Thienopyrimidine-type compounds protect Arabidopsis plants against the hemibiotrophic fungal pathogen Colletotrichum higginsianum pv. maculicola

Mari Narusaka and Yoshihiro Narusaka
Research Institute for Biological Sciences Okayama, Okayama, Japan

ABSTRACT
Plant activators activate systemic acquired resistance-like defense responses or induced systemic resistance, and thus protect plants from pathogens. We screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola. We suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant activators and can be useful and effective agrochemicals against various plant diseases.

Plants have evolved effective defense mechanisms against different types of diseases (fungal, bacterial, and viral) and pests. Plants respond to pathogen attacks by increasing their resistance. Diseases in plants occur rarely because many plants defend themselves against microbial pathogens by employing elaborate defense mechanisms, including both localized and systemic resistant responses. Systemic acquired resistance (SAR) is an inducible plant defense response to pathogen infection and is simultaneously activated in uninfected organs of the plant as well.1 This results in enhanced resistance in the entire plant against further pathogen attack. Accumulation of salicylic acid (SA), which is an endogenously synthesized signaling factor, is required for the induction of SAR.2 Although defense responses are genetically controlled, artificial tools are also able to regulate them. Not only pathogen attacks but also chemicals, called plant activators, activate disease resistance in plants. Plant activators activate SAR-like defense responses or induced systemic resistance (ISR).3 Consequently, various defense-related genes, including Pathogenesis-Related (PR) genes are expressed in the whole plant. For example plant activators, 2,6-dichloroisonicotinic acid (INA), benzo[1,2,3]thiadiazole-7-carboxylic acid 5-s-methyl ester (BTH), Imprimatin, N-cyano-methyl-2-chloroisonicotinamide (NCI), and probenazole (PBZ) and its derivative, benzothiazole (BIT) induce SAR by stimulating the signal transduction pathway for SAR development.

To identify the main compounds that function as plant activators, large-scale and high-throughput screening procedures using plant immune system were established.4-9 These screenings enabled us to identify small molecules that protect plants against diseases. We previously developed a high-throughput screening procedure for identifying plant activators, employing a β-glucuronidase (GUS) histochemical staining assay. This method considered promoters of the Arabidopsis thaliana defense-related genes, PR-1 as a marker for the SA-dependent signal transduction pathway, and PR-4 and PDF1.2 as markers for the ethylene (ET)/jasmonic acid (JA)-dependent signal transduction pathway.14,15 In particular, this system could monitor the activation of SA- and ET/JA-induced resistance in A. thaliana plants. This system enabled us to perform 1,000 to 2,000 screenings per week per person, and was economical in terms of both time and space. Using this screening system, we previously reported that pyrimidine-type plant activator (PPA) induces plant defense programs by moderating reactive oxygen species.16

In the present study, we describe thienopyrimidine-type compounds, obtained by our screening system, protecting A. thaliana plants against the hemibiotrophic fungal pathogen, Colletotrichum higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola.

Using the previously established screening system, we screened a chemical library composed of structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type compounds and their analogs (N2781, N2835, N2947, N2969, N2972, N2914C, N2914A1 to N2914A4) (Fig. 1).

Induced resistance against pathogen-attack and chemicals is associated with the expression of defense-related marker genes,

CONTACT Yoshihiro Narusaka yo_narusaka@bio-ribs.com. Research Institute for Biological Sciences Okayama, Okayama, Japan.
SA-associated *A. thaliana PR-1* gene, and the JA/ET-dependent *PDF1.2* gene. To determine whether these thienopyrimidine-type compounds function as activators of induced resistance, we investigated the transcription profiles of *PR-1* and *PDF1.2* mRNA in *A. thaliana* plants (Col-0 accession) treated with these compounds by quantitative real-time polymerase chain reaction (qRT-PCR). The *A. thaliana* plants were grown in a mixture consisting of Soil-mix (Sakata Seed Corp.), expanded vermiculite (1.5 to 2 mm granules), and perlite (2.5 to 3.5 mm granules) in a 2:1:1 ratio for 28 days in a growth

Figure 1. Molecular structure of plant immune-inducing thienopyrimidine-type compounds and its analogous compounds.

