ATTRACTORS FOR A RANDOM EVOLUTION EQUATION WITH INFINITE MEMORY: THEORETICAL RESULTS

Tomás Caraballo and María J. Garrido-Atienza
Dpto. Ecuaciones Diferenciales y Análisis Numérico
Universidad de Sevilla, Apdo. de Correos 1160
41080-Sevilla, Spain

Björn Schmalfuß
Institut für Mathematik, Institut für Stochastik
Ernst Abbe Platz 2, 07737-Jena, Germany

José Valero∗
Universidad Miguel Hernandez de Elche, Centro de Investigación Operativa
Avda. Universidad s/n
03202-Elche (Alicante), Spain

Abstract. The long-time behavior of solutions (more precisely, the existence of random pullback attractors) for an integro-differential parabolic equation of diffusion type with memory terms, more particularly with terms containing both finite and infinite delays, as well as some kind of randomness, is analyzed in this paper. We impose general assumptions not ensuring uniqueness of solutions, which implies that the theory of multivalued dynamical system has to be used. Furthermore, the emphasis is put on the existence of random pullback attractors by exploiting the techniques of the theory of multivalued nonautonomous/random dynamical systems.

1. Introduction. In our paper [5] we analyzed the long-time behavior of solutions (more precisely, the existence of pullback attractors) for an integro-differential parabolic equation of diffusion type with memory terms, expressed by convolution integrals involving infinite delays and by a forcing term with bounded delay, which represent the past history of one or more variables. In particular, we focused on the following non-autonomous reaction-diffusion equation with memory

\[
\frac{\partial u}{\partial t} - \Delta u + \int_{-\infty}^{t} \gamma(t-s) \Delta u(x,s) ds + g(x,t,u(x,t)) = h(x,t,u(x,t-r)),
\]

with Dirichlet boundary condition, where \(x \) belongs to a bounded domain \(\Omega \subset \mathbb{R}^N \) with smooth boundary, \(t \in \mathbb{R} \), the functions \(h \) and \(g \) satisfy suitable assumptions, and \(\gamma \) is given in a standard way as \(\gamma(t) = -\gamma_0 e^{-d_0 t} \) with \(d_0, \gamma_0, r > 0 \). Instead of analyzing directly equation (1), we developed in [5] an abstract theory for a more general type of non-autonomous evolution equations which included as a particular

2010 Mathematics Subject Classification. 60H15, 60H25, 35K40, 35K41, 35K55.

Key words and phrases. Pullback and random attractor, random dynamical system, random delay equation, infinite delay.

This work has been partially supported by FEDER and Spanish Ministerio de Economía y Competitividad, project MTM2015-63723-P, and by Junta de Andalucía under Proyecto de Excelencia P12-FQM-1492.
case the previous one. These types of equations are important in many physical phenomena as it is assumed they are better described if one considers in the equations of the model some terms which take into account the past history of the system (see, e.g. [15] and the references therein). Although, in some situations, the contribution of the past history may not be so relevant to significantly affect the long time dynamics of the problem, in certain models, such as those describing high viscosity liquids at low temperatures, or the thermomechanical behavior of polymers (see [11], [15] and the references therein) the past history may play a nontrivial role.

However, it is also reasonable to think that certain models from the real world are more realistic if some random or stochastic terms are also considered in the formulation. In this respect, in the paper [2] the asymptotic behavior of a stochastic version of equation (1) (with an additive noise) and with conditions ensuring uniqueness of the Cauchy problem was analyzed. Namely, the problem

\[
\frac{\partial u}{\partial t} - \Delta u + \int_{-\infty}^{t} \gamma(t-s) \Delta u(x,s) \, ds + g(x,u(x,t)) = h(x,u(x,t)) + \partial_t W(t,x),
\]

(2)
is considered, where \(W(t,\cdot)\) is an appropriate Hilbert valued Wiener process (see [2]) and the functions \(h\) and \(g\) are independent of time and delay. The technique used in [2] is based in the well-known Dafermos transformation (see [10]) and the existence of a random attractor is also proved.

In this paper we aim to consider a more general case in which the terms in the equations do not necessarily ensure uniqueness of solutions (and henceforth we will have a multivalued dynamical system), they may contain some kind of delay and randomness can be present as well. In fact, we are interested in studying a random problem which can come from a genuine stochastic model after having performed a conjugation procedure. In the cases of additive or multiplicative linear noise, the so-called Ornstein-Uhlenbeck (O-U) process plays a key role in this conjugation (see, e.g. [3] for more details). However, we will not focus on performing such transformation explicitly in this paper. Instead, we will consider a rather general abstract evolution equation containing delay (both bounded and unbounded) and some random terms, which will have the special structure provided when one uses the aforementioned change of variable by means of the (O-U) process. Furthermore, our objective is to tackle our problem by exploiting the techniques from the theory of multivalued non-autonomous/random dynamical systems without using the Dafermos transformation. We intend to apply the results of this work to a stochastic perturbation of equation (1) in a forthcoming paper.

It is worth mentioning that the problem in which we are interested in (see equation (5)) has a non-autonomous character, which means that for each fixed random parameter we can study a non-autonomous dynamical system and we can analyze the existence of a pullback attractor. However, when we are interested in the random problem, the significant concept to worry about is the concept of random pullback attractor. But this requires of more technicalities and the analysis of measurability properties which make a big difference between the current paper and [5].

The content of the paper is the following. In Section 2 we recall some basic concepts and results from the theory of pullback and random attractors in the set-valued or multivalued set-up. The description of the problem to be analyzed in the paper is included in Section 3. In particular, we consider a random evolution equation with delays with very general coefficients. The existence of solutions to
our random problem as well as the existence of absorbing sets for the multivalued non-autonomous/random dynamical system generated by the problem is proved in Section 4, while the compactness of the dynamical system is proved in Section 5, ensuring the existence of a non-autonomous pullback attractor. But, to prove that this pullback attractor and the multivalued non-autonomous dynamical system are random ones, it is necessary to prove extra measurability properties of both the dynamical system and the attractor. This is carried out in Section 6.

2. General theory of pullback and random attractors. We will recall the general theory of pullback attractors for set–valued non–autonomous and random dynamical systems.

A pair \((\Omega, \theta)\) where \(\theta = (\theta_t)_{t \in \mathbb{R}}\) is a flow on \(\Omega\), that is,

\[
\theta : \mathbb{R} \times \Omega \rightarrow \Omega,
\]

\[
\theta_0 = \text{id}_{\Omega}, \quad \theta_{t+\tau} = \theta_t \circ \theta_\tau =: \theta_{t+\tau} \quad \text{for } t, \tau \in \mathbb{R},
\]

is called a non–autonomous perturbation.

Let \(P := (\Omega, \mathcal{F}, \mathbb{P})\) be a probability space. On \(P\) we consider a measurable non–autonomous flow \(\theta : (\mathbb{R} \times \Omega, \mathcal{B}(\mathbb{R}) \otimes \mathcal{F}) \rightarrow (\Omega, \mathcal{F})\).

In addition, \(\mathbb{P}\) is supposed to be ergodic with respect to \(\theta\), which means that every \(\theta_t\)-invariant set has measure zero or one for \(t \in \mathbb{R}\). Hence \(\mathbb{P}\) is invariant with respect to \(\theta_t\). The quadruple \((\Omega, \mathcal{F}, \mathbb{P}, \theta)\), which is the model for a noise, is called a metric dynamical system.

We also assume that \(\Omega\) is a Polish space with the metric \(d_\Omega\) and that \(\mathcal{F}\) is the Borel \(\sigma\)-algebra of \(\Omega\).

If we replace in the definition of a metric dynamical system the probability space \(P\) by its completion \(P^c := (\Omega, \overline{\mathcal{F}}, \overline{\mathbb{P}})\) the above measurability property is not true in general (see Arnold [1, Appendix A]). But for fixed \(t \in \mathbb{R}\) we have that the mapping \(\theta_t : (\Omega, \overline{\mathcal{F}}) \rightarrow (\Omega, \overline{\mathcal{F}})\) is measurable.

Let \(X = (X, d_X)\) be a Polish space and let us denote by \(P(X) (P_f(X))\) the set of all non-empty (non-empty closed) subsets of the space \(X\). Let \(D : \omega \rightarrow D(\omega) \in P(X)\) be a multivalued mapping describing a family of sets parameterized by \(\omega\). Such family is said to be closed if \(D(\omega) \in P_f(X)\) for any \(\omega \in \Omega\).

Let \(D : \omega \rightarrow D(\omega) \in P_f(X)\) be a multi–valued mapping in \(X\) over \(P\). This mapping is called a random set if

\[
\omega \mapsto \inf_{y \in D(\omega)} d_X(x, y)
\]

is a random variable for every \(x \in X\). It is well known that a mapping is a random set if and only if for every open set \(O\) in \(X\) the inverse image \(\{\omega : D(\omega) \cap O \neq \emptyset\}\) is measurable, i.e., it belongs to \(\mathcal{F}\), see [14, Proposition 2.1.4].

Clearly, all this is also valid if we replace \(P\) by \(P^c\). It is also evident that if \(D\) is a random set with respect to \(P\), then it is also random with respect to \(P^c\).

We now introduce non–autonomous and random dynamical systems.

Definition 2.1. A multi–valued map \(G : \mathbb{R}^+ \times \Omega \times X \rightarrow P_f(X)\) is called a multi–valued non–autonomous dynamical system (MNDS) if the following two conditions are satisfied:

i) \(G(0, \omega, \cdot) = \text{id}_X\),
ii) $G(t + \tau, \omega, x) \subset G(t, \theta_{\tau} \omega, G(\tau, \omega, x))$ (cocycle property) for all $t, \tau \in \mathbb{R}^+, x \in X, \omega \in \Omega$.

It is called a strict MNDS if, moreover, $G(t + \tau, \omega, x) = G(t, \theta_{\tau} \omega, G(\tau, \omega, x))$ for all $t, \tau \in \mathbb{R}^+, x \in X, \omega \in \Omega$.

An MNDS is called a multi-valued random dynamical system (MRDS) if the multi-valued mapping $(t, \omega, x) \mapsto G(t, \omega, x)$ is $\mathcal{B}(\mathbb{R}^+) \otimes \mathcal{F} \otimes \mathcal{B}(X)$ measurable, i.e. \{$(t, \omega, x) : G(t, \omega, x) \cap O \neq \emptyset \} \in \mathcal{B}(\mathbb{R}^+) \otimes \mathcal{F} \otimes \mathcal{B}(X)$ for every open set O of X.

