The strong running coupling at \(\tau \) and \(Z_0 \) mass scales from lattice QCD

(ETM Collaboration) B. Blossier, Ph. Boucaud, M. Brinet, F. De Soto, X. Du, V. Morenas, O. Pène, K. Petrov, and J. Rodríguez-Quintero

1Laboratoire de Physique Théorique, Université de Paris XI; Bâtiment 210, 91405 Orsay Cedex; France
2LPSC, CNRS/IN2P3/UJF; 53, avenue des Martyrs, 38026 Grenoble, France
3Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
4Laboratoire de Physique Corpusculaire, Université Blaise Pascal, CNRS/IN2P3 63177 Aubière Cedex, France
5CEA Saclay, Ifu/SPhN; Orme des Merisiers, Bat 703; 91191 Gif/Yvette Cedex; France
6Dpto. Física Aplicada, Fac. Ciencias Experimentales; Universidad de Huelva, 21071 Huelva; Spain.

This letter reports on the first computation, from data obtained in lattice QCD with \(u, d, s \) and \(c \) quarks in the sea, of the running strong coupling via the ghost-gluon coupling renormalized in the MOM Taylor scheme. We provide with estimates of \(\alpha_{\overline{MS}}(m_c^2) \) and \(\alpha_{\overline{MS}}(m_{\tau}^2) \) in very good agreement with experimental results. Including a dynamical c quark makes safer the needed running of \(\alpha_{\overline{MS}} \).

PACS numbers: 12.38.Aw, 12.38.Lg

INTRODUCTION

The confrontation of QCD, the theory for the strong interactions, with experiments requires a few inputs: one mass parameter for each quark species and an energy scale surviving in the limit of massless quarks, \(\Lambda_{\text{QCD}} \). This energy scale is typically used as the boundary condition to integrate the Renormalization Group equation for the strong coupling constant, \(\alpha_S \). The value of the renormalized strong coupling at any scale, or equivalently \(\Lambda_{\text{QCD}} \), has to be fitted to allow the QCD phenomenology to account successfully for experiments. A description of many precision measurements of \(\alpha_S \) from different processes and at different energy scales can be found in ref. [1]. The running QCD coupling can be alternatively obtained from lattice computations, where the lattice spacing replaces \(\Lambda_{\text{QCD}} \) as a dimensionful parameter to be adjusted from experimental inputs. This means that a lattice-regularized QCD can be a tool to convert the physical observation used for the lattice spacing calibration, as for instance a mass or a decay constant, into \(\Lambda_{\text{QCD}} \). A review of most of the procedures recently implemented to determine the strong coupling from the lattice can be found in ref. [2]. We also quoted in ref. [3] many of the different methods proposed in the last few years.

The present “world average” for the strong coupling determinations [4], usually referred at the \(Z^0 \)-mass scale, is dominated by the lattice determination included in the average [5], as discussed in ref. [1]. Because of the importance of a precise and proper definition of the strong coupling for the LHC cross sections studies and its exploration of new physics, independent alternative lattice determinations are strongly required. The latter is specially true when different lattice actions and procedures are applied, to gain thus the best possible control on any source of systematic uncertainty. Furthermore, the current lattice results have been obtained by means of simulations including only two degenerate up and down sea quarks (\(N_f=2 \)) or, as in ref. [4], also including one more “tuned” to the strange quark (\(N_f=2+1 \)). Now, the European Twisted Mass (ETM) collaboration has started a wide-ranging program of lattice QCD calculations with two light degenerate twisted-mass flavours [6, 7] and a heavy doublet for the strange and charm dynamical quarks (\(N_f=2+1+1 \) [8, 9]). Within this ETM program, we have applied the method to study the running of the strong coupling, and so evaluate \(\Lambda_{\text{QCD}} \), grounded on the lattice determination of the ghost-gluon coupling in the so-called MOM Taylor renormalization scheme [10, 11]. We are publishing the results of this study in two papers: a methodological one [9], where the procedure is described in detail along with some results, and this short letter aimed to update and emphasize the phenomenologically relevant results. In particular, as far as the lattice gauge fields with \(2+1+1 \) dynamical flavours which we are exploiting provide with a very realistic simulation of QCD at the energy scales for the \(\tau \) physics, we are presenting here the estimate for the coupling at the \(\tau \)-mass scale.

