Gender related predictors of limited exercise capacity in heart failure

Gani Bajraktari, Ilir Kurtishi, Nehat Rexhepaj, Rina Tafarshiku, Pranvera Ibrahim, Fisnik Jashari, Rrezarta Alihajdar, Arlind Batalli, Shpend Elezi, Michael Y. Henein

Aim: The aim of this study was to investigate the impact of gender on the prediction of limited exercise capacity in heart failure (HF) patients assessed by 6 minute walk test (6-MWT). Methods: In 147 HF patients (mean age 61 ± 11 years, 50.3% male), a 6-MWT and a Doppler echocardiographic study were performed in the same day. Conventional cardiac measurements were obtained and global LV dysynchrony was indirectly assessed using total isovolumic time — t-IVT [in s/min; calculated as: 60 — (total ejection time — total filling time)] and Tei index (t-IVT/ejection time). Patients were divided into two groups according to gender, which were again divided into two subgroups based on the 6-MWT distance (Group I: ≤ 300 m, and Group II: > 300 m). Results: Female patients were younger (p = 0.02), and had higher left ventricular (LV) ejection fraction — EF (p = 0.007) but with similar 6-MWT distance to male patients (p = 0.68). Group I male patients had lower hemoglobin level (p = 0.02) and lower EF (p = 0.03), compared with Group II, but none of the clinical or echocardiographic variables differed between groups in female patients. In multivariate analysis, only t-IVT [0.699 (0.552–0.886), p = 0.003], and LV EF [0.908 (0.835–0.987), p = 0.02] in males, and NYHA functional class [4.439 (2.213–16.24), p = 0.02] in females independently predicted poor 6-MWT distance (< 300 m). Conclusion: Despite similar limited exercise capacity, gender determines the pattern of underlying cardiac disturbances; ventricular dysfunction in males and subjective NYHA class in female heart failure patients.

© 2013 The Authors. Published by Elsevier Ireland Ltd. Open access under CC BY-NC-ND license.

1. Introduction

Heart failure (HF) has become a major public health problem [1], and its incidence, morbidity and mortality are increasing worldwide [2]. Despite recent advances in medical treatment, patients with persistent symptoms still manifest poor prognosis [3–6]. Many clinical and echocardiographic parameters have been shown as independent predictors of these patients [7–11], particularly the six-minute walk test (6-MWT) which is commonly used to objectively assess patient’s exercise capacity [12–14]. We have previously shown that echocardiographic markers of raised left atrial pressure [15], right ventricular dysfunction [16] and ventricular dyssynchrony [17] correlate with exercise capacity in HF patients and predict 6-MWT distance results. However, the impact of gender on limited exercise capacity and its relationship to clinical and echocardiographic predictors of exercise in these patients have not been evaluated. The aim of this study therefore, was to investigate the impact of gender in predicting limited exercise capacity, assessed by 6-MWT, in HF patients.

2. Methods

2.1. Study population

We studied 147 patients (mean age 61 ± 11 years, 50.3% male, Table 1) with clinical diagnosis of congestive HF secondary to ischemic heart disease or non-ischemic etiology, who were in New York Heart Association (NYHA) functional classes I–III. Patients were referred to the Service of Cardiology, Internal Medicine Clinic, University Clinical Centre of Kosovo, between December 2005 and April 2011. At the time of the study all patients were on full cardiac medications, optimized at least 2 weeks prior to enrollment, based on symptoms and renal function: 81% were receiving ACE inhibitors or ARB, 70% beta-blockers, 11% digoxin, 46% spironolactone, and 64% diuretics. Patients with reduced LV EF had ischemic etiology in 42%, hypertension in 23%, and unknown etiology in 33%. Patients with preserved LV EF had ischemic etiology in 44% and hypertension in 58%. All patients were in sinus rhythm and had symptoms of HF. Patients with clinical evidence of cardiac decompenstation, limited physical activity due to factors other than cardiac symptoms (e.g. arthritis), obesity, more than mild valve regurgitation, more than mild renal failure, chronic obstructive pulmonary disease or those with recent acute coronary syndrome, stroke or anemia were excluded. Patients gave a written informed consent to participate in the study, which was approved by the local Ethics Committee.
2.2. Data collection

Detailed history and clinical assessment were obtained in all patients, in whom routine biochemical tests were also performed including hemoglobin, lipid profile, blood glucose level, and kidney function. Estimated body mass index (BMI) was calculated from weight and height measurements. Waist and hip measurements were also made and waist/hip ratio was calculated.

