The average free volume model for liquids

Yang Yu* a Reinhard Krause-Rehberg b

a School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
b Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany

*Author to whom correspondence should be addressed. Electronic mail: yuyang5020@googlemail.com

Abstract:

In this work, the molar volume thermal expansion coefficient of 59 room temperature ionic liquids is compared with their van der Waals volume V_w. Regular correlation can be discerned between the two quantities. An average free volume model, that considers the particles as hard core with attractive force, is proposed to explain the correlation in this study. A combination between free volume and Lennard-Jones potential is applied to explain the physical phenomena of liquids. Some typical simple liquids (inorganic, organic, metallic and salt) are introduced to verify this hypothesis. Good agreement from the theory prediction and experimental data can be obtained.

Keywords: Average free volume; ionic liquids; Lennard-Jones potential; simple liquids.

Introduction:

Comparing to the gas and the crystalline solid, the nature of the liquid is still unclear. There is no theory for the universally prediction of the properties of liquids from microscopic structure. On the other side, the liquid materials share many common phenomena. Normally T_g / T_m (T_g is glass transition temperature, T_m is melting temperature) is about 2/3, which fits the Boyer-Beaman rule for polymers, ionic liquids and even inorganic glass 1-4. The Eötvos and Guggenheim empirical equations establish the
relationship between surface tension, liquid density and critical temperature for the majority of liquids5,6. For the polymers, there is a correlation between crystalline volume V_c and van der Waals volume V_w: $V_c \sim 1.435 V_w^7$. For the ionic liquids, it is $V_c (=V_M) \sim 1.410 V_w$ (V_M is molecular volume)8. The values 1.435 for polymers and 1.410 for ionic liquids are close to $2^{1/2}$, which corresponds to the minimum energy in Lennard-Jones (or 6-12) potential (at the position $r/\sigma=2^{1/6}$, then the volume ratio is $(2^{1/6})^3=1.414$)8-10).

The common works of liquids focus on the dynamics of particles and harsh repulsion within short range. And normally the attractive interaction is considered as introducing uniform background potential that provides the cohesive energy11. There are few studies working on the free space between molecules12-16. In this study, according to the relationship between thermal expansion coefficient and van der Waals volume for up to 59 ionic liquids, a new average free volume model – that is considering the atom or molecule as hard core with attractive force, each particle is surrounded by the average free volume – is established16. To prove the validity of this new model, some typical simple liquids are introduced for discussion and analysis.

Results and discussion:

From the experimental data1,17, under the atmospheric pressure, the molar volume V_{mol} displays linear correlation with temperature T for all ionic liquids, which can be presented by the linear function:

$$V_{\text{mol}}(T) = V_{E0} + C_1 T$$

(1)

Here, V_{E0} is the volume when extrapolate the molar volume at liquid state to absolute zero. The constant C_1 corresponds to the thermal expansion coefficient of the molar volume. Up to 59 ionic liquids are fit to equation (1), the experimental data are taken from
the NIST website \(^{17,18}\). The fitting results of \(V_{E0}\) and \(C_1\) are compared with the van der Waals volume \(V_w\) of the ionic liquids\(^{8,19,20}\). The van der Waals volume is the space occupied by a molecule, which is impenetrable to other molecules with normal thermal energies\(^{10,21,22}\). For more details, see table 1 in SI. Obvious correlation between \(V_{E0}\), \(C_1\) and \(V_w\) can be discerned from figure 1.

![Fig. 1 Correlation between \(C_1\), \(V_{E0}\) and \(V_w\). The data are fitted by linear function fixing intercept at 0. \(C_1\): thermal expansion coefficient of molar volume. \(V_{E0}\): extrapolation of molar volume from liquid state to absolute zero. \(V_w\): van der Waals volume.](image)

From the fitting result, \(C_1\) shows a correlation with \(V_w\). \(V_{E0}/V_w=1.305V_w\). This value is smaller than crystalline volume ratio \(V_c/V_w=1.410\) for the ionic liquids\(^8\), and it is close to the value of dense packing for crystal 1.35 (reciprocal of 74.05\%). When cancel the intercept limitation in the fitting of \(V_{E0}\) to \(V_w\), the slope is 1.34).

