Generalized Quantum Google PageRank Algorithm with Arbitrary Phase Rotations

Sergio A. Ortega1,† and Miguel A. Martin-Delgado1,2,†

1Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain
2CCS-Center for Computational Simulation, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.

The quantization of the PageRank algorithm is a promising tool for a future quantum internet. Here we present a modification of the quantum PageRank introducing arbitrary phase rotations (APR) in the underlying Szegedy’s quantum walk. We define three different APR schemes with only one phase as a degree of freedom. We have analyzed the behavior of the new algorithms in a small generic graph, observing that a decrease of the phase reduces the standard deviation of the instantaneous PageRank, so the nodes of the network can be distinguished better. However, the algorithm takes more time to converge, so the phase cannot be decreased arbitrarily. With these results we choose a concrete value for the phase to later apply the algorithm to complex scale-free networks. In these networks, the original quantum PageRank is able to break the degeneracy of the residual nodes and detect secondary hubs that the classical algorithm suppresses. Nevertheless, not all of the detected secondary hubs are real according to the PageRank’s definition. Some APR schemes can overcome this problem, restoring the degeneracy of the residual nodes and highlighting the truly secondary hubs of the networks. Finally, we have studied the stability of the new algorithms. The original quantum algorithm was known to be more stable than the classical. We have found that one of our new algorithms whose PageRank distribution resembles the classical one, has a stability similar to the original quantum algorithm.

I. INTRODUCTION

The revolution of search engines to surf the internet originates from novel algorithms inspired by the PageRank algorithm1,4. On contrary to its competitors, whose ranking of pages was quite subjective, the PageRank algorithm classifies in an objective manner having into account the structure of links between the pages. Beyond its importance in the World Wide Web (WWW), it is worth mentioning that the PageRank algorithm has a lot of applications like in bibliometrics5,6, finances7, metabolic networks8, drug discovery9, protein interaction networks10 and social networks11.

In the early era of quantum computing there is a great interest in the development of large-scale quantum networks12–14. These networks can use the ongoing developments in quantum technologies, and are expected to function even without the availability of a fault-tolerant quantum computer. Then, it is of high importance to have an analogue algorithm to classify the quantum information. With that purpose, in 2012 it was proposed a quantization of the PageRank algorithm15. This quantization was based on a quantum walk introduced by Szegedy16 as a generalization of the Grover algorithm17, since the classical PageRank algorithm can be understood as a random walk in the network formed by the pages (nodes) and their links (edges). It was first implemented in small networks, showing intriguing properties like a violation in the nodes ranking. Later, it was scaled to complex networks, showing further properties like a better resolving of the network structure18. An important characteristic of this algorithm is that its classical simulation belongs to the computational complexity class P, so it can be a valuable tool not only for quantum networks, but also for the classical ones.

There has been a recent interest in the quantum PageRank. For example, other quantizations have been proposed like coined discrete-time quantum walks19, continuous-time quantum walks20,22, and has even been realized experimentally in the continuous-time version using photons23. It has been also coupled to quantum search as a further step towards a quantum search engine24.

In this paper we propose to modify the Szegedy’s algorithm used in the quantum PageRank15, introducing arbitrary phase rotations (APR). This technique was introduced in the context of Grover quantum search17,25–28, and has been used to improve its performance29,31, and even make it deterministic32,33. Thus, we address here how these new degrees of freedom can affect the performance of the quantum PageRank algorithm. We will compare our results with those of the original quantum PageRank using first the same small graph studied in15, and later using scale-free networks, which are complex networks that model the WWW34.

This paper is structured as follows. In Section II we introduce the PageRank algorithm and our new approach. In Section III we study the effect of the new quantum algorithm in a small generic graph. In Section IV we apply this algorithm to complex scale-free networks. In Section V we study the stability of the new algorithms. Finally, we summarize and conclude in Section VI. In several appendices we elaborate more on the details when necessary and apply our generalized quantum PageRank to Erdős-Rényi networks.
II. NEW QUANTUM PAGE-RANK ALGORITHMS

The aim of this work is to study the effect of introducing APR on the Szegedy’s quantum walk applied to quantum PageRank. Before describing this modification, let us review the classical algorithm and its quantization, whose complete details can be found in [15].

In the classical algorithm I_e is defined as the vector whose entries are the classical importance or PageRanks of every page P_i. The naive definition of the PageRank is the following:

$$I_e(P_i) := \sum_{P_j \in B_i} \frac{I_e(P_j)}{\text{outdeg}(P_j)},$$

(1)

where B_i is the set of nodes linking to the node P_i and outdeg(P_j) is the outdegree of the node P_j. This formula means that the importance of a node depends of the nodes that link to it. The more important a linking node is, the greater is its contribution to the PageRank. However, its contribution is equally distributed between all the nodes it links to.

In order to compute the PageRank we use a random walk in a directed graph whose nodes represent the pages P_i, and the associated connectivity $N \times N$ matrix H defined as:

$$H_{i,j} := \begin{cases} \frac{1}{\text{outdeg}(P_j)} & \text{if } P_j \in B_i, \\ 0 & \text{otherwise}, \end{cases}$$

(2)

where N is the number of nodes in the network. With this matrix the equation [11] can be expressed as $I_e = HI_e$, so we can apply a power method to obtain the eigenvector I_e. However, for the algorithm to work this matrix must be patched. First, it needs all columns where all entries are zeroes (which correspond to nodes with outdegree zero) to be substituted with columns with all entries equal to $1/N$. This results in a (column-) stochastic matrix E, where all columns sum up to one. Secondly, before performing the random walk, this matrix E is mixed with another matrix 1 where all entries are equal to 1, obtaining a primitive and irreducible matrix called the Google matrix G:

$$G := \alpha E + \frac{(1-\alpha)}{N}1.$$

(3)

The parameter α is called the damping parameter corresponding to the previous mixing, and its value lies in $[0,1]$. It was found by Brin and Page that the optimal value is $\alpha = 0.85$. In our paper this value of the damping parameter is considered unless otherwise stated. This mixing can be interpreted as that the random walk is performed in the network of interest driven by E with probability α, and with probability $1-\alpha$ the walker makes a random hopping driven by the matrix 1. We perform the random walk with the patched matrix G, so we redefine the vector of PageRanks satisfying $I_e = GI_e$. Thus, it is the eigenvector with eigenvalue 1 of the matrix G. Thanks to the mixing with the random hopping matrix, a random walk performed with the matrix G over any probability distribution will converge to this eigenvector.

