Effect of the strain on spin-valley transport properties in MoS$_2$ superlattice

Farhad Sattari1,2,* & Soghra Mirershadi3

The effect of the strain on the spin and valley dependent transport properties, including the conductance and polarization, through a monolayer MoS$_2$ superlattice under Rashba spin–orbit coupling is theoretically investigated. It is found that the conductance strongly depends on the spin and valley degrees of freedom, and spin-inversion can be achieved by MoS$_2$ superlattice. Also, the spin and valley dependent conductance in a monolayer MoS$_2$ superlattice can be efficiently adjusted via strain and the number of the superlattice barriers. Moreover, it is demonstrated that both the magnitude and sign of the spin and valley polarization depend on the strain strength, the number of barriers, and electrostatic barrier height. Both full spin and valley polarized current (with 100% or −100% efficiency) can be realized in a MoS$_2$ superlattice under strain.

In recent years, two-dimensional (2D) materials have been attracted extensive interests due to their potential applications in various research fields. Graphene1,2 is currently the most important member of the 2D materials family. Since monolayer graphene is a gapless semiconductor, it has no useful applications in the semiconductor industry, logic, and spintronic devices. Within the 2D materials, monolayer molybdenum disulfide (MoS$_2$) was successfully synthesized via several experimental techniques$^{3–7}$. Unlike graphene, the monolayer MoS$_2$ is a direct bandgap semiconductor with a tunable bandgap8. Due to the heavy transition-metal atoms, the monolayer MoS$_2$ has a strong spin–orbit coupling (SOC)9. Furthermore, in the monolayer MoS$_2$, in the Brillouin zone two inequivalent valleys (K and K$'$) are separated by a large momentum10. Additionally, due to the symmetry breaking and large SOC in the monolayer MoS$_2$, it is possible to control and tune the spin and valley polarization properties in the monolayer MoS$_2$-based systems$^{11–13}$. Moreover, the monolayer MoS$_2$ in the presence of the Rashba spin–orbit coupling (RSOC), is a fascinating material for spintronics applications. In the monolayer MoS$_2$ the RSOC can easily be induced and tuned via an external electric field14 or a ferromagnetic exchange field15. On the other hand, the electronic, optical, and transport properties of the monolayer MoS$_2$ can be modulated by applying an external strain$^{16–20}$. The strain can be induced in the MoS$_2$ sheet by substrate21 or during the CVD growth22. In recent years, electron, spin and valley-dependent transport properties were reported extensively in monolayer MoS$_2$ structures, both experimentally and theoretically$^{23–36}$. Fontana et al.23 experimentally investigated the transport properties of the electron and hole in a gated MoS$_2$ Schottky barrier and found that in this structure, the source and drain electrodes' materials are essential keys in controlling the transport through the conduction or valence band. Rotjanapittayakul et al.27 theoretically studied the magnetoresistance and spin injection in a MoS$_2$ junction, and demonstrated that a magnetoresistance and spin injection efficiency of the order of 300% and 80%, respectively, can be observed in a MoS$_2$-based tunnel junction. The effect of the Rashba spin–orbit interaction on the thermoelectric properties of monolayer MoS$_2$ nanoribbon is described in Ref. 31, in which the authors presented that the magnitude and sign of Seebeck thermopower can be tuned by adjusting the structure's parameters. Besides, the superlattices structures37 provide a new way for controlling the transport properties. Recently a great deal of attention has been addressed to the transport properties in superlattice-based 2D materials$^{38–50}$. Yu and Liu41 studied the spin transport properties through monolayer and bilayer graphene superlattice. They showed that the monolayer and bilayer graphene superlattice with zigzag boundaries could be used for perfect spin-filtering. Zhang et al.42 demonstrated that a controllable spin and valley polarized current could be obtained in a silicene superlattice in the presence of the electric and magnetic field. The effect of the strain on the electronic properties in the MoS$_2$–WSe$_2$ moiré superlattice was investigated by Waters et al.49. They found that in-plane strain and out-of-plane deformations significantly impact the MoS$_2$–WSe$_2$ moiré superlattice's...
electronic properties. In the present paper, we propose a monolayer MoS₂ superlattice in the presence of strain and RSOC in order to achieve a full spin and valley polarized current. We demonstrate that the spin and valley polarization's magnitude and sign depend on the strain strength and the superlattice parameters. The results show that the conductance dependent on the spin and valley degrees of freedom and spin-inversion can be obtained by the MoS₂ superlattice.

