A low-cost and highly efficient method of reducing coolant leakage for direct metal printed injection mold with cooling channels using optimum heat treatment process procedures

Chil-Chyuan Kuo1,2 · Shao-Xuan Qiu1 · Xin-Yi Yang3

Received: 10 March 2021 / Accepted: 20 May 2021 / Published online: 26 May 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Metal additive manufacturing (MAM) provides lots of benefits and potentials in manufacturing molds or dies with sophisticated conformal cooling channels. It is known that the conformal cooling technology provides effective cooling to reduce cycle time for increasing productivity. Ordinarily, mold inserts fabricated by general printing procedures will result in coolant leakage in the injection molding process. The yield in the manufacturing of fully dense injection molding tools was limited to the very narrow working widow. In addition, high costs of fully dense injection mold fabricated by MAM constitute the major obstacle to its application in the mold or die industry. In general, the high cost of MAM is approximately 50–70% more expensive than conventional computer numerical control machining. In this study, a low-cost and highly efficient method of reducing coolant leakage for direct metal printed injection mold with cooling channels was proposed. This new method employs general process parameters to manufacture the green injection mold rapidly and then uses optimum heat treatment (HT) procedures to improve microstructure of the green injection mold. The results of this study revealed that optimum HT procedures can prevent coolant leakage and save manufacturing time of the injection mold fabricated by direct metal laser sintering. The evolution mechanisms of microstructure were investigated experimentally. The saving in the injection mold manufacture time about 67% can be obtained using the general process parameters.

Keywords Metal additive manufacturing · Injection molding tools · Heat treatment · Coolant leakage · Cooling channel

1 Introduction
In the industry, the productivity is a key issue for large-volume production since it is closely related to the cooling time of the injection-molded parts. To decrease the cooling time, the conformal cooling channel (CCC) [1] was employed in the molds or dies. Some additive manufacturing (AM) technologies [2–8], including fused filament fabrication, direct metal laser sintering (DMLS) [9], vacuum diffusion bonding [10], selective laser sintering [11, 12], selective laser melting [13], or selective electron beam melting [14], were widely employed to manufacture physical models, microchannels, molds, or dies with CCC in the industry. DMLS process can fabricate an injection mold with shape and internal structure using a continuous-wave fiber laser to sinter metal powders according to a computer-aided design file [15]. Some distinct properties such as heat dissipation rate [16], stiffness-to-weight ratio [17], or energy absorption capability [18] can be obtained by the cellular structures inside the molds [19, 20], dies [21], or metal components produced by DMLS technique to solve challenging industrial problems. Attarzadeh et al. [22] did the research to correlate the DMLS process procedures with the surface roughness of components produced with DMLS. It was found that achieving a minimum line roughness at a reasonable fractional density is approximately equivalent to achieving the maximum fractional density. Contaldi et al. [23] carried out experiments to investigate...
the effect of powder reuse for two kinds of precipitation hardening stainless steel. Results showed the knowledge about the effect of powder reuse with regard to stainless steels, demonstrating the possibility to reuse the excess metal powder in powder bed fusion processes. It was found that no significant variation was observed for martensitic. Kundu et al. [24] fabricated titanium nitride–reinforced Ti6Al4V alloy-based metal matrix composites under an argon atmosphere using fiber laser. It was found that the microhardness measured by Vickers test was improved from 388 to 590 HV with an increase in the volume percentage of TiN. AlMangour et al. [25] conducted the experiments to investigate the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and transmission electron microscopy. It was found that the microstructures and properties of 17-4 stainless steel specimens fabricated by DMLS vary significantly from those of specimens produced by conventional methods. Alafaghani et al. [26] investigated the effect of manufacturing procedures on the microstructure and mechanical properties of metal laser sintering parts of precipitate hardenable metals. It was found that 15-5PH and IN718 produced using DMLS can be used in applications with elevated environmental temperatures, as there was no observable permanent change in the microstructure. Mazzarisi et al. [27] proposed a phenomenological model for forecasting three main process parameters such as laser power, powder feed rate, and translation speed and suggested the best ranges of the process parameter exponents for establishing the most suitable combined parameters to predict geometric characteristics of the clad. It was found that new formulations are in good agreement with the behaviors defined in the literature.

Metal additive manufacturing (MAM) [28–30] has drawn much attention since it can manufacture molds, dies, or functional components rapidly for design evaluation. In general, an injection mold fabricated by general process parameters will result in coolant leakage in the injection molding process. However, fabrication of a high-density injection mold with CCC is a time-consuming process. According to practical experience, the success rate of using DMLS process to produce high-density injection molding molds with complex CCC is relatively low since the process control during the DMLS process needs to be manipulated carefully. In the preliminary study, the failed direct metal printed injection molds are shown in the Fig. 1. The total number of slicing layers of the injection mold with CCC is 560. The first case is that the roller collides the sintered agglomerates appeared on the surface of the injection mold when the injection mold with CCC was printed to 439 layers. This collision activates the safety device and the machine was stopped immediately, resulting in the injection mold making failure. The second case is that the sintered agglomerates on the roller collides with the injection mold surface and scratches when the injection mold with CCC was printed to 97 layers. This collision also activates the safety device and the machine was stopped immediately, resulting in the injection mold making failure. According to the practical experiences, two disadvantages were found when a high-density injection mold with CCC was fabricated by DMLS. First, it is a time-consuming process. Second, the success rate is relatively low. Therefore, the development of a high-yield process for producing high-density injection molding molds with complex CCC is an important research issue. In this study, a cost-effective method of reducing coolant leakage for injection mold produced with DMLS was proposed. The injection mold with CCC was produced by general process procedures to reduce the failure rate and the injection mold was processed by the post-heat treatment (HT) [31–33] to increase both the densification and mechanical properties for reducing coolant leakage during the injection molding process. The cooling time of the injection-molded part, transit mold temperature history, transit part temperature history, and warpage of the injection-molded part were numerically examined using the molding simulation software. The recrystallization mechanism of reducing coolant leakage for direct metal printed injection mold with CCC was proposed.

