Studies on the Mechanism of Electron Bifurcation Catalyzed by Electron Transferring Flavoprotein (Etf) and Butyryl-CoA Dehydrogenase (Bcd) of Acidaminococcus fermentans

Received for publication, September 24, 2013, and in revised form, December 20, 2013 Published, JBC Papers in Press, December 30, 2013, DOI 10.1074/jbc.M113.521013

Nilanjan Pal Chowdhury, H1, Amr M. Mowafy, H1, Julius K. Demmer, H1, Vikrant Upadhyay, H2, Sebastian Koelzer, H1, Elamparithi Jayamani, H3, Joerg Kahn, H1, Marco Hornung, H5, Ulrike Demmer, H1, Ulrich Ermel, H1, and Wolfgang Buckel

From the H1Laboratorium für Mikrobiologie, Fachbereich Biologie und SYNMIKRO, Philipps-Universität, 35032 Marburg, Germany, the H2Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany, the H3Faculty of Science, Mansoura University, Mansoura 35516, Egypt, and the H1Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany

Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfM) and butyryl-CoA dehydrogenase (BcdM) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfM contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isalloxazine rings is 18 Å. The EtfM-NAD+ complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH− is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH− by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD−, which donates this electron further to Dh-FAD via α-FAD and the other to ferredoxin. Repetition leads to reduction of crotonyl-CoA.

Significance: The mechanism can be extended to other bifurcating systems.

Electron bifurcation proposed by Peter Mitchell in 1976 (1) is the key event of the Q (ubiquinone)-cycle used by the bc1 complex to double the efficiency of the proton-motive process. In 2008, a second type of electron bifurcation was discovered that is based on flavin cofactors bound to a soluble cytoplasmic protein complex and not on ubiquinone used by the transmembrane bc1 complex (2, 3). This so-called flavin-based electron bifurcation, considered as a new mode of energy coupling, plays a crucial role in diverse energy-limited anaerobic organisms and is proposed to operate since the early evolution of life (4). So far, five such systems are experimentally established; for a recent review, see Ref. 5. The latest additions are caffeyl-CoA reductase of Acetobacterium woodii (6) and formate dehydrogenase of Clostridium acidifaciens (7). All enzyme complexes possess at least one flavin, either FAD or riboflavin 5′-phosphate, and catalyze the reduction of a low-potential ferredoxin. The functional understanding of these enzyme complexes allows an explanation of the bioenergetics of many fermenting bacteria, methanogens, and acetogens.

The best studied flavin-based electron bifurcating system is the electron transferring flavoprotein-butyryl-CoA dehydrogenase (Etf-Bcd)5 complex, which is a key enzyme in butyrate producing clostridia. This Etf-Bcd complex couples the exergonic reduction of crotonyl-CoA to butyryl-CoA (E′ θ = −10 mV) by NADH with the endergonic reduction of ferredoxin (Fd) also by oxidation of NADH to NAD+ (E′ θ = −320 mV). According to current knowledge, the electron pair of NADH is

* This work was supported by grants from the Max-Planck Society, the German Research Foundation (DFG), and SYNMIKRO of the Philipps-Universität Marburg.

The atomic coordinates and structure factors (codes 4L21, 4L24, and 4L1F) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 Both authors contributed equally to this work and are considered as first authors.

1 Present address: Dept. of Anesthesiology, Weill Cornell Medical College, 52 East St., NY, New York 10065.

3 Present address: Division of Infectious Diseases, MA General Hospital, Harvard Medical School, Boston, MA 02114.

4 To whom correspondence should be addressed: Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, 35032 Marburg, Germany. Tel.: 49-6421-2822088; Fax: 49-6421-2828979; E-mail: buckel@staff.uni-marburg.de.

5 The abbreviations used are: Etf, electron transferring flavoprotein; Etfα/Fd, Etf of A. fermentans; Etfα/H9251, Etf of M. elsdenii; Bcd, butyryl-CoA dehydrogenase; BcdH9251, Bcd of A. fermentans; Fd/Fd−, oxidized/semi-reduced/reduced ferredoxin; BisTris propane, 1,3-bis[tris(hydroxymethyl)methylamino]propane; Dh-FAD, dehydrogenase FAD.

Background: Flavin-based electron bifurcation explains the energy metabolism of anaerobic microorganisms.

Results: Kinetic, structural, and spectral data revealed a detailed picture of the bifurcation process.

Conclusion: NADH reduces β-FAD of Etf, which bifurcates one electron to Bcd via α-FAD and the other to ferredoxin. Repetition leads to reduction of crotonyl-CoA.

Significance: The mechanism can be extended to other bifurcating systems.
Mechanism of Electron Bifurcation

split at the two-electron acceptor and one-electron donor FAD; one electron reduces the Dh-FAD (dehydrogenase FAD) of Bcd and the other goes to ferredoxin (Fd−) characterized by a low redox potential (E0′ = −405 mV) (8). Repetition of this process leads to a second reduced ferredoxin and butyryl-CoA upon hydride transfer from FADH− of Bcd to crotonyl-CoA. The “energy-rich” reduced ferredoxin contributes to the energy conservation of the organism either by regeneration of NADH via the H+ /Na+ -pumping ferredoxin-NAD+ reductase also called Rnf (9–11) or by reduction of protons to H2, which increases the substrate-level phosphorylation via the oxidative branch of the fermentation.

To gain detailed mechanistic insights into electron bifurcation, we chose as a model EtfAf and BcdAp of the Gram-negative glutamate fermenting Acidaminococcus fermentans, in which Etf and Bcd are separate proteins (12), in contrast to the non-dissociable Etf-Bcd complexes of several clostridia. We solved the crystal structures of EtfAf and BcdAp and characterized the proteins further by biochemical, kinetic, and spectroscopic methods.

EXPERIMENTAL PROCEDURES

Crotonyl-CoA and Butyryl-CoA—Both were synthesized by acylation of CoASH in aqueous 1 m KHCO3 using 1 m crotonic anhydride or butyric anhydride in acetonitrile with a slight molar excess. After acidification the CoA-thioesters were purified on C18 columns and stored as lyophylized powders at −80 °C (13). The concentration of crotonyl-CoA was determined by the NAD+ -dependent β-oxidation to acetyl-CoA and acetate phosphate as described for the assay of glutaconyl-CoA decarboxylase (14). HPLC of crotonyl-CoA and butyryl-CoA was performed on a C18 Kinetex column (5-μm particle size, 100 Å pore size, 250 × 4.6 mm, Phenomenex, Aschaffenburg, Germany) at a flow rate of 1 ml/min in 50 mM KH2PO4, pH 5.3, and 5% acetonitrile. During 20 min a linear gradient up to 60% acetonitrile was applied. The ferricenium (Fc+) solution for the Bcd assay was prepared in 10 mM HCl to a final concentration of 2 mM set at 617 nm with ε617 = 0.41 mm−1 cm−1 (15).

