FORMULATION AND EVALUATION OF ORODISPERSIBLE TABLETS OF A MODEL ANTI-HYPERTENSIVE DRUG

S. P. Hiremath*, Chidambar Makanapur

Department of Pharmaceutics, KLE University’s College of Pharmacy, Hubli 580031, Karnataka, India

Received: 06 Apr 2017 Revised and Accepted: 21 Sep 2017

INTRODUCTION

Oral dosage forms, both the solids and liquids, have been the most extensively accepted routes of drug delivery for decades now. It is widely accepted because of its advantages such as self-medication, ease of administration, pain avoidance, and patient compliance [1, 2]. However, the evident shortcomings of this route are difficulty in swallowing and patient noncompliance, especially in paediatric, geriatric, nauseated, and mentally ill patients [3, 4]. All these restraints could be resolved by one of the recent pioneering advances in novel drug delivery system (NDDS)—by orally disintegrating tablets (ODT).

ODT technology has been recently approved by the United States Pharmacopoeia (USP) and Centre for Drug Evaluation and Research (CDER) [4]. As per United States Food and Drug Administration (USFDA), ODT is a solid dosage form comprising medicinal constituent, which instantaneously disintegrates within seconds into the saliva when kept on the tongue [5]. The drug will be absorbed as the saliva gradually passes down from the mouth, pharynx, oesophagus, and stomach [6].

The principal benefits of ODT include mellowed patient compliance, improved bioavailability, rapid onset of action, pain avoidance, consumption without water, pregastric absorption, versatility, and economical [7-9]. Pre gastric absorption is the major capital advantage of the ODTs, which avoids hepatic first-pass metabolism of the drugs [10].

Propranolol, a nonselective β blocker, is used to treat major disorders such as acute myocardial infarction, angina pectoris, arrhythmias, hypertension, hyperthyroidism, hypertensive emergencies, menopause, pheochromocytoma, migraine, and anxiety [11]. Propranolol hydrochloride competes with the sympathomimetic neurotransmitters and prevents the binding of catecholamines at β1-adrenergic receptors present in the heart. This results in a decrease of diastolic and systolic and blood pressure, cardiac output, and reflex orthostatic hypotension [11].

The present work was attempted to develop an orodispensible antihypertensive tablet, which disintegrates instantaneously in the oral cavity within few seconds without the aid of water. This will enhance the dissolution rate and bioavailability along with the rapid onset of pharmacological action. In the current development, the ODTs of propranolol were formulated by direct compression technique using crospovidone, sodium starch glycolate and croscarmellose sodium, as the super disintegrants to augment patient compliance and rapid onset of action.

MATERIALS AND METHODS

The active pharmaceutical ingredient—propranolol hydrochloride was procured from Micro labs, Bengaluru. The other excipients such as magnesium stearate, purified talc, and mannitol were procured from SD Fine Chemicals (Mumbai). Sodium starch glycolate and croscarmellose sodium were purchased from Maruthi Chemicals Ltd. (Ahmedabad), and crospovidone was purchased from Kawarlal excipients (P) Ltd (Chennai). Microcrystalline cellulose pH 102 was purchased from E. Merck (Mumbai). Apartsame was purchased from Nutra Sweet Company.

Formulation of orodispensible tablets

Orodispersible tablets of propranolol were formulated by the direct compression technique. The details of composition for the formulations are mentioned in table 1. All the ingredients except talc and magnesium stearate were weighed accordingly and mixed thoroughly to ensure proper mixing of drug with the super disintegrants. The mixture was sifted through a sieve no. 40 and then blended with talc and magnesium stearate. Finally, the blended mixture was subjected to compression using rimek tablet punching machine using 6.5 mm flat and circular punch.
Evaluation of orodispersible tablets

The formulated ODTs were evaluated for physicochemical parameters such as general appearance, weight variation test, uniformity of thickness, friability test, hardness test, and drug content uniformity. The other key parameters which were especially evaluated are following:

Drug content

Five tablets from each formulation were randomly selected, accurately weighed, and average weight per tablet was calculated. Each tablet was pulverized to a very fine powder and a known amount of drug that is equivalent to 40 mg of propranolol hydrochloride was transferred into a 100-ml volumetric flask. Phosphate buffer (pH 6.8) was used to dissolve the drug and solution was made up to the mark. The solution was strained and from which 1 ml was withdrawn into a 10-ml volumetric flask and diluted with buffer. The resultant solution was determined spectrophotometrically at 290 nm [12].

