On uniformly S-coherent rings

Xiaolei Zhanga

a. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China
E-mail: zxlrghj@163.com

Abstract

In this paper, we introduce and study the notions of uniformly S-finitely presented modules and uniformly S-coherent rings (modules) which are “uniform” versions of (c-) S-finitely presented modules and (c-) S-coherent rings (modules) introduced by Bennis and Hajoui [3]. Among the results, uniformly S-versions of Chase’s result, Chase Theorem and Matlis Theorem are obtained.

Key Words: uniformly S-coherent ring; uniformly S-finitely presented module; uniformly S-coherent modules; uniformly S-flat module; uniformly S-injective module.

2020 Mathematics Subject Classification Code: 13C12,13E99.

1. Introduction

Throughout this paper, all rings are commutative with identity. Let R be a ring. For a subset U of an R-module M, we denote by $\langle U \rangle$ the submodule of M generated by U. A subset S of R is called a multiplicative subset of R if $1 \in S$ and $s_1s_2 \in S$ for any $s_1 \in S$, $s_2 \in S$.

The study of commutative rings in terms of multiplicative sets began with Anderson and Dumitrescu [1], who introduced the notion of S-Noetherian rings. Recall that a ring R is called an S-Noetherian ring if for any ideal I of R, there is a finitely generated sub-ideal K of I such that $sI \subseteq K$ for some $s \in S$. Cohen’s Theorem, Eakin-Nagata Theorem and Hilbert Basis Theorem for S-Noetherian rings are also given in [1]. However, the element $s \in S$ in the definition of S-Noetherian rings is not “uniform” in general. This situation make it difficult to study S-Noetherian rings via module-theoretic methods. To overcome this difficulty, Qi et al. [16] defined uniformly S-Noetherian rings as S-Noetherian rings in which definition the choice of s is fixed. Then they characterized uniformly S-Noetherian rings using u-S-injective modules.

Recall from [7] that a ring R is said to be a coherent ring provided that any finitely generated ideal is finitely presented. The notion of coherent rings, which is a
generalization of Noetherian rings, is another important rings defined by finiteness condition. Many algebraists studied coherent rings in terms of various of modules. Early in 1960, Chase [5, Theorem 2.1] showed that a ring is coherent exactly when the class of flat modules is closed under direct product. In 1970 Stenström [19, Theorem 3.2] obtained coherent rings are rings when any direct limits of absolutely pure modules is absolutely pure. In 1982, Matlis [14, Theorem 1] proved that a ring R is coherent if and only if $\text{Hom}_R(M, E)$ is flat for any injective modules M and E.

To extend coherent rings by multiplicative sets, Bennis et al. [3] introduced the notions of S-coherent rings and $c\cdot S$-coherent rings. They also gave an S-version of Chase’s result to characterize S-coherent rings using ideals. Recently, the authors in this paper et al. [17] characterized S-coherent rings in terms of S-Mittag-Leffler modules and S-flat modules (which can be seen as flat modules by localizing at S). The main motivation of this paper is to introduce and study the “uniform” version of S-coherent rings for extending uniformly S-Noetherian rings. The organization of the paper is as follows: In Section 2, we introduce and study uniformly S-finitely presented modules and their connections with $u\cdot S$-flat modules and $u\cdot S$-projective modules (see Proposition 2.8). In Section 3, we introduce uniformly S-coherent modules and uniformly S-coherent rings. In particular, we study the ideal-theoretic characterizations of uniformly S-coherent rings (see Proposition 3.11). Moreover examples of S-coherent rings and $c\cdot S$-coherent rings which are not uniformly S-coherent of are provided (see Example 3.15). In Section 4, Chase Theorem and Matlis Theorem for uniformly S-coherent rings are obtained (see Theorem 4.4 and Theorem 4.7).

Since the paper involves uniformly torsion theory, we give a quick review (see [24, Lemma 2.1] for more details). An R-module T is called $u\cdot S$-torsion (with respect to s) provided that there exists $s \in S$ such that $sT = 0$. An R-sequence $\cdots \rightarrow A_{n-1} \xrightarrow{f_n} A_n \xrightarrow{f_{n+1}} A_{n+1} \rightarrow \cdots$ is $u\cdot S$-exact, if for any n there is an element $s \in S$ such that $s\text{Ker}(f_{n+1}) \subseteq \text{Im}(f_n)$ and $s\text{Im}(f_n) \subseteq \text{Ker}(f_{n+1})$. An R-sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is called a short $u\cdot S$-exact sequence (with respect to s), if $s\text{Ker}(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \text{Ker}(g)$ for some $s \in S$. An R-homomorphism $f : M \rightarrow N$ is an $u\cdot S$-monomorphism (resp., $u\cdot S$-epimorphism, $u\cdot S$-isomorphism) (with respect to s) provided $0 \rightarrow M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \rightarrow 0$, $0 \rightarrow M \xrightarrow{f} N \rightarrow 0$) is $u\cdot S$-exact (with respect to s). Suppose M and N are R-modules. We say M is $u\cdot S$-isomorphic to N if there exists a $u\cdot S$-isomorphism $f : M \rightarrow N$. A family \mathcal{C} of R-modules is said to be closed under $u\cdot S$-isomorphisms if M is $u\cdot S$-isomorphic to N and M is in \mathcal{C}, then N is also in \mathcal{C}. One can deduce from the following [24, Lemma 2.1] that the existence of $u\cdot S$-isomorphisms of two R-modules is actually an equivalence relationship.
2. Uniformly S-finitely presented modules

Recall from [1] that an R-module M is called S-finite (with respect to s) provided that there is an element s ∈ S and a finitely generated R-module F such that sM ⊆ F ⊆ M. Trivially, S-finite modules are generalizations of finitely generated modules. For generalizing finitely presented R-modules, Bennis et al. [3] introduced the notions of S-finitely presented modules and c-S-finitely presented modules. Following [3, Definition 2.1] that an R-module M is called S-finitely presented provided that there exists an exact sequence of R-modules 0 → K → F → M → 0 with K S-finite and F finitely generated free. Certainly, an R-module M is S-finitely presented if and only if there exists an exact sequence of R-modules

0 → T_1 → N → M → 0

with N finitely presented and sT_1 = 0 for some s ∈ S. Following [3, Definition 4.1] that an R-module M is called c-S-finitely presented provided that there exists a finitely presented submodule N of M such that sM ⊆ N ⊆ M for some s ∈ S. Trivially, an R-module M is called c-S-finitely presented if and only if there exists an exact sequence of R-modules 0 → N → M → T_2 → 0 with N finitely presented and sT_2 = 0 for some s ∈ S. Next we will give the notion of uniformly S-finitely presented modules which generalize both S-finitely presented modules and c-S-finitely presented modules.

Definition 2.1. Let R be a ring, S a multiplicative subset of R and s ∈ S. An R-module M is called u-S-finitely presented (abbreviates uniformly S-finitely presented) (with respect to s) provided that there is an exact sequence

0 → T_1 → F → M → 0

with F finitely presented and sT_1 = sT_2 = 0.

Trivially, S-finitely presented modules and c-S-finitely presented modules are all u-S-finitely presented. Certainly, every u-S-finitely presented R-module is S-finite. Indeed, since in definition [2.1] we have sT_2 = 0, so sM ⊆ Im(f). Note that the fact that Im(f) is finitely generated implies M is S-finite.

By [24, Lemma 2.1], an R-module M is u-S-finitely presented if and only if there is an exact sequence 0 → T_1 → M f → F → T_2 → 0 with F finitely presented and s'T_1 = s'T_2 = 0 for some s' ∈ S. So an R-module M is u-S-finitely presented if and only if it is u-S-isomorphic to a finitely presented R-module.

Theorem 2.2. Let Φ : 0 → M f → N q → L → 0 be a u-S-exact sequence of R-modules. The following statements hold.

1. The class of u-S-finitely presented modules is closed under u-S-isomorphisms.
2. If M and L are u-S-finitely presented, so is N.
(3) Any finite direct sum of u-S-finitely presented modules is u-S-finitely presented.

(4) If N is u-S-finitely presented, then L is u-S-finitely presented if and only if M is S-finite. Moreover, if Φ is an exact sequence, the both side of conditions in (2) and (4) can be taken to be “uniform” with respective to a same $s \in S$.