Our first aim is to formulate a general sufficient condition ensuring that an MNDS defines an MRDS. To do that, we introduce an adequate concept of continuity for multivalued mappings: we say that $G(t, \omega, \cdot)$ is upper–semicontinuous at x_0 if for every neighborhood U of the set $G(t, \omega, x_0)$ there exists $\delta > 0$ such that if $d_X(x_0, y) < \delta$ then $G(t, \omega, y) \subset U$. In general $G(t, \omega, \cdot)$ is called upper–semicontinuous if it is upper–semicontinuous at every x_0 in X. It is not difficult to extend this definition and obtain upper–semicontinuity with respect to all variables.

Lemma 2.2. If the mapping $(t, \omega, x) \mapsto G(t, \omega, x)$ is upper–semicontinuous, then it is measurable in the sense of Definition 2.7 see [4].

In order to define the concept of attractor (both pullback and random) we need to recall some definitions.

A multivalued mapping $D : \omega \mapsto D(\omega) \in P(X)$ is said to be negatively (resp. strictly) invariant for the MNDS G if $D(\theta_t \omega) \subset G(t, \omega, D(\omega))$ (resp. $=), \text{ for } \omega \in \Omega, \ t \in \mathbb{R}^+$.

Let \mathcal{D} be a family of multivalued mappings $D : \omega \mapsto D(\omega) \in P_f(X)$. We say that a multivalued mapping K is pullback \mathcal{D}-attracting if for every $D \in \mathcal{D}$,

$$\lim_{t \to +\infty} \text{dist}_X(G(t, \theta_{-t} \omega, D(\theta_{-t} \omega)), K(\omega)) = 0, \text{ for all } \omega \in \Omega,$$

where by $\text{dist}_X(A, B)$ we denote the Hausdorff semi-distance of two non-empty sets A, B:

$$\text{dist}_X(A, B) = \sup_{x \in A} \inf_{y \in B} d_X(x, y).$$

The family $B : \omega \mapsto B(\omega)$ is said to be pullback \mathcal{D}-absorbing if for every $D \in \mathcal{D}$ and $\omega \in \Omega$ there exists $t = t(\omega, D) > 0$ such that

$$G(t, \theta_{-t} \omega, D(\theta_{-t} \omega)) \subset B(\omega), \text{ for all } t \geq t.$$

Throughout this work we always consider a particular system of sets as in [17]. Namely, let \mathcal{D} be a set of multivalued mappings $D : \omega \mapsto D(\omega) \in P_f(X)$ satisfying the inclusion closed property: suppose that $D \in \mathcal{D}$ and let $D' \in P_f(X)$ be a multivalued mapping such that $D'(\omega) \subset D(\omega)$ for $\omega \in \Omega$, then $D' \in \mathcal{D}$. The reason to consider such a system of sets is that then we will have a unique attractor in \mathcal{D}.

An example of a family satisfying this property is the so-called family of tempered sets. Let us consider the system \mathcal{D} given by the multi–valued mappings $D : \omega \mapsto D(\omega) \in P_f(X)$ with $D(\omega) \subset B_X(0, \rho(\omega))$, the closed ball with center zero and radius $\rho(\omega)$, which is supposed to have a subexponential growth (ρ is tempered), i.e.

$$\lim_{t \to +\infty} \frac{\log^{+} \rho(\theta_t \omega)}{t} = 0 \text{ for } \omega \in \Omega.$$

\mathcal{D} is called the family of subexponentially growing (or tempered) multi–functions. It is obvious that this family is inclusion closed.
Let us give the definition of global random pullback \mathcal{D}-attractor.

Definition 2.3. The family $\mathcal{A} \in \mathcal{D}$ is said to be a global pullback \mathcal{D}-attractor for the MNDS G if it satisfies:

i) $\mathcal{A}(\omega)$ is compact for any $\omega \in \Omega$;

ii) \mathcal{A} is pullback \mathcal{D}-attracting;

iii) \mathcal{A} is negatively invariant.

\mathcal{A} is said to be a strict global pullback \mathcal{D}-attractor if the invariance property in the third item is strict.

If, moreover, G is an MRDS and \mathcal{A} is a random set with respect to \mathcal{P}^c, then \mathcal{A} is called a random global pullback \mathcal{D}-attractor.

Now we can formulate the following theorem, proved in \cite{3}.

Theorem 2.4. Suppose that the MNDS $G(t, \omega, \cdot)$ is upper–semicontinuous for $t \geq 0$ and $\omega \in \Omega$. Let $B \in \mathcal{D}$ be a multi-valued mapping such that the MNDS is \mathcal{D}-asymptotically compact with respect to B, i.e. for every sequence $t_n \to +\infty$ and $\omega \in \Omega$, we have that every sequence $y_n \in G(t_n, \theta_{-t_n} \omega; B(\theta_{-t_n} \omega))$ is relatively compact in X. In addition, suppose that B is pullback \mathcal{D}–absorbing. Then, the set \mathcal{A} given by

$$
\mathcal{A}(\omega) := \bigcap_{s \geq 0} \bigcup_{t \geq s} G(t, \theta_{-t} \omega, B(\theta_{-t} \omega))
$$

is a pullback \mathcal{D}-attractor. Furthermore, \mathcal{A} is the unique element from \mathcal{D} with these properties. In addition, if G is a strict MNDS, then \mathcal{A} is strictly invariant.

Moreover, assume that G is an MRDS, $\omega \to G(t, \omega, B(\omega))$ is a random set with respect to \mathcal{F}^0 (respectively \mathcal{F}) for $t \geq 0$, and also that $G(t, \omega, B(\omega))$ is closed for all $t \geq 0$ and $\omega \in \Omega$. Then the set \mathcal{A} defined by \cite{3} is a random set with respect to \mathcal{P}^c (respectively \mathcal{P}).

3. Setting of the problem. Let $\mathcal{O} \subset \mathbb{R}^N$ be an open bounded set with C^∞–smooth boundary. Denote, as usual, $H = L^2(\mathcal{O}), V = H_0^1(\mathcal{O})$, that is, the closure of the space $C_0^\infty(\mathcal{O})$ with respect to the Sobolev space $W^{1,2}(\mathcal{O})$. The norms of these spaces are denoted by $\|\cdot\|$ and $\|\cdot\|_V$, respectively, and the scalar products by $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle_V$. We shall use $\langle \cdot, \cdot \rangle$ for the pairing between the spaces V' (the dual space of V) and V, and $\langle \cdot, \cdot \rangle_{q,p}$ for the pairing between $L^q(\mathcal{O})$ and $L^p(\mathcal{O})$, where $\frac{1}{p} + \frac{1}{q} = 1$ with $p \geq 2$.

Let A be a positive symmetric operator on H with compact inverse. Then the eigenfunctions of A, denoted by $\{w_i\}_{i \in \mathbb{N}}$, form a complete orthonormal system on H. By a bootstrap argument these elements are sufficiently smooth, in particular included in $L^p(\mathcal{O})$. The associated eigenvalues, denoted by $0 < \lambda_1 \leq \lambda_2 \leq \cdots \to \infty$, have finite multiplicity. We consider the space

$$
D(A^{1/2}) = \{ u = \sum_{i=1}^\infty \hat{u}_i w_i \in H : \|u\|_{1/2}^2 = \sum_{i=1}^\infty |\hat{u}_i|^2 \lambda_i < \infty \},
$$

where $\hat{u}_i = (u, w_i)$. In the sequel, A will be $-\Delta$, where Δ is the Laplacian operator endowed with homogeneous Dirichlet boundary conditions. Hence, $D(A^{1/2}) = V$ and $A : V \to V'$ is linear and continuous. Hence, for $u \in V$ it is well known that

$$
\langle Au, u \rangle = \|u\|_V^2 = \|u\|_{1/2}^2.
$$

(4)
Next we define the different phase spaces that will have an important role in our investigations. We consider the space $L^2(-\infty, \cdot; V)$, $r \in \mathbb{R}$, of square integrable functions with values in V and with the measure $e^{\lambda_1 s} \lambda e$, where λe is the standard Lebesgue’s measure. The space $L^2(-\infty, \cdot; V)$ is equipped with the following norm

$$
\|\psi\|^2_{L^2(-\infty,\cdot;V)} = \int_{-\infty}^{r} e^{\lambda_1 s} \|\psi(s)\|^2_{V} \, ds.
$$

This Banach space is separable, see e.g. [13]. From now on, we denote $L^2 : L^2(-\infty, 0; V)$. Furthermore, for $h > 0$ we consider the space $C_h := C([-h, 0], H)$ of continuous functions on $[-h, 0]$ with values in H and with the supremum norm.

Let us finally consider the space

$$
\mathcal{H} = \{ \psi \in L^2 : \text{such that } P_h \psi \in C_h \}
$$

where P_h is the operator of restriction to the interval $[-h, 0]$. \mathcal{H} is a Banach space endowed with the norm $\|\psi\|_{\mathcal{H}} = \|\psi\|_{L^2} + \|\psi\|_{C_h}$. It can be proved easily that \mathcal{H} is separable.

In this paper we are interested in studying the existence of solutions, as well as the longtime behavior of the following random delay system

$$
\begin{aligned}
\begin{cases}
\frac{du}{dt} + Au(t) &= f(\theta t \omega, u_t) + h(\theta t \omega, u_t) - g(\theta t \omega, u(t)), \quad \text{for } t \in [0, T], \\
u(t) &= \psi(t) \text{, for } t \leq 0,
\end{cases}
\end{aligned}
$$

(5)

where $T > 0$, and the initial condition $\psi \in \mathcal{H}$. That u agrees with the initial condition ψ in the system (5) means that

$$
u(t) = \psi(t) \text{, for } t \in [-h, 0] \text{ but almost everywhere when } t < -h. \quad (6)
$$

By $u_t(\cdot)$ we denote as usual the segment function on \mathcal{H} defined by $u_t(s) = u(t + s)$, for $t \in \mathbb{R}^+$ and $s \in [-h, 0]$.

It is worth mentioning that equation (5) includes, as a particular case, the random evolution equation obtained from equation (2) if we perform a suitable change of variable involving an (O-U) process (see [2] for more details on this Hilbert valued (O-U)).

The assumptions on the different functions appearing in (5) are the following.

