Comparative genomics of an endophytic *Pseudomonas putida* isolated from mango orchard

Huma Asif, David J. Studholme, Asifullah Khan, M. Aurongzeb, Ishtiaq A. Khan and M. Kamran Azim

1Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.

2Biosciences, University of Exeter, Exeter, U.K.

Abstract

We analyzed the genome sequence of an endophytic bacterial strain *Pseudomonas putida* TJI51 isolated from mango bark tissues. Next generation DNA sequencing and short read de novo assembly generated the 5,805,096 bp draft genome of *P. putida* TJI51. Out of 6,036 protein coding genes in *P. putida* TJI51 sequences, 4,367 (72%) were annotated with functional specifications, while the remaining encoded hypothetical proteins. Comparative genome sequence analysis revealed that the *P. putida* TJI51 genome contains several regions, not identified in so far sequenced *P. putida* genomes. Some of these regions were predicted to encode enzymes, including acetylornithine deacetylase, betaine aldehyde dehydrogenase, aldehyde dehydrogenase, benzoylformate decarboxylase, hydroxyacylglutathione hydrolase, and uroporphyrinogen decarboxylase. The genome of *P. putida* TJI51 contained three nonribosomal peptide synthetase gene clusters. Genome sequence analysis of *P. putida* TJI51 identified this bacterium as an endophytic resident. The endophytic fitness might be linked with alginate, which facilitates bacterial colonization in plant tissues. Genome sequence analysis shed light on the presence of a diverse spectrum of metabolic activities and adaptation of this isolate to various niches.

Keywords: *Mangifera indica*; bacterial genomics; plant-associated bacteria; endophyte.

Received: July 27, 2015; Accepted: December 20, 2015.

Introduction

The genus *Pseudomonas* is a versatile and ecologically important group of bacteria. They are Gram-negative, slightly curved flagellated rods and prolific colonizers of surfaces (Clarke, 1982). *Pseudomonas* species have been isolated from diverse ecosystems including marine, freshwater and terrestrial environment including plants and animals sources (Achouak et al., 2000; Manaia and Moore, 2002; Liu et al., 2008). This widespread distribution is due to physiological and genetic diversity (Spiers et al., 2000). For instance, an attempt to differentiate *P. Stutzeri* populations from a variety of ecological niches resulted in several distinguishable genomovars (Rossello et al., 1991). Comparative genomics of the *Pseudomonas* strains revealed much variability in their genome sizes, ranging from 3.7 Mbp for *Pseudomonas stutzeri* to 7.1 Mbp for *Pseudomonas aeruginosa* (Schmidt et al., 1996; Ginard et al., 1997).

Pseudomonas putida, an important member of genus *Pseudomonas*, is frequently found in temperate waters and diverse soil environments. It is renowned for its ability to degrade a wide variety of natural and man-made compounds, and thus plays an important role in maintaining environmental quality (Dejonghe et al., 2001). Available complete or draft genome sequences of several *P. putida* isolates from different parts of the world provided a rich and diverse ‘meta-dataset’ (Genome OnLine Database; www.genomeonline.org). *Pseudomonas putida* KT2440 isolated in Japan is so far, the best characterized strain, which is a plasmid free derivative of *Pseudomonas putida* KT2440 isolated in Japan is so far, the best characterized strain, which is a plasmid free derivative of *Pseudomonas putidam-t2* (Timmis, 2002). Other strains with sequenced genomes include *Pseudomonas putida* W619, a plant growth-promoting endophytic bacterium, *Pseudomonas putida* F1, the aromatic hydrocarbon degrading bacterium, and *Pseudomonas putida* GB-1, a robust manganese (Mn$^{2+}$) oxidizer. *Pseudomonas putida* W619 and *Pseudomonas*...
putida KT2440 have been found in association with plants (Wu et al., 2011). However, genome sequences representing more P. putida strains are required to better determine the prevailing diversity and stratification patterns of this environmentally important bacterium. Here, we report the draft genome sequence of Pseudomonas putida TJ151 isolated from infected mango bark. The comparative sequence analysis revealed several genomic loci specific to this endophytic Pseudomonas putida isolate.

