CircRNA-associated ceRNA network reveals ErbB and Hippo signaling pathways in hypopharyngeal cancer

CHUN FENG¹, YUXIAO LI¹, YAN LIN¹, XIANBAO CAO², DONGDONG LI³, HONGLEI ZHANG⁴ and XIAOGUANG HE¹

¹The Second Department of Otolaryngology, Head and Neck Surgery of The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650223; ²Department of Otolaryngology Head and Neck Surgery, Chinese PLA Kunming General Hospital, Kunming, Yunnan 650118; ³Anhui Medical University, Hefei, Anhui 230022; ⁴State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China

Received April 11, 2018; Accepted October 12, 2018

DOI: 10.3892/ijmm.2018.3942

Abstract. Accumulating evidence has suggested that circular RNAs (circRNAs), a novel class of non-coding RNAs, have crucial roles in tumor progression. However, the significance of circRNAs in hypopharyngeal cancer (Hca) remains to be investigated. The present study has identified aberrantly expressed circRNAs by performing circRNA sequencing analyses of three pairs of tumor and adjacent normal samples from patients with Hca. The results demonstrated that 173 circRNAs were differentially expressed (dE), including 71 upregulated and 102 downregulated circRNAs (FdR<0.05 and fold changes of ≥2 or ≤0.5 by Mann-Whitney U test followed by Benjamini-Hochberg correction for multiple testing). Pathway analyses of the genes producing dE circRNAs revealed that many of them were involved in cancer-related pathways. To further illustrate the roles of circRNAs in Hca progression, a competing endogenous RNA (ceRNAs) network was constructed, consisting of circRNAs, miRNA, and miRNA targeted genes. The results demonstrated that multiple cancer-related pathways were affected by performing enrichment analyses of the targeted genes. Of note, a ceRNA subnetwork was isolated, consisting of two circRNAs (hsa_circ_0008287 and hsa_circ_0005027) and one miRNA (hsa-miR-548c-3p), which significantly affect both ErbB and Hippo signaling pathways. In conclusion, the present study identified a set of circRNAs that are potentially implicated in the tumorigenesis of Hca and may serve as potential biomarkers for the diagnosis of Hca.

Introduction

Hypopharyngeal carcinoma is a primary malignant tumor of the hypopharynx, accounting for 3-5% of the malignancies in the upper aerodigestive tract. Early diagnosis of hypopharyngeal cancer is hard because the early stages of hypopharyngeal carcinoma have no specific symptoms. Studies have reported that 60-80% of these patients had ipsilateral lymph node metastases and ≤40% of these patients have contralateral occult lymph node tumor deposits (1-3). Thus, the majority of patients with hypopharyngeal cancer have a poor prognosis and low survival rate (4). Therefore, identifying early stage indicators or biomarkers to improve patient survival is urgent.

Unlike normal linear RNA, the 3' and 5' ends of circular RNAs (circRNAs) are linked by covalent bonds and lack polarities or polyadenylated tails, thereby rendering them stable in tissues, serum and urine (5). Owing to this characteristic, the potential of circRNAs as biomarkers for human cancer has attracted significant focus. In addition, circRNAs are widely involved in cancer; ciRS-7 in HeLa cells (6), Hsa_circ_001569 in colorectal cancer (7), circHIPK3 in several types of cancer (8), f-circM9, f-circPR in hematological malignancy (9), and circTcF25 in urinary bladder carcinoma (10). Previous studies have demonstrated that the main function of circRNAs is that they can function as a microRNA (miRNA) sponge, binding to miRNAs and regulating them and their...
downstream gene targets, through a competing endogenous (ce) RNA mechanism (11).

The present study comprehensively investigated the expression profile of circRNAs in HCa patients. The results identified a circRNA signature in HCa and suggested that a core miRNA-ceRNA network, regulating both the ErbB and Hippo signaling pathways, may have important roles in HCa progression.

Materials and methods

Patients and specimens. The study included three patients with HCa who underwent partial or radical cystectomies at the First Affiliated Hospital of Kunming Medical University (Kunming, China); samples were collected from March 2017 to October 2017. All three patients were male and their ages were 44, 54 and 56. Following surgery, the matched specimens were immediately preserved in liquid nitrogen until use. All patient samples were confirmed by pathological examination and none of the patients received neoadjuvant therapy. The study was approved by the Second Department of Otolaryngology Head and Neck Surgery of the First Affiliated Hospital of Kunming Medical University (Kunming, China). Written informed consent was obtained from all the participants in the study.

Total RNA isolation and quality control. Total RNA was isolated from samples using TRIzol reagent (Thermo Fisher Scientific, Inc., Waltham, MA, USA) following the manufacturer's protocol. The quantity and quality of total RNA samples were measured using NanoDrop ND-1000 (Thermo Fisher Scientific, Inc.). RNA integrity was assessed and confirmed via electrophoresis using denaturing agarose gels. Isolated RNA samples were stored at -80°C prior to use.

