A First Look at the Impact of COVID-19 on Commercial Real Estate Prices: Asset-Level Evidence

David C. Ling¹, Chongyu Wang², Tingyu Zhou³

May 28, 2020
Revised: August 3, 2020

Abstract

This is the first paper to examine the transmission of an asset market shock to the capital markets during the COVID-19 pandemic. Using a novel measure of the exposure of commercial real estate portfolios (CRE) to the growth in COVID-19 (GeoCOVID), we find a one-standard-deviation increase in GeoCOVID on day \(t-1 \) is associated with a 0.24 to 0.93 percentage points decrease in abnormal returns over one-to-three-day windows. There is substantial variation across property types. Local and state policy interventions helped to moderate the negative return impact of GeoCOVID. However, there is little evidence that reopenings affected the performance of CRE markets.

Keywords: COVID-19, Commercial real estate, stock return, asset location

JEL classification: I10, G11, G14, D80, R10

* We thank for Wayne R. Archer, Danny Ben-Shahar, John Duca, Mike Eriksen, Dean Gatzlaff, Andra Ghent, Thies Lindenthal, Colin Lizieri, Greg MacKinnon, Stephen Malpezzi, Andy Naranjo, Adam Daniel Nowak, Jeffrey Pontiff (our editor), McKay Price, Mingming Qiu, Jacob Sagi, Calvin Schnure, Chester S. Spatt, Ko Wang, Mingye Zhang, Yanhui Zhao, an anonymous referee, and seminar participants at the University of Cambridge, AREUÉA Virtual Seminar, and the University of North Carolina-Chapel Hill Institute for Private Capital Virtual Symposium for helpful comments. We also thank John Barwick and NAREIT for supplying some of our return data. Any errors are our own.

¹ University of Florida, PO Box 117168, Gainesville, FL, 32611, author email: david.ling@warrington.ufl.edu
² Concordia University, 1450 Guy St, Montreal, QC, H3H0A1, Canada, author email: chongyu.wang@concordia.ca
³ Florida State University, 821 Academic Way, Tallahassee, FL 32306, author email: tzhou@business.fsu.edu
1. Introduction

The COVID-19 pandemic is having a devastating impact on economic activity. Real gross domestic product (GDP) decreased at an annual rate of 32.9 percent in the second quarter of 2020 according to the "advance" estimate released by the Bureau of Economic Analysis. This has produced a rapidly growing literature, some of which focuses on how stock returns have responded to changes in investors' information and expectations (e.g., Alfaro et al., 2020; Gormsen and Koijen, 2020; Ramelli and Wagner, 2020). Most of these studies provide evidence at the index-level or firm-level. However, movements in a firm's stock price are largely driven by the perceived current and future productivity of the firm's underlying assets; therefore, it is important to understand how the COVID-19 shock transmits to the equity markets from a firm's asset base. The goal of this paper is to help fill this gap in the literature.

We focus on the commercial real estate (CRE) assets owned by listed U.S. equity real estate investment trusts (REITs). This setting is advantageous to the study of the impact of COVID-19 at the level of the firm's assets for several reasons. First, the prices of liquid stocks quickly capitalize information about investors' short-run and long-run expectations of the future cash flows likely to be generated by the underlying asset portfolio. In addition, REITs are subject to a set of restrictive conditions that ensure that equity REITs invest primarily in income-producing real estate and distribute a large percentage of their cash flow in the form of dividends.1 Also, listed REITs typically acquire and dispose of CRE in a parallel private market, in which valuations of comparable properties can be observed. Thus, the CRE assets owned by REITs are relatively easier to locate and value than the tangible (e.g., plant and equipment) and intangible assets (e.g., intellectual property) owned by many

1 A "qualified" REIT may deduct dividends paid from corporate taxable income if they satisfy a set of restrictive conditions on an ongoing basis. Fully 75% of the value of the REIT's assets must consist of real estate assets, cash and government securities. Moreover, at least 75% of the REIT's gross income must be derived from real estate assets. REITs must pay out 90% of annual taxable income in dividends.
conventional firms. Although the illiquidity and opaqueness of private CRE markets limit our ability to detect rent and (especially) price movements in “real time,” we argue that the effects of COVID-19 we observe in highly liquid stock markets are indicative of the effects occurring in the private CRE market.

To examine how the growth rates of COVID-19 cases affect firms differently through their asset holdings, we construct a novel firm-level measure of geographically weighted COVID-19 growth (GeoCOVID) that varies daily during our sample periods. This variable is the weighted average of the daily growth rates of COVID-19 cases in counties in which the firm owns properties. The weights are the percentages of the firm’s portfolio (based on book value) allocated to each county prior to the pandemic outbreak at the end of 2019. Given that the testing capacity and, perhaps, the accuracy of COVID-19 tests may vary across locations over our sample period, our measure of geographically weighted COVID-19 case growth is likely measured with error. However, these growth rates are reported daily and widely discussed and therefore are reasonable proxies for the information investors had available on a day-to-day basis about the spread of the pandemic.

To evaluate firm-level stock performance across property types, we first calculate abnormal returns over 1-day, 2-day, and 3-day windows using a sample of 11,210 firm-day observations for 198 equity REITs from January 21 through April 15, 2020. These returns are risk-adjusted based on the S&P 500 Index and the FTSE-NAREIT All Equity REITs Index. In our univariate analyses, we find that REITs that focus their investments on data center, cell tower, self-storage, and warehouse properties produced positive abnormal returns during the early stages of the pandemic. In contrast, the worst performers were hospitality and retail REITs.

In our multivariate analysis, we regress 1-day, 2-day, and 3-day abnormal returns on each firm’s GeoCOVID on day t-1. Our baseline results suggest that a one-standard-deviation increase in GeoCOVID is associated with a 0.24 percentage point decrease in abnormal
returns on the next day. This return reduction is equivalent to 40% of the sample mean (-0.6 percentage points) of abnormal returns. A one-standard-deviation increase in GeoCOVID is associated with a 0.80 and 0.93 percentage point decrease in abnormal returns over 2-day and 3-day windows, respectively. Our findings also suggest that the strong negative association between our geographically weighted measure of the growth in COVID-19 cases and abnormal returns is not simply driven by the national trend in reported cases. Our results are robust to using the “hump-shaped” period of rapid-and-then-decelerating growth in COVID-19 cases from February 27 to April 13, 2020, as well as an extended sample period that runs through June 30, 2020.

Understanding the connection between local non-pharmaceutical interventions (NPIs), such as shelter-in-place orders (SIPOs), and stock price reactions to COVID-19 might be helpful in assessing the effectiveness of NPI policies. Investors likely expected such policies to flatten the epidemic curve and therefore produce long-term benefits, but at the expense of reduced economic activity, at least in the short run. We find that investors initially react negatively to the announcement of state of emergency declarations (SOEs) and SIPOs. To examine how NPIs affect investors’ reactions to COVID-19 growth, we construct a geographically weighted measure, GeoNPI, of each firm’s time-varying exposure to NPIs at the asset level. We find that firm’s with property portfolios more exposed to NPIs perform better over time and that more exposure (larger GeoNPIs) diminishes the negative return impact of GeoCOVID. These results indicate that investors place more weight on the expected long-term benefits of these policies than their short-run costs.

Using an extended sample through June 30, 2020, we also investigate the impact of reopenings on abnormal returns using another asset-level measure, GeoReopen, to capture a firm’s geographically weighted exposure to reopenings. Our event studies and regression analysis both suggest that reopenings had little impact on abnormal returns. This finding is
consistent with several existing studies (e.g., Chetty et al., 2020; Bartik et al. 2020, Villas-Boas et al. 2020).

Taken together, our findings highlight the importance of the asset-level attributes of a firm’s portfolio to stock price reactions to the pandemic. Specifically, the key drivers are the property type (business) focus of the firm, the geographic allocation of assets (proxied by GeoCOVID, GeoNPI and GeoReopen), and the interaction between these two attributes.

Most of the existing studies on the COVID-19 shock focus either on index-level returns (e.g., Alfaro et al., 2020; Gormsen and Koijen, 2020; Sinagl, 2020) or firm-level returns without controls for the locations of the firm’s underlying assets. (e.g., Ramelli and Wagner, 2020; Ding et al., 2020; Hassan et al., 2020; Gerding et al., 2020). We believe ours is the first paper to examine how the COVID-19 pandemic has affected stock returns through a firm’s underlying assets. Given the extraordinary nature of this pandemic, researchers have found that existing models may no longer be adequate (Barro et al., 2020; Alfaro et al., 2020) and are therefore exploring new measures to better capture firm-level exposures to epidemic diseases (e.g., Hassan et al., 2020). Our paper contributes to this literature on firm-level exposures by constructing a geographically weighted COVID-19 growth variable at the asset-level.

We are the first to examine how the outbreak of the COVID-19 pandemic affects the real estate market. More broadly, our study is related to the extensive literature on the economic effects of pandemics and health shocks (e.g., Bleakley, 2007; Weil, 2007; Nunn and Qian, 2010; Correia et al., 2020; Ambrus et al., 2020; Francke and Korevaar, 2020; Farboodi et al., 2020; Kahn et al. 2020). Outside of the pandemic literature, our study contributes to

2 Milcheva (2020) examines REIT returns across a few Asian countries and the U.S. during the COVID-19 pandemic and finds that the global COVID-19 shock propagates to real estate markets through financial channels. Van Dijk et al. (2020) document substantial drops in transaction volumes in the private commercial real estate markets. D’Lima et al. (2020) provide evidence on the effects of COVID-19 shutdown and reopening orders in the housing market.
the growing literature on the geography of firm assets and the extent to which “local” information about the productivity of a firm’s assets is capitalized into stock prices (e.g., Parsons et al., 2020; García and Norli, 2012; Bernile et al., 2015; Jannati, 2020; Smajlbegovic, 2019; Ling et al., 2019, 2020; Wang and Zhou, 2020).

The paper proceeds as follows. Section 2 describes the data and provides index-level evidence and variable definitions. Section 3 discusses summary statistics and our results. Section 4 concludes.

2. Data

Figure 1 plots daily indices for the S&P 500, Russell 2000, and the FTSE-NAREIT All Equity REITs Index from 2015 through April 23, 2020. Each index is set equal to 100 at year-end 2014. During March of 2020, the total return index on the S&P 500, equity REITs, and the Russell 2000 declined 16%, 23%, and 26%, respectively. This decline in REIT share prices far exceeds the reduction that can be explained by a temporary loss in rental income.\(^3\)

Figure 2 plots daily returns for office, industrial, retail, residential, health care, and lodging/resort REITs from 2015 through April 23, 2020. Even before the onset of the pandemic, returns varied substantially by the property type focus of the REIT. During March of 2020, the cumulative total return index for retail REITs declined by 49%. This March decline was closely followed by lodging/resort REITs (−44%) and health care REITs (−41%); again, with significant day-to-day variation. The total return indices for office and residential REITs also declined sharply in March 2020: 25% and 26%, respectively. Of the six major types included in Figure 2, the best performing during this bear period was industrial (primarily warehouses), which suffered a decline in its total return index of just 10% and recovered a modest 3% through April 23.

