INTRODUCTION

Histamine is a major chemical mediator that induces nasal allergy symptoms through its binding to histamine H1 receptor (H1R) in the development of allergic rhinitis (1). Antihistamines, H1R antagonists, are effective for the treatments of allergic rhinitis, including pollinosis (2). In Japan, prophylactic administration of antihistamines before the onset of pollen season is recommended for pollinosis treatment (1), because the pre-seasonal administration of antihistamines is more effective than post-onset administration in patients with pollinosis (3). In our previous study, we used environmental exposure units and demonstrated that pre-administration of ebastine, an antihistamine down-regulated H1R gene expression before pollen exposure and then inhibited pollen-induced nasal symptoms and pollen-induced up-regulation of H1R gene expression in the nasal mucosa of patients with pollinosis (4). Because, histamine signaling is regulated by the levels of H1R expression (5, 6), it is suggested that prophylactic administration of antihistamines inhibited both basal transcription and histamine-induced transcriptional activation of H1R in the nasal mucosa, resulting in summative suppression of nasal symptoms during peak pollen season in patients with pollinosis.

Intranasal corticosteroid (INCS) is also effective for the treatment of allergic rhinitis (7). A recent randomized placebo-controlled trial demonstrated that pre-seasonal prophylactic administration of INCS prevented the worsening of nasal symptoms during peak pollen season in patients with pollinosis (8). Accordingly, in the present study, we examined whether INCS down-regulates H1R gene expression in the nasal mucosa of healthy participants in vivo. We then examined whether dexamethasone, a corticosteroid inhibits basal and histamine-induced up-regulation of H1R mRNA, and histamine-induced phosphorylation of protein kinase Cδ (PKCδ) and extracellular signal-regulated kinase (ERK) in HeLa cells in vitro.

PARTICIPANTS AND METHODS

Participants

We enrolled 16 healthy participants with no history of allergic rhinitis (10 males, 6 females; 22-26 years old; mean age: 24.2 years). Participants received intranasal doses of 200 µg of mometasone furoate in the right nostril using a nasal spray device once daily for a week. Nasal mucosa samples were obtained under local anesthesia with 4% lidocaine by scraping the surface of the inferior nasal concha with a small spatula before and after INCS administration for 7 days, as previously described (6). This study was approved by the Ethical Committee of Tokushima University Hospital (UMIN6094), and written informed consent was obtained from each patient before inclusion in the study.

Real-time quantitative RT-PCR

Nasal mucosa samples of participants were frozen in RNAlater® (Applied Biosystems, Foster City, CA, USA) and stored at -80°C until use. Total RNA was isolated using the RNeasy-Micro Kit (Applied Biosystems) following the manufacturer’s instructions. RNA samples were reversed-transcribed to produce cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Levels of H1R mRNA in the nasal mucosa of healthy participants receiving INCS was significantly decreased. Dexamethasone suppressed basal levels of H1R mRNA, and histamine-induced up-regulation of H1R mRNA and ERK phosphorylation in HeLa cells. These data suggested that corticosteroid inhibited both basal transcription and histamine-induced transcriptional activation of H1R through its suppression of ERK phosphorylation in the signaling pathway involved in H1R gene transcription. It is further suggested that pre-seasonal prophylactic administration of INCS suppresses both basal and pollen-induced upregulation of H1R gene expression in the nasal mucosa of patients with pollinosis, leading to prevention of the exacerbation of nasal symptoms during peak pollen season. J. Med. Invest. 67: 311-314, August, 2020

Keywords: corticosteroids, extracellular signal-regulated kinase, healthy participants, histamine H1 receptor, intranasal administration
Kit (Applied Biosystems). TaqMan primers and probes were designed using Primer Express primer design software (Applied Biosystems). The sequences of the H1R primers were: sense primer, 5′-CAGAGGATCAGATGTTAGGTGATA-GC-3′; antisense primer, 5′-AGCGGAAGCTCTTCACAACTAAG-3′. The sequence of the probe was as follows: FAM-CTCTCTTGAGGACTGATACGGAC-TGATACCACCC-TAMRA. The PUM1 primer and probe kit (Hs 00206469-m1, Applied Biosystems) was used as an internal standard.