First, $g : \Omega \times L^p(\Omega) \to L^q(\Omega)$, $q = p/(p - 1)$, $h : \Omega \times C_h \to H$ and $f : \Omega \times L^2 \to V'$ are such that the mappings

$$
v \mapsto g(\omega, v), \quad (\omega, \xi) \mapsto h(\omega, \xi), \quad \zeta \mapsto f(\omega, \zeta)
$$

(7)

are continuous in their respective spaces (ω is fixed for g and f), and for arbitrary fixed $v \in L^p(\Omega)$, $\xi \in C_h$, $\zeta \in L^2$ we have that

$$
\omega \mapsto g(\omega, v), \quad \omega \mapsto h(\omega, \xi), \quad \omega \mapsto f(\omega, \zeta)
$$

(8)

are measurable. Since $L^2, C_h, L^p(\Omega), V'$ and H are separable, the functions

$$(\omega, v) \mapsto g(\omega, v), \quad (\omega, \xi) \mapsto h(\omega, \xi), \quad (\omega, \zeta) \mapsto f(\omega, \zeta)$$

are jointly measurable with respect to their arguments, see Castaing and Valadier [8], Chapter 3. We observe also that since Ω is separable, for the function h condition (7) implies (8).

\[1\] \mathcal{H} consists of functions of L^2 whose restriction to $[-h, 0]$ has a version in C_h.

Moreover, assume the following inequalities
\begin{align*}
\langle g(\omega, v), v \rangle_{q,p} & \geq \eta \|v\|^q_{L^q(O)} - c_1(\omega), \quad \text{for } v \in L^p(O), \\
\|g(\omega, v)\|^q_{L^q(O)} & \leq \nu \|v\|^p_{L^p(O)} + c_2(\omega), \quad \text{for } v \in L^p(O), \\
\|h(\omega, \xi)\| & \leq c_3(\omega) + c_4(\omega) \|\xi\|_{C_0}, \quad \text{for } \xi \in C_b, \\
2\|f(\omega, \zeta)\|_{l^2}^2 & \leq c_5(\omega) + K\|\zeta\|_{l^2}^2, \quad \text{for } \zeta \in L^2_V,
\end{align*}
where \(\eta, \nu, K > 0\) and \(c_i : \Omega \to \mathbb{R}^+\) are measurable with respect to \(\mathcal{F}\). Also, the functions \(t \mapsto c_1(\theta \omega)\), \(t \mapsto c_2^2(\theta \omega)\) are assumed to be integrable on any finite interval and subexponentially growing (that is, tempered), whereas \(t \mapsto c_3(\theta \omega)\), \(t \mapsto c_4(\theta \omega)\) are integrable on any finite interval. For \(c_4\) we suppose that \(\mathbb{E}(c_4^2) < \infty\) (and then \(t \mapsto c_4^2(\theta \omega)\) is integrable on any finite interval by the ergodic theorem), so that
\[
\lim_{t \to \pm \infty} \frac{1}{t} \int_0^t c_4^2(\theta \omega) \, ds = \mathbb{E}(c_4^2)
\]
on a \((\theta \omega)_{t \in \mathbb{R}}\)-invariant set of full measure.

On the other hand, and as a consequence of the Young inequality, we have
\[
\|u\|^p_{L^p(O)} \geq \mu \|u\|^2 - C_\mu,
\]
where \(\mu > 0\) can be chosen arbitrarily and \(C_\mu\) denotes a positive constant. In particular, we take \(\mu\) such that
\[
\mathbb{E}(c_4^2) < \frac{\eta \mu \lambda_1}{4e^{\lambda_1 h}}.
\]

Note that from [12] it is straightforward that
\[
2 \int_0^t e^{\lambda_1 s} \|f(\theta \omega, u_s)\|_{l^2}^2 \, ds \leq \int_0^t e^{\lambda_1 s} c_5(\theta \omega) \, ds + K(t - r) \int_{-\infty}^t e^{\lambda_1 \tau} \|u(\tau)\|_{l^2}^2 \, d\tau.
\]

For \(f\) and \(t > 0\) we also assume the following inequalities
\begin{align*}
2 \int_0^t e^{\lambda_1 s} \|f(\theta \omega, u_s)\|_{l^2}^2 \, ds & \leq \int_0^t e^{\lambda_1 s} c_6(\theta \omega) \, ds + \frac{d}{2} \int_{-\infty}^t e^{\lambda_1 s} \|u(s)\|_{l^2}^2 \, ds, \\
2 \int_0^t e^{\lambda_1 s} \|f(\theta \omega, u_s) - f(\theta \omega, v_s)\|_{l^2}^2 \, ds & \leq \int_0^t e^{\lambda_1 s} c_7(\theta \omega) \, ds \\
& \quad + \frac{b}{2} \int_{-\infty}^t e^{\lambda_1 s} \|u(s) - v(s)\|_{l^2}^2 \, ds,
\end{align*}
for \(u, v \in L^2(\mathbb{R}, V), \omega, \omega \in \Omega\), where \(d, b < 1\), and \(c_6 : \Omega \to \mathbb{R}^+, c_7 : \Omega \times \Omega \to \mathbb{R}^+\) are measurable with respect to \(\mathcal{F}\) and \(\mathcal{F} \otimes \mathcal{F}\), respectively, and the functions \(t \mapsto c_6(\theta \omega)\), \(t \mapsto c_7(\theta \omega)\) are integrable on any finite interval. Also, \(t \mapsto c_6(\theta \omega)\) is subexponentially growing. Moreover, for any \(t \in \mathbb{R}, \varepsilon > 0\) there exists \(\delta > 0\) such that if \(d_{\Omega}(\varphi, \omega) < \delta\), then
\[
\int_0^t e^{\lambda_1 s} c_7(\theta \omega) \, ds < \varepsilon.
\]

Additionally, we assume that the maps
\[
\omega \mapsto \int_0^t c_i(\theta \omega) \, ds, \quad i = 1, 3, 4, 5,
\]
are continuous for any fixed \(t \in \mathbb{R} \), and that for every \(\omega_0 \in \Omega, \ t \in \mathbb{R} \) there exists a neighbourhood \(\mathcal{U} \) of \(\omega_0 \) and a constant \(C(t, \omega_0) \) such that

\[
\int_0^t c_j(\theta_s \omega) ds \leq C, \quad \int_0^t c_1(\theta_s \omega) ds \leq C \text{ for any } \omega \in \mathcal{U},
\]

where \(j = 3, 4, \ i = 1, 2, 5, 6 \). It is obvious that for \(i = 1, 5 \) the property (19) implies condition (20).

Finally, let us assume that if \(\omega^n \to \omega, \ u^n \to u \) in \(L^2(0, T; H) \), \(u^n \to u \) weakly in \(L^p(0, T; L^p(\Omega)) \) and \(u^n \to u \) weakly in \(L^2(-\infty, T; V) \) then

\[
f(\theta_s \omega^n, u^n) \to f(\theta_s \omega, u) \text{ weakly in } L^2(0, T; V'),
\]

\[
g(\theta_s \omega^n, u^n(\cdot)) \to g(\theta_s \omega, u(\cdot)) \text{ weakly in } L^q(0, T; L^q(\Omega)),
\]

and

\[
\liminf_{n \to \infty} \int_0^T e^{-\lambda_1(T-s)} \langle g(\theta_s \omega^n, u^n(s)), u^n(s) \rangle_{q,p} ds
\geq \int_0^T e^{-\lambda_1(T-s)} \langle g(\theta_s \omega, u(s)), u(s) \rangle_{q,p} ds.
\]

We would like to point out that, comparing with the nonautonomous case [5], we have introduced the new conditions (18), (19) and (20). Also, assumptions (17), (21), (22) and (23) have been changed, as now the parameter \(\omega \) is not fixed. These stronger conditions are needed in order to prove the measurability of the global pullback attractor, but not for checking its existence.

4. Existence of solutions and absorbing set. Our first aim is to prove the existence of weak solutions for the problem (5).

Definition 4.1. Given \(T > 0 \), the function \(u(t) = u(t, \omega, \psi) \in L^2(-\infty, T; V) \cap C([-h, T], H) \cap L^p(0, T; L^p(\Omega)) \) is called a weak solution of (5) on \((0, T) \) with initial data \(\psi \in \mathcal{H} \), if for arbitrary \(v \in V \cap L^p(\Omega) \),

\[
\frac{d}{dt}(u, v) + (Au, v) + \langle f(\theta_t \omega, u), v \rangle + (h(\theta_t \omega, u), v) - \langle g(\theta_t \omega, u(t)), v \rangle_{q,p},
\]

and \(u \) agrees with the initial condition \(\psi \) according to (6).

From this definition and the above conditions, it follows that \(\frac{du}{dt} \in L^2(0, T; V') + L^q(0, T; L^q(\Omega)) \). Then, see [18], \(\|u\| : [0, T] \to \mathbb{R} \) is absolutely continuous and

\[
\langle \frac{du}{dt}, u \rangle = \frac{1}{2} \frac{d}{dt} \|u(t)\|^2 \text{ for a.a. } t \in (0, T), \text{ where } \langle \cdot, \cdot \rangle \text{ denotes the pairing between } V \cap L^p(\Omega) \text{ and its conjugate space } V' + L^q(\Omega). \text{ Therefore, (24) is equivalent to}
\]

\[
u(t) + \int_0^t Au(s) ds = u(0) + \int_0^t f(\theta_s \omega, u_s) + h(\theta_s \omega, u_s) - g(\theta_s \omega, u(s)) ds \quad \text{in } V' + L^q(\Omega), \text{ for } t \in [0, T].
\]

In what follows we shall obtain some a priori estimates in the spaces \(C_t \) and \(L^2_V \), that will be very useful when proving the existence of a weak solution by using Galerkin approximations, and the existence of an absorbing set as well.
Lemma 4.2. Every weak solution of (5) satisfies, for $t \in [0, T]$, the estimate
\[
\|u_t\|^2_{C_h} + \frac{1 - d}{2} \int_{-t}^t e^{\lambda_t s} \|u_t(s)\|^2_V ds \leq e^{-\lambda_1 (t-h)} + e^{\lambda_1 h} \int_{-t}^t \frac{1 - d}{2} c_2(\theta_{t+s}, \omega) ds \left(2\|\psi(0)\|^2 + d\|\psi\|^2_{L^2_V}\right) + 2e^{\lambda_1 h} \int_{-t}^t e^{\lambda_1 \tau + e^{\lambda_1 h} \int_{-\tau}^0 \frac{1 - d}{2} c_2(\theta_{t+s}, \omega) ds} c(\theta_{t+s}, \omega) d\tau,
\]
where
\[
c(\omega) = \eta C_\mu + c_6(\omega) + 2c_1(\omega) + \frac{2}{\eta h} c_3(\omega).
\]

Remark 1. If we replace \(\|\psi(t, \omega)\|^2\) by \(\|\psi(t)^2\|_{C_h}\) in the right-hand side of (26), then the inequality is true for all $t \in [0, T]$.

