The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust

Hamed Gamal El Dien, Zheng-Xiang Li, Mohamed Abu Anbar, Luc S. Doucet, J. Brendan Murphy, Noreen J. Evans, Xiao-Ping Xia & Jiangyu Li

The growth of continental crust through melt extraction from the mantle is a critical component of the chemical evolution of the Earth and the development of plate tectonics. However, the mechanisms involved remain debated. Here, we conduct petrological and geochemical analyses on a large (up to 5000 km²) granitoid body in the Arabian-Nubian shield near El-Shadli, Egypt. We identify these rocks as the largest known plagiogranitic complex on Earth, which shares characteristics such as low potassium, high sodium and flat rare earth element chondrite-normalized patterns with spatially associated gabbroic rocks. The hafnium isotopic compositions of zircon indicate a juvenile source for the magma. However, low zircon δ¹⁸O values suggest interaction with hydrothermal fluids. We propose that the El-Shadli plagiogranites were produced by extensive partial melting of juvenile, previously accreted oceanic crust and that this previously overlooked mechanism for the formation of plagiogranite is also responsible for the transformation of juvenile crust into a chemically stratified continental crust.
Deciphering the petrogenesis of granitic rocks has important implications for the understanding of the growth of continental crust. In contrast to widespread continental granitic rocks, plagiogranite is a rare leucocratic type predominantly composed of plagioclase (>40%), quartz, and ferromagnesian minerals (<10%, e.g., hornblende), with compositions ranging from diorite through trondhjemitic to tonalite. Geochemically, they are characterized by very low K2O (<1 wt. %), low Rb/Sr (<0.2 wt. %), high Na2O (>3 wt. %), and flat rare-earth element (REE) chondrite-normalized patterns with enriched REE contents (10–100 times that of chondrite), distinguishing these trondhjemitic and tonalitic rocks from their continental equivalents.

In modern and ancient oceanic settings, plagiogranites mostly occur in mid-ocean ridge (MOR) settings and in ophiolite complexes where they are typically found as intrusions in gabbroic lower crust and/or lithospheric mantle (residual peridotite). Two main competing, but not mutually exclusive, models have been proposed to explain their genesis: (1) late-stage fractional crystallization of basaltic magma at low pressures and (2) partial melting of pre-existing gabbroic oceanic crust. The first model implies that plagiogranites are highly differentiated felsic melts formed by the differentiation of parental MORB melt. The second model implies that plagiogranitic melts originate by partial melting of hydrothermally altered oceanic gabbros, triggered by the deep penetration of hydrothermal fluids into oceanic crust along shear zones/detachment faults.

Volumetrically, plagiogranites rarely exceed 1 vol. % of the oceanic crust, and range from dikes/veins a few millimeters to centimeters wide in MORs or ophiolites, to large granite bodies several hundred meters to kilometers in dimension, such as the Wadi Suwaylah plagiogranite in the Oman ophiolite that has surface dimensions of 10 km × 8 km. Until now, no plagiogranite larger than the Wadi Suwaylah plagiogranite has yet been reported. Here, we report the largest plagiogranitic complex (~5000 km2) discovered to date, located in the Eastern Desert of Egypt in the Arabian-Nubian Shield (ANS). We investigate the petrogenesis of this large plagiogranitic complex based on whole-rock geochemical and Sr-Nd isotopic data, as well as zircon U-Pb-Hf-O isotope and trace-element data. We then discuss its petrogenesis in the context of Neoproterozoic global-scale tectonics, which was dominated by Rodinia break-up.

The ANS is one of the largest exposures of Neoproterozoic juvenile continental crust on Earth, consisting of numerous terranes with widespread ophiolites. Most previous studies proposed that crustal growth in the ANS occurred predominantly through arc accretion and intra-oceanic arc assemblage. The El-Shadli granite-diorite-gabbro plutonic complex, the El-Shadli bimodal volcanic rocks, and the W. Hafa plagiogranite in the Oman ophiolite that has surface dimensions of 10 km × 8 km have been interpreted to represent the large plagiogranitic complex in the ANS.

The results show that the large plagiogranitic complex in the ANS is related to the collapse of the Arabian-Nubian Shield and the formation of the Neoproterozoic global-scale tectonic event known as Rodinia break-up. The large plagiogranitic complex in the ANS is significantly younger than the El-Shadli granite-diorite-gabbro assemblage (see below).
Sample description and petrography. The El-Shadli granitoids occur as massive plutons. Within individual batholiths, 1 × 1 to 5 × 2 m gabbroic diorite enclaves represent over 50% of the outcrop area and provide evidence of extensive magmatic mixing zones (Fig. 3a, a-I and Supplementary Fig. 1b). The enclaves show no obvious chilled margins and have irregular, scalloped contacts with the granite (Fig. 3a-I). A similar magmatic mixing zone has been described in the Oman ophiolite plagiogranitic suite6. Smaller (centimeter-sized) ultramafic/mafic enclaves occur within the studied gabbroic diorite rocks and granites (Fig. 3b–d).

The El-Shadli samples include tonalites, trondhjemites, diorite, and gabbro (Fig. 3 and Supplementary Fig. 1c–e), a typical rock association in ophiolitic plagiogranite suites3,5–8,10. The granite samples range from fine- to coarse-grained hypidiomorphic-granular rocks, consisting of zoned plagioclase (50–55%), quartz (35–40%), and hornblende <5% (Fig. 3e, f-I and Supplementary Fig. 2). Quartz-plagioclase intergrowths such as graphic and vermicular textures, typical of plagiogranites3, are observed in the studied granites (Fig. 3f-I and Supplementary Fig. 3a, b). Fe-Ti oxides, zircon, titanite, and apatite are common accessory minerals (Fig. 3e, f-I and Supplementary Fig. 2). Actinolite, sericite, clay minerals, and chlorite are the main secondary minerals. Detailed petrographic descriptions and modal compositions for all the studied samples are provided in the Supplementary information.

Whole-rock geochemical data. Petrographic observations indicate that the El-Shadli granitoid samples are fresh with very minor visible evidence of secondary alteration. These observations are consistent with the low loss on ignition (LOI) values (typically less than 1.2 wt. %, Supplementary Data 1) and indicate that the samples experienced no significant alteration that would affect the abundances of petrogenetic-indicating high field strength elements and REE. The compositional range of the El-Shadli granitic (including dioritic) samples is: SiO2 (60.3–78.5 wt. %), Al2O3 (11.8–15.5 wt. %), Fe2O3T (1.3–10.9 wt. %), TiO2 (0.1–1.4 wt. %), and MgO (0.1–1.7 wt. %) (Supplementary Fig. 5 and Supplementary Data 1). This geochemistry differs from the felsic end-member of the overlying El-Shadli bimodal volcanics23, which is characterized slightly higher silica content (>75 wt. %: Fig. 4b) and lower Fe2O3T (<3.5 wt. %), TiO2 (0.3 wt. %), and MgO (0.6 wt. %), but a similar range in Al2O3 (11.3–13.2 wt. %). The El-Shadli granitoids have ferroan characteristics with Fe-number [FeOT/(FeOT + MgO)] ranging between 0.72 and 0.91 (Supplementary Fig. 5a) and have a calcic affinity according to the modified alkali–lime index (MALI = Na2O + K2O – CaO) (Supplementary Fig. 5b)32.

Gabbroic samples S11-1 and S12 have a composition of SiO2 = 45.8–47.5 wt. %, Al2O3 = 15.6–18.5 wt. %, Fe2O3T = 8.6–12.2 wt. %, TiO2 = 0.8–1.4 wt. %, and MgO = 7.9–15.6 wt. % (Supplementary Fig. 4 and Supplementary Data 1). These major element concentrations are very similar to the mafic endmember of the overlying El-Shadli bimodal volcanics, except for the lower MgO (4.2–9.2 wt. %) in the latter23. All the analyzed samples have very low K2O (<1 wt. %) and total alkali contents (K2O + Na2O = 4.0–6.5 wt. %) (Fig. 4 and Supplementary Data 1).
In general, the studied samples show a distinctive flat REE pattern with slight LREE depletion, similar to that of the overlying El-Shadli bimodal volcanics23 (Fig. 5a). The El-Shadli granites (including diorite samples) show similar MORB-like REE patterns with 5–40 times enrichment relative to chondrite33, and slightly negative Eu anomalies \[(Eu/Eu^*)_{CI} = 0.28 – 0.95\] (Fig. 5a). The associated gabbroic rocks mimic and completely overlap the REE pattern \[(La/Sm)_{CI} < 0.47 and (Yb/Gd)_{CI} < 0.84\] of the granitic rocks \[(La/Sm)_{CI} = 0.56 – 1.22 and (Yb/Gd)_{CI} = 0.71 – 1.29\] (Fig. 5a). On the N-MORB-normalized trace-element diagram 34 (Supplementary Fig. 6a), all samples exhibit flat MORB-like patterns, except for some with negative Ti and Nb anomalies and slightly positive Pb anomalies. Large ion lithophile elements (LILE) such as Cs, Rb, Ba, Th, and U show some enrichment relative to N-MORB34.

