INTRODUCTION

In recent years, the clinical relevance of mouse models of sepsis has been heavily scrutinized due to repeated translational failures following promising preclinical studies. The most frequently used model, cecal ligation and puncture (CLP), has been discussed extensively and the need to improve the clinical relevance of that model has been emphasized (1–3). Several recommendations have been made to more closely align the CLP model with human sepsis including attention to subject-related variables (age, strain, sex); provision of supportive measures (fluids, antibiotics); and modeling with comorbid conditions (4). Standardization of the technical aspects and functional parameters of the CLP model has also been advocated to enhance experimental reproducibility and model standards have been adopted successfully in other fields of study (5). However, there may be even greater impediments to translation from mouse models due to the underlying physiologic stress induced by routine research conditions such as the ambient temperature in animal housing areas.

The ideal temperature for housing laboratory mice has been greatly debated. Current recommendations range from 20°C to 26°C (6), and rodent vivaria typically are maintained at 20°C to 23°C for the comfort of humans wearing personal protective equipment (7). However, this range falls below the established thermoneutral zone (TNZ) of mice, 26°C to 34°C (6, 8) which can have a major impact on murine thermoregulation. Within the TNZ, mice can maintain stable core body temperatures by simply changing behaviors (activity level, nesting, huddling) and adjusting peripheral blood vessel diameters (9). Housed in thermoneutral conditions, mice display mean energy expenditure rates 1.8 times higher than basal metabolism, which resembles the human situation (10). At cooler temperatures, mice must use metabolic heat production to maintain core body temperatures (8, 9), and exhibit increased energy expenditure rates up to 3.1 times basal metabolism (10) along with significant cardiovascular compensation in terms of increased blood pressure and heart rate (11). Therefore, mice live in a state of chronic cold stress at current housing temperatures, which triggers adaptive glucocorticoid production and sympathetic nervous system activation, resulting in secondary, immunosuppressive effects (12). These findings imply current housing temperatures influence the development of numerous mouse models of human disease and any proposed measures to relieve cold stress could impact those models.

Several studies have shown the housing temperature of mice influences experimental phenotypes (13), model development (12), and translation of study results (12–15). In particular, temperature-related alteration of immune responses has direct effects on mouse models of cancer (16), graft-versus-host-disease (17), LPS-induced inflammation (18, 19), and infectious disease...
In each case, increased housing temperature heightened immune responses and caused major changes in the mouse models. In some cases, the changes caused by thermoneutrality resulted in what was considered to be a better model of the human condition (10, 22). Sepsis models involve similar immune responses to the aforementioned studies, suggesting that they might also be affected by warmer housing environments.

Overall, reviews of the controversies surrounding housing temperature emphasize the importance of conducting preliminary experiments at warmer temperatures to see how the difference affects experimental outcomes (15, 23). While it has been shown that short-term, perioperative warming decreases sepsis mortality after CLP (24), the effect of chronic housing at thermoneutral temperatures remains to be ascertained. Therefore, the purpose of our study was to investigate the effects of housing temperature on a CLP model of sepsis.

We hypothesized housing mice at temperatures within their thermoneutral zone would improve sepsis survival and alter immune responses. To test this, survival and select immune parameters were compared between mice housed at standard (22°C) and thermoneutral (30°C) temperatures after CLP. In addition, we repeated our previously reported preclinical study (25) to examine the effects of housing temperature on outcomes after the adoptive transfer of cultured fibrocytes.

Materials and Methods

Ethical statement

This study followed the guidelines of the Institutional Animal Care and Use Committee (IACUC) of the University of Michigan, which approved all of the animal procedures and animal care methods presented here. The IACUC is in full compliance with the eighth edition of the Guide for the Care and Use of Laboratory Animals (6).

Animals

Male (6 wk–8 wk) C57BL/6j mice (The Jackson Laboratory, Bar Harbor, Maine) were used in all the experiments. Mice were housed on approximately 300 mL of a 50:50 blend of 1/4-in. and 1/8-in. irradiated corn cob bedding (Anderson’s Bed-O’Cobs, Frontier Distributing, Maumee, Ohio) with 6 g of brown crinkle paper encased in a white tea bag material (EnviroPak, Shepherd Specialty Papers, Watertown, Tenn). Prior to experimental use, mice were acclimated for at least 5 days in ventilated microisolation cages in specialized climate chambers (TSE ActiMot2 303021/C6). Mice had access to food (Laboratory Rodent Diet 5001, PMI Lab ad libitum) and water (Laboratory Rodent Diet 5001, PMI Lab Diet, St. Louis, Mo) and water.

