Exciton-exciton interaction engineering in coupled GaN quantum dots

Sergio De Rinaldis1,2, Irene D’Amico1,3, and Fausto Rossi1,3,4

1 Istituto Nazionale per la Fisica della Materia (INFM)
2 National Nanotechnology Laboratory (NNL) and Istituto Superiore Universitario per la Formazione Interdisciplinare (ISUFI), 73100, Lecce, Italy;
3 Institute for Scientific Interchange (ISI), 10133 Torino, Italy
4 Dipartimento di Fisica, Politecnico di Torino, 10129 Torino, Italy

(March 22, 2022)

Abstract

We present a fully three-dimensional study of the multiexciton optical response of vertically coupled GaN-based quantum dots via a direct-diagonalization approach. The proposed analysis is crucial in understanding the fundamental properties of few-particle/exciton interactions and, more important, may play an essential role in the design/optimization of semiconductor-based quantum information processing schemes. In particular, we focus on the interdot exciton-exciton coupling, key ingredient in recently proposed all-optical quantum processors. Our analysis demonstrates that there is a large window of realistic parameters for which both biexcitonic shift and oscillator strength are compatible with such implementation.
schemes.
72.25.-b, 72.10.-d, 72.25.De
Semiconductor quantum dots (QDs) are systems of paramount interest in nanoscience and nanotechnology \[1\]. They are the natural evolution of band-gap/wavefunction engineering in semiconductors; however, in contrast to quantum wells and wires, they exhibit a discrete —i.e., atomic-like— energy spectrum and, more important, their optical response is dominated by few-particle/exciton effects. Moreover several QD-based technological applications have been proposed, such as lasers \[2\], charge-storage devices \[3\], fluorescent biological markers \[4\], and all-optical quantum information processors \[5\].

So far, self-organized QDs have been successfully fabricated using a wide range of semiconductor materials; they include III-V QD structures based on GaAs as well as on GaN compounds. GaAs-based QDs have been well characterized and their electronic structures have been widely studied \[6, 7\], whereas the characterization of GaN-based systems is still somewhat fragmentary and their electronic properties have been studied only recently \[8\]. GaAs- and GaN-based nanostructures exhibit very different properties: GaN systems have a wider bandgap (3.5 eV) compared to GaAs-based ones (1.5 eV). Moreover, whereas GaAs and most of the other III-V compounds have a cubic (zincblende) structure, GaN (as well as other nitrides) has a hexagonal (wurzite) structure which leads to strong built-in piezoelectric fields (of the order of MV/cm). As a consequence of such built-in fields, in these nanostructures excitonic transitions are red-shifted, and the corresponding interband emission is fractions of eV below the bulk GaN band-gap.

In this Letter we shall provide a detailed investigation of the interplay between single-particle carrier confinement and two-body Coulomb interactions in coupled GaN-based QDs. In particular, we shall analyze exciton-exciton dipole coupling versus oscillator strength: we demonstrate that it is possible to tailor and control such non-trivial Coulomb interactions by varying the QD geometry (e.g., base and height), since this in turn modifies the wavefunctions of electrons and holes confined into the QDs as well as intrinsic electric fields; at the same time, our investigation shows that the oscillator strength of the ground-state exciton decreases super-exponentially with increasing QD height.

The relevance of our analysis is twofold: (i) we address a distinguished few-particle
phenomenon typical of nitride QDs, i.e., the presence of an intrinsic exciton-exciton dipole coupling induced by built-in polarization fields; (ii) we provide detailed information on the set of parameters needed for the experimental realization of the quantum information processing strategy proposed in [9].

More specifically, in our analysis we consider the range of GaN/AlN QDs presented in [10]: the dot height will vary from 2 to 4 nm and the QD-base diameter from 10 to 17 nm, assuming a linear dependence between these two parameters in agreement with experimental and theoretical findings [8].

