An Integrative Model for Soil Biogeochemistry and Methane Processes. II: Warming and Elevated CO₂ Effects on Peatland CH₄ Emissions

Fenghui Yuan¹,², Yihui Wang¹, Daniel M. Ricciuto³, Xiaoying Shi³, Fengming Yuan¹,², Paul J. Hanson³, Scott Bridgham⁴, Jason Keller⁵, Peter E. Thornton⁶, and Xiaofeng Xu⁷

¹Biology Department, San Diego State University, San Diego, CA, USA, ²Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China, ³Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Sciences Institute, Oak Ridge, TN, USA, ⁴Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA, ⁵Schmid College of Science and Technology, Chapman University, Orange, CA, USA

Abstract Peatlands are one of the largest natural sources for atmospheric methane (CH₄), a potent greenhouse gas. Climate warming and elevated atmospheric carbon dioxide (CO₂) are two important environmental factors that have been confirmed to stimulate peatland CH₄ emissions; however, the mechanisms underlying enhanced emissions remain elusive. A data-model integration approach was applied to understand the CH₄ processes in a northern temperate peatland under a gradient of warming and doubled atmospheric CO₂ concentration. We found that warming and elevated CO₂ stimulated CH₄ emissions through different mechanisms. Warming initially stimulated but then suppressed vegetative productivity while stimulating soil organic matter (SOM) mineralization and dissolved organic carbon (DOC) fermentation, which led to higher acetate production and enhanced acetoclastic and hydrogenotrophic methanogenesis. Warming also enhanced surface CH₄ emissions, which combined with warming-caused decreases in CH₄ solubility led to slightly lower dissolved CH₄ concentrations through the soil profiles. Elevated CO₂ enhanced ecosystem productivity and SOM mineralization, resulting in higher DOC and acetate concentrations. Higher DOC and acetate concentrations increased acetoclastic and hydrogenotrophic methanogenesis and led to higher dissolved CH₄ concentrations and CH₄ emissions. Both warming and elevated CO₂ had minor impacts on CH₄ oxidation. A meta-analysis of warming and elevated CO₂ impacts on carbon cycling in wetlands agreed well with a majority of the modeled mechanisms. This mechanistic understanding of the stimulating impacts of warming and elevated CO₂ on peatland CH₄ emissions enhances our predictability on the climate-ecosystem feedback.

Plain Language Summary Peatlands are one of the largest natural sources for a potential greenhouse gas—methane. In this study, we took use of a number of field observational data to parameterize a microbial model before applying the model to understand the methane processes in a northern temperate peatland under a gradient of warming and doubled atmospheric carbon dioxide concentration. We found that warming and elevated carbon dioxide stimulated methane emissions through different mechanisms. Warming initially stimulated but then suppressed vegetative productivity while stimulating soil organic matter mineralization and dissolved organic carbon fermentation, which led to higher acetate production and enhanced methane production. Elevated carbon dioxide enhanced ecosystem productivity and soil organic carbon decomposition, resulting in higher dissolved organic carbon and acetate concentrations, which stimulate methane production. Both warming and elevated carbon dioxide had small impacts on methane oxidation. The modeling results are consistent with a global data synthesis. This mechanistic understanding of the stimulating impacts of warming and elevated carbon dioxide on peatland methane emissions enhances our ability to predict the interactions between the climate system and the terrestrial ecosystems.

1. Introduction

Methane (CH₄) is a potent greenhouse gas which has 28 times global warming potential of CO₂ on a 100-years time frame (IPCC, 2013). Further, rising atmospheric CH₄ concentration has contributed to 20%–25% of...
climate warming since the Industrial Revolution (Stocker et al., 2013). Natural wetlands cover only 5%–8% of the total land area but serve a critical role in regulating climate. For example, natural wetlands contribute more than 15% of global terrestrial net primary productivity (NPP) (Schlesinger & Bernhardt, 2013) and, due to relatively low decomposition Mitsch & Gosselink, (2007), northern peatlands store up to 50% of global soil organic carbon storage (Gorham, 1991; Nichols & Peteet, 2019; Tarnocai et al., 2009). Meanwhile, natural wetland contributes more than 30% of total global CH4 emission (Jackson et al., 2020), with northern peatlands contributing about 5% (Frolking et al., 2006; Kirschke et al., 2013; Nazaries et al., 2013). Given the high organic carbon (C) storage and complicated thermal and hydrological processes that regulate CH4 cycling in peatlands (Gill et al., 2017; Teh et al., 2011; Updegraff et al., 2001), it is imperative to understand the impacts of various environmental changes on CH4 cycling in order to improve the predictions of CH4 in peatlands.

Warming is projected to stimulate CH4 emissions in wetlands. However, the complexity of microbial-mediated and vegetation-mediated processes that regulate CH4 cycling in peatlands makes a mechanistic explanation of the impacts of warming challenging (Shindell et al., 2004). Under waterlogged condition, rising temperature enhances methanogenesis that leads to higher CH4 emissions (Bardgett et al., 2008; Christensen et al., 2003). In addition, warming directly enhances photosynthesis and thus likely leads to greater plant-derived carbon input, the primary substrate for fermentation that produces acetate and H2 to drive methanogenesis (Wu et al., 2011; Yin et al., 2013). Warming also increases C availability in peatlands through enhanced soil organic matter (SOM) decomposition, which leads to greater methanogenesis (Cao et al., 1996; Wickland et al., 2006). However, the magnitude and mechanisms of warming effects on CH4 emissions vary dramatically due to various microbial responses to different warming intensities (Bridgham et al., 2013). Methanogens and methanotrophs with distinct temperature sensitivities show uneven feedbacks to temperature changes (Conrad, 1995, 1996), leading to large variations in CH4 production and consumption.

Elevated atmospheric CO2 (eCO2) stimulates peatland CH4 emissions by enhancing vegetation productivity that leads to more substrates for methanogenesis (Dijkstra et al., 2010). Previous studies reported that eCO2 concentration promoted photosynthesis by stimulating Rubisco carboxylation capacity and RuBP regeneration rate, especially for C3 plants (Stirling et al., 1997), therefore increasing the substrate availability for methanogenesis (Mignonigal & Schlesinger, 1997; Silvola et al., 2003). Higher substrate concentrations likely stimulate methanogenesis, but the underlying mechanisms remain unclear (Bridgham et al., 2013).

To develop a full mechanistic understanding of peatland CH4 flux in response to multiple environmental changes, it is critically important to investigate the mechanisms of CH4 cycling under concurrent warming and eCO2 treatments. Ecosystem models are a powerful tool to disentangle the impacts of multiple environmental factors on CH4 cycling (Xu et al., 2016), and a number of ecosystem models have been used to investigate CH4 cycling under the warming and eCO2 treatments. For example, Zhuang et al. (2004) used the Terrestrial Ecosystem Model (TEM) model to estimate CH4 emissions from Arctic tundra ecosystems in response to climate change. Xu et al. applied the Dynamic Land Ecosystem Model (DLEM) model to interpret the response of CH4 fluxes to multiple environmental factors from different ecosystems across North America (Xu, 2010; Xu et al., 2010), and in China (Xu & Tian, 2012). More recently, Xu et al. (2015) developed a microbial functional group-based CH4 module, and the module has been incorporated into the Community Land Model (CLM) 4.5 and is being incorporated into the Energy Exascale Earth System (E3SM) land model (ELM). The module can provide mechanistic understanding into how warming and eCO2 affect peatland CH4 emissions (Ricciuto et al., 2021; Xu et al., 2015).

