FeCrNiMnCo高エンタロピー合金における力学的に長い疲労き裂の進展挙動：オーステナイトステンレス鋼との比較

水町 俊介1)・小山 元道1)*・福島 良博1)・津崎 兼彰1)

Synopsis : Fatigue crack growth characteristics of an Fe20Cr20Ni20Mn20Co high entropy alloy (HEA) were investigated by ΔK increasing compact tension test in comparison with a SUS316L. Fatigue crack growth rate of the HEA was lower than that of the SUS316L. The predominant crack growth path was grain interior for both alloys. A difference was found to be in the crack roughness, namely, the fatigue crack growth path of the HEA was more distinctly deflected compared with that of the SUS316L. This fact indicates that roughness-induced crack closure is a key factor decreasing the crack growth rate of the HEA. Another key is a non-crystallographic transgranular crack growth mechanism. The SUS316L shows crack growth via crack blunting/re-sharpening, while the HEA shows transgranular crack growth associated with dislocation substructure alignment.

Key words : high entropy alloy; austenitic steel; fatigue; compact tension test; microstructure evolution.

1. 緒言

金属材料の強化は、格子欠陥、組織界面ならびに固溶原子の分布／量を制御することで達成される。この観点から、固溶原子の効果に着目し、種々の合金系等原子量もしくは多量に含有させた合金を「高エンタロピー合金（HEA : High Entropy Alloy）」と呼ぶ。HEAは優れた強度強延性パラメータ1)や高い靭性値2)を有する点に特徴がある。特にFe, Cr, Ni, Mn, Coを20at.%ずつ含むHEA（以下等原子比HEAと呼称する）は従来材とは一線を画する低温破壊靭性を示す3)。さらに、HEAは種類の異なる等原子量固溶してい るため、結晶格子ずみに由来した、大きな固溶強化が発現する。

HEAの力学特性が多く報告されている4)～7)中、疲労特性に関する報告は少ない。疲労破壊は構造材における事故の8割を占めているため、新材料の疲労き裂発生・伝ば機構の理解は実用上の最重要課題である。昨年（2017年）、Compact tension（CT）試験を用い、HEAの疲労き裂進展速度が評価された8)。比較対象としては、等原子比HEAと類似の結晶構造および物理特性を有するオーステナイト系ステンレス鋼（SUS316L, SUS304L）などが選択されている。この報告において、等原子比HEAの下限界応力拡大係数範囲（ΔKc）はオーステナイト鋼のそれより高いことが示された。また、き裂が安定的に進展するパリス則が成立する範囲での疲労き裂進展特性はほとんど同じであると述べているが、その疲労き裂進展速度には応力拡大係数範囲依存性が存在しており、き裂長さ、または各応力拡大係数範囲における詳細な比較検討が必要である。また、高エンタロピー化することによる変形ミクロ組織への影響は未解明である。

本研究では、Fe20Cr20Ni20Mn20Co（at.%）HEAと、比較材としてSUS316LのΔK漸増試験を行い、疲労き裂進展特性と関連するミクロ組織発達を観察・評価する。これらの結果に基づき、合金の高エンタロピー化による疲労き裂進展特性改善の可能性を検討する。

2. 実験方法

2.1 供試材

本研究では、Fe20Cr20Ni20Mn20Co（at.%）HEAおよび比較材としてSUS316Lを用いた。両合金ともにFCC単相9)であり、室温変形において破断までマルテンサイト変態しない。Table 1にHEAとSUS316Lの化学組成およびビッカース硬度の値を示す。ビッカース硬度試験は圧痕が複数結晶粒をまたぐ荷重（19.6 N）で行った。また計測数数はそれぞれ15点で、値の最大最小2点を除き平均値を算出した。HEAは50 kgインゴットを高周波誘導真空溶射により作製した後、1000℃で熱間圧延した。この圧延材を1200℃で2時

Received on May 30, 2018 ; Accepted on Sep. 6, 2018
1) Corresponding author : E-mail : koyama@mech.kyushu-u.ac.jp
DOI: https://doi.org/10.2355/tetsutohagane.TETSU-2018-073
Table 1. Chemical compositions (mass%) and Vickers hardness (kgf/mm²) of the alloys used.

