Linear hash-functions and their applications to error detection and correction

Boris Ryabko
Federal Research Center for Information and Computational Technologies and Novosibirsk state university, Novosibirsk, Russian Federation, Email: boris@ryabko.net

Abstract

We describe and explore so-called linear hash functions and show how they can be used to build error detection and correction codes. The method can be applied for different types of errors (for example, burst errors). When the method is applied to a model where number of distorted letters is limited, the obtained estimate of its performance is slightly better than the known Varshamov-Gilbert bound. We also describe random code whose performance is close to the same boundary, but its construction is much simpler. In some cases the obtained methods are simpler and more flexible than the known ones. In particular, the complexity of the obtained error detection code and the well-known CRC code is close, but the proposed code, unlike CRC, can detect with certainty errors whose number does not exceed a predetermined limit.

I. INTRODUCTION

Error detection and correction codes are commonly used in telecommunication and data storage systems, and there are many effective and practically used constructions of such codes, see for review [1], [2], [3]. Currently, cyclic redundancy check (CRC), which was proposed in [4], is one of the most popular error detection codes, while block codes [2] are the basis of many error correction methods.
In short, error correction and detection systems can be described as follows: a binary word \(x_1...x_L\) is transmitted through a communication channel, and the recipient receives a message \(y_1...y_L\) in which some letters \(y_i\) may differ from \(x_i\). The purpose of an error detection code is to inform the receiver that some letters sent were changed during the transmission (i.e., at least one \(x_i \neq y_i\)). The purpose of an error correction codes is not only to report that the errors have occurred, but also to find all the letters that were changed (that is, all \(i\) for which \(x_i \neq y_i\)). (We consider the most popular model in which messages are words in the binary alphabet \(\{0, 1\}\), but the main results can be easily extended to any finite alphabet.)

The main part of both types of codes can be described as follows: the transmitted word \(x_1...x_L\) contains two subwords, say \(x_1...x_{L-l}\) and \(x_{L-l+1}...x_L\), where the first subword contains information bits, and the second one contains so-called check bits (or parity bits). When the sender wants to send \(L-l\) bits, he first sets them to \(x_1...x_{L-l}\), and then calculates the check bits \(x_{L-l+1}...x_L\). The receiver receives the word \(y_1...y_L\) and uses it to detect or correct errors that may have occurred during transmission. Generally speaking, check bits are given by a function \(\lambda\), which is defined on the set of \((L-l)\)-bit words with values in the set of \(l\)-bit words. In the area of error detection codes, \(\lambda\) is often called a hash function. It is worth noting that sometimes the check bits are not at the end of the message, but in other places.

The simplest example of this scheme is the parity-bit, or check-bit, method. In this method, a sequence of information bits is \(x_1...x_{L-1}\), the check bit is \(x_L\), (i.e. \(l = 1\)). If the total number of 1-bits in the string \(x_1...x_{L-1}\) is even, then \(x_L = 0\), otherwise \(x_L = 1\). When the receiver obtains \(y_1...y_L\) he calculates the total number of 1-bits. If this value is odd, it means that an error has occurred. Thus, this method makes it possible to detect one error, but, obviously, does not detect two errors (and any even number of errors).

Naturally, the larger the number of information bits (i.e. \(L-l\)), the better the code one can construct. That is why the question about codes with the largest number of information bits has attracted attention of many researcher (see for review [2]). In order to describe some known results in this field we need some definitions. The expression \(|X|\) denotes the number of elements if \(X\) is a set and the length \(X\), if \(X\) is a word. Let \(u, v\) be finite binary words of the same
length. We denote the Hamming weight of \(u \), i.e., the number of 1’s in the word \(u \) by \(||u|| \) and, by definition, the Hamming distance \(d_h(u, v) = ||u \oplus v|| \), where \(\oplus \) is bitwise XOR (or addition modulo 2). Let \(U \) be a set of binary words of the same length and \(|U| > 1 \). The minimal Hamming distance of \(U \) is defined by as \(d_h(U) = \min_{u,v \in U, u \neq v} d_h(u, v) \). Let \(U \) be a set of binary words of some length \(L, L \geq 2 \). The Varshamov-Gilbert bound states that

\[
\max_{d_h(U)=d} |U| \geq 2^{L-\lceil \log_2(1+\sum_{i=0}^{d-2} \binom{L-1}{i}) \rceil},
\]

see [2], Theorem 2.9.3. There exist some improvements of this bound, but they do not change its asymptotic (see for review [5], [6]).

The ability of a code to detect and correct errors is simply related to the Hamming distance \(d_h(U) \). To show this, we first define

\[
B^m_n \subset \{0,1\}^m, n \leq m, \text{is a set of words of length m which contain n or less 1’s . }
\]

(That is, \(B^m_n \) contains all words whose Hamming weight is not grater than \(n \).) Now, take \(U \subset \{0,1\}^L \) and consider a method where \(U \) is the set of messages transmitted and \(v \) is the word of errors occurred, that is, the message transmitted is \(x \in U \) and the message received is \(y = x \oplus v \). Suppose that \(d_h(U) = d, d \geq 2 \). It turns out, that \(d-1 \) errors can be detected is (i.e., \(v \in B^L_{d-1} \)), and \(\lceil (d-1)/2 \rceil \) errors can be corrected (i.e., \(v \in B^L_{\lceil (d-1)/2 \rceil} \)). Indeed, if \(x \in U \) and \(v \in B^L_{d-1} \), then \(y = x \oplus v \) does not belong to \(U \) and this indicates an error. In order to correct errors, the word closest to \(y \) is considered sent.

We briefly reviewed a model in which errors are letter distortions, and their number is limited by a certain bound. There are other models of possible errors that describe various systems for transmitting and storing information, for example, packet errors. This general case is also considered in this work, the part 4.

In this work we describe new classes of error detection and correction codes, which are based on the so-called linear hash functions. Linear hash functions are defined as follows: any map \(\lambda \) defined on \(L \)-bit binary words whose values \(\lambda(x) \) are taken from the set \(l \)-bit binary words,
$l < L$, is called a hash function. (Formally, $\lambda : \{0, 1\}^L \to \{0, 1\}^l$, $L > l \geq 1$.) A hash function λ is called linear if for any L-bit words x and y

$$
\lambda(x \oplus y) = \lambda(x) \oplus \lambda(y).
$$

Linear hash functions are well-known and date back at least to Zobrist [8].

The proposed methods allow us to build a code for any set of errors (including the case when errors occur in packages). In particular, this method can be used to detect errors whose number does not exceed a predetermined limit (for example, detecting any three errors). Note that the well-known cyclic redundancy check (CRC) codes do not detect a predetermined number of errors with certainty; rather, CRC make it possible to detect a predetermined number of errors (say, 3) only with a certain probability.

It is worth noting, that the performance of the proposed codes slightly exceeds the well-known Varshamov-Gilbert (VG) bound [2].

When considering error correction and detection codes, the problem of the complexity of the method is very important. Three questions arise: the complexity of i) encoding, ii) decoding, and iii) constructing encoding and decoding methods. In the case of error-detecting the encoding and decoding is quite simple, whereas the complexity of constructing encoding and decoding methods is relatively large. To overcome this, we propose a randomized algorithm for constructing an encoder and decoder whose performance is close to optimal, but the complexity is much smaller.

