Transformers in Time Series: A Survey

Qingsong Wen1, Tian Zhou2, Chaoli Zhang2, Weiqi Chen2, Ziqing Ma2, Junchi Yan3, Liang Sun1

1DAMO Academy, Alibaba Group, Bellevue, USA
2DAMO Academy, Alibaba Group, Hangzhou, China
3Department of CSE, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University

Abstract
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also triggered great interest in the time series community. Among multiple advantages of Transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review Transformer schemes for time series modeling by highlighting their strengths as well as limitations. In particular, we examine the development of time series Transformers in two perspectives. From the perspective of network structure, we summarize the adaptations and modifications that have been made to Transformers in order to accommodate the challenges in time series analysis. From the perspective of applications, we categorize time series Transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance.

1 Introduction
The innovation of Transformer in deep learning [Vaswani et al., 2017] has brought great interests recently due to its excellent performances in various domains [Kenton and others, 2019; Dosovitskiy et al., 2021]. Over the past few years, numerous Transformers have been proposed to significantly advance the state-of-the-art performances of various tasks. There are quite a few literature reviews from different aspects, such as in NLP [Han et al., 2021], CV [Han et al., 2022], and efficient Transformers [Tay et al., 2022].

Transformers have shown great modeling ability for long-range dependencies and interactions in sequential data and thus are appealing to time series modeling. Many variants of Transformer have been proposed to address special challenges in time series modeling and have been successfully applied to various time series tasks, such as forecasting [Li et al., 2019; Zhou et al., 2022], anomaly detection [Xu et al., 2022; Tuli et al., 2022], and classification [Zerveas et al., 2021; Yang et al., 2021]. Specifically, seasonality or periodicity is an important feature of time series [Wen et al., 2021a]. How to effectively model long-range and short-range temporal dependency and capture seasonality simultaneously remains a challenge [Wu et al., 2021; Wen et al., 2022]. We note that there exist several surveys related to deep learning for time series, including forecasting [Lim and Zohren, 2021; Benidis et al., 2022; Torres et al., 2021], classification [Ismail Fawaz et al., 2019], anomaly detection [Choi et al., 2021; Blázquez-García et al., 2021], and data augmentation [Wen et al., 2021b], but there is no comprehensive survey for Transformers in time series. As Transformer for time series is an emerging subject in deep learning, a systematic and comprehensive survey on time series Transformers would greatly benefit the time series community.

In this paper, we aim to fill the gap by summarizing the main developments of time series Transformers. We first give a brief introduction about vanilla Transformer, and then propose a new taxonomy from perspectives of both network modifications and application domains for time series Transformers. For network modifications, we discuss the improvements made on both low-level (i.e., module) and high-level (i.e., architecture) of Transformers, to optimize the performance of time series modeling. For applications, we analyze and summarize Transformers for popular time series tasks, including forecasting, anomaly detection, and classification. For each time series Transformer, we analyze its insights, strengths, and limitations. To provide practical guidelines on how to effectively use Transformers for time series modeling, we conduct extensive empirical studies that examine multiple aspects of time series modeling, including robustness analysis, model size analysis, and seasonal-trend decomposition analysis. We conclude this work by discussing possible future directions for time series Transformers, including inductive biases for time series Transformers, Transformers and GNN for time series, pre-trained Transformers for time series, Transformers with architecture level variants, and Transformers with NAS for time series. To the best of our knowledge, this is the first work to comprehensively and systematically review the key developments of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers. A corresponding
resource that has been continuously updated can be found in
the GitHub repository1.

2 Preliminaries of the Transformer

2.1 Vanilla Transformer

The vanilla Transformer \cite{Vaswani2017} follows most
competitive neural sequence models with an encoder-decoder
structure. Both encoder and decoder are composed of mul-
tiple identical blocks. Each encoder block consists of a multi-
head self-attention module and a position-wise feed-forward
network while each decoder block inserts cross-attention
models between the multi-head self-attention module and the
position-wise feed-forward network.

2.2 Input Encoding and Positional Encoding

Unlike LSTM or RNN, the vanilla Transformer has no recur-
rence. Instead, it utilizes the positional encoding added in the
input embeddings, to model the sequence information. We
summarize some positional encodings below.

Absolute Positional Encoding

In vanilla Transformer, for each position index \(t \), encoding
vector is given by

\[
PE(t)_{i} = \begin{cases}
\sin(\omega t) & i \% 2 = 0 \\
\cos(\omega t) & i \% 2 = 1
\end{cases}
\] (1)

where \(\omega \) is the hand-crafted frequency for each dimension.
Another way is to learn a set of positional embeddings for
each position which is more flexible \cite{Kenton2019, Gehring2017}.

