The presentation and outcomes of Hermansky-Pudlak syndrome in obstetrics and gynecological settings: A systematic review

Deborah Obeng-Tuudah¹,²,³ | Brwa A. Hussein¹ | Amir Hakim⁴,⁵ | Keith Gomez¹ | Rezan Abdul Kadir¹,²,³

¹Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital NHS Trust, London, UK
²Department of Obstetrics and Gynaecology, Royal Free Hospital NHS Trust, London, UK
³EGA Institute for Women's Health, University College London, London, UK
⁴Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
⁵National Heart and Lung Institute, Imperial College London, London, UK

Correspondence
Rezan Abdul Kadir, Department of Obstetrics and Gynecology, Royal Free Hospital NHS Trust, Pond Street, London, NW3 2QG, UK.
Email: rezan.abdul-kadir@nhs.net

Abstract
Background: Hermansky-Pudlak syndrome (HPS) is a rare autosomal-recessive disorder with clinical manifestations of bleeding diathesis, multi-organ disease and variable oculocutaneous albinism (OCA). In women, it can cause life-threatening obstetric and gynecological (OB/GYN) bleeding.

Objective: To summarize OB/GYN presentations, outcomes, and management strategies in women with HPS.

Search strategy: Main databases (MEDLINE, EMBASE, Cochrane, PubMed, Web of Science Core Collection and Google Scholar) were searched from inception until June 30, 2020.

Selection criteria: Case reports/series of women with confirmed HPS.

Data collection and analysis: A systematic review using PRISMA guidelines. Methodological quality assessment performed using adapted Newcastle Ottawa scale.

Main results: A total 29 pregnancies in 15 women and 2 gynecological patients were identified. Heavy menstrual bleeding (HMB), the most common bleeding symptom, was reported in 8/15 (53%) of women. HMB and post-partum hemorrhage (PPH) led to diagnosis of HPS in 5/17 (29%) women. Primary PPH was reported in 12/27 (44%) of viable pregnancies; half were major PPH. In 17 pregnancies with known HPS diagnosis, 9 had hemostatic cover with desmopressin and 8 with platelet transfusion. Major PPH occurred in 3/9 (33%) pregnancies covered with desmopressin compared with none in the platelet group.

Conclusion: Diagnosis of HPS should be considered in women with OCA presenting with HMB or PPH. Hemostatic management options include desmopressin and platelet transfusion. Management should be multidisciplinary with close collaboration between OB/GYN and hematology teams.

KEYWORDS
delta storage pool disorder, heavy menstrual bleeding, Hermansky-Pudlak syndrome, HPS, labor, obstetrics and gynecology, OB/GYN, oculocutaneous albinism, postpartum hemorrhage, pregnancy
Hermansky-Pudlak syndrome (HPS) was first described in 1959. It is characterized by dense granule deficient platelets (delta storage pool disorder), oculocutaneous albinism (OCA) with present tyrosinase activity and intracellular accumulation of ceroid lipofuscin. Clinically, it manifests as variable degrees of bleeding diathesis, skin hypopigmentation, visual impairment, nystagmus, pulmonary fibrosis, granulomatous colitis and renal impairment. It is heterogeneous in its presentation, clinical course and prognosis.

Early diagnosis in childhood is common due to OCA, which encompasses skin/eye hypopigmentation, visual impairment and nystagmus. Skin and hair color ranges from pale white to light brown/tan and iris color tends to be blue, green or brown. Cases of iris heterochromia are also reported. OCA is only apparent after comparison to unaffected close relatives. HPS patients are prone to ultra-violet light mediated skin damage.

Bleeding symptoms of HPS, typical of platelet storage pool disorders, include excessive bruising, epistaxis, bleeding from other mucosal membranes, excessive bleeding after surgical or dental procedures, heavy menstrual bleeding (HMB) and postpartum hemorrhage (PPH). This is due to reduced platelet aggregation function resulting from the deficient dense granules/bodies.

Pulmonary fibrosis, inflammatory granulomatous colitis and renal failure are thought to be complications from multiple organ accumulation of an amorphous lipid-protein complex called ceroid lipofuscin. The lung pathology is a restrictive type with variable life expectancy, often presenting between the ages of 30–50 years.

Hermansky-Pudlak syndrome is a heterogeneous, autosomal recessive disorder and it is commonly found in Northwest Puerto Rico and the Swiss Valois region populations with an approximate prevalence of 1 in 1800 and a carrier frequency of 1 in 20. Outside these populations it is rare, with a prevalence of about 1 in 100 000 to 1 000 000 worldwide. Variants in at least 10 different genes are known to cause HPS (subtyped HPS1 to HSP10) of which variants in HPS1 are the most frequently reported. The resultant intracellular defect is the disruption of the synthesis and trafficking of lysosome-related organelles, which include platelet dense bodies and melanosomes, thus impairing their relative functions.

The diagnosis of a delta storage pool disorder is indicated by low platelet nucleotides with decreased ADP:ATP ratio, reduced ATP secretion and characteristic impaired platelet aggregometry. A definitive diagnostic feature seen under electron microscopy is the significant decrease in platelet dense granules/bodies. Molecular genetic analysis enables classifications into the different subtypes of HPS and aids in management and prognosis.

Due to its rare nature, most of our knowledge on HPS is through case reports and mouse-model laboratory experiments. HPS presentation in obstetrics and gynecology (OB/GYN) settings can pose significant risks to the patient and challenges for the clinicians involved. This review collates and summarizes the presentations, different management strategies and their effects available in clinical case reports with the main focus on obstetrics and gynecological aspects of care.

2 | MATERIALS AND METHODS

A systematic literature search according to PRISMA guidelines was performed to identify all eligible clinical cases and studies without language or time restriction. Electronic databases of MEDLINE, EMBASE, Cochrane, PubMed, Web of Science Core Collection and Google Scholar were searched from inception until June 30, 2020, using the following keywords: HPS, platelet storage pool disorders, OCA, women, females, pregnancy, labor, delivery, postpartum hemorrhage, obstetrics, HMB, menorrhagia, ovulation bleeding, ovarian bleeding and gynecology. The bibliographic references of the retrieved articles were also screened for additional cases/studies of relevance. We identified 220 articles altogether.

