CONSTRUCTION OF MINIMAL NON-INVERTIBLE
SKEW-PRODUCT MAPS ON 2-MANIFOLDS

JAKUB ŠOTOLA AND SERGEI TROFIMCHUK

(Communicated by Yingfei Yi)

Abstract. Applying the Hric-Jäger blow up technique, we give an affirmative answer to the question about the existence of non-invertible minimal circle-fibered self-maps of the Klein bottle. In addition, we present a simpler construction of a non-invertible minimal self-map of two-dimensional torus.

1. INTRODUCTION

This paper deals with the minimal circle-fibered self-maps of two-dimensional manifolds. We recall that the pair \((X, f)\) consisting of a compact metric space \(X\) and its continuous endomorphism \(f : X \to X\) is called a minimal dynamical system if \(X\) does not have any non-empty compact subset \(X' \neq X\) satisfying \(f(X') \subseteq X'\). The understanding of the structure of minimal systems has a clear importance for discrete dynamics. During the last decades, much progress has been made in studying minimal subsystems of \((M, f)\) in the case when \(M\) is a low-dimensional compact connected manifold; e.g. see [1]–[14].

In particular, Auslander and Katznelson have proved [1] that the minimality of \((M, f)\) together with \(\dim M = 1\) implies that \(M = T^1\) and that \(f\) is conjugate to an irrational rotation (hence, \(f\) is a homeomorphism). If \(\dim M = 2\) then, due to the Blokh-Oversteegen-Tymchatyn Theorem [3][11], the minimal connected manifold \(M\) must be either the 2-torus \(T^2\) or the Klein bottle \(K^2\). It was also shown in [10] that, in contrast with the minimal system \((T^1, f)\), there exist minimal fiber-preserving systems \((T^2, f)\) which are not invertible. The key dynamical and topological components of the proof in [10] are, respectively, the Rees example [14] of a non-distal but point-distal torus homeomorphism and the Roberts-Steenrod characterization [15] of the monotone transformations of 2-dimensional manifolds.

Since the available constructions [5][13] of the minimal homeomorphisms of the Klein bottle are technically quite involved, the similar question about the existence of minimal non-invertible self-maps of \(K^2\) has been left open in [3][10][11]. In fact, more complicated topology of the Klein bottle (a non-trivial fiber bundle with base space \(T^1\) and fiber \(T^1\)) in comparison to the torus \(T^2 = T^1 \times T^1\) (a direct product of two circles) could potentially be an obstacle for the existence of minimal non-invertible self-maps of \(K^2\); cf. [12] Theorem C-11 and Corollary 1] and [4][6]. Nevertheless, the main result of this paper shows that

Theorem 1.1. There exists a fiber-preserving transformation \(\overline{S}\) of the Klein bottle, which is minimal and non-invertible.
Theorem 1.1 is proved in the next section of our work. The proof uses the Hric-Jäger blow-up technique proposed recently in [7]. In the cited work, the authors also sketched a new construction of a non-distal but point-distal torus homeomorphism. We develop further their construction and adopt it to a more complicated topological situation. As a by-product, even without the use of the Roberts-Steenrod theory of monotone transformations of 2-dimensional manifolds, we are able to present a relatively short and explicit construction of a fiber-preserving minimal non-invertible self-map of the 2-torus; cf. [10].

2. Proof of the main theorem

Set $\mathbb{T}^1 := \mathbb{R}/\mathbb{Z}$, then $\mathbb{T}^2 = \mathbb{T}^1 \times \mathbb{T}^1$. We will fix the positive orientation of \mathbb{T}^1 induced by the usual order on $[0, 1)$. Each ordered pair (x, y) of points in \mathbb{T}^1 defines two closed sub arcs of \mathbb{T}^1 whose endpoints are x and y. The arc obtained by moving a point from x to y in the positive direction will be denoted by $[x, y] \subset \mathbb{T}^1$. Hence, $[x, y] \cup [y, x] = \mathbb{T}^1$ so that $0.5 \in [0.25, 0.75]$ and $0 \in [0.75, 0.25]$. By slightly abusing the notation, we will also write $[0, 1] = \mathbb{T}^1$, $[0, 0.5] = [1, 0.5]$, and $[0, 0] = \{0\}$. Next, consider the homeomorphism $P : \mathbb{T}^2 \to \mathbb{T}^2$ defined by $P(x, y) = (x + 1/2, 1 - y)$. Let \sim be an equivalence relation on \mathbb{T}^2 in which each point (x, y) is identified with all its images: $P^0(x, y) = (x, y)$ and $P(x, y)$. Let $\pi : \mathbb{T}^2 \to \mathbb{K}^2$ denote the corresponding quotient map. The quotient space \mathbb{K}^2 is one of standard models of the Klein bottle. Notice that a transformation Q of the torus induces a transformation of the Klein bottle by the quotient map π if and only if Q commutes with P.

