Original Research Article

Evaluation of thyme and ajwain as antibiotic growth promoter substitutions on growth performance, carcass characteristics and serum biochemistry in Japanese quails (*Coturnix japonica*)

Farshid Kheiri a,*, Mostafa Faghania b, Nasir Landyb

a Department of Animal Science, Shahrekord Branch, Islamic Azad University, Shahrekord 8813733395, Iran
b Young Researchers and Elite Club, Khorasgan Branch, Islamic Azad University, Isfahan 8155139999, Iran

A B S T R A C T

The present study was to evaluate thyme and ajwain as antibiotic growth promoter substitutions on growth performance, carcass characteristics and serum biochemistry in Japanese quails (*Coturnix japonica*). A feeding trial was conducted over 28 d with 4 groups of Japanese quails fed experimental diets formulated to provide no supplementation (control), or control + 55 mg zinc bacitracin/kg, 2 g thyme/kg, and 2 g ajwain/kg. At 35 d of age, 2 quails from each replicate were sacrificed and eviscerated. Liver, empty small intestine and heart were weighed and calculated as a percentage of live body weight. The carcasses were weighed and the cuts were performed to evaluate the yield of legs and breast. At 35 d of age, 2 quails per replicate were chosen and approximately 1-mL blood samples were collected through brachial vein, and concentrations of albumin, total protein, triglyceride, total cholesterol, and high density lipoprotein (HDL) -cholesterol were determined. Final body weight were not affected by the dietary treatment whereas, it tended to increase in quails supplemented with antibiotic. Overall feed conversion ratio values were similar though it tended to improve in quails supplemented with thyme compared with other groups. Daily feed intake, internal organ weights and carcass traits were not influenced by the dietary treatments. Serum total cholesterol contents were lower (*P* < 0.05) in quails supplemented with ajwain compared with control and quails supplemented with antibiotic and thyme. The highest serum HDL-cholesterol was seen in the group supplemented with thyme compared with other groups. It was concluded that the addition of 2 g/kg thyme can improve serum biochemistry in quails, although its effects on performance criteria was negligible.

© 2018, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Antimicrobial compounds have been commonly included at subtherapeutic doses in poultry diets for promoting growth and protect health of the birds (Chalamkari et al. (2011, 2012); Landy and Kavyani, 2014; Gheisari et al., 2017; Engberg et al., 2000).

Antibiotic growth promoters (AGP) were supposed to improve growth rate, feed conversion and reduce mortality as a result of improved intestinal microbial flora (Miles et al., 2006; Pfaller, 2006). However, there is the fear that the continuous use of feed grade AGP could lead to, not only cross-resistance, but also to the risk of development of antibiotic resistant bacteria in humans (Nasir and Grashorn, 2006; Nanekarani et al., 2012; Goodarzi et al., 2014). Therefore, efforts have been made to reduce the use of chemical additives in poultry diet. Because of the ban on the use of antibiotics in European Union, the poultry producers are exposed to decrease the use of AGP and find alternatives to AGP in poultry feed. Botanical products, also known as phytophobic feed additives, have received enhanced attention recently, because they have been accepted by consumers as non-antibiotic substances (Toghyani et al., 2015; Landy et al., 2011a,b; Fekri Yazdi et al., 2014a,b).
Thyme (*Thymus vulgaris* L.) an aromatic plant member of the Lamiaceae family is a plant mostly grown in Mediterranean region. Thyme contains compounds with proven antispasmodic, anti-septic, expectorant, carminative, antitussive, antimicrobial and antioxidative properties (Dapkevicius et al., 2002; Nguyen et al., 2000; Vincent, 2002). Thyme possesses thymol, p-cymene, carvacrol, γ-terpinene, linalool and α-pinene (Bagamboula et al., 2004).

Ajwain (*Trachyspermum ammi* L.) belongs to family Apiaceae (Umbelliferae) and is an annual herb, originated in the Middle East, possibly in Egypt and the Indian subcontinent, but also in Iran and Afghanistan (Christie et al., 2005). Ajwain contain compound with proven anti-septic, anti-fungal, antibacterial and anti-helminthic effects (Morsi, 2000). The principle active compounds of ajwain include phenols, mainly thymol and carvacrol which are important pharmacologically active substances (Tsimidou and Boskou, 1994).

