Skeletal muscle signaling response to concurrent endurance and resistance exercise

Yuhei Makanae1,2, Riki Ogasawara3 and Satoshi Fujita2*

1 Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
2 Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
3 Department of Life Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

Received: March 31, 2015 / Accepted: April 30, 2015

Abstract Concurrent training, which is a combination of resistance exercise (RE) and endurance exercise (EE) performed in succession, is used to improve both muscle strength and cardiovascular function. Although numerous studies have investigated the effects of concurrent training on muscle adaptation, no consensus has been reached. Skeletal muscle adaptation is induced by the cumulative effects of the repeated cellular and molecular responses to an acute bout of exercise. Divergent exercise modes induce different molecular signaling responses depending on the muscle contraction type. It is well known that RE induces the mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway while EE activates AMP-activated protein kinase (AMPK) signaling, and the signaling pathways stimulated by each exercise could interfere with each other. Thus, the inconsistencies in the effects of concurrent training on muscle adaptation may be explained by the different signaling interactions occurring in response to RE and EE. This review article describes the signaling pathways induced by RE, EE, and concurrent training.

Keywords: resistance exercise, endurance exercise, concurrent training, mTORC1, AMPK

Introduction Concurrent training, which is a combination of endurance exercise (EE) and resistance exercise (RE) performed in succession, is used to improve both muscle strength and cardiovascular function. Many studies have investigated the effects of concurrent training on muscle adaptation, and it has been demonstrated that the combination of RE and EE attenuates muscle hypertrophic response and increases muscle strength induced by RE alone1-4. In contrast, various studies have shown that the increase in muscle cross-sectional area (CSA) induced by concurrent training is greater than by RE alone5,6.

Skeletal muscle, the largest organ in the body, is very responsive to various types of stimulation. Chronic exercise training alters the metabolic and morphological characteristics of skeletal muscle7. The adaptation of skeletal muscle is induced by cumulative effects from repeated cellular and molecular responses to an acute bout of exercise. Divergent exercise modes induce different molecular signaling responses depending on the muscle contraction type7,8. RE, which consists of high-intensity muscle contractions, induces an increase in muscle protein synthesis, and subsequent muscle hypertrophy is considered to be almost fully dependent on the activation of the mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway. On the other hand, activation of AMP-activated protein kinase (AMPK) signaling is considered to be largely responsible for EE-induced improvements in oxidative capacity and glucose uptake9-14.

Several previous studies have demonstrated that AMPK has inhibitory effects on mTORC1 activation in muscle cells15,16. The stimulation of an AMPK agonist, 5-aminimidazole-4-carboxamide ribonucleoside (AICAR), has been shown to activate AMPK and simultaneously suppress mTORC1 activation and subsequent protein synthesis15,16. Furthermore, the activation of mTORC1 signaling in response to resistance exercise-like high-intensity muscle contraction is also suppressed by AICAR administration-induced AMPK activation17. Given that EE and RE preferentially activate AMPK and mTORC1, respectively, the signaling pathways stimulated by each exercise could interfere with each other18. Thus, the effect of concurrent training on muscle hypertrophic response may be explained by the different signaling interactions induced by RE and EE. For example, a discrepancy could be induced depending on the order of exercise and interval duration between each exercise. In this article, the signaling pathways induced by RE, EE, and concurrent training will be reviewed.

*Correspondence: safujita@fc.ritsumei.ac.jp
mTORC1 signaling response to RE

The mTORC1 pathway, which consists of mTOR, mammalian lethal with Sec13 protein 8 (mLST8, also known as Gbl), regulatory associated protein of mTOR (Raptor), DEP domain-containing mTOR-interacting protein (DEPTOR), and the proline-rich AKT substrate of 40 kDa (PRAS40), plays an important role in regulating muscle mass in response to various types of stimuli, e.g., mechanical stimulation, nutrients, growth factors, and hormones. The activated mTORC1 upregulates mRNA translation initiation and then increases muscle protein synthesis. Numerous studies have demonstrated that RE activates mTORC1 signaling and muscle protein synthesis in both animal and human experiments. Furthermore, rapamycin, an mTORC1 inhibitor, suppresses muscle contraction-induced muscle protein synthesis and subsequent skeletal muscle hypertrophy, indicating that mTORC1 plays as a critical role in regulating muscle protein synthesis and subsequent skeletal muscle hypertrophy in response to RE.

