Activation of PAD4 in NET formation

Amanda S. Rohrbach
The Scripps Research Institute

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/thompson

Part of the Biochemistry Commons, Enzymes and Coenzymes Commons, Immunology and Infectious Disease Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Therapeutics Commons

Repository Citation
Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. (2012). Activation of PAD4 in NET formation. Thompson Lab Publications. https://doi.org/10.3389/fimmu.2012.00360. Retrieved from https://escholarship.umassmed.edu/thompson/42

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Thompson Lab Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Activation of PAD4 in NET formation

Amanda S. Rohrbach1, Daniel J. Slade2, Paul R. Thompson2* and Kerri A. Mowen1*

1 Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
2 Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA

Peptidylarginine deiminases, or PADs, convert arginine residues to the non-ribosomally encoded amino acid citrulline in a variety of protein substrates. PAD4 is expressed in granulocytes and is essential for the formation of neutrophil extracellular traps (NETs) via PAD4-mediated histone citrullination. Citrullination of histones is thought to promote NET formation by inducing chromatin decondensation and facilitating the expulsion of chromosomal DNA that is coated with antimicrobial molecules. Numerous stimuli have been reported to lead to PAD4 activation and NET formation. However, how this signaling process proceeds and how PAD4 becomes activated in cells is largely unknown. Herein, we describe the various stimuli and signaling pathways that have been implicated in PAD4 activation and NET formation, including the role of reactive oxygen species generation. To provide a foundation for the above discussion, we first describe PAD4 structure and function, and how these studies led to the development of PAD-specific inhibitors. A comprehensive survey of the receptors and signaling pathways that regulate PAD4 activation will be important for our understanding of innate immunity, and the identification of signaling intermediates in PAD4 activation may also lead to the generation of pharmaceuticals to target NET-related pathogenesis.

Keywords: PAD4, citrullination, deimination, neutrophil, NET
antibodies (ACPAs) is a better predictor of RA than rheumatoid factor (Vossenaar et al., 2003), and, in 2011, ACPAs were included in the new classification criteria for RA (Willems et al., 2012). A genome-wide association study identified a PAD4 haplotype that is associated with RA in a Japanese population, albeit with a low odds ratio (OR = 1.14; Suzuki et al., 2003). The mutations in the PAD4 gene appear to confer prolonged stability to the transcript, leading to a model where increased expression of PAD4 in these populations would favor the generation of citrullinated self-epitopes to prime the autoimmune response (Suzuki et al., 2003).

Though this association has been confirmed in other Asian populations, it has not been replicated in studies using patients from all Western European populations, indicating that the RA-associated PAD4 haplotype found in Asian RA patients cannot explain the presence of ACPAs in all ethnicities (Klareskog et al., 2008). Interestingly, the PAD4 RA-associated disease haplotype has also been found in some Japanese patients with UC (Chen et al., 2008). MS patients have increased levels of the citrullinated form of myelin basic protein (Wood et al., 1996; Moscarello et al., 2007), and both PAD2 and PAD4 are overexpressed in the brains of MS patients (Wood et al., 2008). Finally, as will be discussed later in this review, in response to microbes, neutrophils can extrude their nuclear contents to form antimicrobial neutrophil extracellular traps (NETs; Brinkmann and Zychlinsky, 2007). Since PAD4 is essential for the formation of NETs (List et al., 2010; Hemmer et al., 2011), PAD4 has also been implicated in NET-related pathologies, such as SLE and thrombosis, where NETs presumably promote deleterious inflammatory responses (Rosenbrock et al., 2009; Logters et al., 2009; Fuchs et al., 2010; Hakim et al., 2010; Garcia-Romo et al., 2011; Villanueva et al., 2011). Thus, PAD4 may be a relevant target for several disease indications.

PAD4 is a 74 kDa protein that exists as a head-to-tail dimer (Arita et al., 2004; Liu et al., 2011). Each monomer consists of two N-terminal immunoglobulin (lg) domains, formed by lg subdomain 1, which contains nine β-sheets, and lg subdomain 2, which contains 10 β-sheets and four short α-helices. The C-terminal catalytic domain adopts the β/α propeller fold that is characteristic of the deaminase superfamily (Shirai et al., 2001; Arita et al., 2004). The C-terminal catalytic domain is the most highly conserved area of the molecule (Vossenaar et al., 2003), suggesting that the active sites are likely quite similar among PADs. While a high degree of conservation exists among PADs, PAD4 is the only family member to contain a classic nuclear localization sequence (56-PPAKKST-63), found in lg1 near the N-terminus, and, thus, is trafficked to the nucleus (Nakashima et al., 2002; Vossenaar et al., 2003; Arita et al., 2004). However, it is worth noting that recent data indicates that other PADs, most notably PAD2, are localized to the nucleus (Zhang et al., 2012).

