ABSTRACT

BACKGROUND AND OBJECTIVES: Dysmenorrhea is the most common gynecological complaint among young women. Several therapeutic resources have been studied, aiming at reducing pain. The objective of this study was to identify the influence of cold or hot compresses on pain intensity and pressure pain tolerance thresholds in women with primary dysmenorrhea.

METHODS: A single-blind randomized clinical study involving 40 young women divided into two groups: hot compress or cold compress, applied for 20 minutes on the lower abdomen and lower back regions. Pressure pain tolerance thresholds were evaluated by algometry in the vastus medialis, gluteus maximus, lumbar paravertebral muscles and supraspinatus ligaments L4-L5 and L5-S1. Pain intensity was assessed by the visual analog scale.

RESULTS: No significant changes in pressure pain tolerance thresholds were observed immediately after the application of the compresses, nor 30 minutes later. The comparison of the variation in the effect of changes showed no differences between the intervention groups, either regarding the pressure pain tolerance thresholds or the visual analog scale. However, both groups had a significant reduction in the visual analog scale right after the application and 30 minutes after the end of the intervention. Nevertheless, right after the use of the compresses, as well as 30 minutes after its end, the group that received the cold compress had a more significant reduction in pain intensity (p=0.002 and p=0.004, respectively).

CONCLUSION: Cold or hot compresses did not produce changes in pressure pain tolerance thresholds. However, pain perception was lower after this treatment, especially in the group using cold compresses.

Keywords: Dysmenorrhea, Pain measurement, Physical therapy modalities.

INTRODUÇÃO

A dismenorreia é considerada a queixa ginecológica mais comum em mulheres jovens, e atinge cerca de 60-80% da população feminina. É caracterizada por dor no baixo ventre, podendo ser acompanhada por náuseas, vômitos, cefaleia, torpor e desmaios. Cerca de 8 a 18% desta população relata desconfortos intensos, levando ao absentismo nas diversas atividades habituais durante o período da dor.
A dismenorreia pode ser classificada em relação à intensidade como leve, moderada ou intensa, e em relação à etiologia como primária ou funcional, e secundária ou orgânica. Alguns recursos têm sido empregados para o tratamento da dismenorreia. O uso de plantas medicinais parece ser eficaz para o tratamento dessa disfunção. Recursos como ioga, acupuntura e acupressão têm sido utilizados para tratar a dor menstrual. Já foi demonstrado que a combinação de estimulação elétrica nervosa transcutânea (TENS) e termoterapia produz alívio da dor aguda em mulheres com dismenorreia primária moderada ou intensa. Ainda, o uso de fármacos também apresenta eficácia no seu tratamento.

Dentre os recursos fisioterapêuticos disponíveis para analgesia, a termoterapia é uma opção comumente utilizada para o tratamento da dismenorreia. A aplicação de frío ou calor por meio de compressas é um recurso prático e de baixo custo no seu tratamento. Um estudo comparou grupos de 10 participantes submetidos a compressa fria ou quente aplicadas no baixo ventre, um a dois dias antes do período menstrual, e durante o período menstrual. Os autores verificaram, por meio da escala analógica visual (EAV) e do questionário McGill, que as voluntárias que realizaram o tratamento com compressa fria apresentaram maior satisfação com o método e maior redução da dor em relação às que fizeram uso do calor. Como ainda existem poucos estudos sobre o uso desses recursos não farmacológicos e de baixo custo para a diminuição da dor durante o período menstrual, são necessários estudos que avaliem a eficácia dessas opções disponíveis para essa finalidade.

O objetivo deste estudo foi verificar a influência de uma única sessão de compressas frias versus compressas quentes sobre a intensidade da dor e o limiar de tolerância de dor à pressão (LTDP) em mulheres com dismenorreia primária.

MÉTODOS

Por contato direto, foram recrutadas 111 universitárias matriculadas no ensino superior de uma instituição privada de ensino situada na cidade de São Paulo. Todas elas receberam esclarecimentos sobre a pesquisa e assinaram um Termo de Consentimento Livre e Esclarecido (TCLE) elaborado de acordo com as recomendações estabelecidas na resolução 466 do Conselho Nacional de Saúde e na Declaração de Helsinki.