2 Experiment

The three-dimensional computer-aided design (CAD) models of part and CCC were imported from an Creo parametric 3D modeling software to Moldex3D simulation software (R14 SP3 OR, CoreTech System Inc.) via a data exchange STEP format for investigating the cooling time of the injection-molded part, transit mold temperature history, transit part temperature history, and warpage of the injection-molded part. The process procedures for the simulation include the filling time of 2 s , injection pressure of 0.06 MPa, mold temperature of 25 °C, melt temperature of 99 °C, room temperature of 22 °C , coolant temperatures of 25 °C, coolant flow rate of 130 cc/s, and an ejection temperature of 30 °C. As can be seen in Fig. 2, there are three key aspects to be addressed. This study focuses mainly on the optimum HT process procedures. The injection mold with CCC was designed and fabricated to evaluate the amount of water leakage during cooling stage. The test specimens of HT were designed and fabricated to investigate the optimum HT process procedures for fabricating the injection mold with CC. The optimum HT process procedures were proposed based on both mechanical properties and the amount of coolant leakage. Finally, the recrystallization mechanism of reducing coolant leakage was proposed. In this study, the maraging stainless steel (MSS) powder (LaserForm Inc.) was used to fabricate injection molds using a DMLS technology (ProX 100, 3D System Inc.), which equips with an optical-path transmission system, a scanning galvanometer mirror, a Q-switched ytterbium doped yttrium aluminum garnet [34–36] (Yb:YAG) 50-W fiber laser (λ =
1070 nm), and a f-theta lens. The system has a building volume of 100 mm × 100 mm × 80 mm. Figure 3 shows the field emission scanning electron microscopy (FE-SEM) (JEC3000-FC, JEOL Inc.) and EDS (scanning electron microscopy) (D8 ADVANCE, Bruker Inc.) images of the MSS powder. The chemical compositions of MSS powder involve 62.51% Fe, 16.27% Ni, 11.75% Co, and 4.61% Mo. The average powder particle size is approximately 13 μm. The injection mold with CCC was produced by general process parameters including hatching space of 100 μm, layer thickness of 50 μm, laser power of 40 W, and scanning speed of 240 mm/s. The microstructures of the test specimen before and after HT were examined by FE-SEM and XRD. The process parameters for fabricating high densification injection mold include hatching space of 60 μm, layer thickness of 30 μm, laser power of 50 W, and scanning speed of 200 mm/s.

Figure 4 shows the CAD model and dimensions of the heat treatment test specimen. The test piece is cylindrical with a diameter and height of 20 mm. Figure 5 shows the CAD model and dimensions of the test mold with CC. The length, width, and height of the mold are 28 mm, 26 mm, and 16 mm, respectively. The diameter of the CC is 4 mm. Figure 6 shows the CAD model and dimensions of the injection-molded product. The injection-molded product is a pipe cap used in investment casting. The outer diameter, height, and thickness of the wax pattern are 23 mm, 15 mm, and 1 mm, respectively. Figure 7 shows the CAD model and dimensions of the injection mold with CCC. The length, width, and height of the core insert are 62 mm, 62 mm, and 31 mm, respectively. The length, width, and height of the cavity insert are 62 mm, 62 mm, and 27 mm, respectively. The diameter of the CC is 4 mm and the center distance with respect to mold cavity is 6 mm.

In this study, the wax (K512, Kato Inc.) was used as molding materials to fabricate wax patterns through a low-pressure wax injection molding machine (0660, W&W Inc.).
characteristics of the molding material are depicted in the Fig. 8. The low-pressure injection molding process parameters involve injection pressure of 0.06 MPa and wax melting temperature of 99 °C. To evaluate the cooling performance of the injection mold with and without CCC, a system composed of a temperature controller (JCM-33A, Shinko Inc.) and
a thermo-electric cooler (TEC12706AJ, Caijia Inc.), and a temperature controller (JCM-33A, Shinko Inc.), and three k-type thermocouples [41–43] (C071009-079, Cheng Tay Inc.) was developed. Figure 9 shows the experimental setup for investigating the cooling performance of the injection mold with and without CCC. The inlet coolant temperature was kept at room temperature. The thermocouples were placed in the wax injection molds for on-line monitoring the temperature history of the wax patterns. In-mold process data was collected using a data acquisition system [44] (MRD-8002L, IDEA System Inc.). This data included continuous time-based data from thermocouples. Data was recorded at a sampling rate of one sample per second. To investigate the surface hardness of the test specimens after different HT procedures, the Vickers hardness tester [45] was used in this study. The number of samples for the surface hardness of each test specimens is 50. Five data of the maximum value and the minimum value are removed. The average surface hardness of the test specimens was calculated based on the remaining 40 data.