\(^3\) Green Street Advisors estimates that a typical property that experiences a loss of all its operating income in the next year would decline in market value by just 5 to 6% (Green Street Advisors, 2020b).
Although property type indices are a substantial improvement over the use of an aggregate, industry-level index, they still mask significant variation across firms in the exposure of their CRE portfolios to the COVID-19 pandemic. To measure time-varying, firm-level exposure to the growth in confirmed COVID-19 cases in each county, we collect the following data from the S&P Global Real Estate Properties (formerly SNL Real Estate) database for each property held by a listed equity REIT at the end of 2019Q4: property owner (institution name), property type, geographic (county) location, book value, initial cost and historic cost. This produces a REIT-property-level data set containing 73,406 property observations for 201 unique equity REITs. We first calculate, for each REIT, the percentage of its property portfolio, based on depreciated book values, invested in each county at the end of 2019. We then match these portfolio allocations with the daily growth rates of county-level COVID-19 confirmed cases, which are obtained from the Coronavirus COVID-19 Global Cases database at Johns Hopkins University. These county-level growth rates are then value-weighted by the percentage of the CRE portfolio invested in each county. This produces an estimated daily COVID-19 exposure (GeoCOVID) for each firm.

The black dash-dot line in Figure 3 shows the trend of GeoCOVID since the first reported case in the U.S. on January 21, 2020. The horizontal axis is the number of trading days since the first outbreak. The average daily increase in reported cases was approximately zero until day 27 (February 27, 2020), consistent with the nationwide trend of reported cases. We also compare GeoCOVID with a simple average of growth rates in 2,572 counties in which REITs own properties. In untabulated results, we find that the simple average of daily COVID growth rates was also about zero from January 21 to February 27, 2020, except for few “spikes.” This is because for each county the growth rates in the first few days since the

4 The use of book values in place of unobservable true market values may understate (overstate) the value-weighted percentage of a CRE portfolio invested in regions that have recently experienced a relatively high (low) rate of price appreciation.

5 https://github.com/CSSEGISandData/COVID-19
first reported case are relatively high. For example, the growth rate from one case to two cases is higher than the growth from ten to twenty. In general, REITs own properties in dense population counties: the virus was spread from counties with higher population densities to those with lower population densities. Therefore, the property weights smooth out the spikes by placing less weight on high growth rates in counties with less population. Thus, GeoCOVID has, on average, a smaller mean and standard deviation than the simple average of county-level COVID-19 growth.

Another important takeaway from Figure 3 is the hump-shaped pattern of GeoCOVID from day 27 to day 58 (February 27 to April 13, 2020). Given the reduced growth of COVID-19 cases after April 13, 2020, our initial sample period runs from January 21 to April 15, 2020. However, our results are robust to extending of our sample period to June 30 or when we restrict our analysis to the hump-shaped period of GeoCOVID from February 27 to April 13, 2020.

We require non-missing values for the following items for each REIT at the end of each day from January 1, 2019, to April 15, 2020: firm identifier (SNL Institution Key), total return, stock price, property type, and stock market capitalization. The initial sample includes 224 unique equity REITs traded on NYSE, AMEX, and Nasdaq in 2019Q4. S&P Global and NAREIT classify CRE portfolios into twelve major property types, including office, industrial, retail, residential, diversified, hospitality (lodging/resorts), health care, self-storage, specialty, timber, data center, and infrastructure. Due to a small number of firms, we include timber REITs in the specialty category and combine infrastructure and data center REITs into a “technology” category. Appendix 2 summarizes property type descriptions. Quarterly accounting data and daily returns on individual REITs and on our

6 The FTSE-NAREIT All Equity REITs Index contained only four timber REITs, five infrastructure (primarily cell tower) REITs and five data center REITs as of February 29, 2020. See REIT Watch, March 2020 (www.nareit.com).
broad-based market indices are obtained from the S&P Global Companies database. The 30-day U.S. Treasury rate is downloaded from the Federal Reserve System website. After merging with *GeoCOVID*, our sample includes 198 equity REITs and 11,210 firm-day observations.

To calculate daily abnormal returns, we estimate return sensitivities for each firm using a simple market model and data from January 1, 2019, to January 20, 2020. We use two stock market indices: the S&P 500 Index and the FTSE-NAREIT All Equity REITs Index. The estimated firm-level return sensitivities are used to compute daily abnormal returns for the baseline period between January 21, 2020 and April 15, 2020.

We first use *GeoCOVID* reported on day $t-1$ to predict stock returns on day t. However, because the news contained in the number of new cases of COVID-19 reported on day $t-1$ may take more than the subsequent day to be fully incorporated into stock prices, we also use *GeoCOVID*$_{t-1}$ to predict cumulative returns over the subsequent two days (day t and day $t+1$). Finally, because investors may be able to partially predict reported *COVID-19 Growth* using epidemiological models, we use *GeoCOVID*$_{t-1}$ to predict aggregate stock returns over a three-day window: day $t-1$, day t, and day $t+1$. These multiple-day return measures are constructed using non-overlapping return horizons (days) so that each observation of the dependent variable is independent of the prior and subsequent observation (Harri and Brorsen, 2009).

Wheaton and Thompson (2020) propose the use of a power function to measure the cumulative number of confirmed COVID-19 cases across the major U.S. counties from January 21, 2020, to the end of March 2020. They calibrate the power parameters using a log-linear regression equation. Among the parameters, days since the onset of the pandemic in that county and the population density of the county predict the cumulative number of confirmed cases. Similar to Wheaton and Thompson (2020), we define *Days since outbreak*

7 See https://www.federalreserve.gov/releases/h15/
as the number of days since a COVID-19 case was reported in any county in which the REIT owns property. To account for the expected non-linearity in the growth rate of COVID-19 cases, we also include Days since outbreak in our analysis.

Population density impedes social distancing and therefore increases the likelihood the virus will spread. To test this conjecture, we construct GeoDensity, which is equal to the average of county-level population densities per square mile in 2019, weighted by the percentage of the firm’s portfolio invested in the corresponding county at the end of 2019Q4. County-level population densities are downloaded from the S&P Global Geographic Intelligence database.

Our control variables include determinants of daily stock returns identified in the prior literature (e.g., Brennan et al., 2013; Giannini et al., 2018; Patel and Welch, 2017). These variables are measured as of the end of 2019. GeoHHI and PropHHI are Herfindahl indices that capture the degree to which the firm concentrates its property portfolio across counties or by property type.8 Leverage is the total book value of debt divided by the book value of total assets, Cash is the sum of cash and equivalents divided by lagged total assets, Size is the reported book value of total assets, and Tobin’s Q is the market value of equity, plus the book value of debt, divided by the book value of total assets. LAG3MRET is defined as the firm’s cumulative return during 2019Q4, InstOwn is a REIT’s institutional ownership percentage, Investment is defined as the growth rate in non-cash assets over the fourth quarter of 2019, and EBITDA/AT is EBITDA divided by the book value of assets.9 Appendix 1 summarizes variable definitions and data sources.

8 For example, GeoHHI is the property-level Herfindahl Index (HHI) calculated as the sum of squared proportions of the total book value of a CRE portfolio located in counties where the firm owns properties.
9 EBITDA is earnings before interest, taxes, depreciation, and amortization expenses.
3. Results

3.1 Summary Statistics

Table 1 reports summary statistics. During our sample period from January 21, 2020 to April 15, 2020, the average 1-day abnormal return based on the S&P 500 (FTSE-NAREIT All Equity REITs Index) is -0.6% (-0.8%). The average 2-day cumulative abnormal return is -1.3% (-1.5%). The number of observations in our 2-day return sample is approximately half of the 1-day sample because of the non-overlapping return horizons. The average 3-day cumulative abnormal return is -1.9% (-2.2%). The standard deviation of 1-day abnormal returns for both the S&P 500 and the FTSE-NAREIT All Equity REITs benchmarks are about ten times their means, reflecting the extreme stock market volatility during the early stages of the pandemic.

Firm-level, geographically weighted COVID-19 growth averaged 6.6% per day with a standard deviation of 9.4% during our sample period. Because we track firms’ portfolio exposures since the first reported U.S. case on January 21, 2020, more than 25% of our firm-day observations are associated with no growth in reported cases. The geographically weighted growth rate in firms’ exposure also varies substantially across firms; for example, more than 25% of firms experienced daily growth in COVID-19 cases in excess of 11.7%. The mean (and median) Days since outbreak is 33 days. On average, 24% of a REIT’s portfolio is exposed to local non-pharmaceutical interventions (NPIs). In the extended sample that runs through June 30, 2020, 37% of the average REIT portfolio is exposed to reopenings, resulting in 29% net geographic exposure to NPIs.

Geographically weighted population density, GeoDensity, averages 4,887 persons per square mile. The summary statistics for other control variables are comparable to prior studies. The average firm in our sample has a property type concentration (Herfindahl Index) of 0.788, a geographic concentration of 0.119 (measured using county data), a leverage ratio of 49%, cash holding of 3.7%, a book value of assets equal to $6.6 billion, and a Tobin’s Q of...
1.5. The percentage of stock owned by institutional investors averages 81%. The percentage growth rate in non-cash assets during 2019Q4 (*Investment*) averaged 9.2% but varies substantially across firms. The ratio of EBITDA to the book value of total assets has a mean of 2.1%. Nineteen percent of REITs focus on retail properties, 14% on hospitality properties, and 11% on office assets and health care properties.10

3.2 Stock Performance across Property Types

Figure 4 displays the means and 95% confidence intervals of abnormal returns by property type. We observe similar patterns for different return horizons (1-day, 2-day, and 3-day), and for the S&P 500 and equity REIT market models (Panel A and B, respectively). The best performing property types were technology, self-storage, and warehouses. Cell towers that transmit data communications and high-tech facilities that host Cloud servers are in high demand because many people are working remotely from home. The worst performers were hospitality and retail REITs, likely because of the combined effects of canceled travel, imposed closures, and shelter-in-place orders in most cities and states. Diversified REITs also underperformed as a sector because many hold retail and multi-use properties. Owners of specialty REITs (e.g., casinos, golf courses, timber, and agriculture) were also negatively affected by reduced demand. Office and residential properties were less negatively affected over our sample period, perhaps because of longer-term leases and relatively inelastic demand. The results are little changed when the FTSE-NAREIT All Equity REITs Index is used as our market benchmark instead of the S&P 500.

Figure 5, Panel A, shows a heat map of average daily COVID-19 growth at the county level during our sample period. In Panels B-D, we show the geographic distribution of

10 The disaggregation of CRE portfolios by major property type may mask some variation across sub-property types. For example, Green Street Advisors (2020a) disaggregate “residential” properties into apartments, student housing, single-family rental, and manufactured home parks.
selected REIT portfolios as of 2019Q4. These geographic patterns are shown in terms of percentiles. Although retail and health care REITs display a similar geographic pattern, these two sectors performed quite differently, as shown in Figure 2. Although COVID-19 growth is highly correlated with overall CRE property holdings, there are substantial variations across firms, making geographic asset allocation an important factor in explaining stock returns.

To gain further insight, we next plot correlations between abnormal returns and geographically weighted COVID-19 growth by the property type focus of the firm. As displayed in Figure 6, the correlations are mostly negative, suggesting a firm’s exposure to COVID-19 is negatively correlated with its stock performance. Again, the correlation pattern across property types is different from the return pattern displayed in Figure 2. For example, healthcare and technology REITs display a positive correlation, even though abnormal returns for these property types are mostly negative. Overall, these correlations suggest that both property location and property type focus affect the sensitivity of a firm’s returns to the COVID-19 pandemic.

3.3 Baseline Results - Abnormal Returns and Geographically Weighted COVID-19 Growth

We begin our multivariate analysis by estimating the relation between the daily growth rate in reported COVID-19 cases and abnormal returns, Ret. The 1-day “market model” results are reported in columns (1) to (3) of Table 2, panel A. The results for the 2-day model are reported in columns (4) to (6). Finally, the 3-day results are reported in columns (7) to (9). Our main test variable is GeoCOVID_{t-1}.