Model and methods

In this work, we are interested in the spin- and valley-dependent transport properties in a MoS₂ superlattice with RSOC in the presence of strain. A series of metallic gate voltages on the top of monolayer MoS₂ with a suitable substrate can be used to get a monolayer MoS₂ superlattice in the presence of RSOC and strain. In our model, the RSOC region with a gate voltage and strain (barrier region) is separated by a normal monolayer MoS₂ (N MoS₂), in which there is no RSOC and strain (well region). The schematic of our proposed device structure is shown in Fig. 1. The growth direction of the superlattice is along the x-axis. We assume that the strain is applied in the armchair direction. The strain tensor, ε, can be written as follows:

$$\epsilon = \epsilon \left(\cos^2 \alpha - \mu \sin^2 \alpha \right) \left(1 + \mu \right) \cos \alpha \sin \alpha \left(1 + \mu \right) \cos \alpha \sin \alpha \left(1 + \mu \right) \cos^2 \alpha \right),$$

where α is the angle between the x-axis and the direction of the strain. For the armchair direction strain α = 0. ε is the strain strength and μ = 0.25 is the Poisson's ratio for the MoS₂. In the considered structure, the low-energy effective Hamiltonian of the carriers near the K and K' valleys can be written as:

$$\hat{H} = \hat{H}_0 + \hat{H}_{\text{RSOC}},$$

with

$$\hat{H}_0 = h \nu_F U^\dagger(\alpha)(\eta(1-\lambda_x)k_x^{(s)}\sigma_x + (1-\lambda_y)q_y^{(s)}\sigma_y)U(\alpha) + (\Delta + \eta \lambda_z)\sigma_z + \eta \lambda \lambda + V(x)\hat{1},$$

$$\hat{H}_{\text{RSOC}} = \lambda_R (s_y \otimes \sigma_x - s_x \otimes \sigma_y),$$

$$V(x) = \begin{cases} U_0 & \text{in barrier} \\ 0 & \text{in well} \end{cases}$$

Here, $\hat{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ and $s = (s_x, s_y, s_z)$ are the Pauli matrices for the sublattice and the spin spaces, respectively. $\nu_F \approx 5.3 \times 10^6$ m/s denotes the Fermi velocity in a monolayer MoS₂, $\eta = 1/(-1)$ is the valley index ($\eta = 1$ for K and $\eta = -1$ for K' valley) and $s_z = +1(-1)$ denotes the electron with the spin-up (down). $\Delta = 833$ meV is the energy gap in the monolayer MoS₂, λ_R is RSOC strength and $\lambda = 37.5$ meV is the spin-splitting energy of the valence band caused by the spin–orbit coupling. $U(\alpha) = \text{diag}(1, e^{i\alpha})$ denotes the unitary matrix, which performs a rotation in the sublattice space and for the monolayer MoS₂ $\lambda_x = 2.2$ and $\lambda_y = -0.5\lambda$. Also, the longitudinal $k_x (k_x^{(s)})$ and the transverse $k_y (q_y)$ components of the wave vectors in the N MoS₂ regions (in the ERSOC regions) with $k (k_x^{(s)})$, respectively. k and $k_x^{(s)}$ are given by:

Figure 1. (a) Schematic representation of a monolayer MoS₂ superlattice under strain and RSOC. (b) Energy potential profile of MoS₂ superlattice with N electrostatic potential barrier.
Figure 2. The spin dependent conductance for valley K_1 as a function of strain strength (ε), for fixed $E = 1.5\Delta$, $U_0 = 3.5\Delta$, $\lambda_R = 50$ meV, $kF_0b = 5$ and $kF_0w = 3$. For (a) two barrier, (b) four barriers, and (c) eight barriers structure.

$$k = ((\eta k_x)^2 + k_y^2) = \frac{1}{\hbar v_F} \sqrt{(E - 2\eta x_2 \lambda + \Delta)(E - \Delta)},$$

$$k'_{s(\varphi)} = ((\eta k_x)^2(1 - \lambda_x \varepsilon)^2 + q_y^2(1 - \lambda_y \varepsilon)^2)$$

$$= \frac{\sqrt{(E - \Delta - U_0)(E + \Delta - U_0 - 1(-1)2\eta \lambda - 1(-1)2\eta v_F)/\hbar^2 v_F^2}}{}.$$

where, $k'_{s(\varphi)} = (1 - \lambda_x \varepsilon)^{-1}k'_{s(\varphi)} \cos \theta$ and $q_y = (1 - \lambda_y \varepsilon)^{-1}k'_{s(\varphi)} \sin \theta$. Let us now consider electrons with the angle of incidence of φ, spin s and energy E will go towards the monolayer MoS$_2$ superlattice from the left side. The spin and valley dependent wave function in the RSOC ($\psi_{s,\varphi}^{\pm}$) and the normal ($\psi_{N,s,\eta}^{\pm}$) regions can be given by:

$$\psi_{N,s,\eta}^{\mp} = ((\pm\eta k_x - ik_y), (E - \Delta)/\hbar v_F, 0, 0) e^{i(\pm k_x x + k_y y)} \times A,$$

$$\psi_{N,s,\eta}^{\pm} = (0, 0, (\pm\eta k_x - ik_y), (E - \Delta)/\hbar v_F) e^{i(\pm k_x x + k_y y)} \times A,$$

$$A = 1/\sqrt{2|k_x|^2 + k_y^2 + ((E - \Delta)/\hbar v_F)^2},$$

$$\psi_{1(s,\eta)}^{\pm} = \{(\pm(\eta k_x x + \lambda x \varepsilon)) \mp ((1 - \lambda_y \varepsilon) i q_y), (E - \Delta - U_0)/\hbar v_F, -i \times (-1)(E - \Delta - U_0)/\hbar v_F, \} \times e^{i(\pm k_x x + k_y y)} D_{1(s,\eta)},$$

$$D_{1(s,\eta)} = 1/\sqrt{2|k_x|^2 + (1 - \lambda_x \varepsilon)^2} + (q_y^2 \times (1 - \lambda_y \varepsilon)^2) + (E - \Delta - U_0)/\hbar v_F^2, \} \times q_y^2 \times (1 - \lambda_y \varepsilon)^2).$$

The spin and valley dependent transmission probability, $T_{s,\eta}^{s,\varphi}$ (with the spin $s = \uparrow, \downarrow$ to be transmitted to the spin $s' = \uparrow, \downarrow$) through the monolayer MoS$_2$ superlattice with N electrostatic barriers can obtained by applying the boundary conditions and using the transfer matrix approach. Then, the spin and valley dependent conductance of a monolayer MoS$_2$ superlattice under strain and RSOC is defined as:

$$G_{s'kl} = \frac{e^2}{h} \frac{1}{\eta} \left| \psi_{s',\eta}^{\pm} \right|^2.$$
Finally, the spin and valley polarization can be calculated by:

\[P_S = \frac{G^{\uparrow\uparrow} K_1 + G^{\downarrow\uparrow} K_1 + G^{\uparrow\downarrow} K_1 - G^{\downarrow\uparrow} K_2 - G^{\uparrow\downarrow} K_2 - G^{\downarrow\downarrow} K_1 - G^{\downarrow\downarrow} K_2}{G^{\uparrow\uparrow} K_1 + G^{\uparrow\downarrow} K_1 + G^{\downarrow\uparrow} K_1 + G^{\downarrow\downarrow} K_1 + G^{\uparrow\uparrow} K_2 + G^{\uparrow\downarrow} K_2 + G^{\downarrow\uparrow} K_2 + G^{\downarrow\downarrow} K_2} \]

