High plasma renin activity associates with obesity-related diabetes and arterial hypertension, and predicts persistent hypertension after bariatric surgery

Lucia La Sala1*, Elena Tagliabue2, Elaine Vieira3, Antonio E Pontiroli4* and Franco Folli4,5

Abstract

Background: Information about the renin–angiotensin–aldosterone system (RAAS) in obese individuals before and after bariatric surgery is scarce. Aim of this study was to analyze the RAAS in severely obese subjects, in relation to anthropometric and metabolic variables, with special reference to glucose tolerance.

Methods: 239 subjects were evaluated at baseline, and 181 one year after bariatric surgery [laparoscopic gastric banding (LAGB)].

Results: At baseline, renin (plasma renin activity, PRA) was increased from normal to glucose tolerance and more in diabetes, also correlating with ferritin. After LAGB, the decrease of PRA and aldosterone was significant in hypertensive, but not in normotensive subjects, and correlated with decrease of ferritin. PRA and glucose levels were predictive of persistent hypertension 1 year after LAGB.

Conclusions: These data support the role of RAAS in the pathophysiology of glucose homeostasis, and in the regulation of blood pressure in obesity. Ferritin, as a proxy of subclinical inflammation, could be another factor contributing to the cross-talk between RAAS and glucose metabolism.

Keywords: Renin, Aldosterone, Diabetes, HOMA index, Hypertension, Obesity, Weight loss, Bariatric surgery, Laparoscopic gastric banding (LAGB), Ferritin

Introduction

Arterial hypertension is a major risk factor for all cardiovascular diseases (CVD), including coronary heart disease (CHD), stroke, atrial fibrillation, heart failure (HF), aortic and peripheral arterial disease, and valvular heart disease [1]. Individuals with hypertension have a two- to threefold increased risk for all CVD events combined, as compared with non-hypertensive individuals [2]. The association between obesity and hypertension was shown prospectively in the Framingham Heart Study in the 1960s, when peripheral resistance was seen in obese hypertensive patients compared with normotensive obese patients [3].

Many factors are implicated in the link of central obesity with pathogenesis of hypertension, such as overactivation of the sympathetic nervous system (SNS) by insulin also present in obese patients [4], leptin, activation of the renin–angiotensin–aldosterone system (RAAS), sodium excretion, pressure natriuresis, and salt sensitivity [5, 6].
As the prevalence of obesity increases, also its co-
morbidities [arterial hypertension, sleep apnea, impaired
glucose tolerance (IGT) type 2 diabetes (T2D) with their
associated cardiovascular (CV) risk], will increase as
well. These co-morbidities are probably inter-related,
due to hyperleptinemia and leptin resistance, oxidative
stress, sub-clinical inflammation, endothelial dysfunc-
tion, sympathetic activation, insulin resistance (IR), and
overactivation of RAAS [7]. In contrast, there are no data
on the interplay between glucose tolerance and RAAS in
obesity, in spite of the known cross-talk between insulin
resistance and RAAS [8, 9].

Weight loss, obtained with diet alone, or in combina-
tion with pharmacological treatment, or bariatric sur-
gery (BS), improves several metabolic variables and
reduces arterial blood pressure [10, 11], preventing the
appearance of T2D [12, 13] and of arterial hypertension
[10]; in addition, BS, compared with medical treatment,
improves quality of life and life expectancy [14, 15] and
is cost-effective in the management of obesity [16, 17].
Most abnormalities improve after weight loss, and the
evidences that these changes are related to each other
and mainly with loss of abdominal fat are known [18].
Although previous data supported the benefits of lapa-
roscopic gastric banding (LAGB) in greatly reducing risk
factors for cardiovascular disease [19], the mechanisms
through which weight reduction decreases the cardiovas-
cular risk are not well established. There are some reports
showing that weight loss, obtained through BS, reduces
blood pressure, aldosterone (ALD) and renin plasma lev-
els in hypertensive subjects, not in normotensive subjects
[20]. It is well known that ALD affects glucose metabo-
lism homeostasis and its high levels may increase the
risk for diabetes mellitus (MESA, Multiethnic Study of
Atherosclerosis) [21]. The pharmacological modulation
of RAAS might be helpful in lowering the risk of appear-
ance of diabetes and of hypertension [22, 23].

The first aim of this study was to analyze RAAS in
obese subjects, candidate for BS, and to correlate RAAS
with anthropometric and metabolic variables, especially
with glucose tolerance. The second aim of this study was
to analyze changes of basal components of RAAS sys-
tem, of glucose metabolism, and of insulin sensitivity in
obese subjects after bariatric surgery; the third aim was
to develop predictive models of persistence of diabetes
and of hypertension in spite of weight loss.

Subjects and methods

239 obese subjects (43 men and 196 women, aged
40.6 ± 10.4 years, baseline BMI 44.5 ± 6.4 kg/m²), can-
didates for LAGB, were included in the study; all subjects
gave written informed consent following the common
protocol already described [24] approved by the local
Ethics Committee, and were studied as in-patients under
standardized conditions. All evaluations were performed
at 30–45 days before intervention. Height, weight and
waist circumference were measured in all subjects.
Except for 6 patients with a pre-existing diagnosis of
diabetes, diagnosis of was done by oral glucose toler-
ance test (OGTT) on fasting and/or 2-h plasma glucose
[24]. Blood pressure was measured with an appropriate
cuff three times in resting conditions in supine position,
and the average of the second two readings was recorded.
Hypertension was defined as systolic blood pressure
(SBP) > 140 mmHg and/or diastolic pressure (DBP) > 90
mmHg [25] or current treatment with anti-hypertensive
drugs (three patients). Supine (after 2 h in lying position)
and upright (2 h after standing) plasma renin activity
(PRA) and ALD, fasting plasma glucose (FPG), insulin,
HbA1c, lipid profile, sodium and potassium electroly-
tes, ferritin, and creatinine were evaluated at 8.00 am
under fasting conditions. The HOMA index (HOMA-IR)
was also calculated [26]. Secondary hypertension was
excluded on the basis of clinical and instrumental diag-
nosis; in particular, subjects with an elevated upright
ALD/PRA ratio [27] underwent further investigation to
rule out primary hyperaldosteronism, and were excluded
from the study. Urinary cortisol levels were also assayed
[28, 29]. All subjects underwent LAGB, and 181 of them
could be analyzed 12 months after surgery. The post-surg-
dery diet has already been described [24].

