Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond

Annalisa Bonafede
Hamburg University
F. Vazza, M. Brüggen, T. Akahori, E. Carretti, S. Colafrancesco, L. Feretti, C. Ferrari, G. Giovannini, F. Govoni, M. Johnston-Hollitt, M. Murgia, L. Rudnick, A. Scaife, V. Vacca

And the SKA magnetism working group
Magnetic fields on the large-scales: galaxy clusters

The Coma cluster,
LOFAR 150 MHz Bonafede et al (in prep)
Magnetic fields on the large-scales: galaxy clusters

The Coma cluster,
LOFAR 150 MHz Bonafede et al (in prep)

\sim 3.3 \text{ Mpc}
Magnetic fields on the large-scales: galaxy clusters

The Coma cluster,
LOFAR 150 MHz Bonafede et al (in prep)
Magnetic fields on the large-scales: galaxy clusters

The Coma cluster,
LOFAR 150 MHz Bonafede et al (in prep)

\(B \sim \text{few } \mu \text{G} \)

\(\sim 3.3 \text{ Mpc} \)

Dolag 2005

\(I_B [\mu \text{G}] \)

\(\rho / \langle \rho \rangle \)

Saturation

Major Mergers

Turbulence
Magnetic fields on the large-scales: galaxy clusters

-> Magnetic field amplification

-> Physics of the intra-cluster medium

The Coma cluster,
LOFAR 150 MHz Bonafede et al (in prep)
Magnetic fields in clusters: methods

3D magnetic field simulations

\[\int n_{gas} B_z = RM \]

Gas model (from X-rays)

(e.g. Murgia et al 2004, Bonafede et al, 2013)
Magnetic fields in clusters: methods

3D magnetic field simulations (e.g. Murgia et al 2004, Bonafede et al, 2013)

\[\int n_{gas} B_z = RM \]

Gas model (from X-rays)

Numerical model

\[|A_k| \propto k^{-\zeta} \]

\[B_k = i k \times A_k \]

\[B(r) = B_0 n_{gas}^n \]
Magnetic fields in clusters: methods

3D magnetic field simulations

\(\int n_{gas} B_z = RM \)

Gas model (from X-rays)

Numerical model

\(|A_k| \propto k^{-\zeta} \)

\(B_k = ik \times A_k \)

\(B(r) = B_0 n_{gas}^n \)

Simulated RM image

(e.g. Murgia et al 2004, Bonafede et al, 2013)
Magnetic fields in clusters: methods

3D magnetic field simulations

\[\int n_{gas} B_z = RM \]

Gas model (from X-rays)

Numerical model

\[|A_k| \propto k^{-\zeta} \]

\[B_k = i k \times A_k \]

\[B(r) = B_0 n_{gas}^\eta \]

Simulated RM image

(e.g. Murgia et al 2004, Bonafede et al, 2013)
Magnetic fields in clusters: current results

Bonafede et al. 2010, 2013
Magnetic fields in clusters: current results

\[B(r) = B_0 n_{gas}^{\eta} \]

- \(B_0 \sim 5 \mu G \)
- \(\eta \sim 0.5 \)

Bonafede et al. 2010, 2013
MAGNETIC FIELDS IN CLUSTERS: CURRENT RESULTS

Limit: Number of sources detectable through the cluster

\[B(r) = B_0 n^{\eta_{gas}} \]

\[B_0 \sim 5\mu G \]

\[\eta \sim 0.5 \]

Bonafede et al. 2010, 2013
SKA1: A “Coma-like” cluster

315 polarised sources / sq degree at 1 microJy at 1.6 arcsec resolution (Rudnick & Owen 2014)

\[M \sim 10^{15} M_\odot \]

\[B(r) \propto B_0 n_{\text{gas}}^\eta \]
SKA1: A “Coma-like” cluster

- 315 polarised sources / sq degree at 1 microJy at 1.6 arcsec resolution (Rudnick & Owen 2014)

\[
M \sim 10^{15} M_{\odot}
\]

\[
B(r) \propto B_0 n_{gas}^\eta
\]
SKA1: A “Coma-like” cluster

315 polarised sources / sq degree at 1 microJy at 1.6 arcsec resolution (Rudnick & Owen 2014)

\[M \sim 10^{15} M_\odot \]

\[B(r) \propto B_0 n_{gas}^\eta \]

