LINKS AND HURWITZ CURVES

VIK. S. KULIKOV

Abstract. In the note, we give a proof, based on the Generalized Thom Conjecture, of Bennequin’s Theorem on upper bound for the Euler number of a link which is considered as a closed braid. A lower bound for the Euler number of a link is also given.

1. Introduction

Let l be a link in the three-dimensional sphere S^3 consisting of k components. Recall that an oriented surface $S \subset S^3$ is called a Seifert surface of the link l if the boundary ∂S of S coincides with l and S has not a closed component (without boundary). Let $\chi(S)$ be the Euler characteristic of S. By definition, the Euler number $e(l)$ of l is

$$e(l) = \max_S \chi(S), \quad (1)$$

where the maximum is taken over all Seifert surfaces of l. Note that if l is a knot of genus g, then

$$e(l) = 1 - 2g. \quad (2)$$

By Alexander’s theorem (see [Al]), there is a number $m \in \mathbb{N}$ such that a given link l is equivalent to a closed braid \overline{b} (notation: $l \cong \overline{b}$), where b is a braid in the braid group Br_m on m strings.

Below, we fix a set $\{a_1, \ldots, a_{m-1}\}$ of so called standard generators of Br_m, i.e., generators being subject to the relations

$$a_i a_{i+1} a_i = a_{i+1} a_i a_{i+1}, \quad 1 \leq i \leq m - 2,$$
$$a_i a_k = a_k a_i, \quad |i - k| \geq 2$$

and extend this set of generators to a set of generators $\{a_{i,j}\}_{1 \leq i < j \leq m}$, where $a_{i,i+1} = a_i$ and

$$a_{i,j} = (a_{j-1} a_{j-2} \ldots a_{i+1}) a_i (a_{j-1} a_{j-2} \ldots a_{i+1})^{-1}$$

The work was partially supported by RFBR (No. 02-01-00786).
for $j - i \geq 2$. An element $b \in \text{Br}_m$ can be presented as a word in the alphabet $\{a_{i,j}, a_{i,j}^{-1}\}_{1 \leq i < j \leq m}$:

$$b = w(a_{1,2}, \ldots, a_{m-1,m}) = \prod_{k=1}^{n_w} a_{i_k,j_k}^{\varepsilon_k},$$

(3)

where $\varepsilon_k = \pm 1$. The minimum

$$| b | = \min_{w(a_{i,j}) = b} n_w,$$

where the minimum is taken over all presentations of b in the form (3) is called the length of b.

As is known, if braids b_1 and b_2 are conjugated in Br_m, then the closed braids \overline{b}_1 and \overline{b}_2 are equivalent links. The number

$$|| \overline{b} || = \min_{g \in \text{Br}_m} | g^{-1} b g |$$

is called the norm of a closed braid \overline{b}.

Let $B_{l,m} = \{ b \in \text{Br}_m \mid l \simeq \overline{b} \}$ be the set of closed braids on m strings equivalent to l. If $B_{l,m} \neq \emptyset$, then the number

$$|| l ||_m = \min_{b \in B_{l,m}} || \overline{b} ||$$

is called the m-norm of a link l.

Denote by $\tilde{\text{Br}}_m^+$ the semigroup generated in the braid group Br_m by the set $\{a_{i,j}\}_{1 \leq i < j \leq m}$. An element $b \in \text{Br}_m$ is called positive (respectively, negative) if $b \in \tilde{\text{Br}}_m^+$ (respectively, if $b^{-1} \in \tilde{\text{Br}}_m^+$).

Consider the homomorphism $\deg : \text{Br}_m \to \text{Br}_m/[[\text{Br}_m, \text{Br}_m]] \simeq \mathbb{Z}$ sending all $a_{i,j}$ to $1 \in \mathbb{Z}$. The image $\deg b$ of an element $b \in \text{Br}_m$ is called the degree of b.

The aim of this note is to give a proof, based on the Generalized Thom Conjecture, of Bennequin’s Theorem \(^1\) (Ben, Ben2) on upper bound for the Euler number $e(l)$ in terms of invariants of a closed braid $\overline{b} \simeq l$ and also to give some lower bound for it.