Several trials have been performed to evaluate the effect of thyme (Khaksar et al., 2012; Cross et al., 2007; Behnamifar et al., 2015) and ajwain powder (Samadian et al., 2015; Deepika et al., 2013) on quail growth performance and serum biochemical parameters but the results have not been consistent. Thus, present trial was conducted to investigate the potential of dietary supplementation with thyme and ajwain powder as growth promoters agents on performance, carcass traits and serum biochemical parameters in Japanese quails.

2. Materials and methods

2.1. Ethical approval

The birds were handled in compliance with the U.S. National Institutes of Health Guide for the Care and Use of Laboratory Animals. Also, all procedures complied with the ethical guidelines of the Shahrekord University’s Ethical Committee (approval Ref No. 2016-54).

2.2. Animals and dietary treatments

One hundred twenty eight 7-d-old healthy Japanese quails (*Coturnix japonica*) of mixed sexes were weighed and randomly allocated to 1 of 4 treatment groups with 4 replicates of 8 chicks each. The experimental treatments included the control (basal diet), control + 55 mg zinc bacitracin/kg, control + 2 g thyme/kg or 2 g ajwain/kg diet. Table 1 lists the basal diet formulated to meet or exceed the nutritional requirements of Japanese quails (NRC, 1994).

The dried aerial part of thyme and ajwain were extracted by hydrodistillation in a Clevenger-type apparatus for 2 h, centrifuged at 2,000 g for 10 min, the method described in the European European Pharmacopoeia (1975). The collected essential oils were analyzed by application of Gas chromatography equipped with mass spectrometry (GC−MS) using the Agilent 6890/5973 GC−MS (Hewlett-Packard, Palo Alto, CA, USA) as described by Vasudeva and Sharma (2012).

Table 1	The ingredient (as-fed basis) and calculated composition of basal diet.
Item	**Content**
Ingredients, g/kg	
Corn	508.3
Soybean meal 45% CP	440
Soybean oil	22
Dicalcium phosphate 22 Ca, 17 P	9.8
CaCO₃	12.2
NaCl	2.3
NaHCO₃	1.3
Trace mineral premix¹	1
Vitamin premix²	1
DL-methionine	0.2
L-threonine	0.9
Choline chloride 60%	1
Calculated composition, g/kg	
Metabolizable energy, kcal/kg	2,900
Crude protein	240
Calcium	8
Available phosphorus	3
Methionine + Cysteine	7.5
Lysine	13.4
Threonine	10.2

¹ Provided the following per kg of diet: Mg, 60 mg; Fe, 120 mg; Cu, 5 mg; Mn, 25 mg; I, 0.3 mg.

² Provided the following per kg of diet: vitamin A, 1,650 IU; vitamin D₃, 750 IU; vitamin E, 12 IU; vitamin K, 1 mg; riboflavin, 4 mg; vitamin B₁₂, 0.003 mg; pantothenic acid, 10 mg; nicotinic acid, 40 mg; folic acid, 1 mg.

2.3. Analysis of thyme and ajwain powders components

The dried aerial part of thyme and ajwain were extracted by hydrodistillation in a Clevenger-type apparatus for 2 h according to the method described in the European European Pharmacopoeia (1975). The collected essential oils were analyzed by application of Gas chromatography equipped with mass spectrometry (GC−MS) using the Agilent 6890/5973 GC−MS (Hewlett-Packard, Palo Alto, CA, USA) as described by Vasudeva and Sharma (2012).

2.4. Performance and carcass components

Body weights (BW) of birds were recorded at 7, 14, 28, and 35 d of age. Feed intake (FI) in each pen was recorded weekly to determine feed conversion ratio (FCR; feed:gain). Mortality was recorded as it occurred.

