Treatment-related adverse events of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors in clinical trials: a meta-analysis

Ze Mi*, Yunshu Zhang‡, Zhichao Feng, Jiahao Liu, Jianmin Wu, Hongpei Tan, Xiaoqian Ma, Zhenguo Liu† and Pengfei Rong‡,§

Aim: PD-1/PD-L1 inhibitors in combination with CTLA-4 inhibitors are being tested in a number of ongoing clinical trials. As a result, it is critical to fully comprehend the toxicity characteristics of adverse events in combination therapy. This study aims to extensively compare the incidences and ORs of treatment-related adverse events between two combination strategies.

Methods: The eligible articles were searched from PubMed, EMBASE and Cochrane databases for studies published between 1 January 2010 and 1 May 2021, investigating PD-1/PD-L1 inhibitors plus CTLA-4 inhibitor-based combined clinical therapies. The mean incidences and pooled ORs of all-grade and grade 3 or higher adverse events were calculated by random-effects model using Stata 12.1. Heterogeneity between studies was assessed with I² statistics and Chi square-based Q statistic. The overall risk of bias was assessed by Review Manager 5.3.

Results: A total of 26 eligible studies of 3607 patients were selected; 2852 patients developed at least one all-grade adverse event. PD-L1 inhibitors plus CTLA-4 inhibitors regimen (incidence 0.67, 95% CI: 0.57–0.77) had marked advantage over PD-1 inhibitors plus CTLA-4 inhibitors regimen (incidence 0.89, 95% CI: 0.86–0.93).

Conclusion: PD-L1 inhibitors plus CTLA-4 inhibitors shows better safety in treatment-related adverse events than PD-1 inhibitors plus CTLA-4 inhibitors.

1. Introduction

Since first PD-1 immune checkpoint inhibitor pembrolizumab was approved in 2014, immune checkpoint blockade treatment has developed rapidly, mainly involving anti-CTLA-4 treatment, anti-PD-1 and anti-PD-L1 checkpoint blockade treatment [1]. Previous studies has indicated satisfying performance of immune checkpoint inhibitors (ICI) in various metastatic tumour, and thereby they have been applied widely in clinical practice. Mono-checkpoint blockade exerts modest effect on tumour while ICI combination therapy shows better efficacy, suggesting that the further studies focussed on ICI combination therapies is necessary [2]. Compared with conventional therapies, randomized clinical trials that applies combination strategies shows longer overall survival (OS) and progressive-free survival (PFS), leading to the approval of CTLA-4 inhibitors plus PD-1/PD-L1 inhibitors for the treatment of advanced melanoma, renal cell carcinoma, colorectal cancer and so on [3–5]. PD-1 inhibitors plus CTLA-4 inhibitors (APC) in combination: Nivolumab (PD-1 inhibitor) plus ipilimumab (CTLA-4 inhibitor) are the first APC therapy granted FDA approval [6]. Nivolumab plus ipilimumab has been studied in melanoma [7], NSCLC [8], sarcoma [9], etc. Pembrolizumab plus ipilimumab has been tested in melanoma [10] and NSCLC [11] with better response rate and improved overall survival. Pembrolizumab (PD-1 inhibitor) plus quavonlimab (CTLA-4 inhibitor) is mainly tested in NSCLC [12] and has shown better ORR and duration response than pembrolizumab alone. PD-L1 inhibitors plus CTLA-4 inhibitors (APLCL in combination: Durvalumab (PD-L1 inhibitor) plus tremelimunab (CTLA-4 inhibitor) are the most prevalent PD-L1 inhibitors plus CTLA-4 inhibitors combination therapy in clinical trials. Durvalumab plus tremelimunab in combination is the most wildly used APLC strategy in current clinical trials and has been mainly studied in NSCLC [13], biliary tract carcinoma [14], pleural or peritoneal mesothelioma [15]. These drugs reactivate T-cell-mediate anti-tumour immunity by blocking the immune checkpoint and their
downstream pathway. The combined use of ICIs has been reported to cause more autoimmune disorders than the use of ICIs alone [16]. Although PD-1 inhibitors or PD-L1 inhibitors is generally well tolerated and widely used in clinical practice, the side-effects of APC and APLC treatments have raised growing concerns about severe or even fatal treatment-related adverse events (AEs) [17–19]. The obvious increase in toxicity and AEs has become important challenge for the development of APC or APLC therapy [20], especially given the growing number of clinical trials testing combination strategies [21]. Hence, it is necessary to systematically analyse the toxicity of APC and APLC strategies, using standardized statistic methods, which may guide the clinicians to better manage potential treatment-related risks and AEs [22].

