harvested fresh asparagus has a GABA content of 0.15 mg g\(^{-1}\) FW (Zhao & Jiang, 2007). This concentration is positively affected by post-harvest processes, such as soaking treatments in different conditions. Best results were obtained after soaking in citric acid-disodium hydrogen phosphate buffer of pH 7.0 or 100 μmol L\(^{-1}\) CaCl\(_2\) solutions for 2 h, resulting in an increase of GABA content by 73 or 62.23% over the control, respectively. Standard processing of green asparagus (Asparagus oficinalis, L.) for commercial purposes negatively affected the GABA content (Lopez et al., 1996). No substantial differences were found on the GABA contents of green asparagus, classified by commercial sizes according to the Spanish Quality Classification for processing vegetables (Fine (≤8 mm), Middle (9–11 mm), Thick (12–14 mm); Very thick (15–19 mm); Extra Thick ≥20 mm). Treatments like washing, blanching (5 min in 90°C water by gradual immersion) and canning (time elapsed from harvesting to obtain the processed product was between 18 and 24 h) decreased the amount of GABA to 1.39–1.67 mg g\(^{-1}\) DW, 0.62–1.39 mg g\(^{-1}\) DW and 0.37–0.84 mg g\(^{-1}\) DW respectively. Extra thick asparagus had the highest GABA content once canned.

To better understand their metabolism, isolated asparagus (Asparagus sprengeri Regel) mesophyll cells (Cholewa, Bown, Cholewinski, Shelp, & Snedden, 1997; Crawford, Bown, Breitkreuz, & Guinel, 1994) were studied. GABA content was reported in the range of 2.16–2.70 nmol of GABA/10\(^6\) cells [0.00022–0.00028 mg/10\(^6\) cells]).

GABA concentrations in artichoke heads of Cynara scolymus L. “Capuanella” were reported (Dosi, Daniele, Ferrara, Severino, & Maro, 2013). The amount of GABA was 1.140 mg 100 g\(^{-1}\) FW [0.011 mg g\(^{-1}\)], representing 0.015% of the total amino acid content.

2.2.8. Fungi, mosses and lichens

The kingdom Fungi is one of the most diverse groups of organisms and is generally recognized as comprising 1.5 million species, classified in five different phyla. Mushrooms generally are considered to be the spore-bearing fruiting body of higher fungi and most belong to the Basidiomycota. As they have been used as foods and food flavouring materials for centuries, their profile of volatile and non-volatile compounds has been widely studied (Kim et al., 2009; Oka, Tsuji, Ogawa, & Sasaoka, 1981; Rotzoll, Dunkel, & Hofmann, 2006) and references in Table 5). Data for GABA content in different species of culinary-medicinal mushrooms are summarized in Table 5. Concentration of GABA varies between species and strains. (Chen, Kung-Jui, Hsieh, Wang, & Mau, 2012) classified mushrooms into five levels depending on the amount of GABA (GABA content of >200 mg kg\(^{-1}\) DW, 100–200 mg kg\(^{-1}\), 10–100 mg kg\(^{-1}\), <10 mg kg\(^{-1}\), no detection; [>0.200, 0.100–0.200, 0.010–0.100, <0.010, mg g\(^{-1}\), no detection]). However, due to the variability of the reported data, this classification system is not commonly used.

Huitlacoche or cuitlacoche (Ustilago maydis) is an edible corn smut fungus consumed in Mexico, and it is becoming internationally known as a delicacy for its flavour. Its GABA concentration (0.75 mg g\(^{-1}\) DW) is much lower than most other reported fungi (Lizárraga-Guerra & López, 1996).
Table 4. GABA content in legumes. First part includes legumes for typical human used. Second part, examples of commercial products with legumes. Third part, cultivated mainly as forage crops

Legume	Tissue//Stage*	GABA content	GABA content (harmonized units)	Data comments	Reference
Vigna radiata cv.	Powdered sprouts	61.6 mg 100 g⁻¹ DW	0.616 mg g⁻¹		(Nakamura et al., 2016)
Vigna radiata	cv. Powedered sprouts	61.6 mg 100 g⁻¹ DW	0.616 mg g⁻¹		
Vigna radiata L. Wilczek (6 cultivars)	Seed/sprout	9–18.5/20–27 mg 100 g⁻¹ DW	0.09–0.185/0.20–0.27 mg g⁻¹	= cultivars	(Jeong et al., 2010)
Vigna radiata	Grain//soaking//sprout	0.132/0.435/0.682 g kg⁻¹ DW	0.132/0.435/0.682 mg g⁻¹	Grain/soaking/12 h germ	(Tiansawang et al., 2016)
Vigna radiata	Grain//soaking//sprout	0.132/0.435/0.682 g kg⁻¹ DW	0.132/0.435/0.682 mg g⁻¹	Grain/soaking/12 h germ	(Tiansawang et al., 2016)
Vigna radiata	Grain//soaking//sprout	0.132/0.435/0.682 g kg⁻¹ DW	0.132/0.435/0.682 mg g⁻¹	Grain/soaking/12 h germ	(Tiansawang et al., 2016)
Vigna mungo	Grain//soaking//sprout	0.044/0.677/0.164 g kg⁻¹ DW	0.044/0.677/0.164 mg g⁻¹	Grain/soaking/12 h germ	(Tiansawang et al., 2016)
Vigna unguiculata cv California Blackeye	Suspension cells	179–359 nmol g⁻¹ FW	0.018–0.037 mg g⁻¹	≠ culture periods	(Mayer et al., 1990)
Vicia faba L.	seed/sprout// (cotyledon//embryo)	1/1.25/1.15/1.5 mg g⁻¹ DW	1/1.25/1.15/1.5 mg g⁻¹	5 days germ	(Yang et al., 2013)
Vicia faba L. (9 cultivars)	Seed/sprout	0–0.05/1.21–2.37 g kg⁻¹ DW	0–0.05/1.21–2.37 mg g⁻¹	–/⅓ day old; ≠ pH, T and air flow	(Li et al., 2010)
Phaseolus vulgaris cv Glamis	Nodules//Host cells	7/16 µmol g⁻¹	0.722/1.650 mg g⁻¹	At two irradiance levels 7/28 W/m²	(Antoniw & Sprent, 1978)
Phaseolus vulgaris cv Glamis	Nodules//Host cells	7/16 µmol g⁻¹	0.722/1.650 mg g⁻¹	At two irradiance levels 7/28 W/m²	(Antoniw & Sprent, 1978)
Phaseolus vulgaris var. Pinto	Sprout	0.57/0.72/0.79 mg g⁻¹ DW	0.57/0.72/0.79 mg g⁻¹	4/6/8 days	(Limon et al., 2014)
Phaseolus aureus Roxb	Native//soaking//sprout//sprout	20.6/385.0/644.5/781.0 nmol 100 mg⁻¹	0.021/0.397/0.665/0.805 mg g⁻¹	Native/soaking/48 h germ/96 h germ	(Pradeep et al., 2011)
Phaseolus mungo Roxb	Native//soaking//sprout//sprout	11.1/349.4/312.2/385.5 nmol 100 mg⁻¹	0.011/0.360/0.322/0.398 mg g⁻¹	Native/soaking/48 h germ/96 h germ	(Pradeep et al., 2011)
Phaseolus acuminifolius, Jacq	Native//soaking//sprout//sprout	20.7/531/1242.5/1401.7 nmol 100 mg⁻¹	0.021/0.548/1.281/1.445 mg g⁻¹	Native/soaking/48 h germ/96 h germ	(Butler & Bathurst, 1958)
Lupinus angustifolius	Nodules	11/12 mg 100 g⁻¹ DW	0.11/0.12 mg g⁻¹	Free//Bound	(Larher, Goas, Le Rudulier, Gerard, & Hamelin, 1983)
Lupinus angustifolius	Nodules	4 µmol g⁻¹ DW	0.412 mg g⁻¹		

(Continued)
Legume	Tissue//Stage*	GABA content	GABA content (harmonized units)	Data comments	Reference
Lupinus angustifolius	Seed//sprout	0.46/1.69 mg g⁻¹ DW	0.46/1.69 mg g⁻¹	9 days germ	(Martinez-Villaluenga et al., 2006)
L. var. zapaton	Sprout	1.2–1.5 mg g⁻¹ DW	1.2–1.5 mg g⁻¹	Day 8	(Peñas et al., 2015)
Lens culinaris var.	Seedlings	1.64/0.78/1.00/2.04/1.26 mg g⁻¹ DW	1.64/0.78/1.00/2.04/1.26 mg g⁻¹	4 day old	(Rozan, Kuo, & Lambein, 2001)
Castellana	Sprout	1.2–1.5 mg g⁻¹ DW	1.2–1.5 mg g⁻¹	Day 8	(Peñas et al., 2015)
Lens culinaris, L.	Native//soaking//sprout	12.6/139.5/301.4/384.6 nmol 100 mg⁻¹	0.013/0.144/0.311/0.397 mg g⁻¹	Native/soaking/48 h germ/96 h germ	(Pradeep et al., 2011)
orientalis, L. ervoides, L. nigricans and L. adeimensis.	Nodules	36 μmol g⁻¹ DW	3.712 mg g⁻¹	Day 5: Cotyledons/Root-shoot axis (1 d)/shoot shafts/root tips/ root tips	(Lawrence & Grant, 1963)
Pisum sativum L. var.	Nodules	12/18 mg 100 g⁻¹ DW	0.12/0.18 mg g⁻¹	Free/Bound	(Butler & Bathurst, 1958)
Unica	Seedlings	491 μmol 100 seedlings⁻¹	50.63 mg 100 seedlings⁻¹	Day 5, whole seedling	(Lawrence & Grant, 1963)
Asmus sativum L. var.	Nodules	435/1.8/35/18/6/0.2 μmol 100 seedlings⁻¹	44.86/0.19/3.61/1.86/0.62/0.02 mg 100 seedlings⁻¹	Day 5: Cotyledons/Root-shoot axis (1 d)/shoot shafts/root tips/ root tips	(Mils & Joy, 1980)
Unica	Chloroplasts from leaf homogenates//Chloroplasts from ruptured protoplasts	4/230 nmol mg⁻¹ Chl	0.412/23.712 mg g⁻¹ Chl		(Mils & Joy, 1980)
Asmus sativum L. cv.	Native//soaking//sprout	14.2/89.0/47.6/573.1 nmol 100 mg⁻¹	0.015/0.092/0.462/0.591 mg g⁻¹	Native/soaking/48 h germ/96 h germ	(Pradeep et al., 2011)
Little Marvel	Nodules	10.9/312.4/290.0/367.7 nmol 100 mg⁻¹	0.011/0.322/0.299/0.379 mg g⁻¹	Native/soaking/48 h germ/96 h germ	(Pradeep et al., 2011)
Cicer arietinum	Native//soaking//sprout	14.2/89.0/47.6/573.1 nmol 100 mg⁻¹	0.015/0.092/0.462/0.591 mg g⁻¹	Native/soaking/48 h germ/96 h germ	(Pradeep et al., 2011)
(Continued)					
Table 4. (Continued)

Legume	Tissue//Stage*	GABA content	GABA content (harmonized units)	Data comments	Reference
Primana lentils	Commercial product	4 mg 100 g\(^{-1}\)	0.04 mg g\(^{-1}\)		(Hermanussen et al., 2010)
Lentils ’chef’	Commercial product	5 mg 100 g\(^{-1}\)	0.05 mg g\(^{-1}\)		
Primana peas	Commercial product	9 mg 100 g\(^{-1}\)	0.09 mg g\(^{-1}\)		
Dolichos biflorus	Native//soaking//sprout	16.9/63.5/162.7/241.0 nmol 100 mg\(^{-1}\)	0.017/0.065/0.168/0.249 mg g\(^{-1}\)	Native//soaking//48 h germ/96 h germ	(Pradeep et al., 2011)
Trifolium repens/T. pratense/T. medium	Nodules	1006 (2)/120 (12)/104 (-) mg 100 g\(^{-1}\) DW	10.06 (0.02)/1.20 (0.12)/1.04 (-) mg g\(^{-1}\)	Bound GABA (free GABA)	(Butler & Bathurst, 1958)
Lotus uliginosus/L. Corniculatus	Nodules	29 (-)/trace (-) mg 100 g\(^{-1}\) DW	0.29 (-)/trace (-) mg g\(^{-1}\)	Bound GABA (free GABA)	(Butler & Bathurst, 1958)
Cytisus scoparius	Nodules	12 (8) mg 100 g\(^{-1}\) DW	0.12 (0.08) mg g\(^{-1}\)	Bound GABA (free GABA)	
Galega officinalis	Nodules	6 (13) mg 100 g\(^{-1}\) DW	0.06 (0.13) mg g\(^{-1}\)	Bound GABA (free GABA)	
Trifolium repens	Effect nodules//(nelf nodules//roots//stems and petioles//leaves	1.6/1.8/3.0/2.2/2.7 mg 100 g\(^{-1}\) DW	0.016/0.018/0.03/0.02/0.027 mg g\(^{-1}\)	Free GABA	
Medicago Sativa	Nodules	5/639 μmol g\(^{-1}\) DW	0.516/65.89 mg g\(^{-1}\)	Free GABA/Bound GABA (2-month old plants)	(Larher et al., 1983)
Medicago Sativa	Nodules (Cytosol Fractions)	2700 nmol g\(^{-1}\) FW	0.278 mg g\(^{-1}\)		(Ta, Mohamad, & Macdowall Fergus, 1986)

*As named by authors.
Table 5. GABA content in fruting body and mycelia of different species of culinary-medicinal mushrooms. Multiple data for the same specie are for different strains. All presented data have been harmonized from mg kg\(^{-1}\) to mg g\(^{-1}\).

Mushroom	Fruiting body (mg g\(^{-1}\) DW)	Mycelia (mg g\(^{-1}\) DW)	Reference
Agaricus bisporus	0.125; 0.36\(^a\)		Chen
Agaricus blazei	0.360	0.200	Chen
Agaricus brasiliensis	1.845; 0.394; 0.590	0.039	Lo
Agrocybe aegerita	0.822	0.490	Lin
Agrocybe cylindracea	0.730; 0.210	0.123	Lo
Agrocybe chauingi	0.239		Lo
Antrodia camphorata		0.038	Chen
Antrodia salmonea	0.133		Chen
Armillaria mellea		0.034	Chen
Auricularia fuscosequinea	0.536		Lo
Auricularia mesenterica	n.d.		Chen
Auricularia polytrichia	0.282		Lo
Boletus edulis	0.202; 0.110	1.274	Lo
Clitocybe maxima (cap)	0.017		Chen
Clitocybe maxima (stipe)	0.023		Chen
Coprinus comatus	1.092; 0.630	n.d.; 0.234; 0.230	Cohen
Cordyceps cicadae		0.255	Chen
Cordyceps militaris	0.756	0.071; 0.069; 0.180; 0.553; 0.494	Cohen
Coriolus versicolor	0.116		Chen
Cyathus striatus	0.037		Lin
Daedalia gibbosa	0.538		Lin
Flamulina velutipes	0.360; 0.230; 0.339		Cohen
Fomes fomentarius	0.159		Lin

(Continued)
Table 5. (Continued)

Mushroom	Fruiting body (mg g⁻¹ DW)	Mycelia (mg g⁻¹ DW)
Ganoderma sp.	0.013; n.d.	0.250
Ganoderma lucidum	0.017	0.114; 0.095; 0.007
Ganoderma lucidum (antler)		Lo
Ganoderma lucidum (baby Ling-chih)	0.018	Lo
Ganoderma lucidum (regular)		Lo
Grifola frondosa		Lo
Hericium erinaceus		0.043
Hypsizygus marmoreus (white)	0.008	0.012
Inonotus obliquus		0.012
Laetiporus sulphureus		0.018
Lentinus edodes		0.012
Marasmius crocatus		0.008
Marasmius cremnipes		0.008
Marasmius elodes		0.008
Phellinus linteus		0.018
Reaurotus crinitum		1.632
Reaurotus columbrius		1.107
Reaurotus cornucopiae		1.31

References:
- Cohen Chen Lin
- Lo
- Ramos-Ruiz et al., Cogent Food & Agriculture (2018), 4: 1534323

https://doi.org/10.1080/23311932.2018.1534323
Mushroom	Fruiting body (mg g\(^{-1}\) DW)	Mycelia (mg g\(^{-1}\) DW)	Reference
Pleurotus cystidiosus	0.037	2.553	Chen, Lin
Pleurotus dryinus	2.402		Lin
Pleurotus eryngii	n.d.; 2.812		Chen, Lin
Pleurotus eryngii (base)	n.d.		Chen
Pleurotus eryngii (sporophore)	0.025		Chen
Pleurotus ferulae	0.047	0.062	Lo, Chen
Pleurotus flavida	0.197		Lin
Pleurotus nebrodensis	1.057		Lin
Pleurotus ostreatus	1.305	0.844	Cohen, Lin
Pleurotus ostreatus (Japan)	0.006		Chen
Pleurotus ostreatus (Korea)	0.024	0.262	Lo, Chen
Pleurotus ostreatus (Taiwan)	n.d.	0.532	Lo, Chen
Pleurotus pulmonarius	0.237; 1.321		Lin
Pleurotus salmoneastramineus	n.d.	0.138	Lo, Chen
Pleurotus smithii	1.994		Lin
Pleurotus tuber-regium	1.039		Lin
Termitomyces albuminosus	2.560		Lo
Trametes versicolor	0.100	0.049; 0.146	Cohen, Lin
Trametes zonata	0.125		Lin
Tremella fucoformis	0.687; 0.525; 0.372		Lo, Cohen
Tremella mesenterica\(^a\)	n.d.		Lin
Verpa bohemica	0.094		Lin
Volvariella volvacea	0.990		Lo

\(^a\) n.d., not detected; \(^\#\) One-cell biomass. §, in mmol kg\(^{-1}\) in the original paper. References: Cohen: (Cohen et al., 2014); Chen: (Chen et al., 2012); Lin: (Lin et al., 2013); Lo: (Lo et al., 2012); Oh: (Oh et al., 2003); Okar (Oka et al., 1981); Tsai 7: (Tsai, 2007); Tsai 8: (Tsai, Tsai, & Mau, 2008).
Processing for commercial uses affect the chemical profile and, as in other food items, GABA content decreases in canned mushrooms (Chiang, Yen, & Mau, 2006). Considering the three types analyzed, canned mushrooms of Flammulina velutipes contained the highest amount of GABA (fruit body/broth; 25.8/18.7 μg g⁻¹ [0.026/0.019 mg g⁻¹]), whereas the concentrations of GABA in Agaricus bisporus (1.38/0.78 μg g⁻¹ [0.0014/0.0008 mg g⁻¹]) and Volvariella volvacea (1.31/0.34 μg g⁻¹ [0.0013/0.0003 mg g⁻¹]) were similar for fruit bodies and broth respectively. Drying processes also negatively affect GABA content. One example is reported by (Thomke, Rundgren, & Eriksson, 1980) using the white-rot fungus (Sporotrichum pulverulentum). The GABA content was 6.9 g per 16 g N (nitrogen) when the test material was dried in bulk, but 8.9 g and 1.8 g when material was dried by freeze plus oven or by fluid bed respectively.

Mushroom mycelia of Antrodia camphorata, Agaricus blazei, Hericium erinaceus and Phellinus linteus have been used to substitute 5% of wheat flour to make bread. After baking, mycelium-supplemented bread still contained substantial amounts of GABA (0.23–0.86 mg g⁻¹ DM) (Ulziijargal, Yang, Lin, Chen, & Mau, 2013).

(Bent & Morton, 1964) reported a study of the free and combined amino acids of the fungus Penicillium griseofulvum throughout its life cycle. GABA content of Penicillium griseofulvum, during growth in shaken culture, varied depending on the type and duration of the culture (7.3–25.3% of total free amino-N). After 45 h, the shaken culture showed levels of GABA of 4.9% (conidia) and 10.1% (sporogenous mycelium).

Pseudevernia furfuracea, a lichenized species of fungus that grows on the bark of firs and pines, contained 34.66 μmol g⁻¹ FW [3.574 mg g⁻¹] (Seher et al., 2013).

2.2.9. Algae and prokaryotes organisms

Marine algae comprises thousands of species that represent a considerable part of the littoral biomass. They are classified as green (Chlorophyta), brown (Phaeophyta) and red (Rhodophyta) algae on the basis of their nutrient and chemical compositions. Brown seaweeds are a very large group and, since ancient times, have been part of the diet in Asian countries. (Cao, Duan, Guo, Guo, & Zhao, 2014) reported the chemical analysis of 24 brown algae samples collected from different locations in China, all of them of the Sargassaceae family (Saccharina japonica, Sargassum pallidum, S. fusiforme, S. thunbergii and S. muticum). GABA was detected in some samples (33%), but generally in trace amounts (1.6–8.6 μg g⁻¹ [0.0016–0.0086 mg g⁻¹]).

Some examples of GABA content in green edible algae have been determined. Ulva lactuca (Seher et al., 2013) and green laver (Oh et al., 2003) have been analyzed showing an amount of GABA of 71.5 μmol g⁻¹ FW [3.574 mg g⁻¹] and 37 nmol g⁻¹ DW [0.004 mg g⁻¹], respectively. Chlorella vulgaris is an unicellular green algae that, under cultivation, produces GABA with the highest production rate of 1.90 μg L⁻¹ per day [1.9 × 10⁻⁶ mg mL⁻¹] under favourable conditions (Kim, Lim, Hong et al., 2016).

Due to its high GABA content, it is worth noting the data reported for the aquatic plants Nymphaea alba and Iris kaempferi, 787.76 μmol g⁻¹ FW [81.23 mg g⁻¹] and 738.14 μmol g⁻¹ FW [76.12 mg g⁻¹], respectively (Seher et al., 2013). (Lahdesmaki, 1968) reported that the amount of GABA in the leaves of Salvinia natans increases with age.

2.2.9.1. Prokaryotes organisms

Phytoplankton represents an important source of carbon and nitrogen in marine systems. (Kittredge, Simonsen, Roberts, & Jelinek, 1962) described for the first time that the dinoflagellate Gonyaulax polyedra had high concentrations of GABA, among other amino acids.
Sinking particles obtained in Breid Bay, Antarctica, at different depths, were analyzed for organic materials, stable carbon and nitrogen isotopes (Handa, Nakatsuka, Fukuchi, Hattori, & Hoshiai, 1992). The acid hydrolysates of these particles consisting of diatoms (mainly Thalassiosira Antarctica) had 15 types of protein amino acids with traces of GABA, β-Alanine and ornithine. The traces of these amino acids indicated that the sinking particles were fresh and that little microbial degradation had occurred.

The analysis made by (Nguyen & Rodger Harvey, 1997) on the contribution of the diatom Thalassiosira weissflogii, the cyanobacterium Synechococcus sp. and the dinoflagellate Prorocentrum minimum, to the amino acid and the particulate carbon and nitrogen pools during their microbially mediated degradation, gave similar results. In the oxic and anoxic dinoflagellate decay experiments, GABA plus β-Alanine reached a maximum of 3.6 and 5.6% respectively of the total hydrolysable amino acids and, thereafter, decayed to concentrations not significantly different from the initial concentrations (1.5%).

This same pattern was obtained in different samples from the Pacific Ocean, also suggesting the presence of microbes. High purity, hydrothermal fluids (300°C) sampled from natural and drilled vents in hydrothermal systems at Suiyo (Horiuchi et al., 2004), yielded different amounts of amino acids including GABA (1.2–6.9 nmol L⁻¹) [1.2 10⁻⁷–7.1 10⁻⁷ mg mL⁻¹] plus β-Alanine as minor constituents, in line with approximately 10⁴–10⁵ cell mL⁻¹ of microbes.

Particles in sea water can originate from a variety of sources including phytoplankton biomass, fragments and moulds of crustaceans, faecal pellets and exudates, resuspension of sediments, terrestrial inputs from rivers and even Aeolian transport. Biochemical and transformation processes occur in these sinking particles throughout the water column, ending as sediments, where they continue their metabolic degradation. Examples of processes will be discussed in the section regarding GABA in soils.

2.3. GABA in pulses
According to the Food and Agriculture Organization (FAO), pulses are defined as “Leguminosae crops harvested exclusively for their grain, including dry beans, peas and lentils”. Pulses are categorized into 11 groups as follows: dry beans, dry brood beans, dry peas, chickepeas, black-eyed peas, pigeon peas, lentils, bambara groundnut, vetch, lupins and other “minor” pulses. It is difficult to differentiate between fresh and dried seeds within literature on pulses, including metabolite profile during development. Therefore, within this review the information related to seed leguminosae, either fresh or dry, has been included in the section on legume vegetables.

2.4. GABA in oil seeds and oil fruits
2.4.1. Oil seeds
Soybean or soya bean is a legume classified as an oilseed due to its high oil content. Soybean accounts for more than a half of the overall world oilseed production. Soybean is a very versatile crop with many different applications from human food to industrial uses. It has been recognized for its healthy properties, being the focus of multiple research projects. GABA content in soybean has been well studied, including the influence of culture conditions during development, post-harvest treatments and processing.

The GABA content of dried soybeans was reported to be 211 μg g⁻¹ (0.211 mg g⁻¹) of soybeans (Zazzeroni et al., 2009) and it was found to be higher for powdered sprouts, 1.16 mg g⁻¹ (Nakamura et al., 2016). Similar to the observations for other seeds, soybean germination caused a significant increase of GABA. GABA content increased around four-fold from 0.25 to 0.9 mg g⁻¹ DW in Glycine max var. Jutro after 4 days of germination compared to var. Merit, which took 6 days of germination to reach 1.09 mg of GABA g⁻¹ DW (initial GABA content, 0.26 mg g⁻¹ DW) (Martínez-Villaluenga et al., 2006). (Tiansawang et al., 2016) obtained the best results after 6 h of incubation, from 0.1222 g kg⁻¹
The influence of germination in isolated germs was also evaluated. GABA content increased considerably as germination progressed, from 26.5 mg 100 g\(^{-1}\) [0.265 mg g\(^{-1}\)] in ungerminated soy seeds to 718.0 mg 100 g\(^{-1}\) [7.180 mg g\(^{-1}\)] after 24 h of germination. The total GABA content of whole soybeans (var. Daepung) was 5.79 mg 100 g\(^{-1}\) [0.058 mg g\(^{-1}\)] (Kim et al., 2013).

(Abe & Takeya, 2005) reported the quantitative differences in free amino acids and GABA in the cotyledon of immature seeds harvested at 35 days after flowering (DAF) of six vegetative-type soybean (Edamame) and two grain-type soybean. The concentration of GABA varied greatly among cultivars. Immature seeds of two vegetative-type soybean cultivars, Shirayama-dadacha and Wase-shirayama, had the highest content of GABA at 15 DAF with over 50 mg 100 g\(^{-1}\) FW [0.50 mg g\(^{-1}\)], and it remained high until 35 DAF, after which it decreased until 50 DAF.

Growth conditions during germination can have important effects on the composition of secondary metabolites of nutritional importance. GABA was shown to accumulate in high concentrations under stressed germination conditions. (Xing, Jun, Hau, & Liang, 2007) showed that the amount of GABA in soybean roots after germination under salinity stress (150 mM NaCl) increased to 11.3 \(\mu\)mol g\(^{-1}\) FW [1.165 mg g\(^{-1}\)] after 2 weeks (GABA content after standard growth was 0.61 \(\mu\)mol g\(^{-1}\) FW [0.063 mg g\(^{-1}\)]). Similar results were obtained after germination under hypoxia stress. GABA content in embryos of soybean sprouts increased from 0.65 mg kg\(^{-1}\) DW to 1.63 g kg\(^{-1}\) DW [0.65 to 1.63 mg g\(^{-1}\)] and in cotyledons increased to 2.61 g kg\(^{-1}\) DW [2.61 mg g\(^{-1}\)] compared to 0.86 g kg\(^{-1}\) DW [0.86 mg g\(^{-1}\)] under no-hypoxia conditions (Guo, Yang, Chen, Song, & Zhenxin, 2012). GABA content in leaves, roots and nodules also changed after 3 h of hypoxia during germination, increasing from 0.35, 0.11 and 1.27 \(\mu\)mol g\(^{-1}\) FW [0.036, 0.011 and 0.131 mg g\(^{-1}\)] to 0.90, 0.34 and 3.03 \(\mu\)mol g\(^{-1}\) FW [0.093, 0.035 and 0.312 mg g\(^{-1}\)], respectively (Serraj, Barry, & Sinclair Thomas, 2002). Drought stress also resulted in an increase in GABA concentration of about 230%. Similar changes in amino acid composition and accumulation of GABA have been observed previously in soybean leaves (with a low content of GABA, 0.05–0.35 \(\mu\)mol g\(^{-1}\) FW [0.05–0.35 mg g\(^{-1}\)]) in response to hypoxia, cold or mechanical stress (Ramputh & Bown, 1996; Shelp et al., 1999; Wallace, Secor, & Schrader, 1984).

Processing treatments also modify GABA concentration. Drying of immature seeds of vegetable soybean (Glycine max L. Merrill) at a maximum temperature of 40\(^\circ\)C increased the GABA content more than 5 times. Untreated seeds contained 79.6 mg of GABA 100 g\(^{-1}\) DW [0.796 mg g\(^{-1}\)] and heat-dried seeds accumulated 447.5 mg 100 g\(^{-1}\) DW [4.475 mg g\(^{-1}\)] (Takahashi, Sasuma, & Abe, 2013). Cooking processes had a negative influence on the GABA content of germinated soy beans. After 6 h of germination, GABA content was of 0.498 g kg\(^{-1}\) DW [0.498 mg g\(^{-1}\)], which decreased after boiling, steaming, microwave cooking and open pan roasting to 0.204, 0.407, 0.191 and 0.306 g kg\(^{-1}\) DW [0.204, 0.407, 0.191 and 0.306 mg g\(^{-1}\)], respectively (Tiansawang et al., 2016).

The nutritional evaluation of sesame seeds and sprouts has also been reported. GABA content of untreated Sesamum indicum seeds was very low, 24.12 \(\mu\)g g\(^{-1}\) DW [0.024 mg g\(^{-1}\)]. As germination progressed an increase of GABA was found, almost three times higher than in seeds 5 days after seeding, 95.28 \(\mu\)g g\(^{-1}\) DW [0.953 mg g\(^{-1}\)] (Liu, Guo, Zhu, & Liu, 2011). The same behaviour was reported by (Tiansawang et al., 2016), who found that the initial amount of GABA, 90.8 \(\mu\)g g\(^{-1}\) [0.091 mg g\(^{-1}\)] increased to 165 \(\mu\)g g\(^{-1}\) [0.165 mg g\(^{-1}\)] after 6 h of germination. (Bor et al., 2009) observed 150 \(\mu\)g g\(^{-1}\) FW [0.150 mg g\(^{-1}\)] of GABA in sesame seedlings.

