Effect of body mass index on functional outcome in primary total knee arthroplasty - a single institution analysis of 2180 primary total knee replacements

Shane C O’Neill, Joseph S Butler, Adam Daly, Darren F Lui, Patrick Kenny,
Department of Orthopaedics, Cappagh National Orthopaedic Hospital, Dublin 11, Ireland

Author contributions: All the authors contributed to the paper.

Institutional review board statement: The study was reviewed and approved for publication by our Institutional Reviewer.

Informed consent statement: All study participants provided informed written consent about personal and medical data collection prior to enrolment.

Conflict-of-interest statement: All the authors have no conflict of interest related to the manuscript.

Data sharing statement: The original anonymous dataset is available on request from the corresponding author at shaneconeill@rcsi.ie.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Shane C O’Neill, MRCS, MCh, Department of Orthopaedics, Cappagh National Orthopaedic Hospital, Finglas, Dublin 11, Ireland. shaneconeill@rcsi.ie
Telephone: +353-1-8140400

Received: February 15, 2016
Peer-review started: February 16, 2016
First decision: March 24, 2016
Revised: June 20, 2016
Accepted: August 11, 2016

Article in press: August 15, 2016
Published online: October 18, 2016

Abstract

AIM
To evaluate the effect of body mass index (BMI) on short-term functional outcome and complications in primary total knee arthroplasty.

METHODS
All patients undergoing primary total knee arthroplasty at a single institution between 2007 and 2013 were identified from a prospective arthroplasty database. 2180 patients were included in the study. Age, gender, BMI, pre- and post-operative functional scores [Western Ontario and McMaster University Arthritis Index (WOMAC) and SF-36], complications and revision rate were recorded. Patients were grouped according to the WHO BMI classification. The functional outcome of the normal weight cohort (BMI < 25) was compared to the overweight and obese (BMI ≥ 25) cohort. A separate sub-group analysis was performed comparing all five WHO BMI groups; Normal weight, overweight, class 1 obese, class 2 obese and class 3 obese.

RESULTS
With a mean age of 67.89 (28-92), 2180 primary total knee replacements were included. 64.36% (1403) were female. The mean BMI was 31.86 (18-52). Ninety-three percent of patients were either overweight or obese. Mean follow-up 19.33 mo (6-60 mo). There was no significant difference in pre or post-operative WOMAC score in the normal weight (BMI < 25) cohort compared to patients with a BMI ≥ 25 (P > 0.05). Sub-group analysis revealed significantly worse WOMAC scores in class 2 obese 30.80 compared to overweight 25.80 (P < 0.01) and class 1 obese.
INTRODUCTION

Total knee arthroplasty (TKA) is an effective surgical treatment of osteoarthritis of the knee, with 700,000 procedures performed in the United States annually with the demand for TKA projected to increase 673% by 2030[5]. Occurring in tandem with this increase in demand is the exponential increase in obesity in society. Currently in Ireland, 36% of the population are overweight and 14% obese and this is estimated to increase further in the future[8]. It is well established that obesity confers an increased risk for a number of medical conditions including ischaemic heart disease, diabetes and stroke[3]. It has also been shown that obesity increases the risk of development of osteoarthritis, particularly in the knee, which has potential implications for the demand for TKA in the future[4].

Obesity has a number of implications for surgery in general, but in particular for elective surgery such as TKA. Obesity is an independent risk factor for a number of perioperative complications including acute coronary syndrome, wound infection and urinary tract infection[5]. The outcome of obese patients that undergo TKA as compared to non-obese patients is of particular interest. Currently the evidence is unclear with some studies indicating that obese patients achieve inferior outcomes[6] with others showing equivalent functional outcome[7,8].

The aim of this study was to assess the effect of body mass index (BMI) on functional outcome in primary total knee arthroplasty.

MATERIALS AND METHODS

Patients that underwent primary total replacement were identified from a prospectively collected joint registry at a single institution. Ethical approval was obtained for the establishment of the joint registry and for ongoing research. The joint registry is maintained by a full time clinical nurse specialist and all demographic and clinical information for each arthroplasty procedure performed at the institution is prospectively anonymously recorded.

