The Relationship Between Lower Limb Bone and Muscle in Military Recruits, Response to Physical Training, and Influence of Smoking Status

Zudin Puthucheary1,2, Mehdi Kordi3, Jai Rawal1, Kyriacos I. Eleftheriou4, John Payne5 & Hugh E. Montgomery1

1UCL Institute for Human Health and Performance, and NIHR University College London Hospitals Biomedical Research Centre, London, UK, 2Division of Respiratory and Critical Care Medicine, University Medicine Cluster, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 3English Institute of Sport, Manchester; and Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK, 4Hippocrates Private Hospital, Psaron 6-12, Engomi 2408, Nicosia, Cyprus, 5Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Clydebank, Glasgow, UK.

The relationship between bone and skeletal muscle mass may be affected by physical training. No studies have prospectively examined the bone and skeletal muscle responses to a short controlled exercise-training programme. We hypothesised that a short exercise-training period would affect muscle and bone mass together. Methods: Femoral bone and Rectus femoris Volumes (RFVOL) were determined by magnetic resonance imaging in 215 healthy army recruits, and bone mineral density (BMD) by Dual X-Ray Absorptiometry (DXA) and repeated after 12 weeks of regulated physical training. Results: Pre-training, RFVOL was smaller in smokers than non-smokers (100.9 ± 20.2 vs. 108.7 ± 24.5, p = 0.018; 96.2 ± 16.9 vs. 104.8 ± 21.3, p = 0.002 for dominant/non-dominant limbs), although increases in RFVOL with training (of 14.2 ± 14.5% and 13.2 ± 15.6% respectively, p < 0.001) were independent of prior smoking status.

Pre-training RFVOL was related to bone cortical volume (r² = 0.21 and 0.30, p < 0.001 for dominant and non-dominant legs), and specifically to periosteal (r² = 0.21 and 0.23, p < 0.001) volume. Pre-training dominant RFVOL was independently associated with Total Hip BMD (p < 0.001). Training-related increases in RFVOL and bone volumes were related. Whilst smokers demonstrated lower muscle mass than non-smokers, differences were abolished with training. Training-related increases in muscle mass were related to increases in periosteal bone volume in both dominant and non-dominant legs.

Human regional muscle mass and strength have been shown to be related to local bone mineral density (BMD) and mass in several cross-sectional studies. Proximally, the dry weight of the human fourth lumbar vertebra correlates strongly with psoas muscle mass and back extensor muscle strength correlates with lumbar BMD in postmenopausal women. In limbs, hamstring torque is associated with femoral BMD in younger women, and upper limb lean mass with upper arm bone mass in hemiparetic patients. Local muscle mass and BMD may be better correlated than those at more distant sites, though distant correlation do exist. The ratio of total muscle weight to total bone weight varies little at autopsy. The relationship between local muscle strength and BMD is, however, weaker in more intensively active young men.

Prospective human data also support a relationship between bone mineralization and mass, with skeletal muscle mass. In response to short-term (8 month) loading, both muscle mass and bone mineral content increase in young males. In the longer term, both muscle and bone mass increase in patients with rheumatoid arthritis over a 2-year strength training programme, whilst the increase in lean muscle mass was the best predictor of gain in femoral bone content and density in exercising prepubertal males over 3 years.

The relationship between muscle and bone mass may be explained in a number of ways. Firstly, Wolff’s Law suggests that bones constantly remodel in response to alterations in their environmental mechanical load. Thus, skeletal muscle contraction during exercise will cause it to grow, whilst applying forces...
trophic to bone. These latter effects may supplement other trophic effects on bone which result from direct loading (e.g. ground force). Such effects might account for regional and sport-specific differences in bone mineralisation.

Secondly, the ‘Mechanostat Theory’ proposes that the skeleton adapts to the increasing mechanical loads imposed by muscle growing in response to exercise. In support, pubertal gains in BMD are related to those in lean body mass and their velocity of attainment, and generally precede them. However, studies of the dominant and non-dominant arms of tennis players suggest that other factors are involved.