2.3. Echocardiographic examination

A single operator performed all echocardiographic examinations using a Philips Intelligent E-33 system with a multi-frequency transducer, and harmonic imaging as appropriate. Images were obtained with the patient in the left lateral decubitus position and during quiet expiration according to the recommendations of the American Society of Echocardiography and European Association of Echocardiography [18,19]. End-systolic and end-diastolic LV dimensions were measured from basal LV M-mode recordings, taken from the left parasternal long axis view with the M-mode cursor positioned by the tips of the mitral valve leaflets. LV volumes and EF were calculated from the apical 2 and 4 chamber views using the modified Simpson’s method. Ventricular long axis motion was studied by placing the M-mode cursor at the lateral segment and the septal angle of the mitral ring and the lateral angle of the tricuspid ring. Total amplitude of long axis motion was measured as previously described [20] from peak inward to peak outward points. LV and right ventricular (RV) long axis myocardial velocities were also studied using Doppler myocardial imaging technique. From the apical 4-chamber view, longitudinal velocities were recorded with the sample volume placed at the basal part of LV lateral and septal segments as well as RV free wall. Systolic (S’), as well as early and late (E' and A') diastolic myocardial velocities were measured with the gain optimally adjusted. Mean value of the lateral and septal LV pre-ejection times were measured as the time interval between the onset of the q wave and the onset of the aortic and pulmonary forward flow velocities, respectively and the time delay between the two was calculated [24].

2.4. Measurements of LV dysynchrony

Indirect assessment of LV dysynchrony was obtained by measuring total isovolumic time (t-IVT), Tei index and LV–RV pre-ejection time delay. Total LV filling time was measured from the onset of the E wave to the end of the A wave and ejection time from the onset to the end of the aortic pulsed Doppler flow velocity. Total isovolumic time (t-IVT) was calculated as 60 – (total ejection time + total filling time) and was expressed in s/min [22]. Tei index was calculated as the ratio between t-IVT and ejection time [22,23]. LV and RV pre-ejection times were measured as the time interval between the onset of the q wave and the onset of the aortic and pulmonary forward flow velocities, respectively and the time delay between the two was calculated [24].

Mitral regurgitation severity was assessed by color and continuous wave Doppler and was graded as mild, moderate, or severe according to the relative jet area to that of the left atrium as well as the flow velocity profile, in line with the recommendations of the American Society of Echocardiography [25]. Likewise, tricuspid regurgitation severity was assessed by color Doppler and continuous-wave Doppler. Retrograde tricuspid pressure drop >35 mm Hg was taken as an evidence for pulmonary hypertension [18], after excluding patients with more mild tricuspid regurgitation. All M-mode and Doppler recordings were made at a fast speed of 100 mm/s with a superimposed ECG (lead II).

2.5. Six minute walk test

Within 24 h of the echocardiographic examination a 6-MWT was performed on a level hallway surface and was administered by a specialized nurse blinded to the results of the echocardiogram. According to the method of Guyatt et al. [26] patients were informed of the purpose and protocol of the 6-MWT which was conducted in a standardized fashion without interrupting patient’s regular medications [27]. A 15 meter flat, obstacle-free corridor was used and patients were instructed to walk as far as they can, turning 180° after they had reached the end of the corridor, during the allocated time of 6 min. Patients walked unaccompanied so as not to influence walking speed. At the end of 6 min the supervising nurse measured the total distance walked by the patient.

3. Statistical analysis

Data are presented as mean ± SD or proportions (% of patients). Continuous data was compared with two-tailed unpaired Student’s t test and discrete data with Chi-square test. Correlations were tested with Pearson coefficients. Predictors of 6-MWT distance were identified with univariate analysis and multivariate logistic regression was performed using the step-wise method, a significant difference was defined as p < 0.05 (2-tailed). Patients were divided according to their ability to walk >300 m into good (Group I) and limited (Group II) exercise performance groups [28], and were compared using unpaired Student t-test.

