The concomitant effects of self-limiting insect releases and behavioural interference on patterns of coexistence and exclusion of competing mosquitoes

Maisie Vollans and Michael B. Bonsall

Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

Aedes aegypti is the dominant vector of dengue, a potentially fatal virus whose incidence has increased eightfold in the last two decades. As dengue has no widely available vaccine, vector control is key to reducing the global public health burden. A promising method is the release of self-limiting Ae. aegypti, which mate with wild Ae. aegypti and produce non-viable offspring. The resultant decrease in Ae. aegypti population size may impact coexistence with Ae. albopictus, another vector of dengue. A behavioural mechanism influencing coexistence between these species is reproductive interference, where incomplete species recognition results in heterospecifics engaging in mating activities. We develop a theoretical framework to investigate the interaction between self-limiting Ae. aegypti releases and reproductive interference between Ae. aegypti and Ae. albopictus on patterns of coexistence. In the absence of self-limiting Ae. aegypti release, coexistence can occur when the strength of reproductive interference experienced by both species is low. Results show that substantial overflooding with self-limiting Ae. aegypti prevents coexistence. For lower release ratios, as the release ratio increases, coexistence can occur when the strength of reproductive interference is increasingly high for Ae. albopictus and increasingly low for Ae. aegypti. This emphasizes the importance of including behavioural ecological processes into population models to evaluate the efficacy of vector control.

1. Introduction

Vector-borne diseases account for 17% of all infectious diseases and cause more than 700 000 deaths annually [1]. For example, dengue, a potentially fatal virus spread by Aedes mosquitoes, has increased eightfold in incidence over the last two decades [2]. Coupled with the rise in average global temperatures, the total burden on public health caused by vector-borne diseases is likely to further increase: Messina et al. [3] predicted 2.25 billion more people will be at risk of dengue by 2080 compared to 2015. In areas where vector-borne diseases are already present, pathogen replication, vector survival, reproduction, biting rate and the length of transmission seasons are set to increase with environmental change [3–5]. Furthermore, the global distribution of vectors is likely to widen: for instance, the global abundance of Aedes aegypti is predicted to increase by 20% or 30% by the end of the century, for a low and high carbon dioxide emission future, respectively [6]. Thus, it is increasingly important to have robust strategies to manage and control vector-borne diseases. As many vector-borne diseases have no widely available vaccine or disease-specific drugs (e.g. [6–8]), the key is employing methods to control vector population size.

However, the environment and human health can be negatively impacted by conventional, chemical-based vector control methods, such as the mass spraying of insecticide. Even pyrethroids, which have a low toxicity compared to many
other insecticides [9], decrease the diversity of non-target small-bodied arthropods [10,11], cause aquatic toxicity [12,13] and negatively impact the human male reproductive system [14,15]. Additionally, the efficacy of chemical control is declining as insecticide resistance spreads [16]. Therefore, there is a growing imperative to develop novel approaches for controlling disease vectors. As such there has been a continued focus on the use of self-limiting insects for the control of mosquito-borne diseases [17–19]; a technique with substantial benefits [18], which is less costly than alternative control methods [19].

Self-limiting insects decrease the number of offspring contributing to the next generation by competing with wild insects for mates and subsequently producing non-viable offspring. Self-limiting systems include the sterile insect technique (SIT), where insects are irradiated so that they cannot produce viable offspring [20], and the release of insects carrying a dominant lethal (RIDL), where insects are genetically engineered to be homozygous for a dominant lethal genetic construct [17,18]. These methods target single species that are detrimental to human well-being, and do not require the direct or indirect release of harmful chemicals, and thus are considered relatively environmentally benign [19]. Previous use of SIT has been successful—resistance to the technique is infrequent, and it has successfully eliminated and controlled multiple insect pests (see Alphey et al. [20]).

However, by altering the population size of the target species, the release of self-limiting insects may have indirect environmental impacts on wider biodiversity—for instance, by affecting the interspecific interactions of the target species [21]. These indirect effects could be substantial when the population size of the heterospecific species is highly coupled to the population size of the target species. This is true for species that have a similar ecological niche to the target species, and are therefore likely to compete strongly with it for resources.

Aedes aegypti and *Aedes albopictus*, the two principal vectors of dengue, have overlapping realized ecological niches: they are both anthropophilic, have similar diurnal peak activity periods, use hosts to find mates, exist in urban and suburban settings and deposit their eggs above the water line in (often ephemeral) natural and artificial pools of water [22–28]. However, the two species cannot reproduce to form viable offspring [29]. Despite these species being native to different continents, their range expansion has resulted in frequent overlap of spatial distribution, causing either exclusion, or coexistence [30].

Two key mechanisms influencing coexistence patterns between *Ae. aegypti* and *Ae. albopictus* are interspecific resource competition and reproductive interference (reviewed by Lounibos & Juliano, [31]). Reproductive interference is where incomplete species recognition results in heterospecifics engaging in mating activities which do not produce viable offspring and cause a fitness cost to one or both of the species involved [31,32]. Thus, reproductive interference is distinct from competition, as the fitness costs incurred are not due to shared limited resources [33]. Instead, they can occur directly by female harassment and reduction in fertility, and indirectly through wasted courtship/handling time and energy [31,33]. Reproductive interference occurs across a wide range of taxa, as summarized by Gröning & Hochkirch [31]. Where two species coexist, theoretical studies have shown reproductive interference is more likely to cause exclusion than interspecific resource competition [34]. When both are considered together, reproductive interference acts synergistically with resource competition to promote exclusion; their combined effect is greater than the sum of their independent effects [35].

Reproductive interference occurs between *Ae. aegypti* and *Ae. albopictus* both in the field [36], and in the laboratory [37,38]. As discussed by Paton & Bonsall [33], at least four types of reproductive interference [31] occur between *Aedes* species: misdirected courtship, heterospecific mating attempts, erroneous female choice and heterospecific mating [36–38]. While the impact of reproductive interference upon the coupled population dynamics of *Ae. aegypti* and *Ae. albopictus* has previously been analysed [33,35], the consequences of this mating disruption and behavioural interference on patterns of coexistence have not been explored in combination with the release of self-limiting *Ae. aegypti*.