(10)

\[P_V = \frac{G^{\uparrow\uparrow} K_1 + G^{\downarrow\uparrow} K_1 + G^{\uparrow\downarrow} K_1 + G^{\downarrow\downarrow} K_1 - G^{\uparrow\uparrow} K_2 - G^{\downarrow\uparrow} K_2 - G^{\uparrow\downarrow} K_2 - G^{\downarrow\downarrow} K_2}{G^{\uparrow\uparrow} K_1 + G^{\uparrow\downarrow} K_1 + G^{\downarrow\uparrow} K_1 + G^{\downarrow\downarrow} K_1 + G^{\uparrow\uparrow} K_2 + G^{\uparrow\downarrow} K_2 + G^{\downarrow\uparrow} K_2 + G^{\downarrow\downarrow} K_2} \]

(11)

Results and discussion

In the following, we consider the effect of both the strain and the RSOC on the spin and valley dependent conductance and polarization through the monolayer MoS\(_2\) superlattice, as shown in Fig. 1. Here, we fix the parameters as: \(E = 1.5\Delta, U_0 = 3.5\Delta, \lambda_R = 50\) meV, \(k_F b = 5 \) and \(k_F w = 3 \), respectively. First, we investigate the valley and spin-dependent conductance as a function of the strain strength (\(\epsilon \)). As shown in Fig. 2, the conductance for the valley \(K_1 \) depends on the spin degree of freedom and the number of the electrostatic barriers. Also for \(N > 2 \), the conductance without and with the spin-flip, shows an oscillatory behavior with respect to \(\epsilon \). Due to the strain and the normal regions’ interface, more resonant peaks appear in the conductance by increasing the number of barriers in the superlattice. It is evident from Fig. 2 that the \(G^{\uparrow\uparrow} K_1 / G_0 \) and \(G^{\downarrow\downarrow} K_1 / G_0 \) decrease by increasing the strain strength. For a large strain and when number of superlattice barriers is big enough (\(N \geq 4 \)), spin-dependent conductance tends to zero. This is due to the evanescent states in the strain region. According to Fig. 2a, it is clear that for \(\epsilon \geq 0.08 \), the value of \(G^{\uparrow\uparrow} K_1 / G_0 = 0 \) and \(G^{\uparrow\uparrow} K_1 / G_0 \). In other words, electrons could transmit through the monolayer MoS\(_2\) superlattice only with spin-flip. In this case the spin state of outgoing electrons were inverted by using monolayer MoS\(_2\) superlattice. So, the monolayer MoS\(_2\) superlattice acts as a spin inverter. The conductance for the valley \(K_2 \) is presented in Fig. 3. It is observed that for \(\epsilon > 0.04 \) the spin-dependent conductance, without and with spin-flip, in a monolayer MoS\(_2\) superlattice has a zero value due to the evanescent waves. This leads to a gap in the spin-dependent conductance with respect to the
strain strength. Furthermore, when $\varepsilon < 0.04$, the conductance depends on the spin orientation of the electrons, and for $N > 2$, $G_{\uparrow \uparrow} / G_0$ and $G_{\downarrow \downarrow} / G_0$ shows an oscillatory behavior with ε, due to the propagating states in the strain region. According to Figs. 2 and 3, in a monolayer MoS$_2$ superlattice, the conductance depends on both the spin and valley degrees of freedom. Thus, the spin and valley dependent conductance in a monolayer MoS$_2$ superlattice can easily be adjusted by the strain. The other motivation of this paper is the calculation of the valley and spin polarization in a monolayer MoS$_2$ superlattice under strain and RSOC. For this purpose, we first plot the spin polarization versus the strain strength, with a different number of barriers and several values of the height of the electrostatic potential barrier, in Fig. 4. According to Fig. 4, at first, by increasing the potential barrier’s height, the spin polarization rises and reaches a maximum value. With the further increment of the electrostatic barrier height, the sign of the spin polarization is changed. In other words, the spin polarization shows great sensitivity to the number of electrostatic barriers and the barrier height, also the magnitude and sign of the spin polarization can be effectively manipulated by adjusting the number of barriers, the height of the electrostatic barrier, and the strain. The valley polarization is plotted in Fig. 5 as a function of the strain strength with a different number of barriers and several barrier height values. As shown in Fig. 5, the valley polarization has an oscillating evolution with the strain. Also, due to the oscillatory behavior of the conductance in terms of the barrier’s height, the spin and valley dependent polarization will also show such behavior as a function of the barrier’s height. Furthermore, it is seen from Fig. 5 that the valley polarization oscillates from -1 to 1 as ε varies. By increasing the number of barriers in the MoS$_2$, more resonant peaks appear in the valley and spin dependent polarization superlattice, due to the strain and the normal regions’ interface. Consequently, the magnitude and the direction of the valley polarization can be tuned by the strain in a MoS$_2$ superlattice. A fully valley polarized current occurs when the value of valley polarization is at its maximum values (1 or -1). In this case, only the carriers from one valley (K or K’) will contribute to the conduction. Similar to the spin polarization, the number of the barriers and the barrier height are essential parameter in controlling the valley dependent transport properties in a monolayer MoS$_2$ superlattice. These results imply that the MoS$_2$ superlattice are excellent candidates for future straintronic and spintronics applications.

