Anaplasmataceae-Specific PCR for Diagnosis and Therapeutic Guidance for Symptomatic Neoehrlichiosis in Immunocompetent Host

Michael Schwameis, Julia Auer, Dieter Mitteregger, Ingrid Simonitsch-Klupp, Michael Ramharter, Heinz Burgmann, Heimo Lagler

Candidatus Neoehrlichia is increasingly being recognized worldwide as a tickborne pathogen. We report a case of symptomatic neoehrlichiosis in an immunocompetent Austria resident who had recently returned from travel in Tanzania. The use of _Anaplasmataceae_-specific PCR to determine the duration of antimicrobial therapy seems reasonable to avert recrudescence.

The Study

In January 2013, a 30-year-old white woman with no relevant medical history was admitted to the Division of Infectious Diseases and Tropical Medicine, General Hospital of Vienna, in Vienna, Austria, because of a 3-week history of high fevers (up to 39.9°C), chills, and night sweats accompanied by headache, muscle pain, and malaise. Four weeks before hospitalization, the woman had returned from a 28-day vacation in Tanzania, and we illustrate the applicability of _Anaplasmataceae_-specific PCR for diagnosis and therapeutic guidance.

Human Neoehrlichiosis

Human neoehrlichiosis is an infectious disease that primarily affects immunocompromised persons and persons with severe concurrent medical conditions (1–5). We describe symptomatic _Candidatus_ Neoehrlichia infection in an otherwise healthy woman who had returned from a 28-day vacation in Tanzania, and we illustrate the applicability of _Anaplasmataceae_-specific PCR for diagnosis and therapeutic guidance.

**On hospitalization day 5, a peripheral blood sample was tested by using a 16S rRNA gene–based eubacterial broad range PCR (SepsiTest; Molzym GmbH & Co. KG, Bremen, Germany); results were positive. The amplification products (300 bp) were sequenced (GenBank accession no. EF633744.1; only 1 database entry was available) and 97% (293/301 bp) homology with _Candidatus_ Neoehrlichia lotoris (GenBank accession no. KT895260) and compared, using BLAST (http://blast.ncbi.nlm.nih.gov/), with known sequences in the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) database. The sequence showed 98% (294/300 bp) homology with _Candidatus_ Neoehrlichia lotoris (GenBank accession no. EF633744.1; only 1 database entry was available) and 97% (293/301 bp) homology with _Candidatus_ Neoehrlichia microensis (GenBank accession no. KF155504.1; several database entries were available and showed a reproducible single base deletion at position 225). These findings were confirmed by _Anaplasmataceae_-specific 16S ribosomal RNA gene–based PCR. Primer pairs EHR16SD (5′-GTT ACC YAC AGA AGA AGT CC-3′) and EHR16SR (5′-TAG CAC TCA TCG TTT ACA GC-3′) were chosen to amplify a 345-bp fragment (6). The protocol was adjusted to that in the manual for High-Fidelity PCR enzyme mix (Thermo Scientific, Waltham, MA, USA) and to that of Brown et al. (7). Bidirectional sequencing of the 345-bp amplicon showed a sequence of 243 bp corresponding to the cDNA strand (GenBank accession no. KT953340) and yielded similar results: 97% (235/243 bp) sequence homology was shared with _Candidatus_ Neoehrlichia lotoris (GenBank accession no. EF633744.1), and 96% (235/244 bp) sequence homology was shared with _Candidatus_ Neoehrlichia microensis (GenBank accession no. JQ359046.1). Because the percentages of shared homologies were not sufficient to attribute the identified microbial agent to an official species, we tentatively named the agent _Candidatus_ Neoehrlichia Tanzania. In addition, a microscopy review of Giemsa-stained blood smears obtained within the first days of admission...

Author affiliation: Medical University of Vienna, Vienna, Austria

DOI: http://dx.doi.org/10.3201/eid2202.141762
showed structures possibly equivalent to microbial patho-
gens within leukocytes (Figure 1).

Antimicrobial treatment with oral doxycycline (300
mg per day) was subsequently initiated, resulting in im-
provement in the patient’s overall condition within 2 days
and in a continuous decrease of all inflammation markers,
normalization of platelet counts, and abatement of fever
(Figure 2). However, serum Neoehrlichia DNA remained
detectable at high levels. To provide the optimal duration
of antibiotic treatment, we performed daily Anaplasmata-
ceae-specific 16S PCR measurements of blood samples.
Over the next 10 days of therapy, the DNA signal intensity
continuously diminished. Doxycycline was stopped 1 day
after disappearance of Neoehrlichia serum DNA.