3 Results and discussion

The 3D simulation models were firstly imported from CAD software to the simulation software through a data exchanges STEP format. The 3D solid mesh involves four different kinds of meshes, including prism, tetra, pyramid, and hexahedron. The number of nodes for tetra, pyramid, and hexahedron are 4, 5, and 6, respectively. In this study, the simulation models are composed of meshed with pyramid, tetrahedron, and hexahedron. Figure 10 shows the mesh sections of the injection mold, conformal cooling channels, and injection-molded parts. To ensure the accuracy of simulation results, the boundary layer mesh (BLM) was employed in this study since it is suitable for
models with complex geometries. Generally, the higher the number of meshes stands for, the longer the computing time of the simulation. In particular, the cooling time of the injection-molded part reaches the steady state when the mesh element counts of exceeding 400,000. Thus, the mesh element count of 400,000 seems to be the optimal number of meshes based on both the correctness of the cooling time and the computing time of the simulation. The simulation model include injection-molded part, CCC, mold base, and runner. The number of elements and nodes are 53,018, 68,008, 261,604, and 8000, respectively. The total elements and nodes are approximately 39,063. The average edge length is about 0.4 mm.

In the injection molding simulation, the melt front time (MFT) result showed the position of melt front with respect to time during the filling stage. Optimization of MFT provides the balanced flow contribution of each gate. The wax injection molding process includes three stages: filling, cooling, and ejection stage. Figure 11 shows the simulation results of the filling of the molded part at the end of filling (EOF). The filling time of the molded part is approximately 2 s. In the injection molding simulation, the average part temperature results showed the distribution of temperature on the front face of part at the end of cooling (EOC). Figure 12 shows the numerical simulation results of the part temperature difference at the EOC for the injection mold with and without CCC. The results revealed that the part temperature at the same location of the molded parts fabricated by the injection mold with CCC can be lower than 2 °C compared to that for the injection mold without CCC. In the injection molding simulation, the magnitudes of deformations in three directions in each position inside the wax patterns can be estimated. Figure 13 shows the numerical simulation results of the x-displacement, y-displacement, and total-displacement of the molded part for the injection mold with and without CCC. The x-displacement, y-displacement, and total-displacement of the molded part for the injection mold without CCC are $-0.049 - 0.049$ mm, $-0.023 - 0.035$ mm, and $0.017 - 0.06$ mm, respectively. The x-displacement, y-displacement, and z-displacement of the molded part for the injection mold with CCC are $-0.033 - 0.033$ mm, $-0.014 - 0.023$ mm, $-0.033 - 0.033$ mm, and $0.01 - 0.04$ mm, respectively. As can be seen, the x-displacement, y-displacement, and z-displacement, and total-displacement of the molded part for the injection mold with CCC are lower than those of the injection mold without CCC.

The cooling time can be estimated from end of packing (EOP) to the instant that wax pattern temperature has been cooled down to the ejection temperature. Figure 14 shows the numerical simulation results of the cooling time of the molded part of the injection mold with and without CCC at the EOP. The theoretical cooling times of the molded part of the injection mold with and without CCC are 13 s and 18 s, respectively. It should be noted that about 27.7% improvement in the cooling time of the molded part can be obtained when the designed CCC was embedded in the injection mold.
In this study, a series of HT experiments were conducted on the MSS samples. In general, HT experiments involve three categories: solution treatment (ST), direct aging treatment (DAT), and solution & aging treatment (SAT). According to the literature reviews, the temperature of ST includes 780 °C, 840 °C, 900 °C, 960 °C, or 1020 °C and the duration is 0.25, 0.5, 1, 2, or 4 h. The temperature of DAT is 400 °C, 440 °C, 480 °C, 520 °C, or 560 °C and the duration is 1, 3, 6, 9, or 12 h. The general SAT HT procedures are at 900 °C followed by 400 °C, 900 °C followed by 440 °C, 900 °C followed by 480 °C, 900 °C followed by 520 °C, or 900 °C followed by 560 °C for 6 h [46]. The temperature of ST is 820 °C for 1 h and the temperature of AT is 460 °C for 5 h [47]. The temperature of the AT is 490 °C [48]. The temperature of AT is 840°C and the temperature of AT is 480°C [49]. The temperature of the AT is 510 °C for 1 h [50]. Figure 15 shows the surface hardness of the test specimens processed by three different HT methods. The surface hardness of the test specimens can be enhanced due to nanometer-sized Ni3 and Fe2Mo intermetallic particles precipitated during the AT [51–53]. According to the surface hardness of the test specimens, three phenomena were found: (a) the surface hardness of the test specimens after SAT is the highest, followed by the DAT; (b) the surface hardness of the test specimens is the highest after ST at 760 °C for 1 h; and (c) the optimum HT procedure is ST at 850 °C for 1 h, followed by AT at 480 °C.
for 6 h. The highest surface hardness of the test specimens can be obtained by SAT with the optimum HT procedure. It was seen that the average surface hardness of the test specimens is about HV 545.9 which meets the requirement of the injection mold.