4. Results

4.1. Female vs. male patients (Tables 2 & 3)

Clinical findings: Female patients were younger (p = 0.02), had higher BMI (p = 0.04), but lower waist/hip ratio (p = 0.001), lower creatinine level (p = 0.02), and lower prevalence of smoking (p < 0.001) (Table 2). There were no gender related differences in the prevalence of diabetes, systemic hypertension or LBBB. Females had smaller aortic root diameter (p < 0.001), smaller left atrium (p = 0.007), LV EDD and LV ESD dimensions (p < 0.001 for both), and higher LV EF (p = 0.006) (Table 3). All other clinical and echocardiographic parameters were not significantly different between genders, neither was 6-MWT distance.

4.2. Female vs. male patients with limited exercise capacity (Tables 4 & 5)

Clinical findings: Female patients walked longer distance as compared with males in this subgroup with limited exercise capacity (p = 0.02). They were also younger (p = 0.08), had lower waist/hip ratio (p < 0.001), lower creatinine level (p = 0.02), and lower prevalence of smoking (p < 0.001) (Table 4). The prevalence of diabetes, systemic hypertension and LBBB did not differ between the two genders. Females had smaller aortic root diameter (p < 0.001), smaller LV EDD and LV ESD dimensions (p = 0.02 for both), longer E wave deceleration time (p = 0.006) and higher septal long axis amplitude (p = 0.03) (Table 5). All other clinical and echocardiographic parameters were not significantly different between the two subgroups.

4.3. Predictors of limited 6-MWT distance in female patients (Table 6)

None of the biochemical or clinical findings predicted the limited 6-MWT distance in the univariate analysis. However, in the multivariate analysis, functional NYHA class was the only independent predictor (p = 0.02) of limited 6-MWT distance in female patients.

4.4. Predictors of limited 6-MWT distance in male patients (Table 7)

In male patients, the univariate analysis showed LV EF (p = 0.007), isovolumic relaxation time (p = 0.008) and t-IVT (0.04) as predictors.
of the limited 6-MWT distance. Total isovolumic time (p = 0.003) and LV EF (p = 0.02) remained independent predictors of limited 6-MWT distance, in multivariate analysis, in male patients.

Table 3

Variable	Female (n = 73)	Male (n = 74)	p value
Systolic LV function			
Ejection fraction (%)	42 ± 15	35 ± 13	0.006
Interventricular septum (cm)	1.12 ± 0.2	1.07 ± 0.2	0.238
Left atrium (cm)	4.5 ± 0.7	4.8 ± 0.7	0.007
LV EDD (cm)	5.9 ± 1.1	6.6 ± 1.1	<0.001
LVESD (mmHg)	12.5 ± 1.3	13.5 ± 1.1	0.29
Septal long axis amplitude (cm)	0.85 ± 0.3	0.87 ± 0.3	0.74
Septal S' wave (cm/s)	6.2 ± 3.3	6.3 ± 1.9	0.31
Lateral long axis amplitude (cm)	1.1 ± 0.3	1.1 ± 0.3	0.99
Lateral S' wave (cm/s)	6.2 ± 3.3	6.3 ± 2.6	0.65
LV posterior wall (cm)	10.5 ± 0.4	10.1 ± 0.1	0.19
Aortic root (cm)	3.28 ± 0.3	3.6 ± 0.3	<0.001
Diastolic LV function			
A wave velocity (cm/s)	62 ± 25	60 ± 25	0.68
Lateral A' wave (cm/s)	7.8 ± 3.4	7.2 ± 3	0.33
E wave deceleration time (ms)	151 ± 65	157 ± 55	0.53
Lateral E' wave (cm/s)	6.2 ± 2.3	6.8 ± 3.1	0.19
E/A ratio	1.4 ± 1	1.3 ± 0.9	0.85
Septal A' wave (cm/s)	8 ± 3	8.9 ± 5.5	0.36
Septal E' wave (cm/s)	5.4 ± 1.7	6.3 ± 1.8	0.09
E wave velocity (cm/s)	67.5 ± 26	68 ± 26	0.94
LA area	21 ± 10	30 ± 9.7	0.16
Global LV function			
t-IVT	13.3 ± 7.7	12.9 ± 5	0.68
Tei index	0.065 ± 0.4	0.068 ± 0.3	0.71
IVRT	106 ± 32	111 ± 32	0.68
E/E' ratio	13 ± 8	12 ± 6	0.28
RV function			
A wave velocity (cm/s)	51 ± 17	54 ± 20	0.42
E wave deceleration time (ms)	46 ± 12	52 ± 21	0.05
Right long axis amplitude (cm)	2.1 ± 0.5	1.96 ± 0.6	0.29
PSAP (mmHg)	41 ± 20	46 ± 21	0.31
Right E' wave (cm/s)	8 ± 3	10 ± 4	0.04
Right A' wave (cm/s)	13 ± 4	15 ± 6	0.31
Right S' wave (cm/s)	11 ± 3	11.3 ± 3.3	0.68
EDD (cm)	3.2 ± 0.8	3.3 ± 0.9	0.53

