Human CD4+ T-Cells: A Role for Low-Affinity Fc Receptors

Anil K. Chauhan*

Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, MO, USA

Both lymphoid and myeloid cells express Fc receptors (FcRs). Low-affinity FcRs engage circulating immune complexes, which results in the cellular activation and pro-inflammatory cytokine production. FcRs participate in the internalization, transport, and/or recycling of antibodies and antigens. Cytosolic FcRs also route these proteins to proteasomes and antigen-presentation pathways. Non-activated CD4+ T-cells do not express FcRs. Once activated, naive CD4+ T-cells express FcγRIIIa, which, upon IC ligation, provide a costimulatory signal for the differentiation of these cells into effector cell population. FcγRIIIa present on CD4+ T-cell membrane could internalize nucleic acid-containing ICs and elicit a cross-talk with toll-like receptors. FcγRIIIa common γ-chain forms a heterodimer with the ζ-chain of T-cell receptor complex, suggesting a synergistic role for these receptors. This review first summarizes our current understanding of FcRs on CD4+ T-cells. Thereafter, I will attempt to correlate the findings from the recent literature on FcRs and propose a role for these receptors in modulating adaptive immune responses via TLR signaling, nucleic acid sensing, and epigenetic changes in CD4+ T-cells.

Keywords: Fc-receptors, T-lymphocytes, autoimmunity, toll-like receptors, epigenetics

INTRODUCTION

Immunoglobulin Fc receptors (FcRs) are expressed by many immune cells, and these receptors induce many diverse biological functions. Activating- and inhibitory-FcRs are expressed as pairs, and they govern the outcome of an immune response. Sandor and Lynch very early on showed that T-cell receptor (TCR)-activation results in the induced expression of FcαR, FcμR, and FcεR in CD4+ T-cell clones (1). FcR common γ-chain (FcR-γ) is the ITAM-bearing signaling unit of FcγRI, FcγRI, and FcγRIIIa (2). FcR-γ chain independently supports the complete development of peripheral CD4+ T-cells in mice lacking the TCR ζ-chain (3–5). The FcR-γ chain forms a heterodimer with the ζ-chain of T-cell receptor complex, suggesting a synergistic role for these receptors. This review first summarizes our current understanding of FcRs on CD4+ T-cells. Thereafter, I will attempt to correlate the findings from the recent literature on FcRs and propose a role for these receptors in modulating adaptive immune responses via TLR signaling, nucleic acid sensing, and epigenetic changes in CD4+ T-cells.

Keywords: Fc-receptors, T-lymphocytes, autoimmunity, toll-like receptors, epigenetics
how positive costimulation from the FcγRIIIa–pSyk signal could alter CD4+ T-cell responses, which, thereby, contribute to tolerance breakdown (10, 11). Systemic lupus erythematosus (SLE) is a classical autoimmune manifestation and is a good model to address these questions since the disease pathology is driven by ICs, the primary ligand for FcγRIIIa (12). In addition, SLE is associated with a hyperactive T-cell response and the presence of autoantibodies that form ICs. Enhanced Th1 and Th17 CD4+ T-cell responses are a hallmark of SLE pathology. An indirect role for FcRs in the Th1 response has also been proposed (13). ICs are present on the membrane of subcapsular sinus macrophages and are not phagolysed. Intact ICs are transferred from the plasma membrane of antigen-presenting cells (APCs) to the B-cell surface (14–16). In germinal centers (GCs), this makes ICs available on APC and B-cell plasma membranes, which are accessible to participate directly in the CD4+ T-cell differentiation upon contact with naive CD4+ T-cells (Figure 1). Furthermore, ICs could also facilitate formation of cyto-conjugates of CD4+ T-cells with other cells expressing FcRs (Figure 1).

The ICs formed by nucleic acids (DNA/RNA) and autoantibodies are pathogenic and trigger TLR signaling and nucleic acid sensing (17). In SLE, FcγRIIa internalizes DNA/RNA-ICs in plasmacytoid dendritic cells (pDCs), which result in a type 1 IFN response, a key driver of SLE disease pathology (18). Even though CD4+ T-cells demonstrate TLR signaling in autoimmune responses, the mechanisms for the delivery of nucleic acids to cytosol are unknown (19, 20). Nucleic acid sensors in innate cells drive IFN responses that contribute to autoimmune pathology. Data are emerging that link both TLR proteins and DNA sensors in the development of CD4+ T-cell effector responses (21–23).

