On the one-dimensional family of Riemann surfaces of genus q with $4q$ automorphisms

Sebastián Reyes-Carocca

Departamento de Matemática y Estadística
Universidad de La Frontera
Temuco, Chile

AMS Sectional Meeting
Special Session Automorphisms of Riemann Surfaces and Related Topics

Partially supported by Postdoctoral Fondecyt Grant 3160002, Redes Etapa Inicial Grant REDI-170071 and Anillo ACT1415 Pia-Conicyt Grant

Portland, United States
April, 14-15, 2018
Automorphism groups

Automorphism groups of Riemann surfaces have been extensively studied, going back to Wiman, Klein and Hurwitz, among others.

Let S denote a compact Riemann surface of genus g. Classically known:

- $|\text{Aut}(S)| \leq 84(g - 1)$.
- In the abelian case $|\text{Aut}(S)| \leq 4g + 4$.
- In the cyclic case $|\text{Aut}(S)| \leq 4g + 2$.

General problem: to understand the extent to which the order of the full automorphism group determines the Riemann surface.

Examples:
1. Hurwitz curves are $(2, 3, 7)$-branched coverings of the projective line.
2. ∃! Riemann surface genus g admitting an automorphism of order $4g$.
3. ∃! Riemann surface genus g with $8(g + 1)$ automorphisms.
Automorphism groups
A very special family

Theorem (Bujalance-Costa-Izquierdo, 2017). Assume

\[g \neq 3, 6, 12, 15, 30. \]

The Riemann surfaces of genus \(g \) admitting **exactly** \(4g \) automorphisms form an equisymmetric one-dimensional family, denoted by \(\mathcal{F}_g \).

Moreover, if \(S \) is a Riemann surface in \(\mathcal{F}_g \) then

- its full automorphism group \(G \) is isomorphic to \(\mathbb{D}_{2q} \), and
- the corresponding quotient \(S/G \) has genus zero.

Remark: This is the second possible largest order (next talk!).
Let $q \geq 5$ be a prime number. For each Riemann surface S in \mathcal{F}_q we study:

- an algebraic description of S and of its automorphisms,
- a decomposition of the Jacobian variety JS,
- the possible fields of definitions of S and of JS, and
- the Shimura family associated to S.

Let S denote a Riemann surface in the family \mathcal{F}_q and let

$$G = \langle r, s : r^{2q} = s^2 = (sr)^2 = 1 \rangle \cong \mathbf{D}_{2q}$$

denote its full automorphism group.
Algebraic description

The quotient Riemann surface S/G has genus zero, and the associated $4q$-fold branched regular covering map

$$
\pi_G : S \to S/G \cong \mathbb{P}^1
$$

ramifies over four values; three ramification values marked with 2 and one ramification value marked with $2q$.

Assumption. The branch values are $\infty, 0, 1$ marked with 2 and $\lambda \in \mathbb{C} - \{0, 1\}$ marked with $2q$.

Let

$$
\Omega := \mathbb{C} - \{0, \pm 1, \frac{1}{2}, 2, \gamma, \gamma^2\} \text{ where } \gamma^3 = -1
$$

denote the set of *admissible* parameters.
Algebraic description

Then \mathcal{F}_q can be understood by means of an everywhere maximal rank holomorphic map

$$h : \mathcal{F}_q \rightarrow \Omega$$

in such a way that the fibers of h agree with the Riemann surfaces in \mathcal{F}_q. We denote by S_λ the Riemann surface $h^{-1}(\lambda)$.

Theorem. Let $\lambda \in \Omega$. Then S_λ is isomorphic to the Riemann surface defined by the normalization of the hyperelliptic algebraic curve

$$y^2 = x(x^{2q} + 2\frac{1+\lambda}{1-\lambda}x^q + 1).$$

The full automorphism group of S_λ is generated by the transformations

$$r(x, y) = (\omega_q x, \omega_{2q} y) \quad \text{and} \quad s(x, y) = \left(\frac{1}{x}, \frac{y}{x^{q+1}}\right)$$

where $\omega_t = \exp\left(\frac{2\pi i}{t}\right)$.
The Jacobian variety

It is well-known that the dihedral group

\[G = \langle r, s : r^{2q} = s^2 = (sr)^2 = 1 \rangle \]

has, up to equivalence, 4 complex irreducible representations of degree one; namely,

