Biochemical Effects of the Toxic Interaction of Copper, Lead and Cadmium on *Clarias gariepinus*

Olayinka Adunni Ubani-Rex, Joseph Kayode Saliu, Taiwo Hassan Bello

Ecotoxicology Unit, Department of Zoology, University of Lagos, Lagos, Nigeria

Corresponding Author: Olayinka Adunni Ubani-Rex
Tel. +2347032323612
ubanirexprecious@gmail.com

Introduction

The presence of heavy metals in the aquatic environment is a major concern because of potential toxicity and threats to plant and animal life. Heavy metals in the aquatic environment can be traced to both natural and anthropogenic sources. Changes arising from anthropogenic activities occur in the aquatic ecosystem, affecting the aquatic habitat and fish. Lead and other trace metals have a high affinity for animal tissues where they are concentrated to varying levels.

Cadmium (Cd) is a non-essential heavy metal and is considered to be one of the most toxic water contaminants and could cause toxicity in organisms at a number of levels, from populations and communities to cell elements. Even at sub-lethal concentrations, Cd has a cumulative polluting effect and can cause serious disturbances in fish metabolism such as abnormal behavior, locomotor anomalies or anorexia. Cadmium also affects blood cells. These toxicants exert their toxic effect by generating reactive oxygen species (ROS), causing oxidative stress. Oxidative stress is an unavoidable aspect of aerobic life. It is the result of an imbalance between the production of ROS and antioxidant defenses in living organisms.

Background. The presence of heavy metals in the aquatic environment is a concern because of potential toxicity and threats to plant and animal life.

Objective. The present study evaluated the joint action toxicity and biochemical effects of sublethal concentrations of copper (Cu), lead (Pb) and cadmium (Cd) against *Clarias gariepinus* over a period of 28 days.

Methods. We procured fingerlings (weight: 5–8 g; length: 4.5–6.0 cm) and juveniles (weight: 20–25 g; length: 14.5–17.5 cm) from a commercial fish farm in Bariga, Lagos state, Nigeria. Test toxicants were selected from the analyzed heavy metals in the field based on their deviation from World Health Organization, Federal Environmental Protection Agency and United States Environmental Protection Agency standards. Fish were randomly loaded into a 4-L glass aquaria for the bioassay per toxicant concentration of two replicates and untreated control (dechlorinated tap water).

Results. The derived 96 hour lethal concentration 50 (LC$_{50}$) value of Cu (2.11 mg/L) was the most toxic followed by Cd (24.18 mg/L) and Pb (34.48 mg/L), which was the least toxic of the singly tested pollutants. The analysis of dose-response data of the joint action toxicity of Cu and Cd, and Cu and Pb determined 96 hour LC$_{50}$ values of 1.804 mg/L and 2.15 mg/L, respectively. The interactions between the mixture of Cu:Cd conformed with the model of synergism (synergistic ratio (SR)>1 and relative toxic units (RTU)>1), while the interaction between Cu:Pb was found to be antagonistic (SR<1), with an SR value of 0.98. The biochemical effects study revealed that malondialdehyde (MDA) levels decreased significantly (P<0.05) in the exposed fish, reduced glutathione was not significant at (P<0.05), and levels of superoxide dismutase (SOD), catalase, glucose and cholesterol were significantly different (P<0.05).

Discussion. The observed increased in the glutathione level in the Cu:Cd mixture and a corresponding decrease in MDA concentration in the liver of test animals revealed the ability of fish to overcome the effects of lipid peroxidation in this group because the Cu ion is displaced by Cd, and the fish were able to catalyze the breakdown of hydrogen peroxide via the Fenton reaction.

Conclusions. Further studies on the joint action toxicity of heavy metals are needed in order to further determine their concentration in the local environment.

Ethics Approval. Study protocols were approved by the Health Research Ethics Committee of the University of Lagos.

Competing Interests. The authors declare no financial competing interests

Keywords. sublethal concentration, lipid peroxidation, synergism, antagonistic, heavy metal

Received May 24, 2017. Accepted October 18, 2017

J Health Pollution 16: 38–48 (2017)
ROS. Elevated production of ROS can cause oxidation of proteins and lipids, alterations in gene expression, and changes in cell redox status.15 Mechanisms of antioxidant defenses in fish include the enzyme system and low molecular weight antioxidants, similar to those in mammals, although the specific isoforms of enzymes in various fish species have not been well identified.16 Superoxide dismutase, catalase, glutathione peroxidase, and glutathione-s-transferase are the main antioxidant enzymes and important indicators of oxidative stress. Reduced glutathione and oxidized glutathione disulphide play a key role in non-enzymatic antioxidant defense. Metal-binding proteins such as ferritin, ceruloplasmin, and metallothioneins have special functions in the detoxification of toxic metals, and also play a role in the metabolism and homeostasis of essential metals.17 Fish are endowed with defensive mechanisms to neutralize the impact of ROS resulting from the metabolism of various chemicals. Exposure of fish to metals may result in increases in ROS, leading to impairment of normal oxidative metabolism and finally to oxidative stress.14

The present study assessed the biochemical effects of the toxic interaction of copper (Cu), Cd and lead (Pb) on Clarias gariepinus.

