Association between body mass index and erosive esophagitis: A meta-analysis

Nan Cai, Guo-Zhong Ji, Zhi-Ning Fan, Yan-Feng Wu, Fa-Ming Zhang, Zhi-Fei Zhao, Wei Xu, Zheng Liu

AIM: To conduct a meta-analysis to estimate the determinants of the association between erosive esophagitis (EE) and body mass index (BMI).

METHODS: We identified the studies using PubMed. Studies were selected for analysis based on certain inclusion and exclusion criteria. Data were extracted from each study on the basis of predefined items. Meta-analyses were performed to verify the risk factors, such as obesity and gender.

RESULTS: Twenty-one studies were included in this systematic review. These studies demonstrated an association between increasing BMI and the presence of EE (95% confidence interval (CI): 1.35-1.88, overweight, odds ratio (OR) = 1.60, P value homogeneity = 0.003, 95% CI: 1.65-2.55, obese, OR = 2.05, P < 0.01]. The heterogeneity disappeared by stratifying for gender. No publication bias was observed in this meta-analysis by the Egger method.

CONCLUSION: This analysis demonstrates a positive association between BMI and the presence of EE, especially in males. The risk seems to progressively increase with increasing weight.

© 2012 Baishideng. All rights reserved.

Key words: Erosive esophagitis; Gastroesophageal reflux disease; Obesity; Body mass index; Meta-analysis

INTRODUCTION

The symptoms of gastroesophageal reflux disease (GERD) are common health problems in industrialized societies. It is a highly prevalent gastrointestinal disorder encountered in clinical practice[1,2]. Erosive esophagitis (EE) is one of the most common forms of GERD. It occurs when excessive reflux of acid and pepsin results in necrosis of surface layers of the esophageal mucosa, thus causing erosions and...
MATERIALS AND METHODS

Search strategy

Two investigators independently performed a systematic search of all existing English-language literatures published up to April 2011 using PubMed, an electronic search engine for published manuscripts. Search terms included “obesity”, “BMI”, “overweight” or “BMI”, combined with “reflux” or “EE”. A total of 268 articles were identified after the preliminary search was reviewed in further details.

Study selection

Studies were included if they met all the following inclusion criteria: (1) Cross-sectional, case control, or cohort studies that permitted assessment of a causal relationship between BMI and EE; (2) Studies with documented and clearly-defined BMI in kg/m\(^2\) for all participants; (3) Studies that reported a relative risk or odds ratio (OR) with confidence intervals or provided sufficient data to permit their calculation; and (4) Studies with EE diagnosed by upper endoscopy. The inclusion criteria were not otherwise restricted by study size or publication type. The followings were chosen as the exclusion criteria: (1) Studies not limited to humans or not written in English; (2) Studies that did not report risk estimates or raw data to allow independent calculation of these estimates; and (3) Case reports, case series or studies that lacked a control group.

Data abstraction

The abstracted data included information on the source of the study population, study design (case control, cohort, or cross-sectional), length of the study period, primary aim of the study, study definitions (BMI definitions of normal, overweight or obese), exposure measurement method (self-reported vs measured BMI), outcome definitions (diagnosis of EE with endoscopy), total number of subjects with EE, case and control criteria, ORs or risk ratios with and without adjustment for potential confounders and potential confounders used for adjustment.

Outcome definition

An outcome was defined as EE diagnosed with endoscopy. The severity of EE was graded from A to D according to the LA classification\(^4\) or modified Savary-Miller classification (grade I, single or multiple non-confluent erosions; grade II, confluent non-circumferential multiple erosion; grade III, circumferential erosions; and grade IV, ulcer and/or stricture)\(^23\).

Statistical analysis

The BMI data were extracted from each study and analyzed with STATA 11.0 (StataCorp, College Station, TX, United States, www.stata.com). Summary OR estimates were calculated using either relative risks (for cohort stud-
We identified 268 published articles or abstracts (Figure 1). After review of titles and abstracts, 31 articles appeared to meet the initial inclusion criteria. The excluded studies were review articles, animal experiments, case series that lacked appropriate control groups and studies that did not report the subject of interest. These 31 studies underwent a complete data abstraction. Ten additional studies were excluded after data abstraction for the following reasons: BMI categories that were inconsistent with the proposed reference ranges[37,39-41], inconsistent outcome definition[37], lack of proper control group[38], and lack of evaluable risk estimates within the proposed categories[39-41].

