Hygiene Behavior and Its Influencing Factors among Primary School Children in Delanta District, North East Ethiopia

Habtie Yizengaw (✉ habtie2003@gmail.com)
Wollo University Dessie

Hussen Ebrahim
Wollo University Dessie

Yitbarek Wassihun
Wollo University Dessie

Getaw Walle
Wollo University Dessie

Research Article

Keywords: Hygiene, Behavior, school children, Factors influencing

Posted Date: February 10th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1337773/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Poor hygiene behaviours create a serious public health threat to school children. One of the major problems faced by school children are infections. The primary causes of infections are associated with poor water supply, poor sanitation and poor hygiene behaviors which can lead to decreased academic performance and increased likelihood of dropout; this, in turn, prevents children from attaining the numerous economic and health benefits associated with educational attainment. Thus, the study aims to assess hygiene behaviors and influencing factors among primary school children in Delanta District, North East Ethiopia, 2020.

Methods: An institution based cross-sectional study was conducted among 407 primary school students of Delanta District, from February 1 to 29, 2020. The participants were selected using systematic random sampling technique. Data were collected using pre-tested interviewer administered structured questionnaire. Descriptive statistics using frequency, proportion, summary measures were done. Binary and multivariate logistic regressions were also done to identify independent variables associated with hygiene behaviors among primary school children. P value less than 0.05 and adjusted odds ratio with 95% confidence interval non-inclusive of one was considered as statistically significant.

Results: A total of 407 respondents were included with a response rate of 100%. The prevalence of positive hygiene behavior was 59.7% (95% CI 54.6%, 64.1%). Out of the total respondents 205 (50.4%) had knowledge on water handling practices whereas 236 (58%) of the respondents had knowledge on latrine utilization but 258 (63.4%) of respondents did not know the proper hand washing practices. In the multivariable logistic regressions analysis, taking training on hygiene and sanitation (AOR 2.2; 95% CI 1.3, 3.6), having awareness on hand washing practices (AOR: 1.92, 95% CI (5.5, 15.7) and having knowledgeable on latrine utilization (AOR: 1.96, 95% CI 1.02, 2.67) demonstrated a statistically significant association with the hygiene behavior.

Conclusion: The overall findings revealed that the students had adequate knowledge on water handling and latrine utilization but poor knowledge on hand washing practices and a greater number of school children did not aware on water handling and hand washing practices. Therefore, focused strategies should be designed on promoting knowledge of school children on toilet use and hand washing practices.

Background

Poor hygiene means children are regularly ill and miss school, adults are not able to work to support their families, patients are at risk in healthcare environments, and people’s dignity is compromised.

Forty percent of the world school-age children have faced worm infections. The primary causes of infection are associated with poor water supply, poor sanitation and poor hygiene behaviors which can lead to decreased academic performance and increased likelihood of dropout; this, in turn, prevents children from attaining the numerous economic and health benefits associated with educational
attainment. And approximately 5,000 children die daily from water, sanitation and hygiene related
diseases (Rahman et al., 2019).

In least-developed countries, only 57% of schools had adequate drinking water facilities and 53% had
adequate hygiene practices. In sub-Saharan Africa, diarrhea is the second most common cause for
school children mortality which is prevented by effective and appropriate hand washing practice (Vally et
al., no date; Global Handwashing Partnership, 2018).

In fact, as a result of unsafe water quality, sanitation and poor hygiene behaviors occurs that 842000
deaths annually and mostly in low income countries accounts 361000 deaths of under five years of age
children (‘Study undertaken by: Technical support and guidance: Data collection and entry: Data analysis
and report writing’:; 2019).

Studies have shown that the lack of adequate latrine facilities in primary schools can lead to high
absenteeism and academic low performance in school children. Poor, inadequate, unhealthy latrine
conditions, children are at risk for poor health, and they are unwillingness to be in school (Lopamudra
Ganguly and and Satpati, 2019).

