Presence of the Extended-Spectrum-β-Lactamase and Plasmid-Mediated AmpC-Encoding Genes in Escherichia coli from Companion Animals—A Study from a University-Based Veterinary Hospital in Taipei, Taiwan

Fang-Ling Liu 1, Nan-Ling Kuan 1,2 and Kuang-Sheng Yeh 1,*

1 Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; r05629015@ntu.edu.tw (F.-L.L.); nanikuan@gmail.com (N.-L.K.)
2 Biology Division, Animal Health Research Institute, Tansui, New Taipei City 25158, Taiwan
* Correspondence: ksyeh@ntu.edu.tw; Tel.: +886-2-33661289

Abstract: Extended-spectrum-β-lactamase (ESBL) and AmpC β-lactamase are two enzymes commonly found in Enterobacteriaceae that confer resistance to major antibiotics, such as third-generation cephalosporins that are widely prescribed for both human and animals. We screened for Escherichia coli producing ESBL and plasmid-mediated AmpC β-lactamase (pAmpC) from dogs and cats brought to National Taiwan University Veterinary Hospital, Taipei, Taiwan from 29 June 2020, to 31 December 2020. The genotypes and phylogenetic relatedness of these E. coli were also analyzed. Fifty samples of E. coli obtained from 249 bacterial isolates were included in this study. Among them, eight isolates had ESBL, seven had pAmpC, and one had both. Thirty-two percent (16/50) of E. coli isolates were resistant to third-generation cephalosporins. The detected ESBL genes included the blaCTX-M-1 and blaCTX-M-9 groups, and the blaCMY-2 group was the only gene type found in pAmpC. ESBL-producing E. coli belonged to the pathogenic phylogroup B2, and the sequence types (STs) were ST131 and ST1193. Three isolates were determined to be ST131-O25b, a highly virulent epidemic clone. The pAmpC-producing E. coli were distributed in multiple phylogroups, primarily the commensal phylogroup B1. The STs of the pAmpC-producing E. coli included ST155, ST315, ST617, ST457, ST767, ST372, and ST93; all of these have been reported in humans and animals. Imipenem was active against all the ESBL/pAmpC-producing E. coli; however, since in humans it is a last-resort antimicrobial, its use in companion animals should be restricted.

Keywords: extended-spectrum-β-lactamase; plasmid-mediated AmpC; Escherichia coli; companion animals

1. Introduction

Antimicrobial resistance (AMR) is a worldwide public health crisis that prevents practitioners, either from medicine or veterinary medicine, from successfully treating bacterial infections [1]. Members of the Enterobacteriaceae family, such as Escherichia coli, are responsible for most of the common infections in hospitals or communities [2]. β-lactamases are the most prominent enzymes in Gram-negative bacteria, and within the β-lactamase class, extended-spectrum-β-lactamases (ESBLs), AmpC (also termed class C) β-lactamas, and carbapenemases are currently widespread. These enzymes allow bacteria to resist the major therapeutic regimes available in clinical settings that rely on β-lactams. Third-generation cephalosporins are broad-spectrum β-lactam antimicrobials that are widely prescribed to both humans and animals to treat serious infections [3]. Because third-generation cephalosporins are essential treatments for many bacterial infections for which resistance is a major concern, this type of antimicrobial agents has been classified as “critically important” for human health [3].
Resistance to third-generation cephalosporins is often mediated by extended-spectrum-β-lactamase (ESBL) and AmpC β-lactamase. ESBLs are a group of enzymes derived from point mutations of β-lactamase. ESBLs confer resistance to most β-lactam antibiotics, including extended-spectrum cephalosporins and monobactams; ESBLs are, however, susceptible to carbapenems and cephemycins and are inhibited by clavulanic acid, sulbactam, and tazobactam [4]. AmpC β-lactamase is chromosomally mediated and present in various microorganisms [5]. The ampC gene in E. coli is normally expressed at a low level [6]. Papanicolaou et al. first demonstrated that AmpC β-lactamase was captured on a plasmid [7], and subsequently, plasmid-mediated AmpC β-lactamase (pAmpC) disseminated worldwide [5].

This study was conducted at National Taiwan University Veterinary Hospital (NTUVH), a teaching hospital affiliated with the College of Bioresources and Agriculture at National Taiwan University located in Taipei, Taiwan. The objective of this study was to screen for E. coli in the dogs and cats that visited NTUVH 29 June 2020, to 31 December 2020, examine their resistance to third-generation cephalosporins, and investigate the resistant gene profile of and connection among these isolates. The results provide valuable public health information.

2. Results

2.1. Occurrence of the ESBL/pAmpC-Producing E. coli and Their bla Genotypes

The 50 E. coli isolates obtained from this study (dog: n = 41, cat: n = 9) were initially screened using CHROMagar ESBL, after which the ESBL-producing E. coli were identified through the phenotypic confirmatory test. Nine E. coli isolates (dog: n = 6, cat: n = 3) that contained ESBL genes were discovered, one of which (from dogs) possessed both ESBL and pAmpC genes. Seven E. coli isolates contained only pAmpC genes. The bla genes that were identified included the blaCTX-M-1, blaCTX-M-9, and blaTEM groups. The blaCTX-M-1 group contained blaCTX-M-55 (n = 2), blaCTX-M-238 (n = 2), blaCTX-M-211, and blaCTX-M-199. blaCTX-M-235 was the only type detected in the blaCTX-M-9 group. The blaTEM group included blaTEM-215 (n = 4) and blaTEM-243 (n = 1). No blaCTX-M-2, blaCTX-M-8, blaCTX-M-25, or blaSHV groups were found. Within the pAmpC gene groups, only the blaCMY-171 type of the blaCMY-2 group was detected (Table 1).

