Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH$_4$SCN

Ziji Liu
University of Electronic Science and Technology of China, China

Detao Liu
University of Electronic Science and Technology of China, China

Hao Chen
University of Electronic Science and Technology of China, China

Long Ji
University of Electronic Science and Technology of China, China

Hualin Zheng
University of Electronic Science and Technology of China, China

See next page for additional authors.
Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH₄SCN

Notes/Citation Information
Published in *Nanoscale Research Letters*, v. 14, 304, p. 1-7.

© The Author(s). 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Digital Object Identifier (DOI)
https://doi.org/10.1186/s11671-019-3134-4
Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH$_4$SCN

Ziji Liu1,*, Detao Liu1,*, Hao Chen1, Long Ji1, Hualin Zheng1, Yiding Gu1, Feng Wang1, Zhi Chen1,2,* and Shibin Li1,*

Abstract
The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH$_4$SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic devices based on perovskite films.

Keywords: Perovskite solar cells, NH$_4$SCN, Crystalline, Trap-state density

Introduction
Owing to the excellent optoelectronic properties, the organic-inorganic hybrid metal halide perovskite (OIMHP) has been widely used as the light-harvester material of solar cells. The last certified power conversion efficiency (PCE) of the solar cells based on OIMHP has reached 24.2% [1]. Perovskite solar cells (PSCs) are the most promising solar cells among the third-generation solar cells.

The bandgap of conventional OIMHP films is at the range of 1.5–1.6 eV, and the corresponding theoretical Shockley–Queisser limit efficiency (TS-QLE) is higher than 30% [2–4]. However, the reported highest PCE is much lower than the TS-QLE due to the trap-assisted non-radiative recombination in the perovskite film [5–8]. The trap-assisted non-radiative recombination intensity often depends on the defect density in perovskite films and most of the defects are spread on the surface and boundary of perovskite crystal grains due to the atomic vacancies [7, 9]. Therefore, perovskite films with less crystal grain boundary area contribute to the better photovoltaic performance of PSCs [10–12]. The perovskite films with less crystal grain boundary area can be obtained via increasing the crystal grain size. To enlarge the crystal grain size of perovskite films, various methods have been developed, including the additive engineering [13–15], precursor solvent engineering [16], anti-solvent engineering [17], and procedure optimization [18–20]. Among these methods, the additive engineering is one of the most frequently used methods to the realization of large-crystal-grain-size perovskite films. The additive materials include polymers [21], small organic molecules [15, 22], and inorganic salts [23]. The polymers with special organic groups like carbonyl groups can slow down the crystallization process and enlarge the grain size of the perovskite films [21]. Small organic molecules containing lone electron pairs can interact with the Lewis acid PbI$_2$ in the precursor solution and the intermediate polymer-PbI$_2$ adduct forms. The formation of the adduct retards the crystal growth and improves the crystallinity of the perovskite film. Bi et al. employed poly(methyl methacrylate) (PMMA) as a template to control the crystallization process of perovskite, improving the PCE up to 21.6% [21]. Small organic molecules containing special groups are also used frequently to adjust the crystallinity of perovskite films. The mechanism for improving the crystallinity of perovskite is the same as polymers. To avoid the defect formation, the small organic molecules are required to have suitable energy levels. Zhang et al. used a fused ring electron acceptor material to dope...
perovskite films. This material improved the crystallinity of perovskite films and increased the PCE of PSCs from 19.6% to 21.7% [22]. The inorganic salts used in perovskite films include Pb(SCN)$_2$, KSCN, NaSCN, CdCl$_2$, and NiCl$_2$ [14, 24, 25]. The SCN$^−$ has a larger electronegativity than the I$^−$ ion, so SCN$^−$ anion is more apt to form ionic bonding with the CH$_3$NH$_3^+$ cation than the I$^−$ anion. The formed ionic bonding can also retard the crystal growth and increase the crystallinity of perovskite films. When the perovskite was heated at high temperature, the SCN$^−$ can escape from perovskite films and the metal ions can be left. The Cd$^{2+}$ and Ni$^{2+}$ in perovskite precursors can also change the crystal growth mechanism and improve the crystallinity of perovskite films.