Proof. (1) It follows from the fact that an R-module M is u-S-finitely presented if and only it is u-S-isomorphic to a finitely presented R-module.

(2) Since u-S-finitely presented modules are closed under u-S-isomorphisms, we may assume Φ is an exact sequence by (1). Consider the following push-out:

$$
\begin{array}{cc}
0 & M \xrightarrow{f} N \xrightarrow{g} L \xrightarrow{h} 0 \\
0 & F_1 \xrightarrow{m} X \xrightarrow{n} L \xrightarrow{l} 0.
\end{array}
$$

with F_2 finitely presented, Ker(h) and Coker(h) u-S-torsion. So l is also a u-S-isomorphism. Consider the following pull-back:

$$
\begin{array}{cc}
0 & F_1 \xrightarrow{m} X \xrightarrow{n} L \xrightarrow{k} Z \xrightarrow{j} 0 \\
0 & F_1 \xrightarrow{j} Y \xrightarrow{k} F_2 \xrightarrow{l} 0.
\end{array}
$$

with F_2 finitely presented, Ker(j) and Coker(j) u-S-torsion. So k is also a u-S-isomorphism. Since F_1 and F_2 are finitely presented, Y is also finitely presented. Hence N is u-S-isomorphic to a finitely presented R-module, and thus is u-S-finitely presented.

(3) Follows from (2).

(4) Since u-S-finitely presented modules and S-finite modules are closed under u-S-isomorphisms respectively, we may assume Φ is an exact sequence by (1). Suppose M is S-finite. Since N is u-S-finitely presented, there is an exact sequence $0 \rightarrow T_1 \rightarrow F \xrightarrow{l} N \rightarrow T_2 \rightarrow 0$ with F finitely presented and $sT_1 = sT_2 = 0$ for some $s \in S$. Consider the following pull-back of f an l:

$$
\begin{array}{cc}
0 & M \xrightarrow{f} N \xrightarrow{g} L \xrightarrow{s} Z \xrightarrow{t} F \xrightarrow{l} K \xrightarrow{t} 0 \\
0 & Z \xrightarrow{t} F \xrightarrow{l} K \xrightarrow{t} 0.
\end{array}
$$

Since l is a u-S-isomorphism, s and t are both u-S-isomorphisms. So Z is also S-finite. Note that L is u-S-isomorphic to K which is u-S-finitely presented (see
So L is u-S-finitely presented. Suppose L is u-S-finitely presented. Considering the above pull-back, we have K is also S-finitely presented. Hence Z is S-finite by [3, Theorem 2.4(5)] which implies that M is also S-finite.

The “Moreover” part can be checked by the proof of (2) and (4). □

Recall from [4] that an R-module M is said to be S-Noetherian provided that any submodule of M is S-finite. A ring R is called S-Noetherian if R itself is S-Noetherian.

Proposition 2.3. Let R be a ring and S a multiplicative subset of R. Then a ring R is S-Noetherian if and only if any S-finite module is u-S-finitely presented.

Proof. For necessity, let M be an S-finite module. Then there is a u-S-epimorphism $f : F \to M$ with F finitely generated free. Since R is an S-Noetherian ring, we have F is also S-Noetherian (see [4]). Hence M is u-S-finitely presented by Theorem 2.2(4). For sufficiency, let I be an ideal of R. Then R/I is S-finite, and thus u-S-finitely presented. By Theorem 2.2(4) again, I is S-finite. □

Proposition 2.4. Let R be a ring, S a multiplicative subset of R consisting of finite elements. Then an R-module M is a u-S-finitely presented R-module if and only if M_S is a finitely presented R_S-module.

Proof. Suppose M is a u-S-finitely presented R-module. there is an exact sequence $0 \to T_1 \to N \xrightarrow{f} M \to T_2 \to 0$ with N finitely presented and $sT_1 = sT_2 = 0$. Localizing at S, we have $0 \to (T_1)_S \to N_S \xrightarrow{f_S} M_S \to (T_2)_S \to 0$. Since $sT_1 = sT_2 = 0$, $(T_1)_S = (T_2)_S = 0$. So $M_S \cong N_S$ is a finitely generated R_S-module. On the other hand, suppose M_S is a finitely generated R_S-module. Suppose $S = \{s_1, \ldots, s_n\}$ and set $s = s_1 \cdots s_n$. We may assume that M_S is generated by $\{\frac{m_1}{s}, \ldots, \frac{m_n}{s}\}$. Consider the R-homomorphism $f : R^n \to M$ satisfying $f(e_i) = m_i$ for each $i = 1, \ldots, n$. It is easy to verify f is a u-S-epimorphism. Consider the exact sequence $0 \to \text{Ker}(f_S) \to R^n_S \xrightarrow{f_S} M_S \to 0$. Then $\text{Ker}(f_S)$ is a finitely generated R_S-module, and thus $\text{Ker}(f)$ is S-finite. By Theorem 2.2(2), M is u-S-finitely presented. □

Let p be a prime ideal of R. We say an R-module M is (simply) p-finite provided R is $(R \setminus p)$-finite. We always denote by Spec(R) the spectrum of all prime ideals of R, and Max(R) the set of all maximal ideals of R, respectively.

Lemma 2.5. Let R be a ring, S a multiplicative subset of R and M an R-module. The following statements are equivalent:

1. M is finitely generated R-module;
Proposition 2.6. The following statements are equivalent:

(2) M is p-finite for any $p \in \text{Spec}(R)$;

(3) M is m-finite for any $m \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) Trivial.

(3) \Rightarrow (1) For each $m \in \text{Max}(R)$, there exists an element $s^m \in R \setminus m$ and a finitely generated submodule F^m of M such that $s^m M \subseteq F^m$. Since $\{s^m | m \in \text{Max}(R)\}$ generated R, there exist finite elements $\{s^{m_1}, ..., s^{m_n}\}$ such that $\langle s^{m_1}, ..., s^{m_n} \rangle = R$. So $M = \langle s^{m_1}, ..., s^{m_n} \rangle M \subseteq F^{m_1} + ... + F^{m_n} \subseteq M$. Hence $M = F^{m_1} + ... + F^{m_n}$. It follows that M is finitely generated.

Let p be a prime ideal of R. We say an R-module M is (simply) u-p-finitely presented provided R is $u-(R \setminus p)$-finitely presented.

Proposition 2.6. Let R be a ring, S a multiplicative subset of R and M an R-module. The following statements are equivalent:

(1) M is a finitely presented R-module;

(2) M is u-p-finitely presented for any $p \in \text{Spec}(R)$;

(3) M is u-m-finitely presented for any $m \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) Trivial.

(3) \Rightarrow (1) By Lemma 2.5, M is finitely generated. Consider the exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ with F finitely generated free. By Theorem 2.2, K is m-finite for any $m \in \text{Max}(R)$. So K is also finitely generated, and thus M is finitely presented.

Let $\{M_j\}_{j \in \Gamma}$ be a family of R-modules and N_j a submodule of M_j generated by $\{m_{i,j} \}_{i \in \Lambda_j} \subseteq M_j$ for each $j \in \Gamma$. Recall from [21] that a family of R-modules $\{M_j\}_{j \in \Gamma}$ is u-S-generated (with respective to s) by $\{\langle m_{i,j} \rangle_{i \in \Lambda_j} \}_{j \in \Gamma}$ provided that there exists an element $s \in S$ such that $sM_j \subseteq N_j$ for each $j \in \Gamma$, where $N_j = \langle \{m_{i,j} \}_{i \in \Lambda_j} \rangle$. We say a family of R-modules $\{M_j\}_{j \in \Gamma}$ is u-S-finite (with respective to s) if the set $\{m_{i,j} \}_{i \in \Lambda_j}$ can be chosen as a finite set for each $j \in \Gamma$, that is, there is $s \in S$ such that $\{M_j\}_{j \in \Gamma}$ are all S-finite with respect to s. Recall from [16] that an R-module M is called a u-S-Noetherian module provided the set of all submodules of M is u-S-finite. A ring R is called to be a u-S-Noetherian ring provided that R itself is a u-S-Noetherian R-module.

Theorem 2.7. Let R be a ring and S a multiplicative subset of R. Then the following statements are equivalent:

(1) A ring R is u-S-Noetherian;

(2) Any S-finite module is u-S-Noetherian;
(3) Any finitely generated module is u-S-Noetherian;
(4) There is $s \in S$ such that any finitely generated module is u-S-finitely presented with respective to s.