The process parameters for fabricating high densification injection mold with CCC include hatching space of 60 μm, layer thickness of 30 μm, laser power of 50 W, and scanning speed of 200 mm/s. The general process parameters for fabricating injection mold with CCC include hatching space of 100 μm, layer thickness of 50 μm, laser power of 40 W, and scanning speed of 240 mm/s. It takes 149 h to manufacture the injection mold by using the high densification process parameters. However, it only takes 49 h to manufacture the injection mold by the using general parameters. This means that the injection mold manufacture time about 67% can be saved using the general process parameters. To evaluate the performance of the optimum HT process procedures, a preliminary experiment was conducted. Figure 16 shows the coolant leakage test results before and after HT of the test injection mold with CC. The results revealed that the coolant leakage for test injection mold after HT during the test was not

Fig. 11 Simulation results of the filling of the molded part at the EOF

Fig. 12 Numerical simulation results of the part temperature difference at the EOC for the injection mold a without CCC and b with CCC
found. However, the test injection mold before HT has coolant leakage of about 38 g, 76.5 g, and 115 g during the test of 1, 2, and 3 h. This means that the proposed method enables quick fabrication of an injection mold with CC by optimum HT process procedures resulting in no coolant leakage in the injection molding process. In this study, the internal surface of the CCC was found are remarkably not smooth. Therefore, improving the internal surface of the CCC is also an important research issue. The potential polishing methods include abrasive blasting [54], abrasive flow machining [55], electrochemical polishing [9], chemical polishing [56], laser polishing [57], or ultrasonic cavitation abrasive finishing [58].

To verify the effectiveness of the optimum HT process procedures, two sets of injection molds shown in the Fig. 17 were fabricated using general process parameters. After optimum HT process procedures, post-process finishing operations of the mold injection inserts was performed for obtaining the desired dimensions of the injection mold using a computer numerical control (CNC) milling machine [59–61]. In addition, positioning pin holes were matching using a CNC drilling machine. The theoretical relative density was increased from 70.02 to 85.03% [62, 63]. In this study, the MSS powder was used to fabricate injection mold. Some alternative powders, such as 17-4 PH stainless steel, Al-Si alloy, Ni-Ti alloy, 304 stainless steel, 316-L stainless steel, CoCrMo [64], IN

![Numerical simulation results of the x-displacement, y-displacement, z-displacement, and total-displacement of the molded part of the injection mold a without CCC and b with CCC](image)

![Numerical simulation results of the cooling time of the molded part for the injection mold with and without CCC at the EOP](image)
718 alloy, Ti6Al4V [13], W-Ni-Cu [65], TC4 [66], Ni [67], Al-Fe-V-Si [68], A357 [69], Cu-15Ni-8S [70], or Inconel 625 [71] could also be used to make functional components for industrial applications. The metallic components, including molds [72], dies [73], automotive, aircraft, aerospace, or gear with high mechanical properties, can be manufactured by MAM technology with above powders.

To investigate the cooling time of the wax patterns after injection molding, a series of experiments were performed using low-pressure wax injection molding. The wax injection
process parameters involve injection time of 2s and injection pressure of 0.06 MPa. Figure 18 shows the part temperature as a function of the cooling time of the wax pattern after injection molding. The coolant temperature and the coolant flow rate are 25 °C and 3 L/min, respectively. Especially, the molded part will cause short shot since the temperature of the injection mold was influenced by the leakage coolant. The cooling times of the wax patterns fabricated by the injection mold with and without coolant leakage are 23 s and 38 s, respectively. The cooling stage is a sophisticated heat transfer process in the injection molding process. Generally, there are four distinct stages, i.e., filling, packing, cooling, and demolding in the injection molding process. To study heat transfer process during the cooling stage, the cycle-averaged temperature...
distribution represented by the steady-state Laplace heat conduction equation was widely employed to simplify the analysis of the cooling process [74, 75]. Figure 19 shows the schematic illustration of the heat fluxes during the cooling stage after low-pressure wax injection molding. Generally, the heat conduction is usually governed by the partial differential equation. The heat transfer rate must be in equilibrium when the heat balance was established. The heat transfer rate from the mold materials to the coolant, and heat transfer rate from the mold materials to the ambient air are symbolized by Q_m, Q_c, and Q_e, respectively. Therefore, the heat balance can be expressed by the equation of $Q_m + Q_c + Q_e = 0$. The heat from the molten wax material in the mold cavity is taken away by both coolant and exterior surfaces of the mold. The heat balance equation can be simplified by neglecting the heat lost to the surrounded environment since Q_e is less than 5% of the Q_m. In addition, the mold materials boundary is assumed to be adiabatic. Therefore, the heat of the molten wax material in the mold cavity is taken away by the coolant moving through the conformal cooling channels after the injection molding. Based on the solidification of the wax patterns, the required cooling time (t_c) of the wax patterns can also be calculated by the following equation [76–78]:

$$Q_m + Q_c + Q_e = 0$$

$$t_c = \frac{s^2}{\pi^2 \alpha} \ln \left[\frac{4}{\pi} \left(\frac{T_m - T_w}{T_c - T_w} \right) \right]$$

where s denotes the thickness of the wax patterns, T_m denotes the melt temperature of the molding material, T_c denotes the average ejection temperature of the wax patterns, α denotes the thermal diffusivity, and T_w denotes the mold cavity surface temperature.

Figure 20 shows the part temperature as a function of the cooling time of the wax pattern for five different coolant temperatures. Two phenomena were found. One is that the cooling times of the wax patterns fabricated by the injection mold without coolant leakage are about 21 s, 33 s, 45 s, and 112 s when the coolant temperatures are 21 °C, 23 °C, 25 °C, 27 °C, and 29 °C, respectively. The other one is that the cooling time of the wax pattern was obvious longer when the coolant temperature is 29 °C. According to the results described above, determination of the coolant temperature is an important factor affecting the injection molding yield and molding cycle time based on the cooling shrinkage rate and cooling time of the wax pattern.