The desired minimal map $\tilde{S} : \mathbb{K}^2 \to \mathbb{K}^2$ will be constructed as a factor of a minimal and non-invertible transformation \hat{S} of the torus. On the other hand, the map \tilde{S} will be constructed as a topological extension of the Parry minimal homeomorphism $S : \mathbb{T}^2 \to \mathbb{T}^2$ of the form $S(x, y) = (R(x), \sigma_x(y)) := (x + \alpha, y + r(x))$. Here $R(x)$ is a rotation by an irrational angle α and continuous function $r : \mathbb{T}^1 \to \mathbb{R}$ is such that $r(x) = -r(x + 1/2)$ (i.e. S commutes with P). Moreover, the Fourier coefficients of $r(x)$ must satisfy several assumptions listed in [13]; in addition, we can choose them in such a way that $r(0) = r(1/2) = 0$, and $r(x) \in (0, 1/4)$ for all $x \in (0, 1/2)$. In the sequel, we will use the notation σ^n_x for the composition $\sigma_{R^{n+1}}^{−1}(x) \circ \sigma_{R^n}^{-2}(x) \circ \cdots \circ \sigma_{R}(x) \circ \sigma_x$.

Take now some point $x_1^* \in (0.1, 0.2) \cap \mathbb{Q}$, set $x_2^* = x_1^* + 1/2$, and then choose the points $z_1^* = (x_1^*, y_1^*)$ and $z_2^* = Pz_2^* = (x_2^*, y_2^*)$ in such a way that $y_2^* \neq \sigma_{R^m}^{-m}(x_1^*)$ for each $m \in \mathbb{Z}$, $j = 1, 2$. Then the S-orbits of z_1^*, z_2^* do not intersect curves $\mathbb{T}^1 \times \{0\}$ and $\{(x, -r(x)) | x \in \mathbb{T}^1\}$.

Let continuous $\psi, \phi : \mathbb{T}^1 \to \mathbb{T}^1$ have their graphs P-invariant and intersecting transversally at the points z_1^* and z_2^*; see Figure 1. We will choose ϕ, ψ in such a way that they take zero values (recall that 1 is identified with 0) in all points except for some small open ρ-neighborhoods U_j of x_j^*, $j = 1, 2$.

We define a fiber measure μ_x^0 on the σ-algebra B of Borelian subsets of \mathbb{T}^1 as

$$\mu_x^0 := \begin{cases} \delta_{y_j^*}, & \text{if } x = x_j^*, \quad j = 1, 2, \\ \frac{\lambda_{\phi(x)}(x)}{\psi(x)} \lambda_{\phi(x)}(x) \cdot \phi(x), & \text{if } \phi(x) > \psi(x), \\ \frac{\lambda_{\phi(x)}(x)}{\psi(x)} \lambda_{\phi(x)}(x) \cdot \phi(x), & \text{if } \psi(x) > \phi(x), \end{cases}$$

where δ_y denotes a probabilistic Dirac measure concentrated at y (i.e. $\delta_y(y) = 1$) and $\lambda_{[a, b]}(A)$ denotes the Lebesgue measure of intersection of a measured set A.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and the arc \([a, b]\). Consider also the measures \(\mu^n_x\), \(n \in \mathbb{Z}\), and \(\mu_x\) on \(\mathcal{B}\) defined by

\[
\mu^n_x := \mu^0_{R^n(x)} \circ \sigma^n_x, \quad \mu_x := (\lambda + \sum_{n=0}^{\infty} 2^{-n-1} \mu^n_x)/2.
\]

It is clear that \(\mu_x(\mathbb{T}^1) = 1, x \in \mathbb{T}^1\). In addition, \(\mu\) inherits the symmetry properties of \(r, \phi, \psi\):

Lemma 2.1. For all \(x \in \mathbb{T}^1\) and \(y \in [0, 1]\), we have

\[
(2.1) \quad \mu_x[0, y] = 1 - \mu_{x+\frac{1}{2}}[0, 1 - y].
\]

Proof. First we prove that, for all \(x, y \in \mathbb{T}^1\), it holds that

\[
(2.2) \quad \mu^0_x[0, y] = 1 - \mu^0_{x+\frac{1}{2}}[0, 1 - y].
\]

For \(x \notin E := [U_1 \cup U_2] \setminus \{x_1^*, x_2^*\}\) (i.e. for the fibers with the usual Lebesgue or Dirac measures), this relation is immediate. Now, let \(x \in E\) be such that \(\phi(x) < \psi(x)\) and hence \(\psi(x + 1/2) = 1 - \psi(x) < \phi(x + 1/2) = 1 - \phi(x)\). Then

\[
\mu^0_{x+\frac{1}{2}}[0, 1 - y] = \begin{cases}
0, & \text{if } 1 - y < \psi \left(x + \frac{1}{2} \right), \\
\frac{1 - y - \psi \left(x + \frac{1}{2} \right)}{\phi(x + \frac{1}{2}) - \psi \left(x + \frac{1}{2} \right)}, & \text{if } \psi \left(x + \frac{1}{2} \right) \leq 1 - y < \phi \left(x + \frac{1}{2} \right), \\
1, & \text{if } 1 - y > \phi \left(x + \frac{1}{2} \right); \\
\frac{\psi(x) - y}{\phi(x) - \psi(x)}, & \text{if } y > \psi(x), \\
1, & \text{if } \phi(x) \leq y \leq \psi(x), \\
0, & \text{if } y < \phi(x);
\end{cases}
\]

\[
= \begin{cases}
0, & \text{if } \phi(x) \leq y \leq \psi(x), \\
1 - \mu^0_x[0, y]. & \text{if } y < \phi(x);
\end{cases}
\]