As an initial baseline, we regress 1-day abnormal returns on GeoCOVID. Property type fixed effects are included in this pooled, cross-sectional regression with 11,210 observations. Standard errors are clustered at the firm level. In column (1), the estimated coefficient on GeoCOVID is negative and highly significant, indicating that an increase in a
firm’s portfolio exposure to COVID-19 cases on day $t-1$ is associated with significantly lower abnormal returns on day t.

We next add *Days since outbreak* and *Days since outbreak*² to our baseline specification. *GeoDensity* is included in the specification to control for variation in the population density of counties in which the REIT owns properties. Finally, we include our set of firm-level control variables defined above, as well as property type fixed effects. The results from estimating this expanded regression are reported in column (2) of Table 2, panel A. The estimated coefficient on *GeoCOVID* remains negative and highly significant. Economically, a one-standard-deviation increase in *GeoCOVID* on day $t-1$ is associated with a 0.24 percentage point decrease ($=-0.026 \times 0.094$) in abnormal returns on day t. This economic magnitude is equivalent to more than 40% of the sample mean decrease in returns (−0.6 percentage points).

The estimated coefficient on *Days since outbreak* is negative and highly significant. This suggests that 1-day abnormal returns are significantly related to the duration of the firms’ exposure to COVID-19 cases. However, the estimated coefficient on *Days since outbreak*² is positive and highly significant. This suggests investors understand the concept of “flattening the curve.” The estimated coefficient on *GeoDensity* is positive and highly significant, indicating that CRE portfolios in dense population areas perform better.

Among the firm-level control variables, the estimated coefficient on *Leverage* is negative and significant at the 1% level, suggesting investors expect firms that employ more financial leverage to underperform during the market downturn. Although a repeat of the credit crisis that occurred during the Global Financial Crisis is unlikely, highly leveraged firms are more likely to experience financial distress during the pandemic. The estimated coefficient on *LAG3MRET* is positive and highly significant. We also find weak evidence that *Ret* is negatively related to the extent to which a firm concentrates its portfolio by property type (*PropHHI*) and geography (*GeoHHI*).
We next estimate our 1-day abnormal return regression using firm fixed effects in place of our set of firm-level explanatory variables. These results are reported in column (3) of Panel A. The estimated coefficients on GeoCOVID remain negative and highly significant. These results suggest that the large and significant coefficient estimates we observe for GeoCOVID are not being driven by an omitted (time-invariant) firm characteristic.

The results from the estimation of our 2-day and 3-day market models are reported in columns (4) to (6) and (7) to (9). Although this 2-day (3-day) return window decreases the number of independent return observations from 11,210 to 5,510 (3,800), the magnitude and significance of the estimated coefficients on GeoCOVID are larger in all specifications than in the corresponding one-day regression model. A one-standard-deviation increase in GeoCOVID is associated with a 0.8 (0.9) percentage points decrease in abnormal returns based on 2-day (3-day), which represents 62% (49%) of the mean abnormal return. Moreover, the estimated coefficients on Days since outbreak, GeoDensity, Leverage, and LAG3MRET retain their significance. Overall, the widening of the abnormal return window has little effect on our coefficient estimates or conclusions about the impact of GeoCOVID on the pricing of CRE portfolios.

We redo the analysis using the total returns on the FTSE-NAREIT All Equity REITs Index in place of the S&P 500. These results are reported in panel B of Table 2. The use of this alternative benchmark has little effect on the magnitude or statistical significance of the estimated coefficients on GeoCOVID, Days since outbreak, Days since outbreak2, or GeoDensity. The lack of sensitivity of our results to the change in the market benchmark is at least partially attributable to the high correlation (0.94) of daily returns on the FTSE-NAREIT All Equity REITs Index and the S&P 500 Index during March and April of 2020.
3.4 Abnormal Returns by Property Type

Given the strong negative relation between abnormal returns and geographically weighted COVID-19 growth we uncover, we next investigate the extent to which this relation varies across property types. As discussed earlier, different property sectors face different COVID-19 exposures and show a striking variation in terms of abnormal returns (Figure 4) and correlations between returns and COVID-19 growth (Figure 6). We therefore augment the regressions reported in Table 2 with interactions between \textit{GeoCOVID} and our property type dummies. We suppress the intercept and saturate the model with all combinations of property type dummies and \textit{GeoCOVID} interactions. The estimated coefficients on the interaction terms can therefore be interpreted as the property-type specific effects of \textit{GeoCOVID}. As before, we include our full set of firm-level controls.

The results of these tests are displayed in Table 3. We continue to find a negative relation between \textit{GeoCOVID} and abnormal returns for most of the property types. Retail and residential REITs experienced the largest negative abnormal returns, followed by office and hospitality REITs. For retail REITs, a one-standard-deviation increase in \textit{GeoCOVID} is associated with a reduction in 1-day abnormal returns of 0.69 percentage points (\(=0.073 \times 0.094\)), which represents 64% of the mean abnormal return for retail REITs (\(=0.69\% \div 1.08\%\)). The cumulative 2-day and 3-day effects for retail properties are even larger, ranging from 1.72 to 2.15 percentage points.\(^{11}\) For residential REITs, a one-standard-deviation increase in \textit{GeoCOVID} corresponds to a return reduction of 0.62 to 1.57 percentage points, depending on the return window and risk adjustment methods. Given that the mean value of abnormal return for residential REITs is \(-0.45\%\), the impact of a one-standard-deviation increase in \textit{GeoCOVID} corresponds to 138% to 349% of the mean. Hospitality REITs also experienced a

\(^{11}\text{There might be multicollinearity between GeoCOVID and our property type dummies. For example, retail properties, especially neighborhood shopping centers, are generally located in most, if not all, communities in a way that high quality office properties are not. However, this multicollinearity should work against us finding significant results.}\)
large impact: a one-standard-deviation increase in GeoCOVID corresponds to a return reduction of 0.24 to 1.88 percentage points, representing 22% to 171% of the mean (-1.09 percentage points).

In contrast, the estimated GeoCOVID interactions for specialty REITs cannot be distinguished from zero in any of the six regression specifications, and the interaction term for industrial REITs is negative and significant in the 2-day return specifications, but otherwise indistinguishable from zero. However, CRE portfolios focused on health care and technology properties display positive (or zero) coefficients on the interaction terms. Using abnormal returns based on the S&P 500, a one-standard-deviation increase in GeoCOVID is associated with a 0.4 percentage point increase in 1-day returns in both sectors.

3.5 The Importance of Asset Allocation

The results reported in Table 2 demonstrate that GeoCOVID predicts future abnormal returns. Given that prior studies using a nationwide growth rate of COVID-19 also find negative stock price responses (e.g., Ding et al., 2020; Alfaro et al., 2020), we investigate whether our geographically weighted COVID-19 growth measure is simply picking up the national trend. To investigate this issue, we re-run our baseline results using daily national COVID-19 growth rates (USCOVID) in place of GeoCOVID. These results are reported in columns (1)-(3), Table 4. Consistent with prior studies, this nationwide measure is negatively related to abnormal returns. Next, we include both GeoCOVID and USCOVID in our pooled, cross-sectional regressions. These results are reported in columns (4)-(6). We find that, after controlling for the national trend, investors still react negatively to increases in our geographically weighted measure of COVID-19 growth. Comparing the economic significance of these two variables, we find that the effect of a one-standard-deviation increase in
GeocOVID on abnormal return is comparable to that of USCOVID in the 2-day window and slightly higher than that of USCOVID in the 1-day and 3-day windows.\footnote{The standard deviations of USCOVID and GeoCOVID are 0.63 and 0.94, respectively. Therefore, a one-standard-deviation increase in USCOVID is associated with a reduction in abnormal return of 0.12, 0.47, and 0.51 percentage points over the 1-day, 2-day, and 3-day window, respectively. Similarly, a one-standard-deviation increase in GeoCOVID is associated with a reduction in abnormal return of 0.15, 0.41, and 0.53 percentage points over the 1-day, 2-day, and 3-day window, respectively.}

Although our geographically weighted measure of COVID-19 growth provides increased explanatory power, the relative ability of national rates of growth in COVID-19 cases to explain the cross-section of abnormal returns is somewhat surprising. As discussed above, equity REITs must invest primarily in income-producing real estate; moreover, these real assets are relatively easier to locate. Our analysis clearly reveals that investors have been able to differentiate the future income-generating ability of the various property types (for example, industrial versus retail). We would also expect that marginal investors in REIT stocks would be able to accurately identify CRE portfolios heavily weighted toward areas hit hard in the early days of the pandemic and punish those stocks relatively more than others with portfolios less tilted toward COVID-19 “hot spots.” However, it is widely known that the panic selling associated with sudden and substantial stock market downturns causes the return comovement of all stocks to increase. We conjecture that CRE portfolios less tilted toward COVID-19 hot spots will outperform during the eventual recovery of the broader stock market.\footnote{We also examine the impact of population density, property type concentration, and geographic concentration. By creating a dummy variable for above-median values and interact it with GeoCOVID, we find weak evidence on population densities but not concentration measures. Specifically, the coefficient estimate on the interaction term of population density and GeoCOVID is negative and significant at the 5% level or higher in all three return windows, suggesting the sensitivity to GeoCOVID increases and returns are more negatively affected if the firm allocates more assets to areas with high population density.}

In Table 5, we report the results of robustness checks using only the hump-shaped period of GeocOVID from February 27 to April 13, 2020 (as shown in Figure 3 and discussed in Section 2), as well as an extended period from January 21 to June 30, 2020. The coefficient

Electronic copy available at: https://ssrn.com/abstract=3593101
estimates on GeoCOVID remain negative and highly significant in all model specifications. We conclude that our results are robust to alternative sample (sub)periods.

3.6 The Impact of Non-pharmaceutical Interventions (NPIs)

There has been an intense debate on the appropriate policy responses to curb the spread of COVID-19. Obviously, there is a potential trade-off between instituting policies intended to slow down the spread of the virus and fostering economic activity. For example, Correia et al. (2020) find that non-pharmaceutical interventions (NPIs) mitigated the negative effects of the 1918 Flu pandemic on economic growth. In contrast, Lilley et al. (2020) suggest that NPIs have no effect on economic growth. An investigation of investors’ responses to these NPIs helps us understand how changes in expectations about the efficacy of these policies affect firms differently. For example, if NPIs enhance investors’ confidence, we expect that firms with more assets exposed to NPIs perform better in response to growth in COVID-19 cases.

NPIs have been passed at different administrative levels (e.g., city, county, and state). We therefore start with open-source data collected by Jataware, a machine learning company that automates the collection of news articles and detects whether an article mentions a COVID-19 NPI using natural language processing (NLP) classifiers (Bidirectional Encoder Representations from Transformers (BERT)).