Os critérios de inclusão foram: idade entre 18 e 30 anos, capacidade de deambulação independente e presença de dismenorreia primária. Os critérios de exclusão foram grávidas, tabagistas, ter filhos, histórico de doenças uterinas e uso de contraceptivos hormonais.

As voluntárias foram submetidas a uma avaliação individual em ambiente reservado para coleta dos dados demográficos, idade, sexo, etnia, escolaridade, peso, estatura e intensidade da dor. A intensidade da dor foi avaliada por meio da EAV. Trata-se de uma reta de zero a 10 cm traçada sobre um papel, onde em uma das extremidades está escrito “sem dor” (ponto zero) e na outra extremidade está escrito “máximo de dor” (ponto 10). Foi solicitado que cada participante marcasse sobre a reta um traço indicando seu nível de desconforto. Quanto mais próximo da origem fosse a marcação (zero cm) menor seria a intensidade da dor percebida. Por outro lado, quanto mais próximo do final da reta (10 cm) maior a intensidade da dor.

Foram selecionadas para participar do estudo 65 mulheres com histórico de dismenorreia primária e dor pela EAV acima de 4 na fase folicular. Contudo, 15 não manifestaram interesse em participar, 4 estavam tomando fármacos e 6 desistiram de participar antes da avaliação. A amostra final foi composta por 40 mulheres, divididas aleatoriamente por meio de sorteio simples em dois grupos: compressa quente (CQ- n=22) ou compressa fria (CF-n=18). As participantes também foram avaliadas quanto ao LTDP, que mensura o quanto de pressão um indivíduo suporta em determinado ponto corporal, através da algometria. Para tal foi usado o algômetro Wagner Force Dial (FDK/FDN SERIES Push Pull Force Gage, GREENWICH CT, USA). O dispositivo de mão contém uma extremidade de borracha de 1 cm de diâmetro. A pressão foi aplicada a uma velocidade constante de 1 kg/seg até o nível em que foi relatado dor ou desconforto pela voluntária. A leitura é expressa em kg/cm². Durante a avaliação, a voluntária foi orientada para dizer “pare” tão logo a sensação de pressão passasse de desagradável para dolorosa. O teste foi interrompido tão logo a voluntária indicou o início da dor e a quantidade final de força aplicada foi registrada. Para avaliar os LTDP, a algometria foi aplicada em seis pontos musculares pré-definidos, identificados a seguir:

PLD: paravertebral lombar direito, PLE: paravertebral lombar esquerdo. Nessa avaliação, o indivíduo permaneceu em decúbito ventral com os membros inferiores em extensão. As voluntárias foram avaliadas em relação à EAV e aos LTDP, antes, logo após a aplicação da compressa e 30 minutos após seu término.

As participantes receberam orientações quanto aos procedimentos do estudo: deveriam estar menstruadas, não poderiam ter feito ou estar fazendo uso de fármaco ou qualquer outro tipo de método para alívio da dor, e usar roupa confortável no momento da intervenção.

Ambos os grupos receberam as aplicações no dia em que referiram maior pico de dor. As compressas foram dispostas no Abdômen inferior e na região lombar por 20 minutos. A voluntária foi posicionada em decúbito lateral e foi colocada uma toalha fina sobre os locais de aplicação a fim de evitar queimaduras e melhorar a fixação das compressas no local. As bolsas quentes eram de borracha sintética e foram aquecidas com água fervida a ponto de ebulição, numa chaleira elétrica. As compressas quentes eram de plástico contendo gel à base de células vegetal, e eram mantidas no congelador e retiradas no momento da aplicação.

Este estudo foi aprovado pelo Comité de Ética em Pesquisa do Centro Universitário Adventista de São Paulo (UNASP-SP), parecer número 2.141.655 de 2017.

