DOUBLE CUBICS AND DOUBLE QUARTICS

IVAN CHELTSOV

Abstract. We study a double cover $\psi : X \to V \subset \mathbb{P}^n$ branched over a smooth divisor $R \subset V$ such that R is cut on V by a hypersurface of degree $2(n - \deg(V))$, where $n \geq 8$ and V is a smooth hypersurface of degree 3 or 4. We prove that X is nonrational and birationally superrigid.

1. Introduction.

Let $\psi : X \to V \subset \mathbb{P}^n$ be a double cover branched over a smooth divisor $R \subset V$, where $n \geq 4$ and V is a smooth hypersurface\(^1\). Then $\text{rk} \, \text{Pic}(X) = 1$ (see \([4]\)) and

$$-K_X \sim \psi^*(\mathcal{O}_{\mathbb{P}^n}(d + r - 1 - n)|_V),$$

where $d = \deg V$ and r is a natural number such that $R \sim \mathcal{O}_{\mathbb{P}^n}(2r)|_V$. Therefore X is nonrational in the case when $d + r \geq n + 1$. The variety X is rationally connected if $d + r \leq n$, because it is a smooth Fano variety (see \([3]\)). Moreover, the following result is due to \([11]\).

Theorem 1. The variety X is birationally superrigid\(^2\) if it is general and $d + r = n \geq 5$.

In this paper we prove the following result.

Theorem 2. The variety X is birationally superrigid if $d + r = n \geq 8$ and $d = 3$ or 4.

One can use Theorem 2 to construct explicit examples of nonrational Fano varieties.

Example 3. The complete intersection

$$\sum_{i=0}^{8} x_i^4 = z^2 - x_0^4x_1^4 + x_2^4x_3^4 + x_4^4x_5^4 + x_6^4x_7^4 - 0 \subset \mathbb{P}(1^9, 3) \cong \text{Proj}(\mathbb{C}[x_0, \ldots, x_8, z])$$

is smooth. Hence, it is birationally superrigid and nonrational by Theorem 2.

In the case when $d + r = n \geq 4$ and $d = 1$ or 2 the birational superrigidity of X is proved in \([5]\) and \([10]\). In the case when $d + r = n = 4$ and $d = 3$ the variety X is not birationally superrigid, but it is nonrational (see \([6]\), \([8]\)). In the case when $d + r < n$ the only known way to prove the nonrationality of X is the method of \(3V\) in \([8]\), which implies the following result.

Proposition 4. The variety X is nonrational if it is very general, $n \geq 4$ and $r \geq \frac{d+n+2}{2}$.

The author would like to thank A. Corti, M. Grinenko, V. Iskovskikh, J. Park, Yu. Prokhorov and V. Shokurov for useful and fruitful conversations.

2. Preliminaries.

Let X be a variety and $B_X = \sum_{i=1}^{\ell} a_iB_i$ be a boundary on X, where $a_i \in \mathbb{Q}$ and B_i is either a prime divisor on X or a linear system on X having no base components. We say that B_X is effective if every $a_i \geq 0$, we say that B_X is movable if every B_i is a linear system having no fixed components\(^3\). In the rest of the section we we assume that all varieties are \mathbb{Q}-factorial.

\(^{1}\)All varieties are assumed to be projective, normal, and defined over \mathbb{C}.

\(^{2}\)Namely, we have Bir(X) = Aut(X), and X is not birational to the following varieties: a variety Y such that there is a morphism $\tau : Y \to Z$ whose general fiber has negative Kodaira dimension and dim(Y) \neq dim(Z) $\neq 0$; a Fano variety of Picard rank 1 having terminal \mathbb{Q}-factorial singularities that is not biregular to X.

\(^{3}\)Every effective movable log pair can be considered as a usual log pair (see \([1]\)).
Remark 5. We can consider B_X^2 as an effective codimension-two cycle if B_X is movable.

The notions such as discrepancies, terminality, canonicity, log terminality and log canonicity can be defined for the log pair (X, B_X) as for usual log pairs (see [2]).

Definition 6. The log pair (X, B_X) has canonical (terminal, respectively) singularities if for every birational morphism $f : W \to X$ there is an equivalence

$$K_W + B_W \sim_{Q} f^*(K_X + B_X) + \sum_{i=1}^{n} a(X, B_X, E_i)E_i$$

such that every number $a(X, B_X, E_i)$ is non-negative (positive, respectively), where B_W is a proper transform of B_X on W, and E_i is an f-exceptional divisor. The number $a(X, B_X, E_i)$ is called the discrepancy of the log pair (X, B_X) in the divisor E_i.

The application of Log Minimal Model Program (see [7]) to an effective movable log pair (X, B_X) such that codim$(Z \subset X) = 2$ the inequality $\text{mult}_Z(B_X) \geq 1$ implies $Z \in \mathbb{CS}(X, B_X)$.

In particular, the log pair (X, B_X) has terminal singularities if and only if $\mathbb{CS}(X, B_X) = \emptyset$.

Remark 8. Let H be a general hyperplane section of X. Then every component of $Z \cap H$ is contained in the set $\mathbb{CS}(H, B_X|_H)$ for every subvariety $Z \subset X$ contained in $\mathbb{CS}(X, B_X)$.

