MLE-guided parameter search for task loss minimization in neural sequence modeling

Sean Welleck
New York University
wellecks@nyu.edu

Kyunghyun Cho
New York University
CIFAR Associate Fellow

Abstract

Neural autoregressive sequence models are used to generate sequences in a variety of natural language processing (NLP) tasks, where they are evaluated according to sequence-level task losses. These models are typically trained with maximum likelihood estimation, which ignores the task loss, yet empirically performs well as a surrogate objective. Typical approaches to directly optimizing the task loss such as policy gradient and minimum risk training are based around sampling in the sequence space to obtain candidate update directions that are scored based on the loss of a single sequence. In this paper, we develop an alternative method based on random search in the parameter space that leverages access to the maximum likelihood gradient. We propose maximum likelihood guided parameter search (MGS), which samples from a distribution over update directions that is a mixture of random search around the current parameters and around the maximum likelihood gradient, with each direction weighted by its improvement in the task loss. MGS shifts sampling to the parameter space, and scores candidates using losses that are pooled from multiple sequences. Our experiments show that MGS is capable of optimizing sequence-level losses, with substantial reductions in repetition and non-termination in sequence completion, and similar improvements to those of minimum risk training in machine translation.

1 Introduction

Neural autoregressive sequence models are used in a variety of natural language processing (NLP) tasks, such as machine translation (Bahdanau et al., 2015), summarization (Rush et al., 2015), dialogue modeling (Vinyals et al., 2015), and text completion (Sutskever et al., 2011; Graves, 2013; Radford et al., 2018; Holtzman et al., 2019; Welleck et al., 2020b). In these tasks, a decoding algorithm is used to produce sequences that are evaluated according to a sequence (or corpus) level task loss such as BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005), or alternative n-gram based metrics. The conventional training approach, maximum likelihood, optimizes a token-level surrogate to the 0-1 loss, and only leverages sequences drawn from the ground-truth distribution. The resulting mismatch between the training and evaluation loss functions, and the discrepancy between the sequence distributions used for training and the distribution encountered at evaluation time has prompted alternative sequence-level training algorithms (e.g. Daumé et al. (2009); Ranzato et al. (2016); Shen et al. (2016)). Nevertheless, maximizing the likelihood has empirically performed well as a surrogate to minimizing the task loss, achieving strong performance on the aforementioned tasks (Ott et al., 2019b; Raffel et al., 2019). In this paper, we develop a sequence-level training procedure that addresses the downsides of maximum likelihood by leveraging its strengths as a surrogate objective.

It is challenging to optimize a task loss, as the loss is typically non-differentiable with respect to the model parameters, and optimization is done over a high-dimensional parameter space. Typical approaches to this problem in natural language processing are based around the policy gradient estimator (Williams, 1992), such as Shen et al. (2016); Ranzato et al. (2016); Bahdanau et al. (2016); Preprint. Under review.
Yu et al. (2017). This estimator is used to optimize an arbitrary task loss by introducing stochasticity via autoregressive sampling in the action space, which is a critical downside in NLP, where the action space (vocabulary) is large and the sequence-level reward is sparse. The estimator’s variance grows with the sequence length, necessitating a parameterized baseline or a heuristic sampling schedule in practice, while requiring initialization from a pre-trained model. Recently, the effectiveness of these methods in NLP has been called into question (Caccia et al., 2020; Choshen et al., 2020).

An alternative class of methods optimize a black-box function without requiring gradient information. Of these, estimation-of-distribution algorithms, including the cross-entropy method (Rubinstein, 1999; De Boer et al., 2005), evolutionary strategies (Rechenberg, 1978; Bäck and Schwefel, 1993), and their variants (Hansen and Ostermeier, 2001; Wierstra et al., 2014; Salimans et al., 2017), operate by maintaining a search distribution from which a set of random perturbations are sampled. The function value (i.e. task loss) at each of the perturbed points is used to update the search distribution. Because stochasticity is introduced in the parameter space rather than the action space, rewards associated with each search candidate are pooled over multiple examples, ‘densifying’ the sparse reward. This parameter-space exploration (Rückstieß et al., 2010; Plappert et al., 2018) is attractive for NLP since the same decoding algorithm can be used for training and evaluation, and the variance is independent of the action space size or the sequence length. However, a key challenge for these black-box methods is handling high-dimensional search spaces. This typically restricts their use to training networks that are small compared to those used in neural sequence modeling (Ha and Schmidhuber, 2018; Mania et al., 2018) or requires massive parallelization (Salimans et al., 2017; Lenc et al., 2019), and their use with large-scale natural language processing models has been under-explored.

In this paper, we leverage the fact that in many sequence modeling tasks encountered in natural language processing, a surrogate update direction is available in the form of the maximum likelihood gradient. We hypothesize that incorporating this surrogate information into a random-search method can substantially alleviate issues stemming from the large search space. We frame learning as sampling from a distribution over parameter update directions that is proportional to the improvement in task loss. Since this distribution is only accessible for evaluation up to a normalizing constant, we propose to use self-normalized importance sampling for obtaining update directions. The key idea behind our method is to form a proposal distribution that is a mixture of random search around the current parameters and around the maximum-likelihood update direction. Our experiments show that the resulting procedure, called maximum-likelihood guided parameter search (MGS), is effective for minimizing sequence-level losses in natural language generation and machine translation, offering an alternative to policy gradient and minimum risk methods.

2 Maximum-likelihood Guided Parameter Search

Sequence generation. Sequence generation is the problem of mapping an input X to an output $Y = (y_1, \ldots, y_{|Y|})$. In our setting of neural sequence generation, this mapping is a deterministic decoding algorithm $F(\theta, X)$, which uses an autoregressive model $p_{\theta}(Y|X) = \prod_{t=1}^{|Y|} p_{\theta}(y_t|y_{<t}, X)$ to produce an output \hat{Y} given an input X. This includes greedy and beam search decoding, and stochastic decoding algorithms with a noise input, $F(\theta, X, \epsilon)$. The goal of sequence generation is to find a model whose generations have minimal task loss on a set $D = \{(X,Y)\}$ of input-output pairs,

$$C(\theta, D) = \sum_{X,Y \in D} c(F(\theta, X), Y), \quad (1)$$

where we assume $c(\hat{Y}, Y) \in \mathbb{R}$ is an arbitrary sequence-level loss (e.g. sentence-BLEU). The most widely used approach to training such a model is minimizing the negative log-likelihood given a training set, which ignores the task loss: $L_{\text{MLE}}(\theta; D) = -\sum_{X,Y \in D} \sum_{t=1}^{|Y|} \log p_{\theta}(y_t|y_{<t}, X)$.

