A NEW PROOF OF A BISMUT-ZHANG FORMULA FOR SOME CLASS OF REPRESENTATIONS

MAXIM BRAVERMAN† AND BORIS VERTMAN

Abstract. Bismut and Zhang computed the ratio of the Ray-Singer and the combinatorial torsions corresponding to non-unitary representations of the fundamental group. In this note we show that for representations which belong to a connected component containing a unitary representation the Bismut-Zhang formula follows rather easily from the Cheeger-Müller theorem, i.e. from the equality of the two torsions on the set of unitary representations. The proof uses the fact that the refined analytic torsion is a holomorphic function on the space of representations.

1. Introduction

Let M be a closed oriented odd-dimensional manifold and let $\text{Rep}(\pi_1(M), \mathbb{C}^n)$ denote the space of representations of the fundamental group $\pi_1(M)$ of M. For each $\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n)$, let $(E_\alpha, \nabla_\alpha)$ be a flat vector bundle over M, whose monodromy representation is equal to α. We denote by $H^\bullet(M, E_\alpha)$ the cohomology of M with coefficients in E_α. Let $\text{Det}(H^\bullet(M, E_\alpha))$ denote the determinant line of $H^\bullet(M, E_\alpha)$.

Reidemeister [21] and Franz [10] used a cell decomposition of M to construct a combinatorial invariant of the representation $\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n)$, called the Reidemeister torsion. In modern language it is a metric on the determinant line $\text{Det}(H^\bullet(M, E_\alpha))$, cf. [19, 2]. If α is unitary, then this metric is independent of the cell decomposition and other choices. In general to define the Reidemeister metric one needs to make some choices. One of such choices is a Morse function $F : M \to \mathbb{R}$. Bismut and Zhang [2] call the metric obtain using the Morse function F the Milnor metric and denote it by $\| \cdot \|_M$.

Ray and Singer [20] used the de Rham complex to give a different construction of a metric on $\text{Det}(H^\bullet(M, E_\alpha))$. This metric is called the Ray-Singer metric and is denoted by $\| \cdot \|^\text{RS}$. Ray and Singer conjectured that the Ray-Singer and the Milnor metrics coincide for unitary representation of the fundamental group. This conjecture was proven by Cheeger [8] and Müller [16] and extended by Müller [17] to unimodular representations. For non-unitary representations the two metrics are not equal in general. In the seminal paper [2] Bismut and Zhang computed the ratio of the two metrics using very non-trivial analytic arguments.

In this note we show that for a large class of representations the Bismut-Zhang formula follows quite easily from the original Ray-Singer conjecture. More precisely, let $\alpha_0 \in \text{Rep}(\pi_1(M), \mathbb{C}^n)$ be a unitary representation which is a regular point of the complex

†Supported in part by the NSF grant DMS-1005888.
analytic set $\text{Rep}(\pi_1(M), \mathbb{C}^n)$ and let $C \subset \text{Rep}(\pi_1(M), \mathbb{C}^n)$ denote the connected component of $\text{Rep}(\pi_1(M), \mathbb{C}^n)$ which contains α_0. We derive the Bismut-Zhang formula for all representations in C from the Cheeger-Müller theorem. In other words, we show that knowing that the Milnor and the Ray-Singer metrics coincide on unitary representations one can derive the formula for the ratio of those metrics for all representations in the connected component C.

The proof uses the properties of the refined analytic torsion $\rho_{\text{an}}(\alpha)$ introduced in [3, 6, 5] and of the refined combinatorial torsion $\rho_{\epsilon, o}(\alpha)$ introduced in [27, 9]. Both refined torsions are non-vanishing elements of the determinant line $\text{Det}(H^\bullet(M, E_\alpha))$ which depend holomorphically on $\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n)$. The ratio of these sections is a holomorphic function

$$\alpha \mapsto \frac{\rho_{\text{an}}(\alpha)}{\rho_{\epsilon, o}(\alpha)}$$

on $\text{Rep}(\pi_1(M), \mathbb{C}^n)$. We first use the Cheeger-Müller theorem to compute this function for unitary α. Let now $C \subset \text{Rep}(\pi_1(M), \mathbb{C}^n)$ be a connected component and suppose that a unitary representation α_0 is a regular point of C. The set of unitary representations can be viewed as the real locus of the connected complex analytic set C. As we know $\frac{\rho_{\text{an}}(\alpha)}{\rho_{\epsilon, o}(\alpha)}$ for all points of the real locus, we can compute it for all $\alpha \in C$ by analytic continuation. Since the Ray-Singer norm of $\rho_{\epsilon, o}$ and the Milnor norm of ρ_{an} are easy to compute, we obtain the Bismut-Zhang formula for all $\alpha \in C$.

The paper is organized as follows. In Section 2, we briefly outline the main steps of the proof. In Subsection 3.5 and Section 3 we recall the construction and some properties of the Milnor metric and of the Farber-Turaev torsion. In Section 4 we recall some properties of the refined analytic torsion. In Section 5 we recall the construction of the holomorphic structure on the determinant line bundle and show that the ratio of the refined analytic and the Farber-Turaev torsions is a holomorphic function on $\text{Rep}(\pi_1(M), \mathbb{C}^n)$. Finally, in Section 6 we present our new proof of the Bismut-Zhang theorem for representations in the connected component C.

2. The idea of the proof

Our proof of the Bismut-Zhang theorem for representations in the connected component C consists of several steps. In this section we briefly outline these steps.

Step 1. In [25, 26], Turaev constructed a refined version of the combinatorial torsion associated to an acyclic representation α. Turaev’s construction depends on additional combinatorial data, denoted by ϵ and called the Euler structure, as well as on the cohomological orientation of M, i.e., on the orientation o of the determinant line of the cohomology $H^\bullet(M, \mathbb{R})$ of M. In [9], Farber and Turaev extended the definition of the Turaev torsion to non-acyclic representations. The Farber-Turaev torsion associated to a representation α, an Euler structure ϵ, and a cohomological orientation o is a non-zero element $\rho_{\epsilon, o}(\alpha)$ of the determinant line $\text{Det}(H^\bullet(M, E_\alpha))$.
Let us fix a Hermitian metric $h^{E_{\alpha}}$ on E_{α}. This scalar product induces a norm $\| \cdot \|_{RS}$ on $\text{Det}(H^\bullet(M, E_{\alpha}))$, called the Ray-Singer metric. In Subsection 3.5 we use the Cheeger-Müller theorem to show that for unitary α

$$\| \rho_{\varepsilon, \sigma}(\alpha) \|_{RS} = 1. \quad (2.1)$$

Remark 2.1. Theorem 10.2 of [9] computes the Ray-Singer norm of $\rho_{\varepsilon, \sigma}$ for arbitrary representation $\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n)$, however the proof uses the result of Bismut and Zhang, which we want to prove here for $\alpha \in \mathcal{C}$.

