Supporting Information to

Screening and HPLC-Based Activity Profiling for New Antiprotozoal Leads from European Plants

Stefanie ZIMMERMANN, Semira THOMI, Marcel KAISER, Matthias HAMBURGER, Michael ADAMS

Published in Sci Pharm. 2012; 80: 205–213 doi:10.3797/scipharm.1111-13
Available from: http://dx.doi.org/10.3797/scipharm.1111-13
© Zimmermann et al.; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table of Contents

Tab. S1. Antiplasmodial activity (growth inhibition in % ± standard deviation [SD]) of 254 plant extracts against Plasmodium falciparum. Bioassays were carried out in duplicate of three independent experiments, at test concentrations of 4.81 µg/mL and 0.81 µg/mL, respectively. The positive control was artesunate (100% inhibition in all bioassays).

Analytical Methods
Tab. S1. Antiplasmodial activity (growth inhibition in % ± standard deviation [SD]) of 254 plant extracts against Plasmodium falciparum. Bioassays were carried out in duplicate of three independent experiments, at test concentrations of 4.81 µg/mL and 0.81 µg/mL, respectively. The positive control was artesunate (100% inhibition in all bioassays).

Plant Family	Plant species	Historical source	Voucher	Plant part	Growth inhib. at 4.81 µg/mL	Growth inhib. at 0.81 µg/mL
Adoxaceae	Sambucus ebulus L.	Br., Lo., Ta.2	A	leaves	80.1 ± 2.8	65.3 ± 3.5
	Sambucus nigra L.	Lo., Ta.2	A	flowers	7.8 ± 6.2	6.8 ± 5.2
	Amaryllidaceae Allium ursinum L.	–	A	petals	7.9 ± 7.6	6.5 ± 4.8
	Apiaceae Angelica archangelica L.	Ta.2	A	fruits	16.0 ± 9.6	12.7 ± 9.0
	Angelica sylvestris L.	Ta.2	B	leaves	34.0 ± 6.0	29.2 ± 4.5
	Coriandrum sativum L.	Br., Ta.2	A	seed	6.3 ± 5.0	5.0 ± 3.8
	Eryngium campestre L.	Ma., Ta.1, Ta.2	A	roots	36.9 ± 11.7	34.4 ± 10.0
	Apioidea Foeniculum vulgare Mill. subsp. vulgare var. dulce (Mill.)	Ta.2	A	roots	15.7 ± 10.0	9.0 ± 5.0
	Peucedanum ostruthium (L.) Koch	Bo., Br., Ma., Zw.	A	rhizome	16.4 ± 4.2	2.2 ± 1.9
Asparagaceae	Asparagus officinalis L.	Ta.2, Zw.	A	roots	26.4 ± 10.3	15.8 ± 6.1
	Aspleniacae Asplenium scolopendrium L.	Bo., Lo., Zw.	B	roots	7.8 ± 5.9	5.0 ± 3.8
Asteraceae	Achillea millefolium L.	Ta.2	A	roots	48.4 ± 4.1	32.9 ± 4.4
	Achillea moschata Wulfen	–	A	roots	42.6 ± 17.2	29.2 ± 17.4
	Anacyclus pyrethrum (L.)	Bo., Ma., Ta.2, Zw.	A	roots	15.0 ± 6.1	10.2 ± 4.1

Article published in: Sci Pharm. 2012; 80: 205–213. doi:10.3797/scipharm.1111-13
Tab. S1. (Cont.)