Finally, variation in genes which influence both bone and muscle responses may partly account for their similar responses to exertional load, especially given that muscle cells and osteoblasts share a common mesenchymal precursor. Both human and murine studies are supportive of such a shared genetic influence. Whilst major loci with such influence have yet to be identified, efforts to identify them have been strongly endorsed.

Environmental factors such as tobacco smoking have been associated with bone and muscle loss in older populations. However, no studies have explored the impact of short-term physical training on the relationship between skeletal muscle and bone mass. Nor has the impact of training on this relationship been explored using high resolution measures of muscle growth and bone morphology in one anatomical region. The influence of environmental factors (alcohol and smoking) on this relationship likewise remains unexplored. We thus sought to perform such a study, examining the relationship between rectus femoris muscle growth and changes in femoral BMD and geometry in young male military recruits exposed to an identical programme of physical training. Given that both smoking and alcohol intake may affect skeletal muscle and bone mass, we also explored their influence of smoking habit and alcohol consumption on these measures.

We have previously reported the impact of environmental and lifestyle factors, and the impact of physical training, on the femoral bone phenotypes of consecutive Caucasian males recruited to the British Army Training Regiment. In this regard, we have now performed a new analysis of acquired images to quantify skeletal muscle volumes in this region, reporting for the first time data relating to skeletal muscle growth in these subjects. We have hence performed novel analysis of the relationship between such growth and remodeling of the femur in the same region.

Table 1 | Baseline anthropomorphic, smoking, alcohol and weight bearing exercise data for the overall cohort and the muscle analysis subset.

	Overall cohort (n = 399)	Muscle analysis subset (n = 215)	P value
Age	19.9 (2.3)	20.0 (2.3)	0.659
Height	178.1 (6.2)	178.2 (5.9)	0.842
Weight	73.7 (9.9)	73.8 (9.7)	0.810
Smoking status			0.999
Non-smokers	278	142	
Ex-smokers	95	62	
Current smokers	26	11	
Alcohol			0.994
Non-drinkers	99	43	
Low	129	76	
Moderate	132	75	
High	33	19	
Weight Bearing			0.988
Low	135	68	
Moderate	111	65	
High	24	11	

Methods

The study had appropriate ethics approval from the Defence Medical Services Clinical Research Committee (DMSCRC), and was carried out in accordance with DMSCRC guidelines and regulation on human research, and met the ethical standards of the 1964 Declaration of Helsinki. Written informed consent was obtained from all subjects. The study structure has been previously described in detail, but key elements are reiterated or summarised below.

Subjects. Subjects were drawn from consecutive Caucasian male recruits to the Army Training Regiment, Lichfield, United Kingdom over a 21-month period. Intakes vary in size and timing, but on average some 20 or more individuals enter training every two weeks. Training structure did not change over this timescale. All were free of medication and of significant self-reported or clinically evident musculoskeletal, cardiovascular or renal disease. Height, weight and leg dominance (ball-kicking) were documented at entry, and prior to any formal exercise training being undertaken. Lifestyle factors were documented by self-assessment questionnaire: Smoking status (non-, current-, long-term ex- [quitting ≥6 months prior to enrolment], and recent ex-smoker [quit ≤6 months prior to enrolment]) and habitual alcohol consumption (no, low [1–9], moderate [12–21] or high [≥21] units wk⁻¹ intake) were...
Table 2 | Comparison between total sample set (Lichfield bone study) and nested cohort. Data shown here are pre training, except when Δ is used, indicating change with training. Bone volumes are in mm³, and Bone Mineral Density (BMD) g/cm². P values are for unpaired 2 tailed Student’s t Test except for # where Wilcoxon signed rank test was used.