As already underlined, the peculiarity of wurzite GaN heterostructures is the strong built-in electric field which is the sum of the spontaneous polarization and the piezoelectric field. Spontaneous polarization charge accumulates at the GaN/AlN interfaces as a consequence of a slight distortion of GaN and AlN unit cells, compared to those of an ideal hexagonal crystal. Piezoelectric fields are caused by uniform strain along the (0001) direction. Contrary to GaN/AlGaN quantum wells — where the spontaneous-polarization contribution is dominant [11] — in QDs the strain-induced piezoelectric field and the spontaneous-polarization potential are of similar magnitude and sign, both oriented along the growth direction. The strength of the intrinsic field along such direction is almost the same inside and outside the dot, but it is opposite in sign. The built-in electric field in GaN QDs and AlN barriers is calculated according to [11]:

\[
F_d = \frac{L_{br}(P_{br}^{br} - P_d^{tot})}{\varepsilon_0(L_d\varepsilon_{br} + L_{br}\varepsilon_d)},
\]

where \(\varepsilon_{br,(d)}\) is the relative dielectric constant of the barrier (of the quantum dot), \(P_{tot}^{br,(d)}\) is the total polarization of the barrier (of the quantum dot), and \(L_{br,(d)}\) is the width of the barrier (the height of the dot). The value of the field in the barrier \(F_{br}\) is obtained by exchanging the indices \(br\) and \(d\). Equation (1) is derived for an alternating sequence of quantum wells and barriers, but it is a good approximation also in the case of an array of similar QDs in the growth (z) direction. The lateral shape of the QD is simply approximated by a bidimensional parabolic potential which mimics the strong in-plane carrier confinement.
caused by the built-in electric field and preserves the spherical symmetry of the ground state \[8\]. Our approach is supported by the agreement with the experimental findings in \[8\]. The polarization is the sum of the spontaneous polarization charge that accumulates at GaN/AlN interfaces and the piezoelectric one. All the parameters are taken from Ref. \[11\] (adapted for the case x=1 for Al percentage in the barrier).

The above theoretical scheme has been applied to realistic state-of-the-art GaN QDs. The difference between the well width of two neighboring QDs is assumed to be 8% to allow energy-selective generation of ground-state excitons in neighboring QDs. The barrier width is such to prevent single-particle tunneling and to allow at the same time significant dipole-dipole Coulomb coupling: the giant internal field in fact strongly modifies the conduction and valence bands along the growth directions and causes the separation of electrons and holes, driving the first one towards the QD top and the latter towards its bottom. This corresponds to the creation of intrinsic dipoles. If we consider two stacked dots occupied by one exciton each, the resulting charge distribution can be seen as two dipoles aligned along the growth direction. This is evident in Fig. \[\text{Fig. 1}\], where we plot the electron and hole single-particle distributions corresponding to the lowest biexcitonic state (with parallel-spin excitons) in our GaN-based semiconductor “macromolecule”. The creation of stacked dipoles results in a negative exciton-exciton coupling (or biexcitonic shift).

The theoretical approach employed to study the optical response of our GaN nanostucture is a generalization (to nitride materials) of the fully three-dimensional exact-diagonalization scheme proposed in \[7\]. More specifically, we consider electrons (e) and holes (h) confined within stacked QDs as depicted in Fig. \[\text{Fig. 1}\]. As usual, the confinement potential is modeled as parabolic in the \(x-y\) plane and as a square-well potential modified by the built-in electric field along the growth (z) direction. The many-exciton optical spectra, i.e., the absorption probability corresponding to the generic \(N \rightarrow N'\) transition, is evaluated as described in \[7\]. In particular, here we focus on the excitonic (0 \(\rightarrow\) 1) and biexcitonic (1 \(\rightarrow\) 2) optical spectra in the presence of the built-in electric field. For all the structures considered, the two lowest optical transitions correspond to the formation of
direct ground-state excitons in dot \(a\) and \(b\), respectively. The biexcitonic \((1 \rightarrow 2)\) optical spectrum describes the creation of a second electron-hole pair in the presence of a previously generated exciton. Here, we shall consider parallel-spin configurations only.

Let us focus on the biexcitonic shift corresponding to the energy difference between the ground-state biexcitonic transition (given a ground-state exciton in dot \(a\)) and the ground-state excitonic transition of dot \(b\). This quantity—a “measure” of the ground-state exciton-exciton coupling—plays a crucial role in all-optical quantum processors, being the key ingredient for conditional-gating schemes \([5,9]\).