Whole-rock Sr-Nd isotope data. All the studied samples have low concentrations of Sr (43.29–207.92 ppm) and Rb (1.03–13.45 ppm), and \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios ranging between 0.702637 ± 0.000002 and 0.708406 ± 0.000007 (Supplementary Data 1). They also have low Nd (4.42–26.61 ppm) and Sm (1.60–8.65 ppm) with measured \(^{143}\text{Nd}/^{144}\text{Nd}\) ratios of 0.512871 ± 0.000001 to 0.513165 ± 0.000012 (Supplementary Data 1). The calculated initial \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios range from 0.702027 to 0.703401, and the initial \(^{143}\text{Nd}/^{144}\text{Nd}\) ratios from 0.511973 to 0.512111 (Supplementary Fig. 7 and Supplementary Data 1). The calculated \(t_{DM}\) values range from +5.55 to +8.18 (Supplementary Fig. 7), similar to those of the El-Shadli bimodal volcanics23, with the corresponding TDM model ages35,36 ranging from 0.78 to 1.2 Ga.

Zircon U-Pb-Hf-O isotopes and trace elements

Diorite sample R10-1. Zircon grains from sample R10-1 have euhedral to subhedral to euhedral rims with clear concentric oscillatory zoning (Fig. 6a and Supplementary Fig. 8a), but the majority have anhedral corroded rims with oscillatory, convolute, or convoluted/mottled zoning patterns (Fig. 6a and Supplementary Fig. 8a). We carefully excluded from our analysis those grains with either mottled or convoluted zones. For sample R10-1, 14 U-Pb Sensitive High-Resolution Ion Microprobe (SHRIMP) analyses conducted on 14 grains yielded variable \(U (142–680 \text{ ppm}) and \(Th (69–1310 \text{ ppm}) with measured \(Th/U ratios of 0.48–4.42\) (Supplementary Data 2). The high Th/U ratios are typical of zircons crystallized from low SiO\(_2\) melts (i.e., gabbro-diorite rocks)37. The U-Pb isotopic analyses yield a weighted mean \(^{206}\text{Pb}/^{238}\text{U} age of 733 ± 7 \text{ Ma (±95\% conf., mean square of weighted deviates \([MSWD]\) = 0.76, \(N = 13\); Fig. 6a), which is interpreted as the crystallization age of the gabbro-diorite complex. Eighteen laser ablation split stream (LASS) analyses on the same sample were conducted on 18 grains, including analyses over the same 14 spots utilized for SHRIMP analyses. The LASS analyses yield a similar \(^{206}\text{Pb}/^{238}\text{U} age of 732 ± 5 \text{ Ma (±95\% conf., MSWD = 1.4, N = 18; Supplementary Fig. 9a). Chondrite (CI)-normalized REE patterns of the zircons exhibit a negative slope.

Fig. 2 Geological map of the studied El-Shadli area with sample locations (after Gamal El Dien et al.23 and Jabal Hamatah quadrangle38). The rock units include the El-Shadli bimodal volcanic rocks, the El-Shadli plagiogranites-diorite-gabbro assemblage (this study), the W. Ghadir ophiolitic assemblage, the W. Hafitat core complex, post-collisional alkaline granites, and post-collisional volcanics. Age data are from Kroner et al.25, Stern et al.27, Gamal El Dien et al.23, Kroner et al.28, Gamal El Dien31, and this study.
from middle to heavy REE with $(\text{Yb}/\text{Gd})_{\text{CI}} = 29–42$, and subdued negative Eu anomalies $[(\text{Eu}/\text{Eu}^*)_{\text{CI}} = 0.13–0.28]$, a feature that is typical of unaltered magmatic zircons38 (Supplementary Fig. 9a). Zircon grains have variable Hf contents (7843–10,390 ppm), Nb contents (0.59–2.46 ppm), and U/Yb ratios (0.06–0.23) (Fig. 7a, b, Supplementary Fig. 10a, and Supplementary Data 3). The Lu-Hf isotopic analyses of these 18 spots yield $^{176}\text{Lu}/^{177}\text{Hf}$ ratios of 0.004320 ± 0.000340 to 0.008358 ± 0.000099 and $^{176}\text{Hf}/^{177}\text{Hf}_{\text{io}}$ ratios of 0.282596 ± 0.000064 to 0.282760 ± 0.000077 (Supplementary Data 3). Calculated $\varepsilon^\text{Hf}(t)$ values range from $+9.70 \pm 0.96$ to $+13.43 \pm 1.16$, with a weighted mean of $+11.56 \pm 0.51$ (MSWD = 1.12) (Fig. 7c, d, Supplementary Fig. 10b, and Supplementary Data 3), corresponding...
with two-stage Hf model ages (T\text{DM crustal}) of 0.77–1.02 Ga. Although spot R10-1-15 has $\varepsilon_{\text{Hf}}(t) = 15.21 \pm 1.16$ and T\text{DM} \(= 0.66\) Ga, the young T\text{DM} age of this spot compared to the crystallization age of the sample suggests recent Pb loss. As a result, the data from this spot were not included in the $\varepsilon_{\text{Hf}}(t)$ weighted mean calculations. The T\text{DM} crustal calculation assumes a $a_{176}\text{Lu}/177\text{Hf}$ value of 0.015, an average value for the continental crust\(^{39}\). The same 18 spots were also analyzed by secondary ion mass spectrometry (SIMS) for O isotopic data, and yield $\delta^{18}\text{O}$ values in the range of 4.33 ± 0.29 to 5.09 ± 0.24‰ with a weighted mean of 4.73 ± 0.1‰ (MSWD \(= 1.09\)) (Fig. 7d, Supplementary Figs 10c and 11, and Supplementary Data 3).