Proof. (1) \Rightarrow (2) Let M be an S-finite module. Then there is a u-S-epimorphism $f : F \to M$ with F finitely generated free. Since R is u-S-Noetherian, we have F is also u-S-Noetherian, and so is M (see [16, Proposition 2.13]).

(2) \Rightarrow (3) \Rightarrow (4) Trivial.

(4) \Rightarrow (1) Let I be an ideal of R. Then R/I is u-S-finitely presented with respective to s. So I is S-finite with respective to s by Theorem 2.2, implying R is u-S-Noetherian. □

Recall from [21, 24] that an R-module P is called u-S-projective (resp., u-S-flat) provided that the induced sequence $0 \to \text{Hom}_R(P, A) \to \text{Hom}_R(P, B) \to \text{Hom}_R(P, C) \to 0$ (resp., $0 \to P \otimes_R A \to P \otimes_R B \to P \otimes_R C \to 0$) is u-S-exact for any u-S-exact sequence $0 \to A \to B \to C \to 0$. It was proved in [24, Proposition 2.9] that any u-S-projective module is u-S-flat.

Proposition 2.8. Let R be a ring and S a multiplicative subset of R. Then the following statements hold.

(1) Every S-finite u-S-projective module is u-S-finitely presented.
(2) Every u-S-finitely presented u-S-flat module is u-S-projective.

Proof. (1) Let P be an S-finite u-S-projective module, then there is a u-S-exact sequence $\Psi : 0 \to \ker(f) \xrightarrow{i} F \xrightarrow{j} P \to 0$ with F finitely generated free. Since P is u-S-projective, the sequence Ψ is u-S-split by [24, Theorem 2.7]. So there is a u-S-epimorphism $i' : F \to \ker(f)$ such that $i' \circ i = s\text{Id}_{\ker(f)}$ for some $s \in S$. Hence $\ker(f)$ is S-finite, and so P is u-S-finitely presented by Theorem 2.2.

(2) Let M be a u-S-finitely presented u-S-flat module. Then there is a u-S-exact sequence $\Upsilon : 0 \to \ker(f) \xrightarrow{i} F \xrightarrow{j} M \to 0$ with F finitely generated free and $\ker(f)$ S-finite. Since M is u-S-flat, Υ is u-S-pure by [22, Proposition 2.4]. It follows from [22, Theorem 2.2] that Υ is u-S-split. Thus M is u-S-projective. □

3. Uniformly S-Coherent Modules and Uniformly S-Coherent Rings

Recall that an R-module is said to be a coherent module if it is finitely generated and any finitely generated submodule is finitely presented. A ring R is said to be a coherent ring if R is a coherent R-module. In this section, we will introduce a “uniform” version of coherent rings and coherent modules.
Definition 3.1. Let R be a ring and S a multiplicative subset of R. An R-module M is called a u-S-coherent module (abbreviates uniformly S-coherent) (with respective to s) provided that there is $s \in S$ such that it is S-finite with respect to s and any finitely generated submodule of M is u-S-finitely presented with respective to s.

Theorem 3.2. Let $\Phi : 0 \to M \xrightarrow{f} N \xrightarrow{g} L \to 0$ be a u-S-exact sequence of R-modules. The following statements hold.

1. The class of u-S-coherent modules is closed under u-S-isomorphisms.
2. If L is u-S-coherent, then M is u-S-coherent if and only if N is u-S-coherent.
3. Any finite direct sum of u-S-coherent modules is u-S-coherent.
4. If N is u-S-coherent and M is S-finite, then L is u-S-coherent.

Proof. (1) Let $h : A \to B$ be a u-S-isomorphism with $s_1\ker(h) = s_1\coker(h) = 0$. Suppose B is u-S-coherent with respective to s_2, then one can check A is u-S-coherent with respective to s_1s_2. Similarly, if A is u-S-coherent, then B is also u-S-coherent (see [24, Lemma 2.1]).

(2) By (1), we can assume that Φ is an exact sequence. Suppose M and L are u-S-coherent with respective to s. Then one can check N is u-S-coherent with respective to s from the proof of Theorem [22(2)]. Suppose N and L are u-S-coherent with respective to s. Then M is S-finite with respective to some $s \in S$ by Theorem [22(4)]. Since N is u-S-coherent with respective to s, M is u-S-coherent with respective to s.

(3) Follows by (2).

(4) Assume that Φ is an exact sequence. Suppose N is u-S-coherent with respective to s and M is S-finite with respective to s for some $s \in S$. Then L is also S-finite with respective to s. Let K be a finitely generated submodule of L. Then the sequence $0 \to M \to g^{-1}(K) \to K \to 0$ is exact. So $g^{-1}(K)$ is S-finite. Consider the following commutative diagram with rows and columns exact:

```
0 \to \ker(m) \to \ker(n) \to K_1 \to 0
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow
0 \to R^n \to R^{n+s} \to R^s \to 0
\downarrow m \quad \downarrow n \quad \downarrow
0 \to M \to g^{-1}(K) \to K \to 0
\downarrow \quad \downarrow \quad \downarrow
0 \quad 0
```
where m and n are u-S-epimorphisms. Since N is u-S-coherent, Ker(n) is S-finite, and so is K_1. Thus L is u-S-coherent (with respective to s).

Corollary 3.3. Let $f : M \to N$ be an R-homomorphism of u-S-coherent modules M and N. Then Ker(f), Im(f) and Coker(f) are also u-S-coherent.

Proof. Using Theorem 3.2 and the exact sequences $0 \to$ Ker(f) \to M \to Im(f) \to 0 and $0 \to$ Im(f) \to N \to Coker(f) \to 0. □

Corollary 3.4. Let M and N be u-S-coherent sub-modules of a u-S-coherent module. Then $M + N$ is u-S-coherent if and only if so is $M \cap N$.

Proof. Following by Theorem 3.2 and the exact sequence $0 \to$ $M \cap N$ \to $M \oplus N$ \to $M + N$ \to 0. □

Let p be a prime ideal of R. We say an R-module M is (simply) u-p-coherent provided R is u-($R \setminus p$)-coherent.

Proposition 3.5. Let R be a ring, S a multiplicative subset of R and M an R-module. The following statements are equivalent.

1. M is a coherent R-module.
2. M is u-p-coherent for any $p \in \text{Spec}(R)$.
3. M is u-m-coherent for any $m \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) Trivial.

(3) \Rightarrow (1) By Lemma 2.5, M is finitely generated. Let N be a finitely generated of M, then M is u-m-finitely presented for any $m \in \text{Max}(R)$. So M is finitely presented by Proposition 2.6. □

Definition 3.6. Let R be a ring, S a multiplicative subset of R and $s \in S$. Then R is called a u-S-coherent ring (abbreviates uniformly S-coherent) ring (with respective to s) provided that R itself is a uniformly S-coherent R-module with respective to s.

Trivially, every coherent ring is u-S-coherent for any multiplicative set S. And if S is composed of units, then u-S-coherent rings are exactly coherent rings.

The proof of the following result is easy and direct, so we omit it.

Lemma 3.7. Let $R = R_1 \times R_2$ be direct product of rings R_1 and R_2, $S = S_1 \times S_2$ a multiplicative subset of R. Then R is u-S-coherent if and only if R_i is u-S_i-coherent for any $i = 1, 2$.

The following example shows that not every u-S-coherent rings is coherent.
Example 3.8. Let \(R_1 \) be a coherent ring and \(R_2 \) a non-coherent ring, \(S_1 = \{1\} \) and \(S_2 = \{0\} \). Set \(R = R_1 \times R_2 \) and \(S = S_1 \times S_2 \). Then \(R \) is \(u\)-\(S \)-coherent non-coherent ring.

Let \(\mathfrak{p} \) be a prime ideal of \(R \). We say a ring \(R \) is (simply) \(u\)-\(\mathfrak{p} \)-coherent provided \(R \) is \(u\)-(\(R \setminus \mathfrak{p} \))-coherent.

Proposition 3.9. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). The following statements are equivalent.

(1) \(R \) is a coherent ring.
(2) \(R \) is a \(u\)-\(\mathfrak{p} \)-coherent ring for any \(\mathfrak{p} \in \text{Spec}(R) \).
(3) \(R \) is a \(u\)-\(\mathfrak{m} \)-coherent ring for any \(\mathfrak{m} \in \text{Max}(R) \).

