Hermaphroditism in fishes: an annotated list of species, phylogeny, and mating system

Tetsuo Kuwamura1,2 · Tomoki Sunobe3 · Yoichi Sakai4 · Tatsuru Kadota5 · Kota Sawada6

Abstract
Fewer than 1% of vertebrate species are hermaphroditic, and essentially all of these are fishes. Four types of hermaphroditism are known in fishes: simultaneous (or synchronous) hermaphroditism (SH), protandry (male-to-female sex change; PA), protogyny (female-to-male sex change; PG), and bidirectional sex change (BS or reversed sex change in protogynous species). Here we present an annotated list of hermaphroditic fish species from a comprehensive review and careful re-examination of all primary literature. We confirmed functional hermaphroditism in more than 450 species in 41 families of 17 teleost orders. PG is the most abundant type (305 species of 20 families), and the others are much less abundant, BS in 66 species of seven families, SH in 55 species of 13 families, and PA in 54 species of 14 families. The recently proposed phylogenetic tree indicated that SH and PA have evolved several times in not-closely related lineages of Teleostei but that PG (and BS) has evolved only in four lineages of Percomorpha. Examination of the relation between hermaphroditism type and mating system in each species mostly supported the size-advantage model that predicts the evolution of sequential hermaphroditism. Finally, intraspecific variations in sexual pattern are discussed in relation to population density, which may cause variation in mating system.

Keywords Bidirectional · Protandry · Protogyny · Sex change · Simultaneous hermaphroditism

Introduction
Over one-half of the world’s living vertebrates (> 60,000 species) are fishes (> 32,000 species; Nelson et al. 2016). Approximately 99% of all vertebrate species consist of separate-sex individuals (gonochorists), i.e., pure males and pure females. The other 1% of vertebrate species are hermaphroditic, and almost all of them are fishes (Avise 2011; Ashman et al. 2014). Among hermaphroditic fishes, four major types of hermaphroditism are known (Sadovy de Mitcheson and Liu 2008; Munday et al. 2010): simultaneous (or synchronous) hermaphroditism (SH), protandry (PA), protogyny (PG), and bidirectional sex change (BS or reversed sex change in protogynous species; Kuwamura et al. 2014). Simultaneous hermaphrodites produce both mature eggs and sperm in their gonads at the same time, but self-fertilization rarely occurs in fishes (Avise 2011). In sequential hermaphrodites, either male-to-female sex change (PA) or female-to-male sex change (PG) occurs during the lifetime of an individual. Reports on bidirectional sex change within a species have increased since the 1990s (Kuwamura and Nakashima 1998; Munday et al. 2010), mostly as reversed sex change in

Electronic supplementary material
The online version of this article (https://doi.org/10.1007/s10228-020-00754-6) contains supplementary material, which is available to authorized users.

* Tetsuo Kuwamura
kuwamura@lets.chukyo-u.ac.jp

1 School of International Liberal Studies, Chukyo University, Yagoto-honmachi, Nagoya 466-8666, Japan
2 Present Address: Faculty of Liberal Arts and Sciences, Chukyo University, Yagoto-honmachi, Nagoya 466-8666, Japan
3 Laboratory of Fish Behavioral Ecology, Tateyama Station, Field Science Center, Tokyo University of Marine Science and Technology, Banda, Tateyama 294-0308, Japan
4 Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
5 Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Taira-machi, Nagasaki 851-2213, Japan
6 Oceanic Ecosystem Group, National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency, Fukuura, Kanagawa 236-8648, Japan
The evolution of hermaphroditism among animals has been explained by two major hypotheses: the low-density model for simultaneous hermaphroditism and the size-advantage model for sequential hermaphroditism (Ghiselin 1969, 1974). In low-density conditions, few mating opportunities are expected, and mating success will be much higher in simultaneous hermaphrodites than that in gonochorists if random mating occurs (Tomlinson 1966), although hermaphrodites suffer the energetic cost of maintaining two reproductive systems (Heath 1977). Self-fertilization further increases the benefits of simultaneous hermaphroditism under extreme low density with little opportunity to find conspecifics (Tomlinson 1966). In addition, simultaneous hermaphroditism is presumably favored by diminishing fitness return for the investment to one sexual function, e.g., owing to small mating groups or brood space limitation (Charnov 1982).

For sequential hermaphroditism, the size-advantage model (SA model) predicts that the occurrence and direction of sex change are determined by mating system, because the relation between reproductive success and body size of males depends on mating system, while reproductive success of females increases with growth irrespective of mating system (Warner 1975, 1984). For example, in species with random mating regardless of male body size, in which females do not have preference for large males and accept small ones, male reproductive success is not related to body size, and male-to-female sex change (PA) will be favored, because the reproductive success of small males is higher than that of females of the same size, and vice versa in large males and females. By contrast, in species with polygynous mating systems, in which large males monopolize females, male reproductive success sharply increases with growth, and female-to-male sex change (PG) will be favored, because large females can increase reproductive success by changing sex to male. Contrastingly, in species with size-associative mating or group spawning by one female with multiple males (i.e., intense scramble-type sperm competition), in which reproductive success of males and females increases with growth in a similar fashion, gonochorism will evolve because of the cost of sex change (Warner 1975, 1984). Some mating systems with extensive sperm competition and size–fecundity skew will also reduce or eliminate the size advantage and result in a reduction or even a lack of sex change (Muñoz and Warner 2003, 2004). Bidirectional sex change has recently been regarded as a tactic to secure mating opportunities when mate-search (finding an opposite-sex individual) after the loss of partners is difficult or costly because of low density, and it is suggested to have derived from either protogynous (Kuwamura et al. 2014, 2016a) or gonochoristic ancestors (Sunobe et al. 2017). Large amounts of evidence supporting the SA model have been reported, especially from coral reef fishes (Nakazono and Kuwamura 1987; Warner 1988; Munday et al. 2006; Sadovy de Mitcheson and Liu 2008; Kazancioglu and Alonzo 2010; Erisman et al. 2013). However, the mating systems of many other hermaphroditic fishes are still unknown.

Sadovy de Mitcheson and Liu (2008) published a comprehensive review of functional hermaphroditism in teleost fishes, providing family accounts with a genus-level list of 94 genera in 27 families of seven teleost orders (based on the classification of Nelson 2006) with confirmed functional hermaphroditism. They also listed 31 genera in 21 teleost families that have been suggested as hermaphroditic but not confirmed. Hermaphroditism has evolved in many different fish lineages, predominantly among tropical marine perciforms, in which hermaphroditism expression diversity is the greatest. However, because the sexual pattern and mating system are often highly variable even within a single genus or species (Munday et al. 2006), the genus-level list provided by Sadovy de Mitcheson and Liu (2008) is not sufficient to estimate the evolutionary patterns of sexuality. Although Devlin and Nagahama (2002) provided a list of 259 species in 25 teleost families, they did not make such a clear distinction between functional and non-functional hermaphroditism which is essential to evolutionary/ecological analyses.

The purpose of this study is to present an annotated species-level list of functional hermaphroditism in fishes, which will enable a wide range of interesting analyses, after a comprehensive review and careful re-examination of all primary literature. Frequencies of hermaphroditism in each family and order were summed up, and its distribution on the recently proposed phylogenetic tree (Betancur-R et al. 2017) was examined. Mating systems of hermaphroditic fish species were also reviewed, and the relation between the type of hermaphroditism in each species and its mating system was investigated to test the SA model. Finally, intraspecific variations in sexual pattern are discussed in relation to population density, which may cause variation in mating system.

Materials and methods

Construction of the database of hermaphroditic fishes. We searched original papers on hermaphroditic fish species using references of review papers (e.g., Nakazono and Kuwamura 1987; Devlin and Nagahama 2002; Sadovy de Mitcheson and Liu 2008) and by Internet searches (mainly by Google Scholar) entering keywords such as hermaphroditism, sex change, protogyny, and protandry along with names of known hermaphroditic taxa (orders/families/genera). For each species, we recorded type of hermaphroditism (SH, PA, PG, and BS), methods of confirmation (histology, aquarium or field observations, see below), mating system...
(see below), habitat (e.g., deep sea, coral reef), reference, and remarks. Species name and habitat are based on FishBase (https://www.fishbase.in). The results were compiled into the list based on the fish classification system of Nelson et al. (2016). Then, to avoid overlooking any species, we conducted similar Internet searches for papers reporting hermaphroditism in each of the remaining families of fishes without known cases of hermaphroditism.

Table 1 is a simplified table in which only the type of hermaphroditism and mating system is shown, and detailed records and references are shown in Electronic supplementary material, Table S1 and S2, respectively. In each table, families and orders are arranged following the order of Nelson et al. (2016), and genera and species in alphabetical order within each family and genus, respectively.

To determine if hermaphroditism was confirmed or not in each species, we applied the criteria for functional hermaphroditism following Sadovy and Shapiro (1987) and Sadovy de Mitcheson and Liu (2008), i.e., detailed gonadal histological series ideally illustrated with photomicrographs that show various stages of sexual transition (as examples), simultaneous occurrence of mature testicular and ovarian tissues in gonads, or field or aquarium observations of gamete release and/or sexual characteristics (e.g., shape of urogenital papilla) in identified individuals. Moreover, histological observation on transition of gonad-associated structures could be used to determine the occurrence of sex change (Cole and Shapiro 1990; Sunobe et al. 2017), and microscopic observation of eggs and sperm is also useful to confirm sexual maturation. Species with suggested, but not confirmed functional hermaphroditism were also recorded (Table S1 with remarks, "?” indicates weak evidence), but excluded from Table 1.