Trondhjemite sample R11-1. Zircon grains from sample R11-1 are commonly >200 μm in length and are equant to prismatic with euhedral rims. These grains show homogenous textures, some with well-developed oscillatory zoning in CL images, but others with faint and broad zoning (Fig. 6b and Supplementary Fig. 8). Sixteen U-Pb SHRIMP analyses on 16 grains yielded variable U (135–1241 ppm) and Th (53–703 ppm) contents, and Th/U ratios of 0.37–0.66 (Supplementary Data 2), typical of zircons that crystallized in a high-SiO\(_2\) magma\(^{37}\). The 16 analyses form a tight cluster that yields a weighted mean 206Pb/238U age of 733 ± 3 Ma (±95% conf., MSWD \(= 0.11\), N = 16; Fig. 6b), interpreted to be the crystallization age of the Trondhjemite. Thirty-eight LASS analyses of 38 grains included 16 grains that were analyzed by SHRIMP, usually over the same spots. Taken together, these LASS analyses yield a 206Pb/238U age of 730 ± 3 Ma (±95% conf., MSWD \(= 0.87\); Supplementary Fig. 9b and Supplementary Data 3) that is within analytical uncertainty of the SHRIMP age. CI-normalized\(^{33}\) zircon REE patterns are similar to those of sample R10-1 and are characterized by a negative slope from the middle to heavy REE [(Yb/Gd)\text{CI} \(= 15–28\)]. They are also characterized by negative Eu anomalies [(Eu/Eu* \text{CI} \(= 0.06–0.12\)) typical of unaltered magmatic zircons\(^{38}\) (Supplementary Fig. 9b and Supplementary Data 3), and by high Hf (7873–13,098 ppm), low Nb (1.01–17.8 ppm), and U/Yb ratios ranging from 0.06 to 0.22 (Fig. 7a, b, Supplementary Figs 10a and 11, and Supplementary Data 3). The Lu-Hf isotopic analyses of these 38 spots yield $a_{176}\text{Lu}/177\text{Hf}$ ratios ranging from 0.0072 ± 0.00011 to 0.01162 ± 0.00020 and $176\text{Hf}/177\text{Hf}_0$ ratios from 0.282570 ± 0.000086 to 0.282710 ± 0.0000680 (Supplementary Data 3). Calculated $\varepsilon_{\text{Hf}}(t)$ values range from +8.66 ± 1.01 to +10.39 ± 0.80 and have a weighted mean of +10.82 ± 0.17 (MSWD = 1.01) (Fig. 7c, d, Supplementary Fig. 10b, and Supplementary Data 3), corresponding with T\text{DM} crustal formation ages of 0.77–1.07 Ga. Twenty O isotope analyses of these zircons yield $\delta^{18}\text{O}$ values ranging from 4.38 ± 0.15‰ to 4.88 ± 0.16‰ with a weighted mean of 4.57 ± 0.04‰ (MSWD = 0.51) (Fig. 7d, Supplementary Figs 10c and 11, and Supplementary Data 3).
Trondhjemite sample S01-1a. Zircon grains from sample S01-1a are euhedral with lengths <200 μm. Most grains exhibit well-developed concentric oscillatory zoning, although some have homogenous cores (Fig. 6c and Supplementary Fig. 8). Twenty U-Pb SHRIMP analyses on 19 grains yielded relatively low U (28–153 ppm) and Th (13–257 ppm) contents, and Th/U ratios of 0.38–0.65 (Supplementary Data 2) that are indicative of a magmatic origin. Spot #S01-1-2 has a high common 206Pb (6.9%), and this analysis is not included in the age calculation. The remaining 19 analyses yield a weighted mean 206Pb/238U age of 729 ± 7 Ma (±95% conf., MSWD = 0.37, N = 19; Fig. 6c), which is interpreted as the crystallization age of this Trondhjemite sample. Thirty LASS analyses were conducted on 30 grains, with 20 analyses from the same spots as the SHRIMP analyses, usually over the SHRIMP spot. These analyses yield a 206Pb/238U age of 728 ± 4 Ma (±95% conf., MSWD = 0.69, N = 27; Supplementary Fig. 9c and Supplementary Data 3), which overlaps (within uncertainty) with the SHRIMP age. CI-normalized zircon REE patterns show negative middle to heavy REE slopes [(Yb/Gd)CI = 0.06–0.12] and Ce [(Ce/Ce*)CI = 0.4–1.6; Ce* = √(La × Pr)]. Such features are typical of magmatic zircons (Supplementary Fig. 9c and Supplementary Data 3). The zircon grains have Hf contents ranging from 8182 to 9859 ppm, Nb from 0.73 to 3.06 ppm, and U/Yb ratios from 0.04 to 0.12 (Fig. 7a, b, Supplementary Fig. 10a, and Supplementary Data 3). The Lu-Hf isotopes of these 30 spots yield 176Lu/177Hf ratios ranging from 0.001548 ± 0.000002 to 0.00668 ± 0.00020 and 176Hf/177Hf(t) ratios from 0.28256 ± 0.000038 to 0.282725 ± 0.000043 (Supplementary Data 3). The calculated εHf(t) values range from +8.51 ± 0.59 to +14.40 ± 0.83 with a weighted mean of +11.00 ± 0.12 (MSWD = 4.3) (Fig. 7c, d, Supplementary Fig. 10b, and Supplementary Data 3), which corresponds with TDM crustal formation ages of 0.72–1.09 Ga. Twenty O isotope spot analyses yield δ18O values ranging between 4.32 ± 0.24‰ and 5.09 ± 0.20‰ with a weighted mean of 4.83 ± 0.09‰ (MSWD = 0.97) (Fig. 7d, Supplementary Figs 10c and 11, and Supplementary Data 3).

Trondhjemite sample S14. Zircon grains from sample S14 are euhedral with lengths <200 μm. Most grains exhibit well-developed concentric oscillatory zoning, although some have homogenous cores (Fig. 6c and Supplementary Fig. 8). Twenty U-Pb SHRIMP analyses on 19 grains yielded relatively low U (28–153 ppm) and Th (13–257 ppm) contents, and Th/U ratios of 0.38–0.65 (Supplementary Data 2) that are indicative of a magmatic origin. Seventeen of the 19 U-Pb SHRIMP analyses conducted on 19 grains yield U and Th contents of 48–937 and 20–1451 ppm, respectively, with Th/U ratios ranging from 0.31 to 1.55 (Supplementary Data 2). These values are consistent with a magmatic origin. Seventeen of the 19 U-Pb isotopic analyses yield a weighted mean 206Pb/238U age of 722 ± 7 Ma (±95% conf., MSWD = 0.41, N = 17; Fig. 6d), which is interpreted as the crystallization age of the sample. Nineteen LASS analyses located over the same 19 SHRIMP spots yield a 206Pb/238U age of 722 ± 11 Ma (±95% conf., MSWD = 3.5, N = 19; Supplementary Fig. 9d and Supplementary Data 3), which is identical within error to the SHRIMP age. All zircons have Hf contents ranging from 8151 to 11,322 ppm, Nb from 0.80 to 9.37 ppm, and U/Yb ratios from 0.07 to 0.47 (Fig. 7a, b, Supplementary Fig. 10a, and Supplementary Data 3). Lu-Hf isotopic analyses of the same 19 spots give 176Lu/177Hf ratios of 0.000936 ± 0.000009 to 0.011387 ± 0.000083 and 176Hf/177Hf(t) ratios of 0.282577 ± 0.000041 to 0.282724 ± 0.000045 (Supplementary Data 3). The calculated εHf(t) values range from +9.39 ± 0.62 to +13.19 ± 1.08 and give a weighted mean of +11.38 ± 0.56 (MSWD = 3.3) (Fig. 7c, d, Supplementary Fig. 10b, and Supplementary Data 3). Lu-Hf isotopic analyses of the same 19 spots give 176Lu/177Hf ratios of 0.000936 ± 0.000009 to 0.011387 ± 0.000083 and 176Hf/177Hf(t) ratios of 0.282577 ± 0.000041 to 0.282724 ± 0.000045 (Supplementary Data 3). The calculated εHf(t) values range from +9.39 ± 0.62 to +13.19 ± 1.08 and give a weighted mean of +11.38 ± 0.56 (MSWD = 3.3) (Fig. 7c, d, Supplementary Fig. 10b, and Supplementary Data 3). Lu-Hf isotopic analyses of the same 19 spots give 176Lu/177Hf ratios of 0.000936 ± 0.000009 to 0.011387 ± 0.000083 and 176Hf/177Hf(t) ratios of 0.282577 ± 0.000041 to 0.282724 ± 0.000045 (Supplementary Data 3).
Fig. 6 Geochronological data and cathodoluminescence images of the El-Shadli plagionagrites. a–d Zircon U-Pb SHRIMP Concordia diagrams show the $^{206}\text{Pb} / ^{238}\text{U}$ ages of the analyzed zircons with 2 sigma errors for samples R10-1 (a), R11-1 (b), S01-1a (c), and S14 (d). Weight means and relative probability diagrams of $^{206}\text{Pb} / ^{238}\text{U}$ age, and representative cathodoluminescence (CL) images, are shown for each sample. The red ovals on the CL images mark the spots for SHRIMP, LASS, and SIMS analyses for the U-Pb age, Hf and O isotopes, and trace-element data, respectively.
Discussion

El-Shadli plagiogranites: mineralogical, petrological, and geochemical evidence. Plagiogranites are distinguished from other granite types based on mineralogical and geochemical criteria\(^1,2,3,40\). The modal mineralogy (plagioclase >50%, quartz, and amphibole <10%) and textures (quartz-plagioclase graphic and vermicular intergrowth textures) of the El-Shadli granite are typical of plagiogranites\(^9\) (Fig. 3e, f-I and Supplementary Figs 2 and 3). In addition, the compositions plot in the trondhjemite and tonalite low-pressure fields on the Ab-An-Or diagram\(^41,42\) (Fig. 4a). The rock association of the El-Shadli complex (trondhjemite, tonalite, diorite, and gabbro) is typical of plagiogranites found in MOR and ophiolites\(^3,5,8,10\) (Fig. 4a and Supplementary Fig. 12a).

Geochemically, the El-Shadli granitoids have very low K\(_2\)O contents (<1 wt. %), typical of known plagiogranite rock suites worldwide (Fig. 4b), suggesting a low-K mafic source\(^43\) (Fig. 4c). On discrimination diagrams of Rb vs. Y + Nb and Nb vs. Y\(^8\), the El-Shadli granites plot in the MOR (ocean crust granite) field, which is typical of plagiogranites from ocean ridge settings (Fig. 4d and Supplementary Fig. 12b). In addition to their high contents of Y (38–98 ppm), and low Nb (0.78–2.83 ppm), they are low in Rb (a fluid-mobile element) (2.06–13.45 ppm; average = 6.5 ppm) (Fig. 4d and Supplementary Fig. 12b) indicating derivation from a highly depleted source and no interaction with (or contamination by) continental crustal materials. Such geochemical features are typical of the MOR- and/or oceanic plume-related granites\(^40\) (Fig. 4d, Supplementary Fig. 12b, and Supplementary Data 1).