Biochemical and hormonal assays

PRA and ALD were measured by radioimmunoassay
(RIA) methods (DiaSorin, Vercelli, Italy, and Medical-
System SpA, Genova, Italy, respectively). Serum elec-
trolytes, blood glucose, insulin, creatinine, HbA1c, total and
HDL cholesterol, triglycerides, leptin, ferritin, iron, and
transferrin were evaluated as already indicated [24, 30,
31]. Urinary free cortisol levels were measured by immu-
nologic chemiluminescent assay (Advia Centaur Bayer,
BAYER- Diagnostics). All measurements were carried
out in the same laboratory; intra- and inter-assay coeffi-
cients of variation (CVs) for insulin, PRA, and ALD assay
were 3.0–5.0%, 3.6–6.1%, and 3.3–5.6%, respectively.

Statistical analysis

Data are presented as mean ± SD or as frequencies. Sub-
jects were divided into normal glucose tolerance (NGT),
impaired glucose tolerance (IGT) and T2D. Intrasubject
changes between baseline and after 12 months from
LAGB were analyzed by paired t test or non-parametric
Wilcoxon signed rank test, as appropriate. Since a nor-
mal distribution of data was not assured, data were com-
pared in the glucose tolerance groups by non-parametric
Kruskal–Wallis test followed by Bonferroni adjustment
for multiple comparisons. Normotensive and hypertensive were compared by non-parametric Wilcoxon test. Correlation between baseline PRA levels and other collected variables was evaluated. Multivariable regression analysis was performed for some outcomes, with models including significant variables at univariate analysis.

Modeling

Logistic modeling for the persistence of diabetes after LAGB was calculated by taking into account variables significantly associated with diabetes at 1 year. Logistic regression models for the association between hypertension at 12 months after LAGB and PRA, adjusted for glycemic parameters or groups were implemented and correspondent receiver operating characteristic (ROC) curves, with AUC (area under the ROC curve), were drawn. Based on the logistic model, a nomogram was built to predict the probability to have persistence of arterial hypertension at 1 year after BS, in spite of weight loss. p less than 0.05 were considered statistically significant; for multiple comparisons, a p value < 0.0167 was considered statistically significant. All statistical analyses were performed with SAS Software v 9.4 (SAS Institute Inc., Cary, NC, USA) or STATA12 for Macintosh (Stata Corporation, College Station, TX).

Results

Baseline conditions

At baseline NGT subjects were younger than IGT and T2DM subjects, without differences in sex proportion and BMI among groups. Triglycerides were different among the three groups; in addition, diastolic BP, ferritin were higher for T2D than IGT and NGT, and HDL-cholesterol were lower; the frequency of hypertensive subjects was higher for IGT and T2D than NGT. Transferrin, iron, and albumin did not differ among the three groups. There was a trend towards increased supine PRA between NGT, IGT and T2D, although not significant (Table 1).

Table 2 shows that hypertensive subjects (n=70) were older, with higher BP and supine PRA than normotensive subjects (n=169). In addition, for waist circumference, total cholesterol, triglycerides, ferritin, uric acid and glycemic parameters except that insulin, differences were significant between normotensive and hypertensive subjects. Baseline supine PRA levels were significantly correlated with age, glycemic parameters, leptin, ferritin, calcium, sodium, ALD and uric acid (Table 3). Reverse associations were also calculated; HOMA-IR, FPG and 1hPPg and 2hPPG correlated with ferritin. At multivariate analysis, glucose tolerance, blood glucose, HOMA-IR, and ferritin were predictors of supine and upright PRA; age and supine PRA were predictors of supine ALD, and age, upright PRA and blood glucose were predictors of upright ALD (results not shown).

Effects of surgery

In subjects re-evaluated one year after BS, all changes observed were as expected. Subjects re-evaluated after one year differed from subjects lost to follow-up only for age (41.96±10.13 vs. 36.30±9.96 year, p=0.0002), not for any other variable (data not shown). Weight, BMI, waist circumference, glycemic parameters, triglycerides and BP significantly decreased after LAGB (Table 4). Also supine PRA (Table 4; Fig. 1), supine ALD and ferritin significantly decreased after bariatric BS. Particularly, weight, BMI, waist circumference and glycemic parameters decreased in a similar manner in NGT, IGT, and T2DM subjects (Table 5). Triglycerides, HDL and BP significantly improve after LAGB in all groups, except for SBP and DBP that did not change in IGT subjects. Generally, NGT was the group in which changes after BS were most evident, including hypertension. Metabolic and glycemic parameters significantly decreased after LAGB in both normotensive and hypertensive subjects (Table 6). Also HDL, triglycerides, BP and ferritin improved after intervention, but transferrin, iron and albumin did not vary. Particularly, hypertensive subjects were those with the greatest changes. Supine PRA and ALD only significantly decreased in hypertensive subjects, not in normotensive subjects. Both glucose tolerance and frequency of hypertension improved after surgery, but a few patients required de-novo treatment of hypertension. At multivariable analysis, decrease of supine PRA and of upright PRA was predicted by decrease of ferritin; decrease of both supine and upright ALD was predicted by decrease of waist circumference (data not shown).

