A second Higgs from the Higgs portal

Adam Falkowski1, Christian Gross2, Oleg Lebedev2

1 Laboratoire de Physique Théorique, CNRS – UMR 8627, Université de Paris-Sud 11, F-91405 Orsay Cedex, France
2 Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki, Finland

Abstract

In the Higgs portal framework, the Higgs field generally mixes with the Standard Model (SM) singlet leading to the existence of two states, one of which is identified with the 125 GeV scalar observed at the LHC. In this work, we analyse direct and indirect constraints on the second mass eigenstate and the corresponding mixing angle. The existence of the additional scalar can be beneficial as it can stabilise the otherwise–metastable electroweak vacuum. We find parameter regions where all of the bounds, including the stability constraints, are satisfied. We also study prospects for observing the decay of the heavier state into a pair of the 125 GeV Higgs–like scalars.
1 Introduction

The Higgs sector of the SM has a special feature that it can couple at the renormalisable level to the hidden sector [1, 2, 3]. In particular, the Higgs bilinear $H^\dagger H$ is the only dimension-2 operator of the SM that is gauge and Lorentz invariant. This allows for an interaction term

$$\Delta V = \frac{\lambda_{hs}}{2} H^\dagger H s^2,$$

(1)

where s is a real SM-singlet scalar. Given that s develops a vacuum expectation value, the Higgs boson mixes with the singlet leading to the existence of two mass eigenstates $H_{1,2}$. In this work, we explore constraints on this scenario from various direct LEP and LHC searches, electroweak data and the Higgs couplings data.

Further motivation for exploring this model comes from stability issues of the SM. The current Higgs and top quark data favour metastability of the electroweak vacuum [4]. Although the existence of a deep global minimum in the scalar potential may not be problematic for current particle physics, it does raise some questions about early Universe physics, in particular, the inflationary stage [5]. These issues are avoided altogether if the Higgs potential receives a correction due to new physics which makes it convex at large field values. The simplest option is to couple the Higgs to a real scalar, in which case even a tiny mixing between the two can lead to a stable potential [6, 7]. Here we explore this mechanism for a more general mixing angle and study how large it is allowed to be by the current data. Some work in this direction has already been done in Ref. [8], while experimental constraints on the singlet portal have also been recently discussed in Ref. [9, 10, 11, 12]. We update and extend these studies. We explore the full range of the singlet-like scalar masses, including the region where it is lighter than 125 GeV. We take into account the most up-to-date constraints from coupling measurements of the 125 GeV Higgs boson, and from searches for an additional Higgs-like scalar at the LHC and other experiments. We also perform a
comprehensive analysis of constraints on the Higgs portal scenario from electroweak precision tests.

An interesting signature of the Higgs portal is the decay of the heavier state H_2 into a pair of the Higgs–like states H_1 \[13\], whenever it is allowed kinematically. We find, in fact, that it is allowed in most of the parameter space favoured by the stability considerations. The relevant cross section for this process is at the picobarn level for a light H_2, which makes it observable at the LHC run-II (see also Ref. \[14\]).

In the next section, we review the structure of the scalar potential. We then proceed to analysing the stability conditions, the experimental constraints and finally implications for the LHC new physics searches.

2 The model

We consider an extension of the SM by a real scalar gauge-singlet field s, which couples to the SM Higgs field via the potential

$$V(h, s) = \frac{\lambda_h}{4} h^4 + \frac{\lambda_{hs}}{4} h^2 s^2 + \frac{\lambda_s}{4} s^4 + \frac{1}{2} \mu_h^2 h^2 + \frac{1}{2} \mu_s^2 s^2.$$ \hspace{1cm} (2)

Here, $(0, h/\sqrt{2})$ denotes the SM Higgs doublet in the unitary gauge. By construction, the above potential has the Z_2 symmetry $s \rightarrow -s$. This could also be thought of as a remnant of a U(1) symmetry in the hidden sector, under which a complex scalar field S transforms and whose imaginary part is gauged away.

In order to produce realistic W and Z boson masses, h must attain a VEV $\langle h \rangle \simeq 246.2$ GeV. In this paper, we consider the situation where also s has a non-zero VEV.\[1\] For both h and s non-vanishing, the potential is stationary at

$$\langle h \rangle^2 = \frac{2\lambda_{hs}\mu_s^2 - 4\lambda_s\mu_h^2}{4\lambda_h\lambda_s - \lambda_{hs}^2} \equiv v^2, \quad \langle s \rangle^2 = \frac{2\lambda_{hs}\mu_h^2 - 4\lambda_h\mu_s^2}{4\lambda_h\lambda_s - \lambda_{hs}^2} \equiv w^2.$$ \hspace{1cm} (3)

The mass matrix at this point is

$$\mathcal{M}^2 = \begin{pmatrix} 2\lambda_h v^2 & \lambda_{hs}vw \\ \lambda_{hs}vw & 2\lambda_s w^2 \end{pmatrix}.$$ \hspace{1cm} (4)

Since the couplings are real and we require $v^2 > 0, w^2 > 0$, the mass matrix \mathcal{M}^2 is positive definite if and only if

$$\lambda_h > \frac{\lambda_{hs}^2}{4\lambda_s}, \quad \lambda_s > 0.$$ \hspace{1cm} (5)

\mathcal{M}^2 can be diagonalised by the orthogonal transformation $O^T \mathcal{M}^2 O = \text{diag}(m_{H_1}^2, m_{H_2}^2)$, where

$$O = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$ \hspace{1cm} (6)

\[1\]The associated domain wall problem can be avoided either by adding a tiny s^4 term to the Lagrangian or by treating our model as a low energy limit of a gauge theory (see above).
The mass squared eigenvalues are given by
\[m_{H_{1,2}}^2 = \lambda_h v^2 + \lambda_s w^2 \pm \frac{\lambda_s w^2 - \lambda_h v^2}{\cos 2\theta} . \] (8)

Note that we are using a different convention for \(\theta \) compared to that of [6, 15]. The above equation implies
\[\text{sign}(m_{H_2}^2 - m_{H_1}^2) = \text{sign}(\cos 2\theta) \text{sign}(\lambda_s w^2 - \lambda_h v^2) . \]

The fields in the mass eigenstate basis are
\[\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta (h - \langle h \rangle) - \sin \theta (s - \langle s \rangle) \\ \cos \theta (s - \langle s \rangle) + \sin \theta (h - \langle h \rangle) \end{pmatrix} . \] (9)

In the following, \(H_1 \) is always identified with the 125 GeV boson discovered at the LHC.

