SYMPLECTIC STRUCTURES ON THE COTANGENT BUNDLES
OF OPEN 4-MANIFOLDS

ADAM C. KNAPP

Abstract. We show that, for any two orientable smooth open 4-manifolds
X_0, X_1 which are homeomorphic, their cotangent bundles T^*X_0, T^*X_1 are
symplectomorphic with their canonical symplectic structure. In particular, for
any smooth manifold R homeomorphic to \mathbb{R}^4, the standard Stein structure on
T^*R is Stein homotopic to the standard Stein structure on $T^*\mathbb{R}^4 = \mathbb{R}^8$. We
use this to show that any exotic \mathbb{R}^4 embeds in the standard symplectic \mathbb{R}^8
as a Lagrangian submanifold. As a corollary, we show that \mathbb{R}^8 has uncount-
ablely many smoothly distinct foliations by Lagrangian \mathbb{R}^4s with their standard
smooth structure.

1. Introduction

We begin with some basics, which can be found in [10]. Throughout, assume that
all manifolds are orientable, smoothable, and come with a fixed smooth structure
unless otherwise indicated. Let N be a smooth manifold of real dimension n. The
cotangent bundle of N, T^*N, carries a canonical 1-form λ_0 defined, in local
coordinates $x_1, \ldots, x_n, y_1 = dx_1, \ldots, y_n = dx_n$, by $\lambda_0 = \sum_{i=1}^n y_i dx_i$. The 1-form
$\lambda_0 \in \Omega^1(T^*N)$ is uniquely characterized by the property that $\sigma^* \lambda = \sigma$ for any
1-form σ on N thought of as a section of T^*N. Then, for any diffeomorphism
$\varphi : M \rightarrow N$, $\lambda_N = \varphi^* \lambda_0$ where φ^* is the induced map $\varphi^* : T^*(T^*M) \rightarrow
T^*(T^*N)$.

From the canonical 1-form we obtain a canonical symplectic form $\omega_0 = -d\lambda_0$ on
T^*N. In local coordinates, ω_0 has the form $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$. As ω_0 depends
only on λ_0, any two diffeomorphic manifolds have symplectomorphic cotangent
bundles. This fact is the basis of an idea of V. I. Arnol’d which states that the
smooth topology of a manifold should be reflected in the symplectic topology of its
cotangent bundle.

As a realization of this idea, M. Abouzaid showed in [1] that in dimension $n \equiv 1$
mod 4, an exotic n-sphere S which does not bound a paralizable manifold does
not embed as a Lagrangian submanifold of T^*S^n with the the standard symplectic
structure; hence the cotangent bundle of such an exotic sphere cannot be symplec-
tomorphic to T^*S^n. As T^*S and T^*S^n are diffeomorphic, the canonical symplectic
structure on T^*S can be considered an exotic symplectic structure on T^*S^n.

The existence and classification of exotic symplectic structures on a given smooth
manifold is of independent interest. In [14] P. Seidel and I. Smith and in [2] M.
Abouzaid and P. Seidel construct exotic symplectic structures on \mathbb{R}^{2n} for $n \geq 4$.
Also, in [11], M. McLean constructs exotic symplectic structures on T^*S^n for $n \geq$
3. However, these constructions do not arise as cotangent bundles, nor are they symplectomorphic to them in any obvious way.

When \(n \neq 4 \), smoothing theory tells us that there is a unique smooth structure on the topological manifold \(\mathbb{R}^n \) up to homeomorphism. (See [15] for \(n > 4 \), [12] for \(n = 3 \).) So among the symplectic structures on \(T^*\mathbb{R}^n \cong \mathbb{R}^{2n} \), there is a fixed one which corresponds to the canonical structure on \(T^*\mathbb{R}^n \). However in dimension \(n = 4 \), the topological manifold \(\mathbb{R}^4 \) admits uncountably infinitely many inequivalent smoothings. For each smooth manifold \(R \), homeomorphic to \(\mathbb{R}^4 \), \(T^*R \) and \(T^*\mathbb{R}^4 \) are diffeomorphic.