Two thousand one hundred and eighty patients were identified during the period 2007-2013. Demographic data including age and gender were collated for each patient. Body mass index (BMI) was calculated for each patient at pre-operative assessment using the standardised formula; weight in kilograms squared, divided by height in metres squared. Functional outcome scores, the Western Ontario and McMaster University Arthritis Index (WOMAC) and the Short Form 36 (SF-36) were collected pre-operatively and 6 mo post operatively. Complications including revision, superficial and deep infection, deep venous thrombosis (DVT) and pulmonary embolism (PE) were recorded prospectively in the postoperative period.

Patients were divided into two comparative groups for the purpose of the study, those with a normal BMI (less than or equal to 25) Group 1 and those who were overweight or obese (greater than 25) Group 2 according to the WHO BMI classification[9]. A separate sub-group analysis was performed comparing all five WHO BMI groups; Normal weight, overweight, class 1 obese, class 2 obese and class 3 obese.

The Primary outcomes assessed were pre-operative and six-month post-operative WOMAC and the SF-36 scores. The WOMAC score is a validated self-administered questionnaire that assesses the condition of patients with hip and knee arthritis. It has a scale of 0 to 100, with a higher score equalling more pain, stiffness and functional limitation[10]. The SF-36 is also a self-administered questionnaire that assesses quality of life. It has a scale of 0 to 100, with a higher score equating to a greater quality of life[11]. Secondary outcomes assessed included...
complications revision, superficial and deep infection, DVT and PE.

Statistical analysis
Statistical analysis was performed using STATA Version 12.1. All data was collated on a Microsoft Excel© (Microsoft Corporation, Seattle WA, United States) spreadsheet. Results were analyzed and are presented as mean, percentage and standard deviation for each BMI group according to the WHO classification as appropriate. Statistical significance between the main study groups (normal weight BMI < 25 vs BMI > 25) was assessed using the student t test, with significance set at \( P < 0.05 \).

Further sub-group analysis was performed comparing each of the WHO BMI sub-groups. Initially a One-way ANOVA analysis was performed to assess any difference between the groups. Further post-hoc Tukey HSD (honest significance test) analysis was then performed, comparing each of the sub-groups with significance set at \( P < 0.05 \). Statistical analysis was performed by Shane O’Neill MD.

RESULTS
A total of 2180 primary total knee replacements were performed at the institution between 2007 and 2013. The mean age was 67.9 years (28-92), with 36% Male and 64% Female. The mean follow up was 19.3 mo, with a range of 6 mo to 5 years. The distribution according to BMI group is shown in Figure 1. The mean BMI was 31.9 (18-52) with 63% obese, 30% overweight and 7% normal weight. The two comparative study groups consisted of Group 1 (\( n = 162 \) patients) and Group 2 (\( n = 2018 \) patients).

Functional outcome
There was no significant difference in the pre-op WOMAC scores between Group 1; 52.7 (1-84) and Group 2; 53.7 (3-96) \( P = 0.5 \). Similarly, there was no significant difference in the post op scores between the two groups, 29.7 (1-83) and 27 (1-95) \( P = 0.075 \). There was no significant difference in either the pre-operative \( P = 0.83 \) or post-operative \( P = 0.7 \) SF-36 scores. The complete functional outcome scores are presented in Tables 1 and 2.

Sub-group analysis
Table 3 outlines 6-mo post operative functional scores arranged by WHO BMI sub-group in tabular format.

