Preface

The history of critical phenomena goes back to the year 1869 when Andrews discovered the critical point of carbon dioxide, located at about 31°C and 73 atmospheres pressure. In the neighborhood of this point the carbon dioxide was observed to become opalescent, that is, light is strongly scattered. This is nowadays interpreted as coming from the strong fluctuations of the system close to the critical point.

Subsequently, a wide variety of physical systems were realized to display critical points as well. Of particular importance was the observation of a critical point in ferromagnetic iron by Curie. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and may even extend to the quark-gluon plasma and the early universe as a whole. Early theoretical investigations tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations and culminating in Landau’s general theory of critical phenomena. In a dramatic development, Onsager’s exact solution of the two-dimensional Ising model made clear the important role of the critical fluctuations. Their role was taken into account in the subsequent developments leading to the scaling theories of critical phenomena and the renormalization group. These developments have achieved a precise description of the close neighborhood of the critical point and results are often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is today emphasized. This can be briefly summarized by saying that at a critical point a system is scale invariant.

Conformal invariance has been known for almost a century in connection with scale invariance. For example, Maxwell’s equations in the vacuum are scale invariant as well as conformal invariant. This feature arises generally in quantum field theories with a local energy-momentum tensor. However, the first application of conformal invariance to critical phenomena was made only in 1970 by Polyakov. At that time, the consequences of conformal invariance for an arbitrary number of space dimensions were considered to be far from spectacular. This is completely different in two dimensions as was pointed out in the seminal work by Belavin, Polyakov and A. Zamolodchikov in 1984. This is because, for two dimensions, the conformal group is infinite-dimensional and much stronger constraints on the multipoint correlation functions of the system are obtained.

In a sense, conformal invariance is the logical extension of scale invariance. Scale invariance requires the invariance of the system under a uniform length rescaling. Conformal invariance also permits a non-uniform, local, rescaling and only requires that angles are kept unchanged. This extension is in fact very natural since it can be shown that for any system which is invariant under translations and rotations, at least in the continuum limit, is scale invariant and has short-ranged interactions, conformal invariance follows automatically.
For two-dimensional systems, conformal invariance has considerably extended our knowledge of the nature of a critical point. While scale invariance alone is capable of casting systems into universality classes only dependent on a few selected properties like the global symmetry, the dimension of the space and of the number of components of the order parameter, two-dimensional conformal invariance yields a classification of the critical point partition functions and thereby furnishes exact values of the critical exponents. Furthermore, the critical multipoint correlation functions of the local variables of the system can be determined exactly.

These prospects should place conformal invariance on the center stage of investigations on critical phenomena. However, the technical tools required for its understanding are quite elaborate. One of the central notions, the central charge, requires some profound background on anomalies which is not necessarily in the toolkit of a condensed-matter physicist. Rather, many of the basic concepts and techniques were developed in the context of string theory and most of the existing reviews on the subject assume quite some knowledge on quantum field theory on the side of the reader. On the other hand, we believe that the time is ready for conformal invariance techniques to enter condensed matter applications on a wide front. In writing this introduction, we have tried to meet the needs of a reader with some exposure to scaling and the renormalization group without being an expert in quantum field theory. To do so, we give a joint presentation of both the field theory techniques required as well as their explicit application in lattice systems. Numerical techniques in connection with finite-lattice systems will be emphasized, having in mind a reader with a good physical understanding of the lattice model who is curious about what conformal invariance techniques can reveal about its behaviour. At the same time, we have laid some accent on immediate applications to lattice systems and have tried to illustrate the phenomenological consequences of conformal invariance as explicitly as possible. Finite-size effects, rather than being a nuisance, will appear at a central position throughout.