Modelling

The only predictor of diabetes 1 year after BS was represented by fasting blood glucose (or 1hPPG or 2hPPG) or glucose tolerance at baseline. Of the patients with hypertension at 1 year after LAGB, 29 were hypertensive at baseline and 2 became hypertensive during the follow-up. Association between hypertension at 12 months from LAGB and baseline supine PRA was evaluated by three logistic regression models in which supine PRA was adjusted either by glucose tolerance groups, FPG and 2hPG (Model 1, Model 2 and Model 3, respectively—Table 7). Increase in supine PRA levels was associated with probability of hypertension at 12 months, which ranged from 47 to 63%, for each ng/ml/h of PRA increase. In Model 1, IGT subjects had 3.60 times probability to be hypertensive at 12 months after surgery as compared with NGT. That probability increased for T2D if compared with NGT (OR: 4.85; 95% CI 1.15–20.56).
Model 2 and 3 showed that for each mg/dl increase of FPG or 2hPG, the probability of hypertension at 12 months after LAGB increased of 2 and 1%, respectively. Figure 2 shows ROC curves and AUC for each logistic model. The nomogram based on Model 2 is a useful tool to predicted probability hypertension at 12 months from BS basing on subject characteristics. For instance, a subject with supine PRA=5.0 ng/ml/h and FPG=250 mg/dl has about 90% risk of hypertension at 1 year, despite weight loss (Fig. 3).

Discussion

In this study, in obese subjects undergoing bariatric surgery, supine PRA was higher in hypertensive than in normotensive subjects, and progressively higher in normal glucose tolerance, impaired glucose tolerance, and diabetes. Before BS, supine PRA correlated with HOMA-IR, and both PRA and HOMA-IR correlated with ferritin. Interestingly, decrease of supine PRA at 12 months after LAGB only occurred in hypertensive subjects, as previously reported, with no difference among groups.
of glucose tolerance. Also, decrease of supine PRA correlated with decrease of HOMA-IR and with decrease of ferritin, suggesting that changes of ferritin are pivotal to change of HOMA-IR and of supine PRA. Similar, albeit less significant, was the behavior of upright PRA, and of both supine and upright aldosterone. Obese individuals frequently develop hypertension, which is largely attributable to RAAS overactivity [6]. Logistic modeling demonstrated that glucose tolerance (or FPG or 2hPG) and PRA are predictors of persistent hypertension at 1 year after BS; a nomogram was derived with probabilities of persistent hypertension based on FPG and PRA at baseline. These results also point to a contribution of ferritin in the interplay between the RAAS and insulin sensitivity. However, there are other aspects that deserve consideration in this possible interplay. For instance, BS is also accompanied by reduced sub-clinical inflammation (not evaluated in this study); studies have shown decrease of inflammatory markers after BS [32], and ferritin is considered also a marker of inflammation [33]. In this study, changes in ferritin levels among NGT, IGT, and DM were not accompanied by changes in transferrin, iron, and albumin. We should not forget the possible role of the hypothalamic-pituitary-adrenal axis in obese individuals [34–36]; in this study, free urinary cortisol was also decreased after BS. Our results are consistent with the demonstrated existence of active cross-talks between angiotensin II and insulin signaling, as well as a role of sub inflammation in contributing to insulin resistance in obese hypertensive subjects [37–41]. Further studies are required for a full comprehension of the interplay between RAAS and insulin sensitivity in obese individuals. The possible role of PRA in the characterization of metabolic phenotype of “remitted obese” is supported by investigations on mice lacking renin (Ren1c), a strain

Table 2	Baseline details of all subjects in the study divided by hypertension		
	Normotensive	Hypertensive	p*
N (M/W)	169	70	
Age (yr)	38.2 ± 9.7	46.4 ± 9.7	< 0.0001
Weight (kg)	117.7 ± 19.2	122.7 ± 21.7	0.1454
BMI (kg/m²)	44.0 ± 6.2	45.8 ± 6.8	0.0687
Waist circumference (cm)	120.3 ± 13.5	127.0 ± 13.7	0.0005
FPG (mg/dl)	103.1 ± 23.9	126.6 ± 55.8	< 0.0001
1hPG (mg/dl)	175.1 ± 55.8	2224 ± 99.7	0.0006
2hPG (mg/dl)	136.3 ± 52.8	1776 ± 93.4	0.0004
Insulin (µU/ml)	19.3 ± 13.2	19.0 ± 9.0	0.3967
HOMA-IR	5.0 ± 4.0	6.1 ± 4.3	0.0240
HbA1c (%)	6.8 ± 0.9	6.7 ± 1.4	< 0.0001
Glucose tolerance (NGT/IGT/T2D)	110/42/17	29/24/17	0.0019
Total cholesterol (mg/dl)	199 ± 40.5	215.5 ± 42.1	0.0025
HDL-cholesterol (mg/dl)	48.3 ± 14.3	47.6 ± 13.2	0.7593
Triglycerides (mg/dl)	137.7 ± 72.2	174.0 ± 100.5	0.0046
Systolic BP (mmHg)	126.2 ± 9.0	143.3 ± 17.9	< 0.0001
Diastolic BP (mmHg)	79.7 ± 6.6	89.5 ± 10.0	< 0.0001
Creatinine (mg/dl)	0.7 ± 0.1	0.7 ± 0.2	0.1204
Leptin (ng/ml)	40.1 ± 19.4	38.6 ± 21.9	0.4670
Ferritin (ng/ml)	76.5 ± 83.6	135.6 ± 140.6	0.0004
Transferrin (mg/l)	2.8 ± 0.5	2.6 ± 0.5	0.0637
Iron (µg/dl)	82.1 ± 33.7	82.8 ± 25.3	0.8775
Albumin (g/l)	57.7 ± 4.23	58.3 ± 4.7	0.3213
Calcium (mmol/l)	2.3 ± 0.1	2.4 ± 0.1	0.1770
Sodium (mmol/l)	140.6 ± 2.5	140.3 ± 2.3	0.5040
Supine PRA (ng/ml/h)	1.7 ± 3.0	4.1 ± 6.9	0.0159
Upright PRA (ng/ml/h)	3.0 ± 4.1	6.9 ± 10.9	0.1200
Supine ALD (ng/dl)	3.3 ± 2.2	3.5 ± 3.1	0.6808
Upright ALD (ng/dl)	7.9 ± 4.5	9.0 ± 6.5	0.4968
Upright ALD/PRA	4.8 ± 5.1	5.9 ± 10.6	0.0644
Urinary cortisol (ng/24 h)	113.8 ± 45.8	115.1 ± 47.3	0.8875
Uric acid (mg/dl)	5.0 ± 1.2	5.5 ± 1.2	0.0022
Hypoglycemic therapy*	0.2 ± 0.4	0.4 ± 0.4	0.0176

