Estimation of Combining Ability, Heritability and Genes action of Yield Components of Inbred Corn Lines in Diallel Crosses

Achmad Amzeri
Faculty of Agriculture
University of Trunojoyo Madura, Indonesia
Po Box 2 Bangkalan, Indonesia
aamzeri@gmail.com

Kaswan Badami
Faculty of Agriculture
University of Trunojoyo Madura, Indonesia
Po Box 2 Bangkalan, Indonesia
aamzeri@gmail.com

Abstract—Crosses are among the breeding methods to obtain superior varieties. To obtain superior varieties requires information about the combining ability, heritability and genes action of lines for parental crosses. The purpose of the present study was to estimate the combining ability, heritability and the genes action of yield components of inbred corn lines in diallel crosses. The study was conducted at the Experimental Station of Agro-Technology Study Program of Agriculture Faculty, University of Trunojoyo Madura from February to July 2017. The parents used in the study were UTM 2, UTM 7, UTM 14, UTM 15, UTM 18, UTM 22 and UTM 31. The estimation of general combining ability (GCA), specific combining ability (SCA), heritability and the genes action was performed by using the Griffing's method I. The experiments used the randomized complete block design (RCBD) with three replications. Results showed that the characters of 50% flowering age, harvesting age and production per hectare were affected by the role of additive and dominant genes, while the cob length, cob diameter, and weight of 100 seeds were affected by the role of the dominant genes. The UTM 2 and UTM 31 parents were the best combiners for production per hectare, UTM 7 was the best combiner for cob size. Thus, the three parents could be used to assemble varieties with a high production per hectare. The heritability value in the broad and narrow sense was the highest for the harvesting age character.

Keywords—GCA, SCA, heritability, genes action, corn

I. INTRODUCTION

Corn (Zea mays L.) is the second major food commodity after rice in Indonesia. In addition to being used as food, corn is also used as livestock feed. For the last few years, the proportion of corn use by feed industry reached 50% of total national demand and after 2020 the figure is expected to increase more than 60% of the total national demand [1]. Based on the annual increase of corn, cultivation of this plant would be highly profitable and has a fairly good prospects for those cultivate it.

Hybridization is a potential technique to increase the yield of a plant commodity with the desired characters. Estimation of combining ability is an effective and efficient way to select a line/parent in hybridization in order to obtain hybrids with high grain yield and other good characters as desired [2]; [3]; [4].

The purpose of the present study was to estimate the general combining ability (GCA) and specific combining ability (SCA) of yield characters and yield components of several corn lines. This study is expected to identify prospective parents and cross combinations with high GCA and SCA values for yield characters and yield components.

II. METHODS

This study was conducted in February to July 2017. The experiments were conducted at the Experimental Station of Agro-Technology Study Program of Agriculture Faculty, University of Trunojoyo Madura using 7 genotypes of corn inbred lines were the UTM 2, UTM 7, UTM 14, UTM 15, UTM 18, UTM 22 and UTM 31 as parents (Table 1).

The experiments used the randomized complete block design (RCBD), consisting of 36 genotypes (yield of diallel crosses of 7 parents) with three replications, so there are 108 experimental units. Each experimental unit consisted of 50 plants which is planted in a sized bed 5 m x 1 m with a plant spacing of 20 cm x 70 cm.

TABLE I. DATA OF PARENTS USED IN THE STUDY

Parents	From
UTM 2	University of Trunojoyo Madura, Indonesia
UTM 7	University of Trunojoyo Madura, Indonesia
UTM 14	University of Trunojoyo Madura, Indonesia
UTM 15	University of Trunojoyo Madura, Indonesia
UTM 18	University of Trunojoyo Madura, Indonesia
UTM 22	University of Trunojoyo Madura, Indonesia
UTM 31	Research Center of Serealia Maros, Indonesia
Observations were made on 20 sample plants from each experimental unit. The observed characters were 50% flowering age (FA), harvesting age (HA), cob length (CL), cob diameter (CD), weight of 100 seeds (W100S) and production per hectare (PPH). Observations of weight per cob and cob size were performed on the same cob harvested in the second to fourth harvests. Estimates of general combining ability (GCA), specific combining ability (SCA) and heritability were obtained from diallel analysis using the random model of Griffing’s method I [5].

