THE NEW \textit{ν–metric} INDUCES THE CLASSICAL GAP TOPOLOGY

\textbf{AMOL SASANE}

\textit{Abstract.} Let \mathcal{A}_+ denote the set of Laplace transforms of complex Borel measures μ on $[0, +\infty)$ such that μ does not have a singular non-atomic part. In [1], an extension of the classical ν-metric of Vinnicombe was given, which allowed one to address robust stabilization problems for unstable plants over \mathcal{A}_+. In this article, we show that this new ν-metric gives a topology on unstable plants which coincides with the classical gap topology for unstable plants over \mathcal{A}_+ with a single input and a single output.

\textit{Mathematics subject classification (2010):} Primary 93B36; Secondary 93D15, 46J15.

\textit{Keywords and phrases:} ν-metric, robust control, Banach algebras.

\section*{REFERENCES}

[1] J. A. BALL AND A. J. SASANE, \textit{Extension of the ν-metric}, Complex Analysis and Operator Theory, to appear.
[2] A. BRUDNYI AND A. J. SASANE, \textit{Sufficient conditions for the projective freeness of Banach algebras}, Journal of Functional Analysis, in press.
[3] A. BÖTTCHER AND B. SILBERMANN, \textit{Analysis of Toeplitz operators}, Springer-Verlag, Berlin, 1990.
[4] R. G. DOUGLAS, \textit{On the C^*-algebra of a one-parameter semigroup of isometries}, Acta Mathematica \textbf{128}, 3–4 (1972), 143–151.
[5] R. G. DOUGLAS, \textit{Banach algebra techniques in the theory of Toeplitz operators}, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 15. American Mathematical Society, Providence, R.I., 1973.
[6] A. K. EL-SAKKARY, \textit{The gap metric: robustness of stabilization of feedback systems}, IEEE Transactions on Automatic Control \textbf{30}, 3 (1985), 240–247.
[7] T. T. GEORGIOU, \textit{On the computation of the gap metric}, Systems Control Letters \textbf{11}, 4 (1988), 253–257.
[8] T. T. GEORGIOU AND M. C. SMITH, \textit{Optimal robustness in the gap metric}, IEEE Transactions on Automatic Control \textbf{35}, 6 (1990), 673–686.
[9] B. JESSEN AND H. TORNEHAVE, \textit{Mean motions and zeros of almost periodic functions}, Acta Mathematica \textbf{77} (1945), 137–279.
[10] K. M. MIKKOLA, \textit{Infinite-dimensional linear systems, optimal control and algebraic Riccati equations}, Doctoral dissertation, Technical Report A452, Institute of Mathematics, Helsinki University of Technology, 2002.
[11] N. K. NIKOLSKI, \textit{Treatise on the shift operator}, Spectral function theory. With an appendix by S.V. Khrushčev and V. V. Peller. Grundlehren der Mathematischen Wissenschaften 273, Springer-Verlag, Berlin, 1986.
[12] N. K. NIKOLSKI, \textit{Operators, functions, and systems: an easy reading. Volume 1. Mathematical Surveys and Monographs}, 92, American Mathematical Society, Providence, RI, 2002.
[13] J. R. PARTINGTON, \textit{Linear operators and linear systems. An analytical approach to control theory}, London Mathematical Society Student Texts 60, Cambridge University Press, Cambridge, 2004.
[14] M. VIDYASAGAR, \textit{The graph metric for unstable plants and robustness estimates for feedback stability}, IEEE Transactions on Automatic Control \textbf{29}, 5 (1984), 403–418.
[15] G. VINNICOM, \textit{Frequency domain uncertainty and the graph topology}, IEEE Transactions on Automatic Control \textbf{38}, 9 (1993), 1371–1383.
[16] G. Zames and A. K. El-Sakkary, *Unstable systems and feedback: The gap metric*, In Proceedings of the Allerton Conference, 380–385, Oct. 1980.