Plasmonics now delivers sensors capable of detecting single molecules. The emission enhancements and nanometer-scale optical confinement achieved by these metallic nanostructures vastly increase spectroscopic sensitivity, enabling real-time tracking. However, the interaction of light with such nanostructures typically loses all information about the spatial location of molecules within a plasmonic hot spot. Here, we show that ultrathin plasmonic nanogaps support complete mode sets which strongly influence the far-field emission patterns of embedded emitters and allow the reconstruction of dipole positions with 1-nm precision. Emitters in different locations radiate spots, rings, and askew halo images, arising from interference of 2 radiating antenna modes differently coupling light out of the nanogap, highlighting the imaging potential of these plasmonic “crystal balls.” Emitters at the center are now found to live indefinitely, because they radiate so rapidly.

Confining and coupling light to nanoscale objects is at the heart of nanophotonics (1). The possibility of imaging, localizing, and eventually manipulating nano-objects down to the level of single emitters is highly desirable for many applications and fundamental studies (2, 3). Approaches include the development of superresolution microscopies, such as stimulated emission depletion microscopy, structured illumination microscopy, stochastic optical reconstruction microscopy, and photoactivated localization microscopy (4, 5); however, there has also been intense interest in plasmonic nanostructures that utilize collective charge oscillations in noble metals to enhance the optical fields within a few nanometers (6). This extreme confinement of optical fields has significant implications for nanoscale sensing (7), advanced spectroscopies (8), biological applications (9), single-atom optics (10), and quantum (11, 12) and nonlinear photonics (13).

The tightly confined fields in plasmonic nanocavities enhance the fluorescence intensity of dye molecules, and their high optical density of states reduces the molecule’s emission lifetime (14–17). However, this enhanced emission comes at the cost of misrepresenting the position of individual molecules near the metallic structure (18–20). Emitters in the vicinity of a nanosphere (NP) radiate into the far field via the plasmon mode and therefore appear displaced either toward or away from the NP center, by up to 100 nm (21). Similarly, the interaction of dye molecules with colloidal aggregates can produce surface-enhanced Raman scattering (SERS) signals spatially shifted from the NP photoluminescence (PL) (22). While superresolution microscopies access subdiffraction resolution, these techniques are currently impractical for plasmonic nanocavities, due to this loss of positional information associated with plasmonic out-coupling (23). Circumventing this limitation would allow plasmonic nanocavities to be simultaneously used as a nanoscopic and spectroscopic tool.

Here, we show how careful selection of the plasmonic architecture controls the confined optical modes, so that measurements of the far-field radiation patterns access near-field positional information. To generate high-quality, high-volume data, we explored the NP-on-mirror (NPoM) architecture, which consists of an Au NP coupled to its image charges on a Au mirror, from which it is separated by a self-assembled molecular layer (24, 25). This architecture forms extremely robust, reliable plasmonic nanocavities; it is easily produced by using self-assembly, and allows for the study of thousands of identical structures on a single substrate. In this study, near-spherical Au NPs with diameters D = 60 or 80 nm are placed on flat Au mirrors after uniformly coating them with molecules of methylene blue (MB), each individually encapsulated inside a molecular container of cucurbit[7]uril (CB[7]). The CB[7] binds strongly to Au, with its molecular height ensuring a constant spacing of d = 0.9 nm between the Au NP and the Au mirror beneath (25–27), while also protecting the dye molecules and orienting them vertically.

Results

Theory and Simulations. Previous studies utilizing NPoMs [also known as particle-over-substrate, metal-insulator–metal waveguide, nanogap patch antenna (6) and equivalent to NP dimers, dumbbells (28), or homodimers (29)] suggest that light in the cavity is out-coupled through 1 of 2 antenna modes, either a transverse particle mode or a longer-wavelength, vertical-field gap mode (6, 30–32). Recent works show that emitters in the NPoM gap radiate dominantly through the gap mode, because of its stronger enhancement and radiative efficiency (33, 34). Because the optical field in the gap is mostly z-polarized (oriented as in Fig. 1), one would expect out-coupled light from these emitters to emerge at high angles from the dimer axis and thus produce ring-shaped
distributions in the far field after collection through high-numerical-aperture (NA) microscope objectives.