Proof. Using (4), (9), (11) and (13) we derive the following energy equality
\[
d\|u(t)\|^2 + \lambda_1 \|u(t)\|^2 + \|u(t)\|^2_{L^2(V)} + 2\eta \|u(t)\|_{L^2(\Omega)}^p \leq 2 - f(\theta_t \omega, u_t) + 2c_1(\theta_t \omega) + 2c_3(\theta_t \omega) \|u(t)\|_{C_h} \left(2 \|f(\theta_t \omega, u_t)\|_{L^2(\Omega)}^p \right) \|u(t)\|^2_{C_h} + \eta \|u(t)\|_{L^2(\Omega)}^p + \|u(t)\|^2_{C_h}.
\]
By (16) it follows immediately that
\[
2 \int_0^t e^{-\lambda_1 (t-s)} \|f(\theta_s \omega, u_s)\|^2_{L^2(V)} ds \leq \int_0^t e^{-\lambda_1 (t-s)} c_6(\theta_s \omega) ds + \frac{d}{2} e^{-\lambda_1 (t-s)} \|u(s)\|^2_{L^2(V)} ds,
\]
so we have
\[
\|u(t)\|^2 + \frac{1 - d}{2} \int_{-t}^t e^{-\lambda_1 s} \|u(s)\|^2_{L^2(V)} ds \leq e^{-\lambda_1 t} \|\psi(0)\|^2 + \int_0^t e^{-\lambda_1 (t-s)} \left(c(\theta_s \omega) + \frac{2c_2^2(\theta_s \omega)}{\eta h}\right) \|u(s)\|^2_{C_h} ds,
\]
where $c(\omega)$ is given by (27). From this expression, for $t \geq h$ we obtain
\[
\|u_t\|^2_{C_h} \leq e^{-\lambda_1 (t-h)} \left(\|\psi(0)\|^2 + \frac{d}{2} \|\psi\|^2_{L^2(V)}\right) + \int_t^{t+h} e^{\lambda_1 s} \left(c(\theta_s \omega) + \frac{2c_2^2(\theta_s \omega)}{\eta h}\right) \|u(s)\|^2_{C_h} ds,
\]
and then, denoting for $v \in \mathcal{H}$

$$
\chi(v)(t) = \|v\|_{\mathcal{H}}^2 + \frac{1 - d}{2} \int_{-t}^{0} e^{\lambda_{1}s} \|v(s)\|_{\mathcal{V}}^2 \, ds
$$

we have

$$
\chi(u_t)(t) \leq e^{-\lambda_1(t-h)} \left(2\|\psi(0)\|^2 + d\|\psi\|^2_{L^2_v} \right) + \int_0^t e^{\lambda_1} e^{-\lambda_1(s-\cdot)} \left(2c(\theta_s\omega) + \frac{4c^4(\theta_s\omega)}{\eta h} \|u_s\|_{\mathcal{H}}^2 \right) \, ds
$$

$$
\leq e^{-\lambda_1(t-h)} \left(2\|\psi(0)\|^2 + d\|\psi\|^2_{L^2_v} \right) + \int_0^t e^{\lambda_1} e^{-\lambda_1(s-\cdot)} \left(2c(\theta_s\omega) + \frac{4c^4(\theta_s\omega)}{\eta h} \chi(u_s)(s) \right) \, ds,
$$
or equivalently,

$$
e^{\lambda_1 t} \chi(u_t)(t) \leq e^{\lambda_1 h} \left(2\|\psi(0)\|^2 + d\|\psi\|^2_{L^2_v} \right) + e^{\lambda_1 h} \int_0^t \left(e^{\lambda_1} 2c(\theta_s\omega) + \frac{4c^4(\theta_s\omega)}{\eta h} e^{\lambda_1} \chi(u_s)(s) \right) \, ds.
$$

Then, applying again Gronwall’s lemma we get

$$
\chi(u_t)(t) \leq e^{-\lambda_1(t-h)+e^{\lambda_1 h} f_0^t \frac{1}{\eta h} c^2(\theta_{\tau+\omega})ds} \left(2\|\psi(0)\|^2 + d\|\psi\|^2_{L^2_v} \right)
$$

$$
+ 2e^{\lambda_1 h} \int_0^t e^{-\lambda_1(t-s)+e^{\lambda_1 h} f_s^t \frac{1}{\eta h} c^2(\theta_{\tau+\omega})ds} c(\theta_s\omega)ds
$$

$$
\leq e^{-\lambda_1(t-h)+e^{\lambda_1 h} f_0^t \frac{1}{\eta h} c^2(\theta_{\tau+\omega})ds} \left(2\|\psi(0)\|^2 + d\|\psi\|^2_{L^2_v} \right)
$$

$$
+ 2e^{\lambda_1 h} \int_0^t e^{\lambda_1 \tau+e^{\lambda_1 h} f_0^t \frac{1}{\eta h} c^2(\theta_{\tau+\omega})ds} c(\theta_{\tau+\omega})ds)
$$

\begin{proof}

Lemma 4.3. Let B be a bounded set of \mathcal{H} and let $T > 0$, $\omega_0 \in \Omega$ be fixed. Then there exists a neighborhood \mathcal{U} of ω_0 such that every weak solution $u(\cdot) = u(\cdot, \omega, \psi)$ of $\mathbf{5}$ with $\psi \in B$ and $\omega \in \mathcal{U}$ satisfies the inequality:

$$
\|u(t)\|^2 \leq \|u(r)\|^2 + C \int_r^t (d(\theta_s\omega) + 1) \, ds, \text{ for all } 0 \leq r \leq t \leq T,
$$

where $d(\omega) = \sum_{i \in \{1,3,4,5\}} c_i(\omega)$ and $C = C(B,T,\omega_0) > 0$ is a constant.

\begin{proof}

First of all, note that thanks to $\mathbf{20}$ and the assumption (20) we obtain that there exists a neighborhood \mathcal{U} of ω_0 such that $\|u(t)\|_{\mathcal{H}} \leq C_1 = C_1(B,T,\omega_0)$ for $t \in [0,T]$, $\omega \in \mathcal{U}$. Hence, arguing as in $\mathbf{25}$ we obtain

$$
\frac{d\|u(t)\|^2}{dt} + \lambda_1\|u(t)\|^2 + \|u(t)\|_{\mathcal{V}}^2 + 2\eta\|u(t)\|_{L^p(\Sigma)}^p \leq 2 < f(\theta_{t}\omega, u_t), u(t) > + 2c_1(\theta_t\omega) + 2C_1\|h(\theta_t\omega, u_t)\|
$$

\begin{align*}
&\leq 2\|f(\theta_{t}\omega, u_t)\|_{\mathcal{V}} + \frac{1}{2}\|u(t)\|_{\mathcal{V}}^2 + 2c_1(\theta_t\omega) + 2C_1\|h(\theta_t\omega, u_t)\|.
\end{align*}

\end{proof}
\end{proof}
functions such that \(J_t \) can be found in [5]. If, moreover, \(J_n \to J \) as \(n \to \infty \), then the result is true also for \(t \to 0 \) as \(n \to \infty \). Then for all \(t_0 \in (0, T] \) and any sequence \(t_n \to t_0 \) we have

\[
\limsup_{n \to \infty} J_n(t_n) \leq J(t_0).
\]

If, moreover, \(J_n(0) \to J(0) \), then the result is true also for \(t_0 = 0 \).

Now we are ready to prove the existence of weak solutions by using the Galerkin method.

Theorem 4.5. For every \(\psi \in \mathcal{H} \) there exists at least one weak solution of [7].

Proof. Recall that \(\{w_j\}_{j=1}^\infty \subset C^\infty(\bar{\Omega}) \) denotes the orthonormal basis consisting of the eigenfunctions of \(A \). We denote by \(V_n = [w_1, ..., w_n] \) the space spanned by \(\{w_j\}_{j=1}^n \), and by \(P_n : L^2(\Omega) \to V_n \) the orthogonal projector defined by \(P_n u = \sum_{j=1}^n (u, w_j) w_j \). It is well-known [16] Chapter 8] that \(V_n \) is complete in \(H_0^1(\Omega) \cap L^p(\Omega) \). For every fixed \(n \) we define

\[
u^n(t) = \sum_{j=1}^n \gamma^n_j(t) w_j,
\]

where the coefficients \(\gamma^n_j \) are required to satisfy the following system:

\[
\frac{d}{dt}(u^n(t), w_j) + (Au^n(t), w_j) = (f(\theta t, u^n_t), w_j) + h(\theta t, u^n_t, w_j) - g(\theta t, u^n(t), w_j),
\]

\[
u^n(t) = P_n \psi(t), \text{ for } t \leq 0,
\]

Once again, by Gronwall’s lemma

\[
\|u(t)\|^2 + \frac{1}{2} \int_r^t e^{-\lambda_1(t-s)} \|u(s)\|^2 d s \leq e^{-\lambda_1(t-r)} \|u(r)\|^2 + 2 \int_r^t e^{-\lambda_1(t-s)} f(\theta_s u, u_s) d s + 2 \int_r^t e^{-\lambda_1(t-s)} (c_1(\theta_s u) + C_1 \|h(\theta_s u, u_s)\|) d s.
\]