As we are interested in stability properties of the vacuum, it is useful to point out that our \(Z_2 \)-symmetric potential subject to (5) has a single local minimum at tree level (barring the reflected minimum \(w \rightarrow -w \)). Indeed, as detailed in [15], the stationary points are local minima under the following conditions:

\begin{align*}
&v \neq 0, w \neq 0 : \lambda_h \mu_s^2 - 2\lambda_s \mu_h^2 > 0 , \lambda_h \mu_s^2 - 2\lambda_h \mu_s^2 > 0 , \\
&v \neq 0, w = 0 : \lambda_h \mu_s^2 - 2\lambda_h \mu_s^2 < 0 , \mu_s^2 < 0 , \\
&v = 0, w \neq 0 : \lambda_h \mu_s^2 - 2\lambda_h \mu_s^2 < 0 , \mu_s^2 < 0 , \\
&v = 0, w = 0 : \mu_h^2 > 0 , \mu_s^2 > 0 .
\end{align*} \] (10)

These conditions are not compatible with each other and only one of them can correspond to a local minimum. As long as radiative corrections are small, e.g. when there are no large logs, this situation persists at the loop level. However, at large field values additional minima may develop.

We will consider the possibility that the SM extended by the singlet is valid up to the Planck scale. This entails constraints on the couplings \(\lambda_i \) as those must remain perturbative and lead to a stable scalar potential. We will require absolute stability of the electroweak vacuum. Although metastability is sufficient for many applications, reconciling the existence of a deeper minimum with cosmology may be non-trivial. For that reason, we choose to impose the stronger condition.

Electroweak scale constraints are formulated more easily in terms of the parameters \((m_{H_1}^2, m_{H_2}^2, \sin \theta, v, \lambda_h) \). On the other hand, perturbativity and stability analyses favour the set \((\lambda_h, \lambda_s, \lambda_{hs}, v, w) \). The quartic couplings can be expressed in terms of the “more physical” parameters as

\begin{align*}
\lambda_h &= \frac{m_{H_1}^2}{2v^2} + \sin^2 \theta \frac{m_{H_2}^2 - m_{H_1}^2}{2v^2} , \quad (11a) \\
\lambda_s &= \frac{2\lambda_{hs} v^2}{\sin^2 2\theta} \frac{m_{H_2}^2 - m_{H_1}^2}{m_{H_2}^2 - m_{H_1}^2} - \sin^2 \theta . \quad (11b)
\end{align*}
We leave λ_{hs} as an independent variable as it is directly related to the decay rate of H_2 into a pair of H_1’s, when the process is allowed kinematically.

Let us now write down the couplings of the scalars to the SM matter. Those involving a single scalar are given by

$$\mathcal{L} \supset \frac{H_1 \cos \theta + H_2 \sin \theta}{v} \left[2m_W^2 W^+_\mu W^-\mu - m_Z^2 Z^+\mu Z^-\mu - \sum_f m_f \bar{f} f \right].$$

(12)

Thus, the partial decay widths of H_1 into SM matter are universally suppressed with respect to those of the SM Higgs by $\cos^2 \theta$. Similarly, the partial decay widths of H_2 into SM matter are those of a would-be SM Higgs with mass m_{H_2} universally suppressed by $\sin^2 \theta$.

On top of that H_2 decays to H_1 pairs are possible if $m_{H_2} > 2m_{H_1} \sim 250$ GeV, and H_1 decays into H_2 pairs are possible for $m_{H_2} < m_{H_1}/2 \sim 62.5$ GeV. These decays are mediated by the scalar self-interaction terms which we parametrise as

$$\mathcal{L} \supset -\frac{\kappa_{112}}{2} v \sin \theta \ H_1^2 H_2 - \frac{\kappa_{221}}{2} v \cos \theta \ H_2^2 H_1 ,$$

(13)

where the couplings are given by

$$\kappa_{112} = \frac{2m_{H_1}^2 + m_{H_2}^2}{v^2} \left(\cos^2 \theta + \frac{\lambda_{hs} v^2}{m_{H_2}^2 - m_{H_1}^2} \right) ,$$

(14a)

$$\kappa_{221} = \frac{2m_{H_2}^2 + m_{H_1}^2}{v^2} \left(\sin^2 \theta + \frac{\lambda_{hs} v^2}{m_{H_1}^2 - m_{H_2}^2} \right).$$

(14b)

In the kinematically allowed regime the decay widths are given by

$$\Gamma(H_2 \to H_1 H_1) = \frac{\sin^2 \theta \ \kappa_{112}^2 v^2}{32\pi m_{H_2}} \sqrt{1 - \frac{4m_{H_1}^2}{m_{H_2}^2}} ,$$

(15a)

$$\Gamma(H_1 \to H_2 H_2) = \frac{\cos^2 \theta \ \kappa_{221}^2 v^2}{32\pi m_{H_1}} \sqrt{1 - \frac{4m_{H_2}^2}{m_{H_1}^2}} .$$

(15b)

3 Vacuum stability and perturbativity

Here we study what constraints are imposed on the parameter space if we require the couplings to remain perturbative and the electroweak vacuum to be stable all the way up to the Planck scale (see also [11,16]).