Análise estatística

Os dados foram analisados por meio do pacote estatístico SPSS v.24 para Windows e expressos como médias e desvios padrão. Os dados demográficos foram tratados com estatística descritiva e a
comparação entre os grupos foi feita pelo teste *t* de Student para amostras independentes. A comparação entre as intervenções foi feita pela Análise de Variância a dois fatores (two-way ANOVA), e para comparar a variação no efeito das intervenções (delta). O teste *t* de Student foi empregado para amostras independentes. Em todos os casos, o nível de significância α estabelecido foi de 5%.

RESULTADOS

A tabela 1 mostra os dados demográficos das pacientes. Os grupos se mostraram homogêneos em relação à idade, peso, estatura, índice de massa corporal (IMC), temperatura e percepção de dor na EAV. Em relação à algometria, não foram observadas modificações significativas imediatamente após a aplicação dos tratamentos, nem tampouco trinta minutos depois de finalizada a aplicação (Tabela 2). A comparação da variação do efeito das intervenções (delta entre os momentos imediatamente após e antes, e entre 30 minutos após e antes) não revelou diferenças significativas entre os dois grupos de intervenção, tanto em relação aos limiares de tolerância de dor à pressão quanto em relação à percepção de dor.

Em relação à intensidade da dor (EAV), ambos os grupos apresentaram redução nessa variável logo após a aplicação e depois de 30 minutos do seu término em relação ao momento anterior à intervenção. Essas diferenças foram estatisticamente significantes (Tabela 3). A comparação entre os grupos em cada um dos três momentos avaliados revelou que não houve diferença entre eles na percepção de dor avaliada pela EAV antes da intervenção (*p=0,17*). Porém, tanto após quanto 30 minutos após a intervenção, o GF exibiu maior redução da percepção de dor do que o CQ (*p= 0,002 e *p=0,004* respectivamente).

DISCUSSÃO

O presente estudo assemelha-se com a pesquisa¹, na qual foi verificada a eficácia do calor e do frio no tratamento da dismenorreia primária. Os autores incluíram 20 mulheres, divididas em 2 grupos: grupo A composto por 10 voluntárias tratadas com calor usando bolsa de gel térmico aquecida, e grupo B composto também por 10 voluntárias tratadas com frio usando bolsa de gel térmico resfriada no congelador. Ambas as técnicas foram aplicadas durante 20 minutos na região do baixo ventre, um a dois dias antes do início da menstruação. No presente estudo, a aplicação da compressa foi semelhante ao estudo supracitado na duração e local de aplicação das compressas, porém diverge na quantidade de sessões. Os referidos autores realizaram três sessões, um a dois dias antes do início da menstruação, e verificaram que a compressa fria é mais eficaz do que a quente para o alívio da dor menstrual.

O estudo avaliou as voluntárias com a EAV e também avaliou a dor com uma medida direta, a algometria. Entretanto, apenas pela EAV foi possível verificar uma melhoria significativa, como já demonstrado por outros autores¹. E os dados corroboraram esses autores¹ no sentido que a compressa fria é mais eficaz do que a compressa quente para o alívio da dor menstrual. Outro estudo¹² evidenciou que o efeito da aplicação de gelo sobre a pele tem uma atuação direta nos neurônios e receptores de dor, reduzindo a velocidade e o número de impulsos nervosos. A velocidade desse efeito se deve à sua ação no mecanismo de comporta da dor, levando à liberação de endorfinas e encefalinas, substâncias calmantes da dor.

Contudo, embora o frio tenha mostrado melhores resultados em relação ao grupo CQ, este último também obteve benefícios em relação à diminuição da percepção da intensidade da dor. Essa diminuição provavelmente ocorreu pelo fato de que o calor pode reduzir a tensão muscular, o que dará momentaneamente a sensação de diminuição da dor, além de atuar também no controle da dor por

Tabela 1. Dados demográficos

Variáveis	CQ (n=22)	CF (n=18)	*p*	Valor de *p*
Idade (anos)	20,91±2,24	21,06±2,10	0,834	
Peso (kg)	58,62±9,39	61,73±16,21	0,478	
Estatura (m)	1,61±0,09	1,62±0,06	0,769	
Índice de massa corporal (kg)	22,61±3,86	23,41±5,57	0,609	
Temperatura (°C)	35,77±0,54	35,75±0,53	0,916	
Escala analógica visual (cm)	6,27±1,77	5,72±1,98	0,354	

Dados expressos como média±desvio padrão; CQ = grupo compressa quente; CF = grupo compressa fria.