It is then natural to ask: Are any of the exotic symplectic structures on \(\mathbb{R}^8 \) symplectomorphic to the canonical structure on \(T^*R \) for some smooth \(R \) homeomorphic to \(\mathbb{R}^4 \)? We answer a stronger question in the negative.

Theorem 1. Let \(X_0, X_1 \) be smooth, open, homeomorphic 4-manifolds. If \(\pi_1(X_i) \neq 0 \) we assume that there is an \(s \)-cobordism between \(X_0 \) and \(X_1 \). Then each of \(T^*X_0 \) and \(T^*X_1 \) have a fixed Stein structure up to Stein homotopy and the Stein structures on \(T^*X_0 \) and \(T^*X_1 \) are Stein homotopic. Therefore, \(T^*X_0 \) and \(T^*X_1 \) are symplectomorphic with their canonical symplectic structures.

We reserve the definition of a Stein manifold until the next section. A special case of Theorem 1 is the following:

Corollary 2. Let \(R \) be a smooth 4-manifold homeomorphic to \(\mathbb{R}^4 \). Then the Stein structure on \(T^*R \) is Stein homotopic to the standard Stein structure on \(\mathbb{R}^8 \); hence \(T^*R \) and \(\mathbb{R}^8 \) are symplectomorphic.

A Lagrangian submanifold \(L \) of a symplectic manifold \((V, \omega) \) is a submanifold of maximal dimension where \(\omega|_L \equiv 0 \). In a cotangent bundle, graphs of closed 1-forms are Lagrangian.

Corollary 3. Let \(R \) be any exotic \(\mathbb{R}^4 \). Then \(R \) embeds in the standard symplectic \((\mathbb{R}^8, \omega) \) as a Lagrangian submanifold.

Proof. The zero section of \(T^*R \) is a Lagrangian copy of \(R \) which sits inside \(\mathbb{R}^8 \) as its image under the symplectomorphism. \(\square \)

Currently, there are no known smooth manifolds which

1. are homeomorphic to \(\mathbb{R}^4 \),
2. have finite handlebody decompositions, and
3. which are known to be not diffeomorphic to the standard \(\mathbb{R}^4 \).

If the smooth 4-dimensional Poincaré conjecture is false, such an object exists and arises by puncturing an exotic 4-sphere. Potential examples arise via Gluck twists [7] or from proposed counterexamples to the Andrews-Curtis conjecture. Recall that the Andrews-Curtis conjecture states that balanced presentations of the trivial group can be trivialized using the Andrews-Curtis moves; a collection of moves on group presentations related to elementary Morse moves of 1 and 2 handles. (See Remark 5.1.11 of [8] for examples.) Since no such finite handlebody is currently

1Recall that an \(s \)-cobordism is an \(h \)-cobordism with vanishing Whitehead torsion. In dimension 4, Freedman proved that in the case of “good” fundamental group, such an \(s \)-cobordism has a topological product structure. See Theorem 7.1A of [6]. We will only require the existence of such an \(s \)-cobordism, not a product structure on it, so we can remove the qualification on \(\pi_1 \).
known to be exotic, all known examples involve highly complicated behavior at infinity.

This complicated behavior at infinity obstructs the usual definitions of Lagrangian Floer homology for non-compact Lagrangians. We then ask the question: Can a Lagrangian Floer homology be defined for Lagrangians such as we have describe? If so, can any of the above Lagrangian exotic \mathbb{R}^4’s be distinguished by their Floer homologies?

A symplectic manifold (V, ω) is called exact if $\omega = d\alpha$ for some 1-form α. (In the case of the canonical structure on a cotangent bundle $\alpha = -\lambda_0$.) A Lagrangian submanifold L of an exact symplectic manifold is exact if $\alpha|_L$ is exact. Note that $\alpha|_L$ is closed on L as $d\alpha|_L = \omega|_L = 0$. When L has $H^1(L; \mathbb{R}) = 0$, every closed form is exact.

The usual version of the nearby Lagrangian conjecture states that if a closed manifold L is an exact Lagrangian in T^*N (with N compact) then L is Hamiltonian isotopic to the zero section of T^*N. We have then shown that the corresponding non-compact version (when N is 4-dimensional and open) is false – without some sort of control at infinity – since such a Hamiltonian isotopy would give a diffeomorphism between any two smooth structures on N.

