THE CRITICAL NUMBER OF DENSE TRIANGLE-FREE BINARY MATROIDS

JIM GEELEN AND PETER NELSON

Abstract. We show that, for each real number \(\varepsilon > 0 \) there is an integer \(c \) such that, if \(M \) is a simple triangle-free binary matroid with \(|M| \geq (\frac{1}{4} + \varepsilon) 2^{r(M)} \), then \(M \) has critical number at most \(c \). We also give a construction showing that no such result holds when replacing \(\frac{1}{4} + \varepsilon \) with \(\frac{1}{4} - \varepsilon \) in this statement. This shows that the “critical threshold” for the triangle is \(\frac{1}{4} \). We extend the notion of critical threshold to every simple binary matroid \(N \) and conjecture that, if \(N \) has critical number \(c \geq 3 \), then \(N \) has critical threshold \(1 - i \cdot 2^{-c} \) for some \(i \in \{2, 3, 4\} \). We give some support for the conjecture by establishing lower bounds.

1. Introduction

If \(M \) is a simple binary matroid, viewed as a restriction of a rank-\(r \)-projective geometry \(G \cong \text{PG}(r-1, 2) \), then the critical number of \(M \), denoted \(\chi(M) \), is the minimum nonnegative integer \(c \) such that \(G \) has a rank-\((r-c)\) flat disjoint from \(E(M) \). A matroid with no \(U_{2,3} \)-restriction is triangle-free. Our first two main theorems are the following:

Theorem 1.1. For each \(\varepsilon > 0 \) there exists \(c \in \mathbb{Z} \) such that every simple triangle-free binary matroid \(M \) with \(|M| \geq (\frac{1}{4} + \varepsilon) 2^{r(M)} \) satisfies \(\chi(M) \leq c \).

Theorem 1.2. For each \(\varepsilon > 0 \) and each integer \(c \geq 1 \), there is a simple triangle-free binary matroid \(M \) such that \(|M| \geq (\frac{1}{4} - \varepsilon) 2^{r(M)} \) and \(M \) has critical number \(c \).

That is, simple triangle-free binary matroids with density slightly more than \(\frac{1}{4} \) have bounded critical number, and those with density slightly less than \(\frac{1}{4} \) can have arbitrarily large critical number. Theorem 1.2 refutes an earlier conjecture of the authors [13]. As in [13], the
proof of Theorem 1.1 depends on a regularity lemma due to Green [11];
this material is discussed in Section 2.

The critical number was originally defined by Crapo and Rota [4]
under the name of critical exponent; our terminology follows Welsh [20].
One can also define $\chi(M)$ as the minimum c so that $E(M)$ is contained
in a matroid whose ground set is the union of c affine geometries. In
particular, if M is the cycle matroid of a graph G, then $\chi(M)$ is the
minimum number of cuts required to cover $E(G)$, so $\chi(M) = 1$ precisely
when G is bipartite, and $\chi(M) = \lceil \log_2(\chi(G)) \rceil$ in general. Thus, we
can view critical number as a geometric analog of chromatic number;
results in graph theory motivate much of the material in this paper.

In analogy to our two main theorems, Hajnal (see [6]) gave examples
of triangle-free graphs G with minimum degree $\delta(G) \geq (\frac{1}{3} - \varepsilon) |V(G)|$
and arbitrarily large chromatic number, and Thomassen [19] showed for
each $\varepsilon > 0$ that every triangle-free graph G with $\delta(G) \geq (\frac{1}{3} + \varepsilon) |V(G)|$
has chromatic number bounded above by a function of ε.

In fact, something much stronger holds; in [3], Brandt and Thomassé
showed that if G is a triangle-free graph G with minimum degree $\delta(G) > \frac{1}{3}|V(G)|$, then $\chi(G) \in \{2, 3, 4\}$. The bound $\chi(G) \leq 4$ is best
possible; Häggkvist [14] found an example of a 10-regular triangle-free
graph on 29 vertices with chromatic number 4. We conjecture a similar
strengthening of Theorem 1.1.

Conjecture 1.3. If M is a simple triangle-free binary matroid with
$|M| > \frac{1}{4}2^{r(M)}$, then $\chi(M) \in \{1, 2\}$.

Chromatic threshold. Erdős and Simonovits [6] proposed the problem,
for a given simple graph H and $\alpha > 0$, of determining the maximum
of $\chi(G)$ among all H-free graphs G with minimum degree at least $\alpha|V(G)|$. Extending on this idea, Łuczak and Thomassé [16] define the chromatic threshold for H to be the infimum of all $\alpha > 0$ such that
there exists $c = c(H, \alpha)$ for which every graph G with no H-subgraph
and with minimum degree at least $\alpha|V(G)|$ has chromatic number at
most c.

The aforementioned results for the triangle C_3 give that its chromatic
threshold is $\frac{1}{3}$. The Erdős-Stone Theorem [7] implies that the chromatic
threshold for any bipartite graph H is 0, since large dense H-free graphs
do not exist. Quite remarkably, the chromatic thresholds of all graphs
have been explicitly determined by Allen et al. in [1]; here we will state
a simplified version of their result that limits the threshold to one of
three particular values depending only on $\chi(H)$.
Theorem 1.4. If H is a graph of chromatic number $c \geq 3$, then H has chromatic threshold in \(\left\{ \frac{c-3}{c-2}, \frac{2c-5}{2c-3}, \frac{c-2}{c-1} \right\} \).