Material and Methods

Isolation and bacteriological characterization of Pseudomonas putida TJ151

Isolation of Pseudomonas putida TJ151 has been described elsewhere (Khan et al., 2014). Briefly, Pseudomonas putida TJ151 was isolated from bark of a mango tree situated in the Horticultural Garden, Sindh Agriculture University, Tando Jam, Pakistan. The bark sample (100 mg) was surface sterilized using 1.3% sodium hypochlorite solution, followed by homogenization using sea sand and 0.8% NaCl. The homogenate was incubated on chlorite solution, followed by homogenization using sea sand and 0.8% NaCl. The homogenate was incubated on LB plates and isolated bacterial colonies were characterized further. Colony PCR of isolated bacterial colonies was performed according to Khan et al. (2014) for amplification of 16S ribosomal DNA. Sanger sequencing of PCR products was carried out, followed by BLASTN analysis (Altschul et al., 1990) of resulted sequences against the NCBI 16S ribosomal RNA sequence (Bacteria and Archaea) database.

Bacteriological analysis was done using a standard protocol for Pseudomonas identification, including sulphur, indole, citrate, motility, urease, and TSI agar tests. Tests for lactose and glucose fermentation, PSP (Pseudomonas agar Pyocyanin) and PSF (Pseudomonas agar Flourescein) were also carried out (Murray et al., 2007). Antibiotic susceptibility tests were carried out using disc diffusion method with the following antibiotics discs (Oxoid Ltd. England): Ceftriaxone (30 µg), Cefixime (5 mg) and Ceftazidime (30 µg) (3rd-generation cephalosporins); Cefuroxime (30 µg) (2nd generation cephalosporin); Ciprofloxacin (5 µg) (Quinolone); Sulfamethoxazole (25 µg) (Sulphonamides); Polymyxin B (300 units) (Polypeptides); Meropenem (10 µg), Imipenem (10 µg) (Carbapenems); Tetracycline (30 µg) (Tetracyclines); Amoxicillin/clavulanate (30 µg), Tazobactam (110 µg) (Penicillin combinations); Gentamicin (10 µg), Amikacin (30 µg) (Aminoglycosides); Aztreonam (30 µg) (Monobactams) and Chloramphenicol (30 µg). Bacterial isolates were also inoculated on casein agar and blood agar (Blood agar base, Oxoid code CM 271) for determination of proteolytic and haemolytic activities.

Genome sequencing and data analysis

Genomic DNA (5 µg) was purified from an overnight culture of P. putida TJ151 using a bacterial genomic DNA isolation kit (Bio Basic Inc.) and subjected to Illumina next generation sequencing. A paired-end library of insert size 500 bp was prepared according to the manufacturer’s protocol followed by HiSeq2000 system sequencing (Illumina Inc., San Diego, USA). The obtained raw sequence data was subjected to filtering of low quality score reads (i.e. < Q20) using the FastX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). CLC Genomics Workbench version 7.5.2 was used for denovo paired-end sequence assembly. The annotation of the assembled genome sequences was carried out using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html).

Comparative genome analysis

We used MUMMER (Delcher et al., 1999) to align assembled contigs with several Pseudomonas genome sequences. A molecular phylogeny analysis of P. putida TJ151 was carried out with several housekeeping gene sequences and multi-locus sequence analysis (MLSA) using MEGA version 4.0 (neighbor-joining method) (Saitou and Nei, 1987). The comparative analyses with available bacterial genome sequences were performed using BLAST programs (BLASTN, TBLASTX and BLASTP) (Altschul et al., 1990). The comparative genomics analysis of P. putida TJ151 was carried out with Pseudomonas putida KT2440 (NC_002947), Pseudomonas putida GB-1 (NC_010322), Pseudomonas putida w619 (NC_010501), Pseudomonas putida F1 (NC_009512), Pseudomonas fluorescens Pf5 (NC_004129), Pseudomonas syringae pv. Tomato DC3000 (NC_004578), Pseudomonas syringae pv. Phaseolicola 1448A (NC_005773), Pseudomonas entomophila L48 (NC_008027), Pseudomonas aeruginosa UCBPP-PA14 (NC_008463), Pseudomonas aeruginosa PA7 (NC_009656), Pseudomonas aeruginosa LESB58 (NC_011770), Pseudomonas fluorescens SBW25 (NC_012660) and Pseudomonas fluorescens Pf01 (NC_007492) using SEED viewer (Dejongh et al., 2007), ClustalX version 2.0 (Larkin et al., 2007) and MEGA4 software (Tamura et al., 2007) were used for multiple sequence alignment and phylogenetic tree construction respectively.