- \(V_1 : \begin{cases} r \to 1 \\ s \to 1 \end{cases} \)
- \(V_2 : \begin{cases} r \to 1 \\ s \to -1 \end{cases} \)
- \(V_3 : \begin{cases} r \to -1 \\ s \to 1 \end{cases} \)
- \(V_4 : \begin{cases} r \to -1 \\ s \to -1 \end{cases} \)

and \(q - 1 \) complex irreducible representations of degree two; namely,

- \(V_{k+4} : r \mapsto \text{diag}(\omega_{2q}^k, \bar{\omega}_{2q}^k), \quad s \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \)

for \(1 \leq k \leq q - 1 \) and \(\omega_t = \exp(\frac{2\pi i}{t}) \).
The Jacobian variety

Lemma.

(1) The rational irreducible representations of \(G \), up to equivalence, are:

(a) four of degree 1; namely \(W_i := V_i \) for \(1 \leq i \leq 4 \) and

(b) two of degree \(q - 1 \); namely

\[
W_5 = \bigoplus_{\sigma \in G_5} V_5^\sigma \quad \text{and} \quad W_6 = \bigoplus_{\sigma \in G_6} V_6^\sigma
\]

where \(G_5 \) and \(G_6 \) denote the Galois group associated to the extensions \(\mathbb{Q} \leq \mathbb{Q}(\omega_2 q + \bar{\omega}_2 q) \) and \(\mathbb{Q} \leq \mathbb{Q}(\omega_q + \bar{\omega}_q) \) respectively, and \(\omega_t = \exp(\frac{2\pi i t}{t}) \).

(2) The group algebra decomposition of \(J S_\lambda \) with respect to \(G \) is

\[
J S_\lambda \sim_G B_1 \times B_2 \times B_3 \times B_4 \times B_5^2 \times B_6^2
\]

where \(B_j \) stands for the factor associated to the representation \(W_j \).
The Jacobian variety

To compute the dimension of the factors B_j (which may be zero) we need to choose a generating vector representing the action of G on S_λ.

Lemma. Let σ be a generating vector of G of type $(2, 2, 2, 2q)$. Then there exist integers e_1, e_2 with $e_1 - e_2$ even and not congruent to 0 modulo $2q$, such that

$$ \sigma = (s^{r_{e_1}}, s^{r_{e_2}}, r^q, r^{e_1-e_2+q}) $$

up to the action of the symmetric group S_3 over the first three entries.

Remark. The family F_q is equisymmetric: every generating vector of G of the desired type can be chosen to represent the action of G on S_λ.
The Jacobian variety

Problem. To analyze how such a choice changes the dimension of the factors arising in the group algebra decomposition of JS_{λ}.

Definition. Two generating vectors σ_1 and σ_2 are termed essentially equal with respect to the action of G on S_{λ} if

$$\dim_{\tau_1}(B_j) = \dim_{\tau_2}(B_j)$$

for all j, where τ_i is the geometric signature associated to σ_i.

Lemma. Each generating vector of G of type $(2, 2, 2, 2q)$ is essentially equal to

$$\sigma_0 = (s, sr^{-2}, rq, rq^{+2}) \quad \text{or to} \quad \sigma_1 = (sr, sr^{-1}, rq, rq^{+2}).$$
The Jacobian variety

Proposition. Let \(\lambda \in \Omega \), and consider the group algebra decomposition of \(J_{S_{\lambda}} \) with respect to \(G \)

\[
J_{S_{\lambda}} \sim_{G} B_1 \times B_2 \times B_3 \times B_4 \times B_5^2 \times B_6^2.
\]

If \(\tau_0 \) denotes the geometric signature associated to \(\sigma_0 \), then

\[
\dim_{\tau_0}(B_j) = \begin{cases}
0 & \text{if } j = 0, 1, 2, 3, 6 \\
1 & \text{if } j = 4 \\
\frac{q-1}{2} & \text{if } j = 5
\end{cases}
\]

If \(\tau_1 \) denotes the geometric signature associated to \(\sigma_1 \), then

\[
\dim_{\tau_0}(B_j) = \begin{cases}
0 & \text{if } j = 0, 1, 2, 4, 6 \\
1 & \text{if } j = 3 \\
\frac{q-1}{2} & \text{if } j = 5
\end{cases}
\]

In particular, \(J_{S_{\lambda}} \) contains an elliptic curve.
The Jacobian variety

Theorem. Let $\lambda \in \Omega$. The group algebra decomposition of JS_λ with respect to G does not depend on the choice of the generating vector.