Relative Positional Encoding

Following the intuition that pairwise positional relationships
between input elements is more beneficial than positions of
elements, relative positional encoding methods have been
proposed. For example, one of such methods is to add a
learnable relative positional embedding to keys of attention
mechanism \cite{Shaw2018}.

Besides the absolute and relative positional encodings,
there are methods using hybrid positional encodings that
combine them together \cite{Ke2021}. Generally, the po-
ositional encoding is added to the token embedding and fed to
Transformer.

2.3 Multi-head Attention

With Query-Key-Value (QKV) model, the scaled dot-product
attention used by Transformer is given by

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{D_k}}\right)V
\] (2)

where queries \(Q \in \mathbb{R}^{N \times D_k} \), keys \(K \in \mathbb{R}^{M \times D_k} \), values
\(V \in \mathbb{R}^{N \times D_v} \), \(N,M \) denote the lengths of queries and keys
(or values), and \(D_k, D_v \) denote the dimensions of keys (or
queries) and values. Transformer uses multi-head attention with
\(H \) different sets of learned projections instead of a sin-
gle attention function as

\[
\text{MultiHeadAttention}(Q, K, V) = \text{Concat}(head_1, \cdots, head_H)W_O,
\]

where \(head_i = \text{Attention}(QW_Q^i, KW^K_i, VW^V_i) \).

1https://github.com/qingsongedu/time-series-transformers-review

2.4 Feed-forward and Residual Network

The feed-forward network is a fully connected module as

\[
FFN(H') = \text{ReLU}(H'W^1 + b^1)W^2 + b^2, \quad (3)
\]

where \(H' \) is outputs of previous layer, \(W^1 \in \mathbb{R}^{D_m \times D_f} \),
\(W^2 \in \mathbb{R}^{D_f \times D_m} \), \(b^1 \in \mathbb{R}^{D_f} \), \(b^2 \in \mathbb{R}^{D_m} \) are trainable pa-
rameters. In a deeper module, a residual connection module
followed by a layer normalization module is inserted around
each module. That is,

\[
H' = \text{LayerNorm}(\text{SelfAttn}(X) + X), \quad (4)
\]

\[
H = \text{LayerNorm}(\text{FFN}(H') + H'), \quad (5)
\]

where \(\text{SelfAttn}(\cdot) \) denotes self-attention module and
\(\text{LayerNorm}(\cdot) \) denotes the layer normalization operation.

3 Taxonomy of Transformers in Time Series

To summarize the existing time series Transformers, we pro-
pose a taxonomy from perspectives of network modifications
and application domains as illustrated in Fig. 1. Based on
the taxonomy, we review the existing time series Transformer
systematically. From the perspective of network modifications,
we summarize the changes made on both module level and archi-
tecture level of Transformer in order to accommodate special
challenges in time series modeling. From the perspective of applications, we classify time series Trans-
formers based on their application tasks, including forecasting,
anomaly detection, and classification. In the following two
sections, we would delve into the existing time series Trans-
formers from these two perspectives.

4 Network Modifications for Time Series

4.1 Positional Encoding

As the ordering of time series matters, it is of great impor-
tance to encode the positions of input time series into Trans-
formers. A common design is to first encode positional infor-
mation as vectors and then inject them into the model as an
additional input together with the input time series. How to
obtain these vectors when modeling time series with Trans-
formers can be divided into three main categories.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{taxonomy.png}
\caption{Taxonomy of Transformers for time series modeling from
the perspectives of network modifications and application domains.}
\end{figure}
Vanilla Positional Encoding. A few works [Li et al., 2019] simply introduce vanilla positional encoding (Section 2.2) used in [Vaswani et al., 2017], which is then added to the input time series embeddings and fed to Transformer. Although this approach can extract some positional information from time series, they were unable to fully exploit the important features of time series data.

Learnable Positional Encoding. As the vanilla positional encoding is hand-crafted and less expressive and adaptive, several studies found that learning appropriate positional embeddings from time series data can be much more effective. Compared to fixed vanilla positional encoding, learned embeddings are more flexible and can adapt to specific tasks. [Zerveas et al., 2021] introduces an embedding layer in Transformer that learns embedding vectors for each position index jointly with other model parameters. [Lim et al., 2021] uses an LSTM network to encode positional embeddings, which can better exploit sequential ordering information in time series.