Abstracts of the articles in the literature searches were reviewed independently by two authors (DO-T and BH) for their relevance to OB/GYN outcomes in HPS patients. Sixteen articles were relevant and included in the review. The full articles were retrieved and the information extracted. One article was written in Spanish, so we obtained its translation into English. The other 15 articles were published in English.

Quality assessment of case reports and case studies were evaluated using the adapted Newcastle-Ottawa Scale recommended by Murad and colleagues. Each study was assessed against four major domains: selection, ascertainment, causality and reporting.

Demographic, medical, obstetrical and/or gynecological history of the women were collected from the included articles. Information retrieved included: author and year of publication; ethnicity; age at diagnosis of HPS; age at presentation to OB/GYN; family history of HPS and parental consanguinity; bleeding symptoms and results of investigations (platelet count, clotting screen, bleeding time, platelet function tests, presence of antiplatelet antibodies, and the causative genetic variant if stated). Detailed gynecological (menstrual history; hemostatic prophylactic cover for menstruation; treatment for HMB and other gynecological problems and treatment) and obstetric (gravidity and parity; antenatal complications; hemostatic prophylactic cover for labor, delivery and puerperium; gestational age at delivery; mode of delivery (MOD); type of anesthesia employed; estimated blood loss (EBL) at delivery; postpartum complications and treatments received; any neonatal complications) data were also collected.

3 | RESULTS

Of the 16 articles included in this review, 14 articles addressed pregnancies and two reported gynecological cases. There were 29 pregnancies described in 15 women and 2 gynecological cases in two women, making a total of 17 patients with HPS to evaluate. The data extracted from the cases are represented in Tables 1 and 2.
In all the studies, diagnosis of HPS was confirmed by a hematologist; of which nine (56%) studies fully described the diagnostic criteria met by subject(s). Further subgroup analysis revealed a high percentage of studies \(n = 15; 94\% \) adequately described and reported study outcome(s) and ensured adequate subject follow-up. Whereas a lesser number of studies fully described patient baseline characteristics \(n = 5; 31\% \) or adequately described the case(s) \(n = 8; 50\% \). Consequently, reporting of patient baseline characteristics and adequate description of case(s) posed the greatest risk of publication bias.

In terms of ethnicity, six (35%) out of the 17 women described were Puerto Rican, two (12%) Indian, one (6%) Hungarian, one (6%) Spanish, one (6%) Hispanic and one (6%) Turkish. The ethnicities of the remaining five (29%) women were not stated. Parental consanguinity was stated in only two (12%) women. Affected siblings and family members were reported in six (35%) women.

The diagnosis of HPS in cases included in this review were made based on clinical and laboratory findings. Only two (12%) women had their diagnosis confirmed by genetic analysis but mutational information was not given. The ages at diagnosis were mentioned for 11/17 (65%) women and ranged from 6–42 years with a median age of 14 years.

In obstetrics, HPS diagnosis was known prior to first pregnancy in 9/15 (60%) women. Two (13%) women were diagnosed antenatally on clinical suspicion due to their OCA and bleeding diathesis history. PPH led to the diagnosis of HPS in three (20%) women. One (7%) woman presented after her fourth child with shortness of breath secondary to pulmonary disease, which led to her diagnosis. In gynecology, severe HMB necessitating packed red cells transfusion was the presenting symptom in both women that led to HPS diagnosis.

Previous bleeding history was reported in 15/17 (88%) women. In two (12%) women, no information was given. The frequency of bleeding symptoms and other HPS associated signs/symptoms reported are described in Table 3. HMB was the most common bleeding symptom reported in 8/15 (53%) women. As part of OCA, nystagmus and significant visual impairment including blindness were reported in 11/15 (73%), 7/15 (47%) and 7/15 (47%) women, respectively.

3.1 Gynecological presentation

The two gynecological cases were aged 13 and 42 years at presentation. They were both nulligravida and presented with HMB, which led to the diagnosis of HPS.

A 13-year-old girl with OCA presented with 14 days history of HMB at menarche. Her hemoglobin level and hematocrit were 55 g/L and 0.15, respectively. She was transfused eight units of packed red cells and one pool of fresh frozen plasma. Norethisterone was started at presentation with little effect. Her OCA roused a high suspicion for a platelet function disorder, so five doses of intravenous desmopressin (0.3 µg/kg every 8–12 h) and intravenous tranexamic acid (TXA, 12 mg/kg 3 times a day) were tried. However, desmopressin was not effective despite laboratory normalization of prolonged collagen/epinephrine PFA-100 closure times by it. Her HMB was resolved after 4 days with a single injection of recombinant factor VIIa (rFVIIa; NovoSeven® at 100 µg/kg). Symptoms were managed with a progesterone derivative and TXA to prevent further HMB during periods. TXA was taken 2 days before her periods and continued 2 days after period cessation. She had a family history of parental consanguinity. Her younger sister was subsequently diagnosed with HPS due to OCA and skin bruising tendency.

The second case was in a 42-year-old woman of Indian ethnicity presenting with a 7-month history of HMB. She had skin hypopigmentation, easy bruising, nystagmus and poor visual acuity. Her hemoglobin level was 74 g/L and she was transfused packed red cells (number of units transfused not reported). She had a normal pelvic ultrasound. She was commenced on oral contraception, TXA and desmopressin, which controlled her heavy bleeding. She was continued on maintenance therapy of TXA and desmopressin during her periods. A chest X-ray and chest CT scan both showed mild pulmonary fibrosis. Her lung function was normal. An echocardiogram showed normal heart function. She had two siblings with similar phenotype and consanguineous parents.

3.2 Pregnancy and obstetric outcomes

A total of 29 pregnancies were reported in 15 women; eight women had one pregnancy, three women had two pregnancies, two women had three pregnancies, one woman had four pregnancies and one woman had five pregnancies described. Twenty-seven pregnancies were singletons, one dichorionic diamniotic twin pregnancy and one dichorionic, triamniotic (DCTA) triplet pregnancy.

Two (7%) of the 29 pregnancies resulted in miscarriage. There was no further information regarding the management and bleeding outcomes of these miscarriages. Twenty-seven (27) viable pregnancies and deliveries were thus reported in 15 women.

