Fundamental properties of Tsallis relative entropy

S. Furuichi1, K. Yanagi2 and K. Kuriyama3

1Department of Electronics and Computer Science,
Tokyo University of Science, Onoda City, Yamaguchi, 756-0884, Japan
E-mail:furuichi@ed.yama.tus.ac.jp

2Department of Applied Science, Faculty of Engineering,
Yamaguchi University,Tokiwadai 2-16-1, Ube City, 755-0811, Japan
E-mail:yanagi@yamaguchi-u.ac.jp,

3Department of Applied Science, Faculty of Engineering,
Yamaguchi University,Tokiwadai 2-16-1, Ube City, 755-0811, Japan
E-mail:kuriyama@yamaguchi-u.ac.jp

Abstract. Fundamental properties for the Tsallis relative entropy in both classical and quantum systems are studied. As one of our main results, we give the parametric extension of the trace inequality between the quantum relative entropy and the minus of the trace of the relative operator entropy given by Hiai and Petz. The monotonicity of the quantum Tsallis relative entropy for the trace preserving completely positive linear map is also shown without the assumption that the density operators are invertible. The generalized Tsallis relative entropy is defined and its subadditivity is shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov inequality is also proven.

Keywords : Tsallis relative entropy, relative operator entropy, monotonicity and generalized Peierls-Bogoliubov inequality

1 Introduction

In the field of the statistical physics, Tsallis entropy was defined in \cite{30} by $S_q(X) = -\sum x p(x)^q \ln_q p(x)$ with one parameter q as an extension of Shannon entropy, where q-logarithm is defined by $\ln_q(x) \equiv \left[\frac{x^{1-q}-1}{1-q}\right]$ for any nonnegative real number q and x, and $p(x) \equiv p(X = x)$ is the probability distribution of the given random variable X. We easily find that the Tsallis entropy $S_q(X)$ converges to the Shannon entropy $-\sum x p(x) \log p(x)$ as $q \to 1$, since q-logarithm uniformly converges to natural logarithm as $q \to 1$. Tsallis entropy plays an essential role in nonextensive statistics, which is often called Tsallis statistics, so that many important results have been published from the various points of view \cite{31}. As a matter of course, the Tsallis entropy and its related topics are mainly studied in the field of statistical physics. However the concept of entropy is important not only in thermodynamical physics and statistical physics but also in information theory.
and analytical mathematics such as operator theory and probability theory. Recently, information theory has been in a progress as quantum information theory \cite{21} with the help of the operator theory \cite{3,13} and the quantum entropy theory \cite{22}. To study a certain entropic quantity is much important for the development of information theory and the mathematical interest itself. In particular, the relative entropy is fundamental in the sense that it produces the entropy and the mutual information as special cases. Therefore in the present paper, we study properties of the Tsallis relative entropy in both classical and quantum system.

In the rest of this section, we will review several fundamental properties of the Tsallis relative entropy, as giving short proofs for the convenience of the readers. See \cite{7,29,28}, for the pioneering works of the Tsallis relative entropy and their applications in classical system.

Definition 1.1 We suppose \(a_j \) and \(b_j \) are probability distributions satisfying \(a_j \geq 0, b_j \geq 0 \) and \(\sum_{j=1}^{n} a_j = \sum_{j=1}^{n} b_j = 1 \). Then we define the Tsallis relative entropy between \(A = \{a_j\} \) and \(B = \{b_j\} \), for any \(q \geq 0 \) as

\[
D_q(A|B) = -\sum_{j=1}^{n} a_j \ln_q \frac{b_j}{a_j}
\]

where \(q \)-logarithm function is defined by \(\ln_q(x) \equiv \frac{x^{1-q} - 1}{1-q} \) for nonnegative real number \(x \) and \(q \), and we make a convention \(0 \ln_q \infty \equiv 0 \).

Note that \(\lim_{q \to 1} D_q(A|B) = D_1(A|B) = \sum_{j=1}^{n} a_j \log \frac{a_j}{b_j} \), which is known as relative entropy (which is often called Kullback-Leibler information, divergence or cross entropy).

For the Tsallis relative entropy, it is known the following proposition.

