COVID-19 lockdown measures induced severe iron-deficiency anaemia resulting in central retinal vein occlusion and amenorrhea

Yu Heng Kwan,1 Natalie Liling Woong,1 Reuben Chao Ming Foo,2 Tharmmambal Balakrishnan1

SUMMARY
During the COVID-19 pandemic, precautionary measures taken by various countries include individual movement restrictions causing significant lifestyle changes and affecting dietary patterns. A 23-year-old woman presented with reduced left eye vision over 1 week and amenorrhea for 4 months. She was diagnosed with severe iron-deficiency anaemia causing central retinal vein occlusion and amenorrhea. During the lockdown, there was a change in her diet with greatly reduced iron intake. Iron is an essential mineral for retina metabolism and function. Iron supplementation was done with improvement in her vision. This case demonstrates the potential impact of lockdown measures on nutrition and health. Education of the general population on maintaining appropriate nutrition during periods of movement restriction is important and that nutritional evaluation and supplementation should be considered in patients with drastic changes in dietary pattern.

BACKGROUND
Central retinal vein occlusion (CRVO) is a common retinal vascular disease.1 The pooled 10-year global cumulative incidence of retinal vein occlusion is 1.63%.2 Cases of iron-deficiency anaemia (IDA)-induced CRVO were previously documented in the literatures.3 4 The mechanism of thrombosis in IDA may be due to anaemia-induced hypoxia leading to injury of endothelial cells in the retinochoroidal circulation, reactive thrombosis and coagulation dysregulation.3 5 6 Examples of other life-threatening complications of IDA that were reported include strokes and pulmonary embolism.7 Furthermore, as many as half of women who have IDA develop amenorrhea.8

In view of the COVID-19 pandemic, many countries have instigated lockdown measures such as the closure of food outlets or enforced stay-home restrictions.9 This can lead to a change in eating behaviours with effects on nutrition and health.10 The WHO recognised the challenges of COVID-19 containment measures on normal food-related practices and released guidance on food and nutrition to address the needs of individuals or families under periods of quarantine.11

In this case report, we present a young woman who developed CRVO and amenorrhea secondary to severe IDA attributed to a drastic change in dietary habits and reduction in iron intake during the COVID-19 pandemic.

CASE PRESENTATION
A 23-year-old woman presented with a 1-week history of reduced left eye vision associated with amenorrhea for 4 months. She had normal menstrual cycles prior and no previous medical issues. When Singapore implemented the ‘circuit breaker’ or the equivalent of lockdown, there was a significant change in her diet that included red meat previously to mainly carbohydrates. Approximating her diet by using the concept of the healthy plate, her previous diet involved regularly eating out for steaks or mutton to mainly biscuits or potato-based food with mostly vegetables for her main meal after the lockdown along with dried fruits for snacks. Her meal portions were also reduced. Her weight dropped from 46 kg to 41 kg over the lockdown period. Relevant negatives included no previous miscarriages, venous thromboembolism, diabetes mellitus, hypertension or raised intraocular pressures. She also did not consume any traditional Chinese medicine, supplements or oral contraceptives.

On measurement of vitals, she was normotensive. Eye examination revealed unaided best corrected visual acuity (BCVA) of counting fingers on the affected left eye and 6/6 of the right eye. There was a grade 2 relative afferent pupillary defect in the left eye. Slit lamp examination of the anterior segments was completely normal.

Fundus examination of the left eye showed papilloedema, intra-retinal haemorrhages of four quadrants, retinal veins tortuosity, cotton wool spots and associated cystoid macular oedema. There were no signs of neovascularisation. Fundus examination of the right eye was completely normal. The patient was diagnosed with a left eye CRVO and was treated with intravitreal bevacizumab 1.25 mg injection with good response. Fundal photos of both eyes 1 week post injection are shown in figure 1.

INVESTIGATIONS
An extensive set of investigations was done on the patient. Profound microcytic hypochromic anaemia with haemoglobin (Hb) of 43 g/L (reference range 120–160 g/L) and mean corpuscular volume of 69.6 fL (reference 78–98 fL) was noted. Platelet level was normal at 288×10^9/L (range 140–440×10^9/L). The iron studies revealed IDA at iron levels <2 µmol/L (reference range 7.7–32 µmol/L) and high total iron binding capacity of 92 (reference range 39–60 µmol/L). Ferritin was normal at 2.8 (7.6–179 µg/L).