Theorem 1.1. Let a link l be presented as a closed braid \overline{b} for some $b \in \text{Br}_m$. Then

$$m - || \overline{b} || \leq e(l).$$

(4)

Theorem 1.2. (Ben, Ben2) Let a link l be presented as a closed braid \overline{b} for some $b \in \text{Br}_m$. Then

$$e(l) \leq m - | \deg b |.$$

(5)
The idea of the proof of Theorem 1.2 is the following. First of all, it is easy to see that the general case can be reduced to the case deg $b \geq 0$. Then for a given link $l \simeq \overline{b}$, where $b \in \mathrm{Br}_m$, deg $b \geq 0$, applying results obtained in [Kh-Ku] about so called Hurwitz curves in the complex Hirzebruch surface F_N, we construct smooth real surface S and algebraic curve C lying in F_N for some $N \geq 1$ and having the genera $g(S) = 1 + (Nm(m-1)-m-e(l)-\deg b)/2$ and $g(C) = 1 + (Nm(m-1)-2m)/2$, and such that $[S] = [C]$, where $[C], [S] \in H_2(F_N, \mathbb{Z})$ are the homology classes represented by real two-dimensional surfaces C and S. Now, the proof of Theorem 1.2 follows from the Generalized Thom Conjecture proved in [M-S-T] and asserting that $g(C) \leq g(S)$.

Since $\deg b = ||\overline{b}||$ for $b \in \widetilde{\mathrm{Br}}_m$, we have the following corollary.

Corollary 1.3. Let a link l be presented as a closed braid \overline{b} for some positive or negative element $b \in \mathrm{Br}_m$. Then

$$||l||_m = ||\overline{b}|| = |\deg b|; \quad (6)$$

$$e(l) = m - ||l||_m. \quad (7)$$

Obviously, $e(l) = k$ for a trivial link l consisting of k connected components. Therefore we have the following corollary.

Corollary 1.4. Let a link l consisting of k connected components be presented as a closed braid \overline{b} for some element $b \in \mathrm{Br}_m$. If

$$k > m - |\deg b|$$

then l is a non-trivial link.

Acknowledgement. The author thanks I.A. Dynnikov for references and his helpful remarks during the preparation of this paper.

2. **Proof of theorem 1.1**

To prove Theorem 1.1 let us identify the sphere S^3 with the boundary $\partial D = (\partial D_1) \times D_2 \cup D_1 \times \partial D_2$ of a bi-disc

$$D = D_1 \times D_2 = \{(z, w) \in \mathbb{C}^2 \mid |z| \leq 1, \ |w| \leq 2\}. $$

Choose m points $w_k = e^{2\pi i k \frac{1}{m}} \in D_2 = \{ |w| \leq 2 \}$, $k = 1, \ldots, m$, and identify the braid group Br_m with the braid group $\mathrm{Br}[D_2, \{w_1, \ldots, w_m\}]$. In this case the generators $a_{i,j}$ are identified with half-twists along the segments $w = tw_i + (1-t)w_j$, $t \in [0,1]$ (see Fig. 1), and \overline{b} with a closed braid lying in $(\partial D_1) \times D_2.$
Let a link \(l \simeq b \), where
\[
b = \prod_{k=1}^{n_b} a^{\varepsilon_k}_{i_k, j_k} \in \mathrm{Br}_m, \quad \varepsilon_k = \pm 1.
\]