Methods

Fingerlings (weight: 5–8 g; length: 4.5–6.0 cm) and juveniles (weight: 20–25 g; length: 14.5–17.5 cm) of *Clarias gariepinus* were procured from a commercial fish farm in Bariga, Lagos state, Nigeria. The procured fish samples were transported to the laboratory in an oxygenated plastic container and kept in 40-litre holding tanks filled with de-chlorinated tap water. During acclimatization, they were fed with 5 percent of their body weight with Coppens fish feed twice daily (morning and evening), and the water was changed every other day to prevent the accumulation of waste metabolite and food particles. They were held in the container for a minimum of 5 days to enable acclimatization to laboratory conditions (temperature: 28 ± 2°C; relative humidity: 78 ± 4%) before the commencement of the experiment. Study protocols were approved by the Health Research Ethics Committee of the University of Lagos.

Test toxicants were selected from the analyzed heavy metals in the field based on their deviation from World Health Organization, Federal Environmental Protection Agency in Nigeria and United States Environmental Protection Agency standards. Test solutions were prepared by dissolving a set amount of lead dinitrate (Merck, 99.5% purity), cadmium sulfate (HiMedia Lab, 98.5% purity), and copper(II) sulfate pentahydrate (Ajax Chemicals, 98.5% purity) in distilled water producing 100 ppm of stock solution. From these stock solutions, different concentrations of test solutions were prepared through a series of dilutions with de-chlorinated tap water. Range finding was conducted to determine the definitive concentrations to be used for the acute test on both single and joint actions of the toxicants.

Physiochemical characteristics were measured at the beginning of the experiment and at the end (that is, before the change of test media). The parameters measured included dissolved oxygen, total dissolved solids, salinity, conductivity, temperature and pH using a Horiba U-50 multi sampler.

Ten fish were randomly loaded into a 4 L glass aquaria for the bioassay per toxicant concentration of two replicates and untreated control (dechlorinated tap water). The fish were not fed during the 96 hour experimental period. Mortality assessment was carried out once every 24 hour for 4 days. After a range finding test, the test organisms were exposed to prepared concentrations for 96 hour as follows:

- Cu—1, 2, 3, 4, 5 and 6 mg/L and untreated control
- Cd—5, 10, 20, 30 and 40 mg/L and untreated control
- Pb—10, 20, 40, 60 and 100 mg/L and untreated control

A series of bioassays similar to those described for single action tests were carried out, but in this instance, animals of similar sizes were exposed to a binary mixture based on essential and non-essential nutrients (Cu: Cd and Cu:Pb) in a ratio of 4:1 and 2:1.
respectively, based on their occurrence in the field.

In this series of experiments, the test animals were exposed to sublethal concentrations (1/10th and 1/100th of 96 hour lethal concentration 50 \(\text{LC}_{50} \)) derived from the results of single and joint action toxicity studies of the test compounds and untreated control in replicates for a period of 28 days. A semi-static bioassay test protocol was adopted, in which the test media were changed once every 4 days to fresh media of the same concentration and untreated control. Tested fish were fed during the test periods. At the end of 28 days, fish were sacrificed to obtain liver tissues required for biochemical assays. The liver was removed and washed free of blood in ice cold isolation medium (0.25 M sucrose, 5 mM tris hydrogen chloride (HCL)), lightly blotted and weighed. Samples were then cut into fragments and homogenized (9% w/v) in 100% methanol and centrifuged at 10,000 x g for 15 minutes at 4°C as described by Hermes-Lima M, et al.\(^{18}\) The supernatant was collected for substrate and enzyme assays.

The level of homogenized malondialdehyde (MDA), as an index of lipid peroxidation was determined using the method of Buege JA, et al.\(^{19}\) Then 1.0 mL of the supernatant was added to 2 mL of (1:1:1 ratio) tricarboxylic acid (TCA)-thiobarbituric acid (TBA)-HCl reagent (TBA 0.37%, 0.24N HCl and 15% TCA)-thiobarbituric acid (TBA)-HCl mixture (3 mL) contained 0.1 mL of 0.1% sodium nitrate and 0.03 mL of epinephrine in 0.005 N HCL was used to initiate the reaction. The reference cuvette contained 2.95 mL buffer, 0.03 mL of substrate (epinephrine) and 0.02 mL of water. Enzyme activity was calculated by measuring the change in absorbance at 240 nm due to decomposition in a hydrogen peroxide \((H_2O_2) \) UV-recording spectrophotometer.\(^{22}\) The reaction mixture (3 mL) contained 0.1 mL of serum in phosphate buffer (50 mM, pH 7.0) and 2.9 mL of 30 mM \(H_2O_2 \) in a phosphate buffer (pH 7.0). An extinction coefficient at 240 nm \(H_2O_2 \) 40.0 M\(^{-1}\) cm\(^{-1}\) was used for the calculation.\(^{23}\) The specific activity of catalase was expressed as moles of \(H_2O_2 \) reduced per minute per mg protein.

The reduced glutathione content of liver tissue as non-protein sulphydryls was estimated according to the method described by Sedlak J, et al.\(^{20}\) Then 10% TCA was added to the homogenate, centrifuged and 1.0 mL of supernatant was treated with 0.5 mL of Ellman’s reagent (19.8 mg of 5, 5-dithiobisnitro benzoic acid in 100 mL of 0.1% sodium nitrate) and 3.0 mL of phosphate buffer (0.2 M, pH 8.0). The absorbance was read at 412 nm.

