Implications of Recent Measurements of Hadronic Charmless B Decays

Hai-Yang Cheng1 and Kwei-Chou Yang1,2

1 Institute of Physics, Academia Sinica
Taipei, Taiwan 115, Republic of China

2 Department of Physics, Chung-Yuan Christian University
Chung-Li, Taiwan 320, Republic of China

Abstract

Implications of recent CLEO measurements of hadronic charmless B decays are discussed. (i) Employing the Bauer-Stech-Wirbel (BSW) model for form factors as a benchmark, the $B \to \pi^+\pi^-$ data indicate that the form factor $F_{B\pi}^0(0)$ is smaller than that predicted by the BSW model, whereas the data of $B \to \omega\pi$, $K^*\eta$ imply that the form factors $A_{B\omega}^0(0)$, $A_{BK^*}^0(0)$ are greater than the BSW model’s values. (ii) The tree-dominated modes $B \to \pi^+\pi^-$, $\rho^0\pi^\pm$, $\omega\pi^\pm$ imply that the effective number of colors $N_{\text{eff}}(LL)$ for $(V-A)(V-A)$ operators is preferred to be smaller, while the current limit on $B \to \phi K$ shows that $N_{\text{eff}}(LR) > 3$. The data of $B \to K\eta'$ and $K^*\eta$ clearly indicate that $N_{\text{eff}}(LR) \gg N_{\text{eff}}(LL)$. (iii) In order to understand the observed suppression of $\pi^+\pi^-$ and non-suppression of $K\pi$ modes, both being governed by the form factor $F_{B\pi}^0$, the unitarity angle γ is preferred to be greater than 90°. By contrast, the new measurement of $B^\pm \to \rho^0\pi^\pm$ no longer strongly favors $\cos \gamma < 0$. (iv) The observed pattern $K^\pi^- \sim K^0\pi^- \sim (2/3)K^-\pi^0$ is consistent with the theoretical expectation: The constructive interference between electroweak and QCD penguin diagrams in the $K^-\pi^0$ mode explains why $\mathcal{B}(B^- \to K^-\pi^0) > \frac{1}{2}\mathcal{B}(B^0 \to K^-\pi^+)$. The observation $N_{\text{eff}}(LL) < 3 < N_{\text{eff}}(LR)$ and our preference for $N_{\text{eff}}(LL) \sim 2$ and $N_{\text{eff}}(LR) \sim 6$ are justified by a recent perturbative QCD calculation of hadronic rare B decays in the heavy quark limit. (vi) The sizeable branching ratios of $K^*\eta$ and the enormously large decay rates of $K\eta'$ indicate that it is the constructive interference of two comparable penguin amplitudes rather than the mechanism specific to the η' that accounts for the bulk of $B \to \eta'K$ and ηK^* data. (vii) The new upper limit set for $B^- \to \omega K^-$ no longer imposes a serious problem to the factorization approach. It is anticipated that $\mathcal{B}(B^- \to \omega K^-) \gtrsim 2\mathcal{B}(B^- \to \rho^0 K^-) \sim 2 \times 10^{-6}$. (viii) An improved and refined measurement of $B \to K^*\pi^+$, $K^0\pi^0$ is called for in order to resolve the discrepancy between theory and experiment. Theoretically, it is expected that $K^0\pi^0 \sim (1/2)K^-\pi^0$ and $K^-\pi^+ \sim 3K^*\pi^+$.
I. INTRODUCTION

A number of new hadronic charmless B decay modes have been recently reported by CLEO \cite{1,5,3,2,4}

\[B \to \pi^+\pi^-, K_s^0\pi^0, \rho^0\pi^\pm, \omega\pi^\pm, K^{*0}\eta, K^{*}\eta, \rho^\pm\pi^\mp, K^{*}\pi^0, (1.1) \]

and several previously observed decays have received improved measurements: $B \to K^{\pm}\eta', K_s^0\eta', K^{*}\pi^\mp, K_s^0\pi^\pm, K^{*}\pi^0, \omega K^\pm$. Needless to say, these measurements will shed light on the underlying mechanism for charmless B decays and provide important constraints on the phenomenological models under consideration and the parameters involved in the model, such as form factors, unitarity angles, and nonfactorized effects.

Beyond the phenomenological level, the nonleptonic B decays have been studied within the framework of the so-called three-scale perturbative QCD factorization theorem in which nonfactorized and nonspectator contributions can be identified and calculated \cite{6}. Recently, it was shown that, in the heavy quark limit, the hadronic matrix elements for two-body charmless B decays can be computed from first principles and expressed in terms of form factors and meson light-cone distribution amplitudes \cite{7}. Nonfactorizable diagrams in the heavy quark limit are dominated by hard gluon exchange and thus can be calculated as expansion in α_s. As we shall see below, this framework provides a useful guidance on the nonfactorized corrections to the hadronic matrix elements of penguin and non-penguin operators and gives a justification on the use of generalized factorization in which the effective Wilson coefficients c_i^{eff} are renormalization-scale and -scheme independent while factorization is applied to the tree-level hadronic matrix elements.

In the present paper we will analyze the data of hadronic charmless B decays within the framework of generalized factorization and see what implications we can learn from the studies of the new measured modes (1.1). This paper is organized as follows. In Sec. II we briefly review the generalized factorization approach relevant to rare B decays. Then we proceed to study $B \to \pi\pi$ and πK decay modes in Sec. III, tree-dominated modes $\rho^0\pi^\pm$ and $\omega\pi^\pm$ in Sec. IV, $B \to K\eta', K^{*}\eta$ decays in Sec. V and $B^\pm \to \omega K^\pm$ decays in Sec. VI. Comparison of the present paper with the previous work \cite{8} is discussed in Sec. VII. Conclusions are presented in Sec. VIII.

II. FRAMEWORK

In the absence of first-principles calculations for hadronic matrix elements, it is customary to evaluate the matrix elements under the factorization hypothesis so that $\langle O(\mu) \rangle$ is factorized into the product of two matrix elements of single currents, governed by decay constants and form factors. However, the naive factorized amplitude is not renormalization scale- and γ_5 scheme- independent as the scale and scheme dependence of Wilson coefficients are not compensated by that of the factorized hadronic matrix elements. In principle, the
scale and scheme problems with naive factorization will not occur in the full amplitude since \(\langle O(\mu) \rangle \) involves vertex-type and penguin-type corrections to the hadronic matrix elements of the 4-quark operator renormalized at the scale \(\mu \). Schematically,

\[
\text{weak decay amplitude} = \text{naive factorization} + \text{vertex-type corrections} \quad (2.1)
\]

\[
+ \text{penguin-type corrections} + \text{spectator contributions} + \cdots,
\]

where the spectator contributions take into account the gluonic interactions between the spectator quark of the \(B \) meson and the outgoing light meson. The perturbative part of vertex-type and penguin-type corrections will render the decay amplitude scale and scheme independent. Generally speaking, the Wilson coefficient \(c(\mu) \) takes into account the physics evolved from the scale \(M_W \) down to \(\mu \), while \(\langle O(\mu) \rangle \) involves evolution from \(\mu \) down to the infrared scale. Formally, one can write

\[
\langle O(\mu) \rangle = g(\mu, \mu_f) \langle O(\mu_f) \rangle, \quad (2.2)
\]

where \(\mu_f \) is a factorization scale, and \(g(\mu, \mu_f) \) is an evolution factor running from the scale \(\mu \) to \(\mu_f \) which is calculable because the infrared structure of the amplitude is absorbed into \(\langle O(\mu_f) \rangle \). Writing

\[
c_{\text{eff}}(\mu_f) = c(\mu)g(\mu, \mu_f), \quad (2.3)
\]

