On the invariant spectrum on \(\mathbb{P}^1 \)

Mounir Hajli

Tuesday 5th November, 2013, 01:30

Abstract

Motivated by the work of Abreu and Freitas \cite{1}, we study the invariant spectrum of the Laplace operator associated to hermitian line bundles endowed with invariant metrics over \(\mathbb{P}^1 \).

Contents

1 Introduction 1

2 The invariant metrics on \(\mathbb{P}^1 \) 3

3 The invariant spectrum of the Laplace operator 8

1 Introduction

Let \(\mathbb{P}^1 \) be the complex projective line and \(\omega \) a smooth and normalized Kähler form on \(\mathbb{P}^1 \). We denote by \(\lambda_1(\omega) \) the first eigenvalue of the Laplace operator defined by \(\omega \) and acting on smooth functions on \(\mathbb{P}^1 \). In \cite{2}, Hersch showed that

\[\lambda_1(\omega) \leq 2. \]

In \cite{1}, Abreu and Freitas studied the invariant spectrum of invariant metrics on \(\mathbb{P}^1 \). Their goal was to analyze this type of inequality in the invariant setting. If we denote by \(0 = \lambda_0(\omega) < \lambda_1(\omega) < \ldots \) the invariant eigenvalues of the Laplace operator defined by \(\omega \). Their first result shows that there is no general analogue of Hersch’s theorem, see \cite{1} theorem 1. Nevertheless, when they consider the class of invariant metrics that are isometric to a surface of revolution in \(\mathbb{R}^3 \), they gave optimal upper bounds for the invariant eigenvalues associated to this class. Their second result is the following theorem

Theorem 1.1. \cite{1} theorem 2] Within the class of smooth, invariant and normalized Kähler form \(\omega \) on \(\mathbb{P}^1 \) and corresponding to a surface of revolution in \(\mathbb{R}^3 \), we have

\[\lambda_j(\omega) < \frac{\xi_j^2}{2} \quad \forall j \in \mathbb{N}_{\geq 1} \]

where \(\xi_j \) is the \(\frac{1}{2}(j + 1) \)th positive zero of the Bessel function \(J_0 \) if \(j \) is odd, and the \(\frac{1}{2}j \)th positive zero of \(J'_0 \) if \(j \) is even. These bounds are optimal.

Using symplectic coordinates they attached to any smooth and invariant Kähler form \(\omega \) a smooth function \(\mathcal{F} \in \mathcal{C}^\infty([0, 1]) \), positive on \(]0, 1[\) and satisfying \(\mathcal{F}(1) = 0 \) and \(\mathcal{F}'(-1) = -2 = -\mathcal{F}'(1) \). When \(\omega \) corresponds to a surface of revolution in \(\mathbb{R}^3 \) they established that these functions satisfy the following inequality

\[\mathcal{F}(x) < \mathcal{F}_{\text{max}}(x), \quad \forall x \in [0, 1]. \]
By monotonicity principle, they deduced that \(\lambda_j(\omega) < \lambda_j(\mathcal{F}_{\text{max}}) \) for any \(j \in \mathbb{N}_{\geq 1} \), where \(\lambda_j(\mathcal{F}_{\text{max}}) \), \(j = 1, \ldots \) correspond to the invariant spectrum of a problem limit defined by \(\mathcal{F}_{\text{max}} \).

Let \(\omega \) be a smooth, invariant and normalized volume form on \(\mathbb{P}^1 \) and \(h \) a smooth and invariant hermitian metric on the holomorphic line bundle \(\mathcal{O}(m) \) over \(\mathbb{P}^1 \) (\(m \in \mathbb{N} \)). The problem of this paper is the study of the invariant spectrum of the Laplace operator \(\Delta_{\omega,h} \) defined by \(\omega \) and \(h \), and acting on the space of smooth functions with coefficients in \(\mathcal{O}(m) \). We denote by \(\lambda_0(\omega,h) = 0 < \lambda_1(\omega,h) < \lambda_2(\omega,h) < \ldots \) the invariant eigenvalues of \(\Delta_{\omega,h} \).

Our main result is the theorem 1.3 which gives optimal upper bounds for the invariant eigenvalues \(\lambda_j(\omega,h) \) for \(j = 1, \ldots \), when \(h \) and \(g \) satisfy an inequality of the same type as \(\Omega \). This theorem generalizes the result of Abreu and Freitas (see [1,1]).

First, we present a slight generalization of the symplectic coordinates formalism to a large class of singular Kähler metrics on \(\mathbb{P}^1 \). Let \(\omega \) be a continuous and invariant volume form on \(\mathbb{P}^1 \) such that \(f_{\omega}^1 \omega = 1 \). There exists \(\| \cdot \|_\omega \), a hermitian and invariant metric of class \(C^2 \) on \(\mathcal{O}(1) \) such that \(\omega = c_1(\mathcal{O}(1), \| \cdot \|_\omega) \). We denote by \(\Psi_\omega \) the function on \(\mathbb{C} \) given by \(\Psi_\omega(z) := -\frac{1}{\pi} \log \| 1 \|_\omega(z), \forall z \in \mathbb{C} \) and we set \(\tilde{F}_\omega(u) := \log \| 1 \|_\omega(\exp(-u)), \forall u \in \mathbb{R} \), where \(1 \) corresponds to the global section \(x_0^m \), and \(\exp(-\cdot) \) is the following morphism \(\mathbb{R} \rightarrow \mathbb{P}^1, u \mapsto [1 : e^{-u}] \). Recall that we have a diffeomorphism \(\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}^* \), given by \((u, \theta) \mapsto e^{-u}e^{i\theta} \). Then on \(\mathbb{C}^* \) we have

\[
\omega_{\mathbb{C}^*} = -\frac{1}{2\pi} \frac{\partial^2 F_\omega}{\partial u^2}(u)du \wedge d\theta,
\frac{\partial^2 \Psi_\omega}{\partial z \partial \bar{z}}(z) = \frac{1}{2} \cdot \,^2 \frac{\partial^2 F_\omega}{\partial u^2}(u).
\] (2)