Taxonomic, phylogenetic, and ecological distributions of hermaphroditism. Frequencies of each type of hermaphroditism, i.e., SH, PA, PG, and BS (reversed sex change), in each family and order were summed up and compared between marine and freshwater families. The phylogenetic tree of Betancur-R et al. (2017), which shows the relationship of major groups (ordinal or supraordinal taxa), was used to examine the distribution of each type of hermaphroditism.

Mating systems in hermaphroditic fishes. To test the SA model (Warner 1975), the relation between the type of hermaphroditism and mating system of each species was investigated. Based on the data cited in Table S1, we classified the mating systems into the following seven types (modified from Kuwamura 1997; Table 1).

1) Random mating: Females mate with males regardless of their body size, without continuing pair bond (i.e., close and lasting association between a male and female).

2) Non-size-assortative monogamy: Pair bonding of a male and a female, which has no preference for male size and accepts a smaller male.

3) Size-assortative monogamy: Pair bonding of a male and a female, in which both prefer larger mates, resulting in pairing of similar-sized mates.

4) Harem polygyny: A large male monopolizes a harem of females.

5) Male-territory-visiting polygamy: Females visit male territories to mate. Males may establish small territories during spawning time even within a multi-male group.

6) Group spawning: Spawning of a single female with multiple males occurs without continuous bonding usually in a spawning aggregation.

7) Spawning aggregation: We used this category when spawning aggregation has been reported, but the detailed mating system is unknown (e.g., neither male territory nor group spawning has been reported).

Facultative monogamy in polygamous species, which may frequently occur in low-density condition (Barlow 1984), is not shown in Table 1.

Results and discussion

Phylogeny and hermaphroditism. We confirmed functional hermaphroditism in more than 450 species of 156 genera in 41 families of 17 teleost orders (based on the classification of Nelson et al. 2016). In Table 1, species with confirmed functional hermaphroditism were listed, indicating the type of hermaphroditism (SH, PA, PG, and BS). A detailed and annotated list of hermaphroditic fish species including additional information and unconfirmed species is provided as Electronic supplementary material Table S1 with a complete reference list of more than 500 papers (S2). We found functional hermaphroditism in 461 species and all of them are teleosts (Infraclasse Teleostei). Two types of hermaphroditism, i.e., PG and BS, are reported within a single species in 18 species (Table 1).

We found at least one hermaphroditic species in 41 families (9% of 470 families of Teleostei; Table 2). Percentage of hermaphroditic species in a family widely varied from 0.1% (2 of 1762 species in Cichlidae) to 100% (in both species of Giganturidae and Eleginopsidae). Among fish families including over 30 species, the percentage was relatively high in Sparidae (84%), Scaridae (35%), Ipnopidae (28%), Lethrinidae (26%), Pomacanthidae (26%), Labridae (19%), Cirrhitidae (18%), and Serranidae (17%), although these percentages represented the lower limits because sexual patterns of all species have not always been investigated in each family.

PG was the most abundant hermaphroditism type (305 species, 66% of 461 hermaphroditic species), while other types were much less abundant, i.e., BS in 66 species (14%), SH in 55 species (12%), and PA in 54 species (12%) (Table 2). SH, PA, PG, and BS were the most abundant in...
Table 1 List of hermaphroditic fish species and their mating systems. Order and family names are arranged following Nelson et al. (2016), and genus and species in alphabetical order within each family and genus, respectively.

Order	Family	Species	Sexual pattern	Mating system
Anguilliformes	Muraenidae	Gymnothorax griseus	SH	
	Muraenidae	Gymnothorax pictus	SH	
	Muraenidae	Gymnothorax thyroideus	SH	
	Muraenidae	Rhinomuraena quaesita	PA	
Clupeiformes	Clupeidae	Tenualosa macrura	PA	
	Clupeidae	Tenualosa toli	PA	
Cypriniformes	Cobitidae	Cobitis taenia	PA, G	
Stomiiformes	Gonostomatidae	Cyclothone atraria	PA	
	Gonostomatidae	Cyclothone microdon	PA	
	Gonostomatidae	Gonostoma elongatum	PA	
	Gonostomatidae	Sigmops bathyphilum	PA	
	Gonostomatidae	Sigmops gracile	PA	
Aulopiformes	Ipnopidae	Bathymicrops brevianalis	SH	
	Ipnopidae	Bathymicrops regis	SH	
	Ipnopidae	Bathyperois grullator	SH	
	Ipnopidae	Bathyperois viridensis	SH, G	
	Ipnopidae	Bathyperois quadrifilis	SH	
	Ipnopidae	Bathyperois mediterraneus	SH	
	Ipnopidae	Bathypholops marionae	SH	
	Ipnopidae	Ipnops agassizii	SH	
	Ipnopidae	Ipnops meadi	SH	
	Giganturidae	Gigantura chuni	SH	
	Giganturidae	Gigantura indica	SH, G	
	Bathysauridae	Bathysaurus ferox	SH	
	Chlorophthalmidae	Chlorophthalmus agassizii	SH	
	Chlorophthalmidae	Chlorophthalmus brasiliensis	SH	
	Chlorophthalmidae	Parasudis truculenta	SH	
	Notosudidae	Ahliesaurus brevis	SH	
	Scopelarchidae	Benthalbella infans	SH	
	Scopelarchidae	Scopelarchus guentheri	SH	
	Paralepididae	Antopterus pharao	SH	
	Paralepididae	Lestidium pseudophyraenoides	SH	
	Alepisauridae	Omosudis lowii	SH	
Gobiiformes	Gobiidae	Coryphopterus alloides	PG	
	Gobiidae	Coryphopterus dicus	PG	
	Gobiidae	Coryphopterus eidolon	PG	
	Gobiidae	Coryphopterus glaucofraenum	PG	MTV polygamy
	Gobiidae	Coryphopterus hyalinus	PG	
	Gobiidae	Coryphopterus lipernes	PG	
	Gobiidae	Coryphopterus personatus	PG	
	Gobiidae	Coryphopterus thrix	PG	
	Gobiidae	Coryphopterus aroplius	PG	
	Gobiidae	Eviota epiphanes	PG, BS	
Table 1 (continued)