BMI, body mass index; FPG, fasting plasma glucose; 1hPG, 1-hour plasma glucose; 2hPG, 2-hour plasma glucose; NGT, normal glucose tolerance; IGT, impaired glucose tolerance; T2D, type 2 diabetes; BP, blood pressure; PRA, plasma renin activity; ALD, aldosterone.

*Non-parametric Wilcoxon test

Table 3	Correlations between baseline characteristics and supine renin activity		
N	Rho	p	
Age (yr)	225	0.14707	0.0274
FPG (mg/dl)	219	0.39719	< 0.0001
1hPG (mg/dl)	217	0.32632	< 0.0001
2hPG (mg/dl)	216	0.29338	< 0.0001
HOMA-IR	217	0.20082	0.0032
HbA1c (%)	217	0.37418	< 0.0001
Leptin (ng/ml)	50	0.29842	0.0353
Ferritin (ng/ml)	218	0.25217	0.0004
Calcium (mmol/L)	192	0.21115	0.0033
Sodium (mmol/l)	225	−0.21633	0.0011
Upright PRA (ng/ml/h)	224	0.85927	< 0.0001
Supine ALD (ng/dl)	216	0.23005	0.0007
Upright ALD (ng/dl)	216	0.26412	< 0.0001
Upright ALD/PRA	215	−0.23321	0.0006
Uric acid (mg/dl)	218	0.17363	0.0102
Hypoglycemic therapy*	190	0.19768	0.0063

*Pills per day

Only significant correlations are shown.

FPG fasting plasma glucose, 1hPG 1-hour plasma glucose, 2hPG 2-hour plasma glucose, PRA plasma renin activity, ALD aldosterone.
Beside the physiology, it is also true that a small number of studies demonstrated the role of microRNA after bariatric surgery. The microRNAs (microRNAs) among others [44]. For example, miR-27a, overexpressing human renin are protected from HFD-induced obesity without changes in food intake and physical activity. In Ren1c−/− mice enhanced energy expenditure and are resistant to development of HFD-induced obesity [42]. Instead, transgenic rodents overexpressing human renin are obese due to increased food intake and exhibit hyperglycemia, hyperinsulinemia, hyperlipidemia, and insulin resistance [43]. In contrast, the role of gender seems to be related to renin activity; female mice overexpressing human renin are protected from HFD-induced obesity. Furthermore, dysfunctional adipose tissue can partially account for the alterations of RAAS signaling influencing the surrounding organs, including the vasculature. It is well known the paracrine communication between adipose tissue and skeletal muscle, pancreas and cardiovascular system with the release of adipokines, cytokines and other small molecules, such as extracellular vesicles (EV) deputed to vehicle small RNAs (microRNAs) among others [44]. For example, miR-27a, which plays a critical for obesity by regulating insulin resistance in adipocytes, seems to facilitate the crosstalk between adipocytes and skeletal muscle, inducing insulin resistance by PPARG [45]. Bariatric surgery leads to a remission/resolution of T2D, but its precise mechanisms are not yet fully understood and the mechanisms of actions are complex, but it seems that the induction of satiety occurs by direct pressure or contact of the band with the gastric wall, or via vagal nerve signaling [46]. Beside the physiology, it is also true that a small number of studies demonstrated the role of microRNA after BS in providing a specific metabolic pattern [47–49]:

Table 4 Differences between baseline values and 12 months after bariatric surgery

	Baseline	12 months	p*		
	N	Mean (± SD)	N	Mean (± SD)	
Weight (kg)	239	119.2±19.97	181	97.3±16.61	<0.0001
BMI (kg/m²)	239	44.4±5.79	181	36.4±5.21	<0.0001
Waist circumference (cm)	238	122.2±13.84	174	107.1±13.5	<0.0001
FPG (mg/dl)	233	110.4±38.05	171	95.8±17.33	<0.0001
1hPG (mg/dl)	226	189.8±75.31	176	158.2±58.57	<0.0001
2hPG (mg/dl)	225	149.1±70.52	169	118.7±47.94	<0.0001*
Insulin (µU/ml)	230	19.4±11.25	160	10.0±5.21	<0.0001
HOME-IR	230	5.4±4.08	147	2.4±1.5	<0.0001
Hba1c (%)	229	6.2±1.1	155	5.7±0.7	<0.0001
Total cholesterol (mg/dl)	239	203.9±41.51	181	204.7±42.54	0.4949*
HDL-cholesterol (mg/dl)	225	48.1±13.93	168	53.4±12.48	<0.0001*
Triglycerides (mg/dl)	239	148.8±83.08	171	107.4±56.29	<0.0001
Systolic BP (mmHg)	194	132.3±15.21	136	127.1±12.9	0.0001
Diastolic BP (mmHg)	194	83.2±9.24	136	80.3±8.89	0.0004
Creatinine (mg/dl)	239	0.7±0.15	167	0.7±0.07	0.2882
Leptin (ng/ml)	52	39.5±20.22	52	20.6±12.4	<0.0001*
Ferritin (ng/ml)	232	95.4±100.98	181	83.3±84.81	0.0164
Transferrin (mg/ml)	221	2.7±0.49	155	2.6±0.48	0.3279
Iron (µg/dl)	235	82.3±31.08	181	85.8±30.43	0.2195
Albumin (g/l)	232	57.9±4.40	159	58.6±4.38	0.8788
Calcium (mmol/l)	202	2.3±0.11	163	2.4±0.11	0.0055*
Sodium (mmol/l)	239	140.5±24.2	181	141.0±24.4	0.0014*
Supine PRA (ng/ml/h)	225	2.4±4.63	115	1.3±2.50	0.033
Upright PRA (ng/ml/h)	224	4.1±7.08	116	3.1±6.09	0.1821
Supine ALD (ng/dl)	230	3.3±2.53	113	2.9±3.7	0.0005
Upright ALD (ng/dl)	230	8.2±5.25	114	8.3±8.2	0.0439
Upright ALD/PRA	215	5.2±7.23	111	5.7±6.9	0.8917
Urinary cortisol (ng/24 h)	180	114.1±46.06	96	106.8±45.5	0.0170*
Uric acid (mg/dl)	232	5.2±1.20	181	4.7±1.27	<0.0001*
Hypoglycemic therapy a	239	0.2±1.4	157	0.3±2.2	1.0000