PAD4 binds five calcium molecules, designated Ca1-Ca5, in a cooperative manner (Arita et al., 2004; Kearney et al., 2005; Liu et al., 2011). Ca1 and Ca2 bind in the C-terminal catalytic domain, and their binding induces major conformational changes that move several active site residues into positions that are competent for catalysis (Arita et al., 2004). This calcium-induced formation of the active site is unique to the PADs, and represents a novel mechanism of enzyme activation (Arita et al., 2004). Calcium binding also induces large structural changes in the N-terminus of the protein. For example, binding of Ca3, Ca4, and Ca5, along with two water molecules, induces the formation of the α1-helix, which is disordered in the apoenzyme (Arita et al., 2004). These conformational changes may provide, or remove, docking sites for other proteins, which may serve to further regulate PAD activity.

BIOCHEMICAL ACTIVATION OF PAD4

While it is unknown whether all PAD enzymes are capable of multimerizing, the dimer has been suggested to be required for PAD4 activity (Arita et al., 2004; Liu et al., 2011). However, the effects on enzyme activity and the calcium dependence of the enzyme are relatively minor (approximately twofold), and we routinely see robust enzyme activity at concentrations of protein that are an order of magnitude below the Kd of the dimer (Kearney et al., 2005). Nevertheless, dimer formation may represent a possible regulatory mechanism (Liu et al., 2011). Dimerization is mediated by both hydrophobic interactions and salt bridges between adjacent monomers (Arita et al., 2004; Liu et al., 2011).

The PADs display limited substrate specificity and citrullinate many proteins in vitro, preferring to modify arginine residues present in unstructured regions; the rate of substrate turnover is inversely proportional to the structural order of the substrate (Arita et al., 2006; Knuckley et al., 2010). Structurally, PAD4 interacts with the backbone atoms surrounding the site deimination, i.e., R-2, R-1, R0, and (R + 1), with few, if any, contacts with the side chains (Arita et al., 2006). The only requirement appears to be a small side chain at the R-2 position so as to avoid steric contacts with the active site (Arita et al., 2006). Upon binding to PAD4 the backbone of the substrate adopts a β-turn-like conformation within the substrate binding cleft (Arita et al., 2006), thereby explaining why the enzymes show such a high level of substrate promiscuity. In contrast to the situation in vitro, the PADs are believed to show greater substrate specificity in vivo. Presumably, interacting proteins modulate the substrate specificity of the enzyme or spatially target the enzyme to specific regions of the cell. For example, PAD4 is present in the nucleus and may be targeted to chromatin where it citrullinates a number of nuclear proteins, including the histones and protein arginine methyltransferase 1 (PRMT1) (Vossenaar et al., 2003; Slack et al., 2011b).

Although PAD4 was reported to convert monomethylated arginine residues to citrulline (Wang et al., 2004), this modification...
PAD MECHANISM AND INHIBITION

Given the substrate promiscuity of the PADs, it is unsurprising that the PADs also citrullinate a number of small molecule arginine mimics, including benzoyl arginine ethyl ester (BAEE) and benzoyl arginine amide (BAA). In fact, these compounds have served as important mechanistic probes of PAD4 catalysis and provided the molecular scaffold for the construction of the first highly potent PAD4 inhibitors. Below we highlight key mechanistic insights that guided the design of these inhibitors.

Briefly, there are four key catalytic residues, Asp350, His471, Asp473, and Cys645. Asp473 binds to both ω-nitrogens and Asp350 coordinates to one ω-nitrogen and the δ-nitrogen (Figure 2A). Cys645 and His471 lie on opposite sides of the guanidinium group and are appropriately positioned to promote catalysis via nucleophilic attack on the guanidinium carbon (Cys645) and protonation of the developing tetrahedral intermediate (His471; Figure 2B). Collapse of this intermediate leads to the loss of ammonia and the formation of the stable S-alkyl thiosuromonium intermediate that is subsequently hydrolyzed via a second tetrahedral intermediate to form citrulline; His471 likely activates the water molecule for nucleophilic attack (Figure 2B).