Then, we can now use a power method to obtain this eigenvector. We only have to take a probability distribution and repeatedly apply the matrix G until it converges. In this work, we choose the equally probability distribution.

The quantization of this algorithm that we are going to deal with is based on the quantum walk of Szegedy [16] using as transition matrix G. The Hilbert space is the span of all the vectors representing the $N \times N$ directed edges of the duplicated graph, i.e., $\mathcal{H} = \text{span}(|i\rangle_1 |j\rangle_2, i,j \in N \times N) = \mathbb{C}^N \otimes \mathbb{C}^N$, where the states with indexes 1 and 2 refers to the nodes on two copies of the original graph.

We define the vectors:

$$|\psi_i\rangle := |i\rangle_1 \otimes \sum_{k=1}^N \sqrt{G_{ki}} |k\rangle_2,$$

(4)

which are a superposition of the vectors representing the edges outgoing from the i^{th} vertex, whose coefficients are given by the square root of the i^{th} column of the matrix G. From these vectors we define the projector operator onto the subspace generated by them:

$$\Pi := \sum_{k=1}^N |\psi_k\rangle \langle \psi_k|.$$

(5)

The quantum walk operator U is defined as:

$$U := S(2\Pi - I),$$

(6)

where S is the swap operator between the two quantum registers, i.e. $S = \sum_{i,j=1}^N |i,j\rangle \langle j,i|$. Since the swap operator changes the directedness of the graph, the operator U must be applied an even number of times, so the actual time evolution operator is chosen as $W := U^2$.

The initial state of the system is chosen to be:

$$|\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^N |\psi_i\rangle,$$

(7)

and the final state is $|\psi_f(t)\rangle = W^t |\psi_0\rangle$. The position of the walker after the quantum evolution is described by the register 2 of the quantum state, so the projection onto the computational basis of the second register will give us the quantum PageRanks for each node:

$$I_q(P_i,t) := ||2^t |i\rangle \psi_f(t)\rangle ||^2.$$

(8)

This quantum PageRank depending on time is called the instantaneous PageRank [15], and it fluctuates in time instead of converging. For that reason, it is defined the
time-averaged quantum PageRank as:

\[I_q(P_t) := \frac{1}{T} \sum_{t=0}^{T} I_q(P_t, t). \quad (9) \]

This quantity converges for a value of \(T \) sufficiently large \([18] \). In the following of the paper, when we speak about the quantum PageRank we will refer to the time-averaged quantum PageRank unless we mention explicitly the instantaneous PageRank.

The introduction of arbitrary phase rotations is done in Grover’s algorithm by introducing complex phases in the reflection operators. Then, they apply an arbitrary complex phase to the perpendicular component of a vector, instead of changing its sign. The part \(2\pi - \theta \) of the quantum walk operator corresponds to a reflection over the subspace generated by the states \(|\psi_i\rangle \), so a natural modification of the Szegedy’s quantum walk to introduce APR is to define a new unitary operator as:

\[U(\theta) := S \left(\left[1 - e^{i\theta} \right] \Pi - 1 \right), \quad (10) \]

where \(\theta \in (-\pi, \pi] \).

As we have mentioned, the quantum PageRank needs to preserve the directness of the graph, so we need to apply an even number of times this operator. Let us define the actual unitary time evolution operator of the quantum PageRank algorithm as:

\[W(\theta_1, \theta_2) := U(\theta_2)U(\theta_1), \quad (11) \]

where in general \(\theta_1 \neq \theta_2 \). Thus, now the quantum PageRanks will be obtained in the same manner as before, but the final state will be \(|\psi_f(t)\rangle = W^t(\theta_1, \theta_2) |\psi_0\rangle \).

This gives rise to a new family of quantum PageRank algorithms with \(\theta_1 \) and \(\theta_2 \) as two degrees of freedom. If we chose \(\theta_1 = \theta_2 = \pi \), the original quantum PageRank algorithm is recovered, so we are going to name that particular case the standard case. To study the effect of choosing different phases, we are going to define three APR schemes with only one degree of freedom \(\theta \):

- Equal-Phases scheme: both phases are equal, i.e. \(\theta_1 = \theta_2 = \theta \).
- Opposite-Phases scheme: both phases have the opposite sign, i.e. \(\theta_1 = -\theta_2 = \theta \).
- Alternate-Phases scheme: the first phase is fixed to \(\pi \), while the second phase is free, i.e., \(\theta_1 = \pi, \theta_2 = \theta \). We have found that the results for \(\theta_1 = \theta, \theta_2 = \pi \) are similar, so we do not have into account that case in this work.

Since the operator \(\Pi \) is real, inverting the sign of the phase \(\theta \) would result in complex conjugating the operator \(W(\theta_1, \theta_2) \). The initial statevector is also real, so the final result would just be the complex conjugated. However, the quantum PageRanks are real probabilities, so there would not be any effect. For that reason, w.l.o.g. \(\theta \in [0, \pi] \).

The matrix representing the operator \(W(\theta_1, \theta_2) \) is of size \(N^2 \times N^2 \), so it is very difficult to use it to simulate complex networks classically. This problem can be overcome using the spectral decomposition of the operator, avoiding the use of such a big matrix in order to save memory resources. Such a method for simulating the standard quantum PageRank is explained in \([15]\), and in the Appendix A we show a generalized version that takes into account the APR.

Regarding the application of this algorithm in a quantum computer, there has been advances in constructing efficient circuits for the Szegedy’s quantum walk for certain kinds of graphs \([35]\). The proposed circuits consist on the construction of a unitary operator that diagonalizes the reflection operator, so that the reflection can be implemented with a multicontrolled-\(\pi \) gate. Then, to take into account the APR in the circuit, it would only be necessary to change the multicontrolled-\(\pi \) gate by a multicontrolled-\(P(\theta) \) gate, where \(P(\theta) \) is a gate that adds a phase \(e^{i\theta} \) to the controlled qubit. This means that given a circuit for implementing the standard quantum PageRank algorithm, it can be easily modified to implement the new algorithms with APR.

In the following section we will study the effect of the phase \(\theta \) in a simple small generic graph, and we will choose a concrete value of \(\theta \) for study the algorithm on complex graphs.