Protein concentrations were estimated with the Bradford assay (16) (Bio-Rad-Microassay reagent, Bio-Rad-Laboratories). Bovine serum albumin (Sigma) served as standard. SDS-PAGE was performed as described by the method of Laemmli (17).

Purification of EtfAf—A. fermentans VR4 (DSM 20731) was grown in a 100-liter glutamate-yeast extract medium under anaerobic conditions at 37 °C (14). Wet packed cells (10 g) were suspended in 20 ml of 50 mM potassium phosphate, pH 7.0 (buffer A), and opened by three passages through a French press. The supernatant, obtained by centrifugation at 150,000 × g for 1 h at 4 °C was loaded on a DEAE column and fractionated with 10 column volumes of 0–100% 1 mM NaCl in buffer A. Etf eluted from the column at around 19% NaCl. The fractions with the highest activity (iodonitrotetrazolium chloride assay) were combined and dialyzed overnight against buffer A. The dialysate was concentrated by ultrafiltration and mixed with an equal volume of 3 M (NH4)2SO4 to make a final concentration of 1.5 M. This mixture was loaded on a phenyl-Sepharose column and fractionated with 10 column volumes of 0–100% 1.5 M (NH4)2SO4 in buffer A. The fractions eluting around 58% were run on SDS-PAGE, which showed both the subunits of EtfAf.

Heterologous Production of EtfAf—The genes Acfer_0555 (β-subunit) and Acfer_0556 (α-subunit) were cloned in this order as one fragment by applying the Stargate™ system according to the instructions of IBA, Göttingen, Germany. Genomic DNA of A. fermentans was used for PCR as template with the forward primer 5′-AGCTTCATAGAACATCGTTGTAT- GTGT-3′ and the reverse primer 5′-AAGCTTCAACCCGGG- ATCTTTGAAGCCTTGA-3′. The PCR product was cloned into the p-ENTRY vector and introduced into Escherichia coli DH5α by chemical transformation. After confirmation of the desired sequence, the genes were transferred from the donor vector to expression vector pASG IBA33 and further into E. coli BL21 (GroEL). The recombinant cells were cultivated in 4 liters of Standard I nutrient broth (Merck, Darmstadt, Germany) containing ampicillin (100 μg/ml) and chloramphenicol (34 μg/ml). When the A600nm was 0.5, both anhydrotetracycline (0.2 μg/ml) and 0.1 mM isoproplthiogalactoside were added to the culture medium to induce the overproduction of Etf and GroEL. The cultures were incubated at room temperature overnight. After harvesting, the cells (17 g wet mass) were suspended in 34 ml of 10 mM imidazole in 10 mM sodium phosphate, pH 7.4, and disrupted by passing the suspension three times through a French press cell at 140 megapascals. Cell debris was removed by centrifugation at 30,000 × g for 1 h and 4 °C to obtain 34 ml of cell extract containing 34 mg of protein/ml. The purification process was performed under oxic conditions at 4 °C. The supernatant was applied on a 20 ml of nickel-nitrirotiacetic acid column, which was equilibrated with buffer A. The recombinant protein was eluted with 500 mM NaCl and 150 mM imidazole in 10 mM sodium phosphate, pH 7.4. The purified protein was concentrated by ultrafiltration, washed with 50 mM potassium phosphate, pH 7.0, and stored at −80 °C.

The prosthetic group was quantitatively extracted with both trichloroacetic acid and heat denaturation of the protein and identified by thin layer chromatography on TLC plates (Silica Gel 60 F254) from Merck KGaA, Germany. The solvent system was n-butylic alcohol-acetic acid-water (4:3:3) (18). The titration of EtfAf with NADH was performed under anoxic conditions in 50 mM potassium phosphate, pH 7.0.

Purification of Butyryl-CoA Dehydrogenase (BcdAp)—The supernatant obtained by centrifugation at 150,000 × g (see purification of Etf) was saturated with ammonium sulfate to 60%. After centrifugation at 50,000 × g for 1 h at 4 °C, the clear supernatant was dialyzed against buffer A. The supernatant was then loaded on a DEAE-Sepharose column equilibrated with buffer A. After washing with this buffer, proteins were eluted by linear gradient from 0 to 1 mM NaCl in buffer A. The fractions containing green BcdAp were analyzed by SDS-PAGE. The purest fractions were collected, washed with buffer A by ultrafiltration, and stored at −80 °C.

The yellow form of BcdAp was prepared by adding a molar excess of solid dithionite to the solution in buffer A under anaerobic conditions. After standing on ice for 1 h the enzyme was desalted by passing through a PD10 column in anaerobic 0.1 M potassium phosphate, pH 6.8. Then the enzyme was washed three times under air with the same but aerobic buffer by ultrafiltration using Centricon 30 (19).
Partial Purification of Hydrogenase—Clostridium pasteurianum (DSM 525) was grown on a medium containing 100 mM glucose, 70 mM NaHCO₃, and yeast extract (2 g/liter). Wet packed cells (10 g) were suspended in 50 mM potassium phosphate, pH 7.4 (buffer B), and broken by three passages through a French press at 140 megapascal (20,000 p.s.i.). The broken cells were centrifuged at 7,000 × g for 20 min. The supernatant containing the hydrogenase (6 mg of protein/ml) was stored at −20 °C until use (20).

Purification of Ferredoxin—Clostridium tetanomorphum (DSM 526) was grown on the same medium as used for A. fermentans from which biotin was omitted. The purification was carried out under strictly anoxic conditions in an atmosphere of 95% N₂ and 5% H₂ (Coy Anaerobic Chamber). Wet packed cells from which biotin was omitted. The purification was performed with XDS (23). Phase determination is described in Table 1. Crystallization of the EtfAf-NAD⁺ complex was performed with REFMAC5 (26). Data quality and refinement statistics were listed in Table 1. Figs. 3–7 were generated with PyMOL (Schrödinger, LLC).

