Anti-oxidant and anti-bacterial activities of 11 *Calophyllum* species from Indonesia

Abbas J

Research Centre for Chemistry, Indonesian Institute of Sciences, PUSPIPTEK Area, Serpong, Tangerang 15314, Indonesia

Abbas J. 2019. Anti-oxidant and anti-bacterial activities of 11 *Calophyllum* species from Indonesia. Journal of Microbial Systematics and Biotechnology (2019) (1) (2), 1-12

Abstract

Members of *Calophyllum* (Calophyllaceae) are commonly used as herbal medicine in Indonesia from the beginning of civilization. Due to their tremendous potential as a source for pharmaceutical industry, we selected 11 *Calophyllum* species for the current anti-oxidant and anti-bacterial studies, namely, *Calophyllum euryphyllum*, *C. bicolor*, *C. flavoramulun*, *C. incrassaptum*, *C. lowei*, *C. macrophyllum*, *C. nodosum*, *C. soulatri*, *C. tetrapterum*, *C. teysmannii*, and *C. tomentosum*. The methods include *Calophyllum* stem bark extraction and separation into n-hexane, ethyl acetate, and butanol fractions, followed by the antioxidant analysis using DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging) and the anti-bacterial activity against *Escherichia coli*, *Staphylococcus aureus*, *Bacillus subtilis*, and *Pseudomonas aeruginosa*. The results showed that n-hexane fraction of *C. soulatri* exhibited the best anti-oxidant activity (IC$_{50}$ = 2.2 µg/m). This study also showed that a xanthone compound isolated from *C. macrophyllum*, namely, 1,8-dihydroxy-6 methoxy xanthone exhibited the anti-oxidant activity with IC$_{50}$ = 1.56 ppm.

Keywords: anti-bacterial, bioactive, *Calophyllum*, stem extract, xanthone

Introduction

Calophyllum (Indonesia: Nyamplung) is the largest genus in *Calophyllaceae* with about 190 species (Stevens 2006). Members of this genus are distributed mainly in South and Southeast Asia, but also in Eastern Africa, tropical America, Australia, Madagascar, the Pacific island, Atlantic forest, and Brazil. *Calophyllum* species are large hardwood and are generally grow in a mountain forest to coastal swamps and restricted to the hot and humid tropic (Noldin 2006). The genus *Calophyllum* is not only potential for its timber, but also for their medicinal properties such as xanthones and coumarins to which have been potential as anti-viral, anti-tumor, cytotoxic, anti-malarial, anti-bacterial, anti-gastrointestinal, and anti-human immunodeficiency virus properties, anti-inflammatory, and ulcers (Iinuma 1994,1997 Yimdjo 2004, Xiao-HS et al. 2008, Cechnel et al. 2009, Li 2016, Sia 2006). The main parts used the leaves or stem barks, in the form of tea (Noldin 2006).

Prenylated xantones (Iinuma M, 1997) from *Calophyllum apetalum*, Caloxantones O and P (Dai Hao-Dai 2010) from *C.inophyllum*, and two xanthone (Iinuma 1994) from *C. inophyllum*, also six xantones (Iinuma 1996) from *C. austroindicum* and then trioxxygenated diprenylated chromoxanthone (Dharumarate 1997) from *C. moonii* have isolated, but they did not do bioassay activities. Four new coumarin (Li 2016) from *C. inophyllum*, coumarins
mammea type (Chilpa 2004) from C. brasiliense, and three isomeric pyranocoumarin (Vittal 1998) from C teysmannii and minor coumarin (Cao-Shu-Geng 1998) from C. teysmannii and also triterpenopid (Li Y-Z 2010) from C. inophyllum have also isolated, but they have not done bioassay activities to four new coumarin from C. inophyllum, coumarins (Li Z 1 2016). The coumarin from C. brasiliense have cytotoxic activity to three cell lines e.i K562, U251 and PC3 human tumor cell lines (Chilpa 2004)

Zakarya in 2014 have isolated the anti-inflammatory activity compound from C.inophyllum. Polysoprenylated acylphloroglucinols and a polyisoprenyllated tetracyclic xanthone have isolated from the bark of Calophyllum thorelii, that compound have cytotoxic activity against to MCF-7 and Hela and NCL-H460 cell lines (Nguyen 2012). Anti-dyslipidemic and anti-oxidant activity compound have isolated from leaves Calophyllum inophyllum by (Prasad 2012). Many compound also isolated from Calophyllum inophyllum and that compound have antimicrobial activity and cytotoxic activity (Yimdjo 2004).

