Mosaicplasty of the Femoral Head: A Systematic Review and Meta-Analysis of the Current Literature

Vasileios Athanasiou¹, Evangelia Argyropoulou¹, Panagiotis Antzoulas¹, John Lakoumentas², George Diamantakis¹, John Gliatis¹

¹. Department of Orthopaedics and Traumatology, University General Hospital of Patra, Patras, GRC ². Department of Medical Physics, School of Medicine, University of Patras, Patras, GRC

Corresponding author: Vasileios Athanasiou, vassathanasiou@yahoo.com

Abstract

Osteochondral lesions of the femoral head are rare. For the treatment of these lesions, various joint-preserving procedures, particularly in young, active patients, have been developed. Mosaicplasty is a well-established surgical procedure for the knee. However, there is little evidence that this method can also be used to treat osteochondral lesions in the hip. The indication for cartilage procedures continues to evolve for the knee, and a similar strategy may be adopted for the hip joint. Due to limited evidence and a lack of experience, mosaicplasty treatment of these lesions remains challenging, especially in young patients. This study shows that open and arthroscopic management using the knee and femoral head as donor sites yielded good to excellent short- to mid-term outcomes. For osteochondral lesions of the femoral head, mosaicplasty may be a new alternative treatment option, although this needs to be proven with longer follow-ups and in a larger sample of patients.

Introduction And Background

The most common cause of mechanical symptoms in the hip is labral tears and cartilage lesions [1,2]. Neumann et al. found that up to 76% of patients (from the age of 17 to 76 years old) presenting with mechanical hip complaints have hip chondral lesions visible on magnetic resonance imaging (MRI) [3]. Trauma, labral tears, femoroacetabular impingement (FAI), arthritis, osteonecrosis, and dysplasia have been identified as causative factors [1-4]. Osteochondral lesions of the femoral head account for only about 2% of all osteochondral lesions. A study revealed that the frequency might be as high as 18% in asymptomatic professional hockey players [5]. Cartilage injury of the hip is a risk factor that can lead to progressive joint degeneration and severe disability, especially in young patients due to cartilage’s poor regeneration capabilities. Magnetic resonance arthography (MRA), arthroscopy, and non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) are useful tools for the assessment of internal pathology of the hip [6]. On the arthroscopic evaluation of 457 hips, McCarthy and Lee found that most chondral injuries (59%) were associated with labral tears and were located in the anterior quadrant of the acetabulum [7]. In terms of location, the most common defect area is found in the anterosuperior acetabulum at the chondrolabral junction, usually due to FAI syndrome. In contrast, the most common defect area in the femur is generally found centrally in the head [2].

The treatment of articular cartilage injuries is challenging, especially in weight-bearing joints such as the hip. In addition, there is a concern regarding the safety and efficacy of surgical hip dislocation in managing femoral trauma [8]. However, hip arthroscopy has recently been gaining popularity as a safe, effective, and minimally invasive method of treating acute and chronic pathology [9]. Conservative treatment frequently yields unsatisfactory results because of the underlying injury to the femoral head cartilage and potential loose bodies that may compromise joint function, causing posttraumatic osteoarthritis to proceed rapidly [10]. Joint arthroplasty is the gold standard for reducing pain and restoring function, although in young, active patients, decreased implant longevity is a concern [11-16]. Although total hip arthroplasty (THA) or resurfacing may provide pain relief and return to activity, they might not be suitable options if the acetabulum remains intact. Additionally, young patients’ high activity levels could result in an early revision [17]. Total hip arthroplasty (THA) is indicated in advanced arthritis, whereas for focal chondral injury, various joint-preserving surgical procedures have been developed during the past few years. The majority of them are adaptations of well-known knee surgeries, such as debridement, microfracture, autologous chondrocyte implantation (ACI), matrix-induced autologous chondrocyte implantation (MACI), autologous matrix-induced chondrogenesis (AMIC), osteochondral autograft transplantation, osteochondral allograft transplantation, direct cartilage suture repair, fibrin adhesive, intra-articular bone marrow mesenchymal stem cell (BM-MSC) injection, artificial plug (TruFit®), and, more recently, partial resurfacing of the femoral head [2,3,16,18-22]. These alternative hip-preserving strategies are more useful in patients who are younger. It seems to be a good option to treat full-thickness chondral lesions with compromised