The influence of post-harvest processing treatments in sesame seeds on GABA content is very similar to that described for soybean seeds. Temperature treatments induced GABA enrichment with a maximum GABA content of 0.84 \(\mu\)mol g\(^{-1}\) [0.087 mg g\(^{-1}\)] when the seeds were heated at 100\(^\circ\)C (GABA content of raw seeds was 0.06 \(\mu\)mol g\(^{-1}\) [0.006 mg g\(^{-1}\)]). Moreover, when water was added to sesame seeds, heating treatment increased GABA production to a maximum of 4.2 \(\mu\)mol g\(^{-1}\) [0.433 mg g\(^{-1}\)] when the seeds were heated at 60\(^\circ\)C (Katsuno et al., 2015). On the contrary,
cooking decrease GABA content of germinated sesame seeds. The amount of GABA in germinated sesame was 0.165 g kg^{-1} DW [0.165 mg g^{-1}], which decreased after boiling, steaming, microwave cooking and open pan roasting to $0.072, 0.073, 0.158$ and 0.093 g kg^{-1} DW [$0.072, 0.073, 0.158$ and 0.093 mg g^{-1}] respectively (Tiansawang et al., 2016).

Other oil seeds or tissues of oil plants have been analyzed to determine the concentration of GABA. Some examples of GABA content are reported: Mustard seed ($Brassica juncea$ (L.) Czern.), $1.23 \text{ mg 100 g}^{-1}$ FW [0.012 mg g^{-1}] (Kim, Lim, Kim et al., 2013); Conophor Nut ($Tetracarpidium conophorum$), $0.5 \text{ mmol (relative amount, (Ogunsua, 1988))}$; incubated excised cotyledons of germinated sunflower seed ($Helianthus annuus$ L.), $0.39 \text{ mmol g}^{-1} \text{ FW}$ [0.040 mg g^{-1}] (Arunugam, Tung, Chinnappa, & Reid, 1997); roots of $Brassica napus$ L. cv. Capitol, $494 \text{ nmol g}^{-1} \text{ FW}$ [0.051 mg g^{-1}] (Beuve et al., 2004).

GABA content of seed oils have also been reported, that is sunflower oil ($0.4-0.7 \text{ ng g}^{-1}$ [4×10^{-7}-$0.7 \times 10^{-7} \text{ mg g}^{-1}$]), corn oil ($0.5-0.7 \text{ ng g}^{-1}$ [5×10^{-7}-$0.7 \times 10^{-7} \text{ mg g}^{-1}$]), soybean oil ($0.37-0.62 \text{ ng g}^{-1}$ [3.7×10^{-7}-$6.2 \times 10^{-7} \text{ mg g}^{-1}$]) (Sánchez-Hernández, Marina, & Crego, 2011).

2.4.2. Oil trees

The main focus of the studies performed with olives was to determine the chemical composition related to fatty acids, vitamins and volatile components. There is very little information related to the amino acid profile. (Rosati et al., 2014) reported that olive ($Olea europaea$ L.) of Leccino cultivars had larger amounts of GABA than Frantoio cultivars.

GABA content is much lower in olive oils than in seed oils. Hojiblanca extra virgin olive oil contained $0.10-0.12 \text{ ng g}^{-1}$ [$0.0001-0.00012 \text{ mg g}^{-1}$] and Arbequina extra virgin olive oil contained $0.06-0.14 \text{ ng g}^{-1}$ [$0.00006-0.00014 \text{ mg g}^{-1}$] (Sánchez-Hernández et al., 2011).

2.5. GABA in cereals

Cereals are the edible seeds or grains of the grass family, Gramineae, including corn, barley, oats, triticale, millet, sorghum and rice. On a worldwide basis, wheat and rice are the most important crops, accounting for over 50% of the world’s cereal production. Cereals are basic foods, and are an important source of energy, carbohydrates, proteins and fibres, as well as containing a range of micronutrients such as vitamin E, some of the B vitamins, magnesium and zinc. They are also an important source of GABA compared to other vegetables (Oh et al., 2003). Many studies are available reporting GABA content in cereals (Tables 6 and 7) and nearly half of them focused on rice ((Cho & Lim, 2016; Patil & Khan, 2011), references in Table 7).

Considering the data reported, it was observed that brown rice, barley and corn had higher concentrations of GABA compared to other cereal grains. Nevertheless, there is great variability dependent on many factors including the cultivar (Frank, Reichardt, Shu, & Engel, 2012; Kihara, Okada, Iimure, & Ito, 2007; Ko et al., 2011; Nagota et al., 2012; Roohinejad et al., 2009; Saikusa, Horino, & Mori, 1994), soaking condition (Banchuen, Thammarutwasik, Oraikul, Wuttijummong, & Sirivongpaisal, 2008; Komatsuzaki et al., 2007; Oh, 2003), germination conditions (Reggiani, Cantu, Brambilla, & Bertani, 1988; Pradeep et al., 2011; Paucar-Menacho, Luz, Duenas, Frias, & Martinez-Villaluenga, 2017), stress pre-treatments (Caceres, Penas, Martinez-Villaluenga, Amigo, & Frias, 2017; Choi et al., 2014) and post-harvest treatments (Mazzucotelli, Tartari, Cattivelli, & Forlani, 2006).

Soaking generally increases the GABA content (Homma, Morohashi, Yoshii, Hosokawa, & Miura, 2006) and similar results have been reported for germination (Morita, Miyake, Maeda, & Van Hung, 2013; Morita, Park, & Maeda, 2013; Polthum & Ahromrit, 2014, van Hung, Maeda, Yamamoto, & Morita, 2012; Yang, Peng Wang, Elbaloula, & Zhenxin, 2016). Again, soaking and germination conditions and time influenced the final GABA concentration. Grain fermentation also increased the GABA content (Hayat et al., 2015).
Cereal (1)	Tissue/Stage (1)	GABA content	GABA content (mg g⁻¹)	Data comments	Reference
Adlay Seed (Coixlachryma-jobi L.)	non-germinat./germinat	29.70/102.7 mg 100 g⁻¹	0.297/1.027	60 h germinat.	(Xu et al., 2017)
Barley	Seed/sprout	190/326 nmol g⁻¹ DW	0.020/0.034		(Oh et al., 2003)
43 Barley varieties (Canada, Germany, Australia, New Zealand and Japan)	non-germinat./germinat	10–12/25.7–89.4 mg 100 g⁻¹ DM	0.10–0.12/0.26–0.89		(Kihara et al., 2007)
20 cultivars and 20 breeding lines barley samples	Cultivar/breeding line	2.7–24.5/4.3–41.7 mg 100 g⁻¹	0.027–0.245/0.043–0.417		(Nogata et al., 2012)
Frost resistant barley (H vulgare L cv Nure); Frost-sensitive barley (H vulgare cv. Tremois)	Seedlings	0.023; 0.020 μmol g⁻¹ FW	0.002; 0.002	8 day germinat	*(Mazzucotelli et al., 2006)
Buckwheat	Non-germinat. grain/germinat grain	12.4/28.7 mg 100 g⁻¹ DM	0.124/0.287	24 h germinat	(Morita, Miyake et al., 2013)
(Fagopyrum esculentum Moench)	Seed/sprout	2.5/79 mg 100 g⁻¹ DW	0.025/0.79	7 days after seeding	(Kim, Kim, & Park, 2004)
Buckwheat	Milled	9; 3; 87; 310; 89 mg 100 g⁻¹ DM	0.009; 0.003; 0.87; 3.10; 0.89	Grain gradually milled from the inner to the outer layers	(Morita, Miyake et al., 2013)
Fagopyrum esculentum cv.	Powdered sprouts	144.7 mg 100 g⁻¹ DW	1.447		(Nakamura et al., 2016)
Corn	Seed	199 nmol g⁻¹ DW	0.021		(Oh et al., 2003)
Five corn isonuclear inbred lines	Seed	65.59–871.96 μg g⁻¹	0.066–0.872		(Culea et al., 2015)
2 Thai waxy corn KKU-KND (purple seed); KKU-SLE (white seed)	Non-germinat./germinat	2.68; 1.58/10.45; 10.20–5.94; 7.78 mg 100 g⁻¹ DM	0.027; 0.016/0.104; 0.102–0.059; 0.078	24 h–48 h germinat.	*(Polthum & Ahromrit, 2014)
4 small ear waxy corn	Seed/sprout/seedling	0.016–0.03/0.020–0.028/0.145–0.231 mg 100 g⁻¹	0.0002–0.0003/0.0002–0.0003/0.0003/0.0002–0.0003		*(Chalorcharoenying et al., 2017)
3 waxy corn	Seed/sprout/seedling	0.021–0.038/0.033–0.053/0.209–0.224 mg 100 g⁻¹	0.0002–0.0004/0.0003–0.0004/0.0004–0.0002		*(Chalorcharoenying et al., 2017)
Cereal (1)	Tissue/Stage (1)	GABA content (mg g⁻¹)	GABA content (mg g⁻¹)	Data comments	Reference
-----------------------------	--------------------------------	------------------------	------------------------	--	---
3 field corn	Seed/sprout/seedling	0.038–0.066/0.031–0.038/0.150–0.232 mg 100 g⁻¹	0.0004–0.0007/0.0003–0.0004/0.0015–0.0023	(Chalorcharoenying et al., 2017)	
3 sweet corn	Seed/sprout/seedling	0.028–0.035/0.027–0.090/0.092–0.184 mg 100 g⁻¹	0.0003–0.0003/0.0003–0.0009/0.0009–0.0018	(Chalorcharoenying et al., 2017)	
Corn	Root	0.37 μg g⁻¹ FW	0.0004	Best germinat conditions 26°C for 63 h and 28°C for 42 h	(Fan et al., 1986)
Kiwicha (Amaranthus caudatus)	Non-germinat./germinat	2.6/9.47–75.69 mg 100 g⁻¹ DM	0.0026/0.0095–0.0076	(Maria Paucar-Menacho et al., 2017)	
Eleusine coracana; Panicum sumatrense	Native/germinated	21.4; 32.2/83.8; 77.2–256.5; 84.6–361.8; 55.4 nmol 100 mg⁻¹ DM	0.022; 0.033/0.086; 0.080–0.265; 0.087–0.373; 0.057	(Prodeep et al., 2011)	
2 foxtail millet and 2 proso millet cultivars	Non-germinat./germinat	236.0–335.5/336.5–347.4 μg g⁻¹	0.236–0.335/0.337–0.347	Max GABA concentration at different germinat. times	(Ko et al., 2011)
Kodo millet (Paspalum scrobiculatum)	Non-germinat./germinat	9.36/47.43 mg 100 g⁻¹	0.094/0.474	(Sharma, Saxena, & Riar, 2017)	
Avena sativa L.	Native oat	57.1 μg g⁻¹	0.057	(Cai et al., 2014)	
Oat	Non-germinat./germinat	0.076/0.109 μg g⁻¹ DW	0.00008/0.00011	(Khang, Vasiljevic, & Xuan, 2016)	
Sorghum vulgare	Native/germinated	24.9/88.7–68.9–49.0 nmol 100 mg⁻¹ DM	0.026/0.091–0.071–0.051	0 h—24 h—96 h germinat	(Prodeep et al., 2011)
Sudanese Sorghum cultivar	Non-germinat./germinat	65/300 μg g⁻¹	0.065/0.300	3 day germinat	(Yang et al., 2016)
2 sorghum cultivars	Non-germinat./germinat	250.5; 353.7/44.0; 410.0 μg g⁻¹	0.250; 0.354/0.444; 0.410	Max GABA concentration at different germinat. times	(Ko et al., 2011)
3 Wheat cultivars	Green wheat kernels	65.4–79.3 mg 100 g⁻¹ FW	0.654–0.793	23–26 maduration days	(Kim et al., 2007)
Wheat (cv Banks)	Non-germinat. grain/germinat grain	5.2/7.9 mg 100 g⁻¹ DM	0.052/0.079	24 h germinat	(Morita, Miyake et al., 2013)

(Continued)
Cereal (1)	Tissue//Stage (1)	GABA content	GABA content (mg g\(^{-1}\))	Data comments	Reference
Frost resistant wheat (T. aestivum cv Cheyenne); Frost sensitive wheat (T. aestivum cv Chinese Spring)	Seedlings	0.018; 0.096 μmol g\(^{-1}\) FW	0.002; 0.010	8 day germinat	*(Mazzucotelli et al., 2006)*
Waxy wheat (Uraramochi (Nohrin-mochi 163))	Milled seed/milled sprouts	84/155 mg kg\(^{-1}\) DW	0.084/0.155	Germin 48 h	*(van Hung et al., 2012)*
Wheat (cv Banks)	Leaves	9 μmol g\(^{-1}\) DW	0.928		*(Naidu, Paleg, Aspinall, Jennings, & Jones, 1991)*

(1) As described in reference; *Reference includes stress treatments.
Table 7. GABA content in rice

Cereal (1)	Tissue//Stage (1)	GABA content	GABA content	Data comments	Reference
35 Malaysian brown rice varieties	Grain	0.01–0.1 mg g\(^{-1}\)	0.01–0.1		(Roohinejad et al., 2009)
Yunam brown rice cultivars	Grain	6.63–8.38 mg 100 g\(^{-1}\)	0.066–0.084		(Zeng et al., 2010)
2 Oryza sativa ssp. indica rice mutant	Grain	3.46–4.09 mg 100 g\(^{-1}\)	0.035–0.041		(Zhang, Hu, Tang, Zhao, & Wu, 2005)
32 Thai rice varieties	Grain	7.60–29.46 mg 100 g\(^{-1}\)	0.076–0.295		(Kittibunchakul, Thiyajai, Suttisomsanee, & Sanlivarangkna, 2017)
5 Pakistani brown rice (basmati super, 385–2000, Irri-6, −9)	Brown rice/polished	4.1–6.58/0.32–0.47 mg 100 g\(^{-1}\)	0.041–0.066/0.003–0.005		(Hayat et al., 2014)
Oryza sativa L. cv. Arborio	Root	0.96 μmol g\(^{-1}\) FW	0.099		*(Aurisano, Bertani, & Reggiani, 1995)
Oryza sativa cv Arborio	Excised rice root	0.54 μmol g\(^{-1}\) FW	0.056		*(Reggiani et al., 1988)
Korean pigmented rice	Germinat	293.0 μg g\(^{-1}\)	0.293	Soaked 18°C, 20 h, Germinat 30°C, 24 h. Data for red rice	(An, Ahn, Lee, & Lee, 2010)
Brown rice	Non-germinat./germin	170/850 nmol g\(^{-1}\) FW	0.018/0.088		*(Oh, 2003)
Brown rice Giant Embryo; Brown rice Normal Embryo	Non-germinat./germin	1.67; 1.58/35.86; 17.65 mg 100 g\(^{-1}\)	0.017; 0.016/0.359; 0.176	2 day germinat	(Choi et al., 2006)
Brown rice	Non-germinat./germin	1.20/3.05 mg 100 g\(^{-1}\)	0.012/0.030		*(Choi, Park, Park, & Kim, 2004)
2 large germ cultivars Oryza sativa (rice) L. ssp. Japonica	Non-germinat./germin	7.3–14/10.1–15 mg 100 g\(^{-1}\)	0.073–0.14/0.101–0.15		*(Komatsuzaki et al., 2007)
3 normal germ cultivars Oryza sativa (rice) L. ssp. Japonica	Non-germinat./germin	2.5–4.3/10 mg 100 g\(^{-1}\)	0.025–0.043/0.10		*(Komatsuzaki et al., 2007)
21 rice varieties	Non-germinat./germin	3.96/17.87–9.91–1.36 mg 100 g\(^{-1}\) DM	0.040/0.179–0.099–0.014	Germinat. 24, 36, 48 h	(Karladee & Suriyong, 2012)

(Continued)
Cereal (1)	Tissue//Stage (1)	GABA content	GABA content (mg g$^{-1}$)	Data comments	Reference
5 Thai brown rice cultivars	Non-germinat./germin	0.45–1.9/7.11–40.17 mg 100 g$^{-1}$ DM	0.0045–0.019/0.071–0.402	(Khwanchai, Chinprahost, Pichyangkura, & Chawanichsiri, 2014)	
Polish Thai rice	Non-germinat./germin	n.d./0.74–6.33 mg g$^{-1}$	n.d./0.74–6.33	30°C, 15 days every 3 days	(Jannoey et al., 2010)
Brown rice	Non-germinat./germin	2.10/23.31 mg 100 g$^{-1}$	0.021/0.233	*(Cheevitsopon & Noomhorm, 2011)	
Oryza sativa L.	Non-germinat./germin rough rice part; hull; brown rice; sprout	15.34; 1.7; 13; n.d./31.79; 3.34; 26.84; 6.04 mg 100 g$^{-1}$	0.153; 0.017; 0.13; n.d./0.318; 0.033; 0.268; 0.060	(Kim et al., 2012)	
Rough rice of Oryza sativa L.	Non-germinat/germinat brown rice/germinated rough rice/germinated rough rice powder	23.8/68.4/115/15 mg 100 g$^{-1}$ FW	0.238/0.684/1.15/0.15	(Moongngarm & Saetung, 2010)	
Sangyod Maung Phatthalung rice	Non-germinat./soaked/germin	2.64/8.36/44.53 mg 100 g$^{-1}$	0.026/0.084/0.445	Soaking solution: citrate buffer pH 3.0, 5 h, 30°C. Germin 36 h. * (Banchuen et al., 2008)	
3 ecuatorian Brown Rice cultivars	Non-germinat./soaked/germin	4.34–5.7/16.9/102.26–124.43 mg 100 g$^{-1}$ DW	0.043–0.057/0.080–0.167/1.023–1.244	Soaking: 28°C; 24 h; germin: 28°C 96 h	*(Caceres, Martinez-Villaluenga, Amigo, & Frias, 2014)
Ecuatorian Brown Rice cultivar (Oryza sativa L. indica)	Non-germinat./soaked/germin	1.07/34.84/99.03 mg 100 g$^{-1}$ DW	0.011/0.348/0.990	(Seed freeze-dried) Soaking: 28°C; 24 h; germin: 28°C 96 h	*(Caceres et al., 2017)
Ecuatorian Brown Rice cultivar (Oryza sativa L. indica)	Non-germinat./soaked/germin	1.07/12.75/49.85 mg 100 g$^{-1}$ DW	0.011/0.127/0.498	(Seed sun dried) Soaking: 28°C; 24 h; germin: 28°C 96 h	*(Caceres et al., 2017)
10 Brown Rice cultivars	Germ(soak germ)	4–70/16–540 mg 100 g$^{-1}$ DW	0.04–0.70/0.16–5.40	4 h, 40°C	(Saikusa et al., 1994)
Cereal (1)	Tissue//Stage (1)	GABA content (mg g\(^{-1}\))	Data comments	Reference	
------------	------------------	-------------------------------	---------------	-----------	
6 Thai rice varieties	Germ/soak germ	107.5–186.2/135.5–555.1 mg kg\(^{-1}\)	0.107–0.186/0.135–0.555	Soak 4 h 40°C	(Varanyanond, Tungtrakul, Surojanametakul, Watanasiritham, & Wang, 2005)
Brown rice	Germin by soak/germin by moist	12.81/29.03 mg 100 g\(^{-1}\)	0.128/0.290	Soak 12 h 30°C + germinat 24 h 25 °C/moisture 30°C + germinat 40 h 25°C	(Cao, Jia, Han, Liu, & Zhang, 2015)
Brown rice	Seed/Germ/sprouts/	123/718/389 nmol g\(^{-1}\) DW	0.013/0.074/0.040		(Oh et al., 2003)
2 glutinous rice	Seed/sprout/seedling	0.021–0.026/0.053–0.068/0.034–0.110 mg 100 g\(^{-1}\)	0.0002–0.0003/0.0005–0.0007/0.0003–0.0011		(Chalorcharoenying et al., 2017)
Rice	Seed/sprout/seedling	0.064/0.085/0.056 mg 100 g\(^{-1}\)	0.0006/0.0008/0.0006		(Chalorcharoenying et al., 2017)
Thai waxy paddy rice	Cultivar/breeding line	n.d./60/220 mg 100 g\(^{-1}\) embryo FW	n.d./0.60/2.20	Soak 50 h; germin. 60 h	(Maisont & Narkrugsa, 2010)
5 Pakistani brown rice (basmati super; 385–2000, Irri-6, −9)	Seed/germinat./ferment.	47–65/115–935/1032–1089 mg kg\(^{-1}\)	0.047–0.065/0.115–0.935/1.032–1.089		(Hayat et al., 2015)
Brown rice (Oryza sativa L.)	Milled	27.71/22.48/20.87/17.64 μg g\(^{-1}\) DW	0.028/0.022/0.021/0.018	Milling time: 1.5 min; 2 min; 3 min; 4.5 min	(Iwaki & Kitada, 2007)
Brown rice	Milled	6 mg 100 g\(^{-1}\) DW	0.06		*(Sasagawa et al., 2006)

(1) As described in reference; *Reference includes stress or processing treatments; n.d.: not detected.
Data of GABA content in cereals other than rice and data related to rice are shown in Tables 6 and 7 respectively.

2.6. GABA in teas, coffee, herbal infusions, cocoa and carobs

2.6.1. Teas

Tea is one of the most widely consumed beverages in the world made from the leaves and buds of *Camellia sinensis* (L.). Tea contains many chemical components such as amino acids, polyphenols (catechins and flavonoids), polysaccharides, volatile oils, vitamins, minerals and alkaloids (Syu, Lin, Huang, & Lin, 2008). Amino acids account for approximately 1–4% of the dry weight of fresh tea leaves, which mainly comprise theanine, glutamic acid (Glu), Asp, Arg and GABA (Zhao et al., 2013). As in other vegetables, the amino acid profile differs among species and cultivars, incubation under stress conditions (Sawai, Yamaguchi, Miyama, & Yoshitomi, 2003; Tsushida & Murai, 1987) or fermentation (Jeng, Chen, Fang, Chien-Wei Hou, & Yuh-Shuen, 2007) Table 8 details some of the data reported in the literature.

2.6.2. Herbal infusions

Information about the free amino acid pool and the role of these substances in non-*Camellia* teas is not as well studied. (Bi et al., 2016) studied 33 non-*Camellia* teas collected in China. GABA was detected in all teas except tea from *Sarcandra glabrate*. The GABA content in teas from *Ampelopsis grossedentata* (2.26 mg g⁻¹), *Isodon serra* (1.82 mg g⁻¹) and *Hibiscus sabdariffa* (1.03 mg g⁻¹) were the highest, much higher than that in green tea (0.28 mg g⁻¹).

The GABA content of some extracts was also studied (Sahin, Eulenburg, Kreis, Villmann, & Pischetsrieder, 2016) to identify specific allosteric GABAAR modulators. Reported results of the amount of GABA in 1 mg mL⁻¹ plant extracts were as follows: Sage leaves: 0.33 μg mL⁻¹ [0.00033 mg mL⁻¹], Lavender flowers: 0.22 μg mL⁻¹ [0.00022 mg mL⁻¹], *Sideritis condensata*: 0.38 μg mL⁻¹ [0.00038 mg mL⁻¹], Chamomile flowers: 0.81 μg mL⁻¹ [0.00081 mg mL⁻¹], *S. sipylea*: 0.23 μg mL⁻¹ [0.00023 mg mL⁻¹], *S. arguta*: 0.21 μg mL⁻¹ [0.00021 mg mL⁻¹], *S. stricta*: 0.45 μg mL⁻¹ [0.00041 mg mL⁻¹], lemon balm leaves: 0.61 μg mL⁻¹ [0.00061 mg mL⁻¹]. The concentrations were all higher than in green tea leaves, 0.14 μg mL⁻¹ [0.00014 mg mL⁻¹].

A study about the composition of free amino acids in 19 species of botanical plants was reported (Carratu, Boniglia, Giammarioli, Mosca, & Sanzini, 2008). GABA was detected in almost all the extracts of dried plants (from 5 to 629 mg 100 g⁻¹ FW [0.05–6.29 mg g⁻¹]). GABA was one of the major amino acids observed in the following 13 extracts: *Camellia sinensis, Coleus forskohii, Echinacea angustifolia, Echinacea pallida, Echinacea purpurea, Ginkgo biloba, Glycine max, G. simplicifolia, Hypericum perforatum, Panax ginseng, Passiflora incarnate, Serenoa repens, Sutherlandia frutescens and Valeriana officinalis*. Two examples are *Valeriana officinalis* and *Panax ginseng* with a GABA content in roots of 57 and 198 mg 100 g⁻¹ FW [0.57–1.98 mg g⁻¹] and in the extracts of 85 and 322 mg 100 g⁻¹ FW [0.85–3.22 mg g⁻¹], respectively.

The GABA content of Asian ginseng (*Panax ginseng* C.A. Meyer) was studied in more detail (Kuo, Ikekami, & Lambein, 2003). The seeds and some parts of the plants (one to three years old) were analyzed. GABA concentrations increased dramatically after germination and reached its maximum in 70% ethanol extracts of the 3-year-old plants: Seed 0.051 mg g⁻¹; 1 year whole plant: 1.175 mg g⁻¹; 2 years root and stem plus leaves, 0.972 and 2.284 mg g⁻¹, respectively and 3 year root, stem and leaves plus buds 1.778, 2.335 and 2.774 mg g⁻¹ of GABA respectively.

Processing also changed the amino acid profile of *Panax ginseng*. GABA content of White Ginseng (0.876 mg g⁻¹ DW) decreased to 0.659 mg g⁻¹ DW after steaming at 100°C (Red Ginseng) and to 0.161 mg g⁻¹ DW after steaming at 120°C (Cho et al., 2008).
Tea*	GABA content	GABA content (harmonized units)	Data comments	Reference
Camellia sinensis cv. Yabukita (Leaves)	0.86 μmol g⁻¹	0.089 mg g⁻¹	Aerobic and anaerobic incubation after feeding 15N-Glutamic acid increased GABA	(Tsushida & Murai, 1987)
Camellia sinensis cv., Leaves/leaves extract	4/28 mg 100 g⁻¹ FW	0.04/0.28 mg g⁻¹		(Carratu et al., 2008)
Camellia sinensis cv. Yabukit; Fresh leaf/stem	0.03/0.09 mg g⁻¹ DW	0.03/0.09 mg g⁻¹	Anaerobic incubation increased GABA content	(Sawai et al., 2001)
1st leaf/6th leaf/stem bark/stem wood/root/bark/root-wood/root-roots/pericarp/cotyledons/sap	—/—/—/—/—/—/—/—/—	—/—/—/—/—/—/—/—/—		(Selvendran & Selvendran, 1973)
28 Black Teas	0.07–0.55 mg g⁻¹ DW	0.07–0.55 mg g⁻¹		(Horanni & Engelhardt, 2013)
Ceylon Black Teas, “Silver Tips”; “White Tea”	63–444; 91–803 mg kg⁻¹	0.063–0.444; 0.091–0.803 mg g⁻¹		(Carvalho et al., 2014)
Sri Lanka, “Black Tea”	81–129 mg kg⁻¹	0.081–0.129 mg g⁻¹		
Japan, “Black Tea”	311–415 mg kg⁻¹	0.311–0.415 mg g⁻¹		(Zhao et al., 2011)
China, Black Tea	0.08 mg g⁻¹	0.08 mg g⁻¹		(Bi et al., 2016)
China, 3 Black Tea	1.18–2.42 nmol g⁻¹	0.0001–0.0002 mg g⁻¹		(Zhao et al., 2013)
28 Green Teas	16.94 ± 8.46 mg 100 g⁻¹ DW	0.169 ± 0.085 mg g⁻¹		(Wang, Tsai, Lin, & Ou, 2006)
23 Green Teas	0.05–0.87 mg g⁻¹ DW	0.05–0.87 mg g⁻¹		(Horanni & Engelhardt, 2013)
Green Tea, leaves	0.14 mg g⁻¹	0.14 mg g⁻¹		(Sahin et al., 2016)
Sri Lanka, “Green Tea”	13–48 mg kg⁻¹	0.013–0.048 mg g⁻¹		(Carvalho et al., 2014)
Taiwan, Green Tea	0.5 μM	0.00005 mg mL⁻¹	GABA content increase with Temperature and decrease with infusion times	(Hsieh & Chen, 2007)
Taiwan, “Green Tea”	169.4 ± 84.6 mg kg⁻¹	0.169 ± 0.085 mg g⁻¹		(Wang et al., 2006)
China, 3 Green Teas	0.49–1.51 nmol g⁻¹	0.0001–0.0002 mg g⁻¹		(Zhao et al., 2013)
China, Green Tea	0.28 mg g⁻¹	0.28 mg g⁻¹		(Bi et al., 2016)

(Continued)
Table 8. (Continued)

Tea*	GABA content (harmonized units)	Data comments	Reference	
China, “Green Tea”	19–105 mg kg⁻¹	0.019–0.105 mg g⁻¹	GABA content increase with temperature and decrease with infusion times	(Syu et al., 2008)
Japan, “Green Tea”	138–204 mg kg⁻¹	0.138–0.204 mg g⁻¹		
Japan, Green Tea	2.4 μM	0.00025 mg mL⁻¹	GABA content increase with temperature and decrease with infusion times	(Hsieh & Chen, 2007)
Taiwan, Red Tea	5.2 μM	0.00054 mg mL⁻¹	GABA content increase with temperature and decrease with infusion times	(Hsieh & Chen, 2007)
9 White Teas	0.24–2.07 mg g⁻¹ DW	0.24–2.07 mg g⁻¹		(Horanni & Engelhardt, 2013)
4 Oolong Teas	0.09–0.97 mg g⁻¹ DW	0.09–0.97 mg g⁻¹		
3 Pu-erh Teas	0.01–0.02 mg g⁻¹ DW	0.01–0.02 mg g⁻¹		
China, Pu-erh Tea	0.51 mg/g mg g⁻¹	0.51 mg/g mg g⁻¹		(Bi et al., 2016)
Pu-erh Tea/Fresh leaves	4.9/1.27 mg g⁻¹	4.9/1.27 mg g⁻¹	Fermentation increased GABA content	(Jeng et al., 2007)
28 GABA Tea	180.97 ± 51.43 mg 100 g⁻¹ DW	1.810 ± 0.514 mg g⁻¹		(Wang et al., 2006)
Japan, Gaboron Tea	1.37 mg g⁻¹	1.37 mg g⁻¹		(Ishikawa et al., 2009)
China, “Fudingdabaicha”, normal tea cultivar	0.28 ± 0.02 mg g⁻¹ DW	0.28 ± 0.02 mg g⁻¹		(Li et al., 2016)
China, ‘White leaf No.1; “Xiaoxueya”, temperature-sensitive albino mutants	0.39 ± 0.02/0.49 ± 0.07 mg g⁻¹ DW	0.39 ± 0.02/0.49 ± 0.07 mg g⁻¹		

*As described in reference

GABA: γ-Aminobutyric acid
2.6.3. Coffee and cocoa beans

Untreated seeds of Arabica green coffee beans (Coffea arabica L.) contained 30–310 nmol of GABA per seed [0.003–0.032 mg] (Bytof, Knopp, Schieberle, Teutsch, & Selmar, 2005). In order to produce tradable standard green coffee, beans are usually dried, leading to a GABA accumulation during the process. Unwashed Arabica beans produced by drying processes had a higher GABA content (1009–2619 nmol seed⁻¹ [0.104–0.270 mg]) than washed Arabica beans (89–264 nmol seed⁻¹ [0.009–0.027 mg]) resulting from a less stressful wet processing method. (Kramer, Breitenstein, Kleinwächter, & Selmar, 2010) reported that GABA accumulation in coffee beans could be associated to the drought stress induced by the drying process.

GABA was detected in C. arabica L. (arabica) green coffee from Burundi, Colombia and Guatemala in different ratios. Interestingly, lower levels of GABA were observed in speciality beans compared to commercial-grade green coffee beans (Kwon et al., 2015).

