A general proof of the equivalence between the δN and covariant formalisms

A. Naruko

Yukawa Institute for Theoretical Physics, Kyoto University - Kyoto 606-8502, Japan

received 17 February 2012; accepted in final form 29 May 2012
published online 27 June 2012

PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

Abstract – Recently, the equivalence between the δN and covariant formalisms has been shown by Suyama et al. but they essentially assumed Einstein gravity in their proof (arXiv:1201.3163). They showed that the evolution equation of the curvature covector in the covariant formalism on uniform energy density slicings coincides with that of the curvature perturbation in the δN formalism assuming the coincidence of uniform energy and uniform expansion (Hubble) slicings, which is the case on superhorizon scales in Einstein gravity. In this short note, we explicitly show the equivalence between the δN and covariant formalisms without specifying the slicing condition and the associated slicing coincidence, in other words, regardless of the gravity theory.

Copyright © EPLA, 2012

Introduction. – Thanks to the current high-precision measurements of the Cosmic Microwave Background (CMB), the nature of its temperature anisotropies has been determined to have a power spectrum with tiny amplitude ($\sim 10^{-5}$), nearly scale invariance and almost Gaussian statistics [1]. These tiny temperature anisotropies are naturally explained by inflation in the very early universe. Fortunately or unfortunately, there are hundreds or thousands of inflation models consistent with the current observations. As such, possible deviations from Gaussianity of the statistics of the CMB, non-Gaussianities, have recently been attracting the attention of cosmologists as a possible mean to constrain inflation models consistent with the current observations. (See articles in the focus section in CQG [3] and references therein for recent developments.) The PLANCK satellite will indeed provide us with more precise constraints on the statistics of the temperature anisotropies in the next couple of years. To theoretically compute the non-Gaussianity, we need to include the non-linear dynamics of cosmological perturbations.

The simple and straightforward way to handle such non-linear dynamics is the standard perturbative approach [4–7], which can in principle deal with the most general of situations, as long as the perturbation expansion is applicable. However, the equations can become very much involved and quite often the physical transparency may be lost. To resolve this problem, we have two alternative approaches: the δN formalism [8–11] and the covariant formalism [12–16] (see also the review [17]).

The δN formalism corresponds to the leading-order approximation of the spatial gradient expansion approach [7,18–27]. In the gradient expansion approach, the field equations are expanded in powers of spatial gradients and hence it is applicable only to perturbations on very large spatial scales. However, a big advantage is that at leading order in the gradient expansion, which corresponds to the separate universe approach [28], the field equations become ordinary differential equations with respect to time; hence, the physical quantities at each spatial point (where “each point” corresponds to a Hubble horizon size region) evolve in time independently of those in the rest of the space. By solving the fiducial homogeneous equation, we can evaluate the non-linear dynamics of perturbations and evaluate the generated non-Gaussianity.

One of the most important results obtained in the gradient expansion approach is that the full non-linear curvature perturbation on uniform energy density slices is conserved at leading order in the gradient expansion if the pressure is only a function of the energy density [11] (i.e., the perturbation is purely adiabatic). This is shown only by using the energy conservation law without specifying the gravity theory as long as the energy conservation law holds.

Thus, without solving the gravitational field equations, one can predict the spectrum and the statistics of the
curvature perturbation at the horizon re-entry during the late radiation or matter-dominated era once one knows these properties of the curvature perturbation at the horizon exit during inflation. (For Galileon or kinetic braiding models [29–41], this does not hold [42,43].)

In the covariant formalism, all quantities are defined in a covariant manner and their evolution equations are also obtained in a fully non-linear and covariant form. Since these quantities behave as tensors, they are much easier to intuitively understand from a geometrical point of view. It is known that the curvature covector is conserved provided the pressure is purely adiabatic. One of the main differences from the gradient expansion approach is that the covariant approach can be applied to the non-linear dynamics at all scales.

However, the relation between quantities in the covariant formalism and those in perturbation theory or the \(\delta N \) formalism is unclear, since all quantities in the covariant formalism are defined in a covariant way. For example, although the correspondence between the curvature covector and the curvature perturbation is revealed perturbatively [12,13,44,45], it is not well-understood at the full non-linear level (see also [15]). The bispectrum of the curvature perturbation at the horizon re-entry during inflation. (For Galileon or kinetic braiding models [29–41], this does not hold [42,43].)

