Supporting Information

Pyrenosetins A–C, New Decalinoylspirotetramic Acid Derivatives Isolated by Bioactivity-Based Molecular Networking from the Seaweed-Derived Fungus *Pyrenochaetopsis* sp. FVE-001

Bicheng Fan 1, Pradeep Dewapriya 1, Fengjie Li 1, Martina Blümel 1 and Deniz Tasdemir 1,2,*

1 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; bfan@geomar.de (B.F.); pdewapriya@geomar.de (P.D.); fli@geomar.de (F.L.); mbluemel@geomar.de (M.B.)

2 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany

* Correspondence: dtasdemir@geomar.de; Tel.: +49-431-600-4430

List of Tables

Table S1. In vitro anticancer activity (%) of Kupchan subextracts (KH, KC, KM) and SPE fractions against cancer cell lines (A-375, A-549, HT-29, HCT-116, MB-231) and non-cancerous HaCaT cell line.

Table S2. The Δδ(δS–δR) data for the S- and R-MTPA esters 6-9 in 1H NMR (CDCl3, 500 MHz).

Table S3. The distance (Å) between protons H-5’, H-15 and H-17 in the tetramic acid portion of the compounds 1-3. The red marking indicates the assigned relative stereochemistry based on the measured distances allowing observable NOE correlations (up to 4 Å) between relevant protons.

List of Figures

Figure S1. 1H NMR spectrum of compound 1 (600 MHz, CDCl3).

Figure S2. 13C NMR spectrum of compound 1 (150 MHz, CDCl3).

Figure S3. DEPT-HSQC spectrum of compound 1 (600 MHz, CDCl3).

Figure S4. COSY spectrum of compound 1 (600 MHz, CDCl3).

Figure S5. HMBC spectrum of compound 1 (600 MHz, CDCl3).

Figure S6. NOESY spectrum of compound 1 (600 MHz, CDCl3).

Figure S7. HR-ESIMS spectrum of compound 1.

Figure S8. FT-IR spectrum of compound 1.

Figure S9. 1H NMR spectrum of compound 2 (600 MHz, CDCl3).

Figure S10. 13C NMR spectrum of compound 2 (150 MHz, CDCl3).

Figure S11. DEPT-HSQC spectrum of compound 2 (600 MHz, CDCl3).

Figure S12. COSY spectrum of compound 2 (600 MHz, CDCl3).
Figure S13. HMBC spectrum of compound 2 (600 MHz, CDCl₃).

Figure S14. NOESY spectrum of compound 2 (600 MHz, CDCl₃).

Figure S15. HR-ESIMS spectrum of compound 2.

Figure S16. FT-IR spectrum of compound 2.

Figure S17. ¹H NMR spectrum of compound 3 (600 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum of compound 3 (150 MHz, CDCl₃).

Figure S19. DEPT-HSQC spectrum of compound 3 (600 MHz, CDCl₃).

Figure S20. COSY spectrum of compound 3 (600 MHz, CDCl₃).

Figure S21. HMBC spectrum of compound 3 (600 MHz, CDCl₃).

Figure S22. NOESY spectrum of compound 3 (600 MHz, CDCl₃).

Figure S23. HR-ESIMS spectrum of compound 3.

Figure S24. FT-IR spectrum of compound 3.

Figure S25. ¹H NMR spectrum of 16-(S)-MTPA ester 6 (500 MHz, CDCl₃).

Figure S26. ¹H NMR spectrum of 16-(R)-MTPA ester 7 (500 MHz, CDCl₃).

Figure S27. ¹H NMR spectrum of 16-(S)-MTPA ester 8 (500 MHz, CDCl₃).

Figure S28. ¹H NMR spectrum of 16-(R)-MTPA ester 9 (500 MHz, CDCl₃).

Figure S29. Δδ(δS-δR) values (ppm) obtained from 16-MTPA esters (6 and 7) of compound 1.

Figure S30. Δδ(δS-δR) values (ppm) obtained from 16-MTPA esters (8 and 9) of compound 2.
Table S1. In vitro anticancer activity (%) of Kupchan subextracts (KH, KC, KM) and SPE fractions against cancer cell lines (A-375, A-549, HT-29, HCT-116, MB-231) and non-cancerous HaCaT cell line.

	A-375 (100 µg/ml)	A-549 (100 µg/ml)	HT-29 (100 µg/ml)	HCT-116 (100 µg/ml)	MB-231 (100 µg/ml)	HaCaT (100 µg/ml)
KH	31	0	29	0	0	31
KC	98	99	99	76	99	66
KM	0	0	0	0	0	0
KC Fr.0	0	0	0	0	0	0
KC Fr.1	0	0	0	0	0	0
KC Fr.2	0	0	0	0	0	0
KC Fr.3	0	0	0	0	0	0
KC Fr.4	0	0	0	0	0	0
KC Fr.5	85	54	99	0	63	44
KC Fr.6	99	99	99	99	99	99
KC Fr.7	99	99	99	99	99	99
KC Fr.8	43	0	0	0	0	0
KC Fr.9	0	0	0	0	0	0
KC Fr.10	0	0	0	0	0	0

Table S2. The Δδ(δS-δR) data for the S- and R-MTPA esters 6–9 in 1H NMR (CDCl3, 500 MHz).