The rest of the paper is organised as follows. The next section contains a description of some of the properties of linear hash functions, as well as a general scheme of their application to codes. Section III is devoted to a model in which errors are letter distortions and an upper bound on their number is given. First, we describe a code which meets the VG bound. This method is then generalized in two directions: we describe its modification that performs slightly better than the VG estimate, and we propose a randomized algorithm. The last section describes general methods of error detection and correction.
II. LINEAR HASH FUNCTIONS AND THEIR APPLICATIONS TO ERROR DETECTION AND CORRECTION

A. Representation of linear hash functions as sums of words

Consider a linear hash function λ defined on the set of L-bit binary words $\{0, 1\}^L$ and $\lambda(x)$ taken from the set of l-bit binary words $\{0, 1\}^l$. It will be convenient to denote by e^k_i a string of k bits that contains 1 at the i-th position and zeros at all others, and let e^k_0 be the string of length k consisting only of 0s.

Let $x = x_1 \ldots x_L$ be an L-bit word and v_1, \ldots, v_L be any l-bit words. Define a function

$$\lambda(x) = x_1 \times v_1 \oplus x_2 \times v_2 \oplus \ldots \oplus x_L \times v_L,$$ \hfill (3)

where $x_i \in \{0, 1\}$ and we assume $0 \times v = 00 \ldots 0, 1 \times v = v$.

For any two vectors x, y we obtain

$$\lambda(x \oplus y) = (x_1 \oplus y_1) \times v_1 \oplus (x_2 \oplus y_2) \times v_2 \oplus \ldots \oplus (x_L \oplus y_L) \times v_L =$$

$$(x_1 \times v_1) \oplus (y_1 \times v_1) \oplus (x_2 \times v_2) \oplus (y_2 \times v_2) \oplus \ldots \oplus (x_L \times v_L) \oplus (y_L \times v_L) = \lambda(x) \oplus \lambda(y).$$

So, the hash-function (3) is linear. On the other hand, for any linear hash-function λ'

$$\lambda'(x) = x_1 \times \lambda'(e^L_1) \oplus x_2 \times \lambda'(e^L_2) \oplus \ldots \oplus x_L \times \lambda'(e^L_L)$$

and, hence, λ' is represented in the form (3), where $v_i = \lambda'(e^L_i)$. Thus, we derived the following:

Theorem 1. A hash-function λ is linear if and only if it can be represented as

$$\lambda(x) = x_1 \times v_1 \oplus x_2 \times v_2 \oplus \ldots \oplus x_L \times v_L$$ \hfill (4)

for some l-bit words $v_1, \ldots, v_L \in \{0, 1\}^l$.

Note that the CRC code is a linear hash function and, hence, can be represented as (3). Also, it is worth noting that the calculation of (3) does not require multiplication or other time-consuming operations, and can be performed in linear time.
B. A scheme for using a linear hash function to detect and correct errors

Consider the following data transfer scheme: there are sets of \(L\)-bit messages \(A_0\) and possible distortions (or errors) \(D \subset \{0, 1\}^L\). If the message \(x \in A_0\) is sent through the channel, a distortion \(d \in D\) may occur, that is, the recipient receives the message \(x \oplus d\). (For example, if \(D\) contains all words with two 1’s, this means that two-bit errors may occur during the transfer.)

A key component is a linear hash function \(\lambda\) such that

\[
\lambda(x) = e_0^l \quad \text{for all } x \in A_0 \quad \text{and} \quad \lambda(d) \neq e_0^l \quad \text{for all } d \in D,
\]

where the set \(A_0\) is constructed as follows: any message \(x = x_1...x_L\) consists of \(L-l\) information symbols \(x_i,...,x_{i_l-1}\), while the remaining \(l\) symbols are used as check symbols. (Generally, we will use \(x_1...x_{L-l}\) as information symbols and \(x_{L-l+1}...x_L\) as check symbols.) The check symbols are chosen in such a way that \(\lambda(x) = e_0^l\) for all \(x \in A_0\). If the distortion \(d \in D\) occurs, the received message \(y\) can be presented as \(y = x \oplus d\). (If no error occurs, then \(y = x\).) We can see from this equation that this method gives a possibility to detect any distortion \(d \in D\), because

\[
\lambda(y) = \lambda(x \oplus d) = \lambda(x) \oplus \lambda(d) = \lambda(d) \neq e_0^l.
\]

Thus, this scheme allows to detect any distortion \(d \in D\), because the equation \(\lambda(y) \neq 0\) means that \(d\) occurred, and, conversely, the opposite equation \(\lambda(y) = 0\) informs about the absence of an error.

This system can be used to correct errors if the following additional property applies: all values of \(\lambda(d)\) are different, i.e. for all \(d_i,d_j \in D\), \(\lambda(d_i) \neq \lambda(d_j)\). Indeed, in this case, the decoder may first compute \(\lambda(y) = \lambda(d)\), see (6). All \(\lambda(d)\) are different and therefore the decoder can find \(d\) from \(\lambda(d)\) and compute \(x = y \oplus d\).

III. CODES FOR A LIMITED NUMBER OF LETTER ERRORS

We consider codes which can detect or correct a limited number of bit-errors, that is, the possible distortions belong to the ball \(B_d^L\) of a certain radius \(d\), \(L > d \geq 1\). For this purpose
we develop some methods for constructing such a linear hash-function $\lambda : \{0, 1\}^L \to \{0, 1\}^l$, $l \leq L$ and a set A_0 that

$$d_h(A_0) = d, d \geq 2, \lambda(x) = e_0^l \text{ for any } x \in A_0 \text{ and } \lambda(y) \neq e_0^l \text{ for any } y \in \{0, 1\}^L \setminus A_0. \tag{7}$$

The following property of this construction will play an important role.

Theorem 2. Let there be a linear hash-function λ, an integer $d, d \geq 2$, and a set A_0 for which $\lambda(x) = e_0^l \text{ for any } x \in A_0 \text{ and } \lambda(y) \neq e_0^l \text{ for any } y \in \{0, 1\}^L \setminus A_0$. Then $d_h(A_0) \geq d, d > 1$, if and only if $\lambda(v) \neq e_0^l \text{ for any } v \in B_{d-1}^L \setminus e_0^l$.

Proof. Suppose that $d_h(A_0) = d$. Then, for any $x \in A_0$ and any $v \in B_{d-1}^L \setminus e_0^l$, the word $x \oplus v$ does not belong to A_0, because $d_h(x, (x \oplus v)) = ||v|| \leq d - 1$. Hence, $\lambda(x \oplus v) \neq e_0^l$. From this we obtain $\lambda(v) = \lambda(x) \oplus \lambda(v) = \lambda(x \oplus v) \neq e_0^l$.

Let us prove the opposite statement. Suppose, $\lambda(v) \neq e_0^l$ for all $v \in B_{d-1}^L \setminus e_0^l$. Let $x \in A_0$, $v \in B_{d-1}^L$. We can see that $x \oplus v$ does not belong to A_0, because $\lambda(x \oplus v) = \lambda(x) \oplus \lambda(v) = e_0^l \oplus \lambda(v) \neq e_0^l$. So, if $0 < ||v|| < d$, for some v, then $x \oplus v$ does not belong to A_0 and, hence, $d_h(A_0) \geq d$. \qed

The construction (7) can be directly used in error detection and correction codes. Indeed, as mentioned in the introduction, those codes are as follows: either

i) a code that can detect $d - 1$ or less bit-errors, or

ii) a code that can correct $\lfloor (d - 1)/2 \rfloor$ or less bit-errors.