Let \(\tilde{F}_\omega \) be the Legendre-Fenchel transform associated to \(F_\omega \) that is the function given on \(\mathbb{R} \) by

\[
\tilde{F}_\omega(x) = \inf_{u \in \mathbb{R}} (x \cdot u - F_\omega(u)),
\]

One shows that \(\tilde{F}_\omega \) is concave and \(\tilde{F}_\omega(x) \) is finite if and only if \(x \in [0,1] \). We claim that \(\tilde{F}_\omega \) is a function of class \(C^2 \) on \([0,1] \). Indeed, since \(F_\omega \) is \(C^2 \) then the function \(\theta : u \mapsto \frac{\partial F_\omega}{\partial u} \) defines a \(C^1 \)-diffeomorphism from \(\mathbb{R} \) onto its image, (we will show that the image is necessarily equal to \([0,1] \)). Let \(x \in [0,1] \), since \(F_\omega \) is strictly concave then there exists a unique element \(G_\omega(x) \in \mathbb{R} \) such that \(\tilde{F}_\omega(x) = xG_\omega(x) - F_\omega(G_\omega(x)) \). Moreover, since \(F_\omega \) is \(C^2 \) then \(x = \frac{\partial F_\omega}{\partial u}(G_\omega(x)) \). Thus \(G_\omega \) is the inverse function of \(\frac{\partial F_\omega}{\partial u}(\cdot) \). In particular we deduce that \(0,1 \) is included in the image of \(\partial \). By differentiating the previous identity we obtain \(\frac{\partial^2 F_\omega}{\partial u^2}(x) = G_\omega(x) \) for any \(x \in [0,1] \). Since \(f_{\omega}^1 \omega = 1 \), and by using \(\mathbb{R} \) we deduce that \(\frac{\partial F_\omega}{\partial u}(\cdot) \) \((\infty \rightarrow 1) \) and \(\frac{\partial^2 F_\omega}{\partial u^2}(\cdot) \) \((\rightarrow 0) \) are finite. We conclude that \(\frac{\partial F_\omega}{\partial u}(\cdot) \) \(\rightarrow 1 \) and \(\theta \) is a \(C^1 \)-diffeomorphism between \(\mathbb{R} \) and \([0,1] \). We can then consider the following change of coordinates \(x = \frac{\partial F_\omega}{\partial u}(u) \). We set

\[
g_\omega(x) := -G_\omega(x) \quad \text{and} \quad \mathcal{T}_\omega(x) := \frac{1}{g_\omega(x)} x \in [0,1].
\]

One checks that \(\mathcal{T}_\omega(x) = -\frac{\partial F_\omega}{\partial u}(G_\omega(x)), \forall x \in [0,1] \). We denote by \(\mathcal{T}_{\text{can}} \) the continuous function on \([0,1] \) given by \(\mathcal{T}_{\text{can}}(x) = 2 \min(x,1-x), \forall x \in [0,1] \) and \(\mathcal{G} \) the set of continuous functions \(\mathcal{T} \) on \([0,1] \), positive on \([0,1] \) and such that \(\mathcal{T} = \mathcal{T}_{\text{can}} + \mathcal{O}(\mathcal{T}_{\text{can}}) \) near the boundary of \([0,1] \). Using the following transformation \(x \mapsto \frac{1}{2} \mathcal{T}(2x-1) \) one sees that the functions \(\mathcal{T} \) satisfying the conditions of the theorem belong to \(\mathcal{G} \) and \(\mathcal{T}_{\text{can}} \) corresponds to \(\mathcal{T}_{\text{max}} \) via this transformation. We prove the following result

Theorem 1.2. (see theorem (2.7)) For any \(\mathcal{T} \in \mathcal{G} \), there exists a continuous, normalized and invariant volume form \(\omega \) such that \(\mathcal{T}_\omega = \mathcal{T} \).

In particular, we show that \(\mathcal{T}_{\text{can}} \) corresponds to a natural volume form defined by the combinatorics of \(\mathbb{P}^1 \), (see example (2.2)).

2
We set \(\overline{h}_\omega \) the function on \([0, 1]\) given by
\[
\overline{h}_\omega(x) := h(1, 1)(e^{-G_\omega(x)}), \forall x \in [0, 1].
\]
We show that \(\overline{h}_\omega \) is a continuous function on \([0, 1]\), positive on \([0, 1]\) such that \(\lim_{x \to 1^-} \frac{\overline{h}_\omega(x)}{1-x} \) exists and positive. Moreover, we prove that any function \(h \) satisfying the previous conditions defines a continuous and invariant hermitian metric on \(\mathcal{O}(m) \), see corollary 2.3.

Theorem 1.3. Let \(m \in \mathbb{N} \). Let \(\omega \) and \(h \) as before. We suppose that \(1 < \frac{\overline{h}(x)}{\min(1, 2(1-x))^m} < \frac{\underline{h}(x)}{\underline{h}_\omega(x)}, \forall x \in [0, 1] \). Then
\[
\lambda_j(\omega, h) < \frac{\xi_{m,j}^2}{2}, \forall j \in \mathbb{N}_{\geq 1},
\]
where \(\xi_{m,j} \) is a zero of the function \(\frac{d}{dz}(z^{-m}J_0J_m) \) such that \(0 < \frac{\xi_{m,1}^2}{2} < \frac{\xi_{m,2}^2}{2} < \ldots \) and \(J_n \) is the Bessel function of order \(n \). Moreover, these bounds are optimal.

The proof of this result is a combination of theorems 2.2 and 3.3.