Here, we show this is not the case and that emission from molecules within nanoscale plasmonic gaps depends on non-negligible contributions from a large number of nanocavity modes. Furthermore, the coupling to each of these modes is highly dependent on the precise position of the molecules in the gap, which can therefore be inferred from the far-field spatial distribution of the out-coupled light. We first explored this complexity by solving Maxwell’s equations using finite element methods (FEMs; Methods and ref. 35). We obtained the far-field emission image of a dipole emitting at $\lambda = 660$ nm inside an 80-nm NPoM with gap $d = 1$ nm and facet diameter $w = 20$ nm, as it was shifted along the x direction by up to 15 nm (Fig. 1). Our calculations showed that the far-field ring emission seen for an on-axis dipole changed and became askew within a 1-nm lateral shift. Intriguingly, this nanobeaming tilted the far-field emission in the opposite direction to the emitter displacement under the facet (Fig. 1A and B). The same emission patterns were confirmed with finite-difference time-domain simulations (SI Appendix, Fig. S1).

To invert these near-field transforms, the center of mass of each of the simulated images (x_c, y_c) was used to map the azimuthal orientation, $\phi_c = \arctan(y_c/x_c) + \pi$ (Fig. 1E, i). The overlap integral O_i with the ideal ring distribution (Fig. 1B; $r = 0$) was used to quantitatively derive the fraction of ring-like emission in images at each emitter position (Fig. 1E, ii and Fig. 1D). These then allowed a 1-to-1 mapping from (ϕ_c, O_i) extracted from measured images, to the position of a single dipole, seen as red crosses in Fig. 1E reconstructing $r = (6, 0)$-nm dipole position (for details on this method, including definitions of ϕ_c and O_i, see SI Appendix, Fig. S2). We note that the total emission from the dipole (shown normalized in Fig. 1B) fell strongly when it was >9 nm from the central location (Fig. 1C), meaning that $r > 10$ nm was not observed.

To understand the peculiar behavior of these emission images, we characterized the quasinormal gap modes [found by using ONMEig (36)] and their out-coupling efficiencies using a near-to-far-field conversion (37). The resulting angular emission when passed through appropriate Fourier filtering (SI Appendix, Methods) gave images matching those shown in Fig. 1B. As is well known for spherical NPoMs or dimers, the (10) gap mode dominates at low energies; however, as the gap facet widened (Fig. 2A), the energies of higher-order modes dropped and either crossed (20) or anticrossed (11) this mode (34) [for (l_m) nomenclature, see SI Appendix, Note]. All other modes (gray) were dark, and, while the symmetric (00) modes dominate emission (Fig. 2B), the (1) modes emit through in-plane antenna dipoles (as seen in the angular emission pattern; Fig. 2F) which were 10-fold weaker but not negligible. We emphasize that since for such small gaps the gap fields are z-polarized, only the z-oriented dipole components contribute to emission.

For the 80-nm NPoMs used here with MB dyes (660 nm, 1.88 eV), facet sizes of 20 nm are typical (38), leading to operation in the regime marked by the dashed circle in Fig. 2A. These emitted typically into a combination of {10, 20, 11} modes, depending not only on the spectral overlaps, but also on the spatial overlaps.
of the near-field modes with the emitter location (Fig. 2 C and D). For example, for an emitter at \(x = 6 \text{ nm} \) (blue vertical dashed), the relative phase and amplitude of \(x \)-polarized (11, \(p \)) and radially polarized (10, 20) antenna emissions combine to give the displaced spot (in the opposite direction as seen in Fig. 1B) shifted by several times the \(\lambda/ \text{NA} \) resolution. The reversed spot displacement for \(x \sim 9 \text{ nm} \) (Fig. 1B) can then be understood to arise from the change in sign of the (20, 21) modes near the facet edge (Fig. 2 C and D). These cross-overs did not vary substantially with the experimental range of facet sizes (SI Appendix, Fig. S3). Placing a plasmonic Au sphere on top of an emitter thus acts as a nanolens or plasmonic refracting globe, capable of expanding the resolvable field of view into the nanoregime.

