Activation of Nuclear Factor-κB and Not Activator Protein-1 in Cellular Response to Nickel Compounds

Yi Huang,1 Gerard Davidson,2 Jingxia Li,2 Yan Yan,2 Fei Chen,3 Max Costa,2 Lung Chi Chen,2 and Chuanshu Huang2

1Monroe-Woodbury High School, Central Valley, New York, USA; 2Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA; 3Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA

The predominant exposure route for nickel compounds is by inhalation, and several studies have indicated the correlation between nickel exposure and respiratory cancers. The tumor-promoting effects of nickel compounds are thought to be associated with their transactivation of transcription factors. We have investigated the possible activation of activator protein-1 (AP-1) and nuclear factor κB (NF-κB) in mouse C141 epidermal cells and fibroblasts 3T3 and B82, and human bronchoepithelial BEAS-2B cells in response to nickel compound exposure. Our results show that NF-κB activity is induced by nickel exposure in 3T3 and BEAS-2B cells. Conversely, similar nickel treatment of these cells did not induce AP-1 activity, suggesting that nickel tumorigenesis occurs through NF-κB and not AP-1. We also investigated the role of NF-κB in the induction of Cyp43 by nickel compounds using dominant negative mutant IκB kinase b-KM BEAS-2B transfectants. Key words: AP-1, NF-κB, nickel compounds. Environ Health Perspect 110(suppl 5):835–839 (2002). http://ehpnet1.niehs.nih.gov/docs/2002/suppl-5/835-839huang/abstract.html

Nickel is one of the most abundant transition metals in the earth’s crust (1). It is used in a variety of industrial processes, e.g., nickel refinement, nickel-cadmium batteries, and electroplating (2). These processes, in addition to the incineration of nickel-containing wastes and fossil fuels, are responsible for the majority of nickel aerosols found in both the workplace and the environment (2). It has been estimated that the average daily exposure to nickel is between 0.2 and 0.4 µg in both urban and rural environments (2). Workplace exposure is considerably higher.

The main route for exposure to nickel compounds is by inhalation. Indeed, a variety of epidemiologic studies have indicated a significant correlation between the number of respiratory cancers and workplace nickel exposure (3,4). An effect of nickel compounds in animal models, through inhalation, injection or ingestion, is to produce tumors (5–7).

The mechanism by which nickel toxicity is exerted has been extensively studied (8–10). Nickel exposure induces several types of cellular and nuclear damage (8,11,12). Although nickel is a potent carcinogen, it is generally not active in mutagenic assays (13–16). This suggests that nickel-induced toxicity/carcinogenicity may be caused by alterations in gene expression rather than by direct DNA damage. For example, transcription factors, metallothionein, and heat shock proteins can be induced by exposure to nickel (17–19).

Nuclear factor κB (NF-κB) was first described as a B-cell nuclear factor that binds to immunoglobulin K enhancer and thus was implicated in immune response (20,21). Subsequent research revealed that NF-κB was not B-cell specific and could bind to specific sites in a variety of gene promoter/enhancers, e.g., interleukin (IL)-2, IL-6, granulocyte macrophage colony-stimulating factor, intercellular adhesion molecule-1, and class I major histocompatibility complex (22–24). Initially the number of inducers of NF-κB was quite small but has since grown substantially, e.g., tumor necrosis factor, IL-1, ultraviolet radiation, growth factors, free radicals, and viral infection (22–24). Additionally, there is an increasing body of evidence suggesting a role for NF-κB in carcinogenesis. For example, NF-κB is implicated in signaling tumor promoter-induced transformation and is activated by viral transforming proteins (24–26). The importance of NF-κB cannot be overstated, as failure in any of the mechanisms leading to NF-κB activation can have serious consequences for the cell. Studies involving NF-κB are frequently compared with those involving activator protein-1 (AP-1). AP-1 is a transcription factor complex composed of Jun family homodimers or AP-1-Luciferase Reporter

Materials and Methods

Plasmons and Agents

The cytomegalovirus (CMV)-neo vector plasmid and AP-1-luciferase reporter, as well as NF-κB-luciferase reporter plasmids, were constructed as previously described (34–36). Anhydrous nickel chloride (NiCl2) was purchased from Aldrich (Milwaukee, WI, USA); nickel subsulfide (Ni3S2) was obtained from INCO (Toronto, Canada). Fetal bovine serum (FBS) was obtained from Life Technologies, Inc. (Carlsbad, CA, USA). Eagle’s minimal essential medium (MEM) and Dulbecco’s modified Eagle’s medium (DMEM) were both obtained from BioWhittaker (Walkersville, MD, USA). The luciferase assay substrate was purchased from Promega (Madison, WI, USA).