A comparison of genomic DNA G+C content between P. putida TJ151 and other Pseudomonas strains was done using the Integrated Microbial Genomes (IMG) system (Markowitz et al., 2010). The sequence analysis of biosynthetic gene clusters for bacterial secondary metabolites was carried out by antiSMASH 2.0 web server (Blin et al., 2013). The association of metabolic pathways with the annotated protein sequences was studied using the KEGG server (Kanehisa et al., 2008).
Results

We isolated a number of endophytic Pseudomonas strains from dead tissues of bark, leaves and inflorescence of mango (Mangifera indica) trees grown in agricultural farms in mango growing districts in Sindh province of Pakistan (Khan et al., 2014). The bacterial characterization was carried out by standard procedures and 16S ribosomal DNA sequencing, which identified isolate-number TJ151 as Pseudomonas species. Antibiotics susceptibility assays of Pseudomonas sp.TJ151 showed resistance against Ampicillin, Cefixime (3rd generation cephalosporin) and Sulfamethoxazole (Sulfonamide). Pseudomonas sp. TJ151 was found to be oxidase and citrate positive; nonhemolytic, nonproteolytic, a non-lactose fermenter and motile. Genome-wide DNA sequencing and comparative genomics were done for detailed functional characterization of this isolate.

Genome sequence of Pseudomonas putida TJ151

The sequencing of chromosomal and plasmid DNA of Pseudomonas sp. TJ151 resulted in 651 mega bases (Mb) of raw data with read length of 90 bp. During raw data filtering by the FASTX-Toolkit, low quality bases (≤ Q20 bases) at 3 ends of the sequence reads, adaptor sequences and reads containing Ns (undetermined/ambiguous nucleotides) were removed. Accordingly, 5,777,778 reads of 90 bp length were obtained (total nucleotides=520,000,020). De novo assembly of sequence reads using CLC Genomics Workbench resulted in 208 contigs of ≥ 541 bp length. Total sequence length of the assembly was 5,805,096 bp, which was in accordance with the previously reported 6.1 Mb genome of P. Putida (Nelson et al., 2002; Moon et al., 2008; Peix et al., 2009). The N50 of assembly was 53,388 bp and the length of the longest contig was 240,918bp. The depth of coverage was estimated as 89X, and mean G+C content was 62% (Table 1). The G+C content distribution plot showed that most of the scaffolds had the GC content in the range of 58-64%, which is in agreement with other Pseudomonas strains. The master record for the genome shotgun sequencing project of P. species TJ151 can be accessed under GenBank under accession number AEWE0000000.2.

Comparative genomics of Pseudomonas sp. TJ151

The 208 scaffolds of the Pseudomonas sp. TJ151 genome sequence were aligned with 13 Pseudomonas genomic sequences using MUMMER (Delcher et al., 1999). The analysis showed that P. putida sequences aligned with greater proportion to P. sp. TJ151 sequences (Table 2). The highest percentages of aligned nucleotides were for P. putida GB-1, F1 and KT2440 (Figure 1). The genome-wide alignment showed that 33-35% of the P. sp. TJ1-51 sequences were aligned with P. putida GB-1, P. putida F1, and P. putida KT2440; 21% with Pseudomonas putida W619 genome; 19% with P. entomophila, while 2-4.5% with Pseudomonas syringae, P. fluorescens, and P. aeruginosa genomic sequences. Hence, these alignments identified P. sp. TJ151 as being more similar to P. Putida than to the other species included in this analysis.

Further support regarding the classification of P. sp. TJ151 as P. Putida was obtained from phylogenetic studies. DNA sequences of five conserved housekeeping genes, gyrB, lepA, recA, recG and rpoD, were selected for the phylogenetic analysis of P. sp. TJ151 (Santos and Ochman, 2004). The corresponding gene sequences of 13 Pseudomonas strains selected on the basis of BLAST results were retrieved from GenBank (Table 2) (Madden et al., 1996). In the resultant phylogenetic tree, P. sp. TJ151 grouped with P. putida GB-1 and P. putida w619, with bootstrap support values of 97 and 100% respectively (Figure 2A). Moreover, a phylogenetic analysis based on the concatenated amino acid sequence data of ten orthologous conserved proteins was also carried out. These universally distributed bacterial genes included transfer RNA synthetases, translation elongation factor, and DNA-directed RNA polymerase beta subunit (Brown et al., 2001). Amino acid sequence alignment of these genes was made using the NJ method. This analysis also showed the alliance of P. sp. TJ151 with P. putida GB-1 and P. putida w619, with bootstrap support values 97 and 100% respectively (Figure 2B). The graphical representation of genome-wide sequence alignment indicated that P. putida TJ151 sequences covered most of the genome map of P. putida GB-1 and P. putida F1 with several gap regions (Figure 1).

