Clifford Structures in Noncommutative Geometry and the Extended Scalar Sector

Maxim A. Kurkov1,2,3 and Fedele Lizzi1,2,3,4

1CMCC-Universidade Federal do ABC, Santo Andrê, S.P., Brazil
2Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Napoli, Italy
3INFN, Sezione di Napoli, Italy
4Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona. Barcelona, Spain

Abstract

We consider aspects of the noncommutative approach to the standard model based on the spectral action principle. We show that as a consequence of the incorporation of the Clifford structures in the formalism, the spectral action contains an extended scalar sector, with respect to the minimal Standard Model. This may have interesting phenomenological consequences. Some of these new scalar fields carry both weak isospin and colour indexes. We calculate the new terms in spectral action due to the presence of these fields. Our analysis demonstrates that the fermionic doubling in the noncommutative geometry is not just a presence of spurious degrees of freedom, but it is an interesting and peculiar property of the formalism, which leads to physically valuable conclusions. Some of the new fields do not contribute to the physical fermionic action, but they appear in the bosonic spectral action. Their contributions to the Dirac operator correspond to couplings with the spurious fermions, which are projected out.
1 Introduction

The standard model of particle interactions can be efficiently described by a particular noncommutative geometry: an “almost commutative geometry”. Over the years the model has been developing both in its mathematical and physical aspects. Its mathematical framework has its roots in a global view [1–4] of geometry based on the spectral properties of operators. The applications of this point of view to geometry are quite startling, the standard reference of the model in its modern version is [5], for a recent review see [6]. The model has predictive power, although it is premature to consider it a fully fledged theory to confront with experiment, with prediction with a significative number of digits. Its main success is in the description of the symmetries of the model, very few Yang-Mills models can be described by a noncommutative geometry (NCG), but the standard model and few more can. The Higgs field emerges naturally as an intermediate boson corresponding to the noncommutative part of the model, of a par with photons, W, Z and gluons. The actions for fermions and bosons are firmly based on the spectral properties of a generalized Dirac operator [7] and the procedure is capable of obtaining numbers such as the mass of the Higgs. The numbers produced in [5], although encouraging, are not in agreement with present data, in particular the model requires the unification of all couplings at a single energy, and one calculates the Higgs boson mass around 170 GeV. Both these aspects are experimentally excluded, and the model can be fixed to allow the physical mass of the Higgs boson [12–21]. Efforts are also undertaken to use the model for other predictions, for example in [22].

The fact that the calculations made in the present model are encouraging, but not yet comparable with experiment, suggests that some improvement may happen also from the mathematical side. In [23] it was discussed a noncommutative version of the Clifford symmetry. One of the remarkable effects of the Clifford requirements is the appearance of scalar fields which are not present in the usual description.

The aim of this paper is to discuss in detail these new fields and their couplings. In particular we will calculate their contribution to the spectral action. The noncommutative model is by nature Euclidean and exhibits spurious degrees of freedom, known as “fermion doubling” [24], therefore for physical applications a Wick (anti)rotation accompanied by an elimination of these spurious degrees of freedom is necessary. We have described this procedure in detail in [25]. Here we find that not all of these extra bosons behave upon this procedure in a standard way: some of the new scalar fields present in the Euclidean Dirac operator are absent in the corresponding (Lorentzian) physical action for fermions.

The paper is organized as follows: in Sec. 2 we review the noncommutative geometric approach to the Standard Model, focusing on the modification of the formalism due to an introduction of the Clifford structures proposed in [23]. In Sec. 3 we introduce the new scalar

1It is remarkable the spectral action is intimately connected to anomalies [8–10], and further development of this observation leads to interesting results beyond the noncommutative geometry [11].
fields, which come out from the fluctuations of the Dirac operator in the “Clifford-based”
approach [23], and discuss their transformation properties upon the action of the gauge group.
Sec. 4 is devoted to the bosonic spectral action: we compute the new terms with respect to the
“standard” spectral approach [5]. In Sec. 5 we discuss the physical action derived from this
model: we carry out the Wick rotation to the Lorentzian signature and get rid of the spurious
degrees of freedom in the fermionic action. The last section contains our conclusions.

2 The standard model as a Noncommutative Geometry

In this section we sketch the main aspects of the model. We will be very brief, the reader
familiar with this approach will need this section just to set the notations. First we outline the
basic concepts of the spectral triples, which are common for both the “standard” approach [5]
and the “Clifford-based” [23] approaches, whilst afterwords we discuss the peculiar features of
the latter, which differ it from the former: the finite dimensional grading \(\gamma_F \) and the finite
dimensional Dirac operator \(D_F \).

2.1 The Standard Spectral Triple

In the spectral approach a geometry is described by a spectral triple [1–3], i.e. a \(*\)-algebra
(possibly noncommutative) realized as bounded operators on a Hilbert space, and a self adjoint
operator which generalizes the Dirac operator. The algebra describes the topology of the space,
for the case at hand the Hilbert space describes the matter content and the Dirac operator gives
a metric structure and enables the writing of action. Being based on operators all quantities
are based on spectra, and in particular the actions for bosons and fermions can be written in
purely spectral form. Also of fundamental importance are two more operators: the grading
and the real structure, which generalize chirality (for the even dimensional case) and charge
conjugation. The standard model emerges form this scheme. We will briefly describe this
approach mainly to set notations, referring for details to the original literature [5,7] or the recent
book [6]. We start choosing an algebra which is the product commutative infinite dimensional
algebra of continuous functions on the manifold \(\mathcal{M} \), which represents the space-time times a
noncommutative but finite dimensional matrix algebra

\[
\mathcal{A} = C(\mathcal{M}) \otimes \mathcal{A}_F
\]

(2.1)

For the standard model the finite algebra is

\[
\mathcal{A}_F = \mathbb{C} \oplus \mathbb{H} \oplus \text{Mat}_3(\mathbb{C})
\]

(2.2)

where by \(\mathbb{H} \) we indicate quaternions, and by \(\text{Mat}_3(\mathbb{C}) \) three by three complex matrices. Likewise
the Hilbert space is the product of usual spinors times a finite dimensional Hilbert space, which
contains all physical degrees of freedom:

$$\mathcal{H} = \text{sp}(\mathcal{M}) \otimes \mathcal{H}_F$$

(2.3)

the generalized Dirac operator (which in the following we will simply call Dirac operator) is

$$\mathcal{D}_0 = i\gamma^\mu \nabla^\text{LC}_\mu \otimes 1_F + \gamma^5 \otimes D_F$$

(2.4)

Where ∇^LC_μ is the covariant derivative on the spinor bundle of \mathcal{M}, which contains the Levi-Civita spin connection. Gravity in the action is considered background, and is not quantized.

A curved background does not however play a major role in this paper, but is useful to retain it, as it enables some simplification in the calculations, as we will see in Sect. 5.

As we mentioned, there are two more operators which play an important role. They are the grading operator Γ and the antiunitary real structure J. The grading operator Γ is present in the even dimensional case, it satisfies $\Gamma^2 = \mathbb{1}$ and it is taken to be

$$\Gamma = \gamma^5 \otimes \gamma_F$$

(2.5)

where γ^5 is the chirality matrix i.e. the usual product of all four Dirac’s γ^μ and γ_F is an operator acting on \mathcal{H}_F. It is usually taken to have eigenvalue $+1$ on left handed states, and -1 on right handed one, but other choices are possible and we will discuss them later in the paper.

The real structure operator $J = J \otimes J_F$, which is antiunitary in \mathcal{H}, enables the definition of the opposite algebra

$$\mathcal{A}^o = JAJ^{-1}.$$

(2.6)

The elements of the triple must satisfy several conditions, which render the space the noncommutative equivalent of a manifold [26]. There are conditions of compatibility between Γ, J and \mathcal{D}_0 with signs which depend on the dimensions:

$$J^2 = \pm \mathbb{1} \quad , \quad J\Gamma = \pm \Gamma J \quad , \quad JD_0 = \pm D_0 \mathcal{J}$$

(2.7)

The opposite algebra must commute with the algebra (order zero condition):

$$[a, JaJ^{-1}] = 0 \quad , \quad \forall a, b \in \mathcal{A}$$

(2.8)

and with one forms (the order one condition)

$$[[\mathcal{D}_0, a], JaJ^{-1}] = 0 \quad , \quad \forall a, b \in \mathcal{A}$$

(2.9)

The dimension of \mathcal{H}_F in (2.3) is 96. This number is obtained taking into account that there is a lepton left doublet plus two right handed singlets, and a doublet and two singlets for quarks times three colours. This makes 16 degrees of freedom, times 3 generations, and times two for particle/antiparticle, sums to 96. Since the spinor index has four degrees of freedom the element of the full Hilbert space \mathcal{H} is described by 384 independent complex valued functions. Clearly
there is some overcounting, called for historical reasons fermion doubling \cite{24}. We will come back to this issue, as well as the fact that the model is at this stage Euclidean, in section 5.