In this study, we reported on the simulating effects of warming and eCO2 on CH4 cycling in a northern Minnesota peatland under various warming and eCO2 scenarios by using the ELM-SPRUCE model, a version of ELM designed for this experiment (Ricciuto et al., 2021; Shi et al., 2015, 2021). As the second in a series of two modeling papers, we expanded upon the model description provided by Ricciuto et al. (2021) and explored the warming and eCO2 impacts on CH4 cycling and further compared the simulated processes against observational data obtained from a global meta-analysis. Uncertainty analyses associated with the simulated CH4 fluxes under the different treatments are reported as well. We address two questions: (1) how do different levels of warming and doubled atmospheric CO2 affect CH4 processes in peatlands, and
(2) what are the mechanisms contributing to the warming and eCO₂ impacts on CH₄ flux in the Minnesota peatland?

2. Methodology

2.1. Field Experiment

Our study was occurred in an ombrotrophic peatland with a perched water table that has little groundwater influence, located in a black spruce-Sphagnum spp. bog in northern Minnesota, USA (Hanson et al., 2016). The site is S1-Bog in the USDA Forest Service’s Marcell Experimental Forest (MEF) (Kolka et al., 2011), which is set up for the Spruce and Peatland Responses Under Changing Environment (SPRUCE) experiment. The SPRUCE experiment was conducted to assess the response of northern peatland ecosystems to warming (five warming levels: ambient, +2.25, +4.50, +6.75, and +9.00°C) and eCO₂ concentration (800 ppm(v) in the atmosphere versus ambient CO₂) with long-term manipulations (Hanson et al., 2016, 2017). More detailed information for the experiment and the field site can be found in Hanson et al. (2017, 2020).

2.2. Model Description

We applied the ELM-SPRUCE model to simulate peatland biogeochemistry, focusing on CH₄ and CO₂ fluxes. The ELM-SPRUCE model was originally developed upon the default CLM4.5 (Oleson et al., 2013) and then modified to better simulate peatland hydrology and vegetation at the SPRUCE site (Shi et al., 2015). The improvements included (a) model representation of microtopography including hummocks and hollows (Shi et al., 2015), (b) an improved hydrology module (Shi et al., 2015), (c) a new moss plant functional type (Shi et al., 2021), and (d) an improved CH₄ module (Ricciuto et al., 2021; Wang et al., 2019; Xu et al., 2015). This new module represents CH₄ production and consumption in association with the existing decomposition subroutines in CLM4.5 (Thornton & Rosenbloom, 2005; Thornton & Zimmermann et al., 2007). Added processes associated with the CH₄ module include dissolved organic carbon (DOC) fermentation, hydrogenotrophic methanogenesis, acetoclastic methanogenesis, aerobic methanotrophy, anaerobic methanotrophy, and hydrogen (H₂) production (Ricciuto et al., 2021). The simulated surface CH₄ flux is the sum of diffusion, ebullition, and plant aerenchyma-mediated transport (Ricciuto et al., 2021; Wang et al., 2019; Xu et al., 2015). The CH₄ concentration is the difference between methanogenesis and methanotrophy; both processes are simulated as a function of microbial biomass, microbial growth efficiency, temperature, soil pH, and oxygen availability (Wang et al., 2019; Xu et al., 2015). Another improvement is the horizontal flow of water and associated biogeochemical variables between hummock and hollow columns. The vertical diffusion of DOC, acetate, CO₂, and CH₄ follows Fick’s law along the concentration gradient (Ricciuto et al., 2021).

Model development and evaluation for the SPRUCE bog site are fully described in Ricciuto et al. (2021). Specifically, the formulation is listed in supplementary online materials of Ricciuto et al. (2021). The model predicted CH₄ flux in the SPRUCE bog site well when compared to several independent observational data sets ($R^2 = 0.33$ with land surface CH₄ flux; $R^2 = 0.58$ with the chamber-derived CH₄ flux), as well as vertical distribution of DOC ($R^2 = 0.97$) and acetate ($R^2 = 0.59$). However, the model showed high variability and lower accuracy in CH₄ concentrations in deeper soils (Ricciuto et al., 2021).

2.3. Model Implementation

The implementation of model simulation included three stages. The first two stages, accelerated decomposition (ad) spin-up and final spin-up, follow the same strategy as CLM4.5 (Oleson et al., 2013; Thornton & Rosenbloom, 2005). The ad-spin-up simulation of 1,200 years allowed the system to accumulate C to reach equilibrium state in an accelerated mode. A 50-years final spin-up subsequently allowed the system to operate with normal decomposition parameters before the transient run. The third phase was the transient run that is, for model application. After the final spin-up, the initial sizes of soil C/nitrogen(N) pools were adjusted based on the measured soil C and N content along soil profiles at the SPRUCE site (Ricciuto et al., 2021). Specifically, the C and N pools in each layer was proportionally adjusted so that the total C and N density in each layer equaled the observational data. Six independent manipulative experimental
simulations from 2015 to 2019 were then conducted to examine how CH₄ emissions respond to warming or eCO₂. The six manipulative simulations included one control scenario (ambient), four warming scenarios (+2.25, +4.50, +6.75, and +9.00°C above ambient under ambient CO₂, respectively), and one eCO₂ scenario (800 ppm CO₂ concentration under ambient temperature, 410 ppm above the ambient CO₂ concentration). Twelve variables were chosen for investigating the warming and eCO₂ impacts by comparing manipulated treatments with the ambient scenario. They are NPP, SOM mineralization, concentrations of DOC, acetate, CO₂ and CH₄ through the soil profile, acetoclastic, and hydrogenotrophic methanogenesis, rates of CH₄ transport via plants, diffusion and ebullition, and surface CH₂ flux. These variables were selected to represent the direct and indirect controls on CH₄ flux by biological, soil, and microbial mechanisms. The cumulative effects of warming and eCO₂ departure from the control scenario on each variable are reported.

2.4. Data Sources

The initial atmospheric forcing data (from 2011 to 2017) used in the model were obtained by the SPRUCE team and gap-filled as necessary (Ricciuto et al., 2021). For all simulations, we repeatedly cycled the 7-years forcing data, including: hourly temperature, precipitation, specific humidity, solar radiation, wind speed, pressure, and longwave radiation. Historical atmospheric CO₂ and N deposition data were from the nearest neighbor grid cell of a globally gridded historical atmospheric CO₂ data set (Oleson et al., 2013). The five model experiments from 2015 to 2019 were set up by adding the constant values of temperature (+2.25, +4.50, +6.75, and +9.00°C) and CO₂ (+410 ppm) to the original data of air temperature and atmospheric CO₂ concentration from 2014. Four plant functional types (PFTs) were defined as evergreen needle-leaf forest-boreal (25%), deciduous needle-leaf forest-boreal (25%), shrub (25%), and Sphagnum moss (25%). These PFTs were assumed to remain unchanged over the study period. Soil properties data were obtained from the SPRUCE project (https://mnspruce.ornl.gov/).

2.5. Uncertainty Analysis

A Monte Carlo approach was used to evaluate the uncertainty of the ELM_SPRUCE model. This approach is based on Bayesian statistics, and its main characteristic is that all model uncertainties are quantified in terms of probabilities, and these uncertainties can be determined by a large ensemble of model simulations with different parameter settings. The Latin hypercube sampling method, which can effectively represent the uncertainties caused by parameters with a manageable ensemble of model simulations, was applied to obtain different combinations of parameters following our previous studies (Xu, 2010; Xu et al., 2015; Wang et al., 2019).

In this study, a total of 100 model simulations were set up to represent the variations of 10 key parameters. All parameters used for the uncertainty analysis varied within a range of ±30% of their optimal values (Table 1). The 20% has been used in our previous studies (Wang et al., 2019; Xu et al., 2015), but in this study, we quantified a greater uncertainty in the parameters. These 10 key parameters are directly relevant to photosynthesis, soil carbon cycling, and microbial activities. Specifically, flnr represents the fraction of leaf N in the Rubisco enzyme, which controls the plant photosynthetic production by calculating the maximum rate of carboxylation at 25°C (Vcmax25); froz_q10, K_s4, and k_dom control the temperature dependence and decomposition rate of DOC. The variables m_dAceProdACmax and m_dACMinQ10 determine acetate production, through controlling the maximum rate of acetate production and temperature sensitivity of DOC decomposition. Methane production from acetate and H₂ is governed by the growth and production efficiency of acetoclastic methanogens and hydrogenotrophic methanogens, as m_dYAceMethanogens, m_dGrowRAcetobacter, and m_dH2ProdAcemax, respectively. The m_dKCH4OxidCH4 represents the half-saturation efficiency for CH₄ concentration in computing CH₄ oxidation. Model simulations with each parameter ensemble were produced for six manipulative experiments, covering the period of 2015–2019.

