SHORT COMMUNICATION

Received 27 August 2021 | Revised 2 September 2021 | Accepted 6 September 2021 | Published 13 September 2021

Editor: Jonas Waldenström

Diet of the introduced Gough Moorhen Gallinula comeri on Tristan da Cunha

Den introducerade goughrööhönans Gallinula comeri diet på Tristan da Cunha

Alexander L Bond1,2 & Gregory TW McClelland1,3

1 RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Sandy Bedfordshire, SG19 2DL, United Kingdom
2 Current address: Bird Group, Department of Life Sciences, The Natural History Museum, Akeman Street, Tring, Hertfordshire, HP23 6AP, United Kingdom | a.bond@nhm.ac.uk
3 Current address: Canadian Wildlife Service, Environment and Climate Change Canada, 5421 Robertson Road, Delta, British Columbia, V4K 3N2, Canada | gregory.mcclelland@canada.ca

Gough Moorhens Gallinula comeri were introduced to Tristan da Cunha in the 1950s, and are now numerous in lowland habitat, filling the ecological niche of the extinct Tristan Moorhen G. nesiotis. On their native Gough Island, moorhens have a varied diet, ranging from vegetation and fruits to scavenging and even predatory behaviour. Here, we examined the stomach contents of four birds on Tristan da Cunha to provide insight into their diet. Moorhens mostly ate vegetation, but we also recorded spiders (Arthropoda: Aranea), earthworms (Oligochaeta: Lumbricidae), remains of introduced rodents (Mus musculus), and anthropogenic debris. As on Gough Island, moorhens on Tristan have a generalist diet, and the impact of ecosystem restoration (and of the moorhens themselves) should be considered.

Keywords: predation | scavenging | generalism | endemic species | island | South Atlantic Ocean

Tristan da Cunha (37°7’S, 12°18’W) and its associated islands (Nightingale, Inaccessible, and Gough islands; Figure 1) are among the most remote in the world, and consequently have a high number of endemic species (Wace & Holdgate 1958, Holdgate 1965, Wace & Dickson 1965). Tristan is home to c. 250 residents, and is nearly circular, covering 96 km² with the conical Queen Mary’s Peak rising 2060 m. Of all the islands in the group, Tristan is geologically the most recent and only 0.2–0.5 million years old (Ryan 2007). Since human settlement in the early 19th century, an increasing number of introduced and invasive species have arrived on the island.
much of the island including the settlement plain (Richardson 1984). There was considerable debate about whether G. nesiotis and G. comeri were the same species (Broekhuysen & Macnae 1949, Eber 1961). Molecular evidence now indicates that they are indeed separate taxa and that G. nesiotis is extinct (Groenenberg et al. 2008).

The ecology of the Gough Moorhen on Tristan, however, has received scant attention with the only de–

TABLE 1. The contents of the proventriculus and gizzard (ventriculus) of four Gough Moorhens *Gallinula comeri* from Tristan da Cunha.
– Körtelmagens (proventriculus) och muskelmagens (ventriculus) innehåll i fyra goughrörhöner *Gallinula comeri* på Tristan da Cunha.

Bird characteristics	Abundance by estimated volume (%)	Notes							
Fågelegenskaper	**Uppskattad mängd som del av total volym (%)**	**Anmärkningar**							
Fågel	**Kön**	**Ålder**	**Vegetation**	**Spider**	**Earthworm**	**House mouse**	**Anthropogenic debris**	**Mänskligt avfall**	**Anmärkningar**
1 female Adult	100	0	0	0	Present	1 piece of metal foil garbage			
2 female Adult	0	0	0	0	Present	6 vertebrate bones (3 rodent, 3 unidentified)			
3 male Adult	95	5	Present	0	Present	2 small pieces of glass			
4 juvenile	90	5	5	0	0	2 små glasbitar			

likely as a result of predation by introduced cats *Felix catus* (eradicated in the early 1970s) and human persecution (Sperling 1872, Richardson 1984, Bond et al. 2019). Only two specimens exist, both in the Natural History Museum, Tring (Knox & Walters 1994, Bond et al. 2019). On Gough, the Gough Moorhen *Gallinula comeri* persists, and 2,000–3,000 pairs are found throughout the island (Watkins & Furness 1986). In 1956, six Gough Moorhens were introduced to Tristan at Sandy Point on the east coast, and they are now present through
etailed information on diet from Richardson (1984) who examined four stomachs in the early 1970s. On Gough Island, the moorhens are predatory scavengers, eating a variety of plants and invertebrates, seabird carrion and eggs, and even introduced house mice *Mus musculus* (Watkins & Furness 1986, Wanless & Wilson 2007). On Tristan, where there are significantly fewer seabirds and more introduced mammals and plants (Wace 1967, Wace & Holdgate 1976), Richardson (1984) found seeds, vegetation and gravel, but also eggshells and a cephalopod beak in 1973 and 1974. The specimens were deposited in the Natural History Museum, Tring (NHMUK 1984.7.1–4), but contain no further details of diet or stomach contents.

