Comparison of near-interface traps in Al_2O_3/4H-SiC and Al_2O_3/SiO_2/4H-SiC structures

Marc Avice, Ulrike Grossner, Ioana Pintilie, and Bengt G. Svensson
University of Oslo, Physics Department and Center for Materials Science & Nanotechnology (SMN)
P.O. Box 1048, Blindern, N-0316 Oslo, Norway

Ola Nilsen and Helmer Fjellvag
University of Oslo, Chemistry Department and Center for Materials Science & Nanotechnology (SMN)
P.O. Box 1033, Blindern, N-0315 Oslo, Norway
(Dated: October 26, 2018)

Aluminum oxide (Al_2O_3) has been grown by atomic layer deposition on n-type 4H-SiC with and without a thin silicon dioxide (SiO_2) intermediate layer. By means of Capacitance Voltage and Thermal Dielectric Relaxation Current measurements, the interface properties have been investigated. Whereas for the samples with an interfacial SiO_2 layer the highest near-interface trap density is found at 0.3 eV below the conduction band edge, E_c, the samples with only the Al_2O_3 dielectric exhibit a nearly trap free region close to E_c. For the Al_2O_3/SiC interface, the highest trap density appears between 0.4 to 0.6 eV below E_c. The results indicate the possibility for SiC-based MOSFETs with Al_2O_3 as the gate dielectric layer in future high performance devices.

PACS numbers: 73.20.-r, 73.40.Qv, 77.55.+f, 77.84.Bw, 81. 05.Hd, 84.30.Jc, 84.32.Tt, 85.30.-z, 85.30.De, 85.30.Tv

With the development of the semiconductor research and industry in recent years, a significant interest in advanced materials for volume production of diode and transistor devices has arisen. One of the most promising of these materials is SiC due to its superior chemical and thermal inertness and high electrical break-down field. Furthermore, because of its wide band gap of 3.26 eV for the most stable polytype 4H, a higher information transfer density for broadcast applications is possible. Another interesting area is the utilization of SiC devices in hybrid electric vehicles because of the reduction in the size, weight, and cost of the power conditioning and thermal systems compared to conventional ones.

Unfortunately, structures utilizing SiC’s natural oxide, SiO_2, as a dielectric suffer from a density of shallow interface states below the the conduction band edge, E_c, at least two orders of magnitude higher than for comparable Si-based devices. These electron traps are suggested to be ‘near-interface traps’ and attributed to intrinsic defects in the interfacial region of SiO_2. Furthermore, the electron channel mobility in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFET) is reduced by at least one order of magnitude relative to the bulk mobility. Apart from this, SiO_2 has a quite low dielectric constant and is thermally not as stable as SiC. With a higher dielectric constant, thinner gate oxides may be used in coherence with the demand for smaller structures. Therefore, initial efforts have been made in recent years to investigate alternative gate oxides on SiC with a particular objective to minimize the density of states, D_{it}, close to E_c. One of the most promising candidates is aluminum oxide, Al_2O_3, with a reported dielectric constant of \approx10, a large band gap (\approx6.2 eV), a good thermal stability, and reasonably large conduction (\approx1.7 eV) and valence band offsets (\approx1.2 eV) to 4H-SiC.

Within this study, the interface traps in Al_2O_3/Si metal-oxide-semiconductor (MOS) devices are directly measured by means of the Thermal Dielectric Relaxation Current (TDRC) technique. Furthermore, a comparison of the electrical properties, based on TDRC measurements, of the SiO_2/SiC and Al_2O_3/SiC interfaces is made. It will be shown, that the near-interface trap density close to E_c is higher for Al_2O_3/SiO$_2$/SiC than for Al_2O_3/SiC capacitors. This indicates either that dangling bonds at the interface are saturated in the Al_2O_3/SiC system or that the responsible traps rather appear within the SiO_2 layer than at the interface to SiC, which is also suggested by recent theoretical findings.

A 100nm thick Al_2O_3 layer has been grown by Atomic Layer Chemical Vapour Deposition (ALCVD) on Si-faced, n-type 4H-SiC samples with a 10 μm thick epilayer (doping level 2×10^{15} cm$^{-3}$) on a highly doped substrate (1×10^{18} cm$^{-3}$), oriented 8° off the (0001) direction, purchased from Cree Inc, following the surface cleaning and growth procedure reported in Ref. 8. To obtain the intermediate SiO_2 layer in the second set of samples, SiC has been dry-oxidized at 1150 °C for 10 min before the aluminum oxide growth, resulting in an SiO_2 layer of approximately 5 nm in thickness. Before depositing circular Al contacts (diameter 0.5 mm) by thermal evaporation through a shadow mask, the Al_2O_3/SiC samples have been annealed in argon for 2 h at 1100 °C, resulting in crystallization of the Al_2O_3 layer 10. No thermal treatment has been applied to the Al_2O_3/SiO$_2$/SiC samples. Silver paste has been used as an Ohmic back