Tabela 2. Limiares de tolerância de dor à pressão antes, após e 30 minutos depois das intervenções

Variável	Antes	Após	30min
GMD	4,77±2,48	4,01±2,22	4,09±2,02
GME	4,66±2,32	4,25±1,88	4,23±1,68
PLD	3,45±1,67	3,61±1,58	3,58±1,42
BLE	3,67±1,57	3,63±1,76	3,71±1,44
LS L4-L5	3,61±1,83	3,71±1,75	3,52±1,43
LS L5-S1	3,55±1,70	3,56±1,74	3,56±1,54

Tabela 3. Evolução da intensidade da dor

Variável	CQ (n=22)	CF (n=18)	*p*	Valor de *p*
Antes	6,27±1,76*	5,71±1,98**		
Após	4,23±1,80	2,59±1,36		
Após 30min.	3,53±2,37	1,70±1,36		

Dados expressos como média±desvio padrão; CQ = grupo compressa quente; CF = grupo compressa fria; *p<0,001 nas comparações entre antes e após e entre antes e 30min após a intervenção com compressa quente; **p<0,003 nas comparações entre antes e após, entre antes e 30min após e entre após e 30min após a intervenção com compressa fria.

¹. Efeitos da compressa fria versus quente sobre a dor em universitárias com dismenorreia primária

BrJP São Paulo, 2020 jan-mar;3(1):25-8
mostra que tanto o exercício quanto a bolsa de água quente levaram à melhoria significativa na gravidade da dor e no sofrimento menstrual nos grupos estudados. Os indivíduos de ambos os grupos mostraram uma clara mudança de graus moderados e intensos para graus leve de dor. Embora a mudança fosse evidente após o primeiro mês de intervenção, tornou-se mais proeminente no final do terceiro mês em ambos os grupos.

Em relação às opções de tratamentos não farmacológicos para a dismenorreia, um estudo reporta que intervenções como terapia comportamental, uso de ervas medicinais, eletroestimulação cutânea, uso tópico de calor, dentre outras, ainda foram pouco estudados e carecem de estudos de boa qualidade a fim de confirmar ou não a efetividade de tais recursos. Essa afirmação vai ao encontro de revisão sistemática e meta-análise que reporta que embora o calor venha sendo utilizado para o tratamento da dismenorreia, rigorosos estudos com qualidade devem ser realizados para prover evidências mais robustas sobre esse recurso.

No presente estudo, para a investigação do comportamento da dor aguda, foram utilizadas a EAV e a algometria. Provavelmente não tenham sido observadas mudanças significantes em relação à algometria após ambas as intervenções devido ao fato de o tempo ter sido curto para promover alteração nos LTDP, ou ainda, é possível que a não significância em relação ao LTDP tenha ocorrido por conta da realização de apenas uma sessão de aplicação da compressa, no momento crítico de dor. Este estudo possui algumas limitações, tais como a inexistência de um grupo controle. Também não houve um exame específico para comprovar a presença de dismenorreia. Como a percepção da intensidade da dor é uma medida subjetiva, os dados dessa variável foram coletados por autorrelatos das participantes da pesquisa. Ainda, como a dor pode ter etiologia multifatorial, a homogeneização das mulheres em relação ao nível de atividade física, estilo de vida, e variáveis de origem emocional talvez pudesse trazer novas informações sobre esta temática.

Um ponto forte deste estudo reside no fato de que as avaliações foram realizadas por um mesmo avaliador que desconhecia o tratamento ao qual a voluntária tinha sido submetida. A aplicação das compressas foi feita por profissional devidamente treinada e acostumada com esse tipo de atendimento, e a aplicação das compressas foi monitorada individualmente, evitando assim que o tempo ou a forma de aplicação fosse diferente entre as voluntárias.