This review will summarize the literature supporting the presence of FcRs on CD4+ T-cells, and further makes a case for FcγRIIa–pSyk signaling in the modulation of TLR responses and epigenetic changes in the human peripheral CD4+ T-cells.

FcRs ON CD4+ T-CELLS

The expression of FcRs and their role in CD4+ T-cell-mediated adaptive immune responses is controversial. Several groups have argued for the lack of low-affinity FcRs on CD4+ T-cells (2, 24). This is likely true for non-activated CD4+ T-cells, and these cells do not contribute to the disease pathology. However, once activated, CD4+ T-cells express robust amounts of FcγRIIa receptors, which is an activation-induced response (10). The activation signal that triggers the expression of FcγRIIa in activated cells remains unknown. FcγRIIa was initially reportedly observed in a small number of peripheral T-cells in healthy individuals (1, 25). Upon binding to FcRs on T-cells, IgM triggers a helper function, while ICs binding provides a suppressor function (26). Two previous studies have also shown an immunoregulatory role for FcR-bearing T-cells in a B-cell-mediated immune response (27, 28). A close relationship between FcR expression and cellular

FIGURE 1 | FcγRIIa–pSyk signal in CD4+ T-cell responses. Activated naive CD4+ T-cells express FcγRIIa and provide a costimulatory signal. In the absence of CD28 costimulation, FcγRIIa ligation by ICs rescues naive CD4+ T-cells from becoming anergic. These cells show Syk phosphorylation, proliferation, cytoskeletal changes, and cytokine production. In the presence of instructive cytokine signals, these cells differentiate into Th1, Th2, and Tfh cells. In GCs, FcRs via ICs will hold together Tfh, B-cells, and FDCs forming stable cyto-conjugates.
activation via the CD3–TCR complex was also documented (28). A stringent and narrow window during which FcRs are expressed on CD4+ T-cells suggest a possible regulatory role for FcRs in adaptive immune responses, and FcR signaling may serve as a checkpoint for the development of T effector cells (29). FcR and TCR comigrate on the T-cell membrane, suggesting a synergism in signaling pathways (1, 30, 31). FcR preferentially colocalizes with TCR into the zone of contact formed between B- and T-cells during cognate-driven cyto-conjugation (1). In trogocytosis, CD4+ T-cells capture both external membrane FcyRIIa and FcR-γ chain from the APC expressing FcyR. However, this receptor transfer/capture of FcRs by T-cells is not capable of triggering a functional response (32). FcyRIIa-mediated signaling in NK T-cells differs from CD4+ T-cells for the production of cytokines, which further suggest a divergent role for FcR in CD4+ T-cells (33). Sandor and Lynch proposed an “avoidance hypothesis,” where a signal in T-cells via FcyRIII might occur in the presence of antigens and specific antibodies (1). Naive CD4+ T-cells activated via ICs ligation of FcyRIIIa show a limited clonal expansion, suggesting a potential contribution from antigenic peptides in the ICs. ZAP-70-deficient patients express high levels of Syk, which is activated from FcR-γ chain phosphorylation, and it plays a distinct role in transducing TCR-mediated signal (34). These findings suggest a role for FcyRIIIa signaling via Syk (Figure 1). Syk is a key player in CD4+ T-cell activation in SLE and is currently a therapeutic target (35, 36).