	Fe	Cr	Ni	Mn	Co	Mo	C
HEA	20.90	18.23	20.21	19.77	20.85	0.002	
SUS316L	65.0	17.9	12.1	0.84	0.006	2.06	0.012

Table 1. Chemical compositions (mass%) and Vickers hardness (kgf/mm²) of the alloys used.

3. 結果

3.1 疲労き裂進展試験

Fig.3にHEAとSUS316Lの疲労き裂進展速度ｄｄＮと△Kの関係を示す。試験した応力振幅範囲においてHEAはSUS316Lよりも疲労き裂進展速度が大きいことが分

知る。特に、△Kが20 MPa·m¹/₂以下の低い応力範囲においてき

裂進展速度に大きな差が生じた。

3.2 微視組織観察

3.2.1 SUS316L

Fig.4にSUS316Lの破面SEM像を示す。両合金の疲労き

裂進展速度に大きな差が生じていた△K = 18 MPa·m¹/₂付

近を観察対象とした。これ以降の観察はすべて△K = 18

MPa·m¹/₂を観察位置としている。SUS316Lの破面にはFig.4

(b) に示すような比較的平坦な破面、Fig.4 (c) に示すスト

ライエーション状模様を含む結晶学の特徴をもたない破

面が観察された。観察されたストライエーション状模様

の幅は1 μm程度であり、き裂進展速度（3.2 × 10⁻³ μm/cycle）

に対応しない。また、破面の大部分は特定結晶面に対応し

ない非ファセット面であった。
Fig.5にSUS316Lのき裂近傍の光学顕微鏡像、SE像およびEBSD観察の結果を示す。Figs.5 (c, d) に示すように、SUS316Lにおいて、
\[\Delta K = 18 \text{ MPa\cdotm}^{1/2} \] 付近では主き裂の大部分が粒内を進展していた。Figs.5 (c, d) に示す白い線は
[111] 面のトレースを表している。SUS316Lの主き裂の一部は [111] 面に沿った粒内進展をしている。また、黄色の実線と矢印で示すように粒界に沿って進展している場合もある。

Fig.6にSUS316Lのき裂近傍のECC像を示す。Fig.6 (b) に示すように、き裂表面から10 µm程度まで鏡面状の変形双晶が生じているが、変形双晶面に沿うようなき裂進展は観察されなかった。またFig.6 (c) に示すように、き裂周りには径1 µm程度のセル組織のような軸位下部組織が形成していた。

Fig.7にHEAの破面SEM像を示す。HEAではFig.7 (b) に示す粒界を進展したと考えられる破面や、Fig.7 (c) に示す平滑な破面、Fig.7 (d) に示すストライエーション状模様を含む結晶学的特徴を含まない破面が観察された。SUS316L同様に、ストライエーション状模様の幅は1 µm程度であり、\[\Delta K = 18 \text{ MPa\cdotm}^{1/2} \] でのき裂進展速度（1.8×10^{-2} µm/cycle）に対応しない。また、破面の大部分は特定結晶面に対応しない非ファセット面であった。

Fig.8にHEAのき裂近傍の光学顕微鏡像、SE像およびEBSD観察の結果を示す。Figs.8 (c, d) に示すように \(\Delta K = 3.2 \times 10^{-2} \) µm/cycleの破壊面には特異な構造が観察された。

Fig.3. Fatigue crack growth rates plotted against stress intensity factor range. HEA shows lower growth rates than SUS316L, especially in the conditions of low stress intensity factor range. (Online version in color.)

Fig.4. Secondary electron (SE) images of fracture surface of SUS316L at \(\Delta K = 18 \text{ MPa\cdotm}^{1/2} \), where the crack growth rate was 3.2×10^{-2} µm/cycle (Fig.3). (a) An overview of the fracture surface consisting of portions with some characteristics: (b) flat surface and (c) striation-like pattern.