As pointed out by Cui et al. (2020), a policy enacted by one jurisdiction might influence other jurisdictions to adopt a similar policy. Therefore, we identify the NPI event date as the earliest date the NPI was announced at either the city, county, or state level. This allows us

14 The NPI Data are available at https://github.com/jataware/covid-19-data.
to manually compare our event dates with those used in Dave et al. (2020) and Mervosh et al., (2020). We also verify our NPI event dates using Google searches (e.g., Google Trends).\footnote{See, for example, Mervosh et al. (2020): \url{https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html}. (Last Access: May 12, 2020).}

In Figure 7, we display market reactions to two sets of NPI events: the announcement date of potential interventions (Panel A) and the announcement date of shelter-in-place orders (SIPO), stay-at-home orders, or mandatory school and business closures (Panel B). These two sets of events are based on the earliest (announcement) date in one of the three states that contain the largest property holdings of the firm.\footnote{We also investigate alternative definitions of announcement dates most relevant for each firm, including the earliest announcement date in any state in which a firm owns property and the date of the announcement in the firm’s headquarters state. These results vary little from those displayed in Figure 7 and are available upon request.} We use announcements of state of emergency declarations (SOEs) as the date of potential policy interventions. In most states, SOE preceded actual interventions. For example, the average gap between a SOE announcement and the announcement of a SIPO at the state level is about 10 days. Thus, investors likely anticipated SIPOs when SOEs were announced and, in fact, evidence suggests declines in local commuting begin after SOE announcements (Couture et al., 2020). SIPOs and stay-at-home orders require residents to remain home for all but essential activities (e.g., purchasing food or medicine, caring for others).\footnote{Many states announced stay-at-home or safe-at-home orders that have similar effects on business activity as SIPOs. We refer to all such orders as SIPOs.}

Inspection of Figure 7, Panel A reveals that, on average, returns were negatively affected by SOE announcements. In addition, the pattern of cumulative average buy-and-hold abnormal returns (CAARs) by property type is consistent with our previous finding that the technology, self-storage, and industrial sectors have been the least affected by the pandemic. In contrast, the retail and hospitality sectors have experienced the largest stock price declines. A comparison of Panel A and Panel B suggests that CAARs started to decline before SIPO announcements. This confirms our conjecture that, after the announcements of SOEs, NPIs such as SIPOs were anticipated by investors.
We show cumulative abnormal returns (CARs) by property type, based 3- and 11-day windows, in columns (1)-(4), Appendix 3. The average 11-day CAR for SOE announcements is -9% for all property sectors in our sample and -15% (-11%) for the hospitality (retail) sector. The corresponding CAR for technology sectors is 3%. The average CARs associated with SIPOs are even more negative.

In untabulated results, we find no consistent evidence that CARs are correlated with leverage, cash holdings, Tobin’s Q, return momentum, institutional ownership, investment, and EBITDA. This is consistent with our earlier finding (Table 2) that most firm characteristics have little effect on the negative stock price impact of the pandemic.

We next investigate whether the sensitivity of returns to GeoCOVID is reduced after policy responses to the crisis are announced. We construct each firm’s exposure to NPIs at the asset level.\footnote{We thank the anonymous referee for this suggestion.} GeoNPI captures the percentage share of a firm’s portfolio (in total adjusted cost) exposed to county-level NPIs. As some NPIs was announced at city level, we manually match NPIs implemented by cities to the corresponding counties. By construction, GeoNPI equals zero for all firms before March 5, 2020, the date when the first NPI went into effect in our sample. A firm’s GeoNPI remains zero until a property in its portfolio is exposed to a NPI. The mean value of GeoNPI increases rapidly in March from 0% to 66%. By April 15, roughly 67% percent of the value of an average firm portfolio in our sample had been exposed to NPIs. For ease of interpretation, we also replace GeoNPI with a dummy variable, Post NPI, which equals one when GeoNPI is greater than zero.

Results reported in columns (1)-(3) of Table 6 indicate that returns are higher after a firm is exposed to one or more NPIs. Moreover, the estimated coefficients on the interactions between GeoCOVID and Post NPI are positive and statistically significant, indicating that returns respond less negatively to GeoCOVID after interventions. For example, the negative
effect of a one-standard-deviation increase in GeoCOVID on 1-day abnormal returns is reduced by 0.63 percentage points (\(=0.067\times0.094\)) in the post-NPI period. We find similar results when GeoCOVID is interacted with our continuous measure of GeoNPI. The stock price effects of NPIs are material. The average stock price reaction to GeoCOVID equals \(-0.026\) (column (2) of Table 2). Compared to a firm with no exposure to NPIs, a firm with a 10% NPI exposure experiences a 1-day decline in stock returns that is 57% less (\(=\left(-0.026+0.15\times0.1\right)/\left(-0.026\right)\)-1). The corresponding reductions in declines for 2-day and 3-day stock return are 49% and 63%, respectively. These results strongly suggest investors respond less negatively to COVID-19 growth rates when public policies intended to reduce the spread of the virus are announced.

3.7 The Impact of Reopenings

We extend our sample through June 30, 2020 and examine the effects of lifting NPIs. Similar to the debate over NPIs, proponents of “reopening” argue that the cost of NPIs, such as reduced consumption and rising unemployment, are substantial. However, reopening opponents express serious concerns about a second wave of infections.

 Unlike compulsory lockdowns, the decision to reopen a business is, ultimately, voluntary. There are several reasons firms and businesses may choose not to open, or fully open, even after restrictions are lifted. First, concerns about health risks for employees and customers may cause a firm to delay. Consistent with this, Dave et al. (2020) find no evidence that the repeal of the SIPO impacted social distancing. Goolsbee and Syverson (2020) find repealing SIPOs may not be an effective tool for restarting growth when people still fear the spread of the virus. Second, a firm may delay reopening if it expects customer demand will not return immediately (Balla-Elliott et al., 2020). Third, the supply chain disruptions created by the pandemic may prevent firms from immediately reopening (Papanikolaou and Schmidt, 2020). Finally, state and local authorities typically announced reopening plans that
included multiple phases of uncertain duration. Perhaps because of these complications and uncertainties, most studies (e.g., Chetty et al., 2020; Bartik et al. 2020, Villas-Boas et al. 2020) find that reopening policies have little immediate impact on local economic activity.

Similar to our analysis of NPIs, we first examine stock price reactions to the earliest reopening announcement in any of the three states in which a firm’s portfolio is most heavily invested. We then calculate daily abnormal returns for each firm. Averages of these returns by property type are plotted in Figure 8. We find no discernable pattern of market reactions to reopening announcements. CARs by property type over 3-day and 11-day event windows are presented in columns (5) and (6) of Appendix 3. Mostly positive stock price responses occur from day -1 to day +1. However, from day -5 to day +5 we find no significant response overall, with some slight variation by property type. For example, the retail sector experienced large positive CARs during both the 3-day and 11-day windows. This is expected as the brick-and-mortar retailers were severely affected by lockdowns.

To analyze the impact of reopenings, we construct GeoReopen to capture the percentage share of a REIT’s property portfolio exposed to a reopening plan. Similar to GeoNPI, a firm’s GeoReopen takes on a value of zero until a property in its portfolio is exposed to a reopening. GeoReopen then increases with the proportion of a firm’s portfolio exposed to state reopenings. Because the reopening of a local economy is a gradual process in which certain types of businesses in certain localities (e.g., essential industries) opened before others, it would be ideal to examine the effects phase by phase. However, there has been substantial variation across states in the precise form of reopening plans. In most states, governors issued guidance and orders as to which industries and places of congregation could reopen and under what conditions (Harris, 2020). In addition, cities and counties have often had discretion over whether, and how, to reopen.¹⁹

¹⁹ For example, in Washington, “Each county can apply to State Secretary of Health John Wiesman for advancement through the different phases on a case-by-case basis, and Wiesman can modify the Safe Start plan
Following Chetty et al. (2020), Nguyen et al. (2020), and Raifman et al. (2020), we define reopening as the date the state government allowed the first set of businesses to reopen. Similar results are obtained when we use the date a state lifted or eased stay-at-home orders. GeoReopen is equal to zero for all REITs before the first state (i.e., South Carolina) adopted a reopening policy on April 20. The mean of GeoReopen increases to over 90% by May 18.

In the results presented in Table 7, we again include Post Reopen in the first specification and GeoReopen in the second, along with their interactions with GeoCOVID. We conduct our analysis using both the extended sample period (April 15 to June 30) and the full sample (January 21 to June 30). Over the full sample, the estimated coefficient on the interaction of GeoCOVID and Post Reopen cannot be distinguished from zero. Similarly, after April 15th, the estimated coefficient on the interaction of GeoCOVID and GeoReopen is not significant (column (2)). Because this lack of significance could be due to reduced COVID-19 growth after reopenings (see Figure 3), we investigate whether the effects of reopenings differ for firms with larger portfolio allocations in more heavily affected areas or for firms with greater NPI exposure prior to reopenings. In the results reported in column (3), we include Severity (Apr 15), which is the percent of each county’s population that has tested positive, weighted by the percentage of each REIT’s portfolio located in the county. We also include the firm’s exposure to NPIs as of April 15th (GeoNPI (Apr 15)). The estimated coefficients on both Severity (Apr 15) and GeoNPI (Apr 15), as well as their interactions with GeoReopen, are not significant.

Finally, because reopenings are intended to nullify NPIs, we construct a composite measure of policy interventions, GeoNetExp, defined as the proportion of properties in each firm’s portfolio exposed to NPIs, minus the proportion exposed to reopenings. Both
proportions are measured at the state level.20 The time-series trend of GeoNetExp based on a simple average across firms is shown in Figure 3 (gray dash line). The inverse-U shape corresponds to an increase in average NPI exposures until April 3, followed by a decline after April 20 as reopenings began to occur. Results in column (4) using data prior to April 15 are consistent those reported in Table 6: the estimated coefficient on GeoNetExp is positive and significant and the interaction between GeoNetExp and GeoCOVID is positive. However, after April 15 the estimated coefficient on GeoNetExp and its interaction with GeoCOVID are not significant (column (5)). Lastly, the results using a sample running from Jan 21 to June 30, which are reported in column (6), are consistent with pre-reopening results. Overall, these results suggest policy interventions that mandate social distancing helped mitigate stock price declines during this public health crisis. However, we find no evidence that reopenings boosted the expected performance of CRE markets.

4. Conclusion and Discussion

How does the shock of COVID-19 transmit to the equity markets from a firm’s underlying assets? To answer this question, we employ asset-level data from the commercial real estate (CRE) market and construct a novel measure of geographically weighted exposure to COVID-19 growth (GeoCOVID) using a sample of equity REITs during the early stages of the pandemic from January 21, 2020, to April 15, 2020.

Using different benchmarks for risk adjustment, different return windows, and different model specifications, we find a consistent negative relationship between abnormal returns and GeoCOVID, after controlling for the national growth rate of COVID-19 cases, a firms’ property type and geographic concentrations, days since the outbreak, population density, and a comprehensive set of firm characteristics. In addition, firms focused on retail

20 GeoNetExp does not equal the difference between GeoNPI and GeoReopen because the former is constructed at the county level while the latter is measured at the state level.
and residential properties react more negatively among all sectors. In contrast, the performance of the health care and technology sectors correlates positively with GeoCOVID.

Do non-pharmaceutical interventions (NPIs) and subsequent reopenings affect the pandemic-induced drop in stock prices? Using a firm’s time-varying asset-level exposure to NPIs and reopenings, we find that a growing exposure to NPIs reduces the negative return impact of GeoCOVID. This indicates investors expected the effectiveness of these policies in slowing down the spread of the virus to outweigh their expected economic cost. However, our findings suggest that lifting policies that closed business and mandated social distancing had no impact on stock performance.

Taken together, our results highlight the importance of asset-level attributes in explaining investors’ reactions to the pandemic. Although our sample period is relatively short, movements in stock returns contain forward-looking information, and stock prices are based on prospective future earnings. Whether the shock of COVID-19 on CRE prices remains significant in the long run depends crucially on the resilience of the overall economy and, perhaps more importantly, how perceptions of risk change after the pandemic. For example, a few firms (e.g., Morgan Stanley, JPMorgan Chase, and Nielsen) currently occupying large amounts of office space in Manhattan have indicated that they expect to occupy considerably less space once the pandemic passes. Dingel and Neiman (2020) conclude that 37 percent of jobs in the US can be done entirely at home. Permanent changes in work and lifestyle should differentially affect the rent generating ability and perceived risk of different types of business activities, as suggested by our finding of substantial variation across property types. These differential effects are certain to be observed across industry sectors outside of the CRE space.

