Random Apollonian Networks

Tao Zhou1,2, Gang Yan2, Pei-Ling Zhou2, Zhong-Qian Fu2, and Bing-Hong Wang1,2

1Nonlinear Science Center and Department of Modern Physics,
University of Science and Technology of China, Hefei Anhui, 230026, PR China
2Department of Electronic Science and Technology,
University of Science and Technology of China, Hefei Anhui, 230026, PR China

(Dated: March 23, 2022)

In this letter, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called Random Apollonian Networks (RANs) as they can be considered as a variation of Apollonian networks. We obtain the analytic result of power-law exponent $\gamma = 3$ and clustering coefficient $C = \frac{1}{36} - 36\ln\xi \approx 0.74$, which agree very well with the simulation results. We prove that the increasing tendency of average distance of RAN is a little slower than the logarithm of the number of nodes in RAN. Since many real-life networks are both scale-free and small-world, RANs may perform well in mimicking the reality. The epidemic spreading process is also studied, we find that the diseases spread slower in RANs than BA networks in the early stage of SI process, indicating that the large clustering coefficient may slow the spreading velocity especially in the outbreaks.

PACS numbers: 89.75.Hc, 64.60.Ak, 84.35.+i, 05.40.-a, 05.50.+q, 87.18.Sn

Recently, empirical studies indicate that the networks in various fields have some common characteristics, which inspires scientists to construct a general model. One of the most well-known models is Watts and Strogatz’s small-world network (WS network), which can be constructed by starting with a regular network and randomly moving one endpoint of each edge with probability p. Another significant one is Barabási and Albert’s scale-free network model (BA network). The BA model suggests that two main ingredients of self-organization of a network in a scale-free structure are growth and preferential attachment.

A few authors have demonstrated the use of pure mathematical objects and methods to construct scale-free networks. One interesting instance is the so-called integer networks, of which the nodes represent integers. Another related work is owed to Dorogovtsev and Mendes et al, in which the deterministic networks, named pseudofractals, are obtained by attachment aiming at edges. Here, we focus on the so-called Apollonian Networks (ANs) introduced by Andrade et al. The networks can be produced as follow: start with a triangle and then at each generation, inside each triangle, a node is added and linked to the three vertices. Doyle et. al. have studied the properties of ANs detailedly, and shown the degree distribution $p(k) \propto k^{-\gamma}$, average length $l \propto (ln N)^{\beta}$, where $\gamma = 1 + \frac{ln 3}{ln 2} \approx 2.585$, $\beta \approx 0.75$ and N is the order. In this letter, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called Random Apollonian Networks (RANs), since they can be considered as a variation of ANs.

RAN starts with a triangle containing three nodes marked as 1, 2 and 3. Then, at each time step, a triangle is randomly selected, and a new node is added inside it and linked to its three vertices. The sketch maps for the network growing process are shown in figure 1. Note that, after a new node is added, the number of triangles increases by 2. Therefore, we can immediately get that when the networks are of order N, the number of triangles are:

$$N_\triangle = 2(N - 3) + 1 = 2N - 5$$

Let N_\triangle^i denote the number of triangles containing the ith node, the probability that a newly added node will connect to the ith node is $N^i_\triangle / N_\triangle$. Apparently, except...
When N is sufficient large, $n(N, k)$ can be approximated as $Np(k)$, where $p(k)$ is the probability density function for the degree distribution. In terms of $p(k)$, the above equation can be rewritten as:

$$(N+1)p(k+1) = \frac{Nkp(k)}{N_\Delta} + Np(k+1) - \frac{N(k+1)p(k+1)}{N_\Delta}$$ \hspace{1cm} (3)$$

Using Equ.(1) and the expression $p(k+1) - p(k) = \frac{dp}{dk}$, we can get the continuous form of Equ.(3):

$$\frac{dp}{dk} + 3N^{-5}p(k) = 0$$ \hspace{1cm} (4)$$

This lead to $p(k) \propto k^{-\gamma}$ with $\gamma = (3N - 5)/N \approx 3$ for large N. Figure 2 shows the simulation results, which agree with the analytic one very well.