Method. To directly optimize (1), we iteratively update the parameters θ in the direction of maximal improvement in the task loss. Each update corresponds to the expected update under a distribution that weights each direction according to its improvement,

$$\Delta_\alpha = \mathbb{E}_{\Delta \sim p_\alpha(\Delta|\theta)} |\Delta|,$$

where $p_\alpha(\Delta|\theta) \propto \hat{p}_\alpha(\Delta|\theta) = \exp(\alpha(C(\theta) - C(\theta + \Delta)))$ and $\alpha \in \mathbb{R}_{>0}$ is a temperature parameter. When $\alpha \to 0$, the distribution becomes uniform, and when $\alpha \to \infty$ it concentrates on the
Algorithm 1: Maximum-likelihood guided parameter search (MGS).

Given: Batch \(\{X_i, Y_i\}_{i=1}^B\), model \(p_\theta\), decoding algorithm \(F\), task-loss \(c(\hat{Y}, Y)\).

Hyper-parameters: Number of candidates \(K\), temperature \(\alpha\), noise level \(\sigma^2\).

Output: Update direction \(\Delta_{\text{MGS}}\).

\[
\Delta_{\text{MGS}} = \sum_{k=1}^K \frac{w(\Delta_k)}{\sum_{\ell'=1}^K w(\Delta_{\ell'} \Delta_k} \]

\(\Delta_k \sim q_{\text{MGS}}(\Delta_k \theta, \nabla_{\theta} \mathcal{L}_{\text{MLE}}, \sigma^2)\)

\(\hat{Y}_i = F(\theta + \Delta_k; \{X_i\})\)

\(C(\theta + \Delta_k) = \frac{1}{B} \sum_{i=1}^B c(\hat{Y}_i, Y_i)\)

\(w(\Delta_k) = \frac{\exp(\alpha C(\theta) - C(\theta + \Delta_k))}{\tilde{q}_{\text{MGS}}(\Delta_k | \theta)}\)

where \(\Delta_k \sim q(\Delta_k \theta)\), each \(w(\Delta_k)\) is \(\frac{\exp(\alpha C(\theta) - C(\theta + \Delta_k))}{\tilde{q}_{\text{MGS}}(\Delta_k | \theta)}\), and \(q \propto \tilde{q}\). This update direction equals \(\Delta_s\) in the limit: \(E(\lim_{K \to \infty} \Delta_{\text{MGS}} = \Delta_s) = 1\) (Owen, 2013).

The sample complexity of such a random-search method is known to depend on the dimensionality of the sample space (Vemula et al., 2019), thus it is crucial to choose a good proposal distribution. Our contribution is a proposal distribution for use in sequence generation, where we have access to the maximum likelihood gradient \(\nabla_{\theta} \mathcal{L}_{\text{MLE}}\). Specifically, we propose a mixture of two Gaussians, whose components are centered at the origin and at the maximum-likelihood gradient, respectively:

\[
q_{\text{MGS}}(\Delta_k | \theta) = \pi N(0, I\sigma^2) + (1 - \pi) N(\Delta(\nabla_{\theta} \mathcal{L}_{\text{MLE}}, I\sigma^2). \tag{4}
\]

Given a batch of examples, we compute the gradient of the maximum likelihood loss, sample candidate directions from the proposal distribution (4), then evaluate the task loss of each candidate and form the update direction (3). Algorithm 1 summarizes the procedure, called maximum-likelihood guided parameter search (MGS).

3 Comparison to Other Task Loss Minimization Methods

Comparison with policy gradient. Policy gradient (PG) methods such as REINFORCE (Williams, 1992) consist of the objective and gradient estimator:

\[
C_{\text{PG}}(\theta) = E_{(X,Y) \sim D} E_{Y \sim p_\theta(\cdot | X)} \left[c(\hat{Y}, Y)\right], \quad \nabla_{\theta} \mathcal{L}_{\text{PG}} = E_{Y \sim p_\theta(\cdot | X)} \left[c(\hat{Y}, Y) \nabla_{\theta} \log p_\theta(\hat{Y} | X)\right]. \tag{5}
\]

The policy gradient objective contains an expectation over the output distribution \(p_\theta(\cdot | X)\), unlike the objective optimized by MGS (Equation 1). In particular, computing the PG objective involves decoding with ancestral sampling, while the objective (1) uses an arbitrary decoding algorithm. Naturally, approximating the policy gradient also uses ancestral sampling instead of the algorithm used at inference time (e.g., greedy or beam search). To contrast this with maximum-likelihood guided parameter search, we formalize the sampling and examine the per-sequence gradient.

Ancestral sampling decodes a sequence by sampling auto-regressively from the model’s per-step categorical distributions. Given noise \(e \sim U(0, 1)\), ancestral sampling, which consists of repeated samples

\[
\text{See Appendix A.1 for a review of self-normalized importance sampling.}
\]
categorical sampling \(\hat{y}_t \sim p_\theta(\cdot|y_{<t}, X) \), can be written as a deterministic function \(\hat{Y} = F_{\text{anc}}(\theta, X, \epsilon) \). The policy gradient estimator is an expectation over the noise used to produce the categorical samples,

\[
\nabla_\theta \nabla_{\text{PG}} = \mathbb{E}_{c \sim U(0, 1)} \left[c \left(F_{\text{anc}}(\theta, X, \epsilon), Y \right) \nabla_\theta \log p_\theta(F_{\text{anc}}(\theta, X, \epsilon)) \right].
\]

Maximum-likelihood guided parameter search uses any arbitrary decoding algorithm, e.g. \(\hat{Y} = F_{\text{greedy}}(\theta, X) \), which can be chosen to be the same algorithm used at evaluation time. The MGS estimator is an expectation over noise in the parameter space,

\[
\nabla_\theta \nabla_{\text{MGS}} = \mathbb{E}_{c \sim q} \left[\hat{w}(c) \exp \left(\alpha(c(F(\theta, X), Y) - c(F(\theta + \epsilon, X), Y)) \right) \right],
\]

where we consider a single example and rewrite the MGS update (3) in order to illustrate how the use of noise and the decoding algorithm differ from policy gradient. See Appendix A.1 for the derivation. In short, policy gradient uses each parameter \(\theta \) to sample multiple sequences for each input, while MGS samples multiple parameters, and uses each to decode a single sequence per input.

