Activity of Haliscosamine against Fusarium oxysporum f.sp. melonis: in vitro and in vivo analysis

Belakssem El Amraoui1,2*, Jean François Biard3, Fatima Ez-Zohra Ikbal4, Majida El Wahidi2, Mostafa Kandil5, Mohammed El Amraoui2 and Aziz Fassouane2,6

Abstract

Marine sponges are a potential source of new molecules with diverse biological activities. We have previously isolated a sphingosine derivative, (9Z)-2-amino-docos-9-ene-1,3,13,14-tetraol (Haliscosamine) from the Moroccan sea sponge Haliclona viscosa. The aim of this study was to test Haliscosamine in vitro and in vivo for its antifungal activity against Fusarium oxysporum f.sp. melonis causing fusarium wilt of melon. Overall, in vitro test showed that haliscosamine has a similar effect as DESOGERME SP VEGETAUX®. In addition, in vivo showed a significant effect against Fusarium oxysporum f.sp. melonis. Taking to gather, our results suggest that haliscosamine constitutes a potential candidate against Fusarium oxysporum f.sp. melonis and the possibility to use in phytopathology.

Keywords: Fusarium oxysporum; Porifera; Haliscosamine; Marine sponges; Haliclona

Introduction

Agriculture is an important economic sector in Morocco; it employs about 40% of the nation’s workforce. The harvest of melon is popular in Morocco; it is found throughout the country. Moreover, Morocco is the 12th largest exporter to export 55,000 tons of melon in 2009 (El Ouafi 2009). However, diseases that still cause problems in melon, are especially Fusarium followed by powdery mildew and bacterial blight (Messiaen et al. 1991). Fusarium wilt caused by Fusarium oxysporum f.sp. melonis (FOM), is a major disease affecting melon production in the province of El Jadida (Morocco) and causes important economic losses in this area. Thus, the suppression of this pathogen is considered urgent and a big challenge for this type of agriculture. Indeed, preventive treatment using chemical pesticides is the only way to fight these fungi. However, chemical pesticides sprayed into the air or discharged into the soil can be harmful to the environment and to humans. Biological antifungal may be an alternative. Furthermore, Marine sponges are a potential source of new biological compounds with diverse biological activities (Acosta and Rodriguez 1992; Baslow and Turlapaty 1969; Akiyama et al. 2009; Bao et al. 2007a; Bao et al. 2005; Bao et al. 2007b). In Morocco, few studies are carried out about Moroccan sponges with an important biological material for the isolation of new molecule (El Amraoui et al. 2014b; EL Amraoui et al. 2014a; El Amraoui et al. 2013; El Amraoui et al. 2010; El-Wahidi et al. 2011; El-Wahidi et al. 2013). Haliscosamine isolated from the Moroccan marine sponge Haliclona viscosa is a new derivative of sphingosine with an original molecular structure (Z)-2-amino-docos-9-ene-1,3,13,14-tetraol (El Amraoui et al. 2013). This compound is active against human pathogenic yeasts, Candida albicans, Candida tropicalis and Cryptococcus neoformans (El Amraoui et al. 2013).

To put it briefly, the aim of this study was to test the antifungal activity in vitro and in vivo of haliscosamine against Fusarium oxysporum f.sp. melonis.

Results and discussion

Antifungal in vitro test has shown that Haliscosamine is more active than DESOGERME SP against FOM with inhibition diameters of 21 mm and 19 mm respectively as illustrated in Figure 1. Haliscosamine showed fungicidal activity against FOM.

* Correspondence: elamraoui.belkassem@yahoo.fr
1 Faculté Polydisciplinaire de Taroudant, Université Ibn Zohr, Taroudant, Maroc
2 Laboratoire Contrôle Qualité en Bio-Industrie et Molécules Bio-Actives, Faculté des Sciences, Université Chouaib Doukkali, BP 20, El Jadida 24000, Maroc
Full list of author information is available at the end of the article

© 2015 El Amraoui et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Interestingly, *in vivo* result showed that the average number of infected seedlings is significantly lower than the average number of infected seedlings in the positive control (Figure 2). *Fusarium oxysporum* f.sp. *melonis* had been suppressed by Haliscosamine treatment in infected plants with different concentrations (1% and 2%). This result indicates that the inhibition of *Fusarium* was a concentration-dependent manner of Haliscosamine (Figure 2).

Figure 3 shows the percentages of seedlings infected with the pathogen in each treatment and in the controls. No seedling (0%) of the negative control uninfected (NCU) has presented infection while all seedlings (100%) of the negative control infected (NCI) were infected.

The analysis of variance (ANOVA1) show highly significant (P < 1‰) factor treatment (intergroup variation). Comparison of means by Duncan’s test helped highlight
homogeneous groups at the 5%. Haliscosamine 1% has an effect similar to DESOGERME SP 2% on the inhibition of FOM. In comparison with the positive control, Haliscosamine has a significant inhibitory effect on the disease development.

The genus of Haliclona sponges are known for their high chemical various secondary metabolites with interesting biological activities (Faulkner 2002) including the antifungal (Barrett et al. 1996; Clark et al. 2001; Wattanadilok et al. 2007), antileishmanial (Dube et al. 2007), antioxidant (Regoli et al. 2004), cytotoxic (Erickson et al. 1997; Fusetani et al. 1989) and other activities (Hattori et al. 1998; Randazzo et al. 2001; Lakshmi et al. 2009; Roper et al. 2009).

Until now, the research that has been conducted on H. viscosa, led to the isolation of a number of alkaloids (Timm et al. 2010). Fuestani et al. (1989) have isolated two cytotoxic compounds, Haliclamine A and B from H. viscosa. Volk and Kock 2003 isolated viscosamine, two forms of viscosaline have recently been isolated (Schmidt et al. 2012). Two other alkaloids, haliclamine C and D, were isolated from H. viscosa. Volk and Kock 2003 isolated viscosamine, two forms of viscosaline have recently been isolated (Schmidt et al. 2012). Two other alkaloids, haliclamine C and D, were isolated from H. viscosa. Volk and Kock 2003 isolated viscosaline have recently been isolated (Schmidt et al. 2012).

Haliscosamine isolated from Haliclon viscosa sponge, has a strong antifungal activity with a wide spectrum. It is active against human pathogenic yeasts, Candida albicans, Candida tropicalis and Cryptococcus neoformans. Haliscosamine used in this study, was isolated as described previously (El Amraoui et al. 2013).

Material and Methods

Phytopathogen strains

The phytopathogen strain of the fungus Fusarium oxysporum f.sp. melonis, Fom 20474 CECT (Coleccion Espanola de Cultivos Tipo) was used in this study (Suárez-Estrella et al. 2007; Suárez-Estrella et al. 2004).

Haliscosamine

Haliscosamine is an antifungal isolated from the Moroccan marine sponge Haliclon viscosa. It is a new derivative of sphingosine with an original molecular structure ((Z)-2-amino-docos-9-ene-1,3,13,14-tetraol) and it is active against human pathogenic yeasts, Candida albicans, Candida tropicalis and Cryptococcus neoformans. Haliscosamine used in this study, was isolated as described previously (El Amraoui et al. 2013).

DESOGERME SP VEGETAUX*

DESOGERME SP VEGETAUX* (LAKORALE, Morocco), used in this study as a positive control, is an algicide, fungicide and bactericide product used in Morocco both to remove algae, fungi and bacteria in irrigation systems and also to disinfect soil. It consists of 20 g/L of polyhexamethylene biguanidine hydrochloride and 50 g/L of N-alkyl dimethyl benzyl ammonium chloride (EL Amraoui et al. 2014a).
In vitro antifungal activity

This test uses Potato Dextrose Agar (PDA) as medium [Difco]. Conidial suspension was prepared from a 5-dold fungal culture (FOM culture was covered with 10 ml of distilled water and then scraped with a sterile glass rod; spores were recovered after filtration on sterile wool cotton) and adjusted with Malassez’s cellule in sterile water in order to obtain a final concentration of 10^5 conidia/mL. Each disk 6 mm in diameter received 20 μg of haliscosamine (20 μL of pur haliscosamine at 1 mg/mL in CH₂Cl₂ [Difco] and then dried and placed on previously inoculated PDA medium. Plates were first kept at 4°C for at least two hours to allow the diffusion of chemicals, and then incubated at 28°C. Inhibition was scored by the absence of any contact between the discs and fungi after 48 h of incubation then inhibition zones were measured. Standard disks of the DESOGERME SP VEGETAUX® (20 μL/disc), served as the positive antifungal controls. All the assays were carried out in triplicate.

To determine whether the haliscosamine has fungistatic (temporary inhibition) or fungicide (permanent inhibition) effect on FOM, agar cylinder was cut out from inhibition zone and placed on the PDA medium and revival of their growth was observed. The fungicidal effect was where there was no growth after additional nine days of incubation at 25°C; whereas, a fungistatic effect was where temporary inhibition of mycelial growth occurred (Askarne et al. 2012).

In vivo antifungal activities of Haliscosamine and DESOGERME SP VEGETAUX® against Fusarium wilts of melon

Haliscosamine was assayed in a greenhouse to determine if it possessed the ability to suppress Fusarium wilt of melon plants. In these tests, two DESOGERME SP VEGETAUX® solutions, 1% and 2% were used as positive control.

Initially, seedlings of charentais melon (No resistance to Fusarium wilt) were planted in 20-cm-diameter pots containing 2.5 L of sterile substrate [Plantaflor PROFI TYP3]. The haliscosamine was dissolved in DMSO and placed on previously inoculated PDA medium. Plates were first kept at 4°C for at least two hours to allow the diffusion of chemicals, and then incubated at 28°C. Inhibition was scored by the absence of any contact between the discs and fungi after 48 h of incubation then inhibition zones were measured. Standard disks of the DESOGERME SP VEGETAUX® (20 μL/disc), served as the positive antifungal controls. All the assays were carried out in triplicate.

To determine whether the haliscosamine has fungistatic (temporary inhibition) or fungicide (permanent inhibition) effect on FOM, agar cylinder was cut out from inhibition zone and placed on the PDA medium and revival of their growth was observed. The fungicidal effect was where there was no growth after additional nine days of incubation at 25°C; whereas, a fungistatic effect was where temporary inhibition of mycelial growth occurred (Askarne et al. 2012).

Statistical analysis

One-way analysis of variance (ANOVA) was used to highlight the effect of treatment on the development of the plant pathogen. Averages of infected plants of different treatments were compared by Duncan test. P-value <0.05 was considered as a significant difference. Statistical analysis of data was performed using the SPSS software package 10.0 (SPSS Inc. USA).

Acknowledgements

We thank Dr. F. Suárez-Estrella from Alméria University, Spain who provide us with a Fusarium oxysporum f. sp. melonis strains and M. Mouchene, director of the agricultural department in LACORALE society (Morocco) who provide us with a DESOGERME SP VEGETAUX® and melon seeds.

Author details

1Faculté Polydisciplinaire de Taroudant, Université Ibn Zohr, Taroudant, Maroc. 2Laboratoire Contrôle Qualité en Bio-Industrie et Molécules Bio-Actives, Faculté des Sciences, Université Chouaib Doukkali, BP 20, El Jadida 24000, Maroc. 3Laboratoire NMS, Faculté de Pharmacie Université de Nantes, Nantes, France. 4Laboratoire de Physiologie végétale et phytopathologie, Faculté des Sciences, Université Chouaib Doukkali, BP 20, El Jadida 24000, Maroc. 5Laboratoire d’Anthropogénétiques et Biorstatistiques, Faculté des Sciences, Université Chouaib Doukkali, BP 20, El Jadida 24000, Maroc. 6École Nationale du Commerce et de Gestion ENCG de Settat, Settat, Maroc.