Millions of children are stunted and/or suffer from chronic illness due to lack of WASH. Half of all
childhood malnutrition can be traced to WASH-related causes (Wagner and Pramling, 2019).

Each year, children lose 443 million school days because of water related illnesses, of which 272 million
are lost due to diarrhea alone. More than 40 percent of diarrhea cases in school children result from
transmission in schools rather than homes (Peter Barrett, Alberto Treves, Tigran Shmis, 2017).

Taking intervention measures on water, sanitation and hygiene behaviours at school level improves
health of school students. Practicing safe water supply, proper hand washing and latrine utilization in
schools could also prevent diarrhea and gastrointestinal diseases.

In Ethiopia, 60% of schools lack access to water and majority of the schools have traditional pit latrines
which do not meet the minimum latrine standard. Moreover, the ratio of students to toilets is on average a
higher than national standards. Teachers and students who are unable to wash their hands, or access
clean and safe toilet facilities are exposed to health risks (Federal Democratic Republic of Ethiopia
Ministry of Education, 2017).

In Ethiopia, access to WASH has not resulted in higher education attainments. A significant number of
students drop out of school; such that only 47% of students complete grade eight. This alludes to the
importance of WASH facilities to enhance students experience in schools and improve their learning
environment (Federal Democratic Republic of Ethiopia Ministry of Education, 2017).

Method And Materials

Study area, period and design
An institution based cross-sectional study was conducted from 1-29 February 2020 in Delanta District, South Wollo Ethiopia. Delanta district is found 94 km west of Dessie, 322 km away east of Bahirdar and 494 km North of Addis Ababa. According to 2012 Delanta district culture and tourism office report a total of 132,878 population of which 67,635 are males and 65,243 are females. Most of the population is engaged in agriculture, while some sections of the population are engaged in the Opal trade (Office, 2019). There are 37 primary schools (eleven schools grade 1-4, 12 schools grade 1-6 and 14 schools grade 1-8). Generally, according to the 2012 academic year registration and class attendance, a total of 24,516(12,230 males and 12,286 females) students were attending their class in 37 primary schools.

Study participants, sample size determination and Sampling procedure

All primary school children living in Delanta district were source population. The Sample size was calculated based on the first specific objective was determined by using a formula for estimating a single population proportion by assuming a confidence level of 95%, marginal error of 5%, and a 61.7% proportion of positive hygiene behavior among primary school children (Mulubrhan.Asefa(MSc), 2013). Sample size for first objective was calculated using single population proportion formula and adding 10% non-response rate, the final sample size was 407. Out of 37 primary schools found in the district, 10 primary schools were included in the study. The sample sizes were distributed to each School proportional to the average number of students. By assuming homogeneity between classes and grades, the participants were selected by using a systematic sampling technique after identifying an initial starting respondent by using a random method.

Data collection instrument and procedure

A standardized structured interviewer administered questionnaire was used to collect data. The questionnaire was translated to Amharic and then pre-test was done in similar primary School in Delanta district which were not included in the study, prior to the actual data collection to assess the suitability of the questionnaire with regards to duration, language appropriateness, content, validity, and question comprehensibility. Data collection was carried out by 2 clinical nurses and 3 B.Sc. environmental health professionals recruited from the health center and the health office. They received two days training on interview and sampling techniques by the principal investigator before three days of the actual study being done.

Data Quality management and analysis

The questionnaire was adapted from pervious literatures (Mulubrhan.Asefa(MSc), 2013). The questionnaire was translated in to Amharic version then back to English to check for the consistency. The data collectors and supervisors were trained for two days on interview and sampling techniques and
common understanding was reached on the questionnaire. The instrument was Pre-tested on 5% of the sample from school with the population having similar socio-demographic characteristics that were not included in the study. During the actual data collection, data was collected by trained health professional. The supervisors along with the principal investigator were checked for completeness of collected questionnaire on daily basis during the data collection period.

