Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy

M.S. Petronek a, J.M. Stolwijk a, S.D. Murray b, E.J. Steinbach a, Y. Zakharia c, G.R. Buettner a, D. R. Spitz a, B.G. Allen a,∗

Keywords: Cancer therapy Antioxidant supplementation Ascorbate

ARTICLE INFO

ABSTRACT

There is a rapidly growing body of literature supporting the notion that differential oxidative metabolism in cancer versus normal cells represents a metabolic frailty that can be exploited to open a therapeutic window into cancer therapy. These cancer cell-specific metabolic frailties may be amenable to manipulation with non-toxic small molecule redox active compounds traditionally thought to be antioxidants. In this review we describe the potential mechanisms and clinical applicability in cancer therapy of four small molecule redox active agents: melatonin, vitamin E, selenium, and vitamin C. Each has shown the potential to have pro-oxidant effects in cancer cells while retaining antioxidant activity in normal cells. This dichotomy can be exploited to improve responses to radiation and chemotherapy by opening a therapeutic window based on a testable biochemical rationale amenable to confirmation with biomarker studies during clinical trials. Thus, the unique pro-oxidant/antioxidant properties of melatonin, vitamin E, selenium, and vitamin C have the potential to act as effective adjuvants to traditional cancer therapies, thereby improving cancer patient outcomes.

1. Introduction

Metabolic alterations associated with neoplastic transformation and malignant progression are recognized as emergent hallmarks of cancer [1]. Recent theoretical constructs connecting cancer development to aging and malignant progression argue that oxidative metabolic abnormalities in dividing cells undergoing neoplastic transformation lead to acceleration of genomic instability and thereby drive malignant progression [2–4]. These models propose that genetic instability associated with carcinogenesis may be driven by perturbations in mitochondrial oxidative metabolism. Dysfunctional mitochondrial oxidative metabolism often leads to a “build-up” of electrons at sites capable of mediating one-electron reduction of O2, leading to an increase in the steady-state levels of intracellular reactive oxygen species (ROS) that are believed to contribute to initiation, promotion, and progression of the malignant phenotype.

Cancer cells are generally thought to have increased levels of ROS, e.g. superoxide and hydrogen peroxide, compared to their normal cell counterparts [5–9]. Increased levels of ROS significantly contribute to: genomic instability, inability to perform differentiated function, immortalization, uncontrolled cellular proliferation, and the progression to the malignant state [2,3,5–7,10,11]. The altered metabolism of tumor cells was first reported by Otto Warburg in 1927 [12]. The Warburg effect describes the increased glucose uptake of tumor tissue relative to adjacent normal tissues. This increased glucose uptake may be utilized in the pentose phosphate pathway to generate reducing equivalents (i.e., NADPH). Transketolase is a critical pentose phosphate pathway mediator necessary for regenerating NADPH. Recently, transketolase has been shown to be critical in regulating cancer cell redox metabolism in hepatocellular carcinoma cells [13]. In this model system, transketolase inhibition led to increased oxidative distress and enhanced sensitivity to sorafenib. By driving the detoxification of hydroperoxides via the glutathione peroxidases and peroxiredoxins, increased NADPH can help mitigate the consequences of increased levels of superoxide.

https://doi.org/10.1016/j.redox.2021.101864

Received 15 November 2020; Received in revised form 8 January 2021; Accepted 10 January 2021

* Corresponding author. Division of Free Radical and Radiation Biology, Department of Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, IA, 52242-1181, USA.
E-mail address: bryan-allen@uiowa.edu (B.G. Allen).

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Clinical trials investigating traditional antioxidants as adjuvants to cancer therapy.

Cancer Type	Treatment	Phase	Trial Identifier
Breast	Melatonin 3 mg	Early	NCT01805089
Non-small Cell	Dietary supplement: 20 mg melanin vs. placebo	Phase 1	NCT00668707
Lung	Dietary supplement: 40 mg melanin vs. matched placebo	Phase 3	NCT02430298
Head and Neck	Dietary supplement: 20 mg melanin vs. matched placebo	Phase 3	NCT00513357
Gastrointestinal and Lung	Dietary supplement: 400 IU vitamin E vs. placebo	Phase 3	NCT00809458
Prostate	Dietary supplement: 1000 mg vitamin E for 7 weeks	Phase 2	NCT02394746
Pancreatic	Dietary supplement: vitamin E δ-tocotrienol supplied as 100 mg, 200 mg, and 400 mg capsules	Phase 1	NCT00985777
Breast	Dietary supplement: tocotrienol 200 mg twice a day	Phase 2	NCT04496492
Soft Tissue	Intravenous high dose ascorbate (75 g) in combination with radiotherapy	Phase 1/2	NCT03508726
Sarcoma	Intravenous high dose ascorbate (75 g) in combination with radiation and chemotherapy	Phase 2	NCT02905578
Pancreatic	Intravenous high dose ascorbate (75 g) in combination with chemotherapy	Phase 2	NCT0028319
Ovarian	Oral ascorbate in combination with chemotherapy	Phase 2	NCT04046094
Bladder	Intravenous ascorbate in combination with chemotherapy	Phase 2	NCT02344355
Glioblastoma	Intravenous ascorbate (87.5 g) in combination with radiation and chemotherapy	Phase 2	NCT02353533
Renal Cell	Oral selenomethionine (4 mg) in combination with asxthim (5 mg)	Phase 1/2	NCT02535533

ClinicalTrials.gov Identifier at http://clinicaltrials.gov as accessed 2020.11.05.
human leukemia Jurkat cells, high concentrations of melatonin (10–1000 μM) led to Fas–induced apoptosis via ROS generation [43]. Rodogna et al. showed that 1 mM melatonin induced ROS production as early as 1 min following exposure with ROS and persisting up to 6 h post-treatment [44]. High-doses (1–10 mM) of melatonin elevate ROS within 15 min in HepG2 cells [45]. The pro-oxidant nature of high-dose melatonin has been shown to promote apoptosis via caspase activation and can be counteracted by N-acetyl-L-cysteine, Trolox, PEG-catalase, and glutathione [46]. The fundamental pro-oxidant mechanism of high-dose melatonin is still poorly understood. MT1 and MT2 receptors are not believed to be central to the pro-oxidant role of melatonin, because MT1/2 antagonists could not mitigate melatonin-mediated ROS production in U937 cells [44].

While the role that MT1/2 plays in carcinogenesis is unclear, it appears there may be differential expression amongst tumors. The melatonin receptor, MT2, has recently been shown to have differential expression among lung cancer subtypes, with higher MT2 expression being associated with a more favorable prognosis [47]. This suggests the potential utility of melatonin agonists, such as ramelteon or agomelatine, to function as anti-neoplastic agents. Both ramelteon and agomelatine appear to be promising agents as cancer therapeutics [48]. Despite their theoretical clinical promise, the anti-cancer potential of both ramelteon and agomelatine need to be investigated.

The pro-oxidant nature of melatonin may be partly due to disruptions in the electron transport chain (ETC), a hypothesis based on the preferential accumulation of melatonin in the mitochondria [19,52]. In human mesangial cells and mouse kidney mitochondria, high doses of melatonin disrupt complex III of the ETC, leading to increased superoxide formation [53,54]. High-dose melatonin has also been shown to increase nNOS expression transiently in vitro, resulting in a decrease in oxidative phosphorylation and mitochondrial membrane potential [55,56]. The definitive role of the ETC disruptions by melatonin has yet to be elucidated but shows great promise since it is well known that cancer cells have significantly elevated levels of ROS relative to normal cells [3,5,40].

2.2. Normal tissue protection

In addition to its potential for enhancing cancer therapy, melatonin may also protect normal tissues from cancer therapy–associated toxicity by assuming a role as a donor antioxidant at higher doses, inducing NQO2, which is able to reduce quinones and semi-quinones to hydroquinones, and/or acting as a chelator of redox active metal ions [17,20,42]. The chemotherapy agent, adriamycin, is associated with significant heart and liver toxicity via oxidative damage. In 2008, a study of adult male rats given a single dose of 10 mg kg\(^{-1}\) adriamycin had significant increases in creatine kinase, lactic dehydrogenase, and aminotransferases, circulating iron, ferritin, and transferrin [57]. These elevations correlated with a decrease in liver and heart glutathione and glutathione-s-transferase activity, along with increases in lipid peroxidation, protein oxidation, catalase activity, and glutathione peroxidase activity. The supplementation of melatonin to adriamycin-therapy returned hepatic and cardiac function markers, circulating iron markers, and TBARS and protein carbonyl levels to baseline levels. Glutathione and glutathione peroxidase activity in the heart and liver also returned to baseline levels following the addition of melatonin to Adriamycin. This study presents an example of the potential novelty of melatonin supplementation during cancer therapy to mitigate normal tissue injuries.

