Design of Lipid Nanocapsule Delivery Vehicles for Multivalent Display of Recombinant Env Trimers in HIV Vaccination

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Pejawar-Gaddy, Sharmila, James M. Kovacs, Dan H. Barouch, Bing Chen, and Darrell J. Irvine. 2014. “Design of Lipid Nanocapsule Delivery Vehicles for Multivalent Display of Recombinant Env Trimers in HIV Vaccination.” Bioconjugate Chemistry 25 (8): 1470-1478. doi:10.1021/bc5002246. http://dx.doi.org/10.1021/bc5002246.
Published Version	doi:10.1021/bc5002246
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:17820952
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Design of Lipid Nanocapsule Delivery Vehicles for Multivalent Display of Recombinant Env Trimers in HIV Vaccination

Sharmila Pejawar-Gaddy,†§ James M. Kovacs,‡ Dan H. Barouch,§∥ Bing Chen,‡ and Darrell J. Irvine*†§,⊥#

†Department of Biological Engineering, ‡Koch Institute for Integrative Cancer Research, and §Department of Material Science, Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
‡Boston Children’s Hospital, Boston, Massachusetts 02115, United States
§Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
∥Center for Virology, Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
⊥Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States

ABSTRACT: Immunization strategies that elicit antibodies capable of neutralizing diverse virus strains will likely be an important part of a successful vaccine against HIV. However, strategies to promote robust humoral responses against the native intact HIV envelope trimer structure are lacking. We recently developed chemically cross-linked lipid nanocapsules as carriers of molecular adjuvants and encapsulated or surface-displayed antigens, which promoted follicular helper T-cell responses and elicited high-avidity, durable antibody responses to a candidate malaria antigen. To apply this system to the delivery of HIV antigens, Env gp140 trimers with terminal histags (gp140T-his) were anchored to the surface of lipid nanocapsules via Ni-NTA-functionalized lipids. Initial experiments revealed that the large (409 kDa), heavily glycosylated trimers were capable of extracting fluid phase lipids from the membranes of nanocapsules. Thus, liquid-ordered and/or gel-phase lipid compositions were required to stably anchor trimers to the particle membranes. Trimer-loaded nanocapsules combined with the clinically relevant adjuvant monophosphoryl lipid A primed high-titer antibody responses in mice at antigen doses ranging from 5 μg to as low as 100 ng, whereas titers dropped more than 50-fold over the same dose range when soluble trimer was mixed with a strong oil-in-water adjuvant comparator. Nanocapsule immunization also broadened the number of distinct epitopes on the HIV trimer recognized by the antibody response. These results suggest that nanocapsules displaying HIV trimers in an oriented, multivalent presentation can promote key aspects of the humoral response against Env immunogens.

INTRODUCTION

HIV ranks as one of the deadliest infectious diseases among adults and is the fourth leading cause of death worldwide. Globally, acquired immune deficiency syndrome induced by HIV infection has killed more than 25 million people (http://www.unaids.org). UNAIDS estimates that there are about 33 million people living with HIV/AIDS worldwide, including approximately 1.1 million people in the U.S. alone. Despite the availability of potent antiretroviral drug regimens,1 these staggering statistics show that the epidemic continues unabated, underscoring the need for a potent and efficacious vaccine. Immunization strategies that elicit antibodies capable of neutralizing diverse strains of the virus will be an important part of a successful vaccine against HIV.

