Abstract

Autophagy plays an essential role in maintaining cellular homeostasis by responding to certain stressed conditions such as nutrient deprivation, organelle damage, pathogen infection, and exposure to certain nanomaterials. Through deliberate tuning of the physicochemical properties, the fate of nanomaterial-treated cells is subjected to various cellular toxicity, stress responses, and immune responses, some of which involve various autophagic mechanisms. Beginning from the molecular basis of the autophagy machinery, we will briefly introduce the major understanding of autophagy in inflammation, immunity, cancer metabolism, and therapy. Different working mechanisms will be discussed to classify the impact of physicochemical parameters on autophagy induction or inhibition by engineered nanomaterials. From the perspective of autophagy-targeting cancer therapeutics, we will focus on the advanced nano-formulations for improved drug delivery to impact autophagy in the setting of cancer diseases and designing co-delivery nanomedicine that targets autophagy along with another major cancer pathway to achieve in vivo synergy. Moreover, cancer immunotherapy, aiming at immune
cells or checkpoints, is also integrated with autophagy-regulatory components using multiple nano-platforms as an emerging strategy for cancer treatment. Overall, considering the recent breakthroughs of nanotechnology, targeting autophagy in cancer cells, antigen-presenting cells, or other cell types within tumor microenvironment by precisely designed nanomedicine may provide additional solutions for cancer treatment through autophagy-dependent metabolic regulation or immune pathways. However, one should closely monitor the extent of autophagy alternation and side effects from certain nanoparticles to avoid severe toxic responses.

Keywords:
Autophagy, engineered nanomaterials, cancer therapy, immune response, nanomedicine

Purpose and Rationale

Breaking the word “autophagy” into two pieces, “auto” refers to “self”, and “phagy” is an alternative way to say “eat”. Observed initially in the glucagon-perfused rat liver, scientists reported this interesting phenomenon by demonstrating the degradation of mitochondria and other organelles within lysosomes [1]. While an essential catabolic process for maintaining cellular homeostasis and attenuating cell stresses, autophagy and its regulatory mechanisms are not thoroughly investigated yet [2, 3]. This profound process also intensively involves many pathological conditions, which is best described in cancer. The process of autophagy has been conceptually divided into three major categories, *i.e.*, macro-autophagy, micro-autophagy, and chaperone-mediated autophagy; among these mechanisms, macro-autophagy is the primary and the best-characterized form. While we will briefly discuss these mechanistically distinct macro-autophagy processes in section 1, suffice to mention here that more than 30 autophagy-related genes (ATG) have been discovered in various organisms, including mammalian cells [4-6]. Noteworthy, this sophisticated cell machinery becomes the basis for understanding the impact of external materials, which could be an insult or therapeutically beneficial to the cell type of interest.

With the rapid emerging of engineered nanomaterials (ENMs), ample evidence has revealed the significant impact of ENMs on autophagy [7], which could exert a hazardous response or become useful therapeutics. For the former, a variety of ENMs have been demonstrated to regulate autophagy since ENMs are frequently sequestered in the autophagosomal and/or lysosomal compartments [8]. For the latter, early studies have demonstrated the possibility when using nano-enabled approaches to target autophagy in various disease scenarios, such as cancer, overcoming drug resistance, infection diseases, and certain rare diseases (*i.e.*, Huntington's disease [9]). In this mini review, we will begin from the fundamental biology of autophagy to illustrate its critical roles in tumor biology, inflammation, and immunity. This will be followed by a discussion about how the physicochemical properties of ENMs could impact autophagy. Finally, from the therapeutic perspective, we will focus on nano-enabled approaches to target autophagy for direct cancer treatment and the creative design of nano-platforms for cancer immunotherapy. Before we conclude, we also share our perspectives on this interesting topic.

Summary of relevant literature

Autophagy in cancer

Macro-autophagy is mediated by autophagosome that delivers engulfed cargos to the lysosomes for degradation. The autophagosome formation requires the hierarchically ordered activities of ATG proteins recruited at the phagophore assembly site (PAS) [10]. A classical macro-autophagy process includes the following: (i) activation of the ULK1 kinase complex to initiate the phagophore formation; (ii) nucleation through class III phosphatidylinositol-3-OH kinase (PI(3)K) complex (Vps34/Beclin 1/Vps15/ATG14L); (iii) membrane elongation and completion through ATG12/ATG7/ATG5/ATG16 and microtubule-associated protein 1A/1B–light chain 3 (LC3)/ATG8 ubiquitin-like conjugation systems; and (iv) maturation by fusing with lysosomes [11, 12]. Recently, several ATG proteins have been discovered to function in a non-canonical autophagic manner [13-16]. These ATG proteins utilize a portion of the canonical autophagy machinery and bypass some steps to create a “short-path” for...
enhanced degradation. For example, LC3-associated phagocytosis (LAP) is a process that is independent of the ULK1 complex but requires PI(3)K complex and ubiquitin-like conjugation systems. The degradation is mediated by the fusion between LC3-positive phagosomes with lysosomes [13]. We recently identified a Beclin 2-mediated non-canonical degradation pathway that bypasses Beclin 1 and the ATG5/7/16L conjugation system, during which Beclin 2-associated ATG9A vesicle could direct fuse with the pre-autophagosomal structure for target protein disposal [15, 16]. The differences among canonical and non-canonical autophagic processes are illustrated in Fig. 1.

Fig. 1 Scheme illustration of canonical macroautophagy, Beclin 2-mediated non-canonical autophagic degradation, and LC3-associated phagocytosis pathways.

