ARTICLE

Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors

Peter L. Voyvodic1, Amir Pandi2, Mathilde Koch2, Ismael Conejero1,3,4, Emmanuel Valjent5, Philippe Courtet3,6, Eric Renard5,7, Jean-Loup Faulon2,8,9 & Jerome Bonnet1,9

Cell-free transcription-translation systems have great potential for biosensing, yet the range of detectable chemicals is limited. Here we provide a workflow to expand the range of molecules detectable by cell-free biosensors through combining synthetic metabolic cascades with transcription factor-based networks. These hybrid cell-free biosensors have a fast response time, strong signal response, and a high dynamic range. In addition, they are capable of functioning in a variety of complex media, including commercial beverages and human urine, in which they can be used to detect clinically relevant concentrations of small molecules. This work provides a foundation to engineer modular cell-free biosensors tailored for many applications.

https://doi.org/10.1038/s41467-019-09722-9

1 Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier 34090, France. 2 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78352, France. 3 INSERM U1061, Neuropsychiatry, Epidemiological and Clinical Research, Montpellier 34093, France. 4 Department of Psychiatry, Caremeau Hospital, University Hospital of Nîmes, Nîmes 30900, France. 5 UMR CNRS 5203/INSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier 34090, France. 6 CHU Montpellier, Department of Emergency Psychiatry and Post Acute Care, Lapeyronie Hospital, CHRU Montpellier, Montpellier 34090, France. 7 Department of Endocrinology, Diabetes, Nutrition and CIC INSERM 1411, Montpellier University Hospital, Montpellier 34295, France. 8 SYNBIOCHEM Center, School of Chemistry, University of Manchester, Manchester M1 7DN, UK. 9 These authors contributed equally: Jean-Loup Faulon, Jerome Bonnet. Correspondence and requests for materials should be addressed to J.-L.F. (email: jean-loup.faulon@inra.fr) or to J.B. (email: jerome.bonnet@inserm.fr)
here is currently an urgent need for low-cost biosensors in a variety of fields from environmental remediation to clinical diagnostics1–3. The ability of living organisms to detect signals in their environment and transduce them into a response can be used to create cheap, novel sensors with high sensitivity and specificity. By leveraging the ability of transcription factors (TFs) to control gene expression, synthetic biologists have genetically engineered microbes to detect a wide range of compounds, from clinical biomarkers to environmental pollutants4–7.

Cell-free transcription/translation (TXTL) systems have great promise as the next generation of synthetic biology-derived biosensors. They are cheap to produce, abiotic, and can be lyophilized such that they are stable at room temperature for up to one year: a vital necessity for point-of-care applications such as low-resource nation and home diagnostic use5. Cell-free TXTL toolboxes have been designed that support the operation of many of the circuits previously engineered in vivo6,7. Encapsulated cell extracts can also be used in combination with living cells to produce new sensing modalities12. Cell-free biosensors were engineered to successfully detect Zika virus in rhesus macaques and an acyl homoserine lactone, 3OC12-HSL, from Pseudomonas aeruginosa in human clinical samples8,9. However, current cell-free biosensors have been limited to detection of nucleic acid sequences, via template displacement, or well-characterized TF ligands.

Here we put forward a generalized, modular workflow using metabolic transducers to rapidly expand the chemical space detectable by cell-free biosensors in a plug-and-play manner. We then illustrate our workflow with a proof-of-concept example: the transcription factor BenR, which is activated by benzoic acid, and two metabolic modules HipO and CocE, which convert hippuric acid and cocaine, respectively, into benzoic acid. Each component is individually cloned into a cell-free vector, such that the DNA concentrations can be titrated over three orders of magnitude to optimize sensor performance. Finally, we demonstrate that these sensors can function in complex solutions, detecting benzoic acid in commercial beverages and hippuric acid and cocaine in human urine.

