De-escalating axillary surgery in early-stage breast cancer

Eliza H. Hersh, Tari A. King

Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA, USA

A R T I C L E I N F O
Article history:
Received 12 July 2021
Received in revised form 23 November 2021
Accepted 25 November 2021
Available online 15 December 2021

Keywords:
Axillary surgery
Axillary surgical staging
Axillary lymph node dissection
Sentinel lymph node biopsy

A B S T R A C T
The role of axillary surgery has evolved over the last three decades from routine axillary lymph node dissection (ALND) to sentinel lymph node biopsy to omission of axillary surgery altogether in select patients. This evolution has been achieved through the design and conduct of multiple clinical trials demonstrating that ALND does not impact survival and is not necessary for local control in patients with early-stage breast cancer and limited nodal involvement. Importantly, this practice-changing shift mirrored the trend towards earlier stage at diagnosis and the recognition of the interplay between local and systemic therapies in maintaining local control. There are numerous clinical scenarios today in which axillary staging can be safely avoided, including (1) DCIS treated with lumpectomy, (2) at the time of contralateral prophylactic mastectomy, and (3) in elderly patients with early-stage, HR+/HER2-clinically node-negative (cN0) disease. Ongoing clinical trials seek to expand the cohorts in which surgical nodal staging can be omitted. These populations include a broader range of early-stage, cN0 patients undergoing upfront surgery, as seen in the SOUND, INSEMA, BOOG 2013–08, SOAPET and NAUTILUS trials. Omission of axillary surgery in cN0 patients with HER2+ or triple-negative disease treated with neoadjuvant chemotherapy is also being tested in the ASICS and EUBREAST-01 trials. Continued advances in imaging and the growing role of genomic assays in selecting patients for systemic therapy are likely to further minimize the need for axillary surgery; thereby further reducing the morbidity of local therapy for women with breast cancer.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The role of axillary surgery in the management of breast cancer has evolved considerably over the last three decades; moving away from axillary node dissection to sentinel lymph node biopsy (SLNB) and now perhaps to omission of axillary surgery altogether in appropriately selected patients (Fig. 1) [1–25]. This trend towards less aggressive axillary management is supported by robust literature demonstrating reduced patient morbidity without compromising oncologic outcomes. Ongoing efforts now challenge us to consider the true role of axillary staging in the modern era.

It has long been recognized that axillary surgery does not impact survival. This was first demonstrated in the landmark NSABP B-04 and Kings/Cambridge trials where patients with operable breast cancer and clinically negative axillae (cN0) were randomized to variations of axillary management [1,2]. Notably, in both trials, axillary treatment (surgery or radiation) did not impact overall survival yet did contribute substantially to local control. In the NSABP B-04 trial, rates of axillary recurrence approached 20% in patients who received total mastectomy alone and decreased to 3% or less in patients receiving axillary treatment (surgery or radiation) [2,26]. In parallel to these observations, systemic therapies emerged as a proven modality to reduce breast cancer mortality, with absolute benefits greater among node-positive patients; thus, axillary lymph node dissection (ALND) emerged as the preferred method for axillary staging and local control for the next three decades.

The shift towards earlier stage at diagnosis and the recognition of the interplay between local and systemic therapy in maintaining local control ultimately led to the acceptance of a less invasive approach to staging. The SLNB procedure, initially tested in clinically node-negative breast cancer patients in the NSABP B-32 and
Milan trials [3,4], revolutionized management of the axilla for women with pathologically node-negative disease. For women with clinically negative axillae found to have one or two positive sentinel lymph nodes there is also robust literature comparing SLNB alone versus SLNB plus ALND or axillary radiotherapy (AxRT) demonstrating that the choice of axillary treatment beyond SLNB does not impact local control or survival (Table 1) [5–9,11,27–30].

More recently, trials have demonstrated that among both clinically node-negative and clinically node-positive patients, SLNB after neoadjuvant chemotherapy (NAC) decreases the need for ALND without apparent increased risk of regional recurrence despite reports of false negative rates ranging from 5 to 10% in this setting [16,31–36].

The next frontier is identifying patients who can safely omit axillary surgery altogether. There are several clinical scenarios in which safe omission of SLNB has been demonstrated, yet each has been met with various degrees of acceptance. These include (1) breast conserving therapy (BCT) for ductal carcinoma in situ (DCIS), (2) contralateral prophylactic mastectomy (CPM), and (3) older patients with early-stage clinically node-negative, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative disease where adjuvant therapy decisions will not be impacted by nodal status. There are also a large number of ongoing or planned clinical trials seeking to expand the patient populations where surgical nodal staging can be safely omitted in clinically node-negative patients undergoing upfront surgery and in select patients post NAC. Here we review the challenges and opportunities for omitting axillary surgical staging.