Simulated RM map
SKA1: A “Coma-like” cluster

Simulated RM map

|RM| [rad/m²]

VLA observations

SKA1-survey

315 polarised sources / sq degree at 1 microJy at 1.6 arcsec resolution (Rudnick & Owen 2014)

\[M \sim 10^{15} M_\odot \]

\[B(r) \propto B_0 n_{\text{gas}}^\eta \]
SKA1: A “Coma-like” cluster

VLA data $\rightarrow \chi^2$ plane

$$M \sim 10^{15} M_\odot$$

$$B(r) \propto B_0 n_{\text{gas}}^\eta$$
SKA1: A “Coma-like” cluster

VLA data $\rightarrow \chi^2$ plane

$M \sim 10^{15} M_{\odot}$

$B(r) \propto B_0 n_{gas}^\eta$

$B_0 = 3.9 \mu G, \eta = 0.4$

$B_0 = 4.7 \mu G, \eta = 0.5$

$B_0 = 5.5 \mu G, \eta = 0.7$
SKA1: Lower Mass clusters and groups

\[B(r) \propto B_0 n_{\text{gas}}^{\eta} \]

\[M \sim 10^{13} M_{\odot} \quad \text{and} \quad M \sim 10^{14} M_{\odot} \]

- \(B_0 = 1\mu G, \eta = 0.5 \)
- \(B_0 = 3\mu G, \eta = 0.5 \)
- \(B_0 = 5\mu G, \eta = 0.5 \)
More realistic cluster models

Cosmological simulations (Vazza et al. 2010)

20 Massive clusters Resolution 25 kpc/h -> resampled at 12 kpc/h

Post - Merger Pre- Merger “Relaxed”
More realistic cluster models

Cosmological simulations (Vazza et al. 2010)

20 Massive clusters Resolution 25 kpc/h -> resampled at 12 kpc/h

Post - Merger Pre- Merger "Relaxed"
SKA-1 PERSPECTIVES - SHOCKS AND RADIO EMISSION

Taken from a cosmological simulation (ENZO amr Vazza et al. 2009)
SKA-1 Perspectives - Shocks and Radio Emission

X-ray emission

Temperature

Shock wave

8 Mpc

Taken from a cosmological simulation
(ENZO amr Vazza et al. 2009)
SKA-1 PERSPECTIVES - SHOCKS AND RADIO EMISSION

X-ray emission

Temperature

8 Mpc

Shock wave

GAS DENSITY + RADIO EMISSION

“Radio Relic”

Taken from a cosmological simulation (ENZO amr Vazza et al. 2009)
Assuming $B \sim n^{0.5}$
Kolmogorov power spectrum (17 - 40 kpc)
resolution \sim8.5 kpc
normalization at the cluster centre (4 μG)
\sim2 μG at the relic

Lower limit!
(only compression)
SKA-1: SHOCKS AND RADIO EMISSION

Assuming $B \sim n^{0.5}$
Kolmogorov power spectrum (17 - 40 kpc)
resolution ~ 8.5 kpc
normalization at the cluster centre (4 μG)
~ 2 μG at the relic

Johnston-Hollitt & Ekers
2004
Magnetic field in intergalactic filaments

0917+75

$z=0.138$

galaxies connecting 2 clusters

(Girardi et al in prep.)

$d \sim 4$ Mpc

Size ~ 1.7 Mpc

No X-ray detected

(ROSAT, XMM)

Slide courtesy of G. Giovannini
Magnetic field in intergalactic filaments

0917+75
$z=0.138$
galaxies connecting 2 clusters
(Girardi et al in prep.)

$d \sim 4 \text{ Mpc}

\text{Size } \sim 1.7 \text{ Mpc}

\text{No X-ray detected (ROSAT, XMM)}

(A3411 - A3412)

ZwCL 2341

1.2 Mpc

VLA

KAT-7

Slide courtesy of G. Giovanninni
Conclusions

RM grid SKA I-survey:
- B in massive galaxy clusters and groups $10^{15} - 10^{13} \, M_{\text{sun}}$
- 10x RM sampling in a Coma-like cluster
- B amplification due to shock waves
- diffuse emission in intergalactic filament