2 The invariant metrics on \(\mathbb{P}^1 \)

Let \(\mathbb{P}^1 \) be the complex projective line and we denote by \([x_0 : x_1]\) the homogenous coordinate and \(z = x_1/x_0 \) the affine coordinate over the open subset \(\mathbb{C} = \{x_0 \neq 0\} \). Let \(\mathbb{C}^* \) be the complex torus acting on \(\mathbb{P}^1 \) as a toric manifold and \(\mathbb{S}^1 \) the compact sub-torus in \(\mathbb{C}^* \).

Let \(m \in \mathbb{N} \). Let \(\| \cdot \| \) be a continuous hermitian metric on the line bundle \(\mathcal{O}(m) \) over \(\mathbb{P}^1 \), and we suppose that \(\| \cdot \| \) is invariant under the action of \(\mathbb{S}^1 \). To the metric \(\| \cdot \| \) we associate a continuous function \(F_{\| \cdot \|} \) defined on \(\mathbb{R} \) as follows
\[
F_{\| \cdot \|}(u) = \log \|1\|(\exp(-u)), \quad \forall u \in \mathbb{R}
\]
For instance, let \(\| \cdot \|_{m,\infty} \) be the following continuous hermitian metric on \(\mathcal{O}(m) \) given by
\[
\|s\|_{m,\infty}(z) = \frac{|s(z)|}{\max(1,|z|)^m}, \quad \forall z \in \mathbb{C}
\]
where \(s \) is a local holomorphic section of \(\mathcal{O}(m) \). Then we have \(F_{m,\infty}(u) := F_{\| \cdot \|_{m,\infty}}(u) = m \min(0, u), \forall u \in \mathbb{R} \). One can establish that there exists a bijection between the set of continuous hermitian and invariant metrics on \(\mathcal{O}(m) \) and the set of continuous functions \(F \) on \(\mathbb{R} \) such that the function \(\mathbb{C}^* \to \mathbb{R}, z \mapsto F(-\log|z|) - F_{m,\infty}(-\log|z|) \) extends to a bounded continuous function on \(\mathbb{P}^1 \).

Example 2.1. Following \(\mathbb{F}^1 \) and \(\mathbb{F} \), the Fubini-Study form \(\omega_{FS} \) is viewed as the "canonical" Kähler metric on \(\mathbb{P}^1 \) which is compatible with the standard moment map on \(\mathbb{P}^1 \). We set \(F_0 = F_{\omega_{FS}} \). For any \(u \in \mathbb{R} \), we have
\[
F_0(u) = -\frac{1}{2} \log(1 + e^{-2u}), \frac{\partial F_0}{\partial u}(u) = \frac{e^{-2u}}{1 + e^{-2u}}, \frac{\partial^2 F_0}{\partial u^2}(u) = -\frac{2e^{-2u}}{(1 + e^{-2u})^2},
\]
and for any \(x \in [0, 1] \)
\[
G_0(x) = \frac{x}{1-x}, \overline{G}_0(x) = 2x(1-x).
\]
Example 2.2. The second example is a singular volume form defined by the combinatorial structure of \mathbb{P}^1. Notice that $T\mathbb{P}^1$ is isomorphic to $\mathcal{O}(2)$ then the metric $\| \cdot \|_{2,\infty}$ induces a continuous volume form ω_{can} on \mathbb{P}^1. This form is given on \mathbb{C} as follows

$$\omega_{\text{can}} = \frac{i}{4\pi} \frac{dz \wedge d\bar{z}}{\max(1,|z|)^4}.$$

One checks that $\int_{\mathbb{P}^1} \omega_{\text{can}} = 1$. We consider the following hermitian continuous metric $\| \cdot \|_{\text{can}}$ on $\mathcal{O}(1)$ defined as follows

$$\|s\|_{\text{can}}^2(z) = \frac{|s(z)|^2}{\max(1,|z|)^2} \exp(-k(z)) \quad \forall z \in \mathbb{C},$$

where s is a local holomorphic section of $\mathcal{O}(1)$ and $k(z) = \frac{1}{2} \min(|z|^2, \frac{1}{|z|^2})$, $\forall z \in \mathbb{C}$. We have the following result

Proposition 2.3. The metric $\| \cdot \|_{\text{can}}$ is positive (i.e the current $c_1(\mathcal{O}(1), \| \cdot \|_{\text{can}})$ is positive) and $c_1(\mathcal{O}(1), \| \cdot \|_{1,\infty}) = \omega_{\text{can}}$

Proof. We have the following equality of currents

$$c_1(\mathcal{O}(1), \| \cdot \|_{\text{can}}) = c_1(\mathcal{O}(1), \| \cdot \|_{1,\infty}) + [dd^c k]$$

From § corollaire 6.3.5, we have $c_1(\mathcal{O}(1), \| \cdot \|_{1,\infty}) = \delta_{\mathbb{S}^1}$ (the current of integration on \mathbb{S}^1). Let f be a smooth function on \mathbb{P}^1. We have

$$[dd^c k](f) = \int_{\mathbb{P}^1} k \, dd^c f$$

$$= \frac{1}{2} \int_{|z| \leq 1} |z|^2 \, dd^c f + \frac{1}{2} \int_{|z| \geq 1} |z|^{-2} \, dd^c f$$

$$= \frac{1}{2} \int_{|z| \leq 1} f \, dd^c |z|^2 + \frac{1}{2} \int_{|z| \geq 1} (dd^c f - f \cdot dd^c |z|^2) + \frac{1}{2} \int_{|z| \geq 1} f \, dd^c |z|^{-2} - \frac{1}{2} \int_{|z| \leq 1} (dd^c f + f \cdot dd^c |z|^2)$$

by Stokes

$$= \frac{1}{2} \int_{|z| \leq 1} f \, dd^c |z|^2 + \frac{1}{2} \int_{|z| \geq 1} f \, dd^c |z|^{-2} - \int_{\mathbb{S}^1} f \, dd^c |z|^2.$$

Therefore,

$$\int_{\mathbb{P}^1} f c_1(\mathcal{O}(1), \| \cdot \|_{\text{can}}) = \frac{i}{4\pi} \int_{|z| \leq 1} f \, dz \wedge d\bar{z} + \frac{i}{4\pi} \int_{|z| \geq 1} f \, \frac{dz \wedge d\bar{z}}{|z|^2} = \int_{\mathbb{P}^1} f \, \omega_{\text{can}},$$

which concludes the proof of the proposition.