2. Clinical scenarios where SLNB may be omitted

2.1. Ductal carcinoma in situ when treated with breast conserving surgery

Since 2005, the American Society of Clinical Oncology (ASCO) clinical practice guideline for SLNB in patients with early-stage breast cancer has recommended SLNB be performed during mastectomy but discouraged its use during lumpectomy [37]. The rationale for omitting sentinel lymph node (SLN) staging during lumpectomy includes the low rate of documented axillary metastases, even if upstaged on final pathology (ranging from 4 to 15%) [38–42], and the ability to return to the operative room should upstaging occur.

Whether axillary staging should be performed in patients undergoing mastectomy for DCIS remains controversial. Although there have been limited reports of successful SLNB after mastectomy, the index operation is the optimal chance to assess the nodes, particularly if immediate breast reconstruction is planned. In studies limited to DCIS patients who have been selected for mastectomy, the rate of upstaging to invasive cancer ranges from 28 to 48% [43], prompting many authors to suggest that SLNB be performed routinely in these cases, as well as when completion

Table 1

Overview of randomized controlled trials demonstrating that omission of ALND either in favor of observation or radiation is not associated with significant differences in rates of axillary recurrence.

	Z0011 [7]	AMAROS [8]	OTOASOR [9]	IBCSG 23–01 [5]	AATRM [6]
	N = 856	N = 1425	N = 474	N = 933	N = 233
Additional positive nodes ALND	27.3%	32.8%	38.5%	13%	13%
Axillary recurrence: ALND	0.5%	0.4%	2%	0.2%	1.0%
Axillary recurrence: other treatment	1.1%	1.8%	1.7%	1%	1.7%
Median follow-up	9.25yrs	10 yrs	8yrs (mean)	10yrs	5.1yrs
Breast conservation	100%	83%	84%	91%	88%

ALND = axillary lymph node dissection; yrs = years.

* Other treatment includes observation or axillary radiation therapy.
mastectomy is performed after attempt at BCT [42,44,45]. The most recent guidelines from the National Comprehensive Cancer Network (NCCN) reaffirm the ASCO guidelines that SLNB should not be performed during breast conserving surgery (BCS) but should be “strongly considered” in patients undergoing mastectomy, in a patient for whom the location of BCS may compromise future SLNB or if there is a high suspicion or risk of upgrade of the lesion on final pathology. Criteria that have been associated with a higher risk of upgrade include the finding of a mass on clinical breast exam or imaging and calcifications spanning ≥5 cm [46].

Despite these guidelines, there continues to be a trend towards increased use of SLNB in DCIS patients treated with less than mastectomy, exceeding 20% of cases in the U.S. in a 2017 National Surgical Quality Improvement Program (NSQIP) report and 26% of cases in the U.K. in a 2015 audit from the National Health Service (NHS) screening program [42,47].

2.2. Contralateral prophylactic mastectomy

Similarly, there is variation in the use of SLNB staging in patients undergoing contralateral prophylactic mastectomy (CPM). The use of CPM in patients who present with unilateral breast cancer undergoing contralateral prophylactic mastectomy (CPM). The rate of occult carcinoma detection at the time of CPM in contemporary series is 3–5%, more than half of which are noninvasive [51–55]. Yet, the finding of occult invasive carcinoma leads to consideration of ALND for staging, thereby prompting many surgeons to consider SLNB at the time of CPM.

Boughhey et al. performed a decision-making analysis to assess the need for empiric SLNB [56]. They modeled routine SLNB at the time of prophylactic mastectomy (PM) or directed ALND post-mastectomy for cases with occult disease. Assuming an occult invasive cancer rate of 1.9%, 37 SLNB were performed per one breast cancer detected and 73 SLNB were required to avoid one ALND in a node-negative PM patient. Further, the probability of complications per breast cancer detected were higher with routine SLNB as compared to directed ALND for all projected rates of occult cancer up to 28%, when the rate of complications became equal [56]. Ultimately, the authors concluded that directed ALND was more effective given the complications of SLNB and the overall low risk of identification of occult cancer in PM specimens. Similar work from these authors highlights that patients with a history of invasive lobular cancer or patients greater than 60 years old may have a risk of occult cancer in the PM specimen approaching 10% [57].

