Thrombus aspiration in patients with high thrombus burden can decrease thrombus burden, lower rates of distal embolization, improve thrombolysis in myocardial infarction-3 flow, reduce the incidence of no reflow, improve microvascular perfusion, and consequently improve clinical outcomes. However, >2 dozen randomized trials have compared the outcomes of routine thrombus aspiration with primary percutaneous coronary intervention (PCI) alone in patients with ST-segment–elevation myocardial infarction (STEMI) and have not shown a consistent reduction in cardiovascular outcomes. As such, routine thrombus aspiration during primary PCI is not recommended by guideline committees (class III, 2021 American College of Cardiology/American Heart Association guidelines or 2017 European Society of Cardiology guidelines), and selective or bailout use is given a class IIb recommendation only by the Japanese Cardiological Society Figure. The 2015 American College of Cardiology/American Heart Association focused update on primary PCI in STEMI states that the usefulness of selective and bailout aspiration thrombectomy in patients undergoing primary PCI is not well established.

Aspiration thrombectomy was used in ~29% of patients overall, resulted in more successful PCI (defined as thrombolysis in myocardial infarction-3 flow at the end of the procedure), but was offset by a significant increase in in-hospital deaths and procedural complications (defined as composite of deaths within 30 days of PCI, peri-procedural myocardial infarction, cardiac tamponade, cardiogenic shock during and after PCI, emergency operations, bleeding, and other complications) in the adjusted analysis. However, there was heterogeneity of observed effect based on the type of acute coronary syndrome.

In patients with STEMI, 53% underwent aspiration thrombectomy, and although there were higher rates of successful PCI and no excess in-hospital mortality (adjusted odds ratio [aOR], 1.02 [95% CI, 0.94–1.12]), there were excess procedural complications (aOR, 1.17 [95% CI, 1.11–1.24]) with aspiration thrombectomy. Although meta-analysis of small randomized trials suggested a benefit of routine aspiration thrombectomy with improved rates of ST-segment resolution at 60 minutes, higher thrombolysis in myocardial infarction blush grade 3 after the procedure, and reduction in major adverse cardiovascular events, subsequent large randomized trials failed to show a mortality benefit. In 2013, the TASTE (Thrombus Aspiration in ST-Elevation Myocardial Infarction in Scandinavia) trial, with 7244 patients, showed that routine thrombus aspiration did not reduce 30-day or 1-year mortality or other cardiovascular events. Subsequently, in 2015, the TOTAL (Trial of Routine Aspiration Thrombectomy With PCI Versus PCI Alone in Patients With STEMI) also failed to show a reduction in cardiovascular events and death in 10732 patients with manual thrombectomy, but showed an increased rate of stroke within 30 days and at 1 year. An
individual patient-level meta-analysis of 3 trials (TAPAS [Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study], TASTE, and TOTAL) (n=19,047 patients) showed no difference in clinical outcomes with routine thrombectomy, but subgroup analysis in those with high thrombus burden showed fewer cardiovascular deaths at the cost of an increased stroke rate.11 Other analyses have shown that the association of thrombus aspiration with stroke to be weak and driven mainly by the TOTAL trial.12 As such, the American College of Cardiology/American Heart Association, European Society of Cardiology, and the Japanese Cardiological Society guideline committees give a class III recommendation for routine thrombus aspiration largely for no benefit rather than harm, and the Japanese Cardiological Society gives a class IIb for its selective use during primary PCI. Despite these class III guideline recommendations (including the country’s own guidelines), the use of thrombus aspiration for STEMI was high (53%) in Japan, suggesting perhaps an oculo-thrombotic reflex. In comparison, in the United States, rates of aspiration thrombectomy fell after the publication of the larger trials and updated guideline recommendations, and in the second quarter of 2016, manual aspiration thrombectomy was used in only 4.7% of all primary PCIs.13

In the J-PCI registry among patients with non–ST-segment–elevation myocardial infarction and unstable angina, 23% and 5% underwent aspiration thrombectomy, respectively. Although there was higher successful PCI, there was also excess in-hospital mortality and increased procedural complications with thrombus aspiration despite covariate adjustment. Although measured and unmeasured confounders are likely drivers of excess mortality and procedural complications, the reason for use of thrombus aspiration in this patient population was not clearly outlined in the study. It is likely that a proportion of these patients could have had thrombotic
circumflex coronary artery occlusion, because they can be electrically silent on electrocardiogram or had thrombotic complications during PCI. The TATORT-NSTEMI (Thrombus Aspiration in Thrombus Containing Culpit Lesions in Non-ST-Elevation Myocardial Infarction) trial randomized 440 patients to adjunctive thrombectomy (n=221) compared with conventional PCI (n=219) in patients with non–ST-segment–elevation myocardial infarction with thrombus-containing lesions. Adjunctive thrombectomy did not reduce the primary end point of the extent of microvascular obstruction, nor were there significant differences in thrombolysis in myocardial infarction flow grade, myocardial blush grade, myocardial salvage index, or infarct size.14 Surprisingly, in the long-term follow-up (median 4.9 years) of this trial, adjunctive thrombectomy was associated with significant reduction in the composite end point of death, myocardial infarction, or new heart failure, driven by significant reduction in reinfarction (P=0.01).15 The trial was not powered for clinical outcomes, and this observation could represent a chance finding. As such, the American College of Cardiology/American Heart Association and European Society of Cardiology guidelines have no recommendations for thrombus aspiration in non–ST-segment–elevation acute coronary syndrome, whereas the Japanese guidelines give a class III recommendation for routine aspiration thrombectomy in non–ST-segment–elevation acute coronary syndrome (Figure).