Plant Family	Plant species	Historical source	Voucher specimen	Plant part	extract solvent	growth inhib. \(\pm 81 \text{ pg/mL} \)	growth inhib. \(\pm 81 \) SD \%
Asteraceae	Arctium lappa L.	Zw.	A	P01472 leaves	PE	17.4 ± 1.5	2.9 ± 2.9
				P01473 leaves	EtOAc	33.3 ± 25.7	0.0 ± 0.0
				P01474 leaves	MeOH	8.9 ± 8.1	2.3 ± 3.2
				P01475 roots	PE	50.5 ± 3.0	54.7 ± 2.8
				P01476 roots	EtOAc	23.3 ± 4.0	11.2 ± 2.0
				P01477 roots	MeOH	4.1 ± 3.0	0.3 ± 0.5
	Arctium nemorosum Lej.	–	B	S20010 aer. pts	MeOH	53.6 ± 24.8	21.8 ± 29.1
				S20011 leaves	EtOAc	16.4 ± 3.9	12.8 ± 2.9
				S20012 leaves	EToAc	99.1 ± 0.4	14.1 ± 10.0
				S20013 leaves	MeOH	16.5 ± 3.2	4.3 ± 3.2
				S20014 fruits	PE	5.3 ± 3.8	2.3 ± 3.3
				S20015 fruits	EToAc	55.6 ± 4.8	3.1 ± 4.2
				S20016 fruits	MeOH	5.8 ± 3.5	0.0 ± 0.0
				S20017 hollow stem	PE	2.7 ± 2.0	1.7 ± 2.4
Asteraceae	Arnica montana L.	–	B	P01451 flowers	EtOAc	18.2 ± 3.8	6.4 ± 4.7
				P01452 flowers	EToAc	30.7 ± 6.8	4.0 ± 5.7
				P01453 flowers	MeOH	5.7 ± 4.4	0.0 ± 0.0
				P01454 roots	PE	23.1 ± 0.9	14.1 ± 1.3
				P01455 roots	EToAc	36.1 ± 3.2	5.9 ± 8.3
				P01456 roots	MeOH	13.5 ± 8.0	5.6 ± 4.0
	Artemisia abrotanum L.	Bo., Ma., Ta.2	A	P01433 aer. pts	PE	50.2 ± 2.4	23.5 ± 8.5
				P01434 aer. pts	EToAc	69.3 ± 3.4	18.3 ± 7.5
				P01435 aer. pts	MeOH	17.8 ± 11.2	8.5 ± 6.0
	Artemisia absinthium L.	Ma., Ta.2, Zw.	B	P01672 leaves	PE	67.9 ± 11.2	5.8 ± 3.8
				P01673 leaves	EToAc	55.7 ± 14.5	3.8 ± 4.9
				P01674 leaves	MeOH	6.3 ± 7.4	1.0 ± 1.5
	Artemisia dracunculus L.	–	A	P01545 aer. pts	PE	16.5 ± 3.2	0.5 ± 0.7
				P01546 aer. pts	EToAc	4.3 ± 3.0	7.1 ± 5.0
				P01544 aer. pts	MeOH	24.5 ± 3.2	1.7 ± 1.8
Asteraceae	Artemisia vulgaris L.	Ta.2	A	P01457 aer. pts	PE	18.9 ± 7.0	6.3 ± 2.7
				P01458 aer. pts	EToAc	41.9 ± 11.6	0.0 ± 0.0
				P01459 aer. pts	MeOH	0.0 ± 0.0	0.0 ± 0.0
				P01460 roots	PE	16.5 ± 5.9	5.2 ± 4.1
				P01461 roots	EToAc	44.1 ± 9.7	5.0 ± 4.3
				P01462 roots	MeOH	17.3 ± 3.8	6.6 ± 5.7
	Carthamus tinctorius L.	–	A	P01502 flowers	EToAc	9.1 ± 9.6	1.2 ± 1.7
				P01503 flowers	EToAc	10.3 ± 2.1	0.4 ± 0.6
				P01504 flowers	MeOH	9.0 ± 6.7	1.0 ± 1.5
	Centaurea cyanus L.	Bo., Lo.	A	P01527 flowers	PE	54.8 ± 9.1	22.3 ± 3.5
				P01528 flowers	EToAc	19.2 ± 8.0	9.6 ± 6.3
				P01526 flowers	MeOH	28.0 ± 6.6	26.4 ± 7.5
	Centaurea montana L.	–	B	P01648 flowers	PE	40.7 ± 5.8	0.0 ± 0.0
				P01649 flowers	EToAc	16.6 ± 5.3	18.2 ± 25.7
				P01650 flowers	MeOH	16.5 ± 2.6	0.0 ± 0.1
				P01651 leaves	PE	25.3 ± 8.7	6.5 ± 3.8
				P01652 leaves	EToAc	10.0 ± 4.6	0.0 ± 0.0
				P01653 leaves	MeOH	8.4 ± 2.7	1.1 ± 1.1
	Cichorium intybus L.	Bo., Ta.2, Zw.	A	P01514 roots	PE	6.0 ± 4.4	0.0 ± 0.4
				P01515 roots	EToAc	14.2 ± 1.9	2.0 ± 1.4
				P01516 roots	MeOH	1.8 ± 2.3	0.0 ± 0.0
				P01517 aer. pts	PE	9.5 ± 1.9	0.0 ± 0.0
				P01518 aer. pts	EToAc	18.2 ± 11.4	0.1 ± 0.2
				P01519 aer. pts	MeOH	6.5 ± 6.6	0.0 ± 0.0
				P01657 aer. pts	PE	9.7 ± 8.6	0.0 ± 0.0
				P01658 aer. pts	EToAc	9.7 ± 13.7	0.0 ± 0.0
				P01659 aer. pts	MeOH	3.5 ± 3.3	0.6 ± 0.8
				P01660 roots	PE	15.0 ± 12.3	4.5 ± 6.3
				P01661 roots	EToAc	21.0 ± 3.1	1.1 ± 1.0
				P01662 roots	MeOH	12.1 ± 3.6	3.9 ± 3.7
Tab. S1. (Cont).