III. SMALL GENERIC GRAPH

Once we have defined the new family of quantum PageRanks that we are going to study, we want to see the effect of the free parameter \(\theta \) in the three APR schemes described above. For this task we are going to use a small generic graph with 7 nodes (see Figure 1) that was previously introduced in \([15]\) to study the standard quantum PageRank.

![Figure 1. Small generic graph with 7 nodes, where each node represent a web page and the directed edges represent links between web pages.](image-url)
In [15] it was shown that the classically most important node was node 7, followed by node 5, whereas the less important node was node 4 as can be seen in Figure 2. Their instantaneous PageRanks defined by equation [8] for the standard quantum PageRank are reviewed in Figure 3(a) where it can be seen that not only does the fluctuation change the relative importance between nodes 5 and 7, but it also does between these nodes and the less important node 4. For that reason, it was made the decision of taking the time-averaged quantum PageRank to rank these nodes. This quantity converges in time as can be seen in Figure 3(h).

To see the effect of the complex phase θ on the instantaneous quantum PageRanks, we show the results for the Alternate-Phases scheme. However, similar results are obtained for the other APR schemes, which are shown in the Appendix B. As three interesting cases we choose a decreasing θ like $\theta = \pi/2$, $\pi/10$ and $\pi/100$. For $\theta = \pi/2$ the instantaneous quantum PageRanks in Figure 3(c) have a smaller amplitude, allowing to distinguish properly the most important nodes from the less important node, and it is also shown that the fluctuation is slower. This oscillation gets more and more slower as we reduce the phase θ, as can be seen for $\theta = \pi/10$ and $\theta = \pi/100$ in Figures 3(d) and 3(e) respectively.

The time-averaged quantum PageRanks for the Alternate-Phases scheme are shown in Figure 2 together with the standard quantum and the classical PageRanks. We observe that as the phase decrease, the distribution gets closer to the classical one, up to a limit. Indeed, from $\theta = \pi/10$ the ranking of the nodes is the same that in the classical case, restoring the ranking violation showed by the standard quantum PageRank [15]. However, the smaller θ is, the slower is the oscillation of the instantaneous PageRank, so we need more time to average the dynamics properly. This results in a slower convergence of the algorithm. In Figures 3(f), 3(g) and 3(h) we show how the averaged quantum PageRank converges more slowly as the complex phase decreases. For this reason, we can not decrease the angle θ arbitrarily.

We can use the classical fidelity defined as

$$f(I_1, I_2) := \sum_{i=1}^{N} \sqrt{I_1(P_i)I_2(P_i)},$$

(12)

to measure the similarity between the quantum distributions and the classical one. The results for the three values of θ analyzed with the three APR schemes are summarized in Table I. From this table and Figures 2, 14 and 16 (see Appendix B) we can see that the major effect of the APR is achieved with $\theta = \pi/2$. Then, we can use this value, allowing the algorithm to converge relatively quickly, in a same manner as the standard quantum algorithm.

Once we have chosen a concrete value of θ, we can compare the results for the three APR schemes with $\theta = \pi/2$. The averaged quantum PageRanks are shown in Figure 4. We can see that for these graphs the Equal-Phases and Alternate-Phases cases get qualitatively closer to the classical distribution, whereas the Opposite-Phases case resembles more the standard quantum distribution. As we will see later, this behavior depends on the type of graph, and will be different for complex networks.

Table I. Fidelity with the classical PageRank distribution for the standard quantum algorithm and the three APR schemes with $\theta = \pi/2$, $\pi/10$ and $\pi/100$, for the small generic graph.

Quantum case	$\theta = \pi/2$	$\theta = \pi/10$	$\theta = \pi/100$
Standard	0.9546		
Equal-Phases	0.9874, 0.9886, 0.9887		
Opposite-Phases	0.9638, 0.9622	0.9621	
Alternate-Phases	0.9870, 0.9940	0.9941	

If we concern about the rankings of nodes, which are summarized in Table [11], we observe that the classical ranking is violated in all the quantum cases. The node that is shifted in the ranking varies between APR schemes. However, it is worth mentioning that all algorithms detect the two most important nodes as well as the less important node properly.
Figure 3. Instantaneous PageRanks of the nodes 7, 5 and 4 of the small generic graph for: a) the standard quantum algorithm, c) the Alternate-Phases algorithm with \(\theta = \pi/2 \), d) the Alternate-Phases algorithm with \(\theta = \pi/10 \), e) the Alternate-Phases algorithm with \(\theta = \pi/100 \). Time-averaged quantum PageRanks for all nodes vs time for b) the standard quantum algorithm, f) the Alternate-Phases algorithm with \(\theta = \pi/2 \), g) the Alternate-Phases algorithm with \(\theta = \pi/10 \), h) the Alternate-Phases algorithm with \(\theta = \pi/100 \). It is observed that as \(\theta \) decreases, the quantum fluctuations get slower and the algorithm takes more time to converge.

Table II. Ranking of the nodes of the small generic graph for the classical algorithm, the standard quantum algorithm, and the three APR schemes with \(\theta = \pi/2 \). The shifted node with respect to the classical ranking is marked in red.

Classical	Standard	Eq.-phases	Opp.-phases	Alt.-phases
7	7	7	7	7
5	5	5	5	5
3	6	2	6	3
2	3	3	3	2
1	2	1	2	6
6	1	6	1	1
4	4	4	4	4

Another important result of the introduction of the APR is that the standard deviation of the fluctuation of the instantaneous quantum PageRank is reduced. In Table III we summarize the standard deviations for all nodes in the three APR schemes with \(\theta = \pi/2 \). The most significant reduction occurs in the Alternate-Phases case, although in general the three schemes show a tendency decreasing the standard deviation. This allows to better distinguish between different nodes, improving the performance of the quantum algorithm.
nodes linking to them, what turns out in a higher ranking. This nodes will constitute the main hubs of the network, where the term hub refers to a node with a relatively large number of links \[18\]. In our work we implement the model described in \[42\] to create random directed scale-free graphs using the python library NetworkX \[43\] with the default parameters. This model considers networks with multiple edges and loops. In order to be in concordance with the PageRank’s definition in \[1\], we have eliminated duplicated edges, but there would not be a major difference if we considered it. At the same time, no major difference in the results have been found either we eliminate the loops or not, and we have decided to keep them.

