Critical Tests of Unintegrated Gluon Distributions

H. Jung, A.V. Kotikov, A.V. Lipatov and N.P. Zotov

1- DESY, Hamburg, Germany
2- BLTHPH - JINR, Dubna, Russia
3- SINP - MSU, Moscow, Russia

We use the unintegrated Parton Density Functions of the gluon obtained from a fit to measurements of the structure functions $F_2(x, Q^2)$ and $F_L(x, Q^2)$ at HERA to describe the experimental data for $F_2^c(x, Q^2)$ and F_L at fixed W.

1 Introduction

The purpose of the present investigation is to study the longitudinal structure function $F_L(x, Q^2)$ as well as the charm and beauty contributions to the proton SF $F_2(x, Q^2)$ using the k_T-factorization approach of QCD [2]. The SF $F_L(x, Q^2)$ is directly connected to the gluon density in the proton. Only in the naive quark-parton-model $F_L(x, Q^2) = 0$, and becomes non-zero in pQCD. However the pQCD leads to controversial results still. It was shown recently [3], that the F_L experimental data from HERA seem to be inconsistent with some of the NLO predictions (in particular the MRST one) at small x. BFKL effects significantly improve the description of the low x data when compared to a standard NLO MS-scheme global fit. The NNLO global fit becomes better when taking into account higher order terms involving powers of $\ln(1/x)$. It means, that we need a resummation procedure.

On the other hand it is known, that the BFKL effects are taken into account from the very beginning in the k_T-factorization approach [2], which is based on the BFKL [4] or CCFM [5] evolution equations summing up the large logarithmic terms proportional to $\ln(1/x)$ or $\ln(1/(1 - x))$ in the LLA. Some applications of the k_T-factorization approach were shown in Refs. [6]. In the framework of k_T-factorization the study of the longitudinal SF F_L began already ten years ago [7], where the small x asymptotics of F_L has been evaluated, using the BFKL results. Since we want to analyze the SF data in a broader range at small x we use a more phenomenological approach in our analyses of F_2 and F_L data [8, 9]. Using the k_T-factorization approach for the description of different SF at small x we hope to obtain additional information (or restrictions), in particular, about one of the main ingredients of k_T-factorization approach - the unintegrated gluon distribution (UGD)

In the k_T-factorization the SF $F_{2,L}(x, Q^2)$ are driven at small x primarily by gluons and are related in the following way to the UGD $x A(x, k_T^2, \mu^2)$

$$F_{2,L}(x, Q^2) = \int_x^1 \frac{dz}{z} \int Q^2 \, dk_T^2 \sum_{i=u,d,s} e_i^2 \tilde{C}_{2,L}^g(x' / z, Q^2, m_i^2, k_T^2) x A(x, k_T^2, \mu^2). \quad (1)$$

The functions $\tilde{C}_{2,L}^g(x, Q^2, m_i^2, k_T^2)$ can be regarded as SF of the off-shell gluons with virtuality k_T^2 (hereafter we call them hard structure functions). They are described by the sum of the quark box (and crossed box) diagram contribution to the photon-gluon interaction.

To apply Eq.(1) for SF at low Q^2 we change the low Q^2 asymptotics of the QCD coupling constant within hard structure functions. We have used the so called "freezing" procedure
in the "soft" form, when the argument of the strong coupling constant is shifted from Q^2 to $Q^2 + M^2$ [10]. Then $\alpha_s = \alpha_s(Q^2 + M^2)$. For massless quarks $M = m_q$ and for massive ones with mass $m_Q, M = 2m_Q$.

To calculate the SF F_2^b and $F_L(x, Q^2)$ we used the hard SF $\tilde{C}^b_{2L}(x, Q^2, m^2, k_T^2)$ from Ref. [9, 11] and two UGD $A(x, k_T^2, \mu^2)$ obtained in our previous paper [13]. These UGD are determined by a convolution of the non-perturbative starting distribution $A_0(x)$ and CCFM evolution denoted by $A(x, k_T^2, \mu^2)$:

$$x A(x, k_T^2, \mu^2) = \int dz A_0(z) \frac{x}{z} A\left(\frac{x}{z}, k_T^2, \mu^2\right),$$

(2)

where

$$x A_0(x) = N x^{-B_2}(1 - x)^{C_2}(1 - D_2 x).$$

(3)

The parameters N, B_2, C_2, D_2 of A_0 were determined in the fits to F_2 and F^b_2 data [14, 15] independently (see [13]) Fig. 1 shows the two different UGD. The small x behaviour of these UGD is very different.