RESULTS AND DISCUSSION

Biochemical Characterization—To find out which of the two gene clusters encoding EtfAf are expressed under the conditions of glutamate fermentation by A. fermentans VR4 (DSM 20731) (27), the protein was purified from a cell-free extract, kinetically characterized by a formazane producing NADH-dependent assay (specific activity 2.5 units/mg of protein) (12) and analyzed by N-terminal sequencing and peptide mapping with MALDI-TOF mass spectrometry for gene identification. Accordingly, EtfAf was encoded by the genes Acfer_0556 and Acfer_0555, composed of 340 and 263 amino acids for subunits α and β, respectively.

To obtain EtfAf in higher amounts, we overproduced the enzyme with a C-terminal His tag at subunit α in E. coli. According to gel filtration, the pure protein (Fig. 1) is a heterodimer with a molecular mass of around 66 kDa (theoretically 37.6 ± 28.4 kDa). Non-covalently bound FAD (and not AMP and other flavins such as riboflavin, riboflavin-5'-phosphate or hydroxylated flavins (28)) was identified by HPLC and MALDI-TOF analysis. Quantitative analyses using UV-visible spectroscopy (ε₄₅₀ = 11.3 mm⁻¹ cm⁻¹) (29) revealed about 0.7 FAD/heterodimer, which could be raised to 2 upon incubation with 1 mM FAD, which agrees well with the structural data (see below). Thereby the specific activity of the EtfAf in the formazane assay increased 4-fold. Bcd of A. fermentans (Bcdₐβ) was purified (Fig. 1) as homotetrameric flavoprotein (4 × 42 kDa) with a specific
Mechanism of Electron Bifurcation

activity of 20 units/mg of protein (21). BcdAf is encoded by the Acre_1477 gene (acyl-CoA dehydrogenase, 383 amino acids).

Kinetic Characterization—Although EtfAf and BcdAf are stable under air, all the following experiments were performed in an anaerobic chamber under an atmosphere of 95% N₂ and 5% H₂, since ferredoxin and the reduced forms of flavin are oxygen sensitive. Incubation of catalytic amounts of EtfAf and BcdAf with NADH and crotonyl-CoA caused oxidation of NADH at the low rate of 0.01 units mg⁻¹ of Etf (units = μmol min⁻¹). However, upon addition of catalytic amounts of ferredoxin (1 μM) and hydrogenase the rate increased to 1.5 units mg⁻¹. The products of the reaction were besides NAD⁺, butyryl-CoA (determined by MALDI-TOF mass spectrometry and HPLC) and molecular hydrogen (determined by gas chromatography (3)). Hence, EtfAf + BcdAf catalyzed the reduction of crotonyl-CoA to butyryl-CoA coupled to the reduction of ferredoxin (Fd; Equation 1), whereby hydrogenase recycled the oxidized ferredoxin (Equation 2) resulting in Equation 3 (3).

Crotonyl-CoA + 2 NADH + 2 Fd⁻ → butyryl-CoA
+ 2 NAD⁺ + 2 Fd²⁻ (Eq. 1)

Crotonyl-CoA + 2 NADH + 2 H⁺ → butyryl-CoA
+ 2 NAD⁺ + H₂ (Eq. 3)

Omission of EtfAf, BcdAf, ferredoxin, or crotonyl-CoA gave no activity. No reaction was observed when NADH was replaced by NADPH or crotonyl-CoA by butyryl-CoA. The required stoichiometry of NADH+crotonyl-CoA = 2.1 ± 0.1 was measured (Fig. 2A) with a solution of the CoA thioester, whose concentration was calibrated by a coupled NAD-dependent assay using β-oxidation enzymes from A. fermentans (14). Because EtfAf and BcdAf are found as separated proteins in solution, a transient Bcd-Etf complex is sufficient to perform a bifurcation process.

Titration of EtfAf with BcdAf increased the rate of NADH oxidation until a molar ratio of 2 Etf:1 Bcd (tetramer) was reached (Fig. 2B). This optimal ratio agrees well with the molecular masses of the stable clostridial Bcd-Etf complexes of Clostridium kluyveri (3), Clostridium difficile (30), and C. tetanomorphum (31, 32) with compositions of Etf₁-Bcd(dimer) or Etf₂-Bcd(tetramer) (see also Fig. 5) (5).

The optimal ratio of ferredoxin:Etf tetramer:Bcd was determined to be 2:1:0.5 based on the titration of the EtfAf-BcdAf system with ferredoxin in the presence of hydrogenase (Fig. 2C). These data suggest that during steady state ferredoxin takes up only one electron and hands it over to the hydrogenase. Most likely the electron acceptor is the semi-reduced form (Fd⁻), which is completely reduced to Fd²⁻ (see Equations 1 and 2). This behavior agrees well with the different redox potentials of the A. fermentans ferredoxin (E₀' = -340 mV for Fd/Fd⁻ and -405 mV for Fd⁻/Fd²⁻) (8).

The dependence of the NADH oxidation rate on the concentration of crotonyl-CoA followed Michaelis-Menten kinetics, Kₘ = 12 μM. By increasing the NADH concentrations the rate passed through a maximum already at about 70 μM NADH (Fig. 2D). This inhibition suggests equilibration between the free proteins and their complex (Etfₐf + BcdAf ⇄ Etfₐf-BcdAf) whereby some of the free EtfAf gets fully reduced by NADH (see spectroscopic characterization) and cannot participate in electron bifurcation. In contrast, the tight non-dissociating bifurcating Etf-Bcd complex of C. difficile exhibits normal Michaelis-Menten kinetics for NADH, Kₘ = 145 μM (30).

Using stoichiometric amounts of ferredoxin (15 μM) in the absence of hydrogenase, identical spectra in the range of 400–500 nm were observed, regardless of whether the reduction was performed by dithionite or by NADH and crotonyl-CoA mediated by EtfAf-BcdAf (Fig. 2E). As demonstrated for other flavin-based electron bifurcating systems (5, 6, 30), ferredoxin reduction is almost 100% indicating a tight energetic coupling between ferredoxin and crotonyl-CoA reduction. Limiting amounts of crotonyl-CoA under these conditions resulted in the reduction of 1 mol of ferredoxin/mol of crotonyl-CoA; hence at equilibrium the completely oxidized Fd accepts two electrons, one by each [4Fe-4S] cluster. In contrast to flavodoxin (33) the fully oxidized and half-reduced ferredoxins absorb at the same wavelength and therefore cannot be distinguished spectroscopically.