Survival studies

Under isoflurane anesthesia (Vetone, Boise, Idaho), CLP was performed with ligation of 50% of the cecum and two punctures with a 26-gauge needle using previously described methods (26). At induction, mice received 1 mL saline and 0.05 mg/kg buprenorphine SQ. Additional analgesia (0.05 mg/kg buprenorphine in 0.1 mL saline) was given SQ every 12 for 48 h. The abdominal musculature was closed with silk sutures followed by closure of the skin with tissue glue. Mice recovered while receiving heat support before being placed back into their home cage. Postoperatively, mice were randomized to housing at either 22°C or 30°C (n = 18–20 per group) in climate controlled chambers (TSE ActiMot2 303021 series) for up to 10 days. Loss of righting reflex was used as a humane endpoint. The experimental reproducibility was assured by performing CLP in six small independent trials and then combining the results for this study.

Endpoint studies

The CLP studies were repeated and mice were euthanized at 12, 24, and 48 h (n = 7–10 per temperature group/time point) for evaluation of immune parameters. For core body temperature measurements, electronic ID transponders (IPY 180, BioMedic Data systems, Inc, Seaford, Del) were inserted into the peritoneum of mice (n = 5/temperature group) prior to abdominal closure after CLP. Temperature readings were obtained with the corresponding handheld reader 24 h after return to housing. A group of unmanipulated mice (n = 10) were euthanized after initial acclimation to provide reference values. At specific time points, mice were deeply anesthetized with isoflurane, and approximately 500 μL blood was collected from the retroorbital sinus into 1.5-mL tubes containing 50 μL of 160 mM EDTA. Mice were then euthanized by cervical dislocation and bimanual pneumothorax. Peritoneal lavage fluid was collected by injecting 10 mL Hank’s Balanced Salt Solution (Invitrogen, Grand Island, NY) containing 1:100 heparin sodium (5,000 USP U/mL; Abraxis, Schaumburg, Ill) into the abdomen and retrieving fluid.

Cell counts—A 50-μL aliquot of blood was used for automated CBC analysis (Hemavet, Drew Scientific, Miami, Fla). The remainder of the blood was centrifuged (2,000 × g, 5 min) and the plasma stored for later cytokine analysis. The peritoneal lavage fluid was centrifuged (600 × g, 5 min), and the supernatant saved at −20°C for later cytokine analysis. The cell pellet was resuspended in 200 μL RPMI 1640 (Invitrogen) containing 0.1% heat-inactivated fetal bovine serum (Invitrogen). Cells were counted after RBC lysis (Zap-O-globin II (Beckman Coulter, Indianapolis, Ind)) using a hemocytometer (Haussner Scientific, Horsham, Pa). Experimental groups were known to the operator during initial cell counts but evaluation of differentials was blinded. Slides were loaded with 1 × 105 cells, centrifuged (109 × g, 5 min), and stained with Diff-Quick (Baxter, Detroit, Mich). Differentials (300 cells) were counted under light microscopy.

Cytokine measurements—Cytokines were measured in plasma (1:10 dilution) and peritoneal lavage fluid (1:2 dilution) using sandwich ELISA kits for IL-6, IL-10, IL-1β, and TNF-α (Mouse Uncoated ELISA Kits, ThermoFisher Scientific, Waltham, Mass), according to manufacturer’s instructions. Absorbance was read at 450 nm on a plate reader (Biotek, Winooski, Vt).

T cell counts and intracellular cytokines—The spleens of mice were harvested at 0, 12, 24, and 48 h after CLP. Spleens were macerated, combined with 5 mL saline, and passed through 100 μM filters. Samples were centrifuged at 2,000 rpm for 5 min and red blood cells lysed (Red Blood Cell Lysis Buffer, eBiosciences, San Diego, Calif). Cells were centrifuged (2,000×g, 5 min), resuspended in 200 μL of 1× PBS, and counted using a hemocytometer (Haussner Scientific). Trypan blue (Invitrogen, Carlsbad, Calif) was used to demonstrate viability of greater than or equal to 95% in suspensions. After total splenic cell counts, cells were resuspended in PBS with 0.1% sodium azide and 1.0% bovine calf serum (HyClone, Logan, Utah) at 1.0 × 107 cells/mL. Cells were then incubated with FcγR/III reagent to block Tc receptors (BD Biosciences), 5 μg/100 μL aliquot, 5–10 min, 4°C. The cells were stained with the appropriate antibodies against surface antigens (2.5 μg/mL, 30 min, 4°C): PerCP-Cy5.5 antimum CD3ε (BD Biosciences); V450 antimouse CD4 (eBiosciences), pacific orange antimouse CD8a (Invitrogen), APC Cy7x antimouse CD69 (BD Biosciences) and their appropriate isotype controls. For intracellular cytokines, cells were stained with BV 786 antimouse IFN-γ (BD Biosciences) and FITC antimouse IL-4 (BD Biosciences) using an established protocol (BD Cytofix/Cytoperm Kit, BD Biosciences). For all flow cytometry, fluorescence measurements was measured using a BD LSR II flow cytometer (BD Biosciences) with a 488 nm excitation laser with peak emission ranging from 515 nm to 545 nm. Compensation was performed in all experiments utilizing Listl 6.0 software (Topsham, Maine).