Let (X_0, J_0) and (X_1, J_1) be two smooth manifolds with smooth foliations. We will call these two foliations smoothly equivalent if there exists a diffeomorphism $\phi : X_0 \to X_1$ such that $\phi_*(J_0) = J_1$. Suppose that a foliated manifold (X, \mathcal{F}) admits a smooth global slice by which we will mean a smooth manifold Y and smooth embedding $Y \to X$ which intersects every leaf of \mathcal{F} once transversely. It is straightforward to show that any two global slices of \mathcal{F} are diffeomorphic; hence the leaf space of \mathcal{F} is naturally identified with Y with its smooth structure.

Corollary 4. The standard symplectic \mathbb{R}^8 admits uncountably infinitely many smoothly distinct foliations by Lagrangian \mathbb{R}^4’s with the standard smooth structure.

Proof. For each exotic \mathbb{R}^4, R, T^*R has a codimension 4 foliation by the fibers of the projection $T^*R \to R$, each a Lagrangian \mathbb{R}^4 with its standard smooth structure. Since the leaf space \mathcal{L} is naturally identified with R, \mathcal{L} is a smooth manifold and its smooth type is an invariant of the foliation. The result follows by the uncountability of smooth structures on \mathbb{R}^4 together with Corollary 2. \qed

2. Stein Manifolds

A smooth manifold V of real dimension $2n$, equipped with an almost complex structure J is said to be Stein if J is integrable and V admits a proper holomorphic embedding into \mathbb{C}^N for some N. By [9, 3, 13], a complex manifold (V, J) is Stein if and only if it admits a smooth function $\phi : V \to \mathbb{R}$ which is

1. proper and bounded below (exhausting) and
2. J-convex in the sense that $-dd^c\phi(v, Jv) > 0$ for all v. Here $d^c\phi$ denotes $d\phi \circ J$.

We call the triple (V, J, ϕ) a Stein structure on V. Note that $-dd^c\phi$ is a symplectic form on V compatible with J. In fact, the existence of a Stein structure only requires a weaker condition, due to the following theorem of Eliashberg:

Theorem 5 (Eliashberg [5]). A smooth manifold V^{2n} with $2n > 4$ admits a Stein structure if and only if it admits an almost complex structure J and an exhausting...
Morse function ϕ with critical points of index $\leq n$. More precisely, J is homotopic through almost complex structures to a complex structure J' such that ϕ is J' convex.

Associated to every symplectic manifold (V, ω) there is a contractible space of almost complex structures J which are compatible with ω in the sense that $g(v, w) = \omega(v, Jw)$ is a Riemannian metric and $\omega(Jv, Jw) = \omega(v, w)$. When $(V, \omega) = (T^*N, \omega_0)$, we can construct a contractible subspace of these structures explicitly in terms of Riemannian metrics on N. That is, pick a Riemannian metric g_N on N and define J_g in local coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n$ (for T^*N) by

$$J_g \left(\frac{\partial}{\partial x_i} \right) = \sum_{j=1}^n (g_N)_{ij} \frac{\partial}{\partial y_j} \quad \text{and} \quad J_g \left(\frac{\partial}{\partial y_i} \right) = \sum_{j=1}^n -(g_N)^{ij} \frac{\partial}{\partial x_j}$$

Then J_g is compatible with ω_0 and, on the zero section Z, $g|_Z \equiv g_N$. This almost complex structure is not, in general, integrable.

Now, pick an exhausting Morse function $f : N \to \mathbb{R}$. Let $\phi : T^*N \to \mathbb{R}$ be defined by $\phi(x, y) = f(x) + \frac{1}{2} |y|^2$. Then ϕ is again an exhausting Morse function, now for T^*N, whose critical points occur along the zero section and have an index-preserving bijection with those of f. As long as the dimension of N is $n > 2$, the conditions of Theorem 5 are satisfied and T^*N admits a Stein structure.