Critical threshold. For a simple binary matroid N, we define the critical threshold of N to be the infimum of all $\alpha > 0$ such that there exists $c = c(N, \alpha)$ for which every simple binary matroid M with no N-restriction and with $|M| \geq \alpha 2^{\rho(M)}$ satisfies $\chi(M) \leq c$. For each integer $k \geq 3$, let C_k denote the k-element circuit $U_{k-1,k}$. Theorems 1.1 and 1.2 imply that the critical threshold for C_3 is $\frac{1}{4}$. In contrast, the main result of [13] shows that, if $k \geq 5$ is odd, then C_k has critical threshold 0.

A result of Bonin and Qin [2], itself a special case of the geometric density Hales-Jewett theorem [8], implies that each simple binary matroid with critical number 1 has critical threshold 0. More generally, the geometric Erdős-Stone theorem [12] gives the following upper bound on the critical threshold of any simple binary matroid.

Theorem 1.5. The critical threshold for a simple binary matroid N is at most $1 - 2^{1-\chi(N)}$.

We show, in fact, that this holds with equality fairly often.

Theorem 1.6. If N is a simple binary matroid of critical number $c \geq 1$ so that $\chi(N \setminus I) = c$ for every rank-$(n - c + 1)$ independent set I of N, then the critical threshold for N is $1 - 2^{1-c}$.

In Conjectures 5.1 and 5.2, we predict the precise value of the critical threshold for any simple binary matroid. The following is a simplification of those conjectures in the vein of Theorem 1.4.

Conjecture 1.7. If N is a simple nonempty binary matroid, then the critical threshold for N is equal to $1 - i \cdot 2^{-\chi(N)}$ for some $i \in \{2, 3, 4\}$.

Specialised to projective geometries, our conjectures give:

Conjecture 1.8. For each $t \geq 2$, the critical threshold for $\text{PG}(t-1,2)$ is $1 - 3 \cdot 2^{-t}$.

Finally, we pose the following strengthening of Conjectures 1.3 and 1.8; the analogous result was proved for graphs by Goddard and Lyle in [9].

Conjecture 1.9. If $t \geq 2$ and N is a simple binary matroid with no $\text{PG}(t-1,2)$-restriction such that $|N| > (1 - 3 \cdot 2^{-t})2^{\rho(N)}$, then $\chi(N) \in \{t - 1, t\}$.

2. Regularity

Green used Fourier-analytic techniques to prove his regularity lemma for abelian groups and to derive applications in additive combinatorics;
these techniques are discussed in greater detail in the book of Tao and Vu [18, Chapter 4]. Fortunately, although this theory has many technicalities, the group GF(2)^n is among its simplest applications.

Let \(V = \text{GF}(2)^n \) and let \(X \subseteq V \). Note that, if \(H \) is a 1-codimensional subspace of \(V \), then \(|H| = |V \setminus H| \). We say that \(X \) is \(\varepsilon \)-uniform if for each 1-codimensional subspace \(H \) of \(V \) we have

\[
| |H \cap X| - |X \setminus H| | \leq \varepsilon |V|.
\]

In Lemma 2.2 we will see that, for small \(\varepsilon \), the \(\varepsilon \)-uniform sets are ‘pseudorandom’.

Let \(H \) be a subspace of \(V \). For each \(v \in V \), let \(H_v(X) = \{ h \in H : h + v \in X \} \). For \(\varepsilon > 0 \), we say \(H \) is \(\varepsilon \)-regular with respect to \(V \) and \(X \) if \(H_v(X) \) is \(\varepsilon \)-uniform in \(H \) for all but \(\varepsilon |V| \) values of \(v \in V \).

Regularity captures the way that \(X \) is distributed among the cosets of \(H \) in \(V \). For \(v \in V \), we let \(X + v = \{ x + v : x \in X \} \); thus \(X + v \) is a translation of \(X \). Note that \(X + v \) is \(\varepsilon \)-uniform if and only if \(X \) is. Also note that \(H_v(X) + v = X \cap H' \) where \(H' = H + v \) is the coset of \(H \) in \(V \) that contains \(v \). Therefore, if \(u, v \in H' \), then \(H_u(X) \) and \(H_v(X) \) are translates of one another. So \(H \) is \(\varepsilon \)-regular if, for all but an \(\varepsilon \)-fraction of cosets \(H' \) of \(H \), the set \((H' \cap X) + v \) is \(\varepsilon \)-uniform in \(H \) for some \(v \in H' \).

The following result of Green [11] guarantees a regular subspace of bounded codimension. Here \(T(\alpha) \) denotes an exponential tower of 2’s of height \([\alpha] \).

Lemma 2.1 (Green’s regularity lemma). Let \(X \) be a set of points in a vector space \(V \) over GF(2) and let \(0 < \varepsilon < \frac{1}{2} \). Then there is a subspace \(H \) of \(V \), having codimension at most \(T(\varepsilon^{-3}) \), that is \(\varepsilon \)-regular with respect to \(X \) and \(V \).

If \(A_1, A_2, A_3 \) were random subsets of \(\text{GF}(2)^n \) with \(|A_i| = \alpha_i 2^n \), we would expect approximately \(\alpha_1 \alpha_2 \alpha_3 2^{2n} \) solutions to the linear equation \(a_1 + a_2 + a_3 = 0 \) with \(a_i \in A_i \). The next lemma, found in [11] and also a corollary of [18, Lemma 4.13], bounds the error in such an estimate when at least two of these sets are uniform.

