A novel, stepwise approach combining conventional and endobronchial ultrasound needle aspiration for mediastinal lymph node sampling

Levy Liran, Kuint Rottem, Fridlender Zvi Gregorio, Abutbul Avi, Berkman Neville
Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel

INTRODUCTION
Convex “real-time” endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has become increasingly popular and widespread since its introduction. Many consider it the preferred modality for the diagnosis and staging of mediastinal lymph
EBUS-TBNA has gradually replaced conventional “blind” TBNA (cTBNA) due to its higher diagnostic yield. It has superior sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), and it is expected to continue to reduce the need for mediastinoscopy for evaluation and staging of abnormal mediastinal LNs. However, along with its distinct advantages, this technique bears some limitations. Samples obtained by EBUS-TBNA have often been claimed to be insufficient for the diagnosis of diseases where histological samples are required as with lymphomas (in particular Hodgkin’s disease). EBUS-TBNA is also considered more costly and entails additional, specialized training and expertise. These drawbacks make EBUS-TBNA less accessible than cTBNA, particularly in small centers with limitations in resources. In this study, we aimed to create an integrative approach utilizing both cTBNA and EBUS-TBNA focusing on the most appropriate individual advantages of each technique. We hypothesized that applying a stepwise approach, based on node characteristics and presumed diagnosis, may avert the default for EBUS-TBNA and suggest the appropriate modality for diagnostic, while providing a welcome, cost-saving strategy.

MATERIALS AND METHODS

Patients
This study was approved by the Ethics Committee of the Hadassah-Hebrew University Medical Center. One hundred and eighty-six patients participated in the study. We included all patients over 18 years of age, who underwent diagnostic LN sampling through fiberoptic bronchoscopy over a period of 3 years (January 2011–December 2013).

Study design
All patients referred for mediastinal LN sampling were assigned to undergo either an EBUS-TBNA or a cTBNA procedure based on a proposed predefined set of criteria [Figure 1]. These criteria were put forth based on (1) the relatively easy accessibility of LNs at station 4R, 7, and 11R by “blind” cTBNA; (2) LN size cutoff of 15–20 mm and (3) disease characteristics. We used cTBNA for LN sampling at stations 7, 4R, or 11R which were >20 mm (short axis diameter) and in cases of a presumed diagnosis of sarcoidosis or lymphoma (based on the combination of clinical presentation, imaging characteristics, and laboratory findings) for sampling smaller LNs 15–20 mm at the same stations. In all other cases, sampling was carried out by EBUS-TBNA. LN aspirates and biopsies were sent for pathologic diagnosis.

Diagnostic procedure
For all patients, flexible bronchoscopy was performed using intravenous sedation (midazolam 1–10 mg and dolestone 25–50 mg) and local anesthesia with 2% lidocaine delivered as required through the bronchoscope. Pulse rate, blood pressure, electrocardiogram, and oxygen saturation were monitored, and clinically, significant adverse events were captured. Following a complete inspection of the bronchial tree, for each LN station biopsied, a minimum of four aspirates were performed and sent for pathological analysis. In the cTBNA group, 19-gauge WANG needle (Cook Medical Inc., Bloomington, IN, USA) was used. EBUS-TBNA was performed using an Olympus endobronchial ultrasonography bronchoscope and NA-411 D-1521 21-gauge needles (Olympus Medical Systems Corporation, Tokyo, Japan). Patients were observed for at least 3 h after endoscopy.

Statistical analysis
The sensitivity, specificity, accuracy, PPV, and NPV (including 95% confidence interval) were calculated for each technique using the GraphPad InStat 3.05 software (GraphPad Software, San Diego, California, United States). The level of significance was set at P < 0.05.

