Morbidity and Mortality Pattern of Neonates Admitted to Neonatal Care Unit. Central Teaching Pediatric Hospital Baghdad

* Riyadh M Ibrahim, **Bushra Jr Hashem

www.jkmc.uobaghdad.edu.iq

ABSTRACT

Background: Neonatal period is a very vulnerable period of life due to many problems, In spite of advances in perinatal and neonatal care still, the mortality rate of neonate high especially in developing country. The World Health Organization estimates that globally four million neonatal deaths per year. Developing countries account for around 99% of the neonatal mortality in the world. In Iraq. Neonatal mortality rate about 19 per 1000 live births which represent 56% of child death below 5 years age in 2012.

Objectives The aims of the study were to determine the institutional new-born case fatality rate and the cause of admission and death in the neonatal care unit.

Method; Across-section study was carried out of the Neonatal Care Unit of Central Teaching Hospital of Pediatric in Baghdad Al-Ikrakh Health Directorate.

Result; During 2015, 1977 neonates were admitted, Mortality rate was 9%, Four main causes of death were identified; Respiratory related condition, Bacterial sepsis, premature neonate (Disorder related to short gestational and low birth weight not relayed to elsewhere classification) and congenital malformation 37.5%, 33.3%, 7.1% and 7.1% respectively. The main causes of morbidity were Neonatal jaundice, Respiratory related condition, Bacterial sepsis 37.5%, 35.2%, 14.1% respectively

Conclusions: The majority of neonatal morbidity and mortality can be prevented by appropriate interventions

Key wards; Mortality, Morbidity, Neonate

INTRODUCTION

Neonatal period (0 to 28 days of life) is the most critical period of life because of various problems/diseases, which a neonate faces. In this period, many physiological modification processes necessary for extra uterine life are formed, Thus, the neonate is very vulnerable with high rates of mortality and morbidity. Neonatal mortality rate is often used as a standard for the development of health care systems as well as achieving optimal educational and social conditions.

Neonatal mortality rate is directly associated with high risk pregnancy and therefore the major reasons for neonatal death can be revealed in relation to complications of risky pregnancy including prematurity, intrauterine growth retardation, congenital abnormalities and other disabilities. Delivery-related complications (birth injury ,birth asphyxia) have direct effect on neonate survival ,fatality and morbidity.

Therefore woman’s health, maternal and child health play substantial role in determine the neonatal fatality and morbidity. Despite a marked lowering in the U5MR in the past few years following substantial interventions like immunization, diarrhea control programs and integration management of child illness program, the neonatal death in resource poor countries is still alarmingly high. It accounts for over 40% of all deaths of children under fiveyear's age. It is estimated that 34 of every 1000 babies born in developing countries die in the first month of life. However, the decline in neonatal death in 1990–2015 has been slower than that of post-neonatal, under-five mortality (1-59 months): 47 percent, compared with 58 percent globally. This manner applies to most low- and middle-income countries.

Around two-third of infant deaths occur in the neonatal period, of which almost two-thirds die during the first week and of these two thirds die during the first 24 hours. Nearly all cases of deaths occur in low-income or middle-income countries. This happens primarily because of most child survival strategies being designed passing the new born.

Globally, the major reasons of neonatal deaths were preterm birth complications (35 per
cent), intrapartum related complications (24 per cent), and sepsis (15 per cent)(7).

In developing countries death in neonatal period accounted 50-70% of infant mortality (8). The main direct cause of death is 27% preterm birth 26% infection, 23% asphyxia, 7% congenital anomalies, 7% other, 7% tetanus, 3% diarrhea(9).

Neonatal outcome is substantial index of obstetrics and health care. It is estimated that effective implementation and high coverage of interventions could prevent up to 70% of neonatal deaths globally(10).

Neonatal mortality is broadly preventable and has been considerably reduced in developed countries using proper techniques and convenient preventive approaches (11,12). However, improved neonatal care, particularly the wide spread use of surfactant replacement and antenatal steroids, has almost halved neonatal mortality in many parts of the world (13).