The p70 ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein 1 (eEF-BP1) are well-known downstream signaling proteins of mTORC1. Specifically, the phosphorylation of p70S6K, a serine/threonine kinase, is widely used as the indicator of mTORC1 activity. Previous studies have reported that acute changes in the phosphorylation of p70S6K are correlated with an increase in muscle mass following repeated muscle contractions in both rodents and humans. The phosphorylation of p70S6K gradually increased until 3 h after RE and remained at high levels until 24 h after the initiation of RE when compared to basal levels in untrained animals. In untrained human subjects, an acute bout of RE increased p70S6K phosphorylation immediately and at 2-4 h after RE.

AMPK signaling response to EE

AMPK is a well-known sensor of cellular energy status and is activated in response to EE and high intensity interval exercise. AMPK has subunits, including α1, α2, β1, β2, γ1, γ2, and γ3. AMPKα1 and α2 subunits play an important role in regulating AMPK activity after muscle contraction. AMPK is widely known to be responsible for EE training-induced muscle adaptations, such as enhancement of glucose uptake and increases in mitochondrial enzymes. EE-induced AMPK activation is observed during and immediately after exercise, and then rapidly returns to the basal level.

Signaling interaction between RE-induced mTORC1 and EE-induced AMPK

Although numerous studies have examined the magnitude of muscle hypertrophy or increase in muscle strength after chronic concurrent training, few studies have investigated the effects of a single bout of concurrent exercise on the mTORC1 signaling pathways in human subjects. In previous studies, EE was conducted before or after RE, and mTORC1 activation in response to RE was evaluated. In one study, subjects performed unilateral-leg cycle ergometer exercise before RE, and the magnitude of p70S6K phosphorylation was the same as when RE was performed alone. In addition, more recent studies have demonstrated a lack of inhibitory effects of EE after RE on mTORC1 activation induced by RE. In contrast, a group found that sprint and aerobic cycling exercise, performed prior to RE, hampered p70S6K phosphorylation in response to RE. Furthermore, sprint cycling exercise, but not aerobic cycling exercise, performed after RE, decreased p70S6K phosphorylation induced by RE.

Therefore, there is conflicting evidence surrounding the effect of EE on the RE-induced activation of mTORC1. However, some previous studies described a failed attempt to elicit mTORC1 activation in response to RE or concurrent training, or did not observe significant AMPK activation after EE alone or in combination with RE. These study design flaws may have contributed to the conflicting effects of EE on mTORC1 activation in response to RE.

Recently, we performed an animal study in which animals underwent an acute bout of EE prior to or after RE in order to modify the timing and interaction between AMPK and mTORC1 activation. We used electrical stimulation-induced maximal muscle contraction (5 sets of ten 3-s contractions, with a 7-s interval between contractions and 3-min rest intervals between sets) as an animal RE model and treadmill running (25 m/min for 60 min) as an EE model. We observed that AMPK activation overlapped mTORC1 activation only when EE was performed after RE, and this overlap also coincided with the attenuation of RE-induced mTORC1 activation and subsequent muscle protein synthesis. Furthermore, we observed that phosphorylation of AMPK and Raptor, the downstream pathway of AMPK and suppressor of mTORC1 signaling, respectively, was elevated when EE was performed after RE, while EE before RE did not alter the phosphorylation levels of the proteins. Thus, the attenuation of the RE-induced mTORC1 upregulation might be mediated by AMPK signaling pathways, and the order of exercise may be an important factor in determining the effect of concurrent training on muscle hypertrophy.