At 35 d posthatch, 2 male quails from each replicate were randomly selected, based on the average weight of the group, individually weighed and sacrificed after a 5-h feed deprivation following standard procedure (Landy et al., 2012). Carcass yield was calculated by dividing eviscerated weight by live body weight. Liver, empty small intestine and heart were removed, weighed and calculated as a percentage of live body weight. The carcasses were weighed and the cuts were performed to evaluate the yield of legs and breast.

2.5. Serum biochemistry

At 35 d posthatch, after 12 h of fasting, approximately 2 mL of blood from 2 male quails in each replicate was collected from the brachial vein into non-heparinised tubes for serum biochemistry and incubated at 37 °C for 2 h, centrifuged at 2,000 × g for 10 min, and serum was separated (SIGMA 4e15 Lab Centrifuge, Germany). Serum samples were analyzed for albumin, total protein, triglyceride, total cholesterol and high density lipoprotein (HDL)-cholesterol using an auto-analyzer (Kodak Ektachem Analyzer, Eastman Kodak Co., Rochester, NY).

2.6. Statistical analysis

All data were analyzed using the General Linear Model procedures of SAS (SAS Inst. Inc., Cary, NC, USA) for a completely randomized design. Means were compared using Duncan test at 5% probability.

3. Results and discussion

3.1. Thyme and ajwain powders components

The analysis of thyme revealed that the major essential oils were thymol (47.98%), γ-terpinene (9.02%), p-cymene (9.77%) and carvacrol (4.30%), and the main essential oils in ajwain were thymol.
effect on BW obtained at 35 d of age can be attributed to the highly digestible ingredients in the basal diet and the ideal conditions of experimentation. As reported by Toghyani et al. (2010) addition of growth promoters to poultry diets may have more impact when the diet used is less digestible. Similarly Ghalamkari et al. (2011, 2012) showed that flavophospholipol did not improve performance of well-nourished, healthy chicks raised in an ideal condition of experimentation. Furthermore, possibly the medicinal plants dosages applied in the present trial has not been such a level that would cause a positive influence on performance criteria, since there are reports of significant increased productive traits in broilers receiving diets supplemented with 5 g/kg thyme (Toghyani et al., 2010) and 1% ajwain seeds (Habibi et al., 2016) which are considerably higher levels compared with the dosage used in our trial.

Table 3 shows carcass, cut yields and relative organ weights as a percentage of live body weight of 35-day-old quails fed dietary treatments. No pathological lesions were noticed for heart, liver and small intestine. Carcass traits evaluated including liver, heart, small intestine weights, carcass and cut yields were not markedly affected by dietary treatments. The quails receiving 2 g/kg thyme had the lowest small intestinal weight and the highest breast yield percentages, although the differences were not statistically significant (P > 0.05). It may have caused lower FCR in treatment quails, although this was not a happened. Despite of having lower small intestinal weight, quails receiving thyme utilized feed efficiency as much as other groups did. This might be a result of higher nutrient absorption area or enhanced digestive enzymes.

Table 3

Item	Control 1	Antibiotic 2	Thyme 3	Ajwain 4	SEM
Body weight, g					
14 d	52.8a	50.5b	52.0a	49.5b	0.3
21 d	115.9a	115.8a	113.7a	114.2b	0.5
28 d	176.5a	181.3a	172.6a	167.4a	3.2
35 d	222.5	226.4	223.5	216.4	5.3
Daily feed intake, g/d					
7 to 14 d	8.4	8.4	8.4	8.4	0.3
15 to 21 d	19.8	20.5	19.5	19.9	0.7
22 to 28 d	23.0	22.4	21.0	21.2	1.8
29 to 35 d	24.0	22.6	24.9	23.9	1.85
7 to 35 d	18.8	18.4	18.4	18.3	2.41
FCR, g/kg					
7 to 14 d	2.19	2.40	2.26	2.5	0.19
15 to 21 d	2.20	2.19	2.21	2.28	0.07
22 to 28 d	2.66	2.40	2.50	2.60	0.18
29 to 35 d	3.65a	3.50e	3.46b	3.42b	0.09
7 to 35 d	3.67	2.62	2.59	2.70	0.20

FCR = feed:gain ratio; SEM = standard error of mean.

