Structural connectivity and functional properties of the macaque superior parietal lobule

Michela Gamberini1 · Lauretta Passarelli1 · Patrizia Fattori1 · Claudio Galletti1

Received: 8 July 2019 / Accepted: 30 October 2019 / Published online: 11 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Despite the consolidated belief that the macaque superior parietal lobule (SPL) is entirely occupied by Brodmann’s area 5, recent data show that macaque SPL also hosts a large cortical region with structural and functional features similar to that of Brodmann’s area 7. According to these data, the anterior part of SPL is occupied by a somatosensory-dominated cortical region that hosts three architectural and functional distinct regions (PE, PEci, PEip) and the caudal half of SPL by a bimodal somato-visual region that hosts four areas: PEc, MIP, PGm, V6A. To date, the most studied areas of SPL are PE, PEc, and V6A. PE is essentially a high-order somatomotor area, while PEc and V6A are bimodal somatomotor–visuomotor areas, the former with predominant somatosensory input and the latter with predominant visual input. The functional properties of these areas and their anatomical connectivity strongly suggest their involvement in the control of limb movements. PE is suggested to be involved in the preparation/execution of limb movements, in particular, the movements of the upper limb; PEc in the control of movements of both upper and lower limbs, as well as in their interaction with the visual environment; V6A in the control of reach-to-grasp movements performed with the upper limb. In humans, SPL is traditionally considered to have a different organization with respect to macaques. Here, we review several lines of evidence suggesting that this is not the case, showing a similar structure for human and non-human primate SPLs.

Keywords Cortical parcellation · Somatotopy · Visuomotor · Limb movements · Macaque/human homology

Introduction
The parietal lobe of the Old World monkeys can be subdivided into anterior and posterior parts. The anterior part occupies the postcentral cortex (yellow region in Fig. 1a), where the somatosensory Brodmann’s areas 3, 1, 2 are located (Brodmann 1909). The posterior part (posterior parietal cortex; PPC) can in turn be subdivided into superior (SPL; green region in Fig. 1a) and inferior (IPL; red region in Fig. 1a) parietal lobules, separated by the intraparietal sulcus. According to Brodmann (1909), the SPL is almost entirely occupied by area 5 (see blue region in the closeup of Fig. 1a), while area 7 occupies only a restricted cortical region in its caudalmost part (see orange region in the closeup of Fig. 1a). Starting from Vogt and Vogt (1919), most studies in the last century claimed that although the architectural pattern changed moving rostrocaudally, the SPL was entirely occupied by area 5 (Fig. 1b). In agreement with this view, Pandya and Seltzer (1982), using the nomenclature previously proposed in humans by von Economo and Koskinas (1925), proposed the subdivision of macaque SPL in an area named PE, anteriorly, and another one named PEc, where ‘c’ stands for ‘caudal’, posteriorly (Fig. 1c), both described as variants of Brodmann’s area 5. Other variants of area 5 adjoining PE laterally and medially were named by Pandya and Seltzer (1982) with the same prefix (areas PEa, PEci; Fig. 1c) to indicate a common structural organization. The thin stripe of area 7 that delimited the caudal part of area 5 in the original Brodmann’s description (orange region in the closeup of Fig. 1a) was not reported by Pandya and Seltzer.

Nowadays, it is evident that the SPL hosts a large number of cytoarchitectonic areas distributed along the exposed surface of SPL, the intraparietal and parieto-occipital sulci, and the precuneate cortex in the mesial surface of the hemisphere (see Fig. 2a). Moving in anteroposterior fashion across SPL, areas PE, PEip, PEci are located anteriorly and...
PEc, MIP, PGm, V6A located posteriorly. The caudalmost part of SPL hosts, in the fundus of parieto-occipital sulcus, area V6. However, since V6 shows an occipital cytoarchitectural pattern (Fig. 2b; see details below), it is not considered as a part of the parietal lobe, hence of SPL.

The presence in SPL of different cytoarchitectonic areas with different functional properties suggests that they have somewhat different functional roles. In the following sections we review the anatomical subdivisions of macaque SPL, together with their cortical connections and functional properties to examine their possible functional roles. Finally, we present a brief comparison with the human SPL.

Structural subdivision of macaque SPL

As mentioned above, the macaque SPL is composed of a mosaic of areas (Fig. 2a) with different architecture, functional properties, and patterns of anatomical connections.

The anterior bank of the parieto-occipital sulcus, which is the caudalmost part of the SPL, hosts two areas, V6 ventrally and V6A dorsally (Galletti et al. 1996, 1999a, b, 2005). Area V6 shows a clear occipital cytoarchitectural pattern, as shown in Fig. 2b (Luppino et al. 2005), with a homogeneous layer III, a compact layer IV, a light layer V, and a clear subdivision of layer VI into two sublayers. Differently, area V6A shows a typical parietal pattern with well-developed layers III and V, a large, but relatively dense, layer IV, and a layer VI with a poorly evident subdivision into sublayers. Although Brodmann (1909) did not examine the cytoarchitectural pattern of the cortex buried in the parieto-occipital sulcus, the parietal pattern of V6A strongly suggests that it represents an extension of Brodmann’s area 7, that from the exposed cortical surface of SPL (the thin stripe of area 7 originally reported by Brodmann; see closeup in Fig. 1a) extends into the dorsal two-third of the anterior wall of the parieto-occipital sulcus. Since according to Brodmann (1909) the parietal area 7 abuts posteriorly the occipital
area 19 (see Fig. 1a), it is logical to assume that area V6, which abuts posteriorly area V6A (Fig. 2a) and shows a clear occipital pattern (Fig. 2b; Luppino et al. 2005), is part of the Brodmann’s area 19.

The mesial surface of the hemisphere at the level of SPL (the precuneate cortex) hosts the mesial sectors of areas V6A and PEc, as well as areas PGm and 31 (Fig. 2a; Pandya and Seltzer 1982; Cavada and Goldman-Rakic 1989; Morecraft et al. 2004; Passarelli et al. 2018). Anterior to the precuneate cortex, area PEci occupies the fundus of the caudal tip of the cingulate sulcus, while the mesial extension of area PE occupies the cortical region above and anterior to it (Fig. 2a; Pandya and Seltzer 1982; Morecraft et al. 2004). Notice that PGm shows a cytoarchitectural pattern similar to Brodmann’s area 7, and in line with this Pandya and Seltzer (1982) maintained for this area the prefix ‘PG’ that they used for area 7 in IPL and the other authors called this region area ‘7m’, where ‘m’ stands for medial (Cavada and Goldman-Rakic 1989). Area PEci, instead, shows a cytoarchitectural pattern similar to that of Brodmann’s area 5 (Pandya and Seltzer 1982) and area 31, a pattern intermediate between those of PGm and 23c (Morecraft et al. 2004).

In the lateral part of SPL, the medial wall of intraparietal sulcus is occupied by two areas, PEip rostrally and MIP caudally (Fig. 2a; Colby et al. 1988; Colby and Duhamel 1991; Matelli et al. 1998; Lewis and Van Essen 2000a, b). PEip occupies a cortical region similar to that originally described by Pandya and Seltzer (1982) as area PEa (compare Fig. 2a with Fig. 1c). Since PEa is cytoarchitecturally similar to Brodmann’s area 5 (Pandya and Seltzer 1982), we suggest that PEip could be part of area 5. Area MIP was originally defined on the basis of myeloarchitecture and cortical connections (Colby et al. 1988), whereas its cytoarchitectonic pattern has not been studied yet. Interestingly, myeloarchitectonic studies showed that area MIP, like V6A, presents two clearly distinct bands of Baillarger, whereas in PEip the bands of Baillarger are barely visible (Fig. 2c; Bakola et al. 2017). In short, MIP, like V6A, seems to be part of Brodmann’s area 7.