the effective Wilson coefficient will be scheme and \(\mu \)-scale independent. Of course, it appears that the \(\mu \)-scale problem with naive factorization is traded in by the \(\mu_f \)-scale problem. Nevertheless, once the factorization scale at which we apply the factorization approximation to matrix elements is fixed, the physical amplitude is independent of the choice of \(\mu \). More importantly, the effective Wilson coefficients are \(\gamma_5 \)-scheme independent. In principle, one can work with any quark configuration, on-shell or off-shell, to compute the full amplitude. Note that if external quarks are off-shell and if the off-shell quark momentum is chosen as the infrared cutoff, \(g(\mu, \mu_f) \) will depend on the gauge of the gluon field [9]. But this is not a problem at all as the gauge dependence belongs to the infrared structure of the wave function. However, if factorization is applied to \(\langle O(\mu_f) \rangle \), the information of the gauge dependence characterized by the wave function will be lost. Hence, as stressed in [11, 8], in order to apply factorization to matrix elements and in the meantime avoid the gauge problem connected with effective Wilson coefficients, one must work in the on-shell scheme to obtain gauge invariant and infrared finite \(c_{\text{eff}} \) and then applies factorization to \(\langle O(\mu_f) \rangle \) afterwards. Of course, physics should be \(\mu_f \) independent. In the formalism of the perturbative QCD factorization theorem, the nonperturbative meson wave functions are specified with the dependence of the factorization scale \(\mu_f \) [10]. These wave functions are universal for all decay processes involving the same mesons. Hence, a consistent evaluation of hadronic matrix elements will eventually resort to the above-mentioned meson wave functions with \(\mu_f \) dependence.
where μ_f is the factorization scale arising from the dimensional regularization of infrared divergence \([10]\), and the anomalous dimension matrix γ_V as well as the constant matrix \hat{r}_V arise from the vertex-type corrections to four-quark operators. Note that in the dimensional regularization scheme the matrix \hat{r}_V depends on the definition of γ_5. The infrared pole is consistently absorbed into universal bound-state wave functions. The expressions for the gauge-invariant constant matrix \hat{r}_V in the naive dimension regularization (NDR) and ’t Hooft-Veltman (HV) renormalization schemes can be found in Eqs. (2.18) and (2.19), respectively, of \([8]\). However, the 66 and 88 entries of \hat{r}_{NDR} and \hat{r}_{HV} shown in \([8]\) are erroneous: $(\hat{r}_{\text{NDR}})_{66}$ and $(\hat{r}_{\text{HV}})_{88}$ should read 17 rather than $−1/3$. This will affect the effective Wilson coefficients c_6^{eff} and c_8^{eff} (see Table I). For example, we have $\text{Re}c_6^{\text{eff}} \approx −0.060$ instead of the value $−0.048$ given in \([8]\).

Two remarks are in order. (i) It should be stressed that the constant matrix \hat{r}_V arising from vertex-like corrections is not arbitrary due to the infrared finiteness of vertex-like diagrams: The infrared divergences in individual vertex-type diagrams cancel in their sum. (ii) As shown in \([10]\), the evolution factor $g(\mu, \mu_f)$ can be decomposed as $g_1(\mu)g_2(\mu_f)$, where $g_1(\mu)$ is an evolution factor from the scale μ to m_b, whose anomalous dimension is the same as that of $c(\mu)$, and $g_2(\mu_f)$ describes the evolution from m_b to μ_f, whose anomalous dimension differs from that of $c(\mu)$ because of the inclusion of the dynamics associated with spectator quarks. Since spectator quarks do not get involved in the factorization approximation, we will set $\mu_f = m_b$ in practical calculations so that $g_2(\mu_f) = 1$. In the generalized factorization approach to be described below, the μ_f dependence of the effective Wilson coefficients are compensated by that of the nonfactorized terms χ_i introduced below.

It is known that the effective Wilson coefficients appear in the factorizable decay amplitudes in the combinations $a_{2i} = c_{2i}^{\text{eff}} + \frac{1}{N_c}c_{2i−1}^{\text{eff}}$ and $a_{2i−1} = c_{2i−1}^{\text{eff}} + \frac{1}{N_c}c_{2i}^{\text{eff}}$ ($i = 1, \cdots, 5$). Phenomenologically, the number of colors N_c is often treated as a free parameter to model the nonfactorizable contribution to hadronic matrix elements and its value can be extracted from the data of two-body nonleptonic decays. As shown in \([13, 15]\), nonfactorizable effects in the decay amplitudes of $B \to PP, VP$ can be absorbed into the parameters a_i^{eff}. This amounts to replacing N_c in a_i^{eff} by $(N_c^{\text{eff}})_i$. Explicitly,

$$a_{2i}^{\text{eff}} = c_{2i}^{\text{eff}} + \frac{1}{(N_c^{\text{eff}})_{2i}}c_{2i−1}^{\text{eff}}, \quad a_{2i−1}^{\text{eff}} = c_{2i−1}^{\text{eff}} + \frac{1}{(N_c^{\text{eff}})_{2i−1}}c_{2i}^{\text{eff}}, \quad (i = 1, \cdots, 5),$$

(2.5)

where

$$\left(1/N_c^{\text{eff}}\right)_i \equiv (1/N_c) + \chi_i,$$

(2.6)
TABLE I. Numerical values of the gauge-invariant effective Wilson coefficients c_i^{eff} for $b \to s$, $b \to d$ and $\bar{b} \to \bar{d}$ transitions evaluated at $\mu_f = m_b$ and $k^2 = m_b^2/2$, where use of $|V_{ub}/V_{cb}| = 0.09$ has been made. The numerical results are insensitive to the unitarity angle γ.

c_i^{eff}	$b \to s$, $\bar{b} \to \bar{s}$	$b \to d$	$\bar{b} \to \bar{d}$
c_1^{eff}	1.169	1.169	1.169
c_2^{eff}	-0.367	-0.367	-0.367
c_3^{eff}	$0.0227 + i0.0045$	$0.0223 + i0.0041$	$0.0225 + i0.0050$
c_4^{eff}	$-0.0463 - i0.0136$	$-0.0450 - i0.0122$	$-0.0458 - i0.0151$
c_5^{eff}	$0.0134 + i0.0045$	$0.0130 + i0.0041$	$0.0132 + i0.0050$
c_6^{eff}	$-0.0600 - i0.0136$	$-0.0588 - i0.0122$	$-0.0595 - i0.0151$
c_7^{eff}/α	$-0.0311 - i0.0367$	$-0.0286 - i0.0342$	$-0.0301 - i0.0398$
c_8^{eff}/α	0.070	0.070	0.070
c_9^{eff}/α	$-1.429 - i0.0367$	$-1.426 - i0.0342$	$-1.428 - i0.0398$
$c_{10}^{\text{eff}}/\alpha$	0.48	0.48	0.48

with χ_i being the nonfactorizable terms, which receive contributions from nonfactorized vertex-type, penguin-type and spectator corrections. In general, χ_i and (N_i^{eff}) are complex. Recently, it has been shown in [8] that, in the heavy quark limit, all nonfactorizable diagrams are dominated by hard gluon exchange, while soft gluon effects are suppressed by factors of Λ_{QCD}/m_b. In other words, the nonfactorized term is calculable as expansion in α_s in the heavy quark limit.

To proceed, we shall assume that χ_i are universal (i.e. process independent) in bottom decays (this amounts to assuming generalized factorization) and that nonfactorizable effects in the matrix elements of $(V - A)(V + A)$ operators differ from that of $(V - A)(V - A)$ operators; that is, we shall assume that

$$\chi_{LL} \equiv \chi_1 = \chi_2 = \chi_3 = \chi_4 = \chi_9 = \chi_{10},$$
$$\chi_{LR} \equiv \chi_5 = \chi_6 = \chi_7 = \chi_8,$$ \quad (2.7)

and $\chi_{LR} \neq \chi_{LL}$ or equivalently

$$N_{c}^{\text{eff}}(LL) \equiv \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_1 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_2 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_3 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_4 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_9 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_{10},$$
$$N_{c}^{\text{eff}}(LR) \equiv \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_5 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_6 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_7 = \begin{pmatrix} N_{c}^{\text{eff}} \end{pmatrix}_8;$$ \quad (2.8)

and $N_{c}^{\text{eff}}(LR) \neq N_{c}^{\text{eff}}(LL)$. As we shall see below, the data analysis and the theoretical study of nonleptonic rare B decays all indicate that $N_{c}^{\text{eff}}(LR) > 3 > N_{c}^{\text{eff}}(LL)$. In principle, N_{c}^{eff} can vary from channel to channel, as in the case of charm decay. However, in the energetic two-body B decays, N_{c}^{eff} is expected to be process insensitive as supported by the data [8].

Although the nonfactorized effects in hadronic charmless B decays are in general small, $\chi \sim \mathcal{O}(0.15)$ [8], they are important for the coefficients a_2, a_3 and a_5. For example, there is
a large cancellation between c_2^{eff} and c_1^{eff}/N_c, so that even a small amount of χ will modify a_2 dramatically, recalling that $a_2 = c_2^{\text{eff}} + c_1^{\text{eff}} (1/N_c + \chi)$. Consequently, the aforementioned coefficients are very sensitive to the change of N_c^{eff}, and moreover a_2 as well as a_5 have a minimum at $N_c^{\text{eff}}(LL) = N_c^{\text{eff}}(LR) = 3$. Therefore, nonfactorized contributions are important to the class-II modes, e.g. $B^0 \rightarrow \pi^0 \pi^0$, $\rho^0 \pi^0$, $\omega \eta$, etc., and to some decay modes which get contributions from the penguin terms ($a_2 + a_5$), e.g. $B \rightarrow \omega K$. It is obvious that the nonfactorized effect in these decays cannot be simply absorbed into form factors. Another example has to do with the decays $B \rightarrow \phi K$ and $B \rightarrow K\eta'$. In the naive factorization approximation, the form factor F_0^{BK} has to be suppressed in order to accommodate the experimental limit on $B^- \rightarrow \phi K^-$. However, the enormously large rate of $B \rightarrow K\eta'$ demands a large F_0^{BK}. This difficulty is resolved if $N_c^{\text{eff}}(LL)$ and $N_c^{\text{eff}}(LR)$ are allowed to deviate from their naive value $N_c^{\text{eff}} = 3$, for example, $N_c^{\text{eff}}(LL) \sim 2$ and $N_c^{\text{eff}}(LR) \sim 6$ (see Sec. V). Hence, it is inevitable to take into account nonfactorized contributions to hadronic matrix elements in order to have a coherent picture for rare hadronic B decays.

