DIRECTED IMMERSIONS OF CLOSED MANIFOLDS

MOHAMMAD GHOMI

Abstract. Given any finite subset X of the sphere S^n, $n \geq 2$, which includes no pairs of antipodal points, we explicitly construct smoothly immersed closed orientable hypersurfaces in Euclidean space \mathbb{R}^{n+1} whose Gauss map misses X. In particular, this answers a question of M. Gromov.

1. Introduction

To every (C^1) immersion $f: M^n \to \mathbb{R}^{n+1}$ of a closed oriented n-manifold M, there corresponds a unit normal vector field or Gauss map $G_f: M \to S^n$, which generates a set $G_f(M) \subset S^n$ known as the spherical image of f. Conversely, one may ask, c.f. [8, p. 3]: for which sets $A \subset S^n$ is there an immersion $f: M \to \mathbb{R}^{n+1}$ such that $G_f(M) \subset A$? Such a mapping would be called an A-directed immersion of M [1, 7, 13, 14]. It is well-known that when $A \neq S^n$, f must have double points (Note 4.1), and M must be parallelizable, e.g., M can only be the torus T^2 when $n = 2$ (Note 4.2). Furthermore, the only known necessary condition on A is the elementary observation that $A \cup -A = S^2$, while there is also a sufficient condition due to Gromov [7, Thm. (D'), p. 186]:

Condition 1.1. $A \subset S^n$ is open, and there is a point $p \in S^n$ such that the intersection of A with each great circle passing through p includes a (closed) semicircle.

A great circle is the intersection of S^n with a 2-dimensional subspace of \mathbb{R}^{n+1}. Note that, when $n \geq 2$, examples of sets $A \subset S^n$ satisfying the above condition include those which are the complement of a finite set of points without antipodal pairs. Thus the spherical image of a closed hypersurface can be remarkably flexible. Like most h-principle or convex integration type arguments, however, the proof does not yield specific examples. It is therefore natural to ask, for instance:

Question 1.2 ([7], p. 186). “Is there a ‘simple’ immersion $T^2 \to \mathbb{R}^3$ whose spherical image misses the four vertices of a regular tetrahedron in S^2?”

Here we give an affirmative answer to this question (Section 2), and more generally present a short constructive proof of the sufficiency of a slightly stronger version of Condition 1.1 for the existence of A-directed immersions of parallelizable manifolds.
$M^{n-1} \times S^1$, where M^{n-1} is closed and orientable. Any such manifold admits an immersion $f: M^{n-1} \to \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ (Note 4.3). We then extend f to $M^{n-1} \times S^1$ by using the figure eight curve
\begin{equation}
E_\delta(t) := (\cos(t), \delta \sin(2t))
\end{equation}
to put a copy of $S^1 \simeq \mathbb{R}/2\pi$ in each normal plane of f, as described below. Note that the midpoint of $GE_\delta(S^1)$ is assumed to be at $(1, 0)$; see Figure 1 which shows $E_{1/2}$ and its spherical image. Further, the unit normal bundle of f may be naturally identified with the pencil of great circles of S^n passing through $(0, \ldots, 0, 1)$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Figure 1.}
\end{figure}

Theorem 1.3. Let $A \subset S^n$ satisfy Condition 1.1 with respect to $p = (0, \ldots, 0, 1)$. Further, if $n \geq 3$, suppose that the semicircle in Condition 1.1 contains p, or that no great circle through p is contained in A. Let $f: M^{n-1} \to \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ be a smooth (C^∞) immersion of a closed orientable $(n-1)$-manifold, and, for every $q \in M$, $C_q \subset S^n$ be the unit normal space of f at q. Then there is a smooth orthogonal frame $\{N_i: M \to S^n\}$, $i = 1, 2$, for the normal bundle of f such that the semicircle in C_q centered at $N_1(q)$ lies in A. For any such frame, and sufficiently small $\varepsilon, \delta > 0,$
\begin{equation}
F(q, t) := f(q) + \varepsilon \sum_{i=1}^2 E^i_\delta(t)N_i(q)
\end{equation}
yields a smooth A-directed immersion $M \times S^1 \to \mathbb{R}^{n+1}$, where E^i_δ are the components of the figure eight curve E_δ given by (1).