We will label the elements of \mathcal{H}_F according the basis given by the elementary particles of the standard model (including right handed neutrinos):

\[
(\nu_R, e_R, L_L, u_R, d_R, Q_L, \nu_R^c, e_R^c, L_L^c, u_R^c, d_R^c, Q_L^c)
\]

(2.10)

where Q_L corresponds to\(^2\) the quark doublet (u_L, d_L) while L_L corresponds to the lepton doublet (ν_L, e_L), with the superscript c we indicate the elements of H_F which correspond to the antiparticles and by boldface characters we indicate that the elements have to replicated by three generations, for example $e = (e, \mu, \tau)$ and so on. Quarks have an extra colour index, which we omit. Below we will use the following notation for matrices action on \mathcal{H}_F. We define the matrix unity $E_{u鲁u鲁}$ to be a matrix whose only nonzero element is an identity matrix in the u location, likewise for $E_{u鲁d鲁}$ is an off diagonal matrix with nonvanishing entry in the $u鲁d鲁$ and so on. In the cases for which a singlet crosses a doublet then we assume that, for example, $E_{u鲁L鲁}$ is two identity matrices side by side, or vertically superimposed.

The representation of the algebra is diagonal and with our notation, an element $a = (\lambda, h, m)$ with $\lambda \in \mathbb{C}, h \in \mathbb{H}$ and $m \in \text{Mat}_3(\mathbb{C})$ is represented by the matrix\(^3\):

\[
a = \lambda E_{u鲁u鲁} + \lambda^* E_{d鲁d鲁} + h E_{Q鲁Q鲁} + \lambda E_{\nu鲁\nu鲁} + \lambda^* E_{e鲁e鲁} + h E_{L鲁L鲁} + m E_{\nu鲁u鲁} + m E_{d鲁d鲁} + m E_{Q鲁Q鲁} + \lambda E_{\nu鲁\nu鲁} + \lambda^* E_{e鲁e鲁} + \lambda E_{L鲁L鲁}.
\]

In our notations the real structure J_F of the finite spectral triple reads:

\[
J_F = (E_{u鲁u鲁} + E_{d鲁d鲁} + E_{Q鲁Q鲁} + E_{\nu鲁\nu鲁} + E_{e鲁e鲁} + E_{L鲁L鲁})^cc
\]

(2.11)

where cc is complex conjugation.

So far we have been in the framework of \cite{5}. From now on we focus on the peculiar properties of the construction of \cite{23}, which enables to incorporate the Clifford structures in the finite spectral triple. We refer to the original paper for all the details, and present here just the results.

2.2 Alternative Grading

The first novelty of the Clifford based construction is the grading γ_F of the finite spectral triple, which has the following form:

\[
\gamma_F = -E_{u鲁u鲁} - E_{d鲁d鲁} + E_{Q鲁Q鲁} + E_{\nu鲁\nu鲁} + E_{e鲁e鲁} - E_{L鲁L鲁}
\]

\(^2\)The construction of the product space clarifies in which sense the word “corresponds” is used: see in particular the discussion around (5.15).

\(^3\)Here and in the following we omit terms like $\otimes I_3$ when for example a complex number act on a quark, and likewise for doublets etc.
\[-(E_{u_R^c, u_R^c} - E_d_R^c, d_R^c) + E_{Q_L^c, Q_L^c} + E_{\nu_R^c, \nu_R^c} + E_{e_R^c, e_R^c} - E_{L_L^c, L_L^c}), \tag{2.12} \]

which differs from the “standard grading” \(\gamma_F^{st} \) considered in [5]:

\[\gamma_F^{st} = -(E_{u_R^c, u_R^c} - E_d_R^c, d_R^c) + E_{Q_L^c, Q_L^c} + E_{\nu_R^c, \nu_R^c} + E_{e_R^c, e_R^c} - E_{L_L^c, L_L^c}. \tag{2.13} \]

The two are connected by the following formula

\[\gamma_F = (Q - L) \gamma_F^{st}, \tag{2.14} \]

where Q and L stand for the projectors of the “quark” and “leptonic” subspaces of \(\mathcal{H}_F \) respectively:

\[Q = E_{u_R^c, u_R^c} + E_{d_R^c, d_R^c} + E_{Q_L^c, Q_L^c} + E_{u_R^c, u_R^c} + E_{d_R^c, d_R^c} + E_{Q_L^c, Q_L^c}, \]

\[L = E_{\nu_R^c, \nu_R^c} + E_{e_R^c, e_R^c} + E_{L_L^c, L_L^c} + E_{\nu_R^c, \nu_R^c} + E_{e_R^c, e_R^c} + E_{L_L^c, L_L^c}. \tag{2.15} \]

2.3 The Dirac Operator

Another novelty of the Clifford based approach is the Dirac operator \(D_F \), which has the following form:

\[D_F = \chi^\nu E_{\nu_R^c L_L^c} + \chi^e E_{e_R^c L_L^c} + \chi^u E_{u_R^c Q_L^c} + \chi^d E_{d_R^c Q_L^c} + \Omega^\nu E_{\nu_R^c u_R^c} + \Omega^d E_{d_R^c e_R^c} + \Delta_U E_{e_R^c u_R^c} + \Delta_L E_{L_L^c Q_L^c} + K E_{L_L^c u_R^c} + J_F (\chi^\nu E_{\nu_R^c L_L^c} + \chi^e E_{e_R^c L_L^c} + \chi^u E_{u_R^c Q_L^c} + \chi^d E_{d_R^c Q_L^c} + \Omega^\nu E_{\nu_R^c u_R^c} + \Omega^d E_{d_R^c e_R^c} + \Delta_U E_{e_R^c u_R^c} + \Delta_L E_{L_L^c Q_L^c} + K E_{L_L^c u_R^c}) J_F + \chi^\nu E_{\nu_R^c u_R^c} + \chi^d E_{d_R^c e_R^c} + h.c., \tag{2.16} \]

and which is compatible with the new grading \(\gamma_F \) and other requirements of the approach of [23]. The terms on the first on the third and on the last lines involve the usual Yukawa couplings and the Majorana mass terms, which are already present in [5]. The second and the fourth lines instead contain novel terms, which are the object of this paper: \(\Delta \) and \(K \) provide novel couplings of leptons and quarks, \(\Omega \) couples leptons among themselves in the Euclidean action before the projection on the physical subspace. We will see later on that the projection to the physical subspace will eliminate some of these couplings. It is important that the selfconsistency the approach of [23] requires in particular that:

- both entries \(\Delta_D \) and \(\Delta_L \) must differ from zero,
- and at least two out of the three entries \(\Delta_U, K \) and \(\Omega \) must be different from zero.
In conclusion we present the explicit matrix form of the Dirac operator D_F defined by (2.16):

$$D_F = \begin{bmatrix}
\cdots & \mathbf{\Upsilon}_\nu & \Delta_u^* & \cdots & \mathbf{\Upsilon}_R^\dagger & \Omega^* & \cdots & \cdots \\
\cdots & \mathbf{\Upsilon}_e & \Delta_d^* & \cdots & \Omega^\dagger & \cdots & \cdots & \cdots \\
\mathbf{\Upsilon}_\nu^\dagger & \mathbf{\Upsilon}_e^\dagger & \cdots & \Delta_d^* & \cdots & \cdots & \cdots & \cdots \\
\Delta_u^\dagger & \cdots & \mathbf{\Upsilon}_u & \cdots & \Delta_L^* & \cdots & \cdots & \cdots \\
\cdots & \Delta_d^\dagger & \cdots & \mathbf{\Upsilon}_d & \cdots & \cdots & \cdots & \cdots \\
\mathbf{\Upsilon}_R & \Omega & \cdots & \cdots & \mathbf{\Upsilon}_\nu^\dagger & \Delta_u & \cdots & \cdots \\
\Omega^\dagger & \cdots & \cdots & \cdots & \mathbf{\Upsilon}_e^\dagger & \Delta_d & \cdots & \cdots \\
\cdots & \cdots & \Delta_u^\dagger & \mathbf{\Upsilon}_u^\dagger & \cdots & \Delta_L^* & \cdots & \cdots \\
\cdots & \cdots & \Delta_d^\dagger & \mathbf{\Upsilon}_d^\dagger & \cdots & \cdots & \Delta_L & \cdots \\
\cdots & \cdots & \cdots & \cdots & \Delta_L^\dagger & \mathbf{\Upsilon}_u^\dagger & \mathbf{\Upsilon}_d^\dagger & \cdots
\end{bmatrix}.$$

(2.17)

Setting $\Delta_{u,d,L} = 0$, $\Omega = 0$ and $K = 0$, one obtains the standard D_F of [5].

3 Fluctuations of the Dirac operator: Fields

The fluctuated Dirac operator is constructed in the following way:

$$\mathcal{D} = D_0 + \sum_i a_i [D_0, b_i] + \sum_i J a_i [D_0, b_i] J^\dagger,$$

(3.1)

for generic elements $a_i, b_i \in A$. Both gauge and scalar fields in the spectral approach come out from these fluctuations. Presence of the new terms (with respect to [5]) in (2.17) indicates new scalar fields, not present in the Standard Model.