THE STRONG COUPLING IN TAYLOR SCHEME

The starting point for the analysis of this letter shall be the Landau-gauge running strong coupling renormalized in the MOM-like Taylor scheme,

\[
\alpha_T(\mu^2) = \lim_{\Lambda \to \infty} \frac{g_2^2(\mu^2)}{4\pi} = \frac{g_2^2(\Lambda^2)}{4\pi} \frac{F(\mu^2, \Lambda^2) G(\mu^2, \Lambda^2)}{E(\mu^2, \Lambda^2)} \tag{1}
\]

obtained from lattice QCD simulations. \(F \) and \(G \) stand for the form factors of the two-point ghost and gluon Green functions (dressing functions). The procedure to compute the coupling defined by (1), and from it to perform an estimate of \(\Lambda_{\overline{MS}} \), is described in very detail in...
ref. [10] [11]. We recently applied this in ref. [3] to compute \(\Lambda_{\text{MT}} \) from \(N_f = 2 + 1 + 1 \) gauge configurations for several bare couplings (\(\beta \)), light twisted masses (\(a\mu_l \)) and volumes. The prescriptions applied for the appropriate elimination of discretization artefacts, as the so-called \(H(4) \)-extrapolation procedure [12], were also carefully explained in ref. [3]. After this, we are left with the lattice estimates of the Taylor coupling, computed over a large range of momenta, that can be described above around 4 GeV (see Fig. 3) by the following OPE formula[11]:

\[
\alpha_T(\mu^2) = \alpha_T^{\text{pert}}(\mu^2) \left(1 + \frac{9}{\mu^2} R \left(\alpha_T^{\text{pert}}(\mu^2), \alpha_T^{\text{pert}}(\mu_0^2) \right) \right) \\
\times \left(\frac{\alpha_T^{\text{pert}}(\mu_0^2)}{\alpha_T^{\text{pert}}(\mu_0^2)} \right)^{1-\gamma_0^2/\beta_0} \frac{g_2^2(q_0^2)(A^2) R_{\text{pert}}}{4(N_C^2 - 1)},
\]

where \(1-\gamma_0^2/\beta_0 = 27/100 \) for \(N_f = 4 \) [13] [14]. \(R(\alpha, \alpha_0) \) for \(q_0 = 10 \) GeV (see Eq.(6) of [3]) is obtained as explained in the appendix of ref. [11]. The purely perturbative running in Eq. (2) is given up to four-loops by integration of the \(\beta \)-function [4], where its coefficients are taken to be defined in Taylor-scheme [10, 15]. Thus, \(\alpha_T^{\text{pert}} \) depends only on \(\ln(\mu^2/\Lambda^2) \). This however allows to fit both \(g_2^2(A^2) \) and \(\Lambda_T \), the \(\Lambda_{\text{QCD}} \) parameter in Taylor scheme, through the comparison of the prediction given by Eq. (2) and the lattice estimate of Taylor coupling. The best-fit of Eq. (2) to the lattice data published in ref. [3] provided with the estimates that can be read in Tab. I. In this letter, we complete the previous analysis by including an “ad-hoc” correction to account for higher power corrections (see Fig. 1) that allows to extend the fitting window down to \(p \approx 1.7 \) GeV and also apply the so-called plateau method to determine the best-fit [10]. Furthermore, in addition to the lattice ensembles of gauge configurations described in ref. [3], we study 60 more at \(\beta = 2.1 \) (\(a\mu_l = 0.002 \)) and three new ensembles of 50 configurations at \(\beta = 1.9 \) and \(a\mu_l = 0.003, 0.004, 0.005 \) to perform a chiral extrapolation for the ratios of lattice spacings. We get: \(a(2.1, 0.002)/a(1.9, 0) = 0.685(21) \). The lattice scale at \(\beta = 1.9, 1.95, 2.1 \) is fixed by ETMC through chiral fits to lattice pseudoscalar masses and decay constants, where \(270 \lesssim m_{\pi S} \lesssim 510 \) MeV, that are required to take the experimental \(f_\pi \) and \(m_\pi \) at the physical point [5, 9]; e.g.: \(a(1.9, 0) = 0.08612(42) \) fm.