Mechanistic studies (Knuckley et al., 2007, 2010), including mutagenesis, pH rate profile, solvent isotope effects, and solvent viscosity effects, as well as crystal structures of PAD4 bound to several substrates (i.e., BAA; Arita et al., 2006), and histone H3 and histone H4 tail analogs; Arita et al., 2004, 2006), and inhibitors (i.e., F-amidine, Cl-amidine, o-F-amidine, o-Cl-amidine, and TDFA; Luo et al., 2006a; Causey et al., 2011; Jones et al., 2012), provide strong support for the above mechanism and helped drive our thoughts about inhibitor design. For example, the presence of a reactive active site Cys prompted us to consider the synthesis of irreversible inhibitors (Knuckley et al., 2007, 2010). Additionally, the fact that mono-methylated arginine residues were exceptionally poor PAD substrates, as well as the steric restraints of the active site (Arita et al., 2004; Kearney et al., 2005; Raijmakers et al., 2007), told us that the reactive moiety would have to be relatively isosteric with respect to the substrate guanidinium. Furthermore, mutagenesis studies on the two active site aspartyl groups in PAD4, Asp350 and Asp473, showed that these residues are critical for catalysis (Knuckley et al., 2007), indicating that proper positioning, hydrogen bonding, and electrostatic interactions between these residues and the substrate guanidinium are critical determinants for efficient substrate turnover, and would have to be maintained for efficient enzyme inactivation. As such, we initially focused our efforts on synthesizing F-amidine and Cl-amidine (Figure 2C), two haloacetamidine-containing compounds that we
Wang et al. (2012) showed that a Cl-amidine analog, YW3-56, decrease nerve damage was examined in a chick embryo model of spinal meningitis (Chumanevich et al., 2011). The effects of Cl-amidine on arthritis (CIA) model of RA. Concomitant with the decreased inflammation by up to 55% in the mouse collagen-induced arthritis (CIA) model of RA. Concomitant with the decreased severity there were significant decreases in the levels of citrullinated histones, decondense chromatin, and generate NETs (Li et al., 2010; Hemmers et al., 2011). Our group and the Wang group have independently mechanisms to NET formation. For example, the Group A Streplococcus expresses a DNase enzyme that can degrade NETs (Buchanan et al., 2006), and Pseudomonas aeruginosa expresses surface molecules that can prevent neutrophil activation and NET formation (Khatua et al., 2012).

The Function of PAD in Neutrophils

Neutrophils are terminally differentiated granulocytes, which differentiate from hematopoietic stem cells in the bone marrow, and make up to 75% of white blood cells in the circulation (Ermert et al., 2009b). Mature neutrophils are released into circulation, where they have a very short life span of several hours to one day before undergoing apoptosis (Borregaard, 2010). Neutrophils are an important component of the innate immune system and form the first line of defense against invading pathogens, such as bacteria and fungi (Borregaard, 2010). Neutrophils contain an arsenal of antimicrobial proteins and peptides in primary (or azurophilic), secondary (or specific), and tertiary granules. Primary granules are mostly composed of proteases, such as myeloperoxidase and neutrophil elastase (NE), and antimicrobial peptides, such as defensins (Ermert et al., 2009b). Secondary and tertiary granules contain lactoferrin and gelatinase, respectively (Mantovanii et al., 2011). Secretory granules also harbor stores of membrane proteins, such as the NADPH oxidase machinery (Nov, Borregaard, 2010), which can be trafficked to the surface of the cell quickly when necessary. In response to chemoattractants, neutrophils are guided to areas of infection, where they respond with several effector mechanisms to invading pathogens, including phagocytosis, release of bactericidal products, and ROS production (Borregaard, 2010). Neutropenia, or the state of having too few neutrophils, leads to extreme immunosuppression and susceptibility to bacterial infections, which can be fatal (Janeway, 2005).

In 2004, Brinkmann et al. (2004) recognized the formation of NET structures, which were extruded by neutrophils in response to bacteria. NETs are composed of nuclear DNA that are decorated with a variety of nuclear and granular proteins, actively thrown out into the extracellular space, and result in death of the NET-producing cell (Brinkmann et al., 2004). Cell death by this mechanism is unique from apoptosis and necrosis and has been termed “NETosis” (Gupta et al., 2010). NETs ensnare extracellular bacteria, which are killed by the inherent antimicrobial properties of NET-associated proteins, such as histones (Parasghan and Luhrs, 2006), NE (Papayannopoulos and Zychlinsky, 2009), and lactoferrin (Papayannopoulos and Zychlinsky, 2009). These structures represent a novel method for pathogen killing, independent of both degranulation and phagocytosis, and have been shown to effectively kill a variety of pathogens, including bacteria, fungi, and protozoa (Papayannopoulos and Zychlinsky, 2009; Remijsen et al., 2011a). NETs have also been reported to occur in response to viral infection; however, they do not appear to show any observable anti-viral capabilities (Hemmers et al., 2011). NETs may represent a killing mechanism for pathogens too large for the neutrophil to phagocytose, such as fungal hyphae or helminths (Urban et al., 2006). Interestingly, bacteria have adapted defense mechanisms to NET formation. For example, the Group A Streptococcus expresses a DNase enzyme that can degrade NETs (Buchanan et al., 2006), and Pseudomonas aeruginosa expresses surface molecules that can prevent neutrophil activation and NET formation (Khatua et al., 2012).