Previously, we isolated flavanol, and fatty acid from stem bark of C. macrophyllum collected from Mount Kerinci, Jambi. Flavanal have anti-diabetic activity (Frengki 2013), and fatty acid have cytotoxic activity (Abbas 2011), and anti-diabetic activity of flavanal (5,7,2',5'-tetrahydroxy flavan-3-ol) compound was investigated in-vitro and in-silico (Frenki 2018). In this study, we evaluated the anti-oxidant and anti-bacterial activities of different extracts of 11 Calophyllum species (Calophyllum euryphylhum, C. bicolor, C. flavoramulum, C incassaptum, C. lowei, C. macrophyllum, C. nodosum, C. soulattri, C. tetapterum, C. teysmannii, and C. tomentosum). These plants were collected from some several places in Indonesia.

The anti-oxidant activities of n-hexane, ethyl acetate and n-butanol extracts of 11 Calophyllum species were did by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and anti-bacterial activities of n-hexane, ethyl acetate extracts of 11 Calophyllum species were investigated by using E. coli. S. aureus, B. subtilis, and P. aeruginosa.

We have investigated the stem bark of 11 Calophyllum species in Indonesia, several species of Calophyllum traditionally been used as herbal medicine for various diseases such as vaginal discharge, rheumatism, scabies, ulcers, hair growers, malaria, bronchitis, gastric, hepatic disturbance pain, inflammation, infection, varicose hemoroid and act as diuretic (Aminuddin 2016). Continuation of our current program concerning the isolation of anti-oxidant compounds from C. macrophyllum. The xanthone isolated from C. macrophyllum have anti-oxidant activities (free radical scavengers).

Many researcher have implicated oxygen radical and other oxygen-derived species such as superoxide radical anion, hydroxyl radical, singlet oxygen, hydrogen peroxide and nitric oxide are produced in human cells and as important causative agents in wide range of disease and distorted in human body (Araújo 2012). Damage due to free radical is caused by ROS (reactive oxygen species) can easily damage of the cell membrane, they can attack lipid, protein, phospholid, protein/enzymes, carbohydrates, DNA in cell by propagating a reaction cycle (Shahwar 2010), induce undesirable oxidation causing, DNA damage and cell death.

Antioxidant compound can terminate or retard the oxidation process by scavenging free radical, chelating free catalytic metals and nascent oxygen from environmental. On the other hand, many bacteria could also depend on these nascent oxygen for survival in any given environmental (Shahwar 2010).

Medicinal plant as anti-oxidant in reducing free radical-induced tissue injure. Many authors explained that anti-oxidant activity of plants is due to their phenolic/polyphenol compound. Xanthone from C. macrophyllum plant can be choosed and used as a source of natural antioxidant because xanthone contains phenolic compound, such as donating of a
hydrogen atom to DPPH radical and binding affinities of *Calophyllum* extracts and xanthone to have inhibitory activity of bacterial.

Materials and methods

Samples

Stem bark samples of 11 *Calophyllum* species were used in this study (*C. euryphyllum*, *C. bicolor*, *C. flavoramulun*, *C. incrassaptum*, *C. lowei*, *C. macrophyllum*, *C. nodosum*, *C. soulattri*, *C. tetrapterum*, *C. teysmannii*, and *C. tomentosum*). These species were collected from several locations in Indonesia such as Bulungan Research forest, Palangkaraya, Central Kalimantan (*C. euryphyllum*, *C. bicolor*, *C. flavoramulun*, *C. lowei*, *C. nodosum*, *C. teysmannii*, and *C. tomentosum*); Mount Kerinci, Jambi Province (*C. macrophyllum*), Palalawan district, Riau province (*C. tetrapterum*), Jayapura, Papua (*C. incrassaptum*, *C. soulattri*).

Bioactive compound isolation

Calophyllum stem barks were dried and crushed. These materials were further macerated with 70% ethanol, and then partitioned with n-hexane, ethyl acetate (EtOAc), or n-butanol. Each solvent was evaporated to obtain a n-hexane, ethyl acetate, and n-butanol extracts (Table 1). A hexane extract of *C. macrophyllum* was separated by chromatographic column with silica as stationary phase, and a mixture of n-hexane-ethyl acetate as the mobile phase with gradually raised polarity system. The resultant columns were monitored with TLC, the same fraction was combined, then reconstituted with a chromatographic column. The recovered compound was recrystallized by several solvents, to obtain a xanthone compound. The obtained crystals were analysed by LC-MS to determine the molecular weight. The compound was further elucidated by using NMR 1D and 2D (2D JNM-ECA-500), UV-VIS (Hitachi U-2000), and FTIR (IRPrestige-21, Shimadzu).