In \[18\] it was observed that with the classical PageRank the less important nodes are quite degenerate. However, the standard quantum PageRank could break this degeneracy. This meant that the quantum algorithm could unveil the structure of the graph in more detail. To study the effect of the APR with this kind of graphs, we have constructed a random scale-free graph with 32 nodes. The resulting network is shown in Figure 5(a), whereas the classical PageRank and all the quantum PageRanks are shown in the histogram of Figure 5(b). We can see effectively that the classical distribution has a degeneracy of the less important nodes, broken in the quantum distribution. When we look at the new algorithms with APR we find intriguing properties. Whereas the Equal-Phases case shows a pattern similar to the standard quantum algorithm, the Opposite-Phases and Alternate-Phases cases show a partial restoring of the degeneration of the less important nodes, resembling the classical distribution. This can be seen explicitly for example in nodes 20 – 26 where the standard and Equal-Phases algorithms find differences in importance not present in the other distributions. Regarding to the main hubs, as it was expected, they correspond to the three first nodes, and are detected properly by all the algorithms. Moreover, the classical relative importance of the three main hubs is kept by all the quantum algorithms, although this may not be the case for other graphs of the same class.

Let us look deeper at the structure of the graph. According to the classical definition of PageRank in \[1\], those nodes without links pointing to them would have null PageRank. Due to the patches introduced to built the Google matrix, these nodes have a small non-null PageRank, which is the same for all of them. These nodes are the outer (blue) nodes of Figure 5(a). In the histogram we can see effectively that all of them are degenerate in the classical distribution. Node 14 is a secondary hub with two nodes linking to it, and since one of the linking nodes is a main hub (node 3), its PageRank is high enough to distinguish it. However, nodes 5, 16 and 19, which have a node linking to them, have a small classical PageRank that is very similar to the less important nodes. This means that the classical PageRank is not able to identify all secondary hubs properly.

IV. APPLICATION TO COMPLEX SCALE-FREE GRAPHS NETWORKS

A. PageRank distributions

Now that we have seen the effect of the APR in a small network, we want to study the behavior of the new algorithms in complex networks, where the standard quantum algorithm has shown a good performance \[18\]. In this context, we are going to use scale-free networks, which not only are good models of the World Wide Web \[34\], but also have a wide range of applications like in neuronal connections \[36\], metabolomics \[37, 38\] and finances \[39\]. This kind of graphs are characterized by a power law distribution in the connectivity of nodes \[34\], and it has been observed that the classical and quantum PageRanks also show a power law behavior \[18, 41\].

Scale-free networks are formed by continuously adding nodes, which are connected to the existing nodes with a probability that is proportional to the in- and out-degree of the existing nodes. Thus, it is expected that the first nodes added to the model have the largest number of

Node	Standard	Eq.-phases	Opp.-phases	Alt.-phases
1	0.046	0.046	0.030	0.026
2	0.071	0.072	0.027	0.033
3	0.063	0.057	0.056	0.044
4	0.039	0.023	0.029	0.012
5	0.105	0.082	0.085	0.059
6	0.070	0.030	0.062	0.022
7	0.102	0.078	0.082	0.055

![Figure 4. Time-averaged quantum PageRanks for the three APR schemes with $\theta = \pi/2$ for the small generic graph with 7 nodes. They are compared with the classical PageRanks and the standard quantum PageRanks.](image)
Figure 5. a) Scale-free network with 32 nodes. The inner (green) nodes correspond to the main hubs. The middle (orange) nodes correspond to secondary hubs. The outer (blue) nodes correspond to residual nodes without links pointing to them. b) PageRank distributions of the scale-free network. There are compared the classical distribution with all the quantum distributions, using $\theta = \pi/2$ in the three APR schemes. We see a partial restoration of the degeneracy of the less important nodes for the Opposite-Phases and Alternate-Phases schemes.

In the case of the standard quantum algorithm, it lifts the importance of these secondary hubs. Nevertheless, it breaks the degeneracy of the less important nodes in a manner that some of these residual nodes overshadow the secondary hubs. See for example how node 9, which should be residual, has a larger importance than nodes 5 and 16. The fact that nodes which are equal from the point of view of (1) are different in the quantum PageRank, can make us think that the quantum algorithm is sensitive not only to the nodes linking to a concrete node, but also to the nodes it points to.

When we add the APR to the quantum algorithm, we do not find a significant difference in the Equal-Phases case. However, in the Opposite-Phases and Alternate-Phases algorithms the residual nodes are again degenerate in majority. Note that node 9 has a slightly greater importance in the Alternate-Phases algorithm than the other residual nodes, but it is still less important than the truly secondary hubs. This means that in these APR schemes the quantum algorithms are practically only sensitive to the in-degree distribution of the nodes, as the classical one. Moreover, these two schemes maintain the quantum property of highlighting secondary hubs with respect to the classical algorithm, as can be seen in nodes 5, 16 and 19. This makes these algorithms a valuable tool for ranking nodes in a scale-free network, because they improve the classical deficiencies while solving the problematic quantum sensitivity to the outdegree distribution.

Note that in the small generic graph the APR schemes that more resembled the classical distribution were the Equal-Phases and Alternate-Phases cases. However, here the Equal-Phases scheme is more similar to the standard quantum case, and the Opposite-Phases is more similar to the classical distribution. This suggests that the behavior of the APR schemes depends on the kind of graph.

As well as happened with the small graph, we have found that the standard deviation of the quantum PageRank can be decreased using certain APR schemes. In Figure 6 it is shown the standard deviations for all the nodes for the four quantum algorithms. While the Equal-Phases scheme seems to have standard deviations similar to the standard case, the Opposite-Phases and Alternate-Phases schemes show a clear improvement decreasing the standard deviations. Recall that these two last schemes are those that have a partial restoration of the degeneration. This highlights the valuable importance of the Opposite-Phases and Alternate-Phases schemes as APR alternatives to the standard quantum algorithm.

Figure 6. Standard deviations for the quantum PageRanks of a random scale-free graph with 32 nodes. It has been used $\theta = \pi/2$ for the three APR schemes. The standard deviations decreases for the Opposite-Phases and Alternate-Phases schemes.