Data are means of 4 replicate cages consisting of 8 birds per replicate cage.

1 Data are means of 4 replicate cages consisting of 8 birds per replicate cage.

2 Basal diet with no supplementation.

3 Basal diet + 55 mg zinc bacitracin/kg.

4 Basal diet + 2 g thyme/kg.

5 Basal diet + 2 g ajwain/kg.

Table 3

Item	Control 1	Antibiotic 2	Thyme 3	Ajwain 4	SEM
Carcass	78.4	79.0	78.9	78.2	0.70
Breast yield	41.0	40.6	43.7	40.6	1.85
Legs yield	30.0	29.8	27.8	29.4	2.10
Liver	3.02	3.77	3.34	3.36	0.77
Heart	1.28	1.22	1.10	1.37	0.21
Small intestine	6.58	7.17	5.56	6.83	1.8

SEM = standard error of mean.

Data are means of 4 replicate cages consisting of 8 birds per replicate cage.

1 Data are means of 4 replicate cages consisting of 8 birds per replicate cage.

2 Basal diet with no supplementation.

3 Basal diet + 55 mg zinc bacitracin/kg.

4 Basal diet + 2 g thyme/kg.

5 Basal diet + 2 g ajwain/kg.

3.3. Serum biochemistry

The impact of treatments on serum constituents are presented in Table 4. An improved HDL-cholesterol concentration was noted in the group supplemented with thyme relative to the control, antibiotic or ajwain. Treatments did not induce any significant effect on the serum concentration of triglyceride, though it tended to increase in quails fed diets containing ajwain. Maximum concentration of serum protein obtained in quails supplemented with ajwain (P < 0.05). An increased serum protein was seen in the group supplemented with thyme compared with control and antibiotic. Minimum concentration of cholesterol was seen in the group supplemented with ajwain (P < 0.05). Quails supplemented with antibiotic and thyme had lower total cholesterol compared with control group. The highest concentration of serum albumin reported that supplementing quails' diet with 1 g/kg thyme essential oil could improve performance, some blood parameters and gut microflora. The lack of significant effect of the additives on BW obtained at 35 d of age can be attributed to the highly digestible ingredients in the basal diet and the ideal conditions of experimentation. As reported by Toghyani et al. (2010) addition of growth promoters to poultry diets may have more impact when the diet used is less digestible. Similarly Ghalamkari et al. (2011, 2012) showed that flavophospholipol did not improve performance of well-nourished, healthy chicks raised in an ideal condition of experimentation. Furthermore, possibly the medicinal plants dosages applied in the present trial has not been such a level that would cause a positive influence on performance criteria, since there are reports of significant increased productive traits in broilers receiving diets supplemented with 5 g/kg thyme (Toghyani et al., 2010) and 1% ajwain seeds (Habibi et al., 2016) which are considerably higher levels compared with the dosage used in our trial.
obtained in the quails fed diets containing ajwain (P < 0.05). Quails receiving antibiotic or thyme had lower serum concentration of albumin compared with control.

Chemical analysis of blood serum is a labile biochemical system which can reflect the situation of the organism and the changes occurring in it under effect of various external and internal factors. In the present trial total cholesterol concentration was significantly reduced by supplementation of thyme and ajwain, and HDL-cholesterol level was significantly enhanced in quails supplemented with thyme. Consistently, Toghyani et al. (2010) indicated that supplementation of dried aerial part of thyme to broiler diets resulted in significant increase in plasma HDL-cholesterol. Davoodi et al. (2016) reported that addition of different levels of ajwain to broiler diets significantly decreased plasma lipids and increased HDL-cholesterol. In contrast with our results, Ali et al. (2007) reported that supplementing thyme to hen diets resulted in significant reduction of plasma total cholesterol, triglycerides and total lipids. The reduction of plasma lipids noticed with thyme in the current study was attributed to the lowering in plasma