Here, we investigated ORs and incidence of AEs associated with the two combination therapies, analysing the differences in incidences of treatment-related AEs in this meta-analysis, which may provide a guide to clinicians in choosing a more appropriate ICI combination therapy in clinical practice.

2. Methods

2.1. Search methods and study selection

We identified published clinical trials using APC or APLC therapy through a systematic search. Literature search was conducted in the Web of Science, PubMed and Cochrane database using the terms PD-1 inhibitors plus CTLA-4 inhibitors and PD-L1 inhibitors plus CTLA-4 inhibitors. Eligible included studies were all published in English between 1 January 2010 and 1 May 2021. We also searched references of relevant retrospective studies to supplement the eligible studies. The included studies met all of the following standards: (1) clinical trials of tumour immune checkpoint blockade therapy; (2) published in English; (3) participants were treated with APC or APLC therapy and (4) reported tabulated data on AEs and immune-related AEs (irAEs: all the irAEs are treatment-related). Studies that did not match the selection criteria were excluded. Other exclusion criteria were as follows: (1) studies in which combined therapy employed additional ICI therapy and (2) studies in which the number of participants were less than 6. Z.M. and Y.S.Z. performed the literature search, study selection and data extraction independently. This study followed the Preferred Reporting Items for Meta-analyses (PRISMA) guidelines and registered online (ID: CRD42021256531).

2.2. Data extraction

The study name, publication year, cancer type, number of patients, name of inhibitors used, dose, all-grade AEs/immune-related AEs and grade 3 or higher AEs/immune-related AE data were obtained from the included studies.

2.3. Statistical analysis

All data analysis was calculated with the software Stata 12.1. OR (odds ratio) and incidence were employed to compare the outcomes between the two types of combined therapy. Due to the inherent heterogeneity among the included AEs, we used the random-effects model for the calculation of ORs and 95% confidence intervals. Heterogeneity among the different treatment groups was assessed by the I² statistics and Chi square-based Q statistic. The overall risk of bias was assessed by Review Manager 5.3.

3. Results

3.1. Literature search results and characteristics of the eligible studies

As shown in Figure 1, 5493 records were identified in our systematic search. Twenty-six studies of 3607 patients were
eligible for inclusion and reported the overall incidence of specific treatment-related AEs, including AEs and immune-related AEs. An evaluation of the risk of bias for each study is presented in the supporting information. All studies included could be sorted into two classes: APC (n = 18) therapy and APLC (n = 8) therapy.

The 26 eligible studies reported over 50 types of treatment-related AEs. A total of 2852 of 3592 patients from 26 studies developed at least 1 AE of all-grade (Table 1). For this meta-analysis, we selected treatment-related AEs and irAEs that were both reported by at least 10% of the included studies. The overall risk of bias by quality assessment is summarized in Figure 2 and Supplementary Figure S1, which shows that the study quality of the included studies was good. The characteristics of the included studies are shown in Table 1, and the profile of all-grade AEs shown in Figure 3 shows the incidence of all-grade AEs. Our study analysed the ORs and incidences of AEs and irAEs in APC and APLC therapy.

