Hydroxycut hepatotoxicity: A case series and review of liver toxicity from herbal weight loss supplements

Lily Dara, Jennifer Hewett, Joseph Kartaik Lim

Dietary supplements represent an increasingly common source of drug-induced liver injury. Hydroxycut is a popular weight loss supplement which has previously been linked to hepatotoxicity, although the individual chemical components underlying liver injury remain poorly understood. We report two cases of acute hepatitis in the setting of documented Hydroxycut exposure, and describe possible mechanisms of liver injury. We also comprehensively review and summarize the existing literature on commonly used weight loss supplements, and their individual components which have demonstrated potential for liver toxicity. An increased effort to screen for and educate patients and physicians about supplement-associated hepatotoxicity is warranted.

© 2008 The WJG Press. All rights reserved.

Key words: Hydroxycut; Dietary supplements; Liver; Liver failure; Toxicity; Weight loss; Medicine; Hepatitis

INTRODUCTION

Obesity has become an increasingly important public health problem in the United States. Recent data show that more than 30% of adults are obese and 65% overweight[1]. The use of diet supplements for weight loss has become increasingly popular, as reflected by the $55.4 billion spent in the U.S. in 2006 for weight loss and diet control[2,3]. Based on a study by the National Center for Complementary and Alternative Medicine (NCCAM), 36% of adults are using some form of complementary or alternative medicine, which rises to 62% when including megavitamins or prayer. Although dietary and herbal supplements are governed under the DSHEA act of 1994, they are not presently regulated by the U.S. Federal Drug Administration, and the safety profiles of many are unknown. An increasing number of case reports have emerged which suggest causative supplement-associated liver toxicity. Hydroxycut is an herbal weight loss supplement that has been suspected to have possible liver toxicity. Herein we present two patients who experienced severe acute hepatitis in the setting of documented Hydroxycut exposure, and without alternative etiology after comprehensive serologic liver evaluation.

CASE REPORTS

Case 1

A 40-year-old female with a prior medical history notable only for hypothyroidism and diet-controlled hyperlipidemia presented to the Emergency Department with 3 d of new-onset crampy, mid-epigastric abdominal pain and non-bloody diarrhea. She noted subjective fevers and chills, and two isolated episodes of nausea and vomiting, anorexia and profound fatigue. She did not experience jaundice, icterus, pruritus, arthralgias, acholic stools or dark urine. One week prior to presentation, she began using Hydroxycut, 6 pills daily in preparation for a bodybuilding competition. Just prior to presentation she attended an office holiday party, although no other persons in attendance became ill. She did not smoke or drink. She otherwise does not take regular medications except for levothyroxine. She denied taking any other herbal supplements or alternative medications. She was afebrile with stable vital signs, and normal body mass index. Her exam was notable only for mild mid-epigastric tender-

Dara L, Hewett J, Lim JK. Hydroxycut hepatotoxicity: A case series and review of liver toxicity from herbal weight loss supplements. World J Gastroenterol 2008; 14(45): 6999-7004 Available from: URL: http://www.wjgnet.com/1007-9327/14/6999.asp DOI: http://dx.doi.org/10.3748/wjg.14.6999
ness to palpation. She had no liver enlargement and no stigmata of chronic liver disease. Her laboratory profile on admission revealed an acute hepatitis with AST 1020 U/L and ALT 1150 U/L, total bilirubin 0.67 mg/dL, alkaline phosphatase 299 U/L, INR 0.96, white cell count 5.9 × 10^9/μL, hemoglobin 11.9 g/dL, platelet count 228/μL, and creatinine 0.9 mg/dL. Diagnostic evaluation was negative for hepatitis A, B, C, cytomegalovirus and Epstein-Barr virus, autoimmune liver disorders (ANA, ASMA), alpha-1 anti-trypsin deficiency, and ehrlichiosis. On day 2 of admission, her transaminases decreased to AST 399 U/L and ALT 647 U/L. On day 3, she was clinically well and discharged from the hospital. Upon outpatient follow-up, she had returned to her usual state of health with normalization of transaminases with AST 46 U/L and ALT 48 U/L. She has not experienced any further recurrence of symptoms or liver abnormalities within 10 mo of follow-up.