B. Power law distribution of the PageRanks

Since scale-free networks follow a power law distribution in the connectivity of the nodes, they also have a
then, the PageRank can be expressed as:

\[I \sim i^{-\beta}, \]

(13)

where \(i \) is the index of the node after sorting them by importance, and \(\beta \) is a constant coefficient. Taking logarithms to both sides of (13) we obtain:

\[\log I \sim -\beta \log i. \]

(14)

Then, plotting the sorted nodes in a logarithmic way we expect to see a linear behavior. This plot is shown in Figure 7(a) for the graph with 32 nodes used previously. We can see that the standard and Equal-Phases quantum algorithms show a smoother behavior due to the degeneracy breaking of the less important nodes. The classical algorithm, the Opposite-Phases and the Alternate-Phases algorithms have a big degeneration in the less important nodes, so the decay in PageRank before the degenerate region is abrupter. Moreover, these two last APR schemes were able to highlight truly secondary hubs, and the less important nodes have a higher PageRank than in the classical distribution, so the distribution is also smoother with respect to the classical one.

To ensure that this behavior is not particular for this concrete graph, but for the majority of the scale-free graphs with 32 nodes, we have averaged the sorted PageRanks from an ensemble of 50 random scale-free graphs. The averaged results are shown in Figure 7(b). This confirms that the discussion above is valid for the scale-free graphs class with 32 nodes, rather than for a concrete graph. Furthermore, we claim that the discussion above holds for scale-free graphs with a higher num-

Figure 7. a) Logarithmic plot of the PageRanks vs the node index (after sorting) for a random scale-free graph with 32 nodes. b) Averaged logarithmic plot of the PageRanks vs the node index (after sorting) for an ensemble of 50 random scale-free graphs with 32 nodes. There are compared the classical distribution with all the quantum distributions, using \(\theta = \pi/2 \) in the three APR schemes. We see a partial restoration of the degeneracy of the less important nodes for the Opposite-Phases and Alternate-Phases schemes.

Figure 8. Averaged logarithmic plot of the PageRanks vs the node index (after sorting) for an ensemble of 50 random scale-free graphs with a) 64 nodes and b) 128 nodes. There are compared the classical distribution with all the quantum distributions, using \(\theta = \pi/2 \) in the three APR schemes. We see that the behavior is independent on the size of the network.

number of nodes. With this purpose, we show the averaged logarithmic plot of the sorted nodes for scale-free graphs with 64 and 128 nodes in Figures 8(a) and 8(b), respectively, obtaining similar results as with 32 nodes.

The coefficient β in (14) is a measurement of the smoothness of the power law distribution. We can obtain the coefficient β for each algorithm after a linear fitting of the logarithmic plots. In Figure 9, we show the power-law distribution for an ensemble of 50 graphs with 256 nodes, as well as the linear fitting for each algorithm. In the classical algorithm, and in the Opposite-Phases and Alternate-Phases schemes the fitting has been made only with the non-degenerate nodes, since the degenerate region has a constant distribution. The separation between both regions is shown with a vertical line. We can see that the standard quantum algorithm, as well as the Equal-Phases case have a smoother behavior with respect to the other algorithms, which is characterized by a smaller value of β. Moreover, the power law distribution extends to the less important nodes since they are not degenerate. This can be related with the previous discussion that these algorithms are more sensitive to both the in- and out-degree distributions of the nodes, thus capturing better the power law of the vertex connectivity. On other hand, as it was expected, the Opposite-Phases and Alternate-Phases distributions are smoother than the classical one, having a slightly smaller value of β. Finally, we have done the linear fitting also for ensembles of 50 graphs with 32, 64, and 128 nodes. The values of β for each case are summarized in Table IV. In the four cases we see a similar qualitative behavior of β between the different algorithms, although the absolute values can change slightly with the number of nodes.

Table IV. Values of the coefficient β in the power-law distribution of the PageRank for all the algorithms using ensembles of scale-free graphs with 32, 64, 128 and 256 nodes. It has been used $\theta = \pi/2$ in the three APR schemes.

Algorithm	$N = 32$	$N = 64$	$N = 128$	$N = 256$
Classical	1.53	1.55	1.38	1.27
Standard	1.04	1.02	0.90	0.83
Equal-Phases	1.06	1.02	0.90	0.83
Opposite-Phases	1.34	1.38	1.28	1.23
Alternate-Phases	1.35	1.35	1.25	1.20

V. STABILITY OF GENERALIZED QUANTUM PAGE-RANKS

We have fixed the damping parameter α in (3) to $\alpha = 0.85$ since that is the value that showed an optimal performance in the classical algorithm. It is known that the classical algorithm is very sensitive to the value of this parameter [14], and the authors of [18] found that the standard quantum PageRank algorithm is more sta-
Fidelity with $\alpha = 0.85$ for a random scale-free graph with 32 nodes. b) Averaged fidelity of the PageRank distributions vs the damping parameter α, with respect to the distribution with $\alpha = 0.85$, for an ensemble of 50 random scale-free graphs with 32 nodes.

There are compared the classical distribution with all the quantum distributions, using $\theta = \pi/2$ in the three APR schemes. We see that all the quantum algorithms are more stable than the classical one, being the standard and the Opposite-Phases algorithms the most stable.

Figure 10. a) Fidelity of the PageRank distributions vs the damping parameter α, with respect to the distribution with $\alpha = 0.85$, for a random scale-free graph with 32 nodes. b) Averaged fidelity of the PageRank distributions vs the damping parameter α, with respect to the distribution with $\alpha = 0.85$, for an ensemble of 50 random scale-free graphs with 32 nodes.

To ensure that this behavior holds for bigger scale-free networks, we have averaged the results for 50 scale-free graphs with 64 nodes in Figure 11(a) and with 128 nodes in Figure 11(b). We effectively find a similar behavior than before. It is worth noting that for the networks with 128 nodes there is a region where the Opposite-Phases algorithm outperforms the standard quantum algorithm. Indeed, we have found for a lot of graphs in this class that the curve with the Opposite-Phases scheme is slightly above the curve of the standard quantum case for all value of α.

Finally, we shall see what happens with the fidelity not only for $\alpha = 0.85$, but for any pair (α, α'), with $\alpha, \alpha' \in [0.1, 0.99]$. We show the averaged results for the ensemble of graphs with 128 nodes in Figure 12 using heatmaps. The standard quantum algorithm shows a good stability region that extend to all values of α, having a minimal fidelity of 0.92 in the extreme pairs. As it is expected, the Opposite-Phases algorithm has a similar pattern, but the fidelity drops slightly at the extremal pairs of α reaching a minimal fidelity of 0.87. The classical algorithm is the less stable, falling quickly the fidelity when we move out of the central region. The minimal value of fidelity reached is 0.70. Last, the Equal-Phases and Alternate-Phases show an intermediate behavior between the classical and the standard quantum algorithms. The minimal values of fidelity are 0.80 and 0.73 respectively. These results all together seems to reinforce the previous discussion about the stability of the PageRank algorithm.
VI. CONCLUSIONS

We have reviewed the quantization of the Google’s PageRank algorithm, in order to modify it introducing arbitrary phases rotations (APR) in the underlying Szegedy’s quantum walk. This modification introduces two degrees of freedom in the algorithm. However, we have defined three simple schemes, called Equal-Phases, Opposite-Phases and Alternate-Phases schemes, with only one parameter \(\theta \). Furthermore, we have shown a method to simulate these new algorithms in a classical computer.