Proposed model:
The correlation between C_1, V_{E0} and V_w can be explained by a schematic average free volume model displayed in figure 2. The molecules are simplified as spheres. Two particles are surrounded by the average free volume, and separated by distance d, then the occupied volume for each particle V is supposed to be the larger sphere volume (hard core volume V_w adds the average free volume) plus interstitial volume V_I: $4\pi/3 * r_v^3 + V_I$, here $r_v = r_w + r_d$. So $V = 4\pi/3*(r_v^3 + 3r_w^2 r_d + 3r_w r_d^2 + r_d^3) + V_I$. When temperature increases, r_d increases, so r_d is a function of T, $r_d(T)$. For simplicity, the first order approximation is applied to the formula, second and third order of r_d are omitted. Then:

$$V(T) = V_w + V_I + 4\pi r_d^2 r_d(T)$$ (2)

The comparison between equation (1) and (2) indicates the relationship:

$$V_{E0} = V_w + V_I$$ (3)

Because the molar volume V_{mol} linearly increases with temperature, so r_d linearly changes with T, that is $r_d = C_2 T$, C_2 is constant:

$$C_1 = 4\pi r_w^2 C_2 = 4\pi C_2 [3V_w/(4\pi)]^{2/3}$$ (4)
The V_{E0} equals the van der Waals volume plus the interstitial volume, corresponding to the dense packing of crystal. And the thermal expansion coefficient C_1 has a positive correlation with van der Waals volume V_w.

Here, the average free volume v_f is the free space averaged to each molecule, it is different from the local free (hole) volume v_h, which is the cavity in the real structure that can be seen from the positron annihilation lifetime spectroscopy (PALS) experiment. The hole volume v_h is generated from coalescence of v_f with statistics possibility because the dynamic movement of particles$^{23-25}$.

The C_2 depends on the force and molecular movement between particles. Here the sphere is considered for simplification, when real particles are introduced, molecular structure and configuration should be accounted in. These are the reasons for the dispersion in the fitting of figure 1.

According to the above model, the volume of liquids can be represented as $V=C_1 T+1.35 V_w$. At the melting point T_m, $V=V_{melt}$, then gives the formula: $V=(V_{melt}-1.35 V_w)T/T_m+1.35 V_w$. Then at the boiling point, $T_b=T_m*(V_b/V_w -1.35)/(V_{melt}/V_w -1.35)$.

To verify this conclusion, experimental data for 24 different typical simple liquids are applied26. Detailed information can be found in the SI table 2.
Fig. 3 Comparison of boiling temperature between experiment and calculation from the average free volume model. The line is a guide to the eye. Simple liquids introduced here are: He, Ne, Ar, Kr, Xe, CO, H2, NO, N2, O2, HCl, Br2, Cl2, F2, HBr, I2, CH4, NO2,Na, NaCl, KCl, C$_6$H$_6$, C$_6$H$_{12}$ and C$_3$H$_{10}$.

Two main factors are not considered in this model: magnitude of the attractive force and the molecule shape. Intuitively, particles with larger force make it harder to be separated, then C_2 is smaller. To verify this assumption, the potential energy change with temperature in one degree is calculated and some typical simple liquids are introduced for analysis.
Fig. 4 Lennard-Jones potential as a function of volume ratio $k_{V_{mol}/V_{w}}$. For the liquids, the volume ratio between V_{mol} and V_{w} normally falls between the range 1.55 to 2.2. In this range, the scaled energy near-linearly changes with volume ratio.