In Iraq UNICEF estimated falling vital statistics (14) U5MR 53 and 34 per 1000 live births in 1990 &2012 respectively, infant mortality rate 42&28/1000live births in 1990 &2012 respectively and neonatal mortality rate 27&19/1000live births in 1990 &2012 respectively. The ministry's annual report said that total number of neonatal incubators 1682 represents 2.7 incubators per 10 children's hospital beds (15).

In Baghdad there are 4 hospital for pediatric specialty and 2 hospital Obstetric and pediatrics specialty (15).

Central teaching hospital of pediatric in alkrakh health directorate (The hospital in our study) represents the largest pediatric hospital in Iraq. It contains 400 children's beds and 24 neonatal incubators.

Case Fatality Rate; The proportion of cases of a specified condition that are fatal within a specified time (16).

Objectives

Rank the causes of admission.

To determine the institutional newborn case fatality rate.

To determine the cause of death in neonatal care unit.

To study cause of death ratio and relation between deaths as an outcome by selected explanatory variables

Method

Study design; Cross sectional descriptive study.

Setting:

Central Teaching Hospital of Pediatric in Baghdad Al-krakh directorate,.

Study sample

All neonates admitted to neonatal care unit in The Hospital during year 2015.

Data collection:

Data have been collected from hospital recording for admitted pediatric in neonatal care unit from 1/Jan./2015 to 31/Dec./2015 by using questionnaire form which has been prepared by the Statistical Department of Planning and Resource Development directorate, MOH

Data type and Organized in categories:

Gender categorized into male and female.

Age of newborn categorized into :At birth (one day), First week of life, 2nd to 4th week of life& ->28 days.

Multiple pregnancy was categorized into single and twins.

Type of delivery categorized into; Normal vaginal delivery, Cesarean section & Assisted vaginal delivery (instrumental).

Age of mother years categorized into; <20, 20-29 & 30- 39.

Neonate weight (gm)-categorized into; extremely low neonate weight (<1500), Low neonate weight (1500-2499), Acceptable (2500-4000) & Macrosomia (>4000).

Duration of hospital stay categorized into; Discharged on the same day, 1 – 5 days, 6-10 days &>11 days.

Cause of admission; the diagnosis recorded in hospital table which had sent to MOH was used and categorized according to ICD10.

Outcome of newborn in analysis.

The outcome was categorized into well and death, and excluding records newborns whose referral to other hospital and newborns discharge on parent responsibility.

Cause of death use same method in categorizing the cause of admission.

Gestational time was excluded because its recording unreliable.

Data analysis

Computerize data which were collected by IBM ver. 21 SPSS programs then analyzed the data compared statistically using a (chi square test and Z-test were used for data analysis according to type of variables, P-
value of less than 0.05 Considered statistically significant.

Results:
The result presented in this study based on analysis of a total 1977 neonates admitted to hospital during the year 2015
As shown in table (1) Frequency of admitted male 59.6 % higher than female neonate 40.4%.
The single delivery neonates represent 98.2%of admitted neonates, On type of delivery normal vaginal delivery, caesarean section and assisted vaginal were counted 45.6%, 54.2%and 0.2% respectively, Neonates had born from mother's age 20-29 years and 30-39 years were 78.3% and 20.5% from admitted neonate respectively, Duration of time that neonates stayed in hospital more than one day to five days about 61% of total neonates and 18% of neonates stayed 6-10 days, Neonatal at age one week represent 43% of neonates in hospital and 17% of neonates at age one day and this consisted 60% of total neonates in hospital.

Table (2) Demonstrated the causes of admission in NCU , Neonatal jaundice ,Respiratory conditions ,Infection/sepsis, Premature(Disorders related to short stature and low birth weight not elsewhere classified), and Bleeding problems were form 37.5%,35.2%, 14.1%,2.3%,and 2.1% respectively from total admitted neonates.