Generation of Stable Transfectants

Mouse fibroblasts 3T3 and B82 cells, as well as their NF-κB-luciferase reporter or AP-1-luciferase reporter stable transfectants, were cultured in DMEM with 10% FBS, 2 mM l-glutamine, and 25 µg gentamicin/mL (34). Human bronchial epithelial cell BEAS-2B stable transfectants IκB kinase β (IKKβ) or IKKβ dominant negative mutant (IKKβ-KM) were cultured in 10% FBS, 2 mM l-glutamine, and 25 µg gentamicin/mL as reported by Chen et al. (37) and Huang et al. (38).

Cell Culture

Mouse fibroblasts 3T3 and B82 cells, as well as their NF-κB-luciferase reporter or AP-1-luciferase reporter stable transfectants, were cultured in DMEM with 10% FBS, 2 mM l-glutamine, and 25 µg gentamicin/mL as reported by Chen et al. (37) and Huang et al. (38).
identified the stable transfectants. Stable transfectants 3T3 NF-κB mass1 or 3T3 AP-1 mass1 were established and cultured in G418-free MEM for at least two passages before each experiment.

Assay for NF-κB Activation
Confluent monolayers of 3T3 NF-κB mass1 or IκKB were trypsinized, and 8×10^5 viable cells were suspended in 100 µL culture medium in each well of a 96-well plate. Plates were incubated at 37°C in a humidified atmosphere containing 5% CO2. Twelve to 24 hr later, cells were starved by culturing them in 0.1% FBS DMEM for 24 hr. The cells were then exposed to either Ni3S2 or NiCl2 for NF-κB induction and maintained in culture. The cells were extracted with lysis buffer at various times, and luciferase activity was measured. The results are expressed as relative NF-κB activity (33).

Assay for AP-1 Activity
Confluent monolayers of 3T3 AP-1 mass1 or B82 AP-1 mass2 were trypsinized, and 8×10^5 viable cells suspended in 100 µL culture medium were added to each well of a 96-well plate. Plates were incubated at 37°C in a humidified atmosphere containing 5% CO2. Twelve to 24 hr later, cells were starved by culturing them in 0.1% FBS DMEM for 24 hr. The cells were then exposed to either Ni3S2 or NiCl2 for AP-1 induction and maintained in culture. The cells were extracted with lysis buffer, and luciferase activity was measured. The results are expressed as relative AP-1 activity (34).

Statistical Analysis
The significance of the difference in the NF-κB and AP-1 activities was determined with the Student t test. The results are expressed as mean ± SEM.

Western Blot Analysis
Human bronchial epithelial cell line BEAS-2B and its stable transfectant IκKB-KM were cultured in each well of 6-well plates to 90% confluence. The cells were exposed to NiCl2 or Ni3S2 and incubated for different times indicated in the figure legends. The cells were then washed once with ice-cold phosphate-buffered saline (PBS) and extracted with sodium dodecyl sulfate (SDS)-sample buffer. The cell extracts were separated on polyacrylamide–SDS gels, transferred, and probed with one of two antibodies, including rabbit specific antibody against Cap43 protein or specific antibody against protein kinase C α. The protein bands specifically bound to primary antibodies were detected using an anti-rabbit immunoglobulin G (IgG)–AP-linked (Amersham Biosciences, Piscataway, NJ, USA) as second antibody and an ECF Western blotting system (36).