The ammonium thiocyanate (NH$_4$SCN) contains SCN$^−$ anion, so it can improve the crystallinity of perovskite films [11]. This material in perovskite films can be decomposed into HSCN and NH$_3$ when samples are heated on hotpot. Therefore, no residual of NH$_4$SCN will be left in perovskite films and defects induced by the introduction of NH$_4$SCN will not appear. From the above analysis, NH$_4$SCN is an effective additive for improving the crystallinity of perovskite films, which has been proved by Zhang et al. [26]. Chen’s group has used NH$_4$SCN to enhance the crystallinity of FAPbI$_3$ films and form the vertically oriented 2D-layered perovskite films [27–29]. Ning’s group introduced NH$_4$SCN into tin-based perovskite films to manipulate the crystal growth process, which improved the photovoltaic performance and stability of tin-based PSCs [30].

Here, the NH$_4$SCN was employed to control the crystallinity of triple-cation perovskite films. The NH$_4$SCN can increase the crystal grain size and reduce the boundary area in perovskite films, inducing a lower trap-state density. The lower trap-state density attributes to the longer charge lifetime and higher photovoltaic performance of PSCs. The PCE of PSCs has been improved from 17.24% to 19.36%.

Method

Materials

All of the materials were purchased from Ying Kou You Xuan Trade Co., Ltd., if not specified. The PbI$_2$, tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)-cobalt(III) bis(trifluoromethylsulphonil)imide (FK209), PEDOT: PSS, and FAI were purchased from Xi’an Polymer Light Technology Cory. CsI, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich Corp. The SnO$_2$ nanoparticle colloidal solution (Alfa Aesar (tin(IV) oxide, 15% in H$_2$O colloidal dispersion)) according to reference [31]. After the spin-coating, the SnO$_2$ film was heated at 165 °C for 0.5 h. Then the substrates were treated with the UV-ozone again and transferred into the glovebox. Perovskite films were prepared by spin-coating with a speed of 1000 rpm for 10 s and 5000 rpm for 45 s. At 9 s before the ending of the spin-coating program, 150 μL chlorobenzene was dropped onto the spinning substrate. Then, the perovskite films were heated at 100 °C for 60 min. The HTL was prepared by spin-coating the HTL solution at 5000 rpm for 30 s. Finally, 100 nm of Au top electrode was thermally evaporated onto the HTL.

Characterization

The current density-voltage (J-V) characteristic of PSCs was recorded by Keithley source unit 2400 under AM 1.5G sun intensity illumination by a solar simulator from Newport Corp. The X-ray diffraction patterns were recorded with Bruker D8 ADVANCE A25X. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were conducted on Nicolet iS10 and field emission fitting SEM (FEI-Inspect F50, Holland). The absorption of perovskite was measured using Shimadzu 1500 spectrophotometer.

Results and Discussion

To optimize the content of NH$_4$SCN, perovskite films were deposited using the perovskite precursor solutions doped with different content of NH$_4$SCN, and these films were used as the light harvester layers of solar cells. The configuration of PSCs is ITO/SnO$_2$/perovskite/Spiro-OMeTAD/Au, as shown in Fig. 1a. To simplify the expression in this article, the perovskite film fabricated

Liu et al. Nanoscale Research Letters (2019) 14:304
from perovskite precursor solutions doped with a concentration of x mg/mL is expressed as perovskite-x here. The current density-voltage (J-V) curve of the champion device in each group is plotted in Fig. 1b, and the corresponding photovoltaic parameters are listed in Table 1. The statistical data for photovoltaic parameters of PSCs are shown in Fig. 2a–d. The perovskite-1.5-based PSCs (target PSCs) exhibit the best photovoltaic performance, attributed to the improved short-circuit current density (J_{SC}) and fill factor (FF). Compared with the champion perovskite-0-based PSCs (reference PSCs), all the photovoltaic parameters of the champion PSCs based on perovskite-3 have been enhanced obviously, resulting in a PCE of 19.36%. The external quantum efficiency (EQE) spectrums of target PSCs and reference PSCs are shown in Fig. 3a. The EQE values of target PSCs at most of the visible light region are higher than that of reference PSCs, consisting with the EQE result in reference [26]. This phenomenon results from the more efficient charge transport in perovskite films with better crystallinity. To investigate the mechanism for the photovoltaic performance improvement, several characterizations have been carried out on the perovskite films.

