INTRODUCTION

The first life on earth was born under the ancient sea of abundant Fe(II) 3.8 Gya [1,2], and it is generally accepted that no independent life on earth can live without iron [3]. Iron is a major redox-active transition metal, which is used for various electron transfer reactions in the form of Fe(II), Fe-S cluster or heme [4]. During evolution, the life obtained the sulfhydryl systems [5], including glutathione, to counteract iron toxicity when present in excess, which might have been insoluble FeS at first [6,7]. Finally, the life acquired the capacity to use molecular oxygen, which allows more flexible and versatile transfer of one to four electron(s) at a time and continuous electron flow inside the entire cells (Fig. 1) [8].

IRON AND OXYGEN FOR ELECTRON TRANSFER

During the O2 metabolism, reactive oxygen species are inevitably produced. Superoxide (O2-) and hydrogen peroxide (H2O2) are generated via enzymatic reactions whereas hydroxyl radical is produced via the chemical reaction called the Fenton reaction (Fe[II] + H2O2 → Fe[III] + •OH + OH-) (Fig. 1) [9-11]. Catalytic Fe(II) is indeed dangerous for life when present unconfined. Now we can detect catalytic Fe(II) by use of turn-off or turn-on fluorescent probes in cellular experiments [12-14]. Fortunately, we have several distinct mechanisms to minimize this iron toxicity.

We fully utilize the advantageous characteristics of iron. Fe(III) is practically insoluble at neutral pH whereas Fe(II) is soluble [11]. Iron is transported by transferrin in higher organisms as Fe(III) [15]. Fe(III) has to be reduced to Fe(II) to be transported through the biomembranes with various transporters, such as divalent metal transporter 1 (DMT1) (solute carrier family 11 member 2 [SLC11A2]) [16] and ferroportin (solute carrier family 40 member 1 [SLC40A1]) [17]. Iron absorption through the duodenal mucosa is strictly regulated via iron storage status [18]. Excess iron in the cell is stored in...
Figure 1. Molecular oxygen as versatile electron acceptors, and its association with ferroptosis. Superoxide and hydrogen peroxide are generated through various enzymatic reactions whereas hydroxyl radicals are produced via chemical reactions. Enzymatic bypass reactions indicate direct decomposition of hydrogen peroxide to water by a variety of enzymes, such as catalase and glutathione peroxidase. Hydroxyl radicals are closely associated with ferroptosis, which is counteracted by sulfhydryls (−SH).

Figure 2. Cytosolic iron chaperon systems. Iron is incorporated by binding of transferrin to transferrin receptor into the cellular cytosol through late endosome/lysosome. Iron retrieved and reduced by STEAP3 (six-transmembrane epithelial antigen of the prostate 3) to Fe(II) in late endosome/lysosome goes through divalent metal transporter 1 (DMT1) (solute carrier family 11 member 2 [SLC11A2]) to cytosol, where Fe(II) is immediately chaperoned by poly rC binding protein 2 (PCBP2). PCBP1 can load iron to ferritin, where Fe(II) is oxidized to Fe(III) via ferritin heavy chain (FTH). PCBP2 appears to play wider roles in transporting Fe(II) in the cytosol. If Fe(II) is not chaperoned by PCBP1/2 due to pathologic causes, unchaperoned Fe(II) is catalytic. Red filled circle, Fe(II); blue filled circle, Fe(III). Note that Fe(III) is insoluble at neutral pH.

IRON-DEPENDENT EXCRETION OF FERRITIN AS EXTRACELLULAR VESICLES

Ferritin is a 24-subunit nanocage protein, consisting of light chain (FTL) and heavy chain (FHL), for safe iron storage under the regulation of the iron-regulatory protein (IRP)/iron-responsive element (IRE) posttranscriptional system. Ferritin is also a serum marker representing body iron storage [30]. However, how ferritin is secreted extracellularly has been completely unknown in the absence of secretory signal peptides [31]. We recently discovered for the first time that an
exosomal marker CD63 is regulated by the IRP/IRE system and that iron-loaded ferritin is secreted as extracellular vesicles (EVs) with the guidance of nuclear receptor coactivator 4 (NCOA4) [32]. This is an efficient sustainable mechanism to share excess iron with nearby or distant cells in a safe manner (Fig. 3).