Results
Design workflow for cell-free biosensors. Synthetic metabolic cascades have been used by the synthetic biology community for a wide range of applications, including production of biofuels, pharmaceuticals, and biomaterials15–17. As such, there is a wide variety of well-characterized enzymes catalyzing various reactions transforming one molecule into another. Our framework harnesses this power by using metabolic enzymes as transducers to allow us to “plug in” a given enzyme into our characterized biosensor modules to detect a ligand with no known corresponding TF (Fig. 1a). Specifically, the metabolic enzyme converts the undetectable molecule into one for which we have an existing TF-based genetic circuit (Fig. 1b). We used the SensiPath webserver that we previously designed and validated in vivo to determine the required metabolic cascade18,19 (Supplementary Note 1).

The workflow to engineer a cell-free biosensor detecting a novel molecule is straightforward (Fig. 1c). First, possible metabolic pathways to convert the molecule of interest into a detectable ligand are identified using SensiPath. Second, the genes coding for the metabolic transducer enzyme, the TF sensor, and the reporter module are synthesized and cloned into cell-free expression vectors. Finally, the DNA concentration of each plasmid is titrated in cell-free reactions to optimize signal strength and dynamic range in response to the molecule of interest (Fig. 1c).

Optimization of cell-free benzoic acid sensor. BenR is a member of the AraC/XylS TF family, originally isolated from Pseudomonas putida. In the presence of benzoate, BenR binds to the Psen promoter and activates transcription (Fig. 2a). To engineer a cell-free biosensor detecting benzoate, we cloned BenR under the control of the OR2-OR1-Pr promoter, a modified version of the lambda phage repressor promoter Cro, known to express strongly in cell-free systems20. The Psen promoter driving superfolder green fluorescent protein (sfGFP) was cloned in a separate plasmid. After initial pilot tests demonstrated that BenR was functional in a cell-free environment, we optimized the BenR biosensor by titrating the DNA concentration of the TF and reporter plasmids.

One advantage of working in a cell-free framework is that the DNA concentration is directly controlled by pipetting. As such, the process of finding an optimal DNA concentration is relatively straightforward: we created a matrix of DNA concentrations for TF and reporter plasmids between 0 and 100 nM, and induced these different cell-free reactions using four different concentrations of benzoic acid: 0, 10, 100, and 1000 μM (Fig. 2b and Supplementary Table 1).

Encouragingly, the system had extremely low background signal in the absence of benzoic acid, indicating that the Psen promoter has very little “leakiness” in a cell-free environment. When benzoic acid was added to the reaction, the sfGFP output signal was clearly detectable and fluorescence intensity was correlated with increasing reporter plasmid concentration. However, the signal reached a plateau for increasing concentrations of TF plasmid at 30 nM. We hypothesize that this plateau is due to competition for transcriptional and translational resources between TF and reporter plasmids. This plateau is also observed in a mathematical model of cell-free biosensors (Supplementary Notes 2-3 and Supplementary Fig. 1). Based on these data, we set the optimal plasmids concentrations to 30 nM for the TF plasmid and 100 nM for the reporter plasmid.

Compared with its in vivo counterpart18, the cell-free benzoic acid biosensor is faster (maximum signal reached in 4h, Supplementary Fig. 2), has a much higher sensitivity and dynamic range, and has a maximum fold change of over 200 (vs. ~10-fold in vivo) (Fig. 2c). These results exemplify the advantages of cell-free systems for rapidly engineering biosensors with optimal properties.

Expanding the detection space of the benzoic acid sensor with metabolic transducers. With the sensor and output modules optimized, we demonstrated the ability of our system to expand its chemical detection space using different metabolic transducer modules. HipO is an enzyme from Campylobacter jejuni and CocE is an esterase from Rhodococcus sp. that convert hippuric acid and cocaine into benzoic acid, respectively. We cloned each enzyme into the cell-free expression vector and, using the optimized DNA concentrations of TF and reporter plasmids, titrated different concentrations of metabolic transducer DNA for a range of inducer inputs (Fig. 3a and Supplementary Table 2). Interestingly, we observed a clear peak in sfGFP signal corresponding to a particular concentration effectiveness: 3 nM for HipO and 10 nM for CocE. We built several mathematical models based on different assumptions that could reproduce the observed bell-shaped response to enzyme DNA concentration as well as its shift between the two enzymes (Supplementary Fig. 3). Based on these models, we hypothesized that the observed bell-shaped response is likely due to competition between the different modules, leading to an important and unnecessary enzyme production at high DNA concentrations that diverts resources such as RNA polymerase, ribosomes, and energy from sfGFP transcription and
A modular design workflow for engineering scalable cell-free biosensors. a Cell-free biosensors are composed of three modules: a generic sensor module linked to an output module and a metabolic transducer module transforming different molecules into ligands detectable by the sensor module. b An undetectable ligand is converted into a detectable ligand by the enzyme from the transducer module. Binding to the transcription factor controls the sensor module and downstream gene expression. c The biosensor design workflow starts with retrosynthetic pathway design using the SensiPath server. Once the transducer and sensor modules are determined, the genes encoding enzymes, transcription factors, and target promoters driving a reporter are cloned into cell-free expression vectors. The sensor is calibrated by titrating the concentrations of each plasmid to maximize signal output and dynamic range.