	Baseline in overall study (n = 399)	Baseline in muscle analysis subset (n = 215)	Change in overall study with training (n = 399)	Change in muscle analysis subset with training (n = 215)	P value
Cortical Volume	20299 ± 2505	20258 ± 2451	0.896 ± 0.17	1.96 ± 0.17	0.851
Endosteal Volume	6136 ± 1876	6147 ± 1839	0.973 ± 0.17	−14 ± 0.66	0.639
Periosteal Volume	26435 ± 3229	26405 ± 2988	0.902 ± 0.17	181 ± 0.83	0.853
Total Hip BMD#	1.08 ± 0.134	1.07 ± 0.13	0.490 ± 0.19	0.019 ± 0.03	0.870
Femoral neck BMD	0.98 ± 0.134	0.97 ± 0.13	0.561 ± 0.01	0.01 ± 0.03	0.609
Proximal Femur BMD	1.23 ± 0.15	1.24 ± 0.16	0.594 ± 0.02	0.02 ± 0.04	0.805
Trochanteric BMD	0.83 ± 0.11	0.84 ± 0.12	0.349 ± 0.02	0.02 ± 0.02	0.785
Wards area BMD	0.87 ± 0.14	0.89 ± 0.15	0.413 ± 0.02	0.02 ± 0.04	0.498

Figure 2 | Change in rectus femoris muscle volume with military training, in dominant and non-dominant limbs. * denotes p < 0.05. Box and Whisker plots are of median and range.

Results

Seven hundred and twenty-three subjects entered the study, 399 of whom had paired MRI images suitable for assessment of bone morphometry. Of these, image quality was suitable for muscle analysis in 215, whose baseline anthropomorphic measurements (age 20.0 ± 2.3 years, height 178.1 ± 5.9 centimetres (cm), weight 73.8 ± 9.7 kilograms (kg), body mass index (BMI) 23.2 ± 2.6) did not differ from the 184 whose muscles were not analysed (p > 0.20 in all cases) (Table 1). One hundred and eighty-two of these also had BMD data available (Figure 1).

Bone Phenotypes

Bone volume data at entry (Table 2) were representative of the larger sample set from which they were drawn (p > 0.2 for all measures), and were not related to age, weight or BMI (p > 0.2). Correlations were seen between height and all bone volumes (periosteal volume r² = 0.27, endosteal...
compared to non-smokers in both the dominant (100.9 ± 21.5, p = 0.001) and non-dominant limbs (100.3 ± 19.5, p = 0.001). In the larger cohort (n = 723), we had previously shown past exercise burden to be associated with greater cortical and periosteal bone volume\(^2\). In this smaller subset (likely due to subsequently reduced power), no relationship was seen with smoking, exercise or alcohol history (p > 0.2).

Both PV and CV increased with training (P < 0.001) and to a similar degree in both legs, whilst EV did not alter (P = 0.66, Table 2). The change in CV and PV were related to subject height (r\(^2\) = 0.02, p = 0.05 in each case).

Femoral BMD data were also consistent with the larger sample set from which they were drawn\(^1\) (p > 0.2 for all measures), and rose with training in all areas assessed (Table 2).

Muscle Volumes. Prior to training, *rectus femoris* volume (RF\(_{VOL}\)) was greater for the dominant than non-dominant legs (104.5 ± 22.3 mm\(^3\) vs. 100.3 ± 19.5 mm\(^3\), p = 0.02). RF\(_{VOL}\) in both legs were associated with height (dominant r\(^2\) = 0.1, p < 0.001, non-dominant r\(^2\) = 0.1, p < 0.001) and weight (dominant r\(^2\) = 0.241, p < 0.001; non-dominant r\(^2\) = 0.243, p < 0.001), and thus with BMI (dominant r\(^2\) = 0.16, p < 0.001, non-dominant r\(^2\) = 0.16, p < 0.001). In both dominant and non-dominant limbs, RF\(_{VOL}\) was unrelated to category of alcohol intake or (in the 144 for whom relevant data were available) to history of past exercise. However, RF\(_{VOL}\) was smaller in those with a positive smoking history when compared to non-smokers in both the dominant (100.9 ± 20.2 vs. 108.7 ± 24.5, p = 0.018) and non-dominant (96.2 ± 16.9 vs. 104.8 ± 21.3, p = 0.002) limbs. This association was still present once corrected for BMI (dominant p = 0.035, non-dominant p = 0.006).