Little information is available in literature regarding GABA content in cocoa. (Marseglia, Palla, & Caligiani, 2014) provide an overview on the GABA content in 39 fermented and dried cocoa beans from different geographical origins (13 from Africa, 20 from Central/South America, 4 from Asia and 2 from Oceania). Results showed that cocoa beans are an excellent source of GABA and its content is extremely variable as a function of the geographical origin. Cocoa beans from Africa showed a GABA content ranging from 35 to 93.9 mg 100 g⁻¹ [0.35–0.939 mg g⁻¹]; cocoa beans from America had a GABA concentration from 31.7 (minimum found in Grenada beans) to 101.2 mg 100 g⁻¹ [0.317 to 1.012 mg g⁻¹]. The maximum was measured in Ecuador beans. Cocoa beans from Asia and Oceania had a GABA content in the ranges of 47–95 and 45–68 mg 100 g⁻¹ [0.47–0.95 and 0.45–0.68 mg g⁻¹], respectively.

Concentrations of free amino acids in cacao tissues depend on the ontogenic stage of the somatic embryos and the culture conditions (Niemenak, Saare-Surminski, Rohsius, Ndoumou, & Lieberei, 2008). The contribution of GABA to the total free amino acids in embryogenic callus is substantial compared to non-embryogenic callus and further developmental stages of cacao somatic embryos.

2.7. GABA in hops

Studies related to the activity of hops (Humulus lupulus L.) have been published. Although some of them relate to GABAergic functions (Moir, 2000; Zanoli & Zavatti, 2008), most do not provide any data on the GABA content in hops. (Sahin et al., 2016) reported that extracts of 1 mg mL⁻¹ of hop cones contains 0.44 μgm mL⁻¹ [0.00044 mg mL⁻¹] of GABA.

2.8. GABA in spices

Spices have a long history of both culinary uses and of providing health benefits (Tapsell et al., 2006). Nevertheless, quantitative GABA contents in the different species have not been extensively studied. GABA content of Curcuma sp. varies depending on the species. In Curcuma aromatica Salisb. from India the GABA concentration was 0.04 μg mg⁻¹ [0.04 mg g⁻¹] but Curcuma longa L., both from Korea and Myanmar contain more than 1 μg mg⁻¹ [1 mg g⁻¹] of GABA, (1.11 and 1.31 μg mg⁻¹ [1.11–1.31 mg g⁻¹], respectively (Jung et al., 2012)). It was also reported that the concentration of GABA in ethanol extracts from Zingiber officinale Rosc. from Korea reached 1.12 μg mg⁻¹ [1.12 mg g⁻¹]. GABA content in Zingiber sp. was also identified by (Anju, Moothedath, & Shree, 2014).

2.9. GABA in sugar plants

Metabolomic studies on sugar beets are not common (Kazimierczak et al., 2014) and the amino acid content has not been determined. (Sekiyama, Okazaki, Kikuchi, & Ikeda, 2017) demonstrated that GABA could be found in early growth stages in leaves of sugar beets (Beta vulgaris L). As a pool of amino acids, GABA with Orn, Pro, Thr Iso, Val, Leu, Ala, His, Lys and Phe, was shown to increase in
roots of chicory during plant development from 27.16 nmol mg\(^{-1}\) DW [2.801 mg g\(^{-1}\)] at day 21 to 49.81 nmol mg\(^{-1}\) [2.166 mg g\(^{-1}\)] at day 56 (Druart, Goupil, Dewaele, Boutin, & Rambour, 2000).

2.10. GABA in miscellaneous plants
This section collects some examples of the presence of GABA in plants that are not included in the previous groups. Examples of GABA content for pollen and floral nectar have also been included here. As discussed throughout the review, GABA content differs among species, tissues and development stages (Table 9). Values are in similar ranges than those reported in other sections.

Reported data for pollen samples also showed high variability among species.

3. GABA in animals
GABA is widely distributed in nature independently of the type of organisms, species and even phylum. In animals, it seems that GABA plays multiple roles and functions considering the location of GABA receptors in nearly all tissues.

In vertebrates, GABA is present at significantly high levels in the brain and central nervous system, and its functions as an inhibitory neurotransmitter are well recognized (Otsuka, Obata, Miyata, & Tanaka, 1971; Waagepetersen, Sonnewald, & Schousboe, 2002). GABA exerts its biological effects through the activation of GABA receptors, the GABA\(_A\) ionotropic receptors, which are ligand-gated ion channels, and GABA\(_B\) metabotropic receptors, which are coupled to G proteins (Chebib & Johnston, 1999; Palacios, Wamsley, & Kuhar, 1981; Ramesh, Tyerman, Gilliham, & Bo, 2017; Watanabe et al., 2002). These receptors are found in a wide range of peripheral tissues (Ong & David, 1990; Tanaka, 1985), including parts of the peripheral nervous system, male and female reproductive system (Erdö, Riesz, Kárpáti, & Szporny, 1984; Geigerseder et al., 2003; Riesz & Erdö, 1985; Ritta, Calamera, & Bas, 1998), enteric system (Auteri, Zizzo, & Serio, 2015; Krantis, 2000; Zhou & Galligan, 2000), respiratory system (Chapman, Hey, Rizzo, & Bolser, 1993; Tohda et al., 1998), salivary glands (Shida et al., 1995), liver (Minuk, 1992), kidney (Auteri et al., 2015) and heart sinus node (Matsuyama, Saito, Shuntoh, Taniyama, & Tanaka, 1993) among others.

This paper will not focus on the analysis of tissues with GABA receptors, but will review the tissues in which endogenous GABA has been quantified.

3.1. GABA in mammals
GABA was discovered in 1950 in the brain (Awapara et al., 1950; Roberts & Frankel, 1950; Udenfriend, 1950) and soon after identified as a key neurotransmitter. Since then, evidence has been discovered of its functional importance in many peripheral tissues (Gerber & Hare, 1980; Krantis, 2000; Louzan, Gallardo, & Tramezzani, 1986; Micholik & Maria, 1992) and in all studied species (Gabriel, Halasy, Fekete, Eckert, & Benedeczky, 1990; Galvez Rojas et al., 2015; Robertson, Auclair, Ménard, Grillier, & Dubuc, 2007; Shi, Liang, Song, Yang, & Gao, 2012).

Due to the significant amount of information retrieved, this section describes the results measured in rodents, mammals different than livestock and human tissues. Studies on livestock are described in a separate section.

3.1.1. GABA in rodents
Due to their similarity to humans genetic, biological and behavioural characteristics, rats and mice are used as models for medical testing. The information related to GABA content in different tissues/systems of rats, guinea pigs and mice are included in Table 10. GABA is present not only in the nervous system, but also in peripheral tissues, cardiovascular, digestive, endocrine, lymphoid, muscular, ocular, reproductive and respiratory systems. The concentration of GABA in mammalian organs varies considerably. It is particularly high in the brain, but, by contrast, is low in most peripheral tissues (about 1% compared to brain). Exceptions are the female genital tract and...
Table 9. GABA content in pollen, floral nectar and several tissues of miscellaneous plants not included in other sections

Plant/product	Tissue	GABA content (harmonized units)	Data comments	Reference
Bee-pollen	Pollen	0.35 mg g⁻¹		(Paramás, González, Cordón Marcos, García-Villanova, & Sánchez, 2006)
Cistus ladanifer	Pollen	0.7 mg g⁻¹		(Paramás et al., 2006)
Sweet corn	Pollen	4.26 ± 0.46 μmol g⁻¹ pollen		(Hollister & Mullin, 1999)
Squash	Pollen	7.98 ± 1.14 μmol g⁻¹ pollen		(Hollister & Mullin, 1999)
Sunflower	Pollen	0.28 ± 0.02 μmol g⁻¹ pollen		(Hollister & Mullin, 1999)
Goldenrod	Pollen	0.82 ± 0.12 μmol g⁻¹ pollen		(Hollister & Mullin, 1999)
Arabidopsis	Pollen/leaves/tubes	270 μM		(Palanivelu et al., 2003)
Arabidopsis	Stigma/style/ovule/ovary wall/pistil	0.20/0.09 μmol g⁻¹		(Palanivelu et al., 2003)
Phryganic (East Mediterranean garrigue) community	Floral nectar	0.021/0.009 mg g⁻¹	Flowers	(Palanivelu et al., 2003)
Cucurbita pepo L	Floral nectar	734 ± 86.3/78.6 ± 94.1 pm µL⁻¹	Male/female	(Nepi et al., 2012)
Tobacco	Leaves	0.025/0.02/0.046 mg N 100 g⁻¹ DW	Flue-curing: 0h/2 h/4h/7 h/96 h	(Yoshida, 1961)
Tobacco (Nicotiana tabacum)	Seedlings	1.3 ± 0.3 mg N 100 g⁻¹ DW		(Noguchi & Tamaki, 1962)
Tobacco (Nicotiana tabacum)	Shoots/roots	6.9-7 nmol g⁻¹ FW		(McLean et al., 2003)
Sutherlandia frutescens (L)	Aerial part	0.48-1.32 mg g⁻¹		(Mncwangi & Viljoen, 2012)
Lessertia (Sutherlandia frutescens L.)	Leaves extracts; seed extracts	7.29/3.48/1.69 mg g⁻¹	in vitro leaf extract/field leaf extract/seed extract	(Shaik, Singh, & Nicholas, 2011)

(Continued)
Plant/product	Tissue	GABA content	GABA content (harmonized units)	Data comments	Reference
Sutherlandia frutescens (L.)		0.23–0.85 mg g\(^{-1}\)	0.23–0.85 mg g\(^{-1}\)	Commercial samples	(van Wyk & Albrecht, 2008)
Rye grass (Lolium perenne L.)	Rye grass juice	0.45 mg mL\(^{-1}\) grass juice	0.45 mg mL\(^{-1}\)		(Synge, 1951)
Tall fescue	Herbage	318–546 mg kg\(^{-1}\) DM	0.318–0.546 mg g\(^{-1}\)		(Kogan et al., 2008)
Acanthopanax sessiliflorus	Aerial part	4.49 mg g\(^{-1}\)	4.49 mg g\(^{-1}\)		(Lee et al., 2015)
Crataegus pinnatifida	Fruit	10.59 mg g\(^{-1}\)	10.59 mg g\(^{-1}\)		(Lee, Cha, Lee, Cha, & Lee, 2015)
Aloe species		7.99/90.15/71.0 μmol g\(^{-1}\) DW	0.824/9.296/7.322 mg g\(^{-1}\)	Aloe arborescens/A. vera/ saponaria	(Kim et al., 2013)
Scots pine (Pinus sylvestris L.)	Needles	0.15–0.6 μmol g\(^{-1}\) DW	0.015/0.062 mg g\(^{-1}\)		(Raitio & Sarjala, 2000)
Datura-Metel	Cultured anthers	31.05/31.85–35.50–155.51/276.43 μmol g\(^{-1}\) DW	3.202/3.284–3.661–16.036/ 28.505 mg g\(^{-1}\)	Induction phase/ embryogenesis (3 phases)/ young plantlet	(Songwan, 1978)
Eucalyptus globulus (ssp. Globulus and Nitens)	Leaves	50–100/10 μg cm\(^{-2}\)	0.050–0.100/0.010 mg cm\(^{-2}\)	Upper surface/lower surface	(Steinbauer, Davies, Gaertner, & Deridj, 2009)
Animal	System	GABA content (harmonized units)	Reference		
-------------------	-----------------	---------------------------------	--		
Rat	Brain-CNS	86 μg g⁻¹ WW	(Awapara et al., 1950)		
Rat	Brain-CNS	1.85 μg g⁻¹ FW	(Fan et al., 1956)		
Rat	Brain-CNS	2.33 nmol g⁻¹	(Tsujii & Nakajima, 1976)		
Rat	Brain-CNS	2.33/1.72/0.19 nmol g⁻¹	(Sarhan, Seiler, Grove, & Birk, 1979)		
Rat	Brain-CNS	801 ± 39 nmol g⁻¹	(Goodyer, Mills, & Scriver, 1982)		
Rat (male S-P)	Brain-CNS	1.2–2.1 μmol g⁻¹	(Lowry, Houck, & Mark Wightman, 1982)		
Rat	Brain-CNS	48.26/3.10 mmol mg⁻¹ protein	(Hamel, Krause, & Roberts, 1981)		
Rat	Brain-CNS	4976.5/219.67 μg g⁻¹ protein	(Cattabeni, Marchetti, De Angelis, & Rizzoti, 1980)		
Rat	Brain-CNS	177.5/513.2/238 μg g⁻¹	(Zecca, Zambotti, Zonta, & Monteleone, 1980)		
Animal	System	GABA content (harmonized units)	Tissue	Reference	
-------------------------------	----------------	---------------------------------	--	---	
Rat (Albino Wistar)	Brain-CNS	120.32/170 μg g⁻¹	Brainstem/frontal cortex	(Aburawi, Elhwuegi, Ahmed, Saad, & Attia, 2003)	
Rat (male S-P)	Brain-CNS	154 μg g⁻¹	Hippocampus	(Harvey, Jonker, Brand, Heenop, & Stein, 2002)	
Rat (male S-P)	Brain-CNS	241/540/173/254 μg g⁻¹	Hippocampus/hypothalamus/brainstem/frontal cortex	(Clarke, O'Mahony, Malone, & Dinan, 2007)	
Rat (male S-P)	Brain-CNS	264.6/956.3/197.6/207.1 μg g⁻¹	Hippocampus/hypothalamus/brainstem/frontal cortex	(Li et al., 2005)	
Rat (Wistar)	Brain-CNS	240/307/189 μg g⁻¹	Hippocampus/hypothalamus/brainstem/frontal cortex	(Acosta, 1998)	
Rat (Wistar)	Brain-CNS	104.8/101.88 μg mg⁻¹/ protein	Hippocampus/prefrontal cortex	(Mao et al., 2011)	
Rat (Wistar)	Brain-CNS	329.3/241.84/354.59 μg g⁻¹	Hippocampus/Thalamus/prefrontal cortex	(de Freitas Silva, Ferraz, & Ribeiro, 2009)	
Rat (Wistar, 22d)	Brain-CNS	250/300/50 μg g⁻¹	Hippocampus/hypothalamus/frontal cortex	(Leret et al., 2004)	
Rat (male, hooded Lister)	Brain-CNS	0.2 pmol 20 μL⁻¹	Ventral hippocampal extracellular GABA	(Rowley, Martin, & Marsden, 1995)	
Rat (male S-P)	Brain-CNS	292/435 203/2.79 μg g⁻¹	Decapitation: Stratum/Substantia Nigra	(Saller & Czupryna, 1989)	
Rat (male S-P)	Brain-CNS	0.03 ng 5μL⁻¹	Striatal microdialysates	(Chen, Jin, Baker, Parent, & Dovichi, 2001)	
Rat (male S-P)	Brain-CNS	70.9 nM	Striatal microdialysates	(Sauvinet et al., 2003)	
Animal	System	GABA content	GABA content (harmonized units)	Tissue	Reference
-----------------	--------------	--------------	---------------------------------	--	---
Rat (male Wistar)	Brain-CNS	0.31 pmol 15 μL⁻¹	0.0021 μg mL⁻¹	Striatal microdialysis sample	(Petteri & Skujins, 2001)
Rat (male S-P)	Brain-CNS	307/114/244/141 nM	0.032/0.012/0.025/0.014 μg mL⁻¹	Transverse microdialysis: Cortex/Hippocampus/Septum/Neostriatum	(Bianchi, Della Corte, & Tipton, 1999)
Rat (male S-P)	Brain-CNS	29/25/31 nM	0.003/0.002/6/0.003 μg mL⁻¹	Vertical microdialysis: Neostriatum/Globus Pallidus/Substantia Nigra reticulata	(Bianchi et al., 1999)
Rat (male S-P)	Brain-CNS	109/22 fmol (min mg)⁻¹ w.t.	0.011/0.002 μg g⁻¹ min⁻¹	Extracellular levels of GABA monitored in vitro by perfusion of rat neostriatal/substantia nigra slices	(Bianchi et al., 1999)
Rat	Cardiovascular	0.62 nmol mg⁻¹ protein	61.93 μg g⁻¹	Aorta	(Hamel et al., 1981)
Rat	Cardiovascular	5.4 nmol g⁻¹	0.557 μg g⁻¹	Heart	(Tsuji & Nakajima, 1978)
Rat (male S-P)	Cardiovascular	580 pmol mL⁻¹	0.06 μg mL⁻¹	Plasma	(Gerber & Hare, 1980)
Rat (albino male)	Cardiovascular	800 ± 58 pmol mL⁻¹	0.082 ± 0.006 μg mL⁻¹	Blood from cardiac puncture (50 % was found in plasma)	(Ferkany, Smith, Seifert, Caprili, & Enna, 1978)
Rat (male S-P)	Cardiovascular	8 pmol mg⁻¹ WW	0.825 μg g⁻¹	Cardiac ventricular tissue	(Gerber & Hare, 1980)
Rat	Digestive	0.008-0.632/0.496/0.190-5.04 mmol kg⁻¹ WW	0.825-65.17/51.15/19.59-519.72 μg g⁻¹	Pancreas/Acini/Islets of Langerhan	(Michalik & Maria, 1992)
Rat	Digestive	2.51/18.9/1.97 mmol kg⁻¹ DW	259.04/1948.97/203.15 μg g⁻¹	Pancreas/Islets of Langerhan/exocrine acini	(Okada, Taniguchi, & Shimada, 1976)
Animal	System	GABA content (harmonized units)	GABA content (harmonized units)	Tissue	Reference
-----------------	------------	---------------------------------	---------------------------------	---	---
Rat	Digestive	21.8–87 nmol g⁻¹	2.248–8.971 μg g⁻¹	Liver	(Minuk, 1992)
Rat	Digestive	32.7/67.0 nmol g⁻¹	3.370/6.909 μg g⁻¹	Liver/Small intestine	(Tsuji & Nakajima, 1978)
Rat (male S-P)	Digestive	0.55 ± 0.06 nmol kg⁻¹ DW	6.10⁻⁵ ± 6.10⁻⁶ μg g⁻¹	Duodenum	(Taniguchi, Osaya, Okada, & Baba, 1982)
Rat	Endocrine	21.3 nmol g⁻¹	2.196 μg g⁻¹	Kidney	(Tsuji & Nakajima, 1978)
Rat (male S-P)	Endocrine	3.95 ± 5.3/19.6/26.7/43.6/37.8 nmol g⁻¹ WW	4.07 ± 0.55/2.02/2.75/4.50/3.90 μg g⁻¹	Whole kidney/superficial renal cortex/mid-renal cortex/juxtamedullary renal cortex/renal	(Goodyer et al., 1982)
Rat	Endocrine	35 pmol mg⁻¹ WW	3.609 μg g⁻¹	Adrenal	(Gerber & Hare, 1980)
Rat	Endocrine	34 ± 8/27 ± 4 μmol kg⁻¹ WW	3.51 ± 0.41/2.78 ± 0.41 μg g⁻¹	Adrenal/thyroid	(Okada, Taniguchi, & Baba, 1982)
Rat	Lymphoid	3.4 nmol g⁻¹	0.351 μg g⁻¹	Spleen	(Tsuji & Nakajima, 1978)
Rat (male S-P)	Lymphoid	38/18 pmol mg⁻¹ WW	3.919/1.856 μg g⁻¹	Thymus/spleen	(Gerber & Hare, 1980)
Rat	Muscular	0.7 nmol g⁻¹	0.072 μg g⁻¹	Muscle	(Tsuji & Nakajima, 1978)
Rat	Ocular	1.55 ± 0.014 μmol g⁻¹ FW	15.84 ± 1.444 μg g⁻¹	Retina	(Ponsantes-Morales, Klethi, Ledig, & Mandel, 1972)
Rat	Ocular	20 nmol kg⁻¹ FW	2062.4 μg g⁻¹	Retinal layers	(Ross, Parli, & Godfrey, 1989)
Animal	System	GABA content (harmonized units)	GABA content (harmonized units)	Tissue	Reference
--------	------------	---------------------------------	---------------------------------	-----------------------------	--
Rat	Ocular	3.21/0.10/0.05/0.22 μmol g⁻¹ DW	331.01/10.31/5.16/22.69 μg g⁻¹	Retina/lens/iris-ciliary body/cornea	(Heinämäki, Muhonen, & Piha, 1986)
Rat	Ocular	0.0/0.0/0.034 nmol kg⁻¹ H₂O	0.0/0.0/3.506 μg g⁻¹	plasma/anterior aqueous/ lens water	(Reddy, 1967)
Rat	Ocular	0.15 μmol 5 mL⁻¹	3.094 μg ml⁻¹	Vitreous	(Heinämäki et al., 1986)
Rat	Reproductive	710 ± 55 μmol kg⁻¹ protein	73.21 ± 5.67 μg g⁻¹ protein	Ovary	(Okada et al., 1982)
Rat	Reproductive	29.8 ± 7.6 nmol g⁻¹ WW	3.073 ± 0.784 μg ml⁻¹	Uterus	(Erdo, 1984)
Rat	Reproductive	4438 ± 220/584 ± 72 nmol g⁻¹ WW	457.65 ± 22.69/ 60.22 ± 7.42 μg g⁻¹	Oviduct/ovary	(Erdo, Rosdy, & Szpony, 1982)
Rat	Reproductive	46.02 ± 3.65/1.01 ± 0.09 nmol mg⁻¹ protein	47.45 ± 376/104.1 ± 9.3 μg g⁻¹ protein	Oviduct/ovary	(Apud et al., 1984)
Rat	Reproductive	5.030.04/0.027 μmol g⁻¹ FW	518.69/4.12/2.78 μg g⁻¹	Oviduct/ovary/uterus	(Martin Del Rio, 1981)
Rat	Reproductive	3500–7000/50–100/80/150 nmol mg⁻¹ protein	3.6 10⁻²/7.2 10⁻⁵/5.2 10⁻⁵/ 1.0 10⁻⁵/8.2 10⁻⁵/1.5 10⁻⁵ μg g⁻¹ protein	Oviduct/ovary/uterus/vagina	(Louzan et al., 1986)
Rat	Reproductive	30 ng μL⁻¹	30 μg ml⁻¹	Fluid of the ovarian bursa	(Louzan et al., 1986)
Rat	Reproductive	0.6 nmol g⁻¹	0.062 μg g⁻¹	Testis	(Tsuiji & Nakajima, 1978)
Rat (male S-P)	Reproductive	6 pmol mg⁻¹ WW	0.619 μg g⁻¹	Testis	(Gerber & Hare, 1980)
Rat	Reproductive	0.019/0.02/traces μmol g⁻¹ FW	0.959/2.062/traces μg g⁻¹	Seminal vesicles/ducturs deferens/Epididymis	(Martin Del Rio, 1981)
Animal	System	GABA content	GABA content (harmonized units)	Tissue	Reference
------------	-----------------	--------------	---------------------------------	-----------------	---
Rat	Respiratory	7.3	0.753 μg g⁻¹	Lung	(Tsuji & Nakajima, 1978)
Rat (male S-P)	Respiratory	15 pmol mg⁻¹ WW	1.547 μg g⁻¹	Lung	(Gerber & Hare, 1980)
Guinea pig	Brain-CNS	100 μg g⁻¹ WW	100 μg g⁻¹	Brain	(Awapara et al., 1950)
Guinea pig	Digestive	17.5 ± 3.1 nmol g⁻¹ WW	1.805 ± 0.320 μg g⁻¹	Tenia coli	(Jessen, Mirsky, Dennison, & Burnstock, 1979)
Guinea pig	Digestive	43.5/79.2/69.7/64.7/66.4/65.8/63.6 nmol g⁻¹ WW	4.48/8.17/7.19/6.67/6.85/6.78/6.56 μg g⁻¹	Duodenum/jejenum/ileum/Appendix/Asc colon/Trans colon/Desc colon	(Miki, Taniyama, Tanaka, & Tobe, 1983)
Guinea pig	Digestive	18.3/34.6/43.2/77.3 nmol g⁻¹ WW	1.89/3.57/4.45/7.97 μg g⁻¹	Gallbladder: Neck/upper body/lower body/base	(Saito, Taniyama, & Tanaka, 1985)
Guinea pig	Respiratory	0.082 ± 0.014/0.026 ± 0.004 pmol mg⁻¹	0.008 ± 0.001/0.003 ± 0.0004 μg g⁻¹	Eluted from airway rings: with the epithelium intact/with the epithelium denuded	(Gallos et al., 2013)
Guinea pig	Urinary	34/17.9/12.6/11.5 nmol g⁻¹ WW	3.51/1.84/1.30/1.19 μg g⁻¹	Urinary bladder: Upper body/Lower body/Bse/Trigone	(Kusunoki, Taniyama, & Tanaka, 1984)
Mouse	Brain-CNS	5 55 mg 100 g⁻¹ WW	550 μg g⁻¹	Brain	(Roberts & Frankel, 1950)
Mouse	Brain-CNS	1.41–1.50/1.70–1.66/1.15–1.11/1.35–1.43 pmol g⁻¹	165.4–154.7/175.3–171.2/118.6–114.5/139.2–147.5 μg g⁻¹	Cerebral cortex/corpus striatum/cerebellum/hippocampus (data depending on technique)	(Bernasconi, Bittiger, Heid, & Martin, 1980)
Mouse	Cardiovascular	548 ± 61 pmol mL⁻¹	0.056 ± 0.006 μg mL⁻¹	Blood from cardiac puncture	(Ferkany et al., 1978)

(Continued)
Animal	System	GABA content	GABA content (harmonized units)	Tissue	Reference
Mouse	Digestive	0.004 nmol g⁻¹ WW	0.0004 µg g⁻¹	Pancreas	(Drummond & Phillips, 1974)
Mouse	Digestive	0.004/0.560-0.827 mmol kg⁻¹ WW	0.412/57.74–85.28 µg g⁻¹	Pancreas/Islets of Langerhans	(Michalik & Maria, 1992)
Mouse	Digestive	15 nmol g⁻¹	1.547 µg g⁻¹	Liver	(Minuk, 1992)
Mouse	Ocular	16.7 ± 0.7/13.6 ± 0.3 mmol kg⁻¹ protein	1722 ± 72/1402 ± 31 µg g⁻¹ protein	90 days old: light-adapted retina/dark-adapted retina	(Cohen, McDaniel, & Orr, 1973)
pancreatic islets, where considerably higher amounts have been found. The difficulties in measuring GABA and the different techniques used are the main reasons for discrepancies.

3.1.2. GABA in humans
Medical and pharmacological effects of GABA have been widely studied due to its numerous physiological functions and positive effects on metabolic disorders. However, abnormal GABA levels do not always result in an illness. Considering different tissues, one of the most common analysis is the measurement of the amount of GABA in plasma. It seems that there are no marked effects on plasma GABA concentrations due to gender, exercise, diet, season, time of day or menstrual cycle (Petty, 1994). GABA levels in other tissues are summarized in Table 11, including results from in vivo analysis (Goddard, Mason, & Almai et al., 2001; Terpstra, Ugurbil, & Gruetter, 2002).

3.1.3. GABA in other mammals
Several studies have been performed to obtain information on amino acids and related compounds from tissues of different mammals. Reported results demonstrated a similar pattern to that shown previously, brain and ocular tissues contain higher concentrations of GABA, although it is distributed in several other organs of mammals. Table 12 shows GABA content in different tissues from cats, dogs and monkeys.

3.2. GABA in livestock
Consumer demand and regulatory requirements for food items of high quality and nutritional properties are constantly increasing. A wide number of methods and breeding programs have been developed to maintain healthy livestock and improve production, yield and quality, from adapted feeding diets to controlled facilities and regular health inspections. Within these procedures, many controls evaluate livestock performance and evolution of plasma metabolites during development. Amino acid profiles, besides the nutritional properties, are of crucial importance due to their particular contribution to the taste. Free amino acids are classified into four categories (saccharinity, amino acids with sulphide, fragrant amino acids and essential amino acids.) However non-protein amino acids are not considered and GABA is not usually quantified (Bermúdez, Franco, Carballo, Sentandreu, & Lorenzo, 2014; Iida et al., 2016; Lim, Jo, Seo, & Nam, 2014; Lisa, Spragins Jeffrey, Reyzer Michelle, Norris Jeremy, & Caprioli Richard, 2014; Mullen et al., 2000; Soriano-Santos, 2000; Subbaraj, Brad Kim, Fraser, & Farouk, 2016).

In recent years, along with the increasing knowledge of its functional properties, GABA has become part of the diet of livestock (Li et al., 2015; Tang & Chen, 2016; Wang, Wang, Liu, Liu, & Ferguson, 2013; Zhang, Zou, Li, Dong, & Zhao, 2011; Zhigang, Sheikahmodi, & Li, 2013). The final objective is to obtain feeding material with good nutritional and sensory properties improving the life quality of the animals.

Table 13 summarizes some data related to GABA content in livestock. Although most of the results are not from tissues included in human diets, they provide evidence of the natural occurrence of GABA in these different animals. Data for muscles show a GABA content of more than 120 μg g⁻¹ in Longissimus lumborum muscle of swine. GABA distribution is similar to that described previously for humans and other mammals.

Food items produced by different type of animals, such as eggs, milk or honey, also show remarkable GABA content without any processing steps. It is interesting that even human milk for baby nutrition contains 0.01 μg mL⁻¹ GABA. Data are shown in Table 14.