We have applied the new quantum algorithms with APR to a small generic graph with 7 nodes, comparing the results with those described in the literature. We have found that the decrease in the value of \(\theta \) reduces the standard deviation of the instantaneous quantum PageRank, allowing to better distinguish between nodes. However, the oscillation of the instantaneous PageRank gets slower, so that the time-averaged quantum PageRanks needs more time to converge. This means that we can not reduce the phase \(\theta \) arbitrarily. We have chosen a value of \(\theta = \pi/2 \) as a value where the APR scheme has a great effect in the time-averaged PageRank while the convergence time is short. With this value we have seen that the Equal-Phases and Alternate-Phases distributions resemble more to the classical one, whereas the Opposite-Phases distribution resembles the standard quantum one.

We have studied the time-averaged quantum PageRank with APR in scale-free complex networks since they are good models of the World Wide Web. It was known that the standard quantum algorithm was able to highlight secondary hubs of the networks, whose PageRank was suppressed in the classical distribution. Moreover, the quantum algorithm breaks the degeneracy of the residual nodes, which should be all degenerate as they do not have nodes linking to them. This could yield a problem as those residual nodes can overshadow the actual secondary hubs. The Opposite-Phases and Alternate-Phases schemes overcome this problem, restoring the degeneracy and making them residual. Thus, these two schemes have a distribution that resembles the classical one but highlighting truly secondary hubs. However, the Equal-Phases scheme yields a distribution very similar to the standard quantum one. Regarding to the standard deviation of the quantum PageRanks, we have found that the Opposite-Phases and Alternate-Phases schemes can decrease it, but the Equal-Phases scheme does not. Since the effect of the different schemes is different to what was found in the small generic graph, we conclude that the effect depends of the kind of network. Moreover, in the Appendix C we show some results for a particular instance of Erdős-Rényi graph, observing a different behavior of some APR schemes with respect to the scale-free graphs.

Scale-free networks follow a power law distribution in the connectivity of the nodes. It was known that the classical and quantum PageRanks also have a power law behavior, being smoother in the case of the quantum algorithm since it breaks the degeneracy of the residual nodes. Comparing all of our algorithms, we have found that the standard quantum algorithm, and that with the Equal-Phases scheme have the smoothest distribution, and the power law extends to the residual nodes. The fact that the residual nodes are not degenerate and also follow a power law may indicate that these two quantum algorithms are sensitive to the outdegree distribution of the nodes, since they do no have any node linking to them, and thus they inherit the power law of the connectivity characteristic of scale-free networks. We have also seen that the Opposite-Phases and Alternate-Phases schemes have a slightly smoother distribution than the classical algorithm.
Figure 12. Averaged fidelity of the PageRank distributions for all pairs $\langle \alpha, \alpha' \rangle$, for an ensemble of 50 random scale-free graphs with 128 nodes, using a) the classical algorithm, b) the standard quantum algorithm, c) the Equal-Phases algorithm, d) the Opposite-Phases algorithm, e) the Alternate-Phases algorithm. It has been used $\theta = \pi/2$ in the three APR schemes. We see that all the quantum algorithms are more stable than the classical one, being the standard and the Opposite-Phases algorithms the most stable.

We have studied the stability of the PageRank algorithm respect to the damping parameter α in the scale-free networks. In the literature it was shown that the classical algorithm was quite unstable, whereas the quantum algorithm improved it considerably. In the case of the APR schemes, we expected that the Equal-Phases scheme were the most stable, since its PageRank distribution is very similar to that of the standard quantum algorithm. Surprisingly, the Opposite-Phases scheme is the most stable, being comparable to the standard quantum case. The Equal-Phases and Alternate-Phases schemes have a similar intermediate stability, despite their PageRank distributions are rather different between them.

Taking all the results together, the fact that the algorithm with the Opposite-Phases scheme is able to highlight the secondary nodes that the classical can not, keeps degenerate the residual nodes, reduces the standard deviation of the time-averaged PageRank, and also has a good stability similar to the original quantum algorithm, makes this new algorithm a valuable tool as an alternative to both classical and standard quantum PageRank for scale-free networks.

In the future, it would be interesting study what happens in complex networks when we use other phases different to $\pi/2$, other APR schemes, or even introducing more phases to the algorithm. It would be also interesting to apply this algorithms to other kind of complex networks, like hierarchical networks. Finally, although we have used the Szegedy’s quantum walk with APR for the PageRank algorithm, it could be of interest for other applications, like quantum search or machine learning.

ACKNOWLEDGMENTS

We acknowledge support from the CAM/FEDER Project No.S2018/TCS-4342 (QUITEMAD-CM), Spanish MINECO grants MINECO/FEDER Projects, PGC2018-099169-B-I00 FIS2018, MCIN with funding from European Union NextGenerationEU (PRTR-C17.11) an Ministry of Economic Affairs Quantum ENIA project. M. A. M.-D. has been partially supported by the U.S.Army Research Office through Grant No. W911NF-14-1-0103. S. A. O. acknowledges support from a QUITEMAD grant.

[1] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30:107–117, 1998.
Appendix A: Spectral decomposition and classical simulation of Szegedy’s quantum walk with APR

In [15] it is shown how to decompose the time evolution operator of the quantum walk for the standard case. Here we are going to show the general decomposition for the operator having into account the complex phases. This decomposition will allow to simulate the final statevector in a faster manner and with less memory resources. Not only can this be used for simulating the quantum PageRank, but also any Szegedy quantum walk with APR that uses either the operator $U(\theta)$ or $W(\theta_1, \theta_2)$.

We start defining the $N \times N$ matrix D whose entries are:

$$D_{ij} := \sqrt{G_{ij}G_{ji}}$$

where there is no sum over repeated indexes. We also define the operator A from the space of vertex \mathbb{C}^N to the space of edges $\mathbb{C}^N \otimes \mathbb{C}^N$:

$$A := \sum_{i=1}^{N} |\psi_i\rangle \langle i|,$$

which satisfies that $AA^\dagger = \Pi$, $A^\dagger A = \mathbb{1}$ and $D = A^\dagger SA$.