The reflecting FTIR measurement has been carried on perovskite films without NH$_4$SCN doping (perovskite-w/o-NH$_4$SCN) and perovskite films with NH$_4$SCN doping (perovskite-NH$_4$SCN) to identify the organic groups and ingredients in perovskite films, as shown in Fig. 3a. The absorption peaks at the wavenumber of 1350 cm$^{-1}$ and 1477 cm$^{-1}$ are attributed to the vibration of organic –CH$_3$ groups in perovskite films. The corresponding absorption peaks of the amino groups in perovskite films locate at the range of 1600–1750 cm$^{-1}$ and 3200–3500 cm$^{-1}$. No absorption peak corresponding to –C≡N in –SCN can be found in perovskite-NH$_4$SCN, demonstrating that there is no residue of NH$_4$SCN in the final perovskite-NH$_4$SCN films. The UV-visible light absorption also has been measured and the result is shown in Fig. 3b. Both perovskite films have a strong absorption when the light wavelength is below 750 nm, and the absorption edges of both perovskite films overlap, clarifying the bandgap values of both perovskite films are the same. The similar shape of the FTIR plots and UV-visible absorption curves of the perovskite-w/o-NH$_4$SCN and perovskite-NH$_4$SCN indicates that both perovskite films have the same ingredient.

The morphology of perovskite films is investigated using SEM, and the results are shown in Fig. 4a, b. The perovskite films without NH$_4$SCN dopants contain many small-size crystals with a gain size lower than 200 nm. In contrast, there are much fewer small-size crystals in perovskite-NH$_4$SCN films. The average crystal grain sizes of both perovskite films have been calculated using the Nano Measurer software. The average crystal grain sizes of perovskite-w/o-NH$_4$SCN and perovskite-NH$_4$SCN is about 312.02 nm and 382.95 nm, respectively. The grain-size distributions of the crystals in SEM images are shown in Fig. 4c. The frequency of the crystal grain size distributed at the range of 200–300 nm is highest in perovskite-w/o-NH$_4$SCN. However, the frequency of the crystal grain size distributed at the range of 300–400 nm is highest in perovskite-NH$_4$SCN. The distribution proportion of the grain size larger than 400 nm in perovskite-w/o-NH$_4$SCN

| Table 1 Photovoltaic parameters of the champion device in each group |
|-----------------|-------|-------|-------|
| Device | J_{SC} (mA/cm2) | V_{OC} (V) | FF (%) | PCE (%) |
| Perovskite-0-based PSCs | 22.37 | 1.077 | 71.58 | 17.24 |
| Perovskite-1.5-based PSCs | 23.57 | 1.075 | 69.88 | 17.71 |
| Perovskite-3-based PSCs | 24.17 | 1.091 | 73.39 | 19.36 |
| Perovskite-6-based PSCs | 22.45 | 1.056 | 71.04 | 16.85 |

Fig. 1 a Schematic illustration of PSCs structure. b J-V curves of PSCs based on perovskite films deposited from perovskite precursors doped with different NH$_4$SCN.
Fig. 2 a–d Statistical data for V_{OC} (a), J_{SC} (b), FF (c), and PCE (d) of PSCs based on perovskite films deposited from perovskite precursors doped with different NH$_4$SCN.

Fig. 3 a EQE spectrum of target PSCs (PSCs with NH$_4$SCN) and reference PSCs (PSCs w/o NH$_4$SCN). b, c FTIR results of the perovskite-w/o-NH$_4$SCN films and perovskite-NH$_4$SCN films. d UV-vis absorption spectrum of the perovskite-w/o-NH$_4$SCN films and perovskite-NH$_4$SCN films.
is also much lower than that in perovskite-NH4SCN. The larger grain size in perovskite results in the fewer crystal grain boundaries. It has been reported that the trap states are mainly distributed on the boundaries of perovskite crystal grains. Hence, the perovskite-NH4SCN films with larger-size crystal grains are favored by high-performance PSCs.