Conclusion

In summary, we have investigated the spin and valley-dependent transport properties in a monolayer MoS$_2$ superlattice under uniaxial strain and RSOC. We found that the strain has a significant effect on the spin and valley dependent conductance, without and with the spin-flip. Furthermore, we showed that the valley and spin dependent conductance have a gap regarding the strain, which allows the valley and spin conductance to

Figure 4. The spin polarization as a function of ε with several values of the height of the electrostatic potential barrier, for fixed $E = 1.5\Delta$, $\delta_R = 50$ meV, $k_F b = 5$ and $k_F w = 3$. For (a) two barrier, (b) four barriers, and (c) eight barriers structure.
have an on/off switching effect. More importantly, we produced both full spin and valley polarized current in a monolayer MoS2 superlattice under an armchair strain. Meanwhile, the magnitude and the direction of the valley and spin polarization can be tuned by strain, the number of electrostatic barriers, and barrier height. Our calculations indicated that the transport properties in a MoS2 superlattice under RSOC could be efficiently controlled mechanically.

Received: 6 March 2021; Accepted: 23 August 2021
Published online: 02 September 2021

References
1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
2. Gaim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
3. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).
4. Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).
5. Li, H., Wu, H., Yuan, S. & Qian, H. Synthesis and characterization of vertically standing MoS2 nanosheets. Sci. Rep. 6, 21171 (2016).
6. Sharma, M., Singh, A. & Singh, R. Monolayer MoS2 transferred on arbitrary substrates for potential use in flexible electronics. ACS Appl. Nano Mater. 3, 4445–4453 (2020).
7. Park, S. et al. Layer-selective synthesis of MoS2 and WS2 structures under ambient conditions for customized electronics. ACS Nano 14, 8485–8494 (2020).
8. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
9. Zhu, Z. Y., Cheng, Y. C. & Schwongenschlogl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).
10. Li, Z. & Carbette, J. P. Longitudinal and spin-valley Hall optical conductivity in single layer MoS2. Phys. Rev. B 86, 205425 (2012).
11. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494 (2012).
12. Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
13. Lu, H. Z., Yao, W., Xiao, D. & Shen, S. Q. Intervallevalley scattering and localization behaviors of spin-valley coupled dirac fermions. Phys. Rev. Lett. 110, 016806 (2013).
14. Shao, Q. et al. Strong Rashba-Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 16, 7514–7520 (2016).
15. Xiao, Y. M., Xu, W., Van Duppen, R. & Peeters, F. M. Infrared to terahertz optical conductivity of n-type and p-type monolayer MoS2 in the presence of Rashba spin-orbit coupling. Phys. Rev. B 94, 155432 (2016).
31. Shokri, A. & Salami, N. Thermoelectric properties in monolayer MoS2 nanoribbons with Rashba spin–orbit interaction.