Theorem 1.9 of [5] computes the Ray-Singer metric of $\rho_{\text{an}}(\alpha)$. Combining this result with (2.1) we conclude, cf. Subsection 5.7, that if α is a unitary representation, then

$$\left| \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \right| = \frac{\| \rho_{\text{an}}(\alpha) \|_{RS}}{\| \rho_{\varepsilon, \sigma}(\alpha) \|_{RS}} = 1. \quad (2.2)$$

Step 2. The Farber-Turaev torsion $\rho_{\varepsilon, \sigma}(\alpha)$ is a holomorphic section of the determinant line bundle

$$\mathcal{D}et := \bigcup_{\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n)} \text{Det}(H^\bullet(M, E_{\alpha}))$$

over $\text{Rep}(\pi_1(M), \mathbb{C}^n)$. We denote by $\rho_{\text{an}}(\alpha)/\rho_{\varepsilon, \sigma}(\alpha)$ the unique complex number such that

$$\rho_{\text{an}}(\alpha) = \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \cdot \rho_{\varepsilon, \sigma}(\alpha) \in \text{Det}(H^\bullet(M, E_{\alpha})).$$

Since both $\rho_{\varepsilon, \sigma}$ and ρ_{an} are holomorphic sections of $\mathcal{D}et$,

$$\alpha \mapsto \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)}$$

is a holomorphic function on $\text{Rep}(\pi_1(M), \mathbb{C}^n)$.

Step 3. Let α' denote the representation dual to α with respect to a Hermitian scalar product on \mathbb{C}^n. Then the Poincaré duality induces, cf. [9, §2.5] and [5, §10.1], an anti-linear isomorphism

$$D : \text{Det}(H^\bullet(M, E_{\alpha})) \longrightarrow \text{Det}(H^\bullet(M, E_{\alpha}')).$$

In particular, when α is a unitary representation, D is an anti-linear automorphism of $\text{Det}(H^\bullet(M, E_{\alpha}))$. Hence,

$$\frac{D(\rho_{\text{an}}(\alpha))}{D(\rho_{\varepsilon, \sigma}(\alpha))} = \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \quad (2.3)$$

1There is a sign difference in the definition of the duality operator in [9] and [5], which is not essential for the discussion in this paper.
Using Theorem 7.2 and formula (9.4) of [9] we compute the ratio $D(\rho_{\varepsilon, \sigma}(\alpha))/\rho_{\varepsilon, \sigma}(\alpha)$, cf. (6.6) (here α is a unitary representation). On the analytic side Theorem 10.3 of [5] computes the ratio $D(\rho_{\text{an}}(\alpha))/\rho_{\text{an}}(\alpha)$. Combining these two results we get

$$\frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} = f_2(\alpha) \cdot \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)},$$

(2.4)

where f_2 is a function on $\text{Rep}(\pi_1(M), \mathbb{C}^n)$ computed explicitly in (6.7).

From (2.3) and (2.4) we conclude that

$$\left(\frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)}\right)^2 = f_1(\alpha)^2 \cdot f_2(\alpha)$$

(2.5)

for any unitary representation α, cf. (6.9), where $f_1(\alpha) = \rho_{\text{an}}(\alpha)/\rho_{\varepsilon, \sigma}(\alpha)$.

Step 4. The right hand side of (2.5) is an explicit function of a unitary representation α. It turns out that it is a restriction of a holomorphic function $f(\alpha)$ on $\text{Rep}(\pi_1(M), \mathbb{C}^n)$ to the set of unitary representations. Recall that the connected component C contains a regular point which is a unitary representation. The set of unitary representations can be viewed as the real locus of the complex analytic set C. Hence any two holomorphic functions which coincide on the set of unitary representations, coincide on C. We conclude now from (2.5) that

$$\left(\frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)}\right)^2 = f(\alpha), \quad \text{for all } \alpha \in C.$$

(2.6)

Step 5. Recall that we denote by $\| \cdot \|_M^F$ the Milnor metric associated to the Morse function F. In Section 3 we compute the Milnor metric

$$\|\rho_{\varepsilon, \sigma}(\alpha)\|_F^M = h_1(\alpha),$$

(2.7)

where $h_1(\alpha)$ is a real valued function on $\text{Rep}(\pi_1(M), \mathbb{C}^n)$ given explicitly by the right hand side of (3.14).

Theorem 1.9 of [5] computes the Ray-Singer norm of the refined analytic torsion:

$$\|\rho_{\text{an}}(\alpha)\|_{\text{RS}} = h_2(\alpha),$$

(2.8)

where $h_2(\alpha)$ is a real valued function on $\text{Rep}(\pi_1(M), \mathbb{C}^n)$ given explicitly by the right hand side of (4.5). Combining (2.6) with (2.8), we get

$$\frac{\| \cdot \|_{\text{RS}}}{\| \cdot \|_M^F} = \frac{\|\rho_{\text{an}}(\alpha)\|_{\text{RS}}}{\|\rho_{\varepsilon, \sigma}(\alpha)\|_F^M} \cdot \frac{\rho_{\varepsilon, \sigma}(\alpha)}{\rho_{\text{an}}(\alpha)} = \frac{h_2(\alpha)}{h_1(\alpha) \cdot |f(\alpha)|}. $$

(2.9)

This is exactly the Bizmut-Zhang formula [2, Theorem 0.2].

The rest of the paper is occupied with the details of the proof outlined above.
3. THE MILNOR METRIC AND THE FARBER-TURAEV TORSION

In this section we briefly recall the definitions and the main properties of the Milnor metric and the Farber-Turaev refined combinatorial torsion. We also compute the Milnor norm of the Farber-Turaev torsion.

