ESTUDO CLÍNICO

Utilidade clínica da extensão do volume peridural após doses subaracnóideas reduzidas: um estudo clínico randomizado

Asha Tyagi, Mukundan Ramanujam, Ashok Kumar Sethi, Medha Mohta

* University College of Medical Sciences and GTB Hospital, Department of Anaesthesiology and Critical Care, Delhi, Índia
+ Dr. Ram Manohar Lohia Hospital, Department of Anaesthesiology, Delhi, India

Recebido em 26 de julho de 2019; aceito em 8 de agosto de 2020

Resumo

Introdução e objetivos: A extensão do volume peridural (EVP) envolve a instilação de solução salina normal no espaço peridural logo após uma injeção subaracnóidea, com o objetivo de aumentar a altura do bloqueio sensorial. A relevância clínica reside na possibilidade de utilizar dose subaracnóidea reduzida e ainda assim atingir o nível de bloqueio sensorial desejado. A dose subaracnóidea é um determinante conhecido do nível de bloqueio sensorial. Não se sabe se EVP é dependente da dose subaracnóidea.

Métodos: Conduzimos um estudo randomizado, controlado e duplo-cego para comparar o nível Sensorial máximo (Smax) alcançado com ou sem aplicação de EVP para duas doses subaracnóideas reduzidas diferentes. Oitenta e quatro participantes adultos do sexo masculino com estadiamento físico ASA I ou II, com peso corporal entre 50-70 kg e altura na faixa de 150-180 cm, agentes para cirurgia ortopédica de membro inferior usando anestesia combinada raqui-peridural foram randomizados para receber, dose subaracnóidea (5 ou 8 mg) com ou sem EVP, dependendo do grupo em que o participante foi alocado.

Resultados: O Smax foi reduzido pela aplicação de EVP para 5 mg de bupivacaína subaracnóidea (T8,9 ± 4,3 vs. T6,4 ± 1,9 com e sem EVP, respectivamente; p = 0,030). Smax foi semelhante com aplicação de EVP a 8 mg de bupivacaína subaracnóidea e sem (T5,8 ± 1,8 vs. T6,4 ± 2,2; respectivamente; p = 0,324).

Conclusão: A EVP não deve ser aplicada a 5 mg de bupivacaína pura durante anestesia combinada raqui-peridural em pacientes submetidos à cirurgia ortopédica de membros inferiores, pois pode resultar em uma diminuição do nível sensorial máximo.

© 2020 Sociedade Brasileira de Anestesiologia. Este é um artigo Open Access sob uma licença CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introdução

A extensão do volume peridural (EVP) envolve a instilação de solução salina a 0,9% no espaço peridural logo após uma injeção subaracnóide. A redução na dose subaracnóide de raqui-peridural, foram incluídos. Aqueles com contraindicação à anestesia combinada raqui-peridural, incluindo história de doença espinhal, hipersensibilidade a anestésicos locais ou anormalidades de coagulação, bem como infecção cutânea no local da injeção, foram excluídos do estudo.

Usando uma tabela de números aleatórios gerada por computador, os participantes foram alocados em um de 4 grupos, de acordo com a dose de bupivacaína subaracnóide e a realização ou não da EVP: os grupos B5 e B5E receberam bupivacaína por via subaracnóide em uma dose de 5 mg sem e com a realização de EVP, respectivamente; enquanto os grupos B8 e BE8 receberam 8 mg de bupivacaína subaracnóide sem e com realização da EVP, respectivamente. Optamos pelo uso subaracnóide de anestésico local puro/isobárico em vez de hiperbárico, uma vez que os dados anteriores comparando as duas formulações observaram o sucesso da EVP apenas quando foi usado o anestésico local puro/isobárico.

Após transferir o paciente para a mesa cirúrgica, foram instalados monitorização não invasiva de pressão arterial oscilométrica, de ECG na derivação II e de oximetria de pulso. O acesso intravenoso foi estabelecido e 10 mL/kg-1 de solução Ringer lactato infundidos rapidamente.