Calibration of sensor and output modules for benzoate detection. a BenR binds to the P_{Ben} promoter in the presence of benzoate and activates gene expression. Here, BenR is cloned in the pBEAST plasmid (a derivative of pBEST) and driven by a strong constitutive promoter, OR2-OR1-Pr. The P_{Ben} promoter is cloned into another pBEAST backbone and drives expression of superfolder green fluorescent protein (sfGFP). As the system operates without a cellular boundary, multiple plasmids encoding different components of the network can easily be used simultaneously. Plasmid concentrations can then be fine tuned to identify optimal operating conditions. b Optimization of the BenR sensor and reporter modules. Cell-free reactions of 20 μl containing different concentrations of the BenR and reporter plasmids were prepared and their response to different concentrations of benzoic acid were monitored. The white square represents the optimal condition (100 nM reporter and 30 nM BenR plasmid) with the highest relative fluorescence (see Supplementary Fig. 2 and Supplementary Table 1). Reactions were run in sealed 384-well plates in a plate reader at 37 °C for at least 8 h. The heat maps represent the signal intensity after 4 h. Data are the mean of three experiments performed on three different days and all fluorescence values are expressed in Relative Expression Units (REU) compared with 100 pM of a strong, constitutive sfGFP-producing plasmid. See Methods for more details. c Upper panel: The BenR sensor can detect benzoic acid over three orders of magnitude and at concentrations as low as 1 μM. Shaded area around curves corresponds to ±SEM of the three experiments. Lower panel: GFP expression in response to the same range of concentrations of benzoic acid as in the upper panel is easily detectable by eye on a UV table. Source Data are available in the Source Data File.
translation, as well as generates toxic byproducts. Moreover, we provide evidence that the shifting peak between the two setups is most likely due to lower expression of CocE (Supplementary Notes 2-3 and Supplementary Fig. 4). In addition, the model hypothesized that using a higher TF concentration would necessitate a higher level of metabolic enzyme without an increase in overall signal, a shift that we subsequently observed experimentally (Supplementary Notes 2-3 and Supplementary Fig. 5).

A key observation is that even at high levels of inducer, there is very little signal in the absence of DNA encoding the metabolic transducer. These data indicate that the metabolic enzyme is essential for sensor selectivity and differentiation between hippuric acid and cocaine from benzoic acid, and that both molecules have minimal off-target binding to BenR. Strikingly, both the hippuric acid and cocaine biosensors exhibit fold change and detection range highly similar to that of the benzoic acid sensor, demonstrating the high conversion rate of the metabolic transducer (Fig. 3b). The conversion also appears to be extremely fast, as no significant difference was observed in response kinetics with or without the metabolic transducer, although the lower incubation temperature of the cocaine biosensor showed slightly slower kinetics (Supplementary Figs. 2, 6, and 7).

Detection of benzoic acid, hippuric acid, and cocaine in complex samples. Although the results of our optimized biosensors were promising, the intended final environment in which they should operate is far more complex. We thus sought to test their capabilities for real-world applications. Benzoic acid and sodium benzoate are widely used food additives for preservation. Although classified as Generalized Recognized As Safe by the United States Food and Drug Administration, their maximal levels in foodstuffs are limited to 0.1%. In addition, some people respond poorly to their consumption, particularly patients suffering from chronic inflammation or orofacial granulomatosis, who are frequently placed on benzoate-free diets by their physicians.

