Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
studies of transmission and efficiency in the conduct of prevention trials.

Contributors
M T Dorak participated in data analysis, interpretation of results, and preparation of the manuscript. J Tang and E S Lobashevsky were responsible for HLA typing, laboratory data acquisition and management, and contributed to analysis and preparation of the manuscript. A Pennan-Aguilar, A O Westfall, and M M Schaeen were responsible for statistical analysis and management of the full dataset and reviewing of the final version of the manuscript. I Zulu and N G Kancheya assisted with protocol development and assembling of the participants, supervised onsite collection of epidemiological data and biological specimens, and reviewed the latest version of the manuscript. S A Allen and R A Kaslow designed the original study and framework for immunogenetics analyses, supervised collection of relevant clinical and epidemiological data and biological specimens, data analysis and interpretation, and reviewed successive drafts of the manuscript.

Conflict of interest statement
None declared.

Acknowledgments
We thank the study participants, staff, interns, and project management group members of the Zambia UAB HIV Research Project in Lusaka, Zambia, and staff and students in the virology laboratory at the University Teaching Hospital, Lusaka, Zambia; the University of Alabama at Birmingham programme in Epidemiology of Infection and Immunity; and the Biostatistics and Bioinformatics Unit, Comprehensive Cancer Center at UAB, Birmingham, AL, USA. This work was funded in part by NIAID R01-A1H14951, R01-A1H14961, P30-A127767, and U51-A1H14530. The sponsor had no role in study design; in collection, analysis, and interpretation of data; in manuscript preparation; or in the decision to submit the manuscript for publication.

1 Fidelis US, Allen SA, Musomba R, et al. Virologic and immunologic determinants of heterosexual transmission of human immunodeficiency virus type 1 in Africa. AIDS Res Hum Retroviruses 2001; 17: 901–10.
2 Trask SA, Derdeyn CA, Fideli U, et al. Molecular epidemiology of human immunodeficiency virus type 1 transmission in a heterosexual cohort of discordant couples in Zambia. J Virol 2002; 76: 397–405.
3 Royce RA, Sena A, Gates W Jr, Cohen MS. Sexual transmission of HIV. N Engl J Med 1997; 336: 1072–78.
4 MacDonald KS, Embree J, Njenga S, et al. Mother-child class I HLA sharing increases perinatal human immunodeficiency virus type 1 infection. J Infect Dis 1998; 177: 551–56.
5 MacDonald KS, Fowke KR, Kimani J, et al. Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis 2000; 181: 1581–89.
6 Lockett SF, Robertson JR, Brettle RP, Yap PL, Middleton D, Leigh Brown AJ. Mismatched human leukocyte antigen alleles protect against heterosexual HIV transmission. J Acquir Immune Defic Syndr 2001; 27: 277–80.
7 Liu C, Carrington M, Kaslow RA, et al. Association of polymorphisms in human leukocyte antigen class I and transporter associated with antigen processing genes with resistance to human immunodeficiency virus type 1 infection. J Infect Dis 2003; 187: 1404–10.
8 Allen S, Meinenz-Derr J, Kautzman M, et al. Sexual behaviour of HIV discordant couples after HIV counselling and testing. AIDS 2003; 17: 733–40.
9 Tang J, Tang S, Lobashevsky E, et al. Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1. J Virol 2002; 76: 8267–84.
10 Trachtenberg E, Korber B, Sollars C, et al. Advantage of rare HLA supertype in HIV disease progression. Nat Med 2003; 9: 928–35.
11 Peters B, Whitall T, Babashady K, Gray K, Vaughan R, Lehrer T. Effect of heterosexual intercourse on mucosal alloimmunisation and resistance to HIV-1 infection. Lancet 2004; 363: 518–24.

Department of Epidemiology (M T Dorak MD, A Pennan-Aguilar MPH, E S Lobashevsky MD, M M Schaeen MSN, S A Allen MD, Prof R A Kaslow MD), Department of Medicine (J Tang MD, and Department of Biostatistics (A O Westfall MD, School of Public Health; and Zambia UAB HIV Research Project I Zulu MD, N G Kancheya MD, S A Allen) University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA

Correspondence to: Dr Richard A Kaslow (e-mail: rkaslow@uab.edu)

Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets
Jan ter Meulen, Alexander B H Bakker, Edward N van den Brink, Gerrit J Weverling, Byron E E Martina, Bart L Haagmans, Thijs Kuiken, John de Kruijf, Wolfgang Preiser, Willy Spaan, Hans R Gelderblom, Jaap Goudsmidt, Albert D M E Osterhaus