Library preparation and sequencing. Total RNA from three matched HCa samples and adjacent normal tissues were treated with Epicenter Ribo-Zero rRNA Removal kit (Illumina, Inc., San Diego, CA, USA) and RNase R (Epicenter; Illumina, Inc.) to remove ribosomal and linear RNA. Then, the RNA-seq libraries were constructed using TruSeq Stranded Total RNA HT/LT Sample Prep kit (Illumina, Inc.). Sequencing was determined on Illumina Hiseq 2500 instrument with 2x150 bp paired reads.

Computational analysis of circRNAs. The clean reads were obtained after the raw reads were preprocessed with the FastQC quality control tool (12). CircRNAs were identified using CIRI (v.1.2) pipeline with default parameters (13). Genomic circRNAs were mapped to the human reference genome (GRCh37) by BWA (14). All circRNAs were annotated for circRNA-hosting genes with the application of GENCODE v24 (15). The identified circRNAs were converted to circRNA ID with web server circBase (16).

Principal component analysis (PCA). PCA was performed as previously described (17). A total of 4,634 distinct circRNAs with non-zero raw counts across the six samples were isolated and expressions of circRNAs were normalized with the reads per Million mapped reads (RPM) method and the expression matrix (each row represented a gene, each column represented a sample) were used for PCA. The prcomp package from R was used to perform PCA and the default parameters were used (18). The ggplot2 package from R was used to draw the scatter plot (19).

Normalization and differential expression analysis of circRNAs. Two steps were performed to normalize circRNA expression for depth. Firstly, the total back-spliced reads in a sample were counted and that number was divided by 1,000,000. This resulted in the 'per million' scaling factor. Secondly, the read counts were divided by the 'per million' scaling factor. This method normalized for sequencing depth, giving RPM. CircRNAs were isolated with RPM>0 across 6 samples and Mann-Whitney U test (20) (paired=T) followed by Benjamini-Hochberg multiple testing correction (21) were applied to identify the differentially expressed (DE) circRNAs. FDR<0.05 and a fold change of >2.0 or <0.5 were the selection criteria for significant DE circRNAs.

Functional enrichment analysis. Gene ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted with web server DAVID 6.8 (22). P<0.05 was considered as statistically significant.

CeRNA network. The top 20 upregulated circRNAs and the top 20 downregulated circRNAs were used to survey miRNA targets with the web tool CircInteractome (23). Specifically, CircInteractome downloads the mature sequences of circRNAs from the UCSC browser mirror (http://genome.ucsc.edu) (24) and predicts miRNAs that target circRNA by surveying for 7-mer or 8-mer complementarity to the mature sequence of the circRNA. mirPath 3.0 (26) was also used for miRNA KEGG pathway analysis. The ceRNA network was displayed by Cytoscape (v3.5.1) (27).

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNA was extracted from pooled normal and tumor tissue samples using TRIzol (Thermo Fisher Scientific, Inc.), and 1 µg of total RNA was reverse transcribed into first-strand cDNA using a PrimeScript RT Reagent kit (Takara Bio, Inc., Otsu, Japan), according to the manufacturer's protocol. qPCR was performed with a SYBR-Green real-time PCR kit (Thermo Fisher Scientific, Inc.) using the ABI StepOnePlus Real-Time PCR system (Applied Biosystems; Thermo Fisher Scientific, Inc.). CircRNAs were analyzed with 18s rRNA as the internal standard and miRNA was analyzed with U6 as the internal standard. The reactions were prepared as follows: 7.5 µl SYBR Premix Ex Taq II, 0.25 µl ROX Reference Dye II, 0.125 µl forward primer, 0.125 µl reverse primer, 5 µl RNase-free water, and 2 µl cDNA. The thermocycling conditions were: one step at 95°C for 30 sec, followed by 40 cycles of 95°C for 5 sec and 60°C for 30 sec, and a final step of 95°C for 15 sec, 60°C for 15 sec and 95°C for 15 sec. Primer sequences are listed in Table I; expression levels were quantified via the 2^ΔΔCq method (28).
Expression analysis of miR-548c-3p. Two methods were used to investigate the expression of miR-548c-3p among normal and tumor samples. The first was RT-qPCR, as detailed above. The second was in-silico analysis. The miRNA dataset of the esophageal carcinoma cohort from The cancer Genome Atlas (TCGA) project (29) was exploited. There were 13 normal samples and 184 tumor samples in this dataset. Normalized miRNA expressions of miR-548c-3p were compared between normal and tumor samples. Mann-Whitney U test was applied to test the significance.

Survival analysis. A Kaplan-Meier curve was used to examine the clinical relevance of miR-548c-3p levels in the patients' outcomes (30). Patients were separated into two groups according to the median expression of hsa-miR-548c-3p using TCGA clinical and expression dataset. Differences between groups were analyzed using log-rank test (31) and two-tailed P-values <0.05 were considered statistically significant.

Expression correlation of hsa-miR-548c-3p and its targeted genes. The miRNA and mRNA datasets of the esophageal carcinoma cohort from TCGA (29) were used for the correlation analysis. Common samples were isolated according to the sample barcodes. The Pearson correlation method was used to assess the expression association between hsa-miR-548c-3p and the targeted genes. Significance of association was determined by the R package cor.test (alternative='two.sided', method='pearson'). Then, P-values were corrected with Benjamini-Hochberg procedure for multiple testing.