Annotation of Pseudomonas putida TJ151 genome

The NCBI Prokaryotic Genome Annotation Pipeline (PGAAP) annotated 6,036 protein coding genes in P. putida TJ151 sequences. In total, 72% of protein coding genes (4,367) were annotated with functional specifications, while the remaining were hypothetical proteins (1,669). The distribution of these genes in different bacterial subsystems is shown in Figure 3. Gene ontology by PGAAP identified protein coding genes involved in core

Table 1 - Sequencing and assembly data of P. putida TJ151 genome.
Library characteristics
No. of filtered paired-end reads
Read length
No. of filtered nucleotide bases
Number of assembled contigs
Length of longest contigs (nucleotides)
Total length of contigs (nucleotides)
N50 of contigs (nucleotides)
Fold coverage
and accessory functions. Genes involved in core functions included nucleic acid biosynthesis, amino acid metabolism, carbohydrate metabolism, protein metabolism, cell wall and capsule synthesis, respiration, etc. A significant number of genes encoding accessory functions were also found, including iron acquisition, metabolism of aromatic compounds, stress response motility and chemotaxis.

Discussion

We characterized the genome of an endophytic *P. putida* strain isolated from mango tree located in an agricultural farm in Sindh province of Pakistan. Genome insight provided information regarding lifestyle and adaptation of *P. putida* TJ151. Plant-associated *Pseudomonas* species

Pseudomonas genomes	GenBank accession number	Genome size (nucleotides aligned)	GenBank coverage (%)	GC content (%)
Pseudomonas putida KT2440	NC_002947	6181861	2068300	33.457
Pseudomonas putida GB-1	NC_010322	6078430	2152707	35.415
Pseudomonas putida F1	NC_009512	5959964	1987103	33.340
Pseudomonas putida w619	NC_010501	5774330	1259208	21.806
Pseudomonas entomophila L48	NC_008027	5888632	1121068	19.037
Pseudomonas fluorescens Pi5	NC_004129	5002643	311819	4.408
Pseudomonas syringae pv. tomatostr. DC3000	NC_004578	6386667	117603	1.841
Pseudomonas syringae pv. phaseolicola 1448A	NC_005773	9517006	113979	1.926
Pseudomonas aeruginosa UCBPP-PA14	NC_008463	6523118	144831	2.220
Pseudomonas aeruginosa PA7	NC_009656	6576011	163735	2.489
Pseudomonas aeruginosa LESB58	NC_011770	6054647	18562	0.306
Pseudomonas fluorescens SBW25	NC_012660	6720050	216725	3.225
Pseudomonas fluorescens Pi01	NC_007492	6436448	256766	3.989

Figure 1 - Diagrammatic representation of MUMMER (Delcher et al., 1999) generated genome-wide alignments of *P. putida* TJ151 contigs with genome sequences of *P. putida* GB-1 (A) and *P. putida* F1 (B).
have rarely been reported from this part of the world. The genetic repository of *P. putida* TJI51 allowed comparative genomics and functional analysis with available *Pseudomonas* genomes for information related to the mode of association with plant tissues.

A sizeable number of genes were predicted to encode hypothetical proteins (i.e. 28%). Analyses of newly sequenced bacterial genomes constantly reveal novel protein coding genes; hence the size of the ‘pan-genome’ is increasing (Tettelin et al., 2008). BLAST searches in the NCBI non-redundant protein sequence database revealed 37 novel hypothetical proteins in *P. putida* TJI51 that have no database match (11 of these novel hypothetical proteins had ≥ 50 amino acids, including hypothetical protein G1E_25761 which contained 1295 amino acids).