Proof. Follows by Proposition 3.5.

Proposition 3.10. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \). If \(R \) is a \(u\)-\(S \)-Noetherian ring, then \(R \) is \(u\)-\(S \)-coherent.

Proof. Follows from Theorem 2.7.

Trivially, \(u\)-\(S \)-coherent rings are not \(u\)-\(S \)-Noetherian in general. Indeed, we can find a non-Noetherian coherent ring in the case that \(S = \{1\} \).

In 1960, Chase characterized coherent rings by considering annihilator of elements and intersection of finitely generated ideals in [5, Theorem 2.2]. Now, we give a “uniform” version of Chase’s result.

Proposition 3.11. (Chase’s result for \(u\)-\(S \)-coherent rings) Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Then the following assertions are equivalent:

(1) \(R \) is a \(u\)-\(S \)-coherent ring;
(2) there is \(s \in S \) such that \((0 :_R r)\) is \(S \)-finite with respective to \(s \) for any \(r \in R \), and the intersection of two finitely generated ideals of \(R \) is \(S \)-finite with respective to \(s \);
(3) there is \(s \in S \) such that \((I :_R b)\) is \(S \)-finite with respective to \(s \) for any element \(b \in R \) and any finitely generated ideal \(I \) of \(R \).

Proof. (1) \(\Rightarrow \) (2): Suppose \(R \) is \(u\)-\(S \)-coherent with respective to \(s \). Considering the exact sequence \(0 \rightarrow (0 :_R r) \rightarrow R \rightarrow Rr \rightarrow 0 \), we have \((0 :_R r)\) is \(S \)-finite with respective to \(s \) by Theorem 2.2. For any two finitely generated ideals \(I, J \) of \(R \), we have \(I \cap J \) is \(S \)-finite with respective to \(s \) by Corollary 3.4 and Theorem 2.2.

(2) \(\Rightarrow \) (1): Let \(I = (a_1, \ldots, a_n) \) be a finitely generated ideal of \(R \). We claim that \(I \) is \(u\)-\(S \)-finitely presented with respective to \(s \) by induction on \(n \). Suppose \(n = 1 \).
the claim follows by the exact sequence \(0 \to (0 :_R r) \to R \to Rr \to 0 \). Suppose \(n = k \), the claim holds. Suppose \(n = k + 1 \). the claim holds by the exact sequence \(0 \to \langle a_1, \cdots, a_k \rangle \cap \langle a_{k+1} \rangle \to \langle a_1, \cdots, a_k \rangle \oplus \langle a_{k+1} \rangle \to \langle a_1, \cdots, a_{k+1} \rangle \to 0 \). So the claim holds for all \(n \).

(1) \(\Rightarrow \) (3): Suppose \(R \) is \(u \)-\(S \)\(-\)coherent with respective to \(s \). Let \(I \) be a finitely generated ideal of \(R \) and \(b \) an element in \(R \). Consider the following commutative diagram with exact rows:

\[
\begin{array}{c}
0 & \to & I & \to & Rb + I & \to & (Rb + I)/I & \to & 0 \\
0 & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \to & (I :_R b) & \to & R & \to & R/(I :_R b) & \to & 0.
\end{array}
\]

Since \(R \) is \(u \)-\(S \)\(-\)coherent with respective to \(s \), we have \(Rb + I \) is \(u \)-\(S \)\(-\)finitely presented with respective to \(s \). Since \(I \) is finitely generated, \((Rb + I)/I \) is \(u \)-\(S \)\(-\)finitely presented with respective to \(s \) by Theorem 2.2. Thus \((I :_R b) \) is \(S \)\(-\)finite is with respective to \(s \) by Theorem 2.2 again.

(3) \(\Rightarrow \) (1): Let \(I \) be a finitely generated ideal of \(R \) generated by \(\{a_1, ..., a_n\} \). We will show \(I \) is \(u \)-\(S \)\(-\)finitely presented by induction on \(n \). The case \(n = 1 \) follows from the exact sequence \(0 \to (0 :_R a_1) \to R \to Ra_1 \to 0 \). For \(n \geq 2 \), let \(L = \langle a_1, ..., a_{n-1} \rangle \). Consider the exact sequence \(0 \to (L :_R a_n) \to R \to (Ra_n + L)/L \to 0 \). Then \((Ra_n + L)/L = I/L \) is \(u \)-\(S \)\(-\)finitely presented with respective to \(s \) by (3) and Theorem 2.2. Consider the exact sequence \(0 \to L \to I \to I/L \to 0 \). Since \(L \) is finitely presented by induction and \(I/L \) is \(u \)-\(S \)\(-\)finitely presented with respective to \(s \), \(I \) is also \(u \)-\(S \)\(-\)finitely presented with respective to \(s \) by Theorem 2.2.

Recall from [3] that a ring \(R \) is \(S \)\(-\)coherent (resp., \(c \)-\(S \)\(-\)coherent) provided that any finitely generated ideal is \(S \)\(-\)finitely presented (resp., \(c \)-\(S \)\(-\)finitely presented).

Proposition 3.12. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \). If \(R \) is a \(u \)-\(S \)\(-\)coherent ring, then \(R \) is both \(S \)-coherent and \(c \)-\(S \)\(-\)coherent.

Proof. Let \(I \) be a finitely generated ideal and \(0 \to K \to F \to I \to 0 \) an exact sequence with \(F \) finitely generated free. Then \(K \) is \(S \)-finite by Theorem 2.2(4). Thus \(I \) is \(S \)\(-\)finitely presented, and so \(R \) is \(S \)\(-\)coherent. Consider the exact sequence \(0 \to T_1 \to N \xrightarrow{f} I \to T_2 \to 0 \) with \(N \) finitely presented and \(sT_1 = sT_2 = 0 \). Note that \(\text{sin } sT_2 = 0 \), we have \(sI \subseteq \text{Im}(f) \cong N/T_1 \). Since \(sT_1 = 0 \), \(s^2I \) can be seen as a submodule of \(N \). Hence \(I \) is \(c \)-\(S \)\(-\)finitely presented. Consequently, \(R \) is \(c \)-\(S \)\(-\)coherent.

Proposition 3.13. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \) consisting of finite elements. Then the following statements are equivalent.
(1) R is a u-S-coherent ring.

(2) R is an S-coherent ring.

(3) R is a c-S-coherent ring.

Proof. Suppose $S = \{s_1, \ldots, s_n\}$ and set $s = s_1 \cdots s_n$.

(1) \Rightarrow (2) and (1) \Rightarrow (3) Follows by Proposition 3.12.

(2) \Rightarrow (1) Let I be a finitely generated ideal of R. Then there is an exact sequence $0 \to K \to F \to I \to 0$ with F finitely generated free and K S-finite. Let X be a submodule of K such that $s_iK \subseteq X$ for some $s_i \in S$. So $sK/X = 0$ Then the exact sequence $0 \to K/X \to F/X \to I \to 0$ makes I u-S-finitely presented with respective to s. So R is a u-S-coherent ring.

(3) \Rightarrow (1) Let I be a finitely generated ideal of R. Then there is a finitely presented sub-ideal J of R such that $s_iI \subseteq J = 0$. So $s(I/J) = 0$. Then the exact sequence $0 \to I \to J \to I/J \to 0$ makes I u-S-finitely presented with respective to s. So R is a u-S-coherent ring.

Let R be a ring, M an R-module and S a multiplicative subset of R. For any $s \in S$, there is a multiplicative subset $S_s = \{1, s, s^2, \ldots\}$ of S. We denote by M_s the localization of M at S_s. Certainly, $M_s \cong M \otimes_R R_s$

Proposition 3.14. Let R be a ring and S a multiplicative subset of R. If R is a u-S-coherent ring with respective to some $s \in S$, then R_s is a coherent ring.

Proof. Suppose R is u-S-coherent ring with respective to $s \in S$. Let J be a finitely generated ideal of R_s. Then $J \cong I_s$ for some finitely generated ideal I of R. So there is an exact sequence $0 \to T_1 \to K \to I \to T_2 \to 0$ with K finitely presented and $sT_1 = sT_2 = 0$. Localizing at S_s, we have $(T_1)_s = (T_2)_s = 0$. So $J \cong I_s \cong K_s$ which is finitely presented over R_s. So R_s is a coherent ring.