WOMAC: Initial One-way ANOVA analysis of the six-month post operative WOMAC scores between the 5 groups revealed a \( P \)-value < 0.01, suggesting a significant difference between one or more groups. Further post-hoc Tukey HSD testing revealed significant differences in the 6 mo postoperative WOMAC scores...
In the United Kingdom (NJR) figures (2013), the mean obese patients undergoing total knee arthroplasty are now which also revealed a considerable proportion of the general population, where 50% are either overweight or obese. This is significantly higher than the baseline levels in the normal weight cohort. The evidence in the literature is clear in relation to the increased risk of perioperative complications with increasing BMI in TKA. The aetiology behind this is multifactorial. Wound healing and the development of both superficial and deep peri-prosthetic joint infections are significantly more common with increasing BMI. A recent meta-analysis revealed no correlation with BMI and functional outcome comparing normal weight BMI < 25 individuals with BMI > 25 is in keeping with a recent study of 13673 primary total knee replacements by Baker et al using NJR data. They found that the improvement of patient reported outcomes (PROMs) were similar irrespective of BMI. Similarly, Desmukh et al revealed no correlation with BMI and functional outcome at 1 year. However, a consensus has yet to be reached in the literature, as there is also evidence that increasing BMI, particularly greater than 40 results in inferior clinical outcomes. Collins et al reviewed 445 total knee replacements and found inferior clinical outcome scores in individuals with a BMI greater than 30 at 9 years follow up. Interestingly, although obese patients achieved lower outcome scores as compared to non-obese patients, they achieved significant absolute functional improvement and the authors concluded that they “found no reason to limit access to total knee replacement in obese patients”. While there was no difference in our main outcome measure, the sub-group analysis revealed significantly worse functional outcomes in the class 2 obese cohort compared to both the overweight and class 1 obese cohort. Interestingly the class 3 obese cohort did not demonstrate any significant difference in functional outcome scores. All cohorts achieved significant absolute improvements in functional outcome measures compared to preoperative values. The significance of our finding of inferior outcomes in the class 2 cohort is unclear. While we have included a relatively large cohort in this study (2180), perhaps larger numbers found in registry studies are necessary to define clear sub-group differences.

**DISCUSSION**

Overall the study revealed no significant difference in short-term post-operative functional outcome in patients with a normal BMI as compared to overweight or obese patients. Sub-group analysis found significantly lower functional outcome scores in class 2 obese patients (BMI 35-39.9) compared to both overweight and class 1 obese patient.

The study highlights that, the vast majority of patients now presenting to our institution for total knee replacement, 93% are either overweight or obese. This is significantly higher than the baseline levels in the general population, where 50% are either overweight or obese. This finding is mirrored in previous studies, which also revealed a considerable proportion of patients undergoing total knee arthroplasty are now obese. According to the latest National joint registry in the United Kingdom (NJR) figures (2013), the mean BMI of patients undergoing TKA in the United Kingdom is now 30.8 (Class 1 obese). This underlines the significant burden that this increase in BMI will place on orthopaedic services now and in the future.

The principle finding in this study of equivalent functional outcome comparing normal weight BMI < 25 individuals with BMI > 25 is in keeping with a recent study of 13673 primary total knee replacements by Baker et al. They found that the improvement of patient reported outcomes (PROMs) were similar irrespective of BMI. Similarly, Desmukh et al revealed no correlation with BMI and functional outcome at 1 year. However, a consensus has yet to be reached in the literature, as there is also evidence that increasing BMI, particularly greater than 40 results in inferior clinical outcomes. Collins et al reviewed 445 total knee replacements and found inferior clinical outcome scores in individuals with a BMI greater than 30 at 9 years follow up. Interestingly, although obese patients achieved lower outcome scores as compared to non-obese patients, they achieved significant absolute functional improvement and the authors concluded that they “found no reason to limit access to total knee replacement in obese patients". While there was no difference in our main outcome measure, the sub-group analysis revealed significantly worse functional outcomes in the class 2 obese cohort compared to both the overweight and class 1 obese cohort. Interestingly the class 3 obese cohort did not demonstrate any significant difference in functional outcome scores. All cohorts achieved significant absolute improvements in functional outcome measures compared to preoperative values. The significance of our finding of inferior outcomes in the class 2 cohort is unclear. While we have included a relatively large cohort in this study (2180), perhaps larger numbers found in registry studies are necessary to define clear sub-group differences.