Experimental. To observe this nanolens effect, we alternately recorded dark-field scattering and light emission from the same NPoM over time. To efficiently excite the gap mode, we used a radially polarized continuous-wave laser with a wavelength of 633 nm and power density of 150 \(\mu \text{W} \mu\text{m}^{-2} \) at the focus. Samples created across large areas (4 \(\times \) 4 mm\(^2\); Methods) showed consistent dark-field scattering spectra, with the lowest (10) mode centered at \(\lambda_{10} \sim 730 \text{ nm} \) (below and SI Appendix, Figs. S4 and S5), close to the MB dye emission at 690 nm. Hundreds of NPs were individually imaged and spectroscopically analyzed (24, 25), with the emitted light spatially magnified (3,500 times) onto the entrance slit of a monochromator after spectrally filtering out the 633-nm excitation laser (Fig. 3). The dark-field image from the 633-nm excitation laser (Fig. 3). The dark-field image from the entrance slit of a monochromator after spectrally filtering out the emitted light spatially magnified (3,500 times) onto the entrance slit of a monochromator after spectrally filtering out the 633-nm excitation laser (Fig. 3). The dark-field image from the entrance slit of a monochromator after spectrally filtering out the emitted light spatially magnified (3,500 times) onto the entrance slit of a monochromator after spectrally filtering out the 633-nm excitation laser (Fig. 3). The dark-field image from the entrance slit of a monochromator after spectrally filtering out the emitted light spatially magnified (3,500 times) onto the entrance slit of a monochromator after spectrally filtering out the 633-nm excitation laser (Fig. 3). The dark-field image from

Insets Relative occurrence of each shape (E, Insets) for \(D = 60-\text{nm} \) (E and G) NPs. (H) Integrated emission intensity of 80-nm NPs, as sample ages after initial preparation. Vertical ellipses give SEs of fractions (G) and intensities (H) from N(3) NPs.
distribution types, at times returning to a previously observed type more than once (Fig. 4 A and B and SI Appendix, Fig. S8). This evolution was accompanied by a gradual reduction in the overall emission intensity, although the intensity tended to a steady value that was ∼30 times higher than the background from a cavity without dyes, even after 2-h irradiation (SI Appendix, Figs. S6 and S7). This implies that full bleaching was never observed, although full recovery of emission to initial levels was also never observed. This was confirmed in a second experiment by irradiating a single particle for 4 cycles, each comprising 15-min illumination and 5-min rest in the dark, with little to no recovery in emission observed following each rest period.

These changes in the emission intensity and far-field profile of individual plasmonic nanocavities suggest that emitters at different positions within the gap out-couple through different cavity modes at different times (Fig. 4E; Discussion). Since CB[7] forms monolayers with 0.24 molecules-nm⁻² (42), a 1:1 molar ratio of CB[7] to MB gives ∼75 emitters within these gaps (for 80-nm NPoMs with 20-nm facets). Given the assembly protocol, these are expected to be randomly distributed across the nanogap (Fig. 4D), although only ∼19 contribute strongly to the (10) mode emission. We note that while complex changes to the SERRS spectra sometimes appear over time (SI Appendix, Fig. S11) with changing Raman peak positions and intensities, we stress that the integrated emission was dominated (>85%) by the PL (Fig. 4F).

Since the NP diameter sets the facet width which controls the spectral tuning of the NPoM gap modes (38), the prevalence of rings (for D = 60 nm) vs. spots (for D = 80 nm) suggests the crucial importance of precisely which range of gap modes the molecules emit into (Fig. 3 E and F). Exploring more carefully the differences between 80-nm NPoMs which originally show rings vs. spots (Fig. 5 and SI Appendix, Fig. S4) provided further evidence. While NPoMs with spot-shaped emission generally gave dark-field scattering spectra dominated by the (10) resonance (Fig. 5 C and D), the NPoMs with ring-shaped emission showed also the higher-energy (20) resonance around 640 nm (Fig. 5 A and B). This was confirmed by extracting the resonance peak positions from the scattering spectra of 1,602 NPoMs, showing that this trend was robust (Fig. 5E). Similar scattering spectral changes accompanied the evolution of shape during time-resolved experiments (Fig. 4 and SI Appendix, Figs. S8–S10). The (20) mode increases out-coupling at shorter wavelengths, thus broadening the spectral emission from ring-NPoMs compared to spot-NPoMs. Askew NPoMs had similar emission spectra to the spot-NPoMs (SI Appendix, Figs. S8C and S10C).