Wetting time

Wetting time was performed to determine the disintegration properties of the tablet. Lower wetting time indicates a faster disintegration of the tablet. A section of tissue paper of 10.75 cm diameter was folded twice and placed in a petri dish containing 10 ml of water. An ODT was placed carefully on the surface of butter paper and the time consumed for complete wetting was taken as a wetting time [13].

In vitro dispersion time

The dispersion time was determined by dropping an ODT in a measuring cylinder having 50 ml of simulated saliva fluid of pH of 6.8. Three tablets from each batch were selected arbitrarily and in vitro dispersion time was measured [14].

In vitro disintegration time

The disintegration time of ODT was determined by disintegration apparatus as per Indian Pharmacopoeia (IP) specifications. Each ODT was placed in six tubes of the basket and a disc was placed in all six tubes to prevent the floating of tablets. The simulated saliva, fluid of pH 6.8, maintained at 37 ± 2 °C, was used as an immersion liquid. The whole assembly placed in immersion liquid was raised and lowered at 30 cycles/min frequency. The time taken for the complete disintegration of ODT with no residue remaining in the apparatus was recorded [15, 16].

In vitro dissolution studies

The dissolution studies of ODT were accomplished using United States Pharmacopeia (USP) XXIV type II paddle type dissolution apparatus at 50 rpm. The release profile of the drugs was studied in 900 ml of 0.1 N hydrochloric acid buffer of pH 1.2 or phosphate buffer of pH 6.8 maintained at temperature 37 ± 0.5 ° C. For every 30 s, 2 ml of the aliquots was withdrawn, filtered, diluted suitably; and the amount of the drug release was determined spectrophotometrically at 290 nm. After the each withdrawal, the same volume replaced into the apparatus to keep the sink conditions [17-20].

Table 1: The quantity of ingredients for the designed formulations of propranolol orodispersible tablets by direct compression technique

Ingredients	Composition (mg)	F1	F2	F3	F4	F5	F6	F7	F8	F9
Propranolol HCl		40	40	40	40	40	40	40	40	40
Sodium starch glycolate		3.6	4.8	6	-	-	-	-	-	-
Croscarmellose sodium		-	-	-	3.6	4.8	6	-	-	-
Crospovidone		24	24	24	24	24	24	24	24	24
Mannitol		47.6	46.4	45.2	47.6	46.4	45.2	47.6	46.4	45.2
Microcrystalline cellulose pH102		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Aspartame		2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
Purified talc		120	120	120	120	120	120	120	120	120

HCl: Hydrochloride

Release kinetics

The cumulative drug release data obtained from formulations were subjected to different kinetic models such as zero-order kinetics, first-order kinetics, higuchi model, and Korsmeyer–peppas release model [21-23].

Zero-order kinetic model: \(C = K_0 \cdot t \)

Where, \(K_0 \) = zero-order rate constant (concentration/time)

First-order kinetic model: \(\log C = \log C_0 - K_1 \cdot t / 2.303 \)

Where \(C_0 \) = initial drug concentration and \(K_1 \) is first-order constant

Higuchi model: \(f_t = K_h \cdot t^{1/2} \)

Where, \(f_t \) = amount of drug released in time \(t \)

K = Higuchi dissolution constant

Korsmeyer–peppas model: \(M / M_{\infty} = Kt^n \)

Where \(M / M_{\infty} \) = fraction of drug release

\(K \) = drug release constant

\(t \) = release time

\(n \) = diffusion coefficient, which characterizes the drug release, depends on the shape of the matrix dosage form.

Hixson-Crowell model: \(W_0^{1/3} - W_t^{1/3} = kt \)

Where, \(W_0 \) = initial amount of drug in the formulation

\(W_t \) = amount of drug remained in the formulation after time \(t \)

K = constant incorporating surface–volume relation

Stability studies

The stability studies for the promising formulation were executed based on International Conference on Harmonisation (ICH) guidelines. The promising ODT was subjected to 40±2°C and 75±5% relative humidity for 30 d. After the specific period is finished, the ODT was once again subjected to all the tests to determine any variance in colour, hardness, drug content uniformity, % cumulative drug release (CDR), in vitro disintegration time [8].

RESULTS AND DISCUSSION

Oral drug delivery, one of the most frontier zones of drug delivery system, has a major benefit of patient compliance. The ODTs belong to the category of oral drug delivery disintegrates and release the medicament rapidly in the oral cavity. The release rate of the drug chiefly depends upon the type and concentration of the super disintegrants, which swell and lead to rapid wicking or bursting of the drug.

