Algebraic Structures in Extended Geometry

Martin Cederwall*

Fundamental Physics, Chalmers University of Technology, Göteborg, Sweden
*e-mail: martin.cederwall@chalmers.se

Abstract—Extended geometry is a unifying framework including exceptional field theory (XFT) and double field theory (DFT). It gives a geometric underpinning of the duality symmetries of M-theory. In this talk I give an overview of the surprisingly rich algebraic structures which naturally appear in the context of extended geometry. This includes Borcherds superalgebras, Cartan type superalgebras (tensor hierarchy algebras) and L_∞ algebras. This is the written version of a talk based mainly on [1–6], presented at SQS 2017, Dubna, Aug. 2017.

DOI: 10.1134/S1063779618050155

String theory/M-theory exhibits duality symmetries that mix gravitational and non-gravitational fields. Manifestation of such symmetries calls for a generalisation of the concept of geometry. It has been proposed that the compactifying space (torus) is enlarged to accommodate momenta (representing momenta and brane windings) in modules of a duality group. This leads to double geometry [7–31] in the context of T-duality, and exceptional geometry [32–52] in the context of U-duality. These classes of models are special cases of extended geometries, and can be treated in a unified manner [4, 6]. The duality group is in a certain sense present already in the uncompactified theory. It becomes “geometrised”.

In the present talk, I will
—Describe the basics of extended geometry, with focus on the gauge transformations;
—Describe the appearance of Borcherds superalgebras and Cartan-type superalgebras (tensor hierarchy superalgebras);
—Indicate why L_∞ algebras provide a good framework for describing the gauge symmetries.
—Point out some questions and directions.

The focus will thus be on algebraic aspects, and less on geometric ones.

Consider compactification from 11 to 11 – n dimensions on T^n. As is well known, fields and charges fall into modules of E_n.

To be explicit, take $n = 7$ as an example. The gauge parameters ξ^M in 56 of E_7 decompose as:

$$\xi^m, \lambda_{mn}, \tilde{\lambda}_{mn}, \tilde{\lambda}_{mnpqr} \leftrightarrow \xi^M = 56.$$

We recognise the parameters for diffeomorphisms, gauge transformations of the 3-form and dual 6-form and a parameter for “dual diffeomorphisms”. The scalar fields are in the coset $E_7(7)/K(E_7(7)) = E_7(7)/(SU(8)/\mathbb{Z}_2)$. The dimension of coset is: $133 - 63 = 70$, and it is parametrised by

$$g_{mn}, C_{mn}, \tilde{C}_{mn}, \tilde{C}_{mnpqr} \leftarrow G_{MN} = 28 + 35 + 7 = 70.$$

From the point of view of $N=8$ supergravity in $D=4$, this is the scalar field coset. Now it becomes a generalised metric. There are also mixed fields (generalised graviphotons): 1-forms in R_1, etc.

The situation for T-duality is simpler. Compactification from 10 to 10 – d dimensions gives the (continuous) T-duality group $O(d, d)$. The momenta are complemented with string windings to form the $2d$-dimensional module.

Note that the continuous duality group is not to be seen as a global symmetry. Discrete duality transformations in $O(d, d; \mathbb{Z})$ or $E_{n(0)}(\mathbb{Z})$ arise as symmetries in certain backgrounds, roughly as the mapping class

n	$E_{n(0)}$	R_1
3	$SL(3) \times SL(2)$	(3, 2)
4	$SL(5)$	10
5	$Spin(5, 5)$	16
6	E_6	27
7	$E_7(7)$	56
8	$E_{8(8)}$	248
9	$E_{9(9)}$	Fund

Table 1. A list of U-duality groups

1 The article is published in the original.
group $SL(n, \mathbb{Z})$ arises as discrete isometries of a torus. The role of the continuous versions of the duality groups is analogous to that of $GL(n)$ in ordinary geometry (gravity).

One has to decide how tensors transform. The generic recipe is to mimic the Lie derivative for ordinary diffeomorphisms:

$$L_u V^m = U^a \partial_a V^m - \frac{\partial_a U^m}{g^a} V^n.$$

The first term is a transport term, and the second one a transformation.