Case 2

A 33-year-old female with a prior medical history of a pituitary adenoma presented to the Emergency Department with 1 mo of new-onset jaundice. She reported a flu-like illness of 2 wk duration with nausea and crampy abdominal pain and began to experience jaundice, acholic stools, dark-colored urine, pruritus, and profound fatigue. These symptoms appeared to be improving during the week prior to admission except for worsening jaundice and fatigue. She noted that during the month prior to admission, she had taken Hydroxycut supplements for 2 wk to help achieve weight loss, but discontinued this medication upon onset of symptoms. She additionally reported eating lobster during the month prior to admission, but could not recall other individuals who became ill. Her only medication was Ortho-Novum contraceptive, which she had been taking for 2.5 years. Her social history was unremarkable without regular alcohol ingestion, and the absence of risk factors for viral hepatitis, alcoholic hepatitis, other toxin-related factors for chronic viral hepatitis. She was afibrile with stable vital signs, and normal body mass index. Her exam was notable only for jaundice and scleral icterus. She had no liver enlargement and no stigmata of chronic liver disease. Her laboratory profile on admission was notable for acute hepatitis with AST 934 U/L and ALT 1570 U/L, total bilirubin 20.9 mg/dL, direct bilirubin 14.2 mg/dL, alkaline phosphatase 112 U/L, INR 1.08, white cell count 9.2 × 10^9/μL, hematocrit 42%, platelet count 414/μL, and creatinine 0.8 mg/dL. Diagnostic evaluation was negative for hepatitis A, B, C, cytomegalovirus, Epstein-Barr virus, and herpes simplex virus infections. Her autoimmune profile revealed low titer increase in anti-nuclear antibody (ANA) and anti-smooth muscle antibody (ASMA) suggestive of an immune-mediated drug-induced hepatitis. Her jaundice eventually resolved and her liver function normalized.

DISCUSSION

The public’s increasing demand for alternative medicine, the newly found global interest in phytomedicine and herbal therapies, the rising cost of conventional prescription drugs, and a loss of faith in Western medicine, have led to a rapid rise in the use of unregulated herbal supplements and therapies. An estimated 80% of the world population uses herbal medicines, largely outside the U.S. In a study performed at an outpatient liver clinic, over 21% of patients were taking herbal supplements in the setting of chronic liver disease[5]. The FDA describes dietary supplements as a product taken by mouth that contains a “dietary ingredient” intended to supplement the diet. The “dietary ingredients” in these products may include: vitamins, minerals, herbs or other botanicals, amino acids, and substances such as enzymes, organ tissues, glandulars, and metabolites. Most of these products have not been rigorously studied through placebo-controlled, blinded, randomized trials[6].

Hydroxycut is one of the most popular dietary supplements for weight loss on the market today, including two formulations Hydroxycut and Hydroxycut hardcore. Hydroxycut contains several different herbs, including: *Garcinia Cambogia* extract, chromium polynicotinate, *Gymnema sylvestre* extract and *Camellia Sinensis* (C. Sinensis) (Table 1). Both patients in this report used the dietary supplement Hydroxycut within a short time frame before presenting with acute hepatitis, suggesting Hydroxycut as the most likely etiology for acute liver injury. Neither patient had a history suggestive of other exposures or risk factors for viral hepatitis, alcoholic hepatitis, other toxin-mediated injury, or chronic liver disease. A comprehensive serologic and radiographic evaluation performed in both patients did not reveal alternative sources for liver toxicity. Although causation is difficult to confirm in cases of suspected drug-associated hepatotoxicity, the temporal relationship to acute liver injury and rapid resolution upon withdrawal of Hydroxycut makes this likely. Hydroxycut has previously been associated with both a cholestatic and hepatocellular pattern of injury. The specific components likely implicated in liver toxicity include *G. Cambogia*, *Chromium*, and green tea root extract (*Camellia Sinensis*) based on prior data suggesting liver toxicity. Patient 1 experienced a more typical hepatocellular pattern of injury, patient 2 demonstrated an immune-mediated pattern of injury, which has not previously been described.

