The Effect of Sitagliptin on Hepatic Ischemic Reperfusion Injury in Rats

Song-Chol Mun, Hye-Sun Hong

Background: Dipeptidyl peptidase-4 (DPP-4, DPPIV, CD26, EC 3.4.14.5) was found out more than four decades ago as a serine protease that severs N-terminal dipeptides from peptide substrates. DPP-4 inhibitors have been used in many animal models of lung and heart illness, in which injury was obtained by an ischemic attack followed by the following reperfusion. Here, we present the large body of experimental study that now gives irresistible evidence for the useful impact of DPP-4 targeting in ischemia/reperfusion injury. In this study, we discuss the effect of DPP-4 inhibitor (Sitagliptin) on DPP-4 expression in the rat model. Materials and Methods: We made a rat model of liver ischemia (90 min)-reperfusion (180 min), collected blood and liver samples after reperfusion. The possible inhibitory effect of Sitagliptin on DPP-4 in a rat model of hepatic ischemia-reperfusion (IR) damage was evaluated. Hepatic malondialdehyde (MDA) levels were evaluated spectrophotometrically to know the degree of oxidizing reaction in the liver. We evaluated the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the model. We used hematoxylin and eosin (H and E) staining to remark the change of liver morphologically. Results: Significantly, the expression of DPP-4 levels was declined after treatment with Sitagliptin in the IR group. MDA, TNF-α, and IL-6 levels were significantly increased in the IR group but decreased in the groups treated with Sitagliptin, 5 mg/kg. H and E staining show exact edema and necrosis were remarked in the IR group, but in the Sitagliptin pretreatment group, they were decreased. Conclusion: The study showed that pretreatment with Sitagliptin might inhibit DPP-4 activation and reduce hepatic IR damage.

Keywords: Dipeptidyl peptidase-4, dipeptidyl peptidase-4 inhibitor, hepatic ischemia-reperfusion injury, sitagliptin

INTRODUCTION

Dipeptidyl peptidase-4 (DPP-4) is a membrane-associated peptidase and this is known as CD26. DPP-4 is widely spread in organs throughout the body and presents pleiotropic effects by its peptidase activity.[1-4] It is connected with immune stimulation, combining to and degradation of the extracellular matrix, resistance to anti-cancer agents, and lipid accumulation.[5-8] In the liver, DPP-4 is presented to a high degree, and recent accumulation shows that DPP-4 is connected with the development of various chronic liver diseases including hepatitis C virus infection, nonalcoholic fatty liver disease,[9,10] and hepatocellular carcinoma.[11,12] In addition, DPP-4 is involved in hepatic stem cells and plays an important role in hepatic regeneration.[8]

Liver ischemia-reperfusion injury (IRI) is observed condition, which is caused by restoring blood supply after ischemia in the liver which involved a series of pathophysiological processes, such as radical generation, neutrophil infiltration, and release of inflammatory mediators. Liver surgery often needs clamping of the selected organs to allow for liver resection, and this is often followed by reperfusion. This ischemia/reperfusion injury is characterized by the release of inflammatory mediators, which leads to damage of liver parenchyma.[13,14] It is important to develop effective therapeutic strategies to prevent and treat liver injury after ischemia/reperfusion.

Materials and Methods: We made a rat model of liver ischemia (90 min)-reperfusion (180 min), collected blood and liver samples after reperfusion. The possible inhibitory effect of Sitagliptin on DPP-4 in a rat model of hepatic ischemia-reperfusion (IR) damage was evaluated. Hepatic malondialdehyde (MDA) levels were evaluated spectrophotometrically to know the degree of oxidizing reaction in the liver. We evaluated the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the model. We used hematoxylin and eosin (H and E) staining to remark the change of liver morphologically. Results: Significantly, the expression of DPP-4 levels was declined after treatment with Sitagliptin in the IR group. MDA, TNF-α, and IL-6 levels were significantly increased in the IR group but decreased in the groups treated with Sitagliptin, 5 mg/kg. H and E staining show exact edema and necrosis were remarked in the IR group, but in the Sitagliptin pretreatment group, they were decreased. Conclusion: The study showed that pretreatment with Sitagliptin might inhibit DPP-4 activation and reduce hepatic IR damage.