Superoxide dismutase activity was determined by its ability to inhibit the auto-oxidation of epinephrine determined by the increase in absorbance at 480 nm as described by Sun M, et al.\(^{21}\) The reaction mixture (3 mL) contained 2.95 mL, 0.05 M sodium carbonate buffer (pH 10.2, 0.02 mL liver homogenate) and 0.03 mL of epinephrine in 0.005 N HCL was used to initiate the reaction. The reference cuvette contained 2.95 mL buffer, 0.03 mL of substrate (epinephrine) and 0.02 mL of water. Enzyme activity was calculated by measuring the change in absorbance at 480 nm due to decomposition in a hydrogen peroxide \((H_2O_2) \) UV-recording spectrophotometer.\(^{22}\) The reaction mixture (3 mL) contained 0.1 mL of serum in phosphate buffer (50 mM, pH 7.0) and 2.9 mL of 30 mM \(H_2O_2 \) in a phosphate buffer (pH 7.0). An extinction coefficient at 240 nm \(H_2O_2 \) 40.0 M\(^{-1}\) cm\(^{-1}\) was used for the calculation.\(^{23}\) The specific activity of catalase was expressed as moles of \(H_2O_2 \) reduced per minute per mg protein.

Cholesterol content of samples was estimated by the method described by Zlatkis AB, et al.\(^{24}\) Next, 0.1 mL each of cholesterol standard and lipid extract was transferred into test tubes and evaporated to dryness in a hot water bath. Then 3 mL of glacial acetic acid was added to each of the test tubes and also a third tube (blank) and shook to dissolve the lipids in the test tubes. Next, 3 mL of color reagent (1 g of ferric chloride dissolved in 10 mL of glacial acetic acid and 1 mL of this solution made up 100 mL with concentrated sulfuric acid) to each of the three test tubes. The solutions were vortexed, allowed to stand and cooled at room temperature for 20 minutes. The absorbance of the standard and lipid extract was measured against the blank at 560 nm in a spectrophotometer. The glucose oxidase method.\(^{25}\)

Toxicological data involving quantal response (mortality) for both single and joint action studies were analyzed by probit analysis including the equation for probit lines.\(^{26}\) This was executed using the Statistical Package for the Social Sciences program for Windows (SPSS 16.0). The indices of toxicity measurement derived from these analyses were \(\text{LC}_{50} \) (lethal concentration causing 50% response (mortality) of the exposed organisms), toxicity factor (TF) and 95% confidence limits employed as follows:

For the joint action toxicity of the heavy metal mixtures, the two models employed for the classifications were the concentration-addition model described by Anderson PD, et al. with slight modification [relative toxic units (RTU) estimations] and the synergistic ratio (SR) model.\(^{27-29}\)

Model 1—

Concentration-Addition Model:

(j) Additive if observed \(\text{LC}_{50} \) value of the mixture is equal to the predicted
The analysis of the physiochemical parameters of the test media showed that the dissolved oxygen level ranged from 3.96 mg/L (after 4 days of exposure) to 6.2 mg/L (after each change to a clean media). The pH and salinity of the test media ranged from 9.02-6.9 and 0.1-0.05 ppt, respectively. The conductivity and total dissolved solids in the test media increased from 0.195 to 0.298 mS/cm and 0.98 to 0.127 g/L, respectively, over the study period.

On the basis of the derived 96 hour LC$_{50}$ values (Table 1), Cu was the most toxic pollutant (2.11 mg/L), followed by Cd (24.18 mg/L) and Pb (34.48 mg/L). The computed toxicity factor revealed that Cu is approximately 12x and 16x more toxic than Cd and Pb, respectively.

The lipid peroxidation and enzyme activity measurement data were subjected to one-way analysis of variance between the different treatment means and the control. Significant difference was determined at a 5% confidence level (P<0.05) using GraphPad Prism 5.

Results

The analysis of the physiochemical parameters of the test media showed that the dissolved oxygen level ranged from 3.96 mg/L (after 4 days of exposure) to 6.2 mg/L (after each change to a clean media). The pH and salinity of the test media ranged from 9.02-6.9 and 0.1-0.05 ppt, respectively. The conductivity and total dissolved solids in the test media increased from 0.195 to 0.298 mS/cm and 0.98 to 0.127 g/L, respectively, over the study period.

On the basis of the derived 96 hour LC$_{50}$ values (Table 1), Cu was the most toxic pollutant (2.11 mg/L), followed by Cd (24.18 mg/L) and Pb (34.48 mg/L). The computed toxicity factor revealed that Cu is approximately 12x and 16x more toxic than Cd and Pb, respectively.

The analysis of dose-response data of the joint action toxicity of Cu with other metals (Cd or Pb) is shown in Table 2. The 96 hour LC$_{50}$ values of Cu:Cd and Cu:Pb were 1.804 ppm and 2.15 ppm, respectively. The interactions between the mixture of Cu:Cd conformed with the model of synergism (SR>1 and RTU>1). The joint action of the toxicants on the tested organisms makes the compound highly toxic. On the other hand, the interaction between Cu:Pb was found to be antagonistic (SR<1), with an SR value of 0.98.

The results revealed that the MDA level in the liver of the exposed fish decreased significantly (P<0.05) compared to the control animals after 28 days of exposure (Figure 1). There was a reduction in the levels of glutathione in the treated groups compared to the control. There was no...
significant difference (P<0.05). Figure 3 showed that there was a significant difference (P<0.05) in the superoxide dismutase (SOD) level of exposed fish over 28 days (Figure 2).