The potential has 5 parameters of which 2 are fixed by requiring $v = 246.2$ GeV and $m_{H_1} = 125.15$ GeV. As the remaining 3 parameters we choose the mass m_{H_2} of the heavier state H_2, the admixture $\sin \theta$ of the singlet to the state H_1 and the coupling λ_{hs}. For given values of $m_{H_2}, \sin \theta$ and λ_{hs}, the corresponding values of λ_h and λ_s are determined by Eqs. (11a,11b). The resulting couplings λ_h, λ_s and λ_{hs} are evolved to the Planck scale $m_P = 2.4 \times 10^{18}$ GeV using one-loop RG evolution. The
relevant RGEs (neglecting all the Yukawa couplings except for y_t) read

\begin{align}
16\pi^2 \frac{d\lambda_h}{dt} &= 24\lambda_h^2 - 6y_t^4 + \frac{3}{8} \left(2g^4 + (g^2 + g^2)^2\right) + (-9g^2 - 3g^2 + 12y_t^2)\lambda_h + \frac{1}{2}\lambda_{hs}^2, \\
16\pi^2 \frac{d\lambda_{hs}}{dt} &= 4\lambda_{hs}^2 + 12\lambda_h\lambda_{hs} - \frac{3}{2} \left(3g^2 + g^2\right)\lambda_{hs} + 6y_t^2\lambda_{hs} + 6\lambda_s\lambda_{hs}, \\
16\pi^2 \frac{d\lambda_s}{dt} &= 2\lambda_{hs}^2 + 18\lambda_s^2, \\
16\pi^2 \frac{dy_t}{dt} &= y_t \left(\frac{9}{2}y_t^2 - \frac{17}{12}g^2 - \frac{9}{4}g^2 - 8g^2\right) + \left(\sqrt{\lambda_h}h^2 - \sqrt{\lambda_s}s^2\right)^2 + \left(\lambda_{hs} + 2\sqrt{\lambda_h\lambda_s}\right)h^2s^2 .
\end{align}

where $g_i = (g', g, g_3)$ denotes the gauge couplings. As input values we use $g(m_t) = 0.64$, $g'(m_t) = 0.35$, $g_3(m_t) = 1.16$ and $y_t(m_t) = 0.93$. Our input top Yukawa coupling is based on the central value of $m_t(m_t)$ advocated in [17].

The vacuum stability conditions depend on the sign of λ_{hs} (cf. also the discussion in Ref. [1]):

$\lambda_{hs} > 0$: The requirement $\lambda_h > \lambda_{hs}^2/(4\lambda_s)$ has to be met only around the mass scale of the fields (i.e. around the TeV scale in our case) in order for v, w to be a minimum of the potential. It may however not hold at the high energy scale. As long as the quartic couplings are positive $\lambda_i > 0$, the potential is positive definite and no run-away direction exists.

$\lambda_{hs} < 0$: Neglecting the quadratic terms, the potential can be written as

$$V \simeq \frac{1}{4} \left[\left(\sqrt{\lambda_h}h^2 - \sqrt{\lambda_s}s^2\right)^2 + \left(\lambda_{hs} + 2\sqrt{\lambda_h\lambda_s}\right)h^2s^2\right].$$

This shows that V has a run-away direction at large field values unless $\lambda_h > \lambda_{hs}^2/(4\lambda_s)$. This condition and $\lambda_i > 0$ are therefore to be imposed at all scales.

In Figure [1] we show, for different weak scale values of λ_{hs}, the area in the $m_{H_u} - |\sin \theta|$ plane where $\lambda_h, \lambda_s, \lambda_{hs}$ remain perturbative ($\lambda_i < 4\pi^2$) up to m_P and where the electroweak vacuum remains stable. Qualitatively, the shape of the allowed regions can be understood as follows:

- At the upper boundary of each of the allowed regions the coupling λ_h becomes non-perturbative below m_P. Note that the initial value for λ_h at the weak scale grows with $|\sin \theta|$ as well as with $m_{H_u}^2$. Since the beta function of λ_h has a positive contribution proportional to λ_h^2, it is clear that above a certain curve (which roughly has the shape $|\sin \theta| \propto 1/m_{H_u}$), the initial values are so large that λ_h does not remain perturbative up to m_P.

\footnote{Note that imposing a stricter criterion for perturbativity, such as $\lambda_i < 4\pi$ or $\lambda_i < 1$, affects the allowed region in the parameter space only mildly. This stems from the fact that an $\mathcal{O}(1)$ coupling becomes nonperturbative very quickly.}
• The limiting factor that determines the lower edge of the allowed regions depends on the value of λ_{hs}:

 - For small λ_{hs} ($\lambda_{hs} = \pm 0.01$), the lower edge is determined by stability of the potential. Since the initial value of λ_h decreases with decreasing $|\sin \theta|$ as well as with m_{H_2}, below a certain curve (which again roughly has the shape $|\sin \theta| \propto 1/m_{H_2}$), the additional threshold contribution $\lambda_h - \lambda_h^{SM}$ becomes too small to either keep $\lambda_h > 0$ (for $\lambda_{hs} > 0$) or satisfy $\lambda_h > \lambda_h^2/(4 \lambda_s)$ (for $\lambda_{hs} < 0$) all the way up to m_P.

 - For sizeable λ_{hs} ($\lambda_{hs} = 0.26$ and $\lambda_{hs} = -0.28$), perturbativity of λ_s is more constraining than stability of the vacuum, i.e. at the lower edge of the allowed regions the coupling λ_s becomes non-perturbative below m_P. Since, for substantial m_{H_2} and small $\sin \theta$, $\lambda_s \propto 1/\sin^2 \theta \times 1/m_{H_2}^2$, the lower edge has the shape $|\sin \theta| \propto 1/m_{H_2}$.

 The reason why perturbativity becomes more constraining lies in the positive contribution $\propto \lambda_{hs}^2$ to the beta-functions of λ_s and λ_{hs}. Increasing $|\lambda_{hs}|$ shrinks the allowed region further, eventually leaving no allowed parameter space.