Keywords: Dipeptidyl peptidase-4, dipeptidyl peptidase-4 inhibitor, hepatic ischemia-reperfusion injury, sitagliptin
portal triad, reducing intraoperative blood loss, and is necessary to cause liver IRI which can increase postoperative liver insufficiency and even liver failure.13,14

However, there are no data connected oxidative injury and inflammation reaction with DPP-4 expression and effect of DPP-4 inhibitor Sitagliptin in liver IRI \textit{in vivo}. In our study, we present the relation of oxidative injury and inflammation reaction with DPP4 expression and the effect of DPP-4 inhibitor (Sitagliptin) on DPP-4 expression in liver IRI \textit{in vivo} in rat model 227.

Materials and Methods

Animals

Male SD rats (200–250 g) were obtained from the Laboratory Animal Center of Kim Il Sung University Pyongyang Medical College. Animals were fed a standard rodent diet and water, and bred in a controlled environment with 12 h light–dark cycles. All animal procedures were approved by the Institutional Animal Care Committee and conducted in accordance with the Kim Il Sung University Pyongyang Medical College Guidelines for the Care and Use of Laboratory Animals.

Liver ischemia-reperfusion injury model

We used an established rat model of hepatic IRI, as described previously.13,14 Briefly, rats were anesthetized with isoflurane and injected with heparin (100 U/kg), and an atraumatic clip was used to interrupt the artery and portal venous blood supply to the left and middle liver lobes. After 90 min of hepatic ischemia, the clamp was removed to generate hepatic reperfusion. Rats were sacrificed 180 min after reperfusion for tissue and plasma collection. To evaluate the role of DPP-4 inhibitor, rats were pretreated with 5 mg/kg of Sitagliptin at 20 min before the ischemia insult. Sham rat underwent the same procedure but without vascular occlusion \((n = 10)\).

Serum levels of alanine aminotransferase and aspartate aminotransferase

The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are one index of hepatocyte injury. A standard automatic analyzer (Hitachi 7600–10, Hitachi High-Technologies Corporation, Japan) was used to determine the serum levels of ALT and AST.

Liver malondialdehyde levels

Hepatic malondialdehyde (MDA) levels were evaluated spectrophotometrically to evaluate the degree of oxidizing reaction in the liver as previously described.15 The absorbance of the upper layer was read at 532 nm with a spectrophotometer (Kadas 100, Dr. Lange, AG Zurich, Zurich, Switzerland), and the results expressed as nanomoles of MDA per liter of wet liver tissue.

Tumor necrosis factor-α and interleukin-6 in the liver

Tumor necrosis factor-α (TNF-α) concentration in serum and mesenteric lymph was determined by using rat TNF-enzyme-linked immunoabsorbent assay kit (LIFEKEY Biotech, Co., USA) according to the manufacturer’s protocol. Interleukin-6 (IL-6) levels were evaluated by IL-enzyme-linked immunosorbent assay according to the manufacturer’s protocol (Adlitteram Diagnostic Laboratories). One single treatment was performed on four individual wells.

Histology

Formalin-fixed, paraffin-embedded rat liver specimens were sectioned at 4 μm and stained with hematoxylin and eosin. Liver sections from the left lobe were stained with hematoxylin (Muto Pure Chemicals, Tokyo, Japan) and eosin (Wako, Osaka, Japan). The sections were used for histopathologic examinations by light microscopy \((\times 100)\).

Statistical analysis

Statistical analysis was performed using the SPSS software, version 14.0 (SPSS Inc., Chicago, Ill., USA). Results are expressed as means and standard deviations. Parameters were analyzed using Student’s \(t\)-test. For the above parameters, \(P < 0.05\) was considered to be statistically significant.

Results

Serum alanine aminotransferase and aspartate aminotransferase levels

The levels of ALT and AST were significantly increased in the IR group (control group) but significantly decreased in groups pretreated with 5 mg/kg Sitagliptin [Figure 1].

Malondialdehyde, tumor necrosis factor-α, and interleukin-6 levels in the liver

The levels of MDA were significantly increased in the IR group (control group) but significantly decreased in groups pretreated with 5 mg/kg Sitagliptin [Figure 2]. The TNF-α and IL-6 levels in the IR group were significantly increased but significantly decreased in groups pretreated with 5 mg/kg Sitagliptin [Figure 3].