Comparison with minimum risk training. Minimum risk training (MRT) (Shen et al., 2016) approximates the policy gradient objective (5) as,

\[
C_{\text{MRT}}(\theta) = \mathbb{E}_{(X,Y) \sim D} \mathbb{E}_{\hat{Y} \sim q_\theta(\cdot|X,S)} \left[c(\hat{Y}, Y) \right], \quad q_\theta(Y|X,S) = \begin{cases} \frac{p_\theta(Y|X)^\alpha}{Z_\theta(X,S)^\alpha}, & \text{if } Y \in S, \\ 0, & \text{otherwise,} \end{cases}
\]

where \(S = \{ \hat{Y}_1, \ldots, \hat{Y}_k \} \) is a set of candidate output sequences, and \(Z_\theta(X,S) = \sum_{Y \in S} p_\theta(Y|X)^\alpha \). There are no importance weights, and \(q_\theta \) is not a valid proposal, unlike \(q_{\text{MGS}} \). The gradient is,

\[
\nabla_\theta C_{\text{MRT}} = \alpha \left[\mathbb{E}_{q_\theta} \left[c(\hat{Y}, Y) \nabla_\theta \log p_\theta(\hat{Y}|X) \right] - \mathbb{E}_{q_\theta} \left[c(\hat{Y}, Y) \right] \mathbb{E}_{q_\theta} \left[\nabla_\theta \log p_\theta(\hat{Y}|X) \right] \right],
\]

where \(\mathbb{E}_{q_\theta} \) denotes \(\mathbb{E}_{\hat{Y} \sim q_\theta(\cdot|X,S)} \). The MRT gradient consists of the policy gradient, minus a term that includes the score function and the expected loss. Minimum risk training can incorporate the maximum likelihood gradient by including the ground truth sequence \(Y^\ast \) as a candidate,

\[
\nabla_\theta C_{\text{MRT}} = \alpha \left[(w(Y^\ast) - \bar{w}(Y^\ast)) \nabla_\theta \log p_\theta(Y^\ast|X) + \sum_{\hat{Y} \in S \setminus Y^\ast} (\hat{w}(\hat{Y}) - \bar{w}(\hat{Y})) \nabla_\theta \log p_\theta(\hat{Y}|X) \right]
\]

where \(w(Y') = c(Y', Y)q_\theta(Y'|X,S) \), and \(\bar{w}(Y') = \mathbb{E}_{Y'' \sim q_\theta} [c(Y'', Y)] q_\theta(Y'|X,S) \). Unlike MGS, the other candidate directions in MRT are not related to the maximum-likelihood gradient. Instead, the candidates are determined by action-space sampling, similar to policy gradient.

Pooled task losses. PG and MRT both sample in the action space (i.e. vocabulary), while the proposed MGS samples in the parameter space. This difference affects the amount of supervision that is used to weight each candidate update direction. To see this, consider a minibatch \(\{X_n, Y_n\}_{n=1}^N \). The policy gradient estimator with \(K \) samples per batch element is,

\[
\nabla_\theta \nabla_{\text{PG}} = \frac{1}{NK} \sum_{n,k} c(\hat{Y}_n^{(k)}, Y_n) \nabla_\theta \log p_\theta(\hat{Y}_n^{(k)}|X_n),
\]

where \(\hat{Y}_n^{(k)} \) is a sampled sequence. Policy gradient uses a single sequence loss to weight each candidate update direction. A similar inspection reveals that MRT shares this property. On the other hand, maximum-likelihood guided parameter search,

\[
\nabla_\theta \nabla_{\text{MGS}} = \sum_k [\hat{w}(\Delta_k) \exp (\alpha(C(\theta) - C(\theta + \Delta_k))] \Delta_k],
\]

weights each candidate direction using a loss \(C(\cdot) \) computed over the entire minibatch (see Equation 1). This has the effect of ‘densifying’ the sparse loss by pooling the losses from multiple examples.

See Appendix A.2 for the derivation.
4 Related Work

Sequence-level training for NLP. Sequence-level training methods based on policy gradient have been applied to several NLP tasks (Liu et al., 2017; Paulus et al., 2018; Ziegler et al., 2019). Related methods use policy gradient with generative adversarial networks (GAN) (Yu et al., 2017; de Masson d’Autume et al., 2019). Policy gradient methods often face training instability and sensitivity to hyper-parameters (Henderson et al., 2018), and GAN methods under-perform maximum likelihood (Caccia et al., 2020). Reward augmented maximum-likelihood (RAML) (Norouzi et al., 2016) maximizes the likelihood of sequences that are sampled proportional to their rewards, which in practice relies on a sampling method designed for a specific task loss. Our method weights parameter, rather than sequence, samples proportional to their rewards. Minimum risk training originated in statistical machine translation (Och, 2003; Smith and Eisner, 2006) and was applied to end-to-end neural machine translation (Shen et al., 2016; Edunov et al., 2018). Other approaches train a greedy decoder given a learned model (Gu et al., 2017; Chen et al., 2018), which is a different setting than ours. A separate family of methods, including globally normalized models, (Andor et al., 2016; Sountsov and Sarawagi, 2016), energy-based models (LeCun et al., 2006; Wang and Ou, 2018; Deng et al., 2020), unlikelihood training (Welleck et al., 2020b; Li et al., 2020), and beam search optimization (Daumé and Marcu, 2005; Wiseman and Rush, 2016), incorporate sequence-level scores without reference to an external reward function.

Drawbacks of MLE in NLP. Several studies investigate drawbacks of maximum likelihood training, including label bias (Lafferty et al., 2001; Andor et al., 2016), exposure bias (Daumé et al., 2009; Ross et al., 2011; Bengio et al., 2015), and loss mismatch (Lee et al., 2020). Neural machine translation models trained with maximum likelihood have been shown to exhibit decreased performance with increased beam size (Koehn and Knowles, 2017; Ott et al., 2018) and a bias towards short sequences (Sountsov and Sarawagi, 2016; Stahlberg and Byrne, 2019), which have been attributed to label bias due to local normalization (Murray and Chiang, 2018). In open-ended text generation, MLE-trained models have been observed to produce non-terminating sequences (Welleck et al., 2020a), degenerate repetition (Holtzman et al., 2019; Welleck et al., 2020b), and a mismatched unigram distribution (Li et al., 2020). These motivate our investigation of an alternative training procedure.

Black-box optimization. Our approach is motivated by black-box optimization methods, specifically those based on random search (Matyas, 1965; Rechenberg, 1978; Bäck and Schwefel, 1993). Several methods augment random search with auxiliary information (Hansen, 2011; Lehman et al., 2018; Pourchot and Sigaud, 2019). Related to our method are learned manifold random search (Sener and Koltun, 2020) which requires an inner optimization to learn parameters of a search manifold, and guided evolutionary strategies (Maheswaranathan et al., 2019) which uses surrogate directions to modify the search distribution’s covariance; their method requires QR decomposition and was evaluated on synthetic and unrolled optimization tasks with smaller networks than those we consider.