To calculate the SF F_2^b and $F^b_L(x, Q^2)$ we took $m_c = 1.4$ GeV and $m_b = 4.75$ GeV and used the $m^2 = 0$ limit of the above Eq. 1 to evaluate the corresponding lightquark contributions to the F^b_L. Fig. 2 shows the F^b_2 as a function of x at fixed Q^2. Fig. 3 shows the F^b_L as a function of x at fixed Q^2. Fig. 4 shows the SF $F^b_L(Q^2)$ at fixed W compared to the H1 data [18]. It is interesting to observe, that the measured F^b_2 seems to prefer the UGD obtained from the fit to F_2 and is inconsistent with the one obtained from F^b_2. Also the measured F^b_L is better described with the UGD from the F_2 fit. In summary the k_T-factorization approach with the CCFM-evolved UGD obtained from the fits to the $F_2(x, Q^2)$ data reproduces the H1 data for SF $F_2^b(x, Q^2)$, $F^b_L(x, Q^2)$ and F^b_L at fixed W (see [13]). The UGD obtained from the fit to F_2^b seems to overshoot the measured F_2^b and F^b_L at small x. New experimental data for $F^b_L(x, Q^2)$ but also more precise measurements of the heavy quark structure functions are very important for a precise determination of the UGD.

Fig. 1: UGD obtained in the fits to F^b_2 (solid curve) and F_2 (dotted curve)

[a] There is full agreement of our results with the formulae for the photoproduction of heavy quarks from Ref. [12].

[b] See also Ref. [16].

DIS 2007
Figure 2: The F_L^2 as a function of x at fixed Q^2 compared to the H1 data [15] (left panel) The solid and dotted lines are from CCFM-evolved UGD obtained from the fits to $F_2(x,Q^2)$ and $F_2^r(x,Q^2)$. The SF F_L as a function of x at fixed Q^2 compared to the H1 data [14, 17] (right panel) The solid and dotted lines are from CCFM-evolved UGD obtained from the fits to $F_2(x,Q^2)$ and $F_2^r(x,Q^2)$.

Figure 3: The Q^2 dependence of $SF F_L(Q^2)$ at fixed $W = 276$ GeV compared to the H1 data [18] The solid and dotted lines are from CCFM-evolved UGD obtained from the fits to $F_2(x,Q^2)$ and $F_2^r(x,Q^2)$.

DIS 2007
References

[1] Slides: http://indico.cern.ch/contributionDisplay.py?contribId=55&sessionId=8&confId=9499

[2] S. Catani, M. Ciafaloni and F. Hautmann, Nucl. Phys. B366 135 (1991); J.C. Collins and R.K. Ellis, Nucl. Phys. B360 3 (1991); E. Levin, M. Ryskin, Yu. Shabelski and A. Shuvaev Sov. J. Nucl. Phys. 53 657 (1991).

[3] R.S. Thorne, arXiv:hep-ph/0511351; C.D. White and R.S. Thorne, Phys. Rev. D74 014002 (2006); D75 034005 (2007).

[4] L.N. Lipatov, Sov. J. Nucl. Phys. 23 338 (1976); E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Sov. Phys. JETP 44 443 (1976); 45 199 (1977); Ya.Ya. Balitzki and L.N. Lipatov, Sov. J. Nucl. Phys. 28 822 (1978); L.N. Lipatov, Sov. Phys. JETP 63 904 (1986).

[5] M. Ciafaloni, Nucl. Phys. B296 49 (1988); S. Catani, F. Fiorani and G. Marchesini, Nucl. Phys. B336 18 (1995); G. Marchesini, Nucl. Phys. B445 49 (1995).

[6] Bo Andersson et al. (Small x Collaboration), Eur. Phys. J. C25 77 (2002); J. Andersen et al. (Small x Collaboration), Eur. Phys. J. C25 67(2002); C35 67 (2004).

[7] S. Catani and F. Hautmann, Nucl. Phys. B427 475 (1994); S. Catani, arXiv:hep-ph/9608310.

[8] B.Badelek, J.Kwiecinski and A. Stasto, Z. Phys. C74 297 (1997).

[9] A.V. Kotikov, A.V. Lipatov and N.P. Zotov, Eur. Phys. J. C26 51 (2002).

[10] N. Nikolaev and B.M. Zakharov, Z. Phys. C49 607 (1991); C53 331 (1992).

[11] A.Lipatov, A.V. Kotikov, A.V. Lipatov and N.P. Zotov, Eur. Phys. J. C25 219 (2003).

[12] S. Catani, M. Ciafaloni and F. Hautmann, Proceedings of the Workshop on Physics at HERA, Hamburg, Germany (1991), v. 2, p. 690.

[13] H. Jung, A.V. Kotikov, A.V. Lipatov and N.P. Zotov, arXiv: hep-ph/0611093.

[14] H. Collab., A. Adloff et al., Eur. Phys. J. C21 33 (2001).

[15] H. Collab., A. Adloff et al., Phys. Lett. B528 199 (2002); A. Akta et al., Eur. Phys. J. C40 349 (2005); C45 23 (2006).

[16] H. Jung, talk in HFS working group on DIS’07.

[17] H. Collab., A. Aid et al., Phys. Lett. B393 452 (1997); N. Gogitidze, J. Phys. G28 751 (2002).

[18] E.M. Lobodzinska, Proceedings of the DIS 2003, Gatchina, St. Petersburg, Russia, p. 93.