The median age of the women during pregnancy was 22 years (age range 18–40 years). No antenatal bleeding was reported. None of the cases reported development of antiplatelet antibodies. One woman required bronchodilators in her pregnancy to relieve shortness of breath secondary to HPS-related pulmonary fibrosis.

The gestational age at delivery was mentioned in 23/27 (85%) cases. Twenty (87%) pregnancies delivered at term (i.e. ≥37 weeks gestation). The three preterm deliveries were in the same woman—the gestational ages at delivery for the first two pregnancies were not mentioned, but the third was the DCTA triplet pregnancy delivered at 31 weeks and 3 days by emergency cesarean section because one of the fetuses had intrauterine growth restriction with abnormal Dopplers (absent end-diastolic flow), non-stressed cardiotocography and biophysical profiles.
Author Year of publication	Pregnancy number if same woman	Maternal age/age at diagnosis (years)	Gravidity/parity F.N.	Parental consanguinity	FHx Ethnicity	Bleeding history prior to pregnancy	Other signs and symptoms	Clotting screen BT and other investigations	
Reiss et al. 1985²²	16/NS Dx several years before pregnancy	G1P0 Singleton	NS	NS	Puerto Rican	Prolonged bleed after tooth extraction, epistaxis, menorrhagia, OCA (blonde hair, nystagmus, poor visual acuity)	Pot count x10⁵/L	PT 11.5 s (normal 10.5 s), PTT 35 s (normal 35 s) BT 15 min (normal <10 min)	
Reiss et al. 1985²²	1st	NS/undiagnosed	G1P0 Singleton	NS	NS	Puerto Rican	Heavy bleed at time of a tooth extraction, prolonged bleeding from minor cuts, occasional epistaxis, single episode of menorrhagia, OCA (including nystagmus), interstitial pulmonary fibrosis No Hx of PPH Skin BCC	Pot count x10⁵/L	BT 6–15 min during antenatal period
Reiss et al. 1985²²	2nd	NS/undiagnosed	G2P1 Singleton	NS	As above	NS	NS		
Reiss et al. 1985²²	3rd	NS/undiagnosed	G3P2 Singleton	NS	As above	NS	NS		
Reiss et al. 1985²²	4th	NS/undiagnosed	G4P3 Singleton	NS	As above	NS	NS		
Reiss et al. 1985²²	5th	40/NS but dx after 4th baby above. Presented with SOB. HPS dx due to restrictive lung disease, OCA and bleeding diathesis	G5P4 Singleton	NS	As above	NS	NS		
Wax et al. 2001¹⁸	18/18 Dx at 32 weeks of this pregnancy on clinical suspicion due to OCA and ethnicity	G1P0 Singleton	NS	None	Puerto Rican	Prolonged bleed after tooth extraction, epistaxis, menorrhagia, OCA (blonde hair, nystagmus, poor visual acuity)	Pot count x10⁵/L	Normal PT, APTT Normal PT and APTT BT 6–15 min during antenatal period	
Zatik et al. 2002¹⁶	1st	18/8	G1P0 Singleton	NS	NS	Hungarian	Severe bleeding after tooth extraction	Pot count x10⁵/L	Normal PT/APTT/TT Prolonged BT >20 min (ref <10 min)
Zatik et al. 2002¹⁶	2nd	22/8	G2P1 Singleton	NS	NS	Hungarian	Severe bleeding after tooth extraction	Pot count x10⁵/L	Normal PT/APTT/TT Prolonged BT >20 min (ref <10 min)
Poddar et al 2004¹⁵	1st	21/21 Dx after major PPH complicated this incident pregnancy	G1P0 Singleton	NS	Sister	Asian/Indian	Epistaxis, menorrhagia, easy bruising, OCA (including nystagmus, visual impairment)	Pot count x10⁵/L	INR 1, APTT 1.1 Hb 113 g/L Prolonged BT >20 min (2–9 min)

TABLE 1 Main characteristics of the reported pregnancies with HPS
Prophylactic treatment prior to delivery	GA (weeks) at delivery	MOD/labor complication	Mode of analgesia/anesthesia	Blood loss (ml)	Treatment and maternal outcome	Neonatal outcome/birth weight/Apgar/HPS status if known
Platelet transfusion	40 SOL	NVD	NS	Normal EBL	Sustained 1st degree tear sutured under local anesthesia	Male 3500 g Apgar 8¹, 9⁵
Had a transfusion reaction				Postpartum Hct 0.40		
None	NS	NS	NS	No PPH	None needed	NS
Dx unknown						
None	NS	NS	NS	No PPH	None needed	NS
Dx unknown						
None	NS	NS	NS	No PPH	None needed	NS
Dx unknown						
None	NS	NS	NS	No PPH	None needed	NS
Dx unknown						
None	39 NS	NVD	Intact perineum	400 ml	None needed	Female 3420 g Apgars 8¹, 9⁵
Bloods in labor: Plt 321						
Hct 0.33						
BT 6 (normal)						
5 units of platelets transfused in labor	40 SOL	NVD	Analgesia by iv butorphanol	Normal	None needed	Male 3374 g
				Uneventful		
				postpartum		
				period		
Desmopressin	41 IOL due to non-reactive nonstress testing and meconium liquor	EmCS due to fetal distress Major PPH 1.6 L	NS	1600 Hb fall from 129 to 77 g/L, Hct 0.37 to 0.23 Plts from 134 to 65	4 units packed red cells and 2 units plts transfusion	NS
Desmopressin	39 SOL	EmCS due to fetal distress	NS	Normal Hb fall from 107 to 93, Hct from 0.29 to 0.27	No need for blood or platelet transfusion	NS
None	40 SOL	NVD with initial EBL 250 ml Extended 2nd degree tear upto right fornix, vulval hematoma	Epidural analgesia/anesthesia	1800	Return to theatre for vaginal tear exploration Vaginal pack inserted, hypotensive, 1 L gelofusine, 2 units RBC Tx, Desmopressin	NS
Dx unknown						