Plant Family	Plant species	Historical source	Src.	Voucher specimen	Plant part	extract solvent	growth inhib. at 4.81 µg/mL ± SD	growth inhib. at 0.81 µg/mL ± SD
Asteraceae	Echinacea angustifolia DC.	–	A	P01551	roots	PE	20.8 ± 6.9	4.2 ± 4.0
	Echinacea purpurea (L.) Moench	–	A	P01552	roots	EtOAc	8.9 ± 6.1	1.3 ± 1.9
		A	P01555	roots	EtOH	29.2 ± 12.8	0.0 ± 0.0	
		A	P01553	roots	MeOH	19.0 ± 7.4	0.3 ± 0.2	
	Eupatorium cannabinum L.	Ma.	A	P01569	roots	EtOAc	23.3 ± 6.5	0.0 ± 0.0
		A	P01570	roots	EtOAc	21.9 ± 2.9	10.1 ± 5.2	
		A	P01571	roots	EtOAc	16.2 ± 6.8	1.4 ± 0.9	
		B	S20023	roots	MeOH	38.7 ± 9.6	5.2 ± 4.1	
		S20024	roots	EtOAc	11.2 ± 9.1	0.9 ± 0.6		
		B	S20025	roots	EtOAc	17.4 ± 4.0	0.0 ± 0.0	
		A	S20026	roots	EtOAc	31.6 ± 5.2	5.6 ± 5.3	
		A	S20027	leaves + flowers	EtOAc	16.4 ± 10.2	0.0 ± 0.0	
	Silybum marianum (L.) Gaerth.	–	A	P01490	aers. pts.	PE	11.4 ± 9.4	0.0 ± 0.0
		A	P01491	aers. pts.	EtOAc	19.8 ± 7.3	0.0 ± 0.0	
		A	P01492	aers. pts.	EtOAc	6.8 ± 7.1	0.0 ± 0.0	
		A	P01493	fruits	EtOAc	8.0 ± 5.1	11.0 ± 2.5	
		A	P01494	fruits	EtOAc	24.7 ± 5.5	0.0 ± 0.0	
		A	P01495	fruits	EtOAc	23.9 ± 9.5	0.5 ± 0.8	
	Asteraeae Tanacetum parthenium L.	Br., Lo., Zw.	A	P01511	aers. pts.	PE	21.9 ± 10.3	0.0 ± 0.0
		A	P01512	aers. pts.	EtOAc	37.6 ± 11.4	0.0 ± 0.0	
	Brassicaceae Armoracia rusticana	Bo., Lo., Ta.2, Zw.	A	P01513	aers. pts.	MeOH	3.6 ± 5.1	0.4 ± 0.5
	Nasturtium officinale R. Br.	Zw.	A	P01510	aers. pts.	EtOAc	29.8 ± 11.4	9.3 ± 3.8
	Cannabaceae Humulus lupulus L.	Br., Lo., Ta.2	A	P01504	flowers	PE	10.7 ± 4.5	2.1 ± 2.9
		A	P01602	aers. pts.	PE	26.1 ± 3.8	5.2 ± 5.0	
		A	P01603	aers. pts.	EtOAc	7.3 ± 5.2	4.6 ± 3.8	
		A	P01601	aers. pts.	MeOH	30.7 ± 12.7	8.5 ± 2.0	