Notably, autophagy dysregulation has been frequently found in tumor cells and perpetuated inflammation. Autophagy serves as a catabolic process to break down proteins and damaged organelles into amino acids to support the nutrition need for sustained tumor growth. Therefore, a group of small-molecule compounds targeting different steps in autophagy has been applied, repurposed, and tested in clinical trials for cancer treatment, such as hydroxychloroquine (HCQ). The commonly used activators and inhibitors for autophagy manipulation process are illustrated in Fig. 2. On the contrary, several ATG proteins have been found to play tumor-inhibitory roles through directly suppressing the oncogenes or tumor-associated inflammation. For example, Beclin 1 is a haploinsufficient tumor-suppressor gene inhibiting anti-apoptotic Bcl-2 family proteins via its BH3 domain by restraining tumorigenesis [17]. Heterozygous deletion of Beclin 1 in mice increases the incidence of spontaneous tumors [18, 19]. Therefore, strategies using Beclin inducer such as Tamoxifen to increase the synthesis of Beclin 1 became a well-recognized anti-tumor drug for breast cancer treatment [20]. By contrast, Beclin 2, a homolog protein of Beclin 1, although sharing a ~57% sequence identity with Beclin 1 and a predicted BH3 domain, suppresses tumorigenesis by inhibiting the inflammatory responses and MAPK pathways [14, 15]. Autophagy balances inflammation in innate immunity and appears to generate multiple effects on immunity. Innate immune signaling pathways, including type I interferon, NF-kB, and inflammasomes, are activated through recognition of pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by innate immune receptors such as DNA sensors, toll-like receptors, and NOD-like receptors (NLRs) [21-24].

While the innate immune response is critical in sensing malignant cells (such as DAMPs released from damaged cancer cells) and supporting an effective adaptive immune response, excessive inflammatory responses may promote cancer development [25-27]. The recognition that autophagy has an anti-inflammatory function, stems from the observation that the production of interleukin 1 beta (IL-1β) and IL-18 is increased in the absence of functional ATG16L1 in a mouse model of Crohn’s disease [28]. An inflammasome complex, consist of pro-caspase 1, the adaptor protein ASC, and a cytoplasmic sensor protein, could respond to PAMPs and DAMPs by inducing the proteolytic processing and secretion of IL-1β and IL-18 [29]. Several convergent reports show that autophagy has a negative role in inflammasome activation by removing intracellular DAMPs, degrading inflammasome components, and the control of biogenesis and secretion of IL-1β production [1-5, 30-34]. Autophagy deficiency leads to an accumulation of depolarized mitochondria, leading to the leakage of mitochondrial DNA (for AIM2 recognition) and reactive oxygen species (ROS) production (which activates the NLRP3 sensor) [33]. We recently identified that Beclin 2 could mediate the degradation of multiple inflammasome sensors by delivering them to autophagosomes through ATG9A-associated vesicles [16]. Loss of Beclin 2 could induce excessive inflammasome activation and IL-1β production to exacerbate the alum-induced peritonitis in a mouse model [16]. We also showed that Beclin 2 could target essential kinases to control NF-κB and ERK1/2 signaling to inhibit the inflammation-associated spontaneous lymphoma development [15]. Autophagy could also suppress type I interferon signaling in response to viral infection or gut microbiota [35, 36]. Autophagy-deficient mice could produce more microbiota-dependent IFN-I production to protect against infection and chemical injury of the intestine [36]. SARS-CoV-2 M protein could induce mitophagy (mitochondria elimination through autophagy) to inhibit the type I IFN response.
while blocking autophagy using inhibitors (3-MA or chloroquine) inhibited viral replication [35]. As an unconventional form of autophagy, LAP could also reduce pro-inflammatory responses and type I interferon signaling pathways in tumor-associated macrophages (TAM) to promote tumor immune tolerance for tumor progression [13]. Therefore, targeting specific ATG proteins or autophagic pathways either through canonical or non-canonical form may alter innate immune signaling and affect tumor initiation and progression.

Autophagy in disease-related immune response

Another essential role of autophagy is the involvement in antigen presentation. Regulation of autophagy could potentially affect the antigen-presentation through major histocompatibility complex (MHC) class I and class II molecules to impact the subsequent adaptive immune responses. Recent studies have shown that autophagy can deliver cytoplasmic materials or pathogens to the lysosomes for MHC class II antigen presentation [37-39]. Starvation-induced autophagy could enhance the MHC class II presentation of antigens from intracellular sources. On average, the highest peptides presentation level was raised by 131% after 24 hours of autophagy induction [37]. In Epstein Barr virus-transformed lymphoblastoid cells, viral antigens accumulate in autophagosomes when lysosomal acidification is blocked, indicating a role of autophagy in delivering viral antigen to lysosomes.

Additionally, blocking autophagy in Epstein Barr virus-transformed B cells leads to reduced recognition by antigen-specific CD4+ T cells, further indicating the critical role of autophagy in viral antigen presentation by MHC class II molecule [37, 38]. Dendritic cells (DCs) deficient in ATG5 appear to have compromised antigen processing and presenting by MHC class II molecules, leading to an impaired CD4+ T cell response after herpes simplex virus infection [40]. These studies indicated that DCs require functional autophagic machinery to process and present antigens onto MHC class II molecules efficiently. Other evidence also indicated a role of autophagy in the cross-presentation of exogenous antigen via MHC class I. In a macrophage cell line, autophagy inhibitor blocked MHC class I antigen presentation and the antigen-specific CD8+ T cell responses against HSV-1 infection. A similar finding was also evident in tumor antigen presentation that inhibition of autophagy almost completely abolished cross-presentation, while induction of autophagy enhanced the cross-presentation of tumor antigens [41, 42]. These reports have led to an expanded view of antigen presentation in which autophagy can play an active role.

Although the regulatory mechanisms of ATGs in cancer have not yet been fully clarified and the functional pathways vary, the role of ATG proteins in metabolism, innate immune signaling, and immunity made them potential therapeutic targets for cancer therapy [11, 43, 44]. Therefore, regulating autophagy protein or machinery at the nano/bio interface could potentially create novel therapeutics against malignancy. Furthermore, precision nanomedicine by rational design that targets specific ATG proteins or certain autophagic steps may provide better solutions for complicated scenarios, especially for tumor therapy or tumor microenvironment (TME) regulation.

Assessment and monitoring of autophagy

To correctly monitor autophagy, multiple techniques should be applied depending on each experimental setting. According to the latest guideline published by Daniel J. Klionsky et al., briefly, autophagy could be assessed through the observation of autophagosomes under transmission electron microscopy, formation of GFP-ATG8 puncta under fluorescent microscope, detection and quantification of autophagic substrate proteins such as p62 or ATG8 family proteins turnover by western blotting with and without lysosome inhibitors, etc.[45] Another method of evaluating autophagy flux is to measure the decomposition rate of a given protein through autophagy. Autophagy can be blocked at a given point, and then the accumulation of organelles, organelle markers, cargo markers, or the entire cargo at the clogged point over time is recorded. One can also track the decrease rate of the protein markers of autophagic degradation over time after completely inhibiting the protein synthesis.
Under certain conditions, researchers also need to determine if they need to assess the early or late autophagic compartments (phagophores, autophagosomes, autolysosomes). No single detection method can be entirely satisfactory to every situation, especially when assessing the nanoparticle-related autophagic process [45].

