Potential of above-ground biomass (AGB) of mangrove vegetation restoration in Lubuk Kertang

N Sulistiyono12* and S A Hudjimartsu3
1Department of Forest Conservation, Faculty of Forestry, Universitas Sumatera Utara, Medan, Indonesia.
2Center of Excellence for Mangrove, Universitas Sumatera Utara, Medan, Indonesia.
3Geoinformatic of Informatics Engineering Department, Faculty of Engineering and science, Ibn Khaldun University, Bogor, Indonesia.

E-mail: *nurdisulistyono@usu.ac.id

Abstract. Mangrove forests have a critical role in supporting coastal areas. Mangrove forests have various functions of environmental services, one of which is a store of carbon stocks. The existence of mangrove forests continues to experience extensive damage and decline. Mangrove restoration is an effort to restore the damaged mangrove to its original condition, as was done by Lubuk Kertang Village. The purpose of this study was to determine the potential for AGB the restorations of mangrove vegetation. The method used is to calculate AGB of mangrove vegetation using allometric equations for estimating AGB from several researchers. The results showed the potential AGB content of the restoration of mangrove vegetation was 114.44 tons/ha. This yield is greater than the natural mangroves in the area, which is only 97.83 tons/ha.

1. Introduction
Mangrove forests have high ecosystem service benefits [1]. One of the mangrove ecosystem services is to store carbon stocks. Mangrove forests can store carbon stocks higher than the carbon stocks that tropical forests can store [2]. Mangroves are forest ecosystems with high productivity in tidal zones [3], and the structure of mangrove vegetation affects the characteristics of AGB. Understanding the characteristics and distribution of AGB of mangroves is essential to estimate above-ground organic carbon [4].

In South Asian countries, mangrove areas have continued to decline due to the conversion of mangroves into ponds and settlements [5]. In Indonesia, especially in Lubuk Kertang Village, Langkat Regency, North Sumatra Province, extensive mangrove forest has also experienced extensive degradation [6]. In 2009, the people of Lubuk Kertang Village began to carry out the restoration of damaged mangroves by planting mangrove vegetation. Knowing the amount of potential AGB from mangroves is needed as an indicator of the success of mangrove restoration. This study objective to determine the AGB of restored mangrove vegetation in the Village of Lubuk Kertang, Langkat Regency, North Sumatra Province.
2. Materials and methods

2.1. Research location
This research was conducted in Lubuk Kertang Village, Langkat Regency, North Sumatra Province. Lubuk Kertang village has a geographic position in 04° 07' 39.71'' North latitudes, and 98° 30' 97.87'' East longitudes. The location of the research can be seen in figure 1.

![Figure 1: Map of research location in Lubuk Kertang](image)

2.2. Measurements of AGB
Direct measurements obtain data collection to determine AGB and carbon in the field. Measurements were made on a sample plot with a size of 20x20m, which was spread evenly over the study area. Measurements of tree dimensions include measurement of diameter at breast height (dbh) using phi-band, tree height using haga hypsometer, and plot coordinates using a global positioning system (GPS). The value of the above-ground carbon is 46% of the AGB. Table 1 contains information on AGB estimator model used to calculate AGB of mangrove vegetation restoration in the field.

Mangrove Vegetation	Estimator of AGB	Source
Avicennia marina	AGB = 0.185 D^{2.352}	[7]
Sonneratia alba	AGB = 0.258 D^{2.287}	[8]
Xylocarpus granatum	AGB = 0.1832*D^{2.21}	[9]
Bruguiera gymnorrhiza	AGB = ρ*0.0754*D^{2.505}	[10]
Avicennia alba	AGB = 0.079211*D^{2.470895}	[11]
General Model of AGB	AGB = 0.251ρD^{2.46}	[12]

Note: AGB = Above Ground Biomass (kg); D = Diameter at breast height (cm); ρ = wood density (gr/cm²)
3. Results and Discussion
The results of measuring 31 plots of the AGB of the mangrove vegetation in the field showed varied values for each mangrove tree and the biomass content in the plot. The results of measurements of tree dimension can be seen in table 2, and AGB can be seen in table 3.

Table 2. Result of measurement of the tree dimension
Planting Year

2009
2010
2011
2013
Natural

Table 3. Result of measurements of AGB
Planting Year

2009
2010
2011
2013
Natural

Based on table 2, the carbon content in each plot varies considerably, this is due to differences in the characteristics of the diameter and height of the plot, the planting year of mangrove vegetation, and the type of mangrove vegetation. Most of the mangrove vegetation types planted by the community are *Rhizophora apiculata* and *Rhizophora mucronata*.

The results of the recapitulation of AGB and carbon content in table 3 show that the mangrove vegetation plot for the 2009 planting year had the highest average number of trees, namely 4,405 trees/ha, while the 2010 mangrove vegetation plot showed the average number of trees per hectare the smallest is 4,011 trees/ha. The largest average AGB content was in the 2009 planting year plot of 173.38 tonnes/ha, while the smallest average above-ground biomass content was in the 2013 planting year plot of 74.14 tons/ha. This is because the older the vegetation, the bigger the tree dimensions so that the biomass content will be even greater.

