Supplementary Information

Demographic estimates from the Palaeolithic-Mesolithic boundary in Scandinavia:
Comparative benchmarks and novel insights

Victor Lundström1 Robin Peters2 Felix Riede3,4

Table of Contents

1. Data and study area ... 2
2. Preparation before Ordinary Kriging... 3
 2.1. Voronoi diagram and density measurements. .. 3
 2.1.1. Semivariograms ... 4
 2.1.2. Kriging rasters ... 5
 2.1.3. ODI selection ... 6
3. Deriving demographic parameters .. 7
 3.1. Ethnographic reference groups ... 7
 3.2. Adjusting the protocol .. 8
4. Results ... 10
 4.1. Late Glacial and Early Holocene estimates: GROUP1 hunter-gatherers 10
5. Comparative estimates: GROUP1 & GROUP2 .. 11
 5.1. The Late Glacial Final Palaeolithic .. 11
 5.2. Early Holocene Norway ... 12
6. Distribution maps .. 13
7. Literature ... 14

1. University Museum, University of Bergen, Villaveien 1A, 5020 Bergen, Norway;
victor.lundstrom@uib.no
2. LVR-State Service for Archaeological Heritage, Endenicher Str. 133, 53115 Bonn, Germany;
mail@robinpeters.net
3. Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270
Højbjerg, Denmark; friede@cas.au.dk
4. BIOCHANGE - Centre for Biodiversity Dynamics in a Changing World, Aarhus University, Ny
Munkegade 116 DK-8000 Aarhus C, Denmark
1. Data and study area

Original data and results for the study, can be found here: https://github.com/VicluUiB/Lundstrom-et-al-2020. The R-markdown for performing the geostatistical component of the protocol is accessed at: https://github.com/C-C-A-A/CologneProtocol-R. Both data sets cover the modern-day administrative boundaries (Fig.1) of Denmark and the southernmost province of Scania in Sweden (solid line) as well as the entire Norwegian coast (dashed line).

Figure 1. Modern administrative boundaries were obtained from www.gadm.org. Projection: UTM32N; EPSG: 25832.
2. Preparation before Ordinary Kriging
2.1. Voronoi diagram and density measurements.

Figure 2. We start by plotting our site locations, followed by producing a Voronoi diagram (grey lines) as well as extracting the largest empty circle measures (black vertices) for the geostatistical interpolation of site densities. These are plotted within the modern-day landmasses of northern Germany, Denmark, Scania (left panel) and Norway (right panel) and forms the so-called “total area of calculation” (TAC) and its area in km² constitutes the input for which metapopulation densities are calculated. Projection: UTM32N; EPSG: 25832
2.1.1. Semivariograms

Figure 3. We then produce semivariograms for southern Scandinavia (upper panels) and Norway (bottom panels) using a ‘spherical’ model. At a certain distance, our spherical model hits a plateau of no autocorrelation, as indicate by an enlargement of the plots (right panels), meaning that predictions beyond these distances will be highly inaccurate. This distance, called the ‘range’, intersects with the amount of semivariance at which the curve levels off, also known as the ‘sill’ (Isaaks and Srivastava, 1990).
2.1.2. Kriging rasters

Figure 4. Four resulting rasters from the geostatistical interpolation. Sites from southern Scandinavia (upper panels) and Norway (lower panels) are superimposed on all rasters for spatial reference, and the colour palette that ranges from yellow to blue (left panels) indicates the size of the LEC-radii, and therefore settlement density, whereas the palette ranging from yellow to purple (right panels) indicates the amount of kriging variance, or in other words, the degree of predictive uncertainty. Projection: UTM32N; EPSG: 25832.
2.1.3. ODI selection