In accordance with this, we will call the hash function λ and the set A_0 in (7) as a code. In this section we consider three methods for constructing such codes. The first method produces a code that matches the VG bound and can be easily randomized. A slightly improved estimate will be valid for the second method, while the third method is a greatly simplified version of the first one, obtained using randomization.
A. Method which meets VG bound

Here our goal is to build a code (7) for given integers \(L \) and \(d \), \(L > d \geq 2 \). It means that we should find methods i) to calculate \(l \), ii) to build \(\lambda \) and iii) to describe how to find, for any information symbols \(x_1...x_{L-l} \), the symbols \(x_{L-l+1}...x_L \) for which \(\lambda(x_1...x_L) = e_0^l \) (that is, \(x_1...x_L \in A_0 \)).

1) Building the hash function \(\lambda \): The following algorithm (Algorithm 1) is intended to find \(l \) and \(\lambda \) while a method for performing iii) will be described immediately after.

The input is two integers \(L, d \).

The output is two integers \(L, d \).

\[
 l = \left\lceil \log \left(\sum_{i=0}^{d-2} \binom{L-1}{i} + 1 \right) \right\rceil, \tag{8}
\]

a linear hash function \(\lambda : \{0, 1\}^L \rightarrow \{0, 1\}^l \), for which (7) holds true, and the set \(A_0 \) (here and below \(\log = \log_2 \)). If \(l \) in (8) is not defined or \(l \geq L \) then the algorithm stops and answers that the solution does not exist.

Algorithm 1.

First step. Calculate \(l \) in (8) and define

\[
 \hat{\lambda}(e_j^L) = e_1^l, \hat{\lambda}(e_2^L) = e_2^l, \ldots, \hat{\lambda}(e_i^L) = e_i^l. \tag{9}
\]

Second step. For \(i = l + 1, l + 2, ..., L \) define \(\hat{\lambda}(e_i^L) \) as follows:

\[
 \hat{\lambda}(e_i^L) = v_i \text{ where } v_i \text{ is any word from } \{0, 1\}^l \setminus \hat{\lambda}(B_{d-2}^{i-1}). \tag{10}
\]

Here and below \(\hat{\lambda}(Z) = \bigcup_{z \in Z} \{ \hat{\lambda}(z) \} \) for any set \(Z \), and \(B_{d-2}^{i-1} \) is the set of all words \(b_1b_2...b_L \) from \(B_{d-2}^L \) such that \(b_i = b_{i+1} = ... = b_L = 0 \). Note that i) \(\hat{\lambda}(e_j^L), j = 1, 2, ..., i - 1 \) are defined when \(\hat{\lambda}(B_{d-2}^{i-1}) \) is calculated, and ii) the set \(\{0, 1\}^l \setminus \hat{\lambda}(B_{d-2}^{i-1}) \) is not empty for \(i = 1, ..., L \), due to \(|\hat{\lambda}(B_{d-2}^{i-1})| \leq \sum_{j=0}^{d-2}(i-1) \) and the definition of \(l \) in (8).

From this definition we can see that \(\hat{\lambda}(e_i^L) \neq \hat{\lambda}(w) \) for any \(w \in B_{d-2}^{i-1} \) and, hence, \(\hat{\lambda}(w') \neq e_0^l \) for any \(w' \in B_{d-1}^{i-1} \), for \(i = l + 1, l + 2, ..., L \).

From (9) and (10) we can see that

\[
 \hat{\lambda}(u) \neq e_0^l \text{ for every } u \in B_{d-1}^L \setminus \{e_0^L\}. \tag{11}
\]
Final step. The goal of this step is to permute the values of the hash function λ in such a way that the last values $\lambda(e_{L-l+1}^L), \ldots, \lambda(e_{L}^L)$ will be the first l values of $\hat{\lambda}$. Clearly, this step is not a mandatory procedure, but it simplifies the encoding of the information symbols. Note that any permutation of coordinates of the set B_n^m does not change it, so the following procedure is correct: Define λ using $\hat{\lambda}$ as follows:

$$\lambda(e_{L-i}^L) = \hat{\lambda}(e_{L-l+i}^L)$$

for $i = 1, \ldots, L-l$ and

$$\lambda(e_{L-l+l+1}^L) = \hat{\lambda}(e_{L}^L)$$

for $i = 1, \ldots, l$. Note that $\lambda(e_{L-l+i}^L) = e_{l+i}$, see (9). From (11) we obtain

$$\lambda(u) \neq e_0^l \text{ for all } u \in B_d^L \setminus \{e_0^L\}. \tag{13}$$

2) Description of the set A_0 or encoding: Now we can describe the set A_0, that is, the method of encoding of information symbols. Let $x_1 \ldots x_{L-l}$ be a set of information symbols and we want to find the check symbols $x_{L-l+1} \ldots x_L$. In order to do it, first, we pad $x_1 \ldots x_{L-l}$ with l zeros at the end and denote the obtained string as $u = x_1 \ldots x_{L-l}00 \ldots 0$. Then calculate $\lambda(u) = w_1 \ldots w_l$ and define $x_{L-l+1} = w_1, x_{L-l+2} = w_2, \ldots, x_L = w_l$.

Taking into account (12) we can see that $\lambda(00 \ldots 0x_{L-l} \ldots x_L) = \lambda(00 \ldots 0w_1 \ldots w_l) = (w_1 \ldots w_l)$. From this we obtain $\lambda(x_1 \ldots x_L) = \lambda(x_1 \ldots x_{L-l}(00 \ldots 0) \oplus \lambda(00 \ldots 0x_{L-l} \ldots x_L) = (w_1 \ldots w_l) \oplus (w_1 \ldots w_l) = e_0^l$. So, for any information symbols $x_1 \ldots x_{L-l}$ we find the check symbols $x_{L-l+1} \ldots x_L$ such that $\lambda(x_1 \ldots x_L) = e_0^l$.

It will be convenient to describe the properties of the described algorithm as follows:

Theorem 3.

i) The described algorithm is correct, that is, $d_h(A_0) \geq d$.

ii) the following inequality is valid for the number of information symbols $L - l$:

$$L - l = L - \left\lceil \log \left(\sum_{i=0}^{d-2} \binom{L-1}{i} + 1 \right) \right\rceil, \tag{14}$$

Proof. Taking into account (13), we can obtain the first statement i) from Theorem 2. The statement ii) follows from (8). \hfill \Box
3) The complexity: Now consider the complexity of the proposed method. There are the following three important characteristics to consider: i) the time \(T \) to construct the hash function using the algorithm described, ii) the tie encoding \(t_{\text{enc}} \) and decoding \(t_{\text{dec}} \) time if the method is used for error detection or correction. It is important to note that the hash function must be constructed only once and then used many times (for different inputs), while encoding and decoding are performed for each input.

Claim 1. i) The time \(T \) is proportional to \(\sum_{j=0}^{d-2} \binom{L-1}{j} \). If \(L \) grows to \(\infty \) and \(d \) is a constant then \(T = O((L \log L)^{d-1}) \), if \(L \to \infty \) and \(\lim d/L \) equals some \(\alpha \), then \(T = 2^{LH(\alpha)} \).

ii) If this algorithm is used for error detection then \(t_{\text{enc}} = t_{\text{dec}} = O((d-2)L \log L) \). For error correction \(t_{\text{enc}} \) is the same, but \(t_{\text{dec}} \) is proportional to \(T \) in i).