An exhausting Morse function on V^{2n} is called subcritical if it has only critical points of index $< n$. A Stein structure (ϕ, J) is called subcritical if ϕ is subcritical. In the subcritical case, Y. Eliashberg and K. Cieliebak showed that Stein structures are unique up to homotopy:

Theorem 6 (Eliashberg, Cieliebak [4]). Let $n > 3$ and let (ϕ_0, J_0), (ϕ_1, J_1) be two subcritical Stein structures on V^{2n}. If J_0 and J_1 are homotopic as almost complex structures, then (ϕ_0, J_0) and (ϕ_1, J_1) are homotopic as Stein structures.

Here a Stein homotopy consists of a concatenation of “simple Morse homotopies” i.e. sequences of Morse birth-deaths and handle slides. In this case, critical points of the ϕ_i do not escape to infinity and Moser’s trick\(^2\) applies to give us a 1-parameter family of diffeomorphisms taking one Stein structure to the other. See [4] for details. Consequently, the underlying symplectic manifolds for the Stein structures (ϕ_0, J_0) and (ϕ_1, J_1) are symplectomorphic.

Before we begin with the proof of Theorem 1. We show the following:

Lemma 7. If two 4-manifolds X_0, X_1 are homeomorphic, then their cotangent bundles are diffeomorphic as 8-manifolds. If $\pi_1(X_i) \neq 0$, we assume that the X_i are s-cobordant.

Proof. Let W be an h-cobordism between X_0 and X_1. If $\pi_1(X_i) \neq 0$, then assume that the Whitehead torsion of W vanishes so that W is an s-cobordism. There is a rank 4 real vector bundle T on W which restricts to T^*X_0 and T^*X_1 on ∂W. The bundle T can be obtained by pulling back T^*X_0 via the homotopy equivalence $W \to X_0$. Then we see that $T|_{X_1}$ is isomorphic to T^*X_1 by noting that it has the requisite characteristic classes.

The unit sphere bundle $S(T)$ is then an s-cobordism between 7-manifolds – the unit sphere bundles of T^*X_i – and, by the s-cobordism theorem, a product.

Now, taking the unit disc bundle $D(T)$, we get an s-cobordism of 8-manifolds with boundary. As we have seen, it is a product on the boundary. As this is again

\(^2\)See Section 3.2 of [10] for the compact case.
a product by the s-cobordism theorem, the diffeomorphism of the T^*X_i follows by restricting to the interior.

Proof of Theorem 1. If X_0 and X_1 are homeomorphic, then T^*X_0 and T^*X_1 are diffeomorphic by Lemma 7. Choose some representative V of this diffeomorphism type and particular diffeomorphisms $\varphi_i : V \to T^*X_i$. The canonical 1-forms, symplectic forms and choices of almost complex structures for the cotangent bundles pull back to λ_i, ω_i and J_i on V.

First, we show that J_0 and J_1 are homotopic as almost complex structures. Write $\mathcal{I}(n)$ for the space $GL^+(2n, \mathbb{R})/GL(n, \mathbb{C})$ which classifies almost complex structures on \mathbb{R}^{2n}. The space $\mathcal{I}(n)$ is homotopy equivalent to $SO(2n)/U(n)$ and, when $n = 4$, we can compute several of the homotopy groups:

$$\pi_0 \mathcal{I}(4) = 0, \quad \pi_1 \mathcal{I}(4) = 0, \quad \pi_2 \mathcal{I}(4) = \mathbb{Z},$$
$$\pi_3 \mathcal{I}(4) = 0, \quad \pi_4 \mathcal{I}(4) = 0, \quad \pi_5 \mathcal{I}(4) = 0,$$
$$\pi_6 \mathcal{I}(4) = \mathbb{Z},$$

The obstructions to a homotopy between J_0 and J_1 lie in $H^i(V, V^{(i-1)}; \pi_i(\mathcal{I}(4))$ where $V^{(i-1)}$ is the $i-1$-skeleton of V. As $H^i(V; \mathbb{Z}) = 0$ for $i \geq 4$, the only non-trivial group in this list is $H^2(V, V^{(1)}; \pi_2(\mathcal{I}(4))) \cong H^2(V, V^{(1)}; \mathbb{Z}) \cong H^2(X_i, X_i^{(1)})$. However, J_0 and J_1 are homotopic over the 2-skeleton so this obstruction vanishes. (Clearly they both have the same first Chern class.) Therefore, J_0 and J_1 are homotopic as almost complex structures.