The HIV envelope glycoprotein trimer, Env, mediates virus attachment and fusion to host cells and consists of 2 subunits—the docking portion, gp120, and the transmembrane portion required for fusion, gp41.2,3 Env is the only neutralizing target on the virus,4,5 but current vaccine strategies have failed to elicit the type of durable, high avidity, broadly neutralizing humoral responses that can confer sterilizing protection against diverse circulating strains of HIV. Most vaccine candidates targeting the envelope glycoprotein have used the monomer form of the docking subunit. Such monomeric gp120 vaccines have failed to induce broadly neutralizing antibodies in preclinical studies and clinical trials.6 Further, antibodies elicited by monomeric gp120 bind epitopes that are poor neutralization targets and are potentially occluded on primary HIV isolates.7,8 Several conserved targets for antibodies against the Env proteins are quaternary epitopes present only in the trimeric, glycosylated native form of the envelope spike.3,8,9 Strategies to promote durable, high avidity antibody responses against the native intact trimer structure are lacking, and the production of stable gp120/gp41 trimers has proven difficult. However, the

Received: May 19, 2014
Revised: July 7, 2014
Published: July 14, 2014
Figure 1. Synthesis of ICMV lipid nanocapsules loaded with HIV env trimers. (1) Anionic maleimide-functionalized liposomes, including Ni-NTA-DGS are prepared from dried lipid films, (2) divalent cations are added to induce fusion of liposomes and the formation of MLVs, (3) membrane-permeable DTT is added, which cross-links maleimide lipids on apposed lipid bilayers in the vesicle walls at 37 °C, (4) post-vesicle recharging with NiCl2 followed by addition of gp140T-his, and (5) resulting lipid particles are PEGylated with thiol-terminated PEG.

ectodomain protein, gp140, has been used as an Env surrogate, and use of soluble trimeric gp120 or trimeric gp140 in vaccines has shown better promise at inducing neutralizing antibodies relative to monomeric immunogens. Recently, we described the preparation of stable and high-quality gp140 trimers (gp140T), which elicited higher titers of potent cross-clade neutralizing antibody responses compared to corresponding gp120 monomers for a diverse set of tier 1 and tier 2 viruses.

Although soluble proteins mixed with adjuvants are most commonly used in vaccination, delivery of antigens arrayed on synthetic micro- and nanoparticles has shown clear advantages over immunization with soluble immunogens in preclinical animal models. Particulate delivery promotes antigen uptake by antigen presenting cells (APCs), allows for physiological display of antigens on membranes, and provides multivalency, promoting B-cell triggering. In addition, this approach allows for the simultaneous codelivery of antigens and adjuvants to B-cells and APCs, which can enhance vaccine efficacy even at low antigen doses, as compared to soluble antigens.