Fig. 3 Metabolic transducers expand the chemical detection space of cell-free biosensors. a Hippurate or cocaine can be detected using different metabolic transducers. Plasmids encoding the HipO or CocE enzymes, which convert hippuric acid or cocaine into benzoic acid, were mixed at different concentrations with optimal BenR and reporter plasmids concentrations as determined in Fig. 2 (30 nM and 100 nM, respectively). These reactions were then incubated with increasing concentrations of inducer for at least 8 h. The heat maps represent the signal intensity after four hours (Supplementary Figs. 6-7 and Supplementary Table 2). Asterisks denote the optimal DNA concentration for the metabolic module. Data are the average of three experiments performed on three different days and all fluorescence values are expressed in Relative Expression Units (REU) compared with 100 pM of a strong, constitutive sfGFP-producing plasmid. b Optimized cell-free biosensors incorporating a metabolic transducer module exhibit comparable performance to the BenR sensor module (from Fig. 2c). All data are the mean of three experiments performed on three different days. Shaded area around curves corresponds to ±SEM of the three experiments. See Methods for more details. Lower panel: GFP expression in cell-free reactions in response to various concentrations of inducer visualized on a UV table. Source Data are available in the Source Data File.
added to beverages in the presence of ascorbic acid, they can be converted into low levels of benzene, a strong carcinogen. This reaction is enhanced by increased temperatures, which frequently occur during transportation. In this context, a simple assay for detecting benzoic acid could be useful.

To test whether our benzoic acid sensor could function as a monitor in the food industry, we procured several different drinks from a local supermarket. The nutritional information of each beverage included benzoic acid, sodium benzoate, or no benzoates. Strikingly, after adding 2 µL of the beverages directly to 20 µL reactions of our optimized benzoic acid sensor, we were able to distinguish which beverages contained benzoates with 100% accuracy after only 1 h of incubation (Fig. 4a and Supplementary Fig. 8). The beverages were composed of two categories: carbonated orange drinks and Monster® energy drinks. Despite similarities between the non-benzoate ingredients in each class, our cell-free benzoic acid biosensor rapidly produced sfGFP in beverages that listed benzoate ingredients with fold changes up to ~180.

Although our system has the ability to quickly detect benzoates by directly adding the beverages to the reaction, we noticed that there was up to 75% inhibition to some of the cell-free reactions when comparing expression of a constitutive promoter to a control (Supplementary Fig. 9). Therefore, to test our sensor’s ability to quantify benzoates, we performed an experiment with a 1:10 dilution, which showed minimal reaction interference (Supplementary Fig. 9), and converted the resulting fluorescence intensities to concentrations using a calibration curve from a benzoic acid standard (Supplementary Fig. 10). These results were compared against measurements from liquid chromatography-mass spectrometry (LC-MS) (Fig. 4b and Supplementary Table 3).

Seven of the ten drinks showed very strong agreement between the quantitative results from our sensor and the LC-MS results. Three of the beverages (Monster®, Absolutely Zero, Monster® Ultra, and Monster® Ultra Red) had diminished cell-free values relative to those from LC-MS. Taken together, these results demonstrate that our sensors can remain functional in commercial products and rapidly detect and quantify benzoates.

We then wanted to test whether our hippuric acid sensor could detect endogenous levels of a molecule of interest in a clinical context. Hippuric acid has long been known to be regularly excreted by humans in urine as the end product of several different aromatic compounds, including benzoates, which are converted in the liver. Hippuric acid has been correlated with high levels of toluene exposure in some operational conditions. When testing the urine for expression of a constitutive GFP plasmid relative to the positive concentration, we found little interference from urine to a 1:10 dilution to a 20 µL reaction (1% cell-free reaction space that each sensor/reporter pair can detect. In addition, we provide a three order-of-magnitude titration for each DNA molecules in unprocessed clinical samples.