As we saw above, for each Morse function f_i on X_i, we obtain Morse functions ϕ_i on T^*X_i whose critical points (and, once a metric is chosen, flow lines along the zero section) can be identified with those of f_i. Note that the ϕ_i will be proper and bounded below when the f_i are.

In order to apply Theorem 6, we will need to show that the X_i admit Morse functions without index 4-critical points. To construct such a Morse function, begin with a Morse function which is bounded below and whose critical values are discrete, with a single critical point per critical value. With such a choice, X_i is identified with a composition of elementary cobordisms.

Let x_4 be an index 4 critical point. Then the unstable manifold of x_4 must include trajectories to at most finitely many index 3 critical points. Further, if x_3 is an index 3 critical point, its stable manifold must meet at most 2 index 4 critical points. (Since the stable manifold is 1 dimensional.) As $H_4(X_i; \mathbb{Z}) = 0$, the boundary map $\partial : C_4(X) \to C_3(X)$ is injective; so, after possibly performing some handle-slides, we can cancel any index 4 critical point with an index 3 critical point. Therefore, each of the X_i admit a Morse function f_i without index 4-critical points.

Let (ϕ_i, J_i) be the Stein structures on V constructed using Theorem 5 where J_i is a complex structure homotopic to the almost complex structure J_i' constructed from the metric on X_i. As each of the ϕ_i are subcritical, we then apply Theorem 6 to see that the (ϕ_i, J_i) are Stein homotopic.

References

[1] M. Abouzaid. Framed bordism and Lagrangian embeddings of exotic spheres. *Ann. of Math.* (2), 175(1):71–185, 2012.
[2] M. Abouzaid and P. Seidel. Altering symplectic manifolds by homologous recombination. *ArXiv e-prints*, July 2010.
[3] E. Bishop. Mappings of partially analytic spaces. *Amer. J. Math.*, 83:209–242, 1961.
[4] K. Cieliebak and Y. Eliashberg. *From Stein to Weinstein and back: Symplectic Geometry of Affine Complex Manifolds*, volume 59 of *Colloquium Publications*. American Mathematical Society, Providence, RI, November 2012.
[5] Y. Eliashberg. Topological characterization of Stein manifolds of dimension ≥ 2. *Internat. J. Math.*, 1(1):29–46, 1990.
[6] M. H. Freedman and F. Quinn. *Topology of 4-manifolds*, volume 39 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 1990.
[7] H. Gluck. The embedding of two-spheres in the four-sphere. *Bull. Amer. Math. Soc.*, 67:586–589, 1961.
[8] R. E. Gompf and A. I. Stipsicz. *4-manifolds and Kirby calculus*, volume 20 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 1999.
[9] H. Grauert. On Levi’s problem and the imbedding of real-analytic manifolds. *Ann. of Math.* (2), 68:460–472, 1958.
[10] D. McDuff and D. Salamon. *Introduction to Symplectic Topology*. Oxford Mathematical Monographs, second edition, 1998.
[11] M. McLean. Lefschetz fibrations and symplectic homology. *Geom. Topol.*, 13(4):1877–1944, 2009.
[12] E. E. Moise. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. *Ann. of Math.* (2), 56:96–114, 1952.
[13] R. Narasimhan. Imbedding of holomorphically complete complex spaces. *Amer. J. Math.*, 82:917–934, 1960.
[14] P. Seidel and I. Smith. The symplectic topology of Ramanujam’s surface. *Comment. Math. Helv.*, 80(4):859–881, 2005.
[15] J. Stallings. The piecewise-linear structure of Euclidean space. *Proc. Cambridge Philos. Soc.*, 58:481–488, 1962.

Department of Mathematics, Columbia University, New York, NY 10027

E-mail address: knapp@math.columbia.edu