Table 1 Hydroxycut ingredients supplement facts (serving size 2 caplets)

Amount per serving	% daily value
Calcium (as hydroxy citrate) 156 mg	16^1
Chromium (as polynicotinate) 133 mg	111^1
Potassium (as hydroxy citrate) 218 mg	6^3
Garcinia Cambogia (66% hydroxycitric acid)	2
Gymnema Sylvestre (25% gymnemic acid)	2
Soy Phospholipids	2
Rhodiola rosea extract (5% rosavins)	2
Green Tea as Camelia Sinensis (91 mg of ECGC)	2
White Tea as Camelia Sinensis (15% ECGC)	2
Oolong Tea as Camelia Sinensis (15% ECGC)	2
Caffeine anhydrous	2

^1Percent daily values based on 2000 calory diet; ^2Daily values not established.
There has been one prior report of two cases of possible hepatotoxicity with Hydroxycut in the literature\(^7\); both cases were young males who had documented periods of Hydroxycut exposure and experienced similar clinical syndromes marked by fatigue, jaundice, and pruritus with marked hepatocellular or cholestatic pattern and complete resolution upon supplement withdrawal. Our case series validates the likely causative relationship between Hydroxycut exposure and liver toxicity, and further suggests that an autoimmune pattern of hepatotoxicity may be observed. Although less common, drug-associated autoimmune hepatitis has been reported in several herbal supplements including Greater Celadine, Dai-Saiko-To, and Black Cohosh. Herein we review key ingredients of Hydroxycut that have been implicated in liver toxicity.

G. Cambogia is a fruit native to southeastern Asia and western Africa used to make meals more “filling”\(^9\). Its main component hydroxycitric acid (HCA) is an inhibitor of the citrate cleavage enzyme (ATP citrate lyase) blocking de novo synthesis of fatty acids\(^9\). HCA was initially studied in rodents for the dietary treatment of obesity and the results seemed to be promising. Unfortunately randomized controlled trials in humans for this purpose showed very conflicting results. Nevertheless, HCA is a primary component of many weight loss supplements in the market, and similar to others in its class, the toxicity profile is poorly studied. In the recent literature a case of fatal liver failure was reported in a patient taking HCA and montelukast suggesting the synergistic hepatotoxic effect of these two agents\(^19\). There have also been reports of *G. Cambogia* toxicity by the WHO database, mostly describing an increase in hepatic enzymes\(^8\).

Chromium is an essential trace element and cofactor to insulin most commonly occurring in hexavalent (VI) and trivalent (III) states. The hexavalent form is found in the dye and leather industry and is responsible for occupational toxicity ranging from dermatitis to lung cancer\(^11\). In 1989, the National Academy of Sciences established an “estimated safe and adequate daily dietary intake” range for chromium of 50 to 200 mg\(^12\). In 2001 the Institute of Medicine and the National Academy of Sciences established Dietary Reference Intakes (DRI) for Chromium, ranging from 0.2 mg for infants to a maximum of 45 mg in lactating mothers\(^13\). Chromium is used in weight loss supplements due to purported effects of decreasing body fat and increasing basal metabolic rate\(^14,13\). A recent meta-analysis of available RCTs concluded that weight reduction with chromium although statistically significant was not clinically meaningful\(^5\). There have been case reports of chromium toxicity causing acute hepatitis, thrombocytopenia and renal failure due to both environmental\(^16,17\) and dietary supplements\(^18\). Although renal failure requiring dialysis is a more common concern\(^19\), those presenting with liver toxicity frequently elaborate aminotransferase elevations greater than 1000 mg/dL. Each Hydroxycut serving contains 133 mg of Chromium, which is taken three times daily, resulting in a cumulative daily consumption greater than twice the NAS safe maximum dose.

Camellia Sinensis is the scientific name for green tea, which is widely regarded by the public as safe, and commonly incorporated into supplements due to purported anti-cancer potential\(^20\), weight reduction\(^21\) and antioxidant properties\(^22\). Acute hepatotoxicity from *C. Sinensis* is well-described, and may range from acute hepatitis to acute liver failure. Based on 17 published cases in the literature\(^23-27\), most cases appear to occur following large ingestions of green tea, with resolution following withdrawal, and recurrence with re-challenge\(^28\). Consequently, *C. Sinensis* has been banned in France and Spain, although it remains unregulated in weight loss supplements commercially available in the U.S.