Structural Characterization—The structural basis of FAD-based electron bifurcation requires information about (i) the proteins Etf containing α-FAD and β-FAD, and Bcd containing Dh-FAD, (ii) the complexes of Etf-NAD⁺, Etf-ferredoxin, and Etf-Bcd, as well as (iii) the electron transfer routes between the redox centers.

Overall Structure of EtfAf—Structural analysis of recombinantly produced EtfAf resulted in an R/Rfree factor of 16.1/19.1% at 1.6-Å resolution (see Table 1). As crystallization was performed under aerobic conditions without reducing agents, both FADs are oxidized. Architecturally, heterodimeric Etf is composed of three domains: domains I (5–199) and II (215–340) from subunit α and domain III (1–219) from subunit β (Fig. 3A). A comparison with the structurally related electron-accepting Efts (34–36) is presented in Fig. 3B. Domains I and III, essentially sharing the same fold (root mean square deviation of 4.6 Å; 208 Cα atoms used), consist of an α/β structure and a tightly associated β-meander. The polypeptides of subunits α and β proceed by strands 200:213 and 220:228 that enlarges the β-meander of the respective other subunit to a four-stranded antiparallel β-sheet. The major difference between domains I and III is an exposed β-hairpin-like segment following strand 2:7 of domain III (Fig. 3A). Domain II of subunit α is composed of a flavodoxin-like fold enlarged by a sixth strand and one helix from subunit β termed as the C-terminal arm (229–262) (Fig. 3A). Domains I and III are tightly associated (contact area of 4200 Å²). Domain II sits above this base in a shallow bowl and is hung up on opposite sides by the flexible linker connecting domains I and II (B-factor 210:213: >50 Å²) and the mentioned C-terminal arm of subunit β (Fig. 3A). Domains I + III and domain II are only loosely attached via a layer of solvent molecules mostly visible in the electron density at 1.6 Å but only by a few direct non-covalent polypeptide interactions.

α-FAD Binding—The completely occupied, non-covalently bound α-FAD is present in a stretched conformation (Fig. 4A) similar to that found in other Etf family members (34). The planar isoalloxazine ring embedded into a pocket at the domain
II-III interface is flanked from the re-face by Arg-α253 and Tyr-β40 and from the si-face by Gln-α269, Gln-α289, and His-α290 (Fig. 4A). In contrast to the other structurally characterized Efs, the guanidinium group of Arg-α253 is oriented coplanar to the isooxazines ring and interacts with subunit β via Tyr-β40, Asp-β182 (solvent-mediated) and via Arg-β173. Both gua-
Nidinium groups are stacked to each other (Fig. 4A). The N5 atom of the dihydropyrazine ring is completely shielded from bulk solvent and hydrogen bonded to Ser-H9251-OG. The N1-C2 group of the pyrimidine ring is hydrogen bonded to the 4'-OH of ribityl, Val-H9251, His-H9251, and Arg-H9251, respectively, the latter being positioned at the N-terminal end of helix 253:258. These interactions, well conserved in Etf (34–36) are considered a major structural feature to neutralize the negatively charged FAD$^+$ and FADH$^-$ states (Fig. 4A) reflected in high redox potentials of the FAD/FADH couple ($E_{0}^\circ = +81$ mV for Etf$_{Me}$) and in a weakened form also of the FAD/FADH couple ($E_{0}^\circ = -136$ mV for Etf$_{Me}$) (37, 38). The higher value of the latter couple is attributable to the unfavorable Ser-H9251-OG-N5(protonated) interactions. Etf$_{Me}$ is the Etf of M. elsdenii, a relative of A. fermentans, which also contains two FAD per heterodimer and shares 49% of its sequence with Etf$_{Af}$, the Etf of A. fermentans (39).

TABLE 1

Data set	Etf$_{Af}$	Etf$_{Af}$ (Hg edgea)	Etf$_{Af}$ + NAD$^+$	Bcd$_{Af}$
Crystallization Conditions	18% PEG 3350, 0.1 M Bistris propane, pH 7.5 1 mm FAD	18% PEG 3350, 0.1 M Bistris propane, pH 7.5 1 mm FAD	17% PEG 3350, 0.1 M Bistris propane, pH 7.5 1 mm FAD	225% PEG1500, 10% SPG buffer, pH 9.0
Protein concentration	20 mg/ml	20 mg/ml	20 mg/ml	15 mg/ml
Temperature	4 °C	4 °C	4 °C	4 °C
Soaking conditions	0.1 mM CH$_3$HgAc, 5 h			
Freezing conditions	+25% (w/v) glycerol	+25% (w/v) glycerol	+25% (w/v) glycerol	25% (v/v) 1,2-propanediol

Data collection

Wavelength (Å)	1.0	1.006	1.0	0.9999
Space group	P2$_1$2$_1$2$_1$	P2$_1$2$_1$2$_1$	P2$_1$2$_1$2$_1$	P2$_1$2$_1$2$_1$
Resolution range (Å)	80.2, 84.9, 106.7	78.2, 85.7, 106.6	79.5, 84.8, 106.4	109.1, 141.4, 64.1
Reduction	30.0-1.6	30.0-1.3	30.0-1.45	30.0-1.8
Completeness (%)	91.2 (91.8)	99.6 (99.8)	97.6 (96.4)	99.9 (100)
I/σ(I) (highest shell)	6.9 (48.8)	9.6 (150.9)	4.5 (63.5)	14.4 (78.8)

Refinement

Resolution limit (Å)	1.9-50.0	1.5-50.0	1.8-50.0	1.6-50.0
(highest shell)	1.6-1.4	1.4-1.49	1.8-1.84	1.6-1.4
Redundancy	16.1/19.1	15.1/20.8	15.3/18.3	24.5/37.5
Completeness (%)	26.4/28.1	25.7/37.5	22.0/25.2	24.5/37.5
Root mean square deviation bond lengths (Å)	0.020	2.36	1.11	2.93
Average B (Å2)	18.2	23.3	18.7	23.3

*Phase determination. Initial SIRAS phases were obtained from native Etf data and from measurements of a crystal soaked with CH$_3$HgAc using SHELXD (50), SHARP (51), and SOLOMON (52). After phase determination the model was built automatically at 2.5-Å resolution with PHENIX (53) supported by a model of human Etf that could be correctly placed into the unit cell and further improved at 1.6-Å resolution with ARP/WARP (54). Applied crystallization screens: JBScreen HTS I+II, pentaerythritol, PACT (JBS), JCSG Core Suite I–IV (Qiagen), and PGA (MDL).
sequence identity. Altogether, α-FAD is not attractive as bifurcating flavin due to the high redox potential and the accompanied weak reduction power.