Heritability in the broad sense \((h^2_{b}) = \frac{2\sigma^2_{DGU} + \sigma^2_{DGK}}{2\sigma^2_{DGU} + \sigma^2_{DGK} + 2\sigma^2_E} \times 100\% \) (1)

Heritability in the narrow sense \((h^2_{n}) = \frac{2\sigma^2_{DGU}}{2\sigma^2_{DGU} + \sigma^2_{DGK} + 2\sigma^2_E} \times 100\% \) (2)

III. RESULTS AND DISCUSSION

Results of variance analysis showed that genotypes had a very significant effect on all the characters observed (Table 2). Estimation of combining ability and heritability using the diallel analysis could be done when the mean square of the genotype had a significant effect [5]. Analysis of variance for general combining ability (GCA) and specific combining ability (SCA) shows that GCA and SCA had a very significant effect on all the characters observed (Table 3).

The actual value of GCA indicates that each line has a different ability to produce offspring and there is one or more lines that are good combiners for the characters. The actual SCA shows that a cross combination can produce better or worse offspring than the two parents. The mean square of GCA and SCA are significantly different shows that the action of additive and non-additive genes plays a role in controlling the characters [3]. The mean square comparison of GCA with SCA which is greater than one indicates that the action of additive genes is more important than the action of non-additive genes in controlling the characters [6]; [7]; [8].

TABLE II. ANALYSIS OF VARIANCE OF CORN YIELD COMPONENTS

Sources of diversity	df	Mean of Squares					
		FA	HA	CL	CD	W100S	PPH
Replications	2	13,905**	0,680*	4,925**	0,049**	2,867 *	679714,068**
Genotype	48	24,382**	73,974**	10,185**	0,510**	17,542**	16447450,564**
Error	96	0,280	0,382	0,043	0,002	0,711	25447,742
CV (%)		1,497	0,815	1,086	1,129	3,291	3,794

Notes: * = significant, ** = very significant, ns = not significant.

TABLE III. ANALYSIS OF VARIANCE OF DIALLEL CROSSES OF SEVEN CORN GENOTYPES

Sources of diversity	df	Mean of Squares					
		FA	HA	CL	CD	W100S	PPH
GCA	6	42,140**	118,153**	0,118**	0,009**	4,922**	3768918,622**
SCA	21	8,413**	1,931**	3003,641**	142,227**	5900,697**	904327,687**
Reciprocal	21	846,006**	3453,191**	473,805**	26,297**	250,939**	5329915,636**
Error	96	0,993	0,127	0,014	0,001	0,237	8482,381
GCA : SCA	5,009	61,188	0,000	0,000	0,001	4,168	

Notes: * = significant, ** = very significant, ns = not significant.

TABLE IV. GENERAL COMBINING ABILITY VALUES OF CORN YIELD COMPONENTS

Genotypes	Yield Components					
	Mean	FA	HA	CL		
UTM 2	32,667	-1,038	72,667	-1,733	15,200	0,0248
UTM 7	34,667	-0,971	74,333	-1,800	15,300	0,1048
UTM 14	33,333	-1,433	73,000	-2,800	15,533	-0,3019
UTM 15	35,000	-1,371	75,333	-1,867	15,100	-0,2419
UTM 18	33,333	-0,971	73,333	-1,800	15,533	-0,1419
UTM 22	34,333	-0,771	74,333	-1,267	14,633	-0,1019
UTM 31	42,333	-0,562	91,000	-3,629	17,067	-2,7943