*BMI body mass index, FPG fasting plasma glucose, 1hPG 1-hour plasma glucose, 2hPG 2-hour plasma glucose, BP blood pressure, PRA plasma renin activity, ALD aldosterone

**Non-parametric Wilcoxon Signed Rank test for paired data

*pPaired T test

p Pills per day

Fig. 1 Comparison between levels of supine plasmatic renin activity (PRA) before and post-laparoscopic adjustable gastric banding (LAGB) in obese (n=110) people. Non-parametric Wilcoxon signed rank test for paired data was used to test significance. **p=0.0035**
about 90% down-regulation of miR-122 and a reduction of miR-342-3p, miR-320, miR-139-5p and miR-146a might regulate metabolic processes such as the citric acid cycle (TCA) cycle, glucose transport, pentose phosphate pathway, fatty-acid synthesis, mitochondrial oxidation, gluconeogenesis, and glycolysis. Obesity is recognized as a major cause of hypertension, and the combination of obesity and hypertension is recognized as a pre-eminent cause of CV risk. An additional important factor in the CV risk associated with obesity and hypertension is the role played by obesity in the development of T2D. Efforts aimed at diminishing the incidence and impact of diabetes, therefore, including both lifestyle changes and the appropriate use of antihypertensive and anti-obesity therapies, are an essential part of the overall therapeutic plan. The recommendation to use RAAS inhibitors after coronary artery bypass grafting (CABG) in order to reduce MACE (major adverse cardiovascular events) [50] are consistent with our observation about the reliable predictive power of Renin after bariatric surgery, among a wide variety of different procedures. Finally, our results point to possible clinical implications. Selection of patients for bariatric surgery is still an open question. Determination of metabolically healthy obese subjects,
for whom surgery is probably not indicated, seems possible only through genetic studies [51]. The response of individual subjects to surgery depends on the aim of surgery; for instance, prevention of mortality is more effective above a given age, while prevention of diabetes is valid for all ages [52]. Response to surgery also depends on age of patients, on initial BMI, and on the type of surgery [53, 54]. Remission of diabetes also depends on the duration of diabetes [55]. The predictive model of persistent hypertension in spite of weight loss is promising, but it should be confirmed for other surgeries, for instance malabsorptive surgeries (biliopancreatic diversion), mixed surgeries (gastric bypass), or restrictive surgeries (sleeve gastrectomy), all more effective than LAGB [54]. In the meanwhile, patients with persistent hypertension should receive close supervision and more intensive treatment to lower blood pressure, even because left ventricular hypertrophy does not regress in hypertensive patients [56].

Table 6	Changes induced by weight loss according to hypertension			
Δ Weight	NT: -22.0 ± 12.2	<0.0001	HT: -20.9 ± 14.6	<0.0001
Δ BMI	NT: -8.2 ± 4.3	<0.0001	HT: -7.9 ± 5.0	<0.0001
Δ Waist circumference	NT: -15.4 ± 10.0	<0.0001	HT: -15.3 ± 10.3	<0.0001
Δ FPG	NT: -11.5 ± 18.2	<0.0001	HT: -24.1 ± 35.7	<0.0001
Δ 1hPG	NT: -34.3 ± 45.3	<0.0001	HT: -41.5 ± 55.6	<0.0001
Δ 2hPG	NT: -28.1 ± 45.9	<0.0001*	HT: -48.1 ± 65.8	<0.0001*
Δ Insulin	NT: -8.8 ± 10.6	<0.0001	HT: -8.2 ± 7.6	<0.0001
Δ HOMA-IR	NT: -2.5 ± 3.1	<0.0001	HT: -3.3 ± 3.5	<0.0001
Δ HbA1c	NT: -0.5 ± 0.9	<0.0001	HT: -0.9 ± 1.1	<0.0001
Δ Total cholesterol	NT: 0.5 ± 29.5	0.8489*	HT: 4.0 ± 33.2	0.3935*
Δ HDL-cholesterol	NT: 6.2 ± 9.7	<0.0001*	HT: 6.7 ± 10.1	<0.0001*
Δ Triglycerides	NT: -38.8 ± 65.0	<0.0001	HT: -46.4 ± 76.9	<0.0001
Δ Systolic BP	NT: -2.8 ± 11.4	0.0156	HT: -9.0 ± 18.4	0.0003
Δ Diastolic BP	NT: -1.4 ± 9.7	0.0948	HT: -5.8 ± 12.2	0.0004
Δ Creatinine	NT: 0.0 ± 0.1	0.7750	HT: 0.0 ± 0.1	0.1481
Δ Leptin	NT: -19.1 ± 12.9	<0.0001	HT: -15.5 ± 12.6	0.0002
Δ Ferritin	NT: -15.9 ± 41.8	0.0042	HT: -16.8 ± 125.5	0.8130
Δ Transferrin	NT: 0.0 ± 0.4	0.5693	HT: 0.1 ± 0.4	0.3586
Δ Iron	NT: 1.7 ± 28.8	0.5846	HT: 1.9 ± 28.9	0.6453
Δ Albumin	NT: 0.2 ± 4.2	0.6064	HT: -0.2 ± 3.7	0.6609
Δ Calcium	NT: 0.04 ± 0.12	0.0037*	HT: 0.02 ± 0.11	0.1442*
Δ Sodium	NT: 0.41 ± 0.30	0.2717*	HT: 1.4 ± 0.36	<0.0001*
Δ Supine PRA	NT: 0.1 ± 3.0	0.3616	HT: -2.7 ± 6.0	0.0005
Δ Upright PRA	NT: 0.4 ± 6.0	0.8130	HT: -3.6 ± 10.0	0.0055
Δ Supine ALD	NT: -0.2 ± 4.8	0.0529	HT: -1.4 ± 3.2	0.0015
Δ Upright ALD	NT: 0.3 ± 10.0	0.2545	HT: -1.6 ± 5.5	0.0796
Δ Upright ALD/PRA	NT: 0.05 ± 8.2	0.7108	HT: -0.7 ± 9.6	0.5834
Δ Urinary free cortisol	NT: -13.4 ± 56.5	0.0185*	HT: -20.4 ± 56.7	0.0731*
Δ Uric-acid	NT: -0.04 ± 1.2	0.0009*	HT: -0.5 ± 1.0	0.0011*
Δ Hypoglycemic therapy	NT: 0.1 ± 1.2	0.7500	HT: -0.1 ± 1.2	1.0000