It is not known if Condition 1.1 is necessary for the existence of A-directed closed hypersurfaces, and the question posed in the first paragraph is open, even for $n = 2$. See [3, 4, 6] for some other recent results on Gauss maps of closed submanifolds, [2, 9, 11, 16] for still more studies of spherical images, and [15] for historical background.

2. Example

If $A = S^2 \setminus X$ for a finite set X without antipodal pairs, we may always find a point $p \in S^2$ with respect to which A satisfies the hypothesis of Theorem 1.3 (e.g., let $p \not\in X$ be in the complement of all great circles which pass through at least two points of X other than $-p$). After a rigid motion (which may be arbitrarily small)
we may assume that $p = (0, 0, 1)$ or $(0, 0, -1)$, and let $f(\theta) := (\cos(\theta), \sin(\theta), 0)$ be the standard immersion of $S^1 \simeq \mathbb{R}/2\pi$ in \mathbb{R}^3. Then the desired framing for the normal bundle of f may always take the form

$$N_1(\theta) := f'(\theta) \times N_2(\theta), \quad N_2(\theta) := \left(\frac{\cos(\theta), \sin(\theta), z(\theta)}{\sqrt{1 + z^2(\theta)}} \right),$$

where $z: \mathbb{R}/2\pi \to \mathbb{R}$ is a smooth function with $z(\theta) = -z(\theta + \pi)$ and such that X is contained entirely in one of the components of $S^2 - N_2(S^1)$. For instance, when X is the vertices of a regular tetrahedron, we may set $z(\theta) := \cos(3\theta)$ in (3). Then, for $\varepsilon, \delta \leq 1/8$, the mapping $F(\theta, t)$ given by (2) yields an immersion $T^2 \simeq \mathbb{R}/2\pi \times \mathbb{R}/2\pi \to \mathbb{R}^3$ which answers Question 1.2. The resulting surface, for $\varepsilon = \delta = 1/8$, is depicted in Figure 2 together with its spherical image (note that

![Figure 2.](image)

here $p = (0, 0, -1))$. To find $z(\theta)$ in general, we may order the points in $X' \cup -X'$, where $X' := X \setminus \{-p\}$, according to their “longitude” θ, and connect them by geodesic segments to obtain a simple closed symmetric curve $\gamma(\theta)$. A perturbation of γ then yields a smooth symmetric curve $\tilde{\gamma}$ such that X is contained in one of the components of $S^2 - \tilde{\gamma}(S^1)$. The third coordinate of $\tilde{\gamma}$ gives our desired height function z.

3. Proof of Theorem 1.3

3.1. First we construct the frame $\{N_i\}$. For every $q \in M$, C_q is a great circle passing through p. So it contains a semicircle in A by assumption (Condition 1.1). Let $m_q \subset C_q$ be the set of midpoints of all such semicircles. We need to find a smooth map $N_1: M \to S^n$ such that $N_1(q) \in m_q$ for all $q \in M$. To this end note that m_q is open and connected. Further, if m_q contains any pairs of antipodal points, then $m_q = C_q$; otherwise, m_q lies in the interior a semicircle of C_q. Consequently,

$$\text{Cone}(m_q) := \{ \lambda x \mid x \in m_q, \text{ and } \lambda \geq 0 \},$$

is a convex set in \mathbb{R}^{n+1}. In particular, for any finite set of points $x_i \in \text{Cone}(m_q)$ and numbers $\lambda_i \geq 0$, $\sum \lambda_i x_i \in \text{Cone}(m_q)$. Now let B be the set of all points $q \in M$ such that $m_q \neq C_q$. Then B is closed (and therefore compact) since $M \setminus B$ is open; indeed the set of great circles contained in A is open, since A is open. Further note
that for any point \(q \in M \), normal vector \(x \in m_q \), and continuous local extension \(v \) of \(x \) to a normal vector field of \(M \), we have \(v(q') \in m_{q'} \) for all \(q' \) in an open neighborhood \(U \) of \(q \) (because the set of semicircles contained in \(A \) is open). Let \(\{ v_i : U_i \to S^n \} \), \(i = 1, \ldots, k \), be a finite collection of such local vector fields so that \(\bigcup U_i \) covers \(B \) and \(v_i \) are smooth. Also let \(\{ \phi_i : M \to \mathbb{R} \} \) be a smooth partition of unity subordinate to \(\{ U_i \} \), and, for \(q \in \bigcup_i U_i \), set

\[
N_1(q) := \frac{\sum_{i=1}^k \phi_i(q) v_i(q)}{\| \sum_{i=1}^k \phi_i(q) v_i(q) \|}.
\]