Order	Family	Species	Sexual pattern	Mating system
Gobiidae	Gobiidae	Fusigobius neophytus	PG	MTV polygamy
Gobiidae	Gobiidae	Gobiodon erythrosplas	BS	SA monogamy
Gobiidae	Gobiidae	Gobiodon histrio	PG, BS	SA monogamy
Gobiidae	Gobiidae	Gobiodon micropus	BS	SA monogamy
Gobiidae	Gobiidae	Gobiodon oculolinealus	BS	SA monogamy
Gobiidae	Gobiidae	Gobiodon okinawae	PG	SA monogamy
Gobiidae	Gobiidae	Gobiodon quinquestrigatus	PG, BS	SA monogamy
Gobiidae	Gobiidae	Lythrypnus dalli	PG, BS	MTV polygamy
Gobiidae	Gobiidae	Lythrypnus nesiotes	PG	
Gobiidae	Gobiidae	Lythrypnus phorellus	PG	
Gobiidae	Gobiidae	Lythrypnus pulchellus	BS	
Gobiidae	Gobiidae	Lythrypnus spilus	PG	
Gobiidae	Gobiidae	Lythrypnus zebra	BS	MTV polygamy
Gobiidae	Gobiidae	Paragobiodon echinocephalus	PG, BS	SA monogamy
Gobiidae	Gobiidae	Paragobiodon xanthosomus	PG	SA monogamy
Gobiidae	Gobiidae	Priolepis akihitoi	BS	
Gobiidae	Gobiidae	Priolepis borea	BS	
Gobiidae	Gobiidae	Priolepis cincta	BS	SA monogamy
Gobiidae	Gobiidae	Priolepis eugenius	PG, BS	
Gobiidae	Gobiidae	Priolepis fallacincta	BS	
Gobiidae	Gobiidae	Priolepis hipoili	PG, BS	
Gobiidae	Gobiidae	Priolepis inhaca	BS	
Gobiidae	Gobiidae	Priolepis latifascima	BS	
Gobiidae	Gobiidae	Priolepis semidoliata	BS	SA monogamy
Gobiidae	Gobiidae	Rhinogobiops nicholsii	PG	
Gobiidae	Gobiidae	Trimma annosum	BS	
Gobiidae	Gobiidae	Trimma benjamini	BS	
Gobiidae	Gobiidae	Trimma caesiura	BS	
Gobiidae	Gobiidae	Trimma cana	BS	
Gobiidae	Gobiidae	Trimma caudomaculatum	BS	MTV polygamy
Gobiidae	Gobiidae	Trimma emeryi	BS	
Gobiidae	Gobiidae	Trimma fangi	BS	
Gobiidae	Gobiidae	Trimma flammeneum	BS	
Gobiidae	Gobiidae	Trimma flavatram	BS	
Gobiidae	Gobiidae	Trimma fucatum	BS	
Gobiidae	Gobiidae	Trimma gigantum	BS	
Gobiidae	Gobiidae	Trimma grammistes	BS	Harem
Gobiidae	Gobiidae	Trimma kudoi	BS	
Gobiidae	Gobiidae	Trimma lantana	BS	
Gobiidae	Gobiidae	Trimma macrophthalma	BS	
Gobiidae	Gobiidae	Trimma maiandros	BS	
Gobiidae	Gobiidae	Trimma marinae	BS	
Gobiidae	Gobiidae	Trimma mila	BS	
Gobiidae	Gobiidae	Trimma nasa	BS	
Gobiidae	Gobiidae	Trimma naudei	BS	
Gobiidae	Gobiidae	Trimma necopinum	BS	
Gobiidae	Gobiidae	Trimma okinawae	PG, BS	Harem
Gobiidae	Gobiidae	Trimma preclarum	BS	
Gobiidae	Gobiidae	Trimma rubromaculatum	BS	
Gobiidae	Gobiidae	Trimma sheppardi	BS	
Order	Family	Species	Sexual pattern	Mating system
------------------	---------------	------------------------	----------------	----------------
Gobiidae	Gobiidae	*Trimma stobbsi*	BS	
Gobiidae	Gobiidae	*Trimma striatum*	BS	
Gobiidae	Gobiidae	*Trimma taurocalum*	BS	
Gobiidae	Gobiidae	*Trimma taylori*	BS	
Gobiidae	Gobiidae	*Trimma unisquamis*	BS	
Gobiidae	Gobiidae	*Trimma yanagitai*	BS	
	Uncertain in ovalentaria			
Pomacentridae	Pomacentridae	*Amphiprion akallopisos*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion bicinctus*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion clarkii*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion frenatus*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion melanopus*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion ocellaris*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion perideraion*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion polynnus*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Amphiprion sandaracinos*	PA	NSA monogamy
Pomacentridae	Pomacentridae	*Dascyllus aruanus*	PG, BS, G	Harem, MTV polygamy
Pomacentridae	Pomacentridae	*Dascyllus carneus*	PG	Harem, MTV polygamy
Pomacentridae	Pomacentridae	*Dascyllus flavicaudus*	PG, G	Harem, MTV polygamy
Pomacentridae	Pomacentridae	*Dascyllus marginatus*	PG	Harem, MTV polygamy
Pomacentridae	Pomacentridae	*Dascyllus melanarus*	PG, G	Harem, MTV polygamy
Pseudochromidae	Pseudochromidae	*Pictichromis porphyrea*	BS	
Cichliformes	Cichlidae	*Satanoperca jurupari*	SH	
Cichliformes	Cichlidae	*Metriaclima cf. livingstoni*	PG	MTV polygamy
Cyprinodontiformes	Rivulidae	*Kryptolebias hermaphroditus*	SH, G	
Cyprinodontiformes	Rivulidae	*Kryptolebias marmoratus*	SH, G	
Cyprinodontiformes	Rivulidae	*Kryptolebias ocellatus*	SH, G	
Poeciliidae	Poeciliidae	*Xiphophorus helleri*	PG, G	
Synbranchiformes	Synbranchidae	*Monopterus albus*	PG	MTV polygamy
Synbranchiformes	Synbranchidae	*Monopterus boueti*	PG	
Synbranchiformes	Synbranchidae	*Ophisternon bengalense*	PG	
Synbranchiformes	Synbranchidae	*Synbranchus marmoratus*	PG	
Trachiniformes	Pinguipedidae	*Parapercis clathrata*	PG	
Trachiniformes	Pinguipedidae	*Parapercis colias*	PG	
Trachiniformes	Pinguipedidae	*Parapercis cylindrica*	PG	Harem
Trachiniformes	Pinguipedidae	*Parapercis hexophthalma*	PG	Harem
Trachiniformes	Pinguipedidae	*Parapercis nebulosa*	PG	
Trachiniformes	Pinguipedidae	*Parapercis snyderi*	PG	Harem
Trachiniformes	Pinguipedidae	*Parapercis xanthozona*	PG	
Table 1 (continued)

Order	Family	Species	Sexual pattern	Mating system
	Trichonotidae	Trichonotus filamentosus	PG	
	Creediidae	Crystallodytes cookei	PA	
	Creediidae	Linnichthys fasciatus	PA	
	Creediidae	Linnichthys nitidus	PA	
	Labriformes			
Labridae	Labridae	Achoerodus gouldii	PG	
Labridae	Labridae	Achoerodus viridis	PG	
Labridae	Labridae	Anampses geographicus	PG	
Labridae	Labridae	Bodianus axillaris	PG	
Labridae	Labridae	Bodianus diploetaenia	PG	MTV polygamy
Labridae	Labridae	Bodianus echancheri	PG	GSP
Labridae	Labridae	Bodianus frenchii	PG	
Labridae	Labridae	Bodianus mesothorax	PG	SPA
Labridae	Labridae	Bodianus rufus	PG	Harem
Labridae	Labridae	Cheilinus chlorurus	PG	
Labridae	Labridae	Cheilinus diaphrurms	PG	
Labridae	Labridae	Cheilinus fasciatus	PG	Harem
Labridae	Labridae	Cheilinus trilobatus	PG	Harem, MTV polygamy
Labridae	Labridae	Cheilinus undulatus	PG	MTV polygamy
Labridae	Labridae	Cheilinus azurio	PG	
Labridae	Labridae	Cheilinus cauteroma	PG	
Labridae	Labridae	Cheilinus cyanodus	PG	
Labridae	Labridae	Cheilinus fasciatus	PG	
Labridae	Labridae	Cheilinus graphicus	PG	
Labridae	Labridae	Cheilinus rubescens	PG	
Labridae	Labridae	Cheirodon schoenleintii	PG	
Labridae	Labridae	Cheirodon venustus	PG	
Labridae	Labridae	Cirrhilabrus temmincki	PG	MTV polygamy
Labridae	Labridae	Clepticus parrae	PG	SPA
Labridae	Labridae	Coris auricularis	PG	
Labridae	Labridae	Coris dorsomaculua	PG	Harem
Labridae	Labridae	Coris guimard	PG	MTV polygamy
Labridae	Labridae	Coris julius	PG	MTV polygamy
Labridae	Labridae	Coris variegata	PG	
Labridae	Labridae	Decodon melasma	PG	
Labridae	Labridae	Epibulus insidator	PG	Harem, MTV polygamy
Labridae	Labridae	Gomphosus varius	PG	MTV polygamy
Labridae	Labridae	Halichoeres bivittatus	PG	MTV polygamy, GSP
Labridae	Labridae	Halichoeres garnoti	PG	MTV polygamy
Labridae	Labridae	Halichoeres maculpinna	PG	MTV polygamy
Labridae	Labridae	Halichoeres margaritaceus	PG	Harem
Labridae	Labridae	Halichoeres marginatus	PG	MTV polygamy, GSP
Labridae	Labridae	Halichoeres melanochir	PG	MTV polygamy
Labridae	Labridae	Halichoeres melanurus	PG	MTV polygamy
Labridae	Labridae	Halichoeres miniatus	PG	Harem
Labridae	Labridae	Halichoeres nebulosus	PG	
Labridae	Labridae	Halichoeres picus	PG	
Labridae	Labridae	Halichoeres poeyi	PG	
Labridae	Labridae	Halichoeres radiatus	PG	
Labridae	Labridae	Halichoeres scapularis	PG	
Order	Family	Species	Sexual pattern	Mating system
--------	--------	----------------------------------	----------------	------------------------
1	Labridae	Halichoeres semicinctus	PG	MTV polygamy, GSP
1	Labridae	Halichoeres tenaspinnis	PG	MTV polygamy
1	Labridae	Halichoeres trimaculatus	PG, BS	MTV polygamy, GSP
1	Labridae	Hemigymnus melapterus	PG	
1	Labridae	Hologymnus annulatus	PG	
1	Labridae	Inistius dea	PG	
1	Labridae	Inistius geisha	PG	
1	Labridae	Inistius pentadactylus	PG	Harem
1	Labridae	Labrichthys unilineatus	PG	Harem
1	Labridae	Labroides diminutus	PG, BS	Harem
1	Labridae	Labrus bergylta	PG	
1	Labridae	Labrus merula	PG	
1	Labridae	Labrus mixtus	PG	
1	Labridae	Labrus viridis	PG	
1	Labridae	Lachnolaimus maximus	PG	Harem
1	Labridae	Macropharyngodon moyeri	PG	Harem
1	Labridae	Notolabrus celiotus	PG	MTV polygamy
1	Labridae	Notolabrus gymnogenis	PG	
1	Labridae	Notolabrus parilus	PG	
1	Labridae	Notolabrus tetricus	PG	MTV polygamy
1	Labridae	Ophthalmochirus lineolatus	PG	
1	Labridae	Parajulis poecilepterus	PG	GSP
1	Labridae	Pictilabrus laticlavius	PG	MTV polygamy
1	Labridae	Pseudocheilinus ataenia	PG	
1	Labridae	Pseudocheilinus evanidus	PG	
1	Labridae	Pseudocheilinus hexataenia	PG	Harem
1	Labridae	Pseudolabrus guentheri	PG	
1	Labridae	Pseudolabrus rubricans	PG	MTV polygamy
1	Labridae	Pseudolabrus sieboldi	PG	MTV polygamy
1	Labridae	Pteragonus aurigas	PG	MTV polygamy
1	Labridae	Semicossyphus darwini	PG	
1	Labridae	Semicossyphus pulcher	PG	MTV polygamy
1	Labridae	Semicossyphus reticulatus	PG	
1	Labridae	Stethojulis balteata	PG	
1	Labridae	Stethojulis interrupta	PG	MTV polygamy
1	Labridae	Stethojulis strigiventer	PG	
1	Labridae	Stethojulis trilineata	PG	MTV polygamy
1	Labridae	Suzeichthys ornatus	PG	MTV polygamy
1	Labridae	Symphodus melanocercus	PG	MTV polygamy
1	Labridae	Symphodus tinca	PG, G	MTV polygamy
1	Labridae	Thalassoma bifasciatum	PG	MTV polygamy, GSP
1	Labridae	Thalassoma capido	PG	MTV polygamy, GSP
1	Labridae	Thalassoma duperrey	PG	MTV polygamy, GSP
1	Labridae	Thalassoma hardwicki	PG	MTV polygamy, GSP
1	Labridae	Thalassoma janseni	PG	MTV polygamy, GSP
1	Labridae	Thalassoma lucasanum	PG	MTV polygamy, GSP
1	Labridae	Thalassoma lunare	PG	MTV polygamy, GSP
1	Labridae	Thalassoma laticeps	PG	MTV polygamy, GSP
1	Labridae	Thalassoma pavo	PG	MTV polygamy, GSP
1	Labridae	Thalassoma purpureum	PG	
Table 1 (continued)