2.6. A Meta-Analysis of Warming and eCO₂ Impacts on CH₄ Cycling

We compared our simulation results to experimental results from the SPRUCE site to evaluate the ELM-SPRUCE model at the site scale. Results of NPP and CH₄ flux were retrieved from Hanson et al. (2020), and results of CH₄ production were from Hopple et al. (2020). Moreover, we evaluated the broader applicability
of our model by comparing model results to a meta-analysis of warming and eCO$_2$ manipulations in global wetlands. We searched in the Web of Science and Google Scholar with the keywords (“warming” or “rising temperature”) or (“elevated CO$_2$” or “rising CO$_2$” or “fumigation CO$_2$” or “CO$_2$ enrichment”) and (“CH$_4$” or “methane”) and (“wetland” or “peatland” or “bog” or “marsh” or “swamp” or “fen”). The search was completed in April 2019. Studies were only included if they (a) reported exact values or graphs for variables related to CH$_4$ processes from observations, (b) provided detailed information for the wetland types and treatment settings, and (c) were published in English. Fifteen warming studies and 20 eCO$_2$ studies met these criteria and were included in our meta-analysis (Table S1). Eight variables were chosen and extracted from these relevant publications; they are NPP, SOM, DOC, CH$_4$ production, CH$_4$ emission, and plant-mediated transport (CH$_4$-Plant), diffusion (CH$_4$-Diff), and ebullition (CH$_4$-Ebull). Among these observational studies, air temperature in the warming experiments was raised by 0.2–15°C, the ambient atmospheric CO$_2$ concentration was approximately 380 ppm(v), and the CO$_2$ concentration in the eCO$_2$ treatments fell within a range of 473–760 ppm(v). The experiments ran from 0.02 to 9 measurement years. Data from model simulations, experimental study, and the meta-analysis for both warming and eCO$_2$ were standardized to get percentage changes per unit (°C or 100 ppm(v)) for comparison.

3. Results

3.1. Effects of Warming and eCO$_2$ on NPP and SOM Mineralization

Net primary production and SOM mineralization showed similar seasonal patterns, reaching their maxima in summer and minima in winter seasons (Figures 1a and 1b). The warming and eCO$_2$ yielded different impacts on NPP and SOM mineralization (Figure 1). At the end of the study period, warming suppressed NPP while the eCO$_2$ greatly promoted NPP (Figures 1c and 1d). Warming greatly stimulated SOM mineralization with strongest effects at +9.00°C (Figure 1b), while eCO$_2$ stimulated SOM mineralization and the impacts increased over time, resulting in stimulation comparable with the warming effects under +2.25°C (Figure 1d).

The impacts of warming and eCO$_2$ showed large seasonal variations. In the warm season (primarily summer), both warming and eCO$_2$ accelerated photosynthesis activity more than plant respiration, thus stimulating NPP (Figures 1c and 1d). However, warming had a stronger suppression effect on NPP in the cold seasons (winter and early spring) than its promoting effects in the warm season, which led to a cumulative suppression of NPP during 5-years simulations. Elevated atmospheric CO$_2$ has positive but minimal impacts on NPP in cold seasons (Figure 1a). Additionally, the stimulating impact of warming on SOM mineralization was strongest in the warm season and relatively weak in the cold season (Figure 1b). The eCO$_2$ impact on SOM mineralization was constant throughout the year, without obvious seasonal variations (Figure 1d).

Parameter	Description	Unit	Value	Standard deviation
Flnr	Fraction of leaf N in the Rubisco enzyme	(g N Rubisco g N leaf$^{-1}$)	0.2	0.0306
froz_q10	Q$_{10}$ for soil respiration rates	Unitless	1.5	0.2296
k_s4	Decomposition rate constant of soil organic carbon pool	Unitless	0.0001	1.53E–05
k_dom	Decomposition rate constant of dissolved organic matter	Unitless	0.007	0.0011
m_dAceProdACmax	Maximum rate of acetate production from available carbon	mmol m$^{-3}$ h$^{-1}$	0.0000024	3.67E–07
m_dACMinQ10	Temperature sensitivity of available carbon fermentation	Unitless	3	0.4592
m_dGrowRAceMethanogens	Growth rate of acetoclastic methanogens	d$^{-1}$	0.008	0.0012
m_dH2ProdAcemax	Maximum reaction rate of conversion of H$_2$ and CO$_2$ to acetate	mmol acetate g$^{-1}$ h$^{-1}$	0.00000005	7.65E–09
m_dYAceMethanogens	Growth efficiency of acetoclastic methanogens	mol C (mol acetate C)$^{-1}$	0.2	0.0306
m_dKCH4OxidCH4	Half-saturation coefficient of CH$_4$ oxidation for CH$_4$ concentration	mmol L$^{-1}$	1	0.1531
3.2. Effects of Warming and eCO$_2$ on Methanogenic Substrate Availability

The seasonal patterns of DOC, acetate, and CO$_2$ concentrations were slightly different. Soil CO$_2$ and DOC concentrations had similar seasonal patterns, low in warm seasons and high in cold seasons (Figures 2a and 2c). However, acetate concentrations showed more complex seasonal patterns, increasing in early spring, declining in summer, accumulating in fall, and depleting in winter (Figure 2b). The changes in acetate concentrations are the result of the net balance of DOC fermentation, acetogenesis, and acetolactic methanogenesis. Overall, warming suppressed soil concentrations of DOC, acetate and CO$_2$, and the warming effects were stronger under higher warming scenarios (Figures 2d–2f). In contrast, eCO$_2$ increased DOC concentrations (Figure 2a).

The effects of warming and eCO$_2$ on cumulative differences in concentrations of DOC, acetate and CO$_2$ varied interannually (Figures 2d–2f). Under the eCO$_2$ treatment, the concentrations of DOC and acetate increased relatively consistently while soil CO$_2$ concentrations slightly increased in first 3 years and then slightly decreased at the end of five years due to enhanced DOC at the beginning and strong enhancement of hydrogenotrophic methanogenesis (Figures 2d–2f; Table S2). With warming, DOC concentrations showed a smooth decreasing trend over time (Figure 2d). However, after four years of warming treatment, the warming effects on soil CO$_2$ concentrations tended to weaken, whereas its effects on acetate concentrations strengthened (Figures 2e and 2f). Additionally, soil acetate concentrations were slightly increased by warming at the start of simulations then decreased (Figure 2e).

3.3. Effects of Warming and eCO$_2$ on CH$_4$ Production

Both acetoclastic and hydrogenotrophic methanogenesis showed similar seasonal patterns, increasing in warm seasons while decreasing in cold seasons (Figures 3a and 3b). Additionally, acetoclastic methanogenesis was generally more than 10-fold faster than hydrogenotrophic methanogenesis in all six simulations.
Warming and eCO$_2$ stimulated acetoclastic and hydrogenotrophic methanogenesis, but with different magnitudes. Methanogenesis increased in concert with greater warming. After 5-year of warming, acetoclastic methanogenesis increased by 6.7 (5.4–8.0)%, 12.5 (10.1–14.9)%, 21.0 (16.9–25.1)%, and 28.0 (22.6–33.4)% for +2.25, +4.50, +6.75, and +9.00°C, respectively. Comparatively, warming increased hydrogenotrophic methanogenesis by 30.1 (24.3–35.9)%, 29.5 (23.8–35.2)%, 49.2 (39.7–58.7)%, and 56.8 (45.8–67.8) along the ascending warming gradient. The stimulatory effects of eCO$_2$ on methanogenesis were less than warming effects at the start of simulations, but they intensified over time. At the end of simulations, eCO$_2$ stimulated acetoclastic methanogenesis by 12.7 (10.2–15.2)% and hydrogenotrophic methanogenesis by 46.9 (37.8–56.0)%.