On the cortical convexity of SPL, two areas have been described: PE rostrally and PEc caudally (Fig. 2a; Pandya and Seltzer 1982). Both extend for several millimeters into the mesial surface of the hemisphere medially and the medial wall of the intraparietal sulcus laterally. Both areas show a parietal cytoarchitectural pattern that Pandya and Seltzer (1982) described as variants of area 5. However, Luppino et al. (2005) reported that the cytoarchitecture of PEc was different from that of PE and similar to that of V6A, hence to that of Brodmann’s area 7: both PEc and V6A showed well-developed layers III and V, a bi-laminated layer IV and a layer VI with a relatively blurred border against the white matter. A very recent study supports this view reporting that
also the chemoarchitecture of area PEc is more similar to that of area 7 than that of area 5 (Impieri et al. 2019). On the other hand, it is worthwhile to remind that the caudalmost part of SPL dorsal convexity was originally reported as area 7 by Brodmann himself (see orange region in closeup of Fig. 1a; Brodmann 1909). Overall, these data suggest that PEc is indeed part of area 7, instead of area 5 as previously suggested by Pandya and Seltzer (1982).

The above-reviewed data support the view that area 7 is wider than originally reported by Brodmann, encompassing a large part of the anterior wall of parieto-occipital sulcus (area V6A), the caudal half of the dorsal surface of SPL (area PEc), area PGm in the precuneate cortex, and the caudal half of the medial wall of the intraparietal sulcus (area MIP). Notice that all these areas are bimodal in nature, being activated by both visual and somatosensory stimulations, a property that is typical of Brodmann’s area 7, but not of area 5 (see below for details).

Cortical connections of macaque SPL

Each area of SPL is connected to a set of parietal and premotor areas involved in specific functional roles. Figure 3 illustrates the cortical connections of the five SPL areas studied by our laboratory, namely PE, PEc, V6A, PGm, MIP. The cortical connections of the other areas of the SPL, taken from literature, will be described only in the text.

The major cortical afferents of PE (Fig. 3a; Bakola et al. 2013) are the primary somatosensory and motor cortices, in particular Brodmann’s areas 2 and 4 (or F1, according to Matelli and coworkers nomenclature; Matelli et al. 1991). As shown in detail in Fig. 4, PE receives inputs from motor and premotor cortical regions representing upper and lower limbs, particularly from the region of the primary motor area F1 that represents the arm (compare labeling distribution in Fig. 4c with the leg and arm representations in F1 and F2 as shown in Fig. 4d). PE also receives somatosensory/somatotor inputs from parietal (areas PEc, PEci, MIP, PEip, PGop, PFBop, RI) and cingulate (areas 23, 24) cortices, and premotor inputs from the supplementary motor area (SMA according to Penfield and Welch 1951 or F3 according to Matelli et al. 1991). Area PEc (Fig. 3b; Bakola et al. 2010) shares several cortical connections with PE, but also shows important differences. Regarding somatosensory and motor inputs, PEc receives a weak input from area 2 (but not at all from area 3) and a very weak input from F1. PEc also receives a strong input from premotor area F2 and very weak input from F3, which is the opposite with respect to PE. Also, PEc receives afferents from somatosensory-related areas of parietal (areas PE, MIP, PG, PGop) and mesial (areas PEci, 23, 24, 31) cortices that are quite different from those of area PE. Finally, PEc receives an input from the visuomotor area V6A, which is not connected with PE. Interestingly, while both PE and PEc receive motor signals related to limb movements, PEc is more strongly connected with the sectors of motor and premotor cortex, representing the lower limb than with those representing the upper limb, as shown in Fig. 4 (compare labeling distribution in Fig. 4c with leg and arm representations in F1 and F2 as shown in Fig. 4d). The overrepresentation of lower limb input to PEc is not the result of a bias in injection site as the whole extent of the area was injected (Fig. 4a). It is also worthwhile to note that PE receives only somatic information, while PEc receives both somatic and visual information (from V6A), in agreement with the somatic and bimodal nature, respectively, of the two areas, and with the functional roles suggested for these two areas by the properties of their neurons (see below).

The caudalmost part of SPL is occupied by the visuomotor area V6A (Fig. 2a). V6A is a relatively wide parietal area that extends medially into the mesial surface of the hemisphere, where it abuts area PGm and laterally into the most lateral end of parieto-occipital sulcus, where it abuts area MIP at the limit of the caudalmost part of intraparietal sulcus (Fig. 2a). Area V6A (Fig. 3c; Gamberini et al. 2009; Passarelli et al. 2011) (see also Shipp et al. 1998; Matelli et al. 1998) shows reciprocal connections with the dorsal premotor areas F2 and F7, as well as with several visual and parietal visuomotor areas. V6A receives visual information from the extrastriate areas of the occipital lobe (V2, V3, V4, MST, V6) and from the visual and visuomotor areas of posterior parietal cortex (including AIP and LIP), and could receive somatosensory and somatomotor inputs from PEc and MIP (Bakola et al. 2010, 2017). While both V6A and PEc receive projections from premotor area F2, the rest of their connections shows a clear complementary pattern: PEc is mainly connected with somatically dominated cortical areas, whereas V6A is mainly connected with visually dominated areas (see Fig. 3b, c). Finally, in agreement with the reaching/grasping activity and the primarily upper limb representation in V6A (see below), this area is strongly connected with the sectors of premotor area F2, representing the upper limb, but not with those representing the lower limb (compare labeling distribution in Fig. 4c with leg and arm representations in F2 as shown in Fig. 4d).

Area PGm, located on the mesial surface of the hemisphere (Fig. 2a), shows a pattern of cortical connections similar to that of V6A, with which it is reciprocally connected, but with some quantitative and qualitative differences (Fig. 3d; Passarelli et al. 2018) (see also Morecraft et al. 2004). In fact, PGm receives afferents from the lateral intraparietal cortex (area LIP) and inferior parietal lobule (areas Opt and PG) that are similar to those of V6A, whereas the visual input from the extrastriate areas to PGm is much weaker. The major difference between the two areas regards
Fig. 3 Summary of the main cortico-cortical connections of areas PE, PEc, V6A, PGm, and MIP. a–e Cortical connections of areas PE, PEc, V6A, PGm, and MIP, respectively. For each area, only projections representing more than 1% of the total cortical connections of that area are reported. The thickness of connecting lines is proportional to the strength of connections, as indicated in the legend within the figure, averaged across all cases with injections in the same area (data obtained from Gamberrini et al. 2009; Bakola et al. 2010, 2013, 2017; Passarelli et al. 2011, 2018). Abbreviations: D dorsal; P posterior; F1, F2, F3, F4, F5, F7, FEF, 23, 24, PFop, PGop, PG, Opt, Ri, 46, AIP, LIP, VIP, V2, V3, V4, MST: areas F1, F2, F3, F4, F5, F7, FEF, 23, 24, PFop, PGop, PG, Opt, Ri, 46, AIP, LIP, VIP, V2, V3, V4, MST; PFC, prefrontal cortex areas 8, 9, 10 and 12; RSC retrosplenial cortex (areas 29, 30); 23i, 23v posterior cingulate cortex; Vis visual cortex ventral to area PGm; cST caudal superior temporal areas MST and TPO; EXT extrastriate areas V2, V3, V4, MST, V6, PIP, and TEO; ParOp parietal operculum. Other abbreviations as in Figs. 1 and 2
the connections of PGm with the visual areas of the ventral part of the precuneus (VIS, RSC), the cingulate cortex (area 23) and the prefrontal cortex (PFC that includes the ‘frontal eye fields’), which are absent in V6A.