Discussion

Emission into a ring implies that dyes near the central axis of the NP must dominate (Fig. 1 and SI Appendix, Figs. S3 and S12). Experiments showed that these rings emerge with most 60-nm NPoMs (λ₁₀ ∼ 680 nm) and for those 80-nm NPoMs (λ₁₀ ∼ 730 nm) with a larger facet [w > 25 nm, estimated from the (20) resonance position]. With smaller facets and smaller NPs, the (10) mode is more tightly confined (nearly 3-fold closer to the axis when w reduces from 20 to 0 nm), so that only dyes within 2 nm of the facet center experience strong Purcell factor enhancements and high quantum yield of emission (43) (Fig. 1). This explains the 60-nm NPoM data, since the smaller size and facets of these NPs imply emission from ∼3 centrally positioned MB dyes, where the MB emission is tuned resonantly to the lowest gap plasmon. For comparison, only dyes within 3 nm of the facet center produced rings in 80-nm NPoMs, which at a surface packing density of 0.24 molecules-nm⁻² (42) implies emission from <7 molecules. After bleaching (as observed in Fig. 4), this reduces to ≤3 molecules.

The bright spots seen initially from the 80-nm NPoMs (as in Fig. 5 C and D) must arise from multiple dyes at different positions ranging across the facet. In this situation, the coordinates given in Fig. 4C must be interpreted as the average position of emitters, indicating the location of the greatest dye concentration. For a w = 20-nm facet, the most likely dye location for out-coupling the PL is at r = 4.5 nm for the (10) mode, which will give a spot in the far field (SI Appendix, Fig. S13). This increases to r = 9.1 nm for the (11) mode, which is spectrally resonant with the PL, although it out-couples 25 times more weakly (Fig. 2B). Either coherently or incoherently summing the emission from
The full interplay of facet size and emitter position is complex in producing different emission shapes. However, askew ring-like distributions always indicate an off-center emitter, with the degree of asymmetry dependent on the emitter’s radial coordinate and thus allowing the nanoscale position of the dye to be estimated. When the facet size is known, along with the maximum emission intensity per dye (when placed at the nanocavity center), a full inversion of the patterns can yield the relative position of each dye. This is possible due to the fundamental symmetries of the (10), (20), and (11) modes in the near and far fields, which is a feature of not only faceted spherical NPoMs, but also, for example, nanocubes-on-mirror (34). A small change in gap size does not change our inversion technique and only slightly updates the appropriate mapping (SI Appendix, Note and Figs. S17 and S18). Similarly, different NP shapes lead to modified mappings from those shown in Fig. 1E and SI Appendix, Fig. S2.

However, because the emitters can be strongly coupled by the plasmonic gap modes (25, 44, 45), emitters can be coherently coupled together and jointly emit into the plasmonic gap modes which subsequently radiate, further complicating the picture outlined here. To avoid this, the samples used here are in the weak coupling regime, since there is a large detuning between the dye emission peak and the cavity resonance of the 60- and 80-nm NPoMs compared to the 40-nm NPoMs used in ref. 25. The smaller, 40-nm NPs have a smaller scattering strength (D^9) and have fewer molecules in the nanogap due to their smaller facet size ($w \sim 6$ nm), making the emission too weak to resolve spatially. Measurements on strongly coupled systems would, however, be extremely interesting for the observation of spatial coherent interactions between the emitters and nanocavity.

The MB dye was chosen for our experiments not only because it is tuned into the weak coupling regime, but because it is the longest-wavelength dye that fits within a CB[7]. Any further detuning of the dye emission peak from the cavity resonance makes emission too weak to resolve spatially. However, since simulations show that a different emission wavelength simply leads to the spot/ring transitions occurring at different emitter positions to those observed with a 660-nm wavelength, tuning the emission wavelength is completely analogous to changing the NPoM size, which is more easily studied experimentally.

The progression from spots to rings seen in time (Fig. 4 and SI Appendix, Figs. S8–S10) can be understood from the progressive bleaching of different dyes and rules out the possibility of different emission patterns being due to nanometer-scale surface roughness features on the Au mirror (32). However, it also points to a surprising feature, since the convergence to rings at longer times implies that the dyes which last longest are always at the center of the facets. This suggests that either the narrow gaps physically protect molecules on the inside from photochemical attack and/or that the Purcell factors for the dyes at the center ($F_P > 3,000$; ref. 43) are so high that the molecules emit their photons before any chemical attack or intersystem crossing is possible. While encapsulation of dyes in CB[7] is known to partially protect them from bleaching (46, 47), this is unable to explain the extreme stability observed here.