β-FAD Binding—The 1.6-Å electron density of Etf$_{Am}$ revealed that the non-covalently bound β-FAD is also completely occupied but arranged in a compressed S-shaped conformation at the C-terminal side of the central β-sheet of domain III (Figs. 3A and 4B). The AMP binding mode of Etf$_{Am}$ corresponds to that of the other structurally characterized Efts (34) (Fig. 4B). The isoalloxazine ring protrudes beyond domain III toward domain I (Fig. 3A) with its nonpolar xylene ring being largely exposed to bulk solvent. The planar tricyclic ring is flanked from the si-face by Thr-225, Gly-β123, Arg-α146, and Ala-α148 and from the re-face by Ile-α157, Thr-β221, and Val-β223 (Fig. 4B). The pyrimidine ring of β-FAD and the polypeptide are hydrogen-bonded via N3 and Leu/H9251 groups of Asp-94:108. Interestingly, O2 is further contacted by the carboxylate of the isoalloxazine ring (Fig. 4B). Gly and Lys), which destabilizes a negatively charged state of the isoalloxazine ring. C, binding of NAD$^+$. The ADP part (in stick mode) of NAD$^+$ (carbons in green) is predominantly fixed by its contacts to β-FAD. The nicotinamide-ribose part (in line mode) is disordered but can be modeled to the nicotinamide-ribose in the conformation capable for hydride transfer and have to be displaced upon NADH binding. The electron density (in blue) is contoured at 1.5.

Mechanism of Electron Bifurcation

![Figure 4](image-url)

Structure of the Etf$_{Am}$-NAD$^+$ Complex—Binding of NAD$^+$ was characterized on the basis of an Etf$_{Am}$-NAD$^+$ structure at 1.5-Å resolution after co-crystallizing Etf$_{Am}$ and NAD$^+$ (Table 1). Its electron density only exhibits the ADP part, whereas the ribose-nicotinamide part is completely disordered (Fig. 4C). NAD$^+$ appears to be primarily fixed to its binding site by interactions with B-FAD. A hydrogen bond is formed between the 2’-OH of the AMP-ribose of NAD$^+$ and the ribitol hydroxyl groups of β-FAD. The diphosphate and ribose fraction of ADP is largely exposed to bulk solvent, whereas the adenine ring is sandwiched between the loops following strands 56:61 and 80:84. In agreement with the kinetic data, NADPH cannot replace NADH due to a collision between the 2’-phospho group and the protein scaffold.

Considering the ADP moiety as anchor point, the ribose-nicotinamide moiety can be reasonably modeled to the re-side of β-FAD in a stacking arrangement thereby underlining the biological relevance of the detected ADP as part of the NAD$^+$ binding site. C4 of the nicotinamide ring and N5 of the isoalloxazine ring can be approached to around 3.5 Å (Fig. 4C) but the ribose-nicotinamide part clashes with the side chains of Ile-β157, Val-β223, and Ser-β226. As demonstrated by spectroscopic characterizations (see next paragraph) NADH reduces β-FAD in the absence of ferredoxin or Bcd and consequently can displace them. This induced displacement by NADH of about 3 Å might significantly affect the conformation of the C-terminal arm of subunit β, the β-meander of subunit α (domain I), and the extended β-hairpin following strand 2:7 of domain III (Fig. 4C).

Structure of Bcd$_{Am}$—The Bcd$_{Am}$ structure was established at 1.9-Å resolution ($R/R_{free} = 15.3/18.3\%$) based on the M. elsdenii enzyme (24) as a model for molecular replacement calculations. The architecture of Bcd$_{Am}$ and Bcd of M. elsdenii corresponds to each other with a root mean square deviation of 0.6 Å (95% of the C$_\alpha$ atoms) and a sequence identity of 66%. Bcd$_{Am}$ is a homotetramer built up of a dimer of two tightly associated dimers (Fig. 5). Each subunit is composed of an amino-terminal α-helical bundle domain, a medial seven-stranded β-sheet domain, and a second α-helical domain at the carboxy terminus. Dh-FAD is embedded between the two latter domains and its conformation and polypeptide surrounding is virtually identical in the two enzymes. Although no substrate analog was supplemented to the Bcd$_{Am}$ solution, CoA persulfide (39) was bound to the re-side of the isoalloxazine ring.

Modeled Structures of the Etf$_{Am}$ Ferredoxin and Etf$_{Am}$ Bcd$_{Am}$ Complexes—The ferredoxin of C. acidi-urici (40) (the structure of the closely related ferredoxin of C. tetanomorphum used in this work is not known) can be docked to domain III of Etf in a manner that the proximal [4Fe-4S] cluster and the isoalloxazine
The Etf$_{Ad}$-Bcd$_{Ad}$ complex can be modeled (Fig. 5) on the basis of the MCAD-Etf (medium chain acyl-CoA dehydrogenase-Etf from Homo sapiens) complex structures (36, 41). After superposition of Etf$_{Ad}$ and Bcd$_{Ad}$ onto the MCAD-Etf complex, the distance between α-FAD of Etf$_{Ad}$ and Dh-FAD of Bcd$_{Ad}$ is more than 30 Å apart from each other. Therefore, a productive electron transfer requires a large-scale conformational change of domain II or a different Etf$_{Ad}$-Bcd$_{Ad}$ interface.

Electron Transfer between α-FAD and β-FAD—Based on the described findings, the one-electron transfer steps between α-FAD and Dh-FAD (42). Therefore, we suggest a reorientation of domain II analogous to that observed between human Etf in the isolated and in complex with MCAD (43). The distance between the two FAD can thus be shortened to about 10 Å.
β-FAD and α-FAD are a necessary prerequisite to explain the experimentally observed coupling between NADH oxidation at β-FAD and crotonyl-CoA reduction at Bcd mainly attached to domain II carrying α-FAD. However, the isoalloxazine rings of β-FAD and α-FAD have an edge-to-edge distance of 18 Å in the present EtfAf structure (Fig. 3A), which appears to be too long for an efficient electron transfer at biologically relevant rates (42). The EtfAf structure offers as solution a rigid-body movement of domain II relative to domains I + III, which reduces the distances between the isoalloxazine rings to about 14 Å (Fig. 7). These conformational changes are realistic because of the soft solvent-mediated domain II-(I + III) interface and their realization in the related Etf-MCAD and Etf-TMADH systems (36, 41). It might be triggered by productive NADH binding conveyed to domain II and/or by Bcd binding (43).