We recently described the production of chemically cross-linked lipid nanoparticles termed ICMVs (interbilayer-cross-linked multilamellar vesicles) as carriers of molecular adjuvants and encapsulated or surface-displayed antigens, which promoted follicular helper T-cell responses and elicited high-avidity, durable antibody responses to a candidate Plasmodium vivax malaria antigen. Here, we utilize this nanocapsule system to display membrane-anchored trimeric HIV Clade A gp140, mimicking native viral display of the envelope glycoprotein in a format where molecular adjuvants could be readily coloaded in the capsule walls or entrapped in the aqueous core. To stably anchor gp140T to the surfaces of these particles under conditions preserving the antigenic integrity of the trimers, we utilized noncovalent binding of polyhistidine-tagged proteins to nitrilotri-acetic acid (NTA)-headgroup lipids. Because NTA-Ni(II)-His binding is site specific, the physical orientation of the protein on the nanoparticle surface is controlled. Compositions of ICMV capsules capable of stably anchoring the heavily glycosylated, half-megadalton trimers were determined, and the immunogenicity of trimer-conjugated nanocapsules compared to soluble trimers adju-
lipid headgroups of adjacent bilayers. We hypothesized that the enhanced stability of ICMVs relative to traditional liposomes would make them more effective for delivery of surface-displayed trimer antigens, and additionally could provide the option of incorporating high levels of molecular adjuvants in the capsule walls or aqueous particle cores. To provide oriented display of gp140 trimers on the surface of these lipid nanocapsules, we took advantage of the 6 histidine residues at the base of each ‘leg’ of the trimer (originally incorporated to facilitate purification of the protein), and utilized these to multivalently anchor gp140T to Ni-NTA-functionalized lipids incorporated in the particle bilayers (Figure 1). Based on our previous successful nanocapsule vaccines carrying malaria antigens or ovalbumin, we first prepared ICMVs comprising the low-T_m lipids DOPC, MPB (maleimide-headgroup lipid for interbilayer cross-links), and Ni-NTA-DGS (Ni-NTA-headgroup lipids for histidine-protein capture) in a 4:5:1 mol ratio (Figure 1 step 1). Lipid capsules were formed by fusing small unilamellar DOPC/MPB/Ni-NTA-DGS vesicles via addition of calcium (step 2), followed by addition of DTG as a membrane-permeable dithiol to introduce interbilayer cross-links at 37 °C (step 3). Ni-NTA-ICMVs containing 5% Ni-NTA-DGS were synthesized with yields similar to DOPC/MPB-only capsules, and had a mean size of $374 \pm 27 \text{ nm}$ diameter by dynamic light scattering. To anchor protein to the nanocapsules, fluorescently tagged gp140 trimer with histags (gp140T-his) was incubated with Ni-NTA-ICMVs at 4 °C for 18 h (step 4), followed by a final PEGylation step using thiol-terminated PEG to cap any remaining maleimide groups at the surfaces of the particles (step 5). As controls, ICMVs loaded with his-tagged GFP were constructed in parallel. Although ICMVs showed effective binding of his-tagged GFP, the high molecular weight trimer molecules showed a low efficiency of binding to the particles at any protein/nanocapsule ratio tested (Table 1). This low level of just prior to protein addition failed to improve trimer loading (Figure 2A). Notably, we also found that attempting to load trimers via an alternative noncovalent strategy, such as using an anti-histag Ab to capture the trimers or using electrostatic adsorption of trimers to cationic ICMVs formed with DOTAP lipids (and thus sacrificing control over protein orientation), also failed to give yields of more than 20% of added trimer bound to the capsules (Figure 2A).

To understand the relative failure of trimer loading we examined the state of the histidine tags on Alexafluor-labeled gp140T-his proteins before and after attempted ICMV loading, to rule out possible proteolytic cleavage of the anchoring residues. Alexafluor-labeled gp140T-his was added to Ni-NTA-ICMVs and incubated for 8 h, then particles were centrifuged and separated from the supernatant. ELISA detection of the histidine tags on the protein was performed on the supernatants, protein recovered from detergent-lysed ICMV capsules, and control neat gp140T-his protein. As shown in Figure 2B, histidines were detected on the control protein as expected. In addition, low binding of the trimer to particles yielded low levels of histag detection following pelleting and lysis of the particles with Triton (DOPC-gp140T-his pellet). Unexpectedly, however, trimer histags also failed to be detected in the particle/trimer supernatants ($\sim 4.42 \text{ ng/mL}$, Figure 2B), despite the presence of substantial amounts of trimer protein in these supernatants as detected by fluorescence from the Alexafluor label. However, when imidazole, which competes with histidine for Ni-NTA binding, was added to the supernatants, histags of the trimer protein were again detected by ELISA (Figure 2B ‘+ imidazole’). This result suggested that trimer protein in the supernatant had extracted Ni-NTA lipids from the nanocapsules into solution, and these lipids remained bound to the trimer and blocked access of the his-tags to detection antibodies in the ELISA measurements.

Anchoring of gp140T-his to High-T_m Lipid Capsules.