Order	Species	Sexual pattern	Mating system
Labridae	Thalassoma quinquevittatum	PG	MTV polygamy, GSP
Labridae	Xyrichtys martinicensis	PG	Harem
Labridae	Xyrichtys novacula	PG	Harem
Odacidae	Odax pullus	PG	
Scaridae	Calotomus carolinus	PG	MTV polygamy
Scaridae	Calotomus japonicus	PG	MTV polygamy
Scaridae	Calotomus spinidens	PG	MTV polygamy
Scaridae	Cetoscarus bicolor	PG	
Scaridae	Chlorurus sordidus	PG	MTV polygamy
Scaridae	Chlorurus spilatus	PG	
Scaridae	Cryptotomus roseus	PG	MTV polygamy
Scaridae	Hipposcarus harid	PG	
Scaridae	Scarus ferrugineus	PG	
Scaridae	Scarus festivus	PG	
Scaridae	Scarus forsteni	PG	MTV polygamy
Scaridae	Scarus frenatus	PG	Harem
Scaridae	Scarus ghobban	PG	
Scaridae	Scarus globiceps	PG	MTV polygamy, GSP
Scaridae	Scarus iseri	PG	Harem, GSP
Scaridae	Scarus niger	PG	MTV polygamy, GSP
Scaridae	Scarus oviceps	PG	MTV polygamy
Scaridae	Scarus psittacus	PG	MTV polygamy
Scaridae	Scarus rivulatus	PG	MTV polygamy
Scaridae	Scarus rubrovioaceus	PG	
Scaridae	Scarus russellii	PG	
Scaridae	Scarus scaber	PG	
Scaridae	Scarus schlegeli	PG	MTV polygamy
Scaridae	Scarus spinus	PG	
Scaridae	Scarus taeniopterus	PG	
Scaridae	Scarus tricolor	PG	
Scaridae	Scarus vetula	PG	Harem, MTV polygamy
Scaridae	Scarus viridifascatus	PG	
Scaridae	Sparisoma atomarium	PG	Harem
Scaridae	Sparisoma aurorufrenatum	PG	Harem
Scaridae	Sparisoma chrysopterum	PG	MTV polygamy
Scaridae	Sparisoma cretense	PG, G	Harem
Scaridae	Sparisoma radians	PG	Harem, MTV polygamy, GSP
Scaridae	Sparisoma rubripinne	PG	MTV polygamy, GSP
Scaridae	Sparisoma viride	PG	MTV polygamy
Perciformes	Centropomus undecimalis	PA	
Latidae	Lates calcarifer	PA	
Polynemidae	Galeoides decadaecytus	PA, G	
Polynemidae	Filimonus heptadactyla	SH, G	
Polynemidae	Polydactylus macrochir	PA	
Polynemidae	Polydactylus microstomus	SH, G	
Polynemidae	Polydactylus quadripilis	PA	
Terapontidae	Bidyanus bidyanus	PA	
Terapontidae	Mesopristes cancellatus	PA	
Serranidae (Epinephelinae)	Cephalopholis argus	PG	Harem
Family	Species	Sexual pattern	Mating system
--------	---------	----------------	---------------
Serranidae (Epinephelinae)	Cephalopholis boenak	PG, BS	
Serranidae (Epinephelinae)	Cephalopholis cruentata	PG	Harem
Serranidae (Epinephelinae)	Cephalopholis cyanostigma	PG	Harem
Serranidae (Epinephelinae)	Cephalopholis fulva	PG	Harem
Serranidae (Epinephelinae)	Cephalopholis hemistiktos	PG	Harem
Serranidae (Epinephelinae)	Cephalopholis miniata	PG	Harem
Serranidae (Epinephelinae)	Cephalopholis panamensis	PG	Harem
Serranidae (Epinephelinae)	Cephalopholis taeniops	PG	
Serranidae (Epinephelinae)	Cephalopholis urodeta	PG	
Serranidae (Epinephelinae)	Epinephelus adscensionis	PG	Harem
Serranidae (Epinephelinae)	Epinephelus aeneus	PG	
Serranidae (Epinephelinae)	Epinephelus aequipinnatus	PG, BS	
Serranidae (Epinephelinae)	Epinephelus andersoni	PG	
Serranidae (Epinephelinae)	Epinephelus bruneus	PG, BS	
Serranidae (Epinephelinae)	Epinephelus chlorostigma	PG	
Serranidae (Epinephelinae)	Epinephelus coioides	PG	
Serranidae (Epinephelinae)	Epinephelus diacanthus	PG	
Serranidae (Epinephelinae)	Epinephelus drummondhayi	PG	
Serranidae (Epinephelinae)	Epinephelus fasciatus	PG	
Serranidae (Epinephelinae)	Epinephelus fuscoguttatus	PG	SPA
Serranidae (Epinephelinae)	Epinephelus guttatus	PG	SPA
Serranidae (Epinephelinae)	Epinephelus iatralis	PG, G	GSP
Serranidae (Epinephelinae)	Epinephelus labriformis	PG	
Serranidae (Epinephelinae)	Epinephelus malabaricus	PG	
Serranidae (Epinephelinae)	Epinephelus marginatus	PG	MTV polygamy
Serranidae (Epinephelinae)	Epinephelus merra	PG	SPA
Serranidae (Epinephelinae)	Epinephelus morio	PG	
Serranidae (Epinephelinae)	Epinephelus ongus	PG	SPA
Serranidae (Epinephelinae)	Epinephelus rivalis	PG	
Serranidae (Epinephelinae)	Epinephelus striatus	PG, G	GSP
Serranidae (Epinephelinae)	Epinephelus taurina	PG	
Serranidae (Epinephelinae)	Hyporthodus flavolimbatus	PG	
Serranidae (Epinephelinae)	Hyporthodus niveatus	PG	
Serranidae (Epinephelinae)	Hyporthodus quernus	PG	
Serranidae (Epinephelinae)	Mycteroperca bonaci	PG	
Serranidae (Epinephelinae)	Mycteroperca interstitialis	PG	
Serranidae (Epinephelinae)	Mycteroperca microlepis	PG	SPA
Serranidae (Epinephelinae)	Mycteroperca olfax	PG	SPA
Serranidae (Epinephelinae)	Mycteroperca phenax	PG	SPA
Serranidae (Epinephelinae)	Mycteroperca rubra	PG	SPA
Serranidae (Epinephelinae)	Mycteroperca venenosa	PG	GSP
Serranidae (Epinephelinae)	Plectropomus laevis	PG	
Serranidae (Epinephelinae)	Plectropomus leopardus	PG	SPA
Serranidae (Epinephelinae)	Plectropomus maculatus	PG	
Serranidae (Serraninae)	Bullisichthys caribbaeus	SH	
Serranidae (Serraninae)	Centropristis striata	PG	
Serranidae (Serraninae)	Centropristis ocyurus	PG	
Serranidae (Serraninae)	Chelidoperca hirundinacea	PG	
Serranidae (Serraninae)	Diplectrum bivittatum	PG	
Serranidae (Serraninae)	Diplectrum formosum	SH	
Table 1 (continued)