Ae. aegypti is a key target for self-limiting techniques, as the dominant vector of dengue, and a vector of chikungunya, yellow fever and Zika viruses [1]. In regions where *Ae. aegypti* and *Ae. albopictus* coexist, their population dynamics are strongly coupled. As *Ae. albopictus* is a secondary vector to dengue, and carrier of chikungunya, yellow fever and Zika viruses, it is epidemiologically relevant: assessments of the impact of the release of self-limiting *Ae. aegypti* need to consider the impact upon *Ae. albopictus* populations.

Here, we form a theoretical framework (based on modified ecological competition equations) to investigate the interaction between the release of self-limiting *Ae. aegypti* and the impact of reproductive interference between *Ae. aegypti* and *Ae. albopictus* populations on patterns of coexistence and exclusion. In order to disentangle the effects of reproductive interference caused by wild mosquitoes and self-limiting *Ae. aegypti*, we examine scenarios where the self-limiting *Ae. aegypti* reproducitively interfere with *Ae. albopictus*, and where they do not. Our results inform on the developing pragmatic applications and policy developments around the ecological (and epidemiological) consequences of the release of self-limiting *Ae. aegypti* to manage the dengue disease burden.

2. Methods

We used a set of simple differential equation models to assess how the release of self-limiting *Ae. aegypti* impacts its coexistence with *Ae. albopictus* when there is reproductive interference. Models are summarized in figure 1.

We use two baseline models: Kuno’s model of reproductive interference ([34], equations (2.1a) and (2.1b)) and a basic model of self-limiting *Ae. aegypti* release (equations (2.2a) and (2.2b)). The former examines the impact of reproductive interference in the absence of self-limiting *Ae. aegypti* release, while the latter explores the effect of self-limiting *Ae. aegypti* release without reproductive interference. The further two models build on these baseline models, to assess the combined impact of self-limiting *Ae. aegypti* release and reproductive interference: first when the self-limiting *Ae. aegypti* do not reproducitively interfere with *Ae. albopictus* (equations (2.3a) and (2.3b)) and, second, when they do (equations (2.4a) and (2.4b)). Comparisons between these models allowed the impact of self-limiting *Ae. aegypti* release, and reproductive interference on coexistence to be examined separately and in combination. For all models with self-limiting *Ae. aegypti* release, we used a proportional release policy [39]: at each time point, the number self-limiting *Ae. aegypti* released is proportional to the number to wild *Ae. aegypti*.
As with our previous work [33] other demographic processes such as birth and death rate [40,41] were assumed to be equal for both *Aedes* species and parameters were varied to allow the results to be investigated for a variety of environmental contexts [42,43], table 1.

(a) Baseline models

(i) Kuno’s model of reproductive interference

Kuno [34] developed a two species interaction model that described resource competition and reproductive interference. In this model, for the ith species an increase in the heterospecific population causes a rise in density-dependent resource competition, increasing mortality and causes a rise in reproductive interference, decreasing recruitment. This model can be described by the following set of differential equations:

\[
\frac{dA(t)}{dt} = r_A A(t) \left(\frac{A(t)}{A_0 + \delta_B(t)} \right) - \alpha_A A(t) [A(t) + \beta_B B(t)] - d_A A(t) \quad (2.1a)
\]

\[
\frac{dB(t)}{dt} = r_B B(t) \left(\frac{B(t)}{B_0 + \delta_A(t)} \right) - \alpha_B B(t) [B(t) + \beta_A A(t)] - d_B B(t) \quad (2.1b)
\]

where \(A\) represents the density of *Ae. aegypti* and \(B\) represents the density of *Ae. albopictus*. Parameters subscript \(A\) correspond to *Ae. aegypti*, and subscript \(B\) to *Ae. albopictus*. Recruitment is determined by \(r\), the reproductive rate, scaled by \(\delta\), the decrease in reproductive success caused by reproductive interference. Density-dependent adult mortality is determined using \(\alpha\), the strength of intraspecific competition, and \(\beta\), the strength of interspecific competition (relative to the intraspecific competition), while \(d\) is the density-independent adult mosquito mortality rate.

(ii) Basic self-limiting *Ae. aegypti* release

This model describes the reduction in recruitment of wild *Ae. aegypti* (denoted \(A\)) by the release of self-limiting *Ae. aegypti*. A proportional release policy [39] is used—this is assumed that there is a stable proportion of self-limiting *Ae. aegypti* to wild *Ae. aegypti*. Furthermore, it is assumed that the self-limiting males always mate to produce non-viable offspring and are fully competitive with wild mosquitoes. This model can be described by

\[
\frac{dA(t)}{dt} = r_A A(t) \left(\frac{A(t)}{A_0 + \theta A(t)} \right) - \alpha_A A(t) [A(t) + \beta_B B(t)] - d_A A(t) \quad (2.2a)
\]

\[
\frac{dB(t)}{dt} = r_B B(t) - \alpha_B B(t) [B(t) + \beta_A A(t)] - d_B B(t) \quad (2.2b)
\]

where \(\theta\) is the ratio of self-limiting *Ae. aegypti* to wild *Ae. aegypti*. All other parameters are given above (for equations (2.1a) and (2.1b)).

Table 1. Canonical parameter values for *Aedes* mosquitoes. The values of subscripted parameters were varied between *Ae. aegypti* and *Ae. albopictus*. The relevance of the particular parameter value was evaluated using sensitivity analyses (see §2.d.ii).

parameter	definition	value	reference/notes
\(r\)	reproductive rate, per capita	1.31	Southwood et al. [41]; Dye [42]
\(d\)	death rate, per capita	0.12	Southwood et al. [41]; Dye [42]
\(\alpha\)	strength of density-dependent	1	
	intraspecific competition, per capita		
\(\beta\)	strength of interspecific	varied, from 0 to 1	when \(\beta = 1\), the strength of interspecific competition is equal to intraspecific competition. \(\beta\) is never greater than 1, as this would make species coexistence impossible [36].
	competition per capita, relative to intraspecific competition (\(\alpha\))		
\(\delta\)	strength of reproductive	varied, from 0 to 1	Kishi & Nakazawa [36]
	interference, per capita		
\(\theta\)	ratio of self-limiting	varied, from 0 to 8	overflowing: \(\theta > 1\)
	Ae. aegypti: wild		underflowing: \(\theta < 1\)