Remark 9. Let $Z \subset X$ be a proper irreducible subvariety such that X is smooth at the generic point of Z. Suppose that B_X is effective. Then $Z \in \mathbb{CS}(X, B_X)$ implies $\text{mult}_Z(B_X) \geq 1$, but in the case codim$(Z \subset X) = 1$ the inequality $\text{mult}_Z(B_X) \geq 1$ implies $Z \in \mathbb{CS}(X, B_X)$.

The following result is Lemma 3.18 in [1].

Lemma 10. Suppose that X is a smooth complete intersection $\cap_{i=1}^{k} G_i \subset \mathbb{P}^n$, and B_X is effective such that $B_X \sim_{Q} rH$ for some $r \in \mathbb{Q}$, where G_i is a hypersurface in \mathbb{P}^n, and H is a hyperplane section of X. Then $\text{mult}_Z(B_X) \leq r$ for every irreducible subvariety $Z \subset X$ such that $\dim(Z) \geq k$.

The following result is well known (see [2], [3]).

Theorem 11. Let X be a Fano variety of Picard rank 1 having terminal \mathbb{Q}-factorial singularities that is not birationally superrigid. Then there is a linear system \mathcal{M} on the variety X whose base locus has codimension at least 2 such that the singularities of the log pair $(X, \mu \mathcal{M})$ are not canonical, where μ is a positive rational number such that $K_X + \mu \mathcal{M} \sim_{Q} 0$.

Let $f : V \to X$ be a birational morphism such that the union of $\cup_{i=1}^{n} f^{-1}(B_i)$ and all f-exceptional divisors forms a divisor with simple normal crossing. Then f is called a log resolution of the log pair (X, B_X), and the log pair (V, B_V^V) is called the log pull back of (X, B_X) if

$$B_V^V = f^{-1}(B_X) - \sum_{i=1}^{n} a(X, B_X, E_i)E_i$$

such that $K_V + B_V^V \sim_{Q} f^*(K_X + B_X)$, where E_i is an f-exceptional divisor and $a(X, B_X, E_i) \in \mathbb{Q}$.

Definition 12. The log canonical singularity subscheme $\mathcal{L}(X, B_X)$ is the subscheme associated to the ideal sheaf $\mathcal{I}(X, B_X) = f_*(\mathcal{O}_V([-B_V^V]))$. A proper irreducible subvariety $Y \subset X$ is called a center of log canonical singularities of the log pair (X, B_X) if there is a divisor $E \subset V$ that is contained in the effective part of the support of $[B_V^V]$ and $f(E) = Y$. The set of all centers of log canonical singularities of (X, B_X) is denoted as $\mathbb{LCS}(X, B_X)$, the set-theoretic union of the elements of $\mathbb{LCS}(X, B_X)$ is denoted as $\mathbb{LCS}(X, B_X)$.
In particular, we have \(\text{Supp}(\mathcal{L}(X, B_X)) = \text{LCS}(X, B_X) \).

Remark 13. Let \(H \) be a general hyperplane section of \(X \) and \(Z \in \text{LCS}(X, B_X) \). Then every component of the intersection \(Z \cap H \) is contained in the set \(\text{LCS}(H, B_X|_H) \).

The following result is Theorem 17.4 in [9].

Theorem 14. Let \(g : X \to Z \) be a morphism. Then \(\text{LCS}(X, B_X) \) is connected in a neighborhood of every fiber of the morphism \(g \circ f \) if the following conditions hold:

- the morphism \(g \) has connected fibers;
- the divisor \(-(K_X + B_X)\) is \(g \)-nef and \(g \)-big;
- the inequality \(\text{codim}(g(B_i)) \subset Z) \geq 2 \) holds if \(a_i < 0 \);

The following corollary of Theorem 14 is Theorem 17.6 in [9].

Theorem 15. Let \(Z \) be an element of the set \(\text{CS}(X, B_X) \), and \(H \) be an effective Cartier divisor on the variety \(X \). Suppose that the boundary \(B_X \) is effective, the varieties \(X \) and \(H \) are smooth in the generic point of \(Z \) and \(Z \subset H \not\subset \text{Supp}(B_X) \). Then \(\text{LCS}(H, B_X|_H) \neq \emptyset \).

The following result is Theorem 3.1 in [3].

Theorem 16. Suppose that \(\dim(X) = 2 \), the boundary \(B_X \) is effective and movable, and there is a smooth point \(O \in X \) such that \(O \in \text{LCS}(X, (1-a_1)\Delta_1 + (1-a_2)\Delta_2 + M_X) \), where \(\Delta_1 \) and \(\Delta_2 \) are smooth curves on \(X \) intersecting normally at \(O \), and \(a_1 \) and \(a_2 \) are arbitrary non-negative rational numbers. Then we have

\[
\text{mult}_O(B_X^2) \geq \begin{cases} 4a_1a_2 & \text{if } a_1 \leq 1 \text{ or } a_2 \leq 1 \\
4(a_1 + a_2 - 1) & \text{if } a_1 > 1 \text{ and } a_2 > 1.
\end{cases}
\]

3. **Main local inequality.**

Let \(X \) be a variety, \(O \) be a smooth point on \(X \), \(f : V \to X \) be a blow up of the point \(O \), \(E \) be an exceptional divisor of \(f \), \(B_X = \sum_{i=1}^e a_iB_i \) be a movable boundary on \(X \), and \(B_V = f^{-1}(B_X) \), where \(a_i \) is a non-negative rational number and \(B_i \) is a linear system on \(X \) having no base components. Suppose that \(O \in \text{CS}(X, B_X) \), but the singularities of \((X, B_X)\) is log terminal in some punctured neighborhood of the point \(O \). The following result is Corollary 3.5 in [3].