Family	Species	Sexual pattern	Mating system		
Serranidae (Serraninae)	Diplectrum macropoma	SH	SA monogamy		
Serranidae (Serraninae)	Diplectrum pacificum	SH			
Serranidae (Serraninae)	Diplectrum rostrum	SH			
Serranidae (Serraninae)	Hypoplectrus aberrans	SH	SA monogamy		
Serranidae (Serraninae)	Hypoplectrus chlorurus	SH	SA monogamy		
Serranidae (Serraninae)	Hypoplectrus nigricans	SH	SA monogamy		
Serranidae (Serraninae)	Hypoplectrus puella	SH	SA monogamy		
Serranidae (Serraninae)	Hypoplectrus unicolor	SH	SA monogamy		
Serranidae (Serraninae)	Paralabrax maculatofasciatus	PG, G			
Serranidae (Serraninae)	Serranichthys pumilio	SH			
Serranidae (Serraninae)	Serranus annadaris	SH			
Serranidae (Serraninae)	Serranus atricauda	SH			
Serranidae (Serraninae)	Serranus auriga	SH			
Serranidae (Serraninae)	Serranus baldwini	SH	Harem		
Serranidae (Serraninae)	Serranus cabrilla	SH			
Serranidae (Serraninae)	Serranus hepatus	SH			
Serranidae (Serraninae)	Serranus phoebe	SH			
Serranidae (Serraninae)	Serranus psittacinus	SH	Harem		
Serranidae (Serraninae)	Serranus scriba	SH			
Serranidae (Serraninae)	Serranus subligarius	SH	SA monogamy		
Serranidae (Serraninae)	Serranus tabacarius	SH	SA monogamy		
Serranidae (Serraninae)	Serranus tigrinus	SH	SA monogamy		
Serranidae (Serraninae)	Serranus tortugurum	SH	SA monogamy		
Serranidae (Grammistini)	Pseudogramma gregoryi	SH			
Serranidae (Grammistini)	Rhypticus saponaceus	PG			
Serranidae (Grammistini)	Rhypticus subbifrenatus	PG			
Serranidae (Anthiinae)	Anthias anthias	PG			
Serranidae (Anthiinae)	Anthias nicholsi	PG			
Serranidae (Anthiinae)	Anthias noeli	PG			
Serranidae (Anthiinae)	Baldwinella vivans	PG			
Serranidae (Anthiinae)	Hemanthias leptus	PG			
Serranidae (Anthiinae)	Hemanthias persuans	PG			
Serranidae (Anthiinae)	Hypoplectrodes huntii	PG			
Serranidae (Anthiinae)	Hypoplectrodes maculochi	PG			
Serranidae (Anthiinae)	Pronotogrammus martincensis	PG			
Serranidae (Anthiinae)	Pseudanthias conspicuous	PG			
Serranidae (Anthiinae)	Pseudanthias elongatus	PG			
Serranidae (Anthiinae)	Pseudanthias pleurotinaea	PG			
Serranidae (Anthiinae)	Pseudanthias rubrizonatus	PG			
Serranidae (Anthiinae)	Pseudanthias squamipinnis	PG	MTV polygamy		
Serranidae (Anthiinae)	Sacura margaritacea	PG			
Pomacanthidae	Centropyge acanthops	PG, BS			
Pomacanthidae	Centropyge bicolor	PG	Harem		
Pomacanthidae	Centropyge ferrugata	PG, BS	Harem		
Pomacanthidae	Centropyge fisheri	PG, BS	Harem		
Pomacanthidae	Centropyge flavissimus	BS	Harem		
Pomacanthidae	Centropyge heraldi	PG	Harem		
Pomacanthidae	Centropyge interruptus	PG	Harem		
Pomacanthidae	Centropyge multiplinclus	PG			
Pomacanthidae	Centropyge poteri	PG	Harem		
Order	Family	Species	Sexual pattern	Mating system	
-------	--------	---------	----------------	---------------	
	Pomacanthidae	Centropyge tibicen	PG	Harem	
	Pomacanthidae	Centropyge vrolicki	PG	Harem	
	Pomacanthidae	Chaetodontoplus septentrionalis	PG	Harem	
	Pomacanthidae	Genicanthus bellus	PG		
	Pomacanthidae	Genicanthus caudovittatus	PG	Harem	
	Pomacanthidae	Genicanthus lamarck	PG	Harem	
	Pomacanthidae	Genicanthus melanospilos	PG	Harem	
	Pomacanthidae	Genicanthus personatus	PG	Harem	
	Pomacanthidae	Genicanthus semifasciatus	PG	Harem	
	Pomacanthidae	Genicanthus watanabei	PG		
	Pomacanthidae	Holacanthus passer	PG, G	Harem	
	Pomacanthidae	Holacanthus tricolor	PG	Harem	
	Pomacanthidae	Pomacanthus zonipectus	PG		
	Pomacanthidae	Apolemichthys trimaculatus	PG		
	Malacanthidae	Malacanthus plumieri	PG	Harem	
	Cirrhitidae	Amblycirrhitus pinos	PG		
	Cirrhitidae	Cirrhitichthys aprinus	PG	Harem	
	Cirrhitidae	Cirrhitichthys aureus	PG, BS		
	Cirrhitidae	Cirrhitichthys falco	PG, BS	Harem	
	Cirrhitidae	Cirrhitichthys oxycapillus	PG	Harem	
	Cirrhitidae	Neocirrhites armatus	PG	Harem	
	Eleginopsidae	Eleginops maclinira	PA		
(continued)	Scorpaeformes	Platycephalidae	Cociella crocodila	PA	
	Scorpaeformes	Platycephalidae	Inegocia japonica	PA	Random mating
	Scorpaeformes	Platycephalidae	Kumoocia rodericensis	PA	
	Scorpaeformes	Platycephalidae	Onigocia macrolepis	PA	
	Scorpaeformes	Platycephalidae	Platycephalus sp.	PA	Random mating
	Scorpaeformes	Platycephalidae	Saggundus meerdervoorti	PA	
	Scorpaeformes	Platycephalidae	Thysanophrys celebica	PA	Random mating
	Moroniformes	Moronidae	Morone saxatilis	PA	
	Spariformes	Nemipteridae	Scolopsis monogramma	PG	
	Spariformes	Nemipteridae	Scolopsis taenioptera	PG	
	Spariformes	Lethrinidae	Lethrinus nebulosus	PG, G	
	Spariformes	Lethrinidae	Lethrinus genivittatus	PG	
	Spariformes	Lethrinidae	Lethrinus lentjan	PG	
	Spariformes	Lethrinidae	Lethrinus variegatus	PG	
	Spariformes	Lethrinidae	Lethrinus miniatus	PG	
	Spariformes	Lethrinidae	Lethrinus rubricerulatus	PG	
	Spariformes	Lethrinidae	Lethrinus atkinsoni	PG	
	Spariformes	Lethrinidae	Lethrinus harak	PG	
	Spariformes	Lethrinidae	Lethrinus ornatus	PG	
	Spariformes	Lethrinidae	Lethrinus rarus	PG	
	Spariformes	Acanthopagrus australis	PA		
	Spariformes	Acanthopagrus berda	PA	SPA	
	Spariformes	Acanthopagrus schlegelli	PA		
	Spariformes	Acanthopagrus latus	PA		
Serranidae, Sparidae, Labridae, and Gobiidae, respectively (26, 16, 98, and 50 spp., respectively). Most cases of BS in Gobiidae have been determined by gonad histology or aquarium experiments (e.g., Sunobe et al. 2017; Table S1), and the frequency of each sex change direction in the field is known only in a few species (Kuwamura et al. 1994; Manabe et al. 2007).

Three types of hermaphroditism were found in Pomacentridae (PA, PG, and BS) and Serranidae (SH, PG, and BS) (Table 2), while two types were found in Muraenidae and Polynemidae (SH and PA), Cichlidae (SH and PG), Sparidae (PA and PG), and Gobiidae, Pseudochromidae, Labridae, Pomacanthidae, and Cirrhitidae (PG and BS). This indicated that different types of hermaphroditism have appeared in different lineages repeatedly (see Mank et al. 2006), and the sexual pattern is often highly variable in expression within a single family.