Similarly, \((2.2)\) holds when \(\phi(x) > \psi(x)\). Next, we claim that

\[
(2.3) \quad \mu^0_x[a, b] = 1 - \mu^0_{x+\frac{1}{2}}[1 - a, 1 - b], \text{ for } a, b \in [0, 1], \ a < b, \ [a, b] \in \mathbb{T}^1.
\]
This is trivial for the fibers over \(x_1^*\) and \(x_2^*\). For the rest of the fibers, (2.23) follows from (2.22) in view of

\[
\mu_x^0[a, b] = \begin{cases}
\mu_x^0[0, b] - \mu_x^0[0, a], & \text{if } 0 \leq a \leq b \leq 1; \\
1 - \mu_x^0[0, a] + \mu_x^0[0, b], & \text{if } 0 \leq b < a \leq 1.
\end{cases}
\]

Finally, we will show that the superscript 0 in (2.2) can be omitted. Indeed, set \(\varrho_n(x) := r(x) + r(x + \alpha) + r(x + 2\alpha) + \ldots + r(x + (n - 1)\alpha)\). Then

\[
\mu_{x + \frac{1}{2}}[0, 1 - y] = \sum_{n \geq 0} 2^{-n-2} \mu_{\sigma_{x + \frac{1}{2}}^n}[0, 1 - y] + (1 - y)/2
\]

\[
= \sum_{n \geq 0} 2^{-n-2} \mu_{x + n\alpha + \frac{1}{2}}[0, 1 - y] + (1 - y)/2
\]

\[
= \sum_{n \geq 0} 2^{-n-2}(1 - \mu_{x + n\alpha}[0, 1 - y]) + 1/2 - y/2
\]

\[
= \sum_{n \geq 0} 2^{-n-2}1/2 - (\sum_{n \geq 0} 2^{-n-2} \mu_{\sigma_x^n}[0, 1 - y] + y/2) = 1 - \mu_x[0, y].
\]

The next two results show that \(\mu_x^0[0, y]\) and \(\mu_x[0, y]\) have discontinuities only at the points from backward orbits of \((x_1^*, y_1^*)\) and \((x_2^*, y_2^*)\).

Lemma 2.2. Let \(\{x_j\}, \{y_j\}, \{w_j\}\) be sequences in \(T^1\) which converge to \(x_0\) and \(y_0, w_0\), respectively. Then

\[
\limsup_{j \to \infty} \mu_{x_j}^0[y_j, w_j] \leq \mu_{x_0}^0[y_0, w_0].
\]

Moreover, if \((x_0, y_0) \neq (x_k^*, y_k^*), k = 1, 2\), then

\[
\liminf_{j \to \infty} \mu_{x_j}^0[y_j, w_j] \geq \mu_{x_0}^0[y_0, w_0].
\]

Proof. Since the functions \(\phi, \psi\) are continuous, this result is a straightforward consequence of the definition of \(\mu_x\). In fact, for each \(x_0 \neq x_k^*\), we have that \(\mu_{x_j}^0[y_j, w_j] \to \mu_{x_0}^0[y_0, w_0]\) as \(j \to +\infty\). \(\square\)

Corollary 2.3. Let \(\{x_j\}\) and \(\{y_j\}\) converge to \(x_0\) and \(y_0\), respectively. Then

\[
\mu_{x_0}^n[0, y_0] \leq \liminf_{j \to \infty} \mu_{x_j}^n[0, y_j] \leq \limsup_{j \to \infty} \mu_{x_j}^n[0, y_j] \leq \mu_{x_0}^n[0, y_0], \quad n \in \mathbb{N}.
\]

Furthermore,

\[
\mu_{x_0}[0, y_0] \leq \liminf_{j \to \infty} \mu_{x_j}[0, y_j] \leq \limsup_{j \to \infty} \mu_{x_j}[0, y_j] \leq \mu_{x_0}[0, y_0].
\]

Proof. Since \(\sigma, \ R\) are continuous functions and, by our assumption, \((R^n(x), \sigma_x^n(0)) \neq (x_k^*, y_k^*), k = 1, 2\), for each \(x \in T^1\), \(n \in \mathbb{N}\), we have that

\[
\mu_{x_0}^n[0, y_0] = \mu_{R^n(x_0)}^n[\sigma_{x_0}^n(0), \sigma_{x_0}^n(y_0)]
\]

\[
\leq \liminf_{j \to \infty} \mu_{R^n(x_j)}^n[\sigma_{x_j}^n(0), \sigma_{x_j}^n(y_j)] \leq \liminf_{j \to \infty} \mu_{x_j}^n[0, y_j].
\]
The proof of the second inequality in (2.4) is similar. Finally, by a direct calculation we get the following:

\[
\lim_{j \to \infty} \sup_{n \geq 0} \left(\sum_{n \geq 0} 2^{-n-2} \mu^n_{x_j} [0, y_j] + y_j/2 \right) \leq \sum_{n \geq 0} 2^{-n-2} \mu^n_{x_0} [0, y_0] + y_0/2 = \mu_{x_0} [0, y_0],
\]

\[
\lim_{j \to \infty} \inf_{n \geq 0} \left(\sum_{n \geq 0} 2^{-n-2} \mu^n_{x_j} [0, y_j] + y_j/2 \right) \geq \sum_{n \geq 0} 2^{-n-2} \mu^n_{x_0} [0, y_0] + y_0/2 = \mu_{x_0} [0, y_0].
\]

