Topological Metal MoP Nanowire for Interconnect

Hyeuk Jin Han, Sushant Kumar, Gangtae Jin, Xiaoyang Ji, James L. Hart, David J. Hynek, Quynh P. Sam, Vicky Hasse, Claudia Felser, David G. Cahill, Ravishankar Sundararaman, and Judy J. Cha*

The increasing resistance of copper (Cu) interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7 nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising candidates to potentially replace current Cu interconnects. Here, we report the unprecedented resistivity scaling of topological metal molybdenum phosphide (MoP) nanowires, and it is shown that the resistivity values are superior to those of nanoscale Cu interconnects <500 nm² cross-section areas. The cohesive energy of MoP suggests better stability against electromigration, enabling a barrier-free design. MoP nanowires are more resistant to surface oxidation than the 20 nm thick Cu. The thermal conductivity of MoP is comparable to those of Ru and Co. Most importantly, it is demonstrated that the dimensional scaling of MoP, in terms of line resistance versus total cross-sectional area, is competitive to those of effective Cu with barrier/liner and barrier-less Ru, suggesting MoP is an attractive alternative for the scaling challenge of Cu interconnects.

1. Introduction

Interconnects are metal wires that connect transistors, transmit signals in computer chips, and occupy a large fraction of integrated circuits. In the early 2000s, copper (Cu) replaced aluminum as low-resistance interconnects for continued downscaling of integrated circuits.[1,2] However, Cu can no longer support the dimensional reduction at the smallest feature size of interconnects due to its ever-increasing resistivity that stems from surface and grain boundary electron scattering.[3] The high resistivity of current Cu interconnects can account for up to 35% of total signal delays and nearly half of dynamic power dissipation in computer chips.[4] Thus, future energy-efficient computing technologies require breakthroughs in interconnect technologies,[5] particularly in new interconnect materials.

Topological semimetals are promising materials for low resistance interconnects as their topologically protected surface electrons are forbidden to backscatter.[6–8] Several experimental studies on nanostructured topological semimetals show promising results. The Weyl semimetal NbAs, for example, exhibit a factor of ten decrease in resistivity from bulk crystals (35 µΩ cm) to nanobelts (≈3 µΩ cm) at room temperature.[9] Similarly, recent theoretical results from IBM predict that the multifold fermion system CoSi would exhibit lower resistivity than Cu at very small dimensions as the current conduction is dominated by Fermi-arc surface states.[10] Among recently reported topological metals, molybdenum phosphide (MoP) is a simple binary compound that was predicted[11] and experimentally confirmed to host topologically protected fermions.[12] Single crystal MoP shows extremely low resistivity and high carrier density,[13] representing an exciting opportunity to potentially replace Cu interconnects. In this work, we report

DOI: 10.1002/adma.202208965
systematic engineering and dimensional resistivity scaling of poly-crystalline MoP nanowires through the template-assisted chemical vapor deposition (CVD) and demonstrate that MoP nanowires exhibit dimensional scaling superior to effective Cu (Cu with TaN barrier) and barrierless ruthenium (Ru) for dimensions beyond the 7 nm technology node.

2. Results and Discussion

2.1. Crystal Structure, Electronic Band Structure, Fermi Surface, and Calculated Resistivity of MoP

MoP has a WC-type hexagonal crystal structure (Figure 1A) with lattice parameters $a = b = 3.22$ Å and $c = 3.18$ Å.[13] Mo and P share the same coordination number and coordination environment of six in a trigonal prism. Ab initio calculations show the presence of topologically protected triple point fermions roughly 0.7 eV below the Fermi level along the Γ-A high symmetry k-point path in the Brillouin zone (Figure 1B), which were verified by previously published angle-resolved photoemission spectroscopy results.[14] Figure 1C shows the first-principles calculated Fermi surface of MoP along with the highly anisotropic electron-phonon mean free path distribution. While the droplet-shaped electron pockets (elongated along the Γ-A direction) are found to have the longest mean free paths, the flat hole pockets centered at Γ have the shortest mean free paths. Based on the calculated Fermi surface, we compute the electron mean free path length of 10.5 nm and the room temperature resistivity of 12.9 $\mu\Omega$ cm along the a-axis and 9.8 $\mu\Omega$ cm along the c-axis for bulk MoP. The mean free path of MoP is nearly four times shorter than that of Cu (40 nm), which is advantageous for interconnect applications because the dimensional increase of resistivity will not emerge until the interconnect dimension approaches the mean free path.