Figure 1. Summary of the development of the models of self-limiting *Ae. aegypti* release with reproductive interference from the baseline models. (Online version in colour.)
(b) Self-limiting Ae. aegypti release with reproductive interference

These models combine Kuno’s model (equations (2.1a) and (2.1b)) [34] and the basic self-limiting Ae. aegypti release model (equations (2.2a) and (2.2b)) to assess the impact of reproductive interference (equations (2.1a) and (2.1b)) and self-limiting Ae. aegypti release (equations (2.2a) and (2.2b)) on the densities of Ae. aegypti (denoted A) and Ae. albopictus (denoted B). Comparisons between the results from equations (2.3a) and (2.3b) and equations (2.4a) and (2.4b) allow the impact of reproductive interference caused by self-limiting Ae. aegypti and wild mosquitoes to be assessed separately.

(i) Self-limiting Ae. aegypti do not cause reproductive interference

Here, the released self-limiting Ae. aegypti only act to decrease the recruitment of Ae. aegypti:

\[
\frac{dA(t)}{dt} = r_A A(t) \left(\frac{A(t)}{A_0 + \theta A(t) + \delta A(t)} \right) - \alpha_A A(t) A(t) + \beta_B(t) B(t) - \delta_A A(t) \tag{2.3a}
\]

\[
\frac{dB(t)}{dt} = r_B B(t) \left(\frac{B(t)}{B_0 + \delta_B A(t)} \right) - \alpha_B B(t) B(t) + \beta_A(t) A(t) - \delta_B B(t) \tag{2.3b}
\]

(ii) Self-limiting Ae. aegypti cause reproductive interference

This model extends equations (2.3a) and (2.3b). Here, the released self-limiting Ae. aegypti reproducitively interfere with Ae. albopictus:

\[
\frac{dA(t)}{dt} = r_A A(t) \left(\frac{A(t)}{A_0 + \theta A(t) + \delta A(t)} \right) - \alpha_A A(t) A(t) + \beta_B(t) B(t) - \delta_A A(t) \tag{2.4a}
\]

\[
\frac{dB(t)}{dt} = r_B B(t) \left(\frac{B(t)}{B_0 + \delta_B A(t) + \theta A(t)} \right) - \alpha_B B(t) B(t) + \beta_A(t) A(t) - \delta_B B(t) \tag{2.4b}
\]

This model assumes that self-limiting and wild Ae. aegypti equally interfere with the reproduction of Ae. albopictus.

(c) Model analysis

(i) Zero-net-growth isolines

Zero-net-growth isolines were used to compare the outcomes of interspecific interaction across models. By definition, the zero-net-growth isolines for each model were determined by solving \(dA(t)/dt = 0\) and \(dB(t)/dt = 0\) and taking positive solutions. This resulted in a linear (basic self-limiting Ae. aegypti release, equations (2.2a) and (2.2b)) or quadratic (all other models) equation for each species. Equilibria occur when the population growth rates of both species are equal zero (i.e. \(dA(t)/dt = 0\) and \(dB(t)/dt = 0\)); where the zero-net-growth isolines for each species cross. Equilibria were determined numerically with a multiroot function [44,45] which uses the Newton–Raphson method. Two types of equilibria are possible: exclusion of either species, or coexistence of both species. A Jacobian matrix approach was used to determine the stability of equilibrium points, where stable equilibria produce negative dominant eigenvalues and the magnitude of the eigenvalue corresponds to the stability [46].

(ii) Sensitivity analysis

Population size. We examined the impact of the strength of different parameters on the population size of each species at stable equilibrium. While keeping all other parameters constant, the strength of the reproductive interference and interspecific competition experienced by each species, together with the self-limiting Ae. aegypti release ratio, were varied. This was conducted separately for exclusion and coexistence equilibria.

As with the isocline analysis, equilibria were determined numerically [44,45]. Under certain circumstances, the Newton–Raphson method fails to converge upon a root. For instance, when there is an inflection point at the root that is being approximated, the Newton–Raphson method often fails to converge but instead forms an oscillating sequence. Thus, for each sensitivity analysis, parameter values were selected to prevent these failures occurring. For this reason, the constant parameter values can vary between sensitivity analyses and comparisons were not made between sensitivity analyses.

Coexistence and exclusion boundaries. For each model with a reproductive interference term (equations (2.1a) and (2.1b), equations (2.3a) and (2.3b) and equations (2.4a) and (2.4b)), further analysis was conducted to determine the parameter space that results in stable coexistence. We examined how the strength of reproductive interference and interspecific competition influence the potential for coexistence for different self-limiting Ae. aegypti release ratios (no self-limiting Ae. aegypti release, \(\theta = 0\); weak underflooding, \(\theta = 0.4\); moderate underflooding, \(\theta = 0.8\); weak overflooding, \(\theta = 1.2\); substantial overflooding, \(\theta = 8.0\)). We varied both the strength of reproductive interference and interspecific competition parameters from 0 (where they have no effect) to 1 (where heterospecifics are equivalent to conspecifics). In order to determine parameter values that result in stable coexistence, cubic expressions (cubic formula, equations (2.5)) were derived by substituting the solution for Ae. aegypti (denoted A) into the equation for Ae. albopictus (denoted B) and vice versa. When both cubic equations in a model have three positive solutions, there is stable coexistence—two unstable coexistence points surrounding one stable coexistence point [35]. For the coupled cubic equations to have at least three solutions, the discriminants of both equations must be greater than zero (equations (2.6)) and for all solutions to be positive, and thus biologically relevant, the coefficients have satisfy certain inequalities [35], see equations (2.7).

\[ax^3 + bx^2 + cx + d = 0\]
\[18abcd - 4b^3d + b^2c^2 - 4ac^2 - 27a^2d^2 > 0\]
\[a \leq c < 0, \quad b < d < 0, \quad 0 < a \leq c < 0, \quad b < d < 0\]

All analyses (simulations, mathematical derivations and graphical analysis) were completed in R (v. 4.0.4) and Mathematica (v. 12). Code is available at (OSF) and for further details of these analyses, see electronic supplementary material [47].