Discussion

This work demonstrates that we can engineer modular, cell-free biosensors that can be easily calibrated to have high signal strength and dynamic range and can function in complex detection environments. Upon engineering a cell-free biosensor for benzoic acid, we show that the system can be scaled by using different metabolic transducer modules to expand the chemical space that each sensor/reporter pair can detect. In addition, we provide a three order-of-magnitude titration for each DNA component to optimize cell-free biosensor performance along with a mathematical model enabling a better understanding of the parameters governing cell-free biosensor response, which will help future optimization of such devices. By demonstrating that these sensors can function in samples from the food and beverage industry, as well as complex clinical samples such as human urine, we provide an example for their potential outside the lab in real-world applications. This is the first time, to our knowledge, that cell-free biosensors have been used to detect endogenous molecules in unprocessed samples.

Using our workflow, this process should be applicable to a wide range of other sensor/reporter pairs. One constraint of our system is that the TF must respond only to the product of the enzymatic reaction and not the substrate. Such potential crossTalk can easily be checked by running a control reaction without the metabolic transducer module. We computed that 1205 disease-associated biomarkers from the Human Metabolome Database (HMDB) could be converted into detectable molecules by one enzymatic reaction (Supplementary Note 1 and Supplementary Data 1). In addition, 64 HMDB metabolites could be transformed into benzoate and thus theoretically connected via a metabolic transducer to our optimized sensor (Supplementary Note 1 and Supplementary Data 2).
Further improvements to our platform could include exploring sample pre-processing methods that could increase sensor robustness and adaptation into an off-the-shelf format more amenable to point-of-care applications. Although we could detect clinically relevant concentrations of cocaine, this application would benefit from achieving a lower detection limit, e.g., through the use of downstream genetic amplifiers.

In summary, by rapidly expanding the number of detectable compounds and remaining functional even in complex samples, cell-free biosensors using plug-and-play metabolic transducers could be used to address many challenges in environmental...
 BENZOIC ACID AND HIPPURIC ACID QUANTIFICATION

In order to quantify fluorescent outputs from our cell-free benzoic acid and hippuric acid biosensors in complex samples as a measure of concentration, we calibrated reaction curves by adding a range between 0 μM and 1000 μM of inducer concentrations to 20 μL cell-free reactions. Hippuric acid reactions were supplemented with 0.8 μL RNAase inhibitor to match reaction conditions. The subsequent calibration reactions were back-ground subtracted and fit to a Hill plot in Python using:

\[
y = \frac{y_{\text{max}} \cdot x^n}{K_n + x^n},
\]

where \(y\) is the fluorescence intensity, \(x\) is the inducer concentration, \(y_{\text{max}}\) is the maximum fluorescence intensity, \(K_n\) is the concentration of ligand needed for half-maximum binding occupancy at equilibrium, and \(n\) is the Hill slope. Commercial beverage benzoic acid and urine hippuric acid concentrations were then calculated by using the background-subtracted fluorescent values from those experiments as \(y\) and solved for the inducer concentration \(x\). Undiluted concentrations were increased by a factor of 100 to account for the 1:10 sample dilution and 10% reaction volume contribution (i.e., 2 μL sample in a 20 μL total reaction volume).

CHEMICAL ANALYSIS OF BEVERAGE AND URINE BY LC-MS

The following procedure was developed for detection of benzoic and hippuric acid by ultra-high-performance LC-tandem MS. The analysis was carried out using an LCMS-8050 mass spectrometer (Shimadzu, Japan) coupled to a NexeraX2 UHPLC chip (Shimadzu, Japan). The column was a Nucleodur pyramid (1.8 μm, 50 x 2.0 mm, Macherey-Nagel) maintained at 40 °C. The eluents were used as follows: H2O with 0.1% formic acid (A), acetonitrile with 0.1% formic acid (B). The flow rate was set to 0.5 mL/min. The injection volume was 5 μL and all the analytes were eluted over a 5 min binary gradient with a starting composition percentage of 100/0 (A/B). The LCMS-8050 is a three-quadrupole mass spectrometer with a heated electrospray ionization source. The analytes were detected in negative MRM mode. The samples were diluted by 20 in water before injection. Dihydrobenzoic acid was used as an internal standard.