Data was entered into Epi data version 4.6.2 Software and was exported to SPSS version 24 for further analysis. Descriptive statistics was done using frequency, proportion, summary measures. Binary logistic regression model was used to identify statistically significant associated factors with hygiene behaviour. First bi-variable analysis was made for each independent variable to outcome variable. Those variables with P-value less than 0.3 were imported to final model (multivariable analysis). In multivariable logistic regression analysis, variables with P-value less than 0.05 and 95% CI didn’t cross one was considered as statistically significant variables. The fitness of the model was checked by Hosmer and Lemeshow goodness of fit test

Ethical considerations

The ethical issues of this study was reviewed and approved by ethical review committee of College of Medicine and Health Sciences, Wollo University. Permission letter was obtained from South Wollo Zonal Health Department and the respective districts and schools. Verbal informed consent was sought from all respondents’ and teachers before the start of each interview. The right of the study participants to refuse participation or withdraw from the study at any time was respected.

Results

Socio-demographic characteristics of the respondents

A total of 407 respondents were participated in the study with a response rate of 100%. The majority (60.2%) of respondents were a male while 162 (39.8%) of the participants were female students. The mean age of the children was 14.9 years (± 0.52 SD). Most (58.5%) and (82.3%) of the respondents were in 15-19 age group and from rural residence. 100 (25.6%) of them miss the class in the past two weeks prior to data collection. 44 (44%) of the students who missed the class in the past two weeks due to diarrhea.

Table 1: Demographic factors of primary school students in Delanta district, Amhara region, North East Ethiopia 2020.
characteristics	Frequency	Percent (%)
sex of student		
Male	245	60.2
Female	162	39.8
Residence		
Urban	72	17.7
rural	335	82.3
Maternal educational status		
unable to read and write	257	63.1
primary/secondary completed	139	34.2
college and more	11	2.7
Father educational status		
unable to read and write	210	51.6
primary/secondary completed	178	43.7
college and more	19	4.7
Parents occupational status		
Farmer	203	49.9
Merchant	168	41.3
Government employee	38	9.3
Age Groups(years)		
10-14	161	39.6
15-19	238	58.5
20-24	8	2
Missing class the past two weeks		
yes	100	25.6
no	307	74.4
Due to diarrhea disease		
yes	44	10.8
no	36	8.8
Predisposing factors of the respondents

In this study, 205 (50.4%) and 236 (58%) of the respondents had knowledge about water handling practices and latrine utilization respectively. But 258 (63.4%) of the respondents did not know the proper way of hand washing practices. 297 (73.0%) of respondents were aware on latrine utilization, but majority (86.2%) of them did not aware on water handling practices and more than half (55.8%) of the respondents were not aware of hand washing practices. According to the criteria defined in the methods part, children were grouped according to their positive or negative hygiene behaviour outcome which permitted identifying factor that affecting the hygiene behavior. 243 (59.7%) of the respondents had positive hygiene behaviour while 164 (40.3%) had negative hygiene behaviour. Among the school children who had adequate knowledge on water handling, 128 (62.4%) of them practiced positive hygiene behavior. In addition among the students who had adequate knowledge on latrine utilization 154 (65.3%) and 83 (55.7%) had positive hygiene behavior on hand washing practices respectively (table3).

Among those who had awareness about latrine utilization, 199 (67.0%) of them practice positive hygiene behavior whereas 44 (40%) of the respondents who did not had awareness about latrine utilization had reported positive hygiene behavior. 128 (52.7%) and 154 (63.4%) of the respondents had proper water handling and proper latrine utilization practices respectively. 154 (63.4%) and 83 (34.2%) of respondents properly practiced latrine utilization and hand washing practices respectively.