Results
Effect on Induction of NF-κB in Human Bronchial Epithelial BEAS-2B Cells by Nickel Compounds
A variety of epidemiologic studies indicated that nickel exposure is correlated with an increase in the incidence of respiratory cancers (3–7). To understand the involvement of NF-κB activation in the response of the respiratory system to nickel compounds, we tested the effect of Ni3S2 and NiCl2 on NF-κB activity in human bronchial epithelial BEAS-2B cells. As shown in Figure 2A, treatment of cells with either Ni3S2 or NiCl2 also leads to an increase in NF-κB activity. The increase in NF-κB

Figure 1. Induction of NF-κB activity by nickel compounds in mouse fibroblast 3T3 cells. 3T3 NF-κB mass1 cells (8×10^5) were seeded into each well of a 96-well plate. After being cultured at 37°C overnight, the cells were starved for 12 hr by replacing the medium with 0.1% FBS DMEM. The cells were then treated as follows: (A) 1 µg/cm² Ni3S2 or 1 µM NiCl2 for 48 hr. (B) For a time-course study, the cells were exposed to 1 µg/cm² Ni3S2 for various times as indicated. (C) For a dose–response study, the cells were exposed to different concentrations of Ni3S2 as indicated for 48 hr. The luciferase activity was then measured and the results are presented as NF-κB–dependent transcription activity relative to control. Each bar indicates the mean and standard deviation of four repeat assay wells. Asterisk (*) indicates a significant increase from control ($p < 0.05$).
activity upon Ni$_3$S$_2$ treatment is approximately 4.5-fold relative to that in the control, whereas NiCl$_2$ treatment leads to an approximately 2.7-fold increase in activity. This induction was also observed in the dose response of NF-kB activity to Ni$_3$S$_2$ (Figure 2B). These results, taken together with the results from 3T3 cells, indicate that the induction of NF-kB is involved in the response of the cell to nickel compounds.

Absence of Induction of AP-1 Activity with Nickel Compounds

To test whether the response of cells to Ni$_3$S$_2$ and NiCl$_2$ involves AP-1, we also generated stable AP-1-luciferase 3T3 transfectants. As shown in Figure 3, treatment of cells with Ni$_3$S$_2$ or NiCl$_2$ did not show any induction of AP-1 activity in 3T3 cells, whereas NF-kB activation was observed. In contrast, ultraviolet-C (UVC) radiation resulted in increases in both NF-kB and AP-1 activity (Figure 3). These results indicated that NF-kB but not AP-1 was involved in the response of cells to nickel compounds.

To further explore whether the effects of Ni$_3$S$_2$ and NiCl$_2$ on AP-1 activity are cell specific, we tested the effect of nickel compounds on AP-1 activity in fibroblast B82 cells. As with the 3T3 cells, treatment of B82 cells with either Ni$_3$S$_2$ or NiCl$_2$ did not lead to an increase in AP-1 activity (Figure 4). Again, UVC radiation treatment resulted in an increase in AP-1, indicating that the absence of induction of AP-1 transcriptional activation toward Ni$_3$S$_2$ and NiCl$_2$ treatment was not cell-type specific. This was consistent with our previous findings in C141 cells (39).

Induction of Cap43 in BEAS-2B Stable Transfectants

Both Ni$_3$S$_2$ and NiCl$_2$ induce a novel gene, Cap43, which is also induced by hypoxia and the calcium ionophore A23187 (40,41). Recently it was found that Cap43 was expressed only in cancer cells, not in normal cells (42). The mechanism by which nickel acts is not well understood. To determine whether NF-kB activation by nickel is involved in nickel-induced Cap43 expression, we compared Cap43 expression between human bronchial epithelial BEAS-2B cells and their stable transfectant IKK-B-KM cells. The results showed that an overexpression of a IKK-B-KM did not affect nickel-induced Cap43 expression (Figure 5). This suggests that the signal transduction pathway leading to NF-kB activation by nickel compounds does not involve Cap43 expression by nickel.

Discussion

In this study we investigated the effect of Ni$_3$S$_2$ and NiCl$_2$ on the transcription factor NF-kB and AP-1 in various cell culture models. NF-kB activation by nickel compounds was found in mouse fibroblasts (3T3) and human bronchoepithelial cells (BEAS-2B), whereas nickel treatment did not induce any activation of AP-1 in the same cells. Furthermore, NF-kB activation by nickel compounds was not required for Cap43 expression, as overexpression of the IKK-B-KM had no effect on Cap43 expression.