(Continues)
Author Year of publication	Pregnancy number if same woman	Maternal age/age at diagnosis (years)	Gravidity/parity F.N.	Parental consanguinity	FHx Ethnicity	Bleeding history prior to pregnancy	Other signs and symptoms	Plt count ×10^9/L	Clotting screen BT and other investigations	GA (weeks) at delivery	Onset of labor (SOL/IOL)	MOD/labor complication	Mode of analgesia/anesthesia	Blood loss (ml)	Postdelivery blood results	Treatment and maternal outcome	Neonatal outcome/birth weight/Apgar/HPS status if known		
Nisal et al. 2012^17	2nd First pregnancy described by Poddar et al. 2004^14	26/21	G2P1 Twins DCDA Unknown if spontaneous or assisted conception	NS	As above	As above	NS but same patient as above	9/10			NS								
Beesley et al. 2008^20	1st 17/17 Dx after major PPH complicated this incident pregnancy	G1P0 Singleton	NS	NS Puerto Rican	NS	NS	NS												
	2nd 19/17	G2P1 Singleton	NS																
	3rd 22/17	G3P2 Singleton	NS																
Tong et al. 2008^25	20/7	G1P0	NS	FhX NS Puerto Rican	Bleeding diathesis OCA														
Spencer et al. 2009^19	19/14	G1P0 Singleton	NS	NS Puerto Rican	OCA (including blindness), recurrent epistaxis, easy bruising, menorrhagia.														
Harris-Glocker et al. 2013^23	1st NS/NS Dx Unknown	G1P0	NS	Brother Hispanic	Occasional prolonged bleeding, PPH at first delivery led to diagnosis. Confirmed by genetic testing. PMHx of Asthma and fibromyalgia														
	2nd NS/NS but dx after first delivery complicated with PPH	G2P1	NS																
	3rd NS/As above	G3P2	NS																
Prophylactic treatment prior to delivery	GA (weeks) at delivery	Onset of labor (SOL/IOL)	MOD/labor complication	Mode of analgesia/ anesthesia	Blood loss (ml)	Postdelivery blood results	Treatment and maternal outcome	Neonatal outcome/birth weight/Apgar/HPS status if known											
--	------------------------	--------------------------	------------------------	-------------------------------	----------------	-----------------------------	-------------------------------	--											
Platelet transfusion before ELCS	NS	NS	ELCS	History of traumatic delivery – maternal request for cesarean section	NS but uncomplicated delivery reported	Prophylactic iv TXA after C/S then 5 days oral TXA	Maternal outcome uneventful	NS											
None	39	NS	EmCS for FTP	NS	Severe hemorrhage	8 units of packed red cells transfused	Not stated if FFP or platelets given	NS											
Desmopressin	Term ≥37 weeks IOL	NVD	PCA with remifentanil	1500	From second degree perineal tear	2 units packed red cells and 2 units of pooled platelets	Male 3032 g Apgar 8¹ 9⁵												
Desmopressin	39	NVD	PCA with ramifentanil	1000	Uterine atony also reported requiring uterine massage	1 unit pooled platelets and 60 units of oxytocin infusion used	Female												
Desmopressin	37	SOL Booked for ELCS (maternal request) at 38 weeks but presented in labor with SROM at 37 weeks	NVD Sustained 2nd degree perineal tear Active management of third stage with oxytocin Regional analgesia/ anesthesia avoided	Moderate major bleeding (about 1500 ml as Hb dropped from 127 to 97 g/L) from perineal area Plts 173	2 units platelet transfusion Discharged day 4	Male 3000 g Apgar 5¹ and 9⁵ Negative HPS testing													
4 units of platelets transfused prophylactically in labor	39	IOL	NVD	NS	700	Hct fall from 0.33 to 0.28	2nd degree tear sutured with no problems	Declined fetal or partner testing Female 3130 g Apgar 9¹ 9⁵											
None – diagnosis unknown	Preterm	NVD	NS	Severe PPH	NS	No information on treatment given for PPH	NS												
Desmopressin	Preterm	NVD	NS	No PPH	None needed	NS													
NS	Pregnancy miscarried/ aborted.	NVD	No further information given	NS	NS	N/A													
(Continues)																			
Author Year of publication	Pregnancy number if same woman	Maternal age/age at diagnosis (years)	Gravidity/parity F.N.	Parental consanguinity	FHx	Ethnicity	Bleeding history prior to pregnancy	Other signs and symptoms	Plt count \(\times 10^9/L \)	Clotting screen BT and other investigations									
---------------------------	-------------------------------	--------------------------------------	----------------------	------------------------	-----	----------	-----------------------------------	-------------------------	-----------------	-----------------------------------									
Tudela SV et al. 2013\(^{13}\)	30/NS but dx before pregnancy	G1P0 Singleton	NS	Sister Paternal aunt Spanish	OCA (including minor visual deficit), menorrhagia	Plts 171													
							Hb 120 g/L	Hct 0.36		Normal clotting Prolonged BT >20 min									
Bachmann et al. 2014\(^{24}\)	30/NS but dx before pregnancy	G7P0 Singleton	NS	NS	OCA (including visual impairment, nystagmus) Heavy surgical bleeding, prolonged menstrual period	Plts 237													
							Normal Hb			Normal clotting screen Prolonged BT 6 min (Duke normal 3–5 min)									
Civaschi et al. 2015\(^{21}\)	20/6	NS	NS	NS	Petechiae	Plts 281													
Civaschi et al. 2015\(^{21}\)	36/34	NS	NS	NS	Mild blood loss—site not stated	Plts 301													
Van Avermaete et al 2016\(^{26}\)	1st 27/8	NS	NS	NS															
	2nd 27/8	G2P0M1	NS																
	3rd 27/8	G3P1 M1	NS																
Prophylactic treatment prior to delivery	GA (weeks) at delivery	MOD/labor complication	Mode of analgesia/ anesthesia	Blood loss (ml)	Postdelivery blood results	Treatment and maternal outcome	Neonatal outcome/birth weight/Apgar/HPS status if known												
--	------------------------	------------------------	-------------------------------	----------------	---------------------------	-------------------------------	---												
2 doses of Desmopressin prior to emergency C/S due to delays	31 + 3	Semi-planned as hospitalized	Preterm triplets delivered due to baby B having IUGR with abnormal dopplers, BPP and CTG. Also had Grade1 IVH	General Anesthesia	800	Uterine atony also reported	None needed Discharged day 4	Apgars and gases Baby A: 5\(^1\), 9\(^5\) Baby B (compromised fetus): 1\(^1\), 4\(^4\), 8\(^10\). Art pH 7.27 BE ~4, Ven pH 7.30 BE ~3 Baby C: 4\(^4\), 7\(^5\) All babies growing well and meeting milestones											
TXA 1 g 12 hourly Desmopressin	38 + 2	SOL IOL was planned but presented in labor 3 h before admission	NVD with episiotomy under local anesthesia	Acupuncture, Entonox, homeopathy, PCA	No PPH reported Post-delivery Hb 101 g/L Hct 0.296	Continued prophylactic TXA postpartum Discharged day 2	Female 3190 g Apgar 9\(^1\) 10\(^5\) 10\(^10\) Art pH 7.29												
Desmopressin	39	SOL	Vacuum delivery Due to failure to progress in second stage of labor	Regional anesthia avoided	300	Post-delivery Plts 236 Normal clotting	One more prophylactic dose of desmopressin postpartum Discharged day 3	Female 3100 g Apgar 9\(^1\) 10\(^5\) 10\(^10\) Art pH 7.25											
None	Term	NVD	None	Normal EBL	No further treatment	NS													
Platelets transfusion	Term	CS Reason unknown	General Anesthesia	Normal EBL	No further treatment	NS													
NS	None	Spontaneous miscarriage at 8 weeks	N/A	NS	No information on amount of bleeding during miscarriage	N/A													
2 units platelet transfusion during and immediately post-delivery (cesarean section)	Term \(\geq37\) weeks	NS	EmC/S for FTP in first stage	NS	Normal EBL	None	Baby weight not stated. Good Apgar scores reported												
4 units prophylactic platelet transfusion within 24 h postdelivery	40	IOL	EmC/S for FTP in first stage Wound hematoma developed 72 h after C/S and subsequent secondary infection	No regional anesthesia or analgesia General anesthesia for cesarean section	600 Hb 106 g/L Plt 146	14 days antibiotics regime (Co-amoxiclav 875 mg tds) Plus prophylactic platelet transfusion Discharged day 6	NS												

