Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study

O O Seminog and M J Goldacre

1Unit of Health–Care Epidemiology, Department of Public Health, University of Oxford, Old Road Campus, Old Road, Oxford, OX3 7LF, UK

Background: The neurofibromatoses (NF) are genetic disorders. Increased risks of some cancers in people with NF are well recognised, but there is no comprehensive enumeration of the risks across the whole range of site-specific cancers. Our aim was to provide this.

Methods: A linked data set of hospital admissions and deaths in England was used to compare rates of tumours in an NF cohort with rates in a comparison cohort, with results expressed as rate ratios (RR).

Results: The RR for all cancers combined, in people with both types of NF combined, was 4.3 (95% confidence interval (CI): 4.0–4.6), based on 769 cases of cancer in 8003 people with NF. Considering only people with presumed NF1 (as defined in the main article), the RR for all cancers excluding nervous system malignancies remained elevated (2.7, 95% CI: 2.4–2.9); and risks were significantly high for cancer of the oesophagus (3.3), stomach (2.8), colon (2.0), liver (3.0), lung (3.0), bone (19.6), thyroid (4.9), malignant melanoma (3.6), non-Hodgkin’s lymphoma (3.3), chronic myeloid leukaemia (6.7), female breast (2.3) and ovary (3.7).

Conclusion: Neurofibromatosis was associated with an increased risk of many individual cancers. The relationships between NF and cancers may hold clues to mechanisms of carcinogenesis more generally.

Neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2) are inherited, autosomal-dominant, tumour predisposition syndromes (Ferner et al, 2007). Neurofibromatosis type 1 is the more common, with a prevalence in the United Kingdom of about 1 in 4560 people. Neurofibromatosis type 2 is a relatively rare disorder affecting about 1 in 56 160 people (Evans et al, 2010). Neurofibromatosis type 1 and NF2 have distinct genetic characteristics, and each disease is associated with mutations in a different gene. Neurofibromatosis type 1 is caused by mutation on chromosome 17q11.2 (Viskochil et al, 1990; Wallace et al, 1990). This genetic abnormality affects synthesis of a tumour suppressor protein, neurofibromin, which in unaffected individuals is expressed in high levels in the nervous system. Its deficit is associated with the development of both benign and malignant tumours (Johannessen et al, 2005, 2008; Jouhilahti et al, 2011). Each of the two diseases has its distinct pathogenesis, clinical features and prognosis, although the current 10th revision of the International Classification of Diseases (ICD) does not distinguish between them (World Health Organisation, 1992).

Patients with NF are at increased risk of neoplasia of several types (Zöllner et al, 1995; Rasmussen et al, 2001; Walker et al, 2006; Evans et al, 2011). The majority of NF1 patients develop benign cutaneous neurofibromas (Ferner, 2010), and there is also an elevated risk of malignant peripheral nerve sheath tumours and...
connective tissue malignancies (Evans et al, 2002, 2011; Walker et al, 2006). Well-documented neoplastic risks in people with NF2 are largely those of benign vestibular schwannomas or meningiomas (Ferner et al, 2004; Ferner, 2010). There are data suggesting increased risks of other cancers, including breast cancer and leukaemia, among patients with NF1 (Stiller et al, 1994; Sharif et al, 2007). The possibility that NF may be associated with an increased risk of other malignant neoplasms, in addition to the already recognised NF-associated cancers mentioned above, is not well documented.

Because of the known tumour-prone nature of NF, it is important to have comprehensive estimates for the risk of different individual malignant neoplasms, both for documented and for hitherto undocumented tumour risks. This is important, both to understand prognosis and risk in people with NF and to boost further research into the relationship between NF and neoplasia.

Our aim was to quantify the risk in people with NF of neoplasms of the nervous system, and of malignant tumours outside the nervous system, systematically across the whole range of cancer sites and types. We analysed data on hospitalisation of people with NF, in the whole of England from 1999 to 2011, and their risk of cancer.

Materials and methods

Populations and data sets. We used a linked English national data set of hospital admissions (Hospital Episode Statistics (HES)) and mortality. Hospital Episode Statistics comprises routinely collected administrative data on all hospital admissions and day cases in all NHS hospitals in England, with brief statistical records for every admission. The HES data were provided by the NHS Information Centre, and the mortality data were derived from death registration data provided by the Office for National Statistics. All records of hospitalisation for each individual person, and the individual’s death record in the event of death, were linked together as a single record of cumulative events for each person. The linkage was undertaken by the Oxford Record Linkage group (Gill and Goldacre, 2003). The data set spanned 1 January 1999 to 28 February 2011.