Bacterial colony counts—Aseptic samples (blood, spleen, peritoneal lavage fluid) were collected from the animals euthanized 24 h after CLP. The samples were serially diluted and plated on TSA w/5% sheep blood agar (ThermoFisher Scientific). Colonies were counted after 24 h at 37°C when dilutions yielded 30 to 300 colonies.

Phagocytosis study

Mice were housed in 22°C or 30°C housing after CLP. Ten hours after surgery, heat-killed (70°C for 15 min) E. coli (1 × 106 CFUs in 200 μL saline) labeled with Sytox Blue (ThermoFisher Scientific), a DNA-specific fluorescent dye, according to manufacturer’s instructions were administered i.p. Two hours later, the animals were euthanized and peritoneal lavage samples and spleens were collected for total cell counts and flow cytometry as described above.
Thermoneutral housing enhances sepsis survival

When mice were housed at either 22°C or 30°C (n = 18–20/group, six independent experiments), the majority of deaths occurred between the first and fourth day post-CLP in the 22°C group (Fig. 1A). The 22°C group had a survival rate of 40% while the 30°C group had a significantly increased (P < 0.05) survival of 78%, demonstrating thermoneutral housing has an effect on the outcome of sepsis in this model.

Thermoneutral housing influences core body temperature.

Core body temperatures were evaluated using electronic transponders. The body temperature of mice housed at 30°C was significantly greater (P < 0.05) than the body temperature of mice housed at 22°C at 24 h after CLP (Fig. 1B).

Thermoneutral housing alters few markers of inflammation.

To examine potential mechanisms for the improved survival, select markers of inflammation were assessed at acute time points (12, 24, and 48 h after CLP) selected because they precede the time points associated with the majority of deaths in the survival studies.

Complete blood counts— Compared with reference values, septic mice had lower mean total white blood cell counts, particularly monocytes and lymphocytes. However, there were no significant differences in total WBC, monocyte, neutrophil, or lymphocyte counts between the housing temperature groups (Fig. 2, A–D) and cell counts showed similar temporal fluctuations between groups.

Peritoneal cell counts— In comparison with reference values, the cell counts rose over the first 24 h. However, there were no significant differences between housing temperature groups at any time point (Fig. 3, A–C).

Plasma cytokines—None of the cytokines were detected in the plasma of the reference animals. The mean plasma IL-6 level of the 22°C group was significantly higher than the 30°C group at 12 h post-CLP (Fig. 4A). The plasma IL-1β levels (Fig. 4B) and IL-10 levels (Fig. 4C) were not significantly different between the temperature groups at any time point. The plasma TNF-α levels were near or below detection limits (<9.0 pg/mL) for the assay at all of the time points in both temperature groups.

Peritoneal cytokines— None of the cytokines were detected in the peritoneal lavage fluid from the reference animals. Like the plasma IL-6, the mean peritoneal IL-6 level of the 22°C group was significantly increased (P < 0.05) in comparison with the 30°C group at 12 h post-CLP (Fig. 4D). The peritoneal IL-1β and IL-10 levels were also not different between groups (Fig. 4E and F, respectively). The peritoneal TNF-α levels were near or below detection limits (<9.0 pg/mL) for the assay at all time points.

Splenic T cell assessments—In comparison with reference values, splenic CD4+ and CD8+ T cells declined in the septic...
FIG. 2. **Thermoneutral housing alters few systemic cell counts.** After CLP and housing at 22°C or 30°C, mice were sacrificed at 12, 24, or 48 h post-CLP. An unmanipulated group provided reference values (n = 10). Retroorbital blood was collected for cell counts and differentials including (A) total WBCs, (B) monocytes, (C) neutrophils, and (D) lymphocytes. Data are reported as mean ± SEM. CLP indicates cecal ligation and puncture.