Our results indicate that both insoluble Ni$_3$S$_2$ and soluble NiCl$_2$ are effective inducers of NF-kB activation in mouse fibroblast 3T3 cells and human bronchoepithelial BEAS-2B cells. As has been shown previously, insoluble Ni$_3$S$_2$ appears to be more effective in potentiating a biochemical response than NiCl$_2$ (43). The effect of Ni$_3$S$_2$ is both time and dose dependent. The maximum effect on NF-kB activation by Ni$_3$S$_2$ takes place after 48-hr exposure. The most effective dose is 1.0–2.0 µg/cm2, although the lower dose of 0.5 µg/cm2 is still very effective in inducing an increase in NF-kB activity. Ni$_3$S$_2$ was toxic to cultured hamster lung fibroblasts at 0.5 µg/cm2 (15), whereas in our system cytotoxicity does not appear to be a factor until after greater than 48-hr exposures and doses above 2.0 µg/cm2. This observation is supported by data that NF-kB activity would increase relative to that of the control (Figure 1B). The reason for this difference may be due to cell-type specificity.

The results showing that Ni$_3$S$_2$ and NiCl$_2$ potentiate NF-kB but not AP-1 activity in different cell culture models were intriguing. NF-kB has been the focus of considerable research since its discovery in 1986 (20,21). NF-kB is a member of the NF-kB/Rel family and exists in an inactive form in cells through formation of a complex with I kB (22,44–45). Phosphorylation of I kB leads to ubiquitination of the cytoplasmic NF-kB complex and subsequent degradation of the complex.

![Figure 2](image)

Figure 2. Induction of NF-kB activity by nickel compounds in human bronchial epithelial BEAS-2B cells. BEAS-2B IKKβ transformed cells (8 × 104) were seeded into each well of a 96-well plate. After being cultured at 37°C overnight, the cells were starved for 12 hr by replacing the medium with 0.1% FBS DMEM. The cells were then treated as follows: (A) 1 µg/cm2 Ni$_3$S$_2$ or 1 mM NiCl$_2$ for 36 hr. (B) For a dose–response study, the cells were exposed to different concentrations of Ni$_3$S$_2$ as indicated for 36 hr. The luciferase activity was then measured and the results are presented as NF-kB–dependent transcription activity relative to control. Each bar indicates the mean and standard deviation of four repeat assay wells. Asterisk (*) indicates a significant increase from control (p < 0.05).

![Figure 3](image)

Figure 3. Nickel compounds induce activation of NF-kB, but not AP-1, in 3T3 cells. 3T3 NF-kB mass1 or AP-1 mass1 (8 × 104) were seeded into each well of a 96-well plate. After being cultured at 37°C overnight, the cells were starved for 12 hr by replacing the medium with 0.1% FBS DMEM. Then the cells were treated with Ni$_3$S$_2$ (2 µg/cm2), NiCl$_2$ (1 mM), or UVC radiation (30 J/cm2) for 36 hr. The luciferase activity was then measured and the results are presented as relative NF-kB activity or relative AP-1 activity. Each bar indicates the mean and standard deviation of four repeat assay wells. Asterisk (*) indicates a significant increase from control (p < 0.05).
produce the active form of NF-κB (52–54). NF-κB is then translocated to the nucleus from the cytoplasm, where it induces gene activation. Considerable evidence has been presented to implicate NF-κB activation with tumor promotion in cell models (23, 25, 55). For example, both v-Rel and p52/Lyt-10, members of the NF-κB family, and Bcl-3, an IκB family member, are potentially oncogenic (24). In addition, it was shown separately that the c-myec oncogene promoter implicated in Burkitt lymphoma is activated by NF-κB (56) and that NF-κB positively regulates the expression of the translocated c-myec gene in Burkitt lymphoma. Additionally, overexpressed IκBα in 3T3 cells blocked the ability of ras alleles to induce focus formation, again suggesting a role for NF-κB (57). Furthermore, overexpressed IκBα crossed with v-Rel transgenic mice induced a delay in death from leukemia (23).

AP-1 is a transcription factor complex composed of members of the Jun and Fos families of proteins (27, 28). Both AP-1 and NF-κB are activated by similar stimuli, including growth factors, cytokines, and UV radiation, leading to altered gene expression (27–29). Like NF-κB, AP-1 has been implicated in tumor promotion in different cell models (27, 30, 31, 58–65). AP-1 activity was also elevated in mouse epidermal JB6 cells, indicating various stages of tumor promotion (59). Furthermore, tumor promotion could be inhibited by the use of several types of AP-1 inhibitors (38, 60–63, 66).