Fig.5. (a) (b) Light microscopic images: (a) The low magnification image for the range of \(\Delta K = 15\text{–}21 \text{ MPa\cdotm}^{1/2} \); (b) The high magnification image for the range of \(\Delta K = 16\text{–}20 \text{ MPa\cdotm}^{1/2} \). (c) SE image and (d) RD-IPF+IQ map around the fracture path of SUS316L at \(\Delta K = 18 \text{ MPa\cdotm}^{1/2} \). The yellow arrows indicate the intergranular crack growth regions. The white lines indicate {111} slip traces for each grain. The crack propagates mostly within the grains. The observation was made on the cross section area at mid-thickness of the CT specimen. (Online version in color.)
18 MPa·m$^{1/2}$付近では、HEAにおいてもSUS316Lと同様に、主き裂の大部分が粒内を進展していた。しかし、Figs.8 (a, b)の光学顕微鏡像をFigs.5 (a, b)と比較してわかるように、HEAの主き裂はSUS316Lに比べて屈曲して進展している。Fig.9にHEAとSUS316Lの実き裂長さa_{k}を投影き裂長さa_{p}で除した値と応力拡大係数範囲の関係を示す。ここで、a_{p}はき裂面に沿ったき裂長さである。この結果から定量的にもHEAの方がSUS316Lよりも屈曲していることがわかる。Figs.8 (c, d) に示す白い線は [111] 面のトレースを表しており、HEAの主き裂の一部は [111] 面に沿った粒内進展をしている。Figs.8 (c, d) 中央部には、焼純双晶界面や粒内 [111] 面に沿わない屈曲したき裂面の存在も確認された。また、黄色の実線と矢印で示すように、粒界に沿ったき裂も観察された。

Fig.10に、Fig.8 (c) の破面で閉まれた領域のECC像を示す。この領域は焼純双晶界面や粒内 [111] 面に沿わずか屈曲した進展経路をとったき裂面近傍を示している。HEAではSUS316L同様にき裂近傍に変形双晶を生じているが、変形双晶に沿うようなき裂進展は観察されなかった。また、変形双晶の発生頻度はSUS316Lに比べ低かった。さらに、Figs.10 (b, c) に示すように、き裂周りには直径1 µm程度のセル組織のような転位下部組織が形成している。ここで注目したいのはFig.10 (a) の矢印で示す二次き裂の進展現象である。この二次き裂は主き裂と同様に湾曲しており、この二次き裂と主き裂は同様の進展挙動を示した可能性が高いため、この二次き裂は当初3 µm程度の[111] 面に平行であるが、その後第2時方向に偏位して進展し、最終的にマクロに湾曲した長さ約15 µmのき裂となっている。

Table 2に破面観察より取得したSUS316LおよびHEAの平圧な破面の面積率をそれぞれ示す。これより両合金において結晶学的特徴を持つ破面の割合は9%弱と同程度であり、両合金ともに約91%が特定結晶面に沿わないき裂進展を示した。

4. 考察

4.1 疲労き裂進展速度への影響因子

HEAの疲労き裂進展速度はSUS316Lよりも低かった。ここでの力学的影響をき裂進展抵抗を上昇させる主因子はき裂閉口現象であることに着目する。しかし、静的なき裂進展速度は変形双晶と粒界の進展挙動に大きく影響する。塑性変形を介して引き裂閉口は、開口時のき裂先端塑性ひずみ

	Facet fracture	others
SUS316L	8.7	91.3
HEA	8.8	91.2

Table 2. Fraction of two fracture surface modes (%) at $\Delta K=18$ MPa·m$^{1/2}$. The total observation area of SUS316L was $49330 \, \mu m^2$ and that of HEA was $49024 \, \mu m^2$.

Fig. 6. ECC images around the fracture path of SUS316L at $\Delta K=18$ MPa·m$^{1/2}$. (a) The low magnification image of the area indicated in Fig.5(b). The yellow arrow indicates a secondary crack. (b) The medium magnification image of the region near the main crack surface. Sharp white lines are deformation twins, and dislocation cells are recognized. (c) The high magnification image showing the dislocation cell structure with a size of about 1 µm. (Online version in color.)
発達に由来するき裂面変位がき裂の早期接触を引き起こし、次サイクル以降のき裂面に残留圧縮応力場を形成する現象のことである。粗き誘起き裂閉口は屈曲したき裂進展に由来する13-16。この屈曲したき裂面は除荷過程に早期接触し、圧縮応力が生じる。Fig.5およびFig.8の比較より、HEAの進展経路はSUS316Lより大きく屈曲していた。このためHEAでは粗き誘起き裂閉口がより大きく働き、次サイクルの進展駆動力が低下して、き裂進展速度の低下に作用する。さらに、疲労き裂進展速度へのき裂屈曲の影響として、以下を指摘する10。

Fig.7. SE images of fracture surface of HEA at ΔK=18 MPa·m$^{1/2}$, where the crack growth rate was 1.8×10$^{-2}$ μm/cycle (Fig.3). (a) An overview of the fracture surface consisting of portions with some characteristics: (b) intergranular fracture surface; (c) flat surface and (d) striation-like pattern.