26. Pawłowski, J., Żebrowski, D. & Bednarek, S. Valley qubit in a gated monolayer quantum dot.
34. Chen, W., Zhou, X., Liu, P., Xiao, X. & Zhou, G. Effect of trigonal warping on the Berry curvature and valley/spin Hall effects in
29. Roch, J. G.
17. Johari, P. & Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
ACS Nano 6, 5449–5456 (2012).
18. Chen, S. F. & Wu, Y. R. Electronic properties of MoS2 nanoribbon with strain using tight-binding method. Phys. Status Solidi B 254, 1600565 (2017).
35. Liu, R. et al. Piezotronic spin and valley transistors based on monolayer MoS2. Nano Energy 72, 104678 (2020).
30. Lin, J.
32. Liu, L., Castro, E. V. & Sacramento, P. D. Strain induced topological phase transition at zigzag edges of monolayer transition-metal dichalcogenides. Phys. Rev. B 94, 195419 (2016).
21. Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).
24. Sun, J. F. & Cheng, F. Spin and valley transport in monolayers of MoS2. Nano Lett. 15, 133703 (2014).
19. Liu, R. & Zbiri, H. Electron–hole transport and photovoltaic effect in gated MoS2, Schottky junctions. Sci. Rep. 3, 1634 (2013).
36. Wang, K.
18. Chen, S. F. & Wu, Y. R. Electronic properties of MoS2 nanoribbon with strain using tight-binding method. Appl. Surf. Sci. 308, 145126 (2020).
37. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors.
40. Niu, Z. P., Zhang, Y. M. & Dong, S. Enhanced valley-resolved thermoelectric transport in a magnetic silicene superlattice.
42. Zhang, Q., Chan, K. S. & Li, J. Electrically controllable sudden reversals in spin and valley polarization in silicene.
27. Rotjanapittayakul, W., Pijitrojana, W., Archer, T., Sanvito, S. & Prasongkit, J.
20. Li, L., Castro, E. V. & Sacramento, P. D. Strain induced topological phase transition at zigzag edges of monolayer transition-metal
dichalcogenides. Phys. Rev. B 97, 155442 (2018).
28. Riccardo, P. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).
23. Roch, J. G. et al. Spin-polarized electrons in monolayer MoS2. Nat. Nanotechnol. 14, 432–436 (2019).
20. Li, L., Castro, E. V. & Sacramento, P. D. Strain induced topological phase transition at zigzag edges of monolayer transition-metal
dichalcogenides. Phys. Rev. B 101, 085425 (2020).
29. Chen, W., Zhou, X., Liu, P., Xiao, X. & Zhou, G. Effect of trigonal warping on the Berry curvature and valley/spin Hall effects in
monolayer MoS2. Phys. Rev. Lett. 134, 126434 (2020).
31. Kim, T., Fan, S., Lee, S., Joo, M. K. & Lee, Y. H. High-mobility junction field-effect transistor via graphene/MoS2 heterointerface.
Sci. Rep. 10, 13101 (2020).
32. Wang, K. et al. Polarization-driven edge-state transport in transition-metal dichalcogenides. Phys. Rev. Appl. 15, 044074 (2020).
33. Esaki, L. & Tsu, R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61 (1970).
34. Park, C. H. et al. Anisotropic behaviors of massless Dirac fermions in graphene under periodic potential. Nat. Phys. 4, 213 (2008).