Analysis of the genome-wide alignment revealed 5-15 kb regions in *P. putida* TJI51 genome sequences that shared no detectable nucleotide sequence similarity with previously sequenced *P. putida* genomes. These regions were predicted to encode proteins involved in an array of biochemical pathways, including different oxidoreductases, glutathione S-transferase, isopenicillin N-synthase, xanthine permease, acetylmornithine deacetylase, aldehyde dehydrogenase, benzoylformate decarboxylase, endoribonuclease, different 2Fe-2S proteins, ABC transporters, extracellular solute-binding protein, xanthine dehydroge-
nase, hydroxyacylglutathione hydrolase, glucose dehydrogenase, uroporphyrinogen decarboxylase, and N-acetylgucosamine-binding protein. The *P. putida* TJ151 genome also appears to contain two plasmids (i.e. contig 20; AEWE02000020 and contig 77; AEWE02000077) and phage sequences (AEWE02000074). Contig 20 aligned with plasmid pGRT1 of the *P. putida* strain DOT-T1E, whereas Contig 77 aligned with plasmid sequences of several *P. putida* strains, including GB-1 and W619. Also among the *P. putida* TJ51-specific regions were genes predicted to encode resistance to heavy metals (contigs represented by GenBank entries AEWE02000041 and AEWE02000128), which may represent adaptations to treatment of the plant host environment with antimicrobial copper sulphate. The study generally augments the knowledge of the pan-genome of the ubiquitous and metabolically versatile species *P. putida*.

ABC transporters in Pseudomonas putida TJ51

The ATP-binding cassette (ABC) transporters family of proteins are common in archaea, bacteria and eukaryotes. They facilitate active transport of an array of substrates, including ions, sugars, lipids, sterols, peptides, proteins, and drugs (Higgins, 1992). Bacterial ABC transporters typically are composed of three components; two integral membrane proteins, each having six transmembrane segments, two peripheral ATPase subunits, and a periplasmic substrate-binding protein. Usually, the genes for the three components form operons, as observed in many prokaryotic genomes.

KEGG analysis revealed 137 ABC transporter system genes in the *P. putida* TJ51 genome sequence. We found a complete set of ATP transporter genes (i.e. integral membrane protein, ATPase and substrate-binding protein) for glycine/betaine/L-proline, different canonical amino acids, phosphate, sulfate, choline, urea, taurine, lipid, metal (i.e. Fe+3, molybdate, nickel), oligopeptide/dipeptide, microcin C, and spermidine/putrescine. Putrescine, or tetramethylenediamine (the precursor of spermidine), is a foul-smelling compound produced by the amino acid catabolism in living and dead organisms. Our analysis showed four distinct orthologous ABC transporter system gene sets for spermidine/putrescine in *P. putida* TJ51. Hence, it appeared that *P. putida* TJ51 contains redundant sets of
spermidine/putrescine ABC transporters. This observation is consistent with the fact that the isolate was obtained from dead mango bark tissues. We noted that the draft genome sequence of \(P. \) putida TJ151 did not contain complete operon sequences of these ATP transporter systems. More than one third of the 137 ATP transporter genes, i.e. 49 (36%), were annotated as ATP transporter protein or ATP transporter-like protein. Hence, their substrate information could not be ascertained.

In \(P. \) putida TJ151, the \(liv \) gene cluster \(LIV-I \), specific for the branched-chain amino acid transport system, was comprised of a periplasmic binding protein \(LivK \), two permease domains \(LivH \) and \(LivM \), and two ATP-binding subunits \(LivF \) and \(LivG \). Closely related orthologues of the \(liv \) gene cluster are found in other \(Pseudomonas \) species. This cluster is found functional in \(P. \) putida TJ151 and predicted to be involved in amino acid transport.

Type VI secretion system (T6SS) in \(Pseudomonas \) putida TJ151

The type VI secretion system (T6SS) gene cluster is widespread among non-pathogenic and pathogenic gram negative bacteria (Boyer *et al.*, 2009). This system enables the bacterial species to maintain pathogenic or symbiotic interaction with their eukaryotic host. The secretion systems facilitate the extracellular transport of proteins into the target eukaryotic cells without requiring hydrophobic amino-terminal sequences (Pukatzki *et al.*, 2006). The T6SS gene cluster comprises 14 core genes that vary in composition between different bacterial species (Bingle *et al.*, 2008). Virulence associated secretion (vas) genes secreted by the T6SS are shown to be responsible for Vibrio cholerae cytotoxicity towards Dictyostelium amoebae and mammalian J774 macrophages (Pukatzki *et al.*, 2006). A survey showed that T6SS is present mostly in the non-pathogenic bacteria or symbionts, e.g. \(Myxococcus \) xanthus and \(P. \) putida (Bingle *et al.*, 2008). However, more recently it has been reported to be involved in the virulence of Burkholderia mallei (Schell *et al.*, 2007).