Next, we will give an example of a ring which is both S-coherent and c-S-coherent, but not u-S-coherent.

Example 3.15. Let R be a domain. Set $S = R - \{0\}$. First, we will show R is c-S-coherent. Let I be a nonzero finitely generated ideal of R. Suppose $0 \neq r \in I$. Then we have $rI \subseteq Rr \subseteq I$. Since $Rr \cong R$ is finitely presented, R is a c-S-coherent ring.

Next we will show R is S-coherent. Let I be a nonzero finitely generated ideal of R generated by nonzero elements $\{a_1, \ldots, a_n\}$. Set $a = a_1 \cdots a_n$. Consider the natural exact sequence $0 \to K \to R^n \xrightarrow{f} I \to 0$ satisfying $f(e_i) = a_i$ for each i. Claim K is S-finite with respective to a by induction on n. Set $I_k = \langle a_1, \ldots, a_k \rangle$.

Suppose $n = 1$. Then $K = 0$ as a_1 is a non-zero-divisor. So the claim trivially holds.
Suppose the claim holds for \(n = k \). Now let \(n = k + 1 \). Consider the following commutative diagram with exact rows and columns.

\[
\begin{array}{ccccccccc}
0 & \rightarrow & K_k & \rightarrow & R^k & \rightarrow & I_k & \rightarrow & 0 \\
\uparrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & K_{k+1} & \rightarrow & R^{k+1} & \rightarrow & I_k + R_{k+1} & \rightarrow & 0 \\
\uparrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & (I_k :_R R_{k+1}) & \rightarrow & R & \rightarrow & (I_k + R_{k+1})/I_k & \rightarrow & 0,
\end{array}
\]

Since \(a(I_k :_R R_{k+1}) \subseteq aR \subseteq (I_k :_R R_{k+1}) \), So \((I_k :_R R_{k+1})\) is \(S \)-finite with respective to \(a \). By induction, \(K_k \) is \(S \)-finite with respective to \(a \). It is easy to check \(K_{k+1} \) is also \(S \)-finite with respective to \(a \). So the claim holds. Consequently, \(R \) is \(S \)-coherent.

Now, let \(R \) is a domain such that \(R_s \) is not coherent for any \(s \neq 0 \). For example, \(R = \mathbb{Q} + x\mathbb{R}[[x]] \) be the subring of formal power series ring \(T = \mathbb{R}[[x]] \) with constants in real numbers \(\mathbb{R} \), where \(\mathbb{Q} \) is the set of all rational numbers. Indeed, let \(0 \neq s = a + xf(x) \in R \). We divide it into two cases. Case I: \(a \neq 0 \). In this case, \(s \) is a unit in \(R \), and so \(R_s \cong R \) which is not coherent by [7, Theorem 5.2.3]. Case II: \(a = 0 \). In this case, \(R_s \cong \mathbb{Q} + (x\mathbb{R}[[x]])_x f(x) \cong \mathbb{Q} + (x\mathbb{R}[[x]])_x \). So \(R_s \) can fit into a Milnor square of type II:

\[
\begin{array}{ccc}
R_s & \rightarrow & \mathbb{R}[[x]][x^{-1}] \\
\uparrow & & \downarrow \\
\mathbb{Q} & \rightarrow & \mathbb{R}.
\end{array}
\]

Hence \(R_s \) is not a coherent domain by [20, Theorem 8.5.17]. We will show \(R \) is not a \(u \)-\(S \)-coherent ring. On contrary, suppose \(R \) is \(u \)-\(S \)-coherent. Then there is a \(s \neq 0 \) such that \(R_s \) is a coherent ring by Proposition 3.14 which is a contradiction.

4. Module-theoretic characterizations of uniformly \(S \)-coherent rings

In this section, we will characterize uniformly \(S \)-coherent rings in terms of \(u \)-\(S \)-flat modules and \(u \)-\(S \)-injective modules. The following lemma is basic and of independent interest.

Lemma 4.1. Let \(R \) be a ring, \(r \in R \) and \(M \) an \(R \)-module. Suppose \(N \) is a pure submodule of \(M \). Then we have the following natural isomorphism

\[
\frac{rM}{rN} \cong r\left(\frac{M}{N}\right).
\]
Consequently, suppose \(\{M_i \mid i \in \Lambda\} \) is a direct system of \(R \)-modules. Then
\[
\varprojlim M_i \cong \varprojlim (rM_i).
\]

Proof. Consider the surjective map \(f : \frac{rM}{rN} \to \frac{M}{N} \) defined by \(f(rm + rN) = r(m + N) \). It is certainly \(R \)-linear. We will check it is also well defined. Indeed, \(f(rn + rN) = r(n + N) = r(0 + N) = 0 \). So \(f \) is an \(R \)-epimorphism. Let \(rm + rN \in \text{Ker}(f) \). Then \(rm \in N \). Since \(N \) is a pure submodule of \(M \), there is \(n \in N \) such that \(rm = rn \). So \(rm + rN = rn + rN = 0 \). Hence \(f \) is an isomorphism. Suppose \(\{ (M_i, f_{ij}) \mid i, j \in \Lambda \} \) is a direct system of \(R \)-modules. Then there is a pure exact sequence
\[0 \to K \to \bigoplus M_i \to \varprojlim M_i \to 0 \]
where \(K = \langle x - f_{ij}(x) \mid x \in M_i, i \leq j \in I \rangle \) (see [8, (2.1.1)]). Note that \(\{ (rM_i, f_{ij}) \mid i, j \in \Lambda \} \) is also a direct system of \(R \)-modules. We have the following equivalence
\[
\varprojlim (rM_i) \cong \frac{\bigoplus M_i}{K'} = \frac{r \bigoplus M_i}{rK} \cong r \frac{\bigoplus M_i}{K} \cong \varprojlim rM_i
\]
where \(K' = \langle rx - f_{ij}(rx) \mid rx \in rM_i, i \leq j \in I \rangle \). \(\square \)

Lemma 4.2. Let \(E \) be an injective cogenerator. Then the following assertions are equivalent.

1. \(T \) is uniformly \(S \)-torsion with respect to \(s \).
2. \(\text{Hom}_R(T, E) \) is uniformly \(S \)-torsion with respect to \(s \).

Proof. (1) \(\Rightarrow \) (2): Follows from [16, Lemma 4.2].

(2) \(\Rightarrow \) (1): Let \(f : sT \to E \) be an \(R \)-homomorphism and \(i : sT \to T \) the embedding map. Since \(E \) is injective, there exists an an \(R \)-homomorphism \(g : T \to E \) such that \(f = gi \). Let \(st \in sT \), we have \(f(st) = sg(t) = 0 \) as \(s\text{Hom}_R(T, E) = 0 \). So \(\text{Hom}_R(sT, E) = 0 \). Hence \(sT = 0 \) as \(E \) is an injective cogenerator. \(\square \)

A multiplicative subset \(S \) of \(R \) is said to be regular if it is composed of non-zero-divisors. Next, we give some new characterizations of \(u \)-\(S \)-flat modules

Proposition 4.3. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \). Then the following assertions are equivalent.

1. \(F \) is \(u \)-\(S \)-flat.
2. there exists an element \(s \in S \) satisfying that \(\text{Tor}_1^R(N, F) \) is uniformly \(S \)-torsion with respect to \(s \) for any finitely presented \(R \)-module \(N \).
3. \(\text{Hom}_R(F, E) \) is \(u \)-\(S \)-injective for any injective module \(E \).
4. \(\text{Hom}_R(F, E) \) is \(u \)-\(S \)-absolutely pure for any injective module \(E \).
5. if \(E \) is an injective cogenerator, then \(\text{Hom}_R(F, E) \) is \(u \)-\(S \)-injective.
6. if \(E \) is an injective cogenerator, then \(\text{Hom}_R(F, E) \) is \(u \)-\(S \)-absolutely pure.
Moreover, if S is regular, then all above are equivalent to the following assertions.

(7) there exists $s \in S$ satisfying that $\text{Tor}_1^R(R/I, F)$ is uniformly S-torsion with respect to s for any ideal I of R.

(8) there exists $s \in S$ satisfying that, for any ideal I of R, the natural homomorphism $\sigma_I : I \otimes_R F \to IF$ is a u-S-isomorphism with respect to s.