Lemma 17. Suppose that \(\dim(X) = 3 \) and \(\text{mult}_O(B_X) < 2 \). Then there is a line \(L \subset E \cong \mathbb{P}^2 \) such that \(L \in \text{LCS}(V, B_V + (\text{mult}_O(B_X) - 1)E) \).

Suppose that \(\dim(X) = 4 \) and \(\text{mult}_O(B_X) < 3 \). Then the proof of Lemma 17 and Theorem 14 implies the following result.

Proposition 18. One of the following possibilities holds:

- there is a surface \(S \subset E \) such that \(S \in \text{LCS}(V, B_V + (\text{mult}_O(B_X) - 2)E) \);
- there is a line \(L \subset E \cong \mathbb{P}^3 \) such that \(L \in \text{LCS}(V, B_V + (\text{mult}_O(B_X) - 2)E) \).

Now suppose that the set \(\text{LCS}(V, B_V + (\text{mult}_O(B_X) - 2)E) \) does not contain surfaces that are contained in the divisor \(E \) and contains a line \(L \subset E \cong \mathbb{P}^3 \). Let \(g : W \to V \) be a blow up of the variety \(V \) in \(L \), \(F = g^{-1}(L) \), \(E = g^{-1}(E) \), and \(B_W = g^{-1}(B_V) \). Then

\[
B^W = B_W + (\text{mult}_O(B_X) - 3)\bar{E} + (\text{mult}_O(B_X) + \text{mult}_L(B_V) - 5)F.
\]

Proposition 19. One of the following possibilities holds:

- the divisor \(F \) is contained in \(\text{LCS}(W, B^W + \bar{E} + 2F) \);
- there is a surface \(Z \subset F \) such that \(Z \in \text{LCS}(W, B^W + \bar{E} + 2F) \) and \(g(Z) = L \).

The following result is implied by Proposition 19.
Theorem 20. Let \(Y \) be a variety, \(\dim(Y) = 4 \), \(\mathcal{M} \) be a linear system on the variety \(Y \) having no base components, \(S_1 \) and \(S_2 \) be sufficiently general divisors in \(\mathcal{M} \), \(P \) be a smooth point on the variety \(Y \) such that \(P \in \text{CS}(Y, \frac{1}{n}\mathcal{M}) \) for \(n \in \mathbb{N} \), but the singularities of \((Y, \frac{1}{n}\mathcal{M}) \) are canonical in some punctured neighborhood of the point \(P \), \(\pi : \hat{Y} \to Y \) be a blow up of \(P \), and \(\Pi \) be an exceptional divisor of \(\pi \). Then there is a line \(C \subset \Pi \cong \mathbb{P}^3 \) such that the inequality
\[
\text{mult}_P(S_1 \cdot S_2 \cdot \Delta) \geq 8n^2
\]
holds for any divisor \(\Delta \) on \(Y \) such that the following conditions hold:

- the divisor \(\Delta \) contains the point \(P \) and \(\Delta \) is smooth at \(P \);
- the line \(C \subset \Pi \cong \mathbb{P}^3 \) is contained in the divisor \(\pi^{-1}(\Delta) \);
- the divisor \(\Delta \) does not contain subvarieties of dimension 2 contained in \(\text{Bs}(\mathcal{M}) \).

Proof. Let \(\Delta \) be a divisor on \(Y \) such that \(P \in \Delta \), the divisor \(\Delta \) is smooth at \(P \), and \(\Delta \) does not contain any surface that is contained in the base locus of \(\mathcal{M} \). Then the base locus of the linear system \(\mathcal{M}|_\Delta \) has codimension 2 in \(\Delta \). In particular, the intersection \(S_1 \cdot S_2 \cdot \Delta \) is an effective one-cycle. Let \(\hat{S}_1 = S_1|_\Delta \) and \(\hat{S}_2 = S_2|_\Delta \). Then we must prove that the inequality
\[
(\text{mult}_P(S_1 \cdot S_2) \geq 8n^2
\]
holds, perhaps, under certain additional conditions on \(\Delta \). Put \(\hat{\mathcal{M}} = \mathcal{M}|_\Delta \). Then
\[
P \in \text{LCS}(\Delta, \frac{1}{n}\hat{\mathcal{M}})
\]
by Theorem 15. Let \(\bar{\pi} : \hat{\Delta} \to \Delta \) be a blow up of \(P \) and \(\bar{\Pi} = \bar{\pi}^{-1}(P) \). Then the diagram
\[
\begin{array}{ccc}
\hat{\Delta} & \xrightarrow{\bar{\pi}} & \hat{Y} \\
\downarrow & & \downarrow \pi \\
\Delta & \xrightarrow{\pi} & Y \\
\end{array}
\]
is commutative, where \(\hat{\Delta} \) is identified with \(\pi^{-1}(\Delta) \subset \hat{Y} \). We have \(\bar{\Pi} = \Pi \cap \hat{\Delta} \).