Fig.8. (a) (b) Light microscopic images: (a) The low magnification image for the range of ΔK=15–21 MPa·m$^{1/2}$; (b) The high magnification image for the range of ΔK=16–20 MPa·m$^{1/2}$. (c) SE image and (d) TD-IPF+IQ map around the fracture path of HEA at ΔK=18 MPa·m$^{1/2}$. The yellow arrows indicate the intergranular crack growth regions. The white lines indicate {111} slip traces for grain A. The crack propagates mostly within the grains. The observation was made on the cross section area at mid-thickness of the CT specimen. (Online version in color.)

Fig.9. Ratio of the actual crack length to the projected crack length plotted against stress intensity factor range. HEA shows higher ratio than SUS316L. Here, the actual crack length was not measured in the ΔK region over 26 MPa·m$^{1/2}$, because the crack length cannot be defined clearly due to the occurrence of crack branching and wear of the crack surfaces. (Online version in color.)

(1) 屈曲したき裂の先端で応力拡大係数がモードⅠ成分とモードⅡ成分に分かれるため、鈍化再親化型でき裂が進展するために必要な応力が大きくなること
(2) 本試験ではき裂長さを投影長さで測定しているため屈曲したき裂は直線状のき裂よりも見かけ上低い速度で進展すること
以上をふまえ、き裂の屈曲がHEAでのき裂進展速度低下の主因であると考える。

4.2 HEAのき裂屈曲の原因

前節でも述べたようにHEAでは主き裂が屈曲していた。主き裂は粒界10,15および双晶界面16,17のような組織界面を進展
Fig. 10. ECC images around the fracture path of HEA at ΔK = 18 MPa·m$^{1/2}$. (a) The low magnification image of the area indicated in Fig. 8(c). The yellow arrow indicates a secondary crack. Yellow lines indicate {111} traces for the points 1 and 2. Misorientation between these two points is 2.0°. (b) The medium magnification image of the region near the secondary crack tip and the main crack surface. Sharp white lines are deformation twins, and dislocation cells are also recognized. (c) The high magnification image showing the dislocation cell with a size of about 1 µm structure. (Online version in color.)
4・3 橋層欠陥力エネルギー（SFE：Stacking Fault Energy）
とき裂進展速度の関係

疲労き裂進展特性に関して影響を与える因子としてSFEが挙げられる。疲労き裂開口はその先端からの転位放出に起因する。SFEが低い材料は交差すべきを起こしにくく、その結果として加工硬化が大きい。すなわちSFEが低い材料はき裂端部が大きく開口し難くなるため、き裂進展速度が低くなると従来議論されている。本研究で用いたSUS316LおよびHEAのSFEはそれぞれ12.9 mJ/m²と30±5 mJ/m²と報告されている。HEAの方がSFEが高く、これよりFig.10で示したように316Lと比べてHEAの方が変形双晶の発生頻度が低かったことと合致する。すなわち上述の理論に基づくと、HEAの疲労き裂進展速度はSUS316Lよりも低くなるはずである。しかし本研究では逆の結果が得られた。このことは、HEAではSFEだけでは説明することとが出来ない疲労き裂抵抗因子が存在することを意味しており、き裂頚部と粗さ誘起き裂閉口の因子も含めて、今後の検討課題であることを指摘する。

5. 結言

HEAとSUS316LのΔK進展試験を室温（23℃）で行い、疲労き裂進展特性と関連する微視構造発達を評価・観察し、以下の結果を得た。

（1）HEAはSUS316Lに比べ低いき裂進展速度を示した。特に低ΔK値においてき裂進展速度に大きな差が生じた。

（2）SUS316Lに比べてHEAでは疲労き裂がより屈曲して進展した。つまり、HEAではより大きな粗さ誘起き裂閉口の影響がある。

（3）破面観察の結果としてHEAおよびSUS316Lは共に大部分が粒内き裂進展であり、中にはフェセット破面を呈している部分も存在した。しかし、二相合金ともフェセット破面の割合は低く、共に約90%と同程度であった。

（4）HEAではすべり面沿わないが屈曲した粒内き裂進展が確認された。この主き裂および二次き裂はき裂端領域で発達したセル状の転位下部組織（疲労損傷）に沿って進展した可能性を指摘した。