Table 1. bla genotypes, phylogroups, and ST types of ESBL/pAmpC-producing E. coli (n = 16).

Case No.	Species	Source	Phylogroup	ST Type	bla Genes
001	cat	urine	B2	ST131	blaTEM-215 + blaCTX-M-235 (ESBL)
002	dog	urine	A	ST93	blaCTX-M-55 + blaCMY-171 (ESBL + pAmpC)
004	cat	ascites	B2	ST131	blaCTX-M-235 (ESBL)
008	dog	urine	B1	ST155	blaCMY-171 (pAmpC)
010	dog	urine	D	ST315	blaTEM-215 + blaCTX-M-55 + blaCTX-M-235 (ESBL)
011	cat	urine	B2	ST131	blaTEM-243 + blaCMY-171 (pAmpC)
025	dog	nasal discharge	B1	ST767	blaTEM-215 + blaCTX-M-211 + blaCTX-M-235 (ESBL)
031	dog	urine	B2	ST131	blaCMY-171 (pAmpC)
032	cat	pus	C	ST617	blaCMY-171 (pAmpC)
034	dog	urine	B2	ST131	blaCTX-M-235 (ESBL)
038	dog	urine	F	ST457	blaCTX-M-235 (pAmpC)
040	dog	urine	B2	ST131	blaCTX-M-235 (ESBL)
042	dog	urine	B2	ST131	blaCTX-M-235 (pAmpC)
049	dog	nasal discharge	B1	ST767	blaCMY-171 (pAmpC)
050	dog	oral mass	B2	ST1193	blaTEM-215 + blaCTX-M-199 (ESBL)
051	dog	urine	B2	ST372	blaCMY-171 (pAmpC)
2.2. Phylogenetic Grouping, Genotyping, and Phylogenetic Analysis

B2 (n = 9) was the most common phylogroup, followed by B1 (n = 3). A, C, D, and F were detected once, and E and clade I were not detected. MLST identified nine STs among 16 ESBL- and/or pAmpC-producing *E. coli*, with ST131 being the most predominant ST (n = 7). ST767 was found in two *E. coli* isolates, and the other STs were encountered once (Table 1). Figure 1 demonstrates the minimal spanning tree of the 16 ESBL- and/or pAmpC-producing *E. coli* STs or phylogroups, according to the degree of allele sharing.

![Minimal spanning tree of ESBL- and/or pAmpC-producing *E. coli*](image)

Figure 1. Minimal spanning tree of ESBL- and/or pAmpC-producing *E. coli*. Each circle indicates one sequence type (ST), divided into one sector for each isolate. The phylogenetic group is displayed within the sector, and each circle is bordered by the ST number. The numbers on the connecting line between STs within the MSTree indicate the number of different alleles. Solid and dotted lines represent allele differences of ≤3 and 4, respectively; allele differences >4 are not displayed.

2.3. *E. coli* ST131 O25b Detection

Case numbers 004, 034, and 042 of the 7 ST131 ESBL-producing *E. coli* isolates tested positive for O25b clones, with both *trpA* and *pabB* PCR products observed on an agarose gel (Figure S1 in Supplementary Materials).

2.4. Conjugation Test

For the *E. coli* that only contained the pAmpC gene, a transfer of the *bla*CMY-171 gene to the recipient *E. coli* J53 strain was observed for five of six isolates by conjugation. The 049 strain did not transfer *bla*CMY-171 to the recipient strain. The 025 strain possessed both *bla*TEM-243 and *bla*CMY-171 and only transferred *bla*CMY-171 to the *E. coli* J53 strain. For the eight *E. coli* strains that possessed only ESBL genes, seven isolates could transfer all the ESBL genes to the *E. coli* J53 strain; however, only two of the three *bla* genes were transferred to the recipient *E. coli* by the 011 *E. coli* strain (Table 2). Figure S2 in Supplementary Materials demonstrates that the *bla* genes can be detected from the donor *E. coli* 031 strain and the transconjugant strain, but they cannot be detected in the recipient *E. coli* J53 strain.
Table 2. PCR detection of \textit{bla} gene in donor and transconjugant strains in a conjugation test.

Case No.	\textit{bla} Genes in the Donor Strain	\textit{bla} Genes in the Transconjugant Strain
001	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235
002	\textit{bla}_CTX-M-55, \textit{bla}_CMY-171	\textit{bla}_CTX-M-55, \textit{bla}_CMY-171
004	\textit{bla}_CTX-M-235	\textit{bla}_CTX-M-235
008	\textit{bla}_CMY-171	\textit{bla}_CMY-171
010	\textit{bla}_CMY-171	\textit{bla}_CMY-171
011	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235, \textit{bla}_CMY-171	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235
025	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235, \textit{bla}_CMY-171	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235
031	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235	\textit{bla}_TEM-215, \textit{bla}_CTX-M-235
032	\textit{bla}_CMY-171	\textit{bla}_CMY-171
034	\textit{bla}_CTX-M-238	\textit{bla}_CTX-M-238
038	\textit{bla}_CMY-171	\textit{bla}_CMY-171
040	\textit{bla}_CTX-M-235	\textit{bla}_CTX-M-235
042	\textit{bla}_CTX-M-238	\textit{bla}_CTX-M-238
049	\textit{bla}_CMY-171	\textit{bla}_CMY-171
050	\textit{bla}_TEM-215, \textit{bla}_CTX-M-199	\textit{bla}_TEM-215, \textit{bla}_CTX-M-199
051	\textit{bla}_CMY-171	\textit{bla}_CMY-171

*: not detected.