Other geochemical features typical of plagiogranITES are the flat REE patterns\(^3,5,7,8,10\) (Fig. 5a, b), low Sr (43–200 ppm), low Rb/Sr (0.02–0.21), and low Sr/Y ratios (0.44–5.29)\(^3,5\). Their low abundance of LILE such as Cs, Rb, Ba, Th, and U also distinguishes them from arc-related granitoids and demonstrates a lack of interaction between the parental magma and subducting crustal and sedimentary materials\(^40\) (Supplementary Fig. 6). These geochemical features therefore suggest that the El-Shadli granitoids have a different origin and formed in a different geodynamic setting from other coeval ANS granitoids\(^44,45\) (Figs 4, 5 and 5 and Supplementary Figs 5, 6, and 12).

Zircon trace-element contents are a powerful tool for tracking the origin of granites and for distinguishing between the different granitic types\(^38\). Chondrite-normalized REE patterns of the El-Shadli zircon grains plot in the ocean-crust zircon field, as defined by zircons from oceanic crust plagiogranites and gabbroic rocks\(^38\) (Supplementary Fig. 9). Also, the low U/Yb and Gd/Yb of the El-Shadli zircon grains are similar to MOR plagiogranite zircons\(^38\) (Fig. 7a, b and Supplementary Fig. 10a). Their \(\delta^{18}O\) values of 4.52 ± 0.14 to 4.83 ± 0.09‰ extend ~1‰ below values typical of mantle zircon (5.3 ± 0.3‰)\(^46\) and are similar to \(\delta^{18}O\) values of plagiogranites (Fig. 7d and Supplementary Fig. 10c), which range from 3.9 to 5.6‰ (average = 4.9 ± 0.6‰)\(^7\).

In conclusion, the mineralogical, petrological, and geochemical characteristics of the El-Shadli granites indicate that they are plagiogranites, which clearly distinguishes them from known ANS I- and A-type granites\(^44,45\), trondhjemite-tonalite-granodiorite suites\(^47\), and arc-related granitoids\(^40\) (Figs 4, 5, and 7 and Supplementary Figs 5, 6, 10, and 12).

Characteristics of the melt source. The El-Shadli plagiogranites have MORB-like compositions. They are metaluminous, have very low K\(_2\)O (Fig. 4b and Supplementary Data 1), and flat-like CI-normalized (except for sample R11-1) REE patterns with slight LREE depletion relative to HREE [(La/Yb)\(_N\) = 0.41–0.88] (Fig. 5a). The low initial \(^{87}\)Sr/\(^{86}\)Sr ratios and high positive \(\varepsilon\)Nd\(_0\) of the El-Shadli plagiogranites and associated gabbros...
Indicate the juvenile composition of a source rock that was itself extracted from a depleted MORB-like mantle source. The Sr-Nd isotopic data of the El-Shadli plagiogranites and associated gabbros, as with the overlying El-Shadli bimodal volcanics, are comparable to the nearby ~750 Ma W. Gerf and W. Ghadir N-MORB mafic ophiolites (Supplementary Fig. 7). Collectively, the geochemical and isotopic characteristics of the El-Shadli plagiogranites and associated gabbros suggest derivation from a MORB-like depleted source, similar to that of the El-Shadli bimodal volcanics. These characteristics are all typical of plagiogranites that are generally interpreted to reflect juvenile and depleted sources. The enrichment in some LILE (Cs, Rb, Ba, Th, and U) in the El-Shadli plagiogranites and associated gabbros relative to N-MORB are likely an inherited feature and could be related to hydrothermal alteration of their source in the oceanic crust. The same enrichments in these LILE have been reported in the nearby ~750 Ma W. Gerf and W. Ghadir N-MORB mafic ophiolites.

The juvenile El-Shadli plagiogranite lithogeochemistry, together with the absence of pre-Neoproterozoic zircon inherited cores or xenocrysts in any of the samples (Fig. 6 and Supplementary Fig. 9), implies that there is no evidence for interaction with old crustal materials. The low U/Yb ratios (mostly <0.1) of the El-Shadli plagiogranite zircons are similar to modern ocean-crust zircons from a depleted source with MORB-like composition and contrasts with continental and arc zircons (Fig. 7a, b and Supplementary Fig. 10a). The low Nb/Yb and Gd/Yb ratios of the El-Shadli plagiogranite zircons are also well-defined features of zircon extracted from a depleted MORB-like source (Fig. 7b and Supplementary Fig. 10a). The high positive εHf(t) values (weighted mean from +10.82 ± 0.17 to +11.56 ± 0.51) of the El-Shadli plagiogranite zircons also indicate a juvenile source with no measurable contribution from old continental crust. These data indicate the El-Shadli plagiogranites were derived from a highly depleted source and indicate a different mode of origin from that of the coeval ANS granitoids (Fig. 7c). It is worth noting that the felsic endmember (sample S02-5) of the overlying ~700 Ma El-Shadli bimodal volcanics shares the same zircon isotopic and trace-element characteristics as the plagiogranite, suggesting derivation from a similarly depleted MORB-like source (Fig. 7).

The uniform δ18O values (weighted mean from 4.52 ± 0.14 to 4.83 ± 0.09‰) of the El-Shadli plagiogranite zircons are lower than that of typical mantle values (5.3 ± 0.3‰) but are consistent either with a source that has previously undergone interaction with high-temperature hydrothermal fluids or with sub-solidus alteration of plagiogranite by post-magmatic fluid-rock interaction. The former possibility is favored for several reasons. First, petrographic observations and the low LOI indicate the plagiogranites are very fresh. Second, zircon resists post-magmatic modification, and zircon within the plagiogranite preserves primary magmatic signatures such as crystal shapes with oscillatory zoning (Fig. 6 and Supplementary Fig. 8), high Th/U (mostly >0.4) and U contents mostly <1000 ppm (Supplementary Fig. 11 and Supplementary Data 1). In addition, there is no correlation between Th/U and U vs. δ18O (Supplementary Fig. 11), and our U-Pb data yield concordant to nearly concordant ages (Fig. 6 and...
Supplementary Fig. 9). All these features indicate that the δ^{18}O compositions may be attributed to hydrothermal fluid contamination of their source rock\(^{7,9}\), rather than to post-magmatic alteration processes.

In summary, the whole-rock petrological, geochemical, and isotopic data and zircon U-Pb-Hf-O-trace-element data suggest that the El-Shadli plagiogranites were derived from a MORB-like, highly depleted mafic source that had previously undergone hydrothermal alteration in an oceanic-and/or ridge/rift-related setting.

Petrogenesis of the El-Shadli plagiogranites. The genesis of the plagiogranites is commonly attributed to either (a) a direct mantle-derived basaltic melt that fractionated to yield plagiogranite compositions\(^{24,53}\) or (b) the product of partial melting of a hydrothermally altered depleted mafic lower oceanic crust\(^{17,13,15-17,24}\), both in MOR environments.

Experiments show that the composition of plagiogranitic melt resulting from fractional crystallization of MORB\(^{55}\) differs markedly from that of plagiogranite melt generated by partial melting of gabbros and amphibolites from the lower oceanic crust and oceanic crustal basalt\(^{15,17,54,56}\) particularly with regard to TiO\(_2\), SiO\(_2\) and K\(_2\)O contents (Fig. 8a). The El-Shadli plagiogranites have a compositional range that overlaps with melts produced by partial melting of hydrated gabbro and amphibolitic rocks of the lower oceanic crust (Fig. 8a). The TiO\(_2\) content of plagiogranitic melts derived by fractionation from tholeiitic magmas is controlled by source composition and redox conditions\(^{11,55}\). Experiments on tholeiitic primitive MORB melts\(^{55}\) show that Fe-Ti oxides are generally stable under oxidizing conditions, and so SiO\(_2\)-enriched felsic melts have significantly lower Ti contents. On the other hand, under reducing conditions, the felsic melts produced by fractionation are characterized by high TiO\(_2\) and FeO contents. As the differentiation of MORB melts typically occurs under more reducing conditions, the resultant felsic melts should have high Ti contents\(^{11,55}\). In contrast, gabbros in the lower oceanic crust are highly depleted in Ti, and partial melting of this source generally occurs under hydrous (i.e., oxidizing) conditions\(^{45}\). The resulting felsic melts should, therefore, have very low Ti contents\(^{55}\). Thus, Koepke et al.\(^{11,15}\) proposed that the TiO\(_2\) content of plagiogranites is a powerful indicator for discriminating between the more felsic plagiogranitic melts generated from anatexis of ocean lower crustal gabbroic rocks (TiO\(_2\) < 1 wt. %) and those generated by fractionation of MORB melts (TiO\(_2\) > 1 wt. %). The El-Shadli trondhjemitic and tonalitic rocks have TiO\(_2\) concentrations below the lower limit for experimental melts produced during MORB fractionation, again supporting an origin involving partial melting of mafic (gabbroic) crust (Fig. 8b,c).