FIG. 3. **Thermoneutral housing alters few local cell counts.** After CLP and housing at 22°C or 30°C, mice were sacrificed at 12, 24, or 48 h post-CLP. An unmanipulated group provided reference values (n = 10). Cell counts and differentials were determined in the peritoneal lavage fluid. Graphs depict (A) total cell counts, (B) macrophages, and (C) neutrophils. Data are reported as mean ± SEM. CLP indicates cecal ligation and puncture.

FIG. 4. **Thermoneutral housing decreases IL-6 levels.** After CLP and housing at 22°C or 30°C, mice were sacrificed at 12, 24, or 48 h post-CLP. An unmanipulated group provided reference values (n = 10). Blood and peritoneal lavage fluid were analyzed for cytokine levels with ELISAs. Graphs depict plasma levels of (A) IL-6, (B) IL-1β, (C) IL-10 and peritoneal lavage fluid levels of (D) IL-6, (E) IL-1β, and (F) IL-10. PLF indicates peritoneal lavage fluid. Data are reported as mean ± SEM. ND indicates not detected, levels lower than assay limits. * = P < 0.05. CLP indicates cecal ligation and puncture.
animals while expression of CD69, a marker of activation, and intracellular cytokines increased over the first 12 h. However, splenic counts of both CD4\(^+\) and CD8\(^+\) T cells had no significant differences between housing temperature groups (Fig. 5, A and E, respectively). Likewise, the expression of CD69 was not different between groups for either cell type (Fig. 5, B and F, respectively). The numbers of CD4\(^+\) and CD8\(^+\) T cells expressing intracellular IFN-\(\gamma\) and IL-4 were not significantly different between housing temperature groups (Fig. 5C, D, G, H).

Thermoneutral housing reduces bacterial burden

At 24 h post-CLP, the mean colony counts derived from peritoneal lavage fluid (Fig. 6A) were significantly \((P < 0.05)\) lower in the 30\(^\circ\)C group as compared with the 22\(^\circ\)C group. Compared with the peritoneal compartment, spleen (Fig. 6B) and blood (Fig. 6C) had no differences between the groups. Thermo-neutral housing enhances the phagocytic activity of leukocytes

To explain differences in peritoneal bacterial load, the phagocytic activity of peritoneal cells was examined at an early time point. At 12 h post-surgery, a significantly higher \((P < 0.05)\) percentage (Fig. 7A) and absolute number (Fig. 7B) of peritoneal neutrophils displayed phagocytosis of fluorescently labeled \(E. coli\) in mice housed at 30\(^\circ\)C compared with mice housed at 22\(^\circ\)C. The mean fluorescence intensity between groups was also significantly higher \((P < 0.05)\) in neutrophils from mice housed at 30\(^\circ\)C (Fig. 7C). Although the number of macrophages demonstrating phagocytosis was not different (Fig. 7, A and B), the mean fluorescence intensity approached significance \((P = 0.056)\) in macrophages from mice housed at 30\(^\circ\)C (Fig. 7D) compared with 22\(^\circ\)C.

Thermoneutral housing does not alter splenic T cell counts. After CLP and housing at 22\(^\circ\)C or 30\(^\circ\)C, mice were sacrificed at 12, 24, or 48 h post-CLP. An unmanipulated group provided reference values \((n = 10)\). Splenic T-cell populations were analyzed using flow cytometry. Graphs depict (A) total CD4\(^+\) cells, (B) activated CD4\(^+\) cells, (C) intracellular IFN-\(\gamma\) expression in CD4\(^+\) cells, (D) IL-4 expression in CD4\(^+\) cells, (E) total CD8\(^+\) cells, (F) activated CD8\(^+\) cells, (G) IFN-\(\gamma\) expression in CD8\(^+\) cells, and (H) IL-4 expression in CD8\(^+\) cells. Data are reported as mean \pm SEM. CLP indicates cecal ligation and puncture.

Thermoneutral housing lowers local bacterial burden. After CLP and housing at 22\(^\circ\)C or 30\(^\circ\)C, samples were harvested aseptically at 24 h for serial dilution and culture on blood agar plates. After 24 h of incubation at 37\(^\circ\)C, the colony forming units were recorded from (A) peritoneal cavity, (B) spleen, and (C) blood. Data are reported as mean \pm SEM. * \(P < 0.05\) as compared with saline 22\(^\circ\)C group. \(n = 10\) mice (22\(^\circ\)C), \(n = 6\) mice (30\(^\circ\)C), two independent experiments. CLP indicates cecal ligation and puncture.
Thermoneutral housing does not significantly enhance adoptive transfer

Previously, we have shown improved outcomes when IV adoptive transfer of fibrocytes is performed at the time of CLP. A repeat of this experiment at standard housing temperatures showed similar findings. The fibrocyte adoptive transfer group had an improved survival rate of 74% compared with the saline group (40%) housed at 22°C (Fig. 8A). However, when mice were housed at 30°C, the survival rate of the adoptive transfer group (80%) was not significantly different from the saline group (70%) (Fig. 8B). The major impact of the raised housing temperature appeared to be on the saline group and not the adoptive transfer group.