Statistical analysis. All statistical analyses were generated using R (32). The Pearson correlation method was used to assess the expression association. Significances of associations were determined by the R package cor.test. Mann-Whitney U test was used for comparisons between two groups. Benjamini-Hochberg procedure was applied for multiple testing. Log-rank test was used for Kaplan-Meier survival curves. P<0.05 was considered to indicate a statistically significant difference.

Results

Identification of DE circRNAs in HCa. To identify DE circRNAs in HCa, circRNA sequencing (Seq) was performed using three matched normal and Hca tissue samples, and an average of 90 million reads was achieved for each sample. A total of 4,634 distinct circRNAs with at least two back-spliced reads across six samples using CIRI pipeline (13) were identified and the expressions of circRNAs were normalized and represented by reads per million mapped reads (RPM) values. Genetic distances across 6 samples were evaluated using PCA (Fig. 1A), and the normalized expression level (RPM) of circRNAs across the six samples is illustrated in Fig. 1B. Following statistical analysis, 71 and 102 circRNAs were determined to be significantly upregulated and downregulated, respectively
The DE circRNAs between tumor and adjacent normal samples were presented in a heatmap (Fig. 1C). To confirm the circRNA-Seq results, RT-qPCR was performed to assess the expression of 19 of the above DE circRNAs in both normal and tumor samples. The results confirmed that 12 of them were consistently upregulated or downregulated with the circRNA-Seq results (Fig. 2).

Next, the distribution of circRNAs in different DNA elements and chromosomes was examined. The bar diagram of Fig. 3A demonstrates the % of back-spliced junction reads on intron, intergenic, and exon areas. The majority of circRNAs belonged to exonic, followed by intronic and intergenic elements (Fig. 3B). These dysregulated circRNAs are widely distributed in all chromosomes, including sex chromosomes X (Fig. 3C).

Functional enrichment analysis of genes producing DE circRNAs. To reveal the dysregulated pathways underlying HCa, first KEGG pathway enrichment analyses were performed for genes that matched DE circRNAs. The results demonstrated that genes containing downregulated circRNAs were enriched in endocytosis, ubiquitin-mediated proteolysis, and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways (Fig. 4A), whereas there were no KEGG pathways enriched with genes producing upregulated circRNAs.

Next, GO term enrichment analyses was performed for genes that produced aberrantly expressed circRNAs. Biological processes, such as the establishment of spindle orientation, response to fungicide, positive regulation of transcription, cell division were significantly enriched (Fig. 4B), whereas genes producing downregulated circRNAs were related to autophagy, mitochodrion organization actin cytoskeleton organization, membrane fission, and cell-cell adhesion pathways (Fig. 4C). These results suggested that multiple pathways may contribute to HCa pathogenesis and progression.