Empregando rigorosa técnica asséptica, a anestesia combinada raqui-peridural foi realizada com o paciente em posição sentada, no espaço intervertebral L4-5 via abordagem na linha média, utilizando técnica agulha agulha através de agulha. O espaço peridural foi identificado com agulha Tuohy 18G pela perda de resistência ao ar, limitando-se o volume de ar a menos de 2 mL. O espaço subaracnóide foi identificado com agulha Whitchacre 27G após a confirmação do fluxo livre de líquido cefalorraquidiano. De acordo com a alocação do grupo a solução subaracnóide foi injetada no líquido cefalorraquidiano a uma velocidade de 0,5-1 mL.s-1 com o orifício da agulha espinal de Whitchacre voltado cranialmente.

O momento da remoção da agulha raquidiana marcou a conclusão do bloqueio subaracnóide. Após a remoção da agulha raquidiana, o cateter peridural foi inserido 4 cm no espaço peridural, e foi verificada a ausência de sangue/líquido cefalorraquidiano à aspiração do cateter. Solução salina normal (10 mL de 0,9%) foi injetada por 10-15 segundos através de cateter peridural em participantes dos grupos BE5 e BE8, enquanto nos grupos B5 e B8 foi realizada injeção peridural. O cateter peridural foi fixado e o paciente colocado em posição supina. O intervalo de tempo decorrido para a colocação do paciente em posição supina desde a conclusão da injeção subaracnóide também foi anotado. Oxigênio foi administrado com fluxo de 4 L.min-1 via máscara facial, conforme nossa rotina.

O bloqueio sensorial e motor foi avaliado a cada 3 minutos por um anestesiologista cego ao estudo, começando após o paciente ser colocado em decúbito dorsal, até que não houvesse mais aumento em três leituras consecutivas. Esse nível de bloqueio sensorial foi designado como nível máximo de bloqueio sensorial (Smax). O tempo de início para Smax foi definido como o tempo desde a conclusão da injeção subaracnóide até o momento em que o nível máximo foi registrado pela primeira vez. Assim que o Smax foi atingido, o nível sensorial foi testado a cada 15 minutos no intraoperatorário ou a cada 30 minutos na sala de recuperação até que o nível do bloqueio recuasse dois dermatómos ou um bolus peridural fosse administrado, o que ocorreuse primeiro. Foram registrados o bloqueio motor máximo e o momento de início. Todas as características do bloqueio foram avaliadas somente até que um complemento peridural fosse administrado.
O nível sensorial do bloqueio foi avaliado por meio da ausência completa de sensação à picada de agulha, registrando-se o nível mais baixo sem sensação à picada de agulha. O bloqueio motor no membro inferior normal foi classificado de acordo com a escala modificada de Bromage, em que a pontuação 1 significa bloqueio motor completo.\(^\text{18}\)

O anestesiologista que avaliou as características do bloqueio desconhecia o grupo alocado e não estava presente na sala de cirurgia até que a execução do bloqueio fosse concluída. Simultaneamente ao registro do nível de bloqueio sensorial e motor, a frequência cardíaca e a pressão arterial média também foram anotadas.

Foi anotado todo episódio de hipotensão durante os primeiros 30 minutos após a deposição subaracnóide do medicamento (e antes do primeiro bolus peridural). Hipotensão foi definida como a queda na pressão arterial média de mais de 30% da linha de base ou uma pressão arterial sistólica de menos de 90 mmHg (a leitura que fosse a maior das duas) e tratada com bolus de 6 mg de mepinétermina por via intravenosa.

Foi registrada a incidência de náusea, vômito e prurido intraoperatorário que ocorressem até o primeiro bolus peridural.

Injeções complementares peridurais foram administradas no intraoperatorário caso o bloqueio subaracnóide fosse inadequado para o início ou continuação da cirurgia. O cateter também foi usado para fornecer anestesia pós-operatoria.

Também foram coletadas as características demográficas de todos os participantes. Foram registrados os tempos para conclusão do bloqueio subaracnóide, posicionamento do paciente em decúbito dorsal e primeira injeção peridural complementar.

O Smax para o grupo B5 foi comparado com o grupo BE5 para avaliar o efeito da EVP para 5 mg de bupivacaína subaracnóide.

Uma comparação semelhante foi feita entre o grupo B8 e o grupo BE8 para avaliar o efeito da EVP para 8 mg de bupivacaína subaracnóide.

A comparação intergrupos para Smax entre o grupo B5 e o grupo BE5 foi feita usando o teste t não pareado, assim como para os grupos B8 e BE8. Para comparação intergrupos das variáveis demográficas normalmente distribuídas nos quatro grupos, usamos a Análise de Variação (ANOVA) com comparações post-hoc com o teste de Tukey. Empregamos o teste Qui-Quadrado para a comparação das variáveis discretas. Para a análise do nível de bloqueio sensorial, os dermatómos foram numerados sequencialmente de C1 a S5.