2.5. Antimicrobial Susceptibility Test

The results of the resistant rate of the 50 \textit{E. coli} isolates to the specified antimicrobials are presented in Figure 2. The breakpoints and the details can be found in Supplementary Table (Tables S1 and S2). The \textit{E. coli} isolates that carried the ESBL genes, pAmpC genes, or both all exhibited a more frequently multidrug-resistant phenotype than those that possessed neither gene. The \textit{E. coli} isolates that possessed neither ESBL nor pAmpC were susceptible to ceftiofur and imipenem, and all of the \textit{E. coli} isolates were susceptible to imipenem.

![Figure 2. Antimicrobial susceptibility tests of \textit{E. coli} containing ESBL, pAmpC, both, or neither. \textit{E. coli} isolates that possess only ESBL, only pAmpC, both ESBL and pAmpC, and neither of the ESBL and pAmpC genes are represented by separate colors. The numbers adjacent to the end of the bars denote the percentage of resistance.](image)

3. Discussion

Overall, 18% (9/50) of the \textit{E. coli} assayed contained ESBLs, which was close to the percentage we previously reported (22.8%) [8]. We did not observe significant variations in the prevalence of ESBL-producing \textit{E. coli} in companion animals in the same vicinity.
Eight isolates from 50 E. coli (16%) specimens contained pAmpC and belonged to different phylogroups (A, B1, B2, C, F, D), within which one isolate Case No. 002 possessed both pAmpC and ESBL. All the pAmpC genes of these eight isolates were determined to be \textit{bla}_{CMY-2} group, which indicates that CMY-2 is the most prevalent and geographically diverse group of pAmpC enzymes [15–17]. Interestingly, our sequencing results revealed that \textit{bla}_{CMY-171} was the only type within the \textit{bla}_{CMY-2} group.

Thirty-two percent (16/50) of the E. coli assayed possessed ESBL- and/or pAmpC-encoding genes, a higher rate than those reported in Japan, Europe, or the United States [18–22]. The high frequency of ESBL and pAmpC genes in E. coli found in dogs and cats may pose a risk for the transmission this multidrug-resistant E. coli to pet owners. A study examined the genetic relationship between multidrug-resistant bacterial isolates, including ESB-producing, between pet owners and their dogs, demonstrating that 9.5% (4/42) of the owner–dog pairs shared similar multidrug-resistant E. coli isolates [23].

We only detected \textit{bla}_{CTX-M-1}, \textit{bla}_{CTX-M-9}, and \textit{bla}_{TEM} groups from the ESBL-producing E. coli. Here, only \textit{bla}_{CTX-M-1} and \textit{bla}_{CTX-M-9} groups belonged to ESBL-encoding genes, whereas \textit{bla}_{TEM-215} and \textit{bla}_{TEM-243} were class A \(\beta\)-lactamase [https://www.ncbi.nlm.nih.gov/pathogens/beta-lactamase-data-resources/, accessed on 1 December 2021]. \textit{bla}_{CTX-M-2}, \textit{bla}_{CTX-M-8}, \textit{bla}_{CTX-M-25}, and \textit{bla}_{SHV} groups were not found; however, \textit{bla}_{CTX-M-2} and \textit{bla}_{SHV} groups had been present in the E. coli isolates obtained from the companion animals visiting NTUVH during studies conducted from 2014 to 2017 [8]. It is unknown why E. coli-containing \textit{bla}_{CTX-M-2} and \textit{bla}_{SHV} groups were absent during the present study. Teunis et al. conducted a longitudinal study to investigate the duration of the presence of ESBL- and pAmpC-producing E. coli in humans living in a livestock-dense region [24]. They concluded that \textit{bla}_{SHV-12} was both easily acquired and lost. The estimated overall mean time to eliminate \textit{bla}_{SHV-12} was 1.1 years, and the mean time to acquire it was approximately 3.0 years [24]. Because both this and our previous studies were only sectional studies, it is worth performing a longitudinal study in the future to investigate how long companion animals carry ESBL- or pAmpC-producing E. coli.

Of the nine ESBL-producing E. coli strains, seven were E. coli ST131 samples that were isolated from urine and ascites and belonged to the B2 phylogroup. Three out of the seven ST131 strains were identified as O25b clones, a globally spreading clone with a high virulence potential [25]. ST131 O25b with CTX-M-15 is a highly virulent clone for humans and is spreading globally [25]. The presence of this virulent clone was first reported in a dog with chronic cystitis in Portugal [26]. In our previous study, CTX-M-174 and CTX-M-194 were the \(\beta\)-lactamases found in the ST131 O25b clones [8], whereas CTX-235 and CTX-238 were those noted in the present study. \(\beta\)-lactamase other than CTX-M-15 were also found in E. coli ST131 O25b clones from companion animals [27]. Therefore, regardless of the \(\beta\)-lactamases present in the ST131 O25b clone, its potential zoonotic risk must be considered as a precaution. ST1193 has emerged as a pandemic clone of a multidrug-resistant human
pathogen [28,29]. This ST was first identified in Australia as a fluoroquinolones resistant clone group [30], and its presence has been reported worldwide [31–34]. The 002 strain possessed both bla_{CTX-M-55} and bla_{CMY-171} and was typed as ST93, which has been reported as an avian and human extraintestinal pathogenic or diarrhoeagenic form of *E. coli* in humans and animals [35–37].