The roles of intrinsic physicochemical properties of engineered nanomaterials on autophagy

An increasing number of ENMs have been reported to modulate the process of autophagy. After ENMs are taken up and trapped within the endomembrane system, autophagy and lysosomal dysfunction are frequently found as an emerging mechanism of ENMs toxicity. Reported examples include metals, metal oxides, rare earth oxide (REO) nanoparticles, carbon-based materials, polymeric nanoparticles, quantum dots, and Stober silica. Exposure of cobalt and chromium (CoCr) nanoparticles to the BeWo trophoblast barrier could alter the autophagic flux and induce a significant production of IL-6. Interestingly, indirect CoCr nanoparticle exposure by transferring conditioned media from the BeWo trophoblast culture could induce DNA damage in neuron cells and astrocytes, and such effect depends on autophagy in the BeWo barrier. As a result, inhibiting autophagy in the BeWo barrier significantly reduced the level of DNA damage in astrocytes. These results collectively suggest a critical role of autophagy dysfunction in initiating CoCr nanoparticle-induced DNA damage [46-50].

By contrast, another study reported that extravillous trophoblast (EVT) cells might utilize autophagy to maintain cellular homeostasis after phagocytosing platinum nanoparticles (nPt). Herein autophagy functions as a protective mechanism to reduce nPt cytotoxicity in human trophoblast cells [46-50]. Regarding the autophagy alternation, various mechanisms are involved, including oxidative stress, direct or indirect ubiquitination of nanomaterials, and inhibition of mTOR signaling, etc [8, 46, 51-55]. While many nanoparticles were found to be engulfed to trigger the formation of autophagosomes [47, 56, 57], other reports suggest that nanoparticles may suppress autophagy flux by lysosome destabilization, during which the unique physicochemical property plays a dominant role [51, 54, 58]. The primary mechanism reported for autophagy induction is the ability of ENMs to generate abundant ROS as a “stress” signal to trigger autophagy [47]. Reactive oxygen and nitrogen species are essential signaling molecules at basal levels; however, both could damage mitochondria at high levels. So far, autophagy is the primary mechanism for responding to danger signals from damaged mitochondrial, such as mitochondrial DNA (mtDNA), to execute mitochondrial turnover. With a high surface area to volume ratio, Nanoparticles are therefore potent ROS inducers to trigger autophagic process. By contrast, the inhibition of autophagic flux is primarily caused by ENM-induced lysosome dysfunction through impairing the autophagosome maturation process [47, 51, 54, 56-58]. Nanoparticles, primarily taken up via endocytosis, will end up in lysosomes for degradation. Due to the inability to degrade inert nanoparticles such as gold nanoparticles, the accumulated nanoparticles may destabilize the lysosome. Therefore, among a substantial number of studies describing the ENM-induced autophagy, inorganic hard ENMs (such as gold nanoparticles) have more likelihood to affect autophagy over soft materials (such as polymers). On top of that, the surface modification and size were the dominant factors that affect the autophagic process since both significantly affect the ROS production and lysosome integrity and function.

CdSe/ZnS quantum dots (QDs) could provoke autophagosome accumulation in a ROS-dependent manner [30]. Further studies compared the cytotoxicity and intracellular processing of QDs of different sizes in human bone marrow mesenchymal stem cells and found that smaller QDs could regulate autophagy and induce autophagic cell death more extensively than larger QDs [55]. Similarly, zinc oxide (ZnO) nanoparticles could induce ROS-dependent mitochondrial damage, the formation of autophagosomes, and autophagic cell death. Such an effect can be rescued by ROS scavenger treatment [59]. Interestingly, autophagy induction by ENMs may have cell-type specificity. Iron oxide nanoparticle-induced autophagy is correlated
with ROS production and mitochondrial damage in cancer cells (A549) but not normal cells (IMR-90) [52]. Studies have also shown that nanoparticles, such as Au nanoparticles (Au NPs) and silica nanoparticles, may induce autophagy in a dispersion-dependent manner, and the degree of autophagy was regulated by adjusting the dispersion status of nanoparticles [56]. Another possibility while seeing the accumulation of autophagosomes is not autophagic induction but the impairment of lysosome function. As a leading example, Ma et al. demonstrated a size-dependent lysosomal alkalization and blockage of autophagosome maturation, owing to the size-dependent uptake and accumulation of Au NPs in lysosomes in normal rat kidney cells. Larger Au NPs (50 nm) that were taken up more efficiently compared to their smaller counterparts (10 and 25 nm) impaired the autophagy flux more potently [58]. Another finding showed that silica nanoparticles inhibited autophagic degradation via a similar lysosomal impairment mechanism [54]. We recently identified an endocytosis-independent autophagy impairment by ultrasmall Au NPs. We examined the oxidative stress of BMDCs after exposure to 200 μg/mL Au 4.5, 13, 30, and 70 nanoparticles for 6 hours. Our data showed that 4.5 nm-sized Au NPs (Au 4.5) were localized in cytoplasm and produced a higher level of ROS than larger-sized counterparts.