Besides PGm, the mesial surface of SPL also hosts areas PEci and 31 (Fig. 2a). According to Pandya and Seltzer (1982) and Morecraft et al. (2004), area PEci (also called SSA—supplementary somatosensory area—by Murray and Coulter 1981a) is connected with the supplementary motor area F3, cingulate areas 23 and 24, the transitional sensory area, the medial portion of the primary motor (F1) and of somatosensory (areas 3, 1, 2) cortex, and with superior parietal areas PE, PEc, 31, and PGm. On the lateral surface of the brain, PEci is directly connected with SII, insula, areas PGop, PG, and MST. Finally, the frontal lobe connections of PEci, besides with the medial part of F1, are with the premotor cortices F2 and F7. Interestingly, PEci shares many connections with PE, but not with PEc. Like PE, PEci is strongly connected with motor and premotor cortical regions and does not receive visual inputs, whereas PEc receives somatomotor and visual inputs, as reported above. PEci and PE are directly connected with the spinal cord, while PEc does not (Murray and Coulter 1981b). These sets of connections are in line with the view that PEci could be part of Brodmann’s area 5, whereas areas PEc, V6A, and PGm could be classified as sectors of Brodmann’s area 7. Area 31, located anterior to PGm on the mesial surface of the brain (Fig. 2a), is strongly connected with premotor (F2) and parietal sensorimotor (V6A, PEci, PE) areas, and with cingulate cortex (areas 23 and 24). The connections of area 31 are quite similar to those of PGm, but the analysis of the laminar patterns of these connections suggests that area PGm represents a higher level of processing in comparison with area 31 (see Passarelli et al. 2018).

As far as the SPL areas buried within the intraparietal sulcus are concerned, area PEip is located in the anterior part of the medial wall of intraparietal sulcus (Fig. 2a) and was identified on the basis of cortico-spinal projections (Matelli et al. 1998). PEip is the target of motor and premotor areas, including the PMd, PMv, the mesial motor areas like SMA, CMAd, and CMAv (Matelli et al. 1998; Riehle and Vaadia 2004) and of parietal areas PE, MIP, and VIP (Bakola et al. 2013, 2017). Area MIP, located posterior to PEip in the caudal part of the medial wall of intraparietal sulcus (Fig. 2a), is strongly connected with dorsal premotor area F2 and less with the primary motor area F1 (Fig. 3e). MIP is also strongly connected with visual areas VIP and V6A, with PEc and PE, and with PEip and PEci (Bakola et al. 2017). The stronger connections of PEip with F1 compared to F2 and the reverse behavior of MIP, combined with the direct connection of PEip (but not of MIP) with the spinal cord and the much weaker visual afferents to PEip relative to MIP, are in line with the view that PEip is part of the somatosensory Brodmann’s area 5 and MIP of the bimodal visual/somatosensory area 7.

Functional properties of macaque SPL

In the past, the PPC was classically defined an ‘association cortex’ and viewed as a structure mainly dedicated to the integration of different sensory information. Starting from the seminal studies by Mountcastle et al. (1975) and Hyvärinen and collaborators (Leinonen et al. 1979;
Hyvärinen 1982), a great deal of research showed that PPC was not only involved in the integration of different sensory modalities, somatic and visual, in particular, but it was also involved in the control of somatosensory, visuomotor, oculomotor activities, as well as in the guidance of visuospatial attention (Kalaska 1996; Andersen et al. 1997; Galletti et al. 2003, 2010; Gottlieb 2007; Filimon 2010; Sereno and Huang 2014; Caminiti et al. 2015; Pisella et al. 2017; Hadjidimitrakis et al. 2019). In particular, it was demonstrated that most SPL neurons discharged in association with active arm movements performed by monkeys to reach and grasp objects in the peri-personal space, thus suggesting that the SPL was selectively involved in the processes related to arm movement planning, execution, and online control (Andersen et al. 1997; Kalaska et al. 1997; Ferraina et al. 1997a; Galletti et al. 1997, 2003; Battaglia-Mayer et al. 2000; Batista and Andersen 2001; Fattori et al. 2001, 2004, 2005, 2009, 2017; see for a review Andersen and Cui 2009; Galletti and Fattori 2018). Till a decade ago, IPL was considered to be specifically involved in the distal phase of prehension, i.e., in grasping movements and SPL in the proximal phase of prehension, i.e., in arm-reaching movements (Jeanerod et al. 1995; Wise et al. 1997; Culham et al. 2006; Gallivan et al. 2009; Grafton 2010; Vesia and Crawford 2012). However, several lines of evidence have demonstrated that the activity of SPL neurons is also modulated by the features of the distal phase of prehension, like wrist orientation and grip formation (Fattori et al. 2004, 2009, 2010; Breveglieri et al. 2016, 2018). The involvement of SPL in the distal phase of prehension has also been recently demonstrated in humans (Verhagen et al. 2013; Begliomini et al. 2014; Vesia et al. 2017). At present, it is clear that the act of prehension is controlled by two parieto-frontal circuits, a lateral one that includes IPL and ventral premotor cortex and is mainly involved in the control of grasping and manipulation, and a medial one, including SPL and dorsal premotor cortex that is involved in the control of the entire reach-to-grasp action, particularly when rapid control is required, as when the action is time constrained (Galletti et al. 2003; Rizzolatti and Matelli 2003; Borra et al. 2017; Galletti and Fattori 2018). Regarding the specific functional role of the different areas of SPL, the most studied areas to date are PE, PEC, and V6A. Area PE is a somatic area that abuts anteriorly the primary somatosensory cortex SI (Fig. 5a; Brodmann’s areas 3, 1, 2). While SI, and in particular, areas 3a and 1 mainly process tactile stimuli and host a detailed map of the entire body (Fig. 5a; Pons et al. 1985; Padberg et al. 2007; Krubitzer and DIBROW 2008; Seeleke et al. 2012), PE is dominated by proprioceptive representation and hosts a rough topographical map of the body with an overrepresentation of the arm, particularly of the hand (Fig. 5a; Duffy and Burchfiel 1971; Sakata et al. 1973; Mountcastle et al. 1975; Padberg et al. 2007; Seeleke et al. 2012; Baldwin et al. 2018; see also the strong connection with the arm region of F1 in Fig. 4c). Notably, however, only the anterolateral part of area PE has been studied in detail to date (yellow region in the closeup of Fig. 5b), whereas the medial part of the area is still quite unexplored. Therefore, it is possible that the lower limb is represented in this part of PE, given also the fact that the leg is represented in the adjoining medial part of SI (see Fig. 5a). In line with this hypothesis, a very recent report (De Vitis et al. 2019) has shown that in the posteromedial part of PE (orange region in the closeup of Fig. 5b), the lower limb is actually overrepresented (Fig. 6e), although both upper and lower limb representations were found (Fig. 6c, e) and not only the lower limb as it could be expected. In sum, a rough topographical map of the body is present in PE, with an overrepresentation of the limbs, the upper ones in the anterolateral part (Fig. 5a) and the lower ones in the posteromedial part (Fig. 6e) of the area.

It has been known since a long time that the visual stimulation is ineffective in activating PE neurons (Mountcastle et al. 1975). PE neurons are generally sensitive to multi-joint stimulations and the posture of limbs (Duffy and Burchfiel 1971; Sakata et al. 1973; Mountcastle et al. 1975; Georgopoulos et al. 1984; Kalaska et al. 1990). According to De Vitis et al. (2019), about 90% of PE neurons are sensitive to somatosensory stimulation (Fig. 6a), in particular, the joint stimulation of both upper and lower limbs (Fig. 6b, e). Neuronal responses in PE are mainly evoked by somatic stimulation of the contralateral side of the body or both sides (Fig. 6d). During arm-reaching movements, different populations of cells encode depth and direction of movement, showing an independent processing of these two parameters (Hadjidimitrakis et al. 2015). It has been demonstrated that PE neurons are involved in preparation and control of limb movements and become active during skilled actions (Kalaska 1996). All these data strongly suggest that PE is a somatomotor area that hosts motor and somatosensory signals from the limbs and that is likely involved in the somatomotor guidance of limb actions.