Histone citrullination is thought to promote NET formation by inducing chromatin decondensation and facilitating the expulsion of chromosomal DNA coated with antimicrobial molecules (Nedel et al., 2008; Wang et al., 2009; Li et al., 2010). In fact, chemical inhibition of PAD4 activity significantly reduces histone decondensation and NET formation in response to either the calcium ionophore ionomycin or the bacterium Shigella flexneri (Wang et al., 2009). Our group and the Wang group have independently created PAD4-deficient mice (Li et al., 2010; Hemmers et al., 2011). Neutrophils isolated from PAD4-deficient mice are unable to citrullinate histones, decondense chromatin, and generate NETs (Li et al., 2010; Hemmers et al., 2011). Because of their inability to form NETs, PAD4 KO mice were shown to be more susceptible to bacterial infection (Li et al., 2010), and, thus, PAD4 is an important mediator of innate immunity.

Neutrophil elastase, a neutrophil serine protease, resides in the azurophilic granules and is a component of NETs (Borregaard, 2010; Amulic et al., 2012). The cleavage of microbial virulence factors by NE is essential for the clearance of specific Gram-negative bacteria (Pham, 2006). NE also cleaves histones to drive chromatin decondensation during NET formation (Papayannopoulos et al., 2010). Indeed, NE is essential for the process of NETosis (Papayannopoulos et al., 2010), and it is interesting to speculate that histone citrullination, by PAD4, promotes a relaxing
of the chromatin structure, allowing NE to gain access. Thus, the activity of NE and PAD4 may converge upon the chromatin decondensation process and NET formation. Neutrophils isolated from PAD4-deficient mice will be useful to delineate the hierarchy between PAD4 and other molecules, like NE, that are required for NETosis.

STIMULATION OF PAD4 ACTIVITY

A number of stimuli, including live and heat-killed bacteria, fungi, protozoa, and chemokines have been reported to induce NET formation (Guimarães-Costa et al., 2012). Because NET formation is PAD4-dependent (Li et al., 2010; Hemmers et al., 2011), these same stimuli likely also induce PAD4 activation. However, the activity of PAD4 in relation to each stimuli must be assessed by looking for histone citrullination, which is both a hallmark of PAD activity (Neeli et al., 2008, 2009) and a component of NETs (Li et al., 2010, Hemmers et al., 2011). Only a handful of these, including live bacteria, the Gram-negative bacterial cell wall component lipopolysaccharide (LPS), the Gram-positive bacterial cell wall component lipoteichoic acid (LTA), the fungal cell wall component zymosan, the proinflammatory cytokine TNF-α, myristate acetate (PMA; Fuchs et al., 2007), and NOX2 (Fuchs et al., 2007), have been shown to induce PAD4 activity and histone citrullination (Neeli et al., 2008, 2009; Li et al., 2010, Hemmers et al., 2011). As discussed earlier, PAD4 is calcium-dependent, and it is thought that PAD4 requires calcium levels higher than are found in the homeostatic cell to be active (Vossenaar et al., 2004). Not surprisingly, the calcium ionophore ionomycin activates PAD4 to induce histone citrullination and elicit NET formation (Neeli et al., 2008, 2009; Wang et al., 2009; Li et al., 2010).

Table 1 catalogs the variety of stimuli reported to stimulate NET formation. Although little is known about the downstream signaling pathways required for PAD4 activation in neutrophils, cytoskeletal activity may be involved in PAD4 activation. Pretreatment of cells with nocodazole or cytoskeleton D, which inhibit microtubule polymerization, prior to LPS stimulation leads to a reduction of histone citrullination and NET formation (Neeli et al., 2009). Additionally, blockade of integrin signaling through Mac-1 and cytohesin-1 impaired PAD4 activity and NET formation (Neeli et al., 2009). How cytoskeletal signaling impacts PAD4 is unknown; however, it has been proposed that the same receptors establish whether a cell will undergo phagocytosis or NET formation (Neeli et al., 2009). Indeed, studies have indicated that neutrophils initiate NET formation when phagocytosis of a large particle fails (Urban et al., 2006). Perhaps cytoskeletal activity and PAD4-mediated citrullination are linked because the initiation of NET formation represents a back-up killing mechanism following unsuccessful phagocytosis.

PAD4 ACTIVITY AND ROS

The generation of reactive oxygen species (ROS) is initiated by a wide variety of neutrophil stimuli, including phagocytosis of pathogens and signaling by LPS and TNF (Kobchi et al., 2009), which are also NET-inducing stimuli. Indeed, ROS generation is required for NET formation, and, thus, it is likely that ROS generation is required for PAD4 activation as well. In neutrophils, superoxide (O$_2^-$) is generated by the NADPH complex (Nox) and by the electron transport chain in mitochondria (Kobchi et al., 2009). O$_2^-$ is then converted to H$_2$O$_2$, spontaneously or by the enzyme superoxide dismutase (SOD, Kobchi et al., 2009). H$_2$O$_2$ acts directly on target cells and is converted to additional effectors by enzymes such as myeloperoxidase (MPO). Interestingly, the addition of H$_2$O$_2$ to primary murine or human neutrophils induces PAD4-dependent histone citrullination (Neeli et al., 2008; Li et al., 2010). ROS molecules are highly cytotoxic and act as antimicrobial agents, but they can also play a dual role as reversible signal transduction mediators to regulate redox-sensitive target proteins (Amulic et al., 2012).