CircRNAs regulate the ErbB and Hippo pathways through a miRNA-CeRNA network. The role of circRNAs as a miRNA sponge is the main mechanism of circRNA function in tumor cells (11,33). Therefore, we further investigated the roles of circRNAs in HCa progression through establishing a ceRNA network. Firstly, the top 20 upregulated and top 20 downregulated circRNAs were isolated and were converted to circRNA ID using circBase database (34). Secondly, miRNAs targeting DE-circRNAs were isolated with the web server CircInteractome (23). Specifically, CircInteractome downloaded the mature sequences of all of the reported circRNAs from the UCSC browser, then to characterize miRNA-circRNA interactions, CircInteractome incorporated the ability to search using the TargetScan algorithm, which predicts miRNAs that target circRNA by surveying for 7-mer or 8-mer complementarity to the seed region as well as the 3'end of each miRNA (23). A total of 191 and 182 miRNAs were putatively identified as the targets of upregulated and downregulated circRNAs, respectively. Networks consisted of circRNAs and miRNAs were displayed using Cytoscape software (27). The results demonstrated extensive interactions...
circRNA ID (CIRI)	circRNA ID (circBase)	Adjusted P-value	FC	Gene
chr16:21973780-21987564	hsa_circ_0005690	0.022002929	9.346453412	UQCRC2
chr2:24234324-242357524	hsa_circ_0004924	0.042106003	4.23716918	FARP2
chr7:72873865-72884813	hsa_circ_0004760	0.003579475	4.13619932	BAZ1B
chr5:133871547-133887899	hsa_circ_0005608	0.036132329	3.80520016	PHF15
chr22:41979962-41980607	hsa_circ_0005703	0.030406606	3.76275756	PMM1
chr3:48019354-48040369	hsa_circ_0005255	0.039183919	3.736266721	MAP4
chr12:27521194-27523163	hsa_circ_0009009	0.01165016	3.55331882	ARNTL2
chr9:117399269-117401006	hsa_circ_0002318	0.041159198	3.381349856	C9orf91
chr1:165859440-165860559	hsa_circ_0006758	0.041758958	3.36786062	UCK2
chr16:50321822-50322261	hsa_circ_0000699	0.043912028	3.31487392	ADCY7
chr16:89484691-89497734	hsa_circ_0000727	0.035411987	3.287797218	ANKRd11
chr9:89817580-98837381	hsa_circ_0003214	0.018483558	3.272900498	LAPTMB4
chr19:48229068-48229481	hsa_circ_0003146	0.006019062	3.268230068	EH2D
chr11:118003110-118045592	hsa_circ_0002059	0.010572316	3.169435071	MAN1A2
chr14:92264128-922687655	hsa_circ_0003296	0.040149042	3.130564666	TC2N
chr2:21096882-211019335	hsa_circ_0002617	0.020968937	3.121028088	C2orf67
chr15:48989365-494952495	hsa_circ_0000660	0.032291249	3.092238962	MCTP2
chr19:48229068-48229481	hsa_circ_0003146	0.006019062	3.268230068	EH2D
circRNA ID (CIRI)	circRNA ID (circBase)	Adjusted P-value	FC	Gene
------------------	----------------------	------------------	----	------
chr22:46125304-46136418	hsa_circ_0001247	0.013526942	2.31185877	ATXN10
chr14:23419522-23421892	hsa_circ_0005663	0.04538212	2.257072167	HAUS4
chr12:122773035-122801402	#N/A	0.015647694	2.25006903	#N/A
chr3:3188323-3190820	#N/A	0.025850456	2.249708035	#N/A
chr3:172363412-172365904	hsa_circ_0007042	0.02689758	2.238856764	NCEH1
chr2:10799297-10808849	hsa_circ_0008511	0.042758286	2.22912485	NOL10
chr10:70696697-70703013	hsa_circ_0007097	0.040819924	2.219586601	DDX50
chrX:14886826-14877456	hsa_circ_0006971	0.009211245	2.215797457	FANcB
chr1:23356961-23385660	hsa_circ_0007822	0.027240129	2.206406433	KdM1A
chr20:13539654-13561628	hsa_circ_0002001	0.017808498	2.188222168	TASP1
chr7:139741443-139757834	hsa_circ_0004684	0.026813206	2.168759032	PARP12
chr7:122773035-122801402	#N/A	0.027697748	2.12527859	#N/A
chr18:21644103-21663045	hsa_circ_0047270	0.020649137	2.102327859	#N/A
chr3:43341245-43345284	hsa_circ_0004089	0.007985302	2.078191163	PUM1
chr2:10799297-10808849	hsa_circ_0008511	0.042758286	2.221921485	#N/A
chr10:70696697-70703013	hsa_circ_0007097	0.040819924	2.219586601	DDX50
chrX:14886826-14877456	hsa_circ_0006971	0.009211245	2.215797457	FANcB
chr1:23356961-23385660	hsa_circ_0007822	0.027240129	2.206406433	KdM1A
chr20:13539654-13561628	hsa_circ_0002001	0.017808498	2.188222168	TASP1
chr7:139741443-139757834	hsa_circ_0004684	0.026813206	2.168759032	PARP12
chr7:122773035-122801402	#N/A	0.027697748	2.12527859	#N/A
chr18:21644103-21663045	hsa_circ_0047270	0.020649137	2.102327859	#N/A
chr3:43341245-43345284	hsa_circ_0004089	0.007985302	2.078191163	PUM1
chr2:10799297-10808849	hsa_circ_0008511	0.042758286	2.221921485	#N/A
chr10:70696697-70703013	hsa_circ_0007097	0.040819924	2.219586601	DDX50
circRNA ID (CIRI)	circRNA ID (circBase)	Adjusted P-value	FC	Gene
-------------------	----------------------	-----------------	----	------
chr18:46858233-46906128	hsa_circ_0002501	0.03573514	0.420126159	DYM
chr1:246784730-246797889	hsa_circ_0017311	0.028462249	0.41970008	CNST
chr12:1399017-1481143	hsa_circ_0024997	0.040174171	0.417295868	ERC1
chr12:27521194-27523163	hsa_circ_0009009	0.024711114	0.414722924	ARNTL2
chr5:50055476-50059076	hsa_circ_0006787	0.018488474	0.412395338	PARP8
chr3:17909612-17904147	hsa_circ_0002219	0.029228228	0.403006229	MFN1
chr10:88203031-88206206	#N/A	0.022884862	0.399217754	#N/A
chr17:26490568-26499644	hsa_circ_0003638	0.013335258	0.397904838	NLK
chr16:8952206-8953192	hsa_circ_0000669	0.000715169	0.397910388	CARHSP1
chr2:145946065-185964557	hsa_circ_0005633	0.009131314	0.397798992	#N/A
chr11:8569570-85695016	hsa_circ_0006629	0.01991069	0.396956177	PIcALM
chr7:91980263-91991587	hsa_circ_0006787	0.018488474	0.396956177	PIcALM
chr14:35519989-35522657	hsa_circ_0006424	0.04322634	0.387507944	FAM177A1
chr12:42768664-42792796	hsa_circ_0003961	0.014465456	0.386034041	PHLH1N
chr1:246021797-246093239	hsa_circ_0017289	0.011181456	0.3845259	SMYD3
chr10:27431315-27434519	hsa_circ_0005633	0.009131314	0.384171219	YMEIL1
chr11:129299319-129299615	hsa_circ_0000462	0.006941025	0.38095649	SLC15A4
chr4:103644027-103647840	hsa_circ_0006007	0.02570568	0.37992038	MAN1C2
chr6:55966269-56006781	hsa_circ_0006629	0.00220417	0.379828753	MAN1C2
chr8:17123415-17126465	hsa_circ_0008592	0.040012263	0.37509744	FAM177A1
chr10:99915849-99923154	hsa_circ_0004419	0.032103617	0.372519687	#N/A
chr16:3900297-3901010	hsa_circ_0006629	0.00220417	0.379828753	MAN1C2
chr10:99915849-99923154	hsa_circ_0004419	0.032103617	0.372519687	#N/A
chr11:1307231-1317024	hsa_circ_0003310	0.0259611	0.359726565	MANBA
chr6:55966269-56006781	hsa_circ_0006629	0.00220417	0.379828753	MAN1C2
chr8:18619432-18624147	hsa_circ_0006733	0.037595523	0.35338689	#N/A
chr14:52977957-53011089	hsa_circ_0003193	0.01966747	0.351937505	TXNDC6
chr21:37710767-37717005	hsa_circ_0001189	0.010082196	0.351304877	MRC3
chr1:94685813-94697199	hsa_circ_0003310	0.0259611	0.35119971	#N/A
chr3:47136562-47180680	hsa_circ_00065159	0.020521933	0.350064342	SETD2
chr8:11726317-11728999	hsa_circ_0005524	0.04966353	0.34303411	DROSHA
chr11:1307231-1317024	hsa_circ_0008301	0.018942131	0.342187543	TOLLIP
chr6:108242132-108243113	hsa_circ_0003310	0.012934139	0.34093459	#N/A
chr19:48229068-48229481	hsa_circ_0003146	0.020521933	0.340720207	EHD2
chr3:37107053-37190529	hsa_circ_0003264	0.013159432	0.336803278	LRRFIP2
chr7:65705311-65751696	hsa_circ_0006041	0.039274732	0.313502465	SETD2
chr13:96409897-96416207	hsa_circ_0005524	0.04966353	0.34303411	DROSHA
chr8:68200189-68214701	hsa_circ_0006773	0.003935998	0.328463848	HIBADH
chr7:27668989-27689252	hsa_circ_0006408	0.043640249	0.325878207	KIF5B
chr7:7310965-73101425	hsa_circ_0005588	0.042073587	0.318524548	WBSCR22
chr7:72873865-72884813	hsa_circ_0004670	0.043342921	0.316315928	BAZ1B
chr2:422284206-242283312	hsa_circ_0005906	0.007810999	0.315723287	SEPT2
chr3:47139444-47144913	hsa_circ_0001289	0.039274732	0.313502465	SETD2
between miRNAs and upregulated (Fig. 5A), and downregulated circRNAs (Fig. 5B). Then, KEGG pathway enrichment analysis was performed for the miRNAs targeted by the top 40 DE circRNAs, in order to explore the altered biological processes using mirPath 3.0 (26). Genes targeted by miRNAs were significantly enriched in multiple signaling pathways, including the ErbB, the Hippo, the Ras, the transforming growth factor (TGF)-β, the phosphoinositide 3-kinase/AKT serine/threonine kinase and the Wnt signaling pathways (Fig. 5C).