Spectroscopic Characterizations—The UV-visible absorption spectrum of recombinant EtfAf as isolated from E. coli containing 0.7 FAD/heterodimer is shown in Fig. 8. Upon overnight incubation at 4 °C with 1 mM FAD and removal of the excess FAD by gel filtration the spectrum changes to a much higher absorption of the two peaks at 375 and 450 nm and a less deep trough between the two peaks (Fig. 8). This reconstituted EtfAf contained 2 FAD/heterodimer. Stepwise addition of NADH in 2.0 µM amounts to 10 µM reconstituted EtfAf (occupied with 20 µM FAD) under anoxic conditions and in the absence of Bcd and ferredoxin (Fig. 9A) revealed a shift of the peak at 375 to 370 nm and a decrease of the 450 nm peak resulting in an equal intensity to the 370 nm peak (at 4–6 µM NADH). We attribute this 370 nm peak to a stable red anionic semiquinone (44). After addition of about 10 µM NADH the spectrum corresponds to a...
mixture of an oxidized and a reduced FAD. The unusual difference spectrum—oxidized half-reduced EtfAf with maxima at 400 and 450 nm is shown in Fig. 9B. Complete reduction of the FAD content was achieved at around 200 μM NADH (NADH/FAD = 1.0). Very similar spectra were recently reported from EtfMe (37, 38).

To remove the weakly bound FAD, the protein was mixed with an equal volume of 2 M KBr and washed in a Centricon (30 kDa cut off) two times with 1 M KBr, followed by 50 mM potassium phosphate, pH 6.8 (38). The KBr-treated Etf exhibited a spectrum with absorbance at 375 and 450 nm of only 50% of that of the reconstituted Etf. Hence one of the two FADs was completely removed. Furthermore, there was a deep trough between the two peaks, like that of free FAD. Notably, titration of the KBr-treated EtfAf (100 μM) with NADH indicated a progressive reduction of both peaks, without the transient formation of the anionic semiquinone. Complete reduction was achieved with 100 μM NADH.

In context of the structural results we concluded that EtfAf contained a strongly bound -FAD and a weakly bound -FAD. Removal of -FAD with KBr gave an Etf, whose -FAD was smoothly reduced by NADH to -FADH++ without semiquinone intermediate. Upon reduction of the reconstituted Etf (2

FIGURE 10. Proposed mechanism of the flavin-based electron bifurcation process of the Etf/Bcd system on a structural ground. The figure shows the Bcd dimers (green and gray and light green) interacting with Etf (light blue, domain I; medium blue, domain II; dark blue, domain III). We propose that domain II changes its position relative to domains I and III. The small rectangles depict FAD in the quinone state (yellow), anionic semiquinone state (red), neutral semiquinone state (light blue in Etf and dark blue in Bcd), and hydroquinone state (white). For the sake of simplicity addition of one electron to oxidized ferredoxin (brown) yields reduced ferredoxin (white). The cycle starts with A containing three oxidized FAD. Butyryl-CoA and reduced ferredoxin, the products of the last turnover, are exchanged by the substrates crotonyl-CoA and NADH. As soon as bound, NADH immediately reduces β-FAD to β-FADH++. The formed NAD++ is released and ferredoxin binds. Bifurcation concomitant with a conformational change of domain II yields β-FADH++ and α-FAD”, which swings to Dh-FAD (D-FAD) (C). Two one-electron transfers to ferredoxin and to Bcd end the first half of the cycle (D). Release of the first reduced ferredoxin and binding of the second NADH starts the second half of the cycle (E-F-A), the only difference being the action of Dh-FADH++ rather than Dh-FAD as electron acceptor in Bcd. After the second bifurcation and electron transfers to ferredoxin and Dh-FADH++, the second reduced ferredoxin and butyryl-CoA are formed. It should be noted that only the α-FAD” has been shown experimentally. The existence of the two neutral semiquinones, β-FADH++ and Dh-FADH++, remains to be established. Also the binding order of NADH, crotonyl-CoA, and ferredoxin is without experimental evidence.
FAD/Etf) by NADH, one electron of β-FADH− is further transferred to α-FAD yielding the stable anionic red semiquinone α-FADH− (44). The remaining electron on the presumably blue neutral semiquinone β-FADH+ is not observable at 590 nm (44). We postulate an immediate intermolecular oxidation of the unstable β-FADH+ by reducing α-FAD of another oxidized EtfmA molecule to α-FAD−. Hence, the intermolecular electron transfer from β-FADH+ to α-FAD should be faster than the intramolecular transfer of the second electron to α-FAD−. The observations that the maximum of the peak at 370 nm was already reached at 0.5 NADH/2 FAD and that both FAD are located at the surface of the EtfmA structure were compatible with an intermolecular electron transfer. Half-reduction of EtfmA and EtfMe (1 NADH/2 FAD) was interpreted as reduced α-FADH− and oxidized β-FAD (38), whereby the spectrum of α-FAD with a maximum at 400 nm turned out to be untypical for flavoproteins (Fig. 9B).

In the presence of 5 μM tetrameric BcdAf (20 μM Bcd subunit) and 10 μM EtfAf, the peak at 370 nm reached its maximum at a ratio of 1 NADH/Etf (Fig. 9C) in contrast to 0.5 NADH/Etf in the absence of Bcd. Moreover, the peak of α-FAD− at 370 nm rose much higher with than without BcdAf. Apparently, BcdAf binding (± crotonyl-CoA) to EtfAf increases the concentration of α-FAD− by suppressing its further reduction to α-FADH− to some extent and/or changes its surrounding. The rotation of domain II predicted on the basis of the presented structural data would increase the distance between β-FAD and α-FAD and turn α-FAD from an accessible to a more shielded position. This reorientation might also implicate a decrease of the extremely high redox potential $E'_{0} = +81$ mV of α-FAD/α-FAD− (for EtfMe) to ensure an electron transfer from α-FAD− to Dh-FAD and eventually to crotonyl-CoA ($E'_{0} = -10$ mV). An increased peak at 370 nm was also achieved by adding butyryl-CoA to EtfAf + BcdAf instead of NADH (Fig. 9D). Obviously electrons can also flow in the reverse direction generating α-FAD+. Thus, EtfAf can also act as an electron carrier like the AMP containing Etf. In a control experiment with Bcd alone no anionic semiquinone was observed (Fig. 9E).