Proposition 1.2

1. (Nonnegativity) \(D_q(A|B) \geq 0 \).
2. (Symmetry) \(D_q(a_{\pi(1)}, \ldots, a_{\pi(n)} | b_{\pi(1)}, \ldots, b_{\pi(n)}) = D_q(a_1, \ldots, a_n | b_1, \ldots, b_n) \).
3. (Possibility of extention) \(D_q(a_1, \ldots, a_n, 0 | b_1, \ldots, b_n, 0) = D_q(a_1, \ldots, a_n | b_1, \ldots, b_n) \).
4. (Pseudoadditivity)

\[
D_q \left(A^{(1)} \times A^{(2)} \middle| B^{(1)} \times B^{(2)} \right) = D_q \left(A^{(1)} \middle| B^{(1)} \right) + D_q \left(A^{(2)} \middle| B^{(2)} \right) + (q-1) D_q \left(A^{(1)} \middle| B^{(1)} \right) D_q \left(A^{(2)} \middle| B^{(2)} \right),
\]

where

\[
A^{(1)} = \left\{ a_j^{(1)} \left| a_j^{(1)} \in A^{(1)} \right. \right\},
\]

\[
B^{(1)} = \left\{ b_j^{(1)} \left| b_j^{(1)} \in B^{(1)} \right. \right\}.
\]

5. (Joint convexity) For \(0 \leq \lambda \leq 1 \), any \(q \geq 0 \) and the probability distributions \(A^{(i)} = \{a_j^{(i)}\}, B^{(i)} = \{b_j^{(i)}\} \), \((i = 1, 2) \), we have

\[
D_q \left(\lambda A^{(1)} + (1-\lambda) A^{(2)} | \lambda B^{(1)} + (1-\lambda) B^{(2)} \right) \leq \lambda D_q \left(A^{(1)} | B^{(1)} \right) + (1-\lambda) D_q \left(A^{(2)} | B^{(2)} \right).
\]
(6) (Strong additivity)

\[D_q (a_1, \cdots, a_{i-1}, a_i, a_{i+1}, \cdots, a_n | b_1, \cdots, b_{i-1}, b_i, b_{i+1}, \cdots, b_n) \]
\[= D_q (a_1, \cdots, a_n | b_1, \cdots, b_n) + b_i^{1-q} a_i^q D_q \left(\frac{a_i}{a_i, b_i} \right) \]

where \(a_i = a_{i-1}, b_i = b_{i-1} + b_i \).

(Proof) (1) follows from the convexity of the function \(-\ln_q(x) \):

\[D_q (A|B) \equiv -\sum_{j=1}^{n} a_j \ln_q \left(\frac{b_j}{a_j} \right) \geq -\ln_q \left(\sum_{j=1}^{n} a_j b_j \right) = 0. \]

(2) and (3) are trivial. (4) follows by the direct calculation. (5) follows from the generalized log-sum inequality [7] :

\[\sum_{i=1}^{n} \alpha_i \ln_q \left(\frac{\beta_i}{\alpha_i} \right) \leq \left(\sum_{i=1}^{n} \alpha_i \right) \ln_q \left(\frac{\sum_{i=1}^{n} \beta_i}{\sum_{i=1}^{n} \alpha_i} \right), \] (2)

for nonnegative numbers \(\alpha_i, \beta_i (i = 1, 2, \cdots, n) \) and any \(q \geq 0 \). We define the function \(L_q \) for \(q \geq 0 \) to prove (6) as

\[L_q (x, y) \equiv -x \ln_q \frac{y}{x} \]

and

\[\left\{ \begin{array}{l}
 a_{i_1} = a_i (1 - s) \\
 a_{i_2} = a_i s
\end{array} \right., \left\{ \begin{array}{l}
 b_{i_1} = b_i (1 - t) \\
 b_{i_2} = b_i t.
\end{array} \right. \]

Then we have

\[L_q (x_1 x_2, y_1 y_2) = x_2 L_q (x_1, y_1) + x_1 L_q (x_2, y_2) + (q - 1) L_q (x_1, y_1) L_q (x_2, y_2), \]

which implies the claim with easy calculations. \[\square \]

Remark 1.3

1. (1) of Proposition 1.2 implies

\[S_q (A) \leq \ln_q n, \]

since we have

\[D_q (A|U) = -n^{q-1} \left(S_q (A) - \ln_q n \right), \]

for any \(q \geq 0 \) and two probability distributions \(A = \{a_j\} \) and \(U = \{u_j\} \), where \(u_j = \frac{1}{n}, \binom{n}{j} \), where the Tsallis entropy is represented by

\[S_q (A) \equiv -\sum_{j=1}^{n} a_j^q \ln_q a_j. \]

2. (4) of Proposition 1.2 is reduced to the pseudoadditivity for the Tsallis entropy:

\[S_q (A^{(1)} \times A^{(2)}) = S_q (A^{(1)}) + S_q (A^{(2)}) + (1 - q) S_q (A^{(1)}) S_q (A^{(2)}). \] (3)
3. (5) of Proposition 1.2 recover the concavity for the Tsallis entropy, by putting $B^{(1)} = \{1, 0, \ldots, 0\}$, $B^{(2)} = \{1, 0, \ldots, 0\}$.