Differently from PE, area PEC is an area that hosts a representation of the visual field, together with an incomplete somatosensory map of the body (Gamberini et al. 2018). The visual receptive fields of PEC neurons are quite large and are often sensitive to optic flow (Ferraina et al. 2001; Breveglieri et al. 2008; Raffi et al. 2010, 2011, 2014). About 65% of PEC neurons are sensitive to somatosensory stimulation (Fig. 6a), in particular the joint stimulation of both upper and lower limbs (Fig. 6b, e). The map of body is more focused on the proximal part of the limbs (Fig. 6e) and, differently from PE, does not show any sign of topographical organization: upper and lower limb representations are intermixed all over the area (Breveglieri et al. 2006, 2008; Gamberini et al. 2018). Somatic PEC neurons respond mostly to single-joint
rotations, but also to tactile stimulations of trunk and limbs (Fig. 6b, e). The incidence of joint versus tactile sensitivity is similar to that of PE (Fig. 6b; Breveglieri et al. 2008; Gamberini et al. 2018; De Vitis et al. 2019), whereas the contralateral sensitivity is more accentuated than in PE (Fig. 6d). Contrary to PE, several PEc neurons show bimodal somato-visual responses (Breveglieri et al. 2008; Gamberini et al. 2018). Most PEc neurons show arm and/or eye movement-related activity (Ferraina et al. 2001; Battaglia-Mayer et al. 2001; Piserchia et al. 2017) and many PEc neurons are able to encode the direction and depth of arm movements (Hadjidimitrakis et al. 2015). All these data suggest that PEc contributes to the visual guidance of motor behavior and eye–hand coordination (Battaglia-Mayer et al. 2000, 2001; Gamberini et al. 2018). Since area PEc is sensitive to optic flow, receives visual information mostly from the lower visual field and is more strongly connected with cortical motor/premotor regions that represent the lower limbs; it has been suggested that it is involved in the visual guidance of locomotion (Breveglieri et al. 2008; Bakola et al. 2010; Raffi et al. 2014; Gamberini et al. 2018).

Area V6A, like PEc, hosts both visual and somatic neurons. However, contrary to PEc, visual neurons represent the majority of V6A neurons (about 65%; Gamberini et al. 2011). Visual neurons mainly represent the contralateral lower part of visual field, partially including also the ipsilateral one. The central part of visual field is more represented in the dorsal part of V6A, while the peripheral part, particularly the lower quadrant, in the ventral one (Gamberini et al. 2011). Somatic neurons are about 40% of V6A cells (Fig. 6a). They represent almost exclusively the upper limb, and in particular, the contralateral arm (Fig. 6c–e). Most of these neurons are modulated by passive stimulation of proximal joints (shoulder, elbow) and some of them by passive stimulation of distal (mainly wrist) joints (Fig. 6b, e; Gamberini et al. 2011, 2018). It is worth noticing that the active arm movements are always more effective than passive movements in activating V6A neurons. During active arm movements, about 70% of V6A neurons are modulated.

Fig. 5 Functional organization of Brodmann’s areas 1, 2, 3, 5 in macaque monkey. a Summary of the functional subdivisions of anterior parietal areas 3a, 3b, 1, 2, and of posterior parietal area 5 (area PE). Notice that the medial part of area 5 has not been studied (modified from Seelke et al. 2012). b Dorsolateral view of macaque’s left hemisphere. The enlarged closeup on the bottom shows in yellow the part of area 5 recorded from, in the whole, by the following studies (Kalaska et al. 1983, 1990; Mackay et al. 1994; Lacquaniti et al. 1995; Scott et al. 1997; Ferraina et al. 2009; McGuire and Sabes 2011; Bremner and Andersen 2012; Seelke et al. 2012; Menzer et al. 2014; Brunamonti et al. 2016; Padberg et al. 2019). In orange, it is reported the recording site of a recent study focused on the medial part of PE (De Vitis et al. 2019). Abbreviations: IPS intraparietal sulcus; PCS post-central sulcus. Other details and abbreviations as in Figs. 1, 2, 3
by the direction (Fig. 7a; Fattori et al. 2005) and/or depth (Hadjidimitrakis et al. 2014, 2017) of reaching movement, and approximately 60% by wrist orientation (Fig. 7b; Fattori et al. 2009) and grip formation (Fig. 7c; Fattori et al. 2010; Breveglieri et al. 2016, 2018). The presence in V6A of cells modulated by grip formation is in contrast with the common view that this part of the brain is only involved in the control of reaching and strongly supports our view that V6A is also involved in the control of distal aspects of arm movements (Galletti et al. 2003; Fattori et al. 2004; see Fattori et al. 2017 for a thorough discussion of this issue). Most V6A cells are responsive to both reaching and grasping.
movements, with some cells more responsive for reaching and others for grasping (Fig. 7d). About 60% of V6A neurons discharge to object presentation, with about half of them displaying object selectivity (Fattori et al. 2012). Finally, the activity of many V6A cells is also modulated by the preparation of prehension action (see for instance the ramp-like activity shown before the onset of grasping, but not of reaching, by the cell in Fig. 7d; Santandrea et al. 2018). Overall, the functional properties of V6A cells suggest that this medial posterior parietal area is involved in the analysis of vision for action and in the control of all phases of prehension during reach-to-grasp actions (Fattori et al. 2012, 2017), particularly when actions are time constrained (see Galletti and Fattori 2018). Interestingly, other properties of V6A neurons supporting these roles are the tuning of activity by eye position (Galletti et al. 1995; Hadjidimitrakis et al. 2011, 2012; Breveglieri et al. 2012) and the modulation of visual response according to gaze direction (Fig. 8a), a property this latter that allows neurons to encode spatial locations of visual stimuli (Galletti et al. 1995). Further support to the above suggested functional roles comes from the presence in V6A of neurons that respond during saccadic eye movements and encode their direction (Fig. 8b; Kutz et al. 2003), are modulated by spatial shifts of covert attention (Fig. 8c; Galletti et al. 2010) and by the affordance of graspable objects (Fig. 8d; Breveglieri et al. 2015).

Areas PEip and MIP, hidden into the intraparietal sulcus, and PEci, 31, and PGm located on the mesial surface of the hemisphere (Fig. 2a) are areas less-intensively studied than those described above. Although specific studies on the functional properties of PEip neurons are lacking, their properties can be partially inferred by data collected in deep electrophysiological penetrations performed in the lateral part of area 5, since this type of penetrations could reach area PEip in depth. According to these data, deep area 5 neurons (likely located in PEip) were found to respond to somatosensory stimulations of the upper limb (Mountcastle et al. 1975; Iwamura and Tanaka 1996), often in association with arm movements (Kalaska et al. 1990). Neurons in area MIP, instead, responded not only to somatosensory, but also to visual stimuli (Colby and Duhamel 1991), a bimodal sensitivity that suggests a similarity with the typical neurons of Brodmann’s area 7 in the IPL (Leinonen et al. 1979; Hyvärinen 1982). Apart from the study of Colby and Duhamel (1991), specific investigations on the functional properties of MIP neurons are still lacking. However, Richard Andersen et al. in the last two decades collected a huge amount of data on the functional properties of neurons of a PPC region, referred to as parietal reach region (PRR; Snyder et al. 1997, 1998; Andersen et al. 2014) that most likely included area MIP. According to these studies, the activity of PRR (MIP) neurons was strongly modulated by arm movement preparation and execution. In particular, PRR neurons were implicated in the sensory-to-motor transformation required for reaching toward visually defined targets (Buneo and Andersen 2006; Chang and Snyder 2010). Single PRR cells integrated target and limb position information across the reaching workspace and seemed to be more involved in

Fig. 7 Reaching and grasping properties of area V6A neurons. a Cell tuned by the direction of arm movement. b Cell modulated by wrist orientation. c Cell modulated by the grip type. d Cell modulated by both reaching and grasping activities (notice that it is the same cell shown in a). Cell responses are shown as peri-event time histograms and raster displays of impulse activity, aligned at the arm movement onset (black triangle). Below cell responses, recordings of X and Y components of eye positions are reported. Reach-to-grasp arm movements were performed in the dark during foveal reach-to-grasp tasks. To the left and right of cell responses, the sketches of hand actions performed by monkey are shown. Scale: vertical bar on histograms, 113 spikes/s; eye traces, 60°/per vertical division. Modified from Fattori et al. (2009, 2010, 2017)
encoding the intention to make arm movements, rather than the execution of these movements (Andersen et al. 2014).