Table II. Continued.

circRNA ID (CIRI)	circRNA ID (circBase)	Adjusted P-value	FC	Gene
chr2:43655238-43657441	hsa_circ_0054309	0.038540875	0.309703944	THADA
chr21:46275124-46281186	hsa_circ_00010200	0.0474882	0.302025085	PTG11P
chr5:179976930-179980471	hsa_circ_00088383	0.028790905	0.292442462	CNOT6
chr1:87185189-87190088	hsa_circ_00130843	0.01567065	0.280991627	SH3GL1B
chr19:53577392-53578436	hsa_circ_00074802	0.031784533	0.275005495	ZNF160
chr16:53289511-53297009	#/N/A	0.003705027	0.260024152	#/N/A
chr22:29090000-29091861	hsa_circ_00049811	0.008438851	0.252361922	CHEK2
chrX:11771869-117724265	hsa_circ_00913824	0.032765014	0.247214419	DOCK11
chr11:12899340-128997200	hsa_circ_00050273	0.041341275	0.246885645	ARHGAP32
chr15:34342498-34343258	hsa_circ_00343467	0.039707643	0.246690583	SLC12A6
chr10:70152894-70154208	hsa_circ_00002393	0.008512372	0.236281903	RUFI2
chr1:236966727-236979843	#/N/A	0.036146024	0.222019071	#/N/A
chr19:33604672-33605325	hsa_circ_00082875	0.042162087	0.207707068	GPC3
chr2:16892000-168931741	hsa_circ_00032793	0.001767352	0.196582978	STK39
chr1:17908721-179091002	#/N/A	0.019369988	0.169662407	#/N/A
chr18:9524591-9525849	hsa_circ_00051587	0.043927311	0.166193525	RALBP1
chr22:36737414-36745300	hsa_circ_00044700	0.042494836	0.147382721	MYH9

The criteria for the differential expression were: Adjusted P<0.05 and FC>2 or FC<0.5. The top 20 upregulated and downregulated genes are presented in bold. circRNA, circular RNA; FC, fold change.