Received: 31 October 2014 Accepted: 5 January 2015

Published online: 13 January 2015

References

Akiyama T, Ueoka R, van Soest RW, Matsunaga S (2009) Ceratodictyols, 1-glyceryl ethers from the red alga-sponge association Ceratodictyon spongiosum/Haliclona cymaeformis. J Nat Prod 72(8):1552–1554. doi: 10.1021/np900355m

Aikane L, Taliib I, Boubaker H, Bouyousf EH, Mnaida F, Saadi B, Serghini MA, Ait Ben Azumar A (2012) In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot 40:53–58. doi:10.1016/j.cropro.2012.04.023

Bao B, Sun Q, Yao X, Hong J, Lee CO, Sim CI, Im KS, Jung JH (2005) Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J Nat Prod 68(6):711–715. doi:10.1021/np049577a

Bao B, Sun Q, Yao X, Hong J, Lee CO, Cho HY, Jung JH (2007a) Bisindole alkaloids of the topsentin and hamacanthin classes from a marine sponge Spongosorites sp. J Nat Prod 70(1):23–22. doi:10.1021/np065026z

Bao B, Zhang P, Lee Y, Hong J, Lee CO, Jung JH (2007b) Monoindole alkaloids from a marine sponge Spongosorites sp. Mar Drugs 5(2):31–39

El Amraoui et al. SpringerPlus (2015) 4:16

Page 4 of 5
Melonis and in vivo antifilarial potential of marine sponge, Haliclorona exigua (Kirkpatrick), against human lymphatic filarial parasite Brugia malayi: In vitro activity of Haliclorona cymaeformis. Mar Drugs 8(1):483–497, doi:10.3390/md8030483

El Amraoui B, Biard JF, Uriz MJ, Fassouane A (2013) Antifungal and antibacterial activity of Porifera extracts from the Moroccan Atlantic coasts. J Mycol Med 20(1):70–74, doi:http://dx.doi.org/10.1016/j.jmycmed.2009.11.001

El Amraoui B, Biard JF, Fassouane A (2013) Halicosamine: a new antifungal sphincomine derivative from the Moroccan marine sponge Haliclorona viscosa. Springerplus 2:252, doi:10.1186/2193-1801-2-252 363

El Amraoui B, El Wahidi M, Fassouane A (2014a) Control of postharvest green mould of citrus by halicosamine isolated from Haliclorona viscosa sponge. EPPO Bulletin 44(1):73–77

El Amraoui B, El Wahidi M, Fassouane A (2014b) In vitro screening of antifungal activity of marine sponge extracts against five phytopathogenic fungi. Springerplus 3:629, doi:10.1186/2193-1801-3-629

El Ouafi H (2009) Melon: Le Maroc, 12ème exportateur mondial. Agriculture du Maghreb. Accessed http://www.agriculturedumaghreb.com/agriculture/AdM/archives/melon.pdf

El Wahidi M, El Amraoui B, Biard JF, Uriz MJ, Fassouane A, Barnhaoud T (2011) Variation saisonnière et géographique de l’activité antifongique des extraits de deux éponges marines récoltées sur le littoral atlantique d’El Jadida, Maroc. J Mycol Med 21:28–32

El Wahidi M, El Amraoui B, Fassouane A, Barnhaoud T (2013) Isolément bio-dirigé d’un antifongique à partir de Haliclorona emanola récoltée du port de Jorf Lasfar, Maroc. J de Mycologie Médicale/J Med Mycol 23(2):91–96, doi:http://dx.doi.org/10.1016/j.jmycmmed.2013.04.006

Erickson KL, Beutler JA, Cardellina IJ, Boyd MR (1997) Salicylihalamides A and B, cytotoxic macrocyclic alkaloids from the sponge arctic sponge Haliclorona sp. J Org Chem 62(23):8188–8192

El Jadida, Maroc (2004) Variations of antioxidant efficiency and presence of endosymbiotic diatoms in the Antarctic porifera Haliclorona dancoi. Mar Environ Res 58(2–3):637–640

El Amraoui B, Lippert H, Lichte E, Köck M (2004) Two New Haliclamines from the tropical marine sponge Haliclorona viscosa. Eur J Org Chem 3154–3158, doi:10.1002/ejoc.200400026

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at springeropen.com