Anti-oxidant activity assay

The anti-oxidant activity assay was performed by using 1,1-diprenyl-2-picrylhydrazyl reagent with an initial sample concentration at 1000 ppm (2 mg/2 mL). For the anti-oxidant assay, the concentration of the sample was made to 25, 50, 100, and 200 ppm (w/v) in a methanol added with a DPPH, and then was incubated at 37°C for 30 min. Absorbance was detected at 517 nm. The effect of extracts resistance on the free radical 1,1-diprenyl-2-picrylhydrazyl can be observed with the colour change of 1,1-diprenyl-2-picrylhydrazyl from violet to yellow. When the tested compound was active as an anti-oxidant, the colour changes to yellow. This indicates the occurrence of free radical capture by the tested xanthone compound (Hanato et al. 1988).

\[
\text{Absorbance}_{517 \text{ control}} - \text{Absorbance}_{517 \text{ sample}} \\
\text{% inhibition} = \frac{\text{Absorbance}_{517 \text{ control}} - \text{Absorbance}_{517 \text{ sample}}}{\text{Absorbance control}_{517}} \times 100\%
\]

DPPH scavenging activities of various concentration of the most effective extract were assessed to determine concentration that causes 50% of inhibition (IC50).

Anti-bacterial activity assay

The agar-well diffusion method was employed in the anti-bacterial activities assay. n-hexane and ethyl acetate extracts of *C. soulattri*, *C. tetrapterum*, and *C. macrophyllum* were tested for the anti-bacterial activities. Selected pathogenic bacteria (*E. coli*, *S. aureus*, *B. subtilis*, and *P. aeruginosa*) were grown on Muller-Hinton agar medium (pH 7.3). A
suspension of each bacterium \((1.45 \times 10^6 \text{ CFU/mL})\) were streaked on the surface of the medium using sterile cotton swab to ensure the confluent growth of the bacteria. Agar wells (6 mm in diameter) were made in the medium, and then about 100 µL of the extracts were delivered into each hole. All plates were incubated at 37°C for 24 hours, and the growth-inhibition zones were measured.

Results

Anti-oxidant activities of Calophyllum extracts

The stem bark of all Calophyllum species collected in Indonesia was macerated in 70% ethanol. All samples were successively partitioned with n-hexane, ethyl acetate, and n-butanol. Almost all Calophyllum extracts showed anti-oxidant activity, except the hexane extract of *C. nodosum* \((IC_{50}) = > 500 \mu g/mL\) (Table 1).

Table 1. Partitioned results and anti-oxidant activities of all Calophyllum stem barks extracts

No.	*Calophyllum* species (stem bark weight)	Extract	Yield (g)	DPPH scavenging \((IC_{50})^{*}\) \((\mu g/mL)\)
1	*C. bicolor* (2.5 kg)	n- hexane	40	387.3
		Ethyl acetate	231.7	5.1
		n-butanol	96.7	8.1
2	*C. euryphyllum* (2.8 kg)	n- hexane	72.9	130.5
		Ethyl acetate	150.9	23.6
		n-butanol	75.0	14.9
3	*C. lowei* (2.0 kg)	n- hexane	160.8	393.1
		Ethyl acetate	17.4	14.1
		n-butanol	60.0	6.9
4	*C. teysmannii* (1.12 kg)	n- hexane	146.5	72.9
		Ethyl acetate	39.3	150.9
		n-butanol	165.3	75.0
5	*C. tetramerum* (2.3 kg)	n- hexane	206.7	65.6
		Ethyl acetate	22.0	212.8
		n-butanol	311.4	11.4
6	*C. incrassaptum* (2.1 kg)	n- hexane	146.5	407.4
		Ethyl acetate	139.0	5.9
		n-butanol	165.3	52.0
7	*C. nodosum* (3.3 kg)	n- hexane	104.9	>500
		Ethyl acetate	92.9	214.0
		n-butanol	152.9	4.5
8	*C. macrophyllum* 5 kg)	n- hexane	5.0	407.4
		Ethyl acetate	59.5	54.4
		n-butanol	47.8	113.9
9	*C. flavoramulum* (3.2 kg)	n- hexane	79.4	193.2
		Ethyl acetate	43.8	4.0
		n-butanol	77.3	54.8
10	*C. tomentosum* (1.7kg)	n- hexane	49.6	206.0
		Ethyl acetate	49.1	67.1
		n-butanol	78.1	11.6
No.	Calophyllum species (stem bark weight)	Extract	Yield (g)	DPPH scavenging (IC₅₀)* (µg/mL)
-----	--------------------------------------	------------------	-----------	---------------------------------
11	C. soulattri (1.8 kg)	n-hexane	50.5	2.2
		Ethyl acetate	86.3	30.1
		n-butanol	75.1	24.1
12	Isolated compound from C. macrophyllum	1,8-dihydroxy-6-methoxy xanthone	-	1.56