If \(q \in B \), then \(v_i(q) \in m_q \) which lies in the interior of a semicircle \(S \subset C_q \), and so \(\| \sum_{i=1}^k \phi_i(q) v_i(q) \| \neq 0 \). Indeed, if \(x \) is the midpoint of \(S \), then \(\langle \sum_{i=1}^k \phi_i(q) v_i(q), x \rangle = \sum_{i=1}^k \phi_i(q) \langle v_i(q), x \rangle > 0 \). Thus \(N_1 \) is well defined (and smooth) on an open neighborhood \(V \) of \(B \). Further, \(N_1(q) \in m_q \) for all \(q \in V \), since \(\text{Cone}(m_q) \) is convex. In particular we are done if \(B = M \); otherwise, note that we may write

\[
N_1(q) = \cos(\theta(q)) p + \sin(\theta(q)) G_f(q),
\]

for some function \(\theta : V \to \mathbb{R} \), since \(G_f \) is well defined due to the orientability of \(M \), and thus \(\{ p, G_f(q) \} \) forms an orthonormal basis for the normal plane \(df(T_q M) \perp \). Further, it is easy to see that we may choose \(\theta \) continuously (and therefore smoothly) if \(n = 2 \). This also holds for \(n > 2 \) if each \(C_q \) contains a semicircle passing through \(p \); for then \(\theta \) is uniquely determined within the range \([-\pi/2, \pi/2]\). Indeed, we may choose the vectors \(v_i \) above so that \(\langle v_i(q), p \rangle \geq 0 \) which would in turn yield that \(\langle N_1(q), p \rangle \geq 0 \). Now let \(V' \) be an open neighborhood of \(B \) with closure \(\overline{V'} \subset V \). Using Tietze’s theorem, followed by a perturbation and a gluing, we may extend \(\theta |_{V'} \) smoothly to all of \(M \). Then (4) yields the desired vector field on \(M \), since for any \(q \in M \setminus B \), \(N_1(q) \in C_q = m_q \). Finally, set

\[
N_2(q) := \sin(\theta(q)) p - \cos(\theta(q)) G_f(q).
\]

3.2. It remains to show that \(G_F(M \times S^1) \subset A \), for small \(\varepsilon, \delta > 0 \). For all \(q \in M \), \(C_q \cap A \) contains an arc of length \(\geq \pi + \alpha \) with midpoint \(N_1(q) \) for some uniform constant \(\alpha > 0 \). Indeed, if we let \(g(q) \) be the supremum of lengths of all arcs in \(C_q \cap A \) with midpoint \(N_1(q) \), then \(g : M \to \mathbb{R} \) is lower semicontinuous, i.e., \(\lim_{q \to q_0} g(q) \geq g(q_0) \), since \(A \) is open. Thus, since \(g \geq \pi + \alpha \) and \(M \) is compact, \(g \geq \pi + \alpha \). Now choose \(\delta > 0 \) so small that the length \(\ell \) of the spherical image of \(E_\delta \) is \(\leq \pi + \alpha \) (this is possible since \(\ell \to \pi \) as \(\delta \to 0 \)). Next, for \((q, t) \in M \times S^1 \), let \(G_F(q, t) \) be the normalized projection of \(G_F(q, t) \) into \(df(T_q M) \perp \), i.e.,

\[
\tilde{G}_F(q, t) := \frac{\sum_{i=1}^2 \langle G_F(q, t), N_i(q) \rangle N_i(q)}{\sqrt{\sum_{i=1}^2 \langle G_F(q, t), N_i(q) \rangle^2}}.
\]