3. Results

(a) Isocline analysis

The addition of self-limiting Ae. aegypti or reproductive interference to the baseline models can alter the shape or gradient of the zero-net-growth isoline of one or both species. This changes where the two isolines intersect and influences the number of coexistence points, their stability and the population size of each species at those points.

By comparing the isolines for Kuno’s model of reproductive interference (equations (2.1a) and (2.1b); figure 2a) to models with reproductive interference and self-limiting Ae. aegypti release, we can determine the impact of releasing self-limiting Ae. aegypti. Where there is reproductive interference, but no release of self-limiting Ae. aegypti (Kuno’s model,
However, the inclusion of reproductive interference (equations (2.1a) and (2.1b)) and a basic self-limiting *Ae. aegypti* release model (equations (2.2a) and (2.2b); (b,e)). The remaining plots illustrate models of self-limiting *Ae. aegypti* release with reproductive interference, where the self-limiting *Ae. aegypti* do not reproducitively interfere with *Ae. albopictus* (equations (2.3a) and (2.3b); (c,f)) and where they do (equations (2.4a) and (2.4b); (d,g)). Filled circles show stable equilibria, and unfilled circles unstable equilibria. Constant parameter values are given in table 1, β_A and β_B = 0.5, and, where relevant, δ_A and δ_B = 0.15 and $\theta = 0.1$ (underflooding, row 1) or 2 (overflooding, row 2).

The influence of reproductive interference on the stable equilibria is assessed by comparing the isolines of the model of self-limiting *Ae. aegypti* release with no reproductive interference (equations (2.2a) and (2.2b); figure 2(a), *Ae. aegypti* and *Ae. albopictus* isolines cross at three points, one stable coexistence point flanked by two unstable coexistence points (as seen in (31)). However, underflooding (figure 2(c,d)) and overflooding (figure 2(f,g)) with self-limiting *Ae. aegypti* causes vertical and horizontal compression of the *Ae. aegypti* isoline, and minor horizontal compression of the *Ae. albopictus* isoline, causing the isolines to only cross at a single point. Therefore, following underflooding and overflooding with self-limiting *Ae. aegypti*, coexistence is destabilized and exclusion are the only stable equilibria.

Isocline analyses are limited in that they only show stable equilibria for a certain set of parameter values. Thus, we conducted further analyses to examine the sensitivity of the population sizes of *Ae. aegypti* and *Ae. albopictus* to the ratio of self-limiting *Ae. aegypti* (θ; electronic supplementary material, figure S1), the strength of reproductive interference (δ_A; electronic supplementary material, figure S2), and the strength of interspecific competition (β_A; electronic supplementary material, figure S3). We then assessed the sensitivity of the stable coexistence of *Ae. aegypti* and *Ae. albopictus* to the strength of reproductive interference (δ_A; figure 3), and interspecific competition (β_A; figure 4), for different ratios of self-limiting *Ae. aegypti* (θ).

(i) Population size

We explored the impact of different parameter values on the population size of both species at all stable equilibria. The magnitude of the ratio of self-limiting *Ae. aegypti* (θ), reproductive interference (δ_A) and interspecific competition (β_A) all impact the population size of both species at coexistence. In all models with the release of self-limiting *Ae. aegypti*, as the release ratio increases, the population size of *Ae. aegypti* at coexistence decreases, and *Ae. albopictus* increases.

(b) Sensitivity analysis

Isocline analyses are limited in that they only show stable equilibria for a certain set of parameter values. Thus, we conducted further analyses to examine the sensitivity of the population sizes of *Ae. aegypti* and *Ae. albopictus* to the ratio of self-limiting *Ae. aegypti* (θ; electronic supplementary material, figure S1), the strength of reproductive interference (δ_A; electronic supplementary material, figure S2), and the strength of interspecific competition (β_A; electronic supplementary material, figure S3). We then assessed the sensitivity of the stable coexistence of *Ae. aegypti* and *Ae. albopictus* to the strength of reproductive interference (δ_A; figure 3), and interspecific competition (β_A; figure 4), for different ratios of self-limiting *Ae. aegypti* (θ).
Figure 3. The effects of the strength of reproductive interference (β) on stable coexistence in all models with a reproductive interference term (equations (2.1a) and (2.1b); equations (2.3a) and (2.3b) and equations (2.4a) and (2.4b)). Parameter space where stable coexistence can occur is shaded in black. The ratio of self-limiting Ae. aegypti release (θ) is varied across plots, from no self-limiting Ae. aegypti release ($\theta = 0$, (a)), to weak underflooding ($\theta = 0.4$, (b),(f)), moderate underflooding ($\theta = 0.8$, (c),(g)), weak overflooding ($\theta = 1.2$, (d),(h)) and substantial overflooding ($\theta = 8$, (e),(i)). In the first row, self-limiting Ae. aegypti do not reproducitively interfere with Ae. albopictus (equations (2.3a) and (2.3b)), while in the second they do (equations (2.4a) and (2.4b)). Constant parameter values are given in table 1, and β_A and $\beta_B = 0.1$.

(electronic supplementary material, figure S1a–c). Similarly, an increase in the strength of reproductive interference or interspecific competition (electronic supplementary material figure S2 and S3, respectively) causes the population size of the species experiencing the force to decrease, and the population size of the other species to increase, where the species coexist.