Study	Year	Cancer type	Number	Number of 3 or higher AE	Dose	Median overall survival (month)		
D'Angelo et al. [9]	2018	Sarcoma	42	42	NA	niv 3 mg/kg + ipi 1 mg/kg	14.3	
Armand et al. [23]	2021	Lymphoma	65	51	19	niv 3 mg/kg + ipi 1 mg/kg	NA	
Blank et al. [7]	2018	Melanoma	10	10	NA	niv 1 mg/kg + ipi 3 mg/kg	NA	
Gubens et al. [11]	2019	NSCLC	51	35	NA	pem 2 mg/kg + ipi 1 mg/kg	pem 10.9	
Hodi et al. [24]	2016	Melanoma	95	86	52	niv 1 mg/kg + ipi 3 mg/kg	NA	
Larkin et al. [25]	2015	Melanoma	314	299	215	niv 1 mg/kg + ipi 3 mg/kg	11.5	
Patel et al. [26]	2020	Neuroendocrine neoplasm	32	27	16	niv 240 mg + ipi 1 mg/kg	11	
Perets et al. [12]	2021	NSCLC	173	144	63	qua 25 mg + pem 200 mg + qua 75 mg + pem 200 mg + qua 25 mg + pem 200 mg	NA	
Pollack et al. [10]	2018	Melanoma	80	80	NA	niv 1 mg/kg + ipi 3 mg/kg	pem 2 mg/kg	NA
Scherpereel et al. [27]	2019	Pleural mesothelioma	61	54	16	niv 3 mg/kg + ipi 1 mg/kg	15.9	
Schoenfeld et al. [28]	2020	Oral cavity squamous cell carcinoma	15	NA	NA	niv 3 mg/kg + ipi 1 mg/kg	NA	
Wolchok et al. [29]	2013	Melanoma	53	52	NA	niv 0.3 mg + ipi 3 mg + niv 1 mg + ipi 3 mg	NA	
Antonia et al. [30]	2016	SCLC	115	88	28	niv 1 mg/kg + ipi 3 mg/kg + niv 3 mg/kg	13.7	
Hellmann et al. [8]	2019	Melanoma	576	442	189	niv 3 mg/kg + ipi 1 mg/kg	17.1	
Motzer et al. [31]	2019	Melanoma	574	514	255	niv 3 mg/kg + ipi 1 mg/kg	NA	
Tawbi et al. [32]	2018	Melanoma	94	91	52	niv 1 mg/kg + ipi 3 mg/kg	NA	
Janjigian et al. [33]	2018	Esophagogastric cancer	100	80	NA	niv 1 mg/kg + ipi 3 mg/kg	NA	
Zimmer et al. [34]	2020	Melanoma	55	55	NA	niv 1 mg/kg + ipi 3 mg/kg	NA	
Antonia et al. [13]	2016	NSCLC	184	82	NA	dur 3 mg/kg + tre 1 mg/kg + dur 10 mg/kg + tre 1 mg/kg	NA	
Boileve et al. [14]	2021	Biliary tract carcinoma	10	7	NA	dur 1500 mg + tre 1 mg/kg	16.6	
Calabro et al. [15]	2018	Pleural or peritoneal mesothelioma	40	30	NA	dur 20 mg/kg + tre 1 mg/kg	7.6	
Chen et al. [35]	2020	Colorectal cancer	118	75	75	dur 1500 mg + tre 75 mg	6.6	
Siu et al. [36]	2019	Neck squamous cell carcinoma	133	77	21	dur 20 mg/kg + tre 1 mg/kg	7.6	
Powles et al. [37]	2020	Urothelial carcinoma	342	255	93	dur 1500 mg + tre 75 mg	15.1	
Gao et al. [38]	2020	Urothelial carcinoma	28	26	6	dur 1500 mg + tre 75 mg	NA	
Ferris et al. [39]	2020	Head and neck squamous cell carcinoma	247	150	40	dur 20 mg/kg + tre 1 mg/kg	7.8	

AE: adverse event; SCLC: small cell lung cancer; NSCLC: non-small cell lung cancer; PD-1 inhibitor: niv: nivolumab; pem: pembrolizumab; PD-L1 inhibitor: dur: durvalumab; CTLA-4 inhibitor: ipi: ipilimumab, tre: tremelimumab, qua: quavonlimab; NA: not available.
Figure 2. Methodological quality assessed by the quality assessment of diagnostic accuracy studies.