DISCUSSION

The studies presented here demonstrate that thermoneutral housing at 30°C resulted in improved survival as compared with standard housing at 22°C. Several recent reviews have described similar impact of thermoneutral housing on survival in other mouse models of human disease (12, 15, 22, 23), including those used in metabolism, cancer, and infectious disease research. For instance, housing at thermoneutrality resulted in slower tumor growth and reduced metastasis in mouse cancer models compared with housing at standard temperatures, due to enhanced antitumor immune responses (23, 28). Warmer housing environments have also been reported to have a favorable impact on survival in a number of infection models (29–31). Overall, the results of our CLP studies suggest that technical modifications would be required to produce CLP models yielding similar levels of lethality if current housing recommendations are changed. Of note, the mice in our studies were group housed and had access to nesting material to replicate the routine experimental conditions used in our laboratory. These are factors that may vary between laboratories and do influence the ability of mice to thermoregulate (32). Therefore, initiatives to standardize CLP models across multiple laboratories would be highly dependent upon standardization of housing temperatures and other related housing factors.

To further characterize temperature-related immune responses after CLP, we examined a number of select local and systemic parameters, including cell counts and cytokines. Here, the finding of lower IL-6 levels in the blood and peritoneal lavage fluid at 12 h post-CLP in mice housed at thermoneutral temperatures compared with 22°C was consistent with our survival outcomes and the known role of IL-6 as a mediator and biomarker negatively correlated with survival after CLP (33–35). Immediate postoperative warming at 35°C for 1 h followed by housing at standard temperatures has also

![Fig. 7. Thermoneutral housing potentiates neutrophil phagocytosis.](image-url)
been shown to significantly lower plasma IL-6 concentrations and improve survival (60% vs. 42%, respectively) after CLP (33). However, all of the mice in our study received immediate postoperative heat support prior to randomized housing and still demonstrated a shift in survival after CLP (78% vs. 40%, respectively), suggesting impact occurred after the immediate recovery period.

Other than IL-6, we saw few temperature-associated differences in cytokine levels, intracellular T cell cytokines, or immune cell counts, at either local or systemic sites. In contrast, thermoneutral housing conditions have been associated with suppression or delay of systemic cytokine levels (TNF-α and IFN-γ) in a murine model of Klebsiella pneumoniae peritonitis (30) and enhanced T-cell cytokine production in mice vaccinated with Francisella tularensis (20) and in tumor-bearing mice (28). Other studies have shown increases of peripheral blood neutrophil counts in response to brief, postoperative warming after CLP (33) and increased local levels of neutrophils and macrophages after the induction of sterile peritonitis in thermoneutral housing temperatures (36). The differences seen between our study and other reports could be due to inherent characteristics of the models, timing of observations or the parameters selected. It is also noteworthy that, even in the 22°C group, core body temperatures at 24 h were not as low (<32°C) as we have previously documented after CLP in singly housed mice (37). The group housing used in this study and the introduction of nesting materials can affect thermoregulation (32, 38) and therefore, may have impacted our findings in comparison with other studies. In addition, the mice in our study were not raised in or acclimated to thermoneutral temperatures prior to experimentation which could have additional impact. Therefore, comprehensive comparisons between studies can be difficult and are highly dependent upon complete reporting of environmental factors that may affect murine thermoregulation.

In our study, thermoneutral housing temperatures were associated with lower bacterial loads in the peritoneum 24 h after CLP, while loads within the blood and spleen were similar between the housing temperatures. These findings are comparable to those seen after intraperitoneal inoculation of Klebsiella pneumoniae that showed mice housed at 35.5°C had lower peritoneal bacterial counts but similar spleen and blood bacterial counts at 24 h when compared with mice housed at 23°C (30). That study ruled out any effects of housing temperature on bacterial proliferation, and the differences in bacterial loads were attributed to alterations in unidentified host defense mechanisms (30). Our study results suggest that enhanced activity by local phagocytes is one mechanism for the effects of thermoneutral housing. These results are in keeping with multiple preclinical sepsis studies that have found increased survival associated with increased phagocytic activity of leukocytes (39–41), and studies that have shown enhanced phagocytosis at warmer temperatures mediated through a number of extra- and intracellular pathways (42–44). Phagocytosis, an energy-dependent process, can vary with temperature due to changes in opsonization, attachment, receptor-mediated uptake, and ingestion (44). Activation of mitochondrial enzymes may also lead to enhanced phagocytosis (43), although temperatures above 39°C may cause impairment in the function of enzymes responsible for pseudopod movement (42). Of note, many of these studies investigated phagocytosis by macrophages while our studies found increased housing temperatures primarily enhanced phagocytosis by neutrophils.