	Caryophyllaceae Gypsophila muralis L.	–	B	P01634	aers. pts.	PE	4.2 ± 3.5	0.0 ± 0.0
		A	P01635	aers. pts.	EtOAc	10.9 ± 8.1	8.5 ± 12.0	
		A	P01636	aers. pts.	MeOH	4.7 ± 1.6	0.0 ± 0.0	
	Clusiaceae Hypericum perforatum L.	Bo., Fu., Lo., Ma., Ta.2	A	P01670	aers. pts.	EtOAc	69.3 ± 17.2	32.3 ± 40.0
		A	P01671	aers. pts.	EtOAc	97.5 ± 12.7	20.0 ± 1.3	
		A	P01691	aers. pts.	MeOH	16.8 ± 10.8	1.6 ± 2.3	
	Cucurbitaceae Bryonia alba L.	–	A	P01487	roots	PE	18.0 ± 6.8	0.8 ± 0.6
		A	P01488	roots	EtOAc	13.7 ± 10.1	0.0 ± 0.0	
		A	P01489	roots	MeOH	9.2 ± 5.6	3.1 ± 2.2	
	Ericaceae Arbutus unedo L.	–	A	P01445	roots	PE	19.1 ± 7.8	0.0 ± 0.0
		A	P01446	roots	EtOAc	8.8 ± 10.4	0.7 ± 0.6	
	Euphorbiaceae Euphorbia cyparissias L.	–	A	P01447	roots	MeOH	4.4 ± 6.2	1.5 ± 2.1
		A	P01572	aers. pts.	PE	11.0 ± 9.3	0.0 ± 0.0	
		A	P01573	aers. pts.	EtOAc	18.4 ± 11.5	0.0 ± 0.0	
		A	P01571	aers. pts.	MeOH	10.2 ± 7.3	0.0 ± 0.0	
	Fabaceae Anthyllis vulneraria L.	–	A	P01439	flowers	PE	20.7 ± 5.0	13.5 ± 5.1
		A	P01440	flowers	EtOAc	20.8 ± 14.7	8.9 ± 5.8	
		A	P01441	flowers	MeOH	15.8 ± 12.5	7.3 ± 3.7	
	Robinia pseudoacacia L.	–	A	P01466	flowers	PE	26.7 ± 5.2	7.5 ± 1.8
		A	P01467	flowers	EtOAc	39.1 ± 5.6	8.0 ± 7.3	
		A	P01468	flowers	MeOH	0.0 ± 0.0	0.0 ± 0.0	
	Gentianaceae Centaurium erythraea Rafn.	Ma., Ta.1, Ta.2, Zw.	A	P01654	aers. pts.	PE	9.1 ± 6.5	5.4 ± 1.7
		A	P01655	aers. pts.	EtOAc	38.9 ± 4.2	0.0 ± 0.0	
		A	P01656	aers. pts.	MeOH	3.6 ± 2.8	2.3 ± 3.2	
		A	P01642	roots	PE	4.4 ± 2.1	7.9 ± 10.8	
	Lamiaceae Galeopsis segetum Neck.	–	A	P01578	aers. pts.	EtOAc	18.1 ± 10.1	0.0 ± 0.0
		A	P01579	aers. pts.	EtOAc	7.6 ± 6.9	1.6 ± 2.2	
		A	P01577	aers. pts.	MeOH	23.7 ± 7.6	2.4 ± 3.4	
Tab. S1. (Cont).