DOI: 10.7759/cureus.31874

How to cite this article

Athanasiou V, Argyropoulou E, Antzoulas P, et al. (November 24, 2022) Mosaicplasty of the Femoral Head: A Systematic Review and Meta-Analysis of the Current Literature. Cureus 14(11): e31874. DOI 10.7759/cureus.31874
subchondral bone due to hyaline cartilage and superior mechanical properties compared to fibrocartilage [19]. In mosaicplasty, chondral or osteochondral deficiencies in an affected joint are filled with autologous osteochondral cylindrical grafts from a non-weight-bearing articular surface. Recent studies revealed that mosaicplasty for femoral head osteochondral lesions showed promising results. Reviewing recent research on mosaicplasty and its effects on the hip joint, especially in the long term, was the aim of this study. We presumed that this surgical method would produce acceptable clinical results and a significant improvement in clinical scores in the short-, mid-, and long-term.

Review

Literature review

Search Strategies and Inclusion Criteria

A systematic review was conducted on two databases (MEDLINE/PubMed and Scholar Google) using the keywords “Mosaicplasty,” “Hip osteochondral defect,” “Hip preserving surgery,” and “Hip osteochondral lesion” in the English language between January 1, 2000, and December 30, 2021. The exclusion criteria included age above 45 years, acetabular chondropathy, and femoral head osteonecrosis. Abstracts were screened by two reviewers (EA and PA) independently (population, intervention, comparison, outcomes, and study (PICOS) criteria).

Results

Data were extracted as follows: our review of the literature yielded 2,209 studies, of which 152 were eligible for abstract review and 32 for full-text review. Finally, 16 studies were found to be eligible for inclusion in our review (Figure 1).

FIGURE 1: PRISMA flowchart of the study selection process

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis, AVN: avascular necrosis

Fifty-one (51) femoral head mosaicplasty procedures were published in 16 papers [23-38], which included short-, mid-, and long-term (one case) studies ranging from one case to 27 cases (Table 1). The etiology of the osteochondral femoral head defect included 21 trauma, 13 femoroacetabular impingement (FAI), four osteochondritis dissecans (OCD), one chondroblastoma, eight sequelae of Legg-Calvé-Perthes disease, and four epiphyseal dysplasia. There were 21 females and 30 males, with a mean age of 22.1 years, ranging from 15 to 44 years. Forty-seven (47) patients underwent open surgical procedures and four arthroscopic surgery (two retrograde and two antegrade mosaicplasty). The mean osteochondral defect size of the femoral head...
was 2.12 cm (range: 6 × 1 cm to 1 × 4 cm), and the mean number of autologous plungets was two (range: 1-8). The donor site of autologous graft in 10 cases was the ipsilateral knee and in 41 cases, the ipsilateral femoral head. The mean last follow-up was 37 months (range: 6-156 months). The results show good to excellent scores.