FcRs AND T-CELL RESPONSES

In order for naive CD4+ T-cells to differentiate into effector cells, it requires two signals: (1) engagement of TCR by peptide–MHC and (2) a cosignal from FcRs by T-cells that also activate the appearance and expansion of the negative costimulatory proteins PD1 and CTLA4. In an autoimmune response, the FcyRIIIa-mediated signal, which is an additional positive ITAM signal, can trigger immune expansion. Thus, specific inhibition of FcyRIIIa in CD4+ T-cells provides an attractive therapeutic target. Costimulatory pathways influence the outcome of T-cell stimulation and are central to the maintenance of immune tolerance (42). In the early phase of antigenic challenge from pathogens or self-antigens, activating cosignals CD28 and ICOS drive an immune expansion. Once the threat from the invading pathogens is over, the immune contraction phase is initiated by the appearance and expansion of the negative costimulatory proteins PD1 and CTLA4. In an autoimmune response, the FcyRIIIa-mediated signal, which is an additional positive ITAM signal, can drive immune expansion. This will lead to perpetual expansion of the immune response such as that observed in autoimmunity. Syk phosphorylation is observed in those SLE CD4+ T-cells that also produce IFN-γ and IL-17A cytokines (11). FcyRIIa cosignaling drives the differentiation of naive CD4+ T-cells into Th1, Th17, and Th effector populations (10, 11, 43). The Th17 cells produced by an FcyRIIIa signal show markers of terminal differentiation that are associated with a pathogenic Th17 population (11). In vitro, FcyRIIIa ligation by ICs on naive CD4+ T-cells induces ICOS expression both in human and mouse cells. ICOS+CD4+ T-cells in SLE patients bind to labeled ICs, suggesting FcyRIIIa coexpression (11). However, cells expressing high levels of PD1high do not show pSyk, suggesting a role for PD1 in immune contraction via SHIP2 by dephosphorylating pSyk (11). IC formation is observed in several other disease pathologies, including cancer and infections. Past and recent literature suggests that FcyRIIIa is a crucial player for CD4+ T-cell responses during autoimmunity. In future, recognizing the precise mechanism of how FcyRIIIa-mediated signaling in CD4+ T-cells alters the adaptive immune responses will be critical for developing therapies that target CD4+ T-cell membrane proteins such as CTLA4, PD1, TLRs, and nucleic acid sensors.

CROSS-TALK BETWEEN TLRs AND FcRs

TLR-dependent T-cell activation is observed in autoimmunity (19). The presence of FcRs on activated human CD4+ T-cells raises the possibility of their coengagement with either TCR or TLRs for signaling. Upon ligand engagement, TLRs trigger
homo-or hetero-dimerization and recruit adaptor proteins to activate downstream signaling and transcriptional activation (44). Distinct signaling by synergistic engagement and cross-talk between FcRs and TLRs in immature DCs promote a Th17 response (45, 46). Such cross-talk between FcRs and TLRs expressed by CD4\(^+\) T-cells will result in an efficient inflammatory immune response and effector T-cell development (47). In B-cells, TLRs synergistically engage FcRs, which generate a distinct signal (47). Similar signaling events could occur in CD4\(^+\) T-cells that express FcRs. TLRs bind to pathogen-derived nucleic acids, which are taken up by the cells via endocytosis or autophagy and transferred to the endolysosomal compartment (48). Intracellular pathogenic challenge triggers the generation of Th1 and CD8\(^+\) T-cell responses, which develop from the engagement of TLRs by pathogen-associated molecular patterns (PAMPs) and produce IL-12, a cytokine that drives IFN-\(\gamma\) production in Th1 cells. Both ITAM and MyD88 signaling pathways converge after coactivation of FcRs and TLRs, resulting in an appropriate inflammatory response. Coactivation of FcRs by ICs and TLRs via damage-associated molecular pattern (DAMP) on infiltrating myeloid cells in joints of rheumatoid arthritis patients contributes to severity of the disease (47). ICs and PAMPs or DAMPs induce cross-talk and contribute to both the onset and the exacerbation of autoimmune disease (47). The nucleic acid-recognizing TLRs (NA-TLRs), also referred to as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9), participate in an autoimmune response (20). The subcellular partitioning of TLRs, cytosolic vs. membrane, discriminates between self and altered non-self DNA and is a key mechanism for the development of autoimmunity (49). FcγRIIIa-mediated signal in CD4\(^+\) T-cells upregulates NA-TLRs, which then colocalize with FcγRIIIa, and some of these NA-TLRs move to the plasma membrane (Figure 2) (11). This is the evidence for FcRs role in modulating TLR signaling in CD4\(^+\) T-cells. FcγRIIIa-mediated signaling in CD4\(^+\) T-cells also upregulates MyD88 and HMGB1, the two proteins that are critical for TLR signaling and nucleic acid sensing (11). DNA-containing ICs in B-cells and pDCs trigger HMGB1-mediated TLR9 activation that contributes to autoimmune pathology (50). TLR agonists have been used to study TLR signaling events in CD4\(^+\) T-cells (19). Surprisingly, various CpG oligodeoxynucleotides, a TLR9 ligand used to study both mouse and human CD4\(^+\) T-cells, show a costimulatory activity that promotes polarization of different Th subsets (51). TLR9-deficient lpr/lpr mice show a selective defect in autoantibody production (52). DAMPs induce inflammatory T-cell responses either directly or indirectly by inducing cytokine production from innate cells. TLR signaling overcomes a rate-limiting chromatin barrier from histone-containing nucleosomes that bind DNA, suggesting its role in epigenetic modifications (53, 54). IFN-\(\gamma\) cytokine is a key player in TLR signaling and chromatin remodeling, and it is produced from FcγRIIIa signaling in CD4\(^+\) T-cells (10, 53). Observations over the last decade have also shown a DC subset-specific expression of PRRs and cytokines produced by these cells promote the differentiation of T-cells into effector populations (55). Emerging evidence suggests that both FcR and TLR signaling trigger CD4\(^+\) T-cell-mediated pro-inflammatory responses. How these signals together influence the development of effector T-cells and/or their contribution to the expansion of memory T-cell pool will be of interest.