 - For intermediate values of λ_{hs} ($\lambda_{hs} = \pm 0.1$), the limiting factor at the upper left side of the lower edge is perturbativity of λ_s, while vacuum stability is the limiting factor for the rest of the lower edge. The transition between the two is at the (hardly visible) kink of the lower edge of the plots.

Finally, let us note that if H_2 is lighter than the SM–like state H_1, the quartic coupling λ_h at the electroweak scale is smaller than that in the SM, which makes it
harder to achieve stability of the electroweak vacuum. On the other hand, the one–loop correction due to λ_{hs} is positive and, if sufficiently large, could overcome the above tree–level setback. We find that this is possible if $4\lambda_h\lambda_s - \lambda_{hs}^2$ is positive yet very close to zero at m_t, with roughly $\lambda_{hs} \sim 0.3165$, $m_{H_2} \lesssim 0.6$ GeV and $\sin \theta \lesssim 0.04$. However, we find that $4\lambda_h\lambda_s - \lambda_{hs}^2$ runs negative already tens of GeV above m_t, which shows that to establish the existence of this minimum in the scalar potential would require a more sophisticated analysis of the full Coleman–Weinberg potential including the 2–loop effects. Since this region of parameter space is excluded experimentally due to the efficient $H_1 \to H_2 H_2$ decay (cf. section 4.2), we do not study it in more detail.

4 Experimental constraints

In this section we discuss the experimental constraints on a singlet scalar mixing with the Higgs boson.

4.1 Limits from electroweak precision data

In our model, electroweak observables are affected at leading order only via oblique corrections, that is via one-loop contributions to the propagators of the W and Z bosons. These corrections come from two sources: i) loop diagrams with the new scalar H_2, and ii) modified couplings of the 125 GeV scalar H_1 to the gauge bosons.

We define the propagator function Π_{VV} via the 2-point amplitude

$$M_{V\mu \to V\nu} = \eta_{\mu\nu} \Pi_{VV}(p^2) + \ldots$$

In dimensional regularisation, the shift of the propagator function with respect to the SM is given by

$$\delta \Pi_{VV}(p^2) = \frac{m^2_V \sin^2 \theta}{4\pi^2 v^2} \left[\frac{m^2_{H_2} - m^2_{H_1}}{4} \left(\frac{1}{\epsilon} + 1 \right) + F(p^2, m^2_V, m^2_{H_2}) - F(p^2, m^2_V, m^2_{H_1}) \right],$$

where $V = W, Z$ and the loop function F is defined by

$$F(p^2, m^2_V, m^2_{\phi}) = \int_0^1 dx \left[m^2_{\phi} - \Delta^2 \right] \log \Delta, \quad \text{with} \quad \Delta = x m^2_{\phi} + (1-x) m^2_V - p^2 x(1-x).$$

The $1/\epsilon$ divergence cancels in physical observables.

The observables used in our fit are the LEP-1 Z-pole observables [18], the W mass [19], the total width [20], and the hadronic width [21], see Table 1. The W and Z partial decay widths appearing in the table are given by

$$\Gamma(Z \to ff) = \frac{N_{fmZ}}{24\pi} g_{fZ,\text{eff}}^2, \quad \Gamma(W \to ff') = \frac{N_{fmW}}{48\pi} g_{fW,\text{eff}}$$

where N_f is the number of colours of the fermion f and the effective couplings are defined as (see e.g. [23])

$$g_{fZ,\text{eff}} = \frac{\sqrt{g_L^2 + g_Y^2}}{\sqrt{1 - \delta \Pi_{ZZ}(m^2_Z)}} \left[T_f^3 - Q_f s^2_{\text{eff}} \right], \quad s_{\text{eff}}^2 = \frac{g_Y^2}{g_L^2 + g_Y^2} \left(1 - \frac{g_L}{g_Y} \frac{\delta \Pi_{ZZ}(m^2_Z)}{m^2_Z} \right),$$

$$g_{fW,\text{eff}} = g_{W,\text{eff}} = \frac{g_L}{\sqrt{1 - \delta \Pi_{WW}(m^2_W)}},$$

7
We take into account the leading order (linear) corrections in $\delta \Pi_{VV}$. Using the observables in Table 1, we construct a global χ^2 function that depends on m_{H^0}, $\sin \theta$, and known SM parameters. For each

observable	experimental value	Ref.	SM prediction	definition
Γ_Z [GeV]	2.4952 ± 0.0023	18	2.4950	$\sum_i \Gamma(Z \to f f_i)$
σ_{had} [nb]	41.540 ± 0.037	18	41.484	$\frac{128 \sqrt{\pi}}{m_Z^3} \Gamma(Z \to q \bar{q}) \Gamma(Z \to q \bar{q})$
R_ℓ	20.767 ± 0.025	18	20.743	$\frac{\sum_i \Gamma(Z \to f f_i)}{\Gamma(Z \to e^+ e^-)}$
A_ℓ	0.1499 ± 0.0018	22	0.1472	$\frac{\Gamma(Z \to e^+ e^-) - \Gamma(Z \to e^+ e^-)}{\Gamma(Z \to e^+ e^-)}$
A_{FB}	0.0171 ± 0.0010	18	0.0163	$\frac{3}{4} A_\ell^2$
$\sin^2 \theta_{\text{eff}}(Q_{\text{FB}})$	0.2324 ± 0.0012	18	0.23150	$\frac{g_\ell^2}{g_\ell^2 + g_Y^2} \left(1 - \frac{g_L \delta \Pi_{ZZ}(m_Z^2)}{g_Y m_Z^2}\right)$
R_b	0.21629 ± 0.00066	18	0.21578	$\frac{\Gamma(Z \to d d)}{\sum_i \Gamma(Z \to q q)}$
A_b	0.923 ± 0.020	18	0.935	$\frac{\Gamma(Z \to d d)}{\Gamma(Z \to d d)}$
A_{FB}	0.0992 ± 0.0016	18	0.1032	$\frac{3}{4} A_\ell A_b$
R_c	0.1721 ± 0.0030	18	0.17226	$\frac{\Gamma(Z \to u u)}{\sum_i \Gamma(Z \to q q)}$
A_c	0.670 ± 0.027	18	0.668	$\frac{\Gamma(Z \to u u)}{\Gamma(Z \to u u)}$
A_{FB}	0.0707 ± 0.0035	18	0.0738	$\frac{3}{4} A_\ell A_c$
m_W [GeV]	80.385 ± 0.015	19	80.3602	$\sqrt{\frac{g_L^2}{4} + \delta \Pi_{WW}(m_W^2)}$
Γ_W [GeV]	2.085 ± 0.042	20	2.091	$\sum_i \Gamma(W \to f f)$
$\text{Br}(W \to \text{had})$	0.6741 ± 0.0027	21	0.6751	$\frac{\sum_i \Gamma(W \to q q)}{\sum_i \Gamma(W \to f f)}$

