Madurella mycetomatis, the main causative agent of eumycetoma, is highly susceptible to olorofim

Wilson Lim1, Kimberly Eadie1, Mickey Konings1, Bart Rijnders1, Ahmed H. Fahal2, Jason D. Oliver3, Mike Birch3, Annelies Verbon1 and Wendy van de Sande1*

1Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Centre, Rotterdam, The Netherlands; 2Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan; 3F2G Ltd, Eccles, Manchester, UK

*Corresponding author. E-mail: w.vandesande@erasmusmc.nl

Received 13 September 2019; returned 8 October 2019; revised 18 November 2019; accepted 26 November 2019

Objectives: Eumycetoma is currently treated with a combination of itraconazole therapy and surgery, with limited success. Recently, olorofim, the lead candidate of the orotomides, a novel class of antifungal agents, entered a Phase II trial for the treatment of invasive fungal infections. Here we determined the activity of olorofim against Madurella mycetomatis, the main causative agent of eumycetoma.

Methods: Activity of olorofim against M. mycetomatis was determined by in silico comparison of the target gene, dihydroorotate dehydrogenase (DHODH), and in vitro susceptibility testing. We also investigated the in vitro interaction between olorofim and itraconazole against M. mycetomatis.

Results: M. mycetomatis and Aspergillus fumigatus share six out of seven predicted binding residues in their DHODH DNA sequence, predicting susceptibility to olorofim. Olorofim demonstrated excellent potency against M. mycetomatis in vivo with MICs ranging from 0.004 to 0.125 mg/L and an MIC90 of 0.063 mg/L. Olorofim MICs were mostly one dilution step lower than the itraconazole MICs. In vitro interaction studies demonstrated that olorofim and itraconazole work indifferently when combined.

Conclusions: We demonstrated olorofim has potent in vitro activity against M. mycetomatis and should be further evaluated in vivo as a treatment option for this disease.

Introduction

The poverty-associated disease mycetoma, which was added to the Neglected Tropical Disease List in 2016 by WHO, remains a major health problem in endemic areas.2 Most cases occur in the mycetoma belt between latitudes 15° South and 30° North.3,4 Mycetoma presents itself as a subcutaneous chronic granulomatous infectious and inflammatory disease characterized by the formation of grains in affected tissues.3,5 In more than 80% of the cases, the foot and leg are affected.4 This disease is divided into two groups: actinomycetoma (mycetoma caused by bacteria) and eumycetoma (mycetoma caused by fungi). Although many different fungal species are found to cause eumycetoma, Madurella mycetomatis dominates other fungal species and is present in more than 70% of all patients.4,6

Eumycetoma is recalcitrant in nature, which necessitates prolonged antifungal therapy combined with massive and repeated surgical debridement. In severe cases, amputation of the affected part may be the only remaining treatment option.3,7,8 Previous reports determined that M. mycetomatis was most susceptible to theazole class of antifungal agents9–11 and is currently treated with itraconazole.12 Treatment with itraconazole may take years and, with an average monthly income of only $60/month, itraconazole at $330/month is considered to be too expensive for patients. Thus there is a dire need for another antifungal agent that is active against M. mycetomatis.13

Olorofim, formerly known as F901318 (F2G Ltd, Eccles, Manchester, UK), is the leading representative from a novel class of antifungal agents called the orotomides.14 Olorofim inhibits the fungal enzyme dihydroorotate dehydrogenase (DHODH) leading to obstruction of the pyrimidine biosynthesis pathway.14,15 Studies have demonstrated that olorofim is active against pathogenic and azole-resistant Aspergillus species,16–19 Scedosporium species,20 Lomentospora prolificans,20 Coccidioides immitis,21 Fusarium proliferatum22 and other dimorphic fungi.22 Oliver et al.14 also demonstrated that olorofim exhibited much greater potency against Aspergillus spp. compared with other leading antifungal
classes. Given the potency and activity of olorofim, here we aim to evaluate its in vitro activity against *M. mycetomatis* and the in vitro interaction between olorofim and itraconazole as a first effort to determine whether olorofim shows potential as a new treatment for eumycetoma.

Materials and methods

In silico modelling

The *M. mycetomatis* DHODH sequence was obtained by BLAST analysis using the *Aspergillus fumigatus* DHODH protein sequence as a guide (EC 1.3.5.2). *M. mycetomatis*, *A. fumigatus* and *Homo sapiens* DHODH sequences were aligned using Clustal Omega (EMBL-EBI, UK) and formatted using BOXSHADE (EMBnet node, Switzerland). Mitochondrial targeting sequences of *M. mycetomatis* and *A. fumigatus* DHODH were predicted by MitoFates (Japan), while the transmembrane domains were predicted by Phobius (Stockholm Bioinformatics Centre, Sweden).

Isolates

A total of 21 *M. mycetomatis* isolates with different genetic and geographical backgrounds were used in this study. Among the isolates used, 14 isolates originated from Sudan, there was 1 isolate each from Algeria, Mali, India, Chad and the Netherlands and there were 2 isolates with unknown origin. Isolates were obtained from the Mycetoma Research Centre in Sudan, the Swiss Tropical Institute in Switzerland and the Westerdijk Fungal Biodiversity Institute and Erasmus Medical Centre mycetoma collection in the Netherlands. All isolates are maintained and preserved in the Erasmus Medical Centre’s mycetoma collection. Isolates were identified to species level on the basis of morphology, PCR-based RFLP and sequencing of the internal transcribed spacer (ITS) regions.

Fungal preparation

Fungal colonies were maintained on Sabouraud dextrose agar (BD Biosciences). After 3 weeks of growth at 37°C, colonies were scraped off, sonicated at maximum power for 5 s (Soniprep 150, Beun de Rande, The Netherlands) and then inoculated into 50 mL Greiner tubes (Sigma–Aldrich) containing RPMI-1640 culture medium supplemented with 0.35 g/L L-glutamine and 1.94 mM MOPS. The isolates were then further incubated for 7 days at 37°C. After incubation, the mycelia within were washed once with RPMI-1640 culture medium. A fungal suspension of 69%–71% transmission was then prepared (Novaspec II spectrophotometer) for *in vitro* susceptibility testing.

In vitro susceptibility testing

Susceptibility testing was carried out according to the previously described and validated method developed for susceptibility testing using a standardized hyphal inoculum. Antifungal activity of olorofim against *M. mycetomatis* was determined using the XTT assay. Efficacy of olorofim was compared with that of itraconazole. Olorofim was dissolved in DMSO and tested at a range of 0.004–2 mg/L and itraconazole from 0.004–0.25 mg/L. The interaction between olorofim and itraconazole was analysed by the FIC index and the interaction ratio (IR). FIC index values were calculated as follows:

\[
\text{FIC index} = \frac{\text{MIC}_A}{\text{MIC}_A \text{ alone}} + \frac{\text{MIC}_B}{\text{MIC}_B \text{ alone}}
\]

where \(\text{MIC}_A\) and \(\text{MIC}_B\) represent the concentration of drugs A and B, respectively, when tested in combination and \(\text{MIC}_A \text{ alone}\) and \(\text{MIC}_B \text{ alone}\) represent the concentration of drugs A and B, respectively, when acting individually. An FIC index value of \(<0.5\) is considered synergistic, a value of \(>0.5\) to 4 is considered indifferent and a value of >4 is considered antagonistic. The IRs were calculated using the formula:

\[
\text{IR} = \frac{Ie}{Io}
\]

Where Io and Ie represent the observed and expected percentage of inhibition for a given interaction, respectively. Ie is calculated as follows:

\[
Ie = A + B - (AB/100)
\]

A and B represent the percentage of inhibition observed for each compound when acting alone. The interaction was considered synergistic when IR was >1.5, indifferent when IR was between 0.5 and 1.5, and antagonistic when IR was <0.5. The chequerboard assay was performed twice using *M. mycetomatis* genome isolate MM455. Using the XTT endpoint read, MIC was defined as the lowest concentration with a minimum of 80% growth reduction.

Statistical analysis

MICs of olorofim and itraconazole were statistically compared using a Mann–Whitney test. A *P* value of <0.05 was deemed statistically significant.

Results

In silico modelling predicts that *M. mycetomatis* is susceptible to olorofim

The analysis of DHODH sequences showed that the *M. mycetomatis* DHODH homologue (accession number: X77K9707) shares 58.7% homology with that of *A. fumigatus* and 40.1% homology with that of *H. sapiens*. When comparing the amino acid residues that are predicted to be important in olorofim binding, in both *A. fumigatus* and *M. mycetomatis* DHODH, we observed a similarity of 86% between the two species. *M. mycetomatis* DHODH shares six out of seven predicted binding residues with *A. fumigatus* DHODH. The amino acid that differed was Leu195, which corresponded to the Met position in *A. fumigatus* (Figure 1). This is a conservative replacement, with both amino acids having
hydrophobic side chains, indicating that *M. mycetomatis* might be susceptible to olorofim.

M. mycetomatis is more susceptible to olorofim compared with itraconazole. Significantly lower MICs were obtained for olorofim (median = 0.016 mg/L) than for itraconazole (median = 0.031 mg/L) (*P* = 0.047) (Table 1). For olorofim, a concentration of 0.016 mg/L was needed to inhibit 50% of isolates and a concentration of 0.063 mg/L was needed to inhibit 90% of *M. mycetomatis* isolates. For itraconazole, 0.031 and 0.125 mg/L was needed to inhibit 50% and 90% of isolates, respectively.

Figure 1. Alignment of *M. mycetomatis*, *A. fumigatus* and human (*H. sapiens*) DHODH amino acid sequences. Conserved residues are highlighted in black and similar residues are highlighted in grey. The predicted mitochondrial targeting sequences are indicated by the green lines and the predicted transmembrane domains are indicated by the yellow lines. The blue arrows depict the amino acid residues predicted to be important for olorofim binding in *A. fumigatus* DHODH that are identical in *M. mycetomatis*. The red arrow depicts the amino acid residue predicted to be important for olorofim binding in *A. fumigatus* DHODH that deviates in *M. mycetomatis*. In *A. fumigatus* this amino acid is Met²⁰⁹, while in *M. mycetomatis* the amino acid is Leu¹⁹⁵. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
Indifferent interaction between olorofim and itraconazole

To determine whether itraconazole and olorofim could potentially be combined in a therapy, a checkerboard assay for olorofim and itraconazole was performed on *M. mycetomatis* genome isolate MM55. As shown in Table 1, an FIC index of 3.2 and an IR of 0.92 were obtained. Both these values indicate that olorofim and itraconazole are indifferent when combined.

Discussion

Despite treatment with itraconazole at 200–400 mg daily, only 25.9% of eumycetoma patients are cured and 2.8% end up with amputation. This in turn leads to a high morbidity and dependency on family members. Therefore, there is an urgent need to identify novel drugs with activity against the causative agents of eumycetoma.

Since the discovery of olorofim, several studies have been carried out on the antifungal properties of olorofim, demonstrating its effectiveness against several fungal species, notably *Aspergillus* spp. Olorofim showed a lower MIC compared with other drugs tested. To evaluate whether olorofim would be active against *M. mycetomatis*, we first analysed and compared the amino acid sequence of *M. mycetomatis* DHODH with that of *A. fumigatus*. A homology of 58.7% was determined between the two DHODH sequences. Furthermore, six out of seven amino acids predicted by Oliver et al. to be important in olorofim binding were shared. The single remaining amino acid, Met²⁰⁹ in the *A. fumigatus* DHODH amino acid sequence, was replaced by Leu¹⁹⁵ in *M. mycetomatis*. Apparently this substitution did not affect the susceptibility to olorofim as we demonstrated that *M. mycetomatis* is indeed susceptible to olorofim with MICs ranging from 0.004 to 0.125 mg/L. Oliver et al. successfully created a mutant *Candida albicans* DHODH that became susceptible to olorofim by replacing Phe¹⁶² and Val¹⁷¹ (equivalent to Val²⁰⁰ and Met²⁰⁹ in *A. fumigatus*) with Val¹⁶² and Met¹⁷¹. This indicated that these two residues at their respective positions in each species were important for olorofim binding and subsequent inhibition of DHODH. However, as for the two residues in *M. mycetomatis*, the presence of Leu¹⁹⁵ (Met²⁰⁹ in *A. fumigatus*) at the latter position apparently did not impair the binding of olorofim to DHODH. Since the difference in the latter amino acid residue between *M. mycetomatis* and *A. fumigatus* did not affect susceptibility to olorofim, taking these data together, the resistance of *C. albicans* to olorofim is most likely due to the difference in the former of the two residues (position...
162 in C. albicans, 200 in A. fumigatus and 186 in M. mycetomatis). As indicated by Oliver et al., there must also be other important differences in DHODH between these species and more studies are needed to understand the importance of the amino acids involved in olorofim binding.

Olorofim is currently in a Phase II study (ClinicalTrials.gov identifier NCT03583164) for treatment of invasive fungal infections caused by Scedosporium spp., Aspergillus spp. and other resistant fungi in patients lacking suitable alternative treatment options. This study will provide a good understanding of the dosage and the efficacy of olorofim in patients, which might also be applicable for mycetoma patients. However, for actinomycetoma, the bacterial form of mycetoma, it was discovered that patients were more responsive to combination therapy than to a single drug alone. The combination therapy differs between countries; in Mexico and Sudan the Welsh regimen is used and in India the Raman regimen is used. Until now, combination therapy for eumycetoma has not extensively been explored in animal models and clinical trials. This is because the results of in vitro combination studies may differ according to the methodologies used and thus cannot be relied upon to predict the clinical effect that may be obtained. For M. mycetomatis, hyphal fragments are exposed to the antifungal agents in vitro, while in vivo it structures itself as grains. Therefore, the efficacy of combination therapy should always be determined both in vitro and in vivo. In the past, combination therapy for eumycetoma did not seem feasible since all antifungal agents with activity against the causative agents had the same mode of action, which could lead to antagonism instead of synergy. When azoles were combined with terbinafine in vitro by Ahmed et al. (2015), indifference and antagonism were noted. The in vivo study by Eadie et al. (2017) demonstrated that combining the drugs resulted in antagonism and treatment significantly decreased larvae survival. Eadie et al. confirmed the discovery of Scheven and Schweger that antagonism occurs when ergosterol is inhibited via two different pathways. In this study, the combination of olorofim and itraconazole, two drugs with different modes of action, was studied. The components of the in vitro combination of olorofim and itraconazole against M. mycetomatis acted indifferently to each other, as no antagonism or synergy was noted. Since olorofim and itraconazole inhibit fungal growth via different mechanisms, this highlights the room for further evaluation in vivo and in a clinical setting where they could be potentially combined to treat eumycetoma.

In conclusion, we showed that olorofim inhibits growth of M. mycetomatis and, although olorofim and itraconazole inhibit fungal growth by different mechanisms, when combined they show no antagonism or synergism. The next step will be to study the efficacy of olorofim against M. mycetomatis in an in vivo model.

Funding
This study was supported by internal funding.

Transparency declarations
Olorofim was obtained from F2G Ltd. Jason D. Oliver and Mike Birch are employees and shareholders of F2G Ltd. Bart Rijnders is an investigator of a Phase II study on olorofim. His employer receives patient fees for the inclusion of patients in this study. All other authors: none to declare.

References
1. Fahal AH, Elkhawad AO. Managing mycetoma: guidelines for best practice. Exp Rev Dermatol 2013; 8: 301–7.
2. WHO. Sixty-Ninth World Health Assembly WHA69.21 - Addressing the Burden of Mycetoma. http://www.who.int/neglected_diseases/mediacentre/ WHA_69.21_Eng.pdf?ua=1.
3. Zijlstra EE, van de Sande WWJ, Welsh O et al. Mycetoma: a unique neglected tropical disease. Lancet Infect Dis 2016; 16: 100–12.
4. van de Sande WW. Global burden of human mycetoma: a systematic review and meta-analysis. PLoS Negl Trop Dis 2013; 7: e2550.
5. Fahal AH, Hassan MA. Mycetoma. Br J Surg 1992; 79: 1138–41.
6. Ameen M, Arenas R. Developments in the management of mycetomas. Clin Exp Dermatol 2009; 34: 1–7.
7. Fahal AH. Mycetoma review. Kharataum Med J 2011; 4: 514–23.
8. van de Sande W, Fahal A, Ahmed SA et al. Closing the mycetoma knowledge gap. Med Mycol 2018; 56: 153–64.
9. Kloewe W, Meis JF, Curfs-Breuker I et al. In vitro antifungal activity of isavuconazole against Madurella mycetomatis. Antimicrob Agents Chemother 2012; 56: 6054–6.
10. van Belkum A, Fahal AH, van de Sande W. In vitro susceptibility of Madurella mycetomatis to posaconazole and terbinafine. Antimicrob Agents Chemother 2011; 55: 1771–3.
11. van de Sande WWJ, Luijendijk A, Ahmed AOA et al. Testing of the in vitro susceptibilities of Madurella mycetomatis to six antifungal agents by using the Sensititre system in comparison with a viability-based 2,3-bis[2-methoxy-4-nitro-5-sulphophenyl]-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assay and a modified NCCLS method. Antimicrob Agents Chemother 2005; 49: 1364–8.
12. Welsh O, Al-Abdely HM, Solinas-Carmona MC et al. Mycetoma medical therapy. PLoS Negl Trop Dis 2014; 8: e3218.
13. van de Sande WW, Maghoub el S, Fahal AH et al. The mycetoma knowledge gap: identification of research priorities. PLoS Negl Trop Dis 2014; 8: e2667.
14. Oliver JD, Sibley GEM, Beckmann N et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA 2016; 113: 12809–14.
15. Jones ME. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 1980; 49: 253–79.
16. du Prê S, Beckmann N, Almeida MC et al. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62: e00231-18.
17. Bui JB, Rijks A, Meis JF et al. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J Antimicrob Chemother 2017; 72: 2548–52.
18. Lackner M, Birch M, Naschberger V et al. Dihydroorotate dehydrogenase inhibitor olorofim exhibits promising activity against all clinically relevant species within Aspergillus section Terrei. J Antimicrob Chemother 2018; 73: 3068–73.
19. Rivero-Menendez O, Cuenca-Estrella M, Alstruey-Izquierdo A. In vitro activity of olorofim (F901318) against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies. J Antimicrob Chemother 2019; 74: 1586–90.
20. Wiedenhold NP, Law D, Birch M. Dihydroorotate dehydrogenase inhibitor F901318 has potent in vitro activity against Scedosporium...
species and Lomentospora prolificans. J Antimicrob Chemother 2017; 72: 1977–80.