Lemma 2.2. Let \(V \) be an \(n \)-dimensional vector space over \(\text{GF}(2) \), and let \(A_1, A_2, A_3 \subseteq V \) with \(|A_i| = \alpha_i |V| \). If \(0 < \varepsilon < \frac{1}{2} \) and \(A_1 \) and \(A_2 \) are \(\varepsilon \)-uniform, then

\[
|\{(a_1, a_2, a_3) \in A_1 \times A_2 \times A_3 : a_1 + a_2 + a_3 = 0\}| \geq (\alpha_1 \alpha_2 \alpha_3 - \varepsilon) 2^{2n}.
\]
3. Triangle-free binary matroids

We mostly use standard notation from matroid theory [17]. It will also be convenient to think of a simple rank-n binary matroid as a subset of the vector space $V = GF(2)^n$. For $X \subseteq V - \{0\}$, we write $M(X)$ for the simple binary matroid on X represented by a binary matrix with column set X.

We require an easy lemma about triples of vectors with sum zero.

Lemma 3.1. If X is a set of elements in an n-dimensional vector space V over $GF(2)$ with $|X| > 2^{n-1}$, then for all $v \in V$ there exist $x_1, x_2 \in X$ such that $x_1 + x_2 + v = 0$.

Proof. If $v = 0$, the result is trivial. If $v \neq 0$; the elements of V partition into 2^{n-1} pairs (x, y) with $x + y + v = 0$. Since $|X| > 2^{n-1}$, some such pair contains two elements of X, giving the result. \(\Box\)

We now prove Theorem 1.1 by means of the following stronger result, which shows that the theorem holds not just for triangle-free matroids but for all matroids in which each element is in $o(2^r)$ triangles.

Theorem 3.2. For each $\varepsilon > 0$ there exist $c \in \mathbb{Z}$ and $\beta > 0$ such that, if M is a simple binary matroid with $|M| \geq (\frac{1}{4} + \varepsilon)2^{r(M)}$, then either $\chi(M) \leq c$, or there is some $e \in E(M)$ contained in at least $\beta 2^{r(M)}$ triangles of M.

Proof. We may assume that $\varepsilon < \frac{3}{4}$. Let $\delta = \frac{1}{16}\varepsilon^3$, noting that $\delta < \frac{1}{2}$ and $(1 + 2\delta)^2 < 1 + 2\varepsilon$, and set $c \geq T(\delta^{-3})$. Let $\beta = 2^{-2\varepsilon}\delta$.

Let M be a simple rank-r binary matroid with $|M| \geq (\frac{1}{2} + \varepsilon)2^{r(M)}$. Let $V = GF(2)^n$ and $X \subseteq V$ be such that $M = M(X)$. Suppose that each $e \in E(M)$ lies in at most $\beta 2^{r(M)}$ triangles of M.

Since $\delta < \frac{1}{2}$, by Lemma 2.1 there is a subspace H of V that is δ-regular with respect to X and V and has codimension $k \leq c$ in V. If $X \cap H = \emptyset$ then $\chi(M) \leq k \leq c$, giving the theorem, so we may assume that there is some $v_0 \in X \cap H$. Let W be the subspace of V that is ‘orthogonal’ to H; thus $|W| = 2^k$ and $\{H + w : w \in W\}$ is the collection of cosets of H in V. We first claim that X is not too dense in any coset:

Claim 3.2.1. $|X \cap (H + w)| \leq \left(\frac{1}{2} + \delta\right)2^{r-k}$ for each $w \in W$.

Proof of claim: The elements of $H + w$ partition into 2^{r-k-1} pairs adding to v_0; since the element of M corresponding to v_0 is in at most $\beta 2^r$ triangles of M, at most $\beta 2^r$ of these pairs contain two elements of X. (This also holds for $w = 0$ since $0 \notin X$.) Therefore

$$|(H + w) \cap X| \leq 2^{r-k-1} + \beta 2^r \leq \left(\frac{1}{2} + 2^k\beta\right)2^{r-k} \leq \left(\frac{1}{2} + \delta\right)2^{r-k},$$

which gives the claim.
as required. \qed

Let \(Z = \{ w \in W : |X \cap (H + w)| \geq \frac{\delta}{2} 2^{r-k} \} \).

Claim 3.2.2. \(|Z| > \left(\frac{1}{2} + \delta \right) 2^k \).