(9) there exists $s \in S$ satisfying that $\text{Tor}_1^R(R/K, F)$ is uniformly S-torsion with respect to s for any finitely presented ideal K of R.

(10) there exists $s \in S$ satisfying that, for any finite generated ideal K of R, the natural homomorphism $\sigma_K : K \otimes_R F \toKF$ is a u-S-isomorphism with respect to s.

Proof. (1) \Rightarrow (2): Set the set $\Gamma = \{(K, R^n) \mid K$ is a finitely generated submodule of R^n and $n < \infty\}$. Define $M = \bigoplus_{(K, R^n) \in \Gamma} R^n/K$. Then $\text{Tor}_1^R(M, F)$ is a finitely presented R-module, then $N \cong R^n/K$ for some $(K, R^n) \in \Gamma$. Hence $\text{Tor}_1^R(N, F) = 0$ is uniformly S-torsion with respect to s.

(2) \Rightarrow (1): Let M be an R-module. Then $M = \lim \longrightarrow N_i$ for some direct system of finitely presented R-modules $\{N_i\}$. So $\text{Tor}_1^R(M, F) = \text{Tor}_1^R(\lim \longrightarrow N_i, F) \cong \lim \longrightarrow (\text{Tor}_1^R(N_i, F)) \cong \lim \longrightarrow (\text{Tor}_1^R(N_i, F)) = 0$ by Lemma 4.1. Hence F is u-S-flat by [21 Theorem 3.2]

(1) \Rightarrow (3): Let M be an R-module and E an injective R-module. Since M is u-S-flat, then $\text{Tor}_1^R(M, F)$ is uniformly S-torsion. Thus $\text{Ext}_R^1(M, \text{Hom}_R(F, E)) \cong \text{Hom}_R(\text{Tor}_1^R(M, F), E)$ is also uniformly S-torsion by [16 Lemma 4.2]. Thus $\text{Hom}_R(F, E)$ is u-S-injective by [16 Theorem 4.3].

(3) \Rightarrow (4) and (3) \Rightarrow (5) \Rightarrow (6): Trivial.

(6) \Rightarrow (2): Let E be an injective cogenerator. Since $\text{Hom}_R(F, E)$ is u-S-absolutely pure, there exists $s \in S$ such that $\text{Hom}_R(\text{Tor}_1^R(N, F), E) \cong \text{Ext}_R^1(N, \text{Hom}_R(F, E))$ is uniformly S-torsion with respect to s for any finitely presented R-module N. Since E is an injective cogenerator, $\text{Tor}_1^R(N, F)$ is uniformly S-torsion with respect to s for any finitely presented R-module N by Lemma 4.2.

(2) \Rightarrow (9), (7) \Rightarrow (9), (7) \iff (8) and (9) \iff (10): Obvious.

(10) \Rightarrow (8): Let $\sum_{i=1}^n a_i \otimes x_i \in \text{Ker}(\sigma_I)$. Let K be the finitely generated ideal generated by $\{a_i \mid i = 1, \ldots, n\}$. Consider the following commutative diagram:
\[
\begin{array}{c}
\begin{array}{c}
K \otimes_R F \xrightarrow{i \otimes 1} I \otimes_R F \\
K F \xrightarrow{i'} I F
\end{array}
\end{array}
\]

Let \(\sum_{i=1}^{n} a_i \otimes x_i \) be the element in \(K \otimes_R F \) such that \(i \otimes 1(\sum_{i=1}^{n} a_i \otimes x_i) = \sum_{i=1}^{n} a_i \otimes x_i \in I \otimes_R F \). Since \(i' \sigma_K(\sum_{i=1}^{n} a_i \otimes x_i) = \sigma_I(\sum_{i=1}^{n} a_i \otimes x_i) = 0 \), we have \(\sum_{i=1}^{n} a_i \otimes x_i \in \ker(\sigma_K) \) since \(i' \) is a monomorphism. Then \(s \sum_{i=1}^{n} a_i \otimes x_i = 0 \in K \otimes_R F \).

So \(\sum_{i=1}^{n} a_i \otimes x_i \in \ker(\sigma_I) \).

Now assume the multiplicative subset \(S \) is regular.

(7) \(\Rightarrow \) (5) Let \(E \) be an injective cogenerator. Since \(\text{Tor}^R_1(R/I, F) \) is uniformly \(S \)-torsion with respect to \(s \), we have \(\text{Hom}_R(\text{Tor}^R_1(R/I, F), E) \cong \text{Ext}^1_R(R/I, \text{Hom}_R(F, E)) \) is uniformly \(S \)-torsion with respect to \(s \) by Lemma 4.2. Since \(s \) is regular and \(E \) is injective, we have \(E \) is \(s \)-divisible. Hence \(\text{Hom}_R(F, E) \) is also \(s \)-divisible. Hence \(\text{Hom}_R(F, E) \) is \(u \)-\(S \)-injective by [16, Proposition 4.9].

In 1960, Chase also characterized coherent rings in terms of flat modules (see [3, Theorem 2.1]). Now, we are ready to give a “uniform” \(S \)-version of Chase Theorem.

Theorem 4.4. (Chase Theorem for \(u \)-\(S \)-coherent rings) Let \(R \) be a ring and \(S \) is a regular multiplicative subset of \(R \). Then the following assertions are equivalent:

1. \(R \) is a \(u \)-\(S \)-coherent ring.
2. there is \(s \in S \) such that any direct product of flat modules is \(u \)-\(S \)-flat with respective to \(s \).
3. there is \(s \in S \) such that any direct product of projective modules is \(u \)-\(S \)-flat with respective to \(s \).
4. there is \(s \in S \) such that any direct product of \(R \) is \(u \)-\(S \)-flat with respective to \(s \).

Proof. (2) \(\Rightarrow \) (3) \(\Rightarrow \) (4) Trivial.

(1) \(\Rightarrow \) (2) Suppose \(R \) is \(u \)-\(S \)-coherent with respective to some \(s \in S \). Let \(\{F_i | i \in \Lambda\} \) be a family of flat \(R \)-modules and \(I \) a finitely generated ideal of \(R \). Then \(I \) is \(u \)-\(S \)-finitely presented with respective to \(s \). So we have an exact sequence \(0 \to T' \to K \xrightarrow{f} I \to T \to 0 \) with \(K \) finitely presented and \(sT = sT' = 0 \). Set
\(\text{Im}(f) = K' \). Consider the following commutative diagrams with rows exact:

\[
\begin{array}{c}
\text{Im}(f) = K'. \\
\text{Consider the following commutative diagrams with rows exact:} \\
T' \otimes_R \prod_{i \in I} F_i \longrightarrow K \otimes_R \prod_{i \in I} F_i \longrightarrow K' \otimes_R \prod_{i \in I} F_i \longrightarrow 0 \\
\alpha \downarrow \quad \gamma \downarrow \cong \quad \beta \\
0 \longrightarrow \prod_{i \in I}(T' \otimes_R F_i) \longrightarrow \prod_{i \in I}(K \otimes_R F_i) \longrightarrow \prod_{i \in I}(K' \otimes_R F_i) \longrightarrow 0,
\end{array}
\]

and

\[
\begin{array}{c}
K' \otimes_R \prod_{i \in I} F_i \longrightarrow I \otimes_R \prod_{i \in I} F_i \longrightarrow T \otimes_R \prod_{i \in I} F_i \longrightarrow 0 \\
\beta \downarrow \theta \\
0 \longrightarrow \prod_{i \in I}(K' \otimes_R F_i) \longrightarrow \prod_{i \in I}(I \otimes_R F_i) \longrightarrow \prod_{i \in I}(T \otimes_R F_i) \longrightarrow 0,
\end{array}
\]

By [8, Lemma 3.8(2)], \(\gamma \) is an isomorphism. Then \(\text{Ker}(\beta) \cong \text{Coker}(\alpha) \) which is \(u\)-\(S \)-torsion with respective to \(s \). Since \(K' \) is finitely generated, we have \(\beta \) is an epimorphism by [8, Lemma 3.8(1)]. Since \(T \otimes_R \prod_{i \in I} F_i \) and \(\text{Ker}(\beta) \) are all \(u\)-\(S \)-torsion with respective to \(s \), so \(\text{Ker}(\theta) \) is also \(u\)-\(S \)-torsion with respective to \(s \).