Melatonin has also demonstrated significant activity as a radioprotector [58], protecting against radiation-induced DNA damage [59]. More recently, the combination of melatonin and vitamin C reduced DNA damage in peripheral blood samples [60]. In this study, 15 healthy volunteers were given an oral dose of 300 mg melatonin and 300 mg vitamin C with peripheral blood being collected 1 h, 2 h, and 3 h following supplementation. The blood was irradiated with 200 cGy of 6 MV photons and assessed for nuclear fragmentation. Maximum protection occurred at 1 h following oral supplementation. In addition, melatonin recently has been shown to mitigate radiation-induced lung fibrosis in a preclinical animal model [61]. Male C57BL/6 mice were treated with 1 mg melatonin daily for 7 days following a single dose of 15 Gy to the lungs. Mice that received melatonin had significantly reduced oxidative stress markers and macrophage infiltration in the lungs following radiation.

Further support for the hypothesis that melatonin may mitigate cancer therapy–associated toxicity arises from its ability to protect brain tissue from neurotoxins [62]. Melatonin protects the brain from oxidative injuries from methamphetamine [63–66], neural lipid peroxidation

Fig. 1. Schematic of melatonin and associated metabolites reactions with reactive oxygen species [22].
associated with aminolevulinic acid accumulation [67,68], and mitochon-
drially produced O$_2^\cdot$ from rotenone [69]. The extensive literature
on melatonin’s ability to protect CNS structures from a wide variety of
neurotoxins suggests that melatonin may also protect against neuro-
toxicity following cancer therapy.

2.3. Clinical relevance

The ideal dosage for melatonin as a potential cancer preventative or
cancer therapy adjuvant has yet to be determined. Oral doses of mel-
tonin ranging from 20 to 40 mg given daily, gradually throughout the
day, have been well tolerated [70–72]. Di Bella has reported that
supraphysiological doses delivered intravenously up to a maximum dose
of 1 g have limited side effects [73]. The primary side effect reported
with 1 g given intravenously was drowsiness, usually at the beginning of
the treatment [16]. A recent review of the clinical pharmacokinetics of
melatonin documented the time to maximum serum concentrations
being approximately 50 min [74]. Both the oral and intravenous half-life
of melatonin is approximately 45 min (28–126 min) [74]. Oral
bioavailability of melatonin is low with significant individual variability
(9–33%) [74]. A separate review recognized that intranasal melatonin
has substantially higher bioavailability of approximately 55–94% [75].

There are a limited number of completed clinical studies investigat-
ing melatonin’s utility as an adjuvant to cancer therapy (Table 2).
The Di Bella Method (DBM) [73] suggests that melatonin is clinically
useful for the enhancement of cancer therapy while mitigating the high
levels of toxicity. Note that this method also includes various other
antioxidants and immunomodulators such as vitamin E, C, and D3,
interleukin 2, and retinoids [16,76,77]. Retrospective clinical studies
using the DBM have shown its potential to improve the therapeutic
outcomes of patients with breast and head and neck cancer [60–62,68].
In 2005, Mills et al. published a meta-analysis of all randomized,
controlled clinical trials utilizing melatonin in cancer patients with solid
tumors [78]. By surveying electronic databases, they found 10 ran-
domized, controlled clinical trials utilizing melatonin from 1992 to 2003
involving a total of 643 patients. From each of these studies, the authors
concluded that melatonin reduced the risk of death at 1 year (relative
risk = 0.66, 95% confidence interval: 0.59–0.73) with no severe adverse
events.

A more recent meta-analysis of melatonin in combination with
chemotherapy, radiotherapy, or both was published in 2012 by Wang
et al. [79]. This study evaluated 8 randomized, controlled clinical trials
from 1992 to 2011 using an oral dosage of 20 mg daily in patients with
solid tumors. They found that melatonin significantly increased both
complete and partial remission (16.5% and 32.6%, respectively),
increased the 1-year survival rate from 28.4% to 52.2% with a relative
risk of 1.9 (95% confidence interval: 1.28–2.83), and decreased
radiotherapy-related side effects including thrombocytopenia (19.7% vs.
2.2%, relative risk = 0.13), neurotoxicity (15.2% vs. 2.5%, relative risk
= 0.19), and fatigue (49.1% vs. 17.2%, relative risk = 0.37). All reported
effects were independent of cancer type and no severe adverse events
associated with melatonin were reported. Despite the great promise for

Table 2

Cancer Type	Dosage	Combination of Drugs	Results	References
Metastatic Colorectal Cancer	melatonin (40 mg/day orally)	low-dose subcutaneous interleukin-2	Significantly increased 1-year survival rate of patients	[83]
Metastatic Breast Cancer	melatonin (20 mg/day orally starting 7 days before tamoxifen)	Tamoxifen	Partial response in 4/14 (28.5%) patients, improved anxiety in most patients and did not enhance the toxicity of tamoxifen. Serum levels of GF-1 were decreased by the combination therapy.	[81]
Metastatic NSCL Cancer	melatonin (20 mg/day orally in the evening)	cisplatin and etoposide	Improved overall tumor response rate and 5-year survival, with better tolerance to chemotherapy.	[80]
Breast Cancer	Di Bella Method	somatostatin, retinoids, vitamin D$_3$ and low dose of cyclophosphamide	Positively correlated with survival and tumor response	[77]
alcohol while GPx1 reacts with both H₂O₂ and ROOH to form either H₂O or ROH. If the hydrogen atom transfer of vitamin E to a lipid peroxyl radical is too slow, perhaps due to low levels of TOH, PLOOH will abstract a hydrogen atom from a neighboring phospholipid, thereby propagating the chain reactions of lipid peroxidation. In addition, insufficient GPx4 activity can increase the steady-state level of PLOOH, providing the potential for additional free radical oxidations.

Low GPx4 activity can be caused by selenium deficiency, which can be overcome by supplementation of Se [99]. During Se-deficiency or inhibition of GPx4, the higher steady-state level of PLOOH could lead to more reactions of ferrous iron through a Fenton-like reaction with PLOOH, leading to PLOOH, which initiates new chain-branching free radical reactions [100–102]. Therefore, the synergy of vitamin E and selenium are thought to be novel partners that can prevent these free radical-mediated oxidations that could lead to cancer or be used in the treatment of cancer.

While GPx4 appears to play a major role in the Se-dependent anti-oxidant effect of lipid peroxidation, other Se-dependent enzymes should not be overlooked. A different isoform in the GPx family, GPx1, also has Se at its active site. GPx1 reduces hydrogen peroxide as well as organic hydroperoxides in the cytosolic fraction of cells. Cytosolic hydroperoxides consist of lipid sections that were cleaved of oxidized phospholipids by phospholipase A₂ [103]. Like GPx1, the 2-Cys members of the peroxiredoxin family (prx1-5) can also act on these organic hydroperoxides [103,104]. In contrast to GPx4 termination of oxidation within the lipid bilayer, both GPx1 and the 2-Cys peroxiredoxins detoxify downstream products of lipid oxidation. The peroxiredoxins overlap with the glutaredoxins in the antioxidant recycling system, as described by Ng et al. [105]. Both, the peroxiredoxins and the glutaredoxins receive electrons from the pentose phosphate pathway, and thus NADPH. The flow of electrons occurs via the reductase/glutaredoxin pathway (GR/GRX), and the Se-dependent thioredoxin/thioredoxin reductase (Trx/TRxR) pathway [106–109]. This shows how Se-dependent enzymes, besides GPx4, can contribute to the termination of lipid peroxidation.