Let \(\mathcal{M} = \bar{\pi}^{-1}(\hat{\mathcal{M}}) \). The inequality 21 is obvious if \(\text{mult}_P(\hat{\mathcal{M}}) \geq 3n \). Hence we may assume that \(\text{mult}_P(\hat{\mathcal{M}}) < 3n \). Then
\[
\bar{\Pi} \notin \text{LCS}(\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\frac{1}{n}\text{mult}_P(\hat{\mathcal{M}}) - 2)\bar{\Pi}),
\]
which implies the existence of a subvariety \(\Xi \subset \bar{\Pi} \cong \mathbb{P}^2 \) such that \(\Xi \) is a center of log canonical singularities of \((\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\frac{1}{n}\text{mult}_P(\hat{\mathcal{M}}) - 2)\bar{\Pi}) \).

Suppose that \(\Xi \) is a curve. Put \(\hat{S}_i = \bar{\pi}^{-1}(S_i) \). Then
\[
\text{mult}_P(\hat{S}_1 \cdot \hat{S}_2) \geq \text{mult}_P(\hat{\mathcal{M}})^2 + \text{mult}_\Xi(\hat{S}_1 \cdot \hat{S}_2),
\]
buts we can apply Theorem 16 to the log pair \((\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\frac{1}{n}\text{mult}_P(\hat{\mathcal{M}}) - 2)\bar{\Pi}) \) in the generic point of the curve \(\Xi \). The latter implies that the inequality
\[
\text{mult}_\Xi(\hat{S}_1 \cdot \hat{S}_2) \geq 4(3n^2 - n\text{mult}_P(\hat{\mathcal{M}}))
\]
holds. Therefore we have
\[
\text{mult}_P(\hat{S}_1 \cdot \hat{S}_2) \geq \text{mult}_P(\hat{\mathcal{M}})^2 + 4(3n^2 - n\text{mult}_P(\hat{\mathcal{M}})) \geq 8n^2,
\]
which implies the inequality 21.

Suppose now that the subvariety \(\Xi \subset \bar{\Pi} \) is a point. In this case Proposition 18 implies the existence of a line \(C \subset \Pi \cong \mathbb{P}^3 \) such that
\[
C \in \text{LCS}(\hat{Y}, \frac{1}{n}\pi^{-1}(\mathcal{M}) + (\text{mult}_P(\mathcal{M})/n - 2)\bar{\Pi})
\]
and \(\Xi = C \cap \hat{\Delta} \). The line \(C \subset \Pi \) depends only on the properties of the log pair \((Y, \frac{1}{n}\mathcal{M}) \).
Suppose that initially we take Δ such that $C \subset \pi^{-1}(\Delta)$. Then we can repeat all the previous steps of our proof. Moreover, the geometrical meaning of Proposition \ref{prop:main} is the following: the condition $C \subset \Delta = \pi^{-1}(\Delta)$ implies that

\[
C \in \text{LCS}(\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\text{mult}_P(\hat{\mathcal{M}})/n - 2)\hat{\Pi})
\]

in the case when the set $\text{LCS}(\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\frac{1}{n}\text{mult}_P(\mathcal{M}) - 2)\hat{\Pi})$ does not contain any other curve in Π. Thus we can apply the previous arguments to the divisor Δ such that $C \subset \hat{\Delta}$ and obtain the proof of the inequality \ref{ineq:main}.

In the rest of the section we prove Proposition \ref{prop:main}. We may assume that $X \cong \mathbb{P}^4$. Let H be a general hyperplane section of X such that $L \subset f^{-1}(H)$, $T = f^{-1}(H)$ and $S = g^{-1}(T)$. Then

\[
K_W + B^W + \tilde{E} + 2F = B_W + (\text{mult}_O(B_X) - 2)\tilde{E} + (\text{mult}_O(B_X) + \text{mult}_L(B_V) - 3)F,
\]

which implies that

\[
F \in \text{LCS}(W, B^W + \tilde{E} + 2F) \iff \text{mult}_O(B_X) + \text{mult}_L(B_V) \geq 4
\]

by Definition \ref{def:condition}. Thus we may assume that $\text{mult}_O(B_X) + \text{mult}_L(B_V) < 4$. We must prove that there is a surface $Z \subset F$ such that $Z \subset \text{LCS}(W, B^W + \tilde{E} + 2F)$ and $g(Z) = L$.

Now let \hat{H} be a sufficiently general hyperplane section of the variety X passing through the point $O, \hat{T} = f^{-1}(\hat{H})$ and $\hat{S} = g^{-1}(\hat{T})$. Then $O \in \text{LCS}(\hat{H}, B_X|_H)$ by Theorem \ref{thm:main} and

\[
K_W + B^W + \tilde{E} + F + \hat{S} \sim_{\hat{Q}} (f \circ g)^*(K_X + B_X + H),
\]

which implies that the log pair $(\hat{S}, (B^W + \tilde{E} + F)|_{\hat{S}})$ is not log terminal. We can apply Theorem \ref{thm:logterminal} to the morphism $f \circ g : S \to H$. Therefore either the locus $\text{LCS}(\hat{S}, (B^W + \tilde{E} + F)|_{\hat{S}})$ consists of a single isolated point in the fiber of the morphism $g|_F : F \to L$ over the point $\hat{T} \cap L$ or it contains a curve in the fiber of the morphism $g|_F : F \to L$ over the point $\hat{T} \cap L$.

