Fetal growth and the risk of childhood non-CNS solid tumours in Western Australia

CL Laurvick1, E Milne*,1, E Blair1, N de Klerk1, AK Charles2 and C Bower1

METHODS

Using population-based linked health data, we investigated whether the risk of certain childhood non-CNS solid tumours (n = 186) was associated with intra-uterine growth. The risk of retinoblastoma and rhabdomyosarcoma, but not other tumour types, was positively associated with increased growth, suggesting a possible role of fetal growth factors. Larger studies are needed.

British Journal of Cancer (2008) 99, 179–181. doi:10.1038/sj.bjc.6604424 www.bjcancer.com
Published online 17 June 2008 © 2008 Cancer Research UK

Keywords: childhood cancer; intra-uterine growth; risk factor; Cox regression

RESULTS

The sex distribution varied by type of tumour, with a higher proportion of males than females with neuroblastoma and retinoblastoma, more than half of which with were diagnosed before 2 years of age. The proportion of first-born children was higher in each tumour group than in the non-case group (Table 1). The risk of retinoblastoma (HR: 0.54) was lower among girls than boys (Table 2). Overall, there was little evidence of an
Epidemiology

association between the three IUG measures and risk of neuroblastoma or Wilms’ tumour. There appeared to be weak positive associations between POBW and retinoblastoma (HR: 1.22) and rhabdomyosarcoma (HR: 1.33) (Table 2). Similarly, POBL appeared to be positively associated with retinoblastoma (HR: 1.26) and POWFL with rhabdomyosarcoma (HR: 1.41) (Table 2), though few associations were statistically significant.

As in our approach with childhood ALL (Milne et al, 2007), CNS tumors and lymphomas (Milne et al, 2008), we aimed to distinguish an effect of high birth weight per se and one with accelerated growth. We restricted the univariate regression analysis of POBW to, in turn, children with birth weights below two commonly used definitions of high birth weight: >3500 and >4000 g. The positive associations observed between POBW and retinoblastoma and rhabdomyosarcoma were also observed among children with birth weights <3500 and <4000 g retinoblastoma (HR: 1.39, 95% CI 0.82–2.36 and HR: 1.32, 95% CI 0.89–1.95, respectively); and rhabdomyosarcoma (HR: 1.53, 95% CI 0.82–2.86 and HR: 1.55, 95% CI 1.00–2.40, respectively).

DISCUSSION

Our measures of the appropriateness of fetal growth – POBL, POBW and POWFL – are independent of gestational age and take account of the major non-pathological determinants of IUG. As with ALL (Milne et al, 2007) and lymphomas (Milne et al, 2008), there was a positive association between at least one measure of IUG and risk of retinoblastoma and rhabdomyosarcoma. We found no evidence of an association between IUG and risk of neuroblastoma and, unlike previous studies (Leisenring et al, 1994; Yeazel et al, 1997; Schuz et al, 2001), we found no association between IUG and the risk of Wilms’ tumour.

Growth is a mixture of skeletal growth – tending to be expressed as increased height; and somatic growth, which may be proportionate (ie, a large child, but with a normal body mass index), or disproportionate (increased soft tissue with a raised body mass index/POWFL). Insulin-like growth factors play a major role in regulating the normal growth and differentiation of cells and tissues during fetal development (LeRoith et al, 1991). Some tumours produce IGF-I, IGF-II or their binding proteins, or possess IGF receptors (Campbell and Novak, 1991; Antoniades et al, 1992; Hirschfeld and Helman, 1994; Boule et al, 1998). IGF-I, in particular, inhibits the process of programmed cell death in both normal and DNA-damaged cells (Barres et al, 1992; Baserga et al, 1997a). The mitotic properties of IGFs, coupled with their ability to inhibit cell death, are thought to enhance tumour growth (Barsera et al, 1997b; Werner and Le Roith, 2000; Bentov and Werner, 2004; Pollak et al, 2004). Different tumours are likely to have different underlying genetic predispositions, which in turn are likely to be reflected in different patterns of growth, which may partly explain the associations we observed.

This study has some important strengths. Examining risk associated with the appropriateness of IUG allows a more detailed exploration of this relationship than using birth weight alone or birth weight with adjustment for gestational age. We were able to explore associations between some specific solid cancers of childhood and three distinct aspects of IUG: POBW, POBL and POWFL. The z-scores for each of these were modeled appropriately as continuous variables and this method obviated the need to assign an arbitrary cutoff for ‘high birth weight’. Being a population-based, record-linkage study, neither selection bias nor recall bias would have affected our results.

There were small numbers of cases in this study and many results were only suggestive of an association; however, our findings are consistent with literature describing biologically plausible mechanisms for associations between increased fetal growth and risk of some non-CNS solid tumours. The persistence of our results when the analysis was restricted to children without high birth weight further supports an association with accelerated growth, rather than high birth weight per se.

We recommend for future studies, the use of measures of the appropriateness of IUG rather than birth weight alone, particularly

Table 1 Descriptive characteristics of non-CNS solid tumours in children aged 0–14 years in Western Australia

Sex	Age at diagnosis	Birth order	POBW	POBL	POWFL
	N (%)	N (%)	N (%)	N (%)	N (%)
Non-cases	576352	293766	282586	295903	280449
Neuroblastoma	69	40 (58.0)	29 (42.0)	39 (56.5)	30 (43.5)
Retinoblastoma	38	25 (65.8)	13 (34.2)	23 (60.5)	15 (39.5)
Wilms’ tumour	52	25 (48.1)	27 (51.9)	20 (38.5)	32 (61.5)
Rhabdomyosarcoma	27	13 (48.2)	14 (51.8)	9 (33.3)	18 (66.7)

Non-cases = non-central nervous system; POBW = proportion of optimal birth weight; POBL = proportion of optimal birth length; POWFL = proportion of optimal weight for length.