In the case of U-duality, the role of $GL(n)$ is assumed by $E_{n(n)} \times \mathbb{R}^+$, and

$$\mathcal{L}_u V^M = L_u V^M + Y^{MN} \partial_N U^P V^Q = U^N \partial_N V^M + Z^{MN} \partial_N U^P V^Q,$$

where $Z^{MN} = -\alpha_n P^{M \alpha} Q, \quad N^P \beta_{\alpha} \delta^M \delta^N = Y^{MN} \delta^M - \delta^P \delta^Q$ projects on the adjoint of $E_{n(n)} \times \mathbb{R}^+$, so that the transformation term contains a parameter for an $e_n \otimes \mathbb{R}$ transformation.

The transformations form an “algebra” for $n \leq 7$:

$$[\mathcal{L}_U, \mathcal{L}_V] W^M = \mathcal{L}_{[U, V]} W^M,$$

where the “Courant bracket” is $[U, V]^M = \frac{1}{2} (\mathcal{L}_U V^M - \mathcal{L}_V U^M)$, provided that the derivatives fulfill a “section constraint”.

n	R_1	R_2
3	(3, 2)	(3, 1)
4	10	5
5	16	10
6	27	27
7	56	133
8	248	1 \otimes 3875

Fig. 1. The module R_1.

Fig. 2. The module R_2.

The section constraint ensures that fields locally depend only on an n-dimensional sub-space of the coordinates, on which a $GL(n)$ subgroup acts. It reads $Y^{MN} \partial_M \ldots \partial_N = 0$, or

$$(\partial \otimes \partial)[R_1] = 0.$$

For $n \geq 8$ more local transformations, so called “ancillary transformations” [4] emerge, which are constrained local transformations in \mathfrak{g}.

The interpretation of the section condition is that the momenta locally are chosen so that they may span a linear subspace of cotangent space with maximal dimension, such that any pair of covectors p, p' in the subspace fulfill $\langle p \otimes p' \rangle_{R_1} = 0$.

The corresponding statement for double geometry is $\eta^{MN} \partial_M \otimes \partial_N = 0$, where η is the $O(d, d)$-invariant metric. The maximal linear subspace is a d-dimensional isotropic subspace, and it is determined by a pure spinor Λ. Once a Λ is chosen, the section condition can be written $\Gamma^M \Lambda \partial_M = 0$. An analogous linear construction can be performed in the exceptional setting. The section condition in double geometry derives from the level matching condition in string theory. Locally, supergravity is recovered. Globally, non-geometric solutions are also obtained.

There is a universal form [1, 3, 4] of the generalised diffeomorphisms for any Kac–Moody algebra and choice of coordinate representation. Let the coordinate representation be $R(\lambda)$, for λ a fundamental weight dual to a simple root α (the construction can be made more general). Then

$$\sigma Y = -\eta_{AB} T^A \otimes T^B + (\lambda, \lambda) + \sigma - 1,$$

where η is the Killing metric and σ the permutation operator, $\sigma(a \otimes b) = (b \otimes a)\sigma$.

This follows from the existence of a solution to the section constraint in the form of a linear space:

—Each momentum must be in the minimal orbit.

Equivalently, $p \otimes p \in R(2\lambda)$.

—Products of different momenta may contain $R(2\lambda)$ and $R(2\lambda - \alpha)$, where $R(2\lambda - \alpha)$ is the highest representation in the antisymmetric product. Expressing these conditions in terms of the quadratic Casimir gives the form of Y.

PHYSICS OF PARTICLES AND NUCLEI Vol. 49 No. 5 2018
I will skip the detailed description of the generalised
gravity. It effectively provides the local dynamics of gravity and 3-form, which are encoded by a vielbein E_M^A in the coset $(E_{n(n)} \times \mathbb{R})/K(E_{n(n)})$.

The T-duality case is described by a generalised metric in the coset $O(d, d)/(O(d) \times O(d))$, parametrised by the ordinary metric and B-field.

With some differences from ordinary geometry, one can go through the construction of connection, torsion, metric compatibility etc., and arrive at generalised Einstein’s equations encoding the equations of motion for all fields. (This has been done for $n \leq 8$.)