Study (year)/reference	Study design	Number of patients and gender (WF)	Followed up (number)	Mean follow-up time (months)	Mean age (years)	Etiology	Location of the defect	Defect size	Number of plungets	Donor site	Treatment type (arthroscopic/open)	Complications	Results	
Hart et al. (2003)	Case report	1 M	1	6	28	Trauma (hip dislocation)	Femoral head	1.4 × 1.6 cm	4	Ipsilateral lone	Open	No	100 points (HHS)	
Nam et al. (2010)	Case report	2 M	2	36 (12 and 60)	18 (15 and 21)	Trauma (hip dislocation)	Femoral head	2 × 3 cm and 1 × 1 cm	3	Ipsilateral lone	Open	No	No complaints of pain	
Girard et al. (2011)	Case series	7 M, 3 F	10	29.2 (20-39)	18 (15-21)	PD (4 hips), epiphyseal dysplasia (4 hips)	Femoral head	1.3 × 3 cm	3	Ipsilateral femoral head	Open	1 sciatic nerve palsy after improved within three months (12-17)		
Enne et al. (2012)	Case report	1 M	1	6	22	PD	Femoral head	1.6 × 1.8 cm	3	Ipsilateral lone	Open	No	96 points (HHS)	
Philippone et al. (2012)	Case report	1 F	1	25	15	Trauma	Femoral head	0.6 × 1 cm	1	Ipsilateral femoral head	Arthroscopic	Labral snapping symptoms	85 points (HHS)	
Kocadal et al. (2016)	Case report	1 M, 1 F	2	49 (20 and 48)	22 (15 and 26)	Trauma (hip dislocation)	Femoral head	2 × 0.5-0.8 cm and 1 × 2 cm	3	Ipsilateral lone	Open	No	96 and 100 points (mHHS)	
Gürbüz et al. (2015)	Case report	2 F	2	13 (12 and 14)	22.5 (22 and 23)	FAI	Femoral head	2 × 1 cm and 3.6 cm	3 and 4	Ipsilateral lone	Open	No	85 and 93 points (HHS)	
Anthorenass et al. (2015)	Case report	1 M	1	28	20	Trauma (hip dislocation)	Femoral head	2 × 2.5 cm	4	Ipsilateral lone	Open	Pain over the scapula heads	84 points (HHS)	
Zelen et al. (2016)	Case report	1 M	1	158	21	Trauma (hip dislocation)	Femoral head	1 cm	1	Ipsilateral femoral head	Open	Pulmonary embolism, lateral hip pain	130 points (HHS)	
Kocadal et al. (2017)	Case report	1 M	1	26	27	Trauma	Femoral head	1 cm	1	Ipsilateral femoral head	Arthroscopic	Retinacular mosaikplasty	No	96 points (HHS)
Uchida et al. (2017)	Report article	1 M, 1 F	2	25 (14 and 36)	38 (18 and 46)	OCD	Femoral head	0.85 cm and 1 cm	1 and 1	Ipsilateral femoral head	Arthroscopic	One HHS improved from 72.5 to 87.5 points, the other from 66.7 to 100 points		
Johnson et al. (2017)	Research article	5 F	5	52 (53), 52, 62, and 54	21.7 (16, 21, 25, and 25)	1 AVN and 4 trauma	Femoral head	1.4 cm	1-3	Ipsilateral femoral head	Open	Hardware removal (20%)	HHS improved to 85-100 points (no AVN included)	
Venne et al. (2021)	Case report	1 F	1	24	17	Chondroblastoma	Femoral head	2.6 × 1.8 cm	3	Ipsilateral lone	Open	No	Pain-free	
Viamont-Guerts et al. (2019)	Case series	17 M, 10 F	22	34.1 (12-50.2)	29 (7-19-44)	11 FAI, 7 trauma, 4 AVN, 2 osteochondritis	Femoral head	1.6 × 2.5 cm	1-6	Ipsilateral femoral head	Open	1 TKA (4%)	Their mHHS improved from 56.3 ± 12.8 to 88.4 ± 9.6 (2% disappointed)	
Paladini-Claeys et al. (2021)	Case report	1 M	1	52	15	Perthes disease	Femoral head	No report	3	Ipsilateral femoral head	Open	No	83.8% (HHS)	
TABLE 1: Characteristics of the included studies

Study	Mean	SD	Confidence Interval
Trauma	70.42	2.00	(69.50, 71.34)
PD	68.50	1.50	(66.75, 70.25)
FAI	68.00	1.00	(66.00, 69.90)
Dysplasia	65.50	1.25	(63.50, 67.50)
OA	63.50	1.50	(61.50, 65.50)

The study of the treatment of femoral cartilage lesions, algorithms have been suggested [2,3,20,43].

Wilson and Jacobs reported the first osteochondral autograft transplantation in 1952 using a patellar graft.

Discussion

Chondral pathology has been categorized using several different classification systems [19,20]. Sampson proposed a classification system specific to cartilage lesions of the femoral head and acetabulum. Based on this classification, he recommended treatment protocols [42]. Regarding the treatment of femoral cartilage lesions, algorithms have been suggested [2,3,20,43].
for a lateral tibial plateau fracture [44]. However, mosaicplasty for osteochondral lesions was described for the first time by Hangody in 1997, and since then, its popularity has risen [45]. The long-term survival of the transplanted chondrocytes and osteocytes has been demonstrated by histological studies [46-49]. The talus, tibial plateau, patella, humeral capitellum, and femoral head are among the various articular surfaces to which mosaicplasty methods have been applied as a result of their effectiveness in the knee. Hangody and Füles reviewed 831 patients who underwent mosaicplasties over 10 years at their institution and found good to excellent results in 92% of patients with femoral condylar implantations, 87% with tibial resurfacing, 79% with patellar and/or trochlear mosaicplasties, and 94% with talar procedures [50]. In their 17-year prospective multicenter study of 305 knee, 39 talar, and 12 elbow autograft transplantations, Hangody et al. reported the findings. A minor deterioration in their performance was observed during the 10-year follow-up period, although follow-up data still showed good to exceptional results [51]. Hangody and Füles reported that osteochondral transplantation was performed on six femoral heads. However, the specifics of the surgical process and the clinical outcome were not covered [50].