Table (3and 4) show Proportion of neonatal death which represent institutional case fatality rate was 9% of all admitted neonate and causes of death ratio ranking from more frequency which were Respiratory conditions ,Infection/sepsis, congenital malformation, Premature(Disorders related to short stature and low birth weight not elsewhere classified) form 37.5 ,33.3,7.1,7.1 respectively to lower blood /bleeding problems and miscellaneous form 1.2% and 0.6% respectively from all mortality neonates

Table (5) demonstrated the case fatality rate for specific cause of admission with statistical analysis (P value, by used Z test). Show the risk of dying was highest for cardiac condition (80%) from all neonates were admitted by cardiac condition, Coming next in risk of death was congenital malformation with case fatality rate of 37.5% then Disorders related to short stature and low birth weight not elsewhere classified 27.9%.

Table (6) show the case fatality rate by selected explanatory variables with statistical analysis (P value, by used chi square test) which revealed Neonatal weight, Duration of staying the neonate in hospital and Neonatal age had a statistically significant association with case fatality rate which explained that low neonatal weight, neonate discharge on the same day and age neonate admitted at birth had case fatality rate 10%, 22.2%, 12.3% respectively
Table 1: Frequency distribution of the study sample by socio-demographic variables

Gender	N	%	Multiple pregnancy	N	%
Male	1179	59.6	Single	1942	98.2
Female	798	40.4	Twins	35	1.8
Total	1977	100	Total	1977	100

Type of delivery	N	%	Age of mother years-categories	N	%
Normal vaginal delivery	902	45.6	<20	23	1.2
Caesarean section	1071	54.2	20-29	1548	78.3
Assisted vaginal delivery (instrumental)	4	0.2	30-39	406	20.5
Total	1977	100	Total	1977	100

Neonate weight (gm)-categories	N	%	Duration of hospital stay	N	%
Extremely low weight (<1500)	15	0.8	Discharged on the same day	219	11.1
Low weight (1500-2499)	1476	74.7	1-5 days	1214	61.4
Acceptable (2500-4000)	481	24.3	6-10 days	359	18.2
Macrosomia (>4000)	5	0.3	11+ days	185	9.4
Total	1977	100	Total	1977	100

Newborn's age at admission (categories)	N	%	(>28 days infant admitted in NCU because of low weight)
At birth	341	17.2	
First week of life	855	43.2	
2nd to 4th week of life	757	38.3	
>28 days	24	1.2	
Total	1977	100	

Table 2: Relative frequency for selected categories of cause of admission.

Cause of admission	N	%
Neonatal jaundice (P59)	742	37.5
Respiratory conditions (P21, P22, P23)	695	35.2
Infection/sepsis (P36)	278	14.1
Disorders related to short stature and low birth weight not elsewhere classified (P07)	45	2.3
Blood and bleeding problems (D64, P61.9, P53)	41	2.1
Congenital malformations/chromosomal abnormalities (P91, Q00-Q99)	40	2
Renal conditions (UTI, renal failure) (P96, P39)	37	1.9
GIT problems/symptoms (A09, P76, P92.0)	38	1.9
Others (miscellaneous) (P71, R69, M00)	19	1
The causes of neonatal morbidity that lead to admission in NCU arranged from more frequencies to lower.

Table 3: The case fatality rate in the total sample

Cause of death	N	%
Respiratory conditions (P21, P22, P23)	63	37.5
Infection/sepsis (P36)	56	33.3
Congenital malformations/chromosomal abnormalities (Q00-99)	12	7.1
Disorders related to short stature and low birth weight not elsewhere classified (P07)	12	7.1
Renal conditions (P96, P39)	8	4.8
Neonatal jaundice (P59)	8	4.8
Cardiovascular conditions (P29)	4	2.4
GIT problems/symptoms (A09, P76, P92.0)	2	1.2
Blood and bleeding problems (D64, P61.9, P53)	2	1.2
Others (miscellaneous) (P71, R69, M00)	1	0.6
Total	168	100

The rate of death was 9% out of the total sample size of 1977 neonates was admitted in NCU.