Construction of cohorts. The ‘exposure’ cohort of people with NF was constructed by identifying the first hospitalisation or day case care for NF in the linked data set. We defined NF as code Q 85.0 (termed ‘Neurofibromatosis’) in the 10th revision of ICD. The coding system used in England does not distinguish between NF1 and NF2. We made the assumption that people with any record of schwannoma, meningioma, acoustic neuroma and sensorineural deafness had NF2 and defined a second cohort excluding them.

We constructed a reference cohort, comprising people hospitalised with a range of mainly minor medical conditions, a range of surgical procedures and a range of injuries (see footnote to Table 1). These conditions and operations, both individually and in combination, were selected as conditions that were considered very unlikely to be associated with either an atypically high or low risk of cancers. We also have experience in using the reference cohort in other studies of cancer risk in people with non-malignant chronic conditions and know that they do not give atypical values (Goldacre et al, 2007, 2009; Fois et al, 2010). We included all eligible patients in the reference cohort. We stratified patients in the exposure and reference cohorts by age, sex, region of residence, calendar year of first hospitalisation and Index of Multiple Deprivation (a standard English metric for socioeconomic status, analysed by us in quintiles). All calculations of expected and observed cancers (see below) were undertaken within these strata (i.e., they were based on people who were the same, in respect of age group, gender, etc) and were then summed across strata to give overall expected and observed cases of each cancer.

The data set was searched for any subsequent hospital admission for, or death from, malignant neoplasms. We used the ICD-10 codes C00–C75, C80–C97 for all cancers, and their equivalents in ICD-9. We estimated the risk of malignant neoplasm for every type of cancer, and the risk of benign tumours of nervous system, at the three-digit level in the ICD. We excluded those patients who had a record of cancer before their first recorded admission for NF (468 cases), and we excluded people with a first record of NF on the same admission record as a cancer (833 cases). We did this to avoid surveillance bias, since cancer could have been diagnosed as a result of admission for NF, or, alternatively, NF could have been recorded because the patient needed care for cancer.

We repeated all analyses on the cohort of presumed NF1 cases only.

Statistical methods. Separate analyses were done for each cancer as described using the example of malignant brain tumour. Rates of malignant brain tumour were calculated based on person years. The ‘date of entry’ into the NF cohort, or the reference cohort, was the date of first admission for NF, or the reference condition. The ‘date of exit’ was the date of subsequent admission for malignant brain tumour (if any occurred), or death, or the end of the data file (28 February 2011), whichever was the earliest. Patients were censored from further follow-up on the exact day of first admission for malignant brain tumour or death.

We used the indirect method of standardisation, taking the combined NF and reference cohorts as the standard population. The stratum-specific rates in the standard population were applied first to the NF cohort, and then, separately, to the reference cohort, in order to obtain the ‘expected’ number of cases of cancers in each individual cohort based on the stratum-specific rates in the two cohorts combined. The ratio of the standardised rate of occurrence of malignant brain tumour in the NF cohort was calculated relative to that in the reference cohort using the formula \(\frac{O_{NF}/E_{NF}}{O_{REF}/E_{REF}} \), where \(O \) is the observed and \(E \) is the expected number of cases of malignant brain tumour in each cohort. This follows the methods described in detail by us elsewhere (Fois et al, 2010), and by Breslow and Day (1987). The analysis was done using a suite of programs developed ‘in house’ using SAS 9 software (SAS Institute, Cary, NC, USA).

Results

There were 8003 people hospitalised with NF over the study period. There were 6739 people in the cohort of presumed NF1. Their age and sex distributions are given in Supplementary Appendix 1 and 2 (online only), which also show the ratio of the number of people in the reference cohort per person in the NF cohort. There were generally about 1000 people in the reference cohort for each person in each 5-year age stratum in the NF cohort, that is, there were ample numbers to ensure adequate stratification and standardisation.

The rate ratio (RR) of cancers in the total NF cohort relative to the reference cohort was 4.3 (95% confidence interval (95% CI): 4.0–4.6), based on 769 observed cases in the NF cohort. In the cohort of people with presumed NF1, that is, after excluding all patients with schwannomas, meningiomas, acoustic neuromas and sensorineural deafness, the RR remained elevated at 4.0 (95% CI: 3.7–4.3, based on 697 observed cases).