Table 1: The electroweak precision observables used in this analysis. We take into account the experimental correlations between the LEP-1 Z-pole observables and between the heavy flavour observables. For the theoretical predictions we use the best fit SM values from GFitter [22], except for $\text{Br}(W \to \text{had})$ where we take the value quoted in [21].

where g_L and g_Y are the gauge couplings of $SU(2) \times U(1)$. Note that in our model $\delta \Pi_{ZZ}$ as well as $\delta \Pi_{\gamma \gamma}$ vanish at one-loop level. As is customary, the SM electroweak parameters g_L, g_Y, v are taken from the input observables G_F, α and m_Z. The oblique corrections also contribute to our input observables, effectively shifting the electroweak parameters by

$$
\frac{\delta g_L}{g_L} = \frac{\Gamma(Z \to e^+ e^-)}{\Gamma(Z \to e^+ e^-)} \left(\frac{2 \delta \Pi_{WW}(0)}{v^2} - 2 \cos^2 \theta_W \frac{\delta \Pi_{ZZ}(m_Z^2)}{v^2} + \frac{g_Y^2}{2} \delta \Pi_{\gamma \gamma}'(0) \right),
$$

$$
\frac{\delta g_Y}{g_Y} = \frac{\Gamma(Z \to e^+ e^-)}{\Gamma(Z \to e^+ e^-)} \left(- \frac{2 g_Y^2}{g_L^2} \frac{\delta \Pi_{WW}(0)}{v^2} + 2 \sin^2 \theta_W \frac{\delta \Pi_{ZZ}(m_Z^2)}{v^2} - \frac{g_L^2}{2} \delta \Pi_{\gamma \gamma}'(0) \right),
$$

$$
\frac{\delta v}{v} = -\frac{2 \delta \Pi_{WW}(0)}{g_Y^2 v^2}.
$$

Using Eqs. (21) and (22) one can calculate how the effective couplings (and hence, by Eq. (20), the partial decay widths) are shifted in the presence of oblique corrections, and compute the corrections to precision observables. We take into account the leading order (linear) corrections in $\delta \Pi_{VV}$. Using the observables in Table 1, we construct a global χ^2 function that depends on m_{H^0}, $\sin \theta$, and known SM parameters. For each
we minimise the global χ^2 with respect to $\sin \theta$, and determine the 95% CL limits by solving

$$\chi^2(m_{H_2}, \sin \theta) - \min_{\sin \theta} \chi^2(m_{H_2}, \sin \theta) = 3.84.$$ \quad (23)

The excluded region is shown as the grey area in Fig. 3. The limits are non-trivial for $m_{H_2} \lesssim 60 \text{ GeV}$ and $m_{H_2} \gtrsim 170 \text{ GeV}$, and become stronger as H_2 gets heavier. For $m_{H_2} \gtrsim 450 \text{ GeV}$, the electroweak precision constraints provide the strongest limits on the model. \footnote{Using Eq. (18) one could also compute the usual Peskin-Takeuchi S and T parameters, which in the case at hand are $S = \frac{16\pi^2 \cos^2 \theta_W}{g^2} \delta \Pi_{ZZ}(0)$, $T = \frac{4\pi}{\cos^2 \theta_W} \left(\frac{\delta \Pi_{WW}(0)}{m_W^2} - \frac{\delta \Pi_{ZZ}(0)}{m_Z^2} \right)$. For $m_{H_2} \gg m_{H_1}$ this gives $T \approx -\frac{3}{8\pi \cos^2 \theta_W} \sin^2 \theta \log(m_{H_2}/M_T)$, $S \approx \frac{1}{6\pi} \sin^2 \theta \log(m_{H_2}/M_S)$, where $M_T \approx 211 \text{ GeV}$, $M_S \approx 81 \text{ GeV}$. The resulting constraints from S and T indeed give a good approximation (within 10%) of the actual limits for $m_{H_2} \gtrsim 400 \text{ GeV}$. We stress that our analysis is valid for any m_{H_2}, in particular also for $m_{H{2} \ll m_{H_1}$.

4.2 Limits from Higgs coupling measurements

An important constraint on the model comes from the fact that mixing with the singlet modifies the coupling strength of the Higgs boson to the SM gauge bosons and fermions. The couplings of the 125 GeV boson, here identified with H_1, have recently been measured at the LHC in several decay channels. Here we only use the results with the $\gamma\gamma$ and 4ℓ final states that have the best mass resolution. This allows us to simplify the discussion of possible contamination of the H_1 signal strength measurements by H_2 decays. We will assume that for m_{H_2} outside the interval $[120, 130]$ GeV this contamination is absent, as suggested by the results of ATLAS and CMS Higgs searches in these two channels. In order to determine the limits on $\sin \theta$ for $m_{H_2} \in [120, 130]$ GeV, one needs a more elaborate analysis that takes into account a different mass resolution in various $h \to \gamma\gamma$ and $h \to 4\ell$ search categories. We will not attempt such an analysis in this paper.