Proof We only need to compare the decompositions associated to σ_0 and σ_1. These decompositions are

$$JS_\lambda \sim_{G,\sigma_0} B_4 \times B_5^2 \quad \text{and} \quad JS_\lambda \sim_{G,\sigma_1} B_3 \times B_5^2$$

respectively, showing that B_3 and B_4 are isogenous. We claim that, in addition, B_4 and B_5 are equal: the outer automorphism Φ of G

$$r \mapsto r, \quad s \mapsto sr$$

identifies σ_0 and σ_1 and identifies W_3 and W_4.

12 / 27
The Jacobian variety

Remark The independence of the group algebra decomposition on the choice of the generating vector is not new: it was

1. noticed by Rojas when she considered the Weyl group $\mathbb{Z}_2^3 \rtimes S_3$ acting on a Riemann surface of genus three with signature $(2, 4, 6)$.

2. noticed by Izquierdo, Jiménez and Rojas when they studied a two-dimensional family of Riemann surfaces of genus $2n - 1$ with action of D_{2n} with signature $(2, 2, 2, 2, n)$.

The existence of outer automorphisms of the group is the key ingredient... however it has not been proved a general result on this respect!!

From now on, we assume the action of G on S_λ to be determined by the generating vector σ_0 and

$$JS_\lambda \sim_G B_4 \times B_5^2.$$.
The Jacobian variety

Theorem. Let \(\lambda \in \Omega \). Consider the subgroups

\[
H_4 = \langle r^{-2}, sr^{-1} \rangle \quad \text{and} \quad H_5 = \langle s \rangle
\]

of \(G \), and the quotient Riemann surfaces \(E_\lambda \) and \(C_\lambda \) given by the action of \(H_4 \) and of \(H_5 \) on \(S_\lambda \), respectively. Then

\[
B_4 \sim JE_\lambda \quad \text{and} \quad B_5 \sim JC_\lambda.
\]

In particular, \(JS_\lambda \) decomposes into a product of Jacobians as follows:

\[
JS_\lambda \sim_G JE_\lambda \times JC_\lambda^2.
\]

Remark. \(C_\lambda \) is an irregular \(2q \)-gonal Riemann surface of genus \(\frac{q-1}{2} \). The elliptic curve \(E_\lambda \) is algebraically represented by

\[
y^2 = x(x - 1)(x - \lambda).
\]
Fields of definition

Let k be a subfield of \mathbb{C} and let X be an algebraic variety.

Definition. The field k is a field of definition of X if there exists $Y \cong X$ such that Y is the zero locus of polynomials with coefficients in k.

Interesting fields of definition are:

1. the field of the reals,
2. the algebraic closure of \mathbb{Q}, and
3. the field of moduli of X.

Real Riemann surfaces An algebraic variety is called *real* if it can be defined over the field of the real numbers; equivalently, if it admits an anticonformal involution.

Remark. $\mathcal{F}_q \subset \mathcal{M}_q$ admits an anticonformal involution whose fixed point set consists of points representing real Riemann surfaces.
Fields of definition

Theorem. Let $\lambda \in \Omega$. Then the following statements are equivalent:

(a) S_λ is a real Riemann surface.
(b) JS_λ is a real algebraic variety.
(c) $\lambda \in \{\bar{\lambda}, 1 - \bar{\lambda}, 1/\bar{\lambda}, \bar{\lambda}/(1 - \bar{\lambda})\}$

Remark. The real Riemann surfaces in the family \mathcal{F}_q form three one-real-dimensional arcs.