Based on theoretical modeling, Brophy\(^{16}\) proposed that plagiogranitic melts formed by hydrous partial melting and exhibit either a flat or slightly decreasing REE with increasing SiO\(_2\) content. Their REE patterns can be slightly higher, and/or overlap with, co-magmatic mafic rocks. On the other hand, plagiogranitic melts produced by fractional crystallization show a positive correlation between REE and SiO\(_2\) contents\(^{16}\). The El-Shadli plagiogranites and associated gabbroic rocks have similar and overlapping flat REE patterns (Fig. 5a) and lack a positive correlation between La and SiO\(_2\) (Fig. 8d), features typical of melts formed by hydrous partial melting of lower oceanic crust\(^{16}\). This process contrasts with that of the Iceland lavas, which display a positive correlation between La with SiO\(_2\) from mafic to felsic endmembers and are thought to have been formed by fractional crystallization\(^{16}\).

Koepke et al.\(^{11,15}\) proposed that hydrous partial melting of pre-existing gabbros produces a plagiogranitic melt with amphibole as residual phase (Olivine + clinopyroxene + plagioclase (A) + H\(_2\)O = amphibole + orthopyroxene + plagioclase (B) + plagiogranitic melt). As REE abundances (particular LREE to MREE) and HFS elements such as Nb are very sensitive to the presence of amphiboles in the residue, the resultant melt should be depleted in LREE and Nb\(^{8,11,15,54}\). This is indeed the case for the El-Shadli plagiogranites (Fig. 8d and Supplementary Fig. 6). The lack of HREE depletion (Fig. 5a) indicates the absence of residual garnet, implying partial melting occurred in a low-pressure environment (i.e., in plagioclase stability field).

Zircon δ^{18}O values can also distinguish between plagiogranitic rocks generated by fractional crystallization (typical mantle-like δ^{18}O values of 5.2 ± 0.5‰\(^7\)) and those generated by re-melting of hydrothermally altered gabbroic lower oceanic crust (δ^{18}O = 4.9 ± 0.6‰\(^7\)). The El-Shadli zircons have low δ^{18}O values ranging between 4.52 and 4.83‰ (Fig. 7d and Supplementary Fig. 10c). There are two possible ways to cause such low δ^{18}O values: one is by melting hydrothermally altered source rocks, and the other is by assimilating hydrothermally altered wall rock during magma intrusion\(^9\). However, a plagiogranitic magma contaminated by wall rock assimilation would be expected to contain zircon xenocrysts and Hf-O isotopic data comparable to that upper crustal rocks\(^9\), but neither of these features have been observed in the studied rocks (Fig. 7d). Also, normal oceanic crust is characterized by δ^{18}O values as low as 2‰ for the gabbroic lower crust due to interaction of the mafic magma with hydrothermal fluids\(^7,14\). The systematic low δ^{18}O values are typical of global ophiolitic plagiogranites, indicating that these values are primary signatures and reflect partial melting of the lower oceanic crust without overprinting by late, low-temperature fluids\(^7\). The above observations support the formation of the El-Shadli plagiogranites by re-melting of altered gabbroic lower oceanic crust. On the plot of TiO\(_2\) (WR) vs. δ^{18}Ozr (Fig. 8c), the El-Shadli plagiogranites also plot outside the field characterizing plagiogranites with a fractional crystallization origin but overlap with plagiogranites with a known partial melting origin from the Oman and Troodos ophiolites\(^7,37\).

It has been demonstrated that high-temperature hydrothermal fluids can penetrate to upper mantle depths, and are thus capable of interacting with the oceanic gabbroic lower crust\(^{39}\). The circulation of such hydrothermal fluids has been recognized by their seawater signatures such as high radiogenic 87Sr/86Sr values and high Cl and B contents in basaltic glass from MORB and secondary amphibole in the gabbroic section of ophiolites\(^{11,15,17,49,54}\). The penetration of such hydrothermal fluids is facilitated by high-temperature shear zones/ detachment fault systems in the oceanic crust\(^{15,49}\).

Field observation of irregularly shaped enclaves of gabbroic blocks within the plagiogranite indicate the presence of magmatic mingling (Fig. 3a, a-I and Supplementary Fig. 1b). Such contact relationships are typical of mingling between two contemporaneous magmas\(^6\). Their interpreted coeval origin is further supported by the overlapping ages for the two rock types (Fig. 6 and Supplementary Fig. 9). The El-Shadli gabbroic rocks exhibit an evolved signature, characterized by low Mg\# ($\mathrm{MgO}/(\mathrm{MgO} + \mathrm{FeO}^\mathrm{T})$)\(^{100 < 60}\), Cr ($< 500$ ppm), and Ni (< 100 ppm) (Supplementary Data 1). Such low values are significantly lower than that of primary mantle melts (Ni > 500 ppm, Cr > 1000 ppm, and Mg\# > 72)\(^{58}\) and suggest these gabbroic rocks are not primary mantle melts. These characteristics, together with the negative correlation of SiO\(_2\) with MgO and CaO (Supplementary Fig. 4), indicate that the source rock of the mafic magmas underwent olivine and clinopyroxene fractionation. Thus, the magma compositions of the gabbroic rocks originated by extensive partial melting of a depleted, juvenile mafic source.

Collectively, whole-rock petrology, geochemical and isotopic data, and zircon Hf-O isotopes support partial melting of the hydrated gabbroic lower oceanic crust as the origin for the El-
Shadli plagiogranites. Some “arc-like” trace-element patterns, such as Nb and Ti negative anomalies, and LILE enrichment, can be interpreted as the result of (1) hydrothermal fluid contamination of the source rocks and/or (2) a two-stage process (i.e., generation followed by reheating of highly depleted source) for the production of the plagiogranitic melt.

Geodynamic context and formation mechanism for the El-Shadli plutonic complex. The geochemical and isotopic data distinguish the El-Shadli plagiogranites from other arc-related granitoids (Figs 4, 5, and 7 and Supplementary Figs 6, 10, and 12) and suggest their formation in a ridge/within-plate tectonic environment (Fig. 4d and Supplementary Fig. 12b). The El-Shadli plutonic complex (plagiogranites and associated gabbros) intruded pre-existing poly-deformed and variably metamorphosed ophiolitic complexes, as evidenced by cross-cutting relationships with strongly foliated ophiolitic country rocks (Fig. 2). The lack of significant deformation or metamorphism in the El-Shadli plutonic complex is consistent with its emplacement in a within-plate tectonic setting. In addition, the El-Shadli plutonic complex is overlain by rift-related, within-plate, and slightly younger (~700 Ma) bimodal volcanic rocks23,27 (Fig. 2). These relationships further support a post-accretionary, within-plate/rifting tectonic setting for the El-Shadli plutonic complex. Geochemical and isotopic data for the El-Shadli plagiogranites suggest an origin involving the anatexis of hydrated gabbroic lower oceanic crust. Their highly depleted and juvenile composition indicates that the magma was likely derived from partial melting of a juvenile mafic proto-continental crust (i.e., accreted oceanic crust) along a continental margin (Fig. 9b, c). This juvenile mafic proto-continental crust was accreted along the flanks of an ocean (i.e., the Mozambique Ocean) that bordered the Rodinia supercontinent (Fig. 9b, c). Such accreted mafic juvenile crust was likely thinner and denser than normal continental crust and was thus mostly submerged (Fig. 9b, c), thereby explaining the submarine setting of the slightly younger (~700 Ma) bimodal volcanics and the formation of pillow basalts23,27. The El-Shadli plagiogranites were formed by melting of an oceanic crust that was accreted 20–10 Myr earlier (i.e., by melting of older ophiolitic complexes), unlike other plagiogranites found in ophiolites and MOR settings worldwide, in which plagiogranites formed contemporaneously with MOR magmatism24,57.