The remaining 21 studies[8,12,42-59] (i.e., four cross-sectional, three cohort, 14 case control studies) were included in the primary analysis (Tables 1 and 2). Twelve studies were conducted for the primary purpose of evaluating the relationship between BMI and EE[8,44,45,49-52,54,55,57-59], eight studies were conducted to identify the variety of risk factors for EE, including BMI[8,12,42,46-48,53,56], and one study described the clinical characteristics of EE and non-erosive reflux disease, including BMI[43]. In Table 1, controls and normal groups were composed of general population and healthy volunteers. Eighteen studies were included in Table 3 because of their stratification by gender.

The pooled OR of EE related to BMI of 25 kg/m² or higher was 1.64-fold greater than that of EE related to BMI less than 25 kg/m² (OR, 1.64, 95% CI: 1.45-1.85, test for homogeneity, P = 0.000, I² = 65.7%) (Figure 2, Table 3). Stratification by gender and BMI category showed a homogeneous positive association between increased BMI and EE, and the strength of the association with increased BMI and EE, and the strength of the association with increased BMI (Table 3). The risk for overweight males (OR, 1.40, 95% CI: 1.11-1.75, P = 0.285) increased further for obese males (OR, 1.75, 95% CI: 1.02-2.96, P = 0.099) (Figure 3). The pooled OR in females and males for BMI greater than 25 kg/m² were 1.45 (95% CI: 1.26-1.66) and 1.52 (95% CI: 1.24-1.87), respectively. Therefore, we considered there was a strong positive association between increasing BMI and EE in males, but not in females.

Evaluation of heterogeneity

The initial summary estimates for EE were heterogeneous, as described above. Stratification by BMI category did not substantially resolve the heterogeneity; however, additional stratification by gender provided more homogeneity. Stratification of the entire population by exposure measurement (e.g., self-report vs measured), or study design (case control vs cohort) did not substantially influence the initial heterogeneity (Table 3).

Publication bias

The rank correlation test did not suggest the presence of publication bias for the main summary estimates for either the overweight (P = 0.656) or the obese and overweight (P = 0.804). A review of funnel plots did not demonstrate patterns strongly suggestive of publication bias (Figure 4).

DISCUSSION

Our pooled results of observational studies demonstrated a positive association between increased BMI and the risk of EE. The strength of the association increased with increasing BMI and there was a trend towards a stronger association in males than in females. Unlike other non-modifiable risk factors such as age, race and gender, BMI is potentially modifiable. Thus, identifying a relationship...
between obesity and EE might have significant implications for counseling.

A recent meta-analysis of BMI and GERD complications found heterogeneous results and it was not able to identify strata with homogeneous results. It was possibly due to their methods of stratification, the utilization of estimates with markedly different measures of BMI association, the absence of studies included in the current analysis, and the inclusion of studies that did not set up a non-GERD control group. In contrast, in the cur-

Table 1: Study characteristics

Authors	Yr	Design	Region	Population size	Case population	Reference population	Confounders adjusted for
Ha et al[43]	2010	Case-control	South Korea	n = 292 (EE), n = 500 (NERD)	Single hospital	Hospital controls	G, E, T, J, OD, WHR, TG
Nam et al[60]	2010	Cohort	South Korea	n = 495 (EE), n = 3779 (normal)	General population	General population	WC, WHR, VAT, SAT
Wang et al[48]	2010	Case-control	China	n = 70 (EE), n = 502 (non-EE)	General population	General population	A, G, S, B, T, E, C, tea drinking, spicy food consumption, betel nut use
Koo et al[54]	2009	Case-control	South Korea	n = 42 (EE), n = 987 (control)	General population	General population	G, T, E, TG
Chua et al[57]	2009	Case-control	Taiwan, China	n = 427 (EE), n = 639 (EE)	Single hospital	Hospital controls	TG, Glucose intolerance, HDL-C, SBP
Song et al[56]	2009	Case-control	South Korea	n = 5443 (non-EE)	Single hospital	Hospital controls	A, G, T, E, H, TC, HL-D, LDL-C, TG, BP, fasting glucose
Lien et al[45]	2009	Case-control	Taiwan, China	n = 102 (EE), n = 1492 (non-EE)	Single hospital	Hospital controls	A, E, T
Chung et al[52]	2008	Case-control	South Korea	n = 3539 (EE), n = 3539 (control)	Single hospital	Hospital controls	E, T, metabolic syndrome
Moki et al[57]	2007	Cross-sectional	Japan	n = 191 (EE), n = 4968 (non-EE)	General population	General population	A, G, T, B, hypertension, lifestyle choices, abdominal obesity, concomitant medications, concomitant medications, concomitant medications
Kang et al[48]	2007	Case-control	South Korea	n = 26229 (non-EE), n = 1810 (EE)	Single hospital	Hospital controls	A, G, J
Labenz et al[59]	2004	Cross-sectional	Germany	n = 2435 (EE), n = 2834 (control)	Medical center	Medical center	A, G, T, B, hypertension, lifestyle choices, abdominal obesity, concomitant medications, concomitant medications, concomitant medications
Nilsson et al[50]	2002	Case-control	Sweden	n = 179 (EE), n = 1024 (control)	Multiple hospital	Multiple hospital	T, cholecystectomy, I, drugs use
Wilson et al[54]	1999	Case-control	United States	n = 179 (control)	Single hospital	Single hospital	A, G, J, R
Steen-Larsen et al[52]	1988	Cross-sectional	Sweden	n = 195 (EE), n = 1029 (control)	Single hospital	Single hospital	None