TABLE V. GENERAL COMBINING ABILITY VALUES OF CORN YIELD COMPONENTS

Genotypes	Yield Components					
	Mean	CD	W100S	Mean	PPH	
UTM 2	3,313	-0,112	21,177	0,962	1924,667	1086,933
UTM 7	3,230	0,004	21,327	0,596	2124,000	-126,867
UTM 14	3,250	-0,027	21,557	1,112	1874,000	-85,133
UTM 15	3,297	-0,026	21,517	-1,833	1954,333	-1147,267
The genotype of UTM 31 was the parent with larger cob size, larger 100-seed weight and higher production per hectare than the genotype of UTM 2, UTM 7, UTM 14, UTM 15, UTM 18 and UTM 22. A cross between genotypes is expected to produce offspring with a high production per hecetare and early maturity. A cross between a parents with a high per hecetare production (UTM 31) and UTM 7 is expected to produce offspring which has a high per hecetare production compared to its parents.

The parents of UTM 2 and UTM 31 had a positive GCA value for per-hecetare production character, while UTM 7 had a positive GCA value for cob length and cob diameter characters (Tables 4 and 5). Thus, the parents of UTM 2 and UTM 31 were the best combiners for per hecetare production, whereas UTM 7 was the best combiner for cob size.

The parents with a large and positive GCA value are those with a good combining ability, while a negative GCA value indicates that the parents have a lower combining ability than that of other parents [9]. Good offspring are resulted from the parents with a high GCA value [10]. However, in certain characters with a negative GCA value is very desirable [11]. For the harvesting age character, the GCA value is expected negative [12], since it shows an early maturity and indicates that the parent has a good combining ability for the character.

The GCA value for harvesting age character indicates that all characters with a negative GCA value is very desirable [11].