In contrast with patients in previously published re-
ports of human neoehrlichiosis, the patient described in
our report was a healthy young woman without concurrent
medical conditions. She had signs and symptoms of disease

Table. Clinical data at admission and primary diagnostic test results for a patient with Candidatus Neoehrlichia infection,
Austria, 2013*

Clinical variable	Finding/value
Subjective symptoms	Malaise, diffuse muscle pain, dull headache (without signs of meningism), and tenderness in the left upper abdominal quadrant
Tympnic temperature	37.8°C, while taking acetaminophen
Heart auscultation	Systolic murmur (right sternal border), tachycardia (125 beats per minute)
Condition of skin	No rash or signs of cutaneous exposure to arthropods
Laboratory testing†	
C-reactive protein	5 mg/dL (<0.5)
Procalcitonin	0.14 ng/mL (<0.5)
Leukocyte count	3.9 x 10^9/L (4–10)
Neutrophils	53% (50–75)
Lymphocytes	27% (25–40)
Monocytes	16% (0–12)
Fibrinogen	480 mg/dL (180–390)
Serum amyloid A	164 mg/dL (<5)
γ-globulins	26.2% (11.1–18.8)
Erythrocyte sedimentation rate	70 mm/h (<15)
Platelet count	121 x 10^9/L (150–350)
Hemoglobin	9 g/dL (12–16)
Chest radiography	No consolidations, no opacities
Abdominal ultrasonography	Splenomegaly of 15.5 × 6.7 cm
Transesophageal echocardiography	Normal cardiac function and valves, no evidence of vegetations
Cranial computed tomography	Parasagittal meningioma, otherwise normal
Ophthalmologic examination	Bilateral papilloedema
Cerebrospinal fluid	Clear and colorless; absolute cell count 4/μL protein, glucose, and lactate levels within reference range
Abdominal ultrasonography	Splenomegaly, 15.5 × 6.7 cm
Urinary dip stick and urinary cultures	No growth
Blood cultures	No growth
Serologic testing	
HIV	Negative
Hepatitis B and C viruses	Negative
Epstein-Barr virus	Negative
Cytomegalovirus	Negative
Mycoplasma spp.	Negative
Adenovirus	Negative
Enterovirus	Negative
Coxsackievirus	Negative
Influenza A, B, and C viruses	Negative
Parainfluenza virus	Negative
Anaplasma spp.	Negative
Rickettsia spp.	Negative
Tuberculous mycobacteria	Negative
Plasmodium spp.	Negative
Syphilis (VDRL, TPPA)	Negative
PCR testing	
Leishmania spp.	Negative
Trypanosoma spp.	Negative
Plasmodium spp.	Negative
Giemsa-stained thin and thick blood smears	

*TPPA, Treponema pallidum particle agglutination assay; VDRL, Venereal Disease Research Laboratory test.
†Laboratory data are given as absolute number or percentage (reference range).
for 4 weeks without any symptomatic improvement before therapy was initiated. Treatment led to a rapid clinical response and rapid clearance of serum Neoehrlichia DNA, which may be attributable to her otherwise good medical condition but may also reflect high antimicrobial efficiency of the high-dose therapeutic regimen applied.

Because symptomatic neoehrlichiosis usually occurs in patients with immunosuppression, we examined the patient for an underlying malignancy or autoimmune disorder. These conditions were largely ruled out by negative test results for HIV and mycobacteria and by a normal finding on 18F-FDG-PET/CT (18F-fluorodeoxyglucose-positron emission tomography/computed tomography) examination (except for enhanced splenic FDG uptake). The patient had moderate disease with nonspecific symptoms partly resembling those of human anaplasmosis. The splenomegaly was attributed to polyclonal B cell activity (indicated by hypergammaglobulinemia), but it could also have resulted from direct infection of splenic sinusoidal cells, as found in Neoehrlichia-infected Wistar rats (8). However, spleen size decreased over the course of antimicrobial treatment and reached a normal diameter by a 3-week follow-up examination.

No evidence exists regarding the exact incubation period of human neoehrlichiosis, but it probably approximates that of human granulocytic anaplasmosis, suggesting that the patient in our study acquired neoehrlichiosis in Tanzania. Nonetheless, several tickborne diseases are highly endemic in Austria. Glatz et al. (9) recently reported a 4.2% prevalence of Candidatus Neoehrlichia in Ixodes ricinus ticks in Austria. However, in the 5-day period between returning home from Tanzania and fever onset, the patient in our study had stayed in the urban area of Vienna; thus, the possibility that she may have been

![Figure 1. Giemsa-stained blood smear from an immunocompetent patient with Candidatus Neoehrlichia infection, Austria, 2013. The blood smear shows possible microbial pathogens within leukocytes. Scale bar indicates 10 µm.](image1)