Below we restrict ourselves to the following structures, where the dependence on the generation indexes is factorised:

$$
\begin{align*}
\mathbf{\Upsilon}_\nu &= \hat{Y}_\nu \otimes \hat{h}_\nu^\dagger \\
\mathbf{\Upsilon}_e &= \hat{Y}_e \otimes \hat{h}_e^\dagger \\
\mathbf{\Upsilon}_u &= \hat{y}_u \otimes \hat{h}_u^\dagger \\
\mathbf{\Upsilon}_d &= \hat{y}_d \otimes \hat{h}_d^\dagger \\
\Delta_u^* &= \hat{y}^\dagger_{\Delta u} \otimes d_u^l \\
\Delta_d^* &= \hat{y}^\dagger_{\Delta d} \otimes d_d^l \\
\Delta_L^* &= \hat{y}^\dagger_{\Delta L} \otimes d_L^l
\end{align*}
$$
\[
\begin{align*}
K &= \hat{y}_L \otimes s^\dagger, \\
\Omega^* &= \hat{y}_R \otimes \omega, \\
\Upsilon^\dagger_R &= \hat{y}_M \otimes M_R.
\end{align*}
\] (3.2)

In these formulas the two component columns \(h_u, e, u, d \) (in the Weak isospin indexes) are chosen in the same way as it was done in [5] (hereafter \(v \) is an arbitrary complex constant of the dimension of the mass):

\[
h_\nu = \begin{pmatrix} v \\ 0 \end{pmatrix}, \quad h_e = \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad h_u = \begin{pmatrix} v \\ 0 \end{pmatrix}, \quad h_d = \begin{pmatrix} 0 \\ v \end{pmatrix},
\] (3.3)

and the three component columns \(d_{u,d,L} \) (in the colour indexes) we choose as follows:

\[
d_u = \begin{pmatrix} v \\ 0 \\ 0 \end{pmatrix}, \quad d_d = \begin{pmatrix} 0 \\ v \\ 0 \end{pmatrix}, \quad d_L = \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix}.
\] (3.4)

The quantity \(s \) is the complex 3 by 2 matrix (in both colour and the weak isospin indexes):

\[
s = \begin{pmatrix} v & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix},
\] (3.5)

\(\omega \) is the complex number, which we set to \(v \), the dimensionful constant \(M_R \) sets the Majorana mass scale for the right handed neutrinos, which is needed for the sea-saw mechanism. The quantities \(\hat{Y}_u, \hat{Y}_d, \hat{y}_u, \hat{y}_d, \hat{y}_{\Delta_u}, \hat{y}_{\Delta_d}, \hat{y}_S \) and \(\hat{y}_M \) are arbitrary (dimensionless) complex 3 by 3 Yukawa matrices which act on the generation index. The tilde indicates charge conjugated weak isospin doublets e.g. \(\tilde{h}_\nu = \sigma_2 h_\nu^* \), where \(\sigma_2 \) stands for the second Pauli matrix.

Considering the fluctuations (3.1) of the Dirac operator one can see, that in order to construct the fluctuated Dirac operator, \(D \) one has replace the constant matrices in (3.2) by the matrix valued functions according to the following rule:

\[
\begin{align*}
\tilde{h}_\nu &\rightarrow \tilde{H} \\
\tilde{h}_e &\rightarrow H \\
\tilde{h}_u &\rightarrow \tilde{H} \\
h_d &\rightarrow H \\
d_u &\rightarrow \Delta_u \\
d_d &\rightarrow \Delta_d \\
d_L &\rightarrow \Delta_L \\
s &\rightarrow S \\
\omega &\rightarrow \Omega.
\end{align*}
\] (3.6)
Note that upon the fluctuations of the Dirac operator M_R remains a constant i.e. it does not transform into a field.

By definition the gauge subgroups $SU(2)$ and $SU(3)$ are represented on the weak isospin fermionic doublets and colour fermionic triplets as a left multiplication by the unitary matrices $U_{SU(2)}$ and $U_{SU(3)}$ respectively:

\[
\begin{align*}
[\text{ferm. doublet}] &\to U_{SU(2)} \cdot [\text{ferm. doublet}]; \\
[\text{ferm. triplet}] &\to U_{SU(3)} \cdot [\text{ferm. triplet}],
\end{align*}
\]

while the gauge fields transform upon the adjoint representation of the gauge group. The transformation law of the scalar fields which is presented below maintains the gauge invariance of the fermionic action upon the simultaneous gauge transformation of the fermionic multiplets, gauge and scalar fields. In what follows Y stands for the abelian hypercharge of a given multiplet, which describes the action of the $U(1)$ gauge subgroup.

The scalar doublet H is nothing but the Higgs field of the minimal Standard Model, which transforms as follows:

\[
H = \begin{bmatrix} H^{up} \\ H^{down} \end{bmatrix} \overset{SU(2) \times SU(3)}{\to} U_{SU(2)} \cdot H; \quad Y_H = 1.
\] (3.8)

The field \tilde{H} transforms as H under the $SU(2)$ transformations however it has the opposite hypercharge:

\[
\tilde{H} = \begin{bmatrix} (H^{down})^* \\ -(H^{up})^* \end{bmatrix} \overset{SU(2) \times SU(3)}{\to} U_{SU(2)} \cdot \tilde{H}; \quad Y_{\tilde{H}} = -1.
\] (3.9)

For each of the three fields Δ_u, Δ_d and Δ^L the transformation law reads:

\[
\Delta_{u,d,L} = \begin{bmatrix} \Delta^{\text{red}}_{u,d,L} \\ \Delta^{\text{green}}_{u,d,L} \\ \Delta^{\text{blue}}_{u,d,L} \end{bmatrix} \overset{SU(2) \times SU(3)}{\to} U_{SU(3)^2} \cdot \Delta_{u,d,L}; \quad Y_{\Delta_u} = Y_{\Delta_d} = Y_{\Delta^L} = \frac{4}{3}.
\] (3.10)

The field S carries both colour and weak isospin indexes and transforms in the following way:

\[
S = \begin{bmatrix} S^{\text{up red}} \\ S^{\text{down red}} \\ S^{\text{up green}} \\ S^{\text{down green}} \\ S^{\text{up blue}} \\ S^{\text{down blue}} \end{bmatrix} \overset{SU(2) \times SU(3)}{\to} U^{-1}_{SU(3)} \cdot S \cdot U^{-1}_{SU(2)}; \quad Y_S = -\frac{1}{3}.
\] (3.11)

The last field Ω is the $SU(2) \times SU(3)$ singlet, and it transforms nontrivially just under the $U(1)$ transformations:

\[
\Omega \overset{SU(2) \times SU(3)}{\to} \Omega, \quad Y_\Omega = -2.
\] (3.12)

In the next section we compute the bosonic spectral action.

4We assume that the the components of the weak isospin fermionic doublets and the color fermionic triplets are combined into columns. Note that antiquarks and antileptons are transformed by the complex conjugated matrices.
4 Bosonic Spectral Action

The aim of this section is to calculate the bosonic spectral action\(^5\)

\[
S_B \equiv \text{Tr} \chi \left(\frac{\mathcal{D}^2}{\Lambda^2} \right) \simeq \Lambda^4 f_0 a_0 + \Lambda^2 f_2 a_2 + \Lambda^0 f_4 a_4 + O \left(\frac{1}{\Lambda^2} \right),
\]

(4.1)

where \(\chi\) is some cutoff function, \(f_0, f_2, f_4\) are the first three momenta of its Fourier transform and \(a_0, a_2, a_4\) are the first three nontrivial heat kernel coefficients on the manifold without boundary. The “fluctuated” (or covariant) Dirac operator is given by:

\[
\mathcal{D} = i\gamma^\mu \nabla_\mu + \gamma_5 \otimes M,
\]

(4.2)

where the covariant derivative \(\nabla_\mu\) involves the gauge and the Levi-Civita spin connections, whilst the 96 by 96 matrix \(M\) is nothing but the “fluctuated” version of \(D_F\), which is obtained from (2.17) via the prescription (3.6).

Comment: We notice that the asymptotic expansion (4.1) correctly describes the behaviour of the trace in the left hand side of (4.1) at the energies below the cutoff scale \(\Lambda\), whilst the high momenta behaviour of the bosonic spectral action is drastically different [28]: high momenta bosons do not propagate, see also [29]. Physically it means that this model becomes strongly coupled at the energies above \(\Lambda\) in both \(U(1), SU(2)\) and \(SU(3)\) sectors. A similar high energy phase transition has been considered beyond the scope of the noncommutative geometry, see e.g. [30, 31]. In what follows we do not discuss the high momenta regime and the mentioned above effects, so from now on the ansatz in the right hand side of (4.1) is identified with the definition of the bosonic spectral action.