Some studies have reported that RE enhances or does not disrupt the improvement in oxidative capacity in response to EE training, while EE could attenuate RE-induced muscle hypertrophy. The previously discussed studies investigated the effect of a single bout of RE on EE-induced PGC-1α expression, which is a positive regulator of mitochondrial biogenesis. PGC-1α activates nuclear respiratory factors (NRFs) 1 and 2, which promote mitochondrial transcription factor A (TFAM),
Previous studies have shown that PGC-1α expression is increased by EE and is important for mitochondrial biogenesis. Lundberg et al. reported that RE after EE did not inhibit the increase in EE-induced PGC-1α mRNA expression. Similarly, RE before EE also did not inhibit the increase in PGC-1α in response to EE. In studies focused on exercise order, there were no significant effects of exercise order on EE-induced PGC-1α expression. In summary, RE performed either before or after EE may affect EE-induced upregulation of PGC-1α expression.

Conclusion

In summary, despite numerous studies, there is yet to be a consensus on the effect of concurrent exercise on muscle hypertrophic adaptation. RE and EE each induce different molecular signaling, and the order of exercise could contribute to mTORC1 activation. Further studies are needed to investigate whether the exercise sequence used when performing concurrent exercise affects long-term training adaptations such as muscle mass or oxidative capacity.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Acknowledgments

This work was supported by JSPS KAKENHI Grant No. 25282200 to S. Fujita.

References

1) Hickson RC. 1980. Interference of strength development by simultaneously training for strength and endurance. *Eur J Appl Physiol Occup Physiol* 45: 255-263.

2) Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT and Dziados JE. 1995. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. *J Appl Physiol*
JPFSM: Makanae Y, et al.

Physiol 78: 976-989.
3) Nader GA. 2006. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc 38: 1965-1970.
4) Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP and Anderson JC. 2012. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res 26: 2293-2307.
5) Mikkola J, Rusko H, Izquierdo M, Gorostiaga EM and Häkkinen K. 2012. Neuromuscular and cardiovascular adaptations during concurrent strength and endurance training in untrained men. Int J Sports Med 33: 702-710.
6) Lundberg TR, Fernandez-Gonzalo R, Gustafsson T and Tesch PA. 2013. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol 114: 81-89.
7) Coffey VG and Hawley JA. 2007. The molecular bases of training adaptation. Sports Med 37: 737-763.
8) Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ and Wackerhage H. 2005. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19: 786-788.
9) Nader GA and Esser KA. 2001. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90: 1936-1942.
10) Ogasawara R, Kobayashi K, Tsutaki A, Lee K, Abe T, Fujita S, Nakazato K and Ishii N. 2013. mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. J Appl Physiol 114: 934-940.
11) Ogasawara R, Yasuda T, Ishii N and Abe T. 2013. Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training. Eur J Appl Physiol 113: 975-985.
12) Winder WW, Taylor EB and Thomson DM. 2006. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med Sci Sports Exerc 38: 1945-1949.
13) Bergman BC, Butterfield GE, Wolfel EE, Lopaschuk GD, Casazza GA, Horning MA and Brooks GA. 1999. Muscle net glucose uptake and glucose kinetics after endurance training in men. Am J Physiol 277: E81-E92.
14) Ploug T, Stallknecht BM, Pedersen O, Kahn BB, Ohkuwa T, Vinten J and Galbo H. 1990. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol 259: E778-E786.
15) Bolster DR, Crozier SJ, Kimball SR and Jefferson LS. 2002. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977-23980.
16) Williamson DL, Bolster DR, Kimball SR and Jefferson LS. 2006. Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR. Am J Physiol Endocrinol Metab 291: E80-E89.
17) Thomson DM, Fick CA and Gordon SE. 2008. AMPK activation attenuates S6K1, 4E-BP1, and eIF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol 104: 625-632.
18) Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL and Kockel L. 2010. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell metabolism 11: 453-465.
19) Sengupta S, Peterson TR and Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40: 310-322.
20) Weigl LG. 2012. Lost in translation: regulation of skeletal muscle protein synthesis. Curr Opin Pharmacol 12: 377-382.
21) Baar K and Esser K. 1999. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276: C120-C127.
22) Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E and Rasmussen BB. 2006. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576: 613-624.
23) Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E and Rasmussen BB. 2008. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294: E392-E400.
24) Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E and Rasmussen BB. 2009. Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol 106: 1730-1739.
25) Glover EI, Oates BR, Tang JE, Moore DR, Tarnopolsky MA and Phillips SM. 2008. Resistance exercise decreases elf2Bepsilon phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. Am J Physiol Regul Integr Comp Physiol 295: R604-R610.
26) O’Neil TK, Duffy LR, Frey JW and Hornberger TA. 2009. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587: 3691-3701.
27) Ogasawara R, Sato K, Higashida K, Nakazato K and Fujita S. 2013. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 305: E760-E765.
28) Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E and Rasmussen BB. 2009. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587: 1535-1546.
29) Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS and Hornberger TA. 2011. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589: 5485-5501.
30) Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H and Blomstrand E. 2008. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102: 145-152.
31) Ogasawara R, Sato K, Matsutani K, Nakazato K and Fujita S. 2014. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J Physiol Endocrinol Metab 306: E1155-E1162.
32) Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA and Rennie MJ. 2008. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in...
human muscle. *J Physiol* 586: 3701-3717.