In this short note, we give a general proof of the equivalence between the \(\delta N \) formalism and those in perturbation theory and the \(\delta N \) formalism, assuming the coincidence of uniform energy density slicings [47]. Although such slicing coincidence happens at least in Einstein gravity, we do not know whether it holds or not in other gravity theories. For example, uniform energy and uniform expansion slicings do not coincide in \(f(R) \) gravity.

In this short note, we give a general proof of the equivalence between the \(\delta N \) formalism and those in perturbation theory and the \(\delta N \) formalism, assuming the coincidence of uniform energy density slicings [47]. Although such slicing coincidence happens at least in Einstein gravity, we do not know whether it holds or not in other gravity theories. For example, uniform energy and uniform expansion slicings do not coincide in \(f(R) \) gravity.

We express the metric in the ADM form

\[
\begin{align*}
\text{ds}^2 &= -\alpha^2 dt + \gamma_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt),
\end{align*}
\]

where \(\alpha, \beta^i \) and \(\gamma_{ij} \) are the lapse function, the shift vector and the spatial metric, respectively. We further decompose the spatial metric as

\[
\gamma_{ij}(t,x^k) = \alpha^2(t) e^{2\psi(t,x^k)} \gamma_{ij}(t,x^k), \quad \text{det} \gamma_{ij} = 1,
\]

where \(\alpha(t)e^{\psi(t,x^k)} \) is the scale factor at each local point, while \(\alpha(t) \) is the scale factor of a fiducial homogeneous universe. By virtue of the separate universe assumption [28], the shift vector is order of \(\epsilon \) or higher and \(\partial \gamma_{ij} = \mathcal{O}(\epsilon^2) \) [9,11]. Then at leading order in the gradient expansion, we identify \(\psi \) as the non-linear curvature perturbation [11].

Under the separate universe assumption, the energy-momentum tensor will take the perfect-fluid form

\[
T_{\mu\nu} = (\rho + P) u_\mu u_\nu + P g_{\mu\nu} + \mathcal{O}(\epsilon^2),
\]

where \(\rho = \rho(t,x^i) \) and \(P = P(t,x^i) \) are the energy density and pressure of the fluid. Here we choose the comoving threading as the choice of spatial coordinates

\[
v^i = \frac{u^i}{\alpha} \left(-\frac{dx^i}{dt} \right) = 0,
\]

which means the spatial coordinates are chosen so as to comove with the fluid. Then the time component of \(u^\mu \) is determined by the normalisation condition of \(u^\mu \), \(u^\mu u_\mu = -1 \), as

\[
u^0 = \frac{1}{\alpha} + \mathcal{O}(\epsilon^2),
\]

where we have used the condition \(\beta^i = \mathcal{O}(\epsilon) \). The expansion of \(u^\mu \) is given by

\[
\Theta \equiv \nabla_\mu u^\mu = \frac{3}{\alpha} \left(\frac{\partial a}{a} + \partial_\mu \psi \right) + \mathcal{O}(\epsilon^2),
\]

Next, we write down the local energy conservation equation

\[
- u_\mu \nabla_\nu T^{\mu\nu} = u^\mu \nabla_\mu \rho + \Theta(\rho + P) = 0.
\]
By inserting eq. (6), this gives
\[\frac{\partial_t a}{a} + \partial_x \psi = -\frac{\partial_t \rho}{3(\rho + P)} + \mathcal{O}(\epsilon^2). \]
(8)

In passing, let us choose the uniform energy density slicing. From eq. (8), if \(P \) is a function of \(\rho \), \(P = P(\rho) \), the RHS is independent of spatial coordinates because it is given by a function of \(\rho \), which is a function of time on uniform energy density slices. And hence the curvature perturbation is conserved,
\[\partial_t \psi_E(t, x^i) = \mathcal{O}(\epsilon^2), \quad \text{if } P = P(\rho), \]
(9)

where the subscript \(E \) denotes a quantity evaluated on the uniform energy density slice.