(here \(H(\alpha) = -(\alpha \log \alpha + (1-\alpha) \log(1-\alpha)) \) is Shannon entropy, see [7].)

Proof. The proof is based on a direct estimation of number of bit-operations and known estimates of the binomial coefficients, see [7], [9].

4) Examples: We start with the case \(d = 2 \), which gives a possibility to detect one error. So, the input of the algorithm is \(L \geq 1 \) and \(d = 2 \). From (8) we see that \(l = \log(1+1) = 1 \). From (9) we obtain \(\lambda(e^L_1) = 1 \). Taking into account that \(B_{i-1}^0 = e^L_0 \), we can see from (10) that \(\lambda(e^L_i) = 1 \) for all \(i, 1 = 2, ..., L \). From this and (12) we can see that \(\lambda(e^L_i) = 1 \) for all \(i, 1 = 1, 2, ..., L \). The information symbols are \(x_1 ... x_{L-1} \), while the check symbol is \(x_L \). If this method is applied to error detection, the encoder calculates \(x_L = \bigoplus_{i=1}^{L-1} (x_i \times \lambda(e^L_i)) = \bigoplus_{i=1}^{L-1} (x_i \times 1) = \bigoplus_{i=1}^{L-1} x_i \), while the decoder calculates \(\bigoplus_{i=1}^{L} (x_i \times \lambda(e^L_i)) = \bigoplus_{i=1}^{L} (x_i \times 1) = \bigoplus_{i=1}^{L} x_i \). If this sum is 1, then one error occurred, otherwise an error did not occur. Thus, in this case, the code based on linear hash functions coincides with the parity check method.

The second example is \(d = 3 \). Now the input of the algorithm is \(L \) and \(d = 3 \). From (8) we obtain \(l = \lceil \log((L-1) + 1 + 1) \rceil = \lceil \log((L+1)) \rceil \). According to the first step (see (9)) \(\lambda(e^L_1) = e^L_1, \lambda(e^L_2) = e^L_2, ..., \lambda(e^L_L) = e^L_L \). Having taken into account (10) we can see that different values of \(\lambda(e^L_i) \), \(i = l + 1, ..., L \) will be assigned different words from \(\{0, 1\}^L \).
\{e_1^{t}, ..., e_t^{t}\}. From the final step of the algorithm we can see that \(\lambda(e_{L-t+1}^{L}) = e_1^{t}, \lambda(e_{L-t+2}^{L}) = e_2^{t}, \ldots, \lambda(e_{L}^{L}) = e_t^{t}\), while the other values of \(\lambda\) are different words from \(\{0, 1\}^L \setminus \{e_1^{t}, ..., e_t^{t}\}\).

The encoding is carried out according to the method [III-A2] described above.

Note that encoding and decoding can be implemented in such a way that there is no need to store the values \(\lambda(e_1^{t}), \lambda(e_2^{t}), \ldots, \lambda(e_t^{t})\). Indeed, one can select the values \(\lambda(e_1^{t}), \lambda(e_2^{t}), \ldots, \lambda(e_t^{L-L-t})\) in lexicographical order and calculate these values sequentially during encoding and decoding.

It is interesting that, in fact, the described method is the well-known Hamming code which can either detect two errors or correct one [2]. (Indeed, the described code can correct one error as follows: if the transmitted (or saved) message is \(y\) and one error occurred, then for some \(i\) \(\lambda(y) = \lambda(e_i^{t})\). This means that the error occurred in \(i\) - th position.)

B. Methods whose performance outperforms the VG bound

The method proposed here is a modification of the previous one. The only difference is the choice of the new value \(\hat{\lambda}(e_i^{t})\) in (10). That is why we describe only those parts of the algorithm that are different, i.e. the output and the second step. It will be convenient to describe the method and the purpose of the modifications together.

First, we describe the main idea of the proposed modification. From (10) we can see that the value of \(l\) is determined by the size of the set \(\hat{\lambda}(B_{d-2}^{L-1})\), because it must be less than \(2^l - 1\). Then we use the following obvious inequality \(|\hat{\lambda}(B_{d-2}^{L-1})| \leq |B_{d-2}^{L-1}|\) and the requirement \(|B_{d-2}^{L-1}| \leq 2^l - 1\) instead of \(|\hat{\lambda}(B_{d-2}^{L-1})| \leq 2^l - 1\). In what follows we build such a hash function \(\hat{\lambda}\) that \(|\hat{\lambda}(B_{d-2}^{L-1})|\) is less than \(|B_{d-2}^{L-1}|\). For this purpose we find such subsets \(U, V\) from \(B_{d-2}^{L-1}\) that \(U \cap V = \emptyset\) and \(\hat{\lambda}(U) = \hat{\lambda}(V)\). Taking into account that \(|\hat{\lambda}(Z)| \leq |Z|\) for any \(Z\) and the last equation we can see that

\[
|\hat{\lambda}(B_{d-2}^{L-1})| = |\hat{\lambda}(B_{d-2}^{L-1} \setminus U)| \leq |B_{d-2}^{L-1} \setminus U| = |B_{d-2}^{L-1}| - |U|.
\] (15)

So, if we find such sets \(U\) and \(V\), we have the upper bound \(|\hat{\lambda}(B_{d-2}^{L-1})| \leq |B_{d-2}^{L-1}| - |U|\) instead of \(|\hat{\lambda}(B_{d-2}^{L-1})| \leq |B_{d-2}^{L-1}|\) and, hence, can reduce the number of the check bits \(l\).
Now we can describe the modified algorithm. As we mentioned, the only difference is the second step and the definition of \(l \) which are as follows:

\[
l = \left\lfloor \log \left(\frac{\sum_{i=0}^{d-2} \binom{L-1}{i}}{\sum_{s=1}^{d-3} \left(\frac{\left(d-1 \right)}{s} \sum_{j=1}^{s-1} \binom{L-d-1}{j} \right) + 1} \right) \right\rfloor,
\]

(16)

and

Second step. For \(i = l + 1, l + 2, \ldots, L \) define \(\hat{\lambda}(e_i^L) \) as follows:

\[
\hat{\lambda}(e_i^L) = w_i \text{ where } w_i \text{ is any word from } \hat{\lambda}(B_{d-1}^{i-1}) \setminus \hat{\lambda}(B_{d-2}^{i-1}).
\]

(17)

Note that \(\sum_{s=1}^{d-3} \left(\binom{d-1}{s} \sum_{j=1}^{s-1} \binom{L-d-1}{j} \right) \) corresponds to \(|U|\) in (15).

Now we describe the sets \(U \) and \(V \). From (17) we can see that for \(i = L - 1 \), \(\hat{\lambda}(e_{L-1}^L) = w_{L-1} \in \hat{\lambda}(B_{d-1}^{L-2}) \setminus \hat{\lambda}(B_{d-2}^{L-2}) \). By definition, \(\hat{\lambda}(e_{L-1}^L) = \hat{\lambda}(00\ldots0010) \). On the other hand, from (17) we see that there exists \(x = x_1\ldots x_{L-2}00 \) which contains \(d - 1 \) ones and \(\hat{\lambda}(x) = w_{L-1} \).