Proof of claim: Using the first claim and \(|W \setminus Z| \leq 2^k \), we have

\[
\left(\frac{1}{4} + \varepsilon \right) 2^r \leq |X| = \sum_{w \in W} |X \cap (H + w)| \leq \sum_{w \in Z} \left(\frac{1}{2} + \delta \right) 2^{r-k} + \sum_{w \in W \setminus Z} \frac{\delta}{2} 2^{r-k} \leq 2^{r-k} \left(\left(\frac{1}{2} + \delta \right) |Z| + \frac{\delta}{2} 2^k \right).
\]

Thus

\[
|Z| \geq \frac{1+2\varepsilon}{2(1+2\delta)} 2^k > \left(\frac{1}{2} + \delta \right) 2^k, \text{ where we use } (1+2\delta)^2 < 1+2\varepsilon. \qed
\]

By regularity there are at most \(\delta 2^k \) values of \(w \in W \) such that \(H_w(X) \) is not \(\delta \)-uniform, so there is a set \(Z' \subseteq Z \) such that \(|Z'| > 2^{k-1} \) and \(H_w(X) \) is \(\delta \)-uniform for each \(w \in Z' \). By Lemma 3.1, there are elements \(w_1, w_2, w_3 \in Z' \) such that \(w_1 + w_2 + w_3 = 0 \). The sets \(H_{w_1}(X), H_{w_2}(X), H_{w_3}(X) \) are \(\delta \)-uniform subsets of \(H \) with at least \(\frac{1}{2} \varepsilon 2^r - k \) elements; by Lemma 2.2 the number of solutions to \(x_1 + x_2 + x_3 = 0 \), so that \(x_i \in H_{w_i}(X) \) for each \(i \in \{1,2,3\} \), is at least \(\left(\left(\frac{1}{2} \varepsilon \right)^3 - \delta \right) 2^{2(r-k)} = \delta 2^{-2k} 2^{2r} \geq \beta 2^{2r} \). For any such solution, the vectors \(x_1 + w_1, x_2 + w_2, x_3 + w_3 \) are elements of \(X \) summing to zero, so \(M \) has at least \(\beta 2^{2r} \) triangles. It follows, since \(|M| < 2^r \), that some \(e \in E(M) \) is in more than \(\beta 2^{2r} \) triangles, a contradiction. \qed

The lower bound. Theorem 1.1 establishes an upper bound of \(\frac{1}{3} \) on the critical threshold of \(C_3 \). We have yet to prove Theorem 1.2 which gives the corresponding lower bound. We will in fact prove a stronger result, Theorem 5.4. However, in the generalisation, we lose the simplicity of the construction that works for \(C_3 \), so we give that construction here. The construction is very close to that of a ‘niveau set’ (see [10], Theorem 9.4).

Let \(c, n \geq 0 \) be integers. Let \(X_n \) denote the set of vectors in \(\text{GF}(2)^{n+1} \) with first entry zero and Hamming weight greater than \(n - c \). Let \(Y_n \) denote the set of vectors in \(\text{GF}(2)^{n+1} \) with first entry 1 and Hamming weight at most \(\frac{1}{2}(n - c) \). Let \(M_{c,n} \) denote the matroid \(M(X_n \cup Y_n) \). The following lemma implies Theorem 1.2.
Lemma 3.3. Let $c \geq 0$ be an integer and $\varepsilon > 0$. Then, for each sufficiently large integer n, the matroid $M = M_{c,n}$ is triangle-free, has critical number $c + 1$, and satisfies $|M| \geq (\frac{1}{2} - \varepsilon)2^{r(M)}$.

Proof. Suppose that $n > 3c$. Clearly $(Y_n + Y_n) \cap X_n$ and $(X_n + X_n) \cap X_n$ are empty; it follows that M is triangle-free. By Stirling’s approximation, $\max_{0 \leq i \leq n} \binom{n}{i} \leq \binom{2n}{n/2} = O(\frac{2^n}{\sqrt{n}}) = o(2^n)$, so

$$|Y_n| = \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n}{i} - \sum_{i=\lceil (n-c)/2 \rceil}^{\lfloor n/2 \rfloor} \binom{n}{i} \geq \frac{1}{2}2^n - \frac{c}{2}o(2^n);$$

since $r(M) = n + 1$ and $|M| \geq |Y_n|$, this implies the required lower bound on $|M|$ for sufficiently large n. Let b_1, \ldots, b_{n+1} be the standard basis for $\text{GF}(2)^{n+1}$ and let $j = \sum b_i$. If $W = \text{span}\{b_2, \ldots, b_{n+1-c}\}$, then $\text{codim}(W) = c + 1$ and $W \cap E(M) = \emptyset$, so $\chi(M) \leq c + 1$.

Finally, we show that $\chi(M) > c$. Let U be a subspace of $\text{GF}(2)^{n+1}$ with $\text{codim}(U) \leq c$ and let A be a matrix with at most c rows having null space U. If there is some $y \in U$ with first entry 1, then there exists $x \in \text{GF}(2)^{n+1}$ with first entry zero and Hamming weight at most rank(U) $\leq c$ such that $Ax = A(y + b_1)$, giving $A(x + b_1) = Ay = 0$. Now $x + b_1$ has first entry 1 and Hamming weight at most $c + 1 < \frac{1}{2}(n-c)$, so $x + b_1 \in U \cap Y_n$ and therefore $U \cap E(M) \neq \emptyset$. Suppose, therefore, that every $y \in U$ has first entry zero. Now there is a vector $z \in \text{GF}(2)^{n+1}$ of Hamming weight at most c such that $Az = Aj$; we have $z + j \in U$ (and therefore $z + j$ has first entry zero) and $z + j$ has Hamming weight at least $n + 1 - c$, so $z + j \in X_n \cap U$, again giving $U \cap E(M) \neq \emptyset$. This completes the proof. \qed

4. LARGE GIRTH AND CRITICAL NUMBER

Jaeger [15] gave a constructive characterisation of matroids with large critical number. Erdős [5] used a probabilistic argument to prove the existence of graphs with large girth and chromatic number, which, since $\chi(M(G)) = \lceil \log_2(\chi(G)) \rceil$ for each graph G, gives binary matroids with large girth and critical number. We will use the probabilistic method to construct such matroids with the additional property that they have a representation comprising only vectors of large support.