Bioinformatics analyses identified Vas genes to be highly conserved in Gram-negative bacteria. The comparison of the T6SS gene cluster in \(Pseudomonas \) putida TJ151 with other bacterial strains showed a closely related gene organization (Figure 4). The genes \(\text{ImpG/VasA} \) (numbered 3), \(\text{Uncharacterized protein ImpC} \) (numbered 2) and \(\text{ImpH/VasB} \) (numbered 4) were present at conserved relative positions, while the \(\text{ImpI/VasC} \) gene (numbered 7) was conserved in few strains.

Association of \(Pseudomonas \) putida TJ151 with plants

\(P. \) putida TJ151 was found to live in association with mango tree bark as an endophyte, and comparative genomics was used to identify the possible functions that are involved in the association of this bacterium with its host.

Figure 4 - Gene organization of Type VI secretion clusters. Homologous genes are grouped and shown with same number and color. Functionally coupled genes are highlighted in gray background boxes (\(\text{ImpG/VasA} \) (numbered 3, orange arrow), \(\text{ImpC} \) protein (numbered 2, green arrow), \(\text{ImpH/VasB} \) (numbered 4, blue arrow) and \(\text{ImpI/VasC} \) (numbered 7, purple arrow).
KEGG analysis of the *P. putida* TJ151 genome revealed 26 genes involved in flagellar biosynthesis. All genes required for flagellar assembly were found present, including the *flhB* gene. It was reported that the impaired swimming capability of *P. putida* DOT-T1E (Segura et al., 2004) resulted from a mutation in the *flhB* gene. The *P. putida* TJ151 *flhB* gene is 91% identical to that of *P. Putida* KT2440, which is known to be a good swimmer (Wu et al., 2011). These observations indicated a probable swimming capability of *P. putida* TJ151. Moreover, the KEGG analysis of the *P. putida* TJ151 genome revealed genes for all proteins involved in bacterial chemotaxis. Multiple genes for CheA (n=7) and CheW (n=10) histidine kinases were found. Moreover, *P. putida* TJ151 also contains RbsB and DppA encoding genes involved in D-ribose and dipeptide chemotaxis in *E. coli*.

Metabolism of secondary metabolites by *Pseudomonas putida* TJ151

Many bacteria synthesize natural products with significant bioactivities, including antibiotics, anticanic agents, and other chemotherapeutics (Newman and Cragg, 2012). Microbial genome mining is a promising alternative for labor-intensive and time-consuming methods to identify and characterize bioactive secondary metabolites. The genome sequence analysis of *P. putida* TJ151 carried out by antiSMASH (Blin et al., 2013) and KEGG servers pointed out several genes putatively involved in the synthesis and catabolism of such metabolites. The antiSMASH (ANTibiotics and Secondary Metabolites Analysis SHell) combines the automated identification of secondary metabolite gene clusters in genome sequences with a large collection of compound-specific analysis algorithms (Blin et al., 2013). AntiSMASH identified at least three non-ribosomal peptide synthetase gene clusters in *P. putida* TJ151 sequences. Non-ribosomal peptides produced by bacteria and fungi are a diverse family of secondary metabolites with a broad range of bioactivities (Schwarzer et al., 2003). Nonribosomal peptides are antibiotics, cytostatics and immunosuppressants, siderophores, or pigments. These peptides are synthesized by non-ribosomal peptide synthetases (NRPS) (Strieker et al., 2010). In bacteria, the NRPS genes for a certain peptide are usually organized in one operon in bacteria. The NRPS are organized in modules, where each module consists of several domains with defined functions. The domains of a complete NRPS include an adenylation domain (A-domain), thiolation and peptide carrier protein with attached phosphopantetheine (PCP domain), condensation domain for amide bond formation (C-domain), thioesterase domain for termination (TE domain), and an optional epimerization into D-amino acids domain (E-domain).

Two NRPS gene clusters found in *P. Putida* TJ151 sequences were located in the following contigs. (1) Contig 131 (GenBank accession AEWE02000131) contained two sets of A-domain, PCP-domain and condensation domain. NRPS gene sequences in this contig were homologous to *Burkholderia pseudomallei* 1710b. (2) Contig82 (GenBank accession AEWE02000082) contained a novel set of A-domain, PCP-domain, condensation domain, along with an epimerization domain.