Table 4: Cause of death ratio
Table 5: The relative frequency of death as an outcome by category of causes of admission.
Case fatality rates according to causes of admission which reflect the risk of dying depended on causes of admission arranged from high risk to low. P (z test) for difference between the proportion dying in a specific cause of death and a hypothesized proportion of 9% (the overall proportion dying in the total sample).

Cause of admission	Well	Death	Total	P (z test)**			
N	%	N	%	N	%		
Cardiovascular conditions (P29)	1	20	4	80	5	100	<0.001
Congenital malformations/chromosomal abnormalities (Q00-99)	20	62.5	12	37.5	32	100	<0.001
Disorders related to short stature and low birth weight not elsewhere classified (P07)	31	72.1	12	27.9	43	100	<0.001
Renal conditions (UTI, renal failure) (P96, P39)	28	77.8	8	22.2	36	100	0.005
Infection/sepsis (P36)	204	78.5	56	21.5	260	100	<0.001
Respiratory conditions (P21, P22, P23)	603	90.5	63	9.5	666	100	0.65[NS]
GIT problems/symptoms (A09, P76, P92.0)	31	93.9	2	6.1	33	100	0.56[NS]
Others (miscellaneous) (P71, R69, M00)	16	94.1	1	5.9	17	100	0.66[NS]
Blood and bleeding problems (D64, P61.9, P53)	36	94.7	2	5.3	38	100	0.43[NS]
Neonatal jaundice (P59)	691	98.9	8	1.1	699	100	<0.001
CNS conditions/symptoms (convulsion-meningitis) (G40, P90, A87.8, P91.6)	8	100	0	0	8	100	0.37[NS]
Trauma P15	3	100	0	0	3	100	0.59[NS]
PUO (P81.9)	6	100	0	0	6	100	0.44[NS]
Endocrine diseases/symptoms (P72)	7	100	0	0	7	100	0.41[NS]
Symptomatic labels (E64, P28.2, L20.9, P74.1)	8	100	0	0	8	100	0.37[NS]

Cause of admission
Table 6: The case fatality rate by selected explanatory variables

	Death as an outcome	P (Chi-square)	
	Well N %	Death N %	Total N %
Age of mother years-categories			
<20	19 90.5 2 9.5 21 100	0.299 [NS]	
20-29	1336 91.5 124 8.5 1460 100		
30-39	338 88.9 42 11.1 380 100		
neonatal weight (gm)-categories			
Extremely low neonatal weight (<1500)	12 92.3 1 7.7 13 100	0.028	
Low neonatal weight (1500-2499)	1264 90 141 10 1405 100		
Acceptable/macrosomia (2500+)	417 94.1 26 5.9 443 100		
Duration of hospital stay			<0.001
Discharged on the same day	147 77.8 42 22.2 189 100		
1-5 days	1062 92.2 90 7.8 1152 100		
6-10 days	318 93 24 7 342 100		
11+ days	166 93.3 12 6.7 178 100		
Newborn’s age at admission (categories)		0.009	
At birth	279 87.7 39 12.3 318 100		
First week of life	741 92.9 57 7.1 798 100		
2nd to 4th week of life	654 90.7 67 9.3 721 100		
>28 days	19 79.2 5 20.8 24 100		
Multiple pregnancy(state of pregnancy)		0.542[NS]	
Single	1663 91.0 164 9.0 1827 100.0		
Twins	30 88.2 4 11.8 34 100.0		
Type of delivery			0.165[NS]
Normal vaginal delivery	762 90.0 85 10.0 847 100.0		
Caesarean section/assissted delivery	931 91.8 83 8.2 1014 100.0		
Gender.			0.295*
male	1014 91.3 97 8.7 1111 100		
Female	679 90.5 71 9.5 750 100		
The case fatality rate by selective socio-demographic variable which represent the secondary risky causes of death, , P (Chi-square) for difference between the proportion dying in a specific cause of death and a hypothesized proportion of 9% (the overall proportion dying in the total sample).