It has been suggested that the volume of plagiogranites reflects the formation process (fractional crystallization vs. partial melting)15. Fractional crystallization of basaltic magma normally produces small volumes of plagiogranites in MOR environments6,13,15. On the other hand, larger volumes of plagiogranitic melt can be generated by partial melting processes and are more likely to occur in ophiolites24,15. Such partial melting processes are made possible by high H2O activity and possibly with an excess heat source in MOR environments. The H2O could be provided through penetration of hydrothermal fluids from the ocean via high-temperature detachment fault systems/shear zones along the MOR13,49 (Fig. 9a). The excess heat source is generally believed to have been provided by underlying melt lenses beneath the MOR, but Amri et al.3 suggested an upwelling mantle diapir as a heat source for the formation of the largest plagiogranites (up to 8 km in outcrop dimension) within the Oman ophiolites. As the El-Shadli plagiogranites formed after terrane accretion instead of in a MOR environment, and the 730–700 Ma magmatism is coeval with global continental rifting and the break-up of Rodinia (~825–680 Ma)9,60 the heat source for their formation could have been related to emplacement of a mantle plume during Rodinia break-up9,60 (Fig. 9c), as first speculated by Gamal El Dien et al.23 for the formation of the ~700 Ma rift volcanics found in the same region. Given that the El-Shadli plagiogranites formed in a post-accretionary within-plate setting, the mantle upwelling could also have been induced by slab break-off61. However, the composition of the El-Shadli plutonic complex is inconsistent with granitoid magmas produced by slab-break-off (Fig. 4d). Thus, a plume-induced model23 is preferred based on evidence discussed below.

First, the exceptional large volume of the El-Shadli plagiogranite (a lateral dimension of ca. ~100 km × 50 km) can best be explained by mantle plume-induced large-scale re-melting the accreted mafic lower crust that generated both the super-large El-Shadli plagiogranites and the overlying bimodal volcanics (80 km × 35 km with a thickness of >10 km)23,27. Second, there is evidence for mantle plume activity that age in the region, such as the layered mafic-ultramafic intrusions at Korab Kansi (741 ± 24 Ma)63 and at G. Dahanib (710 ± 7 Ma)64 (Fig. 1b). Third, the hiatus between the 730–720 Ma plagiogranite and the overlying ~700 Ma bimodal rift volcanics (Fig. 9d) can be interpreted as plume-induced regional doming23,65.

As plumes tend to preferentially nucleate along the margins of a superplume66, a plume heat source is in accord with the proposed paleogeographic position of the ANS over the edge of the Rodinia superplume during the break-up/continental rifting of the supercontinent Rodinia between 825 and 680 Ma59,60. Coeval plume-related magmatism along the margins of Rodinia including granitoids, mafic-ultramafic dikes, and rift-related bimodal volcanics found in South China, Australia, Southern Africa, and Laurentia60,67,68. The proposed plume-induced model for the El-Shadli plutonic complex (~730–720 Ma) is coeval with the global plume/rift-related magmatism such as the well-known Franklin large igneous provinces event (~727–720 Ma) in Laurentia60,68 that extend until ~712 Ma69, and the Gannakouriep event (~720 Ma) in South Africa and Namibia67.

In summary, we propose that the exceptionally large El-Shadli plagiogranite was formed by partial melting of previously accreted oceanic crust (juvenile proto-continental crust) above a mantle plume, instead of the previously well-known formation mechanisms in MOR environments. The preferred tectonic model (Fig. 9) also has implications for the crustal growth of the ANS. Most previous models focus on arc accretion18,20, but mantle plume and rift-related-magmatism have also been suggested to have played an important role in crustal evolution21,22. However, previous studies21,22 advocating plume involvement only inferred that it occurred within an oceanic environment (i.e., the formation of
oceanic plateaus) before accretion and that the products of plume activity were subsequently accreted with island arcs to form a juvenile continental crust. The model presented herein, modified from Gamal El Dien et al.31, suggests that plumes may have also been important in the post-accretionary evolution of the ANS. Our model emphasizes the importance of mantle plume crust formation on early Earth.

Methods

Sampling and petrological examination. Rock samples were mostly collected along R. Ranga (samples R10-1, 2 and R11-1, 2), W. Huluz (samples S01-1a, b, W. Dina, S24-1, 2, and S24-1, 2), and W. Abu Hammanami (sample S14) (Fig. 2). Samples from previous work on the batholiths30,70 covered along W. Ranga (samples R10-1, 2 and R11-1, 2), W. Huluz (samples S01-1a, b), and W. Abu Ghusun (Fig. 2). Sample locations and coordinates are provided in the geological map (Figs 1 and 2) and Supplementary Data 1, respectively. The geological map is created using QGIS 2.7.0 licensed to Curtin University. Thin sections of the rock samples were cut and polished with progressively finer grades of diamond paste (9–1 μm thick) by service provider Yu‘neng Petrology and Mineral Service Company, China. The relative abundance of minerals (both transparent and opaque) and their textural relationships were determined on a Nikon Eclipse 50i optical microscope at Curtin University using transmitted and reflected light. Also, whole thin section images were collected for some samples using a Zeiss Axios Imager M2m Imaging System at Curtin University, at 5× magnification under transmitted and reflected light.

**Phase mineral distribution maps for samples R10-1, R11-1, S01-1a, S14, S23-1, R10-2, R11-2, S01-1a, S14, S23-1, 2, and R10-2 were acquired using a TESCAN Integrated Mineral Analyzer (TIMA) housed at the John de Laeter Centre, Curtin University (Supplementary Fig. 2). The analysis was performed on carbon-coated whole thin sections using Liberation analysis in “Dot Mapping” mode adopting 3 μm dot spacing for backscattered electron images and 27 μm for X-ray acquisition operating at 25 kV acceleration voltage, 15 mm working distance, and a magnification of 185 times. Data processing (include calculation of modal composition) was performed with the TESCAN TIMA version 1.6.71 software.

Whole-rock major and trace-element geochemistry. Rock samples were examined first by optical microscopy. Selected rock samples were crushed with a polyethylene-wrapped hammer into <0.5 cm small chips, ultrasonically cleaned in distilled water, and subsequently dried and handpicked to avoid altered pieces and visible contamination. The samples were then ground with ethyl alcohol in an agate ring mill to grain size <50 μm, and the resulting powders were used for the analyses of major and trace elements, and Sr-Nd isotopes (Supplementary Data 1).

**Whole-rock major element oxides were determined by XRF at Burea Veritas Lab, Perth, Western Australia. Each whole-rock sample was pulverized in a vibrating disc pulverizer. The sample powder was ignited at 1000 °C for 2 h to determine the LOI using a robotic TGA system. Subsequently, the sample was cast using a 66.34 flux with 4% lithium nitrate to form a glass pill (fused bead) by melting at 1080 °C. The major oxides (Al2O3, Cr2O3, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2, and TiO2) were determined using XRF on the oven-dried (105 °C) fused beads.

Trace elements were determined using an Agilent 7500a quadrupole ICPMS at Macquarie (MQ) GeoAnalytical Lab, Macquarie University, Australia. Acid digestion with hydrofluoric acid (HF) was used to digest geological materials for trace-element determination. Powdered samples of 100 mg each were weighed into 15 mL Savillex Teflon beakers. The samples were first refluxed in 1.5 mL 2% (v/v) HF (Merck Suprapur grade) at 140 °C for 3 h. Inorganic material was dissolved in 6 mL of 2 mL of 6 N distilled HCl at 150 °C for 3 h and dried down at 190 °C, and then reflux again in 2 mL of 6 N distilled HNO3 at 150 °C for 3 h. For trace-element analyses, the samples were diluted in 100 mL of 2% H2O2 + 0.5% HF, and heated at 80 °C until a clear solution resulted. Reference materials BCR-2 (basalt), BHVO-2 (basalt), GRB-1 (basalt), and GSP-2 (granodiorite) were analyzed at the beginning and end of each analytical session, and their measured values agreed with recommended GeoTrim (http://geochem.mps-mainz.gwdg.de) and USGS values.

The precision of the measurements by repeated analyses of reference samples is better than ±5% for trace elements and REEs.

