The effect of the addition of mangrove wood charcoal to reduce sulfur content in coal

R Rahman¹, S Widodo², B Azikin³ and D Tahir⁴

¹Graduate Student of Earth and Environmental Technology, Geological Engineering Department, Faculty of Engineering, Hasanuddin University 90245, Indonesia.
²Mining Engineering Department, Faculty of Engineering, Hasanuddin University, 90245, Indonesia.
³Geological Engineering Department, Faculty of Engineering, Hasanuddin University, 90245, Indonesia.
⁴Physics Sciences, Faculty of Science FMIPA, Hasanuddin University 90245, Indonesia.

Email: niarrahmaniarrahman@gmail.com

Abstract. Coal in Sulawesi, especially in South Sulawesi, has several shortcomings since it contains sulfur and produces a high ash content that affects the environment. Desulphurization with High-Temperature Combustion Methods is a sulfur content analysis method using the SC-144DR Dual Range Sulfur Analyzer coal tool, which is one of the methods used to reduce sulfur in coal. Based on the results of the study, it was obtained: a mixture of coal with mangrove wood charcoal with the composition of 25% Sin coal + 75% MWC = 0.067% sulfur content, 50% Sin coal + 50% MWC = 0.089% sulfur content and 75% Sin coal + 25% MWC = 0.107% sulfur content. These results indicate that the more addition of mangrove charcoal, the lower sulfur content in the coal. Decreasing sulfur content can improve the quality of the coal produced, especially in combustion systems that affect the environment.

1. Introduction
Coal is the most abundant resource in Indonesia, especially in South Sulawesi. In Indonesia, the coal is used around 70% for power plants by several power companies, around 10% for the cement industry, and the remaining 20% is utilized by other industries and in the metallurgical process. As economic growth increases, the amount of petroleum reserves is running low, so coal utilization increases [1,2].

There are some weaknesses in the use of coal as fuel, one of which is that the coal contains a high content of ash and sulfur. At the combustion process, the coal will produce emissions of toxic particulate matter, trace elements, and SO2 which significantly impact the environment [3,4] According to [1] coal in Bulupodo and Bongki Villages, Sinjai Regency produces moderate-high ash content which shows that clay is the mineral that contributes the most through microscopy analysis.

In Indonesia, based on [5], the high total sulfur, ash content, and low calorific value significantly affect the quality of coal, especially those found in Sulawesi. Coal in South
Sulawesi, especially in Kaloling Village, Sinjai Regency is classified as low-rank coal even though it contains a low sulfur content of 0.272%, but its ash content is very high at 52.41% and a low calorific value of 3800.1 cal/gram which causes it to be underutilized as a source of energy. Therefore, some efforts are needed to improve the quality of coal to overcome the obstacles in utilizing it as an energy source. Besides the coal, biomass also has good quality specifications as fuel. Mangrove wood charcoal produces a fairly high heating value of 5404.04 cal/gram, and low sulfur content of around 0.029% and ash content: 6.34%, therefore, it can be considered as an environmentally friendly fuel [6].

As an effort to improve the quality of the coal, especially in South Sulawesi, it needs some efforts to reduce any contents which bring an impact on environmental pollution and coal quality. There have been many studies on improving the quality of the coal by reducing the sulfur and ash content, which have an impact on the environment [3,5,7–32], but there are still very few studies investigating desulphurization using mangrove wood charcoal. This study aims to utilize mangrove wood charcoal for the desulphurization process in coal to reduce its sulfur content.

2. Samples and method

The following coal and wood sampling locations in Sinjai Regency, South Sulawesi can be seen in figure 1:

![Map of Sampling Locations in East Sinjai](image)

Figure 1. Map of the location of South Sulawesi coal sampling and mangrove wood charcoal in Sinjai Regency.