On the other hand, by Lemma 4.2 and (20) we have that \(\left(\int_{-\infty}^t e^{\lambda(t-s)} \|u(s)\|^2 d s + 1 \right) \leq C_2 = C_2(B, T, \omega_0) \) for \(t \in [0, T], \omega \in U \). Therefore, in virtue of (11) and (15) we obtain

\[
\|u(t)\|^2 + \frac{1}{2} \int_r^t e^{-\lambda_1(t-s)} \|u(s)\|^2 d s \\
\leq e^{-\lambda_1(t-r)} \|u(r)\|^2 + \int_r^t e^{-\lambda_1(t-s)} c_5(\theta_s u) d s \\
+ KC_2 (t-r) + 2 \int_r^t e^{-\lambda_1(t-s)} (c_1(\theta_s u) + C_1(c_3(\theta_s u) + C_1c_4(\theta_s u))) d s \\
\leq \|u(r)\|^2 + C \int_r^t \left(\sum_{i \in \{1,3,4,5\}} c_i(\theta_s u) + 1 \right) d s.
\]
for $1 \leq j \leq n$. Let $X_n = L^2(-\infty, 0; \mathbb{R}^n) \cap C([-h, 0]; \mathbb{R}^n)$. Consider the map $F_n : [0, T] \times X_n \times \Omega \rightarrow \mathbb{R}^n$ given by

$$F_n(t, \gamma, \omega) = P_n(-A\gamma + f(\theta_t, \omega, \psi) + h(\theta_t, \omega, \psi) - g(\theta_t, \omega, \psi(0))),$$

where $\gamma(t) = (\gamma_1(t), \ldots, \gamma_n(t)) \in X_n$. For the following we fix ω. It is easy to see that $\psi \in \mathcal{H}$ and $\gamma^m \rightarrow \gamma$ in X_n implies $\psi^m \rightarrow \psi$ in \mathcal{H} and $\psi^m(0) \rightarrow \psi(0)$ in $L^p(\mathcal{O})$. Hence, the above continuity conditions \([7]\) for the maps f, g, h imply that for a.a. t the map $\gamma \rightarrow F_n(t, \gamma, \omega)$ is continuous. Also, the measurability condition \([8]\) together with the properties of θ_t give us the measurability of $t \rightarrow F_n(t, \gamma, \omega)$ for any γ. On the other hand, by \([10], [12]\) for every (t_0, γ_0) there is a neighborhood $\mathcal{U}_{t_0, \gamma_0, \omega}$ in $\mathbb{R} \times X_n$ and a Lebesgue integrable function $m(t)$ such that

$$\|F_n(t, \gamma, \omega)\|_{\mathbb{R}^n} \leq m(t) \text{ for all } (t, \gamma) \in \mathcal{U}_{t_0, \gamma_0, \omega}.$$

Hence, Theorem 1.1 in \([13, p.36]\) implies the existence of at least one local solution for \([31]\).

For the remainder of the proof, and in particular the compactness and the convergence argument, we refer the reader to \([5]\).

We observe here that every weak solution of \([5]\) can be extended to a globally defined one (i.e. for all $t \in \mathbb{R}$) simply by concatenating solutions. Let then $\mathcal{S}(\psi, \omega)$ be the set of all globally defined solutions to \([5]\) corresponding to $\psi \in \mathcal{H}$ and $\omega \in \Omega$. We define the multivalued map $G : \mathbb{R}^+ \times \Omega \times \mathcal{H} \rightarrow P(\mathcal{H})$ as follows

$$G(t, \omega, \psi) = \{u : u(\cdot, \omega, \psi) \in \mathcal{S}(\psi, \omega)\}.$$

The next lemma can be proved in a similar way to \([7, Proposition 4]\) or \([4, Lemma 5.1]\).

Lemma 4.6. G satisfies the strict cocycle property $G(t+\tau, \omega, \psi) = G(t, \theta_\tau \omega, G(\tau, \omega, \psi))$ for all $t, \tau \in \mathbb{R}^+$, $\psi \in \mathcal{H}$ and $\omega \in \Omega$.

Let us prove the existence of an absorbing set in the space \mathcal{H}. In what follows, we denote by $B(0, R)$ a closed ball in \mathcal{H} centered at 0 with radius R. We can assume without lost of generality that $c(\omega) > 0$ for all $\omega \in \Omega$.

In the following we need frequently \([14]\).

Lemma 4.7. Let $\mathcal{D} = \{D(\omega)\}_{\omega \in \Omega}$ be the family of tempered sets in \mathcal{H}. Then the ball in \mathcal{H} given by $B(0, R(\omega))$ is a \mathcal{D}-absorbing set, where

$$R^2(\omega) = \frac{8e^{\lambda h}}{1 - d} \int_{-\infty}^0 e^{\lambda_1 \tau + e^{\lambda h} \int_0^\tau e^{\frac{4}{m} e_{21}^2(\theta_s, \omega)} ds} c(\theta_\tau, \omega) d\tau,$$

and the random variable $c(\omega)$ has been defined in \([27]\).

Proof. First of all, note that for $u \in G(t, \omega, \psi)$

$$\frac{1 - d}{2} \|u\|^2_{\mathcal{H}} \leq \chi(u)(t) + \frac{1 - d}{2} e^{-\lambda_1 t} \|\psi\|^2_{L_x^2},$$

where the definition of χ was given in \([29]\). Let $D \in \mathcal{D}$. Thanks to \([26]\) we obtain

$$\sup_{u \in G(t, \theta_\tau \omega, D(\theta_\tau \omega))} \chi(u)(t) \leq 2e^{-\lambda_1 (t-h)} + e^{\lambda h} \int_{-h}^0 \frac{4}{m} e_{21}^2(\theta_s, \omega) ds \sup_{\psi \in D(\theta_\tau \omega)} \|\psi\|^2_{\mathcal{H}} \leq 2e^{\lambda h} \int_{-\infty}^0 e^{\lambda_1 \tau + e^{\lambda h} \int_0^\tau e^{\frac{4}{m} e_{21}^2(\theta_s, \omega)} ds} e(\theta_\tau, \omega) d\tau,$$
where the last integral exists due to condition [14] and the temperedness of $c(\omega)$. Hence
\[
\sup_{u \in G(t, \theta, \omega, D(\theta, \omega))} \|u\|^2_H \leq \frac{1}{2} R^2(\omega) + \left(\frac{4}{1 - d} (e^{-\lambda_1 (T - t)} + e^{\lambda_1 b} \int_{t}^{T} \frac{e^{\lambda_1 t}}{\pi t^2 (\theta, \omega) ds} + e^{-\lambda_1 t}) \right) \sup_{\psi \in D(\theta, \omega)} \|\psi\|^2_H,
\]
and $R(\omega) > 0$. This estimate is true for any $t \geq 0$. Hence, by [14] for any $\omega \in \Omega, D \in \mathcal{D}$ there exists $\bar{t} = \bar{t}(D, \omega)$ such that for $t \geq \bar{t},$
\[
\sup_{u \in G(t, \theta, \omega, D(\theta, \omega))} \|u\|^2_H \leq R^2(\omega).
\]

\[
\Box
\]

Lemma 4.8. The absorbing ball given in Lemma 4.7 belongs to D.

For the proof we refer to Caraballo et al. [6], Lemma 4.6.

5. **Asymptotic compactness and the pullback attractor.** Now, after an auxiliary lemma, we prove that the cocycle is pullback asymptotically compact.

Lemma 5.1. Let $\psi^n \in B$, where B is bounded in H, and $\psi^n \to \psi$ weakly in L^2_V, $\psi^n(0) \to \psi(0)$ weakly in H. Consider any sequence of weak solutions $u^n(\cdot) = u^n(\cdot, \omega^n, \psi^n)$ with initial data ψ^n corresponding to ω^n, where $\omega^n \to \omega$. Then there exists a subsequence u^{n_k} and a function u such that u^{n_k} converges to u in $C([\tau, T]; H)$ for all $0 < \tau < T$. Moreover, $u^{n_k} \to u$ weakly in $L^2(0, T; V)$ for all $T > 0$. Also, we have the following property:
\[
\limsup_{n \to \infty} \|u^{n_k}_T - u_T\|_{L^2_V}^2 \leq \frac{1}{1 - 6} e^{-\lambda_1 T} \limsup_{n \to \infty} \|\psi^n - \psi\|_{L^2_H}^2. \tag{33}
\]

Hence, if $\psi^n \to \psi$, $u^{n_k}_T \to u_T$ in L^2_V for any $T > 0$.

If, moreover, $\psi^n \to \psi$ in C_h, then $u^{n_k} \to u$ in $C(\tau, T]; H)$, for all $T > 0$, and $u(\cdot) = u(\cdot, \omega, \psi)$ is a solution of (5) corresponding to the initial data ψ and the parameter ω.

Proof. First fix $0 < \tau < T$. In view of inequality [26] and assumptions [20], the sequence u^n is bounded in $L^\infty(0, T; H) \cap L^2(\infty, T; V)$, and the norm $\|u^n_T\|_{C_h}$ is uniformly bounded in $[0, T]$. Further, using (12) and (20), from (28) we easily obtain that u^n is bounded in $L^p(0, T; L^p(O))$, which implies, together with (10), (12) and (20), that $f(\theta, \omega^n, u^n), h(\theta, \omega^n, u^n)$ and $g(\theta, \omega^n, u^n(\cdot))$ are bounded in $L^2(0, T; V)$, $L^2(0, T; H)$ and $L^2(0, T; L^2(O))$, respectively. Hence, the equality
\[
\frac{du^n(t)}{dt} = -Au^n(t) + f(\theta, \omega^n, u^n_t) + h(\theta, \omega^n, u^n) - g(\theta, \omega^n, u^n(t))
\]
implies that $\frac{du^n}{dt}$ is bounded in $L^2(0, T; V') + L^q(0, T; L^q(O))$. If we choose $r \geq \max\{1, N\left(\frac{1}{q} - \frac{1}{2}\right)\}$, then $\frac{du^n}{dt}$ is bounded in $L^q(0, T; H^{-r}(O))$.