On the mesial surface of the hemisphere, area PGm codes information related to visually guided navigation and object localization in space (Sato et al. 2006, 2010; Baumann and Mattingley 2010), information useful during planning and execution of arm and/or eye movements (Ferraina et al. 1997a, b). Area 31, anterior to PGm, is likely involved in monitoring eye position and movement (Olson et al. 1996), as well as in sensory cognition for the guidance of head and limb movements (Passarelli et al. 2018). Lastly, PEci, anterior to area 31, hosts a somatosensory map of the body (supplementary sensory area; Murray and Coulter 1981a) like area PE, in agreement with our view that PEci and PE are both parts of Brodmann’s area 5, but to our knowledge, the functional properties of PEci neurons during active movements have not been explored yet.

Overall, the functional properties of SPL summarized in this chapter show that PE, PEip, and PEci are somatomotor areas that are not influenced by visual signals, while PEC, MIP, PGm, and V6A are areas influenced by both somatomotor and visuomotor signals. Since single-cell recordings in macaque monkeys have shown that Brodmann’s area 5 is a somatomotor cortical region not influenced by visual stimulation (Mountcastle et al. 1975) and Brodmann’s area 7, a bimodal somatomotor/visuomotor region (Leinonen et al. 1979; Hyvärinen 1982), we suggest that in SPL, the somatomotor areas are parts of Brodmann’s area 5 and the bimodal areas of Brodmann’s area 7.

Comparison with human SPL

Since Brodmann’s parcellation of the cerebral cortex more than one century ago (Fig. 9a, b; Brodmann 1909), the human SPL has been considered to be organized differently with respect to monkey SPL: in humans, SPL was viewed as hosting both areas 5 and 7, whereas in monkey it seemed to host only area 5 (see Sakata et al. 1973; Mountcastle et al. 1975; Pandya and Seltzer 1982; Battaglia-Mayer et al. 2001). The data reviewed here suggest that this is not the case, and monkey SPL seems likely to have a similar structure with human SPL.

According to Brodmann (1909), area 5 is just posterior to areas 3, 1, 2 in both monkey and human brains (Fig. 9a, b). However, while in monkeys area 5 extends in the lateral part of the brain (Fig. 9a, c), in human it is confined in a more medial region of the brain (Fig. 9b, d). Since it has been demonstrated that during evolution, there has been a high degree of expansion in the associative cortex (Chaplin et al. 2013), particularly in humans (Hill et al. 2010; Gregory et al. 2017), it is plausible that human area 5 was confined...
within more medial brain locations, because it has been ‘pushed’ upward and medially by the growing associative inferior parietal cortex (Brodmann’s areas 39, 40, Fig. 9b; yellow IPL region in Fig. 9d). It is worthwhile to note that the cortex occupying area 5 in humans is a region of low evolutionary expansion (blue stripe under the white dashed oval in Fig. 9d, right). It is therefore reasonable to assume that the functional properties and role of the human area 5 are not significantly different from those of area 5 of the non-human primates.

Strong support to the view that human and non-human primates have SPL organized in a similar way also comes from recent neuroimaging data. Sereno and coworkers (see for review Huang and Sereno 2018) have found in humans, the presence of a second somatosensory homunculus (Parietal Body Area, PBA) in the SPL, besides that in the primary somatosensory cortex located at the level of the medial end of the postcentral sulcus, just posterior to the SI (Fig. 10a, b; Huang et al. 2012). This is the classic location of Brodmann’s area 5 in humans (see Figs. 9d, 10a, b), and the PBA is reminiscent of the rough topographical map of the body observed in macaque area PE (see Fig. 5a; Seelke et al. 2012).

As shown in Fig. 10c, the parietal cortex posterior to PBA is activated by goal-directed limb movements (in particular by reaching), but it is not organized topographically (Fig. 10b), similarly to what has been observed in macaque in the posteromedial part of PE (De Vitis et al. 2019) and in PEc (Gamberini et al. 2018). Huang et al. (2012) found that the part of PBA representing leg and toe and the cortical region that abuts posteriorly PBA overlaps with a region representing the lower visual field (Fig. 10a, b). This suggested to the authors that this parietal region could be involved in the control of locomotion (Fig. 10c),
similarly to macaque area PEc (Breveglieri et al. 2008; Bakola et al. 2010; Raffi et al. 2014; Gamberini et al. 2018).

Overall, the activation by reaching movements, the representation of both lower and upper limb movements, the lacking of somatotopic organization, and the lower field representation of the parietal region abutting posteriorly PBA are reminiscent of the functional properties of the homologous SPL region (posteromedial part of PE and area PEc) in the macaque.

Further support to the view of a strict homology between human and non-human primate SPLs comes from a very recent neuroimaging study (Pitzalis et al. 2019) reporting that the medial SPL cortex in humans hosts the same areas described in macaque SPL, that is V6A, PEc, and PE (compare Fig. 11b, e). As shown in Fig. 11e, human (h) V6A is located in the posterior portion of SPL, anterior to the parieto-occipital sulcus, in a cortical territory that includes the caudalmost portion of the precuneate cortex; hV6A is anterior to hV6 (Pitzalis et al. 2006) and posterior to hPEc, which occupies the dorsalmost portion of the anterior precuneus, just behind the dorsal tip of the cingulate sulcus; area hPE is anterior to hPEc and occupies the dorsomedial portion of the post-central gyrus, just over the tip of the cingulate sulcus. It is worthwhile noticing that while hV6 is part of Brodmann’s area 19 (compare Fig. 11c, e), areas hV6Ad and hPEc are parts of area 7, and hPE part of area 5 (compare Fig. 11c, e). Quite recently, Scheprians and coworkers (2008) reported the presence of several cytoarchitectonic fields within the limits of Brodmann’s areas 7 and 5 in human. A comparison of this anatomical parcellation (Fig. 11d) with the functional parcellation by Pitzalis and colleagues (Fig. 11e) strongly suggest that hV6A is within the limits of Scheprians’ area 7P, hPEc within the limits of area 7A, and hPE within those of area 5L-M. Table 1 provides a comparison between present suggestions and existing nomenclatures in macaque and human SPL.