Also, for fixed \(t \in S^1 \), let \(F_t(q) := F(q, t) \). Then, by the tubular neighborhood theorem, \(F_t : M \to \mathbb{R}^{n+1} \) is a smooth immersion for small \(\varepsilon \). Further, as \(\varepsilon \to 0 \), \(F_t \) converges to \(f \) with respect to the \(C^1 \)-topology. Thus, for each \(q \in M \), the normal
plane \(dF_t(T_q M)^\perp \) (which contains \(G_F(q, t) \)) converges to \(df(T_q M)^\perp \). Consequently \(G_F \) is well-defined for small \(\varepsilon \), and converges to \(\tilde{G}_F \) as \(\varepsilon \to 0 \). So it suffices to check that \(\tilde{G}_F(M \times S^1) \subset A \), which follows from our choice of \(\delta \). Indeed for each fixed \(q \in M, G_F(\{q\} \times S^1) \) is the spherical image of the figure eight curve \(\sum_{i=1}^{2} E_i^1(t)N_i(q) \) in \(df(T_q M)^\perp \), which is an arc of \(C_q \) with midpoint \(N_1(q) \) and length \(\leq \pi + \alpha \). □

4. Notes

4.1. It is well-known that \(G_f(M) = S^n \) for any embedding \(f: M^n \to \mathbb{R}^{n+1} \) of a closed oriented \(n \)-manifold [7, p. 187]. More generally, this also holds for “Alexandrov embeddings”, i.e., immersions \(f: M \to \mathbb{R}^{n+1} \) which may be extended to an immersion \(\tilde{f}: \tilde{M} \to \mathbb{R}^{n+1} \) of a compact \((n+1) \)-manifold \(\tilde{M} \) with \(\partial \tilde{M} = M \). Indeed if \(\nu \) is any vector field along \(M \) which points “outward” with respect to \(\tilde{M} \), then for \(p \in M \), the normalized projection of \(df(\nu(p)) \) into the line \(df(T_p M)^\perp \) defines a normal vector field \(\nu : M \to \mathbb{S}^n \) which coincides with \(G_f \) (after a reflection of \(G_f \) if necessary). Then, for any \(u \in \mathbb{S}^n \), if \(p \) is a point which maximizes the height function \(\langle \cdot, u \rangle \) on \(M \), we have \(G_f(p) = u \). On the other hand, being only regularly homotopic to an embedding, is not enough to ensure that \(G_f(M) = \mathbb{S}^n \). Indeed the example in Figure 2 is regularly homotopic to an embedded torus of revolution [12].

4.2. If \(G_f(M) \neq \mathbb{S}^n \) for an immersion \(f: M^n \to \mathbb{R}^{n+1} \) of an oriented \(n \)-manifold, then, as is well-known [11], \(M \) must be parallelizable. Here we include a brief geometric argument for this fact. If \((0, \ldots, 0, 1) \notin G_f(M) \), we may define a continuous map \(F: TM \to \mathbb{R}^n \simeq \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1} \) as follows, c.f. [5, Lemma 2.2]. There is a continuous map \(\mathbb{S}^n \setminus \{0, \ldots, 0, 1\} \xrightarrow{\rho} SO(n+1), \ u \mapsto \rho_u \) such that \(\rho_u(0) = (0, \ldots, 0, -1) \). Let \(\pi: TM \to M \) be the canonical projection, and for \(X \in TM \) set \(F(X) = \rho_{\pi(G_f(X))(df(X))} \). Also let \(F_p := F|_{T_p M} \). Then \(\{F_p^{-1}(e_i)\} \), where \(\{e_i\} \) is a fixed basis of \(\mathbb{R}^n \), gives a framing for \(TM \) as desired. So in particular, when \(M \) is closed and \(n = 2 \), we have \(M = \mathbb{T}^2 \). The last observation also follows from Gauss-Bonnet theorem via degree theory when \(f \) is \(C^2 \); since if \(G_f(M) \neq \mathbb{S}^2 \), then

\[
0 = \deg(G_f) = \frac{1}{4\pi} \int_M \det(df_G) = \frac{1}{4\pi} \int_M K = \frac{1}{2} \chi(M),
\]

where \(K \) is the Gaussian curvature and \(\chi \) is the Euler characteristic.