In this case one can construct a Seifert surface \(S \) of the link \(l \) similar to the construction in the standard case when the link \(l \) is represented as a projection of \(l \) to a plane whose image is an immersed curve with simple intersections (Wirtinger presentation). Namely, take \(m \) discs
\[
S_j = \{(z, w) \in \mathbb{S}^3 \mid ||z|| \leq 1, \ w = 2e^{\frac{2\pi \sqrt{-1}}{m} k} \} \subset D_1 \times \partial D_2,
\]
j = 1, \ldots, m, glue each \(S_j \) along a circle
\[
C_j = \{(z, w) \in \mathbb{S}^3 \mid ||z|| = 1, \ w = 2e^{\frac{2\pi \sqrt{-1}}{m} k} \} \subset \partial D_1 \times \partial D_2
\]
with an annulus
\[
A_j = \{(z, w) \in \mathbb{S}^3 \mid ||z|| = 1, \ w = 2te^{\frac{2\pi \sqrt{-1}}{m} k} + (1-t)e^{\frac{2\pi \sqrt{-1}}{m} k}, \ t \in [0, 1] \}
\]
and put \(\overline{S}_j = S_j \cup C_j \). Obviously, each \(\overline{S}_j \) is a disc. Next, in each
\[
(\partial D_1)_k \times D_2 = \{(z, w) \in (\partial D_1) \times D_2 \mid z = e^{\frac{2\pi \sqrt{-1}}{m} k}, \ k - \frac{1}{3} \leq t \leq k + \frac{1}{3} \}
\]
let us attach a band \(B_k \simeq [0, 1] \times [0, 1] \) to \(\overline{S}_{i_k} \) and \(\overline{S}_{j_k} \) in dependence on the sign of \(\varepsilon_k \) as it is depicted in Fig. 2.

As a result, we obtain a surface \(S \) in the sphere \(S^3 \) with the boundary \(\overline{b} \). Obviously, the Euler characteristic \(\chi(S) = m - n_b \). Therefore, Theorem 1.1 is proven.

Fig. 1
3. PROOF OF THEOREM 1.2

To prove Theorem 1.2, let us, in the beginning, briefly recall definitions of topological Hurwitz curves and their braid monodromy factorizations given in [Kh-Ku]. For a group Br_m one can define the factorization semigroup S_{Br_m}. For this, consider an alphabet

$$X = \{ x_g | \ g \in \text{Br}_m \}$$

and two sets of relations:

- $R_{g_1,g_2;r}$ stands for $x_{g_1} \cdot x_{g_2} = x_{g_2} \cdot x_{g_1}^{-1}g_1g_2$ if $g_2 \neq 1$ and $x_{g_1} \cdot x_1 = x_{g_1}$;
- $R_{g_1,g_2;l}$ stands for $x_{g_1} \cdot x_{g_2} = x_{g_1g_2g_1^{-1}} \cdot x_{g_1}$ if $g_1 \neq 1$ and $x_1 \cdot x_{g_2} = x_{g_2}$.

Now, put

$$\mathcal{R} = \{ R_{g_1,g_2;r}, R_{g_1,g_2;l} | (x_{g_1}, x_{g_2}) \in X \times X, g_1 \neq g_2 \}$$

and introduce the semigroup

$$S_{\text{Br}_m} = \langle x \in X : R \in \mathcal{R} \rangle$$

by means of this relation set \mathcal{R}. Introduce also a product homomorphism $\alpha : S_{\text{Br}_m} \to \text{Br}_m$ given by $\alpha(x_g) = g$ for each $x_g \in X$.

Denote by F_N a relatively minimal ruled rational complex surface (a Hirzebruch surface), $N \geq 1$, $\text{pr}: F_N \to \mathbb{C}P^1$ the ruling, R a fiber of pr and E_N the exceptional section, $E_N^2 = -N$. The variety $F_N \setminus (E_N \cup R)$ is naturally isomorphic to the complex affine plane \mathbb{C}^2 with complex coordinates (z, w) such that $\text{pr}(z, w) = z$.

By definition, the image $\hat{H} = f(S) \subset F_N$ of a continuous map $f : S \to F_N \setminus E_N$ of an oriented closed real surface S is called a topological Hurwitz curve (in F_N) of degree m if there is a finite subset $Z \subset \hat{H}$ such that:
(i) f is a smooth embedding of the surface $S \setminus f^{-1}(Z)$ and for any
$p \notin Z$, \bar{H} and the fiber $R_{pr}(p)$ of pr meet at p transversely with
positive intersection number;
(ii) the restriction of pr to \bar{H} is a finite map of degree m. (We call
a map finite if the preimage of each point is finite.)