3.1. The Thom-Smale complex. Set

\[C^k(K, E_\alpha) = \bigoplus_{x \in \text{Cr}(F) \atop \text{ind}_F(x) = k} E_{\alpha, x}, \quad k = 1, \ldots, n, \]

where \(E_{\alpha, x} \) denotes the fiber of \(E_\alpha \) over \(x \) and the direct sum is over the critical points \(x \in \text{Cr}(F) \) of the Morse function \(F \) with Morse-index \(\text{ind}_F(x) = k \). If the Morse function is \(F \) generic, then using the gradient flow of \(F \) one can define the Thom-Smale complex \((C^\bullet(K, E_\alpha), \partial) \) whose cohomology is canonically isomorphic to \(H^\bullet(M, E_\alpha) \), cf. for example [2, §I c].

3.2. The Euler structure. The Euler structure \(\varepsilon \) on \(M \) can be described as (an equivalence class of) a pair \((F, c)\) where \(c \) is a 1-chain in \(M \) such that

\[\partial c = \sum_{x \in \text{Cr}(F)} (-1)^{\text{ind}_F(x)} \cdot x, \quad (3.1) \]

cf. [7, §3.1]. We denote the set of Euler structures on \(M \) by \(\text{Eul}(M) \).

Remark 3.3. The Euler structure was introduced by Turaev [26]. Turaev presented several equivalent definitions and the equivalence of these definitions is a nontrivial result. Burghelea and Haller [7] found a very nice way to unify these definitions. They suggested a new definition which is obviously equivalent to the two definitions of Turaev. In this paper we use the definition introduced by Burghelea and Haller.

3.4. The Kamber-Tondeur form. To define the Milnor and the Ray-Singer metrics on \(\text{Det}(H^\bullet(M, E_\alpha)) \) we fix a Hermitian metric \(h_{E_\alpha} \) on \(E_\alpha \). This metric is not necessary flat and the measure of non-flatness is given by taking the trace of \((h_{E_\alpha})^{-1} \nabla_\alpha h_{E_\alpha} \in \Omega^1(M, \text{End}E_\alpha) \) which defines the Kamber-Tondeur form

\[\theta(h_{E_\alpha}) := \text{Tr} \left[(h_{E_\alpha})^{-1} \nabla_\alpha h_{E_\alpha}\right] \in \Omega^1(M), \quad (3.2) \]

cf. [14] (see also [2, Ch. IV]).

Let \(\text{Det}(E_\alpha) \to M \) denote the determinant line bundle of \(E_\alpha \), i.e. the line bundle whose fiber over \(x \in M \) is equal to the determinant line \(\text{Det}(E_{\alpha, x}) \) of the fiber \(E_{\alpha, x} \) of \(E_\alpha \). The connection \(\nabla_\alpha \) and the metric \(h_{E_\alpha} \) induce a flat connection \(\nabla_{\alpha}^{\text{Det}} \) and a metric \(h_{\text{Det}(E_\alpha)} \) on \(\text{Det}(E_\alpha) \). Then

\[\theta(h_{\text{Det}(E_\alpha)}) = \theta(h_{E_\alpha}). \quad (3.3) \]

For a curve \(\gamma : [a, b] \to M \) let

\[\alpha(\gamma) : E_{\alpha, \gamma(a)} \to E_{\alpha, \gamma(b)}; \quad \alpha^{\text{Det}}(\gamma) : \text{Det}(E_{\alpha, \gamma(a)}) \to \text{Det}(E_{\alpha, \gamma(b)}) \quad (3.4) \]
denote the parallel transports along γ. Then

$$\det(\alpha(\gamma)) = \alpha^\det(\gamma).$$

(3.5)

Let $\tilde{\gamma}(t) \in \det(E_{a,\gamma(t)})$ denote the horizontal lift of the curve γ. By the definition of the Kamber-Tondeur form we have

$$\log \frac{h_{\det(E_a)}(\tilde{\gamma}(b), \tilde{\gamma}(b))}{h_{\det(E_a)}(\tilde{\gamma}(a), \tilde{\gamma}(a))} = \int_\gamma \theta(h_{\det(E_a)}) = \int_\gamma \theta(h_{E_a}),$$

(3.6)

where in the last equality we used (3.3).

If γ is a closed curve, $\gamma(a) = \gamma(b)$, we obtain

$$\frac{h_{\det(E_a)}(\tilde{\gamma}(b), \tilde{\gamma}(b))}{h_{\det(E_a)}(\tilde{\gamma}(a), \tilde{\gamma}(a))} = |\alpha^\det(\gamma)|^2 = |\det(\alpha(\gamma))|^2.$$

Hence from (3.6) we obtain

$$|\det(\alpha(\gamma))| = e^{\frac{1}{2} \int_\gamma \theta(h_{E_a})}.$$

(3.7)

3.5. The Milnor metric. The Hermitian metric h_{E_a} on E_a defines a scalar product on the spaces $C^*(K, E_a)$ and, hence, a metric $\| \cdot \|_{\det(C^*(K, E_a))}$ on the determinant line of $C^*(K, E_a)$. Using the isomorphism

$$\phi : \det(C^*(K, E_a)) \to \det(H^*(M, E_a))$$

(3.8)

cf. formula (2.13) of [5], we thus obtain a metric on $\det(H^*(M, E_a))$, called the Milnor metric associated with the Morse function F and denoted by $\| \cdot \|^M_F$.

3.6. The Farber-Turaev torsion. Turaev [26] showed that if an Euler structure is fixed, then the scalar product on the spaces $C^k(K, E_a)$ allows one to construct not only a metric on the determinant line $\det(C^*(K, E_a))$ but also an element of this line, defined modulo sign.

We recall briefly Turaev’s construction. Fix a base point $x_* \in M$. Then every Euler structure ε can be represented by a pair (F, c) such that

$$c = \sum_{x \in C_r(F)} (-1)^{\text{ind}_F(x)} \gamma_x,$$

with $\gamma_x : [0, 1] \to M$ being a smooth curve such that $\gamma_x(0) = x_*$ and $\gamma_x(1) = x$. The chain c is often referred to as a Turaev spider.