Genotypes	Yield Components																												
UTM 2 X UTM 7	UTM 2 X UTM 14	UTM 2 X UTM 15	UTM 2 X UTM 18	UTM 2 X UTM 22	UTM 2 X UTM 31	UTM 7 X UTM 2	UTM 7 X UTM 14	UTM 7 X UTM 15	UTM 7 X UTM 18	UTM 7 X UTM 22	UTM 7 X UTM 31	UTM 14 X UTM 2	UTM 14 X UTM 7	UTM 14 X UTM 15	UTM 14 X UTM 18	UTM 14 X UTM 22	UTM 14 X UTM 31	UTM 15 X UTM 2	UTM 15 X UTM 7	UTM 15 X UTM 14	UTM 15 X UTM 18	UTM 15 X UTM 22	UTM 15 X UTM 31	UTM 18 X UTM 2	UTM 18 X UTM 7	UTM 18 X UTM 14	UTM 18 X UTM 15	UTM 18 X UTM 18	UTM 18 X UTM 22
Mean	FA	Mean	HI	Mean	CL																								
33,333	-0.745	74,000	0.033	19,200	-0.520																								
33,667	0.055	73,667	0.700	19,133	-0.180																								
33,667	-0.011	73,667	-0.233	19,267	-0.107																								
34,000	-0.078	73,667	-0.300	19,467	-0.007																								
35,333	1.055	73,333	0.833	20,367	0.853																								
41,333	-0.278	86,000	-1.033	20,233	-0.040																								
33,667	15.222	73,333	30.755	19,633	9.237																								
33,667	-0.011	73,667	0.767	19,567	0.173																								
33,667	-0.078	73,333	-0.500	19,233	-0.220																								
34,667	0.322	74,333	0.433	19,567	0.013																								
34,333	-0.011	74,333	-0.100	20,200	0.607																								
42,000	0.322	86,333	-0.633	20,300	-0.053																								
34,000	15.489	73,667	31.022	18,333	8.197																								
33,667	13.622	72,667	28.755	19,300	8.937																								
34,333	1.055	73,667	0.833	19,267	0.220																								
33,667	41.855	73,000	90.300	19,333	23.393																								
34,000	0.122	72,333	-1.100	18,333	-0.853																								
40,333	-0.878	84,333	-1.633	20,333	0.387																								
32,667	14.355	72,333	29.555	19,200	0.097																								
34,000	14.155	74,667	30.622	18,267	7.937																								
33,333	13.422	72,667	28.555	19,200	9.131																								
34,333	0.589	73,667	-0.167	19,367	0.160																								
34,333	0.389	73,333	-1.033	19,367	0.120																								
34,000	-0.611	88,333	1.433	19,633	-0.373																								
33,000	14.622	72,333	29.822	19,067	8.884																								
33,667	13.755	73,333	29.555	19,633	8.224																								
33,667	13.689	72,667	28.822	19,367	9.217																								
35,667	15.889	75,333	31.355	18,633	8.517																								
34,000	-0.345	74,333	-0.100	19,367	0.020																								
42,000	0.322	87,000	0.033	20,067	-0.040																								
32,333	14.089	72,667	29.889	19,167	8.691																								
34,000	14.222	73,667	29.622	19,333	8.631																								
34,000	14.155	73,333	29.222	19,400	8.957																								
35,000	15.355	75,333	31.089	19,267	8.857																								
34,333	14.622	74,333	30.355	19,433	8.944																								
43,000	1.122	89,333	1.833	20,267	0.120																								
34,333	-73.778	73,667	-151.045	22,100	-44.109																								
37,000	58.555	75,667	-120.689	22,333	35.437																								
37,333	-72.378	75,667	-150.378	21,633	-44.543																								
37,333	-72.178	76,333	-149.845	22,367	-43.776																								
37,333	-72.911	74,333	-151.578	21,700	-44.523																								
37,000	-72.445	76,000	-150.178	22,433	-44.083																								
The hybrids recommended for the best candidate hybrids resulted from crosses of parents with a high SCA value. Tables 6 and 7 present the SCA values of corn from diallel crosses. A high SCA value is generally obtained from parents with a high GCA value [13]. Research results showed that not all cross combinations of parents with a positive GCA and those with a positive GCA produced offspring with a high and positive SCA. However, there was a cross combination in which one of the parents had a positive GCA and a negative GCA generated a high and positive SCA, for example the crosses of UTM 2 X UTM 7, UTM 2 X UTM 14, UTM 2 X UTM 15, UTM 2 X UTM 18, and UTM 2 X UTM 22 for production per hectare character. This phenomenon may be due to the fact that the favorable genes of a genotype are due to the fact that the favorable genes of a genotype are.
capable of covering the adverse genes of the partner’s genotype and combining properly [10]. In addition, a high and positive SCA also results from crosses of parents with a negative GCA and a negative GCA, for example the crosses of UTM 7 X UTM 15, UTM 7 X UTM 18, and UTM 7 X UTM 22.

The significant effect of SCA on the production per hectare and harvesting age showed that there was at least one best cross combination which could be recommended as a hybrid variety with a high production per hectare and early maturity. The result of diallel crosses indicated that there were two cross combinations which produced the best hybrids, i.e., the crosses of UTM 31 X UTM 2 (with a production per hectare character of 1,0476.00 kg/hectare and a harvesting age of 73.677 days) and UTM 31 X UTM 22 (with a production per hectare character of 1,0365.667 kg/hectare and harvesting age of 76 days).

Table 8 shows that heritability of 50% flowering age, harvesting age and production per hectare character are affected by the role of the additive and dominant genes, whereas the cob length, cob diameter, and 100-seeds weight are affected by the role of dominant genes. Character inheritance that are affected by the role of additive and dominant genes showed that the breeding efforts are directed to assemble pure line varieties and hybrid varieties.

The heritability value can be classified into three criteria: high (>50%), moderate (20–50%) and low (<20%) [14]. Heritability in the broad sense observed ranges from 99.400 to 93.000%, meaning that the observed character ratio is high (>90%). The heritability value in the broad and narrow sense was the highest for the harvesting age character.