SOD is known to provide cytoprotection against free radical-induced damage by converting superoxide radicals generated in peroxisomes and mitochondria to hydrogen peroxide. The result further showed that there was a significant difference (P<0.05) in catalase activity between exposed and control animals (Figure 4). The mean difference in levels of glucose and cholesterol in the control and exposed liver was significant at (P<0.05) (Figures 5 and 6).

Discussion

This present study investigated the individual and joint action of three toxic metals (Cu, Pb and Cd) frequently existing in contaminated areas as an oxidative stressor in Clarias gariepinus. The LC50 value of Pb was similar to the data for Clarias gariepinus found in numerous studies as well as similar data for Clarias anguilaris for Cu. The computed toxicity factor revealed that Cu is approximately 12x and 16x more toxic than Cd and Pb, respectively. However, this conforms to the findings of Claire CL, et al. on the toxicity of Cu, Cd and Pb metal ions in Chironmids and factors that affect metal accumulation. This result also corroborates the report of Fafioye O, et al. for Penaeus monodon exposed to Cd, Cu and Pb, and contradicts the findings of Otitoloju AA, et al. that Cd was more toxic than Cu, Zn and Pb when tested against lagoon animals such as Clibanarius africanus, Tympanotonus fuscatus and Sersema spp. Oyewo EO had a similar observation and recorded differential toxicities of heavy metals against...
Research

Biochemical Effects of the Toxic Interaction of Copper, Lead and Cadmium on Clarias gariepinus

different test organisms.

The differential toxicities observed among the sampled toxicants can be attributed to individual persistence and penetrability of the toxicants into living organisms, site of metabolism action and hence the toxic actions they exert on the exposed organisms.

The analysis of dose-response data of the joint action toxicity of Cu with other metals (Cd or Pb) found that the interactions between the mixture of Cu:Cd conformed with the model of synergism. The joint action of the toxicants on the tested organisms makes the compound highly toxic. The implication of this is that in terms of toxicity, any compound or pollutant containing both Cu and Cd should be carefully injected into the system as it enhances bio-toxicity. On the other hand, the interaction between Cu:Pb was found to be antagonistic. This finding is similar to the result of Xu X, et al. using sea urchin embryo larvae. Consequently, the mixture was less toxic than Cu when acting singly against the test organism. This implies that this compound has reduced toxicity on life forms in the environment, which might be explained by the fact that Cu could decrease the absorption of the mixture, thus reducing its toxicity.

The heavy metals Pb, Cu and Cd, all have electron-sharing affinities that can result in the formation of covalent attachments mainly between heavy metals and sulphhydryl groups of proteins. The result indicates significant lipid peroxidation in the liver of the tested fish.

The relationship between exposure to toxicants and enzymes such as catalase, superoxide dismutase, reduced glutathione, and glutathione-S-transferase, as well as lipid peroxidation products have been
the subject of several investigations. Furthermore, the activities of SOD, MDA, catalase and the redox sensitive thiol compound glutathione were elevated in the species liver. The significant increase in this organ may be a response to oxidative stress caused by the presence of heavy metals. The accumulation of heavy metals might have led to the production of superoxide anions which led to the induction of SOD to convert the superoxide radical to H$_2$O$_2$.

An increase in the activity of catalase and SOD is usually observed in the face of environmental pollutants since the SOD-catalase system represents the first line of defense against oxidative stress. However, in the present study, the activity of MDA was decreased in the liver of all of the tested species. Hence, a decrease in liver MDA levels is an indication of a lower level of lipid peroxidation. This decrease in MDA is consistent with the finding of Saliu JK, et al. who reported a reduction in MDA levels in fish exposed to sublethal concentrations of lead salts (Pb(N0$_3$)$_2$) and also that of Sogbamu TO, et al. who reported a reduction in the levels of MDA in fish exposed to dispersant mixtures over a period of 28 days and contradict the findings of Arafa MM, et al. who reported that malondialdehyde was significantly increased in the liver of Clarias gariepinus exposed to heavy metal pollution.

The significant reduction in the concentration of the MDA in the treated groups could be attributed to the action of the antioxidant enzymes in preventing cellular injury by ROS. Lead has been reported to have no pro-oxidant catalytic activity with respect to lipid peroxidation (LPO). Yiin SJ, et al. demonstrated a significant enhancement of MDA when Pb was incubated with linoic, linolenic and arachidonic acid. Several studies have shown that Pb alters the activity of antioxidant enzymes.
like SOD, catalase, glutathione peroxidase and glucose 6-phosphate dehydrogenase and antioxidant molecules like glutathione in animals and humans.45-48

Watanabe M, et al. showed generation of non-radical hydrogen peroxide which by itself became a significant source of free radicals via the Fenton chemistry.69 It has also been suggested that Cd could induce oxidative damage by causing the intracellular accumulation of ROS such as superoxide radicals \(O_2^-\) and nobelium, thus increase the sensitivity of cell to toxicants.50-52

Cadmium could replace iron and Cu from a number of cytoplasmic and membrane proteins like ferritin, which in turn would release and increase the concentration of unbound iron or Cu ions. These free ions participate in causing oxidative stress via the Fenton reaction.53,54 Recently, Watjen W, et al. showed evidence in support of the proposed mechanism.55 They found that Cu and iron ions displaced by Cd were able to catalyze the breakdown of hydrogen peroxide via the Fenton reaction.54