A: Age; B: Aspirin or NSAID intake; C: Coffee; D: Meal size; E: Alcohol/ethanol; F: Family history; G: Gender; H: *Helicobacter pylori* infection; I: Asthma or asthma medication; J: Hiatal hernia; K: Hospital visit or hospitalization; M: Marital status; O: Symptom checklist-90 score; P: Physical activity; Q: Psychosomatic symptoms; R: Race; S: Socioeconomic status, education; T: Tobacco; W: Right handedness; V: Comorbidity; X: Case control status; Y: Birthplace; Z: Hormone replacement therapy; VAT: Visceral adipose tissue; SAT: Subcutaneous adipose tissue; BP: Blood pressure; SBP: Systolic; DBP: Diastolic blood pressure; TC: Total cholesterol; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; TG: Triglyceride; HBAlc: Hemoglobin A1c; OD: Obesity degree; WHR: Waist-to-hip ratio; WC: Waist circumference; PBF: Percentage of body fat; FBG: Fasting blood glucose; EE: Erosive esophagitis; NERD: Non-erosive reflux disease; NSAID: Nonsteroidal antiinflammatory drugs.
Table 2 Exposure and outcome definitions

Authors	Year	Exposure (source)	BMI reference (kg/m²)	Exposure (definitions)	Outcome (source)	Outcome (definitions)
Ha et al[50]	2010	Measured BMI	≤ 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Nam et al[51]	2010	Measured BMI	< 20	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Wang et al[52]	2010	Measured BMI	< 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Koo et al[53]	2009	Measured BMI	< 23	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Koo et al[53]	2009	Measured BMI	< 23	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Chua et al[54]	2009	Self-report	< 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Song et al[55]	2009	Measured BMI	≥ 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Lien et al[56]	2009	Self-report	< 24	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Lien et al[56]	2009	Self-report	< 24	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Nam et al[57]	2009	Self-report	< 20	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Lee et al[58]	2009	Measured BMI	20-25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Chung et al[59]	2008	Measured BMI	< 23	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Zagari et al[60]	2008	Self-report	20-24.9	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Lee et al[61]	2008	Measured BMI	< 20	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Kim et al[62]	2008	Measured BMI	< 23	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Moki et al[63]	2007	Measured BMI	< 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Kim et al[62]	2007	Measured BMI	18.9-24.5	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Nocom et al[64]	2007	Measured BMI	25-30	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Kang et al[65]	2006	Measured BMI	< 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Labenzi et al[66]	2004	Measured BMI	25-30	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Nilsson et al[67]	2002	Self-report	< 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy Los Angeles classification
Wilson et al[68]	1999	Measured BMI	< 20	BMI overweight (kg/m²)	BMI overweight	Endoscopy NA
Steene-Larsen et al[69]	1998	Measured BMI	< 25	BMI overweight (kg/m²)	BMI overweight	Endoscopy NA

BMI: Body mass index; NA: Not available.

Figure 2 Erosive esophagitis and body mass index (overweight and obese) in males and females.

The size of the square represents the weight that the corresponding study exerts in the meta-analysis. RR: Relative risk; OR: Odds ratio.

```latex
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Authors}          & \textbf{Year} & \textbf{Exposure (source)} & \textbf{BMI reference (kg/m²)} & \textbf{Exposure (definitions)} & \textbf{Outcome (source)} & \textbf{Outcome (definitions)} \\
\hline
Ha et al[50]              & 2010         & Measured BMI              & ≤ 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Nam et al[51]             & 2010         & Measured BMI              & < 20                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Wang et al[52]            & 2010         & Measured BMI              & < 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Koo et al[53]             & 2009         & Measured BMI              & < 23                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Koo et al[53]             & 2009         & Measured BMI              & < 23                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Chua et al[54]            & 2009         & Self-report               & < 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Song et al[55]            & 2009         & Measured BMI              & ≥ 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Lien et al[56]            & 2009         & Self-report               & < 24                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Lien et al[56]            & 2009         & Self-report               & < 24                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Nam et al[57]             & 2009         & Self-report               & < 20                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Lee et al[58]             & 2009         & Measured BMI              & 20-25                        & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Chung et al[59]           & 2008         & Measured BMI              & < 23                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Zagari et al[60]          & 2008         & Self-report               & 20-24.9                      & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Lee et al[61]             & 2008         & Measured BMI              & < 20                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Kim et al[62]             & 2008         & Measured BMI              & < 23                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Moki et al[63]            & 2007         & Measured BMI              & < 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Kim et al[62]             & 2007         & Measured BMI              & 18.9-24.5                    & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Nocom et al[64]           & 2007         & Measured BMI              & 25-30                        & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Kang et al[65]            & 2006         & Measured BMI              & < 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Labenzi et al[66]        & 2004         & Measured BMI              & 25-30                        & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Nilsson et al[67]         & 2002         & Self-report               & < 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  Los Angeles classification \\
Wilson et al[68]          & 1999         & Measured BMI              & < 20                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  NA \\
Stene-Larsen et al[69]    & 1998         & Measured BMI              & < 25                         & BMI overweight (kg/m²)        & BMI overweight           & Endoscopy  NA \\
\hline
\end{tabular}
\end{table}

BMI: Body mass index; NA: Not available.

### Figure 2  Erosive esophagitis and body mass index (overweight and obese) in males and females.

The size of the square represents the weight that the corresponding study exerts in the meta-analysis. RR: Relative risk; OR: Odds ratio.
Cai N et al. Erosive esophagitis and body mass index

Table 3. Meta-analysis results in association between body mass index and erosive esophagitis

| BMI category | OR (95% CI) | P_homo (95%) | I² (%) | No. of studies |
|--------------|-------------|--------------|--------|----------------|
| Overall      |             |              |        |                |
| Overweight   | 1.60        | 0.003        | 59.8   | 15 [4,8,12,44-46,50,53,54,56-59] |
| Obese        | 2.05        | 0.000        | 74.2   | 15 [4,8,12,44-46,50,53,54,56-59] |
| Overweight + obese | 1.64       | 0.000     | 65.7   | 18 [4,8,12,45-47,50,53,54,56-59] |
| Females      |             |              |        |                |
| Overweight   | 1.47        | 0.011        | 7.4    | 3 [12,44,56]   |
| Obese        | 3.76        | 0.340        | 78.0   | 3 [12,44,56]   |
| Overweight + obese | 1.45      | 0.579      | 0.0    | 4 [12,44,55,56] |
| Males        |             |              |        |                |
| Overweight   | 1.40        | 0.285        | 20.8   | 4 [12,44,46,56] |
| Obese        | 1.74        | 0.099        | 52.1   | 4 [12,44,46,56] |
| Overweight + obese | 1.52       | 0.179     | 36.3   | 5 [12,44,46,55,56] |

BMI: Body mass index; OR: Odds ratio.

Figure 3. Erosive esophagitis and body mass index (overweight and obese) in males. The size of the square represents the weight that the corresponding study exerts in the meta-analysis. RR: Relative risk; OR: Odds ratio.

Figure 4. Evaluation of publication bias using a funnel plot. No significant funnel asymmetry was observed which could indicate publication bias. The horizontal line in the funnel plot indicates the random effects summary estimate, while the sloping lines indicate the expected 95% CI for a given standard error, assuming no heterogeneity between studies. Each trial is represented by a circle, the area of which represents the trial’s precision. Larger circles represent trials that offer more information.

Several hypotheses have been proposed to explain how obesity can cause EE. Abdominal fat may cause reflux through an increase in intrabdominal pressure and subsequent esophageal acid exposure. There was a suggestion that hormonal factors related to adiposity are more important than mechanical factors. Obesity is also associated with increased transient lower esophageal sphincter relaxation. Strengths of this analysis include the use of strict criteria for defining our outcome of interest and the consistency of the BMI-EE association within the males despite different patient populations and different study designs. All the included studies used endoscopy to confirm the diagnosis of EE, which eliminated the possibility of false positive EE cases. Also, we included stratification by study design, location, and source population.

There are potential limitations of this analysis. First, only observational studies were included; study results may be influenced by the presence of measured or unmeasured confounding factors, such as physical activity. Second, bias may also exist in the present study because unpublished data were not included, nor were conference abstracts or articles published in a language other than...
English. Third, the exposure definitions (i.e., normal, obese or overweight) differed slightly among the studies. We addressed this, however, by creating more comparable and consistent categories, although few differences still remained. Also, the accuracy of the BMI measurement and its reliability as a measure of adiposity are known to be imperfect.

In summary, based on our extensive review and synthesis of the literature, there appears to be a statistically significant association between elevated BMI and EE. Considering the prevalence of obesity and increasing incidence rates of EE, it is important to pay more attention to further studies that evaluate the influence of gender, ethnicity or age on EE to examine this association. Several studies have found visceral abdominal obesity to be an independent risk factor for EE[44,57]. Nam et al[44] demonstrated that association between EE and abdominal visceral adipose tissue volume was consistent among males and females, unlike the association between EE and BMI. However, CT or MRI is needed to test abdominal visceral adipose, which are time consuming and costly. So, measuring BMI may be more feasible. It is also important to determine whether weight loss can decrease the incidence of EE. Further studies are needed to evaluate the relationship between obesity and EE.

COMMENTS

Background

Both obesity and erosive esophagitis (EE) have a high prevalence worldwide. The relationship between them remains controversial.

Research frontiers

Many studies have been performed to evaluate the body mass index (BMI) for gastroesophageal reflux disease risk. It has been found that there was a positive correlation between BMI and EE in females, but not in males.

Innovations and breakthroughs

Findings from this meta-analysis suggested the importance of BMI in EE, especially in males.

Applications

This study provided the potential measurement indicators to identify high-risk groups for EE in obesity population, especially in males.

Terminology

BMI: BMI is a heuristic proxy for human body fat based on an individual’s weight and height. It is defined as the individual’s body mass divided by the square of his or her height. EE: EE is a term used to indicate any inflammation, swelling, or irritation of the esophagus. The esophagus becomes inflamed (swollen, irritated and red).

Peer review

The meta-analysis presents the data on association between obesity and EE. The topic is interesting and the methodology of the meta-analysis is appropriate.