4. (6) of Proposition 1.2 is reduced to the strong additivity for the Tsallis entropy:

$$S_q (a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n) = S_q (a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n) + a_i q S_q \left(\frac{a_{i+1}}{a_i}, \frac{a_{i+2}}{a_i} \right).$$

We finally show the monotonicity for the Tsallis relative entropy. To this end, we introduce some notations. We consider the transition probability matrix $W : \mathcal{A} \rightarrow \mathcal{B}$, which can be identified to the matrix having the conditional probability W_{ji} as elements, where \mathcal{A} and \mathcal{B} are alphabet sets (finite sets) and $\sum_{j=1}^m W_{ji} = 1$ for all $i = 1, \ldots, n$. By $A = \{a_i^{(in)}\}$ and $B = \{b_i^{(in)}\}$, two distinct probability distributions in the input system \mathcal{A} are denoted. Then the probability distributions in the output system \mathcal{B} are represented by $W A = \{a_i^{(out)}\}$, $W B = \{b_i^{(out)}\}$, where $a_i^{(out)} = \sum_{i=1}^n a_i^{(in)} W_{ji}$, $b_i^{(out)} = \sum_{i=1}^n b_i^{(in)} W_{ji}$, in terms of $W = \{W_{ji}\}$, $(i = 1, \ldots, n; j = 1, \ldots, m)$. Then we have the following.

Proposition 1.4 In the above notation, for any $q \geq 0$, we have

$$D_q (WA | WB) \leq D_q (A | B).$$

(Proof) Applying the generalized log-sum inequality Eq.(2), we have

$$D_q (WA | WB) = - \sum_{j=1}^m a_j^{(out)} \ln_q \frac{b_j^{(out)}}{a_j^{(out)}}$$

$$= - \sum_{j=1}^m \sum_{i=1}^n a_i^{(in)} W_{ji} \ln_q \frac{\sum_{i=1}^n b_i^{(in)} W_{ji}}{\sum_{i=1}^n a_i^{(in)} W_{ji}}$$

$$\leq - \sum_{j=1}^m \sum_{i=1}^n a_i^{(in)} W_{ji} \ln_q \frac{b_i^{(in)} W_{ji}}{a_i^{(in)} W_{ji}}$$

$$= - \sum_{i=1}^n a_i^{(in)} \ln_q \frac{b_i^{(in)}}{a_i^{(in)}} = D_q (A | B).$$

We note that the above proposition is a special case of the monotonicity of f-divergence [10] for the convex function f. As closing introduction, we should also note here that the Tsallis entropy can be derived by a simple transformation from Rényi entropy which was used before Tsallis one in the mathematical literature. See [4] on the details of Rényi entropy, in particular see pp.184-191 of [4] for the relation to the structural α-entropy [15] (or called the entropy of type β [11]) which is one of the nonextensive entropies including the Tsallis entropy.
2 Quantum Tsallis relative entropy and its properties

In references [1, 2], the quantum Tsallis relative entropy was defined by

\[D_q(\rho|\sigma) \equiv \frac{1 - Tr[\rho^q \sigma^{1-q}]}{1 - q} \]

(4)

for two density operators \(\rho \) and \(\sigma \) and \(0 \leq q < 1 \), as one parameter extension of the definition of the quantum relative entropy by Umegaki [32]

\[U(\rho|\sigma) \equiv Tr[\rho(\log \rho - \log \sigma)]. \]

(5)

See chapter II written by A.K.Rajagopal in [31], for the quantum version of Tsallis entropies and their applications.

For the quantum Tsallis relative entropy \(D_q(\rho|\sigma) \) and the quantum relative entropy \(U(\rho|\sigma) \), the following relations are known.

Proposition 2.1 (Ruskai-Stillinger [26] (see also [22])) For the strictly positive operators with a unit trace \(\rho \) and \(\sigma \), we have,

1. \(D_q(\rho|\sigma) \leq U(\rho|\sigma) \leq D_{2-q}(\rho|\sigma) \) for \(0 \leq q < 1 \).
2. \(D_{2-q}(\rho|\sigma) \leq U(\rho|\sigma) \leq D_q(\rho|\sigma) \) for \(1 < q \leq 2 \).

Note that the both sides in the both inequalities converge to \(U(\rho|\sigma) \) as \(q \to 1 \). We must extend the definition of the quantum Tsallis relative entropy Eq.(4) for \(0 \leq q \leq 2 \) and impose the invertibility on the density operators of \(D_{2-q}(\rho|\sigma) \) for \(0 \leq q < 1 \) and of \(D_q(\rho|\sigma) \) for \(1 < q \leq 2 \).