The conjugation test revealed that 81% (13/16) of the ESBL/pAmpC determinants were successfully transferred from the donor strains to the recipient *E. coli* J53 strain. The 049 strain did not transfer its single bla_{CMY-171} to *E. coli* J53, and the 011 and 025 strains transferred some bla genes to the recipient strain. The bla genes that did not transfer to the recipient strain may be located at plasmids other than those that transferred to the recipient strain. Studies have shown that some plasmids carrying bla_{pAmpC} were not self-transmissible; they can, however, be transferred through transformation or mobilization [5,38,39]. We cannot rule out the possibility that bla_{CMY-171} may be chromosome-encoded. Although plasmid extraction from the donor strains was performed (Figure S3), PCR-based replicon typing was not conducted which is a study limitation. Nevertheless, the conjugation test performed in this study demonstrated that the majority of bla_{ESBL}- and bla_{pAmpC}-encoding genes were located on mobile genetic elements, which has important public health implications because of its likely easier dissemination.

The ESBL/pAmpC-producing *E. coli* exhibited a more prominent multidrug-resistant phenotype than *E. coli* isolates without either gene. Imipenem was active against all *E. coli* strains in our study. This carbapenem class of drug has been used to treat multidrug-resistant bacteria in veterinary medicine [40]; however, it should be avoided and restricted to exceptional circumstances where no other options are available under the cascade because carbapenems are critically important antimicrobials of last resort for humans. Furthermore, carbapenem-resistant *E. coli* has been isolated from companion animals in previous studies, and thus, the selection pressure through antimicrobial use in companion animals should be avoided [41,42].

4. Materials and Methods

4.1. Sample Collection

Between June and December 2020, we cultured 249 bacterial isolates from 172 cases of companion animals admitted to NTUVH. Of them, 50 *E. coli* isolates were obtained from dogs (n = 41) or cats (n = 9). The bacteria were identified to the species level using a Vitek-2 Compact microbial detection system (bioMérieux, Marcy l’Etoile, France). The *E. coli* isolates were cultured from urine (n = 38), ascites (n = 2), pus (n = 4), nasal discharge (n = 2), body mass (n = 3), and an unknown source (n = 1). The isolates were stored in a Microbank system (Pro-Lab Diagnostics, Richmond Hill, ON, Canada) and maintained at −80 °C until analysis.

4.2. ESBL Screening and Phenotype Confirmation

E. coli obtained from NTUVH were streaked on CHROMagar ESBL plates (CHROMagar, Paris, France) to initially screen for ESBL producers. ESBL-producing *E. coli* would grow well and exhibit purple colonies on the chromogenic agar medium, and *E. coli* isolates that did not produce ESBL would not grow [43]. Subsequently, ESBL-producing *E. coli* were further identified by using the phenotypic confirmatory test specified by the Clinical and Laboratory Standards Institute (CLSI) [44]. *E. coli* that tested positive for ESBLs through the CHROMagar ESBL-test were evenly streaked on a Muller–Hinton agar (Difco/BectonDickinson, Franklin Lakes, NJ, USA) at a concentration of approximately 0.5 McFarland standards with a cotton swab. Four discs were placed on the agar surface: cefotaxime (30 µg), ceftaxime–clavulanic acid (30 µg/10 µg), ceftazidime (30 µg), and ceftazidime–clavulanic acid (30 µg/10 µg). The plates were then incubated at 35 °C for 16 to 18 h. A difference of 5 mm or more in the inhibition zones between either cefotaxime–clavulanic or ceftazidime–clavulanic acid combination and cefotaxime or ceftazidime alone was used to identify an ESBL-producing *E. coli*. *Klebsiella pneumoniae* ATCC 700603 and
E. coli ATCC 25922 were used as the positive and negative controls, respectively. The antimicrobial susceptible test discs were purchased from BD BBL (Difco/Becton Dickinson, Franklin Lakes, NJ, USA).

4.3. Phylogenetic Grouping

To understand the genetic substructure of the ESBL- and/or pAmpC-producing E. coli, the PCR method reported by Clermont et al. was applied to classify these E. coli cultures into multiple phylogroups, including A, B1, B2, C, D, E, F, and clade I [45]. The lysate preparations of the ESBL- and/or pAmpC-producing E. coli were used as the templates for the PCR, and the primers used are listed in Table 3. The boiling method reported by Shaheen et al. was used to prepare the lysates [46]. Briefly, the tested E. coli strains were cultured for 16–18 h at 37 °C on tryptic soy agar plates (Difco/Becton Dickinson, Franklin Lakes, NJ, USA). A loopful of bacterial cells was resuspended in 200 µL of double-distilled H2O (ddH2O) and boiled for 10 min. The supernatant was saved after centrifugation at 12,000 × g for 10 min and used as the template source for PCR.