Figure 2a shows how the biexcitonic shift increases with the height of the dot. The barrier width is kept fixed and equal to 2.5 nm. In curve (A) both the height and the diameter \(D\) of the dots are varied according to the relation \(D = 3.5L_d + 3\) nm \([10]\), while in (B) only the height of the dot is changed. We notice that, for realistic parameters, it is possible to achieve biexcitonic shifts up to 9.1 meV.

A few comments are now in order: (i) When a barrier of only 2.5 nm separates two stacked GaAs-based QDs, the excitonic wavefunction is molecular-like \([12]\), forming bonding and anti-bonding states spread over the whole macromolecule for both electron and hole. This effect is maximum for dots of the same size but persists even when their dimensions are slightly different. In GaN QDs, instead, over the range of parameters used, the lowest states preserve their atomic-like shape since both electron and hole effective masses and valence/conduction-band discontinuities are much higher than in GaAs, therefore decreasing the atomic-like wavefunction overlap responsible for the molecular bonding. (ii) The excitonic dipole length is roughly proportional to the height of the dot because of the strong built-in electric field; therefore it is crucial to evaluate the dependence of the exciton-exciton interaction on the height of the QDs. (iii) The spreading of the wavefunction affects the biexcitonic shift, as one can notice by comparing curves A and B in Fig. 2. The biexcitonic shift is larger (up to 20% for the parameters considered here) when the wavefunction is more localized, since the system is closer to the idealized “point-like” particle case (see curve C in the same figure). (iv) Our results demonstrate that there exist a wide range of parameters.
for which the biexcitonic shift is at least a few meV. This is a central prerequisite for realizing energy-selective addressing with sub-picosecond laser pulses, as requested, for example, by all-optical quantum information processing schemes [5,9].

Our analysis shows that the best strategy to achieve large biexcitonic shift is to grow "high" and "small diameter" dots. The drawback is that the oscillator strength (OS) of the ground-state transition strongly decreases with the height of the dot, since it is proportional to the overlap of electron and hole wave functions. A small value of the OS enhances the well-known difficulties of single-dot signal detection. The lower panel in Fig. 2 shows that the OS corresponding to the excitonic ground state of dot b decreases super-exponentially with the height of the dot. As shown by the fact that curves A and B practically coincide, the height of the dot is the only parameter relevant for the OS value. Indeed, the wavefunction spreading due to the width of the dot does not influence the electron-hole overlap.

In the range of height values considered in Fig. 2, the OS varies over three orders of magnitude, so care must be taken in a future quantum information processing experiment in order to optimize at the same time biexcitonic shift and OS. Our analysis suggests that a reasonable way to do so is to maximize the product between the biexcitonic shift and the logarithm of the oscillator strength. Such quantity is plotted in Fig. 3 and it is the largest for a QD height of $2.5 \div 3$ nm. The curve presents a well defined maximum corresponding to a quantum dot height of 2.8 nm (parabolic fit).

In conclusion we have performed a detailed investigation of exciton-exciton interaction as well as of its effect on the multi-exciton optical response in state-of-the-art GaN-based nanostructures. We have shown how it is possible to engineer the interdot biexcitonic shift by varying height and width of the dots. Our analysis provides precious indications for the realization of GaN-based quantum information processing clarifying, in particular, the crucial interplay between biexcitonic shift and oscillator strength.
I. ACKNOWLEDGEMENTS

We want to thank R. Cingolani and R. Rinaldi for stimulating and fruitful discussions. This work has been supported in part by the European Commission through the Research Project SQID within Future and Emerging Technologies (FET) program and in part by INFM (National Institute for the Physics of Matter) through the Research Project PRA-SSQI
REFERENCES

[1] L. Jacak, P.Hawrylak, A.Wojs, Quantum Dots (Springer Berlin ,1998); D.Bimberg et al., Quantum Dot Heterostructures (Wiley, Chicester ,1998) and references therein.

[2] H. Saito et al., Appl. Phys. Lett. 78 , 267 (2001).

[3] J.J. Finley et al., Appl. Phys. Lett. 73 , 2618 (1998); G. Yusa and H. Sakaki, ibid. 70 , 345 (1997); T. Lundstrom et al., Science 286 , 2312 (1999).

[4] M. Jr. Bruchez et al., Science 281 , 2013 (1998).

[5] E. Biolatti et al., Phys. Rev. Lett. 85 , 5647 (2000).