Although the ratio of self-limiting Ae. aegypti (θ), the strength of reproductive interference (β) and strength of interspecific competition (β_A) influence the population size of both species at coexistence, only the release ratio of self-limiting Ae. aegypti (θ) has any impact on population size when there is exclusion (electronic supplementary material figure S1d–f). When there is reproductive interference, as the release ratio of self-limiting Ae. aegypti (θ) increases, there is a decrease in the population size of Ae. aegypti when it excludes Ae. albopictus (electronic supplementary material figure S1e,f). These results are sensical: following exclusion of a species, interspecific interactions (through resource competition and reproductive interference) will not occur, and thus will not influence population density. However, following the exclusion of Ae. albopictus, self-limiting Ae. aegypti will still suppress the population size of Ae. aegypti. In the absence of reproductive interference, Ae. aegypti cannot stably exclude Ae. albopictus (electronic supplementary material figure S1d). For all self-limiting insect release models, the population size of Ae. albopictus, when it excludes Ae. aegypti, is unaffected by the self-limiting Ae. aegypti release ratio (electronic supplementary material figure S1d–f). Again, this is sensical, as there will be no self-limiting Ae. aegypti present following the exclusion of Ae. aegypti.
(ii) Coexistence and exclusion boundaries

For all models with the reproductive interference term, analyses explored the ranges of strengths of reproductive interference (δ, figure 3) and interspecific competition (β, figure 4) that resulted in stable coexistence, for different ratios of self-limiting \textit{Ae. aegypti} (θ). Similar patterns are observed for both parameters, in Kuno’s model of reproductive interference (equations (2.1a) and (2.1b)) and the models including self-limiting \textit{Ae. aegypti} release (equations (2.3a) and (2.3b) and equations (2.4a) and (2.4b)).

In Kuno’s model of reproductive interference model (equations (2.1a) and (2.1b)), coexistence regions are biased towards the left corner, where there is low reproductive interference (figure 3a), or low interspecific competition (figure 4a) experienced by both species. In models with self-limiting \textit{Ae. aegypti} release, an increase in the release ratio (θ) causes the stable coexistence parameter space to decrease in area, and change shape. As the release ratio (θ) increases, coexistence can occur when \textit{Ae. albopictus} suffers increasingly high reproductive interference (figure 3) or interspecific competition (figure 4), and \textit{Ae. aegypti} suffers increasingly low reproductive interference (figure 3) or interspecific competition (figure 4).

When self-limiting \textit{Ae. aegypti} do not reproductively interfere with \textit{Ae. albopictus} (figures 3–c and 4b–c), coexistence can occur when \textit{Ae. albopictus} suffers greater reproductive interference and interspecific competition, than when \textit{Ae. aegypti} do cause reproductive interference (figures 3f–i and 4f–i). In the substantial overflooding situation, the self-limiting insect release ratio is high enough (θ = 8) that coexistence cannot occur for any values for reproductive interference (figure 3c,i) or interspecific competition (figure 4c,i)—thus, there is only exclusion.

4. Discussion

This work is the first to investigate the combined role of reproductive interference and self-limiting insect releases on the coexistence of closely related disease vectors, \textit{Ae. aegypti} and \textit{Ae. albopictus}. It is well established, both theoretically [47–50] and through a limited set of field trials [51,52], that the release of self-limiting mosquitoes can be used to suppress the population size of \textit{Ae. aegypti}, and therefore, potentially, reduce the substantial associated public health burden.

\textit{Ae. aegypti} shares a similar ecological niche with \textit{Ae. albopictus}, they compete for resources [24–26] and interfere with each other’s mating attempts [36–38]. Previous studies have separately modelled the impact of reproductive interference [33] and self-limiting \textit{Ae. aegypti} release [21] upon the coexistence of \textit{Ae. aegypti} and \textit{Ae. albopictus}. However, as highlighted [35], the combined effect has not been investigated. We addressed this by examining the interactions between \textit{Ae. aegypti} and \textit{Ae. albopictus} where there is reproductive interference, and self-limiting \textit{Ae. aegypti} release. We explored the potential outcomes following the release of self-limiting \textit{Ae. aegypti}, where \textit{Ae. aegypti} and \textit{Ae. albopictus} coexist. This work remains highly relevant as \textit{Ae. albopictus} and \textit{Ae. aegypti} are undergoing range expansion, making it increasingly likely that these important vectors of disease will come into contact [30]. Our results show that the ratio of self-limiting \textit{Ae. aegypti} and the strength of reproductive interference can act concomitantly to determine whether coexistence is maintained, or exclusion occurs. Self-limiting \textit{Ae. aegypti} releases and reproductive interference also affect the population size of one or both species. Therefore, in locations where the distributions of \textit{Ae. aegypti} and \textit{Ae. albopictus} overlap, both the behavioural ecological and population ecological effects of self-limiting releases have important consequences for the efficacy of vector control programmes.

To investigate the release of self-limiting \textit{Ae. aegypti}, we used a proportional release policy [40], where, at each time point, the number of self-limiting \textit{Ae. aegypti} is proportional to the number of wild \textit{Ae. aegypti} [40]. To conduct proportional releases in the field requires constant monitoring of mosquito populations. There are well established techniques to monitor \textit{Aedes} populations, and entomological surveys are necessary following self-limiting insect release in order to monitor efficacy [19]. The proportional release policy has been investigated in previous theoretical studies on self-limiting control [39,53,54]; under this release policy, fewer self-limiting mosquitoes need to be released to eradicate the target organism than in a constant release scenario (where the same number of self-limiting mosquitoes are released at each time step) [39]. As such, there could be the economic benefit of using proportional release policies, especially in areas where public health monitoring of mosquitoes is sufficient to estimate mosquito density, so no additional monitoring costs accrue. Economic benefits are an important consideration: cost-effectiveness has been highlighted as a technical aspect of self-limiting insect releases that requires further investigation [19]. One approach could be to compare the costs of different release policies to understand the implications of self-limiting releases on wider aspects of biodiversity.

(a) Population size

We examined the impact of increasing the ratio of self-limiting \textit{Ae. aegypti} on the population sizes of \textit{Ae. aegypti} and \textit{Ae. albopictus}. Self-limiting \textit{Ae. aegypti} mate with their wild counterparts to produce non-viable offspring; thus, these self-limiting insects suppress the population density of \textit{Ae. aegypti} by decreasing recruitment. This is shown from our analyses, where increasing the ratio of self-limiting \textit{Ae. aegypti} decreases the population density of \textit{Ae. aegypti} when there is coexistence, or where \textit{Ae. aegypti} excludes \textit{Ae. albopictus}. As there are fewer \textit{Ae. aegypti} to compete with \textit{Ae. albopictus} for resources or interfere with their mating, the population size of \textit{Ae. albopictus} increases with the self-limiting \textit{Ae. aegypti} release ratio when there is coexistence. This result holds when self-limiting \textit{Ae. aegypti} reproductively interfere with \textit{Ae. albopictus}, and when they do not cause reproductive interference: thus, this outcome is governed by the decrease in the wild \textit{Ae. aegypti} population size, rather than any additional increase in reproductive interference by self-limiting \textit{Ae. aegypti}.