CELL-FREE REACTIONS DETECTING COCAINE VIA LUCIFERASE OUTPUT

To test our luciferase-output cocaine biosensor, 20 μL cell-free reactions containing CocE, TF, and reporter plasmid concentrations, 0.8 μL RNAase inhibitor, cocaine inducer gradient, 2 μL of undiluted human urine samples, extract, and buffer were incubated at 30 °C for 8 h. Samples were then transferred to white 96-well plates and 50 μL of Luciferase Assay Reagent (Promega) was added and mixed by manual orbital agitation. The plates were sealed and luciferase levels were measured in a plate reader 2 min after addition of the reagent. Fold change was calculated relative to the 0 μM cocaine-negative control.

reaction models

Coarse-grained modeling was performed using ordinary differential equations, simulated using the R software. Briefly, the model combines Michaelis–Mentken kinetics for the transducer module and resource competition for RNA polymerases and ribosomes to account for varying DNA concentration effects. Michaelis–Mentken equations are used for promoter activation. Production of toxic byproducts as well as energy consumption for mRNA production were also included. Full model derivation can be found in Supplementary Notes 2 and 3.

Chemical identities

In order to allow easier parsing of our article by bioinformatics tools, we provide here the identifiers of our chemical compounds:

- Benzoic acid: InChI = 1S/C7H6O2/c8-7-6-9-5-4/h2,4-5H,1H3-3
- Hippuric acid: InChI = 1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h4,6,12H,1H3

Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The source data underlying Figs. 2b, c, 3a, b, and 4–d, and Supplementary Figure 2 and 4–7, and DNA sequences for all constructs are provided as a Source Data File. Plasmids used in this paper are available from Addgene (pBEAST-BnR: #114597; pBEAST-pBnLuc: #114598; pBEAST-HpoO: #114601; pBEAST-2J3101-CocE: #114600; pBEAST-sGFP: #116916; pBEAST-J23101-sGFP: #116617; pBEAST-pBnLuc: #122694). All other raw data are available from the corresponding authors at reasonable request.

Code availability

Simulation scripts are available at https://github.com/bryensh. Custom python scripts used to process data are available upon request to authors.
References

1. World Health Organization and International Bank for Reconstruction and Development/The World Bank. Tracking Universal Health Coverage: 2017 Global Monitoring Report (World Health Organization, 2017).

2. World Health Organization. World Health Statistics 2018: Monitoring Health for the SDGs (World Health Organization, 2018).

3. Chang, H.-J., Voyvodic, P. L., Zúñiga, A. & Bonnet, J. Microbiially derived biosensors for diagnosis, monitoring and epidemiology. Microbiol. Biotechnol. 10, 1031–1035 (2017).

4. Fernandez-López, R., Ruiz, R., de la Cruz, F. & Moncalián, G. Transcription microorganisms as the sensing machinery. Front. Microbiol. 6, 648 (2015).

5. Park, M., Tsai, S.-L. & Chen, W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13, 5777–5795 (2013).

6. van der Meer, J. R. & Belkin, S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol. 8, 511–522 (2010).

7. Raut, N., O’Connor, G., Pasini, P. & Daunert, S. Engineered cells as biosensing systems in biomedical analysis. Anal. Biochem. 402, 3147–3159 (2012).

8. Sun, Z. Z. et al. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J. Vis. Exp. e50762 (2013).

9. Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940–954 (2014).

10. Garamella, J., Marshall, R., Rustad, M. & Noireaux, V. The all E. coli TX-TL Toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth. Biol. 5, 344–355 (2016).

11. Shin, J. & Noireaux, V. An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 29–41 (2012).

12. Lentini, R. et al. Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat. Commun. 5, 4012 (2014).

13. Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

14. Wen, K. Y. et al. A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa -infected respiratory samples. ACS Synth. Biol. 6, 2293–2301 (2017).

15. Medema, M. H., van Raaphorst, R., Takano, E. & Breitling, R. Computational tools for the synthetic design of biochemical pathways. Nat. Rev. Microbiol. 10, 191–202 (2012).

16. Medema, M. H., Breitling, R., Bovenberg, R. & Takano, E. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat. Rev. Microbiol. 9, 131–137 (2011).

17. Walsh, C. T. & Fischbach, M. A. Natural products version 2.0: connecting genes to molecules. J. Am. Chem. Soc. 132, 2499–2503 (2010).