For $n \geq 8$, the coset $E_{n(n)}/K(E_{n(n)})$ contains higher mixed tensors that do not carry independent physical degrees of freedom. They are removed by ancillary transformations that arise in the commutator between generalised diffeomorphisms [3, 4, 45, 48, 49].

One may introduce (local) supersymmetry. In the case of T-duality, the superspace is based on the fundamental representation of an orthosymplectic supergroup $OSp(d, d)$ of the exceptional cases are unexplored, but will be based on ∞-dimensional superalgebras [53].

The generalised diffeomorphisms do not satisfy a Jacobi identity. On general grounds, it can be shown that the “Jacobiator”

$$[[U, V], W] + \text{cyc} \neq 0,$$

but is proportional to $((U, V), W) + \text{cyc}$, where $(U, V) = \frac{1}{2}(\mathcal{L}_U V + \mathcal{L}_V U)$.

It is important to show that the Jacobiator in some sense is trivial. It turns out that $\mathcal{L}_{U, V} W = 0$ (for $n \leq 7$), and the interpretation is that it is a gauge transformation with a parameter representing reducibility (for $n \leq 6$). (The limits on n in the statements here are due to non-covariance of the derivative arising at some point in the tensor hierarchy, see below. I will not go into details.)

In double geometry, this reducibility is just the scalar reducibility of a gauge transformation: $\delta B_2 = d\lambda_1$, with the reducibility $\delta \lambda_1 = d\lambda_0$.

In exceptional geometry, the reducibility turns out to be more complicated, leading to an infinite (but well defined) reducibility, containing the modules of tensor hierarchies, and providing a natural generalisation of forms (having connection-free covariant derivatives).

The reducibility continues, and there are ghosts at all levels > 0. The representations are those of a “tensor hierarchy”, the sequence of representations R_n of n-form gauge fields in the dimensionally reduced theory.

$$R_1 \leftarrow \partial \quad R_2 \leftarrow \partial \quad R_3 \leftarrow \partial \quad \ldots$$

Example, $n = 5$:

$$16 \leftarrow \partial \; 10 \leftarrow \partial \; \overline{16} \leftarrow \partial \; 45 \leftarrow \partial \; 144 \leftarrow \partial \ldots$$

$$16 - 10 + 16 - 45 + 144 - \ldots = 11,$$

(suitably regularised) which is the number of degrees of freedom of a pure spinor. The representations $\{R_n\}_{n=1}^{\infty}$ agree with

—The ghosts for a “pure spinor” constraint (a constraint implying an object lies in the minimal orbit);

—The positive levels of a Borcherds superalgebra $\mathcal{B}(E_n)$.

Indeed, the denominator appearing in the denominator formula for $\mathcal{B}(E_n)$ is identical to the partition function of a “pure spinor” [54].

$$\mathcal{B}(D_n) = 0 \delta \mathcal{P}(n, n)2,$$

$$\mathcal{B}(A_n) = \delta(1(n + 1)1),$$

The modules R_1, \ldots, R_{8-n} behave like forms. The “exterior derivative” is connection-free (for a torsion-free connection), and there is a wedge product [43].

The modules show a symmetry: $R_{8-n} = R_n^B$. There is another extension to negative levels that respects this symmetry, and seems more connected to geometry: tensor hierarchy algebras [2, 5].

In the classification of finite-dimensional superalgebras by Kac, there is a special class, “Cartan-type superalgebras”. The Cartan-type superalgebra $W(n)$, which I prefer to call $W(A_{n-1})$, is asymmetric between positive and negative levels, and (therefore) not defined through generators corresponding to simple roots and Serre relations.

\begin{table}
\centering
\caption{A list of compact subgroups}
\begin{tabular}{|l|l|l|}
\hline
n & $E_{n(n)}$ & $K(E_{n(n)})$ \\
\hline
3 & $SL(3) \times SL(2)$ & $SO(3) \times SO(2)$ \\
4 & $SL(5)$ & $SO(5)$ \\
5 & $Spin(5, 5)$ & $(Spin(5) \times Spin(5))/\mathbb{Z}_2$ \\
6 & $E_{6(6)}$ & $USp(8)/\mathbb{Z}_2$ \\
7 & $E_{7(7)}$ & $SU(8)/\mathbb{Z}_2$ \\
8 & $E_{8(8)}$ & $Spin(16)/\mathbb{Z}_2$ \\
9 & $E_{9(9)}$ & $K(E_{9(9)})$ \\
\hline
\end{tabular}
\end{table}
$W(A_{n-1})$ is the superalgebra of derivations on the superalgebra of (pointwise) forms in n dimensions.