We emphasise that the gauge content of these formalism is identical to the one of [5], therefore if one sets \(\Delta_{u,d,L} = 0, \Omega = 0\) and \(S = 0\) our operator \(\mathcal{D}\) will coincide with the one of [5], hence it is sufficient to calculate the difference

\[
S_B - S_B \bigg|_{\Delta_{u,d,L}=0,\Omega=0,S=0}.
\]

(4.3)

4.1 Computational simplifications

The structure of the heat kernel coefficients on manifolds without boundaries is very well known (see e.g. [32]), and one can easily see that the scalar fields can contribute to \(a_2\) through the combination:

\[
a_2^{\text{contrib}} = \frac{1}{16\pi^2} \int d^4x \sqrt{g} \text{tr} \left(E \right)
\]

(4.4)

\(^5\)In the present paper we exploit the “standard” definition of the bosonic spectral action, which is based on the introduction of the ultraviolet cutoff. Other definitions, are based e.g. on the \(\zeta\)-function regularisation are also possible [27].
and to a_4 through the combination:

$$a_4^{\text{contrib}} = \frac{1}{16\pi^2} \frac{1}{360} \int d^4x \sqrt{g} tr \left(-60RE + 180E^2 \right),$$ \hspace{1cm} (4.5)

where by definition

$$E \equiv -D^2 - \nabla^2$$ \hspace{1cm} (4.6)

and R stands for a scalar curvature.

Note that the a_2 contribution can not contain covariant derivatives of the scalar field: the simplest scalar contribution which involves the scalar fields and their covariant derivatives has the the canonical dimension 3, whilst the integrand in (4.4) must have the canonical dimension 2. Therefore, to compute a_2^{contrib} is sufficient to neglect the dependence of scalars on coordinates.

Now let us focus on the a_4 contribution. The computation of the scalar contribution to a_4 drastically simplifies, when the Dirac operator transforms in a homogeneous way upon the local Weyl transformation of the metric tensor and of the scalar fields. Even though the Dirac operator D does not exhibit this property (since it contains the constant Majorana mass terms for the right handed neutrinos) one can write:

$$\text{Tr} \chi \left(\frac{D^2}{\Lambda^2} \right) = \text{Tr} \chi \left(\frac{\tilde{D}^2}{\Lambda^2} \right) \bigg|_{\sigma = M_R},$$ \hspace{1cm} (4.7)

where the “intermediate” Dirac operator \tilde{D} is obtained from D via the replacement of the constant M_R by the scalar field σ. This field has no gauge indexes and it has already been considered in the context of the model to fix the Higgs mass in [12]. We emphasise that for the scope of the present article this field is needed at the intermediate step only, and by the end of the day it will be replaced by the constant M_R.

Upon the local Weyl transformation

$$g_{\mu\nu} \rightarrow e^{2\phi} g_{\mu\nu}, \quad H \rightarrow e^{-\phi} H, \quad \Delta_{u,d,L} \rightarrow e^{-\phi} \Delta_{u,d,L}, \quad S \rightarrow e^{-\phi} S, \quad \Omega \rightarrow e^{-\phi} \Omega, \quad \sigma \rightarrow e^{-\phi} \sigma$$ \hspace{1cm} (4.8)

where ϕ is an arbitrary function of x, the “intermediate” Dirac operator \tilde{D} transforms in a homogeneous way:

$$\tilde{D} \rightarrow e^{-\frac{\phi}{2}} \tilde{D} e^{\frac{\phi}{2}},$$ \hspace{1cm} (4.9)

and one can easily check (using the method of conformal variations, see for example [32]) that the fourth heat kernel coefficient which is associated with \tilde{D}^2 is Weyl invariant.

On the other side all heat kernel coefficients are gauge invariant. The only Weyl and gauge invariant combination of scalar fields of the dimension four which involves the derivatives is6:

$$\text{tr} \left[D_\mu (\text{scalar field})^\dagger D^\mu (\text{scalar field}) \right] - \frac{1}{6} R \text{tr} \left[(\text{scalar field})^\dagger (\text{scalar field}) \right], \hspace{1cm} (4.10)$$

6The trace is needed since we are dealing with the matrix valued scalar fields like S.

11
thus it is sufficient to compute the coefficient in front of R(scalar field)4(scalar field), whilst the kinetic term, which contains all the covariant derivatives D_μ, can be restored from (4.10). Note that for such a computation it is sufficient to consider constant scalar fields: ∂_μ(scalar) = 0 and set the gauge connection to zero. Since the same simplification is applicable for the D kinetic term, which contains all the covariant derivatives, one has to calculate tr the calculation of the new terms of the bosonic spectral action reduced to an algebraic exercise: one has to consider constant scalar fields: hence it is sufficient to compute the coefficient in front of tr M^2 and $\text{tr} M^4$. We remind that all the terms which disappeared because of our simplification can be recovered via the Weyl and the gauge invariance of a_4.

4.2 Relevant traces

One can check by a direct computation using e.g. Maple, the following formulas:

$$\text{tr} M^2 = 2y_1 \sigma^2 + 4y_2 (\Omega^* \Omega) + 4y_3 (\Delta_u^\dagger \Delta_u)$$
$$+ 4y_4 (\Delta_d^\dagger \Delta_d) + 8y_5 (\Delta_L^\dagger \Delta_L) + 12y_6 (H^H H) + 4y_7 \text{tr} (S^TS),$$ (4.13)

and

$$\text{tr} M^4 = 2z_1 \sigma^4 + 4z_2 (\Omega^* \Omega)^2 + 4z_3 (\Delta_u^\dagger \Delta_u)^2 + 4z_4 (\Delta_d^\dagger \Delta_d)^2 + 8z_5 (\Delta_L^\dagger \Delta_L)^2$$
$$+ 12z_6 (H^H H)^2 + 8z_7 (\Delta_u^\dagger \Delta_u) (\Omega^* \Omega) + 8z_8 (\Delta_d^\dagger \Delta_d) (\Omega^* \Omega)$$
$$+ 16z_9 (\Delta_u^\dagger \Delta_u) (H^H H) + 16z_{10} (\Delta_d^\dagger \Delta_d) (H^H H) + 16z_{11} (\Delta_L^\dagger \Delta_L) (H^H H)$$
$$+ \left[8z_{12} (\Delta_u^\dagger \Delta_L) (H^H H) + 8z_{13} (\Delta_u^\dagger \Delta_L) (H^H H) + \text{c.c.} \right]$$
$$+ 8z_{14} (\Omega^* \Omega) (H^H H) + 8z_{15} (\Delta_u^\dagger \Delta_u) \sigma^2 + 8z_{16} (\Omega^* \Omega) \sigma^2 + 8z_{17} (H^H H) \sigma^2$$
$$+ 4z_{18} \text{tr} (S^TS)^2 + 8z_{19} (H^H H) \text{tr} (S^TS) + 8z_{20} (\tilde{S}H) (\tilde{S}H)^\dagger$$
$$+ 8z_{21} (SH)^\dagger (SH) + 8z_{22} (\Delta_u^\dagger S) (\Delta_u^\dagger S)^\dagger + 8z_{23} (\Delta_L^\dagger \Delta_L) \text{tr} (S^TS)$$
$$+ \left[8z_{24} (\tilde{H}^TS^T \Delta_u) \sigma + 8z_{25} (H^T S^T \Delta_u \Omega) + \text{c.c.} \right],$$ (4.14)

where the constants y_1, \ldots, y_7, z_1, \ldots, z_{25} depend on the Yukawa couplings as follows:

$$y_1 \equiv \text{tr} \left(\tilde{y}_M y_M^\dagger \right)$$
$$y_2 \equiv \text{tr} \left(\tilde{y}_\Omega y_\Omega^\dagger \right)$$
\[y_3 \equiv \text{tr} \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u}^\dagger \right) \]
\[y_4 \equiv \text{tr} \left(\hat{y}_{\Delta d} \hat{y}_{\Delta d}^\dagger \right) \]
\[y_5 \equiv \text{tr} \left(\hat{y}_{\Delta L} \hat{y}_{\Delta L}^\dagger \right) \]
\[y_6 \equiv \text{tr} \left(\left[\hat{y}_{u} \hat{y}_{u}^\dagger \right] + \left[\hat{y}_{d} \hat{y}_{d}^\dagger \right] + \frac{1}{3} \left[\hat{Y}_u \hat{Y}_u^\dagger \right] + \frac{1}{3} \left[\hat{Y}_d \hat{Y}_d^\dagger \right] \right) \]
\[y_7 \equiv \text{tr} \left(\hat{y}_{S} \hat{y}_{S}^\dagger \right) \]
\[z_1 \equiv \text{tr} \left(\hat{y}_{M} \hat{y}_{M}^\dagger \right) \]
\[z_2 \equiv \text{tr} \left(\hat{y}_{\Omega} \hat{y}_{\Omega}^\dagger \right) \]
\[z_3 \equiv \text{tr} \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u}^\dagger \right) \]
\[z_4 \equiv \text{tr} \left(\hat{y}_{\Delta d} \hat{y}_{\Delta d}^\dagger \right) \]
\[z_5 \equiv \text{tr} \left(\hat{y}_{\Delta L} \hat{y}_{\Delta L}^\dagger \right) \]
\[z_6 \equiv \text{tr} \left(\left[\hat{y}_{u} \hat{y}_{u}^\dagger \right]^2 + \left[\hat{y}_{d} \hat{y}_{d}^\dagger \right]^2 + \frac{1}{3} \left[\hat{Y}_u \hat{Y}_u^\dagger \right]^2 + \frac{1}{3} \left[\hat{Y}_d \hat{Y}_d^\dagger \right]^2 \right) \]
\[z_7 \equiv \text{tr} \left(\hat{y}_{\Omega} \hat{y}_{\Omega}^\dagger \right) \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u} \right) \]
\[z_8 \equiv \text{tr} \left(\hat{y}_{\Omega} \hat{y}_{\Omega}^\dagger \right) \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u} \right) \]
\[z_9 \equiv \frac{1}{2} \text{tr} \left[\left(\hat{y}_{u} \hat{y}_{u}^\dagger \right) \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u}^\dagger \right) + \left(\hat{Y}_u \hat{Y}_u^\dagger \right) \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u} \right) \right] \]
\[z_{10} \equiv \frac{1}{2} \text{tr} \left[\left(\hat{y}_{d} \hat{y}_{d}^\dagger \right) \left(\hat{y}_{\Delta d} \hat{y}_{\Delta d}^\dagger \right) + \left(\hat{Y}_d \hat{Y}_d^\dagger \right) \left(\hat{y}_{\Delta d} \hat{y}_{\Delta d} \right) \right] \]
\[z_{11} \equiv \frac{1}{2} \text{tr} \left[\left(\hat{y}_{u} \hat{y}_{u}^\dagger \right) \left(\hat{y}_{\Delta L} \hat{y}_{\Delta L}^\dagger \right) + \left(\hat{y}_{d} \hat{y}_{d}^\dagger \right) \left(\hat{y}_{\Delta L} \hat{y}_{\Delta L} \right) + \left(\hat{Y}_u \hat{Y}_u^\dagger \right) \left(\hat{y}_{\Delta L} \hat{y}_{\Delta L} \right) + \left(\hat{Y}_d \hat{Y}_d^\dagger \right) \left(\hat{y}_{\Delta L} \hat{y}_{\Delta L} \right) \right] \]
\[z_{12} \equiv \text{tr} \left(\hat{y}_{\Delta u} \hat{y}_{d} \hat{Y}_d \hat{Y}_d^\dagger \right) \]
\[z_{13} \equiv \text{tr} \left(\hat{y}_{\Delta u} \hat{y}_{\Delta L} \hat{Y}_d \hat{Y}_d^\dagger \right) \]
\[z_{14} \equiv \text{tr} \left[\left(\hat{y}_{\Omega} \hat{y}_{\Omega}^\dagger \right) \left(\hat{Y}_u \hat{Y}_u^\dagger \right) + \left(\hat{Y}_d \hat{Y}_d^\dagger \right) \right] \]
\[z_{15} \equiv \frac{1}{2} \text{tr} \left[\left(\hat{y}_{M} \hat{y}_{M}^\dagger \right) \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u}^\dagger \right) + \left(\hat{y}_{M} \hat{y}_{M} \right) \left(\hat{y}_{\Delta u} \hat{y}_{\Delta u} \right) \right] \]
\[z_{16} \equiv \frac{1}{2} \text{tr} \left[\left(\hat{y}_{\Omega} \hat{y}_{\Omega}^\dagger \right) \left(\hat{y}_{M} \hat{y}_{M}^\dagger \right) + \left(\hat{y}_{\Omega} \hat{y}_{\Omega} \right) \left(\hat{y}_{M} \hat{y}_{M} \right) \right] \]
\[z_{17} \equiv \text{tr} \left(\hat{y}_{M} \hat{y}_{M}^\dagger \right) \left(\hat{Y}_u \hat{Y}_u^\dagger \right) \]
\[z_{18} \equiv \text{tr} \left(\hat{y}_{S} \hat{y}_{S}^\dagger \right) \left(\hat{y}_{u} \hat{y}_{u}^\dagger \right) \]
\[z_{19} \equiv \text{tr} \left[\left(\hat{y}_{S} \hat{y}_{S}^\dagger \right) \left(\hat{y}_{u} \hat{y}_{u}^\dagger \right) \right] \]
\[z_{20} \equiv \text{tr} \left(\hat{g}_S \hat{y}_S \left(\hat{Y}_u^\dagger \hat{Y}_u \right) \right) \]
\[z_{21} \equiv \text{tr} \left(\hat{g}_S \hat{y}_S \left(\hat{Y}_d^\dagger \hat{Y}_d \right) \right) \]
\[z_{22} \equiv \text{tr} \left(\hat{y}_S \hat{y}_S \left(\hat{y}_a^* \hat{y}_a \right) \right) \]
\[z_{23} \equiv \text{tr} \left(\hat{g}_S \hat{y}_S \left(\hat{y}_a^\dagger \hat{y}_a \right) \right) \]
\[z_{24} \equiv \text{tr} \left(\hat{y}_a^* \hat{y}_a \left(\hat{y}_a^\dagger \hat{y}_a \right) \right) \]
\[z_{25} \equiv \text{tr} \left(\hat{y}_a^* \hat{y}_a \left(\hat{y}_a \right) \right). \]

\[(4.15) \]

4.3 The full bosonic spectral action

Substituting (4.13), (4.14), (4.11) and (4.12) in (4.4) and (4.5), recovering the dependence on the derivatives and on the gauge fields according to (4.10) and setting \(\sigma = M_R \) we arrive to the following answer for the new terms in the bosonic spectral action:

\[
S_B = S_B \big|_{\Delta_u,d,a=0,\Omega=0,S=0} + \int d^4x \sqrt{g^E} \left\{ -f_2 \Lambda^2 \left(\frac{y_2}{\pi^2} \Omega^* \Omega + \frac{y_3}{\pi^4} \Delta^\dagger \Delta \right) + \frac{y_4}{2\pi^2} \left(D^\mu \Omega^* D^\mu \Omega - \frac{R}{6} \Omega^* \Omega \right) \right.
\]
\[+ \frac{y_5}{\pi^2} \left(D^\mu \Delta^\dagger \Delta^\dagger \Delta - \frac{R}{6} \Delta^\dagger \Delta \Delta \right) + \frac{y_6}{2\pi^2} \text{tr} \left(D^\mu S^\dagger D^\mu S - \frac{R}{6} S^\dagger S \right) \]
\[+ \frac{1}{2\pi^2} z_2 \left(\Omega^* \Omega \right)^2 + \frac{1}{2\pi^2} z_3 \left(\Delta^\dagger \Delta \right)^2 + \frac{1}{2\pi^2} z_4 \left(\Delta^\dagger \Delta \right)^2 \]
\[+ \frac{1}{2\pi^2} z_5 \left(\Delta^\dagger \Delta \right)^2 + \frac{1}{2\pi^2} z_7 \left(\Delta^\dagger \Delta \left(\Omega^* \Omega \right) + \frac{1}{2\pi^2} z_8 \left(\Delta^\dagger \Delta \left(\Omega^* \Omega \right) \right) \right) \]
\[+ \frac{1}{2\pi^2} z_9 \left(\Delta^\dagger \Delta \left(H^\dagger H \right) + \frac{2}{\pi^2} z_{10} \left(\Delta^\dagger \Delta \left(H^\dagger H \right) \right) \right) \]
\[+ \frac{1}{2\pi^2} z_{12} \left(\Delta^\dagger \Delta \left(H^\dagger H \right) \right) + \frac{1}{2\pi^2} z_{13} \left(\Delta^\dagger \Delta \left(H^\dagger H \right) \right) + c.c. \]
\[+ \frac{1}{2\pi^2} z_{14} \left(\Omega^* \Omega \left(H^\dagger H \right) \right) + \frac{1}{2\pi^2} z_{15} \left(\Delta^\dagger \Delta \left(M_R^2 + \frac{1}{\pi^2} z_{16} \left(\Omega^* \Omega \right) M_R^2 \right) \right)
\]
\[+ \frac{1}{2\pi^2} z_{18} \left(\text{tr} \left(S^\dagger S \right) \right)^2 + \frac{1}{2\pi^2} z_{19} \left(H^\dagger H \right) \text{tr} \left(S^\dagger S \right) + \frac{1}{2\pi^2} z_{20} \left(S H \right)^\dagger \left(S H \right) \]
\[+ \frac{1}{2\pi^2} z_{21} \left(S H \right)^\dagger \left(S H \right) + \frac{1}{\pi^2} z_{22} \left(\Delta^\dagger \Delta \left(\Delta^\dagger \Delta \right) \right) + \frac{1}{\pi^2} z_{23} \left(\Delta^\dagger \Delta \left(\Delta^\dagger \Delta \right) \right) \]
\[+ \frac{1}{2\pi^2} \left(\Delta^\dagger \Delta \right) M_R + \frac{1}{2\pi^2} \left(M_R \right) + c.c. \right\}. \]

This is the result of the spectral action computation with the new fields coming form the Clifford requirement grading.
5 Towards the physical action.