33) Jørgensen SB, Voïlet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA and Wojtaszewski JF. 2004. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. *J Biol Chem* 279: 1070-1079.

34) Jensen TE, Schjerling P, Viollet B, Wojtaszewski JF and Richter EA. 2004. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. *J Biol Chem* 279: 1070-1079.

35) Lefort N, St-Amand E, Morasse S, Cote CH and Marette A. 2008. The alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro. *Am J Physiol Endocrinol Metab* 295: E1447-E1454.

36) Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M and Holloszy JO. 2000. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. *J Appl Physiol* 88: 2219-2226.

37) Winder WW and Hardie DG. 1996. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. *Am J Physiol* 270: E299-E304.

38) Rasmussen BB, Hancock CR and Winder WW. 1998. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase. *Am J Physiol* 285: 1629-1634.

39) Apro W, Wang L, Ponten M, Blomstrand E and Sahlin K. 2013. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. *Am J Physiol Endocrinol Metab* 305: E22-E32.

40) Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW and Hawley JA. 2009. Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. *Am J Physiol Regul Integr Comp Physiol* 297: R1441-R1451.

41) Donges CE, Burd NA, Duffield R, Smith GC, West DW, Short MJ, Mackenzie R, Plank LD, Shepherd PR, Phillips SM and Edge JA. 2012. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. *J Appl Physiol* 112: 1992-2001.

42) Lundberg TR, Fernandez-Gonzalo R, Gustafsson T and Tesch PA. 2012. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. *Med Sci Sports Exerc* 44: 1680-1688.

43) Coffey VG, Pilegaard H, Garnham AP, O’Brien BJ and Hawley JA. 2009. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. *J Appl Physiol* 106: 1187-1197.

44) Apro W, Moberg M, Hamilton DL, Ekblom B, van Hall G, Holmberg HC and Blomstrand E. 2015. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. *Am J Physiol Endocrinol Metab* 308: E470-E481.

45) Bell GJ, Syrotuik D, Martin TP, Burnham R and Quinney HA. 2000. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. *Eur J Appl Physiol* 81: 418-427.

46) Sale DG, Jacobs I, MacDougall JD and Garner S. 1990. Comparison of two regimens of concurrent strength and endurance training. *Med Sci Sports Exerc* 22: 348-356.

47) Wenz T. 2013. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. *Mitochondrion* 13: 134-142.

48) Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP and Holloszy JO. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. *FASEB J* 16: 1879-1886.