Table 4

Item	Dietary treatments SEM				
Control1	Antibiotic2	Thyme3	Ajwain4		
Protein, g/mL	3.8±5	3.7±2	4.2±4	4.5±6	0.06
Albumin, g/mL	1.1±8	2.1±0	2.1±0	1.5±2	0.09
Triglyceride, mg/100 mL	67 ± 5	67 ± 5	70 ± 9	92 ± 9	10.2
Total cholesterol, mg/100 mL	221.5±5	205.7±5	208.6±8	161.6±6	3.23
HDL-cholesterol, mg/100 mL	25.56±6	19.52±5	28.39±5	22.79±5	1.10

HDL – high density lipoprotein; SEM – standard error of mean.

1–4 Values in the same row not sharing a common superscript differ (P < 0.05).
1 Data are means of 4 replicate cages consisting of 8 birds per replicate cage.
2 Basal diet with no supplementation.
3 Basal diet + 55 mg zinc bacitracin/kg.
4 Basal diet + 2 g thyme/kg.
5 Basal diet + 2 g ajwain/kg.

4. Conclusion

It was concluded that the addition of 2 g/kg thyme can improve serum biochemistry in quails, although its effects on performance criteria was negligible.

Acknowledgment

This study was supported by Islamic Azad University, Shahrekord Branch (grant number: 2014/04).