SARS coronavirus continues to cause sporadic cases of severe acute respiratory syndrome (SARS) in China. No active or passive immunoprophylaxis for disease induced by SARS coronavirus is available. We investigated prophylaxis of SARS coronavirus infection with a neutralising human monoclonal antibody in ferrets, which can be readily infected with the virus. Prophylactic administration of the monoclonal antibody at 1.0 mg/kg reduced replication of SARS coronavirus in the lungs of infected ferrets by 3·3 logs (95% CI 2·6–4·0 logs; p<0.001), completely prevented the development of SARS coronavirus-induced macroscopic lung pathology (p=0·013), and abolished shedding of virus in pharyngeal secretions. The data generated in this animal model show that administration of a human monoclonal antibody might offer a feasible and effective prophylaxis for the control of human SARS coronavirus infection.

Lancet 2004; 363: 2139–41
See Commentary page 2102

Severe acute respiratory syndrome (SARS) has emerged as a frequently fatal respiratory-tract infection caused by the newly identified SARS coronavirus. After the worldwide SARS epidemic in 2002–2003, sporadic cases continue to arise in southern China, possibly because of human contact with a newly identified SARS coronavirus. After the worldwide SARS epidemic in 2002–2003, sporadic cases continue to arise in southern China, possibly because of human contact with a newly identified SARS coronavirus.
with the animal reservoir. Two recent cases of laboratory-acquired SARS coronavirus infections in China spread into the community and triggered extensive efforts in tracing and isolating contacts of patients to prevent a new epidemic. Means to control SARS coronavirus infection through active or passive immunisation are, therefore, urgently needed.

Passive transfer of mouse immune serum has been shown to reduce pulmonary viral titres in mice infected with SARS coronavirus. Immunoprophylaxis of SARS coronavirus infection with human monoclonal antibodies might therefore be a viable strategy to control SARS.

We generated a human IgG1 monoclonal antibody, CR3014, reactive with whole inactivated SARS coronavirus, by antibody phage display technology screening a large naive antibody library. Binding of this antibody to the viral peplomers was visualised by electron microscopy with a 10× objective. For measurement of the SARS coronavirus titre, homogenates were prepared from 0.1–0.3 g of lung tissue pooled from cranial, medial, and caudal parts of the lung. Histologically lesions consisted mainly of mild alveolar damage as well as peribronchial and perivascular lymphocyte infiltration. RT-PCR on pharyngeal swabs showed that virus was shed in the throat throughout day 7. Animals exposed to the mixture of virus and CR3014 had almost undetectable titres of SARS coronavirus in the lung, showed no lung lesions on day 4 or 7, and did not shed SARS coronavirus in their throats.

In the second set of experiments, two groups of ferrets (n=4 in each group) received an intraperitoneal injection of either CR3014 or the control antibody at a concentration of 10 mg/kg, 24 h before intratracheal infection with 10^5 TCID_50. SARS coronavirus strain HKU-39849, strain HKU-39849. Venous blood was drawn before administration of monoclonal antibody, before challenge, and on day 2 after the challenge. We measured the human IgG1 content of the serum by ELISA, and the neutralising capacity by a neutralisation assay using the fixed virus-varying serum-dilution format. Pharyngeal swabs were taken from the animals before the inoculation and on days 2 and 4 after the challenge for qualitative RT-PCR. Two animals from each of the four groups were killed on days 4 and 7 and necropsies were done according to a standard protocol. For assessment of lung inflammation associated with SARS coronavirus infection, haematoxylin-eosin-stained sections from the cranial and caudal parts of the lung were examined for inflammatory foci by light microscopy with a 10× objective. For measurement of the SARS coronavirus titre, homogenates were prepared from 0.1–0.3 g of lung tissue pooled from cranial, medial, and caudal parts of the lung.

All control ferrets had high titres of SARS coronavirus in their lungs on day 4, and lower titres on day 7. Viral replication was accompanied by multifocal pulmonary lesions affecting about 5–10% of the surface area of the lung. Histologically lesions consisted mainly of mild alveolar damage as well as peribronchial and perivascular lymphocyte infiltration. RT-PCR on pharyngeal swabs showed that virus was shed in the throat throughout day 7. Animals exposed to the mixture of virus and CR3014 had almost undetectable titres of SARS coronavirus in the lung, showed no lung lesions on day 4 or 7, and did not shed SARS coronavirus in their throats.
of the control animals (95% CI 2·6–4·0 logs, p<0·001 [Student’s t test]; figure 2A). This difference was accompanied by complete protection from macroscopic lung pathology (p=0·013 [Wilcoxon rank-sum test]; figure 2C) and a reduction of microscopic lesions compared with controls, which all showed multifocal lesions on gross necropsy (figure 2D). Shedding of SARS coronavirus in the throat was completely abolished in three of the four animals treated with CR3014 (figure 2B). However, in one animal the level of SARS coronavirus excretion was similar to that noted in the control group. The concentration of CR3014 in the serum of this ferret before challenge was less than 5 μg/mL, compared with 65–84 μg/mL in the other three animals, suggesting inappropriate antibody administration. Neutralising serum titres in this animal were less than half of those in the other animals on day 0 (titre of 5 against 100 TCID$_{50}$), and were not detectable on day 2 after infection, compared with a titre of 5–10 against 100 TCID$_{50}$ in the other animals on day 2.