Choose a fibre $R = R_\infty$ being in general position with a topological
Hurwitz curve H. Put $\mathbb{C}^2 = F_N \setminus (E_N \cup R_\infty)$ and fix complex co-
ordinates (z, w) in \mathbb{C}^2 such that $pr(z, w) = z$. At any point $p \in Z$
there is a well-defined $(W$-prepared) germ $(D, H = \bar{H} \cap D, pr)$ of this
curve in a bi-disc $D = D_1 \times D_2$, $D_1 = D_1(\epsilon_1) = \{ | z - z(p) | \leq \epsilon_1 \}$,
$D_2 = D_2(\epsilon_2) = \{ | w - w(p) | \leq \epsilon_2 \}$, $0 < \epsilon_1 << \epsilon_2$, centered at p and
such that the restriction of pr to \bar{H} is a proper map of a finite degree
$k \leq m$. If ϵ_1, ϵ_2 are sufficiently small, then: $R_{pr(p)} \cap H = p$; the above
degree does not depend on ϵ_1, ϵ_2; and the link $\partial D \cap H$ defines a unique,
up to conjugation, braid $b \in Br_k \subset Br_m$, where k is the above degree.
So that, we may speak on a tH-singularity (D, H, pr) of degree k and
type b.

When we are given a link $l \subset \partial D_1 \times D_2$ realizing a braid $b \in B_k$, we
associate with it a standard conical model of a topological singularity
of type b. It is given by $H = C(l),$

$$C(l) = \{ (rz, rw) | 0 \leq r \leq 1, (z, w) \in l \}.$$

As is known (see, for example, [Kh-Ku]), if (D, C, pr) is a germ of a
W-prepared tH-singularity then the germ (D, C, pr) is homeomorphic
to the cone singularity of type $b = pr^{-1}(\partial D_1) \cap C$.

Since $\bar{H} \cap E_N = \emptyset$, one can define a braid monodromy factorization
$b(\bar{H}) \in S_{Br_m}$ of \bar{H}. For doing this, we fix a fiber R_∞
meeting transversely \bar{H} and consider $\bar{H} \cap \mathbb{C}^2$, where $\mathbb{C}^2 = F_N \setminus (E_N \cup R_\infty)$. Choose
$r_1 >> 1$ such that $pr(Z) \subset D_1(\epsilon_1)$ = $\{ | z | \leq r_1 \} \subset \mathbb{C} = \mathbb{CP}^1 \setminus pr(R_\infty)$.
Denote by z_1, \ldots, z_n the elements of the set $pr(Z)$ and assume that for
each i the intersection $pr^{-1}(z_i) \cap Z$ consists of a single point. Pick $\rho,
0 < \rho << 1$, such that the discs $D_{1,i}(\rho) = \{ z \in \mathbb{C} | | z - z_i | < \rho \}$,
i = 1, \ldots, n, would be disjoint. Select arbitrary points $u_i \in \partial D_{1,i}(\rho)$
and a point $u_0 \in \partial D_1(r)$. Let $D_2(r_2) = \{ w \in \mathbb{C} | | w | \leq r_2 \}$ be a disc
of radius $r_2 >> 1$ such that $\bar{H} \cap \partial D_{1,i}(\rho) \subset D_1(\epsilon_1) \times D_2(r_2)$.
Put $D_{2,u_0} = \{ (u_0, w) \in \mathbb{C}^2 | | w | \leq r_2 \} \subset pr^{-1}(u_0)$, $K(u_0) = \{ w_1, \ldots, w_n \} = D_{2,u_0} \cap \bar{H}$, and $Br_m = Br[D_{2,u_0}, K(u_0)]$. Choose dis-
joint simple paths $l_i \subset D_{1,i}(\rho) \setminus \bigcup_1^n D_{1,i}(\rho)$, $i = 1, \ldots, n$, starting at u_0
and ending at u_i and renumber the points in a way that the product
$\gamma_1 \ldots \gamma_n$ of the loops $\gamma_i = l_i \circ \partial D_{1,i}(\rho) \circ l_i^{-1}$ would be equal to $\partial D_1(\epsilon_1)$
in $\pi_1(D_1(\epsilon_1) \setminus \{ z_1, \ldots, z_n \}, u_0)$. Each γ_i defines an element $b_i \in Br_m$
represented by the paths $\text{pr}^{-1}(\gamma_i) \cap \overline{H}$ starting and ending at the points lying in $K(u_0)$. The factorization $b(\overline{H}) = x_{b_1} \cdots x_{b_n} \in S_{Br_m}$ is called a braid monodromy factorization of \overline{H}.