The X-ray diffraction (XRD) pattern has been used to identify the crystallinity of perovskite films further. There are no distinct peak location shifts in the XRD pattern of perovskite-NH4SCN films compared with the XRD pattern of perovskite-w/o-NH4SCN films, demonstrating that both perovskite films show the same crystallization type. The peaks at 14.37°, 20.27°, 24.82°, 28.66°, 32.12°, 35.38°, 40.88°, and 43.46° correspond to (001), (011), (111), (002), (012), (112), (022) and (003) planes of perovskite films, respectively. The peaks at 12.93° originate from the PbI2 crystal grains. The strongest peak in XRD patterns locates at 14.37°, so we have magnified the XRD patterns at a range of 12–15° to observe the crystallinity difference between these two perovskite films accurately. The PbI2 peak intensity in the XRD pattern of the perovskite-NH4SCN is lower than that of the perovskite-w/o-NH4SCN, indicating that less PbI2 byproduct can be observed. Except the excess PbI2 in perovskite precursor, PbI2 can also be generated when the perovskite is annealed due to the escape of some organic cation salts. Hence, it can be inferred that perovskite-NH4SCN films show better thermal stability. The (001) plane peak intensity in the XRD pattern of perovskite-NH4SCN films is higher than that of perovskite-w/o-NH4SCN, and the (001) plane peak width at half the height in the XRD pattern of perovskite-NH4SCN films is much smaller, clarifying perovskite-NH4SCN films show better crystallinity.

The electron-only devices and hole-only devices have been fabricated to characterize the electron trap-state density and hole trap-state density in both perovskite films, respectively. The configuration of electron-only devices and hole-only devices is presented in the inset of Fig. 5 c and d, respectively. The dark current-voltage (I-V) curves of the devices have been measured and plotted in Fig. 5c, d. All I-V curves contain ohmic response region at low bias voltage region. As the voltage is continuously increased, the current rises steeply due to the reduced trap density. The kink point (V_{TFL}) of these curves can be used to identify the trap-state density according to equation (1) [32–35]:

$$V_{TFL} = \frac{e_n L^2}{2\varepsilon \varepsilon_0}$$

where L is the thickness of the perovskite films, ε is the relative dielectric constant of perovskite films, n_i is the trap-state density, and ε_0 is the vacuum permittivity. The similar absorption intensity shown in Fig. 3b indicated that the thickness of both perovskite films is very close. The FTIR results and UV-visible light absorption edges show that the ingredients in perovskite films are the same. Therefore, both perovskite films have the same ε value. The V_{TFL} is relative to the trap-state density positively. As shown in Fig. 5c, d, both V_{TFL} values obtained from perovskite-NH4SCN-based electron-only devices and perovskite-NH4SCN-based hole-only devices are obviously lower than those obtained from perovskite-w/o-NH4SCN-based electron-only devices and perovskite-w/o-NH4SCN-based hole-only devices. It clarifies that both electron trap-state density and hole trap-state density have been reduced in perovskite-NH4SCN films due to the increased crystal grain size.

From the above characterization and analysis, we can infer that using perovskite precursor solution doped with NH4SCN to deposit perovskite films increases the perovskite crystal grain size, resulting in a reduced crystal boundary area and trap-state density. The reduced trap-state density in perovskite is beneficial to the enhanced charge transport and photovoltaic performance of PSCs.
Conclusion
In conclusion, we have adapted NH₄SCN as the dopant of perovskite precursors to increase the crystalline of perovskite films. The enhanced-crystallinity perovskite-based PSCs achieve the champion PCE of 19.36% which is much higher than the maximum PCE of the reference PSCs (17.24%). The improved photovoltaic performance of target PSCs is attributed to the enhanced crystal grain size in perovskite-NH₄SCN films. The enhanced crystal grain size in perovskite-NH₄SCN films can reduce the charge trap-state density and benefit to the charge transport. Our results demonstrate a simple and effective way to enhance the device efficiency by improving the crystalline of perovskite films.