Hence, if \(\mu_{x_0} [0, y_0] \) is discontinuous at some point \((x_0, y_0)\), then \(\mu_{x_0} \{ y_0 \} > 0 \). \(\square \)

Following [7], we consider continuous fiber-preserving self-map \(T : T^2 \to T^2 \) defined by \(T(x, y) := (x, \tau_x(y)) \), where

\[
\tau_x(y) := \min \{ y' \in [0, 1] | \mu_x [0, y'] \geq y \}.
\]

The existence of this minimum can be deduced, for example, from Corollary 2.3. It is clear that \(\tau_x(0) = 0 \) and \(\tau_x(1) = 1 \) because, for all small \(\epsilon > 0 \),

\[
\mu_x [0, 1 - \epsilon] = 1 - \mu_x + \frac{1}{2} [0, \epsilon] = 1 - \sum_{n \geq 0} 2^{-n-2} \mu^n_{x+\frac{1}{2}} [0, \epsilon] - \epsilon/2 < 1.
\]

Obviously, \(\tau_x(y) \) is an increasing function of \(y \in (0, 1) \). Now, let \(\text{Orb}_R(x) = \{ R^j(x), j \in \mathbb{Z} \} \) and \(\text{Orb}^-_R(x) = \{ R^j(x), j \leq 0 \} \) denote the full and backward orbits of a point \(x \in T^1 \), respectively. As we have proved, \(\mu_x [0, y] \) is continuous at each point \((x, y)\) where \(x \not\in \mathcal{D}^- := \text{Orb}^-_R(x_1^2) \cup \text{Orb}^-_R(x_2^2) \). Therefore

\[
(2.5) \quad \mu_x [0, \tau_x(y)] = y \text{ if } x \not\in \mathcal{D}^-,
\]

which implies \(\tau_x(y_1) < \tau_x(y_2) \) for all \(0 < y_1 < y_2 \leq 1 \) and \(x \in T^1 \setminus \mathcal{D}^- \).

Lemma 2.4. The map \(T : T^2 \to T^2 \) is continuous and surjective. Moreover, \(T \) commutes with \(P \) and is invertible on the set \(T^2 \setminus (\mathcal{D}^- \times T^1) \).

Proof. It is clear that \(T \) is continuous if and only if \(\tau_x(y) \) is a continuous function of \(x, y \). So, take some \((x_0, y_0)\) and consider sequences \(x_j \to x_0 \) and \(y_j \to y_0 \). From the definition of \(\tau \) it holds that \(\mu_x [0, \tau_x(y_j)] \geq y_j \). Suppose that \(\tau_{x_j}(y_j) \) converges to some limit point \(z \). Then Corollary 2.3 yields \(\tau_{x_0}(y_0) \leq z = \lim_{j \to \infty} \tau_{x_j}(y_j) \). Suppose for a moment that \(\tau_{x_0}(y_0) < z \) and take \(\delta > 0 \) such that \(\tau_{x_0}(y_0) + \delta < \tau_{x_j}(y_j) \) for all large \(j \). Then

\[
\mu_{x_0} [0, \tau_{x_0}(y_0) + \delta] = \sum_{n \geq 0} 2^{-n-2} \mu^n_{x_0} [0, \tau_{x_0}(y_0) + \delta] + (\tau_{x_0}(y_0) + \delta)/2 \geq y_0 + \delta/2,
\]

and therefore, due to Corollary 2.3, we have for all large \(j \) that

\[
y_j < y_0 + 0.25 \delta < \mu_{x_0} [0, \tau_{x_0}(y_0) + \delta] \leq \lim_{j \to \infty} \mu_{x_0} [0, \tau_{x_0}(y_0) + \delta].
\]

As a consequence, \(\tau_{x_j}(y_j) \leq \tau_{x_0}(y_0) + \delta \) for all large \(j \), a contradiction. Hence, \(\tau_{x_0}(y_0) = \lim_{j \to \infty} \tau_{x_j}(y_j) \) and \(\tau_x(y) \) is continuous.

Now, since \(\tau_x(y) \) depends continuously on \(x, y \) and \(\tau_x(0) = 0 \) and \(\tau_x(1) = 1 \), we obtain that \(\tau_x(T^1) = T^1 \). In addition, if \(x \not\in \mathcal{D}^- \) then \(\tau_x(y) \) is a strictly increasing function of \(y \) and therefore \(T \) is invertible on \(T^2 \setminus (\mathcal{D}^- \times T^1) \).
Next, since
\[(T \circ P)(x, y) = \left(x + \frac{1}{2}, \tau_x + \frac{1}{2}(1 - y)\right), \quad (P \circ T)(x, y) = \left(x + \frac{1}{2}, 1 - \tau_x(y)\right),\]
we find that \(T\) commutes with \(P\) if and only if
\[\tau_x + \frac{1}{2}(1 - y) = 1 - \tau_x(y)\]
for all \(x, y\).