3.1. Cancer prevention

Vitamin E has been well investigated as an antioxidant supplement for cancer prevention. In 1994, a randomized, double-blind, placebo-controlled trial examined vitamin E’s ability to reduce the incidence of lung cancer in male smokers (the study also tested beta-carotene and a combination of vitamin E and beta-carotene, 87). The trial found no difference in the incidence of lung cancer [110]. Similarly, a study of Finnish male smokers who consumed vitamin E supplements for five to eight years failed to show a significant decrease in the incidence of pancreatic carcinoma [111]. This same cohort was also analyzed for the incidence of urinary tract cancer (urothelial cancer and renal cell cancer) and again showed no beneficial effect of vitamin E on cancer initiation [112]. In contrast, the same Finnish male smokers did show a modest preventative effect of colorectal cancer risk with long-term supplementation of vitamin E [112]. Likewise, a study conducted between 1992 and 2004 that recruited healthy US women and randomly assigned them to receive vitamin E or placebo reported no overall benefit for cancer prevention [113]. The SELECT trial was a randomized, placebo-controlled trial of vitamin E supplementation for 7–12 years ability to prevent prostate cancer in healthy men (the study also investigated selenium supplementation, or a combination of vitamin E and selenium, 91). This trial failed to show a benefit in prostate cancer incidence [114]. Recent reviews have suggested that supplementation of vitamin E and selenium may only be effective in cancer prevention when the subjects are deficient but not when are sufficient in these nutrients [115,116]. Based on these results, the hope of using supplemental vitamin E as a means of cancer prevention has waned.

3.2. Anticancer mechanisms of vitamin E

The biochemical anticancer pro-oxidant effects of vitamin E have

Fig. 3. The antioxidant triad, vitamins C, E and selenium cooperatively terminate lipid peroxidation. Oxidation of phospholipids can be initiated by 1-electron oxidants. Upon oxygenation, a phospholipid peroxyl radical, PLOOH, is formed. This species can be protonated through two pathways to form PLOOH. The first pathway, in green, utilizes vitamin C and E as antioxidants thus, protecting adjacent phospholipids to form PLOOH. The second pathway abstracts a hydrogen atom of another phospholipid to form PLOOH. However, this creates a new lipid radical PL•, and thus propagates lipid peroxidation. As shown, both pathways create PLOOH, but the antioxidant pathway is preferred, because this does not reinitiate lipid peroxidation reactions. The formed PLOOH is a substrate for GPx4 that detoxifies it to an alcohol, terminating lipid peroxidation. If GPx4 activity is blunted, PLOOH can initiate chain-branching lipid peroxidation reactions when ferrous iron is available. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Chemical structure of Vitamin E. A. Structural comparison of tocopherol and tocotrienol forms. B. Side chain moieties of individual tocopherols and tocotrienols.

Table:

Tocopherol/Tocotrienol	R₁	R₂	R₃
α	CH₃	CH₂	CH₃
β	CH₃	H	CH₃
γ	H	CH₃	CH₃
δ	H	H	CH₂
been extensively studied and are thought to be mediated by tocopheroxyl/tocotrienol-radical formation from mitochondrial metabolism in cancer cells [89,90,117–119]. The enhanced efficacy of γ-TE-OH may be partly explained by its increased accumulation in cancer cells compared to the tocopherols [120]. Tocotrienols have also been shown to accumulate selectively in cancer cells relative to normal cells following oral administration [96,97]. The tocotrienols γ-TOH, δ-TOH, and δ-TE-OH have all been shown to be effective in inducing growth arrest, apoptosis, autophagy, and endoplasmic reticulum stress in cancer cells [121–125]. The tocotrienols γ-TE-OH and δ-TE-OH, specifically, are believed to be much stronger anticancer agents than the tocopherols, with an IC₅₀ of 20–10 μM, as compared to ≥25–50 μM [95,99,100] — all of which are thought to be more potent anticancer agents than α-TOH. By direct comparison, 50 μM α-TOH failed to produce any reduction in viable PC-3 cells, while an equivalent dose of γ-TOH reduced cell viability by approximately 50% [126]. As for γ-TE-OH, it has been shown to be capable of slowing cell growth and activating apoptosis in both prostate and breast cancer cells [95,100,102,103]. This is thought to be related to the mitochondrial electron transport chain II targeting of redox metabolic differences between cancer versus normal cells [129,130].

In both prostate and breast tumor cells, γ-TE-OH induces apoptosis via caspase activation by suppressing Id1 and NF-kB via activation of the proapoptotic JNK pathway [95,102]. Other antiproliferative and cell stress–associated pathways affected by γ-TOH and γ-TE-OH include PPAR-γ upregulation [127,128,131], inhibition of PI3K-mediated AKT phosphorylation [95,102,105], increased caspase 8/9 activation, and expression of the autophagy marker LC3II [96,102,106]. A possible biochemical mechanism for the anticancer effects of vitamin E forms may be the modulation of sphingolipids. Persistent accumulation of sphingolipids in cancer cells is known to induce apoptosis and inhibit cell growth [132–134]. Both γ-TOH and γ-TE-OH elevate dihydrosphingosine, dihydroceramides, and ceramides in prostate [126], breast [135], colon [136], and pancreatic [137] cancers. One mechanism of sphingolipid accumulation occurs through dihydroceramide desaturase inhibition during de novo synthesis of sphingolipids, potentially leading to enhanced sphingomyelin hydrolysis [137]. Blocking de novo synthesis of sphingolipids can reverse the anticancer effects of both γ-TOH and γ-TE-OH [126,135,137]. Inhibition of sphingolipid synthesis prohibits γ-TOH and γ-TE-OH apoptotic induction via endoplasmic reticulum stress–induced activation of the JNK/CHOP/DR5 pathway [135]. Taken together these data suggest that vitamin E isoforms interact with sphingolipids to enhance cellular stress and promote cancer cell death.

3.3. Vitamin E as a potential adjuvant therapy

While the various forms of vitamin E are structurally similar, they greatly vary in bioavailability. Of the eight isoforms of vitamin E, the most readily available in plasma and tissues is α-tocopherol [138]. Serum concentrations of α-tocopherol range from 20 to 50 μM and have a half-life of approximately 30 h but is dependent on the α-tocopherol transfer protein expression [139,140]. The other vitamin E isoforms have a 4–8 times shorter half-life and much lower serum concentrations [139]. With supplementation, γ-tocopherol has a serum concentration of 10–30 μM [141,142]. An oral dose of 300 mg α-, γ-, and δ-tocotrienol has been shown to have a plasma half-life of 4.4, 4.3, and 2.3 h, respectively [143]. Although most cancer prevention trials utilizing vitamin E were unsuccessful, there is growing interest in the utility of vitamin E forms as adjuvants to cancer therapy (Table 2). In a phase I pharmacokinetic study, δ-TE-OH was given to patients in an oral dose range of 200–1500 mg daily [144]. Serum concentrations up to 18 μM δ-TE-OH were achieved and were sufficient to activate caspase–3 in dysplastic and malignant tissues [144]. At this dose level, no dose-limiting toxicities were observed [144]. There is concern of increased mortality associated with high dose (>400 mg) vitamin E due to cardiovascular complications [145]. A meta-analysis from 2012 of 19 independent clinical trials found there was a significant increase in the all-cause mortality rate (39 per 10,000 persons) for high dose vitamin E (>400 mg) compared to low dose supplementation (16 per 10,000 persons) [146]. The increased mortality associated with high dose vitamin E may be primarily as a result of cardiometabolic effects. In 2005, a randomized, double-blind, placebo-controlled trial evaluating the effects of high dose vitamin E supplementation (400 mg daily) on patients at risk for cardiovascular disease was completed [147]. The long-term study followed patients (n = 3994) for a median of 7 years. The results of this trial showed that patients that received a 400 mg vitamin E supplement were at risk for cardiovascular disease (relative risk = 1.13; 95% CI, 1.01–1.26; P = .03) and hospitalization associated with cardiovascular disease (relative risk = 1.21; 95% CI, 1.00–1.47; P = .045). Despite showing minimal toxicities in cancer related trials, there may be significant long-term effects associated with chronic, high dose vitamin E supplementation that warrant consideration.

One form of vitamin E often considered as a cancer therapy is the tocotrienol-rich fraction (TRF) extracted from palm oil [89]. TRFs have been shown to have an antitumor effect in breast cancer [148] and lung cancer [149] in preclinical animal models. A double-blind, placebo-controlled trial utilizing oral TRFs (200 mg or placebo control) in combination with tamoxifen (20 mg daily) in stage T1-Esterogen positive breast cancer found a 5-year disease-free survival rate of 86.7% compared to 83.3% in the control group [150]. The risk of mortality due to breast cancer was found to be significantly reduced by TRF supplementation (hazard ratio = 0.4, 95% confidence interval = 0.08–2.05) [150]. In preclinical studies, tocotrienols have shown promise as a potential adjuvant to radiation therapy. Kumar et al. showed that when nude mice with PC3 tumor xenografts were given 400 mg kg⁻¹ γ-TE-OH 24 h before a single dose of 12 Gy radiation, there was a 40% reduction in tumor volume compared to reduction by radiation alone [151]. The addition of γ-TE-OH was shown to have no toxic effects in the rectum and was slightly protective of the liver [151]. Unfortunately, the authors did find that the addition of γ-TE-OH appeared to sensitize the kidneys to lipid peroxidation along with the tumor [151].