Histological changes

Apparent edema and necrosis were observed in the IR group [Figure 4b] compared to sham group [Figure 4a]. In the Sitagliptin pretreatment group, edema and necrosis in IR modes were reduced. Disrupted lobular architecture and apparent edema were observed in the Sitagliptin group [Figure 4c].
DISCUSSION

Recently, researchers use partial hepatic ischemia models of rats rather than total hepatic ischemia models and this is because the total ischemia models in liver frequently have hypotension, systemic vascular congestion, and also high mortality. Therefore, in this study, we choose a partial ischemia model to derive hepatic IRI.

It is clear that DPP-4/DPPIV/CD26 cleaves off N-terminal dipeptides from peptides with preferably proline or alanine at the penultimate position. Many DPP-4 inhibitors such as sitagliptin, vildagliptin, saxagliptin, and linagliptin are available for the treatment of Type 2 diabetes. Their pharmacological action is based on the reduced cleavage of incretin hormone glucagon-like peptide-1 by DPP-4, preserving the insulinotropic action of this peptide. Recently, many studies have done regarding DPP-4 inhibitors for their applicability in other conditions pathologically, both in animal studies and in clinical settings.

IRI is characterized by an initial restriction of blood supply to an organ and it is followed by the subsequent reperfusion with concomitant reoxygenation. During ischemia, tissue hypoxia is caused by the severe imbalance of metabolic supply and demand. Restoration of the blood flow and reoxygenation is often accompanied by an exacerbation of tissue damage and profound inflammatory response. IRI is connected with modified local cytokine/chemokine secretion patterns, increased neutrophil recruitment, free-radical accumulation, lipid peroxidation, and impairment of functional and structural integrity of the organ.

The study showed that the content of MDA, TNF-α, and IL-6 in the liver tissue are increased in hepatic IRI model than in the normal one and they were decreased by the injection of Sitagliptin, one of the DPP4 inhibitors. The relevance of DPP4 as a target in IRI has been presented in several animal studies, mostly myocardial infarction and experimental lung Tx, either using DPP4 inhibitor treatment or DPP4 knock out animals. Apart from these animal studies, in patients with coronary artery disease, one study in humans showed cardioprotection by sitagliptin. Another research reported a reduction of the infarct size after myocardial IRI on DPP4 inhibitor treatment. The renal IRI studies were either performed in diabetic or nondiabetic animals, both showing a reduction in serum creatinine levels on DPP4 inhibition. Sauvé *et al.*

Figure 1: The serum level of alanine aminotransferase and alanine asparaginic acid (aspartate aminotransferase) in the sham group, ischemia-reperfusion group (control group), and groups pretreated with 5 mg/kg concentrations of Sitagliptin. The alanine aminotransferase and aspartate aminotransferase levels in the ischemia-reperfusion group were significantly increased, but significantly decreased in groups pretreated with 5 mg/kg Sitagliptin. *P < 0.05

Figure 2: The levels of malondialdehyde in sham group, ischemia-reperfusion group, and 5 mg/kg concentration of Sitagliptin pretreatment groups. **P < 0.01

Figure 3: Serum tumor necrosis factor-α (a) and interleukin-6 (b) in the sham group, ischemia-reperfusion group (control group), and groups pretreated with 5 mg/kg concentrations of Sitagliptin. **P < 0.01, ***P < 0.001
discovered a decrease of mortality both in DPP-4 and sitagliptin-treated mice. DPP4 inhibitors have capable ability to protect the heart, kidney, and lungs against IRI in preclinical models.

There are a few data that is related to DPP-4 in the liver model of IRI. The DPP4 expression is increased in the model of liver IRI, resulting in an increase of oxidative procedure and inflammation morphologic change in the liver tissue. These changes were clearly reduced by Sitagliptin, which is known to be one of the DPP-4 inhibitors. These demonstrated that Sitagliptin reduced the content of MDA, TNF-α, and IL-6 and also improved the pathophysiology findings in liver tissue, inhibiting the expression of DPP4.

In this study, we presented that pretreatment with DPP4 inhibitor Sitagliptin results in reduced MDA, TNF-α, and IL-6 production in hepatic IRI in vivo and this is consistent with previous studies. In addition, we also demonstrated that pretreatment with Sitagliptin results in significantly reduced proinflammatory cytokine production in hepatic IRI models in vivo and this is supporting that Sitagliptin might promote anti-inflammatory by inhibiting DPP-4 in vivo.