McLaughlin et al. sought to quantify the risks and benefits of different approaches for screening of the contralateral breast, such as preoperative MRI before PM [53]. In this retrospective single institution series, 4 of 393 patients (1%) were spared an ALND by routine SLNB. Among those with a preoperative MRI, the sensitivity of MRI for detecting otherwise occult disease was 78%, and the negative predictive value was 98%. Of note, all patients with occult invasive cancer had abnormal MRIs [53]. Nonetheless, routine preoperative MRI may be neither a cost-effective nor practical strategy [58].

Few studies have directly investigated risk factors associated with sentinel node positivity in the contralateral axilla [49,59,60]. In a large retrospective study of 420 patients who underwent CPM, Laronga et al. reported an overall occult cancer rate of 4.3% (18/420) [55]. There were 8 (2%) patients with a positive node in the contralateral axilla, the majority of whom had a locally advanced index cancer suggesting that the contralateral nodal disease likely represented cross metastases.

Collectively, the data do not support routine use of SLNB at the time of CPM; yet the risks and benefits of this approach should be discussed with patients at increased risk of contralateral cancer such as those with a germline mutation in a breast cancer susceptibility gene.

2.3. Patients >70 years old with cT1-2cN0 HR-positive/HER2-negative disease

Age became an integral component of the breast cancer treatment algorithm when the Milan III trial demonstrated that older women had fewer local recurrences, regardless of postoperative radiation therapy (RT) [61]. The elderly demographic, which represents approximately 30% of all invasive breast cancers, typically presents with smaller, low grade and node-negative tumors that are HR positive and responsive to endocrine therapy [62,63]. Several randomized trials have investigated rates of axillary relapse with or without ALND in older patients with favorable tumors (defined as cN0 and estrogen receptor [ER] positive) receiving hormonal therapy with or without RT [64–66]. All trials reported low rates of axillary recurrence, ranging from 1.5% at 10 years of follow up in the CALGB 9343 trial [43] to 5% at 15 years of follow up in the Milan experience [65] with no differences in disease-free survival (DFS), breast cancer mortality, or overall survival based on the performance of an ALND.

The CALGB 9343 trial, a randomized trial of BCS plus tamoxifen with our without RT in women 70 years and older with cT1N0 breast cancer, first published in 2003 and updated in 2013 [40,43], was not designed to address management of the axilla, but rather to test the hypothesis that older women with favorable breast cancer could safely omit RT after BCS. When reported, however, it was determined that approximately 60% of patients in the trial had no axillary staging or treatment. At 10 years, the axillary failure rate was 3% in the tamoxifen only group and 0% in the tamoxifen plus RT group, providing promising data that axillary failure is an uncommon event in this age demographic with early-stage ER-positive breast cancer [20].

Collectively these data led to a statement from the Society of Surgical Oncology as part of the “Choosing Wisely” campaign discouraging routine use of SLNB in clinically node-negative women ≥70 years of age with early-stage HR-positive, HER2-negative invasive breast cancer where the decision for hormonal therapy has already been made. Importantly, the statement argues against routine use and suggests that axillary staging should be considered if the results will impact radiation or systemic therapy recommendations [67].

As described above for patients with DCIS, use of SLNB among the elderly population remains high despite data supporting its diminution, with rates reported from both population-based datasets and single institution series ranging from 80 to 88% in those greater than 70 years of age and 46–76% in patients greater than 80 years old [68–72]. Undoubtedly in patients for whom therapy will be decided based on lymph node status, the selective, individualized use of SLNB is prudent; however, with increasing use of genomic assays in the selection of systemic therapy and low rates of axillary failure in older patients, the omission of SLNB in elderly patients with favorable tumors warrants consideration.

3. The future of axillary staging

3.1. Early-stage breast cancer

There are now several ongoing trials examining whether SLNB contributes to staging or local control in patients with early-stage, clinically node-negative breast cancer (Table 2) [21–25]. Importantly, these studies are not limited to the elderly population or to patients treated with upfront breast conservation and they are not
limited by molecular subtype. All trials do require negative axillary imaging, predominantly with ultrasound although additional modalities are used in some. Among the major international trials in progress on this topic, the SOUND trial [21] was one of the earliest to open and has completed accrual (n = 1464). This multicenter study designed by the European Institute of Oncology focuses on cT1N0 patients (cN0 status confirmed on preoperative axillary ultrasound [AUS]) planned for BCS with whole breast irradiation. Patients with a negative AUS or negative fine needle aspiration are randomized to either SLNB (with completion ALND in cases with macrometastases) or no axillary surgery. The primary endpoint is 5-year distant DFS. The trial also included an ancillary analysis to examine the impact of SLNB vs no SLNB on post-operative physical function and symptoms of the ipsilateral upper limb using the QuickDASH (Disability of Arm, Shoulder and Hand) validated questionnaire. The authors reported on 176 patients, 94 of whom underwent SLNB and 82 of whom were observed in the setting of BCT. Not surprisingly, SLNB was associated with worse early post-operative physical function and symptoms when compared to the group that did not undergo axillary surgery [73]. While these differences resolved over time, they serve as an important reminder that although SLNB is a less invasive procedure it is still associated with significant patient morbidity.