21 https://www.nytimes.com/2020/05/12/nyregion/coronavirus-work-from-home.html (Last Access: May 14, 2020)
Finally, the negative economic effects of social distancing are most severe among businesses that rely heavily on face-to-face communication or close physical proximity. As pointed out by Koren and Peto (2020), the agglomeration premium associated with conducting business in more densely populated areas may decline when firms find it less attractive to locate in high-density areas in a post-pandemic spatial equilibrium. This would suggest a reduced rent premium in highly desirable (pre-pandemic) urban areas, as suggested by our finding of negative return responses to increases in the growth of COVID-19 cases.

References

Alfaro, Laura, Anusha Chari, Andrew N. Greenland, and Peter K. Schott, 2020, Aggregate and Firm-Level Stock Returns During Pandemics, in Real Time, Working Paper 26950, National Bureau of Economic Research April 2020.

Ambrus, Attila, Erica Field, and Robert Gonzalez, 2020, Loss in the time of cholera: Long-run impact of a disease epidemic on the urban landscape, *American Economic Review* 110, 475–525.

Balla-Elliott, Dylan, Zoë B. Cullen, Edward L. Glaeser, Michael Luca, and Christopher T. Stanton, 2020, Business Reopening Decisions and Demand Forecasts During the COVID-19 Pandemic, Working Paper 27362, National Bureau of Economic Research June 2020.

Barro, Robert J., José F. Ursúa, and Joanna Weng, 2020, The Coronavirus and the Great Influenza Pandemic: Lessons from the "Spanish Flu" for the Coronavirus’s Potential Effects on Mortality and Economic Activity, Working Paper 26866, National Bureau of Economic Research March 2020.

Bartik, Alexander W., Zoë B. Cullen, Edward L. Glaeser, Michael Luca, and Christopher T. Stanton, 2020, What Jobs are Being Done at Home During the COVID-19 Crisis? Evidence from Firm-Level Surveys, Working Paper 27422, National Bureau of Economic Research June 2020.

Bernile, Gennaro, Alok Kumar, and Johan Sulaeman, 2015, Home away from Home: Geography of Information and Local Investors, *Review of Financial Studies* 28, 2009–2049.

Bleakley, Hoyt, 2007, Disease and development: Evidence from hookworm eradication in the American South, *Quarterly Journal of Economics* 122, 73–117.

Brennan, Michael, Sahn-Wook Huh, and Avanidhar Subrahmanyam, 2013, An Analysis of the Amihud Illiquidity Premium, *Review of Asset Pricing Studies* 3, 133–176.
Chetty, Raj, John N. Friedman, Nathaniel Hendren, Michael Stepner, and The Opportunity Insights Team, 2020, How Did COVID-19 and Stabilization Policies Affect Spending and Employment? A New Real-Time Economic Tracker Based on Private Sector Data, Working Paper 27431, National Bureau of Economic Research June 2020.

Correia, Sergio, Stephan Luck, Emil Verner et al. (2020), “Fight the pandemic, save the economy: Lessons from the 1918 Flu”, No. 20200327, Federal Reserve Bank of New York.

Couture, Victor, Jonathan I. Dingel, Allison Green, and Jessie Handbury, 2020, Device exposure index based on PlaceIQ data, Working Paper. https://github.com/COVIDExposureIndices/COVIDExposureIndices

Cui, Zhihan, Geoffrey Heal, and Howard Kunreuther, 2020, COVID-19, Shelter-in-Place Strategies and Tipping, Working Paper 27124, National Bureau of Economic Research May 2020.

Dave, Dhaval M., Andrew I. Friedson, Kyutaro Matsuzawa, and Joseph J. Sabia, 2020, When Do Shelter-in-Place Orders Fight COVID-19 Best? Policy Heterogeneity Across States and Adoption Time, Working Paper 27091, National Bureau of Economic Research May 2020.

Ding, Wenzhi, Ross Levine, Chen Lin, and Wensi Xie, 2020, Corporate Immunity to the COVID-19 Pandemic, Working Paper 27055, National Bureau of Economic Research April 2020.

Dingel, Jonathan I., and Brent Neiman, 2020, How Many Jobs Can Be Done at Home? Working Paper 26948, National Bureau of Economic Research April 2020.

D’Lima, Walter, Luis Arturo Lopez, and Archana Pradhan, 2020, COVID-19 and Housing Market Effects: Evidence from U.S. Shutdown Orders, Working Paper. Old Dominion University, University of Illinois at Chicago, and CoreLogic.

Farboodi, Maryam, Gregor Jarosch, and Robert Shimer, 2020, Internal and External Effects of Social Distancing in a Pandemic, Working Paper 27059, National Bureau of Economic Research April 2020.

Francke, Marc, and Matthijs Korevaar, 2020, Housing Markets in a Pandemic: Evidence from Historical Outbreaks, Working Paper. University of Amsterdam and Maastricht University.

García, Diego, and Øyvind Norli, 2012, Geographic dispersion and stock returns, Journal of Financial Economics 106, 547–565.

Gerding, Felix, Thorsten Martin, and Florian Nagler, 2020, The Value of Fiscal Capacity in the Face of a Rare Disaster, Working Paper. Bocconi University.

Giannini, Robert, Paul Irvine, and Tao Shu, 2018, Nonlocal Disadvantage: An Examination of Social Media Sentiment, Review of Asset Pricing Studies 8, 293–336.

Goolsbee, Austan, and Chad Syverson, 2020, Fear, Lockdown, and Diversion: Comparing Drivers of Pandemic Economic Decline 2020, Working Paper 27432, National Bureau of Economic Research June 2020.
Gormsen, Niels J, and Ralph S.J. Koijen, 2020, Coronavirus: Impact on Stock Prices and Growth Expectations, Working Paper. University of Chicago Booth School of Business.

Green Street Advisors, 2020a, REITs Amid a Pandemic, April 27, 2020. (https://www.greenstreetadvisors.com/insights/press-releases) Last Access: May 26, 2020.

Green Street Advisors, 2020b, REIT Insights, April 14, 2020. (https://insights.greenstreetadvisors.com/coronavirus-featured-content) Last Access: May 26, 2020.

Harri, Ardian, and B Wade Brorsen, 2009, The Overlapping Data Problem. Quantitative and Qualitative Analysis in Social Sciences 3(3), 78-115.

Harris, Jeffrey E., 2020, Reopening Under COVID-19: What to Watch For, Working Paper 27166, National Bureau of Economic Research May 2020.

Hassan, Tarek Alexander, Stephen Hollander, Laurence Van Lent, and Ahmed Tahoun, 2020, Firm-Level Exposure to Epidemic Diseases: COVID-19, SARS, and H1N1, Working Paper 26971, National Bureau of Economic Research May 2020.

Jannati, Sima, 2020, Geographic Spillover of Dominant Firms’ Shocks, Journal of Banking and Finance Forthcoming.

Kahn, Lisa B., Fabian Lange, and David G. Wiczer, 2020, Labor Demand in the Time of COVID-19: Evidence from Vacancy Postings and UI Claims, Working Paper 27061, National Bureau of Economic Research April 2020.

Koren, Miklos, and Rita Peto, 2020, Business disruptions from social distancing, Covid Economics 2, 13-31.

Lilley, Andrew, Matthew Lilley, and Gianluca Rinaldi, 2020, Public Health Interventions and Economic Growth: Revisiting The Spanish Flu Evidence, Working Paper. Harvard University.

Ling, David C., Chongyu Wang, and Tingyu Zhou, 2019, The Geography of Real Property Information and Investment: Firm Location, Asset Location, and Institutional Ownership, Real Estate Economics Forthcoming.

Ling, David C, Chongyu Wang, and Tingyu Zhou, 2020, Asset Productivity, Local information Diffusion, and Commercial Real Estate Returns, Working Paper. University of Florida, Concordia University, and Florida State University.

Mervosh, Sarah, Denise Lu, and Vanessa Swales, “See Which States and Cities Have Told Residents to Stay at Home,” The New York Times, April 20, 2020. (https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html) Last Access: May 26, 2020.

Milcheva, Stanimira, 2020, Volatility and the cross-section of real estate equity returns during Covid-19, Working Paper. University College London.

Nguyen, Thuy D., Sumedha Gupta, Martin Andersen, Ana Bento, Kosali I. Simon, and Coady Wing, 2020, Impacts of State Reopening Policy on Human Mobility, Working Paper 27235, National Bureau of Economic Research May 2020.
Nunn, Nathan, and Nancy Qian, 2010, The Columbian exchange: A history of disease, food, and ideas, *Journal of Economic Perspectives* 24, 163–188.

Papanikolaou, Dimitris, and Lawrence D.W. Schmidt, 2020, Working Remotely and the Supply-side Impact of COVID-19, Working Paper 27330, National Bureau of Economic Research June 2020.

Parsons, Christopher A, Riccardo Sabbatucci, and Sheridan Titman, 2020, Geographic Lead-Lag Effects, *The Review of Financial Studies*. Forthcoming.

Patel, Nimesh, and Ivo Welch, 2017, Extended Stock Returns in Response to S&P 500 Index Changes, *Review of Asset Pricing Studies* 7, 172–208.

Raifman, Julia, Kristen Nocka, David Jones, Jacob Bor, Sarah Lipson, Jonathan Jay, Megan Cole, Noa Krawczyk, Philip Chan, and Sandro Galea, 2020, COVID-19 US State Policy Database. Ann Arbor, MI: Inter-university Consortium for Political and Social Research.

Ramelli, Stefano, and Alexander F Wagner, 2020, Feverish Stock Price Reactions to COVID-19, *Review of Corporate Finance Studies*. Forthcoming.

Sinagl, Petra, 2020, Cash-flow Risk during Downturns: Industry Response to COVID-19 Pandemic, *Working Paper*. University of Iowa.

Smajlbegovic, Esad, 2019, Regional economic activity and stock returns, *Journal of Financial and Quantitative Analysis* 54, 1051–1082.

Van Dijk, Dorinth, Anne Kinsella Thompson, and David Geltner, 2020, COVID-19 Special Report: Recent Drops in Market Liquidity May Foreshadow Major Price Drops in US Commercial Real Estate Markets, *Working Paper*. MIT Center for Real Estate.

Villas-Boas, Sofia B., James Sears, Miguel Villas-Boas, and Vasco Villas-Boas, 2020, Are We #StayingHome to Flatten the Curve? *Working Paper*. University of California, Berkeley.

Wang, Chongyu, and Tingyu Zhou, 2020, Trade-offs between Asset Location and Proximity to Home: Evidence from REIT Property Sell-offs, *Journal of Real Estate Finance and Economics*. Forthcoming.

Weil, David N., 2007, Accounting for the effect of health on economic growth, *Quarterly Journal of Economics* 122, 1265–1306.

Wheaton, William C, and Anne Kinsella Thompson, 2020, The Geography of Covid-19 growth in the US: Counties and Metropolitan Areas,” *Working Paper*. Massachusetts Institute of Technology.
Figure 1: Total Return Indices: S&P 500, Russell 2000, FTSE-NAREIT

This figure depicts daily indices for the S&P 500, Russell 2000, and the FTSE-NAREIT All Equity REITs (FNER) Index from 2015 through April 23, 2020. Each index is set equal to 100 at year-end 2014.
Figure 2: Total Return Indices: REIT Property Types

This figure displays daily return indices for the FTSE-NAREIT All Equity REITs indices for industrial, residential, office, health care, diversified, and hospitality REITs from 2015 through April 23, 2020. Each index is set equal to 100 at year-end 2014.