Despite no difference in functional outcome, the incidence of all complications was higher in the overweight and obese cohort as compared to the normal weight cohort. The evidence in the literature is clear in relation to the increased risk of perioperative complications with increasing BMI in TKA. The aetiology behind this is multifactorial. Wound healing and the development of both superficial and deep peri-prosthetic joint infections are significantly more common with increasing BMI. A recent meta-analysis

**Table 3 Sub-group analysis of post-operative functional outcome scores**

| BMI     | Normal | Overweight | BMI 25-29 | BMI 30-34 | BMI 35-39 | BMI > 40 |
|---------|--------|------------|-----------|-----------|-----------|----------|
| WOMAC   |        |            |           |           |           |          |
| SF-36 Scores |        |            |           |           |           |          |
| 6 mo post-operative | 29.67 | 25.8       | 25.5      | 30.8      | 28.6      |          |

WOMAC: Western Ontario and McMaster University Arthritis Index; BMI: Body mass index.
by Kerkhoffs et al\textsuperscript{17} revealed an odds ratio of 1.9 for all infection and 2.38 for deep infection in obese patients as compared to non-obese patients in an analysis of 15276 and 5061 patients respectively. Obese patients are also at a higher risk of thromboembolic disease post operatively\textsuperscript{[18]}. It is imperative that patients are counselled in detail regarding the increased risk of perioperative complications with increasing BMI. While it would seem intuitive that patients should attempt to lose weight prior to surgery, some recent evidence suggests that obese patients who lose a significant proportion of bodyweight preoperatively, actually have a higher rate of surgical site infection compared to control\textsuperscript{[19]}. Further research is needed in relation to perioperative weight management, however it raises interesting questions about the best way to manage this ever-expanding cohort of overweight and obese patients.

Due to the current demographics of our patient cohort, there were relatively few normal weight individuals presenting for surgery and therefore available for inclusion in the study. Similarly, larger studies using registry data may be necessary to elucidate clear sub-group differences. While the patient numbers were sufficient to statistically compare the functional outcome scores, there was an insufficient incidence of complications to draw any statistical conclusions in relation to complication differences. We acknowledge that early functional outcome may not correspond to long-term functional outcome and further research in this area is required.

In conclusion, overall there was no difference in early post-operative functional outcome comparing normal weight individuals with those of a BMI > 25 in a cohort of 2080 primary total knee replacements. Patients should be counselled regarding the potential increased risk of complications with increasing BMI, however they should not be denied TKA based solely on weight if medically fit to undergo the procedure.

**Applications**

Patients with severe degenerative change affecting their quality of life and mobility can benefit from total knee arthroplasty. The procedure can transform a patient’s life, relieving them of chronic pain and improving mobility.

**Terminology**

TKR involves the replacement of the worn surfaces of the distal femur and proximal tibia and replacement with prosthetic implants, which can be secured with or without cement.

**Peer-review**

This is an interesting clinical study concerning the effect of BMI on functional outcome and complications in primary total knee arthroplasty.

**REFERENCES**

1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007; 89: 780-785 [PMID: 17403800 DOI: 10.2106/JBJS.F.00222]
2. Morgan KMH, Watson D, Perry I, Barry M, Shelley E, Harrington J, Molcho M, Layte, RTN, van Lente E, Ward M, Lutomski J, Conroy R, Brugha R. SLAN 2007 Survey of lifestyle attitudes and nutrition in Ireland. Main Report. Dublin: Department of Health and Children, 2007
3. Bray GA. Overweight is risking fate. Definition, classification, prevalence, and risks. Ann N Y Acad Sci 1987; 499: 14-28 [PMID: 3300479 DOI: 10.1111/j.1749-6632.1987.tb6194.x]
4. Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF. Obesity and knee osteoarthritis. The Framingham Study. Ann Intern Med 1988; 109: 19-24 [PMID: 3377350 DOI: 10.7326/0003-4819-109-1-18]
5. Bamgbade OA, Rutter TW, Nafiu OO, Dorje P. Postoperative complications in obese and nonobese patients. World J Surg 2007; 31: 556-560; discussion 561 [PMID: 16957821 DOI: 10.1007/s00268-006-0305-0]
6. Foran JR, Mont MA, Rajahdyaksha AD, Jones LC, Etienne G, Hungerford DS. Total knee arthroplasty in obese patients: a comparison with a matched control group. J Arthroplasty 2004; 19: 817-824 [PMID: 15483795 DOI: 10.1016/j.arth.2004.03.017]
7. Amin AK, Patton JT, Cook RE, Brenkel IJ. Does obesity influence the clinical outcome at five years following total knee replacement for osteoarthritis? J Bone Joint Surg Br 2006; 88: 335-340 [PMID: 16498007 DOI: 10.1302/0301-620X.88B3.16488]
8. Spicer DD, Pomeroy DL, Badenhausen WE, Schaper LA, Curry JI, Suthers KE, Smith MW. Body mass index as a predictor of outcome in total knee replacement. Int Orthop 2001; 25: 246-249 [PMID: 11561501 DOI: 10.1007/s002640100255]
9. WHO. Global database on Body Mass Index: BMI Classification. Geneva: World Health Organization, 2006
10. WOMAC Osteoarthritis Index User Guide. Version V. Australia: Brisbane, 2002
11. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30: 473-483 [PMID: 1593914 DOI: 10.1097/00005650-199206000-00002]
12. Kremers HM, Vischer SL, Kremers WK, Naessens JM, Lewallen DG. The effect of obesity on direct medical costs in total knee arthroplasty. J Bone Joint Surg Am 2014; 96: 718-724 [PMID: 24806008 DOI: 10.2106/JBJS.M.00819]
13. National Joint Registry. National Joint Registry Annual Report, 2014. Available from: URL:http://www.hqip.org.uk/resources/national-joint-registry-annual-report-2014/
14. Baker P, Petheram T, Jameson S, Reed M, Gregg P, Deehan D. The association between body mass index and the outcomes of total knee arthroplasty. J Bone Joint Surg Am 2012; 94: 1501-1508