The coolant flow rate is an important issue on the cooling efficiency for injection mold with conformal cooling channels. In general, the turbulent flow (Reynolds number > 4000) provides three to five times as much heat transfer as laminar flow (Reynolds number < 2100) [79]. The coolant flow performs the turbulence when the Reynolds number exceeds the 4000 [80]. In this study, four different coolant flow rates were used in this study, i.e., 2.5 L/min, 3 L/min, 3.5 L/min, and 4 L/min. The Reynolds number for four different coolant flow rates is about 4927, 5913, 6897, and 7883, respectively. To understand the effects of coolant flow rates on the cooling time of the wax pattern, a series tests was carried out. Figure 21 shows the part temperature as a function of the cooling time for four different coolant flow rates. In particular, the cooling time of the wax pattern is approximately 38 s. This means that the cooling time of the wax pattern was found not affected by the different coolant flow rates while the coolant reaches the turbulent flow. However, the layout of the CCC was not optimized. Therefore, optimization of CCC using Taguchi method [81–85] is also an important research issue. In particular, the discrepancy in the cooling times of the wax patterns between the experimental and numerical simulation results was attributed to the inconsistency in initial and boundary conditions [86–88]. Thus, reducing the discrepancy in the cooling times of the wax patterns between the experimental and numerical simulation results is also an important research issue. The CCC embedded in the injection mold is series circuits. Mixing series circuits [89] to keep turbulent flow and parallel circuits [90] to improve temperature homogeneity is also an important research issue.

In general, a high-temperature HT was widely employed to join small particles for reducing the pore size to obtain sufficient mechanical or thermal properties since precipitation in solids can produce many different sizes of particles during optimum HT process procedures. Figure 22 shows the microstructural developments after optimal HT. It was shown that the irregular pores or void defects were reduced gradually.
through the recrystallization HT [91], resulting in significant reduction in the porosity of the injection mold [92]. In addition, the textural anisotropy [93] and internal residual stresses [94] of the direct metal printed injection mold built with DMLS can also be improved significantly through the recrystallization HT. This result reveals that the mechanical properties and microstructure were improved after optimum HT process procedures. Based on the results described above, the remarkable findings of this study can be used for the fabrication of molds or dies efficiently and economically for trial production in the mold or die industries. The wax pattern can be fabricated by wax injection molding via MSS injection mold processed by optimum HT procedures, which can be employed for investment casting (IC) [95–98].

According to the foregoing results, the findings of this study are very practical and provide the greatest application potential in the IC industry. The main contributions in this study are to propose a low-cost and highly efficient method of reducing coolant leakage during wax injection molding 3D printed conformally cooled injection molds. However, some distinct mold defects, including melt, ball formation [99], swelling, cracking [100], residual stress [101], or delamination [102], were not addressed. In addition, some alternative MAM technologies, such as directed energy deposition, electron beam melting [103], diffusion bonding [10], selective laser sintering [11], or selective laser melting [13], can also be used to make injection molds. The molds or dies fabricated by the MAM technologies could also be employed for micro-injection molding [104], thermoforming [105, 106], forging, hot embossing [107], blow molding [108], metal injection molding, die casting, hot extrusion [109], injection-compression molding, rotational molding [110], transfer
molding [111], or hot stamping. The microstructure of the injection mold manufactured by DMLS can be manipulated by laser power [112], hatch space [113], scanning speed, scanning strategy [114], or powder layer thickness. Normally, slower scanning speed or higher laser power will contribute to grain size growth. These issues are currently being investigated and the results will be presented in a later study.

4 Conclusions

MAM has been widely used in high-value applications, such as aerospace or automotive industries. MSS powder was used in the DMLS process to fabricate the injection mold with sophisticated CCC. However, manufacturing a high densification injection mold or die is a time-consuming process as well as low yield. This method provides a more efficient means of reducing coolant leakage for direct metal printed injection mold incorporated CCCs by integration of mold making using general process parameters and optimum HT process procedures. The cooling time of the wax pattern in the low-pressure wax injection molding was numerically and experimentally examined. The main contributions and findings from this study are summarized as follows:

1. The remarkable findings in this study are very practical and provide the greatest application potential for the fabrication of molds or die efficiently and economically in the mold or die industry.

2. A low-cost and highly efficient method of reducing coolant leakage for direct metal printed injection mold with CC has been proposed.

3. A recrystallization mechanism of reducing coolant leakage for direct metal printed injection mold with CC has been demonstrated.

4. The optimum HT procedure is ST at 850 °C for 1 h, followed by AT at 480 °C for 6 h. The highest surface hardness about HV 545.9 can be obtained via the optimum HT procedure.

5. This new method employs general printing procedures to fabricate the green injection mold rapidly and then uses optimum heat treatment process procedures to improve microstructures of the green injection mold.

Code availability Not applicable.

Author contribution Chil-Chyuan Kuo: wrote the paper, conceived and designed the analysis, performed the analysis, and conceptualization. Shao-Xuan Qiu and Xin-Yi Yang: collected the data and contributed data or analysis tools

Funding This study received financial support by the Ministry of Science and Technology of Taiwan under contract nos. MOST 109-2637-E-131-004 and MOST 107-2221-E-131-018.

Declarations

Ethics approval Not applicable.