3.4. Effects of Warming and eCO$_2$ on CH$_4$ Transport and Emission, and Soil CH$_4$ Concentrations

Surface CH$_4$ emissions via plants, diffusion, and ebullition showed similar seasonal patterns, rising in warm seasons while decreasing in cold seasons. Both warming and eCO$_2$ enhanced all three pathways of CH$_4$ transport. Overall, greater warming led to greater transport, but warming effects tended to weaken in the last 2 years of simulation for ebullition and plant-mediated transport. At the end of simulations, warming by +2.25, +4.50, +6.75, and +9.00°C increased transport by 0.9 (0.7–1.1), 2.2 (1.8–2.6), 4.9 (4.0–5.8), and 6.9 (5.6–8.2) g C m$^{-2}$ via plants, by 1.6 (1.3–1.9), 3.1 (2.5–3.7),
5.0 (4.0–6.0), and 6.5 (5.2–7.8) g C m\(^{-2}\) via diffusion, and by 4.4 (3.6–5.2), 7.2 (5.8–8.6), 10.0 (8.1–11.9), and 12.6 (10.2–15.0) g C m\(^{-2}\) via ebullition for treatments, respectively.

The eCO\(_2\) effects on plant-mediated transport rapidly intensified and increased it by 6.1 (4.9–7.3) g C m\(^{-2}\) at the end of simulations, which was greater than warming effects of all but the +9.0°C treatment (Figure 4e). Positive effects of eCO\(_2\) on diffusion were always lower than warming effects, and an additional 0.8 (0.6–1.0) g C m\(^{-2}\) of CH\(_4\) fluxes were transported via diffusion at the end of simulations (Figure 4f). The eCO\(_2\) effects on ebullition were generally lower than warming effects (Figure 4g). After 5-years simulations, an additional 3.8 (3.1–4.5) g C m\(^{-2}\) of CH\(_4\) fluxes were transported to the atmosphere via ebullition.

Overall, CH\(_4\) emission exhibited a similar seasonal dynamic across the six simulations, high in warm seasons and low in cold seasons (Figure 4d), which corresponded to the seasonal patterns of CH\(_4\) transport. CH\(_4\) emissions were enhanced by warming and eCO\(_2\) but with different magnitudes (Figure 4h). Greater emission occurred with greater warming but this effect weakened at the end of the simulations (Figure 4h). The positive effects of eCO\(_2\) were initially comparable to warming effects at +2.25°C (Figure 4h). However,
since eCO\textsubscript{2} effects intensified over time, they exceeded warming effects at +2.25°C by the end of the simulation with an increase of 10.6 (8.6–12.6) g C m-2 (Figure 4h).

Soil CH\textsubscript{4} concentrations had an obvious seasonal pattern but showed different responses to warming and eCO\textsubscript{2} (Figures 3c and 3f). CH\textsubscript{4} concentrations exhibited large seasonal variations with a “W” curve trend.
in each year (Figure 3c). At the beginning of a year, soil CH$_4$ concentrations declined, then increased to their maximum in late summer which corresponded with the strong CH$_4$ production (Figure 3c). In winter, CH$_4$ accumulated in soils until the next year (Figure 3c). CH$_4$ accumulated under eCO$_2$, whereas CH$_4$ was consumed and transported to the atmosphere under warming (Figure 3f). Additionally, warming effects on CH$_4$ concentrations tended to decrease after 2 year of simulations (Figure 3f).

The vertical distribution of CH$_4$ concentrations along soil profiles showed a seasonality and were consistent with rates of methanogenesis (Figure 5a). Soil CH$_4$ concentrations were higher in deeper soil layers and increased in warm seasons but decreased in cold seasons (Figure 5a). The suppression effects of warming and promotion effects of eCO$_2$ tended to intensify over time (Figures 5b–5f). Effects of warming and eCO$_2$ on CH$_4$ concentrations were usually opposite between the top and bottom soil layers (Figures 4b–4f). At the end of simulations, warming increased CH$_4$ concentration in deep soils, but it still suppressed the CH$_4$ concentrations in shallow layers (Figures 5b–5e). eCO$_2$ slightly suppressed CH$_4$ concentrations at the beginning of simulations, but promoted the accumulation of CH$_4$ concentrations, especially in deep soils, at the end of simulations (Figure 5f).

3.5. A Mechanistic Framework of Warming and eCO$_2$ Impacts on CH$_4$ Cycling

Based on our model output and the compiled experimental results, a mechanistic framework was developed to summarize all mechanisms of warming and eCO$_2$ impacts on CH$_4$ cycling (Figure 6). Under warming scenarios, NPP initially increased but then declined over time. In concert with rising SOM mineralization, soil carbon storage tended to decline slightly, while warming-induced decomposition led to lower DOC. Higher DOC fermentation led to a small increase in acetate initially followed by a decline after a few months. Meanwhile, soil CO$_2$ concentrations decreased. Despite warming stimulating both acetoclastic and hydrogenotrophic methanogenesis, soil CH$_4$ concentrations declined due to warming-induced lower CH$_4$ solubility and high CH$_4$ transport from the soil.
Different from the mechanism of warming effects on CH$_4$ processes, eCO$_2$ enhanced NPP and SOM mineralization, subsequently increasing soil DOC and acetate concentrations. Although soil CO$_2$ concentrations decreased under eCO$_2$, soil CH$_4$ concentrations went up primarily as a result of increasing acetoclastic and hydrogenotrophic methanogenesis and higher acetate availability. This increased dissolved CH$_4$ also contributed to a larger CH$_4$ emissions.

4. Discussion

4.1. Comparison With the Compiled Warming and eCO$_2$ Impacts on CH$_4$ Processes

Our simulations agreed with the global meta-analysis and observations in the SPRUCE project, although the observational data generally had larger variations in treatment impacts on NPP, SOM mineralization, DOC concentration, and CH$_4$ fluxes (Figure 7), which could be caused by large uncertainties associated across-site differences and experimental design. SPRUCE observations also showed that tree growth and moss cover were being suppressed by warming (Norby et al., 2019), and by water-table level declines with enhanced ET under the warming treatments (Hanson et al., 2020; McPartland et al., 2019; Norby et al., 2019). The SPRUCE field experiments found that eCO$_2$ enhanced NPP for all species, while warming stimulated tree NPP but suppressed moss NPP. In the model, NPP was suppressed by warming and increased by eCO$_2$ in our simulations (Figure 7). This discrepancy could be caused by the constant plant community over the model simulations. In addition, experimental results showed an exponential increase in CH$_4$ production and emissions in surface soil layers (25 cm depth) under warming but minor response of CH$_4$ production and emissions to eCO$_2$ (Hopple et al., 2020; Wilson et al., 2016), which were partially in agreement with our simulation results.

Compared with the global meta-analysis, our model simulations were consistent with the positive effects of eCO$_2$, but had a slightly different pattern for warming treatments. The global meta-analysis found that warming stimulated all CH$_4$ processes; however, model results indicated that NPP and DOC were suppressed at the SPRUCE site (Figure 7). This discrepancy may result from differences in techniques and durations in incubation and field experiments. Studies for the global meta-analysis usually had short-term observational data, with most lasting a few months (Saarnio et al., 1998; Wolf et al., 2007), whereas our
simulations for warming effects lasted five years. A meta-analysis found that warming with open-top chambers caused NPP reduction while the greenhouse and infrared heater approaches stimulated NPP (Lu et al., 2013); the same study also reported that <5 years warming might suppress NPP while >5 years warming stimulated NPP regardless of warming techniques (Lu et al., 2013). Different warming intensities could cause distinct responses of plant communities and SOM decomposition (Weltzin et al., 2000). Due to the difficulties in measuring CH₄ transport, few data were retrieved for the global synthesis, but they were generally consistent with our simulations that warming and eCO₂ enhance CH₄ transport (Figures 7a and 7b).