Figure 3. Mean incidences of overall all-grade adverse events (anti-PD-1/PD-L1 plus anti-CTLA-4 therapy).
3.2. OR of adverse events

The possibility of developing AEs was lower in the APLC group. The ORs of AEs and irAEs were higher in the APC group, which indicated that in that group, the incidence of AEs and irAEs was also higher. As illustrated in Figure 4, we compared the most frequent all-grade AEs in both two treatments (APC and APLC): anorexia (pooled OR 1.55, 95% CI: 1.15–2.08), colitis (pooled OR 6.07, 95% CI: 3.18–11.60), diarrhoea (pooled OR 1.65, 95% CI: 1.37–1.98), fatigue (pooled OR 0.91, 95% CI: 0.76–1.09), hypothyroidism (pooled OR 1.94, 95% CI: 1.45–2.60), increased ALT (pooled OR 1.66, 95% CI: 1.28–2.17), increased AST (pooled OR 1.29, 95% CI: 1.00–1.66), nausea (pooled OR 0.91, 95% CI: 0.72–1.14), pruritus (pooled OR 1.43, 95% CI: 1.17–1.76) and rash (pooled OR 6.48, 95% CI: 4.87–8.62). Some AEs seems more likely to develop to grade 3 or higher (Figure 4). The most common grade 3 or higher AEs were colitis (pooled OR 3.88, 95% CI: 2.01–7.50), diarrhoea (pooled OR 1.38, 95% CI: 0.92–2.06), fatigue (pooled OR 0.80, 95% CI: 0.47–1.35), increased alkaline phosphatase (pooled OR 0.32, 95% CI: 0.16–0.64), increased ALT (pooled OR 4.45, 95% CI: 2.45–8.10), increased AST (pooled OR 2.93, 95% CI: 1.66–5.17), increased lipase (pooled OR 0.66, 95% CI: 0.41–1.06), nausea (pooled OR 3.54, 95% CI: 1.06–11.79) and rash (pooled OR 1.75, 95% CI: 1.01–3.05).

3.3. OR of immune-related adverse events

APC and APLC therapies can block immune checkpoints and reactivate cellular immunity, causing irAEs. In this study, we analysed the ORs of all-grade irAEs between these two types of treatments. As shown in Figure 5, the most frequent irAEs of all-grade were anorexia (pooled OR 1.55, 95% CI: 1.15–2.08), colitis (pooled OR 6.07, 95% CI: 3.18–11.60), diarrhoea (pooled OR 1.65, 95% CI: 1.37–1.98), hypothyroidism (pooled OR 1.94, 95% CI: 1.45–2.60), increased alkaline phosphatase (pooled OR 0.32, 95% CI: 0.16–0.64), increased ALT (pooled OR 4.45, 95% CI: 2.45–8.10), increased AST (pooled OR 2.93, 95% CI: 1.66–5.17), increased lipase (pooled OR 0.66, 95% CI: 0.41–1.06), nausea (pooled OR 3.54, 95% CI: 1.06–11.79) and rash (pooled OR 1.75, 95% CI: 1.01–3.05).
(pooled OR 1.66, 95% CI: 1.28–2.17), increased AST (pooled OR 1.29, 95% CI: 1.00–1.66), increased lipase (pooled OR 0.51, 95% CI: 0.36–0.71), pruritus (pooled OR 1.43, 95% CI: 1.17–1.76) and rash (pooled OR 6.48, 95% CI: 4.87–8.62). As shown in Figure 5, the most common grade 3 or higher irAEs were colitis (pooled OR 3.88, 95% CI: 2.01–7.50), diarrhoea (pooled OR 1.38, 95% CI: 0.92–2.06), increased alkaline phosphatase (pooled OR 0.32, 95% CI: 0.16–0.64), increased ALT (pooled OR 4.45, 95% CI: 2.45–8.10), increased AST (pooled OR 2.93, 95% CI: 1.66–5.17) and increased lipase (pooled OR 0.66, 95% CI: 0.41–1.06).

3.4. Subgroup analysis

We performed subgroup analysis by the type of inhibitor regimen, investigating the potential for heterogeneity (Figure 6). Subgroup analysis showed that durvalumab plus tremelimumab regimen (incidence 0.67, 95% CI: 0.57–0.77) had a great advantage over the nivolumab plus ipilimumab regimen (incidence 0.91, 95% CI: 0.87–0.95), which was consistent with the overall analysis. Two types of combination regimen were excluded from subgroup analysis for only used in one study.