35. Li, X., Zhang, F., Niu, Q. & Feng, J. Superlattice valley engineering for designer topological insulators. Sci. Rep. 4, 6397 (2014).
36. Niu, Z. P., Zhang, Y. M. & Dongh, S. Enhanced valley-resolved thermoelectric transport in a magnetic silicene superlattice. New J. Phys. 17, 073026 (2015).
37. Yu, H. & Liu, J. F. Perfect Spin-filtering in graphene monolayer-bilayer superlattice with zigzag boundaries. Sci. Rep. 6, 25361 (2016).
38. Zhang, Q., Chan, K. S. & Li, J. Electrically controllable sudden reversals in spin and valley polarization in silicene. Sci. Rep. 6, 33701 (2016).
39. Briones-Torres, J. A. & Rodriguez-Vargas, I. Fano resonances in bilayer graphene superlattices. Sci. Rep. 7, 16708 (2017).
40. Zhang, Y., Kim, Y., Gilbert, M. J. & Mason, N. Magnetotransport in a strain superlattice of graphene. Appl. Phys. Lett. 115, 143508 (2019).
41. Huber, R. et al. Gate-tunable two-dimensional superlattices in graphene. Nano Lett. 20, 8046–8052 (2020).
42. Chen, H. H. et al. Tunable photoelectric properties of hydrogenated silicene/halogenated-silicene superlattices for water splitting. J. Appl. Phys. 127, 084301 (2020).
43. Wang, J. I., Liu, S., Wang, J. & Liu, J. F. Valley supercurrent in the Kekulé graphene superlattice heterojunction. Phys. Rev B 101, 245428 (2020).
44. Kraft, R. et al. Anomalous cyclotron motion in graphene superlattice cavities. Phys. Rev. Lett. 125, 217701 (2020).
45. Waters, D. & Zhu, X. Flat bands and mechanical deformation effects in the moiré superlattice of MoS2–WSe2 heterobilayers. ACS Nano 14, 7564–7573 (2020).
46. Tavakoli, F., Faizabadi, E., Elahi, S. M. & Hantehzadeh, M. Spin-polarization and spin-flip through a monolayer MoS2 superlattice via the Rashba effect. J. Comput. Electron 20, 126–134 (2021).
47. Guzman, D. M. & Strachan, A. Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study. J. Appl. Phys. 115, 243701 (2014).
48. Chen, X., Deng, Z. Y. & Ban, Y. Delay time and Hartman effect in strain engineered graphene. J. Appl. Phys. 115, 173703 (2014).
49. Yarmohammadi, M. The effects of strain on DC transverse and spin-valley Hall conductivity of ferromagnetic MoS2 and silicene. J. Magn. Magn. Mater. 426, 621–628 (2017).
50. Bui, C. & Zhang, X. Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B 76, 075430 (2007).
51. Abedpour, N., Esmailpour, A., Asgari, R. & Tabar, M. R. R. Conductance of a disordered graphene superlattice. Phys. Rev B 79, 165412 (2009).
52. Böttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761 (1986).
53. Li, H., Shao, J., Yao, D. & Yang, G. Gate-voltage-controlled spin and valley polarization transport in a normal/ferromagnetic/normal MoS2 junction. ACS Appl. Mater. Interfaces 6, 1759–1764 (2014).

Author contributions
All authors conceived the study. F.S. performed the numerical calculations. S.M. wrote the main manuscript text. All authors have contributed in analyzing the results and preparing the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.S.

Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021