Timestamp Encoding. When modeling time series in real-world scenarios, the timestamp information is commonly accessible, including calendar timestamps (e.g., second, minute, hour, week, month, and year) and special timestamps (e.g., holidays and events). These timestamps are quite informative in real applications but hardly leveraged in vanilla Transformers. To mitigate the issue, Informer [Zhou et al., 2021] proposed to encode timestamps as additional positional encoding by using learnable embedding layers. A similar timestamp encoding scheme was used in Autoformer [Wu et al., 2021] and FEDformer [Zhou et al., 2022].

4.2 Attention Module

Central to Transformer is the self-attention module. It can be viewed as a fully connected layer with weights that are dynamically generated based on the pairwise similarity of input patterns. As a result, it shares the same maximum path length as fully connected layers, but with a much less number of parameters, making it suitable for modeling long-term dependencies.

As we show in the previous section the self-attention module in the vanilla Transformer has a time and memory complexity of $O(N^2)$ (N is the input time series length), which becomes the computational bottleneck when dealing with long sequences. Many efficient Transformers were proposed to reduce the quadratic complexity that can be classified into two main categories: (1) explicitly introducing a sparsity bias into the attention mechanism like LogTrans [Li et al., 2019] and Pyraformer [Liu et al., 2022a]; (2) exploring the low-rank property of the self-attention matrix to speed up the computation, e.g. Informer [Zhou et al., 2021] and FEDformer [Zhou et al., 2022]. Table ?? shows both the time and memory complexity of popular Transformers applied to time series modeling, and more details about these models will be discussed in Section 5.

4.3 Architecture-based Attention Innovation

To accommodate individual modules in Transformers for modeling time series, a number of works [Zhou et al., 2021; Liu et al., 2022a] seek to renovate Transformers on the architecture level. Recent works introduce hierarchical architecture into Transformer to take into account the multi-resolution aspect of time series. Informer [Zhou et al., 2021] inserts max-pooling layers with stride 2 between attention blocks, which down-sample series into its half slice. Pyraformer [Liu et al., 2022a] designs a C-ary tree-based attention mechanism, in which nodes at the finest scale correspond to the original time series, while nodes in the coarser scales represent series at lower resolutions. Pyraformer developed both intra-scale and inter-scale attentions in order to better capture temporal dependencies across different resolutions. Besides the ability to integrate information at different multi-resolutions, a hierarchical architecture also enjoys the benefits of efficient computation, particularly for long-time series.

5 Applications of Time Series Transformers

In this section, we review the applications of Transformer to important time series tasks, including forecasting, anomaly detection, and classification.

5.1 Transformers in Forecasting

Here we examine three common types of forecasting tasks here, i.e. time series forecasting, spatial-temporal forecasting, and event forecasting.

Time Series Forecasting

A lot of work has been done to design new Transformer variants for forecasting tasks in the latest years. Module-level and architecture-level variants are two large categories and the former consists of the majority of the up-to-date works.

Module-level variants In the module-level variants for time series forecasting, their main architectures are similar to the vanilla Transformer with minor changes. Researchers introduce various time series inductive biases to design new modules. The following summarized work consists of three different types: designing new attention modules, exploring the innovative way to normalize time series data, and utilizing the bias for token inputs, as shown in Figure 2.

The first type of variant for module-level Transformers is to design new attention modules, which is the category with the largest proportion. Here we first describe six typical works: LogTrans [Li et al., 2019], Informer [Zhou et al., 2021], AST [Wu et al., 2020a], Pyraformer [Liu et al., 2022a], Quatformer [Chen et al., 2022], and FEDformer [Zhou et al., 2022], all of which exploit sparsity inductive bias or low-rank
approximation to remove noise and achieve a low-order calculation complexity. LogTrans [Li et al., 2019] proposes convolutional self-attention by employing causal convolutions to generate queries and keys in the self-attention layer. It introduces sparse bias, a Logsparse mask, in self-attention to generate queries and keys in the self-attention layer. It adapts a segmentation-based representation mechanism. It devises a simple seasonal-trend decomposition architecture with an auto-correlation mechanism working as an attention module. The auto-correlation block measures the time-delay similarity between inputs signal and aggregates the top-k similar sub-series to produce the output with reduced complexity. PatchTST [Nie et al., 2023] utilizes channel-independent where each channel contains a single univariate time series that shares the same embedding within all the series, and subseries-level patch design which segmentation of time series into subseries-level patches that are served as input tokens to Transformer. Such ViT [Dosovitskiy et al., 2021] alike design improves its numerical performance in long-time series forecasting tasks a lot. Crossformer [Zhang and Yan, 2023] proposes a Transformer-based model utilizing cross-dimension dependency for multivariate time series forecasting. The input is embedded into a 2D vector array through the novel dimension-segment-wise embedding to preserve time and dimension information. Then, a two-stage attention layer is used to efficiently capture the cross-time and cross-dimension dependency.