What is the state of coronary thrombus aspiration in 2022? Routine aspiration thrombectomy is not supported by randomized trial data. Selective use can be considered for high thrombus burden with precautions to prevent stroke. Whether continuous mechanical aspiration thrombectomy devices, such as the Indigo Aspiration System using the CAT RX aspiration catheter, lead to better thrombus removal while minimizing embolization/stroke needs to be proven in future randomized trials.

ARTICLE INFORMATION

Affiliation
New York University Grossman School of Medicine, New York, NY.

Disclosures
Dr Bangalore reports ad hoc consulting and speaking for Abbott Vascular, Biotronik, Boston Scientific, Amgen, Pfizer, Merck, and Inari. Dr Pruthi has no disclosures to report.

REFERENCES
1. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, Bittl JA, Cohen MO, DiMaio JM, Don CW, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e4–e17. doi: 10.1161/CIR.0000000000001039
2. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Douwesvenos JA, Halvorsen S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx093
3. Kimura K, Kimura T, Ishihara M, Nakagawa Y, Nakao K, Miyaiuchi K, Sakamoto T, Tsuruta K, Hayashi N, Miyazaki S, et al. JCS 2018 guideline on diagnosis and treatment of acute coronary syndrome. Circ J. 2019;83:1085–1196. doi: 10.1253/circj.CJ-19-0133
4. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittt JA, Cerence B, Chambers CE, Ellis SC, Guyton RA, Holoungen SM, et al. 2015 ACC/AHA focused update on primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the society for cardiovascular angiography and interventions. Circulation. 2016;133:1135–1147. doi: 10.1161/CIRCULATIONAHA.115.021956
5. Inohara T, Kohsaka S, Yamaji K, Lida O, Shinke T, Sakakura K, Ishi H, Amano T, Ikari Y. Use of thrombus aspiration for acute coronary syndrome patients: insights from the nationwide percutaneous coronary intervention registry in Japan. J Am Heart Assoc. 2022;11:e025728. doi: 10.1161/JAHA.122.025728
6. Kumbhani DJ, Bavry AA, Desai DY, Bangalore S. Bhatt DL. Role of aspiration and mechanical thrombectomy in patients with acute myocardial infarction undergoing primary angioplasty: an updated meta-analysis of randomized trials. J Am Coll Cardiol. 2013;62:1409–1418. doi: 10.1016/j.jacc.2013.04.025
7. Frobert O, Lagerqvist B, Olivcrona GK, Gudnason T, Maeng M, Aasa M, Angeras O, Calais F, Danielewicz M, et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N Engl J Med. 2013;369:1587–1597. doi: 10.1056/NEJMoa1308789
8. Lagerqvist B, Frobert O, Olivcrona GK, Gudnason T, Maeng M, Alstrom P, Andersson J, Calais F, Carlsson J, Colliste O, et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N Engl J Med. 2015;371:1111–1120. doi: 10.1056/NEJMoa1408707
9. Jolly SS, Cairns JA, Yusuf S, Rokos J, Gao P, Meeks B, Kedev S, Stankovic G, Moreno R, Gershlick A, et al. Outcomes after thrombus aspiration for ST-elevation myocardial infarction: 1-year follow-up of the prospective randomised total lysis. Lancet. 2016;387:127–135. doi: 10.1016/S0140-6736(15)00448-1
10. Jolly SS, Cairns JA, Yusuf S, Meeks B, Pogue J, Rokosk MJ, Kedev S, Thabane L, Stankovic G, Moreno R, et al. Randomized trial of primary PCI with or without routine mechanical thrombectomy. N Engl J Med. 2017;375:1398–1398. doi: 10.1056/NEJMoa1415098
11. Jolly SS, James S, Dzavik V, Cairns JA, Mahmoud KD, Zilstra F, Yusuf S, Olivcrona GK, Renlund H, Gao P, et al. Thrombus aspiration in ST-segment-elevation myocardial infarction: an individual patient meta-analysis: thrombectomy trials collaboration. Circulation. 2017;135:143–152. doi: 10.1161/CIRCULATIONAHA.116.025371
12. Taglinti N, Bacchi Reggiani ML, Ghetti G, Saia F, Compagnone M, Lanati G, Di Dio MT, Bruno A, Bruno M, Dellai R, D et al. Efficacy and safety of thrombus aspiration in ST-segment elevation myocardial infarction: an updated systematic review and meta-analysis of randomised clinical trials. Eur Heart J Acute Cardiovasc Care. 2019;8:24–38. doi: 10.1177/2048872618795512
13. Secemsky EA, Ferro EG, Rao SV, Kirtane A, Tamez H, Zakroysky P, Wojdyla D, Bradley SM, Cohen DJ, Yeh RW. Association of physician variation in use of manual aspiration thrombectomy with outcomes following primary percutaneous coronary intervention for ST-elevation myocardial infarction: the national cardiovascular data registry CathPCI registry. JAMA Cardiol. 2019;4:110–118. doi: 10.1001/jamacardio.2018.4472
14. Thiele H, de Waha S, Zeymer U, Deusch S, Scheller B, Lauer B, Geisler T, Gawaz M, Gunekl O, Bruch L, et al. Effect of aspiration thrombectomy on myocardial viability and reperfusion in patients: the TATORT-STEMI trial. J Am Coll Cardiol. 2014;64:1117–1124. doi: 10.1016/j.jacc.2014.05.064
15. Feistritzer HJ, Meyer-Saraei R, Lober C, Bohm M, Scheller B, Lauer B, Geisler T, Gawaz M, Bruch L, Klein N, et al. Long-term outcome after thrombus aspiration in non-ST-elevation myocardial infarction: results from the tatort-nstemi trial: thrombus aspiration in acute myocardial infarction. Clin Res Cardiol. 2020;109:1223–1231. doi: 10.1007/s00392-020-01613-0