One possible explanation for the sporadic transient revivals of emission could be lateral diffusion of dyes in and out of the hot spots. However, this is not the case, since fewer than half the number of rings were observed when introducing dye solution only after the NPoM constructs were assembled, suggesting limited migration of MB molecules toward the center of the NPoM cavity. On-site reorientation of the MB dyes from in-plane (dark) to z-oriented (bright) could cause such revivals, but would be prevented by the well-defined CB[7] binding orientation (Fig. 4D). Another hypothesis for the revivals is migrating Au adatoms that can trap light into picocavities close to single molecules (10, 48) or transient defects in the Au facets that depress the local plasma frequency, resulting in large enhancements of electronic Raman emission (49). Such transient phenomena can also lead to the SERRS peaks observed (SI Appendix, Fig. S11), but will demand further enhancements of our spatiotemporal nanoscopy technique, which is shot-noise limited.

One intriguing test of our emitter position reconstruction method is to locate positions of molecules placed at known positions in the gap, for example, using DNA origami (12, 43). However, our attempts to do this have shown that the DNA layer within the NPoM introduces a fluctuating background intensity and increases the gap thickness to ~5 nm, hence decreasing the dye signal intensity below the limit required for our spatial reconstruction imaging.

The construction of localized nanolenses formed of plasmonic nanogaps supporting many highly localized transverse modes...
does, however, offer a route to peer inside solvated molecule–metal interfaces under ambient conditions and resolves here how bleaching of molecules can be localized within a few nanometers. While in typical plasmonic constructs, only a single mode controls emission, in all plasmonic narrow-gap systems (such as dimers, patch antennas, and these NPQMs), the multiple gap modes can clearly yield spatial information when the gap modes are well understood.

An intriguing scenario would be to use Au nanoconstructs as nanolenses to reconstruct deep subwavelength images in real time to track the movement of emitters inside this nanogap. Because these nanogap quasinormal modes form a complete basis set, improved localization requires only broader spectral emission into many modes, together with interferometry (imaging) in the far field. However, the symmetry of the currently faceted NPQMs or NP dimers leads to many modes being dark ($m > 2$ states), which can limit azimuthal information [though broken by noncylindrical symmetry of the NP (50)], while emission into these 3 antenna modes (the z-dipole in Fig. 2 C and E and x,y-dipoles in Fig. 2D and F) limits direct Fourier imaging approaches without the basis-state reconstruction discussed above. Approaches such as localization microscopy (4) using frame-by-frame images of each photon emitted can be combined with the techniques here (as in Fig. 4). Already, these nanocavity gap modes can deliver nanometer precision from single frames for the location of single molecules and resolve how multiple active emitters are distributed and change spatially over time.

Methods

Sample Preparation. Sample preparation began with fabrication of the Au mirror substrate by a template-stripping process. A silicon wafer was coated with a thin layer of Au (100 nm) by thermal vapor deposition. A second silicon wafer was then scored with a diamond scribe and broken into many small pieces, which were then fixed to the Au surface on the first wafer by using epoxy (Epo-Tek 377). After curing (by heating to 150 °C and then slowly cooling to room temperature), these pieces can be stripped off the first wafer as needed, by gentle application of shear force using a pair of tweezers. The Au surface on silicon freshly stripped in this manner is very active emitters are distributed and change spatially over time.