PCR Target	Primer Sequences (5′-3′)	Annealing Tm (°C)	Predicted PCR Size (bp)	Reference
blaTEM	TCGGGGAATGTCGCCGG	55	972	[47]
CTX-M-1-F	GCCTTATCCGACCCTCCTAACA	54	819	[48]
CTX-M-1-R	CACGGCTTTGGGCGTCAAG	54	942	[49]
CTX-M-2-F	GAGGTGACAAAGAGGATGGCAAC	55	876	[51]
CTX-M-2-R	TTAGCGCCATCGGCGAtATTT	52	405	[50]
CTX-M-25-F	GCAAGCTGACATCGCGG	52	327	[50]
CTX-M-25-R	AACCACAGATGTTGATATGC	64	462	[52]
CTX-M-3-F	TGGCCGAAACTGACAGGCAAA	64	520	[52]
CTX-M-3-R	GCCTTATCCGACCCTCCTAACA	54	942	[49]
CTX-M-8-F	TCCGGTTAAGCGGATGATGC	52	666	[50]
CTX-M-9-F	ATGGTGACAAAGAGGATGGCAAC	55	876	[51]
CTX-M-9-R	TTAGCGCCATCGGCGAtATTT	52	405	[50]
chuA.1b	ATGGTACCGGACGAACCAAC	59	288	[45,53]
chuA.2b	CAAACGTTGAAGTGTCAGGAG	59	211	[45]
yjaA.1b	CAAACGTTGAAGTGTCAGGAG	59	211	[45]
yjaA.2b	CAAACGTTGAAGTGTCAGGAG	59	211	[45]
TspE4.C2.1b	TTTTCTCTGCAAGCGTCCGTCGCGG	59	152	[45]
TspE4.C2.2b	GTTGTATCGCTGCGCGTCCGCGG	59	400	[45,54]
trpA.F	GTTGTATCGCTGCGCGTCCGCGG	59	400	[45,54]
trpA.2.R	GTTGTATCGCTGCGCGTCCGCGG	59	400	[45,54]
4.4. Genotyping and Phylogenetic Analysis

The ESBL- and/or pAmpC-producing E. coli were genotyped through multilocus sequence typing (MLST) [58]. The related PCR products were sequenced. The sequence data were then uploaded to the EnteroBase MLST website (http://enterobase.warwick.ac.uk/; accessed on 20 March 2021) for comparison. The similarities between these strains were analyzed using BioNumerics version 7.0 (Applied Maths, Sint-Martens-Latem, Belgium).

4.5. E. coli ST131 O25b Detection

E. coli ST131/O25b was detected through PCR based on the method described by Clermont et al. as follows: initial denaturation at 94 °C for 4 min followed by 30 cycles at 94 °C for 5 s, annealing at 65 °C for 10 s, and 72 °C extension for 5 min [52]. Ten µL of each PCR sample was inserted into a 2.0% agarose gel and electrophoresed at 100 V for 30 min using Tris-acetate-EDTA (TAE) buffer. The gels were then stained with a fluorescent nucleic acid dye (Biotium, Fremont, CA, USA) for 20 min and examined under ultraviolet illumination.

4.6. Conjugation Test

A conjugation test was performed using broth mating experiments as described by Tamang et al. [59]. We added 0.5 mL of the overnight culture of ESBL- and/or pAmpC-producing E. coli (donor) and E. coli J53 (recipient) to 4.5 mL of MH broth (Difco/Becton Dickinson, Franklin Lakes, NJ, USA) and incubated them with constant shaking at 37 °C for 4 h. An aliquot of 0.5 mL of the donor and recipient cells were added to 4 mL of MH broth and incubated with constant shaking at 37 °C overnight. An aliquot of 100 µL of the cocultured cells was spotted and evenly spread on the agar surface of the MH agar supplemented with sodium azide (150 mg/L) (Sigma) and cefotaxime (2 mg/L). Only transconjugants would grow on such double-selected MH agar, and neither the donor nor the recipient would be recovered. PCR detection for the specific ESBL and/or pAmpC genes of each donor strain was performed on the transconjugant strain to confirm the transfer of these genes.

4.7. Antimicrobial Susceptibility Test

All 50 E. coli isolates were tested for susceptibility to the specific antimicrobial agents using the Vitek 2 AST-GN96 card (bioMérieux, Marcy l’Etoile, France), which was designed for minimum inhibitory concentration (MIC) determination and for veterinary use only. We only included ampicillin, amoxicillin/clavulanate, ceftriaxone, imipenem, and enrofloxacin in this study. Breakpoints specified in the Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals of CLSI (Vet 08) were used to interpret the data [44].

5. Conclusions

The expansion of the resistant genes mediated by plasmids, such as ESBL and pAmpC-encoding, has become a major public health concern. ESBL and pAmpC confer resistance to broad-spectrum cephalosporins, limiting treatment options in human and veterinary medicine. E. coli isolates of public health concern ST131 O25b, were discovered in this study, although they possessed bla genes other than blaCTX-M-15, which is commonly present in humans. ST131 O25b clones with different bla genes have been reported to be of companion animal origin. Thus, the role these animals may play in disseminating this clone should be considered. By frequently being MDR, the dissemination of such strains may lead to therapeutic failures or limited therapeutic options. A high prevalence of ESBL- and/or pAmpC-encoding genes in E. coli from companion animals underscores the necessity of antibiotic prudent use and periodic monitoring of multidrug-resistant bacteria.
Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/antibiotics10121536/s1, Figure S1: PCR detection of the transfer of the ESBL genes from donor E. coli ST131/O25b clone. Figure S2: PCR detection of the transfer of the ESBL genes from donor E. coli isolate 031 to recipient E. coli J53 strain in a conjugation test. Figure S3: The plasmid DNA isolation from the donor and the recipient cells. Table S1: Antimicrobial susceptibility test of the E. coli containing ESBL, pAmpC, both or neither. Table S2: Interpretive categories and breakpoints used in the present study.

Author Contributions: Conceptualization, K.-S.Y.; methodology, F.-L.L. and N.-L.K.; writing—original draft preparation, F.-L.L.; writing—review and editing, K.-S.Y.; project administration, K.-S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article or the Supplementary Materials. Sequence data presented in this study are also available on request from the corresponding author.