The location of the Sinjai Regency is located in the eastern part of South Sulawesi geographically with a large area. It has the potential of natural resources, which is quite potential to be developed. Sinjai Regency is geologically located between 50°2’56”- 50°21’16” ‘South Latitude (LS) and 1190 56’30” - 1200 25’33” east longitude (BT) on the East Coast...
Section South Sulawesi Selatan Province. There are ten villages in East Sinjai district, namely Biroro Village, Kaloling Village, Kampala Village, Kessingmarannu Village, Lasiai Village, Panaijang Village, Patalassang Village, Sanjai Village, Saukang Village, Saukang Village, Mangara Bombang Village and Tongke-tongke Village [33]. In this study the location of coal sampling is located in the village of Kaloling, East Sinjai, South Sulawesi and mangrove wood charcoal is located not far from the coal sampling area, namely in the Village of Magara Bombang, East Sinjai, South Sulawesi.

In this study, coal crushing and mangrove wood charcoal were crushed separately so that the small size was obtained, which made it easier during the grinding process. After the crushing process is carried out, the grinding process is carried out and then the sample is sieved using a 200 mesh sieve size for each sample [6,34]. A 200 mesh sieve size was used to accelerate combustion so that perfect combustion was obtained during sulfur analysis. This research, High-Temperature Combustion A method is a method for analyzing sulfur content using the Dual Range Sulfur Analyzer SC-144DR (ASTM D. 3177).

3. Results and discussion

3.1. Sulfur Analysis

3.1.1. Before mixture

The result of Sulfur analysis before in a mixture of coal and mangrove wood charcoal is shown in the

| Table 1. Sulfur analysis before in a mixture of coal and mangrove wood charcoal |
|-----------------|-----------------|
| ID Sample | Sulfur (%) |
| Sin coal | 0.272 |
| MWC (mangrove wood) | 0.029 |

SIN: Sinjai Coal

MWC: Mangrove Wood Charcoal

The sulfur analysis in Table 1 shows that Sinjai coal contains quite a lot of sulfur, while mangrove wood charcoal contains a bit of sulfur content. Nevertheless, Sinjai coal is still considered safe or low sulfur category >1% [1,34]

3.1.2. After mixture

The result of sulfur analysis after getting mixed with the coal and mangrove wood charcoal is shown in Table 2.

| Table 2. sulfur analysis after getting mixed with the coal and mangrove wood charcoal |
|-----------------|-----------------|-----------------|
| ID Sample | Sulfur (%) |
| Sin coal (%) | MWC (%) | |
| 75 | 25 | 0.067 |
| 50 | 50 | 0.089 |
| 25 | 75 | 0.107 |
Figure 2. Graph of sulfur analysis after getting mixed with the coal and mangrove wood charcoal

Table 2 and figure. 2 show significant results, for the mixture of coal with mangrove charcoal with a composition of 25% Sin coal + 75% MWC = 0.067% sulfur, 50% Sin coal + 50% MWC = 0.089% and 75% Sin coal + 25% MWC = 0.107%. Based on the findings of this study, it can be concluded that the more addition of mangrove charcoal, the lower sulfur content in the coal. Decreasing sulfur content can improve the quality of the coal produced, especially in combustion systems that affect the environment [2,4].

4. Conclusions
This study obtained significant results as follows. The lowest sulfur content is obtained from the composition of 25% Sin coal + 75% MWC = 0.067%, the second one is the composition of 50% Sin coal + 50% MWC = 0.089% and the highest one is 75% Sin coal + 25% MWC = 0.107%. Therefore, it can be concluded that the more addition of mangrove charcoal composition, the lower the sulfur content in the coal. As a result, mangrove charcoal is best used as desulphurization in the coal. The sulfur content obtained can affect the quality of the coal, so it can be utilized as the best quality alternative energy source, especially for the environment.