3.3. GABA in other animals
For species that could be part of the human diet, there has been a growing interest in studying their biochemistry, physiology and nutritional characteristics. These studies focus on both physical characteristics and chemical composition (mineral fatty acid and amino acid profile). Nevertheless,
Table 11. GABA content in humans

System	GABA content (harmonized units)	Tissue	Reference
Brain-CNS	60/75/77/70/62/103/86/62/65/32 μg g⁻¹ FW	Pons/temporal lobe/frontal lobe/parietal lobe/occipital lobe/caudate nucleus/cerebellum/medulla/gray matter/white matter	(Awapara et al., 1950)
Brain-CNS	0.208 ± 0.091/4.65 ± 1.92 nmol mL⁻¹	CSF: free GABA/conjugated GABA	(Manyam & Tremblay, 1984)
Brain-CNS	0.019 to 0.022 μg mL⁻¹	CSF samples (patients suffering from tuberculosis meningitis and septic meningitis)	(Khuhawar & Rajper, 2003)
Brain-CNS	0.025 ± 0.009/0.025 ± 0.008 μg mL⁻¹	CSF 20 normal volunteers/19 neurologically normal controls	(Hare & Bala Manyam, 1980)
Brain-CNS	77.34 ± 14.37 μg g⁻¹	Occipital lobe in vivo	(Terpstra et al., 2002)
Brain-CNS	156.74–254.71 μg g⁻¹ brain	Occipital in vivo	(Goddard et al., 2001)
Cardiovascular	0.013 ± 0.001 μg mL⁻¹	Plasma (female+ male)	(Bjork et al., 2001)
Cardiovascular	0.020/0.023 μg mL⁻¹	Plasma: Female/Male	(Petty, 1994)
Cardiovascular	90.74 μg mL⁻¹	Plasma dialysate	(Páez, Rada, & Hernández, 2000)
Cardiovascular	0.089 ± 0.007 μg mL⁻¹	Blood from the antecubital vein (less than 30% was found in plasma)	(Ferkany et al., 1978)
Digestive	73.01/662.03 μg g⁻¹	Human insulinoma: non-tumor region/tumor region	(Michalik & Maria, 1992)
Digestive	289.77/2629.56 μg g⁻¹	Human insulinoma: non-tumor region/tumor region	(Okada et al., 1976)
Digestive	23.72/15.47/35.06/259.86 μg g⁻¹ protein	Mucosa/Circular muscle/Longitudinal muscle/Auerbach’s plexus	(Miki et al., 1983)
Digestive	25.99 μg g⁻¹	Liver	(Minuk, 1992)

(Continued)
System	GABA content (harmonized units)	Tissue	Reference			
Endocrine	0.3–2.9 mg 100 g⁻¹	3–29 μg g⁻¹	Kidney _children with different disease (Zachmann, Tocci, & Nyhan, 1966)			
Ocular	1.90–3.82 μmol 100 mL⁻¹	1.96–3.94 μg mL⁻¹	Aqueous humor (Durham, 1970)			
Reproductive	177 ± 54 nmol g⁻¹	18.25 ± 5.57 μg g⁻¹	Oviduct (Erdö, László, Szporny, & Zsolnai, 1983)			
Reproductive	214 ± 66 nmol g⁻¹	22.07 ± 6.81 μg g⁻¹	Ovary (Erdö Sándor & Adam, 1984)			
Reproductive	0.036 nmol/10⁶ cells	0.0037 μg 10⁶ cells⁻¹	Spermatozoa (Ritta et al., 1998)			
Reproductive	15.21 nmol mL⁻¹	1.568 μg mL⁻¹	Seminal plasma (Tsuiji & Nakajima, 1978)			
Milk	117.7 nM	0.012 μg mL⁻¹	Milk (7 samples) (Limon et al., 2014)			
Animal	System	GABA content	GABA content (harmonized units)	Tissue	Reference	
--------	--------	--------------	---------------------------------	--------	-----------	
Cat	Brain-CNS	23.4 mg 100 g⁻¹ WW	234 μg g⁻¹	Brain	Tallan, Moore, & Stein, (1954)	
Cat	Brain-CNS	0.2/0.9/2.7/6.3/6.0/6.6/6.25 mM	20.62/92.83/278.4/649.6/618.72/680.59/257.80 μg mL⁻¹	Spinal ganglion cells/spinal mononeurons/large cells ventral part of Deiters’ nucleus/large cells dorsal part of Deiters’ nucleus/cerebellar nuclei cells/cerebellar Purkinje cells/cerebral Betz cells	Otsuka et al., (1971)	
Cat	Brain-CNS	5.8 ± 1.5/1.5 ± 0.5 mM	898.10 ± 154.68/154.68 ± 51.56 μg mL⁻¹	Purkinje cells/Motoneurons	Obata, (1969)	
Cat	Cardiovascular	<0.02 mg 100 g⁻¹ WW	<0.2 μg g⁻¹	Plasma	Tallan et al., (1954)	
Cat	Cardiovascular	899 ± 204 pmol mL⁻¹	0.093 ± 0.021 μg mL⁻¹	Blood from the cephalic vein	Ferkany et al., (1978)	
Cat	Digestive	0.68 mmol kg⁻¹ WW	70.122 μg g⁻¹	Pancreas	Ferkany et al., (1978)	
Cat	Digestive	9.7 nmol g⁻¹	10.003 μg g⁻¹	Liver	Michalik & Maria, (1992)	
Cat	Digestive	1.0/0.7 mg 100 g⁻¹ WW	10/7 μg g⁻¹	Liver/Pancreas	Minuk, (1992)	
Cat	Digestive	29.2/26.6/27.8/31.0/33.8/35.9/36.6 nmol g⁻¹ WW	3.013/2.743/2.867/3.197/3.485/3.774 μg g⁻¹	Duodenum/jejumun/Ileum/Appendix/Asc colon/Trans colon/Desc colon	Tallan et al., (1954)	
Cat	Digestive	0.14/0.19/0.24/0.60 nmol mg⁻¹ protein	14.44/19.59/24.75/44.35 μg g⁻¹	Mucosa/Circular muscle/Longitudinal muscle/Auerbach's plexus	Miki et al., (1983)	
Cat	Digestive	1.09 ± 0.13 mmol kg⁻¹ DW	112.40 ± 13.41 μg g⁻¹	Transcolon	Taniguchi et al., (1982)	
Cat	Endocrine	0.5 mg 100 g⁻¹ WW	5 μg g⁻¹	Kidney _children with different disease	Tallan et al., (1954)	
Cat	Urinary	<0.1 mg 100 g⁻¹ WW	<1 μg g⁻¹	Gastrocnemius	Tallan et al., (1954)	
Dog	Cardiovascular	<0.1 μg g⁻¹ FW	<0.1 μg g⁻¹	Heart	Fan et al., (1986)	
Dog	Cardiovascular	6.30 ± 89 pmol mL⁻¹	0.065 ± 0.009 μg mL⁻¹	Blood from the cephalic vein	Ferkany et al., (1978)	
Dog	Digestive	0.43 mmol kg⁻¹ WW	44.342 μg g⁻¹	Pancreas	Michalik & Maria, (1992)	
Monkey	Cardiovascular	1122 ± 84 pmol mL⁻¹	0.116 ± 0.009 μg mL⁻¹	(Macaca mulatt): Blood from the sural vein	Ferkany et al., (1978)	
Monkey	Ocular	0.799/3.34 mmol kg⁻¹ H₂O	82.39/344.42 μg g⁻¹	Lens water: Cynamolgus/Vervet	Reddy, (1967)	
Animal	Group	Tissue	GABA content	(harmonized units)	Data comments	Reference
--------------	-------------	-------------------	---------------	-------------------	--	-----------
Beef	Bovine	Brain-CNS	60	μg g⁻¹ WW	69	Brain
Cow	Bovine	Cardiovascular	23.6	mmol L⁻¹	2433.63 μg mL⁻¹	Serum (early lactating dairy cows)
Calf	Bovine	Ocular	Not quantified		-	GABA detected in calf lens
Sheep	Sheep	Cardiovascular	1332 ± 313 pmol mL⁻¹	0.137 ± 0.032 μg mL⁻¹	Blood	
Swine	Sweat	Muscle	12.08	mg 100 mg⁻¹	120.8 μg g⁻¹	Longissimus lumborum muscle
Broiler	Poultry	Cardiovascular	865	nmol mL⁻¹	89.199 μg mL⁻¹	Serum
Broiler	Poultry	Cardiovascular	810/792	nmol mL⁻¹	83.53/81.67 μg mL⁻¹	Plasma: days 28/35
Chicken	Poultry	Ocular	3.02 ± 0.192	μmol g⁻¹ FW	311.42 ± 19.80 μg g⁻¹	Retina
Cherry Valley Duck	Poultry	Cardiovascular	13.17/0.27	nmol mL⁻¹ _μmol g⁻¹	1.36/27.84 μg mL⁻¹/mg g⁻¹	Day 42 with heat stress (30°C): Breast muscle
Cherry Valley Duck	Poultry	Digestive	0.59	μmol g⁻¹	60.84 μg g⁻¹	Day 42 with heat stress (30°C): Liver

(Continued)
Animal	Group	Tissue	GABA content	(harmonized units)	Data comments	Reference
Horse	Equine	Brain-CNS	48.5 - 53.6	ng mL\(^{-1}\)	0.048 - 0.054 ng mL\(^{-1}\)	(Knych, Steinmetz, & McKemie, 2015)
Horse	Equine	Cardiovascular	55.7/23.9/57.7/39.2/24.7	ng mL\(^{-1}\)	0.056/0.024/0.058/0.039 ng mL\(^{-1}\)	Wctphalan/Pony/ Lusitano/ Oldenburg/ Holsteiner (Knych et al., 2015)
Horse	Equine	Cardiovascular	35.0 - 55.8	ng mL\(^{-1}\)	0.035/0.056 ng mL\(^{-1}\)	16 exercised Thoroughbred horses: Plasma (Knych et al., 2015)
Rabbit	Other farmed	Brain-CNS	38	μ g\(^{-1}\) WW	38 μ g\(^{-1}\)	Brain (Awapara et al., 1950)
Rabbit	Other farmed	Brain-CNS	100.67/3.76	nmol mg\(^{-1}\) protein	10,381.1/387.73 μ g\(^{-1}\) protein	Brain tissue/Pia-arachnoid vessels (Hamel et al., 1981)
Rabbit	Other farmed	Brain-CNS	1.902	nmol g\(^{-1}\)	0.196 μ g\(^{-1}\)	Brain (Tsui & Nakajima, 1978)
Rabbit	Other farmed	Cardiovascular	0.45/1.76/0.80/0.96	nmol mg\(^{-1}\) protein	46.40/181.49/82.51/98.99 μ g\(^{-1}\) protein	Aorta/Vena caval/ Femoral artery/ Mesenteric artery (Hamel et al., 1981)
Rabbit	Other farmed	Cardiovascular	3	nmol g\(^{-1}\)	0.309 μ g\(^{-1}\)	Heart (Tsui & Nakajima, 1978)
Rabbit	Other farmed	Cardiovascular	560 ± 93	pmol mL\(^{-1}\)	0.058 ± 0.009 pmol mL\(^{-1}\)	Blood from the marginal ear vein (Ferkany et al., 1978)
Rabbit	Other farmed	Digestive	0.014/0.003	μ mol kg\(^{-1}\) WW	1.44/0.309 μ g\(^{-1}\)	Pancreas (tail)/ Pancreas (body) (Michalk & Maria, 1992)
Rabbit	Other farmed	Digestive	14/3	pmol mg\(^{-1}\) WW	1.44/0.309 μ g\(^{-1}\)	Pancreas (tail)/ Pancreas (body) (Gerber & Hare, 1980)
Rabbit	Other farmed	Digestive	42.3	nmol g\(^{-1}\)	4.362 μ g\(^{-1}\)	Liver (Minuk, 1992)
Rabbit	Other farmed	Digestive	42.6/97.8	nmol g\(^{-1}\)	4.393/10.085 μ g\(^{-1}\)	Liver/Small intestine (Tsui & Nakajima, 1978)

Table 13. (Continued)
Animal	Group	Tissue	GABA content	(harmonized units)	Data comments	Reference
Rabbit	Other farmed	Endocrine	42.8	nmol g\(^{-1}\)	4.413	Kidney (Tsuji & Nakajima, 1978)
Rabbit	Other farmed	Endocrine	42.2/10.55	μg g\(^{-1}\) protein	42.2/10.55	Adrenal/thyroid (Haber, Kuriyama, & Roberts, 1970)
Rabbit	Other farmed	Lymphoid	3	nmol g\(^{-1}\)	0.309	Spleen (Tsuji & Nakajima, 1978)
Rabbit	Other farmed	Muscle	16.4	nmol g\(^{-1}\)	1.691	Muscle (Tsuji & Nakajima, 1978)
Rabbit	Other farmed	Ocular	traces	mmol kg\(^{-1}\) water in lens	traces	Lens (no detected as mg/100 g of lens) (Reddy & Kinsey, 1962)
Rabbit	Other farmed	Reproductive	0.11 ± 0.04	μmol g\(^{-1}\)	11.343 ± 4.125	Oviduct (Erdö et al., 1984)
Rabbit	Other farmed	Reproductive	16.3 ± 5.3	nmol g\(^{-1}\) WW	1.681 ± 0.546	Uterus (Erdö, 1984)
Rabbit	Other farmed	Respiratory	15	nmol g\(^{-1}\)	1.547	Lung (Tsuji & Nakajima, 1978)
as previously mentioned, GABA has not always been measured or considered in these reports (Alam, Karim, Chakrabortty, Amin, & Hasan, 2016; Bechtel & Oliveira, 2006; Mohanty et al., 2014; Wu, 2013). Table 15 provides a summary of GABA content in other animals not covered in other sections. They are grouped in two main categories, vertebrates and invertebrates. Within these examples several could be included in the food category.

GABA is present in numerous invertebrates (Kittredge et al., 1962), acting as an inhibitory transmitter in central and peripheral nervous systems (Lunt, 1991). In many insect species, there are ionotropic GABA receptors distributed throughout the nervous system (Hosie, Sattelle, Aronstein, & Ffrench-Constant, 1997; Lummis, 1990), confirming the widespread existence of GABA.

These receptors have become the target of numerous commercial insecticides and plants use this pathway as defence against invertebrate pests (Bown et al., 2006). Table 15 shows some examples of GABA content in insects.

4. GABA in products for human diet

Consumer preferences towards healthier lifestyles and safe and nutritional food products are the main drivers for producers to offer best-quality products. Studies with the aim of understanding and evaluating the real composition and functional claims of conventional products in our diets have become common (Diana et al., 2014; Hermanussen et al., 2010). The food industry increasingly develops the functionality of traditional products, trying to improve their properties and to add health claims.

Considering the interest of GABA as a functional food ingredient, many efforts have been made to improve the GABA content during food manufacturing, not only by just adding GABA but also by using ingredients with high GABA content or “in-situ producers of GABA” (Dhakal et al., 2012; Kook & Cho, 2013; Poojary et al., 2017; Quilez & Diana, 2017).

It has been widely reported that the food industry is taking advantage of the different species of microorganisms that are able to produce GABA from glutamate in one step (Bach et al., 2009; Choi et al., 2006; Hayakawa, Ueno, Kawamura, Taniguchi, & Oda, 1997; Hudec et al., 2015; Pietruszko & Fowden, 1961; Reed, 1950; Yang et al., 2008; Yokoyama, Hiramatsu, & Hayakawa, 2002). These microorganisms are included during food production or processing and produced GABA maintained within the foodstuff, fortifying the final product. The fermented products usually have higher GABA concentrations than standard products.
Animal	Classification	System	GABA content (harmonized units)	Data comments	Reference
Pigeon	Ave	Brain-CNS	110 μg g\(^{-1}\) WW	278.62 ± 21.65/232.02 ± 12.37	(Awapara et al., 1950)
Frog	Amphibia	Ocular	2.70 ± 0.21/2.25 ± 0.12 μmol g\(^{-1}\) DW	27.84 ± 21.65/23.20 ± 12.37	(Starr, 1973)
Rana Pipiens	Amphibia	Ocular/Nervous system	5.64/12.5/8.74 μmol g\(^{-1}\) DW	581/1289.00/901.27	(Graham, Baxter, & Lolley, 1970)
Rana Pipiens	Amphibia	Nervous system	6.99/21.1/24.1 μmol g\(^{-1}\) DW	720.81/2175.83/2485.19	(Graham et al., 1970)
Rana temporaria	Amphibia	Nervous system	1.77 ± 0.12/2.75 ± 0.14/3.95 ± 0.36 μmol g\(^{-1}\) DW	185.62 ± 21.65/232.02 ± 24.75/303.17 ± 37.19	(Osborne, 1971)
Petromyzon marinus and Lampetra fluviatilis	Fish	Cerebellum	0.97 ± 0.06/0.59 ± 0.03 μmol g\(^{-1}\) WW	100.03 ± 6.19	(Robertson et al., 2007)
Ictalurus nebulosis	Fish	Brockman body	121.0 μmol mL\(^{-1}\)	0.012 μg g\(^{-1}\) WW	(Gerber & Hare, 1980)
Scyllium canicula	Fish	Endocrine system	25 μg g\(^{-1}\)	25 μg g\(^{-1}\)	(Osborne, 1971)
Carassius auratus	Fish	Ocular	3.15 ± 0.35/1.65 ± 0.21 μmol g\(^{-1}\) DW	324.83 ± 36.09/170.15 ± 21.65	(Osborne, 1971)
Carassius auratus	Fish	Retina	1.96 ± 0.11/1.2 ± 0.08 μmol g\(^{-1}\) DW	202.11 ± 14.6/146.43 ± 8.25	(Starr, 1973)

(Continued)
Animal	Classification	System	GABA content	GABA content (harmonized units)	Data comments	Reference
Spodoptera littoralis Boisduval	Arthropod-Insect	Larve-hemolymph	63–351 μmol 100 mL⁻¹	64.96–361.95 μg mL⁻¹	GABA in the haemolymph of the second, third, fourth and sixth instar larvae	(Boctor & Salem, 1973)
Locusta migratoria	Arthropod-Insect	Nervous system	16.8 μg g⁻¹ WW	16.8 μg g⁻¹	Brain and ventral nerve-cord	(Osborne, 1971)
Cockroach	Arthropod-Insect	Nervous system	60 μmol g⁻¹ weight tissue h⁻¹	6187.2 μg g⁻¹	Formed GABA in central ganglia	(Baxter & Torralba, 1975)
Musca domestica	Arthropod-Insect	Head	0.100/0.138 μg head⁻¹	0.100/0.138 μg head⁻¹	Female/male	(Shi et al., 2012)
Plutella xylostella	Arthropod-Insect	Head	0.00375 μg head⁻¹	0.00375 μg head⁻¹		(Shi et al., 2012)
Lumbricus terrestris L	Annelida	Nervous system	<0.2/<0.2/<0.2 μg g⁻¹ WW	<0.2/<0.2/<0.2 μg g⁻¹	Nerve cord/ supræesophag. + subesophag. ganglia + periesophag. connectives/ supræesophag. Ganglion	(Koidl, 1974)
Lumbricus terrestris	Annelida	Nervous system	1.2 μg g⁻¹ WW	1.2 μg g⁻¹	Cerebral and subpharyng. ganglia, circumoesophag. commissures	(Osborne, 1971)
Hirudo medicinalis	Annelida	Nervous system	<0.2 μg g⁻¹ WW	<0.2 μg g⁻¹	Nerve cord	(Koidl, 1974)
Aphodite aculeata	Annelida	Nervous system	0.6 μg g⁻¹ WW	0.6 μg g⁻¹	Ventral nerve-cord	(Osborne, 1971)
Helix aspersa	Molusca	Nervous system	0.7 μg g⁻¹ WW	0.7 μg g⁻¹	Circumoesophag. ganglia mass	(Osborne, 1971)
Buccinum undatum	Molusca	Nervous system	0.9 μg g⁻¹ WW	0.9 μg g⁻¹	Circumoesophag. ganglia mass	(Osborne, 1971)
Animal	Classification	System	GABA content (harmonized units)	Data comments	Reference	
-----------------------------	-----------------	---------------------------	---------------------------------	---	---------------------------------	
Elodone cirhosa	Molusca	Nervous system	1.3 μg g⁻¹ WW	Optic ganglia	(Osborne, 1971)	
Lobster	Arthropod-Crustac.	Nervous system	9–14/130/480/26,600/1011 μg g⁻¹ DW	Sensory nerve/mixed nerve/CNS ganglia and connectives/motor inhibitory bundles/CNS ganglia alone	(Kravitz, Kuffler, & Potter, 1963)	
Lobster (Homarus americanus)	Arthropod-Crustac.	Nervous system	n.d./1.2–2.4 μmol 100 mm⁻¹ fibre	Isolated axons from the meropodite region: Motor/inhibitory	(Kravitz et al., 1963)	
Lobster (Homarus americanus)	Arthropod-Crustac.	Nervous system	0.012–0.026/0.11–0.37 μmol 100 mm⁻¹ fibre	Isolated axons from the opener muscle surface: Motor/inhibitory	(Kravitz et al., 1963)	
Nephrops norvegicus	Arthropod-Crustac.	Nervous system	13.6 μg g⁻¹ WW	Brain and ventral nerve-cord	(Osborne, 1971)	
Crab	Arthropod-Crustac.	Nervous system	625/127/19/10,000 μg g⁻¹ DW	CNS connective tissue sheath removed/Mixed nerve/Sensory nerve/Motor inhibitory bundles	(Kravitz et al., 1963)	
Carcinus maenas	Arthropod-Crustac.	Nervous system	21.3 μg g⁻¹ WW	Brain and ventral nerve-cord	(Osborne, 1971)	
Astacus	Arthropod-Crustac.	Nervous system	86.6/99.0 μg g⁻¹ WW	Nerve cord/ supraesophag. ganglion	(Koidl, 1974)	
Orconectes immunis	Arthropod-Crustac.	Nervous system	113–153 μg g⁻¹	Ventral nerve cord	(Lin & Cohen, 1973)	
Animal	Classification	System	GABA content (harmonized units)	GABA content (harmonized units)	Data comments	Reference
----------------------------	---------------------	--------------------	---------------------------------	---------------------------------	--------------------------------	----------------------------------
Orconectes immunis Hagen	Arthropod-Crustac.	Nervous system	1.10 ± 0.15/1.49 ± 0.34	113.43 ± 15.47/153.65 ± 35.06	µg g⁻¹ WW	(Lin & Cohen, 1973)
Orconectes immunis Hagen	Arthropod-Crustac.	Hemolymph	0.002/0.002	0.026/0.206	µg mL⁻¹	Female/Male
Litopenaeus vannamei	Arthropod-Crustac.	Body	0.1	100	µg g⁻¹	Whole body
Holothuria scabra	Echinoderm	Whole body	4.67/n.d.	4.67/n.d.	µg g⁻¹	Whole body/body wall
Echinus esculentus	Echinoderm	Nervous system	0.9	0.9	µg g⁻¹ WW	Radial nerve-cord (ectoneural tissue)
Asterias rubens	Echinoderm	Nervous system	1.1	1.1	µg g⁻¹ WW	Radial nerve-cord (ectoneural and hyponeural tissue)
Ciona intestinalis	Tunicata	Nervous system	3	3	µg g⁻¹ WW	Cerebral ganglion

WW: wet weight; n.d.: not detected
Table 16 shows the GABA levels in different examples of usual foodstuff like cheese, yoghurt, flour or bread; fermented food like Kimchi or Tempeh, very common in Asian countries and with high content of GABA; new developments mostly based on fermentation processes with GABA-producer starters and commercial processed products.

5. GABA in the environment
In the past, studies about the role of nitrogen in soil to sustain crop production in agricultural systems have been focused on inorganic nitrogen dynamics. The ability of numerous crop species to take up organic nitrogen from the free amino acids pool has increased the interest in the organic chemical composition of soils (Amelung, Zhang, & Flach, 2006; Bol, Ostle, Petzke, Chenu, & Balesdent, 2008; Friedel & Scheller, 2002; Mittner, Kindler, Knicker, Richnow, & Matthias, 2009; Scheller & Raupp, 2005).

Amino acids are widely present in soils (approximately 20–30% of total nitrogen) either in a free or a polymeric state (e.g. protein–humic complexes and peptides). The majority of amino acids are in a polymeric state and only 0.04–0.5% of the total weight is free amino acids. Most amino acids in the soil are derived from plant residues and root exudation but also from dry and wet deposition, microbial activity and animal inputs. The final level of amino acids in soil is influenced by many parameters from the soil matrix to the local environment, including plant life, external human intervention or microbial communities (Jones, Owen, & Farrar, 2002; Vieublé Gonod, Jones, & Chenu, 2005). Amino acid concentrations ranged from 3.9 to 16.5 g kg$^{-1}$ [3.9–16.5 mg g$^{-1}$] soil and correlated with the organic C and N contents at the sites (Amelung et al., 2006). The most abundant amino acids in soils were Glu, Gly, Asp, Arg and Ala.

In sediments, the amino acid composition may be altered with an increased turnover of proteins (Dauwe, Middelburg Jack, Peter, & Heip Carlo, 1999). In fact, the chemical composition of the sediments is considered to be a maturity indicator to estimate the relative degradation state of the organic matter. In order to understand compositional changes and evolution of oceanic and deep-sea sediments, many studies of analysis of the water column at different depths have been reported (Goutx et al., 2007; Ittekkot, Deuser, & Degens, 1984). Specifically, the examinations of non-protein amino acids like GABA and β-Alanine in sea particles are used as long-term signs of organic degradation and chemical evolution of sediments. As an example, GABA and β-Alanine, degradation products of Asp and Glu, tend to accumulate in older sediments and their relative molar concentration is lowest in the surface sediments and highest in the bottom sediments (Gupta & Kawahata, 2003a, 2003b). Surface waters or surface sediments have no GABA or very low levels (Müller, Suess, & AndréUngerer, 1986; Zhao, Shan, Tang, & Zhang, 2015). Examples of concentrations of GABA in sediments and soils are shown in Table 17.

Concentrations of free and combined amino acids in atmospheric particles have also been investigated. (Zhang & Anastasio, 2003) reported that the average concentrations of combined amino compounds (proteins and peptides) were generally four to five times higher than those of free amino compounds (amino acids and alkyl amines). GABA accounted for only 1% of the free amino acids in the atmospheric fine particles but 7% in the water fog. A different result was obtained by (Filippo et al., 2014) who did not detect GABA as a combined amino acid. Data are included at the end of Table 17.

6. Conclusions
Reviewed literature shows the great attention GABA has attracted over the last several decades due to its ubiquity in life. GABA occurs naturally in plants, animals and microorganisms, having diverse physiological functions and great potential health related benefits. Extensive data demonstrates that GABA content is usually higher in plants than in animals and its concentration is in the range of mg g$^{-1}$ depending on plant matrix, development stage and postharvest and processing conditions. GABA is present in almost all types of fruits and vegetables investigated, including wheat and rice as the worldwide most important crops, and in several food crops like tomato,
| Product | Processing features | GABA content | GABA content (harmonized units) | Data comments | Reference |
|-------------------------|---------------------|--------------|---------------------------------|---|---|
| Pork loin | Dry aged | 12.08/23.09 mg 100 g⁻¹ | 0.121/0.231 mg g⁻¹ | Longissimus lumbarum muscles; Control/left halves of the carcasses aged at 2 ± 1°C, RH: 80%, 40 d | (Lee et al., 2016) |
| Flour | – | 7/19/12/3/27/4/0/12/15/18/24/78 mg kg⁻¹ | 0.007/0.019/0.012/0.003/0.027/0.040/0.012/0.012/0.015/0.018/0.024/0.078 mg g⁻¹ | Common wheat/durum wheat/rye/spelt/oat/buckwheat/Rice/Amaranth/millet/chickpea/soy/quinoa | (Coda, Rizzello, & Gobbetti, 2010) |
| Cheese (commercial) | – | 0.260/0.32/0.77 mg kg⁻¹ | 0.0003/0.0003/0.0008 mg g⁻¹ | Vento d’Estate/Mozzarella/Crescenza | (Siragusa et al., 2007) |
| Cheese (commercial) | – | 289/290/290/330/391 mg kg⁻¹ | 0.289/0.290/0.290/0.330/0.391 mg g⁻¹ | Pecorino Marchigiano/Pecorino del Reino/Pecorino Leccese/Pecorino Umbrali/Pecorino di Filiano | (Siragusa et al., 2007) |
| Cheese (13 Italian commercial) | – | 4–100 mg kg⁻¹ | 0.004–0.100 mg g⁻¹ | Parmigiano Reggiano, Baricato San Martino, Ubriaco di Roboso, Caciocavallo, Gorgonzola, Canestrato Pugliese, Caciotta di Urbino, Pecorino del Tarantino, Pecorino Piemontese, Flor di Capra, Caprino di Cavapese, Caprino di Valsassina, and Capritilla | (Siragusa et al., 2007) |
| 34 Cheeses (commercial) | – | 330 ± 50 mg kg⁻¹ | 0.330 ± 0.050 mg g⁻¹ | Average data | (Diana, Tres, Quilez, Llombart, & Rafecas, 2014) |
| Cheese (commercial) | – | n.d./177.0/7.1/n.d./n.d./48/4.2 μg g⁻¹ | n.d./0.177/0.007/n.d./n.d./0.048/0.004 mg g⁻¹ | Camembert/Gouda/Blue/Cream/Emmental/Cheddar/Edam | (Nomura, Kimoto, Someya, Furukawa, & Suzuki, 1998) |
| Cheese (commercial) | – | 0.3–19.4 mg g⁻¹ | 0.3–19.4 mg g⁻¹ | Cheddar | (Laleye, Simard, Gosselin, Lee, & Giroux, 1987) |

(Continued)
Product	Processing features	GABA content (harmonized units)	Data comments	Reference
Cheese (commercial) Goat's milk	Semi-ripened/Fresh	0.93/0.9 g kg\(^{-1}\)	Babia-Laciana. Curd/ripening 15 days/ripen 60 days	(Diana, Tes, Quilez, Llombart, & Rafecas, 2014)
Cheese Goat's milk	3.1/19.1/33.1/71.7 mg 100 g\(^{-1}\)	TS 0.031/0.191/0.331/0.717 mg g\(^{-1}\)	Murcia al Vino. Ripening day 2/ day 60/ day 60	(Franco, Prieto, Bernardo, Prieto, & Carballo, 2003)
Cheese Goat's milk + Plant coagulant		7.02/56.1 mg g\(^{-1}\) TS 7.02/56.1 mg g\(^{-1}\)	Babia-Laciana: Curd/ripening 15 days/ripen 30 days/ripen 60 days	(Abellan et al., 2012)
Cheese Goat's milk + Animal rennet		9.6/52.9 mg g\(^{-1}\) TS 9.6/52.9 mg g\(^{-1}\)	Murcia al Vino: Ripening day 2/ day 60	(Abellan et al., 2012)
Cheese Goat's milk		0.11/1.38/2.01 μmol g\(^{-1}\)	Teleme: 1 day/before cold room/ripen 60 days/ripen 180 days	(Diana, Tes, Quilez, Llombart, & Rafecas, 2014)
Cheese Ewe's milk		0.98 g kg\(^{-1}\) 0.98 mg g\(^{-1}\)	Ripened	(Diana, Tes, Quilez, Llombart, & Rafecas, 2014)
Cheese Ewe's milk		0.22/1.58/2.51 μmol g\(^{-1}\)		(Mallatou, Pappa, & Boumba, 2004)
Cheese Ewe's milk		3.6/4.5/13.7/2.01 μmol g\(^{-1}\)		(Mallatou, Pappa, & Boumba, 2004)
Cheese Ewe's milk		0.51/2.03/6.12/100 μg g\(^{-1}\) DW 0.51/2.03/6.12/100 μg g\(^{-1}\)		(Manca et al., 2015)
Cheese Ewe's milk		0.23/1/6/0.25/9 mg g\(^{-1}\)		(Manca et al., 2015)
Cheese Sheep's milk + 3 \(≠\) starter culture		0.21/0.23/6/0.25/9 mg g\(^{-1}\)		(Manca et al., 2015)

