Abstract

In this paper, a sudden growth of reactive power demand at a load bus accompanied with the single branch (power transformer or transmission line) outage contingency is studied to determine the critical line at which the weak bus is diagnosed with help of Fast Voltage Stability Index (FVSI).

The importance of this work is due to the fact that the power system which is operating under normal mode may be threatened as it may face a sudden increase demand contingency, which may lead to cascading outages, and/or violations of bus voltage which may lead to voltage collapse.

This diagnosis of the weak bus is useful to determine the optimum location for shunt compensation required to improve
1. B. Venkateswara Rao and G.V. Nagesh Kumar. 2014. Voltage Collapse Proximity Indicator based Placement and Sizing of Static VAR Compensator using BAT Algorithm to Improve Power System Performance. Bonfring International Journal of Power Systems and Integrated Circuits.

2. Isaac A. Samuel, James Katende, Claudius O. A. Awosope1 and Ayokunle A. Awelewa1. 2017. Prediction of Voltage Collapse in Electrical Power System Networks using a New Voltage Stability Index. International Journal of Applied Engineering Research, Volume 12.

3. Nirmal Kumar Nair. 2004. Incorporating Voltage Security Into The Planning, Operation and Monitoring of Restructured Electric Energy Markets. Doctoral Thesis Texas A&M University.

4. Omer H. Mehdi, Noor Izzri and Mohammad K. Abd. 2011. Fast Prediction of Voltage Stability Index Based on Radial Basis Function Neural Network: Iraqi Super Grid Network, 400-kV.[3]

5. Mr. Ponnada Anirudh and Mr. N. Rammohan. 2012. A Study on Voltage Collapse Phenomenon by Using Voltage Collapse Proximity Indicators. International Journal of Engineering Research and Development, Volume 3.

6. George Gross. 2015. Power System Security Monitoring, Analysis, and Control Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

7. Shobha Shankar, A. P. Suma, and Dr. T. Ananthapadmanabha. 2009. Fuzzy Approach to Contingency Ranking. Technical Report. Int. J. of Recent Trends in Engineering and Technology.

8. Subramani Chinnamuthu, Subhransu Sekhar Dash and Arun Seshadri Ram Mohan. 2012. Critical lines based Weak Area Clustering using Voltage Stability Analysis and Contingency Ranking in Power System. Journal of Convergence Information Technology (JCIT), Volume 7, Number 23.

9. Professor Dr. Ismail Musirin and T.K.A. Rahman. 2002. On-Line Voltage Stability Based Contingency Ranking Using Fast Voltage Stability Index (FVSI). Faculty of Electrical Engineering, University Teknologi MARA, MALAYSIA.

10. S. Ravindra, V. C. Veera Reddy, S. Sivanagaraju. 2015. Power system security analysis under transmission line outage condition. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering.

11. J. J. Jamian1, H. Musa3, M. W. Mustafa1, H. Mokhlis2, S. S. Adamu3. 2011. Combined Voltage Stability Index for Charging Station Effect on Distribution Network. International Review of Electrical Engineering (I.R.E.E.), Vol. 6, N. 7

Index Terms

- Computer Science
- Circuits and Systems

Keywords
Critical branch, Fast Voltage Stability Index (FVSI), weak bus, growth of reactive load bus, voltage collapse, worst case contingency, static voltage security, static security.