Conclusions
Most studies in the last century claimed that macaque SPL was entirely occupied by Brodmann’s area 5. Recent data, however, show that in the caudal part of SPL a cortical region larger than that originally indicated as area 7 by Brodmann (1909) has structural and functional features typical of area 7. Within this region that occupies roughly the caudal half of SPL, four cytoarchitecturally and functionally distinct areas have been identified: PEc, V6A, PGm, and MIP (see orange region in Fig. 11a). In the anterior half of SPL, within the cortical region indicated by Brodmann as area 5, three cytoarchitecturally and functionally distinct areas have been recognized: PE, PEip, PEci (see
The comparison of macaque with human SPL presented here (Fig. 11) strongly supports the view that they have similar structural organization, with a somatosensory-dominated anterior sector and a bimodal, visual-somatosensory caudal part. The here-suggested macaque–human homology could address future neuroimaging experiments in humans aimed at understanding the largely unknown functional role of the various sectors lying within the wide sheet of cortex indicated as area 7 in humans. Furthermore, if human SPL, like macaque SPL, is involved in the control of arm-reaching and reach-to-grasp movements, as suggested by many brain imaging studies (e.g., Astafiev et al. 2003; Connolly et al. 2003; Filimon et al. 2009; Cavina-Pratesi et al. 2010; Galati et al. 2011; Gallivan et al. 2011; Fabbri et al. 2014; Tosoni et al. 2015; Heed et al. 2016) and by the effects of caudal SPL lesions (Optic ataxia: Perenin and Vighetto 1988; Karnath and Perenin 2005), we could use the huge

Table 1: Comparison between our architectural parcellation of SPL (in bold) and those of previous studies in monkey and human

SPL	Monkey Brodmann (1909) (cytoarchitecture) Vogt and Vogt (1919) (myeloarchitecture) Pandya and Seltzer (1982) (mainly intrinsic connections) Present results (cytoarchitecture, intrinsic connections, functional properties)	Human Scheperejans et al. (2008) (cytoarchitecture)
Dorsal 5 (anterior) 7 (posterior)	5a PE PEc PE 5L, 5M	7A
Caudal –	– PEci – V6A 7P	
Mesial 5 7	– – PECi 5 Ci	
Lateral –	– PEci 7 M	

dorsal dorsal exposed surface of SPL, *caudal* anterior bank of POs, *mesial* precuneate cortex, *lateral* medial bank of IPs

blue region in Fig. 11a). The comparison of macaque with human SPL presented here (Fig. 11) strongly supports the view that they have similar structural organization, with a somatosensory-dominated anterior sector and a bimodal, visual-somatosensory caudal part. The here-suggested macaque–human homology could address future neuroimaging experiments in humans aimed at understanding the largely unknown functional role of the various sectors lying within the wide sheet of cortex indicated as area 7 in humans. Furthermore, if human SPL, like macaque SPL, is involved in the control of arm-reaching and reach-to-grasp movements, as suggested by many brain imaging studies (e.g., Astafiev et al. 2003; Connolly et al. 2003; Filimon et al. 2009; Cavina-Pratesi et al. 2010; Galati et al. 2011; Gallivan et al. 2011; Fabbri et al. 2014; Tosoni et al. 2015; Heed et al. 2016) and by the effects of caudal SPL lesions (Optic ataxia: Perenin and Vighetto 1988; Karnath and Perenin 2005), we could use the huge
amount of data collected from single cells in different areas of macaque SPL to verify their efficacy in encoding reach-to-grasp actions (e.g., see Filippini et al. 2017, 2018), so to decide whether and how to use neural signals from human SPL to guide artificial arms in tetraplegic patients.

Acknowledgements We thank M. Verdosci and F. Campisi for expert technical assistance.

Funding European Union Grant H2020-MSCA-734227-PLATYPUS and Ministero dell’Università e della Ricerca 2015AWSW2Y_001.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any new, previously unpublished study with human participants or animals performed by any of the authors.

References

Andersen RA, Cui H (2009) Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63:568–583. https://doi.org/10.1016/j.neuron.2009.08.028

Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330. https://doi.org/10.1146/annurev.neuro.20.1.303

Andersen RA, Andersen KN, Hwang EJ, Hauschild M (2014) Optic ataxia: from Balint’s syndrome to the parietal reach region. Neuron 81:967–983. https://doi.org/10.1016/j.neuron.2014.02.025

Astaferi SV, Shalman GL, Stanley CM et al (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699. https://doi.org/10.1523/JNEUROSCI.23-11-04689.2003

Bakola S, Gamberini L, Passarelli L et al (2016) Cortical Correlations of Parietal Field PEc in the Macaque: linking vision and somatic sensation for the control of limb action. Cereb Cortex 26:2592–2604. https://doi.org/10.1093/cercor/bhq007

Bakola S, Passarelli L, Gamberini M et al (2013) Cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex. J Neurosci 33:6648–6658. https://doi.org/10.1523/JNEUROSCI.4685-12.2013

Bakola S, Passarelli L, Huyhn T et al (2017) Cortical afferents and myeloarchitecture distinguish the medial intraparietal area (MIP) from neighboring subdivisions of the Macaque Cortex. eNeuro. https://doi.org/10.1523/eneuro.0344-17.2017

Baldwin MKL, Cooke DF, Goldring AB, Krubitzer L (2018) Representations of fine digit movements in posterior and anterior parietal cortex revealed using long-train intracortical microstimulation in Macaque Monkeys. Cereb Cortex 28:4244–4263. https://doi.org/10.1093/cercor/bhx279

Batista AP, Andersen RA (2001) The parietal reach region codes the next planned movement in a sequential reach task. J Neurophysiol 85:539–544. https://doi.org/10.1152/jn.2001.85.2.539

Battaglia-Mayer A, Ferraina S, Genovesio A et al (2001) Eye-hand coordination during reaching. II. An analysis of the relationships between visuomotor signals in parietal cortex and parieto-frontal association projections. Cereb Cortex 11:528–544. https://doi.org/10.1093/cercor/11.6.528

Baumann O, Mattingley JB (2010) Medial parietal cortex encodes perceived heading direction in humans. J Neurosci 30:12897–12901. https://doi.org/10.1523/JNEUROSCI.3077-10.2010

Begliomini C, De Sanctis T, Marangon M et al (2014) An investigation of the neural circuits underlying reaching and reach-to-grasp movements: from planning to execution. Front Hum Neurosci 8:676. https://doi.org/10.3389/fnhum.2014.00676

Borra E, Gerbella M, Rozzi S, Luppi G (2017) The macaque lateral grasping network: a neural substrate for generating purposeful hand actions. Neurosci Biobehav Rev 75:65–90. https://doi.org/10.1016/j.neubiorev.2017.01.017

Bremner LR, Andersen RA (2012) Coding of the reach vector in parietal area 5d. Neuron 75:342–351. https://doi.org/10.1016/j.neuron.2012.02.025

Breveglieri R, Galletti C, Gameri M et al (2006) Somatosensory cells in Area PEc of macaque posterior parietal cortex. J Neurosci 26:3679–3684. https://doi.org/10.1523/JNEUROSCI.4637-05.2006

Breveglieri R, Galletti C, Monaco S, Fattori P (2008) Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. Cereb Cortex 18:806–816. https://doi.org/10.1093/cercor/bhm127

Breveglieri R, Hadjidimitrakis K, Bosco A et al (2012) Eye position encoding in three-dimensional space: integration of version and vergence signals in the medial posterior parietal cortex. J Neurosci 32:159–169. https://doi.org/10.1523/JNEUROSCI.4028-11.2012

Breveglieri R, Galletti C, Bosco A et al (2015) Object affordance modulates visual responses in the macaque medial posterior parietal cortex. J Cogn Neurosci 27:1447–1455. https://doi.org/10.1162/jocn_a_00793

Breveglieri R, Bosco A, Galletti C et al (2016) Neural activity in the medial parietal area V6A while grasping with or without visual feedback. Sci Rep 6:28893. https://doi.org/10.1038/srep28893

Breveglieri R, De Vitiis M, Bosco A et al (2018) Interplay between grip and vision in the monkey medial parietal lobe. Cereb Cortex. https://doi.org/10.1093/cercor/bhx109

Brodmann K (1909) Vergleichende Lokализation der Grosshirnrinde in ihren Principien dargestellt auf Grund des Zellenbaues. Brunamonti E, Genovesio A, Pani P et al (2016) Reaching-related neurons in superior parietal area 5: influence of the target visibility. J Cogn Neurosci 28:1828–1837. https://doi.org/10.1162/jocn_a_01004