Continued
Product	Processing features	GABA content	GABA content (harmonized units)	Data comments	Reference
Cheese	Cow’s milk + 3 × starter culture	2.4–8.3/3.5–10.3/5.7–16.2/24.4–36.4 mg 100 g⁻¹ DW	0.024–0.083/0.037–0.103/0.011–0.062/0.124–0.364 mg g⁻¹	Telemé: 1 day/before cold room/ripen 60 days/ripen 180 days	(Pappa & Sotirakoglou, 2008)
Cheese	Bovine milk (pasteurized)	0.238/1.536/0.020 µmol g⁻¹	0.025/0.158/0.002 mg g⁻¹	Mahon: 0 day/ripen 120 days/ripen 210 days	(García-Palmer, Serra, Palou, & Gianotti, 1997)
Cheese	Bovine milk (raw)	0.238/1.615/0.578 µmol g⁻¹	0.025/0.167/0.060 mg g⁻¹	Mahon: 0 day/ripen 120 days/ripen 210 days	(García-Palmer, Serra, Palou, & Gianotti, 1997)
Cheese	Cow’s milk (raw)	3.72/49.77/37.4 mg 100 g⁻¹ TS	0.037/0.498/0.374 mg g⁻¹	0 day/ripen 60 days/ripen 90 days	(Prieto, Franco, Josefa, Bernardo, & Carballo, 2002)
Milk beverage	Pasteurized cow’s milk + fermentation till pH 4.4	36.9–43.8 mg L⁻¹	0.037–0.044 mg mL⁻¹	Depending on starter culture. GABA increase with storage	(Servili et al., 2011)
Milk beverage	Fresh low-fat milk + lactic fermentation	n.d./64.0 mg 100 g⁻¹	n.d./0.640 mg g⁻¹	Control/Lactic fermentation	(Chen, Tsai, & Pan, 2007)
Fermented goat Milk	Goat milk + lactic bacteria	28 mg kg⁻¹	0.028 mg g⁻¹		(Minervini, Bilancia, Siragusa, Gobbetti, & Caponio, 2009)
Yogurt	+ Germinated Brown rice	0.35/0.59 µL⁻¹	0.00035/0.00059 mg mL⁻¹	Supplemented 1%/2%	(Kim, Ahn, Lim, Jhoo, & Kim, 2009)
Yogurt	rice milk + GABA producing strain	1.29/137.17 µg g⁻¹ DW	0.0013/0.137 mg g⁻¹	Yogurt: Traditional/rice milk + GABA producing strain	(Park & Oh, 2005)
Yogurt	Germinated soya milk + lactic bac	1.5/42.46 µg g⁻¹ DW	0.0015/0.425 mg g⁻¹	Yogurt: Traditional/germinated soya milk + lactic bac	(Park & Suk-Heung, 2007)
Strawberry beverages	Strawberry pure + fermentation	1.89/5.99/6.73/5.12 mg L⁻¹	0.002/0.006/0.007/0.005 mg mL⁻¹	Control/Glucanobacter japonicus/Gluconobacter oxydans/Acetobacter malorum	(Ordóñez et al., 2015)
Commercial orange juice	Orange juice + ferment + pasteur	187/167/126 mg L⁻¹	0.187/0.167/0.126 mg mL⁻¹	Orange juice/+ fermentat/+ ferment + pasteur	(Cerrillo et al., 2015)
Black raspberry beverages	Black raspberry uice + fermentation	n.d./1.2–1.6/13–15 mg mL⁻¹	n.d./1.2–1.6/13–15 mg mL⁻¹	Control/+ lactic acid fermentation 2 days/ferment 15 days	(Kim, Lee, Ji, Lee, & Hwang, 2009)

(Continued)
Product	Processing features	GABA content (harmonized units)	Data comments	Reference
Soy milk	Soy milk + fermentation	93.9/198.4/361.1 mg 100 g⁻¹	0.939/1.984/3.611 mg g⁻¹	(Tsai, Lin, Pan, & Chen, 2006)
Chinese rice wine	Lactic ferment + Long storage	126/137/143 mg mL⁻¹	126/137/143 mg mL⁻¹	(Liu, Bobin, Zhou, Chen, & Halyun, 2015)
Chinese yellow wine	Glutinous rice + yeast	10.1 ± 0.3 μg mL⁻¹	0.0101 ± 0.0003 mg mL⁻¹	(Lu et al., 2015)
Rice vinegar	-	100 mg L⁻¹	0.1 mg mL⁻¹	(Chen & Chen, 2009)
Beer	-	7.7–40.5 mg L⁻¹	0.008/0.040 mg mL⁻¹	(Kutlán & Molnár-Perl, 2003)
Mung bean	Mung bean + fermentation	0.016/0.122 g 100 g⁻¹ DW	0.16/1.22 mg g⁻¹	(Yeap et al., 2012)
Rice flour	+ fermentation	36.82 mg 100 g⁻¹ DM	0.368 mg g⁻¹	(Kradangar & Songsiriratpong, 2015)
Commercial wheat	Dough + fermentation	1.2/1.74 mg 100 g⁻¹ DW	0.0012/0.0017 mg g⁻¹	(Collar, Mascaros, Prieto, & Debarber, 1991)
Bread	Bread + fermented grains	2.20–2.45 μg g⁻¹ DW	0.0022/0.0024 mg g⁻¹	(Chen, Ulziijargal, & Mau, 2016)
Bread	Bread + fermented rice	60.71 ± 7.21/79.92 ± 0.58 mg kg⁻¹	0.061 ± 0.007/0.080 ± 0.0006 mg g⁻¹	(Tseng, Yang, Chen, & Mau, 2011)
Bread	Several flours and yeast	11/88/504 mg kg⁻¹	0.011/0.088/0.504 mg g⁻¹	(Coda et al., 2010)
Commercial breads	+ L Brevis	1.57–3.95/2.01–8.4/24.2 mg 100 g⁻¹	0.016–0.039/0.020–0.084/0.242 mg g⁻¹	(Diana, Rafecas, & Quilez, 2014)

(Continued)
Product	Processing features	GABA content	GABA content (harmonized units)	Data comments	Reference	
Breakfast cereals	Recipe + glutamic acid decarboxylase	33–219 ppm	33–219 ppm	Glutamic acid decarboxylase (Yersinia intermedia, GADyers)	(Joye, Lamberts, Brijs, & Delcour, 2011)	
Noodles	Brown rice/Rice brown	2751.6–4176.7/5522.0–9617.8 nmol 20 g⁻¹	0.014–0.021/0.028–0.050 mg g⁻¹	Raw and cooked	(Kong & Lee, 2010)	
Pu-ehr tea	Fresh leaves/fermented	1270/4900 μg g⁻¹	1.270/4.900 mg g⁻¹		(Jeng et al., 2007)	
Kimchi	40 h fermentation + 28 days storage	20 mg 100 g⁻¹	0.2 mg g⁻¹	Constant GABA content during storage	(Oh et al., 2008)	
Japanese fermented fish	Long fermented	1.4–1.5 mg g⁻¹	1.4–1.5 mg g⁻¹	Aji-no-susu (4–12 months)	(Kuda et al., 2009)	
Chinese fermented food		32.64/133.13 mg 100 g⁻¹ DM	0.326/1.331 mg g⁻¹	Sufu, soybean based: Control/48 h ferment	(Ma, Cheng, Yin, Wang, & Lite, 2013)	
Chorizo	Fermented sausage	0.88/2.13 mg g⁻¹ DW	0.88/2.13 mg g⁻¹	70 days ferment: Traditional/Industrial	(Mateo, Dominguez, Aguirrezabala, & Zumalacarregui, 1996)	
Nham	Thai sausage + GABA producing strains	3962 mg kg⁻¹	3.962 mg g⁻¹	Thai fermented sausage	(Kantachote, Ratanaburee, Sukhoom, Sumpradit, & Asavarungpipop, 2016)	
Commercial Japanese foodstuff		15.53/3.27/1.37/129.01/12.66 mg g⁻¹	15.53/3.27/1.37/129.01/12.66 mg g⁻¹	Tempeh/Ukogi/Gabarun tea/GABA catechin puras/Pre-tio	(Ishikawa et al., 2009)	
Commercial German foodstuff		18–25/23–39/4–8 mg 100 g⁻¹	0.18–0.25/0.23–0.39/0.04–0.08 mg g⁻¹	Ravioli/spaguetti/noodles	(Hermanussen et al., 2010)	
Commercial German foodstuff		11/17–23/3 mg 100 g⁻¹	0.11/0.17–0.23/0.03 mg g⁻¹	Mc Donald cheeseburger/pizza/Lidi herbal baguette	(Hermanussen et al., 2010)	
Commercial German foodstuff		9/4–5/3 mg 100 g⁻¹	0.09/0.04–0.05/0.03 mg g⁻¹	Peas/lentils/rice pot	(Hermanussen et al., 2010)	
Commercial German foodstuff		2/26 mg 100 g⁻¹	0.02/0.26 mg g⁻¹	Chicken cordonbleu/Curry sausage	(Hermanussen et al., 2010)	
Sample	Place	GABA content	GABA content (harmonized units)	Data comments	Reference	
-------------------------	--------------------------------	--------------	---------------------------------	--------------------------------	--------------------------------	
Fen soil	Weak intensity	Weak intensity			(Bremner, 1950)	
Clay loam soil	Weak intensity	Weak intensity				
Peat soil	Weak intensity	Weak intensity				
Chernozem soil	Weak intensity	Weak intensity				
Agricultural soil	Shanghai, China	0.624–0.631/0.194–0.624	ng N g⁻¹ dry soil			
Arable cultivated soil	loam	15/58	μg N kg⁻¹ soil	0.015/0.058	Before/after hydrolysis	
Arable cultivated soil	sand	-/83	μg N kg⁻¹ soil	-/0.083	Before/after hydrolysis	
Arable cultivated soil	clay loam	8/18	μg N kg⁻¹ soil	0.008/0.038	Before/after hydrolysis	
Pine forest soil		359/519	μg N kg⁻¹ soil	0.359/0.519	Before/after hydrolysis	
Forest soil with deciduous trees		1042/1670	μg N kg⁻¹ soil	1.042/1.670	Before/after hydrolysis	
Soil of a sub-alpine grassland	Snowy Mountains, Australia	3%	Of total amino N pool	3%	Humic umbrosol	
Oa horizons collected beneath Pinus muri sat	J u g Hand le Reserve, northern California	127 (787)/n.d. (n.d.)	nM	0.013 (0.081)/n.d. (n.d.)	μg mL⁻¹	Fresh samples: fertile-slightly acid soil/infertile-acidic soil (after hydrolysis)

(Continued)
Sample	Place	GABA content	GABA content (harmonized units)	Data comments	Reference
Oa horizons collected beneath Cupressus pygmaea	Jug Handle Reserve, northern California	140 (115)/213 (30) nM	0.014 (0.012)/0.022 (0.003) µg mL⁻¹	Fresh samples: fertile-slightly acid soil/infertile-acidic soil (after hydrolysis)	
Intertidal zone salt-marsh soil	La Pérouse Bay, Manitoba, Canada	1.6/5.4 µM	0.165/0.557 µg mL⁻¹	>2ºC/2ºC	(Henry & Jefferies, 2002)
Supratidal zone salt-marsh soil	La Pérouse Bay, Manitoba, Canada	0.9/0.5 µM	0.093/0.051 µg mL⁻¹	>2ºC/2ºC	
Sub-Surface of Semi-Permafrost environment	Hokkaido, altitude 207 m	5/0.1/0.3 nmol g⁻¹	0.516/0.010/0.031 µg g⁻¹	Depth: 0-5/5-10/175-200 cm (water extract aa)	(Takano, Gupta, Kawahata, Kobayashi, & Marumo, 2005)
Squeeze sediments of interstitial waters	Costa Rica Rift, Panama basin	10.8% Of total aa (molar %)	10.8% Of total aa (molar %)	Two holes at 3.5 m depth	(Kawahata & Ishizuka, 1993)
Filtered Interstitial waters	Costa Rica Rift, Panama basin	0% Of total aa (molar %)	0% Of total aa (molar %)	Two holes at 3.5 m depth	
Surface sediments	Haihe River Basin, China	<1 % Molar (total hydrolyzable aa)	<1 % Molar (total hydrolyzable aa)		(Zhao et al., 2015)
Sediment trap material	Antarctic, Drake passage	0.21/0.23 µmol g⁻¹	21.655/23.718 µg g⁻¹	Depth: 965/2540 m	(Müller et al., 1986)
Subantarctic surface waters (6 m)	South Atlantic	0% Of total aa (molar %)	0% Of total aa (molar %)	Particle size 75-150 um	
Antarctic Surface waters (6 m)	South Atlantic	0% Of total aa (molar %)	0% Of total aa (molar %)	Particle size >75 um	
Antarctic Surface waters	Drake passage	0.12 µmol g⁻¹	12.374 µg g⁻¹	Particle size >75 um	
Sea water	East of Gotland, Baltic sea	0.9-3.4/traces Of total aa (molar %)	0.9-3.4/traces Of total aa (molar %)	Depth: 1-4.5 m/65-150 m	(Mopper & Lindroth, 1982)

(Continued)
Sample	Place	GABA content	GABA content	Data comments	Reference
Sea water	Pacific Ocean	0.1%/0.7%	Of total aa (molar %) 0.1%/0.7%	depth: 15 m/650 m	(Sheridan, Lee, Wakeham, & Bishop, 2002)
Sea water	California	3.8/2.0/4.7/0.1/0.7/1.3/0.7/0.9 nmol L⁻¹	0.0004/0.0002/0.0005/0.00001/0.0001/0.0001	Depth, trapped with chloroform: 30/50/400/500/700/900/1400/2000 m	(Lee & Cronin, 1984) (Lee, Wakeham, & Farrington, 1983)
Sea water	Panama Basin	1.42/1.86 μg m⁻³	1.42 10⁻⁶/1.86 10⁻⁶ μg mL⁻¹	Depth: 1267 m, particles <53 um: Free/Combined (Lipid fraction)	
Sea water	Panama Basin	150.2 μg m⁻³	1.50 10⁻⁶ μg mL⁻¹	Depth: 1267 m, particles <53 um: Combined (non-lipid fraction)	
Groundwater	Carolina slate belt	3.8–11 nmol L⁻¹	0.0004/0.0011 μg mL⁻¹	Fractured-rock aquifer	(Shen, Chapelle, Strom, & Benner, 2015)
Surface water	Carolina slate belt	17–33 nmol L⁻¹	0.0018/0.0034 μg mL⁻¹	Fractured-rock aquifer	
Bacterial dissolved organic matter	Carolina slate belt	4.1 ± 3.1 nmol L⁻¹	0.0004 ± 0.0003 μg mL⁻¹	Fractured-rock aquifer	
Samples of urban dust	Rome	0.02–0.4 ng m⁻³	0.02 10⁻⁶ 0.4 10⁻⁴ μg mL⁻¹	Winter_ 2013 (free)	(Di Filippo et al., 2016)
Samples of urban dust	Rome	n.d.–0.52 ng m⁻³	n.d.–0.52 10⁻⁵ μg mL⁻¹	Summer_ 2013 (free)	
Atmospheric fine particles (≤2.5 um)	Davis California	4/42 pmol m⁻³	4.12 10⁻⁹/4.33 10⁻⁹ μg mL⁻¹	Free/Combined	(Zhang & Anastasio, 2003)
Wintertime fog waters	Davis California	47/70 pmol m⁻³	4.85 10⁻⁹/7.22 10⁻⁹ μg mL⁻¹	Free/Combined	

n.d.: not detected
potato, asparagus or spinachs, GABA contents are above 1 mg g⁻¹. In animals, GABA was found at significantly high levels in the brain and central nervous system and some specific peripheral tissues like the pancreas, female reproductive tissues and retina. In the other peripheral tissues, GABA was also present in less abundant levels in the range of μg g⁻¹.

GABA is an important molecule naturally present in considerable amounts in many feed and food matrices from vegetable and animal origin. A healthy diet based on plant products (cereals, vegetables and fruits) following the WHO food-based dietary guidelines (FBGD, adapted to different countries and graphically represented in several food guide pyramids) or/and the Healthy Eating Plate,⁶ will provide a considerable amount of GABA as a natural nutrient. Additionally, considering its potential health benefits, many efforts are being allocated to developed new technological processes for GABA enhancement in traditional foodstuff or avoiding losses after processing treatments. Of particular relevance is the use of microorganisms such as yeast fungi or lactic acid bacteria with the ability of producing GABA within the food matrix. GABA research has been intensified in recent years in parallel with the interest of the food industry in its roles as a health-related compound. The increased tendency of consumers to support functional food will contribute to maintain this research into GABA and its physiological roles.

Funding
The authors received no direct funding for this research.

Competing interests
The authors declare no competing interests.

Author details
Roberto Ramos-Ruiz¹
E-mail: desarrollo@servalesa.com
Emmanuel Poirot²
E-mail: emmanuel.poirot@agrexis.com
Maria Flores-Mosquera²
E-mail: maria.floresmosquera@agrexis.com
¹ Servalesa S.L., Puerto de Sagunto, Valencia, Spain.
² Agrexis AG, Basel, Switzerland.

Citation information
Cite this article as: GABA, a non-protein amino acid ubiquitous in food matrices, Roberto Ramos-Ruiz, Emmanuel Poirot & Maria Flores-Mosquera, Cogent Food & Agriculture (2018), 4: 1534323.

Notes
1. In Europe and the United States, GABA is considered a “food constituent” and a “dietary supplement,” respectively. In China, GABA is listed in the Chinese Pharmacopoeia [National Drug Standards, Drug Standards No W5-10,001-(HD-0871)-2002].
2. Replacing Annex I to Regulation(EC) No 396/2005 of the European Parliament of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin.
3. Excluding brassica roots and brassica baby leaf crops.
4. Harvard Health Publishing and Harvard School of Public Health.

References
Abdou Adham, M., Higashiguchi, S., Horie, K., Mujo Kim, H. H., & Yokogoshi, H. (2008). Relaxation and immunity enhancement effects of γ-Aminobutyric acid (GABA) administration in humans. Biofactors, 26(3), 201–208. doi:10.1002/biof.5520260305
Abe, T., & Tokeya, K. (2005). Difference in gamma-aminobutyric acid content in vegetable soybean seeds. Journal of the Japanese Society for Food Science and Technology, 52(11), 545–549.
Abellan, A., Coyuela, J. M., Pino, A., Martinez-Cacha, A., Salazar, E., & Tejada, L. (2012). Free amino acid content of goat’s milk cheese made with animal rennet and plant coagulant. Journal of the Science of Food and Agriculture, 92(8), 1657–1664. doi:10.1002/jsfa.5528
Aburawi, S. M., Elhwuegi, A. S., Ahmed, S. S., Soaad, S. F., & Attia, A. S. (2003). Behavioral effects of acute and chronic triazolam treatments in albino rats. Life Sciences, 73(24), 3095–3107. doi:10.1016/S0024-3205(03)00612-X
Acosta, G. B. (1998). Administration of cholecytokinin sulphated octapeptide (CKK-8S) induces changes on rat amino acid tissue levels and on a behavioral test for anxiety. General Pharmacology: The Vascular System, 31(4), 637–641. doi:10.1016/S0024-3623(98)00075-5
Ahn, J. (2016). Amino acid, amino acid metabolite, and GABA content of three domestic tomato varieties. Culinary Science & Hospitality Research, 22(6), 71–77. doi:10.20878/cshr.2016.22.6.007
Ahn, J., & Kim. (2016). Analysis of free amino acids and polyphenol compounds from lycopeno variety of cherry tomatoes. Culinary Science & Hospitality Research, 20(3), 37–49.
Akiiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., Aoki, K.,… Ezura, H. (2008). Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant & Cell Physiology, 49, 1378–1389.
Alam, S., Karim, M. H., Chakrabortty, A., Amin, R., & Hasan, S. (2016). Nutritional characterization of the long-whiskered catfish sperata aor: A commercially important freshwater fish of Bangladesh. International Journal of Food Science and Nutrition Engineering, 6, 1–8. doi:10.5923/j.food.20160601.01
Amelung, W., Zhang, X., & Flach, K. W. (2006). Amino acids in grassland soils: Climatic effects on concentrations and chirality. Geoderma, 130(3), 207–217. doi:10.1016/j.geoderma.2005.01.017
An, M. K., Ahn, J. B., Lee, S. H., & Lee, K. G. (2010). Analysis of γ-amino- butyric acid (GABA) content in germinated pigmented rice. Korean Journal of Food Science and Technology, 42, 632–636.
Anan, T., Ito, H., & Monma, S. (1996). Chemical contents in fruits of transgenic tomato carrying the TMV coat protein gene, nontransgenic tomato, and other...
aminobutyric acid levels of sesame (Sesamum indicum L.). Acta Physiologica Plantarum, 31(3), 655–659. doi:10.1007/s11378-008-0255-2

Bouche, N., Fait, A., Bouchez, D., Roller, S. G., & Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6843–6848. doi:10.1073/pnas.1037532100

Bouche, N., Fait, A., Zik, M., & Fromm, H. (2004). The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Molecular Biology, 55(3), 315–325. doi:10.1007/s11103-004-0650-z

Bouche, N., Lacombe, B., & Fromm, H. (2003). GABA signaling: A conserved and ubiquitous mechanism. Trends in Cell Biology, 13(12), 607–610. doi:10.1016/j.tcb.2003.10.001

Bouloumapi, E., Souffleros, E. H., Tsarchopoulos, C., & Bilioderis, C. G. (2002). Primary amino acid composition and its use in discrimination of Greek red wines with regard to variety and cultivation region. Vitis, 41(4), 195–202.

Bouseta, A., Scheirman, V., & Collin, S. (1996). Flavor and free amino acid composition of lavender and eucalyptus honeys. Journal of Food Science, 61(4), 683–687. doi:10.1111/j.1750-3841.2011.tb12181.x

Bown, A. W., MacGregor, K. B., & Shelp, B. J. (2008). Gamma-aminobutyrate: Defense against invertebrate pests? Trends in Plant Science, 11(9), 424–427. doi:10.1016/j.tplants.2006.07.002

Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not just a metabolite. Trends in Plant Science, 21(10), 811–813. doi:10.1016/j.tplants.2016.08.001

Bown, A. W., & Shelp, B. J. (1997). The metabolism and functions of γ-aminobutyric acid. Plant Physiology, 115(1), 1.

Bremner, J. M. (1950). The amino-acid composition of the protein material in soil. Biochemical Journal, 47(5), 538–542.

Butler, G. W., & Bathurst, N. O. (1958). Free and bound amino acids in legume root nodules: Bound 7-aminobutyric acid in the genus trifolium. Australian Journal of Biological Sciences, 11(4), 529–537.

Bytof, G., Knopp, S. E., Schieberle, P., Teutsch, L., & Selmar, D. (2008). Influence of processing on the generation of gamma-aminobutyric acid in green coffee beans. European Food Research and Technology, 220(3–4), 245–250. doi:10.1007/s00217-004-1013-2

Caceres, P. J., Martinez-Villaluenga, C., Amigo, L., & Frias, J. (2016). Maximising the phytochemical and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chemistry, 152, 407–414. doi:10.1016/j.foodchem.2013.11.156

Caceres, P. J., Penas, E., Martinez-Villaluenga, C., Amigo, L., & Frias, J. (2017). Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. Journal of Cereal Science, 73, 1–9. doi:10.1016/j.jcs.2016.11.001

Cai, S., Gao, F., Zhang, X., Wang, O., Wu, W., Zhu, S., … Ji, B. (2014). Evaluation of gamma-aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. Journal of Food Science and Technology, 51(10), 2544–2551. doi:10.1007/s13197-012-0748-2

Calam, D. H., & Waley, S. G. (1964). Amino acids and related compounds in the lens. Biochemical Journal, 93(3), 526.

Callejón, R. M., Tesfaye, W., Torija, M. J., Mas, A., Troncoso, A. M., & Morales, M. L. (2008). HPLC determination of amino acids with AQC derivatization in vignes along submerged and surface acetifications and its relationship with the microbiota. European Food Research and Technology, 227(1), 93–102. doi:10.1007/s00217-007-0697-6

Camargos, L. S., Aguilar, L. F., Souza, L. A., Justino, G. C., & Azevedo, R. A. (2015). Changes in soluble amino acid composition during Canavalia ensiformis development: Responses to nitrogen deficiency. Theoretical and Experimental Plant Physiology, 27(2), 109–117. doi:10.1016/j.sfe.2015-01-0037-3

Cao, S., Cai, Y., Yang, Z., & Zheng, Y. (2012). MeJA induces chilling tolerance in loquat fruit by regulating proline and gamma-aminobutyric acid contents. Food Chemistry, 133(4), 1466–1470. doi:10.1016/j.foodchem.2012.02.035

Cao, Y., Duan, J., Guo, J., Guo, S., & Zhao, J. (2014). Rapid determination of nucleosides, nucleobases and free amino acids in brown seaweeds using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Journal of Applied Phycology, 26(1), 675–686. doi:10.1007/s10811-013-0079-3

Cao, Y., Jia, F., Han, Y., Liu, Y., & Zhang, Q. (2015). Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method. Journal of Food Science and Technology-Mysore, 52(10), 6599–6606. doi:10.1007/s40626-015-0037-3

Carluvila, D. M., Moreno-Arribas, V., Fanoli, S., & Cifuentes, A. (2006). Chiral MEKC-LIF of amino acids in foods: Analysis of vinegars. Electrophoresis, 27(13), 2551–2557. doi:10.1002/elps.200500909

Carratu, B., Boniglio, C., Giammarioli, S., Mosca, M., & Sazinini, E. (2008). Free amino acids in botanicals and botanical preparations. Journal of Food Science, 73(5), C233–C238. doi:10.1111/j.1750-3841.2008.00767.x

Carvalho, E. P., Nimai Punyasiri, A., Sudarshanomsari, H. P. P., Sarath, I., Abeyesinghe, B., & Martens, S. (2014). Quantification of gamma-aminobutyric acid in sri lanka tea by means of ultra performance tandem mass spectrometry. Natural Products Communications, 9(4), 525–528.

Cattabeni, F., Moggi, A., Monduzzi, M., De Angelis, L., & Raccanelli, G. (1978). Circadian fluctuations in rat hypothalamus. Journal of Neurochemistry, 31(2), 565–567. doi:10.1111/j.1471-4159.1978.tb02676.x

Cerrillo, I., Fernandez-Pachon, M. S., Collado-Gonzalez, J., Escudero-Lopez, B., Berna, G., Herrero-Martin, G., … Gil-Izquierdo, A. (2015). Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice. Plant Foods for Human Nutrition, 70(2), 153–159. doi:10.1007/s11130-015-0472-y

Chalorachanoying, W., Lomthaisong, K., Surivankam, B., & Lertrat, K. (2017). Germination process increases phytochemicals in corn. International Food Research Journal, 24(2), 552–558.

Chang, V. H.-S., Chiu, T.-H., & Fu, S.-C. (2015). In vitro anti-inflammatory properties of fermented pepino (Solanum muricatum) milk by γ-aminobutyric acid-producing Lactobacillus brevis and an in vivo animal model for evaluating its effects on hypertension. Journal of the Science of Food and Agriculture, 96(1), 192–198. doi:10.1002/jsfa.7081

Chapman, R. W., Hey, J. A., Rizzo, C. A., & Bolser, D. C. (1993). GABA(B) receptors in the lung. Trends in Pharmacological Sciences, 14, 26–29.
Chebib, M., & Johnston, G. A. (1999). The ‘ABC’ of GABA receptors: A brief review. Clinical and Experimental Pharmacology & Physiology, 26(11), 917–940.

Cheevisapan, E., & Noomhorm, A. (2011). Effects of par-boiling and fluidized bed drying on the physico-chemical properties of germinated brown rice. International Journal of Food Science & Technology, 46(12), 2498–2504. doi:10.1111/j.1365-2621.2011.02773.x

Chen, C., & Chen, F. (2009). Study on the conditions to brew rice vinegar with high content of gamma-aminobutyric acid by response surface methodology. Food and Bioproducts Processing, 87(4C), 334–340. doi:10.1016/j.fbp.2009.03.003

Chen, G.-W., Tsai, J.-S., & Pan, B. S. (2007). Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. International Dairy Journal, 17(6), 641–647. doi:10.1016/j.idairyj.2006.07.004

Chen, S.-Y., Kung-Jui, H., Hsieh, Y.-J., Wang, L.-T., & Mau, J.-L. (2012). Contents of lovastatin, gamma-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT- Food Science and Technology, 47(2), 274–278. doi:10.1016/j.lwt.2012.01.019

Chen, Z., Jin, W., Baker, G. B., Parent, M., & Dovichi, N. J. (2001). Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. Journal of Chromatography A, 914(1), 293–298. doi:10.1016/S0021-9673(01)00539-8

Chiang, P. D., Yen, C. T., & Mau, J. L. (2006). Non-volatile taste components of canned mushrooms. Food Chemistry, 97(3), 431–437. doi:10.1016/j.foodchem.2005.05.021

Chien, R.-C., Ulziijargal, E., & Mau, J.-L. (2016). Quality of bread supplemented with antrodia salmoneo-fermented grains. Food Technology and Biotechnology, 54(2), 180–188. doi:10.17113/ftb.54.02.16.4336

Chincici, F., Duran-Guerrero, E., & Riponi, C. (2016). Discrimination of some European vinegars with protected denomination of origin as a function of their chemical properties. Journal of the Science of Food and Agriculture, 96(11), 3762–3771. doi:10.1002/jfsa.7566

Cho, D.-H., & Lim, S.-T. (2016). Germinated brown rice and its bio-functional compounds. Food Chemistry, 196, 259–271. doi:10.1016/j.foodchem.2015.09.025

Cho, E., Piao, X. L., Jiang, M. H., Baek, S. H., Kim, H. Y., Kang, K. S., … Park, J. H. (2008). The effect of steaming on the free amino acid contents and antioxidant activity of Panax ginseng. Food Chemistry, 107(2), 876–882. doi:10.1016/j.foodchem.2007.08.007

Cho, H. D., Park, U. D., Park, Y. K., & Kim, U. S. (2004). Effect of pretreatment conditions on γ-aminobutyric acid content of brown rice and germinated brown rice. Korean Journal of Food Science and Technology, 36, 734–761.

Choi, I.-D., Kim, D.-S., Son, J.-R., Yang, C.-I., Chun, J.-Y., & Kim, K.-J. (2006). Physico-chemical Properties of Giant Embryo Brown Rice (Keunnumbyeon). Hangug Nonghwahag Hoeji, 49, 95–100.

Choi, S. I., Ju, E.-W., Lee, P. S., Lee, M. Y., Ji, G. E., Park, M. S., & Heo, T. R. (2006). Improvement of γ-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. Journal of Microbiology and Biotechnology, 16, 562–568.

Choi, S. H., Kim, D.-S., Kozukue, N., Kim, H.-J., Nishitani, Y., Mosashi, M., … Friedman, M. (2014). Protein, free amino acid, phenolic, betacarotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. Journal of Food Composition and Analysis, 34 (2), 115–127. doi:10.1016/j.jfca.2014.03.005

Choi, S.-H., Kozukue, N., Kim, H.-J., & Friedman, M. (2016). Analysis of protein amino acids, non-protein amino acids and metabolites, dietary protein, glucose, fructose, sucrose, phenolic, and flavoronoid content and antioxidative and anticancer properties of potato tubers, peels, and cortexes (pups). Journal of Food Composition and Analysis, 50, 77–87. doi:10.1016/j.jfca.2016.05.011

Choi, S. W., Kim, E. O., Lee, Y. J., Leem, H. H., Seo, I. H., Yu, M. H., & Kang, D. H. (2010). Comparison of nutritional and functional constituents, and physicochemical characteristics of mulberries from seven different morus alba L. cultivars. Journal of the Korean Society of Food Science and Nutrition, 39(10), 1467–1475. doi:10.3746/jksfn.2010.39.10.1467

Cholewa, E., Bown, A. W., Cholewinski, A. J., Shelp, B. J., & Sneddon, V. (2019). Cold-shock-stimulated γ-aminobutyric acid synthesis is mediated by an increase in cytosolic Ca2+, not by an increase in cytosolic H+. Canadian Journal of Botany, 75(3), 375–382. doi:10.1139/b97-040

Clarke, G., O’Malhony, S., Malone, G., & Dinan, T. G. (2007). An isocratic high performance liquid chromatography method for the determination of GABA and glutamate in discrete regions of the rodent brain. Journal of Neuroscience Methods, 160 (2), 223–230. doi:10.1016/j.jneumeth.2006.09.006

Clausen, M. R., Bach, V., Edelenbos, M., & Bertram, H. C. (2012). Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers. Journal of Agricultural and Food Chemistry, 60(37), 9495–9501. doi:10.1021/jf302067m

Clements, R. L., & Leland, H. V. (1962). Ion-exchange study of free amino acids in juices of 6 varieties of citrus. Journal of Food Science, 27(1), 20. doi:11.1311/j.1365-2621.1962.tb00051.x

Coda, R., Rizzello, C. G., & Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiology, 137(2), 236–245. doi:10.1016/j.ijfoodmicro.2009.12.010

Cohen, A. I., McDaniel, M., & Orr, H. (1973). Absolute levels of some free amino acids in normal and biologically fractionated retinas. Investigative Ophthalmology, 12 (9), 686–693.