Figure 2. Expression of defense-related genes after treatment with TPA. Twenty eight-day-old *A. thaliana* Col-0 plants were foliar-sprayed with 0.08 mM TPAs. The leaves were collected 2, 5, 10, 24, and 48 h after treatment, and total RNA was isolated. The transcription levels of *PR-1* and *PDF1.2* mRNA were monitored by qRT-PCR analysis. The transcription levels of these genes were normalized against that of housekeeping gene, *CBP20*. The nucleotide sequences of the gene-specific primers for each gene were described previously. The relative expression ratios are shown as fold induction relative to the expression level at 0 h. Bars indicate the standard error (SE). The experiment was repeated at least twice with similar results.
The TPA N2914C-treated plants were foliar-sprayed with 0.08 mM TPAs, N2781, N2835, N2947, N2914C, N2914A1, N2914A2, and N2914A4 effectively protected A. thaliana plants against anthracnose, a group of fungal diseases, commonly affecting the developing shoots and leaves, when compared with the control (Dunnett’s method, 2015; P < 0.05). The experiment was repeated at least twice with similar results.

The leaves were harvested 5 days after the inoculation and total RNA was isolated. Bacterial growth was monitored by quantifying C. higginsianum actin (Ch-ACT) mRNA using qRT-PCR as described previously.18 Bars indicate the SE. The asterisk indicates a significant difference compared with the control (Dunnett’s method; 2015; P < 0.05). The experiment was repeated at least twice with similar results.

To determine whether TPA protects A. thaliana against bacterial pathogen, the plants were sprayed with 0.08 mM TPAs, 2 days prior to spray inoculation with a bacterial suspension (10^5 cfu mL^-1) of P. syringae pv. maculicola (MAFF302783rif4). The leaves were harvested 3 days after the inoculation and total RNA was isolated. Bacterial growth was monitored by quantifying P. syringae pv. maculicola-rpoD (Ps-rpoD) mRNA using qRT-PCR as described previously.20 Bars indicate the SE. The asterisk indicates a significant difference compared with the control (Dunnett’s method; 2015; P < 0.05). The experiment was repeated at least twice with similar results.

Disclosures of potential conflicts of interest
No potential conflicts of interest were disclosed.

Acknowledgments
We would like to thank Aya Okada, Yukiko Kurosaki, Masami Miyamoto, Shoko Nieda, Yasuyo Katayama of RIBS for their excellent technical assistance.

Funding
This work was supported by Cabiner Office, Government of Japan, Cross-ministeral Strategic Innovation Promotion Program (SIP), “Technologies for creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO) to Y.N..

References
1. Vallad GE, Goodman RM. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 2004; 44 (6):1920-34. http://dx.doi.org/10.2135/cropsci.2004.1920
2. Ryals JA, Neuenschwander UH, Willis MG, Molina A, Steiner HY, Hunt MD. Systemic acquired resistance. Plant Cell 1996; 8(10):1809-19; PMID:12239633; http://dx.doi.org/10.1105/tpc.8.10.1809
3. Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J. Acquired resistance in...
Arabidopsis. Plant Cell 1992; 4(6):645-56; PMID:13925899; http://dx.doi.org/10.1105/tpc.4.6.645

4. Friedich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG, Meier B, Dincher S, Staub T, Uknes S. A benzothiazazole derivative induces systemic acquired resistance in tobacco. Plant J 1996; 10(1):61-70; http://dx.doi.org/10.1046/j.1365-313X.1996.10010061.x

5. Lawton KA, Friedich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J. Benzothiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 1996; 10(1):71-82; PMID:17166839; http://dx.doi.org/10.1046/j.1365-313X.1996.10010071.x

6. Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, Ogawa T, Suzuki H, Shibata D, Jikumaru Y, Hanada A, et al. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 2012; 24(9):3795-804; PMID:22960909; http://dx.doi.org/10.1105/tpc.112.098343