We denote by F_{can} the function $u \mapsto \log(\| \cdot \|_{\text{can}}(\exp(-u)))$. We have $F_{\text{can}}(u) = \min(0, u) + \frac{1}{4} \min(e^{-2u}, e^{2u})$ for any $u \in \mathbb{R}$. An easy explicit computation shows that its Legendre-Fenchel is the following function

$$\hat{F}_{\text{can}}(x) = \begin{cases} -\frac{1}{4} x \log(2x) + \frac{1}{2} x & \text{if } x \in [0, 1/2], \\ -\frac{1}{4} (1 - x) \log(2(1 - x)) + \frac{1}{2} (1 - x) & \text{if } x \in [1/2, 1], \end{cases}$$

We see that \hat{F}_{can} is a C^1 function on $[0, 1]$ and we set G_{can} the function on $[0, 1]$ given by $G_{\text{can}}(x) = \frac{dF_{\text{can}}}{dx}(x)$. We have

$$G_{\text{can}}(x) = \begin{cases} -\frac{1}{2} \log(2x) & \text{if } x \in [0, 1/2], \\ \frac{1}{2} \log(2(1 - x)) & \text{if } x \in [1/2, 1], \end{cases}$$
We notice that G_{can} defines a bijection between $[0,1]$ and \mathbb{R}. We set $g_{can} = -G_{can}'$ and $\overline{g}_{can} = \frac{1}{g_{can}}$. We have
\[\overline{g}_{can}(x) = 2 \min(x, 1-x) \quad \forall x \in [0,1]. \]
We have $\overline{g}_{can}(x) = \frac{|x|^2}{\max(1,|x|^2)}$ and $\mathcal{T}_{m,\infty}(x) := \|1\|_{m,\infty}^2(e^{-G_{can}(x)}) = \min(1, 2(1-x))^m$.

We denote by \mathcal{G} the set of continuous functions \overline{g} on $[0,1]$, positive on $]0,1[$ and such that $\overline{g}(x) = \overline{g}_{can}(x) + O(\overline{g}_{can}(x)^2)$ near the boundary of $[0,1]$.

Remark 2.4. In [1] §4, Abreu and Freitas constructed a class of smooth metrics g. They correspond to closed surfaces of revolution in \mathbb{R}^3 and they proved that $\mathcal{F} := \frac{1}{g}$ is a smooth functions on $[-1,1]$ satisfying $\mathcal{F}(-1) = g(0) = 0$, $\mathcal{F}(1) = 2 = -\mathcal{F}(1)$ and $\sup_{[-1,1]} |\mathcal{F}(x)| \leq 2$. (4)

Clearly $\mathcal{F} \leq \mathcal{F}_{\max}$, where $\mathcal{F}_{\max}(x) = 2(1 - |x|)$ for any $x \in [0,1]$. Let $j \in \mathbb{N}_{\geq 1}$ and $\lambda_j(g)$ the j-th invariant eigenvalue of the Laplace operator defined by g. They showed that $\lambda_j(g)$ viewed as a function with variable g is bounded over the set of smooth and invariant metrics corresponding to surfaces of revolution [1] Theorem 2.

By using the following transformation $\mathcal{F}_{[0,1]}(x) := \frac{1}{\mathcal{F}}(2x - 1)$ for any $x \in [0,1]$ (In particular, $\overline{g}_{can}(x) = \frac{1}{2}\mathcal{F}_{\max}(2x - 1)$), we see that smooth functions \mathcal{F} on $[-1,1]$ satisfying $\mathcal{F} \leq \mathcal{F}_{\max}$ belong to the previous transformation, to \mathcal{G}. As we can expect the set \mathcal{G} is not reduced to functions satisfying \mathcal{F}. More precisely, we will prove that there exist functions $\mathcal{F} \in \mathcal{G}$ such that $\mathcal{F}(-1) = g(1) = 0, \mathcal{F}(1) = 2 = -\mathcal{F}(1)$ and $\mathcal{F} \leq \mathcal{F}_{\max}$ but $\sup_{[-1,1]} |\mathcal{F}(x)|$ can be a large real number.

Claim 2.5. For any $A > 0$, there exists a smooth function \mathcal{F}_A on $[0,1]$ such that $\mathcal{F}_A \in \mathcal{G}$ and $\lim_{A \to \infty} \sup_{x \in [0,1]} |\mathcal{F}_A(x)| = \infty$.

Proof. Let ρ be a non-zero, positive, smooth function on \mathbb{R} with support in $[1/4, 3/4]$ and bounded from above by $1/8$. Let $A \geq 1$, one checks that $\rho(A(x - 1/2) + 1/2) \leq 1/2 \min(x, 1-x), \forall x \in [0,1]$. It follows that $\rho(A(x - 1/2) + 1/2) + 1 = 2\rho(x - 1/2) + 1/2 \leq 2 \min(x, 1-x)$ for any $x \in [0,1]$. We set $\mathcal{F}_A(x) = 2x - 1 + \rho(A(x - 1/2) + 1/2)$, then it is easy to see that \mathcal{F}_A is smooth and belongs to \mathcal{G}. If we set $x_A = A(x_0 - 1/2) + 1/2$ where $x_0 \in [0,1]$ is such that $\rho(x_0) \neq 0$, then $\mathcal{F}_A(x_A) = 2 - 4x_A + 2\rho(x_0) / A \sim_{A \to \infty} A$. Thus $\lim_{A \to \infty} \sup_{x \in [0,1]} |\mathcal{F}_A(x)| = \infty$.

