Efficacy of high-dose teneligliptin, a dipeptidyl peptidase-4 inhibitor, for glycemic parameters in patients with type 2 diabetes estimated with continuous glucose monitoring: A pilot study

Ichiro Abe*, Kaoru Sugimoto1, Kaori Takeshita1, Midori Minezaki1, Yuki Fujimura1, Monami Koga1, Saori Kuramoto1, Tadachika Kudo1 and Kunihisa Kobayashi1

1Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan

Abstract

Background: Few studies have focused on the "glucose-normalizing effects" of high and standard doses of dipeptidyl peptidase-4 (DPP-4) inhibitors evaluated using continuous glucose monitoring (CGM). Teneligliptin is a DPP-4 inhibitor licensed in Japan for administration at standard (20 mg/day) and high (40 mg/day) doses to treat type 2 diabetes mellitus. However, little is known about its effects on the "quality" of glucose control or plasma glucose fluctuation, including factors such as postprandial glucose levels and frequency of hypoglycemia. We used CGM to study the efficacy of high-dose teneligliptin for the treatment of diabetic patients.

Materials and methods: Mean amplitude of glycemic excursions (MAGE), and mean, minimum, maximum, and standard deviation (SD) of glucose concentrations were measured by CGM in ten hospitalized individuals with type 2 diabetes mellitus.

Results: Compared with effects of standard-dose teneligliptin, MAGE, SD, and maximum glucose concentrations were significantly reduced by high-dose teneligliptin (P < 0.01). There was no significant difference in mean glucose concentrations, whereas minimum glucose concentrations were significantly increased by high-dose teneligliptin (P = 0.0314).

Conclusion: High-dose teneligliptin decreases hypoglycemia and may provide good "quality" of glucose control, thereby reducing the risk of diabetic complications and improving the patients’ quality of life.

Introduction

Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), exert antidiabetic activities by stimulating insulin secretion and inhibiting postprandial glucagon secretion in a manner dependent on plasma glucose levels [1]. Dipeptidyl peptidase-4 (DPP-4) inactivates incretins by hydrolysis; thus, DPP-4 inhibitors stimulate insulin secretion and inhibit glucagon secretion leading to reduced glucose levels without hypoglycemia [2]. In addition, DPP-4 inhibitors have been reported to prevent hypoglycemia by enhancing glucagon secretion during the hypoglycemic period [3]. Teneligliptin has been reported to be a potent, long-lasting DPP-4 inhibitor [4] and is licensed in Japan for administration at standard (20 mg/day) and high (40 mg/day) doses for glycemic control [5]. However, little is known about effects of high-dose teneligliptin on plasma glucose fluctuation, including the frequency of postprandial glucose increase and hypoglycemia. In this study, we used continuous glucose monitoring (CGM) to assess whether high-dose teneligliptin is superior to the standard dose in terms of the "quality" of glucose control.

Materials and methods

Materials

We recruited ten individuals with type 2 diabetes mellitus (21–81 years) hospitalized at Fukuoka University Chikushi Hospital from April 2014 to June 2016. We have exclusion criteria of this study. Patients who are or might have been pregnant, those with severe liver dysfunction (including liver cirrhosis), and those who have or had any malignancy were excluded, and all participants provided written informed consent to inclusion in this study, which was approved by the Ethics Review Committee of Fukuoka University Chikushi Hospital (Japan). Participant characteristics are shown in Table 1.

Methods

The Medtronic iPro™ 2 CGM system (Medtronic, Northridge, CA, USA) was used for continuous glucose monitoring with Medtronic Enlite™ glucose sensors (Medtronic) placed on the abdomen according to the manufacturer's instructions. Patients were fitted with the CGM device (Day 0) and were started on the standard dose (20 mg/day) of teneligliptin for 2 days (Days 1 and 2) followed by high-dose (40 mg/day) teneligliptin for an additional 2 days (Days 3 and 4) continuously.

Correspondence to: Ichiro Abe, Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka 818-8502, Japan, Tel: +81-92-921-1011; E-mail: abe1ro@fukuoka-u.ac.jp

Key words: continuous glucose monitoring, dipeptidyl peptidase-4 inhibitor, glucose fluctuation

Received: March 28, 2017; Accepted: April 26, 2017; Published: April 29, 2017
Abe I (2017) Efficacy of high-dose teneligliptin, a dipeptidyl peptidase-4 inhibitor, for glycemic parameters in patients with type 2 diabetes estimated with continuous glucose monitoring: A pilot study

Table 1. Participant characteristics.