$^-$ indicates decrease

NT normotensive, HT hypertensive, BMI body mass index, FPG fasting plasma glucose, 1hPG 1-hour plasma glucose, 2hPG 2-hour plasma glucose, BP blood pressure, PRA plasma renin activity, ALD aldosterone

* Non-parametric Wilcoxon signed rank test for paired data

*Paired T test

* Pills per day
In obese subjects supine PRA is higher in hypertensive than in normotensive subjects, with a trend for progressively higher with normal glucose tolerance, impaired glucose tolerance and diabetes. Supine PRA correlates with HOMA-IR, and interestingly that both PRA and HOMA-IR correlate with ferritin. Decrease of supine PRA at 1 year after BS only occurs in hypertensive subjects, as previously reported, with no difference among groups of glucose tolerance. Decrease of supine PRA correlated with decrease of HOMA-IR and with decrease of ferritin, suggesting that changes of ferritin are mechanistically linked to change of HOMA-IR and of supine PRA. Similar, albeit less significant, was the behavior of upright PRA, and of both supine and upright aldosterone. Higher supine PRA and worse glucose tolerance (and FPG and 2hPG) predict persistence of hypertension after bariatric surgery in spite of weight loss.

Table 7 Logistic models for the probability of hypertension 12 months after LAGB

Variables	Model 1	Model 2	Model 3			
	OR (95% CI)	p	OR (95% CI)	p	OR (95% CI)	p
Supine PRA (ng/ml/h)	1.63 (1.19–2.24)	0.0023	1.47 (1.10–1.96)	0.0085	1.52 (1.14–2.03)	0.0049
Glucose tolerance groups						
NGT	1.00 (Reference)	–	–	–	–	–
IGT	3.60 (1.22–10.60)	0.0319	–	–	–	–
T2D	4.85 (1.15–20.56)	0.0201	–	–	–	–
FPG	–	–	1.02 (1.00–1.03)	0.0453	–	–
2hPG	–	–	–	1.01 (1.00–1.02)	0.0470	
AUC = 0.784			AUC = 0.782		AUC = 0.770	

Model 1 is based on supine PRA and glucose tolerance groups. Model 2 is based on supine PRA and FPG. Model 3 is based on supine PRA and 2hPG

OR odds ratio, CI confidence interval, PRA plasma renin activity, NGT normal glucose tolerance, IGT impaired glucose tolerance, T2D Type 2 diabetes, FPG fasting plasma glucose, 2hPG 2-hour plasma glucose, AUC area under the curve

![Fig. 2](image)

Fig. 2 Receiver operating characteristic (ROC) curves and AUC (area under the ROC curve) of logistic regression models for the probability of hypertension at 12 months after laparoscopic adjustable gastric banding (LAGB)
Abbreviations

PRA: Plasma renin activity (supine and upright); ALD: Aldosterone (supine and upright); HbA1c: Haemoglobin A1c; FPG: Fasting plasma glucose; 1hPG: 1h plasma glucose after OGTT; 2hPG: 2h plasma glucose after OGTT; HOMA-IR: Homeostasis model assessment for insulin resistance; OGTT: Oral glucose tolerance test; BMI: Body mass index; GT: Glucose tolerance (NGT = normal; IGT = impaired; T2D = type 2 diabetes).

Acknowledgments

The authors would like to thank Fondazione Romeo and Enrica Invernizzi, Milan (Italy), for the support.

Authors’ contributions

Design of the study: LLS, FF, AEP; search of data: LLS, ET and AEP; analysis of data: ET; writing—original draft preparation: LLS and AEP; review and editing: LLS, ET, EV, FF, and AEP; final version: LLS, FF, and AEP. All authors read and approved the final manuscript.

Funding

This research was funded by Università degli Studi di Milano, Milan (Italy), by IRCCS MultiMedica, Milan (Italy), and Ministry of Health Ricerca Corrente, Italy to IRCCS MultiMedica, Milan (Italy).