Hence, up to a subsequence, we have the convergences
\[
u^n \to u \quad \text{weakly star in } L^\infty(0, T; H),
\]
\[
\frac{du^n}{dt} \to \frac{du}{dt} \quad \text{weakly in } L^q(0, T; H^{-r}(O)),
\]
\[u^n \to u \text{ strongly in } L^2(0, T; H), \]
\[u^n \to u \text{ weakly in } L^2(-\infty, T; V) \text{ and } L^p((0, T; L^p(O))), \]
\[h(\theta, \omega^n, u^n) \to \zeta_h \text{ weakly in } L^2(0, T; H). \]

In view of conditions (21)-(22), we have that \(g(\theta, \omega^n, u^n(\cdot)) \to g(\theta, \omega, u(\cdot)) \) weakly in \(L^2((0, T; L^2(O)), \) and \(f(\theta, \omega^n, u^n) \to f(\theta, \omega, u) \) weakly in \(L^2((0, T; V')). \)

In a standard way (see the proof of Lemma 17 in [5]) we can check that
\[\|u^n(0)\| = \psi. \]

We note that we have used that \(\|v\| \leq \|\psi\| \) for any 0 \(< \tau < T \) if we check that \(u^n(t_n) \to u(t_0) \) strongly in \(H \) for any \(t_n, t_0 \in [0, T] \). Therefore, passing to the limit we obtain that
\[\limsup_n \|u^n(t_n)\| \leq \|u(t_0)\|. \]

Therefore
\[\|u^n(t)\| \leq \|u(t_0)\|. \]

In view of Lemma 4.3, there exists a neighborhood \(U \) of \(\omega \) such that for any \(\omega^n \in U \) the continuous functions
\[J_n(t) = \|u^n(t)\|^2 - C_1 \int_0^t (d(\theta, \omega^n) + 1) \, ds, \]
are non-increasing in \([0, T]\). Passing to the limit we obtain that \(u(\cdot) \) is a solution of the following problem:
\[\frac{du}{dt} + Au = f(\theta, \omega, u) + \zeta_h - g(\theta, \omega, u), \]
\[u(0) = \psi, \quad u = \psi \text{ in } L^2_. \]

We note that \(h(\theta, \omega^n, u^n(\cdot)) \to \zeta_h \text{ weakly in } L^2(0, T; H) \) and assumption (19) implies that \(\zeta_h \) satisfies
\[\int_r^t \|\zeta_h(s)\| \, ds \leq \liminf_{n \to \infty} \int_r^t \|h(\theta, \omega^n, u^n)\| \, ds \]
\[\leq \liminf_{n \to \infty} \int_r^t (c_3(\theta, \omega^n) + C_1 c_4(\theta, \omega^n)) \, ds \]
\[= \int_r^t (c_3(\theta, \omega) + C_1 c_4(\theta, \omega)) \, ds, \]
where we have used that \(\|u^n\|_{C_h} \leq C_1 = C_1(B, T, \omega) \) for all \(n \) and \(t \in [0, T] \). Then repeating the same steps as in Lemma 4.3 we obtain that the continuous function
\[J(t) = \|u(t)\|^2 - C_1 \int_0^t (d(\theta, \omega) + 1) \, ds \]
is also non-increasing in \([0, T]\). Moreover, \(u^n \to u \text{ strongly in } L^2((0, T; H) \) and (19) implies, passing to a subsequence, that \(J_n(t) \to J(t) \) for a.a. \(t \in (0, T) \). Therefore, using Lemma 4.4 we get (35).

Finally, we apply a diagonal argument to prove that the result is valid in an arbitrary interval \(0 < \tau < T. \)

If, moreover, \(\psi^n \to \psi \text{ in } C_h, \) then arguing as before one can check that \(u^n \to u \) in \(C([-h, T]; H). \) Hence, it follows from (7) that \(h(\theta, \omega, u) = \zeta_h, \) and then \(u \) is a solution of (3) corresponding to the initial data \(\psi. \)

Finally, we shall obtain (33), which implies that if \(\psi^n \to \psi \) in \(L^2_V \), then \(u^n_T \to u_T \) in \(L^2_V \) for any \(T > 0. \) Indeed, the difference \(v^n = u^n - u \) satisfies
Applying Gronwall’s lemma and taking into account assumption (17), we deduce

\[\frac{d}{dt} \|v^n(t)\|^2 + \lambda_1 \|v^n(t)\|^2 + \|v^n(t)\|_V^2 \]

\[\leq 2\|f(\theta_t \omega^n, u^n_t) - f(\theta_t \omega, u_t)\|_V^2 + \frac{1}{2}\|v^n(t)\|_V^2 \]

\[+ 2(h(\theta_t \omega^n, u^n_t) - h(\theta_t \omega, u_t), v^n(t)) \]

\[- 2\langle g(\theta_t \omega^n, v^n(t)) - g(\theta_t \omega, v^n(t)) \rangle_{q,p}. \]

Using \(\psi^n(0) \to \psi(0)\) in \(H\), condition (18) and (34) we obtain that

\[\lim_{n \to \infty} e^{-\lambda_1 T} \|v^n(0)\|^2 = 0, \]

\[\lim_{n \to \infty} \int_0^T e^{-\lambda_1 (T-s)} c_7(\theta_s \omega^n, \theta_s \omega) ds = 0, \]

\[\lim_{n \to \infty} \int_0^T e^{-\lambda_1 (T-s)} (h(\theta_s \omega^n, u^n_s) - h(\theta_s \omega, u_s), v^n(s)) ds = 0, \]

\[\lim_{n \to \infty} \int_0^T e^{-\lambda_1 (T-s)} \langle g(\theta_s \omega, u(s)), v^n(s) \rangle_{q,p} ds = 0. \]

Using (11), (20), (22) and (23) we have

\[\lim sup_{n \to \infty} \int_0^T e^{-\lambda_1 (T-s)} \langle -g(\theta_s \omega^n, u^n(s)), v^n(s) \rangle_{q,p} ds \]

\[= \int_0^T e^{-\lambda_1 (T-s)} \langle g(\theta_s \omega^n, u^n(s)), u(s) \rangle_{q,p} ds \]

\[- \lim inf_{n \to \infty} \int_0^T e^{-\lambda_1 (T-s)} \langle g(\theta_s \omega^n, u^n(s)), u^n(s) \rangle_{q,p} ds \]

\[\leq 0. \]

Finally, from (36) we derive

\[\lim sup_{n \to \infty} \int_0^T e^{-\lambda_1 (T-s)} \|v^n(s)\|_V^2 ds \]

\[\leq \frac{b}{1-b} \lim sup_{n \to \infty} \int_{-\infty}^0 e^{-\lambda_1 (T-s)} \|v^n(s)\|_V^2 ds \]

\[= \frac{b}{1-b} e^{-\lambda_1 T} \lim sup_{n \to \infty} \int_{-\infty}^0 e^{\lambda_1 s} \|\psi^n(s) - \psi(s)\|_V^2 ds, \]
Lemma 5.2. The MNDS

Corollary 1. Let u in the sense of (34). Also, it is clear from the above convergences that

$$\xi \leq y$$

we have that

$$\xi = u$$

moreover, that

$$\xi \to \xi$$

we finally arrive at

$$\limsup_{n \to \infty} \|v^n_T\|^2_{L^q_T} \leq \frac{1}{1 - b} e^{-\lambda_1 T} \limsup_{n \to \infty} \int_{-\infty}^0 e^{\lambda_1 r} \|\psi^n(r) - \psi(r)\|^2 dr.$$

As a consequence of Lemmas 4.6 and 5.1 we obtain the following result.

Corollary 1. The map $\psi \mapsto G(t, \omega, \psi)$ has closed graph in H and is upper semicontinuous for fixed $\omega \in \Omega$, $t \geq 0$.

The next step is to prove the asymptotic compactness.

Lemma 5.2. The MNDS G is pullback \mathcal{D}-asymptotically compact.

Proof. Let $y_n \in G(t_n, \theta_{t_n}, \omega, D(\theta_{t_n}))$, where $D \in \mathcal{D}$ and $t_n \to +\infty$. Then we have to prove that the sequence y_n is precompact in H. Observe that for $T > 0$,

$$G(t_n, \theta_{t_n}, \omega, D(\theta_{t_n})) = G(T, \theta_{-T}, \omega, G(t_n - T, \theta_{t_n}, \omega, D(\theta_{t_n})))$$

$$= G(T, \theta_{-T}, \omega, G(t_n - T, \theta_{t_n} + T \theta_{-T}, \omega, D(\theta_{t_n}) + T \theta_{-T}))$$

$$\subset G(T, \theta_{-T}, \omega, B(\theta_{-T})),$$

if $t_n - T \geq T(D, \theta_{-T})$, where B is the absorbing ball. Then $y_n \in G(T, \theta_{-T}, \omega, \xi_n^T)$, where $\xi_n^T \in B(\theta_{-T})$. Let u_n be a sequence of solutions with initial condition ξ_n^T and $u_n^0 = y_n$. Observe that $y_n(s - T) = \xi_n^T(s)$ for a.a. $s \leq 0$. Also, it is clear that u_n depend on T, but we omit this for simplicity of notation.

Since $B(\theta_{-T})$ is bounded in H we can assume (up to a subsequence) that $\xi_n^T \to \xi^T$ weakly in $L^2(-\infty, T; V)$. Also, since $y_n \in B(\omega)$ for n large enough, we have that $y_n \to y$ weakly in $L^2(-\infty, T; V)$, and $y(s - T) = \xi^T(s)$ for a.a. $s \leq 0$. Also, as the sequence $\xi_n^T(0)$ is bounded in H, we can suppose without loss of generality that $\xi_n^T(0) \to \xi^T(0)$ weakly in H.

From the proof of Lemma 5.1 it follows that u_n converges to some function u in the sense of (34). Also, it is clear from the above convergences that $u(s) = y(s - T)$, for a.a. $s \leq T$, and then $u_T = y$ in $L^2(-\infty, 0; H)$. Lemma 5.1 implies, moreover, that

$$u_n \to u$$

in $C([\tau, T], H)$, for all $0 < \tau < T$.

Hence, if we take $T > h$, then we obtain that $y_n = u_T$ converges to $y = u_T$ in C_h, so $u_T = y$ in H.

Finally, we need to prove that, up to a subsequence, $y_n \to y$ strongly in L^q_T.

Using (33) and $\xi_n \in B(\theta_{-T})$, we have

$$\lim_{n \to \infty} \|y_n - y\|_{L^q_T} \leq \frac{1}{1 - b} e^{-\lambda_1 T} \lim_{n \to \infty} \int_{-\infty}^0 e^{\lambda_1 s} \||\xi_n(s) - \xi^T(s)||_V^2 ds$$

$$\leq \frac{4}{1 - b} R^2(\theta_{-T}) e^{-\lambda_1 T},$$

where $R(\omega)$ is the radius of $B(\omega)$ given by (32).
Using a diagonal argument one can prove that this inequality is true (passing to a subsequence) for every $T > 0$. Since $B \in D$, for any $\varepsilon > 0$ there exists T_ε such that
\[\frac{4}{1-b} R^2 (\theta - \omega) e^{-\lambda_1 T} < \varepsilon \text{ if } T \geq T_\varepsilon. \]
Thus, $\lim_{n \to +\infty} \| y_n - y \|_{L^2_V} = 0$. \hfill \Box

As a consequence of Lemmas 4.6, 4.7, 5.2, Corollary 1 and Theorem 2.4 we can ensure the existence of a pullback attractor for our problem.

Theorem 5.3. The MNDS generated by (3) possesses a pullback D-attractor A in H, which is strictly invariant.

Remark 2. This theorem is true without conditions (18), (19), (20) and writing assumptions (7), (17), (21), (22) and (23) just for ω fixed (see the non-autonomous case in [5]). In such a case Lemma 5.1 would be correct for ω fixed. These conditions are needed in the next section in order to prove that the pullback attractor is measurable.