Acknowledgments: The authors also would like to thank L. J. Teng from the Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, for providing Klebsiella pneumoniae ATCC 700603 strain and C.-T. Liao from the Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, for providing the Escherichia coli J53 strain.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. Microbiol. Spectr. 2018, 6, 2. [CrossRef] [PubMed]
2. Vaishnavi, C. Translocation of gut flora and its role in sepsis. Indian J. Med. Microbiol. 2013, 31, 334–342. [CrossRef] [PubMed]
3. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically Important Antimicrobials for Human Medicine, 5th ed.; WHO: Geneva, Switzerland, 2016.
4. Bush, K. Past and present perspectives on beta-Lactamases. Antimicrob. Agents Chemother. 2018, 62, 10. [CrossRef]
5. Philippon, A.; Arlet, G.; Jacoby, G.A. Plasmid-determined AmpC-type beta-lactamases. Antimicrob. Agents Chemother. 2002, 46, 1–11. [CrossRef] [PubMed]
6. Honore, N.; Nicolas, M.H.; Cole, S.T. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 1986, 5, 3709–3714. [CrossRef]
7. Papanicolau, G.A.; Medeiros, A.A.; Jacoby, G.A. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 1990, 34, 2200–2209. [CrossRef]
8. Huang, X.H.; Kuan, N.L.; Yeh, K.S. Characteristics of extended-spectrum beta-lactamase-producing Escherichia coli from dogs and cats admitted to a veterinary teaching hospital in Taipei, Taiwan from 2014 to 2017. Front. Vet. Sci. 2020, 7, 395. [CrossRef]
9. Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum beta-lactamase producing-Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [CrossRef]
10. McLain, J.E.; Cytryn, E.; Durso, L.M.; Young, S. Culture-based methods for detection of antibiotic resistance in agroecosystems: Advantages, challenges, and gaps in knowledge. J. Environ. Qual. 2016, 45, 432–440. [CrossRef]
11. Tsuyuki, Y.; Kurita, G.; Murata, Y.; Takahashi, T.; Veterinary Infection Control Association Sepsis Working Group. Bacteria isolated from companion animals in Japan (2014–2016) by blood culture. J. Infect. Chemother. 2018, 24, 583–587. [CrossRef]
12. Sun, Y.; Zeng, Z.; Chen, S.; Ma, J.; He, L.; Liu, Y.; Deng, Y.; Lei, T.; Zhao, J.; Liu, J.H. High prevalence of bla(CTX-M) extended-spectrum beta-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin. Microbiol. Infect. 2010, 16, 1475–1481. [CrossRef]
13. Ejaz, H.; Younas, S.; Abosalif, K.O.A.; Junaid, K.; Alzahrani, B.; Alshran, A.; Abdalla, A.E.; Ullah, M.I.; Qamar, M.U.; Hamam, S.S.M. Molecular analysis of blashV, blatem, and blactx-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE. 2021, 16, e0245126. [CrossRef] [PubMed]
14. Okeke, I.N.; Lamikanra, A.; Edelman, R. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerg. Infect. Dis. 1999, 5, 18–27. [CrossRef]
15. Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Herman, L.; Haesebrouck, F.; Butaye, P. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiol. Rev. 2010, 34, 295–316. [CrossRef] [PubMed]
16. Cejas, D.; Fernandez Caniglia, L.; Quinteros, M.; Giovanakis, M.; Vay, C.; Lascialandare, S.; Mutti, D.; Pagniez, G.; Almuzara, M.; Gutkind, G.; et al. Plasmid-encoded AmpC (pAmpC) in Enterobacteriaceae: Epidemiology of microorganisms and resistance markers. Rev. Argent. Microbiol. 2012, 44, 182–186. [CrossRef]

17. Rumi, M.V.; Mas, J.; Elena, A.; Cerdeira, L.; Munoz, M.E.; Lincopan, N.; Gentilini, E.R.; Di Conza, J.; Gutkind, G. Co-occurrence of clinically relevant beta-lactamases and MCR-1 encoding genes in Escherichia coli from companion animals in Argentina. Vet. Microbiol. 2019, 230, 228–234. [CrossRef]

18. Huber, H.; Zweifel, C.; Wittenbrink, M.M.; Stephan, R. ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet. Microbiol. 2013, 162, 992–996. [CrossRef]

19. Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.W.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; van der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-β-lactamase and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [CrossRef]

20. Bogaerts, P.; Huang, T.D.; Bouchahrour, W.; Baurain, G.; Berhin, C.; El Garch, F.; Glupczynski, Y.; ComPath Study Group. Characterization of ESBL- and AmpC-producing Enterobacteriaceae from diseased companion animals in Europe. Microb. Drug. Resist. 2015, 21, 643–650. [CrossRef]

21. Maeyama, Y.; Taniguchi, Y.; Hayashi, W.; Ohsaki, Y.; Osaka, S.; Koide, S.; Tamai, K.; Nagano, Y.; Arakawa, Y.; Nagano, N. Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet. Microbiol. 2018, 216, 183–189. [CrossRef] [PubMed]

22. Shaheen, B.W.; Nayak, S.; Foley, S.L.; Kweon, O.; Deck, J.; Park, M.; Rafii, F.; Boothe, D.M. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob. Agents Chemother. 2011, 55, 665–679. [CrossRef] [PubMed]

23. Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz. J. Microbiol. 2016, 47, 150–158. [CrossRef]

24. Teunis, P.F.M.; Evers, E.G.; Hengeveld, P.D.; Dierikx, C.M.; Wielders, C.C.H.; van Duijkeren, E. Time to acquire and lose carrierness of ESBL/pAmpC producing E. coli in humans in the Netherlands. PLoS ONE 2018, 13, e0193834. [CrossRef] [PubMed]