(Proof) Since we have for any \(x > 0 \) and \(t > 0 \),

\[\frac{1 - x^{-t}}{t} \leq \log x \leq \frac{x^t - 1}{t}, \]

the following inequalities hold for any \(a, b, t > 0 \),

\[a \left(\frac{1 - a^{-t}b^t}{t} \right) \leq a \log \frac{a}{b} \leq a \left(\frac{a^t b^{-t} - 1}{t} \right). \]

(6)

Let \(\rho = \sum_i \lambda_i P_i \) and \(\sigma = \sum_j \mu_j Q_j \) be the spectral decompositions. Since \(\sum_i P_i = \sum_j Q_j = I \), then we have

\[
Tr \left[\frac{\rho^{1+t} \sigma^{-t} - \rho}{t} - \rho (\log \rho - \log \sigma) \right] \\
= \sum_{i,j} Tr \left[P_i \left\{ \frac{\rho^{1+t} \sigma^{-t} - \rho}{t} - \rho (\log \rho - \log \sigma) \right\} Q_j \right] \\
= \sum_{i,j} Tr \left[P_i \left(\frac{1}{t} \lambda_i^{1+t} \mu_j^{-t} - \frac{1}{t} \lambda_i - \lambda_i \log \lambda_i + \lambda_i \log \mu_j \right) Q_j \right] \\
= \sum_{i,j} \left(\frac{1}{t} \lambda_i^{1+t} \mu_j^{-t} - \frac{1}{t} \lambda_i - \lambda_i \log \lambda_i + \lambda_i \log \mu_j \right) Tr [P_i Q_j] \geq 0.
\]

Last inequality in the above is due to the inequality of the right side in Eq.(6). Thus we have

\[Tr[\rho(\log \rho - \log \sigma)] \leq \frac{1}{t} Tr[\rho^{1+t} \sigma^{-t} - \rho]. \]
The left side inequality is proven by similar way. Thus putting $1 - q = t(> 0)$ in the above, we have (1) in Proposition 2.1. Also we have (2) in Proposition 2.1 by putting $q - 1 = t(> 0)$.

We next consider another relation on the quantum Tsallis relative entroy. In [12], the relative operator entropy was defined by

$$S(\rho|\sigma) \equiv \rho^{1/2} \log(\rho^{-1/2} \sigma^{-1/2}) \rho^{1/2},$$

for two strictly positive operators ρ and σ. If ρ and σ are commutative, then we have $U(\rho|\sigma) = -Tr[S(\rho|\sigma)]$. For this relative operator entropy and the quantum relative entropy $U(\rho|\sigma)$, Hiai and Petz proved the following relation:

$$U(\rho|\sigma) \leq -\text{Tr}[S(\rho|\sigma)],$$

(7) in [16] (see also [17]).

In our previous papers [34], we introduced the Tsallis relative operator entropy $T_q(\rho|\sigma)$ as a parametric extension of the relative operator entropy $S(\rho|\sigma)$ such as

$$T_q(\rho|\sigma) \equiv \frac{\rho^{1/2}(\rho^{-1/2} \sigma^{-1/2})^{1-q} \rho^{1/2} - \rho}{1 - q},$$

for $0 \leq q < 1$ and strictly positive operators ρ and σ, in the sense that

$$\lim_{q \to 1} T_q(\rho|\sigma) = S(\rho|\sigma).$$

(8)

Actually we should note that there is a slightly difference between two parameters q in the present paper and λ in the previous paper [34] which is an extension of [14]. If ρ and σ are commutative, then we have $D_q(\rho|\sigma) = -\text{Tr}[T_q(\rho|\sigma)]$. Also we now have that

$$\lim_{q \to 1} D_q(\rho|\sigma) = U(\rho|\sigma).$$

(9)

These relations Eq.(7), Eq.(8) and Eq.(9) naturally lead us to show the following theorem as a parametric extension of Eq.(7).