Any operation $\omega \rightarrow \Omega \wedge V \omega$ where Ω is a form and V a vector, belongs to $W(A_{n-1})$. A basis is given by

$$\begin{align*}
\text{Level} = 1 & & \iota_a \\
0 & & e^a \\
-1 & & e^b e^b \iota_a \\
-2 & & e^b e^c e^b \iota_a \\
& & \ldots \\
\text{The level decomposition of } W(A_{n-1}).
\end{align*}$$

A subalgebra $S(A_{n-1})$ contains traceless tensors. The positive levels agree with $\mathfrak{B}(A_{n-1}) = \mathfrak{B}(n|1)$. Note that the representations of torsion and torsion Bianchi identity appear at levels -1 and -2.

In spite of the absence of a Cartan involution, there is a way to give a systematic Chevalley–Serre presentation of the superalgebra, based on the same Dynkin diagram as the Borcherds superalgebra [5].

The construction can be extended to $W(D_n)$, and, most interestingly, $W(E_n)$ (and the corresponding $S(\mathfrak{g})$). The statements about torsion and Bianchi identities remain true (but we still lack a good geometric argument).

Back to the Jacobi identity. Expressed in terms of a fermionic ghost in R_1,

$$[[c,c],c] \neq 0.$$

How is this remedied? The most general formalism for gauge symmetries is the Batalin–Vilkovisky formalism, where everything is encoded in the master equation $(S, S) = 0$.

If transformations are field-independent, one may consider the ghost action consistently. An L_∞ algebra is a (super)algebraic structure which provides a perturbative solution to the master equation.

Let C denote all ghosts. Then the master equation states the nilpotency of a transformation

$$\delta C = (S, C)$$

$$= \partial C + [C, C] + [C, C, C] + [C, C, C, C] + \ldots.$$
What can be learned about the full string theory/M-theory?

...Thank you for your attention.