25. Mathers, A.J.; Peirano, G.; Pitout, J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [CrossRef]

26. Pomba, C.; da Fonseca, J.D.; Baptista, B.C.; Correia, J.D.; Martinez-Martinez, L. Detection of the pandemic O25b-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6′)-Ib-cr genes in a dog. Antimicrob. Agents Chemother. 2009, 53, 327–328. [CrossRef] [PubMed]

27. Timofte, D.; Maciuca, I.E.; Kemmett, K.; Wattret, A.; Williams, N.J. Detection of the human pandemic Escherichia coli B2-O25b-ST131 in UK dogs. Vet. Rec. 2014, 174, 4352. [CrossRef] [PubMed]

28. Tchesnokova, V.; Radey, M.; Chattopadhyay, S.; Larson, L.; Weaver, J.L.; Kisiela, D.; Sokurenko, E.V. Pandemic fluoroquinolone resistant Escherichia coli clone ST1193 emerged via simultaneous homologous recombination in 11 gene loci. Proc. Natl. Acad. Sci. USA 2019, 116, 14740–14748. [CrossRef] [PubMed]

29. Johnson, J.R.; Johnston, B.D.; Porter, S.B.; Clabots, C.; Bender, T.L.; Thuras, P.; Trott, D.J.; Cobbold, R.; Mollinger, J.; Ferrieri, P.; et al. Rapid emergence, subsidence, and molecular detection of Escherichia coli sequence type 1193-fimH64, a new disseminated multidrug-resistant commensal and extraintestinal pathogen. J. Clin. Microbiol. 2019, 57, e01664-18. [CrossRef]

30. Platell, J.L.; Trott, D.J.; Johnson, J.R.; Heigis, P.; Heigis, A.; Clabots, C.R.; Johnston, B.; Cobbold, R.N. Prominence of an O75 clonal group (clonal complex 14) among non-ST131 fluoroquinolone-resistant Escherichia coli causing extraintestinal infections in humans and dogs in Australia. Antimicrob. Agents Chemother. 2012, 56, 3898–3904. [CrossRef]

31. Valenza, G.; Werner, M.; Eisenberger, D.; Nickel, S.; Lehner-Reindl, V.; Holler, C.; Bogdan, C. First report of the new emerging global clone ST1193 among clinical isolates of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in Argentina. J. Glob. Antimicrob. Resist. 2019, 17, 305–308. [CrossRef]

32. Kim, Y.; Oh, T.; Nam, Y.S.; Cho, S.Y.; Lee, H.J. Prevalence of ST131 and ST1193 among bloodstream isolates of Escherichia coli not susceptible to ciprofloxacin in a tertiary care university hospital in Korea, 2013–2014. Clin. Lab. 2017, 63, 1541–1543. [CrossRef]

33. Wu, J.; Lan, F.; Lu, Y.; He, Q.; Li, B. Molecular characteristics of ST1193 clone among phylogenetic group B2 non-ST131 fluoroquinolone-resistant Escherichia coli. Front. Microbiol. 2017, 8, 2294. [CrossRef]

34. Tchesnokova, V.L.; Rechkind, E.; Larson, L.; Ferrier, K.; Weaver, J.L.; Schroeder, D.W.; She, R.; Butler-Wu, S.M.; Aguero-Rosenfeld, M.E.; Zerr, D.; et al. Rapid and extensive expansion in the United States of a new multidrug-resistant Escherichia coli clonal group, sequence type 1193. Clin. Infect. Dis. 2019, 68, 334–337. [CrossRef]

35. Chen, Y.; Chen, X.; Zheng, S.; Yu, F.; Kong, H.; Yang, Q.; Cui, D.; Chen, N.; Lou, B.; Li, X.; et al. Serotypes, genotypes and antimicrobial resistance patterns of human diarrhoeagenic Escherichia coli isolates circulating in southeastern China. Clin. Microbiol. Infect. 2014, 20, 52–58. [CrossRef]

36. Maluta, R.P.; Logue, C.M.; Casas, M.R.; Menge, T.; Guastalli, E.A.; Rojas, T.C.; Montelli, A.C.; Sadatsune, T.; de Carvalho Ramos, M.; Nolan, L.K.; et al. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS ONE 2014, 9, e015016. [CrossRef] [PubMed]

37. Vogt, D.; Overesch, G.; Endimiani, A.; Collaud, A.; Thoman, A.; Perreten, V. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb. Drug. Resist. 2014, 20, 485–494. [CrossRef] [PubMed]
38. Tzouvelekis, L.S.; Tzelepi, E.; Mentis, A.F.; Tsakris, A. Identification of a novel plasmid-mediated beta-lactamase with chromosomally encoded characteristics from *Klebsiella pneumoniae*. *J. Antimicrob. Chemother.* 1993, 31, 645–654. [CrossRef]

39. Wu, S.W.; Dornbusch, K.; Kronvall, G.; Norgren, M. Characterization and nucleotide sequence of a *Klebsiella oxytoca* cryptic plasmid encoding a CMY-type beta-lactamase: Confirmation that the plasmid-mediated cephaporycinase originated from the *Citrobacter freundii* AmpC beta-lactamase. *Antimicrob. Agents Chemother.* 1999, 43, 1350–1357. [CrossRef]

40. Barker, C.W.; Zhang, W.; Sanchez, S.; Budsberg, S.C.; Boudinot, F.D.; Stevenson, M.A.M. Pharmacokinetics of imipenem in dogs. *Am. J. Vet. Res.* 2003, 64, 694–699. [CrossRef] [PubMed]

41. Hong, J.S.; Song, W.; Park, H.M.; Oh, J.Y.; Chae, J.C.; Han, J.I.; Jeong, S.H. First detection of New Delhi metallo-beta-lactamase-producing *Escherichia coli* from companion animals in Korea. *Microb. Drug. Resist.* 2019, 25, 344–349. [CrossRef] [PubMed]