Other Hydroxycut components for which liver toxicity have not been described include Gymnema Sylvestre, Rhodiola Rosea, and Withania Somnifera. Gymnema Sylvestre has been used to control hyperglycemia\(^29\) and hyperlipidemia\(^30\) in rats. Toxicity studies in rodents have not shown hepatotoxicity\(^31\) and no case report of liver injury has been reported. Rhodiola Rosea extract is used to decrease fatigue\(^32\) and improve exercise tolerance\(^33\). Withania Somnifera has been used for its anti-inflammatory properties\(^34,33\). Neither R Rosea or W Somnifera have been associated with liver toxicity, although W Somnifera may result in renal impairment in rats\(^36\).

Of note, the more concentrated Hydroxycut Hard Core product contains additional herbal formulations such as White Willow extract and Yohimbine. These have not been demonstrated to result in liver injury, whereas Willow bark extract may have anti-inflammatory effects *in vitro*, this was not observed in patients with rheumatoid arthritis or osteoarthritis in a randomized controlled trial\(^37\). Yohimbine is an indole alkaloid from the bark of the African *Pausinystalia Yohimbe*, and serves as an alpha-2 receptor antagonist which may treat male impotence\(^38\). Although nausea, vomiting and abdominal pain have been described, liver toxicity has not been observed.

The FDA has issued warnings on several herbal supplements known to have hepatotoxic potential including Comfrey (2001), Kava (2002) and the dietary supplement Lipokinetics (2001). This review does not seek to provide a comprehensive review of all known hepatotoxins, but highlight a short list of ingredients within best selling weight loss supplements which have been demonstrated to have hepatotoxic potential.

Ephedra alkaloid, AKA *Ma Huang*, is the most commonly used weight loss supplement in the U.S.\(^39\), and is well-known to have potentially deleterious cardiovascular and CNS effects\(^40\), but has also been implicated in numerous cases of liver failure\(^41,42\). As such, dietary supplements containing ephedra were banned in the U.S. in April 2004\(^42\), but remain widely available through unregulated internet sources in various forms, including the supplement *Lepotrin* (previously *Anorex*) which contains 20 mg of ephedrine, 200 mg of caffeine, 324 mg of aspirin, and unknown amounts of Green tea and cayenne. *Adipokinetics* came to the market to replace *Lipokinetics* which was removed in 2002 by Syntrax Innovations Inc. due to FDA
warnings regarding reported cases of hepatotoxicity. Although the Usnic acid has been removed from the formulation, this diet pill still contains Norephedrine or Norphenephrine and Green tea extracts. Ephedradil Hardcore, a top selling diet pill, is a newer formulation of Ephedra following its ban in 2004, and contains many ingredients including Chromium, Yohimbine, and green tea extract.

Hoodia Gordonii, a popular supplement used for appetite suppression, and is derived from a cactus-like bush leaf native to southern Africa. Although initially isolated by Pfizer in the 1970s, research was discontinued due to liver toxicity found in early research studies. Despite these reports, this is a common ingredient in dietary supplements such as Slim-Citi, Trim Spa X32 and Ephedrine-P37.

Zalestrim is another top selling supplement composed of green tea and Black Cohosh, which are described above as known sources of potential hepatotoxicity. It also contains Dong Quai, which increases prothrombin time and thereby increases bleeding risk.

In summary, this case series and review of the literature highlight the potential hepatotoxicity of commonly used herbal supplements including Hydroxycut. Due to their loose regulation in the current drug marketplace, oversight of their use by physicians and regulators alike remains poor. Those supplements with potential liver toxicity are summarized in Tables 2 and 3, although further investigation is needed to better clarify the mechanisms and patterns of injury, and inform policy makers on those ingredients which require more vigorous regulation. The use of supplements is frequently not queried by physicians, and may not be reported in the same manner as prescription drugs by patients. As such, it is advisable that physicians ask specifically about the use of non-prescription drugs and supplements, warn patients with known liver disease about the potential consequences of their use, and to query patients specifically about possible supplement exposure in cases of acute or chronic liver injury. Increased attention to this issue by physicians and regulatory agencies may lead to more successful efforts to decrease the burden of drug-associated liver injury in the U.S.