The use of noncovalent chemical conjugation methods to display antigen on particles has been shown previously to enhance T-cell and antibody responses to subunit vaccines. Of note, such binding of proteins to the surface of liposomes has typically involved proteins of substantially lower molecular weight than the env trimer. The synthetic gp140 trimer has a molecular weight of 409 kDa; we hypothesized that this large molecular weight combined with the heavy glycosylation of the protein trimer was responsible for extraction of bound Ni-NTA lipids from the fluid phase bilayer of the capsule surfaces. In order to increase the conjugation efficiency of the large trimer to the particles while continuing to use the site-specific Ni-NTA metal chelation method, we tested stabilizing lipid anchorage in low-T_m DOPC-containing ICMVs by addition of cholesterol, or alternatively exchanged DOPC for a higher T_m lipid, DMPC ($T_m 23^\circ\text{C}$). As shown in Figure 3A, incorporation of cholesterol into DOPC nanocapsules failed to stabilize trimer anchoring. However, DMPC lipid nanocapsules showed a substantial increase in gp140T-his binding, with a 9-fold increase in stable trimer binding over DOPC capsules (Figure 3A). Following incubation with Ni-NTA-bearing DMPC capsules, unbound trimer protein remaining in the supernatant retained accessible his-tags by ELISA analysis, consistent with the idea that lipid was not being extracted from the higher-T_m lipid particles by the trimers (Figure 3B). Despite the modest total binding efficiency of 35%, this degree of protein loading translates to approximately 160 trimers per nanocapsule, giving a mean
spacing between trimers on the particle surfaces of 33 nm. To
determine the stability of multivalent Ni-NTA anchoring of
trimers to the DMPC particles, we measured trimer release
from ICMVs over 7 days at 37 °C. The protein bound stably to
ICMVs and was released slowly over a period of 7 days in the
presence of 10% serum (Figure 4). Given their successful
anchoring of Env trimers, we focused on DMPC lipid
nanocapsules for subsequent in vivo immunization studies.

Humoral Response to gp140T-ICMV Vaccines. To
determine the humoral response generated by the gp140T-his
proteins displayed on ICMV lipid nanocapsules (gp140T-
ICMVs), in pilot studies we compared ICMVs to soluble
trimer. C57Bl/6 mice were immunized with various doses of
gp140T-ICMVs admixed with 5 μg of the Toll-like receptor-4
agonist MPLA, a clinically relevant molecular adjuvant.39,40
Although MPLA can be readily loaded in the membranes of the
ICMV capsules,22,23 we previously found that simply admixing
this adjuvant with ICMVs gave strong humoral responses,19
and thus we used this approach of simply admixing MPLA and
ICMVs to keep the formulations as simple as possible. For
comparison to a strong experimental adjuvant for mouse
humoral responses, soluble trimer was admixed with SAS
(Sigma Adjuvant System) adjuvant, an oil-in-water adjuvant
containing MPLA and trehalose-6,6'-dimycolate that elicits
extremely strong antibody responses in small-animal models
but is too toxic for human use. Sera were collected from
vaccinated mice over time for analysis of titer and avidity of
gp140T-specific antibodies. As shown in Figure 5A, soluble

Figure 2. HIV gp140T-his trimer binding to low-\(T_m\) lipid ICMVs. (A) Percentages of gp140T-his bound by ICMVs prepared from distinct compositions chosen to enhance trimer loading. Various formulations to stabilize the protein on the nanoparticle vesicle (B) Accessibility of trimer histags following incubation of gp140T-his with Ni-NTA-ICMVs was assessed by measuring the concentration of histags by ELISA.

Figure 3. HIV env trimer conjugation to ICMVs stabilized by incorporation of cholesterol or high-\(T_m\) lipids. (A) Percentage of added gp140T-his bound to ICMVs of different compositions. (B) Histag ELISA to determine the availability of histidine residues following attachment to high \(T_m\) lipid vesicles.
trimer elicited much weaker humoral responses than gp140T-ICMVs or gp140T mixed with SAS, even when adjuvanted by multiple TLR agonists (MPLA alone as adjuvant elicited even weaker responses, not shown). We thus focused on comparing ICMVs to the strong oil-in-water emulsion adjuvant. Both soluble trimer in SAS and ICMV vaccinations were capable of eliciting robust trimer-specific antibody responses at antigen doses ≥1 μg (Figure 5B). However, gp140T-ICMVs appeared to elicit a more potent response despite the use of a less inflammatory adjuvant, as evidenced by readily detectable anti-gp140T antibody after a single priming injection with 1 μg of antigen on ICMVs (day 14) compared to no response detected for the soluble antigen/SAS group until post-boost (day 35). Further, ICMV vaccines at all 3 doses tested eventually achieved essentially identical titers by 3 months post-priming, while soluble trimer in SAS showed a 67-fold decrease in titer as the antigen dose was reduced from 5 μg to 0.1 μg (p = 0.025, Figure 5B). Thus, 1 μg of gp140T in SAS elicited the same IgG titer as a 10-fold lower dose of the antigen bound to ICMVs at 3 months. Similarly, the avidity of anti-gp140T sera decayed more quickly as a function of antigen dose for soluble trimer in SAS compared to the nanocapsule vaccines (Figure 5C). At higher antigen doses, both SAS and ICMVs showed similar titers at day 90, but we did not follow these responses longer to determine if the long-term durability of responses was comparable.