For $x \in \text{GF}(2)^S$, let $\text{supp}(x)$ denote the support of x: that is, the set of all $s \in S$ such that $x_s \neq 0$. Let $\text{wt}(x) = |\text{supp}(x)|$ denote the Hamming weight of x. We require the following technical lemma, concerning vectors of small Hamming weight.

Lemma 4.1. Let \(c, s, n \in \mathbb{Z} \) with \(n \geq 2^{c+1}s \) and \(s > c \), and let \(W \) be a \(c \times n \) binary matrix. For each \(v \in \text{GF}(2)^n \), the number of vectors \(x \in \text{GF}(2)^n \) satisfying \(Wx = Wv \) and \(\text{wt}(x) \leq s \) is at least \(\left(\frac{n}{2^{c+1}s} \right)^s \).

Proof. Let \([n] = \{1, \ldots, n\}\) index the column set of \(W \). Since \(Wv \) is in the column space of \(W \), there is a vector \(v_0 \in \text{GF}(2)^n \) with \(\text{wt}(v_0) \leq \text{rank}(W) \leq c \) such that \(Wv_0 = Wv \); let \(I = \text{supp}(v_0) \subseteq [n] \). The matrix \(W \) has at most \(2^c \) distinct columns, so there is a set \(J \subseteq [n] - I \) and a vector \(w_0 \in \text{GF}(2)^c \) such that \(W_j = w_0 \) for each \(j \in J \) and

\[
|J| \geq 2^{-c}([n] - |I|) \geq 2^{-c}(n - c) \geq 2^{-c-1}n \geq s.
\]

If \(s - |I| \) is even, then each vector \(x \) such that \(\text{wt}(x) = s \) and \(I \subseteq \text{supp}(x) \subseteq I \cup J \) satisfies \(Wx = Wv_0 + (s - |I|)w_0 = Wv \). If \(s - |I| \) is odd, then each vector \(x \) such that \(\text{wt}(x) = s-1 \) and \(I \subseteq \text{supp}(x) \subseteq I \cup J \) satisfies \(Wx = Wv_0 + (s - |I| - 1)w_0 = Wv \). The number of vectors \(x \) with \(\text{wt}(x) \leq s \) and \(Wx = Wv \) is therefore at least

\[
\min\left(\left(\frac{|J|}{s - |I|}\right), \left(\frac{|J|}{s - 1 - |I|}\right)\right) \geq \left(\frac{|J|}{s}\right)^{s-|I|-1} \geq \left(\frac{n}{2^{c+1}s}\right)^{s-c-1},
\]

as required. \(\square \)

The following lemma gives a subset of \(\text{GF}(2)^n \) of high girth and critical number, such that every vector has very large Hamming weight.

Lemma 4.2. For all integers \(c, g \geq 2 \) and all sufficiently large \(n \in \mathbb{Z} \), there is a set \(Z \subseteq \text{GF}(2)^n \) such that \(M(Z) \) has girth at least \(g \) and critical number at least \(c \), and \(\text{wt}(z) \geq n - 2cg \) for each \(z \in Z \).

Proof. Let \(s = 2cg \) and let \(\mu = 2^{c(s-c)}s^c \). Let \(n \) be a sufficiently large integer such that \(n \geq s \) and \((2s^c)^{-1/g}n^{2c} \geq c\mu^{-1}n^{c+1} + 1 \). We show that the result holds for \(n \).

Let \(S \) be the set of vectors in \(\text{GF}(2)^n \) of Hamming weight at least \(n - s \) and let \(m = \left\lceil \left(\frac{1}{2}\right)|S|^{1/g} \right\rceil \). Using \(|S| \geq \left(\frac{2^c}{s}\right)^s \) and our choice of \(n \), we have

\[
m \geq \left(\frac{1}{2s^c}\right)^{1/g}n^{s/g} - 1 = (2s^c)^{-1/g}n^{2c} - 1 \geq c\mu^{-1}n^{c+1}.
\]

For each \(m \)-tuple \(X = (x_1, \ldots, x_m) \in S^m \) and each integer \(k \geq 3 \), let \(\gamma_k(X) \) be the number of sub-\(k \)-tuples of \(X \) that sum to zero. Let \(\gamma(X) = \sum_{k=3}^{g-1} \gamma_k(X) \); that is, \(\gamma(X) \) is the number of ‘ordered circuits’ of length less than \(g \) contained in \(X \). Similarly, let \(\zeta(X) \) denote the number of \((c-1)\)-codimensional subspaces of \(\text{GF}(2)^n \) that contain no element of \(X \). Note that if \(\gamma(X) = \zeta(X) = 0 \), then the set \(Z \) of elements in \(X \) has critical number at least \(c \) and contains no small circuits, so
satisfies the lemma. We show with a probabilistic argument that the required \(m \)-tuple \(X \) exists.