DISCUSSION

Corrected data on the morbidity and mortality are helpful for many reasons. It is important for the providers of primary and secondary health care, investigators, local and national health administrators, and for decision makers to design interventions for prevention and treatment and to implement and evaluate health care programs.

Studying neonatal morbidity and mortality is of important at the level of strategic health planning. For example prematurity was the second leading cause of hospital admission for neonates in 2004. Ten years later this problem moved down the top the top 4 cases of admission. Targeting specific important causes of neonatal morbidity allowed other less important causes to climb up the list.

Study sample by socio-demographic variables. The admissions of male babies (59.6%) were more than those of females; this may be related to the predilection for the male child in the society and the biological vulnerability of the males to infection. The male overbalance for admissions has been documented in previous studies.

Our study showed that 98.2% of the sample was singleton delivery. It was recorded in USA that one twin was born for every 30 single infants born 2009. The current study found that neonate delivered by caesarean section admission to hospital (54.2%) more than normal vaginal delivery. This is similar to a study in USA at 2007, which showed that about two thirds of admitted neonates were caesarean section.

As large as 78.3% of admitted baby had mothers aged 20 -29 years, women at this age are more fertile. This agrees with a study by Asma A Aljawadi in 2003 in Iraq which showed that more than half (55.6%) of pregnant women had presented at age of twenties. Most admitted neonates (74.7%) were of low weight; this is similar to many studies which considered the weight of neonate as a risk factor for many diseases. Low neonatal weight may be related to low socio-economic status and poor, maternal health condition. It is often used as indicator of quality for the maternal care facilities. The relation between age of neonate and the morbidity showed that neonate admission at birth (first day) and at first week of life is more than other ages (17.2% and 43.2% respectively). This is because neonate at this age is biologically vulnerable. Many studies agree with the previous argument. In Pakistan 44% of neonates were admitted at first day of age.

Study cause of admission in the hospital; The first three primary causes of admission were Neonatal jaundice, Respiratory condition, Infection /Sepsis. These represent more than 86% of admissions. Study in India in year 2014 reported respiratory condition, sepsis, encephalitis, neonatal jaundice (arranged from high to low). Another study in Pakistan offered other causes of neonatal admission including prematurity, sepsis, respiratory condition, neonatal jaundice (form higher percentages).

These two studies share in common respiratory conditions and sepsis as leading causes of neonatal admission similar to our study. This difference observed reflected the neonatal care, maternal education and antenatal care in community. In present study the admissions related to respiratory condition were divided in to three causes respiratory distress, pneumonia, birth asphyxia which represent 20%, 10% and 2% respectively. Each one of these has specific risk factors. Respiratory distress syndrome was considered the first cause of admission in many hospitals, research done by C.Dani and The Italian Group of Neonatal Pneumology as well found the risk factor like birth weight, maternal age, gestational age, emergence caesarean section and male gender.

In case of bacterial sepsis which occupied the first or second cause of admission in numerous hospital the risk factors related to delivery complication and socio economic factor. The case fatality rate in the total sample; Population studies showed that NMR in Iraq declined as estimated by WHO from 27.1 neonatal death per 1000 birth in 1990 to 18.4 neonatal death per 1000 birth in 2015.
comparison the NMR with neighboring countries such as Saudi Arabia, Jordan, Egypt and Syria showed that Iraq had highest NMR for 2015\(^{(20)}\). Despite the fact that some of these countries have economic income less than Iraq, especially Egypt. If we compared with developed countries such as UK and the USA showed a big difference, is observed. There is a great variation in neonatal fatality statistics between Neonatal care units from different parts of the world. This variation probably reflects the difference in the level of civilization in population, antenatal care, admission criteria, specific exclusion & inclusion criteria and level of neonatal care. Using mortality statistics for the hospital admission neonate's one can see that