Now, for \(x \in \mathbb{T}^1 \setminus \mathcal{D}^-\) it holds that
\[1 = \mu_x[0, \tau_x(y)] + \mu_x + \frac{1}{2}[0, 1 - \tau_x(y)] = y + \mu_x + \frac{1}{2}[0, 1 - \tau_x(y)],\]
so that
\[\mu_x + \frac{1}{2}[0, 1 - \tau_x(y)] = 1 - y = \mu_x + \frac{1}{2}[0, \tau_x + \frac{1}{2}(1 - y)].\]

Thus \(T\) commutes with \(P\) on \(\mathbb{T}^2 \setminus (\mathcal{D}^- \times \mathbb{T}^1)\). Finally, if \((\hat{x}, \hat{y}) \notin \mathbb{T}^2 \setminus (\mathcal{D}^- \times \mathbb{T}^1)\) we can find a sequence of points \((x_j, y_j) \in \mathbb{T}^2 \setminus (\mathcal{D}^- \times \mathbb{T}^1)\) such that \((x_j, y_j) \to (\hat{x}, \hat{y})\) as \(j \to +\infty\). But then
\[T \circ P(\hat{x}, \hat{y}) = \lim_{j \to +\infty} T \circ P(x_j, y_j) = \lim_{j \to +\infty} P \circ T(x_j, y_j) = P \circ T(\hat{x}, \hat{y}).\]

This completes the proof. \(\square\)

We are ready to construct the non-invertible minimal map \(\hat{S} : \mathbb{T}^2 \to \mathbb{T}^2\). Defining \(\hat{S}\) on the set \(\Lambda := \mathbb{T}^2 \setminus (\mathcal{D} \times \mathbb{T}^1)\), where \(\mathcal{D} := \text{Orb}_R(x_1^*) \cup \text{Orb}_R(x_2^*)\), by
\[
\hat{S}|_{\Lambda} := T^{-1}\Lambda \circ S|_{\Lambda} \circ T|_{\Lambda},
\]
we will extend it continuously on the whole torus.

Lemma 2.5. For each \(n \in \mathbb{Z}\), the map \(\theta_n(x) := \mu^r_x[-r(x), 0]\) is continuous on \(\mathbb{T}^1\).

Proof. We observe that \(\theta_n(0) = \theta_n(1/2) = \theta_n(1) = 0\) and thus it suffices to establish the continuity of \(\theta_n\) on the arcs \([0, 1/2]\) and \([1/2, 1]\) of \(\mathbb{T}^1\) separately. For instance, consider the arc \([0, 1/2]\) where \(-r(x) \leq 0\) so that \(\theta_n(x) = 1 - \mu^r_x[0, 1 - r(x)]\).

We recall that, by our assumptions, none of the points \((R^n(x), \sigma^2_x(1 - r(x))) = (R^n(x), \sigma^2_x(-r(x))), n \in \mathbb{Z},\) coincided with \((x_1^*, y_1^*)\) and \((x_2^*, y_2^*)\) and therefore the function \(\mu^r_x[0, y]\) is continuous at each point of the form \((x, y) = (x, 1 - r(x))\). In consequence, the map \(x \to \theta_n(x), x \in [0, 1/2]\) is continuous as a composition of two continuous applications: \(x \to (x, 1 - r(x)), x \in [0, 1/2]\), and \((x, y) \to 1 - \mu^r_x[0, y]\), \((x, y) \in \{(x, 1 - r(x)) : x \in [0, 1/2]\}\).

Next, set \(\Lambda_- := \Lambda \cap ([0, 1/2] \times \mathbb{T}^1)\) and \(\Lambda_+ := \Lambda \cap ([1/2, 1] \times \mathbb{T}^1)\).

Lemma 2.6. The map \(\hat{S}\) is uniformly continuous on \(\Lambda_-\).

Proof. It follows from (2.6) that \(\tau_x^{-1}(y) = \mu_x[0, y]\) for each pair \((x, y) \in \Lambda\). Hence,
\[
\hat{S}(x, y) = (T^{-1} \circ S \circ T)(x, y) = (R(x), \mu_{R(x)}[0, \sigma_x(\tau_x(y))]), (x, y) \in \Lambda.
\]

Since \(R : \mathbb{T}^1 \to \mathbb{T}^1\) is continuous, we need only to prove the uniform continuity of \(M(x, y) := \mu_{R(x)}[0, \sigma_x(\tau_x(y))]\) on \(\Lambda_-\). This task can be simplified if we observe that, due to the Weierstrass M-test and Lemmas 2.4 and 2.6, the function \(W(x, y) := \sum_{n \geq 0} 2^{-n - 2}\mu_x^{n+1}[-r(x), 0] + \sigma_x(\tau_x(y))/2\) is continuous on \(\mathbb{T}^2\) while
\[
M(x, y) = \sum_{n \geq 0} \frac{\mu_{R(x)}[0, \sigma_x(\tau_x(y))]}{2^{n+2}} + \sigma_x(\tau_x(y))/2 = \sum_{n \geq 0} \frac{\mu_x^{n+1}[0, \tau_x(y)]}{2^{n+2}} + W(x, y).
\]
Here we are using the relation
\[
\mu^n_{R(x)}[0, \sigma_x(\tau_x(y))] = \mu^n_{R^n(R(x))} \circ \sigma^{R^n-1}(R(x)) \circ \ldots \circ \sigma R(x) \circ \sigma x(\tau_x(y)) \\
= k^n_{R^{n+1}(x)} \circ \sigma^{R^n(x)} \circ \ldots \circ \sigma R(x) \circ \sigma x(\sigma^{-1}(0), \tau_x(y)) \\
= \mu^{n+1}_x[-r(x), 0] + \mu^{n+1}_x[0, r(x)].
\]
Recall also that \(\sigma_x(y) = y + r(x), \mu^n_{x}(0) = 0, n \in \mathbb{N}, \) and that \(0 \in [-r(x), \tau_x(y)] \) because of non-negativity of \(r(x) \) for \(x \in [0, 1/2]. \)