Gole et al. found that an osteochondral graft’s load-bearing had a beneficial impact on cell viability, indicating that grafts positioned in weight-bearing areas will function better than those positioned in other areas [52]. The better results attained by younger patients suggest that age may have an impact on the clinical outcomes of mosaicplasty treatments [10,53]. After evaluating the outcomes of 831 cartilage joints treated with mosaicplasty, Bartha et al. concluded that results are less remarkable after 45 years of age and that 50 may be the maximum age limit [54]. The optimal defect coverage ranges from 1 to 4 cm², depending on the availability of donor sites and other technical factors [54,55]. It has been shown that expanding the criteria to include larger knee lesions (8–9 cm²) results in an increased rate of donor site morbidity [50,54]. Although the majority of authors employed the ipsilateral knee’s lateral femoral condyle for transplant harvesting, Girard et al. hypothesized that the femoral head’s non-weight-bearing portion might be advantageous [25]. They cited Mardones et al. who reported that excision of up to 30% of the anterolateral quadrant of the femoral head did not appreciably affect the proximal part of the femoral head’s ability to bear weight [56]. Smaller lesions may be suitable for the non-weight-bearing part of the femoral head, particularly when only one cylinder is required. However, grafts from the lateral femoral condyle should be used for bigger lesions [30].

Girard et al. and Viamont-Guerra et al. have published case series of mosaicplasty of the femoral head [25,36]. Girard et al. reported 10 patients with osteochondral lesions of the femoral head who underwent mosaicplasty through trochanteric flap hip dislocation. Sequellee of Legg-Calvé-Perthes disease (six hips), spondylo-epiphyseal dysplasia (three hips), and epiphyseal dysplasia (one hip) were the causes of the osteochondral femoral head defect. They used bone grafts from the non-weight-bearing surface of the ipsilateral femoral head with plugs ranging from 6 to 10 mm. It was suggested that non-weight-bearing for six weeks be followed by gradually increasing weight-bearing as tolerated. The mean follow-up was 29.2 (20-39) months. The Postel Merle d’Aubigné score improved from the preoperative period to the latest follow-up, from 10.5 (8-13) points to 15.5 (12-17) points, and the Harris Hip Score increased from 52.8 (35-74) points to 79.5 (65-95) points, respectively [25]. Viamont-Guerra et al. reported a series of 27 mosaicplasties. The osteochondral lesion of the femoral head was 1.6 ± 0.7 (range: 0.8–4.0) cm² in patients aged 28.7 ± 7.4 (range: 19–44) years. The etiology of the osteochondral defect was FAI, posttraumatic, osteochondritis, and avascular necrosis (the four AVN are excluded from our study). In all patients, osteochondral plugs were taken from the non-weight-bearing surface of the femoral head through a minimally invasive anterior (Hueter) surgical approach. The average diameter of the autografted plugs was 8.5 ± 1.3 (range: 6–10) mm. Toe-touch weight-bearing on the operated limb was allowed for the first 4-6 weeks and then progressed to total weight-bearing as tolerated. At the final follow-up, one patient had been revised to total hip arthroplasty (THA) due to persistent hip pain and the development of degenerative coxarthrosis. The average follow-up of the remaining 22 patients was 39 ± 25 (12-90) months. Their mHHS improved from 56 ± 13 to 88 ± 10, and their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) improved from 45 ± 17 to 81 ± 15. Twenty (91%) patients were very satisfied or satisfied with the surgery [36]. They found that harvesting plugs from the ipsilateral femur via a minimally invasive anterior approach provides satisfactory outcomes and functional improvements. However, they advised that it should be considered for up to 2 cm² (diameter: 16 mm) lesions of the femoral head.