Table 3

Cancer Type	Dosage	Results	References
Pancreatic Cancer	800 mg/kg for 2 weeks	γ-TE is generally safe and induced apoptosis in dysplastic or malignant tissues	[144]
Colorectal Cancer	γTMs for 1 or 2 weeks	Bioavailability, plasma F2-isoprostane, inflammation markers	NCT00905918
Ovarian Cancer	10–25 mg/kg	Progression rate and survival	NCT02560337
Lung Cancer	Tocotrienol, 300 mg × 3 plus standard chemotherapy	Disease progression–free survival	NCT02644252

[145] A meta-analysis from 2012 of 19 independent clinical trials found there was a significant increase in the all-cause mortality rate (39 per 10,000 persons) for high dose vitamin E (>400 mg) compared to low dose supplementation (16 per 10,000 persons) [146]. The increased mortality associated with high dose vitamin E may be primarily as a result of cardiometabolic effects. In 2005, a randomized, double-blind, placebo-controlled trial evaluating the effects of high dose vitamin E supplementation (400 mg daily) on patients at risk for cardiovascular disease was completed [147]. The long-term study followed patients (n = 3994) for a median of 7 years. The results of this trial showed that patients that received a 400 mg vitamin E supplement were at risk for cardiovascular disease (relative risk = 1.13; 95% CI, 1.01–1.26; P = .03) and hospitalization associated with cardiovascular disease (relative risk = 1.21; 95% CI, 1.00–1.47; P = .045). Despite showing minimal toxicities in cancer related trials, there may be significant long-term effects associated with chronic, high dose vitamin E supplementation that warrant consideration.

One form of vitamin E often considered as a cancer therapy is the tocotrienol-rich fraction (TRF) extracted from palm oil [89]. TRFs have been shown to have an antitumor effect in breast cancer [148] and lung cancer [149] in preclinical animal models. A double-blind, placebo-controlled trial utilizing oral TRFs (200 mg or placebo control) in combination with tamoxifen (20 mg daily) in stage T1-Esterogen positive breast cancer found a 5-year disease-free survival rate of 86.7% compared to 83.3% in the control group [150]. The risk of mortality due to breast cancer was found to be significantly reduced by TRF supplementation (hazard ratio = 0.4, 95% confidence interval = 0.08–2.05) [150].

In preclinical studies, tocotrienols have shown promise as a potential adjuvant to radiation therapy. Kumar et al. showed that when nude mice with PC3 tumor xenografts were given 400 mg kg⁻¹ γ-TE-OH 24 h before a single dose of 12 Gy radiation, there was a 40% reduction in tumor volume compared to reduction by radiation alone [151]. The addition of γ-TE-OH was shown to have no toxic effects in the rectum and was slightly protective of the liver [151]. Unfortunately, the authors did find that the addition of γ-TE-OH appeared to sensitize the kidneys to lipid peroxidation along with the tumor [151].

3.4. Normal tissue protection by vitamin E

Tocotrienols may also protect normal tissues from radiation-induced damage. Mice receiving a single dose of 200 mg kg⁻¹ γ-TE-OH before 8 Gy total body irradiation (TBI) exposure were able to protect hematopoietic stem cells and progenitor cells compared to mice receiving radiation alone [152]. A single dose γ-TE-OH (400 mg kg⁻¹ given subcutaneously 24 h before 9 Gy TBI) was able to improve post-radiation survival, decreased radiation-induced vascular oxidative stress, and protected mice from gastrointestinal injury [153]. Similar to γ-TE-OH, a
single dose of δ-TE-OH (400 mg kg\(^{-1}\) given subcutaneously before radiation) protected 100% of mice from TBI-induced death measured 30 days after radiation [154]. Subcutaneous δ-TE (75–100 mg kg\(^{-1}\)) given to mice before 12 Gy TBI protected the animals from TBI-induced gastrointestinal damage, as evidenced by an increased number of jejunal crypt cells present 30 days post-radiation relative to radiation alone [154].

4. Selenium as a cancer therapeutic

Redox-active inorganic Se-compounds, such as sodium selenite, are known to be pro-oxidant at high doses [155–157]. The associated increase in formation of ROS may tip the redox status of cancer cells and thus, killing the cells. Cells in healthy tissues can cope with these fluxes of oxidative stress, while cancer cells are at the limit of their ability to control the oxidative distress, thus killing them. A variety of oxidative damages of redox-active selenium compounds have been reported: sodium selenite was shown to induce single-strand DNA breaks [158–162], as well as oxidative DNA lesions e.g. 8-hydroxydeoxyguanosine [163]. As a result, apoptosis can be readily observed in cells treated with single digit μM concentrations of sodium selenite. Additionally, a different study showed inhibition of neoplastic growth of HeLa cells upon treatment with selenite (5 μM). In contrast, Se-dc-cystine, a non-redox active selenium compound needed a much higher concentration (100 μM) to show a similar anti-tumor response [164]. This last effect is an appropriate example of how understanding and selecting the right Se-compound for each study important. Generally, organic selenium compounds, e.g. selenomethionine, methyl-selenocysteine or Se-dc-cystine are less toxic at higher concentrations. Because these compounds are not redox active, they do not generate ROS readily. An extensive overview on selenium compounds for cancer treatment are provided in Ref. [165].

Zakharia et al. employ a different strategy to utilize selenium in cancer therapy. Where inorganic sources are typically used to induce oxidative distress, this clinical trial (NCT02535533) uses high dose seleno-l-methionine (SLM), a well tolerated, organic source of Se [166, 167]. Preclinical work suggests that high-dose SLM results in down-regulation of hypoxia induced factor 1α and 2α (HIFs) and downstream vascular endothelial growth factor (VEGF) and associated oncogetic miRNA 155 and 210, which results in reduced vascular permeability and improved drug delivery into the tumor upon treatment with high-dose SLM [168–175]. These preclinical data provided the rationale for the use of a defined dose and schedule of SLM in sequential combination with standard of care axitinib as second line and beyond in metastatic clear cell renal cell carcinoma. Patients were treated with high doses of SLM, as high as 4 mg, twice daily for 2 weeks then once a day in combination with axitinib, without a dose limiting toxicity (DLT), and yet with promising efficacy signal [176]. A limitation of this study is that SLM can be incorporated into proteins as a replacement of methionine, especially in plasma [177]. This has the potential to limit the amount of Se that reach target organs or tumor tissues.

4.1. Normal tissue protection by selenium

Selenium can also be used as an adjuvant for chemotherapy and radiation therapy [178,179]. Meecke et al., suggested that Se could restore selenoenzyme activity in Se-deficient patients that are under treatment. This would alleviate the side-effects of the treatment. In their phase 3 clinical trial, Se successfully reduced radiation therapy induced side effects while not impacting the efficacy of the antitumor effect of the therapy. In 2014, a follow-up research article was published where an increased 10-year survival rate was reported [179]. Because this study was conducted with selenium deficient subjects, it is likely that the se-dependent antioxidant enzymatic activities were restored, as is shown in cell culture systems [180]. Other mechanisms have not been identified, since these relatively low doses of sodium selenite do not exhibit any toxicity in humans. While the biochemical of this incorporation is not well understood, there are suggestions that selenium supplementation is capable of protecting normal tissues against oxidative distress associated with therapy [181].

5. Vitamin C, ascorbate

Since its discovery in 1933, vitamin C (ascorbic acid, Asc\(^{\text{H}+}\)) has been biologically implicated in a variety of applications [182,183]. Vitamin C is a ketolactone with two ionizable hydroxyl groups at the second and third carbons. The hydroxyl groups have p\(\text{K}_a\)'s of 4.2 and 11.6, making the ascorbic monoanion (Asc\(^{-}\)) the most prevalent species at pH of 7.4 [183]. Asc\(^{-}\) acts as a reducing agent and donor antioxidant that can undergo two consecutive one-electron oxidations to produce the ascorbate radical (Asc\(^{\text{2+}}\)) and dehydroascorbic acid (DHA), respectively. The ability to undergo redox reactions makes vitamin C a potent antioxidant and pro-oxidant, depending on concentration and environment. Primates and domestic guinea pigs are the only species, including plants, that cannot synthesize vitamin C. This phenomenon is due to inability to convert L-glucolactonolactone to L-ascorbic acid and contributes to humans’ need to consume vitamin C through dietary supplementation [184].