III. $B \rightarrow \pi\pi$ AND πK DECAYS

Recently CLEO has made the first observation of the decay $B \rightarrow \pi^+\pi^-$ with the branching ratio 3

$$B(B^0 \rightarrow \pi^+\pi^-) = (4.3^{+1.6}_{-1.4} \pm 0.5) \times 10^{-6}. \quad (3.1)$$

This decay mode puts a stringent constraint on the form factor $F_0^{B\pi}$. Neglecting final-state interactions and employing the Wolfenstein parameters $\rho = 0.175$, $\eta = 0.370$, corresponding to $\gamma \equiv \text{Arg}(V^*_{ub}) = 65^\circ$ and $|V_{ub}/V_{cb}| = 0.09$, and the effective number of colors $N_c^{\text{eff}}(LL) = 2$ [see Sec. IV for a discussion of $N_c^{\text{eff}}(LL)]$, we find $F_0^{B\pi}(0) = 0.20 \pm 0.04$. This value is substantially smaller than the form factor $F_0^{B\pi}(0) = 0.333$ obtained by Bauer, Stech and Wirbel (BSW) 4. This has two important implications. First, the predicted decay rates of $B \rightarrow K\pi$, which are mainly governed by $F_0^{B\pi}$, will in general be smaller than the central values of experimental measurements [see Eq. (3.2)]. Second, the form factor $F_0^{BK}(0)$ will become smaller either. More specifically, it cannot exceed the value, say 0.33, otherwise the SU(3)-symmetry relation $F_0^{BK} = F_0^{B\pi}$ will be badly broken. Consequently, the predicted $K\eta'$ rates will become too small compared to experiment.

There are several possibilities that the $K\pi$ rates can be enhanced: (i) The unitarity angle γ larger than 90° will lead to a suppression of $B \rightarrow \pi^+\pi^-$ 20,8, which in turn implies an enhancement of $F_0^{B\pi}$ and hence $K\pi$ rates. (ii) A large nonzero isospin $\pi\pi$ phase shift

*It was argued in 4 that a small value $|V_{ub}/V_{cb}| \approx 0.06$ is preferred by the $\pi^+\pi^-$ measurement with the form factor $F_0^{B\pi}(0)$ being fixed to be 0.33. However, this CKM matrix element $|V_{ub}/V_{cb}|$ is smaller than the recent LEP average $0.104^{+0.015}_{-0.018}$ 7 and the CLEO result $0.083^{+0.015}_{-0.016}$ 8.**
difference of order 70° \cite{3} can yield a substantial suppression of the $\pi^+\pi^-$ mode. However, a large $\pi\pi$ isospin phase difference seems to be very unlikely due to the large energy released in charmless B decays. Indeed, the Regge analysis of \cite{21} indicates $\delta_{\pi\pi} = 11^\circ$. (iii) Smaller quark masses, say $m_s(m_b) = 65$ MeV, will make the $(S-P)(S+P)$ penguin terms contributing sizably to the $K\pi$ modes but less significantly to $\pi^+\pi^-$ as the penguin effect on the latter is suppressed by the quark mixing angles. Although some of new quenched and unquenched lattice calculations yield smaller m_s (see e.g. \cite{22}), the value $m_s(m_b) = 65$ MeV or equivalently $m_s(1\text{GeV}) = 100$ MeV is barely on the verge of the lower side of lattice results \cite{22}. Therefore, the first possibility appears to be more plausible. Using the values $F_0^{B\pi}(0) = 0.28$ and $\gamma = 105^\circ$, we find that the $\pi^+\pi^-$ decay is well accommodated (see Table III). As a consequence, the decay rates of $B \to K\pi$ governed by $F_0^{B\pi}$ are enhanced accordingly.

The CLEO collaboration has recently improved the measurements for the decays $B \to K^{\pm}\pi^{\mp}$, $B^{\pm} \to K^0\pi^{\pm}$, $B^{\pm} \to K^{\pm}\pi^0$ and observed for the first time the decay $B^0 \to \bar{K}^0\pi^0$, thus completing the set of four $K\pi$ branching ratio measurements \cite{6}:

\begin{align}
B(B^0 \to K^-\pi^+) &= (17.2^{+2.5}_{-2.4} \pm 1.2) \times 10^{-6}, \\
B(B^- \to \bar{K}^0\pi^-) &= (18.2^{+4.6}_{-4.4} \pm 1.6) \times 10^{-6}, \\
B(B^- \to K^-\pi^0) &= (11.6^{+3.0+1.4}_{-2.7-1.3}) \times 10^{-6}, \\
B(\bar{B}^0 \to \bar{K}^0\pi^0) &= (14.6^{+5.9+2.4}_{-6.1-3.3}) \times 10^{-6},
\end{align}

(3.2)

which are to be compared with the 1998 results \cite{23}:

\begin{align}
B(B^0 \to K^-\pi^+) &= (14 \pm 3 \pm 2) \times 10^{-6}, \\
B(B^- \to \bar{K}^0\pi^-) &= (14 \pm 5 \pm 2) \times 10^{-6}, \\
B(B^- \to K^-\pi^0) &= (15 \pm 4 \pm 3) \times 10^{-6}.
\end{align}

(3.3)

It is known that $K\pi$ modes are penguin dominated. As far as the QCD penguin contributions are concerned, it will be expected that $B(B^0 \to K^-\pi^+) \sim B(B^- \to \bar{K}^0\pi^-)$ and $B(B^- \to K^-\pi^0) \sim B(B^0 \to \bar{K}^0\pi^0) \sim \frac{1}{2}B(B \to K\pi^\pm)$. However, as pointed out in \cite{8,20}, the electroweak penguin diagram, which can be neglected in $\bar{K}^0\pi^-$ and $K^-\pi^+$, does play an essential role in the modes $K\pi^0$. With a moderate electroweak penguin contribution, the constructive (destructive) interference between electroweak and QCD penguins in $K^-\pi^0$ and $\bar{K}^0\pi^0$ renders the former greater than the latter; that is, $B(B^- \to K^-\pi^0) > \frac{1}{2}B(B^0 \to \bar{K}^0\pi^-)$ and $B(\bar{B}^0 \to \bar{K}^0\pi^0) < \frac{1}{2}B(\bar{B}^0 \to K^-\pi^+)$ are anticipated. For numerical calculations we use the parameters

\begin{align}
m_u(m_b) &= 2.13 \text{ MeV}, \quad m_d(m_b) = 4.27 \text{ MeV}, \quad m_s(m_b) = 85 \text{ MeV}, \\
F_0^{B\pi}(0) &= 0.28, \quad F_0^{BK}(0) = 0.36, \quad \gamma = 105^\circ, \\
N_c^{\text{eff}}(LL) &= 2, \quad N_c^{\text{eff}}(LR) = 6.
\end{align}

(3.4)

We see from Table III that, except for the decay $\bar{K}^0\pi^0$, the agreement of the calculated branching ratios for $K\pi$ modes with experiment is excellent. By contrast, the central value
of $\mathcal{B}(B^0 \to K^0 \pi^0)$ is much greater than the theoretical expectation. Since its experimental error is large, one has to await the experimental improvement to clarify the issue. The predicted pattern

$$K^- \pi^+ \gtrsim \overline{K}^0 \pi^- \sim \frac{3}{2} K^- \pi^0 \sim 3 \overline{K}^0 \pi^0$$

is in good agreement with experiment for the first three decays.

We would like to make a remark on the trail of having $\cos \gamma < 0$. The suggestion of $\gamma > 90^\circ$ or a negative Wolfenstein parameter ρ was originally motivated by the 1998 $K\pi$ data which indicated nearly equal branching ratios for the three modes $K^- \pi^+$, $\overline{K}^0 \pi^-$ and $K^- \pi^0$. It was pointed out in [24] that $\cos \gamma < 0$ as well as a large m_s, say $m_s(m_b) = 200$ MeV, will allow a substantial rise of $K^- \pi^0$ and a suppression of QCD penguin contributions so that $K^- \pi^0 \simeq K^- \pi^+$ can be accounted for. The 1999 data [9] show that $K^- \pi^0 \simeq \frac{2}{3} K^- \pi^+$, in accordance with the theoretical anticipation. The motivation for having a negative $\cos \gamma$ this time is somewhat different: It provides a simply way for accommodating the suppression of $\pi^+\pi^-$ and non-suppression of $K\pi$ data without having too small light quark masses or too large $\pi\pi$ final-state interactions or too small CKM matrix element V_{ub}.