The case fatality rate for hospitalized neonatal in current study was 9% from total neonatal admission, this figure was higher than hospital fatality rate reported in Canada, Pakistan & Brazil in 2015 \((\text{4\%, 7\% & 6\% respectively})\) \(^{30,31}\) on the other hand this figure was much lower than study in neonatal care unit in Baghdad teaching pediatric hospital ,medical city ,\((15\% \text{ in 2007 and 19.2\% in 2009})\) \(^{32}\)

Cause of death ratio in the total sample. The current study showed that respiratory condition, infection sepsis, congenital malformation, disorders related to short stature and low birth weight were the leading causes of death, \((37.5\%, 33.3\%, 7.1\% \text{ and 7.1\%})\) respectively which represent 85% of all death. This was in concordance with national death \(^{(15)}\) reported by Iraq MOH annually report. Except for sepsis that occupied the second reason instate of third in general population. The current study showed results similar to a study in 2010 in Baghdad pediatric teaching hospital ,medical city, that revealed the cause of death among 2007, 2008 and 2009 were respiratory condition, congenital malformation, sepsis, 62%, 17%, 22.2% respectively \(^{(32)}\) Infection (sepsis). It represented the second cause of death in current study (33.3%). This agrees with WHO estimation that more than 1/3 of estimated 4 million neonatal deaths each year around world are caused by severe infection \(^{(9)}\). The present study showed that disorders related to short gestation and low birth weight not elsewhere classified as primary cause of death constituted 7.1% of all death in hospital. This figure is lower than globally estimated (28% \(^{(9)}\)). It is also lower than study in India (41%) \(^{(33)}\). This study showed that neonatal death due to Congenital malformations& deformations and chromosomal abnormalities constituted 7.1% all death in hospital, which is lower than study in 2010 by Numan N. Hameed Baraa N,\(^{(32)}\) which reported proportioned mortality ratio of 18.4%,14.2%, 19.5%, at years 2007, 2008,2009 respectively. It was also lower than that reported by study in India 12% \(^{(33)}\), but it was similar to global estimated that recorded 7% in 2004\(^{(2)}\).

Specific case fatality rate by cause of admission;

In current study showed the highest case fatality rate was associated cardiovascular neonatal 80% from all cardiac neonatal admitted. This fatality was significantly higher than that recorded for the overall cases admitted neonate of 9%. This reflects the capability of hospital to deal such difficult condition this agrees with a study by Wren C\(^{(34)}\) which showed that 10 - 20% of all neonates with cardiac malformations, corresponding to 1-2 per 1000 newborns, have a cardiac defect that if undetected may cause circulatory collapse and death during the neonatal period and 30% of cases were not diagnosed before death.

The case fatality rate attributed to congenital malformation is equal to 37.5% which was significantly higher than the average case fatality rate for an admitted neonate of 9%. It was lower in a study in Northern Tanzania, 2010 that recorded a case fatality rate of 44.1%. \(^{(35)}\) This difference may be related in type of congenital malformation which includes wide variety of diseases. The case fatality of sepsis was 21.5% which was significantly higher than the average case fatality rate for an admitted neonate of 9%. This agree with WHO \(^{(9)}\) which suggested that the chances of survival are weak for newborns with a serious infection.

Controlling on neonatal infection can serve as a powerful tool to reduce neonatal mortality since sepsis is both preventable and treatable. Our study revealed that disorders related to short stature and low birth weight not elsewhere classified was associated with a case fatality rate 27.9% which was significantly higher than the average case fatality rate for an admitted neonate of 9%. This finding was similar to that a study by
Northern Tanzania in 2010 that recorded a case fatality rate of 22.4% \(^{35}\). Relation between deaths as an outcome by selected explanatory variables (case fatality rate) which act as risk factors. Regarding death with neonatal weight as risk factor in our study it was shown that 7.7% and 10% of extremely low neonatal weight and low neonatal weight respectively ended in death as an outcome. This agree by study presented by Nayeri F Risk factors for neonatal mortality among very low weight neonate indicated that each 250 g weight increase up had protective effect, and reduced mortality rate. And survival rate was calculated to be 80.4% for neonates weighing more than 1000 g \(^{35}\). In current study the case fatality rate at the youngest age of one day was highest 12.3% compared to other ages (9.3% at the fourth week of life) This agree by many studies showed early age neonatal death more than late age neonatal death \(^{36}\).