CONCLUSÃO

A aplicação de compressas frias ou quentes não provocou alterações no limiar de tolerância de dor à pressão em mulheres com dismenorreia primária. Entretanto, imediatamente após a aplicação das compressas e depois de 30 minutos após o término da intervenção, ambos os grupos apresentaram redução do desconforto causado pela dor. Contudo, o grupo CF exibiu maior redução na intensidade da dor em relação ao grupo que usou a CQ.

REFERÊNCIAS

1. Burnett M, Lemly M. Primary dysmenorrhea consensus guideline. J Obstet Gynaecol Can. 2017;39(7):585-95.
2. Okusany BO, Garba KK, Okome GB, Osuimosiam O. Menstrual pain and associated factors amongst undergraduates of Ambrose Ali University Ekpoma, Edo State, Nigeria. Niger J Med. 2009;18(4):409-12.
3. Osayande AS, Mehulic S. Diagnosis and initial management of dysmenorrhea. Am Fam Physician. 2014;89(5):541-6.
4. Proctor ML, Farquhar CM. Diagnosis and management of dysmenorrhea. BMJ. 2006;332(7550):1134-8.
5. Sanogo R. Medicinal plants traditionally used in Mali for dysmenorrhea. Afr J Tradit Complement Altern Med. 2011;8(5):90-6.
6. Abaraogu UO, Tabansi-Ochuogu CS. Acupressure decreases pain, acupuncture may improve some aspects of quality of life for women with primary dysmenorrhea: a systematic review with meta-analysis. J Acupunct Meridian Stud. 2015;8(5):220-8.
7. Yang NY, Kim SD. Effects of a yoga program on menstrual cramps and menstrual distress in undergraduate students with primary dysmenorrhea: a single-blind, randomized controlled trial. J Altern Complement Med. 2016;22(9):732-8.
8. Lee B, Hong SH, Kim K, Kang WC, Na JH, Lee JR, et al. Efficacy of the device combining high-frequency transcutaneous electrical nerve stimulation and thermotherapy for relieving primary dysmenorrhea: a randomized, single-blind, placebo-controlled trial. Eur J Obstet Gynecol Reprod Biol. 2015;194:58-63.
9. Patel JC, Patel PB, Acharya H, Nukum K, Tripathi CB. Efficacy and safety of loroxinam vs ibuprofen in primary dysmenorrhea: a randomized, double-blind, double dummy, active-controlled, crossover study. Eur J Obstet Gynecol Reprod Biol. 2015;188:118-23.
10. Gerzson LR, Padilha JF, Buz MM, Gasparetto A. Physiotherapy in primary dysmenorrhea: literature review. Rev Doct. 2014;15(4):290-5.
11. Araújo IM, Leitão TC, Ventura PL. Comparative study of the efficacy of heat and cold to treat primary dysmenorrhea. Rev Doct. 2010;11(3):218-21.
12. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011;63(Suppl 11):S240-52.
13. Aliferi FM, Fernandes KM, Pinto YS, Silva NC, Portes LA. Pain tolerance and cardiorespiratory fitness in women with dismenorrhea. Rev Doct. 2017;180(4):311-5.
14. Imamura M, Aliferi FM, Filippop TR, Bartistella LR. Pressure pain thresholds in patients with chronic nonspecific low back pain. J Back Musculoskelet Rehabil. 2016;29(2):327-36.
15. Low J, Reed A. Eletroterapia Explicada: princípios e prática. São Paulo: Manole; 2001.
16. Akin MD, Weingand KW, Hengehold DA, Goodale MB, Hinkle RT, Smith RP. Continuous low-level topical heat in the treatment of dysmenorrhea. Obstet Gynecol. 2001;97(3):343-9.
17. Chauhani A, Singh A, Dhalwala L. A randomised controlled trial of exercise and hot water bottle in the management of dysmenorrhoea in school girls of Chandigarh, India Indian J Physiol Pharmacol. 2013;57(2):114-22.
18. Ryan SA. The treatment of dysmenorrhea. Pediatr Clin North Am. 2017;64(2):331-42.
19. Jo J, Lee SH. Heat therapy for primary dysmenorrhea: a systematic review and meta-analysis of its effect on pain relief and quality of life. Sci Rep. 2018;8(1):16252.