Let \(X = (x_1, \ldots, x_m) \) be an \(m \)-tuple drawn uniformly at random from \(S^m \). Since the last element in any \(k \)-tuple in \(S^k \) summing to zero is determined by the others, the probability that a \(k \)-tuple chosen uniformly at random from \(S^k \) sums to zero is at most \(|S|^{-1}\), so we have \(\mathbb{E}(\gamma_k(X)) \leq m^k|S|^{-1} \) for each \(k \). By linearity, we have

\[
\mathbb{E}(\gamma(X)) \leq \sum_{k=3}^{g-1} m^k < m^g|S|^{-1} \leq \frac{1}{2}.
\]

We now consider \(\zeta(X) \). Let \(F \) be an \((c-1)\)-codimensional subspace of \(\text{GF}(2)^n \) and let \(W \) be a \((c-1) \times n\) binary matrix with null space \(F \). If \(v \) is a vector chosen uniformly at random from \(S \), then \(v = v' + j \), where \(j \) is the all-ones vector and \(v' \) is chosen uniformly at random from \(S' \), the set of vectors in \(\text{GF}(2)^n \) of Hamming weight at most \(s \). We have \(v' + j \in F \) if and only if \(Wv' = Wj \). By Lemma 4.1, the probability that \(Wv' = Wj \) is at least

\[
\frac{1}{|S'|} \left(\frac{n}{2^s} \right)^{s-c} \geq \left(\frac{s}{n} \right)^s \frac{n^{s-c}}{2^{c(s-c)}s^{s-c}} = \mu n^{-c}.
\]

Therefore the probability that \(x_i \notin F \) for all \(i \in \{1, \ldots, m\} \) is at most \((1 - \mu n^{-c})^m\); since there are at most \(2^{(c-1)n} \) subspaces \(F \) of codimension \(c - 1 \), it follows that

\[
\mathbb{E}(\zeta(X)) \leq 2^{(c-1)n}(1 - \mu n^{-c})^m \leq 2^{(c-1)n} \left(2^{-\mu n^{-c}} \right)^m,
\]

Now, using \(m \geq c \mu n^{c+1} \), we have \((c - 1)n - m \mu n^{-c} \leq -n \leq -1\). Therefore \(\mathbb{E}(\zeta(X)) \leq \frac{1}{2} \). This gives \(\mathbb{E}(\gamma(X) + \zeta(X)) < 1 \), so the required tuple \(X_0 \) with \(\gamma(X_0) = \zeta(X_0) = 0 \) exists. \(\square \)

5. Critical thresholds

We now formulate a conjecture predicting the critical threshold for every simple binary matroid, and prove that this prediction is a correct lower bound. To state the conjecture, we use a piece of new terminology. If \(k \geq 0 \) is an integer and \(M \) is a simple rank-\(n \) binary matroid, viewed as a restriction of \(G \cong \text{PG}(n-1, 2) \), then a \(k \)-codimensional subspace of \(M \) is a set of the form \(F \cap E(M) \), where \(F \) is a rank-\((n-k)\) flat of \(G \). Such a set is a flat of \(M \) and has rank at most \(n - k \), but can also have smaller rank; for example, \(\emptyset \) is a 1-codimensional subspace of any simple binary matroid of critical number 1.

Let \(\mathcal{N} \) denote the class of simple binary matroids of critical number 2; we partition \(\mathcal{N} \) into three subclasses as follows:
• Let \(\mathcal{N}_0 \) denote the class of all \(N \in \mathcal{N} \) having a 1-codimensional subspace \(S \) such that \(S \) is independent in \(N \), and each odd circuit of \(N \) contains at least four elements of \(E(N) - S \).

• Let \(\mathcal{N}_{1/4} \) denote the class of all \(N \in \mathcal{N} - \mathcal{N}_0 \) so that some 1-codimensional subspace of \(N \) is independent in \(N \).

• Let \(\mathcal{N}_{1/2} = \mathcal{N} - (\mathcal{N}_0 \cup \mathcal{N}_{1/4}) \).

We know from Corollary 1.5 that binary matroids of critical number 1 have critical threshold 0. Our first conjecture predicts the threshold for the binary matroids of critical number 2.

Conjecture 5.1. For \(\delta \in \{0, \frac{1}{4}, \frac{1}{2}\} \), each matroid in \(\mathcal{N}_\delta \) has critical threshold \(\delta \).

Note that every simple binary matroid \(N \) of critical number \(c \geq 2 \) has a \((c-2)\)-codimensional subspace \(F \) such that \(\chi(N|F) = 2 \). Thus, the minimum in the following conjecture is well-defined, and the conjecture, which clearly implies Conjecture 1.7, predicts the critical threshold for every simple binary matroid of critical number at least 2.

Conjecture 5.2. If \(N \) is a simple binary matroid of critical number \(c \geq 2 \), then the critical threshold for \(N \) is \(1 - (1 - \delta)2^{2-c} \), where \(\delta \in \{0, \frac{1}{4}, \frac{1}{2}\} \) is minimal such that \(N|S \in \mathcal{N}_\delta \) for some \((c-2)\)-codimensional subspace \(S \) of \(N \).

Theorem 5.4 will show that the value given by the above conjecture is a correct lower bound for the critical threshold. The next lemma deals with the case when \(N \) has critical number 2.

Lemma 5.3. Let \(\delta \in \{0, \frac{1}{4}, \frac{1}{2}\} \). For all integers \(c, r \geq 0 \) and \(\varepsilon > 0 \), there is a simple binary matroid \(M \) of critical number at least \(c \) such that \(|M| \geq (\delta - \varepsilon)2^{r(M)} \) and every restriction of \(M \) of rank at most \(r \) either has critical number at most 1, or is in \(\mathcal{N}_\delta' \) for some \(\delta' < \delta \).