Theorem 2.2 For $0 \leq q < 1$ and any strictly positive operators with unit trace ρ and σ, we have

$$D_q(\rho|\sigma) \leq -\text{Tr}[T_q(\rho|\sigma)]$$

(10)

(Proof) We denote the α-power mean \sharp_α by $A\sharp_\alpha B \equiv A^{1/2}(A^{-1/2}BA^{-1/2})^\alpha A^{1/2}$. From Theorem 3.4 of [17], we have

$$\text{Tr}[e^{A\sharp_\alpha B}] \leq \text{Tr}[e^{(1-\alpha)B + \alpha A}]$$

for any $\alpha \in [0,1]$. Putting $A = \log \rho$ and $B = \log \sigma$, we have

$$\text{Tr}[\rho\sharp_\alpha \sigma] \leq \text{Tr}[e^{\log \rho {1-\alpha} + \log \sigma^\alpha}].$$

Since the Golden-Thompson inequality $\text{Tr}[e^{A+B}] \leq \text{Tr}[e^Ae^B]$ holds for any Hermitian operators A and B, we have

$$\text{Tr}[e^{\log \rho {1-\alpha} + \log \sigma^\alpha}] \leq \text{Tr}[e^{\log \rho^\alpha e^{\log \sigma^\alpha}}] = \text{Tr}[\rho^\alpha \sigma^\alpha].$$
Therefore
\[\text{Tr}[\rho^{1/2}(\rho^{-1/2}\sigma^{-1/2}\rho^{1/2})^\alpha \rho^{1/2}] \leq \text{Tr}[\rho^{1-\alpha}\sigma^\alpha] \]
which implies the theorem by taking \(\alpha = 1 - q \).

Corollary 2.3 (Hiai-Petz [16, 17]) For any strictly positive operators with unit trace \(\rho \) and \(\sigma \), we have
\[\text{Tr}[\rho(\log \rho - \log \sigma)] \leq \text{Tr}[\rho \log(\rho^{1/2}\sigma^{-1/2})]. \tag{11} \]

(Proof) It follows by taking the limit as \(q \to 1 \) in both sides of Eq.(10).

Thus the result proved by Hiai and Petz in [16, 17] is recovered as a special case of Theorem 2.2.

For the quantum Tsallis relative entropy \(D_q(\rho|\sigma) \), (i) pseudoadditivity and (ii) nonnegativity are shown in [1], moreover (iii) joint convexity and (iv) monotonicity for projective measurements, are shown in [2]. Here we show the unitary invariance of \(D_q(\rho|\sigma) \) and the monotonicity of that for the trace-preserving completely positive linear map.

Proposition 2.4 For \(0 \leq q < 1 \) and any density operators \(\rho \) and \(\sigma \), the quantum relative entropy \(D_q(\rho|\sigma) \) has the following properties.

1. (Nonnegativity) \(D_q(\rho|\sigma) \geq 0 \).
2. (Pseudoadditivity) \(D_q(\rho_1 \otimes \rho_2 | \sigma_1 \otimes \sigma_2) = D_q(\rho_1 | \sigma_1) + D_q(\rho_2 | \sigma_2) + (q-1)D_q(\rho_1 | \sigma_1)D_q(\rho_2 | \sigma_2) \).
3. (Joint convexity) \(D_q(\sum \lambda_j \rho_j | \sum \lambda_j \sigma_j) \leq \sum \lambda_j D_q(\rho_j | \sigma_j) \).
4. The quantum Tsallis relative entropy is invariant under the unitary transformation \(U \):
\[D_q(U\rho U^* | U\sigma U^*) = D_q(\rho|\sigma) \].

(Proof) Since it holds \(f(q, x, y) \equiv \frac{x^{1-q}y^{1-q}}{1-q} - (x - y) \geq 0 \) for \(x \geq 0, y \geq 0 \) and \(0 \leq q < 1 \), we have \(D_q(\rho|\sigma) \geq \text{Tr}[\rho - \sigma] \), which implies (1), since \(\rho \) and \(\sigma \) are density operators. (See Proposition 3.16 of [22] on the so-called Klein inequality.)

(2) follows by the direct calculation.

(3) follows from the Lieb’s theorem that for any operator \(Z \) and and \(0 \leq t \leq 1 \), the functional \(f(A, B) \equiv \text{Tr}[Z^t A B^{1-t}] \) is joint concave with respect to two positive operators \(A \) and \(B \).

(4) is obvious by the use of Stone-Weierstrass approximation theorem. (It also can be shown by the application of Theorem 2.5 in the below.)

(1) of the above proposition follows from the generalized Peierls-Bogoliubov inequality which will be shown in the next section.