O tamanho da amostra foi determinado usando o teste t bilateral de duas amostras para comparar as médias com poder de 80% e erro α de 5%. Tomando o desvio padrão relatado anteriormente de 1 dermatómio no nível máximo de bloqueio sensório após 5 e 8 mg de bupivacaína pura/isobárica subaracnôidea em pacientes submetidos à cirurgia de membros inferiores,\(^\text{17,19}\) 17 participantes seriam necessários em cada grupo com qualquer dose para detectar uma diferença de 1 dermatómio após EVP. Adicionando mais 10% para possíveis perdas de participantes por vários motivos, como falha do bloqueio, e 15% no caso de o nível sensorial máximo ser não paramétrico na distribuição, seriam necessários pelo menos 21 participantes em cada grupo.

Resultados

O diagrama CONSORT que mostra o fluxo dos participantes no estudo está representado na figura 1. Um total de 21 participantes foram randomizados para cada um dos quatro grupos e o protocolo pode ser concluído com 20 participantes nos grupos B5, B8 e BE8; e com 19 participantes no grupo BE5.

As características de base dos participantes, incluindo parâmetros demográficos, variáveis hemodinâmicas, bem como a duração da cirurgia, foram estatisticamente semelhantes entre os grupos B5 e BE5; e entre os grupos B8 e BE8 (p > 0,05) (tabela 1). A comparação entre os 4 grupos para as características de base também mostrou perfil estatisticamente semelhante (p > 0,05).

O desfecho primário Smax foi significativamente menor no grupo BE5 em comparação com o grupo B5, p = 0,030; mas semelhante entre os grupos B8 e BE8, p = 0,32 (tabela 2).

O bloqueio motor máximo, bem como o tempo para o bloqueio sensorial e motor máximo após a injeção subaracnóidea, avaliado até antes da administração da dose complementar peridural, foram estatisticamente semelhantes entre os grupos B5 e BE5; bem como entre os grupos B8 e BE8 (p > 0,05; tabela 2). O tempo necessário para posicionar o paciente em decúbito dorsal após a conclusão do bloqueio subaracnóide foi semelhante entre os grupos B5 e BE5 (p = 0,171); mas significativamente maior para o grupo BE8 em comparação ao grupo B5 (p = 0,029) (tabela 2).

A incidência de hipotensão, prurido, náuseas e/ou vômitos no intraoperatorário foi estatisticamente semelhante entre os grupos B5 e BE5; bem como entre grupo B8 e grupo BE8 (tabela 3).

O número de participantes que necessitaram de dose complementar peridural no intraoperatorário foi estaticamente semelhante entre os grupos B5 e BE5; bem como entre os grupos B8 e BE8 (tabela 4). No entanto, o número de participantes necessitando de dose complementar peridural intraoperatoria precoce por bloqueio subaracnóide inadequado impossibilitando o inicio da cirurgia foi estatisticamente semelhante para os grupos B5 e BE5, embora clinicamente maior com o último (5% vs. 26% respectivamente; p = 0,247). O valor desse parâmetro foi semelhante nos grupos B8 e BE8 (5% vs. 0% respectivamente; p = 0,799) (tabela 4). A primeira dose complementar peridural foi necessária significativamente mais cedo no grupo BE5 em comparação com o grupo B5 (p = 0,034) (tabela 4); sendo semelhante o momento em que a dose foi necessária nos grupos B8 e BE8; (p = 0,184) (tabela 4).

Discussão

Este estudo teve como objetivo avaliar se os resultados da EVP dependem da quantidade de anestésico local subaracnóide quando ele é usado em doses reduzidas. O desfecho primário foi o Smax, obtido com ou sem EVP após injeção subaracnóidea de doses reduzidas de bupivacaína de 5 mg e 8 mg.