In the current investigation, an attempt has been made to formulate and evaluate ODTs of propranolol hydrochloride used in the
management of hypertension. The ODTs were formulated by direct compression technique using super disintegrants—sodium starch glycolate, croscarmellose sodium, crospovidone, and other additives.

Wetting time

The tablet, when placed in the saliva, mimics the action of it and lead to water uptake and subsequent wetting of the tablet. The wetting time depends on the inner structure of ODT. Since the dissolution process of ODT depends upon the wetting time, followed by disintegration time it could be expected that wetting time might be the cause of disintegration [24]. The wetting time of the formulations was observed to be in the range of 28.71±0.986 to 76.47±2.093 s. It was observed that wetting time was very rapid in crospovidone followed by croscarmellose sodium and the sodium starch glycolate (table 2).

Drug content

The drug content uniformity was executed for all the nine formulations and results are tabulated in table 2. The drug content of the ODTs was found to be in the range of 93.87±0.013 mg. The results obtained were within the Pharmacopeial limits and indicated uniformity of mixing. The in-vitro release studies showed that the cumulative percentage drug released by each ODT was based on the average drug content of the tablet [25].

Formulation code	Drug content (mg) uniformity	In vitro dispersion time in seconds	In vitro disintegration time in seconds	Wetting time in seconds
F1	95.37±0.088	63.88±1.186	55.13±1.160	76.47±2.093
F2	96.87±0.125	56.82±0.740	45.5±1.523	67.91±1.193
F3	98.87±1.016	48.26±0.890	33.6±1.670	53.59±2.823
F4	99.37±0.013	47.15±1.770	36.25±1.280	51.8±1.370
F5	93.87±0.015	41.86±1.040	31.94±1.110	48.12±1.260
F6	98.37±0.054	37.6±1.753	25.09±1.296	44.01±1.870
F7	98.87±0.026	38.20±1.100	32.17±1.144	46.40±1.080
F8	99.87±0.013	32.07±0.970	24.16±1.086	44.37±0.710
F9	97.37±0.032	25.09±1.313	18.65±0.680	28.71±0.986

Data expressed in mean±SD, (n=3)

In vitro dissolution studies

Superdisintegrants accelerates the disintegration of the tablet by their ability to imbibe large amounts of water when exposed to an aqueous environment. The absorption of water consequences as well. Formulated ODTs gets dispersed in the mouth rapidly and releases the drug early as compared to its conventional tablets [27]. The data obtained from the dissolution studies disclosed that as the concentration of super disintegrant increases the percentage of drug release was also increases. The rapid breakdown and absorption of the particles in the dissolution medium were mainly due to the concentration of super disintegrant. Among all formulations, F9 formulated with 6 mg of crospovidone exhibited 98.96% cumulative drug release in 60s.

In addition, the drug release profile from all formulations was observed to be concentration dependent [27]. Including this, formulation F9 also showed short wetting time, good drug content, and fast disintegration. The corresponding drug release pattern of each formulation at predetermined intervals is shown in table 3 and 4.

Table 3: In vitro dissolution profile of the formulations F4-F9

Time (s)	% CDR			
F1	F2	F3	F4	
0	0	0	0	0
30	38.62±0.982	49.69±0.922	51.02±0.912	43.49±0.988
60	43.09±0.992	64.38±0.978	65.71±0.943	65.26±0.962
90	63.05±0.986	71.47±0.980	84.33±0.985	83.02±0.977
120	70.14±0.896	83.05±0.963	91.87±0.923	93.20±0.981
150	82.56±0.943	90.98±0.956	-	-
180	89.21±0.967	-	-	-

CDR: Cumulative drug release; F: Formulation; Data expressed in means±SD, (n=3)

Release kinetics

The kinetic release data attained for the promising formulation was projected to kinetic treatment to determine the drug release order. The data obtained from different models—zero-order kinetics, first-order kinetics, higuchi, hixson crowell, and korsmeyer–peppas models disclosed that the promising formulation exhibited korsmeyer–peppas as the best fitting model (table 4).
The page contains a scientific discussion about the evaluation of orodispersible tablets of propranolol hydrochloride using different formulations. The text includes tables and figures, discussing the in vitro dissolution profile, cumulative drug release, stability studies, and other parameters such as hardness and drug content uniformity. The authors disclose that there were no significant changes in the colour, hardness, drug content uniformity, % CDR, and in vitro disintegration time. They also mention the best fitting model for the release rate profile of the formulations.