*(IC₅₀) < 50 µg/mL = very active, (IC₅₀) 51 - 100 µg/mL = active, (IC₅₀) 101 – 500 µg/mL = less active, (IC₅₀) > 500 µg/mL = not active

This study showed that the majority of Calophyllum extracts exhibited high DPPH scavenging activity, except hexane extracts of C. bicolor, C. lowei, C. incrassaptum, C. nodosum, and C. macrophyllum. Among them, C. soulattri hexane extract showed highest anti-oxidant activity with IC₅₀ = 2.2 µg/mL, followed by the ethyl acetate extracts of C. flavoramulum (IC₅₀ = 4 µg/mL), C. bicolor (IC₅₀ = 5.1 µg/mL), C. incrassaptum (IC₅₀ 5.9 µg/mL), and butanol extracts of C. nodosum (IC₅₀ 4.5 µg/mL) and C. bicolor (IC₅₀ 8.1 = µg/mL). In addition, the ethyl acetate and butanol extracts of C. bicolor, C. euryphylum, and C. lowei exhibited higher anti-oxidant activity than the hexane fraction. A xanthone compound isolated from C. macrophyllum exhibited a high anti-oxidant activity (IC₅₀ =1.56 µg/mL) (Table 1).

Anti-bacterial activities of Calophyllum extracts

Minimum inhibition concentration (MIC) for five Calophyllum species was shown in Table 2. Five Calophyllum species fraction exhibited moderate to high anti-bacterial activities. This study indicated that among five species of Calophyllum, hexane fraction of C. macrophyllum showed the highest anti-bacterial activities compared to the remaining Calophyllum extracts.

Table 2. Minimum inhibition concentration for all extract of five Calophyllum species

Fraction	MIC (Minimum inhibition concentration) (µg / mL)			
	E. coli	S aureus	B. subtilis	P. aeruginosa
C. tetrapterum				
Hexane fraction	1.292	1.264	1.292	1.505
C. tetrapterum				
Ethyl acetate fraction	-	-	-	-
C. incrassaptum				
Hexane fraction	1.281	1.077	1.175	1.228
C. incrassaptum				
Ethyl acetate fraction	1.264	1.260	2.845	1.281
C. macrophyllum				
Hexane fraction	1.024	0.979	0.925	0.954
C. macrophyllum				
Ethyl acetate fraction	1.162	1.176	1.062	1.418
C. tomentosum				
Hexane fraction	1.264	1.260	2.845	1.281
C. tomentosum				
Ethyl acetate fraction	1.315	12.281	1.192	2.010
Fraction	MIC (Minimum inhibition concentration) (µg / mL)			
---------------------	---			
	E. coli	S. aureus	B. subtilis	P. aeruginosa
C. soulattri	1.315	1.152	1.085	1.077
Hexane fraction				
C. soulattri	1.085	1.181	1.033	1.352
Ethyl acetate fraction				

The anti-bacterial activity of *C. soulattri* hexane fraction, *C. macrophyllum* ethyl acetate fraction, and *C. tetrapterum* ethyl acetate fraction were expressed in the diameter of the inhibition zone (Fig. 1). Growth diameter was obtained by disc diffusion method at different concentration of samples.

The inhibition zone of *Calophyllum soulattri*

![Image of inhibition zone of Calophyllum soulattri](image)

The inhibition zone of *Calophyllum macrophyllum*

![Image of inhibition zone of Calophyllum macrophyllum](image)

The inhibition zone of *Calophyllum tetrapterum*

![Image of inhibition zone of Calophyllum tetrapterum](image)

Figure 1. The diameter of zone inhibition some samples to organisms.
Antibacterial activity result of the 11 Calophyllum are shown in Table 2. MIC value range from 0.925 to 12.281 µg/mL were obtained for 11 Calophyllum species and against E. coli 1.024-1.315 µg/mL, and 0.979-12.281 µg/mL for S. aureus, 0.925-2.845 µg/mL for B. subtilis and 0.954-2.010 for P. aeruginosa.