The additional absorbance increase between 500 and 700 nm (Fig. 9, C–E) could be due to an extremely broad band of a neutral semiquinone in Bcd, although the absorption maximum at 590 nm (44) is missing. A similar featureless band was observed with the FAD-containing 4-hydroxybutyryl-CoA dehydratase after addition of the substrate crotonyl-CoA (45). Concomitantly, EPR spectroscopy detected the formation of a neutral semiquinone (46, 47). Reduction of the dehydratase by light or with dithionite, however, gave the “normal” spectrum of a semiquinone with a maximum at 590 nm.

Proposed Mechanism—The reaction starts with a hydride transfer from NADH to the re-side of β-FAD of EtfmA forming β-FADH− (Fig. 10, A and B). Taking the two-electron redox potential of −280 mV for β-FAD/β-FADH− (38), bifurcation could lead to estimated one-electron potentials downhill to α-FAD of about −60 mV and uphill to ferredoxin of about −500 mV. The one-electron transfer from β-FADH− to α-FAD is thermodynamically feasible and presumably requires a reorientation of domain II to reduce the distance between the two isoalloxazine rings from 18 to 14 Å (Fig. 7). Simultaneously or subsequently the remaining β-FADH+, whose redox potential has dropped to <−500 mV, donates the other electron to the nearby ferredoxin (Fig. 10, C and D). See Fig. 6 for the predicted proximity between its [4Fe-4S] cluster and the isoalloxazine of β-FAD.

This electron flow from β-FADH+ to ferredoxin is only accomplished if the thermodynamically more favorable electron transfer to α-FAD− is prevented. Therefore, after the first electron transfer to α-FAD, we postulate a rotation of domain II toward the FAD binding site of BcdAf based on spectroscopic and structural data. This conformational change, concomitantly, also reduces the distance between α-FAD− and Dh-FAD from about 30 to about 10 Å according to modeling studies with the determined EtfAf and BcdAf structures (Fig. 5) on the basis of the reported Etf-MCAD structure (41). Thus, α-FAD embedded into the weakly associated domain II serves as a shuttle between the electron-donating β-FADH+ and the electron-accepting Dh-FAD. How the shuttle process is coordinated remains open. According to the presented data and the well explored Etf/acyl-CoA dehydrogenase systems (48), Bcd binding but also productive NADH, ferredoxin, and crotonyl-CoA binding might trigger domain II rearrangement. Interestingly, the electron transfer between the semiquinone in the bifurcating bc complex to the low potential heme h_{b} is also ensured by an interruption of the second electron transfer between ubiquinone and the high potential [2Fe-2S] cluster because of a conformational change of the Rieske protein (49).

After reorientation of domain II, α-FAD− donates an electron to Dh-FAD forming presumably Dh-FADH+ (Fig. 10, C and D) (19). Repetition of this process affords a second reduced ferredoxin (Fd−) or Fd2− and the generated FADH− of Bcd transfers a hydride to crotonyl-CoA forming butyryl-CoA (Fig. 10, E–F–A).

The mechanism presented for flavin-based electron bifurcation in the EtfAf/BcdAf system can be extended to the other systems. Most likely, their flavin functions as β-FAD and the low-potential ferredoxin can be closely attached to it. Interestingly, in most cases α-FAD has been replaced by iron-sulfur clusters that should have potentials higher than that of ferredoxin and in the same range than that of the terminal high-potential electron acceptors. It might be difficult to tune a flavin in a way that it works in the other systems. The same arguments may explain the presence of the Rieske iron-sulfur cluster in the bifurcating b_{c} complex of the respiratory chain.

Acknowledgments—We thank Professor Rolf K. Thauer (MPI of terrestrial Microbiology) for helpful discussions, Professor Hartmut Michel (MPI of Biophysics) for continuous support, the Biochemisches Institut, Universität Giessen, for the determination of the N-terminal sequences of Etf, Yvonne Thießmann and Barbara Rathmann of the Core Center (MPI of Biophysics) for performing initial crystallization screenings and the staff of the Swiss-Light-Source, Villigen, for help during data collection, Dr. Seigo Shima (MPI of terrestrial Microbiology) for help in flavin identification. N. P. C. acknowledges Dr. Anuththaman Parthasarathy (Stanford University) and Dr. Ankan Banerjee (MPI of terrestrial Microbiology) for constant encouragement.
Mechanism of Electron Bifurcation