Denote by $\Delta^2_m = (a_{1,2}a_{2,3} \cdots a_{m-1,m})^m$ a generator of the center of the group Br_m. It is easy to prove the following lemma (see, for example, [Kh-Ku]):

Lemma 3.1. For a topological Hurwitz curve $\overline{H} \subset F_N$ it holds

$$\alpha(b(\overline{H})) = \Delta^2_N.$$

The converse statement can be also proved in a straightforward way.

Theorem 3.2. ([Kh-Ku]) For any $s = x_{b_1} \cdots x_{b_n} \in S_{Br_m}$ such that $\alpha(s) = \Delta^2_N$ there is a topological Hurwitz curve $\overline{H} \subset F_N$ with a braid monodromy factorization $b(\overline{H})$ equal to s.

Now we are able to prove inequality (5). First of all, it easy to see that if $l \simeq \overline{b}$ for some $b \in Br_m$, then the link b^{-1} is equivalent to the mirror-image \overline{l}^{-1} of the inverted link l^{-1}. Therefore, to prove inequality (5), we can assume that $\deg b \geq 0$, since $e(l) = e(l^{-1}) = e(\overline{l}^{-1})$.

It follows from Theorem 5 in [G] (see, for example, Lemma 1.3 in [Kh-Ku]) that for any $b \in B_m$ there is a positive element $r \in Br_m^+$ and a positive integer $N \geq 1$ such that $rb = \Delta^2_m$. We have $\deg \Delta^2_m = m(m-1)$. Therefore $\deg r = Nm(m-1) - \deg b > 0$. Let

$$r = \prod_{k=1}^{\deg r} a_{i_k,j_k} \quad (8)$$

be a presentation of r as a word in the alphabet $\{a_{i,j}\}^{1 \leq i < j \leq m}$. Factorization (8) defines an element

$$s = \left(\prod_{k=1}^{\deg r} x_{a_{i_k,j_k}} \right) \cdot x_b$$

in the factorization semigroup S_{Br_m}. The element s is a braid monodromy factorization of a topological Hurwitz curve $\overline{H} \subset F_N$ whose set $\text{pr}(Z)$ of the critical values consists of points $z_k = \deg r - k + 2$ for $k = 1, \ldots, \deg r$ and $z_{\deg r+1} = 0$, and whose braid monodromy over $z_k, k = 1, \ldots, \deg r$, is equal to the k-th factor a_{i_k,j_k} entering in (8), and whose braid monodromy over the point z_0 is equal to b. Moreover, without loss of generality, we can assume that $\overline{H} \cap \text{pr}^{-1}(\partial D_1) = \overline{b} \subset (\partial D_1) \times D_2$, where $D_1 = \{|z| \leq 1\}$ and $D_2 = \{|w| \leq r\}$ for some
and by definition of topological Hurwitz curves, since
\(r \gg 1 \). Since all \(a_{i,j} \) are conjugated to \(a_{1,2} \) and the element \(a_{1,2} \) is the monodromy of the critical value of the function given by \(w^2 = z \), then we can assume that the Hurwitz curve \(S_2 = \overline{H} \cap \text{pr}^{-1}(\mathbb{CP}^1 \setminus D_1) \) is a smooth real surface in \(F_N \).

Consider the restriction of \(\text{pr} \) to \(S_2 \):

\[
\text{pr}|_{S_2} : S_2 \to D_{\geq 1} = \mathbb{CP}^1 \setminus D_1.
\]

The Euler characteristic of \(S_2 \) is equal to

\[
\chi(S_2) = m - Nm(m - 1) + \deg b,
\]

since \(D_{\geq 1} \) is a disc, \(\text{pr}|_{S_2} \) has \(\deg r = Nm(m - 1) - \deg b \) simplest critical values, and \(\deg \text{pr}|_{S_2} = m \).