Studies have shown that the long-term clinical outcome after mosaicplasty varies greatly depending on age, gender, and the size of the lesion [31,47,51,54,57-63].

Zelken presented the first long-term follow-up (15 years) as a patient and surgeon after a posttraumatic type II Pijpkin fracture. After the fracture of femoral head fixation, the osteochondral defect of the femoral head was filed with a plug of 10 mm harvested from the non-weight-bearing anterior inferior surface of the ipsilateral femoral head. Mobilized touchdown weight-bearing for the first six weeks postoperatively was allowed, followed by gradually increasing weight-bearing. Thirteen years later, he reported being pain-free with a Harris Hip Score of 100 [31]. Another case with an eight-year follow-up after a successful femoral head mosaicplasty was reported by Kılıçoğlu et al. [57]. However, it was caused by avascular necrosis, which is not one of our criteria [57].

This is the first systematic review of mosaicplasty of the femoral head to our knowledge. This study shows
satisfactory short- and medium-term results and promising in the long term. The comparison among the HHS distributions for different causes showed statistical significance (p < 0.001) overall. More specifically, the pairs that seem to differ considerably are trauma versus dysplasia (p < 0.001), trauma versus PD (p = 0.008), FAI versus dysplasia (p = 0.027), and trauma versus FAI (p = 0.036).

The present study has a number of limitations that should be mentioned. The first limitation is the heterogeneity in surgical techniques, imaging modalities, and groups of patients. The second is that the number of patients remains insufficient overall and in each separate group. The third is the time of follow-up, which is almost short- and medium-term.