We need to construct an element of the determinant line $\det(C^*(K, E_a))$ of the cochain complex $C^*(K, E_a)$. It is easier to start with constructing an element in the determinant line of the chain complex. Since the cochain complex is dual to the chain complex of the bundle $E_{a'}$, where a' denote the representation dual to a, we construct an element in the determinant line $\det(C_a(K, E_{a'}))$. This is done as follows:

Fix an element $v_* \in \det(E_{a',x_*})$ whose norm with respect to the Hermitian metric $h_{\det(E_{a'})}$ is equal to 1 and set

$$v_x := \alpha^\det(\gamma_x)(v_*) \in \det(E_{a',x}),$$
where \(\alpha'^{\text{Det}} \) is the monodromy of the induced connection on the determinant line bundle \(\text{Det}(E_{\alpha'}) \), cf. (3.4). Let

\[
|v|^{\text{Det}(E_{\alpha'})} := \sqrt{h^{\text{Det}(E_{\alpha'})}(v, v)}
\]

denote the norm induced on \(\text{Det}(E_{\alpha'}) \) by the Hermitian metric \(h^{\text{Det}(E_{\alpha'})} \). Then from (3.6) we obtain

\[
|v_x|^{\text{Det}(E_{\alpha'})} = |v_x|^{\text{Det}(E_{\alpha'})} e^{\frac{1}{2} \int_{\gamma_x} \theta(h^{\text{Det}(E_{\alpha'})})} = e^{-\frac{1}{2} \int_{\gamma_x} \theta(h^{\text{Det}(E_{\alpha'})})}.
\] (3.9)

Let

\[
v = \prod_{x \in \mathcal{C}(F)} v_x^{(-1)\text{ind}_F(x)} \in \text{Det} \left(\mathcal{C}^*(K, E_{\alpha'}) \right)/\pm.
\]

(The sign indeterminacy comes from the choice of the order of the critical points of \(F \).) From (3.9) we conclude that

\[
\|v\|^{\text{Det}(\mathcal{C}^*(K, E_{\alpha}))} = e^{-\frac{1}{2} \int_c \theta(h^{\text{Det}(E_{\alpha})})}.
\] (3.10)

Let \(\langle \cdot, \cdot \rangle \) denote the natural pairing

\[
\text{Det} \left(\mathcal{C}^*(K, E_{\alpha}) \right) \times \text{Det} \left(\mathcal{C}^*(K, E_{\alpha'}) \right) \to \mathbb{C}
\]

and let \(\nu \in \text{Det} \left(\mathcal{C}^*(K, E_{\alpha}) \right)/\pm \) be the unique element such that \(\langle \nu, v \rangle = 1 \). From (3.10) we now obtain

\[
\|\nu\|^{\text{Det}(\mathcal{C}^*(K, E_{\alpha}))} = e^{\frac{1}{2} \int_c \theta(h^{\text{Det}(E_{\alpha})})}.
\] (3.11)

Using the isomorphism (3.8) we obtain an element

\[
\phi(\nu) \in \text{Det} \left(H^\bullet(M, E_{\alpha}) \right)/\pm.
\] (3.12)

To fix the sign one can choose a cohomological orientation \(\sigma \), i.e. an orientation of the determinant line \(\text{Det}(H^\bullet(M, \mathbb{R})) \). Thus, given the Euler structure \(\varepsilon \) and the cohomological orientation \(\sigma \) we obtain a sign refined version of \(\phi(\nu) \) which we call the Farber-Turaev torsion and denote by

\[
\rho_{\varepsilon, \sigma}(\alpha) \in \text{Det} \left(H^\bullet(M, E_{\alpha}) \right).
\] (3.13)

3.7. The Milnor norm of the Farber-Turaev torsion. From (3.11) we immediately get

\[
\|\rho_{\varepsilon, \sigma}(\alpha)\|_{F}^{M} = e^{\frac{1}{2} \int_c \theta(h^{E_{\alpha}})}.
\] (3.14)

In particular, if \(\alpha \) is a unitary representation, then \(h^{E_{\alpha}} \) is a flat Hermitian metric and \(\theta(h^{E_{\alpha}}) = 0 \). Hence, if \(\alpha \) is unitary, then

\[
\|\rho_{\varepsilon, \sigma}(\alpha)\|_{F}^{M} = 1.
\] (3.15)

We now use the Cheeger-Müller theorem to conclude that

\[
\|\rho_{\varepsilon, \sigma}(\alpha)\|_{RS}^{M} = 1, \quad \text{if } \alpha \text{ is unitary.}
\] (3.16)
3.8. Dependence of the Farber-Turaev torsion on the Euler structure. For a homology class $h \in H_1(M, \mathbb{Z})$ and an Euler structure $\varepsilon = (F, c) \in \text{Eul}(M)$ we set

$$h\varepsilon := (F, c + h) \in \text{Eul}(M).$$

(3.17)

This defines a free and transitive action of $H_1(M, \mathbb{Z})$ on $\text{Eul}(M)$, cf. [9, §5] or [7, §3.1].

One easily checks, cf. [9, page 211], that

$$\rho_{h\varepsilon, o}(\alpha) = \det(\alpha(h)) \cdot \rho_{\varepsilon, o}(\alpha).$$

(3.18)

From (3.7) and (3.14) we now obtain

$$\|\rho_{h\varepsilon, o}(\alpha)\|_F^M = e^{-\frac{1}{2} \int_{c+h} \theta(h\varepsilon)}. $$

(3.19)

4. The Ray-Singer norm of the Refined Analytic Torsion

In [5] Braverman and Kappeler defined an element of $\text{Det}(H^\bullet(M, E_\alpha))$ called the refined analytic torsion and denoted by $\rho_{\text{an}}(\alpha)$. They also computed the Ray-Singer norm $\|\rho_{\text{an}}(\alpha)\|_{\text{RS}}$ of the refined analytic torsion. In this section we recall the result of this computation.

4.1. The odd signature operator. Fix a Riemannian metric g^M on M and let $\ast : \Omega^\bullet(M, E_\alpha) \to \Omega^{m-\bullet}(M, E_\alpha)$ denote the Hodge \ast-operator, where $m = \dim M$. Define the chirality operator

$$\Gamma = \Gamma(g^M) : \Omega^\bullet(M, E_\alpha) \to \Omega^\bullet(M, E_\alpha)$$

by the formula

$$\Gamma \omega := i^r (-1)^{\frac{k(k+1)}{2}} \ast \omega, \quad \omega \in \Omega^k(M, E),$$

(4.1)

where $r = \frac{m+1}{2}$. The numerical factor in (4.1) has been chosen so that $\Gamma^2 = 1$, cf. Proposition 3.58 of [1].