The INSEMA trial (Germany, NCT02466737) [22], which also recently completed accrual, is a non-inferior trial designed to show that early-stage breast cancer patients managed with reduced extent of axillary surgery do not have inferior 5-year invasive DFS outcomes as compared with the standard treatment arm. cT1-2N0 patients (cN0 defined as negative physical exam and AUS) planned for BCS with whole breast radiation were randomized in a 1:4 ratio to either no axillary surgical intervention or axillary SLNB. Patients with SLNB and pN+(sn) status are secondarily randomized to either SLNB alone or completion ALND in cases with fewer than four involved nodes (1–3 macrometastases). Patients with four or more metastatic sentinel lymph nodes undergo completion ALND.

In the Dutch BOOG 2013–08 trial (Dutch, NCT02271828) [23], cT1-2N0 patients undergoing either upfront BCT or neoadjuvant therapy are randomized to SLNB or no SLNB, with the primary endpoint of regional recurrence at 5 and 10 years. The aim is to decrease the number of breast cancer patients receiving overtreatment of the axilla, in order to positively influence axillary morbidity and quality of life. The SOAPET trial (China, NCT04072653) [24] is a two phase study, the first phase will first evaluate the negative predictive value of pre-operative axillary assessment, including routine imaging examinations and lymph-PET. In the second phase, SLNB will be spared in patients with negative preoperative axillary assessment. Finally, the NAUTILUS trial (Korea, NCT04303715) [25], is a prospective, multicenter, randomized trial enrolling cT1-2N0 BCS candidates with negative preoperative axillary assessment rates of 90% and FNR of 13%. Patients with SLNB staging may not be necessary for adjuvant therapy decision making. Extrapolating one step further, based on data from ACOSOG Z0011 [7] and EORTC 10981–22023 AMAROS [8] it is unlikely that surgery will be needed for local control in the majority of these patients.

3.2. Post neoadjuvant chemotherapy

The role of axillary surgery after NAC remains an area of active investigation. In the cN0 population, SLNB can be reliably used to stage the axilla after NAC and decreases the need for ALND, even in patients with larger tumors where the likelihood of positive nodes is greater [31]. In the cN1 population, more recent attention has been paid to those who experience a good clinical response to NAC with clinical conversion to node-negative status. Several prospective trials have reported the feasibility of SLN staging in this population focusing on the SLN identification rate and the false negative rate (FNR) of the procedure. Two meta-analyses [76,77] have compiled these efforts demonstrating very consistent results; SLN identification rates of 90% and FNR of 13–14% which can be lowered to less than 10% by attention to certain technical details such as the use of dual tracer and the removal of at least 3 SLNs. Early reports of regional and distant recurrences in cN1 patients treated with NAC and deemed pN0 by SLNB alone are reassuring that this is an oncologically safe approach [33–36]. This has inspired efforts to identify predictors of node negativity after NAC (ypN0 status), first in patients who are cN0 prior to treatment, and most notably in those with a high probability of achieving a pathologic complete response (pCR). Patients with HER2-positive breast cancer who receive NAC plus anti-HER2

Table 2

Select ongoing and planned studies examining SLNB vs. axillary observation in patients with normal axillary imaging.

Trial	Planned Enrollment (N)	Inclusion Criteria	Study Design	Primary endpoint
SOUND (Europe, NCT01267490)	1560	T < 2 cm, BCS + whole breast radiation	SLNB v. observation	DFS at 6 months
INSEMA trial (Germany, NCT02466737)	5940	T < 5 cm, BCS + whole breast radiation	SLNB v. observation in patients with positive SLNB, second randomization to ALND v. no ALND	DFS at 5 years
BOOG 13–08 (Dutch, NCT02271828)	1644	T < 5 cm, planned BCS + whole breast radiation	SLNB v. observation	Regional recurrence at up to 10 years
SOAPET (China, NCT04072653)	1528	T < 5 cm, planned BCS + whole breast radiation	Stage 1: NPV of lymph PET	Stage 1: NPV at 6 months
NAUTILUS (Korea, NCT04303715)	1734	T < 5 cm, BCS + whole breast radiation + adequate systemic therapy	SLNB v. observation	Stage 2: DFS and LRFS at 5 years

ALND = axillary lymph node dissection; BCS = breast conserving surgery; DFS = disease-free survival; LRFS = local recurrence-free survival; NPV = negative predictive value; SLNB = sentinel lymph node biopsy.
therapy achieve a pCR in 65–74% of cases and those with triple-negative breast cancer similarly achieve high rates of pCR in 50–67% of cases [78–81]. When examined further, patients in these subgroups who attain a breast pCR after NAC have very low rates of nodal positivity, approximating less than 2% (Table 3) [81–84].