1Internal Medicine, Singapore General Hospital, Singapore
2Cataract and Comprehensive Ophthalmology, Singapore National Eye Centre, Singapore

Correspondence to
Dr Natalie Liling Woong; natalie.woong.11@singhealth.com.sg

Accepted 10 August 2021

To cite: Kwan YH, Woong NL, Foo RCM, et al. BMJ Case Rep 2021;14:e242639. doi:10.1136/bcr-2021-242639
increasing iron in her diet by consuming more red meat.

Capsules daily for 2 months. She was also given dietary advice on maltose once and subsequently oral iron supplementation of COVID-19 lockdown measures. There are literatures that tion to diet and hence health is common when countries institute

Asian by Husain revealed that lockdown measures resulted in reduced purchases of red meat, supporting our hypotheses of

mobilisation, intravenous iron supplementation of 1 g ferric carboxymaltose once and subsequently oral iron supplementation of ferrous gluconate (250 mg ferrous gluconate per capsule) two capsules daily for 2 months. She was also given dietary advice on increasing iron in her diet by consuming more red meat.

DIFFERENTIAL DIAGNOSIS

The severe IDA was largely attributed to the lack of iron intake through her sudden change in dietary habits which happened over the period of lockdown. She did not have any symptoms to suggest blood loss and there is no significant chronic disease. The weight loss and anaemia contributed to her functional hypothalamic amenorrhea.

TREATMENT

The patient was treated with 2 units of red blood cell transfusion, intravenous iron supplementation of 1 g ferric carboxymaltose once and subsequently oral iron supplementation of ferrous gluconate (250 mg ferrous gluconate per capsule) two capsules daily for 2 months. She was also given dietary advice on increasing iron in her diet by consuming more red meat.

OUTCOME AND FOLLOW-UP

One month after iron replacement, the patient’s vision improved. Repeat examination of the affected left eye revealed unaided BCVA of 6/15. Fundus examination of the left eye showed near full resolution of the central retina oedema. There were no signs of neovascularisation of the left eye. Right eye fundus examination was normal. A repeat dose of bevacizumab was given and her Hb improved to 130 g/L. Her diet currently includes more red meat compared with before.

DISCUSSION

CRVO and amenorrhea contributed by IDA were reported in the literature before but this was the first case that was precipitated by COVID-19 related movement restrictions. Disruption to diet and hence health is common when countries institute COVID-19 lockdown measures. There are literatures that revealed that lockdown resulted in people purchasing more chips/snacks. A scoping review by Bennett et al succinctly summarised the impact of a COVID-19 lockdown on changes in dietary habit in various populations. One of the few papers in Asia by Husain et al revealed that lockdown measures resulted in reduced purchases of red meat, supporting our hypotheses of a lockdown-induced iron deficiency in our patient in this case report. However, this is the first case whereby the severity of diet changes results in vision impairment and IDA has been reported.

IDA affects 11%–15% of young women in Asia. IDA can result from insufficient dietary intake or excess loss through bleeding. Iron replacement is therefore appropriate in the setting of deficiency, however, it should be administered judiciously. Many mechanisms were hypothesised to explain thrombosis in IDA including endothelial injury, reactive thrombosis and hypercoagulability. Factors including diet and lifestyle have also been investigated. Iron is important for metabolism and phototransduction of the retina. An iron-containing protein expressed in the retinal pigment epithelium, is an enzyme required to catalyse the conversion of all-trans-retinyl ester to 11-cis-retinol, which is an essential step in the visual cycle. RPE-65 is important for maintenance of photoreceptor excitability by phagocytosis of shed photoreceptor outer segments, allowing rebuilding of light-sensitive outer segment of photoreceptors. Furthermore, majority of secondary amenorrhoea was due to nutrition-related anaemia.

As CRVO with amenorrhoea is not a common diagnosis in the young adult population, a thorough investigation for an underlying systemic aetiology including other ocular ischaemic syndrome, hyperviscosity syndrome, severe anaemia and advanced hypertensive retinopathy should be conducted. Changes in dietary patterns can be significant during the COVID-19 pandemic due to movement restrictions. This case report should prompt clinicians managing sudden onset CRVO and amenorrhoea during the pandemic to consider diet-related IDA as a potential cause and initiate nutritional assessment and early iron supplementation. Judicious supplementation with iron along with dietary advice to consume more red meat restored the patient’s haemoglobin levels to normal with improvement of vision. Her menstrual cycle had not yet recovered at the time of writing of this report due to low body weight. This case highlights the importance of adequate nutrition on health during this period of COVID-19 pandemic.

Case report

Figure 1 Fundal photos of both eyes 1 week post Avastin injection. Arrow points to area of macula oedema that persisted 1 week post Avastin injection.

Oestradiol was low at <91.8 pmol/L and follicle stimulating hormone was inappropriately normal at 4.9 U/L, suggesting hypogonadotrophic hypogonadism.