The RRs for individual malignant and benign neoplasms of the nervous system in the whole NF cohort, and in the NF1 cohort, are shown in Table 1. The RRs of hospital admission for malignant
and benign neoplasm of peripheral nerves, spinal cord, cranial nerves, central nervous system and eye were very high. Table 2 shows the data for individual malignant tumours in the NF1 cohort. For most, the RRs were very similar in the NF1 and the total NF cohort (for the latter, see Supplementary Appendix 3). Of the other tumours, risks were very high for cancers of the ‘heart mediastinum and pleura’, ‘retroperitoneum and peritoneum’, ‘bone and cartilage’, ‘connective and other soft tissue’, small intestine and adrenal gland (Table 2). These are all cancers that are very uncommon in the general population and the ICD coding structure is such that their precise nature cannot be identified from the coding, except that all cases of adrenal cancer were cancers of the adrenal medulla. Considering cancers that are more common in the general population, and the NF1 cohort, we found significantly elevated risks for cancers of the oesophagus (RR: 3.3; see Table 2 for CIs), stomach (2.8), colon (2.0), liver (3.8), biliary tract (8.2), pancreas (3.4), lung and bronchus (3.0), malignant melanoma (3.6), non-melanoma skin cancer (1.6), thyroid gland (4.9), breast (2.3), ovarian cancers (3.7) and several others (Table 2). There were elevations of risk of haematological cancers, notably diffuse non-Hodgkin’s lymphoma (RR: 3.3), other and unspecified non-Hodgkin’s lymphoma (2.3), lymphoid leukaemia (2.5), acute (4.2) and chronic myeloid leukaemia (6.7). Some of these cancers were identified from a subsequent hospital admission that was fairly close in time after admission for NF; others were first identified more than a year after the NF admission (Supplementary Appendix 3).

Additionally, we estimated RRs for breast cancer in women aged under 50 years (i.e., younger than the age at which women in England are routinely invited for mammographic screening) and 50 plus. Younger women with NF had a high risk of breast cancer at RR 3.6 (95% CI: 2.5–5.0, based on 34 observed cases). In women aged ≥50, RR was 1.5 (95% CI: 1–2.2) based on 24 cases. After excluding the first year following hospital admission for NF, the risk remained high (RR: 3.3; 2.2–4.8) in younger women, but not in those aged 50 and older.

Discussion

Principal findings. We have systematically documented and quantified the risk of each individual malignant neoplasm at the three-digit level of the ICD in patients hospitalised with NF in a large defined population. Over the 13-year period, with mean follow-up ~6 years, 697 out of 6739 patients with NF1 (10.3%) developed subsequent neoplasms. As expected, the highest rates, compared with rates in the reference population, were for tumours of the nervous system, brain and eye. Overall, there was a four-fold increase in risk of tumours. After excluding the well-known risks of the nervous system tumours, the RR remained high at 2.7. Some of the highest RRs, besides those relating to nervous system sites, were for cancers of the oesophagus, stomach, colon, liver, biliary tract, pancreas, lung, breast, ovary, and other sites (Table 2). They included elevations of risk of breast cancer, thyroid cancer, haematological cancers, and gastrointestinal tract cancers. The highest RRs, besides those relating to nervous system sites, were for cancers of the oesophagus, stomach, colon, liver, biliary tract, pancreas, lung, breast, ovary, and other sites (Table 2). They included elevations of risk of breast cancer, thyroid cancer, haematological cancers, and gastrointestinal tract cancers.
confirmed that they did not; and both confirmed that we were the first to raise this with them. The Office for National Statistics offered to review some of its death certificates that included NF. It first to raise this with them. The Office for National Statistics confirmed that they did not; and both confirmed that we were the first to raise this with them. The Office for National Statistics offered to review some of its death certificates that included NF. It confirmed that they did not; and both confirmed that we were the first to raise this with them. The Office for National Statistics offered to review some of its death certificates that included NF. It confirmed that they di
Tumours associated with neurofibromatosis

(500 words)

UK, with 36 people who had developed malignant tumours and it would not have had the statistical power to identify risks of different individual malignancies.

Sharif et al (2007) reported an increased risk of breast cancer among female patients with NF1. We show a similarly high risk of breast cancer, notably a three-fold risk in women under 50, and consideration could be given to lowering the age at which breast cancer screening is offered to women with NF.