EXCESS IRON AND CARCINOGENESIS

It is well known that iron metabolism is a semi closed system for an individual in higher animals. Namely, the daily fraction of incomings and outgoings is extremely small in comparison to the total amount (~0.025%). In humans, adult males retain ~4 g of iron in total whereas premenopausal females have ~2.5 g of iron [33]. There is no active pathway to excrete iron to the outside of the body. The only exceptions are hemorrhage or phlebotomy to lose red blood cells, and the use of redox-inactive iron chelating agents, such as desferal, deferasirox and deferiprone [34]. Accordingly, iron would be present in excess during aging by the decrease in metabolic rate, causing ferroptosis time-dependently in a fraction of cells in various organs of rats [35].

Excess iron has also been associated with carcinogenesis, according to the human epidemiological study of the general population or specific diseases, including genetic hemochromatosis and ovarian endometriosis [36-38] as well as various animal studies [4,8,39]. The responsible mechanisms are: 1) increased intracellular iron catalyzes Fenton reaction to generate hydroxyl radicals, leading to mutagenic oxidative DNA lesions [40-42]; 2) iron is necessary for cellular proliferation as cofactors of many enzymes [4,8,10,33,43,44].

Asbestos, a natural nanofibrous mineral, is still used worldwide, especially in some Asian countries, Russia, and South America due to the economic merits, in spite of the designation by World Health Organization as a definite human carcinogen (Group 1 by International Agency for Research on Cancer [IARC]) [45]. Asbestos is resistant to heat, acid and friction, and is also flexible for various industrial use. The association of asbestos exposure and mesothelioma is well established [45,46]. Asbestos is inhaled through the airway to the pulmonary parenchyma. However, the major target cells for carcinogenesis are parietal mesothelial cells in the pleural cavity, which has been a long mystery to be solved [47,48].

Molecular mechanisms underlying asbestos-induced mesothelioma have been intensively studies for these two decades. The important point is that the biopersistent nanofibers go through pulmonary parenchyma, by penetrating visceral pleura, into the pleural cavity after collecting hemoglobin originating from red blood cells on the surface and hence iron, depending on the negative pressure of the cavity, and then injures the parietal pleural mesothelial cells [48,49]. Amazingly, this process requires a few decades.

The ability of mesothelial cells to phagocytose asbestos fibers provides a high risk for DNA double strand breaks and the resultant mutations because asbestos fibers present a high affinity for histones as well [50,51]. The tumor suppressor p16INK4a is activated in response to DNA damage as well as oxidative stress. Therefore, it is no wonder that homozygous deletion of p16INK4a is the major mutation observed in human and rat mesothelioma [52,53], representing direct DNA double-strand breaks by asbestos fiber in mesothelial cells and the following erroneous end-joining of DNA strands [47,48]. Of note, homozygous deletion of p16INK4a is the major target mutation also in the Fenton reaction-induced renal cell carcinoma in rats [42]. However, the role of macrophages in mesothelial carcinogenesis has not been clear other than what is called “frustrated phagocytosis [54].”

According to our 2020 report, macrophages generate mutagenic milieu for the surface mesothelial cells via ferroptosis, catalytic Fe(II)-dependent regulated necrosis accompanied by lipid peroxidation, upon taking up asbestos fibers as foreign material [55]. We have further sublimated this concept into a more concrete one in 2021 that macrophages under asbestos-induced ferroptosis emit ferroptosis-dependent extracellular vesicles (FedEVs) [56] which are received by mesothelial cells, resulting in significant mutagenic DNA lesions (Fig. 4).

Therefore, various cells, including macrophages, can share...
excess iron with the other cells of different types via ferritin in extracellular vesicles as safe non-catalytic Fe(III). However, a similar process, one involving FedEVs, may cause accumulation of excess iron in other specific cells, which may eventually contribute to carcinogenesis.