Figure 2. Reverse transcription-quantitative polymerase chain reaction analysis. Twelve of 19 circRNAs were demonstrated to be consistently regulated with the circRNA-sequencing results. circRNAs, circular RNAs.
To get further insight into the function of circRNAs in the ErbB and Hippo signaling pathways, miRNA-ceRNA networks were constructed corresponding to the two pathways using Cytoscape. For the miRNA-ceRNA network regulating the ErbB pathway, there were 33 circRNAs, 43 miRNAs and 74 ErbB pathway genes (Fig. 6A). In the ErbB miRNA-ceRNA network, the highest number of circRNAs and miRNAs was found in the ErbB pathway genes, indicating a strong interaction between these two pathways. The miRNA-ceRNA network revealed a complex interplay between circRNAs and miRNAs, suggesting that circRNAs may act as sponges to sequester miRNAs, thereby regulating the expression of target genes. This finding highlights the importance of circRNAs in post-transcriptional gene regulation and the potential role of circRNAs in the regulation of ErbB and Hippo signaling pathways.
network, we isolated a subnetwork consisting of circRNAs (hsa_circ_0008287 and hsa_circ_0005027), miRNAs (hsa-miR-548c-3p) and 38 ErbB pathway genes which had the most interaction between miRNAs and targeted genes (Fig. 6B). Hsa_circ_0008287 and hsa_circ_0005027 were significantly downregulated in tumor samples compared with normal (Figs. 2 and 6C). In a similar manner, the miRNA-ceRNA network regulating the Hippo pathway was constructed, consisting of 33 circRNAs, 43 miRNAs and 110 Hippo pathway genes (Fig. 7A). In the Hippo miRNA-ceRNA network, we also isolated a subnetwork consisting of circRNAs (hsa_circ_0008287 and hsa_circ_0005027), miRNAs (hsa-miR-548c-3p) and 61 Hippo pathway genes, which had the most interaction between miRNAs and targeted genes (Fig. 7B).

To further investigate the important role of this subnetwork in tumor progression, the miRNA and mRNA datasets of the esophageal carcinoma cohort from TCGA (29) were exploited. The esophageal carcinoma cohort contains 13 normal samples and 184 tumor samples. In this cohort, the miRNA hsa-miR-548c-3p expression between normal and tumor samples was detected, and its clinical relevance to patient survival was analyzed. The results suggested that hsa-miR-548c-3p was highly expressed in tumor samples compared with normal samples (Fig. 8A and B), and its high expression was significantly associated with lower survival in patients with esophageal carcinoma (Fig. 8C). These findings suggested that hsa-miR-548c-3p is an oncogenic miRNA, which is consistent with the hypothesis that in tumor samples circRNAs were downregulated resulting in more oncogenic hsa-miR-548c-3p being released, and highly expressed hsa-miR-548c-3p may promote HCa progression through downstream target genes. To confirm the negative regulation of hsa-miR-548c-3p on the ErbB and Hippo pathway genes, the expression correlation of hsa-miR-548c-3p and its targeted genes were also analyzed. Many of the targeted genes were negatively correlated with hsa-miR-548c-3p levels, which supported a negative regulatory role of hsa-miR-548c-3p on the ErbB and Hippo pathways (Table III). The present results demonstrated that circRNAs regulate HCa progression through multiple pathways and identifying a miRNA-ceRNA network that regulated the ErbB and Hippo signaling pathways.
Discussion

HCA is clinically difficult to diagnose and has a poor prognosis, therefore, identifying early stage molecular biomarkers has become urgent. CircRNAs, which are stable and easier to extract and detect, are considered ideal candidates for early-stage biomarkers. This is the first report on the expression profile of circRNAs in HCA. In the present study, a number of aberrantly expressed circRNAs in HCA samples were identified. Pathway enrichment results revealed that circRNAs may regulate HCA progression through multiple signaling pathways, especially the ErbB and Hippo signaling pathways. These results provided several potential biomarkers and therapeutic targets for HCA.

The ceRNA hypothesis was described as a way that RNAs communicate with each other, via competing for...
Figure 7. Involvement of circRNAs in the Hippo signaling pathway. (A) miRNA-ceRNA network of Hippo signaling pathway. (B) Subnetwork consisting of circRNAs (hsa_circ_0008287 and hsa_circ_0005027)/miRNAs (hsa-miR-548c-3p) and Hippo pathway genes. circRNAs, circular RNAs; miRNA, microRNA; ceRNA, competing endogenous RNA.
binding to miRNAs and regulating the expression of each other to construct a complex post-transcriptional regulatory network (35,36). mRNAs and long non-coding (Inc) RNAs may all serve as ceRNAs (37). It has been demonstrated that circRNAs can also function as miRNA sponges (6,11). The present study demonstrated that aberrantly expressed circRNAs have extensive interactions with miRNAs, and those miRNAs exerted their effect on multiple cancer-related pathways. These data indicated that the circRNA-associated ceRNA network may have crucial roles in Hca progression.