Electronic copy available at: https://ssrn.com/abstract=3593101
Figure 3: Trends in Geographically weighted COVID-19 Growth and Non-Pharmaceutical Interventions

This figure shows the means of daily geographically weighted COVID-19 growth ($GeoCOVID$) and net geographic exposure to non-pharmaceutical interventions ($GeoNetExp$) for the period from January 21, 2020, through June 30, 2020. The horizontal axis is the number of trading days since the first outbreak in the US on January 21, 2020. $GeoCOVID$ is the average of county-level daily growth rates of COVID-19 cases, weighted by the percentage of the firm’s portfolio allocated to each county at the end of 2019Q4. $GeoNetExp$ is the daily proportion of a firm’s portfolio exposed to NPIs net of its exposure to reopenings.

Electronic copy available at: https://ssrn.com/abstract=3593101
Figure 4: Abnormal Return by Property Types

This figure shows the means and 95% confidence intervals of abnormal returns across property types for the period from January 21, 2020, through April 15, 2020. 1-day AR are calculated as $R_{i,d} - \beta_i M_d$. β_i is estimated from the market model for firm i from the beginning of 2019 to January 20, 2020. $R_{i,d}$ denotes stock returns for firm i on day d. M_d denotes daily returns on either the S&P 500 index (Panel A) or the FTSE-NAREIT All Equity REITs Index (Panel B). 2-day (3-day) CARs are the non-overlapping cumulative abnormal returns from day $(d-1)$ to day $d+1$. See Appendix 1 for variable descriptions and Appendix 2 for descriptions of property types.

Panel A: Abnormal Returns based on S&P 500 Index

Panel B: Abnormal Returns based on NAREIT Equity Index
Figure 5: COVID-19 Growth and Property Holdings

Panel A shows geographic patterns of the average daily growth rates of COVID-19 confirmed cases in the U.S. counties for the period from January 21, 2020, through April 15, 2020. Panels B-D shows the geographic distribution of CRE portfolios as of 2019Q4. Geographic patterns are shown in terms of percentiles. Panel B is based on all property types. Panel C (D) is based on retail (health care). See Appendix 1 for variable descriptions and Appendix 2 for descriptions of property types.

Panel A: COVID-19 Growth

Panel B: Average Property Holdings

Panel C: Average Property Holdings (Retail)

Panel D: Average Property Holdings (Health Care)
Figure 6: Correlations between Abnormal Returns and COVID-19 Growth by Property Type

This figure presents the correlations between abnormal returns across property types based on the S&P 500 Index and the growth rate of COVID-19 cases. See Appendix 1 for variable descriptions and Appendix 2 for descriptions of property types.
Figure 7: Market Reactions to Non-Pharmaceutical Interventions (NPIs)

This figure depicts the cumulative average abnormal returns (CAARs) across property types around the announcement of non-pharmaceutical interventions (vertical line at day 0). In Panel A, the event date for a firm is defined as the earliest date of state-of-emergency declaration in any jurisdiction (city, county or state) in the top 3 states ranked by the size of its property holdings. In Panel B, the event date is the earliest announcement date of shelter-in-place orders (SIPO), stay-at-home orders, or mandatory school and business closures in any jurisdiction (city, county or state) in the top 3 states ranked by the size of its property holdings. Abnormal returns (AR) for each firm are estimated using daily excess returns and a market model. The estimation window includes 250 days of stock returns and ends 50 days before the event window. The event window is from day -30 to day +30 relative to day 0. Next, the abnormal returns are averaged across firms that focus on the same property type to get average abnormal returns (AARs) on day t. Finally, the AARs are chain-linked over 7 days in the event window to obtain the buy-and-hold cumulative average abnormal return (CAAR). See Appendix 2 for descriptions of property types.

Panel A: State-of-Emergency Declaration

Panel B: Shelter-in-Place Orders
Figure 8: Market Reactions to Reopenings

This figure depicts the cumulative average abnormal returns (CAARs) across property types around the announcement of state reopenings (vertical line at day 0). The event date for a firm is defined as the earliest reopening announcement date in any of the top-3 states ranked by the size of its property holdings. Abnormal returns (AR) for each firm are estimated using daily excess returns and a market model. The estimation window includes 250 days of stock returns and ends 50 days before the event window. The event window is from day -30 to day +30 relative to day 0. The abnormal returns are averaged across firms that focus on the same property type to obtain average abnormal returns (AARs) on day t. The AARs are chain-linked over T days in the event window to obtain the buy-and-hold cumulative average abnormal return (CAAR). See Appendix 2 for descriptions of property types.
Table 1: Summary Statistics

This table shows summary statistics (number of observations, mean, standard deviation (SD), and 25th, 50th, and 75th percentiles) for a sample of 11,210 firm-day observations from the period January 21, 2020, through April 15, 2020. Statistics for GeoReopen and GeoNetExp are estimated based on an extended sample that runs through June 30, 2020. Variable definitions and sources are provided in Appendix 1.

Variable	N	Mean	SD	p25	p50	p75
Abnormal Returns (based on S&P500)						
1-day AR	11,210	-0.006	0.061	-0.022	-0.001	0.013
2-day CAR	5,510	-0.013	0.079	-0.039	-0.003	0.016
3-day CAR	3,800	-0.019	0.102	-0.054	-0.005	0.019
Abnormal Returns (based on NAREIT)						
1-day AR	11,210	-0.008	0.070	-0.026	-0.001	0.016
2-day CAR	5,510	-0.015	0.087	-0.046	-0.004	0.017
3-day CAR	3,800	-0.022	0.112	-0.061	-0.006	0.020
COVID-19 Exposure Variables						
GeoCOVID	11,210	0.066	0.094	0	0.005	0.117
Days since outbreak	11,210	33	29	11	33	56
GeoNPI	11,210	0.236	0.320	0	0	0.540
GeoReopen	21,404	0.370	0.464	0	0	1
GeoNetExp	21,404	0.289	0.408	0	0	0.734
Control Variables						
GeoDensity	11,210	4887	9373	1180	1793	4165
PropHHI	11,210	0.788	0.280	0.583	0.949	0.999
GeoHHI	11,210	0.119	0.175	0.020	0.049	0.126
Leverage	11,210	0.490	0.159	0.403	0.474	0.575
Cash	11,210	0.037	0.083	0.005	0.013	0.036
Size	11,210	6641	10129	1664	3925	8297
Tobin’s Q	11,210	1.498	0.584	1.147	1.372	1.690
LAG3MRET	11,210	0.034	0.061	0.001	0.040	0.066
InstOwn	11,210	0.811	0.237	0.688	0.880	0.979
Investment	11,210	0.092	0.331	-0.032	0.028	0.171
EBITDA/AT	11,210	0.021	0.012	0.015	0.020	0.025
Office	11,210	0.111	0.314	0	0	0
Industrial	11,210	0.068	0.252	0	0	0
Retail	11,210	0.189	0.392	0	0	0
Residential	11,210	0.074	0.261	0	0	0
Diversified	11,210	0.147	0.354	0	0	0
Hospitality	11,210	0.142	0.349	0	0	0
Health Care	11,210	0.105	0.307	0	0	0
Self-storage	11,210	0.037	0.188	0	0	0
Specialty	11,210	0.095	0.293	0	0	0
Technology	11,210	0.032	0.175	0	0	0
Table 2: Baseline Results – Abnormal Returns and Geographically Weighted COVID-19 Growth

This table shows regression results on the relationship between abnormal returns and the growth rate of geographically weighted COVID-19 cases. The dependent variable, Ret, is the daily ARs in columns (1)-(3), the 2-day CARs in columns (4)-(6), and the 3-day CARs in columns (7)-(9). GeoCOVID is the average of county-level daily growth rates of COVID-19 cases, weighted by the percentage of a firm’s portfolio allocated to each county at the end of 2019Q4. Panel A (B) shows the results using abnormal returns based on the S&P 500 Index (NAREIT Equity Index) as the dependent variable. The numbers in parentheses are t-statistics. Standard errors are clustered at firm level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Variable definitions and sources are provided in Appendix 1.

Panel A: Abnormal Returns based on S&P 500

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
GeoCOVID	-0.024***	-0.026***	-0.022***	-0.070***	-0.086***	-0.080***	-0.089***	-0.099***	-0.088***
Days since outbreak	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***
Days since outbreak	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
In(GeoDensity)	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***
PropHHI	-0.001*	-0.003**	-0.003**	-0.003**	-0.003**	-0.003**	-0.003**	-0.003**	-0.003**
GeoHHI	-0.002*	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
Leverage	-0.003***	-0.006***	-0.006***	-0.006***	-0.006***	-0.006***	-0.006***	-0.006***	-0.006***
Cash	-0.003*	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
InstOwn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
In(Size)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Tobin’s Q	0.001*	0.001**	0.001**	0.001**	0.001**	0.001**	0.001**	0.001**	0.001**
LAG3MRET	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
InstOwn	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Investment	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
EBITDA/AT	0.005	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
Constant	-0.005***	-0.001	-0.004***	-0.008***	-0.003	-0.008***	-0.013***	-0.002	-0.011***
FE	Prop type								
R Squared	0.005	0.012	0.013	0.016	0.034	0.037	0.018	0.041	0.044
Observations	11,210	11,210	11,210	5,510	5,510	5,510	3,800	3,800	3,800
Panel B: Abnormal Returns based on NAREIT

	(1) Ret (1-day)	(2) Ret (1-day)	(3) Ret (1-day)	(4) Ret (2-day)	(5) Ret (2-day)	(6) Ret (2-day)	(7) Ret (3-day)	(8) Ret (3-day)	(9) Ret (3-day)
GeoCOVID	-0.021***	-0.031***	-0.028***	-0.069***	-0.108***	-0.105***	-0.070***	-0.103***	-0.094***
	(-3.92)	(-4.32)	(-3.61)	(-6.44)	(-7.15)	(-6.53)	(-4.42)	(-4.53)	(-3.80)
Days since outbreak	-0.000***	-0.000***	-0.000***	-0.001***	-0.001***	-0.001***	-0.001***	-0.001***	-0.001***
	(-6.99)	(-6.30)	(-6.24)	(-5.34)	(-6.66)	(-5.98)	(-6.66)	(-5.98)	(-5.98)
Days since outbreak ²	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(10.55)	(9.57)	(10.79)	(9.79)	(10.79)	(9.79)	(10.79)	(9.79)	(10.79)
ln(GeoDensity)	0.001***		0.002***		0.002***		0.002***		0.002***
	(6.58)		(7.35)		(7.35)		(7.35)		(7.35)
PropHHI	-0.002**		-0.003**		-0.003**		-0.003**		-0.003**
	(-2.31)		(-2.50)		(-2.50)		(-2.50)		(-2.50)
GeoHHI	-0.003**		-0.003**		-0.003**		-0.003**		-0.003**
	(-2.15)		(-1.12)		(-1.12)		(-1.12)		(-1.12)
Leverage	-0.003***		-0.007***		-0.010***		-0.010***		-0.010***
	(-3.48)		(-3.75)		(-3.75)		(-3.75)		(-3.75)
Cash	-0.004**		-0.008*		-0.014**		-0.014**		-0.014**
	(-2.41)		(-1.88)		(-2.54)		(-2.54)		(-2.54)
ln(Size)	0.000		-0.000		-0.000		-0.000		-0.000
	(0.16)		(-0.06)		(-0.34)		(-0.34)		(-0.34)
Tobin’s Q	0.001***		0.001***		0.002***		0.002***		0.002***
	(2.61)		(3.22)		(3.04)		(3.04)		(3.04)
LAG3MRET	0.000***		0.000***		0.001***		0.001***		0.001***
	(22.85)		(22.43)		(22.43)		(22.43)		(22.43)
InstOwn	0.001		0.001		0.004		0.004		0.004
	(1.14)		(1.03)		(1.62)		(1.62)		(1.62)
Investment	-0.000		-0.001		-0.001		-0.001		-0.001
	(-0.92)		(-1.33)		(-0.85)		(-0.85)		(-0.85)
EBITDA/AT	-0.001		0.004		-0.004		-0.004		-0.004
	(-0.07)		(0.18)		(-0.12)		(-0.12)		(-0.12)
Constant	-0.006***	-0.002	-0.006***	-0.011***	-0.004	-0.013***	-0.018***	-0.005	-0.018***
	(-14.70)	(-1.05)	(-10.98)	(-12.04)	(-0.99)	(-11.04)	(-13.66)	(-0.80)	(-11.60)
FE	Prop type	Prop type	Prop type	Prop type	Prop type	Prop type	Prop type	Prop type	Firm
R Squared	0.004	0.013	0.014	0.014	0.041	0.043	0.014	0.045	0.048
Observations	11,210	11,210	11,210	5,510	5,510	5,510	3,800	3,800	3,800
Table 3: Abnormal Returns and Geographically weighted COVID-19 Growth by Property Type