The frequency of hermaphroditic fish families in each order is presented in Table 3. We found hermaphrodites in 17 orders (27% of 63 orders of Teleostei). Two families in Series Ovalentaria, Pomacentridae and Pseudochromidae, are not classified into orders by Nelson et al. (2016), but were counted as belonging to the same order here, for convenience. Among 17 orders, PG was the most abundant (20 families, 49% of 41 hermaphroditic families), BS the least abundant (7 families, 17%), and SH and PA had similar abundances (13 and 14 families, 32% and 34%, respectively). The tendency was somewhat different from that of

Table 1 (continued)

Order	Species	Sexual pattern	Mating system
Sparidae	Calamus leucosteus	PG	
Sparidae	Chrysolephas cristiceps	PG	
Sparidae	Chrysolephas punicus	PG	
Sparidae	Chrysolephas laticeps	PG	
Sparidae	Dentex gibbosus	PG	
Sparidae	Dentex tamifrons	PG	
Sparidae	Diplodus annularis	PA, G	
Sparidae	Diplodus capensis	PA, G	
Sparidae	Diplodus puntazzo	PA, G	
Sparidae	Diplodus sargus	PA, G	
Sparidae	Diplodus vulgaris	PA, G	
Sparidae	Lithognathus morrurus	PA, G	
Sparidae	Pagellus acarne	PA, G	
Sparidae	Pagellus bavarveo	PA, G	
Sparidae	Pagellus erythrinus	PG	
Sparidae	Pagrus auriga	PG	
Sparidae	Pagrus caeruleosticis	PG	
Sparidae	Pagrus ehrenbergii	PG, G	
Sparidae	Pagrus major	PG, G	
Sparidae	Pagrus pagrus	PG	
Sparidae	Rhabdosargus sarba	PA, G	
Sparidae	Sarpa salpa	PA, G	SPA
Sparidae	Sparidentex hasta	PA	
Sparidae	Sparus aurata	PA	GSP
Sparidae	Spicara chryseis	PG	
Sparidae	Spicara smaris	PG	
Sparidae	Spicara maena	PG	
Sparidae	Spondyliosoma cantharus	PG	
Tetraodontiformes	Sufflamen chrysopterus	PG	Harem

SH simultaneous hermaphroditism, PA protandry, PG protogyny, BS bidirectional sex change or reversed sex change in protogynous species, G gonochorism, SA monogamy size-assortative monogamy, NSA monogamy non-size-assortative monogamy, Harem harem polygyny, MTV male-territory-visiting polygamy, GSP group spawning, SPA spawning aggregation unknown detailed mating system, blank unknown. Facultative monogamy in polygamous species is not shown. If intraspecific variation has been reported in sexual pattern or mating system, two or more types are shown. Detailed data of each species and references are given in Table S1 and S2, respectively.
Table 2 Frequency of hermaphroditic fish species in each family. Order and family names are arranged following Nelson et al. (2016). Summed up from Table 1.

Order	Family	Number of hermaphroditic species	Total number of species	Habitat**								
		SH	PA	PG	BS	Total	%*		M	F	(M&)F	
Anguilliformes	Muraenidae	3	0	0	4	100.0	2.0	200	M			
Clupeiformes	Clupeidae	0	2	0	2	100.0	0.9	218	M			
Cypriniformes	Cobitidae	0	1	0	1	100.0	0.5	195	F			
Stomiiformes	Gonostomatidae	0	5	0	5	100.0	16.1	31	M			
Aulopiformes	Ipnopidae	9	0	0	9	100.0	28.1	32	M			
	Giganturidae	2	0	0	2	100.0	0.9	218	M			
	Bathysauridae	1	0	0	1	100.0	50.0	2	M			
	Chloropthalmidae	3	0	0	3	100.0	17.6	17	M			
	Notosudidae	1	0	0	1	100.0	5.9	17	M			
	Scopelarchidae	2	0	0	2	100.0	11.1	18	M			
	Paralepididae	1	0	0	1	100.0	3.7	27	M			
	Alepisauridae	1	0	0	1	100.0	11.1	9	M			
Gobiiformes	Gobiidae	0	0	24	50	74	4.9	1359	M(F)			
Uncertain in ovalentaria	Pomacentridae	0	10	6	1	16	4.1	387	M			
	Pseudochromidae	0	2	4	6	100.0	3.9	152	M			
Cichliformes	Cichlidae	1	0	1	0	100.0	0.1	1762	F			
Cyprinodontiformes	Rivulidae	3	0	0	3	100.0	0.8	370	F			
	Poeciliidae	0	0	1	0	100.0	0.3	353	F			
Synbranchiformes	Synbranchidae	0	0	4	4	100.0	17.4	23	F			
Trachiniformes	Pinguipedidae	0	0	7	0	100.0	8.5	82	M			
	Trichonotidae	0	0	1	0	100.0	10.0	10	M			
	Creediidae	0	3	0	3	100.0	16.7	18	M			
Labriiformes	Labridae	0	0	98	2	100.0	18.9	519	M			
	Odacidae	0	0	1	0	100.0	8.3	12	M			
	Scaridae	0	0	35	0	100.0	35.4	99	M			
Perciformes	Centropomidae	0	1	0	1	100.0	8.3	12	M&F			
	Latidae	0	1	0	0	100.0	7.7	13	M&F			
	Polynemidae	2	3	0	5	100.0	11.9	42	M			
	Terapontidae	0	2	0	2	100.0	3.8	52	(M&F)			
	Serranidae	26	0	66	3	100.0	17.1	538	M			
	Pomacanthidae	0	0	22	4	100.0	25.8	89	M			
	Malacanthidae	0	0	1	0	100.0	2.2	45	M			
	Cirrhitidae	0	0	6	2	100.0	18.2	33	M			
	Eleginopsidae	0	1	0	0	100.0	100.0	1	M			
Scorpaeniformes	Platyccephalidae	0	7	0	0	100.0	8.8	80	M			
	Scorpaenidae	0	0	1	0	100.0	0.2	454	M			
Moroniformes	Moronidae	0	1	0	0	100.0	25.0	4	M&F			
Spariformes	Nemipteridae	0	0	2	0	100.0	3.0	67	M			
	Lethrinidae	0	0	10	0	100.0	26.3	38	M			
	Sparidae	0	16	16	0	100.0	84.2	38	M			
Tetraodontiformes	Balistidae	0	0	1	0	100.0	2.4	42	M			
Total number of species		55	54	305	66	461			M	F	(M&F)	

SH simultaneous hermaphroditism, PA protandry, PG protogyny, BS bidirectional sex change or reversed sex change in protogynous species. When two or more types are reported within a species, we counted them in each column.

*Percentage of hermaphroditic species in each family (total number of species after Nelson et al. 2016)

**M marine, F fresh water (after Nelson et al. 2016). In parentheses if no hermaphrodites have been reported from the habitat.
Hermaphroditism in fishes

the number of species. The number of species with BS was higher than that with SH or PA because of the extensive surveys on BS species of Gobiidae (Table 2, S1). The percentage of hermaphroditic families in an order varied widely from 4.9% (2 out of 41 families in Scorpaeniformes) to 100% (all three families in Labriformes) (Table 3). All four types were only found in Perciformes, and three types (PA, PG, and BS) in the tentative order (Pomacentridae–Pseudochromidae) in Ovalentaria.

By combining our list with the phylogenetic tree of Betancur-R et al. (2017), it was indicated that SH and PA have evolved several times in not-closely related lineages; SH in Elopomorpha, Aulopiformes, Ovalentaria, and Eupercaria, and PA in Elopomorphida, Clupeiformes, Cypriniformes, Stomiiformes, Aulopiformes, and Uncertain** in Ovalentaria. All four types of hermaphroditism were found in marine families, while three types (except BS) were found in freshwater families. In freshwater families, the number of species of each type was similar (SH, 4; PA, 3; PG, 6), and the total number of freshwater hermaphroditic species (13 spp., 3% of all hermaphroditic species) was much lower than that in marine families (445 spp., 97%). The percentage of freshwater species in hermaphroditic species (3%) was significantly lower than that of the freshwater species in all fishes (about 43%; Nelson et al. 2016) ($\chi^2 = 294, \ P < 0.001$), although phylogenetic distribution of marine and freshwater species should be considered for a sophisticated test of the different likelihood of hermaphroditism evolution between habitats.

Regarding this hermaphroditism absence from most freshwater habitats, it has been suggested that the relatively large eggs or young produced by many freshwater species tend to accentuate the physical differences in male

Table 3: Frequency of hermaphroditic fish families in each order. Order names are arranged following Nelson et al. (2016). Summed up from Table 2

Order	Number of families including hermaphrodites	Total number of families	Group names in Fig. 1				
	SH	PA	PG	BS	Total	%*	
Anguilliformes	1	0	0	0	1	5.3	Elopomorpha
Clupeiformes	0	1	0	0	1	20.0	Clupeiformes
Cypriniformes	0	1	0	0	1	7.7	Cypriniformes
Stomiiformes	0	1	0	0	1	20.0	Stomiiformes
Aulopiformes	8	0	0	0	8	53.3	Aulopiformes
Gobiiformes	0	0	1	1	1	12.5	Gobiaria
Uncertain** in Ovalentaria	0	1	2	2	2	25.0	Ovalentaria
Cichliformes	1	0	1	0	1	50.0	Ovalentaria
Cyprinodontiformes	1	0	1	0	2	20.0	Ovalentaria
Synbranchiformes	0	0	1	0	1	33.3	Anabantia
Trachiniformes	0	1	2	0	3	27.3	Eupercaria
Labriiformes	0	0	3	1	3	100.0	Eupercaria
Perciformes	2	5	4	3	9	14.5	Eupercaria
Scorpaeniformes	0	1	1	0	2	4.9	Eupercaria
Moroniformes	0	1	0	0	1	33.3	Eupercaria
Spariformes	0	1	3	0	3	50.0	Eupercaria
Tetraodontiformes	0	0	1	0	1	10.0	Eupercaria
Total number of families	13	14	20	7	41		

SH simultaneous hermaphroditism, **PA** protandry, **PG** protogyny, **BS** bidirectional sex change or reversed sex change in protogynous species. When two or more types are reported within a family, we counted them in each column.