Acknowledgment. Thank to Hasanuddin University, Mining Engineering Department staff (Dr. Sufradiin, ST. MT. Akmal Saputno, ST., and Ardi Alam Jabir, ST.,) and my friend Sukmawati and Wahyu Saputra were helped us in editing pictures, the field, laboratory to prepare samples until analysis. Special thanks to Prof. Dr. rer. nat., Ir. A. M. Imran, for his helpful comments, to improve our paper.

References
[1] Sufradiin, Widodo S and Mendaun 2016 Petrography Analysis and Quality of Sinjai Coal Eng. Res. J. 20 21–5
[2] Malaidji E, Anshariah and Budiman 2018 Proximate, Sulfur, and Calorie Value Analysis in Determining Coal Quality in Pattappa Village, Pujananting District, Barru Regency, South
Sulawesi Province. Makassar: Department of Mining Engineering, University of Indonesia, Geomine J. 6 131–7

[3] Vaccaro S 2010 Demineralization and desulfurization process to generate clean coal Chem. Eng. 21 1489–94

[4] Widodo S, Sufriadin S, Imai A and Anggayana K 2017 Characterization of Some Coal Deposits Quality by Use of Proximate and Sulfur Analysis in The Southern Arm Sulawesi, Indonesia Int. J. Eng. Sci. Appl. 3 137–43

[5] Widodo S, Oschmann W, Bechtel A, Sachsenhofer R F, Anggayana K and Puettmann W 2010 Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions Int. J. Coal Geol. 81 151–62

[6] Rahman R, Widodo S, Azikin B and Tahir D 2019 Chemical composition and physical characteristics of coal and mangrove wood as alternative fuel Journal of Physics: Conference Series vol 1341 (IOP Publishing) p 52008

[7] Widodo S, Sufriadin A, Budiman A A, Asmian N, Jafar N and Babay M F 2019 Karakterisasi mineral pirit pada batubara berdasarkan hasil analisis mikroskopi, proksimat, total sulfur, dan difraksi sinar X J. GEOSAPTA Vol 5 121

[8] Widodo S and SufriadinAnshariah 2015 Identifikasi Logam Berat Pada Lapisan Batubara Cekungan Kutai di Kabupaten Kutai Kertanegara Provinsi Kalimantan Timur Pros. TPT XXIV dan Konggres IX Perhapi.

[9] Widodo S, Sufriadin, Anggayana K, Anshariah and Asmiani 2016 Analisis Biomarker Lapisan Batubara Cekungan Kutai Menggunakan Metode Gas Chromatography Mass Spectrometry (GC-MS). Pros. TPT XXV dan Konggres X Perhapi

[10] Widodo S, Bechtel A, Anggayana K and Puettmann W 2009 Reconstruction of floral changes during deposition of the Miocene Embalut coal from Kutai Basin, Mahakam Delta, East Kalimantan, Indonesia by use of aromatic hydrocarbon composition and stable carbon isotope ratios of organic matter Org. Geochem. 40 206–18

[11] Widodo S, Bechte A, Oschmann, W., Anggayana K, Sachsenhofer R and Puettmann W 2010 Distribution of sulfur and pyrite in the Miocene coal seams from Kutai Basin, East Kalimantan, Indonesia Int. J. Coal Geol. 81 151–62

[12] Ipro. 2006 Design of Coal Desulfurization Processes to Improve The Environment Illinois Inst. Technol.

[13] Ahmed A, Ahmad N, Shah R, Bhatti M N and Saleem M 2008 Coal desulfurization by solvent leaching methods J. Fac. Eng. Technol. 2007 47–56

[14] Demirbas A and Balat M 2004 Coal desulfurization via different methods Energy Sources 26 541–50

[15] Amin M, Birawidha D, C I, K H, Y M and M. Prilitasari A 2019 Tanjung Bintang: Research Institute for Mineral Technology-Indonesian Institute of Sciences, Lampung Selatan, Journal of Precipitation, Communication Media and Environmental Engineering Development Commun. Media Environ. Eng. Dev. 16

[16] Ohtsuka Y 2009 Desulfurization of coal Coal, Oil Shale, Nat. Bitumen, Heavy Oil Peat-Volume I 258

[17] Widodo S, Sufriadin and Bungin N R 2014 Studi Komposisi Maseral, Kandungan Abu, dan Sulfur pada Lapisan Batubara di Kabupaten Kutai Kertanegara Kalimantan Timur Pros. Semin. Penlit. Teknol. Terap.