Plant Family	Plant species	Historical source	Src.	Voucher specimen	Plant part	extract solvent	growth inhib. at 4.81 µg/mL ± SD	growth inhib. at 0.81 µg/mL ± SD	
Lamiaceae	Hyssopus officinalis L.	Ma.	A	P01584	aer. pts.	PE	4.8 ± 3.6	0.0 ± 0.0	0.0 ± 0.0
				P01585	aer. pts.	EtOAc	6.1 ± 3.1	3.7 ± 1.2	1.3 ± 0.2
	Nepeta cataria L.	Br.	A	P01605	aer. pts.	PE	3.2 ± 1.5	0.0 ± 0.0	0.0 ± 0.0
				P01606	aer. pts.	EtOAc	6.4 ± 3.8	9.3 ± 2.3	1.6 ± 0.3
	Origanum dictamnus L.	–	A	P01542	aer. pts.	PE	16.4 ± 7.2	0.0 ± 0.0	0.0 ± 0.0
				P01543	aer. pts.	EtOAc	3.3 ± 1.8	0.0 ± 0.0	0.0 ± 0.0
	Origanum vulgare L.	–	A	P01607	aer. pts.	PE	57.7 ± 15.0	0.0 ± 0.0	0.0 ± 0.0
	Stachys officinalis (L.) Trev.	Br.	A	P01478	aer. pts.	PE	30.5 ± 17.0	0.0 ± 0.0	0.0 ± 0.0
				P01479	aer. pts.	EtOAc	30.5 ± 17.0	0.0 ± 0.0	0.0 ± 0.0
				P01480	aer. pts.	MeOH	4.2 ± 5.8	0.0 ± 0.0	0.0 ± 0.0
Piperaeae	Piper cubeba L.F.	–	A	P01520	fruits	PE	34.9 ± 2.4	0.0 ± 0.0	0.0 ± 0.0
Polygonaceae	Bistorta officinalis Delarbre	–	A	P01481	aer. pts.	PE	7.1 ± 8.1	0.0 ± 0.0	0.0 ± 0.0
				P01482	aer. pts.	EtOAc	23.3 ± 6.8	4.2 ± 3.0	1.3 ± 0.2
				P01483	aer. pts.	MeOH	14.1 ± 5.7	0.0 ± 0.0	0.0 ± 0.0
				P01484	roots	PE	11.1 ± 8.2	0.0 ± 0.0	0.0 ± 0.0
				P01485	roots	EtOAc	12.6 ± 11.2	0.0 ± 0.0	0.0 ± 0.0
Ranunculaceae	Aquilegia vulgaris L.	–	A	P01442	aer. pts.	PE	18.1 ± 3.5	0.0 ± 0.0	0.0 ± 0.0
				P01443	aer. pts.	EtOAc	42.7 ± 7.4	0.0 ± 0.0	0.0 ± 0.0
				P01444	aer. pts.	MeOH	18.7 ± 2.3	0.0 ± 0.0	0.0 ± 0.0
Rosaceae	Alchemilla alpina L.	–	A	P01533	aer. pts.	PE	67.3 ± 2.9	0.0 ± 0.0	0.0 ± 0.0
				P01534	aer. pts.	EtOAc	12.6 ± 3.6	0.0 ± 0.0	0.0 ± 0.0
				P01535	aer. pts.	MeOH	27.6 ± 5.4	0.0 ± 0.0	0.0 ± 0.0
	Alchemilla vulgaris L. em. Fröhner	–	A	P01563	aer. pts.	PE	43.3 ± 2.6	0.0 ± 0.0	0.0 ± 0.0
				P01564	aer. pts.	EtOAc	11.4 ± 0.6	0.0 ± 0.0	0.0 ± 0.0
	Agrimonia eupatoria L.	Br., Lo.,	A	P01699	aer. pts.	PE	47.9 ± 6.1	0.0 ± 0.0	0.0 ± 0.0
		Ma., Ta.2, Zw.		P01700	aer. pts.	EtOAc	20.4 ± 4.7	0.0 ± 0.0	0.0 ± 0.0
	Geum urbanum L.	–	A	P01701	roots	MeOH	53.6 ± 17.6	0.0 ± 0.0	0.0 ± 0.0
				P01505	roots	PE	8.6 ± 1.9	0.0 ± 0.0	0.0 ± 0.0
				P01506	roots	EtOAc	14.7 ± 11.5	0.0 ± 0.0	0.0 ± 0.0
	Potentilla erecta (L.) Raeusch.	Br., Bo., Lo.,	A	P01698	roots	PE	7.6 ± 5.5	0.0 ± 0.0	0.0 ± 0.0
		Ta.2		P01697	roots	EtOAc	23.8 ± 1.8	0.0 ± 0.0	0.0 ± 0.0
	Potentilla anserina L.	–	A	P01436	aer. pts.	PE	16.9 ± 7.5	0.0 ± 0.0	0.0 ± 0.0
				P01437	aer. pts.	EtOAc	16.7 ± 15.9	0.0 ± 0.0	0.0 ± 0.0
	Potentilla aurea L.	ZW.	A	P01687	leaves	PE	11.1 ± 5.3	0.0 ± 0.0	0.0 ± 0.0
				P01688	leaves	EtOAc	18.5 ± 16.8	0.0 ± 0.0	0.0 ± 0.0
Rubiaceae	Galium odoratum (L.) Scop.	–	A	P01469	aer. pts.	PE	8.5 ± 3.7	0.0 ± 0.0	0.0 ± 0.0
				P01470	aer. pts.	EtOAc	21.8 ± 4.5	0.0 ± 0.0	0.0 ± 0.0
	Verbena officinalis L.	Bo., Ta.2, Zw.	B	P01690	aer. pts.	PE	8.8 ± 8.7	0.0 ± 0.0	0.0 ± 0.0
				P01691	aer. pts.	EtOAc	40.9 ± 16.8	0.0 ± 0.0	0.0 ± 0.0
				P01692	aer. pts.	MeOH	22.5 ± 19.0	0.0 ± 0.0	0.0 ± 0.0