Theorem 2.6. Let ω be a smooth and invariant Kähler form on \mathbb{P}^1 such that $\int_{\omega} \omega = 1$. We have $\mathcal{F}_\omega \in \mathcal{G}$.

Proof. Recall that for any $z \in \mathbb{C}^*$, $\frac{\partial^2 \psi_{\omega}}{\partial z \partial \overline{z}}(z) = \frac{1}{4} \epsilon^{2u} \frac{\partial^2 F}{\partial u^2}(u) = \frac{1}{4} e^{2G_{\omega}(x)} \mathcal{F}_\omega(x)$ and G_ω is finite over $[0,1]$. Then \mathcal{F}_ω is positive on $[0,1]$. Moreover, since $\lim_{x \to 0} e^{2G_{\omega}(x)} = +\infty$, then $\lim_{x \to +0} e^{2G_{\omega}(x)} \mathcal{F}_\omega(x) = 2 \frac{\partial^2 \psi_{\omega}}{\partial z \partial \overline{z}}(z) = \omega_{\omega}$ which is finite and non-zero. Let $\varepsilon \in [0,1/l_\omega]$, then there exists a positive real number η such that $(1/l - \varepsilon) e^{-2G_{\omega}(z)} \mathcal{F}_\omega(x) \leq (1/l + \varepsilon) e^{-2G_{\omega}(z)} \mathcal{F}_\omega(x) \leq (1/l + \varepsilon) x \leq \eta$. It follows that $(1/l - \varepsilon)x \leq -\frac{1}{2} \int_0^x e^{-2G_{\omega}(z)} \mathcal{F}_\omega(x) \leq (1/l + \varepsilon)x \leq \eta$. Therefore
\[(1/l - \varepsilon)x \leq e^{-2G_{\omega}(z)} \mathcal{F}_\omega(x) \leq (1/l + \varepsilon)x, \quad \forall x \leq \eta. \]

It follows that
\[\lim_{x \to 0} \frac{\mathcal{F}_\omega(x)}{x} = \lim_{x \to 0} e^{2G_{\omega}(x)} \frac{e^{-2G_{\omega}(x)} \mathcal{F}_\omega(x)}{x} = \mathcal{F}_\omega(0) = 2. \]

We claim that $\mathcal{F}_\omega(x)e^{-2G_{\omega}(z)} = l_\omega + O(x)$ for $0 < x \ll 1$. Indeed, since $\frac{\partial^2 \psi_{\omega}}{\partial z \partial \overline{z}}(z) = \omega_{\omega} + O(|z|^2)$ in a small open neighborhood of $z = 0$. So, $\frac{\partial^2 \psi_{\omega}}{\partial z \partial \overline{z}}(e^{-G}(z)) = \frac{l_\omega}{2} + O(e^{-2G_{\omega}(z)})$ for $0 < x \ll 1$. From [3] we deduce that $\frac{\partial^2 \psi_{\omega}}{\partial z \partial \overline{z}}(e^{-G}(z)) = \frac{l_\omega}{2} + O(x)$ for $0 < x \ll 1$.

5
Therefore,
\[\frac{1}{2} \frac{d e^{-2G_\omega(x)}}{dx} = g_\omega(x) e^{-2G_\omega(x)} = \frac{1}{L_\omega} + O(x). \]

Then
\[e^{-2G_\omega(x)} = \frac{2}{L_\omega} x + O(x^2). \] (6)

Thus,
\[\mathcal{F}_\omega(x) = e^{-2G_\omega(x)}(L_\omega + O(x)) = 2x + O(x^2). \]

To conclude the proof of the theorem we need to prove the following
\[\mathcal{F}_\omega(x) = 2(1 - x) + O((1 - x)^2) \quad \forall 0 < 1 - x < 1. \] (7)

We consider the following biholomorphic map \(\tau : \mathbb{P}^1 \rightarrow \mathbb{P}^1, z \mapsto z^{-1} \). Then \(\tau^*\omega \) is smooth, Kähler and invariant. We claim that
\[F_{\tau^*\omega}(-u) = -u + F_\omega(u) \quad \forall u \in \mathbb{R}. \]

This is follows from the following equality over \(\mathbb{C}^* \{ |x| = |z||x_0| \} \). Then, for any \(x \in [0, 1] \)
\[\tilde{F}_{\tau^*\omega}(x) = \inf_{u \in \mathbb{R}} (xu - F_{\tau^*\omega}(u)) = \inf_{u \in \mathbb{R}} (u(1 - x) - F_\omega(u)) = \tilde{F}_\omega(1 - x), \]

Thus
\[G_{\tau^*\omega}(x) = -G_\omega(1 - x), \] (8)

So \(\mathcal{F}_{\tau^*\omega}(x) = \mathcal{F}_\omega(1 - x) \). We conclude that the proof of (7) can be deduced from the first case. \(\square \)

Theorem 2.7. For any \(\mathcal{F} \in \mathcal{G} \), there exists a continuous, normalized and invariant volume form \(\omega \) such that \(\mathcal{F}_\omega = \mathcal{F} \).