Bunco CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neropsychologia 44:2594–2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011

Caminiti R, Innocenti GM, Battaglia-Mayer A (2015) Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 56:73–96. https://doi.org/10.1016/j.neubiorev.2015.06.014

Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: i. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421. https://doi.org/10.1002/cne.902870402

Cavina-Pratesi C, Monaco S, Fattori P et al (2010) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323. https://doi.org/10.1523/JNEUROSCI.2023-10.2010
encodes objects reachable by the hand. J Neurosci 29:4381–4391. https://doi.org/10.1523/JNEUROSCI.0377-09.2009

Gallivan JP, McLean DA, Valyear KF et al (2011) Decoding action intentions from preparatory brain activity in human parieto-frontal networks. J Neurosci 31:9599–9610. https://doi.org/10.1523/JNEUROSCI.0800-11.2011

Gamberini M, Passarelli L, Fattori P et al (2009) Cortical connections of the visuomotor parieto-occipital area V6A of the macaque monkey. J Comp Neurol 513:622–642. https://doi.org/10.1002/cne.21980

Gamberini M, Galletti C, Bosco A et al (2011) Is the medial posterior parietal area V6A a single functional area? J Neurosci 31:5145–5157. https://doi.org/10.1523/JNEUROSCI.5489-10.2011

Gamberini M, Dal Bò G, Breveglieri R et al (2018) Sensory properties of the caudal aspect of the macaque superior parietal lobe. J Neurosci 22:1863–1879. https://doi.org/10.1007/s00429-017-1593-x

Georgopoulos AP, Caminiti R, Kalaska JF (1984) Static spatial effects in motor cortex and area 5: quantitative relations in a two-dimensional space. Exp Brain Res 54:446–454. https://doi.org/10.1007/bf00235470

Gottlieb J (2007) From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53:9–16. https://doi.org/10.1016/j.neuron.2006.12.009

Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204:475–491. https://doi.org/10.1007/s00221-010-2315-2

Gregory MD, Kippenhan JS, Eisenberg DP et al (2017) Neanderthal-derived genetic variation shapes modern human cranium and brain. Sci Rep 7:6308. https://doi.org/10.1038/s41598-017-06587-0

Hadjidimitrakis K, Breveglieri R, Placenti G et al (2011) Fix your eyes in the space you could reach: neurons in the macaque medial parietal cortex prefer gaze positions in peripersonal space. PLoS One 6:e22335. https://doi.org/10.1371/journal.pone.0022335

Hadjidimitrakis K, Breveglieri R, Bosco A, Fattori P (2012) Three-dimensional eye position signals shape both peripersonal space and arm movement activity in the medial posterior parietal cortex. Front Integr Neurosci 6:37. https://doi.org/10.3389/fintneu.2012.00037

Hadjidimitrakis K, Bertozzi F, Breveglieri R et al (2014) Common neural substrate for processing depth and direction signals for reaching in the monkey medial posterior parietal cortex. Cereb Cortex 24:1645–1657. https://doi.org/10.1093/cercor/bht021

Hadjidimitrakis K, Dal Bo’ G, Breveglieri R et al (2015) Overlapping representations for reach depth and direction in caudal superior parietal lobe of macaques. J Neurophysiol 114:2340–2352. https://doi.org/10.1152/jn.00486.2015

Hadjidimitrakis K, Bertozzi F, Breveglieri R et al (2017) Temporal stability of reference frames in monkey area V6A during a reaching task in 3D space. Brain Struct Funct 222:1959–1970. https://doi.org/10.1007/s00429-016-1319-5

Hadjidimitrakis K, Bakola S, Wong YT, Hagan MA (2019) Mixed spatial and movement representations in the primate posterior parietal cortex. Front Neural Circuits 13:15. https://doi.org/10.3389/fncir.2019.00015

Heed T, Leone FT M, Toni I, Medendorp WP (2016) Functional versus effector-specific organization of the human posterior parietal cortex: revisited. J Neurophysiol 116:1885–1899. https://doi.org/10.1152/jn.00312.2014

Hill J, Inder T, Neil J et al (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci 107:13135–13140. https://doi.org/10.1073/pnas.1001229107

Huang R-S, Chen CF, Tran AT et al (2012) Mapping multisensory parietal face and body areas in humans. PNAS 109:18114–18119. https://doi.org/10.1073/pnas.1207946109

Hyvärinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129. https://doi.org/10.1152/physrev.1982.62.3.1060

Imperi D, Zilles K, Niu M et al (2019) Receptor density pattern confirms and enhances the anatomic-functional features of the macaque superior parietal lobule areas. Brain Struct Funct 224:2733–2756. https://doi.org/10.1007/s00429-019-01930-9

Iwamura Y, Tanaka M (1996) Representation of reaching and grasping in the monkey postcentral gyrus. Neurosci Lett 214:147–150. https://doi.org/10.1016/0304-3940(96)12911-6

Jeannerod M, Arib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320. https://doi.org/10.1016/0166-2236(95)93921-J

Kalaska JF (1996) Parietal cortex area 5 and visuomotor behavior. Can J Physiol Pharmacol 74:483–498. https://doi.org/10.1139/y96-040

Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51:247–260. https://doi.org/10.1007/bf0237200

Kalaska JF, Cohen DA, Pru’homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics, Exp Brain Res 80:351–364. https://doi.org/10.1007/bf02281622

Kalaska JF, Scott SH, Cisek P, Sergio LE (1997) Cortical control of reaching movements. Curr Opin Neurobiol 7:849–859. https://doi.org/10.1016/s0959-4388(97)80146-8

Karnath H-O, Perenin M-T (2005) Cortical control of visually guided reaching: evidence from patients with optic ataxia. Cereb Cortex 15:1561–1569. https://doi.org/10.1093/cercor/bhi034

Krubitzer L, Disbrow E (2008) The evolution of parietal areas involved in hand use in primates. In: Kaas J, Gardner E (eds) The senses: a comprehensive reference. Elsevier, London, pp 183–214

Kutz DF, Fattori P, Gamberini M et al (2003) Early- and late-responding cells to saccadic eye movements in the cortical area V6A of macaque monkey. Exp Brain Res 149:83–95. https://doi.org/10.1007/s00221-002-1337-9

Lacquaniti F, Guigon E, Bianchi L et al (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5:391–409. https://doi.org/10.1093/cercor/bhi034

Leinonen L, Hyvärinen J, Nyman G, Linnankoski I (1979) I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp Brain Res 34:299–320. https://doi.org/10.1007/bf00235675

Lewis JW, Van Essen DC (2000a) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurol 428:199–206. https://doi.org/10.1002/1096-9861(20001204)428:1<199::aid-cne8>3.0.co;2-9

Lewis JW, Van Essen DC (2000b) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137. https://doi.org/10.1002/1096-9861(20001204)428:1<112::aid-cne8>3.0.co;2-9

Luppino G, Rizzolatti G (2000) The organization of the frontal motor cortex. News Physiol Sci 15:219–224. https://doi.org/10.1152/physiolonline.2000.15.5.219

Luppino G, Ben Hamed S, Gamberini M et al (2005) Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 21:3056–3076. https://doi.org/10.1111/j.1460-9568.2005.04149.x
Mackey WA, Mendoza AJ, Riehle A (1994) Spatially modulated touch responses in parietal cortex. Brain Res 645:351–355. https://doi.org/10.1016/0006-8993(94)91673-X

Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462. https://doi.org/10.1002/cne.903110402

Matelli M, Govoni P, Galletti C et al (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402:327–352. https://doi.org/10.1002/(SICI)1096-9861(19981221)402:3<327::AID-CNE4<3.0.CO;2-Z

