Plutonium and Minor Actinides Utilization in FUJI-U1 Molten Salt Reactor

Cici Wulandari1, Abdul Waris2,*, Sidik Permana2, Syeilendra Pramuditya2

1Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132, INDONESIA
2Nuclear Physics & Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132, INDONESIA

*E-mail: awaris@fi.itb.ac.id

Abstract. One type of standard Molten Salt Reactor (MSR) uses graphite as moderator and LiF-BeF\textsubscript{2}-ThF\textsubscript{4}-233UF\textsubscript{4} as fuel. Recycling of spent nuclear such as plutonium and minor actinides are considered as one of the effective ways to handle the spent nuclear fuel. Plutonium and minor actinides utilization in FUJI-U1 type of MSR have been evaluated. MSR FUJI U1 is one of small MSR which was designed by Japan. Neutronic calculation was performed using PIJ modules of SRAC 2006 code with JENDL 4.0 as nuclear data library. Several neutronic parameters, such as effective multiplication factor, conversion ratio, and neutron spectrum were evaluated. Even though there are several types of plutonium, in this study, only reactor grade plutonium was taken into account.

Keywords: MSR, FUJI-U1, Plutonium, Minor Actinides, SRAC 2006, JENDL 4.0

1. Introduction

Molten Salt Reactor (MSR) is one of the six Generation IV nuclear reactor systems which is designed by several countries. The first experimental of MSR has been developed by Oak Ridge National Laboratory (ORNL) in the 1950s. They built the Molten Salt Reactor Experiment (MSRE) and Molten Salt Breeder Reactor (MSBR) with the output of 7.5 MWTh and 1000 MWTh, respectively\cite{1}. Based on these reactor designs, the MSR research had been spreading over the world. Recently, MSR has received enormous attention owing to its advantages, such as outstanding safety, easy handling of nuclear fuel spent, and can produce the hydrogen at high temperature (~650\degree C)\cite{2}\cite{3}.

FUJI-U1, a small MSR that has developed by Japan, uses graphite as a moderator which will define the reactor lifetime \cite{4}. The molten salt is used as a fuel salt which consists of thorium (232Th)
and uranium (233U) as fertile and fissile nuclides, respectively[4]. Several types of plutonium such as reactor grade plutonium, weapon grade plutonium, and super grade plutonium can be used as an alternative fuel salt [5]. It is worth to note that the reactor grade plutonium is a spent fuel of other reactors, especially Light Water Reactors (LWRs). Despite being a spent nuclear reactor, this plutonium still has a comparable fissile nuclide concentration with uranium. Various of minor actinides which are the spent nuclear reactor also can be used as an alternative fuel salt.

Our group has been studied the utilization of reactor grade plutonium and minor actinides as an alternative fuel salt on the MSR reactors e.g., minifuji reactor and small molten salt reactor [6][7]. To best of our knowledge, there is no report regarding the reactor grade plutonium and minor actinides as an alternative fuel salt on the MSR FUJI-U1. This scheme is worth to study since this scheme also reduces the spent nuclear fuel simultaneously.

In this paper, we used this scheme and analyzed the neutronic parameters such as multiplication factor, conversion ratio and neutron spectrum in MSR FUJI-U1 using plutonium and minor actinides as the main fuel. The neutronic calculation was performed using PIJ (the collision probability method) module in SRAC 2006 with JENDL 4.0 as a nuclear data library [8].

2. Methodology

The specification of FUJI-U1 design, Japan is shown in Table 1. The electric output and thermal output of the reactor are 200MWe and 450MWt, respectively. The lifetime of the reactor is 20 years, this based on the lifetime of graphite as a moderator [2, 9]. This reactor has homogenous molten salt as a fuel in the active core. The initial composition of molten salt in the reactor is 71.76% of LiF, 16% of BeF$_2$, 12% of ThF$_4$, and 0.24% of PuMAF$_4$. The three variations of fuel volume fraction which is presented in Table 2 were investigated. The fuel volume fraction of fuel B is less than fuel A and C, thus the moderator which used in fuel B is higher than others.

Table 1. Specification of FUJI-U1 design [4]

Parameters	Specification
Thermal Output	450MWt
Thermal Efficiency	44.40%
Reactor Vessel	
- Diameter / Height (inner)	5.40 m/5.34 m
- Thickness	0.05 m
Core	
- Diameter / Height	4.72 m/4.66 m
- Fuel volume fraction (av.)	36%
Fuel path / Duct	
- Width	0.04 m
- Fuel volume fraction	90vol%
Reflector	
- Thickness	0.30 m
- Fuel volume fraction	0.5 vol%
Power density	5.5 MW/m3
Multiplication factor	ca. 1.01
Table 2. Fuel volume fraction [10]

Type of fuel	Fuel A	Fuel B	Fuel C
Fuel volume fraction	0.39	0.27	0.45

The criticality of the reactor was calculated in varying the concentration of fuel salt that shown in Table 3 with output the effective multiplication factor, conversion ratio, and neutron spectrum. The effective multiplication factor (k_{eff}) is one of critical parameter of the reactor. If the value of k_{eff} is less than one the reactor in subcritical condition, more than one the reactor in supercritical condition, and equal to one the reactor in critical condition [11].