The link between ROS and NET formation was first recognized by the fact that patients with chronic granulomas disease (CGD), who are missing the Nox2 protein essential for NADPH assembly and, thus, cannot form ROS. Neutrophils isolated from CGD patients do not make NETs in response to S. aureus or phorbol myristate acetate (PMA; Fuchs et al., 2007). This phenotype is rescued by addition of H$_2$O$_2$ or exogenous glucose oxidase, which generates H$_2$O$_2$ (Fuchs et al., 2007), indicating that the ROS production facilitated by Nox2 is necessary for NETs. Catalase removes intracellular H$_2$O$_2$ by reduction to water and oxygen (Kobchi et al., 2009), and catalase inhibition increases intracellular H$_2$O$_2$, leading to increased NET production in healthy neutrophils (Fuchs et al., 2007). Subsequent studies have demonstrated that ROS generation is upstream of chromatin decondensation (Remsijer et al., 2011), suggesting that NADPH oxide activation may also be a prerequisite for PAD4 activation. Indeed, LPS-induced citrullination of histone H4 is decreased when cells are pre-incubated with the NADPH oxidase inhibitor apocynin (Neeli et al., 2009). Although, to our knowledge, the activity of PAD4 in CGD neutrophils has not yet been directly explored, since chromatin decondensation is not observed in CGD neutrophils, we would predict PAD4-mediated histone citrullination is also impaired. Since H$_2$O$_2$ treatment can activate PAD4-mediated histone deaminination in primary murine and human neutrophils (Neeli et al., 2008; Li et al., 2010), and since NADPH activation seems to be upstream of NET formation (Neeli et al., 2009), we speculate that PAD4 activation may be downstream of NADPH (Figure 3).

The contribution of specific ROS molecules to NET formation has also been examined. NADPH oxidase or mitochondrial ROS selective inhibitors established a requirement for NADPH oxidase generated O$_2^-$ (Nishinaka et al., 2011), but excluded a need for mitochondrial ROS in PMA-induced NET generation (Kürchiner et al., 2012). MPO catalyzes the oxidation of Cl$^-$ ions to generate hypochlorous acid (HOCl) and other reactive products using H$_2$O$_2$ as a cosubstrate (Arnold and Flemming, 2010). In the absence of MPO activity, NET generation is absent (Papayanopoulos et al., 2010; Metzler et al., 2011; Kürchiner et al., 2012), but this phenotype can be rescued by addition of HOCl (Palmer et al., 2012). In fact, the HOCl product of MPO has also been found to be both necessary and sufficient for NET formation, and in CGD neutrophils, the addition of HOCl is also sufficient to initiate NET formation (Palmer et al., 2012). Tauros is a cellular antioxidant capable of reducing HOCl and H$_2$O$_2$ to promote cell survival (Palmer et al., 2012). Interestingly, preincubation of neutrophils with tauros prior to PMA or HOCl stimulation reduces NET formation (Palmer et al., 2012). Additionally, while SOD...
NET stimuli	Shown to activate PAD4	Reference
Activated endothelial cells	n.d.	Gupta et al. (2010)
Aspergillus fumigatus	n.d.	Bruns et al. (2009), McCormick et al. (2010)
Candida albicans	n.d.	Ermart et al. (2009a), Urban et al. (2009), Yost et al. (2009, Hakkim et al. (2010), Svobodova et al. (2012)
Opsonized Candida albicans	n.d.	Metzler et al. (2011)
Cryptococcus species	n.d.	Urban et al. (2009), Springer et al. (2010)
Escherichia coli	Yes	Grinberg et al. (2008), Wang et al. (2009, Yost et al. (2009), Yan et al. (2012)
FMLP	Yes	Neeli et al. (2008)
H2O2	Yes	Neeli et al. (2008), Li et al. (2010)
Haemophilus influenzae	n.d.	Jumeau et al. (2011)
IL-6	Yes	Wang et al. (2009)
IL-8	Yes	Brinkmann et al. (2004), Gupta et al. (2005)
Ca2+ ionophore	Yes	Wang et al. (2009)
Klebsiella pneumoniae	n.d.	Papayannopoulos et al. (2010)
Leishmania species	n.d.	Guimaraes-Costa et al. (2009), Gabriel et al. (2010)
Listeria monocytogenes	n.d.	Ermart et al. (2009a), Munafò et al. (2009)
LPS	Yes	Neeli et al. (2008), Li et al. (2010), Munafò et al. (2009)
Lipoteichoic acid	Yes	Neeli et al. (2009)
Mycobacterium species	n.d.	Remco-Kochs et al. (2009)
Nitric Oxide	n.d.	Patel et al. (2010)
Platelet activating factor	n.d.	Yost et al. (2009, Fuchs et al. (2010)
Platelet TLR-4	n.d.	Clark et al. (2007)
Pseudomonas aeruginosa	n.d.	Pilszczek et al. (2010)
Salmonella typhimurium	n.d.	Brinkmann et al. (2004)
Shigella flexneri	Yes	Brinkmann et al. (2004), Li et al. (2010)
Staphylococcus aureus	n.d.	Brinkmann et al. (2004), Chow et al. (2010), Pilszczek et al. (2010)
Opsonized Staphylococcus aureus	n.d.	Palmer et al. (2012)
Staphylococcus epidermidis 5-toxin	n.d.	Cogan et al. (2010)
Streptococcus species	Yes2	Behser et al. (2006), Buchanan et al. (2006), Lauch et al. (2009), Dahmcke et al. (2009), Cindy Alexander et al. (2010), Li et al. (2010), Pilszczek et al. (2010)
Streptococcus pneumoniae	n.d.	Mori et al. (2012)
Th1/Th2	Yes	Neeli et al. (2009), Wang et al. (2009)
Tnplasma gondii	n.d.	Ali Abdilah et al. (2012)
Yersinia enterocolitica	n.d.	Casch-Meyer et al. (2010)
Zymosan	Yes	Neeli et al. (2009)