Interestingly, Au4.5 could target LC3, a central autophagic machinery protein, for proteasome-mediated degradation. The direct cell penetration ability of Au4.5 causes ubiquitination of LC3 proteasome-mediated degradation to inhibit the autophagy machinery without inducing significant cytotoxicity [51]. Next to size, some studies have uncovered the surface charge-dependent autophagy regulation by ENMs. Positively charged nanoparticles, in general, have higher uptake efficiency and membrane permeabilization ability, thus leading to a higher capability to cause lysosome damage. Therefore, cationic nanoparticles induced more autophagosome accumulation than negatively charged ones even though both are of similar diameters [58]. Comparatively, PEG-functionalization will likely hinder the nano/bio interface and thus impede cellular uptake-dependent autophagy. While formulating a nanoparticle into a fine-tuned size and surface charge may alter the cellular processing, surface modification of peptide RE-1 (ACTARSPWICG), RE-1 peptide variants, or RGD could also regulate the autophagy-inducing activity [49]. By contrast, to avoid nanoparticle-induced lysosome accumulation or autophagy dysfunction, a popular idea is to design “smart” elements for lysosome escape. The polymeric nanoparticles with pH-responsive elements could efficiently escape from the endo-lysosome compartments to enhance the cytoplasmic delivery of drugs, proteins, peptides, antisense oligonucleotides, or siRNA [60-62]. For example, using equimolar amounts of pH-sensitive 2-propyl acrylic acid (PAA) and DMAEMA to formulate neutral charged smart polymer nanoparticles could cause pH-dependent membrane damaging activity for efficient siRNA delivery. In another study, a unique pH/redox sensitive cationic monomolecular NP containing imidazole residues was developed for cytoplasmic siRNA delivery. The efficient endosomal/lysosomal escape of NPs-siRNA complex was empowered through osmotic expansion and endosomal/lysosomal membrane destruction [60-62].

So far, it is inconclusive what is the “most effective” size or modification to affect autophagy since many parameters contribute to the induction and alternation of the autophagy process. For example, autophagy may act as a protective mechanism against ENMs invading by responding to ROS stress signal [53], but excessive ROS production could overwhelm the cells to induce autophagic cell death [59]. Furthermore, while smaller-sized nanoparticles can induce ROS due to the substantially higher surface-over-volume ratio than the larger counterparts, cellular uptake was postulated more efficiently for 40-60 nm-sized NPs. Therefore, systemically characterize the autophagy alternation ability of NPs with different sizes, surface charges, and modifications are warranted. This data collection and understanding are crucial for the design of safe and effective nanoparticles for medical uses.

Design of nanocarriers to impact autophagy in cancer

While profound and highly attractive therapy-wise, one of the key challenges in using...
autophagy targeting drugs is the inadequate tumor access and non-specific biodistribution in vivo. Take the famous weak-base autophagy blockers, such as chloroquine (CQ) and HCQ, for instance, the protonation effect under the acidic tumor TME led to the formation of cell membrane-impermeable molecules, preventing the efficient use of these payloads as free drugs. Moreover, for synergistic tumor inhibition, it has been popular to design drug pairs to target autophagy in addition to a major cancer pathway, which demands synchronized pharmacokinetics (PK) and optimal drug ratio at the cancer site.

While the role of autophagy is complex and sometimes contradictory, it is generally believed that chemotherapeutic agent-induced stress response can induce autophagy, which becomes a major mechanism to promote cancer cell survival. This has become a popular approach, some of which are being tested clinically, to improve the killing effect of chemotherapy drugs or restore drug sensitivity by introducing autophagy inhibitor plus chemo. Various pharmacological inhibitors were tested in the literature, including PI3K inhibitors such as 3-methyladenine and wortmannin and lysosomal neutralization reagents such as CQ, HCQ, and bafilomycin A1 [41]. Similar advancement has been made in the content of nanomedicine, which has led to exciting outcomes at the intact animal level. Want et al. demonstrated the possibility of making an HCQ liposome, which also carries a TH-RGD targeting peptide [63]. Using this delivery platform, the authors showed a significant increase in intratumoral drug concentration for more than 10-fold and major toxicity reduction in a B16F10 melanoma mouse model. When combining with chemotherapeutics, such as doxorubicin (DOX) or liposomal DOX, the best-performing treatment by co-administration of DOX and HCQ liposomes gave >60 days median survival outcome, compared to the control treatment using free drug pair (median survival of 16 days) [63]. The same group also showed the successful synthesis of paclitaxel/HCQ co-delivery liposome, leading to enhanced potency inhibiting primary tumor growth and reducing lung metastasis in the B16F10 model in vivo [64]. Interestingly, the authors’ data strongly indicate the immunomodulatory effects of their formulation, such as the CXCR4/CXCL12 axis, which exemplified a new direction of autophagy-mediated nano-immunotherapy for cancer management [64]. A more detailed discussion will appear below.

Noteworthy oncology findings suggested that both autophagy inhibition and autophagy induction are therapeutically helpful as the latter may impact the anti-apoptosis pathways. Literature suggested that autophagy induction by mTOR or Bcl-2 inhibitors may synergize with chemo options, evidenced in a long list of cancer types, such as glioma, breast cancer, renal cancer, prostate cancer, and mesothelioma [4, 65, 66]. Therefore, these creative combinations were also formulated and tested using various nanoparticles (see Table 1 at the end of the article). In addition to design nanocarriers using autophagy drugs plus chemo agents, we developed a ratiometrically designed nanocarrier targeting autophagy pathway plus a cell-cycle pathway cyclin-dependent kinase (CDK)4/6 for efficient pancreatic cancer treatment (Fig. 3) [67]. We optimized the synergistic drug ratios when combining HCQ plus palbociclib (PAL) in a panel of cultured pancreatic cancer cells, demonstrating PAL:HCQ of 5:1 exerted across-the-board drug synergy in multiple cell lines (Fig. 3). When ratiometrically co-packaged into a mesoporous silica nanoparticle (MSNP)-based carrier, the leading formulation could yield a synchronized PK profile and secured drug ratio, which are key factors for optimal drug synergy in subcutaneous (s.c.) and orthotopic PANC1 models. Nano-enabled ratiometric co-delivery outperformed a list of control treatments, including free drug mixture. We continued to show that repetitive administrations of this drug combination formulation paradoxically activated an anti-apoptosis pathway. This has promoted the introduction of a small molecule pan-Bcl-2 inhibitor, ABT-737, to potentiate the effectiveness of our particles, yielding a long-lasting anti-cancer outcome (Fig. 3).
Design of autophagy-regulatory nanomedicine for immunotherapy

Owing to the critical role of autophagy in antigen-presentation, a nanoparticle-based delivery system that carries antigens along with autophagy inducers showed great potential to enhance T cell activity (see Table 1). DCs are one of the most professional antigen-presenting cells (APCs) for the activation of naïve T cells to drive antigen-specific immunity against cancer. Therefore, promoting the autophagy in DCs may induce potent antigen-specific immunity after vaccination [27, 42]. Aluminum microparticle (also known as Alum) is the only licensed particulate adjuvant in the US. Alum is well known as a potent adjuvant for antibody responses, but its ability to prime cytotoxic T lymphocytes is limited [68]. By formulating aluminum into nanosized, α-Al2O3 nanoparticles could trigger autophagy and deliver antigens to autophagosomes for antigen presentation. Ovalbumin (OVA), as a model antigen, was conjugated to α-Al2O3 nanoparticles, TiO2 nanoparticles, and α-Fe2O3 nanoparticles of similar sizes [57].