Doses subaracnóideas deliberadamente reduzidas foram escolhidas para replicar a utilidade clínica e prática de EVP. Uma dose de 8 mg de bupivacaína subaracnóide foi utilizada por estar previamente documentada como DE50 para cirurgias de membros inferiores, o que implica que um nível de bloqueio sensorial inadequado estaria presente em 50% dos participantes, justificando o uso de aumento do bloqueio sensorial com EVP. Usamos 5 mg como a outra dose reduzida porque na prática clínica é uma das menores quantidades mais consistentemente usadas com êxito em associação com a EVP.\(^\text{20,22}\)

Nosso estudo foi desenhado com poder capaz de detectar até mesmo a variação em um único dermatómio para o nível de...
Características dos participantes e duração da cirurgia
Grupo B5 (n = 20)
Idade (anos)
Peso (Kg)
Altura (cm)
Estado físico ASA (II: I)
Pressão arterial média basal (mmHg)
Frequência cardíaca basal (min⁻¹)
Presença de comorbidade
Duração da cirurgia (min)

Os valores são média ± DP ou número de pacientes.

* Comparações intergrupos entre o grupo B5 e BE5.

** Comparações entre grupos entre os grupos B8 e BE8.

Não houve diferenças significativas entre os grupos. Grupo B5, 5 mg de bupivacaína pura/isobárica subaracnóidea; Grupo BE5, 5 mg de bupivacaína pura/isobárica subaracnóide com extensão do volume peridural; Grupo B8, 8 mg de bupivacaína pura/isobárica subaracnóidea; Grupo BE8, 8 mg de bupivacaína pura/isobárica subaracnóide com extensão do volume peridural.

Características do bloqueio raquidiano
Grupo B5 (n = 20)
Smax
Tempo até o nível sensorial máximo (min)
Bloqueio motor máximo (pontuação de Bromage)
Tempo para bloqueio máximo do motor (min)
Tempo para posicionar o paciente em decúbito dorsal (min)

Os valores são apresentados como média ± DP.

* Comparações intergrupos entre o grupo B5 e BE5.

** Comparações entre grupos entre os grupos B8 e BE8.

Tabela 3 | Eventos adversos intraoperatorários |
|-----------------------------------|
| **Grupo B5** (n = 20) | **Grupo BE5** (n = 19) | **Grupo B8** (n = 20) | **Grupo BE8** (n = 20) |
| **Hipotensão** | 5 (25) | 8 (42) | 0,365 | 8 (40) | 7 (35) | 0,799 |
| **Náusea e/ou vômitos** | 1 (5) | 1 (5) | 0,989 | 0 (0) | 1 (5) | 0,799 |
| **Prurido** | 0 (0) | 0 (0) | 1,000 | 0 (0) | 0 (0) | 1,000 |

Os valores descrevem o número absoluto de pacientes e (%).

* Comparações intergrupos entre os grupos B5 e BE5.

** Comparações entre grupos entre os grupos B8 e BE8.

Grupa B5, 5 mg de bupivacaína pura/isobárica subaracnóidea; Grupo BE5, 5 mg de bupivacaína pura/isobárica subaracnóide com extensão do volume peridural; Grupo B8, 8 mg de bupivacaína pura/isobárica subaracnóidea; Grupo BE8, 8 mg de bupivacaína pura/isobárica subaracnóide com extensão do volume peridural.

Tabela 4 | Características do primeiro bolus no cateter peridural no intraoperatorário |
|-----------------------------------|
| **Grupo B5** (n = 20) | **Grupo BE5** (n = 19) | **Grupo B8** (n = 20) | **Grupo BE8** (n = 20) |
| **Frequência de reforço peridural intraoperatorário** | 17 (85) | 18 (95) | 0,607 | 18 (90) | 17 (85) | 0,799 |
| **Indicado devido a bloqueio subaracnóide inadequado** | 1 (5) | 5 (26) | 0,247 | 1 (5) | 0 (0) | 0,799 |
| **Tempo para o primeiro reforço peridural (min)** | 75,8 ±29,2 | 53,9 ±33,2 | 0,034 | 90,0 ±32,3 | 104,3 ±34,2 | 0,184 |

Os dados descrevem o número absoluto de pacientes e (%).

* Comparações intergrupos entre o grupo B5 e BE5.