[6] R. Rinaldi et al., Phys. Rev. B 62 , 1592 (2000); I. D’Amico and F. Rossi, Appl. Phys. Lett. 79 , 1676 (2001).

[7] E. Biolatti et al., Phys. Rev. B 65 , 75306 (2002).

[8] R. D. Andreev and E. O’ Reilly, Phys. Rev. B 62 , 15851 (2000); F. Widmann et al., ibid. 58 , R15989 (1998).

[9] S. De Rinaldis et al., Phys. Rev. B 65 R81309 (2002)

[10] M. Arley et al., Appl. Phys. Lett. 74 , 3287 (1999); F. Widmann et al., J. Appl. Phys. 83 , 7618 (1998).

[11] R. Cingolani et al., Phys. Rev. B 61 , 2711 (2000).

[12] F. Troiani et al., Phys. Rev. B 65 , R16130 (2002).
FIGURES

FIG. 1. Electron and hole particle distribution, conduction and valence band structure along the growth direction for two coupled GaN dots of, respectively, 2.5nm and 2.7 nm of height, separated by a 2.5 nm AlN barrier. In the upper panel the dotted line corresponds to hole, the solid one to the electron spatial distribution of the biexcitonic ground state.

FIG. 2. Biexcitonic shift (upper panel) and oscillator strength (lower panel) of the ground state transition in dot b for two coupled GaN dots separated by a barrier of 2.5 nm vs QD height. In curve (B) only the height of the dots is changed \(D = 10\text{nm} \), while in curve (A) \(D \) is varied proportionally to the height from 10 to 17 nm. Curve (C) shows the biexcitonic shift in the point-like charge approximation. The parameters used are: effective masses \(m_e = 0.2m_0 \) and \(m_h = m_0 \); in-plane parabolic confinement energy \(\hbar\omega_e = 74\text{meV} \) and \(\hbar\omega_h = 33\text{meV} \) for the (B) curve; \(\hbar\omega_e = 74 \div 290\text{meV}, \hbar\omega_h = 33 \div 130\text{meV} \) for the (A) curve.

FIG. 3. Figure of merit (biexcitonic shift times logarithm of oscillator strength) vs QD height. The arrow indicates the maximum obtained by a parabolic fit.
Fig.1 S. De Rinaldis et al.
Fig. 2 S. De Rinaldis et al.
Fig.3 S. De Rinaldis et al.
Exciton-exciton interaction engineering in coupled GaN quantum dots

Sergio De Rinaldis1,2, Irene D’Amico1,3, and Fausto Rossi1,3,4

1 Istituto Nazionale per la Fisica della Materia (INFM)
2 National Nanotechnology Laboratory (NNL) and Istituto Superiore Universitario per la Formazione Interdisciplinare (ISUFI), 73100, Lecc, Italy;
3 Institute for Scientific Exchange (ISI), 10133 Torino, Italy
4 Dipartimento di Fisica, Politecnico di Torino, 10129 Torino, Italy

(June 5, 2002)

We present a fully three-dimensional study of the multie exciton optical response of vertically coupled GaN-based quantum dots via a direct-diagonalization approach. The proposed analysis is crucial in understanding the fundamental properties of few-particle/exciton interactions and, more important, may play an essential role in the design/optimization of semiconductor-based quantum information processing schemes. In particular, we focus on the interdot exciton-exciton coupling, key ingredient in recently proposed all-optical quantum processors. Our analysis demonstrates that there is a large window of realistic parameters for which both biexcitonic shift and oscillator strength are compatible with such implementation schemes.

72.25.-b, 72.10.-d, 72.25.Dc

Semiconductor quantum dots (QDs) are systems of paramount interest in nanoscience and nanotechnology [1]. They are the natural evolution of band-gap/wavefunction engineering in semiconductors; however, in contrast to quantum wells and wires, they exhibit a discrete—i.e., atomic-like—energy spectrum and, more important, their optical response is dominated by few-particle/exciton effects. Moreover several QD-based technological applications have been proposed, such as lasers [2], charge-storage devices [3], fluorescent biological markers [4], and all-optical quantum information processors [5].