4. Discussion

We included 26 eligible studies in this meta-analysis analysing the incidence and ORs of AEs in APC and APLC therapy. Current clinical trials shows that PD-1/PD-L1 inhibitors are mostly used with chemotherapy, radiotherapy, and immunotherapy in combination. The most frequent combination therapy is anti-CTLA-4 therapy among numerous combination strategies. Longer PFS and OS has been shown in clinical trials using combination therapies but these therapies also result in more severe AEs. Treatment-related AEs are crucial considerations in clinical practice. Early attention of relevant symptoms of AEs can help clinicians alter treatment strategy [40]. Thus, a thorough analysis of APC/APLC-related AEs reported in previous clinical trials is critical, since these findings may be an essential guidance for the clinic. This meta-analysis showed that APC presents higher incidences of AEs/irAEs than APLC [41].

Several results from this meta-analysis are significant for clinical practice. Nearly four of five patients treated with APC or APLC had at least one AE, and one in three patients developed at least one grade 3 or higher AE. These results are critical to inform patients before they begin combination therapy. Diarrhoea was the most common all-grade AE (21.8%), grade 3 or higher AE (3.6%), all-grade irAE (21.8%) and grade 3 or higher irAE (3.6%). We summarized these AEs and irAEs, which can improve clinical vigilance for early intervention. Understanding the common AEs and irAEs is critical for improving clinical awareness which is crucial for effective cancer care.

From the perspective of combined therapy, this meta-analysis is also crucial as a reference for clinical treatment. From the results of this meta-analysis, APC treatment had a higher treatment risk than APLC treatment. In particular, the incidences of irAEs associated with APC treatment were...
almost all higher than those associated with APLC treatment. For all-grade AEs, APC were more likely to cause colitis (pooled OR 6.07, 95% CI: 3.18–11.60) than APLC treatment. To avoid developing severe colitis, clinical monitoring is required for early diagnosis and intervention. T-cell receptor sequence analysis demonstrated that some CD8⁺ T cells, which are closely associated with colitis originated from tissue-resident populations and explained the frequency of colitis symptoms from treatment commencement [42]. For grade 3 or higher AEs, APC was more likely to cause colitis (pooled OR 3.88, 95% CI: 2.01–7.50), increased ALT (pooled OR 4.45, 95% CI: 2.45–8.10), increased AST (pooled OR 2.93, 95% CI: 1.66–5.17), nausea (pooled OR 3.88, 95% CI: 2.01–7.50) and Rash (pooled OR 1.75, 95% CI: 1.01–3.05). For all-grade irAEs, APC might lead to lower incidence of increased alkaline phosphatase (pooled OR 0.07, 95% CI: 0.04–0.12) and increased lipase (pooled OR 0.51, 95% CI: 0.36–0.71). For grade 3 or higher irAEs, APLC was more likely to cause increased alkaline phosphatase but lower incidences of colitis (pooled OR 3.88, 95% CI: 2.01–7.50) and less likely to cause elevation of ALT (pooled OR 4.45, 95% CI: 2.45–8.10) and AST (pooled OR 2.93, 95% CI: 1.66–5.17) than APC therapy, but the mechanism and clinical significance are still unclear.

When compared to current available treatment options for patients with malignant tumours, the higher safety and tolerability results of APLC are clinically meaningful. In previous study, high-grade AEs could develop life-threatening autoimmune disorders, which is closely linked to treatment-related death. Therefore, this meta-analysis may be helpful for decreasing the incidence of AEs and AEs-related death in future clinical practice.

There are several restrictions in this meta-analysis. First, missing data is common in meta-analysis because clinical trials do not always present all of the data that are required in statistic analysis, which is especially true for AEs. Second, each study reported several AEs, and we only included AEs or irAEs that were both reported by at least 10% of the clinical studies. Finally, most of the research were single arm, thus these studies did not apply blinding or randomization. The different types of CTLA-4 inhibitors, PD-1/PD-L1 inhibitors and distinct cancer types also contributed a lot to the heterogeneity [43].