7. Nakashita H, Yasuda M, Nishioka M, Hasegawa S, Ariy Y, Uramoto M, Yoshiida S, Yamaguchi I. Chloroisonicotinamide derivative induces a broad range of disease resistance in rice and tobacco. Plant Cell Physiol 2002; 43(7):823-31; PMID:12154146; http://dx.doi.org/10.1093/mpc/mpc097

8. Yasuda M, Nakashita H, Hasegawa S, Nishioka M, Ariy Y, Uramoto M, Yamaguchi I, Yoshida S. N-cyanomethyl-2-chloroisonicotinamide induces systemic acquired resistance in Arabidopsis without salicylic acid accumulation. Biosci Biotechnol Biochem 2003; 67(2):322-8; PMID:12728993; http://dx.doi.org/10.1271/bbb.67.322

9. Yoshiida K, Nakashita H, Klessig DF, Yamaguchi I. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J 2001; 25(2):149-57; PMID:11169191; http://dx.doi.org/10.1046/j.1365-313X.2001.00952.x

10. Serrano M, Robatzek S, Torres M, Kombrink E, Somsich IE, Robinson M, Schulze-Lefert P. Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals. J Biol Chem 2007; 282(9):6803-11; PMID:17166839; http://dx.doi.org/10.1074/jbc.M608792200

11. Schreiber K, Kcurshumova W, Peek J, Desveaux D. A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis. Plant J 2008; 54(3):522-31; PMID:18248597; http://dx.doi.org/10.1111/j.1365-313X.2008.03425.x

12. Knoth C, Salus MS, Girke T, Eulgem T. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. Plant Physiol 2009; 150(1):333-47; PMID:19304930; http://dx.doi.org/10.1104/pp.108.133678

13. Schreiber KJ, Nasmith CG, Allard G, Singh J, Subramaniam R, Desveaux D. Found in translation: high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat. Mol Plant Microbe Interact 2011; 24(6):640-8; PMID:21303209; http://dx.doi.org/10.1094/mpmi-09-10-0210

14. Narusaka M, Hiroshi Abe H, Kobayashi M, Kubo Y, Kawai K, Iwazawa N, Narusaka Y. A model system to screen for candidate plant activators using an immune-induction system in Arabidopsis. Plant Biotech 2006; 23(3):321-27; http://dx.doi.org/10.5511/plantbiotechnology.23.321

15. Narusaka Y, Narusaka M, Abe H, Hosaka N, Kobayashi M, Shiraishi T, Iwabuchi T. High-throughput screening for plant defense activators using a β-glucuronidase-reporter gene assay in Arabidopsis thaliana. Plant Biotech 2009; 26(3):345-9; http://dx.doi.org/10.5511/plantbiotechnology.26.345

16. Sun TJ, Lu Y, Narusaka M, Shi C, Yang YB, Wu JX, Zeng HY, Narusaka Y, Yao N. A novel pyrimdin-like plant activator stimulates plant disease resistance and promotes growth. PLoS One 2015; 10(4):e0123227; PMID:25849038; http://dx.doi.org/10.1371/journal.pone.0123227

17. Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métrax JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 1996; 8(12):2309-23; PMID:8988885; http://dx.doi.org/10.1105/tpc.8.12.2309

18. Narusaka M, Minami T, Iwabuchi C, Hamasaki T, Takasaki S, Kawamura K, Narusaka Y. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop. PLoS One 2015; 10(1):e0115864; PMID:25565273; http://dx.doi.org/10.1371/journal.pone.0115864

19. Narusaka M, Shiraishi T, Iwabuchi M, Narusaka Y. Monitoring fungal viability and development in plants infected with Colletotrichum higginsianum by quantitative reverse transcription-polymerase chain reaction. J Gen Plant Pathol 2010; 76(1):1-6; http://dx.doi.org/10.1079/jgpp2010s10327-009-0211-z

20. Narusaka M, Shiraishi T, Iwabuchi M, Narusaka Y. rpoD gene expression as a indicator of bacterial pathogens in host plants. J Gen Plant Pathol 2011; 77(2):75-80; http://dx.doi.org/10.1007/s10327-011-0298-x

21. Dunnett CW. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 1955; 50(272):1096-211; http://dx.doi.org/10.1080/01621459.1955.10501294