Table 3. Variation of fuel salt concentration

Fuel A	Fuel B	Fuel C	
LiF	BeF$_2$	ThF$_4$	PuMAF$_4$
6.64% - 12.00%	0.24% - 5.6%		
71.76%	16%	6.24% - 12.00%	0.24% - 6.0%
6.84% - 12.00%	0.24% - 5.4%		

Table 4. Reactor grade plutonium [5]

Isootope	Fuel A	Fuel B	Fuel C	
238Pu	239Pu	240Pu	241Pu	242Pu
1.58%	57.76%	26.57%	8.76%	5.33%

Table 5. Minor actinides [12]

Isootope	Fuel A	Fuel B	Fuel C				
237Np	241Am	243Am	242Cm	244Cm	245Cm	246Cm	
42.25%	47.57%	8.50%	0.32%	0.01%	1.26%	0.07%	0.01%

Based on the fact, the mass ratio both of plutonium and minor actinides in the spent nuclear fuel is 9:1 [13]. The reactor grade plutonium composition is shown in Table 4 which consists of 239Pu and 241Pu as fissile nuclides that can lead fission reaction and others as fertile nuclides that can decay to fissile nuclides. The minor actinides composition is shown in Table 5 which will be burned in the homogenous fuel salt.

3. Results and Discussion

Figure 1 shows the effective multiplication factor as a function of burnup for (a) fuel A, (b) fuel B, and (c) fuel C, respectively. As shown on the graph, if the concentration of plutonium and minor actinides is increased in the fuel salt, the value of effective multiplication factor will increase as well. This is due to the total fissile in the fuel salt. The reactor achieved its criticality condition with burn up 2.5×10^8MWday/Ton, if we loaded plutonium and minor actinides in fuel salt (PuMAF$_4$) of 5.6%, 6%, and 5.4% for fuel A, fuel B, and fuel C, respectively.
Conversion ratio in the neutronic calculation is a comparison between the total fissile which is converted from fertile nuclides and the total fissile nuclide which is burned on the active core. Figure 2 shows the conversion ratio as a function of burnup for (a) fuel A, (b) fuel B, and (c) fuel C, respectively. If the concentration of plutonium and minor actinides in fuel salt is increased, the value of conversion ratio will decrease. This trend is similar for fuel A, fuel B, and fuel C.
Figure 2. Conversion ratio vs burnup for (a) fuel A, (b) fuel B, and (c) fuel C.

Figure 3. Neutron spectrum vs log energy for (a) fuel A, (b) fuel B, and (c) fuel C.

The comparison of the spectrum neutron as a function of log energy is described in Figure 3 for (a) fuel A, (b) fuel B, and (c) fuel C, respectively. In the thermal energy range \((10^3 \text{ eV} - 10^6 \text{ eV})\), the neutron spectrum becomes harder if the concentration of plutonium and minor actinides in the fuel salt is increased. The trend of the neutron spectrum is similar for these three cases but the spectrum
neutron for fuel B is higher than other. This is due to the higher contain of plutonium and minor actinides, which also have mention in the references [7, 14].

4. Conclusion
Utilization of plutonium and minor actinides in FUJI-U1 Molten Salt Reactor has been investigated. The reactor can achieve the criticality condition with loading plutonium and minor actinides of 5.6%, 6.0%, and 5.4% for fuel A, fuel B, and fuel C, respectively. If the concentration of plutonium and minor actinides in the fuel salt is increased, the conversion ratio will decrease and the neutron spectrum becomes harder.

References
[1] Serp, Jérôme, et al 2014 The molten salt reactor (MSR) in generation IV: overview and perspectives. Progress in Nuclear Energy 77 308-319
[2] Furukawa, Kazuo, et al 2008 A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow. Energy Conversion and Management 49.7 1832-1848
[3] Suzuki, Nobuhide, and Yoichiro 2008 Reactivity-initiated-accident analysis without scram of a molten salt reactor Journal of nuclear science and technology 45.6 575-581
[4] Shimazu, Yoichiro 2011 Current situation of mrs development in japan
[5] Marka, J. Carson 1993 Explosive properties of reactor-grade plutonium Science & Global Security 4.1 111-128
[6] Waris, Abdul, et al 2015 Comparative studies on plutonium and minor actinides utilization in small molten salt reactors with various powers and core sizes Energy Procedia 71 62-68
[7] Waris, Abdul, et al 2013 Preliminary study on plutonium and minor actinides utilization in thorims-nes minifuji reactor Energy conversion and management 72 27-32.
[8] Okumura, Keisuke, et al 2007 SRAC2006: a comprehensive neutronics calculation code system. No. JAEA-DATA/ CODE--2007-004 (Japan Atomic Energy Agency)
[9] Moir, Ralph W 2008 Recommendations for a restart of molten salt reactor development Energy Conversion and Management 49.7 1849-1858.
[10] Mitachi, Koshi, Takahisa, and Ritsuo 2007 Self-sustaining core design for 200 MWe molten-salt reactor with thorium-uranium fuel: FUJI-U3-(0) Proceedings of TU2007 pp 4-6
[11] Duderstadt, James J., and Louis J. H. 1976 Nuclear reactor analysis. Vol. 1. (New York: Wiley)
[12] Radulescu, G., and J. C. Wagner 2012 Burn-up Credit Criticality Safety Benchmark, Phase VII, UO 2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal NEA, OECD 148-150.
[13] Salvatore, M. 2000 Medium and long term scenarios for fission nuclear energy and role of innovative concepts Proceedings of the Int. Workshop Nuclear Reaction Data and Nuclear Reactor, ICTP
[14] Waris, A and Sekimoto, H, 2001, Characteristics of Several Equilibrium Fuel Cycles of PWR, J. Nucl. Sci. Technol., 38, 517-526