Casalino E, et al. proposed that Cd binds to the imidazole group of histone H3.3-like type 2 in SOD which is vital for the breakdown of hydrogen peroxide, thus causing its toxic effects.53 Cadmium inhibition of liver mitochondrial antioxidant manganese superoxide dismutase activity was completely removed by manganese(II) oxide ions, suggesting that the reduced effectiveness of this enzyme is probably due to the substitution of Cd for manganese. Gravato C, et al. attribute the depletion of glutathione to direct Cu interference with glutathione synthesis, inhibition of glutathione reductase, and the participation of glutathione as a substrate in detoxification reactions.56

The depletion of glutathione in fish muscle after copper sulphate exposure has also been reported by Jena SD, et al.57 Ahmad I, et al. reported that metallothionein induction plays a role in the oxidative defence against chronic Cu exposure in the liver of a freshwater catfish, \textit{Channa punctatus}.58

Acute intoxication of animals with Cd has been shown to cause increased activity of antioxidant defense enzymes like Cu-zinc containing superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase.59

Apart from oxidative stress-mediated toxicity, Cd is also known to cause deleterious effects by deactivating DNA repair activity.60 The decrease in the cholesterol and glucose level in \textit{Clarias garipeinus} exposed to the heavy metals contradicts the findings of Nath K, et al. and James R, et al. who reported that blood glucose and cholesterol levels rise in response to toxicants.61,62

Conclusions

The use of biochemical responses in heavy metal biomonitoring in fish is very effective as a biomarker of pollution incidents, both in the field and the laboratory. The results from the present study show that the oxidative stress response can serve as a useful tool in environmental monitoring. However, there is a need for further research on joint action toxicity of the mixture of heavy metals and continuous biomonitoring of heavy metals pollution in the field.

Acknowledgment

The authors are grateful to Mr. Adesanya of the Department of Biochemistry, University of Lagos Teaching Hospital.

References

1. Bhattacharya AK, Mandal SN, Das SK. Heavy metals accumulation in water, sediment and tissues of different edible fishes in upper stretch of Ganges West Bengal. Trends Appl Sci Res [Internet]. 2008 [cited 2017 Nov 21];3(1):61-8. Available from: http://scialert.net/qredirect.php?doi=tasr.2008.61.68&linkid=pdf
2. Olomukoro JO, Ezemonye LI. Assessment of the macro-invertebrate fauna of rivers in Southern Nigeria. Afr J Zool [Internet]. 2007 [cited 2017 Nov 21];42(1):1-11. Available from: https://doi.org/10.1080/15627020.2007.1140731 Subscription required to view.
3. Mason CF. Biology of Freshwater Pollution. 3rd ed. United Kingdom: Longman; 1996.
4. Rainbow PS, Dallinger R. Metal uptake regulation and excretion in freshwater invertebrate. In: Rainbow PS, Dallinger R, editors. Ecotoxicology of Metals in Invertebrates. Boca Raton, Florida: Lewis publishers; 1993. p. 119-31.
5. Huang W. Heavy metal concentrations in the common benthic fishes caught from the coastal waters of Eastern Taiwan. J Food Drug Anal [Internet]. 2003 [cited 2017 Nov 21];11(4):324-350. Available from: http://www.fda.gov.tw:8080/en/publish/JFDAListContent.aspx?id=93&chck=222927b9-3b8f-41e8-b022-b1bc670c23ba¶m=p=115&cid=8&sbcid=
6. Martinez CB, Nagae MY, Zaia CT, Zaia DA. Acute morphological and physiological effects of lead in the neotropical fish, \textit{Prochilodus lineatus}. Braz J Biol [Internet]. 2004 Nov [cited 2017 Nov 21];64(4):797-807. Available from: http://www.scielo.br/pdf/bjb/v64n4/22979.pdf
7. Rashed MN. Cadmium and lead levels fish (tilapia nilotica) tissues as biological indicator for lake water pollution. Environ Monit Assess [Internet]. 2001 Apr [cited 2017 Nov 21];68(1):75-89. Available from: https://link.springer.com/article/10.1023/A:1010739023662 Subscription

Copyright Policy

This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).
required to view.

8. Woo PTK, Sin YM, Wong MK. The effects of short-term acute cadmium exposure on blue tilapia, Oreochromis aureus. *Environ Biol Fish*. [Internet]. 1993 May [cited 2017 Nov 21];37(1):67-74. Available from: https://link.springer.com/article/10.1007/BF00000714 Subscription required to view.

9. Bryand MD, Atchison GJ, Sandheinrich MB. Effects of cadmium on the foraging behavior and growth of juvenile bluegill, Lepomis macrochirus. *Can J Fish Aquat Sci* [Internet]. 1995 [cited 2017 Nov 21];52(8):1630-8. Available from: https://www.nrcresearchpress.com/doi/abs/10.1139/f95-757#.WtQ3OUu1uV4 Subscription required to view.