Collectively, these observations inspired the design of two prospective clinical trials to determine whether SLNB can omitted altogether after NAC in patients presenting with cN0 disease: the Avoiding Sentinel Lymph Node Biopsy in Breast Cancer Patients After Neoadjuvant Chemotherapy (ASICS) trial in the Netherlands [85] and the EUBREAST-01 Trial [86], a multicenter study by the European Breast Cancer Research Association of Surgical Trialists, both of which are currently underway. The ASICS trial is a non-inferiority, single arm trial open to both BCT and mastectomy patients in which SLNB will be omitted in cT1–3N0 HER2-positive or triple-negative breast cancer (TNBC) patients with a radiographic complete response on MRI after NAC. cN0 status will be confirmed with physical exam, AUS and positron emission tomography (PET). The primary endpoint is 5-year rate of axillary recurrence with a number of secondary endpoints including quality of life, worry and standard survival outcomes. An axillary recurrence rate of <6% at 5 years will be considered acceptable.

The EUBREAST-01 trial is a prospective, non-randomized single arm multicenter trial of cT1c–T3N0 TNBC or HER2-positive breast cancer treated with preoperative NAC in patients planned for BCS with whole breast RT [86]. cN0 status is determined by physical exam and ultrasound prior to NAC and those with a breast pCR after NAC will undergo BCS to ascertain the breast pathologic response. Those who achieve a breast pCR will then be eligible for no further axillary surgery with the primary endpoint of 3-year axillary recurrence-free survival. The measure of success is a 3-year axillary recurrence-free survival rate of at least 98.5%. For patients who do not achieve a breast pCR, SLNB will be performed and subsequent management based on pathologic findings.

4. Conclusions

Opportunities to de-escalate axillary surgery and minimize patient morbidity have been an important area of investigation over the last three decades and remain a high priority for our patients. It is clear that today, SLNB remains the staging procedure of choice both in upfront surgery patients and post NAC patients with cN0 and cN1 disease. Improvements in axillary imaging—in parallel with the expansion of the role of genomic assays in selecting patients for systemic therapy—may obviate the need for axillary surgery to inform most systemic therapy decisions in cT1–2 N0 patients in the future. For early-stage breast cancer patients, routine axillary imaging to rule out unsuspected, high-volume disease will likely diminish the need for axillary surgery for staging and control. Overall, the increasing role of biology over anatomy in systemic therapy decisions are likely to supersede SLNB as a staging procedure. For more advanced disease, response to therapy will likely be the primary determinant of the extent of axillary treatment.

Funding

None.

Declaration of competing interest

T.A. King reports Speakers honoraria and advisory board participation for Exact Sciences (formerly Genomic Health); and Faculty, PrecisCA cancer information service.

Acknowledgments

We thank Kaitlyn T. Bifolck, BA, for her editorial support.