So far, self-organized QDs have been successfully fabricated using a wide range of semiconductor materials; they include III-V QD structures based on GaAs as well as on GaN compounds. GaAs-based QDs have been well characterized and their electronic structures have been widely studied [6,7], whereas the characterization of GaN-based systems is still somewhat fragmentary and their electronic properties have been studied only recently [8]. GaAs- and GaN-based nanostructures exhibit very different properties: GaN systems have a wider bandgap (3.5 eV) compared to GaAs-based ones (1.5 eV). Moreover, whereas GaAs and most of the other III-V compounds have a cubic (zincblende) structure, GaN (as well as other nitrides) has a hexagonal (wurtzite) structure which leads to strong built-in piezoelectric fields (of the order of MV/cm). As a consequence of such built-in fields, in these nanostructures excitonic transitions are red-shifted, and the corresponding interband emission is fractions of eV below the bulk GaN band-gap.

In this Letter we shall provide a detailed investigation of the interplay between single-particle carrier confinement and two-body Coulomb interactions in coupled GaN-based QDs. In particular, we shall analyze exciton-exciton dipole coupling versus oscillator strength: we demonstrate that it is possible to tailor and control such non-trivial Coulomb interactions by varying the QD geometry (e.g., base and height), since this in turn modifies the wavefunctions of electrons and holes confined into the QDs as well as intrinsic electric fields; at the same time, our investigation shows that the oscillator strength of the ground-state exciton decreases super-exponentially with increasing QD height.

The relevance of our analysis is twofold: (i) we address a distinguished few-particle phenomenon typical of nitride QDs, i.e., the presence of an intrinsic exciton-exciton dipole coupling induced by built-in polarization fields; (ii) we provide detailed information on the set of parameters needed for the experimental realization of the quantum information processing strategy proposed in [9].

More specifically, in our analysis we consider the range of GaN/AlN QDs presented in [10]: the dot height will vary from 2 to 4 nm and the QD-base diameter from 10 to 17 nm, assuming a linear dependence between these two parameters in agreement with experimental and theoretical findings [8].

As already underlined, the peculiarity of wurtzite GaN heterostructures is the strong built-in electric field which is the sum of the spontaneous polarization and the piezoelectric field. Spontaneous polarization charge accumulates at the GaN/AlN interfaces as a consequence of a slight distortion of GaN and AlN unit cells, compared to those of an ideal hexagonal crystal. Piezoelectric fields are caused by uniform strain along the (0001) direction. Contrary to GaN/AlGaN quantum wells —where the spontaneous-polarization contribution is dominant [11]— in QDs the strain-induced piezoelectric field and the spontaneous-polarization potential are of similar magnitude and sign, both oriented along the growth direction.
The strength of the intrinsic field along such direction is almost the same inside and outside the dot, but it is opposite in sign. The built-in electric field in GaN QDs and AlN barriers is calculated according to [11]:

\[F_d = \frac{L_{br}(P^{bn}_{tot} - P^{d}_{tot})}{\epsilon_0(L_{d}\epsilon_{br} + L_{br}\epsilon_d)} , \]

where \(\epsilon_{br(d)} \) is the relative dielectric constant of the barrier (of the quantum dot), \(P^{bn}_{tot} \) is the total polarization of the barrier (of the quantum dot), and \(L_{br,d} \) is the width of the barrier (the height of the dot). The value of the field in the barrier \(F_{br} \) is obtained by exchanging the indices \(br \) and \(d \). Equation (1) is derived for an alternating sequence of quantum wells and barriers, but it is a good approximation also in the case of an array of similar QDs in the growth (z) direction. The lateral shape of the QD is simply approximated by a bidimensional parabolic potential which mimics the strong in-plane carrier confinement caused by the built-in electric field and preserves the spherical symmetry of the ground state [8].

Our approach is supported by the experimental findings in [8]. The polarization is the sum of the spontaneous polarization charge that accumulates at GaN/AlN interfaces and the piezoelectric one. All the parameters are taken from Ref. [11] (adapted for the case \(x = 1 \) for Al percentage in the barrier).