5 Experiments

5.1 Text Completion with GPT-2

First, we evaluate MGS on a text completion task, which has previously been used to evaluate the effectiveness of sequence models (e.g. Sutskever et al. (2011); Graves (2013); Radford et al. (2018); Holtzman et al. (2019); Welleck et al. (2020b)). The task consists of decoding a continuation $\hat{Y} = F(\theta, X)$ given a prefix $X = (x_1, \ldots, x_k)$. In this task, neural language models such as GPT-2 (Radford et al., 2018) exhibit degenerate repetition (Holtzman et al., 2019) and non-termination with greedy decoding; Welleck et al. (2020a) conjectured that the lack of a decoding algorithm in maximum-likelihood training is the cause of the latter. We evaluate whether MGS, which uses a decoding algorithm during training, can alleviate these issues.

Experimental setup. We use the Wikitext-103 dataset (Merity et al., 2016), a large-scale collection of Wikipedia articles containing over 100 million words that has been used for language modeling (Baevski and Auli, 2019) and text completion (Welleck et al., 2020b). We model individual sequences by splitting the corpus according to its newline boundaries, then splitting each sequence into a context X and continuation Y, resulting in a dataset of (X, Y) pairs. Each continuation ends in a special
Table 1: Text completion results (GPT-2, Wikitext-103 test set).

	LM	Edit	Nonterm	Repetition	Avg. len.	Perplexity
MLE	147.5	.945	.387	.538	238.4	21.03
MGS-LM	59.1	.940	.012	.035	18.5	22.30
MGS-edit	72.9	.928	.038	.083	40.3	21.75
Human	–	–	.000	.011	107.9	–

⟨eos⟩ token. We use a context size of $k = 10$ tokens, discarding sequences that are length k or shorter.

The resulting dataset consists of 874,556 training, 1,896 validation, and 2,162 test pairs.

We use GPT-2 117M (Radford et al., 2018), a transformer (Vaswani et al., 2017) language model with a byte-level BPE vocabulary of 50k tokens, pre-trained with maximum likelihood on WebText, a dataset of scraped web pages (see Radford et al. (2018) for details). We fine-tune the pretrained GPT-2 model using MLE and select the model state with the lowest validation perplexity. We then continue with MGS beginning at the selected model state. We use 4 candidates, and compute training task loss with greedy decoding and a max decoding length of 1.3 times the ground-truth length. Models are evaluated with a max decoding length of 500 tokens. See Appendix A.4 for more details.

Task losses. We experiment with two sequence-level task losses. We define a language modeling (LM) loss which scores each sequence with a fixed language model: $c_{\text{LM}}(\hat{Y}) = -\log p_{\text{score}}(\hat{Y})$. We use the fine-tuned GPT-2 model as p_{score}, which is the starting point of MGS training. As a task loss that incorporates the ground-truth sequence, we use edit distance $c_{\text{edit}}(\hat{Y}, Y)$, normalized by $|Y|$.

Metrics. Motivated by prior work which showed that MLE-trained LMs produce repetitive, non-terminating text with greedy decoding, we measure the proportion of non-terminating sequences and the proportion of non-terminating continuations (Welleck et al., 2020a):

$$\text{repetition}(\hat{Y}) = 1 - \frac{|\text{unique n-grams}|}{|\text{n-grams}|}, \quad \text{nonterm}(\hat{Y}) = I[\langle\text{eos}\rangle \not\in \hat{Y}] .$$

We also report the task loss, average length of the generated continuations, and the perplexity.

Effect on sequence-level task loss. Table 1 shows the task losses and metrics for the baseline fine-tuned model (MLE) and each model trained with MGS to optimize the indicated task loss (MGS-loss). The baseline has the highest task losses, and a high degree of non-termination (.387) and repetition (.538). MGS-LM substantially reduces the LM task loss (59.1), along with non-termination (.012) and repetition (.035).

Figure 1 (qMGS) illustrates how optimization progresses, with a monotonic decrease in training loss over time. MGS-edit achieves the lowest edit distance (.928), while also substantially reducing LM task loss, non-termination, and repetition. Both MGS variants result in short sequences, especially MGS-LM, which is expected due to the bias towards short sequences in MLE-trained LMs (Stahlberg and Byrne, 2019). Table 2 shows representative continuations (see Appendix A.5 for more). The first example shows how MGS can fix non-termination, and the second shows how MGS reduces repetition in a terminating sequence.

Analysis. First, we perform an ablation of the proposal distribution q_{MGS}, which is a mixture of two components. We compare against only using the zero-mean (q_{zero}) or MLE-mean (q_{MLE}) components as proposals. Figure 1 shows the training loss using each proposal, indicating that both components in the q_{MGS} mixture are necessary. The task loss on the validation set (see Appendix Table 7) is analogous.

Next, we inspect how the pooled task loss varies between the sampled candidates. Figure 2 shows the task loss on the validation set (see Appendix Table 7) is analogous.

Figure 1: Training task-loss (c_{LM}) under different proposal distributions.

Figure 2: Task loss on the validation set.
Table 2: Example greedy continuations (GPT-2, Wikitext-103 validation set).

Prefix	MLE	GMS-LM	MGS-Edit
The British organized an expedition in early 1776 for the defense of the French colonies in the Caribbean. The expedition was led by Captain William Henry St. Clair, who had been appointed to command the expedition. The expedition was led by Captain William Henry St. Clair, who had been appointed to command the expedition in 1776. The expedition → ∞ the defense of the Ohio River. The expedition was led by Colonel John C. St. Clair, who had been appointed to command the expedition. (eos)			
MGS-LM	the defense of the French colonies. The expedition was led by Lieutenant Colonel John Henry, who was promoted to lieutenant colonel in 1776. (eos)		
MGS-Edit			

Table 3: Example sequences decoded from sampled candidates, showing the component that the candidate was sampled from, and the pooled cost. Top: text completion. Bottom: machine translation.

Prefix	MLE	GMS-LM	MGS-Edit
The manga was licensed for English language release by Del Rey in the United States, and was released in the United Kingdom in the United States in the first volume of the series, and in the United States in the second, and third, volumes of the series, in the United States in the first and second volumes of the first and second volumes and the third volumes ...			
N_{MLE}	137.8		
N_{0}	51.2		
Source	bei den budgets der bundesstaaten geht es um sehr , sehr viel geld – ich werde ihnen die zahlen zeigen – and man kümmert sich sehr wenig um sie . state budgets are very , very high money – i’ll show them numbers – and they take care of them very little .		
N_{MLE}	6767		
N_{0}	5972		

and in Table 3 show an example sequence and the pooled loss. The MLE candidate’s sequence is non-terminating, while the zero candidate decodes a shorter sequence and has a lower pooled loss.

We investigate which candidates contribute to the update direction over the course of training by showing the total weight of MLE-component candidates in Figure 3 (α = 1.0). The MLE candidates are highly weighted at the beginning of training, only contributing occasionally thereafter. Finally, we analyze the effect of the α hyper-parameter, which controls the entropy of the candidate weights. As α decreases, the candidate weights are smoothed towards uniform, which allocates more weight to the MLE candidates, as seen in Figure 3. Performance decreases when the weights are either too uniform or too peaked, as seen in Figure 4.