Hence, \(\hat{\lambda}(00\ldots0010) = \hat{\lambda}(x) \). The word \(x \) contains \(d - 1 \) ones among \(x_1\ldots x_{L-2} \). To simplify the notation we suppose that \(x_1 = 1, \ldots, x_{d-1} = 1 \) whereas the others \(x_i = 0 \). (We can do this without loss of generality due to the symmetry of the set \(B_{d-1}^{L-2} \setminus B_{d-2}^{L-2} \).) So,

\[
\hat{\lambda}(00\ldots0010) = \hat{\lambda}(11\ldots100\ldots0), \text{ where } 11\ldots1 \text{ is } (d - 1) \text{ ones.}
\]

(18)

\[
Z = \{ z : z = xy00, \text{ where } |x| = d - 1, |y| = L - d - 1, ||x|| + ||y|| \leq d - 3, \text{ and } ||y|| \leq ||x|| - 1 \}\]

(19)

Now we define the following sets

\[
U = \{ u : u = 00\ldots0010 \oplus z, z \in Z \}, \quad V = \{ v : v = 11\ldots100\ldots0 \oplus z, z \in Z \},
\]

(20)

where, as before in (18), 11\ldots1 is \((d - 1) \) ones.

Claim 2. i) \(U \cap V = \emptyset \).

ii) \(\hat{\lambda}(U) = \hat{\lambda}(V) \).

iii) \(U \subset B_{d-2}^{L-1}, \ V \subset B_{d-2}^{L-1} \).
iv)
\[|U| = \sum_{s=1}^{d-3} \left(\binom{d-1}{s} \sum_{j=1}^{s-1} \binom{L-d-1}{j} \right). \] (21)

Corollary. From i) - iii) we can see that \(\hat{\lambda}(B_{d-2}^{L-1}) = \hat{\lambda}(B_{d-2}^{L-1}) \setminus U \). From this and iv) we obtain
\[|\hat{\lambda}(B_{d-2}^{L-1})| = |\hat{\lambda}(B_{d-2}^{L-1}) \setminus U| \leq |B_{d-2}^{L-1}| - |U| = \sum_{i=0}^{d-2} \binom{L-1}{i} - \sum_{s=1}^{d-3} \left(\binom{d-1}{s} \sum_{j=1}^{s-1} \binom{L-d-1}{j} \right). \]

Taking into account that |\(\hat{\lambda}(B_{d-2}^{L-1}) \))| must be not greater than \(2^l - 1 \), we obtain (16).

Proof. i) The two last digits of any \(u \in U \) are 10, whereas the two last digits of any \(v \in V \) are 00, see (19).

ii) \(|U| = |V| \) (see (19)) and for any \(u \in U \) there exists \(v \in V \) such that \(\hat{\lambda}(u) = \hat{\lambda}(v) \).

iii) From the definition \(U \) in (19) we can see that \(|u| = ||x|| + ||y|| + 1. Taking into account that \(|x| + |y| \leq d - 3\), we obtain from the last equation that \(|u| \leq d - 2\), that is, \(u \in B_{d-2}^{L-1} \). Let us consider the set \(V \). From (19) we can see that \(|v| = (d - 1) - ||x|| + ||y|| \) and \(|y| + 1 \leq ||x|| \). From the latter two inequalities we obtain \(|v| \leq d - 2\), that is, \(v \in B_{d-2}^{L-1} \).

iv) The equation \(|U| = |Z| \) follows from (19). Let now \(s = ||x||, j = ||y|| \). From (19) we can see that \(|y| \leq ||x|| - 1\), that is, \(0 \leq j \leq s - 1 \). Taking into account that \(|x| + |y| \leq d - 3\) and \(y \geq 0 \), we can see that \(|x| \leq d - 3\), that is, \(0 \leq s \leq d - 3 \). Using common combinatorial formulas, we obtain
\[|U| = \sum_{s=1}^{d-3} \left(\binom{d-1}{s} \sum_{j=1}^{s-1} \binom{L-d-1}{j} \right). \]

The claim is proven.

It will be convenient to summarize the properties of the algorithm just described as follows:

Theorem 4. For the modified algorithm 2, the following equality is valid for the number of information symbols \(L - l \):
\[L - l = L - \left[\log \left(\sum_{i=0}^{d-2} \binom{L-1}{i} \right) - \sum_{s=1}^{d-3} \left(\binom{d-1}{s} \sum_{j=1}^{s-1} \binom{L-d-1}{j} \right) + 1 \right]. \] (22)

DRAFT
C. A randomised algorithm whose performance is close to the VG bound.

In this part we consider a randomised algorithm whose performance is close to the VG bound, but whose complexity is much smaller.

Let, as before, the block length be \(L \), the required code distance be \(d \) and \(l = \lceil \log (\sum_{i=0}^{d-2} (L-i)) + 1 \rceil \), see (8). Define \(l_\Delta = l + \Delta \), where \(\Delta \) is such an integer that \(L - l_\Delta \geq 1 \).

The only difference between the new randomised algorithm and the algorithm 1 is in the second step (10). In the new algorithm the values \(\hat{\lambda}(e^L_i) \), \(i = l_\Delta + 1, ...L \), are chosen randomly from \(\{0,1\}^{l_\Delta} \), are chosen randomly according to the uniform distribution. We call this method Algorithm 3 or the randomised algorithm.

Our goal is to estimate the probability of the following events

\[
\Pi = \{ \text{For } i = l_\Delta + 1, ...L, \text{ the (randomly chosen) word } \hat{\lambda}(e^L_i) \text{ belongs to } \{0,1\}^{l_\Delta} \setminus \hat{\lambda}(B_{d-2}^{i-1}) \},
\]

see (10). In turn, if \(\Pi \) occurs then this gives a possibility to build an encoding set \(A_0 \) for which \(d_h(A_0) \geq d \). Define

\[
\Pi_i = \{ \text{a uniformly chosen word } u \text{ belongs to } \{0,1\}^{l_\Delta} \setminus \hat{\lambda}(B_{d-2}^{i-1}) \}.
\]

Clearly, \(\Pi = \Pi_{l_\Delta + 1} \cap ... \cap \Pi_{L-1} \) and the following chain of equations is valid

\[
P(\Pi) = P(\Pi_{l_\Delta + 1} \cap ... \cap \Pi_{L-1}) = P(\Pi_{l_\Delta + 1} P(\Pi_{l_\Delta + 2} | \Pi_{l_\Delta + 1}) P(\Pi_{l_\Delta + 3} | \Pi_{l_\Delta + 2} \Pi_{l_\Delta + 1}) ... \]

\[
P(\Pi_{L-1} | \Pi_{L-2} \ldots \Pi_{l_\Delta + 1}) \geq \prod_{i=l_\Delta + 1}^{L} \frac{|\{0,1\}^{l_\Delta} \setminus \hat{\lambda}(B_{d-2}^{i-1})|}{2^{l_\Delta}}
\]

\[
\geq \prod_{i=l_\Delta + 1}^{L} (1 - |B_{d-2}^{i-1}|/2^{l_\Delta}) \geq \prod_{i=l_\Delta + 1}^{L} (1 - \sum_{j=0}^{d-2} (i-1) / 2^{l_\Delta}) \geq 1 - 2^{-l_\Delta} \sum_{i=l_\Delta + 1}^{L} \sum_{j=0}^{d-2} (i-1), \quad (25)
\]

where \(|B_{d-2}^{i-1}| = \sum_{j=0}^{d-2} (i-1) \). Here we used two following inequalities: \(|\lambda(Z)| \leq |Z| \) for any hash-function \(\lambda \) and any set \(Z \), and \((1-a)(1-b) \geq 1 - (a+b) \) for non-negative \(a \) and \(b \).