Remark 23. Every element of the set $\text{LCS}(\hat{S}, (B^W + \tilde{E} + F)|_{\hat{S}})$ that is contained in the fiber of the \mathbb{P}^2-bundle $g|_F : F \to L$ over the point $\hat{T} \cap L$ is an intersection of \hat{S} with some element of the set $\text{LCS}(W, B^W + \tilde{E} + F)$ due to the generality in the choice of \hat{H}.

Therefore the generality of \hat{H} implies that either $\text{LCS}(W, B^W + \tilde{E} + F)$ contains a surface in the divisor F dominating the curve L or the only center of log canonical singularities of the log pair $(W, B^W + \tilde{E} + F)$ that is contained in the divisor F and dominates the curve L is a section of the \mathbb{P}^2-bundle $g|_F : F \to L$. On the other hand, we have

\[
\text{LCS}(W, B^W + \tilde{E} + F) \subseteq \text{LCS}(W, B^W + \tilde{E} + 2F),
\]

which implies that in order to prove Proposition \ref{prop:main} we may assume that the divisor F contains a curve C such that the following conditions hold:

- the curve C is a section of the \mathbb{P}^2-bundle $g|_F : F \to L$;
- the curve C is the unique element of the set $\text{LCS}(W, B^W + \tilde{E} + F)$ that is contained in the g-exceptional divisor F and dominates the curve L;
- the curve C is the unique element of the set $\text{LCS}(W, B^W + \tilde{E} + F)$ that is contained in the g-exceptional divisor F and dominates the curve L.

We have $O \in \text{LCS}(H, M_X|_H)$ by Theorem \ref{thm:main}, but $\text{LCS}(S, (B^W + \tilde{E} + 2F)|_S) \neq \emptyset$, where S is the proper transform of H on W. We can apply Theorem \ref{thm:logterminal} to the log pair $(S, (B^W + \tilde{E} + 2F)|_S)$ and the birational morphism $f \circ g|_S : S \to H$, which implies that one of the following holds:

- the locus $\text{LCS}(S, (B^W + \tilde{E} + 2F)|_S)$ consists of a single point;
- the locus $\text{LCS}(S, (B^W + \tilde{E} + 2F)|_S)$ contains a curve C.

Corollary 24. Either $C \subset S$ or $S \cap C$ consists of a single point.
By construction we have $L \cong C \cong \mathbb{P}^1$ and

$$F \cong \text{Proj}(O_L(-1) \oplus O_L(1) \oplus O_L(1))$$

and $S|_F \sim B + D$, where B is the tautological line bundle on F and D is a fiber of the natural projection $g|_F : F \to L \cong \mathbb{P}^1$.

Lemma 25. The group $H^1(O_W(S - F))$ vanishes.

Proof. The intersection of the divisor $-g^*(E) - F$ with every curve that is contained in the divisor E is non-negative and $(-g^*(E) - F)|_F \sim B + D$. Hence $-4g^*(E) - 4F$ is h-big and h-nef, where $h = f \circ g$. However, we have $X \cong \mathbb{C}^4$ and

$$K_W - 4g^*(E) - 4F = S - F,$$

which implies $H^1(O_W(S - F)) = 0$ by the Kawamata–Viehweg vanishing (see [7]). \square

Thus the restriction map

$$H^0(O_W(S)) \to H^0(O_F(S|_F))$$

is surjective, but $|S|_F$ has no base points (see §2.8 in [12]).

Corollary 26. The curve C is not contained in S.

Let $\tau = g|_F$ and \mathcal{I}_C be an ideal sheaf of C on F. Then $R^1 \tau_*(B \otimes \mathcal{I}_C) = 0$ and the map

$$\pi : O_L(-1) \oplus O_L(1) \oplus O_L(1) \to O_L(k)$$

is surjective, where $k = B \cdot C$. The map π is given by a an element of the group

$$H^0(O_L(k + 1)) \oplus H^0(O_L(k - 1)) \oplus H^0(O_L(k - 1)),$$

which implies $k \geq -1$.

Lemma 27. The equality $k = 0$ is impossible.

Proof. Suppose $k = 0$. Then the map π is given by matrix $(ax + by, 0, 0)$, where a and b are complex numbers and $(x : y)$ are homogeneous coordinates on $L \cong \mathbb{P}^1$. Thus the map π is not surjective over the point of L at which $ax + by$ vanishes. \square

Therefore the divisor B can not have trivial intersection with C. Hence the intersection of the divisor S with the curve C is either trivial or consists of more than one point, but we already proved that $S \cap C$ consists of one point. The obtained contradiction proves Proposition [19]

The following result is a generalization of Theorem 20.