In this section we discuss how to make our spectral action applicable in a physical context. In order to do this one has to carry out two important steps:

- get rid of the redundant fermionic degrees of freedom,
- make the action Lorentzian.

The redundancy is usually solved projecting out the extra degrees of freedom \([5, 24, 33]\), while the Euclidean vs. Lorentzian issue has several ramifications (see for example \([34–37]\)), but the usual method is to perform a Wick rotation. We have shown in \([25]\) that the two issues are intimately related, and given a prescription on how to deal with them.

5.1 General prescription: a review and discussion.

Now we briefly recall how the Wick rotation works following \([25]\). In order to pass from the Euclidean to a Lorentzian theory, each expression \(F\) which involves the vierbeins \(e_\mu^a\) has to be transformed according to the following rule:

\[
\text{Wick: } F[e_0^0, e_j^\mu] \rightarrow F[i e_0^0, e_j^\mu], \quad j = 1, 2, 3. \tag{5.1}
\]

As it was demonstrated in \([25]\), upon the transformation (5.1) the Euclidean bosonic action \(S_{\text{bos}}^E\), which comes out from the first three nonzero heat kernel coefficients, perfectly transforms into the “textbook” Lorentzian action \(S_{\text{bos}}^M\), in particular

\[
\text{Wick: } \exp(-S_{\text{bos}}^E[\text{fields}, g_{\mu\nu}^E]) \rightarrow \exp(i S_{\text{bos}}^M[\text{fields}, g_{\mu\nu}^M]), \tag{5.2}
\]

where the metric tensors \(g_{\mu\nu}^E\) and \(g_{\mu\nu}^M\) have the signatures \(\{+, +, +, +\}\) and \(\{+, -, -, -\}\) respectively. We refer the reader to the quoted reference for the details.

A treatment of the fermionic action is more subtle, since the product space \(H\) contains extra degrees of freedom. Now we briefly recall what the problem is. The Hilbert space \(H\) of the almost commutative geometry has the following structure:

\[
H = \text{sp}(M) \otimes H_F = H_L \oplus H_R \oplus H_L^c \oplus H_R^c, \tag{5.3}
\]

where the subspaces \(H_L, H_R, \) by definition consist of the multiplets of the nonchiral 4-component spinors which transform under the gauge transformations as the multiplets of the left handed and right handed chiral fermions of the Standard Model, whilst the subspaces \(H_L^c\) and \(H_R^c\) consist of the nonchiral 4-component spinors fermions which transform under the gauge transformations as the charge conjugated multiplets of the chiral left and right fermions of the Standard Model. This doubling of the degrees of freedom is called in \([25]\) the “mirror doubling”. On the one side the action of the Standard Model does not contain any independent
variables with the index “c”, which indicates the charge conjugated field: the charge conjugated
spinor is obtained from the original one via the charge conjugation operation (i.e. they are
not independent variables, see (5.12) below). This other doubling is called in [25] the “charge
conjugation doubling”.

In order to get rid of the mirror doubling one has to extract the particles with the correct
chirality. The left ψ_L and the right ψ_R chiral spinors are by definition the eigenstates of the
left and the right chiral projectors:

$$\psi_L = \frac{1}{2} (1 - \gamma^5) \psi_L, \quad \psi_R = \frac{1}{2} (1 + \gamma^5) \psi_R. \quad (5.4)$$

In order to get rid of the redundant fermionic degrees of freedom with the wrong chirality one
has to extract just left chiral fermions from \mathcal{H}_L and \mathcal{H}_cR and just right chiral fermions from
\mathcal{H}_R and \mathcal{H}_cL, where we took into account the fact that for the physical fermions, which live in
Lorentzian space-time, the antiparticles have the opposite chirality with respect to the original
particles. So the subspace \mathcal{H}_+ of \mathcal{H} which contains just the fermions with correct chiralities
has the following structure:

$$\mathcal{H}_+ = (\mathcal{H}_L)_L \oplus (\mathcal{H}_R)_R \oplus (\mathcal{H}_cL)_R \oplus (\mathcal{H}_cR)_L. \quad (5.5)$$

In the original paper [5] such an extraction was presented in the form

$$P_+ \mathcal{H}_+ = \mathcal{H}_+ \quad (5.6)$$

where the projector P_+ is defined via the grading as follows:

$$P_+ = \frac{1}{2} (1 + \gamma^5 \otimes \gamma^m_F). \quad (5.7)$$

In this formula γ^m_F stands for the “standard” grading introduced in [5]. Since we are working
with the different grading γ_F, in order to arrive to the correct subspace (5.5) the connection
between the projector P_+ and the grading γ_F takes a slightly different form:

$$P_+ = \frac{1}{2} \left(1 + \gamma^5 \otimes (Q - L) \gamma_F\right). \quad (5.8)$$

The Euclidean fermionic action introduced in [5], which is free of the mirror doubling reads:

$$S_{E\ F} = \frac{1}{2} \int d^4x \sqrt{g_E} \left(\mathcal{J} \Psi_+\right)^\dagger \mathcal{D} \Psi_+, \quad \Psi_+ \in \mathcal{H}_+. \quad (5.9)$$

As [25] shows, after the Wick rotation of the vierbeins (5.1) one obtains:

$$\text{Wick} : \quad \exp \left(-S_{E\ F}^{\text{spinors}, e^a_\mu}\right) \rightarrow \exp \left(iS_{F\ \text{doubled}}^{\text{spinors}, e^a_\mu}\right), \quad (5.10)$$

where the “intermediate” fermionic action $S_{F\ \text{doubled}}^{\text{spinors}, e^a_\mu}$ is already Lorentz invariant. However,
due to the charge conjugation doubling, it depends on twice more fermionic fields than it is
needed, it is not real and therefore it is not suitable for the canonical quantisation. In order to complete a construction of the physical fermionic action one has to eliminate the charge conjugation doubling via the following identification of the variables in the action S^M_{doubled} from the subspaces \mathcal{H}^c_L and \mathcal{H}^c_R with the variables from \mathcal{H}_L and \mathcal{H}_R:

$$\begin{cases}
\left(\psi^c_L\right)_R \in \left(\mathcal{H}^c_L\right)_R \subset \mathcal{H}_+ & \text{has to be identified with} & C_M(\psi^c_L)_L, \quad \left(\psi^c_L\right)_L \in \left(\mathcal{H}^c_L\right)_L \subset \mathcal{H}_+ \\
\left(\psi^c_R\right)_L \in \left(\mathcal{H}^c_R\right)_L \subset \mathcal{H}_+ & \text{has to be identified with} & C_M(\psi^c_R)_R, \quad \left(\psi^c_R\right)_R \in \left(\mathcal{H}^c_R\right)_R \subset \mathcal{H}_+
\end{cases}\quad (5.11)$$

where the operation C_M is the charge conjugation operation, which acts on the arbitrary spinor ψ as follows:

$$C_M\psi = -i\gamma^2\psi^*.$$

Note that in contrast to the Euclidean charge conjugation J the operation C_M changes a chirality. We emphasise that the identification (5.11) makes sense after the Wick rotation to Lorentzian signature: since the quantities to be identified transform in the same way under the Lorentzian $SO(1,3)$ transformations rather than Euclidean $SO(4)$ rotations. After the global axial transformation of all the remaining spinors

$$\text{step 2 : } \psi \rightarrow e^{-\frac{i\pi\gamma^5}{4}}\psi$$

one arrives to the “textbook” form S^M_F of the fermionic action:

$$\text{step 1 + step 2 : } \exp\left(iS^M_{\text{doubled}}[\text{spinors}, e^a_\mu]\right) \rightarrow \exp\left(iS^M_F[\text{phys. spinors}, e^a_\mu]\right). \quad (5.14)$$

Following [25] we remind that the last step must be performed before the quantisation: otherwise one will get an additional Pontrjagin gauge action which comes out from the abelian axial anomaly. Below we apply these prescriptions to our model and we will find out a nontrivial outcome.