10. Cicik B, Engin K. The effect of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L.,1758). *Turk J Vet Anim Sci* [Internet]. 2005 Jan [cited 2017 Nov 21];29:113-7. Available from: http://journals.tubitak.gov.tr/veterinary/issues/vet-05-29-1/vet-29-1-19-0305-17.pdf

11. Witeksa M. Changes in selected blood indices of common carp after acute exposure to cadmium. *Acta Vet Brno* [Internet]. 1998 Dec [cited 2017 Nov 21];67:289-93. Available from: https://actavet.vfa.cz/media/pdf/avb_1998067040289.pdf

12. Nishida Y. The chemical process of oxidative stress by copper (II) and iron (III) ions in several neurodegenerative disorders. *Monatshethe fur Chemie - Chem Mov* [Internet]. 2011 Apr [cited 2017 Nov 21];142(4):375-84. Available from: https://link.springer.com/article/10.1007/s0076-010-0444-8 Subscription required to view.

13. Slaninova A, Smutna M, Modra H, Svobodova Z. A review: oxidative stress in fish induced by pesticides. *Neuro Endocrinol Lett*. 2009;30 Suppl 1:12-12.

14. Lushchak VI. Environmentally induced oxidative stress in aquatic animals. *Aquat Toxicol* [Internet]. 2011 Jan [cited 2017 Nov 21];101(1):13-30. Available from: https://doi.org/10.1016/j.aquatox.2010.10.006

15. Livingstone DR. Oxidative stress in aquatic organisms in relation to pollution and agriculture. *Rev Med Vet* [Internet]. 2003 [cited 2017 Nov 21];154(6):427-30. Available from: http://www.revmedvet.com/2003/RM154_42_430.pdf

16. Di Giulio RT, Meyer JN. Reactive oxygen species and oxidative stress. In: Di Giulio RT, Hinton DE, editors. The toxicology of fishes. Boca Raton, Florida: CRC Press; 2008. p. 273-324.

17. Kelly SA, Harrilla CM, Brady TC, Abramo KH, Levin ED. Oxidative stress in toxicology: established mammalian and emerging piscine model systems. *Environ Health Perspect* [Internet].1998 Jul [cited 2017 Nov 21];106(7):375-84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533135/pdf/envhep00530-0045.pdf

18. Hermes-Lima M, Castillo RF, Meinicke AR, Vercesi AE. Characteristics of Fe(II)-ATP complex-induced damage to the rat liver mitochondria. *Mol Cell Biochem* [Internet]. 1995 April [cited 2017 Nov 21];145(1):53-60. Available from: https://link.springer.com/article/10.1007/BF00925713 Subscription required to view.

19. Buge JA, Aust SD. Microsomal lipid peroxidation. *Methods Enzymol* [Internet]. 1978 [cited 2017 Nov 21];52:302-10. Available from: https://doi.org/10.1016/0076-6879(78)52032-6 Subscription required to view.

20. Sedlik J, Lindsay RH. Estimation of total protein-bound and nonprotein sulphydryl groups in tissues with Ellman's reagent. *Anal Biochem* [Internet]. 1968 [cited 2017 Nov 21];25:192-205. Available from: https://doi.org/10.1016/0003-2697(68)90092-4 Subscription required to view.

21. Sun M, Zigma S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. *Anal Biochem* [Internet]. 1978 Oct [cited 2017 Nov 21];90(1):81-9. Available from: https://doi.org/10.1016/0003-2697(78)90010-6 Subscription required to view.

22. Usoh IF, Akpan EJ, Etim EO, Farombi EO. Antioxidant activities of dried flower extracts of Hibiscus sabdariffa L. on sodium arsenite - induced oxidative stress in rats. *Pak J Nutr* [Internet]. 2005 [cited 2017 Nov 21];4(3):135-41. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.7799&rep=rep1&type=pdf

23. Aebi H. Catalase in vitro. In: Packer L, editor. Methods in enzymology. Vol. 105. San Diego: Academic Press Inc; 1984. p. 121-6.

24. Zlatkis A, Zak B, Boyle AJ. A new method for the direct determination of serum cholesterol. *J Lab Clin Med* [Internet]. 1953 Mar [cited 2017 Nov 21];41(3):486-92. Available from: http://www.translationalres.com/article/0022-2143(53)90125-5/abstract Subscription required to view.

25. Bergmeyer HU, editor. Methods of enzymatic analysis. Vol. 2. New York: Academic Press; 1974.

26. Finney DJ. Phobit analysis. 3rd Ed. New York: Cambridge University Press; 1971. 333 p.

27. Anderson PD, Weber LJ. The toxicity to aquatic populations of mixture containing certain heavy metals. Symposium proceedings: International Conference on Heavy Metals in the Environment; 1975 Oct 27-31; Toronto, Canada. Toronto, Canada: University of Toronto; 1975. p. 933-54.

28. Oitoiloo AA. Joint action toxicity of heavy metals and their bioaccumulation by benthic animals of the Lagos Lagoon [Ph.D thesis]. [Nigeria]: University of Lagos; 2002. 225 p.

29. Hewlett PS, Plackett RL. A unified theory for quantal responses to mixtures of drugs: noninteractive action. *Biom* [Internet]. 1959 Dec [cited 2017 Nov 21];15(4):591-610. Available from: https://www.jstor.org/stable/2527657?seq=1#page_scan_tab_contents Subscription required to view.