Following the release of self-limiting \textit{Ae. aegypti}, where \textit{Ae. albopictus} persists, it will increase in population size; either by excluding \textit{Ae. aegypti} and reaching carrying capacity, or by increasing its population size in coexistence with \textit{Ae. aegypti}. This is an important consideration: as highlighted by Bargielski et al., \textit{Ae. albopictus} is the principal vector of dengue in regions where \textit{Ae. aegypti} is rare or uncommon (e.g. in China [55–57], Bangladesh [58] and South India [59,60]), and in regions of Africa native to \textit{Ae. aegypti} that \textit{Ae. albopictus} has recently colonized [61]. Therefore, in some regions, the decrease in public health burden caused by
lowering the *Ae. aegypti* population may be lessened or compensated for by the associated increase in the *Ae. albopictus* population size. This highlights a limitation of using species specific pest control techniques [18]. In situations where both species coexist and are significant disease vectors, the release of both self-limiting *Ae. aegypti* and *Ae. albopictus* may be a more appropriate course of action [19].

Furthermore, our results show that the strength of reproductive interference and interspecific competition affects the population densities of both species at coexistence. An increase in the strength of reproductive interference or interspecific competition reduces the population size of the species experiencing the behavioural (reproductive interference) or ecological (interspecific competition) effects. For the former, this is due to fewer successful matings, reducing recruitment, and for the latter, more competition with heterospecifics for resources, increasing the number of deaths. The subsequent reduction in population size of the focal species allows the other species to increase in population density, as there are fewer heterospecifics to compete with for resources, or to interfere with their mating.

However, previous work has shown *Ae. aegypti* may develop some resistance to reproductive interference. Bargielowska *et al.* [37] showed that female *Ae. aegypti* from populations in allopatry with *Ae. albopictus* mis-mate more frequently than those from populations with a history of sympatry; suggesting that upon contact between *Ae. aegypti* and *Ae. albopictus, *Ae. aegypti* are selected for their ability to evade reproductive interference by *Ae. albopictus*. Thus, where *Ae. aegypti* and *Ae. albopictus* have come into contact more recently, *Ae. aegypti* may experience stronger reproductive interference. Our results suggest this will cause a lower population size of *Ae. aegypti*—thus, recent contact with *Ae. albopictus* means fewer self-limiting *Ae. aegypti* need to be released to have the equivalent impact upon the *Ae. aegypti* population size. Therefore, these areas could be targeted at a lower economic burden. This is particularly relevant in regions where *Ae. albopictus* is not a disease vector.

(b) Coexistence and exclusion boundaries

Our results show that the ratio of self-limiting *Ae. aegypti* released determines whether coexistence is possible. A high enough release ratio of *Ae. aegypti* destabilizes coexistence across all strengths of reproductive interference and interspecific competition—thus, the only stable outcome is exclusion. However, at lower release ratios, coexistence is still possible. Here, the ratio of self-limiting *Ae. aegypti*, and whether the self-limiting *Ae. aegypti* cause reproductive interference, determines the strength of the reproductive interference and resource competition that can be experienced by *Ae. aegypti* and *Ae. albopictus*, and coexistence maintained.

When self-limiting *Ae. aegypti* reproductively interfere with *Ae. albopictus*, coexistence can occur when each individual *Ae. aegypti* causes weaker reproductive interference and interspecific competition, than when only wild *Ae. aegypti* reproductively interfere with *Ae. albopictus*. This is because, there are additional individuals (the self-limiting *Ae. aegypti* that reproductively interfere with *Ae. albopictus*). This increases the total reproductive interference experienced by the *Ae. albopictus* population, for the same strength of reproductive interference imposed by each individual *Ae. aegypti*.

As discussed, an increase in the ratio of self-limiting *Ae. aegypti* causes the population size of *Ae. aegypti* to decrease, meaning there are fewer *Ae. aegypti* to interfere with the mating of *Ae. albopictus* or compete with them for resources. Thus, as the release ratio increases, each individual *Ae. aegypti* can reproductively interfere and compete for resources increasingly strongly with *Ae. albopictus*, without changing the total ecological effects experienced by the *Ae. albopictus* population. As the population size of *Ae. albopictus* increases with the release ratio of self-limiting *Ae. aegypti*, the reverse occurs to the per capita reproductive interference and competition for resources caused by *Ae. albopictus*. For these reasons, up to a moderate release ratio of *Ae. aegypti*, our results show that as the ratio of self-limiting *Ae. aegypti* increases, coexistence can occur when the reproductive interference and resource competition suffered by *Ae. albopictus* is increasingly high and that suffered by *Ae. aegypti* is increasingly low.

However, meta-analyses suggest that *Ae. albopictus* is more likely to experience weaker reproductive interference, and interspecific resource competition than *Ae. aegypti* [30,42]. A meta-analysis by Juliano [42] showed *Ae. albopictus* has a competitive advantage over *Ae. aegypti* when there is low food quality, and high food quality results in competitive equivalence. Furthermore, *Ae. aegypti* is more likely to mismate than *Ae. albopictus* [37,38] and following mis-mating, female *Ae. aegypti* can become refractory to further mating [36]. This asymmetry is likely to be due to the greater species recognition abilities of *Ae. albopictus* [31,38]. This suggests that in the wild, as the release ratio of self-limiting *Ae. aegypti* increases, coexistence will only occur where both species experience an increasingly low strength of reproductive interference and interspecific resource competition, although coexistence is theoretically possible when *Ae. albopictus* suffers more than *Ae. aegypti*.