FcRs AND NUCLEIC ACID SENSING

Nucleic acid-recognizing TLRs primarily reside intracellularly in endosomes. This prevents recognition of self nucleic acids by the host. Internalization of RNA- or DNA-containing ICs by FcγRIIa and subsequent delivery of nucleic acids to endosomes results in an inappropriate IFN response (20, 23). Nucleic acid reaches the cytosolic compartment either via viral infection or by uptake of DNA/RNA-ICs. Thus, FcRs are crucial for the delivery of nucleic acids to the cytosol, where DNA sensing occurs (22). Nucleic acid-sensing pathways are the therapeutic targets in both autoimmunity and cancers (56). High mobility group box 1 (HMGB1) protein is crucial for the efficient delivery of self nucleic acids to TLR-containing endosomes (50, 57). HMGB1 associates with DNA-ICs and stimulates cytokine production via the TLR9–MyD88 pathway in pDCs (50). HMGB1 uses TLR2 and TLR4 as cellular receptors and engages S100 calcium binding protein A12 (RAGE) to produce type 1 IFN (58). The mechanism and route for RNA/DNA delivery to endolysosome or to the ER in CD4\(^+\) T-cells are not yet recognized. Membrane FcγRIIIa on activated CD4\(^+\) T-cells provides a possible route and mode of RNA/DNA-ICs internalization and delivery of the nucleic acids to the endosomes (Figure 2).