The interaction between a pair of neutral atoms or molecules can be approximated by the Lennard-Jones potential formula:\(^9\):

$$V(r) = 4\varepsilon[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6}]$$ \hspace{1cm} (5)

Here ε is the depth of the potential well, σ is the collision diameter at which the inter-particle potential is zero, r is the distance between the particles. In this work, σ can be displaced by van der Waals radius r_{w}, then $(\sigma/r)^3 = (2r_{w}/r)^3 = V_{w}/V_{mol}$. Set $k_{V_{mol}/V_{w}} = V_{mol}/V_{w}$ Then the Lennard-Jones potential can be written as:

$$\frac{V(r)}{\varepsilon} = 4\left[\left(\frac{1}{k_{V_{mol}/V_{w}}}\right)^{4} - \left(\frac{1}{k_{V_{mol}/V_{w}}}\right)^{2}\right]$$ \hspace{1cm} (6)

For the majority liquids, between the melting temperature T_{m} and boiling temperature T_{b}, the volume ratio of molar volume to van der Waals volume is in the range around 1.6. The minimum is not smaller than 1.45 and maximum not larger than 2.3 (only with
exception of helium He and hydrogen H$_2$) 27 When taking the range 1.55 ~ 2.2, the
Lennard-Jones potential energy nearly linearly increase with $k_{\text{mol/V}}$ as shown in figure 4.
This indicates that the linear change of volume with temperature roots in the linear
change of potential energy with temperature.
The potential energy change can be presented in terms of surface tension as displayed in
figure 5. The surface tension γ expands the free volume, changes the sphere surface from
S_1 to S_2, then the energy change with temperature in one degree is:
\[\Delta E = \gamma S_2 - \gamma S_1 = \gamma 4\pi (r_w + r_d + \Delta r_d)^2 - \gamma 4\pi (r_w + r_d)^2 \]
\[= \gamma 4\pi [2\Delta r_d (r_w + r_d) + \Delta r_d^2] \]
Since $\Delta r_d << r_w$, $r_d << r_w$ the terms Δr_d^2 and r_d are omitted. $\Delta r_d = C_2 \Delta T$, $\Delta T = 1$ K. So:
\[\Delta E = 8\pi \gamma C_2 r_w \]

Fig. 5 Energy change from the free volume expansion by the surface tension.
Combining equation (4) and (8):
\[\Delta E = \frac{2\gamma C_1}{[3/(4\pi)]^{1/3} V_w^{1/3}} \]

The thermal expansion coefficient C_1 is reciprocally proportional to surface tension for
the liquids. Since the surface tension is measure of the force. The intuition that the
thermal expansion coefficient C_1 is smaller when interaction is stronger between particles is verified, if ΔE is the same for all the liquids.

To verify whether ΔE is the same, some typical simple liquids are chosen for comparison. When calculating the molar volume thermal expansion coefficient C_1, only the temperature range near T_m where the molar volume linearly expanded with T is chosen. Normally this it is the range between T_m and T_b.

\[
\begin{align*}
V_w^{1/3}/C_1 &= 1544\gamma \\
R^2 &= 0.999
\end{align*}
\]

\[
\begin{align*}
V_w^{1/3}/C_1 &= 1205\gamma \\
R^2 &= 0.994
\end{align*}
\]

Fig. 6 Comparison between $V_w^{1/3}/C_1$ and surface tension γ for one atom and two atoms liquids. The units for V_w, C_1 and γ are cm3/mol, cm3/mol/K and N/m in this figure. One atom liquids are: He, Ne, Ar, Kr and Xe. Two Atoms liquids are: CO, H$_2$, NO, N$_2$, O$_2$, HCl, Br$_2$, Cl$_2$, F$_2$, HBr and I$_2$. Detailed information can be found in the SI, table 2.

As shown in figure 6. For the one atom (noble gas He, Ne, Ar, Kr, Xe) line, the slope of the linear fitting is 1544, that gives the energy change under one degree 17.63 J/mol/K. That is $2.12R$. Here R is gas constant. For the two atoms line (CO, H$_2$,NO, N$_2$, O$_2$, HCl,Br$_2$, Cl$_2$, F$_2$, HBr, I$_2$), it is 22.59 J/mol/K. That is $2.72R$. For the liquids under 1 atm pressure, the heat capacity under constant pressure C_p for the noble gas is around 40
J/mol/K\(^{17,18}\), that is about 5\(R\), and for the other liquids as O\(_2\), N\(_2\) and etc., this value is about 56 J/mol/K\(^{17,18}\), that is around 7\(R\).