In [23], the monotonicity for more generalized relative entropy was shown under the assumption of the invertibility of the density operators. Here we show the monotonicity for the quantum Tsallis relative entropy in the case of \(0 \leq q < 1 \) without the assumption of the invertibility of the density operators.
Theorem 2.5 For any trace-preserving completely positive linear map Φ, any density operators ρ and σ and $0 \leq q < 1$, we have

$$D_q(\Phi(\rho)\mid\Phi(\sigma)) \leq D_q(\rho\mid\sigma).$$

(Proof) We prove this theorem as similar way in [20]. To this end, we firstly prove the monotonicity of $D_q(\rho\mid\sigma)$ for the partial trace Tr_B in the composite system AB. Let ρ^{AB} and σ^{AB} be density operators in the composite system AB. From [21, 33], there exists unitary operators U_j and the probability p_j such that

$$\rho^A \otimes \frac{I}{n} = \sum_j p_j (I \otimes U_j) \rho^{AB} (I \otimes U_j)^*,$$

where n and I present the dimension and identity operator of the system B, $\rho^A = Tr_B[\rho^{AB}]$ and $\sigma^A = Tr_B[\sigma^{AB}]$. By the help of the joint concavity and the unitary invariance of the Tsallis relative entropy, we thus have

$$D_q \left(\rho^A \otimes \frac{I}{n} \mid \sigma^A \otimes \frac{I}{n} \right) \leq \sum_j p_j D_q \left((I \otimes U_j) \rho^{AB} (I \otimes U_j)^* \mid (I \otimes U_j) \sigma^{AB} (I \otimes U_j)^* \right)$$

$$= \sum_j p_j D_q \left(\rho^{AB} \mid \sigma^{AB} \right)$$

$$= D_q \left(\rho^{AB} \mid \sigma^{AB} \right).$$

Since $D_q \left(\rho^A \otimes \frac{I}{n} \mid \sigma^A \otimes \frac{I}{n} \right) = D_q \left(\rho^A \mid \sigma^A \right)$, we thus have

$$D_q(Tr_B(\rho^{AB})\mid Tr_B(\sigma^{AB})) \leq D_q(\rho^{AB}\mid\sigma^{AB})$$

(12)

It is known [27] (see also [8, 19, 20]) that every trace-preserving completely positive linear map Φ has the following representation with some unitary operator U^{AB} on the total system AB and the projection (pure state) P^B on the subsystem B,

$$\Phi(\rho^A) = Tr_B U^{AB} (\rho^A \otimes P^B) U^{AB*}.$$

Therefore we have the following result, by the result Eq.(12) and the unitary invariance of $D_q(\rho\mid\sigma)$ again,

$$D_q(\Phi(\rho^A)\mid\Phi(\sigma^A)) \leq D_q(U^{AB}(\rho^A \otimes P^B)U^{AB*} \mid U^{AB}(\sigma^A \otimes P^B)U^{AB*})$$

$$= D_q(\rho^A \otimes P^B \mid \sigma^A \otimes P^B).$$

which implies our claim, since $D_q(\rho^A \otimes P^B \mid \sigma^A \otimes P^B) = D_q(\rho^A \mid \sigma^A)$.

Putting $\sigma = \frac{1}{n}I$ in Theorem 2.5 we have the following corollary.

Corollary 2.6 For any trace-preserving completely positive linear unital map Φ, any density operator ρ and $0 \leq q < 1$, we have

$$H_q(\Phi(\rho)) \geq H_q(\rho),$$

where $H_q(X) = \frac{Tr[X^q]-1}{1-q}$ represents the Tsallis entropy for density operator X, which is often called the quantum Tsallis entropy.
We note that Theorem 2.5 for the fixed σ, namely the monotonicity of the quantum Tsallis relative entropy in the case of $\Phi(\sigma) = \sigma$, was proved in [3] to establish Clausius’ inequality.

Remark 2.7 It is known [20] (see also [25]) that there is an equivalent relation between the monotonicity for the quantum relative entropy and the strong subadditivity for the quantum entropy. However in our case, we have not yet found such a relation. Because the pseudoadditivity of q-logarithm function

$$\ln_q xy = \ln_q x + \ln_q y + (1 - q) \ln_q x \ln_q y$$

disturbs us to derive the beautiful relation such as

$$D_q(p(x, y)|p(x)p(y)) = S_q(p(x)) + S_q(p(y)) - S_q(p(x, y))$$

for the Tsallis relative entropy $D_q(p(x, y)|p(x)p(y))$, the Tsallis entropy $S_q(p(x))$, $S_q(p(y))$ and the Tsallis joint entropy $S_q(p(x, y))$, even if our stage is in classical system.

3 Generalized Tsallis relative entropy

For any two positive operators A, B and any real number $q \in [0, 1)$, we can define the generalized Tsallis relative entropy.

Definition 3.1

$$D_q(A||B) \equiv \frac{Tr[A] - Tr[A^qB^{1-q}]}{1 - q}.$$

To avoid the confusions of readers, we use the different symbol $D_q(\cdot||\cdot)$ for the generalized Tsallis relative entropy.