4.2. Different Mechanisms of Warming and eCO₂ Impacts on CH₄ Cycling

Both warming and eCO₂ stimulated CH₄ emission but with different mechanisms. Warming affected photosynthesis and resource partitioning (Mäkiranta et al., 2018), but these impact varied among plant species and functional types (Updegraff et al., 1995; Weltzin et al., 2000), due to variations in their photosynthetic rates and different physiological responses to warming (Mäkiranta et al., 2018; Riutta et al., 2007). Based on our model results, a negative response of NPP under different warming scenarios occurred in the black spruce bog; this suppression further led to declining SOM accumulation, consistent with some field experiments for SOM loss under warming (Megenigal & Schlesinger, 1997; Yavitt et al., 1997). The declining DOC under warming can be explained by the warming-induced DOC fermentation. Soil microbial activities were stimulated by warming, resulting in a rise of acetate from DOC decomposition in the first year, but acetate began to decrease in the following years in parallel with a reduction in DOC, in agreement with Hopple et al. (2020).

Warming led to stronger methanogenesis and more CH₄ production but lower CH₄ concentrations in soils, which is due to the warming-enhanced CH₄ emissions. Both acetoclastic and hydrogenotrophic methanogenesis were enhanced under warming scenarios even with the limited supply of substrates for methanogenesis, indicating that warmer temperature rather than substrate availability primarily controls the activities of methanogenesis (Walker et al., 2018). Moreover, a few studies suggested changes in the composition and biomass of microbial communities due to warming mainly accounted for variations in CH₄ emissions (Megenigal & Schlesinger, 1997; Yavitt et al., 1987). Warming may also affect CH₄ emissions by decreasing the abundance of methanogens even with community composition remaining unchanged (Peltoniemi et al., 2016; Turetsky et al., 2008). Furthermore, a diminishing strength of warming effects on CH₄ dynamics over time was shown in this study, consistent with a previous experiment (Mäkiranta et al., 2018; Walker et al., 2018). Additionally, warming could facilitate soil CH₄ transport to the atmosphere via diffusion and ebullition (Askari et al., 2011), which is similar to this study and another modeling study at the SPRUCE bog site (Ma et al., 2017). The increased aerenchyma-mediated CH₄ transport was found in first year when warming stimulated NPP but declined as warming suppressed NPP.

The mechanism of eCO₂ enhancing peatland CH₄ emissions was different from that of warming, which is consistent with previous studies (Turetsky et al., 2008; Xu et al., 2010; Yvon-Durocher et al., 2011). The major difference was that eCO₂ increased NPP, soil DOC, and acetate while warming suppressed them. Previous studies showed that eCO₂ promoted plant carbon pools in various wetland ecosystems (Liu et al., 2018) because of the increased photosynthetic rates (Lin et al., 2017). On the contrary, warming can cause a
decline in plant growth and C accumulation in some natural wetlands (Sánchez-Carrillo et al., 2018), due to more C allocation to root exudation (Sánchez-Carrillo et al., 2018), which was not found in the present study. Our study simulated a higher SOM mineralization under eCO$_2$, which may be caused by priming effect on SOM decomposition induced by higher root exudates (Ross et al., 2004; Van Groenigen et al., 2014), consistent with field measurements at the SPRUCE site (Hopple et al., 2020; Wilson et al., 2016).

Beside the increased substrate availability for methanogenesis, eCO$_2$ may stimulate microbial activities for CH$_4$ production (Conrad, 2002) and inhibit CH$_4$ oxidation (Bodelier & Laanbroek, 2004; Hutchin et al., 1995; Ineson et al., 1998) by reducing soil N availability that may partially release the N suppression on methanotrophs (Xu et al., 2004; Zhang et al., 2020). The simulated stimulating impacts of eCO$_2$ on CH$_4$ emission is partially due to greater aerenchyma in plant tissues that promotes CH$_4$ transport (Bellisario et al., 1999; Megonigal & Schlesinger, 1997). Moreover, we found that most CH$_4$ processes appeared to respond progressively under eCO$_2$, much slower than responses to warming, indicating the importance of long-term eCO$_2$ treatment.

4.3. Uncertainty Analysis

The uncertainty analysis based on 100 sets of 10 key parameters under each warming and eCO$_2$ scenario indicated that the uncertainties of CH$_4$ processes grow in concert with the treatment duration (Figure 8). The uncertainty of DOC reached 28.4% at the end of simulations due to the cumulative effects of warming and eCO$_2$ on soil C pools. The uncertainty of surface CH$_4$ flux (19.3%) was smaller than that of DOC after 5-years simulations. Furthermore, there was no significant difference in uncertainties among different warming or eCO$_2$ scenarios, indicating larger uncertainties in both DOC and CH$_4$ flux defined in the ELM_SPRUCE model than changes in air temperature and eCO$_2$ concentrations. Additionally, the uncertainties of simulated CH$_4$ flux were mainly determined by the process of methanogenesis, inferring the importance of accurately simulating substrate and SOM mineralization for better predicting CH$_4$ cycling. In summary, the
model parameter-caused uncertainties are relatively well constrained and did not change our conclusions about simulated CH₄ cycle in responses to warming and eCO₂.

4.4. Future Work

This study explored the different mechanisms of warming and eCO₂ effects on CH₄ cycling in S1 Bog, Minnesota. We identified five limitations of the present study that will be addressed in future work. First, the magnitudes and mechanisms of CH₄ cycling responses to warming and eCO₂ could change among different peatland types and at different spatial scales due to the complexity of wetland ecosystems (Zalman et al., 2018). Thus, it is necessary to verify the mechanistic framework built in our study at different spatial and temporal scales. Second, microbial acclimation is a key feature of microbial responses to environmental changes, and this is also true for methanogens (Conrad, 1995, 1996). In our current model, we did not include microbial physiological changes in responses to warming. Rather, the current model only considers the changes in substrate for methanogenesis under warming and eCO₂. The modeled CH₄ production might be overestimated without the mechanisms of microbial acclimation, although temperature acclimation of CH₄ production and microbial CO₂ respiration has not occurred to date at SPRUCE (Hopple et al., 2020).

Third, wetland ecosystems are characterized by their unique soil hydrological and thermal conditions, which brings large uncertainties and variabilities in CH₄ cycling, which requires further mechanistic investigations (Zalman et al., 2018). Although the hydrology module in the ELM_SPRUCE model has already been improved with hummock-hollow microtopography in previous studies (Shi et al., 2015), it is unknown how local and regional soil hydrology will change under future warming and eCO₂. Such long-term climate change might impact the trajectory of experimental observations provided by SPRUCE through extended changes in vegetation productivity and composition, and extended modification of peatland biogeochemical cycles.

Fourth, prior studies suggested soil N availability in wetlands is a critical factor impacting the CH₄ cycle as it might stimulate methanogenesis (Haveroen et al., 2005) and suppress methanotrophy (Bender & Conrad, 1994). The current simulation indicates increased N availability with warming (Malhotra et al., 2020) and decreased N availability with eCO₂. Nevertheless, the effects of N availability on CH₄ flux need further investigation and validation with observations. Fifth, as the SPRUCE field experiments are still operating (whole ecosystem warming began in 2015) and new observational data are becoming available (operations are expected to continue through 2025), additional information on longer-term effects of warming and eCO₂ on peatland CH₄ cycling will be available for future evaluation. For example, large changes in plant community composition have been observed at SPRUCE under warming, particularly the increasing cover in shrubs and concomitant loss of Sphagnum moss and forbs, which could have large ramifications for CH₄ dynamics. It should be noted that the present modeling results are not intended to provide a realistic prediction of the CH₄ flux under warming and eCO₂ conditions, but rather, are to be used to develop a mechanistic understanding of CH₄ processes under warming and eCO₂ (Figure 6). Through such insights a better understanding of the mechanisms of ecosystem behavior in the changing environments can be obtained. Although the present modeling study is relatively consistent with early treatment effects of the SPRUCE project, new empirical findings show sustained C loss as CH₄ with persistent warming (Hopple et al., 2020). Therefore, further model integration with future results from SPRUCE is urgently needed to better understand long-term CH₄ cycling under warming and eCO₂.