REFERENCES

1 National Center for Health Statistics. Prevalence of Overweight and Obesity Among Adults: United States, 1999-2002. Available from: URL: http://www.cdc.gov/nchs/products/pubs/pubd/hestats/obese/obse99.htm

2 Blanck HM, Khan LK, Serdula MK. Use of nonprescription weight loss products: results from a multistate survey. JAMA 2001; 286: 930-935

3 Miles J, Petrie C, Steel M. Slimming on the Internet. J R Soc Med 2000; 93: 254-257

4 Farnsworth NR, Akorele O, Bingel AS, Soejarto DD, Guo Z. Medicinal plants in therapy. Bull World Health Organ 1985; 63: 965-981

5 Stickel F, Patsenker E, Schuppam D. Herbal hepatotoxicity. J Hepatol 2005; 43: 901-910

6 Pittler MH, Ernst E. Dietary supplements for body-weight reduction: a systematic review. Am J Clin Nutr 2004; 79: 529-536

7 Stevens T, Qadri A, Zein NN. Two patients with acute

Table 2 Components of popular weight loss supplements

Brand name	Potentially hepatotoxic components
Hydroxycut	Garcinia Cambogia, Chromium, Camellia Sinensis
Ephedrazile Hardcore	C. Sinensis, Valerian
Zalestrim	C. Sinensis, Black Cohosh, Dong Quai
Slim-Citi	Hoodia
Ephedra	Mau Hang
Leptoril	C. Sinensis, Aspirin
Adipokinetics	C. Sinensis
Xenadrine	C. Sinensis, Ma Huang
Lipovox	C. Sinensis
Lean fire	C. Sinensis
Miracle Burn	Hoodia
7 DFB	Noni extract
Curvatrim	C. Sinensis, Dong Quai
Ambi-Slim	C. Sinensis, Garcinia Cambogia, Chromium, Valerian
TrimSpaX32	C. Sinensis, Hoodia Gordoni
Eroved	Hoodia, Garcinia Cambogia, Chromium
Zylorin	Hoodia, C. Sinensis, Chromium
Jet Fuel	C. Sinensis, Hoodia,
VPX redline	C. Sinensis
Metabolone	C. Sinensis, Chromium, Hoodia

Table 3 Patterns of injury in herbal hepatotoxicity

Cholestatic Hepatocellular Autoimmune Fulminant failure
Atractylin
Gummifera[68]
Black
Cohosh[5,63]
Callicephalis
Laureola[64]
Camellia
Sinensis[5,6]
Chapparal[65]
Chromium picolinate[55,56]
Cascara
Sagrad[57]
Dai-Saiko-To[66]
Garcinia
Cambogia[67]
Germander[68,69]
Greater
Celadine[5,6,66]
Jin Bu
Huang[5]
Kava[56,66]
Noni[56]
Paeonia[60]
Paulina Cupana
Penny
Royal[56]
Senna[60]
Shou wu pian[66]
Syo-Saiko-To[66]
Teucrium
Polium[66]
Usnic[5]
Valerian[56]
liver injury associated with use of the herbal weight-loss supplement hydroxycut. Ann Intern Med 2005: 142: 477-478

8 Burdock G, Soni M, Bagchi M, Bagchi D. Garcinia cambogia toxicity is misleading. Food Chem Toxicol 2005: 43: 1683-1684; author reply 1685-1686

9 Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA 1998: 280: 1596-1600

10 Actis GC, Bugianesi E, Ottobrelli A, Rizzetto M. Fatal liver failure following food supplements during chronic treatment with montelukast. Dig Liver Dis 2007; 39: 953-955