In consequence, it suffices to establish the uniform continuity of the function \(A(x, y) := \sum_{n \geq 0} 2^{-n-2} \mu^{n+1}_x[0, \tau_x(y)] \) on \(\Lambda_\ast. \) In other words, we have to prove that for each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for any \(x_1, x_2 \in [0, 1/2] \setminus S \) and \(y_1, y_2 \in \mathbb{T}^1 \) satisfying \(d(x_1, x_2) < \delta \) and \(d(y_1, y_2) < \delta, \) it holds that \(a := d(A(x_1, y_1), A(x_2, y_2)) < \epsilon. \) Here \(d \) denotes the metric on \(\mathbb{T}^1 \) naturally inherited from \(\mathbb{R}. \) In particular, \(d \) is shift-invariant. Observe also that we interpret \(A(x, y) \) as a point on \(\mathbb{T}^1. \) Set \(s_n := \mu^n_{x_1}[0, \tau_x(1)] - \mu^n_{x_2}[0, \tau_x(1)]. \) Since \(y_k = \mu_{x_k}[0, \tau_x(k)] \), we find that
\[
b := d(y_1, y_2) = d\left(\sum_{n \geq 0} \frac{s_n}{2^{n+2}} + (\tau_{x_1}(y_1) - \tau_{x_2}(y_2))/2, 0 \right), \quad a = d\left(\sum_{n \geq 0} \frac{s_{n+1}}{2^{n+2}}, 0 \right).
\]
So let us take arbitrary \(\epsilon > 0; \) then there exists \(N_1 \) for which
\[
\sum_{n \geq N_1} 2^{-n-2} < \frac{\epsilon}{16}, \quad \text{so that} \quad \sum_{n \geq N_1} d(2^{-n-2}s_{n+1}, 0) < \frac{\epsilon}{16}.
\]
Let \(U^n_\kappa \) denote open \(\kappa- \) neighborhood of the set \(\{ R^n(x^1), R^n(x^2) \}. \) Due to Corollary \(2.3 \) and Lemma \(2.4, \) the function \(\mu^n_x[0, \tau_x(y)] : (\mathbb{T}^1 \setminus \{ U^n_\kappa \}) \times \mathbb{T}^1 \rightarrow \mathbb{T}^1 \) is uniformly continuous for each \(n. \) We can choose \(\kappa \) to be small enough in order to have the closures of \(N_1 \) sets \(U^n_{2\kappa}, \) \(n = 0, 1, \ldots, N_1, \) mutually disjoint. Obviously, each function from the finite set \(\{ \tau_x(y), \mu^n_x[0, \tau_x(y)], n = 0, 1, \ldots, N_1, \} \) is uniformly continuous on \((\mathbb{T}^1 \setminus \{ \bigcup_{n=0}^{N_1} U^n_\kappa \}) \times \mathbb{T}^1. \)

Take now \(\delta \in (0, \min\{\epsilon, 16, \kappa\}) \) small enough to assure that \(d(x_1, x_2) < \delta, \) \(d(y_1, y_2) < \delta \) imply the inequality
\[
d(\tau_{x_2}(y_2), \tau_{x_1}(y_1)) < \epsilon/8,
\]
as well as
(i) the existence of at most one integer \(n_0 \in [0, N_1] \) such that \(\{ x_1, x_2 \} \cap U^{n_0}_{2\kappa} \neq \emptyset; \)
(ii) \(d(2^{-n_0-2}s_{n_0}, 0) < \epsilon/(16(N_1 + 1)) \) once \(\{ x_1, x_2 \} \cap \bigcup_{n=0}^{N_1} U^n_\kappa = \emptyset, \) \(n = 0, 1, \ldots, N_1. \)

A key observation is that in the case (i) the distance \(d(2^{-n_0-2}s_{n_0}, 0) \) cannot be large even when \(\{ x_1, x_2 \} \cap \bigcup_{n=0}^{N_1} U^n_\kappa \neq \emptyset:
\[
d(2^{-n_0-2}s_{n_0}, 0) \leq b + d\left(\sum_{n=0, n \neq n_0}^{N_1} 2^{-n-2}s_n, 0 \right) + d\left(\sum_{n > N_1} 2^{-n-2}s_n, 0 \right) \leq \frac{\epsilon}{16} + (N_1 + 1) \frac{\epsilon}{16(N_1 + 1)} + \frac{\epsilon}{16} + \frac{\epsilon}{16} = \frac{\epsilon}{4}.
\]
Thus, estimating separately the term \(d(2^{-n_0-1}v, 0)\) (whenever \(n_0\) with properties described in (i) appears) as \(d(2^{-n_0-1}v, 0) < \epsilon/2\), we obtain

\[
a = d \left(\sum_{n=0}^{\infty} \frac{s_{n+1}}{2^{n+2}}, 0 \right) \leq \frac{\epsilon}{2} + d \left(\sum_{n<N_1, n \neq n_0} \frac{s_{n+1}}{2^{n+2}}, 0 \right) + d \left(\sum_{n \geq N_1} \frac{s_{n+1}}{2^{n+2}}, 0 \right) < \frac{\epsilon}{2} + 2N_1 \epsilon/(16(N_1 + 1)) + \epsilon/16 < \epsilon,
\]

which completes the proof. □

Corollary 2.7. The map \(\hat{S} \mid \Lambda\) commutes with \(P\), is uniformly continuous on \(\Lambda\), and it admits a unique continuous extension \(\hat{S}\) on \(\mathbb{T}^2\) which also commutes with \(P\).