Conflict of interest The authors declare no competing interests.
35. Auwal ST, Ramesh S, Yusof F, Manladan SM (2018) A review on laser beam welding of titanium alloys. Int J Adv Manuf Technol 97:1071–1098

36. Abdo BMA, El-Tamimi AM, Anwar S et al (2018) Experimental investigation and multi-objective optimization of Nd:YAG laser micro-channeling process of zirconia dental ceramic. Int J Adv Manuf Technol 98:2213–2230

37. Mutua J, Nakata S, Onda T, Chen ZC (2018) Optimization of selective laser melting procedures and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des 139:486–497

38. Sulfiarov VS, Popovich AA, Borisov EV, Polozov IA, Masaylo DV, Orlov AV (2017) The effect of layer thickness at selective laser melting. Procedia Eng 174:126–134

39. Yadvostsev I, Bertrand P, Smurov I (2007) Parametric analysis of the selective laser melting process. Appl Surf Sci 253(19):8064–8069

40. Hu Z, Zhu H, Zhang H, Zeng X (2017) Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Laser Technol 87:17–25

41. Moghaddas MA, Yi AY, Graff KF (2019) Temperature measurement in the ultrasonic-assisted drilling process. Int J Adv Manuf Technol 103:187–199

42. Campidelli AFV, Lima HV, Abrão AM, Maia AAT (2019) Development of a wireless system for milling temperature monitoring. Int J Adv Manuf Technol 104:1551–1560

43. Hangai Y, Takada K, Fujii H, Aoki Y, Aihara Y, Nagahiro R, Amagai K, Utsunomiya T, Yoshikawa N (2020) Foaming of A1050 aluminum precursor by generated frictional heat during friction stir processing of steel plate. Int J Adv Manuf Technol 106:3131–3137

44. Jiang X, Jia J, Liu C, Wang H (2020) A novel method for measuring squareness errors of multi-axis machine tools based on spherical S-shaped trajectories using a double ball bar. Int J Adv Manuf Technol 111:2773–2785

45. Zahoor S, Abdul-Kader W, Ishfaq K (2020) Sustainability assessment of cutting fluids for flooded approach through a comparative surface integrity evaluation of IN718. Int J Adv Manuf Technol 111:383–395

46. Bai Y, Wang D, Yang YQ, Wang H (2019) Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater Sci Eng A 760:105–117

47. Mutua J, Nakata S, Onda T, Chen ZC (2018) Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des 139:486–497

48. Song J, Tang Q, Feng Q, Ma S, Setchi R, Liu Y, Hamb Q, Fan X, Zhang M (2019) Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt Laser Technol 120:105725

49. Bai Y, Yang Y, Wang D, Zhang M (2017) Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater Sci Eng A 703:116–123

50. Bodziak S, Al-Rubiaie KS, Valentina LD, Laffratta FH, Santos EC, Zanatta AM, Chen Y (2019) Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510 °C for 2 h. Mater Charact 151:73–83

51. Rombouts M, Kruth JP, Froyen L, Mercelis P (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann Manuf Technol 55(1):187–192

52. Xu X, Ganguly S, Ding J, Guo S, Williams S, Martina F (2018) Microstructural evolution and mechanical properties of maraging steel produced by wire+ arc additive manufacturing process. Mater Charact 143:152–162

53. Shanthika CR, Narayanan R, Iyer KJL, Radhakrishnan VM, Seshadri SK, Sundararajan S, Sundaresan S (2000) Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel. Mater Sci Eng A 287(1):43–51

54. Jin SY, Pramanik A, Basak AK, Prakash C, Shankar S, Debnath S (2020) Burr formation and its treatments—a review. Int J Adv Manuf Technol 107:2189–2210. https://doi.org/10.1007/s00170-020-05203-2

55. Munthoz MR, Dias LG, Breganov R, Ribeiro FSF, de Souza Gonçalves JF, Hashimoto EM, da Silva Júnior CE (2020) Analysis of the surface roughness obtained by the abrasive flow machining process using an abrasive paste with oticicia oil. Int J Adv Manuf Technol 106:5061–5070

56. Tyagi P, Goulet T, Riso C, Garcia-Moreno F (2019) Reducing surface roughness by chemical polishing of additively manufactured 3D printed 316 stainless steel components. Int J Adv Manuf Technol 100:2895–2900

57. Yang KC, Zhang SS, Duan L, Choy HS, Cai ZX (2019) Laser polishing of additive manufactured tool steel components using pulsed or continuous-wave lasers. Int J Adv Manuf Technol 105:425–440

58. Nagalingam AP, Yeo SH (2018) Effects of ambient pressure and fluid temperature in ultrasonic cavitation machining. Int J Adv Manuf Technol 98:2883–2894

59. Wang Y, Wang H, Zhang Y, He X, Wang Z, Chi G, Chen X, Song M (2020) Micro electrochemical machining of array micro-grooves using in-situ disk electrode fabricated by micro-WEDM. Micromachines 11:66

60. Lee W-L, Shih P-J, Hsu C-C, Dai C-L (2019) Fabrication and characterization of flexible thermoelectric generators using micromachining and electroplating techniques. Micromachines 10:660

61. Kirsch B, Bohley M, Arrabiyeh PA, Aurich JC (2017) Application of ultra-small micro grinding and micro milling tools: possibilities and limitations. Micromachines 8:261

62. Gong Y, Yang Y, Qu S, Li P, Liang C, Zhang H (2019) Laser energy density dependence of performance in additive/subtractive hybrid manufacturing of 316L stainless steel. Int J Adv Manuf Technol 105:1585–1596