Figure 2: Standard deviation of candidate weights (MGS-LM).
Figure 3: Total weight of candidates from the MLE component.
Figure 4: Validation sequence loss as α varies (MGS-LM).

5.2 Machine translation

Experimental Setup We experiment on the IWSLT ‘14 German to English task (Cettolo et al., 2014) using a standard experimental setup from the fairseq (Ott et al., 2019a) repository which we detail in Appendix A.4. We train the MLE baseline and a MGS models with the same hyper-parameters. We use 4 candidates and a grid search over noise (\{0.01, 0.1, 1.0\}) and α (\{1.0, 10.0, 100.0\}). The noise is scaled by $1 \left\| \nabla_{\theta} \mathcal{L}_{\text{MLE}} \right\|_1$. For fine-tuning, we use a batch size of 16k tokens, and accumulate gradients for 4 iterations. We select α = 100.0 and noise 1.0 for all MGS fine-tuning based on a grid search with MGS-SBLEU. For training from scratch, we select α 1.0 and noise 1.0. All models are selected by validation BLEU using beam search with width 5, which is also used during evaluation.
Table 4: Machine translation results (IWSLT ’14 De→En). SBLU, METEOR, and EDIT are computed with greedy decoding to match the training conditions.

Model	BLEU↑	SBLEU↑	MET.↑	EDIT↓	BLEU↑	SBLEU↑	MET.↑	EDIT↓
MLE	36.00	36.22	63.82	47.88	34.71	62.19	50.74	
MGS-SBLU	36.22	**36.58**	64.08	47.25	**35.03**	62.2	50.23	
MGS-METEOR	**36.26**	36.51	**64.13**	47.35	34.98	**35.97**	**62.49**	50.29
MGS-EDIT	35.73	36.42	63.73	**46.83**	34.73	35.95	62.04	**49.45**
MGS-SBLU (train)	36.19	36.13	63.65	48.40	34.80	35.32	61.95	51.38

Figure 5: Validation BLEU. Figure 6: Standard deviation of candidate weights. Figure 7: Proportion of highest-weight MLE candidates.

Results. Results for the baseline, MGS fine-tuned models, and models trained from scratch with MGS are in Table 4, along with prior work that fine-tuned with minimum risk training in Table 5.

The fine-tuned MGS-SBLU model improves BLEU over the baseline MLE model (+0.32 test) at a comparable level to the improvement from fine-tuning with MRT (+0.24 and +0.50 test), with MGS-METEOR showing a similar gain. All of the fine-tuned MGS models improve the sequence-level task losses that are computed with greedy decoding (SBLU, METEOR, EDIT), with each model achieving the best score on its associated task loss. MGS-EDIT shows the largest difference, underperforming on BLEU yet outperforming the baseline by a full point on EDIT.

The MGS model trained from scratch outperforms the baseline MLE model on BLEU, though by a smaller margin than the fine-tuned models. Figure 5 shows the validation BLEU over time for MGS and the baseline, indicating that they arrive at their performance levels via different paths. Figure 7 shows the proportion of MLE candidates that had the highest weight out of the four candidates sampled from the mixture \(q_{MGS}\), and Table 3 shows an example sequence decoded from a candidate sampled from each component. Candidates sampled from the zero-component tend to locally improve the task loss more than those from the MLE component. However, the variations in weight between the candidates (Figure 6) are smaller than those in the text completion task, and we find that at the end of training, roughly 46% of the weight comes from the MLE candidates. The task losses used in MT are highly concentrated on matching a reference translation and are similar to the 0-1 loss to which the log loss (MLE) is a proxy. We suspect that it is more difficult to find candidates that improve substantially over MLE, resulting in smaller improvements than in text completion.

6 Conclusion

We propose maximum-likelihood guided parameter search (MGS), a training method for optimizing an arbitrary sequence-level task loss. MGS samples update directions and weights them according to their improvement in task loss. Key to our method is a proposal distribution which either performs random search around the current parameter or around the maximum-likelihood gradient. MGS substantially reduced non-termination and repetition in a text completion task, and outperformed maximum likelihood on machine translation, with fine-tuning and when trained from scratch. The results suggest that MGS is a promising alternative to minimum risk and policy gradient, and improving upon its simple, yet effective, form of exploration is a fruitful direction for future research.
Broader Impact

Our method deals with improving neural sequence generation models for natural language processing applications, and thus inherits the potential impact and concerns that these applications bring (see Brown et al. (2020) for a review). Generation tasks such as translation, summarization, and machine-aided writing hold the promise of improved communication, easier information access, and increased creative output, and can potentially benefit from directly optimizing task-specific objectives. On the other hand, generation models carry a risk of producing biased or offensive content, and can be used for nefarious applications such as fake news generation (Zellers et al., 2019), which could be enhanced by task loss minimization. Alternatively, using a task loss to specify and correct for biases in conventionally-trained models may be part of a solution that mitigates these issues, but more work is needed to determine whether this is a viable path.

Acknowledgments and Disclosure of Funding

We thank Ilia Kulikov for valuable discussions. We thank NVIDIA and eBay for their support. This work was partly supported by Samsung Advanced Institute of Technology (Next Generation Deep Learning: from pattern recognition to AI) and Samsung Research (Improving Deep Learning using Latent Structure).

References

Andor, D., Alberti, C., Weiss, D., Severin, A., Presta, A., Ganchev, K., Petrov, S., and Collins, M. (2016). Globally normalized transition-based neural networks. In 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 - Long Papers.

Bäck, T. and Schwefel, H.-P. (1993). An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation.

Baevski, A. and Auli, M. (2019). Adaptive input representations for neural language modeling. In International Conference on Learning Representations.

Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A., and Bengio, Y. (2016). An actor-critic algorithm for sequence prediction.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Banerjee, S. and Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for sequence prediction with recurrent neural networks. In Advances in Neural Information Processing Systems.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners.

Caccia, M., Caccia, L., Fedus, W., Larochelle Google Brain, H., Mila, M., Research, F. A., and Canada CIFAR Chair, M. A. (2020). Language GANs Falling Short. In International Conference on Learning Representations (ICLR).

Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., and Federico, M. (2014). Report on the 11th IWSLT evaluation campaign, IWSLT 2014. In Proceedings of the 11th International Workshop on Spoken Language Translation.
Chen, Y., Li, V. O., Cho, K., and Bowman, S. R. (2018). A stable and effective learning strategy for trainable greedy decoding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018.

Choshen, L., Fox, L., Aizenbud, Z., and Abend, O. (2020). On the Weaknesses of Reinforcement Learning for Neural Machine Translation. In International Conference on Learning Representations (ICLR).