*Percentage of hermaphroditic families in each order (total number of families after Nelson et al. 2016)

**Treated as one order for convenience
Fig. 1 Phylogeny of fishes and occurrence of hermaphroditism. The phylogenetic tree was processed from Fig. 1 of Betancur-R et al. (2017). SH simultaneous hermaphroditism, PA protandry, PG protogyny, BS bidirectional sex change or reversed sex change in protogynous species. For group names and orders, see Table 3
and female anatomy, possibly forming a barrier or physical constraint to hermaphroditism (Warner 1978) and that fewer and larger eggs and more parental care may reduce the size advantage (Sadovy de Mitcheson and Liu 2008). Moreover, mating systems of freshwater fish should also be taken into consideration.

Mating system and the evolution of hermaphroditism.

In the field, mating systems have been reported in less than 40% of hermaphroditic species (Table 4), and most of them were shallow coral reef fishes (Table S1). Mating system is known only from 11 species with SH (20% of 55 spp.), i.e., small serranids living on coral reefs (Table 1, S1). Reciprocal pair spawning (i.e., egg trading) occurs in monogamous pairs (9 spp., e.g., Fischer 1981), or a large male (secondary male derived from hermaphrodite) controls a harem of simultaneous hermaphrodites (3 spp., e.g., Petersen and Fischer 1986). Mating systems of the other 80% of species with SH, including deep-sea species (e.g. Aulopiformes), remain unknown. SH in deep-sea fishes are often regarded as evidence for the low-density model (Tomlinson 1966; Ghiselin 1969), because population density is generally low in the deep sea. Although the study of mating behavior in deep-sea fishes is extremely difficult, underwater video tape recordings and the distribution of the number of fish caught have recently suggested pair bonding in two deep-sea SH species of Giganturidae (Kupchik et al. 2018). Another example of hermaphroditism is found in androdioecious (i.e., SH and males) killifish of genus *Kryptolebias*, in which hermaphrodites never mate with other hermaphrodites (Furness et al. 2015), but reproduce via selfing or mating with males.

The mating system has only been reported in 16 species with PA (30% of 54 spp.; Table 4). Non-size-assortative monogamy (i.e., females accept smaller males as in random mating) is known from 10 species of anemonefishes (Pomacentridae; Table 1; e.g., Fricke and Fricke 1977), and random mating from three species of Platyccephalidae (Table 1; e.g., Sunobe et al. 2016). These mating systems support the SA model prediction about PA being favored in species with random mating or non-size-assortative monogamy in which females accept smaller males (Warner 1975, 1984). Spawning aggregation and group spawning have also been reported (in two and one species, respectively, of Sparidae; Table 1; e.g., van der Walt and Mann 1998), but whether random mating occurs in the aggregation remains unknown.

Mating systems have been reported from 142 species with PG (47% of 305 spp.; Table 4). Harem polygyny and male-territory-visiting polygamy (62 and 69 spp., respectively) were the prevailing systems (adding up to 85% of 142 spp.; Table 4), e.g., Labridae, Scaridae, and Pomacentridae (Table 1). This supports the SA model prediction of PG being favored in polygynous species with large males monopolizing females (Warner 1975). Size-assortative monogamy has been reported from five species with PG (Table 4). All five species belong to Gobiidae, and BS was also confirmed in three of them (Table 1) and suggested in another one (Table S1). The tendency of PG with BS in the monogamous goby *Paragobiodon echinocephalus* has been explained by the growth-rate advantage in females (Kuwamura et al. 1994): the difference between sexes in growth rate favors the evolution of sex changer even if the size advantage is the same between the two sexes. For the other exceptional cases of group spawning in two labrid and three serranids, and spawning aggregation in one sparid, two labrds, and nine serranids (Table 1, 4), further observations

Table 4 Relation between hermaphroditism and mating system. Summed up from Table 1

Mating system*	Number of species in each type of sexual pattern**									
	SH	SH, G	PA	PA, G	PG	PG, G	BS	PG, BS	BS	Total
Random mating	3									3
Non-size-assortative monogamy	10									10
Size-assortative monogamy	9	2	3	5	19					
Harem polygyny	2	45	2	4	2	55				
Harem, GSP	1									1
Harem, MTV polygamy	5	3	1	9						
Harem, MTV polygamy, GSP	1									1
MTV polygamy	40	1	1	2	44					
MTV polygamy, GSP	16			1	17					
Group spawning	1	3	2			6				
Spawning aggregation	1	1	11	5	0	8	38	283		

*Harem harem polygyny, MTV polygamy male-territory-visiting polygamy, GSP group spawning

**SH simultaneous hermaphroditism, PA protandry, PG protogyny, BS bidirectional sex change or reversed sex change in protogynous species, G gonochorism

***Mating systems of hermaphroditic species are completely unknown in 26 families (see Table 1)
are needed because group spawning is also known in species with male-territory-visiting polygamy (Table 4; Warner and Hoffman 1980; Suzuki et al. 2010).

Mating system has been reported from 19 species with BS (29% of 66 spp.; Table 4). Size-assortative monogamy is known in eight species (Gobiidae), harem polygyny in seven species (Gobiidae, Pomacentridae, Labridae, Pomacanthidae, and Cirrhitidae), and male-territory-visiting polygamy in five species (Gobiidae, Pomacentridae, and Labridae) (Table 1). BS in the monogamous coral-dwelling gobies has been explained by the risk-of-movement hypothesis (Munday et al. 2010). BS in protogynous and polygynous species can be explained by the low-density hypothesis for the reversed sex change, because facultative monogamy occurs at low-density conditions in polygynous species (Kuwamura et al. 2014, 2016a). Contrastingly, the reversed (female-to-male) sex change does not occur even at very low density in the protandrous anemonefishes (Fricke and Fricke 1977; Kuwamura and Nakashima 1998; T. Kuwamura, unpublished data) or PA species with random mating (Table 1).

Mating system is only known in two of 13 freshwater hermaphroditic species, one in Cichlidae and the other in Synbranchidae (Table 2). Both species are PG with male-territory-visiting polygamy (Table 1), supporting the SA model. Although group spawning is common, mating systems of freshwater gonochorists are as various as in marine species (Taborsky 2008). For example, both monogamy and polygyny are known in cichlid fishes (Kuwamura 1997), but functional hermaphroditism is almost unknown, probably owing to biparental care or prolonged parental care of juveniles, which may reduce the difference in reproductive success between the sexes (Warner and Lejeune 1985).

Effect of population density on mating system and sexual pattern. Intraspecific variations in sexual pattern (including gonochorism) and mating system (excluding facultative monogamy in many polygamous species) have been reported in at least 50 and 28 species, respectively (Tables 1 and 4), which may be partly explained by differences in population density. It is well known that mating system may vary depending on population density (Fricke 1980; Warner and Hoffman 1980; Barlow 1984; Petersen 2006). Accordingly, the low-density hypothesis for the evolution of reversed sex change in polygynous and protogynous species has been proposed and tested (Kuwamura et al. 2002, 2011, 2014, 2016a), predicting that facultative monogamy and reversed sex change may occur under low-density condition in polygynous species. For example, in a coral-dwelling damselfish *Dascyllus aruanus* (Pomacentridae), female-to-male sex change (PG) occurs in harems on isolated corals as the SA model predicts, and reversed sex change (BS) occurs when widowed males meet under experimental low-density conditions at which facultative monogamy occurs (Kuwamura et al. 2016a). In contrast, sex change rarely occurs (i.e., gonochorism) in high-density populations living in continuous coral-covered habitats, where females can choose mates with low risk of movement (Kuwamura et al. 2016a). Moreover, in another pomacentrid, the monogamous and protandrous anemonefish *Amphiprion clarkii*, sex change rarely occurs in a high-density population with low risk of movement (Ochi 1989).

The effect of population density has also been reported from protogynous labrids. Two types of males (diandry) and alternative male mating tactics are well known in Labridae (Warner and Robertson 1978; Kuwamura et al. 2016b). Primary males mature and remain as males, i.e., gonochorists, and secondary males have changed sex from female (PG). Small IP (initial phase) males participate in group spawning or sneaking, and large TP (terminal phase) males establish mating territories and pair spawn with visiting females. The percentage of IP males (primary males) and the frequency of group spawning increase with population density (Warner and Hoffman 1980; Suzuki et al. 2010), and sex change rarely occurs under high densities (Warner 1982). Contrastingly, reversed (male-to-female) sex change has been reported in low-density populations of *Halichoeres trimaculatus* (Kuwamura et al. 2007). Reversed sex change in facultatively monogamous pairs in low-density conditions has also been confirmed in a haremic wrasse *Labroides dimidiatus* (Kuwamura et al. 2014).

These examples suggest that different population densities can cause intraspecific variation in sexual pattern through variations in the mating system. Protogynous species become gonochoristic in high-density conditions and reversed sex change may occur in low-density conditions. In protandrous species; however, reversed sex change has not been reported in low-density conditions and further investigations are needed. In Sparidae, for example, both hermaphroditism (PA or PG) and gonochorism are known in at least 12 species (Table 1, S1). Although their mating systems are almost unknown at present, they will be a good subject to examine the relationship between population density and sexual pattern.

There is much more work to be done to investigate the effects of population density and mating system on interspecific variations in sexual pattern, and we hope that the database presented here should allow for many future comparative tests. To further facilitate this work, we need to create a database of the mating systems of gonochoristic fish species similar to that presented here for hermaphroditic species. We can then proceed to make comparative tests with closely related groups that differ even more strongly in sexual pattern.