Considering electron scattering at surfaces of a square cross-section wire, we calculate the resistivity increase of MoP nanowires with decreasing wire width and compare it to that of Cu using the Fuchs–Sondheimer models[14,15] (Figure 1D). This calculation assumes single-crystalline MoP and Cu with and without a liner (we note though that Cu needs a liner for interconnect applications). Thus, the calculation includes electron scattering at surfaces of the wire and excludes scattering at grain boundaries. The different curves for MoP ($p = 0, 0.5, 1$) correspond to the different values of the specularity parameter p, which is the proportion of electrons scattered elastically at the surfaces. $p = 1$ corresponds to a perfectly smooth surface with specular reflection of electrons, while $p = 0$ represents completely diffused scattering. For Cu, we used reported values for surface scattering[16,17] and this case represents the idealized case without grain boundary scattering.[18] Considering the liner/barrier that is essential for Cu interconnects, our calculations predict that MoP wires will outperform Cu wires with liner <9 nm widths for ideal characteristics ($p = 1$) and
<7 nm for worst-case characteristics (p = 0) (more details can be found in Supporting Information). The latest 5 nm technology node contains Cu interconnects with ≈15 nm width in the M0 stack,[19,20] thus, our calculations suggest MoP as a promising interconnect material for future technology nodes.

2.2. Characterization of MoP Nanowires

We synthesize MoP nanowires by heating MoO₃ nanowires in the presence of PH₃ vapors and H₂ gas in a CVD system (see Figure S1, Supporting Information and Experimental Section for details). Transmission electron microscopy (TEM) images of MoP nanowires show poly-crystalline wires (Figure 2A). Figure 2B shows an atomic-resolution high-angle annular dark-field scanning TEM (HAADF-STEM) image of a MoP grain projected along the [010] direction, with a lattice spacing of 3.2 Å in agreement with the MoP (001) lattice spacing. Selective area electron diffraction (SAED) patterns and X-ray diffraction data (Figure S2, Supporting Information) confirm the atomic structure of MoP for the nanowires. Energy dispersive spectroscopy (EDS) analysis of the poly-crystalline nanowires indicates that the Mo:P atomic ratio is close to 1:1 as the EDS data from the MoP nanowires and bulk crystal; one main peak is resolved at ≈407 cm⁻¹, corresponding to the E mode.[21,22]

2.3. Electron Transport Properties of MoP Nanowires

We focus our attention on room temperature transport properties of MoP nanowires to test the feasibility of MoP as a low-resistance interconnect material. Nanodevices were fabricated using Cr/Au contacts to measure the resistance of MoP nanowires as a function of wire diameter. Figure 3A shows two-probe I–V curves of these MoP nanowires, which are linear and ohmic as expected for a metal. Four-probe resistance measurements were carried out to remove the contact resistance and the measured resistance was converted to resistivity where the cross-section areas of the MoP nanowires were obtained by measuring the wire diameters using scanning electron microscopy and assuming a circular cross-section. The breakdown current density was ≈5.5 × 10⁷ A cm⁻² in ambient conditions for a MoP nanowire with 3200 nm² cross-section area (50 nm in thickness and 64 nm in width), as shown in the inset of Figure 3A. This breakdown current density is comparable to the recently reported breakdown current density (10⁸ A cm⁻²) of annealed Cu/Ta wires and single-crystal 1D-TaSe₃ (Table S1, Supporting Information).[23,24] Figure 3B summarizes the resistivity of MoP nanowires at room temperature. Remarkably, the resistivity of MoP nanowires ranges between 11 and 13 μΩ cm for cross-section areas of 300–1500 nm², which is in agreement with the calculated resistivity and represents only ≈50% increase from the bulk resistivity of single crystal MoP (8 μΩ cm).[25] By contrast, the resistivity of Cu interconnects with a liner at 500 nm² cross-section area increases by more than seven times from the bulk value (from ≈12 μΩ cm to 1.68 μΩ cm).[3] Thus, we show that the resistivity of MoP nanowires is already as good as that of Cu interconnects in these nanoscale dimensions.