In light of the important roles that both NF-κB and AP-1 play in tumor promotion by many chemicals, we wished to investigate the signal transduction pathways involved in the carcinogenic properties of nickel. The results indicate that NiS2 and NiCl2 specifically induce NF-κB activity but not AP-1 activity in mouse fibroblast 3T3 cells. The specificity of NiS2 and NiCl2 for NF-κB activity is further supported by the time-course and dose-response studies, as well as by the observation that UVC stimulates both NF-κB and AP-1 in 3T3 cells. A comparison with fibroblast B82 cells also showed that AP-1 activity was increased by UVC exposure but not by NiS2 or NiCl2.

Cap43 has been reported to be specifically induced by nickel compounds in a variety of cell lines (40, 41). Although the function of the Cap43 protein is not well understood, it does appear to be induced in response to an increase in intracellular concentration of Ca2+ (41). The complete mechanism of signal transduction leading to Cap43 expression has yet to be elucidated, but it has been shown that nickel induces HIF-1 and that this, in turn, activates Cap43 transcription (67). Our current investigation using BEAS-2B and IKKβ-KM indicates that overexpression of IKKβ-KM did not block Cap43 induction in response to both NiS2 and NiCl2. Our results suggest that induction of Cap43 does not involve signals arising from the NF-κB pathway.

To summarize the results, NiS2 and NiCl2 activate NF-κB in both mouse fibroblast 3T3 cells and human bronchoepithelial BEAS-2B cells. In addition, AP-1 activity is unaffected by nickel treatment in mouse 3T3, human bronchoepithelial BEAS-2B, and mouse C141 cells, which indicates that the response to nickel must involve a signal transduction pathway that terminates with NF-κB rather than AP-1. Also, NF-κB activation by nickel compounds is not required for Cap43 expression.

