Case Report

Visualizing Central Vessels of Hepatic Angiomyolipoma Devoid of Fat Using a 2D Multi-Breath-Hold Susceptibility-Weighted Imaging

Ruo-Kun Li,1,2 Meng-Su Zeng,2 and Jin-Wei Qiang1

1Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
2Department of Diagnostic Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China

Correspondence should be addressed to Meng-Su Zeng; zeng.mengsu@zs-hospital.sh.cn

Received 18 March 2015; Accepted 24 May 2015

Academic Editor: Yoshito Tsushima

Copyright © 2015 Ruo-Kun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Epithelioid hepatic angiomyolipoma (Epi-HAML) is a rare benign mesenchymal tumor with malignant potential. Most of Epi-HAML contains no or only a minimal amount of adipose tissue and poses a diagnostic challenge. Central vessels are characteristic imaging finding of Epi-HAML, which usually were displayed by dynamic contrast imaging. In this paper, we displayed the central vessels of Epi-HAML invisible on conventional MR images using a new developed abdominal susceptibility-weighted imaging (SWI). To the best of our knowledge, this is the first description for the role of SWI in characterization of Epi-HAML.

1. Introduction

Hepatic angiomyolipoma (HAML) is a rare benign mesenchymal tumor, which is composed of variable amounts of fat tissue, smooth muscle cells, and vessels at histopathology [1, 2]. Depending on the dominant type of the smooth muscle cell, HAML can be subcategorized into epithelioid, spindle, and intermediate forms [3]. Epithelioid hepatic angiomylipoma (Epi-HAML) is usually devoid of adipose tissue and preoperative diagnosis is quite difficult. A few studies indicated central vessels as characteristic imaging findings [4, 5]. Dynamic contrast imaging could detect large vessels within the tumor. However, microvessels are difficult to visualize due to the partial volume effect.

Susceptibility-weighted imaging (SWI) is an emerging MRI technique. In neuroimaging, SWI is a 3D, fully velocity-compensated, gradient echo sequence. Brain SWI can be used to visualize smaller intracerebral veins and other sources of susceptibility effects, such as hemosiderin, ferritin, and calcium [6, 7]. We have developed a new 2D abdominal SWI sequence for liver imaging at a 3T MR scanner. Our previous studies showed that abdominal SWI technique could improve the detection of siderotic nodules in cirrhotic patients and intratumoral hemorrhages within hepatocellular carcinoma [8, 9]. In this paper, we report a case of Epi-HAML devoid of adipose tissue. The abdominal SWI could well visualize intratumoral microvessels invisible on conventional MR images. To the best of our knowledge, there is no description for the role of SWI in characterization of Epi-HAML.

2. Case Report

A 27-year-old woman complained of upper abdominal discomfort for 2 weeks without fever, jaundice, or weight loss. She denied any history of exposure to specific carcinogens. A review of family history was unremarkable. Physical examination revealed hepatomegaly. Liver function tests were normal. Serology was negative for hepatitis B and hepatitis C. Levels of tumor markers alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9) were normal.

Due to the nonspecific complaints, a biphasic contrast-enhanced CT scanning of the upper abdomen was performed using GE 64-detector CT scanner with hepatic arterial and portal venous phase imaging with delays of 30 s and 70 s. CT images revealed a large well-demarcated hypoattenuate mass with heterogeneously intense enhancement on dynamic
Figure 1: Unenhancement CT (a) images reveals a large well-demarcated hypoattenuate mass in the right lobe of the liver (arrow). No fat tissue is detected at CT images. The mass shows heterogeneously intense enhancement at hepatic arterial phase ((b) arrowhead) and persistent enhancement at portal venous phase ((c) arrowhead).
Figure 2: The mass shows inhomogeneous hypointensity on T1WI (a) and hyperintensity on T2WI ((b) arrowhead) with inhomogeneously intense enhancement at arterial phase (c) and persistent enhancement at portal venous phase (d). SWI images (e) reveal numerous branching punctate or curved central microvessels (arrow). The continuity of the central microvessels could be better visualized on MinIP images of SWI ((f) arrow).

3. Discussion

Hepatic angiomylipoma (HAML) is an unusual mesenchymal neoplasm composed of blood vessels, smooth muscle, and adipose cells [1, 2]. Epi-HAML is a rare subtype of HAML which is prone to occur in females without specific symptoms. At present, it is becoming increasingly clear that Epi-HAML should be regarded as tumors of uncertain malignant potential. Rare cases of Epi-HAML with tumor recurrence, distant metastasis, and vascular invasion were reported. Surgical resection and carefully follow-up are recommended in clinical practice [10–12].

The radiological appearance of HAML varies widely due to the fact that the distribution and relative proportion of three components varies widely. The fat content of typical HAML produces a characteristic appearance on imaging studies that can be easily diagnosed by CT or MRI [13, 14]. However, most of Epi-HAML contains no or only a minimal amount of adipose tissue and poses a diagnostic challenge radiologically. In the present case, CT and MRI either did not detect any adipose component, consistent with previous reports.