Abbreviations
DMF: Dimethylformamide; DMSO: Dimethyl sulfoxide; ETL: Electron transport layer; FA: CH₃NH₃; FF: Fill factor; FTIR: Fourier-transform infrared spectroscopy; HTL: Hole-transport layer; ITO: Indium tin oxide; JSC: Short-circuit current density; J-V: Current density-voltage; MA: CH₃NH₃; NH₄SCN: Ammonium thiocyanate; OIMHP: Organic-inorganic hybrid metal halide perovskite; PCE: Power conversion efficiency; PMMA: Poly(methyl methacrylate); PSCs: Perovskite solar cells; SEM: Scanning electron microscope; Spiro-OMeTAD: (2,2′,7,7′-tetakis(N,N-dimethylamino)-9,9′-spirobi-fluorene); TS-QLE: Theoretical Shockley–Queisser limit efficiency; VOC: Open-circuit voltage; XRD: X-ray diffraction

Acknowledgements
The authors greatly acknowledge the Sichuan University and Ceshigou Analytical Testing Company for the measurement assistance.

Authors’ Contributions
ZL and DL wrote the article and did the experiment together. HC, JL, and HZ performed the FTIR, XRD, and SEM data analysis, respectively. YG, SL, and FW revised the article. ZC supervised the whole project and interpreted the results. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China under Grant Nos. 61874150, 61421002, and 61574029. This work was also partially supported by the University of Kentucky. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. The authors declare no competing financial interests.

Availability of Data and Materials
All the data are fully available without restrictions.

Competing Interests
The authors declare that they have no competing interests.

Author details
1State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, Sichuan, China.
2Department of Electrical & Computer Engineering, Center for Nanoscale Science & Engineering, University of Kentucky, Lexington, KY 40506, USA.