The odd signature operator is the operator

$$\mathcal{B} = \mathcal{B}(\nabla_\alpha, g^M) := \Gamma \nabla_\alpha + \nabla_\alpha \Gamma : \Omega^\bullet(M, E_\alpha) \to \Omega^\bullet(M, E_\alpha).$$

(4.2)

4.2. The eta invariant. We recall from [5, §3] the definition of the sign-refined η-invariant $\eta(\nabla_\alpha, g^M)$ of the (not necessarily unitary) connection ∇_α.

Let $\Pi_> \ (\text{resp. } \Pi_<)$ be the projection whose image contains the span of all generalized eigenvectors of \mathcal{B} corresponding to eigenvalues λ with $\text{Re} \lambda > 0 \ (\text{resp. with } \text{Re} \lambda < 0)$ and whose kernel contains the span of all generalized eigenvectors of \mathcal{B} corresponding to eigenvalues λ with $\text{Re} \lambda \leq 0 \ (\text{resp. with } \text{Re} \lambda \geq 0)$, cf. [18, Appendix B]. We define the η-function of \mathcal{B} by the formula

$$\eta_\theta(s, \mathcal{B}) = \text{Tr} \left[\Pi_> \mathcal{B}_\theta^s \right] - \text{Tr} \left[\Pi_< (\mathcal{B}_\theta)^*_s \right],$$

(4.3)

where θ is an Agmon angle for both operators \mathcal{B} and $-\mathcal{B}$ and \mathcal{B}_θ^s denotes the complex power of \mathcal{B} defined relative to the spectral cut along the ray $\{re^{i\theta} : r > 0\}$, cf. [22, 24]. It was shown by Gilkey, [11], that $\eta_\theta(s, \mathcal{B})$ has a meromorphic extension to the whole complex plane \mathbb{C} with isolated simple poles, and that it is regular at $s = 0$. Moreover, the number $\eta_\theta(0, \mathcal{B})$ is independent of the Agmon angle θ.

Let \(m_+(B) \) (resp., \(m_-(B) \)) denote the number of eigenvalues of \(B \), counted with their algebraic multiplicities, on the positive (resp., negative) part of the imaginary axis. Let \(m_0(B) \) denote algebraic multiplicity of 0 as an eigenvalue of \(B \).

Definition 4.3. The \(\eta \)-invariant \(\eta(\nabla_\alpha, g^M) \) of the pair \((\nabla_\alpha, g^M) \) is defined by the formula
\[
\eta(\nabla_\alpha, g^M) = \frac{\eta_0(0, B) + m_+(B) - m_-(B) + m_0(B)}{2}.
\]

If the representation \(\alpha \) is unitary, then the operator \(B \) is self-adjoint and \(\eta(\nabla_\alpha, g^M) \) is real. If \(\alpha \) is not unitary then, in general, \(\eta(\nabla_\alpha, g^M) \) is a complex number. Notice, however, that while the real part of \(\eta(\nabla_\alpha, g^M) \) is a non-local spectral invariant, the imaginary part \(\text{Im} \eta(\nabla_\alpha, g^M) \) of \(\eta(\nabla_\alpha, g^M) \) is local and relatively easy to compute, cf. \[11, 15\].

We also note that the imaginary part of the \(\eta \)-invariant is independent of the Riemannian metric \(g^M \).

4.4. The Ray-Singer norm of the refine analytic torsion. Let \(\eta(\nabla_\alpha, g^M) \) denote the \(\eta \)-invariant of the odd signature operator corresponding to the connection \(\nabla_\alpha \). By Theorem 1.9 of \[5\]
\[
\|\rho_{\text{an}}(\alpha)\|_{\text{RS}} = e^{\pi \text{Im} \eta(\nabla_\alpha, g^M)}.
\]
In particular, when \(\alpha \) is a unitary representation, \(\eta(\nabla_\alpha, g^M) \) is real and we get
\[
\|\rho_{\text{an}}(\alpha)\|_{\text{RS}} = 1.
\]

5. The Determinant Line Bundle over the Space of Representations

The space \(\text{Rep}(\pi_1(M), \mathbb{C}^n) \) of complex \(n \)-dimensional representations of \(\pi_1(M) \) has a natural structure of a complex analytic space, cf., for example, \[6, \S 13.6\]. The disjoint union
\[
\text{Det} := \bigsqcup_{\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n)} \text{Det} \left(H^*(M, E) \right)
\]
(5.1)
is a line bundle over \(\text{Rep}(\pi_1(M), \mathbb{C}^n) \), called the determinant line bundle. In \[4, \S 3\], Braverman and Kappeler constructed a natural holomorphic structure on \(\text{Det} \), with respect to which both the refined analytic torsion \(\rho_{\text{an}}(\alpha) \) and the Farber-Tureav torsion \(\rho_{\varepsilon, o}(\alpha) \) are holomorphic sections. In this section we first recall this construction and then consider the ratio \(\rho_{\text{an}}/\rho_{\varepsilon, o} \) of these two sections as a holomorphic function on \(\text{Rep}(\pi_1(M), \mathbb{C}^n) \).

5.1. The flat vector bundle induced by a representation. Denote by \(\pi : \tilde{M} \to M \) the universal cover of \(M \). For \(\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n) \), we denote by
\[
E_\alpha := \tilde{M} \times_\alpha \mathbb{C}^n \to M
\]
(5.2)
the flat vector bundle induced by \(\alpha \). Let \(\nabla_\alpha \) be the flat connection on \(E_\alpha \) induced from the trivial connection on \(\tilde{M} \times \mathbb{C}^n \).