(Continues)
TABLE 1 (Continued)

Author Year of publication	Pregnancy number if same woman	Maternal age/age at diagnosis (years)	Gravidity/ parity F.N.	Parental consanguinity	FHx Ethnicity	Bleeding history prior to pregnancy	Other signs and symptoms	Clotting screen BT and other investigations	
Yusuf et al 2016	1st	NS/NS but diagnosis suspected during this pregnancy	G1P0	NS	NS	OCA (including nystagmus), easy bruising, bleeding after tooth extraction	Normal platelets	Hb 115 g/L predelivery	No HLA or Human platelet antigen antibodies
	2nd	31/As above	G2P1	NS					

Abbreviations: APA, antiplatelet antibody; APTT, activated partial thromboplastin time; BT, bleeding time; DCDA, dichorionic, diamniotic twins; DCTA, dichorionic, triamniotic triplets; Dx, diagnosed or diagnosis; EBL, estimated blood loss; ELCS, elective cesarean section; EmCS, emergency cesarean section; F.N., number of fetuses; FHx, family history; FTP, failure to progress in labor; G, gravida; GA, gestational age; Hb, hemoglobin; Hct, hematocrit; HPS, Hermansky-Pudlak syndrome; INR, international normalized ration; IOL, Induction of labor; IVH, intraventricular hemorrhage; M, miscarriages; MOD, mode of delivery; NS, not stated; NVD, normal vaginal delivery; OCA, oculocutaneous albinism; P, parity; PCA, patient controlled analgesia; Plt, platelets; PND, prenatal diagnosis; PPH, postpartum hemorrhage; PT, prothrombin time; SOL, spontaneous onset of labor; TT, thrombin time; TXA, tranexamic acid.

3.3 | Labor and delivery

Mode of delivery was mentioned in 23/27 (85%) pregnancies, of which 13/23 (57%) delivered by normal vaginal delivery, 2/23 (9%) by instrumental delivery (vacuum or forceps), 7/23 (30%) by emergency cesarean section and 1/23 (4%) by maternal request elective cesarean section due to previous traumatic delivery. This woman had heavy bleeding from continuous oozing raw areas of adequately repaired vaginal and perineal tears (second degree). A return to theatre for re-exploration confirmed this and ruled out actively bleeding areas. She required vaginal pack insertion, blood transfusion and desmopressin administration. She was subsequently diagnosed with HPS postnatally. Three (43%) of the seven emergency cesarean sections were due to fetal distress (includes the DCTA triplets mentioned above), 3 (43%) for failure to progress in first stage of labor and no reason stated in 1 (15%).

The type of analgesia and/or anesthesia was stated in 12/27 (44%) cases. Regional analgesia and anesthesia were avoided in 11/12 (92%) cases because of HPS. Epidural anesthesia was used in one case where the diagnosis of HPS was unknown at the time with no report of spinal hematoma. General anesthesia was employed in four cases for cesarean sections. The women used a variety of methods for analgesia ranging from patient-controlled analgesia with remifentanil or butorphanol, entonox, acupuncture, homeopathy to no analgesia.

At the time of labor, HPS diagnosis was known in 20/27 (74%) and unknown in 7/27 (26%) pregnancies. Three women diagnosed postnatally after PPH in their first pregnancies, subsequently had pregnancies described where HPS status was known and one woman had four deliveries before HPS was diagnosed.15,20,22,23

3.4 | Postpartum hemorrhage

Quantitative value for EBL was reported in 10/27 (37%) pregnancies (mean 950 ml, range 300–1800 ml). Descriptive EBL using words such as normal blood loss, no PPH and severe hemorrhage were reported in the remaining 17 (63%) pregnancies.

Primary PPH was reported in 12 (44%) pregnancies, of which six (50%) were major PPH (defined as EBL >1000 ml).20 Of vaginal deliveries and cesarean sections 8/15 (53%) and 4/8 (50%) had PPH, respectively. One case had a cesarean wound hematoma requiring platelet transfusion.