No	Sex	Age (y)	HbA1c (%)	BMI	eGFR (ml/min/1.73 m²)	U-CPR (µg/day)	Diabetic complication	Other diabetic treatment
1	M	78	6.9	26.4	68.5	48.2	none	none
2	F	66	7.3	18.2	92.0	39.3	neuropathy	none
3	M	61	7.7	26.8	76.1	123.0	none	dapagliflozin (5 mg/day)
4	F	51	8.3	24.2	76.9	20.0	none	metformin (500 mg/day)
5	M	21	11.7	24.8	139.1	82.3	none	metformin (1000 mg/day)
6	M	55	10.0	27.0	90.7	132.0	none	metformin (1000 mg/day)
7	M	69	9.7	23.4	84.3	50.2	neuropathy	insulin (32 U/day)
8	M	81	9.4	20.1	43.7	21.8	neuropathy	insulin (16 U/day)
9	F	79	8.6	24.3	72.9	44.0	neuropathy	insulin (15 U/day)
10	F	63	9.2	24.8	71.1	47.6	none	insulin (22 U/day)

HbA1c: hemoglobin A1c, BMI: body mass index, eGFR: estimated glomerular filtration rate, U-CPR: urinary C-peptide immunore activity

We used CGM data obtained on Days 2 and 4 for determining the mean, maximum, minimum, and standard deviation (SD) of glucose levels, and the mean amplitude of glycemic excursion (MAGE), which was calculated as the mean difference between consecutive blood glucose peaks and nadirs measured continuously by CGM, provided that the differences were greater than one SD of the mean glucose value as described previously [6]. During this period, diet, exercise or drugs were not changed.

Statistical analysis

Data were expressed as mean ± SD or standard error of the mean (SEM). The statistical significance of differences between means was estimated by paired Student’s t-test. Values of P < 0.05 were considered to indicate statistical significance.

Results

Patients’ glucose levels over 24 hours and glycemic parameters (MAGE, SD, the mean, minimum and maximum glucose levels) measured using CGM are shown in Figure 1 and Table 2. Table 3 shows that the MAGEs were significantly lower during administration of high-dose teneligliptin (61.7 ± 17.4 mg/dl) compared with those measured during administration of the standard dose (98.4 ± 26.2 mg/dl) (P = 0.0088). The SD values of the glucose concentrations were significantly lower during administration of high-dose teneligliptin (26.3 ± 9.7 mg/dl) compared with those measured during administration of the standard dose (39.7 ± 15.3 mg/dl) (P = 0.0027). Maximum glucose levels were significantly decreased by high-dose teneligliptin (205.9 ± 39.2 mg/dl) compared with the effects of the standard dose (244.7 ± 55.5 mg/dl) (P = 0.0088). There was no significant difference in the effects of the two doses of teneligliptin on the mean glucose levels (high-dose teneligliptin: 147.1 ± 22.3 mg/dl vs. standard-dose teneligliptin: 155.5 ± 35.3 mg/dl). However, minimum glucose levels were significantly increased during administration of high-dose teneligliptin (103.9 ± 12.4 mg/dl) compared with those measured during administration of the standard dose (91.2 ± 13.4 mg/dl) (P = 0.0314).

Discussion

With the increasing prevalence of type 2 diabetes worldwide [7] comes an increase in the importance of preventing its complications [8]. Glucose homeostasis is controlled by both insulin resistance and the secretion of insulin and glucagon [9]. Persistent hyperglycemia leads to diabetic microangiopathies, such as neuropathy, nephropathy, and retinopathy. Furthermore, studies such as the DECODE (Diabetes Epidemiology: Collaborative Analysis of Diagnostic Criteria in Europe) study showed that postprandial hyperglycemia correlates with the occurrence of macroangiopathy [10]. The ACCORD (Action to Control Cardiovascular Risk in Diabetes) and ADVANCE (Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation) studies showed that severe hypoglycemia is a risk factor for microangiopathy, cardiovascular disease, and mortality [11,12]. It is also reported that large glucose fluctuations cause oxidative stress, thereby leading to endothelial cell injury [13]. DPP-4 inhibitors are known to decrease hyperglycemia by stimulating insulin secretion and inhibiting glucagon secretion, owing to an increase in GLP-1 [14]. And it has been reported that DPP-4 inhibitors raise glucagon levels in the glycemic state owing to an increase in GIP; thus, providing the capacity to prevent hypoglycemia [15]. DPP-4 inhibitors have also been reported to reduce MAGEs [16]. For these reasons, DPP-4 inhibitors are expected to prevent diabetic complications. Teneligliptin is a DPP-
Abe I (2017) Efficacy of high-dose teneligliptin, a dipeptidyl peptidase-4 inhibitor, for glycemic parameters in patients with type 2 diabetes estimated with continuous glucose monitoring: A pilot study