To compactify the union of these arcs in the Deligne-Mumford compactification of \mathcal{M}_g, it is enough to add to \mathcal{F}_q three points:

1. two nodal Riemann surfaces, and
2. the *Wiman surface* of type II
Fields of definition

We can recover part of these results:

The Riemann surfaces S_{λ_1} and S_{λ_2} are isomorphic if and only if $\lambda_2 = T(\lambda_1)$ for some $T \in \mathbb{G} = \langle z \mapsto \frac{1}{z}, z \mapsto \frac{1}{1-z} \rangle \cong S_3$. \hspace{1cm} (1)

Observe that for the exceptional values $-1, \frac{1}{2}, 2, \gamma$ and γ^2 where $\gamma^3 = -1$, the Riemann surface S_{λ} has more than $4q$ automorphisms.

Thus, the family \mathcal{F}_q is isomorphic to the quotient of the parameter space

$$\Omega = \mathbb{C} - \{0, \pm1, \frac{1}{2}, 2, \gamma, \gamma^2\}$$

up to the action of \mathbb{G}. Namely: $\Omega \rightarrow \Omega/\mathbb{G} \cong \mathcal{F}_q \cong \mathbb{C} - \{0, 1\}$.
Fields of definition

The complex numbers $\lambda \in \Omega$ representing Riemann surfaces S_λ which are real can be represented in the diagram below; the colored red points represent Riemann surfaces with more than $4q$ automorphisms.
Fields of definition

A fundamental region for the action of \mathbb{G} on Ω is given by

$$\{z \in \mathbb{C} : |z| < 1, \text{Re}(z) < \frac{1}{2}\}$$

and, consequently, the subsets of \mathcal{F}_q given by

$$\Pi(\{e^{i\theta} : \pi < \theta < \frac{\pi}{2}\}), \quad \Pi(\{z : |z - 1| = 1, |z| < 1\}) \quad \text{and} \quad \Pi([1, 0])$$

are the three arcs in \mathcal{F}_q (denoted by a_2, a_1 and b respectively)

The limit point of \mathcal{F}_q which connects the arcs a_2 and b correspond to S_{-1} and therefore can be algebraically described by

$$y^2 = x(x^{2q} + 1).$$
Fields of definition

The map \((x, y) \mapsto (-\omega_{4q} x, \omega_{8q} y)\) where \(\omega_t = \exp(\frac{2\pi i}{t})\), induces an isomorphism between \(S_{-1}\) and the curve

\[y^2 = x(x^{2q} - 1); \]

this is the Wiman surface of type II.

Arithmetic Riemann surfaces. An algebraic variety is called *arithmetic* if it can be defined over a number field.

Equivalence. (Belyi’s theorem)

1. A Riemann surface \(S\) is arithmetic.
2. \(S\) admits a non-constant meromorphic function with three critical values.

As in the case of real Riemann surfaces, arithmetic Riemann surfaces among the Riemann surfaces in the family \(\mathcal{F}_q\) can be easily identified.
Fields of definition

Theorem. Let $\lambda \in \Omega$. Then the following statements are equivalent:

(a) S_λ is an arithmetic Riemann surface.
(b) JS_λ is an arithmetic algebraic variety.
(c) λ is an algebraic complex number.

Corollary. Let $\lambda \in \Omega$ be an algebraic complex number. Then JS_λ is an arithmetic algebraic variety admitting a group algebra decomposition in which each factor is arithmetic as well.

Riemann surfaces defined over the field of moduli. The field of moduli $\mathcal{M}(S)$ of a compact Riemann surface S is by definition the fixed field of the group

$$
\mathbb{I}(S) = \{\sigma \in \text{Gal}(\mathbb{C}) : S^\sigma \cong S\}.
$$
Fields of definition

Proposition. Let $\lambda \in \Omega$. Then

$$\mathbb{Q}(j(\lambda)) \leq \mathcal{M}(S) \leq \mathbb{Q}(\lambda)$$

where j denotes the Legendre invariant function for elliptic curves.