For each connected component (in classical topology) \(\mathcal{C} \) of \(\text{Rep}(\pi_1(M), \mathbb{C}^n) \), all the bundles \(E_\alpha, \alpha \in \mathcal{C} \), are isomorphic, see e.g. \[12\].
5.2. **The combinatorial cochain complex.** Fix a CW-decomposition \(K = \{e_1, \ldots, e_N\} \) of \(M \). For each \(j = 1, \ldots, N \), fix a lift \(\tilde{e}_j \), i.e., a cell of the CW-decomposition of \(\tilde{M} \), such that \(\pi(\tilde{e}_j) = e_j \). By (5.2), the pull-back of the bundle \(E_\alpha \) to \(\tilde{M} \times \mathbb{C}^n \to \tilde{M} \). Hence, the choice of the cells \(\tilde{e}_1, \ldots, \tilde{e}_N \) identifies the cochain complex \(C^\bullet(K, \alpha) \) of the CW-complex \(K \) with coefficients in \(E_\alpha \) with the complex

\[
0 \to \mathbb{C}^{n-k_0} \overset{\partial_0(\alpha)}{\to} \mathbb{C}^{n-k_1} \overset{\partial_1(\alpha)}{\to} \cdots \overset{\partial_{m-1}(\alpha)}{\to} \mathbb{C}^{n-k_m} \to 0, (5.3)
\]

where \(k_j \in \mathbb{Z}_{\geq 0} \) (\(j = 0, \ldots, m \)) is equal to the number of \(j \)-dimensional cells of \(K \) and the differentials \(\partial_j(\alpha) \) are \((nk_j \times nk_{j-1})\)-matrices depending analytically on \(\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n) \).

The cohomology of the complex (5.3) is canonically isomorphic to \(H^\bullet(M, E_\alpha) \). Let

\[
\phi_{C^\bullet(K, \alpha)} : \text{Det} \left(C^\bullet(K, \alpha) \right) \longrightarrow \text{Det} \left(H^\bullet(M, E_\alpha) \right) (5.4)
\]
denote the natural isomorphism between the determinant line of the complex and the determinant line of its cohomology, cf. [5, §2.4]

5.3. **The holomorphic structure on \(\text{Det} \).** The standard bases of \(\mathbb{C}^{n-k_j} \) (\(j = 0, \ldots, m \)) define an element \(c \in \text{Det} \left(C^\bullet(K, \alpha) \right) \), and, hence, an isomorphism

\[
\psi_{\alpha} : \mathbb{C} \longrightarrow \text{Det} \left(C^\bullet(K, \alpha) \right), \quad z \mapsto z \cdot c.
\]

Then the map

\[
\sigma : \alpha \mapsto \phi_{C^\bullet(K, \alpha)}(\psi_{\alpha}(1)) \in \text{Det} \left(H^\bullet(M, E_\alpha) \right), (5.5)
\]

where \(\alpha \in \text{Rep}(\pi_1(M), \mathbb{C}^n) \) is a nowhere vanishing section of the determinant line bundle \(\text{Det} \) over \(\text{Rep}(\pi_1(M), \mathbb{C}^n) \).

Definition 5.4. We say that a section \(s(\alpha) \) of \(\text{Det} \) is holomorphic if there exists a holomorphic function \(f(\alpha) \) on \(\text{Rep}(\pi_1(M), \mathbb{C}^n) \), such that \(s(\alpha) = f(\alpha) \cdot \sigma(\alpha) \).

This defines a holomorphic structure on \(\text{Det} \), which is independent of the choice of the lifts \(\tilde{e}_1, \ldots, \tilde{e}_N \) of \(e_1, \ldots, e_N \), since for a different choice of lifts the section \(\sigma(\alpha) \) will be multiplied by a constant. It is shown in [4, §3.5] that this holomorphic structure is also independent of the CW-decomposition \(K \) of \(M \).

Theorem 5.5. Both the refined analytic torsion \(\rho_{\text{an}}(\alpha) \) and the Farber-Turaev torsion \(\rho_{e,\phi}(\alpha) \) are holomorphic sections of \(\text{Det} \) with respect to the holomorphic structure described above.

Proof. The fact that the Farber-Turaev torsion is holomorphic is established in Proposition 3.7 of [4]. The fact that the refined analytic torsion is holomorphic is proven in Theorem 4.1 of [4]. \(\square \)
5.6. **The ratio of the torsions as a holomorphic function.** Since both $\rho_{\varepsilon,\sigma}$ and ρ_{an} are holomorphic nowhere vanishing sections of the same line bundle there exists a holomorphic function

$$\kappa : \text{Rep}(\pi_1(M), \mathbb{C}^n) \rightarrow \mathbb{C}\setminus\{0\}$$

such that

$$\rho_{\text{an}}(\alpha) = \kappa(\alpha) \cdot \rho_{\varepsilon,\sigma}(\alpha).$$

We shall denote this function by

$$\kappa(\alpha) = \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon,\sigma}(\alpha)}.$$ \hfill (5.6)

5.7. **The absolute value of $\frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon,\sigma}(\alpha)}$ for unitary representations.** Combining (4.6) with (3.16) we obtain

$$\left|\frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon,\sigma}(\alpha)}\right| = \frac{\|\rho_{\text{an}}(\alpha)\|_{\text{RS}}}{\|\rho_{\varepsilon,\sigma}(\alpha)\|_{\text{RS}}} = 1, \quad \text{if } \alpha \text{ is unitary.} \hfill (5.7)$$

6. **The Bismut-Zhang theorem for some non-unitary representations**

We now present our proof of the Bismut-Zhang theorem [2, Theorem 0.2] for representations in the connected component \mathcal{C}.

6.1. **The duality operator.** Let α' denotes the representation dual to α. The Poincaré duality defines a non-degenerate pairing

$$\text{Det} \left(H^k(M, E_\alpha) \times \text{Det} \left(H^{m-k}(M, E_{\alpha'}) \right) \right) \rightarrow \mathbb{C}, \quad k = 0, \ldots, m,$$

and, hence, an anti-linear map

$$D : \text{Det} \left(H^\bullet(M, E_\alpha) \right) \rightarrow \text{Det} \left(H^\bullet(M, E_{\alpha'}) \right)$$ \hfill (6.1)

see [9, §2.5] and [5, §10.1] for details.