We examined the stomachs of four Gough Moorhens on Tristan da Cunha in the summer of 2014/2015. Birds were killed accidentally during rodent trapping at Piggibite (*n*=2) and Big Point Road (*n*=2) at 270–350 m elevation. Birds were sexed either by dissection or using measurements (Parker *et al.* 2012). The complete proventriculus and gizzard were dissected out and flushed with tap water. The contents were examined under a 10–40× dissecting microscope, and prey identified to the nearest 5% by volume.

Of the four examined, the stomach of one was empty aside from six small bones, three of which were of house mouse tail vertebrae. The remaining three had consumed predominantly vegetation, likely one of the many endemic or introduced grasses on Tristan (Ryan 2007). Two had also smaller proportions of earthworms and spiders. Two birds had also consumed anthropogenic debris, including metal foil and glass (Table 1).
There are six recorded species of earthworm (Oligochaeta: Lumbricidae) on Tristan da Cunha, all non-native and with a palearctic distribution (Reynolds & Hähn 2005). The arachnid fauna has not been thoroughly studied, but many islands in the Southern Ocean have endemic species or those associated with South America or the neotropics (Pugh 2004).

That moorhens scavenged or preyed on introduced rodents directly is not surprising, as they do the same on Gough Island where house mice are introduced; they also prey on seabird eggs and chicks (Watkins & Furness 1986, Wanless & Wilson 2007). Moorhens not only scavenge dead rodents, but also actively pursue and prey upon them (Wanless & Wilson 2007). If introduced rodents are ever eradicated from Tristan (Dawson et al. 2015, Holmes et al. 2019), and the moorhen population is to remain, a captive population will be required, as was recommended for Gough Island (Dagleish et al. 2017).

The occurrence of debris (glass and foil) in two of the stomachs is also expected. Waste on Tristan is managed by incineration at a site on the 1961 Volcano east of Edinburgh of the Seven Seas, and incomplete burning or escape from waste management streams is common. In the 1970s, one moorhen had ingested gravel (Richardson 1984), presumably as gastroliths to aid in digestion (Downs et al. 2019). This is the first occurrence of recorded debris ingested by terrestrial birds on Tristan da Cunha, where there is also a significant influx of plastics from international shipping (Ryan et al. 2019). Moorhens are widespread on Tristan, and though uncommon along the coast, can forage on beaches, and likely have territories of c. 5,000 m² (Watkins & Furness 1986).

Together, these results confirm that introduced Gough Moorhens on Tristan have similar diets to those on Gough, namely a generalist, but primarily herbivorous one with opportunistic scavenging and possibly direct predation of introduced rodents. Broader ecosystem restoration on Tristan must account for the potential impact on, and of, Gough Moorhens.

Acknowledgements

We thank the Tristan da Cunha Conservation Department, as well as the Administrator and Island Council for permission to work on Tristan, and for their support during our stay. Comments from anonymous reviewers improved this manuscript.