5.1. Cancer prevention

Because of vitamin C’s ability to act as a potent antioxidant, vitamin C oral supplements were speculated to prevent cancer initiation. In 2004, researchers reported on the efficacy of 120 mg vitamin C supplementation for the prevention of cancer incidence, describing a randomized, double-blind, placebo-controlled primary prevention trial of 13,017 French adults. After a median time of 7.5 years, the subjects taking vitamin C supplements had lower total cancer incidence compared to controls [185]. Conversely, this same cohort had a higher incidence of skin cancer [186]. Another study, its results published in 2006, monitored 29,361 men for up to 8 years and found no evidence that vitamin C supplementation reduced the incidence of prostate cancer [187]. Additionally, a 2015 meta-analysis of seven randomized trials in which participants received either vitamin C or placebo did not show any evidence to support oral vitamin C supplementation prevents esophageal and gastric cancers [188]. However, these studies we not stratified according to circulating levels of ascorbate and therefore might not reflect what supplementation would do in a setting where the subjects were deficient.

5.2. Anticancer effects: ascorbate, a pro-oxidant

The anticancer mechanisms of ascorbate have been well elucidated in comparison to other redox active small molecules. Ascorbate oxidation produces hydrogen peroxide (H\(_2\)O\(_2\)) and has long been proposed to enhance H\(_2\)O\(_2\)-mediated tumor cell killing [189–192]. Ascorbate oxidation occurs more readily in the presence of catalytic metals, including redox active iron, where ascorbate can act as a one-electron reducing agent and thereby reduce ferric (Fe\(^{\text{3+}}\)) to ferrous (Fe\(^{\text{2+}}\)), while producing an ascorbate radical (Equation (1), Fig. 4). The dysfunctional mitochondrial ETC of cancer cells are more prone to increased one electron reductions of O\(_2\) to form superoxide (O\(_2^•\)) formation, which in turn increases catalytically active iron [193]. Thus, catalytically active iron is central to pharmacological ascorbate toxicity, as evidenced by the ability for desferrioxamine, an iron chelator, to mitigate cancer cell sensitivity to ascorbate [193,194].

\[
\text{Asc}^{\text{H}+} + \text{Fe}^{\text{3+}} \rightarrow \text{Fe}^{\text{2+}} + \text{Asc}^{\text{2+}}
\]

(1)

In the presence of oxygen, the ferrous iron resulting from the reaction with ascorbate can be oxidized to generate superoxide (Equation (2)).

\[
\text{Fe}^{\text{2+}} + \text{O}_2 \rightarrow \text{Fe}^{\text{3+}} + \text{O}_2^-
\]

(2)
The superoxide radical can then be dismutated by superoxide dismutase (SOD) to produce H_2O_2 and O_2 (Equation (3)).

$$2\text{O}_2^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad (3)$$

H_2O_2 is the central cytotoxic product of high-dose ascorbate. This large flux of H_2O_2 generated after administration of pharmacological ascorbate (intravenous, typically tens of grams ascorbate) is then able to re-reduce ferric iron formed in reactions 2 and 4, setting up a detrimental redox cycle. The oxidants formed by the oxidation of pharmacological ascorbate can facilitate the release of even more iron into the labile iron from iron sulfur cluster-containing proteins (e.g., aconitase).

The H_2O_2 produced is also able to rapidly interact with catalytically active ferrous iron in classical Fenton chemistry (Equation (4)) to produce the highly reactive hydroxyl radical (HO^\cdot) and cause further cellular damage.

$$\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \text{HO}^\cdot \quad (4)$$

This mechanism of H_2O_2-mediated cytotoxicity is supported by the ability of catalase to decrease the amount of iron in catalytically active iron pools, and to mitigate the toxicity of pharmacological ascorbate by the removal of the H_2O_2 formed (193,195). Across multiple tumor cell lines, the ED$_{50}$ of pharmacological ascorbate is directly correlated with intracellular catalase activity, whereas catalase inhibition with 3-amino-1,2,4-triazole enhanced ascorbate cancer cell killing [195]. These data all point to ascorbate being a pro-oxidant by the formation of high fluxes of H_2O_2 upon its oxidation. The failure of high-dose ascorbate to show cytotoxic effects may be related to enhanced H_2O_2 removal in untransformed cells via catalase and especially peroxiredoxins [195–201].

5.3. Pharmacological ascorbate therapy

In the 1970s, the potential utility of supraphysiological doses of ascorbate (pharmacological ascorbate; achieving mM plasma ascorbate concentrations) gave intravenously was established in multiple trials that showed the safety and efficacy of the treatment with various terminal cancer patients [202–205]. In contrast, two randomized, double-blind clinical trials with high-dose oral ascorbate failed to show a clinical benefit relative to placebo [206,207]. These failures significantly reduced interest in using pharmacologic ascorbate as an anti-cancer agent.

Subsequent studies showed that oral ascorbate administration does not achieve the mM plasma ascorbate concentrations necessary to provide anticancer effects. Following an oral dose of 200 mg, the plasma ascorbate concentration reaches \approx 80 μM [208,209]. Following oral administration, ascorbate concentrations saturate at \approx 220 μM at doses \geq 1000 mg [144,145]. Compare these to an intravenous ascorbate dose of 50 g, which can achieve plasma concentrations of 13.4 mM [210]. In a pilot clinical study, a 10 g intravenous dose of ascorbate reached an average plasma concentration of 1.1 mM [211]. Therefore, we currently think the most optimal way to effectively deliver pharmacological doses of ascorbate is intravenously.

Since determining efficacious delivery approaches, the field has seen a resurgence in interest for evaluating the potential anticancer capabilities of pharmacological ascorbate (Table 4). In 2004, Riordan et al. performed a pilot study of pharmacological ascorbate in late-stage cancer patients diagnosed with renal cell carcinoma, colorectal cancer, pancreatic cancer, non-Hodgkin’s lymphoma, and breast cancer [147,148]. This study showed that gram dose intravenous ascorbate was safe and efficacious. The most common adverse events included nausea, edema, and dry mouth/skin. A 2008 phase I clinical trial using single-agent pharmacological ascorbate showed no significant toxicity but also failed to show any treatment responses [213]. The study concluded that although pharmacological ascorbate may be well tolerated, pharmacological ascorbate may be more beneficial as an adjuvant therapy rather than a single agent [213]. In 2014, a phase I clinical trial of 14 stage IV pancreatic cancer patients combined pharmacological ascorbate with gemcitabine to assess safety and efficacy [214]. The average overall survival was 15 \pm 2 months, and the average time to progression was 26 \pm 7 weeks as compared to 6 months and 9 weeks, historically [214]. Also in 2014, a phase 1 clinical trial in ovarian cancer showed that pharmacological ascorbate enhanced chemosensitivity in murine models and protected against carboplatin and paclitaxel chemotherapy-associated toxicity in human subjects [215]. A recent phase 1 clinical trial of newly diagnosed glioblastoma patients assessed the potential efficacy of pharmacological ascorbate with radiation and temozolomide [216]. This study reported a median overall survival of 18 months and a progression-free survival of 9.4 months, compared to the historical median overall survival of 14.6 months and progression-free survival of 6 months [217]. A phase 1 clinical trial in locally advanced pancreatic cancer that combined pharmacological ascorbate with therapeutic ionizing radiation and gemcitabine chemotherapy demonstrated a significant improvement in progression-free overall survival from 4.6 months to 13.7 months, relative to patients receiving radiation and gemcitabine alone [218].

Aside from the enhancement of cancer therapy, in a preclinical model pharmacological ascorbate (4 g kg$^{-1}$ delivered intraperitoneally) was shown to mitigate radiation- and chemotherapy-induced intestinal damage [221]. Similarly, pharmacological doses of ascorbate in C57Bl/6N Hsd mice prevented radiation-induced (15 Gy/1 fx) alopecia and achromotrichia [221]. These exciting observations suggest that in addition to sensitizing cancer cells to radiation and chemotherapy, pharmacological ascorbate may also ameliorate radiation-induced side effects.