Conclusions

The indication for cartilage procedures continues to evolve for the knee, and a similar strategy may be adopted for the hip joint. Due to limited evidence and a lack of experience, mosaicplasty treatment of these lesions remains challenging, especially in young patients. This study shows that open and arthroscopic management using the knee and femoral head as donor sites yielded good to excellent short- to mid-term outcomes. For osteochondral lesions of the femoral head, mosaicplasty may be a new alternative treatment option, although this needs to be proven with longer follow-ups and in a larger sample of patients. Long-term studies and postoperative MRIs would help determine the procedure’s success.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Neumann G, Mendicuti AD, Zou KH, Minas T, Coblyn J, Winnalski CS, Lang P: Prevalence of labral tears and cartilage loss in patients with mechanical symptoms of the hip: evaluation using MR arthrography. Osteoarthritis Cartilage. 2007, 15:909-17. 10.1016/j.joca.2007.02.002
2. Hevesi M, Jacob G, Shimomura K, Ando W, Nakamura N, Krych AJ: Current hip cartilage regeneration/repair modalities: a scoping review of biology and surgery. Int Orthop. 2021, 45:319-33. 10.1007/s00264-020-04789-2
3. Bitar FEIT, Lindner D, Jackson JT, G Donabh GB: Joint-preserving surgical options for management of chondral injuries of the hip. J Am Acad Orthop Surg. 2014, 22:46-56. 10.5435/JAAOS-22-01-46
4. Lee YJ, Kim SH, Chung SW, Lee YK, Koo KH: Causes of chronic hip pain undiagnosed or misdiagnosed by primary physicians in young adult patients: a retrospective descriptive study. J Korean Med Sci. 2018, 33:e339. 10.3346/jkms.2018.33.e339
5. Silvis ML, Mosher TJ, Smetana BS, Chinchilli VM, Fleming DJ, Walker EA, Black KP: High prevalence of pelvic and hip magnetic resonance imaging findings in asymptomatic collegiate and professional hockey players. Am J Sports Med. 2011, 39:715-21. 10.1177/0363546510388931
6. Crespo-Rodriguez AM, De Lucas-Villarrubia JC, Pastrana-Ledesma M, Hualde-Juvera A, Méndez-Alonso S, Padron M: The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement. Eur J Radiol. 2017, 88:109-16. 10.1016/j.ejrad.2016.12.031
7. McCarthy JC, Lee JA: Arthroscopic intervention in early hip disease. Clin Orthop Relat Res. 2004, 157-62. 10.1097/01.blo.0000150118.42360.1d
8. Khalilah AA, Haridy MA, Fergany A: Safety and efficacy of surgical hip dislocation in managing femoral head fractures: a systematic review and meta-analysis. World J Orthop. 2021, 12:604-19. 10.5531/wjoo.v12.i12.604
9. Begly JP, Robins B, Youm T: Arthroscopic treatment of traumatic hip dislocation. J Am Acad Orthop Surg. 2016, 24:509-17. 10.5435/JAAOS-D-15-00088
10. Maurillo M, Giuseppe F, Elizaveta K: Treatment of cartilage lesions: what works and why?. Injury. 2013, 44:S1-5. 10.1016/S0020-1385(13)70004-4
11. Sheng PY, Konttinen T, Lehto M, et al.: Revision total knee arthroplasty: 1990 through 2002. A review of the Finnish arthroplasty registry. J Bone Joint Surg Am. 2006, 88:1425-30. 10.2106/JBJS.E.00737
12. Springer BD, Connelly SE, Odum FM, Fehring TK, Griffin WL, Mason JB, Masonis JL: Cementless femoral components in young patients: review and meta-analysis of total hip arthroplasty and hip resurfacing. J Arthroplasty. 2009, 24:2-8. 10.1016/j.arth.2009.04.032
13. Kim YH, Choi Y, Kim JS: Cementless total hip arthroplasty with ceramic-on-ceramic bearing in patients younger than 45 years with femoral-head osteonecrosis. Int Orthop. 2010, 34:1125-7. 10.1007/s00264-009-0878-y
14. Huo MH, Dumont GD, Knight JR, Mont MA: What’s new in total hip arthroplasty. J Bone Joint Surg Am. 2011, 93:1944-50. 10.2106/JBJS.K.00656
15. Kärholm J: The Swedish Hip Arthroplasty Register (www.shpr.se). Acta Orthop. 2010, 81:3-4. 10.3109/1745367100365918
16. Du D, Hsu P, Zhu Z, Zhang C: Current surgical options and innovation for repairing articular cartilage
defects in the femoral head. J Orthop Transl. 2020, 21:122-8. 10.1016/j.jot.2019.06.002
17. Girard J, Glorion C, Bonnomet F, Fron D, Miguad H: Risk factors for revision of hip arthroplasties in patients younger than 30 years. Clin Orthop Relat Res. 2011, 469:1141-7. 10.1007/s11999-010-1669-x
18. Ozmen A, Alemadrolgu KB, Aydogan NH: Treatment for cartilage injuries of the knee with a new treatment algorithm. World J Orthop. 2014, 5:677-84. 10.5312/wjo.v5.i5.677
19. Sunil Kumar KH, Garner M, Khanduja V: An evidence-based update on the management of articular cartilage defects in the hip. J Clin Orthop Trauma. 2022, 28:101850. 10.1016/j.jcot.2022.101850
20. Dallich AA, Rath E, Atzmon R, Radparvar JR, Fontana A, Sharman Z, Amar E: Chondral lesions in the hip: a review of relevant anatomy, imaging and treatment modalities. J Hip Preserv Surg. 2019, 6:13-15. 10.1053/j.hpprs.2019.02.002
21. O’Connor M, Minkara AA, Westermann RW, Rozneck J, Lynch TS: Outcomes of joint preservation procedures for cartilage injuries in the hip: a systematic review and meta-analysis. Orthop J Sports Med. 2018, 6:232596718776944. 10.1177/232596718776944