Proof. Let \(\mathcal{F} \in \mathcal{G} \) and we set \(g := 1/\mathcal{F} \). By hypothesis we can find two positive constants \(k \) and \(k' \) such that
\[k \leq \frac{\mathcal{F}(x)}{\mathcal{F}_{\text{can}}(x)} = \frac{g_{\text{can}}(x)}{g(x)} \leq k' \quad \forall x \in [0, 1]. \] (9)

We set \(G_g(x) := -\int_{1/2}^x g(s) ds \) and \(L_g(x) := \int_{1/2}^x G(s) ds \) for any \(x \in [0, 1] \). Since \(g \) is positive, then \(L_g \) is strictly concave on \([0, 1] \) and by \(\mathbb{R} \) we can show that \(L \) is of Legendre type \(\mathbb{F} \) on \([0, 1] \). It follows that the function \(x \mapsto \frac{\partial L_g}{\partial x} \) defines a \(C^1 \)-diffeomorphism between \([0, 1] \) and \(\mathbb{R} \). Moreover, we can prove there exist two constants \(\alpha, \alpha' \) such that \(\alpha \leq L_g(x) \leq \alpha' \), \(\forall x \in [0, 1] \). Therefore the function \(F_g \) given on \(\mathbb{R} \) by
\[F_g(u) = \inf_{x \in [0, 1]} (ux - L_g(x)) \] is of class \(C^2 \) and satisfies
\[-\alpha' + F_{1,\infty}(u) \leq F_g(u) \leq -\alpha + F_{1,\infty}(u) \quad \forall u \in \mathbb{R}. \] (10)

Moreover, \(\frac{\partial F_g}{\partial u} \) is the inverse function of \(\frac{\partial L_g}{\partial x} \).

We consider the following differential form on \(C^* (\mathbb{R} \times \mathbb{R}/2\pi \mathbb{Z}) \)
\[\omega_g := -\frac{i}{4\pi} \frac{\partial^2 F_g}{\partial u^2} e^{2u} dz \wedge d\overline{z}. \]

1 Let \(C \subset \mathbb{R} \) an open convex set. A differentiable concave function \(f : C \rightarrow \mathbb{R} \) is of Legendre type if it is strictly concave and \(\lim_{u \rightarrow \infty} \| \frac{\partial f}{\partial u} (u_i) \| = \infty \) for every sequence \((u_i)_{i \geq 1} \) converging to a point in the boundary of \(C \).
Since \(\frac{\partial^2 F_u}{\partial u^2}(u) = \frac{\partial F_u}{\partial u} \) then \(\omega_g \) is positive on \(\mathbb{C}^* \). Let \(0 < x \ll 1 \), we have \(\frac{\partial F_u}{\partial u} = 2x + O(x^2) \). Then

\[
\frac{\partial}{\partial u}\left(e^{2u}\frac{\partial F_u}{\partial u}\right)^{-1} = O(e^{-2u}) \quad \text{and} \quad \frac{\partial}{\partial u}\left|e^{2u}\frac{\partial F_u}{\partial u}\right| = O(\frac{\partial F_u}{\partial u}) \quad \forall u \gg 1.
\]

The first equality gives \((e^{2u}\frac{\partial F_u}{\partial u}(u))^{-1} = (e^{2u}\frac{\partial F_u}{\partial u}(v))^{-1} = O(e^{-2u} - e^{-2v}) \) for \(u, v \gg 1 \). This shows that the following limit \(l_g := \lim_{u \to \infty}(e^{2u}\frac{\partial F_u}{\partial u}(u))^{-1} \) exists and finite. The limit \(l_g \) is necessarily non-zero. Indeed, by the second equality we have \(e^{2u}\frac{\partial F_u}{\partial u}(u) \leq e^{2\sigma}\frac{\partial F_u}{\partial u}(v)e^{O(F_u(v) - F_u(u))} \) for \(u, v \gg 1 \) and from \([10]\) the RHS of the previous inequality is bounded for fixed \(v \) and \(u \gg 1 \). Therefore,

\[
-e^{2u}\frac{\partial^2 F_u}{\partial u^2}(u) = \frac{2}{l_g} + O(1) \quad \forall u \gg 1.
\]

Then the form \(\omega_g \) extends to \(\mathbb{C} \).

Let \(\overline{g} \) be the function on \([0, 1]\) given by \(\overline{g}(x) = \overline{g}(1 - x), \forall x \in [0, 1] \). Clearly \(\overline{g} \in \mathcal{G} \). We set \(g^* = 1/\overline{g} \). We have \(L_g(x) = L_{g^*}(1 - x) \) for any \(x \in [0, 1] \). Then

\[
-e^{2u}\frac{\partial^2 F_u}{\partial u^2}(u) = \frac{2}{l_{g^*}} + O(1) \quad \forall u \gg 1.
\]

As before we can show that \(F_{g^*}(-u) = -u + F_{g^*}(u), \forall u \in \mathbb{R} \). We deduce that

\[
-e^{-2u}\frac{\partial^2 F_u}{\partial u^2}(u) = \frac{2}{l_{g^*}} + O(1) \quad \forall (-u) \gg 1.
\]

We conclude that \(\omega_g \) extends to a positive, invariant and continuous (1, 1)-form on \(\mathbb{P}^1 \). We denote it also by \(\omega_g \). Finally, notice that \(\int_{[0, 1]} \omega_g = \frac{\partial F_u}{\partial u}(-\infty) - \frac{\partial F_u}{\partial u}(+\infty) = 1 \).

Corollary 2.8. Let \(h \) be a continuous and invariant hermitian metric on \(\mathcal{O}(m) \). Then the function \(\overline{h}_\omega \) on \([0, 1]\) by

\[
\overline{h}_\omega(x) = h(1, 1)(e^{-G_\omega(x)}), \forall x \in [0, 1],
\]

is continuous on \([0, 1]\), positive on \([0, 1]\) and the limit \(\lim_{x \to 1^-} \overline{h}_\omega(x) \) exists, finite and non-zero. Moreover, any continuous function \(\overline{h} \) verifying the previous conditions, defines a continuous and invariant hermitian metric on \(\mathcal{O}(m) \).