11 Katz SA, Salen H. The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 1993; 13: 217-224

12 National Research Council (U.S.). Subcommittee on the Tenth Edition of the RDAs, National Institutes of Health (U.S.), National Research Council (U.S.). Committee on Dietary Allowances. Recommended dietary allowances. 10th rev. ed. Washington, D.C.: National Academy Press, 1989: 241-243

13 Institute of Medicine FaNB, ebrary Inc. DRI. dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc: a report of the Panel on Micronutrients ... and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. 2001: xxii, 773 p. Available from: URL: http://site.ebrary.com/lib/yale/doc?id=10032471

14 Anderson RA. Essentiality of chromium in humans. Sci Total Environ 1989: 66: 75-81

15 Anderson RA. Effects of chromium on body composition and weight loss. Nutr Rev 1998; 56: 266-270

16 Fristedt B, Lindqvist B, Schuetz A, Ovrum P. Survival in a case of acute oral chromic acid poisoning with acute renal failure treated by haemodialysis. Acta Med Scand 1965; 177: 153-159

17 van Heerden PV, Jenkins IR, Woods WP, Rossi E, Cameron PD. Death by tanning--a case of fatal basic chromium sulphate poisoning. Intensive Care Med 1994; 20: 145-147

18 Cerulli J, Grabe DW, Gauthier I, Malone M, McGoldrick W. Chromium picolinate toxicity. Ann Pharmacother 1998; 32: 428-431

19 Wistar-Bogomolov WG, Feldman NS, D’Agati VD. Chronic renal failure after ingestion of over-the-counter chromium picolinate. Ann Intern Med 1997; 126: 410

20 Yang CS, Yang CY, Chung JY, Lee MJ, Li C. Tea and tea polyphenols in cancer prevention. Adv Exp Med Biol 2001; 492: 39-53

21 Shixian Q, VanCrey B, Shi J, Kakuda Y, Jiang Y. Green tea extract thermogenesis-induced weight loss by egpilgalactocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food 2006; 9: 451-458

22 Coimbra S, Castro E, Rocha-Pereira P, Rebelo I, Rocha S, Santos-Silva A. The effect of green tea in oxidative stress. Clin Nutr 2006; 25: 790-796

23 Abu el Wafa Y, Benavente Fernandez A, Talavera Fabuel A, Perez Ramos MA, Ramos-Clemente JI. [Acute hepatitis induced by Camellia sinensis (green tea)] Am J Med Interna 2005; 22: 298

24 Duanas Madornil C, Fabregas Puigto S, Durandez R. [Hepatotoxicity due to Camellia sinensis] Med Clin (Barc) 2004; 122: 677-678

25 Garcia-Moran S, Saez-Royuela F, Gento E, Lopez Morante A, Arias L. [Acute hepatitis associated with Camellia thea and Orthosiphon stamineus ingestion] Gastroenterol Hepatol 2004; 27: 559-560

26 Glorioso R, Hourmand-Ollivier I, Mosquet B, Mosquet L, Rousselet P, Salame E, Piquet MA, Dao T. Fulminant hepatitis during self-medication with hydroalcoholic extract of green tea. Eur J Gastroenterol Hepatol 2005; 17: 1135-1137

27 Molinari M, Watt KD, Kriszyna T, Nelson R, Walsh M, Huang WY, Natasha B, Peltkeian K. Acute liver failure induced by green tea extracts: case report and review of the literature. Liver Transp 2006; 12: 1892-1895

28 Bonkovsky HL. Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis). Ann Intern Med 2006: 144: 68-71

29 Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 2003; 26: 1277-1294

30 Luo H, Kashiwagi A, Shibahara T, Yamada K. Decreased bodyweight without rebound and regulated lipoprotein metabolism by chronic treatment in genetic multifactor syndrome animal. Mol Cell Biochem 2007; 299: 93-98

31 Ogawa Y, Sekita K, Unemura T, Saito M, Ono A, Kawasaki Y, Uchida O, Matsushima Y, Inoue T, Kanno J. [Gynnema sylvestre leaf extract: a 52-week dietary toxicity study in Wistar rats] Shokutain Eiseigaku Zasshi 2004; 45: 8-18