Theorem 28. Let Y be a variety of dimension $r \geq 5$, \mathcal{M} be a linear system on Y having no base components, S_1 and S_2 be general divisors in the linear system \mathcal{M}, P be a smooth point of the variety Y such that $P \in \text{CS}(Y, \frac{1}{n}\mathcal{M})$ for some natural number n, but the singularities of the log pair $(Y, \frac{1}{n}\mathcal{M})$ are canonical in some punctured neighborhood of P, $\pi : \hat{Y} \to Y$ be a blow up of the point P, and Π be a π-exceptional divisor. Then there is a linear subspace $C \subset \Pi \cong \mathbb{P}^{r-1}$ having codimension 2 such that $\text{mult}_P(S_1 \cdot S_2 \cdot \Delta) > 8n^2$, where Δ is a divisor on Y passing through P such that Δ is smooth at P, the divisor $\pi^{-1}(\Delta)$ contains C, the divisor Δ does not contain any subvarieties of Y of codimension 2 that are contained in the base locus of \mathcal{M}.

Proof. We consider only the case $r = 5$. Let H_1, H_2, H_3 be general hyperplane sections of the variety Y passing through P. Put $\tilde{Y} = \cap_{i=1}^3 H_i$ and $\mathcal{M} = \mathcal{M}|_{\tilde{Y}}$. Then \tilde{Y} is a surface, which is smooth at P, and $P \in \text{LCS}(\tilde{Y}, \frac{1}{n}\mathcal{M})$ by Theorem 15. Let $\pi : Y \to \tilde{Y}$ be a blow up of P, Π be an exceptional divisor of π, and $\mathcal{M} = \pi^{-1}(\mathcal{M})$. Then the set

$$\text{LCS}(\tilde{Y}, \frac{1}{n}\mathcal{M} + (\text{mult}_P(\mathcal{M})/n - 2)\Pi)$$

contains a subvariety $Z \subset \Pi$ such that $\dim(Z) \geq 2$.

6
In the case dim(Z) = 4 the claim is obvious. In the case dim(Z) = 3 we can proceed as in the proof of Theorem 2. Suppose that dim(Z) = 3, and consider the following.

Lemma 30. The inequality dim(Z) $\neq 0$ holds.

Proof. Suppose that Z is a point. Let S_1 and S_2 be sufficiently general divisors in the linear system M, $f : U \to X$ be a blow up of Z, and E be an f-exceptional divisor. Then Theorem 2 implies the existence of a linear system M of codimension 2 such that

$$\text{mult}_Z(S_1 \cdot S_2, D) > 8m^2$$

holds for any $D \in |-K_X|$ such that $\Pi \subset f^{-1}(D)$, the divisor D is smooth at Z, and D does not contain any subvariety of X of codimension 2 that is contained in the base locus of M.

Let H be a linear system of hyperplane sections of the hypersurface V such that $H \in \mathcal{H}$ if and only if $\Pi \subset (\psi \circ f)^{-1}(H)$. Then there is a linear subspace $\Sigma \subset \mathbb{P}^n$ of dimension $n - 3$ such that the divisors in the linear system \mathcal{H} is cut on V by the hyperplanes in \mathbb{P}^n that contains the linear subspace Σ. Hence the base locus of the linear system \mathcal{H} consists of the intersection $\Sigma \cap V$, but we have $\Sigma \not\subset V$ by the Lefschetz theorem. In particular, dim($\Sigma \cap V$) = $n - 4$.

4. **Birational superrigidity.**

In this section we prove Theorem 2. Let $\psi : X \to V \subset \mathbb{P}^n$ be a double cover branched over a smooth divisor $R \subset V$ such that $n \geq 7$. Then $\psi \circ \mathcal{O}_{\mathbb{P}^n}(2r)|_V$ for some $r \in \mathbb{N}$, and

$$-K_X \sim \psi^*(\mathcal{O}_{\mathbb{P}^n}(d + r - 1 - n)|_V),$$

where $d = \deg V$. Suppose that $d + r = n$ and $d = 3$ or 4. Then the group Pic(X) is generated by the divisor $-K_X$, and $(-K_X)^2 = 2d \leq 8$. Suppose that X is not birationally superrigid. Then Theorem 2 implies the existence of a linear system M whose base locus has codimension at least 2 and the singularities of the log pair $(X, \frac{1}{m}M)$ are not canonical, where m is a natural number such that the equivalence $M \sim -mK_X$ holds. Hence the set $\text{CS}(X, \frac{1}{m}M)$ contains a proper irreducible subvariety $Z \subset X$ such that $Z \subset \text{CS}(X, \mu M)$ for some positive rational number $\mu < 1/m$.

Corollary 29. For a general $S \in M$ the inequality mult$_Z(S) > m$ holds.

A priori we have dim(Z) \leq dim(X) $- 2 = n - 3$. We may assume that Z has maximal dimension among subvarieties of X such that the singularities of the log pair $(X, \frac{1}{m}M)$ are not canonical in their generic points.

Lemma 30. The inequality dim(Z) $\neq 0$ holds.