Figure 5. The ODI’s for southern Scandinavia (upper panels) and Norway (lower panels) are selected using three heuristic criteria. The ODI for core areas is identified by (1) the first and most significant peak in areal growth per equidistance of the Largest Empty Circle (LEC) radii (left panels) and (2) should encircle approximately 70-90% of all site locations (right panels). The ODI for home ranges should represent a second peak in areal growth and shall, together with the ODI for core areas, (3) remain within an accepted range of kriging variance, which we have defined as anywhere between the lowest amount of kriging variance and the sill. For southern Scandinavia, ODI’s for core areas and home ranges were selected at a 13.5 and 20 km equidistance. The second peak for home ranges actually occurs at 20.5 km equidistance, however, this turned our study area into one single home range, preventing us to operate with a median estimate. For early Holocene Norway, we opted for an 8.5 km and 12.5 km ODI for core areas and home ranges. 8.5 km constitutes a clear peak in growth, whereas 12.5 km represents a plateau in growth. There is also a third peak at 17.5 km, however, growth seems to fluctuate somewhat in these parts, perhaps as a result of increased kriging variance. To minimize uncertainties in our estimates, we therefore select the ODI at 12.5 km for home ranges.
3. Deriving demographic parameters

3.1. Ethnographic reference groups

Table 1. Due to a highly fragmented archaeological record in both case studies, we have to rely on selection of ethnographic reference data from previous research (see Kretschmer for an outline of their selection criteria, but also Lundström and Riede, 2019; Schmidt and Zimmermann, 2019). However, in order to produce comparative estimates for the early Holocene, in which populations might have relied more fully on an aquatic economy, we have selected nine ethnographic reference groups on the basis of stable isotope data from the site Huseby Klev (Boethius and Alhström, 2018) that, however, post-date our time-slice to the end of the preboreal. As this makes our application of these groups highly problematic, we will focus our modelling mainly on the more terrestrially oriented groups mentioned earlier, using more aquatic oriented groups only as comparanda (denoted in italics). By slightly relaxing our selection criteria to groups that are mobile and who obtain 65-75% in aquatic subsistence, 5-35% terrestrial and 0-20% plant gathering we end up with nine groups, where six inhabit the northern hemisphere, and three inhabit the southern hemisphere. Once again, these are mainly used as comparanda, our main focus lies on the more terrestrially oriented groups.

Group#	Name	Latitude	Longitude	GROUP1	GROUP2
335	Round Lake Ojibwa	52.71	90.62	7	50
377	Nunamiut Inuit	68.18	151.71	8.9	31
358	Satudene	65.75	122.89	12	29
352	Hare	67.47	125	13	26
345	Slave	61.15	119.5	13	39
338	Mistassini Cree	51.75	72.66	15	37
332	North Saulteaux	52.28	96.78	15	45
350	Mountain	63.68	125.37	15	60
346	Kaska	59.73	125	16	58
375	Noatak Inuit	68.09	160	17.5	30
343	Sekani	56.14	120	18	40
54	Ona	53.9	68.62	20	45
331	Rainy River Ojibwa	45.21	85.1	21	65
365	Naskapi	56.19	68.92	23	39
355	Chippewyan	59.47	106.19	23	75
347	Tahlitan	57.66	127.85	n/a	71

Group#	Name	Lat.	Long.	GROUP1	GROUP2
55	Yahgan	55.02	68.98	13	24
383	Avilingmiut Inuit	65.16	88.12	13	26
372	Labrador Inuit	57.83	62.32	11	35
390	Inughuit (North Greenland)	77.53	69.50	11.5	35
382	Utkuhikhalingmiut	66.99	95.18	18	35
387	Netsilik Inuit	71.46	94.93	22	85
381	Copper Inuit	68.58	106.61	18	105
53	Alacaluf	49.55	74.52	13.4	n/a
52	Chono	45.00	73.83	n/a	n/a
3.2. Adjusting the protocol

When we model the number of GROUP1 social units, we do so by dividing the median km2 of the so-called ‘home range’ with the km2 of each core area. The maximum, 75th percentile, median, 25th percentile, and the minimum estimate on group size from the ethnographic record, is then multiplied by the number of groups (Ng). This results in the total number of people (Np) which can then be generated into population densities within core areas (Dca), home ranges (Dhr) and across the much wider region for the metapopulation (Dmp). See Table 2 for a summary. Whenever we make comparisons with GROUP2 social units, the number of groups is instead derived by dividing the km2 of each core area, with the median km2 of home ranges.