Proof. Observe that all maps \(T, P, S, \hat{S} : \Lambda \to \Lambda\) are bijective and \(P(\Lambda_+) = (\Lambda_-)\). First, we will prove that \(\hat{S} | \Lambda\) commutes with \(P\). Clearly,

\[
(S \circ T \circ P)(z) = (S \circ P \circ T)(z) = (P \circ S \circ T)(z) = (P \circ T \circ \hat{S})(z) = (T \circ P \circ \hat{S})(z).
\]

But \(T\) is injective on \(\Lambda\) and therefore \((P \circ \hat{S})(z) = (\hat{S} \circ P)(z)\) for each \(z \in \Lambda\). Hence, since \(P, P^{-1}\) are linear maps, \(\hat{S} | \Lambda_+ = P^{-1} \circ \hat{S} | \Lambda_- \circ P | \Lambda_+\) is also uniformly continuous. As the maps \(\hat{S} | \Lambda_-\) and \(\hat{S} | \Lambda_+\) are uniformly continuous and \(\Lambda^-\) is dense in \([0, 1/2] \times \mathbb{T}^1\) and \(\Lambda^+\) is dense in \([1/2, 0] \times \mathbb{T}^1\), they can be uniquely continuously extended to the sets \([0, 1/2] \times \mathbb{T}^1\) or \([1/2, 0] \times \mathbb{T}^1\), respectively. Since these maps coincide on the intersection \([0, 1/2] \times \mathbb{T}^1 = ([0, 1/2] \times \mathbb{T}^1) \cap ([1/2, 0] \times \mathbb{T}^1)\), they define a continuous self-map \(\hat{S} : \mathbb{T}^2 \to \mathbb{T}^2\). Clearly, since \(\hat{S} | \Lambda\) commutes with \(P\), the set \(\Lambda\) is dense in \(\mathbb{T}^2\) and the functions \(\hat{S}, P\) are continuous on \(\mathbb{T}^2\), we obtain that \((P \circ \hat{S})(z) = (\hat{S} \circ P)(z)\) for all \(z \in \mathbb{T}^2\). Similarly, \(T \circ \hat{S} = S \circ T\) on \(\mathbb{T}^2\). □

Lemma 2.8. The map \(\hat{S} : \mathbb{T}^2 \to \mathbb{T}^2\) is minimal and non-invertible.

Proof. Let \(F \subset \mathbb{T}^2\) be a non-empty compact and \(\hat{S}\)-invariant set. But then

\[
S \circ T(F) = T \circ \hat{S}(F) \subseteq T(F).
\]

So, \(T(F)\) is also a compact \(\hat{S}\)-invariant set, which means \(T(F) = \mathbb{T}^2\) because \(S\) is minimal. But since fibers are mapped to fibers and \(T\) is bijective on \(\Lambda\), the set \(F\) must contain whole \(\Lambda\). But then \(F \supseteq \Lambda = \mathbb{T}^2\) and therefore \(\hat{S}\) is a minimal map.

Finally, we prove that \(\hat{S}\) is non-invertible. For \(\delta \in (0, 0.25)\), consider the points \(y_1 = \mu_{x_1}[0, y_1^*] > y_2 = \mu_{x_1}[0, y_1^*] - \delta\) on the circle \(\mathbb{T}^1\). For every \(y' < y_1^*\), we have that

\[
\mu_{x_1}[0, y'] = \sum_{n=0}^{\infty} \frac{\mu^0_R(x_1^n) \sigma^n_{x_1}[0, y']}{2^{n+2}} + y'/2 = \sum_{n=1}^{\infty} \frac{\mu^0_R(x_1^n) \sigma^n_{x_1}[0, y']}{2^{n+2}} + y'/2 \leq \sum_{n=1}^{\infty} \frac{\mu^0_R(x_1^n) \sigma^n_{x_1}[0, y_1^*]}{2^{n+2}} + y_1^*/2 + 0.25 - \delta = y_1^* - \delta = y_2^*.
\]

This yields immediately that \(\tau_{x_1}(y_1) = y_1^* = \tau_{x_1}(y_2)\) and therefore

\[
T \circ \hat{S}(x_1, y_1) = S(x_1^*, y_1^*) = (R(x_1^*), \sigma_{x_1}(y_1^*)) = T \circ \hat{S}(x_1^*, y_2).
\]
Since T is invertible on the fiber over $\{R(x^*_1)\}$, we find that $\hat{S}(x^*_1, y_1) = \hat{S}(x^*_1, y_2)$ and therefore the non-degenerated interval $\{x^*_1\} \times [y_1 - 0.25, y_1]$ is transformed by \hat{S} into a point. □