In succession, let us calculate the clustering coefficient of RANs. For an arbitrary node x, the clustering coefficient $C(x)$ is:

$$C(x) = \frac{2E(x)}{k(x)(k(x) - 1)}$$ \hspace{1cm} (5)$$

where $E(x)$ is the number of edges among node x’s neighbor-set $A(x)$, and $k(x) = |A(x)|$ is the degree of node x. The clustering coefficient C of the whole network is defined as the average of $C(x)$ over all nodes. At the very time when node x is added to the network, it is of degree 3 and $E(x) = 3$. After, if the degree of node x increases by one(i.e. a new node is added to be a neighbor of x), then $E(x)$ will increases by two since the newly added node will link to two of the neighbors of node x. Therefore, we can write down the expression of $E(x)$ in terms of $k(x)$: $E(x) = 3 + 2(k(x) - 3) = 2k(x) - 3$, which leads to:

$$C(x) = \frac{2(2k(x) - 3)}{k(x)(k(x) - 1)}$$ \hspace{1cm} (6)$$

Consequently, we have:

$$C = \frac{2}{N} \sum_{i=1}^{N} \frac{2k_i - 3}{k_i(k_i - 1)} = \frac{2}{N} \sum_{i=1}^{N} \left(\frac{3}{k_i} - \frac{1}{k_i - 1} \right)$$ \hspace{1cm} (7)$$

where k_i denotes the degree of the ith node. Rewrite $\sum_{i=1}^{N} f(k_i)$ in continuous form, we have:

$$C = 6 \int_{k_{min}}^{k_{max}} \frac{p(k)}{k} dk - 2 \int_{k_{min}}^{k_{max}} \frac{p(k)}{k - 1} dk$$ \hspace{1cm} (8)$$

where k_{min} and k_{max} denote the minimal and maximal degree in RAN, respectively. Note that $p(k) = \alpha k^{-\gamma}$ with $\gamma = 3$ and α a constant, one have:

$$C = 6\alpha \int_{k_{min}}^{k_{max}} k^{-4} dk - 2\alpha \int_{k_{min}}^{k_{max}} \frac{1}{k^3(k-1)} dk$$ \hspace{1cm} (9)$$

Using the normalization equation $\int_{k_{min}}^{k_{max}} p(k)dk = 1$ and the approximate condition that $k_{max} \gg k_{min} = 3$, we have $C = \frac{40}{3} - 361n_{\Delta}^3 \approx 0.74$.

Figure 3 shows the simulation results about the clustering coefficient of RAN, which agree very well with
Assume that the node \(N \) from a grows continuously into a single node \(i \), then we have the following Lemma: for any two nodes \(i \) and \(j \), each shortest path from \(i \) to \(j \) does not pass through any nodes \(k \) satisfying that \(k > \max\{i, j\} \). The proof is a routine exercise thus omitted here.

Using symbol \(d(i, j) \) to represent the distance between \(i \) and \(j \), the average distance of RANs can be approximated in terms of \(\sigma(N) \) as:

\[
\sigma(N) = \sum_{1 \leq i < j \leq N} d(i, j)
\]

According to the lemma, newly added node will not affect the distance between old nodes. Hence we have:

\[
\sigma(N + 1) = \sigma(N) + \sum_{i=1}^{N} d(i, N + 1)
\]

(10)

Assume that the node \(N + 1 \) is added into the triangle \(\triangle y_1y_2y_3 \), then the Eqn.(10) can be rewritten as:

\[
\sigma(N + 1) = \sigma(N) + \sum_{i=1}^{N} (D(i, y) + 1)
\]

(11)

where \(D(i, y) = \min\{d(i, y_1), d(i, y_2), d(i, y_3)\} \). Constrict \(\triangle y_1y_2y_3 \) continuously into a single node \(y \), then we have

\[
D(i, y) = d(i, y). \quad \text{Since } d(y_1, y) = d(y_2, y) = d(y_3, y) = 0, \quad \text{the Eqn.(11) can be rewritten as:}
\]

\[
\sigma(N + 1) = \sigma(N) + \sum_{i \in \Gamma} d(i, y)
\]