FIGURE 2 | TLR3 on cell membrane with FcγRIIa. Stimulated emission depletion (STED) confocal image of a human CD4\(^+\) T-cell activated with plate-bound anti-CD3 + ICs + sublytic C5b-9 post 48 h. FcγRIIa recognized by binding of Alexa Fluor 488-labeled ICs (green) and TLR3 with monoclonal antibody-Alexa Fluor 594 (red). At the plasma membrane, both proteins colocalized in many spots. IC binding showed cytosolic FcγRIIa (yellow oval) and on the plasma membrane (white arrow). Area amplified from merge shown in yellow rectangular.
Nucleic acids activate immune cells to induce inflammation and immunity (22). Both TLRs and retinoic acid-inducible gene 1 (RIG-I)-like helicases participate in nucleic acid recognition. Immune sensing of DNA is observed both in early innate as well as late adaptive immune responses (59, 60). Aberrant DNA, altered self-DNA, and cyclic dinucleotide sensing by signaling proteins in the cytosol trigger DNA-signaling pathways. DNA-ICs and nucleosomes are closely associated with the development of inflammation in SLE. DNA-sensing proteins co-operate with TLRs to mount the immune challenge and discriminate against damaged DNA. ICs that stimulate B-cells contain DNA that is hypomethylated and such ICs modulate T-cell responses (61). Members of the DEBx/H box helicase family of proteins, such as RIG-1, interferon inducible helicase C (IFIH1/MDA5), and RIG-1-like receptor (LGP2) recognize cytosolic ssRNA and dsRNA and signal through mitochondrial antiviral signaling proteins to activate interferon regulatory factor (IRF) 1, IRF3, IRF7, and NF-κB. These, in turn, trigger expression of IFN-λ (62). These findings suggest that by upregulating DNA modification enzymes, the FcγRIIIa–pSyk signaling causes epigenetic changes in human CD4+ T-cells. In Th1 cells, the ifng locus shows permisive histone modifications and DNA demethylation (66). In the promoter regions of 14,495 genes in SLE, CD4+ T cells, 236 were hypomethylated and 105 were hypermethylated (67). A profound hypomethylation of genes regulated by type I IFN was observed in genome-wide DNA methylation analysis (68). Methyltransferase changes in SLE persist beyond flares for several months (68). SLE patients demonstrate the elevated presence of complement-opsonized ICs that engage membrane FcγRIIIa. Thus, it is plausible that the FcγRIIIa–pSyk signal in CD4+ T-cells contributes to the modifications observed in the ifng and il17a promoters. DNA methyltransferase, Dnmt3a, establishes a genetically silent chromatin structure at the regulatory region of ifng locus by methylating DNA. It has been proposed that methylation at ~53 CpG by Dnmt3a suppresses IFN-γ transcription during Th2 development (69). FcγRIIIa–pSyk signaling suppresses Dnmt3a expression compared to CD28 signaling in CD4+ T-cells. This ~53 region is also the preferred binding site for activation transcription factor (ATF)2. In our study, the FcγRIIIa–Syk signal significantly upregulated the ATF2 gene expression, suggesting a possible role in increased IFN-γ production (11). Kat6a is another lysine- transferase that was significantly upregulated by FcγRIIIa–pSyk signaling. This gene is suggested to act as a coactivator of RUNX1, which drives Th17 differentiation. Children with a mutation in Kat6a show developmental disorders and cognitive defects (www.ChloeKat6a.org). Decrease in DNMT expression results in hypomethylation of promoters of SLE-associated genes, which drives their overexpression. A positive correlation with Dnmt1 and Dmbd2 expression is observed with disease activity in SLE patients (70, 71). Epigenetic changes not only regulate the differentiation of CD4+ T-cells but also TLR signaling (72). CD4+ T cells express TLR4 (not a DNA sensor), which drives epigenetic regulation of the TNF-α promoter (73). Also, the pan-histone deacetylase inhibitor LBH589 represses cytokines IL-6, IL-10, IL-12, and IL-23 (74). Treatment of CD4+ T-cells with demethylating agents (hydrazine, procainamide, and 5-AzaC) renders them autoreactive. Adoptive transfer of such cells in mice causes them to produce anti-dsDNA antibodies and develop IC glomerulonephritis (75). These studies document a role for epigenetics in autoimmune pathology and data from our laboratory showed modulation of several enzymes that cause epigenetic modifications by FcγRIIIa–pSyk signaling (63). It will be important to further investigate these mechanisms to understand and enhance the efficacy of demethylating agents for SLE therapy.

CONCLUDING REMARKS

Even though earlier studies documented the presence of low-affinity FcRs on CD4+ T-cells, neglect in examining the
contribution of these receptors in CD4+ T-cell responses over the past two decades has hampered progress in establishing the contribution of FcRs to adaptive immune responses. Emerging data reconfirm some of the earlier findings that activated CD4+ T-cells not only express FcRs, but signaling via these receptors modulates adaptive immune responses. Engagement of FcRs by the ligand contributes to the development of CD4+ effector T-cell responses. Low-affinity FcRs are critical for innate immune responses, and their presence on CD4+ T-cells, cells of adaptive immunity, suggests their major role in adaptive immunity. Cross-linking by complexed-Ig triggers proliferation of FcγRIIa-bearing CD4+ T-cells via receptor dimerization. The internalization of RNA/DNA-ICs by FcγRIIa+CD4+ T-cells by engaging TLRs triggers signaling via DNA sensors. Whether these signaling events contribute to the development of IFN signature and plasma pool is an important question. On memory recall, such cells will be able to provide B-cell help and drive them to differentiate into plasma B-cells. Understanding of the interactions among FcRs, TLRs, and/or TCR will assist in explaining autoimmune pathology.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and approved it for publication.

ACKNOWLEDGMENTS

I would like to thank Dr. Ye Bi (member of my laboratory) for discussion of the work. I would also like to thank Dr. Richard DiPaolo, Department of Molecular Microbiology, and Dr. Joel Eisenberg, Department of Biochemistry, Saint Louis University School of Medicine, for critical review of the work.

