PS187

Association analysis of imbalanced interhemispheric functional coordination and early therapeutic efficacy in major depressive disorder: evidence from resting state fMRI.

Zhenghua Hou1, Xiaopeng Song2, Wenhao Jiang3, Yingying Yin4, Yingying Yue5, Yuqun Zhang6, Yijun Liu3

1Department of Psychosomatics and Psychiatry, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China; 2Department of Neurology, Institute of Neurology and Psychology, Southeast University, No. 87, Dingjiaqiao Road, Nanjing 210009, China; 3Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China; 4Faculty of Psychology, Southwest University, Chongqing 400715, China; 5Key Laboratory of Cognition and Personality, Southwest University, Chongqing 400715, China.

Abstract

Background: The relationship between functional changes in brain and therapeutic efficacy remains an intriguing and complex field of research in depression. Emerging evidence indicates that the alteration of interhemispheric functional coordination plays a critical role in the pathogenesis of major depressive disorder (MDD). However, it remains unclear whether the imbalanced interhemispheric functional connectivity is associated with the treatment response in MDD.

Methods: In the present study, we aimed to explore the potential marker by using voxel-mirrored homotopic connectivity (VMHC) approach, which may be contributing to predict the clinical prognosis in MDD. 82 MDD patients and 50 normal control (NC) subjects participated in this study. We divided the MDD group into unresponder and responder group according to the reduction rate of Hamilton Rating Scale for Depression (HAMD) within 2 weeks.

Results: The study detected significantly decreased VMHC in bilateral precuneus (pCu), inferior temporal gyrus (ITG) and increased VMHC in middle frontal gyrus (MFG) and caudate nucleus when compared remitted depression (RD) group to unremitted depression (URD) group. Meanwhile, when compared with NC group, the URD group presented reduced VMHC in bilateral cerebellum anterior lobe, thalamus and postcentral gyrus. Furthermore, the VMHC in media frontal gyrus, postcentral gyrus and precentral gyrus were significantly decreased in URD compared to NC group, the URD group presented reduced VMHC in bilateral precuneus (pCu), inferior temporal gyrus (ITG) and increased VMHC in middle frontal gyrus (MFG) and caudate nucleus when compared remitted depression (RD) group to unremitted depression (URD) group. Meanwhile, when compared with NC group, the URD group presented reduced VMHC in bilateral precuneus (pCu) but increased in right inferior orbitofrontal gyrus (all P<0.05). The nodal degree in right dorso-lateral prefrontal cortex (DLPFC) was significantly decreased in RD compared with URD (P<0.017, FDR corrected). Receiver operating characteristic (ROC) curve analysis indicated that the area under curve (AUC) of nodal degree in right DLPFC was 0.685 [95% confidence interval (CI): 0.64–0.78, P=0.014], which could serve as a specific predictor to differentiate responded patients from unresponded patients.

Conclusion: The study suggests that the altered interhemispheric functional connectivity might be a novel neural trait involved in the pathophysiology of MDD.

Keywords: Major depressive disorder, Graph theory, Antidepressant, Predictor, Early response.

PS189

Post-transcriptional processes in the main serotonin degrading enzyme MAO-A in the adult human brain investigated in vivo with PET and postmortem data

Komorowski A, James GM, Gryglewski G, Kasper S, Lanzenberger R. Medical University of Vienna, Austria.

Abstract

Introduction: Correlations between mRNA expression and positron emission tomography (PET) protein binding in vivo show high associations for structural proteins but rather weak
associations for proteins involved in cell regulation. Strong correlations were found for the serotonin-1A receptor as well as for monoamine oxidase-A (MAO-A). However, regulatory processes induced via exogenous and endogenous substrates have been described for MAO-A, leading to an altered enzyme activity in smokers or depressive patients. To assess potential influences of post-transcriptional modifications for MAO-A correlations between imaging data and gene expression were performed.

Methods: PET total volume of distribution (V_T) of 22 healthy non-smokers was calculated for the radiotracer [11C]harmine via arterial input function and kinetic modelling with a 2-tissue compartmental model and graphical analysis using Logan plot. More than 3000 mRNA samples across the whole brain from six healthy donors were downloaded from the Allen Human Brain Atlas to perform region-wise (within automated anatomical labeling regions) and voxel-wise correlations with PET V_T using Spearman’s correlation coefficients (r_s).

Results: Inter-probe correlations for genomic as well as inter-subject correlations for imaging data were strong, indicating consistency within both modalities. Region-wise correlations of MAO-A V_T and mRNA expression values indicated an interesting association for all brains ($r_s=0.30–0.66$, mean $r_s=0.54$ SD=0.14) as well as for a combined analysis including all samples within one brain template ($r_s=0.66$; Fig.1). Voxel-wise correlations showed weaker effects ($r_s=0.21–0.37$, mean $r_s=0.27$ SD=0.06 and $r_s=0.26$, respectively).

Conclusions: Present findings indicate regionally distinct influences of post-transcriptional and translational processes throughout the brain. In contrast to previous results, our analyses show less pronounced associations between gene and protein expression. Generally, a strong association between in vivo protein density and enzyme activity suggests a rather short-term regulation of MAO-A.

References
1. Guo, Y. et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochimica et Biophysica Sinica 40, 426–436, doi:10.1111/j.1745-7270.2008.00418.x (2008).
2. Zanotti-Fregonara, P. et al. Imaging of monoamine oxidase-A in the human brain with [11C]befloxatone: quantification strategies and correlation with mRNA transcription maps. Nuclear medicine communications 35, 1254–1261, doi:10.1097/MNM.0000000000000196 (2014).
3. Rizzo, G. et al. The predictive power of brain mRNA mappings for in vivo protein density: a positron emission tomography correlation study. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 34, 827–835, doi:10.1038/jcbfm.2014.21 (2014).
4. Cao, X., Li, X. M. & Mousseau, D. D. Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: possible influence by distinct signalling pathways. Life sciences 85, 262–268, doi:10.1016/j.lfs.2009.06.004 (2009).
5. Medvedev, A. E. & Glover, V. Tribulin and endogenous MAO-inhibitory regulation in vivo. Neurotoxicology 25, 185–192, doi:10.1016/S0161-813X(03)00098-6 (2004).
6. Tong, J. et al. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 33, 863–871, doi:10.1038/jcbfm.2013.19 (2013).

PS190
Emotion processing related brain activity assessed with 7 Tesla fMRI predicts early antidepressant response
Spies M1, Kraus C1, Geissberger N1, Auer B1, Klöhl M1, Tik M1, Stürkath E1, Hahn A1, Woletz M1, Pfabigan DM1, Kasper S1, Windischberger C1, Lamm C1, Lanzenberger R2
1Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
2MR Center of Excellence, Center for Medical Physics and Biomedical Engineering Medical University of Vienna, Austria