Analysis of IgG isotypes revealed that the ICMV vaccines elicited a more Th1/Th2-balanced humoral response, with both IgG2c and IgG1 env-specific antibodies elicited earlier and to higher titers at the 1 or 0.1 μg antigen doses compared to antigen in SAS (Figure 5D, E). Thus, ICMV delivery of oriented, membrane-bound trimers enabled strong, Th1/Th2-
balanced humoral responses to be achieved at low antigen doses where a highly inflammatory oil-in-water adjuvant was ineffective.

Immune Sera Recognition of gp140T Epitopes Following Nanocapsule Vaccination. We hypothesized that presentation of HIV envelope trimers presented in a physiological orientation on the surface of lipid nanoparticles might promote breadth of the humoral response, by enabling a more diverse pool of B-cells to be recruited into the immune response via multivalent engagement of particle-bound trimers. Following immunization, we tested the presence of binding antibodies to several conserved linear peptide epitopes of the trimer—the variable loops V1, V2, V3, and the conserved Membrane-Proximal External Region (MPER). As shown in Figure 6A–D, soluble trimer in SAS elicited responses against the V3 peptide and these sera bound the V1 epitope at the highest (5 μg) immunization dose, but no binding was detected to V2 or the MPER sequence. By contrast, ICMVs elicited responses not only against V3 and V1, but also against the V2 peptide and a weak response against the MPER segment at the highest antigen dose (Figure 6A–D). Thus, nanocapsule delivery of the trimer increased the breadth of responses elicited against this key target of the humoral response against HIV.

CONCLUSIONS

In conclusion, we have shown that particle display of a large, complex HIV trimer, gp140, required the use of high-

Tm lipids to enable stable tethering to lipid nanocapsules. Importantly, immunization with trimers anchored to ICMV lipid nanoparticles elicited a significantly stronger humoral response compared to soluble protein in a strong oil-in-water emulsion adjuvant, with a balanced production of multiple isotypes of env-specific antibodies. Importantly, we have shown that the use of the particulate vaccine increased the breadth of the antibody response, as evidenced by binding antibodies produced to several conserved targets on the envelope structure, including the MPER sequence of gp41. Induction of virus-neutralizing antibodies was not assessed here due to the high background of mouse serum in standard neutralizing assays, but future work will assess neutralizing titers in other small animal models (e.g., guinea pigs). Nanoparticles can thus be used to display large HIV trimers in an oriented, multivalent presentation and can promote key aspects of the humoral response against Env immunogens.

EXPERIMENTAL SECTION

Recombinant Gp140T-his Trimer Production. Expression of the subtype A 92UG037.8 gp140 trimer was previously described. Briefly, a stably transfected 293T cell line was expanded to confluence in DMEM supplemented with 10% FBS and subsequently media exchanged to Freestyle 293
expression media (Invitrogen). Cell supernatants were collected 96 h after media exchange and subjected to standard Ni-NTA (Qiagen) affinity chromatography followed by Superox 6 (GE Healthcare) size exclusion chromatography in 25 mM TRIS (pH 7.5) plus 150 mM NaCl. Fractions containing the purified protein were subjected to SDS-PAGE electrophoresis in order to monitor purity before fractions were pooled, concentrated, and flash-frozen in liquid nitrogen and stored at −80 °C.