The matrix D is symmetric, so it can be diagonalized yielding N eigenvectors $|\lambda\rangle$ with eigenvalues λ. With them, we define the vectors $|\tilde{\lambda}\rangle = A|\lambda\rangle$, which belongs to the Hilbert space where the quantum walk is performed. Now we are going to show that the vectors $|\tilde{\lambda}\rangle$ and $S|\tilde{\lambda}\rangle$ generate an invariant subspace of $U(\theta)$ for any θ. We apply $U(\theta)$ to $|\tilde{\lambda}\rangle$ and $S|\tilde{\lambda}\rangle$, and using the properties of the operators defined above:

$$U(\theta)|\tilde{\lambda}\rangle = -e^{i\theta} S|\tilde{\lambda}\rangle,$$

$$U(\theta)S|\tilde{\lambda}\rangle = [1 - e^{i\theta}] \lambda S|\tilde{\lambda}\rangle - |\tilde{\lambda}\rangle.$$ (A4)

Then, the action over these vectors yield vectors in the subspace formed by them, i.e. they generate an invariant subspace. Since these vectors are independent of θ, this subspace is the same for every $U(\theta)$, and we call it I_U. Moreover, the product of two unitaries with different phases, i.e. the operator $W(\theta_1, \theta_2) = U(\theta_1)U(\theta_2)$, also have this subspace as invariant because it do not depend on the complex phases.

The span of the vectors $|\tilde{\lambda}\rangle$ coincides with the span of the vectors $|\psi_i\rangle$, and since Π is the projector onto the subspace formed by these vectors, the action of Π over any vector orthogonal to them is null. The subspace orthogonal to I_U is orthogonal to all $|\tilde{\lambda}\rangle$, so the quantum walk operator in this subspace acts just like $U(\theta) = -S$ for any value of θ. This means that all the eigenvalues are ± 1 in the orthogonal subspace. Since the subspace is independent of θ, it is the same for the operator $W(\theta_1, \theta_2)$, and all the eigenvalues are equal to 1. Thus, all the dynamics of the walk occurs in the subspace I_U, and the problem reduces to finding the eigenvectors and eigenvalues of $W(\theta_1, \theta_2)$ in this subspace.

We start solving the eigenvalue problem for the simple operator $U(\theta)$. We make the following ansatz for the eigenvectors in the subspace I_U:

$$|\mu_\theta\rangle = |\tilde{\lambda}\rangle - \mu_\theta S|\tilde{\lambda}\rangle,$$ (A5)
where μ_θ is the eigenvalue of the eigenvector $|\mu_\theta\rangle$, both depending on the phase θ. We apply $U(\theta)$ to it, and using (A3) and (A4):

$$U(\theta) |\mu_\theta\rangle = \mu_\theta \left| \lambda \right\rangle - (e^{i\theta} + [1 - e^{i\theta}] \mu_\theta \lambda) S \left| \lambda \right\rangle.$$ \hspace{1cm} (A6)

By definition of eigenvector we also have:

$$U(\theta) |\mu_\theta\rangle = \mu_\theta \left| \lambda \right\rangle - \mu_\theta^2 S \left| \lambda \right\rangle.$$ \hspace{1cm} (A7)

Equaling both expressions we obtain an equation for the eigenvalues:

$$-\mu_\theta^2 = -e^{i\theta} - [1 - e^{i\theta}] \mu_\theta \lambda,$$ \hspace{1cm} (A8)

whose solution is:

$$\mu_\theta = \frac{1 - e^{i\theta}}{2} \lambda \pm \sqrt{1 - e^{2i\theta}} \lambda^2 + 4e^{i\theta}.$$ \hspace{1cm} (A9)

With this we can calculate the eigenvectors of $U(\theta)$. However, these depend on the complex phase θ. This means that they are not the same for the operator $W(\theta_1, \theta_2)$ unless $\theta_1 = \theta_2$. Only in that case the eigenvectors would be the same, and the eigenvalues would be μ_θ^2.

In the general case for $W(\theta_1, \theta_2)$ where $\theta_1 \neq \theta_2$, let us call $\nu \equiv \nu(\theta_1, \theta_2)$ to the eigenvalues of the eigenvectors $|\nu\rangle \equiv |\nu(\theta_1, \theta_2)\rangle$ in the invariant dynamical subspace I_U. We use the following more general ansatz for the eigenvectors:

$$|\nu\rangle = \left| \lambda \right\rangle - aS \left| \lambda \right\rangle,$$ \hspace{1cm} (A10)

where a is a parameter to determinate that depends on the two phases as well on λ. We apply the operator to this eigenvector, and using (A3), (A4) and (A6):

$$W(\theta_1, \theta_2) |\nu\rangle = \left(e^{i\theta_1} + C_1 a \lambda \right) \left| \lambda \right\rangle - \left(ae^{i\theta_2} + e^{i\theta_1} + C_1 a \lambda \right) C_2 \lambda S \left| \lambda \right\rangle,$$ \hspace{1cm} (A11)

where $C_k = 1 - e^{i\theta_k}$. Using the definition of eigenvector:

$$W(\theta_1, \theta_2) |\nu\rangle = \nu \left| \lambda \right\rangle - \nu a S \left| \lambda \right\rangle.$$ \hspace{1cm} (A12)

We obtain a system of two equations with two variables, a and ν:

$$\nu = e^{i\theta_1} + C_1 a \lambda,$$ \hspace{1cm} (A13)

$$\nu a = ae^{i\theta_2} + e^{i\theta_1} + C_1 a \lambda C_2 \lambda.$$ \hspace{1cm} (A14)

After substituting the first equation in the second one, we have finally a second order equation for a. After solving that equation, we can calculate the (at most) $2N$ eigenvalues and eigenvectors of the operator $W(\theta_1, \theta_2)$ in the dynamical subspace I_U.