The resistivity of poly-crystalline MoP nanowires is high for large wires (≈30 μΩ cm for 3000 nm² cross-section area in Figure 3B) and decreases asymptotically to the bulk resistivity value as the cross-section area decreases. This observation is attributed to the high number of grain boundaries present in large MoP nanowires, many of which are parallel to the direction of current flow and dramatically increase grain boundary electron scattering, as illustrated in the inset of Figure 3D. When the grain boundaries parallel to the current direction are absent, for example, in small MoP wires (Figure 2A), the resistivity of MoP nanowires is close to the bulk resistivity. The diameter-dependent crystalline quality of MoP nanowires is supported by analyzing the residual resistance ratio (RRR). Figure 3C shows the temperature-dependent resistivity curves of MoP nanowires with varying diameter. The RRR decreases with increasing wire diameter (inset in Figure 3C), which supports the observed resistivity trend and agrees with the
microstructure difference between large and small MoP nanowires. The microstructure difference was directly verified using TEM, where we observe a sudden increase in the number of grain boundaries at the nanowire width of 45 nm (Figure 3D), which coincides with the nanowire width at which the resistivity of MoP nanowires starts to decrease rapidly. Direct correlations between transport properties and microstructures of two MoP nanowire devices are established and shown in Figure S3 (Supporting Information). The stable resistivity of the polycrystalline MoP nanowires for diameters <40 nm shows experimentally that the grain boundary scattering is not significant for MoP at these small dimensions.

2.4. Benchmark and Prospect of MoP as Low-Resistance Interconnects with Excellent Oxidation Resistance and Thermal Conductivity

We benchmark the resistivity of our best performing polycrystalline MoP nanowires against current state-of-the-art interconnect technologies, such as Cu with an improved barrier/liner (1.5 nm TaN/2.5 nm cobalt (Co)), their selective barrier, and barrier-less Ru (dual damascene filled) for cross-section areas <1000 nm²[3,25] which represents dimensions below the 7 nm back end of line (BEOL) technology nodes. In Figure 4A, our poly-crystalline MoP nanowires show the lowest resistivity values with the best dimensional scaling behavior. The room temperature resistivity measurements thus experimentally demonstrate that electron scattering at surfaces and grain boundaries of MoP nanowires are negligible at these dimensions, in contrast to Cu, owing to the much smaller electron mean free path of MoP (10.5 nm) as compared to Cu (40 nm). The resistivity of MoP nanowires is also lower than that of Ru, the leading material candidate to replace Cu interconnects. Given the polycrystalline nature of our MoP nanowires, we repeat the calculation of the resistivity increase of the MoP and Cu nanowires with decreasing wire width and include grain boundary scattering, which shows that MoP will still outperform Cu wires with liner =12 nm widths (Figure S4, Supporting Information). In addition, we compared the temperature
coefficient of resistivity values of MoP nanowires with those of Cu and Ru and determined that electron scattering at surfaces and grain boundaries is not as detrimental for MoP as for Cu and Ru (Figure S5, Supporting Information). Thus, this benchmark comparison suggests that MoP is superior to Cu and Ru for cross-section areas <300 nm².[3,25]

It is important to note that Cu would outperform or be highly competitive with most materials in terms of resistivity scaling if we could implement Cu interconnects without a liner in integrated circuit stacks. However, a low resistance to electromigration effect makes the use of liners unavoidable in the case of Cu, which leads to a significant rise in the line resistance. Hence, the efforts to find a replacement for Cu is currently guided by the objective of finding materials that require no liners or liners that are much thinner than the ones needed for Cu. Using first-principles calculations, we find that the cohesive energy per atom for MoP is 5.49 eV per atom that is ≈60% higher than that of Cu (3.43 eV per atom) (Figure S6, Supporting Information). Since the cohesive energy of a compound indicates its stability, it is often used as a proxy for the measure of a material’s resistance to electromigration effect. A significantly higher cohesive energy of MoP shows that it is more likely that it would need a much thinner or in the best-case scenario—no liner at all. Qualitatively, compared to elemental metals and intermetalics, a covalently bonded metallic compound like MoP can intrinsically preserve its structure even in the presence of electric fields, which renders more resistance to electromigration effect.