Whole-rock Sr-Nd isotopes. Sr and Nd isotopic ratios were obtained by thermal ionization mass spectrometry (TIMS) on a Thermo Finnigan Triton system at Macquarie (MQ) GeoAnalytical Lab, Macquarie University. Analytical procedures including cleaning and column evaporation, sample digestion, chromatographic separation to collect Sr and Nd, and sample loading on Re filament and data collection from TIMS were completed by Shell people. Rb and Sr isotopic data were acquired for each analytical session to check instrument status and sensitivity for Sr and Nd and was followed by unknown samples. Ratios were normalized to 86Sr/87Sr = 0.1194 and 144Nd/144Nd = 0.7219 to correct for mass fractionation. BHVO-2 yielded 87Sr/86Sr ratios ranging between 0.703449 ± 0.000290 (2σ) and 0.703846 ± 0.000464 (2σ) and 144Nd/144Nd ratios between 0.512932 ± 0.000546 (2σ) and 0.512993 ± 0.000106 (2σ). These values are within the range of GeoRem preferred values for BHVO-2 (87Sr/86Sr = 0.703494 ± 0.000043; 144Nd/144Nd = 0.512982 ± 0.000039). These ratios were used to normalize the Sr and Nd isotopic data using the formula:

\[
\frac{\text{Sample}}{\text{Standard}} \times \left(\frac{\text{Standard}_{87Sr/86Sr}}{\text{Sample}_{87Sr/86Sr}} \right) = \text{Normalized}_{87Sr/86Sr}
\]

The precision of the measurements by repeated analyses of reference samples is better than ±5% for trace elements and REEs.
nm) coupled to a Nu Plasma II multi-collector ICP-MS (MC–ICP/MS) and Agilent 7700s quadrupole mass spectrometer. The laser spot diameter was 50 μm, with 3 cm² on-source laser flux, repetition rate of 10 Hz, ablation time of 40 s, and ~45 s of total baseline acquisition.

U-Pb and trace-element data were collected from the split stream on an Agilent 7700s quadrupole mass spectrometer. Analyses of unknowns were bracketed by blocks of primary and secondary zircon reference materials such as 91500, GI-1, Pleövice, and R33 to monitor data accuracy and precision. 176Lu/177Hf was also analyzed to validate the isobaric interference corrections and 176Lu/177Hf, and a range of reference materials with varying 176Lu/177Hf and 176Yb/177Hf ratios was used to validate the isobaric interference corrections and 176Hf/177Hf ratios was also analyzed to validate the isobaric interference corrections 85,86.

The laser spot diameter was 50 µm, with 3 J of energy, with 200 kHz repetition rate and 3 s of acquisition time. The laser beam center was kept within a radius of 1 μm of the center of the track. The mass resolution being ~2500. The target area was ~20 μm in diameter that includes a 10 μm spot diameter and a 10 μm raster diameter. 18O and 17O isotopes were measured in multi-collector mode using two off-axis Faraday cups.

Qinghu and Pengai reference zircons 84,85 have been used to evaluate the precision (reproducibility) and accuracy. Pengai zircons were used as external reference material to calibrate the instrumental mass fractionation (IMF). Pengai zircons were treated as an unknown sample, which yielded a precision of 5.4 ± 0.2% (2 SD). During each session, one Pengai zircon analysis was conducted with every unknown unknown samples (including a Qinghu zircon standard that was treated as an unknown). The measured (18O/16O) ratios were normalized to the Vienna Standard Mean Ocean Water (VSMOW) 18O/16O = 0.00205252 86 and expressed on the 18O-scale. A recommended value of 18O VSMOW = 519.4 ± 0.6% (2 SD) for the Pengai zircon standard was used in this study 85, and then corrected for the IMF as follows:

$$\delta^{18}O = \left(\frac{R_{\text{sample}}}{R_{\text{VSMOW}}} - 1 \right) \times 1000\%$$

whereas (18O/16O) VSMOW is the raw value measured by SIMS, $\delta^{18}O_{\text{VSMOW}}$ the normalized (18O/16O) ratio by the value of VSMOW (18O/16O) = 0.00205252, $\delta^{18}O_{\text{VSMOW}}$ the measured result of standard sample, (18O/16O) VSMOW the recommended value of the Pengai standard, and $\delta^{18}O_{\text{sample}}$ the corrected sample.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary material and are publically available at https://doi.org/10.5281/zenodo.4732646

Received: 29 January 2021; Accepted: 11 June 2021; Published online: 05 July 2021

References

1. Kemp, A. L. S. & Hawkesworth, C. J. Growth and differentiation of the continental crust from isotope studies of accessory minerals. In Treatise on Geochemistry 4 379–421 (Elsevier, 2014).

2. Coleman, R. G. & Peterman, Z. E. Oceanic plagiogranite. J. Geophys. Res. 80, 1099–1108 (1975).

3. Coleman, R. G. & Donato, M. M. Oceanic Plagiogranite Revisited. Developments in Petrology (ed. Barker, F.) 6 (Elsevier Scientific Publishing Company, 1979).

4. Aldiss, D. T. Plagiogranites from the ocean crust and ophiolites. Nature 289, 577–578 (1981).

5. Amri, I., Benoit, M. & Ceuleneer, G. Tectonic setting for the genesis of oceanic plagiogranite intrusions. Earth Planet. Sci. Lett. 577, 194–198 (1996).

6. Röllinson, H. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112, 603–614 (2009).

7. Grimes, C. B., Ushikubo, T., Kozdon, R. & Valley, J. W. Perspectives on the origin of large plagiogranite bodies in northern Oman, and their relationship to oceanic plagiogranite in ophiolites from oceanic isotopes in zircon. Lithos 179, 48–68 (2013).

8. Haase, K. M. et al. Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite. Contrib. Mineral. Petrol. 171 (2016).

9. Wang, H. et al. Continental growth through accreted oceanic arc: Zircon Hf-O isotope evidence for granitoids from the Qinling orogen. Geochim. Cosmochim. Acta 182, 109–130 (2016).

10. Marien, C. S., Hoffmann, J. E., Garbe-Schönberg, C. D. & Münker, C. Petrogenesis of plagiogranites from the Troodos Ophiolite Complex, Cyprus. Contrib. Mineral. Petrol. 174 (2019).

11. Koepeke, J., Berndt, J., Feige, S. T. & Holtz, F. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib. Mineral. Petrol. 153, 67–84 (2007).

12. Röllinson, H. Plagiogranites from the mantle section of the Oman Ophiolite: models for early crustal evolution.

13. Stokes, D. S. & Taylor, H. P. Oxygen isotope and chemical studies on the origin of large plagiogranite bodies in northern Oman, and their relationship...
15. Koepe, J., Feig, S. T., Snow, J. & Freise, M. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. *Contrib. Mineral. Petrol. 146*, 414–432 (2004).

16. Brophy, J. J. La-sio2and Yb-SiO2 systems in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. *Contrib. Mineral. Petrol. 160*, 215–231 (2010).

17. France, L., Koepe, J., Ildenfse, B., Cichy, S. B. & Deschamps, F. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. *Contrib. Mineral. Petrol. 160*, 683–704 (2010).

18. Fritz, H. et al. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. *J. African Earth Sci. 86*, 65–106 (2013).

19. Johnson, P. R. et al. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. *J. African Earth Sci. 61*, 165–252 (2011).

20. Stern, R. J. ARC assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. *Annu. Rev. Earth Planet. Sci. 22*, 319–351 (1994).

21. Reymer, A. & Schubert, G. Rapid growth of some major segments of the Arctic. *Contrib. Mineral. Petrol. 158*, 111–119 (2010).

22. Robinson, F. A., Foden, J. D., Collins, A. S. & Payne, J. L. Arabian Shield fingerprinting: a precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. *Chem. Geol. 123*, 29–51 (1995).

23. Gamal El Dien, H. et al. Two-stage crustal growth in the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. *J. African Earth Sci. 61*, 165–252 (2011).

24. Stern, R. J. ARC assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. *Annu. Rev. Earth Planet. Sci. 22*, 319–351 (1994).

25. Reymer, A. & Schubert, G. Rapid growth of some major segments of the continental crust. *Geology 14*, 299 (1986).

26. Abdel El-Wahed, M., Kamh, S. Z., Ashmawy, M. & Shebl, A. Transpressive closing stages of the northern East African Orogen. *Contrib. Mineral. Petrol. 160*, 215–231 (2010).

27. France, L., Koepe, J., Ildenfse, B., Cichy, S. B. & Deschamps, F. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. *Contrib. Mineral. Petrol. 160*, 683–704 (2010).