It is plausible that there are regions where the reproductive interference and resource competition experienced by *Ae. aegypti* is sufficiently weak for coexistence to occur, even when self-limiting *Ae. aegypti* are released. For instance, coexistence could be facilitated in areas with high food quality, where the competitive advantage of *Ae. albopictus* is reduced, resulting in lower interspecific competition [42]. Furthermore, *Ae. aegypti* may experience reproductive interference that is weak enough to allow coexistence following the release of self-limiting *Ae. aegypti*—for instance in a coexistence region in Brazil, *Ae. albopictus* only weakly reproductively interferes with *Ae. aegypti* [43]. Equally, as discussed, in regions where *Ae. aegypti* initially experiences strong reproductive interference, this species could develop resistance to reproductive interference prior to exclusion [37]. Additionally, in the wild, habitat partitioning in time or space could allow reproductive interference to be avoided and coexistence to be maintained [62]. Thus, the release of self-limiting *Ae. aegypti* could initially destabilize coexistence, but subsequent development of resistance to mis-mating in *Ae. aegypti*, or habitat partitioning, could recover stable coexistence.

5. Conclusion

Previous models have examined the impact of reproductive interference [33–35] and self-limiting insect release [21] on the
population dynamics between the vectors *Ae. aegypti* and *Ae. albopictus*. However, we are the first to address the combined impact of self-limiting insect release and reproductive interference upon *Ae. aegypti* and *Ae. albopictus* coexistence. Our results show that the strength of reproductive interference and the ratio of self-limiting *Ae. aegypti* are important factors that act together to determine the population size of both *Ae. aegypti* and *Ae. albopictus* and whether coexistence can occur. This highlights the importance of including behavioural ecological processes, such as reproductive interference, into population dynamic frameworks to evaluate the efficacy of vector control. Future work could focus on stochastic and spatial aspects of coexistence following self-limiting releases. Furthermore, linking these outcomes to vector-borne disease epidemiology would allow the effects of behavioural traits (such as reproductive interference) on disease spread and the public health implications to be evaluated.

Data accessibility. Code and electronic supplementary material can be found at: https://osf.io/uuwr8/?view_only=d3190f8c1770fa988c4c dcd2bedd3de3e [45].

Authors’ contributions. M.V.: Conceptualization, data curation, formal analysis, investigation, writing-original draft, writing-review and editing; M.B.: conceptualization, supervision, writing-review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Competing interests. We declare we have no competing interests.

Funding. M.V. was supported by a BBBSRC studentship (BB/M011224/1).

Acknowledgements. We thank the Mathematical Ecology Research Group (MERG) and two anonymous referees for their detailed suggestions on this work.

References

1. World Health Organization. Vector-borne diseases. See https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases?---text=Key%20facts, infection%20transmitted%20by%20Anopheline%20mosquitoes.
2. World Health Organization. Dengue and severe dengue. See https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
3. Messina JP et al. 2019 The current and future global distribution and population at risk of dengue. *Nat. Microbiol.* 4, 1508–1515. (doi:10.1038/s41564-019-0476-0)
4. Gubler DJ. 2011 Dengue, urbanization and interspecific interactions. *Science* 333, 1501–1502. (http://doi.org/10.1126/science.1209327)
5. Murray NEA, Quam MB, Wilder-Smith A. 2013 Dengue, urbanization and reproductive interference) on disease spread and the public health implications to be evaluated.
6. Liu-Helmersson J, Brännström Å, Sewe MO, Hallfors D, Harris E, Lacroix R, Matzen K, Beech C. 2013 Genetic control of *Aedes mosquit.* *Pathog. Glob. Health* 107, 170–179. (doi:10.1179/2047773213Y.0000000095)
7. Ristyadi D, Andrew N, Waugh R. 2013 Effect of a common hybridization. In *Dipt. Culicidae* vectors of arboviruses in Mayotte (Indian Ocean): distribution area and larval habitats. *J. Med. Entomol.* 46, 198–207. (doi:10.1633/0022-5188(2003)46[198:DAALH]2.0.CO;2)
8. Yuval B. 2006 Mating systems of blood-feeding flies. *Annu. Rev. Entomol.* 51, 413–440. (doi:10.1146/annurev.ento.51.110104.151058)
9. Shibenna KR, Knob RB. 1997 Barriers to hybridization. In *Pollin biotechnology for crop production and improvement* (eds KR Shibenna, VK Sawhney), pp. 261–272. Cambridge, UK: Cambridge University Press. (doi:10.1017/ CB09780511525469.014)
30. Loumibos LP, Juliano SA. 2018 Where vectors collide: the importance of mechanisms shaping the realized niche for modelling ranges of invasive Aedes mosquitoes. *Biol. Invasions* **20**, 1913–1929. (doi:10.1007/s10530-018-1674-7)

31. Gröning J, Hochkirch A. 2008 Reproductive interference between animal species. *Q. Rev. Biol.* **83**, 257–282. (doi:10.1086/590510)

32. Burdfield-Steel ER, Shuker DM. 2011 Reproductive interference. *Curr. Biol.* **21**, R450–R451. (doi:10.1016/j.cub.2011.03.063)

33. Paton RS, Bonsall MB. 2019 The ecological and epidemiological consequences of reproductive interference between the vectors *Aedes aegypti* and *Aedes albopictus*. *J. R. Soc. Interface* **16**, 20190270. (doi:10.1098/rsif.2019.0270)

34. Kuno E. 1992 Competitive exclusion through lethal genetic system. *PLoS Negl. Trop. Dis.* **7**, e52235. (doi:10.1371/journal.pntd.0003864)

35. Nishimura N, Blosser EM. 2011 Competitive exclusion through *Aedes aegypti* with transgenic methods: implications for population coexistence co-mediated by resource competition and reproductive interference. *Modelling* **34**, 284. (doi:10.1007/BF02514797)

36. Almeida APG, Vos M, Kooi BW, Angelis DL, Mooij WM. 2005 Bioecology and vectorial capacity of *Aedes albopictus* (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. *J. Med. Entomol.* **42**, 419–428. (doi:10.1093/jmedent/42.4.419)

37. Bargielowski IE, Loumibos LP, Carrasquilla MC. 2013 Evolution of resistance to saturation through reproductive character displacement in populations of invasive dengue vectors. *Proc. Natl Acad. Sci. USA* **110**, 2888–2892. (doi:10.1073/pnas.1219599110)

38. Marcela P, Hassan AA, Hamdan A, Dieng H, Kumara TK. 2015 Interspecific cross-mating between *Aedes aegypti* and *Aedes albopictus* laboratory strains: implication of population density on mating behaviors. *J. Am. Mosq. Control Assoc.* **31**, 313–320. (doi:10.2987/mc-14-04.313-313.d01)

39. Atkinson MP, Su Z, Alphely N, Alphley LS, Goleman PG, Weim LM. 2007 Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. *Proc. Natl Acad. Sci. USA* **104**, 9540–9545. (doi:10.1073/pnas.0610685104)

40. Southwood TR, Murdie G, Yasuno M, Tonn RJ, Reader PM. 1972 Studies on the life budget of *Aedes aegypti* in Wat Samphaya, Bangkok, Thailand. *Bull. World Health Organ.* **46**, 211–226.