The superior dimensional scaling of MoP resistivity over effective Cu and Ru is made apparent by analyzing the line resistance. For interconnect applications, the rate of increase of line resistance needs to be as small as possible as the interconnect dimensions shrink. Figure 4B shows the line resistance of the effective Cu, Ru, and MoP nanowires as a function of diameter (cross-section area). DD, dual damascene. SB, selective barrier. Data for Cu and Ru are taken from[3,25]. C) Comparison of resistance change of MoP nanowire device (diameter of 37 nm) with 20 nm thick Cu film over 48 h in ambient condition. D) Comparison of thermal conductivity of various materials for interconnects. While Cu has a high thermal conductivity (≈400 W m⁻¹ K⁻¹), the effective thermal conductivity of actual Cu interconnects is much lower due to the presence of a barrier layer such as TaN that has a low thermal conductivity (≈3 W m⁻¹ K⁻¹).[28–32] The measured thermal conductivity of MoP is similar to that of Ru and Co and higher than other topological metals. E) Comparison chart of carrier density and resistivity of topological semimetals from literature.
be investigated, such as surface oxidation, thermal conductivity, and electromigration. If MoP oxidizes easily or electromigrates under the application of electrical field, MoP will require a barrier layer, which is often resistive and would negate the observed attractive properties of MoP nanowires. Moreover, if the thermal conductivity of MoP is low, then effective heat management would be difficult.

For surface oxidation, we annealed the MoP nanowires in air up to 400 °C and observed negligible surface oxidation up to 150 °C based on X-ray photoelectron spectroscopy (Figure S7, Supporting Information). The negligible surface oxidation for MoP nanowires was confirmed by measuring the resistance of MoP nanowire devices left in ambient. The resistance (R) did not increase noticeably from the initial resistance (R₀) for the three MoP nanowires and we tested (diameters of 37, 43, and 58 nm) over the 48 h of aging in ambient conditions, while the resistance for a 20 nm thick Cu film increased by 140% under the same condition (Figure 4C; Figure S7, Supporting Information).

Using time-domain thermoreflectance (TDTR), an averaged thermal conductivity (k) of 99 W m⁻¹ K⁻¹ with a standard deviation of 2 W m⁻¹ K⁻¹ was obtained from measuring several MoP nanoplates at 300 K (Figure S8 and Table S2, Supporting Information); the systematic uncertainty of TDTR measurements on the through-plane thermal conductivity is usually 7%.[26] The TDTR measurement of the nanoplates is done on the (001) growth facet and is therefore mostly sensitive to the thermal conductivity along the <001> direction of the crystal. The measured thermal conductivity of MoP nanoplates is in good agreement with that of a CVT-grown MoP bulk crystal, which was measured to be 96 W m⁻¹ K⁻¹ using TDTR. The TDTR measurement of the bulk crystal was done on a growth facet of the crystal at 300 K; we did not determine the orientation of this facet and therefore the thermal conductivity we measured for the bulk crystal is for an unknown direction of the crystal. (Figure S8, Supporting Information). These thermal conductivity values are in line with calculations, but an order of magnitude lower than the thermal conductivity reported by Kumar et. al. using CVT-grown MoP bulk crystals.[13,27] The measured thermal conductivity of our MoP nanoplates is compared with thermal conductivity values of other interconnect materials (Figure 4D). While bulk Cu has a high thermal conductivity (k_{Cu} ≈ 397 W m⁻¹ K⁻¹), Cu interconnects are surrounded by a barrier layer such as TaN (k_{TaN} ≈ 3 W m⁻¹ K⁻¹), which dramatically reduces the overall thermal conductivity for the Cu/TaN nanoscale interconnects (Table S2, Supporting Information). In contrast, the thermal conductivity of MoP is close to that of Ru and higher than that of Co, which are representative alternatives to Cu interconnects (Figure 4D; Table S2, Supporting Information). The thermal conductivity of MoP is also higher than other topological metals considered as emerging interconnects.[30,31–32]