PPH was the presenting symptom that led to the diagnosis of HPS in 3/15 (20%) women: one case had 1800 ml blood loss requiring a return to theatre for vaginal/perineal tears re-exploration, vaginal pack insertion and transfusion of two units of red blood cells; the second case had severe hemorrhage requiring transfusion of eight units of red blood cells, and the third case reportedly had severe hemorrhage but blood loss or treatment details were not given.

Of the 20 pregnancies with known HPS diagnosis at labor, hematostatic cover for labor and delivery was administered in 17/20 (85%); 9/17 (53%) received desmopressin and 8/17 (47%) received platelet transfusion. TXA was used in conjunction with desmopressin and platelets in two cases. In 3/20 (15%) no hemostatic prophylaxis was given in labor and delivery (Table 4).

Pregnancies managed with hemostatic platelet transfusion had lower EBL (8 cases, highest EBL 800 ml) compared to those managed with desmopressin (9 cases, highest EBL 1600 ml).13,16–27 Major PPH occurred in 3/9 (33%) cases in the desmopressin group compared to none when platelets were used. Platelets and packed red cells transfusion were required to treat PPH in 4/9 (44%) and 2/9 (22%) cases in the desmopressin group respectively.16,20,25 Among women
receiving desmopressin prophylaxis, there were 6/9 (67%) vaginal and 3/9 (33%) cesarean deliveries compared to 4/8 (50%) vaginal and 4/8 (50%) cesarean deliveries among those with platelet prophylaxis.

The two cases, where there was no PPH despite no hemostatic cover in pregnancies with known HPS diagnosis, were noted to be in women with mild bleeding phenotype (one had only petechiae as her pre-pregnancy bleeding history and the other had occasional bleeding history with a normal bleeding time documented during labor.21,22 One of these women also had no PPH in four previous deliveries where HPS diagnosis was unknown, and thus no hemostatic cover instituted.

Hemostatic cover immediately after delivery and the puerperium were only reported in 6/27 (22%) cases. TXA was continued as prophylaxis in three cases.13,17,27 In the immediate postpartum period, one pregnancy received an additional dose of desmopressin and two pregnancies received further units of platelets.24,26

3.5 Neonatal outcome

Altogether, there were 30 neonates in 27 pregnancies—25/30 (83%) neonates were born at term (≥37 weeks) and 5/30 (17%) were born preterm. The preterm deliveries were all in one woman and included the DCTA triplet pregnancy.23 Information on neonatal outcome were given in 9/30 (30%) neonates. Where stated, babies had good birth weight (range 3–3.5 kg) and Apgar >8 at 5 min.

4 DISCUSSION

This is the first extensive systematic review into the obstetric and gynecological problems and their management in women with HPS. It highlights the bleeding diathesis during menstruation, labor and delivery associated with HPS, making affected women a high-risk population in obstetrics and gynecology setting.

The diagnostic age of HPS was wide, ranging from 6 to 42 years with a median age of 14, interestingly near the general age of menarche.21 Thus, presentations may occur in a variety of medical specialties including pediatrics, OB/GYN, adult general medicine and surgery. HMB was commonly the bleeding symptom reported, affecting 8 (53%) of women. Both gynecological cases initially presented with acute HMB and severe anemia. Therefore, platelet function disorders should be considered in the differential diagnosis of acute HMB. The treatment options include a combination of hormonal therapy and hemostatic therapy with TXA and/or desmopressin. Platelet transfusion and rFVIIa should be considered in cases of intractable bleeding.

Primary PPH occurred in 12 (44%) out of 27 deliveries, with half progressing into major PPH (EBL > 1000 ml). In three (20%) women, major PPH was the presenting symptom leading to diagnosis and they had the highest blood loss necessitating the use of high volumes of packed red cells, return to theatre and/or hemostatic products.15,20,23 There were no reports of antenatal bleeding.

Desmopressin, platelet transfusion and/or TXA, were the main products used for both hemostatic prophylaxis and treatment in these patients, with platelet transfusion generally being preferred in high-risk hemorrhagic situations e.g. major surgery.21,10 rFVIIa has been used to treat acute bleeding in patients with various platelet function defects with variable success.28,32

In this review, we observed that platelet transfusion provided a better hemostatic cover in labor and delivery than desmopressin despite more cesarean sections in the platelet group. Comparing prophylaxis with desmopressin to platelet transfusion, the highest EBL was 1600 ml versus 800 ml and major PPH occurred in 3 (33%) versus none, respectively. In the prophylactic desmopressin
group, 4 (44%) and 2 (22%) subsequently received platelets and red blood cells transfusion respectively to control PPH. The majority of studies featured in this systemic review were case reports, which only permit narrative descriptions or descriptive statistics. Observational studies, especially case reports or case studies, have well known limitations such as heterogeneity between subjects, care settings and methodologies between case reports that need careful consideration when undertaking statistical analyses. Although, randomized controlled trials are difficult to perform for rare diseases such as HPS, future studies should consider other types of observational studies that permit estimations of effect size to test for statistical significance between different prophylactic hemostatic covers of HPS during labor and delivery.

Women with HPS, like other platelet storage pool disorders, have variable response to desmopressin. A particular patient’s response may also differ on separate occasions to desmopressin, and a confirmed laboratory response to desmopressin does not necessarily lead to clinical effectiveness. On the other hand,
TABLE 2 Main characteristics of the reported gynecological cases with HPS

Year of publication	Presenting complaint	Age/age at menarche	Menorrhagia	Consanguinity	Ethnicity	Other signs and symptoms
Ray et al. 2013	Heavy menstrual bleeding	28 months	Yes	Yes	Indian	7 months menorrhagia, Easy bruising
Lohse et al. 2011	Menorrhagia	13/13	NS (Sister)	NS	NS	Parental consanguinity, Other signs and symptoms

Platelet transfusion carries risks of transfusion reactions, the development of antibodies against human leucocyte antigen (anti-HLA) and transfusion-transmitted infections. Platelet alloimmunization could render future platelet transfusion ineffective due to immune-mediated destruction. Thus, it is best practice to reduce patients’ exposure to platelets.