Daumé, H., Langford, J., and Marcu, D. (2009). Search-based structured prediction. Machine Learning.

Daumé, H. and Marcu, D. (2005). Learning as search optimization: Approximate large margin methods for structured prediction. In Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, page 169–176, New York, NY, USA. Association for Computing Machinery.

De Boer, P. T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of Operations Research.

de Masson d’Autume, C., Mohamed, S., Rosca, M., and Rae, J. (2019). Training language gans from scratch. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 4300–4311. Curran Associates, Inc.

Deng, Y., Bakhtin, A., Ott, M., Szlam, A., and Ranzato, M. (2020). Residual energy-based models for text generation. In International Conference on Learning Representations.

Edunov, S., Ott, M., Auli, M., Grangier, D., and Ranzato, M. (2018). Classical structured prediction losses for sequence to sequence learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 355–364, New Orleans, Louisiana. Association for Computational Linguistics.

Graves, A. (2013). Generating Sequences With Recurrent Neural Networks.

Gu, J., Cho, K., and Li, V. O. (2017). Trainable greedy decoding for neural machine translation. In EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. In Advances in Neural Information Processing Systems.

Hansen, N. (2011). Injecting External Solutions Into CMA-ES.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep reinforcement learning that matters. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018.

Holtzman, A., Buys, J., Forbes, M., and Choi, Y. (2019). The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751.

Koehn, P. and Knowles, R. (2017). Six Challenges for Neural Machine Translation.

Lafferty, J., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML ’01 Proceedings of the Eighteenth International Conference on Machine Learning.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. (2006). A tutorial on energy-based learning. Predicting structured data, 1(0).

Lee, J., Tran, D., Firat, O., and Cho, K. (2020). On the discrepancy between density estimation and sequence generation.
Lehman, J., Chen, J., Clune, J., and Stanley, K. O. (2018). Safe mutations for deep and recurrent neural networks through output gradients. In *Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18*, page 117–124, New York, NY, USA. Association for Computing Machinery.

Lenc, K., Elsen, E., Schaul, T., and Simonyan, K. (2019). Non-Differentiable Supervised Learning with Evolution Strategies and Hybrid Methods.

Li, M., Roller, S., Kulikov, I., Welleck, S., Boureau, Y.-L., Cho, K., and Weston, J. (2020). Don’t say that! making inconsistent dialogue unlikely with unlikelihood training.

Liu, S., Zhu, Z., Ye, N., Guadarrama, S., and Murphy, K. (2017). Improved Image Captioning via Policy Gradient optimization of SPIDEr. In *Proceedings of the IEEE International Conference on Computer Vision*.

Maheswaranathan, N., Metz, L., Tucker, G., Choi, D., and Sohl-Dickstein, J. (2019). Guided evolutionary strategies: augmenting random search with surrogate gradients. In Chaudhuri, K. and Salakhutdinov, R., editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 4264–4273, Long Beach, California, USA. PMLR.

Mania, H., Guy, A., and Recht, B. (2018). Simple random search provides a competitive approach to reinforcement learning. Technical report.

Matyas, J. (1965). Random Optimization. *Automat. i Telemekh*.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer sentinel mixture models. *ArXiv*, abs/1609.07843.

Murray, K. and Chiang, D. (2018). Correcting length bias in neural machine translation. In *Proceedings of the Third Conference on Machine Translation: Research Papers*, pages 212–223, Brussels, Belgium. Association for Computational Linguistics.

Norouzi, M., Bengio, S., Chen, Z., Jaitly, N., Schuster, M., Wu, Y., and Schuurmans, D. (2016). Reward augmented maximum likelihood for neural structured prediction. In *Advances in Neural Information Processing Systems*.

Och, F. J. (2003). Minimum error rate training in statistical machine translation.

Ott, M., Auli, M., Grangier, D., and Ranzato, M. (2018). Analyzing uncertainty in neural machine translation. In *35th International Conference on Machine Learning, ICML 2018*.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M. (2019a). fairseq: A fast, extensible toolkit for sequence modeling. In *Proceedings of NAACL-HLT 2019: Demonstrations*.

Ott, M., Edunov, S., Grangier, D., and Auli, M. (2019b). Scaling Neural Machine Translation.

Owen, A. B. (2013). *Monte Carlo theory, methods and examples*.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-j. (2002). BLEU : a Method for Automatic Evaluation of Machine Translation. *Computational Linguistics*.

Paulus, R., Xiong, C., and Socher, R. (2018). A deep reinforced model for abstractive summarization. In *6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings*.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz, M. (2018). Parameter space noise for exploration. In *6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings*.

Pourchot and Sigaud (2019). CEM-RL: Combining evolutionary and gradient-based methods for policy search. In *International Conference on Learning Representations*.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2018). Language Models are Unsupervised Multitask Learners.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence level training with recurrent neural networks. In 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.

Rechenberg, I. (1978). Evolutionstrategien.

Ross, S., Gordon, G. J., and Bagnell, J. A. (2011). A reduction of imitation learning and structured prediction to no-regret online learning. In Journal of Machine Learning Research.

Rubinstein, R. (1999). The Cross-Entropy Method for Combinatorial and Continuous Optimization. Methodology And Computing In Applied Probability.

Rückstieß, T., Sehnke, F., Schaul, T., Wierstra, D., Sun, Y., and Schmidhuber, J. (2010). Exploring Parameter Space in Reinforcement Learning. Paladyn, Journal of Behavioral Robotics.

Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for sentence summarization. In Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution strategies as a scalable alternative to reinforcement learning.

Sener, O. and Koltun, V. (2020). Learning to guide random search. In International Conference on Learning Representations.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016). Minimum risk training for neural machine translation. In 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 - Long Papers.

Smith, D. A. and Eisner, J. (2006). Minimum risk annealing for training log-linear models.

Sountsov, P. and Sarawagi, S. (2016). Length bias in encoder decoder models and a case for global conditioning. In EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings.

Stahlberg, F. and Byrne, B. (2019). On NMT search errors and model errors: Cat got your tongue? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3354–3360, Hong Kong, China. Association for Computational Linguistics.

Sutskever, I., Martens, J., and Hinton, G. (2011). Generating text with recurrent neural networks. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems.

Vemula, A., Sun, W., and Bagnell, J. (2019). Contrasting exploration in parameter and action space: A zeroth-order optimization perspective. In Chaudhuri, K. and Sugiyama, M., editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 2926–2935. PMLR.

Vinyals, O., Quoc, G., and Le, V. (2015). A Neural Conversational Model. In ICML Deep Learning Workshop.

Wang, B. and Ou, Z. (2018). Learning Neural Trans-Dimensional Random Field Language Models with Noise-Contrastive Estimation. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings.
Wang, C. and Sennrich, R. (2020). On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation.