Proof. Suppose that Z is a point. Let S_1 and S_2 be sufficiently general divisors in the linear system M, $f : U \to X$ be a blow up of Z, and E be an f-exceptional divisor. Then Theorem 2 implies the existence of a linear subspace $\Pi \subset E \cong \mathbb{P}^{n-2}$ of codimension 2 such that

$$\text{mult}_Z(S_1 \cdot S_2, D) > 8m^2$$

holds for any $D \in |-K_X|$ such that $\Pi \subset f^{-1}(D)$, the divisor D is smooth at Z, and D does not contain any subvariety of X of codimension 2 that is contained in the base locus of M.

Let H be a general divisor in \mathcal{H} and $D = \psi^{-1}(H)$. Then $\Pi \subset f^{-1}(D)$, and D is smooth at the point Z. Moreover, the divisor D does not contain any subvariety $\Gamma \subset X$ of codimension 2 that is contained in the base locus of \mathcal{M}, because otherwise $\psi(\Gamma) \subset \Sigma \cap V$, but $\dim(\psi(\Gamma)) = n - 3$ and $\dim(\Sigma \cap V) = n - 4$. Let H_1, H_2, \ldots, H_k be general divisors in $|-K_X|$ passing through the point Z, where $k = \dim(Z) - 3$. Then we have

$$2dm^2 = H_1 \cdots H_k \cdot S_1 \cdot S_2 \cdot D \geq \text{mult}_Z(S_1 \cdot S_2 \cdot D) > 8m^2,$$

which is a contradiction. \qed

Lemma 31. The inequality $\dim(Z) \geq \dim(X) - 4$ holds.

Proof. Suppose that $\dim(Z) \leq \dim(X) - 5$. Let H_1, H_2, \ldots, H_k be sufficiently general hyperplane sections of the hypersurface $V \subset \mathbb{P}^n$, where $k = \dim(Z) > 0$. Put

$$\bar{V} = \cap_{i=1}^k H_i, \quad \bar{X} = \psi^{-1}(\bar{V}), \quad \bar{\psi} = \psi|_{\bar{X}} : \bar{X} \to \bar{V},$$

and $\mathcal{M} = \mathcal{M}|_{\bar{X}}$. Then V is a smooth hypersurface of degree d in \mathbb{P}^{n-k}, $\bar{\psi}$ is a double cover branched over a smooth divisor $R \cap \bar{V}$, \mathcal{M} has no base components, and \bar{V} does not contain linear subspaces of \mathbb{P}^{n-k} of dimension $n - k - 3$ by the Lefschetz theorem. Let P be any point of the intersection $\bar{Z} \cap \bar{X}$. Then $P \in CS(\bar{X}, \frac{1}{m}\mathcal{M})$ and we can repeat the proof of Lemma 30 to get a contradiction. \qed

Lemma 32. The inequality $\dim(Z) \neq \dim(X) - 2$ holds.

Proof. Suppose that $\dim(Z) = \dim(X) - 2$. Let S_1 and S_2 be sufficiently general divisors in the linear system \mathcal{M}, and $H_1, H_2, \ldots, H_{n-3}$ be general divisors in $|-K_X|$. Then

$$2dm^2 = H_1 \cdots H_{n-3} \cdot S_1 \cdot S_2 \geq \text{mult}_Z(S_1)\text{mult}_Z(S_2)(-K_X)^{n-3} \cdot Z > m^2(-K_X)^{n-3} \cdot Z,$$

because $\text{mult}_Z(\mathcal{M}) > m$. Therefore $(-K_X)^{n-3} \cdot Z < 2d$. On the other hand, we have

$$(K_X)^{n-3} \cdot Z = \begin{cases} \deg(\psi(Z) \subset \mathbb{P}^n) \text{ when } \psi|_Z \text{ is birational}, \\ 2\deg(\psi(Z) \subset \mathbb{P}^n) \text{ when } \psi|_Z \text{ is not birational}. \end{cases}$$

The Lefschetz theorem implies that $\deg(\psi(Z))$ is a multiple of d. Therefore $\psi|_Z$ is a birational morphism and $\deg(\psi(Z)) = d$. Hence either $\psi(Z)$ is contained in R, or the scheme-theoretic intersection $\psi(Z) \cap R$ is singular in every point. However, we can apply the Lefschetz theorem to the smooth complete intersection $R \subset \mathbb{P}^n$, which gives a contradiction. \qed

Lemma 33. The inequality $\dim(Z) \leq \dim(X) - 5$ holds.

Proof. Suppose that $\dim(Z) \geq \dim(X) - 4 \geq 3$. Let S be a sufficiently general divisor in the linear system \mathcal{M}, $\hat{S} = \psi(S \cap R)$ and $\hat{Z} = \psi(Z \cap R)$. Then \hat{S} is a divisor on the complete intersection $R \subset \mathbb{P}^n$ such that $\text{mult}_{\hat{Z}}(\hat{S}) > m$ and $\hat{S} \sim O_{\mathbb{P}^n}(m)|_R$, because R is a ramification divisor of ψ. Hence, the inequality $\dim(\hat{Z}) \geq 2$ is impossible by Lemma 10. \qed

Therefore Theorem 2 is proved.

5. Reduction into characteristic 2.

In this section we prove Proposition 1. The following result is Theorem 5.12 in §V of [5].