Table 2: Predisposing factors of primary school students in Delanta district, Amhara region, North East Ethiopia 2020.
Characteristics	Frequency	Percent
Knowledge of water handling		
Know	205	50.4
do not know	202	49.6
Knowledge on latrine utilization		
Know	236	58.0
do not know	171	42.0
Knowledge of hand washing		
Know	149	36.6
do not know	258	63.4
Awareness of water handling		
Aware	56	13.8
Not aware	351	86.2
Awareness on latrine utilization		
Aware	297	73.0
Not aware	110	27.0
Awareness on hand washing		
Aware	180	44.2
Not aware	227	55.8

Multivariable analysis of factors influencing hygiene behavior

During multivariable logistic regressions analysis having knowledge on latrine utilization 1.96 times (AOR: 1.96, 95%CI 1.02, 2.67) and having knowledge on hand washing 1.65 times (AOR: 1.65, 95%CI 1.02, 2.67) more likely to practice positive hygiene behavior compared to their counterparts respectively. Having awareness on hand washing practices 1.92 times (AOR: 1.92, 95%CI (5.5, 15.7), and on latrine utilization 4.5 times (AOR: 4.5, 95%CI 2.6, 7.9) more likely to practice positive hygiene behavior compared to their counterparts respectively. Receiving training on hygiene sanitation 2.2 times more likely to practice positive hygiene behavior compared to their counter parts (AOR 2.2; 95% CI 1.3, 3.6).

Table 3: final multivariable logistic regression model analysis of factors influencing hygiene behaviors of primary school children in Delanta district, North East Ethiopia 2020
Characteristics	Hygiene behavior	COR(95% CI)	AOR(95% CI)	
	Positive	Negative		
Knowledge of water handling				
know	128	77	1.26(0.85,1.87)*	1.05(0.63,1.74)
do not know	115	87	1	1
Knowledge on latrine utilization				
know	154	82	1.73(1.16,2.59)*	1.96(1.26,3.04)**
do not know	89	82	1	1
Knowledge of hand washing				
know	83	66	1.3(0.51,1.16)*	1.65(1.02,2.67)*
do not know	160	98	1	1
Awareness of water handling				
Aware	37	19	1.4(0.76,2.48)*	1.27(0.62,2.62)
Not aware	206	145	1	1
Awareness on latrine utilization				
Aware	199	98	3.05(1.94,4.79)*	4.5(2.6,7.9)**
Not aware	44	66	1	1
Awareness on hand washing				
Aware	149	31	6.8(4.26,10.86)*	1.92(5.5,15.7)**
Not aware	94	133	1	1
Hygiene and sanitation training				
Yes	130	72	1.47(0.98,2.19)*	2.2(1.3,3.6)**
No	113	92	1	1
Presence of WASH club				
Yes	167	122	0.76(0.48,1.17)*	0.52(0.299,0.89)*
No	76	42	1	1

NB, * P<0.05, **P<0.01
Discussion

Poor sanitation, shortage of water, low water quality and improper hygiene behaviors are the major causes of risk for health of school children who spent long hours at school compound. This study findings discussed based on the objectives outlined in the introduction and their influence on hygiene behavior among primary schools children.

In this study, 59.7% of school children had positive hygiene behavior which is consistent with the study done in Angolela, Ethiopia, 52.3% of the participants practiced positive hygiene behaviour (Vivas et al., 2010). The study also consistent with the study conducted among school children in Tigray region, Ethiopia 61.7% of the participants had practiced positive hygiene behavior (Mulubrhan.Asefa(MSc), 2013). This study is consistent with a study done in Kenya, the respondents reported that high knowledge, proper hygiene behavior and their institutions had appropriate WASH facilities were significantly less likely to report WASH related illness (Waruingi, 2015).