References

Ali MN, Hassan MS, Abdel-Ghani PA. Effect of strain, type of natural antioxidant and sulphate on productive, physiological and hatchling performance of native laying hens. Int J Poult Sci 2007;6:539–54.
Bagamboula CF, Uyttendaele M, Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 2004;21:33–42.
Bedford M. Removal of antibiotic growth promoters from poultry diets. World’s Poult Sci J 2000;56:347–55.
Behnamifar A, Rahimi S, Karimi Torshizi MA, Hasanpour S, Mohammadzade Z. Effect of thyme, garlic and caraway herbal extracts on blood parameters, productivity, egg quality, hatchability and intestinal bacterial population of laying Japanese quail. Iran J Vet Med 2015;9:179–87.
Christe PJ, Atmakanik K, Krishnamoorthy V, Jakubowski S, Cascales E. Biogenesis, architecture and function of bacterial Type IV secretion systems. Annu Rev Microbiol 2005;59:451–85.
Cross DE, McDevitt RM, Hillman K, Acamovic T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br Poult Sci 2007;48:496–506.
Davoodi SM, Rahimian Y, Vali N, Tabatabaei SN, Ghorban Nezad MH. Effect of using different levels of Ajwain extract as growth promoters in comparison with virginiamycin antibiotic on performance, carcass characteristics, and some blood parameters in Cobb 500 broiler chicks. In: International conference on modern research in agricultural science and environment; 2016. p. 247–57.
Deepika T, Ashoka K, Mondal BC, Anshu R, Jyoti P. Effect of ajwain, hot red pepper and black pepper on the performance of Japanese quail. Indian J Anim Nutr 2013;30:431–3.
Engberg RM, Hedemann MS, Leser TD, Jensen BB. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult Sci 2000;79:1311–5.
Fekri Yazdi F, Ghalamkari GH, Toghyani M, Modaresi M, Landy N. Anise seed (Pimpinella anisum L) as an alternative to antibiotic growth promoters on performance, carcass traits and immune responses in broiler chicks. Asian Pac J Trop Dis 2012;2:447–51.
Fekri Yazdi F, Ghalamkari GH, Toghyani M, Modaresi M, Landy N. Efficiency of Tribulus terrestris L as an antibiotic growth promoter substitute on performance and immune responses in broiler chicks. Asian Pac J Trop Dis 2014b;4(Suppl. 2):S104–8.
Ferket PR. Alternatives to antibiotics in poultry production: responses, production experience and recommendations. In: Lyons TP, Jacques KA, editors. Nutritional biotechnology in the feed and food industries. Nottingham: Nottingham University Press; 2004. p. 57–67.
Ghalamkari GH, Toghyani M, Tavalaerian E, Landy N, Ghalamkari Z, Radnezhad H. Efficiency of different levels of Satureja hortensis L. (Savory) in comparison with an antibiotic growth promoter on performance, carcass traits, immune responses and serum biochemical parameters in broiler chickens. Afr J Biotech 2011;10:13318–23.
Ghalamkari GH, Toghyani M, Landy N, Tavalaerian E. Investigation the effects using different levels of Mentha pulegium L. (Peppermint) in comparison with an antibiotic growth promoter on performance, carcass traits and immune responses in broiler chickens. Asian Pac J Trop Biomed 2012:3:396–9.
Ghesari A, Shalrvand S, Landy N. Effect of ethanolic extract of propolis as an alternative to antibiotics as a growth promoter on broiler performance, serum biochemistry and immune responses. Vet World 2017;10:249–54.
Goodarzi M, Nanekarani SH, Landy N. Effect of dietary supplementation with onion (Allium cepa L.) on performance, carcass traits and intestinal microflora composition in broiler chickens. Asian Poult Trop Dis 2014;4:5297–301.
Halabi R, Jalilvand GH, Moradqoli MR, Azizpour A. Survey of different levels of Ajwain (Trachyspermum ammi) seed powder on performance and some blood parameters in Japanese quails. Anim Sci 2016;111:55–64.
Kaviani A, Zare Shaline A, PorReza J, Jalali Haji-abadi SMA, Landy N. Evaluation of dried powder of mushroom (Agaricus bisporus) as an antibiotic growth promoter substitution on performance, carcass traits and humoral immune responses in broiler chickens. J Poult Sci 2012;49:106–10.
Landy N, Kaviani A. Effect of using multi-strain probiotic on performance, immune responses, and cecal microflora composition in broiler chickens reared under heat stress condition. Iran J Anim Sci 2013;4:703–8.
Landy N, Ghalamkari Gh, Toghyani M. Performance, carcass characteristics, and immunity in broiler chickens fed dietary neem (Azadirachta indica) as alternative for an antibiotic growth promoter. Livest Sci 2011a;142:305–9.
Landy N, Ghalamkari GH, Toghyani M, Moattar F. The effects of Echinacea purpurea L. (purple coneflower) as an antibiotic growth promoter substitution on performance, carcass characteristics and humoral immune response in broiler chickens. J Med Plants Res 2011b:5:2332–8.
Lee KW, Everts H, Kappert HJ, Frehner M, Losa R, Beynen AC. Dietary carvacrol lowers body weight gain but improves feed conversion in female broilers. J Appl Poult Sci 2014;3:1239–44.
Maisonneuve SA. European pharmacopoeia. Sainte-ruf. 2013.p. 247.
Miles RD. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br Poult Sci 2002;43:859–67.
Morsi NM. Antimicrobial effect of crude extracts of *Nigella sativa* on multiple antibiotics-resistant bacteria. Acta Biochim Pol 2000;49:63–74.

Nankarani S, Goodarzi M, Heidari M, Landy N. Efficiency of ethanolic extract of peppermint (*Mentha piperita*) as an antibiotic growth promoter substitution on performance, and carcass characteristics in broiler chickens. Asian Pac J Trop Biomed 2012;2:51–4.

Nascimento GGF, Locatelli J, Freitas PC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz J Microbiol 2000;31:247–56.

Nasir Z, Grashorn MA. Effects of intermittent application of different *Echinacea purpurea* juices on broiler performance and some blood indices (PhD Diss.). Stuttgart, Germany: University of Hohenheim; 2006.

Nguyen DV, Takasova M, Jakubik T, Dang MN. Antioxidant effect of thyme in rapeseed oil. Biologia 2000;55:277–81.

NRC. Nutritional requirements of poultry. 9rd. ed. Washington: Acad. Press; 1994.

Pfaller MA. Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Diagn Microbiol Infect Dis 2006;56:115–21.

Rupasinghe HPV, Ronalds CM, Rathgeber B, Robinson RA. Absorption and tissue distribution of dietary quercetin and quercetin glycosides of apple skin in broiler chickens. J Sci Food Agric 2010;90:1172–8.