In response to training, RF\(_{VOL}\) increased in both dominant (104.5 ± 22.3 to 117.6 ± 21.5, p < 0.001) and non-dominant (100.3 ± 19.6 to 112.5 ± 21.3, p < 0.001) limbs (figure 2), a rise of 14.2 ± 21.5, p = 0.001 for both limbs). The same held true in the non-dominant leg (r\(^2\) = 0.30, p < 0.001; r\(^2\) = 0.23, p < 0.001; r\(^2\) = 0.00, p = 0.41 for relationship with cortical, periosteal and endosteal volumes respectively).

RF\(_{VOL}\) was associated with all measures of femoral BMD, of all 4 parts of the femur measured, but only with Total Hip BMD after multivariate linear regression (p < 0.001, Table 3).

The association between RF\(_{VOL}\) and Total Hip BMD was independent of smoking history. Associations were seen within all levels of alcohol intake (all p < 0.05) except for abstinence (p > 0.2). Total Hip BMD was associated with RF\(_{VOL}\) in those with low weight bearing activity variable relationships (r\(^2\) = 0.27, p < 0.001) levels but not high (r\(^2\) = 0.35, p = 0.054). When corrected for BMI, RF\(_{VOL}\) remained associated with cortical bone volume (n = 173, r\(^2\) = 0.09, p < 0.001) and with Total Hip BMD (n = 183, r\(^2\) = 0.17, p < 0.001).

Bone-Muscle Relationships. Baseline values. At baseline, dominant leg RF\(_{VOL}\) was related to bone cortical volume (r\(^2\) = 0.21, p < 0.001), likely resulting from an association with periosteal volume (r\(^2\) = 0.21, p < 0.001) rather than endosteal volume (r\(^2\) = 0.01, p = 0.22).

The association between RF\(_{VOL}\) and Total Hip BMD was independent of past exercise. However, RF\(_{VOL}\) was unrelated to category of alcohol intake or (in the 144 for whom relevant data were available) to history of past exercise. However, RF\(_{VOL}\) was smaller in those with a positive smoking history when compared to non-smokers in both the dominant (100.9 ± 20.2 vs. 108.7 ± 24.5, p = 0.018) and non-dominant (96.2 ± 16.9 vs. 104.8 ± 21.3, p = 0.002) limbs. This association was still present once corrected for BMI (dominant p = 0.035, non-dominant p = 0.006).

In response to training, RF\(_{VOL}\) increased in both dominant (104.5 ± 22.3 to 117.6 ± 21.5, p < 0.001) and non-dominant (100.3 ± 19.6 to 112.5 ± 21.3, p < 0.001) limbs (figure 2), a rise of 14.2 ± 21.5, p = 0.001 for both limbs). The same held true in the non-dominant leg (r\(^2\) = 0.30, p < 0.001; r\(^2\) = 0.23, p < 0.001; r\(^2\) = 0.00, p = 0.41 for relationship with cortical, periosteal and endosteal volumes respectively).

We also assessed the relation of RF\(_{VOL}\) with %ΔRF\(_{VOL}\) and %Δbone volume and log\(_{10}\) [bone mineral density]. *Denotes p < 0.05.

