REAL AND COMPLEX K-PLANES IN CONVEX HYPERSURFACES

NIKOLAI NIKOLOV

Abstract. It is shown that that the rank of the second fundamental form (resp. the Levi form) of a \(C^2\)-smooth convex hypersurface \(M\) in \(\mathbb{R}^{n+1}\) (resp. \(\mathbb{C}^{n+1}\)) does not exceed an integer constant \(k < n\) near a point \(p \in M\), then through any point \(q \in M\) near \(p\) there exists a real (resp. complex) \((n-k)\)-dimensional plane that locally lies on \(M\).

It is a classical result in the differential geometry that any developable surface \(M\) in \(\mathbb{R}^3\) (i.e. with zero Gaussian curvature) is a part of a complete ruled surface (i.e. through every point of \(M\) there exists a straight line that lies on \(M\)). Note that second fundamental form of such an \(M\) has rank 0 or 1 at any point. A similar result holds in higher dimensions (cf. [3, Lemma 2]):

(R) If the rank of the second fundamental form of a \(C^2\)-smooth hypersurface \(M\) in \(\mathbb{R}^{n+1}\) is a constant \(k < n\) near a point \(p \in M\), then \(M\) is locally generated by \((n-k)\)-dimensional planes. (In particular, if \(k = 0\), then \(M\) is locally a hyperplane.)

This result has a complex version (see [4, Theorem 6.1, Corollary 5.2]):

(C) If the rank of the Levi form of a \(C^2\)-smooth real hypersurface \(M\) in \(\mathbb{C}^{n+1}\) is a constant \(k < n\) near a point \(p \in M\), then \(M\) is locally foliated by complex \((n-k)\)-dimensional manifolds. Moreover, if \(k = 0\) (i.e. \(M\) is Levi-flat) and \(M\) is real analytic, then \(M\) is locally biholomorphic to a complex hyperplane.

On the other hand, in both cases (real and complex), almost nothing is known if the rank is not maximal and non-constant.

The aim of this note is consider the last case when the hypersurface \(M\) is convex, i.e. \(M\) is a part of the boundary of convex domain.

Proposition 1. The rank of the second fundamental form (resp. the Levi form) of a \(C^2\)-smooth convex hypersurface \(M\) in \(\mathbb{R}^{n+1}\) (resp. \(\mathbb{C}^{n+1}\)) does not exceed an integer constant \(k < n\) near a point \(p \in M\) if and...
only if through any point \(q \in M \) near \(p \) there exists a real (resp. complex) \((n - k)\)-dimensional plane that locally lies on \(M \).

Remark. If \(k = 0 \) in the complex case, then \(M \) is locally linearly equivalent to the Cartesian product of \(\mathbb{C}^n \) and a planar domain (see [2, Theorem 1]).

Proof. If the respective real (complex) \((n - k)\)-dimensional plane exists for a point \(q \in M \), then the non-negativity of the second fundamental form (the Levi form) at \(q \) easily implies that the rank of the form at \(q \) does not exceed \(k \).

For the converse, let first consider the complex case.

It is enough to show that through \(p \) there exists a complex line that locally lies on \(M \). Then, considering the intersection of \(M \) with the orthogonal complement of this line, we may proceed by induction on \(n \) to find \(n - k \) orthogonal complex lines locally lying on \(M \). The convexity of \(M \) easily implies that the \((n - k)\)-dimensional planes, spanned by these lines, locally lies on \(M \). Finally, note that the same holds for any point \(q \in M \) near \(p \) (since may replace \(p \) by \(q \)).

Assume that there does not exist such a line. It is claimed in [6, p. 310] and proved in [5, Theorem 6] that \(p \) is a local holomorphic peak point for one of the sides, say \(M^+ \), of \(M \) near \(p \) (the convex one). By [1, Corollary 2], \(p \) is a limit of strictly pseudoconvex point of \(M^+ \) which is a contradiction to the rank assumption.

The proof in the real case is similar. Recall that a point \(q \in M \) is called exposed if there exists a real hyperplane that intersects \(M \) in \(p \) alone (i.e. \(p \) is a linear peak point). It is enough to combine two facts:
- the set of exposed points is dense in the set of extreme points (see [7]);
- the set of strictly convex points of \(M^+ \) (all the eigenvalues of the second fundamental form are positive) is dense in the set of exposed points.

The last fact can be shown following, for example, the proof of [1, Theorem].

Remark. The 'only if' part \((\rightarrow) \) of Proposition [1] remains true if we replace convexity by real-analyticity. Indeed, if \(c_M(q) \) denotes the rank of the Levi form of \(M \) at \(q \in M \) and \(\tilde{c}_M(p) = \limsup_{q \to p} c_M(q) \), then, by (C), through any \(q \) near \(p \) with \(c_M(q) = \tilde{c}_M(p) \) there exists a complex line \((n - c_q)\)-dimensional complex plane that locally lies on \(M \). Then one may find a \((n - c_q)\)-dimensional complex plane with infinite order of contact with \(M \) at \(p \). Since \(M \) is real-analytic, we conclude that this
plane lies on \(M \) near \(p \). The real case follows analogously by using (R) instead of (C).

References

[1] R. F. Basaner, *Peak points, barriers and pseudoconvex boundary points*, Proc. Amer. Math. Soc. 65 (1977), 89–92.

[2] V. K. Beloshapka and S. N. Bychkov, *A property of convex hypersurfaces in \(\mathbb{C}^n \)*, Mat. Zametki 40 (1986), 621–626 (in Russian). English translation in: Math. Notes 40 (1986), 854–857.

[3] S.-S. Chern, R. K. Lashof, *On the total curvature of immersed manifolds*, Amer. J. Math. 79 (1957), 306–318.

[4] M. Freeman, *Local complex foliation of real submanifolds*, Math. Ann. 209 (1974), 1-30.

[5] N. Nikolov, P. Pflug, *Behavior of the Bergman kernel and metric near convex boundary points*, Proc. Amer. Math. Soc. 131 (2003), 2097–2102.

[6] N. Sibony, *Une classe de domaines pseudoconvexes*, Duke Math. J. 55 (1987), 299–319.

[7] S. Straszewicz, *Über exponierte Punkte abgeschlossener Punktmengen*, Fund. Math. 24 (1935), 139–143.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev 8, 1113 Sofia, Bulgaria

E-mail address: nik@math.bas.bg