6. Conclusions

The promising, preliminary translational results summarized above have led to clinical studies of the aforementioned small redox active molecules based on fundamental differences in oxidative metabolism between cancer versus normal tissues. There are still many unknown mechanistic details needed to better understand the electron movement and relationships between anti-cancer and normal tissue effects of these molecules. However, these molecules are safe and well-tolerated in humans at supraphysiological levels and are therefore excellent candidates for interventional studies. Of particular interest is the ability of
transformed cells while simultaneously functioning as cytotoxic pro-

to conventional therapies while protecting normal tissues opening new

oxidants in neoplastic cells that can potentially both sensitize cancers

foundational example of this is pharmacological ascorbate, which takes

in cancer cells, compared to normal cells, to generate cytotoxic fluxes of

H2O2. This biphasic functionality may allow the field of cancer biology

to further understand the underlying differences in electron movement

in cancer cells relative to their normal cell counterparts. Due to their

antioxidant/pro-oxidant potential, appropriate administration of melatoni-
n, vitamin E, selenium, and vitamin C may offer novel, alternative

strategies to enhance traditional cancer therapies, that take advantage of

fundamental differences in oxidative metabolism between tumor and

normal tissue.

Funding

This work was supported by NIH grants T32 CA078586, P01

CA217779, R01 CA169046, R01 CA182804, and the Gateway for Cancer

Research grant G-17-1500. Core facilities were supported in part by the

Carver College of Medicine and the Holden Comprehensive Cancer

center, NIH P30 CA086862.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgements

The ESR Facility at The University of Iowa provided invaluable

support. The content is solely the responsibility of the authors and does

not represent views of the National Institutes of Health.

References

[1] N.N. Pavlova, C.B. Thompson, The emerging hallmarks of cancer metabolism,

Cell Metab. 23 (1) (2016 Jan 12) 27–47.

[2] Y. Zhu, A.E. Dean, N. Horikoshi, C. Heer, D.R. Spitz, D. Gius, Emerging evidence

for targeting mitochondrial metabolic dysfunction in cancer therapy, J. Clin.

Invest. 126 (9) (2018 Aug 31) 3682–3691, 2018/08/31.

[3] D.R. Spitz, Manipulations of redox metabolism for enhancing radiation therapy

treatments: a historical perspective and novel hypothesis, Semin. Radiat. Oncol.

29 (1) (2019 Jan) 1–5.

[4] M.S. Petronek, D.R. Spitz, G.R. Buettner, B.G. Allen, Linking cancer metabolic

dysfunction and genetic instability through the lens of iron metabolism, Cancers

11 (8) (2019 Jul 30) 1077.

[5] L.W. Oberley, G.R. Buettner, Role of superoxide dismutase in cancer: a review,

Canc. Res. 39 (4) (1979 Apr 1) 1141.

[6] N. Aykin-Burns, L.M. Ahmad, Y. Zhu, L.W. Oberley, D.R. Spitz, Increased levels of

superoxide and H2O2 mediate the differential susceptibility of cancer versus

normal cells to glucose deprivation, Biochem. J. 418 (1) (2009 Feb 15) 29–37.

[7] G.-Y. Liou, P. Storz, Reactive oxygen species in cancer, Free Radic. Res. 44 (5)

(2010 May) 479–496.

[8] S. Misra, M. Boylan, A. Selvam, J.E. Spallholz, M. Björnstedt, Redox-active

seleulmin compounds—from toxicity and cell death to cancer treatment, Nutrients

7 (5) (2015 May) 3536–3556.

[9] G.R. Buettner, Superoxide dismutase in redox biology: the roles of superoxide and

hydrogen peroxide, Anti Canc. Agents Med. Chem. 11 (4) (2011 May) 341–346.

[10] L.W. Oberley, T.D. Oberley, G.R. Buettner, Cell differentiation, aging and cancer:

the possible roles of superoxide and superoxide dismutases, Med. Hypotheses

6 (3) (1980 Mar 1) 249–268.

[11] L.W. Oberley, T.D. Oberley, G.R. Buettner, Cell division in normal and

transformed cells: the possible role of superoxide and hydrogen peroxide, Med.

Hypotheses 7 (1) (1981 Jan 1) 21–42.

[12] G. Warburg, F. Wind, E. Negelein, The metabolism OF tumors IN the body, J. Gen.

Physiol. 8 (6) (1927 Mar 7) 519–530.

[13] L.J. Xu, R.K.-H. Lai, S.H. Lin, P.-W. Tse, D.K.-C. Chiu, H.-Y. Koh, et al.,

Transketolase counteracts oxidative stress to drive cancer development, Proc.

Natl. Acad. Sci. U.S.A. 113 (6) (2016 Feb 9) E725.

[14] S.W. Tuttle, M.E. Varner, J.B. Mitchell, J.E. Biaglow, Sensitivity to chemical

oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle

activity, Int. J. Radiat. Oncol. Biol. Phys. 22 (4) (1992 Jan 1) 671–675.

[15] Y. Li, S. Li, Y. Zhou, X. Meng, J.-J. Zhang, D.-P. Xu, et al., Melatonin for the

prevention and treatment of cancer, Oncotarget 8 (24) (2017 Jun 13)

39896–39921.

[16] G. Di Bella, F. Mascia, L. Gualano, L. Di Bella, Melatonin antioxidant effects:

review, Int. J. Mol. Sci. 14 (2) (2013 Jan 24) 2410–2430.

[17] L. Mendez, O. Vazquez-Martinez, R. Hernandez-Muñoz, H. Valente-Godínez,

M. Díaz-Munoz, Redox regulation and pro-oxidant reactions in the physiology of

cirrhotic systems, Biochimie 124 (2016 May) 178–186.

[18] C. Legros, S. Devavry, S. Caigard, C. Tessler, P. Delagrange, C. Ouvry, et al.,

Melatonin MT-1 and MT-2 receptors display different molecular pharmacologies

only in the G-protein coupled state, Br. J. Pharmacol. 171 (1) (2014 Jan

186–201.

[19] C. Venegas, J.A. García, E. Escames, F. Ortiz, A. López, C. Doerrier, et al.,

Extraneural melatonin: analysis of its subcellular distribution and daily

fluctuations, J. Pineal Res. 52 (2) (2012 Mar 1) 217–227.

[20] E. Janda, F. Nepveu, B. Galamini, G. Ferry, J.A. Boutin, Molecular pharmacology

of NRI(quinipine) oxidoreductase 2: a detoxifying enzyme acting as an uncovering

toxifying enzyme, Mol. Pharmacol. 98 (5) (2020 Nov 1) 620.

[21] D. Bonnefont-Rousselot, F. Collin, D. Jore, M. Gardes-Albert, Reaction mechanism

of melatonin oxidation by reactive oxygen species in vitro, J. Pineal Res. 50 (3)

(2011 Apr 1) 328–335.

[22] J.R. Johns, J.A. Plants, Theoretical insight into the antioxidant properties of

melatonin and derivatives, Org. Biomol. Chem. 12 (39) (2014) 7820–7827.

[23] S.R. McKeown, Defining normoxia, physoxia and hypoxia in tumours-

implication for treatment response, Br. J. Radiol. 87 (1035) (2014 Mar),

20130675–20130676.

[24] D.X. Tan, L.C. Manchester, R.J. Reiter, B.F. Plummer, L.J. Hardies, S. T.

Weintraub, et al., A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a

biomarker of in vivo hydroxy radical generation, Biochem. Biophys. Res.

Commun. 253 (3) (1998 Dec 30) 614–620.

[25] A. Galano, D.X. Tan, R.J. Reiter, On the free radical scavenging activities of

melatonin’s metabolites, AFMK and AMK, J. Pineal Res. 54 (3) (2015 Apr 1)

245–257.

[26] D.X. Tan, R. Hardeland, L. Manchester, A. Galano, R. Reiter, Cyclic 3-

hydroxymelatonin (CHOM), A potent antioxidant, scavenges free radicals and

suppresses oxidative reactions, Curr. Med. Chem. (2015 Nov 28) 21.

[27] S. Šarić-Klaićević, I. Abdullah, A.M. Abu-Soud, Melatonin is a potent inhibitor for

meloperoxidase, Biochemistry 47 (8) (2008 Feb 1) 2668–2677.
[28] M. Karbowiak, R.J. Reiter, S. Burkhardt, E. Gitto, D.-X. Tan, A. Lewi, Melatonin attenuates estradiol-induced oxidative damage to DNA: relevance for breast cancer prevention, J. Pineal Res. 50 (3) (2011 Jul) 170–177.