Finally, we define the \(c \)-folding number along an integral curve of \(u^\mu \):
\[\mathcal{N}(t, t_f; x^i) \equiv \frac{1}{3} \int_{t_f}^{t} dt \Theta(t, x^i), \]
(10)

where the integral is performed along a constant spatial coordinate line because of the condition of comoving threading eq. (4). By rewriting \(\Theta \) with eq. (6), we have
\[\mathcal{N}(t, t_f; x^i) = \int_{t_f}^{t} dt (H + \partial_t \psi) = N(t, t_f) + \left[\psi(t, x^i) - \psi(t_f, x^i) \right]. \]
(11)

where we have introduced the \(c \)-folding number of a fiducial homogeneous universe
\[N(t, t_f) \equiv \int_{t_f}^{t} dt \frac{\partial_t a(t)}{a(t)} = \log \left[\frac{a(t_f)}{a(t_1)} \right]. \]
(12)

From eq. (11), we see that the difference between the actual \(c \)-folding number \(N \) and the background value \(N \) gives the change in \(\psi \). Let us consider two slicings, slicings A and B, which coincide at \(t = t_f \). The slicing A is such that it starts on a flat slicing at initial time \(t_f \) and ends on a uniform energy density slicing at final time \(t_f \). On the other hand, the slicing B is the flat slicing all the time from \(t = t_1 \) to \(t = t_f \). Then, we have
\[\psi_E(t, x^i) = N_A(t, t_1; x^i) - N_B(t, t_1; x^i) = N_A(t, t_1; x^i) - N(t, t_f) \equiv \delta N(t, t_1; x^i), \]
(13)

where we have used a property of the flat slicing that the \(c \)-folding number coincides with that of the homogeneous universe on the flat slicing. This is the non-linear \(\delta N \) formula.

Covariant formalism. As we have seen in the last subsection, the \(\delta N \) formalism is a coordinate-based approach focusing on the superhorizon dynamics. On the other hand, in the covariant formalism \([12,13]\), all quantities are covariantly defined and this formalism is applicable to all length scales.

First, we define the curvature covector, which is one of the most important quantity in the covariant formalism,
\[\zeta_\mu \equiv \partial_\mu N - \frac{\dot{N}}{\dot{\rho}} \partial_\mu \rho, \]
(14)

where the dot on a scalar quantity denotes the derivative along \(u^\mu \), \(\dot{\rho} \equiv u^\mu \nabla_\mu \rho \). It is also useful to see the relation between \(N \) and \(\Theta \) from the definition of \(N \), eq. (10),
\[\dot{N} = u^\mu \nabla_\mu N = \frac{1}{3} \Theta. \]
(15)

Here we take the partial derivative of eq. (7) and the equation is rewritten in terms of vector quantities, \(\rho_\mu \equiv \partial_\mu \rho \) and \(N_\mu \equiv \partial_\mu N \),
\[\dot{\rho}_\mu + 3N \partial_\mu (\rho + P) + 3N_\mu (\rho + P) = 0, \]
(16)

where the dot on a vector quantity denotes the Lie derivative of its vector with respect to \(u^\mu \),
\[\dot{V}_\mu \equiv \mathcal{L}_u V_\mu = u^\nu \partial_\nu V_\mu + V_\nu \partial_\nu u^\nu. \]
(17)

After some calculation, we can rewrite eq. (16) as
\[\dot{\zeta}_\mu = -\frac{\Theta}{3(\rho + P)} \left(\partial_\mu P - \frac{\dot{P}}{\dot{\rho}} \partial_\mu \rho \right). \]
(18)

If the pressure is given by a function of the energy density, \(P = P(\rho) \), the right-hand side apparently vanishes and the curvature covector is conserved.