Collection of Spectra and Far-Field Scattering Profiles. Samples were studied by using the experimental setup shown in *SI Appendix, Fig. S16* with a detailed description in *SI Appendix, Experimental Setup*. Samples were illuminated with white light from a halogen lamp and were imaged in dark field through a 100× dark-field/bright-field objective using a charge-coupled device (CCD) camera. These dark-field images were used in conjunction with a motorized stage to automatically center the view on a target NP for analysis. Computer vision and automation for this purpose were enabled by Python and the Open Source Computer Vision Library. After centering, a dark-field spectrum was taken under the same white-light illumination by using a fiber-coupled spectrometer (*SI Appendix, Fig. S5*). A second, magnified, dark-field image of the target NP was taken on a second electron-multiplying CCD camera by using the zero-order reflection of a grating monochromator after passing through a series of filters (Tholier catalog nos. FEL0650 and FES0750; *SI Appendix, Fig. S16*) to limit collected light within the 650–750-nm wavelength range. The white light was then shuttered, and a radially polarized HeNe laser was turned on, allowing excitation of the MB molecules in the sample at the pump wavelength of 633 nm. The emission was collected and imaged in the same configuration as the dark field, by using the zero order of the monochromator. Finally, the monochromator grating was rotated to first order, and the spectrum of the emission was collected. The computer then automatically moved the motorized stage to the next particle, and the process was repeated (hundreds of NPQMs in each single experiment). We note that the weak light emission from individual NPQMs of 1-k counts/mW·s integrated or 0.5 counts/mW·s/pixel in images means that integration times of 10 s are required to adequately discriminate the different shapes, hence integrating over any more rapidly fluctuating phenomena such as the recently described picocavities (10, 48, 51).

COMSOL Multiphysics Simulations. The optical properties of the NPQMs were simulated by using the FEM to solve Maxwell’s equations (COMSOL Multiphysics, Version 5.4). The Au NP was modeled as an 80-nm-diameter sphere with a flat laser facet 20 nm in diameter. The permittivity of Au was modeled by a 2-pole Lorentz–Drude permittivity $\varepsilon(r, \omega) = \varepsilon_{0} + \omega_{p}^{2} / \left(\omega^{2} + \gamma^{2}\right)$. For the Au NP, $\omega_{p} = 9.63 \times 10^{15}$ rad/s, $\gamma = 0.621 \times 10^{13}$ rad/s, $\omega_{0B} = 2.263 \times 10^{13}$ rad/s, $\omega_{0C} = 4.572 \times 10^{13}$ rad/s, and $\gamma_{2} = 1.332 \times 10^{12}$ rad/s. The gap spacer was modeled as a 10-nm-thick dielectric layer with refractive index 1.45, while the NP was modeled as a 20-nm-thick Au layer. The Au NP was modeled as a 2-pole Lorentz–Drude permittivity $\varepsilon(r, \omega) = \varepsilon_{0} + \omega_{p}^{2} / \left(\omega^{2} + \gamma^{2}\right)$.

In Fig. 1, a point electric dipole emitter was placed in a NPQM gap at different radial coordinates, and the simulations were carried at a wavelength of 660 nm. The plasmonic nanocap cavity modes (Fig. 2) were modeled as quasinormal modes (QNM)s described with complex eigenfrequencies. The QNMs were calculated by using QNMeil (36), an open-source program based on COMSOL. The far-field emission patterns of the emitter and of each QNM were obtained by using QNMeil and the FEM to solve Maxwell’s equations. COMSOL Multiphysics Simulations.

Data Availability Statement. All relevant data present in this publication can be accessed at https://www.repository.cam.ac.uk/handle/1810/299012. The source data underlying Figs. 1–5 are provided.

ACKNOWLEDGMENTS. This work was supported by Engineering and Physical Sciences Research Council Grants EP/N016920/1, EP/P029426/1, EP/L027151/1, and NanoDTC EPS/L015978/1. O.S.O. was supported by a Rubicon fellowship from the Netherlands Organisation for Scientific Research, and R.C. was supported by Trinity College Cambridge. A.D. acknowledges support from a Royal Society University Research Fellowship URF11/180097 and Royal Society Research Fellows Enhancement Award RGPEA/181038.
16. R. J. C. Brown, M. J. T. Milton, Nanostructures and nanostructured substrates for surface—Enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313–1326 (2008).

17. R. F. Aroca, Plasmon enhanced spectroscopy. Phys. Chem. Chem. Physics. 15, 5355–5363 (2013).

18. B. Fu, B. P. Isaacoff, J. S. Bitten, Super-resolving the actual position of single fluororescent molecules coupled to a plasmonic nanoantenna. ACS Nano 11, 8978–8987 (2017).

19. M. Raab, C. Vietz, F. D. Stefani, G. P. Acuna, P. Tinnefeld, Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nat. Commun. 8, 13966 (2017).

20. D. L. Mack et al., Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot. Nat. Commun. 8, 14513 (2017).

21. E. Wertz, B. P. Isaacoff, J. D. Flynn, J. S. Bitten, Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. Nano Lett. 15, 2662–2670 (2015).