Table 2 Cox univariate regression analysis of non-CNS solid tumours in children aged 0–14 years in Western Australia

Female sex	Not first born	POBW z-score	POBL z-score	POWFL z-score	
	HR CI	HR CI	HR CI	HR CI	
Neuroblastoma	0.75 (0.47,1.22)	0.98 (0.61,1.57)	1.09 (0.86,1.38)	1.04 (0.82,1.32)	1.07 (0.85,1.36)
Retinoblastoma	0.54 (0.28,1.06)	0.86 (0.46,1.64)	1.22 (0.90,1.66)	1.26 (0.92,1.72)	1.18 (0.86,1.60)
Wilms’ tumour	1.12 (0.65,1.94)	0.80 (0.46,1.39)	1.10 (0.84,1.44)	0.93 (0.71,1.22)	1.08 (0.82,1.42)
Rhabdomyosarcoma	1.12 (0.53,2.38)	0.75 (0.35,1.62)	1.33 (0.93,1.90)	0.99 (0.68,1.44)	1.41 (0.98,2.01)

HR = hazard Ratio; CI = 95% confidence interval; POBW = proportion of optimal birth weight; POBL = proportion of optimal birth length; POWFL = proportion of optimal weight for length.
in large collaborative studies that can examine these relationships with greater power.

ACKNOWLEDGEMENTS

This study was funded by a project grant (no. 404086) from the National Health and Medical Research Council of Australia (NHMRC), Carol Bower by NHMRC fellowship no. 353628 and Eve Blair by NHMRC program Grant no. 353514.

We acknowledge the assistance provided by Diana Rosman and Carol Garfield at the Western Australian Data Linkage Unit and Drs Tim Threlfall and Judith Thompson at the Western Australian Cancer Registry. We also thank Margaret Wood for extracting the linked data files and providing advice on the cleaning and preparation of the data for analysis.

REFERENCES

Antoniades HN, Galanopoulos T, Neville-Golden J, Maxwell M (1992) Expression of insulin-like growth factors I and II and their receptor mRNAs in primary human astrocytomas and meningiomas; in vivo studies using in situ hybridization and immunocytochemistry. Int J Cancer 50: 215 – 222

Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70: 31 – 46

Baserga R, Resnicoff M, D’Ambrosio C, Valentinius B (1997a) The role of the IGF-I receptor in apoptosis. Vitam Horm 53: 65 – 98

Baserga R, Resnicoff M, Dews M (1997b) The IGF-I receptor and cancer. Endocrine 7: 99 – 102

Bentov I, Werner H (2004) IGF, IGF receptor and overgrowth syndromes. Pediatr Endocrinol Rev 1: 352 – 360

Blair E, Liu X, de Klerk N, Lawrence D (2005) Optimal fetal growth for the Caucasian singleton and assessment of appropriateness of fetal growth: an analysis of a total population perinatal database. Bio Med Central Paediatrics 5: 1 – 12

Boule N, Logie A, Gicquel C, Perin L, Le Bouc Y (1998) Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 83: 1713 – 1720

Campbell PG, Novak JF (1991) Insulin-like growth factor binding protein (IGFBP) inhibits IGF action on human osteosarcoma cells. J Cell Physiol 149: 293 – 300

Hirschfield S, Helman L (1994) Diverse roles of insulin-like growth factors in pediatric solid tumors. In vivo 8: 81 – 90

Holman CD, Bass AJ, Rouse II, Hobbs MS (1999) Population-based linkage of health records in Western Australia: development of a health services research linked database. [see comment]. Australian and New Zealand J Public Health 23: 453 – 459

Leisenring WM, Breslow NE, Evans IE, Beckwith JB, Coupes MJ, Grundy P (1994) Increased birth weights of National Wilms’ Tumor Study patients suggest a growth factor excess. Cancer Res 54: 4680 – 4683

LeRoith D, Adamo M, Werner H, Roberts C (1991) Insulin like growth factors and their receptors as growth regulators in normal physiology and pathogenic states. Trends Endocrinol Metab 2: 134 – 139

Milne E, Laurvick CL, Blair E, Bower C, de Klerk N (2007) Fetal growth and acute childhood leukemia: looking beyond birth weight. Am J Epidemiol 166: 151 – 159

Milne E, Laurvick CL, Blair E, de Klerk N, Charles AK, Bower C (2008) Fetal growth and the risk of childhood CNS tumours and lymphomas in Western Australia. Int J Cancer 123: 436 – 443

Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4: 505 – 518

Schuz J, Kaletsch U, Meinert R, Kaatsch P, Michaelis J (2001) High-birth weight and other risk factors for Wilms tumour: results of a population-based case-control study. Euro J Pediatr 160: 333 – 338

StataCorp (2005) Stata Statistical Software: Release 9. College Station, Texas: StataCorp LP

Werner H, Le Roith D (2000) New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell Mol Life Sci 57: 932 – 942

Yeazel MW, Ross JA, Buckley JD, Woods WG, Ruccione K, Robison LL (1997) High birth weight and risk of specific childhood cancers: a report from the Children’s Cancer Group. J Pediatr 131: 671 – 677