Acknowledgments We would like to thank Shohei Suzuki for discussing the early version of a density-dependent sexual pattern hypothesis.
Our thanks are also due to the anonymous reviewers for constructive comments on the manuscript. This work was supported by JSPS KAKENHI Grant Number 24570033 to T. Kuwamura. We would like to thank Editage (https://www.editage.com) for English language editing.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ashman TL, Bachtrog D, Blackmon H, Goldberg EE, Hahn MW, Kirkpatrick M, Kitano J, Mank JE, Mayrose I, Ming R et al (2014) Tree of Sex: A database of sexual systems. Sci Data 1:140015
Avise J (2011) Hermaphroditism: a primer on the biology, ecology, and evolution of dual sexuality. Columbia University Press, New York
Barlow GW (1984) Patterns of monogamy among teleost fishes. Arch FischWiss 35:75–123
Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miyawaki A, Lecointre G, Ortí G (2017) Phylogenetic classification of bony fishes. BMC Evol Biol 17:162
Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton
Cole KS, Shapiro DY (1990) Gonod structure and hermaphroditism in the gobid genus Coryphopterus (Teleostei: Gobiidae). Copeia 1990:996–1003
Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364
Erisman BE, Petersen CW, Hasting PA, Warner RR (2013) Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr Comp Biol 53:736–754
Fischer EA (1981) Sexual allocation in a simultaneously hermaphroditic coral reef fish. Am Nat 117:64–82
Fishelson L (1992) Comparative gonad morphology and sexuality of the Muraenidae (Pisces, Teleostei), with a preliminary investigation of size-fecundity skew. Am Nat 161:749-761
Fricke HW (1980) Control of different mating systems in a coral reef fish by one environmental factor. Anim Behav 28:561–569
Fricke H, Fricke S (1977) Monogamy and sex change by aggressive dominance in coral reef fish, Nature 266:830–832
Furness AL, Tatarenkov A, Avise JC (2015) A genetic test for whether pairs of hermaphrodites can cross-fertilize in a selling killifish. J Hered 106:749–752
Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44:189–208
Ghiselin MT (1974) The economy of nature and the evolution of sex. University of California Press, Berkeley, California
Heath DJ (1977) Simultaneous hermaphroditism; cost and benefit. J Theor Biol 64:363–373
Kazancıoğlu E and Alonzo SH (2010) A comparative analysis of sex change in Labridae supports the size advantage hypothesis. Evolution 64:2254–2264
Kupchik MJ, Benfield MC, Sutton TT (2018) The first in situ encounter of Gigantura chani (Giganturidae: Giganturoidei: Aulopiformes: Cyclosoquama: Teleostei), with a preliminary investigation of pair-bonding. Copeia 106:641–645
Kuwamura T (1997) The evolution of parental care and mating systems among Tanganitian cichlids. In: Kawanabe H, Horii M, Nagoshi M (eds) Fish communities in Lake Tanganyika. Kyoto University Press, Kyoto, pp 57–86
Kuwamura T, Nakashima Y (1998) New aspects of sex change among reef fishes: recent studies in Japan. Environ Biol Fish 52:125–135
Kuwamura T, Kadota T, Suzuki S (2014) Testing the low-density hypothesis for reversed sex change in polygynous fish: experiments in Labroides dimidiatus. Sci Rep 4: 4369
Kuwamura T, Nakashima Y, Yogo Y (1994) Sex change in either direction by growth-rate advantage in the monogamous coral goby, Paragobiodon echinocephalus. Behav Ecol 5:434–438
Kuwamura T, Suzuki S, Kadota T (2011) Reversed sex change by widowed males in polygynous and protogynous fishes: female removal experiments in the field. Naturwissenschaften 98:1041–1048
Kuwamura T, Suzuki S, Kadota T (2016a) Male-to-female sex change in widowed males of the protogynous damselfish, Dascyllus aruanus. J Ethol 34:85–88
Kuwamura T, Suzuki S, Kadota T (2016b) Interspecific variation in the spawning time of labrid fish on a fringing reef at Iriomote Island, Okinawa. Ichthyol Res 63:460–469
Kuwamura T, Suzuki S, Tanaka N, Uchi E, Karino K, Nakashima Y (2007) Sex change of primary males in a diandric labrid Halichoeres trimaculatus: coexistence of protandry and protogyny within a species. J Fish Biol 70:1898–1906
Kuwamura T, Tanaka N, Nakashima Y, Karino K, Sakai Y (2002) Reversed sex-change in the protogynous reef fish Labroides dimidiatus. Ethology 108:443–450
Manabe H, Ishimura M, Shinomiya A, Sunobe T (2007) Field evidence for bi-directional sex change in the polygynous gobiid fish Trimma okinawae. J Fish Biol 70:600–609
Mank JE, Promislow DE, Avise JC (2006) Evolution of alternative sex-determining mechanisms in teleost fishes. Biol J Linn Soc 87:83–93
Munday PL, Buston PM, Warner RR (2006) Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol 21:89–95
Munday PL, Kuwamura T, Kroon FJ (2010) Bidirectional sex change in marine fishes. In: Cole KS (ed) Reproduction and sexuality in marine fishes: patterns and processes. University of California Press, Berkeley, California, pp 241–271
Muñoz RC, Warner RR (2003) Testing a new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size-fecundity skew. Am Nat 159:129-136
Muñoz RC, Warner RR (2004) A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size-skew effects in the bucktooth parrotfish, Sparisoma radians. Behav Ecol 15:129-136
Nakazono A, Kuwamura T (eds) (1987) Sex change in fishes. Tokai University Press, Tokyo
Nelson JS (2006) Fishes of the world, 4th edn. John Wiley & Sons, New York
Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world, 5th edn. John Wiley & Sons, New Jersey
Ochi H (1989) Mating behavior and sex change of the anemonefish, Amphiprion clarkii, in the temperate waters of southern Japan. Environ Biol Fish 26:257–275
Petersen CW (2006) Sexual selection and reproductive success in hermaphroditic seabasses. Integr Comp Biol 46:439–448

Hermaphroditism in fishes
Petersen CW, Fischer EA (1986) Mating system of the hermaphroditic coral-reef fish, *Serranus baldwini*. Behav Ecol Sociobiol 19:171–178
Sadovy Y, Shapiro DY (1987) Criteria for the diagnosis of hermaphroditism in fishes. Copeia 1987:136–156
Sadovy de Mitcheson Y, Liu M (2008) Functional hermaphroditism in teleosts. Fish Fish (Oxf) 9:1–43
Sunobe T, Sakaida S, Kuwamura T (2016) Random mating and protandrous sex change of the platycephalid fish *Thysanophrys cel-ebica* (Platycephalidae). J Ethol 34:15–21
Sunobe T, Sado T, Hagiwara K, Manabe H, Suzuki T, Kobayashi Y, Sakurai M, Dewa S, Matsuoka M, Shinomiya A, Fukuda K, Miya M (2017) Evolution of bidirectional sex change and gonochorism in fishes of the gobid genera *Trimma*, *Priolepis*, and *Trimmatom*. Sci Nat 104:15
Suzuki S, Kuwamura T, Nakashima Y, Karino K, Kohda M (2010) Social factors of group spawning as an alternative mating tactic in the territorial males of the threespot wrasse *Halichoeres trimaculatus*. Environ Biol Fish 89:71–77
Taborsky M (2008) Alternative reproductive tactics in fish. In: Oliveira RF, Taborsky M, Brockmann HJ (eds) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge, pp 251–299
Tomlinson J (1966) The advantages of hermaphroditism and parthenogenesis. J Theor Biol 11:54–58
Van der Walt BA, Mann BQ (1998) Aspects of the reproductive biology of *Sarpa salpa* (Pisces: Sparidae) off the east coast of South Africa. Afr Zool 33:241–248
Warner RR (1975) The adaptive significance of sequential hermaphroditism in animals. Am Nat 109:61–82
Warner RR (1978) The evolution of hermaphroditism and unisexual-ity in aquatic and terrestrial vertebrates. In: Reese ES, Lighter FJ (eds) Contrasts in behavior. John Wiley & Sons, New York, pp 77–101
Warner RR (1982) Mating systems, sex change and sexual demog-raphy in the rainbow wrasse, *Thalassoma lucasanum*. Copeia 1982:653–661
Warner RR (1984) Mating behavior and hermaphroditism in coral reef fishes. Am Sci 72:128–136
Warner RR (1988) Sex change in fishes: hypotheses, evidence, and objections. Environ Biol Fish 22:81–90
Warner RR, Hoffman SG (1980) Local population size as a determinant of mating system and sexual composition in two tropical marine fishes (*Thalassoma* spp.). Evolution 34:508–518
Warner RR, Lejeune P (1985) Sex change limited by paternal care: a test using four Mediterranean labrid fishes, genus *Symphodus*. Mar Biol 87:89–99
Warner RR, Robertson DR (1978) Sexual patterns in the labroid fishes of the Western Caribbean. II: The wrasses (Labridae). Smithson Contrib Zool 254:1–27

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.