22. Arora V, Navarre P, Russ M, Eser M: Use of the Hemicap partial hip resurfacing technique for traumatic femoral head osteochondral defects following obturator hip dislocations. SICOT J. 2018, 4:3. 10.1532/sicotj.2017-01059
23. Hart R, Janecek M, Viana P, Bucik P, Kocs J: Mosaicplasty for the treatment of femoral head defect after incorrect resorbable screw insertion. Arthroscopy. 2003, 19:1E-5. 10.1016/j.arthro.2003.10.025
24. Nam D, Shindle MK, Buly RL, Kelly BT, Lorich DG: Traumatic osteochondral injury of the femoral head treated by mosaicplasty: a report of two cases. HSS J. 2010, 6:228-34. 10.1016/j.hss.2010.12.012
25. Girard J, Roumazelle T, Sakr M, Miguad H: Osteochondral mosaicplasty of the femoral head. Hip Int. 2011, 21:542-8. 10.5301/hip.2011.8659
26. Emre YT, Cih H, Seyhan B, Seyhan E, Unun M: Mosaicplasty for the treatment of the osteochondral lesion in the femoral head. Bull NYU Hosp J Dis. 2012, 70:288-90.
27. Philippem JM, Jarvis CH: Arthroscopic management of a femoral head osteochondral defect using autologous osteochondral transfer, platelet-rich plasma and microfracture. Cur Ortho Prac. 2012, 25:629-33.
28. Krych JA, Lorich GD, Kelly TB: Osteochondral autograft transfer for a posttraumatic osteochondral defect of the femoral head. Am J Orthop (Belle Mead NJ). 2012, 41:472-6.
29. Giangir HR, Kiter E, Ök N, Çatak A: Osteochondral mosaicplasty along with osteochondroplasty of the femoral head in femoroacetabular impingement: a case report. Eklem Hastalik Cerrahisi. 2015, 26:181-4. 10.5606/ehc.2015.37
30. Anthonissen J, Rommens PM, Hofmann A: Mosaicplasty for the treatment of a large traumatic osteochondral femoral head lesion: a case report with 2 year follow-up and review of the literature. Arch Orthop Trauma Surg. 2016, 136:41-6. 10.1007/s00402-015-2352-1
31. Zeelen JA: First-person long-term follow-up using autologous mosaicplasty for osteochondral lesion accompanying femoral head fracture. J Orthop Trauma. 2016, 30:e70-4. 10.1097/BOT.0000000000000439
32. Kocada O, Akman B, Güven M, Saylı U: Arthroscopic-assisted retrograde mosaicplasty for an osteochondral defect of the femoral head without performing surgical hip dislocation. SICOT J. 2015, 7:41. 10.1532/sicotj.2014-010700
33. Uchida S, Utsumonoya H, Honda E, Kanezaki S, Nakamura E, Pascual-Garrido C, Sakai A: Arthroscopic osteochondral autologous transplantation for the treatment of osteochondritis dissecans of the femoral head. SICOT J. 2017, 5:18. 10.1532/sicotj.2016-0444
34. Johnson JD, Desy NM, Sierra RJ: Ipsilateral femoral head osteochondral transfers for osteochondral defects of the femoral head. J Hip Preserv Surg. 2017, 4:231-9. 10.1093/jbps/ijn022
35. Verma T, Mishra A, Agarwal G, Maini L: Three dimensional surgical planning for mosaicplasty in chondroblastoma of femoral head with articular disruption. J Orthop Sci. 2021, 26:719-24. 10.1016/j.jos.2019.09.022
36. Viamont-Guerra MR, Bonin N, May O, Le Viguéroux A, Saffarin M, Laude F: Promising outcomes of hip mosaicplasty by minimally invasive anterior approach using osteochondral autografts from the ipsilateral femoral head. Knee Surg Sports Traumatol Arthrosc. 2020, 28:767-76. 10.1007/s00167-019-05442-1
37. Palazón-Quevedo Á, Galán-Olleiros M, Egea-Gámez RM: Bilateral femoral head reshaping and mosaicplasty in Legg-Calvé-Perthes disease residual deformity. J Hip Preserv Surg. 2021, 8:9-15. 10.1095/jbps.hban021
38. Coulomb R, Alrubaie A, Hainigière V, Kouyoumdjian P: Femoral head mosaicplasty by direct anterior approach for an osteochondral impaction without performing surgical hip dislocation. SICOT J. 2021, 7:22. 10.1532/sicotj.2021014
39. Marques de Sá JP: Applied statistics using SPSS, STATISTICA, MATLAB and R, 2nd edition . Springer Berlin, Heidelberg, Germany; 2007. 10.1007/978-3-540-71972-4
40. Harrer M, Cuijpers P, Furukawa TA, Ebert DD: Doing meta-analysis with R: a hands-on guide . Chapman & Hall/CRC Press, Boca Raton, FL and London; 2021.
41. The R Project for statistical computing. (2022). https://www.r-project.org/.
42. Sampson TG: Arthroscopic treatment for chondral lesions of the hip. Clin Sports Med. 2011, 30:331-48. 10.1016/j.csm.2010.12.001
43. Oliver-Welsh L, Griffin JW, Meyer MA, Gitelis ME, Cole BJ: Doing meta-analysis with R: a hands-on guide. Chapman & Hall/CRC Press, Boca Raton, FL and London; 2021.
44. Wilson WJ, Jacobs JE: Patelar graft for severely depressed comminuted fractures fo the lateral tibial condyle. J Bone Joint Surg Am. 1952, 34:436-42.
45. Gangody L, Kish G, Kärpäti Z, Szabó I, Udvarhelyi I: Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc. 1997, 5:262-7. 10.1007/s001670050061
46. Barber FA, Chow JC: Arthroscopic osteochondral transplantation: histologic results. Arthroscopy. 2001, 17:832-5. 10.1053/jart.2001.52045
47. Tetta C, Busacca M, Moio A, et al.: Knee osteochondral autologous transplantation: long-term MR findings and clinical correlations. Eur J Radiol. 2010, 76:117-23. 10.1016/j.ejrad.2009.05.011
48. Biant LC, Bentley G, Vijayan S, Skinner JA, Carrington RW: Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med. 2014, 42:2178-83. 10.1177/0363546514539545