Channel	μ (ATLAS)	μ (CMS)
$H_1 \to \gamma\gamma$	$1.17^{+0.27}_{-0.27}$ \cite{24}	$1.12^{+0.26}_{-0.24}$ \cite{20}
$H_1 \to ZZ^* \to 4\ell$	$1.44^{+0.40}_{-0.35}$ \cite{25}	$1.00^{+0.29}_{-0.26}$ \cite{26}

Table 2: The signal strength of the 125 GeV scalar relative to that of the SM Higgs measured at the LHC in the $\gamma\gamma$ and 4ℓ channels.

We use the most recent inclusive H_1 signal strengths measurements by ATLAS and CMS collected in Table 2. Moreover, we take into account the 15% theoretical uncertainty in the Higgs production cross section, which is a linear sum of the PDF and QCD scale errors on the gluon fusion cross section \cite{27}. We include this uncertainty as a Gaussian-modeled nuisance parameter. With this procedure, we get the combined constraint on the Higgs signal strength

$$\mu > 0.81, \quad @95\% \text{ CL.}$$ \quad (24)
For $m_{H_2} \geq m_{H_1}/2 \sim 62.5$ GeV and m_{H_2} outside the $[120,130]$ GeV interval, this translates to a bound on $\sin \theta$,

$$\sin \theta < 0.44, \quad @95\% \text{ CL,}$$

that is independent of m_{H_2}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Left: Regions of parameter space for $m_{H_2} < 65$ GeV excluded at 95\% CL by the limits on the H_1 coupling. The excluded areas (in yellow) correspond to $\lambda_{hs} = -0.011, 0.0001, 0.011, 0.014$ (from the darkest to the palest). Right: The excluded region (in yellow) for $m_{H_2} = 20$ GeV. Inside the white region the $H_1H_2^2$ coupling is very small.}
\end{figure}

For $m_{H_2} < m_{H_1}/2$ the situation is more complicated because the $H_1 \rightarrow H_2H_2$ decay channel opens up, leading to a decrease of the signal strength in all visible channels. This typically leads to stronger limits on $\sin \theta$, which are slightly dependent on m_{H_2} and strongly on λ_{hs}. Representative examples of these constraints are shown in Fig. 2. A larger $|\lambda_{hs}|$ normally entails stronger limits and at some point almost the entire m_{H_2}–$\sin \theta$ plane gets excluded. Thus, at low m_{H_2}, the allowed λ_{hs} is typically limited to the range $|\lambda_{hs}| < 0.015$. Nevertheless, for a given m_{H_2} and $\sin \theta$ one can always adjust a negative λ_{hs} such that the $H_1H_2^2$ coupling vanishes, in which case the limit is that of Eq. (25). The region excluded by H_1 coupling measurements is marked as the yellow area in Fig. 2.

\subsection{4.3 Limits from direct searches for a Higgs-like scalar}

Further constraints are provided by the LEP and LHC searches for a Higgs-like scalar. We take into account the following results:

- Searches for $H_2 \rightarrow \gamma\gamma$ in ATLAS \cite{28} and CMS \cite{29}.
- Combined limits from $H_2 \rightarrow ZZ$ and $H_2 \rightarrow WW$ searches in various final states in CMS \cite{30} (for $m_{H_2} \geq 145$ GeV) and searches for $H_2 \rightarrow ZZ$ in the 4ℓ channel in ATLAS \cite{25} and CMS \cite{31} (for $m_{H_2} \leq 145$ GeV).
- $H_2 \rightarrow H_1 H_1$ searches in CMS with the $2b2\gamma$ [32] and $4b$ [33] final states, and in ATLAS with the $2b2\gamma$ final state [34].

- LEP Higgs searches [35] dominated by the $b\bar{b}$ decay channel.

- DELPHI search for a low mass Higgs in Z–decays [36].

- b–physics constraints on a low mass Higgs [37, 38].

 The parameter space excluded by these searches is shown as the red area in Fig. 3. At very low masses, $m_{H_2} < 5$ GeV, the strongest limits come from $B \rightarrow K\ell\ell$ decays [37]. The resulting constraint $\sin \theta < 10^{-2} \ldots 10^{-3}$ can be extracted from the analysis of Ref. [39]. Between 5 GeV and 12 GeV, the bound $\sin \theta \lesssim 0.5$ is imposed by the radiative Υ decays [38] and the DELPHI searches for a light Higgs in Z–decays [36]. Above this mass window up to about 115 GeV, LEP Higgs searches [35] become relevant. The resulting bound on $\sin \theta$ is about 1×10^{-1} to few $\times 10^{-1}$ depending on the exact H_2 mass. The region between 120 and 130 GeV remains poorly constrained due to the presence of the SM–like Higgs [4], whereas a strip just below and above it is constrained through the diphoton channel searches [28, 29] although the bound is still looser than the indirect one from the H_1 coupling measurements. Above ~ 135 GeV the limits are dominated by $H_2 \rightarrow ZZ$ and $H_2 \rightarrow WW$ searches [25, 30, 31]. This imposes $\sin \theta < 0.3 \ldots 0.4$ in a wide range of masses up to about 500 GeV, above which the indirect bounds are consistently stronger.

Concerning the λ_{hs}–dependence of the exclusion limits, let us note that the limits on $(m_{H_2}, \sin \theta)$ can be much stronger for a given λ_{hs}. In particular, for $2m_{H_2} < m_{H_1}$, the $H_1 \rightarrow H_2 H_2$ decay would dilute the Higgs signal strength as explained in the previous subsection. Therefore, in Fig. 3 we marginalise over λ_{hs} in this mass region. For $m_{H_2} > 2m_{H_1}$ the limits also depend on λ_{hs}: the larger it is, the more suppressed are the $H_2 \rightarrow ZZ$ and $H_2 \rightarrow WW$ channels, and the more enhanced is the $H_2 \rightarrow H_1 H_1$ decay. However, this effect is non-negligible only for $\lambda_{hs} \gtrsim 1$; for smaller values the limits depend very little on the precise value of λ_{hs}. The constraints from $H_2 \rightarrow H_1 H_1$ are more important than those from $H_2 \rightarrow ZZ$ and $H_2 \rightarrow WW$ only for $\lambda_{hs} \gtrsim 2$; for no perturbative value of λ_{hs} are these limits stronger than the indirect ones from the H_1 coupling measurements.