LV: left ventricle; RV: right ventricle; A: atrial diastolic velocity; E: early diastolic filling velocity; EDD: end-diastolic dimension; ESD: end-systolic dimension; t-IVT: total isovolumic time; IVRT: isovolumic relaxation time; S': systolic myocardial velocity; E': early diastolic myocardial velocity; A': late diastolic myocardial velocity.

5. Discussion

5.1. Findings

In this study we found that 6-MWT distance was not different between genders, irrespective of its length, despite the fact that female patients with stable chronic HF were younger. NYHA class and all cardiac functional echocardiographic parameters including those of filling pressures, global dyssynchrony and right ventricular function were not different between males and females. Of note, females had smaller LV and LA dimensions, and higher LV EF, compared with males. Predictors of 6-MWT distance, however, were quite different between the two groups. While markers of global LV dyssynchrony, measured by t-IVT, and LV EF predicted exercise capacity in males, NYHA functional class was the only predictor of poor 6-MWT in females.

5.2. Data interpretation

In our study, male and female HF patients had equal exercise capacity, compared to healthy subjects in whom males have better exercise ability than females [29,30]. Our data show that in this group of HF patients with limiting exertional symptoms gender differentiates between patients with respect to the underlying mechanisms for limited exercise capacity, irrespective of the 6 MW distance. Apart from the slightly raised EF in females, the rest of the cardiac functional parameters were not different between genders. Even global measures of LV dyssynchrony as well as right ventricular structure and function were all not different between males and females. Strikingly though, predictors of poor 6-MWT were quite different, while markers of LV systolic function (EF) and global dyssynchrony (total isovolumic time) predicted exercise capacity in males, it was only NYHA class in females that independently predicted poor exercise capacity.

Etiological factors unfortunately, did not help in explaining such difference between genders, since the prevalence of ischemic heart disease was similar as well as other co-morbidities, even NYHA class was not different between groups. Such different mechanistic explanation of exercise intolerance matches what we previously found in normal exercise, with peak oxygen consumption being determined by stroke volume in males and by raised left atrial pressure in females [29]. Despite being in HF, our patients followed a similar pattern with males’ exercise capacity determined by ventricular...
early diastolic myocardial velocity; A which is known to exaggerate with age. Thus, our promises the stroke volume entering and ejected by the ventricle stroke volume and cardiac output. Likewise dyssynchrony classing. We did not have invasive measurements of left atrial pressures but relied on Doppler measurements, which are known to be highly reproducible and to closely correlate with invasive pressure measurements.