32 Darbinyan V, Keyan A, Panossian A, Gabrielian E, Wikman G, Wagner H. Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine 2000; 7: 365-371

33 De Bock K, Eijndhe BO, Ramaekers M, Hespel P. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab 2004; 14: 298-307

34 Rasool M, Varalakshmi P. Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascular Pharmacol 2006; 44: 406-410

35 Spelman K, Burns J, Nichols D, Winters N, Ottersberg S, Tenborg M. Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern Med Rev 2006; 11: 128-150

36 Arseculeratne SN, Gunatilaka AA, Panabokke RG. Studies of medicinal plants of Sri Lanka. Part 14: Toxicity of some traditional medicinal herbs. J Ethnopharmacol 1985; 13: 323-335

37 Bieger C, Wagner I, Ludtke R, Kofler I, Lohmuller C, Gunaydin I, Taxis K, Heide L. Efficacy and safety of willow bark extract in the treatment of osteoarthritis and rheumatoid arthritis: results of 2 randomized double-blind controlled trials. J Rheumatol 2004; 31: 2121-2130

38 Thomas C, Westfall and David P. Westfall. Adrenergic receptor antagonist: Yohimbine. In: Goodman LS, Gilman AG, editors. Goodman and Gilman's the Pharmacological Bases of Therapeutics. 11th ed. New York: The McGraw-Hill Companies, Inc, 2006: 271

39 HALLER CA, Benowitz NL. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N Engl J Med 2000; 343: 1833-1838

40 Borum ML. Fulminant exacerbation of autoimmune hepatitis after the use of ma huang. Am J Gastroenterol 2001; 96: 1654-1655

41 Nadir A, Agrawal S, King PD, Marshall JB. Acute hepatitis associated with the use of a Chinese herbal product, ma-huang. Am J Gastroenterol 1996; 91: 1436-1438

42 US Food and Drug Administration. FDA Issues Regulation Prohibiting Sale of Dietary Supplements Containing Ephedrine Alkaloids and Reiterates Its Advice That Consumers Stop Using These Products. 2004 [cited 2007 8th November]; Available from: URL: http://www.fda.gov/ bbs/topics/NEWS/2004/NEW01021.html

43 Administration UFaD. Letter to Distributor on Hazardous Dietary Supplement LipoKinetix. 2001 [cited 2007 8th November]; Available from: URL: http://www.cfsan.fda.gov/ ~dms/ds-ltr26.html

44 Cohen SM, O’Connor M, Hart J, Merel NH, Te HS. Autoimmune hepatitis associated with the use of black cohosh: a case study. Menopause 2004; 11: 575-577
Levitsky J, Alli TA, Wiseacre J, Sorrell MF. Fulminant liver failure associated with the use of black cohosh. *Dig Dis Sci* 2005; 50: 536-539

Lontos S, Jones RM, Angus PW, Gow PJ. Acute liver failure associated with the use of herbal preparations containing black cohosh. *Med J Aust* 2003; 179: 390-391

Mahady GB. Black cohosh (*Actaea/Cimicifuga racemosa*): review of the clinical data for safety and efficacy in menopausal symptoms. *Treat Endocrinol* 2005; 4: 177-184

Whiting PW, Clouston A, Kerlin P. Black cohosh and other herbal remedies associated with acute hepatitis. *Med J Aust* 2002; 177: 440-443

Stedman C. Herbal hepatotoxicity. *Semin Liver Dis* 2002; 22: 195-206

Larrey D, Pageaux GP. Hepatotoxicity of herbal remedies and mushrooms. *Semin Liver Dis* 1995; 15: 183-188

Lynch CR, Folkmes ME, Hutson WR. Fulminant hepatic failure associated with the use of black cohosh: a case report. *Liver Transpl* 2006; 12: 989-992

Huntley A. The safety of black cohosh (*Actaea racemosa, Cimicifuga racemosa*). *Expert Opin Drug Saf* 2004; 3: 615-623

Mokhobo KP. Herb use and neurodegenerative hepatitis. *S Afr Med J* 1976; 50: 1096-1099

Sheikh NM, Philen RM, Love LA. Chaparral-associated hepatotoxicity. *Arch Intern Med* 1997; 157: 913-919