4.4 Combined experimental constraints vs. vacuum stability

Combining the bounds from direct searches, precision tests, and H_1 coupling measurements and imposing them on the parameter space favoured by the stability considerations in Fig. 3 (green), we find that for $m_{H_2} \gtrsim 200$ GeV all of the constraints are compatible. The entire stability–favoured region above ~ 350 GeV is unconstrained, whereas between 200 and 350 GeV there are pockets of allowed parameter space with $\sin \theta$ between 0.2 and 0.4.

The favoured region can be probed further by measuring the Higgs signal strength with higher precision as well as by searching for the decay $H_2 \rightarrow H_1 H_1$.

This allows for an almost degenerate second Higgs with a large mixing between the two [40].
Figure 3: Left: Parameter space (for $m_{H_2} \leq 2m_{H_1}$) excluded at 95 % CL by direct searches (red), precision tests (gray), and H_1 couplings measurements (yellow). For $m_{H_2} < m_{H_1}/2$, the limit from the H_1 couplings is marginalised over λ_{hs}, otherwise it does not depend on λ_{hs}. The green region is preferred by stability of the scalar potential up to the Planck scale at $\lambda_{hs} = 0.01$; for other λ_{hs}, it is either very similar or smaller and contained within the green region. Right: Same for $m_{H_2} > 2m_{H_1}$.

5 Prospects for observing $H_2 \rightarrow H_1 H_1$ at LHC-13

For $m_{H_2} > 250$ GeV, the decay $H_2 \rightarrow H_1 H_1$ is allowed kinematically. It is an important channel for studying properties of H_2, which allows for a reconstruction of λ_{hs} [13]. The rate of $H_2 \rightarrow H_1 H_1$ depends on $\sin \theta$, m_{H_2} and also λ_{hs}, cf. Eq. (15a). While the first two parameters can be fixed using the SM–like decay modes of H_2, determination of λ_{hs} requires an additional channel such as $H_2 \rightarrow H_1 H_1$.

The left panel of Fig. 4 displays contours of equal $\sigma(pp \rightarrow H_2) \text{ BR}(H_2 \rightarrow H_1 H_1)$ in the $\sin \theta - m_{H_2}$ plane, while the right panel shows the maximal production rate $\sigma(pp \rightarrow H_2) \text{ BR}(H_2 \rightarrow H_1 H_1)$ at LHC-13 consistent with all the experimental constraints. The different curves in the right panel correspond to different λ_{hs}. At fixed λ_{hs}, the rate is restricted by the bound on $\sin \theta$ which is mostly due to the LHC constraints for $m_{H_2} < 500$ GeV and to the electroweak constraints for $m_{H_2} > 500$ GeV. The rate also increases with λ_{hs}, which we take to be 0.01, 1, 2 in the plot. In all of these cases, $\sigma(pp \rightarrow H_2) \text{ BR}(H_2 \rightarrow H_1 H_1)$ is in the picobarn range for m_{H_2} up to about 400 GeV. This makes the prospects for detecting $H_2 \rightarrow H_1 H_1$ at LHC-13 quite good, at least for a relatively light H_2.

Imposing the extra stability/perturbativity constraint up to m_P, we find reduction of the maximal rate for m_{H_2} above around 350 GeV. This theoretical constraint becomes the strongest bound on the model, with the preferred parameter space being difficult to probe experimentally. For light H_2 however, the main constraints are due to the LHC heavy Higgs searches which allow for a substantial rate $\sigma(pp \rightarrow H_2) \text{ BR}(H_2 \rightarrow H_1 H_1)$.
6 Summary and conclusions

We have analysed constraints on the two scalar states of the simplest Higgs portal model. One of them is identified with the 125 GeV Higgs–like boson observed at the LHC. The other boson’s mass is allowed to be in a wide range down to about 5 GeV, below which the constraints on the mixing angle become severe. Above ~ 90 GeV, a substantial mixing between the Higgs and the singlet, $\sin \theta \sim 0.3\ldots 0.4$, is consistent with the data.

Stability of the scalar potential can be improved over that of the SM if the state H_2 is sufficiently heavy, above about 200 GeV. For a range of $\sin \theta$ consistent with the electroweak precision measurements and the LHC data, the electroweak vacuum is stable and the model is perturbative up to the Planck scale. The required mixing angle is of order 10^{-1} for m_{H_2} up to 1 TeV.

In the allowed parameter space, the decay $H_2 \to H_1 H_1$ can be quite efficient such that the H_1 pair production rate at LHC-13 is at the picobarn level. This applies to a relatively light H_2 up to about 400 GeV, with the rate quickly falling off above 500 GeV or so. Apart from the search for a new resonance, the Higgs portal can be efficiently constrained by further improvement of the Higgs coupling measurements.

Acknowledgements. This work was supported in part by the Academy of Finland project “The Higgs boson and the Cosmos”. AF is supported by the ERC Advanced Grant Higgs@LHC.

N.B. At the time of completion of this work, we became aware of the preprints arXiv:1501.02234 (Ref. [8]) and arXiv:1501.03799 (Ref. [12]) which have some overlap with our study.
References

[1] V. Silveira and A. Zee, Phys. Lett. B 161, 136 (1985).

[2] R. Schabinger and J. D. Wells, Phys. Rev. D 72, 093007 (2005) [hep-ph/0509209]; B. Patt and F. Wilczek, hep-ph/0605188; D. O’Connell, M. J. Ramsey-Musolf and M. B. Wise, Phys. Rev. D 75, 037701 (2007) [hep-ph/0611014]; V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf and G. Shaughnessy, Phys. Rev. D 77, 035005 (2008) arXiv:0706.4311 [hep-ph]; D. Bertolini and M. McCullough, JHEP 1212, 118 (2012) arXiv:1207.4209 [hep-ph].