Synthesis of ICMVs. Interbilayer cross-linked multilamellar vesicles (ICMVs) have been previously described. Here, modifications were made to the procedure used by Moon et al. to accommodate conjugation of the large molecular weight gp140 trimer. All lipids were obtained from Avanti Polar Lipids (Alabaster, AL) and used as received. Briefly, low-Tm lipids (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC): 1,2-dioleoyl-sn-glycerol-3-[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl) nickel salt (Ni-NTA-DGS): 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine-N-[4-(p-maleimidophenyl) butyramide] (MPB) in a 4:1:5 molar ratio, or high-Tm lipids (1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC): Ni-NTA-DGS:MPB 4:1:5 molar ratio) in chloroform were dried into a thin film (total 1.26 μmol lipid) in glass vials by evaporating the organic solvent under vacuum overnight. In some experiments, cationic low-Tm ICMVs were prepared using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP): DOPC:MPB at a ratio of 2:1 and incubation of the vesicles for 1 h at 37 °C followed by sonication at a constant power of 5 W for 5 min at 30 °C to ensure recovery of the ICMV lipid nanocapsules were recovered by centrifugation at 14 000 × g for 4 min, and washed twice with deionized water. Since DTT is known to disrupt the ICMV particles with 1% Triton X-100 treatment and measuring released protein by fluorescence spectrophotometry.

Anti-histag ELISA. To qualify the presence of the histidine residue tag on gp140T-his proteins, an enzyme-linked immunosorbent assay (Cell Biolabs, Inc., San Diego, CA) analysis of the concentration of histags was performed on solutions of neat AF647-labeled gp140T-his or Alexafluor-labeled protein recovered from ICMVs. Total protein concentration was measured in parallel via AF647 fluorescence, for concurrent protein and histidine tag detection.

Vaccination Studies. Animals were cared for following National Institutes of Health, state, and local guidelines following an MIT IACUC-approved protocol. Groups of 6–8 week old C57Bl/6 mice (Jackson Laboratories, Bar Harbor, ME) were immunized subcutaneously at the tail base with the various indicated doses of gp140T-his (either soluble form or loaded on ICMVs) mixed with the TLR4 agonist monophosphoryl lipid A (MPLA, Invivogen, San Diego, CA), or in some cases CpG 1826 DNA (10 μg, Invivogen). As a standard, mice were immunized with soluble gp140T-his mixed with SAS adjuvant (Sigma, St. Louis, MO), a strong experimental adjuvant. Mice were immunized twice, 3 weeks apart, and anti-gp140T-his IgG titers, defined as the dilution of sera at which the 450 nm OD reading was 0.5, were determined by ELISA analysis of sera from immunized mice. For antibody avidity analysis, low-affinity antibodies were eluted by the addition of 6 M urea for 10 min at 25 °C following serum incubation. The antibody titers (450 nm OD reading) obtained with and without addition of urea were then used to calculate the IgG avidity values.

Statistics. Statistical analysis was performed with Graphpad Prism (La Jolla, CA). Data sets were analyzed using one-way analysis of variance (ANOVA). p-Values less than 0.05 were considered statistically significant. All values are reported as mean ± s.e.m.
ICMV technology for vaccines.

REFERENCES

1. Demberg, T., and Robert-Guroff, M. (2012) Controlling the HIV/AIDS epidemic: current status and global challenges. *Front Immunol* 3, 250.

2. Harrison, S. C. (2008) Viral membrane fusion. *Nat. Struct. Mol. Biol.* 15, 690–696.

3. Clapham, P. R., and Lu, S. (2011) Vaccinology: precisely tuned antibodies nab HIV. *Nature* 477, 416–7.

4. Blumenthal, R., Durell, S., and Viard, M. (2012) HIV entry and envelope glycoprotein-mediated fusion. *J. Biol. Chem.* 287, 40841–9.