Our study showed a RR of more than two for non-Hodgkin’s lymphoma and leukaemia, in line with that reported by Stiller in the United Kingdom and Matsui in Japan (Matsui et al, 1993; Stiller et al, 1994). Although NF1-associated skeletal problems and abnormal bone metabolism have been reported (Tucker et al, 2009), an increased risk of bone cancer in people with NF has not previously been reported. Phaeochromocytoma is known to be more common in patients with NF1 than in the general population (Zinnamosca et al, 2011). We found 12 cases of malignant neoplasm of the adrenal medulla, where most cases of phaeochromocytoma arise, and none coded as cancer of the adrenal cortex.

To the best of our knowledge, we are the first to report on the increased risk of several gastrointestinal cancers, lung cancer, skin malignancies, thyroid cancer, a number of haematological malignancies and cancer of ovary (Table 2). Johannessen et al (2005) described NF1 as a ‘familial cancers syndrome’ and provided a robust genetic explanation for the increased risk of malignant tumours in people with NF1. Our findings on the elevation of risk of a wide range of cancers have biological plausibility.

CONCLUSIONS

First, we have shown associations between NF and a wide range of individual malignancies. If our findings on risks of individual cancers that are not already well documented are confirmed elsewhere, they have implications for understanding prognosis in people with NF, and, where appropriate, for the possibility of anticipatory care and screening. Second, the clinical recording and ICD coding of NF is suboptimal and should be improved. Third, large-scale epidemiological studies based on nationwide data sets that accumulate a large number of observations offer opportunities for studying the epidemiology of rare conditions, like NF, that would be difficult to study on such a scale in other study designs.

ACKNOWLEDGEMENTS

David Yeates wrote the software package used for the analysis. Over many years, the linked data sets were built by Leicester Gill and Matt Davidson, Unit of Health–Care Epidemiology, University of Oxford. The Unit of Health–Care Epidemiology is funded by the English National Institute for Health Research to analyse the linked data. The views expressed in this paper do not necessarily reflect those of the funding body.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ETHICAL APPROVAL

Ethical approval for analysis of the record-linkage study data was obtained from the Central and South Bristol Multi–Centre Research Ethics Committee (04/Q2006/176).
REFERENCES

Breslow N, Day N (1987) Statistical methods in cancer research. Volume II—
the design and analysis of cohort studies. IARC Sci Publ 82: 91–97.

Burns EM, Rigby E, Mamidanna R, Bottle A, Aylin P, Ziprin P, Faiz OD
(2011) Systematic review of discharge coding accuracy. J Public Health
34: 138–148.

Duong TA, Sibidian E, Valeyrie-Allanore L, Viallette C, Ferkal S, Hadji-Rabia S,
Glerion C, Lyonnet S, Zerah M, Kemlin I, Rodriguez D, Bastuji-Garin S,
Wolkenstein P (2011) Mortality associated with neurofibromatosis 1: a
cohort study of 1895 patients in 1980–2006 in France. Orphanet J Rare Dis
6: 18.

Evans DGR, Baser ME, McGeoughran J, Sharif S, Howard E, Moran A (2002)
Malignant peripheral nerve sheath tumours in neurofibromatosis. J Med
Genet 39: 311–314.

Evans DG, Howard E, Giblin C, Clancy T, Spencer H, Huson SM, Lalloo F
(2010) Birth incidence and prevalence of tumor-prone syndromes:
estimates from a UK family genetic register service. Am J Med Genet
152A: 327–332.

Evans DG, O’Hara C, Wilding A, Ingham SL, Howard E, Dawson J,
Moran A, Scott-Kitching V, Holt F, Huson SM (2011) Mortality in
neurofibromatosis 1: in North West England: an assessment of
actuarial survival in a region of the UK since 1989. Eur J Hum Genet
19: 1187–1191.

Ferner RE, Hughes RA, Hall SM, Upadhya M, Johnson MR (2004)
Neurofibromatous neuropathy in neurofibromatosis 1 (NF1). J Med
Genet 41: 837–841.

Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG,
Upadhya M, Towers R, Gleeson M, Steiger C, Kirby A (2007) Guidelines
for the diagnosis and management of individuals with neurofibromatosis
1. J Med Genet 44: 81–88.

Ferner RE (2010) The neurofibromatoses. Pract Neurol 10: 82–93.

Fois AF, Wotton CJ, Yeates D, Turner MR, Goldacre MJ (2010)
Cancer in patients with motor neuron disease, multiple sclerosis and
Parkinson’s disease: record linkage studies. J Neurol Neurosurg Psychiatry
81: 215–221.