Thermoneutral housing improved the outcome of our control CLP model but did not add to the impact of adoptive transfer studies. Repeatedly, we have shown a survival benefit from the adoptive transfer of fibrocytes in the CLP model (25, 45). This benefit is due, at least in part, to a reduction in bacterial load and increased phagocytic activity (45). In the current study, we once again demonstrated a significant difference from adoptive transfer in standard housing conditions; however, this difference was lost in thermoneutral housing. Since both the adoptive transfer and thermoneutral housing appear to lower bacterial load by enhancing phagocytosis, the effects of housing temperature may have maximized bacterial clearance and negated the significance of the cell therapy. Therefore, further evaluation of the adoptive transfer in a CLP model with greater severity would be warranted. This raises important questions...
as to which housing condition would best replicate the responses in a clinical patient and whether metabolic alterations caused by housing temperature would impact the efficacy of therapies tested in preclinical studies. There have been reports that temperature-associated changes have produced models that better recapitulate the human disease response. This is evident in allogenic hematopoietic cell transplantation where the major, clinical complications of graft versus host disease and lethality will manifest in mouse models when housed at thermoneutral temperatures but not at standard housing temperatures. Likewise, when housed at 31°C, mice may develop the hyperthermia seen in humans (19) after administration of endotoxin. Yet, at standard housing temperatures, mice develop paradoxical hypothermia in response to endotoxin (19). In cases of clinical sepsis, the majority of patients are hyperthermic (46), and recent reports suggest these patients are at a lower risk of mortality than septic patients with hypothermia (46, 47). Therefore, the inherent cold stress of standard housing may result in murine CLP models representative of the more severely affected clinical cohort. In our study, mean core body temperature was higher in the mice housed at 30°C as compared with 22°C at the 24 h time point and further, continuous temperature monitoring could determine whether transient hyperthermia develops. This suggests that comprehensive preclinical testing of sepsis therapeutics in mice might benefit from studies at a range of housing temperatures, an approach that has already been advocated in cancer research due to similar temperature dependency (23).

Overall, a broad change to thermoneutral housing of mice could present some challenges to ongoing sepsis studies employing the CLP model. The metabolic changes associated with relief of cold stress might necessitate modifications to re-establish the severity of some CLP models and/or, depending upon the underlying mechanisms, might require re-evaluation of interventions. With regard to implementation, regulation of thermoneutral housing at the room level would create an uncomfortable working environment for personnel, while cage level regulation would increase the labor and expense associated with husbandry (7, 48). On the other hand, further study could reveal advantages to a murine CLP model that more closely replicates the metabolic and immunologic responses of humans and yields a better translational link with clinical sepsis studies.

In conclusion, this study demonstrates that thermoneutral housing improves the survival outcome of the CLP model and reduces bacterial load by enhancing phagocytosis. These results reinforce the importance of reporting housing temperature and related factors such as housing density, nesting materials, and relative humidity to improve reproducibility of animal models. They also highlight that the effects of cold stress must be considered when interpreting the results of current mouse studies. Therefore, housing temperature, a very basic variable, may have further, serious implications for preclinical models and the treatment of septic patients in intensive care settings.

ACKNOWLEDGMENT

The authors thank Dr Randy Seeley (Department of Surgery, University of Michigan) for the use of specialized climate chambers.