n.d., not determined

1 Some investigators have reported that IL-8 induced NET formation may be sensitive to cell culture conditions (Marcos et al., 2011).
2 M1 GAS deficient in an extracellular DNAse (Sda1) could induce PAD4-dependent NETs (Li et al., 2012).
inhibition does not impede NET formation, addition of exogenous SOD does seem to increase NET production, perhaps owing to the increase in available H2O2 (Palmer et al., 2012). These studies indicate a model in which NADPH oxidase activity generates O2•−, which then dissipates to H2O2; either spontaneously or with the help of SOD, and is then used by MPO to generate HOCl, which is necessary and sufficient to induce NET formation. It will be interesting to determine whether HOCl can also directly regulate PAD4 activity.

PAD4 AND AUTOPHAGY

Like ROS, autophagy has been shown to be required for chromatin decondensation during NET generation (Remijsen et al., 2011b); however, these two processes seem to be independent of each other (Remijsen et al., 2011b). Blockade of PMA with wortmannin inhibits autophagy, and pretreatment of PMA stimulated neutrophils with wortmannin prevented chromatin decondensation (Remijsen et al., 2011b). However, no direct role between autophagy, PMA and citrullination has been shown. Recently, newly developed PAD4 inhibitors were found to reduce autophagy processes in an osteosarcoma cell line (Wang et al., 2012), further providing evidence of a link between PAD4 activity and autophagy.

REFERENCES

Abi Abdallah, D. S., Lin, C., Ball, C. J., King, M. R., Duhamel, G. E., and Donkers, E. Y. (2012). Toll-like receptor 4 (TLR4) is required for microbial-induced NET formation. *J. Immunol.* 188, 768–777.

Amade, B., Causlet, C., Hayes, G. L., Mendes, K. D., and Zylinski, A. (2012). Neutrophil function from mechanisms to disease. *Annu. Rev. Immunol.* 30, 459–489.

Andrade, F., Durhak, E., Gucek, M., Cole, R. N., Bieniek, A., and Zhu, X. (2010). Autocitrullination of human papillomavirus oncoprotein E6 is required for cell transformation. *Arthritis Rheum.* 62, 1630–1640.

Arita, K., Hashimoto, H., Shimizu, T., Nakashima, K., Yamada, M., and Sato, M. (2006). Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4. *Proc. Natl. Acad. Sci. U.S.A.* 103, 5291–5296.

Arimboli, J., and Hemming, I. (2010). Human myeloperoxidase in innate and acquired immunity. *Arch. Biochem. Biophys.* 500, 92–108.

Beiss, K., Wartha, F., Albiger, B., Normark, S., Zychlinsky, A., and Henriques-Normark, B. (2006). An endogenous superoxide dismutase precursor to escape from neutrophil extracellular traps. *Curr. Biol.* 16, 401–407.

Borregaard, N. (2010). Neutrophils, from macrophages to microspheres. *Immunol. Rev.* 235, 657–670.