Table 4: In vitro dissolution profile of the formulations F5-F9

Time (s)	F5	F6	F7	F8	F9
0	0.00	0.00	0.00	0.00	0.00
30	53.23±0.912	55.01±0.910	56.33±0.933	66.08±0.917	88.28±0.914
60	74.13±0.895	75.02±0.897	76.79±0.966	87.43±0.893	98.96±0.925
90	94.09±0.911	94.97±0.912	87.88±0.918	97.19±0.931	-
120	-	-	-	-	-
150	-	-	-	-	-
180	-	-	-	-	-

CDR: Cumulative drug release; F: Formulation; Data expressed in mean±SD, (n=3)

Table 4: Curve fitting data of the release rate profile of formulations F1–F9

Formulation	Zero-order	First order	Higuchi	Korsmeyer-peppas	Hixon-crowell	Best fitting model	
R	k	R	k	R	k		
F1	0.755	0.024	0.541	-0.0001	0.934	0.061	Peppas
F2	0.777	0.031	0.744	-0.0000	0.923	0.058	Peppas
F3	0.840	0.054	0.766	-0.0005	0.936	0.095	Peppas
F4	0.830	0.034	0.814	-0.0003	0.978	0.148	Peppas
F5	0.885	0.062	0.835	-0.0002	0.924	0.135	Peppas
F6	0.732	0.084	0.611	-0.0006	0.951	0.147	Peppas
F7	0.716	0.049	0.425	-0.0002	0.949	0.1054	Peppas
F8	0.833	0.142	0.875	-0.0015	0.963	0.1643	Peppas
F9	0.841	0.092	0.735	-0.0007	0.937	0.1364	Peppas

*R is drug release; k is rate constant for each model; n is diffusion coefficient; F: Formulation

Stability studies

Stability studies were conducted as per the ICH guidelines. The promising formulation F9 subjected to 40±2°C/75±5% RH for 1 mo disclosed that there was no any significant changes in the colour, hardness, drug content uniformity, % CDR, and in vitro disintegration time. It specifies that prepared optimized formulation is stable [26]. The corresponding results are shown in the table 5.

Table 5: Stability studies of promising formulation F9

Time	Evaluation parameters	In vitro disintegration time	% CDR		
	Colour	Hardness (kg/cm²)	Drug content Uniformity(mg)	1841±1.027	98.52
After 1 w	White	3.12±0.13	96.37±0.112	1835±0.927	98.08
After 2 w	White	3.04±0.08	95.37±0.131	17.25±1.011	97.19
After 4 w	White	2.93±0.18	94.87±0.141	17.11±0.089	96.30

Data expressed in mean±SD, (n=3); CDR: Cumulative drug release

CONCLUSION

In the current efforts have been made to formulate and evaluate orodispersible tablets of propranolol hydrochloride using different super disintegrants by a direct compression method. The results disclosed that increased amount of various super disintegrants were associated with an increase in overall rate of cumulative drug release. Of all nine formulations, F9 formulation with 6 mg of crospovidone exhibited maximum cumulative drug release in 60 s. In addition, formulation F9 also showed short wetting time, good drug content, and fast disintegration and followed korsmayer-peppas, as an ideal fitting model. Stability studies conducted also revealed no any significant changes in the colour, hardness, drug content uniformity, % CDR, and in vitro disintegration time. Henceforth, we concluded that formulated propranolol hydrochloride ODTs can be one of the better choices for the management of hypertension enhanced patient compliance and rapid onset of action.

ACKNOWLEDGEMENT

None

AUTHOR CONTRIBUTION

SPH designed the study and prepared the manuscript. CM developed and analysed the data and prepared the initial draft of the manuscript.