The activation of ErbB oncogenes has been described in various types of human tumors, including hypopharynx carcinomas, and it has been correlated with a poor prognosis. For example, one study describing the molecular alterations in hypopharynx carcinomas demonstrated that ErbB1 was amplified in 29% of patients with hypopharyngeal squamous cell carcinomas (38). In addition, ErbB1 amplification is correlated with a hypopharyngeal primary site (39). Another study reported that v-erbB stained positively in 62.5% of hypopharyngeal squamous cell carcinomas samples but negatively in normal mucosa (40). The present ceRNA network analysis demonstrated that a circRNA (hsa_circ_0008287 and hsa_circ_0005027)/miRNA (hsa-miR-548c-3p) axis may have important roles in ErbB-mediated tumor progression (Fig. 6).

Another pathway that is likely to be associated with hypopharynx carcinomas is the Hippo signaling pathway. The Hippo pathway has generated considerable interest in recent years because of its involvement in several key hallmarks of cancer progression and metastasis (41). Regulation of Hippo signaling can be an attractive alternative strategy for cancer treatment (42-44). Previously, ACTL6A and p63 were demonstrated to cooperatively promote head and neck squamous cell carcinoma, through activation of the Hippo/Yes-associated protein 1 (YAP) pathway and YAP activation can predict poor patient survival (45). The present ceRNA network analysis demonstrated that a circRNA (hsa_circ_0008287 and hsa_circ_0005027)/miRNA (hsa-miR-548c-3p) axis may have important roles in Hippo-mediated tumor progression (Fig. 7).

Extensive evidence has suggested that miRNAs have important roles in breast cancer. The miR-548 family has been demonstrated to be involved in the pathogenesis of several cancers. For example, miR-548-3p was significantly downregulated in breast cancer and overexpression of miR-548-3p inhibited the proliferation and promoted the apoptosis of breast cancer cells (46). Overexpression of miR-548c-3p was also confirmed in prostate epithelial stem cells and in castration-resistant prostate cancer cells (45). Overexpression of miR-548c-3p in differentiated cells induced stem-like properties and radio-resistance (45). Re-analyses of published studies further revealed that miR-548c-3p is significantly overexpressed.
in castration-resistant prostate cancer cells and is associated with poor recurrence-free survival, suggesting that miR-548c-3p is a functional biomarker for prostate cancer aggressiveness (47). The present results demonstrated that miR-548c-3p may have important roles in Hca progression through modulating the ErbB and Hippo pathways. Due to the crucial roles of miR-548c-3p in multiple types of cancer, development of novel gene therapies based on miR-548c-3p might be encouraged.

Taken together, the present study indicated that hsa_circ_0008287 and hsa_circ_0005027 were downregulated in Hca and competitively bound miR-548c-3p with ErbB and Hippo signaling pathway genes. Further studies are warranted on the roles of hsa_circ_0008287, hsa_circ_0005027, and miR-548c-3p as potential diagnostic biomarkers and therapeutic targets for Hca.

Acknowledgements

Not applicable.

Funding

This work was funded by Yunnan Applied Basic Research Projects (grant no. 2016FB038).

Availability of data and materials

The sequencing data have been deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE111423.
The authors declare that they have no competing interests.

Written informed consent was obtained from all the participants in the study.

The study was approved by the Ethics Committee of the First Affiliated Hospital of Kunming Medical University (Kunming, China). Written informed consent was obtained from all the participants in the study.

The authors declare that they have no competing interests.