Variable	Slope	95% CI	Intercept	R\(^2\)	P value	Slope	Beta	P value
Total Hip	0.258	−0.640−0.345	−0.493	0.21	<0.001*	1.331	0.760	<0.001*
Femoral Neck	0.243	−0.669−0.342	−0.568	0.16	<0.001*	0.567	0.034	<0.001*
Trochanter	0.240	−0.738−0.398	−0.567	0.14	<0.001*	0.14	0.019	<0.001*
Proximal Femur	0.265	−0.595−0.295	−0.445	0.21	<0.001*	0.21	0.013	<0.001*
Wards Area	0.271	−0.817	−0.609	0.13	<0.001*	0.13	0.013	<0.001*

Table 3 | Univariate and multivariate analysis of log\(_{10}\) [pre-training *rectus femoris* volume] and log\(_{10}\) [bone mineral density]. *Denotes p < 0.05

Table 4 | Univariate analysis of log\(_{10}\) [percentage change in *Rectus femoris* volume and] and log\(_{10}\) [bone volumes]. *Denotes p < 0.05
Discussion

In this prospective study of regional bone and muscle mass, muscle volume was related to bone mineral density and volume, both at baseline and in response to training.

Prior to training, *rectus femoris* volume was greater for the dominant than non-dominant limb and positively associated with height and weight (and thus BMI). Training-related increases in RFVOL in the dominant and non-dominant limbs were highly correlated, and only initial RFVOL appeared an independent determinant of muscle response to training.

Height correlated with all bone volumes at entry and with their training-related change, albeit that the proportion of variation attributable to height was low (r² variably 0.02–0.27). Similarly, height and weight (and thus BMI) also correlated with initial muscle volumes, but again accounted for a limited proportion of variation in these phenotypes (r² = 0.10, 0.24 and 0.16 respectively). Impacts on change in muscle volume were smaller still, given r² values of 0.26–0.32, although initial muscle volume perhaps exerted a greater influence on such change (r² = 0.13–16).

In terms of the relationships between muscle and bone volumes, similar associations (again accounting for small proportions in phenotypic variation) were observed (r² = 0.01–0.30). Likewise, contributions of muscle volume to variance in BMD were small (given r² = 0.17) and smaller still when the association of %ARFVOL with BMD was addressed (r² = 0.049).

The relationship between changes in muscle and bone volumes was stronger for moderate than low habitual activity (r² = 0.20, and 0.3 respectively) - and very strong in the dominant leg of those of high activity status (r² = 0.56).

Whilst the observations that muscle volume is related to BMI and is greater in the dominant limb, and that the growth responses in both limbs are correlated, are perhaps unsurprising, other observations are of greater interest. RFVOL was smaller in smokers than non-smokers even after adjustment for BMI. Ours is the first study to confirm a relationship between smoking history and reduced muscle mass in young healthy individuals. Data from an Italian study did perhaps suggest this association, but failed to reach statistical significance. Nonetheless, the observation is in keeping with the association of smoking-related chronic lung disease (obstructive pulmonary disease, COPD) with reduced muscle mass and with muscle damage independent of disease severity and treatment. It is also consistent with reduced measures of muscle strength, and with the increased prevalence of sarcopenia amongst elderly smokers. Further, the association is biologically plausible: fractional protein synthesis rates are lower in the skeletal muscle of smokers, and are associated with increased expression of (growth-inhibiting) Myostatin and members of the protein catabolic pathway as Atrogin-1. Whether the lack of relationship between RFVOL response to training and smoking history reflects a lack of biological effect, the magnitude of training response exceeding that of smoking (making our study underpowered to detect an effect), or the consequence of smoking habit changing substantially during the training period, cannot be determined.

Prior to training, RFVOL was related to both bone mineral density and bone geometry. It was related to bone cortical volume in both the dominant and non-dominant legs, and specifically to periosteal rather than endosteal volume. Such bone geometric change is likely to increase bone strength, meaning that both bone and muscle strength are related. Such findings support a relationship between bone geometry and muscle mass. A similar relationship with Total Hip BMD remained after multivariate linear regression. Such data are consistent with those reported by others: muscle wasting and loss of bone cortical thickness follow motor paresis in rats and bone weight in kittens. Human regional muscle mass and bone mass and BMD are related, whilst global muscle mass correlates with BMD at diverse sites and the ratio of total muscle weight to total bone weight varies little.