HeLa cells were cultured at 37°C under a humidified 5% CO₂ atmosphere in Minimal Essential Medium-α (α-MEM) containing 8% fetal calf serum and 1% antibiotic-antimycotic (Invitrogen). HeLa cells were cultured to 70% confluence in 6-well dishes then serum-starved for 24 h and treated with dexamethasone at doses of 0.1, 1, and 10 µM for 1 h. Cells were then treated with 100 µM histamine for 3 h then cells harvested with 700 µl of RNAlater Plus (Takara Bio Inc. Kyoto Japan) and total RNA and cDNA were prepared by a previously reported method (9). For real-time quantitative polymerase chain reaction (RT-qPCR), GAPDH levels were used to standardize the amount of starting material (Applied Biosystems), and data were expressed as the ratio of H1R mRNA to GAPDH mRNA. Transcripts were subjected to a 40-cycle, 3-step PCR program using the GeneAmp 7300 Sequence Detection System (Applied Biosystems). The size and reaction specificity of the amplicon were confirmed by agarose gel electrophoresis. Identification of PCR products was carried out using a genetic analysis system (SEQ8000; Beckman Coulter, Inc., Fullerton, CA, USA).

Immunoblot analysis

After HeLa cells were treated with 10 µM dexamethasone for 1 h before stimulation with 100 µM histamine, whole cell extracts were prepared at various time points as described previously (9). Ten µg of total protein per sample was separated on a 10% SDS-PAGE gel then transferred to a nitrocellulose membrane (Bio-Rad). The membrane was briefly rinsed in Tris-buffered saline with 0.1% Tween 20 (TBS-T) then incubated for 1 h at room temperature in TBS-T with 3% BSA (Sigma). The membrane was then incubated overnight at 4°C with one of the following primary antibodies: PKCδ (C-20), sc-937, 1:1000; ERK (K-23), sc-94, 1:1000; phospho-ERK (E-4), sc-7383, 1:1000, (Santa Cruz Biotechnology); phospho-PKCδ (Tyr311), #2055S, 1:500 (Cell Signaling). The membrane was then incubated in the appropriate secondary antibody (goat anti-rabbit IgG (H + L)-HRP conjugate (#170-6515, 1:10,000, Bio-Rad) or Immun-Star goat anti-mouse-HRP conjugate (#170-5047, 1:10,000, Bio-Rad) and proteins visualized using Immobilon Western Chemiluminescent HRP substrate (Millipore).

Statistical analysis

Data are presented as means ± SEM. Statistical analyses were performed with unpaired t tests or one-way ANOVA using Dunnett’s test by the GraphPad Prism software (GraphPad-Software Inc., LaJolla, CA). P values of <0.05 were considered statistically significant.

RESULTS

Effect of INCS administration on H1R mRNA levels in the nasal mucosa of healthy participants.

Levels of H1R mRNA in the nasal mucosa of healthy participants receiving INCS once a day for a week were significantly decreased, compared to those before INCS administration (Fig. 1). No localized adverse events, such as nasal burning or epistaxis, were observed.

DISCUSSION

In the present study, we showed that INCS administration for a week decreased levels of H1R mRNA in the nasal mucosa of healthy participants with no history of allergic rhinitis. The finding suggests that INCS down-regulates H1R gene expression in the nasal mucosa in vivo. We also showed that dexamethasone decreased basal levels of H1R mRNA in HeLa cells (Fig. 2A). Histamine significantly increased levels of H1R mRNA in HeLa cells and dexa-methasone at doses from 0.1-10 µM significantly suppressed histamine-induced up-regulation of H1R mRNA (Fig. 2B).

Stimulation with histamine also increased phosphorylation of PKCδ and ERK in HeLa cells (11). Immunoblot analysis showed that dexamethasone did not suppress histamine-induced PKCδ phosphorylation (Fig. 3). On the other hand, dexamethasone suppressed histamine-induced ERK phosphorylation in HeLa cells (Fig. 3).

Figure 1. Effect of intranasal corticosteroid (INCS) administration on histamine H1 receptor (H1R) mRNA levels in the nasal mucosa of healthy participants.

HeLa cells expresses H1R endogenously (10). Treatment with dexamethasone at a dose of 1 µM significantly decreased basal levels of H1R mRNA in HeLa cells (Fig. 2A). Histamine significantly increased levels of H1R mRNA in HeLa cells and dexamethasone at doses from 0.1-10 µM significantly suppressed histamine-induced up-regulation of H1R mRNA (Fig. 2B).

Effects of dexamethasone on basal and histamine-induced H1R mRNA levels, and histamine-induced phosphorylation of PKCδ and ERK in HeLa cells.

HeLa cells expresses H1R endogenously (10). Treatment with dexamethasone at a dose of 1 µM significantly decreased basal levels of H1R mRNA in HeLa cells (Fig. 2A). Histamine significantly increased levels of H1R mRNA in HeLa cells and dexamethasone at doses from 0.1-10 µM significantly suppressed histamine-induced up-regulation of H1R mRNA (Fig. 2B).