Brzhusova, M., and Mijack, M. (2011). Localization and expression of peptidylarginine deiminase 4 (PA- D4) in mammalian oocytes and preimplantation embryos. *Zygote*
Chow, O. A., von Kockritz-Blickwede, C., Chang, X., Han, J., Pang, L., Zhao, C. C., Isomoto, H., Narumi, Y., Yang, Y., and Shen, Z. (2009). Aspergillus fumigatus in vitro and in vivo metabolism of the non-strychnos alkaloid 1-iminoethyl-L-ornithine amide (N-F-amidine) and 1-(carboxyl)benzoyl-N(5)-(2-chloro-1-iminoethyl)-L-ornithine amide (Cl-amidine: a novel peptidylarginine deiminase 3). FEBS Lett. 584, 181–193.

Ermert, D., Zychlinsky, A., and Urban, C. F. (2012). Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. U.S.A. 109, 2593–2598.

Hakkinen, A., Penttinen, R. G., Auranen, K., Lahti, L., Hämäläinen, H., and Penttinen, M. (2010). Impairment of neutrophil extracellular trap degradation by placental microparticles. Mediators Inflamm. 2010, 942316.

Hidaka, Y., Hagiwara, T., and Yamada, T. (2004). Histone deimination antagonizes arginine methylation. Cell 118, 540–553.

U LTIMATE gene family. J. Immunol. 180, 6772–6781.

Hahn, S. (2005). Histone deimination and the regulation of neutrophil extracellular trap formation. J. Immunol. 174, 3193–3197.

Kessenbrock, K., Krumbholz, M., Schonermarck, U., Back, W., Gross, W. L., Wesl, Z., et al. (2009). Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–629.

Knaus, B., Bhattacharya, K., and Mandl, C. (2012). Sialoglycoproteins adsorbed by Plasmodium aerocystis facilitate their survival by impeding neutrophil extracellular trap pathway. J. Leukoc. Biol. 89, 641–650.

Kirchner, T., Moller, S., Klinger, M., Selbach, W., Lukan, T., and Rohrbach, K. (2012). The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Microbes Infection 2012, 149136.

Klareskog, L., Klareskog, J., Lambberg, K., Padrubek, L. and Alfredsson, L. (2008). Immunology Cytotoxicants in refractory rheumatoid arthritis. Ann. Rheum. Dis. 65, 653–657.

Knudsen, B., Bhattacharya, M., and Thompson, P. R. (2005). Protein arginine deiminase 4: evidence for a reverse protein deiminisation mechanism. Biochim. Biophys. Acta 1751, 657–667.

Knudsen, B., Causer, C. P., Jones, J. E., Bhattacharya, M., Dreyer, C. J., Osborne, T. C., et al. (2010). Substrate specificity and kinetic studies of PADS 1, 3 and 4 identify protein arginine deiminases as selective inhibitors of protein arginine deiminase 3. Biochem. Biophys. Res. Commun. 395, 26–31.