REFERENCES

1. Mitchell, P. (1975) The protonmotive Q cycle. A general formulation. FEBS Lett. 59, 137–139
2. Herrmann, G., Jayamani, E., Mai, G., and Buckel, W. (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol. 190, 794–791
3. Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W., and Thauer, R. K. (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluveri. J. Bacteriol. 190, 843–850
4. Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A., Allen, J. F., Lane, N., and Martin, W. F. (2013) Early bioenergetic evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130088
5. Buckel, W., and Thauer, R. K. (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na⁺ translocating ferredoxin oxidation. Biochim. Biophys. Acta 1827, 94–113
6. Bertsch, J., Parthasarathy, A., Buckel, W., and Müller, V. (2013) An electron-bifurcating cafFyl-CoA reductase. J. Biol. Chem. 288, 11304–11311
7. Wang, S., Huang, H., Kaht, J., and Thauer, R. K. (2013) Clostridium acidurici electron-bifurcating formate dehydrogenase. Appl. Environ. Microbiol. 79, 6176–6179
8. Thamer, W., Cirpus, I., Hans, M., Pierik, A. J., Selmer, T., Bill, E., Linder, D., and Buckel, W. (2003) A two [Fe4S-4] cluster-containing ferredoxin as an alternative electron donor for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Arch. Microbiol. 179, 197–204
9. Boiangiu, C. D., Jayamani, E., Brügel, D., Herrmann, G., Kim, J., Forzi, L., Hedderich, R., Vgenopoulou, I., Pierik, A. J., Steuber, J., and Buckel, W. (2005) Sodium ion pumps and hydrogen production in glutamate-fermenting anaerobic bacteria. J. Mol. Microbiol. Biotechnol. 10, 105–119
10. Biegl, E., and Müller, V. (2010) Bacterial Na⁺-translocating ferredoxin: NAD⁺ oxidoreductase. Proc. Natl. Acad. Sci. U.S.A. 107, 18138–18142
11. Imkamp, F., Biegl, E., Jayamani, E., Buckel, W., and Müller, V. (2007) Dissection of the caffeate respiratory chain in the acetogen Acidobacterium woodii. Identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J. Bacteriol. 189, 8145–8153
12. Wohlfarth, G., and Buckel, W. (1985) A sodium ion gradient as energy source for Peptostreptococcus asaccharolyticus. Arch. Microbiol. 142, 128–135
13. Parthasarathy, A., Pierik, A. J., Kaht, J., Zelder, O., and Buckel, W. (2011) Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum. Toward a Bio-based production of adipic acid. Biochemistry 50, 3540–3550
14. Buckel, W. (1986) Biotin-dependent decarboxylases as bacterial sodium pumps. Purification and reconstitution of glutamate translocator pathways. Ph.D. thesis, Philipps-Universität, Marburg, Germany
15. Hans, M., Bill, E., Cirpus, I., Pierik, A. J., Hetzel, M., Alber, D., and Buckel, W. (2002) Adenosine triphosphate-induced electron transfer in 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. Biochemistry 41, 5873–5882
16. Roberts, D. L., Freeman, F. E., and Kim, J. J. (1996) Three-dimensional structure of human electron transfer flavoprotein from Peptostreptococcus elsdenii. J. Biol. Chem. 271, 2163–2171
17. Schlegel, P. F., Lane, N., and Martin, W. F. (2013) Early bioenergetic evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130088
18. Dawson, R. M. C., Elliott, D. C., Elliott, H. C., and Jones, K. M. (1986) Data for Biochemical Research, 3rd Ed., Clarendon Press, Oxford
19. Williamson, G., Engel, P. C., Mizzer, J. P., Thorpe, C., and Massey, V. (1971) Purification and properties of hydroxyl butyryl-CoA dehydrogenase/Etf complex from Clostridium kluveri. Biochemistry 10, 14355–14360
20. Roberts, D. L., Salazar, D., Fulmer, J. P., Freeman, F. E., and Kim, J. J. (1999) Crystal structure of Paracoccus denitrificans electron transfer flavoprotein. Structural and electrostatic analysis of a conserved flavin binding domain. Biochemistry 38, 1977–1989
21. Leys, D., Basran, J., Talfournier, F., Sutcliffe, M. J., and Scronut, N. S. (2003) Extensive conformational sampling in a ternary electron transfer complex. Nat. Struct. Biol. 10, 219–225
22. Sato, K., Nishina, Y., and Shiga, K. (2003) Purification of electron-transferring flavoprotein from Megasphaera elsdenii and binding of additional FAD with an unusual absorption spectrum. J. Biochem. 134, 719–729
23. Sato, K., Nishina, Y., and Shiga, K. (2013) Interaction between NADH and electron-transferring flavoprotein from Megasphaera elsdenii. J. Biochem. 153, 565–572
24. Williamson, G., Engel, P. C., Mizer, J. P., Thorpe, C., and Massey, V. (1982) Evidence that the greening ligand in native butyryl-CoA dehydrogenase is a CoA persulphide. J. Biol. Chem. 257, 4314–4320
25. Murthy, H. M., Hendrickson, W. A., Orme-Johnson, W. H., Merritt, E. A., and Phizackerley, R. P. (1988) Crystal structure of Clostridium aciditurstici ferredoxin at 5 Å resolution based on measurements of anomalous X-ray scattering at multiple wavelengths. J. Biol. Chem. 263, 18430–18436
26. Toogood, H. S., van Thiel, A., Basran, J., Sutcliffe, M. J., Scronut, N. S., and Leys, D. (2004) Extensive domain motion and electron transfer in the human electron transferring flavoprotein/medium chain acyl-CoA dehydrogenase complex. J. Biol. Chem. 279, 32904–32912
27. Toogood, H. S., van Thiel, A., Scronut, N. S., and Leys, D. (2005) Stabili-
zation of non-productive conformations underpins rapid electron transfer to electron-transferring flavoprotein. *J. Biol. Chem.* **280**, 30361–30366

44. Massey, V., and Palmer, G. (1966) On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. *Biochemistry* **5**, 3181–3189

45. Mühl, U., Cinkaya, I., Albracht, S. P., and Buckel, W. (1996) 4-Hydroxybutyryl-CoA dehydratase from *Clostridium aminobutyricum*. Characterization of FAD and iron-sulfur clusters involved in an overall non-redox reaction. *Biochemistry* **35**, 11710–11718

46. Cinkaya, I., Buckel, W., Medina, M., Gomez-Moreno, C., and Cammack, R. (1997) Electron-nuclear double resonance spectroscopy investigation of 4-hydroxybutyryl-CoA dehydratase from *Clostridium aminobutyricum*. Comparison with other flavin radical enzymes. *Biol. Chem.* **378**, 843–849

47. Näser, U., Pierik, A. J., Scott, R., Cinkaya, I., Buckel, W., and Golding, B. T. (2005) Synthesis of 13C-labeled γ-hydroxybutyrates for EPR studies with 4-hydroxybutyryl-CoA dehydratase. *Bioorg. Chem.* **33**, 53–66

48. Toogood, H. S., Leys, D., and Scrutton, N. S. (2007) Dynamics driving function. New insights from electron transferring flavoproteins and partner complexes. *FEBS J.* **274**, 5481–5504

49. Zhu, J., Egawa, T., Yeh, S. R., Yu, L., and Yu, C. A. (2007) Simultaneous reduction of iron-sulfur protein and cytochrome b$_1$ during ubiquinol oxidation in cytochrome bc$_1$ complex. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 4864–4869

50. Sheldrick, G. M. (2008) A short history of SHELX. *Acta Crystallogr. A* **64**, 112–122

51. De la Fortelle, E., and Bricogne, G. (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphus replacement and multiwavelength anomalous diffraction method. In *Methods of Enzymology* (Carter, C. W., ed.) Vol. 276, pp. 472–494, Academic Press, San Diego

52. Abrahams, J. P., and Leslie, A. G. (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. *Acta Crystallogr. D Biol. Crystallogr.* **52**, 30–42

53. Afonine, P. V., Grosse-Kunstleve, R. W., Chen, V. B., Headd, J. J., Moriarty, N. W., Richardson, D. C., Richardson, D. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D. (2010) phenix.model_vs_data. A high-level tool for the calculation of crystallographic model and data statistics. *J. Appl. Crystallogr.* **43**, 669–676

54. Langer, G., Cohen, S. X., Lamzin, V. S., and Perrakis, A. (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. *Nat. Protoc.* **3**, 1171–1179