6. The random attractor. We need to prove now that the MNDS G is in fact an MRDS, and that the pullback D-attractor is a random attractor.

Lemma 6.1. The map $(t, \omega, \psi) \to G(t, \omega, \psi)$ is $B(\mathbb{R}^+) \otimes F \otimes B(H)$ measurable.

Proof. It is enough to check that $(t, \omega, \psi) \to G(t, \omega, \psi)$ is upper semicontinuous (see [5 Lemma 2.5]), and this is true if we prove that for any sequence $y^n \in G(t^n, \omega^n, \psi^n)$ such that $t_n \to t$, $\omega_n \to \omega$, $\psi^n \to \psi$, there exists a subsequence y^{n_k} converging in H to some $y \in G(t, \omega, \psi)$.

Take a sequence of solutions $u^n (\cdot) = u^n (\cdot, \omega^n, \psi^n)$ satisfying $y^n = u^n_0$. Let $t < T$. In view of Lemma 5.1 there exists a subsequence u^{n_k} such that
\[u^{n_k} \to u \text{ in } C([-h, T]; H), \]
\[u^{n_k} \to u \text{ in } L^2 (-\infty, T; V), \quad (38) \]
where $u(\cdot) = u (\cdot, \omega, \psi)$ is a solution with the initial data ψ.

Therefore,
\[y^n = u^n_0 \to u_t = y \in G(t, \omega, \psi) \text{ in } C_h. \]

It remains to prove that $y^{n_k} \to y$ in L^2_V. Let $t^n = t + \tau^n < T$, where $\tau^n \to 0$. We observe that
\[
\| y^{n_k} - y \|^2_{L^2_V} \\
= \int_{-\infty}^{0} e^{\lambda_1 s} \| u^{n_k}_t (\tau^{n_k} + s) - u_t (s) \|^2_V \, ds \\
\leq 2 \int_{-\infty}^{0} e^{\lambda_1 s} \| u^{n_k}_t (\tau^{n_k} + s) - u_t (\tau^{n_k} + s) \|^2_V \, ds \\
+ 2 \int_{-\infty}^{0} e^{\lambda_1 s} \| u_t (\tau^{n_k} + s) - u_t (s) \|^2_V \, ds.
\]
By (38) it is straightforward to check that
\[
\int_{-\infty}^{0} e^{\lambda_1 s} \| u^{n_k}_t (\tau^{n_k} + s) - u_t (\tau^{n_k} + s) \|^2_V \, ds \to 0.
\]
On the other hand, if \(v \in L^2(-\infty, T; V) \), then \(v_\varepsilon(\cdot) = v(\cdot + \tau) \to v(\cdot) \) in \(L^2(-\infty, T - \varepsilon; V) \) as \(\tau \to 0 \) for any \(\varepsilon > 0 \), see [12]. Hence, choosing \(\varepsilon > 0 \) such that \(t < T - \varepsilon \) we obtain
\[
\int_{-\infty}^{0} e^{\lambda s} \| u(t) - u(s) \|_V^2 \, ds = \int_{-\infty}^{t} e^{-\lambda(s-t)} \| u(r + \tau) - u(r) \|_V^2 \, ds \to 0,
\]
which concludes the proof. \(\Box \)

We will define now a new pullback \(\mathcal{D} \)-absorbing family \(K(\omega) \) given by
\[
K(\omega) = \left\{ y : \exists \omega^n, y^n \in G(2h, \theta_{-2h} \omega^n, B(\theta_{-2h} \omega^n)) \text{ such that } \omega^n \to \omega, y^n \to y \text{ in } \mathcal{H} \right\}.
\]
We note that
\[
G(2h, \theta_{-2h} \omega, B(\theta_{-2h} \omega)) \subset K(\omega)
\]
and then for any \(\omega \in \Omega \), \(D \in \mathcal{D} \), there exists \(T(\omega, D) \) such that
\[
G(t, \theta_{-2h} \omega, D(\theta_{-2h} \omega)) \subset G(2h, \theta_{-2h} \omega, G(t - 2h, \theta_{-2h} \omega, D(\theta_{-2h} \omega)))
\]
if \(t \geq T \). Therefore, the family \(K(\omega) \) is pullback \(\mathcal{D} \)-absorbing.

Lemma 6.2. Assume that the radius \(R(\omega) \) of the absorbing family \(B(\omega) \) defined in Lemma 4.3 is locally bounded, that is, for any \(\omega_0 \in \Omega \) there exists a neighborhood \(U \) of \(\omega_0 \) and a constant \(C(\omega_0) \) such that
\[
R(\omega) \leq C \forall \omega \in U.
\]
Then for any fixed \(t \geq 0 \) the map \(\omega \mapsto G(t, \omega, K(\omega)) \) has closed values and is a random set with respect to \(\mathcal{F}^\omega \).

Proof. We shall prove that \(\omega \mapsto G(t, \omega, K(\omega)) \) has closed graph. We consider the sequence \(y^n \in G(t, \omega^n, K(\omega^n)) \), where \(\omega^n \to \omega \), \(y^n \to y \) in \(\mathcal{H} \). Then there are solutions \(u^n(\cdot, \omega^n, x^n) \) such that \(y^n = u^n \) and \(x^n \in K(\omega^n) \).

Since \(x^n(s) = y^n(s - t) \) for a.a. \(s \leq 0 \) and \(y^n \to y \) in \(L^2 \), we deduce that \(x^n \to x \) in \(L^2 \), where \(x(s) = y(s - t) \) for a.a. \(s \leq 0 \).

We will check further that, up to a subsequence, \(x^n \to x \) in \(C_h \). In view of the definition of the set \(K(\omega) \) one can choose \(\overline{x}^n, \overline{v}^n \in G(2h, \theta_{-2h} \overline{x}^n, B(\theta_{-2h} \overline{x}^n)) \) such that
\[
d_{H}(\overline{x}^n, \omega^n) < \frac{1}{n}, \| \overline{v}^n - x^n \|_H < \frac{1}{n},
\]
There exist \(\psi^n \in B(\theta_{-2h} \overline{x}^n) \) and solutions \(v^n(\cdot) = v^n(\cdot, \overline{x}^n, \psi^n) \) such that \(\overline{v}^n = v_{2h} \).

In view of condition (38), \(\psi^n \) is bounded in \(\mathcal{H} \). Thus, passing to a subsequence we have that \(\psi^n \to \psi \) weakly in \(L^2 \) and \(\psi^n(0) \to \psi(0) \) weakly in \(H \). Lemma 5.1 implies then that \(v^n \to v \) in \(C([t, 2h]; H) \) for any \(0 < t < 2h \). Hence, \(\overline{v}^n = v_{2h}^n \to v_{2h} \) in \(C_h \). This, together with (40), gives
\[
x^n \to v_{2h} = x \in C_h,
\]
and therefore
\[
x^n \to x \text{ in } \mathcal{H}.
\]
Moreover, from (40) we have \(v^n \to x \) in \(\mathcal{H} \), \(\overline{v}^n \to \omega \) as well, so by the definition of \(K(\omega) \) it is obvious that \(x \in K(\omega) \).

Now, using again Lemma 5.1 we obtain the existence of a solution \(u(\cdot) = u(\cdot, \omega, x) \) such that \(y = u_t \), thus \(y \in G(t, \omega, K(\omega)) \), proving that the graph is closed. This
Proof. For an arbitrary c function

\begin{align*}
\text{Lemma 6.3.} \quad & \text{Let the functions } \omega \text{ exist a neighborhood } U \text{ of } \omega, 0 < \delta(\omega) < \lambda_1 - e^{\lambda_1 h} \frac{1}{\eta_0} \text{ and } C(\omega), \ t_0(\omega) > 0 \text{ such that } \\
& c_i(\theta_i \omega) \leq C(\omega)e^{\delta(\omega)|t|}, \quad i = 1, 6, \\
& c_3^2(\theta_1 \omega) \leq C(\omega)e^{\delta(\omega)|t|},
\end{align*}

for all $\omega \in U$, $|t| \geq t_0$. Moreover, for any $\omega_0 \in \Omega$ there exists a neighborhood U_2 such that for any $\gamma > 0$ there exists $r_0(\gamma, \omega_0) < 0$ such that

\begin{align*}
(-E(c_3^2) + \gamma)r \leq \int_0^r c_3^2(\theta_k \omega)d\tau \leq (-E(c_3^2) - \gamma)r,
\end{align*}

for all $\omega \in U_1$ and $r \leq r_0$. Then (39) holds.

Remark 3. Assumption (43) means that the ergodic property $\lim_{t \to -\infty} \frac{1}{t} \int_0^t c_2^2(\theta, \omega)d\tau = E(c_2^2)$ is satisfied uniformly in a neighborhood of each $\omega_0 \in \Omega$.

Proof. For an arbitrary $\omega_0 \in \Omega$ let $U = U_1 \cap U_2$. Take $\gamma \in (0, \frac{\lambda_1 \eta_0}{2 \eta_0^2 - 1} - E(c_3^2) - \frac{\delta(\omega_0)\eta_0}{4e^{\lambda_1 h}})$ and denote $\delta = \lambda_1 - e^{\lambda_1 h} \frac{4}{\eta_0} E(c_3^2) - e^{\lambda_1 h} \frac{1}{\eta_0} \gamma > \delta(\omega_0) > 0$. Let $\overline{t}(\omega_0, \gamma) = \max\{t_0(\omega_0), -r_0(\omega_0, \gamma)\}$. Conditions (41)-(43) imply

\begin{align*}
& \frac{8e^{\lambda_1 h}}{1 - d} \int_{-\infty}^T e^{\lambda_1 t + e^{\lambda_1 h} \int_t^T e^{(\gamma + \frac{4}{\eta_0} E(c_3^2))} r} d\tau \leq \frac{8e^{\lambda_1 h}}{1 - d} \int_{-\infty}^T e^{(\lambda_1 - e^{\lambda_1 h} \frac{4}{\eta_0} E(c_3^2)) - e^{\lambda_1 h} \frac{1}{\eta_0} \gamma} r d\tau \leq \frac{8e^{\lambda_1 h}}{1 - d} \int_{-\infty}^T e^{t \gamma} (\eta C_\mu + (3 + \frac{2}{\eta_0}) C(\omega_0)) e^{-\delta(\omega_0) r} d\tau \leq D_1(\omega_0), \quad \text{for any } \omega \in U.
\end{align*}

for any $\omega \in U$. On the other hand, from condition (20) we obtain easily that

\begin{align*}
& \frac{8e^{\lambda_1 h}}{1 - d} \int_{-\infty}^T e^{\lambda_1 t + e^{\lambda_1 h} \int_t^T e^{(\gamma + \frac{4}{\eta_0} E(c_3^2))} r} d\tau \leq D_2(\omega_0), \quad \text{for any } \omega \in U.
\end{align*}

Hence, assumption (39) follows.