Integr Obesity Diabetes, 2017 doi: 10.15761/IOD.1000176

In conclusion, we recommend that high-dose teneligliptin should be a potent treatment alternative for patients with type 2 diabetes to attain good “quality” of glucose control and reduce the risk of diabetic complications. It should be noted that the limitations of our study include the small number of cases and the short duration of the period of investigation. Thus, further randomized control studies including larger numbers of cases, with longer-term monitoring are required to confirm the beneficial effects of high-dose teneligliptin and other DPP-4 inhibitors in patients with type 2 diabetes.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

1. Drucker DJ (2007) The role of gut hormones in glucose homeostasis. J Clin Invest 117: 24-32. [Crossref]
2. Barnett A (2006) DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 60: 1454-1470. [Crossref]
3. Ahrén B, Schweizer A, Dejager S, Dunning BE, Nilsson PM, et al. (2009) Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J Clin Invest 119: 1236-1243. [Crossref]
4. Yoshida T, Akahoshi F, Sakashita H, Kitajima H, Nakamura M, et al. (2012) Discovery and preclinical profile of teneligliptin (3-[2S,4S]-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)pyrazol-1-yl]pyrrolidin-2-ylcarbonyl[thiazolidine]): a highly potent, selective, long-lasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem 20: 5705-5719. [Crossref]
5. Otsubo H, Kosaka T, Nakamura K, Shimomura F, Kuwahara Y, et al. (2014) Safety and efficacy of teneligliptin: a novel DPP-4 inhibitor for hemodialysis patients with type 2 diabetes. J Clin Endocrinol Metab 94: 1236-1243. [Crossref]
6. Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, et al. (1970) Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19: 644-655. [Crossref]
7. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414: 782-787. [Crossref]
8. Edelman SV (1998) Importance of glucose control. Med Clin North Am 82: 665-687. [Crossref]
9. Virally M, Bicklé JF, Girard J, Halimi S, Simon D, et al. (2007) Type 2 diabetes mellitus: epidemiology, pathophysiology, unmet needs and therapeutic perspectives. Diabetes Metab 33: 231-244. [Crossref]
10. The DECODE study group on behalf of the European Diabetes Epidemiology Group (1999) Glucose tolerance and mortality: comparison of WHO and American Diabetic Association diagnostic criteria. Lancet 354: 617-621.

Data are expressed as mean ± standard deviation (SD). The significance of differences between means was estimated by paired Student’s t-test. Values of *P* < 0.05 were considered to indicate statistical significance (*).
Abe I (2017) Efficacy of high-dose teneligliptin, a dipeptidyl peptidase-4 inhibitor, for glycemic parameters in patients with type 2 diabetes estimated with continuous glucose monitoring: A pilot study

11. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, et al. (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358: 2545-2559.

12. Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, et al. (2010) Severe hypoglycemia and risks of vascular events and death. N Engl J Med 363: 1410-1418. [Crossref]

13. Monnier L, Mas E, Ginet C, Michel F, Villon L, et al. (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295: 1681-1687.

14. Lotfy M, Singh J, Rashed H, Tariq S, Zilahi E, et al. (2014) Mechanism of the beneficial and protective effects of exenatide in diabetic rats. J Endocrinol 220: 291-304. [Crossref]

15. Malmgren S, Ahrén B (2015) DPP-4 inhibition contributes to the prevention of hypoglycaemia through a GIP-glucagon counterregulatory axis in mice. Diabetologia 58: 1091-1099.

16. Rizzo MR, Barbieri M, Marfella R, Paolisso G (2013) Response to Comment on: Rizzo et al. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care 2012;35:2076-2082. Diabetes Care 36: e13. [Crossref]

17. Kishimoto M (2013) Teneligliptin: a DPP-4 inhibitor for the treatment of type 2 diabetes. Diabetes Metab Syndr Obes 6: 187-195. [Crossref]

18. Kadovaki T, Kondo K (2013) Efficacy, safety and dose-response relationship of teneligliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. Diabetes Obes Metab 15: 810-818.

Copyright: ©2017 Abe I. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.