References

[1] Turnbull AR, Turner DT, Chant AD, et al. Treatment of early breast cancer. Lancet 1978;2:7–9.
[2] Fisher B, Montague E, Redmond C, et al. Comparison of radical mastectomy with alternative treatments for primary breast cancer. A first report of results from a prospective randomized clinical trial. Cancer 1977;39:2827–39.
[3] Krag DN, Anderson SJ, Julian TB, et al. Sentinel-lymph-node cessection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 2010;11:927–33.
[4] Veronesi U, Zucali R, Luini A. Local control and survival in early breast cancer: the Milan trial. Int J Radiat Oncol Biol Phys 1986;12:717–20.
[5] Galimberti V, Cole BF, Zurrada S, et al. Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol 2013;14:297–305.
[6] Sola M, Alberro JA, Fraile M, et al. Complete axillary lymph node dissection versus clinical follow-up in breast cancer patients with sentinel node metastasis: final results from the multicenter clinical trial AATRM 048/13/2000, Ann Surg Oncol 2013;20:120–7.
[7] Giuliano AE, Hunt KK, Ballman KV, et al. Axillary dissection versus no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 2011;305:569–75.
[8] Donker M, van Tienhoven G, Straver ME, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 2 non-inferiority trial. Lancet Oncol 2014;15:1303–10.
[9] Savolt A, Musonda P, Matrai Z, et al. [Optimal treatment of the axilla after positive sentinel lymph node biopsy in early invasive breast cancer. Early results of the OTOSAR trial. Orv Hetil 2013;154:1934–42.
[10] Goyal A, Dodwell D. POSNOC: a randomised trial looking at axillary treatment in women with one or two sentinel nodes with macrometastases. Clin Oncol 2015;27:692–5.
[11] de Boniface J, Frisell J, Andersson Y, et al. Survival and axillary recurrence following sentinel node-positive breast cancer without completion axillary lymph node dissection: the randomized controlled SENO MAC trial. BMC Cancer 2017;17:379.
[12] Tinterri C, Canavesi G, Bruzzi P, Dozin B. SINODAR ONE, an ongoing randomized clinical trial to assess the role of axillary surgery in breast cancer patients with one or two macrometastatic sentinel nodes. Breast 2016;30: 197–200.
[13] Boughery JC, Suman VJ, Mittenford EA, et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACSOSG Z1071 (Alliance) clinical trial. JAMA 2013;310:1455–61.
[14] Kuehn T, Bauerfeind I, Fehm T, et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol 2013;14:609–18.
[15] Boileau JF, Pieroir B, Basik M, et al. Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: the SN FNCAD Study. J Clin Oncol 2008;26:584–6.

[16] Classe JM, Loaec C, Gimbergues P, et al. Sentinel lymph node biopsy without axillary lymphadenectomy after neoadjuvant chemotherapy is accurate and safe for selected patients: the GANEA 2 study. Breast Cancer Res Treat 2010;120:83–91.

[17] van Nijnatten TJ, Simons JM, Smidt ML, et al. A novel less-invasive approach for axillary staging after neoadjuvant chemotherapy in patients with axillary node-positive breast cancer by combining radioactive iodine seed localization in the axilla with sentinel node procedure (RadNAS): a Dutch prospective multicenter validation study. Clin Breast Cancer 2017;17:399–402.

[18] Clinicaltrials.gov. Comparison of Axillary Lymph Node Dissection With Axillary Radiation for Patients With Node-Positive Breast Cancer Treated With Chemotherapy. https://clinicaltrials.gov/ct2/show/NCT01901094. Accessed October 12, 2020.

[19] Clinicaltrials.gov. Standard or Comprehensive Radiation Therapy in Treating Patients With Early-Stage Breast Cancer Previously Treated With Chemotherapy and Surgery. https://clinicaltrials.gov/ct2/show/NCT01872975.

[20] Hughes KS, Schnaper LA, Bellon JR, et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of CALGB 9344. J Clin Oncol 2013;31:2389–7.

[21] Clinicaltrials.gov. Sentinel Node Vs Observation After Axillary Ultra-souND (SOUND). https://clinicaltrials.gov/ct2/show/NCT02167490.

[22] Clinicaltrials.gov. Comparison of Axillary Sentinel Lymph Node Biopsy Versus No Axillary Surgery (INSEMA). https://clinicaltrials.gov/ct2/show/NCT01956737.

[23] Clinicaltrials.gov. Omitting Sentinel Node Procedure in Breast Cancer Patients Undergoing Breast Conserving Therapy. https://clinicaltrials.gov/ct2/show/NCT04917228.

[24] Clinicaltrials.gov. Sentinel Node Vy Vs Observation After Axillary PET. https://clinicaltrials.gov/ct2/show/NCT04072653.

[25] Clinicaltrials.gov. No Axillary Surgical Treatment in Clinically Lymph Node Negative Patients After UltraSonography. https://clinicaltrials.gov/ct2/show/NCT04303715.

[26] Fisher B, Jeong JH, Anderson S, et al. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 2002;347:567–75.

[27] Giuliano AE, McCall L, McAnally L, et al. Eight-year follow-up result of the OTOASOR trial: the Optimal Treatment of the Axilla - surgery or radiotherapy after mastectomy for ductal carcinoma in situ (DCIS). Breast 2017;26:931–6.

[28] Bonev V, De Paz Villanueva CC, Solomon N, et al. Is sentinel lymph node dissection necessary in all patients with ductal carcinoma in situ undergoing total mastectomy? Am Surg 2016;82:982–4.

[29] Watanabe Y, Anan K, Furuya M, et al. Upstaging to invasive ductal carcinoma after mastectomy for ductal carcinoma in situ: predictive factors and role of sentinel lymph node biopsy. Breast Cancer 2018;25:663–70.