Interestingly, α-Al2O3 nanoparticles exhibited more potent T cell priming and antigen-cross presentation ability than other particle adjuvants, suggesting a chemical composition-dependent adjuvant effect. Consequently, immunization of mice with tumor antigen-conjugated α-Al2O3 nanoparticles resulted in significant tumor regression [57]. Furthermore, conjugating autophagy inducers can achieve manipulation of autophagy to nanoparticles, such as linking a Beclin 1 peptide (NH2-CGTNVFNATFFIWHSHGQFGT-COOH) to the backbone of the polymer. The polymeric nanoparticles that upregulate autophagy in DCs thus leading to a high-efficiency antigen presentation of OVA and OVA-specific T cells activation [69].
In addition to adjuvating antigen-specific T cell responses through the antigen-presentation mechanism, nanoparticles may also improve the antibody responses by modulating the inflammasome activity through autophagy. Our recent study indicated a size-dependent autophagy suppression by Au nanoparticles. Ultrasmall-sized nanoparticles (Au4.5) suppressed autophagy by target LC3 for proteasome-mediated degradation. Being a negative regulator of the inflammasome, suppression of autophagy induced excessive NLRP3 accumulation for enhanced inflammasome activity [51]. Another comparative analysis was conducted in macrophages receiving ENMs with different chemical compositions, such as multiwall carbon nanotubes (MWCNT) and rare earth oxide (REO) nanoparticles. Li et al. demonstrated that MWCNTs and REO nanoparticles are potent inducers of NLRP3 inflammasome assembly. In the case of MWCNTs, NLRP3 assembly and IL-1β production were accompanied by intact autophagy homeostatic regulation. Thus, the treated cells were capable of rapidly removing activated NLRP3 complexes.

Fig. 4. Au nanoparticles exhibited potent NLRP3-dependent adjuvant activity and enhanced antibody production through autophagy inhibition mechanism. (A) Optical images of Au nanoparticle suspension and TEM analysis of Au nanoparticles. (B) ELISA test for the induction of IL-1β production in supernatants of bone marrow-derived DCs primed with LPS (100 ng/ml, 3 h) alone or followed by 6 h of different sized Au nanoparticles (Au4.5, Au13, Au30, or Au70) treatment at increasing doses (50, 100, and 200 μg/ml) or 1 h ATP (5 mM) treatment. (C, D) Immunoblot analysis of cell lysates (C) and ELISA for IL-1β in supernatants (D) of DCs primed with LPS (100 ng/ml, 3 h), followed by treatment with 200 μg/ml Au4.5 for different times. (E-G) Scheme illustration of mice receiving OVA or OVA plus adjuvant immunization. 6–8 weeks old female C57BL/6 wild-type or NLRP3-deficient mice were subcutaneously injected with PBS, OVA alone, OVA adjuvanted by Au nanoparticles (2 mg), or OVA adjuvanted by alum (2 mg) on day 0 and day 7. Serum samples were collected on days 14, 28, and 42 for OVA-specific IgG (H+L) production antibody titer analysis (n=5) (F, G). *p< 0.05, **p< 0.01. Figure adapted from Zhu M et al. ACS Nano. 2020 [51].
This differs from REO ENMs mediated lysosomal injury severity-wise, which damages this organelle to the extent that it disrupts autophagosome fusion and removal of the activated NLRP3 complexes; this leads to exaggerated IL-β production [51]. Importantly, NLRP3 inflammasome activation has been implicated for T cell-mediated cancer immunotherapy [70] and adjuvant activity for antibody production [71, 72]. Furthermore, the nanoparticles that activated NLRP3 inflammasomes have been demonstrated to markedly enhance OVA-specific antibody production in an NLRP3-dependent manner (Fig. 4) [51]. Therefore, tuning autophagy by nanoparticles with selective properties could enable the development of novel cancer vaccine adjuvants.

Immune checkpoint blockade therapy aims to take the “brake” off the immune system to activate the anti-tumor immunity fully. The levels of programmed cell death-1 (PD-1) with its ligand (PD-L1), two major immune checkpoints, have been reported to be upregulated by autophagy inhibitors in different cancers such as melanoma, ovarian cancer, and gastric cancer [73]. Liu et al. developed a lipid bilayer-coated MSNP, also known as a silicasome, for chemo-immunotherapy [74]. Irinotecan, a weak-basic chemo-drug, neutralizes the acidic lysosomal pH, leading to autophagy inhibition and PD-L1 expression in pancreatic ductal adenocarcinoma (PDAC) cells. Therefore, checkpoint blockade therapy, combined with silicasome-empowered irinotecan delivery, synergistically enhanced the anti-tumor effect in an orthotopic PDAC mouse model [74]. Similarly, legumain-responsive Au nanoparticles were loaded with DOX and autophagy inhibitor HCQ [75]. Co-administration of the nanoparticle with anti-PD-L1 antibody enhanced the anti-glioma effect and efficiently prevent glioma recurrence [75].

Conclusions and perspective

Although the correlation between autophagy and cancer is complicated and sometimes contradictory, the critical role of ATG protein in metabolism, innate immune signals, and immunity makes it a potential therapeutic target for cancer. Considering autophagy’s essential role in maintaining cellular homeostasis, it would not be surprising to see the contradictory outcome in various developmental stages of cancer. Alternatively, autophagy may suppress or facilitate cancer growth through different mechanisms, as illustrated in Fig. 5.