[29] M. Karbowiak, A. Lewi, Melatonin reduces fenton reaction-induced lipid peroxidation in porcine thyroid tissue, J. Cell. Biochem. 90 (4) (2003 Nov) 806–811.

[30] J. Wang, X. Wang, Y. He, L. Jia, C.S. Yang, R.J. Reiter, et al., Antioxidant and pro-oxidant activities of melatonin in the presence of copper and polyphenols in vitro and in vivo, Cells (8) (2019 Aug) 1903.

[31] R.G. Stevens, G.C. Brainard, D.E. Black, S.W. Lockley, M.E. Motta, Breast cancer and circadian disruption: emerging links in the modern world, CA Cancer J. Clin. 64 (3) (2014) 207–218, 2013/12/24.

[32] W.-S. Yang, Q. Deng, W.-Y. Fan, W.-Y. Wang, X. Wang, Light exposure at night, sleep fragmentation and breast cancer: a systematic review and meta-analysis of observational studies, Eur. J. Canc.Prev. 23 (4) (2014). https://journals.lww.com/eurjcancerprev/Fulltext/2014/07000/Light_exposure_at_night,sleep_duration,&.asp.

[33] R.G. Stevens, Electromagnetic use and breast cancer: a hypothesis, Am. J. Epidemiol. 125 (4) (1987 Apr 1) 556–561.

[34] M.D. Medavilla, S. Cos, E.J. Sánchez-Barceló, Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro, Life Sci. 65 (4) (1999 Jun 18) 415–420.

[35] E.S. Schernhammer, K. Schulmeister, Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br. J. Canc. 90 (5) (2004 Mar 8) 941–943.

[36] G. Meten-Mucha, K. Winczyk, M. Pawlikowski, Somatostatin analogue octreotide and melatonin inhibit bromododecynyl incorporation into cell nucleus and enhance apoptosis in the transplantable murine colon 38 cancer, Anticancer Res. 18 (5A) (1998) 3615–3619.

[37] Y. Kadoma, S. Fujisawa, Radical-scavenging activity of melatonin, either alone or in combination with vitamin E, ascorbate or 2-mercaptoethanol as antioxidants, using the induction period method. In vivo (athens, Greece) 25 (2010 Nov 30) 49–53.

[38] A.M. Sánchez-Andújar, V. Martín, G. García-Santo, J. Rodríguez-Blanco, S. Casado-Zapico, S. Suarez-Garnacho, et al., Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells 45 (11–12) (2011 Nov 1) 1333–1341, null.

[39] R.M. Sainz, J.C. Melendez-Torres, J. Leon, L. Manchester, R.J. Reiter, Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism, Prostate 63 (1) (2005 Apr 1) 29–43.

[40] N. Aykin-Burns, I.M. Ahmad, Y. Zhu, L.W. Oberley, D.R. Spitz, Increased levels of melatonin increase pro-apoptotic effects, Basic Clin. Pharmacol. Toxicol. 108 (1) (2011 Jan 1) 14–20.

[41] R.A. Osseni, P. Rat, A. Bogdan, J.-M. Warnet, Y. Touitou, Evidence of prooxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and antioxidant action of melatonin on human liver cell line HepG2, Life Sci. 68 (2001 Aug 3–4) 45.

[42] F. Radogna, L. Paternoster, M. De Nicola, C. Cerella, S. Ammendola, A. Bedini, et al., Rapid and transient stimulation of intracellular reactive oxygen species by melatonin–agonist indicated for treatment of insomnia, J. Clin. Pharmacol. 46 (2) (2006 Feb) 162, 2013/12/20.

[43] R. Hardeland, New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists, Eur. J. Endocrinol. 162 (2) (2010 May 1) 218, 2013/12/24.

[44] I. Bejarano, J. Espino, C. Barriga, R.J. Reiter, J.A. Pariente, A.B. Rodríguez, Prooxidant effect of melatonin in tumour leucocytes, FEBS (Fed. Eur. Biochem. Soc.) Lett. 502 (3) (2001 Aug 3) 407–410.

[45] D.J. Greenblatt, J.S. Harmatz, A. Karim, Age and gender effects on the pharmacokinetics of melatonin: a systematic review, Eur. J. Clin. Pharmacol. 71 (2015 May) 1–8.

[46] H.-M. Zhang, Y. Zhang, Melatonin: a well-documented antioxidant with conditional pro-oxidant actions, J. Pineal Res. 57 (2) (2014 Sep 1) 131–146.

[47] Y. Chul Won, S. Kim, J. Lee, Sang hun, Melatonin promotes apoptosis of colorectal cancer cells via superoxide-mediated ER stress by inhibiting cellular prion protein expression, Anticancer Res. 38 (2018 Jul 1) 3951–3960.

[48] A. Wolff, H.-C. Cardo, P.M. Abuja, G. Dohl, K. Schauenstein, P.M. Liehmab, Prooxidant activity of melatonin promotes fas-induced cell death in human leukemic Jurkat cells, FEBS (Fed. Eur. Biochem. Soc.) Lett. 502 (3) (2001 Aug 3) 127–131.

[49] F. Tognaga, L. Paternoster, M. De Nicola, C. Cerella, S. Ammendola, A. Bedini, et al., Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes, Toxicol. Appl. Pharmacol. 239 (1) (2009 Aug 15) 37–45.

[50] B.J. Oseni, P.A. Ogunbanjo, J.M. Wamun, Y. Toutou, Evidence of prooxidant and antioxidant action of melatonin on human liver cell line HepG2, Life Sci. 68 (2000 Dec 15) 387–399.

[51] I. Bejarano, J. Espino, C. Barriga, R.J. Reiter, J.A. Pariente, A.B. Rodríguez, Prooxidant effect of melatonin in tumour leucocytes: relation with its cytotoxic and pro-apoptotic effects, Basic Clin. Pharmacol. Toxicol. 108 (1) (2011 Jan 1) 14–20.

[52] K. Jablonska, K. Nowinska, A. Piotrowska, A. Partynska, E. Kotnik, K. Pawelczyk, et al., Prognostic impact of melatonin receptors MT1 and MT2 in non-small cell lung cancer (NSCLC), Cancers 11 (7) (2019 Jul 17) 1001.

[53] R.E. Kast, Agomelatine or ramelteon as treatment adjuncts in glialbloma and other M1- or M2-expressing cancers, Contemp. Oncol. 19 (2) (2015) 157–162, 2015/05/13.

[54] B. Hardeland, New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists, Neuropsychiatric Dis. Treat. 5 (2009) 341–354, 2009/06/10.

[55] D.J. Greenblatt, J.S. Harmatz, A. Karim, Age and gender effects on the pharmacokinetics and pharmacodynamics of ramelteon, a hypnotic agent acting via melatonin receptors MT1 and MT2, J. Clin. Pharmacol. 47 (4) (2007 Apr) 485–496.

[56] A. Karim, D. Tolbert, C. Cao, Disposition kinetics and tolerance of escalating single doses of ramelteon, a high-affinity MT1 and MT2 melatonin receptor agonist indicated for treatment of insomnia, J. Clin. Pharmacol. 46 (2) (2006 Feb) 140–148.

[57] J. López, J.A. García, G. Escames, C. Venegas, F. Ortiz, L.C. López, et al., Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production, J. Pineal Res. 46 (2) (2009 Mar 1) 188–196.

[58] B. Zhang, y. Liu, Y. Wu, M. Niu, Z. C. Li, Alteration of serotonin 2C receptor expression in the aorta and the pulmonary artery in rats exposed to hypoxia, Chin. J. Physiol. 51 (2009 Jan 1) 338–347.

[59] M.-S. Petronek et al. Redox Biology 42 (2021) 101864
tamoxifen plus metanostin in metastatic breast cancer patients undergoing tamoxifen alone, Br. J. Canc. 71 (4) (1995 Apr) 854–856.

[8] G. Cerea, M. Vaghefi, M. S. Villa, S. Mengo, et al., Biomodulation of cancer chemotherapy for metastatic colorectal cancer: a randomized study of weekly low-dose irinotecan alone versus irinotecan plus the oncotic protein human metanostin in metastatic colorectal cancer patients progressing under 5-fluorouracil-containing combinations, Anticanc. Res. 23 (2003 Mar 1) 1951–1954.

[9] S. Barni, P. Lissoni, M. Cazzaniga, A. Arditziola, S. Mereregalli, V. Fossati, et al., A randomized study of low-dose subcutaneous interleukin-2 plus metanostin versus supportive care alone in metastatic colorectal cancer patients progressing under 5-fluorouracil and folates, Oncology 52 (3) (1995) 245–245.