謝辞

本研究は、JST産学官基盤基礎研究プログラム「革新的構造用金属材料創製を目指したへテロ構造制御に基づく新制御原理の構築」（2010113）およびJSPS科学研究費補助金（JP16H06365, JP17H04956）からの支援を頂き行った。

文献

1) Y.Zhang, T.T.Zuo, Z.Tang, M.C.Gao, K.A.Dahmen, P.K.Liaw and Z.P.Lu: Proc. Mater. Sci., 61(2014), 1.
2) B.Gludovatz, A.Hohenwarter, D.Catoor, E.H.Chang, E.P.George and R.O.Ritchie: Science, 345(2014), 1153.
3) F.Otto, A.Dlouhy, Ch.Somsen, H.Bei, G.Eggeler and E.P.George: Acta Mater., 61(2013), 5743.
4) A.Gali and E.P.George: Intermetallics, 39(2013), 74.
5) B.Gludovatz, E.P.George and R.O.Ritchie: JOM, 67(2015), 2262.
6) K.E.Nygren, K.M.Bertsch, S.Wang, H.Bei, A.Nagao and I.M.Robertson: Curr. Opin. Solid State Mater. Sci., 22(2017), 1.
7) K.Ichi, M.Koyama, C.C.Tasan and K.Tsuzaki: Sci. Mater., 158(2018), 74.
8) K.V.Thurston, B.Gludovatz, A.Hohenwarter, G.Laplanche, E.P.George and R.O.Ritchie: Intermetallics, 88(2017), 65.
9) B.Cantor, I.T.H.Chang, P.Knight and A.J.B.Vincent: Mater. Sci. Eng. A, 375-377(2004), 213.
10) ASTM standard E647: 2011, Standard Test Method for Measurement of Fatigue Crack Growth Rates.
11) S.Suresh: Fatigue of Materials, The press syndicate of the University of Cambridge, Cambridge, (1998).
12) S.Suresh and R.O.Ritchie: Metall. Trans. A, 13(1982), 1627.
13) G.T.Gray, J.C.Williams and A.W.Thompson: Matell. Trans. A, 14(1983), 421.
14) M.Koyama, Z.Zhang, M.Wang, D.Ponge, D.Raabe, K.Tsuzaki, H.Noguchi and C.C.Tasan: Science, 335(2010), 1055.
15) M.Koyama, Z.J.Xi, Y.Yoshida, N.Yoshimura, K.Ushioda and H.Noguchi: ISIJ Int., 55(2015), 2463.
16) L.W.Tsay, J.J.Chen and J.C.Huang: Corros. Sci., 50(2008), 2973.
17) Y.B.Ju, M.Koyama, T.Sawaguchi, K.Tsuzaki and H.Noguchi: Acta Mater., 112(2016), 326.
18) K.Habib, M.Koyama and H.Noguchi: Int. J. Fatigue, 99(2017), 1.
19) Y.Ro, S.R.Agniew and R.P.Gangloff: Metall. Mater. Trans. A, 38(2007), 3042.
20) Y.B.Ju, M.Koyama, T.Sawaguchi, K.Tsuzaki and H.Noguchi: Int. J. Fatigue, 103(2017), 333.
21) K.Ryoiuchi: Tetsu-to-Hagané, 70(1984), 803.
22) J.Awatani, K.Katagiri, H.Nakai, A.Omura and K.Koyanagi: J. Soc. Mater. Sci., Jpn., 27(1978), 257.
23) K.Ushioda, S.Goto, Y.Komatsu, A.Hoshino and S.Takebayashi: ISIJ Int., 49(2009), 312.
24) J.Awatani, K.Katagiri and K.Koyanagi: Metall. Trans. A, 10(1979), 503.
25) A.J.McEvily, Jr and R.G.Boettner: Acta Metall., 11(1963), 725.
26) M.Ojima, Y.Adachi, Y.Tomota, Y.Katada, Y.Kaneko, K.Kuroda and H.Saka: Steel Res. Int., 80(2010), 477.
27) N.L.Okamoto, S.Fujimoto, Y.Kambara, M.Kawamura, Z.M.T.Chen, H.Matsunoshita, K.Tanaka, H.Inui and E.P.George: Sci. Rep., 6(2016).