This meta-analysis summarized profiles of the most common AEs and irAEs in APC and APLC therapy. APC therapy was associated with a higher risk of developing AEs/irAEs than APLC therapy. This comprehensive analysis of AEs in

Study	Incidence (95% CI)	% Weight		
Nivolumab + Ipilimumab				
Angelo 2018	0.99 (0.96, 1.02)	4.77		
Armand 2021	0.78 (0.68, 0.88)	4.08		
Blank 2018	0.99 (0.93, 1.05)	4.53		
Hodi 2016	0.91 (0.85, 0.97)	4.57		
Larkin 2015	0.95 (0.93, 0.97)	4.80		
Patel 2020	0.84 (0.71, 0.97)	3.72		
Pollack 2018	0.99 (0.97, 1.01)	4.81		
Scherperelle 2019	0.88 (0.80, 0.96)	4.31		
Wolchok 2013	0.98 (0.94, 1.02)	4.73		
Antonia 2016	0.77 (0.69, 0.85)	4.37		
Hellmann 2019	0.77 (0.74, 0.80)	4.75		
Motzer 2019	0.90 (0.88, 0.92)	4.80		
Tawbi 2018	0.97 (0.94, 1.00)	4.75		
Janjigian 2018	0.80 (0.72, 0.88)	4.35		
Zimmer 2020	0.99 (0.96, 1.02)	4.79		
Subgroup, DL (I²= 93.2%, p=0.000)				
Durvalumab + Tremelimumab				
Antonia 2016	0.45 (0.38, 0.52)	4.42		
Boileve 2021	0.70 (0.42, 0.98)	1.93		
Calabro 2018	0.75 (0.62, 0.88)	3.63		
Chen 2020	0.64 (0.55, 0.73)	4.25		
Siv 2019	0.58 (0.50, 0.66)	4.29		
Powles 2020	0.75 (0.70, 0.80)	4.67		
Gao 2020	0.93 (0.84, 1.02)	4.16		
Ferris 2020	0.61 (0.55, 0.67)	4.54		
Subgroup, DL (I²= 91.9%, p=0.000)				
Overall, DL (I²= 96.6%, p=0.000)			0.83 (0.78, 0.88)	100.00

Figure 6. Mean incidences of overall all-grade adverse events by combination types.
APC and APLC therapy may be useful as a clinical reference for future applications.

Author contributions
Ze Mi: study design, data extraction, literature search, study selection, manuscript writing, revision of manuscript; Yunsu Zhang: literature search, study selection, data extraction, data analysis, draw figure, manuscript writing, revision of manuscript; Pengfei Rong: study design, manuscript writing, revision of manuscript; Zhenguof Liu: manuscript writing, revision of manuscript, statistic analysis for heterogeneity and bias; Zhichao Feng and Jiahao Liu: data analysis, manuscript writing, revision of manuscript; Jianmin Wu, Hongpei Tan and Xiaqian Ma: data analysis, manuscript writing, revision of manuscript.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by the National Natural Science Foundation of China (No. 81201986) the Science and Technology Project of Hunan Province [2021RC017], the Furong Scholars Programme of Hunan Province and the Wisdom Accumulation and Talent Cultivation Project of Hunan Province [2021RC4017], the Furong Scholars Programme of Hunan Province [No. 81201986] the Science and Technology Project of Hunan Province. This work was supported by the National Natural Science Foundation of China [No. 81201986] and the Science and Technology Project of Hunan Province [No. 81201986].

ORCID
Ze Mi http://orcid.org/0000-0001-9075-1606
Zhenguof Liu http://orcid.org/0000-0003-2696-6535
Pengfei Rong http://orcid.org/0000-0001-5473-1982