References

1. Pingree TF, Davis RK, Reichman O and Derrick L: Treatment of hypopharyngeal carcinoma: A 10-year review of 1,362 cases. Laryngoscope 97: 901-904, 1987.
2. Chan JY and Wei WJ: Current management strategy of hypopharyngeal carcinoma. Auris Nasus Larynx 40: 2-6, 2013.
3. Lagha A, Chraiet N, Labidi S, Rifi H, Ayadi M, Krimi S, Allani B, Raies H, Touati S and Boussen H: Larynx preservation: What is the best non-surgical strategy? Crit Rev Oncol Hematol 88: 447-458, 2013.
4. Ferrer MC, Lopez Molla C, Balaguer Garcia R, Ferrer B, Garcia LA and Suarez C: Evaluation of survival data using real-time quantitative PCR and the 2(T)(-delta)Ct method. Methods 25: 402-408, 2001.
5. Kozomara A and Griffiths-Jones S: miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 35:D152-D157, 2011.
6. Rodrigo JP, Ramos S, Lazo PS, Alvarez I and Suarez C: Genetic alterations in squamous cell carcinomas of the hypopharynx with correlations to clinicopathological features. Oral Oncol 38: 357-363, 2002.
7. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrett D, Zadissa A, Searle S, et al: GENCODE: The reference human genome annotation for the ENCODE project. Genome Res 22: 1760-1774, 2012.
8. Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57, 2009.
9. Rooijers SJ, Eshuis H, van der Plas T, van den Beek T and Bussink J: Circular RNAs: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13: 34-42, 2016.
10. Paffenholz SV, Berry K, Blackwood A, Poon LC, van den Heuvel M, Helfrich CM, Saeij PJ and Takeshi K: An unbiased approach for the discovery of mammalian circular RNAs. Cell 165: 289-302, 2016.
11. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrett D, Zadissa A, Searle S, et al: GENCODE: The reference human genome annotation for the ENCODE project. Genome Res 22: 1760-1774, 2012.
12. Kozomara A and Griffiths-Jones S: miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 35:D152-D157, 2011.
13. Rodrigo JP, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Karolchik D, et al: The UCSC genome browser database: 2018 update. Nucleic Acids Res 46:D762-D769, 2018.
14. Akhtar MM, Qasim M, Ahmad S, Saleem M, Rasheed S and Akhtar M: Genetic alterations in squamous cell carcinomas of the hypopharynx with correlations to clinicopathological features. Oral Oncol 38: 357-363, 2002.
15. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrett D, Zadissa A, Searle S, et al: GENCODE: The reference human genome annotation for the ENCODE project. Genome Res 22: 1760-1774, 2012.
16. Kozomara A and Griffiths-Jones S: miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 35:D152-D157, 2011.
17. Lever J, Krzywinski M and Atman N: Points of Significance: principal component analysis. Nature Methods 14: 641-642, 2017.
18. Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57, 2009.
19. Rooijers SJ, Eshuis H, van den Beek T and Bussink J: Circular RNAs: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13: 34-42, 2016.
20. Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Karolchik D, et al: The UCSC genome browser database: 2018 update. Nucleic Acids Res 46:D762-D769, 2018.
21. Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife 4: 7554, 2015.
22. Vlachos IS, Zagzagas K, Paraskevopoulos MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamanas T and Hatzigeorgiou AG: DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res 43: W460-W466, 2015.
23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498-2504, 2003.
24. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta)Ct method. Methods 25: 402-408, 2001.
25. Cancer Genome Atlas Research Network, Analysis Working Group, Asan University School of Medicine, et al: Integrated genomic characterization of oesophageal carcinoma. Nature 541: 169-175, 2017.
26. Lanccar R and Funck-Brentano C: Survival analysis example based on an event history model from a clinical trial in cardiology. Rev Epidemiol Sante Publique 47: 613-618, 1999 (In French).
27. Mantel N: Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50: 163-170, 1966.
28. R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing, 2011.
29. Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15: 409, 2014.
30. Glazar P, Papavasileiou P and Rajewsky N: circBase: A database of circular RNAs. Nature 541: 289-302, 2016.
31. Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57, 2009.
32. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K and Gorospe M: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13: 34-42, 2016.
33. Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Karolchik D, et al: The UCSC genome browser database: 2018 update. Nucleic Acids Res 46:D762-D769, 2018.
34. Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife 4: 7554, 2015.
35. Vlachos IS, Zagzagas K, Paraskevopoulos MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamanas T and Hatzigeorgiou AG: DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res 43: W460-W466, 2015.
36. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498-2504, 2003.
37. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta)Ct method. Methods 25: 402-408, 2001.
38. Cancer Genome Atlas Research Network, Analysis Working Group, Asan University School of Medicine, et al: Integrated genomic characterization of oesophageal carcinoma. Nature 541: 169-175, 2017.
39. Lanccar R and Funck-Brentano C: Survival analysis example based on an event history model from a clinical trial in cardiology. Rev Epidemiol Sante Publique 47: 613-618, 1999 (In French).
40. Mantel N: Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50: 163-170, 1966.
40. Otsu M, Hayashi Y, Amatsu M and Itoh H: Immunohistochemical study of p53, EGF, EGF-receptor, v-erb B and ras p21 in squamous cell carcinoma of hypopharynx. Kobe J Med Sci 40: 139-153, 1994.

41. Ma Y, Yang Y, Wang F, Wei Q and Qin H: Hippo-YAP signaling pathway: A new paradigm for cancer therapy. Int J Cancer 137: 2275-2286, 2015.

42. Santucci M, Vignudelli T, Ferrari S, Mor M, Scalvini L, Bolognesi ML, Uliassi E and Costi MP: The Hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment. J Med Chem 58: 4857-4873, 2015.

43. Guo L and Teng L: YAP/TAZ for cancer therapy: Opportunities and challenges (Review). Int J Oncol 46: 1444-1452, 2015.

44. Liu AM, Xu MZ, Chen J, Poon RT and Luk JM: Targeting YAP and Hippo signaling pathway in liver cancer. Expert Opin Ther Targets 14: 855-868, 2010.

45. Saladi SV, Ross K, Karaayvaz M, Tata PR, Mou H, Rajagopal J, Ramaswamy S and Ellisen LW: ACTL6A Is Co-amplified with p63 in squamous cell carcinoma to drive YAP activation, regenerative proliferation, and poor prognosis. Cancer Cell 31: 35-49, 2017.

46. Shi Y, Qiu M, Wu Y and Hai L: MiR-548-3p functions as an anti-oncogenic regulator in breast cancer. Biomed Pharmacother 75: 111-116, 2015.

47. Rane JK, Scaravilli M, Ylipää A, Pellacani D, Mann VM, Simms MS, Nykter M, Collins AT, Visakorpi T and Maitland NJ: MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets. Eur Urol 67: 7-10, 2015.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.