5. van Gils, M. J., and Sanders, R. W. (2013) Broadly neutralizing antibodies against HIV-1: templates for a vaccine. *Virology* 435, 46–56.

6. Gilbert, P., Wang, M., Winr, T., Petropoulos, C., Gurwitz, M., Sinangil, F., D’Souza, P., Rodriguez-Chavez, I. R., DeCamp, A., Giganti, M., Berman, P. W., Self, S. G., and Montefiori, D. C. (2010) Magnitude and breadth of a nonprotective neutralizing antibody response in an efficacy trial of a candidate HIV-1 gp120 vaccine. *J. Infect. Dis.* 202, 595–605.

7. Burton, D. R., Desrosiers, R. C., Doms, R. W., Koff, W. C., Kwong, P. D., Moe, J. P., Nabel, G. J., sodroski, J., Wilson, I. A., and Wyatt, R. T. (2004) HIV vaccine design and the neutralizing antibody problem. *Nat. Immunol.* 5, 233–6.

8. Koval, J. M., Nkola, J. P., Peng, H., Cheung, A., Perry, J., Miller, C. A., Seaman, M. S., Barouch, D. H., and Chen, B. (2012) HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. *Proc. Natl. Acad. Sci. U. S. A.* 109, 12111–6.

9. Walker, L. M., Phogat, S. K., Chan-Hui, P.-Y., Wagner, D., Phung, P., Goss, J. L., Winr, T., Simek, M. D., Fling, S., Mitcham, J. L., Lehrman, J. K., Priddy, F. H., Olsen, O. A., Frey, S. M., Hammond, P. W., Investigators, P. G. P., Kaminsky, S., Zamb, T., Moyle, M., Koff, W. C., Poignard, P., and Burton, D. R. (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. *Science* 326, 285–9.

10. Bedford, S., Schulte, N., Kochs, M., Kirschner, M., Barnes, K., Franti, M., Michael, E., Ketas, T., Sanders, R. W., Maddon, P. J., Olson, W. C., and Moore, J. P. (2005) Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type I. *J. Virol.* 79, 8812–27.

11. Earl, P. L., Sugiura, W., Montefiori, D. C., Broder, C. C., Lee, S. A., Wild, C., Lifson, J., and Irvine, D. J. (2012) Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. *Proc. Natl. Acad. Sci. U. S. A.* 109, 1080–5.

12. Henriken-Lacey, M., Christensen, D., Bramwell, V. W., Lindenstrom, T., Agger, E. M., Andersen, P., and Perrie, Y. (2011) Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), Sn-[N(N,N'-Dimethylaminoethane)[carbonyl] cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. *Mol. Pharm.* 8, 153–61.

13. Bachmann, M. F., and Jennings, G. T. (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. *Nat. Rev. Immunol.* 10, 787–796.

14. Nkola, J. P., Peng, H., Settembre, E. C., Freeman, M., Grandpre, L. E., Devoy, C., Lynch, D. M., La Porte, A., Simmons, N. L., Bradley, R., Montefiori, D. C., Seaman, M. S., Chen, B., and Barouch, D. H. (2010) Breadth of neutralizing antibodies elicited by stable, homogeneous clade A and clade C HIV-1 gp140 envelope trimers in guinea pigs. *J. Virol.* 84, 3270–9.

15. Yang, X., Wyatt, R., and Sodroski, J. (2001) Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. *J. Virol.* 75, 1165.

16. Perrie, Y., Mohammed, A. R., Kirby, D. J., McNeil, S. E., and Bramwell, V. W. (2008) Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. *Int. J. Pharm.* 364, 272–80.

17. Irvine, D. J., Swartz, M. A., and Szeto, G. L. (2013) Engineering synthetic vaccines using cues from natural immunity. *Nat. Mater.* 12, 978–90.