	6 (S)	7 (R)	ΔδS-R	8 (S)	9 (R)	ΔδS-R
C	δH, mult (J in Hz)					
13	3.39, m	3.35, dd (11.5, 9.5)	0.04	3.27, dd (11.3, 9.7)	3.28, dd (11.4, 9.4)	-0.01
14	5.92, dd (15.5, 9.5)	5.84, dd (15.4, 9.8)	0.08	6.09, dd (14.8, 9.7)	6.10, dd (15.3, 9.7)	-0.01
15	5.65, dd (15.5, 6.4)	5.58, dd (15.4, 6.4)	0.07	5.39, dd (14.9, 7.8)	5.52, dd (15.3, 7.6)	-0.13
16	5.46, m	5.45, m	0.01	5.34, m	5.38, m	-0.04
17	1.22, d (6.5)	1.30, d (6.5)	-0.08	1.31, d (6.3)	1.27, d (6.5)	0.04
Table S3. The distance (Å) between protons H-5', H-15 and H-17 in the tetramic acid portion of the compounds 1-3. The red marking indicates the assigned relative stereochemistry based on measured the distances allowing observable NOE correlations (up to 4 Å) between relevant protons.

Compd	2D Structure	3D model	H-5' orientation	Distance H-5'/H-15	NOE	Distance H-5'/H-17	NOE
1 (5'-β)	![2D Structure](image)	![3D model](image)	β	2.96 Å	YES	3.28 Å	YES
1 (5'-α)	![2D Structure](image)	![3D model](image)	α	4.83 Å		5.07 Å	
2 (5'-β)	![2D Structure](image)	![3D model](image)	β	2.88 Å		3.33 Å	
2 (5'-α)	![2D Structure](image)	![3D model](image)	α	5.14 Å	NO	6.84 Å	NO
3 (5'-β)	![2D Structure](image)	![3D model](image)	β	3.80 Å		5.11 Å	
3 (5'-α)	![2D Structure](image)	![3D model](image)	α	5.41 Å	NO	6.77 Å	NO
Figure S1. 1H NMR spectrum of compound 1 (600 MHz, CDCl$_3$).

Figure S2. 13C NMR spectrum of compound 1 (150 MHz, CDCl$_3$).
Figure S3. DEPT-HSQC spectrum of compound 1 (600 MHz, CDCl3).

Figure S4. COSY spectrum of compound 1 (600 MHz, CDCl3).
Figure S5. HMBC spectrum of compound 1 (600 MHz, CDCl3).

Figure S6. NOESY spectrum of compound 1 (600 MHz, CDCl3).
Figure S7. HR-ESIMS spectrum of compound 1.

Figure S8. FT-IR spectrum of compound 1.
Figure S9. 1H NMR spectrum of compound 2 (600 MHz, CDCl$_3$).

Figure S10. 13C NMR spectrum of compound 2 (150 MHz, CDCl$_3$).
Figure S11. DEPT-HSQC spectrum of compound 2 (600 MHz, CDCl₃).

Figure S12. COSY spectrum of compound 2 (600 MHz, CDCl₃).
Figure S13. HMBC spectrum of compound 2 (600 MHz, CDCl₃).

Figure S14. NOESY spectrum of compound 2 (600 MHz, CDCl₃).
Figure S15. HR-ESIMS spectrum of compound 2.

Figure S16. FT-IR spectrum of compound 2.
Figure S17. 1H NMR spectrum of compound 3 (600 MHz, CDCl$_3$).

Figure S18. 13C NMR spectrum of compound 3 (150 MHz, CDCl$_3$).
Figure S19. DEPT-HSQC spectrum of compound 3 (600 MHz, CDCl$_3$).

Figure S20. COSY spectrum of compound 3 (600 MHz, CDCl$_3$).
Figure S21. HMBC spectrum of compound 3 (600 MHz, CDCl₃).

Figure S22. NOESY spectrum of compound 3 (600 MHz, CDCl₃).
Figure S23. HR-ESIMS spectrum of compound 3.

Figure S24. FT-IR spectrum of compound 3.
Figure S25. 1H NMR spectrum of 16-(S)-MTPA ester 6 (500 MHz, CDCl$_3$).

Figure S26. 1H NMR spectrum of 16-(R)-MTPA ester 7 (500 MHz, CDCl$_3$).
Figure S27. 1H NMR spectrum of 16-(S)-MTPA ester 8 (500 MHz, CDCl$_3$).

Figure S28. 1H NMR spectrum of 16-(R)-MTPA ester 9 (500 MHz, CDCl$_3$).
Figure S29. $\Delta \delta(\delta_S-\delta_R)$ values (ppm) obtained from 16-MTPA esters (6 and 7) of compound 1.

Figure S30. $\Delta \delta(\delta_S-\delta_R)$ values (ppm) obtained from 16-MTPA esters (8 and 9) of compound 2.