Is there another topological semimetal that may be better than MoP for interconnect applications? To answer this, we surveyed reported values of room temperature transport properties of topological semimetals. Figure 4E summarizes the carrier density versus resistivity of topological semimetals from bulk and sub-micron samples. For interconnect applications, high carrier density and low resistivity are desirable. For this reason, topological insulators are not suitable as interconnects as they have high resistivity values. We observe that MoP has the best attributes for interconnect applications among the topological semimetals reported in literature. We note, however, that it remains to be seen if another topological semimetal may outperform MoP at small dimensions due to more prominent contributions from their topological surface states. For MoP, the next challenge is in developing scalable and controllable vertical synthesis of MoP nanowires that are also BEOL-compatible.

Diverse phosphorus precursors are commercially available (Table S3, Supporting Information), which can be adapted for scalable deposition of MoP using techniques such as atomic layer deposition, physical vapor deposition, or even perhaps Damascene process.

3. Conclusion

The room temperature transport data of MoP nanowires do not suggest any obvious effects from the topological surface states or suppression of electron backscattering (see Figures S9 and S10, Supporting Information, for additional calculations of MoP thin slabs and discussion on the lack of topological effects). Regardless, we demonstrate nanoscale MoP as emerging metal lines for beyond-Cu interconnects. The resistivity values of our MoP nanowires are already lower than those of Cu interconnects <500 nm² cross-section areas, and the resistivity scaling behavior of MoP nanowires is superior to those of Cu and Ru interconnects at nanoscale. The resistivity values of these polycrystalline MoP nanowires represent an upper bound on the achievable low resistivity, which is exciting as there is room for improvement. A higher cohesive energy for MoP compared to Cu suggests better stability against electromigration, making possible barrier-free or reduced liner interconnects. In addition, MoP shows good oxidation resistance and high thermal conductivity, further supporting its utility as nanoscale interconnects. Thus, our work demonstrates MoP as a breakthrough material for interconnect technologies for continued downscaling of integrated circuits and future energy-efficient computing.

4. Experimental Section

Synthesis of MoP Nanowires: MoO₃ nanowires were used as the precursor to synthesize MoP nanowires. MoO₃ nanowires were grown by CVD, as previously reported by this group.[31] MoO₃ (0.15 g) source powder (Sigma–Aldrich, 99.95%) was placed at the center of a 1 in tube furnace with anodized aluminum oxide (AAO, InRedox) substrates located 14 cm downstream. After purging with Ar, the system was pumped down to 200 mTorr, and then H₂ was flowed at 20 sccm, bringing the furnace pressure to 5 Torr. The furnace was heated to 600 °C in 15 min and held at that temperature for 10 min to produce MoO₃ nanowires with high yield. MoP nanowires were synthesized by converting MoO₃ nanowires. MoO₃ nanowires were placed in a tube furnace with a sufficient amount (3 g) of NaH₂PO₂·H₂O (Sigma–Aldrich, ≥99%) placed upstream (15–17 cm from the center of the furnace). After purging with Ar, the system was pumped down to 200 mTorr, and then H₂ was flowed at 20 sccm, bringing the furnace pressure to atmospheric pressure. The furnace was heated to 700 °C in 30 min, held there for 1 h, and then cooled down to room temperature naturally. During the reaction, phosphine gas was produced, which is highly flammable, toxic, and explosive. Phosphine gas was neutralized in the scrubber containing copper sulphate.
Characterization of MoP Nanowires: Structural characterization of the MoP nanowires was carried out using SEM and TEM. A field emission SEM (Hitachi S-4800) was used at an acceleration voltage of 10 kV and a working distance of 5 mm. High-resolution TEM images were obtained using a 200 kV accelerating voltage TEM (FEI, Talos F200X). Atomic-resolution STEM images were obtained using a probe-corrected microscope (ThermoFisher Scientific, Spectra 300) at 200 kV. Raman spectra were obtained using a Horiba LabRAM HR Evolution Spectrometer with an excitation wavelength of 532 nm. For chemical compositions of the nanowires, X-ray photoelectron spectroscopy (XPS) were acquired using a multipurpose X-ray photoelectron spectrometer (Sigma Probe; Thermo VG Scientific). The X-ray diffraction (XRD) measurements were carried out using a multipurpose thin-film X-ray diffractometer (D/MAX 2500; Rigaku).