This rather cumbersome expression can be simplified to obtain an asymptotic estimate. Indeed,

\[
\sum_{i=l_\Delta + 1}^{L} \sum_{j=0}^{d-2} (i-1) \leq \sum_{i=0}^{L} \sum_{j=0}^{d-2} (i-1) = \sum_{j=0}^{d-2} \sum_{i=0}^{L} (i-1), \quad (26)
\]
where, by definition, \(\binom{n}{k} = 0 \), if \(a < b \) or \(b < 0 \). Now we will apply the well-known identity
\[
\sum_{m=0}^{n} \binom{m}{k} = \binom{n+1}{k+1}
\]
which is sometimes called the hockey-stick identity (see, for example, [9]). So, from this and (26) we obtain
\[
\sum_{i=\Delta+1}^{L} \sum_{j=0}^{d-2} \binom{i-1}{j} \leq \sum_{j=0}^{d-2} \sum_{i=0}^{L} \binom{i-1}{j} = \sum_{j=0}^{d-2} \sum_{m=0}^{L-1} \binom{m}{j} = \sum_{j=0}^{d-2} \binom{L}{j+1}.
\]
From this and (III-C) we obtain the inequality
\[
P(\Pi) \geq 1 - 2^{-l} \sum_{j=0}^{d-2} \binom{L}{j+1}, \tag{27}
\]
which can be used instead of the more complicated right part of (III-C).

Considering that the occurrence of the event \(\Pi \) guarantees that for the encoding set \(A_0 \) constructed \(d_h(A_0) \geq d \), and combining the last inequality and (27), we obtain the following

Theorem 5. Let \(L, d \) and \(\Delta \) be integers and let \(l \) correspond to the VG bound, see [9]. If Algorithm 3 (randomised) is applied and the number of check symbols is \(l + \Delta \) (that is, the values of the hash functions are chosen randomly from \(\{0, 1\}^{l+\Delta} \) according to the uniform distribution), then the probability of the event \(\Pi^\ast \) that for the encoding set \(A_0 \) \(d_h(A_0) \geq d \), satisfies the following inequalities:
\[
P(\Pi^\ast) \geq 1 - 2^{-(l+\Delta)} \sum_{j=0}^{d-2} \binom{L}{j+1}.
\]

Corollary. Clearly, \(\sum_{j=0}^{d-2} \binom{L}{j+1} < 2^l \). From this and the theorem we obtain
\[
- \log(1 - P(\Pi^\ast)) \geq \Delta + O(1),
\]
if \(L \to \infty \).

So we can see that the probability of getting an encoding set \(A_0 \) with \(d_h(A_0) \geq d \) is mainly determined by the value of \(\Delta \), that is, the number of extra bits that are added to the VG bound \(l \). This gives a possibility to build simple error detection codes for which the number of extra
check bits Δ does not depend on the length of the message (L) and the number of errors that can be detected ($d - 1$).

IV. A GENERAL METHOD FOR ERRORS OF ANY TYPE

Now we consider a general case where there is a length of transmitted (or stored) messages L and a set of possible distortions $D \subset \{0, 1\}^L$. For example, let $L = 5$ and $D = \{00111, 01110, 11100\}$. It means that three consecutive letters can be changed. If $x = 01010$ and $d = 11100$, the output message is $y = 10110$.

So far, we have considered the case where the check symbols are located at the end of the message. Now it will be convenient to assume that the check symbols can be located in different positions, but, of course, they will be known to the encoder and decoder. This generalization allows us to simplify the notation slightly.

A. Error detection.

Let us describe an algorithm for calculating a hash function λ that gives a possibility to detect any distortion $d \in D$, $D \subset \{0, 1\}^L \setminus e_0^L$. That is, for any message x and any $d \in D$

$$\lambda(x \oplus d) = \lambda(d) \neq 00...0; \quad \lambda(x) = 00...0.$$

(28)

In order to describe the algorithm we define the sets D_i and D'_i, $i = 1, 2, ..., L$, by

$$D_i = \{d = d_1...d_L : d \in D, \ d_i = 1 \text{ and } d_{i+1} = 0, d_{i+2} = 0, ..., d_L = 0\}$$

$$D'_i = \{d' : \exists d \in D_i \text{ for which } d' = (d \oplus e^L_i)\},$$

(29)

that is, D_i contains all $d = d_1...d_L$ from D for which $d_i = 1$ and $d_{i+1} = 0, d_{i+2} = 0, ..., d_L = 0$, while D'_i contains all the words from D_i in which d_i changes to 0.

Input. A message length L and a set of possible distortions $D \subset \{0, 1\}^L \setminus e_0^L$.

Output. Such an integer l that

$$2^l - 1 \geq \max_{i=1,...,L} |D'_i|$$

(30)
and a linear hash function $\lambda : \{0, 1\}^L \rightarrow \{0, 1\}^l$, for which (28) is true. If l in (30) is not defined or $l \geq L$, the algorithm stops and answers that the solution does not exist.

The algorithm.

First step. Calculate l in (30) and define

$$\lambda(e_1^L) = e_1^l, \lambda(e_2^L) = e_2^l, \ldots, \lambda(e_l^L) = e_l^l. \quad (31)$$

Second step. For $i = l + 1, l + 2, \ldots, L$ define $\lambda(e_i^L)$ as follows:

$$\lambda(e_i^L) = v_i \text{ where } v_i \text{ any word from } \{0, 1\}^l \setminus \lambda(D_i'). \quad (32)$$

From (31) and (32) we can see that

for any $u \in \lambda(D)$, \quad $\lambda(u) \neq e_0^l$. \quad (33)

Note that $\lambda(e_j^L), j = 1, 2, \ldots, i - 1$ are defined when $\lambda(D_i')$ is calculated, see (31) and (32).

Now we can describe the method for encoding and decoding. The positions $1, \ldots, l$ are used for check symbols, while the other $L - l$ are used for information symbols. When encoding, the encoder first puts the information symbols into positions $\{l + 1, \ldots, L\}$ and 0’s into positions $1, \ldots, l$. Denote the obtained word x^* and calculate $\lambda(x^*) = w_1 \ldots w_l$. Then put letters $w_1 \ldots w_l$ into the check positions $1, \ldots, l$ and denote the obtained word by $x = x_1 \ldots x_L$. It should be clear that $\lambda(x) = 00 \ldots 0$. Indeed, $\lambda(x) = \lambda(x^*) \oplus \lambda(x \oplus x^*) = w_1 \ldots w_l \oplus ((e_1^l \times w_1) \oplus (e_2^l \times w_2) \oplus (e_l^l \times w_l)) = w_1 \ldots w_l \oplus w_1 \ldots w_l = 00 \ldots 0$. (Here we used the definition (31).)

It will be convenient to describe the properties of the algorithm above as follows:

Theorem 6. The algorithm is correct, that is, if an error $d \in D$ has occurred, then $\lambda($received message$) \neq 00 \ldots 0$, and $\lambda($received message$) = 00 \ldots 0$, if no error occurred.