Figure 6. Demographic parameters are generated using the fundamental estimate on the number of groups present within each core area. The number of groups (Ng), is obtained by dividing the median km2 of home ranges (light grey) with the km2 of core areas (dark grey).
Table 2 Summary of demographic parameters obtained, and the formulas or mode for calculating them.

Protocol outputs	Abbreviations	Mode of calculation
Core Area in km2	Aca	Ordinary kriging & 1st peak ODI
Median home Range in km2	Mhr	Ordinary kriging & 2nd peak ODI
Number of groups	Ng	Ahr / Aca
Group size	Gs	Max, 75th, median, 25th and min
Number of people	Np	Max, 75th, median, 25th and min * Ng
Density within core areas	Dca	Np / Aca
Density within home ranges	Dhr	Np / Ahr
Metapopulation density	Dmp	Np / Atac
Total area of calculation in Km2	Atac	Polygons of modern national borders
4. Results
4.1. Late Glacial and Early Holocene estimates: GROUP1 hunter-gatherers

Table 3 Results for southern Scandinavia and Norway (italics). Mhr (median home range in km²), Tca (total km² of core areas per region), Ng (number of GROUP1 social units), R (range), Gs (size of GROUP1 social units), Np (total number of people), Dca (population density within core areas), Dhr (population density within home ranges), Atac (km² of total area of calculation), Dmp (metapopulation density).

Region	Mhr	Tca	Ng	R	Gs	Np	Dca	Dhr	Atac	Dmp
DK	2369	12,244	16	Median	15	240	0.02	0.10	54,496	0.002
S. Swe	2369	1178	13	Median	15	195	0.16	0.08	54,496	0.002
S. Scand	2369	13,422	29	Median	15	435	0.03	0.18	146,624	0.003

Region	Ahr	Tca	Ng	R	Gs	Np	Dca	Dhr	Atac	Dmp
SE. Nor	990	2261	7	Median	15	100	0.04	0.10	146,624	0.004
N. Nor	246	5721	20	Median	15	299	0.05	1.22	146,624	0.003
C. Nor	2128	5153	14	Median	15	259	0.05	1.05	146,624	0.002
SW. Nor	2128	4261	36	Median	15	544	0.13	0.26	146,624	0.004
Total Norway	5492	17,396	77	Median	15	1159	0.07	0.21	146,624	0.008

Max value
Q3 value
Median value
Q1 value
Min value
5. Comparative estimates: GROUP1 & GROUP2
5.1. The Late Glacial Final Palaeolithic

Figure 7 Box and whisker plots with comparative estimates on total population size (Np) and population densities across core areas (Dca), and home ranges (Dhr), using GROUP1 and GROUP2 social units for predominantly terrestrial hunter-gatherers.
5.2. Early Holocene Norway

Figure 8 Box and whisker plots with comparative estimates on total population size (Np) and population densities across core areas (Dca), and home ranges (Dhr), using both GROUP1 and GROUP2 social units for predominantly marine oriented hunter-gatherers (left panels) and predominantly terrestrial hunter-gatherers (right panels).
6. Distribution maps

Figure 9 Distribution maps of site locations, core areas, and home ranges, from southern Scandinavia during the Late Glacial Final Palaeolithic (top panel) and south-eastern (A), central (B), south-western (C), and northern Norway (D) during the early Holocene (bottom panel). Palaeogeographic maps were compiled by ZBSA after Björck 1995; Brooks et al. 2011; Cohen et al. 2017; Edwards/Brooks 2008; Harff et al. 2017; Lericolais 2017; Moscon et al. 2015; Pässe/Andersson 2005; Seguinot et al. 2018; Stroeven et al. 2016; Subetto et al. 2017; Weaver et al. 2003. Projection: UTM32N; EPSG: 25832.
7. Literature

Björck, S. 1995. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quaternary International 27, 19–40.