Knowledge make significant contribution to practicing positive hygiene behavior on latrines utilization 58% and hand washing practices 36.6% by the students. This finding is relatively comparable with a study done in 2016 in Oromia, Ethiopia 59% of the participants had good knowledge on hygiene behavior (Endashaw Fentaye, 2016) and a study done in Tigray Region, Ethiopia showed that there is significant difference on knowledge of latrine utilization 91.1% of the study participants did not know proper latrine but 71% of respondents had knowledge on hand washing practices in Tigray Region. This discrepancy might be large sample size (n=528) in Tigray study (Mulubrhan.Asefa(MSc), 2013). This finding was consistent with the study done in Hosanna, Ethiopia 69.9% of students had knowledge on hand washing practices (Buda et al., 2018).

This study finding revealed, about 73.0% of respondents were aware on latrine utilization, and 55.8% of the respondents were not aware on hand washing practices. This result is higher than the study done in Tigray region 80.5% of the respondents were not aware on latrine but 58.9% respondents were aware on hand washing practices (Mulubrhan.Asefa(MSc), 2013). The variation might be majority of the respondents in Delanta district visited model schools and trained on water sanitation and hygiene activities. The finding of this study is consistent with the study done in Kenya that school children awareness is one of the best way to avoid getting sick and spreading illness (Waruingi, 2015).

From this research finding, presence of hand washing facilities nearer to latrines had significant influence to practicing positive hygiene behavior among school children. This study revealed, 88.9% of school latrines did not have functional hand washing facilities. The research finding is consistent with a study conducted in Ghana, of 37 participating schools 84% of them hand not functional washing stations (Appiah-Brempong et al., 2018). The study also consistent with the study done in North Shewa, Amhara 94% of primary schools lack functional hand washing facilities (Tsige, Kummie and Dejene, 2019).
Getting water from protected sources in primary schools is a protective factor from poor hygiene behavior among primary school students. This study revealed that almost half of the schools (50%) access water from protected sources and students who have got water from protected sources 72.3% of them more likely to practice positive hygiene behaviour than others. This finding is different the finding from a study conducted in Ginchi, Oromia, Ethiopia 96% of schools were not getting adequate water supply. This is might be mainly associated with budget difference and low awareness on the importance of the facilities (Endashaw Fentaye, 2016).

Training on water, sanitation and hygiene activities demonstrated positive influence on the hygiene behavior of school children. This study revealed that 49.6% participants were trained on hygiene sanitation, and 64.4% of them had positive hygiene behaviors. The study finding was consistent with the study done in Tigray region 60.3% in which students who were trained on hygiene sanitation practiced positive hygiene behavior counterparts (Mulubrhan.Asefa(MSc), 2013).

This study found out that the presence of hygiene sanitation club was significantly associated with practicing positive hygiene behaviour among school children.

Primary school clubs (WASH) in the district promote proper utilization latrine, water handling and hand washing practices. Similarly, Schools clubs (WASH) in Malawi, promote the importance of clean water, good hygiene and improved sanitation. Club members create their own songs, dramas and games to communicate safe water and hygiene messages within their schools and communities (Water, Children and WHO, 2010). A study done in Tanzania shows that top three activities conducted by school WASH clubs were latrine cleaning, promotion of hygiene behaviour and practices through art, drama and/or poetry either in the schools 63% or in the community 40% (Antwi-agyei et al., 2017).

Strength and limitation of the study

Strength: It has never been done similar studies in the study area before. So it can serve as a resource for those who want to work on this next study. Because the study was conducted on school children who are change agents, changing hygiene behaviors of school children, can also help to change diseases burden from students’ family and their community at large.

Limitation: The short coming of this study was its cross-sectional nature of the study, which is unable to correctly demonstrate the way of relationship or association. Due to financial limitation, the study could not cover private schools. As a result, the finding is not generalized to all schools in the study area.

Conclusion And Recommendation

It is an emerged evidence from this study that the school students who had adequate knowledge or awareness on latrine utilization and hand washing practices were likelihood to practice the positive hygiene behaviors.
Knowledge and awareness on latrine utilization and hand washing practices are influencing factors for practicing positive hygiene behaviours among primary school children.