Data availability statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

References
[1] Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–1355.
[2] Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639.
[3] Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–1290.
[4] Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in advanced colorectal cancer. J Clin Oncol. 2018;36(8):773–779.
[5] Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–1356.
[6] Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 2019;38(1):12.
[7] Blank CU, Rozeman EA, Fanchi LF, et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24(11):1655–1661.
[8] Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer. N Engl J Med. 2019;381(21):2020–2031.
[9] D’Angelo SP, Mahoney MR, Van Tine BA, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018;19(3):416–426.
[10] Pollack MH, Betof A, Dearden H, et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol. 2018;29(1):250–255.
[11] Gubens MA, Sequist LV, Stevenson JP, et al. Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non–small-cell lung cancer: KEYNOTE-021 cohorts D and H. Lung Cancer. 2019;130:59–66.
[12] Perets R, Bar J, Rosco DW, et al. Safety and efficacy of quavolinib, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non–small-cell lung cancer. Ann Oncol. 2021;32(3):395–403.
[13] Antonia S, Goldberg SB, Balmoukian A, et al. Safety and antitumor activity of durvalumab plus tremelimumab in non–small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 2016;17(3):299–308.
[14] Boileve A, Hilmi M, Gougis P, et al. Triplet combination of durvalumab, tremelimumab, and paclitaxel in biliary tract carcinomas: safety run-in results of the randomized IMMUNOBIL PRODIGE 57 phase II trial. Eur J Cancer. 2021;143:55–63.
[15] Calabro L, Morra A, Giannarelli D, et al. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Respir Med. 2018;6(6):451–460.
[16] Simmet V, Eberst L, Marabelle A, et al. Immune checkpoint inhibitor-based combinations: is dose escalation mandatory for phase I trials? Ann Oncol. 2019;30(11):1751–1759.
[17] Yang Y, Jin G, Pang Y, et al. Comparative efficacy and safety of nivolumab and nivolumab plus ipilimumab in advanced cancer: a systematic review and Meta-analysis. Front Pharmacol. 2020;11:40.
[18] Gu L, Khadaroo PA, Su H, et al. The safety and tolerability of combined immune checkpoint inhibitors (anti-PD-1/1 PDL-1 plus anti-CTLA-4): a systematic review and Meta-analysis. BMC Cancer. 2019;19(1):559.
[19] Zhou X, Yao Z, Bai H, et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitor-based combination therapies in clinical trials: a systematic review and meta-analysis. Lancet Oncol. 2021;22(9):1265–1274.
[20] Iwama S, De Remigi A, Callahan MK, et al. Pituatory expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45.
[21] Almutairi AR, McBride A, Slack M, et al. Potential immune-related adverse events associated with monotherapy and combination therapy of ipilimumab, nivolumab, and pembrolizumab for advanced melanoma: a systematic review and meta-analysis. Front Oncol. 2020;10:91.
[22] Wang Y, Zhou S, Yang F, et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 2019;5(7):1008–1019.
[23] Armand P, Lesokhin A, Borrello I, et al. A phase 1b study of dual PD-1 and CTLA-4 or IIb blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia. 2021;35(3):777–786.
[24] Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–1568.
[25] Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.
[26] Patel SP, Othus M, Chae YK, et al. A phase II basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. Clin Cancer Res. 2020;26(10):2290–2296.
[27] Scherpereel A, Mazieres J, Greieller L, et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label,
randomised, non-comparative, phase 2 trial. Lancet Oncol. 2019; 20(2):239–253.

[28] Schoenfeld JD, Hanna GJ, Jo VY, et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial. JAMA Oncol. 2020; 6(10):1563–1570.

[29] Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013; 369(2):122–133.

[30] Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016; 17(7):883–895.

[31] Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019; 20(10): 1370–1385.

[32] Tawbi HA, Forsyth PA, Algazi A, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018; 379(8):722–730.

[33] Janjigian YY, Bendell J, Calvo E, et al. CheckMate-032 study: efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol. 2018; 36(28):2836–2844.

[34] Zimmer L, Livingstone E, Hassel JC, et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020; 395(10236):1558–1568.

[35] Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 Study. JAMA Oncol. 2020; 6(6):831–838.

[36] Siu LL, Even C, Mesia R, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-Low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 2019; 5(2):195–203.

[37] Powles T, van der Heijden MS, Castellano D, et al. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (Danube): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2020; 21(12):1574–1588.

[38] Gao J, Navai N, Alhalabi O, et al. Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatin-ineligible operable high-risk urothelial carcinoma. Nat Med. 2020; 26(12):1845–1851.

[39] Ferris RL, Haddad R, Even C, et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Ann Oncol. 2020; 31(7):942–950.

[40] Park R, Lopes L, Cristancho CR, et al. Treatment-related adverse events of combination immune checkpoint inhibitors: systematic review and Meta-analysis. Front Oncol. 2020; 10:258.

[41] Xu X, Huang Z, Zheng L, et al. The efficacy and safety of anti-PD-1/PD-L1 antibodies combined with chemotherapy or CTLA4 antibody as a first-line treatment for advanced lung cancer. Int J Cancer. 2018; 142(11):2344–2354.

[42] Luoma AM, Suo S, Williams HL, et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell. 2020; 182(3):655–671.e22.

[43] Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med. 2004; 23(9):1351–1375.