RESULTS
The characteristics of our study populations are shown in Table 1. One hundred and eighty-six procedures performed in 180 patients were included in the study. Of these, 100 procedures were carried out in 96 patients using EBUS-TBNA, and 86 procedures were performed by cTBNA in 84 patients (EBUS-TBNA was repeated in four patients as the first attempt was not diagnostic, and cTBNA was repeated in two patients for the same reason). Mean age was 55 years (61 in EBUS-TBNA and 48 in cTBNA). The men:woman ratio was 52:32 in cTBNA and 58:36 in EBUS-TBNA. The number of included patients was 84 in cTBNA and 96 in EBUS-TBNA. The number of procedures was 86 in cTBNA and 100 in EBUS-TBNA.

	cTBNA	EBUS-TBNA
Age, years (range)	48 (18-88)	61 (21-84)
Male:female	52:32	58:36
Number of patients	84	96
Number of procedures	86	100

cTBNA: Conventional transbronchial needle aspiration, EBUS-TBNA: Endobronchial ultrasound-guided transbronchial needle aspiration
For both groups, patients were predominantly male (60% in EBUS-TBNA group vs. 62% in cTBNA).

Lymph node distribution by procedure

As demonstrated graphically in Figure 2, cTBNA was used to sample most of the LNs of size ≥ 20 mm (83%), whereas most of the LNs of size <20 mm were sampled by EBUS-TBNA (77%). cTBNA was mostly utilized at stations 7 (61%), 4R (13%), and 11R (10%), whereas EBUS-TBNA was most frequently utilized for LNs at stations 7 (28%), 11R (26%), 4R (16%), and 4L (11%) [Table 2]. Subcarinal LNs at station 7 were the only instance where cTBNA was used more frequently than EBUS-TBNA (69% vs. 31%).

Diagnoses by procedure

Sarcoidosis was the most common diagnosis made by cTBNA (50%), while lung cancer was most commonly detected by the EBUS-TBNA group (58%). Other diagnoses made by cTBNA, in decreasing order, were lung cancer 31% (87% nonsmall cell lung cancer, 13% small cell lung cancer), lymphoma 9%, breast cancer 4%, melanoma 2%, colon cancer 2%, and tuberculosis 2%. Diagnoses made by EBUS-TBNA include 49% nonsmall cell lung cancer and 9% small cell lung cancer, as well as breast cancer 11%, sarcoidosis 8%, mediastinal cysts 5%, tuberculosis 3%, melanoma 3%, renal cell carcinoma 3%, and other malignancies (carcinoid, thyroid carcinoma, rectal carcinoma, pancreatic carcinoma and neuroblastoma) accounting for 15% of cases [Figure 3].

Statistical analysis

Both cTBNA and EBUS-TBNA had a true positive yield of 65%. The true negative rate was higher for EBUS-TBNA (21%) compared with cTBNA (2%), whereas the false negative rate was lower for EBUS-TBNA (7%) compared to cTBNA (28%). Sensitivity, specificity, PPV, and NPV for cTBNA were 68%, 100%, 100%, and 7%, respectively, and
for EBUS-TBNA were 90%, 100%, 100%, and 75%, respectively.

DISCUSSION

Despite the overall superiority of EBUS-TBNA in terms of diagnostic yield, cTBNA remains a reasonable option for sampling LNs at stations 4R, 7, 11R, in particular in the case of presumed sarcoidosis or lymphoma when pathology, rather than cytology, is essential for diagnosis. Considering its simplicity, availability, affordability, safety, and several unique indications, C-TBNA continues to contribute to the welfare of patients worldwide.\(^{[11]}\) Alternatively, EBUS-TBNA provides direct visualization of the biopsy site, which makes it a more accurate tool than cTBNA.\(^{[12-15]}\) However, the initial capital cost of the equipment, the disposable aspiration needles, and the maintenance and repair costs are significantly higher.\(^{[6,16]}\)

The suggested approach aims to strike a balance between the accuracy advantage of EBUS-TBNA and the better accessibility and cost advantages of cTBNA.