4.3. To generate some concrete examples of the immersions \(f: M^{n-1} \to \mathbb{R}^n \simeq \mathbb{R}^n \times \{0\} \) in Theorem 1.3, note that if \(f_0: M_0^{n-k-1} \to \mathbb{R}^{n-k} \times \{0\} \) is any immersion such that \(f_0(M_0) \) is disjoint from the subspace \(L := \mathbb{R}^{n-k} \times \{(0, 0)\} \), then spinning \(f_0 \) about \(L \) yields an immersion \(f_1: M_0 \times S^1 \to \mathbb{R}^{n-k+1} \) given by

\[
f_1(q, t) := \begin{bmatrix}
1 & 0 \\
0 & \cos(t) & \sin(t) \\
-\sin(t) & \cos(t) & 0
\end{bmatrix} \begin{bmatrix}
f_0^1(q) \\
\vdots \\
f_0^{n-k}(q)
\end{bmatrix},
\]
where f_0^i are the components of f_0. Thus, for instance, one may inductively construct immersions of $S^{n-k-1} \times T^k$ in \mathbb{R}^n, for $k = 1, \ldots, n-1$. More generally, if $M^{n-1} \times S^1$ is parallelizable, then so is the open manifold $M^{n-1} \times (0,1)$, which may be immersed in \mathbb{R}^n [10] by the h-principle [7], or more specifically, the “holonomic approximation theorem” of Eliashberg-Mishachev [1, 5].

Acknowledgements

The author thanks Misha Gromov for his interesting question in [7, p. 186], and David Spring who first called the author’s attention to that problem and pointed out a correction in an earlier draft of this work.

References

[1] Y. Eliashberg and N. Mishachev. Introduction to the h-principle, volume 48 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[2] M. Ghomi. Gauss map, topology, and convexity of hypersurfaces with nonvanishing curvature. Topology, 41(1):107–117, 2002.
[3] M. Ghomi. Shadows and convexity of surfaces. Ann. of Math. (2), 155(1):281–293, 2002.
[4] M. Ghomi. Tangent bundle embeddings of manifolds in Euclidean space. Comment. Math. Helv., 81(1):259–270, 2006.
[5] M. Ghomi and M. Kossowski. h-principles for hypersurfaces with prescribed principal curvatures and directions. Trans. Amer. Math. Soc., 358(10):4379–4393 (electronic), 2006.
[6] M. Ghomi and S. Tabachnikov. Totally skew embeddings of manifolds. Math. Z., 258(3):499–512, 2008.
[7] M. Gromov. Partial differential relations. Springer-Verlag, Berlin, 1986.
[8] M. Gromov. Spaces and questions. Geom. Funct. Anal., (Special Volume, Part I):118–161, 2000. GAFA 2000 (Tel Aviv, 1999).
[9] P. Hartman and L. Nirenberg. On spherical image maps whose Jacobians do not change sign. Amer. J. Math., 81:901–920, 1959.
[10] M. W. Hirsch. On imbedding differentiable manifolds in euclidean space. Ann. of Math. (2), 73:566–571, 1961.
[11] J. Milnor. On the immersion of n-manifolds in $(n + 1)$-space. Comment. Math. Helv., 30:275–284, 1956.
[12] U. Pinkall. Regular homotopy classes of immersed surfaces. Topology, 24(4):421–434, 1985.
[13] C. Rourke and B. Sanderson. The compression theorem. II. Directed embeddings. Geom. Topol., 5:431–440 (electronic), 2001.
[14] D. Spring. Directed embeddings of closed manifolds. Commun. Contemp. Math., 7(5):707–725, 2005.
[15] D. Spring. The golden age of immersion theory in topology: 1959–1973. A mathematical survey from a historical perspective. Bull. Amer. Math. Soc. (N.S.), 42(2):163–180 (electronic), 2005.
[16] H. Wu. The spherical images of convex hypersurfaces. J. Differential Geometry, 9:279–290, 1974.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
E-mail address: ghomi@math.gatech.edu
URL: www.math.gatech.edu/~ghomi