Table 6	Predictors of limited 6 minute walk test in female patients.	
Variable	Odds ratio (95% CI) p value (–)	
Clinical univariate predictors		
Homoglobin	1.005 (0.979–1.031) 0.72	
Heart rate	1.031 (0.993–1.070) 0.11	
NYHA class	2.228 (0.974–5.100) 0.06	
Creatinine	1.008 (0.959–1.022) 0.23	
Urea	1.055 (0.945–1.179) 0.34	
Body-mass index	1.029 (0.941–1.124) 0.53	
Diabetes mellitus	1.224 (0.418–3.590) 0.71	
Age	0.995 (0.958–1.034) 0.81	
Echocardiographic univariate predictors		
t-IVT	0.959 (0.882–1.042) 0.32	
Tei index	0.755 (0.230–2.478) 0.64	
IVRT	0.987 (0.963–1.011) 0.29	
LV EF	0.983 (0.931–1.016) 0.31	
E/A ratio	1.435 (0.886–2.325) 0.14	
LV EDD	1.063 (0.683–1.066) 0.79	
Right long axis amplitude	1.832 (0.883–3.791) 0.11	
LV ESD	1.136 (0.770–1.767) 0.52	
Left atrium	1.816 (0.853–3.857) 0.12	
E wave deceleration time	0.999 (0.991–1.007) 0.76	
E/E ratio	1.021 (0.959–1.087) 0.51	
Lateral long axis amplitude	0.461 (0.080–2.664) 0.39	
Septal long axis amplitude	0.436 (0.083–3.001) 0.39	

Variable	Odds ratio (95% CI) p value (–)	
Multivariate predictors		
t-IVT	0.961 (0.644–1.095) 0.55	
LV ejection fraction	1.002 (0.947–1.061) 0.94	
E/A ratio	1.386 (0.688–2.804) 0.36	
Lateral A’ wave velocity	1.017 (0.980–1.054) 0.37	
LV EF	1.055 (0.915–1.217) 0.46	
Age	1.007 (0.946–1.071) 0.83	
Body-mass index	1.073 (0.931–1.233) 0.32	
Diabetes	1.425 (0.275–7.374) 0.67	
NYHA class	4.439 (2.213–16.242) 0.02	
LV: left ventricle; A: atrial diastolic velocity; E: early diastolic filling velocity; EDD: end-diastolic dimension; ESD: end-systolic dimension; t-IVT: total isovolumic time; IVRT: isovolumic relaxation time; S: systolic myocardial velocity; E’: early diastolic myocardial velocity; A’: late diastolic myocardial velocity.		

5.4. Clinical implications

In addition to LV EF as the first marker of ventricular dysfunction in heart failure patients, markers of global cavity dyssynchrony (t-IVT) should be routinely used in assessing patients with exercise intolerance, particularly males. Until more objective measures of exercise intolerance are available in females, NYHA classing remains the only predictor.

5.5. Conclusions

Despite similar exercise capacity, gender determines the pattern of underlying cardiac disturbances; ventricular dyssynchrony and LV systolic dysfunction in males and subjective NYHA class in female heart failure patients as independent predictors of limited exercise capacity.

Disclosure

None.

References

[1] Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics — 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009;119:480–6.

[2] Weir RA, McMurray JJ. Epidemiology of heart failure and left ventricular dysfunction after acute myocardial infarction. Curr Heart Fail Rep 2006;3:175–80.
Table 7: Predictors of limited 6-minute walk test in male patients.

Variable	Odds ratio (95% CI)	p value (<)
Clinical univariate predictors		
Hemoglobin	1.021 (0.997–1.050)	0.09
Heart rate	1.021 (0.979–1.066)	0.33
NYHA class	1.246 (0.603–2.578)	0.55
Creatinine	0.998 (0.985–1.010)	0.71
Urea	0.999 (0.996–1.017)	0.88
Body-mass index	0.978 (0.862–1.109)	0.73
Diabetes mellitus	0.772 (0.282–2.116)	0.61
Age	0.988 (0.938–1.040)	0.64
Echocardiographic univariate predictors		
t-IVT	0.887 (0.790–0.956)	0.04
Tei index	0.126 (0.012–1.299)	0.08
IVRT	0.961 (0.934–0.990)	0.008
LV EF	0.938 (0.895–0.983)	0.007
E/A ratio	1.435 (0.884–2.325)	0.14
LV EDD	0.971 (0.882–1.070)	0.55
Right long axis amplitude	1.034 (0.457–2.341)	0.94
LV ESD	1.447 (0.917–2.283)	0.11
Left ventricle	1.138 (0.588–2.203)	0.70
E wave deceleration time	0.995 (0.986–1.004)	0.26
E/E' ratio	0.989 (0.907–1.079)	0.81
Laterolong axis amplitude	0.901 (0.219–3.709)	0.88
Septal long axis amplitude	0.418 (0.0634–2.717)	0.36
Multivariate predictors		
t-IVT	0.699 (0.552–0.886)	0.003
LV-ejection fraction	0.908 (0.835–0.987)	0.023
E/A ratio	1.151 (0.459–2.884)	0.76
Hemoglobin	1.028 (0.990–1.068)	0.15
Urea	0.994 (0.806–1.228)	0.96
Age	0.961 (0.867–1.066)	0.45
Body-mass index	0.926 (0.729–1.177)	0.53
Diabetes	0.988 (0.813–1.447)	0.89
Age	0.961 (0.867–1.066)	0.45
NYHA class	0.490 (0.108–2.230)	0.34