![Fig. 5 Competing outcomes of autophagy inhibition/promotion in cancer development. Abbreviations: TAM, tumor-associated macrophage; LAP, LC3-associated phagocytosis; DC, dendritic cells.](image)

Therefore, a precise design of nanomedicine that targets specific ATG protein(s) or certain autophagy step(s) may provide novel solutions for cancer treatment. Owing to the roles of different types of cells
in tumor development, cell-type-specific nano-formulations for targeted therapy are needed to manipulate autophagy in cancer cells, cancer-associated macrophages APCs, or other cells within TME. For example, to deliver cancer antigens for cancer immunotherapy, autophagy inducers could be co-delivered by nanoparticles to promote autophagy-dependent antigen-presentation for a potent anti-tumor immune response. By contrast, autophagy inhibitors could be delivered specifically to cancer cells by nanoparticles to prohibit tumor nutrition supply when aiming at cancer metabolism. In addition, with the advent of nanotechnology, it has become popular to consider constructing co-delivery nanocarriers or designing nano-enabled combination therapy to implement “autophagy interference” + “X”. The candidates for “X” could be a nuclear acid-based active pharmaceutical ingredient (API) or their combinations, which per se largely require nano-formulation. The apparent advantage of such an approach is the “synergy” by implementing synchronized PKs, multi-target combinations, and improved safety profile of the combination. These become the major strengths to augment the likelihood of a successful tumor therapy in vivo. The third interesting aspect is to systemically dissect the critical roles of nanomaterial properties in autophagy regulation. However, when attempting to do this, one should closely monitor the extent of autophagy alternation to avoid unexpected toxic responses due to engineered nanomaterials' diverse physical and chemical properties. This may become the basis of designing drug-free nano-formulations to replace the classical pharmacological compounds that target autophagy.

Acknowledgements
H. Meng and M. Zhu thank the startup funding support from National Center for Nanoscience and Technology, CAS (E1763911, E1773911). Y. Zhao thanks the support from Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB36000000).

Conflict of interest
The authors declare no conflicts of interest. For signed statements, please contact the journal office: editor@precisionnanomedicine.com

Quote this article as You L, Feng Z, Zhao Y, Meng H, Zhu, M, The Role of Autophagy at Nano/Bio Interface - Underlying Mechanisms and Therapeutic Potential in Cancer, Precis. Nanomed. 2020 September;3(3):821-8xx

References
1. Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967 May;33(2):437-449.
2. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy-related proteins in the immune system. Nat Immunol. 2015 Oct;16(10):1014-1024.
3. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macro-autophagy. Cell Res. 2014 Jan;24(1):24-41.
4. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010 May;221(1):3-12.
5. Onorati AV, Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in cancer. Cancer. 2018 Aug;124(16):3307-3318.
6. Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective. Cell. 2019 Jan 10;176(1-2):11-42.
7. Wei M, Le WD. The role of nanomaterials in autophagy. Adv Exp Med Biol. 2019;1206:273-286.
8. Li R, Ji Z, Qin H, et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome. ACS Nano. 2014 Oct 28;8(10):10280-10292.
9. Jin P, Wei P, Zhang Y, et al. Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide. Nanoscale. 2016 Nov 10;8(44):18740-18750.
10. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107-132.
11. Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, inflammation, and immunity: A troika governing cancer and its treatment. Cell. 2016 Jul 14;166(2):288-298.
12. Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. 2011 Dec 14;13(1):7-12.
13. Cunha LD, Yang M, Carter R, et al. LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell. 2018 Oct 4;175(2):429-441.e16.
14. Zhu M, Deng G, Xing C, Nie G, Wang RF. BECN2 (beclin 2)-mediated non-canonical autophagy in innate immune signaling and tumor development. Autophagy. 2020 Dec;16(12):2310-2312.
15. Zhu M, Deng G, Tan P, et al. Beclin 2 negatively regulates innate immune signaling and tumor development. J Clin Invest. 2020 Oct 1;130(10):5349-5369.
16. Deng G, Li C, Chen L, et al. BECN2 (beclin 2) negatively regulates inflammasomes through ATG9A-dependent but ATG16L1- and LC3-independent non-canonical autophagy. Autophagy. 2021 Jun 21;21:1-17.
17. Elgendy M, Ciro M, Abdel-Aziz AK, et al. Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nat Commun. 2014 Dec 4;5:5637.
18. Gong C, Bauvy C, Tonelli G, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene. 2013 May 2;32(18):2261-2272.
19. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003 Dec;112(12):1809-1820.
20. Jung YY, Lee YK, Koo JS. The potential of Beclin 1 as a therapeutic target for the treatment of breast cancer. Expert Opin Ther Targets. 2016;20(2):167-178.
21. Ajibade AA, Wang Q, Cui J, et al. TAK1 negatively regulates NF-kappaB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils. Immunity. 2012 Jan 27;36(1):43-54.
22. Yu X, Cai B, Wang M, et al. Cross-regulation of two type I interferon signaling pathways in plasmacytoid dendritic cells controls anti-malaria immunity and host mortality. Immunity. 2016 Nov 15;45(5):1093-1107.
23. Cadwell K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol. 2016 Nov;16(11):661-675.
24. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015 Apr;16(4):343-353.
25. Gerada C, Ryan KM. Autophagy, the innate immune response and cancer. Mol Oncol. 2020 Sep;14(9):1913-1929.
26. Li MO, Wolf N, Raulet DH, et al. Innate immune cells in the tumor microenvironment. Cancer Cell. 2021 Jun 14;39(6):725-729.
27. Xia H, Green DR, Zou W. Autophagy in tumour immunity and therapy. Nat Rev Cancer. 2021 May;21(5):281-297.
28. Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. 2008 Nov 13;456(7219):264-268.
29. Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012 Mar 19;13(4):333-342.
30. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011 Jan 13;469(7329):221-225.
31. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011 Mar;12(3):222-230.
32. Dupont N, Jiang S, Pilli M, Ormatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 2011 Nov 8;30(23):4701-4711.
33. Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012 Jan 29;13(3):255-263.
34. Lupfer C, Thomas PG, Anand PK, et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat Immunol. 2013 May;14(5):480-488.
35. Hui X, Zhang L, Cao L, et al. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduct Target Ther. 2021 May 8;6(1):180.
36. Martin PK, Marchiando A, Xu R, et al. Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat Microbiol. 2018 Oct;3(10):1131-1141.
37. Dengjel J, Schoor O, Fischer R, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A. 2005 May 31;102(22):7922-7927.
38. Paludan C, Schmid D, Landthaler M, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005 Jan 28;307(5709):593-596.
39. Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007 Jan;26(1):79-92.
40. Lee HK, Mattei LM, Steinberg BE, et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity. 2010 Feb 26;32(2):227-239.
41. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019 Sep;9(9):1167-1181.
42. Ghiblat G, Lawrence T. Autophagy in dendritic cells. Cell Mol Immunol. 2018 Nov;15(11):944-952.
43. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011 Jan 20;469(7330):323-335.
44. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013 Oct;13(10):722-737.
45. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 2021 Jan;17(1):1-382.
46. He G, Ma Y, Zhu Y, et al. Cross talk between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell death. Adv Healthc Mater. 2018 Sep;7(17):e1800332.
47. Peynshaert K, Manshian BB, Joris F, et al. Exploiting intrinsic nanoparticle toxicity: the pros and cons of nanoparticle-induced autophagy in biomedical research. Chem Rev. 2014 Aug 13;114(15):7581-7609.
48. Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology. 2016 Oct;10(8):1021-1040.
49. Hawkins SJ, Crompton LA, Sood A, et al. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. Nat Nanotechnol. 2018 May;13(5):427-433.
50. Nakashima A, Higashisaka K, Kusabiraki T, et al. Autophagy is a new protective mechanism against the cytotoxicity of platinum nanoparticles in human trophoblasts. Sci Rep. 2019 Apr 2;9(1):5478.
51. Zhu M, Du L, Zhao R, et al. Cell-penetrating nanoparticles activate the inflammasome to enhance antibody production by targeting microtubule-associated protein 1-light chain 3 for degradation. ACS Nano. 2020 Mar 24;14(3):3703-3717.
52. Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials. 2012 Feb;33(5):1477-1488.
53. Luo YH, Wu SB, Wei YH, et al. Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chem Res Toxicol. 2013 May 20;26(5):662-673.
54. Wang J, Yu Y, Lu K, et al. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int J Nanomedicine. 2017 Jan 24;12:809-825.