A borderline low C3 of 0.85 (reference range 0.90–1.80 g/L) was also noted. All other laboratory parameters were normal including white blood cell count, renal panel, liver panel, quantitative beta-hCG, coagulation profile, thrombophilia screen, antinuclear antibodies, anti-double stranded DNA, anti-cardiolipin, lupus anticoagulant, thyroid function, prolactin, vitamin B12 and folate.

DIFFERENTIAL DIAGNOSIS

The severe IDA was largely attributed to the lack of iron intake through her sudden change in dietary habits which happened over the period of lockdown. She did not have any symptoms to suggest blood loss and there is no significant chronic disease. The weight loss and anaemia contributed to her functional hypothalamic amenorrhea.

TREATMENT

The patient was treated with 2 units of red blood cell transfusion, intravenous iron supplementation of 1 g ferric carboxymaltose once and subsequently oral iron supplementation of ferrous gluconate (250 mg ferrous gluconate per capsule) two capsules daily for 2 months. She was also given dietary advice on increasing iron in her diet by consuming more red meat.

OUTCOME AND FOLLOW-UP

One month after iron replacement, the patient’s vision improved. Repeat examination of the affected left eye revealed unaided BCVA of 6/15. Fundus examination of the left eye showed near full resolution of the central retina oedema. There were no signs of neovascularisation of the left eye. Right eye fundus examination was normal. A repeat dose of bevacizumab was given and her Hb improved to 130 g/L. Her diet currently includes more red meat compared with before.

DISCUSSION

CRVO and amenorrhea contributed by IDA were reported in the literature before but this was the first case that was precipitated by COVID-19 related movement restrictions. Disruption to diet and hence health is common when countries institute COVID-19 lockdown measures. There are literatures that revealed that lockdown resulted in people purchasing more chips/snacks. A scoping review by Bennett et al succinctly summarised the impact of a COVID-19 lockdown on changes in dietary habit in various populations. One of the few papers in Asia by Husain et al revealed that lockdown measures resulted in reduced purchases of red meat, supporting our hypotheses of a lockdown-induced iron deficiency in our patient in this case report. However, this is the first case whereby the severity of diet changes results in vision impairment and IDA has been reported.

IDA affects 11%–15% of young women in Asia. IDA can result from insufficient dietary intake or excess loss through bleeding. Iron replacement is therefore appropriate in the setting of deficiency, however, it should be administered judiciously. Many mechanisms were hypothesised to explain thrombosis in IDA including endothelial injury, reactive thrombosis and hypercoagulability. Factors including diet and lifestyle have also been investigated. Iron is important for metabolism and phototransduction of the retina. An iron-containing protein expressed in the retinal pigment epithelium, is an enzyme required to catalyse the conversion of all-trans-retinyl ester to 11-cis-retinol, which is an essential step in the visual cycle. RPE-65 is important for maintenance of photoreceptor excitability by phagocytosis of shed photoreceptor outer segments, allowing rebuilding of light-sensitive outer segment of photoreceptors. Furthermore, majority of secondary amenorrhoea was due to nutrition-related anaemia.

As CRVO with amenorrhoea is not a common diagnosis in the young adult population, a thorough investigation for an underlying systemic aetiology including other ocular ischaemic syndrome, hyperviscosity syndrome, severe anaemia and advanced hypertensive retinopathy should be conducted. Changes in dietary patterns can be significant during the COVID-19 pandemic due to movement restrictions. This case report should prompt clinicians managing sudden onset CRVO and amenorrhoea during the pandemic to consider diet-related IDA as a potential cause and initiate nutritional assessment and early iron supplementation. Judicious supplementation with iron along with dietary advice to consume more red meat restored the patient’s haemoglobin levels to normal with improvement of vision. Her menstrual cycle had not yet recovered at the time of writing of this report due to low body weight. This case highlights the importance of adequate nutrition on health during this period of COVID-19 pandemic.

Patient’s perspective

I did not realise that diet restrictions can lead to this condition that affected my eyesight. I am relieved that my vision has almost recovered fully.

Learning points

- Lockdown measures during the COVID-19 pandemic can have significant impact on dietary patterns and lead to malnutrition.
- Consider iron-deficiency anaemia in patients presenting with sudden onset of central retinal vein occlusion and amenorrhoea.
- Nutritional evaluation and supplementation may be considered in patients with drastic dietary pattern changes during quarantine measures due to COVID-19 pandemic.