REFERENCES

1 Dent J. El-Serag HB, Wallander MA, Johansson S. Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 2005; 54: 710-717
2 Holtmann G. Reflux disease: the disorder of the third millennium. Eur J Gastroenterol Hepatol 2001; 13 Suppl 1: S5-S11
3 Kahrilas PJ. Clinical practice. Gastroesophageal reflux disease. N Engl J Med 2008; 359: 1700-1707
4 Steine-Larsen G, Weberg R, Froystov Larsen I, Bjørtuft O, Hoel B, Berstad A. Relationship of overweight to hiatus hernia and reflux oesophagitis. Scand J Gastroenterol 1988; 23: 427-432
5 Pisegna J, Holtmann G, Howden CW, Kotelaris CH, Sharma P, Spelpler S, Triadafilopoulos G, Tytgat G. Review article: oesophageal complications and consequences of persistent gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2004; 20 Suppl 9: 47-56
6 Rennie KL, Jebb SA. Prevalence of obesity in Great Britain. Obes Rev 2005; 6: 11-12
7 Fujisawa Y, Higuchi K, Shiba M, Yamamori K, Watanabe Y, Sasaki E, Tominaga K, Watanabe T, Oshitani N, Arakawa T. Differences in clinical characteristics between patients with endoscopy-negative reflux disease and erosive esophagitis in Japan. Am J Gastroenterol 2005; 100: 754-758
8 Labenz J, Jaspersen D, Kulig M, Leodolter A, Lind T, Meyer-Sabellec W, Stolle M, Vieth M, Willrich S, Malfertheiner P. Risk factors for erosive esophagitis: a multivariate analysis based on the ProGERD study initiative. Am J Gastroenterol 2004; 99: 1652-1656
9 Butany VJ, Singh SH, Lal SK. Study of urinary volume and creatinine excretion in women medical students. Indian J Physiol Pharmacol 1975; 19: 193-198
10 Vainio H, Bianchini F. Evaluation of cancer-preventive agents and strategies a new program at the International Agency for Research on Cancer. Ann N Y Acad Sci 2001; 952: 177-180
11 Corley DA, Kubo A. Body mass index and gastroesophageal reflux disease: a systematic review and meta-analysis. Am J Gastroenterol 2006; 101: 2619-2628
12 Nilsson M, Lundegårdh G, Carleng L, Ye W, Lagergren J. Body mass and reflux oesophagitis: an oestrogen-dependent association? Scand J Gastroenterol 2002; 37: 626-630
13 Vandurkar S, Locke GR, Fett S, Zinzimeister AR, Cameron AJ, Talley NJ. Relationship between body mass index, diet, exercise and gastro-oesophageal reflux symptoms in a community. Aliment Pharmacol Ther 2004; 20: 497-505
14 Ruizgomez A, Garcia Rodriguez LA, Wallander MA, Johanson S, Grafinner H, Dent J. Natural history of gastro-oesophageal reflux disease diagnosed in general practice. Aliment Pharmacol Ther 2004; 20: 751-760
15 Locke GR, Talley NJ, Weaver AL, Zinmeister AR. A new questionnaire for gastroesophageal reflux disease. Mayo Clin Proc 1994; 69: 539-547
16 Wang JH, Luo JY, Dong L, Gong J, Tong M. Epidemiology of gastrooesophageal reflux disease: a general population-based study in Xi’an of Northwestern China. World J Gastroenterol 2004; 10: 1647-1651
17 Lagergren J, Bergström R, Nyrén O. No relation between body mass and gastro-oesophageal reflux symptoms in a Swedish population based study. Gut 2000; 47: 26-29
18 Incarbone R, Bonavita L, Szachnowicz S, Saino G, Perachia A. Rising incidence of esophageal adenocarcinoma in Western countries: is it possible to identify a population at risk? Dis Esophagus 2000; 13: 275-278
19 Inamori M, Togawa J, Nagase H, Abe Y, Umezawa T, Nakajima A, Saito T, Ueno N, Tanaka K, Sekihara H, Kairui H, Tsuoboi H, Kayama H, Tominaga S, Nagura H. Clinical characteristics of Japanese reflux oesophagitis patients as determined by Los Angeles classification. J Gastroenterol Hepatol 2003; 18: 172-176
20 Savary M, Miller G. The oesophagus Handbook and atlas of endoscopy. Switzerland: Verlag Gassman AG, 1978
21 Pettiti DB. Meta-analysis, decision analysis, and cost-effectiveness analysis, 2nd ed. New York: Oxford University Press, 2000
22 Olkin I. Re: “A critical look at some popular meta-analytic methods”. Am J Epidemiol 1994; 140: 297-299; discussion 300-301
with hiatal hernia and esophagitis. *Am J Gastroenterol* 1999; 94: 2840-2844

60 **Hampel H**, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. *Ann Intern Med* 2005; 143: 199-211

61 **Locke GR**, Talley NJ, Fett SL, Zinsmeister AR, Melton LJ. Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. *Gastroenterology* 1997; 112: 1448-1456

62 **El-Serag HB**, Ergun GA, Pandolfino J, Fitzgerald S, Tran T, Kramer JR. Obesity increases oesophageal acid exposure. *Gut* 2007; 56: 749-755

63 **El-Serag HB**, Tran T, Richardson P, Ergun G. Anthropometric correlates of intragastric pressure. *Scand J Gastroenterol* 2006; 41: 887-891

64 **Wu JC**, Mui LM, Cheung CM, Chan Y, Sung JJ. Obesity is associated with increased transient lower esophageal sphincter relaxation. *Gastroenterology* 2007; 132: 883-889

S- Editor Shi ZF  L- Editor Ma JY  E- Editor Zheng XM

Cai N et al. Erosive esophagitis and body mass index