REFERENCES AND NOTES
1. Greenwood NN, Earnshaw A. Chemistry of the Elements. Oxford: Pergamon Press, 1994.
2. Bennett BD. Environmental nickel pathways to man. IARC Scientific Publication No. 53. Lyon: International Agency for Research on Cancer, 1984.
3. Shen HM, Zhang QF. Risk assessment of nickel carcinogenicity and occupational lung cancer. Environ Health Perspect 102:275–282 (1994).
4. Langard S. Nickel-related cancer in welders. Sci Total Environ 148:303–309 (1994).
5. Sunderman FW. Nickel-related cancer in welders. Sci Total Environ 148:303–309 (1994).
6. Sunderman FW, Donnelly AJ. Studies of nickel carcinogenesis metastasizing pulmonary tumors in rats induced by inhalation of nickel carbonyl. Am J Pathol 46:1027–1042 (1965).
7. Oottolenghi AD, Haseeman JK, Payne WW, Falk HL, Macfarland HN. Inhalation studies of nickel sulfide in pulmonary carcinogenesis of rats. J Natl Cancer Inst 54:1165–1172 (1975).
8. Sunderman FW. Recent research on nickel carcinogenesis. Environ Health Perspect 40:131–141 (1981).
9. Sunderman FW. Mechanisms of nickel carcinogenesis. Scand J Work Environ Health 15:112–117 (1989).
10. Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol 31:221–237 (1991).
Toxicol Environ Chem 49:145–148 (1995).
11. Snow ET. Metal carcinogenic-mechanistic implications. Pharmacol Ther 53:31–65 (1992).
12. Costa M. Mechanisms of nickel genotoxicity and carcino-
genicity. In: Toxicology of Metals (Chang LW, ed). Boca
Raton, FL:CRC Press, 1996:245–251.
13. Flessel CP. Metals as mutagens. In: Inorganic and
Nutritional Aspects of Cancer (Schrauer GN, ed). New
York:Plenum Press, 1978:117–128.
14. Fletcher GG, Florretta FE, Tumble JD. Nieboer E. Toxicity,
uptake, and mutagenicity of particulate and soluble nickel
compounds. Environ Health Perspect 102:69–72 (1994).
15. Kargacin B, Klein CB, Costa M. Mutagenic responses of
nickel oxides and nickel sulfides in Chinese hamster V79
cell lines at the xanthine-guanine phosphoribosyl-
transferase locus. Mutat Res 300:63–72 (1993).
16. Morita H, Umeda M, Ogawa HI. Mutagenicity of various
chemicals including nickel and cobalt compounds in
cultured mouse F10MA cells. Mutat Res 261:131–137 (1991).
17. Epner DE, Herschman HR. Heavy-metals induce expression
of the TPA-inducible sequence (TIS) genes. J Cell Physiol 148:66–74 (1991).
18. Bauman JW, Liu J, Klaassen CD. Production of metalloth-
onein and heat-shock proteins in response to metals.
Fundam Appl Toxicol 21:15–22 (1993).
19. Yianguo M, Ge X, Carter KC, Papaconstantinou J. Induction
of several acute-phase protein genes by heavy metals—a new class of metal-
responsive genes. Biochemistry 30:3798–3808 (1991).
20. Sen R, Baltimore D. Multiple nuclear factors interact with
the immunoglobulin enhancer sequences. Cell 46:705–716 (1986).
21. Sen R, Baltimore D. Inducibility of kappa immunoglobulin
enhancer-binding protein NF-κB by a posttranslational
mechanism. Cell 47:921–928 (1986).
22. Siebenlist U, Franzoso G, Brown K. Structure, regulation
and function of NF-κB. Annu Rev Cell Biol 10:405–455 (1994).
23. Baueerle PA, Baltimore D. NF-κB: ten years after. Cell
89:17–20 (1997).
24. Baldwin AS. The NF-κB transcription factor and IκB:
the emerging antitumor promotion effect of retinoic acid on AP-1 activity and transformation in JB6
cells. Proc Natl Acad Sci USA 91:7240–7244 (1994).
25. Dong Z, Birrer MJ, Watts RG, Matrisian LM, Colburn NH.
Blocking of tumor promoter-induced AP-1 activity inhibits
transformations in JB6 mouse epidermal cells.
Proc Natl Acad Sci USA 91:809–613 (1994).
26. Dong Z, Watts RG, Sun Y, Colburn NH. Progressive
activation of AP-1 activity during preneoplastic progression as modeled in mouse JB6 cell variants. Int J Oncol 7:385–394 (1995).
27. Huang C, Ma WY, Hecht SS, Dong Z. Inositol hexaphos-
phate inhibits cell transformation and activator protein 1
activation by targeting phosphatidylinositol-3 kinase.
Cancer Res 57:2873–2878 (1997).
28. Huang C, Ma WY, Dong Z. Requirement for phosphatidyli-
nositol-3-kinase 3-kinase in epidermal growth factor-induced AP-1 transactivation and transformation in JB6 P+ cells. Mol Cell Biol 16:6427–6435 (1996).
29. Huang C, Ma WY, Dong Z. Inhibitory effects of ascorbic
acid on AP-1 activity and transformation in JB6 cells. Int J Oncol 8:389–393 (1996).
30. Huang C, Li J, Ma WY, Dong Z. JNK activation is required
for JB6 cell transformation induced by TNF-α but not by
12-0-tetradecanophosphor-3-3-acetate. J Biol Chem 274:29672–29676 (1999).
31. Watts RG, Huang C, Young MR, Li JQ, Dong Z, Pennie WD,
Colburn NH. Expression of dominant negative Erk2 inhibits
AP-1 transactivation and neoplastic transformation.
Oncogene 17:3493–3498 (1998).
32. Cohen DR, Curran T. Fas-1: a serum-inducible, cellular
immediate-early gene that encodes a fcs-related antigen.
Mol Cell Biol 18:2063–2068 (1998).
33. Huang C, Ma WY, Dawson MJ, Rincon M, Flavell RA,
Dong Z. Blocking activator protein-1 activity, but not acti-
vating retinoic acid response element, is required for the
antitumor promotion effect of retinoic acid. Proc Natl
Acad Sci USA 94:5836–5840 (1997).
34. Salnikow K, Blagosklonny MV, Ryan H, Johnson R, Costa M.
Carcinogenic nickel induces genes involved with
hypoxic stress. Cancer Res 60:38–41 (2000).