This table shows regression results on the relationship between daily abnormal returns and the growth rate of geographically weighted COVID-19 cases interacted with property type dummies. Columns (1)-(3) ((4)-(6)) present the results using abnormal returns based on the S&P 500 Index (NAREIT Equity Index) as the dependent variable. GeoCOVID is the average of county-level daily growth rates of COVID-19 cases, weighted by the percentage of a firm’s portfolio allocated to each county at the end of 2019Q4. Control variables are the same as columns (2) in Table 2 and suppressed. See Appendix 1 for variable descriptions and Appendix 2 for descriptions of property types. The numbers in parentheses are t-statistics. Standard errors are clustered at firm level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Property Type × GeoCOVID	Abnormal returns using S&P500	Abnormal returns using NAREIT				
	(1) Ret (1-day)	(2) Ret (2-day)	(3) Ret (3-day)	(4) Ret (1-day)	(5) Ret (2-day)	(6) Ret (3-day)
Office × GeoCOVID	-0.026*** (-4.67)	-0.073*** (-5.24)	-0.089*** (-3.69)	-0.030*** (-4.59)	-0.100*** (-6.13)	-0.112*** (-3.75)
Industrial × GeoCOVID	0.002 (0.13)	-0.060** (-2.02)	0.004 (0.13)	-0.006 (0.34)	-0.081*** (-2.67)	0.012 (0.36)
Retail × GeoCOVID	-0.073*** (-4.80)	-0.183*** (-6.62)	-0.229*** (-5.23)	-0.074*** (-4.79)	-0.192*** (-6.95)	-0.210*** (-4.89)
Residential × GeoCOVID	-0.066*** (-5.15)	-0.167*** (-5.67)	-0.138*** (-3.78)	-0.069*** (-4.88)	-0.180*** (-5.66)	-0.143*** (-3.68)
Diversified × GeoCOVID	-0.037** (-2.34)	-0.099*** (-3.38)	-0.085* (-1.92)	-0.044** (-2.58)	-0.122*** (-3.93)	-0.084 (-1.64)
Hospitality × GeoCOVID	-0.026** (-2.00)	-0.045 (-1.30)	-0.199*** (-4.38)	-0.031** (-2.25)	-0.078** (-2.19)	-0.208*** (-4.47)
Health Care × GeoCOVID	0.039** (2.41)	0.017 (0.52)	0.076 (1.43)	0.038** (2.20)	0.013 (0.35)	0.098* (1.69)
Self storage × GeoCOVID	-0.016** (-2.20)	-0.073*** (-2.93)	-0.039 (-0.70)	-0.021*** (-2.77)	-0.089*** (-3.69)	-0.041 (-0.78)
Specialty × GeoCOVID	0.016 (0.92)	-0.020 (-0.62)	-0.013 (-0.17)	0.011 (0.66)	-0.026 (-0.71)	-0.003 (-0.04)
Technology × GeoCOVID	0.038** (2.33)	0.039 (1.14)	0.104*** (3.27)	0.030 (1.50)	0.016 (0.39)	0.105*** (2.66)

Controls: Yes
FE: Prop type
R Squared: 0.023, 0.058, 0.071, 0.022, 0.061, 0.071
Observations: 11,210, 5,510, 3,800, 11,210, 5,510, 3,800

Electronic copy available at: https://ssrn.com/abstract=3593101
Table 4: Asset Allocation and COVID-19 Growth

This table shows regression results on the relationship between abnormal returns and alternative measures of COVID-19 exposure. The dependent variable, Ret, is the 1-day, 2-day, or 3-day abnormal returns based on S&P500. USCOVID is the U.S. daily growth rate of COVID-19 cases. GeoCOVID is the average of county-level daily growth rates of COVID-19 cases, weighted by the percentage of a firm’s portfolio allocated to each county at the end of 2019Q4. The numbers in parentheses are t-statistics. Standard errors are clustered at firm level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Variable definitions and sources are provided in Appendix 1.

Variable	(1) Ret (1-day)	(2) Ret (2-day)	(3) Ret (3-day)	(4) Ret (1-day)	(5) Ret (2-day)	(6) Ret (3-day)
USCOVID	-0.023***	-0.086***	-0.089***	-0.020***	-0.076***	-0.080***
	(-8.86)	(-14.39)	(-14.84)	(-7.06)	(-12.00)	(-12.87)
GeoCOVID		0.016**	-0.044***	-0.056***		
		(-2.15)	(-2.91)	(-2.73)		
Days since outbreak	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***
	(-6.85)	(-5.85)	(-6.86)	(-6.22)	(-4.87)	(-5.80)
Days since outbreak²	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(7.55)	(6.70)	(6.90)	(7.83)	(7.15)	(7.21)
ln(GeoDensity)	0.000***	0.000**	0.001***	0.000***	0.001***	0.001***
	(3.19)	(2.58)	(3.62)	(3.77)	(3.41)	(4.33)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
FE	Prop type					
R Squared	0.013	0.045	0.050	0.014	0.046	0.052
Observations	11,210	5,510	3,800	11,210	5,510	3,800
Table 5: Abnormal Returns and Geographically weighted COVID-19 Growth During Different Periods

This table shows regression results on the relationship between daily abnormal returns and the growth rate of geographically weighted COVID-19 cases during different sample periods. Columns (1)-(3) present the results based on 1-day, 2-day, and 3-day abnormal returns during the humped period of case growth from trading day 27 to 58 (i.e., February 27 to April 13, 2020) depicted in Figure 3. Columns (4)-(6) present the results using the extended sample period from January 21 through June 30, 2020. GeoCOVID is the average of county-level daily growth rates of COVID-19 cases, weighted by the percentage of a firm’s portfolio allocated to each county at the end of 2019Q4. Control variables are the same as columns (2) in Table 2 and suppressed. See Appendix 1 for variable descriptions and Appendix 2 for descriptions of property types. The numbers in parentheses are t-statistics. Standard errors are clustered at firm level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Abnormal returns (S&P500)	(1) Hump-shaped Period (February 27 to April 13, 2020)	(2) Hump-shaped Period (February 27 to April 13, 2020)	(3) Hump-shaped Period (February 27 to April 13, 2020)	(4) Extended Period (January 21 to June 30, 2020)	(5) Extended Period (January 21 to June 30, 2020)	(6) Extended Period (January 21 to June 30, 2020)
GeoCOVID	-0.020**	-0.057***	-0.073***	-0.032***	-0.083***	-0.111***
	(-2.21)	(-3.01)	(-2.66)	(-5.68)	(-7.33)	(-6.58)
Days since outbreak	-0.001***	-0.001***	-0.003***	0.000*	0.000***	0.000**
	(-5.24)	(-4.23)	(-5.17)	(1.79)	(2.75)	(2.58)
Days since outbreak^2	0.000***	0.000***	0.000***	0.000**	0.000	0.000
	(8.66)	(7.70)	(8.56)	(2.52)	(1.54)	(0.66)
ln(GeoDensity)	-0.000	-0.001	-0.001	-0.000	-0.000	-0.000
	(-1.03)	(-1.09)	(-0.96)	(-1.16)	(-0.46)	(-0.83)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
FE	Prop type					
R Squared	0.035	0.064	0.117	0.007	0.018	0.023
Observations	5890	3040	1900	21,404	10,411	6,936
Table 6: Abnormal Returns and Non-Pharmaceutical Interventions (NPIs)

This table shows regression results on the relationship between daily abnormal returns and the growth rate of geographically weighted COVID-19 cases interacted with measures of non-pharmaceutical interventions (NPIs). The dependent variable, \(Ret \), is the 1-day, 2-day, or 3-day abnormal returns based on S&P500. \(GeoNPI \) is the percentage share of a firm’s portfolio (based on total adjusted cost) exposed to NPIs at the county level. \(Post \ NPI \) indicates that \(GeoNPI \) is greater than zero. \(GeoCOVID \) is the average of county-level daily growth rates of COVID-19 cases, weighted by the percentage of a firm’s portfolio allocated to each county at the end of 2019Q4. Control variables are the same as columns (2) in Table 2 and suppressed. See Appendix 1 for variable descriptions and Appendix 2 for descriptions of property types. The numbers in parentheses are \(t \)-statistics. Standard errors are clustered at firm level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Abnormal returns (S&P500)	(1)	(2)	(3)	(4)	(5)	(6)
\(Post \ NPI \)	0.011***	0.031***	0.043***	0.029***	0.045***	0.048***
	(3.27)	(5.04)	(4.80)	(5.84)	(4.20)	(2.98)
\(Post \ NPI \times GeoCOVID \)	0.067***	0.058**	0.078	0.150***	0.420***	0.663***
	(3.85)	(2.00)	(1.41)	(4.29)	(4.75)	(4.56)
\(GeoNPI \times GeoCOVID \)	0.078***	-0.169***	-0.239***	-0.035***	-0.116***	-0.137***
	(-9.49)	(-12.13)	(-8.50)	(-4.30)	(-6.16)	(-4.90)
\(GeoCOVID \)	0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.001***
	(-6.19)	(-4.32)	(-4.36)	(-7.95)	(-7.05)	(-8.08)
\(Days since outbreak \^2 \)	-0.000	-0.000	-0.000	-0.000**	-0.000**	-0.000
	(-0.58)	(-1.48)	(-1.10)	(-2.40)	(-2.01)	(-1.31)
\(ln(GeoDensity) \)	0.001***	0.001***	0.002***	0.001***	0.002***	0.002***
	(3.84)	(4.27)	(4.92)	(3.40)	(4.05)	(4.08)