Let \(S_1 \subseteq \partial(D_1 \times D_2) \) be a Seifert surface of the link \(\overline{b} \simeq l \). We can assume that

\[
\chi(S_1) = e(l).
\]

Consider a surface \(S \) in \(F_N \) which is obtained from \(S_1 \) and \(S_2 \) by gluing along \(\overline{b} \). Obviously, \(S \) is a closed real surface. Without loss of generality (after small deformation of \(S \) near \(\overline{b} \)), we can assume that \(S \) is a smooth surface. Since \(\chi(\overline{b}) = 0 \), the Euler characteristic

\[
\chi(S) = \chi(S_1) + \chi(S_2) = e(l) + m - Nm(m - 1) + \deg b. \quad (9)
\]

Consider the class \([S]\) of \(S \) in the homology group \(H_2(F_N, \mathbb{Z}) \). As is known, the group \(H_2(F_N, \mathbb{Z}) \) is generated by the class \([R]\) of a fibre \(R \) of \(\text{pr} \) and the class \([E_N]\) of the exceptional section \(E_N \) which have the following intersection numbers: \([R] \cdot [R] = 0, [R] \cdot [E_N] = 1\), and \([E_N] \cdot [E_N] = -N\). By construction of \(S \), we have \([S] \cdot [R] = \deg \overline{H} = m\) (to see this, one can consider the intersection of \(\overline{H} \) and a fibre \(R_\ell \) lying over a point \(z \in D_{\geq 1} \)) and \([S] \cdot [E_N] = 0\), since \(S_1 \subseteq D \subseteq \mathbb{C}^2 \subseteq F_N \setminus E_N \) and by definition of topological Hurwitz curves, \(\overline{H} \cap E_N = \emptyset \). Therefore

\[
[S] = m[E_N] + Nm[R].
\]

Let \(C \subseteq F_N \) be a non-singular algebraic curve whose class \([C]\) = \(mE_N + Nm[R] \). It is well-known that its genus

\[
g(C) = (Nm(m - 1) - 2m)/2 + 1. \quad (10)
\]

Since \(C \subseteq F_N \) is an algebraic non-singular curve, it follows from the Generalized Thom Conjecture proved in [M-S-T] that \(\chi(S) \leq \chi(C) = 2 - 2g(C) \) for any smooth surface \(S \subseteq F_N \) whose class \([S]\) = \([C]\) in \(H_2(F_N, \mathbb{Z}) \). Therefore, applying (9) and (10), we have

\[
\chi(S) = e(l) + m - Nm(m - 1) + \deg b \leq 2m - Nm(m - 1).
\]

Thus,

\[
e(l) \leq m - \deg b.
\]
REFERENCES

[Al] ALEXANDER, J.W.: A Lemma on Systems of Knotted Curves. Proc. Nat. Acad. Sci. USA. 9, (1923), 93–95.

[Ar] ARTIN, E.: Theorie der Zopfe. Hamburg Abh. 4, (1925), 47–72.

[Ben] BENNEQUIN, D.: Entrelacements et équations de Pfaff. Astérisque. 107–108, (1983), 87–161.

[Ben2] BENNEQUIN, D.: Entrelacements et équations de Pfaff. UMN, 44, 3(276), (1989), 3–53 (in russian).

[G] F.A. GARSIDE, F.A.: The braid group and other groups. Quart. J. Math. Oxford vol. (2) 20, (1969), 235–254.

[Kh-Ku] Kharlamov V., KULIKOV VIK.S.: On Braid Monodromy Factorizations. Izv. Math. 67:3 (2003).

[M-S-T] MORGAN J.W., STABO Z., AND TAUBES C.H.: A product formula for Seiberg – Wittwn Invariants and the Generalized Thom Conjecture. J. Differential Geom. 44 (1996), 706–788.

Steklov Mathematical Institute, Gubkina str., 8, 119991 Moscow, Russia

E-mail address: kulikov@mi.ras.ru