The above theoretical scheme has been applied to realistic state-of-the-art GaN QDs. The difference between the well width of two neighboring QDs is assumed to be 8% to allow energy-selective generation of ground-state excitons in neighboring QDs. The barrier width is such to prevent single-particle tunneling and to allow at the same time significant dipole-dipole Coulomb coupling: the giant internal field in fact strongly modifies the conduction and valence bands along the growth directions and causes the separation of electrons and holes, driving the first one towards the QD top and the latter towards its bottom. This corresponds to the creation of intrinsic dipoles. If we consider two stacked dots occupied by one exciton each, the resulting charge distribution can be seen as two dipoles aligned along the growth direction. This is evident in Fig. 1, where we plot the electron and hole single-particle distributions corresponding to the lowest bie excitonic state (with parallel-spin excitons) in our GaN-based semiconductor “macromolecule”. The creation of stacked dipoles results in a negative exciton-exciton coupling (or bie excitonic shift).

The theoretical approach employed to study the optical response of our GaN nanostructure is a generalization (to nitrogen materials) of the fully three-dimensional exact-diagonalization scheme proposed in [7]. More specifically, we consider electrons \((e) \) and holes \((h) \) confined within stacked QDs as depicted in Fig. 1. As usual, the confinement potential is modeled as parabolic in the \(x-y \) plane and as a square-well potential modified by the built-in electric field along the growth (z) direction. The many-exciton optical spectra, i.e., the absorption probability corresponding to the generic \(N \to N' \) transition, is evaluated as described in [7]. In particular, here we focus on the excitonic \((0 \to 1) \) and bie excitonic \((1 \to 2) \) optical spectra in the presence of the built-in electric field. For all the structures considered, the two lowest optical transitions correspond to the formation of direct ground-state excitons in dot \(a \) and \(b \), respectively. The bie excitonic \((1 \to 2) \) optical spectrum describes the creation of a second electron-hole pair in the presence of a previously generated exciton. Here, we shall consider parallel-spin configurations only.

Let us focus on the bie excitonic shift corresponding to the energy difference between the ground-state bie excitonic transition (given a ground-state exciton in dot \(a \) and the ground-state excitonic transition of dot \(b \). This quantity—a “measure” of the ground-state exciton-exciton coupling—plays a crucial role in all-optical quantum processors, being the key ingredient for conditional-gating schemes [5,9].

Figure 2a shows how the bie excitonic shift increases with the height of the dot. The barrier width is kept fixed and equal to 2.5 nm. In curve (A) both the height and the diameter \(D \) of the dots are varied according to the relation \(D = 3.5L + 3 \) nm [10], while in (B) only the height of the dot is changed. We notice that, for realistic parameters, it is possible to achieve bie excitonic shifts up to 9.1 meV.

A few comments are now in order: (i) When a barrier of only 2.5 nm separates two stacked GaAs-based QDs, the excitonic wavefunction is molecular-like [12], forming bonding and anti-bonding states spread over the whole macromolecule for both electron and hole. This effect is maximum for dots of the same size but persists even when their dimensions are slightly different. In GaN QDs, instead, over the range of parameters used, the lowest states preserve their atomic-like shape since both electron and hole effective masses and valence/conduction-band discontinuities are much higher than in GaAs, therefore decreasing the atomic-like wavefunction overlap responsible for the molecular bonding. (ii) The excitonic dipole length is roughly proportional to the height of the dot because of the strong built-in electric field; therefore it is crucial to evaluate the dependence of the exciton-exciton interaction on the height of the QDs. (iii) The spreading of the wavefunction affects the bie excitonic shift, as one can notice by comparing curves A and B in Fig. 2. The bie excitonic shift is larger (up to 20% for the parameters considered here) when the wavefunction is more localized, since the system is closer to the idealized “point-like” particle case (see curve C in the same figure). (iv) Our results demonstrate that there exist a wide range of parameters for which the bie excitonic shift is at least a few meV. This is a central prerequisite for realizing energy-selective addressing with sub-picosecond laser pulses, as
requested, for example, by all-optical quantum information processing schemes [5,9].

Our analysis shows that the best strategy to achieve large biexcitonic shift is to grow "high" and "small diameter" dots. The drawback is that the oscillator strength (OS) of the ground-state transition strongly decreases with the height of the dot, since it is proportional to the overlap of electron and hole wave functions. A small value of the OS enhances the well-known difficulties of single-dot signal detection. The lower panel in Fig. 2 shows that the OS corresponding to the excitonic ground state of dot b decreases super-exponentially with the height of the dot. As shown by the fact that curves A and B practically coincide, the height of the dot is the only parameter relevant for the OS value. Indeed, the wavefunction spreading due to the width of the dot does not influence the electron-hole overlap.