Gill L, Goldacre M (2003) English national record linkage of hospital episode
statistics and death registration records. Report to the Department of
Health. Oxford: Unit of Health-Care Epidemiology, University of Oxford.
Goldacre MJ, Wotton CJ, Yeates D, Seaaraot V, Flint J (2007) Cancer in
people with depression or anxiety: record-linkage study. Soc Psychiatry
Psychiatr Epidemiol 42: 683–689.

Goldacre MJ, Wotton CJ, Yeates DG (2009) Cancer and immune-mediated
disease in people who have had meningococcal disease: record-linkage
studies. Epidemiol Infect 137: 681–687.

Imazumi Y (1995) Mortality of neurofibromatosis in Japan, 1968–1992.
J Dermatol 22: 191–195.

Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K
(2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR.
Proc Natl Acad Sci USA 102: 8573.

Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE,
Lynch RC, Rooth MJ, McClatchey A, Ryosm, Cichowski K (2008)
TORC1 is essential for NF1-associated malignancies. Curr Biol 18:
56–62.

Jouhilah E, Peltonen S, Haape AM, Peltonen J (2011) The pathobiology
of neurofibromatosis 1. Am J Pathol 178: 1932–1939.

Mosseco M, Kodra Y, Vichi M, Coni S, Kanieff M, Pace M, Frova I, Taruscio
D (2011) Mortality associated with neurofibromatosis type 1: a study
based on Italian death certificates (1995–2006). Orphanet J Rare Dis
6: 11.

Matsui I, Tanimura M, Kobayashi N, Sawada T, Nagahara N, Akatsu A
(1993) Neurofibromatosis type 1 and childhood cancer. Cancer 72:
2746–2754.

Rasmussen SA, Yang Q, Friedman JM (2001) Mortality in neurofibromatosis
1: an analysis using U.S. death certificates. Am J Hum Genet 68:
1110–1118.

Sharif S, Moran A, Huson SM, Idrenden R, Shenton A, Howard E, Evans DG
(2007) Women with neurofibromatosis 1 are at a moderately increased
risk of developing breast cancer and should be considered for early
screening. J Med Genet 44: 481–484.

Sorenson SA, Mulvihill JJ, Nielsen A (1986) Long-term follow-up of von
Recklinghausen neurofibromatosis. Survival and malignant neoplasms.
N Engl J Med 314: 1010–1015.

Stiller CA, Chessells JM, Fitchett M (1994) Neurofibromatosis and childhood
leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer
70: 969–972.

Tucker T, Schnabel C, Hartmann M, Friedrich RE, Frielings I, Kruse HP,
Mautner VF, Friedman JM (2009) Bone health and fracture rate in
individuals with neurofibromatosis 1 (NF1). J Med Genet 46: 259–265.

Viskokich D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver
M, Carey JC, Copeland NG, Jenkins NA, White R, O’Connell P (1990)
Deletions and a translocation interrupt a cloned gene at the
neurofibromatosis type 1 locus. Cell 62: 187.

Walker I, Thompson D, Easton D, Ponder B, Ponder M, Frayling I, Baralle D
(2006) A prospective study of neurofibromatosis type 1 cancer incidence
in the UK. Br J Cancer 95: 233–238.

Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM,
Fountain JW, Brereton A, Nicholson J, Mitchell AL, Brownstein BH,
Collins FS (1990) Type 1 neurofibromatosis gene: identification of a large
transcript disrupted in three NF1 patients. Science 249: 181–186.

World Health Organization (1992) International Statistical Classification of
Diseases and Related Health Problems, 10th revision: Volume 1: 844.
World Health Organization: Geneva.

Zimpanosca L, Petramala L, Custeza D, Marinelli C, Schina M, Cianci R,
Giustini S, Sciomser S, Anastasi E, Calvieri S, De Toma G, Letizia C (2011)
Neurofibromatosis type 1 (NF1) and pheochromocytoma: prevalence,
clinical and cardiovascular aspects. Arch Dermatol Res 303: 317–325.

Zöller M, Rembeck B, Akesson HO, Angervall L (1995) Life expectancy,
mortality and prognostic factors in neurofibromatosis type 1. A twelve-
year follow-up of an epidemiological study in Göteborg, Sweden. Acta
Derm Venereol 75: 136–140.

Zöller ME, Rembeck B, Odén A, Samuelsson M, Angervall L (1997) Malignant
and benign tumors in patients with neurofibromatosis type 1 in a defined
Swedish population. Cancer 79: 2125–2131.

This work is published under the standard license to publish agree-
ment. After 12 months the work will become freely available and
the license terms will switch to a Creative Commons Attribution-
NonCommercial-Share Alike 3.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)