63. Tran HC, Lo YL (2019) Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process. Int J Adv Manuf Technol 105:4443–4460

64. Song C, Yang Y, Wang Y, Wang D, Yu J (2014) Research on rapid manufacturing of CoCrMo alloy femoral component based on selective laser melting. Int J Adv Manuf Technol 75:444–453

65. Zhang D, Cai Q, Liu J, He J, Li R (2013) Microstructural evolution and formation of selective laser melting W–Ni–Cu composite powder. Int J Adv Manuf Technol 67:2233–2242

66. Cao L (2019) Study on the numerical simulation of laying powder for the selective laser melting process. Int J Adv Manuf Technol 105(5-6):2253–2269

67. Li R, Liu J, Shi Y, Wang L, Jiang W (2012) Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol 59(9-12):1025–1035

68. Sun S, Zheng L, Liu Y, Liu J, Zhang H (2015) Selective laser melting of Al-Fe-V-Si heat-resistant aluminum alloy: powder modeling and experiments. Int J Adv Manuf Technol 80(9-12):1787–1797

69. Tonelli L, Liverani E, Valli G, Fortunato A, Ceschini L (2020) Effects of powders and process procedures on density and hardness of A357 aluminum alloy fabricated by selective laser melting. Int J Adv Manuf Technol 106(1-2):371–383