According to the study findings, among motivational factors trained on water, sanitation and hygiene (WASH) activities was significant indicator for practicing positive hygiene behaviors.

Obtaining water from protected sources and presence of hand washing facilities near to toilets were the most enabling factors that had significant influence for practicing positive hygiene behavior.

From observation findings, latrines within the school compound were poor in quality, lack cleanliness, not sex segregated, unable to ensure privacy and the hand washing facilities were not functional. Hand washing after defecation and using soap during washing their hands were under reported practices. Unavailability of soap was the reasons for not using soap during washing hands.

Recommendation

Operational recommendation

The ministry of education should develop a school curriculum with guidelines for hygiene practices. Such a curriculum, if well implemented, may result into improved hygiene behaviours which will lead to a reduction on diarrhea morbidity, respiratory infections and decrease WASH related illness dropout rates.

School directors should direct efforts towards promote knowledge or awareness of school children on latrine utilization and hand washing practices, strengthening school WASH clubs, organizing and coordinating WASH trainings for students and teachers. They should also review availability of water from protected sources provided in the schools with an aim of improving them so that students can use the water to drink and clean their toilets after use as a sign of their proper use.

Public primary school principals in the schools under study should regard hand washing facilities with water will also be located in these toilets, then the students will be in a position to wash their hands after visiting the toilets.

School management should try and improve on privacy, type and number of toilets in their schools but give more emphasis to the number of the toilets. This will ensure that all the students access the toilets without struggle.

In addition, parents should also be included in the activities, and correct information regarding use of sanitation facilities. It is important that schools, households and communities work more closely together to change hygiene behaviour of school children.

For research

Further research should be undertaken that incorporate a variety of methods to quantify the influencing factors of hygiene behaviors; to understand additional motivational issues, assess the impact of parental
health package on children's hygiene behaviour. A similar study should be carried out in the other Counties in Ethiopia so as to compare the study findings with this one which was carried out in Delanta district.

Declarations

Authors’ contributions:

All the authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by [Habtie Yizengaw], [Hussen Ebrahim], [Yitbarek Wassihun] and [Getaw Walle]. The first draft of the manuscript was written by [Habtie Yizengaw] and Hussen, and Getaw Walle commented on previous versions of the manuscript. Habtie Yizengaw, Hussen Ebrahim, Yitbarek Wassihun, and Getaw Walle read and approved the final manuscript.

Acknowledgement

I am strongly indebted to my advisors Mr. Yitbarek Wassihun and Getaw Walle from Wollo University College of Medicine and health sciences, school of Public health, for their continuous advice, and meticulous comments that I received throughout my thesis work, without their advice, the accomplishment of this research work was not be finalized. I would like to thank Wollo University, school of public health for their giving this opportunity.

Furthermore, I am grateful to Delanta district education office, primary school directors and teachers for their support during data collection and giving necessary information for this thesis work.

Availability of data and materials:

All data generated or analyzed during this study are included in this article. The data that support the findings of this study are also available from the corresponding author upon reasonable request.

Ethics approval and consent to participate:

Ethical clearance was obtained from the Ethical Review Committee of Wollo University Research Ethics Review Committee reviewed the ethical acceptability of the research. Those study participants who were selected to participate were informed about the purpose of the study, the importance of their participation, and their ability to withdraw at any time. Written consent was obtained prior to data collection.

Consent for publication:

Not applicable.

Competing interests:

The authors declare that they have no competing interests
References

1. Antwi-agyei, P. et al. (2017) ‘Water, sanitation and hygiene (WASH) in schools: results from a process evaluation of the National Sanitation Campaign in Tanzania’, pp. 140–150. doi: 10.2166/washdev.2017.159.

2. Appiah-Brempong, E. et al. (2018) ‘Examining school-based hygiene facilities: A quantitative assessment in a Ghanaian municipality’, BMC Public Health, 18(1), pp. 1–8. doi: 10.1186/s12889-018-5491-9.