Welleck, S., Kulikov, I., Kim, J., Pang, R. Y., and Cho, K. (2020a). Consistency of a recurrent language model with respect to incomplete decoding. *arXiv preprint arXiv:2002.02492*.

Welleck, S., Kulikov, I., Roller, S., Dinan, E., Cho, K., and Weston, J. (2020b). Neural text generation with unlikelihood training. In *International Conference on Learning Representations*.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J. (2014). *Natural evolution strategies*. *Journal of Machine Learning Research*.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning*.

Wiseman, S. and Rush, A. M. (2016). Sequence-to-sequence learning as beam-search optimization. In *EMNLP 2016 - Conference on Empirical Methods in Natural Language Processing, Proceedings*.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., and Brew, J. (2019). Huggingface’s transformers: State-of-the-art natural language processing. *ArXiv*, abs/1910.03771.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). SeqGAN: Sequence generative adversarial nets with policy gradient. In *31st AAAI Conference on Artificial Intelligence, AAAI 2017*.

Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., and Choi, Y. (2019). Defending against neural fake news. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R., editors, *Advances in Neural Information Processing Systems 32*, pages 9054–9065. Curran Associates, Inc.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D., Christiano, P., and Irving, G. (2019). Fine-Tuning Language Models from Human Preferences.

Appendix

A.1 Self-normalized Importance Sampling

For completeness, we review self-normalized importance sampling (see (Owen, 2013) for a further review), and show the explicit derivation of the MGS update. Importance sampling estimates the expected value of a function $f(x)$ under $p(x)$ using a proposal distribution $q(x)$. Self-normalized importance sampling assumes $p(x)$ and $q(x)$ are only known up to multiplicative constants, $\tilde{p}(x) = ap(x), \tilde{q}(x) = bq(x)$. The expected value is estimated with weights $w(x) = \tilde{p}(x) \tilde{q}(x)$,

$$
\hat{\mu}_{f,p} = \frac{\sum_{k=1}^{K} f(x_k) w(x_k)}{\sum_{k'=1}^{K} w(x_{k'})} = \frac{a}{b} \frac{\sum_{k=1}^{K} f(x_k) p(x_k)}{\sum_{k'=1}^{K} q(x_{k'})} = \frac{a}{b} \frac{\sum_{k=1}^{K} f(x_k) p(x_k)}{\sum_{k'=1}^{K} q(x_{k'})},
$$

where the last line shows that self-normalized importance sampling is equivalent to using standard importance sampling weights $\frac{p(x)}{q(x)}$ that are normalized.

In our case, x_k is a direction Δ_k, f is the identity, and \tilde{p} and \tilde{q} are defined in 2, 4. This gives,

$$
w(\Delta_k) = \frac{\exp(\alpha(C(\theta) - C(\theta + \Delta_n)))}{q_{MGS}(\Delta_n|\theta)},
$$
and

\[\hat{\Delta} = \sum_{k=1}^{K} \frac{w(\Delta_k)}{\sum_{k'=1}^{K} w(\Delta_k)} \Delta_k \]

\[= \sum_{k=1}^{K} \hat{w}(\Delta_k) \exp (\alpha (C(\theta) - C(\theta + \Delta_k))) \Delta_k, \]

(9)

where

\[\hat{w}(\Delta_n) = \frac{q_{\text{MGS}}(\Delta_k|\theta)^{-1}}{\sum_{k=1}^{K} w(\Delta_k)}. \]

We use the form (9) in Section 3.

MGS inherits properties of self-normalized importance sampling (see (Owen, 2013)). The variance can be computed as,

\[\text{Var}(\hat{\Delta}_{\text{MGS}}) = \sum_{k=1}^{K} \hat{w}_k (\Delta_k - \hat{\Delta})^2, \]

(10)

where \(\hat{w}_k = w(\Delta_k)/\sum_{k'} w(\Delta_{k'}). \)

A.2 Derivations

Minimum risk gradient. Consider the minimum risk training objective (6). Let \(Z_\theta \) denote \(\sum_{Y \in S} p_\theta(Y|X)^{\alpha}, p_\theta^\alpha \) denote \(p_\theta(Y|X)^{\alpha}, q_\theta \) denote the distribution (6), and \(c_{\hat{Y}} \) denote \(c(\hat{Y}, Y) \). The gradient of the objective is,

\[\nabla_\theta \left[\sum_{\hat{Y} \in S} q_\theta c_{\hat{Y}} \right] = \sum_{\hat{Y} \in S} q_\theta \nabla \log q_\theta c_{\hat{Y}}. \]

(11)

Now,

\[\nabla \log q_\theta = \nabla \log p_\theta^\alpha - \nabla \log Z_\theta \]

\[= \alpha \nabla \log p_\theta - \nabla \log Z_\theta, \]

\[\nabla \log Z_\theta = \nabla \log \sum_{Y' \in S} p_\theta^\alpha \]

\[= \sum_{Y' \in S} \nabla p_\theta^\alpha \]

\[= \alpha \sum_{Y' \in S} q_\theta \nabla \log p_\theta. \]

Substituting these expressions into (11) gives,

\[\nabla_\theta C_{\text{MRT}} = \sum_{\hat{Y} \in S} q_\theta \left[\alpha \nabla \log p_\theta - \alpha \sum_{Y' \in S} q_\theta(Y'|X) \nabla \log p_\theta(Y'|X) \right] c_{\hat{Y}} \]

\[= \alpha \sum_{\hat{Y} \in S} q_\theta \left[\nabla \log p_\theta - \mathbb{E}_{Y' \sim q_\theta} \nabla \log p_\theta(Y'|X) \right] c_{\hat{Y}} \]

\[= \alpha \left[\mathbb{E}_{q_\theta} [c_{\hat{Y}} \nabla \log p_\theta] - \mathbb{E}_{q_\theta} [c_{\hat{Y}}] \mathbb{E}_{q_\theta} [\nabla \log p_\theta] \right], \]

which is equation (7).
When $Y^* \in S$, expanding the preceding expression for $\nabla_\theta C_{\text{MRT}}$ gives (hiding the conditioning terms for brevity),

$$
\nabla_\theta C_{\text{MRT}} = \alpha [q_\theta(Y^*)c(Y^*) \nabla \log p_\theta(Y^*) + \sum_{\tilde{Y} \in S \setminus Y^*} q_\theta(\tilde{Y})c(\tilde{Y}) \nabla \log p_\theta(\tilde{Y}) -
$$

\[\mathbb{E}_{q_\theta} [c_{Y^*}] q_\theta(Y^*) \nabla \log p_\theta(Y^*) - \sum_{\tilde{Y} \in S \setminus Y^*} \mathbb{E}_{q_\theta} [c_{\tilde{Y}}] q_\theta(\tilde{Y}) \nabla \log p_\theta(\tilde{Y}) \]

\[= \alpha [w(Y^*) \nabla \log p_\theta(Y^*) + \sum_{\tilde{Y} \in S \setminus Y^*} w(\tilde{Y}) \nabla \log p_\theta(\tilde{Y}) - w(Y^*) \nabla \log p_\theta(Y^*) - \sum_{\tilde{Y} \in S \setminus Y^*} \tilde{w}(\tilde{Y}) \nabla \log p_\theta(\tilde{Y})] \]

\[= \alpha \left[(w(Y^*) - \tilde{w}(Y^*)) \nabla \log p_\theta(Y^*) + \sum_{\tilde{Y} \in S \setminus Y^*} (w(\tilde{Y}) - \tilde{w}(\tilde{Y})) \nabla \log p_\theta(\tilde{Y}) \right]. \]

\[\square \]