Finally, as pointed out in [9], the branching ratio of $K^*-\pi^+$ predicted to be of order 0.5×10^{-5} is smaller than that of $K^-\pi^+$ owing to the absence of the a_6 penguin term in the former. The observation $\mathcal{B}(B^0 \to K^*-\pi^+) = (22^{+8}_{-6,5}) \times 10^{-6}$ [1] is thus strongly opposite to the theoretical expectation. Clearly, it is important to have a refined measurement of this mode.

IV. TREE-DOMINATED CHARMELESS B DECAYS

CLEO has observed several tree-dominated charmless B decays which proceed at the tree level through the b quark decay $b \to u\bar{u}d$ and at the loop level via the $b \to d$ penguin diagrams: $B \to \pi^+\pi^-$, $\rho^0\pi^\pm$, $\omega\pi^\pm$, $\rho^{\pm}\pi^{\mp}$. The first three modes have been measured recently for the first time with the branching ratios [32]:

$$\mathcal{B}(B^\pm \to \rho^0\pi^\pm) = (10.4^{+3.3}_{-3.4} \pm 2.1) \times 10^{-6},$$
$$\mathcal{B}(B^\pm \to \omega\pi^\pm) = (11.3^{+3.3}_{-2.9} \pm 1.5) \times 10^{-6},$$

and [34]. These decays are sensitive to the form factors $F_0^{B\pi}$, $A_0^{B\rho}$, $A_0^{B\omega}$ and to the value of $N_{c\pi}^{\text{eff}}(LL)$. To illustrate the sensitivity on form factors, we consider two different form-factor models for heavy-to-light transitions: the BSW model [19] and the light-cone sum rule (LCSR) model [25]. The relevant form factors at zero momentum transfer are listed in Table II. We see from Table IV that the branching ratios of $\rho^0\pi^\pm$ and $\omega\pi^\pm$ decrease with $N_{c\pi}^{\text{eff}}(LL)$ and generally they become too small compared to the data when $N_{c\pi}^{\text{eff}}(LL) > 3$, whereas $\mathcal{B}(B \to \pi^+\pi^-)$ increases with $N_{c\pi}^{\text{eff}}(LL)$ and becomes too large when $N_{c\pi}^{\text{eff}}(LL) > 3$. More precisely, we obtain $1.1 \leq N_{c\pi}^{\text{eff}}(LL) \leq 2.6$ from $\rho^0\pi^\pm$ and $\omega\pi^\pm$ modes. Evidently,
$N_c^{\text{eff}}(LL)$ in all these tree-dominated decays are preferred to be smaller. This is indeed what expected since the effective number of colors, $N_c^{\text{eff}}(LL)$, inferred from the Cabibbo-allowed decays $B \to (D, D^*)(\pi, \rho)$ is in the vicinity of 2 [27] and since the energy released in the energetic two-body charmless B decays is in general slightly larger than that in $B \to D\pi$ decays, it is thus anticipated that

$$|\chi(\text{two-body rare } B \text{ decay})| \lesssim |\chi(B \to D\pi)|,$$

and hence $N_c^{\text{eff}}(LL) \approx N_c^{\text{eff}}(B \to D\pi) \sim 2$.

Note that the branching ratio of $\rho^0\pi^\pm$ is sensitive to the change of the unitarity angle γ, while $\omega\pi^\pm$ is not. For example, we have $\mathcal{B}(B^\pm \to \rho^0\pi^\pm) \sim \mathcal{B}(B^\pm \to \omega\pi^\pm)$ for $\gamma \sim 65^\circ$, and $\mathcal{B}(B^\pm \to \rho^0\pi^\pm) > \mathcal{B}(B^\pm \to \omega\pi^\pm)$ for $\gamma > 90^\circ$. It appears that a unitarity angle γ larger than 90°, which is preferred by the previous measurement $[2] \mathcal{B}(B^\pm \to \rho^0\pi^\pm) = (15 \pm 5 \pm 4) \times 10^{-6}$, is no longer strongly favored by the new data of $\rho^0\pi^\pm$.

It is worth remarking that although the decays $B \to \rho^\pm\pi^\mp$ are sensitive to $N_c^{\text{eff}}(LL)$, no useful constraint can be extracted at this moment from the present measurement $[3] \mathcal{B}(B^\pm \to \rho^0\pi^\pm) = (27.6^{+8.4}_{-7.4} \pm 4.2) \times 10^{-6}$ due to its large error.

From Tables II and IV it is also clear that the form factor $A_B^{\omega\rho}$ predicted by the LCSR, which are substantially larger than that of the BSW model, is more favored. Since the form factor $F_{B\pi^0}^B$ in the LCSR is slightly big, we will employ the improved LCSR model (called as LCSR'), which is the same as the LCSR of [25] except that the values of $F_{B\pi^0}^B(0)$ and $F_{BK^0}^B(0)$ are replaced by those given in (3.4), in ensuing calculations.

Table II. Form factors at zero momentum transfer for $B \to P$ and $B \to V$ transitions evaluated in the BSW model [19]. The values given in the square brackets are obtained in the light-cone sum rule (LCSR) analysis [25]. We have assumed SU(3) symmetry for the $B \to \omega$ form factors in the LCSR approach. In realistic calculations we use Eq. (3.13) of [8] for $B \to \eta^{(')}$ form factors. For later purposes, we will use the improved LCSR model (LCSR') for form factors, which is the same as the LCSR of [25] except for the values of $F_{B\pi^0}^B(0)$ and $F_{BK^0}^B(0)$ being replaced by those given in Eq. (3.4).

Decay	$F_1 = F_0$	V	A_1	A_2	$A_3 = A_0$
$B \to \pi^\pm$	0.333 [0.305]				
$B \to K$	0.379 [0.341]				
$B \to \eta$	0.168 [—]				
$B \to \eta'$	0.114 [—]				
$B \to \rho^\pm$	0.329 [0.338]	0.283 [0.261]	0.283 [0.223]	0.281 [0.372]	
$B \to \omega$	0.232 [0.239]	0.199 [0.185]	0.199 [0.158]	0.198 [0.263]	
$B \to K^*$	0.369 [0.458]	0.328 [0.337]	0.331 [0.283]	0.321 [0.470]	
V. $B \to K\eta'$ AND $K^*\eta$ DECAYS

The improved measurements of the decays $B \to \eta' K$ by CLEO \cite{4}

$$B(B^\pm \to \eta' K^\pm) = \left(80^{+10}_{-9} \pm 7\right) \times 10^{-6},$$
$$B(B^0 \to \eta' K^0) = \left(89^{+18}_{-16} \pm 9\right) \times 10^{-6},$$

are larger than the previous published results \cite{28}:

$$B(B^\pm \to \eta' K^\pm) = \left(65^{+15}_{-14} \pm 9\right) \times 10^{-6},$$
$$B(B^0 \to \eta' K^0) = \left(47^{+27}_{-20} \pm 9\right) \times 10^{-6}.$$ \hspace{1cm} (5.1)

This year CLEO has also reported the new measurement of $B \to K^*\eta$ with the branching ratios \cite{4}

$$B(B^\pm \to \eta K^{*\pm}) = \left(26.4^{+9.6}_{-8.2} \pm 3.3\right) \times 10^{-6},$$
$$B(B^0 \to \eta K^{*0}) = \left(13.8^{+5.5}_{-4.4} \pm 1.6\right) \times 10^{-6}.$$ \hspace{1cm} (5.2)

Theoretically, the branching ratios of $K\eta'$ ($K^*\eta$) are anticipated to be much greater than $K\pi$ ($K^*\eta'$) modes owing to the presence of constructive interference between two penguin amplitudes arising from non-strange and strange quarks of the η' or η.\footnote{In a recent analysis \cite{26}, the branching ratio of $K^*\eta'$ is predicted to be similar to that of $K^*\eta$, whereas it is found not exceed 1×10^{-6} according to \cite{11} and the present paper.} In general, the decay rates of $K\eta'$ increase slowly with $N^\text{eff}(LR)$ if $N^\text{eff}(LL)$ is treated to be the same as $N^\text{eff}(LR)$, but fast enough with $N^\text{eff}(LR)$ if $N^\text{eff}(LL)$ is fixed at the value of 2. Evidently, the data much favor the latter case (see Table III).\footnote{As stressed in \cite{8}, the contribution from the η' charm content will make the theoretical prediction even worse at the small values of $1/N^\text{eff}$ if $N^\text{eff}(LL) = N^\text{eff}(LR)$! On the contrary, if $N^\text{eff}(LL) \approx 2$, the $c\bar{c}$ admixture in the η' will always lead to a constructive interference irrespective of the value of $N^\text{eff}(LR)$.} On the contrary, the branching ratios of $K^*\eta$ in general decrease with $N^\text{eff}(LR)$ when $N^\text{eff}(LL) = N^\text{eff}(LR)$ but increase with $N^\text{eff}(LL)$ when $N^\text{eff}(LR) = 2$. Again, the latter is preferred by experiment. Hence, the data of both $K\eta'$ and $K^*\eta$ provide another strong support for a small $N^\text{eff}(LL)$ and for the relation $N^\text{eff}(LR) > N^\text{eff}(LL)$. In other words, the nonfactorized effects due to $(V - A)(V - A)$ and $(V - A)(V + A)$ operators should be treated differently.