28. Kröner, A., LeCheminant, A. N. & Rainbird, R. H. Nature and timing of early Proterozoic granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. *Contrib. Mineral. Petrol. 125*, 161–174 (1996).

29. Heaman, L. M., LeCheminant, A. N. & Rainbird, R. H. Nature and timing of early Proterozoic granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. *Contrib. Mineral. Petrol. 125*, 161–174 (1996).

30. Gharib, M. E. & Ahmed, A. H. Late Neoproterozoic volcanics and associated granite-gneisses in the Eastern Desert of Egypt and south-west Sinai. *Lithos 78*, 383–397 (2004).

31. Grimes, C. B., Wooden, J. L., Cheadle, M. J. & John, B. E. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. *Lithos 61*, 237–269 (2002).

32. Tornqvist, T. E. The role of oceanic plate tectonics in the evolution of the Pacific Ocean. *Annu. Rev. Earth Planet. Sci. 25*, 207–240 (1997).

33. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. *Geochim. Cosmochim. Acta 53*, 197–214 (1989).

34. Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Geol. Soc. London, Spec. Publ. 26*, 313–345 (1989).

35. Goldstein, S. L., O’Nions, R. K. & Hamilton, P. J. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. *Earth Planet. Sci. Lett. 70*, 221–236 (1984).

36. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu-Hf and Sm-Nd isotopic compositions of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth Planet. Sci. Lett. 273*, 48–57 (2008).

37. Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N. & McDonald, B. Zircon U-Th ratios in magmatic environments. *Lithos 212–213*, 397–414 (2015).

38. Grimes, C. B., Wooden, J. L., Cheadle, M. J. & John, B. E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. *Contrib. Mineral. Petrol. 170*, 1–26 (2015).

39. Griffin, W. L. et al. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. *Lithos 61*, 237–269 (2002).

40.Pearce, J. Sources and settings of granitic rocks. *Episodes 19*, 120–125 (1996).

41. O’Connor, J. T. A classification of quartz rich igneous rock based on feldspar ratios. *US Geol. Surv. 525B*, B79–B84 (1965).

42. Barker, T. F. Definition, environment and hypotheses of origin. *Dev. Petrol. 6*, 1–12 (1979).

43. Laurent, O., Martin, H., Moyen, J. F. & Doucelance, R. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. *Lithos 205*, 208–235 (2014).

44. Robinson, F. A., Foden, J. D., Collins, A. S. & Payne, J. L. Arabian Shield magmatic cycles and their relationship with Gondwana assembly: insights from zircon U-Pb and Hf isotopes. *Earth Planet. Sci. Lett. 408*, 207–225 (2014).
plume and the break-up of Laurentia. Earth Planet. Sci. Lett. 109, 117–131 (1992).

69. Denyszyn, S. W., Halls, H. C., Davis, D. W. & Evans, D. A. D. Paleomagnetism and U-Pb geochronology of Franklin dykes in High Arctic Canada and Greenland: a revised age and paleomagnetic pole constraining block rotations in the Nares Strait region 1. Can. J. Earth Sci. 46, 155–167 (2009).

70. Maurice, A. E., Bakhti, B. R., Basta, F. F. & Khiami, A. A. Geochemistry of carbonatites and granodiorites (M- and T-types) from the Nubian Shield of Egypt: roots of Neoproterozoic intra-oceanic island arc. Precambrian Res. 224, 397–411 (2013).

71. Tillh, R. et al. Sources and timing of pyroxenite formation in the sub-arc mantle: case study of the Cabo Ortegal Complex, Spain. Earth Planet. Sci. Lett. 474, 490–502 (2017).

72. Compston, W., Williams, I. S. & Meyer, C. U. Pb-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J. Geophys. Res. 89, B525–B525 (1984).

73. Williams, I. S. U-Th-Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (ed. McKibben, M., Shakes, W. & Ridley, W.) 7 1–35 (Society of Economic Geologists, 1998).

74. Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).

75. Slama, J. et al. Pléiocene zircon — a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

76. Claoué-Long, J. C., Compston, W., Roberts, J. & Fanning, C. M. Two carboniferous ages: a comparison of shrimp zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In Geochronology, Time Scales, and Global Stratigraphic Correlation (ed. Berggren, W., Kent, D., Aubry, M.-P. & Hardenbol, J.) 3–21 (SEPM (Society for Sedimentary Geology), 1995). https://doi.org/10.2110/pec.95.04000.

77. Black, L. P. et al. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200, 155–170 (2003).

78. Ludwig, K. R. Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel. (Berkeley Geochronology Center Special Publication, 2003).

79. Ludwig, K. R. SQUID II. A User’s Manual. (Berkeley Geochronology Center, Special Publication, 2009).

80. Vermeesch, P. Isotopitc: a free and open toolbox for geochronology. Geosci. Front. 9, 1497–1493 (2018).

81. Spencer, C. J., Kirkland, C. L. & Taylor, R. J. M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front. 7, 581–589 (2016).

82. Wiedenheck, M. et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28, 9–39 (2004).

83. Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).

84. Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace element related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

85. Spencer, C. J., Kirkland, C. L., Roberts, N. M. W., Evans, N. J. & Liebmann, J. Strategies towards robust interpretations of in situ zircon Lu-Hf isotope analyses. Geosci. Front. 11, 843–853 (2020).

86. Spencer, C. J. et al. Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon. Geology 45, 975–978 (2017).

87. Woodhead, J. D. & Hergt, J. M. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geoanal. Res. 29, 183–195 (2005).

88. Fuji, C. M., Vervoort, J. D. & DuFrane, S. A. Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochim. Geophys. Geosystems 15, 121–139 (2014).

89. Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., Miller, J. S. & Vroon, P. Z. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255, 231–235 (2008).

90. Panin, O. V., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).

91. Scherer, E., Münker, C. & Mezger, K. Calibration of the lutetium-hafnium clock. Science 293, 683–687 (2001).

92. Li, X.-H. et al. Old continental crust underlying juvenile oceanic arc: evidence from Northern Arabian-Nubian Shield, Egypt. Geophys. Res. Lett. 45, 3001–3008 (2018).

93. Yang, Q. et al. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid Earth 3, 81–86 (2018).

94. Li, X. H. et al. Qinghu zircon: a working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Sci. Bull. 58, 4647–4654 (2013).

95. Li, X.-H. et al. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb. Age. Geostand. Geoanalytical Res. 34, 117–134 (2010).

96. Baertschi, P. Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 341–344 (1976).

97. Stern, R. J. & Hedge, C. E. Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am. J. Sci. 285, 97–127 (1985).

98. GSE. Geological Map of Jabel Hamahat Quadrangle, South Eastern Desert, Egypt: Scale 1: 250.000. (Geological survey of Egypt, 1997).

99. Peccerillo, A. & Taylor, S. R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 58, 63–81 (1976).

100. Masiar, D. & Piccoli, M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101, 635–643 (1989).

101. GeoRoc repository (Accessed July 2020); http://georoc.mpch-mainz.gwdg.de/georoc/.

Acknowledgements

We would like to thank Allen Kennedy, Hao Gao, Elaine Miller, and Brad McDonald for assisting with SHRIMP and LA-ICPMS analyses of zircons. We are greatly indebted to Dr Josh Beardmore for proofreading. Comments from Navot Morag and editor Joe Aslin helped to improve the manuscript. This work was supported by the Australian Research Council Laureate Fellowship (grant to Z.-X. L. [FL150100133]). Research in the John de Laeter Centre GeoHistory Facility is enabled by AuScope (ausscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). The NPII multi-collector was obtained via funding from the Australian Research Council LIEF program (LE150100103). This is a contribution to IGCPR 648: Supercontinent Cycles and Global Geodynamics.

Author contributions

H.G. and Z.-X.L. designed the project. H.G. performed the analyses, compiled the data, and drafted the manuscript. Z.-X.L. conducted the field trip with H.G. and M.A., clarified the concepts including the designing of a key figure, and assisted H.G. in the writing of the manuscript. M.A. organized the fieldwork, helped with sample collection, and commented on the manuscript. L.D. assisted with the SHRIMP analyses and edited the manuscript. J.B.M. clarified some concepts and edited the manuscript. N.E. performed the LASS analyses and edited the manuscript. X.-P.X. performed the SIMS analyses and commented on the manuscript. J.L. assisted with the SHRIMP analyses and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s43247-021-00205-8.

Correspondence and requests for materials should be addressed to H.G.E D. or Z.-X.L.

Peer review information Communications Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Primary handling editor: Joe Aslin.

Reprints and permission information is available at http://www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.