*Electronic address: ulrike.grossner@fys.uio.no
TDRC and CV measurements of the Al/Al₂O₃/SiC capacitors are shown in Fig. 1. As presented in the inset of panel (a), the Al/Al₂O₃/SiC capacitors exhibit a flatband voltage (V_{FB}) of about 11 V. The plot is obtained by sweeping from deep depletion to accumulation and backwards. The small capacitance step at about 0 V is found in almost any Al₂O₃/SiC capacitor, and mobile ions introduced during growth are a possible origin. In general, the CV characteristics are similar to those reported recently for Al₂O₃/SiC samples. To obtain the TDRC spectra, the SiC surface is brought into accumulation by applying a forward bias (V_{charging}) at elevated temperature, or, alternatively, low temperature. After cooling to 40 K under forward bias, a reverse bias (V_{discharging}) is applied in order to place the capacitor into deep depletion. The temperature is subsequently raised at a constant rate β, and filled traps in the upper part of the bandgap begin to emit electrons to the SiC conduction band edge, E_c. Hence, an emission current is observed due to the electrons being swept out of the depletion region, as shown in the data sets in Fig. 1. It should be noted that the field within the MOS structure is sufficiently large to sweep out the carriers out of the depletion region without any recombination and, hence, causing a current which is only due to the electrons emitted from the traps. The TDRC measurements have been performed for different charging voltages, keeping the discharging voltage (V_{discharging} = -5 V) and heating rate (β = 0.133 K/s) constant. The corresponding leakage current (the current measured for V_{discharging} when no filling of the traps is performed - not shown in the figure) was subtracted from the recorded TDRC spectrum. To verify whether there is an overlying current due to dipole polarization/depolarization to the emptying of the traps within the TDRC measurements, the samples were cooled under V_{discharging} and the short-circuit current was measured during the heating (curve indicated with triangles in Fig. 1(a)). It has been found to be around zero for temperatures T ≤ 270 K. In the upper panel (a), a charging temperature of 330 K was used, whereas in the lower panel, (b), the sample was charged at 40 K (duration 15 s). In (a), a broad peak between 150 and 250 K develops with increasing charging voltage, but no signal is found in the low-temperature range of the spectrum, indicating a low density of shallow electron traps. For a charging temperature of 40 K, a different peak at about 100 K develops with increasing charging voltage, whereas the peak found in Fig. 1(a) is strongly suppressed. The substantial increase of the broad peak in Fig. 1(a) with charging voltage (accumulation) demonstrates that it originates from near-interface traps and is not caused by traps in the SiC bulk. Moreover, the strong suppression of this peak in Fig. 1(b) reflects presumably a pronounced temperature dependence of the electron capture cross section and/or a spatial location of the traps which extends into the Al₂O₃ layer yielding a thermally activated filling process. Also the peak at...
are due to the same type of intrinsic interfacial defect of Rudenko et al. [12] have argued that both groups of traps exhibit a high D_{it} versus energy distribution for the Al_2O_3/4H-SiC and Al_2O_3/SiO$_2$/4H-SiC capacitors. Figure 2 reveals clearly the former ones are essentially free of electron traps for energies ≤ 0.2 eV below E_c, while the latter ones exhibit a high D_{it} close to E_c, in agreement with previous reports for the SiO$_2$/4H-SiC interface [3, 4, 5, 12]. On the other hand, the Al_2O_3/4H-SiC samples display a high density of deep states from ≈ 0.4 to ≈ 0.7 eV below E_c, and these are due to the traps with a thermally activated filling process, as discussed in conjunction with Fig. 1.

In conclusion, Fig. 3 shows unambiguously that the intrinsic and shallow near-interface traps dominating in SiO$_2$/4H-SiC structures do not appear in Al_2O_3/4H-SiC capacitors and at least two possible explanations can be put forward; these intrinsic defects do not form at the Al_2O_3/4H-SiC interface, which may be consistent with the assignment to a $C\equiv C$O pair [8], or they are efficiently passivated. In any case, it can be concluded that Al_2O_3 shows great promise as gate dielectric for 4H-SiC MOSFET’s with a low density of shallow interface states which limit the electron channel mobility and further work is being pursued with a particular emphasis to minimize the density of deep states between ≈ 0.4 and ≈ 0.7 eV below E_c and to reduce the flat band voltage.

Financial support by the Norwegian Research Council (Strategic University Program) and the University of Oslo (FUNMAT program) is greatly acknowledged.

[1] W. J. Choyke, H. Matsunami, and G. Pensl, Silicon Carbide: Recent Major Advances, Springer Series: Advanced Texts in Physics (2004).
[2] L. M. Tolbert, B. Ozpineci, S. K. Islam, and F. Z. Peng, SAE 2002 Transactions, Journal of Passenger Cars: Electronic and Electrical Systems pp. 765–771 (2003).
[3] V. Afanas’ev, M. Bassler, G. Pensl, and M. Schulz, phys. stat. sol. (a) 162, 321 (1997).
[4] G. Pensl, M. Bassler, F. Ciobanu, V. Afanas’ev, H. Yano, T. Kimoto, and H. Matsunami, MRS Proc 640, H3.2 (2000).
[5] V. Afanas’ev, A. Stesmans, M. Bassler, G. Pensl, and M. J. Schulz, Applied Physics Letters 76, 336 (2000).
[6] H. Olafsson, F. Allerstam, and E.O. Sveinbjorhnsson, Mater. Sci. Forum 389, 1005 (2002).
[7] V. Afanas’ev, F. Ciobanu, S. Dimitrijev, G. Pensl, and
A. Stemsans, Journal of Physics: Condensed Matter 16, S1839 (2004).

[8] J. M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke, Physical Review B (Condensed Matter and Materials Physics) 72, 115323 (2005).

[9] M. Avice, U. Grossner, O. Nilsen, J. S. Christensen, H. Fjellvag, and B. G. Svensson, Mater. Sci. Forum 527, 1067 (2006).

[10] U. Grossner, M. Servidori, M. Avice, O. Nilsen, H. Fjellvag, R. Nipoti, and B. G. Svensson, to be published in Mater. Sci. Forum (2007).

[11] P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron states (1992).

[12] T. E. Rudenko, I. N. Osiyuk, I. P. Tyagulski, H. O. Olafsson, and E. O. Sveinbjornsson, Solid-State Electronics 49, 545 (2005).

[13] J. G. Simmons and H. A. Mar, Physical Review B (Solid State) 8, 3865 (1973).

[14] H. A. Mar and J. G. Simmons, Solid State Electronics 17, 131 (1974).