Availability of data and materials

Data are available on request.

Declarations

Ethics approval and consent to participate

The protocol of bariatric surgery has been approved by the Local Ethics Committee in 1995, in 2002, and in 2006.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Author details

1 Lab of Cardiovascular and Dysmetabolic Disease, IRCCS MultiMedica, 20138 Milan, Italy. 2 Value-based Healthcare Unit, IRCCS MultiMedica, Milan, Italy. 3 Postgraduate Program on Physical Education, Universidade Católica de Brasilia, Taguatinga, DF 71966-700, Brazil. 4 Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy. 5 Unità di Endocrinologia, Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy.

Received: 22 May 2021 Accepted: 2 June 2021

Published online: 09 June 2021

References

1. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease: Hypertension. 2020;75:285–92.
2. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Prospective Studies: Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.
3. Kannel WB. The Framingham study: ITS 50-year legacy and future promise. J Atheroscler Thromb. 2000;6:60–6.
4. Rowe JW, Young JB, Minaker KL, Stevens AL, Pallotta J, Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981;30:219–25.
5. Peregó L, Pizzocrì P, Corradi D, Maisano F, Pagarelli M, Fiorina P, Barbieri M, Morabito A, Paolissio G, Follì F, Pontioli AE. Circulating leptin correlates with left ventricular mass in morbid (grade III) obesity before and after weight loss induced by bariatric surgery: a potential role for leptin in mediating human left ventricular hypertrophy. J Clin Endocrinol Metab. 2005;90:4087–93.
6. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15:367–85.
7. Fiorentino TV, Proletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 2013;19:5695–703.
8. Ferrannini E, Buzigoli G, Bonadonna R, Gioraco M, Grazilidei L, Pedrinelli R, Brandi L, Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med. 1987;317:350–7.
9. Velloso LA, Folli F, Sun XY, White MF, Saad MJ, Kahan CR. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA. 1996;93:12490–5.
10. Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16(10):545–55.
11. Arterburn DE, Telem DA, Kushner RF, Croucoulas AP. Benefits and risks of bariatric surgery in adults: a review. JAMA. 2020;324:87–97.
12. La Sala L, Pontiroli AE. Prevention of diabetes and cardiovascular disease in obesity. Int J Mol Sci. 2020;21(2):1878.
13. Heffron SP, Parham JS, Pendse J, Alemán JO. Treatment of obesity in mitigating metabolic risk. Circ Res. 2020;126:1646–65.
14. Pontiroli AE, Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery: a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann Surg. 2011;253:484–87.
15. Raaijmakers LC, Pouwels S, Thomassen SE, Nienhuis SW. Quality of bariatric surgery, metabolic surgery alleviates systemic and local inflammation in obesity. Obes Surg. 2018;28:3658–68.
16. Koman KE, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29:401–9.
17. Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2020;16(10):545–55.
18. Arterburn DE, Telem DA, Kushner RF, Croucoulas AP. Benefits and risks of bariatric surgery in adults: a review. JAMA. 2020;324:87–97.
19. La Sala L, Pontiroli AE. Prevention of diabetes and cardiovascular disease in obesity. Int J Mol Sci. 2020;21(2):1878.
20. Heffron SP, Parham JS, Pendse J, Alemán JO. Treatment of obesity in mitigating metabolic risk. Circ Res. 2020;126:1646–65.
21. Pontiroli AE, Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery: a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann Surg. 2011;253:484–87.
22. Raaijmakers LC, Pouwels S, Thomassen SE, Nienhuis SW. Quality of life and bariatric surgery: a systematic review of short- and long-term results and comparison with community norms. Eur J Clin Nutr. 2017;71:441–9.
23. Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, Clegg AJ. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. 2009;13:1–190.
24. Keating CL, Dixon JB, Moodie ML, Peeters A, Buffle L, Maglianno DJ, O’Brien PE. Cost-effectiveness of surgically induced weight loss for the treatment of obesity. Obes Surg. 2011;21:1544–51.
25. The Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. The sixth report of Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Arch Intern Med. 1997;157:2413–46.
26. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.
27. Giachetti G, Ronconi V, Lucarelli G, Boscara M, Mantero F. Analysis of screening and confirmatory test in the diagnosis of primary hyperaldosteronism: need for a standardized protocol. J Hypertens. 2006;24:737–45.
28. Pazzaglia M, Kim JB, Messeri G, Kohen F, Bolelli GF, Tommasi A, Salemo R, Seno M. Luminescent immunosassay (LIA) of cortisol-2. Development and validation of the immunosassay monitored by chemiluminescence. J Steroid Biochem. 1981;14:1181–7.
29. Krasowski MD, Drees D, Morris CS, Maakestad J, Blau J, Ekins S. Cross-reactivity of steroid hormone immunosassays: clinical significance and two-dimensional molecular similarity prediction. BMC Clin Pathol. 2014;14:33.
30. Pontiroli AE, Folli F, Paganelli M, Micheletto G, Pizzocri P, Vedani P, Luisi F, Perego L, Morabito A, Bressani Doli S. Laparoscopic gastric banding prevents type 2 diabetes and arterial hypertension and induces their remission in morbid obesity: a 4-year case-controlled study. Diabetes Care. 2005;28:2703–9.
31. Gantaldelli A, Perego L, Paganelli M, Sesti G, Hiribal M, Chavez AO. Defronzo RA, Pontiroli A, Folli F. Elevated concentrations of liver enzymes and ferritin identify a new phenotype of insulin resistance: effect of weight loss after gastric banding. Obes Surg. 2009;19:80–6.