30. Kusenjuk V, Amoroufa P, Obayatowia AJ. Accumulation of lead on the tissues of freshwater catfish Clarias gariepinus exposed to static nominal concentrations of lead nitrate. *Agric Biol J North Am* [Internet]. 2012 [cited 2017 Nov 21];4(3):121-50. Available from: https://www.schibum.com/ABJNA/PDF/2012/ABJNA-3-12-510-515.pdf

31. Olafia FE, Olafia AK, Lewis OO. Toxic stress of lead on Clarias gariepinus (African Catfish) fingerlings. *Afr J Biomed Res* [Internet]. 2003 [cited 2017 Nov 21];6(2):101-4. Available from: https://www.afrjbr.org/index.php/abjr/article/view/54032/42574

32. Daramola JA, Oladimeji AA. Accumulation of copper in Clarias anguillarius L. and Orechromis niloticus L. *Water Air Soil Pollut* [Internet]. 1989 Dec [cited 2017 Nov 21];48(3):457-61. Available from: https://link.springer.com/article/10.1007/BF00238334 Subscription required to view.

33. Lagrana CC, Apodaca DC, David CP. Toxicity of Ca2+, Cd2+ and Pb2+ metal ions in chironomids and factors that affect metal accumulation. 2011 International Conference on Environment Science and Engineering; 2011 Apr 1-3; Bali, Indonesia. Singapore; IACSIT Press; 2011. Vol. 8. p. 9-13.

34. Fafoye OO, Ogunsawo BM. The comparative toxicities of cadmium, copper and lead to Macrobachium rosenbergii and Penaeus monodon postlarvae. *Afr J Agric Res* [Internet]. 2007 Jan [cited 2017 Nov 21];2(1):31-5. Available from: http://www.academicjournals.org/journal/AJAR/article-full-text-pdf/86C1DE931302

35. Oitoiloo AA, Don-Pedro KN. Bioaccumulation of heavy metals (Zn, Pb, Cu and Cd) by Tympanotonus fuscatus var. radula (L.) exposed to sublethal concentrations in laboratory bioassays. *West Afr J Appl Ecol* [Internet]. 2002 [cited 2017 Nov 21];3(1):17-29. Available from: https://www.ajol.info/index.php/wajae/article/view/45570