Proof. Suppose that the input message is $x = x_1 \ldots x_L$ and the output message is $y = y_1 \ldots y_L$. Then

$$\lambda(y) = 00 \ldots 0 \oplus \lambda(y) = \lambda(x) \oplus \lambda(y) = \lambda(x \oplus y) \in D.$$

Taking into account (33), from these equations we can see that $\lambda(y) = 00 \ldots 0$ if $y = x$ and $\lambda(y) \neq 00 \ldots 0$, if $y \neq x$.

DRAFT
Now consider the complexity of the proposed method. There are two important characteristics: the time of encoding and decoding and the construction time of the hash function. It is important to note that the hash function must be prepared once, and then can be used for a long time, while encoding and decoding are performed repeatedly.

Claim 3. The number of bit-operations \(t \) for encoding and decoding is not greater than \(O(Ll) \). If \(L \) grows to \(\infty \), the number of bit-operations \((T) \) for building the hash-function \(\lambda \) is proportional to \(|D|l \).

Proof is based on a direct estimation of the number of bit-operations.

Let us consider a simple example illustrating the described method. Suppose that a system should transmit 6-bit messages, but two consecutive letters may be distorted. It means that the set of possible distortions is

\[
D = \{000011, 000110, 001100, 011000, 110000\}. \quad (34)
\]

(That is, any message \(x_1\ldots x_6 \) may change into \(x \oplus d_i \) during the transmission, where \(d_i \) is \(i \)-th word from \(D \).) Our goal is to build a code which can detect any distortion from \(D \) that occurs during the transmission. For this, we first build a linear hash-function \(\lambda \) described in this part. According to (IV-A) we find that \(D_1 \) and \(D'_1 \) are empty sets and

\[
D_2 = \{110000\}, \quad D_3 = \{011000\}, \quad D_4 = \{001100\}, \quad D_5 = \{000110\}, \quad D_6 = \{000011\},
\]

\[
D'_2 = \{100000\}, \quad D'_3 = \{010000\}, \quad D'_4 = \{001000\}, \quad D'_5 = \{000100\}, \quad D'_6 = \{000010\}.
\]

Clearly, \(\max_i |D'_i| = 1 \) and from (30) we obtain that \(2^l - 1 \geq 1 \) and, hence, it is enough to put \(l = 1 \). Recall that it means that there will be one check symbol and 5 information ones, and, besides, \(\lambda \) will take values from \(\{0,1\} \).

Now we can find \(\lambda \). According to (31) we obtain \(\lambda(e_1^0) = 1 \). Then, based on (32) we calculate all the rest of the values of \(\lambda \) as follows: \(\lambda(e_2^0) \) should be chosen from the set \(\{0,1\} \setminus \{1\} = \{0\} \). So, \(\lambda(e_2^0) = 0 \). Analogously, \(\lambda(e_3^0) = 1 \), \(\lambda(e_4^0) = 0 \), \(\lambda(e_5^0) = 1 \), \(\lambda(e_6^0) = 0 \). Or, to put it shortly,
\(\lambda(e^6_{\text{even}}) = 0, \lambda(e^6_{\text{odd}}) = 1 \). From (34), we can see that \(\lambda(d) = 1 \) for any distortion \(d \in D \) and, hence, any distortion from this set is detected.

Now we can finish the description of the code. We know that \(l = 1 \) and, hence, the first message symbol \(x_1 \) is a check symbol, while \(x_2...x_6 \) are information ones. Suppose that information symbols are 11001. The encoder forms the word \(x^* = 011001 \), calculates \(\lambda(x^*) = 1 \) and, hence, \(x = 111001 \). If no error occurs, then \(\lambda(x) = 0 \) and the receiver obtains the information symbols 11001. If a distortion \(d \) occurs (say, \(d = 011000 \)), the receiver obtains the word \(y = x \oplus d = 100001 \), calculates \(\lambda(100001) = 1 \) and sees that the message was corrupted during the transmission.

B. Error-correction.

In this part we describe an algorithm for calculating a hash function \(\lambda \) that gives a possibility to correct any distortion \(d \in D \), where \(D \) is a given subset from \(\{0, 1\}^L \). We say that the system corrects distortions from \(D \) if

\[
\lambda(x) = 00...0 \text{ for any input message } x, \text{ all } \lambda(d), d \in D \text{ are different and non-equal to } 00...0, \text{ (hence, } \lambda(x \oplus d) = \lambda(d) \neq 00...0 \text{).} \tag{35}
\]

Note that this property gives a possibility to find \(d \) and the original message \(x = y \oplus d \).

To describe the algorithm for constructing \(\lambda \), we will define some auxiliary variables. For any word \(x_1...x_L \) and \(1 \leq i \leq L \) we define \(x_i^L = x_1x_2...x_i00...0 \) and let

\[
D^+ = D \cup \{e^L_0\}, \quad G_i = \{d_1^i, d \in D^+\}, \quad H_i = G_i \setminus G_{i-1},
\]

\[
F_i = \{\text{All } f \text{ for which } \exists g \in G_{i-1}, \exists h \in H_i: f = g \oplus h \oplus e^L_i\}. \tag{36}
\]

Input. A message length \(L \) and a set of possible distortions \(D \subset (\{0, 1\}^L \setminus e^L_0) \).

Output. An integer \(l \) such that

\[
2^l - 1 \geq \max_{i=1,...,L} |F_i| \tag{37}
\]
and a linear hash function $\lambda : \{0, 1\}^L \to \{0, 1\}^l$, for which

$$
\text{all } \lambda(d), \ d \in D, \text{ are different and non-equal to 00...0},
$$

(38)

see (IV-B). If l in (37) is not defined or $l \geq L$, the algorithm stops and answers that the solution does not exist.

The algorithm.

First step. Define

$$
\lambda(e^L_1) = e^l_1, \ \lambda(e^L_2) = e^l_2, \ldots, \lambda(e^L_l) = e^l_l.
$$

(39)

Second step. For $i = l + 1, l + 2, \ldots, L$ define

$$
\lambda(e^L_i) = v \text{ where } v \text{ any word from } \{0, 1\}^l \setminus \lambda(F_i).
$$

(40)

Note that $\lambda(e^L_j), \ j = 1, 2, \ldots, i - 1$ are defined when $\lambda(F_i)$ is calculated, see (39) and (40).

The key property of the algorithm described is the following

Theorem 7.

All $\lambda(u), \ u \in \lambda(D^+)$, are different.

(41)

Proof. We prove this by induction on i for $G_i, i = 1, \ldots, L$, where $G_L = D^+$. For $1, \ldots, l$ the property (41) follows from (39), because $x_1x_2\ldots x_l = \lambda(x^l_1)$ for any $x = x_1\ldots x_L$. Suppose that (41) is proven for G_i, and let us prove it for G_{i+1}. Let $u, v \in G_{i+1}$. We need to show that $\lambda(u) \neq \lambda(v)$. There are the following three possibilities:

i) $u, v \in G_i$. Then, $\lambda(u) \neq \lambda(v)$, because it is proven for G_i.

ii) $u, v \in G_{i+1} \setminus G_i (= H_{i+1})$. In this case $u \oplus e^L_{i+1} \in G_i$ and $v \oplus e^L_{i+1} \in G_i$ (i.e. both belong to G_i) and, hence, $\lambda(u \oplus e^L_{i+1}) \neq \lambda(v \oplus e^L_{i+1})$. So, $\lambda(u) \neq \lambda(v)$.

iii) $u \in G_i, v \in H_{i+1}$. In this case $\lambda(u) \oplus \lambda(v) = \lambda(u \oplus v \oplus e^L_{i+1}) \oplus \lambda(e^L_{i+1})$. From the definition (IV-B) we can see that $u \oplus v \oplus e^L_{i+1}$ belong to F_{i+1}. Taking into account (40), we can see that $\lambda(e^L_{i+1}) \neq \lambda(u \oplus v \oplus e^L_{i+1})$. Hence, $\lambda(u \oplus v) \neq 00\ldots0$, and $\lambda(u) \neq \lambda(v)$.