Architecture-level variants Some works start to design a new transformer architecture beyond the scope of the vanilla transformer. Triforner [Cirstea et al., 2022] design a triangular, variable-specific patch attention. It has a triangular tree-type structure as the later input size shrinks exponentially and a set of variable-specific parameters making a multi-layer Triforner maintain a lightweight and linear complexity. Scaleformer [Shabani et al., 2023] proposes a multi-scale framework that can be applied to the baseline transformer-based time series forecasting models (FEDformer [Zhou et al., 2022], Autoformer [Wu et al., 2021], etc.). It can improve the baseline model’s performance by iteratively refining the forecasted time series at multiple scales with shared weights.

Remarks Note that DLinear [Zeng et al., 2023] questions the necessity of using Transformers for long-term time series forecasting, and shows that a simpler MLP-based model can...
achieve better results compared to some Transformer baselines through empirical studies. However, we notice that a recent Transformer model PatchTST [Nie et al., 2023] achieves a better numerical result compared to DLinear for long-term time series forecasting. Moreover, there is a thorough theoretical study [Yun et al., 2020] showing that the Transformer models are universal approximators of sequence-to-sequence functions. It is a overclaim to question the potential of any type of method for time series forecasting based solely on experimental results from some variant instantiations of such method, especially for Transformer models which already demonstrate the performances in most machine learning-based tasks. Therefore, we conclude that summarizing the recent Transformer-based models for time series forecasting is necessary and would benefit the whole community.

Spatio-Temporal Forecasting

In spatio-temporal forecasting, both temporal and spatio-temporal dependencies are taken into account in time series Transformers for accurate forecasting.

Traffic Transformer [Cai et al., 2020] designs an encoder-decoder structure using a self-attention module to capture temporal-temporal dependencies and a graph neural network module to capture spatial dependencies. Spatial-temporal Transformer [Xu et al., 2020] for traffic flow forecasting takes a step further. Besides introducing a temporal Transformer block to capture temporal dependencies, it also designs a spatial Transformer block, together with a graph convolution network, to better capture spatial-spatial dependencies. Spatio-temporal graph Transformer [Yu et al., 2020] designs an attention-based graph convolution mechanism that is able to learn a complicated temporal-spatial attention pattern to improve pedestrian trajectory prediction. Earthformer [Gao et al., 2022] proposes a cuboid attention for efficient space-time modeling, which decomposes the data into cuboids and applies cuboid-level self-attention in parallel. It shows that Earthformer achieves superior performance in weather and climate forecasting. Recently, AirFormer [Liang et al., 2023] devises a dartboard spatial self-attention module and a causal temporal self-attention module to efficiently capture spatial correlations and temporal dependencies, respectively. Furthermore, it enhances Transformers with latent variables to capture data uncertainty and improve air quality forecasting.

Event Forecasting

Event sequence data with irregular and asynchronous timestamps are naturally observed in many real-life applications, which is in contrast to regular time series data with equal sampling intervals. Event forecasting or prediction aims to predict the times and marks of future events given the history of past events, and it is often modeled by temporal point processes (TPP) [Yan et al., 2019; Shchur et al., 2021].

Recently, several neural TPP models incorporate Transformers in order to improve the performance of event prediction. Self-attentive Hawkes process (SAHP) [Zhang et al., 2020] and Transformer Hawkes process (THP) [Zuo et al., 2020] adopt Transformer encoder architecture to summarize the influence of historical events and compute the intensity function for event prediction. They modify the positional encoding by translating time intervals into sinusoidal functions such that the intervals between events can be utilized. Later, a more flexible named attentive neural damping through time (ANDTT) [Mei et al., 2022] is proposed to extend SAHP/THP schemes by embedding all possible events and times with attention as well. Experiments show that it can better capture sophisticated event dependencies than existing methods.

5.2 Transformers in Anomaly Detection

Transformer based architecture also benefits the time series anomaly detection task with the ability to model temporal dependency, which brings high detection quality [Xu et al., 2022]. Besides, in multiple studies, including TranAD [Tuli et al., 2022], MT-RVAE [Wang et al., 2022], and TransAnomaly [Zhang et al., 2021], researchers proposed to combine Transformer with neural generative models, such as VAEs [Kingma and Welling, 2014] and GANs [Goodfellow et al., 2014], for better performance in anomaly detection. We will elaborate on these models in the following part.