FUNDING

This work was supported by National Institute of Health RO1 grant (A1098114) to AC.
by T cells bearing receptors for IgM or IgG. *J Exp Med* (1977) 146:184–200. doi:10.1084/jem.146.1.184

27. Moreta L, Mingari MC, Moretta A, Fauci AS. Human lymphocyte surface markers. *Semin Hematol* (1982) 19:273–84.

28. Sandor M, Gajewski T, Thorson J, Kemp JD, Fitch FW, Lynch RG, CD4+ murine T cell clones that express high levels of immunoglobulin binding belong to the interleukin-4-producing T helper cell type 2 subset. *J Exp Med* (1990) 171:2171–6. doi:10.1084/jem.171.6.2171

29. Fridman WH, Golstein P. Immunoglobulin-binding factor present on and produced by thymus-processed lymphocytes (T cells). *Cell Immunol* (1974) 11:442–55. doi:10.1016/0008-7974(74)90042-2

30. Kinet JP. The gamma-zeta dimers of Fc receptors as connectors to signal transduction. *Curr Opin Immunol* (2009) 4:43–8. doi:10.1016/j.coi.2009.05.005

31. Sandor M, Houliden B, Bluestone J, Hedrick SM, Weinstock J, Lynch RG. *In vitro* and *in vivo* activation of murine gamma/delta T cells induces the expression of IgA, IgM, and IgG Fc receptors. *J Immunol* (1992) 148:2365–9.

32. Hudrisier D, Clemencau B, Balor S, Daubeuf S, Magdeleine E, Daeron M, et al. T cell binding and undetected functional response of FcεR after capture by T cells via trogocytosis. *J Immunol* (2009) 183:6102–13. doi:10.4049/jimmunol.0900821

33. Uciechowski P, Gessner JE, Schindler R, Schmidt RE. Fc gamma RIII activation is different in CD16+ cytoxic T lymphocytes and natural killer cells. *Eur J Immunol* (1992) 22:1635–8. doi:10.1002/eji.18302020643

34. Noraz N, Schwarz K, Steinberg M, Dardalhon V, Hipskind R, et al. Alternative antigen receptor (TCR) signaling in T cells derived from ZAP-70-deficient patients expressing high levels of Syk. *J Biol Chem* (2000) 275:15832–9. doi:10.1074/jbc.M090568-199

35. Grammatikos AP, Ghosh D, Devlin A, Kyttaris VC, Tsokos GC. Spleen tyrosine kinase (Syk) regulates systemic lupus erythematosus (SLE) T cell signaling. *PLoS One* (2013) 8:e74550. doi:10.1371/journal.pone.0074550

36. Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA. Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. *Pharmacol Ther* (2013) 138:294–309. doi:10.1016/j.pharmthera.2013.02.001

37. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated synergistic activation of inflammatory cytokine genes by interferon-gamma- and polyfunctional Th cells by cross-talk between TLRs and FcRs. *J Immunol* (2015) 194:1856–66. doi:10.4049/jimmunol.1303126

38. den Dunnen J, Vogelpoel LT, Wypych T, Muller FJ, de Boer L, Kuijpers TW, et al. IgG opsonization of bacteria promotes Th17 responses via synergy between TLRs and FcgammaRIIa in human dendritic cells. *Blood* (2012) 120:112–21. doi:10.1182/blood-2011-12-399931

39. van Emgon M, Vidalsson G, Bakema JE. Cross-talk between pathogen recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. *Immunol Rev* (2015) 268:311–27. doi:10.1111/imr.12333

40. Blasius AL, Beutler B. Intracellular toll-like receptors. *Immunol Today* (2010) 32:305–15. doi:10.1016/j.imnt.2010.03.012

41. Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. *Nat Immunol* (2006) 7:49–56. doi:10.1038/ni1280

42. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. *Nat Immunol* (2007) 8:487–96. doi:10.1038/ni.1457

43. Landrigan A, Wong WT, Utz PJ, CpG and non-CpG oligodeoxynucleotides directly costimulate mouse and human CD4+ T cells through a TLR9- and MyD88-independent mechanism. *J Immunol* (2011) 187:3033–43. doi:10.4049/jimmunol.1003414

44. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. *Nat Rev Immunol* (2006) 6:823–35. doi:10.1038/nri1957