Our data clearly show that Sitagliptin may inhibit expression of DPP-4 in hepatic IR. In addition, we conclude that targeting DPP-4 represents a useful approach to promoting hepatic IRI. These results give the rationale for promoted approaches to decline hepatic IRI.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.
18. Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: A comparative review. Diabetes Obes Metab 2011;13:7-18.

19. Lambeir AM, Scharpé S, De Meester I. DPP4 inhibitors for diabetes – What next? Biochem Pharmacol 2008;76:1637-43.

20. Zaruba MM, Theiss HD, Vallaster M, Mehli U, Brunner S, David R, et al. Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 2009;4:313-23.

21. Post S, Smits AM, van den Broek AJ, Sluijter JP, Hoefer IE, Janssen BJ, et al. Impaired recruitment of HHT-1 mononuclear cells to the ischemic heart is due to an altered CXCR4/CX26 balance. Cardiovasc Res 2010;85:494-502.

22. Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M, et al. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 2010;59:1063-73.

23. Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y, et al. The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol 2010;298:H1454-65.

24. Zhang D, Huang W, Dai B, Zhao T, Ashraf A, Millard RW, et al. Genetically manipulated progenitor cell sheet with diprotin A improves myocardial function and repair of infarcted hearts. Am J Physiol Heart Circ Physiol 2010;299:H1339-47.

25. Huisamen B, Genis A, Marais E, Lochner A. Pre-treatment with a DPP-IV inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther 2011;25:13-20.

26. Ku HC, Chen WP, Su MJ. DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebersgs Arch Pharmacol 2011;384:197-207.

27. Theiss HD, Vallaster M, Rischpler C, Krieg L, Zaruba MM, Brunner S, et al. Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis. Stem Cell Res 2011;7:244-55.

28. Yin M, Silljé HH, Meissner M, van Gilst WH, de Boer RA. Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiologie Diabetol 2011;10:85.

29. Hocher B, Sharkovskaya Y, Mark M, Klein T, Pfab T. The novel DPP-4 inhibitors linagliptin and BI 14361 reduce infarct size after myocardial ischemia/reperfusion in rats. Int J Cardiol 2013;167:87-93.

30. Zhai W, Cardell M, De Meester I, Augustyns K, Hillinger S, Inci I, et al. Ischemia/reperfusion injury: The role of CD26/dipeptidyl-peptidase-IV inhibition in lung transplantation. Transplant Proc 2006;38:3369-71.

31. Zhai W, Cardell M, De Meester I, Augustyns K, Hillinger S, Inci I, et al. Intragraft DPP IV inhibition attenuates post-transplant pulmonary ischemia/reperfusion injury after extended ischemia. J Heart Lung Transplant 2007;26:174-80.

32. Zhai W, Jungraithmayr W, De Meester I, Inci I, Augustyn K, Arni S, et al. Primary graft dysfunction in lung transplantation: The role of CD26/dipeptidylpeptidase IV and vasoactive intestinal peptide. Transplantation 2009;87:1140-6.

33. Jungraithmayr W, De Meester I, Matheussen V, Baerts L, Arni S, Weder W, et al. CD26/DPP-4 inhibition recruits regenerative stem cells via stromal cell-derived factor-1 and beneficially influences ischaemia-reperfusion injury in mouse lung transplantation. Eur J Cardiothorac Surg 2012;41:1166-73.

34. Jungraithmayr W, De Meester I, Matheussen V, Inci I, Augustyns K, Scharpé S, et al. Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants: The pivotal role of vasoactive intestinal peptide. Peptides 2010;31:585-91.

35. Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging 2010;3:195-201.

36. Vaghasiya J, Sheth N, Bhaldia Y, Manek R. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. Regul Pept 2011;166:48-54.

37. Glorie LL, Verhulst A, Matheussen V, Baerts L, Magielse J, Hermans N, et al. DPP4 inhibition improves functional outcome after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2012;303:F681-8.

38. Natsume H, Tokuda H, Mizutani J, Adachi S, Matsushima-Nishiwaki R, Minamitani C, et al. Synergistic effect of vasoactive intestinal peptides on TNF-alpha-induced IL-6 synthesis in osteoblasts: Amplification of p44/p42 MAP kinase activation. Int J Mol Med 2010;25:813-7.