[3] C. Englert, J. Jaeckel, V. V. Khoze and M. Spannowsky, JHEP 1304, 060 (2013) arXiv:1301.4224 [hep-ph]; E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, Phys. Rev. D 89, no. 1, 015017 (2014) arXiv:1309.6632 [hep-ph].

[4] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, JHEP 1312, 089 (2013) arXiv:1307.3536 [hep-ph]; F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, JHEP 1210, 140 (2012) arXiv:1205.2893 [hep-ph]; S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. B 716, 214 (2012) arXiv:1207.0980 [hep-ph].

[5] O. Lebedev and A. Westphal, Phys. Lett. B 719, 415 (2013) arXiv:1210.6987 [hep-ph].

[6] O. Lebedev, Eur. Phys. J. C 72 (2012) 2058 arXiv:1203.0156 [hep-ph].

[7] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, H. M. Lee and A. Strumia, JHEP 1206 (2012) 031 arXiv:1203.0237 [hep-ph].

[8] G. M. Pruna and T. Robens, Phys. Rev. D 88, 115012 (2013) arXiv:1303.1150 [hep-ph]; D. Lopez-Val and T. Robens, Phys. Rev. D 90, no. 11, 114018 (2014) arXiv:1406.1043 [hep-ph]; T. Robens and T. Stefaniak, Eur. Phys. J. C 75 (2015) 3, 104 arXiv:1501.02234 [hep-ph].

[9] S. Profumo, M. J. Ramsey-Musolf, C. L. Wainwright and P. Winslow, Phys. Rev. D 91 (2015) 3, 035018 arXiv:1407.5342 [hep-ph].

[10] C. Y. Chen, S. Dawson and I. M. Lewis, Phys. Rev. D 91 (2015) 035015 arXiv:1410.5488 [hep-ph].

[11] R. Costa, A. P. Morais, M. O. P. Sampaio and R. Santos, arXiv:1411.4048 [hep-ph].

[12] V. Martin-Lozano, J. M. Moreno and C. B. Park, arXiv:1501.03799 [hep-ph].

[13] C. Englert, T. Plehn, D. Zerwas and P. M. Zerwas, Phys. Lett. B 703, 298 (2011) arXiv:1106.3097 [hep-ph]; C. Englert, M. Spannowsky and C. Wymant, Phys. Lett. B 718, 538 (2012) arXiv:1209.0494 [hep-ph].
[14] J. M. No and M. Ramsey-Musolf, Phys. Rev. D 89, no. 9, 095031 (2014) [arXiv:1310.6035 [hep-ph]].

[15] O. Lebedev and H. M. Lee, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284 [hep-ph]].

[16] M. Gonderinger, H. Lim and M. J. Ramsey-Musolf, Phys. Rev. D 86, 043511 (2012) [arXiv:1202.1316 [hep-ph]]; V. V. Khoze, C. McCabe and G. Ro, JHEP 1408, 026 (2014) [arXiv:1403.4953 [hep-ph]].

[17] S. Moch, PoS LL 2014, 054 (2014) [arXiv:1408.6080 [hep-ph]].

[18] S. Schael et al. [ALEPH and DELPHI and L3 and OPAL and SLD and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group Collaborations], Phys. Rept. 427 (2006) 257 [hep-ex/0509008].

[19] Tevatron Electroweak Working Group [CDF and D0 Collaborations], arXiv:1204.0042 [hep-ex].

[20] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86 (2012) 010001.

[21] S. Schael et al. [ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations], Phys. Rept. 532 (2013) 119 [arXiv:1302.3415 [hep-ex]].

[22] M. Baak et al. [Gfitter Group Collaboration], Eur. Phys. J. C 74 (2014) 9, 3046 [arXiv:1407.3792 [hep-ph]].

[23] J. D. Wells, hep-ph/0512342

[24] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 90 (2014) 11, 112015 [arXiv:1408.7084 [hep-ex]].

[25] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 91 (2015) 012006 [arXiv:1408.5191 [hep-ex]].

[26] V. Khachatryan et al. [CMS Collaboration], arXiv:1412.8662 [hep-ex].

[27] S. Dittmaier et al. [LHC Higgs Cross Section Working Group Collaboration], arXiv:1101.0593 [hep-ph].

[28] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 113 (2014) 17, 171801 [arXiv:1407.6583 [hep-ex]].

[29] V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 74 (2014) 10, 3076 [arXiv:1407.0558 [hep-ex]].

[30] V. Khachatryan et al. [CMS Collaboration], arXiv:1504.00936 [hep-ex].

[31] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. D 89 (2014) 9, 092007 [arXiv:1312.5353 [hep-ex]].
[32] CMS Collaboration, CMS-PAS-HIG-13-032.

[33] CMS Collaboration, CMS-PAS-HIG-14-013.

[34] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 114 (2015) 8, 081802 [arXiv:1406.5053 [hep-ex]].

[35] R. Barate et al. [LEP Working Group for Higgs boson searches and ALEPH and DELPHI and L3 and OPAL Collaborations], Phys. Lett. B 565 (2003) 61 [hep-ex/0306033].

[36] P. Abreu et al. [DELPHI Collaboration], Z. Phys. C 51 (1991) 25.

[37] R. Aaij et al. [LHCb Collaboration], JHEP 1302 (2013) 105 [arXiv:1209.4284 [hep-ex]]; J.-T. Wei et al. [BELLE Collaboration], Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770 [hep-ex]].

[38] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 87 (2013) 3, 031102 [Erratum-ibid. D 87 (2013) 5, 059903] [arXiv:1210.0287 [hep-ex]].

[39] K. Schmidt-Hoberg, F. Staub and M. W. Winkler, Phys. Lett. B 727 (2013) 506 [arXiv:1310.6752 [hep-ph]].

[40] M. Heikinheimo, A. Racioppi, M. Raidal and C. Spethmann, Phys. Lett. B 726, 781 (2013) [arXiv:1307.7146].