Source A: Plants were obtained from Dixa (St. Gallen, Switzerland).
Source B: Plants were collected in and around Basel by Dr. M. Adams in the summer of 2010.

Analytical methods

TLC

Thin layer chromatography plates (TLC silica gel 60 F254) were from Merck (Darmstadt, Germany). Mobile phase: ethyl acetate/n-heptane 30:70. Detection was done in a UV

Article published in: Sci Pharm. 2012; 80: 205–213. doi:10.3797/scipharm.1111-13
chamber at 254 and 366 nm. Spots were also visualised with anis aldehyde-sulphuric acid reagent, which was prepared according to Wagner and Bladt [21].

HPLC ESI-MS

For micro fractionation and analysis of extracts an HPLC system consisting of a 1100 series low-pressure mixing pump with degasser module, column oven, and a 1100 series PDA detector (all Agilent, Waldbronn, Germany) was used. A Gilson 215 liquid handler with Gilson 819 injection module and 50 µl loop served as autosampler (Gilson; Mettmenstetten, Switzerland). The HPLC was coupled to an Esquire 3000 Plus ion trap mass spectrometer equipped with an electrospray (ESI) interface (Bruker Daltonics; Bremen, Germany). The MS parameters were as follows: Spectra were recorded under ion charge control conditions (ICCD 30 000) at a scan speed of 30 000 m/z/s with a Gauss filter with of 0.2 m/z. Nitrogen was used as a drying gas a flow rate of 10 L/min and as nebulising gas at a pressure of 30 psi. The nebulizer temperature was set 300 ° C. In the positive ion mode spectra were detected from 150–1500 m/z. Capillary voltage was set at -4500 V, endplate offset at -500 V, capillary exit at 109.8 V, skimmer voltage at 65.0 V, and trap drive at 39.8. The negative ion mode was also recorded from 150–1500 m/z. Capillary voltage was set at 4500 V, endplate offset at -500 V, capillary exit at -111.8 V, skimmer voltage at -40 V, and trap drive at 43.7. A SunFire RP-18, 3.5 µm, 3 x 150 mm (Waters GmbH, Eschborn, Germany) was used for HPLC ESI-MS. A gradient consisting of A (H₂O + 0.1% formic acid) and B (acetonitrile + 0.1% formic acid) was used, starting at 90% A–10 % B and leading to 0% A–100% B in in 30 min, followed 100% B for 5 minutes. The flow rate was 0.5mL/min. Data acquisition and processing for HPLC system was performed using HyStar 3.0. software (Bruker Daltonics).