Cohen, N., Cohen, J., Assatian, M. D., Varshney, V. K., Hui-Tzu, Y., Yi-Chi, Y., … Wasser, S. P. (2014). Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher basidiomycetes mushrooms. International Journal of Medicinal Mushrooms, 16(3), 273–291.

Collado, J., Pérez, Z. C., Medina, S., Mellisho, C. D., Hernández, P. R., Galindo, A., … Gil-Izquierdo, A. (2016). Effects of water deficit during maturation on amino acids and jubilee fruit eating quality. Macedonian Journal of Chemistry and Chemical Engineering, 31, 105–119. doi:10.20450/mjcc.2014.375

Collar, C., Mascaro, A. F., Prieto, J. A., & Debarber, C. B. (1991). Changes in free amino-acids during...
fermentation of wheat doughs started with pure culture of lactic-acid bacteria. Cereal Chemistry, 68 (1), 66–72.

Corsaro, C., Mallamoce, D., Vasi, S., Ferrantelli, V., Dugo, G., & Cicero, N. (2015). 1H HR-MAS NMR spectroscopy and the metabolite determination of typical foods in mediterranean diet. Journal of Analytical Methods in Chemistry. Article ID 175696. doi:10.1155/2015/175696

Crawford, L. A., Bown, A. W., Breitkreuz, K. E., & Guinel, F. C. (1994). The synthesis of [γ-amino]-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiology, 104(3), 865–871.

Cremer, J. E. (1970). Selective inhibition of glucose oxidation by trihexyphenidyl in rat brain in vivo. Biochemical Journal, 119(1), 95–102.

Cui, S. S., Li, Z. Y., Li, Y. P., Lin, W. S., & Yu, S. L. (2011). Amino acid composition of feizixiao litchi juice from different geographic origins. Food Science, 269, 273.

Culea, M., Scrib, S., Suvar, S., Podea, P., Has, I., & Muste, S. (2015). Determination of amino acids in corn seed by gas chromatography-mass spectrometry. Analytical Letters, 48(1), 37–46. doi:10.1080/00032719.2014.930869

Dai, S. F., Gao, F., Zhang, W. H., Song, S. X., Xu, X. L., & Cui, S. S., Hu, Z. Y., Yu, K., Li, Y. P., Lin, W. S., & Yu, S. L. (1994). Nitrate assimilation in chicory roots (Cichorium intybus L.) which acquire radial growth. Journal of Experimental Botany, 51(344), 539–546.

Drummond, R. J., & Phillips, A. T. (1974). L-Glutamic acid decarboxylase in non-neural tissues of the mouse. Journal of Neurochemistry, 23(6), 1207–1213. doi:10.1111/j.1471-4159.1974.tb12219.x

Durham, D. G. (1973). Distribution of free amino acids in human intracranial fluids. Transactions of the American Ophthalmological Society, 68, 462–500.

Erbe, T., & Brückner, H. (1998). Chiral amino acid analysis of vinegars using gas chromatography – Selected ion monitoring mass spectrometry. European Food Research and Technology, 207(5), 400–409. doi:10.1007/s002170050352

Erdö, S. L. (1984). Identification of gaba receptor binding sites in rat and rabbit uterus. Biochemical and Biophysical Research Communications, 125(1), 18–24. doi:10.1016/S0006-291X(83)90327-7

Erdö, S. L., László, Á., Szporny, L., & Zsolnai, B. (1983). High density of specific GABA binding sites in the human ovary. Journal of Neurochemistry, 42(5), 1464–1467. doi:10.1111/j.1471-4159.1984.tb02810.x

Erdö, S. L. (1992). Non-neuronal GABA systems: An overview. In S. L. Erdö (Ed.), GABA shunt in plants. Berlin, Heidelberg: Springer Berlin Heidelberg.

Erdö, S. L., Rosdy, B., & Szporny, L. (1982). Higher GABA levels in the human fallopian tube than in brain of the rat. Journal of Neuroscience, 28(4), 1174–1176. doi:10.1111/j.1471-4159.1982.tb05368.x

Fait, A., Fromm, H., Walter, D., Galli, G., & Fernie, A. R. (2008). Highway or byway: The metabolic role of the GABA shunt in plants. Trends in Plant Science, 13(1), 14–19. doi:10.1016/j.tplants.2007.10.005

Fait, A., Yelin, A., & Fromm, H. (2003). GABA and GHB neurotransmitters in plants and animals. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 171–185). Berlin, Heidelberg: Springer Berlin Heidelberg.

Fon, T. W. M., Higashi, R. M., Lane, A. N., & Jardetzky, O. (1986). Combined use of 1H-NMR and GC-MS for metabolite monitoring and in vivo 1H-NMR assignments. Biochimica et Biophysica Acta, 882(2), 154–167. doi:10.1016/0304-4167(86)90150-9
Ferkony, J. W., Smith, L. A., Seifert, W. E., Caprioli, R. M., & Enna, S. J. (1978). Measurement of gamma-aminobutyric acid (GABA) in blood. Life Sciences, 22(21), 2121–2128. doi:10.1016/0024-3205(78)90456-3

Filippo, D., Patrizia, D. P., Riccardi, C., Bularelli, F., Gallo, V., & Quarante, A. (2014). Free and combined amino acids in size-segregated atmospheric aerosol samples. Atmospheric Environment, 98, 179–189. doi:10.1016/j.atmosenv.2014.08.069

Fougère, F., Le Rudulier, D., & Streeter, J. G. (1991). Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, 96(4), 1228–1236.

Franco, I., Prieto, B., Bernardo, A., Prieto, J. G., & Carballo, J. (2003). Biochemical changes throughout the ripening of a traditional Spanish goat cheese variety (Ibiza-Laciana). International Dairy Journal, 13(2), 221–230. doi:10.1016/S0960-9488(02)00154-1

Frank, T., Reichardt, B., Shu, Q., & Engel, K.-H. (2012). Metabolite profiling of colored rice (Oryza sativa L.) grains. Journal of Cereal Science, 55(2), 112–119. doi:10.1016/j.jcs.2011.09.009

Friedel, J. K., & Scheller, E. (2002). Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biology & Biochemistry, 34(3), 315–325. doi:10.1016/S0038-0717(01)00185-7

Gabriel, R., Holasy, F., Keke, E., Eckert, M., & Benedekczy, I. (1990). Distribution of gaba-like immunoreactivity in myenteric plexus of carp, frog and chicken. Histochernistry, 94(3), 323–328.

Gallo, G., Townsend, E., Yim, P., Virag, L., Zhang, Y., Xu, D., ... Emala, C. W. (2013). Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone. American Journal of Physiology. Lung Cellular and Molecular Physiology, 304(3), L191–L197.

Galvez Rojas, R. L., Aih, L-Y., Sudrez Mantilla, B., Sant’Anna, C., Furusho Pral, E. M., & Mariano, S. A. (2015). The uptake of GABA in Trypanosoma cruzi. Journal of Eukaryotic Microbiology, 62(5), 629–636. doi:10.1111/jeu.12219

Gambao-Santos, J., Soria, A. C., Corzo-Martinez, M., Villamini, M., & Montilla, A. (2012). Effect of storage on quality of industrially dehydrated onion, garlic, potato and carrot. Journal of Food and Nutrition Research, 51(1), 132–144.

Garcia-Palmer, F. J., Serra, N., Palou, A., & Gianotti, M. (1997). Free amino acids as indices of Mahón cheese ripening. Journal of Dairy Science, 80(9), 1908–1917. doi:10.3168/jds.s0022-0302(97)76131-9

Garde-Cerdán, T., Portu, J., López, R., & Santamaría, P. (2015). Effect of methyl Jasmonate application to grapevine leaves on grape amino acid content. Food Chemistry, 203, 536–539. doi:10.1016/j.foodchem.2016.02.049

Geigerseder, C., Doepner, R., Thalhammer, A., Frunieri, M. B., Gamel-Didelon, K., Calandra, R. S., ... Mayerhofer, A. (2003). Evidence for a GABAergic system in rodent and human testis: Local GABA production and GABA receptors. Neuroendocrinology, 77(5), 314–323. doi:10.1159/000070897

Gerber, J. C., & Hare, T. A. (1980). GABA in peripheral tissues: Presence and actions in endocrine pancreatic function. Brain Research Bulletin, 5, 341–346. doi:10.1016/0361-9230(80)90055-6

Gillham, M., & Tyerman, S. (2001). Linking metabolism to membrane signaling: The GABA-molate connection. Trends in Plant Science, 21(4), 295–301. doi:10.1016/j.tplants.2015.11.011

Goddard, A. W., Mason, G. F., Alnai, A., Rothman, D. L., Behar, K. L., Petroff, O. A., Charney, D. S., & Krystal, J. H. (2001). Reductions in occipital cortex gaba levels in panic disorder detected with 1H-magnetic resonance spectroscopy. Archives of General Psychiatry, 58(6), 556–561. doi:10.1001/archpsyc.58.6.556

Golan-Goldhirsh, A., Hogg, A. M., & Wolfe, F. H. (1982). Gas chromatographic analysis of the free amino acid pool of the potato and gas chromatography-mass spectrometry identification of gamma-aminobutyric acid and ornithine. Journal of Agricultural and Food Chemistry, 30(2), 320–323. doi:10.1021/jf01000026

Goodyer, P. R., Mills, M., & Scriver, C. R. (1982). Properties of γ-aminobutyric acid synthesis by rat renal cortex. Biochimica et Biophysica Acta, 716(3), 348–357. doi:10.1016/0006-4165(82)90027-7

Goutx, M. G., Stuart, W., Lee, C., Dufois, M., Guigue, C., Liu, Z., ... Xue, H. (1997). Composition and degradation of marine particles with different settling velocities in the northwestern mediterranean sea. Limnology and Oceanography, 52(4), 1645–1664. doi:10.4319/lo.2007.52.4.1645

Graham, L. T., Baxter, C. F., & Lalley, R. N. (1979). In vivo influence of light or darkness on the GABA system in the retina of the frog (Rana pipiens). Brain Research, 203(1), 379–388. doi:10.1016/0006-8993(79)90168-X

Guitart, A., Hernandez-Orte, P., & Cocho, J. (1997). Effects of maceration on the amino acid content of Chardonnay musts and wines. Vitis, 36(1), 43–47.

Guz, Y., Yang, R., Chen, H., Song, Y., & Zhenxin, G. (2012). Accumulation of γ-aminobutyric acid in germinated soybean (Glycine max L.) in relation to glutamate decarboxylase and dopamine oxidase activity induced by additives under hypoxia. European Food Research and Technology, 234(4), 679–687. doi:10.1007/s00217-012-1678-y

Gupta, L. P., & Kawahata, H. (2003a). Vertical and latitudinal variations in amino acid fluxes and compositions of settling particles along 175°E in the North Pacific Ocean. Tellus B: Chemical and Physical Meteorology, 55(2), 445–455. doi:10.3402/tellusb.v55i2.16758

Gupta, L. P., & Kawahata, H. (2003b). Amino acids and hexosamines in the Hess rise core during the past 220,000 years. Quaternary Research, 60(3), 394–403. doi:10.1016/j.yqres.2003.07.012

Haber, B., Kurijama, K., & Roberts, E. (1970). An anion stimulated L-glutamic acid decarboxylase in non-neural tissues: Occurrence and subcellular localization in mouse kidney and developing chick embryo brain. Biochemical Pharmacology, 19, 1119–1136. doi:10.1016/0006-2952(70)90373-4

Hogwara, H., Seki, T., & Ariga, T. (2004). The effect of p-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Bioscience, Biotechnology, and Biochemistry, 68(2), 444–447.

Ham, T.-H., Chu, S.-H., Han, S. J., & Ryu, S.-N. (2012). γ-Aminobutyric acid metabolism in plant under environmental stresses. Hanuk Jakmol Hakhoe Chi, 57(2), 144–150.

Hamel, E., Krause, D. N., & Roberts, E. (1981). Specific cerebrovascular localization of glutamate decarboxylase activity. Brain Research, 223(1), 199–204. doi:10.1016/0006-8993(81)90824-6

Honda, N., Nakatsuka, T., Fukushima, M., Hattori, H., & Hoshimi, T. (1993). Vertical fluxes and ecological significance of organic materials during the phytoplankton bloom during autumnal bloom in breid bay, Antarctica. Marine Biology, 112(3), 465–478. doi:10.1007/BF00356292
Hansen, M. E., Sorensen, H., & Cantwell, M. (2001). Changes in acetaldehyde, ethanol and amino acid concentrations in broccoli florets during air and controlled atmosphere storage. Postharvest Biology and Technology, 22(3), 223–243. doi:10.1016/S0925-5214(01)00009-x

Hare, T. A., & Bala Manyam, N. V. (1980). Rapid and sensitive ion-exchange fluorometric measurement of γ-aminobutyric acid in physiological fluids. Analytical Biochemistry, 101(2), 349–355. doi:10.1016/0003-2697(80)90199-2

Harvey, B. H., Jonker, L. P., Brand, L., Heenop, M., & Stein, D. J. (2002). NMDA receptor involvement in imipramine withdrawal-associated effects on swim stress, GABA levels and NMDA receptor binding in rat hippocampus. Life Sciences, 71(1), 43–54. doi:10.1016/S0024-3205(02)01561-8

Hatmi, S., Graauw, C., Tretol-Aziz, P., Villaume, S., Rabenelouin, F., Baillieux, F., … Aziz, A. (2015). Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea. Journal of Experimental Botany, 66(3), 775–787. doi:10.1093/jxb/eru436

Häusler, R. E., Ludewig, F., & Krueger, S. (1980). Molecular biology of insect neuronal GABA receptors. Trends in Neurosciences, 20(2), 578–583. doi:10.1016/S0165-2845(96)01213-2

Horiuchi, T., Tahara, Y., Ishibashi, J.-I., Murumo, K., Urabe, T., & Kobayashi, K. (2004). Amino acids in water samples from deep sea hydrothermal vents at suyio seamount, Izu-Bonin arc, Pacific Ocean. Organic Geochemistry, 35(10), 1121–1128. doi:10.1016/j.orggeochem.2004.06.006

Horrie, H., Anderegg, A., & Saito, T. (2013). The contents of gamma-aminobutyric acid in eggplant and its accumulation with heat treatment. Journal of the Japanese Society for Food Science and Technology, 60(11), 661–664.

Hruschka, T., Detke, R., Köhn, D. J. (2002). NMDA receptor involvement in imipramine withdrawal-associated effects on swim stress, GABA levels and NMDA receptor binding in rat hippocampus. Life Sciences, 71(1), 43–54. doi:10.1016/S0024-3205(02)01561-8

Hrubec, R., & Engelhardt, U. H. (2013). Determination of gamma-aminobutyric acid in physiological fluids. Analytical Biochemistry, 101(2), 349–355. doi:10.1016/0003-2697(80)90199-2

Hübner, R., & Heinämaa, A. A., Muhonen, A. S. H., & Piha, R. S. (1986). Determination of gamma-aminobutyric acid on growth performance and serum parameters in 22 to 42-day-old broilers exposed to hot environment. Animal Physiology and Animal Nutrition, 100(2), 361–370. doi:10.1111/j.1365-2052.2013.06470.x

Hulme, A. C., & Arthington, W. (1950). γ-Amino-butyric acid and β-alanine in plant tissues: Amino-acids of...
the apple fruit. Nature, 165, 716. doi:10.1038/1657160

Iida, F., Miyazaki, Y., Tsuyuki, R., Kato, K., Egusa, A., Ogoshi, H., & Nishimura, T. (2018). Changes in taste compounds, breaking properties, and sensory attributes during dry aging of beef from Japanese black cattle. Meat Science, 112, 46–51. doi:10.1016/j.meatsci.2015.10.015

Inaba, A., Yamamoto, T., Ito, T., & Nakamura, R. (1980). Changes in the concentrations of free amino acids and soluble nucleotides in attached and detached tomato fruits during ripening. Engel Gakkai Zasshi, 49 (3), 435–461. doi:10.2503/jshs.49.435

Ishikawa, A., Oka, H., Hiemori, M., Yamashita, H., Kimoto, M., Kawasaki, H., & Tsuji, H. (2009). Development of a method for the determination of gamma-amino-butyric acid in foods. Journal of Nutritional Science and Vitaminology, 55, (3), 292–295.

Ji, Y., & Kitada, Y. (2001). Availability of partially milled rice as a daily source of γ-amino-butyric acid. Food Science and Technology Research, 13(1), 41-44. doi:10.3136/fsr.13.41

Joarma, M. (1969). Comparison of chemical changes in potato tubers induced by gamma-irradiation and by chemical treatment. Acta Chemica Scandinavica, 23, 3435-3442. doi:10.3891/acta.chem.scand.23-3435

Jannoo, P., Niamsup, H., Lumyong, S., Suziki, T., Katayama, Y., & Chairate, G. (2010). Comparison of gamma-amino-butyric acid production in Thai rice grains. World Journal of Microbiology & Biotechnology, 26(2), 257–263. doi:10.1007/s11274-009-0168-2

Jeng, K.-C., Chen, C.-S., Fong, Y.-P., Chien-Wei Hou, R., & Jannoey, P., Niamsup, H., Lumyong, S., Suzuki, T., Iwaki, K., & Kitada, Y. (2001). Analysis of γ-aminobutyric acid in tall fescue herbage. Journal of Agricultural and Food Chemistry, 49(3), 129–134. doi:10.1021/jf000128h

Iwasaki, K., & Ittekkot, V., Deuser, W. G., & Degens, E. T. (1978). Amino-acids in the vertebrate peripheral nervous system. Journal of Nutritional Science and Vitaminology, 24(3), 257–263. doi:10.3136/jsk.24.257

Jung, Y.-S., Park, S. J., Park, J.-H., Jhee, K.-H., Lee, I.-S., & Yang, S.-A. (2012). Effects of ethanol extracts from zingiber officinale rosc., Curcuma longa L., and Curcuma aromatica Salisb. on Acetylicholinesterase and Antioxidant Activities as well as GABA Contents. Journal of the Korean Society of Food Science and Nutrition, 41(10), 1395–1401. doi:10.3746/jkfn.2012.41.10.1395

Kader, A. A., Stevens, M. A., Albright, M., & Morris, L. L. (1978). Amino acid composition and flavor of fresh market tomatoes as influenced by fruit ripeness when harvested. Journal of the American Society for Horticultural Science, 103(4), 541–544.

Kagan, I. A., Cao, B. L., Smith, L. L., Cheng-Jun, H., Daugherty, C. T., & Stickland, J. R. (2008). A validated method for gas chromatographic analysis of gamma-amino-butyric acid in tall fescue herbage. Journal of Agricultural and Food Chemistry, 56(14), 5538–5543. doi:10.1021/jf8000229

Kantachote, D., Ratanaburee, A., Sukhoon, A., Sumpradit, T., & Asavarungpipop, N. (2016). Use of γ-amino-butyric acid producing lactic acid bacteria as starters to reduce biogenic amines and cholesterol in Thai fermented pork sausage (Nham) and their distribution during fermentation. LWT - Food Science and Technology, 70, 171–177. doi:10.1016/j.lwt.2016.02.041

Karlurie, D., & Suriyong, S. (2012). γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination. Science Asia, 38(1), 13–17. doi:10.2306/sciencesia1513-1874.2012.38.013

Kato, R., Hayashi, S., Kobayashi, T., Takahashi, H., Kimura, N., Takahashi, A., … Matsuoka, H. (2015). Behavior analysis of gamma-amino-butyrate and glutamate decarboxylase activity in salted radish roots (Takuan-zuke). Journal of Japanese Society for Food Science and Technology, 62(10), 492–500. doi:10.3136/nnkk.62.492

Katsuno, N., Sakamoto, C., Yabe, T., Yamauchi, R., Nishizu, T., & Kato, K. (2015). Methods for enrichment of gamma-amino-butyric acid in sesame seeds. Food Science and Technology Research, 21(6), 787–791. doi:10.3136/fsr.21.787

Kawahata, H., & Ishizuka, T. (1993). Amino-acids in the sediments and interstitial waters from odp hole-677b and hole-678b in the panama basin. Oceanologica Acta, 16(4), 373–379.

Kazimierczak, R., Hallmann, E., Lipowski, J., Drela, N., Kowalik, A., Püssa, T., … Ewa, R. (2014). Effect of microbial fermentation on the vitamin and mineral composition of mungbean (Vigna radiata L. var. angularis) grown under different fertiliser levels. Engei Gakkai Zasshi, 55(4), 5538-5543. doi:10.2503/jjshs.49.5538

Kelly, M. T., Blaise, A., & Laroque, M. (2010). Rapid automated high performance liquid chromatography method for simultaneous determination of amino acids and biogenic amines in wine, fruit and honey. Journal of Chromatography A, 1217(47), 7395–7392. doi:10.1016/j.chroma.2010.09.040

Khang, D. T., Vasiljevic, T., & Xuan, T. D. (2003). Liquid chromatographic determination of γ-amino-butyric acid in cerebrospinal fluid using 2-hydroxynaphthaldehyde as derivatization reagent. Journal Chromatography B, 798(2), 413–418. doi:10.1016/S1570-0232(03)00682-X

Khwanich, P., Chinpunrath, N., Pichyangkura, R., & Chaiwanichsiri, S. (2014). Gamma-amino-butyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (Oryza sativa L.): Effect of rice
cultivars. Food Science and Biotechnology, 23(2), 373–379. doi:10.1007/s10068-014-0052-1

Kihara, M., Okada, Y., Iimure, T., & Ito, K. (2007). Accumulation and degradation of two functional constituents, GABA and beta-glucan, and their varietal differences in germinated barley grains. Breeding Science, 57(2), 85–89. doi:10.1270/jsbbs.57.85

Kim, H. Y., Hwang, I. G., Kim, T. M., Wood, K. S., Park, D. S., Kim, J. H., … Jeong, H. S. (2012). Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry, 134(1), 288–293. doi:10.1016/j.foodchem.2012.02.138

Kim, J., Jung, Y., Song, B., Bong, Y.-S., Ryu, D. H., Lee, K.-S., & Hwang, G.-S. (2013). Discrimination of cabbage (Brassica rapa ssp pekinensis) cultivars grown in different geographical areas using H-1 NMR-based metabolomics. Food Chemistry, 137(1–4), 68–75. doi:10.1016/j.foodchem.2012.10.012

Kim, J. Y., Lee, M. Y., Ji, G. E., Lee, Y. S., & Hwang, K. T. (2009). Production of gamma-amino-butyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. International Journal of Food Microbiology, 130(1), 12–16. doi:10.1016/j.ijfoodmicro.2008.12.028

Kim, M.-C., Lee, K.-S., Lee, B.-J., Kwon, B.-G., Ju, J.-I., Gu, J.-H., & Oh, M.-J. (2007). Changes in the physicochemical characteristics of green wheat during matura- tion. Journal of the Korean Society of Food Science and Nutrition, 36(10), 1307–1313.

Kim, M.-H., Ahn, S.-I., Lim, C.-M., Jho, J.-W., & Kim, G.-Y. (2016). Effects of germinated brown rice addition on the flavor and functionality of yogurt. Korean Journal for Food Science and Animal Resources, 36(4), 508–515. doi:10.5851/kosfa.2016.36.4.508

Kim, M.-Y., Chung, I.-M., Lee, S.-J., Ahn, J.-K., Kim, E.-H., Kim, M.-J., … Song, H.-K. (2009). Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chemistry, 113(2), 386–393. doi:10.1016/j.foodchem.2008.07.045

Kim, M. J., Lim, J. S., & Yang, S. A. (2016). Component analysis and anti-proliferative effects of ethanol extracts of fruits, leaves, and stems from Elaeagnus umbellata in HepG2 cells. Journal of the Korean Society of Food Science and Nutrition, 45(6), 828–834. doi:10.1374/jkfn.2016.15.6.878

Kim, N. J., & Yoon, K. Y. (2013). Qualities and antioxidant activity of lactic acid fermented-potato juice. Journal of the Korean Society of Food Science and Nutrition, 42(6), 542–549. doi:10.3746/jkfn.2013.42.4.542

Kim, S.-H., Lee, B.-H., Kim, J.-C., Choi, S.-S., Kim, G.-W., Joo, M.-H., & Yoo, S.-H. (2008). Compositional characterization and colorant identification of omija (Schizandra chinensis) fruit extract. Food Science and Biotechnology, 17(4), 787–793.

Kim, S. L., Kim, S. K., & Park, C. H. (2004). Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International, 37(4), 319–327. doi:10.1016/j.foodres.2003.12.008

Kim, S.-H., Lim, S. R., Hong, S.-J., Cho, B.-K., Lee, H., Lee, C.-G., & Choi, H.-K. (2016). Effect of ethephon as an ethylene-releasing compound on the metabolic profile of chlorella vulgaris. Journal of Agricultural and Food Chemistry, 64(23), 4807–4816. doi:10.1021/acs.jafc.6b00541

Kim, S.-L., Lee, J.-E., Kwon, Y.-U., Kim, W.-H., Jung, G.-H., Kim, D.-W., … Chung, I.-M. (2013). Introduction and nutritional evaluation of germinated soy germ. Food Chemistry, 136(2), 491–500. doi:10.1016/j.foodchem.2012.08.022

Kim, Y. B., Lee, M.-K., Kim, S.-J., Kim, H. H., Chung, E., Lee, J.-H., & Park, S. U. (2013). Accumulation of gamma-amino butyric acid and transcription of glutamate decarboxylase in Brassicca juncea (L.) Czern. Plant Omics, 6(4), 263–267.

Kim, Y. K., Hui, X., Park, N. I., Boo, H. O., Lee, S. Y., & Park, S. U. (2009). Amino acid and GABA content in different cultivars of Momordica charantia L. Journal of Medicinal Plants Research, 3(11), 897–914.

Kim, Y. K., Suh, S. Y., Uddin, M. R., Kim, Y. B., Kim, H. H., Lee, S. W., … Park, S. U. (2013). Variation in amino acid content among three aloe species. Asian Journal of Chemistry, 25(11), 6346–6348.

Kinnesley, A. M., & Turano, F. J. (2000). Gamma amino butyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6), 479–509. doi:10.1080/07352680091139277

Kittibunchakul, S., Thiyajai, P., Suttissansonee, U., & Santivarangkna, C. (2017). Determination of GABA content in Thai brown rice by an optimized enzyme-based method. Warasana Khana Wittayayat Maha Witthayayat 12, 132–143.

Kittredge, J., Simonsen, D., Roberts, E., & Jelinek, B. (1962). Free amino acids of marine invertebrates. In J. T. Holden (Ed.), Amino acid pools (pp. 176–186). The Netherlands:Elsevier.

Kliweb, W. M. (1970). Free amino acids and other nitrogenous factions wine grapes. Journal of American Science, 35(17). doi:10.1111/j.1652-2621.1970.tb12358.x

Knych, H. K., Steinmetz, S. J., & McKemie, D. S. (2015). Endogenous concentrations, pharmacokinetics, and selected pharmacodynamic effects of a single dose of exogenous GABA in horses. Journal of Veterinary Pharmacology and Therapeutics, 38(2), 113–122.

Ko, J. Y., Song, S. B., Lee, J. S., Kang, J. R., Seo, M. C., Oh, B. G., … Woo, K. S. (2011). Changes in chemical components of foxtail millet, proso millet, and sorghum with germination. Journal of the Korean Society of Food Science and Nutrition, 40(8), 1128–1135. doi:10.3746/jkfn.2011.40.8.1128

Kobashigawa, C., Tamaya, K., & Shimomachi, T. (2011). Effect of UV-C treatment on plant growth and nutrient contents. Acta Horticulturae, 907, 237–242. doi:10.17660/ActaHortic.2011.907.36

Koo, Y. H. (2016). The GABA content of the central nervous system of crustacea and annelida: A comparison. Journal of Comparative Physiology, 94(1), 49–55. doi:10.1007/BF00610157

Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N., & Kimura, T. (2007). Effect of soaking and gaseous treatment on GABA content in germinated broccol. Journal of Plant Science, 78(2), 556–560. doi:10.1080/1070460.2005.1003817

Kong, S., & Lee, J. (2010). Quality characteristics and changes in GABA content and antioxidant activity of noodle prepared with germinated brown rice. Journal of the Korean Society of Food Science and Nutrition, 39(2), 274–280. doi:10.3746/jkfn.2010.39.2.274

Kook, M.-C., & Cho, S.-C. (2013). Production of GABA (gamma amino butyric acid) by lactic acid bacteria. Korean Journal for Food Science of Animal Resources, 33(3), 377–389. doi:10.5851/kosfa.2013.33.3.377

Koyama, Y., Ogasawara, Y., Endou, K., Akano, H., Nakojima, T., Aoyama, T., & Nakamura, K. (2017). Fermentation-induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutase-like activity in tomato
vinaigre. *International Journal of Food Properties*, 20(4), 888–898. doi:10.1080/10992912.2016.1188309

Kradangar, P., & Songsermpong, S. (2015). Optimization of fermentation process on the gaba content and quality of fermented rice flour and dry fermented rice noodles. *Journal of Food Processing and Preservation*, 39(6), 1183–1191. doi:10.1111/jfps.12334

Kramer, D., Breitenstein, B., Kleinwächter, M., & Selmar, D. (2010). Stress metabolism in green coffee beans (Coffea arabica L.): Expression of dehydrins and accumulation of GABA during drying. *Plant and Cell Physiology*, 51(4), 546–553. doi:10.1093/pcp/pcp019

Krantis, A. (2000). GABA in the mammalian enteric nervous system. *News in Physiological Sciences*, 15, 284–290.