A.3 Limitations

Computation. Maximum-likelihood guided parameter search requires decoding $K + 1$ sequences to compute the sequence costs, as well as a single forward and backward pass to compute the loss gradient $\nabla \mathcal{L}$. However, the candidates and their corresponding costs can be computed in parallel. To reduce communication cost, each parameter update can be computed by only communicating the scalar sequence costs and the random seed used to generate each perturbation, in a scheme similar to (Salimans et al., 2017). In principle this would allow scaling MGS to a large number of candidate directions, which we save for future work. We demonstrate in the experiments that MGS can also be effective with just four candidate directions computed serially.

A.4 Experimental Setup

Text completion. First, we fine-tune the pretrained GPT-2 model using maximum likelihood for 400k steps, and select the model state with the lowest validation perplexity (evaluated every 5k steps). Each training batch contains a maximum of 1024 total tokens, and we use the default hyper-parameters from the implementation in the transformers library (Wolf et al., 2019). We then train with MGS using the same hyper-parameters, beginning at the fine-tuned model state. We use 4 candidates and a mixture parameter $\pi = 0.5$. For computing each candidate’s task loss during training, we use greedy decoding, with a maximum decoding length of 1.3 times the length of the longest target sequence in the batch. The MLE gradient is clipped to have a maximum L_2 norm of 1.0. The noise level σ^2 is set to $1/\|\nabla_\theta \mathcal{L}\|_1$, which on average yields candidates with similar L_1 norms to the MLE gradient. We found that scaling the noise for each weight tensor w individually by $1/\|\nabla_\theta \mathcal{L}\|_1$ resulted in candidates with more diverse decoded sequences, and use this method in the experiments below. The model is evaluated on the validation set every 100 batches, and training ends when the lowest achieved validation distance does not change for 10 consecutive evaluations.

Machine translation. We experiment on the IWSLT ‘14 German to English task (Cettolo et al., 2014) using the experimental setup from the fairseq repository.3 The training data consists of 160K sentence pairs, the validation set consists of 7K sentences randomly sampled and held out from the training data, and the test data is a concatenation of tst2010, tst2011, tst2012, dev2010, and dev2012.4 All data is lowercased and tokenized with a byte-pair encoding (BPE) of 10,000 types. We use the transformer_iwslt_de_en model configuration, a six-layer transformer. We train the MLE baseline with the default hyper-parameters, except we use gradient clipping (1.0) and disable patience (-1) which resulted in higher validation BLEU. We train MGS models with the same hyper-parameters, using 4 candidates and a grid search over noise ({(0.01, 0.1, 1.0)}) and

3https://github.com/pytorch/fairseq/blob/8e48f45aa469bbff85613520ffcc61c0850e4744/examples/translation.

4https://github.com/pytorch/fairseq/blob/8e48f45aa469bbff85613520ffcc61c0850e4744/examples/translation/prepare-iwslt14.sh
Table 6: Text completion results (GPT-2, Wikitext-103 validation set).

	LM	Edit	Nonterm	Repetition	Avg. len.	Perplexity
MLE	146.4	.938	.379	.545	239.7	20.9
MGS-LM	59.2	.937	.013	.043	20.1	22.1
MGS-edit	74.3	.925	.049	.089	45.6	21.5
Human	–	–	.000	.009	107.7	–

Table 7: Using the MGS mixture distribution (q_{MGS}) versus using only the zero-mean component (q_{zero}) or the MLE-mean component (q_{MLE}) as the proposal distribution in MGS (LM cost).

	Cost	Nonterm	PPL
q_{MGS}	59.2	.013	22.1
q_{zero}	143.0	.348	20.9
q_{MLE}	141.6	.351	20.9

$\alpha (\{1.0, 10.0, 100.0\})$, selecting α 1.0 and noise 1.0. The noise is scaled by $\frac{1}{\|\theta\|} \|\nabla_{\theta} L_{MLE}\|_1$. For fine-tuning, we use a batch size of 16k tokens, and accumulate gradients for 4 iterations. We select $\alpha = 100.0$ and noise 1.0 for all MGS fine-tuning based on a grid search with MGS-SBLEU. All models are selected for evaluation based on validation BLEU using beam search with width 5.

A.5 Additional Results

Text completion. Table 6 shows text completion results from the Wikitext-103 validation set. Table 7 shows validation metrics for the proposal distribution ablation. Table 8 shows additional continuations.
Disappointed by her blocked entry into the operatic world, the composer turned to the theatre, where he was able to work with the theatre's staff. He was able to write a number of plays, including The Mikado (1894), The Mikado (1894), The Mikado (1894), The Mikado (1894), and The Mikado (1894). As the 29th Brigade advanced toward the Mivo River, the 2nd Battalion, 29th Infantry Regiment, was ordered to attack the village of Mivo. The regiment was ordered to attack the village from the north, and the 2nd Battalion, 29th Infantry Regiment, was ordered to attack from the south. The regiment was ordered to attack from the north to the Mivo River, the brigade's commander, Brigadier General Richard H. White, ordered the brigade to move forward. The brigade's advance was halted by the arrival of the 2nd Battalion, 7th Marines. In April 1991, Carol Matthews and Richard Kevin Lang were hired as the new head coach of the University of Michigan. The team was ranked No. 1 in the AP Poll and No. 1 in the Coaches' Poll. The team was also ranked No. 1 in the Coaches' Poll. In 1644, Hu took it upon himself to establish a new royal court in the capital, Beijing. He also established a new administrative system, which was based on the principle of the "Five Hundred Years' War". He was assisted by the king's brother, the Duke of Wellington, who was appointed to the post of governor.

Table 8: Example greedy continuations (GPT-2, Wikitext-103 validation set). The first two show representative examples of eliminating non-termination. Roughly 38% of the baseline's continuations are non-terminating, with around 1% for MGS-LM and 5% for MGS-edit. The next two show reduction in repetition within a terminating continuation.