CONCLUSION

1- The case fatality rate in total admitted neonates during 2015 was 9%.
2- The main causes of admission were Neonatal jaundice, Respiratory condition and Infection /Sepsis which composed more than 86% of admission.
3- The two most important causes of death were Respiratory condition and Infection / Sepsis that form about three quarter of all deaths.
4- The low weight of neonates, discharging the neonates on same days (which represent the severity) and age of neonates less than week were more likely to die than others
5- Neonates admitted because cardiac condition and congenital malformation had higher case fatality rate.
6- The majority of morbidities and subsequently the mortalities can be prevented by improving antenatal care, maternal health, timely intervention, referring at appropriate time to tertiary care centers for high risk cases, preventing preterm deliveries, and care of neonates at centers with proper facilities.

References

1- Carl Ahrendt Scherer, Text book of Pediatrics 2nd Edition, Amazon Parthasarathy; 2002 p42 – 73
2- Kliegman R,Walde E Nelson: Nelson Textbook of Pediatrics:. 19th Edition; Philadelphia;Elsevier/Saunders; 2011,P332-646
3- Mangiaterra V, Matteo M, Dunkelberg E Why and how to invest in neonatal health. Fetal Neonatal Med (2006); 11: 37-47.
4- Luo ZC, Liu S, Wilkins R, Kramer MS. Infant Health Study. Group of the Canadian Perinatal Surveillance , Fetal. Risks of stillbirth and early neonatal death by day of week. CMAJ. 2004;170(3):337-41
5- Yu VY. Global, regional and national perinatal and neonatal mortality. J Perinat Med. 2003;31(5):376-9.
6- WHO.UNICEF mortality/neonatal.html#sthash.U7au02Q0.2013 available from http://data.unicef.org/child.
7- Tariq P, Kundi Z. Analysis of high-risk infant births and their mortality: ten years' data from chonnam national university hospital. J Pakistan Med Assoc. 1999; 49:56–9.
8- Kingerberg .c. Olomi R, Orek. M, Sam ;N. Neonatal morbidity & mortality in Tanzanian tertiary care referral hospital Annal of tropical pediatrics International child health 2004 ;23(4):293-299.
9- Lawn JE, et al. 4 million neonatal death: when? Where? Why? Lancet 5 March 2005 ;365(9462): 891-900
10- Fauveau V. New indicator of quality of emergency obstetric and newborn care. Lancet(2007) 370: 1310
11- Mandy GT. Incidence and mortality of the premature infant. Up-to-date; 2015; Available from: www.uptodate.com.
12- Hadavi M, Alidalaki S, Abedininejad M, Akhvan S. Etiologies and contributing factors of prenatal mortality: a report from southeast of Iran. Taiwan J Obstetric Gynecol. 20115:0(2):145–8.
13- King JF, Warren RA. The role of reviews of perinatal deaths. Seminar Fetal Neonatal Med 2006;11(2):79-87.
14- UNICEF/WHO/The World Bank/UN Pop Div. Levels and Trends in Child Mortality: Report 2013
15- Republic of Iraq, MOH, Directorate of planning and resources development. Annual statistical report: 2013 P 100-133.
16- Miquel porta .ADICTONARY of EPIDEMIOLOGY, Fifth edition , Oxford university press;2008.page 32.
17- Raghvendra Narayan, A study of the pattern of admissions and outcome in a neonatal intensive care unit at high altitude Sri Lanka Journal of Child Health, 2012: 41(2): 79-81.
18- Tariq P, Kundi Z. Determinants of neonatal mortality. J Pak Med Assoc. 1999; 49: 56-60.
19- Arafa MA, Alshehri MA. Predictors of neonatal mortality in the intensive care unit in Abha, Saudi Arabia. Saudi Med J. 2003; 24: 1374–1376.