Proof. Let \(h \) be a continuous and invariant hermitian metric on \(\mathcal{O}(m) \). There exists a continuous and invariant function \(f \) on \(\mathbb{P}^1 \) such that \(h = e^f h_{m, \infty} \). Then it suffices to prove the corollary for the metric \(h_{m, \infty} \). We have \(h_{m, \infty}(x) = \min(1, e^{2mG_0(x)}) \) for any \(x \in [0, 1] \). Clearly \(h_{m, \infty} \) is continuous on \([0, 1]\). By \([3]\) and \([8]\) we deduce that \(h_{m, \infty}(x) = 1 \) for \(0 < x < 1 \) and \(h_{m, \infty}(x) = \frac{2}{r} (1 - x)^m + O((1 - x)^{m + 1}) \).

Now, let \(\overline{h} \) be a continuous function on \([0, 1]\), positive on \([0, 1]\) and such that the limit \(\lim_{x \to 1^-} \overline{h}_\omega(x) \) exists, finite and non-zero. The function \(x \mapsto \overline{h}_\omega(x) \) is continuous and positive on \([0, 1]\). Thus it extends to a continuous, positive and invariant function on \(\mathbb{P}^1 \). Therefore, \(\overline{h} \) defines a continuous hermitian metric on \(\mathcal{O}(m) \).

\[\square \]
3 The invariant spectrum of the Laplace operator

Let \(m \in \mathbb{N} \) and \(\mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) the space of smooth functions on \(\mathbb{P}^1 \) with coefficients in \(\mathcal{O}(m) \). Let \(\omega \) be smooth, invariant and normalized Kähler form on \(\mathbb{P}^1 \) and \(h \) an invariant smooth hermitian metric on \(\mathcal{O}(m) \). The metrics \(\omega \) and \(h \) induce a \(L^2 \)-scalar product \((\cdot, \cdot)_{\omega,h} \) on \(\mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) given as follows

\[
(s,t)_{\omega,h} = \int_{\mathbb{P}^1} h(s(x), t(x)) \omega(x),
\]

for \(s, t \in \mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \). The Cauchy-Riemann operator \(\overline{\partial}_{\mathcal{O}(m)} : \mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \to \mathcal{A}^{(0,1)}(\mathbb{P}^1, \mathcal{O}(m)) \) has an adjoint for the \(L^2 \)-scalar product, i.e there is a map \(\overline{\partial}_{\mathcal{O}(m)}^* : \mathcal{A}^{(0,1)}(\mathbb{P}^1, \mathcal{O}(m)) \to \mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) such that \((s, \overline{\partial}_{\mathcal{O}(m)}^* t)_{\omega,h} = (\overline{\partial}_{\mathcal{O}(m)} s, t)_{\omega,h} \) for any \(s \in \mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) and \(t \in \mathcal{A}^{(0,1)}(\mathbb{P}^1, \mathcal{O}(m)) \). The operator \(\Delta_{\omega,h} := \overline{\partial}_{\mathcal{O}(m)}^* \overline{\partial}_{\mathcal{O}(m)} \) on \(\mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) is called the Laplace operator. We denote by \(H_2 \) the completion of \(\mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) with respect to \(\| \cdot \|_2 \) defined as follows

\[
\| s \|^2_2 = \int_{\mathbb{P}^1} h(s(s), s) + \frac{i}{2\pi} \int_{\mathbb{P}^1} h \frac{\partial s}{\partial \overline{\partial}^*} \frac{\partial s}{\partial \overline{\partial}} dz \wedge d\overline{z} \quad \forall s \in \mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)).
\]

Recall that \(\Delta_{\omega,h} \) admits a maximal and positive self-adjoint extension to \(H_2 \) and has a discrete, infinite and positive spectrum.

In \([2]\), we associated to the metrics \(\omega_{\text{can}} \) and \(h_{m,\infty} \) a singular Laplace operator \(\Delta_{\mathcal{O}(m)_{\infty}} \) which extends the definition of the classical one, and we showed that this operator has the same properties as in the classical situation. More precisely, we established that \(\Delta_{\mathcal{O}(m)_{\infty}} \) admits a maximal positive and self-adjoint extension to \(H_2 \) see \([2]\) theorem 0.3] and has a discrete, infinite and positive spectrum \([2]\) theorem0.4. Moreover we computed it explicitly.

Remark 3.1. Following the notations of this article we set \(\Delta_{\omega_{\text{can}}, h_{m,\infty}} := 2\Delta_{\mathcal{O}(m)_{\infty}} \), since the volume form in \([2]\) was not normalized.

Let \(n \in \mathbb{Z} \) and \(J_n \) the Bessel function of order \(n \). We consider the function \(L_{m,n} \) defined on \(\mathbb{C}^* \) as follows:

\[
L_{m,n}(z) = -z^m \frac{d}{dz} \left(z^{-m} J_n(z) J_{n-m}(z) \right) \quad \forall z \in \mathbb{C}^*.
\]

We have

Theorem 3.2. For any \(m \in \mathbb{N} \), \(\Delta_{\omega_{\text{can}}, h_{m,\infty}} \) admits a discrete, positive and infinite spectrum, and

\[
\text{Spec}(\Delta_{\omega_{\text{can}}, h_{m,\infty}}) = \left\{ 0 \right\} \cup \left\{ \frac{\lambda^2}{4} \mid \exists n \in \mathbb{N}, L_{m,n}(\lambda) = 0 \right\}.
\]

If we denote by \(0 < \lambda_1(\omega_{\text{can}}, h_{m,\infty}) < \lambda_2(\omega_{\text{can}}, h_{m,\infty}) < \ldots \) the invariant eigenvalues of \(\Delta_{\omega_{\text{can}}, h_{m,\infty}} \). Then the set of invariant eigenvalues of \(\Delta_{\omega_{\text{can}}, h_{m,\infty}} \) is equal to \(\left\{ \frac{\lambda^2}{4} \mid L_{m,0}(\lambda) = 0 \right\} \).