It appears from Tables III and IV that the data of $K\eta$ and in particular $K\eta'$ are well accommodated by $N^\text{eff}(LR) = \infty$. However, we have argued in \cite{3} that $N^\text{eff}(LR) \lesssim 6$. In principle, the value of $N^\text{eff}(LR)$ can be extracted from the decays $B \to \phi K$ and ϕK^*. The present limit \cite{42} \cite{43}.
$\mathcal{B}(B^\pm \to \phi K^\pm) < 0.59 \times 10^{-5}$ \hfill (5.4)

at 90\% C.L. implies that

$$N_{c_\text{eff}}(LR) \geq \begin{cases} 5.0 & \text{BSW}, \\ 4.2 & \text{LCSR}', \end{cases}$$ \hfill (5.5)

with $N_{c_\text{eff}}(LL)$ being fixed at the value of 2. Note that this constraint is subject to the corrections from spacelike penguin and W-annihilation contributions. At any rate, it is safe to conclude that $N_{c_\text{eff}}(LR) > 3 > N_{c_\text{eff}}(LL)$.

Since the penguin matrix elements of scalar and pseudoscalar densities are sensitive to the strange quark mass, the discrepancy between theory and experiment, especially for $K\eta'$, can be further improved by using an even smaller m_s, say $m_s(m_b) = 65$ MeV. However, as remarked in Sec. III, this small strange quark mass is not favored by lattice calculations. Moreover, it will lead to too large $B \to K\pi$ rates. For example, the predicted $\mathcal{B}(B^0 \to K^-\pi^+) = 28 \times 10^{-6}$ using $m_s(m_b) = 65$ MeV is too large compared to the observed branching ratio $(17.2^{+2.5}_{-2.4} \pm 1.2) \times 10^{-6}$.

Several new mechanisms have been proposed in the past few years to explain the observed enormously large rate of $K\eta'$, for example, the large charm content of the η' \cite{29} or the two-gluon fusion mechanism via the anomaly coupling of the η' with two gluons \cite{30,31}. These mechanisms will in general predict a large rate for $K^*\eta'$ comparable to or even greater than $K\eta'$ and a very small rate for $K^*\eta$ and $K\eta$. The fact that the $K^*\eta$ modes are observed with sizeable branching ratios indicates that it is the constructive interference of two comparable penguin amplitudes rather than the mechanism specific to the η' that accounts for the bulk of $B \to \eta'K$ and ηK^* branching ratios.

Two remarks are in order. First, as shown in \cite{8}, the charged $\eta'K^-$ mode gets enhanced when $\cos \gamma$ becomes negative while the neutral $\eta'K^0$ mode remains steady. Therefore, it is important to see if the disparity between $\eta'K^\pm$ and $\eta'K^0$ is confirmed when experimental errors are improved and refined in the future. Second, we see from Table IV that the form factor $A_{0}^{BK^*}(0)$ entering the decay amplitude of $B \to K^*\eta$ is preferred to be larger than the value predicted by the BSW model.

The observation $N_{c_\text{eff}}(LL) < 3 < N_{c_\text{eff}}(LR)$ is theoretically justified by a recent perturbative QCD calculation of $B \to \pi\pi$ decays in the heavy quark limit. Following the notation of \cite{7}, we find the nonfactorized terms:

\begin{itemize}
 \item Note that Eqs. (4-8) in \cite{7} can be reproduced from Eqs. (2.12-2.19) and (4.1) in \cite{8} with the nonfactorized terms given by Eq. (5.8). For example, from \cite{8} we obtain in the NDR scheme (the superscript “eff” of a_i is dropped for convenience) that

$$a_2 = c_2 + \frac{c_1}{N_c} + \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} c_1 (12 \ln \frac{m_b}{\mu} - 18) + c_1^\text{eff} \chi_2,$$
\[
\chi_1 = \chi_2 = \chi_3 = \chi_4 = -\chi_5 = -\chi_6 = \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} (f^I + f^{II}).
\]

It follows from (2.7) that
\[
\chi_{LR} = -\chi_{LL} = -\frac{\alpha_s}{4\pi} \frac{C_F}{N_c} (f^I + f^{II}).
\]

Several remarks are in order. (i) Since \(f^I \) is complex due to final-state interactions via hard gluon exchange \([7]\), so are \(\chi_i \) and \(N^\text{eff}_{c(LL)} \) and \(N^\text{eff}_{c(LR)} \). Nevertheless, the complex phases of \(\chi_i \) are in general small. (ii) Contrary to the common assertion, the nonfactorized term is dominated by hard gluon exchange in the heavy quark limit as soft gluon contributions to \(\chi_i \) are suppressed by orders of \(\Lambda_{\text{QCD}}/m_b \) \([7]\). (iii) Because \(\text{Re} \chi_{LL} > 0 \), it is obvious that \(N^\text{eff}_{c(LL)} < 3 \) and \(N^\text{eff}_{c(LR)} > 3 \) [see Eq. (2.6)]. Furthermore, \(N^\text{eff}_{c(LL)} \sim 2 \) implies \(N^\text{eff}_{c(LR)} \sim 6 \). Therefore, the assumption (2.7) and the empirical observation \(N^\text{eff}_{c(LR)} > 3 > N^\text{eff}_{c(LL)} \) get a justification from the perturbative QCD calculation performed in the heavy quark limit.

VI. B \rightarrow \omega K AND \rho K DECAYS

The previous CLEO observation \([32]\) of a large branching ratio for \(B^\pm \rightarrow \omega K^\pm \)

\[
a_4 = c_4 + \frac{c_3}{N_c} + \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} c_3 (12 \ln \frac{m_b}{\mu} - 18) + c_4^\text{eff} \chi_4 + \frac{\alpha_s}{9\pi} (C_t + C_p + C_g),
\]

\[
a_5 = c_5 + \frac{c_6}{N_c} + \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} c_6(-12 \ln \frac{m_b}{\mu} + 6) + c_6^\text{eff} \chi_5,
\]

with \(C_t, C_p, C_g \) being defined in \([11]\) and \(C_F = (N_c^2 - 1)/(2N_c) \), while Eqs. (6) and (8) of \([7]\) lead to

\[
a_2 = c_2 + \frac{c_1}{N_c} + \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} c_1 (12 \ln \frac{m_b}{\mu} - 18 + f^I + f^{II}),
\]

\[
a_4 = c_4 + \frac{c_5}{N_c} + \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} c_3 (12 \ln \frac{m_b}{\mu} - 18 + f^I + f^{II}) + \frac{\alpha_s}{9\pi} (C_t + C_p + C_g),
\]

\[
a_5 = c_5 + \frac{c_6}{N_c} + \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} c_6(-12 \ln \frac{m_b}{\mu} + 6 - f^I - f^{II}),
\]

where the hard scattering function \(f^I \) corresponds to hard gluon exchange between the two outgoing light mesons and \(f^{II} \) describes the hard nonfactorized effect involving the spectator quark of the \(B \) meson. The expressions for the hard scattering functions \(f^I \) and \(f^{II} \) can be found in \([7]\). Comparing (5.6) with (5.7) yields

\[
\chi_2 = \chi_4 = -\chi_5 = \frac{\alpha_s}{4\pi} \frac{C_F}{N_c} (f^I + f^{II}).
\]

Note that the quark mass entering into the penguin matrix elements of scalar and pseudoscalar densities via equations of motion is fixed at the scale \(\mu_f \).
\[\mathcal{B}(B^{\pm} \to \omega K^{\pm}) = \left(15^{+7}_{-6} \pm 2\right) \times 10^{-6}, \tag{6.1} \]

imposes a serious problem to the generalized factorization approach: The observed rate is enormously large compared to naive expectation \cite{8}. Since the \(\omega K^- \) amplitude differs from that of \(\rho^0 K^- \) only in the QCD penguin term proportional to \((a_3 + a_5)\) and in the electroweak penguin term governed by \(a_9 \), it is naively anticipated that their branching ratios are similar as the contributions from \(a_3, a_5, a_9 \) are not expected to be large. While the branching ratio of \(B^{\pm} \to \rho^0 K^{\pm} \) is estimated to be of order \(1 \times 10^{-6} \) (see Table IV), the prediction of \(\mathcal{B}(B^{\pm} \to \omega K^{\pm}) \) is less certain because the penguin contribution proportional to \((a_3 + a_5)\) depends sensitively on \(N_{c}^{\text{eff}}(LR) \). At any rate, it is reasonable to assert that \(\mathcal{B}(B^{-} \to \omega K^-) > 2 \mathcal{B}(B^{-} \to \rho^0 K^-) \sim 2 \times 10^{-6} \).