LV: left ventricle; A: atrial diastolic velocity; E: early diastolic filling velocity; EDD: end-diastolic dimension; ESD: end-systolic dimension; t-IVT: total isovolumic time; IVRT: isovolumic relaxation time; S: systolic myocardial velocity; E': early diastolic myocardial velocity; A': late diastolic myocardial velocity.

3. Davies M, Hobbs F, Davis R, Kenjek J, Roalle AK, Hare R, et al. Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study. Lancet 2001;358:439–45.

4. Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D. Survival after onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993;88:107–15.

5. Packe r, Coats AJ, Fowler MB, Katus HA, Krum H, Moch aci P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;344:1651–8.

6. Grundtvig M, Cullstadt I, Hole T, Flanes B, Westerheim A. Characteristics, implementation of evidence-based management and outcome in patients with chronic heart failure: results from the Norwegian heart failure registry. Eur J Cardiovasc Nurs 2011;10:44-9.

7. Bajraktari G, Dini FL, Cortigiani L, Baldini U, Boni A, Olloni R, et al. Prognostic value of left ventricular markers of global diastolic dysfunction in heart failure in Framingham Heart Study subjects. Circulation 1993;88:107–15.

8. Bajraktari G, Lindqvist P, Henein M. Left ventricular dyssynchrony is exaggerated by left ventricular filling pressure in patients with coronary artery and peripheral vascular disease. Heart 1996;75:151–8.

9. Zoghbi WA, Enriquez-Sarano M, Foster E, Greyburn P, Kraft CD, Levine RA, et al. American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003;16:777–802.

10. Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW, et al. The 6-minute walk test: a new measure of exercise capacity in patients with chronic heart failure. Can Med Assoc J 1985;132:919–23.

11. Guyatt GH, Thompson PJ, Berman LB, Sullivan MJ, Townsend J, Nelson J, et al. How should we measure function in patients with chronic heart and lung disease? J Chronic Dis 1988;38:217–24.

12. Inoue K, Osada N, Inoue K, Samejima H, Seki A, Omiya K, et al. Relationship between improvement in left ventricular dyssynchrony and raised left ventricular filling pressures predict limited exercise performance due to deconditioning. Eur Heart J 2005;26:357–66.

13. Henein MY, Das SK, Osullivan C, Kakkar VV, Gillie CE, Gibson DC. Effect of acute alterations in afterload on left ventricular function in patients with combined coronary artery and peripheral vascular disease. Heart 1996;75:151–8.

14. Itoh K, Nishida H, Kato M, Hasegawa M, Yamada K, Nakano N, et al. Postoperative chest pain in patients undergoing cardiac surgery: a study in normals and dilated cardiomyopathy. J Cardiovasc Med 2005;10:77–82.

15. Lapu-Bula R, Robert A, De Kock M, D’Hondt AM, Detry JM, Melin JA, et al. Relation of left atrial filling pressure to body weight and self-perceived symptom severity in older patients with chronic heart failure. Eur J Heart Fail 2007;9:375–84.
[38] Tartière-Kesri L, Tartière JM, Logeart D, Beauvais F, Cohen Solal A. Increased proximal arterial stiffness and cardiac response with moderate exercise in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 2012;59:455–61.

[39] Allemann Y, Sartori C, Lepori M, Pierre S, Mélot C, Naeije R, et al. Echocardiographic and invasive measurements of pulmonary artery pressure correlate closely at high altitude. Am J Physiol Heart Circ Physiol 2000;279:H2013–6.