Device Fabrication and Transport Measurements: Synthesized MoP nanowires were transferred onto SiO2/Si substrates by stamping and coated with triple e-beam resist layers (∼200 nm PMMA A3 as the first layer, ∼200 nm MMA EL 8.5 as the second layer, and ∼200 nm PMMA A3 as the third layer). Electrode patterns were obtained by standard e-beam lithography using a Vistec EBPG 5000+. The devices were designed for four-probe measurements, and the distance between the electrodes was kept at ∼200 nm. After the pattern was developed, 10/100 nm thick Cr/Au electrical contacts were deposited by e-beam evaporation. Transport measurements at low temperature were performed using a Quantum Design Dynacool physical property measurement system equipped with a base temperature of 2 K. Transport data were taken at applied currents ranging between 10 and 10 μA.

CVD Growth of 2D MoP Single Crystal Nanoplates for Thermal Conductivity Measurements: A liquid droplet of gallium (Ga, Sigma–Aldrich, 99.9995%) was placed onto 1 cm × 1 cm molybdenum (Mo) foil (Sigma–Aldrich, 99.9% purity) substrate. The Ga–Mo substrate was then heated in a quartz tube to 1100 °C at a heating rate of 30 °C min−1. At 1100 °C, red phosphorus powder (Sigma–Aldrich, ≥99.99%) was introduced into the tube furnace downstream where the temperature was ∼400 °C. The furnace was kept at 1100 °C for 20 min under the flow of Ar (250 sccm) and H2 (50 sccm).

Theoretical Calculations: Open-source planewave Density Functional Theory (DFT) code DFTx[39] was used to compute the bulk resistivity and resistivity scaling of MoP and Cu. The electronic structure of MoP was calculated using the fully relativistic revised Perdew–Burke–Ernzerhof (PBEsol)[35] pseudopotentials and generalized gradient approximation (GGA) exchange-correlational functional. A plane-wave cut-off of 35 Hartrees and a Fermi smearing of 0.01 Hartrees were used. A k-space mesh of 12 × 12 × 12 and a q-mesh of 3 × 3 × 3 were employed for the electron and phonon calculations, respectively. Subsequently, the electronic states, phonon modes, and electron-phonon matrix elements were transformed to the maximally localized Wannier function basis[39] and interpolated to a very fine mesh (∼105 points) to obtain converged integrals for the linearized Boltzmann solution for bulk resistivity. The electron-phonon lifetimes were computed using the Fermi’s golden rule. For details of the implementation of these methods, refer to Refs.[37] and [38]. The resistivity scaling for single-layer, double-layer, and electron scattering, energy-efficient computing, interconnects, topological metals

Published online: February 17, 2023

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

H.J.H. and S.K. gratefully acknowledge the support by the Semiconductor Research Corporation (SRC) – nCORE IMPACT center. J.C.C. acknowledges support from Betty & Gordon Moore Foundation under the EPiQS Investigator Award. Theoretical calculations were performed at the Center for Computational Innovations (CCI) at Rensselaer Polytechnic Institute. X.J. thanks Sushant Mahat for thickness measurements of MoP nanoplates.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

H.J.H., S.K., and G.J. equally contributed to this work. H.J.H., G.J., and J.J.C. conceived the project and designed experiments. H.J.H. and G.J. optimized the fabrication, prepared samples, and carried out structural characterizations. S.K. and R.S. carried out ab initio calculations and computed the dimensional scaling of the resistivity of MoP and Cu wires. H.J.H., J.L.H., and Q.P.S. carried out the TEM characterization. G.J. and D.J.H. carried out further materials characterization on MoP nanowires. X.J. and D.G.C. measured the thermal conductivity of MoP plates. V.H. and C.F. synthesized the bulk crystals of MoP. H.J.H. performed the electrical properties experiments and analyzed the data. H.J.H., G.J., and J.J.C. led the discussions and wrote the manuscript with input from all authors. J.J.C. supervised the project.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

electron scattering, energy-efficient computing, interconnects, topological metals

Received: September 28, 2022
Revised: January 13, 2023
Published online: February 17, 2023