As pointed out recently in \cite{2}, the additional data and re-analysis of old CLEO data did not support the previously reported observation (6.1). Therefore, the new measurement of \(B^{-} \to \omega K^- \) no longer imposes a serious difficulty to the factorization approach. The theoretical prediction \(\mathcal{B}(B^{-} \to \omega K^-) \sim (2.1 - 5.5) \times 10^{-6} \) for \(N_{c}^{\text{eff}}(LL) = 2 \) and \(N_{c}^{\text{eff}}(LR) \) ranging from 6 to \(\infty \) is consistent with the current limit \(8.0 \times 10^{-6} \) \cite{2}. It is important to measure the branching ratios of \(\omega K \) and \(\rho K \) modes in order to understand their underlying mechanism.

From Table IV we see that \(\rho^0 K^0 \sim \rho^+ K^0 > \rho^0 K^+ \) is expected in the factorization approach.

\section*{VII. COMPARISON WITH REF. [7]}

Although we have followed the framework of \cite{8} to study nonleptonic charmless \(B \) decays, it is useful at this point to summarize the differences between the present work and \cite{8}:

- The 66 and 88 entries of the constant matrix \(\hat{r}_V \) in NDR and HV \(\gamma_5 \) schemes given in \cite{8} are erroneous and have been corrected here. As a result, the magnitude of the effective penguin Wilson coefficient \(c_6^{\text{eff}} \) is enhanced. The decay rates of the penguin-dominated modes governed by the \(a_6 \) penguin term are thus enhanced. For example, the branching ratios of \(\overline{K}^{0} \eta \) and \(K^{*-} \eta \) are enhanced by almost a factor of 2.

- In order to accommodate the new data of \(\pi^+ \pi^- \) and \(K \pi \) decays, we have fixed the relevant form factors and the unitarity angle to be \(F_0^{B\pi}(0) = 0.28 \), \(F_0^{B_K}(0) = 0.36 \) and \(\gamma = 105^\circ \).

- While the strange quark mass is slightly changed to \(m_s(m_b) = 85 \text{ MeV} \), the \(u \) and \(d \) quark masses are modified to \(m_u(m_b) = 2.13 \text{ MeV} \), \(m_d(m_b) = 4.27 \text{ MeV} \) in order to respect the chiral-symmetry relation \(m_{\pi^\pm}/(m_u + m_d) \sim m_{K^\pm}/(m_u + m_s) \).

- Branching ratios of all \(B_{u,d} \to PP, VP, VV \) modes are tabulated in Tables III-V in BSW and LCSR' models for form factors. Our preference for heavy-to-light form factors is that given by the LCSR' model.
Implications inferred from recent CLEO measurements of hadronic charmless two-body decays of B mesons are discussed in the present paper. Our main conclusions are as follows.

1. Employing the Bauer-Stech-Wirbel (BSW) model for form factors as a benchmark, the $B \to \pi^+\pi^-$ data indicate that the form factor $F_0^{B\pi}(0) = 0.20 \pm 0.04$ is much smaller than that predicted by the BSW model, whereas the data of $B \to \omega\pi$, $K^*\eta$ imply that the form factors $A_0^{B\pi}(0)$, $A_0^{BK^*}(0)$ are greater than the values obtained in the BSW model.

2. The tree-dominated modes $B \to \pi^\pm\pi^\mp, \rho^0\pi^\pm, \omega\pi^\pm$ imply that the effective number of colors $N_c^{\text{eff}}(LL)$ for $(V-A)(V-A)$ operators is preferred to be smaller $1.1 \leq N_c^{\text{eff}}(LL) \leq 2.6$, while the current limit on $B \to \phi K$ shows that $N_c^{\text{eff}}(LR) > 3$. The data of $B \to K\eta$ and $K^*\eta$ clearly support the observation $N_c^{\text{eff}}(LR) \gg N_c^{\text{eff}}(LL)$.

3. The decay rates of $\pi^+\pi^-$ and $K\pi$ are governed by the form factor $F_0^{B\pi}$. In order to explain the observed suppression of $\pi^+\pi^-$ and non-suppression of $K\pi$ modes, the unitarity angle γ is favored to be greater than 90° (see also [28,33]). By contrast, the new measurement of $B^\pm \to \rho^0\pi^\pm$ no longer strongly favors $\cos\gamma < 0$.

4. The observed pattern $K^-\pi^+ \sim \overline{K}^0\pi^- \sim \frac{3}{2}K^-\pi^0$ is consistent with the theoretical expectation: The constructive interference between electroweak and QCD penguin diagrams in the $K^-\pi^0$ mode explains why $B(B^- \to K^-\pi^0) > \frac{1}{2}B(\overline{B}^0 \to K^-\pi^+)$.

5. We found that, except for the decays $K^{*+}\pi^-$ and $\overline{K}^0\pi^0$, all the measured charmless B decays can be well accommodated by the LCSR form factors and the parameters $m_s(m_b) = 85$ MeV, $F_0^{B\pi}(0) = 0.28$, $F_0^{BK^*}(0) = 0.36$, $\gamma = 105^\circ$, $N_c^{\text{eff}}(LL) = 2$, $N_c^{\text{eff}}(LR) = 6$.

6. The observation $N_c^{\text{eff}}(LL) < 3 < N_c^{\text{eff}}(LR)$ and our preference for $N_c^{\text{eff}}(LL) \sim 2$ and $N_c^{\text{eff}}(LR) \sim 6$ are theoretically justified by a recent perturbative QCD calculation of charmless B decays performed in the heavy quark limit.

7. The new upper limit set for $B^- \to \omega K^-$ no longer imposes a serious problem to the factorization approach. It is anticipated that $B(B^- \to \omega K^-) \gtrsim 2B(B^- \to \rho^0 K^-) \sim 2 \times 10^{-6}$.

8. An improved and refined measurement of $B \to K^{*+}\pi^-$, $\overline{K}^0\pi^0$ is called for in order to resolve the discrepancy between theory and experiment. Theoretically, it is expected that $\overline{K}^0\pi^0 \sim \frac{1}{2}K^-\pi^0$ and $K^-\pi^+ \sim 3K^{*+}\pi^+$.

9. Theoretical calculations suggest that the following 18 decay modes of B_u^- and \overline{B}_d^0 have branching ratios are of order 10^{-5} or above (in sequence of their decay rate
strength): \(\eta' K^- \), \(\eta' K^0 \), \(\rho^+ \rho^- \), \(\rho^- \rho^0 \), \(\rho^- \omega \), \(K^- \pi^+ \), \(\bar{K}^0 \pi^- \), \(\rho^- \pi^+ \), \(K^* \eta \), \(\rho^+ \pi^- \), \(\rho^- \pi^0 \), \(K^- \pi^0 \), \(\rho^0 \pi^- \), \(\bar{K}^0 \eta \), \(\omega \pi^- \), \(K^* \rho^0 \), \(K^* \rho^- \), \(\rho^- \eta \). Many of them have been observed and the rest will have a good chance to be seen soon.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Council of the Republic of China under Grant No. NSC89-2112-M001-016.
REFERENCES

[1] CLEO Collaboration, Y.S. Gao and F. Würthwein, hep-ex/9904008.
[2] CLEO Collaboration, M. Bishai et al., CLEO CONF 99-13, hep-ex/9908018.
[3] CLEO Collaboration, J.G. Smith, invited talk presented at the Third International Conference on B Physics and CP Violation, Taipei, Taiwan, Dec. 3-7, 1999.
[4] CLEO Collaboration, S.J. Richichi et al., hep-ex/9912059.
[5] CLEO Collaboration, D. Cronin-Hennessy et al., hep-ex/0001010.
[6] T.W. Yeh and H-n. Li, Phys. Rev. D56, 1615 (1997); H-n. Li and B. Tseng, ibid. D57, 443 (1998).
[7] M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999).
[8] Y.H. Chen, H.Y. Cheng, B. Tseng, and K.C. Yang, Phys. Rev. D60, 094014 (1999).
[9] A.J. Buras and L. Silvestrini, Nucl. Phys. B548, 293 (1999).
[10] H.Y. Cheng, H-n. Li, and K.C. Yang, Phys. Rev. D60, 094005 (1999).
[11] A. Ali and C. Greub, Phys. Rev. D57, 2996 (1998); A. Ali, G. Kramer, and C.D. Lü, Phys. Rev. D58, 094009 (1998).
[12] H.Y. Cheng and B. Tseng, Phys. Rev. D58, 094005 (1998).
[13] H.Y. Cheng, Phys. Lett. B395, 345 (1994); in Particle Theory and Phenomenology, XVII International Karimierz Meeting on Particle Physics, Iowa State University, May 1995, edited by K.E. Lassila et al. (World Scientific, Singapore, 1996), p.122.
[14] A.N. Kamal and A.B. Santra, Alberta Thy-31-94 (1994); Z. Phys. C72, 91 (1996).
[15] J.M. Soares, Phys. Rev. D51, 3518 (1995).
[16] K. Agashe and N.G. Deshpande, hep-ph/9909298.
[17] D. Abbaneo et al., LEPVUB-99-01, 1999.
[18] CLEO Collaboration, B.H. Behrens et al., hep-ex/9905056.
[19] M. Wirbel, B. Stech, and M. Bauer, ibid. C29, 637 (1985); M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C34, 103 (1987).
[20] X.G. He, W.S. Hou, and K.C. Yang, Phys. Rev. Lett. 83, 1100 (1999).
[21] J.-M. Gérard, J. Pestieau, and J. Weyers, Phys. Lett. B436, 363 (1998).
[22] G. Martinelli, invited talk presented at Kaon '99, Chicago, June 21-26, 1999.
[23] CLEO Collaboration, R. Godang et al., *Phys. Rev. Lett.* **80**, 3456 (1998).