Nadir A, Reddy D, Van Thiel DH. Cascara sagrada-induced intrahepatic cholestasis causing portal hypertension: case report and review of herbal hepatotoxicity. *Am J Gastroenterol* 2000; 95: 3634-3637

Larrey D, Vial T, Pauwels A, Castot A, Biour M, David M, Michel H. Hepatitis after germander (*Teucrium chamaedrys*) administration: another instance of herbal hepatotoxicity. *Ann Intern Med* 1992; 117: 129-132

Mosteﬁ-Kara N, Pauwels A, Pines E, Biour M, Levy VG. Fatal hepatitis after herbal tea. *Lancet* 1992; 340: 674

Benninger J, Schneider HT, Schuppman D, Kirchner T, Hahn EG. Acute hepatitis induced by greater celandine (*Chelidonium majus*). *Gastroenterology* 1999; 117: 1234-1237

Stickel F, Poschl G, Seitz HK, Waldherr R, Hahn EG, Schuppman D. Acute hepatitis induced by Greater Celandine (*Chelidonium majus*). *Scand J Gastroenterol* 2003; 38: 565-568

Woolf GM, Petrovic LM, Rojter SE, Wainwright S, Villamil FG, Katkov WN, Micheletti P, Wanless IR, Stermitz FR, Beck JJ, Vierling JM. Acute hepatitis associated with the Chinese herbal product jin bu huan. *Ann Intern Med* 1994; 121: 729-735

Escher M, Desmeules J, Giona E, Menth G. Hepatitis associated with Kava, a herbal remedy for anxiety. *BMJ* 2001; 322: 139

Russmann S, Lauterburg BH, Helbling A. Kava hepatotoxicity. *Ann Intern Med* 2001; 135: 68-69

Stickel F, Baumuller HM, Seitz K, Vasilakis D, Seitz G, Seitz HK, Schuppman D. Hepatitis induced by Kava (*Piper methysticum rhizoma*). *J Hepatol* 2003; 39: 62-67

Millonig G, Stadtmann S, Vogel W. Herbal hepatotoxicity: acute hepatitis caused by a Noni preparation (Morinda citrifolia). *Eur J Gastroenterol Hepatol* 2005; 17: 445-447

Galloway JH, Marsh ID, Bittiner SB, Messenger AG, Gawkrodger DJ, Glet R, Forrest AR. Chinese herbs for eczema, the active compound? *Lancet* 1991; 337: 566

Anderson IB, Mullen WH, Meeker JE, Khosasteh-BakhtSC, Oishi S, Nelson SD, Blanc PD. Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. *Ann Intern Med* 1996; 124: 726-734

Bakerink JA, Gospe SM Jr, Diamand RJ, Eldridge MW. Multiple organ failure after ingestion of pennyroyal oil from herbal tea in two infants. *Pediatrics* 1996; 98: 944-947

Seybold U, Landauer N, Hillebrand S, Goebel FD. Senna-induced hepatitis in a poor metabolizer. *Ann Intern Med* 2004; 141: 650-651

Itoh S, Marutani K, Nishijima T, Matsuo S, Ihabashi M. Liver injuries induced by herbal medicine, syo-saiko-to (*xiao-chai-tang*). *Dig Dis Sci* 1995; 40: 1845-1848

Durazo FA, Lassman C, Han SH, Saab S, Lee NP, Kawano M, Saggi B, Gordon S, Farmer DG, Yersiz H, Goldstein RL, Ghobrial M, Busuttil RW. Fulminant liver failure due to usnic acid for weight loss. *Am J Gastroenterol* 2004; 99: 950-952

Sanchez W, Maple JT, Burgart LJ, Kamath PS. Severe hepatotoxicity associated with use of a dietary supplement containing usnic acid. *Mayo Clin Proc* 2006; 81: 541-544

Meneccier D, Saloum T, Dourthe PM, Bronstein JA, Thielet C, Farret O. [Acute hepatitis after phytotherapy] *Presse Med* 1999; 28: 966

S- Editor Li DL L- Editor Ma JY E- Editor Ma WH