(12)

where \(\Gamma = \{1, 2, \cdots, N\} - \{y_1, y_2, y_3\} \) is a node set with cardinality \(N - 3 \). The sum \(\sum_{i \in \Gamma} d(i, y) \) can be considered as the total distance from one node \(y \) to all the other nodes in RAN with order \(N - 2 \). In a rough version, the sum \(\sum_{i \in \Gamma} d(i, y) \) is approximated in terms of \(L(N - 2) \):

\[
\sum_{i \in \Gamma} d(i, y) \approx (N - 3)L(N - 2)
\]

(13)

Note that, the average distance \(L(N) \) increases monotonously with \(N \), it is clear that:

\[
(N - 3)L(N - 2) = \frac{2\sigma(N - 2)}{n - 2} < \frac{2\sigma(N)}{N}
\]

(14)

Combining Eqns.(12), (13) and (14), one can obtain the inequality:

\[
\sigma(N + 1) < \sigma(N) + N + \frac{2\sigma(N)}{N}
\]

(15)

Consider (15) as an equation, then the increasing tendency of \(\sigma(N) \) is determined by the equation:

\[
\frac{d\sigma(N)}{dN} = N + \frac{2\sigma(N)}{N}
\]

(16)

This equation leads to

\[
\sigma(N) = N^2\ln N + H
\]

(17)

where \(H \) is a constant. As \(\sigma(N) \sim N^2L(N) \), we have \(L(N) \sim \ln N \). Which should be pay attention to, since (15) is an inequality indeed, the precise increasing tendency of \(L \) may be a little slower than \(\ln N \).

As we mentioned above, close to many real-life networks, random Apollonian networks are both scale-free and small-world. Therefore, it is worthwhile to investigate the processes taking place upon RAN and directly compare these results with just small-world and just scale-free networks. One widely studied process is the epidemic spreading process\[10\] and for the sake of protecting networks and finding optimal strategies for the deployment of immunization resources, it is of practical importance to study the dynamical evolution of the outbreaks in\[11, 12\]. Numerical simulations aiming at BA, NW\[13\] and RAN are shown in figure 5 with the process and the conception of density and velocity all the same as previous studies\[11, 12\]. The result that diseases spread more quickly in RAN and BA networks than in NW networks is easy to be understood as the well-known conclusion: boarder degree distribution will speed up the epidemic spreading process\[10\].

Why the diseases spread more quickly in BA networks than RAN is a very interesting question. We argue...
that the larger clustering coefficient may slow down the spreading process especially in the outbreaks. Remove an arbitrary edge \(e(x, y)\) from quondam network, then, the distance between \(x\) and \(y\) will increase as \(d'(x, y) > 1\) (if the removal of \(e\) makes \(x\) and \(y\) disconnected, then we set \(d'(x, y) = N\). The quantity \(d'(x, y)\) can be considered as edge \(e\)'s score \(s(e) = d'(x, y) \geq 2\), denoting the number of edges the diseases must pass through from \(x\) to \(y\) or form \(y\) to \(x\) if they do not pass across \(e\). If \(s(e)\) is small, then \(e\) only plays a local role in the spreading process, else when \(s(e)\) is large, \(e\) is of global importance. For each edge \(e\), if it does some contribution to clustering coefficient, it must be contained in at least one triangle and \(s(e) = 2\). Therefore, networks of larger clustering coefficient have more local edges. RANs and BA networks are two extreme cases of scale-free networks. In RANs, all the edges are of score 2; while in BA networks, almost all the edges are of score larger than 2 because the clustering coefficient of BA networks will decay to zero quickly as \(N\) increases. Consequently, diseases spread more quickly in BA networks than RAN. The above explanation is qualitative and rough, to study the process upon networks with tunable clustering coefficient\(^{[16]}\) may be useful, which will be the future work.