REFERENCES

1. Muenzer JT, Davis CG, Dunne BS, Unsinger J, Dunne WM, Hotchkiss RS: Pneumonia after cecal ligation and puncture: a clinically relevant “two-hit” model of sepsis. Shock 26(6):565–570, 2006.
2. Doi K, Leelahavanichkul A, Yuen PS, Star RA: Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest 119(10):2668–2678, 2009.
3. Efron PA, Mohr AM, Moore FA, Moldawer LL: The future of murine sepsis and trauma research models. J Leukoc Biol 98(6):945–952, 2015.
4. Zingarelli B, Coopersmith CM, Drechsler S, Efren P, Marshall JC, Moldawer L, Wiersinga WJ, Xiao X, Osuchowski MF: Thiemermann C: Part I: minimum quality threshold in preclinical sepsis studies (MQTPSS) for study design and humane modeling endpoints. Shock 51(1):10–22, 2019.
5. Remick DG, Ayala A, Chaudry IH, Coopersmith CM, Deutschman C, Hellman J, Moldawer L, Osuchowski MF: Premise for standardized sepsis models. Shock 51(1):4–9, 2019.
6. Institute for Laboratory Animal Research. Guide for the care and use of laboratory, animals. Washington (DC): National Academies Press; 2011.
7. Gaskill B N, Rohr S A, Pajer E A, Lucas F, Garner F: Some like it hot: mouse temperature preferences in laboratory housing. Appl Anim Behav Sci 116(2):279–285, 2009.
8. Gordon C: Temperature Regulation in Laboratory Animals. New York: Cambridge University Press; 1993.
9. Gordon CJ: The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol Behav 179:55–66, 2017.
10. Fischer AW, Cannon B, Nedergaard J: Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metab 7:161–170, 2018.
11. Swoap SJ, Overton JM, Garber G: Effect of ambient temperature on cardiovascular parameters in rats and mice: a comparative approach. Am J Physiol Regul Integr Comp Physiol 287(2):R391–R396, 2004.
12. Karp CL.: Unresting intemperate models: how cold stress undermines mouse modeling. J Exp Med 209(6):1069–1074, 2012.
13. Overton JM: Phenotyping small animals as models for the human metabolic syndrome: thermoneutrality matters. Int J Obes (Lond) 34(suppl 2):S53–S58, 2010.
14. Maloney SK, Fuller A, Mitchell D, Gordon C, Overton JM: Translating animal model research: does it matter that our rodents are cold? Physiology (Bethesda) 29(6):413–420, 2014.
15. Hankenson FC, Marx JO, Gordon CJ, David JM: Effects of rodent thermoregulation on animal models in the research environment. Comp Med 68(4):425–438, 2018.
16. Messmer MN, Kokolus KM, Eng JWL, Abrams SI, Repasky EA: Mild cold-stress depresses immune responses: implications for cancer models involving laboratory mice. BioEssays 36(9):884–891, 2014.
17. Leigh ND, Kokolus KM, O’Neill RE, Drs W, Eng JWF, Qin J, Chen GL, McCarthy PL, Farrar JD, Cao X, et al.: Housing temperature-induced stress is suppressing murine graft-versus-host disease through beta2-adrenergic receptor signaling. J Immunol 195(10):5045–5054, 2015.
18. Liu E, Lewis K, Al-Saffar H, Krall CM, Singh A, Kulchitsky VA, Corrigan JJ, McCarthy PL, Farrar JD, Cao X, et al.: Housing temperature-induced stress is suppressing murine graft-versus-host disease through beta2-adrenergic receptor signaling. J Immunol 195(10):5045–5054, 2015.
19. Rudaya AY, Steiner AA, Robbins JR, Dragic AS, Romanovsky AA: Thermoregulatory responses to lipopolysaccharide and Escherichia coli-induced systemic inflammation. Am J Physiol Regul Integr Comp Physiol 302(12):R1372–R1383, 2012.
20. Rudaya AY, Steiner AA, Robbins JR, Dragic AS, Romanovsky AA: Thermoregulatory responses to lipopolysaccharide and Escherichia coli-induced systemic inflammation. Am J Physiol Regul Integr Comp Physiol 302(12):R1372–R1383, 2012.
21. Rubio RL: Mouse housed at elevated vivarium temperatures display enhanced T-cell response and survival to Francisella tularensis. Comp Med 67(6):491–497, 2017.
22. Jbbevari KA, Trammell RA, Toth LA: Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice. Brain Behav Immun 21(7):975–987, 2007.
23. Ganeshan K, Chawla A: Warming the mouse to model human diseases. Nat Rev Endocrinol 13(8):458–465, 2017.
24. Hylander BL, Repasky EA: Thermoneutrality, mice, and cancer: a heated opinion. Trends Cancer 2(4):166–175, 2016.
25. Xiao H, Remick DG: Correction of perioperative hypothermia decreases experimental sepsis mortality by modulating the inflammatory response. Crit Care Med 33(1):161–167, 2005.