70. Zhang G, Chen C, Wang X, Wang P, Zhang X, Gan X, Zhou K (2018) Additive manufacturing of fine-structured copper alloy by
selective laser melting of pre-alloyed Cu-15Ni-8Sn powder. Int J Adv Manuf Technol 96(9-12):4223–4230
71. Criales LE, Arsoy YM, Özel T (2016) Sensitivity analysis of material and process procedures in finite element modeling of selective laser melting of Inconel 625. Int J Adv Manuf Technol 86:2653–2666
72. Gudati S, Kiran ASK, Leavy M, Ramakrishna S (2019) Recent advancements in additive manufacturing technologies for porous material applications. Int J Adv Manuf Technol 105:193–215
73. Kadir AZA, Yusuf Y, Wahab MS (2020) Additive manufacturing cost estimation models—a classification review. Int J Adv Manuf Technol 107:4033–4053
74. Rao NS, Schumacher G, Schott NR, O’Brien KT (2002) Optimization of cooling systems in injection molds by an easily applicable analytical model. J Reinf Plast Compos 21:451–459
75. Zhang J, Liu Z (2017) Transient and steady-state temperature distribution in monolayer-coated carbide cutting tool. Int J Adv Manuf Technol 91:59–67
76. N S Rao, G Schumacher, (2004) Design formulas for plastics engineers, second ed., Hanse Verlag: Munich, Pages 145–148.
77. White JL, Bernhardt EC (1983) Computer aided engineering for injection molding. Hanser, New York, pp 105–106.
78. Shayfull Z, Sharif S, Zain AM, Saad RM, Fairuz MA (2013) Milled groove square shape conformal cooling channels in injection molding process. Mater Manuf Process 28:884–891
79. Liu C, Cai Z, Dai Y, Huang N, Xu F, Lao C (2018) Experimental comparison of the flow rate and cooling efficiency of internal cooling channels fabricated via selective laser melting and conventional drilling process. Int J Adv Manuf Technol 90(1–4):119–126
80. Ng EY-K, Guanan D (2015) The stability of 30-μm-diameter water jet for jet-guided laser machining. Int J Adv Manuf Technol 78(5–8):939–946
81. Chen WC, Nguyen MH, Chiu WH, Chen TN, Tai PH (2016) Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. Int J Adv Manuf Technol 83(9–12):1873–1886
82. MF Adnan, AB AbdullahE, Z Samad, (2017)"Springback behavior of AA6061 with non-uniform thickness section using Taguchi Method," Int J Adv Manuf Technol, Volume 89, Issue 5–8, Pages 2041–2052.
83. Pinar AM, Filiz S, Ünlü BS (2016) A comparison of cooling methods in the pocket milling of AA5083-H36 alloy via Taguchi method. Int J Adv Manuf Technol 83(9–12):1431–1440
84. Gong G, Chen JC, Guo G (2017) Enhancing tensile strength of injection molded fiber reinforced composites using the Taguchi-based six sigma approach. Int J Adv Manuf Technol 91(9–12):3385–3393
85. Zhou M, Kong L, Xie L, Fu T, Jiang G, Feng Q (2017) Design and optimization of non-circular mortar nozzles using finite volume method and Taguchi method. Int J Adv Manuf Technol 90(9–12):3543–3553
86. Park H, Rhee B (2016) Effects of the viscosity and thermal property of fluids on the residual wall thickness and concentricity of the hollow products in fluid-assisted injection molding. Int J Adv Manuf Technol 86:3255–3265
87. Lu L, Han J, Fan C, Xia L (2018) A predictive feedrate schedule method for sculpting surface machining and corresponding B-spline-based irredundant PVT commands generating method. Int J Adv Manuf Technol 98:1763–1782
88. Lan X, Li C, Yang L, Xue C (2018) Deformation analysis and improvement method of the Ni-P mold core in the injection molding process. Int J Adv Manuf Technol 99:2659–2668
89. Abbès B, Abbès F, Abdessalam H, Upganlawar A (2019) Finite element cooling simulations of conformal cooling hybrid injection molding tools manufactured by selective laser melting. Int J Adv Manuf Technol 103:2515–2522
90. Kuo CC, Jiang ZF, Lee JH (2019) Effects of cooling time of molded parts on rapid injection molds with different layouts and surface roughness of conformal cooling channels. Int J Adv Manuf Technol 103:2169–2182
91. Fan X, Jin X, He Z, Yuan S (2020) Determination of pressurizing rate during hot gas forming with integrated heat treatment of Al-Cu-Li alloy: deformation and strengthening behaviors. Int J Adv Manuf Technol 110:1665–1676
92. Pisanu L, Santiago LC, Barbosa JDV, Beal VE, Nascimento MLF (2021) Effect of the process parameters on the adhesive strength of dissimilar polymers obtained by multicomponent injection molding. Polymers 13:1039
93. Dinda SK, Kockelmann W, Roy GG, Strirangam P (2020) Neutron diffraction bulk texture study with impact property correlation of electron beam welded dissimilar Fe-7%Al alloy to steel joints. Int J Adv Manuf Technol 108:1499–1508
94. Meng L, Khan AM, Zhang H, Fang C, He N (2020) Research on surface residual stresses generated by milling Ti6Al4V alloy under different pre-stresses. Int J Adv Manuf Technol 107:2597–2608
95. Dong Y, Yan W, Wu Z, Zhang S, Liao T, You Y (2020) Modeling of shrinkage characteristics during investment casting for typical structures of hollow turbine blades. Int J Adv Manuf Technol 110:1249–1260. https://doi.org/10.1007/s00170-020-05861-2
96. Huang P, Shih LK, Lin H et al (2019) Novel approach to investment casting of heat-resistant steel turbine blades for aircraft engines. Int J Adv Manuf Technol 104:2911–2923. https://doi.org/10.1007/s00170-019-04178-z
97. Jiang RS, Zhang DH, Bu K, Wang WH, Tian JW (2017) A deformation compensation method for wax pattern die of turbine blade. Int J Adv Manuf Technol 88(9–12):3195–3203
98. Cui K, Wang W, Jiang R, Zhao D (2018) Layout optimization method for core holders in wax pattern mold of hollow turbine blade. Int J Adv Manuf Technol 98(1–4):1031–1045
99. Liverani E, Lutey AHA, Ascari A, Fortunato A (2020) The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM). Int J Adv Manuf Technol 107:109–122
100. Zhang H, Xu W, Xu Y, Lu Z, Li D (2018) The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation. Int J Adv Manuf Technol 96(1–2):97–110
101. Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87:647–656
102. Khorasani AM, Gibson I, Ghaderi A, Mohammed MI (2019) Investigation on the effect of heat treatment and process procedures on the tensile behaviour of SLM Ti-6Al-4V parts. Int J Adv Manuf Technol 101:3183–3197
103. Al-Tamimi AA, Huang B, Vyas C, Hernandez M, Peach C, Bartolo P (2019) Topology optimised metallic bone plates produced by electron beam melting: a mechanical and biological study. Int J Adv Manuf Technol 104:195–210
104. Weng C, Li J, Lai J, Liu J, Wang H (2020) Investigation of interface thermal resistance between polymer and mold insert in micro-injection molding by non-equilibrium molecular dynamics. Polymers 12:2409
105. Wei H (2021) Optimisation on thermoforming of biodegradable poly (lactic acid) (PLA) by numerical modelling. Polymers 13:654
106. Erchiqui F, Zaafrañé K, Baatti A, Kaddami H, Imad A (2020) Reliability of free inflation and dynamic mechanics tests on the prediction of the behavior of the poly(methylsilsesquioxane–high-density polyethylene nanocomposite for thermoforming applications. Polymers 12:2753
107. Chang C-Y (2021) Nonuniform heating method for hot embossing of polymers with multiscale microstructures. Polymers 13:337
108. Wawrzyniak P, Karaszewski W (2020) Blowing Kinetics, Pressure Resistance, Thermal stability, and relaxation of the amorphous phase of the PET container in the SBM process with hot and cold mold. Part II: Stat Anal Interpretation Tests Polym 12: 1761
109. Vitiello L, Russo P, Papa I, Lopresto V, Mocerino D, Filippone G (2021) Flexural properties and low-velocity impact behavior of polyamide 11/basalt fiber fabric laminates. Polymers 13:1055
110. Ruiz-Silva E, Rodríguez-Ortega M, Rosales-Rivera LC, Moscoso-Sánchez FJ, Rodrigue D, González-Núñez R (2021) Rotational molding of poly(lactic acid)/polyethylene blends: effects of the mixing strategy on the physical and mechanical properties. Polymers 13:217
111. Koutsomichalis A, Kalampoukas T, Mouzakis DE (2021) Mechanical testing and modeling of the time-temperature superposition response in hybrid fiber reinforced composites. Polymers 13:1178
112. Abate KM, Nazir A, Jeng JY (2021) Design, optimization, and selective laser melting of vin tiles cellular structure-based hip implant. Int J Adv Manuf Technol 112:2037–2050
113. Marin F, de Souza AF, Ahrens CH, de Lacalle LNL (2021) A new hybrid process combining machining and selective laser melting to manufacture an advanced concept of conformal cooling channels for plastic injection molds. Int J Adv Manuf Technol 113: 1561–1576
114. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2021) Current trends and research opportunities in hybrid additive manufacturing. Int J Adv Manuf Technol 113:623–648

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.