45. Qiao Y, Giannopoulos EG, Chan CH, Park SH, Gong S, Chen J, et al. Synergistic activation of inflammatory cytokine genes by interferon-gamma-induced chromatin remodeling and toll-like receptor signaling. *Immunity* (2012) 36:288–97. doi:10.1016/j.immuni.2012.08.009

46. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. *Nature* (2007) 447:972–8. doi:10.1038/nature05836

47. Merad M, Sathe P, Hefti J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. *Ann Rev Immunol* (2013) 31:563–604. doi:10.1146/annurev-immunol-020711-154950

48. Juni T, Barchet W. Translating nucleic acid-sensing pathways into therapies. *Nat Rev Immunol* (2015) 15:529–44. doi:10.1038/nri3875

49. Yanai H, Han B, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. *Nature* (2009) 462:99–103. doi:10.1038/nature08512

50. Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim YJ, Strassheim D, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. *Am J Physiol Cell Physiol* (2006) 290:C917–24. doi:10.1152/ajpcell.00401.2005

51. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. *Nat Immunol* (2006) 7:40–8. doi:10.1038/ni1282

52. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. *Nat Immunol* (2016) 17:343–53. doi:10.1038/ni.3132

53. Sano H, Morimoto C. DNA isolated from DNA/anti-DNA antibody immune complexes in systemic lupus erythematosus is rich in guanine-cytosine content. *J Immunol* (1982) 128:1341–5.

54. Mi XR, Zeng QF. Hypomethylation of interleukin-4 and -6 promoters in T cells from systemic lupus erythematosus patients. *Acta Pharmacol Sin* (2008) 29:105–12. doi:10.1111/j.1744-7248.2008.00739.x

55. Chauhan AK. Immune complexes and complement-mediated epigenetic changes and trigger TLR signaling in CD4+ T cells. *Ann Rheum Dis* (2014) 73:194–9. doi:10.1136/annrheumdis-2015-erar4958

56. Heinzman ND, Hon GC, Hawkins BD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. *Nature* (2009) 459:108–12. doi:10.1038/nature07829

57. Miao CG, Yang JT, Yang YY, Du CL, Huang C, Huang Y, et al. Critical role of DNA methylation in the pathogenesis of systemic lupus erythematosus: new advances and future challenges. *Lupus* (2014) 23:730–42. doi:10.1177/0961203314527365

58. Schoenborn JR, Dorscher MO, Sekimata M, Santer DM, Shnyreva M, Fitzpatrick DR, et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. *Nat Immunol* (2007) 8:373–82. doi:10.1038/ni.14874

59. Jeffries MA, Sawalha AH. Epigenetics in systemic lupus erythematosus: leading the way for specific therapeutic agents. *Int J Clin Rheumol* (2011) 6:423–39. doi:10.2217/ijr.11.32
68. Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. *PLoS Genet* (2013) 9:e1003678. doi:10.1371/journal.pgen.1003678

69. Jones B, Chen J. Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. *EMBO J* (2006) 25:2443–52. doi:10.1038/sj.emboj.7601148

70. Liu CC, Ou TT, Wu CC, Li RN, Lin YC, Lin CH, et al. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus. *Lupus* (2011) 20:131–6. doi:10.1177/0961203310381517

71. Balada E, Ordi-Ros J, Serrano-Acedo S, Martinez-Lostao L, Vilardell-Tarres M. Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. *J Leukoc Biol* (2007) 81:1609–16. doi:10.1189/jlb.0107064

72. Boi SK, Elsawa SF. Epigenetic regulation of Toll-like receptor signaling. *Med Epigenet* (2013) 1:19–30. doi:10.1159/0003535684

73. Sullivan KE, Reddy AB, Dietzmann K, Suriano AR, Kocieda VP, Stewart M, et al. Epigenetic regulation of tumor necrosis factor alpha. *Mol Cell Biol* (2007) 27:5147–60. doi:10.1128/MCB.02429-06

74. Song W, Tai YT, Tian Z, Hideshima T, Chauhan D, Nanjappa P, et al. HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. *Leukemia* (2011) 25:161–8. doi:10.1038/leu.2010.244

75. Quddus J, Johnson KJ, Gavalchin J, Amento EP, Chrisp CE, Yung RL, et al. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. *J Clin Invest* (1993) 92:38–53. doi:10.1172/JCI116576

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Chauhan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.