21 Wiederhold NP, Najjar LK, Jaramillo R et al. The orotomide olorofim is efficacious in an experimental model of central nervous system coccidioidomycosis. Antimicrob Agents Chemother 2018; 62: e0099-18.

22 Jorgensen KM, Astvad KMT, Hare RK et al. EUCAST determination of olorofim (F901318) susceptibility of mold species, method validation, and MICs. Antimicrob Agents Chemother 2018; 62: e0047-18.

23 Fukasawa Y, Tsuji J, Fu SC et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 2015; 14: 1113–26.

24 Kall L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 2007; 35: W429–32.

25 van de Sande WW, Gorkink R, Simons G et al. Genotyping of Madurella mycetomatis by selective amplification of restriction fragments (amplified fragment length polymorphism) and subtype correlation with geographical origin and lesion size. J Clin Microbiol 2005; 43: 4349–56.

26 Lim W, Eadie K, Horst-Kreft D et al. VNTR confirms the heterogeneity of Madurella mycetomatis and is a promising typing tool for this mycetoma causing agent. Med Mycol 2019; 57: 434–40.

27 Ahmed AO, Mukhtar MM, Kools-Sijmons M et al. Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J Clin Microbiol 1999; 37: 3175–8.

28 Ahmed AOA, van de Sande WWJ, van Vianen W et al. In vitro susceptibilities of Madurella mycetomatis to itraconazole and amphotericin B assessed by a modified NCCLS method and a viability-based 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assay. Antimicrob Agents Chemother 2004; 48: 2742–6.

29 Meletiadis J, Meis J, Mouton JW et al. Methodological issues related to antifungal drug interaction modelling for filamentous fungi. Rev Med Microbiol 2002; 13: 101–17.

30 Ahmed SA, Kloezen W, Fahal AH et al. In vitro interaction of currently used azoles with terbinafine against Madurella mycetomatis. Antimicrob Agents Chemother 2015; 59: 1373–4.

31 Gisi U. Synergistic interaction of fungicides in mixtures. Phytopathology 1996; 86: 1273–9.

32 Welsh O, Vera-Cabrera L, Welsh E et al. Actinomycetoma and advances in its treatment. Clin Dermatol 2012; 30: 372–81.

33 Ramam M, Bhat R, Garg T et al. A modified two-step treatment for actinomycetoma. Indian J Dermatol Venereol Leprol 2007; 73: 235–9.

34 Ramam M, Garg T, D’Souza P et al. A two-step schedule for the treatment of actinomycotic mycetomas. Acta Derm Venereol 2000; 80: 378–80.

35 Welsh O, Saucedo E, Gonzalez J et al. Amikacin alone and in combination with trimethoprimsulfamethoxazole in the treatment of actinomycotic mycetoma. J Am Acad Dermatol 1987; 17: 443–8.

36 EMA. Guideline on the Clinical Evaluation of Antifungal Agents for the Treatment and Prophylaxis of Invasive Fungal Diseases. CHMP/EWP/1343/01 Rev. 1, 2010.

37 Eadie K, Parel F, Helvert-van Poppel M et al. Combining two antifungal agents does not enhance survival of Galleria mellonella larvae infected with Madurella mycetomatis. Trop Med Int Health 2017; 22: 696–702.

38 Scheven M, Schwegler F. Antagonistic interactions between azoles and amphotericin B with yeasts depend onazole lipophilicity for special test conditions in vitro. Antimicrob Agents Chemother 1999; 39: 1779–83.

39 Kloezen W, van Helvert-van Poppel M, Fahal AH et al. A Madurella mycetomatis grain model in Galleria mellonella larvae. PLoS Negl Trop Dis 2015; 9: e0003926.