20- National Central for health statistic USA brief from journal 2012

21- Allen VM, O’Connel CM, Jangaard KA. Neonatal outcomes with cesarean delivery at term. Arch Dis Child Fetal Neonatal Ed U.S.A: 2008. 93(3): F176–82.

22- Asma A Al-Jawadi, Hajer H Al-Deen., EPIDEMIOLOGICAL SURVEILLANCE INDICATORS FOR MATERNAL AND NEONATAL HEALTH , The Medical Journal of Basrah University. 2005, V:23, issue:1, P8-12

23- Rashid M, Rasul H, Hafiz M. Neonatal mortality: a scenario in a tertiary level hospital of a developing country. Pediatr. Rep. 2010 June 18; 2(1): e9.

24- Tamil Selvan1, MayiGowda ,et al.Neonatal care unit outcome in low resource hospital, International journal of medical and applied sciences. India, Volume 4, Issue 2, 2015 E-ISSN: 2320-3137

25- Jehan I, Harris H, Salat S . Neonatal mortality, risk factors and causes: a prospective population-based cohort study in urban Pakistan. Bull World Health Organ. 2009 Feb.; 87(2): 130–138.

26- Choudhury AM, Nargis S, Mollah AH, Kabir LM, Sarkar RN. Determination of risk factors of neonatal pneumonia. Mymensingh Med J. 2010 Jul; 19(3):323.

27- C. Dani and The Italian Group of Neonatal Pneumology Risk factors for the development of respiratory distress syndrome and transient tachypnea in newborn infants European respiratory journal July 1999. 14: 155-159

28- AdeoluAA, RufalA. Pattern of death in a Nigerian teaching hospital: 3 decade analysis. Afr Health Sci. 2010 Sep;10(3):266-72.

29- WHO/the World Bank/UN Pop Div. Levels and Trends in Child Mortality. Report 2016.

30- Veena Prasad,et.Cause of morbidity and mortality in neonate admitted in government medical collage ultrakhand .India , journal of pharmaceutical and medical, 2011: ISSN No 2230.

31- Kasirye-Bainda E, Musoke FN. Neonatal morbidity and mortality at Kenyatta National Hospital newborn unit. East Afr Med J. 1992; 69: 360-365.

32- Numan N. Hameed,Baraa N. Abed.Descriptive et al Study of Neonatal Death in Neonatal Care Unit of Baghdad Teaching Hospital / Medical city / Baghdad (2007-2009) J Fac. Med. Baghdad vol. 45, No. 3, 2012

33- V Sridhar1, P S Thammanna2, M Sandee,Morbidity Pattern and Hospital Outcome of Neonates Admitted in a Tertiary Care Teaching Hospital, MandyadOI 2015: 10.17354/fjss/407.

34- Wren C, Reinhardt Z, Khawaja K. Twenty-year trends in diagnosis of life threatening neonatal cardiovascular malformations. Arch Dis Child Fetal Neonatal Ed 2008;93:F33e 5.

35- Nayeri F, Risk factors for neonatal mortality among very low weight neonate Acta med Iran 2013 May 30;51(5):297-302

36- Fanaroff AA, Walsh MC, eds. Fanaroff and Martin's Neonatal-Perinatal Medicine Diseases of the Fetus and Infant. 10th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 100

Abbreviation

ICD 10	The 10th revision of the International Classification of Diseases and Related Health Problems.
LBW	Low Birth Weight.
MDGs	Millennium Development Goals.
MOH	Ministry Of Health.
NCU	Neonatal Care Unit
NMR	Neonatal mortality rate
RDS	Respiratory distress syndrome.
UNICEF	United Nations International Children's Emergency Fund.
USMR	Under five year's mortality rate
WHO	World Health Organization.

www.jkmc.uobaghdad.edu.iq 48 Al-kindy College Medical Journal 2020:16 No.1