Based on field measurements, the average above-ground biomass content in the restoration of mangrove vegetation plots is greater than the natural mangrove vegetation plots in the area. This is because the restoration results of mangrove vegetation are denser and more regular so that the number of trees per hectare is more than in natural mangrove vegetation. The vegetation in the natural mangrove plots in Lubuk Kertang Village is natural mangrove vegetation that varies in age. Most of the existing natural mangrove vegetation is thought to be secondary mangrove forests that are not too old. This can be derived from the relatively small mean tree diameter of breast height (Table 2).

Carbon storage can describe how much tree stores carbon. The amount of biomass contained in trees, soil fertility, and vegetation absorption affects the amount of carbon storage [8,13]. Meanwhile, [9,14] said that 46% of the biomass of vegetation is carbon, so the higher the biomass in mangrove vegetation, the higher the carbon storage. The carbon content of plants describes how much they can bind CO₂ from the air [10,15]. Plants absorb CO₂ from the air and then convert it into organic material through photosynthesis, which is used for growth. The high above-ground biomass content at the study location was due to differences in the planting age of the mangroves and the types of mangrove vegetation planted. The longer the mangrove age, the bigger the tree diameter and height.
4. Conclusions
The AGB of restored mangrove vegetation in the Village of Lubuk Kertang is greater than that of the natural mangroves in the Lubuk Kertang area. The restoration results of mangrove vegetation are denser and more regular so that the number of trees per hectare is more than in natural mangrove vegetation.

References
[1] Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E, Primavera J, Granek EF, Polasky S, Aswani S, Cramer LA, Stoms DM, Kennedy CJ, Bael D, Kappel CV, Perillo GME and Reed DJ 2008 Science 319(5861) pp 321-23
[2] Kauffman JB, Bernardino AB, Ferreira TO, Giovannoni LR, Gomes LEO, Romero DJ, Jimenez LCZ and Ruiz F 2018 Carbon stocks of mangroves and salt marshes of the Amazon region, Brazil. Biol. Lett. 14
[3] Saenger P 1998 Mangrove vegetation: an evolutionary perspective Mar. Freshwater Res 49(4) pp 277–86.
[4] Clark DB and Clark DA 2000 Landscape-scale variation in forest structure and biomass in a tropical rain forest Forest Ecology and Management 137 pp185-98
[5] Richards DR and Friess DA 2016 Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012 Proc. Natl. Acad. Sci. USA 113 pp 344–9
[6] Basyuni M, Harahap MA, Wati R, Slamet B, Thoha AS, Nuryawan A, Putri LA and Yusriani E 2018 Evaluation of mangrove reforestation and the impact to socioeconomic-cultural of community in Lubuk Kertang village, North Sumatra IOP Conf. Ser.: Earth Environ. Sci. 126
[7] Dharmawan IWS and Siregar CA 2008 Karbon tanah dan pendugaan karbon tegakan Avicennia marina (Forsk.) Vierh.di Ciasem, Purwakarta [Soil carbon and stand carbon estimates for Avicennia marina (Forsk.) Vierh.di Ciasem, Purwakarta] Jurnal Penelitian Hutan dan Konservasi Alam 5(4) pp 317-28
[8] Kusmana C, Hidayat T, Tiryana T, Rusdiana O and Istomo 2018 Allometric models for above and below ground biomass of Sonneratia spp. Global ecology and conservation 15 e00417
[9] Tarlan MA 2008 Biomass estimation of nyirih (Xylocarpus granatum Koenig. 1784) in primary mangrove forest in Batu Ampar, West Kalimantan. Undergraduate thesis (Bogor, Indonesia: Institut Pertanian Bogor)
[10] Kauffman JB and Donato DC 2012 Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forest CIFOR Working Paper 86 (Bogor, Indonesia: Center for International Forestry Research (CIFOR))
[11] Tue NT, Dung LV, Nhuan MT and Omori K 2014 Carbon storage of a tropical mangrove forest in Mui Ca Mau National Park Vietnam. Catena 121 pp 119-26
[12] Komiyama AS, Pourgarn and Kato S 2005 Common Allometric Equations For Estimating The Tree Weight Of Mangroves Journal of Tropical Ecology 21(04) pp 471- 7
[13] Ati RNA, Rustam A, Kepel TL, Sudirman N, Astrid M, Daulat A, Mangindaan P, Salim HL and Hutahean AA 2014 Stok Karbon dan Struktur Komunitas Mangrove sebagai Blue Carbon di Tanjung Lesung, Banten [Carbon Stock and Mangrove Community Structure as Blue Carbon in Tanjung Lesung, Banten] Jurnal Segara, 10(2) pp 98-171
[14] Hairiah K and Rahayu S 2007 Pengukuran karbon tersimpan di berbagai macam penggunaan lahan [Measurement of stored carbon across a wide variety of land uses] (Bogor, Indonesia: World Agroforestry Centre-ICRAF, SEA Regional Office, University of Brawijaya, Unibraw, Indonesia)
[15] Heriyanoto NM and Subiandono E 2012 Komposisi dan struktur tegakan, biomasa, dan potensi kandungan karbon hutan mangrove di Taman Nasional Alas Purwo [The composition and structure of stands, biomass, and potential carbon stock of mangrove forests in Alas Purwo National Park] Jurnal Penelitian Hutan dan Konservasi Alam 9(1) pp 023-32
Acknowledgements
This study was fully supported by DRPM Grant 2020 from the Ministry of Research, Technology and Higher Education, Republic of Indonesia.