[18] Shahrazi S, Karamoozian M and Azizi A 2018 Desulfurization of coal by HNO3 leaching: Optimization of influential factors using Box-Behken design J. Min. Environ. 9 657–65

[19] Jaya, D, Syahri M, Sugondo and Nurindahsari 2016 Utilization of Crude Palm Oil for Desulfurization in Coal Using Flotation Methods Chem. Eng. Study Program, UPN Veterans, Eksergi 13

[20] Rakesh Kumar D and Srivastava V C 2012 Studies on adsorptive desulfurization by activated carbon Clean–Soil, Air, Water 40 545–50
[21] Brotowati S and Pirman 2017 Utilization of Low-Quality Coal as Coke Involves the Process of Desulfurization, Demineralization, and Carbonization Proc. Res. Results Semin. 145–50
[22] Syamsidar 2011 Optimization of Coal Desulfurization Process from South Sulawesi by Adding Vegetable Oil J. Technol. 5 51–8
[23] Zhang C, Yang D, Jiang X and Jiang W 2016 Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization-activation method Environ. Technol. 37 1895–905
[24] Zhang P, Zhang S, Shao L, Bing M, Qiu S and Zhang Q 2017 Desulfurization of High Sulfur Coal Leached with H2O2 and NaOH by Microwave Irradiation Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies (Springer) pp 259–69
[25] Zhu G, Zhang B, Lv B, Yan G and Zhu X 2018 Clean Desulphurization of High-Sulfur Coal Based on Synergy Effect between Microwave Pretreatment and Magnetic Separation ACS omega 3 10374–82
[26] Aladin A 2009 Determination of the Optimum Ratio of CPO Mixtures: Coal in Desulfurization and Deashing by Flotation of a Continuous System. Makassar J. Process Eng. 3 50–6
[27] Ardany, M. J., Tawfiequrrahman A and Purwono S No Title (Yogyakarta: ajah Mad University,)
[28] Widodo S, Sufriadin S, Saputno A, Imai A and Anggayana K 2017 Geochemical Characterization and Its Implication for Beneficiation of Coal from Tondongkura Village, Pangkep Regency South Sulawesi Province Int. J. Eng. Sci. Appl. 4 83–96
[29] Cara J, Carballo M. T., Moran A, Bonilla D, Escolano O and Frutos G 2005 Biodesulphurisation of High Sulfur Coal by Heap Leaching Univ. Leon, Avda. Port. s / n, Elsevier Fuel 84
[30] Widodo S, Sufriadin E S and Suhendar E 2018 Desulfurisasi Dan Deaashing Pada Batubara Menggunakan NaOH Dan HCL Sebagai Leaching Agent
[31] Chandra D and Mishra A. 1988 Desulfurization of Coal by Bacterial Means India Indian Sch. Mines, Elsevier Sci. Publ. B. V. Resour. Conserv. Recycl. 1 293-308.
[32] Fan C-W 1984 Coal desulfurization and demineralization by chemical/physical treatments
[33] Hidayatullah and Trisutomo 2019 Development of Ecotourism in the Tongke-TongkeMangrove Forest in Sinjai District, East Sinjai District (Makassar: Hasanuddin University)
[34] Nursanto E, Sudaryanto and Sukamto 2015 Coal Processing and Its Utilization for Energy Proc. Natl. Semin. Chem. Eng. 'Struggle Dev. Chem. Technol. Process. Indones. Nat. Resour.