Once obtained the eigenvectors, we can project the initial state onto them. Rising to the power of t the eigenvalues, we can calculate the dynamical component of the final state without the need of the $N^2 \times N^2$ matrix. In the quantum PageRank algorithm the initial state lies in the dynamical subspace, so its component in the orthogonal subspace is null. However, for a more general initial vector, once we project it onto the dynamical subspace, we can calculate its orthogonal component. Since $W(\theta_1, \theta_2) = (-S)^2 = 1$ in the orthogonal subspace, this component do not change with the time evolution and can just be added once the dynamical component is calculated.
Appendix B: Results for the other APR schemes of the generic graph with 7 nodes

In the main paper we have shown how the decrease of the phase θ affects to the instantaneous PageRanks for the Alternate-Phases algorithm. Here we show that similar results are obtained for the other APR schemes. In Figures 13 and 15 we show that the decrease of the phase θ increases the period of the quantum fluctuations for the Equal-phases and Opposite-phases respectively. This turns out in a longer time for the time-averaged quantum PageRank to converge. Furthermore, it is interesting that in the Opposite-Phases case the quantum fluctuations get a modulated behavior. Finally, in Figures 14 and 16 we show that the major effect due to the APR scheme is achieved with $\theta = \pi/2$, so we can take this value as a trade-off between having a short convergence time and a great effect due to the APR.

Figure 13. Instantaneous PageRanks of the nodes 7, 5 and 4 of the small generic graph for the Equal-Phases algorithm with: a) $\theta = \pi/2$, b) $\theta = \pi/10$, c) $\theta = \pi/100$. Time-averaged quantum PageRanks for all nodes vs time for the Equal-Phases algorithm with: d) $\theta = \pi/2$, e) $\theta = \pi/10$, f) $\theta = \pi/100$. It is observed that as θ decreases, the quantum fluctuations get slower and the algorithm takes more time to converge.

Figure 14. Time-averaged quantum PageRanks for the Equal-Phases scheme with $\theta = \pi/2$, $\pi/10$ and $\pi/100$ for the small generic graph with 7 nodes. They are compared with the classical PageRanks and the standard quantum PageRanks.
Figure 15. Instantaneous PageRanks of the nodes 7, 5 and 4 of the small generic graph for the Opposite-Phases algorithm with: a) \(\theta = \pi/2 \), b) \(\theta = \pi/10 \), c) \(\theta = \pi/100 \). Time-averaged quantum PageRanks for all nodes vs time for the Opposite-Phases algorithm with: d) \(\theta = \pi/2 \), e) \(\theta = \pi/10 \), f) \(\theta = \pi/100 \). It is observed that as \(\theta \) decreases, the quantum fluctuations get slower and the algorithm takes more time to converge.

Figure 16. Time-averaged quantum PageRanks for the Opposite-Phases scheme with \(\theta = \pi/2 \), \(\pi/10 \) and \(\pi/100 \) for the small generic graph with 7 nodes. They are compared with the classical PageRanks and the standard quantum PageRanks.
Appendix C: Erdős-Rényi graphs

In order to benchmark the results found for scale-free graphs, we can use Erdős-Rényi random graphs [45, 46]. Theses graphs are constructed connecting a set of vertices randomly by adding edges with a fixed probability. In our work we are going to use a directed Erdős-Rényi network with 32 nodes created using NetworkX [43], where we have chosen the probability for adding edges as $p = 0.1$. The network is shown in Figure 17(a). The distributions of PageRanks for the classical algorithm and all the quantum algorithms are shown in the histogram of Figure 17(b).

In [18] it was found that both the classical and the standard quantum PageRank algorithms did not identify hubs in this class of networks. We observe that this is also the case for all the quantum algorithms with APR, since all the distributions are rather homogeneous. It was also observed in [18] that the quantum algorithm changed the ranking of nodes with respect to the classical one, and we observe something similar. With regard to the APR schemes, the Equal-Phases algorithm has a similar distribution to the standard quantum case, in a same manner as with scale-free networks. However, the Opposite-Phases and Alternate-Phases distributions are different to both the classical and standard quantum ones. Thus, with Erdős-Rényi networks we do not obtain any quantum distribution that resembles the classical one. This highlights the fact that the effect of the APR schemes depends on the class of network that we are dealing with.

![Erdős-Rényi network with 32 nodes](image17a.png)

![PageRank distributions of the Erdős-Rényi network](image17b.png)

Figure 17. a) Erdős-Rényi network with 32 nodes. b) PageRank distributions of the Erdős-Rényi network. There are compared the classical distribution with all the quantum distributions, using $\theta = \pi/2$ in the three APR schemes.

If we regard to the standard deviations of the quantum PageRanks, however, we observe a similar effect than that with scale-free networks. In Figure 18 we can see that for the Equal-Phases case the standard deviations are similar to those of the standard quantum algorithm, whereas for the Opposite-Phases and Alternate-Phases cases the standard deviations are significantly smaller.

Finally, we have analyzed the stability of the algorithm with respect to the damping parameter α for this network. In Figure 19(a) we show the fidelity of the PageRank distributions for $\alpha \in [0.01, 0.99]$ with respect to the distribution with $\alpha = 0.85$. We find that now the classical algorithm is more stable than all the quantum algorithms. However, all algorithms are actually quite stable, being the worst fidelity around 0.95. This behavior can be due to the quite homogeneous pattern of the distributions. Since a decrease of alpha turns out to be a major importance of the random-hopping, and this random-hopping tends to give a homogeneous distribution, the decrease of the parameter α here has little effect. However, it is interesting noting that the introduction of the APR improves the stability of the standard quantum algorithm. To ensure that these results are nor particular for this instance of Erdős-Rényi graphs, we have averaged over an ensemble of 50 random graphs with 32 nodes, obtaining Figure 19(b). We can see that the Opposite-Phases and Alternate-Phases schemes improve the standard quantum algorithm, although the effect is small.
Figure 18. Standard deviations for the quantum PageRanks of a random Erdős-Rényi graph with 32 nodes. It has been used $\theta = \pi/2$ for the three APR schemes. The standard deviations decreases for the Opposite-Phases and Alternate-Phases schemes.

Figure 19. a) Fidelity of the PageRank distributions vs the damping parameter α, with respect to the distribution with $\alpha = 0.85$, for a random Erdős-Rényi graph with 32 nodes. b) Averaged fidelity of the PageRank distributions vs the damping parameter α, with respect to the distribution with $\alpha = 0.85$, for an ensemble of 50 random Erdős-Rényi graphs with 32 nodes. There are compared the classical distribution with all the quantum distributions, using $\theta = \pi/2$ in the three APR schemes. We see that all the quantum algorithms are less stable than the classical one. The Alternate-Phases and Opposite-Phases schemes improve the stability of the standard quantum algorithm.