REFERENCES

1. J. Palmkvist, “Exceptional geometry and Borcherds superalgebras,” J. High Energy Phys. 1511, 032 (2015); arXiv:1507.08828.
2. J. Palmkvist, “The tensor hierarchy algebra,” J. Math. Phys. 55, 011701 (2014); arXiv:1305.0018.
3. G. Bossard, M. Cederwall, A. Kleinschmidt, J. Palmkvist, and H. Samtleben, “Generalised diffeomorphisms for E_6^*,” Phys. Rev. D 96, 106022 (2017); arXiv:1708.08936.
4. M. Cederwall and J. Palmkvist, “Extended geometries,” J. High Energy Phys. 182, 71 (2018); arXiv:1711.07694.
5. L. Carbone, M. Cederwall, and J. Palmkvist, “Generators and relations for Lie superalgebras of Cartan type,” arXiv:1802.05767.
6. M. Cederwall and J. Palmkvist, “L algebras for extended geometry from Borcherds superalgebras,” in preparation; arXiv:1804.04377.
7. A. A. Tseytlin, “Duality symmetric closed string theory and interacting chiral scalars,” Nucl. Phys. B 350, 395 (1991).
8. W. Siegel, “Two vierbein formalism for string inspired axionic gravity,” Phys. Rev. D 47, 5453 (1993); arXiv:hep-th/9302036.
9. W. Siegel, “Manifest duality in low-energy superstrings,” in Proceedings of the International Conference Strings’93, Berkeley, 5993, p. 353; arXiv:hep-th/9308133.
10. N. Hitchin, “Lectures on generalized geometry,” in Surveys in Differential Geometry, Vol. 16: Geometry of Special Holonomy and Related Topics (Surv. Differ. Geom. Int. Press, Somerville, MA, 2011), pp. 79–124; arXiv:1010.2526.
11. C. M. Hull, “A geometry for non-geometric string backgrounds,” J. High Energy Phys. 0510, 065 (2005); arXiv:hep-th/0406102.
12. C. M. Hull, “Doubled geometry and T-folds,” J. High Energy Phys. 0707, 080 (2007); arXiv:hep-th/0605149.
13. C. Hull and B. Zwiebach, “Double field theory,” J. High Energy Phys. 0909, 99 (2009); arXiv:0904.4664.
14. O. Hohm, C. M. Hull, and B. Zwiebach, “Background independent action for double field theory,” J. High Energy Phys. 1007, 016 (2010); arXiv:1003.5027.
15. O. Hohm, C. M. Hull, and B. Zwiebach, “Generalized metric formulation of double field theory,” J. High Energy Phys. 1008, 008 (2010); arXiv:1006.4823.
16. O. Hohm and S. K. Kwak, “Frame-like geometry of double field theory,” J. Phys. A 44, 085404 (2011); arXiv:1011.4101.
17. O. Hohm and S. K. Kwak, “$N = 1$ supersymmetric double field theory,” J. High Energy Phys. 1203, 080 (2012); arXiv:1111.7293.
18. J. Jeon, K. Lee, and J.-H. Park, “Differential geometry with a projection: Application to double field theory,” J. High Energy Phys. 1104, 014 (2011); arXiv:1011.1324.
19. J. Jeon, K. Lee, and J.-H. Park, “Stringy differential geometry, beyond Riemann,” Phys. Rev. D 84, 044022 (2011); arXiv:1105.6294.
20. J. Jeon, K. Lee, and J.-H. Park, “Supersymmetric double field theory: stringy reformulation of supergravity,” Phys. Rev. D 85, 081501 (2012); arXiv:1112.0069.
21. O. Hohm and B. Zwiebach, “Towards an invariant geometry of double field theory,” J. Math. Phys. 54, 032303 (2013); arXiv:1212.1736.
22. O. Hohm, S. K. Kwak, and B. Zwiebach, “Double field theory of type II strings,” J. High Energy Phys. 1109, 013 (2011); arXiv:1107.0008.
23. J. Jeon, K. Lee, J.-H. Park, and Y. Suh, “Stringy unification of type IIA and IIB supergravities under $N=2$ $D=10$ supersymmetric double field theory,” Phys. Lett. B 723, 245 (2013); arXiv:1210.5048.
24. I. Jeon, K. Lee, and J.-H. Park, “Ramond–Ramond cohomology and $O(D, D)$ T-duality,” J. High Energy Phys. 1209, 079 (2012); arXiv:1206.3478.
25. O. Hohm and B. Zwiebach, “Large gauge transformations in double field theory,” J. High Energy Phys. 02, 075 (2013); arXiv:1207.4198.
26. J.-H. Park, “Comments on double field theory and diffeomorphisms,” J. High Energy Phys. 1306, 098 (2013); arXiv:1304.5946.
27. D. S. Berman, M. Cederwall, and M. J. Perry, “Global aspects of double geometry,” J. High Energy Phys. 1409, 66 (2014); arXiv:1401.1311.
28. M. Cederwall, The geometry behind double geometry,” J. High Energy Phys. 1409, 70 (2014); arXiv:1402.2513.
29. M. Cederwall, “T-duality and non-geometric solutions from double geometry,” Fortschr. Phys. 62, 942 (2014); arXiv:1409.4463.
30. R. Blumenhagen, F. Hassler, and D. Lüst, “Double field theory on group manifolds,” J. High Energy Phys. 1502, 001 (2015); arXiv:1410.6374.
31. R. Blumenhagen, P. du Bosque, F. Hassler, and D. Lüst, “Generalized metric formulation of double field theory on group manifolds,” J. High Energy Phys. 08, 056 (2015); arXiv:1502.02428.
32. C. M. Hull, “Generalised geometry for M-theory,” J. High Energy Phys. 0707, 079 (2007); arXiv:hep-th/0701203.
33. P. P. Pacheco and D. Waldram, “M-theory, exceptional generalised geometry and superpotentials,” J. High Energy Phys. 0809, 123 (2008); arXiv:0804.1362.
34. C. Hillmann, “Generalized $E_8(7)$ coset dynamics and $D = 11$ supergravity,” J. High Energy Phys. 0903, 135 (2009); arXiv:0901.1581.
35. D. S. Berman and M. J. Perry, “Generalised geometry and M-theory,” J. High Energy Phys. 1106, 074 (2011); arXiv:1008.1763.
36. D. S. Berman, H. Godazgar, and M. J. Perry, “$SO(5, 5)$ duality in M-theory and generalized geometry,” Phys. Lett. B 700, 65 (2011); arXiv:1103.5733.
37. D. S. Berman, H. Godazgar, M. Godazgar, and M. J. Perry, “The local symmetries of M-theory and
their formulation in generalised geometry,” J. High Energy Phys. 1201, 012 (2012); arXiv:1110.3930.