THE WILSON OPE COEFFICIENT AND THE HIGHER-POWER CORRECTIONS

The OPE prediction for \(\alpha_T \) given by Eq. (2) is dominated by the first correction introduced by the non-vanishing dimension-two Landau-gauge gluon condensate [10] [21], where the Wilson coefficient is applied at the \(O(\alpha^4) \)-order. In the previous methodological paper [3], we provided with a strong indication that the OPE analysis is indeed in order: it was clearly shown that the lattice data could be only explained by including non-perturbative contributions and that the Wilson coefficient for the Landau-gauge gluon condensate was needed to describe the behaviour of data above \(p \approx 4 \) GeV and up to \(p \approx 7 \) GeV (see next Fig. 2).

Now, in Fig. 1 the impact of higher-power corrections is sketched: the plot shows the departure of the lattice data for the Taylor coupling from the prediction given by Eq. (2), plotted in terms of the momentum, with logarithmic scales for both axes. The data seem to indicate that the next-to-leading non-perturbative correction is highly dominated by an \(1/p^6 \) term. This might suggest that the \(1/p^4 \) OPE contributions are negligible when compared with the \(1/p^6 \) ones or that the product of the leading \(1/p^4 \) terms and the involved Wilson coefficients leave with an effective \(1/p^6 \) behaviour. Anyhow, this implies that we can effectively describe the Taylor coupling lattice data for all momenta above \(p \approx 1.7 \) GeV with

\[
\alpha_T^2(p^2) = \alpha_T^2(p^2) + \frac{d}{p^6},
\]

where \(d \) is a free parameter to be fitted which we do not attribute to any particular physical meaning. Other possible ad-hoc fitting formulas might be also applied and this can be thought to induce a systematic error on the determination of \(\Lambda_{\text{MS}} \) in the next section. However, the comparison of perturbative and nonperturbative estimates will show this error not to be larger than around 20 MeV.
THE STRONG COUPLING IN $\overline{\text{MS}}$ SCHEME

To obtain the $\overline{\text{MS}} \Lambda_{\text{QCD}}$ from Λ_T is rather immediate, as the scale-independent Λ_{QCD}-parameters in both Taylor and $\overline{\text{MS}}$ schemes are related through \[11\]

\[
\frac{\Lambda_{\overline{\text{MS}}}}{\Lambda_T} = \exp \left(-\frac{507 - 40N_f}{792 - 48N_f} \right) = 0.560832 .
\]

Then, one can numerically invert Eqs. \[2,3\] and apply Eq. \[4\] to determine $\Lambda_{\overline{\text{MS}}}$ from all the lattice estimates of the Taylor coupling at any available momenta. $\Lambda_{\overline{\text{MS}}}$ from different momenta must only differ by statistical fluctuations, provided that Eqs. \[2,3\] properly describes lattice data at those momenta. Thus, the parameters $g^2(A^2)$ and d are to be fixed such that a constant fits with the minimum χ^2/d.o.f. to the $\Lambda_{\overline{\text{MS}}}$ results obtained by the inversion of Eqs. \[2,3\]. This is the plateau method applied in Fig. \[2\] which is equivalent to fit directly Eqs. \[2,3\] to the Taylor coupling lattice data, as done in Fig. \[1\]. The best-fit parameters can be found in Tab. \[1\], The best plateau with Eq. \[3\] is obtained for $\Lambda_{\overline{\text{MS}}} = 0.324(17)$ GeV over a fitting window ranging from $p = 1.7$ GeV up to $p = 6.8$ GeV, where χ^2/d.o.f. = 146/516; while χ^2/d.o.f. = 106.7/329 over 4.1 $< p < 6.8$ GeV for $\Lambda_{\overline{\text{MS}}} = 0.316(13)$ with Eq. \[2\]. For the sake of comparison, we also estimate $\Lambda_{\overline{\text{MS}}}$ by inverting Eq. \[2\] with $g^2(A^2) = 0$. A plateau is then possible for a narrow window only including the highest momenta; as for 5.5 $< p < 6.8$ GeV, where we obtain $\Lambda_{\overline{\text{MS}}} = 0.351(11)$ GeV with χ^2/d.o.f. = 107.2/154. Indeed, these last estimates clearly show a systematic non-flat behaviour that can be pretty well explained as described in the caption.