5. Conclusions

With a data-model integration approach, we found that warming and elevated CO₂ stimulated CH₄ emissions in a temperate peatland with different mechanisms. The differences are expressed primarily through soil biogeochemistry, controlled by plant net primary production and DOC and acetate availability, which further affects both the acetoclastic and hydrogenotrophic methanogenesis pathways. In summary, the stimulating effects of warming on CH₄ emissions are primarily determined by the temperature responses of microbial activities, while elevated CO₂ concentration stimulated CH₄ emissions primarily via the enhanced availability of substrate for methanogenesis.

The different mechanisms of warming and eCO₂ on surface CH₄ emissions underscore the importance of representing biogeochemical mechanisms for better simulating and predicting C₄ cycling in Earth system
models. With the growing recognition of the CH₄ contribution to climate change (Saunois et al., 2016), it is critical to mechanistically simulate CH₄ cycling under multiple environmental changes. In particular, warming might cause alteration of soil water content and water-table depth in the field (Waddington et al., 2015), which affect the impacts of warming and elevated CO₂ on CH₄ cycling. Future mechanistic investigations of peatland biogeochemistry in association with hydrological feedbacks will assist global-scale CH₄ estimation, improving predictability of CH₄ cycling and climate mitigation.

Data Availability Statement
Model code used in these simulations is available on the GitHub repository at http://doi.org/10.5281/zenodo.3733924. Model simulation output used in this analysis can be accessed at https://doi.org/10.25581/spruce.082/1638024.

Acknowledgments
The authors are grateful for four anonymous reviewers for their constructive comments that substantially improved this manuscript. Fenghui Yuan, Yihui Wang, and Xiaofeng Xu are grateful for financial and facility support from San Diego State University, and partial funding provided by the ORNL Terrestrial Ecosystem Science Scientific Focus Area (ORNL TES-SFA) and NGB Arctic projects and DE-SC0014416, which are supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. Authors Daniel M. Ricciuto, Xiaoying Shi, Fengming Yuan, Paul J. Hanson, and Peter E. Thornton are supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. ORNL is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-1008 G0002272. Scott Bridgham and Jason Keller were supported by the U.S. Department of Energy Grants DE-SC0008902 and DE-SC0014416. Fenghui Yuan and Yihui Wang contributed equally to this manuscript.

References
Aasker, L., Elberling, B., Friisborg, T., Jørgensen, C. J., & Hansen, B. U. (2011). Plant-mediated CH₄ transport and C gases quantified in situ in a Phalaris arundinacea-dominant wetland. Plant and Soil, 343(1–2), 287–301. https://doi.org/10.1007/s11104-011-0718-x
Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814. https://doi.org/10.1038/ismej.2008.58
Bellissario, L., Rubier, J., Moore, T., & Chantron, J. (1999). Controls on CH₄ emissions from a northern peatland. Global Biogeochemical Cycles, 13(1), 81–91. https://doi.org/10.1029/1998GB000021
Bender, M., & Conrad, R. (1994). Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils. Biogeochemistry, 27(2), 97–112. https://doi.org/10.1007/BF00002813
Bodelier, P. E. L., & Laanbroek, H. (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 47, 265–277. https://doi.org/10.1016/S0168-6496(03)00304-0
Bridgeham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspective from local to global scales. Global Change Biology, 19(5), 1325–1346. https://doi.org/10.1111/gcb.12131
Cao, M., Marshall, S., & Gregson, K. (1996). Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model. Journal of Geophysical Research: Atmospheres, 101(D9), 14399–14414. https://doi.org/10.1029/96JD00219
Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., et al. (2003). Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters, 30(7), 1414. https://doi.org/10.1029/2002GL016848
Conrad, R. (1995). Soil microbial processes involved in production and consumption of atmospheric trace gases. In Advances in microbiological ecology (pp. 207–250). Springer. https://doi.org/10.1007/978-1-4684-7724-5_5
Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, COₓ, N₂O, and NO). Microbiological Reviews, 60(4), 609–640. https://doi.org/10.1128/mrbo.60.4.609-640.1996
Conrad, R. (2002). Control of microbial methane production in wetland rice fields. Nutrient Cycling in Agroecosystems, 64(1–2), 59–69. https://doi.org/10.1023/A:1012117871988
Dijkstra, F. A., Morgan, J. A., LeCain, D. R., & Follett, R. F. (2010). Microbiologically mediated CH₄ consumption and N₂O emission is affected by elevated CO₂, soil water content, and composition of semi-arid grassland species. Plant and Soil, 329, 269–281. https://doi.org/10.1007/s11104-009-0152-5
Frolking, S., Roulet, N., & Fuglestvedt, J. (2006). How northern peatlands influence the Earth’s radiative budget: Sustained methane emission versus sustained carbon sequestration. Global Change Biology, 12(1), 81–91. https://doi.org/10.1111/j.1365-2486.2005.01078.x
Hanson, P. J., Griffiths, N. A., Xu, X., Phillips, J. R., Wesston, D. J., Kolka, R. K., et al. (2016). Intermediate-scale community-level flux of CO₂ and CH₄ in a Minnesota peatland: Putting the SPRUCE project in a global context. Biogeochemistry, 129(3), 255–272. https://doi.org/10.1007/s10533-016-0230-0
Hanson, P. J., Griffiths, N. A., Iversen, R. J., Honjo, S. D., Phillips, J. R., et al. (2020). Rapid net carbon loss from a whole-ecosystem warmed peatland. AGU Advances, 1, e2020AV000163. https://doi.org/10.1029/2020AV000163
Hanson, P. J., Riggs, J. S., Netles, J.V.W. R., Phillips, J. R., Krassovski, M. B., et al. (2017). Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO₂ whole-ecosystem warmed peatland. AGU Advances, 1, 1911. https://doi.org/10.1002/2017AV000163
Haveron, M. E., MacKinnon, M. D., & Fedorak, P. M. (2005). Polycyclamidine added as a nitrogen source stimulates methanogenesis in consortia from various wastewaters. Water Research, 39(14), 3333–3341. https://doi.org/10.1016/j.watres.2005.05.042
Hoppie, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. F., Kostka, J., et al. (2020). Massive peatland carbon banks vulnerable to rising temperatures. Nature Communication, 11, 2373. https://doi.org/10.1038/s41467-020-16311-8
Hutchin, P. R., Press, M. C., Lee, J. A., & Ashenden, T. W. (1995). Elevated concentrations of CO₂ may double methane emissions from mires. Global Change Biology, 1(2), 125–128. https://doi.org/10.1111/j.1365-2486.1995.tb00012.x
Iversen, C. M., Coward, P., & Hartwig, U. (1998). Soil gas fluxes of N₂O, CH₄, and CO₂ beneath Lollum perenne under elevated CO₂. The Swiss free air carbon dioxide enrichment experiment. Plant and Soil, 198(1), 89–95. https://doi.org/10.1023/A:1004298309606
IPCC (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., et al. (2020). Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 15(7), 071002. https://doi.org/10.1088/1748-9326/ab9cd2
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., et al. (2013). Three decades of global methane sources and sinks. *Nature Geoscience*, 6(10), 813–823. https://doi.org/10.1038/ngeo1955

Kolka, R., Sebestyen, S.,erry, E. S., & Brooks K. (Eds.) (2011). *Pieland biogeochemistry and watershed hydrology at the Marcell experi-mental forest*. CRC Press.