[30] Wilkie C, White L, Dupont E, et al. An update of sentinel lymph node mapping in patients with ductal carcinoma in situ. Am Surg 2018;84:341–7.

[31] Pyfer BJ, Jonczyk M, Jean J, et al. Analysis of surgical trends for axillary lymph node management in patients with ductal carcinoma in situ using the NSQIP database: are we following national guidelines? Ann Surg Oncol 2020;27:1448–55.

[32] Intra M, Rotmensz N, Veronesi P, et al. Sentinel node biopsy is not a standard procedure in ductal carcinoma in situ of the breast: the experience of the European Institute of Oncology on 854 patients in 10 years. Ann Surg Oncol 2014;21:315–9.

[33] Miller-Ocuin JL, Howard-McNatt M, Levine EA, Chiba A. Is sentinel lymph node biopsy necessary for ductal carcinoma in situ patients undergoing mastectomy? Am Surg 2020;86:955–7.

[34] Piłewskie M, Karsten M, Radosa J, et al. Is sentinel lymph node biopsy indicated at completion mastectomy for ductal carcinoma in situ? Ann Surg Oncol 2016;23:2229–34.

[35] Gradishar WJ, Anderson BO, Balassanian R, et al. Breast cancer, version 4.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 2018;16:310–20.

[36] Nicholson S, Hanby A, Clements K, et al. Variations in the management of the axilla in screen-detected ductal carcinoma in situ: evidence from the UK NHS breast screening programme audit of screen detected DCIS. Eur J Surg Oncol 2015;41:86–93.

[37] Tuttle TM, Barrio AV, Klimberg VS, et al. Guidelines for guidelines: an assessment of the American Society of Breast Surgeons contralateral prophylactic mastectomy consensus statement. Ann Surg Oncol 2017;24:1–2.

[38] Tuttle TM, Habermann EB, Grund EH, et al. Increasing use of contralateral prophylactic mastectomy for breast cancer patients: a trend toward more aggressive surgical treatment. J Clin Oncol 2007;25:5203–9.

[39] Kurian AW, Lichtensztajn D, Keegan TH, et al. Use of and mortality after bilateral mastectomy compared with other surgical treatments for breast cancer in California, 1998–2011. JAMA 2014;312:902–14.

[40] Peralta EA, Ellenhorn JD, Wagar LD, et al. Contralateral prophylactic mastectomy improves the outcome of selected patients undergoing mastectomy for breast cancer. Am J Surg 2000;180:435–43.

[41] Dupont EL, Kuhn MA, McCann C, et al. The role of sentinel lymph node biopsy in patients undergoing contralateral prophylactic mastectomy. Breast Cancer Res Treat 2005;90:274–8.

[42] McLaughlin SA, Stempel M, Morris EA, et al. Can magnetic resonance imaging be used to select patients for sentinel lymph node biopsy in prophylactic mastectomy? Cancer 2008;112:1214–21.

[43] Fretias V, Crystal P, Kulkarni SR, et al. The value of breast MRI in high-risk patients with newly diagnosed breast cancer to exclude invasive disease in the contralateral prophylactic mastectomy: is there a role to choose wisely patients for sentinel node biopsy? Cancer Med 2016;5:1031–6.

[44] Lagrange C, Lee MC, McGuire KP, et al. Indications for sentinel lymph node biopsy in the setting of prophylactic mastectomy. J Am Coll Surg 2009;209:746–52, quiz 800-741.

[45] Boughey JC, Cornier JH, Xing Y, et al. Analysis decision to assess the efficacy of routine sentinel lymph node dissection in patients undergoing prophylactic mastectomy. Breast Cancer Res Treat 2007;110:2542–50.

[46] Boughey JC, Khakpour N, Meric-Bernstam F, et al. Selective use of sentinel lymph node surgery during prophylactic mastectomy. Cancer 2006;107:1426–7.

[47] Black D, Specht M, Lee JI, et al. Detecting occult malignancy in prophylactic mastectomy: preoperative MRI versus sentinel lymph node biopsy. Ann Surg Oncol 2007;14:2477–84.

[48] Murphy BL, Glasgow AE, Keeney GL, et al. Selective use of sentinel lymph node surgery in patients undergoing prophylactic mastectomy using intraoperative pathology. Ann Surg Oncol 2017;24:3032–7.

[49] Yi M, Meric-Bernstam F, Middleton LP, et al. Predictors of contralateral breast cancer in patients with unilateral breast cancer undergoing contralateral prophylactic mastectomy. Cancer 2009;115:962–71.