5.2 This model

Let us parametrise the elements of the Hilbert space \mathcal{H} as follows:

$$\Psi = (\mathcal{v}_R, e_R, \mathcal{L}_L, u_R, d_R, Q_L, v^c_R, e^c_R, \mathcal{L}^c_R, u^c_R, d^c_R, Q^c_L)^T, \quad (5.15)$$

This is basically the parametrisation (2.10) of the elements of \mathcal{H}_F, the change of typeface indicates that the elements of \mathcal{H} are spinors, no longer complex numbers. In these notations u_R is a collection of 4-component spinors which transforms upon the action of the gauge group as the right handed quarks, u^c_R is an independent collection of 4-component spinors which transforms upon the action of the gauge group as the charge conjugated right handed quark
field and so on. The typical element of \mathcal{H}_+, which is constructed according to (5.5), then becomes:

$$\Psi_+ = ([u_R]_R, [d_R]_R, [Q_L]_L, [v_R]_R, [e_R]_R, [L_L]_L, [u_R^c]_L, [d_R^c]_L, [Q_L^c]_R, [v_R^c]_L, [e_R^c]_L, [L_L^c]_R)^T$$

(5.16)

Composing the fermionic action (5.9), applying the Wick rotation procedure (5.1), removing the charge conjugation doubling according to the general prescription (5.11) and finally carrying out the axial transformation (5.13) we see that:

$$\text{Wick rotation + dequadrupling : } -S^E_F \rightarrow iS^M_F,$$

(5.17)

where S^M_F is given by:

$$S^M_F = \int d^4x \sqrt{-g^M} \{ i(\bar{\psi}_R \gamma^\mu \psi_R) + i(\bar{d}_R \gamma^\mu d_R) + i(\bar{Q}_L \gamma^\mu Q_L) - [\bar{Q}_L \gamma^\mu \hat{H}] u_R + [\bar{Q}_L \gamma^\mu H] d_R + [\bar{L}_L \gamma^\mu \hat{H}] v_R + [\bar{L}_L \gamma^\mu \hat{H}] e_R$$

$$+ \frac{1}{2} (\overline{C_M}_R \gamma^\mu \hat{H}) |\tilde{Y}_M^\mu \gamma_4 \psi_R + (\overline{C_M}_R \gamma^\mu \Omega^\delta \gamma^\nu) |\tilde{Y}_M^\mu \gamma_4 \psi_R + \text{c.c.}|.$$

(5.18)

In this formula for an arbitrary spinor ψ the bar stands for the Dirac conjugation: $\bar{\psi} \equiv \psi^\dagger \gamma^0$. Note that after the Wick rotation accompanied by the elimination of the fermionic quadrupling just the multiplets of the structures $[\psi_R]_R$ and $[\psi_L]_L$ remain in the result, therefore we simplified the notations replacing them by ψ_R and ψ_L respectively.

We now come to an important point of this noncommutative geometric construction. Note that the fields Δ_u, Δ_d, Δ_L and S, which are present in the Dirac operator and hence in the bosonic spectral action are absent in the fermionic action (5.18)! Let us clarify what has happened. If one looks carefully at the structure $[J \Psi]^\dagger D\Psi$, $\Psi \in \mathcal{H}$ one immediately finds out that the mentioned fields always appear in interactions terms in the action (vertices) which involve spinors with unphysical chiralities. Therefore, when one restricts the fermions just to the “good-chirality” subspace \mathcal{H}_+, all these terms vanish. Indeed, the S field enters in $(J \Psi)^\dagger D\Psi$ in particular via the combination:

$$(J u_R)^\dagger (\gamma^5 \otimes \tilde{y}_S \otimes S) L_L$$

(5.19)

When one restricts $\Psi \in H_+$ this expression turns into

$$(J [u_R]_R)^\dagger (\gamma^5 \otimes \tilde{y}_S \otimes S) [L_L]_L \equiv (J P_R u_R)^\dagger (\gamma^5 \otimes \tilde{y}_S \otimes S) P_L L_L$$

$$= (J u_R)^\dagger (\gamma^5 \otimes \tilde{y}_S \otimes S) (P_R P_L) L_L = 0,$$

(5.20)

where we took into account the fact that the chiral projectors $P_L = \frac{1}{2} (1_4 - \gamma^5)$ and $P_R = \frac{1}{2} (1_4 + \gamma^5)$ commute with the Euclidean charge conjugation J and remain unchanged upon the
Hermitian conjugation of matrices. One can easily check that all other combinations which involve S vanish according to the same mechanism.

Now let us see what has happened to the $\Delta_{u,d,L}$ fields. The Δ_u field enters in $(J\Psi)^\dagger D\Psi$ in particular through the expression:

\[
(Ju^c_R)^\dagger (\gamma^5 \otimes \hat{y}_{\Delta_u} \otimes \Delta_u) v_R
\]

Upon the restriction $\Psi \in \mathcal{H}_+$ this expression turns into

\[
(J[u_R^c]_L)^\dagger (\gamma^5 \otimes \hat{y}_{\Delta_u} \otimes \Delta_u) [v_R]_R = (JP_Lu^c_R)^\dagger (\gamma^5 \otimes \hat{y}_{\Delta_u} \otimes \Delta_u) P_R v_R
\]

\[
= (Ju^c_R)^\dagger (\gamma^5 \otimes \hat{y}_{\Delta_u} \otimes \Delta_u) P_L P_R v_R = 0.
\]

One can easily check that all other terms, which involve the Δ-fields vanish as well in the similar way.

6 Conclusions and Outlook.

Based on the purely algebraic idea to incorporate the Clifford structure in the finite dimensional spectral triple, proposed in [23], we arrive to a set of new scalar fields in the minimal version of the noncommutative standard model. Some of the new scalar fields (viz $\Delta_{u,d,L}$ and S) carry both colour and the weak isospin indexes. The fields of such a kind are of interest of recent phenomenological research, in particular the scalar lepto-quarks are the case [38].

We computed the new terms in the bosonic spectral action which come out from these fields. The equation (4.16) is one of the main results of this article. The scalar-scalar couplings between the new fields and the Higgs field may improve the minimal noncommutative standard model from the phenomenological point of view: they give positive contributions to the beta function of the Higgs self-interaction quartic constant at the level of the one loop [39], what is needed to avoid the vacuum instability problem [40,41].

We did not discuss in detail in this paper the possible phenomenological consequences of these new terms. The whole approach to the standard model based on noncommutative geometry is now reaching the level to be confronted with phenomenology, and of course the scalar sector seems to be of paramount importance. The new fields discussed here may possibly be part of this, but more work is necessary in this direction.

The approach is interesting from the mathematical point of view as well. It turns out that some of the new fields (viz $\Delta_{u,d,L}$ and S) are coupled to the spurious fermionic degrees of freedom, whose presence is due to the “product-based” construction of the almost commutative spectral triple. Therefore this model exhibits a very peculiar property, which is the another important result of this article. On the one side these fields do not enter in the physical (Minkowskian) fermionic Lagrangian (5.18), even though they appear in the Euclidean NCG Dirac operator. On the other side the physical (“Wick rotated” to the Lorentzian signature)
bosonic spectral action keeps memory about these extra degrees of freedom: it depends on
$\Delta_{u,d,L}$ and S. Therefore the fermionic quadrupling in the spectral approach is not just the
presence of the extra fermions to be projected out: by the end of the day it effects nontrivially
the bosonic action of the model, without altering the fermionic action.

In this article we considered an evolution of the spectral approach from an algebraic point of
view. There are other interesting mathematical directions which can be taken. In particular we
consider the manifold \mathcal{M} without boundary, manifolds with boundaries have been considered
within the spectral action formalism as well [42–44]. Recently another purely spectral feature
has been discovered: parity anomaly on four dimensional manifolds with boundaries [45, 46].
It would be interesting to understand the role played by the parity anomaly in the context of
the spectral action approach, and the issue will deserve further scrutiny.

Acknowledgments

We thank Francesco D’Andrea for several illuminating discussions which helped shape this
paper, and clarifications of various conceptual and technical aspects of the Clifford-based ap-
proach. FL acknowledges the support of the COST action QSPACE, the INFN Iniziativa Speci-
fica GeoSymQFT, the Spanish MINECO under project MDM-2014-0369 of ICCUB (Unidad
de Excelencia ‘Maria de Maeztu’). M.K. acknowledges the support of the Sao-Paulo Research
Foundation (FAPESP), grant 2015/05120-0.

References

[1] A. Connes, *Noncommutative Geometry*, Wiley, 1994.
[2] G. Landi, *An Introduction to Noncommutative Spaces and their Geometries*, Springer, 1997.
[3] P. Aschieri, M. Dimitrijevic, P. Kulish, F. Lizzi, J. Wess, *Noncommutative Spacetimes:
Symmetries in Noncommutative Geometry and Field Theory*, Lect. Notes in Physics 774, 1.
[4] A. Connes, M. Marcolli, *Noncommutative Geometry, Quantum Fields and Motives*, AMS 2007.
[5] A. H. Chamseddine, A. Connes and M. Marcolli, “Gravity and the standard
model with neutrino mixing,” Adv. Theor. Math. Phys. 11 (2007) no.6, 991 doi:10.4310/ATMP.2007.v11.n6.a3 [hep-th/0610241].
[6] W. Van Suijlekom *Noncommutative Geometry and Particle Physics* Springer 2015.
[7] A. H. Chamseddine and A. Connes, “The Spectral action principle,” Commun. Math.
Phys. 186 (1997) 731 doi:10.1007/s002200050126 [hep-th/9606001].
[8] A. A. Andrianov and F. Lizzi, “Bosonic Spectral Action Induced from Anomaly Cancela-
tion,” JHEP 1005 (2010) 057 doi:10.1007/JHEP05(2010)057 [arXiv:1001.2036 [hep-th]].
[9] A. A. Andrianov, M. A. Kurkov and F. Lizzi, “Spectral action, Weyl anomaly and the Higgs-Dilaton potential,” JHEP 1110 (2011) 001 doi:10.1007/JHEP10(2011)001 [arXiv:1106.3263 [hep-th]].