In respect that the RANs are of very large clustering coefficient and very small average distance, they are not only scale-free, but also small-world. Since many real-life networks are both scale-free and small-world, RAN may perform better in mimicking reality than WS and BA networks. The epidemic spreading process is also studied, in which the diseases spread slower in RAN than BA networks during the outbreaks, indicating that the large clustering coefficient may slow the spreading velocity especially in the outbreaks. This numerical study suggests that the clustering structure may affect the dynamical behavior upon networks much. Further more, many real-life networks are planar networks by reason of technical or natural requirements, such as layout of printed circuits, river networks upon the earth’s surface, vas networks clinging to cutis, and so forth. Since the number of edges in RAN is equal to \(3N - 6\), RAN are maximal planar networks\(^{[17]}\), which are possibly of particular practicability for layout of printed circuits and so on.

This work has been partially supported by the National Natural Science Foundation of China(No. 70171053, 70271070, 70471033 and 10472116), the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP No.20020358009) and the Foundation for Graduate Students of University of Science and Technology of China under Grant No. KD200408.

\[\text{FIG. 5: The left and right plots show average density of infected individuals and spreading velocity versus time with } N = 10000 \text{ and average degree } \langle k \rangle = 6 \text{ fixed. The black, red and blue curves correspond to the case of BA, RAN and NW networks respectively. The NW networks are of } z = 1 \text{ and } \phi = 4 \times 10^{-4}, \text{ thus } (k) \approx 2z + \phi N = 6 \text{ (see also the accurate definitions of } z \text{ and } \phi \text{ in reference}\[14\]). \text{ The spreading rate is } \lambda = 0.01. \text{ All the data are averaged over } 10^3 \text{ independent runs. The spreading velocity reaches a peak quickly. Before the peak-time, the spreading velocities of the three kinds of networks satisfy the inequality } v_{inf}^BA > v_{inf}^RAN > v_{inf}^NW.\]

\[\begin{align*}
1. & \text{ R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47(2002); S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079(2002); M. E. J. Newman, SIAM Review 45, 167(2003).} \\
2. & \text{ D. J. Watts and S. H. Strogatz, Nature 393, 440(1998).} \\
3. & \text{ A.-L. Barabási and R. Albert, Science 286, 509(1999).} \\
4. & \text{ S. N. Dorogovtsev, et. al. Phys. Rev. E 63, 062101(2001); Phys. Rev. E 65, 066122(2002).} \\
5. & \text{ T. Zhou, et. al. arXiv: cond-mat/0405258} \\
6. & \text{ J. S. Andrade Jr. et. al. Phys. Rev. Lett. 94, 018702(2005); arXiv: cond-mat/0411364} \\
7. & \text{ J. P. K. Doye and C. P. Massen, Phys. Rev E 71, 016128(2005).} \\
8. & \text{ In this paper, the terminology “order” means the number of nodes in network, which is also called network size in some other papers.} \\
9. & \text{ K. Klemm and V. M. Eguíluz, Phys. Rev. E 65, 036123(2002).} \\
10. & \text{ R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200(2001); Phys. Rev. E 63, 066117(2001).} \\
11. & \text{ M. Barthélemy, A. Barrat, R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 92, 178701(2004).} \\
12. & \text{ G. Yan, T. Zhou, J. Wang, Z.-Q. Fu and B.-H. Wang, Chin. Phys. Lett. 22, 510(2005).} \\
13. & \text{ M. E. J. Newman and D. J. Watts, Phys. Lett. A263, 341(1999); We use NW networks as a paradigm of small-world networks by way of keeping the networks connected.} \\
14. & \text{ M. E. J. Newman and D. J. Watts, Phys. Rev. E 60, 7332(1999).} \\
15. & \text{ The symbol } z \text{ and } \phi \text{ denote the average coordination number and the adding probability in generating NW networks, respectively.} \\
16. & \text{ P. Holme and B. J. Kim, Phys. Rev. E 65, 066109(2002).} \\
17. & \text{ B. Bollobás, Modern Graph Theory (Springer-Verlag Publishers, New York, 1998).}
\]