[50] Veronesi U, Luini A, Del Vecchio M, et al. Radiotherapy after breast-preserving surgery in patients for sentinel node biopsy? Cancer 2007;110:1082–9.

[51] Chagpar AB, Horowitz N, Sanft T, et al. Does lymph node status in breast cancer patients evaluated via sentinel node biopsy after neoadjuvant chemotherapy influence the indication for adjuvant chemotherapy? Ann Oncol 2017;28:109–15.

[52] van Nijnatten TJ, Simons JM, Smidt ML, et al. A novel less-invasive approach for axillary staging after neoadjuvant chemotherapy in patients with axillary node-positive breast cancer by combining radioactive iodine seed localization in the axilla with sentinel node procedure (RadNAS): a Dutch prospective multicenter validation study. Clin Breast Cancer 2017;17:399–402.

[53] van Nijnatten TJ, Simons JM, Smidt ML, et al. A novel less-invasive approach for axillary staging after neoadjuvant chemotherapy in patients with axillary node-positive breast cancer by combining radioactive iodine seed localization in the axilla with sentinel node procedure (RadNAS): a Dutch prospective multicenter validation study. Clin Breast Cancer 2017;17:399–402.

[54] van Nijnatten TJ, Simons JM, Smidt ML, et al. A novel less-invasive approach for axillary staging after neoadjuvant chemotherapy in patients with axillary node-positive breast cancer by combining radioactive iodine seed localization in the axilla with sentinel node procedure (RadNAS): a Dutch prospective multicenter validation study. Clin Breast Cancer 2017;17:399–402.
older patients with breast cancer: first results of International Breast Cancer Study Group Trial 10-93. J Clin Oncol 2006;24:337–44.

[67] Oncology SoS. Five things physicians and patients should question. In: 7/12/2016 edition. vol. 2; 2016.

[68] Kantor O, Pesce C, Liederbach E, et al. Surgery and hormone therapy trends in octogenarians with invasive breast cancer. Am J Surg 2016;211:541–5.

[69] Mamtani A, Gonzalez JJ, Neo D, et al. Early-stage breast cancer in the octogenarian: tumor characteristics, treatment choices, and clinical outcomes. Ann Surg Oncol 2016;23:3371–8.

[70] Chagpar AB, Hatzis C, Pusztai L, et al. Association of LN evaluation with survival in women aged 70 Years or older with clinically node-negative hormone receptor positive breast cancer. Ann Surg Oncol 2017;24:3073–81.

[71] Dominici LS, Sineshaw HM, Jemal A, et al. Patterns of axillary evaluation in older patients with breast cancer and associations with adjuvant therapy receipt. Breast Cancer Res Treat 2018;167:555–66.

[72] Kalinsky K, Barlow WE, Meric-Bernstam F et al. First results from a phase III randomized clinical trial of standard adjuvant endocrine therapy (ET) +/- chemotherapy (CT) in patients (pts) with 1-3 positive nodes, hormone receptor-positive (HR+) and HER2-negative (HER2-) breast cancer (BC) with recurrence score (RS) < 25: SWOG S1007 (RxPonder) [abstract]. Presented at the 2020 San Antonio Breast Cancer Symposium. https://www.abstractsonline.com/presentation/2794.

[73] El Hage Chehade H, Headon H, El Tokhy O, et al. Is axillary sentinel lymph node biopsy a viable alternative to complete axillary dissection following neoadjuvant chemotherapy in women with node-negative breast cancer at diagnosis? An updated meta-analysis involving 3,398 patients. Am J Surg 2016;212:969–81.

[74] Samiei S, van Nijnatten TJA, de Munck L, et al. Correlation between pathologic complete response in the breast and absence of axillary lymph node metastases after neoadjuvant systemic therapy. Ann Surg 2020;271:574–80.

[75] Tadros AB, Yang WT, Krishnamurthy S, et al. Identification of patients with documented pathologic complete response in the breast after neoadjuvant chemotherapy for omission of axillary surgery. JAMA Surg 2017;152:665–70.

[76] Clinicaltrials.gov. Avoiding Sentinel Lymph Node Biopsy in Breast Cancer Patients After Neadjuvant Chemotherapy (ASICS). https://clinicaltrials.gov/ct2/show/NCT04225858.

[77] Reimer T, Glass A, Bottori E, et al. Avoiding axillary sentinel lymph node biopsy after neoadjuvant systemic therapy in breast cancer: rationale for the prospective, multicentric EU-BREAST-01 trial. Cancers 2020;12.