FIG. 2: $\Lambda_{\overline{\text{MS}}}$ obtained by applying the plateau method to the lattice data labelled in the plot. Red solid/dashed line corresponds to the plateau for $\Lambda_{\overline{\text{MS}}}$ obtained with Eq. \[3\]/\[2\]. The black solid is for Eq. \[2\] with $g^2(A^2) = 0$, while black dashed corresponds to evaluate first Eq. \[3\] with the best-fitted parameters in Tab. \[1\] and take then the resulting α_T to obtain $\Lambda_{\overline{\text{MS}}}$ by inverting Eq. \[2\] with $g^2(A^2) = 0$.

FIG. 3: Eq. \[2\] (red dashed) and Eq. \[3\] (red solid) for the parameters in Tab. \[1\] fitted to the lattice data for α_T defined by \[4\]. The black line is for Eq. \[2\] with $g^2(A^2) = 0$.

TABLE I: The parameters for the best-fit of Eq. \[2\] (see ref. \[2\]) to lattice data (first row) and the same with Eq. \[3\] (second row). The conversion to $\overline{\text{MS}}$ scheme for Λ_{QCD} is done by applying Eq. \[4\]. The renormalization point for the gluon condensate is fixed at $\mu = 10$ GeV. We quote statistical errors obtained by applying the jackknife method.

in $\overline{\text{MS}}$-scheme for $N_f = 4$. Thus, we can apply the two estimates of $\Lambda_{\overline{\text{MS}}}$, that can be found in Tab. \[1\] to run the coupling down to the scale of τ mass, below the bottom quark mass threshold, and compare the result with the estimate from τ decays \[11\]. $\alpha_{\overline{\text{MS}}}(m_{\tau}^2) = 0.334(14)$. This will produce, with the 1-σ error propagation, the two following results at the τ-mass scale: $\alpha_{\overline{\text{MS}}}(m_{\tau}^2) = 0.337(8)$ and $\alpha_{\overline{\text{MS}}}(m_{\tau}^2) = 0.342(10)$. If we combine both estimates and conservatively add the errors in quadrature, we will be left with

\[
\alpha_{\overline{\text{MS}}}(m_{\tau}^2) = 0.339(13) ,
\]

in very good agreement with the one from τ decays. This can be graphically seen in the plot of Fig. \[4\].

The determination of $\alpha_{\overline{\text{MS}}}$ at the Z^0 mass scale implies first to run up to the MS running mass for the bottom quark, m_b, with β-coefficients and $\Lambda_{\overline{\text{MS}}}$ estimated for 4 quark flavours, apply next the matching formula \[1\]:

\[
\alpha_{\overline{\text{MS}}}(m_b^2) = \alpha_{\overline{\text{MS}}}^{N_f=4}(m_b^2) \left(1 + \sum_n c_{n0} \left(\frac{\alpha_{\overline{\text{MS}}}^{N_f=4}(m_b^2)}{\alpha_{\overline{\text{MS}}}^{N_f=4}(m_b^2)} \right)^n \right) ,
\]

where the coefficients c_{n0} can be found in ref. \[22\] and then run from the bottom mass up to the Z^0 mass scale. Thus, from our two estimates of $\Lambda_{\overline{\text{MS}}}$, we obtain: $\alpha_{\overline{\text{MS}}}(m_{\tau}^2) = 0.1198(9)$ and $\alpha_{\overline{\text{MS}}}(m_{\tau}^2) = 0.1203(11)$.
Again, combining these two results and their errors added in quadrature, we will be left with

$$\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1200(14) \ ,$$

lying in the same ballpark of lattice results from the PACS-CS collaboration [24], $\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1205(8)(5)$, estimated with 2+1 Wilson improved fermions but relatively large pion masses (~ 500 MeV); and from HPQCD [5], $\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1183(8)$, with 2+1 staggered fermions. This last is consistently estimated from two different methods and 5 different lattice spacings, and is included in the 2010 world average [4]: $\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1184(7)$ (also in the very preliminary 2011 update [1]: $\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1183(10)$). Our estimate also agrees well with this world average, but still better with $\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1197(12)$, the average obtained without the lattice HPQCD result and without that from DIS non-singlet structure functions [24], $\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1142(23)$, which is more than 2 σ's away from most of the other involved estimates. However, if the HPQCD lattice result, only including $u,d,$ and s quarks is replaced by the present one, also including the c quark, the world average would still be consistent: $\alpha_{\overline{\text{MS}}}(m_Z^2) = 0.1191(8)$.