[24] N.G. Deshpande, X.G. He, W.S. Hou, and S. Pakvasa, *Phys. Rev. Lett.* **82**, 2240 (1999).

[25] P. Ball and V.M. Braun, *Phys. Rev.* **D58**, 094016 (1998); P. Ball, *J. High Energy Phys.* **9809**, 005 (1998) [hep-ph/9802394].

[26] W.S. Hou, J.G. Smith, and F. Würtzwein, [hep-ph/9910014].

[27] H.Y. Cheng and K.C. Yang, *Phys. Rev.* **D59**, 092004 (1999).

[28] CLEO Collaboration, B.H. Behrens et al., *Phys. Rev. Lett.* **80**, 3710 (1998).

[29] I. Halperin and A. Zhitnitsky, *Phys. Rev.* **D56**, 7247 (1997); E.V. Shuryak and A. Zhitnitsky, *Phys. Rev.* **D57**, 2001 (1998).

[30] M.R. Ahmady, E. Kou, and A. Sugamoto, *Phys. Rev.* **D58**, 014015 (1998).

[31] D.S. Du, C.S. Kim, and Y.D. Yang, *Phys. Lett.* **B419**, 369 (1998); D.S. Du, Y.D. Yang, and G. Zhu, *Phys. Rev.* **D59**, 014007 (1999); *ibid.* **D60**, 054015 (1999).

[32] CLEO Collaboration, T. Bergfeld et al., *Phys. Rev. Lett.* **81**, 272 (1998).

[33] M. Gronau and J.L. Rosner, [hep-ph/9909478].
Table III. Branching ratios (in units of 10^{-6}) averaged over CP-conjugate modes for charmless $B_{u,d} \to PP$ decays. Predictions are made for $k^2 = m_b^2/2$, $\sqrt{p^2 + \eta^2} = 0.41$, $\gamma = 105^\circ$, and $N_{c_{\text{eff}}}(LR) = 2, 3, 6, \infty$ with $N_{c_{\text{eff}}}(LL)$ being fixed to be 2 in the first case and treated to be the same as $N_{c_{\text{eff}}}(LR)$ in the second case. Classification of decay amplitudes is described in details in [6]. Results using the improved light-cone sum rule (LCSR') and the BSW model for heavy-to-light form factors are shown in the upper and lower entries, respectively. Experimental values (in units of 10^{-6}) are taken from [7,8,9]. Our preferred predictions for branching ratios are those using LCSR' form factors, $N_{c_{\text{eff}}}(LL) = 2$ and $N_{c_{\text{eff}}}(LR) = 6$.

Decay	Class	$N_{c_{\text{eff}}}(LL) = 2$	$N_{c_{\text{eff}}}(LL) = N_{c_{\text{eff}}}(LR)$	Expt.
\(B_{d}^0 \to \pi^+ \pi^-\)	I	5.98	5.90	5.98
		8.31	8.20	8.31
\(B_{d}^0 \to \pi^0 \pi^0\)	II, VI	0.54	0.60	0.54
		0.75	0.83	0.75
\(B_{d} \to \eta \eta\)	II, VI	0.13	0.18	0.13
		0.18	0.26	0.18
\(B_{d}^0 \to \eta \eta'\)	II, VI	0.11	0.34	0.11
		0.16	0.48	0.16
\(B_{d}^+ \to \eta \eta'\)	II, VI	0.03	0.14	0.03
		0.04	0.21	0.04
\(B^- \to \pi^- \pi^0\)	III	5.92	5.92	5.92
		8.23	8.24	8.23
\(B^- \to \pi^- \eta\)	III	2.64	2.66	2.64
		3.68	3.71	3.68
\(B^- \to \pi^- \eta'\)	III	1.79	1.77	1.79
		2.51	2.62	2.51
\(B_{d} \to K^- \pi^+\)	IV	16.9	18.6	16.9
		23.7	27.4	23.7
\(B^- \to \overline{K}^0 \pi^-\)	IV	15.2	17.0	15.2
		21.4	25.1	21.4
\(B^- \to \overline{K}^- K^0\)	IV	1.76	1.97	1.76
		1.97	2.31	1.97
\(B_{d} \to K^- \pi^0\)	VI	5.27	6.02	5.27
		7.66	8.73	7.66
\(B_{d} \to K^0 \overline{K}^0\)	VI	1.65	1.85	1.65
		1.85	2.06	1.85
\(B_{d}^0 \to \pi^0 \eta\)	VI	0.36	0.50	0.36
		0.50	0.69	0.50
\(B_{d}^0 \to \pi^0 \eta'\)	VI	0.11	0.33	0.11
		0.15	0.46	0.15
\(B_{d} \to K^- \eta\)	VI	1.74	1.40	1.74
		1.30	0.88	1.30
\(B_{d} \to K^- \eta'\)	VI	25.8	47.9	25.8
		31.4	57.5	31.4
\(B^- \to K^- \pi^0\)	VI	11.6	12.6	11.6
		15.9	17.3	15.9
\(B^- \to K^- \eta\)	VI	1.75	1.43	1.75
		1.37	1.07	1.37
\(B^- \to K^- \eta'\)	VI	28.8	52.8	28.8
		35.2	63.5	35.2
Table IV. Same as Table III except for charmless $B_{u,d} \rightarrow VP$ decays.