References

Angel A & Cooper BA. 2006. A review of the impacts of introduced rodents on the islands of Tristan da Cunha and Gough. RSPB Research Report No. 57. RSPB, Sandy, UK.
Bond AL, Carlson CJ & Burgio KR. 2019. Local extinctions of insular avifauna on the most remote inhabited island in the world. Journal of Ornithology 160: 49–60. https://doi.org/10.1007/s10336-018-1590-8
Brookhuyse GJ & Macnab W. 1949. Observations on the birds of Tristan da Cunha Islands and Gough Island in February and early March, 1948. Ardea 37: 97–113.
Caravaggi A, Cuthbert RJ, Ryan PG, Cooper J & Bond AL. 2019. The impacts of introduced House Mice on the breeding success of nesting seabirds on Gough Island. Ibis 161: 648–661. https://doi.org/10.1111/ibis.12164
Dagleish MP, Ryan PG, Girling S, Ghazali M & Bond AL. 2017. Clinical pathology of the Vulnerable Gough Moorhen (Gallinula comeri). Journal of Comparative Pathology 157: 246–255. https://doi.org/10.1016/j.jcpa.2017.08.003
Dawson J, Oppel S, Cuthbert RJ, Holmes N, Bird JP, Butchart SHM, Spatz DR & Tershy B. 2015. Prioritizing islands for the eradication of invasive vertebrates in the United Kingdom Overseas Territories. Conservation Biology 29: 143–153. https://doi.org/10.1111/cobi.12347
Dilley BJ, Davies G, Glass T, Bond AL & Ryan PG. 2020. Severe impact of introduced scale insects on Island Trees threatens endemic finches at the Tristan da Cunha archipelago. Biological Conservation 251: 108761. https://doi.org/10.1016/j.biocon.2020.108761
Downs CT, Bredin IP & Wragg PD. 2019. More than eating dirt: a review of avian geophagy. African Zoology 54: 1–19. https://doi.org/10.1080/136651702.2019.1570335
Eber G. 1961. Vergleichende untersuchungen am flugfähigen Teich­uhn Gallinula chloropus und an der flugunfähig­en Insel­rall Gallinula nesiotis. Bonner Zoologische Beitraege 12: 247–315.
Groenenberg DSJ, Beintema AJ, Dekker RWRJ & Gittenberger E. 2020. Ancient DNA elucidates the controversy about the flightless island hens (Gallinula sp.) of Tristan da Cunha. PLoS ONE 3: e1835. https://doi.org/10.1371/journal.pone.0001835
Holdgate MW. 1965. The fauna of the Tristan da Cunha islands. Philosophical Transactions of the Royal Society of London B Biological Sciences 249: 361–424. https://doi.org/10.1098/rstb.1965.0015
Holmes ND, Spatz DR, Oppel S, Tershy B, Croll DA, Keitt B, Genovesi P, Burfield UJ, Will DJ, Bond AL, Wegmann A, Aguirre-Muñoz A, Raine AF, Knapp CR, Hung C-H, Wingate D, Hagen E, Méndez-Sánchez F, Rocamora G, Yuan H-W, Fric J, Millett J, Russell J, Liske-Clark J, Vidal E, Jourdan H, Campbell K, Springer R, Swinerton K, Gibbons-Decherlong L, Langrand O, Brooke MdL, McMinn M, Bunbury N, Oliveira N, Sposimo P, Geraldes P, McClelland P, Hodum P, Ryan PG, Borroto-Páez R, Pierce R, Griffiths R, Fisher RN, Wanless R, Pasachnik SA, Cranwell S, Micel T & Butchart SHM. 2019. Globally important islands where eradicating invasive mammals will benefit highly threatened vertebrates. PLoS ONE 14: e0211218. https://doi.org/10.1371/journal.pone.0211218
Jones AG, Chown SL, Ryan PG, Gremmen NJM & Gaston KJ. 2003. A review of conservation threats on Gough Island: a cast story for terrestrial conservation in the Southern Oceans. Biological Conservation 113: 75–87. https://doi.org/10.1016/S0006-3207(02)00351-8
Svensk sammanfattning

Ögrenna Tristan da Cunha – som utöver huvudön inkluderar Nightingale Island och Inaccessible Island – samt Gough Island är en av jordens mest isolerade platser, belägen i södra Atlanten mellan Afrika och Sydamerika (figur 1). fågelfaunan har stort inslag av endemiska arter, vilken sedan koloniseringen av öarna under tidigt 1800-tal och efterföljande introduktion av invasiva arter och predatörer påverkats starkt negativt. På Tristan och Gough fanns ursprungligen flygoförmögna rörhönor, även Gough, och fler introducerade däggdjur och växter, vilket gör det troligt att födan skiljer sig mellan öarna. I samband med studier på invasiva gnagare på Tristan 2014–2015 fångades fyra goughrörhönor oavsett, vilkas sammansättning studerades.

Av de fyra undersökta fåglarna hade en fågel en relativt tom mage, som endast innehöll liten men variabel del, merare trots att detta skämte och de inte drar sig till foder. Fågelfaunan på Tristan och Gough är betydligt kändare än Gough, och har en bred diet som inkluderar växtdelar, olika rygggrads- och två av fåglarna hade konsumerat skräp i form av aluminiumfolie och glas (tabell 1). Fåglarna innehåller ett flertal andra däggmaskar och spindlar och två av fåglarna hade konsumerat skräp i form av aluminiumfolie och glas (tabell 1). Fåglarna innehåller ett flertal andra däggmaskar och spindlar och två av fåglarna hade konserverat skräp i form av aluminiumfolie och glas (tabell 1). Fåglarna innehåller ett flertal andra däggmaskar och spindlar och två av fåglarna hade konserverat skräp i form av aluminiumfolie och glas (tabell 1). Fåglarna innehåller ett flertal andra däggmaskar och spindlar och två av fåglarna hade konserverat skräp i form av aluminiumfolie och glas (tabell 1). Fåglarna innehåller ett flertal andra däggmaskar och spindlar och två av fåglarna hade konserverat skräp i form av aluminiumfolie och glas (tabell 1).
en inhägnad population goughrörhönor som försäkring ifall den vilda påverkas ytterligare negativt.

Att fåglarna konsumerat skräp kan tyckas förvånande, men faktum är att sophantering mestadels har skett genom enkel förbränning på ön, från vilken skräp kan transporterats via vatten eller vind till andra delar av ön.