Before closing this subsection, we leave a brief comment on the initial condition of the curvature covector. In the covariant formalism, the \(c \)-folding number is defined as the integration of the expansion along an integral curve of \(u^\mu \) as in eq. (10). Then, the derivative of \(N \) with respect to \(u^\mu \), eq. (15), is well-defined and gives the expansion. On the other hand, how can we evaluate the partial derivative of the \(c \)-folding number, \(\partial_\mu N \), in eq. (14)? Since we do not specify the initial time of the integration, the \(c \)-folding numbers for each integral curve cannot be directly compared. This means the curvature covector has an arbitrariness in the choice of the initial hypersurface, which we thus need to specify before being able to discuss the relation with the curvature perturbation in the \(\delta N \) formalism, for example. Hereinafter, we introduce a prefix for \(\zeta_\mu \) to make clear the dependence of the curvature covector on the initial slicing. In particular, \(\sigma \zeta_\mu \) and \(f \zeta_\mu \) are defined as the curvature covector on the general initial slice and the initial flat slice, respectively,
\[\sigma \zeta_\mu \equiv \zeta_\mu \text{ on the general initial slice}, \]
(19)
\[f \zeta_\mu \equiv \zeta_\mu \text{ on the initial flat slice}. \]
(20)
Equivalences. –

δN formula and the curvature covector. In this subsection, the relation between the curvature covector and the curvature perturbation in the δN formalism is revealed. In particular, we show that the spatial component of the curvature covector exactly coincides with the spatial derivative of the curvature perturbation on the uniform energy density slicing given by the δN formalism when the initial conditions for the curvature covector are given on an appropriate slicing, i.e., flat slicing. As we have seen in the last subsection, we need to specify the initial hypersurface for ζ to compare with the curvature perturbation. Of course, since the initial hypersurface for ζ can be chosen arbitrarily, the spatial component of the curvature covector does not, in general, coincide with the spatial derivative of the curvature perturbation in the δN formalism. This is because the initial hypersurface in the δN formalism is chosen to be a flat one.

Now we show the equivalence between the δN formula and the curvature covector. From eq. (14), the spatial component of the curvature covector on the uniform energy density slicing is given by the spatial derivative of the e-folding number, which corresponds to the difference in the curvature perturbation on initial and final slices

\[\delta \zeta_0|_E(t, x^i) = \partial_i N_E(t, x^i) = \partial_i \left[\psi_E(t, x^i) - \psi(t_1, x^i) \right], \quad \text{(21)} \]

where \(\psi_E \) means the curvature perturbation on uniform energy density slices. By appropriately choosing the initial slicing to be a flat slicing, we can further rewrite the above equation as

\[\delta \zeta_0|_E(t, x^i) = \partial_i \psi_E(t, x^i) = \partial_i \left[\delta N(t, t_1; x^i) \right], \quad \text{(22)} \]

This apparently shows the equivalence between the δN formula eq. (13) and the curvature covector. However, if the initial hypersurface is not chosen to be a flat one, the equivalence does not hold.

Lowest-order gradient expansion and the covariant formalism. Next, we show the equivalence between the lowest-order gradient expansion and the covariant formalism without specifying the time slicing at final time, that is, in a gauge invariant way (see also [47]).

First, the time component of the curvature covector is expressed as

\[\delta \zeta_0 = \partial_0 N + \frac{\partial \rho}{3(\rho + P)} = \mathcal{O}(\epsilon^2), \quad \text{(23)} \]

and the spatial component is

\[\delta \zeta_i = \partial_i N + \frac{\partial \rho}{3(\rho + P)} = \partial_i \left(\int dt \partial_0 \psi \right) + \frac{\partial \rho}{3(\rho + P)}. \quad \text{(24)} \]

The evolution equation for the spatial component of the curvature covector is given by the spatial part of eq. (18)

\[\delta \zeta_i = -\frac{\Theta}{3(\rho + P)} \left(\partial_i P - \frac{\dot{P}}{\rho} \partial_i \rho \right) = \frac{1}{\alpha} \frac{\partial \rho}{3(\rho + P)^2} \left(\partial_i P - \frac{\partial P}{\partial \rho} \partial_i \rho \right), \quad \text{(25)} \]

where the explicit form of the LHS is given by

\[\delta \zeta_i = u^\mu \partial_\mu (\partial \zeta_i) + \alpha \zeta_i \partial_i u^\mu = u^0 \partial_0 (\partial \zeta_i) + \alpha \zeta_i \partial_i u^0 \]

\[= \frac{1}{\alpha} \left[\partial_i (\partial \zeta_i) - \zeta_i \frac{\partial \alpha}{\alpha} \right] \quad \text{(26)} \]