Theorem 34. Let $f : X \to S$ be a proper and flat morphism having irreducible and reduced fibers, $g : Z \to T$ be a proper and flat morphism having reduced fibers, where S is irreducible scheme, and T is a spectrum of discrete valuation ring with closed point O. Suppose that some component of the fiber $g^{-1}(O)$ is not geometrically ruled and the generic fiber of g is birational to a fiber of the morphism f. Then there are countably many closed subvarieties $S_i \subset S$ such that for any closed point $s \in S$ the fiber $f^{-1}(s)$ is geometrically ruled $\iff s \in \cup S_i$.

Let Y be a scheme, L be a line bundle on the scheme Y, and s be a global section of the line bundle L^k for some $k \in \mathbb{N}$. Let us construct a $k : 1$ cover $Y^k_{s,L}$ of Y ramified along the zeroes of the section s as follows:
• let U be a total space of L with a natural projection $\pi : U \to Y$;
• we have $\pi_*(\mathcal{O}_U) = \bigoplus_{i \geq 0} L^{-i}$ and $\pi_*(\pi^*(L)) = \bigoplus_{i \geq -1} L^{-i}$;
• there is a canonical section y of $\pi^*(L)$ that corresponds to $1 \in H^0(\mathcal{O}_Y)$;
• both y and s can be viewed as a section of $\pi^*((L^k))$ since $\pi_*(\pi^*((L^k))) = \bigoplus_{i \geq -k} L^{-i}$;
• let $y^k = s$ be an equation of $Y^k_{s,L}$ in U;
• there is a natural projection $\pi|_{Y^k_{s,L}} : Y^k_{s,L} \to Y$;
• the morphism $\pi|_{Y^k_{s,L}}$ is a $k : 1$ cover ramified along the zeroes of the section s.

Example 35. Let $Y = \mathbb{P}^n$ considered as a scheme over \mathbb{Z}, $L = \mathcal{O}_{\mathbb{P}^n}(r)$ for some $r \in \mathbb{N}$, and s be a global section of $\mathcal{O}_{\mathbb{P}^n}(2r)$. Consider the weighted projective space

$$\mathbb{P}(1, \ldots, 1, r) = \text{Proj}(\mathbb{Z}[x_0, \ldots, x_n, y])$$

where $\text{wt}(y) = r$ and $\text{wt}(x_i) = 1$. Then $Y^k_{s,L} \cong V(y^2 - s) \subset \mathbb{P}(1, \ldots, 1, r)$.

The following result is Theorem 5.11 in §V of [8].

Theorem 36. Let Y be a smooth projective variety over an algebraically closed field of characteristic p, L be a line bundle on Y, s be a general global section of L^p such that $\dim(Y) \geq 3$, the divisor $L^p \otimes K_Y$ is ample and the restriction map $H^0(Y, L^p) \to (\mathcal{O}_Y/m_Y^2) \otimes L^p$ is surjective for every point $x \in Y$. Then $Y^p_{s,L}$ is not separably uniruled.

Let Y be a smooth hypersurface in \mathbb{P}^n of degree d defined over an algebraically closed field of characteristic 2. Let $L = \mathcal{O}_{\mathbb{P}^n}(r)|_V$ for some $r \in \mathbb{N}$ and s be a sufficiently general global section of the line bundle $\mathcal{O}_{\mathbb{P}^n}(2r)|_V$. Then $Y^2_{s,L}$ is not ruled if $r \geq \frac{d+n+2}{2}$ and $n \geq 4$ by Theorem 36; therefore, Theorem 36 implies Proposition 4.

REFERENCES

[1] I. Cheltsov, Nonrationality of a four-dimensional smooth complete intersection of a quadric and a quadric not containing a plane, Sb. Math. 194 (2003), 1679–1699.
[2] A. Corti, Factorizing birational maps of threefolds after Sarkisov, J. Alg. Geometry 4 (1995), 223–254.
[3] A. Corti, Singularities of linear systems and 3-fold birational geometry, L.M.S. Lecture Note Series 281 (2000), 259–312.
[4] I. Dolgachev, Weighted projective varieties, Lecture Notes in Mathematics 956 (1982), 34–71.
[5] V. Iskovskikh, Birational automorphisms of three-dimensional algebraic varieties, J. Soviet Math. 13 (1980), 815–868.
[6] V. Iskovskikh, A. Pukhlikov, Birational automorphisms of multidimensional algebraic manifolds, J. Math. Sci. 82 (1996), 3528–3613.
[7] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math. 10 (1987), 283–360.
[8] J. Kollár, Rational curves on algebraic varieties, Springer-Verlag (1996), Berlin.
[9] J. Kollár et al., Flips and abundance for algebraic threefolds, in “A summer seminar at the University of Utah, Salt Lake City, 1991”. Astérisque. 211 (1992).
[10] A. Pukhlikov, Birational automorphisms of a double space and a double quadric, Math. USSR Izv. 32 (1989), 233–243.
[11] A. Pukhlikov, Birationally rigid double Fano hypersurfaces, Sb. Math. 191 (2000), 883–908.
[12] M. Reid, Chapters on algebraic surfaces, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser. 3 AMS, Providence, RI (1997), 3–159.

STEKLOV INSTITUTE OF MATHEMATICS
8 GUBKIN STREET, MOSCOW 117966
RUSSIA

cheltsov@yahoo.com

I.CHELTSOV@ED.AC.UK