The bone and muscle responses to training were also related. Except for cortical volume in the non-dominant leg, training-related change in RFVOL was related to increases in all bone volumes in both legs. No associations were seen between change in RFVOL and change in bone mineral density.

These data support the co-regulation of human bone and muscle mass and architecture. They do not offer insight into whether these result from a response to shared loading stimuli, from the influence of skeletal muscle contractile force on bone, or from the influence of common genetic variants on both tissues. However, the training-related changes in periosteal (but not endostial) bone volume which we describe are consistent with those in the larger study from which this sample was drawn. Such changes might be more consistent with a response to muscular loading of bone, rather than gravitational. Genetic analysis would also offer further insight into the mechanisms of co-regulation.

Both muscular and gravitational loadings are likely to have been similar across individuals, and any differences irrelevant to the interpretation of results (which related to within-individual associations between muscle and bone).

A limitation in our analysis might be that we did not measure the volume of the whole RF muscle, but rather used a ten-slice sum as a proxy for this. Such an approach is valid: even single slice cross-sectional area measurements correlate very well with total RF muscle volume, and such single-slice measures are of proven functional relevance. We should thus emphasise that ‘whole RF volume’ is not reported, and that the sum-of-slices, which we report, must, per force, represent an underestimate of that total volume. Further, it is possible that growth responses in more distal muscle regions might have differed slightly from that in the proximal 20 cm region we analysed.

In summary, we have performed the first large-scale human prospective study to investigate the relationship between regional bone architecture/BMD and muscle mass. We report, for the first time, that thigh muscle mass is lower in young healthy male smokers than in non-smokers. We found muscle volume to be related to femoral periosteal bone volume and bone mineral density. Training-related increases in muscle and bone volume were related.

1. Doyle, F., Brown, J. & Lachance, C. Relation between bone mass and muscle weight. The *Lancet* 295, 391–393, doi:10.1016/S0140-6736(70)91520-5 (1970).
2. Sinaki, M., McPhee, M. C., Hodgson, S. F., Merritt, J. M. & Offord, K. P. Relationship between bone mineral density of spine and strength of back extensors in healthy postmenopausal women. *Mayo Clin Proc* 61, 116–122 (1986).
3. Hyakutake, S., Goto, S., Yamagata, M. & Moriya, H. Relationship between bone mineral density of the proximal femur and lumbar spine and quadriceps and hamstrings torque in healthy Japanese subjects. *Calcif Tissue Int* 55, 223–229 (1994).
4. Pang, M. Y. C. & Eng, J. J. Muscle strength is a determinant of bone mineral content in the hemiparetic upper extremity: Implications for stroke rehabilitation. *Bone* 37, 103–111, doi:10.1016/j.bone.2005.03.009 (2005).
5. Nordstrom, P., Thorsen, K., Nordstrom, G., Bergstrom, E. & Lorenzont, R. Bone mass, muscle mass, and different body constitutional parameters in adolescent boys with a low or moderate exercise level. *Bone* 17, 351–356, doi:10.1016/S87563289(00)02405 (1995).
6. Szulc, P., Beck, T. J., Marchand, F. & Delmas, P. D. Low Skeletal Muscle Mass Is Associated With Poor Structural Parameters of Bone and Impaired Balance in Elderly Men—The MINOS Study. *J Clin Bone Miner Res 10*, 721–729, doi:10.1359/jbmr.041230 (2005).
7. Forbes, R. M., Cooper, A. R. & Mitchell, H. H. The composition of the adult human body as determined by chemical analysis. *J Biol Chem* 230, 359–366 (1953).
8. Cooper, A. R., Forbes, R. M. & Mitchell, H. H. Further studies on the gross composition and mineral elements of the adult human body. *J Biol Chem* 223, 969–975 (1956).
9. Nordstrom, P., Thorsen, K., Bergstrom, E. & Lorenzont, R. High bone mass and altered relationships between bone mass, muscle strength, and body constitution...
in adolescent boys on a high level of physical activity. Bone 19, 189–195, doi:10.1016/S87832880(63)81596-0 (1996).