![Figure 2. Body temperature and markers of inflammation over the course of hospitalization for a patient with Candidatus Neoehrlichia infection, Austria, 2013. Day 0 indicates time of admission. Antimicrobial therapy with doxycycline (300 mg per day) was begun on day 5 and led to a rapid resolution of clinical symptoms and a progressive decrease of all inflammatory parameters. Daily Anaplasmataceae-specific PCR measurements guided therapy, which was safely stopped 1 day after disappearance of serum Candidatus Neoehrlichia DNA. Upper right shows 1.5% agarose gel electrophoresis analysis. The intensity of the 345-bp DNA band amplified from blood samples progressively decreased over the course of treatment. CRP, C-reactive protein; SAA, serum amyloid A; Temp, tympanic temperature.](image2)
exposed to ticks in Austria is limited but not excluded. Furthermore, the patient returned to Vienna at the height of winter, making the possible transmission of Candidatus Neoehrlichia by a domestic tick even less plausible. On the other hand, no epidemiologic data are available on the prevalence of Candidatus Neoehrlichia in ticks in Tanzania, but Candidatus Neoehrlichia mikurensis was recently found in ticks of 2 species collected in Nigeria (10). Thus, the presence of Candidatus Neoehrlichia in ticks in Tanzania and the risk for transmission from ticks to humans seem conceivable. Because a 16S rDNA sequence difference of >2% is arbitrarily considered as indicative for delineation at the species level, it seems possible that a new Candidatus Neoehrlichia agent was detected in the patient in our study.

Conclusions
This case demonstrates that Candidatus Neoehrlichia can affect healthy persons who have no underlying hematologic or autoimmune disorders. Neoehrlichiosis should be considered in the differential diagnosis for patients with appropriate symptoms, independent of concurrent conditions and immune status. As long as no evidence-based recommendations regarding treatment of human neoehrlichiosis exist, it seems reasonable to use Anaplasmataceae-specific PCR to monitor treatment response and determine the duration of antimicrobial therapy to avert recrudescence.

Acknowledgments
We thank the patient in our study for giving consent to publish the data, Wolfgang Barousch for providing assistance with GenBank, and Albert Lalremruata for performing the Plasmodium spp. PCR.

Dr. Schwameis is an internal medicine resident at the Department of Clinical Pharmacology, Medical University of Vienna. His research interests include staphylococcal bloodstream infections and infection-associated coagulopathy.

References
1. Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wenneras C. First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol. 2010;48:1956–9. http://dx.doi.org/10.1128/JCM.02423-09
2. Pekova S, Vydra J, Kabickova H, Frankova S, Haugvicova R, Mazal O, et al. Candidatus Neoehrlichia mikurensis infection identified in 2 hematopoietic patients: benefit of molecular techniques for rare pathogen detection. Diagn Microbiol Infect Dis. 2011;69:266–70. http://dx.doi.org/10.1016/j.diagmicrobio.2010.10.004
3. von Loewenich FD, Geissdorfer W, Disque C, Matten J, Schett G, Sakka SG, et al. Detection of “Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol. 2010;48:2630–5. http://dx.doi.org/10.1128/JCM.00588-10
4. Grantvist A, Andersson PO, Mattsson M, Sender M, Vaht K, Hoper L, et al. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin Infect Dis. 2014;58:1716–22. http://dx.doi.org/10.1093/cid/ciu189
5. Fehr JS, Bloemberg GV, Ritter C, Hornbach M, Luscher TF, Weber R, et al. Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg Infect Dis. 2010;16:1127–9. http://dx.doi.org/10.3201/eid1607.091907
6. Inokuma H, Raoult D, Brouqui P. Detection of Ehrlichia platys DNA in brown dog ticks (Rhipicephalus sanguineus) in Okinawa Island, Japan. J Clin Microbiol. 2000;38:4219–21.
7. Brown GK, Martin AR, Roberts TK, Atiken RJ. Detection of Ehrlichia platys in dogs in Australia. Aust Vet J. 2001;79:554–8. http://dx.doi.org/10.1111/j.1751-0813.2001.tb10747.x
8. Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H, Suto C, et al. Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol. 2004;54:1837–43. http://dx.doi.org/10.1099/ijs.0.63260-0
9. Glatz M, Mullerger RR, Maurer F, Fingerle V, Aichner Y, Wilske B, et al. Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasmaphagocytophilum in a tick population from Austria. Ticks Tick Borne Dis. 2014;5:139–44. http://dx.doi.org/10.1016/j.ttbdis.2013.10.006
10. Kamani J, Baneth G, Mumcuoglu KY, Waziri NE, Eyal O, Guthmann Y, et al. Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl Trop Dis. 2013;7:e2108. http://dx.doi.org/10.1371/journal.pntd.0002108

Address for correspondence: Heimo Lagler, Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; email: heimo.lagler@medunivwien.ac.at; Michael Schwameis, Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; email: michael.schwameis@meduniwien.ac.at

Letters

Letters commenting on recent articles as well as letters reporting cases, outbreaks, or original research are welcome. Letters commenting on articles should contain no more than 300 words and 5 references; they are more likely to be published if submitted within 4 weeks of the original article’s publication. Letters reporting cases, outbreaks, or original research should contain no more than 800 words and 10 references. They may have 1 Figure or Table and should not be divided into sections. All letters should contain material not previously published and include a word count.