[10] M. A. Kurkov and F. Lizzi, “Higgs-Dilaton Lagrangian from Spectral Regularization,” Mod. Phys. Lett. A 27 (2012) 1250203 doi:10.1142/S0217732312502033 [arXiv:1210.2663 [hep-th]].

[11] M. A. Kurkov and M. Sakellariadou, “Spectral Regularisation: Induced Gravity and the Onset of Inflation,” JCAP 1401 (2014) 035 doi:10.1088/1475-7516/2014/01/035 [arXiv:1311.6979 [hep-th]].

[12] A. H. Chamseddine and A. Connes, “Resilience of the Spectral Standard Model,” JHEP 1209 (2012) 104 doi:10.1007/JHEP09(2012)104 [arXiv:1208.1030 [hep-ph]].

[13] A. Devastato, F. Lizzi and P. Martinetti, “Grand Symmetry, Spectral Action, and the Higgs mass,” JHEP 1401 (2014) 042 doi:10.1007/JHEP01(2014)042 [arXiv:1304.0415 [hep-th]].

[14] A. Devastato, F. Lizzi and P. Martinetti, “Higgs mass in Noncommutative Geometry,” Fortsch. Phys. 62 (2014) 863 doi:10.1002/prop.201400013 [arXiv:1403.7567 [hep-th]].

[15] A. H. Chamseddine, A. Connes and W. D. van Suijlekom, “Inner Fluctuations in Noncommutative Geometry without the first order condition,” J. Geom. Phys. 73 (2013) 222 doi:10.1016/j.geomphys.2013.06.006 [arXiv:1304.7583 [math-ph]].

[16] A. H. Chamseddine, A. Connes and W. D. van Suijlekom, “Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification,” JHEP 1311 (2013) 132 doi:10.1007/JHEP11(2013)132 [arXiv:1304.8050 [hep-th]].

[17] A. Devastato and P. Martinetti, “Twisted spectral triple for the Standard Model and spontaneous breaking of the Grand Symmetry,” Math. Phys. Anal. Geom. 20 (2017) no.1, 2 doi:10.1007/s11040-016-9228-7 [arXiv:1411.1320 [hep-th]].

[18] A. H. Chamseddine, A. Connes and W. D. van Suijlekom, “Grand Unification in the Spectral Pati-Salam Model,” JHEP 1511 (2015) 011 doi:10.1007/JHEP11(2015)011 [arXiv:1507.08161 [hep-ph]].

[19] U. Aydemir, D. Minic and T. Takeuchi, “The Higgs Mass and the Emergence of New Physics,” Phys. Lett. B 724 (2013) 301 doi:10.1016/j.physletb.2013.06.044 [arXiv:1304.6092 [hep-ph]].

[20] U. Aydemir, D. Minic, C. Sun and T. Takeuchi, “Higgs mass, superconnections, and the TeV-scale left-right symmetric model,” Phys. Rev. D 91 (2015) 045020 doi:10.1103/PhysRevD.91.045020 [arXiv:1409.7574 [hep-ph]].

[21] U. Aydemir, D. Minic, C. Sun and T. Takeuchi, “PatiSalam unification from noncommutative geometry and the TeV-scale W_R boson,” Int. J. Mod. Phys. A 31 (2016) no.01, 1550223 doi:10.1142/S0217751X15502231 [arXiv:1509.01606 [hep-ph]].
U. Aydemir, D. Minic, C. Sun and T. Takeuchi, “The 750 GeV diphoton excess in unified $SU(2)_L \times SU(2)_R \times SU(4)$ models from noncommutative geometry,” Mod. Phys. Lett. A 31 (2016) no.18, 1650101 doi:10.1142/S0217732316501017 [arXiv:1603.01756 [hep-ph]].

F. D’Andrea and L. Dabrowski, “The Standard Model in Noncommutative Geometry and Morita equivalence,” Journal of Noncommutative Geometry 10, (2) 2016, 551-578, doi: 10.4171/JNCG/242 [arXiv:1501.00156 [math-ph]].

F. Lizzi, G. Mangano, G. Miele and G. Sparano, “Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories,” Phys. Rev. D 55 (1997) 6357 doi:10.1103/PhysRevD.55.6357 [hep-th/9610035].

F. D’Andrea, M. A. Kurkov and F. Lizzi, “Wick Rotation and Fermion Doubling in Noncommutative Geometry,” Phys. Rev. D 94 (2016) 025030 doi:10.1103/PhysRevD.94.025030 [arXiv:1605.03231 [hep-th]].

A. Connes, “On the spectral characterization of manifolds,” J. Noncommut. Geom. 7 (2013) 1 doi:10.4171/JNCG/108 [arXiv:0810.2088 [math.OA]].

M. A. Kurkov, F. Lizzi, M. Sakellariadou and A. Watcharangkool, “Spectral action with zeta function regularization,” Phys. Rev. D 91 (2015) no.6, 065013 doi:10.1103/PhysRevD.91.065013 [arXiv:1412.4669 [hep-th]].

M. A. Kurkov, F. Lizzi and D. Vassilevich, “High energy bosons do not propagate,” Phys. Lett. B 731 (2014) 311 doi:10.1016/j.physletb.2014.02.053

N. Alkofer, F. Saueressig and O. Zanusso, “Spectral dimensions from the spectral action,” Phys. Rev. D 91 (2015) no.2, 025025 doi:10.1103/PhysRevD.91.025025

V. A. Rubakov and S. V. Troitsky, “Trends in grand unification: Unification at strong coupling and composite models,” hep-ph/0001213.

A. A. Andrianov, D. Espriu, M. A. Kurkov and F. Lizzi, “Universal Landau Pole,” Phys. Rev. Lett. 111 (2013) no.1, 011601 doi:10.1103/PhysRevLett.111.011601

D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rept. 388 (2003) 279 doi:10.1016/j.physrep.2003.09.002 [hep-th/0306138].

J. M. Gracia-Bondia, B. Iochum and T. Schucker, “The Standard model in noncommutative geometry and fermion doubling,” Phys. Lett. B 416 (1998) 123 doi:10.1016/S0370-2693(97)01310-5 [hep-th/9709145].

K. v. d. Dungen, “Krein spectral triples and the fermionic action,” Math. Phys. Anal. Geom. 19 (2016) no.1, 4 doi:10.1007/s11040-016-9207-z [arXiv:1505.01939 [math-ph]].

N. Franco and M. Eckstein, “An algebraic formulation of causality for noncommutative geometry,” Class. Quant. Grav. 30 (2013) 135007 doi:10.1088/0264-9381/30/13/135007 [arXiv:1212.5171 [math-ph]].
[36] A. Devastato, S. Farnsworth, F. Lizzi and P. Martinetti, “Lorentz signature and twisted spectral triples,” JHEP 1803 (2018) 089 doi:10.1007/JHEP03(2018)089 [arXiv:1710.04965 [hep-th]].

[37] N. Bizi, C. Brouder and F. Besnard, “Space and time dimensions of algebras with applications to Lorentzian noncommutative geometry and quantum electrodynamics,” arXiv:1611.07062 [hep-th].

[38] C. Patrignani et al. [Particle Data Group], “Review of Particle Physics,” Chin. Phys. C 40 (2016) no.10, 100001. doi:10.1088/1674-1137/40/10/100001

[39] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings,” Nucl. Phys. B 249 (1985) 70. doi:10.1016/0550-3213(85)90040-9

[40] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, “Higgs mass implications on the stability of the electroweak vacuum,” Phys. Lett. B 709, 222 (2012) doi:10.1016/j.physletb.2012.02.013

[41] F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, “Higgs Boson Mass and New Physics,” JHEP 1210 (2012) 140 doi:10.1007/JHEP10(2012)140

[42] A. H. Chamseddine and A. Connes, “Noncommutative Geometric Spaces with Boundary: Spectral Action,” J. Geom. Phys. 61 (2011) 317 doi:10.1016/j.geomphys.2010.10.002 [arXiv:1008.3980 [hep-th]].

[43] A. H. Chamseddine and A. Connes, “Quantum Gravity Boundary Terms from Spectral Action,” Phys. Rev. Lett. 99 (2007) 071302 doi:10.1103/PhysRevLett.99.071302 [arXiv:0705.1786 [hep-th]].

[44] B. Iochum, C. Levy and D. Vassilevich, “Spectral action for torsion with and without boundaries,” Commun. Math. Phys. 310 (2012) 367 doi:10.1007/s00220-011-1406-7 [arXiv:1008.3630 [hep-th]].

[45] M. Kurkov and D. Vassilevich, “Parity anomaly in four dimensions,” Phys. Rev. D 96 (2017) no.2, 025011 doi:10.1103/PhysRevD.96.025011 [arXiv:1704.06736 [hep-th]].

[46] M. Kurkov and D. Vassilevich, “Gravitational parity anomaly with and without boundaries,” JHEP 1803 (2018) 072 doi:10.1007/JHEP03(2018)072 [arXiv:1801.02049 [hep-th]].