Kohelski, C., Imagawa, H., Nichibara, T., and Soma, G. (2009). RDS and...
Li, P., Li, M., Lindberg, M. R., Ken-
Rohrbach et al. PAD4 activation
Wang, J. Y., Riblett, M., Y alavarthi,
trophils release IL-17 through extra-
S., et al. (2011). Mast cells and neu-
Immunol. 187, 490–500.
ley, B., Lee, Y. H., Stallcup, M. R.,
(2009). PAD4 is essential for antibac-
Zinkernagel, A. S., Beall, B., et al.
Mechin, M. C., Coudane, F., Adoue, V.,
Aranzal, I., Duplan, H., Chaverrou,
and Thompson, P. R. (2008). Reg-
menegazzi, R., Decleva, E., and Dri, P.
(2012). Killing by neutrophil extra-
cellular traps: fact or folklore? Blood
119, 124–126.
metzler, K. D., Fuchs, T. A., Nauseef,
(2010). Nitric oxide donors release
myeloperoxidase regulate the forma-
taphil extracellular trap formation. Bioch. Res. Commun. 431, 73–79.
gh, M., and Zychlinsky, A. (2008). Neutrophil deimination and autophagy
extracellular traps. J. Leukoc. Biol. 84, 466–476.
slag, S., Kurnia, S., Syarif, A., Bring,
B. S., Kenhrt, R. S., Sakuhi, E., et al.
(2001). Neutrophil extracellular traps from human neutrophils by augmenting free radical
production.
Park, H., Stil, A. M., Ket-
E., et al. (2011). Neutrophil deimination of citrullinated proteins suggests a
role in the pathogenesis of rheumatoid arthritis.
Okuda, K., Higashino, T., Yamada, R.,
Shibieda, H., Blundell, T. L., and
Munekata, A. (2012). Alpha-Enolase of Streptomyces plicatus induces formation of neutrophil extracellular traps.
Motta, Y., Yamaguchi, M., Teto, Y.,
Hamada, S., Ooshima, T., and
Kanohaba, S. (2012). alpha-Enolase of Streptomyces plicatus induces formation of neutrophil extracellular traps.
Furuskog, M. H., and Lahrz, K.
(2006). Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem. Cell Biol. 84, 459–468.
Platek, S., Kurnia, S., luria, A., String,
B. S., Kenhrt, R. S., Sakuhi, E., et al.
(2001). Neutrophil extracellular traps from human neutrophils by augmenting free radical
generation.
Fisher, S. C., Sawada, T., Suzuki, M.,
Tokuhiro, S., Sawada, T., Suzuki, M.,
Blundell, T. L., and Munekata, A. (2012). Alpha-Enolase of Streptomyces plicatus induces formation of neutrophil extracellular traps.
Furuskog, M. H., and Lahrz, K.
(2006). Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem. Cell Biol. 84, 459–468.
Platek, S., Kurnia, S., luria, A., String,
B. S., Kenhrt, R. S., Sakuhi, E., et al.
(2001). Neutrophil extracellular traps from human neutrophils by augmenting free radical
generation.
Fisher, S. C., Sawada, T., Suzuki, M.,
Tokuhiro, S., Sawada, T., Suzuki, M.,
Blundell, T. L., and Munekata, A. (2012). Alpha-Enolase of Streptomyces plicatus induces formation of neutrophil extracellular traps.
Furuskog, M. H., and Lahrz, K.
(2006). Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem. Cell Biol. 84, 459–468.
Platek, S., Kurnia, S., luria, A., String,
B. S., Kenhrt, R. S., Sakuhi, E., et al.
(2001). Neutrophil extracellular traps from human neutrophils by augmenting free radical
generation.
Fisher, S. C., Sawada, T., Suzuki, M.,
Tokuhiro, S., Sawada, T., Suzuki, M.,
Blundell, T. L., and Munekata, A. (2012). Alpha-Enolase of Streptomyces plicatus induces formation of neutrophil extracellular traps.
Furuskog, M. H., and Lahrz, K.
(2006). Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem. Cell Biol. 84, 459–468.
Platek, S., Kurnia, S., luria, A., String,
B. S., Kenhrt, R. S., Sakuhi, E., et al.
(2001). Neutrophil extracellular traps from human neutrophils by augmenting free radical
generation.
Fisher, S. C., Sawada, T., Suzuki, M.,
Tokuhiro, S., Sawada, T., Suzuki, M.,
Blundell, T. L., and Munekata, A. (2012). Alpha-Enolase of Streptomyces plicatus induces formation of neutrophil extracellular traps.
Furuskog, M. H., and Lahrz, K.
(2006). Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem. Cell Biol. 84, 459–468.
the two related fungal species Can-
dida albicans and Candida dublin-
sis with human neutrophils. J. Immuno-
ol. 189, 2502–2511.
Thompson, P. R., and Fast, W. (2006). Histone citrat-
lillation by protein arginine deiminase: is arginine
deiminase enzymes in monocytes and
inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 189, 4596–4604.
Wood, D. D., Ackley, C. A., Brand, B., Zhang, L., Rajima, M., Mastrocnudo, F. G., et al. (2008). Medlin localization of peptideargi-
ty-aminohydrolase 2 and 4: comparison of PAD2 and PAD4 activity. J. Invest. 88, 354–364.
Wood, D. D., Bhatia, J. M., O'Connor, P., and Moscatelli, M. A. (1998). Acute multiple sclerosis (Marburg type) is associated with developmentally
impaired myelin basic protein. Ann. Neurol. 41, 18–24.
Yao, H., Li, P., Wang, S., Hu, J., Chen, X. A., Wu, J., et al. (2012). Anticancer peptidearginine deim-
nase (PAD) inhibitors regulate the autophagy flux and the mamalian target of rapamycin complex 1 activ-
ity. J. Biol. Chem. 287, 24941–24953.
Wang, X., Wysocka, J., Sargh, J., Lee, Y. H., Perlin, J. R., Leodelli, L., et al. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 271–274.
Wilkens, A., Tracey, L. A., Touc, R. E., and Hunte, T. W. (2012). The influence of AC133 status and charac-
teristics of the course of RA. Nat. Rev. Rheum. 4, 144–152.
Wilk, V. C., Gamini, A. M., Randa, N. K., Casey, C. P., Knuckles, B., Cordova, K. N., et al. (2011). N’(alpha-benzoyl)-5S-(2-dehydro-
-l-lysyl)-5-oxol-valine, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 189, 4596–4604.
Yost, C. C., Gady, M. J., Harris, E. S., Thornton, N. L., Melt-
toff, A. M., Martinez, M. L., et al. (2008). Impaired neutrophil extracellular trap formation: A novel innate immune deficiency of human neonates. Blood 113, 6433–6437.
Zhang, Z., Boll, M., Grytten, M. J., Chen, W., Zhang, X., Sencer, B. D., et al. (2012). Peptideargi-
ty-aminohydrolase 2-catalyzed histone H3 arginine 26 citrullination facili-
tiates estrogen receptor alpha target

citekey{10}