10. Weeks, B. K., Young, C. M. & Beck, B. R. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and girls: the POWER PE study. J Bone Miner Res 23, 1002–1011, doi:10.1359/jbmr.080226 (2008).

11. Hakkinen, A., Sorkka, T., Kotaniemi, A. & Hannonen, P. A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis. Arthritis Rheum 44, 515–522, doi:10.1002/art.1920311443 (2000).

12. Vicente-Rodriguez, G., Ara, I., Perez-Gomez, J., Dorado, C. & Calbet, J. A. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med 43, 611–616, doi:10.1136/bjsm.2004.014431 (2005).

13. Chen, J. H., Liu, C., You, L. & Simmons, C. A. Boning up on Wolff’s Law: Genetic and environmental correlations between bone geometric parameters and total body lean mass. J Bone Miner Res 29, 1547–1551, doi:10.1359/jbmr.1997.12.10.1547 (1997).

14. Rauch, F. & Schonau, E. The ‘muscle–bone unit’ in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 293, E843–848, doi:10.1359/jpeme.2007.10.1152/apendo.00301.2007 (2007).

15. Frost, H. M. Muscle, bone, and the Utah paradigm: a 1999 overview. J Bone Miner Res 2004, 281–287, doi:10.1002/jbmr.00306450-200109000-00003 (2001).

16. Exen, H. M. Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc 32, 911–917 (2000).

17. Burr, D. B. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12, 1547–1551, doi:10.1359/jbmr.1997.12.10.1547 (1997).

18. Rauch, F. & Schonau, E. The developing bone: slave or master of its cells and molecules? Pediatr Res 50, 309–314, doi:10.1203/00006450-200109000-00003 (2001).

19. Petersen, A. M. The influence of sex hormones on the bony changes occurring in paralysed limbs. J Endocrinol 11, 66–70 (1954).

20. Walton, J. M., Roberts, N. & Whitehouse, G. H. Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med 31, 59–64 (1997).

21. Mathur, S., Takai, K. P., MacIntyre, D. L. & Reid, D. Estimation of thigh muscle mass with magnetic resonance imaging in older adults and people with chronic obstructive pulmonary disease. Phys Ther 88, 219–230 (2008).

22. Seymour, J. M. et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J 5, 226–231 (1992).

23. Sarianna, S. & Harri, S. Ultrasound imaging of the quadriceps muscle in elderly patients. Thorax 64, 418 (2009).

24. Karasik, D. et al. The Relationship between cigarette smoking and muscle strength in elderly athletes and untrained men. Muscle Nerve 14, 527–533 (1991).

25. Puthucheary, Z. A. et al. Acute skeletal muscle wasting in critical illness. JAMA 310, 1591–1600, doi:10.1001/jama.2013.278481 (2013).

Acknowledgments
Mr LE James acquired the lower limb images used in this analysis. We thank the staff and recruits of ATR Basingbourn, UK. We acknowledge the support of NIHR University College London Hospitals Biomedical Research Centre in supporting this work.

Author contributions
Z.P. and H.M. wrote the main text, Z.P., M.K. and J.R. performed data analysis, K.E., J.P. and Z.P. and H.M. wrote the main text, Z.P., M.K. and J.R. performed data analysis, K.E., J.P. and H.M. conceived, designed and implemented the study. All authors reviewed and approved the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Puthucheary, Z. et al. The Relationship Between Lower Limb Bone and Muscle in Military Recruits, Response to Physical Training, and Influence of Smoking Status. Sci. Rep. 5, 9323; DOI:10.1038/srep09323 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/