- Weil: necessary conditions for S to admit its field of moduli as a field of definition.
- these conditions hold trivially if S does not have non-trivial automorphisms.
- Wolfart: if $S/\text{Aut}(S)$ is an orbifold with signature of type (a, b, c) then S can be defined over its field of moduli.
- Dèbes-Emsalem: there is a field of definition of S which is an extension of finite degree of its field of moduli.

By a result of Huggins follows directly that:

Proposition. The field of moduli of S_λ is a field of definition for S_λ.

Shimura family

Let S be a compact Riemann surface of genus $g \geq 2$, and let

$$JS = (\mathcal{H}^{1,0}(S, \mathbb{C}))^*/H_1(S, \mathbb{Z})$$

be its Jacobian variety.

After fixing a symplectic basis of $H_1(S, \mathbb{Z})$ we have:

1. a period matrix $(I_g Z_S)$ with $Z_S \in \mathcal{H}_g$ for JS, and
2. a rational representation of $L_S := \text{End}_\mathbb{Q}(JS) = \text{End}(JS) \otimes_{\mathbb{Z}} \mathbb{Q}$

If S is hyperelliptic, then the symplectic representation

$$\rho_r : G \to \text{Sp}(2g, \mathbb{Z})$$

of the automorphism group G of S induces an isomorphism

$$G \cong G := \{R \in \text{Sp}(2g, \mathbb{Z}) : R \cdot Z_S = Z_S\}.$$
We can now consider the complex submanifold of \mathcal{H}_g

$$\mathcal{H}_g(G) = \{ Z \in \mathcal{H}_g : R \cdot Z = Z \text{ for all } R \in G \}$$

consisting of those period matrices Z representing ppavs of dimension g admitting the given action of G. Clearly, $Z_S \in \mathcal{H}_g(G)$.

In the case of the action of D_{10} on the Riemann surfaces in family \mathcal{F}_5, we can be much more explicit.

Theorem. Consider the action of D_{10} with generating vector σ_0. There exists a three-dimensional family

$$\mathcal{A}_5(D_{10}) \subset \mathcal{A}_5$$

of principally polarized abelian varieties of dimension five admitting the given group action; it is given by the period matrices in \mathcal{H}_5 of the following form:
Shimura family

\[
\begin{pmatrix}
2(u+v+u) & -w-u & -2v & -v-w-u & -v+u \\
-w-u & -v-\frac{1}{2}w+\frac{5}{4}u & v-\frac{1}{2}u & w+\frac{1}{2}u & v-u \\
-2v & v-\frac{1}{2}u & u & v & w \\
-v-w-u & w+\frac{1}{2}u & v & u & -w \\
v+u & v-u & w & -w & 2(u-v-w)
\end{pmatrix}
\]

for complex numbers \(u, v\) and \(w\).
Furthermore, \(A_5(D_{10})\) contains the one-dimensional family \(F_5\).

The automorphism group \(G\) of \(S\) can be canonically seen as a subgroup of \(L_S\). Thus, the variety \(\mathcal{H}_g(G)\) contains the complex submanifold

\[\mathbb{H}(L_S) = \text{the Shimura domain of } S\]

whose points are matrices representing ppavs containing \(L_S\) in their endomorphism algebras (the Shimura family).

Proposition. Let \(\lambda \in \Omega\). The dimension of the Shimura family of each Riemann surface \(S_\lambda\) in \(F_q\) is \(\frac{q+1}{2}\).
Shimura family

Given a Riemann surface S, to provide an explicit description of the elements of $\mathbb{H}(L_S)$ seems to be a difficult task.

As a simple consequence of the previous theorem, we obtain:

Corollary. Each element of the Shimura family associated to every member of the family \mathcal{F}_5 admits a period matrix of the form

$$\begin{pmatrix}
2(u+v+u) & -w-u & -2v & -v-w-u & -v+u \\
-w-u & -v-\frac{1}{2}w+\frac{5}{4}u & v-\frac{1}{2}u & w+\frac{1}{2}u & v-u \\
-2v & v-\frac{1}{2}u & u & v & w \\
-v-w-u & w+\frac{1}{2}u & v & u & -w \\
-v+u & v-u & w & -w & 2(u-v-w)
\end{pmatrix}$$

for some $u, v, w \in \mathbb{C}$.

(2)
Thanks!