Brooks, A. J., Bradley, S. L., Edwards, R. J. and Goodwyn, N. 2011. The palaeogeography of Northwest Europe during the last 20,000 years. Journal of Maps 7, 573-587.

Boethius, A., Ahlström, T., 2018. Fish and resilience among Early Holocene foragers of southern Scandinavia: A fusion of stable isotopes and zooarchaeology through Bayesian mixing modelling. Journal of Archaeological Science. 93, 196–210. https://doi.org/10.1016/j.jas.2018.02.018

Cohen, K. M., Westley, K., Erkens, G., Hijma, M. P. and Weerts, H. J. T. 2017: The North Sea. Submerged Landscapes of the European Continental Shelf: John Wiley & Sons, Ltd, 147-186.

Edwards, R., Brooks, E., 2008. The Island of Ireland: Drowning the Myth of an Irish Land-bridge?, In: Davenport, J.J., Sleelman, D.P., Woodman, P.C. (Eds.), Mind the Gap: Postglacial Colonisa, pp. 19-34.

Harff, J., Flemming, N. C., Groh, A., Hünicke, B., Lericolais, G., Meschede, M., Rosentau, A., Sakellariou, D., Uścinowicz, S., Zhang, W. and Zorita, E. 2017: Sea Level and Climate. In Flemming, N. C., Harff, J., Moura, D., Burgess, A. and Bailey, G. N., editors, Submerged Landscapes of the European Continental Shelf, Hoboken, NJ: Wiley & Sons, 11-49.

Isaaks, E. and Srivastava, R., 1990. Applied Geostatistics. New York: Oxford University Press.

Kretschmer, I., 2015. Demographische Untersuchungen zu Bevölkerungsichten, Mobilität und Landnutzungsmustern im späten Jungpaläolithikum, Kölner Studien zur prähistorischen Archäologie. VML Verlag Marie Leidorf GmbH, Rahden/Westf.

Lericolais, G., 2017. Late Pleistocene Environmental Factors defining the Black Sea, and Submerged Landscapes on the Western Continental Shelf, Submerged Landscapes of the European Continental Shelf, John Wiley & Sons, Ltd, pp. 479-495.

Lundström, V., Riede, F., 2019. A spatially explicit model of Final Palaeolithic population densities for southern Scandinavia in the period between 14,000 and 12,700 cal BP. J. Archaeol. Sci. Rep. 26, 101886. https://doi.org/10.1016/j.jasrep.2019.101886

Moscon, G., Corregiari, A., Stefani, C., Fontana, A. and Remia, A. 2015. Very-high resolution analysis of a transgressive deposit in the Northern Adriatic sea (Italy). Alpine and Mediterranean Quaternary 28, 121-129.

Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P.L., Stroeven, A.P., Shackleton, C., Winsborrow, M., Heyman, J., Hall, A.M., 2017. Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews 169, 148-172.

Pässe, T., Andersson, L., 2005. Shore-level displacement in Fennoscandia calculated from empirical data. Gff 127, 253-268.

Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., Preusser, F., 2018. Modelling last glacial cycle dynamics in the Alps. The Cryosphere 12, 3265-3285.

Stroeven, A.P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B.W., Harbor, J.M., Jansen, J.D., Olsen, L., Caffee, M.W., Fink, D., Lundqvist, J., Rosqvist, G.C., Strömberg, B., Jansson, K.N., 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews 147, 91-121.
Subetto, D., Zobkov, M., Potakhin, M., Tarasov, A., 2017. Paleoreconstructions of Lake Onego. Development in the Late Pleistocene and Holocene.

Weaver, A.J., Saenko, O.A., Clark, P.U., Mitrovica, J.X., 2003. Meltwater Pulse 1A from Antarctica as a Trigger of the Bølling-Allerød Warm Interval. Science 299, 1709-1713.