This book has grown out of a joint two-trimester course held at the University of Fribourg in the winter 1991/1992. We hope it may serve as a first glance into the field and will prepare the reader for the study of more advanced presentations, some of which are given in the general references. In selecting the material to be presented in a first introduction to conformal invariance, we had to restrict ourselves to the basic foundations of the theory and many of the more advanced applications had regrettably to be left out completely. Although string theory stands at the origin of conformal invariance, no mention is made of it here. While conformal invariance provides one of the building blocks of strings in higher dimensions, it has also led to profound studies of field theories on a fluctuating metric. These studies include pure two-dimensional quantum gravity as well as spin systems on lattices with random connectivity, rewritten in the form of matrix models. We skip completely the fascinating subject of exactly integrable systems with the exceptions only of the two-dimensional Ising
model and a brief sketch of A. Zamolodchikov’s theory of two-dimensional systems perturbed away from their critical point. The most spectacular result of this has been the proof that the two-dimensional Ising model at its critical temperature, but in a magnetic field, is integrable. These developments have also stimulated further investigations in mathematics, uncovering for example very deep and interesting relationships to the theory of knots and links. We merely mention here that polynomial invariants of knots have reappeared in connection with the partition functions of two-dimensional integrable systems. Conformal invariance has also added to the general understanding of the flow under the renormalisation group, referred to as the \(c \)-theorem. We restrict ourselves here exclusively to its occurrence in two dimensions and do not go into the existing generalisations in four dimensions. Since conformal invariance acts primarily as a dynamical symmetry which allows one to write the spectrum of the transfer matrix in terms of the irreducible representations of the conformal algebra, it is worth looking for conformal symmetries more general than a Lie group. Of the extensions of the conformal group we only briefly mention \(N = 1 \) superconformal invariance and skip higher superconformal algebras as well as \(W \) algebras, braid groups and quantum groups. The only Kac-Moody algebra treated here in any detail is the \(U(1) \), including its shifted representations. Temperley-Lieb algebras are merely mentioned although they provide but the first example of a whole class of new symmetry structures present in conformally invariant and integrable systems. On the side of the more advanced applications, we do not cover weakly disordered systems, polymers and random walks, the quantum Hall effect or the Kondo effect. It would be tempting to use conformal invariance for a better understanding of high \(T_c \) superconductivity. Conformal invariance techniques have also been useful in calculating exactly the fractal dimensions of clusters as defined for example by the order parameter of spin systems. For an introduction to these active reasearch topics, see the general references in the bibliography or the references to review articles in the text.

In chapter 1, we recall some well-known notions of scaling relevant in connection with their subsequent generalisation to conformal invariance. We also repeat the correspondence between quantum field theory and classical statistical equilibrium mechanics. This is formulated via the transfer matrix, which will play a major role in what follows. In chapters 2 to 7, we then give the field theory point of view of conformal invariance. We shall show how this can be used to calculate explicitly the critical multipoint correlation functions and shall go through the example of the Ising model in full detail. Following our two-pronged approach, we present at an early stage (chapter 3) the theory of finite-size scaling and the important contributions to it from conformal invariance. Conversely, the new conformal results provide a simple and efficient means for the calculation of critical exponents and the central charge from a given lattice system. We then turn to lattice systems. A large part of the original work done on conformal invariance uses as a simplifying technical device an extremely anisotropic limit of the transfer matrix, which has the virtue of turning a fully
populated matrix into a sparse one. This is quite useful for numerical calculations and also sheds more light on universality, as detailed in chapter 8. We describe the numerical techniques needed with an accent laid on the subleties of finite-lattice extrapolation in chapter 9. The Ising model example is then studied again in chapter 10 to show how a lattice system can be treated from the start from the point of view of conformal invariance.

The subsequent chapters deal with more advanced applications. Modular invariance is treated in chapter 11 and is shown to lead to a classification of the critical point partition functions. Examples beyond the Ising model, along with additional concepts, are presented in chapter 12. In chapters 13 and 14, we consider the effects of both relevant and irrelevant perturbing operators, culminating in the beautiful developments involving S-matrix theory which led to the recognition of the integrability of the two-dimensional Ising model in a magnetic field. Surface critical phenomena are treated in chapter 15 and we close with an outlook towards possible applications in critical dynamics.

To keep track of every new piece of work in this rapidly expanding field has been beyond our capabilites. We compiled in the bibliography the references we used in writing this text and added some more intended as suggestions for further reading. The first half of the general references gives introductory texts on critical phenomena, followed by earlier reviews on conformal invariances and a few suggestions for catching up with the current lines of research. The selection is certainly incomplete and we sincerely apologize to any author who might feel that we did not give proper credit to his contribution to the field. Inevitably the bibliography reflects our interests and/or our lack of knowledge of some directions under the conformal umbrella. Citations in the text are often in historical order.

Finally, we have the pleasant task of thanking all those who have contributed to making this work possible. We thank Prof. D. Baeriswyl for his kind invitation to give the lectures from which this book has grown. We are deeply indebted to R. Flume and V. Rittenberg for introducing us to the subject and for continuous support and encouragement. One or other or both of us have received advise or support from and/or had the pleasure to collaborate with J.L. Cardy, E. Domany, M. Droz, L. Frachebourg, G.v. Gehlen, H.J. Herrmann, A.W.W. Ludwig, M.J. Martins, G. Mussardo, A. Patkós, R. Peschanski, V. Privman, F. Ravanini, H. Saleur, G. Schütz, N.M. Švrakić, R.A. Weston and J.-B. Zuber. Our warmest thanks go to all of them.

We thank the Institut für Theoretische Physik of the Universität Bern and the Département de Physique Théorique of the Université de Genève for support. This work was supported in part by the Swiss National Science Foundation.