Proof of Theorem 1.1. So far we have obtained a non-invertible minimal self-map \hat{S} of the torus. Since \hat{S} commutes with P, it induces a transformation \tilde{S} of the Klein bottle. \tilde{S} is a factor of \hat{S} by the fiber-preserving quotient map π, so \tilde{S} is a non-invertible minimal fiber-preserving transformation \hat{S} of the Klein bottle. The construction is completed. □

Remark 2.9. After changing the definition of μ_x (where an appropriate weighted sum of all measures μ^n_x, $n \in \mathbb{Z}$, should be considered), we can similarly construct a minimal circle-fibered homeomorphism of the Klein bottle having an asymptotic pair of points. Then the Roberts-Steenrod theory [15] of monotone transformations of 2-dimensional manifolds can be applied in order to obtain a different proof of Theorem 1.1; see [10] for more detail.

ACKNOWLEDGMENTS

The authors express their gratitude to the anonymous referee for valuable comments and suggestions which helped to improve the final version of this paper. The authors also thank Lubomír Snoha and Roman Hric for valuable conversations. The first author was supported by Project SGS 2/2013 from the Silesian University in Opava. Support of this institution is gratefully acknowledged. The second author was partially supported by FONDECYT (Chile), project 1110309. This work was done during the second author’s sabbatical leave from the University of Talca and his research stay at the Mathematical Institute of the Silesian University in Opava. The second author acknowledges the hospitality of this Mathematical Institute.

REFERENCES

[1] J. Auslander and Y. Katznelson, *Continuous maps of the circle without periodic points*, Israel J. Math. 32 (1979), no. 4, 375–381, DOI 10.1007/BF02760466. MR571091 (81e:58048)

[2] F. Béguin, S. Crovisier, Tobias Jäger, and F. Le Roux, *Denjoy constructions for fibered homeomorphisms of the torus*, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5851–5883, DOI 10.1090/S0002-9947-09-04914-9. MR2529917 (2010k:37074)

[3] Alexander Blokh, Lex Oversteegen, and E. D. Tymchatyn, *On minimal maps of 2-manifolds*, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 41–57, DOI 10.1017/S0143385704000331. MR2122911 (2006f:37015)

[4] Matúš Dirbák and Peter Maličký, *On the construction of non-invertible minimal skew products*, J. Math. Anal. Appl. 375 (2011), no. 2, 436–442, DOI 10.1016/j.jmaa.2010.09.042. MR2735534 (2012a:37015)

[5] Robert Ellis, *The construction of minimal discrete flows*, Amer. J. Math. 87 (1965), 564–574. MR0185589 (32 #3059)

[6] S. Glasner and B. Weiss, *On the construction of minimal skew products*, Israel J. Math. 34 (1979), no. 4, 321–336 (1980). DOI 10.1007/BF02760611. MR570889 (82f:54068)

[7] Roman Hric and Tobias Jäger, *A construction of almost automorphic minimal sets*, Israel J. Math. 204 (2014), no. 1, 373–395, DOI 10.1007/s11856-014-1102-3. MR3273462

[8] Wen Huang and Yingfei Yi, *Almost periodically forced circle flows*, J. Funct. Anal. 257 (2009), no. 3, 832–902, DOI 10.1016/j.jfa.2008.12.005. MR2530846 (2010a:37090)

[9] T. Jäger, F. Kwakkel, and A. Passeggeri, *A classification of minimal sets of torus homeomorphisms*, Math. Z. 274 (2013), no. 1-2, 405–426, DOI 10.1007/s00209-012-1076-y. MR3054336

[10] Sergii Kolyada, Lubomír Snoha, and Sergei Trofimchuk, *Noninvertible minimal maps*, Fund. Math. 168 (2001), no. 2, 141–163, DOI 10.4064/fm168-2-5. MR1852739 (2002j:37017)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
[11] Sergii Kolyada, Lubomir Snoha, and Sergei Trofimchuk, *Proper minimal sets on compact connected 2-manifolds are nowhere dense*, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 863–876, DOI 10.1017/S0143385707000740. MR2422019 (2009m:37124)

[12] Sergii Kolyada, Lubomir Snoha, and Sergei Trofimchuk, *Minimal sets of fibre-preserving maps in graph bundles*, Math. Z. 278 (2014), no. 1-2, 575–614, DOI 10.1007/s00209-014-1327-1. MR3267591

[13] William Parry, *A note on cocycles in ergodic theory*, Compositio Math. 28 (1974), 343–350. MR0352407 (50 #4894)

[14] M. Rees, *A point distal transformation of the torus*, Israel J. Math. 32 (1979), no. 2-3, 201–208, DOI 10.1007/BF02764916. MR531263 (81g:54054)

[15] J. H. Roberts and N. E. Steenrod, *Monotone transformations of two-dimensional manifolds*, Ann. of Math. (2) 39 (1938), no. 4, 851–862, DOI 10.2307/1968468. MR1503441

Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01, Opava, Czech Republic

E-mail address: Jakub.Sotola@math.slu.cz

Instituto de Matemática y Fisica, Universidad de Talca, Casilla 747, Talca, Chile

E-mail address: trofimch@inst-mat.ualca.cl