3. Buda, A. S. et al. (2018) ‘Knowledge, attitude and practice on hand washing and associated factors among public primary schools children in Hosanna town, Southern Ethiopia’, 10(June), pp. 205–214. doi: 10.5897/JPHE2017.0987.

4. Endashaw Fentaye (2016) ‘Factors Associated With Personal Hygiene Practice Among School Children In Boda Primary School Around Ginci Twon, West Shoa, Oromia, Ethiopia’.

5. Federal Democratic Republic of Ethiopia Ministry of Education (2017) National School Water, Sanitation and Hygiene (SWASH) Strategy and Implementation Action Plan.

6. Global Handwashing Partnership (2018) ‘The State of Handwashing in 2017: Annual Research Summary’, 2016(May), pp. 1–27.

7. Lopamudra Ganguly and and Satpati, L. (2019) ‘Sanitation and hygiene status among school students: A micro study on some selective schools of North Dumdum municipality area, West Bengal’, 6(September), pp. 127–131.

8. Mulubrhan.Asefa(MSc) (2013) ‘Assessment of factors influencing hygiene behaviour among school children in Mereb - Leke District, Tigray Region, Ethiopia 2013 Assessment of factors influencing Hygiene Behaviour among School Children in Mereb - Leke District, Tigray Region, Ethiopi’.

9. Office, culture and tourism (2019) Delanta district coulture and tourism office.

10. Peter Barrett, Alberto Treves, Tigran Shmis, D. A. and M. U. (2017) ‘Safe and Healthy School Buildings’, (Oecd), pp. 13–19.

11. Rahman, M. et al. (2019) ‘Knowledge and Practice of Personal Hygiene among Primary School Students in Dhaka, Bangladesh’, 11(9), pp. 3140–3144.

12. ‘Study undertaken by: Technical support and guidance: Data collection and entry: Data analysis and report writing’ : (2019), (March).

13. Tsige, W., Kummie, A. and Dejene, T. (2019) ‘Environment Pollution and Climate Change Status of School Sanitation Service and Factors Affecting School Water, Sanitation and Hygiene Services: A School-Based Cross-Sectional Study’, 2(4), pp. 2–6. doi: 10.4172/2573-458X.1000168.

14. Vally, H. et al. (no date) ‘The Impact of a School-Based Water, Sanitation and Hygiene Intervention on Knowledge, Practices, and Diarrhoea Rates in the Philippines’, pp. 1–14.

15. Vivas, A. P. et al. (2010) ‘Knowledge, attitudes and practices (KAP) of hygiene among school children in Angolela, Ethiopia’, Journal of Preventive Medicine and Hygiene, 51(2), pp. 73–79. doi: 10.15167/2421-4248/jpmh2010.51.2.216.
16. Wagner, J. T. and Pramling, I. (2019) 'WASH from the START: Water, Sanitation and Hygiene Education in Preschool', *International Journal of Early Childhood*, (0123456789). doi: 10.1007/s13158-019-00236-5.

17. Waruingi, R. N. (2015) 'Determinants Of Water, Sanitation And Hygiene Related Morbidity Among Primary School Children In Mathare Informal Settlement, Nairobi County, Kenya Rosemary'.

18. Water, C. • D. C. • E. U. C. for G. S., Children, I. I. W. and S. C. • S. the and WHO, U. • W. A. • W. • W. F. P. • (2010) 'Raising Clean Hands'.

Figures

![Conceptual Framework](image)

Figure 1

A conceptual framework for determinants of hygienic behavior adapted from Green L. W. and Kreutzer M. W 1991/2005 year of publication
Figure 2

A diagram has shown the sampling procedures of primary schools and school children in Delanta district, North East Ethiopia.
Figure 3

The distribution of hygiene behavior among school children in Delanta District, North East 2020