** Comparações entre grupos entre os grupos B8 e BE8.

Grupa B5, 5 mg de bupivacaína pura/isobárica subaracnóidea; Grupo BE5, 5 mg de bupivacaína pura/isobárica subaracnóide com extensão do volume peridural; Grupo B8, 8 mg de bupivacaína pura/isobárica subaracnóide; Grupo BE8, 8 mg de bupivacaína pura/isobárica subaracnóide com extensão do volume peridural.
bloqueio sensorial após o uso da EVP. Nenhuma das doses subaracnôideas usadas, ou seja, 5 ou 8 mg, associou-se com aumento no nível de bloqueio sensorial após a EVP. No entanto, uma diminuição significante, mas paradoxal, na Smax foi observada quando a EVP foi aplicada a dose de 5 mg, juntamente com um aumento insignificante na necessidade de suplementação peridural para o início da cirurgia (26% vs 5%), e uma necessidade significativamente mais precoce no intraoperatorário da dose peridural complementar. A aplicação da EVP associada ao uso de 8 mg de bupivacaina subaracnôide não resultou em nenhuma alteração clínica ou estatisticamente significante da Smax ou de outras características avaliadas. Isso sugere que não houve utilidade da EVP para o aumento do bloqueio sensorial com qualquer uma das duas doses subaracnôideas avaliadas.

Estudos anteriores que analisaram vários aspectos e efeitos da EVP usaram doses de bupivacaina subaracnôide variando de 2 a 15 mg.4-11,23-29 Nenhum desses estudos comparou os resultados após aplicá-la a várias doses subaracnôideas sob condições semelhantes. O efeito da EVP para uma determinada dose de bupivacaina subaracnôide pode, entretanto, ser inferido a partir desses estudos. Embora um aumento no nível sensorial tenha sido observado com a EVP aplicada a doses ≥ 8 mg (8, 9, 10 e 15 mg) de bupivacaina subaracnôide,4,10 o mesmo não foi relatado após uso de doses semelhantes > 8 mg (9 e 12,5 mg).27,29 Aumentando o número de resultados inconsistentes, a ineficiência da EVP é observada com doses < 8 mg (2 e 7,5 mg)12,13 enquanto doses igualmente menores que 8 mg (3 a 5 mg) têm sido usadas na prática clínica da EVP.

Figura 1 Diagrama Consort descrevendo o fluxo dos participantes no estudo.
como pode ser observado em relatos de casos publicados.20-22,30 Esses resultados que mostram tanto êxito como falha, apesar de doses subaracnóideas semelhantes, podem ser devido a vários outros fatores influenciando a EVP, como as características do paciente e a solução peridural injetada.3

Nossos achados de falha no aumento do bloqueio sensorial com EVP em ambas doses subaracnóideas, contrastam com os relatos anteriores de resultados bem sucedidos após dose de 8 mg de bupivacaína7,8 e doses 5 mg ou menores.20-22,30 No entanto, as evidências anteriores de sucesso com doses subaracnóideas reduzidas de 8 mg ou menores foram obtidas em pacientes obstétricas,7,8,20-24,30 enquanto nosso grupo de estudo era constituído por pacientes não de obstetricia. Sabe-se que a dispersão subaracnóide da droga e as características do bloqueio diferem entre as duas populações de pacientes.22 Em pacientes que não de obstetricia, evidências anteriores mostraram EVP bem-sucedida com dose subaracnóide reduzida para apenas 10 mg.6,9,11 Redução maior da dose subaracnóide, para 8 mg e 5 mg, pode tornar a EVP ineficaz em pacientes não obstétricas.

Observamos diminuição paradoxal do nível sensorial quando a EVP foi associada a dose de 5 mg de bupivacaína, mas o mesmo não foi observado com a dose de 8 mg. No momento, não podemos formular explicação plausível para esse achado. Foi um resultado inesperado que não havia sido relatado antes. A observação acrescenta peso à questão de pesquisa clínica por nós formulada quanto à utilidade da EVP após doses subaracnóideas extremamente reduzidas.

O que é realmente intrigante é que, apesar de não existir consenso sobre a utilidade do aumento do bloqueio sensorial com EVP, os relatos clínicos do seu uso bem sucedidos em parturientes de alto risco após a injeção de doses subaracnóideas extremamente reduzidas continuam a aumentar o dilema. Isso só poderia ser explicado pelo fato de o fenômeno ser dependente de múltiplas variáveis,7-9 das quais dose subaracnóide e gravidez seriam duas importantes. A utilidade e eficácia da EVP aplicada a doses subaracnóideas reduzidas também podem ser diferentes para as pacientes obstétricas, em contraste com nossos resultados.

Uma limitação do presente estudo é que teve poder para detectar uma diferença apenas na Smax e não para outras características de bloqueio. Além disso, não pode ser determinado o motivo para o efeito prejudicial da EVP para a dose de 5 mg de bupivacaína subaracnóide.