By Theorem 10.3 of [5] we have

$$D \rho_{\text{an}}(\alpha) = \rho_{\text{an}}(\alpha') \cdot e^{2\pi i \left(\eta(\nabla_\alpha, g^M) - (\text{rank } E) \eta_{\text{trivial}}(g^M) \right)},$$ \hfill (6.2)

where $\eta(\nabla_\alpha, g^M)$ is defined in Definition 4.3 and η_{trivial} is the η-invariant corresponding to the standard connection on the trivial line bundle $M \times \mathbb{C} \rightarrow M$.

6.2. **The dual of the Farber-Turaev torsion.** By Theorem 7.2 of [9]

$$D \rho_{\varepsilon,\sigma}(\alpha) = \pm \rho_{\varepsilon^*,\sigma}(\alpha'),$$ \hfill (6.3)

where $\varepsilon^* := (-F, -c)$ is the dual Euler structure on M.

We shall use formula (3.18) in the following situation: if $\varepsilon = (F, c) \in \text{Eul}(M)$ then the Euler structure $\varepsilon^* := (-F, -c)$ is called dual to ε. Since $H_1(M, \mathbb{Z})$ acts freely and transitively on $\text{Eul}(M)$ there exists $c_\varepsilon \in H_1(M, \mathbb{Z})$ such that

$$\varepsilon = c_\varepsilon \varepsilon^*.$$ \hfill (6.4)
The homology class \(c_\varepsilon \) was introduced by Turaev [26] and is called the characteristic class of the Euler structure. From (3.18) and (6.3) we now conclude that
\[
D \rho_{\varepsilon, \sigma}(\alpha) = \pm \rho_{\varepsilon, \sigma}(\alpha') = \pm \Det \left(\alpha'(c_\varepsilon) \right) \cdot \rho_{\varepsilon, \sigma}(\alpha').
\] (6.5)

If \(\alpha \) is a unitary representation, then \(\alpha = \alpha' \). Hence, it follows from (6.5) that
\[
\rho_{\varepsilon, \sigma}(\alpha') = \pm \left(\Det \left(\alpha(c_\varepsilon) \right) \right)^{-1} \cdot D \rho_{\varepsilon, \sigma}(\alpha).
\] (6.6)

6.3. The ratio of torsions for unitary representations. Combining (6.2) and (6.6) we conclude that for unitary \(\alpha \)
\[
\frac{D \rho_{\text{an}}(\alpha)}{D \rho_{\varepsilon, \sigma}(\alpha)} = \pm \Det \left(\alpha(c_\varepsilon) \right) \cdot \rho(\alpha) \cdot \rho\left(\alpha \right)\frac{\rho_{\text{triv}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)}.
\] (6.7)

Since \(D \) is an anti-linear involution we have
\[
\left(\frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \right)^2 = \pm \Det \left(\alpha(c_\varepsilon) \right) \cdot e^{2i\pi \left(\eta(\nabla_{\alpha, g^M} - (\text{rank } E) \eta_{\text{triv}}(g^M)) \right)} \cdot \left| \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \right|^2.
\] (6.8)

Combining this equality with (5.7) we obtain for unitary \(\alpha \)
\[
\left(\frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \right)^2 = \pm \Det \left(\alpha(c_\varepsilon) \right) \cdot e^{-2i\pi \left(\eta(\nabla_{\alpha, g^M} - (\text{rank } E) \eta_{\text{triv}}(g^M)) \right)} \cdot \left| \frac{\rho_{\text{an}}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \right|^2.
\] (6.9)

6.4. The ratio of torsions for non-unitary representations. Suppose now that \(\mathcal{C} \subset \text{Rep}(\pi_1(M), \mathbb{C}^n) \) is a connected component and \(\alpha_0 \subset \mathcal{C} \) is a unitary representation which is a regular point of the complex analytic set \(\mathcal{C} \). The set of unitary representations is the fixed point set of the anti-holomorphic involution
\[
\tau : \text{Rep}(\pi_1(M), \mathbb{C}^n) \to \text{Rep}(\pi_1(M), \mathbb{C}^n), \quad \tau : \alpha \mapsto \alpha'.
\]
Hence it is a totally real submanifold of \(\text{Rep}(\pi_1(M), \mathbb{C}^n) \) whose real dimension is equal to \(\dim_{\mathbb{C}} \mathcal{C} \), see for example [13, Proposition 3]. In particular there is a holomorphic coordinates system \((z_1, \ldots, z_r) \) near \(\alpha_0 \) such that the unitary representations form a real neighborhood of \(\alpha_0 \), i.e. the set \(\text{Im } z_1 = \ldots = \text{Im } z_r = 0 \). Therefore, cf. [23, p. 21], if two holomorphic functions coincide on the set of unitary representations they also coincide on \(\mathcal{C} \). We conclude that the equation (6.9) holds for all representations \(\alpha \in \mathcal{C} \). Hence, using (4.5) and (3.14) we obtain for every \(\alpha \in \mathcal{C} \)
\[
\frac{\| \cdot \|_{RS}^{1/2}}{\| \cdot \|_{M_F}^{1/2}} = \frac{\left| \rho_{\text{an}}(\alpha) \right|^2}{\left| \rho_{\varepsilon, \sigma}(\alpha) \right|^2} \cdot \left| \frac{\rho_{\varepsilon, \sigma}(\alpha)}{\rho_{\varepsilon, \sigma}(\alpha)} \right|^2 \cdot \left| \Det \left(\alpha(c_\varepsilon) \right) \right|^{-1/2} \cdot e^{-\frac{1}{2} \int_{\theta'} f_{\theta_{\text{triv}}}}.
\] (6.10)
6.5. **The absolute value of the determinant of** $\alpha(c_\varepsilon)$. Let

$$PD : H_1(M, \mathbb{R}) \to H^{n-1}(M, \mathbb{R})$$

denote the Poincaré isomorphism. By Proposition 3.9 of [7] there exists a map

$$P : \text{Eul}(M) \to \Omega^{n-1}(M, \mathbb{R})$$

such that

$$P(h\varepsilon) = P(\varepsilon) + PD(h),$$

$$P(\varepsilon^*) = -P(\varepsilon),$$

(6.11)

and if $\varepsilon = (X, c)$ then for every $\omega \in \Omega^1(M, \mathbb{R})$

$$\int_c \omega = \int_M \omega \wedge X^*\Psi(g) - \int_M \omega \wedge P(\varepsilon).$$

(6.12)

Here $\Psi(g)$ is the Mathai-Quillen current on TM, cf. [2, §III c] and $X^*\Psi(g)$ denotes the pull-back of this current by $X : M \to TM$.