TranAD [Tuli et al., 2022] proposes an adversarial training procedure to amplify reconstruction errors as a simple Transformer-based network tends to miss small deviation of anomaly. GAN style adversarial training procedure is designed by two Transformer encoders and two Transformer decoders to gain stability. Ablation study shows that, if Transformer-based encoder-decoder is replaced, F1 score drops nearly 11%, indicating the effect of Transformer architecture on time series anomaly detection.

MT-RVAE [Wang et al., 2022] and TransAnomaly [Zhang et al., 2021] combine VAE with Transformer, but they share different purposes. TransAnomaly combines VAE with Transformer to allow more parallelization and reduce training costs by nearly 80%. In MT-RVAE, a multiscale Transformer is designed to extract and integrate time-series information at different scales. It overcomes the shortcomings of traditional Transformers where only local information is extracted for sequential analysis.

GTA [Chen et al., 2021c] combines Transformer with graph-based learning architecture for multivariate time series anomaly detection. Note that, MT-RVAE is also for multivariate time series but with few dimensions or insufficient close relationships among sequences where the graph neural network model does not work well. To deal with such challenge, MT-RVAE modifies the positional encoding module and introduces feature-learning module. Instead, GTA contains a graph convolution structure to model the influence propagation process. Similar to MT-RVAE, GTA also considers “global” information, yet by replacing vanilla multi-head attention with a multi-branch attention mechanism, that is, a combination of global-learned attention, vanilla multi-head attention, and neighborhood convolution.

AnomalyTrans [Xu et al., 2022] combines Transformer and Gaussian prior-Association to make anomalies more distinguishable. Sharing similar motivation as TranAD, AnomalyTrans achieves the goal in a different way. The insight is that it is harder for anomalies to build strong associations with the whole series while easier with adjacent time points compared with normality. In AnomalyTrans, prior-association and series-association are modeled simultaneously. Besides reconstruction loss, the anomaly model is optimized by the
minimax strategy to constrain the prior- and series- associations for more distinguishable association discrepancy.

5.3 Transformers in Classification

Transformer is proved to be effective in various time series classification tasks due to its prominent capability in capturing long-term dependency. GTN [Liu et al., 2021] uses a two-tower Transformer with each tower respectively working on time-step-wise attention and channel-wise attention. To merge the feature of the two towers, a learnable weighted concatenation (also known as ‘gating’) is used. The proposed extension of Transformer achieves state-of-the-art results on 13 multivariate time series classifications. [Rußwurm and Körner, 2020] studied the self-attention based Transformer for raw optical satellite time series classification and obtained the best results compared with recurrent and convolutional neural networks. Recently, TARNet [Chowdhury et al., 2022] designs Transformers to learn task-aware data reconstruction that augments classification performance, which utilizes attention score for important timestamps masking and reconstruction and brings superior performance.

Pre-trained Transformers are also investigated in classification tasks. [Yuan and Lin, 2020] studies the Transformer for raw optical satellite image time series classification. The authors use self-supervised pre-trained schema because of limited labeled data. [Zerveas et al., 2021] introduced an unsupervised pre-trained framework and the model is pre-trained with proportionally masked data. The pre-trained models are then fine-tuned in downstream tasks such as classification. [Yang et al., 2021] proposes to use large-scale pre-trained speech processing model for downstream time series classification problems and generates 19 competitive results on 30 popular time series classification datasets.

6 Experimental Evaluation and Discussion

We conduct preliminary empirical studies on a typical challenging benchmark dataset ETTm2 [Zhou et al., 2021] to analyze how Transformers work on time series data. Since classic statistical ARIMA/ETS [Hyndman and Khandakar, 2008] models and basic RNN/CNN models perform inferior to Transformers in this dataset as shown in [Zhou et al., 2021; Wu et al., 2021], we focus on popular time series Transformers with different configurations in the experiments.

Robustness Analysis

A lot of works we describe above carefully design attention modules to lower the quadratic calculation and memory complexity, though they practically use a short fixed-size input to achieve the best result in their reported experiments. It makes us question the actual usage of such an efficient design. We perform a robust experiment with prolonging input sequence length to verify their prediction power and robustness when dealing with long-term input sequences in Table ??.

As in Table ??, when we compare the prediction results with prolonging input length, various Transformer-based model deteriorates quickly. This phenomenon makes a lot of carefully designed Transformers impractical in long-term forecasting tasks since they cannot effectively utilize long input information. More works and designs need to be investigated to fully utilize long sequence input for better performance.