CONCLUSION

The major causes of human mortality in most countries are cancer and atherosclerosis (myocardial infarction and cerebral infarction/hemorrhage) except for emerging infectious diseases, such as COVID-19. We believe that these conditions, especially cancer, are associated with the long-term use of iron and oxygen [4]. Thus, modifying iron metabolism would be important as a practical way to prevent carcinogenesis. The present finding on the role of EVs in the transport of iron-loaded ferritin is important to consider future strategy for cancer prevention. We have been using plastics thus far so much in our daily life for convenience, which currently causes microplastics and nanoplastics pollution in the sea [57]. Surprisingly, the microplastics and nanoplastics are coming back to us as part of seafood diet [58], which is an emergent issue in current ecotoxicology to be further explored from the viewpoint of iron and foreign body.

ACKNOWLEDGMENTS

This work was supported, in part, by JST CREST (Grant No. JPMJCR19H4), JSPS Kakenhi (Grant No. JP19H05462 and JP20H05502) and Research Grant of the Princess Takamatsu Cancer Research Fund (19-251) to ST.

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

ORCID
Shinya Toyokuni, https://orcid.org/0000-0002-5757-1109
Yingyi Kong, https://orcid.org/0000-0002-6481-0745
Hao Zheng, https://orcid.org/0000-0002-2821-4153
Danyang Mi, https://orcid.org/0000-0003-2035-0596
Misako Katabuchi, https://orcid.org/0000-0003-2998-6056
Yashiro Motooka, https://orcid.org/0000-0002-4230-7559
Fumiya Ito, https://orcid.org/0000-0001-5310-9630

REFERENCES

1. Olson KR, Straub KD. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda) 2016;31:60-72.
2. Gualtieri AF, Andreozzi GB, Tomatis M, Turci F. Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radic Biol Med 2019;133:21-37.
3. Knoll AH, Nowak MA. The timetable of evolution. Sci Adv 2017;3:e1603076.
4. Toyokuni S, Kong Y, Cheng Z, Sato K, Hayashi S, Ito F, et al. Carcinogenesis as side effects of iron and oxygen utilization: from the unveiled truth toward ultimate bioengineering. Cancers (Basel) 2020;12:3320.
5. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999;27:916-21.
6. Pósfai M, Buseck PR, Bazylinski DA, Frankel RB. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 1998;280:880-3.
7. Schippers A, Jorgensen BB. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 2002;66:85-92.
8. Toyokuni S, Yanatori I, Kong Y, Zheng H, Motooka Y, Jiang L. Ferroptosis at the crossroads of infection, aging and cancer. Cancer Sci 2020;111:2665-71.
9. Fenton HJH. Oxidation of tartaric acid in presence of iron. J...
27. Chen C, Lei J, Zheng Q, Tan S, Ding K, Yu C. Poly(rC) binding
24. Shi H, Bencze KZ, Stemmler TL, Philpott CC. A cytosolic iron
23. Yanatori I, Richardson DR, Imada K, Kishi F. Iron export through
22. Yanatori I, Richardson DR, Toyokuni S, Kishi F. The iron
21. Yanatori I, Yasui Y, Tabuchi M, Kishi F. Chaperone protein
20. Yanatori I, Richardson DR, Toyokuni S, Kishi F. The new role of
18. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF,
17. Ganz T. Erythropoietic regulators of iron metabolism. Free Radic
16. Yanatori I, Kishi F. DMT1 and iron transport. Free Radic Biol Med
15. Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med
14. Hirayama T. Fluorescent probes for the detection of catalytic Fe(II) ion. Free Radic Biol Med
13. Mukaide T, Hattori Y, Misawa N, Funahashi S, Jiang L, Hirayama
12. Hirayama T, Okuda K, Nagasawa H. A highly selective turn-on
11. Koppenol WH, Hider RH. Iron and redox cycling. Do’s and don’ts. Free Radic Biol Med 2019;133:3-10.
10. Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 1996;20:553-66.
9. Belizowsky-Moshe S, Lifshitz L, et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 2018;131:342-52.
8. Wang X, Guo Q, Wang H, Yuan X, Wang B, Lobie PE, et al. PCBP2 posttranscriptional modifications induce breast cancer progression via upregulation of UFD1 and NT5E. Mol Cancer Res 2021;19:86-98.
7. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014;509:105-9.
6. Wish JB. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin J Am Soc Nephrol 2006;1 Suppl 1:S4-8.
5. Truman-Rosentsvit M, Berenbaum D, Spektor L, Cohen LA, Belizowsky-Moshe S, Lifshitz L, et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 2018;131:342-52.
4. Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 2009;100:9-16.
3. Mobarra N, Shanaki M, Ehteram H, Nasiri H, Sahmani M, Saeidi M, et al. A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Oncol Stem Cell Res 2016;10:239-47.
2. Yanatori I, Richardson DR, Dhekne HS, Toyokuni S, Kishi F. CD63 is regulated by iron via the IRE-IRP system and is important for ferritin secretion by extracellular vesicles. Blood 2021;138:1490-503.
1. Toyokuni S. Iron and redox cycling. Do’s and don’ts. Free Radic Biol Med 1996;20:553-66.
Evaluation of Carcinogenic Risks to Humans, World Health Organization, eds. A Review of Human Carcinogens: Part C: Arsenic, Metals, Fibres, and Dusts. Lyon, International Agency for Research on Cancer, pp 219-309, 2012.