Bern and Genève
January 1993

Philippe Christe
Malte Henkel
Chapter	Title	Start Page
5	Operator Algebra and Correlation Functions	65
5.1	Operator algebra and associativity	65
5.2	Analyticity and the monodromy problem	70
5.3	The Riemann point of view	72
6	The Ising Model Correlation Functions	76
6.1	Four-point function of the spin-density operator	76
6.2	Four-point function of the energy-density operator	79
6.3	Mixed four-point function	81
6.4	Semi-local four-point functions	82
7	Coulomb Gas Realization	84
7.1	Free massless boson gas	84
7.2	Screened Coulomb gas	87
7.3	Minimal correlation functions	89
7.4	Minimal algebras and OPE coefficients	91
8	The Hamiltonian Limit and Universality	94
8.1	Hamiltonian limit in the Ising model	94
8.2	Hubbard-Stratonović transformation	97
8.3	Hamiltonian limit of the scalar \(\phi^4 \) theory	98
8.4	Hamiltonian spectrum and conformal invariance	101
8.5	Temperley-Lieb algebra	101
8.6	Landau-Ginzburg classification	105
9	Numerical Techniques	107
9.1	Simple properties of quantum Hamiltonians	107
9.2	Some further physical quantities and their critical exponents	109
9.3	Translation invariance	111
9.4	Diagonalization	112
9.5	Extrapolation	115
10.1	Exact diagonalization	122
10.1.1	General remarks	122
10.1.2	Jordan-Wigner transformation	123
10.1.3	Diagonalization of a quadratic form	124
10.1.4	Eigenvalue spectrum and normalization	125
9.6	VBS algorithm	118
9.7	BST algorithm	119
10	Conformal Invariance in the Ising Quantum Chain	122
10.2	Character functions	126
10.3	Finite-size scaling analysis	128
10.3.1	Ground state energy	128
10.3.2	Operator content	130
Finite-size corrections. .. 132
Finite-size scaling functions. .. 133
10.4 The Virasoro generators .. 134
10.5 Recapitulation ... 135

11 Modular Invariance .. 137
11.1 The modular group ... 137
11.2 Implementation for minimal models 137
11.3 Modular invariance at $c = 1$... 143
 Circle or Coulomb models. ... 143
 Orbifold models. .. 145

12 Further Developments and Applications 148
12.1 Three-states Potts model ... 148
12.2 Tricritical Ising model .. 149
 Operator content. ... 149
 Supersymmetry and superconformal invariance. 152
12.3 Yang-Lee edge singularity ... 154
12.4 Ashkin-Teller model .. 157
 Relation with the XXZ quantum chain. 138
 Global symmetry and boundary conditions. 158
 Phase diagram. .. 159
 Operator content on the $c = 1$ line. 160
12.5 XY model ... 162
12.6 XXZ quantum chain .. 164
12.7 A few remarks on 3D systems ... 168

13 Conformal Perturbation Theory 171
13.1 Correlation functions in the strip geometry 171
13.2 General remarks on corrections to the critical behaviour 172
13.3 Finite-size corrections ... 174
 Application to the Ising model. 176
 Application to the three-states Potts model. 177
 Checking the operator content from finite-size corrections. 179
13.4 Finite-size scaling functions ... 179
 Ising model: thermal perturbation. 180
 Ising model: magnetic perturbation. 181
13.5 Truncation method .. 183

14 The Vicinity of the Critical Point 187
14.1 The c-theorem ... 187
14.2 Conserved currents close to criticality 190
14.3 Exact S-matrix approach .. 193
14.4 Phenomenological consequences 200
List of Tables