MPLC

A Büchi Sepacore system consisting of a control unit C-620, a fraction collector C-660, an UV photometer C-635, and two pump modules C-605 was used, with the following method. The column consisted of a cartridge (Büchi, ø 40 x150 mm) containing pressed silica gel (Silica gel 60, 0.040-0.063 mm, Merck, Darmstadt, Germany). A gradient system was used consisting of A (heptane) and B (ethyl acetate), starting at 100 % A and 0% B, and leading to 70% A and 30% B in 33 minutes, then to 20 % A and 80 % B in 31.5 minutes. The flow rate was 30 mL/min. Fractions were collected every 30 seconds. The sample was dissolved in A:B 1:1 at a concentration of 50 mg/mL and the injection volume was 10 ml.

Semi-preparative HPLC

Semi-preparative HPLC was done on an Agilent 1100 series HPLC system consisting of an 1100 series quaternary low-pressure mixing pump with degasser module, column oven, and a 1100 series PDA detector with a 1000 µL loop.) using a SunFire prep RP-18 column (5 µm, 10 x 150 mm, Waters GmbH, Eschborn, Germany). A gradient starting at 85% A (H₂O + 0.1% formic acid) and 15% B (acetonitrile + 0.1% formic acid) and leading to 40% A and 60% B in 15 minutes, then to 100 % B in another 5 minutes. Finally the column was flushed with 100% B for 7 minutes. The flow rate was 5 mL/min. The sample was dissolved in MeOH at a concentration of 50 mg/mL and the injection volume was 300 µl.
Preparative HPLC

Preparative HPLC was done on a SCL-10, HPLC system from Shimadzu (Kyoto, Japan). A SunFire™ prep C18 OBD™ (5 µm, 30x 150 mm, Waters, Ireland) was used. The gradient was isocratic for 30 min and consisted of acetonitrile:H₂O 1:1 at a flow rate of 30 ml/min. UV data were recorded from 220 to 500 nm. The samples were dissolved in acetonitrile at a concentration of 100 mg/ml and the injection volume was 300 µl.

High resolution Mass Spectrometry (micrOTOF)

High-resolution mass spectra were obtained on a micrOTOF ESI-MS system (Bruker Daltonics) connected to an Agilent 1100 series HPLC. Data acquisition and processing was performed using HyStar 3.0 software (Bruker Daltonics). Conditions for LC-TOF MS were as follows: spectra were recorded in the range of m/z 150–1500 in positive mode. Nitrogen was used as a nebulising gas at a pressure of 2.0 bar and as a drying gas at a flow rate of 9.0 L/min (dry gas temperature 240 °C). Capillary voltage was at 4500 V, endplate offset at -50 V, hexapole at 250.0 Vpp, skimmer 1 at -50 V and skimmer 2 at -22.5 V. Instrument calibration was performed using a reference solution of sodium formiate 0.1% in isopropanol / water (1:1) containing 5 mM sodium hydroxide. Typical mass accuracy was ±2 ppm. The spectra were recorded in negative and positive mode in the range of m/z 150–1500.