46. Oury TD, Sporn TA, Roggli VL. Pathology of asbestos-associated diseases. 3rd ed. Berlin/Heidelberg, Springer, 2014.

47. Toyokuni S. Mechanisms of asbestos-induced carcinogenesis. Nagoya J Med Sci 2009;71:1-10.

48. Toyokuni S. Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: toward the era of mesothelioma prevention. Free Radic Biol Med 2019;133:206-15.

49. Toyokuni S, Ito F, Motooka Y. Role of ferroptosis in nanofiber-induced carcinogenesis. Metallomics Res 2021;1:14-21.

50. Nagai H, Ishihara T, Lee WH, Ohara H, Okazaki Y, Okawa K, et al. Asbestos surface provides a niche for oxidative modification. Cancer Sci 2011;102:2118-25.

51. Nagai H, Toyokuni S. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci 2012;103:1378-90.

52. Xio S, Li D, Virg J, Sugarbaker DJ, Corson JM, Fletcher JA. Codeletion of p15 and p16 in primary malignant mesothelioma. Oncogene 1995;11:511-5.

53. Jiang L, Akatsuka S, Nagai H, Chew SH, Ohara H, Okazaki Y, et al. Iron overload signature in chrysotile-induced malignant mesothelioma. J Pathol 2012;228:366-77.

54. Stanton MF, Wrench C. Mechanisms of mesothelioma induction with asbestos and fibrous glass. J Natl Cancer Inst 1972;48:797-821.

55. Ito F, Yanatori I, Maeda Y, Nimura K, Ito S, Hirayama T, et al. Asbestos conceives Fe(II)-dependent mutagenic stromal milieu through ceaseless macrophage ferroptosis and j-catenin induction in mesothelium. Redox Biol 2020;36:101616.

56. Ito F, Kato K, Yanatori I, Murohara T, Toyokuni S. Ferroptosis-dependent extracellular vesicles from macrophage contribute to asbestos-induced mesothelial carcinogenesis through loading ferritin. Redox Biol 2021;47:102174.

57. Rezania S, Park J, Md Din MF, Mat Taib S, Talaiekhozani A, Kumar Yadav K, et al. Microplastics pollution in different aquatic environments and biota: a review of recent studies. Mar Pollut Bull 2018;133:191-208.

58. Sana SS, Dogiparthi LK, Gangadhar L, Chakravorty A, Abhishek N. Effects of microplastics and nanoplastics on marine environment and human health. Environ Sci Pollut Res Int 2020;27:44743-56.