Desmopressin is safe in pregnancy and can therefore be used initially. However, HLA-matched platelets or pre-stored and leucodepleted platelet concentrates should be ready for transfusion if needed. Platelet transfusion should be instituted where there is a high hemorrhagic emergency with or without desmopressin; random platelets may be required in such instances. In intractable hemorrhagic cases, rFVIIa can be considered.

An epidural block was used in a case where HPS diagnosis was unknown with no adverse outcome. However, the Royal College of Obstetricians and Gynaecologists recommend that women with severe platelet function disorders should avoid regional analgesia or anesthesia, to prevent spinal hematoma and
its devastating neurological consequences.37 Individual case assessment for suitability of regional block should involve a senior anesthetist and hematologist. Non-invasive analgesia options including Entonox, transcutaneous electrical nerve stimulation, and/or intravenous patient-controlled analgesia, are safe to use. Where regional anesthesia is contraindicated, a general anesthesia is recommended.15,37

As HPS is an autosomal recessive condition, the fetus of a woman with HPS can be affected if the father is a carrier (50% chance) or has HPS (100% chance). Heterozygous carriers are asymptomatic and do not have a bleeding phenotype. Unless the fetus has the potential to be affected, there are no restrictions on invasive obstetric procedures such as fetal blood sampling, fetal scalp electrode and instrumental deliveries. However, difficult instrumental delivery in such women requires delicate care as deep perineal/vaginal trauma could lead to significant hemorrhage and the development of hematomas.15,25

Non-bleeding complications of HPS requires consideration in managing these women. This review highlighted significant visual impairment and nystagmus in almost half the women (Table 3). Most patients with HPS have horizontal nystagmus and poor vision with acuity of 20/50 or worse.2 Pulmonary fibrosis and skin basal cell carcinoma were reported in 2/15 (13%) and 1/15 (7%) of women respectively in this review.

Limitations of this review include a small number of cases due to the rarity of HPS, risk of publication bias and heterogeneity in data obtained from case reports as authors focused on one aspect of care or another. The risk of publication bias, overall, was moderate with more than 90% of the studies, clearly ascertained study outcome(s) and had appropriate subject follow-up, ensuring a low level of publication bias but reporting of patient baseline characteristics posed the greatest risk. However, this is the first and largest review possible in OB/GYN presentations of HPS to provide some guidance to clinicians managing pregnancy or gynecological problems in such women.

In conclusion, the care of the woman with HPS should take a holistic approach, considering both hematological and non-hematological aspects. HPS diagnosis should be considered in women with OCA presenting with HMB or PPH. Women with HPS should be managed in a multidisciplinary setting involving OB/GYN team, hematologists with bleeding disorders expertise and anesthetists. Other non-hematological aspects of HPS such as respiratory, gastroenterology or renal problems require attention by their respective specialties.

In pregnancy, a detailed delivery plan should be made in advance of expected date of delivery and communications disseminated to relevant teams. Although anemia is not a direct focus in this review, it is important in HMB, pregnancy and PPH, so it should be investigated and treated accordingly. Anti-HLA antibodies should be checked in previously platelet transfused patients antenatally. Perineal evaluation should be considered in women with granulomatous colitis of HPS, particularly if vaginal delivery is planned, as it can involve the perineum. Ideally, delivery should be in a center with obstetric experience and hemophilia unit with easy access to laboratory and blood products. Planned delivery may be considered to facilitate the availability of resources and experienced clinicians.

The decision on type of hemostatic cover for delivery should take into consideration the woman’s previous bleeding history, response to hemostatic treatment and her obstetric risk factors. Desmopressin is safe in pregnancy and can be used initially; however, HLA-matched platelets should be ready if needed. Platelet transfusion should be used in women with a high risk of bleeding.

Active management of third stage of labor and steps to minimize tissue trauma during delivery in addition to appropriate hemostatic cover are important to minimize risk of PPH. Non-steroidal anti-inflammatory drugs should be avoided to preserve any residual platelet function.

The MOD should depend mainly on obstetric indications. If the fetus is at risk of HPS, invasive procedures such as fetal blood sampling, fetal scalp electrode and instrumental deliveries should be avoided, except for easy lift out forces when the fetal head is deeply engaged in the pelvis. The choice of analgesia/anaesthesia should be individually assessed by the multi-disciplinary team.

Supportive measures like modulated lighting in care areas and increased healthcare workers’ assistance for women with significant visual impairment should be established whilst hospitalized.

ACKNOWLEDGEMENTS
We would like to thank Ms Angela Young of University College London, London, UK (Royal Free Hospital campus) library for her help and guidance during the literature searches.

CONFLICTS OF INTEREST
The authors do not have any conflicts of interest.

AUTHOR CONTRIBUTIONS
R.A.K. and K.G. conceptualized and designed the study. D.O-T. and B.A.H. performed literature research and retrieved the data from case reports. A.H. and D.O-T. conducted methodological quality assessment of the studies and reviewed data analysis. D.O-T. wrote the first draft of the manuscript, revised it, performed project administration, and incorporated revisions by R.A.K., K.G., B.A.H. and A.H. All authors approved the final draft.

ORCID
Deborah Obeng-Tuudah https://orcid.org/0000-0002-0334-1121
Rezan Abdul Kadir https://orcid.org/0000-0002-2684-1006

REFERENCES
1. Hermansky F, Pudliak P. Albinism associated with hemorrhagic diathesis and unusual pigmented cells in the bone marrow: report of two cases with histochemical studies. Blood. 1959;14:162-169.
2. Huizing M, Anikster Y, Gahl WA. Hermansky-Pudlak syndrome and Chediak-Higashi syndrome: disorders of vesicle formation and trafficking. Thromb Haemost. 2001;86:233-245.
3. Gahl WA, Brantly M, Kaiser-Kupfer MI, et al. Genetic defects and clinical characteristics of patients with a form of
oculocutaneous albinism (Hermansky-Pudlak syndrome). N Engl J Med. 1998;338(18):1258-1264.