Combining (6.4) with (6.11) we obtain

$$P(\varepsilon) = P(\varepsilon^*) + PD(c_\varepsilon) = -P(\varepsilon) + PD(c_\varepsilon).$$

Thus

$$PD(c_\varepsilon) = 2P(\varepsilon).$$

(6.13)

Combining this equality with (6.12) we get

$$\int_c \omega = \int_M \omega \wedge X^*\Psi(g) - \frac{1}{2} \int_M \omega \wedge PD(c_\varepsilon).$$

(6.14)

Notice now that

$$\int_M \omega \wedge PD(c_\varepsilon) = \int_{c_\varepsilon} \omega.$$

Hence, from (6.14) we obtain

$$\int_{c_\varepsilon} \omega = -2 \int_c \omega + 2 \int_M \omega \wedge X^*\Psi(g).$$

(6.15)

In particular, setting $\omega = \theta(h^{E_\alpha})$ and using (3.7) we obtain

$$\left| \text{Det} \left(\alpha(c_\varepsilon) \right) \right| = e^{-\int_c \theta(h^{E_\alpha}) + \int_M \theta(h^{E_\alpha}) \wedge X^*\Psi(g)}. $$

(6.16)

Combining this equality with (6.10)

$$\| \cdot \|_{M}^{\text{RS}} \| \cdot \|_{F}^{\text{M}} = e^{-\frac{1}{2} \int_M \theta(h^{E_\alpha}) \wedge X^*\Psi(g)},$$

(6.17)

which is exactly the Bizmut-Zhang formula [2, Theorem 0.2].
References

[1] N. Berline, E. Getzler, and M. Vergne, *Heat kernels and Dirac operators*, Springer-Verlag, 1992.

[2] J.-M. Bismut and W. Zhang, *An extension of a theorem by Cheeger and Müller*, Astérisque 205 (1992).

[3] M. Braverman and T. Kappeler, *A refinement of the Ray-Singer torsion*, C.R. Acad. Sci. Paris 341 (2005), 497–502.

[4] ———, *Ray-Singer type theorem for the refined analytic torsion*, 243 (2007), 232–256.

[5] ———, *Refined Analytic Torsion as an Element of the Determinant Line*, Geometry & Topology 11 (2007), 139–213.

[6] ———, *Refined Analytic Torsion*, J. Differential Geom. 78 (2008), no. 1, 193–267.

[7] D. Burghelea and S. Haller, *Euler Structures, the Variety of Representations and the Milnor-Turaev Torsion*, Geom. Topol. 10 (2006), 1185–1238.

[8] J. Cheeger, *Analytic torsion and the heat equation*, Ann. of Math. 109 (1979), 259–300.

[9] M. Farber and V. Turaev, *Poincaré-Reidemeister metric, Euler structures, and torsion*, J. Reine Angew. Math. 520 (2000), 195–225.

[10] W. Franz, *Über die torsion einer überdeckung*, Journal für die reine und angewandte Mathematik 173 (1935), 245–254.

[11] P. B. Gilkey, *The eta invariant and secondary characteristic classes of locally flat bundles*, Algebraic and differential topology—global differential geometry, Teubner-Texte Math., vol. 70, Teubner, Leipzig, 1984, pp. 49–87.

[12] W. Goldman and J. Millson, *The deformation theory of representations of fundamental groups of compact Kähler manifolds*, Inst. Hautes Études Sci. Publ. Math. (1988), no. 67, 43–96.

[13] N.-K. Ho, *The real locus of an involution map on the moduli space of flat connections on a Riemann surface*, Int. Math. Res. Not. (2004), no. 61, 3263–3285.

[14] F. Kamber and Ph. Tondeur, *Flat bundles and characteristic classes of group-representations*, Amer. J. Math. 89 (1967), 857–886.

[15] X. Ma and W. Zhang, *η-invariant and flat vector bundles*, Chinese Ann. Math. Ser. B 27 (2006), 67–72.

[16] W. Müller, *Analytic torsion and R-torsion of Riemannian manifolds*, Adv. in Math. 28 (1978), 233–305.

[17] ———, *Analytic torsion and R-torsion for unimodular representation*, Jour. of AMS 6 (1993), 721–753.

[18] R. Ponge, *Spectral asymmetry, zeta functions, and the noncommutative residue*, Internat. J. Math. 17 (2006), 1065–1090.

[19] D. Quillen, *Determinants of Cauchy-Riemann operators over a Riemann surface*, Funct. Anal. Appl. 14 (1985), 31–34.

[20] D. B. Ray and I. M. Singer, *R-torsion and the Laplacian on Riemannian manifolds*, Adv. in Math. 7 (1971), 145–210.

[21] K. Reidemeister, *Homotopieringe und Linsenräume*, Hamburger Abhandl. 11 (1935), 102–109.

[22] R. Seeley, *Complex powers of an elliptic operator*, Proc. Symp. Pure and Appl. Math. AMS 10 (1967), 288–307.

[23] B. V. Shabat, *Introduction to complex analysis. Part II*, Translations of Mathematical Monographs, vol. 110, American Mathematical Society, Providence, RI, 1992, Functions of several variables, Translated from the third (1985) Russian edition by J. S. Joel.

[24] M. A. Shubin, *Pseudodifferential operators and spectral theory*, Springer Verlag, Berlin, New York, 1987.

[25] V. G. Turaev, *Reidemeister torsion in knot theory*, Russian Math. Survey 41 (1986), 119–182.
[26] ______, *Euler structures, nonsingular vector fields, and Reidemeister-type torsions*, Math. USSR Izvestia 34 (1990), 627–662.

[27] ______, *Introduction to combinatorial torsions*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001, Notes taken by Felix Schlenk.

Department of Mathematics, Northeastern University, Boston, MA 02115, USA

E-mail address: maximbraverman@neu.edu
URL: www.math.neu.edu/~braverman/

Mathematisches Institut, Universität Bonn, 53115 Bonn, Germany

E-mail address: vertman@math.uni-bonn.de
URL: www.math.uni-bonn.de/people/vertman