In the sequel we strengthen conditions (41)-(42) and condition (20) (for the function $c_4(\omega)$) to ensure that the family $K(\omega)$ is tempered.

Lemma 6.4. Assume that (33) is satisfied and that for any $\omega_0 \in \Omega$ and $k > 0$ there exist a neighborhood U of ω_0 and $C(\omega_0, k), \overline{t}(\omega_0, k) > 0$ such that

\begin{align*}
& c_i(\theta_i \omega) \leq C(\omega_0, k)e^{k|t|}, \quad i = 1, 6, \\
& c_3^2(\theta_1 \omega) \leq C(\omega_0, k)e^{k|t|},
\end{align*}

for all $\omega \in U$ and $|t| \geq t_0$. Then (39) holds.
for all $\omega \in \mathcal{U}$, $|t| \geq \bar{t}$. Also, assume that for every $\omega_0 \in \Omega$, $t_0 \in \mathbb{R}$ there exists a neighbourhood \mathcal{U} of ω_0 and a constant $D(t_0, \omega_0)$ such that

$$\int_{t_0}^{t_0 + t} c_2^2(\theta_\omega) ds \leq D, \quad \text{for any } \omega \in \mathcal{U}, \ t \in \mathbb{R}. \quad (46)$$

Then $K \in \mathcal{D}$.

Proof. First, we ought to establish that the absorbing family $B(\omega)$ is locally uniformly tempered. We shall prove that for any ω_0 there exists a neighborhood \mathcal{U}_0 of ω_0 such that for any $\delta > 0$,

$$\lim_{t \to +\infty} \sup_{\omega \in \mathcal{U}_0} e^{-\delta t} R^2(\theta_{-t} \omega) = 0. \quad (47)$$

Using assumption (43), the proof is quite similar to that in Lemma 4.6 from Caraballo et al. [6], so we omit it.

Further, we need to prove that for any $\delta > 0$,

$$\lim_{t \to +\infty} e^{-\delta t} \sup_{y \in K(\theta_{-t} \omega)} \|y\|^2_{\mathcal{H}} = 0. \quad (48)$$

For any $y \in K(\theta_{-t} \omega)$ there exist $y^n \in G(2h, \theta_{-2h-t} \omega^n, z^n)$, $z^n \in B(\theta_{-2h-t} \omega^n)$, $\omega^n \in \Omega$, such that $\omega^n \to \omega$, $y^n \to y$ in \mathcal{H}. From (26) we have

$$\|y^n\|^2_{\mathcal{H}} + \frac{1}{2} \int_{-2h}^{0} e^{\lambda_1 s} \|y^n(s)\|^2_V ds \leq e^{-\lambda_1 h + \epsilon\lambda_1 h} \int_{-2h}^{0} \frac{4}{\eta^2} c_2^2(\theta_{-s} \omega^n) ds \left(2 \|z^n(0)\|^2 + d \|z^n\|^2_{L^2} \right) + 2e^{\lambda_1 h} \int_{-2h}^{0} e^{\lambda_1 t + \epsilon\lambda_1 h} f_{\tau}^{\lambda_1 t + \epsilon\lambda_1 h} c_2^2(\theta_{-\tau} \omega^n) d\tau.$$

We observe that (46), (44)-(45) imply that for any $k > 0$ there exist a neighborhood \mathcal{U}_1 of ω and constants $D(\omega)$, $C(\omega, k)$, $\bar{t}(\omega, k) > 0$ such that

$$e^{-\lambda_1 h + \epsilon\lambda_1 h} \int_{-2h}^{0} \frac{4}{\eta^2} c_2^2(\theta_{-s} \omega^n) ds = e^{-\lambda_1 h + \epsilon\lambda_1 h} \int_{-2h}^{0} \frac{4}{\eta^2} c_2^2(\theta_{-s} \omega^n) ds \leq e^{-\lambda_1 h + \epsilon\lambda_1 h} \frac{4}{\eta^2} D(\omega)$$

and

$$\int_{-2h}^{0} e^{\lambda_1 t + \epsilon\lambda_1 h} f_{\tau}^{\lambda_1 t + \epsilon\lambda_1 h} c_2^2(\theta_{-\tau} \omega^n) d\tau \leq \int_{-2h}^{0} e^{\lambda_1 t + \epsilon\lambda_1 h} \frac{4}{\eta^2} D(\omega) (\eta C_\mu + 3 + \frac{2}{\eta^2}) C(\omega, k) e^{-\lambda_1 t + \epsilon\lambda_1 h} d\tau,$$

whenever ω^n belongs to the neighborhood \mathcal{U}_1 and $t \geq \bar{t}$. Therefore, there exist constants $D_1(\omega), D_2(\omega), D_3(\omega, k) > 0$ such that

$$\|y^n\|^2_{\mathcal{H}} = \|y^n\|^2_{\mathcal{C}_h} + \int_{-2h}^{0} e^{\lambda_1 s} \|y^n(s)\|^2_V ds + \int_{-\infty}^{-2h} e^{\lambda_1 s} \|y^n(s)\|^2_V ds \leq \int_{-2h}^{0} e^{\lambda_1 s} \|y^n(s)\|^2_V ds + e^{-2\lambda_1 t} \int_{-\infty}^{0} e^{\lambda_1 s} \|z^n(s)\|^2_V ds \leq D_1(\omega) \|z^n\|^2_{\mathcal{H}} + D_2(\omega) + D_3(\omega, k)e^{kt}.$$
if $\omega^n \in U_1$ and $t \geq \bar{t}$. Now, for any $\delta > 0$, choosing $k < \delta$ and using (47) we obtain that for any $\varepsilon > 0$ there exists $T(\varepsilon)$ such that
\[
e^{-\delta t} \|y^n\|_H^2 \leq e^{-\delta t}(D_1(\omega)R^2(\theta_{-2h-t}\omega^n) + D_2(\omega)) + D_3(\omega, k)e^{-(\delta-k)t} \leq \varepsilon
\]
if $\omega^n \in U_1 \cap U_0$ and $t \geq T$.
Passing to the limit as $n \to \infty$
\[e^{-\delta t} \|y\|_H^2 \leq \varepsilon \quad \forall t \geq T(\varepsilon), \ y \in K(\theta_{-t}\omega).
\]Then, (48) follows.

We are ready to prove that the pullback \mathcal{D}-attractor A defined in Theorem 5.3 is a random pullback \mathcal{D}-attractor.

Theorem 6.5. Assume that conditions (43)-(46) are satisfied. Then A is a random \mathcal{D}-attractor.

Proof. From Lemmas 6.4, 6.1 we know that the family of absorbing sets K belongs to \mathcal{D} and that the map $(t, \omega, \psi) \to G(t, \omega, \psi)$ is $\mathcal{B}(\mathbb{R}^+) \otimes \mathcal{F} \otimes \mathcal{B}(H)$ measurable. Also, from Lemmas 6.2, 6.3 we have that for any fixed $t \geq 0$ the map $\omega \mapsto G(t, \omega, K(\omega))$ has closed values and is a random set with respect to \mathcal{F}^ω.

Hence, Theorem 2.4 implies that
\[A(\omega) := \bigcap_{s \geq 0} \bigcup_{t \geq s} G(t, \theta_{-t}\omega, K(\theta_{-t}\omega))
\]and this set is random with respect to \mathcal{P}^ω.

Acknowledgments. The authors would like to thank the anonymous referees for their useful remarks.

REFERENCES

[1] L. Arnold, *Random Dynamical Systems*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
[2] T. Caraballo, I. D. Chueshov and J. Real, Pullback attractors for stochastic heat equations in materials with memory, *Discrete Cont. Dyn. Systems Series B*, 9 (2008), 525–539.
[3] T. Caraballo, M. J. Garrido-Atienza and B. Schmalfuß, Existence of exponentially attracting stationary solutions for delay evolution equations, *Discrete Contin. Dyn. Syst.*, 18 (2007), 271–293.
[4] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, *Discrete Contin. Dyn. Syst.*, 21 (2008), 415–443.
[5] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Global attractor for a non-autonomous integro-differential equation in materials with memory, *Nonlinear Analysis*, 73 (2010), 183–201.
[6] T. Caraballo, P. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, *Appl Math Optim*, 50 (2004), 183–207.
[7] T. Caraballo, J. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems, *Nonlinear Anal.*, 48 (2002), 805–829.
[8] C. Castaing and M. Valadier, *Convex Analysis and Measurable Multifunctions*, Springer-Verlag, Berlin, 1977.
[9] G. Da Prato and J. Zabczyk, *Stochastic Equations in Infinite Dimensions*, Cambridge University Press, Cambridge, 1992.
[10] C. M. Dafermos, Asymptotic stability in viscoelasticity, *Arch. Rational Mech. Anal.*, 37 (1970), 297–308.
[11] M. Fabrizio and A. Morro, *Mathematical Problems in Linear Viscoelasticity*, SIAM Studies in Applied Mathematics 12, SIAM, Philadelphia, 1992.
[12] H. Gajewsky, K. Gröger and K. Zacharias, Nichtlineare operatorgleichungen und operatordifferezialgleichungen, Akademie-Verlag, Berlin, 1974.
[13] Y. Hino, S. Murakami and T. Naito, *Functional Differential Equations with Infinite Delay*, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991.
[14] S. Hu and N. S. Papageorgiou, *Handbook of Multivalued Analysis*, Vol. I, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.
[15] M. Renardy, W. J. Hrusa and J. A. Nohel, *Mathematical Problems in Viscoelasticity*, Longman, Harlow; John Willey, New York, 1987.
[16] J. C. Robinson, *Infinite-dimensional Dynamical Systems*, Cambridge University Press, Cambridge, 2002.
[17] B. Schmalfuß, Attractors for the non-autonomous dynamical systems, In *International Conference on Differential Equations*, Vol. 1, 2 (Berlin, 1999), pp. 684–689, World Sci. Publishing, River Edge, NJ, 2000.
[18] R. Temam, *Navier-Stokes Equations*, North-Holland, Amsterdam, 1979.

Received April 2016; revised June 2016.

E-mail address: caraball@us.es
E-mail address: mgarrido@us.es
E-mail address: bjoern.schmalfuss@uni-jena.de
E-mail address: jvalero@umh.es