Since Lieb’s concavity theorem is available for any positive operators A and B, the generalized Tsallis relative entropy has a joint convexity:

$$D_q\left(\sum_j \lambda_j A_j || \sum_j \lambda_j B\right) \leq \sum_j \lambda_j D_q(A_j || B_j), \quad (13)$$

for the positive number λ_j satisfying $\sum_j \lambda_j = 1$ and any positive operators A_j and B_j. Then we have the subadditivity of the generalized Tsallis relative entropy between $A_1 + A_2$ and $B_1 + B_2$.

Theorem 3.2 For any positive operators A_1, A_2, B_1 and B_2, and $0 \leq q < 1$, we have the subadditivity

$$D_q(A_1 + A_2 || B_1 + B_2) \leq D_q(A_1 || B_1) + D_q(A_2 || B_2). \quad (14)$$

Proof Firstly we note that we have the following relation for any numbers α and β, and two positive operators A and B,

$$D_q(\alpha A || \beta B) = \alpha D_q(A || B) - \alpha \ln_q \frac{\beta}{\alpha} Tr[A^qB^{1-q}]. \quad (15)$$
Now from Eq. (13), we have
\[D_q(\lambda_1 X_1 + \lambda_2 X_2 || \lambda_1 Y_1 + \lambda_2 Y_2) \leq \lambda_1 D_q(X_1 || Y_1) + \lambda_2 D_q(X_2 || Y_2) \]
for any positive operators \(X_1, X_2, Y_1 \) and \(Y_2 \), and \(\lambda_1, \lambda_2 \) (\(\lambda_1 + \lambda_2 = 1 \)). Putting \(A_i = \lambda_i X_i \)
and \(B_i = \lambda_i Y_i \) for \(i = 1, 2 \) in the above inequality, we have
\[D_q(A_1 + A_2 || B_1 + B_2) \leq \lambda_1 D_q\left(\frac{A_1}{\lambda_1} || \frac{B_1}{\lambda_1}\right) + \lambda_2 D_q\left(\frac{A_2}{\lambda_2} || \frac{B_2}{\lambda_2}\right) \]
Thus we have the our claim due to Eq. (15).

As a famous inequality in statistical physics, the Peierls-Bogoliubov inequality is known. Finally, we prove the generalized Peierls-Bogoliubov inequality for the generalized Tsallis relative entropy in the following.

Theorem 3.3 For any positive operators \(A \) and \(B \), \(0 \leq q < 1 \),
\[D_q(A || B) \geq \frac{\text{Tr}[A] - (\text{Tr}[A])^q(\text{Tr}[B])^{1-q}}{1-q}. \]

(Proof) In general, it holds the following Hölder’s inequality
\[|\text{Tr}[XY]| \leq \text{Tr}[|X|^s]^{1/s} \text{Tr}[|Y|^t]^{1/t} \]
for any bounded linear operators \(X \) and \(Y \) satisfying \(\text{Tr}[|X|^s] < \infty \) and \(\text{Tr}[|Y|^t] < \infty \) and for any \(1 < s < \infty \) and \(1 < t < \infty \) satisfying \(\frac{1}{s} + \frac{1}{t} = 1 \). By putting \(X = A^q, Y = B^{1-q} \)
and \(s = \frac{1}{q}, t = \frac{1}{1-q} \) in Eq. (16), we have
\[\text{Tr}[A^q B^{1-q}] \leq (\text{Tr}[A])^q(\text{Tr}[B])^{1-q}, \]
which implies our claim.

Note that Theorem 3.3 can be considered a noncommutative version of Eq. (2). If \(A \) and \(B \) are density operators, then the nonnegativity of the quantum Tsallis relative entropy follows from Theorem 3.3.

4 Conclusion

As we have seen, the monotonicity of the quantum Tsallis relative entropy for the trace-preserving completely positive map was shown. Also the trace inequality between the Tsallis quantum relative entropy and the Tsallis relative operator entropy was shown. It is remarkable that our inequality recovers the famous inequality shown by Hiai-Petz as \(q \to 1 \).

Acknowledgement

The authors thank referees for valuable comments to improve the manuscript.
References

[1] S.Abe, Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification, Phys.Rev.A,Vol.68,032302 (2003).

[2] S.Abe, Monotonic decrease of the quantum nonadditive divergence by projective measurements, Phys. Lett. A, Vol.312, pp. 336-338 (2003), and its Corrigendum, Vol.324,pp.507(2004).