Lin, Y., Liu, D., Yuan, J., Ye, G., & Ding, W. (2017). Methanogenic community was stable in two contrasting freshwater marshes exposed to elevated atmospheric CO2. *Frontiers in Microbiology*, 8, 932. https://doi.org/10.3389/fmicb.2017.00932

Liu, S., G. Wang, C., Chen, L., Jia, Y., Zou, Z., et al. (2018). Climatic role of terrestrial ecosystem under elevated CO2. A bottom-up greenhouse gases budget. *Ecology Letters*, 21(7), 1108–1118. https://doi.org/10.1111/ele.13078

Lu, M., Zhou, X. H., Yang, Q., Li, H., Luo, Y. Q., Fang, C. M., et al. (2018). Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. *Ecology*, 94(3), 726–738. https://doi.org/10.1890/12-0279.1

Ma, S., Jiang, J., Huang, Y., Shi, Z., Wilson, R. M., Ricciuto, D., et al. (2017). Data-constrained projections of methane fluxes in a northern Minnesota peatland in response to elevated CO2 and warming. *Journal of Geophysical Research: Biogeosciences*, 122, 2841–2861. https://doi.org/10.1002/2017JG003932

Mäkiranta, P., Lailo, R., Mehtätalo, L., Strakov, P., Sormunen, J., Minkininen, K., et al. (2018). Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. *Global Change Biology*, 24(3), 944–956. https://doi.org/10.1111/gcb.13934

Malhotra, A., Brice, D. J., Childs, J., Graham, J. D., Hobbie, E. A., Vander Stel, H., et al. (2020). Peatland warming strongly increases fine-root growth. *Proceedings of the National Academy of Sciences of the United States of America*, 117(30), 17627–17634. https://doi.org/10.1073/pnas.2003361117

McPartland, M. Y., Kane, E. S., Falkowski, M. J., Kolka, R., Turetsky, M. R., Palik, B., & Montgomery, R. A. (2019). *Spruce: LAT data from SPURCE experimental plots, 2017–2018*. Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.25581/ spruce.058.1491566

Megenia, L. P., & Schlesinger, W. H. (1997). Enhanced CH4 emission from a wetland soil exposed to elevated CO2. *Ecology*, 78(1), 77–88. https://doi.org/10.2307/1938755

Mitsch, W. J., & Gosselink, J. G. (2007). *Wetlands* (4th ed.). John Wiley & Sons, Inc.

Nazzaro, L., Murrell, J. C., Millard, P., Bagg, L., & Singh, B. K. (2013). Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. *Environmental Microbiology*, 15(9), 2395–2417. https://doi.org/10.1111/1462-2920.12349

Nichols, J. E., & Pateet, D. M. (2019). Rapid expansion of northern peatlands and doubled estimate of carbon storage. *Nature Geoscience*, 12, 917–921. https://doi.org/10.1038/s41561-019-0454-z

Norby, R. J., Childs, J., Hanson, P. J., & Warren, J. M. (2019). Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog. *Ecology and Evolution*, 9(22), 12571–12585. https://doi.org/10.1002/ece3.5722

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniski, B., Huang, M., Kwon, D. C., & Yang, Z. L. (2013). Technical description of version 4.5 of the community land model (CLM) (*NCAR Tech. Note NCAW/TN-503+ STR*). National Center for Atmospheric Research. https://doi.org/10.5065/D6RR1W7M

Peltoniemi, K., Lailo, R., Jutunen, H., Rodrosy, L., Kell, D. K., Minkininen, K., et al. (2016). Responses of methanogenic and methano- trophic communities to warming in varying moisture regimes of two boreal fens. *Soil Biology and Biochemistry*, 97, 144–156. https://doi.org/10.1016/j.soilbio.2016.03.007

Ricciuto, D. M., Xu, X., Shi, X., Wang, Y., Song, X., Schadt, C. W., et al. (2021). An integrative model for soil biogeochemistry and methane Proces-ses: I. Model structure and sensitivity analysis. *Journal of Geophysical Research: Biogeosciences*. https://doi.org/10.1029/2019JG005468

Rutti, T., Laine, J., & Tuittila, E. S. (2007). Sensitivity of CO2 exchange of fen ecosystem components to water level variation. *Ecosystems*, 10(5), 718–733. https://doi.org/10.1007/s10021-007-9046-7

Ross, D., Newton, P., & Tate, K. (2004). Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. *Plant and Soil*, 260(1–2), 183–196. https://doi.org/10.1023/B:PLASO.0000030188.77365.46

Saarnio, S., Alm, J., Martikainen, P. J., & Silvola, J. (1998). Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from, a boreal mire. *Journal of Ecology*, 86(2), 261–268. https://doi.org/10.1046/j.1365-2745.1998.00248.x

Sánchez-Carrillo, S., Álvarez-Cobelas, M., Angeler, D. G., Serrano-Grijalva, L., Sánchez-Andrés, R., Cirujano, S., & Schmid, T. (2018). Elevated atmospheric CO2 increases root exudation of carbon in wetlands: Results from the first free-air CO2 enrichment facility (FACE) in a marsh. *Ecosystems*, 21(5), 852–867. https://doi.org/10.1002/10121.001-017.0189-x

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., et al. (2016). The global methane budget 2000–2012. *Earth System Science Data*, 8(2), 697–751. https://doi.org/10.5194/esd-8-697-2016

Schlesinger, W. H., & Bernhardt, E. S. (2013). *Biogeochemistry: An analysis of global change*. Academic Press.

Shi, X., Ricciuto, D. M., Thornton, P. E., Xu, X., Yuan, J., Norby, R. J., et al. (2021). Extending a land-surface model with Sphagnum moss and nitrogen cycle model. *Ecosystems*, 24(2), 111–135. https://doi.org/10.1002/1523-1719.12304

Thornton, P. E., & Rosenbloom, N. A. (2005). Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. *Ecological Modelling*, 189(1–2), 25–48. https://doi.org/10.1016/j.ecolmodel.2005.04.008
Thornton, P. E., & Zimmermann, N. E. (2007). An improved canopy integration scheme for a land surface model with prognostic canopy structure. *Journal of Climate*, 20, 3902–3923. https://doi.org/10.1175/jcli4222.1

Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., & McGuire, A. D. (2008). Short-term response of methane fluxes and methanogenesis activity to water table and soil warming manipulations in an Alaskan peatland. *Journal of Geophysical Research: Biogeosciences*, 113, G00A10. https://doi.org/10.1029/2007JG001125

Updegraff, K., Bridgham, S. D., Pastor, J., Weishampel, P., & Harth, C. (2001). Response of CO₂ and CH₄ emissions from peatlands to warming and water table manipulation. *Ecological Applications*, 11(2), 313–326. https://doi.org/10.1890/1051-0761(2001)011[0313:ROECAE]2.0.CO;2

Updegraff, K., Pastor, J., Bridgham, S. D., & Johnston, C. A. (1995). Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. *Ecological Applications*, 5(1), 151–163. https://doi.org/10.2307/1942060

Wang, Y., Yuan, F., Yuan, F., Gu, B., Hahn, M. S., Torn, M. S., et al. (2019). Mechanistic Modeling of microtopographic impact on CH₄ processes in an Alaskan tundra ecosystem using the CLM-Microbe model. *Journal of Advances in Modeling Earth Systems*, 11, 4228–4304. https://doi.org/10.1029/2019MS001771

Yin, H., Li, Y., Xiao, J., Xu, Z., Cheng, X., & Liu, Q. (2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. *Global Change Biology*, 19(7), 2158–2167. https://doi.org/10.1111/gcb.12161

Yvon-Durocher, G., Montoya, I. M., Woodward, G., Jones, J. L., & Trimmer, M. (2011). Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. *Global Change Biology*, 17, 1225–1234. https://doi.org/10.1111/j.1365-2486.2010.02289.x