Stimulation with histamine also increased phosphorylation of PKCδ and ERK in HeLa cells (11). Immunoblot analysis showed that dexamethasone did not suppress histamine-induced PKCδ phosphorylation (Fig. 3). On the other hand, dexamethasone suppressed histamine-induced ERK phosphorylation in HeLa cells (Fig. 3).
inflammation and eosinophil migration in the nasal mucosa of patients with allergic rhinitis (15).

In the present study, we showed that dexamethasone also suppressed histamine-induced up-regulated H1R gene expression in HeLa cells, as reported previously (10). We also showed that immunoblot analysis showed that dexamethasone suppressed histamine-induced ERK phosphorylation, but not PKCδ phosphorylation in HeLa cells. The PKCδ/ERK/poly (ADP-ribose) polymerase-1 (PARP-1) signaling pathway was involved in histamine-induced up-regulation of H1R gene expression in HeLa cells after PKCδ and ERK activation by phosphorylation (11). Therefore, it is suggested that ERK is a target molecule of dexamethasone to suppress transcriptional activation of H1R.

Because we previously showed that corticosteroids suppressed histamine-induced transcriptional activation of H1R in the nasal mucosa of a rat model of allergic rhinitis (16), it is assumed that INCS would suppress histamine-induced up-regulation of H1R in the nasal mucosa of patients with pollinosis. Although the hypothesis should be proved in the further study, the findings in the present study suggest that prophylactic administration of INCS before pollen dispersion suppresses transcriptional activation of H1R, as well as its basal transcription in the nasal mucosa, resulting in the prevention of worsening of nasal symptom during peak pollen season in patients with pollinosis.

In conclusion, we showed INCS down-regulated H1R gene expression in the nasal mucosa of healthy participants with no history of allergic rhinitis. We also showed that dexamethasone, a corticosteroid inhibited basal transcription and transcriptional activation of H1R in HeLa cells through its suppression of ERK phosphorylation in the PKCδ/ERK/PARP-1 signaling involved in H1R gene transcription. These data suggest that pre-seasonal prophylactic administration of INCS suppresses both basal and pollen-induced up-regulation of H1R gene expression in the nasal mucosa of the patients with pollinosis, leading to prevention of the exacerbation of nasal symptoms during peak pollen season.

CONFLICT OF INTEREST
The authors have no conflict of interest to declare.

ACKNOWLEDGEMENTS
This work was financially supported in part by Grant-in-Aid the Japan society for the Promotion of Science, and from the Osaka Medical Research Foundation for Intractable Diseases. This study was supported by Support Center for Advanced
All authors read and approved the final manuscript.