According to our findings, cTBNA has an acceptable diagnostic yield when applied for nodes ≥20 mm at stations 7, 4R, and 11R or smaller size when sarcoidosis or lymphoma is the presumed diagnosis. Our findings are on par with previous data published showing EBUS-TBNA and cTBNA to have close diagnostic yield when assessing LNs at stations 4R, 7, and 11R.\(^{[8]}\) LNs at stations 4R, 7, and 11R are relatively easy to navigate. This facilitates localization of the point of interest with the needle, making it relatively easy to sample by cTBNA despite the lack of direct visualization through the bronchoscope.\(^{[9,17]}\)

In this scenario, the direct visualization advantage of EBUS-TBNA may be less profound. On the other hand, given the low NPV of cTBNA, a negative biopsy result in the setup of high clinical suspicion should prompt further investigation.

cTBNA maintains a valuable role in the diagnosis of sarcoidosis\(^{[9,18,19]}\) and lymphoma where cytology or histology alone is often insufficient to make a diagnosis, and pathologic findings serve as means to confirm the diagnosis and exclude other pathologies.\(^{[20]}\) In fact, it has been claimed that a lack of operator skills and adequate experience is what mainly limits further cTBNA use for diagnosis of sarcoidosis.\(^{[9,21]}\)

Furthermore, the cTBNA 19-gauge needle has the advantage of a larger sample of core tissue over the usual small 22-gauge EBUS-TBNA needle.\(^{[20,22]}\) This difference in sample size may potentially influence the diagnosis of specific lymphoma subtypes as demonstrated in marginal zone and follicular lymphoma.\(^{[5]}\)

Consequently, diagnosis of lymphoma with EBUS-TBNA may be trickier, requiring a combination of cytology, immunophenotyping, and histology to confirm the subtype.\(^{[20,23]}\) The controversy regarding the role of EBUS-TBNA in diagnosing lymphoma has been expressed by the British Thoracic Society guidelines, which suggest that EBUS-TBNA is not necessarily the preferred diagnostic modality when lymphoma is suspected.\(^{[24]}\)

This study has several notable limitations. We depict the experience of a single institution, while selection criteria, bronchoscopy technique, and sample processing may potentially vary between organizations. The reproducibility of our results remains to be further investigated. Furthermore, we did not perform a direct comparison between the pair diagnostic procedures (i.e., sampling each node by both cTBNA and EBUS-TBNA). In our view, applying both techniques
for every sampled LN would pose an unnecessary risk that would be hard to justify. In spite of this limitation, our findings are consistent with previously published sensitivity, specificity, PPV, NPV, and diagnostic yield. Finally, our work did not attempt to examine the cost-effectiveness of the proposed approach, but we do believe that integration of cTBNA will have potential cost-effectiveness benefit.

CONCLUSION

While EBUS-TBNA is considered a more accurate tool than cTBNA, we have shown that applying an integrative, stepwise approach, based on predefined clinical criteria, would maintain an acceptable diagnostic yield in real-world practice.