38. D. S. Berman, H. Godazgar, M. J. Perry, and P. West, “Duality invariant actions and generalised geometry,” J. High Energy Phys. 1202, 108 (2012); arXiv:1111.0459.

39. A. Coimbra, C. Strickland-Constable, and D. Waldram, “$E_{d(d)} \times \mathbb{R}^+$ generalised geometry, connections and M theory,” J. High Energy Phys. 1402, 054 (2014); arXiv:1112.3989.

40. A. Coimbra, C. Strickland-Constable, and D. Waldram, “Supergravity as generalised geometry II: $E_{d(d)} \times \mathbb{R}^+$ and M theory,” J. High Energy Phys. 1403, 019 (2014); arXiv:1212.1586.

41. D. S. Berman, M. Cederwall, A. Kleinschmidt, and D. C. Thompson, “The gauge structure of generalised diffeomorphisms,” J. High Energy Phys. 1301, 64 (2013); arXiv:1208.5884.

42. J.-H. Park and Y. Suh, “U-geometry: SL(5),” J. High Energy Phys. 1406, 102 (2014); arXiv:1302.1652.

43. M. Cederwall, J. Edlund, and A. Karlsson, “Exceptional geometry and tensor fields,” J. High Energy Phys. 1307, 028 (2013); arXiv:1302.6736.

44. M. Cederwall, “Non-gravitational exceptional supermultiplets,” J. High Energy Phys. 1307, 025 (2013); arXiv:1302.6737.

45. O. Hohm and H. Samtleben, “U-duality covariant gravity,” J. High Energy Phys. 1309, 080 (2013); arXiv:1307.0509.

46. O. Hohm and H. Samtleben, “Exceptional field theory. I. $E_{6(6)}$ covariant form of M-theory and type IIB,” Phys. Rev. D 89, 066016 (2014); arXiv:1312.0614.

47. O. Hohm and H. Samtleben, “Exceptional field theory. II. $E_{7(7)}$,” Phys. Rev. D 89, 066017 (2014); arXiv:1312.4542.

48. O. Hohm and H. Samtleben, “Exceptional field theory. III. $E_{8(8)}$,” Phys. Rev. D 90, 066002 (2014); arXiv:1406.3348.

49. M. Cederwall and J. A. Rosabal, “E_8 geometry,” J. High Energy Phys. 1507, 007 (2015); arXiv:1504.04843.

50. M. Cederwall, “Twistors and supertwistors for exceptional field theory,” J. High Energy Phys. 1512, 123 (2015); arXiv:1510.02298.

51. G. Bossard and A. Kleinschmidt, “Loops in exceptional field theory,” J. High Energy Phys. 1601, 164 (2016); arXiv:1510.07859.

52. O. Hohm, E. T. Musaev, and H. Samtleben, “$O(d + 1, d + 1)$ enhanced double field theory,” J. High Energy Phys. 1710, 086 (2017); arXiv:1707.06693.

53. M. Cederwall, “Double supergeometry,” J. High Energy Phys. 1606, 155 (2016); arXiv:1603.04684.

54. M. Cederwall and J. Palmkvist, “Superalgebras, constraints and partition functions,” J. High Energy Phys. 0815, 36 (2015); arXiv:1503.06215.

55. O. Hohm and B. Zwiebach, “L algebras and field theory,” Fortschr. Phys. 65, 1700014 (2017); arXiv:1701.08824.