Model Size Analysis

Before being introduced into the field of time series prediction, Transformer has shown dominant performance in NLP and CV communities [Vaswani et al., 2017; Kenton and others, 2019; Han et al., 2021; Han et al., 2022]. One of the key advantages Transformer holds in these fields is being able to increase prediction power through increasing model size. Usually, the model capacity is controlled by Transformer’s layer number, which is commonly set between 12 to 128. Yet as shown in the experiments of Table ??, when we compare the prediction result with different Transformer models with various numbers of layers, the Transformer with 3 to 6 layers often achieves better results. It raises a question about how to design a proper Transformer architecture with deeper layers to increase the model’s capacity and achieve better forecasting performance.

Seasonal-Trend Decomposition Analysis

In recent studies, researchers [Wu et al., 2021; Zhou et al., 2022; Lin et al., 2021; Liu et al., 2022a] begin to realize that the seasonal-trend decomposition [Cleveland et al., 1990; Wen et al., 2020] is crucial part of Transformer’s performance in time series forecasting. As an experiment shown in Table ??, we adopt a simple moving average seasonal-trend decomposition architecture proposed in [Wu et al., 2021] to test various attention modules. It can be seen that the simple seasonal-trend decomposition model can significantly boost model’s performance by 50 % to 80 %. It is a unique block and such performance boosting through decomposition seems a consistent phenomenon in time series forecasting for Transformer’s application, which is worth further investigating for more advanced and carefully designed time series decomposition schemes.

7 Future Research Opportunities

7.1 Inductive Biases for Time Series Transformers

Vanilla Transformer does not make any assumptions about data patterns and characteristics. Although it is a general
7.4 Transformers with Architecture Level Variants

Most developed Transformer models for time series maintain the vanilla Transformer’s architecture with modifications mainly in the attention module. We might borrow the idea from Transformer variants in NLP and CV which also have architecture-level model designs to fit different purposes, such as lightweight [Wu et al., 2020b; Mehta et al., 2021], cross-block connectivity [Bapna et al., 2018], adaptive computation time [Dehghani et al., 2019; Xin et al., 2020], and recurrence [Dai et al., 2019]. Therefore, one future direction is to consider more architecture-level designs for Transformers specifically optimized for time series data and tasks.

7.5 Transformers with NAS for Time Series

Hyper-parameters, such as embedding dimension and the number of heads/layers, can largely affect the performance of Transformers. Manual configuring these hyper-parameters is time-consuming and often results in suboptimal performance. AutoML technique like Neural architecture search (NAS) [Elsken et al., 2019; Wang et al., 2020] has been a popular technique for discovering effective deep neural architectures, and automating Transformer design using NAS in NLP and CV can be found in recent studies [So et al., 2019; Chen et al., 2021b]. For industry-scale time series data which can be of both high dimension and long length, automatically discovering both memory- and computational-efficient Transformer architectures is of practical importance, making it an important future direction for time series Transformers.

8 Conclusion

In this paper, we provide a survey on time series Transformers. We organize the reviewed methods in a new taxonomy, summarize representative methods in each category, discuss their strengths and limitations by experimental evaluation, and highlight future research directions.

References

[Bapna et al., 2018] Ankur Bapna, Mia Xu Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. Training deeper neural machine translation models with transparent attention. In EMNLP, 2018.

[Benidis et al., 2022] Konstantinos Benidis, Syama Sundar Rangapuram, Valentín Flunkert, Yuyang Wang, Danielle Maddix, et al. Deep learning for time series forecasting: Tutorial and literature survey. ACM Computing Surveys, 55(6):1–36, 2022.

[Blázquez-García et al., 2021] Ane Blázquez-García, Angel Conde, Usue Mori, et al. A review on outlier/anomaly detection in time series data. ACM Computing Surveys, 54(3):1–33, 2021.
[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, et al. Language models are few-shot learners. NeurIPS, 2020.

[Cai et al., 2020] Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting. Transactions in GIS, 24(3):736–755, 2020.

[Chen et al., 2021a] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, et al. Pre-trained image processing transformer. In CVPR, 2021.

[Chen et al., 2021b] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. AutoFormer: Searching transformers for visual recognition. In CVPR, 2021.

[Chen et al., 2021c] Zekai Chen, Dinghuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng. Learning graph structures with transformer for multivariate time series anomaly detection in IoT. IEEE Internet of Things Journal, 2021.

[Chen et al., 2022] Weiqi Chen, Wenwei Wang, Bingqing Peng, Qingsong Wen, Tian Zhou, and Liang Sun. Learning to rotate: Quaternion transformer for complicated periodical time series forecasting. In KDD, 2022.

[Choi et al., 2021] Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines. IEEE Access, 2021.

[Chowdhury et al., 2022] Ranak Roy Chowdhury, Xiuyan Zhang, Jingbo Shang, Rajesh K Gupta, and Dezhi Hong. TARNet: Task-aware reconstruction for time-series transformer. In KDD, 2022.