McGuire LMM, Sabes PN (2011) Heterogeneous representations in the superior parietal lobule are common across reaches to visual and proprioceptive targets. J Neurosci 31:6661–6673. https://doi.org/10.1523/JNEUROSCI.2921-10.2011

Menzel DL, Rao NG, Bondy A et al (2014) Population interactions between parietal and primary motor cortices during reach. J Neurophysiol 112:2959–2984. https://doi.org/10.1152/jn.00851.2012

Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS et al (2004) Corticoarchitectural and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469:37–69. https://doi.org/10.1002/cne.10980

Mountcastle VB, Lynch JC, Georgopoulos A et al (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908. https://doi.org/10.1152/jn.1975.38.4.871

Murray EA, Coulter JD (1981) Supplementary sensory area BT—cortical sensory organization: volume 1: multiple somatic areas. In: Woolsey CN (ed). Humana Press, Totowa, pp 167–195

Murray EA, Coulter JD (1981b) Organization of corticospinal neurons in the monkey. J Comp Neurol 195:339–365. https://doi.org/10.1002/cne.901950212

Olson CR, Musil SY, Goldberg ME (1996) Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. J Neurophysiol 76:3285–3300. https://doi.org/10.1152/jn.1996.76.5.3285

Padberg J, Franca JG, Cooke DF et al (2007) Parallel evolution of cortical areas involved in skilled hand use. J Neurosci 27:10106–10115. https://doi.org/10.1523/JNEUROSCI.2632-07.2007

Padberg J, Cooke DF, Cerkevich CM et al (2019) Cortical connections of area 2 and posterior parietal area 5 in macaque monkeys. J Comp Neurol 527:718–737. https://doi.org/10.1002/cne.22530.Digestion

Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210. https://doi.org/10.1002/cne.902040208

Passarelli L, Rosa MGP, Gamberini M et al (2011) Cortical connections of area V6Av in the Macaque: a visual-input node to the eye/hand coordination system. J Neurosci 31:1790–1801. https://doi.org/10.1523/JNEUROSCI.4784-10.2011

Passarelli L, Rosa MGP, Bakola S et al (2018) Uniformity and diversity of cortical projections to precurvature areas in the Macaque Monkey: what defines area PGm? Cereb Cortex 28:1700–1717. https://doi.org/10.1093/cercor/bhx067

Penfield W, Welch K (1951) The supplementary motor area of the cerebral cortex: a clinical and experimental study. AMA Arch Neurol Psychiatry 66:289–317. https://doi.org/10.1001/archneur.1951.02320090038004

Perenin M-T, Vighetto A (1988) Optic Ataxia: a specific disruption in visuomotor mechanisms. Brain 111:643–674. https://doi.org/10.1093/brain/111.3.643

Pisella L, Rossetti Y, Rode G (2017) Optic ataxia in Balint-Holmes syndrome. Ann Phys Rehabil Med 60:148–154. https://doi.org/10.1016/j.rehab.2016.01.003

Pisochva V, Breveglieri R, Hadjidimitrakis K et al (2017) Mixed body/hand reference frame for reaching in 3D space in macaque parietal area P Ec. Cereb Cortex 27:1976–1990. https://doi.org/10.1093/cercor/bhw039

Pitzalis S, Galletti C, Huang R-S et al (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26:7962–7973. https://doi.org/10.1523/JNEUROSCI.0178-06.2006

Pitzalis S, Serra C, Sulpizio V et al (2019) A putative human homologue of the macaque area P Ec. Neuroimage 202:116092. https://doi.org/10.1016/j.neuroimage.2019.116092

Pons TP, Garraghty PE, Cusick CG, Kaas JH (1985) The somatotopic organization of area 2 and posterior parietal area 5 in macaque monkeys. J Comp Neurol 241:445–466. https://doi.org/10.1002/cne.902410405

Raffi M, Carrozzini C, Maioli MG, Squatrito S (2010) Multimodal representation of optic flow in area P Ec of macaque monkey. Neuroscience 171:1241–1255. https://doi.org/10.1016/j.neuroscience.2010.09.026

Raffi M, Maioli MG, Squatrito S (2011) Optic flow direction coding in area P Ec of the behaving monkey. Neuroscience 194:136–149. https://doi.org/10.1016/j.neuroscience.2011.07.036

Raffi M, Persiani M, Piras A, Squatrito S (2014) Optic flow neurons in area P Ec integrate eye and head position signals. Neurosci Lett 568:23–28. https://doi.org/10.1016/j.neulet.2014.03.042

Riehle A, Vaadia E (2004) Motor cortex in voluntary movements: a distributed system for distributed functions. CRC Press, Boca Raton

Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157. https://doi.org/10.1007/s00221-003-1588-0

Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102. https://doi.org/10.1016/0006-8993(73)90172-8

Santandrea E, Breveglieri R, Bosco A et al (2018) Preparatory activity for purposeful arm movements in the dorsomedial parietal area V6A: beyond the online guidance of movement. Sci Rep 8:6926. https://doi.org/10.1038/s41598-018-25117-0

Sato N, Sakata H, Tanaka YL, Taira M (2006) Navigation-associated medial parietal neurons in monkeys. Proc Natl Acad Sci USA 103:17001–17006. https://doi.org/10.1073/pnas.0604277103

Sato N, Sakata H, Tanaka YL, Taira M (2010) Context-dependent place-selective responses of the neurons in the medial parietal region of Macaque Monkeys. Cereb Cortex 20:846–858. https://doi.org/10.1093/cercor/bhp147

Scheperejans F, Eickhoff SB, Hömke L et al (2008) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157. https://doi.org/10.1093/cercor/bhm241

Scott SH, Sergio LE, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. II. Activity of individual cells in dorsal premotor cortex and parietal area 5. J Neurophysiol 78:2413–2426. https://doi.org/10.1152/jn.1997.78.5.2413

Seeleke AMH, Padberg JJ, Disbrow E et al (2012) Topographic Maps within Brodmann’s Area 5 of Macaque Monkeys. Cereb Cortex 22:1834–1850. https://doi.org/10.1093/cercor/bhr257

Sereno MI, Huang R-S (2014) Multisensory maps in parietal cortex. Curr Opin Neurobiol 24:39–46. https://doi.org/10.1016/j.conb.2013.08.014

Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A.
Eur J Neurosci 10:3171–3193. https://doi.org/10.1046/j.1460-9568.1998.00327.x
Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. Nature 386:167–170. https://doi.org/10.1038/386167a0
Snyder LH, Batista AP, Andersen RA (1998) Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. J Neurophysiol 79:2814–2819. https://doi.org/10.1152/jn.1998.79.5.2814
Tosoni A, Pitzalis S, Committeri G et al (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220:3307–3321. https://doi.org/10.1007/s00429-014-0858-x
Verhagen L, Dijkerman HC, Medendorp WP, Toni I (2013) Hierarchical organization of parietofrontal circuits during goal-directed action. J Neurosci 33:6492–6503. https://doi.org/10.1523/JNEUROSCI.3928-12.2013
Vesia M, Crawford JD (2012) Specialization of reach function in human posterior parietal cortex. Exp Brain Res 221:1–18. https://doi.org/10.1007/s00221-012-3158-9
Vesia M, Barnett-Cowan M, Elahi B et al (2017) Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex 92:175–186. https://doi.org/10.1016/j.cortex.2017.04.007
Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. Zweite Mitteilung. Das Wesen der topischen architektonischen Differenzen des Cortex cerebri. J Psychol Neurol 25:292–360
von Economo CF, Koskinas GN (1925) Die cytoarchitektonik der hirnrinde des erwachsenen menschen. Springer, New York
Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42. https://doi.org/10.1146/annurev.neuro.20.1.25
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.