49. Ogura T, Bryant T, Minas T: Long-term outcomes of autologous chondrocyte implantation in adolescent patients. Am J Sports Med. 2017, 45:1066-74. 10.1177/0363546516682492

50. Hangody L, Fules P: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003, 85-A Suppl 2:25-32. 10.2106/00004623-200300002-00004

51. Hangody L, Dobos J, Baló E, Pánics G, Hangody LR, Berkes I: Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010, 38:1125-33. 10.1177/0363546509360405

52. Gole MD, Poulosen D, Marzo JM, Ko SH, Ziv I: Chondrocyte viability in press-fit cryopreserved osteochondral allografts. J Orthop Res. 2004, 22:781-7. 10.1016/j.orthres.2003.11.006

53. Kish G, Módis L, Hangody L: Osteochondral mosaicplasty for the treatment of focal chondral and osteochondral lesions of the knee and talus in the athlete. Rationale, indications, techniques, and results. Clin Sports Med. 1999, 18:45-66. 10.1016/s0278-5919(05)70129-9

54. Barth A, Javid A, Duska Z, Rahmeh H, Hangody L: Autologous osteochondral mosaicplasty grafting. J Orthop Sports Phys Ther. 2006, 36:739-50. 10.2519/jospt.2006.2182

55. Dozin B, Malpeli M, Cancedda R, et al.: Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med. 2005, 15:220-6. 10.1097/01.jsm.0000171882.66432.80

56. Mardones RM, Gonzalez C, Chen Q, Zobitz M, Kaufman KR, Trousdale RT: Surgical treatment of femoroacetabular impingement: evaluation of the effect of the size of the resection. J Bone Joint Surg Am. 2005, 87:273-9. 10.2106/JBJS.D.01793

57. Kaloçugu ÖI, Polat G, Ersen A, Birikik F: Long-term result of mosaicplasty for femoral head osteochondral lesion: a case report with 8 years follow-up. Hip Int. 2015, 25:589-92. 10.5301/hipint.5000244

58. Szerb I, Hangody L, Duska Z, Kaposi NP: Mosaicplasty: long-term follow-up. Bull Hosp Jt Dis. 2005, 63:54-62.

59. Solheim E, Hegna J, Øyen J, Harlem T, Strand T: Results at 10 to 14 years after osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee. Knee. 2013, 20:287-90. 10.1016/j.knee.2013.01.001

60. Cognault J, Seurat O, Chaussard C, Ionescu S, Saragaglia D: Return to sports after autogenous osteochondral mosaicplasty of the femoral condyles: 25 cases at a mean follow-up of 9 years. Orthop Traumatol Surg Res. 2015, 101:513-7. 10.1016/j.otsr.2014.12.020

61. Ronga M, Stissi P, LA Barbera G, Valoroso M, Angeretti G, Genovese E, Cherubino P: Treatment of unstable osteochondritis dissecans in adults with autogenous osteochondral grafts (Mosaicplasty): long-term results. Joints. 2015, 5:173-8. 10.11138/its.2015.5.4.173

62. de l'Escalopier N, Amouyel T, Mainard D, et al.: Long-term outcome for repair of osteochondral lesions of the talus by osteochondral autograft: a series of 56 Mosaicplasties®. Orthop Traumatol Surg Res. 2021, 107:103075. 10.1016/j.otsr.2021.103075