Kratz, E. A., Kuffer, S. W., Potter, D. D., & van Gelder, N. M. (1963). Gamma-amino-butyric acid and other blocking compounds in crustacea: III. Peripheral nervous system. *Journal of Neurophysiology*, 26(5), 729–738. doi:10.1152/jn.1963.26.4.729

Krafft, E. A., Kuffer, S. W., Potter, D. D., & van Gelder, N. M. (1963). Gamma-aminobutyric acid and other blocking compounds in crustacea: II. Peripheral nervous system. *Journal of Neurophysiology*, 26(5), 729–738. doi:10.1152/jn.1963.26.5.729

Kuda, T., Tanibe, R., Mori, M., Take, H., Michihata, T., Yano, T., . . . Kimura, B. (2009). Microbial and chemical properties of aji-no-suusu, a traditional fermented fish with rice product in the Noto Peninsula, Japan. *Fisheries Science*, 75(6), 1499–1506. doi:10.1007/s12262-009-0175-0

Kuo, Y. H., Ikegami, F., & Lambein, F. (2003). Neuroactive and other free amino acids in seed and young plants of Panax ginseng. *Phytochemistry*, 62(7), 1087–1091. doi:10.1016/S0031-9422(02)00658-1

Kusunoki, M., Taniyama, K., & Tanaka, C. (1984). Neuronal GABA release and GABA inhibition of ACh release in guinea pig urinary bladder. *American Journal of Physiology. Regulatory, Integrative and Comparative Physiology*, 246(4), RS02–RS09. doi:10.1152/ajpregu.1984.246.4.RS02

Kutdin, D., & Molnár-Perl, I. (2003). New aspects of the simultaneous analysis of amino acids and amines as their o-phthalaldehyde derivatives by high-performance liquid chromatography: Analysis of wine, beer and vinegar. *Journal of Chromatography A*, 987(1), 311–322. doi:10.1016/S0021-9673(02)01538-8

Kwon, H. J., Kim, S. H., Hwang, J. H., & Park, Y. D. (2010). Effect of γ-aminobutyric acid on growth performance, behavior and plasma hormones in weaned pigs. *Canadian Journal of Animal Science*, 95(2), 165–171. doi:10.4141/cjas2013-148

Larher, F., Goas, G., Le Rudulier, D., Gerard, J., & Hamelin, J. (1983). Bound 4-aminobutyric acid in root nodules of Medicago sativa and other nitrogen fixing plants. *Plant Science Letters*, 29(2), 315–326. doi:10.1016/0304-4218(83)90157-8

Lawrence, J. M., & Grant, D. R. (1963). Nitrogen mobilization in pea seedlings. II. Free amino acids. *Plant Physiology*, 38(5), 561. doi:10.1104/pp.38.5.561

Lee, C. W., Lee, J. R., Kim, M. K., Cheurun, J., Lee, K. H., You, I., & Jung, S. (2016). Quality improvement of pork loin by dry aging. *Korean Journal for Food Science of Animal Resources*, 36(3), 369–376. doi:10.5851/kfsa.2016.36.3.369

Lee, C., & Cronin, C. (1984). Porticulate amino acids in the sea: Effects of primary productivity and biological distribution. *Journal of Marine Research*, 42(4), 1075–1097. doi:10.1357/00222468788520710

Lee, C., Wakeham, S. G., & Farrington, J. W. (1983). Variations in the composition of porticulate organic matter in a time-series sediment trap. *Marine Chemistry*, 13(3), 181–194. doi:10.1016/0304-4203(83)90013-0

Lee, D. G., Cho, S., Lee, J., Cho, S. H., & Lee, S. (2013). Analysis of gamma-aminobutyric acid content in fermented plant products by HPLC/UV. *Journal of Applied Biological Chemistry*, 58(4), 303–309. doi:10.8389/jabc.2013.048

Lee, Y., & Hwang, K. T. (2017). Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. *Scientia Horticulturae*, 217, 189–196. doi:10.1016/j.scienta.2017.01.042

Lee, Y., Lee, J. H., Kim, S. D., Chang, M. S., Jo, I. S., Kim, S. J., . . . Kim, J. H. (2015). Chemical composition, functional constituents, and antioxidant activities of berry fruits produced in Korea. *Journal of the Korean Society of Food Science and Nutrition*, 44(9), 1295–1303. doi:10.3746/jkfn.2015.44.9.1295

Lee, Y. R. (2016). Nutritional components and antioxidant activity of dry bitter melon (Momordica charantia L.). *Journal of the Korean Society of Food Science and Nutrition*, 45(4), 518–523. doi:10.3746/jkfn.2016.45.4.518

Leret, M. L., Peinado, V., Suárez, L. M., Tecedor, L., Gamallo, A., & González, J. C. (2004). Role of maternal adrenal glands on the developing serotoninergic and aminoacidergic systems of the postnatal rat brain. *International Journal of Developmental Neuroscience*, 22(2), 87–93. doi:10.1016/j.ijdevneu.2003.12.005

Li, N., Liu, Y., Zhao, Y., Zheng, X., Jianliang, L., & Liang, Y. (2016). Simultaneous HPLC determination of amino acids in tea infusion coupled to pre-column derivatization with 2,4-dinitrofluorobenzene. *Food Analytical Methods*, 9(5), 1307–1314. doi:10.1007/s12161-015-0310-8

Li, Q., Jin, C.-L., Li-Sha, X., Zhu-Ge, Z.-B., Yang, L.-X., Liu, L.-Y., & Chen, Z. (2005). Histidine enhances carboxamidopeptidase action against seizures and improves spatial memory defects induced by chronic transauricular kindling in rats. *Acta Pharmacologica Sinica*, 26, 1297. doi:10.1111/j.1744-7255.2005.00200.x

Li, Y., Bai, Q., Jin, X., Wen, H., & Zhenxin, G. (2010). Effects of cultivar and culture conditions on gamma-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). *Journal of the Science of Food and Agriculture*, 90(1), 52–57. doi:10.1002/jsfa.3778

Li, Y. H., Li, F., Liu, M., Yin, J. J., Cheng, B. J., Shi, B. M., & Shan, A. S. (2015). Effect of γ-aminobutyric acid on growth performance, behavior and plasma hormones in weaned pigs. *Canadian Journal of Animal Science*, 95(2), 165–171. doi:10.4141/cjas2013-148
Lim, D. G., Jo, C., Sea, K. S., & Nam, K. C. (2016). Comparison of meat quality of loins and butts in different two-way crossbred pigs. Livestock Science, 161, 210–217. doi:10.1016/j.livsci.2013.12.015

Lim, J. S. (2015). Colocasia esculenta. In Edible medicinal and non-medicinal plants. Modified stems, roots, Bulbs (Vol. 9, 1st ed.), 454–492. The Netherlands: Springer Netherlands.

Limon, A., Jose-Luis Gallegos-Perez, J. M., Reyes-Ruiz, M. A., Aijohe, A., Alshanqeeti, S., & Miledi, R. (2014). The endogenous GABA bioactivity of camel, bovine, goat and human milks. Food Chemistry, 145, 481–487. doi:10.1016/j.foodchem.2013.08.058

Limon, R. I., Pesas, E., Martinez-Villalobos, C., & Frias, J. (2016). Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT- Food Science and Technology, 65(2), 328–334. doi:10.1016/j.lwt.2015.12.014

Lin, S.-Y., Chen, Y.-K., Hui-Tzu, Y., Barseghyan, G. S., Asatiani, M. D., Wasser, S. P., & Mau, J.-L. (2013). Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culi- nary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 15(3), 315–323.

Lin, S., & Cohen, H. P. (1973). Crayfish ventral nerve cord and hemolymph: Content of free amino acids and other metabolites. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 45(1), 249–263. doi:10.1016/0305-0491(73)90305-2

Liu, B., Guo, X., Zhu, K., & Liu, Y. (2016). Determination of d-serine and other amino acids in cocoa beans from different geographical origins. Food Chemistry, 210, 210–217. doi:10.1016/j.foodchem.2016.05.024

Liu, T., Bobin, L., Zhou, Y., Chen, J., & Haiyun, T. (2015). HPLC derivatization and validation strategy for determination of γ-aminobutyric acid production in vine-ripened tomato fruits using pre-column derivatization. Journal of Agricultural and Food Chemistry, 63(9), 2556–2559. doi:10.1021/jf5096017u

Lo, Y.-C., Lin, S.-Y., Enkhjargal, U., Chen, S.-Y., Chien, R.-C., Tzu, Y.-J., & Mau, J.-L. (2012). Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mush- rooms. International Journal of Medicinal Mushrooms, 14(6), 57–363.

Louiudice, R., Impembo, M., Loratbo, B., Villari, G., Lo Voi, A., Siviero, P., & Castaldo, D. (1995). Composition of San Marzano tomato varieties. Food Chemistry, 53(1), 81–89. doi:10.1016/0308-8146(95)95791-4

Lopez, G., Ros, G., Rincon, F., Ortuño, J., Periago, M. J., & Martinez, M. C. (1990). Amino acids and in vitro protein digestibility changes in green asparagus (Asparagus officinalis, L) during growth and processing. Food Research International, 23(7), 617–625. doi:10.1016/0963-9995(90)90072-5

Louzan, P., Gallardo, M. G. P., & Tramezzani, J. H. (1986). Gamma-aminobutyric acid in the genital tract of the rat during the oestrus cycle. Journal of Reproduction and Fertility, 77(2), 499–504.

Lowry, C. W., Houch, G. P., & Mark Wightman, R. (1982). Determination of γ-aminobutyric acid by liquid chromatography with electrochemical detection. Journal of Chromatography. B, Biomedical Sciences and Applications, 227(2), 331–339. doi:10.1016/0308-0213(84)90078-7

Lu, Q.-Y., Liu, A.-P., Huang, Y., Yang, J., Henning, S. M., Hong, X., … Zhaoqing, L. (2015). Quantification of bioactive constituents and antioxidant activity of Chinese yellow wine. Journal of Food Composition and Analysis, 44, 86–92. doi:10.1016/j.jfca.2015.07.005

Lummis, S. C. R. (1990). GABA receptors in insects. Comparative Biochemistry and Physiology. C, Comparative Pharmacology, 95(1), 1–8. doi:10.1016/0742-8413(90)90073-1

Lunt, G. G. (1991). GABA and GABA receptors in invertebrates. Seminars in Neuroscience, 3(3), 251–258. doi:10.1016/0308-8146(91)90022-G

Ma, Y., Cheng, Y., Yin, L., Wang, J., & Lile, L. (2013). Effects of processing and NaCl on angiotensin I-converting enzyme inhibitory activity and gamma-aminobutyric acid content during sufu manufacturing. Food and Bioprocess Technology, 6(7), 1782–1789. doi:10.1007/s11947-012-0852-3

Macone, E. A., & Reddaway, R. J. (1992). Amino-acids in kiwifruit. 1. Distribution within the fruit during fruit maturation. New Zealand Journal of Crop and Horticultural Science, 20(3), 329–336.

Mae, N., Makino, Y., Oshita, S., Kawagoe, Y., Tanaka, A., Akhiro, T., … Ezuru, H. (2010). Stimulation of γ-aminobutyric acid production in wine-ripened tomato (Solanum lycopersicum L.) Fruits under an adjusted aerobic atmosphere. Journal of Packaging Science and Technology, 19(5), 375–381.

Maisont, S., & Narkrugsa, W. (2010). The effect of germi- nation on GABA content, chemical composition, total phenolics content and antioxidant capacity of Thai waxy paddy rice. Wittayasuan Kasetats, 44, 912–923.

Mallatou, H., Pappas, E., & Boumba, V. (2004). Proteolysis in teleme cheese made from ewes’, goats’ or a mixture of ewes’ and goats’ milk. International Dairy Journal, 14, 977–987. doi:10.1016/j.idaj.2004.03.009

Manca, G., Parcu, A., Antonio, R., Margherita Salaris, M., Franco, A., & De Santis, E. P. L. (2015). Comparison of γ-aminobutyric acid and biogenic amine content of different types of Ewe’s milk cheese produced in Sardinia, Italy. Italian Journal of Food Safety, 4(2), 4700. doi:10.4081/jifs.2015.4700

Marion, B. V., & Tremblay, R. D. (1994). Free and con- jugated GABA in human cerebrospinal fluid: Effect of degenerative neurologic diseases and isoniazid. Brain Research, 307(1), 217–223. doi:10.1016/0006-8993(84)90475-X

Mao, X., Cao, Y., Min, D., Guo, F., Xie, N., Chen, T., ... Cai, J. (2011). RP-LC with fluorescence detection of amino acids in rat brain synaptosomes. Chromatographia, 73(1), 157–163. doi:10.1007/s10337-010-1822-4

Marcy, J. E., Carroll, D. E., & Young, C. T. (1981). Changes in free amino-acid and total nitrogen concentrations during maturation of muscadine grapes (V- Rotundifolia). Journal of Food Science, 46(2), 543. doi:10.1111/1196-9991.00946.x

Marsiglio, A., Palla, G., & Calignani, A. (2016). Presence and variation of γ-aminobutyric acid and other free amino acids in cocoa beans from different geogra- phical origins. Food Research International, 63, 360–366. doi:10.1016/j.foodres.2014.05.026

Martin Del Rio, R. (1981). Gamma-aminobutyric acid sys- tem in rat ovudct. Journal of Biological Chemistry, 256(19), 9816–9819.

Martinez-Pinilla, O., Guadalupe, Z., Hernandez, Z., & Ayestarán, B. (2013). Amino acids and biogenic
amines in red varietal wines: The role of grape variety, malolactic fermentation and vintage. European Food Research and Technology, 237(6), 887–895. doi:10.1007/s00217-013-2059-x

Martinez-Villaluenga, C., Kuo, Y.-H., Lambein, F., Frias, J., & Vidal-Vilardell, C. (2008). Kinetics of free protein amino acids, free non-protein amino acids and trigonelline in soybean (Glycine max L) and lupin (Lupinus angustifolius L) sprouts. European Food Research and Technology, 224(2), 177-186. doi:10.1007/s00217-006-0300-6

Mato, J., Domínguez, M. C., Aguirrezabal, M. M., & Zumalacarregui, J. M. (1996). Taste compounds in chorizo and their changes during ripening. Meat Science, 44(4), 245–254. doi:10.1016/0309-1740(96)00098-8

Matsuyama, S., Saito, N., Shuntoh, H., Tanjyama, K., & Tanaka, C. (1993). GABA modulates neurotransmission in sinus node via stimulation of GABA receptor. American Journal of Physiology. Heart and Circulatory Physiology, 264(1), H1057–H1061. doi:10.1152/ajpheart.1993.264.4.H1057

Mayer, R. R., Cherry, J. H., & Rhodes, D. (1999). Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiology, 94(2), 796–810.

Mazzotti, F., Benabdelkamel, H., Di Donna, L. M., Constantinos, A., Napoli, A., & Sindona, G. (2012). Light and heavy dansyl reporter groups in food chemistry: Amino acid assay in beverages. Journal of Mass Spectrometry, 47(7), 932–939. doi:10.1002/jms.3005

Mazzucotelli, E., Tartari, A., Cattivelli, L., & Forlani, G. (2006). Metabolism of γ-amino butyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. Journal of Experimental Botany, 57(14), 3755–3766. doi:10.1093/jxb/erl141

McLean, M. D., Yevtushenko, D. P., Alice Deschene, O. R., McFarlane, M. D., Yevtushenko, D. P., Alice Deschene, O. R., Moing, A., Svanella, L., Rolin, D., Monique, G., Gaudillère, J. G., et al. (2012). Metabolism of γ-amino butyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. Journal of Experimental Botany, 57(14), 3755–3766. doi:10.1093/jxb/erl141

Meepley, M., & Deewatthewanawong, R. (2012). Determination of gamma-amino butyric acid (GABA) in rambutan fruit cv. Lonrangian by HPLC-ELSD and separation of GABA from rambutan fruit using dowex 50W-X8 column. Journal Chromatographic Science, 54(3), 465–462. doi:10.1093/jcms/cbmv166

Merodio, C., Muñoz, M. T., Del Cura, B., Buitrago, D., & Torrelo, D., & Escribano, M. I. (1998). Effect of high CO₂ on the titres of γ-amino butyric acid, total polypeptides and some pathogenesis-related proteins in cherimoya fruit stored at low temperature. Journal of Experimental Botany, 49(325), 1339–1347

Michaeli, S., & Fromm, H. (2015). Closing the loop on the GABA shunt in plants: Are GABA metabolism and signaling entwined? Frontiers in Plant Science, 6, 419. doi:10.3389/fpls.2015.00419

Michalk, M., & Maria, E. (1982). Gaba in pancreatic islets: Metabolism and function. Biochemical Pharmacology, 44(1), 1–9. doi:10.1016/0006-2952(82)90030-M

Miki, Y., Taniyama, K., Tanaka, C., & Tobe, T. (1983). GABA, glutamic acid decarboxylase, and GABA transaminase levels in the myenteric plexus in the intestine of humans and other mammals. Journal of Neurochemistry, 40, 860–865.

Mills, W. R., & Joy, K. W. (1980). Rapid method for isolation of purified, physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves. Planta, 148(1), 75–83. doi:10.1007/bf00385445

Miltner, A., Kindler, R., Knicker, H., Richnow, H.-H., & Matthias, K. (2009). Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Organic Geochemistry, 40(9), 978–985. doi:10.1016/j.orggeochem.2009.06.008

Minervini, F., Bilancia, M. T., Siragusa, S., Gobbetti, M., & Caponio, F. (2009). Fermented goats’ milk produced with selected multiple starters as a potentially functional food. Food Microbiology, 26(6), 559–564. doi:10.1016/j.fm.2009.03.008

Minuk, G. Y. (1992). GABA and the Liver: The First 40 Years. In S. L. Erdös (Ed.) GABA Outside the CNS. Berlin, Heidelberg: Springer Berlin Heidelberg.

Mncwango, N. P., & Viljoen, A. M. (2012). Quantitative variation of amino acids in Sutherlandia frutescens (Cancer bush) towards setting parameters for quality control. South African Journal of Botany, 82, 46–52. doi:10.1016/j.sajb.2012.06.009

Mody, I., De Koninck, Y., Otis, T. S., & Sotolzes, I. (1994). Bridging the cleft at GABA synapses in the brain. Trends in Neurosciences, 17(12), 517–525. doi:10.1016/0166-2236(94)90155-4

Mohanty, B., Mohanty, A., Satabdi Ganguly, T. V., Sankar, K. C., Rangasamy, A., Paul, B., … Sharma, A. P. (2014). Amino acid compositions of 27 food fishes and their importance in clinical nutrition. Journal of Amino Acids, 2014. Article ID 269797. doi:10.1155/2014/269797

Moing, A., Svanella, L., Rolin, D., Monique, G., Gauthière, J. P., & Monet, R. (1998). Compositional changes during the fruit development of two peach cultivars differing in juice acidity. Journal of the American Society for Horticultural Science, 123(5), 770–775.

Moir, M. (2000). Hops – A millennium review. Journal of the American Society of Brewing Chemistry, 58, 131–146.

Moongarm, A., & Saetung, N. (2010). Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry, 122(3), 782–788. doi:10.1016/j.foodchem.2010.03.053

Mopper, K., & Lindroth, P. (1982). Die and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnology and Oceanography, 27(2), 336–347. doi:10.4319/lo.1982.27.2.0336

Moreno, F. J., Marta Corzo-Martinez, M., Del Castillo, D., & Villamil, M. (2006). Changes in antioxidant activity of dehydrated onion and garlic during storage. Food Research International, 39(8), 891–897. doi:10.1016/j.foodres.2006.03.012

Mori, T., Umeda, T., Hondo, T., Zushi, K., Wojtme, T., & Matsuzawa, N. (2013). Varietal differences in the chlorogenic acid, anthocyanins, soluble sugar, organic acid, and amino acid concentrations of eggplant fruit. Journal of Horticultural Science and Biotechnology, 88(5), 657–663. doi:10.1080/14620316.2013.11513021

Morin, E., Stingone, C., Corinali, S., & Sandei, L. (2015). Non-volatile taste compounds assessment of commercial Italian tomato cultivars before and after processing into diced tomato and tomato puree. Acta Horticulturae, 1081, 283–290. doi:10.17660/ActaHortic.2015.1081.36

Morita, N., Miyake, K., Maeda, T., & Van Hung, P. (2013). Germinated buckwheat for industrial foods. In Morita, N., Van Hung, P., Maeda, T. (Eds.), Advances in cereal and pseudocereal research for functional foods (pp. 75–90). US: Nova Science Publishers, Inc.
Morita, N., Park, S. H., & Maeda, T. (2013). Germinated quinoa for functional foods. In Morita, N., Van Hung, P., Maeda, T. (Eds.), Advances in cereal and pseudo-cereal research for functional foods (pp. 93–109). US: Nova Science Publishers, Inc.

Mucci, A., Parenti, F., Rigli, V., & Schenetti, L. (2013). Citron and lemon under the lens of HR-MAS NMR spectroscopy. Food Chemistry, 141(3), 3167–3176. doi:10.1016/j.foodchem.2013.05.151

Mudryj, A. N., Yu, N., & Aukema, H. M. (2014). Nutritional and health benefits of pulses. Applied Physiology, Nutrition, and Metabolism, 39(11), 1197–1204. doi:10.1139/apnm-2013-0557

Mulas, G., Galaffu, M. G., Pretti, L., Nieddu, G., Mercenaro, L., Tonelli, R., & Aneda, R. (2011). NMR analysis of seven selections of vermentino grape berry: Metabolites composition and development. Journal of Agricultural and Food Chemistry, 59(3), 793–802. doi:10.1021/jf103285f

Mullen, A. M., Stoeva, S., Laib, K., Gruebler, G., Voelter, W., & Troy, D. J. (2000). Preliminary analysis of amino acids at various locations along the M. longissimus dorsi in aged beef. Food Chemistry, 69(4), 461–465. doi:10.1016/S0308-8146(00)00066-2

Müller, P. J., Suess, E., & Andrêuinger, C. (1986). Amino acids and amino sugars of surface particulate and sediment trap material from waters of the Scotia sea. Deep-Sea Research. Part I, Oceanographic Research Papers, 33(8), 819–838. doi:10.1016/0198-0343(86)90090-7

Murcia, A. M., Lopez-Ayerza, B., Martinez-Tome, M., & Garcia-Carmona, F. (2001). Effect of industrial processing on amino acid content of broccoli. Journal of the Science of Food and Agriculture, 81(14), 1299–1305. doi:10.1002/jsfa.942

Na, H., XiaoFeng, Y., & Liqian, Y. (2013). Effects of different stress treatments on γ-aminobutyric acid (GABA) content in cabbage. Nanjing Nong Ye Da Xue Xue Bao, 36, 111–116.

Naidu, B. P., Paleg, L. G., Aspinall, D., Jennings, A. C., & Gaj, P. J. (1991). Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry, 30(2), 407–409. doi:10.1016/0031-9422(91)83693-F

Nakamura, K., Koyama, M., Ishida, R., Kitahara, T., Nakajima, T., & Aoyama, T. (2016). Characterization of bioactive agents in five types of marketed sprouts and comparison of their anti-atherosclerotic, anti-peroxidative, and antiobiotic effects in fructose-loaded SHRs. Journal of Food Science and Technology, 53(1), 581–590.

Nakamura, K., Nara, K., Noguchi, T., Ohshiro, T., & Koga, H. (2006). Contents of gamma-aminobutyric acid (GABA) in potatoes and processed potato products. Journal of the Japanese Society for Food Science and Technology, 53(9), 514–517.

Németh, K., Bartels, H., Vogel, M., & Mengel, K. (1988). Organic nitrogen compounds extracted from arable and forest soils by electro-ultrafiltration and recovery rates of amino acids. Biology and Fertility of Soils, 5(4), 271–275. doi:10.1007/BF00262130

Nepi, M., Soligo, C., Nocentini, D., Abate, M., Guarnieri, M., Cai, G., … Pacini, E. (2012). Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora, 207(7), 475–481. doi:10.1016/j.flora.2012.06.002

Nguyen, R. T., & Rodger Harvey, H. (1997). Protein and amino acid cycling during phytoplankton decomposition in oxic and anoxic waters. Organic Geochemistry, 27(3), 115–128. doi:10.1016/S0146-6380(97)00076-4

Niemenk, N., Saare-Surminski, K., Rohsius, C., Ndoumou, D. O., & Lieberie, R. (2008). Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Reports, 27(4), 667–676. doi:10.1007/s00299-007-0457-2

Nikmaram, N. B., Dar, N., Roohinejad, S., Mohamed Khouab, J., Francisco, B., Greiner, R., & Johnson Stuart, K. (2017). Recent advances in γ-aminobutyric acid (GABA) properties in pulses: An overview. Journal of the Science of Food and Agriculture, 97(9), 2681–2689. doi:10.1002/jsfa.8283

Nogata, Y., Yanagisawa, T., Abe, D., Saito, T., Yoshida, A., Ohta, H., & Nagamine, T. (2012). Determination of gamma-aminobutyric acid and free amino acid contents in barley seeds and amounts produced by water soaking treatment. Food Science and Technology Research, 18(2), 263–269.

Nouchi, T., & Tanaka, E. (1962). Studies on nitrogen metabolism in tobacco plants A.3. On free amino acid composition of tobacco leaves from different positions on stalk. Agricultural and Biological Chemistry, 26(10), 689.

Nomura, K., Kimoto, H., Someya, Y., Furukawa, S., & Suzuki, I. (1990). Production of γ-aminobutyric acid by cheese starters during cheese ripening. Journal of Dairy Science, 81(6), 1486–1491. doi:10.3168/jds. S0022-0302(98)75714-5

O’Donnell, T., Rotzinger, S., Ulrich, M., Hanstock, C. C., Nakashima, T. T., & Silverstone, P. H. (2003). Effects of chronic lithium and sodium valproate on concentrations of brain amino acids. European Neuropsychopharmacology, 13(6), 220–227. doi:10.1016/S0924-977X(03)00070-1

Obata, K. (1969). Gamma-aminobutyric acid in Purkinje cells and motoneurones. Experientia, 25(12), 1283. doi:10.1007/BF01897500

Ogunnsua, A. O. (1988). Amino acid determination in conch-nut cow by gas-liquid chromatography. Food Chemistry, 28(4), 287–298. doi:10.1016/S0308-8146(88)90104-5

Oh, C. H., & Oh, S. H. (2004). Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. Journal of Medicinal Food, 7(1), 19–23. doi:10.1089/ 109662004322984653

Oh, S. H. (2003). Stimulation of gamma-aminobutyric acid synthesis activity in brown rice by a chitosan/gluconic acid germination solution and calcium/calcium gluconate. Journal of Biochemistry and Molecular Biology, 36(3), 319–325. doi:10.1007/BF01897500

Oh, S.-H., Kim, H.-J., Kim, Y.-H., Yu, J.-J., Park, K.-B., & Jeon, J.-I. (2008). Changes in some physico-chemical properties and γ-aminobutyric acid content of Kimchi during fermentation and storage. Journal of Food Science and Nutrition, 13(3), 219–224.

Oh, S.-H., Moon, Y.-J., & Oh, C.-H. (2003). γ-aminobutyric acid (GABA) content of selected uncooked foods. Nutraceuticals & Food, 8, 75–78. doi:10.3746/jfn.2003.8.1.075

Oka, Y., Tsuji, H., Ogawa, T., & Sosaoka, K. (1981). Quantitative determination of the free amino acids and their derivatives in the common edible mushroom, agaricus bisporus. Journal of Nutritional Science and Vitaminology, 27(3), 253–262. doi:10.3177/jnsv.27.253
Okado, Y., Taniguchi, H., & Baba, S. (1982). High concentration of GABA in pancreatic islets with special emphasis on B cells. In Okado, Y., Roberts, E. (Eds.), Problems in GABA research from brain to bacteria. Amsterdam: Excerpta Medica. doi:10.1016/0166-2236(83)90073-5

Okado, Y., Taniguchi, H., & Shimada, C. (1976). High concentration of GABA and high glutamate decarboxylase activity in rat pancreatic islets and human insulinoma. Science, 194(4265), 620–622. doi:10.1126/science.194.4265.620

Ong, J., & David, I. B. K. (1990). GABA-receptors in peripheral tissues. Life Sciences, 46(21), 1489–1501. doi:10.1016/0024-3205(90)90421-M

Onomo, P. E., Niemenak, N., Ndoumou, D. O., & Lieberei, R. (2010). Change in amino acids content during germination and seedling growth of Cola sp. African Journal of Biotechnology, 9(35), 5632–5642.

Ordóñez, J. L., Sainz, F., Callejón, R. M., Troncoso, A. M., Torija, M. J., & García-Parrilla, M. C. (2015). Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile. Food Chemistry, 178, 221–228. doi:10.1016/j.foodchem.2015.01.085

Osborn, N. N. (1973). Occurrence of GABA and taurine in the nervous systems of the dogfish and some invertebrates. Comparative and General Pharmacology, 2 (8), 433–438. doi:10.1016/0010-4355(73)90040-1

Otsuka, M., Obata, K., Miyata, Y., & Tanaka, Y. (1971). Measurement of γ-aminobutyric acid in isolated nerve cells of cat central nervous system. Journal of Neurochemistry, 18(2), 287–295. doi:10.1111/j.1471-4159.1971.tb00567.x

Pérez, X., Rado, P., & Hernández, L. (2000). Neutral amino acids monitoring in phenylketonuric plasma microdialysates using micellar electrokinetic chromatography and laser-induced fluorescence detection. Journal of Chromatography. B, Biomedical Sciences and Applications, 739(2), 247–254. doi:10.1016/S0378-4347(99)00536-8

Palacios, J. M., Wamsley, J. K., & Kuchar, M. J. (1981). High affinity GABA receptors — Autoradiographic localization. Brain Research, 222(2), 285–307. doi:10.1016/0006-8993(81)91034-9

Polanivelu, R., Laura Brass, A., Edlund, F., & Preuss, D. (2003). Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell, 114(1), 47–59. doi:10.1016/S0092-8674(03)00479-3

Palmo, F., Carvajal, F., Jamilena, M., & Garrido, D. (2014). Contribution of polyamines and other related metabolites to the maintenance of zucchini fruit quality during cold storage. Plant Physiology and Biochemistry, 82, 161–171. doi:10.1016/j.plaphy.2014.06.001

Pappas, P. C., & Sotakoglou, K. (2008). Changes of free amino acid content of Teleme cheese made with different types of milk and culture. Food Chemistry, 111(3), 606–615. doi:10.1016/j.foodchem.2008.06.027

Parramás, A. M., González, J. A. G. B., Córdon Marcos, C., García-Villanueva, R. J., & Sánchez, J. S. (2006). HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chemistry, 95(1), 148–156. doi:10.1016/j.foodchem.2005.02.008

Park, C. H., Yeo, H. J., Kim, N. S., Eun, P. Y., Kim, S.-J., Arasu, M. V., ... Park, S. U. (2017). Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Applied Biological Chemistry, 60(3), 249–257. doi:10.1007/s13765-017-0274-z

Park, K. B., & Oh, S. H. (2005). Production and characterization of GABA rice yogurt. Food Science and Biotechnology, 14(4), 518–522.

