Supplementary Information to

Digital Loop-Mediated Isothermal Amplification on a Commercial Membrane

Xingyu Lin¹, Xiao Huang¹, Katharina Urmann¹, Xing Xie¹,², and Michael R. Hoffmann*¹

1. Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
2. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

*Corresponding author, e-mail, mrh@caltech.edu
Primer Name	Sequence (5'-3')	Reference
Escherichia coli		
F3	GCCATCTCCTGATGACGC	1
B3	ATTTACCAGCAGGACAGC	
LF	CTTTGTAAACACCTGTCATCGCA	
LB	ATCAAATCTGATATCGGAAGTG	
FIP	CATTTTTCAGGCATTGCTCAGCAGCGCCATCATGAGTGTGCT	
BIP	CTAAGGGCGAGGTCGGTTGTTATTGCTCCGACAAACACCAGAATTT	
Enterococcus faecalis		
F3	GCCCGGAAATCGATGGAAGA	2
B3	TCCAGCAAACGTGATGTG	
LF	AAATGCTGCGCGACGCTG	
LB	TCCAATGTTGAAACTTAAACGTACC	
FIP	CACTTTTTGTGTGGTTTTTCGCTTTATATTACCTGCTTGGGTTGCT	
BIP	ATCTGAGACAAAGTAGTAATTGCTCCAGTCTTTTAAAGCGTACGGTGTC	
Salmonella Typhi		
F3	GACTTGGCCTTAAAAAGATACCA	3
B3	AGAGTGCGTATTAGCAACATT	
LF	TCGGATGGCTCTGGTCCCT	
LB	CAAGGGTTTCAAGACTAAGTGGTTC	
FIP	AAATTGTGCTGTTGAAGTGTTGGACGAGATAGACTGCACCATC	
BIP	CCGTDGGCCAAAATGGCATATTGCTAAGATAGCAAGTCG	
MS2		
F3	CTTGCCGAGATAGACTTATC	4
B3	TAGATGCCATATTGCTCAG	
LF	GATTTCCGATGTTGAGCG	
LB	GCTAGATGCCAATGTTAATTCTG	
5’FAM-FIP	**FAM-** ATCGTATCGTCTCGCCATCTA + CCACCAGAGCATTATATTTCATAC	
qFIP-3’IBF Q	**GAGACGAGATACGATBFQ**	
BIP	ACAATGGGAAATGGGTTCCACA + GGTCGCTTGGACTATATG	
Table S2. Primers and probe for qPCR.

	Sequence (5’–3’)
Forward primer	5’CGGTGAATACGTTTCYCGG3’ where Y is either C or T
Reverse primer	5’GGWTACCTTTGTTACGACTT3’, where W is either A or T
TaqMan probe	FAM-5’CTTGTACACACCGCCCGTC3’

The PCR thermocycling involves 3 minutes of initialization at 95 °C, and 42 cycles of denaturation at 95 °C for 15 seconds, followed by annealing/extension at 55 °C for 30 seconds. The primers and probe are targeting the universal 16s rRNA gene. The sequences are listed above.
Figure S1. (a) Fluorescence image of the membrane when pores were filled with fluorescent solution. The red circle indicates overlapped micropores. (b) Top-view SEM image of a membrane. The red circle denotes the overlapped micropores.
Figure S2. Droplet formation on PCTE membranes with different nominal pore sizes. (a) 30 µm. (b) 14 µm.
Figure S3. Calibration curves obtained from a series of dilutions of different *E. coli* DNA samples. (a) qPCR. (b) qLAMP.

As can be seen in Figure S3, the qPCR results based on Cq show identical calibration curves for different *E. coli* DNA samples. However, the qLAMP results based on Tt show disordered calibration curves for different samples. Even multiple samples with the same DNA concentration show quite different Tt values.
Figure S4. Optimization of LAMP reaction. (a,b) Effects of Bst (a) and BSA (b) concentrations on the number of positive pores obtained on the membrane. (c,d) Effects of Mg\(^{2+}\) (c) and betaine concentration (d) on Tt value for LAMP performed in the tube. A smaller Tt value means less time is needed for nucleic acid amplification.

According to the optimization results (Figure S4), the final 25 µL LAMP reactions contained 1 × isothermal buffer, 6 mM total MgSO\(_4\), 1.4 mM dNTP, 640 U/mL Bst 2.0 WarmStart polymerase, primer mix (1.6 uM FIB and BIP, 0.2 uM F3 and B3, 0.8 uM LF and LB), 1 mg/mL BSA, 50 µM calcein, 1 mM MnCl\(_2\) and 2.5 µL of template.
Figure S5. (a-e) End-point fluorescence images of membranes (14 µm pore size) after mdLAMP with a series concentration of target *E. coli* DNA. (f) Comparison of measured *E. coli* DNA concentrations to the expected concentrations.
Figure S6. mdLAMP analysis of DNA samples extracted from *Enterococcus faecalis* (a) and *Salmonella Typhi* (b).
Figure S7. Real-time RT-LAMP results of MS2 quantification in DI water and wastewater.

As shown in Figure S7, the qRT-LAMP in the tube was strongly inhibited, resulting in an increased Tt value.
Supplementary Movie Legends

Supplementary Movie S1: Time lapse movie showing the removal of fluorescent solution on the membrane surface when peeling off the PDMS films. In order to be seen clearly by naked eye, an over-exposure time was used to increase the fluorescence intensity. Therefore, the pores looks larger than original.

1. Hill, J.; Beriwal, S.; Chandra, I.; Paul, V. K.; Kapil, A.; Singh, T.; Wadowsky, R. M.; Singh, V.; Goyal, A.; Jahnukainen, T., et al. Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Common Strains of Escherichia Coli. J. Clin. Microbiol. 2008, 46, 2800-2804.
2. Kato, H.; Yoshida, A.; Ansai, T.; Watari, H.; Notomi, T.; Takehara, T. Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Enterococcus Faecalis in Infected Root Canals. Oral Microbiol. Immunol. 2007, 22, 131-135.
3. Fan, F.; Yan, M.; Du, P.; Chen, C.; Kan, B. Rapid and Sensitive Salmonella Typhi Detection in Blood and Fecal Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification. Foodborne Pathog. Dis. 2015, 12, 778-786.
4. Huang, X.; Lin, X.; Urmann, K.; Li, L.; Xie, X.; Jiang, S.; Hoffmann, M. R. A Smartphone Based in-Gel Loop Mediated Isothermal Amplification (gLAMP) System Enables Rapid Coliphage Ms2 Quantification in Environmental Waters. Environ. Sci. Technol. 2018, DOI: 10.1021/acs.est.8b00241.