[Cirista et al., 2022] Razvan-Gabriel Cirista, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. Triformer: Triangular, variable-specific attentions for long sequence multivariate time series forecasting. In IJCAI, 2022.

[Cleveland et al., 1990] Robert Cleveland, William Cleveland, Jean McAra, et al. STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 6(1):3–73, 1990.

[Dai et al., 2019] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, et al. Transformer-XL: Attentive language models beyond a fixed-length context. In ACL, 2019.

[Dehghani et al., 2019] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers. In ICLR, 2019.

[Dosovitskiy et al., 2021] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In NeurIPS, 2021.

[Elsken et al., 2019] Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal of Machine Learning Research, 2019.

[Gao et al., 2022] Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Bernie Wang, Mu Li, et al. Earthformer: Exploring space-time transformers for earth system forecasting. In NeurIPS, 2022.

[Gehring et al., 2017] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to sequence learning. In ICML, 2017.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, et al. Generative adversarial nets. NeurIPS, 2014.

[Han et al., 2021] Xu Han, Zhengyan Zhang, Ning Ding, Xuyian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qu, Liang Zhang, et al. Pre-trained models: Past, present and future. AI Open, 2021.

[Han et al., 2022] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jiaoyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, et al. A survey on vision transformer. IEEE TPAMI, 45(1):87–110, 2022.

[Hyndman and Khandakar, 2008] Rob J Hyndman and Yeasmin Khandakar. Automatic time series forecasting: the forecast package for r. Journal of statistical software, 27:1–22, 2008.

[Ismail Fawaz et al., 2019] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification: a review. Data mining and knowledge discovery, 2019.

[Ke et al., 2021] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. In ICLR, 2021.

[Kenton and others, 2019] Jacob Devlin Ming-Wei Chang Kenton et al. BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.

[Kingma and Welling, 2014] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[Li et al., 2019] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhui Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In NeurIPS, 2019.

[Li et al., 2022] Longyuan Li, Jian Yao, Li Wenliang, Tong He, Tianjun Xiao, Junchi Yan, David Wipf, and Zheng Zhang. Grin: Generative relation and intention network for multi-agent trajectory prediction. In NeurIPS, 2021.

[Liang et al., 2023] Yuxuan Liang, Yutong Xia, Songyu Ke, Yiwei Wang, Qingsong Wen, Junbo Zhang, Yu Zheng, and Roger Zimmermann. AirFormer: Predicting nationwide air quality in china with transformers. In AAAI, 2023.

[Lim and Zohren, 2021] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society, 2021.

[Lim et al., 2021] Bryan Lim, Sercan Ö Ark, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):1748–1764, 2021.

[Lin et al., 2021] Yang Lin, Irena Koprinska, and Mashud Rana. SSDNet: State space decomposition neural network for time series forecasting. In ICDM, 2021.

[Liu et al., 2021] Minghao Liu, Shengqi Ren, Siyuan Ma, Jiahui Jiao, Yizhou Chen, Zhiguang Wang, and Wei Song. Gated transformer networks for multivariate time series classification. arXiv preprint arXiv:2103.14438, 2021.

[Liu et al., 2022a] Shizhan Liu, Hang Yu, Cong Liao, Jiaoguo Li, Wenyao Lin, Alex X. Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In ICLR, 2022.

[Liu et al., 2022b] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity in time series forecasting. In NeurIPS, 2022.

[Mehta et al., 2021] Sachin Mehta, Marjan Ghazvininejad, Srini Iyer, Luke Zettlemoyer, and Hamnane Hajishirzi. Delight: Deep and light-weight transformer. In ICLR, 2021.

[Mei et al., 2022] Hongyuan Mei, Chenghao Yang, and Jason Eisner. Transformer embeddings of irregularly spaced events and their participants. In ICLR, 2022.

[Nie et al., 2023] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In ICLR, 2023.
[Rußwurm and Körner, 2020] Marc Rußwurm and Marco Körner. Self-attention for raw optical satellite time series classification. *ISPRS J. Photogram. Remote Sens.*, 169:421–435, 11 2020.

[Shabani et al., 2023] Amin Shabani, Amir Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: iterative multi-scale refining transformers for time series forecasting. In *ICLR*, 2023.

[Shaw et al., 2018] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. In *NAACL*, 2018.

[Shchur et al., 2021] Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural temporal point processes: A review. In *IJCAI*, 2021.

[So et al., 2019] David So, Quoc Le, and Chen Liang. The evolved transformer. In *ICML*, 2019.