Proof. See \([2]\) theorems 0.6, 0.7 \(\square\)

Since \(\mathcal{O}(m) \) is endowed with its global sections, an element \(\xi \in \mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) can be written in the following form \(f \otimes 1 \) where \(f = \sum_{j=0}^{m} f_j z^j \) and \(f_j \) are smooth functions on \(\mathbb{P}^1 \). Then an invariant element in \(\mathcal{A}^{(0,0)}(\mathbb{P}^1, \mathcal{O}(m)) \) corresponds to a smooth function \(f \) of the previous form invariant under the action of \(S^1 \). To this function \(f \) we associate a smooth function \(\phi_f \) on \([0,1] \) as follows \(\phi_f(x) = f(\exp(-G(x))) \),
∀ \lambda \in [0,1]. We set \(\mathcal{H}_\omega(x) := h(1,1)(\exp(-G_\omega(x))) \) for any \(x \in [0,1] \) and we consider the following norm on \(\mathcal{C}^\infty([0,1]) \)
\[
\|\varphi\|_2^2 = \int_0^1 \mathcal{H}_\omega(x)|\varphi(x)|^2 \, dx + \int_0^1 \mathcal{H}_\omega(x)|\varphi'(x)|^2 \, dx.
\]

One checks easily that \(\|\delta\|_2 = \|f \otimes 1\|_2 \). We set \(K_{\omega,h} = \{ \varphi \in \mathcal{C}^\infty([0,1]) \mid \|\varphi\| < \infty \} \) and we denote by \(H^2_2 \) the completion of \(K_{\omega,h} \) with respect to \(\|\cdot\|_2 \). This completion doesn’t depend on the choice of the metrics, since it is the restriction of \(\|\cdot\|_2 \) to the space of invariant elements in \(H_2 \) which doesn’t depend on \(\omega \) and \(h \).

We set \(R_{\omega,h} \)
\[
R_{\omega,h}(\varphi) := \frac{\int_0^1 \mathcal{H}_\omega(x)|\varphi(x)|^2 \, dx}{\int_0^1 \mathcal{H}_\omega(x)|\varphi(x)|^2 \, dx} \quad \forall \varphi \in K_{\omega,h} \setminus \{0\}.
\]

We denote by \(0 = \lambda_0(\omega,h) < \lambda_1(\omega,h) < \lambda_1(\omega,h) \ldots \) the invariant eigenvalues of \(\Delta_{\omega,h} \) then by the Min-Max principle,
\[
\lambda_j(\omega,h) = \inf_{\varphi \in K_{\omega,h,j} \setminus \{0\}} R_{\omega,h}(\varphi) \quad \text{for } j \in \mathbb{N}_{\geq 1}.
\]

where \(K_{\omega,h,j} \) is the orthogonal to the subspace of \(H^2_2 \) spanned by the eigenfunctions associated to \(\lambda_k(\omega,h) \) for \(k = 0, \ldots, j - 1 \).

Theorem 3.3. Suppose that \(1 < \frac{1}{\mathcal{H}_m} < \frac{1}{\mathcal{H}_m} \). Then
\[
\lambda_j(\omega,h) \leq \lambda_j(\omega_{\text{can}},h_{m,\infty}) \quad \forall j \in \mathbb{N}_{\geq 1}.
\]

Proof. Suppose that \(1 < \frac{1}{\mathcal{H}_m} < \frac{1}{\mathcal{H}_m} \). Then,
\[
R_{\omega,h}(\varphi) \leq \frac{\int_0^1 \mathcal{H}_{m,\infty}(x)|\varphi(x)|^2 \, dx}{\int_0^1 \mathcal{H}_{m,\infty}(x)|\varphi(x)|^2 \, dx} \quad \forall \varphi \in K \setminus \{0\}.
\]

Notice that
\[
R_{\omega_{\text{can}},h_{m,\infty}}(\varphi) = \frac{\int_0^1 \mathcal{H}_{m,\infty}(x)|\varphi(x)|^2 \, dx}{\int_0^1 \mathcal{H}_{m,\infty}(x)|\varphi(x)|^2 \, dx}, \quad \forall \varphi \in K \setminus \{0\} \quad \text{(see the notations of 2.2)}
\]

By the monotonicity principle and the theorem 3.2, we obtain
\[
\lambda_j(\omega,h) \leq \lambda_j(\omega_{\text{can}},h_{m,\infty}) \quad \forall j \in \mathbb{N}_{\geq 1}.
\]

In particular, when \(m = 0 \) and \(h = h_{0,\infty} \) is the constant metric on \(\mathcal{O} \), the theorem becomes
\[
\lambda_j(\omega,h) \leq \lambda_j(\omega_{\text{can}},h_{0,\infty}) \quad \forall j \in \mathbb{N}_{\geq 1}
\]
and since \(\{\lambda_k(\omega_{\text{can}},h_{0,\infty}), k \in \mathbb{N}_{\geq 1}\} = \left\{ \frac{\alpha^2}{2} \mid J_0(\alpha)J'_0(\alpha) = 0 \right\} \). Then we recover the result of [1] theorem 2.
References

[1] Miguel Abreu and Pedro Freitas. On the invariant spectrum of S^1-invariant metrics on S^2. Proc. London Math. Soc. (3), 84(1):213–230, 2002.

[2] Mounir Hajli. Spectre du Laplacien singulier associé aux métriques canoniques sur la droite projective complexe. Arxiv.

[3] Vincent Maillot. Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables. Mém. Soc. Math. Fr. (N.S.), 80:vi+129, 2000.

National Center for Theoretical Sciences, (Taipei Office)
National Taiwan University, Taipei 106, Taiwan
e-mail: hajli@math.jussieu.fr