18. Shen, H., Ackerman, A. L., Cody, V., Giodini, A., Hinson, E. R., Cresswell, P., Edelson, R. L, Saltzman, W. M., and Hanlon, D. J. (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. *Immunity* 117, 78–88.

19. Moon, J. J., Suh, H., Li, A. V., Ockenhouse, C. F., Yadava, A., and Irvine, D. J. (2012) Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Th1 cells and promote germinal center induction. *Proc. Natl. Acad. Sci. U. S. A.* 109, 1080–5.

20. Henriksen-Lacey, M., Christensen, D., Bramwell, V. W., Lindenstrom, T., Agger, E. M., Andersen, P., and Perrie, Y. (2011) Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), Sn-[N(N,N'-Dimethylaminoethane)[carbonyl] cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. *Mol. Pharm.* 8, 153–61.
(29) van Broekhoven, C. L., and Altin, J. G. (2005) The novel chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) promotes stable binding of His-tagged proteins to liposomal membranes: potent anti-tumor responses induced by simultaneously targeting antigen, cytokine and costimulatory signals to T cells. Biochim. Biophys. Acta 1716, 104–16.

(30) Watson, D. S., Platt, V. M., Cao, L., Venditto, V. J., and Szoka, F. C., Jr. (2011) Antibody response to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrilotriacetic acid in mice. Clin. Vaccine Immunol. 18, 289–97.

(31) Kwong, P. D., Mascola, J. R., and Nabel, G. J. (2011) Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harbor Perspect. Med. 1, a007278.

(32) Gonzalez, N., Alvarez, A., and Alcami, J. (2010) Broadly neutralizing antibodies and their significance for HIV-1 vaccines. Current HIV Research 8, 602–12.

(33) Pantophlet, R., and Burton, D. R. (2006) GP120: target for neutralizing HIV-1 antibodies. Annu. Rev. Immunol. 24, 739–69.

(34) Huang, J., Ofek, G., Laub, L., Louder, M. K., Doria-Rose, N. A., Longo, N. S., Imamichi, H., Bailer, R. T., Chakrabarti, B., Sharma, S. K., Alam, S. M., Wang, T., Yang, Y., Zhang, B., Migueles, S. A., Wyatt, R., Haynes, B. F., Kwong, P. D., Mascola, J. R., and Connors, M. (2012) Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–12.

(35) Beddows, S., Franti, M., Dey, A. K., Kirschner, M., Iyer, S. P., Fisch, D. C., Ketas, T., Yuste, E., Destrosiers, R. C., Klasse, P. J., Maddon, P. J., Olson, W. C., and Moore, J. P. (2007) A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120. Virology 360, 329–40.

(36) Kim, M., Qiao, Z. S., Montefiori, D. C., Haynes, B. F., Reinhzer, E. L., and Liao, H. X. (2005) Comparison of HIV Type 1 ADA gp120 monomers versus gp140 trimers as immunogens for the induction of neutralizing antibodies. AIDS Res. Hum. Retroviruses 21, 58–67.

(37) Reddy, S. T., van der Vlies, A. J., Simeoni, E., Angeli, V., Randolph, G. J., O’Neil, C. P., Lee, L. K., Swartz, M. A., and Hubbell, J. A. (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–64.

(38) Masek, J., Bartheldyova, E., Turanek-Knotigova, P., Skrabalova, M., Korvasova, Z., Plockova, J., Koudelka, S., Skodova, P., Kulich, P., Krupek, M., Zachova, K., Czernekova, L., Horynova, M., Kratochvilova, I., Miller, A. D., Zykova, D., Michalek, J., Vrbkova, J., Sebela, M., Ledvina, M., Raska, M., and Turanek, J. (2011) Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: preparation, structural study and immune response towards rEap90. J. Controlled Release 151, 193–201.

(39) Mata-Haro, V., Celis, C., Martin, M., Chilton, P. M., Casella, C. R., and Mitchell, T. C. (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316, 1628–32.

(40) Guy, B. (2007) The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol. 5, 505–17.