Central punctation or filiform vessels was considered as a characteristic imaging feature of Epi-HAML compared with other hypervascular hepatic tumors [4, 5]. Large vessels within the tumor could be visualized by dynamic contrast imaging after administration of contrast media. However, microvessels are usually invisible due to partial volume effect and limited spatial resolution. In addition, for patients with risk of allergic reaction and renal insufficiency, dynamic contrast imaging could not be performed. In the present case, no definite vessels were detected on CT and conventional MRI images. However, SWI visualize central microvasculature with better conspicuity, which appeared as curvilinear
Figure 3: Gross specimen (a) shows the tumor is yellowish mixed with white colored tissue and red vessels without hemorrhage or necrosis. Microscopy views (b) hematoxylin and eosin stain, original magnification ×20) showed that the tumor is composed of epithelioid cells and malformed vessels (arrow).

In summary, our case report shows that SWI may be a potential tool for visualizing central microvessels of Epi-HAMs, which may be useful for making correct preoperative diagnosis.

Conflict of Interests

All authors declare that they have no conflict of interests.

References

[1] A. A. Petrolla and W. Xin, “Hepatic angiomylipoma,” Archives of Pathology and Laboratory Medicine, vol. 132, no. 10, pp. 1679–1682, 2008.
[2] X. Yang, A. Li, and M. Wu, “Hepatic angiomylipoma: Clinical, imaging and pathological features in 178 cases,” Medical Oncology, vol. 30, no. 1, article 416, 2013.
[3] S. Yamasaki, S. Tanaka, H. Fuji et al., “Monotypic epithelioid angiomylipoma of the liver,” Histopathology, vol. 36, no. 5, pp. 451–456, 2000.
[4] P.-J. Xu, Y. Shan, F.-H. Yan, Y. Ji, Y. Ding, and M.-L. Zhou, “Epithelioid angiomylipoma of the liver: cross-sectional imaging findings of 10 immunohistochemically-verified cases,” World Journal of Gastroenterology, vol. 15, no. 36, pp. 4576–4581, 2009.
[5] J. S. Ji, C. Y. Lu, Z. F. Wang, M. Xu, and J. J. Song, “Epithelioid angiomylipoma of the liver: CT and MRI features,” Abdominal Imaging, vol. 38, no. 2, pp. 309–314, 2013.
[6] E. M. Haacke, Y. Xu, Y.-C. N. Cheng, and J. R. Reichenbach, “Susceptibility weighted imaging (SWI),” Magnetic Resonance in Medicine, vol. 52, no. 3, pp. 612–618, 2004.
[7] E. M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, and Y.-C. N. Cheng, “Susceptibility-weighted imaging: technical aspects and clinical applications, part I,” American Journal of Neuroradiology, vol. 30, no. 1, pp. 19–30, 2009.
[8] Y. Dai, M. Zeng, R. Li et al., “Improving detection of siderotic nodules in cirrhotic liver with a multi-breath-hold...
susceptibility-weighted imaging technique, “Journal of Magnetic Resonance Imaging, vol. 34, no. 2, pp. 318–325, 2011.

[9] R. K. Li, M. S. Zeng, S. X. Rao et al., “Using a 2D multibreathehold susceptibility-weighted imaging to visualize intratumoral hemorrhage of hepaticcellular carcinoma at 3T MRI: correlation with pathology,” Journal of Magnetic Resonance Imaging, vol. 36, no. 4, pp. 900–906, 2012.

[10] A. Nonomura, Y. Enomoto, M. Takeda et al., “Invasive growth of hepatic angiomyolipoma a hitherto unreported ominous histological feature,” Histopathology, vol. 48, no. 7, pp. 831–835, 2006.

[11] T. T. Nguyen, B. Gorman, D. Shields, and Z. Goodman, “Malignant hepatic angiomyolipoma: report of a case and review of literature,” American Journal of Surgical Pathology, vol. 32, no. 5, pp. 793–798, 2008.

[12] W. M. S. Tsui, R. Colombari, B. C. Portmann et al., “Hepatic angiomyolipoma: a clinicopathologic study of 30 cases and delineation of unusual morphologic variants,” American Journal of Surgical Pathology, vol. 23, no. 1, pp. 34–48, 1999.

[13] P.-Q. Cai, Y.-P. Wu, C.-M. Xie, W.-D. Zhang, R. Han, and P.-H. Wu, “Hepatic angiomyolipoma: CT and MR imaging findings with clinical-pathologic comparison,” Abdominal Imaging, vol. 38, no. 3, pp. 482–489, 2013.

[14] F. Yan, M. Zeng, K. Zhou et al., “Hepatic angiomyolipoma: various appearances on two-phase contrast scanning of spiral CT,” European Journal of Radiology, vol. 41, no. 1, pp. 12–18, 2002.

[15] K. P. Mermuys, P. K. Vanhoenacker, P. Chappel, and L. van Hoe, “Three-dimensional venography of the brain with a volumetric interpolated sequence,” Radiology, vol. 234, no. 3, pp. 901–908, 2005.

[16] Z. Jin, L. Xia, and Y. P. Du, “Reduction of artifacts in susceptibility-weighted MR venography of the brain,” Journal of Magnetic Resonance Imaging, vol. 28, no. 2, pp. 327–333, 2008.

[17] S. W. Anderson, J. B. Kruskal, and R. A. Kane, “Benign hepatic tumors and iatrogenic pseudotumors,” Radiographics, vol. 29, no. 1, pp. 211–229, 2009.