36. Oyewo EO. Industrial sources and distribution of heavy metals in Lagos Lagoon and their biological...
effects on estuarine animals [Ph.D. thesis]. [Lagos, Nigeria]: University of Lagos; 1999. 279 p.
37. Xu X, Li Y, Wang Y, Wang Y. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. *Toxicol Vitro* [Internet]. 2011 Feb [cited 2017 Nov 21];25(1):294-300. Available from: https://doi.org/10.1016/j.tiv.2010.09.007 Subscription required to view.
38. Alimohamadi M, Abolhamad G, Keshkhar A. Pb(II) and Cu(II) bioaccumulation on Rhizopus arhizus modeling mono- and multi-component systems. *Miner Eng* [Internet]. 2005 Nov [cited 2017 Nov 21];18(13-14):1325-30. Available from: https://doi.org/10.1016/j.mineng.2005.08.007 Subscription required to view.
39. McCord JM. Effects of positive iron status at a cellular level. *Nutr Rev* [Internet]. 1996 Mar [cited 2017 Nov 21];54(3):85-8. Available from: http://onlinelibrary.wiley.com/doi/10.1111/1753-4887.1996.tb03876.x/abstract Subscription required to view.
40. Patrick-Iwuwananywu KC, Wegwu MU, Ayalogu EO. Prevention of CC14-induced liver damage by garlic, ginger and vitamin E. *Pak J Biol Sci* [Internet]. 2007 Feb 15 [cited 2017 Nov 21];10(4):617-21. Available from: http://sciaret.net/qredirect.php?doi=pjbs.2007.617.621&linkid=pdf
41. Salifu JK, Bawa-Allah KA. Toxicological effects of lead and zinc on the antioxidant enzyme activities of post juvenile Clarias gariepinus. *Resour Environ* [Internet]. 2012 [cited 2017 Nov 21];2(1):21-6. Available from: http://article.sapub.org/doi/10.5923.j.re.20120201.03.html
42. Sogbamu TO, Otitoloju AA. Joint action toxicity and biochemical effects of binary mixture of forocados light crude oil and three dispersants against Clarias gariepinus. *Int J Environ Res [Internet]*. 2014 Spring [cited 2017 Nov 21];8(2):395-402. Available from: https://ijer.ut.ac.ir/article_730_4c23fdd842a97560221c7558ea05838a.pdf
43. Arafa MM, Al-Afifi SH, Ali AT. Investigating the oxidative stress of heavy metal pollution in Clarias gariepinus. *Egypt J Chem Environ Health [Internet]*. 2015 [cited 2017 Nov 21];1(1):231-43. Available from: https://www.semanticscholar.org/paper/Investigating-the-Oxidative-Stress-of-High-Metal-Arafa-Afifi/5105d8d3b3428b591eb5383958480af5e57b1f
44. Yiin SJ, Lin TH. Lead-lateralized catalysis of essential unsaturated fatty acid. *Biol Trace Elem Res* [Internet]. 1995 Nov [cited 2017 Nov 21];50(2):167-72. Available from: https://link.springer.com/article/10.1007%2FBF02789419 Subscription required to view.
45. Hsu JM. Lead toxicity as related to glutathione metabolism. *J Nutr* [Internet]. 1981 Jan [cited 2017 Nov 21];111(1):26-33. Available from: http://jn.nutrition.org/content/111/1/26.long Subscription required to view.
46. Ito Y, Niiya Y, Kurita H, Shima S, Sarai S. Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead. *Int Arch Occup Environ Health* [Internet]. 1985 Aug [cited 2017 Nov 21];56(2):119-27. Available from: https://link.springer.com/article/10.1007/BF00379383 Subscription required to view.
47. Sugawara E, Nakamura K, Miyake T, Fukumura A, Seki Y. Lipid peroxidation and concentration of glutathione in erythrocytes from workers exposed to lead. *Brit J Ind Med* [Internet]. 1991 Apr [cited 2017 Nov 21];48(4):239-42. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1055362/pdf/brjindmed00028-0023.pdf
48. Chiba M, Shinohara A, Matsuhashi K, Watanabe H, Inaba Y. Indices of lead exposure in blood and urine of lead-exposed workers and concentration of major and trace element and activities of SOD, GSH-Px and catalase in their blood. *Tohoku J Exp Med* [Internet]. 1996 Jan [cited 2017 Nov 21];178(1):49-62. Available from: https://www.jstage.jst.go.jp/article/tjem/178/178_1_49/_pdf
49. Watanabe M, Henni K, Ogawa K, Suzuki T. Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. *Comp Biochem Physiol C Toxicol Pharmacol* [Internet]. 2003 Feb [cited 2017 Dec 5];134(2):227-34. Available from: https://doi.org/10.1016/S1532-0456(02)00253-3 Subscription required to view.
50. Hassoun EA, Stohs SJ. Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774.A.1 cell cultures. *Toxicol* [Internet]. 1996 Sep 2 [cited 2017 Nov 21];112(3):219-26. Available from: https://doi.org/10.1016/0040-483X(96)03040-X Subscription required to view.
51. Chowdhury BA, Friel JK, Chandra RK. Cadmium-induced immunopathology is prevented by zinc administration in mice. *J Nutr* [Internet]. 1987 Oct [cited 2017 Nov 21];117(10):1788-94. Available from: http://jn.nutrition.org/content/117/10/1788.long Subscription required to view.
52. Brzoska MM, Galazyn-Sidorczuk M, Rogalska J, Roszczenko A, Jurczuk M, Majewska K, Moniszko-Jakoniuk J. Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium. *Chem Biol Interact* [Internet]. 2008 Feb 15 [cited 2017 Nov 21];171(3):312-24. Available from: https://doi.org/10.1016/j.cbi.2007.11.007 Subscription required to view.
53. Casalino E, Sblano C, Landriscina C. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. *Arch Biochem Biophys* [Internet]. 1997 Oct 15 [cited 2017 Nov 21];346(2):171-9. Available from: https://doi.org/10.1006/abbi.1997.0197 Subscription required to view.
54. Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. *Toxicol* [Internet]. 2003 Nov 5 [cited 2017 Nov 21];192(2-3):95-117. Available from: https://doi.org/10.1016/S0300-483X(03)00305-6 Subscription required to view.
55. Watjen W, Beyersmann D. Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress. *Biometals* [Internet]. 2004 Feb [cited 2017 Nov 21];17(1):65-78. Available from: https://link.springer.com/article/10.1023/A:103102440519018 Subscription required to view.
56. Gravato C, Teles M, Oliveira M, Santos MA. Oxidative stress, liver biotransformation and genotoxic effects induced by copper in Anguilla anguilla L. – the influence of pre-exposure to β-naphthoflavone. *Chemosphere* [Internet]. 2006 Dec [cited 2017 Nov 21];65(10):1821-30. Available from: https://doi.org/10.1016/j.chemosphere.2006.04.005 Subscription required to view.
57. Jena SD, Behera M, Dandapat J, Mohanty N. Non-enzymatic antioxidant status and modulation of lipid peroxidation in the muscles of Labeo rohita by sub-lethal exposure of CuSO4. *Vet Res Commun* [Internet]. 2009 Jun [cited 2017 Nov 21];33(5):421-9. Available from: https://link.springer.com/article/10.1007%2Fs11259-008-9188-x Subscription required to view.
Protective influence of vitamin E on antioxidant defence system in the blood of rats treated with cadmium. *Physiol Res* [Internet]. 2003 [cited 2017 Nov 21];52(5):563-70. Available from: http://www.biomed.cas.cz/physiolres/pdf/52/52_563.pdf

60. McMurray CT, Tainer JA. Cancer, cadmium and genome integrity. *Nat Genet* [Internet]. 2003 Jul [cited 2017 Nov 21];34(3):239-41. Available from: https://www.nature.com/articles/ng0703-239 Subscription required to view.

61. Nath K, Kumar N. Hexavalent chromium: toxicity and its impact on certain aspects of carbohydrate metabolism of the freshwater teleost, Colisa fasciatus. *Sci Total Environ* [Internet]. 1988 Jun [cited 2017 Nov 21];72:175-81. Available from: https://doi.org/10.1016/0048-9697(88)90016-2 Subscription required to view.

62. James R, Sampath K, Alagurathinam S. Effects of lead on respiratory enzyme activity, glycogen and blood sugar levels of the teleost Oreochromis mossambicus (Peters) during accumulation and depuration. *Asian Fish Sci* [Internet]. 1996 Sep 1 [cited 2017 Nov 21];9(2):87-100. Available from: https://www.asianfisheriessociety.org/publication/abstract.php?id=924