4. Radke P, Schimmenti LA, Schoonveld C, Bothun ED, Summers CG. The unique association of iris heterochromia with Hermansky-Pudlak syndrome. J AAPOS. 2013;17(5):542-544.

5. Avila NA, Brantly M, Premkumar A, Huizing M, Dwyer A, Gahl WA. Hermansky-Pudlak syndrome: radiography and CT of the chest compared with pulmonary function tests and genetic studies. AJR Am J Roentgenol. 2002;179:887-892.

6. Salvaggio HL, Graeber KE, Clarke LE, Schlosser BJ, Orlow SJ, Clarke JT. Mucocutaneous granulomatous disease in a patient with Hermansky-Pudlak syndrome. JAMA Dermatol. 2014;150:1083-1087.

7. Kelil T, Shen J, O’Neill AC, Howard SA. Hermansky-Pudlak syndrome complicated by pulmonary fibrosis: radiologic-pathologic correlation and review of pulmonary complications. J Clin Imaging Sci. 2014;4:59.

8. Witkop CJ, Nunez BM, Rao GH, et al. Albinism and Hermansky-Pudlak syndrome in Puerto Rico. Bol Assoc Med PR. 1990;82:333-339.

9. Huizing M, Malicdan MC, Gochucio BR, Gahl WA. Hermansky Pudlak syndrome. GeneReviews. Initial posting: July 24, 2000. Updated: October 26, 2017. https://www.ncbi.nlm.nih.gov/books/NBK1287/. Accessed November 7, 2020.

10. Masliah-Planchon J, Darnige L, Bellucci S. Molecular determinants of platelet delta storage pool deficiencies: an update. Br J Haematol. 2012;160:5-11.

11. Witkop CJ, Krumweide N, Sedano H, et al. Reliability of absent platelet dense bodies as a diagnostic criterion for Hermansky-Pudlak syndrome. Am J Hematol. 1987;26:305-311.

12. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006-1012.

13. Tudela SV, Grané N, Vilaseca S, et al. Prevención de la hemorragia posparto en una gestante afectada de síndrome de Hermansky-Pudlack [Title translation is Prevention of postpartum hemorrhage in a pregnant patient with Hermansky-Pudlak syndrome]. Prog Obstet Ginecol. 2013;56(2):86-89 (In Spanish).

14. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of case series and case reports. BMJ Evid Based Med. 2018;23:60-63.

15. Poddar RK, Coley S, Pavord S. Hermansky-Pudlak syndrome in a pregnant patient. Br J Anaesth. 2004;92:740-742.

16. Zatik J, Poka R, Borsos A, Pfleigler G. Variable response of Hermansky-Pudlak syndrome to prophylactic administration of platelet dense bodies as a diagnostic criterion for Hermansky-Pudlak syndrome. J AAPOS. 2002;6:25-33.

17. Yusuf L, Dukka S, Ciantar E. Hermansky-Pudlak syndrome in pregnancy: a case report. Obstet Med. 2016;9(4):171-173.

18. Lohe J, Gehrisch S, Tauer JT, Knöfler R. Therapy refractory menorrhagia as first manifestation of Hermansky-Pudlak syndrome. Hamostaseologie. 2011;31(Suppl 1):561-563.

19. Ray A, Ray S, Matthew JJ. Case report: Hermansky Pudlak syndrome (presenting as late onset heavy menstrual bleeding). J Clin Diagn Res. 2013;7(9):2023-2024.

20. Royal College of Obstetricians and Gynaecologists. Prevention and management of postpartum haemorrhage. Green-top guideline no 52. 2016. https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg52/. Accessed March 30, 2020.

21. Reiss RE, Copel JA, Roberts NS, Hobbins JC. Hermansky-Pudlak syndrome in pregnancy: two case studies. Am J Obstet Gynecol. 1985;153(5):564-565.

22. Harris-Glocker M, Thornburg LL, Pressman EK. Hermansky-Pudlak syndrome in a pregnant patient: a case report. J Reprod Med. 2013;58(5-6):267-270.

23. Bachmann C, Abele H, Wallwiener D, Kagan KO. Neonatal and maternal risk in Hermansky-Pudlak syndrome: peripartum management-brief report and review of literature. Arch Gynecol Obstet. 2014;289(6):1193-1195.

24. Nisal M, Pavord S, Oppenheimer CA, Francis S, Khare M. Management of platelet delta storage pool deficiencies: an update. Br J Haematol. 2012;160:5-11.

25. Tong IL, Bourjeily G. Hermansky-Pudlak syndrome in the peripar tum period. Obstet Med. 2008;1:95-96.

26. Van Avermaete F, Muys J, Jacquemyn Y. Management of Hermansky-Pudlak syndrome in pregnancy and review of literature. BMJ Case Rep. 2016. https://doi.org/10.1136/bcr-2016-217719.

27. Almeida AM, Khair K, Hann I, Liesner R. The use of recombinant factor VIII in children with inherited platelet function disorders. Br J Haematol. 2003;121:477-481.

28. Metelli S, Chaimani A. Challenges in meta-analyses of observational studies. Evid Based Ment Health. 2020;23:83-87. https://doi.org/10.1136/ebmental-2019-300129.

29. Trigg DE, Stergiouli I, Peitsidis P, Kadir RA. A systematic review: the use of desmopressin for treatment and prophylaxis of bleeding disorders in pregnancy. Haemophilia. 2012;18:25-33.

30. D’Andrea G, Chetta M, Margaglione M. Inherited platelet disorders: thrombocytopenias and thrombocytopathies. Blood Transf. 2009;7:278-292.

31. Ray JG. DDAVP use during pregnancy: analysis of its safety for mothers and child. Obstet Gynecol Surv. 1998;53:450-455.

32. Pavord S, Raymond R, Madan B., et al. Management of inherited bleeding disorders in pregnancy. Green-top guideline no 71. BJOG. 2017;124:e193-e263.

How to cite this article: Obeng-Tuudah D, Hussein BA, Hakim A, Gomez K, Abdul Kadir R. The presentation and outcomes of Hermansky-Pudlak syndrome in obstetrics and gynecological settings: A systematic review. Int J Gynecol Obstet. 2021;00:1-16. https://doi.org/10.1002/ijgo.13632