The IR spectrum illustrates strong band the presence free hydroxyl (OH) at v max 3456 cm⁻¹, C-H stretching aromatic at 3157 cm⁻¹ and the OH group conjugated to the carbonyl group at v max 1697. There are four sharp absorption that occur in pairs 1622; 1519; 1469; and 1440 characteristic for C=C stretching aromatic ring. The presence of C-H scissoring at v max 1384.89 and =C-H out-of-plan bending at 900-690 cm⁻¹. It supports that the compound obtained has a xanthone nucleus with two OH groups and one methoxyl (OCH₃) group, OH groups conjugated to C=O group (Fig. 2). The UV spectrum exhibited four maxim absorbent at lambda 327.5:248.0:232.0 and 202.0 nm.

![Figure 2. Infra-red (IR) spectrum of isolated compound from C. macrophyllum](image-url)

In this study, the isolated xanthone compound was determined of consisting of a methoxy (O-CH₃) group. Xanthone compounds provide a positive FeCl₃/MeOH test reagents (blue spot), it is indicating the present of the OH group. Mass spectrum showing the molecular ions (M + 1)⁺ at m/z 385.241 of which indicates the xanthone molecular weight was 384.241 with the molecular structure of C₂₅H₂₃O₅. The ¹HNMR spectrum showed the presence of two ortho-coupled protons [6.87 and 6.77 (1H each, d J 8.5 Hz)], presence one proton at 6.78 (1H, dd J 8.5 6.75 Hz), and one proton aromatic singlet at δ 6.52 (1H.s). The ¹HNMR analysis showed the existence of one methoxyl group at δ 4.04 (Fig. 3).

In the HMBC spectrum, the proton group δH of 6.87 ppm caused four cross peaks with four aromatic carbons at δC 157.9 (C-1), δC 115.6(C-3), δC 108.7(C-4) and δC 157.9(C-9a), and a proton at δH of 6.78 ppm caused four aromatic carbons at δC 157.9 (C-1), δC 110.8 (C-2), δC 108.7(C-4) and 153.5 (C-4a), and a proton δH of 6.77 ppm caused cross peaks with four aromatic carbons at δC 110.8 (C-2) and δC 115.6(C-3) and δC 153.5 (4a) and 107.1 (C-9a), and a proton aromatic at δH 6.52 ppm singlet caused cross peaks with four aromatic carbons at δC 122.5 (C-5), δC 136.9(C-6), δC 157.1 (C-8) and δC 150.6 (C-10a).
One aliphatic proton $\delta_H 1.58$ ppm caused cross peaks with five carbons at $\delta C 39.8$ (C-11), $\delta C 55.3$ (C-12) and $\delta C 29.8$ (C-14, C-15), and $\delta C 122.5$ (C-5) respectively. One methoxyl group $\delta_H 4.04$ ppm (3H, s) caused cross peaks with five carbons at $\delta C 122.5$ (C-5), $\delta C 136.9$ (C-6), and $\delta C 100.0$ (C-7) (Fig. 3). The HMBC data also showed that one OH group ($\delta H 12.2$) bound to C-1 at xanthone moiety, a proton from OH group ($\delta H 12.2$) caused cross peaks with three aromatic carbons at $\delta C 110.8$ (C-2), $\delta C 202.1$ (C-9) and $\delta C 107.1$ C-9a) and one OH group ($\delta H 11.87$) bound to C-8 at xanthone moiety, a proton from OH group ($\delta H 11.87$) caused cross peaks with three aromatic carbons at $\delta C 100.0$ (C-7), $\delta C 202.1$ (C-9), and $\delta C 123.1$ (C-8a). The substitution of hexyl group at C-5 in xanthone moiety was proven by HMBC data, a correlation between the proton methyl doublet $\delta H 0.97$ ppm (6H, $d J 4.9$) correlated to the carbon with $\delta C 38.9$ (C-11), $\delta C 5.3$ (C-12) and 49.3 (C-13), and one methyl singlet $\delta H 0.93$ ppm (3H, s) correlated to the carbon with $\delta C 38.9$ (C-11), $\delta C 5.3$ (C-12) and 49.3 (C-13), and one methyl singlet $\delta H 0.82$ ppm (3H,s) also correlated to the carbon with $\delta C 38.9$ (C-11), $\delta C 5.3$ (C-12) and 49.3 (C-13) (Fig. 4, Table 3).