Park, K.-B., & Suk-Heung, O. (2007). Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technology, 98(8), 1675–1679. doi:10.1016/j.biortech.2006.06.006

Park, S., Arasu, M. V., Lee, M.-K., Chun, J.-H., Seo, J. M., Lee, S.-W., ... Kim, S.-J. (2016). Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.). Food Chemistry, 145, 77–85. doi:10.1016/j.foodchem.2013.08.010

Pasantes-Morales, H., Kletih, J., Ledig, M., & Mandel, P. (1972). Free amino acids of chicken and rat retina. Brain Research, 42(2), 494–497. doi:10.1016/0006-8993(72)90523-9

Patil, S. B., & Khan, M. K. (2011). Germinated brown rice as a value added rice product: A review. Journal of Food Science and Technology-Mysore, 48(6), 661–667. doi:10.1007/s13197-011-0232-4

Paucau-Menacho, M., Luz, E. P., Dueñas, M., Frias, J., & Martínez-Villaluenga, C. (2017). Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT- Food Science and Technology, 76, 245–252. doi:10.1016/j.lwt.2016.07.038

Peñas, E., Limon, R. I., Martínez-Villaluenga, C., Restani, P., Phlianto, A., & Frias, J. (2015). Impact of elicitation on antioxidant and potential antihypertensive properties of lentin sprouts. Plant Foods for Human Nutrition, 70(4), 401–407. doi:10.1007/s11386-015-0508-3

Perez, G., Pablo, R. Z., Wang, X., Jun, Y., & Huang, D. (2015). Characterization of the amino acid composition of soils under organic and conventional management after addition of different fertilizers. Journal of Soils and Sediments, 15(4), 890–901. doi:10.1007/s11368-014-1049-3

Perez, S., Maria, E., Lopez, J. G., Iglesias, M. J., Ortiz, F. L., Toresano, F., & Camacho, F. (2011). HRMAS-nuclear magnetic resonance spectroscopy characterization of tomato “flavor varieties” from Almeria (Spain). Food Research International, 44(10), 3212–3221. doi:10.1016/j.foodres.2011.08.012

Petanidou, T., Van Loere, A., Ellis, W. N., & Smet, E. (2006). What shapes amino acid and sugar composition in mediterranean floral nectars? Oikos, 115(1), 155–169. doi:10.1111/j.0030-1299.14487.x

Petteri, P. T., & Skujins, A. (2001). Rapid and sensitive step gradient assays of glutamate, glycine, taurine and γ-aminobutyric acid by high-performance liquid chromatography—Fluorescence detection with o-phthalaldehyde-Mercaptobethanol derivatization with an emphasis on microdialysis samples. Journal of Chromatography. B, Biomedical Sciences and Applications, 757(2), 277–283. doi:10.1016/S0378-4347(01)00156-6

Petty, F. (1994). Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: A blood test for manic depressive disease? Clinical Chemistry, 40(2), 296.

Pietruszko, R., & Fowden, L. (1961). γ-Aminobutyric acid metabolism in plants. Part 1. metabolism in yeasts. Annals of Botany, 25(100), 491–511.

Polthum, P., & Ahromrit, A. (2014). GABA content and antioxidant activity of Thai waxy corn seeds.
Germinated by hypoxia method. Warasan Songkhla Nakharin, 36(3), 309–316.

Poojary, M. M., Dellarosa, N., Roohinejad, S., Koubaa, M., Tyliewicz, U., Federico Gómez-Galindo, A. J., ... Barbo, J. F. (2017). Influence of innovative processing on γ-aminobutyric acid (GABA) contents in plant food materials. Comprehensive Reviews in Food Science and Food Safety, 16(5), 895–905. doi:10.1111/1541-4337.12285

Pradeep, S. R., Mallesh, N. G., & Guha, M. (2011). Germinated millets and legumes as a source of gamma-aminobutyric acid. World Applied Sciences Journal, 14(1), 108–113.

Prietó, B., Franco, I., Josefa, G. P., Bernardo, A., & Carballo, J. (2002). Proteolytic and lipolytic changes during the ripening of León raw cow's milk cheese, a Spanish traditional variety. International Journal of Food Science and Technology, 37(6), 661–671. doi:10.1046/j.1365-2621.2002.00596.x

Qi, H. J., Yang, Y., Wang, L. B., Xu, Y. Q., & Qu, S. P. (2012). Determination of bioactive ingredients in five pumpkin seeds cultivars. Advanced Materials Research, 554–556, 985–989. doi:10.4028/www.scientific.net/AMR.554-556.985

Quilez, J., & Diana, M. (2017). Chapter 5 - Gamma-aminobutyric acid-enriched fermented foods A2 - Frias, J., & Rodriguez-Saona, M. E. (2017). Fermented foods in health and disease prevention (pp. 85–103). Boston: Academic Press.

Rakho, H., & Sarjala, T. (2009). Effect of provenance on free amino acid and chemical composition of Scots pine needles. Plant Soil, 221(2), 231–238. doi:10.1007/s10476-012-1299-1

Ramesh, S., Tyerman, S. D., Gillham, M., & Bo, X. (2017). β-Aminobutyric acid (GABA) signaling in plants. Cellular and Molecular Life Sciences: CMLS, 74(9), 1577–1603. doi:10.1007/s00018-016-2415-7

Rampth, A.-I., & Bown, A. W. (1996). Rapid γ-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-leafed yeast roller larvae. Plant Physiology, 111(4), 1349–1352.

Rastogi, R., & Davies, P. J. (1990). Polyamine metabolism in ripening tomato fruit. 1. Identification of metabolites of putrescine and spermidine. Plant Physiology, 94(3), 1449–1455. doi:10.1104/pp.94.3.1449

Reddy, D. V. N. (1967). Distribution of free amino acids and related compounds in ocular fluids, lens, and plasma of various mammalian species. Investigative Ophthalmology & Visual Science, 6(5), 478–483.

Reddy, D. V. N., & Kinsey, V. E. (1962). Studies on the crystalline lens. IX. Quantitative analysis of free amino acids and related compounds. Investigative Ophthalmology, 1, 635–641.

Redgwell, R. J., & Macrae, E. A. (1992). Amino acids in kiwifruit. 2. Distribution of 4(4’-leucine) photosynthate among free amino acids during fruit maturation. New Zealand Journal of Crop and Horticultural Science, 20(4), 457–461. doi:10.1080/0114067192.10418065

Reed, L. J. (1990). The occurrence of γ-aminobutyric acid in yeast extract; its isolation and identification. Journal of Biological Chemistry, 183(2), 451–458.

Reggiani, R., Contu, C., Brambilla, I., & Bertoni, A. (1988). Accumulation and interconversion of amino acids in rice roots under anoxia. Plant and Cell Physiology, 29(6), 981–987. doi:10.1093/oxfordjournals.pcp.a077604

Riesz, M., & Erdő, S. L. (1985). GABA-B receptors in the rabbit uterus may mediate contractile responses. European Journal of Pharmacology, 119(3), 199–204.

Ritta, M. N., Calamera, J. C., & Bas, D. E. (1998). Occurrence of GABA and GABA receptors in human spermatozoa. Molecular Human Reproduction, 4(8), 769–773.

Roberts, E., & Frankel, S. (1950). Gamma-Aminobutyric acid in brain: its formation from glutamic acid. Journal of Biological Chemistry, 187(1), 55–63.

Roberts, E., & Hammerschlag, R. (1972). Amino acid transmitters. In R. W. Albers, G. J. Siegel, R. Katzman, & B. W. Agranoff (Eds.), Basic neurochemistry (pp. 131–165). Boston: Little, Brown.

Roberts, E., & Kurijama, K. (1966). Biochemical-physiological correlations in studies of the gamma-aminobutyric acid system. Brain Research, 81(1), 1–35.

Robertson, B., Auclair, F., Ménard, A., Grillner, S., & Dubuc, R. (2007). GABA distribution in lamprey is phylogenetically conserved. The Journal of Comparative Neurology, 503(1), 47–63. doi:10.1002/cne.21348

Roohinejad, S., Omidizadeh, A., Mirhosseini, H., Rasti, B., Sani, N., Shuhaimi, M., ... Manap, Y. A. (2008). Effect of hypcholesterolemic properties of brown rice varieties containing different gamma amino butyric acid (GABA) levels on Sprague-Dawley male rats. Journal of Food Agriculture and Environment, 7(3&4), 197–203.

Rosati, A., Cafiero, C., Paoletti, A., Alle, B., Caporali, S., Casciini, L., & Valentini, M. (2014). Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.). Food Chemistry, 159, 236–243. doi:10.1016/j.foodchem.2014.03.014

Ross, C. D., Parli, J. A., & Godfrey, D. A. (1989). Quantitative distribution of six amino acids in rat retinal layers. Vision Research, 29(9), 1079–1084. doi:10.1016/0042-6989(89)90055-2

Rotzoll, N., Dunkel, A., & Hofmann, T. (2006). Quantitative studies, taste reconstitution, and omission experiments on the key taste compounds in Morel mushrooms (Morchella deliciosa fr.). Journal of Agricultural and Food Chemistry, 54(7), 2705–2711. doi:10.1021/jf053113y

Rowley, H. L., Martin, K. F., & Marsden, C. A. (1995). Determination of in vivo amino acid neurotransmitters by high-performance liquid chromatography with o-phthalaldehyde–sulphite derivatisation. Journal of Neuroscience Methods, 57(1), 93–99. doi:10.1016/0165-0270(94)00132-Z

Rozan, P., Kuo, Y. H., & Lambein, F. (2001). Amino acids in seeds and seedlings of the genus Lens. Phytochemistry, 58(2), 281–289. doi:10.1016/S0031-9422(01)00200-X

Sahin, S., Eulenburg, V., Kreis, W., Villmann, C., & Pischnetsrieder, M. (2016). Three-step test system for the identification of novel GABAA receptor modulating food plants. Plant Foods for Human Nutrition, 71(4), 355–360. doi:10.1007/s11130-016-0566-1

Saikusa, T., Horino, T., & Mori, Y. (1994). Accumulation of gamma-aminobutyric-acid (GABA) in the sperm during water soaking. Bioscience, Biotechnology, and Biochemistry, 58(12), 2291–2292.

Saito, N., Taniyama, K., & Tanaka, C. (1985). Uptake and release of gamma-aminobutyric acid in guinea pig gallbladder. American Journal of Physiology: Gastrointestinal and Liver Physiology, 249(2), G192–G196. doi:10.1152/ajpgi.1985.249.2.G192

Saito, T., Fukudo, N., Ikubo, T., Inai, S., Fujii, T., Konishi, C., & Ezura, H. (2008). Effects of root-volume restriction and salinity on the fruit yield and quality of processing tomato. Engi Gokai Zasshi, 77(2), 165–172. doi:10.2503/jjshs1.77.165

Saito, T., Matsukura, C., Sugiyama, M., Watohiki, A., Ohshima, I., Iijima, Y., ... Ezura, H. (2008). Screening for gamma-aminobutyric acid (GABA)-rich tomato
varieties. Engi Gakkai Zasshi, 77(3), 242–250. doi:10.2503/jjshis1.77.242

Sailer, C. F., & Czupryna, M. J. (1989). Gamma-aminobutyric acid, glutamate, glycine and taurine analysis using reversed-phase high-performance liquid chromatography and ultraviolet detection of dansyl chloride derivatives. Journal of Chromatography, 487(1), 167–172.

Sánchez-Hernández, L., Marina, M. L., & Crego, A. L. (2011). A capillary electrophoresis–Tandem mass spectrometry methodology for the determination of non-protein amino acids in vegetable juices as novel markers for the detection of adulterations in olive oils. Journal of Chromatography A, 1218(30), 4944–4951. doi:10.1016/j.jchroma.2011.01.045

Sangwan, R. S. (1978). Amino-acid metabolism in cultured anthers of datura-metel. Biochimie et Physiologie des Plantes, 173(4), 355–364.

Sarhan, S., Seiler, N., Grove, J., & Bink, G. (1979). Rapid method for the assay of 4-aminobutyric acid (GABA), glutamic acid and aspartic acid in brain tissue and subcellular fractions. Journal of Chromatography, 162(4), 561–572.

Sasapura, A., Nozaki, N., Nagashima, S., Yamakura, M., Yamazaki, A., & Yamada, A. (2006). Process for producing brown rice with increased accumulation of GABA using high-pressure treatment and properties of GABA-increased brown rice. Journal of Applied Glycoscience, 53(1), 27–33. doi:10.5458/jagg.53.27

Sathy, N. V., & Nair, P. M. (1998). Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry, 29(2), 367–375. doi:10.1016/0031-9422(90)85081-P

Sauvinet, V., Parrot, S., Benturqua, N., Bravo-Moratón, E., Renaud, B., & Denory, L. (2003). In vivo simultaneous monitoring of γ-aminobutyric acid, glutamate, and L-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments and in vitro/in vivo validations. Electrophoresis, 24(18), 3187–3196. doi:10.1002/elps.200305565

Sawoi, Y., Yanojuku, Y., Miyama, D., & Yoshimoto, H. (2003). Cycling treatment of anaerobic and aerobic incubation increases the content of γ-aminobutyric acid in tea shoots. Amino Acids, 20(3), 331–334. doi:10.1007/s007260170049

Scheller, E., & Raupp, J. (2005). Amino acid and soil organic matter content of topsoil in a long term trial with farmyard manure and mineral fertilizers. Biological Agriculture and Horticulture, 22(4), 379–397. doi:10.1007/s10487-005-0755-2

Seher, Y., Filiz, O., & Melike, B. (2013). Gamma-4-aminobutyric acid, glutamate dehydrogenase and glutamate decarboxylase levels in phylogenetically divergent plants. Plant Systematics and Evolution, 299(2), 603–412. doi:10.1007/s00606-012-0730-5

Sekiyaomi, Y., Okazaki, K., Kikuchi, J., & Ikeda, S. (2011). NMR-based metabolic profiling of field-grown leaves from sugar beet plants harbouring different levels of resistance to cercospora leaf spot disease. Metabolites, 1(4). doi:10.3390/metabo1040004

Selman, I. W., & Cooper, P. (1978). Changes in the free amino compounds in young tomato plants in light and darkness with particular reference to g-aminobutyric acid. Annals of Botany, 42(3), 627–636.

Selvendran, R. R., & Selvendran, S. (1973). Distribution of some nitrogenous constituents in tea plant. Journal of the Science of Food and Agriculture, 24(2), 161–166. doi:10.1002/jsfa.2740240208

Seong, G.-U., Chung, S.-K., & Hwang, I.-W. (2016). Physicochemical composition of head-type kimchi cabbage leaves. Journal of the Korean Society of Food Science and Nutrition, 45(6), 923–928.

Serraj, R. J., Barry, S., & Sinclair Thomas, R. (2002). Accumulation of γ-aminobutyric acid in nodulated soybean response to drought stress. Physiological Plantarum, 102(1), 79–86. doi:10.1046/j.1399-3054.1998.1020111.x

Servili, M., Rizzello, C. G., Taticchi, A., Esposto, S., Urbani, S., Mazzocane, F., & Di Cagno, R. (2011). Functional milk beverage fortified with phenolic compounds extracted from olive vegetation water, and fermented with functional lactic acid bacteria. International Journal of Food Microbiology, 147(1), 45–52. doi:10.1016/j.ijfoodmicro.2011.03.006

Shaik, S., Singh, N., & Nicholas, A. (2011). HPLC and GC analyses of in vitro-grown leaves of the cancer bush Lessertia (Sutherlandia frutescens). Reveal higher yields of bioactive compounds. Plant Cell, Tissue and Organ Culture, 105(3), 431–438. doi:10.1007/s11240-010-9884-4

Sharma, S., Saxena, D. C., & Riar, C. S. (2017). Using combined optimization, GC-MS and analytical technique to analyze the germination effect on phenolics, dietary fibers, minerals and GABA contents of Kodo millet (Paspalum scrobiculatum). Food Chemistry, 233, 20–28. doi:10.1016/j.foodchem.2017.04.099

Shelp, B. J., Bown, A. W., & McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446–452. doi:10.1016/S1360-1385(99)01486-7

Shelp, B. J., Bown, A. W., & Zarei, A. (2017). γ-Aminobutyrate (GABA): A metabolite and signal with practical significance. Botany, 95(11), 1015–1032. doi:10.1139/bot-2017-0135

Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Chiu, G., & Bajwa, V. S. (2012). Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. I. Pathway structure. Botany, 90(8), 651–668. doi:10.1139/b2012-030

Shelp, B. J., Van Cauwenberghhe, O. R., & Bown, A. W. (2003). Gamma aminobutyrate: From intellectual curiosity to practical pest control. Canadian Journal of Botany, 81(11), 1045–1048.

Shen, Y., Chapelle, F. H., Strom, E. W., & Benner, R. (2015). Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry, 122(1), 61–78. doi:10.1007/s10533-014-0029-4

Sheridan, C. C., Lee, C., Wakeham, S. G., & Bishop, J. K. B. (2002). Suspended particle organic composition and cycling in surface and midwaters of the equatorial Pacific Ocean. Deep-sea Research. Part I, Oceanographic Research Papers, 49(11), 1983–2008. doi:10.1016/S0012-7982(02)00118-0

Shi, X., Liang, P., Song, D., Yang, W., & Gao, X. (2012). Quantification of γ-aminobutyric acid in the heads of houseflies (Musca domestica) and diamondback moths (Plutella xylostella (L.)), using capillary electrophoresis with laser-induced fluorescence detection. Journal of Separation Science, 35(4), 548–555. doi:10.1002/jss.201100802

Shida, T., Kanda, E., Ueda, Y., Takai, N., Yoshida, Y., Araki, T., & Toyohama, M. (1995). Role of amino acids in salivation and the localization of their receptors in the rat salivary gland. Molecular Brain Research, 33(2), 261–268. doi:10.1016/0169-328X(95)00131-8

Shimomachi, T., Kawahara, Y., Kobashigawa, C., Omoda, E., Hamabe, K., & Tamaya, K. (2008). Effect of residual salinity on spinach growth and nutrient contents in polder soil. Acta Horticulturae, 797, 419–424. doi:10.17660/ActaHortic.2008.797.60
Signorelli, S., Dans, P. D., Coitino, E. L., Borsani, O., & Monza, J. (2015). Connecting proline and gamma-aminobutyric acid in stressed plants through non-enzymatic reactions. Plos One, 10(3), e0115349. doi:10.1371/journal.pone.0115349

Simó, C., Martín-Alvarez, P. J., Barbos, C., & Cifuentes, A. (2006). Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids. Electrophoresis, 25(16), 2885–2891. doi:10.1002/elps.200505838

Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C. G., Coda, R., & Gobbetti, M. (2007). Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology, 73(22), 7283–7290. doi:10.1128/aem.01064-07

Soriano-Santos, J. (2000). Chemical composition and nutritional content of raw poultry meat. Meat Science, 117, 163–172. doi:10.1016/0309-1740(99)00129-2

Sroyraya, M., Honna, P. J., Sianshang, T., Tinikul, R., Jattapan, P., Poontong, T., & Sabhon, P. (2017). Nutritional components of the sea cucumber Holothuria scabra. Functional Foods in Health and Disease, 7(3), 168–181.

Starr, M. S. (1973). Effect of dark adaptation on the GABA system in retina. Brain Research, 59, 331–338. doi:10.1016/0006-8993(73)90271-0

Steinbauer, M. J., Davies, N. W., Gaertner, C., & Derdijck, S. (2009). Epicuticular waxes and plant primary metabolites on the surfaces of juvenile Eucalyptus globulus and E-nitens (Myrtaceae) leaves. Australian Journal of Botany, 57(6), 474–485. doi:10.1071/bt09108

Steward, F. C., Thompson, J. F., & Dent, C. E. (1968). Enzymatic reactions. Environmental Microbiology from a variety of Italian cheeses. Electrophoresis, 56(17), 7637–7643. doi:10.1002/jbf.7801795m

To, T.-C. A., Mohamad, F., & Macdowall Fergus, D. H. (1986). Pathways of nitrogen metabolism in nodules of Alfafoil (Medicago sativa L.). Plant Physiology, 80(4), 1002–1005.

Tokahashi, Y., Sasanuma, T., & Abe, T. (2013). Accumulation of gamma-aminobutyrate (GABA) caused by heat-drying and expression of related genes in immature vegetable soybean (edamame). Breeding Science, 63(2), 205–210. doi:10.1270/jsbs.63.205

Takano, Y., Gupta, L., Kawahata, H., Kobayashi, K., & Marumo, K. (2005). Characterization of water-extractable amino acids in the sub-surface of semi-permafrost environments. Bulletin of the Chemical Society of Japan, 78(11), 1994–1999. doi:10.1246/bcsj.1994

Tokayama, M., & Ezura, H. (2015). How and why does tomato accumulate a large amount of GABA in the fruit? Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00612

Tollan, H. H., Moore, S., & Stein, W. H. (1954). Studies on the free amino acids and related compounds in the tissues of the cat. Journal of Biological Chemistry, 211 (2), 927–939.

Talley, E. A., Toma, R. B., & Orr, P. H. (1983). Composition of raw and cooked potato peel and flesh - amino acid content. Journal of Food Science, 48(4), 1360. doi:10.1111/j.1365-2613.1983.tb09234.x

Tanaka, C. (1985). Gamma-Aminobutyric acid in peripheral tissues. Life Sciences, 37(24), 2221–2235.

Tang, J., & Chen, Z. (2016). The protective effect of gamma-aminobutyric acid on the development of immunity function in chickens under heat stress. Journal of Animal Physiology and Animal Nutrition, 100(4), 768–777. doi:10.1111/j.1365-2613.1983.tb09234.x

Taniguchi, O., Osoyo, Y., Okada, Y., & Baba, S. (1982). Presence of GABA and GAD and high uptake of [H]-GABA in Auerbach’s plexus. In E. O. Y. Roberts (Ed.), Problems in GABA research from brain to bacteria (pp. 113–118). Amsterdam: Excerpta Medica.

Topp, C. L., Hemptihl, I., Cobiac, L., Sullivan, D. R., Fenech, M., Rodeneyss, S., … Inge, K. E. (2006). Health benefits of herbs and spices: The past, the present, the future. The Medical Journal of Australia, 185(4), 51–52.

Terpstra, M., Urgubil, K., & Gruetter, R. (2002). Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magnetic Resonance in Medicine, 47(5), 1009–1012. doi:10.1002/mrm.10146

Thomke, S., Rudgren, M., & Eriksson, S. (1980). Nutritional-evaluation of the white-rot fungus sporotrichum-pulverulentum as a feedstuff to rats, pigs, and sheep. Biotechnology and Bioengineering, 22(11), 2285–2303. doi:10.1002/bit.260221107

Thompson, J. F., Pollard, J. K., & Steward, F. C. (1953). Investigations of nitrogen compounds and nitrogen metabolism in plants. III. gamma-aminobutyric acid in plants, with special reference to the potato tuber and a new procedure for isolating amino acids other than alpha-amino acids. Plant Physiology, 28(3), 401–414.
Wu, G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45(3), 407–411. doi:10.1007/s00726-013-1500-6

Wu, Z.-C., Yang, Z.-Y., Li, J.-G., Chen, H.-B., Huang, X.-M., & Wang, H.-C. (2016). Methylninositol, gamma-aminobutyric acid and other health benefit compounds in the aril of litchi. International Journal of Food Sciences and Nutrition, 67(7), 762–772. doi:10.1080/09637486.2016.1198888

Xie, S.-W., Li, Y. T., Zhou, W. W., Tian, L. X., Li, Y. M., Zeng, S. L., & Liu, Y. J. (2015). Effect of γ-aminobutyric acid supplementation on growth performance, endocrine hormone and stress tolerance of juvenile Pacific white shrimp, Litopenaeus vannamei, fed low fishmeal diet. Aquaculture Nutrition, 23(1), 54–62. doi:10.1111/anu.12358

Xing, S. G., Jun, Y. B., Hau, Z. W., & Liang, L. Y. (2007). Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiology and Biochemistry, 45(8), 560–566. doi:10.1016/j.plaphy.2007.05.007

Xu, L., Chen, L., Ali, B., Yang, N., Chen, Y., Fengfeng, W., … Xueming, X. (2017). Impact of foliar application of nontoxical and physicochemical properties of adlay seed (Coixlachryma-jobi L.). Food Chemistry, 239, 312–318. doi:10.1016/j.foodchem.2017.02.096

Yang, N.-C., Zhou, K.-Y., & Tseng, C.-Y. (2012). Antihypertensive effect of mulberry leaf aqueous extract containing γ-aminobutyric acid in spontaneously hypertensive rats. Food Chemistry, 132(4), 1796–1801. doi:10.1016/j.foodchem.2011.11.143

Yang, R., Guo, Q., & Zhenxin, G. (2013). GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating faba bean (Vicia faba L.) under hypoxia. Food Chemistry, 136(1), 152–159. doi:10.1016/j.foodchem.2012.08.008

Yang, R., Peng Wang, M., Elbaloula, F., & Zhenxin, G. (2016). Effect of germination on main physiology and biochemistry metabolism of sorghum seeds. Bioscience Journal, 32(2), 378–383.

Yang, S. Y., Liu, F. X., Lu, Z. X., Bie, X. M., Jiao, Y., Sun, L. J., & Yu, B. (2008). Production of γ-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids, 34(3), 473–478. doi:10.1007/s00726-007-0544-x

Yates, R. A., & Taberner, P. V. (1975). Glutamic acid, GABA and their metabolising enzymes in the frog central nervous system. Brain Research, 84(3), 399–407. doi:10.1016/0006-8993(75)90761-1

Yeop, S. K., Ali, N. M., Yusof, H. M., Allthen, N. B., Beh, B. K., Ho, W. Y., … Long, K. (2012). Antihyperglycemic effects of fermented or nonfermented mung bean extracts on alloxan-induced diabetic mice. Journal of Biomedicine & Biotechnology. doi:10.1155/2012/285430

Yin, Y.-G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., … Matsukura, C. (2010). Metabolic alterations in organic acids and gamma-aminobutyric acid in developing tomato (Solanum lycopersicum L.) fruits. Plant and Cell Physiology, 51(8), 1300–1314. doi:10.1093/pcp/pcq090

Yokoyama, S., Hiramoto, J.-L., & Hoyakawa, K. (2002). Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering, 93(1), 95–97. doi:10.1263/jbb.93.95

Yong, J. W., Ge, L., Ng, Y. F., & Tan, S. N. (2009). The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules, 14(12), 5144–5164. doi:10.3390/molecules14125144

Yoo, S.-K., Kim, M.-J., Kim, J. W., & Rhee, S.-J. (2002). Effects of YK-209 mulberry leaves on disaccharidase activities of small intestine and blood glucose-lowering in streptozotocin-induced diabetic rats. Journal of the Korean Society of Food Science and Nutrition, 31, 1071–1077.

Yoon, Y.-E., Kuppasamy, S., Cho, K. M., Kim, P. J., Kwack, Y.-B., & Lee, Y. B. (2017). Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chemistry, 215, 185–192. doi:10.1016/j.foodchem.2016.07.167

Yoshida, D. (1961). Changes of free amino acid composition in tobacco leaves during the process of flue-curing. Plant and Cell Physiology, 2(2), 209–211.

Yoshimura, M., Tsyoshi, T., Sano, A., Izumi, T., Fujii, T., Konishi, C., … Obata, A. (2020). Antihypertensive effect of a gamma-aminobutyric acid tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 58(1), 615–619. doi:10.1021/acs.jafc.9b06077

Yu, Z., Zhang, Q., Kraus, T. E. C., Dahlgren, R. A., Anastasio, C., & Zasoski, R. J. (2002). Contribution of amino compounds to total dissolved organic nitrogen in forest soils. Biogeochemistry, 61(2), 173–198. doi:10.1023/ A1020221528515

Zachmann, M., Tocci, P., & Nyhan, W. L. (1966). The occurrence of γ-aminobutyric acid in human tissues other than brain. Journal of Biological Chemistry, 241(6), 1355–1358.

Zanoli, P., & Zavatti, M. (2008). Pharmacognostic and pharmacological profile of Humulus lupulus L. Journal of Ethnopharmacology, 116(3), 383–396. doi:10.1016/j.jep.2008.01.011

Zazzaroni, R., Homan, A., & Thain, E. (2009). Determination of gamma-Aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry. Journal of Chromatographic Science, 47(7), 564–568.

Zecca, L., Zambotti, F., Zonta, N., & Mantegazza, P. (1982). Determination of γ-aminobutyric acid in brain areas by high-performance liquid chromatography of dansyl derivatives with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications, 233(1), 307–312. doi:10.1016/S0378-4347(00)81758-2

Zeng, Y.-W., Juan, D., Yang, S.-M., Xiao-Ying, P., Wang, Y.-C., Yang, T.-Y., … Xin, P.-Y. (2013). The zonal characteristics and cultivated types difference of functional components in brown rice for core collection of Yunnan rice. Guan Gu Xue Yu Guang Pu Fen Xi, 30(12), 3388–3394.

Zhang, H., Wang, Z. Y., Yang, X., Zhao, H. T., Zhang, Y. C., Dong, A. J., … Wang, J. (2014). Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an amino acid analyzer and ICP-MS with micro-wave digestion. Food Chemistry, 147, 189–194. doi:10.1016/j.foodchem.2013.09.118

Zhang, L. L., Hu, P. S., Tang, S. Q., Zhao, H. J., & Wu, D. X. (2005). Comparative studies on major nutritional components of rice with a giant embryo and a normal embryo. Journal of Food Biochemistry, 29(6), 653–661. doi:10.1111/j.1745-4514.2005.00039.x

Zhang, M., Zou, X.-T., Li, H., Dong, X., & Zhao, W. (2011). Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Animal Science Journal, 82(3), 141–147. doi:10.1111/j.1740-0929.2011.00939.x
Zhang, Q., & Anastasio, C. (2003). Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. *Atmospheric Environment, 37*(16), 2247–2258. doi:10.1016/S1352-2310(03)00127-4

Zhang, Y., Pengmin, L., & Cheng, L. (2010). Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in 'Honeycrisp' apple flesh. *Food Chemistry, 123*(4), 1013–1018. doi:10.1016/j.foodchem.2010.05.053

Zhao, M., Yan, M., Dai, L.-L., Zhang, D.-L., Jia-Hua, L., Yuan, W.-X., ... Zhou, H.-J. (2013). A high-performance liquid chromatographic method for simultaneous determination of 21 free amino acids in tea. *Food Analytical Methods, 6*(1), 69–75. doi:10.1007/s12161-012-9408-4

Zhao, M., Yan, M., Wei, Z.-Z., Yuan, W.-X., Yo-Li, L., Zhang, C.-H., ... Zhou, H.-J. (2011). Determination and comparison of gamma-aminobutyric acid (GABA) content in Pu-erh and other types of Chinese tea. *Journal of Agricultural and Food Chemistry, 59*(8), 3641–3648. doi:10.1021/jf104601v

Zhao, Y., Shan, B., Tang, W., & Zhang, H. (2015). Nitrogen mineralization and geochemical characteristics of amino acids in surface sediments of a typical polluted area in the Haihe River Basin, China. *Environmental Science and Pollution Research, 22*(22), 17975–17986. doi:10.1007/s11356-015-4837-o

Zhigang, S., Sheikhhahmadi, A., & Li, Z. (2013). Effect of dietary γ-aminobutyric acid on performance parameters and some plasma metabolites in Cherry Valley ducks under high ambient temperature. *Iranian Journal of Veterinary Research, 14*(4), 283–290.

Zhou, M., Ndeurumio, K. H., Zhao, L., & Zhuoyan, H. (2016). Impact of precooling and controlled-atmosphere storage on gamma-aminobutyric acid (GABA) accumulation in longan (Dimocarpus longan lour.) fruit. *Journal of Agricultural and Food Chemistry, 64*(13), 6443–6450. doi:10.1021/acs.jafc.6b01738

Zhou, X., & Galligan, J. J. (2009). GABAA receptors on calbindin-immunoreactive myenteric neurons of guinea pig intestine. *Journal of the Autonomic Nervous System, 78*(2), 122–135. doi:10.1016/S0165-1838(09)00065-X

Zushi, K., & Matsuzoe, N. (2007). Salt stress-enhanced γ-Aminobutyric Acid (GABA) in tomato fruit. *Acta Horticulturae, 761*(99), 00065-X

Zushi, K., Matsuzoe, N., Yoshida, S., & Chikushi, J. (2005). Comparison of chemical composition contents of tomato fruit grown under water and salinity stresses. *Shokubutsu Kankyo Kogaku, 17*(3), 128–136. doi:10.2525/shita.17.128