55. Seleverstov O, Zabirnyk O, Zscharnack M, et al. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett. 2006 Dec;6(12):2826-2832.

56. Huang D, Zhou H, Gao J. Nanoparticles modulate autophagic effect in a dispersity-dependent manner. Sci Rep. 2015 Sep 23;5:14361.

57. Li H, Li Y, Jiao J, Hu HM. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol. 2011 Sep 18;6(10):645-650.

58. Ma X, Wu Y, Jin S, et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano. 2011 Nov 22;5(11):8629-8639.

59. Yu KN, Yoon TJ, Minai-Tehrani A, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro. 2013 Jun;27(4):1187-1195.

60. Bulmus V, Woodward M, Lin L, Murthy N, Stayton P, Hoffman A. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J Control Release. 2003 Dec 5;93(2):105-20.

61. Nelson CE, Gupta MK, Adolph EJ, Guelcher SA, Duvall CL. siRNA Delivery from an Injectable Scaffold for Wound Therapy. Adv Wound Care (New Rochelle). 2013 Apr;10(4):1170.

62. Chen G, Wang Y, Xie R, Gong S. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. J Control Release. 2017 Aug 10;259:105-114.

63. Wang Y, Shi K, Zhang L, et al. Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin. Autophagy. 2016 Jun 2;12(6):949-962.

64. Yin S, Xia C, Wang Y, et al. Dual receptor recognizing liposomes containing paclitaxel and hydroxychloroquine for primary and metastatic melanoma treatment via autophagy-dependent and independent pathways. J Control Release. 2018 Oct 28;288:148-160.

65. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005 Sep;5(9):726-734.

66. Lian J, Wu X, He F, et al. A natural BH3 mimic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Bclin1 interaction at endoplasmic reticulum. Cell Death Differ. 2011 Jan;18(1):60-71.

67. Ji Y, Liu X, Li J, et al. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. J Natl Cancer Inst. 2020 Aug 25;112(1):4249.

68. Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009 Apr;9(4):287-293.

69. Xu C, Wang Y, Yuan Q, et al. Serum pleiotrophin as a diagnostic and prognostic marker for small cell lung cancer. J Cell Mol Med. 2019 Mar;23(3):2077-2082.

70. Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009 Oct;15(10):1170-1176.

71. Flach TL, Ng G, Hari A, et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med. 2011 Apr;17(4):479-487.

72. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008 Jun 19;453(7198):1122-1126.

73. Wang X, Wu WKK, Gao J, et al. Autophagy inhibition enhances PD-L1 expression in gastric cancer. J Exp Clin Cancer Res. 2019 Mar 29;38(1):140.

74. Liu X, Jiang J, Liao YP, et al. Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1. Adv Sci (Weinh). 2021 Jan 27;8(6):2002147.
75. Ruan S, Xie R, Qin L, et al. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. Nano Lett. 2019 Nov 13;19(11):8318-8332.
76. Xie Y, Jiang J, Tang Q, et al. Iron oxide nanoparticles as autophagy intervention agents suppress hepatoma growth by enhancing tumoricidal autophagy. Adv Sci (Weinh). 2020 Jun 9;7(16):1903323.
77. Wang Y, Lin YX, Qiao ZY, et al. Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Adv Mater. 2015 Apr 24;27(16):2627-2634.
78. Lu HY, Chang YJ, Fan NC, et al. Synergism through combination of chemotherapy and oxidative stress-induced autophagy in A549 lung cancer cells using redox-responsive nanohybrids: A new strategy for cancer therapy. Biomaterials. 2015 Feb;42:30-41.
79. Xu J, Wang H, Hu Y, et al. Inhibition of CaMKIIalpha activity enhances antitumor effect of fullerene C60 nanocrystals by suppression of autophagic degradation. Adv Sci (Weinh). 2019 Feb 10;6(8):1801233.
80. Lin YX, Wang Y, An HW, et al. Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett. 2019 May 8;19(5):2968-2978.
81. Ruan SB, Xie R, Qin L, et al. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. Nano Lett. 2019 Nov 13;19(11):8318-8332.
82. Deng YY, Song PY, Chen XH, et al. 3-Bromopyruvate-conjugated nanoplatform-induced pro-death autophagy for enhanced photodynamic therapy against hypoxic tumor. ACS Nano. 2020 Aug 25;14(8):9711-9727.
83. Wang XS, Zeng JY, Li MJ, Li LR, Gao F, Zhang XZ. Highly stable iron carbonyl complex delivery nanosystem for improving cancer therapy. ACS Nano. 2020 Aug 25;14(8):9848-9860.
84. An JY, Zhang KX, Wang BH, et al. Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano. 2020 Jun 23;14(6):7639-7650.
85. Wang Y, Lin YX, Wang J, et al. In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator enables effective cancer immunotherapy. ACS Nano. 2019 Jul 23;13(7):7568-7577.
86. Li HY, Li YH, Jiao J, Hu HM. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol. 2011 Sep 18;6(10):645-650.
Table 1 The use of autophagy-regulatory nanoparticles for cancer therapy