26. Nemzek JA, Fry C, Moore BB: Adoptive transfer of thiocees enhances splenic T-cell numbers and survival in septic peritonitis. Shock 40(2):106–114, 2013.
27. Hugunin KM, Fry C, Shuster K, Nemzek JA: Effects of tramadol and buprenorphine on select immunologic factors in a cecal ligation and puncture model. Shock 34(3):250–260, 2010.
27. Moore BB, Kolodick JE, Thannickal VJ, Cooke K, Moore TA, Hogaboam C, Wilke CA, Toews GB: CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 166(3):675–684, 2005.
28. Kokolus KM, Capitano ML, Lee CT, Eng JW, Waight JD, Hylander BL, Sexton S, Hong CC, Gordon CJ, Abrams SI, et al.: Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci U S A 110(50):20176–20181, 2013.
29. Underwood GE, Baker CA, Weed SD: Protective effect of elevated temperature on mice infected with Coe virus. J Immunol 96(6):1006–1012, 1966.
30. Jiang Q, Cross AS, Singh IS, Chen TT, Viscardi RM, Hasday JD: Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun 68(3):1265–1270, 2000.
31. Won WD, Ross H: Relationship of low temperature to mouse resistance to infection with Klebsiella pneumoniae. Aerosp Med 42(6):642–645, 1971.
32. Gaskill BN, Gordon CJ, Pajor EA, Lucas JR, Davis JK, Garner JP: Impact of nesting material on mouse body temperature and physiology. Physiol Behav 110-111:87–95, 2013.
33. Remick DG, Bolgos G, Copeland S, Siddiqui J: Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun 73(5):2751–2757, 2005.
34. Remick DG, Bolgos GR, Siddiqui J, Shin J, Nemzek JA: Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 17(6):463–467, 2002.
35. Riedemann NC, Neff TA, Guo RF, Bernacki KD, Laudes II, Sarma JV, Lambris JD, Ward PA: Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J Immunol 170(1):503–507, 2003.
36. Tian XY, Ganesan K, Hong C, Nguyen KD, Qiu Y, Kim J, Tangirala RK, Tontonoz P, Chawla A: Thermoneutral housing accelerates metabolic inflammation to potentiate atherosclerosis but not insulin resistance. Cell Metab 23(1):165–178, 2016.
37. Nemzek JA, Xiao HY, Minard AE, Bolgos GL, Remick DG: Humane endpoints in shock research. Shock 21(1):17–25, 2004.
38. Speakman JR: Measuring energy metabolism in the mouse— theoretical, practical, and analytical considerations. Front Physiol 4:34, 2013.
39. Lu X-J, Chen J, Yu C-H, Shi Y-H, He Y-Q, Zhang R-C, Huang Z-A, Ly J-N, Zhang S, Xu L: LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J Exp Med 210(1):5–13, 2013.
40. Redlich S, Ribes S, Schutze S, Nau R: Palmitoylethanolamide stimulates phagocytosis of Escherichia coli K1 by macrophages and increases the resistance of mice against infections. J Neuroinflammation 11:108, 2014.
41. Lee S, Lee SJ, Coronata AA, Fredenburgh LE, Chang SW, Perrella MA, Nakahira K, Ryter SW, Choi AM: Carbon monoxide confers protection in sepsis by enhancing beclin 1-dependent autophagy and phagocytosis. Antioxid Redox Signal 20(3):432–442, 2014.
42. Pramanik T, Thapa M, Sakia TC: Effect of temperature on phagocytic activity of neutrophils. Nepal Med Coll J 6(1):39–40, 2004.
43. Djaldetti M, Bessler H: High temperature affects the phagocytic activity of human peripheral blood mononuclear cells. Scand J Clin Lab Invest 75(6):482–486, 2015.
44. Holtzman E: Lysosomes. New York: Plenum Press; 1989, 39–40.
45. Collins D, Fry C, Moore BB, Nemzek JA: Phagocytosis by fibrocytes as a mechanism to decrease bacterial burden and increase survival in sepsis. Shock 51(4):464–471, 2019.
46. Kushimoto S, Gando S, Saitoh D, Mayumi T, Ogura H, Fujishima S, Araki T, Ikeda H, Kotani J, Miki Y, et al.: The impact of body temperature abnormalities on the disease severity and outcome in patients with severe sepsis: an analysis from a multicenter, prospective survey of severe sepsis. Crit Care 17(6):R271, 2013.
47. Rumbus Z, Matics R, Hegyi P, Zsiboras C, Szabo I, Balasko M, Marta K, Miko A, et al.: Fever is associated with reduced, hypothermia with increased mortality in septic patients: a meta-analysis of clinical trials. PLoS One 12(1):e0170152, 2017.
48. Gordon CJ, Puckett ET, Repasky ES, Johnstone AF: A device that allows rodents to behaviorally thermoregulate when housed in vivariums. J Am Assoc Lab Anim Sci 56(2):173–176, 2017.