CONFLICT OF INTERESTS

The Author(s) declare(s) that they have no conflicts of interest to disclose

REFERENCES

1. Dey P, Maiti S. Orodispersible tablets: a new trend in drug delivery. J Nat Sci Biol Med 2010;1:2-5.
2. Nagar P, Singh K, Chauhan I, Verma M. Orally disintegrating tablets: formulation, preparation techniques and evaluation. J Appl Pharm Sci 2011;1:35-45.
3. Swamy N, Sachin, Abbas Z. Design and characterization of oral dispersible tablets of enalapril maleate using a co-processed disintegrants. J Pharm Pharm SciTech 2010;1:1-12.
4. Velmurugan S, Sundar V. Orally disintegrating tablets formulation, preparation techniques and evaluation. J Appl Pharm Sci 2011;1:35-45.
5. Hirani JJ, Rathod DA, Vadalia KR. Orally disintegrating tablets: a review. Trop J Pharm Res 2009;8:161.
6. Abbas A, Swati A, Gayti A. Oral dispersible tablets: novel technology and development. Int J Pharm Sci Rev Res 2013;20:193-9.
7. Velmurugan S, Sundar V. Oral dispersible tablets: novel technology and development. Int J Pharm Sci Rev Res 2013;20:193-9.
8. Revathi S, Moulali SK, Dhanaraju MD. Formulation and evaluation of orodispersible valsartan tablets. Pharm Lett 2015;7:315-24.
9. Rewar S, Singh C, Bansal R, Pareek R, Sharma A. Oral dispersible tablets: An overview; development, technologies and evaluation. Int J Res Dev Pharm Life Sci 2014;3:1223-35.
10. Deshpande K, Ganesh N. Orodispersible tablets: an overview of formulation and technology. Int J Pharma Biol Sci 2011;2:26-34.
11. Sivaramaiah N, Alekhya M, Anusha M, Bhargav C, Harish G. Formulation and evaluation of oral dispersible tablets of propranolol hcl. Am J Biol Pharm Res 2014;1:160-9.
12. Mohsin A, Nimbalkar NE, Sanaullah S, Aejaz A. Formulation and evaluation of mouth dissolving tablets of amitriptyline hydrochloride by direct compression technique. Int J Pharm Pharm Sci 2010;2:204-10.
13. Goyani SM, Shah P, Vyas B, Shah D. Formulation and evaluation of orally disintegrating tablets of meclizine hydrochloride. Int Res J Pharm 2012;3:196-9.
14. Leela MK, Ramana G, Digpati R. Formulation and evaluation of oral disintegrating tablets of alfuzosin hydrochloride using super disintegrants. J Appl Pharm Sci 2011;1:161-5.
15. Vijaya K, Mishra D. Rapidly disintegrating oral tablets of meloxicam. Indian Drugs 2006;43:117 -21.
16. Hirave R, Kondawar M. Development and evaluation of herbal fast dissolving tablet of capparis divaricata lam. Int J Adv Pharma 2017;6:24-30.
17. Sai PB, Syanala S, Vinod kN, Voleti VK, Madhusudhan C. Formulation and evaluation of orodispersible tablets of clonazepam using natural super disintegrants. IOSR-J Pharm Biol Sci 2014;9:47-52.
18. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 2010;67:217-23.
19. Gupta M, Vishal P. Formulation and evaluation oral dispersible tablets of cinnarizine. J Drug Delivery Ther 2013;3:12-7.
20. Karthik N, Vijaya KB, Sateesh KV. Different techniques to enhance the dissolution rate of lovastatin: formulation and evaluation. Asian J Pharm Clin Res 2013;6:56-60.
21. Reddy MNK, Hussain MA, Rao TR, Krishna TR, Pawan V. Formulation and evaluation of naproxen oral disintegrating tablets. Int J Pharm Biol Sci 2012;2:303-16.
22. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001;13:123-33.
23. Sumit D, Sayantan M, Laxmi G. Preparation, characterization and evaluation of floating microparticles of ciprofloxacin. Int J Appl Pharm 2017;9:1-8.
24. Shashank C, Vipin KA, Anurag V, Navneet V, Sunil S. Comparative evaluation of natural and semisynthetic super disintegrants in the formulation of orodispersible tablets of norfloxacin. Int J Pharm Pharma Sci 2012;4:576-83.
25. Ananda K, Kiran KT, Gyana JR. Development, formulation and evaluation of solfinacin succinate immediate release oral tablets by using starch and hpmc. Int J Res Pharm Nano Sci 2013;2:91-100.
26. Mangesh MS, Nagesh ST. Formulation and in vitro evaluation of fast dissolving tablets of metoprolol tartrate. Braz J Pharm Sci 2013;49:784-92.
27. Chandrasekhar P, Shahid MS, Niranjan BM. Formulation and evaluation of oral dispersible tablets of antihypertensive drug atenolol. Int J Pharm 2013;3:79-84.
28. Parag P, Tejal P, Rajesh P. Formulation and evaluation of mouth dissolving tablet for the antihypertensive drug Pharmagene 2013;1:10-20.