SARS coronavirus has been detected in nasopharyngeal aspirates of up to 72% of SARS patients, being associated with increased mortality, and in the lungs of all autopsied patients by viral isolation or RT-PCR. On the basis of our data and the successful prophylaxis of respiratory syncytial virus disease with a humanised monoclonal antibody (Palivizumab), we reason that immunoprophylaxis of SARS coronavirus infection with a human monoclonal antibody might be an option for the control of SARS. The prophylactic dose we used for CR3014 (10 mg/kg) is less than the 15 mg/kg dose at which Palivizumab is given intramuscularly to at-risk infants once a month. If CR3014 reduced the replication of SARS coronavirus in people to the same extent as in ferrets, and in view of the serum halflife of up to 20 days for IgG1 in human beings, one intramuscular administration of CR3014 at the dose used in this study should protect an adult for the length of at least one to two SARS coronavirus incubation periods (median 4–6 days). Passive immunisation with CR3014 might, therefore, be a feasible approach to prevent lung manifestations in people exposed to SARS coronavirus, and prevent person-to-person spread of the virus by abolishment of viral shedding in pharyngeal secretions.

Contributors
J ter Meulen, A B H Bakker, G J Weverling, J Goudsmit, and A D M E Osterhaus planned the study, analysed data, and wrote the report. E N van den Brink, J de Kruif, W Preiser, and W Spaan generated and characterised the recombinant antibody. H R Gelderblom did electron microscopy. B E E Martina and B L Haagmans did animal experiments and virus titrations. T Kuiken did pathological analysis. All authors saw and approved the final version of the manuscript.

Conflict of interest statement
The animal studies at the Erasmus University, Rotterdam, were funded by Crucell Holland BV. The sponsor was involved in the design of the animal studies and in data analysis, but was not involved in performing the animal studies or the virological or pathological analysis of the necropsy samples.

Acknowledgments
SARS coronavirus strain HKU-39849 was provided by Malik Peiris, Department of Microbiology, University of Hong Kong. We thank Geert van Amerongen and Roberto Dias d’Ulloa for technical support in the animal studies, and Frank Piotto (ViroClinics), James Simon (CoroNovative), and Jindrich Cinatl for logistical support of the studies. We thank Rob van Lavieren, Freek Cox, Mandy Jongeneelen, GABI BauER, and Andrea Mannel for excellent technical assistance.

1 Guan Y, Zheng BJ, He YQ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 2003; 302: 276–78.
2 Subbarao K, McAllister J, Vogel L, et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 2004; 78: 3572–77.
3 Martina BE, Haagmans BL, Kuiken T, et al. SARS virus infection in cats and ferrets. Nature 2003; 425: 915.
4 Tsang OT, Chau TN, Choi KW, et al. Coronavirus-positive nasopharyngeal aspirate as predictor for severe acute respiratory syndrome mortality. Emerg Inf Dis 2003; 9: 1381–87.
5 Parnes C, Guillermin J, Habersang R, et al. Palivizumab prophylaxis of respiratory syncytial virus disease in 2000–2001: results from The Palivizumab Outcomes Registry. Pediatr Pulmonol 2003; 38: 484–89.

Crucell Holland BV, Leiden, Netherlands (J ter Meulen MD; A B H Bakker PhD, E N van den Brink PhD, G J Weverling MD, J de Kruif PhD, J Goudsmit MD; Institute of Medical Virology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany (W Preiser MD; Robert Koch-Institut, Berlin, Germany (H R Gelderblom MD; Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands (W Spaan PhD; Department of Virology, Erasmus Medical Center, Rotterdam, Netherlands (B E E Martina PhD, B L Haagmans PhD, T Kuiken PhD, A D M E Osterhaus PhD)

Correspondence to: Dr J ter Meulen, Crucell Holland BV, PO Box 2048, 2301 CA Leiden, Netherlands (e-mail: j.termeulen@crucell.com)