The genome analysis of *P. putida* TJ151by the KEGG server revealed catabolic pathways for the transformation of bioactive aromatic compounds, including L-tyrosine, Azathioprine/6-Mercaptoprine and Fluorouracil. Azathioprine is an immunosuppressive produrg which is almost completely converted to 6-Mercaptoprine (Maltzman and Koretzky, 2003), whereas Fluorouracil is an anticancer drug. The KEGG analysis identified nine enzymes involved in biodegradation of these xenobiotics in the *P. putida* TJ151 genome.

Acknowledgments

This research was financially supported by the Higher Education Commission, Islamabad Pakistan.

References

Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N, Degraeve S, Christen R and Gardan L (2000) *Pseudomonas brassicacearum* sp nov and *Pseudomonas thivervalensis* sp nov, two root-associated bacteria from *Brassica napus* and *Arabidopsis thaliana*. Int J Syst Evol Microbiol 50:9-18.

Altschul SF, Gish W, Miller W, Meyers EW and Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410.

Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E and Weber T (2013) antiSMASH 2.0 - A versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204-W212.

Bingle LE, Bailey CM and Pallen MJ (2008) Type VI secretion, a beginner’s guide. Curr Opin Microbiol 11:3-8.

Boyer F, Fichant G, Berthod J, Vandenbrouck Y and Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide *in silico* analysis: What can be learnt from available microbial genomic resources. *BMC Genomics* 10:e104.

Brown JR, Douady CJ, Italia MJ, Marshall WE and Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281-285.

Clarke PH (1982) The metabolic diversity of pseudomonads. Antonie Van Leeuwenhoek 48:105-130.

Dejongh M, Formsma K, Boillett P, Gould J, Ryeenga M and Best A (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8:e139.

Dejonghe W, Boon N, Seghers D, Top EM and Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: Missing links. Environ Microbiol 3:649-657.

Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O and Salzberg SL (1999) Alignment of whole genomes. Nucleic Acids Res 27:2369-2376.

Ginard M, Lalucat J, Tummler B and Romling U (1997) Genome organization of *Pseudomonas stutzeri* and resulting taxo-
Genomics of an endophytic *Pseudomonas putida* 473

Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF and Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in *Vibrio cholerae* using the *Dictyostelium* host model system. Proc Natl Acad Sci USA 103:1528-1533.

Rossello RA, García-Valde E, Lalucat J and Ursing J (1991) Genotypic and phenotypic diversity of *Pseudomonas stutzeri*. Syst Appl Microbiol 14:150-157.

Saitou N and Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.

Santos SR and Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754-759.

Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS and Mrazek J (2007) Type VI secretion is a major virulence determinant in *Burkholderia mallei*. Mol Microbiol 64:1466-1485.

Schmidt KD, Tummler B and Romling U (1996) Comparative genome mapping of *Pseudomonas aeruginosa* PAO with *P. aeruginosa* C, which belongs to a major clone in cystic Fibrosis patients and aquatic habitats. J Bacteriol 178:85-93.

Schwarzer D, Finking R and Marahiel MA (2003) Nonribosomal peptides: From genes to products. Nat Prod Rep 20:275-287.

Segura A, Hurtado A, Dugue E and Ramos JL (2004) Transcriptional phase variation at the *flhB* gene of *Pseudomonas putida* DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol 186:1905-1909.

Spier AJ, Buckling A and Rainey PB (2000) The causes of *Pseudomonas* diversity. Microbiology 146:2345-2350.

Stricker M, Tanovic A and Marahiel MA (2010) Nonribosomal peptide synthetases: Structures and dynamics. Curr Opin Struct Biol 20:234-240.

Tamura K, Dudley J, Nei M and Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.

Tettelin H, Riley D, Cattuto C and Medini D (2008) Comparative genomics: The bacterial pan-genome. Curr Opin Microbiol 12:472-477.

Timmis KN (2002) *Pseudomonas putida*: A cosmopolitan opportunist per excellence. Environ Microbiol 4:779-781.

Wu X, Monchy S, Taghavi S, Zhu W, Ramos J and van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in *Pseudomonas putida*. FEMS Microbiol Rev 35:299-323.

Associate Editor: Ana Tereza R. Vasconcelos

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited.