Venous Thromboembolism in Ambulatory Covid-19 patients: Clinical and Genetic Determinants

AUTHORS:
JQ Xie, BS.Med, MSc, A Prats-Uribe, FFPH, DPhil, Q Feng, PhD, YH Wang, MSc, D Gill, MD, PhD, R Paredes, MD, PhD, and D Prieto-Alhambra MD, PhD, *

AFFILIATIONS:
1. Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, United Kingdom
2. Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
3. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
4. Department of Clinical Pharmacology and Therapeutics, Institute for Infection and Immunity, St George’s, University of London, London, UK
5. Genetics Department, Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
6. Infectious Diseases Department & irsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Catalonia, Spain

* Correspondence to:
Prof Daniel Prieto-Alhambra
Botnar Research Centre, Windmill Road, OX37LD, Oxford, UK
Daniel.prietoalhambra@ndorms.ox.ac.uk

Abstract [248w]

Background
Substantial evidence suggests that severe Covid-19 leads to an increased risk of Venous Thromboembolism (VTE). We aimed to quantify the risk of VTE associated with ambulatory Covid-19, study the potential protective role of vaccination, and establish key clinical and genetic determinants of post-Covid VTE.

Methods
We analyzed a cohort of ambulatory Covid-19 patients from UK Biobank, and compared their 30-day VTE risk with propensity-score-matched non-infected participants. We fitted multivariable models to study the associations between age, sex, ethnicity, socio-economic status, obesity, vaccination status and inherited thrombophilia with post-Covid VTE.

Results
Overall, VTE risk was nearly 20-fold higher in Covid-19 vs matched non-infected participants (hazard ratio [HR] 19.49, 95% confidence interval [CI] 11.50 to 33.05). However, the risk was substantially attenuated amongst the vaccinated (HR: 2.79, 95% CI 0.82 to 9.54). Older age, male sex, and obesity were independently associated with higher risk, with adjusted HRs of 2.00 (1.61 to 2.47) per 10 years, 1.66 (1.28 to 2.15), and 1.85 (1.29 to 2.64), respectively. Further, inherited thrombophilia led to an HR 2.05, 95% CI 1.15 to 3.66.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conclusions

Ambulatory Covid-19 was associated with a striking 20-fold increase in incident VTE, but no elevated risk after breakthrough infection in the fully vaccinated. Older age, male sex, and obesity were clinical determinants of Covid-19-related VTE. Additionally, inherited thrombophilia doubled risk further, comparable to the effect of 10-year ageing. These findings reinforce the need for vaccination, and call for targeted strategies to prevent VTE during outpatient care of Covid-19.
Introduction

Numerous hospital-based studies and case series have demonstrated a high risk of venous thromboembolism (VTE) in severe Covid-19 patients. A recent meta-analysis reported a pooled VTE rate of 14.7% and 23.2% among those admitted to hospital and in intensive care units, respectively.\(^1\) Additionally, emerging randomized controlled trials have shown the benefit-risk of anticoagulation for Covid-19 patients at different stages of the diseases,\(^2\) and clinical societies have recommended initiating routine antithrombotic therapy during hospital admission.\(^3\)

In contrast, fewer clinical interventions have been implemented to prevent VTE amongst ambulatory patients with SARS-CoV-2 infection, partially due to conflicting findings on the association between infection and VTE risk, and mixed evidence of benefit from oral anticoagulation.\(^4\) Given the ongoing global rollout of vaccines, relaxation of public health restrictions, and widespread highly transmissible Omicron variant, the absolute number of milder Covid-19 cases managed in ambulatory settings continues to rise worldwide.\(^5,6\) These collectively suggest that prophylaxis, including timing and dosing regimens, requires further refinement, particularly in the outpatient setting.\(^2,7-10\) Moreover,\(^11\) a lack of insight into the impact of clinical, socioeconomic, and genetic risk factors for infection-related VTE persists.

This study aimed to (1) quantify the magnitude of acute VTE risk attributable to SARS-CoV-2 infection identified in ambulatory settings; and (2) investigate the clinical and genetic determinants of VTE risk after SARS-CoV-2 infection.

Methods

We included UK Biobank (UKBB) participants from England who were alive on 01 March 2020. All participants provided written informed consent at the UKBB cohort recruitment. This study received ethical approval from UKBB Ethics Advisory Committee (EAC) and was performed under the application of 65397.

Data sources and study cohorts

We obtained data from UK Biobank comprising multiple linked sources, including baseline surveys conducted between 2006-2010, individual genetic data, primary care electronic medical records, hospital inpatient data from Hospital Episode Statistics, diagnostic Covid-19 test data from Public Health England and death records from the national death registry (Office of National Statistics).

We curated an infected cohort by enrolling individuals with positive polymerase-chain-reaction SARS-CoV-2 results confirmed between 1 March 2020 and 30 September 2021. Participants who were never tested or only had negative test results were classified into the non-infected cohort. The index date was the date of the first positive specimen sample for the infected cohort, and a random date during the same calendar period for the matched non-infected. Participants with historical VTE or who used antithrombotic drugs one year before index dates were. Additionally, we excluded those in the infected cohort who tested positive in hospital settings.

Inherited thrombophilia

Information on genotyping and imputation procedures in UK Biobank has been detailed in previous studies.\(^12\) Briefly, genome-wide single nucleotide polymorphisms (SNPs) were genotyped using two closely related purpose-designed arrays (the UK BiLEVE Axiom array and UK Biobank Axiom array). We defined inherited thrombophilia carriers as having any of two risk SNP variants in Factor V Leiden (rs6025) or Prothrombin G20210A (rs1799963). We also defined a positive genetic control exposure
by calculating a 297-SNPs polygenic risk score (PRS) for VTE that did not include these two variants13 (see Supplementary Appendix for details).

Covariates
We pre-specified a list of covariates for adjustment, including demographics (age, sex, ethnicity), socio-economic status measured by the Index of Multiple Deprivation (a summary deprivation measurement used in England containing seven aspects in crime, education, employment, health, housing, income and living environment),14 body mass index (BMI), medications prescribed within one year before the index date, and comorbidities recorded in primary care records (Table 1). The number of hospital admissions in the past one year (proxy of healthcare utilization) and vaccination status (no, partial 1-dose, or full 2-dose vaccination) were also studied.

Outcomes
Incident VTE, comprising either deep vein thrombosis or pulmonary embolism, was identified using ICD-10 codes based on hospital records. Eligible participants were followed up for up to 30 days after the index date, given that VTE occurring after 30 days were much less likely to be due to a direct consequence of SARS-CoV-2 infection.

Statistical analyses
We used propensity score (PS) matching to minimize confounding in the study of the association between SARS-CoV-2 infection and VTE. We fitted multivariable logistic regression models to estimate PS as the probability of infection based on the predefined covariates. We then matched infected with non-infected individuals with a ratio of 1:5 based on PS values with a caliper width of up to 0.2 standard deviations of the logit of the PS, with exact-matching on index dates.15,16 We assessed covariate balance between the cohorts before and after matching using absolute standardized mean differences (SMD) and specified SMD>0.1 as relevant imbalances.17 Cause-specific Cox survival models were applied to estimate hazard ratios (HRs) for VTE according to exposure, in which death was considered a competing risk.18

To study clinical determinants, we fitted multivariable Cox models of 30-day VTE in the ambulatory Covid-19 cohort, including age, sex, ethnicity, socio-economic status, obesity (BMI less than vs equal or more than 30 kg/m2) and vaccination status. For the analysis of inherited thrombophilia’ effect on post Covid-19 VTE, we adjusted Cox models for age, sex and genetic ancestry (quantified by the first three principal components), assuming that genetic variants were independent of baseline characteristics. We introduced a positive exposure control (PRS for VTE) and a negative outcome (arterial thromboembolism [ATE]) experiment to detect residual confounding and potential unresolved bias.19

A sensitivity analysis was performed repeating the modelling of clinical determinants with VTE in the non-infected cohort, where no association is expected between vaccination and Covid-19-unrelated VTE.

All statistical tests were 2-sided, where a $P = 0.05$ or a 95% CI that did not contain unity were considered statistically significant for the primary analyses. All analyses and data visualizations were conducted using R statistical software. Genetic data management and quality controls were performed using Plink 1.9.20

Results

Baseline characteristics
Out of 407,311 UKBB participants, 26,210 were infected with SARS-CoV-2 between 1 March 2020 and 30 September 2021. After applying exclusion criteria, 21,724/26,210 (83%) infected and 318,754/407,311 (78.23%) non-infected were eligible for analyses (Supplementary Results 1). For all infections, 2,877 (13%) and 18,847 (87%) tested in hospital and outpatient settings, respectively. Only the latter were included for subsequent analyses.

Baseline characteristics by infection status are summarized in Table 1. Overall, ambulatory Covid-19 participants were younger than the uninfected (mean age [sd] 64.32 [8.03] vs 67.85 [8.04]), more likely male (43.8% vs 41.5%), from non-White ethnicity (12.0% vs 6.4%), and more socioeconomically deprived and obese. After PS matching, almost all ambulatory Covid-19 cases (98.7%) were successfully matched to at least one non-infected counterpart, and all covariates became balanced. In addition, index dates and calendar periods were accurately aligned between the cohorts, as depicted in Supplementary Results 2.

Association of SARS-CoV-2 infection with incident VTE

Figure 1 depicts cumulative incidence of VTE according to infection status, showing an early separation of the matched cohorts, with continued divergence over time. A total of 73 and 17 VTE events were seen within 30 days amongst the ambulatory Covid-19 patients and matched uninfected, corresponding to incidence rates of 5.00 and 2.61 per 1,000 person-years, respectively. Survival analyses (Table 2) suggested that SARS-CoV-2 infection was associated with a striking increase in VTE risk: HR: 19.49, 95% CI 11.50 to 33.05. The observed risk was more pronounced in the unvaccinated patients (HR: 29.37, 95% CI 15.11 to 57.08) and substantially mitigated in the fully vaccinated (HR: 2.79, 95% CI 0.82 to 9.54).

Clinical determinants of post-Covid-19 VTE

The associations between socio-demographic and clinical factors (including vaccination status) and risk of post-Covid VTE are shown in Figure 2. Older participants had a higher risk, with an approximate doubling of risk per each 10-year increase in age (adjusted HR: 2.00, 95% CI 1.61 to 2.47). Men were at higher risk than women (adjusted HR: 1.66, 95% CI 1.28 to 2.15), and people with obesity at a higher risk than non-obese (adjusted HR: 1.85, 95% CI 1.29 to 2.64). These associations were equally seen for Covid-19-unrelated VTE in both direction and magnitude (Figure 2; Supplementary Results 3).

Additionally, 2-dose vaccination was associated with a substantially lower risk of Covid-19-related VTE (adjusted HR: 0.13, 95% 0.06 to 0.28). A sensitivity analysis demonstrated no association between vaccination status and Covid-19-unrelated VTE (Figure 2; Supplementary Results 3).

Inherited thrombophilia and post-Covid-19 VTE

Among 21,055 infected participants with complete genetic data, 1,287 (6.11%) had inherited thrombophilia, with 909 (4.32%) and 392 (1.86%) carrying risk variant/s of Factor V Leiden and Prothrombin G20210A, respectively (Table 3). The frequency of these genetic variations in the infected cohort was like that in the overall UKBB cohort and consistent with reports from previous literature (Supplementary Results 4). No differences in any of the measured covariates (except for ethnicity), including socio-demographics, medications or comorbidities, were observed when comparing those with vs without inherited thrombophilia (Supplementary Results 5).

Participants with inherited thrombophilia had a higher risk of VTE following SARS-CoV-2 infection than those without (adjusted HR: 2.05, 95% CI 1.15 to 3.66). For each risk variant, the adjusted HR was 2.17 (95% CI 1.13 to 4.15) for Factor V Leiden carriers and 1.52 (95% CI 0.48 to 4.79) for Prothrombin G20210A carriers. Also, individuals with higher PRS values had greater VTE risk:
adjusted HR per 1-SD increase of PRS 1.33, 95% CI 1.11 to 1.59 (Table 3). As expected, no associations were observed between inherited thrombophilia and the negative control outcome ATE, with adjusted HR ranging from 0.91 (95% CI 0.29 to 2.84) to 0.99 (95% CI 0.49 to 2.01).

Discussion

In this community-based cohort of UKBB participants, including 26,210 with PCR-confirmed ambulatory Covid-19 cases and 381,063 matched contemporary non-infected controls, we found SARS-CoV-2 infection was associated with an approximately 20-fold increase in VTE risk within 30 days of a positive test. However, this risk was largely attenuated in the fully vaccinated participants who then suffered a breakthrough infection.

Known clinical determinants of VTE, including older age, male sex, and obesity, applied to post-Covid-19 VTE. Complete vaccination was associated with an almost 90% relative risk reduction of Covid-19-related VTE. As expected, vaccination did not impact VTE risk in the uninfected peers. Finally, inherited thrombophilia carriers had an additional double risk of post-Covid-19 VTE compared to non-carriers, equivalent to the excess risk attributable to an increase of 10 years of age.

Our finding of a substantially higher incidence of VTE following ambulatory Covid-19 disagreed with a previous meta-analysis of seven heterogeneous small Covid-19 cohorts, which had suggested that mild Covid-19 was not a risk factor for VTE. However, our data are in line with larger self-controlled case series studies that better accounted for within-person confounding and consistently showed orders of magnitude increases in VTE risk after SARS-CoV-2 infection.

Public interest and concerns have been placed predominantly on vaccine-related rare thromboembolic events, which has led to vaccine hesitancy and restrictions on its use. Our study found that the vaccination can offset SARS-CoV-2-induced VTE risk even if people get a breakthrough infection. This evident benefit should not be ignored in the ongoing global vaccination campaigns.

For the first time, we showed that inherited thrombophilia conferred a double risk of Covid-19-related VTE, echoing clinical findings of elevated factor V activity in severe Covid-19 patients. Although a relatively high proportion of congenital thrombophilia was previously detected in a small pilot study of 87 Covid-19 patients, the minimal sample size precluded any robust inference.

We analyzed rich linked data combining extensive community SARS-CoV-2 testing, well-recorded vaccination status, ambulatory and hospital-based clinical outcomes, as well as large scale genotyping data readily available for UKBB participants. The results of this analysis have many noteworthy implications. First, VTE risk management needs re-evaluation for milder ambulatory Covid-19 patients. With emerging evidence and guidelines focusing on VTE prophylaxis for hospitalized Covid-19 patients, further work is now necessary to mitigate risk in the community. Second, although the aetiology of post-Covid VTE is complex and multifaceted, our findings elucidated the role of Factor V and possibly Prothrombin proteins as contributing factors. Third, although genetic testing of inherited thrombophilia for VTE prevention has been previously discussed in many clinical scenarios, this newly identified effect on Covid-19-related VTE, comparable to a 10-year ageing effect, supports the potential value of targeted genetic screening for thrombophilia in the infected older adults. Fourth, traditional known clinical risk factors of VTE are still informative to identify subgroups of people at high risk of Covid-19-related VTE. Finally, our data demonstrate the significant impact of vaccination to minimize the risk of Covid-19 VTE.
This study also has some limitations. Residual confounding cannot be ruled out in this observational study, although robust statistical approaches for causal inference was applied, including PS matching and knowledge-driven negative control analyses. Participants recruited in UKBB might not fully represent the general population and were likely healthier. Although those Covid-19 participants were from non-hospital settings, they were likely to be symptomatic and more severe cases. The extent to which asymptomatic infection is associated with VTE risk warrants further investigation. Finally, the estimates from our analyses were an average and mixed effect of several SARS-CoV-2 strains, which should be cautiously extrapolated to novel variants, such as Omicron.

Community-based ambulatory Covid-19 is associated with a striking 20-fold excess risk of VTE. This risk was much higher among unvaccinated individuals, and increased with older age, in men, and in patients with obesity. Inherited thrombophilia further doubled VTE risk, comparable to a 10-year ageing effect. Our findings call for targeted prevention strategies for post-Covid VTE in outpatient settings, and suggest an aetiologic role of inherited thrombophilia. The clinical utility of genetic testing to stratify infected patients and inform personalized thromboprophylaxis warrants further research.
Declaration of interests

Funding:

Mr Xie is funded through Jardine-Oxford Graduate Scholarship and a titular Clarendon Fund Scholarship. DG is supported by the British Heart Foundation Research Centre of Excellence (RE/18/4/34215) at Imperial College London and by a National Institute for Health Research Clinical Lectureship (CL-2020-16-001) at St. George's, University of London. Prof Prieto-Alhambra is funded through an NIHR Senior Research Fellowship (grant SRF-2018-11-ST2-004), and received partial support from the Oxford NIHR Biomedical Research Centre. APU has received funding from the Medical Research Council (MRC) [MR/K501256/1, MR/N013468/1].

Conflicts of interest:

Prof Prieto-Alhambra that his research group has received grants and advisory or speaker fees from Amgen, Astellas, AstraZeneca, Chiesi-Taylor, Johnson & Johnson, and UCB; and that Janssen, on behalf of Innovative Medicines Initiative–funded European Health Data Evidence Network and European Medical Information Framework consortiums and Synapse Management Partners, have supported training programs, open to external participants, organized by his department. DG is employed part-time by Novo Nordisk.

Roger Paredes has participated in advisory boards for Gilead, MSD, ViiV Healthcare, Theratechnologies and Lilly. His institution has received research support from Gilead, MSD, and ViiV Healthcare.

Ethical approval

All participants provided written informed consent at the UKBB cohort recruitment. This study received ethical approval from UKBB Ethics Advisory Committee (EAC) and was performed under the application of 65397.

Data sharing

Bonafide researchers can apply to use the UK Biobank dataset by registering and applying at http://ukbiobank.ac.uk/register-apply/. The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Transparency declaration

The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted.

Contributors
D.P.A., J.Q.X., D.G, R.P were responsible for the study design. J.Q.X. did the data analyses, and A.P.U. checked the statistical codes. J.Q.X. and D.P.A. drafted the manuscript, and all co-authors reviewed and approved it for submission.
Table 1: Demographic and clinical characteristics of participants, stratified by the SARS-CoV-2 infection status.

	Un-matched participants	Matched participants				
	Non-infected	Infected	SMD	Non-infected	Infected	SMD
Number	318,754	18,847		85,151	18,818	
Age, mean (sd)	67.85 (8.04)	64.32 (8.03)	0.44	65.05 (7.92)	64.33 (8.03)	0.09
Sex, male (%)	132,412	82,478	0.045	36,714	82,358	0.122
Ethnicity White (%)	298,406	165,900	0.195	76,981	165,784	0.079
Index of Multiple Deprivation, mean (sd)	17.03 (13.51)	19.87 (14.68)	0.201	18.85 (14.59)	19.83 (14.65)	0.067
Body mass index, mean (sd)	27.04 (4.61)	27.65 (4.83)	0.129	27.43 (4.86)	27.64 (4.81)	0.044
Vaccination status						
Not vaccinated	202,661	11,140	0.092	48,144	11,117	0.05
Partial-vaccinated	37,471	924	0.25	37,85	923	0.21
Fully-vaccinated	78,622	6,783	0.248	33,076	6,775	0.06
Medications (%)						
(Past one year)						
Lipid lowering drugs	86,937	4,634	0.061	20,924	4,626	0.001
RAS inhibitors	57,790	3,296	0.017	14,645	3,290	0.007
Other anti-hypertensives	26,224	1,369	0.036	6,119	1,368	0.003
Proton pump inhibitors	78,004	5,268	0.079	22,564	5,247	0.03
Diabetes medicines	16,096	1,112	0.037	4,629	1,105	0.018
Antidepressants	43,411	3,189	0.092	13,403	3,180	0.031
Systemic glucocorticoids	15,031	994	0.026	4,203	984	0.013
Immunosuppressants	35,611	2,03	0.004	914	203	<0.001
Antineoplastic agents	182	14	0.007	51	14	0.006
Coexisting conditions (%)						
(Past years)						
Cancer	31,098	1,476	0.068	7,050	1,475	0.017
Malignant cancer	1,102	63	0.002	283	63	<0.001
Diabetes (uncomplicated)	23,095	1,496	0.026	6,396	1,490	0.015
Diabetes (end-organ damage)	6,651	415	0.008	1,775	414	0.008
Congestive heart failure	1,629	90	0.005	410	90	0.001
Myocardial infarction	645	35	0.004	156	35	0.001
Cerebrovascular disease	2,426	138	0.003	639	136	0.003
Peripheral vascular disease	13,117	49	0.026	224	49	0.001
Liver disease (mild)	1,493	81	0.006	397	81	0.005
Liver disease (moderate to severe)	595	46	0.012	184	45	0.005
Condition	Before (Cases)	After (Cases)	SMD	Before (Mean ± SD)	After (Mean ± SD)	p-value
---------------------------------	----------------	--------------	-----	--------------------	-------------------	---------
COPD	49824 (15.6)	3309 (17.6)	0.052	14373 (16.9)	3294 (17.5)	0.016
Chronic kidney disease	12746 (4.0)	691 (3.7)	0.017	3152 (3.7)	688 (3.7)	0.003
Peptic ulcer	6240 (2.0)	419 (2.2)	0.019	1827 (2.1)	418 (2.2)	0.005
Rheumatoid arthritis	8310 (2.6)	511 (2.7)	0.006	2276 (2.7)	509 (2.7)	0.002
Dementia	1873 (0.6)	206 (1.1)	0.055	786 (0.9)	202 (1.1)	0.015
Hemiplegia	244 (0.1)	15 (0.1)	0.001	65 (0.1)	15 (0.1)	0.001
AIDS	302 (0.1)	17 (0.1)	0.001	69 (0.1)	17 (0.1)	0.003
Hospital admissions (numbers, past one year)	**0.30 (1.51)**	**0.32 (1.96)**	**0.014**	**0.29 (1.39)**	**0.31 (1.61)**	**0.015**

SMD: Standardised mean difference, COPD: Chronic obstructive pulmonary disease, AIDS: Acquired immune deficiency syndrome
Figure 1: Cumulative incidence curves of venous thromboembolic events within 30 days.

Matched entire cohorts

Matched not-vaccinated subcohorts

Matched fully-vaccinated subcohorts
Table 2: Associations between ambulatory Covid-19 and venous thromboembolic events, overall and stratified by vaccination status

Subgroups*	Matched Non-infected	Matched Infected	Hazard ratio (95% CI)	P-value				
	No. of People	No. of Events	Incidence per 1000 PYs	No. of People	No. of Events	Incidence per 1000 PYs		
All participants	85,151	17	2.61	18,818	73	51.00	19.49 (11.50 to 33.05)	<0.01
Not vaccinated	48,248	10	2.54	11,120	67	75.09	29.37 (15.11 to 57.08)	<0.01
Fully vaccinated	33,032	7	3.08	6,774	4	8.61	2.79 (0.82 to 9.54)	0.10

*No separate analysis was performed among the half-vaccinated (one does) subgroup due to the minimal sample size.
Figure 2: Associations of clinical factors and vaccination status with Covid-19-related VTE (Any VTE events in the ambulatory Covid-19 cohort).

* Body mass index was measured at cohort recruitment.
Table 3: Effects of inherited thrombophilia on venous and arterial thromboembolism amongst all SARS-CoV-2 infected participants.

Exposure	Primary outcome	Negative outcome					
	Venous thromboembolism	Arterial thromboembolism					
	Unadjusted HR. (95% CI)	Adjusted HR (95% CI)	P value	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	P value	
Inherited thrombophilia	1.82 (1.02 to 3.23)	2.05 (1.15 to 3.66)	0.01*	0.94 (0.51 to 1.73)	0.98 (0.53 to 1.80)	0.95	
Factor V Leiden	1.97 (1.03 to 3.76)	2.17 (1.13 to 4.15)	0.02*	0.97 (0.48 to 1.98)	0.99 (0.49 to 2.01)	0.97	
Prothrombin G20210A	1.31 (0.42 to 4.11)	1.52 (0.48 to 4.79)	0.45	0.84 (0.27 to 2.62)	0.91 (0.29 to 2.84)	0.86	
Continuous PRS5	NA	1.29 (1.08 to 1.54)	1.34 (1.11 to 1.60)	<0.01*	NC	NC	NC
Categorical PRS†	6%	1.39 (0.73 to 2.66)	1.54 (0.80 to 2.95)	0.20	NC	NC	NC

HR: Hazard ratio, PRS: polygenic risk score, NA: Not available, NC: Not calculated

5Per 1-SD increase of PRS, † top 6% of PRS vs the lower, * statistical significance

To set an informative, positive exposure arm, we classified people as low and high polygenic risk groups according to their PRS value with a cut-off point at the 94% percentile. This threshold was chosen based on the proportion of inherited thrombophilia in the general UK Biobank population (~6%).
Supplementary Results 1: Flow-chart for the study design and participants' eligibility

Contemporary control group

407,311 Participants over 50 from England alive on 01/03/2020

381,063 Not part of SARS-CoV-2 infection group and alive at assigned start of follow-up

318,754 Without historical VTEs and previous use of any antithrombotic drugs

Maximal 5:1 matching:
- Calendar weeks
- Demographics
- Socioeconomics
- Medications
- Coexisting health conditions

85,151 Matched non-infected control group

SARS-CoV-2 infection group

407,311 Participants over 50 from England alive on 01/03/2020

25,210 First SARS-CoV-2 positive test between 01/03/2020 and 30/09/2021

21,724 Without historical VTEs and previous use of any antithrombotic drugs

18,847 Tested in outpatient settings

669 excluded for missing genotype

19,768 Non-carriers

1,287 Carriers

SARS-CoV-2 provoked VTE in 30 days

Any incident VTEs in 30 days
Supplementary Results 2: The distribution of infected and 1:5 matched non-infected persons over the study period.
Supplementary Results 3: Associations of clinical factors and vaccination status with Covid-19-unrelated VTE (Any VTE events in the non-infected cohort).

* Body mass index was measured at cohort recruitment. Because the VTE events in the non-infected group were very rare, we extended follow-up to 180 days to increase statistical power.
Supplementary Results 4: The frequency of study genetic variations

	Inherited thrombophilia (any of the two risk variants)	Factor V Leiden risk variant	Prothrombin G20210A risk variant
All UKBB participants (407,311)	6.26%	4.43%	2.03%
Infected participants (21,724)	6.11%	4.32%	1.86%
Supplementary Results 5: Demographic and clinical characteristics of SARS-CoV-2 infected participants, stratified by the inherited thrombophilia.

Infected participants	Without inherited thrombophilia	With inherited thrombophilia	SMD
Number	19,768	1,287	
Age, mean (sd)	64.82 (8.25)	64.82 (8.32)	<0.001
Sex, male (%)	8804 (44.5)	555 (43.1)	0.028
Ethnicity White (%)	16560 (83.8)	1131 (87.9)	0.118
Index of Multiple Deprivation, mean (sd)	19.97 (14.49)	19.48 (14.71)	0.034
Body mass index, mean (sd)	27.78 (4.88)	27.91 (5.03)	0.026
Vaccination status			
Not vaccinated	12426 (62.9)	802 (62.3)	0.011
Partial-vaccinated	956 (4.8)	54 (4.2)	0.031
Fully-vaccinated	6386 (32.3)	431 (33.5)	0.025
Medications (%)			
(Past one year)			
Lipid lowering drugs	4744 (24.0)	316 (24.6)	0.013
RAS inhibitors	3383 (17.1)	232 (18.0)	0.024
Other anti-hypertensives	1514 (7.7)	92 (7.1)	0.019
Proton pump inhibitors	5376 (27.2)	341 (26.5)	0.016
Diabetes medicines	1210 (6.1)	70 (5.4)	0.029
Antidepressants	3278 (16.6)	228 (17.7)	0.03
Systemic glucocorticoids	1102 (5.6)	69 (5.4)	0.009
Immunosuppressants	220 (1.1)	16 (1.2)	0.012
Antineoplastic agents	19 (0.1)	0 (0.0)	0.044
Coexisting conditions (%)			
(Past years)			
Cancer	1576 (8.0)	105 (8.2)	0.007
Malignant cancer	92 (0.5)	3 (0.2)	0.039
Diabetes (uncomplicated)	1614 (8.2)	97 (7.5)	0.023
Diabetes (end-organ damage)	455 (2.3)	29 (2.3)	0.003
Congestive heart failure	115 (0.6)	8 (0.6)	0.005
Myocardial infarction	52 (0.3)	2 (0.2)	0.024
Cerebrovascular disease	164 (0.8)	8 (0.6)	0.025
Peripheral vascular disease	65 (0.3)	2 (0.2)	0.035
Liver disease (mild)	93 (0.5)	7 (0.5)	0.01
Liver disease (moderate to severe)	54 (0.3)	3 (0.2)	0.008
COPD	3363 (17.0)	206 (16.0)	0.027
Chronic kidney disease	738 (3.7)	58 (4.5)	0.039
Peptic ulcer	431 (2.2)	25 (1.9)	0.017
Rheumatoid arthritis	541 (2.7)	32 (2.5)	0.016
Dementia	254 (1.3)	20 (1.6)	0.023
Hemiplegia	15 (0.1)	0 (0.0)	0.039
AIDS	19 (0.1)	0 (0.0)	0.044
Hospital admissions (numbers, past one year)	0.45 (2.33)	0.39 (1.36)	0.032
Supplementary Results 6: Effects of inherited thrombophilia on venous thromboembolism by community and hospitalized Covid-19 cases.

Exposure	Adjusted HR (95% CI)	P value
All Covid-19 cases		
Inherited thrombophilia	2.05 (1.15 to 3.66)	0.01*
Factor V Leiden	2.17 (1.13 to 4.15)	0.02*
Prothrombin G20210A	1.52 (0.48 to 4.79)	0.45
Community Covid-19 cases		
Inherited thrombophilia	1.60 (0.69 to 3.72)	0.27
Factor V Leiden	1.89 (0.76 to 4.72)	0.17
Prothrombin G20210A	0.83 (0.12 to 6.01)	0.855
Hospital Covid-19 cases		
Inherited thrombophilia	2.82 (1.26 to 6.30)	0.01*
Factor V Leiden	2.49 (0.98 to 6.29)	0.05
Prothrombin G20210A	3.18 (0.77 to 13.15)	0.10
Supplementary Appendix: Summary statistics for 297 candidate SNPs used for constructing the polygenic risk score for VTE.

Chr:Pos	rsid	Effect Allele	Beta
1:11910677	rs632793	G	0.0466
1:150383318	rs698915	A	0.0561
1:166533517	rs764024	T	0.0502
1:168406710	rs111414961	A	0.1183
1:168500034	rs72703796	G	0.2014
1:168572720	rs72705895	T	0.1313
1:168619548	rs1933116	T	0.1724
1:168738303	rs611769	C	0.0562
1:168714137	rs10918970	T	0.0572
1:168729631	rs12117978	A	0.2166
1:168812398	rs34258243	G	0.1015
1:168893973	rs78516619	G	0.6841
1:168909952	rs7526462	T	0.0714
1:168937072	rs113123846	G	0.4417
1:168960286	rs1322487	A	0.046
1:168969254	rs35990973	A	0.1057
1:169012124	rs1320969	G	0.0478
1:169014610	rs116140155	A	0.2498
1:169031755	rs113079063	T	0.2356
1:169038856	rs12747018	T	0.0717
1:169064630	rs1200118	G	0.1111
1:169072013	rs1892091	C	0.0526
1:169079419	rs1358714	A	0.0444
1:169086013	rs2143289	T	0.2335
1:169107377	rs7520186	T	0.0873
1:169276816	rs10732287	T	0.0916
1:169316610	rs10158131	G	0.0673
1:169318242	rs72702145	A	0.1342
1:169463296	rs147474835	G	0.12
1:169463519	rs4656683	T	0.1781
1:169486814	rs966751	G	0.1142
1:169511555	rs6032	T	0.1351
1:169593113	rs3917862	G	0.2198
1:169620673	rs12075684	G	0.0534
1:169659128	rs185120584	T	0.5696
1:170051841	rs115476742	C	0.0857
1:170080014	rs12128208	C	0.1373
1:170174298	rs12144655	A	0.0893
1:181031783	rs3936939	A	0.0458
1:201882277	rs2644120	C	0.058
1:207282149	rs2842700	A	0.1138
1:207285043	rs57695638	C	0.1708
1:230417394	rs3088075	T	0.0798
1:248028780	rs79322592	A	0.0517
1:248039451	rs3811444	C	0.0513
1:9341786	rs677665	T	0.0521
2:127934102	rs10198483	A	0.0559
2:127979335	rs111736896	A	0.0717
2:128130376	rs35295119	G	0.0442
2:128175875	rs1799809	G	0.072
2:128187428	rs67495946	C	0.0631
2:128398892	rs67076363	A	0.0733
2:161845453	rs75145714	C	0.1264
2:178238316	rs4893934	G	0.0449
2:198894550	rs355527575	G	0.1319
2:198946551	rs6434955	G	0.0587
2:68530180	rs13013670	T	0.0485
2:68619981	rs1867312	C	0.0585
3:126238371	rs11721316	A	0.061
3:126276710	rs12636448	C	0.0456
3:150872174	rs75341781	A	0.1323
3:150880908	rs3116549	C	0.0522
Chr:Pos	rsid	Effect Allele	Beta
---------	---------------	---------------	--------
3:185234111	rs115110838	T	0.0649
3:194787481	rs116764841	T	0.0661
3:36140951	rs113114306	T	0.1047
3:39240559	rs7622284	T	0.0741
3:6084766	rs11712865	G	0.0799
3:77048575	rs6799348	G	0.1488
3:88354842	rs1641009	T	0.0567
3:89250573	rs7347904	A	0.0751
3:89679389	rs134192156	T	0.1656
3:90390344	rs9858006	A	0.0465
3:93518545	rs139156297	T	0.1388
3:93580976	rs9290378	T	0.0509
3:94209055	rs9290227	T	0.0849
4:155251071	rs116333064	A	0.1157
4:155424231	rs4323084	T	0.1012
4:155432944	rs457780	G	0.064
4:155450158	rs13435192	T	0.1124
4:155474683	rs115999709	G	0.1456
4:155549026	rs79726896	G	0.1598
4:155513276	rs2070008	T	0.0975
4:155515486	rs1984906	G	0.0671
4:155538470	rs13130318	G	0.1984
4:155542926	rs59234924	G	0.1077
4:155549598	rs72681247	T	0.2163
4:155553541	rs79201245	C	0.1462
4:187114479	rs10866290	C	0.0464
4:187136220	rs72646294	A	0.1947
4:187161283	rs551251712	C	0.2385
4:187169469	rs2203111	G	0.0901
4:187178014	rs3775303	T	0.1486
4:187200115	rs4253333	G	0.0494
4:187190285	rs925452	A	0.2681
4:187196853	rs4253414	C	0.1544
4:187200550	rs56810541	T	0.1975
4:187205929	rs4253425	C	0.2399
4:187213360	rs72712610	A	0.1509
4:187219599	rs56379917	A	0.1638
4:187220894	rs13126546	T	0.1142
4:187234735	rs72712626	G	0.1365
4:187240280	rs13137269	T	0.0617
4:187267791	rs75440104	C	0.1177
4:187347217	rs7685922	C	0.054
4:79917638	rs140303646	T	0.218
5:143119511	rs325247	C	0.0439
5:172785895	rs12234072	G	0.0661
5:32831939	rs12656497	T	0.0438
5:38705554	rs16867574	C	0.059
5:63916834	rs4700642	A	0.0491
5:75992254	rs56347914	C	0.0843
6:147701133	rs9375323	G	0.06
6:169633335	rs11759438	C	0.0436
6:25531133	rs214057	C	0.0446
6:28436060	rs2531815	T	0.047
6:29894392	rs1627764	G	0.0525
6:30639412	rs3094094	A	0.0793
6:31092767	rs3095304	T	0.0634
6:31239869	rs2074492	T	0.051
7:151028181	rs11981586	C	0.0657
7:1557763424	rs1347390	G	0.0515
8:102881195	rs118105926	A	0.1379
8:106573309	rs7341574	T	0.0452
8:106590705	rs4541868	C	0.0876
8:108291878	rs4236786	C	0.0512
8:108340982	rs7004172	G	0.051
8:108347806	rs6991048	T	0.0904
Chr:Pos	rsid	Effect Allele	Beta
---------	------------	---------------	--------
8:27810577	rs2685413	G	0.0608
8:27820792	rs10087301	A	0.0632
8:3026541	rs11756459	G	0.1314
8:53204323	rs138757339	C	0.2102
8:78572803	rs17383689	G	0.0833
8:87143573	rs7812868	C	0.0621
9:116253293	rs169064188	T	0.0804
9:124362398	rs146383320	T	0.1278
9:135985796	rs3761824	C	0.0538
9:136025460	rs3885651	C	0.0559
9:136031918	rs7027827	A	0.0729
9:136069596	rs10793953	G	0.0496
9:136062437	rs10441806	C	0.105
9:136077004	rs11244032	C	0.0837
9:136080512	rs149189328	C	0.2669
9:136081319	rs11244035	T	0.2223
9:136098498	rs2470788	T	0.0723
9:136121303	rs7855466	T	0.1054
9:136124590	rs7875596	A	0.2855
9:136128731	rs11244051	A	0.384
9:136144593	rs66697526	G	0.1399
9:136145404	rs9411377	A	0.308
9:136152070	rs8176634	G	0.1117
9:136152722	rs8176630	C	0.1382
9:136156064	rs55988407	G	0.1664
9:136156230	rs78590974	T	0.2221
9:136157037	rs557317	A	0.1499
9:136177993	rs4962043	G	0.0607
9:136184782	rs9411395	G	0.1408
9:136184985	rs11791119	T	0.1052
9:136185324	rs11789139	G	0.1669
9:136193356	rs76771223	G	0.1431
9:136212168	rs11719759	A	0.2099
9:136226421	rs141397052	G	0.2259
9:136240304	rs3124755	C	0.1278
9:136255149	rs62575992	C	0.0967
9:136268084	rs3124747	A	0.0757
9:136270538	rs43102673	G	0.242
9:136277854	rs2285488	G	0.1007
9:136296530	rs149187677	T	0.2461
9:136311017	rs652600	A	0.0992
9:136323826	rs3094373	A	0.2432
9:136343647	rs3094326	G	0.1027
9:136359182	rs736418	G	0.0556
9:136365146	rs28615587	T	0.078
9:136382716	rs9802874	A	0.0636
9:136390015	rs13300181	A	0.0616
9:136397195	rs11507176	T	0.0802
9:136509514	rs1613128	G	0.0495
10:121010256	rs10886430	G	0.1289
10:2397591	rs211416	T	0.0684
10:45632668	rs2211163	A	0.0724
10:71144324	rs2305196	A	0.0555
10:7148728	rs12416320	G	0.1553
10:7213882	rs3793846	T	0.0572
10:71181371	rs36054387	C	0.0729
10:71215107	rs13796874	G	0.2231
10:71218059	rs10998791	A	0.0677
10:71245276	rs78707713	T	0.2414
10:71262048	rs1665581	G	0.0771
10:71338397	rs17285008	C	0.0691
10:71346272	rs12783163	A	0.0596
10:76189250	rs140438685	A	0.2024
10:80898969	rs1769758	G	0.0436
10:96011865	rs1547643	G	0.0476
Chr:Pos	rsid	Effect Allele	Beta
--------------	--------------	---------------	--------
11:126300537	rs11600151	T	0.0793
11:32967270	rs563259534	T	0.1048
11:33247621	rs2061997	T	0.049
11:46593730	rs11038913	T	0.1126
11:46745003	rs5896	T	0.0668
11:46893108	rs2306029	T	0.0641
11:46896126	rs2897640	T	0.0672
11:47373425	rs2856656	C	0.3976
11:47794348	rs34953939	A	0.0931
11:48865680	rs369876615	C	0.1184
11:50242788	rs117653193	T	0.1049
11:51282525	rs11606922	C	0.1115
11:55436134	rs72910502	C	0.1161
11:5626894	rs543926510	C	0.1339
11:56735815	rs75348906	A	0.0695
11:56875074	rs141798115	T	0.2207
11:61489705	rs198428	A	0.0464
11:61571348	rs174548	C	0.0842
11:61621611	rs73487492	A	0.1034
11:73283937	rs12274057	T	0.0751
12:10417207	rs3751198	G	0.0491
12:111932800	rs7137828	C	0.0424
12:123861452	rs28413626	G	0.0739
12:32847998	rs61926202	A	0.2109
12:39156743	rs137870902	T	0.2329
12:54734289	rs11170877	A	0.0696
12:6071943	rs139727584	C	0.1076
12:6150824	rs183535	A	0.1405
12:6160614	rs7135039	T	0.0781
12:670645	rs78915411	G	0.0823
13:113787459	rs3211752	G	0.06
13:11380274	rs12858483	G	0.0588
14:10018918	rs1286724	G	0.0501
14:26690604	rs77398404	T	0.0794
14:66082793	rs2229678	C	0.1842
14:83281618	rs112089121	G	0.0752
14:92217670	rs61988257	A	0.0603
14:94838142	rs112635299	T	0.1463
15:43757184	rs19054302	T	0.1973
15:43911751	rs115384559	T	0.3853
15:44880783	rs14877027	C	0.1837
15:65114833	rs35204896	G	0.0738
15:66430422	rs74245462	T	0.0503
15:96125226	rs17502085	A	0.0525
16:1405044	rs116468525	A	0.2059
16:81840709	rs34603417	A	0.0456
16:81844607	rs9937779	C	0.0568
16:81870969	rs12440505	T	0.1248
16:81874200	rs61374069	A	0.0524
16:81896523	rs55908616	C	0.0437
16:81902990	rs4889419	G	0.0575
16:81915832	rs11150422	G	0.053
16:81971403	rs1071644	C	0.0475
16:81976177	rs16956040	C	0.0613
16:89265466	rs12926888	A	0.0449
17:1966457	rs1048483	T	0.0616
17:2172753	rs216181	A	0.072
17:43758898	rs57222984	G	0.0522
17:67081278	rs77542162	G	0.1932
17:7785590	rs76209469	T	0.0867
17:8393900	rs2270744	C	0.0447
18:74465347	rs62112904	A	0.059
18:75283432	rs2032276	G	0.0435
18:8800723	rs631126	C	0.0579
19:10639312	rs8100818	T	0.0483
19:10659971	rs11668544	G	0.1314
Chr:Pos	rsid	Effect Allele	Beta
--------------	--------------	---------------	-------
19:10688153	rs187758170	A	0.1465
19:10734951	rs8110479	C	0.1131
19:10741622	rs12710257	G	0.1164
19:10898413	rs8107372	T	0.0515
19:17004049	rs1054533	T	0.0451
19:33896432	rs4805881	C	0.0544
19:45426792	rs142170418	C	0.1574
19:49241006	rs12981072	C	0.0469
19:55536595	rs1613662	A	0.0818
19:7832001	rs874492	A	0.0481
20:22672552	rs6137727	A	0.0534
20:22938940	rs62204096	A	0.1565
20:23000653	rs6076004	T	0.0472
20:23077117	rs149439892	A	0.1527
20:23170450	rs34397775	A	0.084
20:23182559	rs6083037	A	0.0798
20:32485961	rs6087538	C	0.0585
20:32523172	rs6059574	G	0.0479
20:33434252	rs56244533	A	0.0567
20:33435161	rs17092148	G	0.0612
20:33451060	rs75627267	T	0.1209
20:33587569	rs551986443	C	0.1488
20:33612647	rs564783003	C	0.1488
20:33731880	rs2050652	G	0.0564
20:33762035	rs2069946	C	0.1255
20:33772243	rs6060288	A	0.1178
20:33858772	rs6058218	G	0.0552
20:33895947	rs6058227	T	0.0813
20:34025983	rs143383	G	0.0482
20:34562935	rs185663249	A	0.1487
20:34712310	rs6141600	C	0.0482
22:42461918	rs2854827	G	0.0589
22:43107837	rs9620006	A	0.0609
22:44324730	rs738408	C	0.0566
1:169519049	rs6025	T	0.4031
11:46761055	rs1799963	A	0.2741
References

1. Tan BK, Mainbour S, Frigeri A, et al. Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis. *Thorax*. 2021;76(10):970-979. doi:10.1136/thoraxjnl-2020-215383.

2. Talasz AH, Sadeghipour P, Kakavand H, et al. Recent Randomized Trials of Antithrombotic Therapy for COVID-19: JACC State-of-the-Art Review. *J Am Coll Cardiol*. 2021;77(15):1903-1921. doi:10.1016/j.jacc.2021.02.035.

3. National Institutes of Health. Antithrombotic Therapy in Patients with COVID-19. 2021.

4. Thilagar B, Beidoun M, Rhoades R, Kaatz S. COVID-19 and thrombosis: searching for evidence. *Hematology Am Soc Hematol Educ Program*. 2021;2021(1):621-627. doi:10.1182/hematology.2021000298.

5. European Centre for Disease Prevention and Control. Assessment of the further spread and potential impact of the SARS-CoV-2 Omicron variant of concern in the EU/EEA, 19th update. https://www.ecdc.europa.eu/en/publications-data/covid-19-omicron-risk-assessment-further-emergence-and-potential-impact. Updated January 27, 2022. Accessed March 3, 2022.

6. Iuliano AD, Brunkard JM, Boehmer TK, et al. Trends in Disease Severity and Health Care Utilization During the Early Omicron Variant Period Compared with Previous SARS-CoV-2 High Transmission Periods - United States, December 2020-January 2022. *MMWR morb mortal wkly rep*. 2022;71(4):146-152. doi:10.15585/mmwr.mm7104e4.

7. Goligher EC, Bradbury CA, McVerry BJ, et al. Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19. *N Engl J Med*. 2021;385(9):777-789. doi:10.1056/NEJMoa2103417.

8. Ortega-Paz L, Galli M, Capodanno D, et al. Safety and efficacy of different prophylactic anticoagulation dosing regimens in critically and non-critically ill patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. *Eur Heart J Cardiovasc Pharmacother*. 2021. doi:10.1093/ehjcvp/pvab070.

9. Spyropoulos AC, Golden M, Giannis D, et al. Efficacy and Safety of Therapeutic-Dose Heparin vs Standard Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in High-risk Hospitalized Patients With COVID-19: The HEP-COVID Randomized Clinical Trial. *JAMA Intern Med*. 2021;181(12):1612-1620. doi:10.1001/jamainternmed.2021.6203.

10. Emert R, Shah P, Zampella JG. COVID-19 and hypercoagulability in the outpatient setting. *Thrombosis Research*. 2020;192:122-123. doi:10.1016/j.thromres.2020.05.031.

11. Xiong X, Chi J, Gao Q. Prevalence and risk factors of thrombotic events on patients with COVID-19: a systematic review and meta-analysis. *Thrombosis J*. 2021;19(1):32. doi:10.1186/s12959-021-00284-9.

12. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. *Nature*. 2018;562(7726):203-209. doi:10.1038/s41586-018-0579-z.

13. Klarin D, Busenkell E, Judy R, et al. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. *Nat Genet*. 2019;51(11):1574-1579. doi:10.1038/s41588-019-0519-3.

14. English indices of deprivation. *GOV.UK*. Updated December 13, 2012. https://www.gov.uk/government/collections/english-indices-of-deprivation. Accessed March 14, 2022.

15. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. *Multivariate Behavioral Research*. 2011;46(3):399-424. doi:10.1080/00273171.2011.568786.

16. Thomas L, Li F, Pencina M. Using Propensity Score Methods to Create Target Populations in Observational Clinical Research. *JAMA*. 2020. doi:10.1001/jama.2019.21558.
17 Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. *Stat Med.* 2009;28(25):3083-3107. doi:10.1002/sim.3697.

18 Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. *Am J Epidemiol.* 2009;170(2):244-256. doi:10.1093/aje/kwp107.

19 Arnold BF, Ercumen A. Negative Control Outcomes: A Tool to Detect Bias in Randomized Trials. *JAMA.* 2016;316(24):2597-2598. doi:10.1001/jama.2016.17700.

20 PLINK 1.9. https://www.cog-genomics.org/plink/. Updated March 14, 2022. Accessed March 14, 2022.

21 Mai V, Tan BK, Mainbourg S, et al. Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: A systematic review with meta-analysis. *Vascular Pharmacology.* 2021;139:106882. doi:10.1016/j.vph.2021.106882.

22 Hippisley-Cox J, Patone M, Mei XW, et al. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. *BMJ.* 2021;374:n1931. doi:10.1136/bmj.n1931.

23 Ho FK, Man KKC, Toshner M, et al. Thromboembolic Risk in Hospitalized and Nonhospitalized COVID-19 Patients: A Self-Controlled Case Series Analysis of a Nationwide Cohort. *Mayo Clinic Proceedings.* 2021;96(10):2587-2597. doi:10.1016/j.mayocp.2021.07.002.

24 Cines DB, Bussel JB. SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. *N Engl J Med.* 2021;384(23):2254-2256. doi:10.1056/NEJMe2106315.

25 Mahase E. Covid-19: US suspends Johnson and Johnson vaccine rollout over blood clots. *BMJ.* 2021;373:n970. doi:10.1136/bmj.n970.

26 Stefely JA, Christensen BB, Gogakos T, et al. Marked factor V activity elevation in severe COVID-19 is associated with venous thromboembolism. *Am J Hematol.* 2020;95(12):1522-1530. doi:10.1002/ajh.25979.

27 Meijenfeldt FA von, Havervall S, Adelmeijer J, et al. Elevated factor V activity and antigen levels in patients with Covid-19 are related to disease severity and 30-day mortality. *Am J Hematol.* 2021;96(4):E98-E100. doi:10.1002/ajh.26085.

28 Appenzeller F, Schmehl J, Gawaz M, Müller I. Extensive Thromboembolism in a Young Male with Asymptomatic COVID-19 Infection and Heterozygous Factor V Leiden Mutation. *Hamostaseologie.* 2021;41(5):400-402. doi:10.1055/a-1554-6390.

29 La Morena-Barrio ME de, Bravo-Pérez C, La Morena-Barrio B de, et al. A pilot study on the impact of congenital thrombophilia in COVID-19. *European Journal of Clinical Investigation.* 2021;51(5):e13546. doi:10.1111/eci.13546.

30 Connors JM. Thrombophilia Testing and Venous Thrombosis. *N Engl J Med.* 2017;377(12):1177-1187. doi:10.1056/NEJMra1700365.

31 Segal JB, Brotman DJ, Necochea AJ, et al. Predictive value of factor V Leiden and prothrombin G20210A in adults with venous thromboembolism and in family members of those with a mutation: a systematic review. *JAMA.* 2009;301(23):2472-2485. doi:10.1001/jama.2009.853.