**COMMENTS**

**Background**

The demand for total knee arthroplasty is increasing year on year and is projected to increase further in the future. Parallel to this the average weight of individuals is also increasing year on year. This directly corresponds to an increase in demand for total knee replacement (TKR), as increasing weight is associated with increased risk of symptomatic degenerative change in the knee. It is therefore imperative that the authors study the efficacy and safety of performing TKR in this patient cohort.

**Research frontiers**

The author’s group perform high volume multi-surgeon arthroplasty at a single dedicated unit. This paper provides evidence for the efficacy for TKR in this patient cohort irrespective of body mass index (BMI).

**Innovations and breakthroughs**

Recent innovations in perioperative pain management and the enhanced recovery protocol have had a positive impact in decreasing length of stay and rehab potential for patients undergoing this procedure. This is particularly relevant to overweight and obese individuals for whom it imperative that they mobilise early to try and minimise the risk of perioperative complications.
15 Deshmukh RG, Hayes JH, Pinder IM. Does body weight influence outcome after total knee arthroplasty? A 1-year analysis. J Arthroplasty 2002; 17: 315-319 [PMID: 11938508 DOI: 10.1054/arth.2002.30776]

16 Collins RA, Walmsley PJ, Amin AK, Brenkel IJ, Clayton RA. Does obesity influence clinical outcome at nine years following total knee replacement? J Bone Joint Surg Br 2012; 94: 1351-1355 [PMID: 23015559 DOI: 10.1302/0301-620X.94B10.28894]

17 Kerkhoffs GM, Servien E, Dunn W, Dahm D, Bramer JA, Haverkamp D. The influence of obesity on the complication rate and outcome of total knee arthroplasty: a meta-analysis and systematic literature review. J Bone Joint Surg Am 2012; 94: 1839-1844 [PMID: 23079875 DOI: 10.2106/JBJS.K.00820]

18 Mantilla CB, Horlocker TT, Schroeder DR. Risk factors for clinically relevant pulmonary embolism and deep venous thrombosis in patients undergoing primary hip or knee arthroplasty. Anesthesiology 2003; 99: 552-560 [PMID: 12960538]

19 Inacio MC, Kritz-Silverstein D, Raman R, Macera CA, Nichols JF, Shaffer RA, Fithian DC. The risk of surgical site infection and readmission in obese patients undergoing total joint replacement who lose weight before surgery and keep it off post-operatively. Bone Joint J 2014; 96-B: 629-635 [PMID: 24788497 DOI: 10.1302/0301-620X.96B5.33136]

P- Reviewer: Cui QT, De Fine M, Drosos GI, Fernandez-Fairen M, Hasegawa M S- Editor: Qiu S L- Editor: A E- Editor: Lu YJ