Controls: Yes, Yes, Yes, Yes, Yes, Yes
FE: Prop type, Prop type, Prop type, Prop type, Prop type, Prop type
R Squared: 0.033, 0.083, 0.116, 0.032, 0.085, 0.099
Observations: 11,210, 5,510, 3,800, 11,210, 5,510, 3,800
This table shows the results of estimating the relation between daily abnormal returns and the growth rate of geographically weighted COVID-19 cases interacted with measures of reopenings. The dependent variable is the 1-day abnormal return based on S&P500. GeoReopen is the percentage share of a firm’s portfolio exposed to an announced reopening plan. Post Reopen indicates that GeoReopen is greater than zero. Severity (April 15) is the percent of the county population that has tested positive, weighted by the percentage of each REIT’s portfolio located in the county, measured as of April 15th. GeoNPI (April 15) is the firm’s exposure to NPIs (GeoNPI) as of April 15th. GeoNetExp is the proportion of a firm’s portfolio exposed to NPIs net of its exposure to reopenings. GeoCOVID is the average of state-level daily growth rates of COVID-19 cases, weighted by the percentage of a firm’s portfolio allocated to each state at the end of 2019Q4. Control variables are the same as columns (2) in Table 2 and suppressed. See Appendix 1 for variable descriptions and Appendix 2 for descriptions of property types. Columns (1) and (6) are based on a sample runs from January 21 to June 30, 2020. Columns (2), (3), and (5) are based on a sample runs from April 16 to June 30. Column (4) is based on a sample runs from January 21 to April 16. The numbers in parentheses are t-statistics. Standard errors are clustered at firm level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Ret (1-day)	(1)	(2)	(3)	(4)	(5)	(6)
Full Sample	After Apr 15	After Apr 15	Before Apr 15	After Apr 15	Full Sample	
Post Reopen	0.007***	0.000	0.004	-0.080***	-0.171***	-0.096***
Post Reopen × GeoCOVID	-0.014	-0.001	0.004	-0.000***	0.000***	-0.000***
GeoReopen	-0.050	-0.026	-0.005	-1.33	-0.34	-0.133
GeoReopen × GeoCOVID	-0.026	-0.002	-0.005	-1.33	-0.34	-0.133
Severity (Apr 15)	-0.045	-0.045	-0.045	-0.045	-0.045	-0.045
GeoReopen × Severity	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
GeoNPI (Apr 15)	0.004	0.004	0.004	0.004	0.004	0.004
GeoReopen × GeoNPI	0.004	0.004	0.004	0.004	0.004	0.004
GeoNetExp	0.116***	0.043	0.138***	0.116***	0.043	0.138***
GeoNetExp × GeoCOVID	0.009***	-0.003	0.003**	0.009***	-0.003	0.003**
GeoCOVID	-0.022***	-0.186***	-0.035	-0.080***	-0.171***	-0.096***
Days since outbreak	-0.000	0.000***	0.000***	-0.000***	0.000***	-0.000***
Days since outbreak²	0.000	0.000***	0.000***	0.000	0.000	0.000
ln(GeoDensity)	-0.000**	0.000	0.000	0.001***	0.000	0.000
Controls	Yes	Yes	Yes	Yes	Yes	Yes
FE	Prop type					
R Squared	0.008	0.004	0.002	0.032	0.004	0.021
Observations	21,404	10,194	10,194	11,210	10,194	21,404
Appendix 1: Variable Definitions

Variable	Source	Definition
Daily Abnormal Returns		
1-day AR	S&P Global, NAREIT	The daily abnormal returns are calculated as $R_{i,t} - \beta_i M_t$. β_i is estimated from the market model for firm i from the beginning of 2019 to January 20, 2020. $R_{i,t}$ denotes stock returns for firm i on day t. M_t denotes daily returns on either the S&P 500 index or the NAREIT All Equity Index.
2-day CAR	S&P Global, NAREIT	The non-overlapping cumulative abnormal returns from day t to $t+1$.
3-day CAR	S&P Global, NAREIT	The non-overlapping cumulative abnormal returns from day $t-1$ to $t+1$.
COVID-19 Exposure Variables		
GeoCOVID	JHU COVID-19 Global Cases, S&P Global	The COVID-19 geographic exposure of a firm, calculated as the average of county-level daily growth rates of COVID-19 cases, weighted by the percentage of the firm’s portfolio allocated to each county at the end of 2019Q4. County-level daily growth rate of confirmed COVID-19 cases in county l on day t is calculated as $\ln(1 + \#CASES_{l,t}) - \ln(1 + \#CASES_{l,t-1})$.
HighGeoCOVID	JHU COVID-19 Global Cases, S&P Global	An indicator variable that equals one if GeoCOVID for firm i on day t is in the upper quartile of the growth rates across all counties in which the firm owns any property on day t.
USCovid	JHU COVID-19 Global Cases, S&P Global	The daily growth rates of COVID-19 confirmed cases across the U.S..
GeoNPI	S&P Global	The percentage share of properties (based on total adjusted cost) of a firm’s portfolio exposed to county-level NPIs.
GeoReopen	S&P Global	The percentage share of properties (based on total adjusted cost) of a firm’s portfolio exposed to state reopenings.
GeoNetExp	S&P Global	The daily proportion of a firm’s portfolio exposed to state-level NPIs net of its exposure to reopenings.
Days since outbreak	JHU COVID-19 Global Cases, S&P Global	The number of days since the outbreak of the COVID-19 pandemic in counties where a firm owns any property at the end of 2019Q4.
Days since outbreak2	JHU COVID-19 Global Cases, S&P Global	The quadratic term of Days since outbreak.
Control Variables

Variable	Source	Description
GeoDensity	S&P Global	The average of county-level population density weighted by the percentage of the CRE portfolio allocated to each county at the end of 2019Q4. Population density is defined as the number of people per square miles.
GeoHHI	S&P Global	The Herfindahl Indexes of each firm’s property weights across the U.S. counties at the end of 2019Q4.
PropHHI	S&P Global	The Herfindahl Indexes of each firm’s property weights in each of the ten property categories, including office, industrial, retail, residential, diversified, hospitality, health care, self-storage, specialty, and technology at the end of 2019Q4.
Leverage	S&P Global	Sum of total long-term debt and debt in current liabilities divided by book value of assets at the end of 2019Q4.
Cash	S&P Global	The ratio of cash and cash equivalents to book value of assets at the end of 2019Q4.
Size	S&P Global	The book value of assets at the end of 2019Q4.
Tobin's Q	S&P Global	The ratio of the market value of equity plus the book value of debt to the book value of assets/LAG3MRET
LAG3MRET	S&P Global	Cumulative stock returns over 2019Q4 (in percentage).
InstOwn	S&P Global	The ratio of the number of shares held by institutional investors to the total number of shares outstanding at the end of 2019Q4.
Investment	S&P Global	The percentage growth rate in non-cash assets during 2019Q4.
EBITDA/AT	S&P Global	The ratio of EBITDA to book value of total assets at the end of 2019Q4.
Appendix 2: Property Type Descriptions

This Appendix summarizes REITs by property types. The classification is based on S&P Global and NAREIT.

Property Type	# Stocks	Description
Office	22	Office REITs own and manage office real estate and rent space in those properties to tenants. Those properties can range from skyscrapers to office parks. Some office REITs focus on specific types of markets, such as central business districts or suburban areas. Some emphasize specific classes of tenants, such as government agencies or biotech firms.
Industrial	14	Industrial REITs own and manage industrial facilities and rent space in those properties to tenants. Some industrial REITs focus on specific types of properties, such as warehouses and distribution centers. Industrial REITs play an important part in e-commerce and are helping to meet the rapid delivery demand.
Retail	37	Retail REITs own and manage retail real estate and rent space in those properties to tenants. Retail REITs include REITs that focus on large regional malls, outlet centers, grocery-anchored shopping centers and power centers that feature big box retailers. Net lease REITs own freestanding properties and structure their leases so that tenants pay both rent and the majority of operating expenses for a property.
Residential	15	Residential REITs own and manage various forms of residences and rent space in those properties to tenants. Residential REITs include REITs that specialize in apartment buildings, student housing, manufactured homes and single-family homes. Within those market segments, some residential REITs also focus on specific geographical markets or classes of properties.
Diversified	32	Diversified REITs own and manage a mix of property types and collect rent from tenants. For example, diversified REITs might own portfolios made up of both office and industrial properties.
Hospitality	27	Hospitality REITs own and manage hotels and resorts and rent space in those properties to guests. Hospitality REITs own different classes of hotels based on features such as the hotels’ level of service and amenities. Hospitality REITs’ properties service a wide spectrum of customers, from business travelers to vacationers.
Health Care	20	Health care REITs own and manage a variety of health care-related real estate and collect rent from tenants. Health care REITs’ property types include senior living facilities, hospitals, medical office buildings and skilled nursing facilities.
Self-storage	7	Self-storage REITs own and manage storage facilities and collect rent from customers. Self-storage REITs rent space to both individuals and businesses.
Specialty	18	Specialty REITs own and manage a unique mix of property types and collect rent from tenants. Specialty REITs own properties that do not fit within the other REIT types. Examples of properties owned by specialty REITs include movie theaters, casinos, farmland and outdoor advertising sites. This category also includes four Timber REITs which specialize in harvesting and selling timber.
Technology	6	This category includes Data Center and Infrastructure REITs. Data center REITs own and manage facilities that customers use to safely store data. Data center REITs offer a range of products and services to help keep servers and data safe, including providing uninterruptable power supplies, air-cooled chillers and physical security. Infrastructure REITs’ property types include fiber cables, wireless infrastructure, telecommunications towers and energy pipelines.

Total 198

Electronic copy available at: https://ssrn.com/abstract=3593101
Appendix 3: Market Reactions to Non-Pharmaceutical Interventions and Reopenings

This table presents summary statistics on cumulative abnormal returns (CARs). In columns (1)-(2) ((3)-(4), the announcement date for a firm is defined as the earliest date of state-of-emergency declaration (shelter-in-place orders) in any jurisdiction (city or county) in the top-3 states ranked by the size of its property holdings. In columns (5)-(6), the announcement date is defined as the earliest date of reopening in any of the top-3 states ranked by the size of its property holdings. CARs are constructed based on two event windows, including (-1,1) and (-5,5), which represent, respectively, 3-day and 11-day windows. Test statistics are reported within parenthesis. *, ** and *** denote statistical significance at the 10%, 5% and 1% levels, respectively.

Property Type	Top 3 SOE	Top 3 SIPQ	Top 3 Reopenings			
	CAR(-1,1)	CAR(-5,5)	CAR(-1,1)	CAR(-5,5)	CAR(-1,1)	CAR(-5,5)
Overall	-0.04***	-0.09***	-0.11***	-0.35***	0.06***	0.00
	(-9.22)	(-8.97)	(-7.82)	(-16.93)	(9.69)	(0.46)
Office	-0.04***	-0.07***	-0.06**	-0.25***	0.01	-0.03*
	(-4.25)	(-3.99)	(-2.61)	(-8.19)	(1.04)	(-1.74)
Industrial	-0.05***	-0.10***	-0.06**	-0.20***	0.04**	-0.01
	(-3.73)	(-2.81)	(-2.45)	(-5.43)	(2.63)	(-0.85)
Retail	-0.03***	-0.11***	-0.16***	-0.40***	0.12***	0.06***
	(-2.70)	(-3.28)	(-3.72)	(-8.52)	(8.28)	(4.44)
Residential	-0.06**	-0.04***	-0.07*	-0.29***	0.03***	-0.01
	(-3.98)	(-2.75)	(-1.81)	(-5.19)	(3.40)	(-0.70)
Diversified	-0.02**	-0.06***	-0.09***	-0.35***	0.06***	0.02**
	(-2.30)	(-3.17)	(-2.99)	(-6.66)	(4.58)	(1.91)
Hospitality	-0.06***	-0.15***	-0.10**	-0.41***	0.08***	0.01
	(-5.58)	(-6.84)	(-2.30)	(-6.18)	(4.05)	(0.63)
Health Care	-0.06***	-0.11***	-0.20***	-0.59***	0.03**	-0.05**
	(-4.29)	(-3.16)	(-3.61)	(-7.35)	(2.58)	(-2.64)
Self storage	0.00	-0.05**	-0.10***	-0.26***	0.02**	-0.06***
	0.23	(-2.02)	(-2.81)	(-3.84)	(2.45)	(-4.08)
Specialty	-0.03	-0.14***	-0.11***	-0.30***	0.02	-0.02
	-1.60	(-2.70)	(-2.67)	(-4.68)	(1.39)	(-1.02)
Technology	-0.03***	0.03***	-0.04	-0.10	0.00	0.03*
	(-3.90)	(3.46)	(-1.44)	(-1.43)	(0.03)	(1.88)