Figure 3. 1HNMR and 13CNMR spectrum values of the isolated compound from C. macrophyllum

Figure 4. HMBC spectrum value of isolated compound from C. macrophyllum
Table 3. 1H, 13C –NMR, HMQC, and HMBC spectral data of the isolated compound from *C. macrophyllum*

No.	C	Chemical shifts (δ, ppm)	HMBC correlation
1	157.9 C-OH	12.2	C-2, C-9, C-9a
2	110.8	6.87 (1H,d J 8.5 Hz)	C-1, C-3, C-4, C-9
3	115.6	6.78 (1H,dd J 8.5, 6.75 Hz)	C-1, C-2, C-4, C-4a, C-9a
4	108.7	6.77 (1H, d J 8.5)	C-2, C-3, C-4a, C-9a
5	122.5		
6	136.9		
7	100.0	6.52 (1H,s)	C5, C-6, C-8, C-10a
8	157.1 C-OH	11.87	C-7, C-8a, C-9
9	202.1. C=O		
4a	153.5		
8a	123.1		
9a	108.1		
10a	150.6		
11	29.8		
12	55.3		
13	49.2	1.54 (1H,m)	C-11, 12, C-14/C-15
14, 15	29.8	0.97 (6H, d J 4.9)	C-11, 12, C-13
16	25.6	0.93 (3H,s)	C11, C-12, C-13, C-17
17	15.4	0.82 (3H,s)	C11, C-12, C-13, C-16
18	29.8	1.68 (3H, s)	C-5,C11, C-12, C-19
19	19.4	0.75 (3H,s)	C-5,C11, C-12, C-18
20	56.3 (OCH$_3$)	4.03 (3H, s)	C-5, C-6, C-7

Based on the basic spectroscopic analysis by using 1H-NMR, 13C-NMR, NMR-1D and 2D (HMBC, HMQC, DEEP), IR, melting point, and molecular weight confirmation by LC-MS, the xanthone was determined containing substitution on C-1 C-8 as hydroxyl groups, and methoxyl group at C-6, and therefore it was named as 1,8-dihydroxy-6-methoxyl xanthone with the molecular formula of C$_{23}$H$_{28}$O$_5$ BW = 384.241. The 1,8 - dihydroxy-6 methoxy xanthone compound showed the highest anti-oxidant activity with IC$_{50}$ = 1.56 µg/mL (Fig. 5).

![Structure of xanthone isolated from C. macrophyllum](image)

Figure 5. Structure of xanthone isolated from *C. macrophyllum*
Discussion

In this study, we isolated bioactive xanthone compound from *C. macrophyllum* using extracting solvents with different polarities. The hexane extract of the *C. macrophyllum* give the most inhibitory effect in anti-bacterial assay (MIC 1.024; 0.979; 0.925; 0.954 µg/mL for *E. coli*, *S. aureus*, *B. subtilis*, and *P. aeruginosa*) respectively. The hexane extract of this *C. macrophyllum* plant was subsequently fractionated by column chromatograph eluting by *n*-hexane: ethyl acetate with gradient polarity system. In this study, we found 1.8-dihydroxy-6-methoxy xanthone. (Table 3, Figure 3, 4, 5) involved anti-oxidant activity,

1.8-dihydroxy-6-methoxy xanthone is one type of xanthone compound identified from *C. macrophyllum* hexane extract. In line with this study, Yimdjo 2004 reported various xanthones to have anti-microbial activity. Dharmaratne (1999) published anti-microbial activity of xanthones from *Calophyllum* species, against Methicillin–resistant *Staphylococcus aureus* (MRSA). Adewujii (2014) isolated antibacterial activity of acetonides from the seed oils of *Calophyllum inophyllum*.

From the structure of xanthone and binding affinities of xanthone acting to bacterial inhibition. Lin 2015 et al reported that generally, hydrophobic interaction was essential in the binding of xanthone/flavonoid to antibacterial activity. The planar structure and double bond C1-C2-C3 of xanthone are advantageous for antibacterial activity and antioxidant activity. Regarding antioxidant activity, xanthone showed the highest radical scavenging activities in DPPH assay. Similar to the results, Jamilah (2011) reported that fatty acid from *C. macrophyllum* have been reported to have antioxidant activity.

Conflict of Interest

The authors state no conflict of interest from this manuscript.

Acknowledgment

The authors thank to Indonesian Institute of Sciences (LIPI) for financial support & research facilities I am grateful with Ismail Rahman from Herbarium Bogoriense-LIPI for identified of *Calophyllum* spesies and several staffs from Research Centre for Chemistry-LIPI are also thanked for the laboratory assistance.