In the range of height values considered in Fig. 2, the OS varies over three orders of magnitude, so care must be taken in a future quantum information processing experiment in order to optimize at the same time biexcitonic shift and OS. Our analysis suggests that a reasonable way to do so is to maximize the product between the biexcitonic shift and the logarithm of the oscillator strength. Such quantity is plotted in Fig. 3 and it is the largest for a QD height of 2.5–3 nm. The curve presents a well-defined maximum corresponding to a quantum dot height of 2.8 nm (parabolic fit).

In conclusion we have performed a detailed investigation of exciton-exciton interaction as well as of its effect on the multi-exciton optical response in state-of-the-art GaN-based nanostructures. We have shown how it is possible to engineer the interdot biexcitonic shift by varying height and width of the dots. Our analysis provides precious indications for the realization of GaN-based quantum information processing clarifying, in particular, the crucial interplay between biexcitonic shift and oscillator strength.

I. ACKNOWLEDGEMENTS

We want to thank R. Cingolani and R. Rinaldi for stimulating and fruitful discussions. This work has been supported in part by the European Commission through the Research Project SQ1D within Future and Emerging Technologies (FET) program and in part by INFM (National Institute for the Physics of Matter) through the Research Project PRA-SSQI

Berlin 1998); D. Bimberg et al., Quantum Dot Heterostructures (Wiley, Chichester, 1998) and references therein.

[2] H. Saito et al., Appl. Phys. Lett. 78, 267 (2001).
[3] J.J. Finley et al., Appl. Phys. Lett. 73, 2618 (1998); G. Yusa and H. Sakaki, ibid. 70, 345 (1997); T. Lundström et al., Science 286, 2312 (1999).
[4] M. Jr. Bruche et al., Science 281, 2013 (1998).
[5] E. Biolatti et al., Phys. Rev. Lett. 85, 5647 (2000).
[6] R. Rinaldi et al., Phys. Rev. B 62, 1592 (2000); I. D’Amico and F. Rossi, Appl. Phys. Lett. 79, 1676 (2001).
[7] E. Biolatti et al., Phys. Rev. B 65, 75306 (2002).
[8] R. D. Andreev and E. O. O’Reilly, Phys. Rev. B 62, 15851 (2000); F. Widmann et al., ibid. 58, R15989 (1998).
[9] S. De Rinaldis et al., Phys. Rev. B 65 R81309 (2002).
[10] M. Arley et al., Appl. Phys. Lett. 74, 3287 (1999); F. Widmann et al., J. Appl. Phys. 83, 7618 (1998).
[11] R. Cingolani et al., Phys. Rev. B 61, 2711 (2000).
[12] F. Troiani et al., Phys. Rev. B 65, R16130 (2002).

FIG. 1. Electron and hole particle distribution, conduction and valence band structure along the growth direction for two coupled GaN dots of, respectively, 2.5 nm and 2.7 nm in height, separated by a 2.5 nm AlN barrier. In the upper panel the dotted line corresponds to hole, the solid one to the electron spatial distribution of the biexcitonic ground state.

FIG. 2. Biexcitonic shift (upper panel) and oscillator strength (lower panel) of the ground state transition in dot b for two coupled GaN dots separated by a barrier of 2.5 nm vs QD height. In curve (B) only the height of the dots is changed (D = 10 nm), while in curve (A) D is varied proportionally to the height from 10 to 17 nm. Curve (C) shows the biexcitonic shift in the point- like charge approximation. The parameters used are: effective masses \(m_e = 0.2m_0\) and \(m_h = m_0\); in-plane parabolic confinement energy \(\hbar\omega_c = 74 \text{ meV}\) and \(\hbar\omega_h = 33 \text{ meV}\) for the (B) curve; \(\hbar\omega_c = 74 \div 290 \text{ meV}\), \(\hbar\omega_h = 33 \div 130 \text{ meV}\) for the (A) curve.

FIG. 3. Figure of merit (biexcitonic shift times logarithm of oscillator strength) vs QD height. The arrow indicates the maximum obtained by a parabolic fit.