Acknowledgment
We wish to thank Jean Pnini for her editorial contribution to the preparation of this manuscript.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Zhu T, Zhang X, Xu J, et al. Endobronchial ultrasound guided-transbronchial needle aspiration vs. conventional transbronchial needle aspiration in the diagnosis of mediastinal masses: A meta-analysis. Mol Clin Oncol 2014;2:151-5.
2. Nakajima T, Yasufuku K, Fujiwara T, et al. Recent advances in endobronchial ultrasound-guided transbronchial needle aspiration. Respirology 2016;21:230-6.
3. Yasufuku K, Nakajima T, Motoori K, et al. Comparison of endobronchial ultrasound, positron emission tomography, and CT for lymph node staging of lung cancer. Chest 2006;130:710-8.
4. Czarnecka K, Yasufuku K. The role of endobronchial ultrasound/esophageal ultrasound for evaluation of the mediastinum in lung cancer. Expert Rev Respir Med 2014;8:763-76.
5. Farmer PL, Bailey DJ, Burns BF, et al. The reliability of lymphoma diagnosis in small tissue samples is heavily influenced by lymphoma subtype. Am J Clin Pathol 2007;128:474-80.
6. Medford AR, Agrawal S, Free CM, et al. A prospective study of conventional transbronchial needle aspiration: Performance and cost utility. Respirorion 2010;79:482-9.
7. Bellinger CR, Chatterjee AB, Adair N, et al. Training in and experience with endobronchial ultrasound. Respirorion 2014;88:478-83.
8. Arslan Z, Ilgazli A, Bakir M, et al. Conventional vs. endobronchial ultrasound-guided transbronchial needle aspiration in the diagnosis of mediastinal lymphadenopathies. Tuberk Toraks 2011;59:153-7.
9. Oki M, Saka H, Kitagawa C, et al. Real-time endobronchial ultrasound-guided transbronchial needle aspiration is useful for diagnosing sarcoidosis. Respirorion 2007;12:863-8.
10. Herth FJ, Becker HD, Ernst A. Ultrasound-guided transbronchial needle aspiration: An experience in 242 patients. Chest 2003;123:604-7.
11. Mehta AC, Wang KP. Teaching conventional transbronchial needle aspiration: A continuum. Am Am Thorac Soc 2013;10:668S-9.
12. Adams K, Shah PL, Edmonds L, et al. Test performance of endobronchial ultrasound and transbronchial needle aspiration biopsy for mediastinal staging in patients with lung cancer: Systematic review and meta-analysis. Thorax 2009;64:757-62.
13. Stather DR, Chee A, MacEachern P, et al. Endobronchial ultrasound learning curve in interventional pulmonary fellows. Respirorion 2015;20:333-9.
14. Toloza EM, Harpole L, Deterbeck F, et al. Invasive staging of non-small cell lung cancer: A review of the current evidence. Chest 2003;123:1 Suppl:S57-65.
15. Varella-Lema L, Fernández-Villar A, Ruano-Ravina A. Effectiveness and safety of endobronchial ultrasound-transbronchial needle aspiration: A systematic review. Eur Respir J 2009;33:1156-64.
16. Hergott CA, MacEachern P, Stather DR, et al. Repair costs for endobronchial ultrasound bronchoscopes. J Bronchology Interv Pulm Med 2010;17:223-7.
17. Kennedy MP, Jimenez CA, Bruzzi JF, et al. Endobronchial ultrasound-guided transbronchial needle aspiration in the diagnosis of lymphoma. Thorax 2008;63:360-5.
18. Morales CF, Patefield AJ, Strollo PJ Jr., et al. Flexible transbronchial needle aspiration in the diagnosis of sarcoidosis. Chest 1994;106:709-11.
19. Trisolini R, Lazzari Agli L, Cancellieri A, et al. Transbronchial needle aspiration improves the diagnostic yield of bronchoscopy in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2004;21:147-51.
20. Steinfort DP, Conron M, Tsui A, et al. Endobronchial ultrasound-guided transbronchial needle aspiration for the evaluation of suspected lymphoma. J Thorac Oncol 2010;5:804-9.
21. Wong M, Yasufuku K, Nakajima T, et al. Endobronchial ultrasound: New insight for the diagnosis of sarcoidosis. Eur Respir J 2007;29:1182-6.
22. Medford AR, Bennett JA, Free CM, et al. Endobronchial ultrasound guided transbronchial needle aspiration. Postgrad Med J 2010;86:10-15.
23. Moonim MT, Breen R, Fields PA, et al. Diagnosis and subtyping of de novo and relapsed mediastinal lymphomas by endobronchial ultrasound needle aspiration. Am J Respir Crit Care Med 2013;188:1216-23.
24. Du Rand IA, Barber PV, Goldring J, et al. British Thoracic Society guideline for advanced diagnostic and therapeutic flexible bronchoscopy in adults. Thorax 2011;66 Suppl 3iii1-21.