Other liquids (CH\(_4\), NO\(_2\), Na, NaCl, KCl, C\(_6\)H\(_6\), C\(_6\)H\(_{12}\), C\(_5\)H\(_{10}\), C\(_8\)H\(_{15}\)BF\(_4\)N\(_2\)) are also introduced in this work. As displayed in the SI table 2, the energy change for all the liquids in the study is around 2\(R\) ~ 3\(R\). This value is near the kinetic energy of particles 3/2\(R\).

According to the result and discussion above, kinetic energy gives rise to potential energy change for each particle, by means of repulsive force. The hard core with kinetic energy pushes away other particles, that expands the volume.

Conclusion:

According to the correlation between molar volume thermal expansion coefficient, extrapolate volume at absolute zero and van der Waals volume, an average free volume model is proposed. The volume can be estimated only with the information of van der waals volume for ionic liquids: \(V_{\text{mol}}=0.001V_w+0.13V_w\). For the simple liquids, when known the volume at melting point and melting temperature, \(V_{\text{mol}}=(V_{\text{melt}} - 1.35V_w)T/T_m+1.35V_w\).

The ratio of the molar volume to van der Waals volume for liquids is around the range 1.5 ~2.2. From the Lennard-Jones potential, in this range, the scaled potential can be approximated as linearly change with volume ratio. Then linear function of volume to temperature means linear change of potential energy, this energy change with temperature in one degree is around 2\(R\) to 3\(R\) for the simple liquids in this study.
This average free volume model is more a technique method than corresponding to a real structure, since from the result and discussion of our previous experiment PALS work, the average v_f will coalesce to larger holes.

There are imperfections of the model:

1. The molar volume doesn’t linearly expand with temperature exactly for some simple liquids. First order approximation of the curve is utilized in this work.

2. The first order approximation is applied when calculate the volume and potential energy change.

3. It is questionable to use V_w as hard core volume. Precise work is needed for this part.

4. The shape factor is not considered in this work, more detailed work is needed in the future study.

5. Lennard-Jones potential only estimation of forces between particles.

Acknowledgements

Dr. Yang Yu acknowledges the financial support from the National Natural Science Foundation of China (Grant No.: 11247220) and the Science Research Startup Foundation from the Nanjing University of Information Science & Technology (Grant No: S8112078001). Supported by the Natural Science Foundation of Jiangsu Province (No. BK20131428)

Reference:

1. URL: http://ilthermo.boulder.nist.gov/ILThermo/pureprp.uix.do.
2 Tokuda, H., Tsuzuki, S., Susan, M. A. B. H., Hayamizu, K. & Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. *J Phys Chem B* **110**, 19593-19600, doi:10.1021/jp064159v (2006).

3 Boyer, R. F. *Relationship of First - to Second - Order Transition Temperatures for Crystalline High Polymers*. Vol. 25 (AIP, 1954).

4 Beaman, R. G. Relation between (apparent) second-order transition temperature and melting point. *J Polym Sci* **9**, 470-472, doi:10.1002/pol.1952.120090510 (1952).

5 Shereshefsky, J. L. Surface Tension of Saturated Vapors and the Equation of Eötvös. *The Journal of Physical Chemistry* **35**, 1712-1720, doi:10.1021/j150324a014 (1930).

6 Guggenheim, E. A. The Principle of Corresponding States. *The Journal of Chemical Physics* **13**, 253-261, doi:http://dx.doi.org/10.1063/1.1724033 (1945).

7 Krevelen, D. v. Properties of polymers, their estimation and correlation with chemical structure. 2nd edn., (Elsevier, Amsterdam-Oxford-New York, 1976).