18. Libis, V., Delépine, B. & Faulon, J. L. Expanding biosensing abilities through computer-aided design of metabolic pathways. ACS Synth. Biol. 5, 1076–1085 (2016).

19. Delpine, B., Libis, V., Carbonell, P. & Faulon, J. L. SeniPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Res. 44, W226–W231 (2016).

20. Shin, J. & Noireaux, V. Efficient cell-free expression with the endogenous E. coli RNA polymerase and sigma factor 70. J. Biol. Eng. 4, 8 (2010).

21. Campbell, H. E. et al. Review article: cinnamon- and benzoate-free diet as a primary treatment for orfacial granulomatosis. Aliment. Pharmacol. Ther. 34, 687–701 (2011).

22. Del Olmo, A., Calzada, J. & Núñez, M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: uses, exposure, and controversy. Crit. Rev. Food. Sci. Nutr. 57, 3084–3103 (2017).

23. Gardner, L. K. & Lawrence, G. D. Benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition-metal catalyst. J. Agric. Food. Chem. 41, 693–695 (1993).

24. Aprea, E., Biasiol, F., Carlin, S., Märk, T. D. & Gasperi, F. Monitoring benzoic formation from benzoate in model systems by proton transfer reaction-mass spectrometry. Int. J. Mass Spectrom. 275, 117–121 (2008).

25. Quick, A. J. Clinical value of the test for hippuric acid in cases of disease of the liver. Arch. Intern. Med. 57, 544–556 (1936).

26. Wilczok, T. & Bieniek, G. Urinary hippuric acid concentration after occupational exposure to toluene. Occup. Environ. Med. 35, 330–334 (1978).

27. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

28. Ambre, J. The urinary excretion of cocaine and metabolites in humans: a kinetic analysis of published data. J. Anal. Toxicol. 9, 241–246 (1985).

29. Williams, R. H., Maggiore, J. A., Shah, S. M., Erickson, T. B. & Negrusz, A. Cocaine and its major metabolites in plasma and urine samples from patients in an urban emergency medicine setting. J. Anal. Toxicol. 24, 478–481 (2000).

30. Salehi, A. S. M. et al. Cell-free protein synthesis approach to biosensing hTRβ-specific endocrine disruptors. Anal. Chem. 89, 3395–3401 (2017).

31. Salehi, A. S. M. et al. Biosensing estrogenic endocrine disruptors in human blood and urine: A RAPID cell-free protein synthesis approach. Toxicol. Appl. Pharmacol. 345, 19–25 (2018).

32. Martinez, A. W., Phillips, S. T. & Whitesides, G. M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl Acad. Sci. USA 105, 19606–19611 (2008).

33. Courtbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).

34. Caschera, F. & Noireaux, V. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 99, 162–168 (2014).

Acknowledgements

We thank the Bonnet and Faulon lab members for fruitful discussions. We are grateful to Pau Bernardo, Annika Urbanek, and Anna Morato for helpful discussions on cell-free systems and extract creation. Jan Stier, Gottfried Oetting for BL21 (DE3) Star::RF1-CBD strain, and the patients for providing their samples. We thank Gilles Valette from the “Laboratoire de Mesures Physiques”, the analytical facilities of the University of Montpellier, where the spectrometry analyses were performed. This work was supported by an ERC starting grant “COMPUCELL” to J.B. J.B. also acknowledges continuous support from the INSERM Atip-Avenir program and the Bettencourt-Schueller Foundation. The CBS acknowledges support from the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01. J.-L.F. acknowledges support from BBSRC/ EPSRC (grant number BB/M017702/1) and from the ANR (grant number ANR-15-CE11-0008). M.K. is supported by DGA (French Ministry of Defense) and Ecole Polytechnique and A.P. is supported by a scholarship from INRA and the IDEX Paris-Saclay. All plasmids will be available from Addgene.

Author contributions

P.L.V., A.P. and J.-L.F. designed experiments. P.L.V. and A.P. cloned constructs and performed experiments. M.K. constructed the computer model simulations. I.C., P.C., E. R. and E.V. participated in clinical sample collection and analysis. P.L.V., A.P., M.K., J.-L. F. and J.B. wrote the paper. All authors approved the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-09722-9.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Michael Jensen and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019