42. Cole, S.D.; Peak, L.; Tyson, G.H.; Reimschuessel, R.; Ceric, O.; Rankin, S.C. New Delhi metallo-beta-lactamase-producing *Escherichia coli* in companion animals, United States. *Emerg. Infect. Dis.* 2020, 26, 381–383. [CrossRef] [PubMed]

43. Sutcliffe, J.G. Nucleotide sequence of ampicillin resistance gene of *Escherichia coli* JM109, a new plasmid. *BMC Microbiol.* 2003, 3, 3737–3741. [CrossRef]

44. Chia, J.H.; Chu, C.; Su, I.H.; Chiu, C.H.; Kuo, A.J.; Sun, C.F.; Wu, T.L. Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M beta-lactamases of *Escherichia coli*, *Klebsiella pneumoniae*, and *Enterobacter cloacae* in Taiwan. *J. Clin. Microbiol.* 2005, 43, 4486–4491. [CrossRef]

45. Yu, Y.; Ji, S.; Chen, Y.; Zhou, W.; Wei, Z.; Li, L.; Ma, Y. Resistance of strains producing extended-spectrum beta-lactamases and genotype distribution in China. *J. Infect.* 2007, 54, 53–57. [CrossRef]

46. Shaheen, B.W.; Oyarzabal, O.A.; Boothe, D.M. The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical *E. coli* isolates from the US. *Vet. Microbiol.* 2010, 144, 363–370. [CrossRef] [PubMed]

47. Sutcliffe, J.G. Nucleotide sequence of ampicillin resistance gene of *Escherichia coli* plasmid pBR322. *Proc. Natl. Acad. Sci. USA* 1978, 75, 3737–3741. [CrossRef]

48. Chia, J.H.; Chu, C.; Su, I.H.; Chiu, C.H.; Kuo, A.J.; Sun, C.F.; Wu, T.L. Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M beta-lactamases of *Escherichia coli*, *Klebsiella pneumoniae*, and *Enterobacter cloacae* in Taiwan. *J. Clin. Microbiol.* 2005, 43, 4486–4491. [CrossRef]

49. Yu, Y.; Ji, S.; Chen, Y.; Zhou, W.; Wei, Z.; Li, L.; Ma, Y. Resistance of strains producing extended-spectrum beta-lactamases and genotype distribution in China. *J. Infect.* 2007, 54, 53–57. [CrossRef]

50. Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. *J. Antimicrob. Chemother.* 2006, 57, 154–155. [CrossRef] [PubMed]

51. Zhang, J.; Zheng, B.; Zhao, L.; Wei, Z.; Ji, J.; Li, L.; Xiao, Y. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in *Escherichia coli* isolated from patients with community-onset infections in Chinese county hospitals. *BMC Infect. Dis.* 2014, 14, 659. [CrossRef]

52. Javier Pérez-Pérez, F.; Hanson, N.D. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. *J. Clin. Microbiol.* 2002, 40, 2153–2162. [CrossRef]

53. Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the *Escherichia coli* phylogenetic group. *Appl. Environ. Microbiol.* 2000, 66, 4555–4558. [CrossRef] [PubMed]

54. Clermont, O.; Bonacorsi, S.; Bingen, E. Characterization of an anonymous molecular marker strongly linked to *Escherichia coli* strains causing neonatal meningitis. *J. Clin. Microbiol.* 2004, 42, 1770–1772. [CrossRef]

55. Lescat, M.; Clermont, O.; Woerther, P.L.; Glodt, J.; Dion, S.; Skurnik, D.; Djossou, F.; Dupont, C.; Perroz, G.; Picard, B.; et al. Commensal *Escherichia coli* strains in Guiana reveal a high genetic diversity with host-dependant population structure. *Environ. Microbiol. Rep.* 2013, 5, 49–57. [CrossRef] [PubMed]

56. Lescat, M.; Clermont, O.; Woerther, P.L.; Glodt, J.; Dion, S.; Skurnik, D.; Djossou, F.; Dupont, C.; Perroz, G.; Picard, B.; et al. Commensal *Escherichia coli* strains in Guiana reveal a high genetic diversity with host-dependant population structure. *Environ. Microbiol. Rep.* 2013, 5, 49–57. [CrossRef] [PubMed]

57. Clermont, O.; Lescat, M.; O’Brien, C.L.; Gordon, D.M.; Tenailleon, O.; Denamur, E. Evidence for a human-specific *Escherichia coli* clone. *Environ. Microbiol.* 2008, 10, 1000–1006. [CrossRef] [PubMed]

58. Clermont, O.; Dhanji, H.; Upton, M.; Gibreel, T.; Fox, A.; Boyd, D.; Mulvey, M.R.; Nordmann, P.; Ruppe, E.; Sarthou, J.L.; et al. Rapid detection of the O25b-ST131 clone of *Escherichia coli* encompassing the CTX-M-15-producing strains. *J. Antimicrob. Chemother.* 2009, 64, 274–277. [CrossRef] [PubMed]

59. Tamang, M.D.; Nam, H.M.; Jang, G.C.; Kim, S.R.; Chae, M.H.; Jung, S.C.; Byun, J.W.; Park, Y.H.; Lim, S.K. Molecular characterization of extended-spectrum-beta-lactamase-producing and plasmid-mediated AmpC beta-lactamase-producing *Escherichia coli* isolated from stray dogs in South Korea. *Antimicrob. Agents Chemother.* 2012, 56, 2705–2712. [CrossRef]