Contributors YHK wrote the manuscript. NLW and TB revised the manuscript. RCMF revised the manuscript and provided the fundal image. All authors were involved in the clinical management of the patient.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.
Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

REFERENCES
1 Blair K, Czyz CN. Central retinal vein occlusion. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2020.
2 Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors. J Glob Health 2019;9:010427.
3 Yang V, Turner LD, Imrie F. Central retinal vein occlusion secondary to severe iron-deficiency anaemia resulting from a plant-based diet and menstrohagia: a case presentation. BMC Ophthal 2020;20:112.
4 Kaeer B, Hattenbach LO, Hörte S, et al. Central retinal vein occlusion and nonarteritic ischemic optic neuropathy in 2 patients with mild iron deficiency anemia. Ophthalimologica 2001;215:128–31.
5 Evstatiev R. Iron deficiency, thrombocytosis and thromboembolism. Wien Med Wochenschr 2016;166:437–46.
6 Tang X, Fang M, Cheng R, et al. Iron-Deficiency and estrogen are associated with ischemic stroke by up-regulating transferrin to induce hypercoagulability. Circ Res 2020;127:651–63.
7 Nicastro N, Schmider A, Leemann B. Iron-deficiency anaemia as a rare cause of cerebral venous thrombosis and pulmonary embolism. Case Rep Med 2012;2012:497814.
8 Tonali S, Kawabata A, Nakashita T, et al. Iron deficiency induces female infertility in order to failure of follicular development in mice. J Reprod Dev 2020;66:475–83.
9 Dikonomou E, Azaounidou K, Barbetseas J, et al. Hospital attendance and admission trends for cardiac diseases during the COVID-19 outbreak and lockdown in Greece. Public Health 2020;187:115–9.
10 Gląbska D, Skolmowska D, Guzek D. Population-based study of the changes in the food choice determinants of secondary school students: Polish adolescents’ COVID-19 experience (PLACE-19) study. Nutrients 2020;12. doi:10.3390/nu12092640. [Epub ahead of print: 30 Aug 2020].
11 WHO. Food and nutrition tips during self-quarantine, 2020. Available: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/noncommunicable-diseases/food-and-nutrition-tips-during-self-quarantine
12 Poelman MP, Gilletbaart M, Schlinkert C, et al. Eating behavior and food purchases during the COVID-19 lockdown: a cross-sectional study among adults in the Netherlands. Appetite 2021;157:105002.
13 Marty L, de Lauzon-Guillain B, Labesse M, et al. Food choice motives and the nutritional quality of diet during the COVID-19 lockdown in France. Appetite 2021;157:105005.
14 Ruiz-Rosso MB, Knott-Torcal C, Matilla-Escalante DC, et al. COVID-19 Lockdown and changes of the dietary pattern and physical activity habits in a cohort of patients with type 2 diabetes mellitus. Nutrients 2020;12:2327.
15 Robinson E, Boyland E, Chisholm A, et al. Obesity, eating behavior and physical activity during COVID-19 lockdown: a study of UK adults. Appetite 2021;156:104853.
16 Bennett G, Young E, Butler I, et al. The impact of Lockdown during the COVID-19 outbreak on dietary habits in various population groups: a scoping review. Front Nutr 2021;8:626432.
17 Husain W, Ashkanani F. Does COVID-19 change dietary habits and lifestyle behaviours in Kuwait: a community-based cross-sectional study. Environ Health Prev Med 2020;25:61.
18 Yamamoto K, Wang N, Takita M, et al. Iron deficiency anaemia: its prevalence among women of reproductive age in Shanghai and Tokyo and links to body mass index. Cures 2020;372:e9436.
19 Lopez A, Cacoub P, Macdougall IC, et al. Iron deficiency anaemia. Lancet 2016;387:906–17.
20 Ajana S, Cougnard-Grégoire A, Colin JM, et al. Predicting Progression to Advanced Age-Related Macular Degeneration from Clinical, Genetic, and Lifestyle Factors Using Machine Learning. Ophthalmology 2021;128:587–97.
21 Moiseyev G, Takahashi Y, Chen Y, et al. RPE65 is an iron(II)-dependent isomerohydrolase in the retinoid visual cycle. J Biol Chem 2006;281:2835–40.
22 Chen H, Lukas TJ, Du N, et al. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci 2009;50:1895–902.
23 Gnana-Prakash JP, Martin PM, Smith SB, et al. Expression and function of iron-regulatory proteins in retina. IUBMB Life 2010;62:NA–370.
24 Raghuraman V, Rathika V. Secondary amenorrhea: nutritional anaemia a cause or reason. Comp Haematol Int 2001;10:208–11.
25 London NJS, Brown G. Update and review of central retinal vein occlusion. Curr Opin Ophthalmol 2011;22:159–65.