Target	Cancer model	Treatment	Antitumor effect	Key observation of autophagy	Ref
Tumor cells	SK-Hep-1 hepatoma xenograft model	Carboxy-functional iron oxide nanoparticle \((\text{Fe}2\text{O}3@\text{DMSA})\)	SK-Hep-1 tumor cells with NPs co-implanting model: \(~33\%\) tumor inhibition compared to PBS; SK-Hep-1 subcutaneous tumor model: \(~42\%\) tumor inhibition compared to PBS	LC3-II and p62 protein↑ Formation of autophagosomes (LC3B, p62, Beclin 1, ATG2A, ATG16L1) mRNA↑ Autophagic cell death↑	[76]
MCF-7 cancer cells xenograft tumor model	Bec1 (an autophagy-inducing peptide)-modified pH-sensitive polymers	~40% tumor inhibition compared to PBS	LC3-II/LC3-I protein↑ p62 protein↑ LC3-II protein↑		[77]
A549 lung cancer xenograft model	Au NPs (5 nm in diameter) attached onto the amino-functionalized MSNs (denoted as GCMSNs) loaded with camptothecin (CPT)	Significantly inhibited tumor growth by high CPT-loaded GCMSNs treatment \((p < 0.05)\)	LC3-I, LC3-II protein↑ ATG5 protein↑ LC3 protein↑		[78]
143B osteosarcoma xenograft model	Fullerene C60 nanocrystals (s.c.) + chemical inhibitor KN-93 (s.c.)	~25% tumor inhibition compared to PBS	Autophagic flux↓ (autophagosome accumulation and impairment of autophagic degradation) LC3-II protein↑ p62 protein↑ Cathepsin B and cathepsin D↓		[79]
A549 lung cancer xenograft model	Pt(IV)-peptide-bis(pyrene), cRGD NPs encapsulated Beclin 1 siRNA (siBec1@PPN)	A549 tumor nude mice model: 86.04% tumor inhibition compared to PBS; Pt-resistant A549 tumor-bearing	1. siBec1@PPN induced autophagy inhibition 2. A549 tumor cells: Beclin 1 and LC3-II↓ 3. Pt-resistant A549 tumor cells: Beclin 1 and LC3-II↓ (non-		[80]
Model Type	Treatment	Effect			
-----------------------------	---	--			
C6 glioma xenograft model;	Legumain-responsive Au NPs (D&H-A-A&C) encapsulated DOX and HCQ+ anti-PD-L1 antibody	athymic nude mice: 83.98% tumor inhibition compared to PBS treated group higher than normal A549 tumor cells)			
C6 glioma rechallenge model	C6 glioma model: 56 days median survival time compared to control ~28 days; C6 glioma rechallenge model: 60.9 days median survival time compared to control ~18 days	1. LC3-II/LC3-I ratio ↑ 2. Autophagosomes ↑ observed via transmission electron microscope (TEM)			
KB (s.c.) tumor model;	3-bromopyruvate (3BP, an autophagy promoter and hypoxia ameliorator) integrated into photosensitizer chlorin e6 (Ce6)-encapsulated nanoparticles (CD-Ce6-3BP NPs)	1. KB model: complete inhibition; low systemic toxicity; 2. Orthotopic 4T1 model: complete inhibition; reduced metastatic tumor nodules in lung LC3-II/LC3-I protein ratio ↑ p62 protein ↓ LC3 puncta dots ↑ Autophagosomes ↑			
orthotopic 4T1 breast cancer model;	Au nanocage encapsulated pentacarbonyl	Complete inhibition			
4T1 breast cancer model	Lipid-coated MSNP co-encapsulate CDK4/6 inhibitor PAL and HCQ	1. LC3 protein↑ 2. Autophagosomes ↑			
Panc-1 s.c. and orthotopic xenograft model	Panc-1 s.c. model: ~43% tumor inhibition compared to phosphate buffered saline (PBS); Panc-1 orthotopic models: ~20% tumor inhibition compared to PBS; ~36% tumor inhibition compared to PBS when combined with BCL2 inhibitor ABT-737	1. Autophagosomes ↑ 2. p62 protein↑ 3. ROS ↓ 4. LC3-II/LC3-I ratio ↑			
DCs	CT26 tumor xenograft model; CT26 abscopal tumor model	Honeycomb calcium carbonate (CaCO₃) nanoparticles (HOCN)+ mitoxantrone (MTX)	10% tumor inhibition compared to saline; secondary tumors: complete inhibition	1. LC3-II ↑ and LC3-I ↓ in DCs	
2. Autophagosomes in DCs ↑
3. Antigen was encapsulated by autophagosomes in DCs ↑; colocation rate of antigen and autophagosome was up to 84%
5. LC3-II ↑ in the lymph nodes | [84] |
|-----------------|---|---|--|--|--------|
| B16-F10-OVA xenograft model | Polymer conjugated with Beclin 1 peptide and antigen peptide OVA₂₅⁷−₂₆₄ (NP-B-OVA) | ~12% tumor inhibition compared to saline (NPs by s.c./i.v.) | 1. LC3B II ↑, p62 ↓ in DCs
2. Antigen cross-presentation↑ by inducing autophagy | [85] |
| B16-OVA melanoma xenograft model | α-Al₂O₃-OVA | 11% tumor inhibition compared to PBS | 1. Nanoparticles co-localized with the autophagosome marker-LC3
2. Autophagosomes containing α-Al₂O₃ nanoparticles was observed by TEM
3. Knockdown of Beclin 1 in DCs blocked the cross-presentation of OVA | [86] |

NP = nanoparticles; PBS = phosphate buffered saline; TEM = transmission electron microscope.