NMR

NMR data were acquired at target temperature 18°C on a Bruker Avance III™ 500 MHz spectrometer (Bruker, Fällanden, Switzerland) operating at 500.13 MHz for ¹H, and 125.77 MHz for ¹³C. A 1mm TXI microprobe with a z-gradient was used for ¹H-detected experiments; ¹³C-NMR spectra were recorded with a 5 mm BBO probe head with z-gradient. NMR experiments were done as previously described [22]. For processing and evaluation Topspin 2.0 was used.

Bioassays

a. In vitro test against Trypanosoma brucei rhodesiense

Trypanosoma brucei rhodesiense (STIB 900) were grown in axenic medium as previously described [23]. The compounds were tested using a modified Alamar Blue assay protocol [24] to determine the 50% inhibitory concentration (IC₅₀). Serial threefold drug dilutions were prepared in 96-well micro titer plates and 50 µl of T. b. rhodesiense STIB 900 bloodstream forms were added to each well except for the negative controls. Melarsoprol (Arsobal®, Sanofi-Aventis, Meyrin, Switzerland) was used as a reference drug. After 70 h of incubation Alamar blue marker (12.5 mg resazurin dissolved in 100 mL distilled water) was added. The plates were then incubated for an additional 2 to 5 h. A Spectramax Gemini XS micro plate fluorescence reader (Molecular Devices Cooperation, Sunnyvale, CA) with an excitation wavelength of 536 nm and an emission wavelength of 588 nm was used to read the plates. The IC₅₀ values were calculated from the sigmoidal growth inhibition curves using Softmax Pro software (Molecular Devices).

b. In vitro testing against Plasmodium falciparum

A modification of the [³H]-hypoxanthine incorporation assay was used to determine the intra-erythrocytic antiplasmodial activity (Des Jardins 1979) of the extract library and
purified compounds in 96 well plates. Chloroquine (Sigma-Aldrich) and artesunate (Mepha, Switzerland) were used as standard drugs. Briefly, infected human red blood cells in RPMI 1640 medium (100 µL per well with 2.5% haematocrit and 0.3% parasitaemia) were exposed to twofold serial drug dilutions in 96-well micro titer plates. After 48 h incubation, 0.5 μCi [³H]-hypoxanthine was added to each well. The plates were incubated for further 24 h before being harvested using a Betaplate cell harvester (Wallac, Zürich, Switzerland) The radioactivity was counted with a Betaplate liquid scintillation counter (Wallac) as counts per minute per well at each drug concentration and compared to the untreated controls. IC₅₀ values were calculated from sigmoidal inhibition curves using Microsoft Excel. All assays were run in duplicate and repeated three times [25].

c. In vitro cytotoxicity testing

Cytotoxicity was assessed using a similar Alamar Blue assay protocol [23] whereby 4000 rat myoblast cells/well were seeded in RPMI 1640 medium. All following steps were according to the T. b. rhodesiense protocol. Podophyllotoxin (Sigma-Aldrich) was used as the reference drug.

References

[21] Wagner H, Bladt S, editors. Plant Drug Analysis. A thin layer Chromatography Atlas, 2th ed. Berlin: Springer-Verlag, 1996: 359.

[22] Adams M, Plitzko I, Kaiser M, Brun R, Hamburger M. HPLC-profiling for antiparasmodal compounds – 3-methoxy carpachromene from Pistacia atlantica. Phytochem Lett. 2009; 2: 159–162. http://dx.doi.org/10.1016/j.phytol.2009.05.006

[23] Baltz T, Baltz D, Giroud C, Crockett J. Cultivation in a semidefined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense, T. gamiense. EMBO J. 1985; 4: 1273–1277. http://www.ncbi.nlm.nih.gov/pubmed/4006919

[24] Räz B, Hen M, Grether-Bühler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensivity of African trypanosomes in vitro. Acta Trop. 1997; 68: 139–147. http://dx.doi.org/10.1016/S0001-706X(97)00079-X

[25] Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979; 16: 710–718. http://dx.doi.org/10.1128/AAC.16.6.710