[Tang and Matteson, 2021] Binh Tang and David Matteson. Probabilistic transformer for time series analysis. In *NeurIPS*, 2021.

[Tay et al., 2022] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. *ACM Computing Surveys*, 55(6):1–28, 2022.

[Torres et al., 2021] José F. Torres, Dalil Hadjout, Abderrazak Sebbaa, Francisco Martínez-Álvarez, and Alicia Troncoso. Deep learning for time series forecasting: a survey. *Big Data*, 2021.

[Tuli et al., 2022] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. TranAD: Deep transformer networks for anomaly detection in multivariate time series data. In *VLD*, 2022.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, et al. Attention is all you need. In *NeurIPS*, 2017.

[Wang et al., 2020] Xiaoxing Wang, Chao Xue, Junchi Yan, Xiaokang Yang, Yonggang Hu, et al. MergeNAS: Merge operations into one for differentiable architecture search. In *IJCAI*, 2020.

[Wang et al., 2022] Xixuan Wang, Dechang Pi, Xiangyan Zhang, et al. Variational transformer-based anomaly detection approach for multivariate time series. *Measurement*, page 110791, 2022.

[Wen et al., 2019] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, et al. RobustSTL: A robust seasonal-trend decomposition algorithm for long time series. In *AAAI*, 2019.

[Wen et al., 2020] Qingsong Wen, Zhe Zhang, Yan Li, and Liang Sun. Fast RobustSTL: Efficient and robust seasonal-trend decomposition for time series with complex patterns. In *KDD*, 2020.

[Wen et al., 2021a] Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, et al. RobustPeriod: Time-frequency mining for robust multiple periodicities detection. In *SIGMOD*, 2021.

[Wen et al., 2021b] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time series data augmentation for deep learning: A survey. In *IJCAI*, 2021.

[Wen et al., 2022] Qingsong Wen, Linxiao Yang, Tian Zhou, and Liang Sun. Robust time series analysis and applications: An industrial perspective. In *KDD*, 2022.

[Wu et al., 2020a] Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang. Adversarial sparse transformer for time series forecasting. In *NeurIPS*, 2020.

[Wu et al., 2020b] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short range attention. In *ICLR*, 2020.

[Wu et al., 2021] Haixu Wu, Jiehui Xu, Jianmin Wang, and Ming-sheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In *NeurIPS*, 2021.

[Xin et al., 2020] Ji Xin, Raphael Tang, Jaejun Lee, Yaoiang Yu, and Jimmy J. Lin. DeeBERT: Dynamic early exiting for accelerating bert inference. In *ACL*, 2020.

[Xu et al., 2022] Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi, and Hongkai Xiong. Spatial-temporal transformer networks for traffic flow forecasting. *arXiv preprint arXiv:2001.02908*, 2020.

[Xu et al., 2022] Jiehui Xu, Haixu Wu, Jianmin Wang, and Ming-sheng Long. Anomaly Transformer: Time series anomaly detection with association discrepancy. In *ICLR*, 2022.

[Yan et al., 2019] Junchi Yan, Hongteng Xu, and Liangda Li. Modeling and applications for temporal point processes. In *KDD*, 2019.

[Yang et al., 2022] Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. Voice2series: Reprogramming acoustic models for time series classification. In *ICML*, 2021.

[Yu et al., 2020] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In *ECCV*, 2020.

[Yuan and Lin, 2020] Yuan Yuan and Lei Lin. Self-supervised pre-training of transformers for satellite image time series classification. *IEEE J-STARS*, 14:474–487, 2020.

[Yun et al., 2022] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, et al. Are transformers universal approximators of sequence-to-sequence functions? In *ICLR*, 2020.

[Zeng et al., 2023] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In *AAAI*, 2023.

[Zerveas et al., 2021] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. A transformer-based framework for multivariate time series representation learning. In *KDD*, 2021.

[Zhang and Yan, 2023] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *ICLR*, 2023.

[Zhang et al., 2020] Qiang Zhang, Aldo Lipani, Omer Kirmap, and Emine Yilmaz. Self-attentive Hawkes process. In *ICML*, 2020.

[Zhang et al., 2021] Hongwei Zhang, Yuanqing Xia, et al. Unsupervised anomaly detection in multivariate time series through transformer-based variational autoencoder. In *CCDC*, 2021.

[Zhou et al., 2021] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *AAAI*, 2021.

[Zhou et al., 2022] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *ICML*, 2022.

[Zuo et al., 2020] Simiao Zuo, Haoming Jiang, Zichong Li, Tu Zhao, and Hongyuan Zha. Transformer Hawkes process. In *ICML*, 2020.