Now we consider the following commutative diagram with rows exact:

\[
\begin{array}{c}
0 \longrightarrow \text{Tor}_1^R(R/I, \prod_{i \in I} F_i) \longrightarrow I \otimes_R \prod_{i \in I} F_i \longrightarrow R \otimes_R \prod_{i \in I} F_i \\
\text{Tor}_1^R(R/I, F_i) \downarrow \theta \downarrow \\
0 \longrightarrow \prod_{i \in I}(\text{Tor}_1^R(R/I, F_i)) \longrightarrow \prod_{i \in I}(I \otimes_R F_i) \longrightarrow \prod_{i \in I}(R \otimes_R F_i),
\end{array}
\]

Note \(\text{Tor}_1^R(R/I, \prod_{i \in I} F_i) \subseteq \text{Ker}(\theta) \). So \(\text{Tor}_1^R(R/I, \prod_{i \in I} F_i) \) is \(u\)-\(S \)-torsion with respective to \(s \), Hence \(\prod_{i \in I} F_i \) is \(u\)-\(S \)-flat (with respective to \(s \)) by Proposition 4.3.

(4) \(\Rightarrow \) (1) Let \(I \) be a finitely generated ideal of \(R \). Consider the following commutative diagram with rows exact:

\[
\begin{array}{c}
I \otimes_R \prod_{i \in I} R \longrightarrow R \otimes_R \prod_{i \in I} R \longrightarrow R/I \otimes_R \prod_{i \in I} R \longrightarrow 0 \\
g \downarrow \quad \cong \quad \cong \\
0 \longrightarrow \prod_{i \in I}(I \otimes_R R) \longrightarrow \prod_{i \in I}(R \otimes_R R) \longrightarrow \prod_{i \in I}(R/I \otimes_R R) \longrightarrow 0.
\end{array}
\]

Since \(\prod_{i \in I} R \) is a \(u\)-\(S \)-flat module with respective to \(s \), then \(f \) is a \(u\)-\(S \)-monomorphism. So \(g \) is also a \(u\)-\(S \)-monomorphism with respective to \(s \).
Let $0 \rightarrow L \rightarrow F \rightarrow I \rightarrow 0$ be an exact sequence with F finitely generated free. Consider the following commutative diagram with rows exact:

\[
\begin{array}{ccccccccc}
L \otimes_R \prod_{i \in I} R & \longrightarrow & F \otimes_R \prod_{i \in I} R & \longrightarrow & I \otimes_R \prod_{i \in I} R & \longrightarrow & 0 \\
0 & \longrightarrow & \prod_{i \in I} (L \otimes_R R) & \longrightarrow & \prod_{i \in I} (F \otimes_R R) & \longrightarrow & \prod_{i \in I} (I \otimes_R R) & \longrightarrow & 0.
\end{array}
\]

Since g is a u-S-monomorphism with respective to s, h is a u-S-epimorphism with respective to s. Set Λ equal to the cardinal of L. We will show L is S-finite with respective to s. Indeed, consider the following exact sequence

\[
L \otimes_R R^L \longrightarrow L^L \longrightarrow T \longrightarrow 0
\]

with T a u-S-torsion module with respective to s. Let $x = (m)_{m \in L} \in L^L$. Then $sx \subseteq \text{Im} h$. Subsequently, there exist $m_j \in L, r_{j,i} \in R, i \in L, j = 1, \ldots, n$ such that for each $t = 1, \ldots, k$, we have

\[
sx = h(\sum_{j=1}^{n} m_j \otimes (r_{j,i})_{i \in L}) = (\sum_{j=1}^{n} m_j r_{j,i})_{i \in L}.
\]

Set $U = \langle m_j \mid j = 1, \ldots, n \rangle$ be the finitely generated submodule of L. Now, for any $m \in L$, $sm \in \langle \sum_{j=1}^{n} m_j r_{j,m} \rangle \subseteq U$, thus the embedding map $U \hookrightarrow L$ is a u-S-isomorphism with respective to s and so L is S-finite with respective to s. Consequently, I is u-S-finitely presented with respective to s. Hence, R is u-S-coherent with respective to s. □

In 1982, Matlis [14, Theorem 1] showed that a ring R is coherent if and only if $\text{Hom}_R(M, E)$ is flat for any injective modules M and E. The rest of this paper is devoted to obtain a “uniform” S-version of this result.

Lemma 4.5. Let R be a ring, S is a regular multiplicative subset of R and E an injective cogenerator over R. Suppose $\text{Hom}_R(E, E)$ is u-S-flat with respective to $s \in S$, then $\text{Hom}_R(E, E)/R$ is also u-S-flat with respective to s.

Proof. Let I be an ideal of R. Set $H = \text{Hom}_R(E, E)$. Let $i : R \rightarrow H$ be the multiplicative map. Suppose H is u-S-flat with respective to $s \in S$. Then there is a long exact sequence

\[
\text{Tor}^R_1(R/I, H) \rightarrow \text{Tor}^R_1(R/I, H/R) \rightarrow R/I \otimes_R R^{R/I \otimes i} \rightarrow R/I \otimes H.
\]

18
Note that $\text{Ker}(R/I \otimes i) \cong (HI \cap R)/I = 0$ by [14, Proposition 1(2)]. Since $\text{Tor}^1_0(R/I, H)$ is u-S-torsion with respective to $s \in S$, $\text{Tor}^1_0(R/I, H/R)$ is u-S-torsion with respective to $s \in S$, which implies that H/R is also u-S-flat with respective to s. \hfill \square

Lemma 4.6. Let R be a ring, S is a regular multiplicative subset of R. Suppose that $\{A_\lambda \mid \lambda \in \Lambda\}$ is a family of u-S-flat modules with respective to $s \in S$, and that B_λ is a submodule of A_λ such that A_λ/B_λ is u-S-flat with respective to s for each $\lambda \in \Lambda$. Then $\prod_{\lambda \in \Lambda} A_\lambda$ is u-S-flat with respective to s if and only if so is $\prod_{\lambda \in \Lambda} B_\lambda$ and $\prod_{\lambda \in \Lambda} A_\lambda/B_\lambda$.

Proof. Let I be a finitely generated ideal of R. Then there is an exact sequence

$$\text{Tor}^2_0(R/I, \prod_{\lambda \in \Lambda} A_\lambda/B_\lambda) \to \text{Tor}^1_0(R/I, \prod_{\lambda \in \Lambda} B_\lambda) \to \text{Tor}^1_0(R/I, \prod_{\lambda \in \Lambda} A_\lambda).$$

By [21 Theorem 3.2], we just need to show $\prod_{\lambda \in \Lambda} A_\lambda/B_\lambda$ is u-S-flat with respective to s. Consider the following exact sequence

$$\text{Tor}^1_0(R/I, \prod_{\lambda \in \Lambda} A_\lambda) \to \text{Tor}^1_0(R/I, \prod_{\lambda \in \Lambda} A_\lambda/B_\lambda) \to R/I \otimes_R \prod_{\lambda \in \Lambda} B_\lambda \xrightarrow{f} R/I \otimes_R \prod_{\lambda \in \Lambda} A_\lambda.$$

Since $\text{Tor}^1_0(R/I, \prod_{\lambda \in \Lambda} A_\lambda)$ is u-S-torsion with respective to s, to show $\prod_{\lambda \in \Lambda} B_\lambda$ is u-S-flat with respective to s, we just need to show $\text{Ker}(f)$ is u-S-torsion with respective to s. Note that $\text{Ker}(f) \cong (\prod_{\lambda \in \Lambda} B_\lambda \cap I(\prod_{\lambda \in \Lambda} A_\lambda))/I \prod_{\lambda \in \Lambda} B_\lambda \cong \prod_{\lambda \in \Lambda} (B_\lambda \cap IA_\lambda)/IB_\lambda$ as I is finitely generated. Consider the following exact sequence $\text{Tor}^0_0(R/I, A_\lambda) \to \text{Tor}^1_0(R/I, A_\lambda/B_\lambda) \to R/I \otimes_R B_\lambda \xrightarrow{f_\lambda} R/I \otimes_R \prod_{\lambda \in \Lambda} A_\lambda$. We have $\text{Ker}(f_\lambda) \cong (B_\lambda \cap IA_\lambda)/IB_\lambda$ is u-S-torsion with respective to s since A_λ/B_λ is u-S-flat with respective to s. So $\text{Ker}(f) \cong \prod_{\lambda \in \Lambda} \text{Ker}(f_\lambda)$ is u-S-torsion with respective to s. \hfill \square

Theorem 4.7. (*Matlis Theorem for u-S-coherent rings*) Let R be a ring and S is a regular multiplicative subset of R. Then the following statements are equivalent.