IV. CONCLUSION

The 50% flowering age, harvesting age and production per hectare were affected by the role of additive and dominant genes, while the cob length, cob diameter, and weight of 100 seeds were affected by the role of the dominant genes. The UTM 2 and UTM 31 parents were the best combiners for production per hectare, UTM 7 was the best combiner for cob size. Thus, the three parents could be used to assemble varieties with a high production per hectare. The cross combinations of UTM 31 X UTM 2 and UTM 31 X UTM 22 could be directed to hybrid varieties with a high production properties and early maturity. The heritability value in the broad and narrow sense was the highest for the harvesting age character.

V. REFERENCES

[1] Director General of Food Security, 2010. Maintaining Self-Sufficiency of Maize Towards Food Self-Reliance. Sinar Tani. Edition: 20 - 28 October 2010.

[2] Olfati, J.A., H. Samizadeh, B. Rahieei and G. Peyvast, 2012. Griffling’s Methods Comparison for General and Specific Combining Ability in Cucumber. The Scientific World Journal. vol. 2012.: 1-4.

[3] Dogra, BS and M.S. Kanwar, 2011. Exploitation of Combining Ability in Cucumber (Cucumis sativus L.). Research J. Agric. Sciences. 2(1) : 111-115.

[4] Suhendi, D., A.W. Susilo and S. Mawardi, 2004. Measuring Analysis of Vegetative Growth Character Some Several Cocoa Clones (Theobroma cacao L.). Zuriate 15 (2) : 25-32.

[5] Singh, R.K., B.D. Chaudhary. 1979. Biometrical Methods in Quantitative Genetic Analysis. Revised Edition. Kalyani. New Delhi.

[6] Kimani, J. M. and J. Derera. 2009. Combining Ability Analysis Across Environments for Some Traits in Dry Bean (Phaseolus vulgaris L.) Under Low and High Soil Phosphorus Conditions. Euphytica 166:1-13.

[7] Hallauer AR., Marcelo J.C & Miranda JB. 2010. Quantitative Genetics in Maize Breeding. Springer Science and Business Media.

[8] Matin, M.Q.I, Md.G. Rasul, A.K.M. A. Islam, M.A.K. Mian, N.A. Ivy and J.U. Ahmed, 2016. Combining Ability and Heterosis in Maize (Zea mays L.). American Journal of BioScience. 4(6) : 84-90.

[9] Zare, M., R. Choukan, E.M. Heravan, M.R. Bihamta and K. Ordookhani, 2011. Gene Action of Some Agronomic Traits in Corn (Zea mays L.) Using Diallel Cross Analysis. African J. Agric. Res. 6(3) : 693-703.

[10] Iriany, R.N., S. Sujiprihati, M. Gratnitude, J. Kowswara, M. Yunus. 2011. Evaluation of combined power and heterosis of five sweet corn lines (Zea mays var. saccharata) from a diallels crosses. J. Agron. Indonesia 39: 103-111.

[11] Aryana, Igp. M., 2008. Special Joining Power and Special Merging Power of Rice Red Rice Cross Tops. Agrotekzos. 18 (1): 27-36

[12] Gupta, P, ‘Chaudhary & S.K. Lal, 2011. Heterosis and Combining Ability Analysis for Yld and Its Component in Indian Mustard (Brassica junceea L. Czern and Coss). Academic J. Plant Science. 4(2) : 45-52.

[13] Sujiprihati, S., R. Yunianti, M. Syukur, Undang. 2007. Estimation of heterosis value and the power of multiple component components on a full dialled crossing of six chili genotypes (Capsicum annuum L) from a diallels crosses. J. Bul. Agron. 35: 28-35.

[14] Haeruman, M., A. Baitaki, G. Satari, T. Danakusuma, and A.H. Permadi, 1990. Genetic Variations of the Properties of Garlic Plants in Indonesia. Zuriat 1(1) : 32-36.

[15] Syukur, M., S. Sujiprihati, R. Yunianti, Undang. 2010. Diallel analysis using hayman method to study genetic parameters of yield components in pepper (Capsicum annuum L). Hayati J. Biosci. 17:183-188.