Proof. We consider the three values of \(\delta \) separately. For \(\delta = 0 \), a matroid \(M \) given by Lemma 4.2 with critical number at least \(c \) and girth at least \(r + 2 \) will do, since every rank-\(r \) restriction of \(M \) is a free matroid and thus has critical number at most 1. For the other values of \(\delta \) we require slightly more technical constructions.

Case 1: \(\delta = \frac{1}{4} \). Let \(g = r + 2 \) and let \(s = 2cg \). By Stirling’s approximation we have \(\binom{2n}{n} \approx \frac{1}{\sqrt{\pi n}}2^{2n} \). Let \(n \in \mathbb{N} \) be such that \(\binom{2n}{n} \leq \frac{2c}{gs}2^{2n} \), and such that there exists a set \(X \subseteq \text{GF}(2)^{2n} \), given by Lemma 4.2, for which \(\text{wt}(x) \geq 2n - s \) for each \(x \in X \), and \(M(X) \) has rank \(2n \), girth at least \(g \), and critical number at least \(c \). Let \(Y = \{ y \in \text{GF}(2)^{2n} : \text{wt}(y) \leq n - gs \} \).
Let \(X', Y' \subseteq \text{GF}(2)^{n+1} \) be defined by \(X' = \{ [0]_x : x \in X \} \) and \(Y' = \{ [1]_y : y \in Y \} \). Let \(M = M(X' \cup Y') \). First note that \(\chi(M) \geq \chi(M(X')) \geq c \). By symmetry of binomial coefficients and the fact that \(\binom{2n}{r} \leq \binom{2n}{n} \) for each \(i \), we have

\[
|M| \geq |Y| \geq \sum_{i=0}^{n-gs} \binom{2n}{i} \geq \frac{1}{2} \left(2^{2n} - 2gs \binom{2n}{n} \right) \geq \left(\frac{1}{4} - \varepsilon \right) 2^{2n+1},
\]

so \(|M| \geq \left(\frac{1}{4} - \varepsilon \right) 2^{r(M)} \). Finally, let \(R \) be a restriction of \(M \) with \(r(R) \leq r \). The set \(E(R) \cap X' \) contains a 1-codimensional subspace \(S \) of \(R \), and since \(M(X') = M(X) \) has girth at least \(g = r(R) + 2 \), the set \(S \) is independent in \(R \); it follows that \(\chi(R) \leq 2 \). We argue that if \(\chi(R) = 2 \) then \(R \in \mathcal{N}_0 \).

Let \(C \) be an odd circuit of \(R \) with \(|C - X'| \leq 2 \), and let \(C_X, C_Y \subseteq \text{GF}(2)^{2n} \) be the subsets of \(X \) and \(Y \) corresponding to \(C \cap X' \) and \(C \cap Y' \) respectively. Note that \(\sum C_X = \sum C_Y \), and \(|C_X| + |C_Y| \leq r(R) + 1 = g - 1 \), with \(|C_X| \in \{0, 2\} \) and \(|C_X| \) odd. By choice of \(Y \) we know that \(\text{wt}(\sum C_Y) \leq 2(n - gs) \). Since every \(x \in C_X \) has the form \(j + \hat{x} \) where \(j \) is the all-ones vector and \(\text{wt}(\hat{x}) \leq s \), we have \(\text{wt}(\sum C_X) \geq 2n - (g - 1)s > 2(n - gs) \geq \text{wt}(\sum C_Y) \), a contradiction. Therefore each odd circuit of \(R \) contains at least four elements of \(E(R) - S \), so \(R \in \mathcal{N}_0 \).

Case 2: \(\delta = \frac{1}{2} \). Let \(g = r + 2 \) and \(n \) be an integer such that there is a set \(X \subseteq \text{GF}(2)^n \), given by Lemma 4.2, so that \(M(X) \) has girth at least \(g \) and critical number at least \(c \). Let \(X' = \{ [0]_x : x \in X \} \) and let \(Y' = \{ [1]_y : y \in \text{GF}(2)^n \} \). Let \(M = M(X' \cup Y') \).

Clearly \(\chi(M) \geq \chi(M(X)) \geq c \) and \(|M| \geq 2^n \geq \left(\frac{1}{2} - \varepsilon \right) 2^{r(M)} \). If \(R \) is a restriction of \(M \) with \(r(R) \leq r \), then the set \(E(R) \cap X' \) contains a 1-codimensional subspace \(S \) of \(R \) and, since \(M(X') \) has girth at least \(g \geq r(R) + 2 \), the set \(S \) is independent in \(R \). It follows that \(\chi(R) \leq 2 \) and \(R \notin \mathcal{N}_{1/2} \).

We can now show that Conjecture 5.2 provides a valid lower bound.

Theorem 5.4. If \(N \) is a simple rank-\(r \) binary matroid with critical number \(c \geq 2 \), then the critical threshold for \(N \) is at least \(1 - (1 - \delta)2^{c-1} \), where \(\delta \in \{0, \frac{1}{3}, \frac{1}{2}\} \) is minimal so that \(N|S \in \mathcal{N}_\delta \) for some \((c - 2)\)-codimensional subspace \(S \) of \(N \).