Table	Title	Page
1	Possible melting transitions of adatoms.	14
2	Analogies between statistical mechanics and quantum theory.	20
3	Correspondence of physical quantities of statistical and quantum systems.	21
4	Bulk scaling and finite-size scaling close to T_c with $\tilde{z} = 0$.	42
5	Kac table for the Ising model and for the A_5 RSOS model.	61
6	Correspondence between conformal primary fields and the LGW fields ϕ^n.	105
7	Symmetry properties of a p-state Z_p symmetric quantum Hamiltonian.	109
8	Convergence of the Lanczos algorithm.	114
9	Finite-lattice extrapolation with the VBS algorithm, $\alpha = -1$.	121
10	Finite-lattice extrapolation with the BST algorithm, $\omega = 1.94$.	121
11	Calculation of the degeneracies $d(0, I)$ of the operator $\phi_{1,1}$ for $m = 3$.	127
12	Virasoro characters of the primary operators $\phi_{r,s}$ for $m = 3$.	128
13	Critical point partition functions as given by the A, D and E series of unitary models.	140
14	Critical point partition function for Z_2 symmetric systems with antiperiodic boundary conditions in the A series.	142
15	Virasoro characters of the primary fields $\phi_{r,s}$ for $m = 5$.	149
16	Virasoro characters of the primary fields $\phi_{r,s}$ for $m = 4$.	151
17	Location of the Yang-Lee singularity and conformal normalization.	154
18	Virasoro characters of the primary fields $\phi_{r,s}$ for $p = 5, p' = 2$.	155
19	Sector equivalence of the XXZ chain with the Ashkin-Teller chain.	158
20	Symmetries of the Ashkin-Teller model in dependence of the boundary conditions.	159
21	Operator content of the Ashkin-Teller model for the D_4-invariant boundary conditions Σ^0, Σ^2.	162
22	Scalar primary fields for periodic boundary conditions of the Ashkin-Teller quantum chain.	162
23	Exponent $\eta(\lambda)$ for the $(1 + 1)D$ XY model.	164
24	Critical point t_c and amplitude ratio Ξ in the $(2 + 1)D$ Ising model.	169
25	Finite-size correction coefficients for the three-states Potts model.	177
26	Quasiprimary states up to level four for the Yang-Lee singularity.	184
27	The normalized scalar states and their scaling dimensions for the truncated space up to level 3.	184
28	Counting criterion for the Ising model perturbed with $\phi_{1,2}$.	192
29	Mass ratios $r_i = m_{i+1}/m_1$ for the Ashkin-Teller model.	206
30	Numerical values for μ_{abc} and $\rho_{abc} := \lambda_{abc}^2/(8m_a^2\mu_{abc})$ for the $2D$ Ising model.	214
31 Mass shifts δG_i for the Ising model in a magnetic field. 216
List of Figures

1 Typical phase diagram of a ferromagnet. 1
2 Magnetization as function of B and T. 2
3 Droplet picture (schematic). 2
4 Zeroes of the Ising model partition function at $T > T_c$. 8
5 Phase diagram of the tricritical Ising model. 10
6 Example of a closed graph in the p-state Potts model. 11
7 Plaquette of a square lattice. 16
8 The six possible plaquettes. 17
9 Classical path. 19
10 Hypercubic lattice with "time" and "space" directions. 20
11 Conformal transformation in d dimensions. 24
12 Bounded coordinate transformation. 31
13 Convention for the contours in the definition of the Virasoro generators. 35
14 Commutation contours for the Virasoro algebra. 35
15 Specific heat as a function of temperature for two lattices of sizes $L_1 > L_2$. 39
16 Solving the phenomenological renormalization condition to find T^*. 46
17 Logarithmic transformation. 48
18 Deformation of a oriented contour: $\oint_{C_{z}} = \oint_{C} - \sum_i \oint_{C_{i}}$. 58
19 Sequence of Verma submodules. 62
20 Crossing symmetry condition for the four-point functions. 69
21 One possible decomposition of a n-point function. 69
22 Monodromy transformations. 70
23 Effective potential $V(\phi)$. 99
24 Relationship between systems in the Ising universality class. 100
25 Finite-size estimates of the exponent x_ε in the $(1 + 1)D$ Ising model. 116
26 Finite-size estimates for β_c in the $3D$ spherical model. 117
27 Critical finite-size scaling spectrum for $H_0^{(0)}$ in the $2D$ Ising model. 131
28 The torus and the modular transformations T and S. 138
29 The manifold S^3 and the orbifold S^3/Z_2. 145
30 Known conformal modular invariant systems with $c = 1$. 146
31 Phase diagram of the $2D$ Ashkin-Teller quantum chain. 160
32 Finite-size scaling functions for the quantum Ising chain. 186
33 Mapping the s-plane to the θ-plane. 194
34 Three-particle elastic scattering factorization. 195
35 Anomalous threshold. 196
36 Bootstrap equation. 196
Page	Description
37	Mass ratios $r_i = (\xi_{i+1}/\xi_1)^{-1}$ for the Ising model in a magnetic field as a function of μ.
38	Mass ratios $r_i = (\xi_{i+1}/\xi_1)^{-1}$ as functions of μ for the tricritical Ising model.
39	Relation between Z_2 breaking perturbations $\phi_{2,2}$ in multicritical Ising models and the Ashkin-Teller model.
40	Mass shift in the $(1+1)D$ Ising model with a magnetic field.
41	Schematic local order parameter profiles.
42	Schematic surface phase diagram.
43	Scaled spectrum $x(\kappa)$ of the $Q = 0$ sector of the Ising quantum Hamiltonian with a single defect line.
44	Scaled spectrum $x(\kappa)$ of the $Q = 1$ sector of the Ising quantum Hamiltonian with a single defect line.