By inserting eq. (24), this reduces to

\[\delta \zeta_i = \frac{1}{\alpha} \partial_i (\partial \zeta_i) + O(\epsilon^3) \]

\[= \frac{1}{\alpha} \left[\partial_i (\partial \psi) + \frac{\partial \rho}{3(\rho + P)} - \frac{\partial \rho}{3(\rho + P)^2} \right] + O(\epsilon^3), \quad \text{(27)} \]

where we have used eq (23) in the first equality. Finally, eq. (25) is rewritten as

\[\partial_i (\partial \psi) = \frac{\partial \rho}{3(\rho + P)^2} \left(\partial_i P - \frac{\partial P}{\partial \rho} \partial_i \rho \right) \]

\[- \frac{\partial_i \partial \rho}{3(\rho + P)} + \frac{\partial \rho \partial_0 (\rho + P)}{3(\rho + P)^2} \]

\[= -\partial_i \left(\frac{\partial \rho}{3(\rho + P)} \right). \quad \text{(28)} \]

By integrating eq. (28) over \(x^i \), we have

\[\partial_i \psi + C(t) = -\frac{\partial \rho}{3(\rho + P)}. \quad \text{(29)} \]

where \(C(t) \) is an integration constant. By appropriately choosing \(C(t) \) so that it coincides with \(\partial_i a/\alpha \), we can see the coincidence of eq. (29) with eq. (8). This shows the equivalence between the lowest-order gradient expansion and the covariant formalism.

Conclusion. – In this short note, we have given a general proof of the equivalence between the δN and covariant formalisms without specifying the slicing condition and the associated slicing coincidence, in other words, regardless of the gravity theory. First, we have shown that the spatial component of the curvature covector on the uniform energy density slicing coincides with the spatial gradient of the curvature perturbation on the same slice which is given by the δN formalism when the initial hypersurface for the curvature covector is appropriately chosen so as to be a flat slicing. Next, we have shown that the evolution equation of the curvature covector is equivalent.
REFERENCES