22. S. M. Stranahan, K. A. Willets, Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 10, 3777–3784 (2010).

23. F. Balzarotti, F. D. Stefani, Plasmonics meets far-field optical nanoscopy. ACS Nano 6, 4580–4584 (2012).

24. B. de Nijs et al., Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy. Faraday Discuss. 178, 185–193 (2015).

25. R. Chikkaraddy et al., Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

26. R. W. Taylor et al., Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”. ACS Nano 5, 3878–3887 (2011).

27. C. Carnegie et al., Mapping SERS in Cu:Au plasmonic nanogap arrays. ACS Photonics 4, 2681–2686 (2017).

28. J. F. Herrmann, C. Hoppen, Dumbell gold nanoparticle dimer antennas with advanced optical properties. Beilstein J. Nanotechnol. 9, 2188–2197 (2018).

29. L. V. Brown, H. Sobhani, J. B. Lasiter, P. Nordlander, N. J. Halas, Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010).

30. M.-W. Chu et al., Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett. 9, 399–404 (2009).

31. A. Rose et al., Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).

32. P. B. Joshi, T. P. Anthony, A. J. Wilson, K. A. Willets, Imaging out-of-plane polarized emission patterns on gap mode SERS substrates: From high molecular coverage to the single molecule regime. Faraday Discuss. 205, 245–259 (2017).

33. C. Tserkezis et al., Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps. Phys. Rev. A 92, 053811 (2015).

34. R. Chikkaraddy et al., How ultranarrow gap symmetries control plasmonic nanocavity modes: From cubes to spheres in the nanoparticle-on-mirror. ACS Photonics 4, 469–475 (2017).

35. N. Kongsuwan, et al., Plasmonic nanocavity modes: From near-field to far-field radiation. arXiv:1910.02927 (5 October 2019).

36. W. Yan, R. Faggiani, P. Lalanne, Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B 97, 205422 (2018).

37. C. Sauvan, J. P. Hugonin, I. S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013).

38. F. Benz et al., SERS of individual nanoparticles on a mirror: Size does matter, but so does shape. J. Phys. Chem. Lett. 7, 2264–2269 (2016).

39. J. Mertens et al., Tracking optical welding through groove modes in plasmonic nanocavities. Nano Lett. 16, 5605–5611 (2016).

40. D. Verhussen et al., Directional fluorescence emission by individual V-antennas explained by mode expansion. ACS Nano 8, 8232–8241 (2014).

41. A. G. Cury et al., Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

42. Q. An et al., A general and efficient method to form self-assembled cucurbit[n]uril monolayers on gold surfaces. Chem. Commun. (Camb.) 1998–1991 (2008).

43. R. Chikkaraddy et al., Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett. 18, 405–411 (2018).

44. A. Delga, J. Feist, J. Bravo-Abad, F. J. Garcia-Vidal, Quantum emitters near a metal nanoparticle: Strong coupling and quenching. Phys. Rev. Lett. 112, 253601 (2014).

45. R.-Q. Li, D. Hernández-Pérez, F. J. García-Vidal, A. I. Fernández-Domínguez, Transformation optics approach to plasmon-exciton strong coupling in nanocavities. Phys. Rev. Lett. 117, 107401 (2016).

46. A. L. Koner, W. M. Nau, Cucurbituril encapsulation of fluorescent dyes. Supramol. Chem. 19, 55–66 (2007).

47. W. M. Nau, J. Mohanty, Taming fluorescent dyes with cucurbituril. Int. J. Photoenergy 7, 133–141 (2005).

48. M. Uribeta et al., Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect. ACS Nano 12, 585–595 (2018).

49. C. Carnegie et al., Flickering nm-scale disorder in a crystal lattice tracked by plasmonic ‘flare’ light emission. Nat. Commun., in press (2019).

50. M.-E. Kleemann et al., Revealing nanostructures through plasmon polarimetry. ACS Nano 11, 850–855 (2017).

51. C. Carnegie et al., Room-temperature optical picocavities below 1 nm³ accessing single-atom geometries. J. Phys. Chem. Lett. 9, 7146–7151 (2018).

52. J. Yang, J.-P. Hugonin, P. Lalanne, Near-to-far field transformations for radiative and guided waves. ACS Photonics 3, 395–402 (2016).