Zalman, C., Keller, J. K., Talley, M., Kolton, M., Pfeiffer-Meister, L., Wilson, R. M., et al. (2018). Small differences in ombrotrophic control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. *Biogeochemistry*, 139, 155–177. https://doi.org/10.1007/s10533-018-0460-z

Zhang, L., Yuan, F., Bai, J., Duan, H., Gu, X., Hou, L., et al. (2020). Phosphorus alleviation of nitrogen-suppressed methane sink in global grasslands. *Ecology Letters*, 23(5), 821–830. https://doi.org/10.1111/ele.13489

Zhao, Q., Melillo, J. M., Kicklighter, D. W., Prinl, R. G., McGuire, A. D., Steudler, P. A., et al. (2004). Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. *Global Biogeochemical Cycles*, 18, GB3010. https://doi.org/10.1029/2004GB002239

YIN ET AL.
Curtis, P. S., Drake, B. G., & Whigham, D. F. (1989). Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ. *Oecologia*, 78(3), 297–301. https://doi.org/10.1007/BF00379101

Dacey, J. W. H., Drake, B. G., & Klug, M. J. (1994). Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. *Nature*, 370(6484), 47–49. https://doi.org/10.1038/370047a0

Ellis, T., Hill, P. W., Fenner, N., Williams, G. G., Godbold, D., & Freeman, C. (2009). The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog. *Ecological Engineering*, 35(6), 978–986. https://doi.org/10.1016/j.ecoleng.2008.10.011

Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., et al. (2004). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. *Nature*, 430(6996), 195–198. https://doi.org/10.1038/nature02707

Granberg, G., Sundh, L., Svensson, B. H., & Nilsson, M. (2001). Effects of temperature and nitrogen and sulfur deposition, on methane emission from a boreal mire. *Ecology*, 82(7), 1982–1998. https://doi.org/10.1890/0012-9658(2001)082[1982:EOTMNT]2.0.CO;2

Hutchinson, P. R., Press, M. C., Lee, J. A., & Ashendon, T. W. (1995). Elevated concentrations of CO2 may double methane emissions from mires. *Global Change Biology*, 1, 125–128. https://doi.org/10.1111/j.1365-2486.1995.tb00012.x

Johnson, C. P., Pyppler, T. G., Hribljan, J. A., & Chimner, R. A. (2013). Open top chambers and infrared lamps: A comparison of heating efficiency and CO2/CH4 dynamics in a northern peatland. *Ecosystems*, 16(5), 736–748. https://doi.org/10.1007/s10021-013-9646-3

Jones, S. F., Stagg, C. L., Krauss, K. W., & Hester, M. W. (2018). Flooding alters plant-mediated carbon cycling independently of elevated atmospheric CO2 concentrations. *Journal of Geophysical Research: Biogeosciences*, 123, 1976–1987. https://doi.org/10.1029/2017JG004369

Kang, H., Freeman, C., & Ashendon, T. W. (2001). Effects of elevated CO2 on fen peat biogeochemistry. *Science of the Total Environment*, 279(1–3), 45–50. https://doi.org/10.1016/S0048-9697(01)00724-0

Keller, J. K., White, J. R., Bridgham, S. D., & Pastor, J. (2004). Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality. *Global Change Biology*, 10(7), 1053–1064. https://doi.org/10.1111/j.1365-2486.2003.00785.x

Laine, A. M., Mäkiranta, P., Laiho, R., Mehtätalo, L., Penttilä, T., Lainen, J., et al. (2019). Warming impacts on boreal fen CO2 exchange under wet and dry conditions. *Global Change Biology*, 25(6), 1995–2008. https://doi.org/10.1111/gcb.14617

Lee, S. H., & Kang, H. (2016). Elevated CO2 causes a change in microbial communities of rhizosphere and bulk soil of salt marsh system. *Applied Soil Ecology*, 108, 307–314. https://doi.org/10.1016/j.apsoil.2016.09.009

Lilkanen, A., Ratilainen, E., Saarnio, S., Alm, J., Martikainen, P., & Silvolta, I. (2003). Greenhouse gas dynamics in boreal, littoral sediments under raised CO2 and nitrogen supply. *Freshwater Biology*, 48(3), 500–511. https://doi.org/10.1046/j.1365-2427.2003.01023.x

Lin, Y., Liu, D., Yuan, J., Ye, G., & Ding, W. (2017). Methanogenic community was stable in two contrasting freshwater marshes exposed to elevated atmospheric CO2. *Frontiers in Microbiology*, 8, 932. https://doi.org/10.3389/fmicb.2017.00932

Moore, T. R., & DaVla, M. (1993). The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. *Journal of Soil Science*, 44(4), 651–664. https://doi.org/10.1111/j.1365-2407.1993.tb0230.x

Pastore, M. A., Megonigal, J. P., & Langley, J. A. (2017). Elevated CO2 and nitrogen addition accelerate net carbon gain in a brackish marsh. *Biogeochemistry*, 133(1), 73–87. https://doi.org/10.1007/s10533-017-0312-2

Pearson, M., Penttilä, T., Harjunpää, L., Laiho, R., Sarjala, T., et al. (2015). Temperature of water table is a key control on CH4 production and CH4 oxidation in a northern Michigan peatland. *Ecology*, 96(2), 261–268. https://doi.org/10.1890/13-0714.1

Peltoniemi, K., Laiho, R., Juutonen, H., Bodrossy, L., Kell, D. K., Minkkinen, K., et al. (2016). Responses of methanogenic and methano-trophic communities to warming in varying moisture regimes of two boreal fens. *Soil Biology and Biochemistry*, 97, 144–156. https://doi.org/10.1016/j.soilbio.2016.03.007

Saarnio, S., Alm, J., Martikainen, P. J., & Silvola, J. (1999). Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from, a boreal mire. *Journal of Ecology*, 87(2), 261–268. https://doi.org/10.1046/j.1365-2745.1999.00028.x

Sánchez-Carrillo, S., Álvarez-Cobelas, M., Angeler, D. G., Serrano-Grijalva, L., Sánchez-Andrés, R., Cirujano, S., & Schmid, T. (2018). Elevated atmospheric CO2 increases root exudation of carbon in wetlands: Results from the first free-air CO2 enrichment facility (FACE) in a Marshland. *Ecosystems*, 21(5), 852–867. https://doi.org/10.1007/s10021-017-0189-x

Turetsky, M. R., Treat, C. C., Lappalainen, E., Saarnio, S., Alm, J., Martikainen, P., & Silvola, J. (2003). Greenhouse gas dynamics in a northern Michigan peatland. *Ecosystems*, 6(5), 694–704. https://doi.org/10.1007/BF02732908

Updegraff, K., Bridgham, S. D., Pastor, J., Weishampel, P., & Harth, C. (2001). Response of CH4 and CO2 emissions from peatlands to warming and water table manipulation. *Ecological Applications*, 11(2), 311–326. https://doi.org/10.1890/1051-0761(2001)011[0311:ROCACE]2.0.CO;2

Updegraff, K., Pastor, J., Bridgham, S. D., & Johnston, C. A. (1995). Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. *Ecological Applications*, 5(1), 151–163. https://doi.org/10.2307/1942060

Vann, C. D., & Megonigal, J. P. (2003). Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species. *Biogeochemistry*, 63(2), 117–134. https://doi.org/10.1023/A:1023397032331

Wolf, A. A., Drake, B. G., Erickson, J. E., & Megonigal, J. P. (2007). An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. *Global Change Biology*, 13(9), 2036–2044. https://doi.org/10.1111/j.1365-2486.2007.01407.x

Yang, B., Chen, Z., Zhang, M., Zhang, H., Zhang, X., Pan, G., et al. (2015). Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice–wheat rotation system. *Journal of Environmental Sciences*, 32, 62–71. https://doi.org/10.1016/j.jes.2014.11.010