So, for i) - iii) the inequality $\lambda(u) \neq \lambda(v)$ is proven and the induction step is completed. The claim (41) is proven.
Now we can describe the methods for encoding and decoding. The encoding coincides with
the method for error-detection. Namely, the positions $1,\ldots,l$ are used for check symbols, while
the other $L-l$ are used for information symbols. The encoder first puts the information symbols
into positions $\{1+1,\ldots,L\}$ and 0’s into positions $1,\ldots,l$. Denote the obtained word x^* and
calculate $\lambda(x^*)=w_1\ldots w_l$. Then put letters $w_1\ldots w_l$ into the check positions
$1,\ldots,l$ and denote the obtained word by $x=x_1\ldots x_L$. It should be clear that $\lambda(x)=00\ldots0$.
Indeed, $\lambda(x) = \lambda(x^*)
\oplus \lambda(x \oplus x^*) = w_1\ldots w_l \oplus ((e_1^l \times w_1) \oplus (e_2^l \times w_2) \oplus (e_l^l \times w_l)) = w_1\ldots w_l \oplus w_1\ldots w_l = 00\ldots0$.
(Here we used the definition (39).) The decoder calculates $\lambda(y)$ for the received (or stored) y.
If $\lambda(y) = 00\ldots0$, then no error occurred, otherwise a distortion d has occurred, for which $\lambda(d) = \lambda(y)$ (and, hence $y \oplus d$ is the original message).

From the property (41) we can see that the described method is correct.

Let us consider the complexity of the proposed method. There are three important characteristics: the encoding time (t_{enc}), decoding one (t_{dec}) and the construction time of the hash
function in accordance with the described algorithm (T). It is clear that $t_{enc} = O(L \log L)$ and $t_{dec} = O(|D|L \log L)$. Basing on (IV-B) and (40) we can obtain an estimate $T = O(|D| \log L)^3$.

Let us consider an example. Let the set of possible distortions D be (34). Then, from (IV-B) we obtain

$D^+ = \{000000, 000011, 000110, 001100, 011000, 110000\}$,

$G_1 = \{000000, 100000\}, G_2 = \{000000, 010000, 110000\},$

$G_3 = \{000000, 001000, 011000, 110000\}, G_4 = \{000000, 000100, 001100, 011000, 110000\},$

$G_5 = \{000000, 000110, 011000, 001100, 110000, 000010\}, G_6 = D^+$,

$H_1 = G_1 = \{000000, 100000\}, H_2 = \{010000, 110000\}, H_3 = \{001000, 011000\},$

$H_4 = \{001000, 001100\}, H_5 = \{000010, 000110\}, H_6 = \{000011\},$

$F_1 = \{000000, 100000\}, F_2 = \{000000, 100000\}, F_3 = \{000000, 100000, 010000, 110000\},$

$F_4 = \{000000, 010000, 110000, 011000, 001000, 111000\}$,
According to (37) we find $\max_{i=1,...,L} |F_i| = |F_5| = 8$ and, hence, $2^4 - 1 \geq 8$, $l = 4$. From (39) we obtain

$$\lambda(e_1^6) = 1000, \lambda(e_2^6) = 0100, \lambda(e_3^6) = 0010, \lambda(e_4^6) = 0001.$$

Then, according to (40) we calculate

$$\{0, 1\}^4 \setminus \lambda(F_5) = \{0, 1\}^4 \setminus \{0000, 0001, 0011, 0010, 0110, 0111, 1100, 1101\} = \{0100, 0011, 1000, 1001, 1011, 1110, 1111\}.$$

Any of these words can be chosen as the value of $\lambda(e_5^6)$. So, let $\lambda(e_5^6) = 1111$. Analogously,

$$\{0, 1\}^4 \setminus \lambda(F_6) = \{0, 1\}^4 \setminus \{0000, 1111, 0001, 1100, 1001, 0011\} = \{0010, 0011, 1000, 1001, 0101, 0110, 0111, 1010, 1101, 1110\}.$$

Thus, we can define $\lambda(e_6^6) = 1000$. (We can check that all $\lambda(d), d \in D$, are different: $\lambda(000011) = 0111$, $\lambda(000110) = 1110$, $\lambda(001100) = 0011$, $\lambda(011000) = 0110$, $\lambda(110000) = 1100$.) So, a linear hash function has been constructed, the number of information symbols is $L - l = 6 - 4 = 2$, the number of check symbols is $l = 4$. Suppose that the information symbols are 10. Then, according to the encoding method, $x^* = 000010, \lambda(x^*) = 1111, x = 111110$. Suppose that the distortion 011000 has occurred. Then $y = 100110$, $\lambda(y) = 0110$. Note that $\lambda(011000) = 0110$. Thus, $0110 = \lambda(y) = \lambda(011000)$. It means that the decoder has found the distortion $d = (011000)$ and can find $x = y \oplus d = 100110 \oplus 011000 = 111110 = x$. So, the error is corrected.
V. CONCLUSION

In this paper we have shown how linear hash functions can be used for error detection and error correction. It turns out, that it is possible to build error detection and correction codes for any possible set of distortions.

The case when the number of errors does not exceed a predetermined value is discussed in more detail. We consider a method whose performance is slightly better than the Varshamov-Gilbert bound [2]. In addition, we propose a randomized algorithm, the performance of which is close to this bound, but the construction and encoding times are close to linear.

ACKNOWLEDGMENT

This work was supported by Russian Foundation for Basic Research (grant 18-29-03005).

REFERENCES

[1] Lin, Shu, and Daniel J. Costello. Error control coding. Vol. 2. Prentice hall, 2001.
[2] Pless, Vera, and W. Cary Huffman. "Fundamentals of error-correcting codes." (2003).
[3] Klove, T., and Korzhik V. Error detecting codes: general theory and their application in feedback communication systems. Vol. 335. Springer Science & Business Media, 2012.
[4] Peterson, William Wesley, and Daniel T. Brown. "Cyclic codes for error detection." Proceedings of the IRE 49.1 (1961): 228-235.
[5] T. Jiang and A. Vardy, Asymptotic Improvement of the Gilbert-Varshamov bound on the size of binary codes, IEEE Transactions on Information Theory, Vol. 50, No. 8, Aug. 2004, pp. 1655-1664.
[6] P. Gaborit and G. Zemor, "Asymptotic Improvement of the Gilbert-Varshamov Bound for Linear Codes," in IEEE Transactions on Information Theory, vol. 54, no. 9, pp. 3865-3872, Sept. 2008
[7] T. M. Cover and J. A. Thomas, Elements of information theory. New York, NY, USA: Wiley-Interscience, 2006.
[8] A. L. Zobrist. A new hashing method with application for game playing. Technical Report 88, Computer Science Department, University of Wisconsin, 1970.
[9] Feller, W. An introduction to probability theory and its applications, John Wiley & Sons, 2008.