[1] Komatsu E. et al., Astrophys. J. Suppl., 192 (2011) 18, arXiv:1001.4538.
[2] Komatsu E. and Spergel D. N., Phys. Rev. D, 63 (2001) 063002, arXiv:astro-ph/0005036.
[3] Sasaki M. and Wands D., Class. Quantum Grav., 27 (2010) 123031.
[4] Acquaviva V., Bartolo N., Matarrese S. and Riotto A., Nucl. Phys. B, 667 (2003) 119, arXiv:astro-ph/0209156.
[5] Malik K. A. and Wands D., Class. Quantum. Grav., 21 (2004) L65, arXiv:astro-ph/0307055.
[6] Noh H. and Hwang J.-c., Phys. Rev. D, 69 (2004) 104011.
[7] Lyth D. H. and Rodriguez Y., Phys. Rev. D, 71 (2005) 123508, arXiv:astro-ph/0502578.
[8] Starobinsky A. A., JETP Lett., 42 (1985) 152 (Pisma Zh. Eksp. Teor. Fiz., 42 (1985) 124).
[9] Sasaki M. and Stewart E. D., Prog. Theor. Phys., 95 (1996) 71, arXiv:astro-ph/9507001.
[10] Sasaki M. and Tanaka T., Prog. Theor. Phys., 99 (1998) 763, arXiv:gr-qc/9801017.
[11] Lyth D. H., Malik K. A. and Sasaki M., JCAP, 05 (2005) 004, arXiv:astro-ph/0411220.
[12] Langlois D. and Vernizzi F., Phys. Rev. Lett., 95 (2005) 091303, arXiv:astro-ph/0503416.
[13] Langlois D. and Vernizzi F., Phys. Rev. D, 72 (2005) 105001, arXiv:astro-ph/0509078.
[14] Langlois D. and Vernizzi F., JCAP, 02 (2007) 017, arXiv:astro-ph/0610064.
[15] Langlois D., Vernizzi F. and Wands D., JCAP, 12 (2008) 004, arXiv:0809.4646.
[16] Renaux-Petel S. and Gianmassimo T., JCAP, 01 (2009) 012, arXiv:0810.2405.
[17] Langlois D. and Vernizzi F., Class. Quantum Grav., 27 (2010) 124007, arXiv:1003.3270.
[18] Salopek D. S. and Bond J. R., Phys. Rev. D, 42 (1990) 3936.
[19] Durrer N. and Langlois D., Phys. Rev. D, 52 (1995) 2007, arXiv:gr-qc/9411040.
[20] Nambu Y. and Taruya A., Class. Quantum Grav., 13 (1996) 705, arXiv:astro-ph/9411013.
[21] Shibata M. and Sasaki M., Phys. Rev. D, 60 (1999) 084002, arXiv:gr-qc/9905064.
[22] Yokoyama S., Suyama T. and Tanaka T., JCAP, 07 (2007) 013, arXiv:0705.3178.
[23] Yokoyama S., Suyama T. and Tanaka T., Phys. Rev., 77 (2008) 083511, arXiv:0711.2920.
[24] Tanaka Y. and Sasaki M., Prog. Theor. Phys., 117 (2007) 633, arXiv:gr-qc/0612191.
[25] Tanaka Y. and Sasaki M., Prog. Theor. Phys., 118 (2007) 455, arXiv:0706.0678.
[26] Takamizu Y.-i. and Mukohyama S., JCAP, 01 (2009) 013, arXiv:0810.0746.
[27] Takamizu Y.-i., Mukohyama S., Sasaki M. and Tanaka Y., JCAP, 06 (2010) 019, arXiv:1004.1870.
[28] Wands D., Malik K. A., Lyth D. H. and Liddle A. R., Phys. Rev. D, 62 (2000) 043527, arXiv:astro-ph/0003278.
[29] Nicolis A., Rattazzi R. and Trincherini E., Phys. Rev. D, 79 (2009) 064036, arXiv:0811.2197.
[30] Deffayet C., Puiglos O., Sawicki I. and Vikman A., JCAP, 10 (2010) 026, arXiv:1008.0048.
[31] Kobayashi T., Yamaguchi M. and Yokoyama J., Phys. Rev. Lett., 105 (2010) 231302, arXiv:1008.0603.
[32] Mizuno S. and Koyama K., Phys. Rev. D, 82 (2010) 103518, arXiv:1009.0677.
[33] De Felice A. and Tsujikawa S., JCAP, 04 (2011) 029, arXiv:1103.1172.
[34] Kobayashi T., Yamaguchi M. and Yokoyama J., Phys. Rev. D, 83 (2011) 103524, arXiv:1103.1740.
[35] De Felice A., Tsujikawa S., Elliston J. and Tavakol R., JCAP, 08 (2011) 021, arXiv:1105.4685.
[36] Kobayashi T., Yamaguchi M. and Yokoyama J., Prog. Theor. Phys., 126 (2011) 511, arXiv:1105.5723.
[37] Cristiano G. and Yuki W., JCAP, 07 (2011) 031, arXiv:1106.0502.
[38] Gao X. and Steer D. A., JCAP, 12 (2011) 019, arXiv:1107.2642.
[39] De Felice A and Tsujikawa S., Phys. Rev. D, 84 (2011) 083504, arXiv:1107.3917.
[40] Renaux-Petel S., Mizuno S. and Koyama K., JCAP, 11 (2011) 042, arXiv:1108.0305.
[41] Tsujikawa S., Phys. Rev. D, 85 (2012) 083518, arXiv:1201.5926 (2012).
[42] Naruko A. and Sasaki M., Class. Quantum Grav., 28 (2011) 072001, arXiv:1101.3180.
[43] Gao X., JCAP, 10 (2011) 021, arXiv:1106.0292.
[44] Enqvist K., HøgdaHL. J., Nurmi S. and Vernizzi F., Phys. Rev. D, 75 (2007) 023515, arXiv:gr-qc/0611020.
[45] Lehners J.-L. and Renaux-Petel S., Phys. Rev. D, 80 (2009) 063503, arXiv:0906.0530.
[46] Watanabe Y., Phys. Rev. D, 85 (2012) 103505, arXiv:1110.2462 (2011).
[47] Suyama T., Watanabe Y. and Yamaguchi M., Phys. Rev. D, 85 (2012) 083504, arXiv:1201.3163.