41. Dye C. 1984 Models for the population dynamics of the yellow fever mosquito, *Aedes aegypti*. *J. Anim. Ecol.* **53**, 247. (doi:10.2307/4355)

42. Juliano SA. 2010 Coexistence, exclusion, or neutrality? A meta-analysis of competition between *Aedes albopictus* and resident mosquitoes. *Isr. J. Ecol. Evol.* **56**, 325–351. (doi:10.1560/UEE.55.3-4.325)

43. Alphley N, Bonsall MB. 2011 Modeling resistance to genetic control of insects. *J. Theor. Biol.* **270**, 42–55. (doi:10.1016/j.jtbi.2010.11.016)

44. Watkinson-Powell B, Alphley N. 2017 Resistance to genetic insect control: modelling the effects of space. *J. Theor. Biol.* **413**, 72–85. (doi:10.1016/j.jtbi.2016.10.014)

45. Gratz NG. 2004 Critical review of the vector status of *Aedes albopictus*. *Med. Vet. Entomol.* **18**, 215–227. (doi:10.1111/j.0269-283X.2004.00513.x)

46. Ali M, Wagatsuma Y, Emch M, Breiman RF. 2003 Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for *Aedes albopictus* in an urban outbreak. *Am. J. Trop. Med. Hyg.* **69**, 634–640. (doi:10.4269/ajtmh.2003.69.634)

47. Nishimura N, Blosser EM. 2011 Competitive exclusion through *Aedes aegypti* with transgenic methods: implications for population coexistence co-mediated by resource competition and reproductive interference. *Modelling* **34**, 284. (doi:10.1007/BF02514797)

48. Phuc H, Vos M, Kooi BW, Angelis DL, Mooij WM. 2005 Inducible defenses in food webs. *Dynamic food webs*, 261–289. (doi:10.1007/978-1-4614-0439-4_19)

49. Legros M, Xu C, Okamoto K, Scott TW, Morrison AC, Donnelly CA, Alphey L, Malavasi A, Capurro ML. 2015 Suppression of a field population of the yellow fever mosquito, *Aedes aegypti* in Wat Samphaya, Bangkok, Thailand. *Bull. World Health Organ.* **93**, 1007–1012. (doi:10.2471/BLT.13.131471)

50. Seirin LS, Baker RE, Gaffney EA, White SM. 2013 Spatial risk for dengue transmission in Bangladesh: role for *Aedes albopictus* in an urban outbreak. *Am. J. Trop. Med. Hyg.* **69**, 634–640. (doi:10.4269/ajtmh.2003.69.634)

51. Almeida APG, Vos M, Kooi BW, Angelis DL, Mooij WM. 2005 Bioecology and vectorial capacity of *Aedes albopictus* (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. *J. Med. Entomol.* **42**, 419–428. (doi:10.1093/jmedent/42.4.419)

52. Vos M, Kooi BW, Angelis DL, Mooij WM. 2005 Bioecology and vectorial capacity of *Aedes albopictus* (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. *J. Med. Entomol.* **42**, 419–428. (doi:10.1093/jmedent/42.4.419)

53. Gratz NG. 2004 Critical review of the vector status of *Aedes albopictus*. *Med. Vet. Entomol.* **18**, 215–227. (doi:10.1111/j.0269-283X.2004.00513.x)

54. Ali M, Wagatsuma Y, Emch M, Breiman RF. 2003 Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for *Aedes albopictus* in an urban outbreak. *Am. J. Trop. Med. Hyg.* **69**, 634–640. (doi:10.4269/ajtmh.2003.69.634)

55. Das BP, Kabilan L, Sharma SN, Lal S, Regu K, Saxena VK. 2004 Detection of dengue virus in wild caught *Aedes aegypti* (Skuse) around Kozhikode airport, Malagpurra district, Kerala, India. *Dengue Bull.* **28**, 210–212.

56. Therioush V, Hitiyan JG, Tewari SC, Samuel PP, Paramasivam R, Rajendran R, Mani TR, Tyagi BK. 2007 Natural vertical transmission of dengue virus in *Aedes albopictus* (Diptera: Culicidae) in Kerala, a Southern Indian State. *Jpn. J. Infect. Dis.* **60**, 245–249.

57. Paramasivam R, Rajendran R, Mani TR, Tyagi BK. 2007 Natural vertical transmission of dengue virus in *Aedes albopictus* (Diptera: Culicidae) in Kerala, a Southern Indian State. *Jpn. J. Infect. Dis.* **60**, 245–249.

58. Paramasivam R, Rajendran R, Mani TR, Tyagi BK. 2007 Natural vertical transmission of dengue virus in *Aedes albopictus* (Diptera: Culicidae) in Kerala, a Southern Indian State. *Jpn. J. Infect. Dis.* **60**, 245–249.

59. Paramasivam R, Rajendran R, Mani TR, Tyagi BK. 2007 Natural vertical transmission of dengue virus in *Aedes albopictus* (Diptera: Culicidae) in Kerala, a Southern Indian State. *Jpn. J. Infect. Dis.* **60**, 245–249.

60. Paramasivam R, Rajendran R, Mani TR, Tyagi BK. 2007 Natural vertical transmission of dengue virus in *Aedes albopictus* (Diptera: Culicidae) in Kerala, a Southern Indian State. *Jpn. J. Infect. Dis.* **60**, 245–249.

61. Paramasivam R, Rajendran R, Mani TR, Tyagi BK. 2007 Natural vertical transmission of dengue virus in *Aedes albopictus* (Diptera: Culicidae) in Kerala, a Southern Indian State. *Jpn. J. Infect. Dis.* **60**, 245–249.