[10] M.V. Hansen, L.T. Andersen, M.T. Madsen, I. Hageman, L.S. Rasmussen, S. Bokmand, et al., Effect of metanostatin on symptoms and anxiety in patients undergoing breast cancer surgery: a randomized, double-blind, placebo-controlled trial, Breast Canc. Res. Treat. 145 (3) (2014 Jun 1) 683–695.

[11] M.T. Madsen, M.V. Hansen, L.T. Andersen, L.S. Rasmussen, S. Bokmand, et al., Effect of metanostatin on sleep in the perioperative period after breast cancer surgery: a randomized, double-blind, placebo-controlled trial, Journal Clinical Sleep Medicine 12 (2) (2016 Feb) 225–233.

[12] W.Y. Chen, A. Giobbie-Hurder, K. Gantman, J. Saviose, R. Scheib, L.M. Parker, et al., A randomized, placebo-controlled trial of metanostatin on breast cancer survivors: impact on sleep, mood, and hot flashes, Breast Canc. Res. Treat. 145 (2) (2014 Jun 1) 381–388.

[13] C. Lund Rasmussen, M. Klee Olsen, A. Thit Joehansen, M. Aagaard Petersen, H. Lindholm, L. Andersen, et al., Effects of metanostatin on physical fatigue and other symptoms in patients with advanced cancer receiving palliative care: a double-blind placebo-controlled crossover trial, Cancer 121 (20) (2015 Oct 15) 3727–3736.

[14] P.J. McLaurin, J.J. Weihrich, Vitamin E contents of foods, J. Am. Diet. Assoc. (1997 Jan 1) 75.

[15] Q. Jiang, Natural forms of vitamin E as effective agents for cancer prevention and therapy, Advances in Nutrition 8 (6) (2017 Nov 1) 850–867.

[16] N. Aykin-Burns, N. A. Boerma, T. King, H. Hauer-Jensen, Utilization of vitamin E analogs to protect normal tissues while enhancing tumor antitargets, Semin. Radiat. Oncol. 23 (1) (2019 Jan) 55–61.

[17] Q. Jiang, Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory actions and their role in disease prevention and therapy, Free Radic. Biol. Med. 72 (2014 Jul) 76–90, 2014/04/03.

[18] H. Yin, L. Xu, N.A. Porter, Free radical lipid peroxidation: mechanisms and analysis, Chem. Rev. 111 (10) (2011 Oct) 5944–5972.

[19] D.A. Pratt, R.A. Tallman, N.A. Porter, Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks, Accounts Chem. Res. 44 (6) (2011 Jun) 458–467.

[20] G. Buettner, The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate, Arch. Biochem. Biophys. 300 (2) (1993 Feb 19) 535–543.

[21] I. Fridovich, The biology of oxygen radicals, Science (New York, NY) 201 (4359) (1978 Aug 31) 75.

[22] V.B. Wali, S.V. Bachawal, P.W. Sylvester, γ-Tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing akt and nuclear factor β6 activity, Exp. Biol. Med. 230 (4) (2005 Apr 1) 241.

[23] K. Husain, R.A. Francois, S.Z. Hutchinson, A.M. Neuger, R. Lush, D. Coppola, et al., Vitamin E delta-tocotrienol levels in tumor and pancreatic tissue of mice after oral administration, Pharmacology 83 (3) (2009) 157–163, 2009/01/13.

[24] Y. Hiura, H. Tachibana, R. Arakawa, N. Aoyama, M. Okabe, M. Sakai, et al., Specific accumulation of γ- and δ-tocotrienols in tumor and their antimutagen effect in vivo, J. Nutr. Biochem. 20 (8) (2009 Aug 1) 607–613.

[25] V.B. Wall, S.V. Bachawal, P.W. Sylvester, Endoplasmic reticulum stress mediates γ-tocotrienol-induced apoptosis in mammary tumor cells, Apoptosis 14 (11) (2009 Nov 1) 1366–1377.

[26] S. Shah, P.W. Sylvester, Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells, Exp. Biol. Med. 229 (8) (2004 Sep 1) 745–755.

[27] S. Jiang, X. Rao, C.Y. Kim, H. Freiser, Z. Zhang, Z. Jiang, et al., Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydroxyproginsine and dihydroxyomerdine, Int. J. Canc. 130 (3) (2012 Feb 1) 685–693, 2011/05/09.

[28] Q. Jiang, J. Wang, H. Yang, R. Zhao, B.N. Ames, γ-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis, Proc. Natl. Acad. Sci. U.S.A. 101 (5) (2004 Dec 21) 17825.

[29] W.N. Yap, P.N. Chang, H.T.W. Lee, M.T. Lee, Y.C. Wang, et al., γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways, Br. J. Canc. 99 (11) (2008 Dec 1) 1832–1841.

[30] W.N. Yap, N. Zaiden, Y.L. Tan, C.P. Ngoh, X.W. Zhang, Y.G. Wong, et al., inhibitor of differentiation, is a key protein mediating anti-tumor responses of gamma-tocotrienol in breast cancer cells, Canc. Lett. 291 (2) (2010 May 28) 1029–1035.

[31] S. Shah, P.W. Sylvester, Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells, Exp. Biol. Med. 229 (8) (2004 Sep 1) 745–755.

[32] S. Shah, P.W. Sylvester, Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells, Exp. Biol. Med. 229 (8) (2004 Sep 1) 745–755.

[33] D.A. Pratt, R.A. Tallman, N.A. Porter, Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks, Accounts Chem. Res. 44 (6) (2011 Jun) 458–467.

[34] G. Buettner, The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate, Arch. Biochem. Biophys. 300 (2) (1993 Feb 19) 535–543.

[35] I. Fridovich, The biology of oxygen radicals, Science (New York, NY) 201 (4359) (1978 Sep) 875–880.

[36] Y. Ogasawara, I. Yamazaki, Steady-state kinetics of the catalase reaction in the presence of cyanide, J. Biochem. 94 (2) (1983 Aug) 403–408.

[37] J. Atkinson, R.F. Eapen, R.M. Eapen, Tocopherols and tocotrienols in membranes: a critical review, Biochim. Biophys. Acta 709–714 (1982 Jan 1).
A. Nicolussi, S. D’inzeo, C. Capalbo, G. Giannini, A. Coppa, The role of peroxiredoxins in cancer (Review), Mol. Cell. Oncol. 6 (202) (2017) 1–881.

M. Bubendorf, F. Gasser, M. Schneeweiss, A. Cubeddu, R. Cobas, J. Tschopp, C. Neves, et al., Multivariable analyses of death and disease-free survival after resection of node-positive stage I-II adenocarcinoma of the pancreas: comparison of clinical and molecular markers, Ann. Surg. Oncol. 15 (2008) 1613–1621.

M. Bubendorf, F. Gasser, M. Schneeweiss, A. Cubeddu, R. Cobas, J. Tschopp, C. Neves, et al., Clinical and molecular markers of outcome in adenocarcinoma of the pancreas, Int. J. Cancer 127 (2010) 1618–1625.

M. Bubendorf, F. Gasser, M. Schneeweiss, A. Cubeddu, R. Cobas, J. Tschopp, C. Neves, et al., Multivariable analyses of death and disease-free survival after resection of node-positive stage I-II adenocarcinoma of the pancreas: comparison of clinical and molecular markers, Ann. Surg. Oncol. 15 (2008) 1613–1621.

M. Bubendorf, F. Gasser, M. Schneeweiss, A. Cubeddu, R. Cobas, J. Tschopp, C. Neves, et al., Clinical and molecular markers of outcome in adenocarcinoma of the pancreas, Int. J. Cancer 127 (2010) 1618–1625.

M. Bubendorf, F. Gasser, M. Schneeweiss, A. Cubeddu, R. Cobas, J. Tschopp, C. Neves, et al., Multivariable analyses of death and disease-free survival after resection of node-positive stage I-II adenocarcinoma of the pancreas: comparison of clinical and molecular markers, Ann. Surg. Oncol. 15 (2008) 1613–1621.

M. Bubendorf, F. Gasser, M. Schneeweiss, A. Cubeddu, R. Cobas, J. Tschopp, C. Neves, et al., Clinical and molecular markers of outcome in adenocarcinoma of the pancreas, Int. J. Cancer 127 (2010) 1618–1625.