8 Machida, H., Taguchi, R., Sato, Y. & Smith Jr, R. L. Analysis of ionic liquid PVT behavior with a Modified Cell Model. *Fluid Phase Equilibria* **281**, 127-132, doi:10.1016/j.fluid.2009.03.025 (2009).

9 Jones, J. E. On the Determination of Molecular Fields. II. From the Equation of State of a Gas. *Proceedings of the Royal Society of London. Series A* **106**, 463-477, doi:10.1098/rspa.1924.0082 (1924).

10 Simha, R. & Carri, G. Free volume, hole theory and thermal properties. *Journal of Polymer Science Part B: Polymer Physics* **32**, 2645-2651, doi:10.1002/polb.1994.090321610 (1994).

11 Hansen, J.-P. & McDonald, I. R. *Theory of simple liquids*. (Access Online via Elsevier, 1990).

12 Doolittle, A. K. Studies in Newtonian Flow .2. The Dependence of the Viscosity of Liquids on Free-Space. *J Appl Phys* **22**, 1471-1475 (1951).

13 Fox, T. G. & Flory, P. J. The Glass Temperature and Related Properties of Polystyrene - Influence of Molecular Weight. *J Polym Sci* **14**, 315-319 (1954).

14 Cohen, M. H. & Turnbull, D. Molecular Transport in Liquids and Glasses. *J Chem Phys* **31**, 1164-1169 (1959).

15 Turnbull, D. & Cohen, M. H. On Free-Volume Model of Liquid-Glass Transition. *J Chem Phys* **52**, 3038-3041 (1970).

16 Yu, Y., Bejan, D. & Krause-Rehberg, R. Free volume investigation of imidazolium ionic liquids from positron lifetime spectroscopy. *Fluid Phase Equilibria* **363**, 48-54, doi:http://dx.doi.org/10.1016/j.fluid.2013.11.011 (2014).

17 Kazakov, A. M., J.W.; Chirico, R.D.; Diky, V.; Muzny, C.D.; Kroenlein, K.; Frenkel, M."NIST Standard Reference Database 147: NIST Ionic Liquids Database - (ILThermo)", Version 2.0, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://ilthermo.boulder.nist.gov.

18 Dong, Q. et al. ILThermo: A Free-Access Web Database for Thermodynamic Properties of Ionic Liquids†. *Journal of Chemical & Engineering Data* **52**, 1151-1159, doi:10.1021/je700171f (2007).

19 Ue, M., Murakami, A. & Nakamura, S. A Convenient Method to Estimate Ion Size for Electrolyte Materials Design. *Journal of The Electrochemical Society* **149**, A1385-A1388, doi:10.1149/1.1507593 (2002).

20 Zhao, Y. H., Abraham, M. H. & Zissimos, A. M. Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. *The Journal of Organic Chemistry* **68**, 7368-7373, doi:10.1021/jo034808o (2003).

21 Frenkel, J. *Kinetic Theory of Liquids*. (Oxford University Press, 1946).
Bondi, A. van der Waals Volumes and Radii. *The Journal of Physical Chemistry* **68**, 441-451 (1964).

Fürth, R. On the theory of the liquid state. *Mathematical Proceedings of the Cambridge Philosophical Society* **37**, 252-275, doi:10.1017/S0305004100021745 (1941).

Dlubek, G. *et al.* Free volume in imidazolium triflimide ([C3MIM][NTf2]) ionic liquid from positron lifetime: Amorphous, crystalline, and liquid states. *The Journal of Chemical Physics* **133**, 124502-124510 (2010).

Yu, Y. *et al.* Free volume and phase transitions of 1-butyl-3-methylimidazolium based ionic liquids from positron lifetime spectroscopy. *Physical Chemistry Chemical Physics* **14**, 6856-6868 (2012).

Yaws, C. Thermophysical Properties of Chemicals and Hydrocarbons; William Andrew Inc. *New York* (2008).

URL: http://webbook.nist.gov/chemistry/fluid/.