References

Stevens PF. 2006. Clusiaceae–Guttiferae. In: Kubitzi K. The families and genera of vascularplants, Vol. IX, Flowering Plants.Berlin: Springer, 48–66.

Noldin VF, Isaiaq DB, Filho V, Quim N. 2006. *Calophyllum* Genus: Chemical and Pharmacological Importance .29(3), 549-554

Yimdjo MC, Azebaze GA, Augustin EN, Meyer MA, Bodo B, Fomum ZT. 2004. Antimicrobial and Cytotoxic agents from *Calophyllum inophyllum*. Phytochemistry 65 (20), 2789-2795. DOI:10.1016/j

Xiao-HS, Man-LiZ, Li GL, Chang-HH, Yu-CG, Qing-WS. 2008. Chemical constituents of the plants of the genus *Calophyllum*. Chemistry and Biodiversity. 5, 2579–2608.

Cechinel VF, Meyre-SC, Niero R. 2009. Chemical and pharmacological aspects of the genus *Calophyllum*. Chemistry and Biodiversity 6, 313–327.

Li. Z, Li.Y, Qin. NB, L D-H., Liu.Z-g. Liu. Q. 2016. Four new coumarin from the leaves of *Calophyllum inophyllum*. Phytochemistry Letter. 16, 203-206.

Sri BS, Emma SK, Sofie MC. 2006. Phytopharmaceuticals and phytochemicals evaluation on leaves and bark of *Calophyllum inophyllum* and *Calophyllum soulattri*. Biodiversitas 7(1), 25-29.

Iinuma M, Tosa H, Tanaka T, Yenemori S. 1993. Two xanthones from root bark of *Calophyllum inophyllum*. Phytochem 35 (57), 527-532
V. Sim Minor, F, var Lile leaves 1423-1429. Yin Ilham SG, thorelii. Narender the QX, from 2018. from Awasth Isolation and of Kuala from University HT, LT, Z.L, T. Life Calophyllum syntheses Khan HL-60 A-D: elucidation fruits MV. Indonesian Wati Y-Z, new In Bhatia Conference Elya and S., Pereira Anti-Calophyllum alpha B fracrion MS, incrasaptum Conjungtion and from Apan Wijesinghe BH, Journal K, J, Periera of O from Cenz Produc Zhao of on G, with 1420-2014. 1998. Incrasaptum Abbas. 2013. Goh Tan Flavan-3-ol Zulkifli Cao M, human SG, of of coumarin Calophyllum Z, Xiao of stem 2012. inhibitory Vijayasekaran, Sin of prenylated Phytochemistry and diprenylated stem J, Zeng biological compound the Wu apetalum Natural Inhibitory isomeric and growth Aumales of DPPH, bark Teysmanone ISSN FS. moonii Shrivastava Calophyllum B, Calanone, Brunner Goh Tan G, Sim teysmannii leukemia 5,7,2 NA. vital HM. inophyllum XH, Q, isolated 8 teysmannii: the from Goh Syah Frengki RM2016. macrophyllum from CK, YB, cytotoxic 1998. constituents teysmannii T, JT, and of Isocalanone acetate and Vital of DHP, 2011. mammea of Conference multidisciplinary P Januari. Shi A, C Hua by 1998. Han J var the SL, Scheff. from M, 72x125 Aminuddin Frengki, 72x166 Prima.D. 72x221 Abbas Frengki. 72x290 Prasad Nguyen 72x331 Zakaria Nguyen Z, Wahyuni Cao, 72x400 Vittal Chilpa 72x442 Vietnamese W. Nguyen 72x483 Cao, 72x524 Vittal M, 72x566 Amekraz Cao, 72x607 DharmaratneH.R, 72x662 Wijesinghe WMNM. 1997. A trioxygenated diprenylated chromen xanthone from C. moonii Phytochemistry 46 (7), 1293-1295.

Chilpa RR, Muniz EE, Apan TR, Amekraz B, Aumales A, Jankowski CK, Torres MV. 2004. Cytotoxic effects of mammea type coumarins from Calophyllum brasiliense. Life Science 75, 1635-1647.

Vittal, J J, Cao SG, Goh SH, Tan GKD, Sim KY. 1998. Three isomeric pyranocoumarins from C. teysmannii: Calanone, Isocalanone and Teysmanone A, Acta Cryst. C54. 1536-1540.