Decay	Class	$N_c^{\text{eff}} (LL) = 2$		$N_c^{\text{eff}} (LL) = N_c^{\text{eff}} (LR)$	Expt.						
		2	3	6	∞	2	3	6	∞		
$B_d^+ \rightarrow \rho^- \pi^+$	I	18.5	18.5	18.5	18.5	21.0	23.6	26.4			
		26.5	26.5	26.5	26.5	30.0	33.8	37.7			
$B_d^0 \rightarrow \rho^+ \pi^-$	I	14.8	14.6	14.8	14.9	14.8	16.3	18.3	20.3	27.6$^{+8.4}_{-7.4}$ ± 4.2	
		8.54	8.34	8.43	8.51	8.54	9.32	10.4	11.6		
$\bar{B}_d^0 \rightarrow \rho^+ K^-$	I,IV	2.27	2.59	2.96	3.36	2.27	2.45	2.64	2.85	< 25	
		1.31	1.49	1.70	1.93	1.31	1.41	1.52	1.64		
$B_d^0 \rightarrow \rho^0 \pi^0$	II	0.73	0.72	0.71	0.70	0.73	0.01	0.54	2.33	< 5.1	
		0.80	0.79	0.78	0.77	0.80	0.02	0.50	2.22		
$B_d^0 \rightarrow \omega\pi^0$	II	0.16	0.07	0.02	0.003	0.16	0.07	0.02	0.01	< 5.8	
		0.19	0.10	0.05	0.04	0.19	0.09	0.07	0.14		
$B_d^0 \rightarrow \omega\eta$	II	0.32	0.35	0.39	0.44	0.32	0.004	0.28	1.14	< 12	
		0.30	0.32	0.35	0.41	0.30	0.02	0.29	1.13		
$B_d^0 \rightarrow \omega\eta'$	II	0.30	0.28	0.25	0.23	0.30	0.04	0.15	0.66	< 60	
		0.23	0.24	0.23	0.23	0.23	0.01	0.15	0.66		
$B_d^0 \rightarrow \rho^0\eta$	II	0.002	0.002	0.003	0.003	0.002	0.002	0.003	0.006	< 10	
		0.05	0.05	0.05	0.05	0.05	0.01	0.02	0.10		
$B_d^0 \rightarrow \rho^0\eta'$	II,VI	0.04	0.01	0.01	0.05	0.04	0.05	0.06	0.08	< 23	
		0.02	0.02	0.04	0.08	0.02	0.02	0.05	0.12		
$B^- \rightarrow \rho^-\pi^0$	III	13.2	13.3	13.3	13.3	13.2	12.0	10.9	9.77	< 77	
		17.1	17.1	17.2	17.2	17.1	16.8	16.5	16.2		
$B^- \rightarrow \rho^0\pi^-$	III	13.1	13.2	13.3	13.4	13.1	9.98	7.29	5.04	10.4$^{+3.3}_{-3.4}$ ± 2.1	
		9.64	9.69	9.76	9.82	9.64	6.14	3.46	1.61		
$B^- \rightarrow \omega\pi^-$	III	9.56	10.1	10.8	11.5	9.56	7.80	6.31	5.09	11.3$^{+3.3}_{-2.9}$ ± 1.5	
		6.25	6.71	7.27	7.93	6.25	4.20	2.64	1.57		
$B^- \rightarrow \rho^-\eta$	III	9.46	9.70	10.0	10.3	9.46	7.95	6.62	5.41	< 15	
		11.9	11.8	12.1	12.3	11.9	10.8	10.0	9.25		
$B^- \rightarrow \rho^-\eta'$	III	5.49	4.88	4.45	4.20	5.49	4.27	3.21	2.31	< 47	
		6.97	6.43	6.00	5.67	6.97	6.16	5.40	4.69		
$B^- \rightarrow \rho^0K^-$	III,VI	0.86	0.90	0.97	1.05	0.86	0.63	0.46	0.30	< 22	
		0.57	0.56	0.57	0.59	0.57	0.34	0.18	0.07		
$\bar{B}_d^0 \rightarrow K^{*-}\pi^+$	IV	5.63	5.63	5.63	5.63	5.63	6.27	6.95	7.66	22$^{+8.4}_{-6.5}$	
		8.13	8.13	8.13	8.13	8.13	9.06	10.3	11.1		
$B^- \rightarrow \bar{K}^{*0}\pi^-$	IV	3.41	3.41	3.41	3.41	3.41	4.34	5.38	6.54	< 27	
		4.93	4.93	4.93	4.93	4.93	6.27	7.78	9.45		
$B^- \rightarrow K^{*0}K^-$	IV	0.38	0.39	0.39	0.39	0.38	0.49	0.61	0.74	< 12	
		0.43	0.44	0.44	0.44	0.43	0.56	0.69	0.84		
$B^- \rightarrow K^{*-}K^0$	IV	0.26	0.30	0.35	0.41	0.26	0.23	0.20	0.18	< –	
		0.12	0.14	0.17	0.19	0.12	0.11	0.09	0.08		
Table IV. (Continued)

Decay	Class	\(N_{\text{eff}}^{(LL)} = 2 \)	\(N_{\text{eff}}^{(LL)} = N_{\text{eff}}^{(LR)} \)	Expt.
\(\overline{B}_d \to \phi^0 \)	V	0.02 0.001 0.01 0.03	0.02 0.002 0.05 0.17	< 5.4
		0.03 0.002 0.01 0.04	0.03 0.003 0.08 0.25	
\(\overline{B}_d \to \phi \eta \)	V	0.01 0.001 0.003 0.02	0.01 0.001 0.03 0.09	< 9
		0.02 0.001 0.004 0.02	0.02 0.002 0.04 0.14	
\(\overline{B}_d \to \phi \eta' \)	V	0.006 0.0005 0.002 0.01	0.006 0.001 0.02 0.06	< 31
		0.01 0.001 0.002 0.01	0.01 0.001 0.03 0.09	
\(B^- \to \phi \pi^- \)	V	0.04 0.003 0.01 0.06	0.04 0.005 0.11 0.37	< 4.0
		0.06 0.005 0.01 0.09	0.06 0.01 0.17 0.54	
\(\overline{B}_d \to K^{*0} \bar{K}^0 \)	VI	0.36 0.36 0.36 0.36	0.36 0.46 0.57 0.69	
		0.41 0.41 0.41 0.41	0.41 0.52 0.64 0.78	
\(\overline{B}_d \to \bar{K}^{*0} K^0 \)	VI	0.24 0.28 0.33 0.38	0.24 0.21 0.19 0.16	
		0.11 0.13 0.15 0.18	0.11 0.10 0.09 0.08	
\(\overline{B}_d \to \bar{K}^{*0} \pi^0 \)	VI	1.43 1.45 1.45 1.46	1.43 1.93 2.52 3.21	
\(\overline{B}_d \to \rho^0 \bar{K}^0 \)	VI	2.92 3.32 3.68 4.07	2.92 2.74 2.58 2.50	< 27
		2.23 2.50 2.75 3.01	2.23 2.10 2.01 2.00	
\(\overline{B}_d \to \omega \bar{K}^0 \)	VI	0.33 0.16 1.55 4.55	0.33 0.71 5.01 13.3	< 21
		0.83 0.04 0.89 3.45	0.83 0.34 4.37 13.0	
\(\overline{B}_d \to \bar{K}^{*0} \eta \)	VI	7.28 8.84 10.5 12.4	7.28 6.90 6.53 6.20	13.8_{-4.1}^{+5.5} ± 1.6
		5.49 6.42 7.40 8.45	5.49 5.64 5.78 5.94	
\(\overline{B}_d \to \bar{K}^{*0} \eta' \)	VI	4.18 1.91 0.52 0.41	4.18 4.98 5.41 5.88	< 24
		1.10 0.43 0.19 0.56	1.10 1.28 1.30 1.33	
\(\overline{B}_d \to \phi \bar{K}^0 \)	VI	11.3 7.15 3.97 1.74	11.3 5.87 2.22 0.32	< 28
		13.0 8.23 4.57 2.00	13.0 6.76 2.56 0.37	
\(B^- \to K^{*-0} \pi^0 \)	VI	4.46 4.45 4.43 4.42	4.46 4.68 4.92 5.17	< 800
		5.50 5.50 5.48 5.47	5.50 5.90 6.32 6.76	
\(B^- \to \rho^- \bar{K}^0 \)	VI	2.53 2.99 3.49 4.02	2.53 2.27 2.02 1.78	< 140
		1.46 1.72 2.01 2.32	1.46 1.31 1.16 1.03	
\(B^- \to \phi K^- \)	VI	11.6 7.71 4.28 1.87	11.6 6.33 2.39 0.35	< 5.9
		13.2 8.87 4.92 2.16	13.2 7.29 2.75 0.40	
\(B^- \to K^{*-} \eta \)	VI	9.60 11.4 13.3 15.4	9.60 8.51 7.50 6.57	26.4_{-8.2}^{+0.6} ± 3.3
		7.93 9.01 10.2 11.4	7.93 7.45 6.99 6.55	
\(B^- \to K^{*-} \eta' \)	VI,III	4.93 2.16 0.76 0.71	4.93 5.61 6.36 7.18	< 35
		1.43 0.67 0.57 1.12	1.43 1.58 1.75 1.95	
\(B^- \to \omega K^- \)	VI,III	1.50 0.78 1.79 4.53	1.50 1.04 5.30 14.3	< 8.0
		1.87 0.56 1.09 3.46	1.87 0.55 4.53 13.8	
Table V. Same as Table III except for charmless $B_{u,d} \to VV$ decays.

Decay Class	$N_{\text{eff}}(LL) = N_{\text{eff}}(LR)$	Expt.									
$\overline{B}_{d}^0 \to \rho^- \rho^+$	$N_{\text{eff}}(LL) = 2$	$N_{\text{eff}}(2)$	$N_{\text{eff}}(3)$	$N_{\text{eff}}(6)$	$N_{\text{eff}}(\infty)$	$N_{\text{eff}}(2)$	$N_{\text{eff}}(3)$	$N_{\text{eff}}(6)$	$N_{\text{eff}}(\infty)$	Expt.	
I	32.0	19.6	1.71	0.72	0.44	0.71	27.0	16.5	21.9	13.5	< 2200
II	1.17	0.72	0.58	0.72	0.54	0.72	1.17	1.17	21.9	13.5	< 40
III	0.72	0.44	0.71	0.72	0.33	0.44	0.71	1.17	13.5	9.97	< 19
IV	6.16	6.16	6.16	6.16	6.16	6.16	6.16	6.16	6.16	6.16	< 19
V	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	< 10
VI	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	0.68	< 10
VII	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	< 10
VIII	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	< 10
IX	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	< 10
X	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	< 10
XI	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	< 10
XII	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	< 10
XIII	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	< 10
XIV	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	< 10
XV	8.17	8.17	8.17	8.17	8.17	8.17	8.17	8.17	8.17	8.17	< 10
XVI	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	< 10
XVII	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	< 10
XVIII	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	< 10
XIX	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	< 10
XX	22.7	22.7	22.7	22.7	22.7	22.7	22.7	22.7	22.7	22.7	< 10
XXI	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	< 10