Com base em nossas observações, a dose subaracnóide parece afetar a eficácia da EVP. Os achados têm repercussão na aplicação clínica da EVP, uma vez que as evidências anteriores de uso bem-sucedido na prática se concentram na redução da dose subaracnóide concomitante à obtenção de Smax adequada. Se a redução da dose subaracnóide de fato é indicada, a EVP deve ser considerada clinicamente. Comparamos apenas duas doses reduzidas pré-determinadas em pacientes em procedimento não obstétrico. O limite inferior para a redução da dose precisará ser investigado, tanto para obstetrícia quanto para procedimentos não obstétricos.

Em conclusão, a EVP não deve ser aplicada à dose subaracnóide menor de 5 mg de solução de bupivacaína pura/isoóbarica durante anestesia combinada raqui-peridural em pacientes submetidos à cirurgia ortopédica de membros inferiores. Sua aplicação pode resultar em diminuição do nível sensorial máximo. Por sua vez, quando é usado 8 mg de bupivacaína subaracnóide, ao invés de 5 mg, embora a extensão do volume peri-dural possa ser aplicada sem efeitos adversos, ela não oferece benefícios no aumento do bloqueio sensorial.

Conflitos de interesse
Os autores declararam não haver conflitos de interesse.

Agradecimentos
Esta pesquisa foi parcialmente financiada por bolsa para pesquisa interna concedida pela University College of Medical Science, Delhi, Índia.

Referências

1. McNaught AF, Stocks GM. Epidural volume extension and low-dose sequential combined spinal-epidural blockade: two ways to reduce spinal dose requirement for caesarean section. Int J Obstet Anesth. 2007;16:346-53.

2. Heesen M, Weibel S, Klimmek M, Roissaint R, Arends LR, Kranke P. Effects of epidural volume extension by saline injection on the efficacy and safety of intrathecal local anaesthetics: systematic review with meta-analysis, meta-regression and trial sequential analysis. Anaesthesia. 2017;72:1398-411.

3. Tyagi A, Sharma CS, Kumar S, Sharma DK, Jain AK, Sethi AK. Epidural volume extension: a review. Anaesth Intensive Care. 2012;40:604-13.

4. Mohan A, Singh PM, Malviya D, Arya SK, Singh DK. Reinforcement of subarachnoid block by epidural volume effect in lower abdominal surgery: A comparison between fentanyl and tramadol for efficacy and block properties. Anesth essays Res. 2012;6:189-94.

5. Tyagi A, Kumar A, Girotra G, Sethi AK. Combined spinal epidural and epidural volume extension: Interaction of patient position and hyperbaric bupivacaine. J Anaesthesiol Clin Pharmacol. 2011;27:459-64.

6. Tyagi A, Kumar S, Salhotra R, Sethi AK. Minimum effective volume of normal saline for epidural volume extension. J Anaesthesiol Clin Pharmacol. 2014;30:228-32.

7. Choi DH, Park NK, Cho HS, Hahm TS, Chung IS. Effects of epidural injection on spinal block during combined spinal and epidural anesthesia for cesarean delivery. Reg Anesth Pain Med. 2000;25:591-5.

8. Blumgart CH, Ryall D, Dennison B, Thompson-Hill LM. Mechanism of extension of spinal anaesthesia by extravascular injection of local anaesthetic. Br J Anaesth. 1992;69:457-60.

9. Stienstra R, Dilrosun-Alhadi BZ, Dahan A, van Kleeft JB, Veering BT, Burm AG. The epidural top-up in combined spinal-epidural anesthesia: the effect of volume versus dose. Anesth Analg. 1999;88:810-4.

10. Stienstra R, Dahan A, Alhadi BZ, van Kleeft JB, Burm AG. Mechanism of action of an epidural top-up in combined spinal epidural anesthesia. Anesth Analg. 1999;88:808-10.

11. Doganci N, Apan A, Tekin Ö, Kaymak Ç. Epidural volume expansion: is there a ceiling effect? Minerva Anestesiol. 2010;76:334-9.

12. Zaphiratos V, George RB, Macaulay B, Bolleddula P, McKeeen DM. Epidural Volume Extension During Combined Spinal-Epidural Labor Analgesia Does Not Increase Sensory Block. Anesth Analg. 2016;123:684-9.