Cao SG, Wu XH, Sim KY, Tan BHK, vital JJ, Periera JT, Goh SH. 1998. . Minor coumarins from C. teysmannii var inophylloide and synthesis of cytotoxic calanone derivate. Helvetica Chemica Acta. 81. 1404-1415

Cao, Wu XH, Sin KY, Tan BH, Vital JJ, Pereira JT, Goh SH. 1998. Minor coumarin from Calophyllum teysmannii var inophylloide and synthesis of cytotoxic calanon derivate, Helvetica Chimica Acta 81, 1404-1415

Li Y-Z, Li Z.L., Yin SL, Shi G, Liu MS, Jing YK, Hua HM. 2010. Triterpenopid from C. inophylloid and their growth inhibitory effect on human leukemia HL-60 cells. Fitoterapia. 81,586-589.

Zakaria M.B, Vijayasekaran, Ihlem Z, Muhammad NA. 2014. Anti-inflammatory activity of Calophyllum inophylloid fruits extracs, Procedia Chemistry. 218-220.

Nguyen LT, Nguyen HT, Barbic M, Brunner G, Helman J, PHD, Nguyen DM and Nguyen LHD. 2012. Polyisoprenylated acylphloroglucinols and a polyisoptrenyllated tetracyclic xanthone from the bark of Calophyllum thorelii. Tetrahedron Letters 53, 4487-4493.

Prasad J, Shrivastava A, Khan AK, Bhatia G, Awasth K, Narendra T. 2012. Antidyslipidemic and anti-oxidant activity of the constituents isolated from leaves Calophyllum inophylloid, Phytomedicine 19, 1245-1249.

Frengki. Abbas. J, Wati S., 2013. Inhibitory of activity α-Glucoside from ethyl acetate and flavanal compound of the stem - bark of Calophyllum macrophyllum Scheff. Proceedings of the 3rd Annual International Conference Syah Kuala University (AIC Unsyiah) in Conjunction with the 2nd International Conference on multidisciplinary Research (ICMR). 306-311

Abbas J, Frengki., Barna Elya, Januari. 2011. Isolation and elucidation of chemical compound from ethyl acetate fracion of the stem bark of Calophyllum macrophyllum Scheff and antioxidant bioassay by DPPH, The Indonesian Journal of Natural Product, 7(5), 248-253.

Frengki, Prima.D. Wahyuni FS. Khamri D, Vanda H, Zakiah.N., Abbas J, Elya B., 2018. In-Vitro and In silico 5,7,2’,5’-tetrahydroxy Flavan-3-ol compound to enzyme alpha glucosidase. Jurnal Fitofarmaka Indonesia 5 (2), 279-283.

Aminuddin NA, Ahmad F, Taher M, Zulkifli RM2016. Incrasaptum A-D: Four new 4-subtituted coumarin from Calophyllum incrasaptum and their biological activities. Phytochemistry Letters 16. 287-293.
Araújo MGF, Hilário F, Vilegas W, Santos LC, Brunetti LL, Sotomayor EC and Bauab TM. 2016. Correlation among anti-oxidant, hemolitic and anti-proliferative of Leiothrix spiraliss leaves extract. International Journal of Molecular Sciences. ISSN 1422-0067. 13. 9260-9277. DOI:10.3390/ijms1379260.

Shahwar D, Rahman S, Ahmad N, Ullah S and raza MA. 2010. Antioxidant activities of the selected plants from the family Euphorbiaceae, Lauraceae, Malvaceae and Balsaminaceae. African Journal of Biotechnology 9(7), 1086-1096.

Hatano T, Kagawa H, Yasuhara T, Okuda T. 1988. Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem Pharm Bull. 36, 2090-2097

Dharmaratne HRW, Wijesinghe WMNM, Thevanasem V. 1999. Anti-microbial activity of xanthones from Calophyllum species, against Methicillin – resistant Staphylococcus aureus (MRSA). Journal of Ethnopharmacology 66(3).339-342

Adewuji A, Fasusi OH, Oderinde RA. 2014. Antibacterial activity of acetonides prepared from the seed oils of Calophyllum inophyllum. Journal of cute medicine, vol xx, 92014 – 92016

Lin S, Zhang G, Liao Y, Pan J, Gong D. 2015. Dietary flavonoids as xanthine oxidase inhibitions: structure–affiliation and structure-activity relationships. J. agric. Food Chem, 63, 7784-7794

Zhang JD, Xu Z, Cao YB, Chen HS, Yan L, An MM, Gao PH, Wang Y, Jia XM, , Jiang YY. 2006. Anti-fungal activities and action mechanisms of compounds from Tribulus terrestris L. Journa-. Ethnopharmacol.;103:76–84