32. Zhang C, Zhang J, Liu Z, Zhou Z. More than an anti-diabetic bariatric surgery, metabolic surgery alleviates systemic and local inflammation in obesity. Obes Surg. 2018;28:3658–68.
33. Kernan KE, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29:401–9.
34. Muraca E, Ciardullo S, Perra S, Zerbini F, Oltoni L, Annaracchi R, Bianconi E, Villa M, Pizzi M, Pizzi P, Marzoni G, Lattuada G, Persichin G. Hypercor-tisolism and altered glucose homeostasis in obese patients in the pre-bariatric surgery assessment. Diabetes Metab Res Rev. 2020 Aug;1:e3389.
35. Ceccato F, Lizzul L, Barbos A, Scaroni C. Pituitary-adrenal axis and peripheral cortisol metabolism in obese patients. Endocrine. 2020;69:386–92.
36. Werdermann M, Berger L, Scriba LD, Santambrogio A, Schlinkert P, Brendel H, Morawietz H, Schedl A, Peitzsch M, King AJF, Andoniadou CL, Bornstein SR, Steenblock CN. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol Metab. 2021;43:101112.
37. Folli F, Khan CR, Hansen S, Bouchie JL, Feener EP. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for senile phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest. 1997;100:2158–69.
38. Fedorov M, Hirbali ML, Menghini R, Kanno H, Marchetti V, Porzio O, Sunnarborg SW, Riza S, Serino M, Cusolo V, Lauro D, Maunelio A, Smokler DS, Stracca P, Sesti G, Lee DC, Khokha R, Accili D, Lauro R, Timp3 deficiency in insulin receptor-Haplinsufficient mice promotes diabetes and vascular inflammation via increased TNF-alpha. J Clin Invest. 2005;115:3494–505.
39. Monroy A, Kamath S, Chavez AO. Centonze VE, Veerasamy M, Barrentine A, Wewer JJ, Coletta DK, Jenkinson C, Jhingan RM, Smokler D, Reyna S, Muni N, Khokha R, Fedorov M, Tripathy D, Defronzo RA, Folli F. Impaired regulation of the TNF-alpha converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: a new mechanism of insulin resistance in humans. Diabetologia. 2009;52:2169–81.
40. Hotamisligil GS. Inflammation, metabolism and immunometabolic disorders. Nature. 2017;542:177–85.
41. Fiorentino TV, Monroy A, Kamath S, Satero R, Cas MD, Daniele G, Chavez AO, Abdul-Ghani M, Hirbali ML, Sesti G, Tripathy D, DeFronzo RA, Folli F. Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism. 2021;114:54164.
42. Takahashi N, Li F, Hua K, Deng Y, Wang CH, Bowers RR, Bartzens T, Kim HS, Harp JB. Increased energy expenditure, dietary fat wasting, and resistance to diet-induced obesity in mice lacking renin. Cell Metab. 2007;6:506–12.
43. Gratzé P, Boschmann M, Dechend R, Qadri F, Malchow J, Graeske S, Meng X, Janke J, Springer J, Contrepas A, Plehn R, Klaus S, Nguyen G, Lutf FC, Muller DN. Energy metabolism in human renin-gene transgenic rats: does renin contribute to obesity? Hypertension. 2009;53:516–23.
44. La Sala L, Ciremani M, Galavalli S, de Candia P, Pontiroli AE. Does microRNA perturbation control the mechanisms linking obesity and diabetes? Implications for cardiovascular risk. Int J Mol Sci. 2020;22(11):143.
45. Yu Y, Du H, Wei S, Feng L, Li J, Yao F, Zhang M, Hatch GM, Chen L. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARα. Theranostics. 2018;8:2171–88.
46. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and body weight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2:152–64.
47. Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JH, Wang J, Dohm GL, Pories WJ, Mietus-Snyder M, Freishat R. Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity. 2017;25:102–10.
48. Kuryłowicz A, Wólczyk Z, Dębczewska M, Konarska M, Święniak M, Lisik W, Jonas M, Noszczyk B, Pużanowska-Kuźnicka M. NGS reveals molecular pathways affected by obesity and weight loss-related changes in miRNA levels in adipose tissue. Int J Mol Sci. 2017;19(1):66.
49. Wu Q, Li JV, Seyfried F, le Roux CW, Ashrafian H, Anthanasiou T, Fenske W, Darzi A, Nicholson JK, Holmes E, Gooderham NJ. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery. Int J Obes. 2015;39:1126–34.
50. Martinsson A, Nielsén SJ, Björklund E, Pivodic A, Malm CJ, Hansson EC, Jeppsson A. Renin-angiotensin system inhibition and outcome after coronary artery bypass grafting: a population-based study from the SWEDHEART registry. Int J Cardiol. 2021;313:40–5.
51. Huang LO, Rauch A, Mazzaferr E, Preuss M, Carobbio S, Baysak CS, Chami N, Wang Z, Schick UM, Yang N, Itan Y, Vidal-Puig A, den Hoed M, Mandrup S, Kilpeläinen TO, Loos RJF. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metab. 2021;3:228–43.
52. Pontiroli AE, Ceriani V, Tagliaabue E. Compared with controls, bariatric surgery prevents long-term mortality in persons with obesity only above median age of cohorts: a systematic review and meta-analysis. Obes Surg. 2020;30:2487–96.
53. Nickel F, de la Garza JR, Werthmann FS, Benner L, Tapking C, Karadza E, Wekerle AL, Billeter AT, Keningott HG, Fischer L, Müller-Stich BP. Predictors of risk and success of obesity surgery. Obes Facts. 2019;12:427–39.
54. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schas velles K. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.
55. Aung L, Lee WJ, Chen SC, Ser KH, Wu CC, Chong K, Lee YC, Chen JC. Bariatric surgery for patients with early-onset vs late-onset type 2 diabetes. JAMA Surg. 2016;30:2487–96.
56. Pontiroli AE, Pizzocri P, Saibene A, Girola A, Koprivec D, Fragasso G. Left ventricular hypertrophy and QT interval in obesity and in hypertension: effects of weight loss and of normalisation of blood pressure. Int J Obes. 2004;28:1118–23.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.