It should be noted that we applied two different fitting strategies, taking different fitting windows and studying the impact of higher order OPE corrections, and no systematic effect have been observed. Our error analysis is based on the jackknife method when we account for the fitted parameters, while the statistical uncertainties on the lattice sizes are properly propagated into the final estimates. Some other systematic effects (not included in our error budget), as those related to the use of the twisted-mass action for the dynamical quarks or to the lattice size determination at the chiral limit, could also appear but can be only excluded by the comparison with other lattice and experimental estimates.

CONCLUSIONS

We have presented the results for a first computation of the running strong coupling from lattice QCD simulations including u,d,s and c dynamical flavours. We applied the procedure of determining the ghost-gluon coupling renormalized in Taylor scheme over a large momenta window and then compare this with the perturbative running improved via non-perturbative OPE corrections. That procedure has been previously shown to work rather well when analysing lattice simulations with $N_f=0$ and 2 dynamical flavours and so happens here for $N_f=2+1+1$. Our estimate for the running strong coupling at the τ-mass scale nicely agrees with those from τ-decays and, after being properly propagated up to the Z^0-mass scale, is pretty consistent with most of the estimates applied to obtain the current PDG world average, although slightly larger than the $N_f=2+1$ lattice result also used for this average.

Acknowledgements

We thank the support of Spanish MICINN FPA2011-23781 and “Junta de Andalucía” P07FQM02962 research projects, and the IN2P3 (CNRS-Lyon), IDRIS (CNRS-Orsay) and apecNEXT (Rome) computing centers. K. Petrov is part of P2IO "Laboratoire of Excellence".

[1] S. Bethke, A. H. Hoang, S. Kluth, J. Schieck, I. W. Stewart, et al. (2011), 1110.0016.
[2] Y. Aoki, PoS LAT2009, 012 (2009).
[3] B. Blossier, et al. (2011), 1110.5829.
[4] K. Nakamura et al. (PDG), J. Phys. G37, 075021 (2010).
[5] C. Davies, et al. (HPQCD), Phys.Rev. D78, 114507 (2008); Phys.Rev. D82, 034512 (2010).
[6] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz (Alpha), JHEP 08, 058 (2001).
[7] R. Frezzotti and G. C. Rossi, Nucl. Phys. Proc. Suppl. 128, 193 (2004).
[8] R. Baron, et al. (ETMC), JHEP 1006, 111 (2010).
[9] R. Baron, et al. (ETMC), PoS LATTICE2010, 123 (2010).
[10] P. Boucaud, et al. Phys.Rev. D79, 014508 (2009).
[11] B. Blossier et al. (ETM), Phys. Rev. D82, 034510 (2010).
[12] D. Becirevic, et al., Phys. Rev. D60, 094509 (1999).
[13] F. de Soto and C. Roiesnel, JHEP 0709, 007 (2007).
[14] J. A. Gracey, Phys. Lett. B552, 101 (2003).
[15] K. Chetyrkin and A. Maier, JHEP 1001, 092 (2010).
[16] K. Chetyrkin and A. Retey (2000).
[17] P. Boucaud, et al., Phys.Rev. D63, 114003 (2001); Phys.Lett. B493, 315 (2000).
[18] P. Boucaud, et al., JHEP 01, 046 (2002).
[19] P. Boucaud, et al., JHEP 0601, 037 (2006).
[20] F. V. Gubarev and V. I. Zakharov, Phys. Lett. B501, 28 (2001).
[20] D. Dudal, R. Sobreiro, S. Sorella, and H. Verschelde, Phys.Rev. D72, 014016 (2005).
[21] E. Ruiz Arriola, P. O. Bowman, and W. Broniowski, Phys.Rev. D70, 097505 (2004).
[22] K. Chetyrkin, J. H. Kuhn, and C. Sturm, Nucl.Phys. B744, 121 (2006).
[23] J. Blumlein, H. Bottcher, and A. Guffanti, Nucl.Phys. B774, 182 (2007).
[24] S. Aoki et al. (PACS-CS), JHEP 10, 053 (2009).