1. R is a u-S-coherent ring.
2. there are $s_1, s_2 \in S$ such that $\text{Hom}_R(M, E)$ is u-S-flat with respective to s_1 for any M a u-S-absolutely pure module with respective to s_2 and any injective module E.
3. there are $s_1, s_2 \in S$ such that $\text{Hom}_R(M, E)$ is u-S-flat with respective to s_1 for any M u-S-injective module with respective to s_2 and any injective module E.

19
(4) there is $s_1, s_2 \in S$ such that if E is injective cogenerators, then $\text{Hom}_R(M, E)$ is u-S-flat with respective to s_1 for any M u-S-injective module with respective to s_2.

(5) there are $s_1, s_2 \in S$ such that $\text{Hom}_R(\text{Hom}_R(M, E_1), E_2)$ is u-S-flat with respective to s_1 for any M a u-S-flat module with respective to s_2 and any injective modules E_1, E_2.

(6) there are $s_1, s_2 \in S$ such that if E_1 and E_2 are injective cogenerators, then $\text{Hom}_R(\text{Hom}_R(M, E_1), E_2)$ is u-S-flat with respective to s_1 for any M a u-S-flat module with respective to s_2.

(7) there is $s \in S$ such that if E_1 is an injective cogenerator, then $\text{Hom}_R(E_1, E_2)$ is u-S-flat with respective to s for any injective cogenerator E_2.

Proof. (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (7) and (5) \Rightarrow (6): Trivial.

(3) \Leftrightarrow (5) and (4) \Leftrightarrow (6): Follows from Proposition 1.3

(1) \Rightarrow (2): Suppose R is a uniformly S-coherent ring with respective to some element $s \in S$. Let I be a finitely generated ideal of R. Then we have an exact sequence $0 \rightarrow T' \rightarrow K \xrightarrow{f} I \rightarrow T \rightarrow 0$ with K finitely presented and $sT = sT' = 0$. Set $\text{Im}(f) = K'$. Consider the following commutative diagrams with exact rows $((- -) = \text{instead of } \text{Hom}_R(-, -))$:

\[
\begin{array}{c}
\begin{array}{c}
(M, E) \otimes_R T' \rightarrow \quad (M, E) \otimes_R K \rightarrow \quad (M, E) \otimes_R K' \rightarrow 0
\end{array}
\end{array}
\]

\[
\begin{array}{c}
(\quad (T', M), E) \quad \rightarrow \quad ((K, M), E) \quad \rightarrow \quad ((K', M), E) \rightarrow 0,
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow \text{Tor}_1^R((M, E), R/K') \rightarrow \quad (M, E) \otimes_R K' \rightarrow \quad (M, E) \otimes_R R \rightarrow \quad (M, E) \otimes_R R/K' \rightarrow 0
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\psi_{K'} \quad \psi_K \quad \psi_{K'}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow \text{Tor}_1^R((M/K', M), E) \rightarrow \quad ((K', M), E) \rightarrow \quad ((R, M), E) \rightarrow \quad ((R/K', M), E) \rightarrow 0
\end{array}
\]

and

\[
\begin{array}{c}
\begin{array}{c}
\text{Tor}_1^R((M, E), T) \rightarrow \quad \text{Tor}_1^R((M, E), R/K') \rightarrow \quad \text{Tor}_1^R((M, E), R/I) \rightarrow \quad (M, E) \otimes_R T
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\psi_{K'} \quad \psi_K \quad \psi_{R/I}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
(\text{Ext}_1^R(T, M), E) \rightarrow \quad (\text{Ext}_1^R(R/K', M), E) \rightarrow \quad (\text{Ext}_1^R(R/I, M), E) \rightarrow \quad ((T, M), E)
\end{array}
\]

Since ψ_K is an isomorphism by [2 Proposition 8.14(1)] and [10 Theorem 2], $\psi_{K'}$ is a u-S-isomorphism with respective to s, and so is $\psi_{R/I}$. Then $\psi_{R/I}$ is a u-S-isomorphism with respective to s^3 (see the proof of [23 Theorem 1.2]). Since M is u-S-absolutely pure, $\text{Ext}_1^R(R/I, M)$ is u-S-torsion with respective to s_2 (s_2 is independent of I). Then $\text{Tor}_1^R(\text{Hom}_R(M, E), R/I)$ is u-S-torsion with respective to
$s_1 := s^3 s'$, and thus $\Hom_R(M, E)$ is u-S-flat with respective to s_1 by Proposition 4.3.

(7) \Rightarrow (1): Let E be an injective cogenerator and set $H = \Hom_R(E, E)$. Then H is u-S-flat with respective to s by assumption. Since $R \subseteq H$, we have that H/R is u-S-flat with respective to s by Lemma 4.5. Let Λ be an index set. Set $H_\lambda = H$, $R_\lambda = R$ and $E_\lambda = E$ for any $\lambda \in \Lambda$. Since $\prod_{\lambda \in \Lambda} E_\lambda$ is also a injective cogenerator, $\prod_{\lambda \in \Lambda} H_\lambda \cong \Hom_R(E_\lambda, \prod_{\lambda \in \Lambda} E_\lambda)$ is u-S-flat with respective to s by assumption. Hence $\prod_{\lambda \in \Lambda} R_\lambda$ is u-S-flat with respective to s by Lemma 4.6. So R is a u-S-coherent ring by Theorem 4.4.

References

[1] D. D. Anderson, T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), 4407-4416.
[2] L. Angeleri Hügel, D. Herbera, Mittag-Leffler conditions on modules, Indiana Math. J. 57, (2008), 2459-2517.
[3] D. Bennis, M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499-1512.
[4] Z. Bilgin, M. L. Reyes, and U. Tekir, On right S-Noetherian rings and S-Noetherian modules, Comm. Algebra 46 (2018), 863-869.
[5] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
[6] L. Fuchs, L. Salce, Modules over Non-Noetherian Domains, Providence, AMS, 2001.
[7] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989.
[8] R. Gobel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, De Gruyter Exp. Math., vol. 41, Berlin: Walter de Gruyter GmbH & Co. KG, 2012.
[9] S. Jain, Flat and FP-injectivity, Proc. Amer. Math. Soc. 41 (1973), 437-442.
[10] E. Lenzing, Endlich präsentierbare Moduln, Arch. Math., 20 (1969), no. 3, 262-266.
[11] J. W. Lim, A Note on S-Noetherian Domains, Kyungpook Math. J. 55, (2015), 507-514.
[12] J. W. Lim, D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218, (2014), 2099-2123.
[13] B. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc. 18 (1967), 155-158.
[14] E. Matlis, Commutative coherent rings, Can. J. Math. 6 (1982), 1240-1244.
[15] C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc. 26 (1970), 561-566.
[16] W. Qi, H. Kim, F. G. Wang, M. Z. Chen, W. Zhao, Uniformly S-Noetherian rings, submitted. https://arxiv.org/abs/2201.07913.
[17] W. Qi, X. L. Zhang, W. Zhao, New characterizations of S-coherent rings J. Algebra Appl., Vol. 22, No. 4 (2023) 2350078 (14 pages).
[18] J. J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, 85, Academic Press, Inc. New York-London, 1979.
[19] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), no. 2, 323-329
[20] F. G. Wang, H. Kim, Foundations of Commutative Rings and Their Modules, Singapore, Springer, 2016.

[21] X. L. Zhang, Characterizing S-flat modules and S-von Neumann regular rings by uniformity, Bull. Korean Math. Soc. 59 (2022), no. 3, 643-65.

[22] X. L. Zhang, On uniformly S-absolutely pure modules, to appear in J. Korean Math. Soc. https://arxiv.org/abs/2108.06851.

[23] X. L. Zhang, The u-S-weak global dimension of commutative rings, Commun. Korean Math. Soc. 38 (2023), no. 1, 97-112.

[24] X. L. Zhang, W. Qi, Characterizing S-projective modules and S-semisimple rings by uniformity, to appear in J. Commut. Algebra, https://arxiv.org/abs/2106.10441.