[3] S.Abe and A.K.Rajagopal, Validity of the second law in nonextensive quantum thermodynamics, Phys.Rev.Lett.,Vol.91,No.12,120601(2003).

[4] J.Aczél and Z.Daróczy, On measures of information and their characterizations, Academic Press, 1975.

[5] T.Ando, Topics on operator inequality, Lecture Notes, Hokkaido Univ.,Sapporo,1978.

[6] N.Bebiano, J.da Providencia Jr. and R.Lemos, Matrix inequalities in statistical mechanics, Linear Algebra and its Applications, Vol.376,pp.265-273(2004).

[7] L.Borland, A.R.Plastino and C.Tsallis, Information gain within nonextensive thermostatistics,J.Math.Phys,Vol.39,pp.6490-6501(1998), and its Erratum, Vol.40,pp.2196(1999).

[8] M.-D.Choi, Completely positive linear maps on complex matrices, Linear Algebra and its Applications, Vol.10,pp.285-290(1975).

[9] T.M.Cover and J.A.Thomas, Elements of Information Theory, John Wiley and Sons, 1991.

[10] I.Csiszár, Infomation type measures of difference of probability distribution and indirect observations, Studia Scientiarum Mathematicarum Hungarica, Vol.2,pp.299-318(1967).

[11] Z.Daróczy, General information functions, Information and Control, Vol.16,pp.36-51(1970).

[12] J.I.Fujii and E.Kamei, Relative operator entropy in noncommutative information theory, Math. Japonica, Vol.34,pp.341-348(1989).

[13] T.Furuta, Invitation to Linear Operators: From Matrix to Bounded Linear Operators on a Hilbert Space, CRC Pr I Llc, 2002.

[14] T.Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra and its Applications, Vol.381,pp.219-235(2004).

[15] J.Havrda and F.Charvát, Quantification method of classification processes, Concept of structural \(a \)- entropy, Kybernetika(Prague), Vol.3, pp.30-35(1967).

[16] F.Hiai and D.Petz, The proper formula for relative entropy in asymptotics in quantum probability, Comm.Math.Phys.,Vol.143,pp.99-114(1991).
[17] F.Hiai and D.Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra and its Applications, Vol.181, pp.153-185(1993).

[18] K.Huang, Statistical Mechanics, John Wiley and Sons, 1987.

[19] K.Kraus, State, Effects and Operations: Fundamental Notations of Quantum Theory, Springer, 1983.

[20] G.Lindblad, Completely positive maps and entropy inequalities, Comm.Math.Phys., Vol.40, pp.147-151(1975).

[21] M.A.Nielsen and I.Chuang, Quantum Computation and Quantum Information, Cambridge Press, 2000.

[22] M.Ohya and D.Petz, Quantum Entropy and its Use, Springer-Verlag, 1993.

[23] D.Petz, Quasi-entropies for finite quantum system, Rep.Math.Phys., Vol.23, pp.57-65(1986).

[24] A.K.Rajagopal and S.Abe, Implications of form invariance to the structure of nonextensive entropies, Phys. Rev. Lett., Vol.83, pp.1711-1714(1999).

[25] M.B.Ruskai, Inequalities for quantum entropy: a review with condition for equality, J.Math.Phys., Vol.43, pp.4358-4375(2002).

[26] M.B.Ruskai and F.M.Stillinger, Convexity inequalities for estimating free energy and relative entropy, J.Phys.A, Vol.23, pp.2421-2437(1990).

[27] B.Schumacher, Sending entanglement through noisy quantum channel, Phys.Rev.A, Vol.54, pp.2614-2628(1996).

[28] M.Shiino, H-theorem with generalized relative entropies and the Tsallis statistics, J.Phys.Soc.Japan, Vol.67, pp.3658-3660(1998).

[29] C.Tsallis, Generalized entropy-based criterion for consistent testing, Phys.Rev.E, Vol.58, pp.1442-1445(1998).

[30] C.Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J.Stat.Phys., Vol.52, pp.479-487(1988).

[31] C. Tsallis et al., Nonextensive Statistical Mechanics and Its Applications, edited by S. Abe and Y. Okamoto (Springer-Verlag, Heidelberg, 2001); see also the comprehensive list of references at http://tsallis.cat.cbpf.br/biblio.htm.

[32] H.Umegaki, Conditional expectation in an operator algebra, IV (entropy and information), Kodai Math.Sem.Rep., Vol.14, pp.59-85(1962).

[33] A.Wehrl, General properties of entropy, Rev.Mod.Phys., Vol.50, pp.221-260(1978).

[34] K.Yanagi, K.Kuriyama and S.Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy, Linear Alg. Appl., Vol.394, pp.109-118(2005).