Review Article

Risk and Prognostic Factors for BRAFV600E Mutations in Papillary Thyroid Carcinoma

Xiaojing Wei,1 Xiaodong Wang,2 Jie Xiong,3 Chen Li,4 Yixuan Liao,5 Yongjun Zhu6, and Jingxin Mao2,5

1Chongqing Jiaotong University Hospital, Chongqing 400074, China
2Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
3Department of Pharmacy, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders/Chongqing Key Laboratory of Pediatrics/Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
4Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany
5College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
6The Orthopedics department of Ninth People’s Hospital of Chongqing, Chongqing 400700, China

Correspondence should be addressed to Yongjun Zhu; zhuyongjun00110919@163.com and Jingxin Mao; maomao1985@email.swu.edu.cn

Received 6 January 2022; Accepted 20 April 2022; Published 18 May 2022

Academic Editor: Gitana Maria Aceto

Copyright © 2022 Xiaojing Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Over the past ten years, the incidence rate of papillary thyroid carcinoma (PTC) worldwide has been increasing rapidly year by year, with the incidence rate increasing 6% annually. PTC has become the malignant tumor with the highest growth rate in the world that fourteen PTC-related mutant genes have been identified. Whether the BRAFV600E mutation related to more aggressive clinicopathologic features and worse outcome in PTC remains variable and controversial. We aim to investigate the risk factors that may predict the BRAFV600E mutation potential of these lesions and new prevention strategies in PTC patients.

Methods. A total of 9,908 papillary thyroid carcinoma patients with average 74.6% BRAF V600E mutations were analyzed (RevMan 5.3 software) in this study. The PubMed, Embase, and ISI Web of Science databases were systematically searched for works published through December 15, 2021. Results. The following variables were associated with an increased risk of BRAFV600E mutation in PTC patients: age ≥ 45 years (OR = 1.39, 95%CI = 1.21 – 1.60, p < 0.00001), male gender (OR = 1.13, 95%CI = 0.99 – 1.28, p = 0.06), multifocality (OR = 1.22, 95%CI = 1.07 – 1.40, p = 0.004), lymph node metastasis (OR = 1.33, 95%CI = 0.79 – 2.23, p = 0.28), extrathyroidal extension + (OR = 1.61, 95%CI = 1.06 – 2.44, p = 0.03), vascular invasion + (OR = 2.04, 95%CI = 1.32 – 3.15, p = 0.001), and tumor node metastasis stage (OR = 1.61, 95%CI = 1.38 – 1.88, p < 0.00001). In addition, tumor size (>1 cm) (OR = 0.51, 95%CI = 0.32 – 0.81, p = 0.005) and distant metastasis (OR = 0.69, 95%CI = 0.22 – 2.21, p = 0.54) had no association or risk with BRAFV600E mutation in PTC patients. Conclusion. Our systematic review identified the following significant risk factors of BRAFV600E mutation in PTC patients: age (≥45 years), gender (male), multifocality, lymph node metastasis, vascular invasion, extrathyroidal extension, and advanced tumor node metastasis stage (stages III and IV). Tumor size (>1 cm) and distant metastasis do not appear to be correlated with BRAF V600E mutation in PTC patients.

1. Background

Thyroid cancer (TC) is the most common endocrine malignancy, with a relatively good prognosis after early diagnosis and treatment [1]. TC is usually classified into five different morphological groups which include papillary, follicular, medullary, poorly differentiated, and undifferentiated [2]. Nowadays, a combination of fine-needle aspiration (FNA) and ultrasound (US) is reliable to be used as a routine method for preoperative evaluation of thyroid [3]. There
are benefits from the improvement of detection methods; the prevalence of TC is rising in recent years, and the most common subtype is papillary thyroid carcinoma (PTC) accounting for 80–85% [4]. In addition, the World Health Organization (WHO) defines tumors less than 1 cm as papillary thyroid microcarcinoma (PTMC) [5]. Although outstanding outcome and clinical indolence of papillary thyroid carcinoma patients (PTCs), aggressive clinical characteristics, and poor prognosis were also found in a small proportion of PTCs [6], it was reported that some PTCs are more aggressive with lymph node metastasis (LNM) and distant metastasis which may cause high mortality and poor prognosis [7]. Risk stratification is important to identify patients with a higher risk of recurrence, so more aggressive management and monitoring can be implemented [8]. Therefore, various risk stratification methods have been used to treat PTC patients properly and reasonably. Molecular markers for predicting PTC have been widely used to improve the risk stratification of PTCs in recent years [9]. Identifying molecular markers that can recognize these aggressive tumors, especially at the preoperative stage, is very useful for guiding the clinical treatment of PTCs [10].

B-type Raf kinase (BRAF) is a cytoplasmic protein kinase, a major subtype of Raf kinase, which triggers tumorigenesis by activating the MAPK pathway [11]. The pathogenic PTC mutations include BRAFV600E mutation, RET/PTC rearrangement, and/or RAS mutation for most of patients [12]. The BRAFV600E mutation frequency and specifically occurred in PTCs with a frequency of 25–82.3% while it is usually absent in other types of thyroid tumors [13]. In addition, BRAFV600E mutations commonly occur in advanced PTC, which may enhance the ability of BRAF-mutant cells to proliferate into cancer cells [14]. Whether the BRAFV600E mutations related to more aggressive clinicopathologic features and worse outcome remains variable and controversial. Hence, we aim to explore the clinicopathological significance of BRAFV600E mutations in patients with PTC in this meta-analysis. Moreover, the results of our meta-analysis may also be helpful to assist the surgeons to choose the best surgical managements, such as whether the prophylactic central neck dissection (PCND) is needed and the risk stratification after PTCs.

2. Methods

We followed the methods of Mao et al. [15].

2.1. Search Strategy. The protocol of this overview was registered on the International Prospective Register of Systematic Reviews (PROSPERO) with registration number CRD42021278949 (http://www.crd.york.ac.uk/PROSPERO). The relevant published articles including PubMed, Embase, and ISI Web of Science databases were used to identify until December 15, 2021. The following keywords were used in searching: “BRAFV600E mutation OR BRAF mutation” AND “clinical characteristics OR prognostic factor OR risk factor” AND “papillary thyroid carcinoma OR PTC OR papillary thyroid microcarcinoma OR PTMC”. Relevant articles were used to broaden the search scope, and all retrieved studies, reviews, and conference abstracts were retrieved by the computer. If multiple published studies describe the same population, we extract only the most complete or recent one. Three authors independently completed the selection process and resolved the differences through discussion. In addition, the research strictly follows the recommendations of the preferred reporting items for systematic review and meta-analysis (PRISMA) reporting.

2.2. Selection Criteria. The selection strategy used the following criteria: (a) prospective or retrospective original studies; (b) English language studies; (c) pathological confirmation of PTC during or after operation; and (d) available data on PTC risk or prognostic factors and sufficient forms of data extraction to calculate the odds ratio (OR).

The following exclusion criteria were adopted to exclude studies from meta-analysis: (a) reviews, case reports, editorials, letters to editors, meetings, and conference records; (b) insufficient data (e.g., less than 30 patients in the studying or research); (c) research using big data (e.g., using SEER study data); and (d) studying period beyond 5 years.

2.3. Data Extraction. Three authors abstracted the following data from the included articles: first author, country, publication years, case number, number of BRAFV600E mutation, and PTC-related risk factors. Age, gender, multifocality, tumor size, vascular invasion, LNM, extrathyroidal extension (ETE), tumor node metastasis (TNM) stage, and distant metastasis were concluded in the risk factors of PTC patients. The Newcastle-Ottawa quality assessment scale (NOS) was used to assess the quality of the research. Any disagreements were resolved by a third investigator (JXM).

2.4. Statistical Analysis. Statistical analysis of all meta-analyses was performed using Review Manager version 5.3 (Cochrane Collaboration, Oxford, UK). The magnitude of the effect of each study was calculated by the OR or the weighted mean difference (WMD) of the 95% confidence interval (CI) briefly. A p value of <0.05 was considered statistically significant unless otherwise specified. In addition, the heterogeneity was quantified using the Q-test and the I² statistic. When p > 0.1 and I² < 50%, a fixed-effects model was applied; otherwise, a random-effects model was used. The Begg funnel plot was used to analyze for potential publication bias.

3. Results

After initially searching, a total of 1,512 studies were considered for inclusion in the meta-analysis. 25 records were excluded by language and duplicate; 136 records were excluded by the screening of reviews, letters, case reports, editorials, and meeting proceedings; 1141 records were excluded by using big data, studying period beyond 5 years, or insufficient data; 184 records were excluded by the screening of title or abstract. Finally, a total of 26 studies that met our selection criteria were included in our meta-analysis. The selection flowchart of research is presented in Figure 1. The basic characteristics of included studies and the associated prognostic factors examined are included in
3.2.3. Tumor Size. A random-effects model was utilized to analyze the data (p < 0.012, I^2 = 36%). The prevalence of BRAF^{V600E} mutation in male PTC patients was relatively higher than that in female PTC patients (OR = 1.13, 95% CI = 0.99 – 1.28, p = 0.06) (Figure 3).

3.2.5. Lymph Node Metastasis. A fixed-effects model was utilized to analyze the data (p < 0.00001, I^2 = 85%). It was revealed that LNM was significantly associated with BRAF^{V600E} mutation in PTC patients (OR = 1.33, 95% CI = 0.79 – 1.79, p = 0.28) (Figure 6).

3.2.6. Extrathyroidal Extension. A random-effects model was applied to analyze the data (p = 0.003, I^2 = 65%). It was demonstrated that ETE was significantly related to a high rate of BRAF^{V600E} mutation in PTC patients (OR = 1.61, 95% CI = 1.06 – 2.44, p = 0.03) (Figure 7).

3.2.7. Vascular Invasion. A random-effects model was applied in the analysis involving vascular invasion (p = 0.003, I^2 = 65%). It was indicated that vascular invasion exhibited a significantly high odds ratio for BRAF^{V600E} mutation in PTC patients (OR = 2.04, 95% CI = 1.32 – 3.15, p = 0.001) (Figure 8).

3.2.8. Distant Metastasis. A fixed-effects model was applied in the analysis (p = 0.04, I^2 = 53%). It was found that distant
First author	Country	Publication years	Case number	No. of BRAF+ (%)	Age	Gender	Tumor size	Multifocality	LNM	ETE	Vascular invasion	Distant metastasis	TNM stage	NOS
Celik [57]	Turkey	2020	256	65 (25.4)	Y	Y	Y	Y	Y	Y	Y	N	Y	9
Chen [58]	China	2017	40	34 (85.0)	Y	Y	Y	N	N	N	N	N	N	7
Choi [59]	Korea	2015	95	78 (82.1)	N	N	Y	N	N	N	N	N	N	6
da Silva [60]	Brasil	2015	116	74 (63.8)	Y	Y	N	N	N	N	Y	N	Y	7
Finkel [61]	Israel	2016	59	49 (83.1)	N	Y	N	N	N	N	Y	N	N	6
Fraser [62]	Australia	2016	496	309 (62.3)	N	N	N	N	N	N	N	N	N	5
Gan [63]	China	2020	475	239 (50.3)	N	Y	N	N	Y	N	N	N	Y	7
Gao [64]	China	2019	60	39 (65.0)	Y	Y	N	N	N	N	Y	N	N	7
Goh [65]	Singapore	2018	75	42 (56.0)	Y	Y	N	N	N	N	N	N	Y	8
Huang [66]	China	2018	1708	1443 (84.5)	N	Y	N	N	N	N	N	Y	N	6
Ji [67]	China	2019	89	67 (75.3)	Y	Y	N	Y	N	N	N	N	Y	8
Na [68]	China	2016	653	416 (65.7)	Y	Y	Y	N	N	N	N	N	Y	7
Jung [69]	Korea	2015	302	265 (89.0)	Y	N	N	Y	N	N	Y	N	N	7
Kim [70]	America	2020	241	215 (89.2)	N	N	N	N	N	N	N	N	Y	6
Kowalska [71]	Poland	2017	723	475 (65.7)	Y	Y	Y	Y	N	N	Y	N	Y	9
Lee [72]	Korea	2019	911	717 (78.8)	N	Y	N	Y	Y	N	Y	Y	N	8
Liu [73]	China	2016	60	40 (66.7)	Y	Y	Y	Y	Y	Y	Y	Y	N	9
Lu [74]	China	2015	150	121 (80.6)	Y	Y	Y	Y	Y	N	N	N	N	7
Lu [75]	China	2017	108	59 (54.6)	Y	Y	N	N	N	N	Y	N	N	6
Martinez [76]	Chile	2019	126	66 (52.0)	N	Y	N	N	N	Y	Y	N	N	7
Rusmana [77]	Indonesia	2018	36	21 (58.3)	N	N	N	N	N	N	N	N	N	6
Yan [78]	China	2019	2048	1715 (83.7)	Y	Y	N	N	N	Y	N	N	Y	8
Zeng [79]	China	2015	619	465 (75.1)	N	Y	Y	N	N	N	N	N	Y	7
Zheng [80]	China	2019	299	249 (83.3)	N	N	N	Y	N	N	Y	N	N	5
Zhou [81]	China	2018	163	135 (83.3)	Y	Y	N	Y	Y	N	Y	N	Y	8

BRAFV600E + indicates the BRAFV600E mutation; Y indicates that the study was evaluated for the correlatively prognostic factor; N indicates that the study was not evaluated for the correlatively prognostic factor.
3.2.9. Tumor Node Metastasis (TNM) Stage. (Figure 9).

A fixed-effects model was utilized in the analysis (p = 0.12, I² = 34%). It was demonstrated that TNM stage was significantly related to BRAFV600E mutation in PTC patients (OR = 0.69, 95% CI = 0.22 – 2.21, p = 0.54) (Figure 9).

3.2.10. Publication Bias and Sensitivity Analysis. Cochrane funnel plot was used to evaluate the publication bias, and no obvious asymmetric distribution was found in Figure 11 indicating that there was no publication bias.

Table 2: Risk factors for BRAFV600E in PTC patients.

Risk factor	Pooled OR	95% CI	p value
Age (≥45 years)	1.39	1.21–1.60	<0.00001
Gender (male)	1.13	0.99–1.29	0.06
Tumor size	0.51	0.32–0.81	0.005
Multifocality (+)	1.22	1.07–1.40	0.004
Lymph node metastasis (+)	1.33	0.79–2.23	0.28
Extrathyroidal extension (+)	1.61	1.06–2.44	0.03
Vascular invasion (+)	2.04	1.32–3.15	0.001
Distant metastasis	0.69	0.22–2.21	0.54
TNM stage (+)	1.61	1.38–1.88	<0.00001

+ indicates the presented state.

metastasis was not associated with BRAFV600E mutation in PTC patients (OR = 0.69, 95% CI = 0.22 – 2.21, p = 0.54) (Figure 9).

3.2.9. Tumor Node Metastasis (TNM) Stage. A fixed-effects model was utilized in the analysis (p = 0.12, I² = 34%). It was demonstrated that TNM stage was significantly related to BRAFV600E mutation in PTC patients (OR = 0.69, 95% CI = 1.38 – 1.88, p < 0.00001) (Figure 10).

3.2.10. Publication Bias and Sensitivity Analysis. Cochrane funnel plot was used to evaluate the publication bias, and no obvious asymmetric distribution was found in Figure 11 indicating that there was no publication bias.

Table 2: Risk factors for BRAFV600E in PTC patients.

Risk factor	Pooled OR	95% CI	p value
Age (≥45 years)	1.39	1.21–1.60	<0.00001
Gender (male)	1.13	0.99–1.29	0.06
Tumor size	0.51	0.32–0.81	0.005
Multifocality (+)	1.22	1.07–1.40	0.004
Lymph node metastasis (+)	1.33	0.79–2.23	0.28
Extrathyroidal extension (+)	1.61	1.06–2.44	0.03
Vascular invasion (+)	2.04	1.32–3.15	0.001
Distant metastasis	0.69	0.22–2.21	0.54
TNM stage (+)	1.61	1.38–1.88	<0.00001

+ indicates the presented state.

Table 2: Risk factors for BRAFV600E in PTC patients.

Risk factor	Pooled OR	95% CI	p value
Age (≥45 years)	1.39	1.21–1.60	<0.00001
Gender (male)	1.13	0.99–1.29	0.06
Tumor size	0.51	0.32–0.81	0.005
Multifocality (+)	1.22	1.07–1.40	0.004
Lymph node metastasis (+)	1.33	0.79–2.23	0.28
Extrathyroidal extension (+)	1.61	1.06–2.44	0.03
Vascular invasion (+)	2.04	1.32–3.15	0.001
Distant metastasis	0.69	0.22–2.21	0.54
TNM stage (+)	1.61	1.38–1.88	<0.00001

+ indicates the presented state.

The association between age and BRAFV600E mutation was analyzed in fourteen studies. It was demonstrated that age is a strong, continuous, and independent mortality risk factor in patients with BRAFV600E mutation in patients with PTC [23]. Previous studies reported that age ≥ 45 years was association with the increased risk of BRAFV600E mutations in PTC patients [24]. In the present meta-analysis, we found that the patients with old age (≥45 years) for PTC may have the increased risk of BRAFV600E mutations in clinical practice (OR = 1.38).

The relationship between gender and BRAFV600E mutation was analyzed in nineteen studies. Although the proportion of women and men in PTCs is 3 : 1, the rates of PTC-induced malignancies and mortality are higher in men [25]. In addition, it was reported that male sex is a robust independent risk factor for BRAFV600E mutation in patients with PTCs [26]. Based on the analysis result, we also concluded that the gender of male was a significant risk factor for BRAFV600E mutation in PTC patients (OR = 1.13).

Eight studies were analyzed for the correlation between tumor size and BRAFV600E mutation in PTC patients. Generally speaking, tumor size is an important factor for TNM staging, and large tumor always exhibits aggressive characteristic [27]. It was revealed that BRAFV600E mutation is associated with invasive tumor growth and tumor size (≥1 cm) in high-risk PTCs [28]. However, previous research also demonstrated that BRAFV600E mutation was not correlated with tumor size (≥1 cm) in PTC patients [29]. In our meta-analysis, we found that tumor size ≥ 1 cm had no relation or risk with enough sources of variation BRAFV600E mutations in PTC patients (OR = 0.51). Our finding was consistent with some reports in previous research. These conflicting findings between different studies may be due to different characteristics of the patients studied, including the sample sizes and proportions of different types of PTCs. In addition, different hospitals have different ultrasound equipment and different detection doctors. For the size of the tumor, human manipulation and subjective factors may have a greater impact on the final result.

Tumor multifocality is frequently observed in PTCs, but its prognostic value is controversial. It was reported that tumor multifocality is not considered to be an independent risk factor of BRAFV600E mutation in PTC patients [30]. However, previous research also has demonstrated that BRAFV600E mutation is closely related to tumor multifocality with poor prognosis and aggressively behavior in PTC patients [31]. Our results showed that BRAFV600E mutation was related to multifocality in PTC patients which is analogous with previous research (OR = 1.22).

The association between LNM and BRAFV600E mutation was analyzed in nine studies. LNM is commonly considered to be an important risk factor for recurrence and/or persistent disease and overall survival in PTCs [32]. In previous meta-analysis, it was reported that BRAFV600E mutation is
significantly related to LNM in PTC patients with poor outcome [33]. In the present meta-analysis, the prevalence of LNM was increased in PTC patients with BRAF^{V600E} mutation which means BRAF^{V600E} mutation was related to multifocality in PTC patients but with not enough sources of variation (OR = 1.33).

A total of eleven studies were analyzed for the correlation between ETE and BRAF^{V600E} mutation in PTC patients. The prognosis of the tumor is associated with the pathogenetic degree of ETE, and severely dilated extrathyroid disease is more severe than patients with histological examination showing local expansion [34]. A previous study also demonstrated that BRAF^{V600E} mutation is linked to the aggressive clinicopathological features especially ETE [35]. In our meta-analysis, there was significant association between ETE and BRAF^{V600E} mutation in PTC patients (OR = 1.61) which is similar with a previous study.

The relationship between vascular invasion and BRAF^{V600E} mutation in PTC patients was analyzed in nine studies. It was reported that vascular invasion of PTC patients is a sign of increased tendency of hematogenic invasion, which means finally a poorer prognosis [36]. In addition, it has been demonstrated that presence of tumor vascular invasion does not adversely influence biological
BRAFV600E mutation is more common in aggressive histological types of thyroid cancer and was likely to present in behavior or survival of PTCs [37]. It was also revealed that BRAFV600E mutation is more common in aggressive histological types of thyroid cancer and was likely to present in vascular invasion [38]. In the present meta-analysis, it was demonstrated that vascular invasion was significantly associated with BRAFV600E mutation in PTC patients (OR = 2.04).
Ours study also showed that BRAF V600E mutation is not directly related to distant metastasis in PTC patients [39]. However, the previous study also showed that BRAF V600E mutation causes poorer prognosis including the rapid development of PTCs. It has been demonstrated that BRAF V600E mutation is an indicator of Distant metastasis which affects the prognosis [40]. An interesting finding in the present meta-analysis is that the BRAF V600E mutation had no relationship or risk with distant metastasis (OR = 0.69). A potential cause of this result may be different factors leading to the clinicopathological features such as the distant metastasis.

Figure 7: Forest plots of the association between ETE and BRAF V600E mutation in papillary thyroid carcinoma (PTC) patients.

Study or subgroup	Vascular invasion+	Vascular invasion-	Weight
Ji 2019	37	43	5.09
Jin 2016	16	27	5.50
Jung 2015	2	3	10.71
Kim KT 2020	5	62	1.96
Lee 2019	319	395	1.24
Liu 2016	35	49	3.00
Martinez 2019	9	16	1.20
Yan 2019	237	280	1.08
Zhou 2018	104	119	2.38
Total (95%) CI	994	3841	0.25
Total events	764	2209	0.01
Heterogeneity: Tau² = 0.23; Chi² = 23.15, df = 8 (P = 0.003); I² = 65%			
Test for overall effect: Z = 3.21 (P = 0.001)			

Figure 8: Forest plots of the association between vascular invasion and BRAF V600E mutation in papillary thyroid carcinoma (PTC) patients.

Study or subgroup	Distant metastasis+ (m1)	Distant metastasis- (m0)	Weight
Celik 2020	1	2	0.34
da Silva 2015	2	3	1.14
Goh 2018	1	4	0.24
Huang 2018	2	4	0.85
Kowalska 2017	0	7	0.03
Lee 2019	1	1	0.81
Liu 2016	25	30	5.00
Yan 2019	5	1711	0.78
Total (95%) CI	56	4309	0.69
Total events	36	3316	0.01
Heterogeneity: Tau² = 1.40; Chi² = 15.00, df = 7 (P = 0.04); I² = 53%			
Test for overall effect: Z = 0.62 (P = 0.54)			

Figure 9: Forest plots of the association between distant metastasis and BRAF V600E mutation in papillary thyroid carcinoma (PTC) patients.

Distant metastasis is usually regarded as an indicator of the rapid development of PTCs. It has been demonstrated that BRAF V600E mutation causes poorer prognosis including distant metastasis in PTC patients [39]. However, the previous study also showed that BRAF V600E mutation is not related to the clinicopathological features such as the distant metastasis which affects the prognosis [40]. An interesting finding in the present meta-analysis is that the BRAF V600E mutation had no relationship or risk with distant metastasis (OR = 0.69). A potential cause of this result may be different factors leading to the clinicopathological features such as the distant metastasis.
diagnoses of distant metastases in different countries and medical centers.

Twelve studies that were analyzed are associated with TNM stage and BRAFV600E mutation in PTC patients. It was demonstrated that BRAFV600E mutation is related to TNM stage, especially high stage which means poor prognosis [41]. In addition, it was also revealed that TNM stage is closely related to tumor recurrence [50]. Interestingly, it was reported that the mutation rate of BRAF in PTCs is relatively high, especially in Asian countries including South Korea, Japan, and China where the mutation rate can reach 68.7% [51]. In addition, previous studies have reported a positive association between active smoking and thyroid cancer risk which indicates that lifestyle may also influence the recurrence of PTCs [52]. Although the relationship between BRAF mutation and PTC clinicopathology and prognosis is controversial, it has been recognized as a “specific gene” of PTC; notably, the combination of thyroid nodules fine needle aspiration and BRAF mutation detection can significantly improve the detection rate of PTCs [53]. Recent clinical studies have reported that the selective BRAF inhibitor dabrafenib can activate cancer cells that do not uptake I131 to reexpress NIS and regain the function of I131 uptake, providing a new therapeutic hope for patients with BRAF-mutated I131-refractory metastatic PTCs [54].

Cohen et al. first discovered the existence of BRAF gene mutation in thyroid cancer in 2003; then, BRAF gene mutation is considered to be the most deeply studied gene in thyroid cancer molecular markers [43]. Mutations in the BRAF gene are particularly common in PTCs, with mutation rates ranging from 29% to 83% [44, 45] which is similar with us. In addition, BRAF is part of the mitogen-activated protein kinase (MAPK) signaling pathway, and the V600E mutation leads to the conversion of valine to glutamate, resulting in constitutive activation of BRAF, which leads to the transcription of genes involved in cell proliferation and promotes tumorigenesis, cell proliferation, and metastasis. BRAF mutation may also lead to decreased expression of iodine uptake genes in the thyroid gland, loss of human sodium iodide transport protein (NIS) gene expression, and misplaced distribution of NIS protein, causing some PTC patients to be resistant to radioactive iodine therapy and ultimately resulting in poor prognosis after treatment failure [46]. Previous studies have found that BRAF mutations are closely associated with aggressive pathological features of PTCs such as extrathyroidal invasion, lymph node metastasis, and later TNM staging [47, 48], even for PTMC [49]. A meta-analysis of 2470 PTCs showed that BRAF mutant had a higher recurrence rate than BRAF wild type (24.9% vs. 12.6%), and its sensitivity for predicting tumor recurrence was 65%, indicating that BRAF mutation is closely related to tumor recurrence [50]. Interestingly, it was reported that the mutation rate of BRAF in PTCs is relatively high, especially in Asian countries including South Korea, Japan, and China where the mutation rate can reach 68.7% [51]. In addition, previous studies have reported a positive association between active smoking and thyroid cancer risk which indicates that lifestyle may also influence the recurrence of PTCs [52]. Although the relationship between BRAF mutation and PTC clinicopathology and prognosis is controversial, it has been recognized as a “specific gene” of PTC; notably, the combination of thyroid nodule fine needle aspiration and BRAF mutation detection can significantly improve the detection rate of PTCs [53]. Recent clinical studies have reported that the selective BRAF inhibitor dabrafenib can activate cancer cells that do not uptake I131 to reexpress NIS and regain the function of I131 uptake, providing a new therapeutic hope for patients with BRAF-mutated I131-refractory metastatic PTCs [54].

Although the meta-analysis has investigated several clinical and pathological predictors of BRAFV600E mutation risk that may help surgeons to choose appropriate treatment strategies and determine various risk stratification prognosis in PTC patients, there are still some limitations that exist in

Study or subgroup	TNM III/IV	TNM I/II	Odds ratio	Heterogeneity:	Test for overall effect:
	Events	Total	Events	Total	
da Silva 2015	11	18	63	98	
Fraser 2016	135	200	168	297	
Gan 2020	14	28	140	290	
Goh 2018	6	11	36	64	
Ji 2019	15	18	52	71	
Jin 2016	17	219	10	407	
Kim KJ 2020	1	3	234	963	
Kowalska 2017	159	204	316	519	
Lu 2017	20	25	39	83	
Yan 2019	341	389	1301	1583	
Zeng 2015	188	239	277	380	
Zhou 2018	45	97	90	200	
Total (95% CI)	1451	4955	100.0%		
Total events	952	2726			
Heterogeneity: Chi² = 16.73, df = 11 (P = 0.12); I² = 34%					
Test for overall effect: Z = 6.00 (P < 0.00001)					

Figure 10: Forest plots of the association between TNM stage and BRAFV600E mutation in papillary thyroid carcinoma (PTC) patients.

Figure 11: Funnel plot for publication bias analysis of the included articles.
our study. Firstly, only 25 studies and recent five-year studies were included for predicting the risk of BRAFV600E mutation and clinicopathologic features in PTC patients. Secondly, surgery performed by different physicians may also have influence on the accuracy of data analysis, even following the standard mode and operation quality. Thirdly, although PTC is also considered to be a genetically driven disease, there is only one molecular mechanism (BRAFV600E mutations) that was discussed. It was revealed that coexistent TERT promoter and BRAFV600E mutations may have a synergistic effect on clinical outcomes in PTCs [55]. Furthermore, it has been demonstrated that coexistence of BRAFV600E and TERT promoter mutations are the most aggressive subgroup in PTC patients, while PTCs with BRAF or TERT alone are less aggressive [56]. Above all, to research those genetical mutations affiliated with PTC can help to stratify patients into distinct risk groups and better assess patients’ outcome.

5. Conclusions

Taken together, this meta-analysis investigated the following risk factors and related links with BRAFV600E mutation in PTC patients including age (≥45 years), gender (male), multifocality, LNM, vascular invasion, ETE, and advanced TNM stage (stages III and IV). Tumor size (≥1 cm) and distant metastasis were not correlated with BRAFV600E mutation in PTC patients. In addition, based on the available evidence, BRAFV600E mutation is significantly related to recurrence and PTC-related mortality as well. Therefore, molecular detection of BRAFV600E mutation may help us clinically stratify the risk of PTCs and scientific management of patients.

Abbreviations

BRAF: B-type Raf kinase
Cl: Confidence interval
ETE: Extrathyroidal extension
FNA: Fine-needle aspiration
LNM: Lymph node metastasis
NOS: Newcastle-Ottawa quality assessment scale
OR: Odds ratio
PTC: Papillary thyroid carcinoma
PTMC: Papillary thyroid microcarcinoma
PCND: Prophylactic central neck dissection
PRISMA: Preferred reporting items for systematic review and meta-analysis
TC: Thyroid cancer
TNM: Tumor node metastasis
US: Ultrasound
WHO: World Health Organization.

Data Availability

All data generated or analyzed in the study are included in this published article.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Authors’ Contributions

JXM conceived and designed the project. JXM, XJW, XDW, and JX conducted statistical analysis/meta-analysis and wrote the paper. CL, YXL, and YJZ abstracted the total data from the included articles. XDW make half of the effort and contribution to analysis in the manuscript. Jingxin Mao and Yongjun Zhu contributed equally to this work. All of the authors have developed research plans and participated in research design, manuscript development, editing, and completion of manuscripts. All authors contributed to manuscript revision and read and approved the submitted version.

Acknowledgments

This work was supported by 2020 Ministerial Project of China (No. 2020YYCXCQJ050).

Supplementary Materials

Supplementary Material PRISMA 2020 is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses. PRISMA primarily focuses on the reporting of reviews evaluating the effects of interventions but can also be used as a basis for reporting systematic reviews with objectives other than evaluating interventions (e.g., evaluating aetiology, prevalence, diagnosis, or prognosis). For authors: PRISMA is aimed at helping authors improve the reporting of systematic reviews and meta-analyses. For reviewers and editors: PRISMA may also be useful for critical appraisal of published systematic reviews, although it is not a quality assessment instrument to gauge the quality of a systematic review. (Supplementary Materials)

References

[1] D. Viola, L. Valerio, E. Molinaro et al., “Treatment of advanced thyroid cancer with targeted therapies: ten years of experience,” Endocrine-Related Cancer, vol. 23, no. 4, pp. R185–R205, 2016.
[2] Y. E. Nikiforov and M. N. Nikiforova, “Molecular genetics and diagnosis of thyroid cancer,” Nature Reviews. Endocrinology, vol. 7, no. 10, pp. 569–580, 2011.
[3] M. W. Yeh, A. J. Bauer, V. A. Bernet et al., “American thyroid association statement on preoperative imaging for thyroid cancer surgery,” Thyroid, vol. 25, no. 1, pp. 3–14, 2015.
[4] M. Vivero, S. Kraft, and J. A. Barletta, “Risk stratification of follicular variant of papillary thyroid carcinoma,” Thyroid, vol. 23, no. 3, pp. 273–279, 2013.
[5] B. Y. Kim, C. H. Jung, J. W. Kim et al., “Impact of clinicopathologic factors on subclinical central lymph node metastasis in papillary thyroid microcarcinoma,” Yonsei Medical Journal, vol. 53, no. 5, pp. 924–930, 2012.
[6] Y. Ito, A. Miyauchi, M. Fujishima et al., “Prognostic significance of patient age in papillary thyroid carcinoma with no high-risk features,” Endocrine Journal, pp. EJ22–0056, 2022.
[7] C. La Vecchia, M. Malvezzi, C. Bosetti et al., “Thyroid cancer mortality and incidence: A global overview,” *International Journal of Cancer*, vol. 136, no. 9, pp. 2187–2195, 2015.

[8] Y. R. Hong, S. H. Lee, D. J. Lim et al., “The stratification of patient risk depending on the size and ratio of metastatic lymph nodes in papillary thyroid carcinoma,” *World Journal of Surgical Oncology*, vol. 15, no. 1, pp. 1–9, 2017.

[9] H. G. Vuong, U. N. P. Duong, A. M. A. Altibi, H. T. T. Ngo, T. Q. Pham, and H. M. Tran, “A meta-analysis of prognostic roles of molecular markers in papillary thyroid carcinoma,” *Endocrine Connections*, vol. 6, pp. 8–17, 2017.

[10] F. Bhajee and Y. E. Nikiforov, “Molecular analysis of thyroid tumors,” *Endocrine Pathology*, vol. 22, no. 3, pp. 126–133, 2011.

[11] H. X. Xu, “The role of BRAF in the pathogenesis of thyroid carcinoma,” *Frontiers in Bioscience*, vol. 20, no. 7, pp. 1068–1078, 2015.

[12] A. Guerra, P. Zeppa, M. Bifulco, and M. Vitale, “Concomitant BRAFV600E mutation and RET/PTC rearrangement is a frequent occurrence in papillary thyroid carcinoma,” *Thyroid*, vol. 24, no. 2, pp. 254–259, 2014.

[13] M. H. Kim, J. S. Bae, D. J. Lim et al., “Quantification of BRAF V600E alleles predicts papillary thyroid cancer progression,” *Endocrine-Related Cancer*, vol. 21, no. 6, pp. 891–902, 2014.

[14] K. B. Kim, M. E. Cabanillas, A. J. Lazar et al., “Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAFV600E mutation,” *Thyroid*, vol. 23, no. 10, pp. 1277–1283, 2013.

[15] J. Mao, Q. Zhang, H. Zhang, K. Zheng, R. Wang, and G. Wang, “Risk factors for lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis,” *Frontiers in Endocrinology*, vol. 11, p. 265, 2020.

[16] Y. Ito, T. Kudo, K. Kobayashi, A. Miya, K. Ichihara, and A. Miyauchi, “Prognostic factors for recurrence of papillary thyroid carcinoma in the lymph nodes, lung, and bone: analysis of 5,768 patients with average 10-year follow-up,” *World Journal of Surgery*, vol. 36, no. 6, pp. 1274–1278, 2012.

[17] Y. Ito, A. Miyauchi, M. Kihara, K. Kobayashi, and A. Miya, “Prognostic values of clinical lymph node metastasis and macroscopic extrathyroidal extension in papillary thyroid carcinoma,” *Endocrine Journal*, vol. 61, no. 8, pp. 745–750, 2014.

[18] M. Gapany, “Central lymph node metastasis of unilateral papillary thyroid carcinoma: patterns and factors predictive of nodal metastasis, morbidity, and recurrence,” *Yearbook of Otolaryngology-Head and Neck Surgery*, vol. 2012, pp. 247–248, 2012.

[19] S. Pillai, V. Gopalan, R. A. Smith, and A. K. Y. Lam, “Diffuse sclerosing variant of papillary thyroid carcinoma—an update of its clinicopathological features and molecular biology,” *Critical Reviews in Oncology/Hematology*, vol. 94, no. 1, pp. 64–73, 2015.

[20] C. C. Lubitz, S. Parangi, T. M. Holm et al., “Detection of circulating BRAFV600E in patients with papillary thyroid carcinoma,” *The Journal of Molecular Diagnostics*, vol. 18, no. 1, pp. 100–108, 2016.

[21] M. Xing, A. S. Alzahrani, K. A. Carson et al., “Association between BRAFV600E mutation and recurrence of papillary thyroid cancer,” *Journal of Clinical Oncology*, vol. 33, no. 1, pp. 42–50, 2015.

[22] L. E. Henke, J. D. Pfeifer, C. Ma et al., “BRAF mutation is not predictive of long-term outcome in papillary thyroid carcinoma,” *Cancer Medicine*, vol. 4, no. 6, pp. 791–799, 2015.

[23] M. Xing, A. S. Alzahrani, K. A. Carson et al., “Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer,” *Journal of the American Medical Association*, vol. 309, no. 14, pp. 1493–1501, 2013.

[24] G. M. Howell, M. N. Nikiforova, S. E. Carty et al., “BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer,” *Annals of Surgical Oncology*, vol. 20, no. 1, pp. 47–52, 2013.

[25] L. G. T. Morris, A. G. Sikora, T. D. Tosteson, and L. Davies, “The increasing incidence of thyroid cancer: the influence of access to care,” *Thyroid*, vol. 23, no. 7, pp. 885–891, 2013.

[26] F. Wang, S. Zhao, X. Shen et al., “BRAF V600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer,” *Journal of Clinical Oncology*, vol. 36, no. 27, pp. 2787–2795, 2018.

[27] H. S. Kazaure, S. A. Roman, and J. A. Sosa, “Aggressive variants of papillary thyroid cancer: incidence, characteristics and predictors of survival among 43,738 patients,” *Annals of Surgical Oncology*, vol. 19, no. 6, pp. 1874–1880, 2012.

[28] K. J. Kim, S. M. Kim, Y. S. Lee, W. Y. Chung, H. S. Chang, and C. S. Park, “Prognostic significance of tumor multifocality in papillary thyroid carcinoma and its relationship with primary tumor size: a retrospective study of 2,309 consecutive patients,” *Annals of Surgical Oncology*, vol. 22, no. 1, pp. 125–131, 2015.

[29] D. Ahn, J. S. Park, J. H. Sohn et al., “BRAFV600E mutation does not serve as a prognostic factor in Korean patients with papillary thyroid carcinoma,” *Auris, Nasus, Larynx*, vol. 39, no. 2, pp. 198–203, 2012.

[30] F. Frasca, C. Nucera, G. Pellegriti et al., “BRAF (V600E) mutation and the biology of papillary thyroid cancer,” *Endocrine-Related Cancer*, vol. 15, no. 1, pp. 191–205, 2008.

[31] H. J. Qu, X. Y. Qu, Z. Hu et al., “The synergic effect of BRAF V600E mutation and multifocality on central lymph node metastasis in unilateral papillary thyroid carcinoma,” *Endocrine Journal*, vol. 65, no. 1, pp. 113–120, 2018.

[32] C. Shi, Y. Guo, Y. Lv et al., “Clinicopathological features and prognosis of papillary thyroid microcarcinoma for surgery and relationships with the BRAFV600E mutational status and expression of angiogenic factors,” *PLoS One*, vol. 11, no. 12, pp. 167–414, 2016.

[33] C. Liu, T. Chen, and Z. Liu, “Associations between BRAF V600E and prognostic factors and poor outcomes in papillary thyroid carcinoma: a meta-analysis,” *World Journal of Surgical Oncology*, vol. 14, no. 1, pp. 1–12, 2016.

[34] S. Kim, K. E. Lee, J. P. Myong et al., “BRAFV600E mutation is associated with tumor aggressiveness in papillary thyroid cancer,” *World Journal of Surgery*, vol. 36, no. 2, pp. 310–317, 2012.

[35] A. Chakraborty, A. Narkar, R. Mukhopadhyaya, S. Kane, A. D’Cruz, and M. G. R. Rajan, “BRAF V600E mutation in papillary thyroid carcinoma: significant association with node metastases and extra thyroidal invasion,” *Endocrine Pathology*, vol. 23, no. 2, pp. 83–93, 2012.

[36] A. Czarniecka, M. Kowal, D. Rusinek et al., “The risk of relapse in papillary thyroid cancer (PTC) in the context of BRAFV600E mutation status and other prognostic factors,” *PLoS One*, vol. 10, no. 7, pp. 132–821, 2015.

[37] C. Eloy, J. Santos, J. Cameselle-Teijeiro, P. Soares, and M. Sobrinho-Simões, “TGF-beta/Smad pathway and BRAF
mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma,” *Virchows Archiv*, vol. 460, no. 6, pp. 587–600, 2012.

[38] S. Lassalle, V. Hofman, M. Ilie et al., “Clinical impact of the detection of BRAF mutations in thyroid pathology: potential usefulness as diagnostic, prognostic and theragnostic applications,” *Current Medicinal Chemistry*, vol. 17, no. 17, pp. 1839–1850, 2010.

[39] A. Zoghlanl, F. Roussel, J. C. Sabourin et al., “BRAF mutation in papillary thyroid carcinoma: predictive value for long-term prognosis and radioiodine sensitivity,” *European Annals of Otorhinolaryngology, Head and Neck Diseases*, vol. 131, no. 1, pp. 7–13, 2014.

[40] Y. Ito, H. Yoshida, M. Kihara, K. Kobayashi, A. Miya, and A. Miyauchi, “BRAFV600E mutation analysis in papillary thyroid carcinoma: Is it useful for all patients,” *World Journal of Surgery*, vol. 38, no. 3, pp. 679–687, 2014.

[41] M. Daliri, M. R. Abbaszadegan, M. Mehrabi Bahar et al., “The role of BRAF V600E mutation as a potential marker for prognostic stratification of papillary thyroid carcinoma: a long-term follow-up study,” *Endocrine Research*, vol. 39, no. 4, pp. 189–193, 2014.

[42] J. Sun, J. Zhang, J. Lu et al., “BRAF V600E and TERT promoter mutations in papillary thyroid carcinoma in Chinese patients,” *PLoS One*, vol. 11, no. 4, pp. 153–319, 2016.

[43] Y. Cohen, M. Xing, E. Mambo et al., “BRAF mutation in papillary thyroid carcinoma,” *Journal of the National Cancer Institute*, vol. 95, no. 8, pp. 625–627, 2003.

[44] M. Xing, “BRAF mutation in thyroid cancer,” *Endocrine-Related Cancer*, vol. 12, no. 2, pp. 245–262, 2005.

[45] S. K. Kim, J. W. Woo, J. H. Lee et al., “Role of BRAF V600E mutation as an indicator of the extent of thyroidectomy and lymph node dissection in conventional papillary thyroid carcinoma,” *Surgery*, vol. 158, no. 6, pp. 1500–1511, 2015.

[46] M. Rivera, R. A. Ghossein, H. Schoder, D. Gomez, S. M. Larson, and R. M. Tuttle, “Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma,” *Cancer*, vol. 113, no. 1, pp. 48–56, 2008.

[47] V. Rodolico, D. Cabibi, G. Pizzolanti et al., “BRAFV600E mutation and p27kip1 expression in papillary carcinomas of the thyroid’s 1 cm and their paired lymph node metastases,” *Cancer*, vol. 110, no. 6, pp. 1218–1226, 2007.

[48] C. Lupi, R. Giannini, C. Ugolini et al., “Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma,” *The Journal of Clinical Endocrinology & Metabolism*, vol. 92, no. 11, pp. 4085–4090, 2007.

[49] X. Lee, M. Gao, Y. Ji et al., “Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma,” *Annals of Surgical Oncology*, vol. 16, no. 2, pp. 240–245, 2009.

[50] R. P. Tufano, G. V. Teixeira, J. Bishop, K. A. Carson, and M. Xing, “BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment,” *Medicine (Baltimore)*, vol. 91, no. 5, pp. 274–286, 2012.

[51] Y. S. Song, J. A. Lim, and Y. J. Park, “Mutation profile of well-differentiated thyroid cancer in Asians,” *Endocrinol Metab (Seoul)*, vol. 30, no. 3, pp. 252–262, 2015.

[52] W. J. Mack, S. Preston-Martin, L. Bernstein, and D. Qian, “Lifestyle and other risk factors for thyroid cancer in Los Angeles County females,” *Annals of Epidemiology*, vol. 12, no. 6, pp. 395–401, 2002.

[53] C. K. Zhao, J. Y. Zheng, L. P. Sun, R. Y. Xu, and H. X. Xu, “BRAFV600E mutation analysis in fine-needle aspiration cytology specimens for diagnosis of thyroid nodules: The influence of false-positive and false-negative results,” *Cancer Medicine*, vol. 8, no. 12, pp. 5577–5589, 2019.

[54] S. M. Rothenberg, D. G. McDadden, E. L. Palmer, G. H. Daniels, and L. J. Wirth, “Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib,” *Clinical Cancer Research*, vol. 21, no. 5, pp. 1028–1035, 2015.

[55] S. Moon, Y. S. Song, Y. A. Kim et al., “Effects of coexistent-BRAFV600EandTERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis,” *Thyroid*, vol. 27, no. 5, pp. 651–660, 2017.

[56] L. Jin, E. Chen, S. Dong et al., “BRAF and TERT promoter mutations in the aggressiveness of papillary thyroid carcinoma: a study of 653 patients,” *Oncotarget*, vol. 7, no. 14, pp. 18346–18355, 2016.

[57] M. Celik, B. Y. Bulbul, S. Ayturk et al., “The relation between BRAFV600E mutation and clinicopathological characteristics of papillary thyroid cancer,” *Med Glas (Zenica)*, vol. 17, pp. 1–6, 2020.

[58] D. Chen, W. Qi, P. Zhang et al., “Investigation of BRAF V600E detection approaches in papillary thyroid carcinoma,” *Pathology-Research and Practice*, vol. 214, no. 2, pp. 303–307, 2018.

[59] E. K. Choi, A. Chong, J.-M. Ha, C. K. Jung, O. Joo Hyun, and S. H. Kim, “Clinicopathological characteristics including BRAFV600E mutation status and PET/CT findings in papillary thyroid carcinoma,” *Clinical Endocrinology*, vol. 87, no. 1, pp. 73–79, 2017.

[60] R. C. Da Silva, H. S. C. de Paula, C. B. Q. S. Leal et al., “BRAF overexpression is associated with BRAF V600E mutation in papillary thyroid carcinomas,” *Genetics and Molecular Research*, vol. 14, no. 2, pp. 5065–5075, 2015.

[61] A. Finkel, L. Liba, E. Simon et al., “Subclonality for BRAF mutation in papillary thyroid carcinoma is associated with earlier disease stage,” *The Journal of Clinical Endocrinology and Metabolism*, vol. 101, no. 4, pp. 1407–1413, 2016.

[62] S. Fraser, C. Go, A. Aniss et al., “BRAFV600E mutation is associated with decreased disease-free survival in papillary thyroid cancer,” *World Journal of Surgery*, vol. 40, no. 7, pp. 1618–1624, 2016.

[63] X. X. Gan, F. Shen, X. Y. Deng et al., “Prognostic implications of the BRAF-V600 mutation in papillary thyroid carcinoma based on a new cut-off age stratification,” *Oncology Letters*, vol. 19, no. 1, pp. 631–640, 2020.

[64] J. Gao, X. P. Ma, F. S. Deng, L. Jiang, W. D. Jia, and M. Li, “Associations of the BRAF V600E Mutation and PAQR3 Protein Expression with Papillary Thyroid Carcinoma Clinicopathological Features,” *Pathology Oncology Research*, vol. 26, no. 3, pp. 1833–1841, 2020.

[65] X. Goh, J. Lum, S. P. Yang et al., “BRAF mutation in papillary thyroid cancer—Prevalence and clinical correlation in a South-East Asian cohort,” *Clinical Otolaryngology*, vol. 44, no. 2, pp. 114–123, 2019.

[66] M. Huang, C. Yan, H. Wei, Y. Lv, and R. Ling, “Clinicopathological characteristics and prognosis of thyroid cancer in north-west China: a population-based retrospective study of 2490 patients,” *Thorac Cancer*, vol. 9, no. 11, pp. 1453–1460, 2018.
W. Ji, H. Xie, B. J. Wei et al., “Relationship between BRAF V600E gene mutation and the clinical and pathologic characteristics of papillary thyroid microcarcinoma,” *International Journal of Clinical and Experimental Pathology*, vol. 12, no. 9, pp. 3492–3499, 2019.

H. Y. Na, H. W. Yu, W. Kim et al., “Clinicopathological indicators for TERT promoter mutation in papillary thyroid carcinoma,” *Clinical Endocrinology*, 2022.

Y. Y. Jung, J. H. Yoo, E. S. Park et al., “Clinicopathologic correlations of the BRAFV600E mutation, BRAF V600E immunohistochemistry, and BRAF RNA in situ hybridization in papillary thyroid carcinoma,” *Pathology-Research and Practice*, vol. 211, no. 2, pp. 162–170, 2015.

K. J. Kim, S. G. Kim, J. Tan et al., “BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma,” *European Journal of Cancer*, vol. 124, pp. 161–169, 2020.

A. Kowalska, A. Walczyk, A. Kowalik et al., “Response to therapy of papillary thyroid cancer of knownBRAFstatus,” *Clinical Endocrinology*, vol. 87, no. 6, pp. 815–824, 2017.

S. M. Lee, C. R. Lee, S. W. Kang et al., “Association between BRAFV600E mutations and clinicopathological features of papillary thyroid microcarcinoma (PTMC),” *J Endocr Surg.*, vol. 19, no. 3, pp. 76–84, 2019.

L. Liu, J. W. Chang, S. N. Jung et al., “Clinical implications of the extent of BRAFV600E alleles in patients with papillary thyroid carcinoma,” *Oral Oncology*, vol. 62, pp. 72–77, 2016.

J. L. Lu, J. Gao, J. Zhang et al., “Association between BRAF V600E mutation and regional lymph node metastasis in papillary thyroid carcinoma,” *International Journal of Clinical and Experimental Pathology*, vol. 8, no. 1, pp. 793–799, 2015.

H. Z. Lu, T. Qiu, J. M. Ying, and N. Lyn, “Association between BRAFV600E mutation and the clinicopathological features of solitary papillary thyroid microcarcinoma,” *Oncology Letters*, vol. 13, no. 3, pp. 1595–1600, 2017.

J. R. Martínez, S. Vargas-Salas, S. U. Gamboa et al., “The combination of RET, BRAF and demographic data identifies subsets of patients with aggressive papillary thyroid cancer,” *Hormones and Cancer*, vol. 10, no. 2-3, pp. 97–106, 2019.

M. P. Rusmana, N. P. Sriwidyan, and I. G. S. Dewi, “BRAF V600E expression found in aggressive papillary thyroid carcinoma (PTC), lymph node metastasis, and extra-thyroid extension,” *Bali Medical Journal*, vol. 7, no. 3, pp. 658–662, 2018.

C. J. Yan, M. L. Huang, X. Li, T. Wang, and R. Ling, “Relationship between BRAF V600E and clinical features in papillary thyroid carcinoma,” *Endocrine Connections*, vol. 8, no. 7, pp. 988–996, 2019.

R. Zeng, L. Jin, E. Chen et al., “Potential relationship between Hashimoto’s thyroiditis and BRAFV600Emutation status in papillary thyroid cancer,” *Head & Neck*, vol. 38, no. S1, pp. E1019–E1025, 2016.

Z. Xiangqian, P. Chen, G. Ming et al., “Risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: a study of 1,587 patients,” *Cancer Biology & Medicine*, vol. 16, no. 1, pp. 121–130, 2019.

C. Zhou, J. Li, Y. Wang, S. Xue, and Y. Zhang, “Association of BRAF gene and TSHR with cervical lymph node metastasis of papillary thyroid microcarcinoma,” *Oncology Letters*, vol. 17, no. 1, pp. 183–194, 2019.