13. Loubert C, O’Brien PJ, Fernando R, Walton N, Philip S, Addel T, et al. Epidural volume extension in combined spinal epidural anaesthesia for elective caesarean section: a randomised controlled trial. Anaesthesia. 2011;66:341-7.
14. Hamlyn EL, Douglass CA, Plaat F, Crowhurst JA, Stocks GM. Low-dose sequential combined spinal-epidural: an anaesthetic technique for caesarean section in patients with significant cardiac disease. Int J Obstet Anesth. 2005;14:355-61.

15. Richardson P, Whittaker S, Rajesh U, Bonduelle M, Morgan J, Garry M, et al. Caesarean delivery in a parturient with a femoro-femoral crossover graft and congenital aortic stenosis repaired by the Ross procedure. Int J Obstet Anesth. 2009;18:387-91.

16. Tiwari AK, Singh RR, Anupam RP, Ganguly S, Tomar GS. Epidural volume extension: A novel technique and its efficacy in high risk cases. Anesth essays Res. 2012;6:233-5.

17. Tyagi A, Kumar A, Sethi AK, Mohta M. Epidural volume extension and intrathecal dose requirement: plain versus hyperbaric bupivacaine. Anesth Analg. 2008;107:333-8.

18. Breen TW, Shapiro T, Glass B, Foster-Payne D, Oriol NE. Epidural anesthesia for labor in an ambulatory patient. Anesth Analg. 1993;77:919-24.

19. Chen M, Chen C, Ke Q. The effect of age on the median effective dose (ED50) of intrathecally administered plain bupivacaine for motor block. Anesth Analg. 2014;118:863-8.

20. Tiwari AK, Agrawal J, Tayal S, Chadha M, Singla A, Valson G, et al. Anaesthetic management of peripartum cardiomyopathy using epidural volume extension technique: a case series. Ann Card Anaesth. 2012;15:44-6.

21. Guasch E, Alsina E, Dominguez A, Diaz J, Gilsanz F. Epidural volume extension with low dose spinal anesthesia for cesarean section. Eur J Anaesthesiol. 2007;24:143-4.

22. Hamlyn EL, Douglass CA, Plaat F, Crowhurst JA, Stocks GM. Low-dose sequential combined spinal-epidural: an anaesthetic technique for caesarean section in patients with significant cardiac disease. Int J Obstet Anesth. 2005;14:355-61.

23. Lew E, Yeo S-W, Thomas E. Combined spinal-epidural anesthesia using epidural volume extension leads to faster motor recovery after elective cesarean delivery: a prospective, randomized, double-blind study. Anesth Analg. 2004;98:810-4.

24. Yun MJ, Kwon MY, Kim DH, Lee JW. Combined spinal-epidural anesthesia using a reduced-dose of spinal bupivacaine and epidural top up leads to faster motor recovery after lower extremity surgeries. Korean J Anesthesiol. 2014;66:28-33.

25. Choi D-H, Ahn H-J, Kim J-A. Combined low-dose spinal-epidural anesthesia versus single-shot spinal anesthesia for elective cesarean delivery. Int J Obstet Anesth. 2006;15:13-7.

26. Sherin A. Mohamed. Epidural volume expansion and single shot spinal anesthesia, for elective caesarean section. Al-Azhar Assiut Med JAAMJ. 2003;10.

27. Kucukguclu S, Unlugenc H, Gunenc F, Kuvaki B, Gokmen N, Gunasti S, et al. The influence of epidural volume extension on spinal block with hyperbaric or plain bupivacaine for Caesarean delivery. Eur J Anaesthesiol. 2008;25:307-13.

28. Salman C, Kayacan N, Ertuğrul F, Bigat Z, Karsli B. Combined Spinal-Epidural Anesthesia with Epidural Volume Extension causes a Higher Level of Block than Single-Shot Spinal Anesthesia. Brazilian J Anesthesiol. 2013;63:267-72.

29. Mardirosoff C, Dumont L, Lemedioni P, Pauwels P, Massaut J. Sensory block extension during combined spinal and epidural. Reg Anesth Pain Med. 1998;23:92-5.

30. Kumar A, Sinha C, Kumar A, Kumari P. Epidural volume extension for caesarean section in a patient with severe pulmonary stenosis and moderate tricuspid regurgitation. Indian J Anaesth. 2019;63:242.

31. Hocking G, Wildsmith JAW. Intrathecal drug spread. Br J Anaesth. 2004;93:568-78.