Proof. Let \(t \in \mathbb{Z} \) and let \(\varepsilon > 0 \). By Lemma 5.3 there exists a rank-\(n \) matroid \(M_0 \) for which \(\chi(M_0) \geq t \) and \(|M_0| \geq (\delta - \varepsilon)2^n \), and such that every restriction \(R_0 \) of \(M_0 \) with \(r(R_0) \leq r \) satisfies either \(\chi(R_0) \leq 1 \) or \(R_0 \in \mathcal{N}_\delta \) for some \(\delta' < \delta \). Let \(G \cong \text{PG}(n + c - 3, 2) \) have \(M_0 \) as a restriction, and let \(F_0 = \text{cl}_G(M_0) \). Set \(M = G \setminus (F_0 - E(M_0)) \).
Since \(M_0 \) is a restriction of \(M \), we have \(\chi(M) \geq t \). Moreover,
\[
|M| = |G| - |F_0| + |M_0| \\
\geq (2^{n+c-2} - 1) - (2^n - 1) + (\delta - \varepsilon)2^n \\
= (1 - (1 - \delta + \varepsilon)2^{2-c})2^{n+c-2} \\
\geq (1 - (1 - \delta)2^{2-c} - \varepsilon)2^{r(M)}.
\]

Finally, suppose for a contradiction that \(M \) has a restriction \(R \cong N \). The set \(E(R) \cap F_0 \) contains a \((c-2)\)-codimensional subspace \(S \) of \(R \), and \(\chi(R|S) \geq \chi(R) - (c - 2) = 2 \). However, \(R|S \) is also a restriction of \(M_0 \) of rank at most \(r \), so either \(\chi(R|S) = 1 \) or \(R|S \in N'_{\delta'} \) for some \(\delta' < \delta \). The former contradicts \(\chi(R|S) \geq 2 \) and the latter contradicts the minimality of \(\delta \). \(\square \)

Finally, we restate and prove Theorem 1.6.

Theorem 5.5. If \(N \) is a simple binary matroid of critical number \(c \geq 1 \) so that \(\chi(N \setminus I) = c \) for every rank-\((r(N) - c + 1)\) independent set \(I \) of \(N \), then the critical threshold for \(N \) is \(1 - 2^{1-c} \).

Proof. The upper bound is given by Corollary 1.5, which also gives the theorem when \(c = 1 \). It thus suffices by Theorem 5.4 to show that \(N \) has no \((c-2)\)-codimensional subspace in \(N_0 \cup N_1/4 \). Indeed, if \(S \) is such a subspace then \(N\setminus S \) has an independent 1-codimensional subspace \(I \), so \(\chi((N|S) \setminus I) = 1 \). Moreover, \(r_N(I) \leq r_N(S) - 1 = r(N) - c + 1 \), and \(\chi(N \setminus I) \leq 1 + (c - 2) < c \), a contradiction. \(\square \)

Acknowledgements

We thank the referees for their careful reading of the manuscript and for their useful comments.

References

[1] P. Allen, J. Böttcher, S. Griffiths, Y. Kohayakawa, R. Morris, The chromatic thresholds of graphs, Adv. Math, 235 (2013): 261–295.

[2] J.E. Bonin, H. Qin, Size functions of subgeometry-closed classes of representable combinatorial geometries, Discrete Math. 224, (2000) 37–60.

[3] S. Brandt, S. Thomassé, Dense triangle-free graphs are four-colorable, to appear, JCTb.

[4] H.H. Crapo, G.-C. Rota, On the foundations of combinatorial theory: Combinatorial geometries, M.I.T. Press, Cambridge, Mass., 1970.
TRIANGLE-FREE BINARY MATROIDS

[5] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34–38.
[6] P. Erdős, M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323–334.
[7] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52, (1946) 1087-1091.
[8] H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, Journal d’Analyse Mathématique 45, (1985) 117–168.
[9] W. Goddard, J. Lyle, Dense graphs with small clique number, J. Graph Theory 66 (2011) no. 4, 319–331.
[10] B. Green, Finite field models in additive combinatorics, Surveys in combinatorics 2005, London Mathematical Society Lecture Note Series 327 (Cambridge University Press, Cambridge, 2005), pp. 1–27.
[11] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geometric & Functional Analysis GAFA 15 (2005), 340–376.
[12] J. Geelen, P. Nelson, An analogue of the Erdős-Stone theorem for finite geometries, Combinatorica, in press.
[13] J. Geelen, P. Nelson, Odd circuits in dense binary matroids, Combinatorica, to appear.
[14] R. Häggkvist, Odd cycles of specified length in nonbipartite graphs, Graph theory (Cambridge, 1981), 89–99.
[15] F. Jaeger, A constructive approach to the critical problem for matroids, Eur. J. Combin. 2 (1981), 137–144.
[16] T. Łuczak, S. Thomassé, Coloring dense graphs via VC-dimension, arXiv:1007.1670 [math.CO]
[17] J. G. Oxley, Matroid Theory, Oxford University Press, New York (2011).
[18] T. C. Tao, V. H. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge (2006).
[19] C. Thomassen, On the chromatic number of triangle-free graphs of large minimum degree, Combinatorica 22 (2002), 591–596
[20] D.J.A. Welsh, Matroid Theory, Academic Press, London (1976). Reprinted 2010, Dover, Mineola.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada