Facile synthesis of catalytic AuPd nanoparticles within capillary microreactors using polyelectrolyte multilayers for the direct synthesis of H2O2

Citation for published version (APA):
Kanungo, S., Paunovic, V., Schouten, J. C., & Neira D'Angelo, M. F. (2017). Facile synthesis of catalytic AuPd nanoparticles within capillary microreactors using polyelectrolyte multilayers for the direct synthesis of H2O2. Nano Letters, 17(10), 6481-6486. https://doi.org/10.1021/acs.nanolett.7b03589

DOI:
10.1021/acs.nanolett.7b03589

Document status and date:
Published: 11/10/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 15. May. 2021
Facile Synthesis of Catalytic AuPd Nanoparticles within Capillary Microreactors Using Polyelectrolyte Multilayers for the Direct Synthesis of H₂O₂

Shamayita Kanungo, Violeta Paunovic, Jaap C. Schouten, and M. Fernanda Neira D’Angelo

Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

Supporting Information

ABSTRACT: Microreactors present innovative solutions for problems pertaining to conventional reactors and therefore have seen successful application in several industrial processes. Yet, its application in heterogeneously catalyzed gas–liquid reactions has been challenging, mainly due to the lack of an easy and flexible methodology for catalyst incorporation inside these reactors. Herein, we report a facile technique for obtaining small (<2 nm) and well-distributed catalytic nanoparticles on the walls of silica-coated capillaries, that act as micro(channel) reactors. These particles are formed in situ on the reactor walls using polyelectrolyte multilayers (PEMs), built by layer-by-layer self-assembly. Manipulating the PEMs’ synthesis condition gives easy control over metal loading, without compromising on particle size. Both monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles were successfully obtained using this technique. Finally, these catalytic microreactors were found to exhibit exceptional activity for the direct synthesis of hydrogen peroxide from H₂ and O₂.

KEYWORDS: Polyelectrolyte multilayers (PEMs), AuPd catalyst, hydrogen peroxide, direct synthesis, bimetallic catalysts, microreactor
PEMs are formed by a layer by layer (LbL) self-assembly technique, first introduced by Decher.30,31 It is the alternating deposition of oppositely charged polyelectrolytes on a substrate, thus giving rise to multilayers of thin films. PEMs can be fabricated on surfaces having different shapes, sizes, and geometries, where the film properties can be easily controlled by changing the assembly conditions (like pH, electrolyte type, and concentration). This technique has found application in various fields including antireflective coatings, biological applications, drug delivery, and formation of nanoparticles for membrane and catalytic applications.36–40 In particular, the synthesis and in situ formation of nanoparticles using PEMs has been studied extensively by the groups of Stroeve and Rubner, among others.41

Although highly versatile, the application of this method in catalyst synthesis has been limited, with only a few studies reported in literature.38–40,47,48 Moreover, the use of PEMs for the in situ synthesis of nanoparticles to form wall coated catalytic microreactors has not been demonstrated before. Since PEMs can be easily fabricated on surfaces having different shapes and sizes, it is an ideal technique to be applied in microreactors. In this study, PEMs were first assembled on the micro reactor walls, which provide ideal charged surfaces for the controlled deposition of the metal precursors, which subsequently form highly dispersed nanoparticles. The catalytic microreactors, thus synthesized, were then applied to test their performance in the direct synthesis of H2O2.

Figure 1 shows the overall scheme of the PEMs formation technique, followed by metal deposition and characterization. Fused silica, 320 μm ID capillaries of 1–1.5 m length with a silica precoat layer (CP-silicaPLOT, Agilent), were first pretreated by flushing with ammonium nitrate solution (1 M), followed by drying at 120 °C for 12 h and calcination at 300 °C for 2 h in a static air oven. The LbL-method was implemented for obtaining PEMs by flushing solutions of poly(acrylic acid) (PAA) and polyethylene imine (PEI) alternatively through these microchannels by means of a syringe pump. PAA (35 wt % in H2O, Sigma-Aldrich) was prepared as a 10 mg/mL solution and PEI (50 wt % in H2O, Sigma-Aldrich) as a 2 mg/mL solution with DI water. Both solutions were treated with hydrochloric acid (0.1 M) and sodium hydroxide (0.1 M) to adjust the pH to 4 and 9 for PAA and PEI, respectively. Each fluid was fed through the capillary at 4 mL/h for 20 min with an intermittent rinse with DI water. Consecutive repetition of the same procedure resulted in the formation of multiple layers, such that one flushing with PAA followed by PEI led to formation of one layer of polyelectrolyte. Thus, capillaries with one, two, and three layers each were prepared and were denoted as 1LbL, 2LbL, and 3LbL, respectively. The formation of PEMs on the silica layer is clearly evidenced in the SEM image of Figure 1b. Moreover, the layer thickness was observed to increase with the number of cycles (Figure S2).

After formation of PEMs, metal deposition was carried out by passing solutions of HAuCl4 (Aldrich, 30 wt % in HCl) and K2PdCl4 (Sigma, 99.99%) as precursors. For AuPd deposition, a solution was prepared using these precursors in DI water, according to the desired loading of 5 wt % total metal (Au/Pd = 1:2 molar ratio), based on the amount of silica precoat in the capillary and the empty volume. For example, in case of the AuPd capillary a 10 mL solution having concentration of 5.7 mgmetal/mL (Au/Pd = 1:2, molar ratio) was prepared. For the metal deposition, the capillary was completely filled with this solution using a syringe pump at 15 mL/h and kept undisturbed for about 10 min. After this time, the excess solution was removed by flushing the capillaries with N2. Next, reduction of the metal(s) was carried out by flushing ~1 mg/mL NaBH4 solution through the capillaries at 15 mL/h. As soon as this solution was passed, the capillary appeared dark, indicating successful reduction and hence metal incorporation. The reduction was carried out until no more visible color change in the capillary was observed, which was about 10 min. The detailed procedure for PEMs formation and metal deposition, along with photos are provided in the Supporting Information.
loading was also 5 wt % and they were prepared in a similar manner as mentioned above. Finally, the capillaries were at dried at 120 °C for 12 h and calcined at 380 °C for 4 h. The capillaries thus obtained, were named x/yLbL, where x denotes the metal(s) deposited and y stands for the number of PEMs. The following capillaries were synthesized in this manner: AuPd/1LbL, AuPd/2LbL, AuPd/3LbL, Au/2LbL, and Pd/2LbL. In addition, a powder sample named AuPd/SiO2_2LbL was prepared in the same manner, using Davisil 643 as support.

This was done to perform additional characterization like thermogravimetric analysis (TGA) and UV−vis spectroscopy (UV−vis), which were not possible with the capillary samples. Moreover, the successful preparation of the powder catalyst exhibited the flexibility of this method for metal deposition on conventional supports with the advantage of tuning the metal loading and particle size.

The formation of metal nanoparticles was confirmed by Transmission Electron Microscopy (TEM), as shown in Figure 2. It can be seen that the metal nanoparticles are well distributed throughout the support surface with a uniform particle size distribution. The density of particles is clearly more in the 3LbL sample, compared to the 2LbL, indicating a higher metal loading in the former, which follows from an increased number of sites for ion exchange. It can also be observed that the method is successful in yielding very small particles (~1 nm in size). Increase in the number of PEMs and hence the metal loading, did not lead to particle agglomeration. This was also observed in case of the monometallic (Au/2LbL and Pd/2LbL) capillaries, where ~1−2 nm sized particles were observed (Supporting Information). Such precise control over particle size is relevant as it plays an important role in determining activity and selectivity in most catalytic reactions, making the control of particle size an ongoing challenge in catalysis research.49−51 Moreover, recent studies have shown that single sites and nanoclusters (NPs with size <2 nm) are the most active sites in catalytic processes.52−56 Along with the TEM images we also see the selected area electron diffraction (SAED) patterns as insets in Figure 2a,b that show well-defined diffraction rings and face-centered cubic diffraction features (the diffraction rings represent the (111), (200), (220), and (311) planes). The existence of a single set of rings indicates successful alloying of Au and Pd and excludes phase segregation. A further confirmation that the particles are bimetallic and do not constitute a mixture of separate Au and Pd nanoparticles was done by carrying out UV−vis spectroscopy (Supporting Information, Figure S3). More in depth characterization to reveal the nanoparticle structure (core−shell/alloy, existence of defects, and so forth) is being carried out and will be reported in a future publication.

To have a more quantitative picture about the control of metal loading with different number of PEMs, inductively coupled plasma-optical emission spectroscopy (ICP-OES) was employed to determine the exact metal loading in all the capillaries. As observed in Table 1, as the number of PEMs increased the total weight loading of metal also increased. Introduction of each layer increased the loading by approximately 2.6 times and three layers of PEMs (3LbL) proved sufficient to approach the target loading of 5 wt %. This
Table 1. Effect of Layers on Metal Loadings

sample	Au (wt %)	Pd (wt %)	total metal (wt %)	Au/Pd w/w (real)	Au/Pd w/w (target)
AuPd/1LbL	0.30	0.37	0.68	0.81	0.92
AuPd/2LbL	0.73	1.01	1.84	0.70	
AuPd/3LbL	2.22	2.48	4.88	0.96	

"Determined by ICP-OES.

exponential increase in metal deposition is most likely due to an exponential growth of the PEMs, which is one of the growth modes (the other being linear) of PEMs and depends on the assembly conditions. Along with the metal content and nanoparticle size (as discussed in the previous section), it is also important to obtain the targeted Au/Pd ratio, as this can further effect the Au–Pd interaction and finally the catalytic activity. As observed, the real Au/Pd ratio ranges from 0.7 to 0.9, which is not far from the target of 0.92 and is not affected with change in the number of PEMs (and hence metal loading). Hence, we see that this method of metal deposition allows easy tuning of the amount of metal incorporation. The scope of attaining high metal loadings is desired, as it increases the operational window of micro reactor technology.

Finally, the catalytic activity of these capillaries was tested for the direct synthesis of H2O2 using concentrated H2–O2 mixtures. The detailed experimental setup, reaction conditions, and expressions for evaluating catalytic activity (conversion, selectivity, and rate of formation of H2O2) can be found in the Supporting Information. Briefly, the gas phase consisted of a 1:1 mixture of H2 and O2 and the liquid phase consisted of solvent with promoters. The H2 conversion was determined by an online gas chromatograph, while the amount of peroxide formed was quantified by titration with standard cerium(IV) sulfate solution.

Figure 3 shows the peroxide formed with time on stream for AuPd/2LbL, along with H2 conversion and H2O2 selectivity. A steady peroxide yield of ~1 wt % is reached after 2 h of reaction, where the average selectivity and H2 conversion are 67% and 42%, respectively. The average is calculated between 180 and 300 min of reaction. To compare the performance of different capillaries, we use the term productivity, defined by molH2O2/kgcat/h, as this allows comparison of capillaries with different lengths. This is shown in Figure 4, where we see that the 2LbL capillary is more active in peroxide formation, than the 1LbL; whereas the latter has higher peroxide selectivity. The higher activity can be correlated to the higher metal loading in the 2LbL capillary, whereas the loss in selectivity can be attributed to an increase in the total sites (due to increase in loading) for hydrogenation and decomposition of the formed peroxide. Surprisingly, the Au/2LbL capillary also produced substantial amount of peroxide with productivity slightly higher than 1LbL and selectivity similar to 2LbL. This is rather contrary to values reported in literature where activity of Au catalysts for peroxide was substantially lower than the bimetallic counterpart. A probable explanation for this behavior may be attributed to the very small Au nanoparticles achieved using this synthesis technique, compared to the ones used in literature for this reaction. The catalytic behavior of Au is strongly dependent on particle size with small changes leading to significant effect on the catalytic activity. The Pd/2LbL capillary was also found to be active for peroxide formation, but its yield decreased drastically with time on stream (from 0.9 to 0.07 wt % in 3 h, Figure S6). This can be attributed to Pd leaching from this capillary, as verified by ICP-OES of liquid samples collected during reaction. This is a common occurrence in Pd catalysts and is another reason for alloying with Au, as it inhibits Pd leaching. Accordingly, the Au and AuPd capillaries did not exhibit metal leaching (within limits of detection) during reaction (Table S3). In summary, the performance of the AuPd capillary was most superior, followed by Au and finally Pd.

Finally, we compare the performance of the capillary microreactors developed in this study with values in literature, as enumerated in Table 2. It must be noted that apart from using catalysts prepared by different synthesis methods, the reaction conditions (including promoters added in the liquid phase) and reactor types were quite different from each other and hence a direct comparison is not encouraged. Extensive studies have been performed by the group of Hutchings in the development of AuPd catalysts for direct synthesis of H2O2, and their results are compared in the Supporting Information.
H₂O₂, and three of the most active ones are enlisted as the first three entries (Table 2). Although they are tested at dilute conditions, the total pressure is higher (40 bar) and reaction temperature is substantially lower, compared to our study. Entry 4 shows a Pd catalyst on titanate nanotubes that showed exceptional activity in relatively mild conditions. Another Pd catalyst is shown is entry 5, this time synthesized using the polyelectrolyte PAH, that exhibits high productivity, although quite high O₂ partial pressures were used. The only catalyst tested at nearly similar conditions as ours, is shown in entry 6, where micropacked bed made it possible to conduct the reaction with concentrated H₂/O₂ mixtures. We see that our microchannel catalyst shows much higher productivity, especially if expressed per kg_{cat}. Overall, we see that the application of microreactor (that ensured safe use of concentrated mixture and better heat and mass transfer) coupled with an active catalyst, resulted in highly superior performance, as compared to literature.

In summary, metal nanoparticles, Au, Pd, and AuPd, were successfully synthesized inside the walls of microchannel capillaries using PEMs. PEMs that were incorporated inside the capillary prior to metal deposition by a layer-by-layer technique, formed a charged surface that was ideal for metal ion adsorption. The metals were reduced using NaN₃H and calcination in the final step ensured removal of the PEMs, yielding metal nanoparticles that were <2 nm in size with homogeneous distribution. The metal loading could be easily controlled by varying the number of multilayers. The capillaries synthesized using this technique showed exceptional catalytic performance for the direct synthesis of H₂O₂. Given the flexibility and facility of the synthesis technique described in this study, it can be easily extended to a variety of substrates, where controlled metal nanoparticle incorporation is desired, for catalytic or other applications.

ASSOCIATED CONTENT

1. Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b03589.

Detailed experimental method for catalyst preparation, description of characterization methods used, experimental setup for catalytic activity measurement, SEM and TEM images, ICP-OES data, UV−vis spectra, TGA and catalytic activity results (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: m.f.neira.dangelo@tue.nl. Phone: +31 40-247 8281.

ORCID

Jaap C. Schouten: 0000-0001-5706-7087

Present Address

1. DSM, Geleen, The Netherlands

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by The Netherlands Organization for Scientific Research (NWO), Project (10017587). We acknowledge the support of Carlo Buips for SEM and TEM measurement, Beatriz Ortizosa Pena for help with catalytic measurements, and Elisabeth Huber for preliminary tests.

REFERENCES

(1) Toshima, N.; Yonezawa, T. New J. Chem. 1998, 22, 1179–1201.
(2) Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845–910.
(3) Rodriguez-Lopez, J. L.; Montejano-Carrizales, J. M.; Pal, U.; Sanchez-Ramirez, J. F.; Troiani, H. E.; Garcia, D.; Miki-Yoshida, M.; Jose-Yacaman, M. Phys. Rev. Lett. 2004, 92, 196102–1.
(4) Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. Chem. Soc. Rev. 2012, 41, 8099–8139.
(5) Villa, A.; Wang, D.; Su, D. S.; Prati, L. Catal. Sci. Technol. 2015, 5, 55–68.
(6) Jiang, H.-L.; Xu, Q. J. Mater. Chem. 2011, 21, 13705.
(7) Wang, D.; Li, Y. Adv. Mater. 2011, 23, 1044–1060.
(8) Gilroy, K. D.; Ruditskiy, A.; Peng, H.; Qin, D.; Xia, Y. Chem. Rev. 2016, 116, 10414–10472.
(9) Shi, J. Chem. Rev. 2013, 113, 2139–2181.
(10) Francesco, I. N.; Fontaine-vive, F.; Antoniotti, S. ChemCatChem 2014, 6, 2784–2791.
(11) Edwards, J. K.; Thomas, A.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Green Chem. 2008, 10, 388.
(12) Edwards, J. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2008, 47, 9192–9198.
(13) Yi, Y.; Wang, L.; Li, G.; Guo, H. Catal. Sci. Technol. 2016, 6, 1593–1610.
(14) García-Serna, J.; Moreno, T.; Biasi, P.; Cocero, M. J.; Mikkola, J.-P.; Salmi, T. O. Green Chem. 2014, 16, 2320–2343.
(15) Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. ChemSusChem 2016, 9, 3374–3381.
(16) van Weymers Bergh 1995. U.S. Patent US005447706A.
(17) Edwards, J. K.; Solsona, B. N.; E. N.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Science 2009, 323, 1037–1041.
(18) Bockley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Croce, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y.; Kiely, C. J.; Hutchings, G. J. Science 2016, 351, 965–968.

Table 2. Catalytic Performance of Various Catalysts in the Direct Synthesis of H₂O₂

catalyst	reactant mixture	reactor type/temperature/pressure	productivity (mol/kg_{cat}/h)	reference
1. AuPd/C	dilute	batch/2 °C/40 bar	175	19
2. AuPd/SiO₂		batch/2 °C/40 bar	108	12
3. AuPd/TiO₂		batch/2 °C/40 bar	100	19
4. AuPd/titanate-nanotubes	H₂/O₂/Ar = 5:10:85	batch/5 °C/20 bar	175	20
5. Pd/PAH-K2621	N₂/H₂/O₂ = 50:3:47	upflow fixed bed/30 °C/50 bar	127	48
6. Pd/C	D₂/O₂ = 2:3	microreactor/20 °C/21 bar	170	25
7. AuPd/2LbL	H₂/O₂ = 1:1	microreactor/42 °C/20 bar	210	this work
(19) Sankar, M.; He, Q.; Morad, M.; Pritchard, J.; Freakley, S. J.; Edwards, J. K.; Taylor, S. H.; Morgan, D. J.; Carley, A. F.; Knight, D. W.; Kiley, C. J.; Hutchings, G. J. ACS Nano 2012, 6, 6600–6613.
(20) Torrente-Murciano, L.; He, Q.; Hutchings, G. J.; Kiley, C. J.; Chadwick, D. ChemCatChem 2014, 6, 2531–2534.
(21) Choudhary, V. R.; Galkow, A. G.; Sansare, S. D. Angew. Chem., Int. Ed. 2001, 40, 1776–1779.
(22) Chattopadhyay, S.; Veser, G. AIChE J. 2006, 52, 2217–2229.
(23) Inoue, T.; Ohtaki, K.; Adachi, J.; Lu, M.; Murakami, S. Catal. Today 2015, 248, 169–176.
(24) Inoue, T.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2007, 46, 1153–1160.
(25) Inoue, T.; Kikutani, Y.; Hamakawa, S.; Kitamori, M.; Mizukami, F.; et al. Chem. Eng. J. 2010, 160, 909–914.
(26) Freakley, S. J.; Piccinni, M.; Edwards, J. K.; Ntanjua, E. N.; Moulijn, J. A.; Hutchings, G. J. ACS Catal. 2013, 3, 487–501.
(27) Paunovic, V.; Ordomsky, V.; Neira D’Angelo, M. F.; Schouten, J. C.; Nijhuis, T. A. J. Catal. 2014, 309, 325–332.
(28) Ng, J. F.; Nie, Y.; Chuah, G. K.; Jaenicke, S. J. Catal. 2010, 269, 302–308.
(29) Paunovic, V.; Schouten, J. C.; Nijhuis, T. a. Catal. Today 2015, 248, 160–168.
(30) Decher, G. Science 1997, 277, 1232–1237.
(31) Decher, G.; Hong, J.-D. Makromol. Chem., Macromol. Symp. 1991, 46, 321–327.
(32) Derocher, J. P.; Mao, P.; Kim, J. Y.; Han, J.; Rubner, M. F.; Cohen, R. E. ACS Appl. Mater. Interfaces 2012, 4, 391–396.
(33) Graul, T. W.; Schlenoff, J. B. Anal. Chem. 1999, 71, 4007–4013.
(34) Shiratori, S. S.; Rubner, M. F. Macromolecules 2000, 33, 4213–4219.
(35) Lutkenhaus, J. L.; McEnnis, K.; Hammond, P. T. Macromolecules 2008, 41, 6047–6054.
(36) Jiang, C.; Tsukruk, V. V. Adv. Mater. 2006, 18, 829–840.
(37) Dotzauer, D. M.; Dai, J.; Sun, L.; Bruening, M. L. Nano Lett. 2006, 6, 2268–2272.
(38) Dai, J.; Bruening, M. L. Nano Lett. 2002, 2, 497–501.
(39) Zhang, X.; Su, Z. Adv. Mater. 2012, 24, 4574–4577.
(40) Chu, C.; Su, Z. Appl. Catal., A 2016, 517, 67–72.
(41) Wang, T. C.; Rubner, M. F.; Cohen, R. E. Langmuir 2002, 18, 3370–3377.
(42) Shang, L.; Jin, L.; Guo, S.; Zhai, J.; Dong, S. Langmuir 2010, 26, 6713–6719.
(43) Rahim, M. A.; Nam, B.; San Choi, W.; Lee, H.-J.; Jeon, I. C. J. Mater. Chem. 2011, 21, 11831.
(44) Logar, M.; Jancar, B.; Suvorov, D.; Kostanjšek, R. Nanotechnology 2007, 18, 325601.
(45) Dutta, A. K.; Ho, T.; Zhang, L.; Stroeve, P. Chem. Mater. 2000, 12, 1042–1048.
(46) Dutta, A. K.; Jarero, G.; Zhang, L. Q.; Stroeve, P. Chem. Mater. 2000, 12, 176–181.
(47) Chung, Y. M.; Kwon, Y.-T.; Kim, T. J.; Oh, S. H.; Lee, C. S. Chem. Commun. 2011, 47, 5705–5707.
(48) Kim, J.; Chung, Y. M.; Kang, S. M.; Choi, C. H.; Kim, B. Y.; Kwon, Y. T.; Kim, T. J.; Oh, S. H.; Lee, C. S. ACS Catal. 2012, 2, 1042–1048.
(49) Henry, C. R.; Chapon, C.; Giorgio, S.; Goyhenex, C. Size Effects in Heterogeneous Catalysis: A Surface Science Approach. In Chemisorption and Reactivity on Supported Clusters and Thin Films; Lambert, R. M., Pacchioni, G., Eds.; Springer, 1997; pp 117–152.
(50) Bond, G. C. Surf. Sci. 1985, 156, 966–981.
(51) Van Santen, R. A. Acc. Chem. Res. 2009, 42, 57–66.
(52) Vile, G.; Albani, D.; Nachtgeaal, M.; Chen, Z.; Douttsiova, D.; Antonietti, M.; Lopez, N.; Perez-Ramirez, J. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.
(53) Corma, A.; Concepcion, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yamamoto, H.; Larios, E.; Posadas, A.; Lopez-Quintela, M. A.; Buceta, D.; Mendoza, E.; Guiler, G.; Mayoral, A. Nat. Chem. 2013, 5, 775–781.
(54) Tyo, E. C.; Vajda, S. Nat. Nanotechnol. 2015, 10, 577–588.