Received: 6 June 2019 Accepted: 19 August 2019

References
1. NREL: National Center For Photovoltaics Home Page. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf. Accessed 16 April 2019.
2. Turren-Cruz SH, Hagfeldt A, Saliba M (2018) Methylammonium-free, high
performance and stable perovskite solar cells on a planar architecture. Science 362(6413):449–453
3. Wang F, Zhang T, Wang Y et al (2019) Steering the crystallization of perovskites for high-performance solar cells in ambient air. J Mater Chem A 7(19):12166–12175
4. Wang P, Wu Y, Cai B et al (2019) Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater DOI: https://doi.org/10.1002/adfm.201907661
5. Yang Y, Peng H, Liu C et al (2019) Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density. J Mater Chem A 7(11):6450–6458
6. Chen Y, Yang Z, Jia X et al (2019) Thermally stable methylammonium-free inverted perovskite solar cells with Sn3+ doped CsAu3 as efficient mesoporous hole-transporting layer. Nano Energy 61:148–157
7. Zheng X, Deng Y, Chen B et al (2018) Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv Mater 30(52):e1803428
8. Liu D, Wang Y, Xu H et al (2019) SnO2-based perovskite solar cells: configuration design and performance improvement. Sol RRL 3(2):1802092
9. Lin Y, Shen L, Dai J et al (2017) π-Conjugated Lewis Base: Efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv Mater 29(7):1704545
10. Liu D, Wang Y, She Z et al (2018) Suppressed decomposition of perovskite film on ZnO via a self-assembly monolayer of methoxyisilane. Sol RRL 2(12):1802040
11. Dong H, Wu Z, Xi J et al (2018) Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells. Adv Funct Mater 28(3):1704836
12. Zhao Y, Tan H, Yuan H et al (2018) Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun 9(1):1607
13. Azam M, Liu K, Yue S et al (2019) The positive function of incorporation of small molecules into perovskite materials for high-efficient stable solar cells. Sol RRL 3(3):1800327
14. Gong X, Guan L, Pan H et al (2019) Solution-processable perovskite solar cells: formamidinium-lead-iodide-based perovskites for high-efficient stable solar cells. Adv Mater 30(52):e1800327
15. Lin Y, Shen L, Dai J et al (2017) π-Conjugated Lewis Base: Efficient trap -passivation and charge-extraction for hybrid perovskite solar cells. Adv Funct Mater 28(3):1704545
16. Zhou W, Li D, Xiao Z et al (2019) Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V. Adv Funct Mater 2019:1901026
17. Li S, Zhang P, Chen H et al (2017) Mesoporous Pb3As2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997
18. Wang Y, Wu J, Zhang P et al (2017) Stitching triple cation perovskite by a single anti-solvent process for high performance perovskite solar cells. Nano Energy 39:616–625
19. Wang Y, Li S, Zhang P et al (2016) Solvent annealing of PbI2 for high-quality crystallization of perovskite films for solar cells with efficiency exceeding 18%. Nanoscale 8(47):19654–19659
20. Conings B, Bretschneider SA, Babayigit A et al (2017) Structure-property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells. ACS Appl Mater Interfaces 9(9):8099–8109
21. Jiang Q, Zhang L, Wang H et al (2016) Enhanced electron extraction using SnO2 for high-efficiency planar-structure CH3(NH2)2PbI3-based perovskite solar cells. Nat Energy 1:16177
22. Liu D, Li S, Zhang P et al (2017) Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31:462–468
23. Lin Y, Shen L, Dai J et al (2017) π-Conjugated Lewis Base: Efficient trap -passivation and charge-extraction for hybrid perovskite solar cells. Adv Funct Mater 28(3):1704836
24. Wang Y, Tan H, Yuan H et al (2018) Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun 9(1):1607
25. Azam M, Liu K, Yue S et al (2019) The positive function of incorporation of small molecules into perovskite materials for high-efficient stable solar cells. Sol RRL 3(3):1800327
26. Chen Y, Yang Z, Jia X et al (2019) Thermally stable methylammonium-free inverted perovskite solar cells with Sn3+ doped CsAu3 as efficient mesoporous hole-transporting layer. Nano Energy 61:148–157
27. Zhang X, Zhou Y, Wang S et al (2016) Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. J Mater Chem A 4(24):9430–9436
28. Zhao Y, Tan H, Yuan H et al (2018) Perovskite seeding growth of planar heterojunction perovskite solar cells fabricated in ambient air with low-temperature process. J Power Sources 377:52
29. Zhang X, Wu G, Fu W et al (2018) Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv Energy Mater 8(14):1702498
30. Wang F, Jiang X, Chen H et al (2018) 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2(12):2732–2743
31. Zhang X, Wu G, Yang S et al (2017) Vertically oriented 2D layered perovskite CH3NH3PbI3-x(SCN)x films and solar cells. Adv Mater 29(7):1704545
32. Liu D, Wang Y, Xu H et al (2019) SnO2-based perovskite solar cells: configuration design and performance improvement. Sol RRL 3(2):1802092
33. Lin Y, Shen L, Dai J et al (2017) π-Conjugated Lewis Base: Efficient trap -passivation and charge-extraction for hybrid perovskite solar cells. Adv Funct Mater 28(3):1704836
34. Zhang X, Wu G, Fu W et al (2018) Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv Energy Mater 8(14):1702498
35. Wang F, Jiang X, Chen H et al (2018) 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2(12):2732–2743
36. Wang Y, Wu J, Zhang P et al (2017) Stitching triple cation perovskite by a single anti-solvent process for high performance perovskite solar cells. Nano Energy 39:616–625
37. Wang Y, Li S, Zhang P et al (2016) Solvent annealing of PbI2 for high-quality crystallization of perovskite films for solar cells with efficiency exceeding 18%. Nanoscale 8(47):19654–19659
38. Conings B, Bretschneider SA, Babayigit A et al (2017) Structure-property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells. ACS Appl Mater Interfaces 9(9):8092–8099
39. Jiang Q, Yang Z, Wang S et al (2016) Enhanced electron extraction using SnO2 for high-efficiency planar-structure CH3(NH2)2PbI3-based perovskite solar cells. Nat Energy 1:16177
40. Liu D, Li S, Zhang P et al (2017) Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31:462–468
41. Heo JH, You MS, Chang MH et al (2015) Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 15:530–539
42. Zhang P, Wu J, Wang Y et al (2017) Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition. J Mater Chem A 5(33):17368–17378
43. Chen Y, Yang Z, Wang S et al (2018) Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv Mater 30(52):e1805660

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:
- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com