REFERENCES

1. Okubo K, Kurono Y, Fujieda S, Ogino S, Uchio E, Odajima H, Takenaka H: Japanese Guideline for Allergic Rhinitis 2014. Allergol Int 63: 357-375, 2014
2. Bousquet J, Khalkaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, Zuberbier T, Baena-Cagnani CE, Canonica GW, van Weel C, Agache I, Ait-Khaled N, Buchert C, Blasi FS, Bonini S, Boulet LP, Bousquet PJ, Camargos P, Carlsen KH, Chen Y, Custovic A, Dahl R, Demoly P, Douagui H, Durham SR, van Wijk RG, Kalayci O, Kaliner MA, Kim YY, Kowalski ML, Kusa P, Le LT, Lemiere C, Li J, Lockey RF, Mavale-Manuel S, Meltzer EO, Mohammad Y, Mullol J, Naclerio R, O’Hehir RE, Ohta K, Ouedraogo S, Papadopoulos N, Passalacqua G, Pawanaran R, Popov TA, Rabe KB, Rosado-Pinto J, Scadding GK, Simons FE, Teskala E, Valovirta E, van Cauwenberge P, Wang D, Wickman M, Yawn BP, Yorgancioglu A, Yusuf OM, Zar H, Annesi-Maesano I, Bateman ED, Ben Kheder A, Boakye DA, Bouchard J, Burney P, Busse WW, Chan-Yeung M, Chavannes NH, Chuchalin A, Dolen WK, Emuzyte R, Grouse L, Humbert M, Jackson C, Johnston SL, Keith PK, Kemp JP, Klosek JM, Larenas-Linnemann D, Lipsworth B, Malo JL, Marshall GD, Naspitz C, Nekam K, Niggemann B, Nizankowska-Mogilnicka E, Okamoto Y, Orentas RJ, Potter P, Price D, Stoloff SW, Vandenvlas P, Vieg G, Williams D: Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update. Allergy 63 (Suppl 86): 8-160, 2008
3. Kurokawa M, Kuni P, Gorski P: Montelukast plus cetirizine in the prophylactic treatment of seasonal allergic rhinitis: Influence on clinical symptoms and nasal allergic inflammation. Allergol 59: 280-288, 2004
4. Kitamura Y, Nakagawa H, Fuji T, Sakoda T, Enomoto T, Mizuguchi H, Fukui H, Takeda N: Effects of antihistamine on up-regulation of histamine H1 receptor mRNA in the nasal mucosa of patients with pollinosis induced by controlled cedar pollen challenge in an environmental exposure unit. J Pharmaco Clin Sci 129: 183-187, 2013
5. Ohuchi Y, Yanai K, Sakurai E, Fukui H, Yanagisawa T, Watanabe T: Histamine-induced calcium mobilization in single cultured cells expressing histamine H1 receptors: a relationship between its sensitivity and the density of H1 receptors. Int. J. Mol. Med 1: 355-360, 1998
6. Mizuguchi H, Kitamura Y, Kondo Y, Kuroda W, Yoshida H, Miyamoto Y, Hattori M, Fukui H, Takeda N: Pre-seasonal prophylactic treatment with antihistamines suppresses histamine H1 receptor mRNA expression in the nasal mucosa of patients with pollinosis. Methods Find Exp Clin Pharma col 32: 745-748, 2010
7. Dorendorf H, Meltzer EO: Molecular and clinical pharmacology of intranasal corticosteroids: clinical and therapeutic implications. Allergy 63: 1292-1300, 2008
8. Makihara S, Okano M, Fujiwara T, Kimura M, Higaki T, Haruna T, Noda Y, Kani K, Kariya S, Nishizaki K: Early interventional treatment with intranasal mometasone furoate in Japanese cedar/cypress pollinosis: a randomized placebo-controlled trial. Allergol Int 61: 295-304, 2012
9. Mizuguchi H, Miyagi K, Terao T, Sakamoto N, Yamawaki Y, Adachi T, Ono S, Sasaki Y, Yoshimura Y, Kitamura Y, Takeda N, Fukui H: PMA-induced dissociation of Ku86 from the promoter causes transcriptional up-regulation of histamine H1 receptor. Sci Rep 2: 916, 2012
10. Das AK, Yoshimura S, Mishima R, Fujimoto K, Mizuguchi H, Dev S, Wakyama Y, Kitamura Y, Horio S, Takeda N, Fukui H: Stimulation of histamine H1 receptor up-regulates histamine H1 receptor itself through activation of receptor gene transcription. J Pharmacol Sci 103: 374-382, 2007
11. Mizuguchi H, Terao T, Kitai M, Ikeda M, Yoshimura Y, Das AK, Kitamura Y, Takeda N, Fukui H: Involvement of protein kinase Cdelta/extracellular signal-regulated kinase/poly (ADP-ribose) polymerase-1 signaling pathway in histamine-induced up-regulation of histamine H1 receptor gene expression in HeLa cells. J Biol Chem 286: 30542-30551, 2011
12. Okano M: Mechanisms and clinical implications of glucocorticoids in the treatment of allergic rhinitis. Clin Exp Immunol 158: 164-173, 2009
13. Grant D, Aaronsen D, Chervinsky P, Kaiser H, Melamed J, Pedinoff A, Rosen JP, Schenkel Ed, Vandewalker ML, Keim A, Jensen PK, Nolop K, Mesarina-Wicki B: A placebo-and active-controlled trial of prophylactic treatment of seasonal allergic rhinitis with mometasone furoate aqueous nasal spray. J Allergy Clin Immunol 98: 724-731, 1996
14. Higaki T, Okino M, Makihara S, Fujiwara T, Haruna T, Noda Y, Kariya S, Nishizaki K: Early interventional treatment with intranasal corticosteroids compared with poston-set treatment in pollinosis. Ann Allergy Asthma Immunol 109: 458-464, 2012
15. Canonica GW, Compalati E: Minimal persistent inflammation in allergic rhinitis: implications for current treatment strategies. Clin Exp Allergy 38: 267-282, 2009
16. Kitamura Y, Miyoshi A, Murata Y, Kalubi B, Fukui H, Takeda N: Effect of glucocorticoid on up-regulation of histamine H1 receptor mRNA in nasal mucosa of rats sensitized by exposure to toluene diisocyanate. Acta Otolaryngol 124: 1053-1058, 2004